{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "kgMvP3SF-w_X" }, "source": [ "##### Copyright 2022 The TensorFlow Authors." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "cellView": "form", "execution": { "iopub.execute_input": "2024-08-24T11:22:50.377868Z", "iopub.status.busy": "2024-08-24T11:22:50.377364Z", "iopub.status.idle": "2024-08-24T11:22:50.381283Z", "shell.execute_reply": "2024-08-24T11:22:50.380753Z" }, "id": "yhrhZl5t-yUe" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "ZuQzYr8B1J1K" }, "source": [ "# Visualizing TensorFlow Decision Forest Trees with dtreeviz\n", "\n", "\n", " \n", " \n", " \n", " \n", "
\n", " View on TensorFlow.org\n", " \n", " Run in Google Colab\n", " \n", " View on GitHub\n", " \n", " Download notebook\n", "
\n" ] }, { "cell_type": "markdown", "metadata": { "id": "WROGgnC0_X4n" }, "source": [ "## Introduction\n", "\n", "The [beginner tutorial](https://www.tensorflow.org/decision_forests/tutorials/beginner_colab) demonstrates how to prepare data, train, and evaluate (Random Forest, Gradient Boosted Trees and CART) classifiers and regressors using TensorFlow's Decision Forests. (We'll abbreviate TensorFlow Decision Forests *TF-DF*.) You also learned how to visualize trees using the builtin `plot_model_in_colab()` function and to display feature importance measures.\n", "\n", "The goal of this tutorial is to dig deeper into the interpretation of classifier and regressor decision trees through visualization. We'll look at detailed tree structure illustrations and also depictions of how decision trees partition feature space to make decisions. Tree structure plots help us understand the behavior of our model and feature space plots help us understand our data by surfacing the relationship between features and target variables.\n", "\n", "The visualization library we'll use is called [dtreeviz](https://github.com/parrt/dtreeviz) and, for consistency, we'll reuse the penguin and abalone data from the beginner tutorial. (To learn more about dtreeviz and the visualization of decision trees, see the [YouTube video](https://www.youtube.com/watch?v=4FC1D9SuDBc) or the article on the [design of dtreeviz](https://explained.ai/decision-tree-viz/index.html)).\n", "\n", "In this tutorial, you'll learn how to\n", "\n", "* display the structure of decision trees from a TF-DF forest\n", "* alter the size and style of dtreeviz tree structure plots\n", "* plot leaf information, such as the number of instances per leaf, the distribution of target values in each leaf, and various statistics about leaves\n", "* trace a tree's interpretation for a specific instance and show the path from the root to the leaf that makes the prediction\n", "* print an English interpretation of how the tree interprets an instance\n", "* view one and two dimensional feature spaces to see how the model partitions them into regions of similar instances" ] }, { "cell_type": "markdown", "metadata": { "id": "gl0tV6RueIb3" }, "source": [ "## Setup" ] }, { "cell_type": "markdown", "metadata": { "id": "oC6TkF60jjRV" }, "source": [ "### Install TF-DF and dtreeviz" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:22:50.384643Z", "iopub.status.busy": "2024-08-24T11:22:50.384430Z", "iopub.status.idle": "2024-08-24T11:23:18.607012Z", "shell.execute_reply": "2024-08-24T11:23:18.605922Z" }, "id": "rWVR82cI2XBD" }, "outputs": [], "source": [ "!pip install -q -U tensorflow_decision_forests==1.9.2 # Warning: dtreeviz is not compatible with TF-DF >= 1.10.0" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:18.611096Z", "iopub.status.busy": "2024-08-24T11:23:18.610833Z", "iopub.status.idle": "2024-08-24T11:23:20.510823Z", "shell.execute_reply": "2024-08-24T11:23:20.509861Z" }, "id": "cM2_M_KY2jjr" }, "outputs": [], "source": [ "!pip install -q -U dtreeviz" ] }, { "cell_type": "markdown", "metadata": { "id": "am88uNiGjpQN" }, "source": [ "### Import libraries" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:20.515185Z", "iopub.status.busy": "2024-08-24T11:23:20.514936Z", "iopub.status.idle": "2024-08-24T11:23:24.246766Z", "shell.execute_reply": "2024-08-24T11:23:24.246030Z" }, "id": "UU8lDr622ZWi" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2024-08-24 11:23:20.927022: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:479] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", "2024-08-24 11:23:20.953649: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:10575] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", "2024-08-24 11:23:20.953682: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1442] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/tmpfs/tmp/ipykernel_8633/31193553.py:20: DeprecationWarning: `set_matplotlib_formats` is deprecated since IPython 7.23, directly use `matplotlib_inline.backend_inline.set_matplotlib_formats()`\n" ] } ], "source": [ "import tensorflow_decision_forests as tfdf\n", "\n", "import tensorflow as tf\n", "\n", "import os\n", "import numpy as np\n", "import pandas as pd\n", "import tensorflow as tf\n", "import math\n", "\n", "import dtreeviz\n", "\n", "from matplotlib import pyplot as plt\n", "from IPython import display\n", "\n", "# avoid \"Arial font not found warnings\"\n", "import logging\n", "logging.getLogger('matplotlib.font_manager').setLevel(level=logging.CRITICAL)\n", "\n", "display.set_matplotlib_formats('retina') # generate hires plots\n", "\n", "np.random.seed(1234) # reproducible plots/data for explanatory reasons" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:24.250116Z", "iopub.status.busy": "2024-08-24T11:23:24.249705Z", "iopub.status.idle": "2024-08-24T11:23:24.254932Z", "shell.execute_reply": "2024-08-24T11:23:24.254305Z" }, "id": "tqu6EVKMbX3N" }, "outputs": [ { "data": { "text/plain": [ "('1.9.2', '2.2.2')" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Let's check the versions:\n", "tfdf.__version__, dtreeviz.__version__ # want dtreeviz >= 2.2.0" ] }, { "cell_type": "markdown", "metadata": { "id": "VUXskgdymAPe" }, "source": [ "It'll be handy to have a function to split a data set into training and test sets so let's define one:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:24.258031Z", "iopub.status.busy": "2024-08-24T11:23:24.257511Z", "iopub.status.idle": "2024-08-24T11:23:24.261666Z", "shell.execute_reply": "2024-08-24T11:23:24.261090Z" }, "id": "Ia3YOR8mmCtI" }, "outputs": [], "source": [ "def split_dataset(dataset, test_ratio=0.30, seed=1234):\n", " \"\"\"\n", " Splits a panda dataframe in two, usually for train/test sets.\n", " Using the same random seed ensures we get the same split so\n", " that the description in this tutorial line up with generated images.\n", " \"\"\"\n", " np.random.seed(seed)\n", " test_indices = np.random.rand(len(dataset)) < test_ratio\n", " return dataset[~test_indices], dataset[test_indices]" ] }, { "cell_type": "markdown", "metadata": { "id": "dfFjKqUeTpxe" }, "source": [ "## Visualizing Classifier Trees\n", "\n", "Using the penguin data, let's build a classifier to predict the `species` (`Adelie`, `Gentoo`, or `Chinstrap`) from the other 7 columns. Then, we can use dtreeviz to display the tree and interrogate the model to learn more about how it makes decisions and to learn more about our data." ] }, { "cell_type": "markdown", "metadata": { "id": "7wDQTQ3mU50S" }, "source": [ "### Load, clean, and prep data\n", "\n", "As we did in the beginner tutorial, let's start by downloading the penguin data and get it into a pandas dataframe." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:24.264881Z", "iopub.status.busy": "2024-08-24T11:23:24.264472Z", "iopub.status.idle": "2024-08-24T11:23:24.511564Z", "shell.execute_reply": "2024-08-24T11:23:24.510820Z" }, "id": "zxy8Z70z4gf-" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
speciesislandbill_length_mmbill_depth_mmflipper_length_mmbody_mass_gsexyear
0AdelieTorgersen39.118.7181.03750.0male2007
1AdelieTorgersen39.517.4186.03800.0female2007
2AdelieTorgersen40.318.0195.03250.0female2007
\n", "
" ], "text/plain": [ " species island bill_length_mm bill_depth_mm flipper_length_mm \\\n", "0 Adelie Torgersen 39.1 18.7 181.0 \n", "1 Adelie Torgersen 39.5 17.4 186.0 \n", "2 Adelie Torgersen 40.3 18.0 195.0 \n", "\n", " body_mass_g sex year \n", "0 3750.0 male 2007 \n", "1 3800.0 female 2007 \n", "2 3250.0 female 2007 " ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Download the Penguins dataset\n", "!wget -q https://storage.googleapis.com/download.tensorflow.org/data/palmer_penguins/penguins.csv -O /tmp/penguins.csv\n", "\n", "# Load a dataset into a Pandas Dataframe.\n", "df_penguins = pd.read_csv(\"/tmp/penguins.csv\")\n", "df_penguins.head(3)" ] }, { "cell_type": "markdown", "metadata": { "id": "_f7uchI4m8o4" }, "source": [ "A quick check shows that there are missing values in the data set:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:24.515182Z", "iopub.status.busy": "2024-08-24T11:23:24.514920Z", "iopub.status.idle": "2024-08-24T11:23:24.520353Z", "shell.execute_reply": "2024-08-24T11:23:24.519784Z" }, "id": "9ezd79LBnM53" }, "outputs": [ { "data": { "text/plain": [ "['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 'body_mass_g', 'sex']" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_penguins.columns[df_penguins.isna().any()].tolist()" ] }, { "cell_type": "markdown", "metadata": { "id": "XeR5el2An8bS" }, "source": [ "Rather than impute missing values, let's just drop incomplete rows to focus on visualization for this tutorial:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:24.523182Z", "iopub.status.busy": "2024-08-24T11:23:24.522931Z", "iopub.status.idle": "2024-08-24T11:23:24.527022Z", "shell.execute_reply": "2024-08-24T11:23:24.526399Z" }, "id": "jrNi7JspAre2" }, "outputs": [], "source": [ "df_penguins = df_penguins.dropna() # E.g., 19 rows have missing sex etc..." ] }, { "cell_type": "markdown", "metadata": { "id": "_1WLYlZloLcC" }, "source": [ "TF-DF requires classification labels to be integers in [0, num_labels), so let's convert the label column `species` from strings to integers.\n", "\n", "**Note:** TF-DF supports categorical string input features. You don't need to encode any feature values." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:24.530225Z", "iopub.status.busy": "2024-08-24T11:23:24.529698Z", "iopub.status.idle": "2024-08-24T11:23:24.540963Z", "shell.execute_reply": "2024-08-24T11:23:24.540414Z" }, "id": "RBYJMGmn4lgu" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Target 'species'' classes: ['Adelie', 'Gentoo', 'Chinstrap']\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
speciesislandbill_length_mmbill_depth_mmflipper_length_mmbody_mass_gsexyear
00Torgersen39.118.7181.03750.0male2007
10Torgersen39.517.4186.03800.0female2007
20Torgersen40.318.0195.03250.0female2007
\n", "
" ], "text/plain": [ " species island bill_length_mm bill_depth_mm flipper_length_mm \\\n", "0 0 Torgersen 39.1 18.7 181.0 \n", "1 0 Torgersen 39.5 17.4 186.0 \n", "2 0 Torgersen 40.3 18.0 195.0 \n", "\n", " body_mass_g sex year \n", "0 3750.0 male 2007 \n", "1 3800.0 female 2007 \n", "2 3250.0 female 2007 " ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "penguin_label = \"species\" # Name of the classification target label\n", "classes = list(df_penguins[penguin_label].unique())\n", "df_penguins[penguin_label] = df_penguins[penguin_label].map(classes.index)\n", "\n", "print(f\"Target '{penguin_label}'' classes: {classes}\")\n", "df_penguins.head(3)" ] }, { "cell_type": "markdown", "metadata": { "id": "5d81SeuHq_2i" }, "source": [ "Now, let's get a 70-30 split for training and testing using our convenience function defined above, and then convert those dataframes into tensorflow data sets." ] }, { "cell_type": "markdown", "metadata": { "id": "4jljZTvCVCR9" }, "source": [ "### Split train/test set and train model" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:24.544333Z", "iopub.status.busy": "2024-08-24T11:23:24.544088Z", "iopub.status.idle": "2024-08-24T11:23:26.829784Z", "shell.execute_reply": "2024-08-24T11:23:26.829124Z" }, "id": "fU49bP6C5dlJ" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "243 examples in training, 90 examples for testing.\n" ] } ], "source": [ "# Split into training and test sets\n", "train_ds_pd, test_ds_pd = split_dataset(df_penguins)\n", "print(f\"{len(train_ds_pd)} examples in training, {len(test_ds_pd)} examples for testing.\")\n", "\n", "# Convert to tensorflow data sets\n", "train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(train_ds_pd, label=penguin_label)\n", "test_ds = tfdf.keras.pd_dataframe_to_tf_dataset(test_ds_pd, label=penguin_label)" ] }, { "cell_type": "markdown", "metadata": { "id": "D6Dfhu3mrutT" }, "source": [ "### Train a random forest classifier" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:26.833251Z", "iopub.status.busy": "2024-08-24T11:23:26.832979Z", "iopub.status.idle": "2024-08-24T11:23:34.638681Z", "shell.execute_reply": "2024-08-24T11:23:34.637945Z" }, "id": "-Veh05HX5hU2" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "[INFO 24-08-24 11:23:30.6792 UTC kernel.cc:1233] Loading model from path /tmpfs/tmp/tmp9lux37mm/model/ with prefix 6f4d2502a3684ad1\n", "[INFO 24-08-24 11:23:30.6924 UTC decision_forest.cc:734] Model loaded with 300 root(s), 4310 node(s), and 7 input feature(s).\n", "[INFO 24-08-24 11:23:30.6924 UTC abstract_model.cc:1344] Engine \"RandomForestGeneric\" built\n", "[INFO 24-08-24 11:23:30.6924 UTC kernel.cc:1061] Use fast generic engine\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Train a Random Forest model\n", "cmodel = tfdf.keras.RandomForestModel(verbose=0, random_seed=1234)\n", "cmodel.fit(train_ds)" ] }, { "cell_type": "markdown", "metadata": { "id": "DcUeypEMsaFR" }, "source": [ "Just to verify that everything is working properly, let's check the accuracy of the model, which should be about 99%:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:34.642090Z", "iopub.status.busy": "2024-08-24T11:23:34.641842Z", "iopub.status.idle": "2024-08-24T11:23:38.378009Z", "shell.execute_reply": "2024-08-24T11:23:38.377358Z" }, "id": "7BNmaeLqsJOb" }, "outputs": [ { "data": { "text/plain": [ "{'loss': 0.0, 'accuracy': 0.9888888597488403}" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cmodel.compile(metrics=[\"accuracy\"])\n", "cmodel.evaluate(test_ds, return_dict=True, verbose=0)" ] }, { "cell_type": "markdown", "metadata": { "id": "rWMj6nSgBqGe" }, "source": [ "Yep, the model is accurate on the test set." ] }, { "cell_type": "markdown", "metadata": { "id": "mK7OsBZuVStM" }, "source": [ "### Display decision tree\n", "\n", "Now that we have a model, let's pick one of the trees in the random forest and take a look at its structure. The dtreeviz library asks us to bundle up the TF-DF model with the associated training data, which it can then use to repeatedly interrogate the model.\n", "\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:38.381678Z", "iopub.status.busy": "2024-08-24T11:23:38.381423Z", "iopub.status.idle": "2024-08-24T11:23:38.395642Z", "shell.execute_reply": "2024-08-24T11:23:38.394990Z" }, "id": "-p6DsbVZ5yFF" }, "outputs": [], "source": [ "# Tell dtreeviz about training data and model\n", "penguin_features = [f.name for f in cmodel.make_inspector().features()]\n", "viz_cmodel = dtreeviz.model(cmodel,\n", " tree_index=3,\n", " X_train=train_ds_pd[penguin_features],\n", " y_train=train_ds_pd[penguin_label],\n", " feature_names=penguin_features,\n", " target_name=penguin_label,\n", " class_names=classes)" ] }, { "cell_type": "markdown", "metadata": { "id": "VOw7d4SawtIo" }, "source": [ "The most common dtreeviz API function is `view()`, which displays the structure of the tree as well as the feature distributions for the instances associated with each decision node." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:38.398779Z", "iopub.status.busy": "2024-08-24T11:23:38.398548Z", "iopub.status.idle": "2024-08-24T11:23:39.769279Z", "shell.execute_reply": "2024-08-24T11:23:39.768470Z" }, "id": "nYUeb1js5o8J" }, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "G\n", "\n", "\n", "cluster_legend\n", "\n", "\n", "\n", "node6\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:38.598931\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "leaf7\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:39.478461\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node6->leaf7\n", "\n", "\n", "\n", "\n", "\n", "leaf8\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:39.506933\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node6->leaf8\n", "\n", "\n", "\n", "\n", "\n", "node4\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:38.693908\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node4->node6\n", "\n", "\n", "\n", "\n", "\n", "leaf5\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:39.448936\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node4->leaf5\n", "\n", "\n", "\n", "\n", "\n", "leaf9\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:39.534909\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "node3\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:38.798581\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node3->node4\n", "\n", "\n", "\n", "\n", "\n", "node3->leaf9\n", "\n", "\n", "\n", "\n", "\n", "node1\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:38.908684\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node1->node3\n", "\n", "\n", "\n", "\n", "\n", "node10\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:39.237129\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "leaf2\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:39.420516\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node1->leaf2\n", "\n", "\n", "\n", "\n", "\n", "node13\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:39.009415\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "leaf14\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:39.596193\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node13->leaf14\n", "\n", "\n", "\n", "\n", "\n", "leaf15\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:39.623097\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node13->leaf15\n", "\n", "\n", "\n", "\n", "\n", "leaf16\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:39.651882\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "node12\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:39.123593\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node12->node13\n", "\n", "\n", "\n", "\n", "\n", "node12->leaf16\n", "\n", "\n", "\n", "\n", "\n", "node10->node12\n", "\n", "\n", "\n", "\n", "\n", "leaf11\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:39.564593\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node10->leaf11\n", "\n", "\n", "\n", "\n", "\n", "node0\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:39.351431\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node0->node1\n", "\n", "\n", "  <\n", "\n", "\n", "\n", "node0->node10\n", "\n", "\n", "  ≥\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "legend\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:38.434553\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "" ], "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "viz_cmodel.view(scale=1.2)" ] }, { "cell_type": "markdown", "metadata": { "id": "x-MsxE4-jYLW" }, "source": [ "The root of the decision tree indicates that classification begins by testing the `flipper_length_mm` feature with a split value of 206. If a test instance's `flipper_length_mm` feature value is less than 206, the decision tree descends the left child. If it is larger or equal to 206, classification proceeds by descending the right child.\n", "\n", "To see why the model chose to split the training data at `flipper_length_mm`=206, let's zoom in on the root node:" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:39.776497Z", "iopub.status.busy": "2024-08-24T11:23:39.776193Z", "iopub.status.idle": "2024-08-24T11:23:40.086512Z", "shell.execute_reply": "2024-08-24T11:23:40.085566Z" }, "id": "E_RCrfXtBMB1" }, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "G\n", "\n", "\n", "cluster_legend\n", "\n", "\n", "\n", "node0\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:39.979378\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "legend\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:39.807891\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "" ], "text/plain": [ "" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "viz_cmodel.view(depth_range_to_display=[0,0], scale=1.5)" ] }, { "cell_type": "markdown", "metadata": { "id": "MaLbmDVuBVaJ" }, "source": [ "It's clear to the human eye that almost all instances to the right of 206 are blue (`Gentoo` Penguins). So, with a single feature comparison, the model can split the training data into a fairly pure `Gentoo` group and a mixed group. (The model will further purify the subgroups with future splits below the root.)\n", "\n", "The decision tree also has a categorical decision node, which can test category subsets rather than simple numeric splits. For example, let's take a look at the second level of the tree:\n", "\n", "" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:40.090412Z", "iopub.status.busy": "2024-08-24T11:23:40.090108Z", "iopub.status.idle": "2024-08-24T11:23:40.765796Z", "shell.execute_reply": "2024-08-24T11:23:40.764997Z" }, "id": "FIwp-ooxCsMw" }, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "G\n", "\n", "\n", "cluster_legend\n", "\n", "\n", "\n", "node1\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:40.304952\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node10\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:40.413073\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "legend\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:40.124126\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "" ], "text/plain": [ "" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "viz_cmodel.view(depth_range_to_display=[1,1], scale=1.5)" ] }, { "cell_type": "markdown", "metadata": { "id": "ctndFMe8CqqR" }, "source": [ "The node (on the left) tests feature `island` and, if a test instance has `island==Dream`, classification proceeds down it's right child. For the other two categories, `Torgersen` and `Biscoe`, classification proceeds down it's left child. (The `bill_length_mm` node on the right in this plot is not relevant to this discussion of categorical decision nodes.)\n", "\n", "This splitting behavior highlights that decision trees partition feature space into regions with the goal of increasing target value purity. We'll look at feature space in more detail below.\n", "\n", "Decision trees can get very large and it's not always useful to plot them in their entirety. But, we can look at simpler versions of the tree, portions of the tree, the number of training instances in the various leaves (where predictions are made), etc... Here's an example where we turn off the fancy decision node distribution illustrations and scale the whole image down to 75%:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:40.770108Z", "iopub.status.busy": "2024-08-24T11:23:40.769838Z", "iopub.status.idle": "2024-08-24T11:23:41.239333Z", "shell.execute_reply": "2024-08-24T11:23:41.238230Z" }, "id": "Mj-LiHi4KP-h" }, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "G\n", "\n", "\n", "cluster_legend\n", "\n", "\n", "\n", "node6\n", "flipper_length_mm@189.00\n", "\n", "\n", "\n", "leaf7\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:40.977928\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node6->leaf7\n", "\n", "\n", "\n", "\n", "\n", "leaf8\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:41.006894\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node6->leaf8\n", "\n", "\n", "\n", "\n", "\n", "node4\n", "bill_length_mm@40.60\n", "\n", "\n", "\n", "node4->node6\n", "\n", "\n", "\n", "\n", "\n", "leaf5\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:40.949298\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node4->leaf5\n", "\n", "\n", "\n", "\n", "\n", "leaf9\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:41.035889\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "node3\n", "bill_length_mm@44.20\n", "\n", "\n", "\n", "node3->node4\n", "\n", "\n", "\n", "\n", "\n", "node3->leaf9\n", "\n", "\n", "\n", "\n", "\n", "node1\n", "island@Dream\n", "\n", "\n", "\n", "node1->node3\n", "\n", "\n", "\n", "\n", "\n", "node10\n", "bill_length_mm@41.85\n", "\n", "\n", "\n", "\n", "leaf2\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:40.920966\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node1->leaf2\n", "\n", "\n", "\n", "\n", "\n", "node13\n", "bill_length_mm@48.45\n", "\n", "\n", "\n", "leaf14\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:41.097903\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node13->leaf14\n", "\n", "\n", "\n", "\n", "\n", "leaf15\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:41.126130\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node13->leaf15\n", "\n", "\n", "\n", "\n", "\n", "leaf16\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:41.154202\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "node12\n", "flipper_length_mm@210.50\n", "\n", "\n", "\n", "node12->node13\n", "\n", "\n", "\n", "\n", "\n", "node12->leaf16\n", "\n", "\n", "\n", "\n", "\n", "node10->node12\n", "\n", "\n", "\n", "\n", "\n", "leaf11\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:41.065697\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node10->leaf11\n", "\n", "\n", "\n", "\n", "\n", "node0\n", "flipper_length_mm@206.00\n", "\n", "\n", "\n", "node0->node1\n", "\n", "\n", "  <\n", "\n", "\n", "\n", "node0->node10\n", "\n", "\n", "  ≥\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "legend\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:40.800249\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "" ], "text/plain": [ "" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "viz_cmodel.view(fancy=False, scale=.75)" ] }, { "cell_type": "markdown", "metadata": { "id": "x9IYKl5VzDTD" }, "source": [ "We can also use a left-to-right orientation, which sometimes results in a smaller plot:" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:41.243456Z", "iopub.status.busy": "2024-08-24T11:23:41.243167Z", "iopub.status.idle": "2024-08-24T11:23:43.304866Z", "shell.execute_reply": "2024-08-24T11:23:43.303905Z" }, "id": "OrARL5XmJrak" }, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "G\n", "\n", "\n", "cluster_legend\n", "\n", "\n", "\n", "node6\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:41.435018\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "leaf7\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:42.681410\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node6->leaf7\n", "\n", "\n", "\n", "\n", "\n", "leaf8\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:42.799113\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node6->leaf8\n", "\n", "\n", "\n", "\n", "\n", "node4\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:41.532545\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node4->node6\n", "\n", "\n", "\n", "\n", "\n", "leaf5\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:42.567848\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node4->leaf5\n", "\n", "\n", "\n", "\n", "\n", "leaf9\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:42.904770\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "node3\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:41.636906\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node3->node4\n", "\n", "\n", "\n", "\n", "\n", "node3->leaf9\n", "\n", "\n", "\n", "\n", "\n", "node1\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:41.751782\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node1->node3\n", "\n", "\n", "\n", "\n", "\n", "node10\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:42.199970\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "leaf2\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:42.469868\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node1->leaf2\n", "\n", "\n", "\n", "\n", "\n", "node13\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:41.858891\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "leaf14\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:43.132996\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node13->leaf14\n", "\n", "\n", "\n", "\n", "\n", "leaf15\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:43.161042\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node13->leaf15\n", "\n", "\n", "\n", "\n", "\n", "leaf16\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:43.188257\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "node12\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:41.982087\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node12->node13\n", "\n", "\n", "\n", "\n", "\n", "node12->leaf16\n", "\n", "\n", "\n", "\n", "\n", "node10->node12\n", "\n", "\n", "\n", "\n", "\n", "leaf11\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:43.018883\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node10->leaf11\n", "\n", "\n", "\n", "\n", "\n", "node0\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:42.319349\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node0->node1\n", "\n", "\n", "  <\n", "\n", "\n", "\n", "node0->node10\n", "\n", "\n", "  ≥\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "legend\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:41.275202\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "" ], "text/plain": [ "" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "viz_cmodel.view(orientation='LR', scale=.75)" ] }, { "cell_type": "markdown", "metadata": { "id": "3ubba6J_bGCG" }, "source": [ "If you're not a big fan of the pie charts, you can also get bar charts." ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:43.312168Z", "iopub.status.busy": "2024-08-24T11:23:43.311873Z", "iopub.status.idle": "2024-08-24T11:23:44.950651Z", "shell.execute_reply": "2024-08-24T11:23:44.949566Z" }, "id": "V8qMliA-bN38" }, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "G\n", "\n", "\n", "cluster_legend\n", "\n", "\n", "\n", "node6\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:43.504072\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "leaf7\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:44.649927\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node6->leaf7\n", "\n", "\n", "\n", "\n", "\n", "leaf8\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:44.678799\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node6->leaf8\n", "\n", "\n", "\n", "\n", "\n", "node4\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:43.599311\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node4->node6\n", "\n", "\n", "\n", "\n", "\n", "leaf5\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:44.619397\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node4->leaf5\n", "\n", "\n", "\n", "\n", "\n", "leaf9\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:44.707021\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "node3\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:43.703653\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node3->node4\n", "\n", "\n", "\n", "\n", "\n", "node3->leaf9\n", "\n", "\n", "\n", "\n", "\n", "node1\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:43.818060\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node1->node3\n", "\n", "\n", "\n", "\n", "\n", "node10\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:44.409557\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "leaf2\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:44.590497\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node1->leaf2\n", "\n", "\n", "\n", "\n", "\n", "node13\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:44.180153\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "leaf14\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:44.769315\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node13->leaf14\n", "\n", "\n", "\n", "\n", "\n", "leaf15\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:44.800617\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node13->leaf15\n", "\n", "\n", "\n", "\n", "\n", "leaf16\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:44.829366\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "node12\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:44.293686\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node12->node13\n", "\n", "\n", "\n", "\n", "\n", "node12->leaf16\n", "\n", "\n", "\n", "\n", "\n", "node10->node12\n", "\n", "\n", "\n", "\n", "\n", "leaf11\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:44.738045\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node10->leaf11\n", "\n", "\n", "\n", "\n", "\n", "node0\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:44.528502\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node0->node1\n", "\n", "\n", "  <\n", "\n", "\n", "\n", "node0->node10\n", "\n", "\n", "  ≥\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "legend\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:43.345147\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "" ], "text/plain": [ "" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "viz_cmodel.view(leaftype='barh', scale=.75)" ] }, { "cell_type": "markdown", "metadata": { "id": "RyyMHTolg9VN" }, "source": [ "### Examining leaf stats\n", "\n", "Decision trees make decisions at the leaf nodes and so it is sometimes useful to zoom in on those, particularly if the entire graph is too large to see all at once. Here is how to examine the number of training data instances that are grouped into each leaf node:" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:44.957665Z", "iopub.status.busy": "2024-08-24T11:23:44.957398Z", "iopub.status.idle": "2024-08-24T11:23:45.168299Z", "shell.execute_reply": "2024-08-24T11:23:45.167680Z" }, "id": "mpMYp3vqOXpB" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4wAAAFlCAYAAACgHmbBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AABOlElEQVR4nO3deVxVdf7H8fdhRxRUEEXBXVHcrdxNK3GpHM1S2x11miX7ZalZ077ZptMyE03TYk3Z5FpO5l6puWtp7oKUsiiIIFxAdri/PxivIlcEvPdc0Nfz8ejR4Zzv95zPPQ8t3vd8z/drWK1WqwAAAAAAuICbqwsAAAAAANRMBEYAAAAAgF0ERgAAAACAXQRGAAAAAIBdBEYAAAAAgF0ERgAAAACAXQRGAAAAAIBdBEYAAAAAgF0ERgAAAACAXQRGAAAAAIBdBEYAAAAAgF0ERgAAAACAXQRGAAAAAIBdBEYAAAAAgF0ERgAAAACAXQRGAAAAAIBdBEYAAAAAgF0ERgAAAACAXQTGK8TUqVNdXQIAAACAKwyB8QqRnZ3l6hIAAAAAXGEIjAAAAAAAuwiMAAAAAAC7CIwAAAAAALsIjAAAAAAAuwiMAAAAAAC7CIwAAAAAALsIjAAAAAAAuwiMAAAAAAC7PFxdAAAAAICaISXlpCyWTFeXUSsFBPgrOLixq8twOAIjAAAAAKWknNSkSZOUn5/v6lJqJW9vb82dO/eKC42mBMa9e/dKksLDw+Xt7V2pPgUFBTp8+LAkqWvXrk6rDQAAAIBksWQqPz9fg0ZOVEBQiKvLqVUsqUnasOwTWSyZBMbqmDFjugzD0AcffKgWLVpUqk9qaqqt3+rVa5xcIQAAAABJCggKUVCT5q4uAzUEk94AAAAAAOyqsYGxpKREkuTmVmNLBAAAAIArWo1NYykpJyVJfn5+Lq4EAAAAAK5OTnmH8WzYu1BaWpp8fX0q7FtQUKikpBP69NNPZRhGpd95BAAAAAA4llMC43333Vdun9Vq1V//+kSVzxUZGemIkgAAAAAAVeSUwGi1Wqu03x4vLy+NHj1aw4ePcFRZAAAAAIAqcEpgnDHjsTI/z5kzW4ZhaMKE3ysoKOii/QyjNCg2bBiotm3bytfX1xnlAQAAAAAqwSmBcejQoWV+njNntiSpf//+vJMIAAAAALWEUwLjhWbPniNJatKkiRmXAwAAAAA4gCmBsVu3bmZcBjVESspJWSyZri6j1gkI8FdwcGNXlwEAAADYmBIYcfVISTmpSZMmKT8/39Wl1Dre3t6aO3cuoREAAAA1humB8ddff9W+ffuUnJyknJwclZSUVNjeMAxNnz7DpOpwuSyWTOXn52vQyIkKCApxdTm1hiU1SRuWfSKLJZPACAAAgBrDtMCYkJCgOXPm6PDhQ5XuY7VaCYy1VEBQiIKaNHd1GQAAAAAugymBMTU1VdOmParMzEzbWoy+vr6qW7eu3NzczCgBAAAAAFBFpgTG//znC1ksFhmGoREjRmjs2HEKDQ0149IAAAAAgGoyJTDu3LlThmFoyJBIPfroNDMuCQAAAAC4TKaMB01LS5MkRUZGmnE5AAAAAIADmBIY69WrJ0mqW9fPjMsBAAAAABzAlMDYvn17SVJiYqIZlwMAAAAAOIAp7zCOHn2btm/fruXLV2jw4BvMuGSVpaSc1MqVq7R9+3alpJxUTk6O6tevr8aNG6tbt+4aNGiQWrVqddH+O3bs0IoVyxUdHS2LxaKAgACFh4fr5ptvUa9evUz8JAAAAADgGKYExmuuuUbjx4/XggUL9M47b2vKlIfk4WHaEpCXtHTp1/r444+Vl5dXZv+pU6d06tQp7d+/Xzk5OXrwwQfL9S0pKdFbb72lVatWltmfmpqq1NRUbd68WSNGjNAjjzzKEiIAAAAAahVTUtvatWvUvHlzRUREaMWKFdq2bZsGDrxeYWFh8vHxvmT/yMihTqvtiy/m6dNPP5UkhYaG6uabb1b79uHy8/NTZmamfv01Vps2bZabm2G3/yefzLWFxbZt22rcuPFq2jREJ04kaeHCBYqNjdXKlSsVEFBfkydPdtrnAAAAAABHMyUwzp49W4ZxLnCdPn1a//3v0kr3d1Zg3LVrly0sRkZGatq06eWefPbs2VNjx45TYWFhuf6JiYlatGiRpNL3NN988y15e5cG4PDwDurbt6+mT5+mmJgYLVq0UMOHD1ezZs2c8lkAAAAAwNFMGyNptVqr9Y+zlJSU6O9/f0eS1Lp1G02fPqPCYbKenp7l9n311RIVFxdLkqZMecgWFs/y8fHRlCkPSZKKi4u1ZMkSR5UPAAAAAE5nyhPGzz+fZ8ZlquTnn3/S8ePHJUnjx4+Xu7t7lfpbrVZt2bJFkhQWVjrc1p6IiAiFhYUpISFBW7du0f/93/+VedoKAAAAADWVKYGxcePGZlymSn788UdJkmEY6tOnj21/ZmamMjMz5e/vL39//4v2T05OUlpamiSpa9euFV6ra9euSkhIUGpqqpKTkxUSEuKATwAAAAAAzlVzpio12aFDhySVhtk6derohx++15dffqljx47Z2pydBGfUqNHy8vIq0z8uLt623bx5WIXXCgs7dzw+Pp7ACAAAAKBWuCoDY0lJiRISEiRJAQEBioqK0tKlX5drl5iYqA8++ECbNm3WrFmzVLduXduxU6dO2baDghpVeL1GjYLt9gMAAACAmuyqDIxnzpxRSUmJJOno0aOKjo5Ww4aB+uMf/6hevXrJy8tL0dHR+uijD3Xo0CEdPHhAc+bM0fPPP287R25ujm3b19enwuv5+Jw7npub69gPAwAAAABOYkpgvO++e6vd1zAMffbZ5w6sRsrLy7NtFxQUyMfHR3PmzCkzdLRr166aPXuOHn74Yf3226/avHmTDh06pI4dO/6v37llNjw8ys+ger7zZ1gtKMivUq1RUVGKioq6ZLsOHcKrdF4AAAAAuBRTAuPJkycr3dYwjDLLaThjRtEL30ccPnxEmbB4lre3tyZNmqinn35akrRhw3pbYPTyOhcCi4rKr9F4vvPXcPTy8q6gZXlTpkzRlClTLtlu8uRJVTovAAAAAFyKKYExMnLoJdvk5eUqMfG4jh79TYZhqE2btmrVqpVT6vH19S3z87XXXnPRtj169JS7u7uKi4sVHR193jnq2LZzc/PsdbU5/4nmhdcGAAAAgJrKlMD42GOPVbrtsWPH9Le/zdGxY8d01113aeDAgQ6vx8vLS/Xr11dGRoakspPS2GsbEBCg06dPy2Kx2PY3anRuopvU1Ionsjl1KsVuPwAAAACoydxcXcCFWrZsqTfemK2GDQP1xhuvKz4+/tKdqqFFixa27ZKS4grbnp0gx93d/bz+zW3b8fEJFfY/OyOrJDVv3ryClgAAAABQc9S4wCiVDtu8447blZ+fr0WLFjrlGl26dLVtJyUlXbTdmTNnbE8WAwMDbfubNAmx/bx3794Kr7V37z5JUlBQkJo0aVLtmgEAAADATDUyMEpS+/btJUm7d+92yvnPH+q6efPmi7bbvHmzbRKeLl262PYbhqF+/fpJkhIS4nXw4EG7/Q8ePKiEhNKnpH379nPKJD4AAAAA4Aw1NjCenSg1PT3dKedv3bq1rruulyRp3bp12rVrV7k2p0+f1qeffiKpdGmMYcOGlzk+ZsztcnMrvYVRUe8qP7/skhn5+fmKinpXUulw1jFjxjj8cwAAAACAs9TYwPjTTz9Jkvz8/Jx2jQcffFB169ZVSUmJnnnmaX388Ufat2+foqOj9c03/9VDD03RqVOlE9pMmPB7BQUFlekfGhqqcePGSZJiYmL0yCNTtX79OkVHR2v9+nV65JGpiomJkSSNHTtOoaGhTvssAAAAAOBopsySWlXr1q3T/PlfyjAMde7c2WnXCQ0N1UsvvaQXX3xR6enpmj9/vubPn1+mjWEYuvvuuzV+/Hi755g4cZIyMjK0atUqxcbGatasWeXaDB8+QhMnTnTKZwAAAAAAZzElMM6ZM/uSbUpKrMrOzlJsbKzS0tJktVrl7u6u8ePvdGptnTt30UcffaSlS5dq8+YtSk5OUlFRkRo2bKhu3bpp9OjRatu23UX7u7m5afr0GRowYKBWrFiu6OhoZWZmyt/fX+Hh4brlllvVq1cvp34GAAAAAHAGUwLjmjVrKj3Zy9kJZurUqaNp06YrPDzcmaVJkvz9A3T//RN0//0Tqn2O3r17q3fv3g6sCgAAAABcy5TAGBwcfMnAaBiGfH3rKCSkibp27aqbbhqigIAAM8oDAAAAANhhSmCcN+8LMy4DAAAAAHCgGjtLKgAAAADAtQiMAAAAAAC7XLashtVqVVJSkrKyMiVJ9er5KyQkpNKT4wAAAAAAnMv0wLhz5059881/tWfPHuXn55c55u3trW7dumvUqFG69tprzS4NAAAAAHAe0wJjYWGhZs9+Qxs2bJB0bvmM8+Xl5WnHju3asWO7Bg0apMcemylPT0+zSgQAAAAAnMe0wPjqq69o8+bNslqtcnd3V8+ePdWhQ0c1bNhAknT6dLqiow9r165dKioq0oYNG1RcXKxnnnnWrBIBAAAAAOcxJTBu375NmzZtkmEY6tatu2bMmKHGjRvbbZuSclJz5szRL7/8ok2bNmn79u3q3bu3GWUCAAAAAM5jyiypq1evkSS1bt1ar7766kXDoiQFBzfWK6+8qjZt2vyv72ozSgQAAAAAXMCUwHj48CEZhqE77hgrD49LP9T08PDQ2LFjZbVadfjwIRMqBAAAAABcyJTAmJGRIUlq0aJ5pfuEhZW2tVgszigJAAAAAHAJpgRGHx8fSVJmZmal+2RlZUkqXWoDAAAAAGA+UwJjWFiYJGn9+vWV7rNhw/oyfQEAAAAA5jIlMPbt21dWq1WrV6+u1CQ2a9eu1apVq2QYhvr1629ChQAAAACAC5myrMaoUaO1dOlSpaen6803/6aNG3/UsGHD1bFjR9WvX1+GYSg9PV2HDh3S6tWrtHPnTlmtVgUFBWnUqFFmlAgAAAAAuIApgdHX11cvv/yyZs6cqezsbO3cuVM7d+68aHur1aq6devqpZdetr3/CAAAAAAwlylDUiWpbdt2+uCDDzVgwEAZhiGr1Wr3H8MwNHDgQH3wwYe2tRgBAAAAAOYz5QnjWUFBQXr22WeVlpamPXv26NixY8rKKp05tV49f7Vs2VLdunVTYGCgmWUBAAAAAOwwNTCeFRgYqBtvvNEVlwYAAAAAVJJpQ1IBAAAAALWLU54wZmdna+/evZKk4OBGatu2XaX7HjlyRKdOnZIkde/eXXXq1HFGiQAAAACAS3BKYJw792MtX75cPj4++vvf/1Glvl5eXnr99deUl5en2267TX/+81+cUSIAAAAA4BIcPiQ1PT1dK1eulCRNnDhRLVq0qFL/Fi1aaOLESbJarfrmm29ksVgcXSIAAAAAoBIcHhh/+OF7FRcXKzAwUCNH/q5a5xg5cqSCg4NVXFysH374wcEVAgAAAAAqw+GB8Zdf9tjWUnR3d6/WOdzd3TVgwEBZrVb98stuB1cIAAAAAKgMhwfGo0d/kyR169btss7TtWsXSdJvv/122TUBAAAAAKrO4YExMzNTUulai5ejYcPS/rzDCAAAAACu4fDAWFJSIkmyWi/vPIZR9nwAAAAAAHM5PDD6+/tLkk6fTrus86SlnS5zPgAAAACAuRweGJs0CZEk7d2777LOs3fv3jLnAwAAAACYy+GBsUePHrJarVq37gfl5uZW6xy5ubn64YfvZRiGevTo4eAKAQAAAACV4fDAOGjQIBmGoYyMDP3rX+9X6xzvv/9PZWRkyDAMDR482LEFAgAAAAAqxeGBsXnz5rrxxhtltVq1cuVKvf3228rPz69U3/z8fL399ltauXKlDMPQjTfepLCwMEeXCAAAAACoBA9nnPTBB6fo8OHDOn78uFauXKHt27fp5ptvVq9evdSmTVt5eJy7bFFRkX79NVbbt2/XypUrdfp06WQ3zZqF6sEHH3RGeQAAAACASnBKYKxXr55eeeUVPfPMM4qPj9fp06c1b948zZs3T4ZhyM/PTz4+PsrLy9OZM2dk/d8aHGf/3bx5c7300suqW7euM8oDAAAAAFSCw4eknhUS0lRRUe9p1KjR8vLyktVqldVqVUlJibKyspSamqqsrCyVlJTYjnl7e2v06Nv07rtRCglhdlQAAAAAcCWnPGE8y9vbW1OmTNG9996rdevWae/evfrtt1+VmZmp3Nxc+fr6yt/fX61bt1HXrl11ww03KCAgwJklAQAAAAAqyamB8ayAgACNHj1ao0ePNuNyAAAAAAAHcNqQVAAAAABA7UZgBAAAAADYZcqQ1Nrkww8/1MKFC2w/z5kzR926da+wz44dO7RixXJFR0fLYrEoICBA4eHhuvnmW9SrVy8nVwwAAAAAzkFgPE9sbKyWLFlc6fYlJSV66623tGrVyjL7U1NTlZqaqs2bN2vEiBF65JFH5ebGw1wAAAAAtQuB8X9KSkr09ttvqbi4WPXr11dGRsYl+3zyyVxbWGzbtq3GjRuvpk1DdOJEkhYuXKDY2FitXLlSAQH1NXnyZCd/AgAAAABwLB57/c/SpV8rOjpaYWHNNXz4iEu2T0xM1KJFiyRJ7du319tvv6MbbrhB4eEddMMNN+itt95W+/btJUmLFi3U8ePHnVo/AAAAADgagVFSSspJffrpp5KkqVOnytPz0g9ev/pqiYqLiyVJU6Y8JG9v7zLHfXx8NGXKQ5Kk4uJiLVmyxLFFAwAAAICTERgl/eMf/1Bubq4iI4eqW7dul2xvtVq1ZcsWSVJYWHNFRETYbRcREaGwsDBJ0tatW2S1Wh1XNAAAAAA42VUfGDdsWK9t27apXr16+tOf/lSpPsnJSUpLS5Mkde3atcK2Z4+npqYqOTn58ooFAAAAABNd1YExOztb7733niTpD394QAEBAZXqFxcXb9tu3jyswrZnnzBKUnx8fAUtAQAAAKBmqVGzpJ44cUIWi0VNmjRRgwYNnH69Dz/8QKdPn1anTp00YsSlJ7o569SpU7btoKBGFbZt1CjYbj8AAAAAqOlMCYzp6enauPFHSdJNN90kP7+6ZY4fP35cs2a9rF9//dW2r1+/fpo2bbrq1avnlJr27dunlStXyt3dXVOnPiLDMCrdNzc3x7bt6+tTYVsfn3PHc3Nzq14oAKBGSUk5KYsl09Vl1EoBAf4KDm7s6jIAAFVgSmDctGmT3n33XTVr1ky/+92oMscKCgr05JNPKjk5qcykMFu2bJHFYtGbb77l8HoKCwv11ltvyWq16vbbb1erVq2q1L+goNC27eHhWWFbT89zxwsK8qtWqKSoqChFRUVdsl2HDuFVPjcAoGpSUk5q0qRJys+v+n/PIXl7e2vu3LmERgCoRUwJjD///LMMw1D//v3LHVuzZo2Skk7IMAz17dtXPXr00K5du7Rt2zYdOHBA69ev0+DBNzi0ni+//I8SEuIVHByse++9r8r9vbzOhcCiosIKWpaG03P9vCtoad+UKVM0ZcqUS7abPHlSlc8NAKgaiyVT+fn5GjRyogKCQlxdTq1iSU3ShmWfyGLJJDACQC1iSmBMTEyQJHXsWH75iR9++EGS1L17d73wwouSpNGjb9Pjjz+u3bt3af369Q4NjPHx8Zo/f76k0vUTfX19q3wOX986tu3c3LwK2+blnTtenWsBAGqegKAQBTVp7uoyAABwOlMCo8VikSQFBQWV2Z+fn6/Dhw/JMAzdfPMtZY4NHz5cu3fv0pEjRxxay1dfLVFhYaFCQkKUn5+vdevWlWtz7Ngx2/bu3b/o9Ol0SVKfPn3k6+urRo3OTXSTmlrxRDanTqXYts/vBwAAAAA1nSmBMTs7W5Lk5lZ2FY9Dhw6pqKhIhmGoZ8+eZY41adJEkpSRkeHQWs6+f5iUlKRXXpl1yfZffDHPtv355/Pk6+urFi3OfascH59QYf+EhHPHmzfn22gAAAAAtYcp6zCeHYp5+vTpMvv37NkjSWrRokW52VA9PEqzrLu7uwkVVk2TJiEKDAyUJO3du7fCtnv37pNU+nT1bAgGAAAAgNrAlCeMYWFhOnz4sH76aad69+5t279p00YZhqGuXbuW63M2XDp6PcaZM2dq5syZFbb57LN/6/PPP5ckzZkzR926dS9z3DAM9evXT8uWLVNCQrwOHjyoiIjy72cePHhQCQnxkqS+fftVaekOAAAAAHA1U54w9urVW1arVcuXL9eyZd/o6NGj+te//qW4uDhJ0oABA8v1iY0tfXcxMDCo3LGaYMyY221DbKOi3i03xXp+fr6iot6VVPqUdMyYMabXCAAAAACXw5QnjKNHj9KyZd/o9OnTevfdd8sc69ixo7p3716uz7Zt22QYhsLDa+b6gqGhoRo3bpzmz5+vmJgYPfLIVI0fP14hIU2VlHRCCxYsUGxsrCRp7NhxCg0NdXHFAAAAAFA1pgRGP7+6ev31N/T666/bnhxKUufOXfTkk0+Wa//rr78qOjra7mQ4NcnEiZOUkZGhVatWKTY2VrNmlZ9EZ/jwEZo4caILqgMAAACAy2NKYJRKJ7Z57733lJSUpPT0dDVs2LDCSWBmzHhMktSjRw+zSqwyNzc3TZ8+QwMGDNSKFcsVHR2tzMxM+fv7Kzw8XLfccqt69erl6jIBAAAAoFpMC4xnhYSEKCQkpMI2bdq0UZs2bUyqqLz775+g+++fUOn2vXv3LjOZDwAAAABcCUyZ9AYAAAAAUPuY/oSxpKREv/zyiw4dOqjTp9OVn5+niRMn2dY1lKTCwkIVFxfLzc1NXl5eZpcIAAAAAJDJgXHbtm2KinpXKSkpZfaPHTuuTGBcuXKFoqKi5OPjo/nzF8jX19fMMgEAAAAAMnFI6ooVy/Xcc8/q5MmTslqt8vf3l9Vqtdt2xIib5efnp7y8PG3evNmsEgEAAAAA5zElMCYmJuof//iHJKl79+766KOPtWjR4ou29/T01IABA2S1WvXzzz+ZUSIAAAAA4AKmBMavvlqi4uJitWjRQrNmvaLmzZtfsk+XLl0kSbGxsc4uDwAAAABghymB8ZdffpFhGBozZow8PT0r1adp02aSpFOnTjmzNAAAAADARZgSGM+GvtatK7+2oo+PjyQpPz/fKTUBAAAAACpmSmA0DENS1cJfZmamJMnPz88pNQEAAAAAKmZKYAwKCpIkJSUlVbrP/v37JUkhISFOqQkAAAAAUDFTAmPXrt1ktVq1du2aSrU/cyZb3377rQzDUPfu3Z1bHAAAAADALlMC46233iLDMLR3716tXr26wraZmRY999xzSk8/LXd3d91660gzSgQAAAAAXMDDjIu0bdtOt912m7766iu9+ebftHPnDg0cONB2/MCBA/r111jt339A69b9oJycHBmGoXvuuUeNGzc2o0QAAAAAwAVMCYyS9Kc//VkFBYX69ttl2rhxozZu3GibDOedd962tbNarZKkMWPG6J577jWrPAAAAADABUwLjIZh6OGHH1b//v01f/587d27xxYOz2/TsWOE7rnnHvXq1cus0gAAAAAAdpgWGM+65pprdM011ygnJ0exsbHKyMhQSUmx/P391aZNWwUEBJhdElBjxMfHu7qEWikgwF/BwQxfBwAAcDTTA+NZderUUdeuXV11eaBGycm2yDAMvfbaq64upVby9vbW3LlzCY0AAAAO5rLACOCcgrxcWa1WDRo5UQFBrD1aFZbUJG1Y9okslkwCIwAAgIMRGIEaJCAoREFNmru6DAAAAECSgwPj559/7sjT2dx3331OOS8AAAAA4OIcHBg/sy2V4UgERgAAAAAwn8OHpF64VAYAAAAAoHZyaGBcs2atI08HAAAAAHAhN1cXAAAAAAComQiMAAAAAAC7CIwAAAAAALtMX4exuLhYW7Zs0e7du3T06FFlZWVJkurVq6eWLVuqZ8+e6tevv9zd3c0uDQAAAABwHlMD45YtW/Tuu/9QWlqabd/ZWVUNw9DBgwe1YsUKNWzYUA899H/q37+/meUBAAAAAM5j2pDUr776Si+88LzS0tJsIbFx48bq2LGjOnbsqMaNG0sqDZBpaWl68cUX9NVXS8wqDwAAAABwAVOeMB46dEj/+tf7slqtqlOnju6++24NGzZcAQEBZdpZLBatXr1KX375pc6cOaMPPvhAHTtGqGPHjmaUCQAAAAA4jylPGJcsWSyr1So/Pz+9887fNW7c+HJhUZICAgI0btx4vf32O/Lz85PVatWSJYvNKBEAAAAAcAFTAuO+fftlGIbGjx+vFi1aXLJ9ixYtNH78eFmtVu3bt8+ECgEAAAAAFzIlMGZnl86E2q1b90r3Ods2OzvbCRUBAAAAAC7FlMDYsGFDl/QFAAAAAFSfKYGxZ8+ekqS9e/dWus+ePXskSd2793BKTQAAAACAipkSGO+4Y6y8vLy0YMF8JSYmXrJ9YmKiFi5cIB8fH40bN86ECgEAAAAAFzIlMIaFhenZZ5+VJD388P/pq6+WKDMzs1y7rKwsffXVV5o69WFJ0tNPP6OwsDAzSgQAAAAAXMCUdRgfe2yGpNJlM44fP65//etf+te//qUmTUJUv359GYaUnp6h5OQkW5+mTZtq0aKFWrRo4UXOamj27NkmVA8AAAAAVydTAuOePXtkGIbtZ6vVKklKSjqhpKQTdvucOHFCJ06csLU9yzAMWa3WMucDAAAAADieKYGxS5cuBDwAAAAAqGVMCYx/+9ubZlwGAAAAAOBApgTGmig6Olo7duzQ/v37FR8fJ4vFInd3dwUGBqpTp84aMWK4OnfuUunz7dixQytWLFd0dLQsFosCAgIUHh6um2++Rb169XLiJwEAAAAA57gqA+O0aY9q37595fYXFhbq+PHjOn78uNasWa3IyEg9+ug0eXp6XvRcJSUleuutt7Rq1coy+1NTU5WamqrNmzdrxIgReuSRR+XmZsqktAAAAADgEFdlYExLS5MkBQYG6vrrB6lLl84KDg5WcXGJDh06qMWLFys1NVVr165VUVGRnnzyqYue65NP5trCYtu2bTVu3Hg1bRqiEyeStHDhAsXGxmrlypUKCKivyZMnm/L5AAAAAMARTA+MJSUliouLU1JSknJzc1VSUnzJPpGRQx1aQ1hYmCZNmqQBAwbK3d29zLGIiAgNGRKpRx6ZqsTERK1bt0633jpSXbt2LXeexMRELVq0SJLUvn17vfnmW/L29pYkhYd3UN++fTV9+jTFxMRo0aKFGj58uJo1a+bQzwIAAAAAzmJaYMzLy9MXX3yhVatWKjMzs0p9HR0YX355VoXHAwIC9Kc//VnPPPO0JGnjxh/tBsavvlqi4uLSwDtlykO2sHiWj4+Ppkx5SFOnPqzi4mItWbJEDz/8sIM+BQAAAAA4lykv1eXm5mr69GlauHCBLBaLrFZrpf9xlW7dutm2T5wov1ak1WrVli1bJElhYc0VERFh9zwREREKCwuTJG3dusWlnwkAAAAAqsKUJ4xffDFPR44ckSR17NhRN998i9q0aS0/v7o1diKYwsJC27abm3u548nJSbZ3Ie09fTxf165dlZCQoNTUVCUnJyskJMSxxQIAAACAE5gSGDdu3CjDMNSrVy+98MKLNTYknm/v3r227ebNm5c7HhcXf97xsArPdfYJoyTFx8cTGAEAAADUCqYkt9TUVEnS6NG31YqwWFJSogUL5tt+HjRoULk2p06dsm0HBTWq8HyNGgXb7QcAAAAANZkp6a1+/fqSpIAAfzMud9mWLFmiw4cPS5IGDBig9u3bl2uTm5tj2/b19anwfD4+547n5uY6qEoAAAAAcC5ThqSGh3dQauomJSQkqm3bdmZcstr27Nmjjz/+SFJp0H344al22xUUnHvH0cPDs8JzenqeO15QkF+leqKiohQVFXXJdh06hFfpvAAAAABwKaYExttvv12bN2/Sf/+7VIMHD5ZhGGZctsqOHTumF154XsXFxfLy8tIzzzyrBg0a2G3r5XUuBBYVFdptc9b5E+h4eXlX0LK8KVOmaMqUKZdsN3nypCqdFwAAAAAuxZQhqZ06ddIf/vAHHTx4ULNmvazs7GwzLlslSUlJeuKJx5WVlSU3Nzc99dRTFc5+6utbx7adm5tX4bnz8s4d9/X1vfxiAQAAAMAEpjxhlKSxY8cpJKSp3nrrTd19913q2fMahYY2k7d3xe//SdJ9993n1NpSU1P1+OMzlZaWJsMwNGPGDPXr17/CPo0anZvoJjW14olsTp1KsdsPAAAAAGoy0wJjenq6Nm/epDNnzshqtWrr1i2V7uvMwGixWPTEE48rKSlJkjRlykOKjBx6yX4tWpxbaiM+PqHCtgkJ547bW6IDAAAAAGoiUwJjZqZF06dP0/Hjx2W1Ws24ZKWcOZOtv/71CcXFxUmSJk/+g0aNGlWpvk2ahCgwMFBpaWll1my0Z+/efZKkoKAgNWnS5PKKBgAAAACTmBIY//OfL5WYmChJGjhwoH73u9+pdes2qlu3rssmwMnLy9NTTz2lI0eOSJLuvvtu3XnnnZXubxiG+vXrp2XLlikhIV4HDx5UREREuXYHDx5UQkK8JKlv3341dsIfAAAAALiQKZPebN26VYZhaMiQIXrmmWfVrVt31atXz2XhqbCwUM8//5wOHDggSbrttjGaOLHqs4yOGXO73NxKb2FU1LvKzy+7ZEZ+fr6iot6VJLm7u2vMmDGXWTkAAAAAmMeUJ4xpaamSpGHDhptxuUt65ZVZ+vnnnyVJ3bv30IgRw3X06NGLtvf09FRoaGi5/aGhoRo3bpzmz5+vmJgYPfLIVI0fP14hIU2VlHRCCxYsUGxsrKTSSX/snQMAAKAiKSknZbFkurqMWicgwF/BwY1dXQZQ65kSGP39/ZWWlqY6depcurEJNm3aZNv+5Zfd+uMf/1hh+8aNG2vevC/sHps4cZIyMjK0atUqxcbGatasWeXaDB8+QhMnTry8ogEAwFUnJeWkJk2aVG4UEy7N29tbc+fOJTQCl8mUwNilSxetX79ex44dVbt27cy4pGnc3Nw0ffoMDRgwUCtWLFd0dLQyMzPl7++v8PBw3XLLrerVq5erywQAALWQxZKp/Px8DRo5UQFBIa4up9awpCZpw7JPZLFkEhiBy2RKYLzjjrHauHGjFi1apEGDBsvLy8uMy17U2rXfOfycvXv3Vu/evR1+XgAAgICgEAU1YWkuAOYzZdKbdu3aadq06UpMTNQTTzxumzEVAAAAAFBzmfKEcc6c2ZKkFi1aaP/+/Zo8eZJat26t0NBQeXt7V9jXMAxNnz7DjDIBAAAAAOcxJTCuWbPGtoSGYRiyWq367bff9Ntvv1XYz2q1EhgBAAAAwEVMCYzBwcEsWA8AAAAAtYwpgfFiS1IAAAAAAGouUya9AQAAAADUPgRGAAAAAIBdBEYAAAAAgF2mvMNoT3FxsbKzs5Wfny/JWmHb4ODG5hQFAAAAALAxNTBaLBYtXbpUW7ZsVlxcnKzWioPiWatXr3FyZQAAAACAC5kWGA8cOKAXXnheFoul0kFREstxAAAAAICLmBIYMzMteu65Z5WZmSlfX1+NGDFCfn519fnnn8kwDD366DRlZWUpJiZG27ZtVUFBgTp16qThw0eYUR4AAAAAwA5TAuN///tfZWZmytPTU++883e1bNlSx44d0+effyZJGj58uK1tWlqaXn31Fe3bt08dO0bogQceMKNEAAAAAMAFTJkldceOHTIMQ8OGDVfLli0rbBsYGKhZs15RSEiIFi9epN27d5tRIgAAAADgAqYExhMnTkiSevbsadt3/ruJxcXFZdp7e3vr9ttvl9Vq1bffLjOjRAAAAADABUwJjDk5OZKkxo3PLY/h5eVp287NzS3Xp3379pKkw4cPO7k6AAAAAIA9pgRGX19fSWWfJNar52/bTk5OLtenoKBQkpSRkeHc4gAAAAAAdpkSGJs2bSpJSklJse2rW7euGjRoKEnas+eXcn32798nSfLx8XF+gQAAAACAckwJjB06dJAkRUdHl9l/3XXXymq1auHChUpMTLTtP3jwoBYtWiTDMBQeHm5GiQAAAACAC5iyrMa1116nb775Rps2bSqzTMbtt9+h77//XhkZGXrggT+odevWysvL0/Hjx1VSUiLDMHTbbbeZUSIAAAAA4AKmPGG89tprNWRIpDp27KikpCTb/latWunhh6fKzc1NxcXFOnLkiBISElRSUiJJuu+++3Xddb3MKBEAAAAAcAFTnjB6eHho5syZdo+NGDFCnTt31po1q3XsWJyKi4vVrFkzDRkyhOGoAAAAAOBCpgTGSwkLC9PkyX9wdRkAAAAAgPOYMiQVAAAAAFD71JjAmJlpUWZmpqvLAAAAAAD8j0uHpKanp+vTTz/Rpk2blJ2dLUmqU6eO+vbtp9//foKCgxu7sjwAAAAAuKo5/AnjqVOnNH78eI0fP17Lln1z0XZJSSf04IN/0apVq5SVlSWr1Sqr1aozZ87o+++/05///GfFxsY6ujwAAAAAQCU5/Anjzp07lZ5+Wh4eHho0aNBF282aNUtpaWm2nxs1aqTAwEDFxcUpNzdX2dnZeuWVV/Thhx/K3d3d0WUCuMLEx8e7uoRaJyDAn5EcAACgQg4PjIcOHZQkde/eXf7+AXbbbNu2TTExMTIMQ3Xr1tVf//qkrr32WklSfn6+3n33H1q9erWOH0/Uxo0/avDgGxxdJoArRE62RYZh6LXXXnV1KbWOt7e35s6dS2gEAAAX5fDAePToURmGoZ49r7lom++//962/ac//dkWFqXSX2CmTZuumJgYHTt2TFu2bCEwAriogrxcWa1WDRo5UQFBIa4up9awpCZpw7JPZLFkEhgBAMBFOTwwnjx5UpLUunXri7bZu3ePJMnPz0833nhjueOGYWjYsOF6//1/6rfffnN0iQCuQAFBIQpq0tzVZQAAAFxRHD7pzZkzZyRJAQH2h6MmJycrPT1dhmGoS5cu8vCwn1nbtm0rSWXecwQAAAAAmMfhgdEwDElSUVGh3ePR0Ydt2+3bt7/oeerWrStJysvLc2B1AAAAAIDKcnhg9Pf3lyQlJh63e/zAgYO27fbtwy96npycHEmSl5eXA6sDAAAAAFSWw99hbN26tU6fPq2NGzfqpptuKnPMarVq69YtkiR3d3d17tz5oudJSSl9F7J+/QaOLhEA8D8sR1I13C8AwNXG4YGxb99+2rlzp7Zu3aK1a9cqMjLSdmzRooU6efKkDMNQjx495Ovre9HzHDxY+iQyLCzU0SUCwFWP5UgAAEBlODwwDhkyRF9++R+lpqZqzpzZ+uab/6pp06aKj48vM+Pp7bffcdFzWK1WbdmyRYZhqGPHjo4uEQCueixHUj2Jsfu0a+MyV5cBAIBpHB4YfXx89NRTT+uvf31Cubm5iomJUUxMjKTSIChJw4YNU8+ePS96jh07tis1NfV/TyIv3g4AcHlYjqRqMlKTXV0CgCpgGHnVcL9gj8MDoyRFREQoKuo9zZ07Vzt37lB+fr4kqXHjxho1arRuv/32CvvPmzdPktSgQQNFREQ4o0QAAABcoRh2DziOUwKjJIWGhurZZ59VSUmJLBaLPDw8VK9evUr1feON2ZJKJ8YBAAAAqoJh99XDsHvY47TAeJabm5saNKjaTKcVTYYDAABqL4a8VQ336/Iw7L5qGHYPe5weGK8mJ0+e1Ndff60dO7br1KlT8vT0VEhIiAYNGqTf/W6UfHx8XF0iAAAuwRBBAKidCIwOsnXrVr322qvKycmx7cvLy1NWVpZiYmK0cuVKvfzyLDVr1syFVQIA4BoMEawehggCcDUCowPExh7RrFkvKz8/X76+vrrzzrvUvXt35efna/36dVqxYoUSExP19NNPKSrqPdWpU8fVJQMA4BIMEawahggCcDUCowO89957ys/Pl7u7u1577fUyM7v26NFDzZo104cffqjExEQtXrxI998/wYXVAgAAAEDluLm6gNru8OHD2rdvnyRp+PARdpcBueOOsWrevPTb1K+//lpFRUWm1ggAAAAA1UFgvEybN2+2bQ8bNsxuGzc3N0VGRkqSsrOz9csvv5hRGgAAAABcFgLjZTpwYL8kycfHR+3bt79ou65du53X54DT6wIAAACAy0VgvExn10dq2rSZ3N3dL9ouLCzsvD5xTq8LAAAAAC4Xk95choKCAlksFklSo0ZBFbatV6+efHx8lJeXp1OnTplRnktZUpNcXUKtkp1R+meC+1Z13Lvq4b5VD/et+rh31cN9qx7uW/Vw36rvSr5nhtVqtbq6iNoqIyNDY8feIUkaPHiwnnrq6Qrbjx17hzIyMtSyZUt9+OFHlbpGVFSUoqKiLtmuRYvmatq0aaXOeTVLT09XgwYNXF1GrcS9qx7uW/Vw36qH+1Z93Lvq4b5VD/et+rh3lVO3bj298847DjkXTxgvQ0FBgW3bw+PSt9LT07Ncv0uZMmWKpkyZUvXiYFdERIQOHjzo6jJqJe5d9XDfqof7Vj3ct+rj3lUP9616uG/Vx70zH+8wXgYvLy/bdmWWyigsLCzXDwAAAABqKgLjZahTp45tOzc395Lt8/LyJEm+vr5OqwkAAAAAHIXAeBm8vLzk7+8vSTp1KrXCtllZWbbA2KhRI6fXBgAAAACXi8B4mVq0aCFJOnHiuIqLiy/aLiEhwbbdvHkLp9cFAAAAAJeLwHiZOnXqLKl0uGlMTMxF2+3du+e8Pp2cXhcAAAAAXC4C42Xq37+/bXv16tV225SUlGjt2rWSpLp166p79+5mlAYAAAAAl4XAeJk6dOigLl26SJJWrVppd5rfxYsXKT4+XpJ02223VWoJDgAAAABwNZKLAzz44IN65JFHlJ+fryeeeFx33XWXunXrroKCAq1fv07Lly+XJIWGhuqOO8a6uFoAAAAAqBwCowO0bdtOTz31tF577VXl5ORo7ty55dqEhobq5ZdnlVmKA+abMmWKq0uotbh31cN9qx7uW/Vw36qPe1c93Lfq4b5VH/fOfIbVarW6uogrxcmTJ/X1119p+/btSk1NlYeHh5o2barrrx+kUaNGycfHx9UlAgAAAEClERgBAAAAAHYx6Q0AAAAAwC4CIwAAAADALgIjAAAAAMAuAiMAAAAAwC4CIwAAAADALgIjAAAAAMAuAiMAAAAAwC4CIwAAAADALg9XFwA4Q3R0tHbs2KH9+/crPj5OFotF7u7uCgwMVKdOnTVixHB17tzF1WXWSJGRQyrVrmvXrvrb3950cjW1w/Tp07R3794q9ZkzZ466devunIJqocLCQq1du1Y//rhBR48eVVZWltzd3RUUFKSIiE66+eab1alTJ1eXWeMUFBRo1aqV2rhxk44e/U1nzpyRv3+A2rRpo8jISN1www2uLtFU6enpio6O1uHDhxUTE63o6GhlZmZKkiIjh2rmzJmXPEdJSYkSEhJ0+PBhRUcfVnR0tI4eParCwkJJV+bfXUfct4vJy8vTAw/8QcnJyZKkxo0ba968LxxSd03giHu3evVqzZkzu1LXmzHjMQ0bNuyyaq4JnPFnbteun/Xdd9/rwIH9On36tNzc3NSgQQO1bt1aPXr00JAhkfL19XX0R7kqEBhxxZk27VHt27ev3P7CwkIdP35cx48f15o1qxUZGalHH50mT09PF1SJq5mbm5uaNQt1dRk1xsmTJ/X000/p2LFjZfYXFhYqMTFRiYmJWrNmtUaPHq0HH5wiwzBcU2gNk5CQoOeee1YJCQll9p8+nabTp9O0c+cOrV69Ss899/xV80vSuHFjL/sc3333nWbPfsMB1dQejrhvF/Pvf//bFhavRM68d1cyR963rKwszZkzW1u2bCl3LCcnR8ePH9fGjRvVsWOE2rZt67DrXk0IjLjipKWlSZICAwN1/fWD1KVLZwUHB6u4uESHDh3U4sWLlZqaqrVr16qoqEhPPvmUiyuumUaOHKmRI3930eM+Pj4mVlOzzZjxmPLy8ipsEx8fp5dfflmS1L17DwUFBZlRWo1XVFRUJiy2bt1at99+h0JDQ5Wbm6v9+/dr8eJFysvL09KlSxUYGKg777zLtUXXAOnp6Xr88Zk6deqUJOn666/X0KFDFRgYqLS0NK1Zs0Y//vijfv75Z82a9bJefnmWiys2X3BwsMLCwvTzzz9XqZ/VarVte3h4qFWrVioqKtLRo0cdXWKNVN37Zk9s7BF99dUSeXl5ycPDQzk5OQ6osOZyxL179dXXFBgYeNHjjRo1qva5a6rLuW9nzmTr8ccf15EjMZKk/v0H6PrrByokpKnc3Nx06tQp7d27V5s2bXR02VcVAiOuOGFhYZo0aZIGDBgod3f3MsciIiI0ZEikHnlkqhITE7Vu3TrdeutIde3a1UXV1lz169dXq1atXF1GrRASEnLJNt99951tOzIy0pnl1CpbtmyxhcWIiAi9+eZbZf7eXnPNNerbt6+mTn1YRUVFWrBggcaOHVfu7/bVZt68ebaweN999+n++yfYjrVt2069e/fRv//9b82b97m2b9+uH3/8Uddff72ryjXNvffep/DwcIWHh6tBgwZKTk7WfffdW6VztGjRQlOmTFH79uFq27atvLy89Nln/76iA6Mj7tuFiouL9eabb6mkpER33XW3Vq1aeUUGRkffu9DQUDVp0sSBFdZMjrpv7777ro4ciZGnp6eefvoZ9evXr8zx8PBwDRgwQH/5y19UUlLiqPKvOkx6gyvOyy/P0qBBgy/6C2VAQID+9Kc/237euPFHs0rDVaqkpEQ//PC9JMnX11cDBgxwcUU1x8GDB2zbd955l92/t+3bt1fv3n0kSdnZ2YqPjzOtvpqouLhY339f+gVE48aNdc899n/JuvfeexUcHCxJmj9/vmn1udKECRPUp08fNWjQoNrn6NChg0aPvk0RERHy8vJyYHU1lyPu24W+/vprHTkSo7CwMI0fP95h561pnHHvrgaOuG/79++zfRk7ceLEcmHxfIZhXPVfNF4OAiOuSt26dbNtnzhxwoWV4Gqwe/dupaamSpIGDrye4bznKSwssm1X9KS2adNzx87vczU6fvy4zpw5I0nq2bPnRX8Jcnd3V8+e10iSjhyJUVJSkmk14up28uRJ/fvfn0qSpk6dylwBcIr//ve/kiQ/Pz+NGjXatcVc4QiMuCqdne1Oktzc+MYJzrV27VrbNsNRywoLOzf5T0WB5sSJ0mOGYahZs2ZOr6smOzuToKRLfjt//vH9+8tPBgY4w9///o7y8vI0ZMiQK25GWdQMhYWFtklueva8xjYaoLi4WCkpKUpOTlZBQYErS7yi8A4jrkrnL4HQvHlzF1ZSc/3444/asGGDTp48+b+pqRuqU6cIDR06TN27d3d1ebVGbm6uNm/eJKl0+OD5T7ch3XDDjfrkk0+Uk5OjBQvmq1evXuWemMXGHtGOHdslSTfeeKP8/PxcUWqNcf6Mp2efNF7M+cfj4q7uobwwx7p167Rjxw7Vq1evzOsfqJw5c2YrISFRmZkW1alTR02bNlXPnj01cuTvmCztPL/99qstELZq1UpnzpzRv//9b61du0bZ2dmSJE9PT3Xp0kV33303X1xcJgIjrjolJSVasODc+zyDBg1yYTU114W/XObmHteJE8e1du1a9e/fX4899pj8/Oq6qLraY+PGjbYZVG+66SaWhLhAQECAHn/8Cb366is6cOCAHnpoisaMGaNmzUKVl5erAwcOaPHixSosLFS7du34BVRS06ZN5eHhoaKiIrtLCJ1v375zX46lpKQ4uzRc5bKysvTPf74nSZo8ebLq16/v2oJqoT179ti2MzMzlZmZqcOHD2vx4sX6y18e1K233urC6mqOuLh427bVWqIpUx7U8ePHy7QpLCzUrl27tHv3bk2aNFl33nmn2WVeMQiMuOosWbJEhw8fliQNGDBA7du3d3FFNYuPj4/69OmrHj16qHnzMPn4+MpisWjv3j369ttvlZmZqc2bNysrK0uvv/6GPDz4z0hFyg5HHerCSmqufv36KSrqPS1evEirVq3SG2+UXQOvQYMGmjDh97r55pt5/1OlTxi7d++un376Sb/99pt++OEH3XjjjeXa/fDDD2Vm9szNzTWzTFyFPvjgA6WnpysiIkI333yLq8upVUJCQjRgwAB17Bih4ODSpTOSkpK0ceNGbdy4UQUFBXrnnbdlGNIttxAas7LODc1fsGCBCgoKdN1112nChAlq1aq1cnJytHHjRn388Uc6c+aMPv74IzVvHqZ+/fq7sOrai9/0cFXZs2ePPv74I0mly0Y8/PBUF1dU83z55XzVrVv+yeE111yj0aNv05NP/lWxsbHau3evli1bpttuu80FVdYOpes/lX5b3LFjR4WGhl6ix9WpsLBQa9eu1datW8usgXdWenq6vv/+OzVp0qTCWfCuJvfdd792796t4uJizZ79hpKSTigyMlINGwbq9Ok0rV27VvPmzZOnp6ftne38/HwXV40r2d69e7V69Sq5u7tr6tRHGE1RBQMG9NfQoUPL3bPw8A4aPPgGbdu2TS+88LyKior0/vvvq2/ffmrYsKGLqq0Zzl/7uKCgQD17XqOXXnrZ9kqDl5eXRo4cqVatWmr69OkqKSnRxx9/rL59+/FnsxqY9AZXjWPHjumFF55XcXGxvLy89MwzzzINth32wuJZDRo00LPPPmt7qrh06VKTqqqdvv/+O9u6TzxdtC83N1ePPz5T8+d/qczMTI0bN14ffzxXK1as1NKl/9Vrr72uzp07KyYmRs8//5wWL17s6pJrhIiICD3yyCNyd3dXUVGRPv30U91zzz0aMWK47rnnHn366adyd3cvM4S3Tp06LqwYV7KCggK9/fZbslqtuu22MWrdurWrS6pV/PzqVhhi+vTpo3vvLV0+Jy8vTytXrjSrtBrrwiVvHnjgD3ZnjO7cuYv69y9dyio+Pv6KXk/VmQiMuCokJSXpiSceV1ZWltzc3PTUU0+pa9euri6rVgoJKX0BX5JOnDhuWy4C5Z1dH8rT01ODBw92bTE11Oeff2Z7D2/69Bl64IEH1Lx5c3l6esrPz0/XXHON5sz5m7p37y6r1aoPP/xAv/76q4urrhmGDx+hf/zjXfXvP6DMUF13d3f17dtX7733zzJD7iv6Mgi4HP/5z3+UkJCgRo0a6f7773d1OVekm2++xRYqz5+472rl63vuC7D69eurbdt2F2177bXX2rajo6OdWteViiGpuOKlpqbq8cdnKi0tTYZhaMaMGYxhv0wtWrTQjh07JElpaanM3GZHdHS0beKgPn36qF69ei6uqOaxWq1atWqVJCk0NFRDh9p/Cuvu7q4JE36vX355RCUlJVqzZrX+8pcHzSy1xmrXrp2ef7505ERaWpqKiooUFBRk+/b97JcWktSiRUsXVYkr3cKFCySVrgu6bds2u23ODiHMy8vTunXrJJX+ot+jRw9ziqzlGjRoIH9/f1ksFqWl8UVto0aNbNuX+h3k/LYWS4azSrqiERhxRbNYLHriicdt67tNmfIQQwMdgPH/l/bdd0x2cynp6enKysqSJLVt27bCtuc/KUtISHBqXbWRu7u7goODy+0/ciTGtt2hQwczS8JV5Ox7sqtXr9bq1asrbGuxWPTKK7MkSV27diUwVgH/7z2nZcuWtu2zr35czPnH7Q1bxaUxJBVXrDNnsvXXvz5he8ozefIfNGrUKBdXdWU4f8mNwECeLl6oqKhI69evl1T6DXqvXr1cW1ANdf7/uIuLiytsW1RUZLcfLq64uFibNpWuAdqoUSNFRES4uCIA1ZWRkSGLxSJJCgwMdHE1rte4cWPbl2TJycl2J0w7KynphG2b31mqhyeMuCLl5eXpqaee0pEjRyRJd999N+vvOEhSUpJ27dolqXQ9OIajlrdjxw5lZGRIKl2YnoBjX7169VSnTh3l5OTo4MGDKi4uvui9Ov+dnSZNmphVYq22atVK29qLt9xyK38O4TRr1353yTb33nuPTp48qcaNG2vevC9MqOrKsnz5clsoYg6GUgMHDtSSJUuUk5Oj3bt3qWfPa+y2O/vFmSR17tzZrPKuKDxhxBWnsLBQzz//nA4cOCBJuu22MZo4cZKLq6odtm7dWuGTnvT0dL344gu24UcjR/7OrNJqlbLDUSNdWEnN5ubmpt69e0uS0tLS9J//2P8lMisrSx999KHt5969+5hSX01X0YRTu3fv1j//+U9Jpe+Hjh071qyyAFRBcnKyYmOPVNhm27Zt+uKLeZIkb29vDRs23IzSarwxY8bY3td+//33debMmXJtvvvuO+3ZU7q8Ve/eve0O3cel8YQRV5xXXpmln3/+WZLUvXsPjRgxvMJplD09PVkf73+iot7VO+8UaeDAgerYMUJNmjSRl5eXMjMt2rNnj5YvX24bEtO5c2f97ncExgtlZWXZJn1o2bKl2rW7+MxtkO699z5t3bpVeXl5+uyzzxQTc0RDh0YqJCREBQWFOnTooL766ivbk7IePXqUmfHuavbAA39Q165d1bt3b7Vo0VKenp5KSUnR5s2b9MMPP6ikpET16tXT008/U24K+ivV/v37dPz4ueFnmZkW2/aJE8fLvV83bNgwu+e5sN35M/Pu3LlTycknbT83a9ZUnTt3uay6Xc1R9+1qdLn37uTJZM2YMUMRERHq06ePWrduo/r160uSkpOT9OOPP2rjxo22p4t//OMfr4iRPY74Mxcc3FgTJkzQhx9+qKNHj+r//u8hjRs3Xq1bt1ZOTo42bdqoZcuWSSpdVujPf/6Lkz7Nlc+wVjToF6iFIiOHVKk9w2POOTtk6FIGDhyoadOmM02/HcuWLdPf//6OJOmBBx7QuHHjXVxRzbdr18965ZVXbF9GXEz37j307LPPMuPs/4wceWuZxasv1LJlSz3xxF/Vpk0bE6tyrTfeeENr166pdPuLDaWsyv9HIiOHaubMmZVuXxM56r5V5Eodknq5927Pnl80Y8aMS/bz8fHRn//8Z91yy61VrrEmcuSfuY8//kgLFiy46HuM9evX1wsvvMh73JeBJ4wAbB57bKb27t2rQ4cOKikpSRaLRTk5OfL19f3fpBmdNHToUP6jW4Gzyxi4ubnpxhtvcnE1tUPPntdo7ty5WrlylXbu3KG4uDhlZ2fL3d1dDRo0UHh4uG688Ub17duPWQLPM23adP3880+Kjo5WWlqa8vLyFBAQoFatWuv666/XkCFD5OHB/+aBmqxdu/Z64om/6uDBg4qJidbp06eVmZmp4uJi1a1bVy1atFSPHj00YsQINWjQwNXl1kiTJ/9Bffv207Jl32j//v1KS0uTl5eXQkND1bdvX40ePVp+fnzBfTl4wggAAAAAsItJbwAAAAAAdhEYAQAAAAB2ERgBAAAAAHYRGAEAAAAAdhEYAQAAAAB2ERgBAAAAAHYRGAEAAAAAdhEYAQAAAAB2ERgBAAAAAHYRGAEAAAAAdhEYAQAAAAB2ERgBAAAAAHYRGAEAAAAAdhEYAQAAAAB2ERgBAAAAAHYRGAEAAAAAdhEYAQAAAAB2ebi6AAAAcHlSUk7qP//5j3bt2qXU1FQVFhZKkp5//gX179/fxdUBAGozAiMA4Kq0Z88vmjFjhiTpvvvu0/33T3BxRdWTknJSDz74oCwWy2Wd54033tDatWskSZ9/Pk9NmjQpc3z16tWaM2d2uX7u7u7y8/OTn5+fmjRpovbt26tr12669tpr5ebGQCYAqO0IjAAA1GJffPGFLBaL3N3dNXHiJHXp0kW+vr6SpMaNGzv9+sXFxcrMzFRmZqaSkpK0e/duLViwQMHBwbrzzjs1cuTvnF4DAMB5CIwAANRiu3btkiT169df48ePN+Wav//9RPXr18/2c05OjrKysnTkyBH99NNPOnjwgFJSUvT3v/9d27Zt07PPPidvb29TagMAOBaBEQCAWiwtLU2SFBoaato1g4KC1KpVq3L7+/Tpo/vuu08HDhzQa6+9quTkZO3YsUOzZ7+hp556WoZhmFYjAMAxeLkAAIBa7OwENx4e7i6u5JxOnTrp3Xej1KhRI0nShg0btHnzZhdXBQCoDp4wAgBwGX755RetWbNa+/btU3p6utzd3RUcHKzrrrtOY8bcrqCgoIv2PXr0qLZs2ax9+/YpLi7O9i5iw4aB6tQpQrfeOlIRERHl+tmbgObzzz/X559/bvs5MnKoZs6c6bgPWkUBAQGaOvURPf30U5Kk+fO/1IABA8q1Kygo0PLly7Vp00bFxcUpOztbderUUUBAgEJCQtSz5zUaMGBAuUl4AADmIDACAFANBQUFmj17ttavX1fu2LFjx3Ts2DEtW7ZMTz75lPr27VuuzfmztJ6vsLBQJ04c14kTx7V27Vrdeeedmjz5D075DM7Wq1cvhYWFKSEhQdHR0UpNTS0ToNPS0vT44zMVFxdXpl9WVpaysrKUmJionTt3Ki0tTX/605/MLh8AIAIjAABVZrVa9eKLL2j79u2SpD59+mrQoEEKCQmRYRiKjo7W4sWLlJKSopdeelFvvfW2wsPDy5yjuLhYPj4+6t27t7p376GwsDD5+dVRenqG4uLitHTp1zp58qTmz5+vZs1CNXz4cFvf/v37q3379pKkP/7xAUnSyJEjy8xIWq9ePWffhksyDEPdu/dQQkKCJGn//n0aPPgG2/GoqHdtYfGmm4ZowIABCgwMlJubm06fPq2YmBht2bLFJbUDAEoRGAEAqKKVK1do+/bt8vDw0IsvvqjrrutV5nhERISGDBmiadMe1bFjx/TPf76nt99+p0ybNm3a6ssv56tu3brlzn/ddddp1KhRevrpp7Vr18+aN+9zRUZGyt299D3FunXrlutXv359uxPRuFq7du1s24mJx23bBQUF2rp1qyTpjjvG2n2C2LdvX02YMEGZmZnOLxQAYBeT3gAAUAVWq1ULFiyQJI0efVu5sHhWvXr19MADf5QkHThwQImJiWWOBwQE2A2LZ3l6euqPfyztf/LkSf3666+OKN90/v7+tu3s7CzbdmZmpoqKiiRJXbp0qfQ5AADmIjACAFAFcXFxOnHihCRp4MCBFbY9PwgdOnSwwrYFBQVKSTmpuLg4HT16VEePHpXVarUd/+232hkYfX19bNs5OTm2bX9/f3l6ekqSvvvuOxUXF5teGwDg0hiSCgBAFcTExNi2p059uNL9Tp9OL7cvNzdXS5d+rfXr1+vYsWMqKSm5aH+LpXYOy8zJybVt16njZ9v28vLSoEGD9N1332njxh81YUK0Bg0apK5du6lTp04VPn0FAJiHwAgAQBVkZJQPfpWRn59X5ufk5GQ99tgMJScnV6p/QUF+ta7rapmZFtv2hRPxPPTQ/yk7+4y2bduqkydPauHChVq4cKHc3NzUtm1bDRo0SLfccov8/AiPAOAqBEYAAKrg/KeAL730sho3blypfvXr1y/z8+uvv6bk5GQZhqFhw4Zp8OAb1Lx5cwUEBMjT01OGYaikpETDhg2VpDLDU2uT2NhY23ZYWFiZY35+fnrppZd0+PBhbdiwQXv27NGvv8aqpKREMTExiomJ0aJFi/TCCy/aXY8SAOB8BEYAAKrg/AlY6tb1q9bMpPHx8dq/f78k6a677tLEiZPstsvKyrK7v7awWq3atWuX7efOnTvbbdehQwd16NBBUul7jnv27NGaNau1adMmZWRk6IUXXtBnn30mb29vU+oGAJzDpDcAAFRBmzZtbdv79x+o1jni4o7ZtgcPHnzRdjEx0dU6f02xY8d2HT9eupRGx44d1bBhw0v2qVOnjvr27avnnnteo0ffJkk6fTrNFrABAOYiMAIAUAXt2rVTo0aNJEkrVixXQUFBlc9x/oygubl5F2337bffVr3AGsJiseidd86tPXnnnXdV+Rw9evQocz4AgPkIjAAAVIGbm5vuuqs0/CQlJen111+rMDSeOXNGS5cuLbOvWbNQ2/aaNWvs9lu27Btt2bLl8gt2gQMHDuihh6bo1KlTkqQbbrhB/fr1K9MmKemE9uzZU+F5fv75Z9t2kyZNHF8oAOCSeIcRAHDV+/XXX7V69epLtuvRo7uCgxvr1ltH6uefd2nz5k368ccfFRsbq1tuuUXh4R3k5+ennJwcJSTEa8+ePdq6dau8vLw0evRo23natm2rli1b6tixY1q+/FtlZ2dpyJBINWzYUKmpp/Tdd99r48Yf1alTJx04UL1hr86Umpqqo0eP2n7Ozc1VZmamYmNjtXPnTh08eK7mPn36aMaMx8qdIyUlRTNmzFCLFi3Uv39/tW8frqCgwP8dO6UNG9Zrw4YNkqQ2bdqoY8eOTv5UAAB7CIwAgKveli1bKvU07/nnX1BwcGMZhqGnn35a770XpW+//VYnTpzQhx9+eNF+F86QahiGHn/8Cc2c+ZiysrK0YcMGWzg6q1WrVnrmmWd1553jq/WZnOnTTz/Rp59+UmGbxo0b684779Ktt95aYbu4uDjFxcVd9HhYWHM999zzMgyjWrUCAC4PgREAgGrw8PDQww9P1ciRI7VixQrt2bNHKSkpys3Nla+vr5o0aaJ27dqrV6/r1Lt3n3L927Ztq/fff19ffvmldu7cqbS0NPn6+qpZs2a6/vpBGjVqlLy8vFzwyarG3d1dderUkZ+fn5o0CVF4eHt169ZN11xzrdzcLv7mS+fOXTRnzt/0008/6fDhQ0pJOaWMjHQVFBSoXr16at26tQYMGKihQ4fWivsAAFcqw1pbF3YCAAAAADgVk94AAAAAAOwiMAIAAAAA7CIwAgAAAADsIjACAAAAAOwiMAIAAAAA7CIwAgAAAADsIjACAAAAAOwiMAIAAAAA7CIwAgAAAADsIjACAAAAAOwiMAIAAAAA7CIwAgAAAADsIjACAAAAAOwiMAIAAAAA7CIwAgAAAADsIjACAAAAAOwiMAIAAAAA7CIwAgAAAADsIjACAAAAAOwiMAIAAAAA7CIwAgAAAADsIjACAAAAAOwiMAIAAAAA7CIwAgAAAADs+n85iP1DKQ1zBAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 178, "width": 454 } }, "output_type": "display_data" } ], "source": [ "viz_cmodel.leaf_sizes(figsize=(5,1.5))" ] }, { "cell_type": "markdown", "metadata": { "id": "NhKTJzE9z-jD" }, "source": [ "A perhaps more interesting graph is one that shows the proportion of each kind of training instance in the various leaves. The goal of training is to have leaves with a single color because it represents \"pure\" nodes that can predict that class with high confidence." ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:45.171686Z", "iopub.status.busy": "2024-08-24T11:23:45.171419Z", "iopub.status.idle": "2024-08-24T11:23:45.357990Z", "shell.execute_reply": "2024-08-24T11:23:45.357364Z" }, "id": "rjCAJHubex8E" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABI4AAAFlCAYAAACN0KN/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AACETElEQVR4nOzdd1hU19bH8e+AIChSBDtYsaFi7y3X3pKo6YmJN5puisbcJPem92Z6TC8mamJsSeyKLWLF3lAQFQUFld7bMO8fvIwSBgQdZkB/n+fJcw9nl7PmXFFZ7r22wWQymRAREREREREREfkHB3sHICIiIiIiIiIilZMSRyIiIiIiIiIiYpESRyIiIiIiIiIiYpESRyIiIiIiIiIiYpESRyIiIiIiIiIiYpESRyIiIiIiIiIiYpESRyIiIiIiIiIiYpESRyIiIiIiIiIiYpESRyIiIiIiIiIiYpESRyIiIiIiIiIiYpESRyIiIiIiIiIiYpESRyIiIiIiIiIiYpESRyIiIiIiIiIiYpESRyIiIiIiIiIiYlGlShzl5OSQmJhIfn6+vUMREREREREREbnuVbPFQzIzMzlw4AAAgYGBuLq6FmlPTk7mk08+ZseOHRiNRlxcXBg5chSTJk3C2dnZFiGKiIiIiIiIiMg/GEwmk6miH7JmzRpmzPgAHx8f5syZi4PDxYVO+fn5PPHE40RERHBpKAaDgT59+vDKK69WdHgiIiIiIiIiImKBTbaq7dq1E4C+ffsVSRoBbNy4kWPHjgHg79+S8eNvwd+/JSaTia1bt7JzZ4gtQhQRERERERERkX+wyVa1yMhIDAYD7doFFGtbuzYIgJYtW/Lpp5/h6OhIXl4e06ZNJTw8nDVrgujevYctwqzSnnrqKT799FN7hyEiIiIiVdT58+e47777MBqN9g6lSnJ0dOSXX36hbt169g5FRMSqbJI4SkpKAqB+/QZF7ufl5XHw4EEMBgM33XQzjo6OBUFVq8aYMTfy4YczCAs7aosQq7y0tFR7hyAiIiIiVVhycgpGo5Ext9yDdx0lP8oj/sI5li2aS3JyihJHInLNsUniKDW1IKlRrVrRx4WFhZGdnY3BYKB79+5F2nx9fQFITEy0RYgiIiIiIgK069iNxk1b2DuMKuV05HGWLZpr7zBERCqETWocVa9eHbi48qjQwYMFJ601bNgQLy+vf4zRaWoiIiIiIiIiIvZkk8RRw4YNAdi/f3+R+1u2bMFgMNChQ4diY5KSkgHw9PSs8PhERERERERERKQ4mySOunTpgslkYunSJYSEhJCZmcmff/5BWFgYAL169S425uTJEwDUru1tixBFREREREREROQfbFLjaNy48SxbtozMzExeeunFIm2NGzemd+/iiaMdO3ZgMBjw9/e3RYgiIiIiIiIiIvIPNllx5O3tzRtvvImXlxcmk8n8X4MGDXjppZcxGAxF+p89e5aDBw8CBauVRERERERERETE9myy4gigQ4cOzJ49h8OHD5OQkIC3d23at++Ao6Njsb4JCfFMmDABgK5du9oqRBERERERERERuYTNEkcATk5OdOrU6bL92rfvQPv2xQtmi4iIiIiIiIiI7dhkq5qIiIiIiIiIiFQ9Nl1xVJrjx48THLyJ5ORk6tdvwODBg/Hx8bF3WCIiIiIiIiIi1y2bJI7Cwo7y+eef4+joyFtvvY2bm1uR9mXLlvH5558Vuffrr3N5+eVXVONIRERERERERMRObJI42rZtO+Hh4XTt2rVY0igmJoYvv5yJyWQqcj8zM5O33nqTH3/8CU9PT1uEKVYSErKDY8ci7B1GldOypT89evS0dxgiIiIiIphMJhITE8nIyCA/P9/e4YhICRwcHKhRowZeXl7FTqy3Fpskjg4c2I/BYKB79+7F2pYsWUJeXh7Vq1fn+ef/S+fOndm1axcffPA+6enpLFu2zHzCmlR+58+f48UXXyyWCJTLMxgMzJkzh7p169k7FBERERG5ThmNRoKDN7F582bOno2xdzgiUkYNGzagX79+9O8/wOLp9VfDJomjuLg4AJo1a16sbevWrRgMBkaPHk3fvn0BGDBgAKGhoSxevIidO3cqcVSFJCenYDKZGDOmM97ebpcfIADEx6exbNlekpNTlDgSEREREbtZsGABmzcH07FjR8aMubFCVzGIyNUrXB24c2cICxcu5Ny589xxxx1WfYZNEkfJyckAuLu7F7kfFxdHTMxZDAYDAwYMLNLWtWtXFi9eRFTUaVuEKFY2cmRHWrasb+8wqoxjx2JZtmyvvcMQERERkevYzp0hbNq0iXvuucf8j/oiUvk1adKETp06sXnzZn799VeaN29uccfXlXKw2kylyM3NBSArK6vI/YMHDwJQvXp1WrduXaTNy8sLKKh1JCIiIiIiIhVr585dtGzpr6SRSBXVr18/Wrb0Z9eunVad1yaJo8Li1mfPni1yf8+e3QC0bdu22B68nJwcgGLFtEVERERERMS6cnNzCQ8Po3379vYORUSuQrt27QkPDzcv4LEGmySOWrVqhclkYtWqleaK/CkpyWzevBmDwUDnzp2LjYmJKSjEphPVREREREREKlZiYiI5Obk0btzY3qGIyFVo0qQx2dk5JCUlWW1Om9Q4GjJkKFu3buXQoUNMmzaVgIB2bN++jfT0dKpVq8agQYOLjTl8+DAADRs2tEWIIiIiIiIi163s7GwAXFxc7RyJiFyNwu/hf5YKuho2SRwVHAnXn+DgYI4cOcLRo0fNx7Xffvvt1K1bt0h/o9HIli0Fq5G0VFJERERERKRiFf58phPURKq2wu/hwu9pa7BJ4gjghRdeZMmSJWzatInExARq167N0KHDGDFiRLG+GzduJDExEYAePXraKkQREREREREREbmEzRJHDg4OjB07lrFjx1627+DBgxk8uPj2NRERERERERERsR2bJY4qu/Pnz7Fy5Sp27NjB+fPnyMjIwNPTk3r16tGxYycGDhxIs2bNShwfEhLCihXLCQsLIzk5GQ8PD1q3bs2oUaPp0aOHDT+JiIiIiIiIiIh1KHEE/PnnH/zwww/FikdduHCBCxcucOjQITIyMnjssceKjc3Pz+fjjz9m1aqVRe7HxcURFxfHli1bGDlyJFOnTsPBwSaH2ImIiIiIiIiIWMV1nziaO3cOs2bNAsDX15dRo0bRqlVratasSUpKCsePR7B58xYcHCwXifvppx/NSSN/f39uv/0OGjZswNmzMcyf/zsRERGsXLkSDw9PJk+ebKuPJSIiIiIiIiJy1WyaOMrNzWXdunVs3bqFEydOkJycTE5OzmXHrV69pkLi2bNnjzlpNHToUJ5+ejrVqhV9JV26dOG2224nNze32Pjo6GgWLFgAQKtWrfjoo4+pXr06AK1bt6F3795Mn/404eHhLFgwnxEjRtCoUaMK+SwiIiIiIiIiItZms71T0dHRPPLIw3z88Uds376d8+fPk52djclkKvW/ipKfn89nn30KQPPmLZg+/ZliSaNLOTk5Fbu3ePEijEYjAFOmPG5OGhVycXFhypTHATAajSxatMha4YuIiIiIiIiIVDibrDjKzMzkf//7L7GxsRgMBvr06YunpwcrVqzAYDBw9933kJqaQnh4OEePHsVgMNC2bVu6du1aYTHt3r2LM2fOAHDHHXfg6OhYrvEmk4mtW7cC4OfXmICAAIv9AgIC8PPzIyoqim3btvLEE09gMFje9iYiIiIiIiIiUpnYJHG0bNkyYmNjcXBw4J133qVz585ERkayYsUKACZOnGjuGxFxjPfee48jR45www3/YuzYsRUS06ZNmwAwGAz06tXLfD8lJYWUlBTc3d1xd3cvcXxsbAzx8fEABAYGlvqswMBAoqKiiIuLIzY2lgYNGljhE4iIiIiIiIiIVCybJI62b9+GwWBg4MCBdO7cudS+/v4t+eCDGTz88MN8883XBAQE0KpVK6vHdOTIEQDq1atHjRo1WL9+Hb/99huRkZHmPoXFsm++eSzOzs5Fxp86ddp83bixX6nP8vO72H769GkljkRERERERESkSrBJjaPTpwuSLH379rPYnp+fX+RrT09Pbr31FoxGI3/99ZfV48nPzycqKgoADw8PZs6cyTvvvFMkaQQFdZm+/fZb/vOf/5CWllak7cKFC+ZrH586pT6vTp26FseJiIiIiIiIiFRmNllxVJh0qVfvYgLl0mLTWVlZ1KhRo8iYdu3aA3DgwH6rx5Oenm5OVp08eZKwsDBq1/bmoYceokePHjg7OxMWFsb333/HkSNHCA09zIwZM3j11VfNc2RmZpivXV1dSn2ei8vF9szMzHLFOnPmTGbOnHnZfm3atC7XvCIiIiIiIiIil2OTxFH16tX/P2FysSi0m5ub+fr8+fM0bdrU4tjExESrx5OVlWW+zsnJwcXFhRkzZhTZUhYYGMgHH8zgySef5MSJ42zZspkjR47Qtm3b/x+Xa+5brVrxE9cudWmSLCcnu1yxTpkyhSlTply23+TJk8o1r4iIiIiIiIjI5dhkq1r9+vUBzMWkoWCLWK1atQA4fPhQsTHh4eEAVKtm/dzWP+sVjRgxskjSqFD16tWZNOl+89d//73xkjkuJoPy8nIpTW7uxXZn5+rlDVdERERERERExC5skjgqLG5dmAwq1LlzZ0wmE/PnLyAlJcV8PybmLL//Pg+DwUCLFi2sHo+rq2uRr7t161pi386du+Do6AhAWFjYJXNc3FqXmZlVbNylLl3h9M9ni4iIiIiIiIhUVjbZqta1a1dWrVrFtm3b+Pe//22+P3bsODZt2kRsbAz33/9vOnbsRFZWFocPHyIzMxODwcDo0aOtHo+zszOenp4kJSUBRYtXW+rr4eFBQkICycnJ5vt16lwsiB0XV3rB6wsXzlscJyIiIiIiIlJVTJhwD+fOnStyLyhorZ2iEVuxyYqjnj170aFDB2rUcOXs2bPm++3bt2fChAmYTCZSU1PZsmUzu3fvMheQHjZsOIMGDa6QmJo0aWK+zs83ltq3sJB24cqjgvGNzdenT0eVOr7wBDeAxo0bl9JTRERERERERKTysMmKIxcXFz788COLbffdN5H27TuwcuVKTp2KxGg00qhRI4YOHUr//gMqLKYOHQLZv7/gxLaYmBj8/Vta7Jeenm5eaeTt7W2+X79+A7y9vYmPj+fAgQOlPuvAgYMA+Pj4mOs9iYiIiIiIiIhUdjZJHF1Oly5d6NKli02f2b9/f+bMmQ3Ali1bSkxSbdmyBZPJBECHDh3M9w0GA3369GHp0qVERZ0mNDSUgICAYuNDQ0OJijoNQO/efTAYDMX6iIiIiIiIiFR2w4ePIDU11d5hiI1VisSRPTRv3pzu3Xuwc2cIGzZsYNiw4cWSVwkJCcya9RMATk5ODB8+okj7+PG3sHz5cvLz85k58ws++uhjqle/eGpadnY2M2d+ARRscxs/fnwFfyoRERERERGRinHvvffaOwSxA5vUOKqsHnvsMdzc3MjPz+ell17khx++5+DBg4SFhbFkyV88/vgULlwoKHw9ceK/8fHxKTLe19eX22+/HSg4MW7q1KfYuHEDYWFhbNy4galTnzKfJHfbbbfj6+tr2w8oIiIiIiIiInIVrtsVR1CQ+HnjjTd4/fXXSUxMZN68ecybN69IH4PBwN13380dd9xhcY77759EUlISq1atIiIigrfeeqtYnxEjRnL//fdXyGcQERERERER64qJOcuKFSs5cOAAZ8+eIT09HYPBgIeHB+7u7jRq1Ah/f386dAgkICAAB4eCNRmxsbHce++EInMFBgby4YcfERsby6JFCwkJ2Ulc3AVcXFxo2bIlN910E3369L1sTJmZmaxevZrdu3dz/HiEecuYp6cnbdq05YYbbqBPn7KVR8nIyGDt2iD27NnD8ePHSU5OJi8vDy8vL+rUqUNgYEd69uxJu3btiowr76lq1og5PT2dVatWsnPnTk6fPk1KSgpGo5FatWrh4eFBnTp1adGiBe3btyMwsCOurq6X/fxSPlZNHP3zG8QaDAYDv/wy2+rzFmrfvgPff/89f/75J1u2bCU2Noa8vDxq165Nx44dGTt2bImFswEcHByYPv0Z+vXrz4oVywkLCyMlJQV3d3dat27N6NFj6NGjR4XFLyIiIiIiItazatVKPv30U/Ly8oq1XbhwgQsXLnD8+HE2bdoEwK+//kadOnVKnXPr1i28++675hPEAXJycti9eze7d+9mxIiRTJs2zZyA+qcNGzbw+eefWawvFBsbS2xsLBs3bqBt27a89NLLpcazatUqvv76K9LT04u1nT9/nvPnz3P48GHWr1/HnDlzS/1cpbFGzOHh4bzwwv9ISkoq1paYmEhiYiKRkZHs3BkCwHPPPc+QIUOuOGaxzKqJo39mHq3BFsWk3d09uO++idx338QrnqNnz5707NnTilGJiIiIiIiILUVHR5eYNLpSUVFRvPnmm+Tm5pbYZ9WqlXh6ejB58gPF2hYvXsRXX31VpmcdOXKEJ598gi++mFnkVPBCs2b9xNy5V54MKitrxGw0GnnzzTcsJo3EtqyaOBo6dJg1pxMRERERERGxmb//3lgsadSoUSMCAtrh6upKRkY6Z86c4eTJk2RlZZVpzsTERAB8fHzo1q0bRqORkJAQkpOTi/SbP38+gwYNolmz5uZ7R48e5Ztvvik2Z9OmTWnVqjVGYx779+8nLi7O3BYXF8f777/He++9X2TMtm3bLCaNHBwc6NixI40aNSIvL4/jx08QEXGsTJ/NEmvFfORIKDExMUXm8PDwoFOnTnh4eJKTk825c+c4efKkkksVzKqJo//85z/WnE5ERERERETEZs6fP1/k6zZt2vDJJ5/i6OhY5H5eXh5Hjhxh06a/cXJyuuy8gYGBvPXW27i4uACQkpLC9OlPExkZae6Tn5/Pn3/+ybRpT5vv/fLLL+Tn5xeZa8qUxxk7dqz56+zsbF599RV27dplvrdnzx4OHDhAYGCg+d6PP/5QLC5fX19ef/0N/Pz8ityPjo5mxYrll/1cllgr5n/+f1G9enV++OFHPDw8ij0zMjKSLVs2W1xlJVfvuj5VTURERERERKSQq2uNIl9nZWWRkZFRrF+1atXo0KEDU6Y8jqen52XnffzxJ8xJIwB3d3ceeODBYv127txpvk5PT2fPnt1F2tu0aVMkAQMFCZUJE+4tNldw8Cbz9enTp4skqaBgpdErr7xaLGkEBQmlhx56uNTPZIk1Y/7n/xf5+fkkJMRbfG7Tpk25554JdO7cudwxy+Vd16eqiYiIiIiIiBTq3LkzixYtNH8dGRnJHXfcTpMmTfD19cPPz5cmTZrQrl17fHx8yjRnnTp1aNasWbH7Xbp0wdHREaPRaL534cIFUlKScXf34NixY0XaoGAb2NChZSv+HBoaWmTcP7Vr156mTZuWaa6ysmbM7dq1w9nZmZycHAByc3N5+OGHadSoEY0bN8bX1xc/Pz/atGlLkyZNbFIf+XpVIYmjnJwcoqOjAahZsyb16tUr89hz586Zq7s3btyYatWU2xIREREREZGK17NnT/r27cuWLVvM93Jzc4mIiCAiIqJI3zZt2jBhwgR69uxV6pwlnXDm5OSEh4dnsVU0yckpuLt7kJycdGUf4v8V1lb653Whxo2LrzS6WtaM2d3dnUmTJvH111+b75lMJqKjo835hkL16tVj/Pjx3Hzz2GLbCuXqVchWtblz5/Doo4/w+ONTuHDhQrnGXrhwgccfn8Kjjz7C77/Pq4jwRERERERERCx6+eVXeOqpqbRo0aLUfkePHuWll17i77832iawcsrMzLR3COX2z5hvueVW3n33Pbp27VrqopJz587x1VdfMXPmzIoO8bpk9eU86elpLF68GIC77rqL9u3bl2t8+/btueuuu5g9ezbz589n/PhbcHV1tXaYIiIiIiIiIsU4ODgwZswYxowZQ1JSEidOHCc6OpozZ84QGhpaZNuXyWRi1qxZDBx4Q4nzlbSYIjc31+IKHQ8PdwCLtZOaNGlCly5dy/Q5qld3Nl9bmuv06agyzVMe1oy5UNeuXenatSuZmZmcOHGCqKgozp49S0REBHv37ilyCt7y5cu4++67y7yNUMrG6omjjRs3kp2djYeHB7feetsVzXHbbbezZMkSUlJS2LhxIyNHjrRylCIiIiIiIiKl8/T0pEuXrkUSH++++w7r1q0zfx0dHU1aWhpubm4W57hw4QInT54sVudo7969xeoB1alTB3f3glPD/P39cXBwKHJCmdFo5NFHHy1TPZ9L527Tpk2x9sOHD3Hq1CmaNGly2bnKypox/5Orqyvt2rWjXbt25nsrVqzg448/Mn+dn59PWFiYEkdWZvWtart378FgMNC3b98rXink4uJC//79MZlM7N696/IDRERERERERK7S1q1b+PHHHzlx4oTF9vz8fJKTk4vdz83NLXXeL774nKysLPPXqampfP/9d8X6de/e3Xxds6ZbsVPCoqOj+eSTj0vchnbhwgWWLPmLxx57lEOHDprvN2nSpFgh7Pz8fF599RWiooqvPDp37pzF+C7HmjGfP3+OGTM+YN++fUVWFV3KUu2m3NyccsctpbP6iqPjxwsKhnXu3OWq5unUqTPLli3j2LGIy3cWERERERERuUpJScn89tuv/Pbbr3h6etK0aTPq1q2Lq6sLGRmZHDkSWqwws5ubGx4eHqXOe+DAASZNup+uXbthNBrZuTOEpKSkIn0cHBy4+eaxRe7dd99E9u7dW2QFz4oVK/j777/p0CEQb29vTKZ8EhMTOXXqFGfPni0xhvvvn8Qrr7xc5F50dDQPPvgAgYGB+Pr6kpubx+nTpzh69Ch16tThgQceLPVzWWKtmHNz81i9ejWrV6/GxcWFZs2a0bBhQ2rUqEleXi6nTp3myJHQYuN8fX3LHbOUzuqJo8Jf/CVVji+rwqVlSUnFM4giIiIiIiIiFSkpKYl9+/Zett/o0aNxcCh5M0+dOnVIS0vjwoULrFq1ssR+t956K82bNy9yLyAggIceeqjIyWIA6enpbN++7bKxXapPnz7ceeddzJv3W5H7RqORvXv3snfv5T9rWVgz5kJZWVkcOXKEI0eOlNqvbdu2+Pu3vKJnSMmsvlWtcIleaRXPy6JwfElL0kRERERERESsqSx1eC41aNAg7rtvYql9GjRowKuvvlZiDSSAoUOHMXnyAxbbbrnlVl544QXc3d3LHFezZs3w9i5e52fy5MlMmzaNGjVqlHmuK2GNmMv7/0WLFi148cWXyjVGysbqK448PDxISEiwuNewPApXLpXnF5qIiIiIiIjIlRoxYgTNmzdn3759hIWFERV1mvj4eDIyMjAYDLi6ulK/fgPatGnDoEGDynyKeJcuXfj22++YP38+ISEhxMVdoHr16rRs2YqbbrqJvn37ljr+hhv+Ra9evVm/fj27du3i2LFwUlJSyMrKwsXFBW9vHxo39qNdu3Z069aNZs2alzjXqFGjGTjwBoKCgtizZzfHjx8nJSUFo9GIp6cnderUJTAwkJ49e5br3Vk75oYNG/LLL7+we/cejhw5QmTkSS5cuEBaWhpGoxEXFxd8fHxo0aIFffv2o1+/fjg6Ol5VzGKZ1RNHderUISEhgdDQw1f1C+3w4UPm+UREREREREQqmsFgoHXr1rRu3drqc9epU4cpU6YwZcqUKxrv4uLCqFGjGDVq1FXHUrNmTcaOHcvYsWPLNW7OnLnl6n+1MTdo0JAxYxoyZsyYKxov1mH1rWodO3bCZDKxYcOGUo/SK01eXh7r16/HYDDQsWMn6wYoIiIiIiIiIiJlYvXEUf/+/YGC4/vmzp1zRXP8+utczp07V2Q+ERERERERERGxLasnjlq1akXPnj0xmUzMnTuX3377FZPJVObxv/76K3PmzMFgMNCjR09atWpl7RBFRERERERERKQMrF7jCOCJJ54gPDycpKQkZs2aRXBwMGPHjqNHjx54enoW65+UlMSOHTv4668/OX78OACenl488cQTFRGeiIiIiIiIiIiUQYUkjurWrcfrr7/Byy+/RGJiIsePH+fDD2cA4O3tjaenFy4uLmRlZZGUlEh8fLx5rMlkwsvLizfeeIO6detWRHgiIiIiIiIiIlIGFZI4AmjdujVff/0NH3/8Edu3bzffj4+PL5IoAopsZevduzdTp07Dy8urokITERERERERsbr69esTFLTW3mGIWFWFJY4AvLy8eP31N4iMjGT16tUcOLCfkydPkpeXdzGAatVo1qwZgYEdGTZsGM2aNavIkEREREREREREpIwqNHFUqGnTpjz88MPmrzMyMsjIyKBGjRrUqFHDFiGIiIiIiIiIiEg52SRx9E9KGImIiIiIiIiIVH4O9g5AREREREREREQqJyWORERERERERETEIiWORERERERERETEIiWORERERERERETEIiWORERERERERETEIiWORERERERERETEIiWORERERERERETEIiWORERERERERETEIiWORERERERERETEIpskjj7//HMiIo7Z4lEiIiIiIiIiImIlNkkcLV26hClTpvDIIw/z559/kJKSYovHioiIiIiIiFzXJky4h6FDh/D+++9XyPz79+9j6NAhDB06hP379xVr/+WXn83tUjVVs8lDqlUjLy+PEydO8NVXX/Hdd9/Ru3dvhg8fTrdu3TEYDLYIQ0RERERERGwsJyeH3Nxce4dRYZycnHB2dr6qOfbv388zz0w3f/3JJ5/Srl27qw1NxCpskjiaN+931q1bx5o1qzl+/Di5ubkEBwcTHByMt7c3w4YNY9iw4TRs2NAW4YiIiIiIiIgN5OTkcO+9d5OQkGTvUCpM7dqezJ7961Ulj4KC1vzj6yAljqTSsEniyN3dnXHjxjFu3DgiIiJYvXoVGzZsICUlhbi4OH777Td+++032rdvz4gRIxkwYADVq1e3RWgiIiIiIiJSQXJzc0lISGLu3MeoUePa+xkvIyObe+75ktzc3CtOHGVnZxMcHAyAq6srmZmZbNr0N4899thVr2SqDO67byL33TfR3mHIVbBJ4uhS/v7++Ps/zsMPP8K2bVtZtWoVu3fvJj8/n0OHDnHo0CFmzvyCG264gWHDhhMQEGDrEEVERERERMSKatSoTs2a117iyBq2bNlMRkYGAI89NoUPP5xBamoq27dvZ8CAAXaOTsRGxbEtqVatGv37D+Ctt95m7txfmTRpEo0aNcJkMpGRkcHKlSuZNm0qDzwwmQULFpCYmGivUEVEREREREQqRFBQEADNmzdnxIgR+Pn5FbkvYm82X3Fkibe3N3feeRd33nkXO3fuZMaMGSQlJWIymYiKiuL777/jp59+pG/fvtxxx534+/vbO2QRERERERGRqxIfH8+ePXsAGDx4sPl/Z82axa5dO0lKSsLT07PUOUJCQvjzzz8JDw8jKysLHx8fevXqxa233oaPj0+ZYzl27BjLly9n//59xMXFAeDj40OnTp245ZZb8fX1vaLP+MsvPzN79mwAgoLWltgvJyeHFStWsGXLFk6diiQ1NRU3NzeaNWvGv/41iGHDhuHo6HhFMcjVqRSJI4ADBw6wevVqgoM3kZ2djclkAsDFxYXMzEzy8vLYtGkTmzZt4qabbubRRx/FwcFuC6ZERERERERErsr69evIz8/HwcGBQYMKEkeDBg3m559/Ji8vjw0bNjBu3LgSx3/99VcsWrSoyL0zZ86waNEi1q1bx5tvvnXZGPLz8/n2229YvHix+efwQtHR0URHR7Ny5UqeeOIJRo8ecwWf8vKOHz/OK6+8zLlz54rcT0pKYu/evezdu5fly5fxxhtv4uXlVSExSMnsmjg6f/48QUFrWLNmDbGxsQCYTCYMBgNdunRh5MhR9O3bl3PnzrFq1UpWrFhBamoqS5b8RcOGDUv9BhIRERERERGpzNauLViBExjY0bw6qEGDBgQEBHD48GGCgoJK/Ll38eJF5qRR4S6eNm3akJOTw44dO/jjj8W8+eYbZGdnlxrDF198wdKlSwDo0CGQYcOG0aBBA1xcqnP8+An++GMxkZGRfPLJJ3h51aZPnz7W+vhAQaJr+vSnSU9Pp0aNGtx00820adOGOnXqkJKSwrZt21i+fBlhYWG8/PJLfPzxJ1SrVmnWwFwXbP62c3Jy2Lx5M6tXr2bfvr0A5qymj48Pw4ePYMSIEdSrV888plGjRkye/AB33nknr776Kvv372fFiuVKHImIiIiIiEiVFBERwYkTJ4CL29QKDR48hMOHD3PsWDinTp2iSZMmRdoTExP56aefAKhXrx6fffY5tWvXNrcHBgbSrVs3/vvf5zEajSXGsHv3bnPS6OmnpzNy5Mgi7a1bt2HIkCG88MIL7Nu3ly+/nEnPnj2tumXs/fffJz09HX9/f9599z08PDyKtHfr1o1evXry4osvcvToUdasWc2oUaOt9ny5PJvt9Tp69CiffvoJd955B++99y779u3FZDLh6OhI3759efPNt5g791cmTpxYJGl0qZo13czH+J09e9ZWoYuIiIiIiIhY1dq1BcWvq1evTv/+/Yu0DRw4ECcnJwCCgtYUGxsUtIasrCwAHn744SJJo0KdO3dm1KhRpcYwb948APr3718saVTI2dmZxx9/HIBz586xb9++Uucsj4MHDxIaehiAZ599tljSqFD37j3M72j16uLvQyqWTVYcPfDAZKKiooCLq4t8fX0ZMWIEQ4cOK9ceRW9vbwDy8vKsHyjw3XffMX/+7+avZ8yYQceOnUodExISwooVywkLCyM5ORkPDw9at27NqFGj6dGjR4XEKSIiIiIiIlWT0Whk/fr1APTq1YuaNWsWaXd3d6dHjx5s2bKF9evXM2nS5CI1fgsLateqVYs+ffqW+Jzhw0ewdOlSi23p6ekcOLAfgP79B5Qab5MmTfDw8CA5OZnQ0FC6du16+Q9ZBtu2bQXAz8+PZs2al9q3Q4dA/v77b8LDwzAajSqUbUM2SRydPn0auJhJHTlyFB06dLiiuWrUqMGQIUMxGAzWDBEoWCq4aNHCMvfPz8/n448/ZtWqlUXux8XFERcXx5YtWxg5ciRTp05TIW8REREREREBYNeunSQmJgIF29IsGTx4MFu2bOHChQvs27ePLl26mNtOnowEoEUL/1ITKP7+/jg5OZGbm1usLSIigvz8fADefvst3n778oW0ARITE8rUryzCw8MBiIqKYuhQy+/hn/Ly8khJSVGRbBuySeLI39+fkSNHMmjQ4GKZ1PLy9PTk2WeftVJkF+Xn5/PJJx9jNBrx9PQkKSnpsmN++ulHc9LI39+f22+/g4YNG3D2bAzz5/9OREQEK1euxMPDk8mTJ1s9ZhEREREREal6goIKtqm5u7vTvXt3i3169uyFm5sbaWlprF0bVCRxlJqaAhT8fFwaR0dHatWqRUJC8WRPWX7mtSQrq/Ri2+VxpTFcruC3WJdNEkdffvmVLR5zVf788w/CwsLw82tM3759mTfvt1L7R0dHs2DBAgBatWrFRx99TPXq1YGCAmK9e/dm+vSnCQ8PZ8GC+YwYMYJGjRpV+OcQERERERGRyis9PY1t27YBkJKSwsiRIy47ZvPmzTzxxJO4uroWuX81G3EKVxsBTJ06lYCAdmUaV6tWrSt/aAkxNG/egueff77M4wpPoBPb0Bl2wPnz55g1axYATz31FPv377vsmMWLF5mr00+Z8rg5aVTIxcWFKVMe56mnnsRoNLJo0SKefPJJa4cuIiIiIiIiVcjff/9NTk5OucZkZmayefNmhg4dCmBeRZSYmFTqOKPRSGpqqsU2d3d383X16i40a9asXDFZQ61aBTFkZWXa5flSNnZJHCUmJnLgwH5OnjxJSkrBL2J391o0bdqUjh072Xyv4ueff05mZiZDhw6jY8eOl00cmUwmtm4tLOLVmICAAIv9AgIC8PPzIyoqim3btvLEE09USG0mERERERERqRoKt6nVru3NI488ctn+3333LRcuXGDt2iBz4qhp02YkJCRw/HhEqYWijx8/brG+EUCLFi0wGAyYTCYOHz7EkCFlqzFkTf7+/oSGHiYmJoaEhASLp8OJ/dk0cRQXF8c333zNli1bzKt1/snBwYG+ffvy0EMPUbduvQqP6e+/N7J9+3Zq1arFww8/XKYxsbExxMfHAxAYGFhq38DAQKKiooiLiyM2NpYGDRpcdcwiIiIiIiJS9cTExHD4cMHx8/379+Nf//rXZcccOXKEP/5YzL59+4iLi8PHx4cuXbqwZ89uUlNT2bZtG/369bM4dtWqVSXO6+npSdu2bQkNDWX9+vVMnPjvy9ZMsrbevXuzZMlfmEwm/vhjMZMnP2DT50vZ2Oyor0OHDvLggw+wadMm8vLyMJlMFv8zGo0EBwfz0EMPcejQwQqNKS0tjS+//BKABx54EA8PjzKNO3XqtPm6cWO/Uvv6+V1sLzxdTkRERERERK4/a9cGYTKZAOjff0CZxgwY0B8oqAe0du1aAIYNG2Yul/LNN1+bT2i71P79+1mxYnmpc9999z0AZGRk8Prrr5OWllZi35ycHP76669yb7MrTbdu3WjTpg0A8+fP5++/N5ba/+TJE+b6UGI7NllxFBcXx0svvUR6ejoA3bt3Z8SIEbRu3ca8LS0xMZGwsDBWr15FSEgIGRkZvPTSS3z33fcVVvjqu+++JSEhgXbt2jFy5Mgyj7tw4YL52senTql969Spa3GciIhUTefPnyM5OcXeYVRJHh7uNllNLCIiUlkVJn48PT3p0KFDmcYEBLSjdm1vEhLiWbduLXfeeSdeXl5MnPhvvv32G2JjY3nssUe58867aNOmNTk5uYSE7GDRokX4+PiQnZ1d4ullPXv2ZNy48fzxx2IOHjzA5MmTGDNmDO3atcfd3Z2srCzOnj3LwYMH2bJlM6mpqQwbNsxarwOA//73fzz++BRSU1N58803Wbt2HTfccAONGjXCwcGBpKQkIiIi2L59G0eOHOHWW2+jd+/eVo1BSmeTxNG8eb+Rnp6Og4MDzzzzH4t7J+vWrUvdunXp378/69ev47333iMjI4Pff5/HlCmPWz2mgwcPsnLlShwdHXnqqanlqj2UmZlhvnZ1dSm1r4vLxfbMzMxyxzlz5kxmzpx52X5t2rQu99wiIlI+58+f4/5Jk8jREbBXxLl6dX768Uclj0RErkMZGdfmn53l+VyHDh3i7NmzAPTt2w8Hh7JtACos57J06RIiIyMJDw+nVatW3HbbbZw/f54///yDuLg4vvji8yLjPDw8eOmll3jjjTdKnf/RRx+lVq1azJ07h4SEBH755ZcS+7q4uJQ57rJq2LAhn332Oa+99iqRkZFs376N7dtLXlVUo0YNqz5fLs8miaOQkBAMBgOjRo0qU8GtQYMGc+jQIZYtW8aOHTusnjjKzc3l448/xmQyccstt5S7entOzsXiYtWqOZXa18npYntOTvl/s5wyZQpTpky5bL/JkyeVe24RESmf5OQUcrKz6fvvEXjUV/HG8kiOTWDLrFUkJ6cocSQich1xcnKidm1P7rnnS3uHUmFq1/Ys8nNfSdauDTJf9+/fv1zP6N+/P0uXLgEKimu3atUKKPh5sVu3bvz55x+EhYWRnZ2Nj08devTowe23306dOqXvkAEwGAzce++9DBkyhGXLlrFv315iYmJIT0/HxcWFOnXq4O/vT9euXenbt1+xE8WtwdfXl6+//oa///6bzZuDCQsLIzk5mfz8fGrVcsfPz5f27dvTt28/WrZsafXnS+lskjgqLCQ9YMDAMo8ZMGAgy5YtM4+1pt9++5WoqNPUrVuXCRPuLfd4Z+eLvynk5VmuUF/o0gr2zs7W/wYTERHb86hfG+/GSn6IiIhcjrOzM7Nn/1riyV7XAicnJ5ydnS/bb+rUaUydOu2KntG5c2eCgtZabOvZsyc9e/YsceycOXPL9IwGDRrw4IMPlju2jh07lRgbwH33TeS++yZedh5HR0cGDRrEoEGDyh2DVCybJI7c3GqRlJRIzZo1yzymsK+bWy2rxnL69GnmzZsHwJQpj+Pq6lruOVxdLy6Ny8zMKrVvVtbF9it5loiIiIiISFXm7OxcpsSKiFRONkkctWrVipCQHZw8ebLMy8pOnjxpHmtNixcvIjc3lwYNGpCdnc2GDRuK9YmMjDRf7927j4SEggr1vXr1wtXVtchyv7i40gteX7hw3nxdlmWCIiIiIiIiIiKVhU0SR+PGjWXHju3Mn/87AwYMKFIw2pKsrCx+/30eBoOBsWPHWjWWwvpEMTExvP32W5ftP3fuHPP17NlzcHV1pUmTxuZ7p09HlTo+Kupie+PGjUvpKSIiIiIiIiJSuVi3HHoJunTpyr333svp06d55pnpRERElNj3+PHj/Oc/zxAdHc2ECffStWtXW4RYLvXrN8Db2xuAAwcOlNr3wIGDAPj4+FC/fv0Kj01ERERERERExFqsuuJo9uzZpbQaaNWqFeHh4UyZ8hhNmzajdetWeHp6YTBAYmIiYWHhREYW3aI2e/Zs7r23/AWsS/Lss8/y7LPPltrnl19+Nn+WGTNm0LFjp6KfxGCgT58+LF26lKio04SGhhIQEFBsntDQUKKiTgPQu3cfDAaDdT6EiIiIiIiIiIgNWDlx9MtlkyMGgwGTyURk5ElzkuhSJpMJg8FAeHg44eHhAFZNHFnL+PG3sHz5cvLz85k58ws++ujjIscSZmdnM3PmF0BBdfjx48fbK1QRERERERERkSti9a1qJpPpsv+V1s9SW2Xk6+vL7bffDkB4eDhTpz7Fxo0bCAsLY+PGDUyd+pQ58XXbbbfj6+trz3BFRERERERERMrNqiuO1qwJsuZ0ld79908iKSmJVatWERERwVtvFS+2PWLESO6//347RCciIiIiIiIicnVscqratcrBwYHp05+hX7/+rFixnLCwMFJSUnB3d6d169aMHj2GHj162DtMEREREREREZErosSRBffdN5H77ptY5v49e/akZ8+eFRiRiIiIiIiIiIjtWb3GkYiIiIiIiIiIXBuUOBIREREREREREYuUOBIREREREREREYuUOBIREREREREREYuUOBIREREREREREYuUOBIREREREREREYuUOBIREREREREREYuUOBIREREREREREYuUOBIREREREREREYuq2TuAS509e5bk5GTq16+Pl5eXvcMREREREREREbmu2SRxlJiYSHDwJgAGDx5MzZpuRdrPnDnDW2+9yfHjx833+vTpw9NPT6dWrVq2CFFEREREREQqQE5ODrm5ufYOo8I4OTnh7Ox8xeONRiNbt25h165dhIaGkpSURGpqKtWrV8fT05NmzZoREBBA//4DaNCggRUjFykbmySONm/ezBdffEGjRo246aabi7Tl5OTwv//9j9jYGEwmk/n+1q1bSU5O5qOPPrZFiCIiIiIiImJlOTk5TJgwgcTEBHuHUmG8vGozZ86cK0oebd26lW+++YazZ88Ua8vIyCAjI4OzZ8+yZcsWvvvuO3r27MnkyQ/QrFkza4RudatXr2bGjA8AmD17DvXr17dzRGINNkkc7d69G4PBQN++fYu1rVmzhpiYsxgMBnr37k3nzp3Zs2cP27dv5/Dhw2zcuIEbbviXLcIUERERERERK8rNzSUxMYE3P/kRF9ca9g7H6rIyM3hx6iRyc3PLnTiaO3cOP//8s3kBRceOHenZsxfNmzfH3d2d7Ows4uMTOHjwADt27CA2NpYdO3bg41OHqVOnVsCnEbHMJomj6OgoANq2DSjWtn79egA6derEa6+9DsDYseN47rnn2Lt3Dxs3blTiSEREREREpApzca2B6zWYOLpSq1atZNasWQB4eXnxwgsv0LFjJ4t9Bw4cyKOPPsbGjRv58ccfbBekyP+zSeIoOTkZAB8fnyL3s7OzOXr0CAaDgVGjRhdpGzFiBHv37uHYsWO2CFFERERERESkwp0/f57PP/8cgBo1avDxx5/QqFGjUsc4OjoyePBgevbsycGDB20RpoiZTRJHaWlpADg4OBS5f+TIEfLy8jAYDHTp0qVIW+FeyKSkJFuEKCIiIiIiIlLhFi1aSE5ODgD33z/pskmjS7m5udG7d+8S2xMSEvjzzz/ZtWsXsbExZGVl4enpSdu2bRk9ejRdunS1OC42NpZ7750AwDPP/Ifhw4eze/du/vzzD8LCwkhLS8Pb25tu3bpx9933UKdOnSLj9+/fxzPPPFPkXuF8l5oxY0axlVWZmZn89defbN26lejoaLKysvDw8KBt27YMGzacXr16Xfa9JCUl8ccfi81b+nJycqhduzbt23dgzJjRtG/f4bJzSMlskjhydXUlPT2dhISiBdH2798PQJMmTYqdnlatWkFojo6OtghRpFJYuXIFISE+l+8oRbRs6U+PHj3tHYaIiIiISKlMJhNr164FClYbDR8+3Gpzr1u3jk8++ZisrKwi9y9cuMCFCxfYtGkTI0aMZOrUqZf9OfuHH75n3rx5Re7FxsaybNkyNm/ezIwZH9KkSZOrjjki4hgvvvgi8fHxRe7HxcURHBxMcHAw/fr147///V+JNaR27drFG2+8TkZGRpH7586d49y5c6xbt5abbrqZKVOmFFvMImVjk8SRn58fR48eZdeunfTsefGHu82bgzEYDAQGBhYbU5hk8vLyskWIInaVkFCwKm/p0qV2jqRqMhgMzJkzh7p169k7FBERERGREkVGniQlJQWA9u3b4+rqapV5//57I++99y4mk4kGDRpw880307hxEzw9PYmNjWXVqpWEhISwatVKataswSOPPFriXCtWrCA09DCBgYGMHj0GX19f0tLSWLs2iKCgIJKSkvjwwxl89tnn5jGtWrXm22+/Y+vWrcya9RMA77zzLt7e3kXmvvSUtbi4OJ599llSU1MxGAwMGzaMG274F+7u7pw6dYqFCxdy4sRxNm/ezAcfvM8LL7xYLNaIiAhefvklcnNzqVatGjfffDO9e/fGxcWFiIgI5s2bR2xsLEuW/IWLiwsPPvjg1b7q65JNEkc9evTkyJEjLF++nMaNG9O+fQfWrFnDqVOnMBgM9OvXv9iYiIiC2kbe3lp9Ide+tLRsAMaM6Yy3t5udo6la4uPTWLZsL8nJKUociYiIiEilduLESfN1y5YtrTJncnIyH3/8MSaTiREjRjB16rQiK4patmxJ//79+fHHH/ntt1/5448/GD16DH5+fhbnCw09zKhRo5g6dRoGg8F8v0uXLlSrVo2VK1dy5MgRIiKO4e9f8BlcXV1p1qwZ4eHh5v6+vr5FEkX/9OWXX5KamgrAtGlPM3LkSHNbq1atGDhwIC+88D/27dvHxo0bGTp0GD169CgyxyeffExubi4ODg688cabdOvWzdzWunUbBgwYyLRpU/8/EbWAoUOH0rRp0zK8VbmUTRJHY8fezNKlS0hISOCLL74o0ta2bVs6depUbMz27dsxGAy0bt3aFiGKVAojR3akZcuSf3OV4o4di2XZsr32DkNERERE5LIKD44C8PDwLLFffn4+p06dKrHdz8/PXN5l6dKlpKen4+PjwxNPPFniNrSJEycSFLSGuLg4goKCmDRpksV+tWt7M2XK40WSRoVuu+12Vq5cCcDBg4fMiaPyiouLY8uWzQB07969SNKokLOzM9OnP8O//z0Ro9HIX3/9WSRxdPToUcLCwgAYNWpUkaRRoVq1ajF16jSmTZtKfn4+S5Ys4cknn7yimK9nNkkc1azpxnvvvc97771nXkkE0L59B/73v/8V63/8+HHCwsIsFs0WERERERERqYoyMy/W4XFxcSmxX0ZGBg89VPK2qtmz55hX82zbthWAnj17lVgHCArqB7dtG0Bw8CaOHAktsd+AAf1LnMfPzw9XV1cyMzOJiYkpcY7LOXBgP/n5+QCMGFE8aVSofv36dOnSlZ07Qzhw4ABGo9GcGNuzZ4+5X2lztG/fnsaNG3P69Gn27t1TYj8pmU0SR1BQAPvLL78kJiaGxMREateuXeqytWee+Q8AnTt3tlWIIiIiIiIiIhXG1bWG+fqfRayvhNFo5Pjx4wAsX76M5cuXlWncPw+uulRJW9gKubm5kZmZWSQJVl4nT0aar9u0aVNq37Zt27BzZwhZWVnExMTg6+sLFNSLAnBycsLf37/UOdq0acvp06c5c+YMubm5ODk5XXHs1yObJY4KNWjQgAYNGpTap0WLFrRo0cJGEYmIiIiIiIhUPHd3d/N1cnJSif3c3NwIClpb5N77779PUNCaIvdSU1MxGo3ljiM7O7vEturVS14JBZhPJjMa88v93EKFtY0APD09S+3r5VXb4rjC61q1al32lLjatQsO3TKZTKSlpekQrnKyeeJIRERERERE5HrUokVz83VERMRVz1e43Qtg5MiRjBs3vkzjKtOKG0u1lMo5g1XikJLZPHGUn5/Pvn37OHIklISERLKzs7j//klFjunLzc3FaDTi4OBQ6h5NERERERERkaqiadNmuLu7k5KSwsGDB8nKyiq11tHl1KpVy3xtMkGzZs2sEWaFuzTuxMRE6tatW2LfxMSL2+ouHVd4nZqaUqT2kSUJCYlAQZLKzU2nWJeXgy0ftn37diZOvI///vd5fvnlF5YtW0pQUBBpaWlF+q1cuYKbb76J2267lczMTFuGKCIiIiIiIlIhDAYDgwcPAQoKYP9z61l5OTk5mY+XP3z48NWGd9XKunqoWbOm5uujR4+W2rew3cXFpUjZm6ZNC5Jkubm5l129FRZWMEejRo0q1WqrqsJmiaMVK5bzyisvc+7cOUwmE+7u7phMJot9R44cRc2aNcnKymLLli22ClFERERERESkQt166y3mnTU//PDDVZ1OBtCrV28AoqJOs3PnzquO72o4O19MyuTm5pbYLzCwo7lW0qpVq0rsd/78OfPpaYGBgUVWFV16Avvq1SXPERoayqlTpwDo3Fmntl8JmySOoqOj+fzzzwHo1KkT33//AwsWLCyxv5OTE/369cNkMrF79y5bhCgiIiIiIiJS4erWrceUKVMASE9PZ9q0qRw6dLDUMSaTifT0NItt48ePx9XVFYAZM2YQGRlZ6lw7dmznxIkT5Q+8DGrXvliC5uzZsyX28/HxoW/ffgDs3BnCmjXFV17l5uYyY8YM8vLyALj55rFF2tu0aUOrVq0AWLFihTnBdKn09DQ++eRjoKCo94033li+DySAjWocLV68CKPRSNOmTXnrrbfLtDSsQ4cOrFq1yioFw0REREREREQqi1GjRhMXF8fs2bOJj49n2rRpdOrUmd69e/1/HaRaGI35JCYmcuzYMTZt+tucEHJwcKBatYs/ynt5efGf/zzLG2+8TkJCPFOmPMawYcPo3r0HderUIS8vj7i4Cxw9GkZw8CZiYmJ44403ad68eQnRXTl/f3+cnZ3Jycnh559nUa1aNerVq2fewubj40P16tUBePTRR9m3by+pqal8+OEMDh06yA033ICbWy2ioqJYsGA+x48fB2DgwIH06NGj2POmTXuaJ598gtzcXF588QVuvnksvXr1wsXFhePHI5g3b555Rdett95WZWpAVTY2SRzt27cPg8HA+PHjy7yfsGHDRgBcuHChIkMTERERERGRCpaVmWHvECrE1Xyu++6bSPPmLfj222+IiYlh37697Nu3t8T+BoOBbt268eCDD+Hj41OkrX///rz22ut88MH7pKamsmzZMpYtW2ZxHgcHh6sqyF2aGjVqMHbsOObP/51jx47x/PPPFWmfMWMGHTt2AqBOnTq8//77vPjii8THx7Ny5UpWrlxZbM5+/frx7LPPFbsPBYmq119/gzfeeJ2MjAwWLlzAwoULivW76aabmTx58tV/wOuUTRJHhcmf5s1blHlM4S/k7OzsColJREREREREKpaTkxNeXrV5ceoke4dSYby8al9xweV+/frRu3dvNm/ezK5duzhyJJSkpCTS0tKoXr067u7uNGvWjICAAAYOvKFIceh/6t27N7Nnz2HFihWEhIRw6lQkqampODo64uXlRdOmTenUqRP9+w8o9RSzq/XAAw/QqFEj1q4NIjIykvT0dPLz8y329fdvyU8/zeKvv/5ky5YtREdHk52djbu7O23btmXYsOH07t271Od169aNn3/+hcWLFxMSsoOYmBhyc3Px8vKiQ4cOjBkzhvbtO1TER71u2CRxVLgsrTxJoJSUFABq1qxZITGJiIiIiIhIxXJ2dmbOnDmlFkqu6pycnMzFrq+Eo6MjAwcOZODAgVcdS82aNbntttu47bbbyjWufv36BAWtLVPfOXPmltpuMBgYNWoUo0aNKtN8rq6u3HnnXdx5511l6m+Jp6cnkyZNYtKkazdBaU82SRz5+Phw5swZYmJi6NChbJm+Q4cOAZSaURUREREREZHKzdnZ+aoSKyJiXzY5VS0wsCMmk4mgoOKV0i1JT09j2bJlGAwGOnXqVLHBiYiIiIiIiIiIRTZJHI0ZMxqDwcCBAwdYvXp1qX1TUpJ55ZVXSExMwNHRkTFjdFyeiIiIiIiIiIg92GSrmr9/S8aNG8fixYv56KMP2bkzhP79+5vbDx8+zPHjERw6dJgNG9aTkZGBwWDgnnvuoV69erYIUURERERERERE/sEmiSOAhx9+hJycXJYtW0pwcDDBwcHmotmffvqJuZ/JZAJg/Pjx3HPPBFuFJyIiIiIiIiIi/2CzxJHBYODJJ5+kb9++zJs3jwMH9puTRJf2ads2gHvuuYcePXrYKjQREREREREREbHAZomjQl27dqVr165kZGQQERFBUlIS+flG3N3dadHCHw8PD1uHJCIiIiIiIiIiFtg8cVSoRo0aBAYG2uvxIiIiIiIiIiJyGTY5VU1ERERERERERKoeJY5ERERERERERMQiq25Vmz17tjWnM7v33nsrZF4RERERERERESmZlRNHv2AwGKw5JaDEkYiIiIiIiIiIPVi9OLbJZLL2lBUiLCyMkJAQDh06xOnTp0hOTsbR0RFvb2/atWvPyJEjaN++Q5nnCwkJYcWK5YSFhZGcnIyHhwetW7dm1KjR9OjRowI/iYiIiIiIiIhIxbBq4mjNmiBrTldhnn56GgcPHix2Pzc3lzNnznDmzBnWrFnN0KFDmTbtaZycnEqcKz8/n48//phVq1YWuR8XF0dcXBxbtmxh5MiRTJ06DQcHlZQSERERERERkarD6iuOqoL4+HgAvL29GTBgIB06tKdu3boYjfkcORLKwoULiYuLIygoiLy8PP73vxdKnOunn340J438/f25/fY7aNiwAWfPxjB//u9ERESwcuVKPDw8mTx5sk0+n4iIiIiIiIiINVyXiSM/Pz8mTZpEv379cXR0LNIWEBDAkCFDmTr1KaKjo9mwYQNjxtxIYGBgsXmio6NZsGABAK1ateKjjz6mevXqALRu3YbevXszffrThIeHs2DBfEaMGEGjRo0q/gOKiIiIiIiIiFjBdbl36s0332LgwBuKJY0KeXh48PDDj5i/Dg7eZLHf4sWLMBqNAEyZ8rg5aVTIxcWFKVMeB8BoNLJo0SJrhC8iIiIiIiIiYhM2X3FkNBrZunUre/fu4eTJk6SmpgJQq1YtmjZtSpcuXejTp2+JSR1b6dixo/n67NmzxdpNJhNbt24FwM+vMQEBARbnCQgIwM/Pj6ioKLZt28oTTzxRISfPiYiIiIiIiIhYm00TR1u3buWLLz431xiCi6ewGQwGQkNDWbFiBbVr1+bxx5+gb9++tgyviNzcXPO1g0PxJFZsbIz5c1jaxnapwMBAoqKiiIuLIzY2lgYNGlg3WBERERERERGRCmCzrWqLFy/mtddeJT4+3pwsqlevHm3btqVt27bUq1cPKEgkxcfH8/rrr7F4sf22dh04cMB83bhx42Ltp06dvqTdr9S5/Pwutp8+fbqUniIiIiIiIiKXFxsby9ChQxg6dAirV6++4nlWr15tnic2NtaKEcq1wiYrjo4cOcI333yNyWSiRo0a3H333QwfPgIPD48i/ZKTk1m9ehW//fYb6enpfPvtt7RtG0Dbtm1tEaZZfn4+v/8+z/z1wIEDi/W5cOGC+drHp06p89WpU9fiOBERERERkWtdTk5OkR0d1xonJyecnZ2veHxubi7BwcHs3BlCWFgYSUlJZGRkULNmTerVq0fr1q3p378/nTp1xsHhuixTLHZmk8TRokULMZlM1KxZk08++ZQmTZpY7Ofh4cHtt99Bz569mDr1KTIyMli0aCEvvviSLcK8JN5FHD16FIB+/frRqlWrYn0yMzPM166uLqXO5+JysT0zM7NcscycOZOZM2detl+bNq3LNa+IiIiIiEhFy8nJ4e4Jd5OcmGTvUCqMh5cnv8759YqSR8HBwXz77TcWV/qkpKSQkpLCsWPHWLZsGb6+vjzyyCP07NnLGmFXGb/88jOzZ88GIChorZ2juT7ZJHF08OAhDAYDd9xxR4lJo0s1adKEO+64gx9//JGDBw/aIMKL9u/fzw8/fA+Ap6cnTz75lMV+OTkXM+bVqjmVOqeT08X2nJzscsUzZcoUpkyZctl+kydPKte8IiIiIiIiFS03N5fkxCTGv/UATi5XviqnssrNymHxC9+Tm5tb7sTRnDlz+PnnWeavu3TpSu/evWnSpAlubm6kpqYQFRXN9u3b2LNnD9HR0fz4409WTxwNHz6c4cOHW3VOubbYJHGUllZwclrHjp3KPKawb1paWgVEZFlkZCSvvfYqRqMRZ2dnXnrpZby8vCz2dXa+mAzKyyt92eWlyzKdnatbJ1gREREREZEqwsnFGWdX/SxUaNWqVeakkaenJy+++FKRk70LdenSlZtvvpmTJ0/y9ddfkZSUbONIRWyUOKpduzbnz5+/4rG2EBMTw/PPP0dqaioODg688MILpZ6W5upaw3ydmZlV6txZWRfbXV1drz5YERERERERqZLi4uKYOfMLoKCsyYcffmTxQKZLNWvWjHfeeZf169fbIkSRImySOOrSpQurVq3iwIEDZS50vX//fgA6depckaEBBd+4zz33LPHx8RgMBp555hn69Olb6pg6dS4WxI6LK73g9YULF5Nml44TERERERGR68uiRYvMiwsmTvz3ZZNGhRwcHBgyZEipfXbv3s2ff/5BWFgYaWlpeHt7061bN+6++54SfxZdvXo1M2Z8AMDs2XOoX79+kfbp05/mwIEDBAYG8uGHHxEXF8fChQvYtm0bcXFxVK9enVatWjF+/C306NGjxNiMRiNr165lw4b1nDhxgtTUVJydnfH09KJu3bp07tyZvn37msvbXBpXoaFDi3/+S2P+Z6zR0dH88ccf7Nq1i/j4OLKzs4v0j4+PZ8uWzezbt4/jx0+QkBCP0WjE3d2dVq1aMWjQIAYMGFhiUfL9+/fxzDPPADBjxgw6dAhk1aqVrF69mqioKHJzc2nYsCE33HADt9xy61UVUbcnmySObr31NtavX8/vv8+jb9+++Pr6lto/Ojqa+fN/x8XFhdtvv71CY0tOTub5558jJiYGgClTHmfo0GGXHdekycVv7tOno0rtGxV1sb2svymIiIiIiIjItcVkMhEUtAYoWG00atQoq839ww/fM2/evCL3YmNjWbZsGZs3b2bGjA/LVHO4NIcOHeLVV18hOfnilrmcnBx2797N7t27eeihh7jttuI/w2dmZvLCC/8rVsM4Ly+PjIwMzp49w759e4mIOMbLL79yVTEW2rp1C++8806RHUCXMhqN3H33XeTn5xdri4+PZ9u2bWzbto2VK1fx6quvXnb3UG5uHi+++AI7d+4scv/EiROcOHGCdevW8f77H9hsV5U12SRx5Ofnx8svv8w777zDk08+wYQJExgyZCju7u5F+qWmphIUFMTcuXMAePHFl/Dz86uwuNLT0/jvf5/n1KlTAEye/AA333xzmcbWr98Ab29v4uPjOXDgQKl9Dxwo+Obw8fEplr0VERERERGR60NkZKQ56dKhQwdq1KhxmRFls2LFCkJDDxMYGMjo0WPw9fUlLS2NtWuDCAoKIikpiQ8/nMFnn31+xc9ISEjg1VdfwWAwMHnyA7Rv3x4np2ocOnSIOXPmkJaWxg8//ED37j1o2rRpkbG//PKLOWnUq1cvBg0aTN26dXF2diYpKZGIiAi2b98BGMxj+vbtS6tWrVi6dAlLly4F4NtvvysWl4+PT7F758+f591338XFxYV77plAhw4dcHBwICwsrFgCqFOnzvTo0Z2mTZvh6elJRkYGMTExrFy5gtDQUPbs2c3nn3/Gs88+V+r7mTXrJ8LCwujatSs33ngTderU4cKFCyxZsoQ9e3Zz6tQpXnrpRT777HMcHR3L8sorDZskjv7zn4KlWx4eHpw5c4ZvvvmGb775hvr1G+Dp6YnBAImJScTGxpjHNGzYkAUL5rNgwfwSZjXwwQcflNB2eVlZWbzwwgscO3YMgLvvvps777yzzOMNBgN9+vRh6dKlREWdJjQ0lICAgGL9QkNDiYo6DUDv3n0wGAzF+oiIiIiIiMi178SJE+brli1bWm3e0NDDjBo1iqlTpxX5mbNLly5Uq1aNlStXcuTIESIijuHvf2XPjY6Opl69enzyyadFkjWtW7ehdevWPP300xiNRpYvX17sZPC//94IQP/+A3j55ZeLzd29ew/uuutuUlJSzPfc3Nxwc3PD09PTfK9Zs2ZlijU2NhZvb28+++wz6tatZ75/aekcBwcHfvzxJxo1alRsfMeOHRkxYgQ///wzc+bMZu3atdx99z2l7p4KCwtj9OjRTJ06zXyvVatW9O3blw8//JBVq1YSHh7O8uXLuOmmsi1YqSwsb9Szsv3793PgwAHOnj0LFCzPM5lMxMSc5ciRUEJDQ4mJOWu+bzKZOHv2LAcOHGD//v1F/iu8d+DA/iuOJzc3l1dffYXDhw8DMG7ceO6/v/zH2Y8ff4t5r+PMmV+QnZ1dpD07O9tc9MzR0ZHx48dfccwiIiIiIiJStV2aGPH0tHyC95WoXdubKVMet7hQ4dKtYwcPHrqq50yZ8rjFFT7t23egTZs2ABw6dLBYe2JiIlCwyqo0/9yVdDUmT36gSNLonwwGg8Wk0aUmTJiAh4cHJpOJbdu2ldrXy8uLRx551GLbY489Zk6AFa6eqkpssuKoQ4cOlWqlzdtvv8Xu3buBgmVpI0eO4OTJkyX2d3JysphZ9PX15fbbb2fevHmEh4czdepT3HHHHTRo0JCYmLP8/vvvREREAAXfrJer7SQiIiLyT2FhR4mOPmPvMKocX99GtG7dxt5hiIgUkZGRYb52cXGx2rwDBvQvsfCyn58frq6uZGZmmmv7Xgk3Nzd69uxZYnvLlq04cuSIxWcUnrS+ceNGRo4cadXPbomTkxMDBw4s15j8/HwSEhLIzMwkLy/PfN/Hx4fk5GROnDhe6viBAweW+LlcXV0ZMGAgS5b8RWRkJAkJCVWq1pFNEkcffviRLR5TZps3bzZf79u3l4ceeqjU/vXq1WPOnLkW2+6/fxJJSUmsWrWKiIgI3nrrrWJ9RowYyf333391QYuIiMh15/z5czz11FMYjUZ7h1LlODo68ssvv5T6r80iIrZ2aU2jkoo2X4nL1QZ2c3MjMzOTzMyMUvuVplGjRiWeLgZQq1YtoKAQ9j8NHTqMuXPnEBp6mHvvncCAAQPp3Lkz7du3L7IVzVoaNWpUphPMTCYT69atY9WqlRw9erTYLqJLJSenlNgG0KpV61Lb27RpzZIlBdcnT55U4uh64uDgwPTpz9CvX39WrFhOWFgYKSkpuLu707p1a0aPHlPqkYQiIiIiJUlOTsFoNDLmlnvwrqMESFnFXzjHskVzSU5OUeJIRCqVS7diFW7fsobq1UtfwVOY8DEai58gVvZnVL/MMwp2GVk6pWzChAnEx8exevVqkpKSWLLkL5Ys+QuApk2b0q9ff2666Sa8vKyzfc/Nze2yfXJycnj11VfZuTOkTHPm5JScVAIumwC7dGtiamrpSajK5rpMHAUFrbX6nD179ix12Z6IiIjIlWrXsRuNm7awdxhVxunI4yxbZHm1uIiIPTVv3tx8HRFxzI6R2Fa1atWYPv0Zbr31NjZsWM/evfs4diyc3NxcIiMjiYyMZNGihTz//PP06dP3qp9X2sqoQr/+OtecNAoMDOSmm26mZcuWeHl5Ub16dfMcTz89jYMHD2IymUqdrzKV57G26zJxJCIiIiIiImJrTZs2xcPDg+TkZA4ePEh6ejo1a9a0d1g206RJE/797/v5978LVvwcOnSQ9evXExQURGZmJm+//TY///wL3t7eFRqHyWRi5cqVQEFN5g8+mFFisik1NbVMc15uBVlS0sX2WrWsVwTcFmyeOMrPz+fUqVPExMSQmZlJfv7l9+wPHTrMBpGJiIiIiIiIVByDwcDQocNYuHABWVlZrFy5kltvvdXeYdmFs7MzXbp0pUuXrjRr1oyvv/6a7OxsduzYzqhRo839KmIlT2pqCgkJCQAMGDCgxKRRZmYmUVFRZZozPDyMoUOHltgeFhZmvm7atGnZg60EbJY4ysrKYu7cuaxatbLIEYRlocSRiIiIiIiIXAtuueUWli1bSlZWFj//PIsePXrQuHHjy47Lz89nw4YNDB482AZR2lbnzl3M18nJyUXanJwuFrnOyckpU9Hry7m01lNpRcpXrlxR5gMqNm3axAMPPGixFlRmZiZ///03ULDqqqJXVFnb5Tf+WUFmZibTpz/N/Pm/k5ycjMlkKvN/IiIiIiIiItcKHx8fpkx5HChIWkyf/jT79+8vdcypU6f473//y/z5820RolWlpKSwbdu2Un++3717l/m6fv0GRdq8vS+ePhYTE2OVmDw8PMwFtDds2EBOTk6xPmFhR5k1a1aZ50xISOCbb7622PbNN1+TlJQEwJgxN5Y7XnuzyYqjuXPncOxYQeGvtm3bMmrUaFq0aE7Nmm5lKlolIiIiIiIicq0YMWIEcXFx/PzzLJKSknjmmel07dqVPn360LhxE9zcapKSksqZM9Hs2LGDnTt3kp+fT/PmVe+ghIyMDF5++SXq169P3779aNu2DXXr1sPR0ZGEhAS2b99mrjfk4+NDr169iowPCGhnvv7qqy+5++57qF27tnkLW/369XF0dCxXTA4ODgwaNJglS/7ixIkTTJs2lVtuuZVGjRqRnp5OSEgIS5cuwdXVFW9vb6Kjoy87Z6tWrVi6dCmxsbGMGTOGOnXqcuHCeZYuXcquXQWJMX9/f268UYkji4KDgzEYDPTo0YPXXntdySIREREREZHrSG5W8RUd14Kr+VwTJkygSZMmfPvtN8TGxrJ79252795dYv+mTZvy4IMPXvHz7C02NpZFixaW2F67tjevvfY6rq6uRe43atSIgQMH8vfff1t8R7Nnz6F+/frljmfSpPs5fPgQx48fJzw8nHfeebtIe61atXj55Vf4+edZZUoc3X//JBYuXMDOnTvZuXNnsXY/v8a88cab5U5yVQY2SRzFxcUBMHbsOCWNRERERERErhNOTk54eHmy+IXv7R1KhfHw8sTJyemKxvbv359evXoRHLyJkJCdhIeHkZSUREZGBjVq1KB+/fq0adOWAQMG0LFjxyp55Hu9evX44osvCAkJ4fDhw5w/f57ExEQyMzNxc3OjceMm9O7di1GjRpd4wtzzz/+XVq1aERwcTFRU1P8ftJVvsW9Z1azpxieffMqiRQv5+++/OXPmDI6OjtSpU4eePXsybtx46tSpU+b5nJyq8dZbb7NixXKCgoKIiooiLy+PBg0aMHDgDdx6660W6x9VBTZJHHl6ehIXF4eHR9U6ck5ERERERESunLOzM7/O+ZXc3Fx7h1JhnJycrqpgs5OTE4MGDWbQoPIVva5fvz5BQWvL1HfOnLkltg0fPpzhw4eX2P7hhx+V6Rn33TeR++6bWOy+wWCgdes2tG7dpkzzWFKtWjVuv/0Obr/9jlL7lTXWQi4uLtxzzwTuuWeCVeZ0dHTkxhtv4sYbbypXHJWdTRJHrVu3IS5uM1FR0fj7t7TFI0VERERERKQScHZ2tspJWCJiHzbZN3bLLbcA8Ndff+qkNBERERERERGRKsImiaN27drxwAMPEBoayltvvUlaWpotHisiIiIiIiIiIlfBJlvVAG677XYaNGjIxx9/xN1330WXLl3x9W1E9eoulx1777332iBCERERERERERG5lM0SR4mJiWzZspn09HRMJhPbtm0t81gljkREREREREREbM8miaOUlGSmT3+aM2fOqMaRiIiIiIiIiFR5HTt2KvPJdlWZTRJHv/76G9HR0QD079+fm266iebNW+Dm5obBYLBFCCIiIiIiIiIiUk42SRxt27YNg8HA4MGDefbZ52zxSBERERERERERuUo2OVUtPj4OgOHDR9jicSIiIiIiIiIiYgU2SRy5u7sDUKNGDVs8TkRERERERERErMAmiaMOHToAEBl50haPExERERERERERK7BJ4ujWW2/D0dGRBQsWkJOTY4tHioiIiIiIiIjIVbJJ4qhly5Y8/fR0oqOjef7558wnrImIiIiIiIiISOVlk1PVZsz4AIAmTZpw6NAhJk+eRPPmzfH19aV69eqljjUYDEyf/owtwhQRERERERERkUvYJHG0Zs0aDAYDUJAIMplMnDhxghMnTpQ6zmQyKXEkIiIiIiIiImInNkkc1a1b15w4EhERERERERGRqsEmiaM5c+ba4jEiIiIiIiIiImJFNimOLSIiIiIiIiIiVY8SRyIiIiIiIiIiYpESRyIiIiIiIiIiYpFNahxZYjQaSUtLIzs7GzCV2rdu3Xq2CUpERERERERERMxsmjhKTk7mzz//ZOvWLZw6dQqTqfSEUaHVq9dUcGQiUtWdPn3a3iFUOR4e7krMi4iICID5FOyy/owmIpVT4fewg4P1NpjZLHF0+PBhXnvtVZKTk8v1m1Hhb2AiIpYkJKSBwcC7775j71CqHOfq1fnpxx+VPBIRERFcXV0BSE1NsXMkInI1Cr+HXVxcrDanTRJHKSnJvPLKy6SkpODq6srIkSOpWdON2bN/wWAwMG3a06SmphIeHs727dvIycmhXbt2jBgx0hbhiUgVlpaWDSYTff89Ao/6te0dTpWRHJvAllmrSE5OUeJIRERE8Pb2pnZtLw4dOkT79h3sHY6IXKGDBw/i7V0bb29vq81pk8TRX3/9RUpKCk5OTnz66Wc0bdqUyMhIZs/+BYARI0aY+8bHx/POO29z8OBB2rYN4MEHH7RFiCJSxXnUr413YyVARERERK6EwWCgS5eubN4cTO/efWjSpIm9QxKRcjp16hQ7d+6kX7/+Vt29ZZPEUUhICAaDgeHDR9C0adNS+3p7e/PWW2/z8MMPsXDhArp160bnzp1tEaaIiIiIiMh1a+TIkZw4cZxPP/2E7t2706FDB2rVclf5EJFKzGQykZqawsGDB9m5cycNGzZk5Ejr7t6ySeLo7NmzAHTp0sV879LffIxGI46Ojuavq1evzi233MLnn3/OsmVLlTgSERERERGpYK6urkyZ8jgrV65kz57dBAdvtndIIlJG3t616devPyNHjjTXLLMWmySOMjIyAKhX7+I2EmdnJ/N1ZmYmbm5uRca0atUKgKNHj9ogQhEREREREXF1dWX8+PGMGzeO+Ph4srKyyM/Pt3dYIlICBwcHXFxc8Pb2rrDVgTZJHLm6upKeno7RaDTfq1XL3XwdGxuLv79/kTE5ObkAJCUl2SJEEZHr0sqVKwgJ8bF3GFVGfHycvUMQERGxCYPBgI+P/o4gIjZKHDVs2JBjx45x/vx52rRpA4CbmxteXrVJSkpk//59xRJHhw4dBKx7hJyIiBS1dOlSe4cgIiIiIiKVmE0SR23atOHYsWOEhYUxYMAA8/3u3buxZs0a5s+fT8+evfD19QUgNDSUBQsWYDAYaN26tS1CFBG5LvXv35rmzevaO4wq48SJ8wQHh9k7DBERERERm7FJ4qhbt+4sWbKEzZs38+CDD5rv33LLraxbt46kpCQefPABmjdvTlZWFmfOnCE/Px+DwcC4ceNsEaKIyHWpT59WDB7czt5hVBnr1h1W4kikCjl9+rS9Q6hS9L5ERMQSGyWOujFkyFDy8/OJiYmhQYMGADRr1ownn3yKzz77FKPRyLFjx4qMu/fe++jevYctQhQRERGRa0RKUiIYDLz77jv2DqXqMRgK3p+IiMj/s0niqFq1ajz77LMW20aOHEn79u1Zs2Y1kZGnMBqNNGrUiCFDhmibmoiIiIiUW0ZGGphM9P33CDzq17Z3OFVGcmwCW2atKnh/IiIi/88miaPL8fPzY/LkB+wdhoiIiIhcQzzq18a7cT17hyEiIlKlVYrEkYiIiFwfQkJCVEelHGJjY+0dgoiIiFznKk3iKCUlGTDg7u5u71Cu2Llz5/jjjz8ICdnBhQsXcHJyokGDBgwcOJCbbroZFxcXe4coIiJiV7Nm/WTvEERERESkHOyaOEpMTGTWrJ/YvHkzaWkFe6lr1KhB7959+Pe/J1K3btVZWrxt2zbeffcdMjIyzPeysrJITU0lPDyclStX8uabb9GoUSM7RikiImJf/QeNpHmrtvYOo8o4EX6E4PUr7R2GiIiIXMesnji6cOECjz/+OAATJtzDjTfeZLFfTMxZnn76aRISEjCZTOb76enprFu3lu3bt/H++x/g7+9v7RCtLiLiGG+99SbZ2dm4urpy55130alTJ7Kzs9m4cQMrVqwgOjqaF198gZkzv6RGjRr2DlnkmpMcm2DvEKoUvS+xl+at2tKjzw32DqNKUeLoyun3uvLR+xIREUusnjjauXMniYkJVKtWjYEDB5bY76233iI+Pt78dZ06dfD29ubUqVNkZmaSlpbG22+/zXfffYejo6O1w7SqL7/8kuzsbBwdHXn33fcICAgwt3Xu3JlGjRrx3XffER0dzcKFC7jvvol2jFbk2pKXZwSDgS2zVtk7lKrHYMDNrbq9oxARsTpjnhGD/my4MgYDNWq42TsKERGpRKyeODpyJBSATp064e7uYbHP9u3bCQ8Px2Aw4Obmxn//+z+6desGQHZ2Nl988TmrV6/mzJlogoM3ccMN/7J2mFZz9OhRDh48CMCIESOLJI0K3XrrbaxevZrTp0/zxx9/cPfd91CtWqUpLyVSpVWr5ggmE2PGdMbbW3/RLasTJ84THBxG7dp6ZyJy7XGs5ojJZGLMLffgXafqlD6wt8Ktke6eXvYORUREKhGrZy9OnjyJwWCgS5euJfZZt26d+frhhx8xJ40AqlevztNPTyc8PJzIyEi2bt1aqRNHW7ZsMV8PHz7cYh8HBweGDh3KDz/8QFpaGvv27SvymUXk6o0c2ZGWLevbO4wqY926wwQHh9k7DLkOxV84x+nI4/YOo8qIv3AOgNizUXaOpGopfG/tOnajcdMWdo6matHWSBER+SerJ47OnSv4g7p58+Yl9jlwYD8ANWvWZNCgQcXaDQYDw4eP4Ouvv+LEiRPWDtGqDh8+BICLiwutWrUqsV9gYMdLxhxW4khERK5LyxbNZdmiufYOo0oxGAz8/PVH9g5DRERErlNWTxylp6cD4OFheZtabGwsiYmJGAwGOnToUOKWrcKi2JfWQaqMTp8+DUDDho1KrcXk5+d3yZhTFR6XiIhIZTRmTGfatfO1dxhVxuHD0SxbtpeJE/tTv76nvcOpMgrfm4iIiFw9qyeODAYDAHl5uRbbw8KOmq9LW6Hj5lZQdyMrK8uK0VlXTk4OycnJANSp41Nq31q1auHi4kJWVhYXLlywRXh2dfp05U74VTaxsUmA3tuV0Lu7MnpvV6bwvenkofIrfGfe3m40buxt52iqjsJfc/Xre+q9lUPhe9MWv/LR1sgrp3cmItcyqyeO3N3dSUhIIDr6DK1btynWfvhwqPm6VavWJc6TkZEBgLOzs7VDtJrCGAFcXV0v278wcZSZmVnmZ8ycOZOZM2detl+TJo2ZPHlSmeetSI0bN+a33/bbOwyLEhMT8fKqnAUfK/N7A727K6X3dmUq+3uLWh9KZfwRoTK/Nyh4dxs2nGLDhsq38rYyvzt9r16Zxo0bs2HFQnuHYZHe25Wr7O/u3XffsXcYALi51eLTTz+1dxgico2weuKoefPmJCQkEBwczODBg4u0mUwmtm3bCoCjoyPt27cvcZ7z5wv+xcOzEp/qkJOTY74uyylpTk5OxcZdzpQpU5gyZUr5gxOLAgICCA0NvXxHKUbv7srovV0Zvbcro/d25fTuroze25XRe7tyenciIrbnYO0Je/fuY04QBQUFFWlbsGA+586dw2Aw0Llz51JX6RT+geDnV3nrIFy6GiovL++y/XNzc4uNExERERERERGprKy+4mjIkCH89tuvxMXFMWPGByxZ8hcNGzbk9OnTRU5Iu+WWW0ucw2QysXXrVgwGA23btrV2iFZTo0YN83VZtp8V1msqy7Y2ERERERERERF7s/qKIxcXF1544UVcXFwwmUyEh4ezceNGTpw4gclkAmD48OF06dKlxDlCQnYQFxcHQOfOJfezN2dnZ9zd3QG4cCGu1L6pqanmxFGdOnUqPDYRERERERERkatl9cQRFOw9njnzS/r164+zszMmkwmTyUS9evV46KGHmTbt6VLHz5kzBwAvLy8CAgIqIkSradKkCQBnz57BaDSW2C8q6mIZ1caNm1R4XCIiIiIiIiIiV8vqW9UK+fr68vLLL5Ofn09ycjLVqlWjVq1aZRr7/vsfAAUFtCu7du3ac/DgQbKysggPDy9xa92BA/svGdPOVuGJiIiIiIiIiFyxCllxVOQBDg54eXmVOWkEBTWAXF1dq0QR6b59+5qvV69ebbFPfn6+uVC4m5sbnTp1skVoIiIiIiIiIiJXpcITR9e6Nm3a0KFDBwBWrVpp8XjQhQsXcPr0aQDGjRtHtWoVttBLRERERERERMRqlMGwgscee4ypU6eSnZ3N888/x1133UXHjp3Iyclh48YNLF++HCjYvnfrrbfZOVoRERERERERkbJR4sgK/P1b8sILL/Luu++QkZHBjz/+WKyPr68vb775FjVq1LBDhFJoypQp9g6hytK7uzJ6b1dG7+3K6L1dOb27K6P3dmX03q6c3p2IiO0ZTCaTyd5BXCvOnTvHH38sZseOHcTFxVGtWjUaNmzIgAEDufnmm3FxcbF3iCIiIiIiIiIiZabEkYiIiIiIiIiIWKTi2CIiIiIiIiIiYpESRyIiIiIiIiIiYpESRyIiIiIiIiIiYpESRyIiIiIiIiIiYpESRyIiIiIiIiIiYpESRyIiIiIiIiIiYpESRyIiIiIiIiIiYpESRyIiIiIiIiIiYlE1ewcgUhHCwsIICQnh0KFDnD59iuTkZBwdHfH29qZdu/aMHDmC9u072DvMSmno0CFl6hcYGMiHH35UwdFUDdOnP82BAwfKNWbGjBl07NipYgKqgnJzcwkKCmLTpr85efIkqampODo64uPjQ0BAO0aNGkW7du3sHWalk5OTw6pVKwkO3szJkydIT0/H3d2DFi1aMHToUP71r3/ZO0SbSkxMJCwsjKNHjxIeHkZYWBgpKSkADB06jGefffayc+Tn5xMVFcXRo0cJCztKWFgYJ0+eJDc3F7g2v3et8d5KkpWVxYMPPkBsbCwA9erVY86cuVaJuzKwxrtbvXo1M2Z8UKbnPfPMfxg+fPhVxVwZVMSvuT17drN27ToOHz5EQkICDg4OeHl50bx5czp37syQIUNxdXW19kcREbkuKHEk15ynn57GwYMHi93Pzc3lzJkznDlzhjVrVjN06FCmTXsaJycnO0Qp1zMHBwcaNfK1dxiVxrlz53jxxReIjIwscj83N5fo6Giio6NZs2Y1Y8eO5bHHpmAwGOwTaCUTFRXFK6+8TFRUVJH7CQnxJCTEs3NnCKtXr+KVV169bn5Yuv322656jrVr1/LBB+9bIZqqwxrvrSQ///yzOWl0LarId3cts+Z7S01NZcaMD9i6dWuxtoyMDM6cOUNwcDBt2wbg7+9vteeKiFxPlDiSa058fDwA3t7eDBgwkA4d2lO3bl2MxnyOHAll4cKFxMXFERQURF5eHv/73wt2jrhyuvHGG7nxxptKbHdxcbFhNJXbM8/8h6ysrFL7nD59ijfffBOATp064+PjY4vQKr28vLwiSaPmzZtzyy234uvrS2ZmJocOHWLhwgVkZWXx559/4u3tzZ133mXfoCuBxMREnnvuWS5cuADAgAEDGDZsGN7e3sTHx7NmzRo2bdrE7t27eeutN3nzzbfsHLHt1a1bFz8/P3bv3l2ucSaTyXxdrVo1mjVrRl5eHidPnrR2iJXSlb43SyIijrF48SKcnZ2pVq0aGRkZVoiw8rLGu3vnnXfx9vYusb1OnTpXPHdldTXvLT09jeeee45jx8IB6Nu3HwMG9KdBg4Y4ODhw4cIFDhw4wObNwdYOW0TkuqLEkVxz/Pz8mDRpEv369cfR0bFIW0BAAEOGDGXq1KeIjo5mw4YNjBlzI4GBgXaKtvLy9PSkWbNm9g6jSmjQoMFl+6xdu9Z8PXTo0IoMp0rZunWrOWkUEBDARx99XOT7tmvXrvTu3ZunnnqSvLw8fv/9d2677fZi39vXmzlz5piTRvfeey/33TfR3Obv35KePXvx888/M2fObHbs2MGmTZsYMGCAvcK1mQkT7qV169a0bt0aLy8vYmNjuffeCeWao0mTJkyZMoVWrVrj7++Ps7Mzv/zy8zWdOLLGe/sno9HIRx99TH5+PnfddTerVq28JhNH1n53vr6+1K9f34oRVk7Wem9ffPEFx46F4+TkxIsvvkSfPn2KtLdu3Zp+/frx6KOPkp+fb63wRUSuOyqOLdecN998i4EDbyjxB0sPDw8efvgR89fBwZtsFZpcp/Lz81m/fh0Arq6u9OvXz84RVR6hoYfN13feeZfF79tWrVrRs2cvANLS0jh9+pTN4quMjEYj69YVJCLr1avHPfdY/mFrwoQJ1K1bF4B58+bZLD57mjhxIr169cLLy+uK52jTpg1jx44jICAAZ2dnK0ZXeVnjvf3TH3/8wbFj4fj5+XHHHXdYbd7KpiLe3fXAGu/t0KGD5n+Uuf/++4sljS5lMBiu+39wEBG5GkocyXWpY8eO5uuzZ8/aMRK5Huzdu5e4uDgA+vcfoG1+l8jNzTNfl7Zyq2HDi22XjrkenTlzhvT0dAC6dOlS4g9Djo6OdOnSFYBjx8KJiYmxWYxyfTt37hw//zwLgKeeekq1BKVC/PXXXwDUrFmTm28ea99gRESucUocyXWp8HQcAAcH/QuUVKygoCDztbapFeXnd7FIeGmJjbNnC9oMBgONGjWq8Lgqs8KTh4DL/mv9pe2HDhU/NECkInz22adkZWUxZMiQa+4EOqkccnNzzcWwu3Tpal4daDQaOX/+PLGxseTk5NgzRBGRa4pqHMl16dKj0xs3bmzHSCqvTZs28ffff3Pu3Ln/P9K2Nu3aBTBs2HA6depk7/CqjMzMTLZs2QwUbCu6dLWbwL/+NYiffvqJjIwMfv99Hj169Ci2giYi4hghITsAGDRoEDVr1rRHqJXGpSekFa48Ksml7adOXd9b/MQ2NmzYQEhICLVq1SqyLVzKZsaMD4iKiiYlJZkaNWrQsGFDunTpwo033qRDFS5x4sRxc2KoWbNmpKen8/PPPxMUtIa0tDQAnJyc6NChA3fffbcSmCIiV0mJI7nu5Ofn8/vvF+t9DBw40I7RVF7//CEzM/MMZ8+eISgoiL59+/Kf//yHmjXd7BRd1REcHGw+cW3w4ME6Sv4fPDw8eO6553nnnbc5fPgwjz8+hfHjx9OokS9ZWZkcPnyYhQsXkpubS8uWLfWDKNCwYUOqVatGXl4eBw+Wvoro4MGLSfLz589XdGhynUtNTeWrr74EYPLkyXh6eto3oCpo//795uuUlBRSUlI4evQoCxcu5NFHH2PMmDF2jK7yOHXqtPnaZMpnypTHOHPmTJE+ubm57Nmzh7179zJp0mTuvPNOW4cpInLNUOJIrjuLFi3i6NGjAPTr149WrVrZOaLKxcXFhV69etO5c2caN/bDxcWV5ORkDhzYz7Jly0hJSWHLli2kpqby3nvvU62afhspTdFtasPsGEnl1adPH2bO/JKFCxewatUq3n///SLtXl5eTJz4b0aNGqX6UBSsOOrUqRO7du3ixIkTrF+/nkGDBhXrt379+iIngWVmZtoyTLkOffvttyQmJhIQEMCoUaPtHU6V0qBBA/r160fbtgHUrVsHKNi+GxwcTHBwMDk5OXz66ScYDDB6tJJHqakXt+z+/vvv5OTk0L17dyZOnEizZs3JyMggODiYH374nvT0dH744XsaN/ajT5++doxaRKTq0k98cl3Zv38/P/zwPVBw3PyTTz5l54gqn99+m4ebW/GVRF27dmXs2HH873//JSIiggMHDrB06VLGjRtnhyirhgsXLnDgQMG/Hrdt2xZfX9/LjLg+5ebmEhQUxLZt2zCZTMXaExMTWbduLfXr1y/11Jzryb333sfevXsxGo188MH7xMScZejQodSu7U1CQjxBQUHMmTMHJycnc0237OxsO0ct17IDBw6wevUqHB0deeqpqVpdWQ79+vVl2LBhxd5Z69ZtuOGGf7F9+3Zee+1V8vLy+Prrr+nduw+1a9e2U7SVQ+FKXoCcnBy6dOnKG2+8ad7q7OzszI033kizZk2ZPn06+fn5/PDDD/Tu3Ue/NkVEroCKY8t1IzIyktdeexWj0YizszMvvfSyjs+1wFLSqJCXlxcvv/yyeZXRn3/+aaOoqqZ169aSn58PaLVRSTIzM3nuuWeZN+83UlJSuP32O/jhhx9ZsWIlf/75F++++x7t27cnPDycV199hYULF9o75EohICCAqVOn4ujoSF5eHrNmzeKee+5h5MgR3HPPPcyaNQtHR8ciW/tq1Khhx4jlWpaTk8Mnn3yMyWRi3LjxNG/e3N4hVSk1a7qVmszo1asXEyZMAAoSJitXrrRVaJVWYTHsQg8++IDFEybbt+9A3779ADh9+nSRVZgiIlJ2ShzJdSEmJobnn3+O1NRUHBwceOGFFwgMDLR3WFVSgwYFhToBzp49Yz5mXopbu3YtUFCg84YbbrBvMJXU7Nm/mOv0TJ/+DA8++CCNGzfGycmJmjVr0rVrV2bM+JBOnTphMpn47rtvOX78uJ2jrhxGjBjJ559/Qd++/Yps4XN0dKR37958+eVXRbbilpYUFrkav/76K1FRUdSpU4f77rvP3uFck0aNGm1OLl16wMf1ytX1YiLc09MTf/+WJfbt1q2b+TosLKxC4xIRuVZpq5pc8+Li4njuuWeJj4/HYDDwzDPPaI/7VWrSpAkhISEAxMfH6aQXC8LCwswFxnv16kWtWrXsHFHlYzKZWLVqFQC+vr4MG2Z5VZajoyMTJ/6bffumkp+fz5o1q3n00cdsGWql1bJlS159tWAlZXx8PHl5efj4+Jj/Nb4weQnQpElTO0Up17r5838HoEuXLmzfvt1in8KtRVlZWWzYsAEo+IG/c+fOtgmyivPy8sLd3Z3k5GTi4/UPNnXq1DFfX+7vIJf2TU5OqqiQRESuaUocyTUtOTmZ559/jpiYGACmTHlcW4asQPUBLm/tWhXFvpzExERSU1MB8Pf3L7XvpStnoqKiKjSuqsjR0ZG6desWu3/sWLj5uk2bNrYMSa4jhXW0Vq9ezerVq0vtm5yczNtvvwVAYGCgEkfloD97L2ratKn5unBLeEkubbe0nU1ERC5PW9XkmpWensZ///u8edXH5MkPcPPNN9s5qmtD4TsF8PbWaqN/ysvLY+PGjUDBv6j36NHDvgFVUpf+Bd5oNJbaNy8vz+I4KZnRaGTz5s1Awb+4BwQE2DkiEblSSUlJJCcnA+Dt7W3naOyvXr165mR5bGysxYMVCsXEnDVf6+8sIiJXRiuO5JqUlZXFCy+8wLFjxwC4++67ufPOO+0c1bUhJiaGPXv2ANCwYUNtU7MgJCSEpKQkAP71r0FKdJSgVq1a1KhRg4yMDEJDQzEajSW+q0tretSvX99WIVZpq1at5Pz580DB8d36dSgVJSho7WX7TJhwD+fOnaNevXrMmTPXBlFdW5YvX25OjqhGY4H+/fuzaNEiMjIy2Lt3D126dLXYrzCBDtC+fXtbhScick3RiiO55uTm5vLqq69w+PBhAMaNG8/990+yc1RVw7Zt20pd+ZGYmMjrr79m3pZw44032Sq0KqXoNrWhdoykcnNwcKBnz54AxMfH8+uvln+YTE1N5fvvvzN/3bNnL5vEV9mVVph+7969fPXVV0BB/ajbbrvNVmGJSDnExsYSEXGs1D7bt29n7tw5AFSvXp3hw0fYIrRKb/z48eZ6bl9//TXp6enF+qxdu5b9+/cD0LNnT4tbekVE5PK04kiuOW+//Ra7d+8GoFOnzowcOaLU41ednJzw9fW1VXiV2syZX/Dpp3n079+ftm0DqF+/Ps7OzqSkJLN//36WL19uXirfvn17brpJiaN/Sk1NNReHbdq0KS1blnzSi8CECfeybds2srKy+OWXXwgPP8awYUNp0KABOTm5HDkSyuLFi80rZzp37lzkhJzr2YMPPkBgYCA9e/akSZOmODk5cf78ebZs2cz69evJz8+nVq1avPjiS8WOrr5WHTp0kDNnLm5LSUlJNl+fPXumWP2d4cOHW5znn/0uPclv586dxMaeM3/dqFFD2rfvcFVx25u13tv16Grf3blzsTzzzDMEBATQq1cvmjdvgaenJwCxsTFs2rSJ4OBg82qjhx566JpY6WuNX3N169Zj4sSJfPfdd5w8eZInnnic22+/g+bNm5ORkcHmzcEsXboUgBo1avDII49W0KcREbn2GUylbQoWqYKGDh1Srv5aNn9R4VaCy+nfvz9PPz1dx3tbsHTpUj777FMAHnzwQW6//Q47R1T57dmzm7ffftuclCxJp06defnll3VC3f+78cYx5pOqLGnatCnPP/9fWrRoYcOo7Ov9998nKGhNmfuXtMWqPH+ODB06jGeffbbM/Ssja7230lyrW9Wu9t3t37+PZ5555rLjXFxceOSRRxg9eky5Y6yMrPlr7ocfvuf3338vsc6Rp6cnr732uuq8iYhcBa04EhGz//znWQ4cOMCRI6HExMSQnJxMRkYGrq6u/19ctx3Dhg3TX75KUXj8uYODA4MGDbZzNFVDly5d+fHHH1m5chU7d4Zw6tQp0tLScHR0xMvLi9atWzNo0CB69+6jU4Uu8fTT09m9exdhYWHEx8eTlZWFh4cHzZo1Z8CAAQwZMoRq1fTHvEhl1rJlK55//r+EhoYSHh5GQkICKSkpGI1G3NzcaNKkKZ07d2bkyJF4eXnZO9xKafLkB+jduw9Lly7h0KFDxMfH4+zsjK+vL71792bs2LHUrKl/6BIRuRpacSQiIiIiIiIiIhapOLaIiIiIiIiIiFikxJGIiIiIiIiIiFikxJGIiIiIiIiIiFikxJGIiIiIiIiIiFikxJGIiIiIiIiIiFikxJGIiIiIiIiIiFikxJGIiIiIiIiIiFikxJGIiIiIiIiIiFikxJGIiIiIiIiIiFikxJGIiIiIiIiIiFikxJGIiIiIiIiIiFikxJGIiIiIiIiIiFikxJGIiIiIiIiIiFikxJGIiIiIiIiIiFikxJGIiIiIiIiIiFikxJGIiIiIiIiIiFikxJGIiIiIiIiIiFhUzd4BiIiIyNU5f/4cv/76K3v27CEuLo7c3FwAXn31Nfr27Wvn6ERERESkKlPiSERErkv79+/jmWeeAeDee+/lvvsm2jmiK3P+/Dkee+wxkpOTr2qe999/n6CgNQDMnj2H+vXrF2lfvXo1M2Z8UGyco6MjNWvWpGbNmtSvX59WrVoRGNiRbt264eCghc0iIiIiVZ0SRyIiIlXY3LlzSU5OxtHRkfvvn0SHDh1wdXUFoF69ehX+fKPRSEpKCikpKcTExLB3715+//136taty5133smNN95U4TGIiIiISMVR4khERKQK27NnDwB9+vTljjvusMkz//3v++nTp4/564yMDFJTUzl27Bi7du0iNPQw58+f57PPPmP79u28/PIrVK9e3SaxiYiIiIh1KXEkIiJShcXHxwPg6+trs2f6+PjQrFmzYvd79erFvffey+HDh3n33XeIjY0lJCSEDz54nxdeeBGDwWCzGEVERETEOlR8QEREpAorLIRdrZqjnSO5qF27dnzxxUzq1KkDwN9//82WLVvsHJWIiIiIXAmtOBIREbkK+/btY82a1Rw8eJDExEQcHR2pW7cu3bt3Z/z4W/Dx8Slx7MmTJ9m6dQsHDx7k1KlT5lpFtWt7065dAGPG3EhAQECxcZYKVc+ePZvZs2ebvx46dBjPPvus9T5oOXl4ePDUU1N58cUXAJg37zf69etXrF9OTg7Lly9n8+ZgTp06RVpaGjVq1MDDw4MGDRrQpUtX+vXrV6xYt4iIiIjYhhJHIiIiVyAnJ4cPPviAjRs3FGuLjIwkMjKSpUuX8r//vUDv3r2L9bn0VLdL5ebmcvbsGc6ePUNQUBB33nknkyc/UCGfoaL16NEDPz8/oqKiCAsLIy4urkgiLT4+nueee5ZTp04VGZeamkpqairR0dHs3LmT+Ph4Hn74YVuHLyIiIiIocSQiIlJuJpOJ119/jR07dgDQq1dvBg4cSIMGDTAYDISFhbFw4QLOnz/PG2+8zscff0Lr1q2LzGE0GnFxcaFnz5506tQZPz8/atasQWJiEqdOneLPP//g3LlzzJs3j0aNfBkxYoR5bN++fWnVqhUADz30IAA33nhjkRPMatWqVdGv4bIMBgOdOnUmKioKgEOHDnLDDf8yt8+c+YU5aTR48BD69euHt7c3Dg4OJCQkEB4eztatW+0Su4iIiIgUUOJIRESknFauXMGOHTuoVq0ar7/+Ot279yjSHhAQwJAhQ3j66WlERkby1Vdf8sknnxbp06KFP7/9Ng83N7di83fv3p2bb76ZF198kT17djNnzmyGDh2Ko2NBHSM3N7di4zw9PS0WrLa3li1bmq+jo8+Yr3Nycti2bRsAt956m8UVRb1792bixImkpKRUfKAiIiIiYpGKY4uIiJSDyWTi999/B2Ds2HHFkkaFatWqxYMPPgTA4cOHiY6OLtLu4eFhMWlUyMnJiYceKhh/7tw5jh8/bo3wbc7d3d18nZaWar5OSUkhLy8PgA4dOpR5DhERERGxLSWOREREyuHUqVOcPXsWgP79+5fa99KEyJEjoaX2zcnJ4fz5c5w6dYqTJ09y8uRJTCaTuf3EiaqZOHJ1dTFfZ2RkmK/d3d1xcnICYO3atRiNRpvHJiIiIiKXp61qIiIi5RAeHm6+fuqpJ8s8LiEhsdi9zMxM/vzzDzZu3EhkZCT5+fkljk9OrprbtTIyMs3XNWrUNF87OzszcOBA1q5dS3DwJiZODGPgwIEEBnakXbt2pa7GEhERERHbUeJIRESkHJKSiieAyiI7O6vI17GxsfznP88QGxtbpvE5OdlX9Fx7S0lJNl//s2D3448/QVpaOtu3b+PcuXPMnz+f+fPn4+DggL+/PwMHDmT06NHUrKkkkoiIiIi9KHEkIiJSDpeuCnrjjTepV69emcZ5enoW+fq9994lNjYWg8HA8OHDueGGf9G4cWM8PDxwcnLCYDCQn5/P8OHDAIpsW6tKIiIizNd+fn5F2mrWrMkbb7zB0aNH+fvvv9m/fz/Hj0eQn59PeHg44eHhLFiwgNdee52AgABbhy4iIiIiKHEkIiJSLpcWanZzq3lFJ5mdPn2aQ4cOAXDXXXdx//2TLPZLTU21eL+qMJlM7Nmzx/x1+/btLfZr06YNbdq0AQrqIO3fv581a1azefNmkpKSeO211/jll1+oXr26TeIWERERkYtUHFtERKQcWrTwN18fOnT4iuY4dSrSfH3DDTeU2C88POyK5q8sQkJ2cObMGQDatm1L7dq1LzumRo0a9O7dm1deeZWxY8cB8H/t3btvVmUAx/HfW0iT0rAg0JqK3FoqAYMNCgQQQ4IslMBm+RskuBRwAMFNEhwYJCQMsLESKU0gmFiQMpSavEORoQSqCU3agtxruuCgVpED2CIX5fOZzuU5T57zjt+855zr16+NhjYAAJ4v4QgAxqChoSHTpk1LkrS3H8/IyMiY5/jrF8SGh3955Li2traxL/AlcfPmzezbt290v6Vl05jnaGpqemA+AACeP+EIAMagoqIimzb9FkH6+/uzZ88Xj41Hd+/ezdGjRx84Vlf3xuj2yZMnC687duzrdHZ2Pv2CX4Cenp5s3vxxBgcHkySrV6/O8uXLHxjT33815XL5sfN0d3ePbtfW1v77CwUA4Im84wiAV96lS5dy4sSJJ45ranon06fXpLl5fbq7v8/Zs9/l9OnT6e3tzbp169LY+Faqq6tz7969/PTTjymXyzl37lwqKyuzcePG0Xnq6+sza9asXLlyJcePt+XOndtZs+bDTJkyJUNDgzl16pucOXM6CxYsSE/P+B6He5aGhoZy+fLl0f3h4eHcunUrvb296erqyoULf6552bJlaW3d+tAcAwMDaW1tzcyZM7NixYrMm9eYqVNf+/3cYDo6vk1HR0eSZO7cuZk/f/4zvisAAIoIRwC88jo7O//Rv3t27/4806fXpFQqZceOHdm//6u0tbXl6tWrOXjw4COv+/sX1UqlUrZv/zTbtm3N7du309HRMRpJ/jB79uzs3PlZWlo+Gtc9PUuHDx/K4cOHHjumpqYmLS2b0tzc/NhxfX196evre+T5GTPezK5du1Mqlca1VgAAno5wBADjMHHixGzZ8knWr1+f9vb2lMvlDAwMZHh4OFVVVamtrU1Dw7wsWfJeli5d9tD19fX1OXDgQI4cOZKurq5cu3YtVVVVqaury6pVH2TDhg2prKx8AXc2NhMmTMikSZNSXV2d2trX09g4L4sWLcrixe+mouLRT8QvXPh29u79MufPn8/Fiz9kYGAwN278nJGRkUyePDlz5szJypXvZ+3atf+J3wEA4P+qdP/+/fsvehEAAAAAvHy8HBsAAACAQsIRAAAAAIWEIwAAAAAKCUcAAAAAFBKOAAAAACgkHAEAAABQSDgCAAAAoJBwBAAAAEAh4QgAAACAQsIRAAAAAIWEIwAAAAAKCUcAAAAAFBKOAAAAACgkHAEAAABQSDgCAAAAoJBwBAAAAEAh4QgAAACAQsIRAAAAAIWEIwAAAAAKCUcAAAAAFBKOAAAAACgkHAEAAABQSDgCAAAAoJBwBAAAAEChXwEI2Az5RaicUgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 178, "width": 583 } }, "output_type": "display_data" } ], "source": [ "viz_cmodel.ctree_leaf_distributions(figsize=(5,1.5))" ] }, { "cell_type": "markdown", "metadata": { "id": "4S53gu2x0YWY" }, "source": [ "We can also zoom in on a specific leaf node to look at some stats of the various instance features. For example, leaf node 5 contains 31 instances, 24 of which have unique `bill_length_mm` values:" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:45.361244Z", "iopub.status.busy": "2024-08-24T11:23:45.361012Z", "iopub.status.idle": "2024-08-24T11:23:45.388112Z", "shell.execute_reply": "2024-08-24T11:23:45.387570Z" }, "id": "EnNMnQvyhLoR" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
bill_depth_mmbill_length_mmbody_mass_gflipper_length_mmislandsexyear
count31.031.031.031.0313131.0
unique<NA><NA><NA><NA>12<NA>
top<NA><NA><NA><NA>Dreamfemale<NA>
freq<NA><NA><NA><NA>3119<NA>
mean18.09032337.261293595.967742189.0NaNNaN2008.032258
std1.2169242.002778471.1730396.21289NaNNaN0.836017
min15.532.12900.0178.0NaNNaN2007.0
25%17.236.253275.0185.0NaNNaN2007.0
50%18.137.03500.0189.0NaNNaN2008.0
75%18.6538.953925.0193.0NaNNaN2009.0
max21.140.34650.0202.0NaNNaN2009.0
\n", "
" ], "text/plain": [ " bill_depth_mm bill_length_mm body_mass_g flipper_length_mm island \\\n", "count 31.0 31.0 31.0 31.0 31 \n", "unique 1 \n", "top Dream \n", "freq 31 \n", "mean 18.090323 37.26129 3595.967742 189.0 NaN \n", "std 1.216924 2.002778 471.173039 6.21289 NaN \n", "min 15.5 32.1 2900.0 178.0 NaN \n", "25% 17.2 36.25 3275.0 185.0 NaN \n", "50% 18.1 37.0 3500.0 189.0 NaN \n", "75% 18.65 38.95 3925.0 193.0 NaN \n", "max 21.1 40.3 4650.0 202.0 NaN \n", "\n", " sex year \n", "count 31 31.0 \n", "unique 2 \n", "top female \n", "freq 19 \n", "mean NaN 2008.032258 \n", "std NaN 0.836017 \n", "min NaN 2007.0 \n", "25% NaN 2007.0 \n", "50% NaN 2008.0 \n", "75% NaN 2009.0 \n", "max NaN 2009.0 " ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "viz_cmodel.node_stats(node_id=5)" ] }, { "cell_type": "markdown", "metadata": { "id": "yyUmFRLIURN6" }, "source": [ "### How decision trees classify an instance\n", "\n", "Now that we've looked at the structure and contents of a decision tree, let's figure out how the classifier makes a decision for a specific instance. By passing in an instance (a feature vector) as argument `x`, the `view()` function will highlight the path from the root to the leaf pursued by the classifier to make the prediction for that instance:" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:45.391462Z", "iopub.status.busy": "2024-08-24T11:23:45.390883Z", "iopub.status.idle": "2024-08-24T11:23:46.956286Z", "shell.execute_reply": "2024-08-24T11:23:46.955338Z" }, "id": "N2wEfuctKZyY" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/models/shadow_decision_tree.py:335: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/trees.py:1231: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/trees.py:1225: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/models/shadow_decision_tree.py:335: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n" ] }, { "data": { "image/svg+xml": [ "\n", "\n", "G\n", "\n", "\n", "cluster_legend\n", "\n", "\n", "cluster_instance\n", "\n", "\n", "\n", "node6\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:45.500867\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "leaf7\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:46.413869\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node6->leaf7\n", "\n", "\n", "\n", "\n", "\n", "leaf8\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:46.443054\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node6->leaf8\n", "\n", "\n", "\n", "\n", "\n", "node4\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:45.595045\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node4->node6\n", "\n", "\n", "\n", "\n", "\n", "leaf5\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:46.384348\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node4->leaf5\n", "\n", "\n", "\n", "\n", "\n", "leaf9\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:46.469968\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "node3\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:45.698126\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node3->node4\n", "\n", "\n", "\n", "\n", "\n", "node3->leaf9\n", "\n", "\n", "\n", "\n", "\n", "node1\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:45.813947\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node1->node3\n", "\n", "\n", "\n", "\n", "\n", "node10\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:46.164018\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "leaf2\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:46.356969\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node1->leaf2\n", "\n", "\n", "\n", "\n", "\n", "node13\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:45.917093\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "leaf14\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:46.779583\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node13->leaf14\n", "\n", "\n", "\n", "\n", "\n", "leaf15\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:46.806634\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node13->leaf15\n", "\n", "\n", "\n", "\n", "\n", "leaf16\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:46.833767\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "node12\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:46.036490\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node12->node13\n", "\n", "\n", "\n", "\n", "\n", "node12->leaf16\n", "\n", "\n", "\n", "\n", "\n", "node10->node12\n", "\n", "\n", "\n", "\n", "\n", "leaf11\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:46.498595\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node10->leaf11\n", "\n", "\n", "\n", "\n", "\n", "node0\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:46.291259\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node0->node1\n", "\n", "\n", "  <\n", "\n", "\n", "\n", "node0->node10\n", "\n", "\n", "  ≥\n", "\n", "\n", "\n", "\n", "\n", "X_y\n", "\n", "\n", "bill_depth_mm\n", "\n", "bill_length_mm\n", "\n", "body_mass_g\n", "\n", "flipper_length_mm\n", "\n", "island\n", "\n", "sex\n", "\n", "year\n", "\n", "16.70\n", "\n", "39.50\n", "\n", "3250.00\n", "\n", "178.00\n", "\n", "Dream\n", "\n", "female\n", "\n", "2007.00\n", "\n", "\n", "\n", "leaf5->X_y\n", "\n", "\n", "  Prediction\n", " Adelie\n", "\n", "\n", "\n", "\n", "\n", "\n", "legend\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:45.417083\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "" ], "text/plain": [ "" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x = train_ds_pd[penguin_features].iloc[20]\n", "viz_cmodel.view(x=x, scale=.75)" ] }, { "cell_type": "markdown", "metadata": { "id": "e8RUIBz0385V" }, "source": [ "The illustration highlights the tree path and the instance features that were tested (`island`, `bill_length_mm`, and `flipper_length_mm`).\n", "\n", "For a very large tree, you can also ask to see just the path through the tree, and not the entire tree, by using the `show_just_path` parameter:" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:46.963637Z", "iopub.status.busy": "2024-08-24T11:23:46.962908Z", "iopub.status.idle": "2024-08-24T11:23:47.666592Z", "shell.execute_reply": "2024-08-24T11:23:47.665395Z" }, "id": "LGtTtt5bXb5n" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/models/shadow_decision_tree.py:335: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/trees.py:1231: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/trees.py:1225: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/models/shadow_decision_tree.py:335: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n" ] }, { "data": { "image/svg+xml": [ "\n", "\n", "G\n", "\n", "\n", "cluster_legend\n", "\n", "\n", "cluster_instance\n", "\n", "\n", "\n", "node4\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:47.159668\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "leaf5\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:47.572658\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node4->leaf5\n", "\n", "\n", "\n", "\n", "\n", "node3\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:47.269471\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node3->node4\n", "\n", "\n", "\n", "\n", "\n", "node1\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:47.396005\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node1->node3\n", "\n", "\n", "\n", "\n", "\n", "node0\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:47.506847\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node0->node1\n", "\n", "\n", "\n", "\n", "\n", "X_y\n", "\n", "\n", "bill_depth_mm\n", "\n", "bill_length_mm\n", "\n", "body_mass_g\n", "\n", "flipper_length_mm\n", "\n", "island\n", "\n", "sex\n", "\n", "year\n", "\n", "16.70\n", "\n", "39.50\n", "\n", "3250.00\n", "\n", "178.00\n", "\n", "Dream\n", "\n", "female\n", "\n", "2007.00\n", "\n", "\n", "\n", "leaf5->X_y\n", "\n", "\n", "  Prediction\n", " Adelie\n", "\n", "\n", "\n", "legend\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:46.996055\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "" ], "text/plain": [ "" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "viz_cmodel.view(x=x, show_just_path=True, scale=.75)" ] }, { "cell_type": "markdown", "metadata": { "id": "Vs_qb1Y_4nBN" }, "source": [ "To obtain the English interpretation for the classification of an instance, the smallest possible representation, use `explain_prediction_path()`:" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:47.671559Z", "iopub.status.busy": "2024-08-24T11:23:47.670727Z", "iopub.status.idle": "2024-08-24T11:23:47.676610Z", "shell.execute_reply": "2024-08-24T11:23:47.675703Z" }, "id": "t5D0VZr6fimw" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "bill_length_mm < 40.6\n", "flipper_length_mm < 206.0\n", "island in {'Dream'} \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/models/shadow_decision_tree.py:335: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/interpretation.py:54: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n" ] } ], "source": [ "print(viz_cmodel.explain_prediction_path(x=x))" ] }, { "cell_type": "markdown", "metadata": { "id": "-LOuAvrJEvC-" }, "source": [ "The model tests `x`'s `bill_length_mm`, `flipper_length_mm`, and `island` features to reach the leaf, which in this case, predicts `Adelie`." ] }, { "cell_type": "markdown", "metadata": { "id": "cE1FtBAyzcOu" }, "source": [ "### Feature space partitioning\n", "\n", "So far we've looked at the structure of trees and how trees interpret instances to make decisions, but what exactly are the decision nodes doing? Decision trees partition feature space into groups of observations that share similar target values. Each leaf represents the partitioning resulting from the sequence of feature splitting performed from the root down to that leaf. For classification, the goal is to get partitions to share the same or mostly the same target class value.\n", "\n", "If we look back at the tree structure, we see that variable `flipper_length_mm` is tested by three nodes in the tree. The corresponding decision node split values are 189, 206, and 210.5, which means that the decision tree is splitting `flipper_length_mm` into four regions, which we can illustrate using `ctree_feature_space()`:\n", "\n" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:47.680150Z", "iopub.status.busy": "2024-08-24T11:23:47.679900Z", "iopub.status.idle": "2024-08-24T11:23:47.925393Z", "shell.execute_reply": "2024-08-24T11:23:47.924670Z" }, "id": "9NExSEZw6Wp6" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABDoAAAFeCAYAAABkcH9SAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AADd20lEQVR4nOzdeVxU97n48c/sGzMwLAIKirsogvsSNZqYPWZP2jT72jZNe2/S29vbNunt7Z626W3vr3uaNCZmbcxujKmaxF1xQ0RxFwEVZGAYBmZffn8gE0a2GQRZfN6vV17RmTNnvufMHOT7nOf7PIpwOBxGCCGEEEIIIYQQYhBQ9vUAhBBCCCGEEEIIIXqKBDqEEEIIIYQQQggxaEigQwghhBBCCCGEEIOGBDqEEEIIIYQQQggxaEigQwghhBBCCCGEEIOGBDqEEEIIIYQQQggxaEigQwghhBBCCCGEEIOGBDqEEEIIIYQQQggxaEigQwghhBBCCCGEEIOGBDqEEEIIIYQQQggxaEigQwghhBBCCCGEEIOGBDqEEEIIIYQQQggxaEigQwghhBBCCCGEEIOGBDqEEEIIIYQQQggxaEigQwghhBBCCCGEEIOGBDqEEEIIIYQQQggxaEigQwghhBBCCCGEEIOGBDqEEEIIIYQQQggxaKj7egBCiIFp+fLluFxNGI0mbr/99r4ejhADxmC9dgbrcQkhhBBi4JFAhxCiW95+ezk2m43U1FSZ1AgRh8F67QzW4xJCCCHEwCNLV4QQQgghhBBCCDFoSKBDCCGEEEIIIYQQg4YEOoQQQgghhBBCCDFoSKBDCCGEEEIIIYQQg4YEOoQQQgghhBBCCDFoSKBDCCGEEEIIIYQQg4YEOoQQQgghhBBCCDFoSKBDCCGEEEIIIYQQg4a6rwcghBiYZs+eTUODE4vF3NdDEWJAGazXzmA9LiGEEEIMPIpwOBzu60EIIYQQQgghhBBC9ARZuiKEEEIIIYQQQohBQ5auCCGEEEIIIQaFYDCI3W7H7XYjietC9E8KhQKDwYDVakWlUvXKe0igQwghhBBCCDGgHTt2jM2bN7NnTxFNTa6+Ho4QIgYmk5GCgilccskljBo1qkf3LTU6hBDd8o1vfAO7vQ6rNZk///nPfT0cIQaMwXrtDNbjEkL0f0VFRbzwwvMkJyczbdp0xo0bh9FoRKFQ9PXQhBDtCIfDuFwuDh06xK5dO6mrq+Phhx9hypQpPfYektEhhOgWu70Om83W18MQYsAZrNfOYD0uIUT/duzYMV544XmmTJnKAw880Gtp8EKInpebm8uSJUtYunQpL7zwPE8++e0ey+yQYqRCCCGEEEKIAWnz5s0kJydLkEOIAUqlUvHAAw+QnJzMli2be2y/EugQQgghhBBCDDjBYJA9e4qYNm26BDmEGMBUKhVTp06jqKiIYDDYI/uUQIcQQgghhBBiwLHb7TQ1uRg3blxfD0UIcZ7GjRtHU5MLu93eI/uTQIcQQgghhBBiwHG73QAYjcY+HokQ4nyZTCYAPB5Pj+xPAh1CCCGEEEKIAaeleaR0VxFi4Gu5jkOhUI/sTwIdQgghhBBCCCGEGDQk0CGEEEIIIYQQQohBQwIdQgghhBBCCCGEGDTUfT0AIcTA9Oijj+LxeNHrdX09FCEGlMF67QzW4xJCCCHEwCOBDiFEt1x++eK+HoIQA9JgvXYG63EJIYQQYuCRpStCCCGEEEIIIYQYNCTQIYQQQgghhBBCiEFDlq4IIbqloqKCYDCISqUiOzu7r4cjxIAxWK+dwXpcQgghhBh4JNAhhOiW7373P7HZbKSmpvL662/09XD6JbfbjdfrRafTYTAY+no4op8YrNfOYD0uIYQQQgw8EugQQogeFAwGKSkpYd3m9TR4GtHqdfg8XiyGBBbOvZS8vDxUKlVfD1MIIYQQQohBSwIdQgjRQ1wuFy8uW0rArCRnQS7m5MTIc846B58Xb2Hj1k08eO8DGI3GPhypEEIIIYQQg5cUIxVCiB4QDAZ5cdlSEsamMnnR9KggB4A5OZHJi6ZjGpvKi8uWEgwG+2ikQgghhBBCDG4S6BBCDAput5v6+nrcbnefvH9JSQkBs5LsCSM73W74hJEEzEpKSkou0MiEEEIIIYS4uMjSFSHEgNWf6mGs27KenAUTY9o2J38M6zdtoKCgoJdHJYQQQgghxMVHAh1CiAGpP9XDcLvdNLgbMVstMW1vTk7E4XLidrulG4sQQgghhBA9TAIdYkCStp0Xt9b1MNpbKtJSD6P8wHFeXLaUrz/ytV7N7PB6vWj1urheo9Fr8fl8Ud9f+V4LIYQQQvSse+65m+rq6qjHVq9e00ejEReKBDrEgNGflimIvhVPPYy9VXWUlJT06jIRna75uxgPv8eHVquV77UQQgghhBA9TAIdYkDoT8sURN/rb/UwDAYDFkMCzjpHm24r7XHWOUg0mgmHw/z1+b9FvtfGxARCoRBKpRKXo1G+10IIIYQQQnSDBDpEv9fflikMFL29DOKPf/xTZFJ+IfVkPYyePEcL517K58VbmLxoepfblhUfYcHMS3hx2VJMY1NJGpqCra6WQH0NCqWScCiEWqlixLSx1J+0yfd6kOmra6e3DdbjEkIIMbBdffU1OJ3Ovh6GuMAk0CH6vfaWKQSDwcgv1C2Tvwu1TKE/u5DLIIxGYyRI0BvsdjsNDQ1YLBasVmvk8fOth9Fb5ygvL4+NWzdRceB4p0tqyg8cR+0MoVAo8JrCGAwKbE47xmQzau0XP5IDvgA2px2lUYnPFL6ov9eDTUpKSl8PoVcM1uMSQggxsN177719PQTRByTQIfq9lmUK4XAYp9NJbV0tgVAw6s53SnIKZrP5om7beSGW9/R2IMXn87FixYes2fApAVUYrUGHz+1FHVJyxfzLWLLkhvOqh9Gb50ilUvHgvQ/w4rKl7K2qIyd/TJv9lxUfQe0M8dB9D/Lc0ufRjjKjMmlJSGj7XmqtGktKIu5GF5o0E+u2rL8ov9dCCCGEEELESwIdol9rWaZgtJg4UX6CkFrR4Z3vOnsd2VnZF2XbzguxvKe3Ayk2m40f/fzHmHNSmPrlhSQO+SKLw3HGTuG2vaz9r8/58VM/6lY9DK1Wy1+f/1uvniOj0cjXH/laczBo43oa3I1o9Fr8Hh+JRjOL5iwgLy8Pn89HVW01o2dkYmgnyNGaIcGIP9nP0e1HLrrvtRBCCCFid/r0KVau/Jji4mJOnTpJU1MTCoWCxMRELBYLw4YNY8yYMUyenM/EiRMjSw2rqqq49957ovaVn5/Pb3/7v1RVVfH228spLNyOzVaDXq9n7Nix3HjjjVxyybwux+R2u/nkk0/YuXMnR48eiSwhSUpKYsKEXBYtWsQll1yCQqHocl8ul4s1a1aza9cujh49isPhIBAIYLVaSUtLIz+/gNmzZzNp0qSo18XbdaUnxtzU1MSqVR+zfft2ysvLaWhoIBgMYjabSUxMJC1tCKNHjyYvbxL5+QXy+10vkECH6Ne8Xi8avZaKyoqY7nxXVFag1rVt2znY9XYXkvYCKbs/K8Tv9aLR6Zh62azzChL4fD5+9PMfM2JBLjlTxrZ5PnGIlWk3zKOs6DA/+vmPeeCu+9hcvDPmehiL5iy4YJ1aVCoVBQUFFBQU4Ha78fmas0lafx+9Xi9NXhdGiymmfRrNJpq8rkH5vb4YW+p+9NEK3G4PBoOe669f0tfD6TGD9biEEGIgWLXqY/7v//6PQCDQ5rmamhpqamo4evQo69evB+C1114nLS2t031u3ryJZ555BrfbHXnM5/Oxc+dOdu7cyTXXXMuTTz7ZYW2mzz77jD/84f+1Wx+jqqqKqqoqPv/8M3Jzc/nhD/+70/GsWrWKv/71LzQ1NbV57syZM5w5c4Z9+/bx6adreeWVVzs9rs70xJgPHTrEU0/9gPr6+jbP2e127HY7ZWVlbN9eCMB//df3uOKKK7o9ZtE+CXSIfk2n01FfaydFPaLdIEdrhgQjDV4/jjo7Wq32Ao2wf+jtLiTtBQk2vb8Wp70Bs9XC1MtmAZ0HCTqb0K5Y8SHmnJR2gxxRY58ylrqKM5woP4HaGYq5HkZeXh5/+vufL3inFoPB0O7kPRwO43F7UGti+xGs1qrxuD2EQqHzGk9/cbG31H3llVew2WykpqYOqoDAYD0uIYTo7yorKzsMcnRXRUUFP/vZz/D7/R1us2rVxyQlJfLww4+0ee6dd97mL3/5S0zvVVpayr/927f44x//1G69p6VLX+TVV7sfvIhVT4w5GAzys5/9tN0gh7iwJNAh+jWDwYCjrp5wjBO8cDBEg91x0dwZhp7tQtKR7gZSYp3Qrtn4GdO+vDCm/Y+ePZHP3lrHb376q5jrYfh8vl4/R/FQKBQogtBkd2KymrvcvsnuRBHivLtZ9IfsCWkVLYQQQvSsdes+bxPkGDZsGBMnTsJgMOByNXHy5EmOHz+Ox+OJaZ92ux2A1NRUZsyYQTAYpLCwEIfDEbXdP//5Ty6//HJGjhwVeezAgQP87W9/a7PPnJwcxo0bTzAYYM+ePdhstshzNpuNX//6V/zqV7+Oes2WLVvaDXIolUoKCgoYNmwYgUCAo0ePceTI4ZiOrT09NebS0v2cPn06ah+JiYlMmTKFxMQkfD4v1dXVHD9+XIIhvUwCHaJfc7vdGE1GTpeWk5hm7XL70wfKMRgNF1Utg/PtQtKV7gZS6urqeP2tN7qc0N5yw80ElCEsaUkx7T9xiBW/IojX642pHoZKpaK+vr5Xz1G8dDod5oQEKvYeY8KlXWeNVOw9htmU0CZTKZbARX/KnpBW0UIIIUTPO3PmTNTfJ0yYwO9//39t/g0NBAKUlpayfv06NBpNl/vNz8/n5z//BXq9HoCGhgb+4z++TVlZWWSbUCjEe++9x5NPfjvy2Msvv9wmC/Xxx7/JzTffHPm71+vlf/7nR+zYsSPy2K5duyguLiY/Pz/y2D/+8UKbcWVlZfGTn/yU7OzsqMcrKytZufKjLo+rPT015nM/C51Oxwsv/IPExLZ15crKyti0aaN0LeslEugQ/ZrX6yU1YwhOexOnD1WQOS67w21PHyrHa28iJSNtUNYy6Mj5dCGJRXcCKWqdlqWvvERK3rAuJ7QvvfoyWkOcQQiDlsbGRqxWa5f1MKD3z1G8DAYDWZnDOFV1JqbvdWOVneyhWXG3x+2L7InOgi8Xqk7KhdQfsmQutIvxmIUQoj8zGKL/Dfd4PLhcLszm6KxRtVrN5MmTmTx5ckz7/eY3vxUJcgBYLBYeeeRRnn76qajttm/fHvlzU1MTu3btjHp+woQJUQEDaP7d7J577o0KGgBs2LA+EjQoLy+PCqpAcybHj370P22CHNAcAPnqV78W07G11pNjPvezCIVC1NXVthvoyMnJIScnJ+7xithIoEP0azqdjoDPz/wbF7Pxg7U4qurInjwqKt2/ye6kYu8xvPYmFty0mB3vb7ioanQYDIZudSGJdYLSnSCBo85OanZGTBPa6uOncJ9yxbV/v9tHQkJC1GMd1cNoea69cxQMBgmFQiiVyqi7HvGeo+64bN4i1hSt50xpRZff6/TMTBZNWRBX4EKn012w7IlYgy+9XUvmQulPWTIXSizHLIQQom9MnTqVt99eHvl7WVkZX/7ylxgxYgRZWdlkZ2cxYsQIJk3KIzU1NaZ9pqWlMXJk298fpk2bhkqlIhgMRh6rqamhocGBxZLI4cOHo56D5mUhV14ZW7HN/fv3R73uXJMm5fV4cKAnxzxp0iS02uasYAC/38/XvvY1hg0bxvDhw8nKyiI7O5sJE3IZMWJETN1mRPdIoEP0ay0TVJ/bw2W3X03F4RMcXleMz+9Ho9Pg9/rRarWMLZhA9uIRNDkae32C2h8tnHspnxdviasLSay6E0hx1NUz55bLYtr/hNl5FG/ZheOMPaqlbEccZ+xowiqs1q63ba3lHOUtnIbT6aS2rpZAKIhCqSQcCqFWqkhJTsFsNsd9jrojLy+PjVs3MWbyeFAqOvxeh7PCuI/WkZuby99ffD7mwMXcmXMuSPZErMGXr9xxZ7+qk9JdF2ONkViPORwO9+EohRDi4jV79mzmzZvHpk2bIo/5/X6OHDnCkSNHoradMGEC99xzD7Nnz+l0nx11QNFoNCQmJlFXVxv1uMPRgMWSiMNR372DOKulNsi5f24xfHjHWbDd1ZNjtlgsPPTQQ/z1r3+NPBYOh6msrKSysjLqdenp6dx6663cdNPNg+4GSX9wfpXthLgAFs69lLLiIyhVKkZMGMUVd17PFV+6jnnXLuKKL13HFV++jhETRqFUqSgrPsKlvTxB7Y/y8vIiXUg607oLSTxaPoNYHCs6hNFkjGtCazaZOLJtX9Tj4XCYUCjcZvJ0dNt+Fs9bFNO+W8vLyyNc76Nw3RZsTjuGZDPWoakkZSRjHZqKIdmMzWmncN0WwvW+ds+R2+2mvr4+qs1ad6lUKh689wFcR+toqLIz+6r5Ud/r2VfOo6HKjvtoHQ/d9yClpaUxBy4CZiXvf/Q+OQWdd7FpkZM/hvVbN8R9DK1rbkxeNL1NIKwl+GIam8rSV15Co48v06qlTsr5sNvtnDhxot1fluIVz/G+uGxpm7tDA1E8x9zkatvyTwghxIXx3//9I/79359g9OjRnW534MABfvjDH7Ju3ecXZmBx6onfsS60c8d8222388wzv2L69Omo1R3nFVRXV/OXv/yFP/3pT709xIuSZHSIfq/lznfrVqJanRatLnrS1N1JfF/o6TXuLZPm1l1I9AlG/IEAGrUaT6MrqgtJvFHj9j6D9pQfOE7Y3lxXJR7ZY3KoPHKCsqLDZOWNxOfzESYMKIAwChRotVoqS47jLKtlyWM3xLX/iFCY6kMV+H1+siePIhzWEfAFUGvV+FxeTu0ro7asilFpwyMv6c1lCkajMeaCqu0t+/B5fQS8PtTnXA/ZeaMo2babhb2cPRFPzY3aijPUV1TFvG9ov05KLNeOz+djxYoPWbPhUwKqMFqDDp/bizqk5Ir5l7FkyQ3dWt42GGuMdCWeY0bSb4UQos8olUqWLFnCkiVLqK+v59ixo1RWVnLy5En2798ftQwkHA6zdOlSFi5c1OH+ampq2n3c7/e3mwGRmNj8O0dSUlKb50aMGMG0aV1nHQPoWv0+096+yssrYtpPPHpyzC2mT5/O9OnTcbvdHDt2jIqKCk6dOsWRI0fYvXtXVJecjz5awV133RXzsiIRGwl0iH6vvUl8Z61E+2vqV2+v6zcajTx034M8/8Lz/PN3L6EyaiMTvJDbx+wps3jo4Uc6nBx2NoFs7zNorfVn8MDd9/Pnl9q25+pMOBDi2998kv/55Y+pOl7J6DmTopaxOM7YKd66j+p95fz6p7/q9iRVkazjuiW3sPvz7ax/aSUKtQqtQYvP7SMcDDFh6iSuf+AWSjfvpaSkhLFjx/b6MgWVShUpqGq323E6nZjN5qilOa0734SCQSoOn+BQUSl+vx+NXoPf40er0TB2Si7ZY0dgSkxAqdPg8/raBAQ70p0uM/HU3BgzfQJH9xzoVi2ZeK4dm83Gj37+Y8w5KUz98sI236PCbXtZ+1+f8+OnfhT3LxTxBJv6c42ReMTzGas08iuFEEL0B0lJSUybNj1qov7MM79k7dq1kb9XVlbS2NjYpuZZi5qaGo4fP96mTsfu3bvbZCympaVhsTT/2z5mzBiUSmVUB5NgMMhjjz0WUz2K1vueMGFCm+f37SvhxIkTjBgxost9xaonx3wug8HApEmTmDRpUuSxlStX8rvf/W/k76FQiIMHD0qgo4fJbyViQIjnznd/dCHW9bee4C169AaMiSaC/gAqjRqXo4mj2/bznR98N2qCF88E8tzPQKVUYTInoFKqKN90IOoziLemh1lv4l+frubyO6/DduoMO978HIVaicagxd8qCDHxzjzeW/F+twpnrtuynqEzR7Pu3TXorCYuvf86DIkmwqEwCqUCt6OJir3HWPfuGqYsmMHnm9exceumXi/mGctn0NL5xuv2svGDteisJsYtzG+3eOmRPQeYe/0iVGoVAZ8/5kBHvF1mutN22GgycqzoIAWXz+py+5Y6KfFcO2q1mh/9/MeMWJBLzpS2y3YSh1iZdsM8yooO86Of/5jf/eq3MR9zvMGmzrJksrKyMJlMcdeZudDi/YxTh6YRDobIzBzayyMTQgjR2ubNmzhw4CCLFi1i1KhRbZ4PhUI4HI42j/v9/k73+8c//iGqvazT6eT55//eZruZM2dG/mwyJTB16lR27vyii0llZSW///3v+PrXH2v3hkpNTQ1btmxm1apVfO1rX6OgYArQnFWRk5PTpp3t//zPj9ptL1tdXc2HH37AI4882ulxnasnx3zmTDUvv/wyV1xxZfPS8naWrrS3nNbvP7+luqItCXSIAaP1ne/OWon2N63XuPfWhNnn87U7wdOcneQmDtG2meAFAoG4gy+tP4NH73+kw88g3uKo2enDqPDUMDJvLCPzxjLzqnk0NTTiaXKjNxkwWb6427DXtjPuJQFutxtHUwPV67czJDc7up3r2UpFJquZCZcWcPpQOUUbduCpbSRrQk6vLlOIdRJ/5+1fxutys/GDtW3HT9vxb/noc0L+IJ5GF0azqctxdKfLTHfaDqdkpEG9P6YlUGpnKO4CrOkpaZhzUtoNcrSWM2UsdRVnWLHiQ2699baYxh5vsGn+jYs7zJL5zW+ejek9+1pHn3FHWSx3fe9Rtr+/nq/f9ciFHKYQQlz06usdvP76a7z++mskJSWRkzOSIUOGYDDocbnclJbub1MIMyEhod2Wp60VFxfz0EMPMn36DILBINu3F1JfXx+1jVKp5Kabbo567L777mf37t1RGRIrV65k3bp1TJ6cT0pKCuFwKFJH69SpUx2O4cEHH+JHP/rvqMcqKyt59NFHyM/PJysrC78/QHn5CQ4cOEBaWlrcgY6eHLPfH+CTTz7hk08+Qa/XM3LkSIYOHYrRaCIQ8HPiRDmlpfvbvC4rKyvuMYvOSaBDDEidtRLtby7Euv4VKz6Ma4L3wYcfUG07c17Bl84+g3hqeqidISocp8i5NDo93mRJiApwRI6hG0sCvF4vLpcbQ3ZSu0GC1jLHDcdRZaei9DiX3LE4pv13Z0zxBMDeWP4mviYv6qHGmMZfV1mDUaHj5MFykjPbr5reWne6zHSn7XDQF+C++x7ijeVvxrQMLZ4CrHur6vho9cfMe+jamMYyevZE1r71ecyBDp1OF1ewaeMHa9GH1AO61XXrzziWLBalShV3ZpAQQoieVV9fT1HR7i63u/7661EqO+5LkZaWRmNjIzU1Naxa9XGH291+++1tskgmTpzIV7/61ajOIwBNTU1s3bqly7G1dskll3DnnV/hjTdej3o8GAyye/dudu/u+lhj0ZNjbuHxeCgtLaW0tLTT7XJzcxkzJrYC8iJ20nVFiF62bsv6Xu9+sWbjZ4yZMynqMb/Xh9vpwu+NToUbPXsiqz77V1wdPEpKSuIaT0tNj8bDNvZ+vhNnXXS6pLPOwd7Pd9J02MZdX/oKTk/32o7GSqfTYbPZyM5vm87ZnmF5OQTCQSzJSb02pvYCYMFgEL/fH7XWs+UzcHvcpI7MjGnfKTkZJFoTe7UTT+u2w635vD5cDY34zvnetWSNpKSk8PVHvsaiSXM5sbGUzW+uYfv769n85prmJVCT5vL1R76GwWCI69oZlpuDN+THkpYU9XhH10HiECt+RTDmbiwGg4GAy4farIsp2KQ26wi6/QMmINuels+49tQZPlv+CRXlFYxbmM+sOxYx9YZ5zLpjEWMX5lNRXsFnyz+h9tSZi7K9txBC9LVY6ki0dvnll3Pfffd3uk1mZib/8z8/7rCGB8CVV17Fww+3n8V3222389RTT2GxxPb7HcDIkSNJSWlbp+Lhhx/mySef7PW27T0x5ng/i9GjR/P00z+M6zUiNpLRIUQv6k4dg3i7X9jtdgLKEJa0JELBEFVHKynfe5RgIBi566rWqMjOG03G6KzIBG/IqNjW0Xe3qGKsdVWcTmfcSyC6UzhTrdOgM8a2vdagR2fUEwwEY15GFO+YWoo8hsNhnE4ntXW1BEJBFEol4VAItVJFSnIKZrOZYeOHc6BoHyajEXejC0NCx//QuxtdJJhMOHQavnLHnbz+1hu9VsS3ZYnSpAVTurzb3zprJN4CrLHQm41ojXr8Xh8qtbrL60Cpaq4B09jYGHOtDKVaRXIcwSZ7Tc9Xhr/Q5s+ax/NvvMj4y6d2mcXy2T9X8cidD/bBKIUQ4uJ2zTXXMGrUKIqKijh48CAVFeXU1tbicrlQKBQYDAYyMjKZMGECl19+ecw3N6ZNm8Zzz/2df/7znxQWFmKz1aDT6Rg7dhw33ngj8+bN6/T1ixZdxpw5c/n000/ZsWMHhw8foqGhAY/Hg16vJyUlleHDs5k0aRIzZsxg5MiOb0hdd931LFy4iNWrV7Nr106OHj1KQ0MDwWCQpKQk0tKGkJ+fz+zZs+M6dz095qFDh/Lyyy+zc+cuSktLKSs7Tk1NDY2NjQSDQfR6PampqYwePZp58+Yzf/78fltjcKCTQIcQvag7dQzinTA3NDQ0d1fxeNm9cgumFDPjFxVgSmpVO6DeycmS41SUHGPKtXPQ6LWoY+yQ0FHw5Ze//AUOh4PExES+//0ftPvaWOqqdGcJRLzp8V6vl7S0NFzOJiwpXRdI9TS60Rp0vVbMs2USb7SYOFF+gpBagTHZjFr7xWcS8AWwOe3U2etIsSSj0CgZmjmMU6dP0uD1YzSbUGlUhMPNXT2D/iAuZxPKQJjsrGxqDOWoVKqoYJPd6UCpURLyh0i2JJ13Ed+8vDw+2/A5K15YTnJORoc1K4rWb2dkanbkF6t4CrDGSqNWo1KrcDtdlK4v6vI6mHrdXPxuX6d3qlpzu90odZo4g03qdoOWsVw7/YVCoSAxM4WkoSmdbpc0NJXaKhsvvPA8n3yS1e+PSwghBhOFQsH48eMZP358j+87LS2Nxx9/nMcff7xbr9fr9Vx33XVcd9115z0Wk8nEzTffzM033xzX61555dW4tj/fMWdmDmXJkqEsWbKkW68XPUMCHUL0ogsxibdYLHhdHnav3ELmxBFkjG1bzMiUZGbc/HyqDlWwe+VWfG4velPs2RDtBV+Ki4ux2Wwxt8LqqKZH6yUQ8bYdjZVOp0Oj0qAMhGOapKpCoAwp2hTz7KgIY7xj8nq9aPRaKiorUJm0JLQzHrVWjSUlEXeji2pbNUFfAIUChmcPp7q6mpqKKsKKcCQDRBFWkJqcQnp2Okqlsu33KNxcqTwchHAoRDgcjmmsXVIqSB+XTdrYYejO+U7pTAaGTspBo9WgqG9O5Ty3AKvOZIicU2+TO1KA9St33BnXtaPRagh4/RR9vJmcmbldXgeF73yOOqSMOZvD6/WiM+jIzsqmorIiEmw6Nzh1brCpvaBlvNdOX9qwbSMzF19CfZOjy2P2utwcOl1DXV1dH45YCCGEEEICHSIGbre7+Zd8nU7WXsfpQkzirVYrgUYvOrOh3cldaxnjsqmrrMFlb2y30GdHervAYLxdWuItnGkwGEg0JpBkSoxpwpZkSiTDOoSTB8tJGpIc17KMWOh0Oupr7aSoR7Qb5Igae4IRv9ePz+Whoa4Bp8dJSK0gLTsDpVoZaY8bCoRwOZsorygnyZRIotFMOBzmz8/9hRq3HbfXTVipQKPW4A/4cdVX8fbaD1i/eQMP3/9Qt9a9lpSUoEjSMmvhtPaX36jUpFqTGblwOCXrdrFnzx62bN+KcXQyKBVs/dfGds9peEiY1996A7M+vmsnQWNAmxDbdXDqwAnGjhoR87G2BC1VKhUjho/o9HjNZjMKhWLAF+ZsyTxKSrWSmJLU5TG3FLXrsSCaEEIIIUQ3SaBDtCuW1HJZTxab3p7EA6SkpJA8PD2mbZOzh2AwGno1+BKveLu0xFs4E85+DiVbyOtiUm42mylZt4sbr1nCuk3r416WEQuDwYCjrp5wqxZmnQkHQxAIs+vzrUxYPDU6OHK2pLRSq4xkgGxfs5nbF97Ac//4O2W2CpJzMpg4eVL7rVDLynjuH3/nW499M+5ruqXOiEKhwGKxYLFYCAaDhEIhlEpl1P5y8sfwwXsfYM5O4dTeg522Z/Xam0hOTmakeShlxUdivnaSrckkjEzH1dCE0dJxW11XQxNDRg4jVB3scJtznRu07Op4L8R109taLx+K5TNuIYEOIYQQQvQ16boi2nC5XPz1+b/x+b4tjFiQyyVfvoIZNy3gki9fwYj5uXy+bwt/ff5vuFyuvh7qgJCXl9er3S/cbjeJqVY0ajWuhqZOt3U1NKHRaBg6PIsjOw/EtP+y4iNc2o3gSzzi6dLS3cKZLZ9D5cEyLBYLI3NGkpM1gmHpmeRkjWDkiBwsFgsVB8tQO0NMmjQpsixj6KScDpdlZIzLRqFsv8K22+2mvr6+TTcWt9uN0WTkdGl5TGM/faAcY4IJ+ykb9adqO922/pQNR1UtR48e4VD5EUbOmciESwuiAgrwRRHJUXNyOVR+hD179sQ0ltbH0F6xUJVKhUajafMZmZMTqTxzmqpTVQzJze50TENys6g+XcWJ0xUxXzvU+9CadBRMm4K7rhFHtR2/zx+1nd/nx1Ftx13XyJRpU3F6muLqlLNw7qWUFR+J6XgvxHXT2zpaetfRMbeIt+K8EEIIIURPk4wOESUYDPLisqUkjE1t9866OTmRyYumU37gOC8uW8rXH/maZHZ0oWUS/+Kypb3S/aK5doCe8WPHcfDwIfxuH0ZrAhqtJrKN3+fHZW8k4PYxfux43IfrUDj8vZpBEa9Yu7R09/vW8jm88PKLbD1WgTkrGW2CPpLR4Wv04KyswxzQ88j9D1FaWhrXsoySkhIKCgpiLrSZmjEEp72J04cqOm1XevpQOV57EwqDmkuums/BnSU4qurInjyqw2yIy758LSufW87wmeNjaoVaV1nDBys/YNq0aTGfz3iLhfq8PnwBHwkZSTGNyVFl5+TRU3z/if/ijeVvdnntfOmWO1j23utotVom5U6kuroa26na9uuY5DTXMYm38O+FyDzqT+JdehcKNWdySKBDCCGEEH1NAh0iSklJCQGzstNf4gGGTxjJ3qq6yOROdK43J/Etd13jmeAFvD6+ev/XerX1aHfE0qXlvIXDeBpc2IvqCCtAo9Pg9/pRhkGv1WM26AiHw3Evy1i/aQNjx46NKrR57jltXWgz4PMz/8bFbPxgbZeBi0uWLOL9v73JkOwMho4cRsXhExxeV4zP74+MX6vVMrZgAtmLRxAIBPGG/IyYOiamU5IzdRybX/4krrbG8RbaDXh9BEMhsvM7bh3XWvbkUWwtPoZarY7p2vH5fJHxKJVKMjMzyczMxO/zEwgGUKvUUcE/iL/2TG8HLfujeJbeBf2BCzAiIYQQPS0jI4PVq9f09TCE6FES6BBRWiZ3sWiZ3EmgIza9NYk/965rVxO8ltoBycnJvZpBcb466tLSXS3ZSpbxQ5g0obnHus/rI+Dzo9ZqIl1Uyg8c5+8vPk+Dt6ndZRntnQ9zciL1TU7+/uLzJOVmdJkN1VJo0+f2cNntV3cZuKivrUcRIjLGERNGMWLCqHbHD+Cuc6A16jEmmtuMoz0mqxmlTk1DQ0PM5zzuQrv2BtQaNQnnnNPOxhRWNneKieXa6Wg8Gq0GDZo2++9uDY3ezjzqb+LJYkFqcwghhBCin5BAh4joaM19R8zJiThczrjuAotmPT2Jb++ua0cTvNYFTy9IBsUF0lV3oPaylbTntImF5mylHWWn8bv85+6iU/6gD5/BGHM2VLY+PVJos6vARUXJMcymtl1y2hs/QFihQKVREc8KApVaDcQ3UY3nbn9FaRmmBBMBXyCq201HAr4AeoM+0smjRWfXzoUo/AuD67rpSjxZLCajCY/b04ejFUIIIYRoJoEOERHvmnsg7jXuonf0RO2Ang6+XAjxdAeKJ1tpVMFY1r75cVxjqamxkb94Vkzb5uSPoWzDftRKddRn1l7govzAcbRNkJU5LPZaCf4AAa+foD8Yc1AhHAhhsXS979bi+d7p3AosRjMuZxOWlK7fx+VswqQzxrW0pC9qaAzE6yZesWaxbPx8fV8PVQghhBACkECHaCXeNfcQ/xp30Tv6onbAddddR1NTEyZTx208e5PL5YqpHsaD9z6AQqGIK1spOTONgNdPvc1OUqq1y+3rbXYCXh/JGakx7d+cnIjT08Rj9301pkKbD933IIcOHYo5W+HkwXLSzMnYKqvJGDWsy+1tldVkWIfEPWGP53v31Yce5bmlz+Opa0Sj02Bo3SL3HO5GF566RjJT0+Ma00CpodHX1053xJLFMhCPSwghhBCDkwQ6RETca+67ucZd9I4LXTvg3nvv65H9dEe83YHuvP3LcWcrpaSmcHzPIaYunt3ltsf3HCI1NS2u/Wv02pgLbapUqrizFb5y250sX/8hiUOsXQYVTheX8aVrbopr/C3i+d4tuuRS1u7dSNBiosHrx2g2RWWcBHwBXM4mlIEw/hoXl8+9tFfH01f68trpCR1lsQz04xJCCCHE4CGBDhHlQq1xF73jYqkdEG93oGPHjsadrWQyGlE7QzEHFozG+M5xSzZUrJ9ZvNkKWq2WDds2caqkjLSxwzoMKtQcPkmGPpn8/Py4xn/u2GI5hpZgjdIdJnlococte+tP2tA20e2lJRfLdSCEEEIIIdongQ4RpS/WuIveMZhrB8TbHWjrpsK4s5WSEhJ5+N6HYluW8eCj/P2l5887G6qrzyzebIWvPvAIL7z8Imf2nMCclYw2QR8JKviavDgrajEH9Dzy4EM9luHQ2TG0DtY4zp5TY2JCpGWvy9FI2a7DPbq0ZDBfB0IIIYQQon0S6BBRBsoad3Hx6m53oKvmLWZL8a64spXiCSz0x44fRqORbzz69ebxb1lPddMpVFo1QV8Aa0Ii18+54oIv4xgIS0uEEEIIIcTAJoEO0YZMREQsvvKVO7HZbKSmpvL6629csPftbnegMWPGsH33jrizleJdltHfOn70x2Uc/XFMF1JfXTu9bbAelxBCCCEGHgl0iHZd7BMR0X91tzuQwWA472ylWJdl9NdsqP64jKM/jkkIIYQQQgxsEugQXZKJiOhPzrc7UG9mK0k2lBBCCCGEEH1PAh1CiAHnfOph9Ha2kmRDCSGEEEII0beUfT0AIYSIV15eXqT1a2e6qodhMBhITEzstSBEb+9fCCGEEEII0ZYEOoQQA05LPYzGwzb2fr4TZ50j6nlnnYO9n++k6bBNugMJIYQQQgww99xzN1deeQW//vWve2X/e/YUceWVV3DllVewZ09Rm+dffvmlyPNiYJKlK0KIAUnqYQghhBCit/h8Pvx+f18Po9doNBq0Wu157WPPnj185zv/Efn773//f0yaNOl8hyZEj5BAhxBiwJJ6GEIIIYToaT6fj3vvvYu6uvq+HkqvSU5OYtmy184r2LF69b/O+ftqCXSIfkMCHUKIQUG6AwkhhBCiJ/j9furq6nn11W9gNOr6ejg9zuXycvfdf8bv93c70OH1etmwYQPQ/DuY2+1m/fp1fOMb3zjvTJH+4L777ue+++7v62GI8yCBDiGEEEIIIYQ4h9Gow2QafIGOnrBp00ZcLhcA3/jG4/z2t8/idDrZunUrl156aR+PTggJdAghuul73/sePp8frVbT10MRYkAZrNfOYD0uIYQQba1evRqAUaNGcc011/DPf75JRUUFq1evlkCH6Bck0CGE6JaCgil9PQQhBqTBeu0M1uMSQggRrba2ll27dgGwePHiyP+XLl3Kjh3bqa+vJykpqdN9FBYW8t5773Ho0EE8Hg+pqanMmTOH22+/g9TU1JjHcvjwYT766CP27CnCZrMBkJqaypQpU7jtttvJysrq1jG+/PJLLFu2DIDVq9d0uJ3P52PlypVs2rSJEyfKcDqdJCQkMHLkSC677HKuuuoqKYzfRyTQIYQQQgghhBAiJp9+upZQKIRSqeTyy5sDHZdfvpiXXnqJQCDAZ599xi233NLh6//617/w9ttvRz128uRJ3n77bdauXcvPfvbzLscQCoV47rm/8c477xAOh6Oeq6yspLKyko8//phvfetbXH/9km4cZdeOHj3Kj37031RXV0c9Xl9fz+7du9m9ezcffbSCn/70Z1it1l4Zg+iYBDqEEEIIIcQF5Xa78Xq96HQ6KSQtxACzZk1zhkN+fkEk+yIzM5OJEyeyb98+Vq9e3WGg45133o4EOVJSUrjzzq8wYcIEfD4f27Zt49133+FnP/spXq+30zH88Y9/5MMPPwBg8uR8rrrqKjIzM9HrdRw9eox3332HsrIyfv/732O1JnPJJZf01OEDzYGZ//iPb9PU1ITRaOTGG29iwoQJpKWl0dDQwJYtW/jooxUcPHiQ//7vH/K73/0etVqm3heSnG0hRLfs2VMUWY8vKetCxG6wXjuD9bhEzwkGg5SUlLB5y1Y8Pj96vQGPx41Bp2XunNnk5eVJircQ/dyRI0c4duwY8MWylRaLF1/Bvn37OHz4ECdOnGDEiBFRz9vtdl588UUA0tPT+X//7w8kJydHns/Pz2fGjBl8//vfIxgMdjiGnTt3RoIc3/72f3DttddGPT9+/ASuuOIKnnrqKYqKdvPnP/+J2bNn9+jPl1//+tc0NTUxZswYnnnmVyQmJkY9P2PGDObMmc3TTz/NgQMH+Ne/PuG6667vsfcXXZNAhxCiW5555hlsNhupqam8/vobfT0cIQaMwXrtDNbjEj3D5XKx7JVXMVvTWHDF9ViTv1iDb6+zUbx7B1u3FXLvPXdjNBr7cKRCiM6sWdNchFSn07FgwYKo5xYuXMhf/tLctnb16n/xyCOPRj2/evW/8Hg8AHzta1+LCnK0mDp1Ktdddx0ffvhhh2N4443mf2MWLFjQJsjRQqvV8s1vfpNHHnmY6upqioqKmD59euwH2om9e/eyf/8+AL773e+2CXK0mDlzFgsWLGDdunV88sm/JNBxgSn7egBCCCGEEGLwCgaDLHvlVcZOnMbCxddEBTkArMmpLFx8DWMmTmXZK692eidXCNF3gsEgn376KQBz5szBZDJFPW+xWJg1axYAn376KaFQKOr5lgKmZrOZSy6Z1+H7XH31NR0+19TURHHxHgAWLOi8u8uIESMiQYj9+/d3um08tmzZDEB2djYjR47qdNvJk/MBOHTooPxsu8Ako0MIIYQQQvSakpISzNY0xk+c1Ol2EybmUX26kpKSEgoKCi7Q6IQQsdqxYzt2ux1oXqbSnsWLF7Np0yZqamooKipi2rRpkeeOHy8DYPToMZ0uIxkzZgwajQa/39/muSNHjkQCKL/4xc/5xS+6LlwKYLfXxbRdLA4dOgRARUUFV17Z/nk4VyAQoKGhQYqSXkCS0SGEEEIIIXrNlq3byJ86M6Zt86fOYMu2wl4ekRCiO1avbl62YrFYmDmz/Wt69uw5JCQkAF8sc2nhdDYAdNl6VqVSYTab232uvr4+jhF/wePpvLhpPLo7hq4KrIqeJRkdQgghhBAiSk91RXG73bi9PqzJKTFtb01Oxe3x4na7pRuLEP1IU1MjW7ZsAaChoYFrr+14eUmLjRs38q1v/Vuba1mh6P44Wi+HeeKJJ5jYRaZYi44CJ+czhlGjRvO9730v5te1dKgRF4YEOoQQQggxoF1srUp763h7oyuK1+tFr49vjDqdAZ/Pd1F8lkIMFOvWrcPn88X1GrfbzcaNG7nyyiuB5mBDXV0ddnt9p68LBoM4nc52n7NYLJE/63R6Ro4cGdeYeoLZ3DwGj8fdJ+8vYiOBDiGEEEIMOBdbq9LePt7e6oqi0+nweNxxjcXrdaPVauN6jRCid7UsW0lOTuHrX/96l9v//e/PUVNTw5o1qyOBjpyckdTV1XH06BGCwWCHP7OOHj3abn0OgNGjR6NQKAiHw+zbV8IVV8RWI6MnjRkzhv3793H69Gnq6ura7R4j+p4EOoQQQohB5GLIbrjYWpX29vG27orSUjDU6/Hg9XnRaXWRrigH9pew7JVXeeThh2IOqhgMBgw6LfY6W5tuK+2x19kw6Afvd1eIgej06dPs29fcTnXBgvlcdtllXb6mtLSUd999h6Kiokjr8WnTprFr106cTidbtmxh/vz57b521apVHe43KSmJ3Nxc9u/fz6effsr99z/QZc2PnjZ37lw++OB9wuEw7777Dg8//MgFfX8RGylGKoQQQgxwwWCQPXv28Je//o2//v0FXv/n2/z17y/w1789x549ewZVS7v2WpV6PR4aGhx4PZ5B16r0QrRmbemKMmb8BA7s38sbr7zIW6+/zCcrP+Ct11/mzVdf5MD+vYwdn4vZmkZJSUlc+587ZzbFu3fEtG3x7h3MnT0r7mMQzUHO+vp63O74MmiE6MqaNasJh8NA1y1dW1x66QKguZ7FmjVrALjqqqvQ6XQA/O1vf410cGltz549rFz5Uaf7vuuuu4HmIPBPfvITGhsbO9zW5/Px/vvvx73spjMzZsxgwoQJAPzzn/9k3brPO93++PFjkfom4sKRjA4hhBBiABts2Q1dZaScOykv2rWDgN+PzmDA63aj0WoomDqDseMnDphWpZ0d84Vozbpl6zZmzLuct99YhjVlCAuvXBJVPNReV0vJ7u0U797JgssWs2Xz53G9R15eHlu3FXJw/75Oj+PA/hKc9hry8m6Ia/yDVSzZWRfbEi7RN1oCFUlJSUyePDmm10ycOInk5BTq6mpZu3YNd955J1arlfvvf4DnnvsbVVVVfOMbj3HnnV9hwoTx+Hx+Cgu38fbbb5OamorX6+2wu8ns2bO55ZZbeffdd9i7t5iHH36IJUuWMGlSHhaLBY/Hw6lTp9i7dy+bNm3E6XRy1VVX9dTpAOD73/8B3/zm4zidTn72s5+xZs1aFi1axLBhw1AqldTX13PkyBG2bt1CaWkpt99+B3Pnzu3RMYjOSaBDCNEtr7/+Rl8PQYgBqSevnfaWHLR2PksOOtLR5Ot8jiueyVpvT8ovlFiPecvWbcxffH1M+8yfOoONn34c1/G63W6a3B42fLaG3PxpjJ2QB0AoGCIUCqFUKrEmp7Bg8TUcKi1hw2drCQV9cXVFUalU3HvP3Sx75VWqTleQP3VGuwE5p72G++6956KemMdzLZwb5DQaEyLLjVyuxgEX5OyPXK7B2Q40nuMqKSnh1KlTAMybNx+lMrYFAUqlknnz5vHhhx9QVlbGoUOHGDduHHfccQdnzpzhvffexWaz8cc//iHqdYmJifzwhz/kpz/9aaf7f+yxxzCbzbz66ivU1dXx8ssvd7itXq+PedyxGjp0KP/v//2BH//4fygrK2Pr1i1s3dpx1oZcgxeeBDqEEEKIAepC3O2H3r1rHE9GikKhaHdS3tr5TsovhFiP+Y7bb+v11qxerxdXUxPZI7MYM34SjU4nDkc94XAYpVLZHOxQKLAkJjF2wiSqT1VSfuxg3F1RjEYjjzz8ECUlJWxcuxK314dOZ8DrdWPQ65g7exZ5eTf0WJBjINaqieda0Ol0LHvlVUZPKEChVPDJyg/bzWxKS8/ssSDnxUSj0ZCcnMTdd/+5r4fSa5KTk9BoNF1ut2bN6sifFyxYENd7LFiwgA8//ABoLmY6btw4AB5//HFmzJjBe++9y8GDB/F6vaSmpjFr1iy+9KUvkZaW1uW+FQoF9957L1dccQUrVqygqGg3p0+fpqmpCb1eT1paGmPGjGH69OnMmzc/smSmJ2VlZfHXv/6NdevWsXHjBg4ePIjD4SAUCmE2W8jOziIvL4958+YzduzYHn9/0TlFuGXBlRBCCCEGlL/+7TnmL74+pomwvc7Gxk8/5utffTTq8a4mhK0nX53die/OXeNgMMjzL/yjw4yUFgf2l3Bk/25uv+1W/vzX58geOZ4Fi6/pcv8b1q6i/NhB/v1b3yAxMTGusfWWeI553+4tqLUGbrrjnpj3//5br3L3nbdHHW9nn7Hb7eZ7P3iaux/5N7weDxqtDnNiEiqVinAohEKpbG716KjH72vex6sv/IFnfvGz8woguN1ufD4fWq22xwIRrQNyLrcXrU6Hz+vFZNT3+2Uc8V4LM2dMZ2/pEerq6rCmDCFv6sx2M5vstWdITk5mSt74fpnZdL7Ky8t55pln+N73vsfw4cN7dN8+n6/Dzh+DgUajke5Gol/p6etZMjqEEEKIAcjtdnf7br9Wq40pQ6O3l8bEm5Fy7NhRbDYb190W28Q/b+pMdm/f1OaX+b682x/PMVeWH6e87Fhc+29pzRpPFo5Wp8ftcmFJSgIU1J6pbs7oUCkJBUMolArMlkS0Oh1ORz1anb6bR/8Fg8HQo+fe5XLx8rJXUOlM5EyYSoLZglKpIhQK0uRsoHB3CVu2buO+e+/plynk8V4LKz76CK3BwpSZc7vMbNqzYzNNTvugDHT0Jq1WK4EAIQYwCXQIIbpl2bKXaWpqwmQyce+99/X1cIQYMHrq2vF6vej18U0UdToDDoeD9z/4MKb0+MOHD8c8+Vq14h1+8Yufk5OTE/NxxVt/Yt3qD9Hp9JhM5phek5BgRqdvnpT3l6KN8Rzz9Flz2bOrMO7WrOFwmOdf+EdMn7HP58NstqBQqnA2NKDV6khJS0fTaoLn9/lwNtTj83lRKFWYzea4l670pmAwyIsvvURSWjZjcydjsSS2GX9yWjqHS/fy4ksv8fWvfrXfZXbE872YlD+dT1evYv6iSe0GOVobl5tH9alKjh4s7ndLuIQQojdJoEMI0S0rV66M9EWXQIcQseupa0en0+HxtG0j6fV4IgUJWyb5LTweF2+/8y65+bNiytAIBoNcemV0B4yO9n/86GEc9Xb2798f03F1JyPF5fZiTU6hocFBSmrXa7gbGhykpaXFFdxp725/T2WAdOeYTSYTu3cWcvmV13W5ffHuHcyaMT2uLJy77/oKTmcDAb+PpOQUEsxtl/hotFqSU4fQ6HRQX1eL0+nsV3e6i4uL8QaU5E2ZSYK5bRBMo9WSkpqGbspM1n58kuLiYqZOndoHI21fvN+LxCQrCqWSSQUzYto+b+pM9uza2q+CU0II0dsk0CGEEEIMQAaDAYNOi73OhiXRyuGD+ztttdrgsON1u8gYOj6mDI3TJ8s5uL8Ya3IKwWCwy/23VLSPtfRXdzJSDAYjjY0NBHxeGp3Odie1LRqdTgI+LwqFgnfefZcJk2ML7rQsv+mNDJDuHHN6xjDqbadjbs2qUIyIawlEael+nA31BPx+jMYEQqEgCoUShUIR2TYcDhMOhzAaE7BVV+FscMR1DL3t40/+xaxLr+70+wCQYDYzedpsVn3ySb8KdMT7vfD7fBiMJiyJSTFtb01OQaVSEwqFujlCIYQYeCTQIYQQQvRjnWUTzJ0zm53bNkcKEnbWajU5OZlAIED+1Jkxve+k/Ons2r4Vt9vFh+/8s8v9twQ4Yg10dJSR0hm/30eC0YjJaKDJ6cDr9bS7TKGhwUHA58VkNOB2NTI0a1JcnWnGjh0bc/eLeDJAunfMXu67+yssf/udmFqzvvTysriWA3226n1CoTBlxw+RM2Y84XCIcChE6ymxAlAoFSiUSsqOHSIUCp13dkBPZsnU1zeQlZ0T0/bZw3NY7WjokWUcPXUM8X4vAkE/Wq2OYDCAWtP1r/L+s5/Vue01B2JnGiGEiJUEOoQQQoh+JtZsgtzcXJa+vIwFi5dQMH1Wm/20FCQs2rGNDWtXMCwrO+b0+JTUNBRKFe+99Tp5U2d2WfDw0399BBCVCdCZ1hkp8dSfmDt7FvuKd3Lp5dfgdDZQZzuD2+MmGAiiUqsw6A1YrUmYM9JZ/+kqVCp1zMGd/Kkz2Lh2JVu3FUYt/Wi9XOd8MkC6e8wpKSlRrVmbXB40Wi1+nw+TyRBpzerz+eJeGuPx+TGZEmiw13H4QAljJ+ShUIHX68Hn9aDV6dGdLT56+EAJDfV1mC2J3coO6I0sGYfDgUariwp2dUaj1aLWaGlocERN7mOd9PfGMcT7vXA1NRIM+mlsdLZZntaehgZHpLBmf6lVI4QQvU0CHUIIIUQ/0rqdayzFQqfNvISMzKHU2mo6zG7IHDqMKdNnU1F2NOZxqFRKAj4f5qTkqCBHONyctaFQKGiJaYzLzUNx9m5xrIEOaM5IKd69g4UxtIot3r3j7IQ+j63bCjmwrxiFUkHRrh14vV60Wh0+nxe9XkfB1BmEQiHsNafRG4xxTfxrau0MzxnFmPETOLB/b6fLdbqTAdKdY24tHA4TCocIhUKEwqHmD+Ss7hWo1aPT67ni2pv510fvsHdXIYGAH6VKFZkEh4Ih1Go1SqWCq5fcyvJXn2+THdCVeL7X8XZF8fl9cW3v9/kBRdyT/t48hni+Fwf37yUt2UpdTTU6nb7LJVx1NdWkpVjbFKm1JCYTCoVQKpU0OOrOa/xCCNHfSKBDCCGE6CfibecaCoVYcMUSkqwpkeyGQDCEUqkgFAqjVikj2Q0mo4HdO7bFNR5/MMDIMRMIhyEYCODz+6OeVwAajQaVWo1K1f6vFJ3dKW8JWsRafyIv7wZUKhW33XoLP//FLxk2YizjJ03BkmRFqVQSCoVoqLeze+cOTp44wr9965usWv1pXMfs8/rIGTWWt99Y1uVynQWXLWbLps/aZIC0du5n9uAD98d9zLFOsO+4/bZ2l0AEg6HIhFalig5Q+H0+9Ho9TqcDhUKBOTGREaPGYjYnRtrLOp0OThw7jKuxISo7oLXOPufebFOcmJiIz+PGXlcbU0DLXleLz+tGo9HE3JnGaDT2eqvleK+Fa6+5mpKDx7EkJnW5hMtWXcmsmTPOjn8qmVnDqbPXY3c0RlrwqpRKps68hFMVJ7o1fiGE6G8k0CGEEEL0EyUlJTEXkqwsP0552TGsySmRm/pnq2QQDisif2uRmpaGTqen6vRJMjKHdTmWqtMnSTAlYDIZqau1YUowo9XqIpkbAOFQiEDAj8NRj0LZnMkRDodjvlOuUqm49567WfbKqzHVn2hZIvLmW28x45LLGDU2F73RhFqtibzGkphEatoQjh3O4sMVH+EPtl1i0dHEPxgM4XK7KNyykcnTZkUyWbweDz5fc9ZI6+U6Gz5bi9NhZ8SoMVGfWXudab4o/lna5ph1OiMejxu93oDX64o6ZqDNBLujpTRvLX8bvVaDvc5GkjW1Ofhlrz97rF9MaK3WJMxmC/V2GyaTAb1Ow+qP3mHmJYsYP2kKAKFQkHAohEKpJFM5nHG5kzmwr4jVH71DRloyBoMh5s85nu91S5ZMQUFBl99RaF72kZqSTNH2LVx29ZIuty/avoXUlGTeWv521Dlt/Z1oL2jRm8cAxH0taLVaCrfvwNPUQKZ1OHW2MwTb+ZxP1Z2hyVGLQjESoyUFvcmCs8lNSuqQdgMjhoREjJaUuMcvhBD9jQQ6hBBCiH5iy9ZtMReSHJ87iSOHDhIMhqisrESt1XU4ebHb68nKyiJtSBp7dhWScf0tkW06mvTv2VlI2pAhEIamxgZCoRDmxCQ0Cg1hwihQEAgGcDY4cLkaI3GVUCgU151yo9EYVX/C7fWh0xnwet2RmhwtmRzQfivR6OU0BiwWC0ZTAmtPn8LlrIl54l9rq8HtbiItfSijxuZyqLSEkqIdBAKByNIVtUZDXsF0Ro/LpfpUJWVHD3PVklti6kyTP3UGGz/9mIKCAu679x5eeOEFfv+rjzGYEjAYTbhdTbhdTUzJz+Phhx/GYDCwZ88ezNa0mJfS6FUhdu8oZPT4vC6/E0cPljB39iyOHj1KQKFl5Ojx+H1e1GoNSqUKlM3nvCWgNWr0eI4fLiUj3RrXMo54vtetz1Gsrr/uWt546x2yRuS0W0umxaHSEg6VFjNr+hR8YTXjcifR0NDxd2J87hdBi94+BiDua+GLwEgl+VNntFmKsnv75khgZOlLLzNywlRM5sROW/A2Op2kZWSxZes2CXQIIQY0CXQIIYQQ/YDb7Y6rkOSQ9KG4XE1UVFaQYE7qcvJSWVmJSqnC7azn4P6SSPq62+0i4Pej1mgwGozNd4ErTuBurMfjcaPR6RmSOYxaWw2VJ47j9/kIhgKolGo0Wi2JSUlkD8+J1OZwuz1xp/erVCoKCgooKCjA7Xbj8/nQarXtFoVsr5WoQtG2NkhLK9HPPn475on/kdI9+Lw+xk3M44O3XiE5NZ2FV95AUqvPpL6ulpKi7ezbs5O5Cxazad1qLObEqKUuZrOFQDCAWqXG6WyILHW54dYv4fZ4qays5Le/+z05YybyyLe+S0pqemSCWmurZtumdfzg6R/y1Pe/x5at25gx7/KYl9JsXb+Go0ePYrIkt1ugtuU7UbRjG7u2b+bLty5h85atjM+dSjAYQK8x4Pd5o/KBWpYoefw+xudO5viB3TFnmby49CW8/kCb73VHATZrcipujzeurigFBQVs3rKVrevXUnWykrypM9s9R8ePHmRE9lDO1NiYt/h6ysvLI9+J5k4yzVk7SqUy8p2YlD+dDWtX4A8E46r1Eu8xtIjnWog1MOLz+bDV1TM9LT2mFrzJaels32zvkc40QgjRVyTQIYTolvz8fBwOB4mJiX09FCEGlI6unXgLSer0etyuJlyNLjKGZn+xn1bLLFqWTSSYzZypPo3X4+K+ex7mZz//BUazFYVSiVKpQKPR4fd7CYfChEJBXM56fvj0U/z8l8/g9/s5WVFO+YljHDu0n3AY9AYDHrcbhVLBqLG5DB8xihGjxnD00H4yMoedV3q/wWDocHLVnVai/kCIHds2RE38Q60m2dET/60kJlnZ+NlqJk1pv9NMUnIK8y+/hsMHSti4bjVarY6VH77DxIIZJKcOodZWQ11tbWSZTTgcZsLkqdTaqvnwnX+iUKj4zW//l4VX3hgViFCeneynpWey5NY7KdqxjZ/94pdkDh3Ghs/WkJs/rcvONxs+W0ttTRWTp8zgxNEDNNTXdTjpt9eeYcr0WRQVFeHx+Zk4KY/KyspIvQe1RhvJkgn4fTgcdgI+LxMn5bF982dtCrZ63W5UWg1Bnx+90RDJMjlx7DAuWw3QnHnTVVaNQgE6naFN+1q73U5DQwMWiwWr1Rp1DlQqFQ89+AAvvbyMOttp1nz0NgqFEp3egNfjJkwIrUZDRloyX/7SHSxd9ipNTW70xgSqT1eybvVH7WbtpGdm0eRqxNnYhMUS37917R1DvDq7Flofe1eBEa/Xi8/nj/kYLJZEfD7feY9fCCH6kgQ6hBDd8v3v/6CvhyDEgNTRtaPT6dotJNkZn89H2fFDjBg9hqOHSjtdZnHi6CECgQDLXnkVl8eLwRxGAahUarQ6HaFQEH/ITxhwebwsfekldHo9G9auxOPxkD40m8XX3EyiNQWFonnS6rDXUlK8k89WryAtPRN3o5NHHv92TGPvTnp/R61EWwculK2yAzRaLUqVinET8ig7Ukr16UqyR47FbEmMFC9tbHBw4vhhPE1OcvMKOHRgP4nJqZ0ugQAYOyGPyhPHONBUhDkpGZVag98fYGh2TqQdKzS3aa2vq0Wt1mJOTGbrhjVMnja73WyL1qbMmE3FiaOU7t3F3AVXdDmecbl5VJ+qpHRfMbff9TDJKSkcPrif9WtW4Pf5I5N+rVZL/tTpXH7l1TQ47Kz9+F30eiMqlZLhw4dHitq2V+/BnJGOQvFFwda3XnuJQDB0tkuLGo1WTygYxu32sqNwG0U7tzN3/kLeW/5amyVWHWVQZGVl4fU2j9Pn87FixQo2bNqMSq1FbzDicbsIBf3Mv2QuS5YsiRRFNRqNfPXRRyLLTJxNLsJBP0pFCHOCKdKxx+l0EgyGCYZCfLrq/S6zdmbPvwxo7rgSj5ZjOB+xtrxt0VFgJBwO43a74mrB63a7u9VCWAgh+gsJdAghhBD9gMFgwKDTYq+zRdU76EjV6ZNYk5Oprz3DK8//gZzREzqcsG1evwaL2UwoHKZ4bwkZw7IZMz6PyVNmkmhNbo5aKBQ47HXsLdoOwL79B0hIMFFRXs71t9zF5GmzztZu+CKQoNUNZUFqGsW7trHy3dexJCZhMpliOt6O0vu7mty1tBINh8M0NTbicNQTDocjgQulQtE8joQEFAoFHrebcbl5FO/eSYOjnj07tqBUKtHp9Xg9HsLhECqVGrVKyeQp09mxfQt5+dMIBgKo1B3/mhQMBJiUP53N61aTkpZBSlo6lkRrm+10Oj3pmcNocNhpcNTjCwSYM++ymM7R7HmXsXv7ZiZPmxnT9pPyp7Np3WqSU1JRqZRMmDiZCRMn0+Cop7GxkYSEBCyJSZHtrcmp+PxBAoEmoHkJkMViwWKxdFmwdcvGz3G5XOSMnkDelJntfu+OHz3ApvWf4na52LdvL+mZ2V1mUOzfV4JBp6WpqYmf//IZcsZM5Mv3P0ZaemZk/zXVp9m2aR3/9f0f8NT3v0dqavP1Ekt2g06n40x1FVvWr40pa2fL+rXU1dUxYnh2zNemvc6GQR9bcOJc8ba8jYVCoSAYDMTVmSYYDMTdQlgIIfoTCXQIIYQQ/cTcObMp3r2DhYuv6XLbPTsLSU0dAgoFY3PzGTshD9M56+9NZjMT86eh0WioPlXO6apqEsyJzL/smugJ3tn6FknJKSy4/Boyhmax6oO3OH70EHMWXMaQzGE4GxxYLEkoW90VDgaai5GmZ2aRmzeVPbu2odXqYj7elvR+rVYbmdw1uppbf/r9fswmY9TkrqWVaG3NGbxeLxqtjpS0dDSaVjU3/D6cjnoaHPVodTpcTY3s2bWDvKkzo7qo+P0+NBptZHnPodISNm/4/GxnlVSCAT+hUBC1WtNup5lwKESC2YzeYGRIxrB2gxytWRKtDMkYitmciLlVsAHOLab6xeOJSVYSLEnodLFNmA0mE0aTmYDfB2i6LI6qUqkwmcwE/J42k3iVqm0rWoBaWw1ORz0KhZLLrrmp00BB+tAsPlv1Pl6Ph317drNvz64uMygUCiXZGVZ+/stnWLB4SbuZL62X9/z8l8/wq1/+ok32RGfLPuz2OsZOLIgpa+dk+XEOle7lS7fdHPO1Wbx7B3Nnd56x0554CrwajcaY96vT6UgwGSnZvZ0FMYy/ZPd2EkzG885IEUKIviShWiGEEKKfyMvLw2mv4eD+fZ1ud2B/Ce7GepwNdtKGDGXugsswGAzU1VRz+mQ51acrOX2ynLqaagwGA3MvvZyUIZnU2mrImzIjpgnepILp6I1Gps++lKzhI9Hp9dTWVHOqspyqU5Wcqiyn1laNTq8na/hIps9ZEBVwiIXX6yYQCPDc359n7bqN1DtdhMJKUGkJhZXUO12sXbeR5/7+PC6XC4PBQEpyEuvWrCTBkkhy6pA276nRaElOHUKCJZF1a1bi8bhJHZIZdcw6vZ4EsyUS5IDmpR9JKc1dZpwNDvQGA2qVCr/Pi9fjjvzn93lRq1ToDQbsdTb0BiNJ1mTCXaT5h0MhzJZEdAYjfr+PcBgC/gAulxu3243H42kuSOtyE/AHCIfB5/NiNJpwOOwxnc/GRid6g56GhnrefmMZFeUVLLxyCbff8wg33HY3t9/zCJdesYSK8grefmMZbrcLr9fN3NkzKd69I6b32Fe8E6/Py7hJ+TF9j8ZNzKfR1cSxowcYOTaX+ZdfExXkgC8CIzljJnDsSClbtm0lZ8zEmJb35IyZyIoVK2IaOzTXq9BqteSMHh/T9jmjxqHVahk9ekzM16bTXkNeXufn5lzBYDBS4HXh4mvaZI60FHgdM3Eqy155lWAwGPO+DQYDmRkZVJ0q5/CBkk63PVRaQtWpcjIzM6U+hxBiQJNAhxCiW/7zP7/DI488zH/+53f6eihCDCidXTsqlYp777mbw/t3sW7tKux1tqjn7XU21q1dxZH9u3nowQdwuVzk5k1BoVCQYDYzNCubjIxMklNSyMjIZGhWNglmMwqFgrET8jAYDEydNS+mcRZMn01CQgJDs0Y07z/BQsawbNIzh5E6JJ30zGFkDM0mIcGCQqHg/bdepr7Oxs9/9N2Y9m+vs6HTanj9jTeprqkjOTWTK5fcHjUpv+L620hOzaSqpo5/vLiUYDDIxNxcKsqPc6qyvNP9n6osp7L8OBqNps3Sj3AYQqEw4XD0awqmzsLn8xIIeGlqdKLWqDEYDej1enQ6HXq9HoPRgFqjpqnRSVNjAwG/D73BQDjcXMg1fM5OWz9uMJrwul0olEo8bjeBYPBs0VhD5D+NVkcgGMTjdqPR6PC4XYSDQRqdzk6Pt9HpJBTwEwoG+ei95eTmT2PB4mvaLFVoKV46YfI0lr/+MjqthmnTpsc8iXfUVqPV6SiYNrfTbVvkT5+NTqejYNoshqRnUmc7g//s8qMWfr+POtsZ0jOGMn32fOrtDcyetyim/c+et5CNm7fEtC0Q+RwMBgNNjQ2dbtvU2IDBaMRgNKFQKGK+Nu+79564l5eUlJRgtqbFVMjXbE2jpKTzgMW55l0yl8zMoZQW72LD2lXY62oJBUME/AFCwRD2ulo2rF3Fgb27yBw6lHlz58S1fyGE6G9k6YoQolsqKyux2Ww0NTX19VCEGFC6unbiaRlpTU5FoVLFVK8iEPBjtiRhtiTFNE6zJYkEc2LzMo2wPtK+tXkCFz2JC4fD2Kqr8Pm8VFedimn/xbt3MCQ1hcKdRVx+zY2R7IDWyzhaJuXpQ7P47JMP2LNnDzW2Wq64+kaKd26l+lRlh/Uhqk9XsvDya/hs9UeYTGbC4ealNj6/P2ocLa1TVWo15sRE9HoDGpWKJqcDV1MjeqMJlUoTKcAaDPrxuJoIh4JoVSp8Ph/1dXUkJacQDocIh0KEztm/QqlAoVRSX1dLo7OBmupqhmaNaLcGiEKpRKPVEQwEqK6qxO1qwpxgosnpiHREaa89bsDnxWQ0oFErSUhMjql46aHSEjKGJEUCbMteeZWq0xXkT52BJTE5UqOjwVFH8e4dOO01XH/dtRwtK++yTWmLhAQLpgQLo8flkjksi6bGRupqqgm18z1NTUsjGAywc9smUtLSY9p/WnomSpUGu93ephtLexQKBUajieTUVOpsNrweD+bEpHaXP/l9XlJS0zAajSiVypivzXiDHABbtm5j/uLrY9q2O4V88/Ly2LqtkEmTCzh5soKXn/s/1GoNeqMRj8tFIOhn6vRZTJycT9mhfXFnpAghRH8jgQ4hhBCin4m1ZWRKSgp+r4eKE8cxGBM6rFdRW1uD192E3mBsXmIRw0RMoVCgVmsIBgMAkUwFRasiEudmL5x9kIP793V6Z7olvf9MdTXjcvMZMz6PgL/jIERzrYQyPvxoBZbEZKZMm441JZVTpyr47JP3CYVCkeKiKpWKEaPHMn/8lSRbk9i+dT319joSzIkolEq0Wl27NTf8fj9NTU7Shgxhz65tTCyYgc/bXCzV5/dFipNqNdrmtrQaFWXHDqMgTEnRduZffg0KhRJF5NSGzx7BF0qKthMIBNlduInsnNGdnn+VWs3OrRvIGprBvuKdXHr5NV12RFn/6SoMOh3jc/NodDo7DUY0Op2Mz82j7GAR0Bxge/CB+1mxYgUv/OX/UKk1bbqc3P7A/dTV1WHQGwiHQtEFW8NhwoRRoIjUfAkGAoTDYTQaLRaLNZJ5lGA2d9gpR61WYzDGVtC2hV5vpLGxMaZAh06nQ6vV0NTYGFPgpa7WhlarjdSriOXajJfb7cbt9cVUKBQ6LuTbGZVKxW233hIp8HrXg49hSbRGatU0OOxs27SO4l3v8PQPvt+tYI0QQvQnEugQQggh+rGOiipG2tEqwJRgwZRgRq1SR0041Sp1pJWqghBulwuf34tao+nyfQOBAK6mRlyNjSQmJUeCGu0FNxQKBaFQc80Ak8nE4f27IpkB7RVUdNpr+NIdt/M/P/kZ194+F4/b3WUQYsqMuRTv2kJySjoqlZKRI0eSmppCdnYObo+bYDCESqXEoDc0T/zNFnxeD8FAAIfDjlqrixQM9Xo9+LxetDodOp0ejVZHg8OOo96O0Whgb9F2TJYU1BoN+4t3QTgcKeapUCrJnTwVv8/H/pLdGI0GTlWUcfhAyTlZFNFBjsMHSjhVUYZOp+H40QPs3V3I5Kkd16Ao3rWNY4dLGT9uLE57DYdKm4NHHXVEObC/hHrbaYxmCxMn5VFZWdllBsjESXmUFhfidrsJh8ORQpgPP/bvGI0JkfavLlcjxbt38OLSl7jj9tvw+7yoVCoCAf/ZjJ/moE5L1guEv8gAUirwetxR9VAAlKroAEcLra55uU48PB4XCQkJMW1rMBhITU6irqYanU7faeCl0emkrqaatBRru9dgZwVP4+H1etHr49tPSyHfWN8/GAzy9jvvcsMtd5KZNRy7vZ5a25mogNlV1y7hVMVklr/9Do88/JAEO4QQA5oEOoQQQogByGAw4HG7cLncjMzMxuv14j47QVQoFJGAhEajITklFUd9HV6Pi8oTxxk7flJUQOFc4VCIirKjuF2NlOzZQcbQrHO2j85WCIdC+HzNdReUSmVM6f01NTVodXr0eiMqtabLZRx6gxGd3ojTUX/2GLtuharT62lqaoRwmKYGB0cO7KPs2CFCoVCkbadSqSRn1Dgyh2ZBOEydrYbU9GF8smI5+VNnsvi6W0hNG0IoGEKpUmKrOcO2jWvZu3s7o8dOwJqgwxfWUlq8s9OlNHW2agwmI+aEBB795nd47o//S0XZUWbOW0TakFatU8+cZvumzzl2aD/feOK7/GvFO9x+260sf/udqOBRy3G2Dh7dcvPNvPfhSlQqJcOHD+8yA0ShaJ4wu91u3lr+NmMnTovKxGkJTuj0ehYuvoYD+0t4a/nbJCWaqSw/Tuaw4aBQoFKrUShaBajCIULBIITDnCwvay7o6vWSENNqFwVNjU5sZ6oYkpHZ5dY11acJBf0xZXO0uGTuHIpLj2JJTIoKBrUEOFoHg2zVlcydMzvmfXdHJGgZB6/XHVdXlC9qgDQH4ywWC64mFx6PG73egNHU3MXFMmky1VUnKSkpiWtpzGDk8/nwn5NlNphoNJrz6qwTDAbZvHkTO3bsYP/+/dTX1+N0OtHpdCQlJTFy5EgmTpzIggWXkpnZ9bUsRE+TQIcQQggxQAUDAcqOHiRzaDYKpRKDwXg2INEciGjJiPC43ZQdPUiSJYE9O7aQnjEMc2Ji81KLc5aihMMhnA4He3Zs5tqrr2Lzth1kjRjJ+In5rbZXRG1/YN8eAq0mBLGm96vUahRKZbtBjnO3C4WCKFUqdDptzK1Q7XU2gn4fxw4foLHRSZI1lXmLriYxKTmSfeCor+NASREVJ46SkGDm1OnT6PQOltz6FdLSh+J01OFqbECpUhMKBggGg8yYcynDc8aw9uP3CGekUe9oYN5l12FKSGDdmhXN7VzPLqXRaDRMKpiO2ZLIxrUfMWbcBKzJKTz5vR/x+dpVvLn0L821Es4uEwkGA0yZPpMnv/cjtFotOp0BtVodc92WlglzLIEgaJ4wHzlyJOZCmNWnK7EmJbJ9yzquuuGOc9rqtgTAVKDW0OCwU7hlPcMyM6IyKDrSkkGRbE2icPM6ltx6Z6fjAdi2aR3zL4mtMGqLlnoVnqYGMq3DOwwGnao7Q5Ojlry8m+Laf7wMBgOGdr7XHbHX2TDodXFlk7TUAAkGg122He5ODZDBxufzcc8992C31/X1UHqN1ZrMK6+80q1gx+bNm/nb3/7GqVMn2zzncrlwuVycOnWKTZs28fe//53Zs2fz8MOPMHLkyJ4Yeo/75JNPePbZ3wCwbNkrZGRk9PGIRE+QQIcQQggxALndbgymBKpOVnL86EHGT5rS6tnmQERLRsSBfUVUnawkfWgWGpWCPTs3M37SFBKTktFodZFX+X3e5on/viLMBg233XYb1TU1bPrsE6pOVjB52iysyWmR7e11NezdVcjRQ/tRq5uXMpyro/T+xMREmpzOtkth2qn10PxwGFdjIwtuWkLx7h0sXHxNl+eoaGchqWlplO7dzcKrbvhiqUir99BnDiM9cxjFu7axbvUKfP4Ak6dOxpJoRaVSk50zBq1WFymQ6vN5qa+rJTHJyrjcyZTs3sZPf/Jjfvu735MzZiILLruq3doHZUf281/f/Q5vLn8HAK1Wy1XX3shV195IzZkq6u12kqxW0oZE/4Ldcuc+luBRRxPmzgJBBr2OXbuL4iqE+c7rL+JsdFO6dzdjJ+S1KubZ/Hm11IY5XLqX+tozzJ45jZqqyjYZFC3OzaC488tf4rU33mTPzsJOW8wW7dhG2ZH9PPbwL2Ia+xfno3Xx1cp2i6/u3r4Zp72mWx1UumPunNkxf6+Ld+9g7uzOW++21lIDRG8w8PYby7CmDGHhlUuiaoLY62op2b2d4t07ueHWL8VdA2Sw8fv92O11/Oz3/0BvMPb1cHqcx+3i6Scewu/3xx3oePXVV3jppZciP7sLCgqYPXsOo0aNwmKx4PV6qK2tY+/eYrZt20ZVVRXbtm0jNTWNJ554oheORoj2SaBDCCGEGIC8Xi/hsIJFV13Pto2fUVNd1emyiUVXL2Hr5x/zlTu/zLvvvU9R4QaGDh+NJTEpcie7wVHPqfKjqAnw6CMPo9Vq+eojj7D0pZeprT7JqvfeQKlSo9Mb8HrchIJB9DotOdlDKT92EI/HE9cx+P1eTlWcIGfMOIKBIP6AH8JEsi0UClCrNajUKk5VnMDv9zFp0iR2F+2JqeCpveY0Wq2OgpmTI61NWyblinMm5ekZQymYPpvPVq9kxKixpKSlR2UrtGS+6HR60jOH0eCwM3zkGIp3F6LRqPnVL3/BihUr+OdLf0Wp1qDXG/F4vijk+djDv2gOTJwNRFgSrV3eWW9w2Nu9c99ZbYh4J8zTpxawcUthXIUwa+vquevBr7Hp87U0NtQzfORYEs7WggmFQjQ2ODhx/DCeJid33vsQ2zd9ikKhiDmDYtq0mxg5ciQ//+UzVJw4xux5C0lLb7W8p/p0JHj0w6d+0K070r3ZQaU7WrJMYi3km5d3Q8z79nqba618+M4/yc2f1m5HnpYOR4dKS/jwnX+i0ejiqgEyWOkNRgyDMNDRXatWfczSpUsBsFqtPPXUUxQUTGl324ULF/LYY9/g888/5x//eOHCDVKIsyTQIYQQQgxAOp2OmjPVpA3J4MY77uHoodIOl03Mv+xKQsEgNTU1JCYm8tVHH6GkpIQtW7dx7IALtVrT3H42wcSlc2eRl5cXmeAZjUa+9tVHI9s7GhpRKsMotWoSE61nJ4R5bFj/eVzj93q9ZGYOpXjXVhKTUzAlmNFqdShb1QIJnV1601BrZ8+urWRkZhIIBNq0Qu2o4Ondd32FH//05yy5Yw6JSclddtggHGb7lvWkZ2adsySjLUuilYyh2ej1BhyOBtLTM7j11lu59dZbsdvtNDY2kpCQ0KZ2xNw5s9m5bTN1dXVd3llPTk6O6849xD9hHnX5Anbs3hvz/r0eD1qdgfT0odz+lfs4fHA/e3bvwOvxotHq8Pu86PV68qdOZ+z4iahUKtxeH/ffcxdvLX875gyK1NTUmINH3dUbHVTOZyyxfq/jzTLR6XRUnT7J6PH5MbUdrj5VydGDxed1bsXgc+bMGf7whz8Azf8u/O53v2fYsGGdvkalUrF48WJmz57N3r2x/5wRoidIoEMIIYQYoLxeD42NTqzJKYzLzWNcbh5ejyeybKJ1p4sGRz3esxkX8U7wemNCqNPpMJpMlB09RMqQDHLzpmK2JKFsNbkKBgI0NjjYv3cXJ44eYkTOiMj7xlqzQqfTYzKZY2ttqtFiNJmxJMVW2DIpOQWdXo9SGd1hxWq1dlgcMzc3l6UvL2PB4iXtLstoubNetGMbGz/9iK/ccXNMY2kR74QZiKsQptfnRavVRup9TJg4mQkTJ+P1eCJdWs7tsKLTGVCpVHFnUGi12piCRz2hpzqonI/eyjIxGAw0NTWRmzclpu0n5BVQvGtLn58P0b+8/fbySNHpBx98qMsgR2sJCQnMndtxLZ26ujree+89duzYQVXVaTweD0lJSeTm5nL99dczbdr0dl9XVVXFvWd/jn3nO//J1Vdfzc6dO3nvvXc5ePAgjY2NpKSkMGPGDO66627S0tKiXr9nTxHf+c53oh5r2V9rzz77bJvMFbfbzfvvv8fmzZuprKzE4/GQmJhIbm4uV111NXPmzOnyvNTX1/Puu+9Elvj4fD6Sk5PJy5vMkiXXk5c3uct9iI5JoEMI0S333HMPbrcHg0Hf9cZCiIieuna8Xi+pqamU7N7OglbLFHR6fZuJJkDJ7u2kpKS2SUePd4LX0fbxHpfBYMDjamJSwXRs1afZ2dTEiFFjMZsTUaqUhIIhnE4HJ44dxtXYwKSCGdiqyiLv3Tr4YrfbcTqdmM3mqEmw1+slbUg6DQ0OUlK/+AW3o9amXq8bv9+HuoviqC20ZzvCxLo9QGlpKdNmXkJG5lBqbTUd1qvIHDqM6bMuobS0NO6ikPFOmOMphOlqasTv97ap+dHR9w7iqzPSkc6CR4NJbwQV3W431uRUFDEGSJQqNdbk1Iu6RoeIFg6HWbNmDdD88+Xqq6/usX2vXbuW3//+d22WPtbU1FBTU8P69eu55ppreeKJJ7oM8r3wwvO88cYbUY9VVVWxYsUKNm7cyLPP/pYRI0ac95iPHDnM008/TW1tbdTjNpuNDRs2sGHDBubPn8/3v9/x0rodO3bw05/+BJcrup12dXU11dXVrF27hhtvvInHH388KtNRxE4CHUKIbrn++iV9PQQhBqSeunZaMiLstWc4fKCk05T0Q6Ul2GvPYEow9Vo6eneOS6VWMzY3j+E5ozl6qJSSPTvxeb1odVp8Xh86nY5JBdMZPS6XE8ePUl9TGXltMBikpKSEzVu24vH5I+1iDTotc+fMJi8vD51Oh0qlIODz0uh0dtnxQ6lQ4GpqxFFvJyV1SFRHmnOFw2HsdTZ8Xi8qVey/TrV0v0iypnTZ/tViNna7+0U8E+Z46noc3L+XpETLeXcI6Q8ZFP1dT50jr9dLSkpKzNdBwNe8vdToEC3Kyo7T0NAANC+P66nvxbp1n/OrXz1DOBwmMzOTm266ieHDR5CUlERVVRWrVn1MYWEhq1Z9jMlk5Otff6zDfa1cuZL9+/eRn5/P9dcvISsri8bGRtasWc3q1aupr6/nt799lv/3//4Qec24ceN57rm/s3nzZpYufRGAX/7yGVJSomsWte7CYrPZ+O53v4vT6UShUHDVVVexaNFlWCwWTpw4wfLlyzl27CgbN27kN7/5NU899XSbsR45coT//u8f4vf7UavV3HTTTcydOxe9Xs+RI0d44403qKqq4oMP3kev1/Poo4+e76m+KEmgQwghhBiADAYDJoOeGfMuY8Nna6k6WUne1Jnt1nuw157h0suuYPvmz/rNxMXtdqM3GDEajLhdrk6X3jQ6nZiMRnQGI263m3A4zLJXXsVsTWPBFde3uzRj67ZC7r3nbox6HSajgSano8uOH0ajHp/Xy749O7h08bW0NIQ5twXv2T+xd3chCkVzWnasx+z2+iKfUVftX63JqT3S/aKrCXO8dT2uvfqqXusQInqeTqfD6/WQlZVFZWVll9dBVlYW2zZ4pEaHiDh27Hjkz2PHju2RfTocDn73u98RDoe55ppreOKJJ6MyNsaOHcuCBQv4xz/+weuvv8a7777L9dcvITs7u9397d+/j+uuu44nnngy6mf2tGnTUKvVfPzxx5SWlnLkyGHGjGk+BoPBwMiRIzl06FBk+6ysrE7by/75z3/G6XQC8OST3+baa6+NPDdu3DgWLlzIU0/9gKKiIj7//HOuvPIqZs2K/hn4+9//Dr/fj1Kp5Kc//RkzZsyIPDd+/AQuvXQhTz75xNnAyVtceeWV5OTkxHBWRWuSByOEEEIMUHPnzOZQ6T5uu/Nesodns37NCpa/8jwfLn+V5a88z4Y1H5E9PJvb7ryXg6Ul/WrC6fV6MRiMZGVl0eR0UGurwe/zodPrSTBb0On1+H0+am01NDkdZGVlodc3BzqWvfIqYydOY+Hia9pkFViTU1m4+BrGTJzKsldeZdbMGewr3snw4cMxmwzU2c5wqrKcqlMnOVVZ3tyJxWRg+PDhHNpfjEGv52RFGYcP7IvsMxwOR/5rcah0LycryjCZjDEvqfB6vej1bQMOKpUSjUbdbgtYnc4QWRffW1rqehzev4t1a1dhr7NFPW+vs7Fu7SqO7N/NfffeQ35+Pk57DQf37+tgj82+6BDSeQFM0bta2g43OOpiug4aHHXtZuGIi5fD4Yj8OTExqcPtQqEQx48f7/C/QCAQ2fbDDz+kqamJ1NRUvvWtf+twWcr9999PamoqoVCI1atXd/jeyckpPP74N9vNxLvjji9F/rx3b0lnh9opm83Gpk0bAZg5c2ZUkKOFVqvlP/7jO5Hjef/996KeP3DgAAcPHgTguuuuiwpytDCbzTzxxJNA8zn94IMPuj3mi5lkdAghuqW2tjZyB/LcFD8hRMd68tppuRN/5OCBTotCdqclZbziPS6dTofH40alUjJ8+PAul3EoFM21Ho4ePYLZmtZp5gHAhIl5VJ+uRKFQ4LTXcKi0OVuhowyKlnN09VVXcOKUjZKi7VSdLCdv6qw2GSMluwux1VRjNpvJnzA65nPUcszxaKlv0dvirevRWx1CRO9ovTypq0wiycIR53K7v6gjoe+gFg+Ay+Xiq1/teJnFsmWvRLIltmzZDMDs2XM6/RmnUqnIzZ3Ihg3rKS3d3+F2l166oMP9ZGdnYzAYcLvdnD59usN9dKW4eA+hUAiAa65pG+RokZGRwbRp09m+vZDi4mKCwWDk5+CuXbsi23W2j7y8PIYPH055eTm7d+/qcDvRMQl0CCG65ZvffBybzUZqaiqvv/5G1y8QQgA9e+101GGjJcBxISec8R5Xy13mlloPXU2+Wmo97NxVxPzF18c0pvypM9j46cfc1845atl3e+fov77/A+Zddh0Gg4HPP/mAQCCATm/A63Gj1miYXDCdxKRkNn/+Md/62kMxn6Nzj7krHdW36C3x1PXorQ4hone0tzxJpVK2ySK6EEFRMfAYDMbIn88tGtodwWCQo0ePAvDRRyv46KMVMb2urq6uw+c6WtLSIiEhoXn5oNvV6XadOX68LPLnCRMmdLptbu4Etm8vxOPxcPr0abKysoDmeicAGo2GMWPGdLqPCRNyKS8v5+TJk/j9fjQaTbfHfjGSQIcQQggxgA3kCWd7RTDbm3xB813maVMK2LS1MKoOSWdaalwoFIq4ztFT3/8eP//lM+SMmciiK6/DbLFGsmScDXa2bVpH2ZH9/PCpjivqx3PMHenLO+uxFMLsjQ4honfE23a4P/68EH3HYrFE/uxw1He4XUJCAqtXr4l67Ne//jWrV/8r6jGn00kwGIx7HF6vt8PndLrOO361dC4JBkNxv2+LltocAElJSZ1ua7Umt/u6lj+bzeYur7Pk5OZlkeFwmMbGxoui81RPkkCHEEIIMcAN1AlnvEUwR1++gJ1Fe+N6j5YaFwaDIeZzlJqayq9++QtWrFjBP1/6K0q1Br3eiMfjIhT0M/+SuTz28C+6taQk3mMeKHfWpYtK/zeQg6Kib40ePSry5yNHjpz3/lqWfwBce+213HLLrTG9rj9lNHTWlSvGPfTIOETHJNAhhBBCDCIDacIZ711moEdqXMRyjrRaLbfeeiu33nordrudxsZGEhISzvuOmtxZF31poAZFRd/KyRmJxWKhoaGBvXv34vF4Oq3V0RVzqxbH4TCMHDmyJ4bZ61qP2263M2TIkA63tdu/WGbT+nUtf3Y6G6Jqd7Snrs4ONAdVYu3uJb4ggQ4hhBBC9Jl47zL3RY0Lq9XaoynDcmdd9AcDKSgq+pZCoWDx4it49913cLlcrF79L2644cZu70+j0ZCTk0NZWRn79nXevelCiDU7Y+TInMifDxw40Gmg48CBA0Bz8dbMzMzI4zk5I4HP8Pv9HDlyhPHjx3e4j4MHm/cxbNiwfpXNMlBIoEMIIYQQfSqeu8wDpcZFV+TOuhBiILn99tv46KMV+Hw+XnjhBWbMmBk1gY/XnDlzKSsro6KinO3btzNz5sweHG18tNovggh+v7/D7fLzC1AqlYRCIVatWsWll17a7nZnzlRHuqvk5+dHBa2nTZvGiy/+A4BPPlnVYaBj//79nDhxAoCpU6fFd0ACgLbVvoQQQggh+ojBYCAxMbHDCX9eXh5Oew0H93d+F/CLGhd5vTHMHtXVMQshRF8bMiSdxx9/HICmpiaefPIJSko6r5kUDodpamps97lbb7018jPv2WefpaysrNN9bdu2lWPHjsU/8BgktypwferUqQ63S01NZd68+QBs317Iv/71rzbb+P1+nn32WQKBAAA33XRz1PMTJkxg3LhxAKxcuTKq3WyLpqZGfv/73wHNRVRvuGFg1GrqbySjQwghhBADhtS4EEKIvnHddddjs9lYtmwZtbW1PPnkk0yZMpW5c+ecreNhJhgMYbfbOXz4MOvXr4sEMJRKJWr1F1NPq9XKf/7nd/npT39CXV0tjz/+Da666ipmzpxFWloagUAAm62GAwcOsmHDek6fPs1Pf/ozRo0a1cHoum/MmDFotVp8Ph8vvbQUtVpNenp6ZElLamoqOp0OgMcee4yiot04nU5++9tnKSnZy6JFi0hIMFNRUcFbb/0z0jp34cKFzJrVNqvwySe/zb/927fw+/08/fRT3HTTzcyZMwe9Xs/Ro0d44403OH36NAC3337HgKlh0t9IoEMIIYQQA4rUuBBCXAget6uvh9Arzue47rvvfkaNGs1zz/2N06dPU1S0m6Ki3R1ur1AomDFjBo8++lVSU6NrKy1YsIAf//gn/OY3v8bpdLJixQpWrFjR7n6USuV5FUDtjNFo5Oabb+Gf/3yTw4cP873v/VfU888++ywFBVMASEtL49e//jVPP/00tbW1fPzxx3z88cdt9jl//ny++93/avM4NAdWfvKTn/LTn/4El8vF8uVvsXz5W222u/HGm3j44YfP/wAvUhLoEEIIIcSAIzUuhBC9RaPRYLUm8/QTD/X1UHqN1Zrc7QKX8+fPZ+7cuWzcuJEdO3ZQWrqf+vp6Ghsb0el0WCwWRo4cycSJE1m4cFGntTzmzp3LsmWvsHLlSgoLCzlxogyn04lKpcJqtZKTk8OUKVNYsODSTot/nq9HHnmEYcOGsWbNasrKymhqaopqg9vamDFjefHFpbz//nts2rSJyspKvF4vFouF3NxcrrrqaubOndvp+82YMYOXXnqZd955h8LCbZw+fRq/34/VamXy5MksWbKEvLzJvXGoFw1FOBwO9/UghBADT0VFRaQtVnZ2dl8PR4gBY7BeO4P1uIQQ/Vd5eTnPPPMM3/ve9xg+fHiP7tvn83VamHKg02g0bVpvC9GXevp6lowOIUS3yERGiO4ZrNfOYD0uIcTFSavVSiBAiAFMuq4IIYQQQgghhBBi0JBAhxBCCCGEEEIIIQYNWboihOiWTz9di8fjRa/Xcfnli3t8/263G6/Xi06nk+KCYlDp7WunrwzW4xJCCCHEwCOBDiFEt/z973/HZrORmpraY5OaYDBISUkJhYUb8PubMBq1uFw+tFoTM2cuIC8vT9pFigGvN66d/mCwHpcQQgghBh4JdAgh+gWXy8Vrry0lPV3NzTdPJjU1MfKczeZg69ZtbN++ibvuegCj0diHIxVCCCGEEEL0Z1KjQwjR54LBIK+9tpSZMzNYsmRWVJADIDU1kSVLZjFzZgavvbaUYDDYRyONj9vtpr6+Hrfb3ddDEUIIIYQQ4qIhGR1CiD5XUlJCerqa/PxRnW6Xnz+K8nIbJSUlFBQUXKDRxaf18huvtwG9XoPH40evt8jyGyGEEEIIIS4ACXQIIYC+Lf65ffsGbr55ckzbzpkznvff39gvAx0ul4tXX30Ri8XHzJlpJCZmoFIpCQZDOBweDhz4jMLCjdx994Oy/EYIIYQQQoheIoEOIS5i/aH4p9vtxudrIiUlseuNaV7G4vM14na7+1U3lmAwyMsvP8/IkSoKCkZhtSag1X7xI9bnC5CRYaaoqJKXX36eRx99XDI7hBBCCCGE6AUS6BDiItVfin96vV6MRm1crzEYtPh8vn4V6Ni7txiNpp45c2ZisbQ9X1qtmvT0JObO1XLy5Hb27i1mypSpfTBSIYQQQgghBjcpRirERag/Ff/U6XS4XL64XuN2+9Bq4wuO9LbVq1dwySWj2w1ytGaxGJk7dzSrV3903u8pxU6FEEIIIYRoSzI6hBikOqu50Z+KfxoMBrRaEzabo03ApT02mwOtNqFfZXO43W6czhpGjbokpu1Hj87A6Szs1vKb/rDcSAghhBBCiP5MAh1C9IC+LOTZWqyT4J4o/mm1Jkf9/3zMnLmArVu3sWTJrC633br1IDNnzj/v9+xJDocDnU4VVZOjM1qtGq1WSUODI67vy/kuN+ov39PzMRiOoSevnf5ksB6XEEIIIQYeCXQI0U3nc2e9O5O1rl4T6yT4llu+3CPFP//85z/H9PpYxp+Xl8f27ZsoLj7WaZZJcfExqqsDXHddXlzvfSH4fIG4tvf7A4Ai5u1bLzdq7xy1LDcqLj7Ga68t5cEHv4ZKpRoUGSCD4Rhai/faGSgG63EJIYQQYuCRQIcQ3XBuUMFk0uP1+tHpNDQ1edq9s96dyVrr17jdDWi1Sny+EEajJeo18UyC33xzGXp9fJd+d4t/xnrMKpWKu+56gNdeW0p5uY05c8a3E6g5SHV1gLvvfrDfTWoTExNxuQLYbA2kplq63N5ma8DlCmCxdL1ti/aWG7nd3sj3zmDQAdHLjcaOHXveBWfjDcr1dMZFfymaK4QQQgghBg4JdAgRp5agwrRpQ1CpFLz33jr8fn+rSbyWmTMnMmxYOHJn3ev1xj1Zc7lcvPLKPwiFHPj9HtRq0Ou1hEI+PB43W7asYNu2Ddxzz0McPnw45pobZWVn2LOnLK5jbq/4Z7wZJiqVEqfThdlsJBgMtTlmo9HIgw9+jZKSEt5/fwMeTwM6nQav149en8jMmfO57rqezZLpKQaDAas1nY0bD3LzzTO73H7jxoNYrRlxjbNluVEwGGTfvjIKC/e1+72bNCmHOXPG8+6769m+fVPcGSAQf1CutzIuupvFIoQQQgghLm4S6BAiTiUlJVitYXbtOkB6uombb54adRffZmtg69YjVFc3YbVa2bu3mB07tkRN1oLBIKFQCKVS2e5kDeCll/6O03mS3NxM5szJb/c9SkvLeemlv6NWK7nllvyocbZ3tx/gkkty2bx5X5vinx1t37r4Z6wT2pYJakFBKhUV1fzmN6+i1SpJSNDT2OjB7w8ze3YeBQXp7U5Qw2Hw+YIEg0GCQdDrw+1+Fq3H4/U2oNdr8Hj86PWWmCbYPRkcueaaG3n//ZcYNSqd/PzhHW5XXHyCoqIKbrrp/pj37Xa78fmaMBh0LF36caffu+3bS/nKV66gquokBQU5cRecjTeDojczLvpT0VwhhBBCCDFwSKCDwVHcbqAbSJ/Btm3r8PttzJ8/tt0JbWqqhSVLplFcfIING45w5MiHTJyYweTJI2loaKC+vo5QKIBKpSQYDKFUqklKSmby5JGRyVowGKSq6hi33joj8h5NTR7cbh8GgzbyHsOHn2D58u0kJCSSkpIY093+1NREUlOT2LBhHzfeOLvL7VuKf547oX3lldXYbM0ZGnfcMSdqQnv48GFMJh9vvbWGvLyh/Pu/X0V6eiKhUBilUkF1tYO1a0t46629TJ06MbLMonUGi15PZDweT3VUBkvLBPvVV1/EYvExc2YaiYkZkXPqcHg4cOAzCgs3cvfdD0ZNsHsr+6CgoIBt20bxySd7zy6/GdNBcOo0GRmj45qQe71e9Ho1r7++hpkzR3T5vXv99TU0NTUwa9bYmPbfUnA2Ly8vrgyK++57pFczLnqiaG5/9Pvf/46GBicWi5knnniyr4fTYwbrcQkhhBBi4LloAx2DrbjdQDQQPwO3201V1SmmTo2+ax8KhQmHwygUCpTK5gKT+fkjKC+vZe3aEu68czYVFSfQ6RRkZJijunP4fAHsdjv19XXMnDmGFSs2cuZMDVOmZDNxYhZbtx5i27aDhEJfTPyVSgWzZ49jxowxFBScprCwDJfLw+uvr4nc7TeZ9JHASHPdkC/u9qekWCkvb+J///dNcnMzO8wO+OSTbZjNw7j66lxefvn5qAltYWFpJCvkiSduj5rQ+nwejh7dz623ziAvbxj19S4qKmytgjtKbrppOqNHp/POOzux28Ns3vx5VAZLSoolck5ra6MzWB5++DFefvl5Ro5UUVAwCqs1oc05zcgwU1RUycsvP8+jjz6OSqXq1ewDlUrF/fc/yiuv/IOTJx28+WYhSmVzfRO320c4rECl0pGUNJx77304ru+2TqejsrKmzfcuHCZyjhRn65rm54+grKyGvXs9pKUlxbT/loKzu3btjCuDYsWKD3st46Ili+V8i+b2R9u2bcNms5GamtrXQ+lRg/W4hBBC9JyqqiruvfceAL7znf/k6quv7tZ+PvnkE5599jcALFv2ChkZGT02RjE4XJSBDilu1/cu9GfQUxkjXq8Xl8vJ3LnzCYeb/+73+wBQKJonngAajRadTsfs2WNYvXoPTmcd2dlJWCxtj0WrVZOenkRDg4v6+gbcbge1tVVMnXoFf/rTSoYPT+ErX7mEIUO+CEScOdPApk2H+NOfDrFkyUw++2wfr732L6ZPHw6EWL58M8FgKDLJVqtVzJo1hqFDrbz++hpcLgVarZHc3BEUFGS1GZfFYmTmzFFoNFpOnAjFtYSgrOwMH3+8l7lzR5CVZcXt9pGRkdhOcKeJrKxkJk/OYsuWPaSnW7jtthnk5g4jEPDjdrsi59Rk0nD11flkZ6fw7rs7ee+9d9Fo6pkzZ2Zk7G63r9XSGy3p6UnMnavl5Mnt7N1bzOTJ+b1e78FoNPLww49RUlLC9u0baGy0EwopCQS0JCQkM3Pm/G514zEYDDQ1NTF9+kjCYQgEAgQC/rNBjuZzpFAoUKs1qNVqpkzJ4dNP98U1foNBy/btm/jSl6bFtP2cOeN59tnl/Od/3h7z9vFkXHi9XoxGbdcbttLdorlCCCHEuXw+H36/v6+H0Ws0Gk2b+mvx8Pv9bNiwge3bCzl48CD19fW4XC5MJhPp6emMHz+eBQsWMGXKVJRKZQ+OXIjYXHSBDilu1/cu1GfQGxkj4XAYtVqB1ZpAY6MzKoNDoVAQPhvpCAR8+P0+kpNN6PVqNBraDXK0ZrEYcbt9+HxuDAYl7723jUsvHc/UqTltth0yxMItt8xg164yVqzYjlarRK9XUFh4iKFDk7jttlmkpZkj29fUONm69TCnTtWTlGTm0KEaFixI48orZ+J0Oqmqan85zVVXDeejj7azatUHfPWrl8V0jpqzUtaRn59FUpIRi6XtpLM5uJNIQ4ObyZOzWLt2L1OmTGLs2CGEQn50OnXkvEJzxozf72fcuCEUFGTx8ccr+Pa3r8Fk0lNcXEZh4RH8/kCrz1jNzJljmDRpOHPnjuajjz5CoVBe0HoP4TAolSrUahWhUBDous5IR99Tn89HamoSCoUCj8eNUkmH58jj8aPRqDCZtLjd3qh6K51xOpv3G2sGhcmkR6MJk5SUENP28WZc6HQ6XC5fTPtu0V7R3IvRQFoKKIQQ/ZHP5+Oue+7CYa/v66H0mkRrEq+98lq3/t3csGEDzz33N6qqqto819DQQENDA4cPH2bFihVkZWXx9a9/ndmz5/TEsAeMl19+iWXLlgGwevWaPh7NxemiC3T0RXE7+aUz2oX4DM43Y8Rut9PQ0IDFYsFqtUYeVygUGI166usdaLUq1GolGo0KleqLSHUwGMLvDxIIBHE4nKjVKqzW6Mmg2+2LLCsxGL74B8ZqTaCmphav18O0acPbDXK0Nm1aDidO2Dhy5DQVFWe47rqpFBS0rd+QlmbmhhumUVR0gtWrS/D5mpg7dzwKhQKLxYLFYokqkNo6ADRz5hjWr9/dZgLcEtRp+X/rY0hMNGC1JkQFOVpv1rLMwmIxMHSoFZNJx9SpwyPns+Uceb0BdDo1BoMWnU6D3x9k2rThrF5dRHp6EkuXfkZ6uoWbb55OSkrC2cwGqK1tPLtU5yi33TYHp7OQLVs+4/bbp57zObRfgLW79R56q5Dn9dffQkqKlbo6J1qtguRkU5v3VioV6HQa6uoasdsbSUgwcfp0HaNGZXY5bpvNgVKpJyFB0eW2LbxePyaTjlAoFHPAMJ6MC4PBgFZralM0tyOti+ZejAbiUkAhhOiv/H4/Dns9t/78ETT6wRdA93t8vPPU8/j9/rgDHa+88govvbQ08vdp06Yzd+5cRowYQUJCAk5nAxUVlWzduoVdu3ZRWVnJP/7xYo8HOq6++upuL3sRF4eLLtBxoYrbyS+dHWvvM4h3wtlZ8Ki9jJHW++8oY8Tn87FixYds3foZWi0kJOhobPTi9yuYPXsRS5bcgE6no6nJi8PhIisrOTIpb02lUqJSKfH7ldTUOGls9OD1+gkEQuzde5xt2w63u6ykuVipC58viMfjZd682ApJXnLJWD7+uIjRozOYOHFYq3MUHSgAmDQpi9LSk9TUNMZ8Jz452YzRqMbt9qLXa3E6ndTX1xEMBiPnu7y8jKSkZMxmM+FwGKNRh8GgbRXcCEfVk2jW/H+9XoPZbMBqNaJUKiguPkFh4VH8/uA5GRqjmDQpG6vVhMVi4M03N3PJJWPOLnUJ4Hb7Wi110XL11fns33+St9/eikYDTmd9XAVb4633EG+mUnuFPDv6nr7//ls0NNixWked/U4GsFpN7S4H8nqDWK0JBAIK9uw5HlOgY+vWg8yaNZ8dOz5r97jaC4DpdBqamrxxpaPGm3Exc+YCtm7dxpIls7rctqVo7sVIlmMKIUTv0Oi1aGPMjLwYrFq1KhLkSEpK4umnf9juPGnatOncdNNNHD9+nL/+9S/U1zsu8EiFuMgCHRequJ380tmx1p9BvBNOrVYbU/CoJWNk0qQRFBcf7XT/LRkjw4YN49e//jF5eUP493+/gqFDv8jiOHXKztq1e3n66c/57nd/RFWVjepqBykpCWg0HX8v3G4f1dUOnE4X27YdxWazd7qspLDwCKmpVqzWRBQKf7tLPtpjNhtISNAze/YYvF4/xcXl7NpVRiDwRaBAo1ExdWoO48dnMmPGaPbvPxmZvLYELtpbumI2m1EqlWg0zYGOmprTkYKqanXzBFetVpKRYY4UVE1NHYLb7cVk0hIOhyMZLhCOLO9priehiryfXq8hEAixdOk60tMTufnmGR1kaBzj5ptnolIpSU42MnZsOqFQEJ1O084yjgDjxqVTXl5LSUklY8aktynY2ll71njrPcSbqdRSyLP197Q5eKfB6/Wj1+ujvqelpdWEw5CdPQSn00VVlYNgMBQ5pyqVkqQkM0OGGDl92k5jo5e6OiguPtbpmIqLj1FdHeC666ZTXFyIzeYgJcXS5feiqcmD36/Abm/stYyLvLw8tm/fFMcx5LV5brBn1MlyTCGEEBeCzWbjT3/6IwB6vZ7f/vZ/GT68bRZxayNHjuSXv3yGTz/99EIMUYgoF1Wg40IUt5NfOjvX8hnEO+F0OBysWPFOTMGj7ds3cPXV41i69OMu93/VVbNYufJzjh07ws035zN37rg2Yx461Mq9917K5s0H+eUvf0Qw6OfkyTqGDk3C7fZ1cme9ebtwGDZsKOFLX5rDJZe0zdJoWVayefMhli/fTmrqUCyWBOx2F+np0RP4c4VCYez2JkwmHRqNijff3MqQIYnceOM0UlO/CKbYbE4KC49RVHSCW26ZidcbwO/3c/r0yUjgQqVSRtq/BoOhSOBi2LBsfL4gR48eZfz4jC4Lqh48eASHw4PD4UahUKBSKdHr1VF3/kOh5uCH3x+gocGF0+lh+fJtzJ3bkqERPJuh0TyJN5l0kQyN5cu30dTkJT8/G7Va1W5WTcsyDr8/yKRJw1i5sohAIBRXe1aPR9Um+6CzSXN7mUodZUO0FPL85jdv4MUXP8Ji0TJzZjaJiUZUKgXBYBiHw8WBA4cpLNzHFVfM5OOPN7Nr13Guv94a9R7Nn1f08qFdu46TkGDillu+zLvvvnm23e34dq6bg1RXB7j77gdRqVTMnLmAzZu3MGVKRpcdgoqKqpg9exFbtx7stYwLlUrFXXc9wGuvLY35GFrO+8WSUdcXyzGFEEJcfN5++208Hg8A99//QJdBjhZKpZIrrrii02127mwuNH/w4EEaGxtJSUlhxowZ3HXX3aSlpbX7mq66rvzHf3yb4uJi8vPz+e1v/xebzcby5W+xZcsWbDYbOp2OcePGceuttzFrVse/xwSDQdasWcNnn33KsWPHcDqdaLVakpKsDBkyhKlTpzJv3jxGjBjRZlwtrryy7fG3HvO5Y62srOTdd99lx44d1Nba8Hq9UdvX1tayadNGioqKOHr0GHV1tQSDQSwWC+PGjePyyy/n0ksXdph1u2dPEd/5zncAePbZZ5k8OZ9Vqz7mk08+oaKiAr/fz9ChQ1m0aBG33Xb7gK1/dlEFOi5EcTv5pbNzOp2OxkZPXBNOl0vB+++/xZw5w7oMHi1b9gJebwOffFIY0/7/9a9CDh06xZQpme0GOVq75JLxHDhwkp0766mvd1Ff7yInJ42qqnpCoXCru94KkpJMVFU1b5eamsCECUPJykqmutqB1WpCo/ni0vP7WzqQpDB79hi2b6/BYAji94doaHBjNutRKpWRuhbQvDwjFArR0ODB5wvi9QZ4773tzJ8/PnLMrWtipKcncsMNUykuLufttwtxuXyUlh5mzJghKBRQVVV79hiaJ83Nx2BGr4eSklJAz4EDlcyc2fn32mIxUlJyAp/v/7d33wFNnmv/wL8hCSGEPQRBFBfgglYL7lGVts5aa5e1w56O09q3+3jaX1u17+m07ek4q+3bYVutPa0dinvUWheK4EIFRAUBBWSEANnj90dMJCaBJDLD9/NP6TPvJzcP5rme675uI/buLcCcOSMgEtk/UAoEAvj6iqDTGXDo0DlUV9cjNFSGgQOjYTQaLxfatA+MJCREIz//IuTyxsvFMJt/WBWLzYGQwEB/1Ndr0KdPsMPfiaaSk/vg7NlKnDrVCKlU6nKxUEumkslkajK8RwcfH8Hlz1ZszYaQyfwgEhmxfv0+9OsXipSUOIcBs+joYBw5ch6bNmUiPFyG8+drsW3bEaSkxDmdyWb//nyUldUhNjYSIpEICxc+htzcXKxduxtabaN1yJSvbwBSU8dh+vQrD/2DBg3CqlWfIzJS6PB+sAS09u3Lx969J/Daa8uxatVX15Rx0RJ/f3+3rqG7ZdS113BMIiLqvkwmE7Zt2wrAnM0xffr0Vjv2F198ju+//95mWXl5OdavX489e/bgvffetwYRPJWbm4tly5airu7KEBqtVovs7GxkZ2fj0UcfxR133Gm3n0qlwssv/z8cP37cZrler4dSqcSFC2U4cuQwCgtPY8mSpdfURot9+/birbfesgaVrmYwGDB//j0wGo1266qrq7F//37s378fmzZtxrJly1p8Wa/T6fHKKy8jKyvLZvnZs2dx9uxZ7NixA8uXv4uwsDDPL6qDdKtAR3sUt+OXzuZJpVIoFBrExga4/MBZUHAB48dHuhQ8OneuHJmZFRg7tq9Lxz9/vhoHD8oxeXK6S+2fOHEwDh8+i3vuGY3Vq/fj/PlqjBo1AKGh/jAYzIGC2lol/vgjDxUVdZg/fwzeeGMtEhJi0KtXOOrqlCgtrQEAa1BBIABCQgIQGRmMYcPU2L+/GDqdBD4+IigUaqjVOgQHS+0eauvqVNBqDfDxEaG2tgGjRw+0uWaBg0SQ5OTeOHOmEkqlBsePn0NkpD8kEqHTh2aNxoAjR85Cq9Wjvt48LKa5z/XYsWIoFDqIxT4oKrqEkycvIDk5DgCg1xusGSOW4q0nT5bh3LlLEAp9MHBgFIRCH5t2WPj4+EAi8YFWq8eAAVGQSMTQavVQKFTNDvFRKFTQavUICJBCKPRBUlLL9SoAIDGxJwoLz7lVLNTf3xcGgwGlpSUAdDAajRAIzBkX5iE8GtTWVqC2tgYBAaHQanUQi40YNap/szPTjB49AKWl5iwWvd6Ao0eLodXqMGrUAJusHYVChaysszh16gICA4OsQVqhUIiUlBSkpKRcHjpmXu7o79qpU6cwcmQSTp6sQHV1w+Vz2GdDVVQ0YuTIJBQUFHiUceEuV6+hu2XUtddwTCIi6t6KioqsQYJhw4a12ouCjRs34uTJE0hOTsaMGTPRq1cvNDQ0YPv2bdi2bRvkcjnef/89fPzxPzw+R01NDZYtWwqBQIA//elhDB06FGKxCLm5uVi5ciUaGhrwxRdfIDU1DfHx8Tb7fvPNN9Ygx6hRozB58hT06NEDvr6+kMtrUVhYiMzMA7DUnQOAsWPHIiEhARkZ65CRkQEA+Oyz/7NrV0REhN2yyspKvP322/Dz88O99y7AsGHD4OPjg/z8fLt/t6+77nqkpaUiPr4vQkJCoFQqcfHiRWzatBEnT55ETk42/vGPj7F48V+b/XxWrPgK+fn5GDFiBGbNmo3IyEhcunQJ69atQ05ONoqLi/Hqq6/g44//0eW+M3WrQAfQtsXt+KXTNWKx0O6B01w401KM9EoGTWJiT/zxx2mMHp3o0rFHjUrCli37MXr0TS5tP2xYHHbuPIaYGNeilHFxkdYhEQ88MAHHj5szJPR6I6RSMVQq3eXiov1wyy0p0OsNUCo16NEjGNXV9QgK8kNwcCRMJpP1oV8gEECn06OqSgGZTIrAQDEGDRqJnTtPYMGCCaivV+LSpXrrEAjLf0NCAhEV5Y+VK/+AVmvCddf1gU5naDbLQaczICWlDzZsOILc3FIkJkZj9GjzcJqmGSCWh+x9+wpw9GgxZDJ/PPjgdKxevf3yA+0ATJo0FA0NKgQESG0egB944BYsWfJ/6NkzDJmZp5GXV4bExBiEhPhbs17MwzIuQC5XIjY2FKWl1ZBKJVAqNRAKfS4P12kaqTF/Xo2N5qFPQUFSBAfLUFPT2OzwIZVKh6ioEKjVOoSGiuHvL4NCoWx2ql+FwjwHvL+/EN988zlGj+7V4kPzunVroNOpUFJyHnq9GoGBEoSGBjlsU329ClVVWigUDRgzZmCLtViCgqQYM2Ygdu/Ow9ixibj11qk4ceI81q7Nhlarb5LdIEZqan9MmzYCGRnZ1oyUpqRSabN/ayyB2pCQAJw4UYS1a49cHrrnaw2cpKYOxrRp8aitbbAGat3JuLhWzV1DV8mou/HGG1Ff34DAQNcKAjvTHsMx3dFa10VERJ3L2bNnrT8PHOhasXxXnDx5AtOnT8czzzzbpFg9MHz4cIhEImzatAmnTp1CYeFpDBjg2XlLS0sRFRWFDz/8yCa4kJiYhMTERDz33HMwGAzYsGEDFi1aZLPvrl2/AwDGj5+AJUuW2B07NTUN99wzHwqFwrosICAAAQEBCAkJsS7r27evS20tLy9HeHg4Pv74Y/ToEWVdPmjQIOvPPj4++PLLrxAbG2u3f0pKCm655RZ8/fXXWLnyW2zfvh3z59+LXr16OT1nfn4+ZsyYgWeeeda6LCEhAWPHjsX777+PzZs3oaCgABs2rMfs2be6dB2dRbcLdLRGcTtnOupLZ1cqtqdSqSCTmR84a2sbUFJShYMHC6HT6a+aYWMA4uIiIBL5QiYTuzxDSEREMIKCWh7SYCEWixAQ4Hd5isyWZ4/w9TUPhTh16gJSUnpj8OBYpKT0hkajh1arh6+vCBKJyFp/4syZCiiVWkgkvqirU8JoNFofyi3PfVqtHnK5uU6FSCSGv78Eo0aNxqefHkBmZgFGj05AUJA/DAajXUbEvn35OHasAv37m+tVmLMmjBCLRQ6LcxqNJojFQgQH+yM1tT9OnryAqqp6pKX1c1jTo7KyHqNHJyAr6wwkEjEefHCa9QHYYADCwoKhUmmxdu0R6wOwXq9HYKAU1dUNUKu1MJmAPXvyIRQK4OfnC7VaC4PBBJFIiLo6FdRqAwIDpYiONtf4UKl0CA72h6/vlT7Uag2oq1NCpzOgZ89QiMUiKBQaREcHQ6XS4OJFubUgp6VAZ0CAH3r08Edjox5arQH+/n6IjY1DWVnJ5eBIgINARAM0GhNiY+NgNB5HZKTA5u+Eo5oblofmvXvPoaKiEoMGxTaboSGVqnD0aDH8/SXo29fxuNOr9e3bA1KpL5KSekIo9EFycjySk+OhUmmtv3dXBwgLC8+5dGyLqwO1ycn9kZzcHyqVpsk5rlSevzpQ62rWiKPzttbfr66SUffoo4+1ynHaYzimO1rruoiIqHNp+iAfEhLazJbuCQsLx6JFT9oEOSzuuONObNq0CQBw/Hiux4EOAFi06EmHGRRDhw5DUlISTp06hdzc43bra2trAZizWJoTFBTU7Hp3/OlPD9sEOa4mEAgcBjmaWrBgATIy1qGurg779+/HHXfc4XTb0NBQ/PnPjztc98QTTyAzcz/kcjkyMjIY6OjsPC1u54r2/NLZVYvtmYNBEoSG9sCXX65F796hmD17OHr0uPIHorJSgb1787Fz50ncfvtUyGSSy4GIK9fjrMij0WhEYKA/Kivrmn1rb6HV6qDV6i/XUHDtGnQ6E/bty0dCQjTCwswBGKnU1+ZBUyLxQU1NA3bsOAFAAKlUhB49wlBfr0J5eR1UKg0MBnNwRSqVICTEHz16BKOyUgGFQomwsDAsXrwUy5e/hsLCckyZMgwxMaHWNlpmgsnNrcSTT76A3377GfX1WshkOgQGSqHR6Kwzllj+KxKJ0NioQn29BjKZBKmpA9Cjhwz5+WXIyDgMne5KdoBYLML11/fBjTcOQUODDrt3n7wcQBFbH4Bra+tRX6+6PDXslSCJXq+HRqODWCzEoEF9kJLSG6GhMhgMRut0t0KhD2prG3HkyHnk51+ETqeHWCxCWFgANBodLl1SwGQyWTNYLIGLwEApfHzMQ1gOHz6HuXNHQSz2hb+/HwwGg/VahUIhRCIxRCIRfvstBwEBQVCrtRAKhYiL64P6+nqUlzueUaRHj0AIBAJcunQJt902yqbmhrMZSEaNSsTGjfuQn38RI0cOaPb3JyhIiuPHSyCTSRwOL3JEo9EiJMT/8tCvKxkpV//eAVcyUmQykVvZYs4CtVKpxCbAYbvOPlDbUtYI0DZ/v7pjRl17DMckIiJSKpXWn/38/FrtuBMmjHf6HBQXFwepVAqVSoWLFy96fI6AgACMHDnS6fqBAxNw6tQph+cICwtDZWUlfv/9d0ybNq1Vr90RsViMiRMnurWP0WhETU0NVCoV9Hq9dXlERATq6upw9uyZZvefOHGi0+uSSqWYMGEi1q1bi6KiItTU1HSpWh3dLtABuF/czlXt9aWzKxfbsxQj/eGH33DjjUMuz7Chg1KptT6UBwZKMXNmKk6eLMOGDfvQ2KiGj4+PSw+cPj4+UKsNMJmELg1R8PERo6FBi4oKOXr1Cm+x/Rcu1EKnE+DixXpkZZ1FSkofhIbKIJFcuZU0GvMQhcOHi1BaKofBYLTWpygquoSDB89ApzPAz08MtVp3OYOlH4YMiYNeb4BCoUJoqDla/vrr72P9+gx8/PEOiMUmyGS+aGzUQqcTYOTISXj99b/CYDBArdZhwIAEFBYWQKnUICIiCH5+IuuDv0ajR0WFHAqFFvHx/aHR/IHQUAkkEhFGjOiHESP6OcwO0OkMl2dNEePChWr06hXZ4pTAcnkjqqrqMXZsAtLTh1mDO5asGbncMvTGHzfdNOxyYdRS1NTUo0ePIEilYoSFBcBovJLBYgl46PVGVFbWQ6czoqSkDsePm2uGiMXma7VMXWsJIBw7Vozi4lrExvaGj4/Aem8GBQUhKCjIacCsoqIGKpUO0dFhKCkpbnEGkujoGMhkIsjlSps6JuYhWebgjuUzPXbsPBoa1NBq9TAY4NJwI5VKD4lEjKionqiqqnQpI0UqPedWtlh7BWrb6u9XZxvG0V7acjimM10pi5CIiK5d03+PnRXJ9ERcXFyz6wMCAqBSqaBSKZvdrjmxsbFOZx8BgMBA88s6lUplty49/SasWrUSJ0+ewH33LcCECRNx/fXXY+jQoTZDU1pLbGysS9+rTCYTduzYgc2bNyEvLw8ajcbptnV1CqfrACAhofnyAElJiVi3zvzzuXPnGOjoCtwp0OeOtv7S2dWL7dkWIzVXUHb2kJqS0gfnzlXi1CkdqqrqoNEoWnzglEiCoNMJEBQUDrlc0eIDoUQShMDASOzceQL33Tehxfbv2HEcMlkQHnssHb/88huqqxswaFAMQkJk1sCLXN6IU6cuoLKyAY8/fhuWL1+NPXvy0dCgRlRUMObMucFumIh5utuzCAjwQ3BwiPUts6+vL+bOvR1z596O2tpaNDQ0ICAgwBoIsfD1lUGhUCEpaTAqKipw7lzV5SwOAfR6E0wmICQkHElJUaioqIFarbObmtVRdoBYLIRarYNUKsGePSehVitbnLI3NDQUEokUycm9IRAIEBTk73TojbmfeyMjIxuHDp3FnDmpl+uXmCtJW4bfmLM6fODrK8ShQ2cgFvuhZ88oZGUVW2uGREQEWVMfm9YM6dkzCgMGmO+zq+9NoVDo8P7IzMxDREQ4yspKEBIiaXFK3bKyEvj7++LOO8cgIyMb+/efvhwkEliDQUajebiOj48QjzySjpdfXo36eg2CgiTW4UaOarcYjYBOh8tDoCQuZ6S4G4Roj0BtW/796mzDONpLWw7HbKqrZhESEdG1azo0wzKcozVIJM1nSFgCFAaD/Qwjrp/DcVbqlXNc+a55tQULFqC6ugpbtmyBXC7HunVrsW7dWgBAfHw8xo0bj9mzZ9t9L/dUQEDLQ/W1Wi2WLVuGrKyDLh1Tq3UeBAHQYsCm6VCl+vrmgyadTbcNdDTlSqq1q9r6S2dHFNtr7bd3joqRCgRwOD4vMbEnDhy4gA0b9mDevNQWHzjXrNmD1NQJyMoqxIwZqS0+EG7YkIV58+7Gf//7NfbvL2h2illLPYz4+Bj06RONJ5+8E4cOncQff5yAXq+3ZmiIxSKkpQ3BnXcOhslkQo8ewcjMLMQdd4zEmDH24wsjIgIxc+b12LevAGvWZGHQoEEO3zKHhoY6/UPaNMDWs2dP9OzZEzqdDnq9HiKRCGKx2LptVlYhjEagsVGNwMCWU/AaG9XW2Vfmzk2xfkYPPfRvVFfXIzw8EF9++QRmzhyOffvy8csvx9C7d8zlB/WWsxVEIiFCQwNQXFxtzdAAhDbFUa9kaJxHaWktfHxEaGgQY/jwJAiFAqdFM2NjTcjJqcTQoUMvX7vtvekoo8N8bxoAABKJoMUhUEFB/mhs1ECl0sDXVwSBAAgNlSExsSeCg6VNCrCqkJ9/EQqF2lrQdt++Atx6ayrq6hpQW1sLjUZrHdIkkfgiNDQQwcEByM7OhVbrg9raBpcyUjzNFnMUqFWpNE0KBV/5suBJoLYt/351pWEcDz20ENXV1QgPD8eXX351Tcdqy+GYFq5m4ezZcwC1tbWtcl1ERNR59Ot35d/twsLTHdiS9iUSifD88y9g3rw7sHPnbzh8+AhOny6ATqdDUVERioqK8NNPa/Diiy9izJix13y+5jJPLL77bpU1yJGcnIzZs2/FwIEDL79olFiP8dxzz+L48eMwNf1C7YCj5y9vwUBHK2vrL53tVWyvrd7eNS1G2nRoiaO3/ZZaA1KpCMXFVSgqqmp2atOioks4f74as2f3xeHDl3D8+DkkJ/dz+kB4Jdh0Pfr0iberh2FxdT2M33//BYD5j9+oUckYNSoZjY0qqFQaSKUSyGRXHpwMBgNUKh3Gjx+C6OgQXLwotw7LsAxp8PEx1/OIjg7FpElDcfToJbffMjsKsInFYpsAh+Way8t1kEgkqKioh7+/pMXpWSsqzLU40tNHIiYmEsXFlTAajWhoUEOl0qKhQY1z58rh4+OD2NgeGDNmEE6fvgiTSYza2kYIhQI0NKgdFgs1GEwwGkUIDPRHZGQIsrLOWafsdZT1UlGhQGxsBORyAW677S788st/ERUlwq23ToBM5mcdetPYqHZ4n82f/yBWrfoKeXnFSEyMRHCwX5NAhBr5+VVQKMS4//6HsWzZYhgMzf/jYGEymSCXK/HTT5kYObK/9fe06e91fLwPUlL64Nix81i16g/IZFLk5BRDKhVBKhUjL+8CjEajNVgjFPogMTEGSqUW2dnFGD8+HZmZ+S5mpHg2RMHye3T4cCGEQoHTIUoGg8mjQG1b//3qiGEcnlCpVFAqla02tLCthmMC7mXhrFtXDZVK3emGTBIR0bWJj49HcHAw6urqcPz4cTQ2NkImk3V0s9pNnz598OCDC/Hgg+aMitzc4/jtt9+wbds2qFQqvPnmm/j6628QHt7yMPhrYTKZrAVahw0bhnfffc9pcKS+vt6lY7aUoSOXX1kfGNh6RVfbAwMdbaCtvnS2V7G9tqwBYilGGhsbh9LSEtTWNlwelgAIhQIYDOZhFuabVoxeveKgUjXi0Udn4LffcmyGKVxp05VhCg8/PBNbthzA/PkL7YJNls/bUbApIiLC5XoYjtLjZTKpTYDDQigUQq3WIC2tP6KiQnDwYAG+/34/AFgfHgUCAVJTByAtLQF+flLs21fk9ltmdwJss2fPwzffVKC4uBqhobJmp2fVaAwoLq6Gr68YaWkDodc3QiQSQiaTQigUXD63AGFhMjQ2aqHXAyNHJmD//lz07BmLwsICBAb6WmuGWKjVetTUNKC+Xov4+H4wmYCGBj3S0vpDKITTqVNjYyOQk1OK2NhIiEQim/tMqVRALPaBTmeEv3+w0/vMZDKhtlaJPXvy4eMD6zlMJgGEQgl8fIKhVJqDbDk552yCXs7k5BTBZDIXGm0ajBMKfeyK3CYn90Z+/kX4+YWgoUGJjRsPIzW1H2bNut5BgO0EsrLOQiiUYcaMmVi16qs2HaIgFAoxZ86dWL78NQwd2gPTpyc7Dfr99a/L3Pob1h5/v9prGEdn1FbDMd3Jwmk60xMREXkPgUCA9PSbsGbNj1Cr1di0aRPmzZvX0c3qEL6+vhg+fASGDx+Bvn374pNPPoFGo8GBA5mYPn2Gdbu2yJSor1egpqYGADBhwgSnQQ6VSoWSkhKXjllQkI/09HSn6/Pz860/x8fHu97YToCBjjbSFl8626PYXlvXAGk6jt5cQ8L80CwWC63FSHU6g/WhWa3WQiQSoHfvKJupTR0NU5g2LR5CoRBabQ4EAoHbwSZ36mG4mh5fWnoJQUEy6PUGfPPN74iKCsJ99423ztYCADU1DcjMLMQ33/yOKVOGISIixO3gFOB6gE2r1UImk+HSJRXkchXi4yMvFws1WYNNPj4ChIQEorz8Ei5ebEBAgAQ6XQNCQ/2sWTiWP+ACgQDBwYEIDjZn4cjljfDzE+Po0RNITIyGVOoLvV4HjUYPgUBgnU0lOjocQUFaFBScgUqlx3333YzVq7cjKkqGW29Nc5ChYQ5mzZ+fjhUrfrfJejEHx8z1XgwGLQD7TAzL7/bIkTFITja/yXc0deqxY2fx3/9+i5iYcFRUNNoUF3Xk2LFiVFQ0Ijg4AImJPV0arpOQ0BM5OVUICvLFjBkj0L9/JBoa1CgqumST9TJ9+nVISIjBxo25OHXq1DVni7U0DM1gMODXX3/AvfdOQnx8JOTyGps2+fiIcOutE5GcfAm//PJft+7/9vj71R7DOLqC1hyO6U4WjkQiQmNjq5yWiIg6mdtvvx3r12dArVbj669XIC0tDb17O/9+ZGE0GrFz505MmTKlHVrZvq6/frj157q6Opt1YvGV7zyW58Br1bRWSXNFYTdt2giDweDSMf/44w88/PAjDmuZqFQq7Nq1C4A5q6WtM1ZaGwMd7aC1vnS2R7G9tq4BIpVKIRb7Izf3FPr2Dbc+NDctRurvD+tD85EjJ+Dv72d9ILFMberoAfXKOa48HHkabHK1HkZL9u07hejoaKxdewgTJiTg+uvj7bax1OjIyTmHtWsPITQ00uOZIFwJsEmlUvj5BeKmmxKwdetB61CR0NAA6zCL2toG/PFHHioqGjF+/HVYs+Y3+Pn5uFSvQqXSQiIR48iRc0hNtQyjcVxwNjhYhOPHiyAQSKFUalwKZtXWNsDXNwAmkwlfffWpy5lHjn63fX1FEIl8bCLiycn9UFRUiaNHy/H883OwevX2FjOJbrttAoqKfkBwcAjkciWCgvwgFots3nAbjSbodHrU1akREhIChaIaU6cOQ2pqAvR6vdMpctPSQnHxogKbN2dg+PDhbgfw3BmGduUz6n+5Px0P+0pJCUJJSbVb9397FQtty2Ec3Y27WTiW+6il8cBERNT1REREYNGiJ/H+++9BrVbj+eefwyuvvNrs94Di4mL8+9//hlwu73KBDoVCgRMnTmDUqFFOszOysw9Zf46Otq0/GB5+ZXaSixcvok+fPtfcpuDgYAQEBKChoQE7d+7E3Lm3231Pys/Pw4oVK1w+Zk1NDT799BM89dTTdus+/fQTyOVyAMDMmbOupekdgoGOLqQ9iu05envnrBihpzVAwsNjcOzYSaSkXJlSylEx0qAgf+Tnl6LJlNBWUqnELsBxpb32D0cdVXC2thaQyxtx3XXRSEqKhUajc/oAPGhQL5SV1ePIkQqHD3fuFoVt7ppTU8fj6NEDLgUW1q07AI1Gh9DQlitBA0BoaADq6hQIDPSzyYZw1MfHjhVDodAhPDzUWn+ipWBWZmY+hg8f7XbmkeV3u+k0xQaDDj4+gsvZLGLrNMVjxgzCvn0nXA6+FBdXQCaTonfvPigrK4FOp4RM5uskU8kHERHREAqBceMSIRCYA0HOgkGAebt9+zZaM31cDeC5OwzN0f3vrA6Iu/d/exYLbathHN2NJ1k4AAMdRETe6pZbbkFVVRW+/noF5HI5XnjheYwYMQJjxoxB7959EBAgg0JRj7KyUhw4cABZWVkwGo3o169/RzfdbUqlEkuWvIro6GiMHTsOgwYloUePKAiFQtTU1CAzc7+1XkZERARGjRpls//gwUOsP//nP//G/Pn3IiwszPpdODo62u2XLj4+Ppg8eQrWrVuLs2fP4tlnn8Htt89DbGwsGhsbcfDgQWRkrINUKkV4eDhKS0tbPGZCQgIyMjJQXl6OmTNnIjKyBy5dqkRGRgYOHTIHcgYMGIBZsxjooDbWlsX2mr69MxgMOHGi6HIxQi38/HyhVmvh6ytBaupgDBkS73ENkKqqMuh0OpeGBKhURjQ2qjvVTArupMc/8MAjWLZsMW64oS/8/KTQ6/XQaHSXH2Zx+e29ACKRGL6+IowY0Rd79561tr+tisJagjUnThQ3G1g4duwsKiv10OmMUCiUNhkNztTWNkCl0mDhwhn44YffWsyGeOihGVixYifKytQ2wSNHwSxLbYW4OIFbmUc5OdnQahsREhKA8+eLAeistWF8fMzDaQwGDWprK1BbW4NeveIQERGC3btP4LbbxrQYfDl6tAgikTnzyDL9qzmQorIO+zAHUiIQGBiIiopayGQSu8/T2exDERFB8PcXQaFQ2GXnOPtdd3cY2j33PNDmNTQ6olhoawY5uxtPsnAA767gTkTdi07t/t/AruBarmvBggXo06cPPvvsU5SXlyM7OxvZ2dlOt4+Pj8cjjzzi8fk6Wnl5OX76aY3T9WFh4Xjttf+1+64RGxuLiRMnYteuXQ4/o2+/XYno6Gi32/PQQwtx4kQuzpw5g4KCArz11ps26wMDA7FkyVJ8/fUKlwIdCxc+hDVrfkRWVhaysrLs1sfF9cbf/vZ6l8yEZaCji2nLYnuWt3dKpRqrV29DRIQUt9wyCGFhAdaH8pqaBmRnn0NW1kncc0+622PoVSoV9HoVHnxwuktDAh56aAbee+8X7Nt3CrNnj2rmyGbtNZOCO/UwIiJC4OMjsHlzr9cbYTQa4OMjhEh0ZdiEUCiw1ugwmUzXVBS2uQwQZ8Eay8N702DNnDl34uuv/4nMzELMnDnc7jxX27+/EP7+Uvj5iV2uqyKVSjBt2p1Yv/5nl2orrFr1hVuzd6xZsxdSqS9KSs5Dr1cjMFCC0NAghwVY6+tVKCk5j/DwEFy8qHEp+FJTA4SE9LAG5Fqa/rWmph4SiRjuPA+KxSI4qj3ijLvD0I4cOdLmNTS6c7HQrsjdLByj0Tx2mIEOIurqxGIxgkND8PPLn3d0U9pMcGiI3ex8rho/fjxGjRqF3bv/wMGDWSgoyIdcLrfOKBYdHY2kpEGYMGECUlJSuuS/C1FRUfjnP/+JgwcP4sSJE6isrERtbS1UKhUCAgLQu3cfjB49CtOnz3A6A82LL76EhIQE7N69GyUlJVCpVNZ/Kz0lkwXgww8/wk8/rcGuXbtQVlYGoVCIyMhIjBw5ErfdNheRkZEuH08sFuGNN97Exo0bsG3bNpSUlECv16Nnz56YOHES5s2b57B+R1fAQEcX05bF9iQSCRoa1Pjuu61ISemJ5OQ4u2EWfn6hiIwMxNGjJfjuu63QaMRujaG3BFP8/f1cfgiOjY3EhQvqTvdw5Ep6vEajQUREGDQaE+rqlBAIALm83mHhT5MJ0GhMCA8PhUqlws8/f+92UVh3MkDcLV7qemHOhsu/N+aHe1fqqqhUWgQHB7vcHnczDwwGFcrLG6DRRKJnzxCHU+r6+ooQFRUMqVSFixflqKqS4+GHn8XPP3/v0r1WUFBgl63gbNhHfn4ZdDqT9fNoiVarh1ZrRFCQa9cMuD+V608/HYLR2LY1NFgstOtxJwtHo3EwzpCIqAvy9fXFdyu/g06n6+imtBmx2L3v8I72nzx5CiZPdq/2RnR0NLZt2+7StitXrnK67uabb8bNN9/sdP377//dpXPcf/8DuP/+B+yWCwQCJCYmITExyaXjOCISiXDnnXfhzjvvanY7V9tq4efnh3vvXYB7713QKscUCoWYNWs2Zs2a7VY7OjsGOrqgtiq2J5VKoVCo0b+/L667ro/DmSN8fASQSMS4/vo+KCqqxJkzGrfSwpumQrv6EKzR6HHXXQ/il1/+22kfjpylx0skEqhUWkRHx6CwsABBQb7o0SMIfn5XIuhqtQ5VVQooFFoMGJAAtTofhYWFbheFHThwoNsZIJ4VLzVn4TTVNAtnxowx+Oc/16G2tsGmDc7qqlw93MiV4JG7mQcymRSnTp2BwZDoMMjRVFCQFKWl1Sgrq0BYWJjL95o72QrmDJBonDlTjkGDelnXOavRceZMOQIDI93KnHI3GGQ0quHj49fmw8RYLLRrcef32mhkbQ4i8h6+vr6tMlMGEXUMBjq6qLYqtqdWqzBoUHyz02MCgFgsxKBBMThx4pRbx3eWCt3SQ3B4eHiXfDiyzDJz6lQB+vYNt061qlRqbWp0REWFIzBQi1OnCiAWy3Ds2EG33sb/8ssfyMrae03TArtbvHTAgFgkJflArzdi7doj1iycTZuyMXLkJGtx0ZY4G27UXPDI3boBjY0qGAw6FBSUY/DgXi1uX1BQDp1O61bxT3ezFfLz87B/fwZiY8OsvxeOarcolVrs338G6emuF4HydCrXpKRUZGbmtnkNje5eLPTpp5+xDivr7Nz5vX7hhb/AZEKXuC4iIiLybgx0eIHWKrZnrguhRmCgPxQKVbNvvhUKFQIC/GEyqd0uRuppQcKu+nB09SwzzU21euzYIQQHD0RVVbFbb+PLy8uQkhLfZtMCu1O8tKJCj/vvn4Vvvvm8TYYbeTJ7h8lkzqSprnZl+M15VFc3IiIiwK3in4B72QrDhiVj796d2LkzFyNG9EFERBCk0ivBCbVah4qKahw6VAy1OhDDhiW7+Al5PpXrsGHJ+P77I+06TKw7Fgu9ujJ7Z8csHCIiIupqGOggq7q6Ovj5CREX1wNlZVVQqbQIDZU5LNio0RjQu3cPSCRCKBR1bj2otEZBwq70cORolpnmplqtry+DTObe23ilsh5paQNd2taTaYHdKV56770L4evr26a1GNwNlg0bNgJ795bhnnvGYfXqPTh/vvpyEdzAJm2qvzz8RoH588fj73/fCHeKf1q4E5Dz8REiP/8iNBoDEhOjEBzsb63dUlenRH5+BYqKqhEUFOfgTM55OpVrQEAAa2iQQ1010ExERETdEwMdZEOr1UMo9EFcXA/U1ytRXl7nsHBmjx7+EAgAnU4PwL1Kyt2pIKEns8x8+eUOKBTunEMDkUiAyMgQl7b3dFpgd9/qtuVbYHeDZTfemIrffvsFIpEQDz54I06cOI+1a7Oh1eqbtEmM1NT+mDZtBAwGo9vFPx1pLiCXm5uLXr2kmDbtbpw4UYSsrJNQq9WQSMTQaHTw8/NDaupg3H57OjZtynY7C8fTzCm+vaeWdKVAMxEREXVPDHSQVXBwMJRKPaqqFIiICEJQkD+CgvxhMBhhNJqDHELhlalQq6oUUCr1CAoKauaojnWXhylPZpmRyaRQKo0uv42/eLEaMpnUrc/K3WlBLZq+1T1+/Lg1WDJsmON6Im31FtjdYJlUKkVgYKS1+GdycjySk+OhUmmbDL+5kkVTUHDBreKfnrDMiuJKUV5PsnCuJXOKb+/bVkFBAfR6PUQiERISEjq6Oa3GW6+LiIjIm6SkXOfyzDddGQMdZCWVShEaGoU9e/IxZ06qdblQ6ANHz9B79uQjNDTa44ef7vAw5cksMyqVFqmpNyIz84hLb+OPHi2CSOTnVrvcnRbUkTfffANVVVWIiIjA6tXft7h9a78FdjdYlp4+01r8MyjI/3KbfG0CHACgUCjdLv7pLmezojgryutJFk5rZU7x7X3rW7p0iVv3TlfhrddFREREXQ8DHWTjlltmY+3ar9GvX1QLBRuLceRICW691X7eaU9468OUp7PMjBgxAl99dciNqUp7tPm0oJ2RO8GyYcOSkZm5G5mZZ5GS0guhoQEO6s804MiRUuj1oW4V/3SXp7OiuJuF010yp4iIiIiImmKgg2ykpKTgwIF+2LLleLP1JE6duojo6P5updJ3V57USnD3bXxBQYFH9Ri8SUvBMqFQiPvvfxirVn0FufwsEhMjERzsB6HQBwaDEXV1auTnV0GhEOP++x9u04d/T2dF8SQLpztkThERERERNcVAB9kQCoV44IFHsHLllygrq8N//3sQPj6wvgU2mQQQCiUICemN++77E98Eu8DTWgnuvI1vjZlsugN/f3889NCfkZubi6ys3VCrFU2KfwYjNfVGDB3a9hkOns6Kcq3BCW/NnCIiIiIiaoqBDrLj7++PP/3pcevDoFKpgFothF4vhL9/MFJTx7XLw6C3uJZaCa6+je9OM9lcq86S4eDprChERERERNQ8BjrIoc7yMOgtWqNWQktv41mPwX0dmeHgrVk4KpUKGo0GEomEfy+IiIiIqEMw0EEtYrp762iP4BEDVF2HN2XhGAwG5Obm4uDB3dDpGuHv7wulUgtfXxlSU8czA4yIiIiI2hUDHUQdoD2CRwxQdX7ekIWjVCrx3XcrEBUlwpw5wxwEaw4gK2sv5s9/EP7+/h3YUiIiIiLqLhjoICLqQF05C8dgMOC771YgNTXa4fCbiIhgzJyZhmPHzuK771Zg4cLHOnXQhoiIiIi8g09HN4CIiMykUimCg4O7RJADAHJzcxEVJWq2xggAJCf3Q1SUCLm5ue3UMiIiIiLqzpjRQUQe+eKLL2EymSAQCDq6KdRBsrJ2Y86cYS5tO2pUItau3YOUlJQ2blXn5633jrdeFxEREXU9DHQQkUdYb6F7Mw+zaUR4eHDLG8M8jEWrbYBKpeoyGSttxVvvHW+9LiIiIup6OHSFiIjcptFo4O/v69Y+UqkvtFptG7WIiIiIiMiMgQ4iInKbRCKBUule0MI8m4x7wREiIiIiIndx6AoReWTNmjVQKhvh7y/DvHnzOro51M6kUil8fWWoqqqzmVLWmaqqOvj6BnT7YSuA99473npdRERE1PUw0EFEHvnppzWoqqpCREQEH2q6qdTU8cjMPICZM9Na3DYzMx+pqePaoVWdn7feO956XUTUefn4mJPTTSZTB7eEiK6V5T623NfXikNXiIjII0OHDkVFhR7Hjp1tdrtjx86iokKPoUOHtlPLiIioO7AUQa6tre3glhDRtbLcxzKZrFWOx0AHERF5RCgUYv78B5GVVY716w+iqqrOZn1VVR3Wrz+IrKxy3HvvQgiFwg5qKREReaPQ0FDExPREVtbBjm4KEV2jrKyDiI2NQUhISKscj0NXiIjIY/7+/li48DHk5uZi7drd0GobIZX6Xi48GoDU1HGYPn0ogxxERNTqBAIBxo0bhzVr1mDPnj0YN45DJIm6ot27d+Po0aO44447IBAIWuWYDHQQEdE1EQqFSElJQUpKClQqFbRa8+wqLDxKRERtbfz4CSgvr8B3332HrKyDGDJkKPr06Q0/P2mrPTARUesymUxQq1UoLj6PEydycfp0ISZOnIhx48a32jkY6CAiolYjlUoZ4CAionYjFApx9913o3///jh0KAubNm2ERuPe9OdE1DEkEl8kJCRg4cKFSE1NbdVjM9BBRERERERdWmpqKlJTU6HT6SCXy6FWqzkbC1EnJRAI4Ofnh5CQEIjF4jY5BwMdRERERETkFcRiMSIjIzu6GUTUwTjrChERERERERF5DWZ0EJFHBgwYiMjISAQHh3R0U4i6FG+9d7z1uoiIiKjrEZg4eI2IiIiIiIiIvASHrhARERERERGR12Cgg4iIiIiIiIi8BgMdREREREREROQ1WIyUiDzy6quvoq5OjuDgEPztb3/r6OYQdRneeu9463URERFR18NABxF5pLDwNKqqqhAREdHRTSHqUrz13vHW6yIiIqKuh0NXiIiIiIiIiMhrMNBBRERERERERF6DgQ4iIiIiIiIi8hoMdBARERERERGR12Cgg4iIiIiIiIi8BgMdREREREREROQ1GOggIiIiIiIiIq/BQAcREREREREReQ2ByWQydcSJn376aTQ01Lu0bW1tLUJDQ9u4RdTR2M/ej33cPbCfvR/7uHtgP3u/ztTHAQGB+Oijjzq6GUTkJTos0OGOwYMH4+TJkx3dDGpj7Gfvxz7uHtjP3o993D2wn70f+5iIvBWHrhARERERERGR12Cgg4iIiIiIiIi8BgMdREREREREROQ1GOggIiIiIiIiIq/BQAcREREREREReQ0GOoiIiIiIiIjIazDQQUREREREREReg4EOIiIiIiIiIvIaXSLQsWjRoo5uArUD9rP3Yx93D+xn78c+7h7Yz96PfUxE3kpgMplMHd0IIiIiIiIiIqLW0CUyOoiIiIiIiIiIXMFABxERERERERF5DQY6iIiIiIiIiMhrMNBBRERERERERF6DgQ4iIiIiIiIi8hoMdBARERERERGR12Cgg4iIiIiIiIi8BgMdREREREREROQ1RG114JKSEmRnH0JBwWmcPl2A8+fPw2g04sEHH8S99y5wuE96+lSXjr148WKkp99kt7ygoADff/89jh8/hsbGRoSHh2PkyJG4994FCA0NvabrIcc86WcAUCjq8OOPPyIzMxPl5eXQ6/UICQnBoEGDMWfOHCQnJzvdl/3cvjzvYwV+/PEH7N27DxUV5fD19UXfvn0xbdp0pKenN3tO9nH70uv1OHbsGA4dysLRo0dRVlYGtVqNoKAgJCYmYebMGRg5cpTT/XNysrFmzU/Iz8+DWq1GVFQUxo0bj3vuuQdSqdTpfmVlZVi1ahUOH85BXV0dgoODcf31w3HffQvQs2dMW1xqt+ZpP1dWVuLgwYM4fboAp0+fRlFREXQ6HW65ZRqef/75Fs/L+7n9eNLHRqMRp06dQlZWFo4cOYzz589DqVRCJpNhwIABuOmmmzF58mQIBAKn52Uftx9P7+ODBw9i9+7dOHPmDKqrq1BfXw+RSISePWOQlpaGefPmITg42Ol52cdE1NUITCaTqS0O/O9//xu//PKz3fLmHo6WL1/u9HiXLlXiyJEjEAgE+PbblYiKirJZ/8cff+DNN9+AwWBAYmIioqOjUVBQgIsXLyI0NBQffPAhYmNjr+2iyI4n/XzhwgU899yzqK6uRlBQEJKSkiCR+KG4uAjnz58HADz22J8xb948u33Zz+3Pkz6+ePEC/vKXv6CiogJBQUEYNGgQNBot8vJOQa1WIz39JvzlL39x+MWZfdz+cnKy8de//hUAEBYWhoEDB8LPzw/FxcUoKioCAMyYMQNPP/2MXZ/99NMafPLJJxAIBBg6dBhCQ0OQm5uLmpoaxMXF4YMPPnT45Tk3NxcvvfQi1Go14uPjER8fj6KiIhQVFcHPzw/vvLMcgwcPbvNr70487eeff/4J//nPf+yO50qgg/dz+/Kkj8vKyvDggw8AAAIDA5GQkIDAwEBcvHgR+fn5AIBRo0ZhyZKlEIvFdudkH7cvT+/jt99+Czt27EBMTCyio6MQHBwMhUKB/Px8NDQ0ICQkBO+++x7i4+Ptzsk+JqIuydRGNmzYYPr0009MO3ZsNxUXF5vefvst09SpU0wrV37r0fE++uhD09SpU0yLFy+2W3fp0iXTzJkzTFOnTjGtX59hXa7X601vvWU+76JFT5iMRqPH10OOedLPr776imnq1Cmml1/+fyalUmmzbv36DNPUqVNMN998k6mystJmHfu5Y3jSx08+ucg0deoU0/PPP2dSKBTW5aWlpab777/PNHXqFNOGDevt9mMfd4ycnBzTa68tMx07dsxu3c6dv5luuindNHXqFNPWrVts1p0+XWBKT59quummdNOBAwesy1Uqlekvf3nBNHXqFNNrry2zO6ZKpTLdddedpqlTp5g+//xzm3Wff/65aerUKaZ77rnbpFarW+kKyWTyvJ/37t1j+uc//2HavHmz6cyZM6Yvv/zCNHXqFNN7773X7Pl4P7c/T/q4rKzM9MILL5gOHjxg0uv1NvscOXLE2offfPON3THZx+3P87/Xp03V1dV2+yiVStP//u9rpqlTp5j+53+etFvPPiairqrNanRMnz4djz76GCZPnoLevXtDIPD8VFqtFjt37gQATJt2i936X375GWq1GsOHD8eMGTOty4VCIZ5++mnIZDLk5+fj0KFDHreBHPOkn48cOQIAuO++++zS2mfMmInY2FgYDAbrmyQL9nPHcLePT548iby8PPj4+OC5555HYGCgdV1sbCwee+zPAICVK1fCdFVCGfu4Y1x//fVYsmQphg0bZrdu0qQbcdNNNwMAtm3bZrNu9erVMJlMuPnmm5GWlmZd7ufnh+effwE+Pj7YvXu3NVPLYuvWLaiurkavXr2wcOFCm3ULFy5Er169cOnSJbvz0bXxtJ/HjBmLRYuexM0334x+/fpBKBS6dD7ez+3Pkz6OiYnBu+++i9TUNLu+TUlJwd133w0A2L7d/n5kH7c/T+/jAQMGICwszG4fqVRq/Xf51KlTaGxstFnPPiairqpLFCPdvXs3GhoaEBgYiDFjxtqt37NnLwDgxhsn262TSqUYPXo0AGDv3j1t21Byia+vr0vbXZ3uzn7uGiwBqujoaMTE2NdZGD58OADg0qVLyMvLs1nHPu6cBgwYAMDcZxY6nQ4HDx4EAEyePMVun6ioKAwZMgSAfX/t3Wvu50mTboSPj+0/Qz4+Ppg4cRIAYM+e3a1zAeQSR/18LXg/dz6e9HFz+7CPOx9P+tgS4PLx8YFIZFu+j31MRF1Vlwh0bN68GQAwZcpUu4dkpVKJCxfKAACJiQkO909ISAQAFBYWtmEryVWpqakAgG+//RZqtdpm3caNG1BWVoa+ffvajM9nP3cdKpUKABAUFORwvZ+fHyQSCQDg9OkC63L2cedVVmbul6ZvA0tLS633b0KCs/4yL7+6vyz/39J+Z86cuYZWk7sc9bOneD93Tp70sbN92Medk7t9rNVq8eWXXwIwv4iw/PsMsI+JqGtrs1lXWkt5eTmOHj0CAJg2bZrd+oqKcuvPPXr0cHiMyMhI67Go4z366GMoLj6PAwcO4N5752PQoEGQSCQoLi5GSUkJRo4ciWeffc4mhZb93HWEhIQAcN4PNTU10Gg0dtuwjzunmpoabN26BQAwfvx463JLHwQEBMDf39/hvo76S6lUQqFQAHDezz16mPeTy+VQqVTNztxCrcNZP3uK93Pn40kfq9Vq/PLLLwCAceNs92Efdz6u9PHp06cv96kJcnkdCgryUVdXh8TERDz//As227KPiagr6/SBji1btsBkMiEhIQH9+vWzW69Uqqw/+/k5/jJs+ZKsVCrbppHkltDQULz//vv46KOPsGPHdhw4cMC6LjIyEtddd731YdmC/dx1XHfddRAIBJDL5di7dy/GjrUdbrZ+fYb156Z9xT7ufAwGA95++y00Njaib9++NuOzVSpzH/j5+Tnd31F/Nf3Z2b5N+1+pVDLQ0caa62dP8X7uXDzt448//hjl5eUIDw/H/Pn32KxjH3curvZxZWUltm3barNs+PDheOaZZxAREWGznH1MRF1Zpw50GI1Ga2T6llvsi5BS13T+/Hm8+uqrqKuT46mnnsKoUaPh7++PwsJCfPbZp/j000+QlZWFN9980+Wid9R5xMTEYMqUKdi+fTvef/89qFQqpKWlQqPRYseOHVi9ejVEIhH0er3D6WWp8/jwww9x+PBhBAUFOZ1akro+9rP386SPV65ciW3btsLX1xevvPIqgoLsp4mmzsPVPh47diy2bdsOg8GAqqoq5OTk4JtvvsYjjzyCxYv/igkTJrRzy4mI2kanrtGRk5ODyspKSCQSTJ5sXwQJAPz9r0SY1WqVw20sNQOcpVdT+zEYDPjf/30NFy6U4dlnn8OsWbMRGRkJmUyGlJQUvP32OwgLC0NOTrZNxXD2c9fy1FNPY+zYsaivr8c777yN22+/HfPn34MvvvgcY8eOxciRIwEAgYFX6niwjzuXf/3rX9i8eRMCAwPxzjvvoFevXjbrpVJzH1xdZ6cpR/3V9Gdn+zbtf/Z122qpnz3F+7nz8KSP16xZg6+/XgGxWIxly5Zh6NChdtuwjzsPT/pYKBQiKioK06ZNwwcffAiBQID33nsXNTU11m3Yx0TUlXXqQMeWLeYipOPGjYdMFuBwmx49oqw/V1ZWOtzGUnk6KirK4XpqP6dOnUJxcTHEYjHGjRtntz4wMNBarPTw4RzrcvZz1yKVSrFs2Wv46KOPsWDBfZg+fTruuusuvPvue3jllVdRW1sLAOjbt691H/Zx5/HJJ5/g119/QUBAAN56620MGDDQbpvoaHMfNDQ0OE1ZvtJf0dZl/v7+1imHnfVzZaV5v+DgYA5baUOu9LOneD93Dp708a+//oJPP/0EYrEYS5cuRWpqmsPt2MedQ2vcx9HR0UhJSYFKpUJ2drZ1OfuYiLqyThvoUCgU1ikIp01zPmxFJpMhJiYWAJCfX+Bwm4IC83SXAwe23pc48ozlH0o/Pz+nw1JkMhkAoL6+3mYZ+7nrGTx4MB544AE8++xzePjhR3DddddBqVTizJkzEAqFuO6666zbso87h//7v8/w009rIJPJ8PbbbyMxMdHhdr16xVlrbBQUOOsv8/KBAwfYLLf0X0v7WaZJpNbnaj97ivdzx/Okj9euXYt//etfEIvFWLJkKUaOHOV0W/Zxx2vN+9jy91wul1uXsY+JqCvrtIGO337bAZ1Oh5iYGCQnpzS77bhx5mKHO3f+ZrdOpVIhMzMTADB2rH0GAbUvS6Gr+vp6lJaWOtwmLy8PgPkNQ1PsZ++wbt06aDQaTJgwAaGhoTbr2Mcd6/PP/w8//PADZDIZ3nnnHSQmJjndViwWIy3N/Kb3t9922K2vqKjAiRMnANj3l6VA7e+/74TRaLRZZzQasWvX7wDsZ3mg1uFOP18L3s8dx5M+zsjIwD//+Q9rkGPUKOdBDgv2ccdpzftYq9UiNzcXAOyGvbCPiair6rSBjs2bzcNWbr75lhYLFt5221z4+fkhJycHGzdusC43GAz4+OOP0NDQgMTERNxwww1t2mZq2eDBg63Bjr///e82bw6MRiO+/341Tp48CQC48Ubbuizs567jwoULNn0LACaTCZs3b8LXX69AYGAgHnvsz3b7sY87zldffYn//ve/CAgIcPlL89133wOBQIAtW7YgK+ugdblarcb7778Ho9GI8ePHo3fv3jb73XTTzQgPD0dpaSlWrFhhs27FihUoLS1FZGQk0tPTW+Xa6ApP+tlTvJ87hid9vHHjBvzjHx+7FeQA2Mcdxd0+rq2tRUbGOjQ2Ntqtq6qqwjvvvI3q6mpER0djxIgRNuvZx0TUVQlMJpOpLQ58+vRpfPzxR9b/v3jxIurq6hAZGYnw8HDr8mXLXrP5fwAoLDyNxx9/HD4+Pli16ju76a4c2bVrF9588w0YjUYkJSUhOjoa+fn5uHjxIkJDQ/HBBx8iNja29S6QAHjWz4cPH8aSJa9CrVbD398fSUmD4O8vxdmzZ3HhwgUAwD33zMdDDz1kdz72c/vzpI9//vknfPbZZxg4cCAiI3sAMKGgoAAVFRUICQnBm2++5TTNlX3c/vbt24elS5cAABISEtCnT7zD7YKDg/HYY4/ZLPvppzX45JNPIBAIkJycjJCQEBw/nouammrExcXhgw8+RHCw/WwNubm5eOmlF6FWqxEfH4/4+L4oKjqHoqIi+Pn54Z13lmPw4MGtfq3dmaf9XF1djWXLllr/v6qqClVVVQgJCbHJvHvqqaft7mvez+3Lkz4uLCzEE088DpPJhLi43khKcv7QvHjxYrtl7OP25Ukfl5eX4777FkAsFqN///6IioqCyWTCpUuXUFhYCJ1Oh/DwcLzxxpvo37+/3bHYx0TUFbXZ9LJKZaN1CEJTly5dshYuAgCdTme3jSWb44YbbnApyAEAEydORM+ePbF69XfIzc3FmTNnEBYWhtmzb8WCBQvsUuSpdXjSz9dffz0+++wzrFnzEw4fPowTJ3JhMBgQHByMsWPHYdasWXZvFCzYz+3Pkz4eMmQIxo8fj7y8PBQVFQEAevbsiXvvXYB58+YhIMBxcWGAfdwRmtbDKSgocFo7Iyoqyi7Qcfvt89C3b1+sWbMGeXl5UKvV6NGjB+6++x7cc889TivxDx06FJ988ilWrVqJnJwc7NmzG8HBwUhPT8eCBfchJiam9S6QAHjezzqdzuHfALlcbpO5pVTavy3m/dy+POnjxsYGWN55lZScR0nJeafHdxToYB+3L0/6OCQkBI899mccP34MRUVFOH/+PDQaDQICApCUNAijR4/C9OkzrDXSrsY+JqKuqM0yOoiIiIiIiIiI2lunrdFBREREREREROQuBjqIiIiIiIiIyGsw0EFEREREREREXoOBDiIiIiIiIiLyGgx0EBEREREREZHXYKCDiIiIiIiIiLwGAx1ERERERERE5DUY6CAiIiIiIiIir8FABxERERERERF5DQY6iIiIiIiIiMhrMNBBRERERERERF6DgQ4iIiIiIiIi8hoMdBARERERERGR12Cgg4iIiIiIiIi8BgMdREREREREROQ1RB3dACKipiorK/Ddd98hJycHVVVV0Ol0AIBly17D3r17sW3bVkRFRWHlylV2+y5YcC8qKiqQnn4TFi9e3N5N90rffPM1vv32WwDAtm3bO7g1ncvzzz+HY8eOITk5Ge+///eObg4RERERXcZABxF1GpWVFXjiiSdQV1fX0U0hIiIiIqIuioEOIuo0Vq1ahbq6OgiFQixc+BCGDRsGqVQKAIiKisLevXs7uIXk7ZjBQkRERNT1MdBBRJ1GTk4OAGDMmLG466673N7f0XAWIiIiIiLqXliMlIg6jerqagBAr169OrglRERERETUVTHQQUSdhqXwqEgk7OCWEBERERFRV8WhK0TUobZs2YL33nvXZtm3335rrZMAwOVZVJqbdeXo0SN44YUXAADvvfcehg1LxubNm7BlyxaUlJRAp9MhJiYGkyZNwu23z4Ovr6/Dcyxfvtxm5peqqiqsWfMjMjMzUVVVBT8/PyQmJmLOnDlITU1rsc2NjQ1Yt24dMjMPoKysFI2NjQgKCkJCQgLS02/C+PHjIRAIHO6bnj4VAHDffffh/vsfwOHDh5GRkYG8vFOoqalBREREuw3n0Wq12LhxI/bu3Yvi4iLU19cjICAAffv2xY03TsZNN90EodBxAOvqfispKcGPP/6AnJwc1NTUQCaTYciQIbjzzrswePDgZtthMBiwbt067NixHSUlJRAIBIiJicWUKZMxe/atqK6uxn33LQAAvPDCX3DzzTcDcPx7aPl8m/r225WIjo52eG7L78L+/ftRVVUFiUSChIQEzJ17O9LSWv5dcMfVv8/JySnYvHkztmzZjPPnz8NgMCAuLg633joH6enp1v10Oh02b96MrVu3oKysDHq9Hn379sPcubdh4sRJDs9VXl5u95nt3r0b69evx9mzZ6BWqxETE4Np06Zh5sxZEInMXy1MJhN27vwNGzZswPnz56FSqRAXF4fp02dg5syZTn+viYiIiK4VAx1E1O3odHq88srLyMrKsll+9uxZnD17Fjt27MDy5e8iLCys2ePk5+fjlVdehlwuty7TaDQ4ePAgDh48iNtvn4c///nPTvfPycnBG2+8DoVCYbO8pqYGmZmZyMzMRFpaGl555VVrUVZnvvzyS6xe/V2z27SVM2fOYOnSJaioqLBZLpfLcfjwYRw+fBgbNqzH3/72OkJDQ5s91p49e/DOO29DrVbbHGfv3r3Yv38/XnrpJUyadKPDfRsbG/HSSy/i1KlTNstPny7A6dMF+P333/H00894dpEtyM3NxbJlS21mDNJqtcjOzkZ2djYeffRR3HHHnW1ybr3egCVLliAzc7/N8vz8fCxf/g4KCgqwaNEi1NfXY+nSpTh+/JjNdidPnsDJkydQVnYB8+fPb/F8H3/8ETIyMmyWnT17Fv/6179w9OhRvPLKqzAYDHj77bexe/cfNtsVFhbi448/QmHhaTz77HMeXjERERFR8xjoIKIONXbsWCQkJAAAHn30EQDArFmzMGvWbOs2gYGBrXrOFSu+Qn5+PkaMGIFZs2YjMjISly5dwrp165CTk43i4mK8+uor+PjjfzjNQtBoNHj99b+hsbERd999N9LSRkIsFiMv7xRWr/4eNTXV+OmnNejRowfmzp1rt39ubi5efvn/Qa/XIzQ0FLfeOgf9+/dHeHg4qqur8fvvv2PHju04ePAgli9/B0uXLnN6PXv27MG5c+fQt29fzJ17O/r2jYdGo8WZM2da6yNzqqysDM8//xwaGxvh7++P2bNvRVJSEiIjI6FQKLB//35s2LAe+fn5WLLkVXzwwYfWN/5XKyo6h127fkdYWBjmzbsDCQkJMJlMyM4+hO+//x5arRYffPABrrvueoSEhNjt/8Ybb1iDHEOGDMGcOXMQExOLujo5duzYgR07duCjjz50eG7L72FGxjrrQ/xnn/2f3XYRERF2y2pqarBs2VIIBAL86U8PY+jQoRCLRcjNzcXKlSvR0NCAL774AqmpaYiPj3ftg3XDihVfIS8vD1OmTMGNN05GWFgYSktL8e2336CkpAS//voLRo8ehV9//RUnT57ArFmzMHbsOAQFBeHMmUKsWLEC1dXV+PrrFRgzZkyzbVy/PgN5eXlIS0vDtGnTERUVhUuXKrF69Wrk5eVhz5492LJlC86dO4vdu//A5MmTMXnyZISFhaOsrBTffPMtSkrOY+PGjRg3bpxLWU9ERERE7mKgg4g6VEBAAAICAmyWhYSEoG/fvm12zvz8fMyYMQPPPPOsdVlCQgLGjh2L999/H5s3b0JBQQE2bFiP2bNvdXgMuVwOkUiEd95ZjuTkZOvypKQkjBs3Hk899T+4dOkSvvrqS0yePNnmwVyv1+Odd96GXq9HamoqlixZCj8/P+v6gQMHYtSoUUhOHoYPPvgAe/bsQXZ2NkaMGOGwLefOncP111+P119/w2bITdN2tZXly5ejsbERAwYMwNtvv4Pg4GCb9TfccANGjRqJV155BXl5edi6dQumT5/h8FinT5/GwIEJePfddyGTyazLBw8ejJiYWLz99ltQKpXYsWM7br99ns2++/btRVbWQQDAuHHj8OqrS+Djc6UMVWpqGvr3H4DPPvvU4bktv4dN+8nV38HS0lJERUXhww8/sgmEJCYmITExEc899xwMBgM2bNiARYsWuXRMd+Tl5eHxx5+wCagNHDgQKSkpWLjwQSiVSrz11luoq6vD0qXLMHbsWJvtEhIS8fjjf4bRaGyxjXl5eZg7dy4ef/wJm2MMHz4CDz/8J1RUVOCLLz5HfX29wzYlJ19pU0ZGBgMdRERE1CZYjJSIup3Q0FD8+c+PO1z3xBNPWB92r07Pv9qMGTMcBhMiIiLw2GOPAQDUajW2bdtqs37nzp0oLy+Hr68vFi/+q02Qo6np02cgKSkJALB16xan7fDx8cFzzz3vtK5IWzl+/DhOnjwBAFi8eLFdkMMiNTUN48ePBwBs2bLV4TYWL7zwgk2Qw2Ly5MkIDw+/fN5cu/Xr168HAEgkEjz99DM2QQ6LefPmYeDAgc2e31OLFj3pMNtj6NBh1j7MzT3eJudOSkpymDUUFhZmDWrI5XJMnDjRJshh0a9fPwwZMtSlNkZGRuKRRx61W+7n54f09JsAAAqFwqU25eba9yMRERFRa2Cgg4i6nYkTJzoNLkilUkyYMBEAUFRUhJqaGqfHufnmW5yuGzt2nDVTJScnx2bd/v3mWgrJyckOh2A0NWzYMADAyZMnnW4zZMgQpwUy29L+/fsAAHFxcejbt1+z2w4bZg4IFRTkw2AwONymb9++6NfP8XEEAgEGDBgAALh48aLNOoPBgGPHzHUnbrgh1elnKhAIMHWqfYHRaxUQEICRI0c6XT9woHlo1tXtbi033ui4ZgkA9OvX3/qzs9omANC/v/lzb6mN48aNdzr0qGnfTZo0qcU21dfXo6GhodnzEREREXmCQ1eIqNtJSEhsdn1SUiLWrTP/fO7cOYdFScVisdOHcgAQiUQYMGAAjhw5gnPnztmsO326AABw6NAhhzN7OFJbW+t0XUtBhrZSUGC+jpKSEpevQ6/XQ6FQOCxKGhcX1+y+llotKpXSZvmFCxeg0WgAoMWMDUs9mNYUGxvrMIPE4kq7Va1+bvP5ezldFxBwJTumVy/n28lk5qBcS23s1Su2mXNdGYLmapuUSqXd0DUiIiKia8WMDiLqdlrKoggJufIQXl+vcLhNYGCg00KlVx+nvr7eZnnTWVpcZXmQd9yWjnlQ9OQ6AOfXIpE4zrKxEAjM/2QZjUab5U0/35AQx8NnLIKDQ1xooXskEkmz6318zNOoXt3u1uLn5/z8ls8MaL6drraxuT6yHMOdNrXVZ0JERETdGzM6iKjbEQgELW/U8lE83tMydCM1NQ2PPPLINbekuWyCtmR5SO3Xrz9efPFFl/dzVMuCiIiIiKi1MNBBRN1Oc8NAAEAuv7I+MDDI4Tb19QoYDIZmszosx7l6etygoCBUV1dDr9e16ewybc3y2ajVqg69jqafr1xe1+y2dXXyNm4NEREREXU0Dl0hom6noCC/2fX5+VfWx8fHO9xGp9Ph7NmzTo9hMBhw5swZh8ewFNUsKCiATqdzocWdU9PioM0VbW1rMTEx1hlnTp8+3ey2lroizrROtg8RERERdSQGOoio2/njjz+c1olQqVTYtWsXAKBPnz7WKU0d2brV+VSpe/bssdaOGD58uM260aNHAwAaGxuxZYvzaWM7O8t1mEwm/PLLzx3WDqFQaJ2d5tChLKe1Q0wmE7Zv397sscTiK1P0arXaVmsjEREREbUfBjqIqNupqanBp59+4nDdp59+Yn1QnjlzVrPHWb8+A7m5xx0e/7PPPgUA+Pn5IT39Jpv16ek3ITIyEgDw2WefWqdGdSY39ziOHj3a7DYd4YYbbkBSUhIA4IcffsCuXb83u/25c2etU+u2thkzZgIwFzr96KMPHRa5XLNmTYsZH+HhV2bYaavpYImIiIiobbFGBxF1OwkJCcjIyEB5eTlmzpyJyMgeuHSpEhkZGTh06BAA87CMWbOcBzpCQkIgkUjw17/+FXPn3o6RI9MgFouRl5eP1au/Q3V1NQDggQcetJtK1dfXF6+88ipeeOF5qFQq/OUvL+DGG2/EmDFjER0dDZPJiOrqGpw+fRp79+7BuXPnsGjRk0hJSWm7D8VDL730//Dkk4tQX1+P119/Hdu378CkSZOsU67K5XIUFhYiM3M/Tp06hXnz7rBmgrSm8ePHY8SIEcjOzsaePXvw3HPP4rbbbkNMTCzkcjl27NiBHTu2IykpCXl5eQAcD1MZPHiI9ef//OffmD//XoSFhVm3jY6ObnG2HSIiIiLqWAx0EFG3s3DhQ1iz5kdkZWUhKyvLbn1cXG/87W+vN/tAK5FI8OqrS/Dyy/8P33+/Gt9/v9pumzlzbsO8efMc7j948GC89977eP31v+HSpUuXH8R3OD2fTObvwpW1v5iYGHz88T/w2mvLUFRUhMzM/cjMdJ614e/fdtfxyiuv4qWXXkReXh5OnDiBEydO2KwfMGAA/ud/nsKiRU8AAHx9xXbHiI2NxcSJE7Fr1y5kZ2cjOzvbZv23365EdHR0m10DEREREV07BjqIqNsRi0V44403sXHjBmzbtg0lJSXQ6/Xo2bMnJk6chHnz5kEikbR4nMTERPz73//Bjz/+iIMHD6Cqqgp+fn5ITEzEnDm3IS0trdn9Bw8ejBUrvsbWrVuRmbkfhYWFUCgUEAgECA4ORu/evZGcnILx48cjLi6utS6/1fXq1QuffPIpdu3ahT17diM/Px91dXUwGo0IDAxCXFwvDB06FGPHjsPAgQPbrB0BAQH44IMPsW7dWmzfvgOlpSUQCATo2bMnJk2ahLlzb8f58+et28tkMofHefHFl5CQkIDdu3ejpKQEKpXK4VAYIiIiIuqcBCaTydTRjSAiamtHjx7BCy+8AAB47733kJJynUfHWb58ObZt24qoqCisXLmqFVtI7WH79u145523AQBff/0NYmJiOrhFRERERNTaWIyUiIi6jZ07fwNgrrHSs2fPDm4NEREREbUFBjqIiMgrVFVVOZ02GAA2btyIgwcPAgCmTk13WIyUiIiIiLo+1uggIiKvkJ2djc8//z9MmjQJyckpiIqKgslkxIULF7Fr1+/Yu3cvACA0NBT33HN3B7eWiIiIiNoKAx1ERF5KpVKhvLzco33j4uIgEnW9fyLkcjl+/fVX/Prrrw7Xh4WF4403XkdQUHD7NuwqpaWl0Ol0bu8XEhJiN10xEREREdnqet9iiYjIJQUF+dYCrO7qitOojho1Ck899TSysw+huLgYdXV1UCqVCAgIQO/evTFq1CjMnDmrTae4ddWLL/4VFRUVbu9333334f77H2iDFhERERF5DwY6iKhbSEm5Dtu2bb/m4yxevBiLFy9uhRZRawsODsasWbMwa9asjm4KEREREXUgTi9LRERERERERF6Ds64QERERERERkddgoIOIiIiIiIiIvAYDHURERERERETkNRjoICIiIiIiIiKvwUAHEREREREREXkNBjqIiIiIiIiIyGsw0EFEREREREREXoOBDiIiIiIiIiLyGgx0EBEREREREZHXYKCDiIiIiIiIiLwGAx1ERERERERE5DUY6CAiIiIiIiIir8FABxERERERERF5DQY6iIiIiIiIiMhrMNBBRERERERERF6DgQ4iIiIiIiIi8hoMdBARERERERGR12Cgg4iIiIiIiIi8xv8HOw46sO4Q6FQAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 175, "width": 541 } }, "output_type": "display_data" } ], "source": [ "viz_cmodel.ctree_feature_space(features=['flipper_length_mm'], show={'splits','legend'}, figsize=(5,1.5))" ] }, { "cell_type": "markdown", "metadata": { "id": "Ij_ypRl27cti" }, "source": [ "(The vertical axis is not meaningful in this single-feature case. To increase visibility, that vertical axis just separates the dots representing different target classes into different elevations with some noise added.)\n", "\n", "The first split at 206 (tested at the root) separates the training data into an overlapping region of Adelie/Gentoo Penguins and a fairly region of Chinstrap Penguins. The subsequent split at 210.5 further isolates a region of pure Chinstrap (above 210.5 flipper length). The decision tree also splits at 189, but the resulting regions are still impure. The tree relies on splitting by other variables to separate the \"confused\" clumps of `Adelie`/`Gentoo` Penguins. Because we have passed in a single feature name, no splits are shown for other features.\n", "\n", "Let's look at another feature that has more splits, `bill_length_mm`. There are four nodes in the decision tree that test that feature and so we get a feature space split into five regions. Notice how the model can split off a pure region of `Adelie` by testing for `bill_length_mm` less than 40:" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:47.928801Z", "iopub.status.busy": "2024-08-24T11:23:47.928560Z", "iopub.status.idle": "2024-08-24T11:23:48.090864Z", "shell.execute_reply": "2024-08-24T11:23:48.090225Z" }, "id": "Jl0qjk_UKuJ6" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAAFeCAYAAABzUu+bAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AADwpklEQVR4nOzddXzb95348ZcYbJkhYAqTY4epSZNSyk3Xdlu3Mm3duu3ag8EN7m7b3W+32269Ybt2bdaUVmZYUghzHHDigJM4tkMm2ZbF+kq/PxQpki3ZsmM7hvfz8dhjjSV9QfoaPu/vG1SBQCCAEEIIIYQQQgghxACmvtgHIIQQQgghhBBCCNEVCWAIIYQQQgghhBBiwJMAhhBCCCGEEEIIIQY8CWAIIYQQQgghhBBiwJMAhhBCCCGEEEIIIQY8CWAIIYQQQgghhBBiwJMAhhBCCCGEEEIIIQY8CWAIIYQQQgghhBBiwJMAhhBCCCGEEEIIIQY8CWAIIYQQQgghhBBiwJMAhhBCCCGEEEIIIQY8CWAIIYQQQgghhBBiwJMAhhBCCCGEEEIIIQY8CWAIIYQQQgghhBBiwJMAhhBCCCGEEEIIIQY8CWAIIYQQQgghhBBiwJMAhhBCCCGEEEIIIQY8CWAIIYQQQgghhBBiwNNe7AMQQgxer732Gg6HHbM5idtuu23Y7b+/DbfzHQrkMxNCCCGE6D0SwBBC9Njrr79GQ0MDWVlZF2VxdrH339+G2/kOBfKZCSGEEEL0HikhEUIIIYQQQgghxIAnAQwhhBBCCCGEEEIMeBLAEEIIIYQQQgghxIAnAQwhhBBCCCGEEEIMeBLAEEIIIYQQQgghxIAnAQwhhBBCCCGEEEIMeBLAEEIIIYQQQgghxIAnAQwhhBBCCCGEEEIMeNqLfQBCiMFr/vz5tLbaSEmxDMv997fhdr5DgXxmQgghhBC9RxUIBAIX+yCEEEIIIYQQQgghOiMlJEIIIYQQQgghhBjwpIRECCGEEEIIMWAFAgGsVisOhwO/33+xD0cIEYdarcZsNpOeno5KpeqTfUgAQwghhBBCCDHgKIrC+vXr2LBhA6dOnb7YhyOESNCoUSNZvHgxS5Zcikaj6dVtSw8MIUSPffOb38RqbSI9PYM//vGPw27//W24ne9QIJ+ZEEL03Msvv8yGDespLS1l7tx5fXpXVwhx4ULZUtu3b2PPnj0sWXIpX/7yl3t1H5KBIYToMau1iYaGhmG7//423M53KJDPTAghemb79m2sW7eOO+64g0suueRiH44QIkGFhYXMmDGDDRs28OKLLzJ27Fjmzp3ba9uXJp5CCCGEEEKIAWX79h1MmDBeghdCDFKLFy9mwoTx7NixvVe3KwEMIYQQQgghxIDh9Xo5fPgQxcXFF/tQhBAXYNq0Yg4fPozX6+21bUoAQwghhBBCCDFgWK1WPB4vBQUFF/tQhBAXoLCwALfbQ3Nzc69tUwIYQgghhBBCiAHD7XYDYDSaLvKRCCEuROh72OVy9do2JYAhhBBCCCGEGDBCQxJl4ogQg1voe7g3B59KAEMIIYQQQgghhBADngQwhBBCCCGEEEIIMeBJAEMIIYQQQgghhBADnvZiH4AQYvB66KGHcLncGI2GYbn//jbczncokM9MCCGEEKL3SABDCNFjl19+xbDef38bbuc7FMhnJoQQQgjRe6SERAghhBBCCCGEEAOeBDCEEEIIIYQQQggx4EkJiRCix2pqalAUBY1GQ35+/rDbf38bbuc7FMhnJoQQQgjReySAIYTose9+919oaGggKyuLl156edjtv78Nt/MdCuQzE0IIIYToPRLAEEIIIYQQIgFOpxO3243BYMBkMl3swxFCiGFHAhhCCCGEEELEoSgK5eXlrN20jlZXG3qjAY/LTYopmaULL6W4uBiNRnOxD1MIIYYFCWAIIYQQQggRg8Ph4NlVK/FZ1BQtmYIlIzX8mK2phc/3bmbDlo3cd9e9mM3mi3ikQggxPMgUEiGEEEIIIdpRFIVnV60keUIW05fNjgpeAFgyUpm+bDZJE7J4dtVKFEW5SEcqhBDDhwQwhBBCCCGEaKe8vByfRU3+5DGdPq9g8hh8FjXl5eX9dGRCCDF8SQBDCCGE6GN+vx+n03mxD0MI0Q1rN6+jqHRCQs8tKhnPui3r+/iIhBBCSA8MIYQQopeFmv61tbUBYHc4+PUTj0vTPyEGCafTSauzDUt6SkLPt2Sk0uKw4XQ6ZTqJEP3kzjvv4OzZs1FfW716zUU6GtFfJIAhhBBC9KLIpn8agw5cLvQmPYu+fKU0/RNikHC73eiNhm69RmfU4/F4JIAhhBB9SEpIhBBCiF7SvumfWq2KenwoNf1zOp00NzdLaYwYkgyG4KjU7vC6POj1+j46IiGEECAZGEKIC/D73/8Bv9+PWn1xYqEXe//9bbid72DUvunfvf/+CH5/oEMgo2DyGPadaaK8vJzS0tKLcag9EiqNWbtpHa2uNvTG4CKvs9IYp9OJ2+3GYDDInWkxaJhMJlJMydiaWjpMH4nF1tRCqtki17gQ/ejqq6/BZrNd7MMQ/UwCGEKIHsvMzBzW++9vw+18B6O1m9dRtGRq+N/JafHr54tKxrNu4/pBE8CILI0pWjIlalHXvjTGYDB0O9AhxECzdOGlfL53M9OXze7yuVV7K1m2YEk/HJUQIuSuu+662IcgLgIJYAghhBjQBssd/L5u+tdf70Os/USWxsQaKRkqjak+eJw/P/MUGq0Wf4qmy0CH9AARA1lxcTEbtmyk5uDxTkepVh88jtbmp7i4uB+PTgghhicJYAghhBhw2tra2LNnD1vLtuPwOgfFHfy+aPrXk5KNnuhqP4qiRJXGxJM3oYBtH62neMksps3uuJiLDHQ8u2olDz/49QH3OQoRotFouO+ue3l21Ur2nWmiqGR8h4Bc1d5KtDY/9999n1zLos+cPn2KDz74kL1793Lq1EnsdjsqlYrU1FRSUlIYPXo048ePZ/r0EqZOnRouNT1z5gx33XVn1LZKSkr49a//lzNnzvD666+xbdt2GhrqMRqNTJgwgZtuuolFiy7p8picTicff/wxO3fu5OjRynApR1paGpMnT2HZsmUsWrQIlUrVxZaCGX5r1qxm165dHD16lJaWFnw+H+np6WRnZ1NSUsr8+fOZNm1a1Ou6O4WkN47Zbrfz0Ucfsn37dqqrq2ltbUVRFCwWC6mpqWRn5zBu3DiKi6dRUlI6oG+8DFYSwBBC9Nj777+H0+nCZDJy/fU3DLv997ehcL6dZRGEFtGfrP2EispDpBflMmpyASPTRpGZkYnFYqHN2hp1B1+lUg2Y7IxYTf/KPtuG1+1GZzAw87J5HV7TWdO/7pRsXEgmQyL7ObS9nMvuvK7LbdUcOUH2xNEYspI7fd5g7QEihh+z2czDD349GODbsI5WZxs6ox6vy0Oq2cKyBUsGZEBVDB0fffQh//d//4fP5+vwWH19PfX19Rw9epR169YB8OKLL5Gdnd3pNjdt2sgvfvGLqCbMHo+HnTt3snPnTq655loee+yxuD23PvvsM373u9/G7D9x5swZzpw5w+eff8aUKVP48Y9/0unxfPTRRzzxxJ+w2+0dHqurq6Ouro79+/fz6aef8PzzL3R6Xp3pjWM+fPgwP/zhv9Lc3NzhMavVitVqpaqqiu3btwHwve99nyuvvLLHxyxikwCGEKLHnn/+eRoaGsjKyrooC+re2P9gKU+Ai/9+91QiWQRut5tnV63EkwRnHI0UXzefkRPzAfB5fDTYrDRZm8jPy2fakhns/GQr//Kj7zIibzQG08DIzojV9G/j259gs7ZiSU/pEMDorOlfd0o2LiSTIZH9TF0yg1bFzu5127nstqtRd7KfI7srmLCsBI/DjaIonR7TYOsBIoYvjUZDaWkppaWlOJ1OPJ5g4HGg/84Qg19tbW3c4EVP1dTU8POf/xyv1xv3OR999CFpaak88MCDHR57443X+dOf/pTQvioqKvjOd77N73//h5h9vFaufJYXXuh5UCJRvXHMiqLw85//LGbwQvQvCWAIIYadvkjLH0yBkAuV6LmGxmy+8sarkK6Pe3d/3eYNKD4f6VNH4ieAzecIBy8AtHotKZmpONscHDt6lOqySgzpSUy6bg4FefmkpKREbe9i9lforaZ/7aeZtOdxe/C5PYwYM5pDF5DJ0NV+APx+P7nj8jij1FBz5ASFk8fGPSany4Vao0HxKbicLlT+AFqDHr2hY5ZJqAeI1WpFpVINi+8dMfiZTCa5TkW/Wbv28w7Bi9GjRzN16jRMJhMOh52TJ09y/PhxXC5XQtu0Wq0AZGVlMWfOHBRFYdu2bbS0tEQ975VXXuHyyy9nzJjzP/MPHjzIk08+2WGbRUVFTJw4CUXxsWfPHhoaGsKPNTQ08Mtf/jf//d+/jHrN5s2bYwYv1Go1paWljB49Gp/Px9Gjx6isPJLQucXSW8dcUXGA06dPR20jNTWVGTNmkJqahsfj5uzZsxw/flyCHH1MAhhCiGHF4XDw1Mqn8SWrGXPJJNKy0sOPdXcB3F/9CQaCRM818nktzjYarA341QEs7hRSRqSTlJocvoMfyiKo2FFOxYZd3LJiPp+++hETlpXEPAaDycjOjRsomjGRvClF+Dw+Gq1N4QCGOTWZyZeUcPJI9UXrr9BbTf/aTzMB8CsKNUdOcHh3BV6vF51Rh9flRRWAN4+d6dH1Fms/oeBIKPCgVqsJ+P3kTx/LkXX7OgQwQsdVsX0vrU3N7HhvA7aGZrZ6FSwZqRhMJgwGPRNmTCF/QiFqjYZAIIDNZuNsUz2P//m3JKVYhuz3jhBC9FRdXV3UvydPnszjj/9fh5+PPp+PiooK1q1bi06n63K7JSUl/Od//hdGoxGA1tZW/umf/pGqqqrwc/x+P2+99RaPPfaP4a8999xz+P3+qG098si3uPnmm8P/drvd/Pu//xs7duwIf23Xrl3s3buXkpLzv9+feeYvHY4rLy+Pn/70Z+Tn50d9vba2lg8+eL/L84qlt465/WdhMBj4y1+eITW145jlqqoqNm7cINPj+ogEMIQQw4KiKOzZs4enVz3DyNljyR07mvrWRqxtzeH+Ct1Jy++v/gQDQaLn+uVbv8TfXn8l/LyAVkWDzUpKZip2q42afceo3HOQxTddgcF0vtmlMSuJ7Il5HN9ficfrJSnNEvM4zhytJXVEBhlFuUAwM8Pr89Lc3Iy12YrPr6BSqwkYA9TYz/L222+xYsXN/boQbt/0z+8PRD2eSNO/WNNM3E43G975BEN6EhOXlpCUfv49slttHPhsF79/8g88dO+DCV9vkfuJFxzR63RMmDEFtU6FIcmEx+PB4/aEMyoij2vCslJym1sxpSZhTDbhdbo5WX4ce6ONogWTqTlcQ+Wegyy8fhl1jXX4tSq0Rh0Lv3RleHu9/b0znDKjhBBDj8kU/TPQ5XLhcDiwWKJ/T2q1WqZPn8706dMT2u63vvXtcPACICUlhQcffIgf/eiHUc/bvn17+L/tdju7du2Menzy5MlRgQAILuzvvPOuqGAAwPr168LBgOrq6qhgCQQzL/7t3/69Q/ACgoGNr33t6wmdW6TePOb2n4Xf76epqTFmAKOoqIiioqJuH69IjAQwhBB9ZqAsHkIL8LP2RrKn5TFp0flf8O37K2g0mi4bDPZXf4KBIOFzrTjGv/3nfzDn+ksonDoOgONVxzFnBv/ISkq3MPnSUk4frmbDO5+EeykoioLPr1A0cwIHVu9EZ4p/56im/CiTls4gEPATCAQI+AO4XC4a25pJyrCg1Z//laZeNI01b67ldP3Zfg8iRTb9W/PyewB4nG42/W1NQk3/2k8z8SsKG975hJwp+VGlNSFJ6RYmLJqOpk3p1vUW2k9XwZGafcdoq2tmzKKp6Aw6fB4veoM+6rhGTMij8XQ9SenJGFPMaNQa9AY9ExeXcOZwDYc27WPuiks5e7SWv//tPWbesAiNP4DJbI4qL+nseyfRnyfDKTNKCDG0zZw5k9dffy3876qqKr785S9RWFhIXl4++fl5FBYWMm1aMVlZWQltMzs7mzFjOv4+nzVrVjiTMqS+vp7W1hZSUlI5cuRI1GMQLM+46qrEmlQeOHAg6nXtTZtW3OuL/t485mnTpqHXByeHAXi9Xr7+9a8zevRoCgoKyMvLIz8/n8mTp1BYWJjQ9BXRMxLAEEL0qoG2eIhcgJ/cXceEWdEjuCL7K9TU1lBYEPyl01mDwUT6BsDQmLSQ6Lmmjc7CUpQJ6uAv7FBgQquL/jUzcmIBLWes4V4Kfr8flVpNUroFn1/B7/DH2jxetwefV8GclozX7SXgD9B0tgFjahIpmakd/lBIzUnHnGHBUJh6UYJIoaZ/yUnJuJwuksxJ/NPDjyYUyGs/zaTmyAkM6UkxgxchAb+fgiljOdCwO+HrzWAw4Gyzs+6t1eROK2DUxIIOz4kMPFV8Vobf60Or13U4LntrG6hV6E1G/D4/WoOWAEAgQO7EfFrrrJw5WkvO2FGcrT5Dy9kmWs9YmVA6Oeaxhb539uzZg0ajSfjnyXDKjBJCDH3z58/nkksuYePGjeGveb1eKisrqaysjHru5MmTufPOO5k/f0Gn24w3EUSn05GamkZTU2PU11taWklJSaWlpblnJ3FOqPdG+/8OKSiI/zuup3rzmFNSUrj//vt54oknwl8LBALU1tZSW1sb9brc3FxuueWWfs8CHS5iz8YRQogecDgcPPH0k3y+fzOFS6aw6MtXMmfFEhZ9+UoKF0/h8/2beeLpJ3E4HP12TKEFeO6Y0Z2WJ5iSzfi1qvB4rVCDwcgRYyFrN6+jqHRCQvsvKhnPui3re34CF1noXBVFwev1driTEdLY1Mi4BVM5sid4VyUUmIglf/rY8PNC/RUAjGYjWo0Gu7XjiDOfx4fOGMrOCOByOFFp1RiTTHHvcugMOkaMGY3Poqa8vLw7p93r1Gp1wllIkdNMIDjZI78kduNMCL43Wo0WjUaT0PUWKqd6auXTVB6qJGDSkJqXicPhCDaLC3R8zciJBaSNzMR+tpVDm/dha2rhcNkBsseNpP5kHdb6JnxeH7bGZmz1zdiaWvE43Xg9XjwuNznj86gqO4zb7aFwxngOb9qH22onf0Jh3OMcNTGfp1c9k/DPk8hg5fRls6OCF3A+uyNpQhbPrloZ91oWQoiB5Cc/+Tf+4R8eZdy4cZ0+7+DBg/z4xz9m7drP++fAuinW31MDXftjvvXW2/jFL/6b2bNno9XGzwM4e/Ysf/rTn/jDH/7Q14c4LEkGhhCiVwzUsopQk0Kf2xOxAI7NbEmKagqpMwZTBSMXnrH6E3QmMhAy2Grw7XY7pxvOktSSi89aF+wv4fejVWvCfUNUKlU42yJ9RFa4R4JGqwkHJtpLSrdE9VLQqjX4PD68bi+TSqdQs+8Yky+NziDQ6rV4XV4CgQAqlRpHqw1Dqhl9J83KvG4vWr1uUI7rDE0zmbRweqeBNwCHzU5WegbQ9fXWPkPh6NkT5E4Yjc6gJxAI4PF58Xi9mIzGDoGhrKIRaOo9LBw/i7+/v5qT1dWMnjcBY7IJQ4oJvclAwB9A8flw2RzYm22k5KSj1qjR5ujwer00nqwnKTUJj8PFgq8siTuS1a8o7F6/g5GzxzJ1yYwOPyti/TwZTplRQojhQ61Wc8MNN3DDDTfQ3NzMsWNHqa2t5eTJkxw4cCCqHCMQCLBy5UqWLl0Wd3v19fUxv+71emNmLKSmBv/eSUtL6/BYYWEhs2Z1PXULwBBRLhhrW9XVNQltpzt685hDZs+ezezZs3E6nRw7doyamhpOnTpFZWUlZWW7oqbGvP/+e3z1q19NuLxHJEYCGEKIXjEQFw+RwQaP24PXFX/mOQQXyT7Fh6IoaDQavC4Pen30L6/2/QkSESsQMtA5HA6e/MufsftcmNr1l2jfNyQy2yKyR0IoMBH52pDI52VmZFJdW4Ner2fMtPFUVRzl9OGaqJIJnUGPVqfB1tBCSkYqPp8Xs0aDVhP715jdakOvD07R0Bv0gy6IFJpmcmJ/ZaeBN2ebA7UvENXQLd711j7I6HF70Bn1GExGXHYXxiQjWp0WRVFwulyYjSZQnd+PXqfnTFMdH3z2EbW1tSRnp5GUbkGn1eL1+QgEAqACjV5LcmYqbruT1jorKTlpqFChMxnQ6ILfV1mjc+Jm6MD58pTcsaPx+/1xg52RP09iTVSJp7Og1kDp3SOEEO2lpaUxa9bsqAX4L37x//jkk0/C/66traWtrY3k5OSY26ivr+f48eMd+mCUlZV1yEzLzs4mJSWYzTZ+/HjUanXURA9FUfjGN76RUL+HyG1PntyxfHD//nJOnDhBYWH8zLzu6s1jbs9kMjFt2jSmTTtfmvzBBx/wm9/8b/jffr+fQ4cOSQCjl0kJiRCix/Ly8s41ksq7KGUVkfuPJTLYoDfo0et0McsTIqnO/aKzNbWQarZ0WMC070+QiFiBkJ7o6nx7S2ihmzoxB73J0CEAEeoboknSU1Nbg0p1vgwklPUAkJmRicNmj7mPyOdZLBZO760iLT0NtUbD4puuoK6ihoPr9kR9Xrnj8qjeXYmjuQ0CKkxGY3iB3V7NvmNR/RVCi/r+1tPPLDTNxHWiheYzTfg8vqjHfR4frY0tKHYP+Xn5UX+Ixbve2gcZfW4POpOejNwsPG1O2ppaUby+YLBABT7FF9xPQzPNZ5vQGHUk56aRO62Q0aVjg0ElvRav4sPn8+Fze/F5gv/zuj2otRo0Wg0+pzc4OtWnkJyWjN5swN7cFv78YwmVzQT8ftSdBDog+PPk0w2f9TgzCs6X1fz2T7/j1088zp9feoZfP/E4v33id+zZs+eCyk2cTifNzc2DMn1aCHFxbdq0kWeeeYZjx47FfNzv99PS0tLh615v5zdsfv/73+FyucL/ttlsPP30Ux2eN3fu3PB/JyUlM3PmzKjHa2trefzx38T9+VZfX88777zNN7/5DcrL94W/XlhY2KFhp9/v59///d+oqemYiXH27NmYx9eV3jzmurqz/OpX/8Pu3bujsiwixert4fX2/98eQ51kYAgheux//udXQPAP9F8/8Xi/l1WE9h9P+2DDhBmxyxMihRZMVXsrWbZgSYfHI/sTtK+xjyVeIKQnujrf3hJa6I4pmcjRA0ewW21RkylCTMlmWt1eHA47WrWGljprOOsBgoGJJmsTzjYHpuTzDRMjsyMAag5VkWvMQONUs+/znRSVjOey266m5sgJjqzdi9PpxOf14bO7wRvAk5eHPj1+74vTh6uD/RWuOH8Xp7eCSN11IZ+Z2WzmWw8/ws9/+Z80Vp1Bn2w8X8aj0ZKVnhEu4wnp7Hprn6GgNejxuryoNWoyR2bjsjuxN9rwB/zBAIbbh8WchM/jJS0nA5PFTEAJUHWgkslXzqT80x04WtrQmQyo1Go0ei1qzflgQ8Dvx5BkpOWslSSPF61Oh86gx+Nqo63ZFv78PW4PPrcH7blsGY/bg8frxWA24XcrXZaaWTJSsdpaMFm615QzFNQKBAK93vhzoDUzFkIMTs3NLbz00ou89NKLpKWlUVQ0hpycHEwmIw6Hk4qKAx0aSCYnJ8cc7Rlp79693H//fcyePQdFUdi+fRvNzc1Rz1Gr1axYcXPU1+6++x7KysqiMho++OAD1q5dy/TpJWRmZhII+LFarZw4cYJTp07FPYb77ruff/u3n0R9rba2loceepCSkhLy8vLwen1UV5/g4MGDZGdn8+CDD3V6XrH01jF7vT4+/vhjPv74Y4xGI2PGjGHUqFGYzUn4fF5OnKimouJAh9f19U2n4UgCGEKICzZQyyraBxvyJxRSuedgh/KEkFAzxJNHqtHa/BQXF8fcbqg/wfRlXddQxguEDGSRC92ugj6hviGZGZls+Xg9k0qnhB9TqVTk5+VTU1tDq9uL2ZKEVq8NZ0fYmlqo2luJ1ubn6/c9hF6vDy76Nqyj1dmGzqjHrDKQnZbG/JlzKS2dgUql4tlVKzl68Bje2RPIGJWF7txCODTy0221s2TFFeH+Cr0ZROpvGo2Gm69bwef7NzN22hT85wJs8Ra/8a63WL1bIrOSktItmJLNwWa2fj8Bf4CWs02kp6XTZA8GB+xWG1qtBp9PISnNQt60sVTtOsykS0tRawlmwwQIZ8Wo1Gr0ZiMarYZD6/ZQMG0ser2ew/urMBgNHN17iGMHKvF6veiMOrwuL3qdjvyJRegM2qjeHl0xJhnxOLufGaXVajvt3WNIMjFu1iTOVJ1KuHePTEIRQvSF5uZmdu8u6/J5119/faeZa9nZ2bS1tVFfX89HH30Y93m33XYbY8dGN5CeOnUqX/va16ImcUCwZ9aWLZu7PLZIixYt4vbbv8LLL78U9XVFUSgrK6OsrOtzTURvHnOIy+WioqKCioqKTp83ZcoUxo9PLDtZJE4CGEKIC3Yxyyq6EhlsCJUnbHjnE1rONJE/fWxUZkFD7VnaqhpJVUzcf/d9cRcqof4ENQePd9rzo/rg8U4DIQNR+4VuV0GfUN+Qxpo6bFWNMC16hIVGo6GwoBCbzUZjUyOnjtZQu+coqkY3bcn1LFuwJOpudGlpKaWlpTidTjye4DUSCjyE7mr7FB/eFie7P9pCQPETUPwYTEbSszOZOHMK+VcURjWHHIxBpEih6+3UkeoeX2/xgoyxAlRqtRrUoNZoaLQ2kZQVvBZq9h2jaNJYThytAiBtRCZHdx6k/thpsseNggAECHTIjGk6WY/1VAP508ZSf+wUbWes+AIK1VXVTFxaEvU9aLfaqCo7zJmqU4ybOy2qt0dn/D4/KcbuZ0ZVVlZ26N3jVxRqjpzg8O6KqOCKvcnG22+/1elYvL5sZiy9OYQYfhLp0xDp8ssv5+677+n0OSNHjuSOO+7kZz/7KW1tbTGfc9VVy3nggQdjPnbrrbeRmZnJ7373O1pbWxM6rjFjxpCZ2bEPxAMPPMDIkSN48sm+nVDXG8fc3c9i3Lhx/OhHP+7Wa0RiJIAhhLhgF7Osoivtgw0GkyGqPMHj9aIz6GiztuJv8/LgnfdTUlLS6aIi1J/g2VUr2XemiaKS8R3usoYyCzoLhAxE7Re6XQV97FYbR7cdYKQ+k5/+6N95+bW/sa+uOeo9UalUqHwB2qqaSLHp+On3/o3U1NSYn3/kIi0yBTbqrvalUylOX8CJ6hOoTcFmoCf3V+FpdjCicHRU8GIwBpHa643rLV6QsbMAlf9c3wetThsuyylYPI/K/UeAYGPPGdcvoHzNTppPN5BfMg5jShL4A6BS4WyxU7vvGFU7DzF7xWL2r95J7qgRTFkyk7K/b2b09DEYktr1mEkykV86ntNHauL2T2kv9PPk0gVLup0Z1b6sxu10s+GdTzCkJ3UIrrTUWdm2aS+nnz4bN3uit5sZSymKEMPbNddcw9ixY9m9ezeHDh2ipqaaxsZGHA4HKpUKk8nEiBEjmTx5MpdffnnCv+tmzZrFn//8FK+88grbtm2joaEeg8HAhAkTuemmm7jkkks6ff2yZZexYMFCPv30U3bs2MGRI4dpbW3F5XJhNBrJzMyioCCfadOmMWfOHMaMiT8K/Lrrrmfp0mWsXr2aXbt2cvToUVpbW1EUhbS0NLKzcygpKWH+/Pndeu96+5hHjRrFc889x86du6ioqKCq6jj19fW0tbWhKApGo5GsrCzGjRvHJZcsZvHixfLzuY+oAoFAjInvQgjRtf/3//6LlpYWUlNTue666/l8f2KLh32f72TZtIUXPIUkcv8/+MG/xn1e1OK33eKv6XQ9x/ccQe9U8bX7H+pWUCW8uNh8vuTB6/KEF1O9vbhI9HwvRKifyaIvXxn19dBd6SO7K8JBH6/bi16vx9Nk59+/9xOSk5N79J50tUibMmUKTz37dIe72oqiUFNbg1+rwmxJor7qFHUVtVx229XYW9qiFvUX6451b35mF3q9/faJ31G4eEqHIGPkoj0UoPJ5fNgbW3HY7LScaQqX5eiNBta8/D7jLi3G6XCSNjITv+Ln1METnDlcg+LzBXtrOD2otWoy8nOoqzxJ8RVzqFi9k8UrruBsUz1n9lUx79olNDY14vMrUb09MtMzsJ6s51D5QRZcvSQ81jie0M+T4uJinnj6ybjZDyHVB49jP9LAPXfczeNP/S58rfsVhc9e+5icKfkxs40ArKca0LlUOI82xcye+O0Tv6NwydSE+gHZmlqo3niQb3/9WzEf7+znVmTQSkpRxFBUXV3NL37xC77//e9TUFBwsQ9n0Dpz5gx33XVn1NdKSkr49a//N84rhOhdffG9LBkYQoge27t3Lw0NDWRlZfHd736v38sqIvffGbPZzMMPfr1Df4XQ4m/5gmU9CjZoNJpOSx56W6LneyHiZdOoNRoKJ4+lcPLYYNNFT3CKiNvupHrjwfC4tu6+J4n0C3jr3bexFGUypd111b48xZhsxhvw8dGf36Awr6BDecrF0Juf2YVeb/F6t8TKSnI7XZjVBpoaG1m04vKospwJM6ZwYs9RsicFG5OpNWpGTi4gd0Iefp9CwB9Ao9OiNeg4vG4vE+ZOJWtUDsnpKTQ2NtJ44iwTSqeQkpJCSkoKiqJ06O2RnJRExfZ9VOwqZ/6yRXHPKfLnicfj4ZabvsArb75KcwKZKu2zjUKjW+MFLyDY12P0hHwO1jV3yJ6I1WekM501M+7LUhQhhBBiMJMAhhCiVwz0soq+DjaYTKYhU5feVZNSveH8BJFDm/fF7S/R1XuS6CLt7cN/IzO7gECgY38FlUoVtRDOTE6nZuOhuHe14xls/QV6cr111rslMkB1bO9hWg/X8fUHvsZfVj1DRk5mVFlO/oRCDpcdoP7YKVJz04Hg95fP60Ot06DTBcejnjlcg8NqY9qlwRF2HpeHuprT+Gwu8iecnxCj0Wg6/DxQazRc9sVreeP/VmH0axk7Y1LMnyfqFh8L5szjD3/+Yzh7x+104mv00HyiDrVBh950PljZPqgVWVZzZHcFE5aVdPoehqYUFZWMZ93G9VEBjN5sZtzbpShCCCHEUCEBDCFEr+kq02Eg3BGHoRVs6Av91aQ0kUWax+1BZzJgzEjGZrN1Wk6g0WjIyMnkoMeR0Ije4dZfoDtBxm889DAmkylmMEut0XDpzVfxyuMr8bo8FMwcT1KaJdj8UwnQ2tzM6YoTOKxtzLpuEWqNmpY6K/YmG21nm/nCt78aFRCJFDlS1WAyMHbSeOaPncmODTs7/DxZMGMu28p2sOnIrpjZO1V7K8Hq4ctf+FLMniuR2UaGJBMer5ektPhNQ0NTijQaTczsid5sZty+N0dnYgVThBBCiKFKAhhCiF7V32UVoveFU/HfSCwVv6eL/EQWaT63B51RFx7X2lU/BEhsRO9QHHWZSBZJd4OM8YJZBpOBxSuu4MDOfRxeuwePy4NGq0WrUqNSqcnIy2bUhALszW0E/H6ObzvIZXMu4XDN0Q5ZCvGmfuh1OjxWByUlJSxatCjq54ler+eJp58kZWJ2lyUWr7/9Bg8/+PWY70coQDNu1iR0Rl2n72/7sa7tr7Peambcm6UoQgghxFAjAQwhRJ+RTIfBI1Y2gtvtxn+imV1HT6M169GbjVEL3fHjx+N2B+84d/dzTnSRpjXo8bq84XGtiqJ0GTDpakTvUOov0JMsku4EGTvL2iicNIZDO8pJy88ha0Q2udm5GEzGcHlRqLfFySPV5CflctutX+QPT/0xaoHf1dSPo5v289cXngsHkkLHuGfPnl4psQgFaM5WncLr8sbdjrPNgdoXiBrrGus666r8KlK88b69WYoihBBCDDUSwBBCiGGuq2yEqr2V0BxMxU9OTubo0aOs3bSOdz/9oMdlF4ku0vQGPXqdDrvVhkqtxu/3d7r9REb0DpX+Ar2RRZJIkLGzrI2RyVnYjrXi8OkhMyccvABwtJsEo9Foohb4fkVhwzufxJ36odKoWXDdpTSfauwQSOqtEovIAI29yUZLnZXUnPTw4z6PD4fNjtoXID8vP9yDJd511hvlV71ZiiKEGN5GjBjB6tVrLvZhCNGrJIAhhBDDWKxshMipEJHZCC+/9jc0Wi3+FM0Fl110Z5E2YcYUavYdI3f86GCfhU7Eu6sdaSj0F+jvLJLOsjbCWSDdLEnxE4g79SMy4yFlckpUIKm3SyxCAZq3336LbZv2Mmbe5KixrlnpGVgslqgGsvGus95oZtxbpShCCCHEUCQBDCGEGMZC2Qh5k4pobW2lsakRn185v4BTa8jMyGT0+Hy2fbSe4iWzmDa7413j7i6Yu7NIy59QSMW2vej0OiaMHR/3eYk0FR0q/QUuZhZJ+6yNnpaklB87yOxbooMA8TIeIgNJfVFiodFoWLHiZk4/fRa9S8WoCflRY10jdXWd9UYz494oRRFCCCGGIglgCCHEMLZ28zryF03iRPUJ/FoV5gwLWv35Xw0+j48Gm5WDZeVkTRyNISs55nZCWRujJxRwIMEFc6KLNLVGQ+7IEdhPNLPv850X1FR0qPQXGKhZJImWpNx75z38/Df/D5USwHqqocuMh8hAUl+VWEQGVw7WNV/QdXahzYz7axKQEEIIMdhIAEMI0WPXXXcddrudpKSkYbn//tbb5+t0OmlxtJFsb0GTpCc5uWPZh1avJSUzlfI125i4dAZe3/lGmoFAAJvN1iFrQ51h4K0P3unyLnN3FmlGl4Zv/9P3qKiouKARvf3dX6AvrtGhkEXi9XpJz8xgTNGYqJKlzj6/UCApNTW1z0os+mIUdE+aGfdGKYoQQggxFEkAQwjRY3fddfew3n9/6+3zdbvdeBUvfq0qZvAixOv2EECFOS0ZZ6MNv98PQE1tTdysjQNry/j9E3/gofsejNsPo7uLNL1ef8Ejevu7v0BfXKNDIYskMpCk0WgSWoBHBpL6ssRioIyC7otgihBCCDHYSQBDCCGGKYPBQH19PZNTOs8O8Hl86Iw6NFoNbrcHlUpNTW1Np1kbabkZGArTuuyH0dNF2oWM6B3s/QWGwpSKCw0k9VeJxcUeBT1QgilCCCHEQCEBDCGEGMZ8bi/uNifadEvc52j1WrwuL36fQsDvp63NlkDWhpeiaeM41Lqvy34Y/b1IG+z9BYbKlIoLCSQNxxKLix1MEUIIIQaCzufRCSGEGLLcbjdZWVnU7DvW6fN0Bj1anYamk/Xo9XoarU2YO8nasFtt6PV69AZ9sIHklvUJH5PJZCI1NbVPF2qhxW/bkQb2fb4TW1NL1OO2phb2fb4T+5GGAbv4XbrwUqr2Vib03Kq9lVw6wLJIIBhI0tr81Bw83unz4gWSQtk7y6Yt5MSGCjb9bQ3b317Hpr+toXrjQZZNW8jDD35dFv1CCCHEECIZGEKIHvvKV26noaGBrKwsXnrp5WG3//7W2+drMBgwm024rHZOH65h5MT8uM9NSrNQu/cY4+dORfEraHXxf33U7DvGhNLJwMBsIAn911+gr67RwZ5FAr2TRSElFkIIIcTwIgEMIYQYpkwmE6lJKUyeM5bd63fQcqaJ/OljSYooJ7FbbdTsO4avxY3K7cdaXUfW2FFxt3n6cDVuq538KwrDXxtoDSRDBvPid6iUUPRmIElKLIQQQoihTwIYQohhzel04na7MRgMw3Lxs3ThpXy+fzOX3XY1NUdOcGTtXjxeLzqDDq/bi16vZ0LpZPKvKGTPp9tpPdHEkbONTF02K2agw221s2TFFagjFpwDrYFkLINx8TtUplQM5kCSEEIIIfqXBDCEEMOOoijBRd+mdbS62tAbg1MdUkzJLF146aBY9PWWUCnCySPVFE4eS+HksXjcHnweL1q9Dr0hGHioPngco0vDt//lB/znf/8nB1bvJKAiZqAjMngxUBtIDhVDbfE/GANJQgghhOg/EsAQQgwrDoeDZ1etxGdRU7RkSoe0+8/3bmbDlo3cd9e9mM3xp2wMFfFKEUKBi/alCHq9nltuuoXP929m0sLpHQId7Q3EMaRDlSz+hRBCCDHUyRQSIcSwoSgKz65aSfKELKYvm91hBKUlI5Xpy2aTNCGLZ1etRFGUi3Sk/au70xxC0yPOHj+J2ZIUN3gxkBtICiGEEKL/3XnnHVx11ZX88pe/7JPt79mzm6uuupKrrrqSPXt2d3j8uef+Gn5cDE6SgSGEGDbKy8vxWdSdTm0AKJg8hn1nmigvL6e0tLSfju7i6k4pwlBpICmEEGL48Xg8eL3ei30YfUan011w36k9e/bwz//8T+F/P/74/zFt2rQLPTQheoUEMIQQw8bazesoWjI1oecWlYxn3cb1wyaAESmRUoSh0kBSXHzDvZGuEKL/eDwe7rrrqzQ1NV/sQ+kzGRlprFr14gUFMVav/nu7f6+WAIYYMCSAIYQYFpxOJ63ONizpKQk935KRSovDhtPplEVVHEOtgaRITG8EHKSRrhDiYvB6vTQ1NfPCC9/EbDZc7MPpdQ6Hmzvu+CNer7fHAQy328369euB4A0Np9PJunVr+eY3vzngJ4ol4u677+Huu++52IchLoAEMIQQw4Lb7UZv7N4fKzqjHo/HIwvyBEgDyaEtFHDYtHkLLo8Xo9GEy+XEZNCzcMH8bgUcpJGuEOJiM5sNJCUNvQBGb9i4cQMOhwOAb37zEX79619hs9nYsmULl1566UU+OiEkgCGEuADf//738Xi86PW6Ab9/gyF4h7c7vC7PgLrbcLHfb9F9Q+EzczgcrHr+BSzp2Sy58nrSM7LCj1mbGthbtoMtW7dx1513dBlwiGykG6sXTaiRbvXB4zy7aiUPP/h1ycQQQoh+tHr1agDGjh3LNddcwyuv/I2amhpWr14tAQwxIEgAQwjRY6WlMwbN/k0mEymmZGxNLR2mj8Ria2oh1WwZUFkFF/v9Ft032D8zRVFY9fwLTJg6i0lTO9Y/p2dksfSKazh4oJxVz7/Agw/c32nAQRrpCiHEwNXY2MiuXbsAuOKKK8L/v3LlSnbs2E5zczNpaWmdbmPbtm289dZbHD58CJfLRVZWFgsWLOC2275IVlZWp6+NdOTIEd5//3327NlNQ0MDAFlZWcyYMYNbb72NvLy8Hp3jc8/9lVWrVgGwevWauM/zeDx88MEHbNy4kRMnqrDZbCQnJzNmzBguu+xyli9fLgH2i0TGqAohho2lCy+lam9lQs+t2lvJpQuW9PERCTGwlZeXY0nPjhm8iDR5ajGW9GzKy8s7fd7azesoKp2Q0L6LSsazbsv6hI9VCCHEhfn000/w+/2o1WouvzwYwLj88itQqVT4fD4+++yzTl//xBN/4oc//Fe2b99GS0sLbrebkydP8vrrr/ONbzzMoUOHujwGv9/PE0/8iUce+Sbvv/8etbW1uFwuXC4XtbW1vPfeezz44AO8//57vXLOsRw9epT777+PP/zh9+zeXYbVasXn89Hc3ExZWRn/+7+/5h/+4TtYrdY+OwYRn2RgCCGGjeLiYjZs2UjNweOd3gGuPngcrc1PcXFxPx6dEAPP5i1bWXzF9Qk9t2TmHDZ8+mHcjAlppCuEEAPbmjXBjISSktJwtsTIkSOZOnUq+/fvZ/Xq1XzhC1+I+do33nid119/HYDMzExuv/0rTJ48GY/Hw9atW3nzzTf4+c9/htvdeTnv73//e9599x0Apk8vYfny5YwcORKj0cDRo8d48803qKqq4vHHHyc9PYNFixb11ukDcPLkSf7pn/4Ru92O2WzmpptWMHnyZLKzs2ltbWXz5s28//57HDp0iJ/85Mf85jePo9XKkro/ybsthOixPXt2h+v7L0aqfHf3r9FouO+ue3l21Ur2nWmiqGR8hwaCVXsr0dr83H/3fQMuNfBiv9+i+wbzZ+Z0OnG6PaRnZCb0/PSMLJwud9yAgzTSFUKIgauyspJjx44B58tHQq644kr279/PkSOHOXHiBIWFhVGPW61Wnn32WQByc3P57W9/R0ZGRvjxkpIS5syZww9+8H0URYl7DDt37gwHL/7xH/+Ja6+9NurxSZMmc+WVV/LDH/6Q3bvL+OMf/8D8+fN79e+1X/7yl9jtdsaPH88vfvHfpKZGlx3PmTOHBQvm86Mf/YiDBw/y979/zHXXJRboF71DAhhCiB77xS9+QUNDA1lZWbz00suDYv9ms5mHH/x6cITjhnW0OtvQGfV4XR5SzRaWLVgyYEc4Xuz3O6Q3xmgOFwPlM+sJt9uN0di9z1ej0VFfX092dnaHa2MoNNIVQoihas2aYPNOg8HAkiXRJbRLly7lT38KjmddvfrvPPjgQ1GPr179d1wuFwBf//rXo4IXITNnzuS6667j3XffjXsML78c/D25ZMmSDsGLEL1ez7e+9S0efPABzp49y+7du5k9e3biJ9qJffv2ceDAfgC++93vdghehMydO48lS5awdu1aPv747xLA6GcSwBBCDDsajYbS0lJKS0txOp14PMFFkizG4+vNMZpicDAYDLhczi6fpygKRw4dYPeuHZw+WcO7H3yMx+PucG0MhUa6QggxFCmKwqeffgrAggULSEpKino8JSWFefPmsXHjRj799FPuv/8B1OrzrRRDjT8tFguLFl0Sdz9XX31N3ACG3W5n7949ACxZ0vm0k8LCQlJTU2lpaeHAgQO9FsDYvHkTAPn5+YwZM7bT506fXsLatWs5fPgQiqLI30D9SAIYQohhzWQyyQKpC705RlMMHiaTCZNBj7WpIeozj+R0Onj3jVdIz8zhkmXL8SsKhYUFQOxrY+nCS/l872amL+v6j82qvZUsk0a6QgjR53bs2B5uSHnFFVfGfM4VV1zBxo0bqa+vZ/fu3cyaNSv82PHjVQCMGze+04X8+PHj0el0eL3eDo9VVlbi9/sB+K//+k/+67/+M6Fjt1qbEnpeIg4fPgxATU0NV10V+31oz+fz0draSnp6eq8dh+icTCERQohe4HQ6aW5uxuns+o71YBI5RnPpFdd0WMiGxmiOnzqTVc+/0Gltqxh8Fi6Yz96yHTEfUxSFd994hSkls1hyxTWoNVrS09PCj8e6NoqLi9Ha/NQcPN7pfodCI92h+jNBCDH0rF4dLB9JSUlh7ty5MZ8zf/4CkpOTgfPlJiE2WytAlyNWNRoNFosl5mPNzc3dOOLzXN0sTexMT4+hq8akondJBoYQQvTQcCir6M4YzbOnaykvL487hUIMPsXFxWzZuo1DB/Z3uAaOHDpAemYOEyYX02az4fO4sYzI7bCN9tfGYG6k25Xh8DNBCDG02O1tbN68GYDW1lauvfaaLl+zYcMGvv3t73TIYFWpen4coewLgEcffZSpXfzdERIvIHIhxzB27Di+//3vJ/y60MQW0T8kgCGEEHF01qxyuJRV9OYYzUQM1gahg/W4u6LRaLjrzjtY9fwLnDldQ8nMOeFrfU/ZDi5ZejWNDfX4PG7y8vLi/vEaeW0M5ka6nRkuPxOEEEPL2rVr8Xg83XqN0+lkw4YNXHXVVUAwiNDU1ITV2tzp6xRFwWazxXwsJeX8iG2DwciYMfHH3fcViyV4DC6X86LsXyRGAhhCCBEhkTuoQLisIlZmQih1/uCBclY9/wIPPnD/oFuMQe+P0YxnsN61TvRaGezMZjMPPnA/5eXlbPjkA5xuDxqNjlO1NSiKj/SUZCwjcju989b+2ohspGu1WrHZbFgslkFbQxxZajWUfyYIIYaeUPlIRkYmDz/8cJfPf+qpP1NfX8+aNavDAYyiojE0NTVx9Ghlpw0tjx49GrP/BcC4ceNQqVQEAgH27y/nyisT60HRm8aPH8+BA/s5ffo0TU1NMaepiItPAhhCCHFOondQZ84oHRZlFT0Zo2kwmPB4PAkHMAbrXetEjzsQCFzEo+w97Sf31NfX8+4HH4cbdiYi8toYrEGreKTUSggxGJ0+fZr9+4NjQ5csWcxll13W5WsqKip488032L17d3hM+KxZs9i1ayc2m43NmzezePHimK/96KOP4m43LS2NKVOmcODAAT799FPuuefeLntq9LaFCxfyzjtvEwgEePPNN3jggQf7df8iMdLEUwgh6F6zypdfeZXpM2I3uWqvZOYcNm/d1heH3OcSHaMZye12otfrE3ruYG0Q2p3jdjgccbczWJs8mkwmsrOz8Xi617QsdG04HA6e/ssz7D98nCVXXs+X7nyQm267gy/d+SCLr7iO/YeP8/Rfnun0vRtoNm/ZSsnMof8zQQgxtKxZszocaO9qdGnIpZcGp0P5/X7WrFkDwPLlyzEYDAA8+eQT4Ykmkfbs2cMHH7zf6ba/+tU7gOBNgp/+9Ke0tbXFfa7H4+Htt9/udvlLZ+bMmcPkyZMBeOWVV1i79vNOn3/8+LFw/xDRfyQDQwghSPwO6pix4zGYktDqdAltt6dlFQNBImM0I1mbGjAZE+8BMVjvWnfnuFXq6PsEQyXzoKfXhl6v5+m/PDOkSi36q9RKCCF6WygAkZaWxvTp0xN6zdSp08jIyKSpqZFPPlnD7bffTnp6Ovfccy9//vOTnDlzhm9+8xvcfvtXmDx5Eh6Pl23btvL666+TlZWF2+2OO+1j/vz5fOELt/Dmm2+wb99eHnjgfm644QamTSsmJSUFl8vFqVOn2LdvHxs3bsBms7F8+fLeejsA+MEP/pVvfesRbDYbP//5z1mz5hOWLVvG6NGjUavVNDc3U1lZyZYtm6moqOC2277IwoULe/UYROckgCGE6LGXXnp5yOw/0WaVbo+bzKwcrNbmqIZTneluWUU8F+P9Do3RXHpF113J95btYOH8eQlvu78bhPaW7hz3f/7qD2z49EMe/tpD/VouE6upaG83Gu3JtTFYg1ad6Y9SKyFE73I4hubYy+6cV3l5OadOnQLgkksWo1YnlpivVqu55JJLePfdd6iqquLw4cNMnDiRL37xi9TV1fHWW2/S0NDA73//u6jXpaam8uMf/5if/exnnW7/G9/4BhaLhRdeeJ6mpiaee+65uM81Go0JH3eiRo0axW9/+zv+4z/+naqqKrZs2cyWLfGzLAZSeetwIQEMIcSw1507qAa9AcXnQ/H7URQ/Gk3XvzjtdhtOZzB9frAtWDoboxnp4IFybNZ6iotvTGi7Xb3niuLH7/ejVqvRaNQD5q51T++22+12nn/hxZiZB26XC41Wx4JLlnH8WGWPMw/sdju7d+9mV9lufP4ARqMJh8OOo82GRqPFaDZjMpl7LeOjJ9fGU0//ZVAGrTrT16VWQojeo9PpyMhI4447/nixD6XPZGSkoUsgS3TNmtXh/16yZEm39rFkyRLeffcdINgEdOLEiQA88sgjzJkzh7feepNDhw7hdrvJyspm3rx5fOlLXyI7O7vLbatUKu666y6uvPJK3nvvPXbvLuP06dPY7XaMRiPZ2dmMHz+e2bNnc8kli8OlK70pLy+PJ554krVr17Jhw3oOHTpES0sLfr8fiyWF/Pw8iouLueSSxUyYMKHX9y86JwEMIcSw1507qAajEZ1eR5vNht8fP4ChKApHDh1g2+YNWJsaePOd97u1cOyvsZxd7aezMZpwPnPAZq3n7rvuTHgxHOs9DwTAZmulydp8Lnihwe9X0KjVpKenYTAY+/Wudaz3pqd32/fs2R2VeRC6Pnbv2oHP68VgMuF2OtHpdRDws2fPHmbNmhX3OEJCJSnrNmyk6kQ1RlMSeoMeiyWFwnGTOLh/HyMLJlA4biJJZjN5eXloNOpeyfjo7rXh8XiGZKlFX5da9YehOgZYiPb0ej2rVr0YdxLGUKDT6RIKkD766GM8+uhjPdrHzJkzWb16TczH5s+fz/z58+O+9vnnX0hoHyNHjuShhx7q9rGVls6Ie2wAd999D3fffU+X29FoNFx++eVcfvnl3T4G0bckgCGEGPa6ewe1dOYcynbuYNq02HednU4H777xCumZOcxZdBl5o0eFy006Wzj2V3+E7u4n1hhNg8GE2+3EZDSwcP48iotv7NaxtX/PFcVPbW0tWr2BzKwcdBF/fHk9HlpbW6iqOt7njTy7em/Gjx/fo7vtu8r2sOzqFbhdLlpam/nko/fJyhnJ0qtuiFrQW5sa2b19M889/wJer5ddZbvjfkZut5u/PrcKh9tHc3MLaZk5JCVbcDud2O1O3n/7deYvvpwFi5eh0Whos9mora2loKCg13pNdOfaaG5uHrKlFn1ZatVXhko/FiG6S6/XSwaUEIOYBDCEED22atVz2O12kpKSuOuuuwft/rt7BzUrO4eT1UepPFTRIXVeURTefeMVppTMYuToQuy2FiyW870y4i0cE+mP8MwzzzB+/HjS0lJ7fL497cPQfoymx+O5oJKYyPc8LT2L2tpakiypJFssAPgjSkh0ej1qtRpzkoVXX3u9zxo7Jvre6DSahK4VRfHz8qqnqTy0H6/Xi1tR4XG7OX2qljkLLmXM+EnodHoCgQAqlQqA9IxMLr3yWvzAa2+9w533fo2s7NwOx7F5y1acTictNgd5ReNZsPRqsnNHhZ9Xtn0TlpRU8grGcObUSUbl5ZNsseB2u2hoqMNgMGDQGxLuNdHZHfpErw2DwUBbm43W1hYMegMGo7HLz2SwlFr0ValVXxms44uFEEIICWAIIXrsgw8+CM8AvxgBjN7cf3fuoO7fW8btX/oiu/fs6pA6f+TQASypGWRk5WK3tZCXl8e5tWmUyIVjcXFxeCxnZ5MZXnvpOQ4c2N/j840c/3khEyBMJtMF3xF3Op1MLy6mbOc25sxfjFZvICk5mTabjZaWZgJ+Pyq1msC5IMa+3du5ZMnl1Ned6pPGjt15bzav/Zg9u7az7MprOzyvfRnMus/+jtvlwmAwMnfRMtpsNnJP1bLg0ivxej3YWpppbWkmd+QoNBoNgUCAs6dPMWP2AnQaDQ31dVEBjNBxbN+6mffe/Bu3fvV+8gvHodNH1wCfOHaEZctvQKvT0Vh3lpbmZurOnGTvrm24XE5S09LCJSvjxk9k4+YtHd7Tntyhj3VtRG6nvq6e999+HcXnQ6fXUTpzDhMmTY15nQ3EUot4+qrUqi/01s8BIYQQ4mKQAIYQQtD9O6hzbrmROXPmdEidP3TwANeu+DKWJBOWEbkxgxchoSaFQEKTGUKjW3tau9tbEyB6Wi/ffkGs1xs4dPAAbo9C6ez5nDpZi0ajJdmSilarQ6UKBgQOV+zhcMU+HLYWll25nM2bPmfixIm9WrPfnffm9Mlqqo8d5tCBgqjnty+DOXqkAsUXLHkxmEzoDSZ2/P19rlnxJQB0Oj0ZWTnY21o5e/oUI0fnYW9rQ6c3YDInMX3mPNZ/8j6Tp3YcbedwOJhWOoeRowsIQNS4Vrfbhc/nJS09WJrSYm3i3ddfoKBoPJddvQKT2YzJZEKlCpaslJdt5+DBgzQ2NpKZmRnefm/coW+/nWVaPTa7k8ys7PC+95bt5MZbvoTJFL2dgVJqkai+KLXqC0NxEowQQojhQwIYQggBeDwebrrxBt54861u3UGNTJ1vbW3l+RftTC8pSWifoSaFn32+lgWXXhW8U59AWr3H4+nROV7I2NKu7saPGzcOn88XN6DQfiFrNifj9rhZcsW1vPLCSurOnmL2/CWMLhiDVqsLzlpvamTf7u3U153mC7ffR/WxI7z92t9obm7kj088hTkpqddq9rvz3syYPQ9rwxmOHDifgRNZBuP1etiy/lOOHt6PTq/H5/OiQoU5KRmVRo3JnATBsAMASckpuF0u7G1ttLY0k56ZDYEA6ZmZeDweHHZHuIxGo1GjKH4qD1Vw5fW30Nra0qGUxRPRaFRRFLZu/IzpM+cxfcZcUKlwu5zhspX0jEyWXHENWr2eF19+mW8+/DBAr9yhj3WnPxAAq7WZNpstvO/DFeW8+8Yr3Hr7XeHtDJRSi+7q7VKrvjBYxxcLIYQQIAEMIcQwFmtR7vb6qDp6iKOH9mNOtmAyJSV0B9VkMuF2uzEnJSW071CpQUNDE3a7DTZvCKf0d5ZWH3xtoNuTGboz/jM01tPWZsfpDC52Y92NDwSgprqKT9Z9zl+eXcn4CZNQFF+HgEJoITtucimBAHz43tsoioLRZMLpcOB2e2hprmab8jlsWovJZMbtdqHX65laMptFS69Co1ZjNJqoqT5OXtE4rr72RnS64K+wzjICEskW6cloVJ/i5757vsLRo0fZ8MkH1DdaUfwBTCYzer2ekpmzaWw4g06vx+mwo1KB09FGUpIFlVqN4lPQaM//CrakptFYdyYY1lCp0Gi1+Lw+Aqg4dvwYyZbU8EQWvV5HgABZOSM4fbIavz+6sak+okHqsSMVZOeMZNzEqQQCflSq4DWlapcaVDhmPCgeysvLg8fTC3foY93pV6mC4+lqa2txu12kpKQycUoxZ0/VcuTQAXJHjBwwpRYXqjdKrXpbT8cAD/RJMEIIIYYPCWAIIYalRFLkmxtOc8uK60lNTU3oj/dEp5lElhoYzUlcef0tFBSNPbfvztPqAVCpuj2Zoavxn7HGetbVNfDkU0/jdDiYv/gKJk0tjnEOJq67+XaOHz3MwX27uPUr99HaYo0KKBw6dAhFpWPTxvXkjBjFgkuXk5aegQrQ6rRUlO/hZO0JGuvOMmv+Jeh0ejQaLQajEUtKKmq1CrfbhSU1jTnzl7Dmw7dQX78ifCztMwLuu/ceKioqEurd4HQ6qaurQ6vVJfxeQnA6ht1up7CwkIkTJ/KXZ55lziWXk5MzAoPRiNvlYsfWzahVodIOFVqtDqfTgVarw+txRwUwdDo9il9BpVLj9/vDPUAUv0J+4dhwZo7X4+FkbXW454VarSYQIPz84LEZ0Wp1NDc1sn/PTpYtv+FcwEIVfB5ElTZ5PR40ajUzZs9jw6cf4vP5WHz59ShK/DHBIZ3doY93p1+jUVNQUBDsFdJQh+L3kzsqn3def5kpUyYPmFKLoainY4AHwyQYIYQQw4MEMIQQw053mti9/c67PPjA/QltN5FpJoEAUaUGSWYz2oiFbGdp9ZEb6e5khs6CK06ng3de/xvpmTksvfIGUtPS8fv9nD1zkoazJ6mprsaYlBJe0EaeQ2hqSORd9MlTp4ffv2f/+leOHKkkNSObeYsuY8KU8/0cAn4/LpcDkzmJZVdez/Gjh6nYV8Z1X/gKer0er8eDrbWZ1uZgWYVWq2NUQRFerxuf14NGE11uM3lqMbUnjvHr//0NheMmxQ1Mbd6ylZkzSsMjSvV6AydOnOBvLzzbZfZLKNBz8OB+nn/RjjkpCYfdTnX1CaaUzkU7Oh8At8eNod2CLzUtHY1aTbO1AbM5OXgxnIskBPx+Av4APsUNEMyAiTGtQ6fXM3JUHm5XsM+F3+/HcK5MJbKR57TS2ZRt34TP5yU1LeNcFogKr9eDThcdrGltbSEtLQ2VCo4ePY5PUZi50I2tuhqNWk16ehoWS0rMfi7x7tB3dadfpYKUlBRSUoLXld/v50BZIffcdacslPtQd0dGw+CZBCOEEGJ46PzWihBCDCJOp5Pm5maczs7/QO9OEztLenY4rT4RoWkm8dhsrWj1BpItFsrLtlM6aw4atRpvu74WE6cUk56Zw5FDBzpsQ6VSdXuRFxlcCQn2I7Dy4nPPMmbiNKbNmIvN1kptzQnOnDmFx+1h/97dLFh8OUmWVGpra8OlL6FziFQ8cy57y3aG/z1pSjEunwq73UnhmIlRwYvQeTQ1NqA3GNHpDUyaWkJmdi7HKw9CIIBOH2xymWxJwdpUTyAQQKvVYjAYabO1djhHRVE4ffoUBeOnsfSKazoEkdIzsli8bDmWzFG8/ta7LLrsGm79yv1c/4Wv8IUv38Oipcupqa7h9ZdX4XQ6Omzf6XTw+surOH7sONetuJ3b7/kaN912B7d+9X6uWXF71GsNegPudtehSgUls+azf/dOAoEALpcT97n/eT1uVCoVOq0WRQmWl5Tv3s600tm4XS5srS24nC78/gB6gxGD0UjdmVNAMKgR8PtRfL7wvsZOmEJD3Wn8fj9+RUGlVqEoCgG/Pyrzo81mw+txYW1uDjbXzBnByNH5jBg1mlF5BWRk5WCzO6murkZR/DGvrdAd+kjdudOv0ajR6bSYzEk97u8iEhPr50BnBtMkGCGEEMODBDCEEIOe1+vlT088yRNP/YWXXnmdJ576C088+Wf27NmDoigdnr95y1ZKZs5NaNslM+eweeu2hI+luLgYm7WeQwf2x3zcam0mJSWVwxXlWBvrmDBpKunpabS2tnTcVruAQEjk3dBEgzYQHVxRFD/V1dXs37+PkaPzyczOxe/3kzNiNKPyi8jIzCY1IwO1VktySioajRaNTo/N1ho+h/bSM4JNJ90uFxAMdEyfMRd/wE9xjPfbbreh1xsI3dgPBAJMnzGXA3t3ESD8RczJFvQGI/a2VgiAz+clcP4ZYUcOHWDEqAIKxoyPudgOZY4Uz5jLxKmllJeXc6K6mpOnTuPx+mhra2PmvEuYOLWU1//2PA67PfxaRVF4941XmFIyi5LZ8yksKgo/plarSbZYWHLFNUyePot333gFrU6HTq/D748+jvGTpmBtrOPYkYOYTCaMRiMmkwmtVoNBryMAOB12jlTs4/jRg+zZtY23XlnFmg/f5s1X/sprLz5D+Z6dTJ5ayvZNa1GpVKhUYDSZUHxevB53MEih0bD8xttorD9Lfd1pFJ+C4vNiPDd9xOvx0NhQj93WAgFItqSSmZVNwO/HFxFE0On1ZGZlRwWw2ot1h/5i3+nvzvfFcNNVkDXSYJsEI4QQYuiTEhIhRJ/p6bjNRAXOraa8Pl/Cox77uomdRqPhrjvvYNXzL3SYZqIofqzWpnDw4qZbv4xGo8FiSQlPZojMaogMCBiMRnznxqdqtVr27NmTUI+HSOdHxZZjTEohyZLKiWNHmFY6h+SUVJKTU4BgYMHlcKD4fBjOZUcoPh96g5GmJiv+c9kRsRiMJjweNwajEau1mezckZjNSaSkpnV4rq21hYysHOrPnMbr9aLT6UhNz8Dn8+JxuzAYTeEwhSUllcb6s/i8PtxOJxZLxwDKnrIdLL3qhnOZCh37N9hsrWjO9deYMn0mGz/7mAWLLwOCwY3Wlhaam61odAY0Gj1/eeK35IwYQenMOfiVAOmZOYwcXYjd1oJlRG7EZ64OZ9FEltKUzpzD52s+6nB9XHntzbz7+os0N9VTXDqH9MwsWltbSE1N4fjxKnZsWU/lof3MnLeEGbPnk5aRiUqlRqVShSezHDt8gPr606SkpGLQ60lNSz8XxPDh9bjxeL24HA5UKhVnTtaQM8KHRqNBrdaEm4Gmp6cRMJtoczhJtliwNjViNBoJEMDa1Bj1PZJsseB2u7DZWklJSQl/vf0d+qjv+S7KqSL1xp3+riblXMiUmqGkuyOjB9skGCGEEEObBDCEED1WUlJCS0sLqannF5P9tYhQFAVzUhIpaRnkjhgVs1wg1qjHnjaxa21tSTgYYzabefCB+ykvL2fDJx/gdHvONX20cfrUKa6/+YtcftXV4fch1mSGUIDAYDRRV3eaY0cOkZaexpgxRVibm9l/+HjCQZuQUHDl/377O8yp2cxdeCm21lYys3IxmZI4XLGPfWXbUBQfZnMSDoedU7XVHKnYx9iJU9HrDTR7veh08e+Su11O9HoDiuJH8ftRqVQYzebgaM+IhqR+v0LAH0CvN2BOTsbWYiUjK+fc+23E5XKhDe8nENxnAMq2byQtPb3DuFm3y4XX4yUtPZNT9mrU6o4Jhk3WZszJKWi0OrJzR6EoCm6XC73BiMvpRG80km0243Q4mFw8g4p9fi698gbKy7azY+t6bvri3dhtLeTl5XXoBxHKosnMyqZ45lzWr3mfW2+/i/T0DHJGjCJnxKjgmQQC2GwtXLLsKk7VVvPhO6/gsNvxeNykWJJobm7GZE5i4dLlTJxcTLIlBbX6/PdLUrKFaSWz0Gl1JFUnU7ZjM83WBkpmzQ8/1+9XaLO1UH30EKnJRtzOViaMXxzuNREaxwpw4kR1+H0vL9tOyczZ4f9ecsU1UeeYkpJKU0NdVABjb9kO5s2ZHTOg1tbawuYNa7n2xltj9s+IdKF3+hNpytvTKTVDTWdBVog/MloIIYQYCCSAIYTosR/84F+j/t3TRURPlJeXc+U1N7G03SKrvfajHruT2h7q93D8+DGee+FlkpMtXQZjIhdEpaWllJaWYrVasdls6HQ6Xn71dSZPnd5hX7EmM6jVGmqrj7ND5WPJJYu4bcUTPLvyrwk1H40M2kQym82kpqYyuqiQtWvew95mI0CAt/72V7Jzcrn86ptIS8/Efy67pfLQfmqrj7N/z06W33Abfn8ARfF12DcEJ6jo9XoMRiNerw+1WoNeb8Dr9mBva40KYAT8ftTnFtHJySnUnT2Fvc1GUrIFj9uF0WQ6t8hW4T9XBlR9/AgH9+/muhtv7rDvUNPM0ESN9tkXiuLH4/GSpjeEe0AYjEY8Hg9+fwCNVhf+erLFQkZWDo2NDdhaW8gfM45DFeUY9Hry8/NRqzuuxiOzaEKZM/Y2G49+/9/45KP3ycoZSWN9HW32NnRaPSPzCkhJS8fn9VB/9hTzFy6m8shBqj5dzaSpM5g5ewEut4vGhjoCgQBqtebcpBEVlpRU5i+5HO9nHpqbGlHhp2zLZxgMJnQGA163m6QkEwvnz2PKXbfz7Mq/hu+2R74voSCTTq8PZwVdftXVAOwt28mRg+VMmHx+8oxOr0fx+8PNXA8eKKep7hTbmupIycjp8D3fUH+WF1Y+hTl5DUuWXh53osmF3unvTlPe7k6pGariBVkTGRkthBBCXEwSwBBC9IruLiJiLa67I96IxlgiRz0mMikkeD7BMaF2h4PM7Gy+eu/D4cfaB2MMBkOHrBOHw46jzYZGo8VoNmMymXG5nNRUn2DH1o3MnLOgw/m3n8zQ2FDPmKJ8HvnGNwDYs2dPws1HI4M2kZxOJ26vjznzL2Hi5Gk8+YfHWf/JR5TMnMeEydNQ/H4CBFCrgyULowuKyMoeQWPDWf7+/mtMnzkPnS4Jr8fToYwk8g6+Wq3G71dwOOz4/QpNDfUYTWaSzpWpoFLh9XhwOZ1AgLT0TKxNDZw9cxK/X8FgMMC57hgtzU3sK9vOts1rGTNmHJOmdAwAhZpmtra2kJ6e1uFxv99PIOCPGpfqdrmC56lWnwteBAAVKpWa1PQM1CrIysxArVKRO3IkpqRk2tpsURkIkdvPHZHL6dOnaW2xYrU28drLq7CkpuH1ejmwbxfrPv2I3JF55OSOwON2odfrKZk5+1zQQIXWYOZAeTl5hWNRqdWkpmWQnpGFoigoig+VSoVWq8XvD+D3+5k4pYSdW9Zz+dU3UrblMx7+2gP4fL5wHwm3242iKHHvtvv9ftpsNtZ/8lFUSRPAjbd8iXffeIUzJ2spnjk3XE6iVmtobKinoryMlsazqNUqJk6bHfOazMrO5Wvf+kdWPfMkZ0+f5Kprricjs/fv9HenKe+p2mp++T//w9iJ0/o8yDrQaTSacJDV6XTi8XjQ6/XDJhNlKBuOmUVCiOFDAhhCiF7RnUVEvMV1oi60j0WoiV287I3IMaGHK8qZO/+SDtsLBWOeeXYlWq026g600+ng3TdeYWTBBArHTSTJbCYvLw+NRk31iSq2bdnEscoj3HjLlzCZYi+SNBo1FeVlLF60KPy1ngZtIkWV0KhUtNlaSE3PYMKUaShKsOQjsvwiKcmCraWFUfmFnDlZw8nqKsaOn0hrSzOZ2Tnh57W/gx/qC7F7+2ZmzpnHmdPVpKSm4Xa5SEq2YG1qQDk3HUOvNwYDACNH8+lHb2NtauLFZ/6AJSUVj9uNWqMhLT0LtQq+dMc9MRe6BqMRh8NOU/1ZRo0oifGOBM7tL3huzU2NaHU6UAUDGJHNXlUE+4y4nE60GjUGgxG309mhhCKUodNkbcZ/rlzGbndgMpnR6vQsXLock8mM369waP8eRua1MnPOArKzsjGZjOEymEAAqqur0eoNpGZkkHbuGgplrGg0GjRqNYpfwe8/H1zS6XRkZucyMq+AtXYnzzy7kvnz5rJzV1mHzIJ5c+egUqmi7rY7HcHxrzfdentUSROAyWTm1tvv4sihA6xb8x5ejxeD0URt9XHGFOWzeNEi/P5CKipPdPo9bzKZeeDh7/DaSyt59/UXMJmTev1Of6LfF4EAZI/I42jl4Zjf+70dZB1MTCaTLHQHOekBI4QYLiSAIYToFb2xuO5K6K6Sy+XqUR8Lj8eDyWTqsoldaEzoqdoTUYvy9iZMmsLH77/FksuuYtac+UD0tIpQ+n2bzUZtbS0FBQXkFxQRQM2ZU6d4941XuPX2u2L+Udk+rb63mo9GltAY9AbUajVjxk0i4A+gUtGhd4RKpSI7dyQNdacZmVfIps8/prh0Fk6HPTiC0+uhvGx7hzv4AA11pzlcsZdv/MN3eevVF2mztTBydAGnak+Qlp6JwWiitaWZjMxsAI5XHsRpt3P3Q9+hpdlKY+NZkpMtJJmT2Fe2jdEjctm6cW3cmn2d2k/92VpUJbECGCoCgQBerwedTs++3duZMLmYQCCARqNFFdGkIRAIYG2qP1deEgyO6PQ62tps4RIKCAa5tHoDmVk5aHU6Tp+sJWfEKDxu97kFoZGRI3LQanVs3/QZS6+6Aa1WT0trC6lpaeH9ha43vV5PUlIySckWmhrqIs4xcK6fiDp8nG1trXg8btLSMwDIzMzhbH0jG7aWdZnpoFKpwnfb//rcKnJHjIx5DWo0GiZPnc7kqdNxu1zU1Z1mh8oXzgh64sk/J/Q9r9FoWH7dCjZ8+iH33HVnr97p7873hc3WSkZ2LiaTOdwYN5beCLIK0Z/6s3xTCCEuNglgCCF67F/+5Z+xWq2kpKSSXzS2TyZ7xLqr5LAH7xzv+N538Hm9pKal872f/Fen24kc0dhVE7sTVVXUVldha2nqsCiPdOTQASZOKSEze2TU19Izc6J6B7Sf4JCXlwdATfUxynZsYU5Ehke8tHq32832LZvYXbaL1NS0mOfrdrmCvSD0BgxGY1TQJiSyhMZsTsaSkoreYKDN1kpySmrwNnW7xbxGoyHZkoLb7aLZ2sjH772Kx+XG63WjUmlYtGRp1B380Dm0NtVRmD+K4+eyTd594xWOVR5k3MSppKZlgArqTp/izKlqjh46gLWpgWVXXU9Li5UAAVLTMlER4PjRQzTVneSf//mfOHz4cNya/dtWXBfV7yGSWq1Gq9Fga2mmsaGO+rOnmLdoGRCICl5AMGizf88uDCYT9Q31pKalUTpzDuVl25kwZTqKX+H0qdMkWVLDU2PabDZ0egNJySmUbfuIWfMuIdmSxi/+4we4nA5cLhcrvnTPuc8yepqH1dpMRlYOfr//XIZKMnVnTtFQd4bUtAy0Wm04uOTxeLC1WPF6PeFgiVqj4fixI1x/8+1k5Y6IaH4aFCuzIHRNdJWNFGIwGjl25BBLLglmBLUPHMRqENr+GJwuN0BU098L1Z2mvKH3OXJSTjw9DbIK0d/6u3xTCCEuNglgCCF6rLa2loaGBjIyMpgwufPSkfZiLa7b6+yu0r69e/njb/4Tp8OOw2HvdF+xRjTGa2IXmVY/YdL1nf6hFxrb6bDbw40NQ19rL7L8INSwU8UiXn3hLxw7UtFlWr3BYMBma8VVX4cz4nwVReHIoQPs3rUDn9eLwWTC7XSi0+uwNpyNefyhRWvprHkkJaegUqloabHi8bixpKaFp4yoVOD1erC1tOD1uklOtjA6r4AbVtzKh++8ygP3fZOTJ0+yecvWuOfgdrv563Or2L1rC06ni4MV+zlYvgetTn9uZCe0NlvJLxxD8Yy5+AMBMrNz0en0WBvr2b19E00NZ8kZVcCzK1dy7z33dFqzHy8wpdGocbud7Ni6gRZrEyu+fA86nQ6Px9Ph/TlysJzTJ6vJzR2JOTkFm62VCZOmsrdsJ8cqD5KWakGrN0SNvA2W1ORy5GA5TQ1nWXzZVWg0wX4RrS3WqEV25LUQ2UgTQKvT0WK1otXpzr3+LIrPh+Zc7wu1WkVScrDJaIu1CZ1Ox8HyPYwZP4lJ06bj9Xg6TAoJiZVZ0NORmsH6eiOtredLaNqPaLVYUqKmjyTyPd9diTbljXyfQ5NyOtPd8clCXCz9Wb4phBADgQQwhBAXTKVSJTzZIyQyIyKWru4qFRYVodPpcWLH5XSiKErcYEO8EY2xmtg5nU7efOf9mJNCoo4/Ymyny+nC7/fj83rCX2uv/QQHlQoKCovILyjk3rvuQK1Wd5pWbzKZOmQKhHptpGfmsPSqG6IyYOrPnmbT2jW88OJLHdKGi4uLWb9hIy+vegaP14tfUTAnJaM3GGiqr8MfCN5JVxQ/arWKlNQ0DEYDdlsrao2aZEsKlpQ0dDpdh/cv1AvCYDBEjIlVYUlJY8r08cxbfAUjRuXjdrtoqq/j2JEKbC1NNDU1sH3T55jMyRiMRtwuJ6hUZOeOYuGlV6HT6zl2pIIf/vgn3HXHV8MNWduLF5hyuRw01NfR1GQlgIp1a95n0tQZJFtSSE1LJ8mSQou1iX27t9PUcJbsnJEUFI2JCjYsuewKXnj2SerPnGLR0ivD+/QrfpqbrRw5uJ+mhrNce/OXwucemlgSODfVpf21EFr4hz+b0tmU795O0fiJ+P0KI0bm4XDa0esNqFRqNBpNsJeHCsp3b2da6Ww+/egdbrztzpjXWXvtMwt6OlLT7/dTVXUcm91JZlZOVENXr8dDa2sLVmtzuPcLdP093xOJNuUNvc+Rk3K60hcBFyF6W3+UbwohxEAiAQwhxAVTqVQJLSJCYmVEtNfVXSWLJYXg1AhQqdUcOXQgZtAh0RGNoSZ2er0+oWBMaGwngN+voFarcTrPfy2W4B3q6IWlwWBCrVYnlFav1+txOoPHFqvXRtS+NFquvfELnKqtjpk2rFKrmFw8g+NHj6AzGGhuaiQ1PYPM7FzUmuCddJVKheLzYW+z4fUEO9qHylMiF6OKonD48OEOzeOMeh2NjQ0sWHIVU4pL8Hp9nDx1CqPRiMlkIj09nXETJ/Hpx++i0mi5+Ut34XG7cbmcWJsaSUpOwWA0kZycjFqtYsSo0bhdLj7fsJntO3bGreduH5hqaWnh9TfeZFrJLDJyRpGakY21sYH9e3bidNrxeTzYHXayc0ZSMmseOSNGcqh8N+MmXhcMGJwLCByu2M+Xv3gr73/4MZvW/j3c2NJut1F39jTX3PjFcObFeeeCTioV1qbGqGkeoZILv/98A9FxE6ewa9smdHo9RWMn0NbWik6nj5qeAoSDJRmZmQQCAUbl5Xd6nYXEyizo7khNRVF49bXXMZuTUavVHabR6PR6MrOyo3q/NFu7/p7vqUTKYELvc+SknK70RcBFiN7UW72RhBBiMJEAhhCiVyRaSw/xMyIidXVXSaUivKDSaLRs37oxKoDR0xGNid7RDY3t9Ho8aM7V/Ye+Fk8o0BGpO4sknS64iPV5vTF7bYS02Wz4PG4sI3Jjpg3v3LkTU1IaCxYuJiXFwv6y7UycWoJaraah/gyBQCBcDkAgQEpKKlnZ2Wz49GNKZs6OCkB1VuYTmriyb88uisaND08bCWUlhDRbmyidvRB7WxtJyck0NtSTkZVDUnIKbpczKvNkxtyFrF/zPuOnzkyonluv1/P2O+8ypWQek6ZOw+V2c/ToMTKzcrj+lq/g9yu0tbZyqvYEFeW7OV1bTXNTfbssCg0HD+zFZq1nwuVLGLX3ADfddgdulwuPx00gEOCdN15h4pSOn0XkZ1detp0l574/gkGL4DhU9bmRsjq9Ho1GQ07uCCoP7sXjcZI7Ip+U1PRgWY1ej7WxgX1lWzl7+iQ5uSM5WL6bUfkFUe9RrOssUqzMgu6M1AwFF8dPnRF1Tu1F9n5J5Hu+pxIpg9Fo1FQfP8KZU9Vxm/JGSiTIKsTF1p0eMCGSWQQejwev13uxD6PP6HS6Cwq+KorCpk0b2bFjBwcOHKC5uRmbzYbBYCAtLY0xY8YwdepUliy5lJEjR3a9QSF6mQQwhBC9oqe19LF0966SRqOhqb6eF1c+QVKS5YJHNCYSjAlNpqipriJv9Kjw17Q6HU0NDaRnZkXV/0cGOkJ6ukjy+bz8/YN3uOX2+6K+Hkrd93nc5OXlhfdfMnMOGz75AIBNm7dwvKqanJF5vPbyc2i0GmytLWTljMBkTmLk6Hy8Hg8ejweVWoVarSHgV9i3exdnz5zksiuvZuPa1SycP6/LMp8Aaq6+4RaOHz18fuKKWh1erEOwFMfn9TK6oIim+rMA4WaYAb8fFVE9RUnPyMTj8TBm7PiE6rnbZ/LotDqMxmC2TVP9WfyBAGqVipTUdNRqNQ57Kzd98XzAy9rUyOZ1azDr4b577wU4P8XFeH4Uqk6vi8qwaE+r1WFtrONIRTl5heNwOp3U1J5Erdbg8fqorTlBds4ITtZU0dbazL0PfYtjlYfYvWs71VXHMZmTcLvd+LwejCYTI0aMYuy4sSy7/EreeOWFqGug/XXWXldBs65GaoaCiympaewt28mRg+UxA2kQ7Pexc+sG2hLIguqpRMtgqo8eYlTBmIR+HvRlwEWI3pJoD5hIwz2zyOPxcOedd2K1Nl3sQ+kz6ekZPP/88z36nDdt2sSTTz7JqVMnOzzmcDhwOBycOnWKjRs38tRTTzF//nweeOBBxowZ0xuH3us+/vhjfvWr/wFg1arnGTFixEU+ItEbJIAhhOgVPa2lj6W7d5XUahVFY8Zy683XYzSaLnhEY6LBmPSMTPbt2srkSXeHmxnmjsxn17aNLFq2HBXBOyEarZbW1hbS09OiXt/TRZLZbCY5ORlF8XGqtrpj88QRuVGL/pTUDI5VncBkSWfRZddR3GZnVF4BEFygl23byOd/f5eCMeOZMfcSRuYVYDInoVaraW5qZO+uLTQ21LFo2XI2rPuM5obTFN9yY6dlPpFNEydOKebsqVqOHDrAqLxCWltbyMwKjk71nCvF0en0+AMBWpqtZOUE/8Dw+bzhrJNIBqMJm62FseMnsn7j2k4DGO0zeTQaNVqNGoPBwKi8fJwOBy6nk7T0DBYvu4rXXvwLb770LAajCbfLSQA/Xpedx77//fA1GytDJzSlpGM2wrkyJxVct+I2Xnnhr+zfV8bMuYvCn0EgALU1VXzy0TtUVR7ka9/+J/R6fXiE6d7dOzlRVUXxjLk4HW2MHTMWo+l8D4fI4Ems6yzShWYWtA8uhqbLnDlZS/HMuVEBHGtTI+Vl29m1bT3//pMf9+nkg0TKYDqbUhMp0bIzIS62RDMGQySzCLxeL1ZrEz9//BmMpqE3UtbldPCjR+/H6/V2O4DxwgvP89e//jXcs6m0tJT58xcwduxYUlKCk8gaG5vYt28vW7du5cyZM2zdupWsrGweffTRPjgbIWKTAIYQotd0t5Y+np7eVUpJSe2VP8wSDca4bFa0eFn3+SdMmDKdzKwcsnNH8s6rz1NddZTxE6fi83lpaWnG63FhGZEb3saFLJICgQBZWVkUFhZ0Ob4yEAhOi0lLz2b+oksxmpJoc7jCj6dnZHL5NTcxMq+A119cydHDFaRmZJKRmY2iKOh0OiZMLqa4dA4Hy8s4fvQQOZnBfh2dlfl0aE45cy7r17zPpCnTsVqbabPZSLZY0EeU3ahUKvx+Ba1Oj+LzEfD70RjOT4tQFIWjhyuoPHwAp8OOKSmJ2hM1/P6Pf2LJJYsoLi6OurbijfpMTk5iT9k2qo9V4vP5wpNbtDodZlMS16+4Fa1Wi15vYMvGz5k2MfqufawMndCUkvbZCH5/IPx+nD59minFM9mzcyNl29azfeNn4UCJTqdjxOgCRowazXtvvsJX73kovM9Ro/P4bPWHWFJSWbL08g6fcyh4MnPeJeHSoXguNLOgfXDRZDJz6+13ceTQAdateS/cFyQ46UNPyczZtLVM7ZexjYmUwfRWkFWIgaK3yzeHC6PJjGkIBjB66qOPPmTlypUApKen88Mf/pDS0hkxn7t06VK+8Y1v8vnnn/PMM3/pv4MU4hwJYAghelV3aunj6e5dJb/f3+t3lRIJxkyZch1/fuppjlTsw+vxhO9AX7vii3z49qucrD5O0diJaPU6DOcyCRrq69mzayttzfXcd++9PVokRU590Wg6Lxew2VrR6g1oNGr0ekOHppEh+YXjKJ09nwmTp6L4FPbt2UFA8aMxGtm9YzMpFguls+Zw+VVX89nqD1i3bh12hytuyUT7/YRKPzxuF3l5edTW1uJ2u0hJSUWr09Hc1Iii+NCoNXg9bgJ+P0aTKZxJ4nI6+PDtV0lJy+DaFbczeVqw38mZUycxG/XsLy9jy9ZtUY09Y4369Hq8bPj8Y7JyRrJw2XJyckcSarTZ3NTIuk8+4IN3XueWL9/J8WOVMYNMsTJ0NBpNVDbClJJZnKypwuVynDt+J++9+Te8bhfX3PgFpk2fgc/rxeNxoz/XGDUQCH5eZ05W89Tv/4eRo/LD19utN99I2e49bPj87x0W3lnZOXz8/tvo9HqWLL2cdsNqwnojsyBWcFGj0YSzRUJ9QULnBLB319Z+T1mPVwbTW0FWIQaK3izfFMNTXV0dv/vd74Dgz8jf/OZxRo8e3elrNBoNV1xxBfPnz2ffvn39cZhChEkAQwjRZ7qqpe9Md+4qeb2ePrmr1FUwZs+ePWTkjOKmL93T4Q601+Om5vhhTlYfw2gyY2ttwemw41d8ZGVlYU5K4q/PrWLhgvkdMge60p2pL1ZrM2qNJmp0ZPs+FACtLc3Mu2QZmz7/O1+4/R6mlc7C7XLhsLfRZmth7NixHDl0gFdfeg6n00HF/n1oNFpOnKgOlq1YUqIWzhqNusN+DEZTsGTEaKSgoACbrZWmhjpGjspn++a1jJ80BY1Gi1ajQWMwhLenKAofvv0qU0pmk5mVE3VN+f0KmVnZLL3iGg4eKI9q7Nl+1Kdao+GdV59n9oJLGT9xKh6PG6fDjsFoQq3WkJaRydxFS2luauDPv/9fxhTmc+89d3f4bOJl6ISyEbZuWstTv/0F4yZORa834HG70ekNfOXehwn4/ZTv3sHB/au48ZYvYUk5P31GpYKUlBSWX3sDa1e/yx233xZ1vc2ZMyfuwruzAEdvZhZ0FVyM7AsS2vdAS1nvjSCrEANFb5ZviuHp9ddfw+PxAHDfffd3GbyIlJyczMKFC+M+3tTUxFtvvcWOHTs4c+Y0LpeLtLQ0pkyZwvXXX8+sWbGnQp05c4a77gqOB//nf/4Xrr76anbu3Mlbb73JoUOHaGtrIzMzkzlz5vDVr95BdnZ21Ov37NnNP//zP0d9LbS9SL/61a86ZJo4nU7efvstNm3aRG1tLS6Xi9TUVKZMmcLy5VezYMGCLt+X5uZm3nzzjXCpjcfjISMjg+Li6dxww/UUF3ecmicSJwEMIUSP3XnnnTidLkwR9fi9JZG7Situ/QrVJ47T3HiW4uL4EyB6Q6xgTKiEorM70E6ngzdfeZHReUUUFI1l1pw54deH/rBsnzkQT+T7nZeX32WAJ9SH4nBFedToyPT0tKg+FH7Fjz8QIDdnJF6vF7fLFV6ItrXZSE1N4fWXV5GemcPSq24gPSOTqmNH2L5pLRlZObS2tmC1NpOXlxeVDdJ+P8GygmBJSGixnpKSwsiRI/nj478gPy+PrNxRBAL+qGDI0cMVZGTlMiqvgLbWFrLO/aHSvmFl5MSV4uLiDqM+D1eUk5GVGy7xMBhN+LxeXE4narUGRfHhcjrIzs5hwqQpzCmdGndRG+9OvtNpp7ammhW3fYXSmXMYPXo0LpcTh9NFWnoGAEuuuIbDFeXnG5u2W1CkZ2Th8SodFtVdLbw7C3D0ZmbBUEpZv5AgqxADhWQWiZ4KBAKsWbMGCF5HV1/d9ZSmRH3yySc8/vhvcLlcUV+vr6+nvr6edevWcc011/Loo492eW3+5S9P8/LLL0d97cyZM7z33nts2LCBX/3q1xQWFl7wMVdWHuFHP/oRjY2NUV9vaGhg/fr1rF+/nsWLF/ODH/xr3MzCHTt28LOf/RSHwxH19bNnz3L27Fk++WQNN920gkceeaTTiWEiPglgCCF67Prrb+izbSdyV0mlgozUZB791sP9/odZvEkpkXegFUXh3TdeYfqseUyYXMyp2moUxR9ecKdnZMXMHIgn8v1WFKXLAI/f7+fE8UqsjXVRoyMtlpSoPhShHhqh4/d6PcHghc2G2+lg4+a1TCmZFdXbwWg0o9VqaWuzkZmVTZvNRm1tLQUFBeHgQ+R+vF5PVBZIpGOVhyjMH82pE4c5e+YkRROmMXb8xPDju7ZtYu6iZbS1tpA7clR4ZGishpUlM+ew4dMPg/tvN+qzfM9Oll4Vfc1qdToCgeBn0mK1kTd6FGlpaaRYzGz49ENmzpwZ9/OIFVA4fPgQR6oKmDVnPgBXXH09Xq+Pk6dOR702srFp5PjfkK5GHcZaePdXZoGkrAsx8EhmkeiJqqrjtLa2AsGf7b11vaxd+zn//d+/IBAIMHLkSFasWEFBQSFpaWmcOXOGjz76kG3btvHRRx+SlGTm4Ye/EXdbH3zwAQcO7KekpITrr7+BvLw82traWLNmNatXr6a5uZlf//pX/Pa3vwu/ZuLESfz5z0+xadMmVq58FoD/9/9+QWZm9N9skVNJGhoa+O53v4vNZkOlUrF8+XKWLbuMlJQUTpw4wWuvvcaxY0fZsGED//M/v+SHP/xRh2OtrKzkJz/5MV6vF61Wy4oVK1i4cCFGo5HKykpefvllzpw5wzvvvI3RaOShhx660Ld6WJIAhhBiwBrId5USmZRy5NAB0jNzwgv/4LQQP+17VkRmDnQ2USNSIgGe3Tu3sW3zev7huz+Jeo9UKqL6UCQnB4MYEBxrCtDYUI/P48Zlt0WdQ4jfr1A64/zkjWSLBbfbhc3WSkpKSof9bN+ygbHjJ0RtIzK1+YH770Ov17N3715WvfACltRM0jMycbTZsDY1kjtiJEnJyeHgRZvNFrNhZXpGFk6Xm/UbNrLs6hXhUZ8H9u7C5/WSlt6xZ4dWq6OluQnF5yE1dUTUdpxOZ0J/0IUCCjt37e7Q2DRe35FQY9NYAYwLHXXY3cwCp9N5rmdI1+UekrIuxMAmmUUiUceOHQ//94QJEzp5ZuJaWlr4zW9+QyAQ4JprruHRRx+L+j0wYcIElixZwjPPPMNLL73Im2++yfXX30B+fn7M7R04sJ/rrruORx99LPw3AMCsWbPQarV8+OGHVFRUUFl5hPHn/s4wmUyMGTOGw4cPh5+fl5fX6RjVP/7xj9hsNgAee+wfufbaa8OPTZw4kaVLl/LDH/4ru3fv5vPPP+eqq5Yzb150huHjj/8Gr9eLWq3mZz/7OXMism4nTZrMpZcu5bHHHj0XEHmVq666iqKiogTeVRFJAhhCiAFtoN5VSmRSyp6yHVF3/P1+JW66YChzINEABiQW4GltqsPpsHcItmg06nAfCmtTAy6ng1O1J/B6PdhtreFxrK+8+EmHrIVQ6cakqdMo37srPHkjJSWVpoa6cAAjtB9nWwuOlnpOVnk4dqSi0yDUzJkzmTRpEs+u/CsmSzIz58ylbOd2ki2W8L5bW1vwedzk5eXFbFip0+mxt9miRn2+9tIqXE4XXq8Hne58YMDr9WBraaaluYmJEydEba+rLIj24mXlxOoHAucbm4ZKdkL6q2+EoiiUl5ezafMWXB4vRqMJl8uJyaDvsjfLQA4uCiGESExLS0v4v1NT0+I+z+/3c+LEibiP5+fno9UGl5XvvvsudrudrKwsvv3t78T9PXDPPfewevXfaWhoYPXq1dx///0xn5eRkckjj3wrKngR8sUvfokPPwxmXe7bVx4OYHRXQ0MDGzduAGDu3LlRwYsQvV7PP/3TP3PvvfegKApvv/1WVADj4MGDHDp0CIDrrrsuKngRYrFYePTRx3jssUfx+/288847fOc73+nRMQ9nEsAQQvRYY2NjuPygfVpeX2h/V6m/99/hWDppZuh2ufB6zt/xb9+vob1E7vjHOt9EAjzx+hVE9qFobm5m9Ufvs3DRpRQWFsQ8h5BQ6Ub7yRvFM+ei+P3hMpnIO/GP/sN3MJlMCQWhzGYzD3/9a5SXl7N+w0Zqq2s5c+okfr+CRq0OB1fiTdtwOh2Yk5LD/zaZzNz65Tt5fuWfaao/iz8QOJcV4UetUpGSmobiS0ZF9Aa7mwURKyun2dp0bj+BqH4gIZGNTUP6o2+Ew+Fg1fMvYEnPZsmV18fMoOiqN8tADS4KIYRIjNN5vk+DMUaJZ4jD4eBrX4tf7rBq1fPh7IbNmzcBMH/+gk5/h2o0GqZMmcr69euoqDgQ93mXXrok7nby8/PDf1ucPn065nMSsXfvnnAm6jXXdAxehIwYMYJZs2azffs29u7di6Io4QDNrl27ws/rbBvFxcUUFBRQXV1NWdmuuM8T8UkAQwjRY9/61iM0NDSQlZXFSy+93PULhtj+O2tm6Pa4MUQs5GL1a2ivqzv+XZ1vrLThRPsVnDlZw4mjFVGdsdufA3Qs3QhN3ghNYTl98iT5BfkoPm/MO/GJpjZHLo5//8c/YTbqyczK7nRkLAQX32aTAY/XG/V1c1ISqWlpmMxmUlPTw4Eg9bnttbZYo7JjepIFESsr5z/+9TGsTY2kZ2Ty6Pd/Fu47EhLZ2BT6p2+Eoiisev4FJkydFfOa6G5vFpCUdSGEGIxMpvMB6vbNNntCURSOHj0KwPvvv8f777+X0OuampriPhavtCQkOTk5mAHpdHT6vM4cP14V/u/Jkyd3+twpUyazffs2XC4Xp0+fJi8vDwj2EwHQ6XSMHz++021MnjyF6upqTp48idfrRafT9fjYhyNpfSqEED1UXFyMzVrPoQP7Ozxm0BtwO4OL2fCi35LS4XmRLrTvQSyhfgVHDuxi7ScfYW1qiHrc2tTA2k8+orJiNz/61x9w9OCe8PMiz8Hr8dDYUI/d1tKhdCM0heXLd9xHTk4WX751BQ8/9AAPf+0hSktLL7iMYMkli6goL+syeAHB7IXFixaFs2Milc4M9uxQa9Roddpw8CJWdkxPsiAis3JiycvLw25robGhHq/Hg7WpMdzYNPw5HCjr874R5eXlWNKzOw1oQbA3iyU9m/Ly8j47FiGEEBdPZMlnS0tz3OclJyezevWaqP9dddXyDs+z2WwoSseeT11xu91xHzMYOp90F7r5oCj+bu83JNT7AiAtLa3T56afmyjW/nWh/7ZYLF3+Ds/ISAeCU2Da2tq6e7jDnmRgCCFED3XWzNBgNBII+DlWeZgkszluv4aQvux70J1+Be2fd+Z0LQf37yU9PaPL0g1rUwOW5CRyc+M3yeqJnk69aJ8dM2HSVPaW7Qz37Ahpnx1zIVkQnWXlRPYdaWqoY9O6T3DYmnnl+af7tW9EaPxvInrSm0UIIcTgMG7c2PB/V1ZWXvD2QmUYANdeey1f+MItCb1uIGUgxOq10c0t9MpxiPgkgCGEEBegs+CA122n6sh+rr3x1k6DF9D3fQ8S7VfQ/nllZWUcrTnFjBkzutxHX51DT6ZexAp6xOrZodPpwyUxvTE9o6tgS6jvyKnaasx6uP+bX+/X8ot4jUbj6e40FiGEEINHUdEYUlJSaG1tZd++fbhcrk57YXTFElEiGQjAmDFjeuMw+1zkcVutVnJycuI+12o9X+4S+brQf9tsrVG9MWJparICwWBJcnJy3OeJ2CSAIYQQFyhecECv1/P0X57hcEX3Mgf6WqILZpPJxPz589lX/ky3sx96W3enXsQLeoR6dpTt2MKrq/5MIOCnoKCQres9vZIF0X6/kXejIDrYct+99/Z7UCCR8b/tdXcaixBCiMFBpVJxxRVX8uabb+BwOFi9+u/ceONNPd6eTqejqKiIqqoq9u/vWF7b3xLNphgzpij83wcPHuw0gHHw4EEg2PR05MiR4a8XFY0BPsPr9VJZWcmkSZPibuPQoeA2Ro8ePaCyTwYLCWAIIUQvah8c6G7mwEDTk+yHvjyW7ky96Cro8dUv38b48ePx+Xy9Oj0jcr8vu4NN0ZxOR7+XisSSyPjf9vqiN4sQQoiB4bbbbuX999/D4/Hwl7/8hTlz5kYtzLtrwYKFVFVVUVNTzfbt25k7d24vHm336PXngwPeds29I5WUlIank3300UdceumlMZ9XV3c2PG2kpKQk6vf4rFmzePbZZwD4+OOP4gYwDhw4EB5JO3PmrO6dkAAkgCGEEH2qu5kDA9FAPIeeTDPpz1Gfof0mJSXhdDoxm0w8/NADFz2Loavxv+31ZW8WIYQQF19OTi6PPPIIv/nNb7Db7Tz22KP86Ec/ippK1l4gEMBuj9188pZbbuHtt9/C6XTyq1/9iv/+7/+mqKgo7ra2bt1CdnYOY8eOjfucnsqIKJc8depU3IkmWVlZXHLJYtavX8f27dv4+9//zvLl0U1KvV4vv/rVr/D5fACsWHFz1OOTJ09m4sSJHD58mA8++IDFi5cwa1Z0gMJub+Pxx38DBJuP3nhj/2TeDjUSwBBCiD52sRbRvWkonMPFHPWpVqsHzHvVWaPR9vq6N4sQQoiL77rrrqehoYFVq1bR2NjIY489xowZM1m4cMG5PhkWFMWP1WrlyJEjrFu3lqqqKiD4+02rPb+kTE9P51/+5bv87Gc/pampkUce+SbLly9n7tx5ZGdn4/P5aGio5+DBQ6xfv47Tp0/zs5/9vE8CGOPHj0ev1+PxePjrX1ei1WrJzc0Nl5ZkZWVhMARHmX/jG99g9+4ybDYbv/71rygv38eyZctITrZQU1PDq6++Eh4Ru3TpUubN6/i78bHH/pHvfOfbeL1efvSjH7Jixc0sWLAAo9HI0aOVvPzyy5w+fRqA22774qDpETLQSABDCCH60cVcRPeWoXAOw1lPp7oIIcRQ4XI6LvYh9IkLOa+7776HsWPH8ec/P8np06fZvbuM3bvL4j5fpVIxZ84cHnroa2RlRWf0LVmyhP/4j5/yP//zS2w2G++99x7vvfdezO2o1eoLahzaGbPZzM03f4FXXvkbR44c4fvf/17U47/61a8oLZ0BQHZ2Nr/85S/50Y9+RGNjIx9++CEffvhhh20uXryY7373ex2+DsGAyU9/+jN+9rOf4nA4eO21V3nttVc7PO+mm1bwwAMPXPgJDlMSwBBCCCGGkYHU10QIIfqTTqcjPT2DHz16/8U+lD6Tnp7R48aQixcvZuHChWzYsIEdO3ZQUXGA5uZm2traMBgMpKSkMGbMGKZOncrSpcs67ZWxcOFCVq16ng8++IBt27Zx4kQVNpsNjUZDeno6RUVFzJgxgyVLLu20aeaFevDBBxk9ejRr1qymqqoKu93eocF2yPjxE3j22ZW8/fZbbNy4kdraWtxuNykpKUyZMoXly69m4cKFne5vzpw5/PWvz/HGG2+wbdtWTp8+jdfrJT09nenTp3PDDTd0Wp4juqYKBAKBi30QQojBqaamJjwqKl5d4VDef38bbuc7FAzkz0xRFMrLy9m8ZWucvibFErwQQlwU1dXV/OIXv+D73/8+BQUFvbptj8fTaUPHwU6n00njZTFg9MX3smRgDAFOpxO3243BII3WRP+62Auyi73//jbczncoGMif2VDoayKEEN0VGnMuhBicJIAxSIXunG3bth6v147ZrMfh8KDXJzF37pIhcedMAjNCCNE/pK+JEEIIIQYDCWAMQg6HgxdfXElurpabb55OVlZq+LGGhha2bNnK9u0b+epX78VsNl/EI+2+4RCYGUwkiCSEEEIIIYQYKCSAMcgoisKLL65k7twRlJR0HDeUlZXKDTfMY+/eY7z44kruu+/rg2bBPxgDM721wB9IgYLuBJE+/fQTXC43RqOByy+/ot+P9WLvv78Nt/MdCuQzE0IIIYToPRLAGGTKy8vJzdXGDF4AOJ1u3G4vEyaMprq6gfLyckpLS/v5KLtvMAVmeitLJNZ22tqcqNVG5s5dzKxZs/v9HLsbRHrqqadoaGggKyvroizOLvb++9twO9+hQD4zIYQQQojeIwGMQWb79vXcfHP06B1FUdi/v4pt2/bj9XrDC2q/H/btOz0oyi66CsyElJSMvaiBmd7KEonczooVxRgMapqbm/D7fbS2Oti27X1efXUVt956J3PmzOmXz68nQSQhhBBCCCGE6C8SwBhEgl3i7WRmnl80OxwuXnppDbm5Sdx880yyslLCjzU0tPLWWzt4+uk/ctddDwyYsotYYgVm4lmwYBJvv72h3wMYvZUlErmdadMKOXmyBr9fxYgRFvT64LdkSUkhO3Yc4733XmTPnu3ceef9ff759SSIJIQQQgghhBD9RX2xD0Akzu12YzafH/ukKAovvbSGuXMLueGGWVHBC4CsrBSuvrqUOXNyefHFlSiK0t+HnJBYgZnOZGWl4vG04XQ6w69vbm4O/7uvdGeBn5urjbvAD21n+vQxnDxZQ1qagdzctHDwImTOnLHMmVNEVhb98vlt376ehQsnJfTcBQsmsX37hj49HiGEEEIIIYSIJBkYg4jBYMDh8IT/vX9/Fbm5SZSUFMR9jaL4KS0dx6lTzQO2H0b7wEwiDAYtu3eXUV6+q9+mlfRWlkhoOzabDYNBRUpK/MyKBQvG8/bbu8nNze3Tz6+nQaRAINAnxyOEEEIIIYQQ7UkAYxAxmUzo9Uk0NLSQlZXK9u0HuPnmmXGf7/H4UKu1aDSai1Z2kYj2gZmuOBwuDhw4QlZWUr9NK7mQLJHIqSKR26murmLECEsX20nB4/EwY8YYPv647z6/ngSRTCa9BDCEEEIIIYQQ/UZKSAaZuXOXsGXLIZxONx6Ph8zM+Atgq7WNtLQMoGPZxUASGZjpiqIoPPvsByxfPp2bbloQFbyA830o5s4d0StlF6HylJaWlh4t8D2e6MBMKFCgKAp+v69D2Ui87Vgs5oQ+v1jlNImU2HQ3iBTcrgeVStWt1wghhBBCCCFET0kGxiBTXFzM9u0bKSur7HRB3drqwO0OkJNzPsARWlBHZgQMFMHAzFZuuGFep8/bv7+KlBQdCxZ0XspxIdNKYo03bW110tBwhtbW2VgsloQW7k6nB70++jMKBQr8fj8aTWLxw+B2tHE/v9jjWF20trrRajUkJ+swmw2dlti0z+7pSkNDC3p9co8CGE6nE7fbjcFgGJDXohBCCCGEEGJgkgDGIKPRaPjqV+/lueeepr6+EY8n+i6+x+PDam3D7Q4wenR+1AIz1oJ6oAgFZvbuPRazSabT6cbt9vLBB5u47rqZWCydl15Az6aVdDYm9Q9/eJ2TJ2tISkpi9Oj8TntshBb47RfooUBBU5MNRfF3eTwNDa3o9XpMJkPMzy/W8YYm04wencykSSOjjrezEptYQaRgpogftVoddb5bthxi7tzFfPLJ+i7PIbSd9kGWyIDKuHHj8Pl8EtQQQgghhBBCxCUBjEHIbDbz0EOP8L//+19UVJwmNdWIRqNGUfyo1VrS0jLIzDTj9wcXyKGFa6wF9UARCsy8+OJKqqsbWLBgEunpyezfX8W2bftxOJx4PD6am1vZuvUYYGLatKJOgwjx+lDEY7fbefbZPzNv3ijmzu04jWPJkhkcPVrNpZdO5uTJGvLzC+NmIIQW+LHMnbuE7du3UlKS0yEA1XE7lcydOzXm5xdrrGvkZJpQc9fWVkf4eDsb9Xo+iHSUoqJsmpub8Pt9Ha6t48frOXvWx3XXFZOeHixRCv1/LPGCQoFAgKqqk3z66ds899wpJk8eh9fr71Yj1kT2PxSEslbS0tKAoX++Q8lwuUaFEEIIIfqDBDAGKY1Gw/LlN1FdvZXi4inhu+R2u53m5iaamuqiFp5btlQxZ87Si33YnTKbzdx339cpLy/ntdc+pbLyEFOnjmD27CIyM9NITk7Bbm/GZNKxZUsl27dX8JWvXInZbIy7za7KZiIzA5qbz6JWu9mxo4m9ew8zd+7UqCDJ2LEj2bhxL8eO1TFyZBo2m42UlJQO29y791h4gR9LKFBw8mRwCklublrM5+3de4KzZ+1ce20RH364s0NAJNZY19BkmmnT8vB6FdTq4JQTp9MTdbyxSmw0Gg033/wlfvnL/6C4OIcrrpjOqFHZ4W2fOmXl7bfXUl5ex/e+9+9oNBr++Mc/xnnnz7+/sYIsXq+Xs2dPYzarueuuSzh48CTbt1fzta9di9XalnAj1q72P5hFXptudytGo45p0wowGouZO3cJiqL0+qQd0fuG8jUqhBBCCNHfJIAxiIUWwvv3n2DatEJOnqzBYFAxYoQl6q7+jh3HOHDgOC0tWiZOnNRrkzn6gkajCZ/XnXdeybRphajVwV4RPp+PlpZGsrIyueGGWezde4KXXlrDvfdeG3ch11nZTPvMAIcjL/ze1dY2smnTYTZt2susWZPZu/cIXq8XnU7N88+vZ/LkkZSWjmXOnBnhLIxgecYhzp71cccd98U9plC2yQsvPEtFxXEuu2wyY8bkhh9vaGhly5ZKzp6189WvXsX+/SdiBkTaj3VVFIW//30ry5dPoaamDo1GhaIEUKtVJCWZsFobowIu7UtsFEXhrbde4fbbl6LRqPjww33ngj/68Ps4d+5Uioun8Oabf4vK3oh+z8/3uDh8+DC5uVqmTx9Da2trOKvD5/OgUoHbrcXl0jN9eiHV1Y3s319FScm4uFkiF1N/9u5wOBy88MKzpKR4mDs3m9TUEeGAZEuLi4MHP2Pbtg3cccd9A/r7WQghhBBCiN4kAYxBLHIhvGNHOZddNpnc3NgL4e9976scOXJyQC0I4wllFpSWjsNms0WVMjidLlpabJjNpg6L3vY6K5tpnxmgKAotLWc5eLCWbdsq8Xp9mEx6mpqaeP75D7n11gUsXjwlvIjctOkQr7++iXffLaOoqAC3W0GvT2bu3MVcd13XpQ9ms5n773+YXbt28uSTz5OcrCY3NxWfzx8OFMydm8Enn+yJGRBxOp04HK1oNBqcTjeBQIBVqz7G5XIyefKoGH1R7NjtbXg85wM67UtsQu/7zJnjASgpGXdu2o3vXBNRQ3ibJ082RWVvxOtxceJELdddN5uqquOYzRpGjLCgUoHf78Vg0IWPrbm5jblzx/Lee3vDn+WFNGLtLV317kikzKUn+3zuuacZM0ZDaelY0tOTO3yeI0ZY2L27lueee5qHHnpkQH8/CyGEEEII0VskgHGBLvZEBbPZzOzZC9m27UM+/fQQHs++DnfMr702WAbRlwvC3nwftm9fz403TqO6ugqdDrKzkzGZgovu1lYTDocDo1GLy+Vl/vzxvPPO7pgBjM76ULQvv2hrc/L++zsYOzaHm2+eTWamBZcrOMWjsvIM+/bVsnLlZ3zlK4sxmw0sWTKFoqIcTp50smtXHffe+w2SkpK6dZ4ajYa5c+cxa9Zsdu7cyfbt61EUNyaTiY0bK2MGREIL6g0bPqGx8TRvv/0ZbW1uqqvruOqq6RgM/g49NfR6Lbm5qajVKk6dqqWwcEw4aySyxKZ9RkfwcUNU4CIkMnsjXo8LRVHYu3cfx46d4cCBw9x99zL0ei1OpxODQRt1bK2tTpqbnXg8bpxOd3ifPWnE2ls6a+jaWTPUC7Vv3150umYWLJhLSkrH7QbfszQWLtRz8uR29u3by4wZM3tt/0IIIYQQQgxUEsDogYtxV7Yzu3Zt4rbbFpOZmRr3jnlIby4IY9Xou1xejMaUHr8PDQ0NNDSc4v+3d9+BUZXp4se/UzOTOulASAg1QCAIGDoIKCKICnaxr+uuu+793d3VbddddYtlLatb7lqurlhRF1cBG1IUaYEAQkggCSGENBJImUyS6eX3xzBDhkwKkEZ4Pn/hnPaeOZNxznPe53lqagyEhChRKtVUV9ehVCowGCIID9djNDZhs3lnSISHa7Db7QE3vdBxHYqWN+sul4t//3sT06aNYMoUbyDEVz9Co1ExfHgiYWE6jEYzK1du5Z575vlnYmRmjqamppmioqJzfk9VKhVTpkxhypQpWCyWgFkSNpvNH2BoeUN9ww2XYLGkkJoaT05OCcXFEYwcmUBu7jE8Hk/Q4qJhYTpcrsBaGL5Al/e4zcTGdtxCFU7P3nj22Wc4eDCPwYOjuO++7wWs43a7MRhCWbLkEnJyynjjja+5++65KJXetJaWIiP1WCx2XC43drvTfy07KsT64osvYDI1EhkZwU9/+rMuC6R1VNA1WDFUu93eJcdev/5TliwZHjR48eKLn9HYaCEiQs9Pf3o106cP57PPPpMARh925mdUCCGEEEKcu34bwOiumRG99VS2LWfeeLb1xNznbDtztKUrc/R9gZBt2zZRUHCQxMRQBg6MQKfToFarUatVOBynUw0GDIihqqoOi8VOaGgIGo3Sf9NbXn6S7dsPUV8Pd999f6u0C5vNm27R8j3LyythwIAIxo9Pwe323lx7W3pqAO8Tb7fbTXr64FMpK6WMHj0YpVKNSqXq0qCQVqulsLCwVXBMownl5Ml6rrpqrD/Fo7TUhN3uJDu7yD9rJCRETUVFLUlJcbSMYbjd3qBGTEw4VVV1REZGBqTYGI1GQkPPrsWuXq9l48YtmEwmrNamVss9Hg95eaV89VUdbrcbm83Oyy9/SUSEnunTR5CenoxKpfSvHx0dxsmTxlYzSNorxLpz505qamqIiooiLExzXgHFsyno6pOePoQdOw7x/PNPEh6uPe9gpsViobHxJMOGzQi6fNeuw9TUNBIX520jPHz4ABobd53337PoPr7PaFxcXG8PRQghhOg2VVVV3HnnHQA8/PAvWLhw4TntZ926dTz33LMAvP32OwwYMKDLxij6h34VwOjumRHBOiq01F6Lyu5is9nO6cazvc4cHenKHH1fQCg+XonbXc/tt09n164CDIYwPB4PDocTq9WJTqf1pxpUVdUxeHA8TU0WampMHD5cyT//+Sn19Ub0ei0JCXEolRreffd1Jk2agcNhZ/fu7Xg8VsLD9ZhMZiorK8nJOUJ6eirZ2QdZunQiarUGh8OBVqvG4wGlUoHFYsdmc+J0unC7PUybNoLVq/eSmGjAYPC2RezKoFBbwbGjR8vZutXI3r35pKUNJjRUh8EQw/HjJ7DbncTGem9oZ84cRXb2URITo9FoTr/nDocTtVqDRqPG7XbicrkCUmxCQkIwm+2dGqfFYsNmc9DYaMHhaL2Nx+PhxIka3n9/A4MGRbJ48QRiY8NxONzU1JgICwth9+6jZGcXc9ttMwgN9QbcTCYLFosjyPHaLsTq8XgAcDrt5xxQtFgsGI1G1qxZxaBBIa0KuvpqyZzZ9cZstrJy5QYSE3VMmzaACRPGnfWxz9TQ0EBIiKrd1rotabVqtFolJlODBDCEEEKITrDb7TgcrX9v9BcajabN302d4XA42LJlC9nZuygoKMBoNGI2mwkLCyMxMZG0tDRmz57NJZdM9BfaF6In9ZsARk/MjAjWtjKYniw+eDY3nj7t3RCeXqftGSxdlaPfcpp+SIgapdLCpZcOZ+/eImprvU+ZQ0I0OBwurFY7Ol2IP9Wgqcnibw9qMlmYNm0wM2YsIDHRG1TweDzk5x9lxYqXSEmJZdasMURFhaFUqomMNFBcXEJpaSk7duRiNptRqZQ4nW4ArFYHBw+Ws2/fMRwOF6GhWurqmgkP1zF16nCam62YTHYSEiL853I2QaFg721HwTGVysktt8wgP7/C33klIiKCsrKKgJvd9PRkdu48wr59JWRmnk6Hcbvxr6dSKdm//0hAio1er0erDaOmpiHgb8fH5XKRl1fCrl15OBwO1Gol1dV1uFzOVuuVlh7js892ctllaYwbNxiFwntMt9tNdbUHi8XBVVdlcPBgBStXbueeey5DpVKSlVVEXFxkQApJR4VYzeZm//t/5rh9AcXs7AL+9a9XuPfeH/jrlASmPzVSVlbOvHmjGDMmAbXag9vt9L9fcXGRrbreAKxcuYHMzCFkZKRQUnIyoK3p+QQz7XZnxyu14HA4gdYpQ0IIIYQIZLfbWX7Hchrqjb09lG4TFW3gvXfeO6cgxpYtW3j11VeoqqpqtcxkMmEymTh8+DCffvopgwcP5oEHHmDq1GldMewLxltvvcnbb78NwPr1G3p5NBenfhHA6KmZEcGKHLalK9IKOpMG09GN55mC3RD6jqNWqzly5EjADJamJgtKpY7MzFlMmjQZlUoVkKPvnaHg7SjhK7TpExkZ2ipHv+WNY01NJWAhK+skFRW1LFkykaYmC2lpA9m+/TDXXjsJAI1Ghdvtxul0odGoiI4Oo6qqgYiIUD77bA+Zmd62mxqNxn+M0tJjbNy4k+XLpzN0aAJGo4Xk5PhTqSgN6HRqpk4dzp49R/j008N8/HEWVqsDUNDQ0MyYMYO47rpLiY+POJX+4KSpyUZW1mHKymoJDTUE1JnoKCjU0ewgj8fdZnDM5XL5b6gzMgI7r6SmprJ+/V5sNgcajffP+eabp/HGG5s5fryBSy9NJTo6Ap1Oj0Lh7Uyzbt1+3O447rrr+wF/B5mZs8nK2smSJVMCjn96pkEYS5dOJC4ukupqI3a7lp/85O+nxujE6XRSWVlOdXUtqanxTJgwBLfbBXAqNUeJXq8hLCyEiop6xo1LPnUuZYCC6moTYWH6gIBMR4VYz6yl0fI9axlwsdls/POfTxMdnciECVP47rtdDByoZenS8VRW1lBaqmPhwkuw253U1NTjdNrxeAhIw2n53gMkJoaRkZECnA7QnPm9crbBzKioKMxmJzU1JuLiIjtcv6bGhNnsDGiPK4QQQojgHA4HDfVGrn/i+2h05z5Loa9yWO3855HXTs0oPrvze+edd3jzzRX+/540aTLTp09nyJAhhIeH09hooqysnKysHezdu5fy8nL+9a83ujyAsXDhwnNOPxEXh34RwOiJmRHnWuTwbNMKziUNpq0bz2B8N4RnHkejUZKff4SxYwcxf/5EYmMjaWiox+12YjKZ2bXrM/7977e55pqbMZlOYDYn8dprG3A4nC3GqCYzcwTp6Sn+2gYtc/Q9Hg/vvPMv3O4GHA4rOp2DqKgILBYHBoOOLVsO8vHHOxkxYgBHjlSj06mZNm0kERE6NBo1NpsDpVKBQqE41co0n9LSWu688zL/FDaPx0NFRVnATbT3+tlpbDQTGRlKXFwkJlMTzc3NzJ07huZmCyNHDiA9PZmXX97AtGnDGTo0AYMh9FS9DBdKpZKYmDCuvnoSGo2GTz/dzve/vwSVStXuLAHo3OygrVtz+fnPlwXd3ntjfHqKnjeNxdt5JSxMT1hYOOXlRhQKD+BBpVJyxRXjOHr0JB999B1qtcrfmcbjUdDQoOJXv/pxq8/RuHHjyM7eRk5Osf9vyeVyBcw0ADCZzNhsHuLjYziVwYFCoeDo0WIiI0PIyytl6dLJ/pt/pVKB2+3B5fLgdLqJjNRjtzsxmSxMmjSEV1/9huTkOBYunMC6dQf9sy9aFmINFszLzt5CSIia5uYz3+/WARe73UlVVSN6vYG1a7/EaGzi9tuvJzRUx+rV37J0qTfA5ps9VFJiwWq1+AM/Z773gH8b7/vkbnMa5dkEM/V6PdHRiWzdWsDSpZkdrr91awHR0QMkfUQIIYQ4CxqdFm07NeMuNl9++aU/eGEwGPjtb38X9HfLpEmTue666zh69Cgvv/wSRmNDD49UiH4SwOiJmRE9UWviXNNggt14BuO7IZw7dxhvvPGK/zjR0eGsWPEFd901k7S0gVRX11FV1UBKSqJ/VkVGxhB27y7m3/9+j6amRior61i6dLK/mKB3jI2nagUc8bcb9eXo19fXs3r1v2lsrGDMmIFMnZpBWJgavV6DxWKnrq6R7747Rn5+JeDh0UeX8fbbW6muNjF+fDKpqXHU1TWjVCowmSxs21bIvn2l/OQnV6FWa/w3442NjYSEKPw30T4tZ21UVNSQmBiFRuO94Zw6dThffJEDwJAhcVx22RhMJguVlfUMHGjA5XKj14egUChwOJyMHZuE04l/FkR7swSCzQ7yzqjw3vDGxUVx+eUTyM8/jNXagMdjaNVBRKn0Fkf18d6QezuveDweamoa2b49n1tume6fhWGx2Bg5cjBGYzMmk53Y2ET0+hA2btxPSsrUoDOQVCoVy5ffw3vvreDIkSomTEilttbkn2lgtzupr2/CZvOQlJSMSqU6I0hhR6PRB9TkUCiUp85Vgc3mOBUQ8qaIVFTUnio6q+W66yazY0cxmZljT33WCygrMzNmTAavvvp3PB5bQDBvwoQpWK2NrYIGwQIu4CvE6kSjgauvnkB1dQMrV27g1lsvx263+8frfR+UaDRqnE4XTqfT/5763nur1Yrb7fFvY7c7/QVdgznbYOZVV13L6tVvMmxYYsA5nCkn5xj79pVx3XV3d7hPIYQQQohgampq+N///QcAOp2O55//Cykpbf/+ABg6dChPPfU0mzZt6okhChHggg9g9NTMiO6qNeFzPmkwLW88S0trmDYtLUjwo4Dqaie33noX77//VsBxcnKOkJgYxvjxKVitFgYONGCx2Dl50khycoL/JnXixFTWrNnFtGnjWLQoA6VSdcYYI1iyZCI5OaUB7UYdDicFBflUVRVz/fWXkpHh7fZhs1mwWu1oNCoGDoxm8OBYhgyJ4z//yebw4SoeeOBy9u49yptvbiEyUsegQdG43R60WjUpKbHYbE6io3VYrU5//QGjsQ6DISTgJhp8N7AeGhqaCQlRERmpx+XyYDZbiYmJwGy2sX17ITfeOAVQEBmpx2y2YTQ2ExcXicfjxuOBurpmDIaIFk/iFe22a/XNDho/figmkwmjsQ632+nv2KJUqlEoQoiLiyQkRBHQ4tRHpVKhVKr97XGBUzMqbHz88bdcddV49u49Qn5+pf+9dbtBo1ESFxeJXm/FaKyjrMzV7lhdLheHDx/G7XZy5MhJCgqKqaszkpAQiVarYuTIwcTGxhEfH05TUxNGY50/hcPlcqNWK7BabQGpRAqFd/aFd+aHhbi4CPR6LTqdt2POoEExREXp2bz5IJs3FzByZDNNTS4UCg9mcx1NTeVoNGoiIsKYOHEE6emp1Nc3sW3bbsrKyv1FPH3y8koCUjsC30clRmMtgwYZSEw0UFpay/79R4IGJg2GCJqbzajVqoAABkBIiCYgoFRf34TBEOMvbupNpwp8qnM2wcwJEyawc+cw1q07cOrveUSrdBKLxcG6dbkMGDC82+vsCCGEEKL/+uijj7BarQDcffc9HQYvfJRKJVdccUW76+zZs4dPPvmYgoICmpqaiI2N5dJLL2X58tuJj48Puk1HXUgeeujn5OTkkJGRwfPP/4WamhpWrfo3O3bsoKamhpCQEEaNGsX119/AlCltz053uVxs2LCBr7/eRHFxMY2NjWi1WgyGaBISEpg4cSIzZ85kyJAhrcbls2BB6/NvOeYzx1peXs7HH3/M7t27qa2twWazBaxfW1vLtm1b2bdvH0eOFFNXV4vL5SIyMpJRo0Yxf/585sy5rM1Zv/v37+Phhx8G4LnnnmP8+Ay+/PIL1q1bR1lZGQ6Hg0GDBjF37lxuuOHG8yr22psu+ABGT3Xh6IpaE+053zSY0NBQ7r33h+Tm5rJ69Rbs9mZ/2oBWG05m5iwWLx4X9Di+LhxOpxOl0ltzQqPRB6RdAOTllTJx4hBGjEjA4XCi1SpbzRbwjjHF32500KAYzGYn3367iQkTBjN+vPdL0ZcGotEo0WhUuFxuPB4PGRkpHDlygq++yiEjI4WcnDLuvXcOUVGhOJ0uEhMjUalUFBZWUVlpJDo6HKdTQUVFGYMGDcbtduJ2a4N+JlQqBUZjI4MGGfz/rVKpUKs1eDxgNtuJjg7H7fbenEZHh1NZWU9UlPcpfGOjBbPZRkJCDE6ni+PHa9mxo7xVu9aWsrO3cM016ZSVHSMkROHvbOFjtzs5frweo9GEwRBGdXVd0HoGBkMM9fX1JCZ6x26x2DlypJLExDAmTkwlLW0g7723hfz8SkaMSCQ6Ohy1ugmXy0NDg5ndu49SW6vh//2/h4OOteXsn2XLJhAXF3WqlkgxYWEh7Nx5hE2bDnLzzfMpLi5mx46DHDhQ6i842dxsY82avUyePJTGRou/foTH423f2tBgxmy2ExcXgUKhQKEAtVqJ0+mipqYJm01JevoIamrsjBwZTXJyKAkJo9Bq1f5zyM8/zK5deSxffiVLlkwlJMTBSy8dPeP9PhiQ2tGS0+mtx+F7/6dNG8FHH+3x1+loKSIiFKOxicbG1mkkNpsDt9sbOKmvb+LAgXKOHt2P0+loMUtEG9B69WyCmSqVirvvvp933vkXFRUNfPDBLpRK7/dWU5MN8NYUMRhSuPPO+7q905EQQggh+iePx8P69V8B3tkXixcv7rJ9v/76a7z//vsBr1VVVfHpp5+ydetWnnvueX9w4Fzl5uby+OOP0dBwOpXFbrezZ88e9uzZww9+8ANuuunmVttZLBYeeeR/OHDgQMDrTqcTs9lMZWUF+/Z9R1HRYR599LHzGqPP9u3beOqpp/zBojO5XC6WL7/Nfx/SUm1tLTt27GDHjh188cWXPP744x3eYzocTn7720fIzs4OeL24uJji4mI2btzIM888S0xMzLmfVC+54AMY3T0zoqVzqTVx+pjtF+TsijQYlUrFhAkTmDBhwqmZKd7zbHm8M49jsdj8U+gtFgshIac/Er60C18AIzu7iKVLJ3PihIm6umYSE9VA8JsnX7tRg6GKpiYrZnMpmZnXYLGYUSgUp4IGHtRq7/a+J/UqlYLZs9PYseMw3313lISEKMaPT8Zud1JRUU94uJ6qKiN6vYamJhsqlRKlErRaBSaTCZVKSUiIJuhnwtdlpGUAwXdjarc7iYjQ43B4C4WqVMpT+1bgcLiprq6jqcmKVqvm6NFqNJoQDIZYbr75jja/QLzXoAmrtQGDIaTNji1DhsQTEqLh5Ml63G5FQDcLn4iICIzGOkwm86mZGFpycg4H3Kx7PFBb20hVlRGNRt2i7oUHUFJTU9dqxgK0PfvH7XajVqtISIjimmsmsX//MV56aRUnThiZMCGFn/50IQ8//B41NY2EhmqZN28sxcXVlJbWcOzYCYYMScBms9PQYMFudzJoUDR2u9Mf3GhutnH8eAN1dc1ER0dy+PBRZswYyeTJgzAYQomMDA24PgMGRLFvXylvv/0l3//+NYwdOySgiGfLz/KZ7HYnCoWKlm9rXFwkbrcLpVLVqmimQgFJSXEUFpbjdiuIiTndUlWn02G12vnuu6N8++0hhg0bwLJlEwO2b9l69corp5xVMBO8Acn77vsRubm5ZGdvwWw2YbWq8HUb0Wp13Hffj/pk8KIzxYeFEEII0ftKSkr8N//jx48/506NZ/r88885eDCPjIwMrr56CYMHD6apqYkNG9azfv16jEYjzz//HH/729/P+Rh1dXU8/vhjKBQK7rvv+4wbNw6NRk1ubi7vvPMOTU1NvP7662RmTiE1NTVg27feessfvJg2bRrz519OQkICWq0Wo7GeoqIisrJ20rLL28yZMxk1ahRr165h7dq1ALz66v+1GldcXFyr106cOMHTTz+NTqfj9tvvYPz48SiVSgoKClr9VrrkkolMmZJJaupQDAYDZrOZ48eP88UXn3Pw4EH27t3D3//+N375y1+1+/6sWPEGBQUFTJ48mWuuuZb4+HhOnjzJmjVr2Lt3D8eOHeN3v/stf/vb3/vk78n2XPABjO6eGdHS2daaWLhwDPv37++wIGd3pMHo9fpWy4Idx2bzPjX2eLxR2JY3hL60C5fLjd3u9KdlmExWTCYLer0WgyGcIJMwiI2NoLbWREFBJQsXTuK77w4xeLA3wud2e7DbA/tvKxQKPB4PbreHuLgIQkO1ZGUd4bbbpuPxgFqtwuOBqqoG6urMJCXFERGhp6nJSlRUKHq9CqOxAY/HjV6vPXWz2eiv0eG9gVWgUgUO1uOB6uo6IiK875VKpQq4ybbbXVRXm4iNjWLQoHhsNic1Nc2kpKSiUrX+0mnJZrPhdjsICVEEDV60NHNmGtnZR7jkkmFBu1koFAqSkpKpqChj8+YDpKYmUVh4lNjYCFwuN++++y0TJw4hPT0ZnU6P1Wr3p5z4Ujq+/HIfK1a8wi233EVoaKh/7G3N/jmz9saoUQN5993NXH31BObNSwdg7twxNDVZCQ/XERYWwsSJqWg0al56aQP33z//VJ2PcBITo/yzdTweD2azHbfbQ0FBJcuWTSEiQoder2TevDGEh+twudxYrTZ0Oi0KheJUcc0opk8fQUXFLg4cOMKwYQOYOnUkR4/WMHlymv+zHIwvzcNorAl4Xa/XkpY2lKysIpYsmRSwTKVSotPp0ekMVFUZcbudbNqUS2WlFaVSx0cfZXPzzVPJyGj99KBl69XXX//snOpUBAtIejzhWCxWIiLC+9T/bM6l+PDFYt68eTQ2NhEREd7bQxFCCCECFBcX+/89cuTILtvvwYN5LF68mJ/+9GcBs7UnTZqEWq3miy++4NChQxQVHWbEiHM7bnl5OYmJibz44l8DggZpaaNJS0vj5z//OS6Xi88++4wHH3wwYNvNm78BYPbsOTz66KOt9p2ZOYXbbluOyWTyvxYeHk54eDgGg8H/2tChQzs11qqqKmJjY/nb3/5GQkKi//UxY8b4/61UKvnXv94gKSmp1fYTJkzgqquu4s033+Sdd95mw4YNLF9+O4MHD27zmAUFBVx99dX89Kc/8782atQoZs6cyfPPP8+XX35BYWEhn332Kddee12nzqOvuOADGHB+MyPOxtnUmli27Bbeeuu1ThXktNvtPZIGEyzdxjdbwTvVP9g5K07Vqzh9c6hQeGe+nDzZiM3mIiYmLGBWg83mpK6uEYvFTlJSIpmZY8jLO+xfrlQqTgVH3P6ghVKpQKn0Fnx0uTyn0gvcxMVF4PFwasq+B4vFQVpaMiqVkilTRpy68ZyITqfG6WxGrdZgtzvJzDy9DKC+vhmDIRyjsck/Du8+FezadYSZM0eTnV1EQ4OZ2NgInE4nDoe32KZOp8VobMRkasJgiMDtdlFdXddhICwkJIQTJ04SHd3xjcvIkUls21ZAbu4xUlKGB11HpVJRX++iqkqB0VhLY2MTZWW1HDpUTkxMOBMmDEOtVqNQeD8fvsCFxwONjWaGDImhrOwwr732AhEREf6by127vmXZsoygx2tZeyM7u5DMzGEMH376i/cHP5jv/7cvTWTRogkcP24kO7uYpUsvbdVeF6C8vJa6umbsdjczZqTxwgtrWLJkIpGR3vdTo9HgcLiwWu3odCH+z2ZkpJ7p00fw2We7eeih21i+fC4ffriNO++8EiDozBtf15SEhChMJmNALRGLxc748cP44IMScnJKA2pn2O1OVCo1BoMBg8HAd98dxm438POff5+iosPs2bOW1NTg+Zs+qanxpKTEttnutbN8Ackf//jBjlfuYedafPhi8YMf/LC3hyCEEEIE1fIG3WCI7rL9xsTE8uCDPwmaan7TTTfzxRdfAHDgQO45BzAAHnzwJ0FnPIwbN57Ro0dz6NAhcnMPtFpeX18PeGedtKcr29Tfd9/3A4IXZ/I+rGwdvGjpjjvuYO3aNTQ0NLBjxw5uuummNteNjo7mgQd+FHTZj3/8Y7KydmA0Glm7du0FF8AIXgHkAjNu3Diqq53k5BS3u55vZsS4ccGLGHaGr9ZESspUVq8+wEsvrWPFiq956aV1rF6dS0rKVO666/t8/PEHZGYOYMmSKa1mhvgKcmZmDuC991ag0QRPeWjPuaTBBEu30etD0Gq11NY2EiS7AJfLG1zwBTq8HReUpKQk4HC4sVqdVFQYOXr0JCUlNRw9epKKijrMZjsuF9x111VER0dgszn99RLgdOqGL3XE96RfqVTicLhOPb1VYTbbMZttOBwuQEFycqK/pWh6egrV1SZyckrRaNS43S4iIgzU1zcFLDOZLNhsLqKiwlEqFf5xOBxODh2qpKKinvT0FDIzR7BjRxFWq83fOSM0NISUlFhSU+MYMCAKi8XbXnP79kOtAmEWiwWj0YjFYmnxmgOTyRz0erjdHo4fr+PgwWMcO1ZJRkYSn3yym5dfXkVeXmFADlxNTQOffrqL3bur+a//eoj77/8JUVHxDBiQzLFjRubOHecvNuktmum7fm7Kyk5gsVgYNMjA0qWZxMaG8KMfLeS668Zz5Mg2ysqKMBjCcblcOBwOXK7TNSG8tTea8Hhg796jzJ07OuB6BX6+NNhsTsxmO9dcM4ns7CN8/vk+TpwwBaSuHDxYwbZthRQUVLF8+WzsdieNjRaGDUsI+AxqNCqUSoW/doXP8OGJNDY2YbXaSUpKxuHw8Omnu2hutqLVaqmp8f7P2G53Ul1txGi0kZSUjEKhIDLSQE2NCZfLTU2NCa1WS3h4KLfddgXZ2cf49NO9/u19szZ87/3evSe5554fEh4ezu7d21iyZDZGo43qamPAZ/vMY1999Sx2794e9DNwoWuZftTed92kSfGsWPEqTU1NbexJCCGEED3NbD79G1Wn03XZfufMmd3mfUpycrL/AeDx48fP+Rjh4eFMnTq1zeUjR45q8xi+ug/ffPNNmzUpupJGo+Gyyy47q23cbjc1NTWUlZVx9OhRjh49SmlpqT9gU1x8pN3tL7vssjavqV6vZ84c73hKSkqoq6s7q7H1tn4xA+NsZkbcfvu95z2VuaNaE/v37z+rgpxFRUU9kgbTVrpNZuZYdu4s4vLLx/hnQ4CvPaQClUrpT8s4cqSapKR4XC434eERaLU6jMZaFAqPv7NGy2BDdLQ3hSMiIpwjR6oZM8YbWfQVcvT++3S7TYAjR6oJCdFis3mLZ6rVKpxO16l/n465qVRKbrttFitXbqW0tJa4uAiGDBlBVZWJ5mYrV145gddf30RKSixXXz0ZhcLbXaK+vhm328P27Yepq7Nz5ZUTUamUjB2bwtdf55Kfb2DixFSqqxswGE4/MfalMRw6VMGOHQUsWXJ/u1Pnx46dSGxsTND0BLvdSVFRBZGROoYNi0en0/Dpp9/xgx/Mp7nZybvvbsTpXM/IkSNxOj0BhVh9n1+dLpLqaiNOp4PISD0Wi8U/k8YXCDhxwkRMTBjh4TpsNidRUXp/C9a4uCjmzEnnyJFiCgsPodfrArqjGAwxhIeHYzTWUVVVj8fjIT4+Cqu19lS9ktPn43C48Hg8DB4cS2VlHVqtmoSEKBQKWLlyO263B41GRV1dM9XVRm65ZSYzZ45GpVJSVWUkJERzKggVGBjRaNTYbA40mtMH87bmVWMyNZOYGIPBEEdq6lRWr95FZWUza9bsYf78cf5ziInR09DQQGNjAx6PC6fTTkmJhc2b84mJicflchEaquOeexaRl1fC6tX7qK834XB4MBji0GojAt57XypWQkI0Ho+BxsZGqqpad5cxGGJISPAWLT2XzkcXgvaKD3s8HhobGzEa64iOVhASYuQvf/kTgwYNvujTSoQQQoi+oOXMyK68kU9OTm53eXh4OBaLBYsl+EO+zkhKSmqzGwd468cBAQ8WfRYsuJJ3332HgwfzuPPOO5gz5zImTpzIuHHjAlJEukpSUlKnHjx7PB42btzIl19+QX5+Pjabrc11GxpMbS4DGDUqrd3lo0ensWaN999Hjx69oIp59osABnS+C0dX/2AOVmviXApy9lQaTLDjpKenkp19iPz844wdO5CQEA3gS7s4XRAxJiaSHTuKuPfeIVRV1eNwONHp7AwfPhCNRu1/yt7Y2MiaNXuoqWnCbLYSGqrjiisuZceOXJKSYvxpAmq1GqfThVqtQqFQoFSqaGiwkJV1hMWLZ7Bjx35MJm/rzTPH4hMaGsI998xj+/YC3n57G7t2nUCn01JeXoFKpWDevEuJigrj009zsNvtqFQKiouPExam45prZrN06XAqKsqw251YrXauu24yGzfmcvhwNWlpAwNSCmpqGtmx4zDFxTVMmzaG/fv3sX//bv/U+bAwnb+NZnOzle3bD3DiRA0GgyYgPcHt9lBUVMGAAVHExIQBkJNTSnV1A5ddNpbw8HDmzx/HN9/ksXbtAR5//M9Bp7BlZs5m27ZvUCrdp2ptqANSFRoazISEqAgL02K3O1GrvdfVm37kxOPxsGrVN1itNgYPjkan0/lncdjtTurr6zEa6xgwYBD5+YXo9d7Cq94bdIX/XBwOJ263B53O+8UcFxeBxWKnudlKUVENBoP3fXE4nKe6ybj9wQsfu92J2+1GoVD6W9YqFN50I199lpbTEB0OJ6A4FcyLYMqUKUyZMoWmpibefvs16us9DB8eQ11dDWZzE+HhOgwGPVqtHrVaw3ffFfvTilas+ILbbruC0FAdgwbFkZiYiNMZxbJlNxMZGdXq77tlKpZ3VkckkZGRuFyuUzN3lK2+Z84l5etC0NZ3ncvloqKiLKDzzrXXTmb16n1cd934iz6tRAghhOgLWv6+9KVVdIWQkPZnc/gCD8Fm9Hb+GCHtLj/9W7X1Me644w5qa2tYt24dRqORNWtWs2bNagBSU1OZNWs21157LdHRXZNWEx7ecTq53W7n8ccfJzt7V6f2abe3HdwAOgzEtEwZamxsPxjS1/SbAAZ0rgtHdzvXgpzDhw8/qwKhixefWxpMsEKkKpWK2267gpUr11NcXM2MGSMJCwvBZnORkBDq76hQU2PB7VaxY0cBBkMogwfHBhSn9KWDFBQcx253c9VV41i5cgP33LOI8eOHs3PnQbKyjjBhQjLR0WFoNGqsVuep7iAejMZm9u0rxelUM2HCSOrra8nKKmLOnNH+sQSjVCo5ftwIKE/d7EJsbAJms5Ndu8oJD9eg14fjdFrweHQsWbKA/PwcysuNDB7c5G9RarPZ0GrVxMdHkpdXQX29me3bD7cIhGkYMWIAd92VidMJzz//DrfcMgeVSsEnn2zG4fDWCWlqsqJQqJgyZQxXXJFOQUE1u3YdPTU7aAQOh5PISB0xMWHU1DSSlVVEdXUDt946A6VS6Z+ZMnduOmVltWzYsJ7rr7+h1XmPGTOGt956lfh4jT/o1FJDg5kBA6JOzYpxEhLi/TuwWOyo1UpWrtzA9OnDyM52nnpN5Q9guFxuQkI0KBROqqoqGTZsGOvX78VqdZwqwuotdPrgg29QV9dMbGw4r7/+Q6xWGxqNCr0+HI8H7rxzMXV1J4iPDyMhIQqjsZl33/2WiooakpMTUCggKiqUpiYrJ0+aiI+PPFXzxBckUfhnlPjel5qaRsxmB5GRodxzz9OYzXa2b9/Nv/71BuHh4dx00x0888zvGTcugfT0JEaMSPAHzU6cMLFt2z5KS+tZvvxKHA4LBw8e4w9/eJvk5MHodJEdBjvb6nykUqna3OZcOx+d6Xvfu5fa2lpiY2P517/eOO/9nY+2vus8Hg8VFWWtOu/ExUVit9sJC9OxZMkUcnKKee+9Fdx77w/79UyMvnTNhBBCiJaGDTt9z1FUdLidNfsXtVrNQw89zI033sTXX2/iu+/2cfhwIQ6Hg5KSEkpKSvjoo1X8+te/ZsaMmed9vPZmivi89967/uBFRkYG1157HSNHjiQ6OpqQkBD/Pn7+859x4MCBoJ0FWwpWf6S/6FcBjJaCzYzoCcEKZXZEr9ee6v3b/WkwbaXbeKfQL2br1hz++td1gIehQwfgdoNWqyUzcyyZmTFs23aQ99/PJjMzhYSEwBuXmhoTO3YUceRIJT/84ZXo9VoqKurJyyshI2M4d955Fe+99xVGo4W0tESiokJRKhU0NVkwmawUFZ2gudnFXXctQqvVEhdn4JNPdqDVarj88oygRUZdLjcbNuwnN/cY9903n0mTMlqMx/ueVVRYWbToZqKiTj9NnzFjRovZOk3U15+kubmJYcMSycwcztVXZ6JSKbFYTnfzcDicGI02DIYoGhsb0ek87NqVR1JSJNddN5GQEDVGYyNutweTycyuXXnk51cRFxfOrFkZaLVqVq/eR0FBCSNGJOJyudFq1WRmDmPRoktwOl0olYGBiMsvH8/f/rYxaADj0KFDzJgxll27cjh0qILhwxP9xSldLjcu1+kiqRqNGqfTSUODGa1Wy5EjlSQmhp2aFeJm164jXHbZGHJySti1qwiHw+lPh3G53Fx6aTqgpLj4BIMHxxISokWh8BZstVjsWK2OU+NXoNGoqKioxeFwM3BgLAkJBioqyqiuNqLXa0/VVFHR2GhGo1FTWlpNaKiOHTuKWLbsUn8Awxu08Jwqtnra1q0Fp9quVmC1OrDZbP7pgS6Xi08++ZBbb72MkpLjrFmzh8TEyIAgVGbmcObOHU9jo4Xk5CEkJSVjs2lJSppMZmbHM6B6svPRmSwWC2azuU/MWmjru66xsbHNzju+2T96fYg/hS43N7dVS+j+pC9dMyGEEKKl1NRUoqKiaGho4MCBAzQ3NxMWFtbbw+oxQ4YM4Z577uWee7wzIHJzD7Bp0ybWr1+PxWLhySef5M033yI2NrZbx+HxePyFTcePH8+zzz7XZtCjsbGxU/vsaEaN0Xh6eURE1xUr7Qn9NoDRW9p6Otse39NZvV7fI2kwbaXbNDdbUKn03HDDfbjdHvbs2YbLZUOv17NtW5F/DDU1ToYONbB69b5T0+K1/nPIzBzLuHFD/OkB06aNYPXqfWRkDCc0VMe9915NXl4J2dkHsVis2O0OqqrqcDq9N74ajYo//OEtQkMjCAkJJSFhAKWlDXzxxT6mTRtBXNzpP7CyslrWrs3GZLJw333ziY4OrOzrKyCYk1PMp5/+h3vvPd0N4MzZOmVlZXz44cssWTKZ6Ohw//j1ei0qlZL6+iZsNo+/GGRtbQ1ms4UpU4aQkTGEiooa3G4VAwZE+YMIGRkp7N59lE8+2cXbb3/BU089QHJyAs8++za33DI9oMWpt+MJAd1cLBZvdxql0kV9fX2raWy+6fvDhsVz4EAxYWG6U7UpFP4OKkqlCq1Whcfj7SSTlVVEZuZYsrMPsnSpt0NLenoK27cX8r//+xXjxiWzdOlkf/tZ8M5a2LKlgNraZtavz+XHP14QtKuG0+kkJESD2+1hw4aDTJs23v9eJycP8ddDMJvtVFc34HLVExISwoABBpYtm8Lq1bsYPjyBjIwUf0caX/DCm1ai4sCBUvbuLWHgwEFkZ1cRGhqGxXI6Z9NXk2HixBHs3XuI//qvRYSGhrRqKQtgtxtpbGwkMjKSmTPHsnp1dqcCGNBznY/6sra+67xpR63TvcD3XXf6M+5LoevPAQwhhBCir1IoFCxYcCWrVv0bq9XKF198wY033tjbw+oVWq2WSZMmM2nSZIYOHcrLL7+MzWZj584sFi++2r9ed8xsaGw0+Qtpzpkzp83ghe+epTMKCwtYsGBBm8sLCgr8/05NTe38YPsACWB0sfN9OttTaTC+44wbN449e/awa9cW3G4ID4fdu79Bqw1j1qwrGD58OC6Xyz8Gi8XCtm1fMmvWBGbNmoDFYmtxc+jNRTOZTNTX15OYaPBPG7dYbOj1IahUKjIyhjNiRBJvv72OkBAVixdfzejR3j7KLpeLEyfqyc4u4sQJF06nk8mTk1CpFKxevQ+r1UZzs4WamgY0GhXh4SGEh+v55JPdzJuXSXp6WKsAT0dPevV6PcnJycTEJKDXR3dYkNHlcnH4cDlpaQMZOXIg+fllxMdHkJDQOnp56aVDqaoyUl5ey9NPv8vSpbOJigolKsr7NPZ0DQnQ6fS43W7y8koDZkGAk7fe+j/mzl3I8OHDcTq99St80/cNhnD27CnEaLSRnj7Y34WksvKkv/ilQqEgJ+cYVVWNzJ07kG3b9hEbe/omU6GACRNSmDhxqD/dwsdgCCUzcyhhYWF8/PFOtm0rZMaMkf50Ex+Px4PH42HHjiIOHqzkj388/WXvdrspKTnJrl15eDwK1q/PRaHwBmzmzBlLenoKO3cWsW7dAUpLa5k2bQSxsRHYbA48Higvr2f37mJyc8sxm5VMm3Y1EyZMYOPGbwPG4AvqeD+Xdv85BmvlGh0dTlVVHZGRkf5Urs4W2gyWihXM+aZ89WXBvuu8dUCcAUEKH1/XF9/3BHDW77sQQgghutYNN9zAp5+uxWq18uabK5gyZQopKSkdbud2u/n666+5/PLLe2CUPWvixNPF9xsaGgKWaTQtH4Z1TYpwy1og7RVT/eKLzwO6Bbbn22+/5fvfvz9orRCLxcLmzZsB7yyU7p5h0tUkgNENuurpbHenwZjNZt57bwWJiWpuueXSICkrpwvt+cZx5rRxvT4k4IYEvFV/jcY6TCYzkZGh6PVaTCazv8ClVqtm5coNZGQMIikpnuTkIf5tVSoVAwfGce21ceTkFLNjRzm7d1cxcKCWK6+cyuef7yAtLZq7756D2WwlPj4clUpFU5ODnTuLyM7O9xdkbKmjJ73em7Fw7HYPKSmp7RZkdDgcfPNNLtHRoaxYsYmQEG8xUl86SHp6ckCBymnTRvDeeycZMyaVtWv3YTY3Y7HYT6VIKFCrve+JxWJj5cqtJCZGBsyCyM+vRK2OZPPm1bz1ViWjRw/HYrFTWVlJTs4R0tNTT9Uw2eCvsxEXF+lvGWsyWcjKKqK4+AT33HMtTqc74Brm5ZUyaJCByy4bi9MJVVUN/pkcvja6druH+fOnYrWqWLVqD6WltcyePdqff+fxeKiqamDr1kLy8ir51a/u9H+hm81WVq7cQGJiGEuXTiQ2NpKyshNotUoUCiXZ2UfIzj7CTTdN4z//2UVFRT0ffJCFx+NBrfYWh3U63TQ12UlMHMWvfvWDoH8XLWsyGI1NHaZyabVq3G4nLpcLlUp1VoU2e7rzUV915ned2+0O+Oy35Jv9c6b+WuBUCCGEuBDExcXx4IM/4fnnn8NqtfLQQz/nt7/9XbuzI48dO8Y///lPjEbjBRfAMJlM5OXlMW3atDZnU+zZs9v/7wEDBgYsi4093a3j+PHjDBkyhPMVFRVFeHg4TU1NfP3111x//Q2tAiMFBfmsWLGi0/usq6vjlVde5v/9v/9uteyVV17GaDQCsGTJNecz9F4hAYxucCE8nXW5XLz33goyMwcEHWPL9IuWhfY6kyKjUChISkqmtPQY3313lNzcEpqbrYSH6zCb7dTXN6HVKomOHklYWDRWq71VEAROz5xITs7E7fbwj3+8wfz5Ixg7Nhmz2Y7d7iAkRIdarUav17NkySRyco75C4e2vGnszJPeljdjbRVkNJutvP32lyQnx7B0aSYGg56QEA1KpcJfkDM7u5jbbptBaGjIqWNH4HK5mDEjHbP5CIcOGSkpqSc1Nd4/M8DlcrNy5VYyM4cGdD6xWOw4HC6io+HOO2eSn19BdnYpP/zhleTlHaS0tJTs7EPcdtsVAW1A7XY7LpcLo7GRgQOjycwczpgxKYSF6bHbnQHXMDu7iEWLJqDRaAkNVRMZGYrL5fa31FWplJSUnESlUjFrVjonT7qIjBzEq69+g8nkjRKbTFaee+4LFiyYwh//uNj/petyuVi5cgOZmUMCzmvAgBgKCkqJj4/iyivHk59fySefZHP33XPZufMwGzcewOl0kZQUdyrgEo7R2Mydd97X5vVrGVwLCdF0KpVLpVKeuulWnXWhzd7qfNSXnPldp1Qqg1YUz8k5RnV1M4sWpbZa1lUFToUQQghxbq666ipqamp4880VGI1GHn74ISZPnsyMGTNISRlCeHgYJlMjFRXl7Ny5k+zsbNxuN8OGDe/toZ81s9nMo4/+jgEDBjBz5izGjBlNQkIiKpWKuro6srJ2+OtRxMXFMW3atIDtx45N9//7pZf+yfLltxMTE+MPhgwYMOCsf/splUrmz7+cNWtWU1xczM9+9lNuuOFGkpKSaG5uZteuXaxduwa9Xk9sbCzl5eUd7nPUqFGsXbuWqqoqlixZQnx8AidPnmDt2rXs3u0N0IwYMYJrrpEAhuDCeDrrqxXQXoAFWqdfdDZFxmZzsGlTHgaDlhtumMLAgbGoVEqcTjcVFSc5dKiC115bz+jRSTgcbn/9jPT01ID3wztzYjuZmbOYPXs8V1wx+VRtBDcnTlS0SmPIyBhCaWmtv3BoSx096e0o8OS7GU9PH3Cqq0YkNpvDXw8iLi6CJUsmkpNTysqV27nnnstO3SB70Ou1VFbWUFCQS2RkKGvW7CIyUo9Go2bKlBG43R4SEyMDbvI9HqiuNhITE0FioiHg/PLzy4iNNZCenkx+foU/aJORMZyMjOFYLDYsFhv//vfXZGYOY/ToQVRVNZ6aaaBCq9VSU2MiLEyHxWInOjoctfr0e6lSKfFdBrvdiVKpRqVSERcXhdNpZtGixVx//Q3ccsvN1NXVERERyeTJU5k9e3zAzWheXkmLYqGnORwudLoQQkP1VFU1EBkZikIBf/7zGgYNiuP66+czfPggnE63Pz1pxYqv25021zK4pteH+M+xZd2U1tfUO8vmXAtt9oXOR70p2HedUqn2p5X5OhhVVzezfPmCVt91XVngVAghhOgsh/Xs6tVdKM7nvO644w6GDBnCq6++QlVVFXv27GHPnj1trp+amsr9999/zsfrbVVVVXz00ao2l8fExPL73/+h1W+UpKQkLrvsMjZv3hz0PXr77XcYMGDAWY/ne9+7l7y8XI4cOUJhYSFPPfVkwPKIiAgeffQx3nxzRacCGPfe+z1Wrfo32dnZZGdnt1qenJzCH//4pwvyQZsEMLpJX38666sV0Blnpl90lCJz+ql76qkOENGEhYXhdDo5fryClJQYpkwZRn5+JdnZR/nBD+ZTX990avbCoYAUEN/MiR07vuHGGy/xz4xwuVxt9o5uWTi0pY6e9HYUeNq+PRet1kNyciIOhw2HwxW0M0pGRsqpIEoZGRlDsFrtVFbWk5h4nNtvn87gwUlUVJSSlBSN0+li584jbNtWwM9+tjigXWhtbSNms53RowOnrvnO76abLqO+vr7NoI1SqeSmm+bx8cffsn9/CbNmTfQvy8wcy9atBaSnD0ajUaPT6YOeC0B9vbfVrE/LQJCvyJBSqQz6uWhZLLQlk8mMUqkiMjLUP+Nj0SIda9bs4777gkeCO7p+ZwbXMjPHkpVVxJIlk4Ku3zIw0xWFNnur81FvO/O7rr6+GoXCSmiozh+YXLQoNeh3XX8tcCqEEKJv0mg0REUb+M8jr/X2ULpNVLQBjUbT8YpBzJ49m2nTprFly7fs2pVNYWEBRqPR301rwIABjB49hjlz5jBhwoQLslVnYmIi//jHP9i1axd5eXmcOHGC+vp6LBYL4eHhpKQMYfr0aSxefHWbHVl+/evfMGrUKLZs2UJZWRkWiwW3O/h9SWeFhYXz4ot/5aOPVrF582YqKipQqVTEx8czdepUli27nvj4+E7vT6NR88QTT/L555+xfv16ysrKcDqdDBw4kMsum8uNN94YtD7GhUACGN2orz6dbVkroDPOTL/oaKaC76l7amocRqONhARvLYfq6uNER+vQavVoteoWN/qlZGSktpkCotEosVqbAsarUqkCnvQGjjewcCh0/klve4GnY8fKeeCBq0hJGURZWQk2mxO1OvgXtzfIsIfRo5M4dKiSyEg9S5dOobCwDLu9kWHDBlFaWk1kpI45c0ZTWHgcm82By+XC6XRTU2Oirq6ZkSMHt+r44Ts/jSYEo9HbsnXatBF8/PF3AOzalYfD4fC3QW1stFFb68RiOYLLlXeq44yV0tJKoqNjcLuVbQYvvLVLPP5rCG0HEs78XJxZSLPlPh0ObxEk3/VTqZQMHGjA7XYGXDefzl6/lkGU9PRUsrMPkZNT2moGCJwOzPTnQps9peV3XXNzMytWvMqllw4iMzOtzW3kfRdCCNHTtFot773zHg6Ho7eH0m00Gs15pWZqNBrmz7+c+fPPrrbFgAEDWL9+Q6fWfeedd9tctnDhQhYuXNjm8uef/0unjnHXXXdz1113t3pdoVCQljaatLTRndpPMGq1mptvvoWbb76l3fU6O1YfnU7H7bffwe2339El+1SpVFxzzbVcc821ZzWOvk4CGD2kLz2dPbMQZ2e0fOre0UyFLVv2cfnlozEabf62oyaTiZAQBZGRYVgsZv+63hv9vWRkpALBU0CamqxERoa2GpPBEOPvdhJ8vE7/jfDZPOkNFnhyu92sXPkqqalJp44di9lcT1iYCqfTWwSyZRDA10GjutrEwYPlXHnlBEymRtRqFQMHetuhjh6dQnV1PYcPVxEWFgJ4yM+vwONREBsbT0SEImj3jJbnl5SUTEVFGW63g0OHSvyFMr1BDif19U1UVTVy7FgTJ0+6ufHGO1Cr1Wi1WjweD++9t4LqahOVlfUMGnS6Tatv25atY6H9QMKZn4uxYwcHfM7O3Gdzc3Or63fmdfPp7PU7M4gSrLgpeIMoVVWNlJVVUV3t6teFNntaWFgY9977w1OfrV19MoVOCCHExUur1UrtJSEuYBLAuAh1phDnmc586t7WTIXGRgs1NSYGDUomIiLCf+NrNNYxYEAECoU38ukrEBkXF4Hd7sBisftv1lumgNTUNKDXR2KztW4pdGa3k9bj9X68z+dJry/wZDQaA27GfcfWakGjcQedQqfXh7B791EaG22MGjWImpp64uMN/uVKpYKBA2MwGMLJzj5KQoIBj8eEXq9Do9HjctnaHJfv/FQqFYMGDea119Zw+eXpjBmTjMXioKTkpL/9a0ZGChMmKMjJKebjjz/wF2QFuPfeH7J69Sd8+WUO8+ePbbN1rM+ZgYT//u+fYrPZ/FPQWn4u1q//mvLyasrKaoPuM9j1a3ndfNq7fmceP1hwrWVx0+ZmMw6HE5PJTlLScKZNu+yCKrR55vn2VX09ha4nXSjXTAghhBDiQiABjItQZwtx+rT11D3YTAWLxcKXX64kMvJ04URvS9LTqR5qtQaHw9tS1Tse31N3b4CgZQpIVlYB06fPJTt7S6vx+rqdVFSU+QtR+goHarXeNImNG/d3yZPeM4M+LY/d1GQmLi48YNaAw+GkoqKOAwfKeeKJ2zCZmnE6PUREtJ5JotdrCQlR09zsDVhERoZy4kQDHk/wXDrf+fmOd/DgMQYPjiY9PZmkJG8rp2DtX88syArea3jddUt5441qjEZIT08Oui0EDyScWZnZt0/f5+Lll/+KWh3JoEHRrfZ55vVzuTwB59WZJ/XBjt/WzbPdriUkJJLMzEuZMOGSNvMa+7Jg59tX9dUUup52IV0zIYQQQoi+TgIYF6mOCnG21Jnp+76ZClqtttXsDm+bSqX/v9VqNVarA4fDhUajCvrUXa/Xsm9fUcANc7DxqlQqkpOH0NjYSFVVHW63k02bcqmstLJ6dW6XPekNFvTxHbuhoYFjx8pRqRSEhKjxeKChwYxaHUJaWgwNDWbq6kykpSW3WWsiM3MEWVlFTJiQglqtwuNxoVCogtb4yMoqIjNzrP+/s7MPsnjx+FN1Jdov2nRmQVbfefhmLZSX13XplP/p0+eyZ0/bn7OW12/Vqm+orDSzYsXX5/2kXm6e+5a+lEInhBBCCCEuXBLAuEh1VIjT52zTL4Ld6CuVyoCOIQoF6HR6rFYLJ082oFarAmo92O1OystrsdmiuPvu+1GpVO2OV6FQEBkZSWRkJN99dxi73cDPf/59wsPDz+Yt6VCwoI9CocBgMBAVFUVDQwNGYy0ej5s9e45htSqprGxAq40gPNwZEMQ5U3p6CtnZRzh4sIJBg+JRqZSEh0dRX98YUCMiJ+cY1dXNLFqUCuAvlKlUKjAYooPvvIUzC7L6dNeU/858zhQKBSUlNXg8cfz853fhcrm6NNggN89CCCGEEEL0DxLAuEh1VIjzfJ66n3mjH6xjiC+IkZ2dy9ChAykpOemvv9DQYEWni+P++x/0H/dsxnvPPT8MuGG1WCz+HPTzuZHtKIhiMBgwGAz+IMovfvEw77+/AocD3G5Pu/tWqZRceeUE/vGPdTgckJQUzcCBKVRWmjCZzNjtTrKyiqiubmb58gX+98Vmc+B2u1t1CmlPy4KsgWM4+1kLhYWFOJ1O1Go1o0aNCnJeZ/c5O9vr09Hx+5uL7Xz7A7lmQgghhOgJEyZc0ulOMBcyCWBcxHryqXuwjiEHDhyjpsbKkiXzAG+qiVKpJDd3D1deeU2r457NeF0uF7m5uezatQWHo9nfUlSrDSMzczbjxp1bWsLZBlEyM2eTnb2TjIyEoOkgLe3fX8qtty6gqcnMBx/sJiurmpAQFceOlaFUwvz5k1i0aI5/3DU1DWzZkseJE00BnUI60lYb1JY6O2vhsccepaamhri4OFaufD/oOt1Z0LEzx+9PLrbz7Q/kmgkhhBBCdB0JYFzkuqNWQLAb/djYSH/HibZmE6hUqg5TVjozXrPZzHvvrSAxUc3SpeODBBl2kp29jeXL7yE0tHVRzfac7c24L5hTUdFISIgiaMtXaJkaMowvvtjD8uXfZ9SoUdjtdtRqNUVFRWRnbyE3d0Or49XWuqivbzqvgqzdTWpSCCGEEEIIIc6XBDCEX1fWCgh2o9/RbIKzTVkJNl6Xy8V7760gM3NA0JoLcXFRLFkyhZycYt57b0VAS9HOOpubcV8w59133+DQoaPMmzeaoUMT/ctrakwBwZy8vGP+AI5KpfLvs6PjdWVB1u4mNSmEEEIIIYQQ50ICGKLbqFQqRo0axZAhQ/B4PCiVyg5nE5xvx5Dc3FwSE9XtFiaF4C1Fz0VnbsZDQ0P53vceYO/ePbzyyjuEhytJTIzC6XSj1WrJzBxLZmZMp1q+BjtedxVkFUIIIYQQQoi+RAIYost1pv5Ed6USZGdvYenS8Z1aN1hL0e6iUqnIzJzCpEmT2bNnD9nZW3C5bOj1erZtKzrvlqHdVZBVCCGEEEIIIfoKCWCILnW29Se6MpXAGxBpJja241oQ0HZL0e6kUqmYMmUKU6ZM6dIATncWyhRCCCGEEEKIvkACGKLL9ET9ifbYbDZCQ9vvrnGmtlqK9oSurgUhhTKFEEIIIYQQ/Zmytwcg+o+zqT+RmKgmNze3S48fEhKC2Ww/q20601L0QqTX64mKipLghRBCCCGEEKLfkACG6DLZ2VuYPj2tU+tOm5ZGdvbWLj2+Xq9Hqw2jpqahU+v3VktRIYQQQgghhBBnTwIYokucT/2JrpSZOZusrIJOrdsXWooKIYQQQgghhOgcqYEhukRfqT8hLUV71uuv/wuPx4NCobgoj9/TLrbz7Q/kmgkhhBBCdB0JYIgu0VfqT0hL0Z4VGhp6UR+/p11s59sfyDUTQgghhOg6EsAQXaJl/YmWAYO2dGf9CWkpKoQQQgghhBD9jwQwRJfx1p/YyZIlUzpct7vrT0hLUSGEEEIIIYToXySAIbpMX60/odfrJXDRTVatWoXZ3ExoaBg33njjRXf8nnaxnW9/INdMCCGEEKLrSABDdBmpP3Hx+eijVdTU1BAXF9crN2e9ffyedrGdb38g10wIIc6er/Cxx+Pp5ZEIIc6H729Yqey65qcSwBBdSupPCCGEEEKI8+GbOdvYaOrlkQghzofvb1in03XZPiWAIbqc1J8QQgghhBDnKjY2lpiYaHJzcxk3bnxvD0cIcY4OHDhAbGwMsbGxXbbPrpvLIUQQer2eqKgoCV4IIYQQQohOUSgUTJo0mV27dnHs2LHeHo4Q4hwcO3aM7OxsJk6c5E8L6woyA0MIIYQQQgjRpyxatIji4iP89a8vkpmZyfjx44mIiOzSGyEhRNfyeDw0Npo4cOAA2dnZDBo0iEWLFnXpMSSAIYQQQgghhOhT9Ho9Dz74E7744gv27t3Dli1be3tIQohOio2NYdas2SxatKjLZ+JLAEMIIYQQQgjR5+j1eq6//nqWLVtGbW0tVqsVt9vd28MSQrRBqVSi0+mIjY3tttlSEsAQQgghhBBC9FkKhYK4uLjeHoYQog+QIp5CCCGEEEIIIYTo82QGhhDinI0YMZL4+HiiogwX5fF72sV2vv2BXDMhhBBCiK6j8Hg8nt4ehBBCCCGEEEIIIUR7JIVECCGEEEIIIYQQfZ4EMIQQQgghhBBCCNHnSQBDCCGEEEIIIYQQfZ4U8RRCnLPf/e53NDQYiYoy8Mc//vGiO35Pu9jOtz+QayaEEEII0XUkgCGEOGdFRYepqanptd7svX38nnaxnW9/INdMCCGEEKLrSAqJEEIIIYQQQggh+jwJYAghhBBCCCGEEKLPkwCGEEIIIYQQQggh+jwJYAghhBBCCCGEEKLPkwCGEEIIIYQQQggh+jwJYAghhBBCCCGEEKLPkwCGEEIIIYQQQggh+jwJYAghhBBCCCGEEKLPU3g8Hk9X7vC///u/aWpq7Mpdih5QX19PdHR0bw9D9BK5/hc3uf4XN7n+Fze5/he3nrj+4eER/PWvf+3WYwghLh5dHsAQF6axY8dy8ODB3h6G6CVy/S9ucv0vbnL9L25y/S9ucv2FEBcaSSERQgghhBBCCCFEnycBDCGEEEIIIYQQQvR5EsAQQgghhBBCCCFEnycBDCGEEEIIIYQQQvR5EsAQQgghhBBCCCFEnycBDCGEEEIIIYQQQvR5EsAQQgghhBBCCCFEnycBDCGEEEIIIYQQQvR5EsAQADz44IO9PQTRi+T6X9zk+l/c5Ppf3OT6X9zk+gshLjQKj8fj6e1BCCGEEEIIIYQQQrRHZmAIIYQQQgghhBCiz5MAhhBCCCGEEEIIIfo8CWAIIYQQQgghhBCiz5MAhhBCCCGEEEIIIfo8CWAIIYQQQgghhBCiz5MAhhBCCCGEEEIIIfo8CWAIIYQQQgghhBCiz5MAhhBCCCGEEEIIIfo8dW8PQHSPjRs3snt3NsXFxdTV1dHY2EhISAjJycnMnDmTpUuXodfrA7Z56603efvtt9vd7+uv/4uUlJTuHLroBv/3f6/y4YcfAnDPPfdw++13BF1v7949rFr1EQUF+VitVhITE5k1aza33XZbq8+LuLB09BmQv//+45lnnmH9+q/aXeezzz5Hq9W2er2wsJD333+fAwdyaG5uJjY2lqlTp3L77XcQHR3dXUMWXehcrv+6det47rln293mySefJDNzSpeMUXQ/h8PBp59+yubN31BaWorVaiUqKoqhQ4dy5ZVXMnfuvFbbyG8AIcSFQAIY/dTatWs4ePAgKSkpjBgxgoiICOrrjRw6dJCCggK+/HIdzz//PHFxca22HTZsOMOHDw+637CwsO4euuhieXl5rFq1CoVCgcfjaXO9jz5axcsvv4xCoWDcuPFERxvIzc1l5cr32Lp1Cy+88CJRUVE9OHLRVTr7GQD5++9P0tPTGTQoKegypbL1BMxvv/2WJ598ApfLRVpaGgMGDKCwsJDVq1fz7bff8sILL5KUFHx/ou852+sPMGjQINLTxwVdFuz3guibTp48yW9+82uOHTtGVFQU6enp6HQ6Tpw4yYEDB9DpdK0CGPIbQAhxoZAARj/1wx8+QFJSEpGRkQGvm0wNPPbYY+Tm5vLKK6/wyCOPtNp25swZ3HXX3T01VNGNrFYrzz77DDExMaSlpbFt27ag6xUVHeaVV15BqVTyxz/+iSlTpvi3f/TR3/Hdd9/x17++yKOPPtaTwxddoLOfAR/5++8/Fi1azMKFCzu1bk1NDc8++wwul4uf/vSnXH31EgBcLhfPPvssGzdu4KmnnuTvf/8HCoWiO4ctusjZXH+f9PRx/PKXv+ymEYmeYLPZ+NWvfkVZWSl33XUXt922HLX69M99q9VKeXl5wDbyG0AIcSGRGhj91JgxY1oFLwAiI6P43vfuA2DPnt09PSzRw15//XUqKir46U9/Rmho20/PV65cicfjYeHChf4fLgA6nY6HHnoYpVLJli1bKC0t7Ylhiy7U2c+AuLh9/PF/sFqtTJo0yR+8AFCpVPz3f/83YWFhFBQUsHu3/H9DiL5s5cqVlJWVcvXVV3PnnXcFBC/A+//1ESNGtNpGfgMIIS4UEsC4CKlUKgA0mtb5z6L/2L9/H6tXf8KCBQuYOnVqm+s5HA527doFwPz5l7danpiYSHp6OgDbtm3tnsGKbtHZz4AQW7d6Z+bMmze/1TK9Xs/06dMB+Q4Qoi9zOp18+ulaAG666eZObSO/AYQQFxpJIbnImM1m3nrrTQD/D9IzHT5cxGuv/R+NjY2EhYUxYsQIpk2bTmhoaE8OVZwHi8XCc889R3R0ND/60Y/bXbe8vByr1QrAqFGjgq4zatQoDhw4QFFRUZePVXSPs/kMtCR///3H/v37OHr0KBaLmcjISNLSRjNlypRWxTvNZjOVlRUApKW19R2QxoYNG+Q74ALS2evfUmVlBW+88S+MRiN6vZ7U1FSmT58htQ8uEIcPH6ahoYHY2FiSkpI4erSYrVu3UltbS3h4OOPHjyczc0pADRT5DSCEuNBIAKOf2717N5s2bcLjcVNfX8+hQ4cwm81kZmZy//3fD7pNVtYOsrJ2BLwWFhbGgw8+yIIFV/bEsMV5euWVV6iqquLxx39PREREu+tWVVUBEB4e3uZNanx8fMC6ou87m89AS/L333+sX7++1WsxMbE8/PBDAd0kqqtP/10nJCQE3Zd8B1x4Onv9W8rLyyMvLy/gNa3279x5513ceuut3TJO0XWOHi0GvH+vr732f3z44YcBhZs/+OADRowYwe9//3sSEhIB+Q0ghLjwSACjnystPdaqndr8+fN54IEfERYWHvD6wIGD+N73vkdm5hQSE73/Yzt27BgffPA+WVlZPPPMMyiVKi6/vPUUQ9F37N69m88++5S5c+cxc+bMDte3WMyAN9e1Lb72aWazuWsGKbrV2X4GQP7++5Phw4cxcuSDTJw4kYSEBGw2G8XFxbz11lscPJjHo48+ytNPP82ECZcAYDZb/NvqdMFbJcp3wIXjbK8/QExMNMuXL2f69BkMHDgQjUZDWVkZq1d/woYNG3j99ddwu90sX768905MdMhkMgFQVFREfn4+1157HcuWLSM6OpqCgnz+/ve/U1RUxCOPPMJLL72MWq2W3wBCiAuO1MDo566//gbWr9/AF198yZtvvsUPf/gA2dnZ3Hff98jJyQlYd8GCBdx223J/29WIiAjGjRvHH//4J5YuXQrAyy+/hMPh6IUzEZ3R3NzEX/7yPAaDgZ/85Ce9PRzRC871MyB///3HDTfcyLJly0hNTSU0NJTo6GgmT57Miy++yIwZM3A6nfzzny/19jBFNzmX65+ZOYV77/0eo0ePJioqitDQUNLS0vjlL3/FD37wQwDeeedt6uvre+OURCf5Zls4nU7mzZvHf/3XfzF48GDCwsKYNGkyf/7zn9FqtZSUlPD111/38miFEOLcSADjIqFWqxk0aBA33ngjTzzxJE1NTTz99FPYbLZObX/nnXehVCoxGo3k5+d382jFufrnP1/i5MmT/OQnP+l0zrJe750y6suBDcZi8T6hlToIfd+5fAY6In///YNCofC3yC0uPsKJEycACA09PevCarUE3Va+Ay58bV3/jixbtoyoqCgcDod0oenjfP8/BwK6CfkkJCT6Czp/993egG3kN4AQ4kIhKSQXoTFjxjBkyBBKSkooLCxk/PjxHW4TGRmJwRBNXV0tJ0+e7IFRinOxbdtWVCoVa9asYc2aNQHLysrKAPjyyy/Zu3cvMTExPPLIbxkwwJsu0NTUhNlsDvoDxXfNExMHdPMZiPN1Lp+Bjsjff/+RkpLi/3dNTQ0JCQn+XHiAEydOMHRoeKvtTn8HJLZaJi4cwa5/R1QqFUlJSTQ0NFBTI3//fdnAgQOD/jvYOrW1dQDyG0AIccGRAMZFypfraDR2bjqoy+XCbG4GJALf17lcrlbpQS1VVVVRVVXlvxEZPDgZnU6H1WqlsLCQSy65pNU2hYWFAIwcOaLVMtH3nO1noDP7k7///sGXIw+n89rDwsIYNCiJysoKCgoKGTp0WKvtCgsLABg5cmTPDFR0i2DX/2y2a/mEX/Q9I0eORKFQ4PF4MJkaggaoGhoagNPXX34DCCEuNBLAuAg1NDRw5MgRAAYPHtypbXbs2IHVakWhULTZZkv0vk8+Wd3msmeeeYb167/innvu4fbb7/C/rtFomDJlCt9++y2bNm1s9eOlurraX5V+5sxZ3TJu0XXO5TPQEfn77z+++cab9x4aGkpycrL/9VmzZvLhhx/y9debuOqqqwK2sVgsZGVlAfIdcKFr6/q35/Dhw5SXlwMwevTobhubOH8xMTGMGzeOAwcOsHfvXkaMCAw4Op1Of3B79Og0QH4DCCEuPFIDox86duwYGzduxG63t1pWXl7OH//4BxwOB2PGjPE/aTtxopoNGzYE3Wbbtm385S/PAzB//uXExMR07wmIHnfrrbehUChYt24d2dm7/K9brVaef/453G43s2fPDph+LPoP+fvvP4qKiti+fTsulyvgdbfbzRdffMG//vUvwFvXQK0+/Qxj2bLr0el07N27l88//8z/usvl4m9/+ytNTU2kpaVx6aWX9syJiHNyLtffarWyevXqoB0mcnJy+MMffg/AuHHjJIBxAbjjjjsBeP/99zl48KD/dZfLxSuvvMzx48cJDQ1l4cLTgUr5DSCEuJAoPC0bRIt+Yf/+fTz88MPodDpGjBhBXFw8TqeDEydOUFRUhNvtJiUlhaeeesqf+1xUVMSPfvQAer2eESNGEBsbh91u49ixY1RUVABwySWX8Ic//PGspp2KvqOjp+8ffbSKl19+GYVCQUZGBgaDgQMHcqmrqyU5OZkXXnixy4pCit7R1mdA/v77j23btvH4448RERHBiBEjiI6OpqmpiZKSEn/Rxnnz5vGrX/0alUoVsO3mzZt58skncLvdjB49mgEDBlBQUMDx48eJjo7mhRdeJCkpqTdOS3TSuVz/pqYmli1bikajYcSIESQkJOByuSgvL6ekpASAoUOH8tRTTxMbG9tbpybOwrvvvsOKFStQqVSkpY0mJiaaoqIiqqqqCAkJ4Xe/+x1Tp04L2EZ+AwghLhQSwOiHjEYjn3/+Obm5BygrK8NoNOJyuYiIiCA1dSizZs1i4cKFaLVa/zYmUwMffvghBQWFVFZWYDKZcDqdREZGMWrUSObNm8/cuXNRKmXSzoWqM+kDe/fuYdWqVeTn52O1WklISGD27DncdtttUvugH2jrMyB///3H8ePH+eSTjyksLKSqqgqTyYTH4yE6Opq0tNEsXLjQ34UgmMLCQlaufI/c3Fyam5uJiYlh6tRp3HHHHURHR/fgmYhzcS7X3+Fw8O6771JYWEhZWSkmkwmbzUZERATDhg1jzpw5XHnlQjQaTS+dlTgXu3fv5j//+Q/5+YewWCxER0czceIkbrnlljZnUshvACHEhUACGEIIIYQQQgghhOjz5HGaEEIIIYQQQggh+jwJYAghhBBCCCGEEKLPkwCGEEIIIYQQQggh+jwJYAghhBBCCCGEEKLPkwCGEEIIIYQQQggh+jwJYAghhBBCCCGEEKLPkwCGEEIIIYQQQggh+jwJYAghhBBCCCGEEKLPkwCGEEIIIYQQQggh+jwJYAghhBBCCCGEEKLPkwCGEEIIIYQQQggh+jwJYAghhBBCCCGEEKLPkwCGEEIIIYQQQggh+jwJYAghhBBCCCGEEKLPkwCGEEIIIYQQQggh+jwJYAghLlhvvfUmCxZcwYIFV5zzPh566OcsWHAFDz3086DLfft/6603Wy3bv3+ff/n+/fvOeQxneuaZZ1iw4AruuOP2Lttnf3HHHbezYMEVPPPMM709FCGEEEII0cMkgCGEEEIIIYQQQog+TwIYQgghepXMOBFCCCGEEJ2h7u0BCCFEb3r++b/09hCEEEIIIYQQnSAzMIQQQgghhBBCCNHnSQBDCCGEEEIIIYQQfZ6kkAgh+o2mpiY++ugjtmz5lurqajQaDcOGDWPx4quZP39+0G0eeujn5OTkkJGRccGlkzQ3N7FmzRqysnZSUVFOc3MzkZGRjBo1igULrmT27NkoFIqg2/o6t9x5553cddfdFBTks2rVR+TmHqChoYHIyEguuWQit912G0OGDGl3HFarlVWrVvHtt5s5fvw4Go2GlJQUrrrqKhYuvIqcnP08/PDDADz33HNMmHAJ4O0i8/bbb/v3U11dHbSjzPr1G9o8dllZGf/+94fs3buXuro6wsLCSE9P5+abb2Hs2LHtjvtsrVu3jueeexaAt99+h9jYWFavXs2mTZuoqChHpVIxdOhQbr75ZqZOnebfzmw2s3btWr7+ehPHjx9HoVCQlpbGLbfcyqRJk4Iea//+fQHvWUbGBL788kvWrfuS0tJSXC4XycnJXHfdUhYsWODfzuFw8OWXX/LVV+uoqKjA6XQydOgwrr9+GZddNrdL3w8hhBBCiJ4mAQwhRL9w/Phxfv3rX1FZWel/zWq1sn//fvbv38/27dv4zW/+B5VK1Yuj7Dp79+7liSf+hMlkCni9rq6OrKwssrKymDJlCr/97e/Q6/Xt7mvNmtX885//xOVy+V+rra1l48YNbNu2lSeeeJKMjIyg2548eZJf/OJhKioq/K9ZrVby8vLIy8tj27ZtLF267DzOtG1bt27lz39+GqvV6n/NaDSybds2duzYwW9+8xvmzp3XLcc2m8088cSfyM/PD3g9JyeHnJwcHnjgAW644UZOnKjmkUceoaSkJGC9vXv38t133/GrX/2ayy+/vN1jOZ0uHn30UbKydgS8XlBQwDPP/JnCwkIefPBBGhsbeeyxxzhwICdgvYMH8zh4MI+KikqWL19+7icthBBCCNHLJIAhhOgXnnjiT1RVVbFkyRJmz55DWFgYR48W88EHH1BeXs7mzZuJjY3lRz/6cW8P9bzl5ubyyCP/g9PpJDo6muuuW8rw4cOJjY2ltraWb775ho0bN7Br1y6eeebPPPbY423ua/fu3RQUFJCaOpRly5YxdOhQ7HY727Zt5eOPP8ZqtfLnPz/NihVvotFoArZ1Op389reP+IMXU6dOZfHixcTFxVNTc5LPPvuMrKwsjEZj0GNfc821zJ49hxUr3mD79u3Exsby1FNPd+o9KCk5yubN3xATE8ONN97EqFGj8Hg87Nmzm/fffx+73c4LL7zAJZdMxGAwdGqfZ+OFF/7C4cOHueaaa5k1aybh4REcOXKEN99cQW1tLa+++iqTJk3m2Wef5fjx49x6661cemkmOp2OvLw83nrrTZqbm/nb3/7KpEmTiI6ObvNYK1a8QX5+Ppdffjnz5s0nJiaG8vJy3n77LcrKyvjkk4+ZPn0an3zyCQcP5nHNNdcwc+YsIiMjOXKkiBUrvGN6880VzJgxg9TU1C5/P4QQQggheoIEMIQQ/UJBQQG/+c3/BKSKpKWlMWfOZfzsZz+juPgIn3zyCVddtYihQ4f24kjPj9Pp5M9/fhqn00lmZiaPPvoYOp3Ov3zkyJFMmzaNjIzxvPDCC2zdupU9e/YwefLkoPs7dOgQU6ZM4fHHfx8QoBg/fjwREZGsWPEGJ06cYOfOncyaNStg2zVr1lBcXAzA9ddfHxAcGjVqFDNmzOQf//g7q1evDnrs6OhooqOjCQsLB0CtVnf62hw+fJiRI0fx7LPPEhYW5n997NixDBqUxNNPP4XZbGbjxg3ccMONndrn2SgoKOCxxx5n5syZ/tdGjRpFWloaP/rRA7jdbn75y1/Q3NzM88//hTFjxvjXS0tLIykpid/+9hHMZjObNm1sd4z5+fn86Ec/5vrrr/e/NnLkSCZMmMC9996D2WzmqaeeoqGhodWYRo4cyahRp8f02Wef8eCDD3bxuyGEEEII0TOkiKcQol+YNm1a0DoXoaGh/OxnPwPA7Xbz6aef9vTQutTXX39NVVUVWq2WX/7yVwHBi5YWL76a0aNHA/DVV+va3J9Wq+Xhh3/RanYFwLJly/yv5+YeaLXc917Gx8dz333fD7r/++//AbGxse2f1Dl6+OGHA4IXPvPnz/cf88CB3G459mWXXRYQKPAZNmwY6enjAG86y/XXXx8QvPCZOnUqiYmJnRrj6NGjA4IXPjExMf4xGI3GTo0p2HUUQgghhLhQSABDCNEvXHnlwjaXjR492j9t/rvv9vbQiLrHjh3eOggZGRkdpkaMHz8egIMHD7a5zqRJk9tMXwgNDSUpKQnw1hhpqaamhrKyUgDmzJmDVqsNuo+QkBDmzLms3XGei6FDhzJs2LCgyxQKBSNGjABaj7urtFdbY/jwYZ1ab+hQ73odjXHevLb3MWzY8LMaU3e9H0IIIYQQPUFSSIQQ/UJaWlqHy0tKSigvL8fhcASdcXAhOHy4EPDWrgjWsSOY+vr6NpelpCS3u21ERAQAZrMl4PWjR4/6/z1y5Kh29zFqVPvLz0VycufGbbGYu/zYAIMHD25zmS8lpqP1wsO9s0c6GmNSUsf76OyYLBZLm+sIIYQQQvR1MgNDCNEvdDQbwTfLwOPx0NTU1AMj6h5tFcRsj81ma3NZSEhIu9v62rC63a6A11u+h1FRUe3uo6Pl5yIkJHjqjI9C4f3fm9vt7vJje4/f9vumVJ5uXdtWig90fow6XdvH8u2js2PqrvdDCCGEEKInyAwMIUS/4LvR7u98rU4zM6dw//339/JohBBCCCGE6DkSwBBC9Av19fUkJCS0uxy8gY7w8PA21+vrIiMjqa2txel09Go3lZbvYUNDQ7vrdrRcCCGEEEKIzpAUEiFEv1BQUNCp5UlJSRds/QvAX5yysLAQh8PRa+PwFUWF03U52lJY2P7yi2X2jBBCCCGEOD8SwBBC9Avr13/V5rKCgnxKSkoAmDhxUg+NqHtMnz4dgObmZtata7s9aneLj4/3F4389ttvsdvtQdez2+18++3mdvel1XoDSr0ZkBFCCCGEEH2fBDCEEP3Cjh072Lz5m1avWywWXnzxRQCUSiVLlizp2YF1sQULriQ+Ph6AV199hZycnHbXz809wP79+7tlLFdf7X0vT548yeuvvxZ0nVdffYXa2tp29xMTEwt4C5Sazd3TNUQIIYQQQlz4pAaGEKJfGDVqFE8++ST79+cwZ84cQkNDKS4u5sMPP6CsrAyAa6+9lmHDhvXySM+PVqvlt7/9HQ8//BAWi4Vf/OJh5s2bx4wZMxkwYAAej5va2joOHz7Mtm1bOXr0KA8++BMmTJjQ5WO57rrrWLfuS0pKSvjPf/5DZWUlixYtJj4+npMnT/L555+xc+dORo8eTX5+/qmtWqeLpKePBbwdMv761xe57rqlAZ1LkpKSunzsQgghhBDiwiMBDCFEv/Db3/6OX/7yF6xdu4a1a9e0Wj579mweeOBHvTCyrjd27Fiee+55/vSnP3Ly5Ek2btzIxo0b21w/LCy0W8ah0Wh44okn+MUvfkFlZSVZWVlkZWUFrDN58mRuuOEG/ud//gfwBmDOdMklExkzZgyHDh1i06ZNbNq0KWD5+vUbumX8QgghhBDiwiIBDCFEvzBw4ED++c+X+Pe//822bVs5ceIEKpWKYcOGc/XVV3P55Zf39hC71NixY1mx4k2++uorsrJ2UFRUhMlkQqFQEBUVRUpKChkZE5g9ezbJycndNo6EhERefvkVVq1axbffbub48eNoNBqSk5NZsGABV1+9hB07dvjXDwsLa7UPpVLJ00//mQ8//IAdO7I4frwSq9WKx+PptnELIYQQQogLj8IjvxCFEEJ0o3fffYcVK1agUqlYs2Zt0FkYQgghhBBCdESKeAohhOg2Ho+Hb775BoDhw4dL8EIIIYQQQpwzCWAIIYQ4Z1VVVbhcrjaXv/nmCn8L2wULruyhUQkhhBBCiP5IamAIIYQ4Z199tY5169Yxf/580tPHERsbi9PppLS0lPXrv/K3cB0yZAiLFy/u5dEKIYQQQogLmQQwhBCiCzU1NXHy5Mlz2nbo0KFdPJqeceLECd5///02lycnp/CnPz3R6+kjR48ePaft4uPjCQ8P7+LRCCGEEEKIsyVFPIUQogutW7eO55579py2vRDbhZ44cYItW75lz549VFRU0tBgxGazERERwbBhw5g5cxZXXXUVGo2mt4fKggVXnNN2Dz/8CxYuXNjFoxFCCCGEEGdLZmAIIYQ4ZwkJCdxww43ccMONvT0UIYQQQgjRz8kMDCGEEEIIIYQQQvR50oVECCGEEEIIIYQQfZ4EMIQQQgghhBBCCNHnSQBDCCGEEEIIIYQQfZ4EMIQQQgghhBBCCNHnSQBDCCGEEEIIIYQQfZ4EMIQQQgghhBBCCNHnSQBDCCGEEEIIIYQQfZ4EMIQQQgghhBBCCNHnSQBDCCGEEEIIIYQQfZ4EMIQQQgghhBBCCNHnSQBDCCGEEEIIIYQQfZ4EMIQQQgghhBBCCNHnSQBDCCGEEEIIIYQQfZ4EMIQQQgghhBBCCNHnSQBDCCGEEEIIIYQQfZ4EMIQQQgghhBBCCNHnSQBDCCGEEEIIIYQQfZ4EMIQQQgghhBBCCNHn/X/F/7o4LsgE9AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 175, "width": 536 } }, "output_type": "display_data" } ], "source": [ "viz_cmodel.ctree_feature_space(features=['bill_length_mm'], show={'splits','legend'},\n", " figsize=(5,1.5))" ] }, { "cell_type": "markdown", "metadata": { "id": "Ylq5vqHa8lJI" }, "source": [ "We can also examine the how the tree partitions feature space for two features at once, such as `flipper_length_mm` and `bill_length_mm`:" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:48.094163Z", "iopub.status.busy": "2024-08-24T11:23:48.093913Z", "iopub.status.idle": "2024-08-24T11:23:48.388585Z", "shell.execute_reply": "2024-08-24T11:23:48.387938Z" }, "id": "5ggvD7wqM6Y8" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABIgAAAN5CAYAAABjRQDxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeViU19k/8O8wDAwwg8MmoICAyKIiigguGDEVXBsTjGmiJtGm7dvU9n2TJk2XpGnapGlqzC/pkjZpk2jWJkbI6gYkagRUcEcdQDYVBZRlZFgGhmF+f1BQwjYPzDMzMN/PdeXqOM8557mfGWni7bnvIzEajUYQEREREREREZHdcrB2AEREREREREREZF1MEBERERERERER2TkmiIiIiIiIiIiI7BwTREREREREREREdo4JIiIiIiIiIiIiO8cEERERERERERGRnWOCiIiIiIiIiIjIzjFBRERERERERERk55ggIiIiIiIiIiKyc0wQERERERERERHZOSaIiIiIiIiIiIjsHBNERERERERERER2jgkiIiIiIiIiIiI7xwQREREREREREZGdY4KIiIiIiIiIiMjOMUFERERERERERGTnmCAiIiIiIiIiIrJzTBAREREREREREdk5JohGmf/7v/+zdghERERERERENMYwQTTKNDVprR0CEREREREREY0xTBAREREREREREdk5JoiIiIiIiIiIiOwcE0RERERERERERHaOCSIiIiIiIiIiIjvHBBERERERERERkZ1jgoiIiIiIiIiIyM4xQUREREREREREZOeYICIiIiIiIiIisnNMEBERERERERER2TkmiIiIiIiIiIiI7BwTREREREREREREds7R2gEQERERERGR9RgMBjQ0NKC1tRVGo9Ha4RBRPyQSCVxcXODh4QGpVCrKPZggIiIiIiIiskNlZWXIzc3F6dOn0NzcYu1wiMgEbm6uiImZifnz5yM0NNSsazNBREREREREZGdOnTqFN998A56enkhMXIjw8HC4urpCIpFYOzQi6ofRaERLSwuKi4tx4sRxHD16BA899APMnDnTbPdggoiIiIiIiMiOlJWV4c0338DMmbOwceNG0cpViMj8oqKisGrVKmzfvh1vvvkGHn3052bbScQm1URERERERHYkNzcXnp6eTA4RjVJSqRQbN26Ep6cnDh/ONdu63EEEQK/X48svv8TBgwdw6dIl6HQ6jBs3DiEhIUhJSUFS0uI+c06cOI6dO9NQVFQInU4HX19fJCYuxH333QcXFxcrPAUREREREdHgDAYDTp8+hcTEhUwOEY1iUqkUs2bFIicnG/fee59Zfp7tPkF0/fp1/PrXv8LFixcxbtw4TJs2DXK5HNeuXUdBQQHkcnmfBFFa2k689tprkEgkmD49Gh4eKpw9exb/+c8HyM4+hJdffgXjxo2z0hMRERERERH1r6GhAc3NLQgPD7d2KEQ0QuHh4cjIyEBDQwO8vb1HvJ5dJ4ja2trwy1/+EpcvX8IDDzyA++5bB0fHmx+JTqdDZWVlrzklJRfw+uuvw8HBAc8++xzi4+N7xj799G9x8uRJ/OUvr+Dpp39n0WchIiIiIiIaSmtrKwDA1dXVypEQ0Ui5ubkB6MpHmINd9yD6z3/+g8uXL2HlypW4//4HeiWHAEAulyMsLKzPHKPRiKVLl/Ykh7rHPvbY43BwcMChQ4dw6dIlizwDERERERGRqYxGIwDwtDKiMaD757izs9Ms69ltgqijowNffvkFAGDt2ntMmqPX65GXlwcAuP327/S57uvri2nTpgEAcnKyzRQpEREREREREZG47LbE7MKFC7hx4wa8vLwwceJElJeXITs7G3V1dVAoFIiOjsacOfFwcLiZQ6usrOzZujVQzW54eDgKCgpQUlJikecgIiIiIiIiIhopu00QlZeXAQB8fHzwxhv/xo4dO3q2WwLARx99hLCwMPz+97/H+PG+AIDq6moAgEKhGLBm18fHp9dYIiIiIiIiIiJbZ7cJosbGRgBASUkJCgsLcccdq3HXXXfBw8MDRUWF+Nvf/oaSkhI8+eST+Oc/X4OjoyNaW1sAdPUbGkj3EfctLS2C4nn11Vfx6quvDjkuMjJC0LpEREREREREREOx2wRR926hjo4OLF68GD/72c96rsXGzsaf//xnbNq0CRUVFdi/fz+Sk5NFjWfz5s3YvHnzkOMeeuj7osZBRERERERERPbHbptUu7jcLBFbuXJVn+vjx/siISEBAHDy5IlecwY7Qo7HRhIRERERERHRaGO3O4j8/f37fd3fmLq6egCAn19XL6Kmpia0tLT0mwS6fv06AMDX18+s8RIRERERkXVcuXIFn3/xBU6dOo22Nh2cneWYOTMGq++4AxMmTLB2eEREZmG3CaIpU6ZAIpHAaDSisfEGxo8f32fMjRs3ANzsKxQQEAi5XA6dTofi4mLMnDmzz5zi4uL/rh8mXvBERERERCS6pqYmbNnyImrrGzB/8TJsfuJuOMtd0KZrxZmTeXju+Rfg7eWBXz7xC7i5KawdLhHRiNhtiZmnpyemT58OADhx4kSf6x0dHThz5gyAm42hZTIZ4uPjAQBff/1Vnzk1NTU4d+4cAGDBgkRR4iYiIiIiIvE1NTXh8V/8AhExCXjkyRcQPz8JchdXSCQSyF1cET8/CY88+QIiZiTg8V88gaamJmuHTEQ0InabIAKADRvuBwB8+OGHOH/+fM/7BoMBr7/+GqqqquDq6oqlS5f1XLv33vsgkUiwb98+5Ofn9byv0+nw0ktb0dnZiYULFyIoKMhyD0JERERERGa1ZcuLWLjku5gzP2nQcXPmJyHxO6uw5cUXLRMYEZFI7LbEDABiY2OxceNGbN++HT//+aOIiIiEp6cHSkpKUF1dDWdnZ/zmN7+Bh4dHz5wpU6bgf/7nf/Daa6/hySefxIwZM6BSqVBQcBb19XUIDAzE//3fI9Z7KCIiIiIiGpErV66gtr4BG4ZIDnWbMz8JOfv34urVq+xJRESjll0niABg/foNiIiIRHp6OgoL1SguLoKHhwdSUpbie9/7Xr87gdasuRshISHYuXMnCgsLodPpMH78eNx773247777eIIZEREREdEo9vkXX2D+4mVDD7zF/KSl+Ozzz/Hwj38sUlREROKy+wQRAMTFxSEuLk7QnNjY2YiNnS1SREREREREZC2nTp3G5ifuFjRnRmwCXt3ypUgRERGJjwkiGrZPv0hDS1uLtcMgIiI70KRpwaxZc6wdhiiqrl6FP0tSiGyKERJcLL8ACSR9rjnKZAidEtXnfWe5C9radJYIj4hIFEwQ0bC1tLUgcVmCtcMgIiI78Ol7+xA1bYa1wxBFefnFMftsRKPV5PAohEyOhJOzc59rxefP9DunTdcKZ2e52KEREYmGCSIiIiIiIqJbhIaEoKKsGOFR0SbPOXPiKGbOjBExKiLL2bBhPWpqanq9l5mZZaVoyFLs+ph7IiIiIiKib4uPj4e64ISgObkH9mH1HXeIFBERkfiYICIiIiIiIrqFl5cn3BVuKFYXmDQ+P/cAvL08eMQ9EY1qLDEjIiIiIiL6ljVrUrFt23YAGLTULD/3ALK/+hJbX9xiociIxLd06TJotVprh0EWxgQRERERERHRt8jlcmzatBFp6elQFxxH1PRYBE+OgBFG6FpbcObEUeQc2AsfL09sfXEL3NwU1g6ZyGzuv/9+a4dAVsAEERERERERUT/kcjnWr1uH+vp6HD2ah13p+SgtVkMCI2bNjMFvf/NrlpUR0ZjBBBEREREREdEgPD09sXz5MgCA+twZzJkda+WIyFyqqq5i9+49OHPmDK5evYLm5mZIJBKMGzcO7u7umDhxIsLCwhAdPQNTp06Fg0NXG9/q6mrcf/+GXmvNmDEDL730/1BdXY20tJ3Iy8tHbe11yOVyTJkyBXfccQfmz18wZEytra3Yt28fjh8/jtLSkp5SL5VKhcjIKCQlJWH+/PmQSCRDrtXS0oKsrEycOHECpaWluHHjBjo6OuDh4QEfHx/MmBGDhIQETJs2rdc8oaeYmSPm5uZm7N27B/n5+bh06RIaGxthMBigVCoxbtw4+PiMx+TJkzF9+jTMmBEDFxeXIZ+fhGGCiIiIiIiIiOzO3r178Je//AUdHR19rl2/fh3Xr19HaWkpvvnmGwDABx/8Bz4+PoOumZubgxdeeAGtra0977W3t+P48eM4fvw4li1bjkcffbQn0fRt+/fvx9/+9td++/9UV1ejuroaBw7sR1RUFH7726cHjWfv3r147bV/orm5uc+1a9eu4dq1azh37hy+/vorvPfe+4M+12DMEXNxcTGefPI30Gg0fa41NDSgoaEBFRUVyM/PAwD88pe/wpIlS4YdM/WPp5gRERERERGRXamsrBwwOTRcly9fxnPPPdcrOfRte/fuwbZtb/V7LT09Dc8//0eTmkOr1Wr87//+DHV1df1e3759G156aWu/ySFzMkfMBoMBzz33bL/JIbIs7iAiIiIiIiIiu3Lw4IE+yaGJEydi6tRpcHFxQUtLM65cuYLy8nLodDqT1mxoaAAAeHt7Iy4uDgaDAXl5ebhx40avcTt27MDtt9+OkJDQnvcKCwvx+uuv91kzODgY4eERMBg6cPr0adTW1vZcq62txZYtf8af/9z7BL3Dhw/j/ff77ghycHBATEwMJk6ciI6ODpSWlqGk5IJJz9Yfc8WsVp9HVVVVrzXGjRuHmTNnYtw4Fdrb21BTU4Py8nImkUTGBBERERERERHZlWvXrvX6dWRkJF555S+QSqW93u/o6IBarcY33xyETCYbct0ZM2bgj398HnK5HADQ2NiIxx77OSoqKnrGdHZ24tNPP8Wjj/6857133nkHnZ2dvdbavPmnuPPOO3t+3dbWhmee+R2OHTvW896JEydw5swZzJgxo+e9t956s09cAQEB+MMfnkVgYGCv9ysrK7F7964hn6s/5or529+Fs7Mz3nzzLYwbN67PPSsqKpCTkw0vL69hxUyDY4kZERERERER2RUXF9dev9bpdGhpaekzztHREdHR0di8+adQqVRDrvvTn/6sJzkEAO7u7vjBD37YZ1x+fn7P6+bmZpw4cbzX9cjIyF6JFqArcbJhQ9/j5w8d+qbn9aVLl3olo4CunUO/+90zfZJDQFfi6Ec/+p9Bn6k/5oz5299FZ2cn6uv7L50LDg7G+vUbMGvWLMEx09C4g4iIiIiIiIjsyqxZs5CWtrPn1xUVFfje9+7BpEmTEBAQiMDAAEyaNAnTpk2Ht7e3SWv6+PggJCSkz/uxsbGQSqUwGAw9712/fh2NjTfg7j4OFy5c6HUN6CrfSk42rQnz+fPne837tmnTpiM4ONiktUxlzpinTZsGJycntLe3AwD0ej3+53/+BxMnTkRQUBACAgIQGBiIyMgoTJo0yaTT22h4mCAiIiIiIiIiu5KQkIAFCxYgJyen5z29Xo+SkhKUlJT0GhsZGYkNGzYgIWHuoGsOdKKYTCbDuHGqPrtibtxohLv7ONy4oRneQ/xXd++jb7/uFhTUd+fQSJkzZnd3d3z/+9/Ha6+91vOe0WhEZWUlKisre83z9fVFamoqVq++s085II0cS8yIiIiIiIjI7jz99O/wf//3CCZPnjzouMLCQvz2t7/FwYMHLBOYQIOdmmarvh3zmjV344UX/ozZs2fD0XHgfSw1NTX45z//iVdffVXsEO0SdxARERERERGR3XFwcMCqVauwatUqaDQalJWVorKyEleuXMH58+d7lWsZjUZs374dixYlDbje9evX+31fr9f3u+Nm3Dh3AOi3t9GkSZMQGzvbpOdwdnbqed3fWpcuXTZpHSHMGXO32bNnY/bs2WhtbUVZWRkuX76Mq1evoqSkBCdPnuh16tyuXV9i3bp1Jpf/kWmYICIiIiIiIiK7plKpEBs7u1eC44UX/oSvvvqq59eVlZVoamqCQqHod43r16+jvLy8Tx+ikydP9unX4+PjA3f3rlO6wsLC4ODg0OtEMIPBgIcfftikfju3rh0ZGdnn+rlzZ3Hx4kVMmjRpyLVMZc6Yv83FxQXTpk3DtGnTet7bvXs3Xn75//X8urOzE0VFRUwQmRlLzIiIiIiIiMiu5Obm4K233kJZWVm/1zs7O3Hjxo0+7+v1+kHX/fvf/wadTtfza61Wizfe+HefcXPmzOl57eam6HMqV2VlJV555eUBy8euX7+Ozz//DD/5ycM4e7ag5/1Jkyb1aUjd2dmJZ575HS5f7ruTqKampt/4hmLOmK9dq8HWrS/i1KlTvXYJ3aq/3kp6fbvguGlw3EFEREREREREdkWjuYH//OcD/Oc/H0ClUiE4OATjx4+Hi4scLS2tUKvP92mQrFAoMG7cuEHXPXPmDL7//U2YPTsOBoMB+fl50Gg0vcY4ODhg9eo7e733wAMP4uTJk7125OzevRsHDx5EdPQMeHl5wWjsRENDAy5evIirV68OGMOmTd/H7373dK/3Kisr8cMf/gAzZsxAQEAA9PoOXLp0EYWFhfDx8cEPfvDDQZ+rP+aKWa/vwL59+7Bv3z7I5XKEhIRgwoQJcHV1Q0eHHhcvXoJafb7PvICAAMEx0+CYICIiIiIiIiK7pdFocOrUySHHrVy5Eg4OAxfh+Pj4oKmpCdevX8fevXsGHHf33XcjNDS013tTp07Fj370o14neQFAc3Mzjhw5PGRst5o/fz7uvfc+fPjhf3q9bzAYcPLkSZw8OfSzmsKcMXfT6XRQq9VQq9WDjouKikJY2JRh3YMGxhIzIiIiIiIisium9Mm51e23344HHnhw0DH+/v545pnfD9ijCACSk1Pw0EM/6PfamjV348knn4S7u7vJcYWEhMDLq28fnoceegiPPvooXF1dTV5rOMwRs9DvYvLkyXjqqd8KmkOm4Q4iIiIiIiIisivLli1DaGgoTp06haKiIly+fAl1dXVoaWmBRCKBi4sL/Pz8ERkZidtvvx3Tp083ad3Y2Fj861//xo4dO5CXl4fa2utwdnbGlCnhuOOOO7BgwYJB5yclLcbcufPw9ddf49ixY7hwoRiNjY3Q6XSQy+Xw8vJGUFAgpk2bhri4OISEhA641ooVK7FoURIyMzNx4sRxlJaWorGxEQaDASqVCj4+4zFjxgwkJCQI+uzMHfOECRPwzjvv4PjxE1Cr1aioKMf169fR1NQEg8EAuVwOb29vTJ48GQsWJCIxMRFSqXREMVP/mCAiIiIiIiIiuyKRSBAREYGIiAizr+3j44PNmzdj8+bNw5ovl8uxYsUKrFixYsSxuLm54c4778Sdd94paN57770vaPxIY/b3n4BVqyZg1apVw5pP5sESMyIiIiIiIiIiO8cEERERERERERGRnWOCiIiIiIiIiIjIzjFBRERERERERERk55ggIiIiIiIiIiKyczzFjIiIiIiIiEgAPz8/ZGZmWTsMIrPiDiIiIiIiIiIiIjvHBBERERERERERkZ1jgoiIiIiIiIiIyM6xBxGRHdA2alF0oQjVNdUw6A2QyqTw8/VDZHgkFEqFtcMjIiIiIiIiK2OCiGgM07frkZObDW1LE1RBPgiIC4ODVIpOgwHaaxrsP7QfSlcFEhckwlEms3a4REREREREZCUsMSMao/TtemRkZUDq7YLghCio/L0hlTpCAgmkUkeo/L0RnBAFqbcLMjIzoG/XWztkIiIiIiIishImiIjGqJzcbLgHeUHl7z3oOJW/N5RBXsjJzbZQZERERERERGRrmCAiGoO0jdqusrIhkkPdVP7e0LY0o0nbJHJkREREREREZIuYICIag4ouFEEV5CNojirQG4XFhSJFRERERERERLaMCSKiMai6phrK8SpBc5S+KlTXVIsTEBEREREREdk0JoiIxiCD3gAHqVTQHAepFAa9QaSIiIiIiIiIyJYxQUQ0BkllXUfZC9FpMEAqE5ZUIiIiIiIiorGBCSKiMcjP1w/aaxpBc7Q1Gvj5+okTEBEREREREdk0JoiIxqCIKRHQXLouaI7mci0iwyNFioiIiIiIiMS0YcN6JCcvwZYtW0RZ//TpU0hOXoLk5CU4ffpUn+vvvPN2z3UanRytHQARmZ/SXQmlqwKaqlqTjrrXVNVC6eoGhVJhgeiIiIiIaCxqb2+HXq+3dhiikclkcHJyGtEap0+fxuOPP9bz61de+QumTZs20tCIzIIJIqIxasH8RGRmZQDAoEkiTVUttJfqkJKcYqnQiIiIiGiMaW9vx/33r0N9vcbaoYjG01OFd9/9YERJoszMjG/9OpMJIrIZTBARjVEyJxmSl6QgJzcbFZfUUAX6QOmrgoO0q4G1tkYDzeXrULoqkJKcAkeZzNohExEREdEopdfrUV+vwfvv/wSurs7WDsfsWlrasH79P6DX64edIGpra8OhQ4cAAC4uLmhtbcU33xzET37ykxHvTLIFDzzwIB544EFrh0EjwAQR0Rgmc5IhKWkxmrRNKCwuROWxEhj0XaeV+fn6Y9bCxSwrIyIiIiKzcXV1hpvb2EsQmUNOTjZaWloAAD/5yWa89NJWaLVaHDlyBLfddpuVoyNigojILiiUCsTNjrN2GEREREREdiszMxMAEBoaimXLlmHHjo9w+fJlZGZmMkFENoEJIiIiIiIiIiIR1dXV4cSJEwCA73znOz3/u337dhw7lg+NRgOVSjXoGnl5efj0009RXFwEnU4Hb29vzJ07F3ffvRbe3kMfTNPtwoUL2LVrF06fPoXa2loAgLe3N2bOnIk1a+5GQEDAsJ7xnXfexrvvvgsAyMzMGnBce3s7du/ejZycHFy8WAGtVguFQoGQkBAsXnw7UlJSIJVKhxUDjQwTREREREREREQi+vrrr9DZ2QkHBwfcfntXguj227+Dt99+Gx0dHdi/fz/uuuuuAee/9to/kZaW1uu9K1euIC0tDV999RWee+6PQ8bQ2dmJf/3rdaSnp8NoNPa6VllZicrKSuzZswc/+9nPsHLlqmE85dBKS0vxu989jZqaml7vazQanDx5EidPnsSuXV/i2Wefg4eHhygx0MCYICIiIiIiIiISUVZW146aGTNienb7+Pv7Y+rUqTh37hwyMzMHTBClp6f1JIe8vLxw7733ITIyEu3t7Th69Cg++SQdzz33LNra2gaN4e9//zu++OJzAEB09AykpKTA398fcrkzSkvL8Mkn6aioqMArr7wCDw9PzJ8/31yPD6ArofXYYz9Hc3MzXF1dcccdqxEZGQkfHx80Njbi8OHD2LXrSxQVFeHpp3+Ll19+BY6OTFlYEj9tIiIiIiIiIpGUlJSgrKwMwM3ysm7f+c4SnDt3DhcuFOPixYuYNGlSr+sNDQ3Ytm0bAMDX1xd//evf4Onp2XN9xowZiIuLw69//SsYDIYBYzh+/HhPcujnP38My5cv73U9IiISS5YswZNPPolTp07iH/94FQkJCWYt9dqyZQuam5sRFhaGF174M8aNG9frelxcHObOTcBTTz2FwsJCZGTsw4oVK812fxqag7UDICIiIiIiIhqrsrK6mlM7Oztj4cKFva4tWrQIMpkMAJCZmdFnbmZmBnQ6HQDgf/7nf3olh7rNmjULK1asGDSGDz/8EACwcOHCPsmhbk5OTvjpT38KAKipqcGpU6cGXVOIgoICnD9/DgDwxBNP9EkOdZszJ77nM9q3r+/nQeJigoiIiIiIiIhIBAaDAV9//TUAYO7cuXBzc+t13d3dHfHx8QCAr7/+Gp2dnb2udze2ViqVmD9/wYD3Wbp02YDXmpubcebMaQDAwoWDn5Y2adKknuTN+fPnBx0rxOHDuQCAwMBAhISEDjo2OnoGAKC4uGjQXVFkfiwxIyIiIiIiIhLBsWP5aGhoANBVTtaf73znO8jJycH169dx6tQpxMbG9lwrL68AAEyeHDZouVdYWBhkMhn0en2fayUlJT2Jp+ef/yOef37ohtYA0NBQb9I4UxQXFwMALl++jOTk/j+Hb+vo6EBjYyObVVsQdxARERERERERiSAzs6u8zN3dHXPmzOl3TELCXCgUCgA3y9G6abWNAACVSjXofaRSKZRKZb/XNBqNgIhv0ukGb3otxHBjGKrxNpkXdxARERERERERmVlzcxMOHz4MAGhsbMTy5QOXgXXLzs7Gz372v3Bxcen1vkQy/DhuLVt75JFHMHXqNJPmDZRwGkkMoaGT8atf/crked0nvpFlMEFEREREREREZGYHDx5Ee3u7oDmtra3Izs5GcnIygK4kTX19PRoaNIPOMxgM0Gq1/V5zd3fvee3sLEdISIigmMxBqeyKQadrtcr9yTRMEBERERERERGZWXd5maenF3784x8POf7f//4Xrl+/jqyszJ4EUXBwCOrr61FaWgKDwTBgH6LS0tJ++w8BwOTJkyGRSGA0GnHu3FksWWJaDyBzCgsLw/nz51BVVYX6+vp+T2Mj62OCiIiIiIiIiMiMqqqqcO5c17HuCxcmYvHixUPOUavV+OSTdJw6dQq1tbXw9vZGbGwsTpw4Dq1Wi8OHDyMxMbHfuXv37h1wXZVKhaioKJw/fx5ff/01Hnxw45A9jcxt3rx5+Pzzz2A0GvHJJ+l46KEfWPT+ZBo2qSYiIiIiIiIyo6ysTBiNRgBDHy3f7bbbFgLo6teTlZUFAEhJSYGzszMA4PXXX+s5Ee1Wp0+fxu7duwZde9269QCAlpYW/OEPf0BTU9OAY9vb2/HZZ58JLo8bTFxcHCIjIwEAO3bswMGDBwYdX15e1tO/iSyHO4iIiIiIiIiIzKg7waNSqRAdHW3SnKlTp8HT0wv19XX46qss3HvvvfDw8MCDD27Ev/71Oqqrq/GTnzyMe++9D5GREWhv1yMv7yjS0tLg7e2Ntra2AU8LS0hIwF13peKTT9JRUHAGDz30faxatQrTpk2Hu7s7dDodrl69ioKCAuTkZEOr1SIlJcVcHwcA4Ne//g1++tPN0Gq1eO6555CV9RWSkpIwceJEODg4QKPRoKSkBEeOHIZarcbdd6/FvHnzzBoDDY4JIiIiIiIiIjKLlpaxeSy5kOc6e/Ysrl69CgBYsCARDg6mFe44ODhgwYIF+OKLz1FRUYHi4mKEh4dj7dq1uHbtGj799BPU1tbi73//W69548aNw29/+1s8++yzg67/8MMPQ6lU4v3330N9fT3eeeedAcfK5XKT4zbVhAkT8Ne//g2///0zqKiowJEjh3HkyMC7hFxdXc16fxoaE0REREREREQ0IjKZDJ6eKqxf/w9rhyIaT08VZDLZkOOysjJ7Xi9cuFDQPRYuXIgvvvgcQFeT6/DwcADA5s2bERcXh08//QRFRUVoa2uDt7cP4uPjcc8998DHx2fItSUSCe6//34sWbIEX375JU6dOomqqio0NzdDLpfDx8cHYWFhmD17NhYsSOwpbTOngIAAvPba6zh48CCysw+hqKgIN27cQGdnJ5RKdwQGBmD69OlYsCARU6ZMMfv9aXBMEBEREREREdGIODk54d13PxjwJK2xQCaTwcnJachxjzzyKB555NFh3WPWrFnIzMzq91pCQgISEhIGnPvee++bdA9/f3/88Ic/FBxbTMzMAWMDgAceeBAPPPDgkOtIpVLcfvvtuP322wXHQOJigoiIiIiIiIhGzMnJyaQEChHZJp5iRkRERERERERk55ggIiIiIiIiIiKyc0wQERERERERERHZOSaIiIiIiIiIiIjsHBNERERERERERER2jgkiIiIiIiIiIiI7xwQREREREREREZGdY4KIiIiIiIiIiMjOMUFERERERERERGTnmCAiIiIiIiIiIrJzTBAREREREREREdk5JoiIiIiIiIiIiOwcE0RERERERERERHaOCSIiIiIiIiIiIjvHBBERERERERERkZ1jgoiIiIiIiIiIyM4xQUREREREREREZOeYICIiIiIiIiIisnNMEBERERERERER2TlHawdAREREREREo197ezv0er21wxCNTCaDk5PTsOcbDAbk5ubg2LFjOH/+PDQaDbRaLZydnaFSqRASEoKpU6di4cLb4O/vb8bIiUzDBBERERERERGNSHt7OzZs2ICGhnprhyIaDw9PvPfee8NKEuXm5uL111/H1atX+lxraWlBS0sLrl69ipycHPz73/9GQkICHnroBwgJCTFH6Ga3b98+bN36IgDg3Xffg5+fn5UjInNggoiIiIiIiIhGRK/Xo6GhHs+98hbkLq7WDsfsdK0teOqR70Ov1wtOEL3//nt4++23YTQaAQAxMTFISJiL0NBQuLu7o61Nh7q6ehQUnMHRo0dRXV2No0ePwtvbB4888ogIT0PUPyaIiIiIiIiIyCzkLq5wGYMJouHau3cPtm/fDgDw8PDAk08+iZiYmf2OXbRoER5++Cc4cOAA3nrrTcsFSfRfTBARERERERERmdm1a9fwt7/9DQDg6uqKl19+BRMnThx0jlQqxXe+8x0kJCSgoKDAEmES9WCCiIiIiIiIiMjM0tJ2or29HQCwadP3h0wO3UqhUGDevHkDXq+vr8enn36KY8eOobq6CjqdDiqVClFRUVi5ciViY2f3O6+6uhr3378BAPD447/A0qVLcfz4cXz66ScoKipCU1MTvLy8EBcXh3Xr1sPHx6fX/NOnT+Hxxx/v9V73erfaunVrn51Sra2t+OyzT5Gbm4vKykrodDqMGzcOUVFRSElZirlz5w75uWg0GnzySXpPKV57ezs8PT0xfXo0Vq1aienTo4dcgwbGBBERERERERGRGRmNRmRlZQHo2j20dOlSs6391Vdf4ZVXXoZOp+v1/vXr13H9+nV88803WLZsOR555BFIpdJB13rzzTfw4Ycf9nqvuroaX375JbKzs7F160uYNGnSiGMuKbmAp556CnV1db3er62txaFDh3Do0CEkJibi17/+zYA9no4dO4Znn/0DWlpaer1fU1ODmpoafPVVFu64YzU2b94MBweHEcdsj5ggIiIiIiIiIjKjiopyNDY2AgCmT58OFxcXs6x78OAB/PnPL8BoNMLf3x+rV69GUNAkqFQqVFdXY+/ePcjLy8PevXvg5uaKH//44QHX2r17N86fP4cZM2Zg5cpVCAgIQFNTE7KyMpGZmQmNRoOXXtqKv/71bz1zwsMj8K9//Ru5ubnYvn0bAOBPf3oBXl5evda+9VSz2tpaPPHEE9BqtZBIJEhJSUFS0mK4u7vj4sWL2LlzJ8rKSpGdnY0XX9yCJ598qk+sJSUlePrp30Kv18PR0RGrV6/GvHnzIJfLUVJSgg8//BDV1dX4/PPPIJfL8cMf/nCkH7VdYoKIiIiIiIiIyIzKysp7Xk+ZMsUsa964cQMvv/wyjEYjli1bhkceebTXDqEpU6Zg4cKFeOutt/Cf/3yATz75BCtXrkJgYGC/650/fw4rVqzAI488ColE0vN+bGwsHB0dsWfPHqjVapSUXEBYWNczuLi4ICQkBMXFxT3jAwICBj3m/h//+Ae0Wi0A4NFHf47ly5f3XAsPD8eiRYvw5JO/walTp3DgwAEkJ6cgPj6+1xqvvPIy9Ho9HBwc8OyzzyEuLq7nWkREJG67bREeffSR/yacPkZycjKCg4NN+FTpVtx3RURERERERGRGN27c6Hk9bpxqwHGdnZ0oLy8f8J+Ojo6esV988QWam5vh7e2Nn/3sfwcsH3vwwQfh7e2Nzs5OZGZmDnhvT08vbN78017JoW5r197T87qg4Oxgjzqo2tpa5ORkAwDmzJnTKznUzcnJCY899njP83z22ae9rhcWFqKoqAgAsGLFil7JoW5KpRKPPPIogK7P9PPPPx92zPaMO4iIiIiIiIiIzKi19WafHLlcPuC4lpYW/OhHA5dDvfvuez27cw4fzgUAJCTMHbBPD9B1ElpU1FQcOvQN1OrzA4677baFA64TGBgIFxcXtLa2oqqqasA1hnLmzGl0dnYCAJYt65sc6ubn54fY2NnIz8/DmTNnYDAYehJGJ06c6Bk32BrTp09HUFAQLl26hJMnTww4jgbGBBERERERERGRGbm4uPa8/nYz6eEwGAwoLS0FAOza9SV27frSpHn19fUDXhuo9KybQqFAa2trr2SXUOXlFT2vIyMjBx0bFRWJ/Pw86HQ6VFVVISAgAEBXPycAkMlkCAsLG3SNyMgoXLp0CVeuXIFer4dMJht27PaICSIiIiIiIiIiM3J3d+95feOGZsBxCoUCmZlZvd7bsmULMjMzer2n1WphMBgEx9HW1jbgNWfngXc2Aeg5Ccxg6BR8327dvYcAQKVSDTrWw8Oz33ndr5VK5ZCnsnl6egDoOkWuqakJHh4eQkO2a0wQEREREREREZnR5MmhPa9LSkpGvF53mRYALF++HHfdlWrSPFvaQdNfryOBK5glDhoYE0REREREREREZhQcHAJ3d3c0NjaioKAAOp1u0F5EQ1EqlT2vjUYgJCTEHGGK7ta4GxoaMH78+AHHNjTcLIe7dV73a622sVdvov7U1zcA6EpGKRSKYcdtr3iKGREREREREZEZSSQSfOc7SwB0NaL+dsmYUDKZrOfY9nPnzo00vBEzdTdQSEhwz+vCwsJBx3Zfl8vl8Pf373k/OLgrGabX64fcjVVU1LXGxIkTbWr31GjBBBERERERERGRmd1995qeU8LefPPNEZ0GBgBz584DAFy+fAn5+fkjjm8knJxuJl/0ev2A42bMiOnpZbR3794Bx127VtNzWtmMGTN67RKKjY3teb1v38BrnD9/HhcvXgQAzJoVO+A4GhgTRERERERERERmNn68LzZv3gwAaG5uxqOPPoKzZwsGnWM0GtHc3NTvtdTUVLi4uAAAtm7dioqKikHXOnr0CMrKyoQHbgJPT6+e11evXh1wnLe3NxYsSAQA5OfnISOj704qvV6PrVu3oqOjAwCwevWdva5HRkYiPDwcALB79+5ex953a25uwiuvvAygq7n2d7/7XWEPRADYg4iIiIiIiIhIFCtWrERtbS3effdd1NXV4dFHH8XMmbMwb97c//YpUsJg6ERDQwMuXLiAb7452JP4cXBwgKPjzT+ye3h44Be/eALPPvsH1NfXYfPmnyAlJQVz5sTDx8cHHR0dqK29jsLCIhw69A2qqqrw7LPPITQ0dIDohi8sLAxOTk5ob2/H229vh6OjI3x9fXtKz7y9veHs7AwAePjhh3Hq1ElotVq89NJWnD1bgKSkJCgUSly+fBkff7wDpaWlAIBFixYhPj6+z/0effTn+N///Rn0ej2eeupJrF59J+bOnQu5XI7S0hJ8+OGHPTu07r577ajp0WRrmCAiIiIiIiIis9C1tlg7BFGM5LkeeOBBhIZOxr/+9Tqqqqpw6tRJnDp1csDxEokEcXFx+OEPfwRvb+9e1xYuXIjf//4PePHFLdBqtfjyyy/x5Zdf9ruOg4PDiBpjD8bV1RV33nkXduz4CBcuXMCvfvXLXte3bt2KmJiZAAAfHx9s2bIFTz31FOrq6rBnzx7s2bOnz5qJiYl44olf9nkf6EpI/eEPz+LZZ/+AlpYW7Nz5MXbu/LjPuDvuWI2HHnpo5A9op5ggIiIiIiIiohGRyWTw8PDEU49839qhiMbDw3PYjY8TExMxb948ZGdn49ixY1Crz0Oj0aCpqQnOzs5wd3dHSEgIpk6dikWLkno1af62efPm4d1338Pu3buRl5eHixcroNVqIZVK4eHhgeDgYMycORMLF9426KlhI/WDH/wAEydORFZWJioqKtDc3IzOzs5+x4aFTcG2bdvx2WefIicnB5WVlWhra4O7uzuioqKQkrIU8+bNG/R+cXFxePvtd5Ceno68vKOoqqqCXq+Hh4cHoqOjsWrVKkyfHi3Go9oNJoiIiIiIiIgGUVdXj7y8PJSVl6O0WI03/m3EzJkxWH3HHZgwYYK1w7MJTk5OeO+99wZtWDzayWSynqbTwyGVSrFo0SIsWrRoxLG4ublh7dq1WLt2raB5fn5+yMzMMmnse++9P+h1iUSCFStWYMWKFSat5+LignvvvQ/33nufSeP7o1Kp8P3vfx/f//7YTURaExNERERERERE/dDpdEhLS0djUzOiomOxMnUByksLMSlkCs6czMNzz78Aby8P/PKJX8DNTWHtcK3OyclpRAkUIrIuu04QbdmyBZmZfbuo32rXrt29/k9u37592Lr1xUHnPP/885gzp29jLSIiIiIiGh10Oh3e2rYNU2PisTjqZtmKBBLIXVwRPz8J8fOTkJ97AI//4gm8uGULFAomiYho9LLrBFG3adOmYcKEif1ec3Bw6Pf9CRMmYNq06f1e+3YjMSIiIiIiGl3S0tIxNSYe4VGD9zSZMz8JALDlxRfxh9//3gKRERGJgwkiAMuXr8DSpUsFzZk2bTqeeOIJkSIiIiIiIiJrqaurR2NTc6+dQ4OZMz8JOfv34urVq+xJRESjVv/bY4iIiIiIiOxUXl4eoqJjBc2Zn7QUn33+uUgRERGJjwkiIiIiIiKiW5SVlyM4NFzQnBmxCTh16rRIERERiY8lZgBOnz6F8vJytLa2wN3dHRERkYiPjx+0A//Vq1ewbdtb0Gg0cHFxQXBwMObNm49x48ZZMHIiIiIiIjI3vb4dMoGncTnLXdDWphMpIiIi8TFBBCAzM7PPe56eXnj88ccGPI3s3LlzOHfuXK/3nJz+hvvvfwD33nuvKHESEREREZH4ZDIn6Nvb4eTsbPKcNl0rnJ3lIkZFRCQuu04QTZ4ciilTNmPWrFkYP3482traUFZWhnfeeQfnz5/D008/jRdeeAExMTN75nh6emDdunWYN28+/P39IZPJcPnyZXz22afIysrCm2++gc7OTqxbt856D0ZERERERMMWGhKCirLiIU8wu9WZE0cxc2aMiFEREYnLrhNEa9bc3evXrq6umD17NmJjY/HMM79Dbm4u/vGPf+L111/vGTNnTnyfXUURERF44olfIjR0Ml5//TW89967WL58OTw8PEyO5dVXX8Wrr7465LjIyAiT1yQiIiIiIuHi4+OxY2eaoARR7oF9eOo3vxIxKiIicbFJdT8kEgkeeOBBAEBZWSmuXbtm0ry77roL48aNg16vx7FjxwTdc/PmzTh//vyQ/whJOhERERERkXBeXp5wV7ihWF1g0vj83APw9vLgEfdENKoxQTSAoKCgnte1tbUmzZFKpZg4ceJ/51wXJS4iIiIiIhLfmjWpUJ/OHzJJlJ97ANlffYlfPvELC0VGRCQOuy4xG0xjY2PPaxcXF8HzXFxczR4TERERERFZhlwux6ZNG5GWng51wXFETY9F8OQIGGGErrUFZ04cRc6BvfDx8sTWF7fAzU1h7ZCJiEaECaIBHDiwH0BXX6LAwECT5ly4cAGVlZUAgMjISNFiIyIiIiIi8cnlcqxftw719fU4ejQPu9LzUVqshgRGzJoZg9/+5tcsKyOiMcNuE0QlJSW4du0aEhISIJVKe97v7OzEvn378NZbbwHo6ivk6Nj1Mel0Ouzbtw/Jyclwde29Q+jMmTN48cUtAIDp06czQURERERENEZ4enpi+fJlAAD1uTOYMzvWyhEREZmf3SaIampq8Mwzv4NSqURYWBg8PDzQ1NSEioqKnqbUixcvxv33P9Azp6OjA3//+9/w+uuvISwsDOPHj4fBYEBlZSUqKioAACEhIXjqqd9a45GIiIiIiIiIiIbFbhNEoaGhSE1NRXFxMS5fvoxz587BaDTCw8MDCxfehqVLlyIhIaHXHGdnZ6xfv+G/cy7h4sWLaGtrg1KpRGxsLG677TakpCyFTCaz0lMREREREREREQlntwkif39/PPzwTwTNkclk2LhxozgBERERERERERFZCY+5JyIiIiIiIiKyc0wQEREREREREdmo6upqJCcvQXLyEuzbt2/Y63QduNS1TnV1tRkjpLHCbkvMiIiIiIiIyHza29uh1+utHYZoZDIZnJychj1fr9fj0KFDyM/PQ1FRETQaDVpaWuDm5gZfX19ERERg4cKFmDlzFhwcuJeDLI8JIiIiIiIiIhqR9vZ2rNuwDjcaNNYORTTjPFT44L0PhpUkOnToEP71r9f73bnT2NiIxsZGXLhwAV9++SUCAgLw4x//GAkJc80R9qjxzjtv49133wUAZGZmWTka+8QEERER0SihbdSi6EIRqmuqYdAbIJVJ4efrh8jwSCiUCmuHR0REdkyv1+NGgwapf/wBZPLh77KxVXpdO9KffAN6vV5wgui9997D229v7/l1bOxszJs3D5MmTYJCoYBW24jLlytx5MhhnDhxApWVlXjrrW1mTxAtXboUS5cuNeuaNLYwQURERGTj9O165ORmQ9vSBFWQDwLiwuAglaLTYID2mgb7D+2H0lWBxAWJcJTJrB0uERHZMZncCU4uztYOw2bs3bu3JzmkUqnw1FO/RUxMTJ9xsbGzsXr1apSXl+O11/4JjeaGhSMlYoKIiIjIpunb9cjIyoB7kBeC/QN7XZNKHaHy94bK3xuaqlpkZGYgeUkKZE5MEhEREVlbbW0tXn317wAAuVyOl176fwgKChp0TkhICP70pxfw9ddfWyJEol6YICIiIrJhObnZcA/ygsrfe9Bx3ddzcrORlLTYEqERERHRINLS0qDT6QAADz64ccjkUDcHBwcsWbJk0DHHjx/Hp59+gqKiIjQ1NcHLywtxcXFYt249fHx8+p2zb98+bN36IgDg3Xffg5+fX6/rjz32c5w5cwYzZszASy/9P9TW1mLnzo9x+PBh1NbWwtnZGeHh4UhNXYP4+PgBYzMYDMjKysL+/V+jrKwMWq0WTk5OUKk8MH78eMyaNQsLFizApEmT+sTVLTm57/PfGvO3Y62srMQnn3yCY8eOoa6uFm1tbb3G19XVIScnG6dOnUJpaRnq6+tgMBjg7u6O8PBw3H777bjttkUDNgc/ffoUHn/8cQDA1q1bER09A3v37sG+fftw+fJl6PV6TJgwAUlJSViz5u4RNTO3JiaIiIiIbJS2UQttS1OfnUMDUfl7o+JSIZq0TexJREREZEVGoxGZmRkAunYPrVixwmxrv/nmG/jwww97vVddXY0vv/wS2dnZ2Lr1pZ7ky3CdPXsWzzzzO9y4cbPUrb29HcePH8fx48fxox/9CGvX3tNnXmtrK5588jcoKCjo9X5HRwdaWlpw9eoVnDp1EiUlF/D0078bUYzdcnNz8Kc//aknGfdtBoMB69bdh87Ozj7X6urqcPjwYRw+fBh79uzFM888AxcXl0Hvp9d34KmnnkR+fn6v98vKylBWVoavvvoKW7a8CE9Pz+E/lJUwQURERGSjii4UQRXU/98CDkQV6I3C4kLEzY4TKSoiIiIaSkVFRU9yJTo6Gq6urmZZd/fu3Th//hxmzJiBlStXISAgAE1NTcjKykRmZiY0Gg1eemkr/vrXvw37HvX19Xjmmd9BIpHgoYd+gOnTp0Mmc8TZs2fx3nvvoampCW+++SbmzIlHcHBwr7nvvPNOT3Jo7ty5uP3272D8+PFwcnKCRtOAkpISHDlyFICkZ86CBQsQHh6OL774HF988QUA4F//+nefuLy9++6mvnbtGl544QXI5XKsX78B0dHRcHBwQFFRUZ9Ez8yZsxAfPwfBwSFQqVRoaWlBVVUV9uzZjfPnz+PEieP429/+iiee+OWgn8/27dtQVFSE2bNn47vfvQM+Pj64fv06Pv/8c5w4cRwXL17Eb3/7FP76179BKpWa8pHbDCaIiIiIbFR1TTUC4sIEzVH6qlB5rESkiIiIiMgUZWVlPa+nTJlitnXPnz+HFStW4JFHHoVEcjPJEhsbC0dHR+zZswdqtRolJRcQFja8+1ZWVsLX1xevvPKXXkmZiIhIRERE4Oc//zkMBgN27dqFzZs395p78OABAMDChbfh6aef7rP2nDnxuO++dWhsbOx5T6FQQKFQQKVS9bwXEhJiUqzV1dXw8vLCX//6V4wf79vzflRUVM9rBwcHvPXWNkycOLHP/JiYGCxbtgxvv/023nvvXWRlZWHduvUICAgY8J5FRUVYuXIlHnnk0Z73wsPDsWDBArz00kvYu3cPiouLsWvXl7jjjtUmPYet6L/AjoiIiKzOoDfAQeDfPDlIpTDoDSJFRERERKa4NQGiUnmYbV1PTy9s3vzTXsmhbreWfBUUnB3RfTZv/mm/O3amT49GZGQkAODs2YI+1xsaGgB07ZoajLu7+4jiu9VDD/2gV3Lo2yQSSb/JoVtt2LAB48aNg9FoxOHDhwcd6+HhgR//+OF+r/3kJz/pSXR174YaTZggIiIislFSWddR9kJ0GgyQykbXdmYiIqKxpqWlpee1XC4327q33bZwwAbIgYGBPWVVVVVVw76HQqFAQkLCgNenTAkf8B7dfXcOHDgwYE8gc5LJZFi0aJGgOZ2dnaitrcXly5dRXl6O8vJyXLp0qSchVlZWOuj8RYsWDfiduri44LbbuuKpqKhAfX29oNisjSVmRERENsrP1w/aa5ohTzC7lbZGAz9fv6EHEhERkWhu7TlkzkRJYODgB1coFAq0traitbVl0HGDmThx4oCneQGAUqkE0NWQ+tuSk1Pw/vvv4fz5c7j//g247bZFmDVrFqZPn96rhMxcJk6caNKJYUajEV999RX27t2DwsJCtLW1DTj2xo3GAa8BQHh4xKDXIyMj8PnnXa/Ly8tHVbNqJoiIiIhsVMSUCBzIPiAoQaS5XItZC5PEC4qIiIiGdGsJVXfZlTk4Ow++G6k7sWMw9D2xy/R7OA9xj67ytv5OBduwYQPq6mqxb98+aDQafP75Z/j8888AAMHBwUhMXIg77rgDHh7mKbtTKIY+tbW9vR3PPPMM8vPzTFqzvX3g5BGAIRNdt5YUarWDJ5tsDRNERERENkrproTSVQFNVa1JSSJNVS2Urm484p6IiMjKQkNDe16XlFywYiSW5ejoiMceexx3370W+/d/jZMnT+HChWLo9XpUVFSgoqICaWk78atf/Qrz5y8Y8f0G2+nU7YMP3u9JDs2YMQN33LEaU6ZMgYeHB5ydnXvW+PnPH0VBQQGMRuOg6/XX/2msYIKIiIjIhi2Yn4jMrAwAGDRJpKmqhfZSHVKSUywVGhEREQ0gODgY48aNw40bN1BQUIDm5ma4ublZOyyLmTRpEjZu3ISNG7t28Jw9W4Cvv/4amZmZaG1txfPPP4+3334HXl5eosZhNBqxZ88eAF2Ns198ceuASSWtVmvSmkPtCNNobl5XKs3XjNsS2KSaiIjIhsmcZEhekgJDbSsqjqqhuVoLg6EDRhhhMHRAc7UWFUfVMNS2IiU5BY4ymbVDJiIisnsSiQTJ//1LG51O15OksEdOTk6IjZ2Nxx//BX70ox8BANra2nD06JFe48TYmaPVNvY0ir7tttsGTA61trbi8uXLJq1ZXFw06PWiopvXg4ODTQvURjBBREREZONkTjIkJS3G4oWL4dLuiMpjJSjPPo/KYyVwaZdh8cLFSEpazOQQERGRDVmzZk3PaVdvv70dly5dMmleZ2cnvvrqKzFDs5pZs2J7Xt+4caPXNZnsZrPp9vZ2s9zv1l5MgzUL37NnNwwmnhz7zTffDNjkurW1FQcPHgTQtYtK7B1S5sYEERER0SihUCoQNzsOq1aswurVq7FqxSrEzZ7NnkNEREQ2yNvbG5s3/xRAV3Liscd+jtOnTw865+LFi/j1r3+NHTt2WCJEs2psbMThw4cH7eFz/Pixntd+fv69rnl53Tztq6qqyiwxjRs3rqeR9f79+/tNPBUVFWL79u0mr1lfX4/XX3+t32uvv/4aNBoNAGDVqu8Kjtfa2IOIiIiIiIiISATLli1DbW0t3n57OzQaDR5//DHMnj0b8+fPR1DQJCgUbmhs1OLKlUocPXoU+fn56OzsRGjoZGuHLlhLSwuefvq38PPzw4IFiYiKisT48b6QSqWor6/HkSOHe0rtvL29MXfu3F7zp06d1vP6n//8B9atWw9PT8+e0jM/Pz9IpVJBMTk4OOD227+Dzz//DGVlZXj00UewZs3dmDhxIpqbm5GXl4cvvvgcLi4u8PLyQmVl5ZBrhoeH44svvkB1dTVWrVoFH5/xuH79Gr744gscO9aVAAsLC8N3v8sEEREREREREdkpvc48pUG2ZiTPtWHDBkyaNAn/+tfrqK6uxvHjx3H8+PEBxwcHB+OHP/zhsO9nbdXV1UhL2zngdU9PL/z+93+Ai4tLr/cnTpyIRYsW4eDBg/1+Ru+++x78/PwEx/P972/CuXNnUVpaiuLiYvzpT8/3uq5UKvH007/D229vNylBtGnT97Fz58fIz89Hfn5+n+uBgUF49tnnBCezbAETRERERGQR2kYtii4UobqmGga9AVKZFH6+fogMj2SZHBHRKCeTyTDOQ4X0J9+wdiiiGeehgmyY/f4WLlyIuXPn4tChb5CXl4/i4iJoNBq0tLTA1dUVfn5+iIyMwm233YaYmJhReZS6r68v/v73vyMvLw/nzp3DtWvX0NDQgNbWVigUCgQFTcK8eXOxYsXKAU90+9Wvfo3w8HAcOnQIly9fRmtrKzo7O/sdayo3NwVeeeUvSEvbiYMHD+LKlSuQSqXw8fFBQkIC7rorFT4+PiavJ5M54o9/fB67d+9CZmYmLl++jI6ODvj7+2PRoiTcfffdcHZ2HlHM1iIxDlYgSDbnoYe+jzfffMvaYQAAPtj5LhKXJVg7DCIisnH6dj1ycrOhbWmCKsgHyvEqOEil6DQYoL2mgebSdShdFUhckDhgo+1P39uH72982MKRW8buL7/AilHYp4DIXqnPncGc2bFDD7RRly5dwgsvvIBf/epXCAoKMuva7e3t0Ov1Zl3TlshkMjg5OQ09kMac06dP4fHHHwcAbN26FTExM60b0H+Z++eZO4iIiIhINPp2PTKyMuAe5IVg/8Be16RSR6j8vaHy94amqhYZmRlIXpICmRNPYyPrqaurR15eHsrKy6HXt0Mmc0JoSAgSEuLh6ek59AJEdszJyYkJFKJRjAkiIiIiEk1Objbcg7yg8vcedFz39ZzcbCQlLbZEaES96HQ6pKWlo7GpGVHRsViZugAyJyfo29tRUVaMjz5Og7vSDWtSU3uOrSYiIhpLeMw9ERERiULbqO0qKxsiOdRN5e8NbUszmrRNIkdG1JtOp8Nb27ZhYkgEVt/zIMKjouHk7AyJRAInZ2eER0Vj9T0PYmJwBLZt2w6dTmftkImIiMyOCSIiIiISRdGFIqiCTG/6CACqQG8UFheKFBFR/9LS0jE1Jh7hUdGDjguPikZUzBykpadbKDIiIiLLYYKIiIiIRFFdUw3leJWgOUpfFaprqsUJiKgfdXX1aGxqHjI51C08KhqN2mbU19eLHBkREZFlsQcRERERicKgN8BBKhU0x0EqhUFvECkior7y8vIQFS3sRKqo6bNw9Ggeli9fJlJURERkS2JiZiIzM8vaYYiOO4iIiIhIFFJZ11H2QnQaDJDKhCWViEairLwcwaHhguYET45AWXm5SBERERFZBxNEREREJAo/Xz9or2kEzdHWaODn6ydOQET90OvbIRN4LLfMyQl6fbtIEREREVkHE0REREQkiogpEdBcui5ojuZyLSLDI0WKiKgvmazrKHsh9O3tkMmEJZWIiIhsHRNEREREJAqluxJKVwU0VbUmjddU1ULp6gaFUiFyZEQ3hYaEoKKsWNCcitIihIaEiBQRERGRdTBBRERERKJZMD8R2kt1QyaJNFW10F6qQ+KCRAtFRtQlPj4e6oITguaoz55EQkK8SBERERFZBxNEREREJBqZkwzJS1JgqG1FxVE1NFdrYTB0wAgjDIYOaK7WouKoGobaVqQkp8BRJrN2yGRnvLw84a5wQ7G6wKTxxeoCuCvd4OnpKXJkRERElsVj7omIiEhUMicZkpIWo0nbhMLiQlQeK4FB33VamZ+vP2YtXMyyMrKqNWtSsW3bdgBAeFT0gOOK1QVQn87Hpk0bLRMYERGRBTFBRERERBahUCoQNzvO2mEQ9SGXy7Fp00akpadDXXAcUdNjETw5ouu0svZ2VJQWQX32BNyVCmzatBFyudzaIRMREZkdE0REREREZPfkcjnWr1uH+vp6HD2ah13p+dDru04rCw0JwffW3s2yMiIiGtOYICIiIiIi+i9PT08sX77M2mEQERFZHBNEREREZBHaRi2KLhShuqb6lh5EfogMj2QPIiIiIiIrY4KIiIiIRKVv1yMnNxvaliaognwQEBcGB6kUnQYDtNc02H9oP5SuCiQuSOQpZkRERERWwgQRERHZBe5esQ59ux4ZWRlwD/JCsH9gr2tSqSNU/t5Q+XtDU1WLjMwMJC9JgcyJSSIiIiIiS2OCiIiIxjTuXrGunNxsuAd5QeXvPei47us5udlISlpsidCIiIiI6BYO1g6AiIhILN27V6TeLghOiILK3xtSqSMkkPTsXglOiILU2wUZmRnQt+utHfKYom3UdiXmhkgOdVP5e0Pb0owmbZPIkRERERHRtzFBREREY5aQ3SvKIC/k5GZbKDL7UHShCKogH0FzVIHeKCwuFCkiIiJycOj6I6DRaLRyJEQ0Ut0/x90/1yPFBBEREY1J3L1ifdU11VCOVwmao/RVobqmWpyAiIgIrq6uAICGhgYrR0JEI9X9c+zm5maW9diDiIiIxqSR7F6Jmx0nUlT2xaA3wEEqFTTHQSqFQW8QKSIi21BXV4+8vDyUlZdDr2+HTOaE0JAQJCTEw9PT09rh0Rjn4eGBCRP8kZ+fh5kzZ1o7HCIagfz8PEycOAEqlcos6zFBREREY1J1TTUC4sIEzVH6qlB5rESkiOyPVNbVDFwqNf0/NzoNXSfMEY1FOp0OaWnpaGxqRlR0LFamLoDMyQn69nZUlBXjo4/T4K50w5rUVMjlcmuHS2OURCJBYmIidu7ciezsbCQmJlo7JCIahkOHDuH06dNYu3YtJBKJWdZkgoiIiMYk7l6xPj9fP2ivaUwu8wMAbY0Gfr5+IkZFZB06nQ5vbduGqTHxWBwV3euak7MzwqOiER4VjWJ1AbZt245NmzYySUSiWbjwNlRX1+CDDz5Afn4epk2bjkmTgiCXu5jtD5pEZF5GoxE6XSsuXryEc+fO4sKFEixatAiJiQvNdg8miIiIaEzi7hXri5gSgQPZBwQliDSXazFrYZJ4QRFZSVpaOqbGxCP8W8mhb+u+npaejvXr1lkiNLJDUqkU9957LyZPnoxjx/KxZ89utLW1WzssIjKBs7MTwsPDsWnTJsyZM8esazNBREREYxJ3r1if0l0JpasCmqpak74HTVUtlK5uUCgVFoiOyHLq6urR2NTcZ+fQQMKjoqEuOIH6+nr2JCJRzZkzB3PmzIFer4dGo4FOp+PpZkQ2SiKRQC6XQ6VSQSaTiXIPJoiIiGhM4u4V27BgfiIyszIAYNDvQlNVC+2lOqQkp1gqNCKLycvLQ1R0rKA5UdNn4ejRPCxfvkykqIhukslk8PERdrADEY09POaeiIjGpFt3r5iCu1fEIXOSIXlJCgy1rag4qobmai0Mhg4YYYTB0AHN1VpUHFXDUNuKlOQUOIr0N2JE1lRWXo7g0HBBc4InR6CsvFykiIiIiPriDiIiIhqzuHvFNsicZEhKWowmbRMKiwtReawEBn1Xvyc/X3/MWriYiTka0/T6dsicnATNkTk5Qa9nTxgiIrIcJoiIiGjM6t69kpObjbKKc3BwdoRe1w6joRMSqQNkcid0tnVgnMKdu1csQKFUIG52nLXDILI4mazrKHsnZ2eT5+jb2yGTCUsqERERjQQTREREZBckDg4Y5+cFd18VHKRdJ5w11miguXzd2qER0RgXGhKCirLiIU8wu1VFaRFCQ0JEjIqIiKg3JoiIiGjM0rfrkZGVAfcgL4T4B/a6JpU6wmOCNzwmeENTVYuMzAwkL0mBzIm7iIjIvOLj47FjZ5qgBJH67El8b+0aEaMiIerq6pGXl4ey8nKUFqvxxr+NmDkzBqvvuAMTJkywdnhERGbBBBEREY1ZObnZcA/yGvIks+7rObnZSEpabInQiMiOeHl5wl3hhmJ1gUlJomJ1AdyVbjzi3gbodDqkpaWjsakZUdGxWJm6AOWlhZgUMgVnTubhuedfgLeXB375xC/g5sZeakQ0uvEUMyIiGpO0jVpoW5pMPuZe5e8NbUszmrRNIkdGRPZozZpUqE/no1hdMOi4YnUB1KfzsSY11UKR0UB0Oh3e2rYNE0MisPqeBxEeFQ0nZ2dIIIHcxRXx85PwyJMvIGJGAh7/xRNoauK/P4hodOMOIiIiGpOKLhRBFeQjaI4q0BuFxYVspExmU1dXjyN5R1BaXoaOdj0cnWSYHBKKeQlzuTvEzsjlcmzatBFp6elQFxxH1PRYBE+O6DqtrL0dFaVFUJ89AXelAps2bYRcLrd2yHYvLS0dU2Pih9z1NWd+EgBgy4sv4g+//70FIiMiEgcTRERENCZV11QjIC5M0BylrwqVx0pEiojsiU6nw460j9HQqMH4qEBErYyD1FEKQ4cBteXVePej9+Hp7oG1a+62dqhkQXK5HOvXrUN9fT2OHs3DrvR86PVdp5WFhoTge2vvZuLQRtTV1aOxqRmLTewbNWd+EnL278XVq1fZk4iIRi0miIiIaEwy6A1wkEoFzXGQSmHQG0SKiOyFTqfDG9vegPfUQERPiep1TSpzhG94AHzDA3DtwhW8se1NBPr7WylSshZPT08sX77M2mHQIPLy8hAVHStozvykpfjs88/x8I9/LFJURETiYg8iIiIak6SyrqPsheg0GCCVCUsqEX3bjrSP4T01EOOnTBx03PgpE+E9NQCnTp+0UGREZKqy8nIEh4YLmjMjNgGnTp0WKSIiIvExQURERGOSn68ftNc0guZoazTw8/UTJyCyC3V19V1lZUMkh7qNnzIRLa061NfXixwZEQmh17dD5uQkaI6z3AVtbTqRIiIiEh8TRERENCZFTImA5tJ1QXM0l2sRGR4pUkRkD47kHcH4qEBBcxR+Khw+ekSkiIhoOGSyrubhQrTpWuHszObiRDR6MUFERERjktJdCaWrApqqWpPGa6pqoXR1g0KpEDkyGstKy8vgHSJsF5qblxKl5WUiRUREwxEaEoKKsmJBc86cOIqZM2NEioiISHxMEBER0Zi1YH4itJfqhkwSaapqob1Uh8QFiRaKjMaqjnY9pI4Cm6NLHNDRrhcpIiIajvj4eKgLTgiak3tgH1bfcYdIERERiY+nmBERkSi0jVoUXShCdU01DPqu5s9+vn6IDI+02C4dmZMMyUtSkJObjYpLaqgCfaD0VcFB2tXAWlujgebydShdFUhJToGjTGaRuGjscnSSwdBhgFRm+n9idRo74ejE33tEtsTLyxPuCjcUqwsQbsJR9/m5B+Dt5cEj7oloVGOCiIiIzErfrkdObja0LU1QBfkgIC7sZkLmmgb7D+2H0lWBxAWJFknIyJxkSEpajCZtEwqLC1F5rOSWhJU/Zi1czLIyMpvJIaGoLa+Gb3iAyXOa67SIjZglYlRENBxr1qRi27btADBokig/9wCyv/oSW1/cYqHIiIjEwQQRERGZjb5dj4ysDLgHeSHYv3ejXqnUESp/b6j8vaGpqkVGZgaSl6RAZqGdEwqlAnGz4yxyL7Jfc+Pn4r0d7wtKEDVVazDvgbkiRkVEwyGXy7Fp00akpadDXXAcUdNjETw5AkYYoWttwZkTR5FzYC98vDyx9cUtcHPjXzYQ0ejGBBEREZlNTm423IO8oPL3HnRc9/Wc3GwkJS22RGhEFuHl5QkPdxWuXbhi0lH31y5cgauLHJ6enhaIjoiEksvlWL9uHerr63H0aB52peejtFgNCYyYNTMGv/3Nr1lWRkRjBhNERERkFtpGLbQtTX12Dg1E5e+NikuFaNI2scSLxpR71qzFG9veBIBBk0TXLlxB7flKzIxheRmRrfP09MTy5csAAOpzZzBndqyVIyIiMj+eYkZERGZRdKEIqiAfQXNUgd4oLC4UKSIi65DL5fjBpoegr9Si4LPDqCm+DIO+AzAaYdB3oKb4Mgo+Owx9pRY/2PQQZI5sUE1ERETWxx1ERERkFtU11QiICxM0R+mrQuWxEpEiIrIeuVyO+9dvQH19PQ4fPQL1rmPoaNfD0UmGySGhWPq99SwrIyIiIpvCBBEREZmFQW+Ag1QqaI6DVAqD3iBSRGOPtlGLogtFqK6pvuUkNj9EhkeyTM9GeXp6YuXyFdYOg4iIiGhITBAREZFZSGVdR9lLpab/q6XT0JXkoMHp2/XIyc2GtqUJqiAfBMSFwUHa9Xlrr2mw/9B+KF0VSFyQCEcZy5WIiIiISDj2ICIiIrPw8/WD9ppG0BxtjQZ+vn7iBDRG6Nv1yMjKgNTbBcEJUVD5e0MqdYQEEkiljlD5eyM4IQpSbxdkZGZA3663dshERERENApxBxEREQ3JlNKmiCkROJB9YMgj7m+luVyLWQuTRIq6N6HlWbZSzpWTmw33IK8hP9fu6zm52UhKWmyJ0IhGhbq6euTl5aGsvBx6fTtkMieEhoQgISGefaCIiIhuwQQRERENSEhpk9JdCaWrApqqWpOSRJqqWihd3URPtggtz7Klci5toxbaliYE+weaNF7l742KS4Vo0jaxJxHZPZ1Oh7S0dDQ2NSMqOhYrUxdA5uQEfXs7KsqK8dHHaXBXumFNairkcrm1wyUiIrI6lpgREVG/hlPatGB+IrSX6qCpqh10bU1VLbSX6pC4INGmnqG5qcmmyrmKLhRBFeQjaI4q0BuFxYUiRUQ0Ouh0Ory1bRsmhkRg9T0PIjwqGk7OzpBIJHBydkZ4VDRW3/MgJgZHYNu27dDpdNYOmYiIyOqYICIion4JKW1SBnkhJzcbMicZkpekwFDbioqjamiu1sJg6IARRhgMHdBcrUXFUTUMta1ISU4RfQeO0GfIyMoU/Mxiqq6phnK8StAcpa8K1TXV4gRENEqkpaVjakw8wqOiBx0XHhWNqJg5SEtPt1BkREREtosJIiIi6qO7tMnUfkIqf29oW5rRpG2CzEmGpKTFWLxwMVzaHVF5rATl2edReawELu0yLF64GElJiy1WnmXqM7iMU6BTgmE9s1gMegMcpMJOeXOQSmHQG0SKiMj21dXVo7GpecjkULfwqGg0aptRX18vcmRERES2jT2IiIioj5GUNsXNjgMAKJSKntfWIPQZ6i/VwCfUX9A9vv3M5iaVdfU+kkpN/9d1p6GroTaRvcrLy0NUdKygOVHTZ+Ho0TwsX75MpKjGFjb+JiIam5ggIiKiPqprqhEQFyZojtJXhcpjJSJFJJzQZ2hqaMT4KRMF3UPsZ/bz9YP2mkbQyXDaGg38fP1Ei4nI1pWVl2Nl6gJBc4InR2BXer5IEY0dbPxNRDS2MUFERER9jIXSJqHPYOzotLlnjpgSgQPZBwQliDSXazFrYdKw7qdt1KLoQhGqa6ph0HftRPLz9UNkeCRPRaNRQ69vh8zJSdAcmZMT9Pp2kSIaG7obf0+Nicfib5XvdTf+Do+KRrG6ANu2bcemTRuZJCIiGmWYICIioj7GQmmT0GeQODrY3DMr3ZVQuiqgqao1KUmkqaqF0tVNcDJH365HTm52V8+mIB8ExIXBQdr1+WmvabD/0H4oXRVIXJAoeu8oopGSybp2tDg5O5s8R9/eVSZFAxPS+BsA0tLTsX7dOkuERkREZsIm1URE1Ed3aZMQtlbaJPQZFB7uaKwxfTxgmWdeMD8R2kt10FTVDjpOU1UL7aU6JC5IFLS+vl2PjKwMSL1dEJwQBZW/N6RSR0gggVTqCJW/N4IToiD1dkFGZgb07fqRPA6R6EJDQlBRVixoTkVpEUJDQkSKaPRj428iIvvABBEREfURMSUCmkvXBc3RXK5FZHikSBH1VV1VjT179+DjnTvw0Y4d+HjnDuzZuwc11V1HvAt9Bs8gX1wvqxIUgyWeWeYkQ/KSFBhqW1FxVA3N1VoYDB0wwgiDoQOaq7WoOKqGobYVKckpgnf45ORmwz3Ia8gdSip/byiDvJCTmz2SxyESXXx8PNQFJwTNUZ89iYSEeJEiGv1G0vibiIhGD5aYERFRH5YqbRqO5qYmZGRlolMC+IT6w983pKccqrFGg+yjh+FgBJYmpwh6htYbTXAwwiafWeYkQ1LSYjRpm1BYXIjKYyW39Ajyx6yFi4cVh7ZRC21LE4L9A00ar/L3RsWlQjRpm9iTiGyWl5cn3BVuKFYXmLTjpVhdAHelG0/fGgQbfxMR2QcmiIiIqF8L5iciMysDAAZNmHSXNqUkp4geU3NTE3bv2Q3fyEB4TOh9hL1U6giPCd7wmOCNhqvXsWv3LiQvSUbu4VwAJj7DkmQc/Oag6eMt8My3MhqN/b077PWKLhRBFeQz9MBbqAK9UVhciLjZccO+rz2pq6vHkbwjKC0vQ0e7Ho5OMkwOCcW8hLlMSIhozZpUbNu2HQAGTRIVqwugPp2PTZs2WiawUWqkjb/r6uqRl5eHsvLyrrVkTggNCUFCQrzZfg4scQ8iorGOCSIiIupXd2lTTm42Ki6poQr0gdJXdbN5cY0GmsvXoXRVDKu0aTgysjL7TQ59W/f1/QcPYNWKVYKewdaeGRCviXR1TTUC4sIExaL0VaHyWInQR7A7Op0OO9I+RkOjBuOjAhG1Mg5SRykMHQbUllfj3Y/eh6e7B9auudvaoY5JcrkcmzZtRFp6OtQFxxE1PRbBkyNuHsleWgT12RNwVyp42pYJhtv429FRhvff/wCNTc2Iio7FytQFN7+DsmJ89HEa3JVuWJOaOuzvQKfTIS0tXdR7EBHZCyaIiIhoQGKVNg1HdVU1OiUYMjnUzWOCD66XVaO+vk7QM9jSMwM3m0i7B3n1KQXrbiKt8veGpqoWGZkZSF6SApmTaUkig94AB6mwU9gcpFIY9AZBc+yNTqfDG9vegPfUQERPiep1TSpzhG94AHzDA3DtwhW8se1NBPr7WynSsU0ul2P9unWor6/H0aN52JWe32tnyffW3s2dJSbqbvxtapNqoKvxt07XiokhCVj8rXlOzs4Ij4pGeFQ0itUF2LZt+7ASdTqdDm9t24apMfGi3YOIyJ4wQURERENSKBVWLyk6efokfEKF/UHaJ8QPJ06dxPJlywU/gy08MyCsiXT3+KSkxSatLZV17UKSSrv+c6CtRYf6SzVoamiEsaMTEkcHKDzc4TnJF84uXX+o6jR0JctoYDvSPob31ECMnzJx0HHd108dOIbVd6ZaIjS75OnpieXLl1k7DIsyd7lVfHw8duxME5QgOnX8CKbFzBlyTvf1tPR0rF+3TlBcaWnpmBoTL+o9iIjsCRNEREQ0KjQ1aeHvK+wYanc/D9QUXxYpIvGJ3UTaz9cP2msaKH1UqDxTBr1eD68gX4yfMvFm4+9rGlw+UwqZkwwB0aHQXtPAz9dvpI82ZtXV1aOhUdNn59BAxk+ZiJN7slFfX8/dLDRiYpVbCW78ff4M9G1tiJk916T1w6OioS44IejnoK6uHo1NzX12DpnzHkRE9obH3BMR0ajQ2YlhlUN1dooUkAWMpIm0KSKmRKDh4nWU5xfC3d8TYQnT4OHvDanUERJIuhp/+3sjLGEa3P08UZ5fiIZL1xEZHjmcx7ELR/KOYHyUaQm9bgo/FQ4fPSJSRGQvusutJoZEYPU9DyI8KhpOzs6QSCQ95Var73kQE4MjsG3bduh0OkHrr1mTCvXpfBSrCwYdV6wuwLEjBzErXtipZ1HTZ+Ho0TyTx+fl5SEqOlbUexAR2RvuICIioiFpG7UoulCE6prqW/rx+CEyPNJi/XgcHNCrHMoUnQYDHEbxX4WI3URa6a6EQd8Br8l+8BiihM3D3xswGlFXWs0j7gdRWl6GqJXCShPdvJQoLS8TKSKyF2KXWwlp/C13liMsYpqg+IMnR2BXer7J48vKy7EyVVgSSug9iIjsDRNEREQ0ILFOzxoOhUKJxhoNPCYMnsi4VWN1AxQKpYhRiUvsJtLaRi2kTo6CGn9rLteaXMJmjzra9ZA6CvzOJA7oaNeLFBHZA0uVW5na+PuVv/wFMicnQc8gc3KCXt9u8ni9vl30exAR2RsmiIiIqF9inp41HLNiZiEn77CgBNH18mokJswTLaaRMGVX1rebSJtCSBPpogtF8BBYwuYR6IPC4kKbaOBtixydZDB0GCCVCfjOjJ1wFPFnh0a/oZpOj6TcajgNvIdq/C2Tde0qcnJ2NnlNfXvXc5nKEvcgIrI3TBAREVG/xDw9azj8/P3gYAQarl43acdLw9XrcDACvn621VBZyK6s7ibSQ30Ht9LWmN5EWuwSNns0OSQUteXV8A0PMHlOc50WsRGzRIyKRitTm043NGiwao3tlFuFhoSgoqxY0KlnFaVFCA0x/SACS9yDiMjejOLODEREJJbu07NMTUyo/L2hbWlGk7ZJ1LhSliSjpvAyGq5eH3Rcw9XrqCm8jKXJKaLGI1T3riyptwuCE6Kg+lZDaJW/N4IToiD1dkFGZgZCg0OhuTT4s36b5nKtyU2kxS5hs0dz4+fimlrYyXlN1RrMSzDttCeyH0KaTmsbG22q3Co+Ph7qghOC5qjPnkRCQrxN3YOIyN5wBxEREfUxktOzxCw9clMosGL5CmRkZeJ6WRV8Qvzh7udx80j26gZcL6+Cg1GClStWwtXNTbRYhkPorqwzBaehdFVAU1VrUrJOU1ULpaubyf2BxC5hs0deXp7wcFfh2oUrGD9l4pDjr124AlcXOY/dpj6ENJ0+cfTQiMqthiphE8rLyxPuCjcUqwtM2uFTrC6Au9JN0L0scQ8iInvDHURERNRHdU01lONVguYofVWorqkWJ6BbuCkUuOvOu5CYMB/NVzW48M0ZqL86iQvfnEHzVQ0SE+bjrjvvsrnk0HB3Zc2IjoH2Uh00VbWDjtdU1UJ7qQ6JCxJNjqm7hE0IISVs9uqeNWtRe74S1y5cGXTctQtXUHu+EjNjWF5GvXU3nTa1fCooZArKSgsF3aOitAhBQYF4//0PsGNnGlzG+WBl6gasvf/HWJm6AS7jfPDRx2l4/4MPoNPpBD/DmjWpUJ/OR7G6YNBxxeoCqE/nY01qqk3eg4jInnAHERER9TEaSo98/fywfNlyi91vpIa7K6usogzJS1KQk5uNiktqqAJ9oPRV3exbVKOB5vJ1KF0VSElOEXSaXMSUCBzIPiCox5Hmci1mLUwS9Bz2Ri6X4webHsLHaTtRcP4wxkcFwDvEH1JHKQwdBtSWV+GauhKe7h74waaH8HVWprVDJhsjtOn01BmxyNr9CSKnxpg8R11wAnp9G2bMnt/n9LPuErbwqGgUqwuwbdt2bNq0EXK53OT15XI5Nm3aiLT0dKgLjiNqeiyCJ0fc7KFUWgT12RNwVyoEr23JexAR2RMmiIiIqA+WHpnfSBpCx82OQ1LSYjRpm1BYXIjKYyW3nHzmj1kLFw/r2Hmlu1LUEjZ7JpfLcf/6Daivr8fho0eg3nUMHe16ODrJMDkkFEu/t56lLjSgsvJyrEw1vem0ysMLbgolCs+dRuS0oZNExeoCtLY2IzbhNpNK2AAgLT0d69etMzkmoOvnYP26daivr8fRo3nYlZ7fq4Tte2vvHvHPgSXuQURkL5ggIiKiPsQ+PcsemWNXlkKpMHuPpwXzE5GZlQEAg37f3SVsKTbW+NvWeXp6YuXyFdYOg0YZvb5dcNPpxSnfxUdvvwYHB4dBkz7F6gKcPXEEznIXk0vYwqOioS44gfr6+mElWzw9PbF8+TLB82ztHkREYx0TRERE1AdLj7p6BhVdKEJ1TfUtu3X8EBkeOawdNNbYlWXKM8icZKKVsBHZAnM3YLYEmcxJcNNpBwcpFEolrlQUDVluNSl4EpSe/oJiipo+C0eP5jEJQ0Q0hjFBREREfdhz6ZG+XY+c3OyuhtJBPgiIC7uZLLmmwf5D+6F0VSBxQaKgZIkld2UJfQaZk0yUEjYia9LpdEhLS0djUzOiomOxMnXBzWRJWTE++jgN7ko3rElNtbneNKEhIagoKzZ5hw/Q1XQ6bPJkLF++bMhyq1f/8U+sjFskKKbgyRHYlZ4v9FGIiGgUYYKIiIj6ZY+lR/p2PTKyMuAe5IVg/8Be16RSR6j8vaHy94amqhYZmRlIXpICmZNpSSJL7coayTOIUcJGZA06nQ5vbduGqTHxojRgFlt8fDx27EwTlCBSnz2J761dA2DocqvhlLDJnJyg17cDGJ27soiIaGg85p6IiPrVXXpkqG1FxVE1NFdrYTB0wAgjDIYOaK7WouKoGoba1jFTepSTmw33IK8hkzgqf28og7yQk5tt8tq37soyxXB3ZYn5DESjRVpaOqbGxJvUgDkqZg7S0tMtFJlpvLw84a5wG/L49m7F6gK4K91MTs50l7AJoW9vh6OjDO+//wF27EyDyzgfrEzdgLX3/xgrUzfAZZwPPvo4De9/8AF0Op2gtYmIyDbY9Q6iLVu2IDMzY9Axu3bthlM/f8NSXFyMDz/8EAUFZ9Dc3AwvLy8kJCRg/foN8PDwECtkIiKLsqfSI22jFtqWpj67bgai8vdGxaVCNGmbTP4MxN6VZYlnILJ1dXX1aGxq7rNzaCAjbcAsljVrUrFt23YAGLLptPp0PjZt2mjy2sMtYdPpWjExJGFU7soiIqKh2XWCqNu0adMwYcLEfq85OPTdZPXNN9/g+ef/CIPBgIiICPj5+aG4uBifffYZvvnmG7z88iuYOLH/9YiIRiNbLD0ydxPpogtFUAX5CJqjCvRGYXGhyZ+N2A2hLfEMRLYuLy8PUdGxgubYYgNmuVyOTZs2Ii09fcim00KTMcMpYTt1/AimxcwxaVcWAKSlp2P9unUmr09ERNbHBBGA5ctXYOnSpSaNra2txYsvboHBYMAjjzyClStXAQAMBgNefPFFfPVVFv70p+fxt7/9HRKJRMywiYjsklhNpKtrqhEQFyYoFqWvCpXHSgTNEXNXlqWegciWlZWXY2XqAkFzbLUBs1wux/p164ZsOi3UrSVspiSJis+fgb6tDTGz55q0vq3uyiIiosExQSTQJ5+kQ6fTITY2tic5BABSqRT/93//hyNHDqOoqAjHjh3DnDlzrBgpEdHYI2YTaYPeAAepsCPlHaRSGPQGQXO6ibEry9LPQKOPPTQXHmkDZls0VNPp4RBSwnbsyEHMiheWdLPFXVlERDQ4JogEys7OAQAsXnx7n2suLi6YN28esrKykJOTzQQREZGZCWnA3D0+KWmxSWtLZV27kKRS0//V2Gno2vljK8bCM5A4RvOR70J1N2B2cnY2eY6+vStZZk+ElLDJneUIi5gmaH1b3ZVFREQDY4IIwOnTp1BeXo7W1ha4u7sjIiIS8fHxfZpTt7S04OrVKwCAiIjwftcKD49AVlYWSkq4XZ+IyJzEbsDs5+sH7TWNoGPotTUa+Pn6mTxebGPhGcj8RvuR70INtwFzaEiIiFHZJlNL2F75y1/G3K4sIiLqiwkiAJmZmX3e8/T0wuOPP4Y5c+J73qupqe55PX78+H7X8vHpag5aXV3d73UiIhoesRswR0yJwIHsA4KSK5rLtZi1MElQTGIaC89A5ifkyHdg9DcXHk4DZvXZk/je2jUiRmXbhiphG4u7suyh3JKISCi7ThBNnhyKKVM2Y9asWRg/fjza2tpQVlaGd955B+fPn8PTTz+NF154ATExMwEALS2tPXPlcpd+13Rxcfnv2BbR4ycisidiN2BWuiuhdFVAU1VrUoJFU1ULpaubTR0PPxaegcxrrBz5LoTgBszqArgr3Ubt81rCWNqVZU/llkREQvU9w92OrFlzN+666y4EBwfD1dUVHh4emD17Nl555RXMnz8fHR0d+Mc//mmRWF599VVMnTp1yH8aGhosEg8Rka2xRAPmBfMTob1UB01V7aDjNFW10F6qQ+KCREHxWMJYeAYyn5Ec+T6arVmTCvXpfBSrCwYdV6wugPp0PtakploostEpPj4e6oITguaoz55EQkL80AMtqLvccmJIBFbf8yDCo6Lh5OwMiUTSU265+p4HMTE4Atu2bYdOp7N2yEREFmXXCaKBSCQSPPDAgwCAsrJSXLt2DQDg6npz15BO19rv3NbW1v+OdRV0z82bN+P8+fND/uPh4TGcRyIiGvW6GzALIbQBs8xJhuQlKTDUtqLiqBqaq7UwGDpghBEGQwc0V2tRcVQNQ20rUpJT4Cgz7YQ0SxoLz0DmU1ZejuDQ/vsmDiR4cgTKystFisgyuhswX6kowmc7tqP4/Bm0t7XBaDSiva0NxefP4LMd23GlomjU91yyhFt3ZZnCVndlCSm3jIqZg7T0dAtFRkRkG+y6xGwwQUFBPa9ra2sxfvx4jB/v2/PetWvXEBLSd0v+9evXAQC+vr59rhER0fBZqgGzzEmGpKTFaNI2obC4EJXHSmDQdyWa/Hz9MWvhYpsvyRoLz0DmMRaPfDeVqQ2YyTRr1qRi27btADBogqV7V9amTRstE5iJ7LHckohIKCaIBtDY2NjzuruvkJubGyZMmIirV6+gqKgYISGhfeYVFxcBAKZMmWKZQImI7ISlGzArlAqTmlvbsrHwDDQyo6G5sNjNgodqwEym6d6VlZaejnOn8zF1xmyETI7s6d9TXlqI82eOQzXO3SZ3ZY2k3JK/f4jIXjBBNIADB/YD6CoVCwy8eaRyYuIC7NixA/v3f41ly3r/y6K1tRVHjhwBACxgTwciIrNiA2Yi4Wy5uTCbBY9SRqDT0ImyC4U4cyIPBkMHpFJHKJTu6DR0Wju6AZWVl2Nl6gJBc4InR2BXer5IERER2R67TRCVlJTg2rVrSEhIgPSWpqednZ3Yt28f3nrrLQDAXXfdBUfHmx/TXXel4vPPP8eJEyewe/curFixEgBgMBjw17/+BU1NTYiIiEBcHP/GlojI3BbMT0RmVgYADJok6m7AnJKcYqnQiGySrR753t0seGpMfJ+Sn+5mweFR0ShWF2Dbtu02uSPF3vT6zlYMXmJmi9+ZPZdbEhGZym4TRDU1NXjmmd9BqVQiLCwMHh4eaGpqQkVFRU9T6sWLF+P++x/oNc/b2xuPP/4LPP/8H/Hyyy9jz5498PPzQ1FREaqqquDh4YFf//o3kEgk1ngsIqIxrbsBc05uNiouqaEK9IHSVwUHaVcDa22NBprL16F0Vdh8A2ZtoxZFF4pQXVN9S38gP0SGR3LXE5mNrR75LqRZMACkpadj/bp1osZkz0wp8xvt39loKLckIrI2qyWILl68iN27d6Gg4Cyqq6vQ0tICo9E45Lx9+zLMcv/Q0FCkpqaiuLgYly9fxrlz52A0GuHh4YGFC2/D0qVLkZCQ0O/cRYsWwd/fH//5zwc4e/YsSktL4enpiTvuWI0NGzbwpDEiIhGN9gbM+nY9cnKzoW1pgirIBwFxYTcTXNc02H9oP5SuCiQuSLTpBBeNHrbWXJjNgm2HqWV+i5MWj/rvzJbLLYmIbIVVEkQffvgfvP322+js7DQpKdTNnLty/P398fDDPxn2/PDwcPzud8+YLR4iIhJmNDZg1rfrkZGVAfcgLwT7B/a6JpU6QuXvDZW/NzRVtcjIzEDykhTInJgkopG5tbmwuuA4oqbHInhyxM1EQGkR1GdPwF2psEhZEJsF2wYhZX4f/OcDzIybL2h9W/vO4uPjsePjncLKLQtO4Hv33C1iVEREtsXiCaKDBw/29PeRSCSIjo5GaOhkKBQKODiwLIuIiMaunNxsuAd5Ddlku/t6Tm42kpIWWyI0GuNs6ch3Ngu2DUJKxjo7O1FeUoipM2abvL6tfWdeXp5obWlG0fkziJg6Y8jxRedPo7W12WZ2QBERWYLFE0SffJIOoKuXzx//+Md+j4onIiIaa7SNWmhbmvrsHBqIyt8bFZcK0aRtsumSORpdbOHIdzYLtj6hZX6R02KgLjiJGw31GOdhWsLE1r6zurp6OLu44OypfEgkkiHLLc+eOgZnuYtNlckREYnN4gmi8vJySCQSPPjgRiaHiIjIbhRdKIIqyEfQHFWgNwqLCy1WSsfG2WQJI20WbEpDZRrccMr8ps6IxbkzxzF/UbJJ422twXNeXh6mxczBpJAwHMj8EudOH8O0GbP7lFueO3Mcrm4KrFqzHhdLi22qTI6ISGwWTxB1Hyk/efJkS9+aiIjIaqprqhEQFyZojtJXhcpjJSJFdBMbZ5MlDbdZcFBQIN5//4MhGyqvSU21qePVbdFwyvxCJkeg4GSeyeNtrcFz9zM7OTtj6XfX4kZDPc6dOY4zJ/PQ0aGHo6MMEwKCcfvS1T27pGytTI6ISGwWTxAFBASgqKgIjY2Nlr41ERHZsLG+e8WgN8Dhv39JYioHqRQGvUGkiLqwcTZZWnx8PHbsTBPcLFivb8OM2fOHbKi8bdt2izTbHglr74IabplfR4fe5PHqsyfxvbVrhIYmmm8/8zgPzyF3Q9lamRwRkdgsniBKTk5BYWEhcnNzEBsrbGsrERGNPfaye0Uq63omqdT0f/V2GroSZWJi42yyNC8vT7gr3FCsLjApSVSsLkBrazNiE24zqaEyAKSlp2P9unVmidecTD1WXuxdUMMt84OJpw8XqwvgrnSzqZK/kZY2EhHZAwdL33D58uWYPj0au3fvxuHDhy19eyIisiHdu1ek3i4IToiCyt8bUqkjJJD07F4JToiC1NsFGZkZ0Leb/rfXtsbP1w/aaxpBc7Q1Gvj5+okTEG42zh4qOdRN5e8NbUszmrRNosVE9mHNmlSoT+ejWF0w6LhidQHOnjgCZ7mLyTuOwqOi0ahtRn19vTlCNZvuY+UnhkRg9T0PIjwqGk7OzpBIJD27oFbf8yAmBkdg27bt0Ol0osXSXeYnREVpETo7DSZ9Z+rT+ViTmjqSEM1uuM9sS2VyRERis/gOIkdHR/zhD3/Ali1/xjPP/A5JSUlYtCgJAQEBkMuHzuiPH+9rgSiJiMgS7Gn3SsSUCBzIPmByMgYANJdrMWthkmgxjYbG2TQ4a5cqDZdcLsemTRuRlp4OdcFxRE2P7dMsWH32BNyVCkwKngSlp7+g9aOmz7JYc2FTvwMhx8oD4u6CGlaZ39mTWHffOuw/sH/I78waJX5DfQ/DfWZbKpMjIhKbxRNEAKBQKHDnnXdBrVbjwIEDOHDggMlz9+3LEC8wIiKyGHs79l3proTSVQFNVa1JSSJNVS2Urm6iPqstN86mwdlKqdJIyOVyrF+3DvX19Th6NA+70vN7/cH+e2vvhqenJ179xz+xMm6RoLUt0VxYyHfQ3Nwi6Fj58KhoqAtOiHbE+nDK/NyVbpgwwd+k78yShHwPw3lmW060EhGZm1USRP/4xz/w2WefAgCMJtYyA4BEIhEpIiIisjR73L2yYH4iMrO6/qJjsCSRpqoW2kt1SElOETUeW22cTYPrLlWaGhM/Jho2D/WfgsNtqCxmc2Gh30FAQIDgY+XF3gW1Zk0qtm3bDgCDJky6S8Y2bdrY856np6dNHP0u9Hu477578Z//fAhA+DMTEdkDiyeIsrKy8OmnnwAAXFxcsGBBIiZPDoWbmwIODhZviURERFZij7tXZE4yJC9JQU5uNiouqaEK9IHSV3WzKXeNBprL16F0VSAlOUX0pty22jibBmdLpUojYerOD0dHmc01Fxb6HeTl7Mc999vWLighZX62mmQU+j3s2r171D8zEZGYLJ4g6t45FBgYiK1bX4KHh4elQyAiIhtgr7tXZE4yJCUtRpO2CYXFhag8VgKDvivp4ufrj1kLF1ushK67cbaQvkhiN86mwdXV1dtUqdJwCdn5UVV1ABVlRQiPmmHy+mI2Fx7Od3AyLwctLU2CklyWOGLd1DI/WzTcn4WWlpZR+8xERGKzeILo0qVLkEgkeOCBB5gcIiKyY/a+e0WhVFi9VM4WG2fT4PLy8myuVGk4hOz8aG1pwqljRwQliMRsLjyc7yAmbh4KTuVj4WLTvwNLHrFuKyVjQoz0Z2E0PjMRkdgsXtPl6Nj1B4GJEwMsfWsiIrIhtnjsu725tXG2KSzROJsGV1ZejuDQcEFzgidHoKy8XKSIhOve+WHqaVIxs+ehva0NxefPmDRe7ObCw/kOQsMiceVimaA5PGJ9cGPhZ4GIyNZYfAdRYGAg1Go1GhrqLX1rIiKyIdy9YhtsrXE2Dc4WGzYLNZydH7Fz5uPYkYOARGL15sLD/Q7adDpBc27dBTXUEe72aCz8LBAR2RqL7yBaunQZjEYj9u/fb+lbExGRDeHuFdvQ3TjbUNuKiqNqaK7WwmDogBFGGAwd0FytRcVRNQy1rRZpnE2Dk8m6mukKYclSJVMMZ+dHWOR0ODvLcaWiCJ/t2I7i82fQ3tYGo9HYs7vosx3bcaWiSPTmwsP9DqSOUhSrC0wa370LytXVFe+//wF27EyDyzgfrEzdgLX3/xgrUzfAZZwPPvo4De9/8AF0ApNPY8FY+FkgIrI1Ft9BtHz5cuTm5uKrr75CeHgE7rzzTkuHQERENoK7V2yDLTXOpsGFhoSgoqzY5PIswPZKlYa788Ng6LCJ5sLD/Q6ioqKgPt11Kpkpu6Duu+9eQUe429upW2PhZ4GIyNZYPEF05swZ3HXXnbhxQ4N//vMf2L//ayQlLUZAwEQ4Ow/9L7UZM0xvUEhERLbN1o59t3e20Djb0sQu3TH3+vHx8dixM03QH4rFbNg8HN07P4Z7bL21mwuP5DtwdXU1+Yh1oUe4p6WnY/26dSN6ttFkLPwsEBHZGosniB5//DFIJJKeXxcWFqKwsNDk+fv2ZYgRFhERWQl3r5A16HQ6pKWlo7GpGVHRsViZuuDmH9TLivHRx2lwV7phTWrqsHZlCFlfCC8vT7gr3FCsLjDpD8ZiN2wejtG+82Ok34Epu6CGe4R7fX29TX3XYhoLPwtERLbG4gkiADAajcOad2tiiYiIxhZ73L1C1qHT6UQt3RG6/gT/8YLiX7MmFdu2bQdgWqmSmA2bh2Ms7PwY6Xcw1C6orkbeswTFdOsR7vbCkj8Lt+4GLC1W441/GzFzZgxW33EHJkyYMOx1iYhsicUTRC++uNXStyQiIiLqIXbpjtD1v8n8HKvvNH0nkVwu7ypBMrFUydb60oyFnR9ifwdl5eVYmbpA0JzgyRHYlZ4vaM5oZ4mfhf52A5aXFmJSyBScOZmH555/Ad5eHvjlE7+Amxt3uxLR6GbxBFFMTIylb0lEREQEAKKX7gxn/YwvdgouDZLL5TbRsHm4RvsuKEDc76C9vW1Yjbzb29uGdb/RTMzvYaDdgBJIIHdxRfz8JMTPT0J+7gE8/osn8OKWLVAomCQiotHLKiVmRERkXtpGLYouFKG6pvqW/j1+iAyPZP8eolt0le7ECpojpHRnOOv7Tpg47NIgazdsHq7RvgvqVsPsnDAog6FzWI28DQaD+YMZJcT4WTB1N+Cc+UkAgC0vvog//P73Zo2BiMiSmCAiIhrF9O165ORmQ9vSBFWQDwLiwm6eAHZNg/2H9kPpqkDigkSeAEYE8Ut3hrO+p7cvysrLBc0ZC0b7LigxG50bjUZUlBYhfKrpp/eWlxaJkqyyV0J3A86Zn4Sc/Xtx9epV9iQiolGLCSIiolFK365HRlYG3IO8EOwf2OuaVOoIlb83VP7e0FTVIiMzA8lLUiBzYpKI7Jte3z6s0h29vl209aVSqcnrj0WjcReU2I3OpQ4SnDtzQlCC6PyZE5A6OJg8ngY3nN2A85OW4rPPP8fDP/6xSFEREYnLagmiGzdu4KuvvsLZswWoqqpCS0srOjsH3xYrkUjwzjvvWihCIiLblpObDfcgL6j8vQcd1309JzcbSUmLLREakc2SyZyGVbojk5mW9BnO+gaDweT1R+rWk5hu3a2TkBBv07t1bI3Yjc6d5S6Qu7gIauQtd3EBjPZbYmZuw9kNOCM2Aa9u+VKkiIiIxGeVBNHXX3+Nv/71L2htbQVg+rH3POaeiKiLtlELbUtTn51DA1H5e6PiUiGatE3sSUR2LTQkBBVlxYKOWK8oLUJoSIho69fX1iA8LMzk8cMhZjmUvRG70TnQ9ftI5joOBSfzetYYSLG6AAUn8xA1bSb0rTdMWp+GNpzdgM5yF7S16USKiIhIfBZPEJ08eRJ//vMLPUkhX19fhISEQKFQQCLhtlgiIlMUXSiCKshH0BxVoDcKiwsRNztOpKiIbF98fDx27EwTlMBRnz2J761dI9r6NVev4P71pu8uEUrscih701V6NEvQHCGNzoGbv49Wpa7Dgcwvce70MUybMbtPI+9zZ47D1U2BVWvWY+9nH5n8+5SGNpzdgG26Vjg782eHiEYviyeIPvzwQxiNRigUCvzqV79GfHy8pUMgIhr1qmuqERAnbMeB0leFymMlIkVENDp4eXnCXeEmqHTHXelm8s6P4awvlzuJWt4ldjmUvRG70Tlw8/fRxfISLP3uWtxoqMe5M8dx5mQeOjr0cHSUYUJAMG5fuhrjPDwF/z6loQ1nN+CZE0cxc2aMiFEREYnL4gmi4uIiSCQSPPDAA0wOERENk0FvgINUKmiOg1QKg579KYjWrEnFtm3bAQxduqM+nY9NmzaKun5MjHh/oLREOZS9aW9vG1aj8/b2NkFzvv37aP6i5H7HDff3KQ1uOLsBcw/sw1O/+ZWIURERicviCaLOzk4AwLRp0y19ayKiMUMq6zrKXio1/f/GOw0GSGXCkkpEtqJR04jdX35htvUm+I/HN5mfY98XH8NvQgA8vX0hlUphMBhQX1uD6quVcJE7IyYmBl9nZQ57/T2ffggnuRztOh06Ozvh4OAAJ7kcep0Orm6uiImJQXNTk9me69uGcxKT0HIoe2MwdA6r0bnBcDNBb0qzcLlcjk2bNiItPR3qguOImh7bp8RMffYE3JUKlgWKQOhuwPzcA/D28uAR90Q0qlk8QTRhwgSUlZVBp2MDNyKi4fLz9YP2mmbIE8xupa3RwM/XT8SoiMTjrnLHilXfNeuaq+9MRX19PY4e7f0H9fCwMNy/ft2IdtDodDo0Netwo1GLqBmzEXLLH+zLS4ugPnMc48YpsXTZimEloExliXIoe2M0GlFRWiToCPry0iIYjcKbhcvlcqxft67n9+mu9PxeCaXvrb2bO71EZOpuwPzcA8j+6ktsfXGLhSIjIhKHxRNESUmLUVpaimPH8hEdbfqWTSIiuiliSgQOZB8QlCDSXK7FrIVJ4gVFNAp5enoK2iljys6PoZpCR0ydgYipM3qaQk/wH2/WZ7rVcE5ikjk5Qa9vFymi0U/qIMG5MycEJYjOnzkBiQTDbhYu9PcpmcdAu7iMMELX2oIzJ44i58Be+Hh5YuuLW+DmxlNCiWh0s3iC6I477kBWVibS09Mxf/4CREREWDoEIqJRT+muhNJVAU1VrUlJIk1VLZSubjzinmiYhOz8ENoU+pvMz7H6zlRR4h7OSUz69q7EF/XPWe4CuYuLsEbkLi5obrrBZuGjUH+7uEqL1ZDAiFkzY/Db3/yaZWVENGZYPEHk4uKCP/7xj3jmmd/jscd+jtTUNUhKSkJAQACcBP4NFxGRPVswPxGZWRkAMGiSSFNVC+2lOqQkp1gqNKIxRcgx8W+88SYkUqmgptAZX+wUrSn0cE5iqigtQmhIiNljGStCQ0Igcx2HgpN5AIZuRF5wMg/BoeFo1jaa/D2wWbjtuXUXl/rcGcyZLay3FxHRaGDxBBEAjB/viyeeeAK/+MXj+OijD/HRRx+aPHffvgwRIyMiGj1kTjIkL0lBTm42Ki6poQr0gdJXBQdpVwNrbY0GmsvXoXRVICU5BY4ymbVDJhqVhOwI6jR2Qn3mpKD1fSdMFK0p9HBOYlKfPYnvrV1j9ljGiu7PdFXqOhzI/BLnTh/DtBmz+zSQPnfmOFzdFFi1Zj3S3n8TcXMXCroPm4UTEZGlWSVBlJ6ejn/963UYjUYYjUaT50kkEhGjIiIafWROMiQlLUaTtgmFxYWoPFYCg77rtDI/X3/MWriYZWVEIyD0mPjIqTFQnzmBGw31GOdh2s4PT29flJWXjyTMAQk9ialYXQB3pRt3rQyi+zO9WF6Cpd9dixsN9Th35jjOnMxDR4cejo4yTAgIxu1LV2OchyeK1QXo7OxA8GRhbRXYLJyIiCzN4gmio0eP4rXX/gmgK+ETHR2N0NDJUCgUcHBgAoiIaDgUSgXiZsdZOwyiMWc4x8RPnTEb584cx/xFySaNl0qlojaFNvUkpmJ1AdSn87Fp00bRYhkrvv2ZDvRdd3+mTjInNgsnIiKbZ/EE0ccf7wAAeHt7449//CNCQkItHQIRERGRSYZzTHzI5Iie/jSmMBgMojaFHugkplvLodRnT8Bdqeh1chYNTOhn+uZb29gsnIiIbJ7FE0RlZWWQSCR44IEHmRwiIiIimzbcY+I7OvQmj6+vrUF4WJjQ0ATp7yQmvb4rAREaEoLvrb2bZWUCCflM2SyciIhGA4sniDo7OwEAYWGTLX1rIiIiIkGGe0y8o6PpTeFrrl7B/estc5z5rScxiaWurh55eXkoKy/vlTBJSIgfk0koUz5TNgsnIqLRwOIJookTJ6KkpARabZOlb01EREQkyHB2fpSXFMJNoTRpbLG6AHK505hInOh0OqSlpaOxqRlR0bFYmbrgZslVWTE++jgN7ko3rElNtbsyNjYLJyKi0cDiCaLFi2/HhQsXkJubg1mzZln69kREREQmG87Oj8KzJ9Ghbx8yGdDdwDgmJsYcoVqVTqfDW9u2YWpMfJ8T35ycnREeFY3wqGgUqwuwbdv2Xr2O7GXHEZuFExGRrbN4gujOO+/EwYMHsGvXLsTGzsa8efMsHQIRERGRSYa188NdgTWpqSY3MP46K9MCTyKutLR0TI2JH/Iz6r6elp7e9RnZ0Y4jNgsnIiJbZ/EEUX19HX7+85/j5ZdfxjPP/A5JSUlYtCgJAQEBkMuHru8fP97XAlESERERdRnOzg97agpdV1ePxqbmPjuHBhIeFY1zp/PxxhtvYnrsXME7jkYze/p9QUREo4/FE0QbNmyARCIBABiNRhw4cAAHDhwwef6+fRkiRUZERNakbdSi6EIRqmuqYdAbIJVJ4efrh8jwSCiUCmuHR3ZsJDs/LNEU2try8vIQFR0raI4REkydJWzH0fp1lmnkbQn28PuCiIhGH4sniICuxFB/r4fSnVgiIqKxQ9+uR05uNrQtTVAF+SAgLgwOUik6DQZor2mw/9B+KF0VSFyQCEeZ6SdDEZkTd34MrKy8HCtTF5g8XtNQBwmAyKmm9V4Kj4qGuuAE6uvr7fYzJiIisgSLJ4gef/wXlr4lERHZKH27HhlZGXAP8kKwf2Cva1KpI1T+3lD5e0NTVYuMzAwkL0mBzIlJIrIeAX+vZRG20OBZr2+HzMnJ5PHnz5zAtBmzBd0javosHD2aN6xdN7bwGREREY0GFk8QpaSkWPqWRERko3Jys+Ee5AWVv/eg47qv5+RmIylpsSVCI+rF1o5wt6V4ZLKu+zo5D91LEgCuVl5E3NzbBN0jeHIEdqXnC5pjS58RERHRaOBg7QBGqrm5CZmZGcjMZG8iIqLRRNuo7SorGyI51E3l7w1tSzOatE0iR0bUW/cR7hNDIrD6ngcRHhUNJ2dnSCSSnobKq+95EBODI7Bt23bodDq7imfCBH+UlRaaPL6jQy9oxxGArsSOvt3k8bb2GREREY0Goz5BdP16LV588UVs3brV2qEQEZEARReKoAryETRHFej9/9m796i27jNf+F+hC8JIGINBYBuCsMUtNtSX4GA7FNsxuXbS2EnTOk1jt53T6XTeNdMzbefMaufMnHN6Zs407Zzp+55e0pnGnulJOk1j557GOPiS2AHjWww26AKIADYIjEwQ2CAh9P5BhME2sH+CLbak72etWWuCfnvr2Xsjah6e5/nBapf+iyjRfBDZwr2w5B4cOHgwpuIJBAK4eF56dY9Go4XPKz3ZAwA+73hrmFRKu0dERESRIOITREREFJm6Xd0wpicLHWM0JaPb1S1PQER3ENzCfbZEQ1Be4RoMeIbgdrtjIh4A6OrqRqLBCHtTg6T1iQajUMURALS12JBrNktaq8R7REREFAmYICIiogXh9/kRp1YLHROnVsPv88sUEdHtQtnCPThQWb541iomHmB8SPXWys+h4XzdrEkie1MDPAP9aKw/J/QeTRfPY+PGUklrlfbMiIiIIgUTREREtCDU2vGt7EWM+f1Qa8WSSkRz0ep0Iic3T+iYnJX5aHU6ZYwnXzHxAONDquPi1Hh05244m6149T/2wd5YD+/ICAKBALwjI7A31uPV/9gHZ7MVj33hWSQkLIL10gVJ57c3NSDJmCh5xzGlPbP50Nfnxh/+8C5+9vNf4J9/+lP87Oe/wB/+8C6rnoiIaF6FfRczIiIiAMgwZcDT0y95SDUAeFz9yDBlyBgV0VSiW7gD4gOVRXi9IyHF4/WOyBIPAOSazWhrtSOvcA0e+NyT+OSaG5fqz6L+fB1GR33QaLRYtiIH2x54DIuXjCd57spZhXOn3kdcXNyMrWD2pgY0XTiNvXv3SI5Hac9sLrgTGxERhRMTREREtCDyLfk4duKYUIKov+Mq1t5XIV9QRLcQ3cIdEB+oLMLvHwspHr9gtV5QX58bdXV1aHU6xxMvWh1yzWZs3Fg6UdFTWlqKl185MJHoWbwkBZs+u2PG8zpsF7H7S7tx9NhRNDWcReHqdchZmX8z+dFiQ9PFc0gyGrB37x6h5IfSnlmogjuxFZWUYustSbTgTmx5hWtgb2rAvn37he8TERHRrZggIiKiBWFMMsK4yID+rquSkkT9XVdhXJQIg9EQhuiIxk2ujpFKZKCyqEAggLYWG/KKiiUf42yxIRAQex+RypXU1BQkGRJhb2qQdJ+CLWPLlmXi6d274Xa7cepUHd4+eHpKEuqpJ5+Q3FY2mdKeWahEdmIDgAMHD+Lp3bvDERoREUUpziAiIqIFs3nTFnja+9DfdXXGdf1dV+Fp78OWzVvCFBnRuNLSUjQ1yDdQWZQ6ToVLggOeG+vPQR0n/Z98wcqV5eZ8PPaFZ5FXuAa6+HioVKqJypXHvvAslufkY9++/RgeHsauXTvRdOG0pCHVTRdOY9fOnRNfS0lJwUMPPYhv/ek38Rd//uf41p9+Ew899GBIySFAec8sFNyJjYiIFgITREREtGC0Oi123F8J/9UbaDvVhP4rV+H3jyKAAPz+UfRfuYq2U03wX72Byh2V0Gi1Cx0yxZjJ1TFSiA5UFhWvT4A+IUEoHn1CAuIFWo9EKlcKS+7BgYMHodfrsXfvHlxus+H1l/ffcUj16y/vx+U2m+ytUEp7ZqHgTmxERLQQ2GJGREQLSqvToqJiKwY9g7Dareg80wy/b3y3sgxTJtbet5VtZbSgdu3aiX379gPAvA9UFpVrNkO7aDEaztdJiqfhfB0K7/4MfDc+kXT+YOXKrTNvppNXuAZNDefgdruRkpIiS8tYKJT0zELR6nTikZ2bhY7JWZmPtw+elikiIiKKBUwQEZHieQY8sDls6HZ1T0ocZKAgr4CJgyhiMBqwYf2GhQ6D6DbB6pgDBw/O+0BlUcGB0I/u3I1jh9/CpQtncHfx+tviuVR/FosSDXh019N49/Xf4aknd0k6/1wqVx566EEAN1vGFpKSnlkoomknNiIiihxMEBGRYvm8Ppz88AQ81weRnJ2GFRtWIU6txpjfD09PP45+cBTGRQZs2byFrUdEJCu9Xq+I6phg+9THzmZJW8qLtk9FU+WKUp5ZKKJlJzYiIoosTBARkSL5vD5UvVeFpOxU5GRmTXlNrdYgOXMpkjOXor/rKqoOV2HH/ZXQ6pgkIiJ5KaE65tb2qem2lA+lfSoaK1eU8MxERctObEREFFmYICIiRTr54QkkZafOuv158PWTH55ARcXWcIQWFdi2RxS55GyfYuWKMgRbCUUSRE0Xz0tuJSQiIrqTiE8Q5eTkoKrq8EKHQUTzyDPggef64G2VQ9NJzlyKtnYrBj2DTG7Mgm17RNFBrvYpVq4ow+Sd2KQ8CyXuxEZERJEn4hNERBR9bA4bkrPThI5JzloKq92q2CHHSqjYYdseUfSZ7/ap+ahcaWlpxXvV1bh27RrG/GOIU8dhyZIl2HH/duTm5s5brNEu0ndiIyKiyLNgCaKBgU/w3nvVuHixAV1dXbh+/QbGxvwzHqNSqfDv//6bMEVIRAul29WNFRtWCR1jNCWj80yzTBGFTkkVO2zbI6LZzKVypb+/Hy+8sA9xag1KNpTBPKntzdliwxtvvo2xsVF87at7sXhxsvwXE+EifSc2IiKKPAuSIDp+/Dj++Z//N65fvw4ACAQCko5TqVRyhkVECuH3+RGnVgsdE6dWw++bOckcbkqq2GHbHhFJFUrlSn9/P37xy1/i3vvuR35R8ZR1uvh45BcVI7+oGLbGevz8F8/jm3/yDSQnJ8t4FdEhkndiIyKiyBP2BFFTUxP+4R/+HoFAAIFAAKmpqVi1ahWMRiNUqrhwh0NECqTWjlfYqNXSf0SN+cfbtpRESRU70di2R0TyCKVy5ec//8Udk0O3Cr7+wr59+M/f/nY4LicqROJObEREFHnCniD63e9+h7GxMcTHx+Pb3/42tm3bHu4QiEjhMkwZ8PT0z5pYmczj6keGKUPGqMQorWInmtr2iEh+IpUrLS2tiFNrZk0OBeUXFePCmRq0trZyJhEREZGChD1B1Nh4CSqVCk899UUmh4jojvIt+Th24phQgqi/4yrW3lchX1CClFaxM9e2PSUM2SaKRH19btTV1aHV6ZySYNm4sTQiWoOkVK68V12Nz2woEzpvyYZ7cfi9anzjPzFBREREpBRhTxANDg4CADZsYMsCEd2ZMckI4yID+ruuSkoS9XddhXFRoqISFUqr2Am5bU8Th2PHjipiyDZRJBkeHsaBAwcxMDiEwjXr8MjOzTdbtFrt+N3vDyDJmIhdO3cudKhzdu3aNeSszBc6xryyAKdOHJUpIiIiIgpF2If+pKamAgA4b5qIZrJ50xZ42vvQ33V1xnX9XVfhae/Dls1bwhSZNEobtB1s2xPhcfVjxOuFemkCcjYWIjlzKdRqDVRQTQzZztlYCPXSBFQdroLP65MldqJIMzw8jBf27cNycz4e+8KzyCtcA118PFQqFXTx8cgrXIPHvvAslufkY9++/fCNRvZnZ8w/Bq1OJ3SMVqfDmH9MpoiIiIgoFGGvIFq7di0OHToEu92B/PyCcL89EUUIrU6LHfdX4uSHJ9DW3oTkrDQYTck3q1dc/ejv6IVxkQGVOyoVV72itEHbobTt9bZ2ISU7XRFDtokiyYEDB1FUUjrrNvHB198//AYe+3x4KonkaHmLU8fB5/VCFx8v+Rif14s4dWh/p2xpacV71dW4du0axvxjiFPHYcmSJdhx/3bONCIiIpqDsCeInnzyCzh69CheeeX3uP/++5GQkBDuEIgoQmh1WlRUbMWgZxBWuxWdZ5onzb/JxNr7tiqqrWwypQ3aDqVtb8zvx9KcTEnnl3vINlGk6OtzY2BwCFtnSQ4F5RWuQdWbr8Dtdss6k0ik5U2v1wude8mSJXC22CQPqQYAZ4sVS5YsEXqf/v5+vPDCPsSpNSjZUAbzpJ3VnC02vPHm2xgbG8XXvroXixcnC52biIiIFiBBlJWVhf/yX/4a//APf4/vfe+7+Mu//A5ycnLCHQYRRRCD0RBxW62He9C2lCHS92y4B+/84R0EAgEsWTb9AO1rV3rR1dSOjLwVQjHIOWSbKFLU1dWhcM1aoWNMy5bj1Kk62bYxD7a8FZWU3pa4Cra85RWugb2pAfv27Z/Yul6q+7dvx5tvvS2UILpwphZ/9LlHAEiraurv78cvfvlL3Hvf/be9jy4+HvlFxcgvKoatsR4//8Xz+OaffAPJycmS4wm3SB9eTkRE0Um2BNGPf/zcjK9nZ98Fm82Gb3zjPyEnx4zs7CzEz1KarFKp8Jd/+Z35DJOISBbhGrTt8/pw8sMTkoZInz5zGumWFRhwXUNfew9Ss01ImtS2N+DqR1+7C9p4LdRaNRYvSxW7ZhmHbBNFilanE4/s3Cx0TMpSE1qdTpkiEm95O3DwIJ7evVvy+VeuzMWYfxS2xnpJSSJb4wWMjY1i2bJlePHFlyRVNb3wwr47JoduFXz9hX378J+//W3J1xAuclZyERERzZVsCaKqqiqoZplErVKpEAgE0NbmRFvbzP8wCgQCTBARUUTZvGkLDr9XBQAzJomCg7Yrd1QKnd/n9aHqvSokZaciJzNrymvBIdLJmUvR33UV7x56F2MqwLwmCylZ6Ri5MQz3xy5c/bgLgdExqDRxMKQkIatkJeIT9LB/cEFRQ7aJIoXXOyI8sFmtVsPrHZElnlBa3poazgm3vH31q3vxi18+DwAzJnFsjfWo/eAIvrp3j+Sqpl/96l+AuDjJFUr5RcW4cKYGra2tippJJHclFxER0VzJliBKT0+fNUFERBTN5B60ffLDE0jKTpU0RDowBvR1uCa+Fp+gR2bBXdMeo9LEKWrINlGk8PvHhAc2+/1++P3yJFfHW97WCR1TuHqtcMtbcnIyvvkn38AL+/bho9MfomRDGXJXFUxUx7Q2W3HhTA0CAT/+9JvfwFtvvSO5qmlsbAxNDeeErqFkw704/F41vvGflJMgkruSi4iIaK5kSxD93//7olynJiKKGHIN2vYMeOC5Pnhb5dB0lixfir4OF0ZuDCM+Yfa/SBuWJGHA1Y8ly5QxZJsoUgQCAbS12JAnMI/HfdWFQECeeEJpectZmY+3D54Wfi+9Xg9Tugl97mtodTSh4Xwd/P5RqNUaGIxJUKvVSE1diuvXbwhVNRXcXYKmhnP45Jobi5dIq2oyryzAqRNHha9BLuGq5CIiIpqLsA+pJiKKRfM9aNvmsCE5e/pB03eSmp0O98euGSuHglKyTeiobxFKEM1lyDZRtFDHqXCp/pxQgqj7cifS0k2yxOPzeYVb3rQ6HXw+r9AxU9qnHp4+CWJvasCLL72EDWWfFTp/UfF6XKo/i02f3SFpvVanw5h/TOg95BSuSi4iIqK5YIKIiCgCdbu6sWLDKqFjkkxLcPXjbklr4xfpodFpcO1yL5Ysnz0RFeqQbaJIM9vuU/H6BOgTEmBvapi1lQgYT5hodFrEyzRrRqvVCbe8+bzj1yVCpH3q3KkPkJObL3R+88p8NJyvAwD0X+tDY/05XOn8GKOjPmg0WixbcRfuLl4/UWHk83oRp44Teg85hbOSi4iIKFRhTxBVVu6ASqXCr371L7jrrtn/ig0AV65cwZ49z0KlUuHQoSqZIyQiUj6/zx/SEOnAqPS/qCelJaO3pQuqOJUsQ7aJIonU3aeys7OQYEydSGbMlDCxNzWg4XwdUlLSkGs2yxJ3rtmMtla7pGRVUFuLTSge0fYpqFShVTV5vXj3jZdx4/p13F2yHhvuLZ/yDI4cegOLEhNRUfk5tLXYsGTJEqH3kFO4KrmIiIjmghVERPPMM+CBzWFDt6t70qyZDBTkFbC6guaNWqsOaYi0SiP9L+oDV65ha3kF6hsuyDJkmyhSiOw+dfFcLVTqTjy6czeOHX4Lly6cwd3F65GzMv9mMqPFhkv1Z7Eo0YBHdz2Nf/npP+DZr3wZwOwVSqJKS0vx8isHhBJETRfP46knd0lef2v71GwVPhqNVriqacgzAK93GLmWwtuu5dZn8NaBF+HzefH5P/qc5PPLLVyVXERERHPBBBHRPPF5fTj54Ql4rg8iOTsNKzasuvmLdE8/jn5wFMZFBmzZvIW/SNOcZZgy4Onpn3UHs8kGuq9BGy/tl41gy1hKaoosQ7aJIono7lPnTr2Pj53NeOBzT+KTa25cqj+L+vN1k5IlOdj2wGNYvCQF9qYG6PU6LFq0CC+++NKsFUq7du4U2vo8NTUFSYZEoZa3JGOiUDIq2D41MnwDR6venLXCx7RshfAg76p3DmDjlu2SnkEgMIZTJ44qaov7cFRyERERzVVEJIg++eQTABD6BxFROPm8PlS9V4Wk7NTbdpVSqzVIzlyK5Myl6O+6iqrDVdhxfyW0OiaJKHT5lnwcO3FMKEHU33kVqrHx5I9oy9h8D9kmihQh7T5VfxYNZ2sm/nu6wcr2pgY0XTiNu4uKJFco7du3H3v37hH6N9GuXTuxb9/+iXimE4xn7949ks8NjLdPjY358dbBl1C8buOsFT4fnfkQva4uyQmi/mt9GPX6UHB3iaT1+UUlaKpX1g5g4ajkIiIimivlTO+bxo0bN/D6668BAJYtW7awwRBN4+SHJ5CUnTrrL+vJmUthzE7FyQ9PhCkyilbGJCOMiwzo77oqaX1/11UkLTLgwcoH4b96A22nmtB/5Sr8/lEEEIDfP4r+K1fRdqoJ/qs35qVlzDPgwbmzZ/CHd97CW2+9jj+88xbOnT2DQc/gnM5LFE4h7T61Zh1yzDm43GbD6y/vh72xHt6REQQCAXhHRmBvrMfrL+/H5TYb9u7dg0uNjZIrlApL7sGBgweF4tHr9di7d4/keET/IKfV6nC06s07JofudA2f2bAJw9evw3rpgqTz17z/Hko2lAnFVFS8HqdO1QkdI6fJlVxShFLJRURENFeyVxA988yX7/j1v/7r/wL1LANWfT4f+vv7EQgEoFKpcO+9Yv84IAoHz4AHnuuDt1UOTSc5cyna2q0Y9AyyNYfmZPOmLTj83vjgfqkVQRqtVvaWMZ/Xh5qaExgZGYLFko7i4gJoNGqMjvrR2elGTc0x6PUGlJVtZrslKd5cdp/61p9+E263G6dO1eHtg6enzBR66sknkJKSgr4+N4aHvZIrS/IK16CpQbw6Rq/X4+ndu2eNJxSZmRnovNwldA0XztTgbM37iIuLm7WqqdfVhe0Pfl4oJiXuACZ3JRcREdFcyZ4gcrlct30tEAjg6lVpf/UOKiwsxBe+8IX5Coto3tgcNiRnz74N+GTJWUthtVvZskPTkjLsXKvTYsf9lTj54QnhIdJytYz5vD5UV1ehoCANOeacKa9ptGrkmNOQY05Dm7MX1dVV2LaN7ZakbHPdfSolJQUPPfTgtGvr6upgWrZC6PyFq9fi1Km6Gc87ndniCYVKpcKatfcIHbNm3Ua4u9txuc2GpoazKFy97rZB3k0XzyHJaIA+Pj4qdgALVnIdOHhw1msOpZKLiIhormRPEO24Zdvjw4eroFKpUFZWhsTE6f9KrVIBOp0OKSmpKCoqwtq1a6FSqeQOl0hYt6sbKzasEjrGaEpG55lmmSKiSCY67Fyrk78iSERNzYlPk0MzJ02Dr9fWnsR95RVhiIwoNHLvPtXqdCJlabpQTEqrjrlypQtr790udEzuqgI01Z+RVGX1s5//Imp2AJOzkouIiGiuZE8Qffe7353y34cPj7dD7N37Vdx1111yvz2R7Pw+P+JmaZe8VZxaDb/PL1NEFKnmMuxcCUOkPQMejIwM3VY5NJ0ccxocjktstyRFk3v3KZ/PO2vL/a2UVh0jd5VVNO4AJkclFxER0VyFfRezZ555BgCQnJwc7rcmkoVaO17doVZL/ziN+ccrPIgmExl2HlxfUbE1HKFJ4nDYYLGIVUKsWpUOu92KdWFIbnkGPHA4bHC5uuEf80Mdp4bJlIG8SW17RLeSe/cprVYHv1/sDwZKq46Ru8oq3DuA9fW5UVdXh1anc0p1z8aNpazuISKiqLYACaKvhPstiWSVYcqAp6dfaLtxj6sfGaYMGaOiSBMNw85drm4UFxcIHZOVlQKr1SpTROM4NJvmYvLuU1ISFKK7T+WazbA3twjFpLTqGLkrfOR+BkHDw8M4cOAgBgaHULhmHR7ZufnmfKBWO373+wNIMiZi186dnA9ERERRKewJIqJok2/Jx7ETx4QSRP0dV7H2vgr5gqKIo/Rh51KGZvvH/NBoxCrjNBo1/GPytVtyaDbNBzl3nyotLcUH7x8Ximcu1TGipFTThKPCR+4dwIaHh/HCvn0oKinF1lvOr4uPR17hGuQVroG9qQH79u3nEGkiIopKYU8Q1dfXCx+jUqmg02mRmGiAyWSCln/hJQUxJhlhXGRAf9dVSUmi/q6rMC5KVEzVBymDUoediwzNVseNV+VoBNonR0fHW73kwqHZNB/k3H0qNTUFer1O9uoYUSLVNOGo8JF7B7ADBw6iqKR01viDrx84eBBP794t9B5ERERKF/YE0Xe+85dz2o1MrVZj5cqVqKysxEMPPQyNhkVQtPA2b9qCw++ND2CfKUnU33UVnvY+VN6yux+REoediw7NTktLQ2ene9ZkzGQdHW6YZGq35NBsmk9y7j5VUlKCpgvju5LJUR0jKpRqGrkrfAD5nkFfnxsDg0O3Xet08grXoKnhHNxuN2cSERFRVFmQ7EogEAj52NHRUdhsNtjtdrz55pv44Q9/iPR00zxGRyROq9Nix/2VOPnhCbS1NyE5Kw1GU/LNSgtXP/o7emFcZEDljkrOOaHbKHHYuejQ7E9cHvRfG55IEHkGhmFzdKO7+xP4R/1Qa9TIyFiMfEsGjEnjf91vbu5BWVmFLPErfWg2RSY5dp/SarSyVseICrWaJlzXMN/PoK6uDoVr1gkdU7h6LU6dquNOZEREFFXCniB67rkfw+8fxf79+2G1WpGamory8nLk5eVj8eLFAIBPPvkEdrsN77//Pvr6+lBQUICvfOVZeL0jcDrbcPz4MbS1taGtrQ3f//738ctfPi+8RSzRfNPqtKio2IpBzyCsdis6zzRPmtWSibX3bWVVAk1LacPOQxuafRWJ8Xo4HC5cvnwNnuteJGebsOKezCltacdO2GFcpMOK5Uug1xtk+1wodWg20Z3IWaEkYq7VNEq4BlGtTice2blZ6Jiclfl4++BpmSIiIiJaGGFPEJWUlOBv/uZvYLPZ8Nhjn8cf//EfQ6e7fZvT7du342tf+zp+9avn8cYbb+DgwYP4+7//e2zatBlPP/009u/fh5deegnt7e04dOhdPPzwI+G+FKI7MhgNYRkaTNFFacPOQx2arRkK4KML7TDlZyFnzdTjJ7elXbvSi/MX2vHwgw+HHONsg7OVODSbaDai1THzvSX7fFTTyFFlJSefzwvtHf4tOhOtTgefzwtg/p8BERHRQgl7gujdd9/FqVO12LhxI771rW/NuFan0+HP/uz/QXd3N06fPo23334LjzzyKABgz569uHjxIurr63HixAkmiIgooilt2HmoQ7ObP7iIjILsWa9hybI0qFQqnD5zGhUVW4XeR+rg7DhVnOKGZhPNF7m2ZI/Fahqtdvy+6eLjJR/j83qh0Wjx4osvzfszICIiWihx4X7DQ4fehUqlEkroPPLIowgEAqiqOjzl65WVDwAAWlpa5zVGIqKFsHnTFnja+9DfdXXGdcFh51s2b5EtllCGZo8Oj0KliZNcBZWcuRSe60MY9AxKfo/g4Gz10gTkbCxEcuZSqNUaqKCaqFDK2VgI9dIEDHt9cLbNfC9vJefQbKL5Ehwivdycj8e+8CzyCtdAFx8/vuvrp0OkH/vCs1iek499+/ZjeHhY8rnnWk0TiXLNZrS12oWOaWuxYXj4hizPgIiIaKGEPUHU3t4OAEhLk95GEVzb0dE+5evZ2dkAAI9nYJ6iIyKSxjPgwZmzZ/DWO2/h9ddfx1vvvIUzZ88IJTtuFRx27r96A22nmtB/5Sr8/lEEEIDfP4r+K1fRdqoJ/qs3ZB92HhyaLaKvvRtpuZlCxyRnLYXVLn3mj8jg7DTLMtRf7BSKp7m5B3l5YnOLiMJNZIh0Yck9OHDwoORzB6tpRPi8421Vkaq0tBRNDeeEjvnobC3uLrlHlmdARES0UMKeIPJ++o+O3l7pf9UNrvX5fFO+HpwtwbJdIgoXn9eHY8eO4tiJY7gRP4oVG1bBvKUIKzaswo34URz94CiOHTuK0Vt+XkkVHHa+9b6tSPBq0HmmGc4Tjeg804wErxZb79uKioqtsu+EFxyaLcJz9RMkmZYIHWM0JaPb1S3t/J8OzhapUIpTq9HUeEXS+jZnr6xDs4nmQ3CI9GyJiaC8wjUY8AzB7XZLWr9sWSZaW8QGtbc2W7FsmVhyWElSU1OQZEiEvalB0np7Yz18IyMoWX+vpPWiz4CIiGihhH0G0bJly9DW1oY//OEdlJWVSTrmnXfemTh2sr6+PgCY2P2MiEhOwfampOzU23b3mjyAub/rKqoOV2HH/ZXQ6kJL5Cz0sPNQhmaH0pYWp1bD75NWqRTK4Oyl5kxYbZeRkKBFjnn6Y9ucvbDZerF9e6XQ+SnyyT1gWIlDpGcSCARw8fxpFBSVSD7/xY9OY8XyyE0QAcCuXTuxb99+AJgx+WZvasCZ2uNYWyo2p0nkGRARES2UsCeI7ruvHE6nE6dOncLzzz+Pr33ta9Bo7hzG6Ogo/vVf/xWnTtVCpVKhvLx8yusXL14CcHviiIhIDiLtTcH1ogOYlSKUodnquDiM+f1Qq6X/T8uYf3z3MSlCHZz9SXsvOjquw26/BIslHVlZKdBo1Bgd9aOjww2HowcJCQZs3y5v2x4pi1xDnkM5vwi5h0h3dXUj0WCEvalBUpWSvakBiQYjurqkVQIqlV6vx969e3Dg4EE0NZxF4ep1yFmZf/OZtdjQdPEckowG6OP1WJV/t9D5I32QNxERxYawJ4iefPJJvPfeYVy5cgUHDx7A++8fR3n5Z2GxWJCcPF4J1N//CRwOB95//ziuXh1vL8vMzMQTTzw5cR6/34+jR49ApVJhPbcUJyKZBdubbq0cmk5y5lK0tVsx6BmM2JalzZu24PB7VQAwY5IoODQ7Ozsbnp5+oaojj6sfGRKHQodcoTQ6hvvKKzDoGYTdboXVaoV/bHy3MpMpE5s2VUTsM6LQBIc8F5WUYustSZDggOG8wjWwNzVg37792Lt3j1CSSPT8yzLTJZ9b7iHSPp8XD1V+Dm+/+lsAs1fTNJyvw6M7d+P1l/cLxaREer0eT+/eDbfbjVOn6vD2wdNTqr6eevIJpKSk4J9/+tOYG+RNRESxIewJovj4eDz33I/xgx98H06nE729vTh48MAd1wYCAQBATk4OfvjD/4n4SduPXr16FQ88ML6L2a2VRURE8y2U9qbgAOZwtIp5BjywOWzodnXD7xuvyskwZaAgryDk5EdwaPbJD0+grb0JyVlpMJqSb24p7+pHf0cvjIsMqNxRiRs3hoXb0vo7rmLtfRWS1gYHZ4daoWQwGrBO4FnIcU9JGUSGPAPAgYMH8fTu3bKd//3Db+Cxz0urJLp1S/b+a31orD+HK50fY3TUB41Gi2Ur7sLdxeuxeMl4C5vIEGmtVoe4ODUe3bkbxw6/hUsXzuDu4vW3VdNcqj+LRYkGPLrraaigmnJ+udv25JaSkjJjK9itz0CKcA/yjvRnQERECyPsCSIASEtLw89//gu8/vrrePvtt9DR0XHHdStWrMAjjzyCxx77/G1taCaTCc8885VwhEtEFHJ7U+eZZpkiGufz+nDywxPjw5uz07Biw6qbCZyefhz94CiMiwzYsnlLSO1TwaHZg55BWO1WdJ5pnpQsycTa+7ZOJEuMWq1wW5pxUaLkZEtwcLZcFUpBct9TWljBIc+3VvZMJ69wDZoazsHtdkv6xTqU81e9+Yrk8we3ZL/LvApHq97EjevXcXfJemy4t3xKC9uRQ29gUWIiKio/h49b7Mg1myXFEzx/XuEaPPC5J/HJNTcu1Z9F/fm6SQmoHGx74LGJBJS9sR65ZrPsbXtKMfkeSdXWYpP8DOYiVp4BERHJY0ESRACgVquxc+dO7Ny5E1evXkVbWxsGBz0AAIPBiJycHCxdKv2XACIiOck9gDkUShyaLdqWVrlD+lDoUAZni1QoAeG9p7Qw5B7yHMr5TcuWSz5/aWkp/uPll1F/7hSK1228LUlxawvbWwdeRFycCl966guSYiktLcXLrxyYOO/iJSnY9NkdMx7TdPE8Hvvco7K27SnJrfdIiqaL5/HUk7tkjEr+1kkiIop+C5Ygmmzp0qVMBhGRos21vUkOShyaLdqWJlKBE8rgbJEKJUCZ95Skk9JWI/eQ51DOn7LUhFanU9La1NQUjNy4gbUb75PUwhYIBHC+7gPJbUWTt3yXOqQ6yZiIo0ePytq2pySh3iO5W7vkbp0kIqLoF7fQARARRYJge5OIUNqbJJ/706HZUqtpkjOXwnN9CIOeQVnimSzYlrb1vq1I8GrQeaYZzhON6DzTjASvFlvv24qKiq0htWdt3rQFnvY+9HddnXFdsEJpy+Ytks+t5HtKMxseHsaLL76El185gITFaXhk55fx5DN/gkd2fhkJi9Pwu98fwIsvvYTh4eGwDHkWPb9arZZ8/r4+NxIWJSK/qFjS+vyiYiQkJMLtdkuOZ9eunWi6cBr2poYZ19mbGtB04TS2bd2KgcEhyRU1eYVrMOAZEopJaUTvkehudaKCrY2x9AyIiGj+KaKCSCn+5V9+hZdffhkAsGfPHjz99JenvP7v//5v+M1vfjPjOX796xeQnZ0tW4xEtDDC0d4kQulDswHpbWki5KxQioR7SrcTbavRaLSyDhgOZYCx3++XfP66ujoUFq+XfG4AKFyzTnILGyC25fvevXtw9OgxFK5ZKxaTQNueEk2+R5cunEZR8XqYVxZM3CNnixWN9WeRvDgpLK1ccrdOEhFRbFiwBJHf78epU7VoaLiIrq4u3LhxHWNjY7McpcJzzz0nSzyXLl3CK6+8ApVKNbF72nRyc1di5cqVd3wtMTFRjvCIaIGFo71JhFKHZoeDyOBsEbF8TyOZaFtN/dkaWQcMhzLA2H3VhbxV0r735G6RC5K65Xs4Y1KkADDmH0Orw4r6c3Xw+0ehVmtgMCZhzD/bv2vnT0w/AyIimjcLkiC6eLEB//iP/4ienp6Jr82UlAkmbVQqlSzxDA8P47nnfoSUlBTk5+fj5MmTM67fvHkTvvKVZ2WJhYiUS84BzKKUODQ73Oa7Qon3NPKEsmNYw7lTaLxwRrYBw6EMMHZduYxnnpY2C0buFrlbzbblOwB4vSMhxeT1joQUkxJMqVx7ePpnHa6B0OH+viAiougU9gRRe3s7/vqv/xperxeBQAAajQbLly+H0ZiEuDh5EkCz+fWvf43Lly/jhz/8nzh+/PiCxEBEyidne5MoJQ7NjnS8p5EnlLaaNWtLUX+uVrYBw6EMMNbrdZLPH0oL2+QWOSmDvEX5/WMhxeT3R25yVWkDoef6fUFERAQsQILot799CSMjI4iLi8Ozz+7B448/joSEhHCHMeHChY/w+uuvYceOHdi4cSMTREQ0I7nam0QFh2aLzESSc2h2NOA9jTyhttU0nD+FpgvjrTUz/YIfHDC8d+8eoffYtWsn9u3bL/n8JSUlks8dSgtbW4sN2dlZePHFlzAwOITCNevwyM7NN2cKtdrxu98fQJIxEbt27hSudAkEAmhrsSFP4uBsAHC22DBLR79ihVK51tRwDm63W7adzEL9vpDaOklERLEh7Amijz76CCqVCo8/vhO7F3hrzRs3buDHP/4xlixZgm9+808lH+dwNONf//Vf4PF4kJiYiFWrVuHee8uwaNEiGaMlIiWRYwCzCKUNzY4GvKeRJ9S2Gr9/FH/89a9JHsIsmjARHfJ85L3Dks8dSgtbU8M5+HwjKF6/SdIgb9FrVsepcKn+nFCCqLH+HNRxkbmZrhIHQof0fSHQOklERLEh7AmiTz75BACwebPYX/zk8Pzzz6O7uxt/93f/DUajUfJxtbU1qK2tmfK1xMREfOtb38IOGWeOEBEFKW1odjTgPY08c2mrERnCHAq5zh9KC9uNG0NYt7FctnaoeH0C9AkJYm11CQlAIDJbzJQ4EDqU7wuR1kkiIooNYU8QJScno6+vD/EC/5iTw5kzZ/D222+homKr5GRVZuYyfPWrX8U995TCZDIBAD7++GP87nf/gdraWvzoRz9CXJwa27dvF47nZz/7GX72s5/Nuq6gIF/43EQUnZQ0NDta8J5Glvloq5EyhHku5Di/SAvbxXO1iNcnSL5HobRD5ZrN0C5ajIbzdZJiajhfh8K7PwPfjU8knV9plDoQWrS1UbR1koiIol/Ya3vvvns1AKCtzRnut54wNDSIf/qnnyA5ORl/9md/Jvm4HTt24Etf2o1Vq1bBaDTCaDRi9erV+B//44f4/Oc/DwD45S9/AZ/PJxzTt771LTQ2Ns76f0uWLBE+NxFFp+DQbP/VG2g71YT+K1fh948igAD8/lH0X7mKtlNN8F+9IfvQ7GjBexpZSktL0dRwTuiYpovnsXFjqUwRhUewhe1ymw2vv7wf9sZ6eEdGEAgE4B0Zgb2xHq+/vB+X22y4K+cu3F1yj9D5g+1QUpWWlsJhvYhHd+6Gs9mKV/9j3x1jevU/9sHZbMWju56Gw3YxYp9DsHJNRDgGQot8X8i9qxoREUWmsFcQPfHELpw48QFeffVVbNu2HWrBLYXnw89//gv09vbiBz/4ARYvXjwv53zmma/gjTfeQH9/P6xWK9askf7XTCKiUCllaHY04T2NHLHcViO1he1nP/8FHtnwWaFzi7ZDBZ/Dx85mPPC5J/HJNTcu1Z9F/fk6jI76oNFosWxFDrY98BgWL0mJ+Oeg5IHQcrdOEhFRdAt7gig/vwDf/OY38bOf/Qx/93d/h+985zvzlqSR6uTJE1Cr1XjjjTfwxhtvTHmto6MDAPDuu+/i3LlzSElJwfe//4NZz5mUlITk5CVwu/vQ29srS9xERNNZ6KHZ0Yj3NDLEelvNbC1s4WqHuvU5bPrsjjuui4bnEAkDoeVunSQiougU9gTRb37zGwBAQUEBTp2qxZe//DTWrVuHrKwsxMfPXur6zDPPzEscfr8f9fX1077e3d2N7u7uiVlDUs53/foQAHA3MyIiojAR3TEs1tpq5jLIW0QsPYdYrlwjIqLotgAJon+HSqUCAKhUKoyMjKC2tha1tbWSjp+PBNFrr70+7Ws/+tGPcPhwFfbs2YOnn/6y5HPW1NRgeHgYKpUKeXl5c46RiIiIpGFbzfTC2Q4VS88h1ivXiIgoOoU9QQQAgUBgxv9Wop4eF+rrG1BeXg7dLaXaJ0+exD/9008AANu2bY+af/wQERFFErbV3G6u7VB9fW7U1dWh1emckuzZuLF02n/vxMJziKWKKSIiih1hTxBVVR0O91vOi4EBD/7xH/8X/t//96dYtWoVUlOXwusdwccff4zLly8DAD7zmc/gz//8zxc4UiIiIqJxobZDLVq0CC+++BIGBodQuGYdHtm5+Wbyo9WO3/3+AJKMidi1c2fMJj9iqWKKiIhiw4JUEEWi9PQ0PPXUU7DZ7Lhy5TIcDgdGR0eRlLQY9957L7Zu3YaKigrExcUtdKhEREREE0Tbob70pS/ihX37UFRSiq23rNfFxyOvcA3yCtfA3tSAffv2R12FjGjVVCxUTBERUWxggugW3/ve9/C9733vtq8nJS3G17/+xwsQEREREVHoRNuhDhw4iKKS0lkrjoKvHzh4EE/v3h2OS5HV8PAwDhw4yKopIiKKWUwQEREREUU5qe1QfX1uDAwO3VY5NJ28wjVoajgHt9sd0e1Uw8PDMV01RUREBCxwgujcuXOoqqpCU1Mj3G43vF4vfvWrf8Fdd901saa+vh5tbU4sWpSI+++/fwGjJSIiIopss7VD1dXVoXDNOqFzFq5ei1On6iK6zSpWq6aIiIgmW5AE0fDwMH70ox/h5MkTAG7uYqZSqW5bGxcXh//zf/4PVCoVCgoKsGLFirDGSkRERBQrWp1OPLJzs9AxOSvz8fbB0zJFJL9YrZoiIiK61YJMVP7hD/8HTp48gUAggLy8PDz55JPTrl29ejVycnIAACdOfBCmCImIiIhij8/nhVanEzpGq9PB5/PKFJH85lI1RUREFE3CniD64IP3UVc3/j+of/EX38b/9//9H/zxH/+nGY/ZsmULAoEA6uvrwxEiERERUUzSaseHMovwecdnGUWqVqcTObl5QsfkrMxHq9MpU0REREQLI+wJoqqqwwCA7du34+GHH5Z0jMUy/j/a7e3tssVFREREFOtyzWa0tdqFjmlrsSHXbJYpIvnFYtUUERHRnYR9BpHdbodKpcJnP1sh+Zhgf/cnn3wiU1RERBRpPAMeOBw2uFzd8I/5oY5Tw2TKQF5eAQxGw0KHRwRgfL7N6dO1cDpb4fP5oNVqYTbnorT0XkXOryktLcXLrxyYdVjzZE0Xz+OpJ3fJGJW8glVTuvh4ycdEetUUERHRnYQ9QeTxDAAAUlNTJR8TFzde6DQ2NiZLTEREFDl8Xh9qak5gZGQIFks6iosLoNGoMTrqR2enGzU1x6DXG1BWthkarXahw6UYNTw8jFdffQWDg/0ovecuVFTci/h4DUZGRmGzduHAgZdgMCTj8cefWOhQp0hNTUGSIRH2pgZJSSJ7UwOSjImKTHZJFayaEkmKRXrVFBER0Z2EvcUsMTERANDX1yf5mO7uLgDA4sWLZYmJiIgig8/rQ3V1FbKzE7Gj8m7kmNOg0aoBFaDRqpFjTsOOyruRlbUI1dVV8Hl9Cx0yxaDh4WHs3/9rFBUm4+tfvw/FJdmIj9cCUCE+Xovikmx8/ev3oagwGf/2b7+Gb1RZ36e7du1E04XTsDc1zLjO3tSApgunsWvnzjBFJo/S0lI0NZwTOqbp4nls3FgqU0REREQLI+wVRMuXL8fAwABaW1uwceNGScecPPkhAGDlylVyhkZERApXU3MCBQVpyDGnzbgu+Hpt7UncV14RhsgoUvX1uVFXV4dWp3N8Fo1Wh1yzGRs3loZcFfPqq6+g7N67UFySNeO64OtvvF6Hxz6vnCSLXq/H3r17cODgQTQ1nEXh6nXIWZk/PnfH60Vbiw1NF88hyWjA3r17oNfrFzrkOYnFqikiIqI7CXuCaOPGjWhsbMRrr72OXbuegG6WoYANDQ04duwoVCoVysruDVOUJEVfnxvV7xxb6DCIIs7gJwNIXcKKSFHDw8No+7gZcTcy0WnrlHSMzdaFkWsj0MdH9i+wBFwfHJrX8w0PD+PAgYMYGBxC4Zp1eGTn5psJkFY7fvf7A0gyJmLXzp1CCZC+PjcGB/tRXCKtXam4JAu///1xuN1uRSUc9Ho9nt69G263G6dO1eHtg6enJNCeevIJRcU7V7t27cS+ffsBYMYkUbBqau/ePeEJjIiIKIzCniD6oz96DK+88gr6+6/hv//3/4bvfe+vkJSUdNs6v9+PQ4fexfPPP49AIIC0tDRUVj4Q7nBpBqmpKdjyoLQqMCK6qbbqOJ58fOtChxFxzp49g4pNqTCb0yUf09rag2vX4rB+/QYZI6Nw+NW/vjtv5xoeHsYL+/ahqKQUW29JBuji45FXuAZ5hWtgb2rAvn37hapkTp+uRek9dwnFk529BHV1tXjwQWm7u4ZTSkoKHnrowYUOQ3axVjVFRER0J2FPECUmJuL73/8BfvCD7+P06dN4+undWLOmeOL1f/mXX8HnG4XDYcfQ0BACgQB0Oh1+8IO/gUYT9nCJiEghXK5uFBcXCB2TlZUCq9UqU0QUqQ4cOIiiktJZ24mCrx84eBBP794t6dxOZysqKsQqnk2mJDidrULH0PyLtaopIiKiWy1IxmXdunX40Y+ewz/+4/+Cy+XCmTOnoVKpAACnT58GAAQCAQBAWloafvCDv0FBgdgvBUREFF38fj80GrXQMRqNGn6/X6aIKBL19bkxMDh0W+XQdPIK16Cp4ZzkFjCfz4f4eLF/XmnUavh8w0LHkHxipWqKiIjoVgtWkrN69Wrs3/9vOHr0KGpqPoTdbkd/fz/GxsaQlJSEVatWoaysDDt2VELLbYqJiGKeWj2+lb1WK/1/ukZH/VCrxZJKFN3q6upQuGbdxH/3X+tDY/05XOn8GKOjPmg0WixbcRfuLl6PxUvGE0KFq9fi1Kk6SUkDrVaLkZHRT3ctk2bU7+e/dYiIiGjBLWjPllqtxv3334/7779/IcMgIqIIYDJloLPTLTSDqKPDDZMpQ8aoKNK0Op14ZOdmjAzfwNGqN3Hj+nXcXbIeG+4tnzKk+sihN7AoMREVlZ9Dzsp8vH3wtKTzm825sFm7UFySLTkml2sAZvNnQrwiIiIiovkRt9ABEBERSWGx5MPh6BE6prm5B3l5bFGmm3w+L8bG/HjzwIvItRTi8S/uQV7hGuji46FSqSaGVD/+xT0wryrAWwdexNiYHz6fV9L577nnXtSd/lgopvb2aygt5U6tREREtLCYICIiooiQlGREfHwinM5eSeudzl7o9QYYjQaZI6NIotXqcLTqTRSv2yhpSPWataU4WvUmtFqdpPOnpqbAYEhG/YUOSevrL3QgXpfA4cdERES04JggIiKiiFFWtgU2W8+sSSKnsxc2Ww/KyjaHKTKKFJmZGRga9MyaHArKK1yDoUEPMjOltyo+/vgTqD318axJovoLHag99TGKSz4j+dxEREREcpFtBtEzz3x53s+pUqnw7//+m3k/LxERRQadTott2ypRW3sSdrsLFks6srJSoNGMD7Du6HDD4ehBQoIB27dzkwO6nUqlwpq19wgds/oz9+CTq5clr9fr9Xj22a/h1VdfQd3pNtxzz10oKMhEfLwGIyOjsFq7cPr0xzAYkvHss1/DkfcOi15GTOvrc6Ourg6tTueUbeg3bixlJRYREdEcyJYgcrlc835OlUo17+ckIqLIotNpUV5eAY9nEHa7FVarFX7/+G5lJlMmNm2qYFsZTevKlS6svXe70DG5qwrwdv0ZoWP0ej2+9KUvw+12o66uFjU1tfD5fNBqtTCbc7Fr124mMwQNDw/jwIGDGBgcQuGadXhk5+Ypg8V/9/sDSDImYtfOndDr9QsdLhERUcSRLUG0Y0elXKcmIiKC0WjA+vUbFjoMijA+nxdanbR5QkFanU7ykOpbpaSk4MEHHw7pWDlEavXN8PAwXti3D0Ulpdh6S3tgcLB4XuEa2JsasG/ffuzduydsSaJIvadERES3ki1B9N3vfleuUxMRERGFRKsdrzjRxcdLPsbn9UoeUq1UkV59c+DAQRSVlEoaLA4ABw4exNO7d8saU6TfUyIioltxSDURERHFjFyzGW2tdqFj2lpsyDWbZYpIfsHqm+XmfDz2hWeRV7gGuvh4qFSqieqbx77wLJbn5GPfvv0YHh5e6JCn6OtzY2BwSGiw+IBnCG63W7aYIv2eEhER3UnEJ4ja2tpQWbkDDzzAljYiIiKaWWlpKZoazgkd03TxPDZuLJUpIvmJVN8UltyDAwcPhikyaerq6lC4Zp3QMYWr1+LUqTqZIor8e0pERHQnEZ8gIiIiIpIqNTUFSYZE2JsaJK23NzUgyZgYsbNklFh9I6rV6URObp7QMTkr89HqdMoSTzTcUyIiojuRbQYRERERkRLt2rUT+/btBwCkZyxDY/05XOn8GKOjPmg0WixbcRfuLl4PV/dlNF04jb1790wcG2kDiedSffPQQw/KFJWYcA8Wn0003FMiIqI7YYKIiIiIYsr4FvRfxAv79iEuToOSDWXYcG/5xIBhZ4sNh978PcbGRvG1r+6FXq+P2IHErU4nHtm5WeiYnJX5ePvgaZkiEqe0weLRcE+JiIjuhAkiIiIiiinDw8N46be/xbqN5be1Ceni45FfVIz8omLYmxrw0kv/gS996Yt46be/VeQW67NRWvVNKIKDxaW2dAHyDhaPhntKRER0J0wQEVHM8wx4YHPY0O3qht/nh1qrRoYpAwV5BTAYDQsdniwGBjxwOGxwubrh9/uhVqthMmUgL68ARl4zRTnRLdNf2Lfvjsmk6daHY4t1qZRWfROK0tJSvPzKAaEEUdPF83jqyV2yxBMN95SIiOhOmCAiopjl8/pw8sMT8FwfRHJ2GlZsWIU4tRpjfj88Pf04+sFRGBcZsGXzFmi02oUOd154vT7U1JzAyMgQLJZ0FBcXQKNRY3TUj85ON2pqjkGvN6CsbDO0vGaKQsEBw7dWAk0nr3ANPjr9IUwZyyWvb2o4B7fbrYiZREqrvgnF5MHiUq5D7sHi0XBPiYiI7oS7mBFRTPJ5fah6rwrqpQnI2ViI5MylUKs1UEEFtVqD5MylyNlYCPXSBFQdroLP61vokOfM6/WhuroK2dkGVFauhtmcDq1WA5VKBa1WA7M5HZWVq5GVlYjq6ip4ec0UhcYHDK8VOqZkw724VH9W8nq5t1gXUVpaiqaGc0LHNF08j40bS2WKKDS7du1E04XTs+4+Z29qQNOF09i1c6dssUTLPSUiIroVE0REFJNOfngCSdmpSM5cOuO65MylMGan4uSHJ8IUmXxqak6goCAdZnPajOvM5jTk56ejtvZkmCKTTyxeM81sfMv0fKFjzCsLcKXzY8nr5dxiXdTk6hsp5K6+CZVer8fevXtwuc2G11/eD3tjPbwjIwgEAvCOjMDeWI/XX96Py2022WdARcs9JSIiuhVbzIgo5ngGPPBcH0ROZpak9cmZS9HWbsWgZzBiZxINDHgwMjIEs8QWB7M5DQ6HCx7PYMTO54nFa6bZeb0joQ0Y9o6IrVfQQOJdu3Zi3779ADBjW1Sw+mbv3j3hCUyQXq/H07t3w+1249SpOrx98PT4wGitDrlmM5568omwJWGi5Z4SERFNxgQREcUcm8OG5OyZK0pulZy1FFa7FRvWb5ApKnk5HDZYLOlCx6xalQ673Yr1vGaKIn7/WEgDhsfGxoTWK2kgcbD65sDBg2hqOIvC1euQszL/08SXF20tNjRdPIcko0FRO7BNJyUlBQ899OCCxhBt95SIiAhggoiIYlC3qxsrNqwSOsZoSkbnmWaZIpKfy9WN4uICoWOyslJgtVplikh+sXjNNLtAIIC2FhvyioolH+NssSEQkP4eShxIrKTqm2jBe0pERNGGCSIiijl+nx9xarXQMXFqNfw+v0wRyc/v90OjEbtmjUYNv5/XTNFFHafCpfpzQgmixvpzUMVJH9so5xbrc6WE6ptow3tKRETRggkiIoo5au34VvZqtfQfgWN+P9RasWSDkqjV49u6a7XSr3l01A+1YCItnAYGPHA4bHC5uuH3j8dqMmUgL68ARqMhKq+Z5i5enwB9QoLQlun6hASMDF+XdH4OJAb6+tyoq6tDq9M5paJm48bSmL4vREREShfxCaK0tKX4zne+u9BhEFEEyTBlwNPTP+sOZpN5XP3IMGXIGJW8TKYMdHa6YTZLn8nT0eGGSYHX7PX6UFNzAiMjQ7BY0lFcXACNZjwZ1NnpRk3NMej1BqSlpUfNNdP8yTWboV20GA3nx7ehn23AcMP5OhTe/Rl81Ncza1Ip1gcSDw8P48CBgxgYHELhmnV4ZOfmmzN5Wu343e8PIMmYiF07d3ImDxERkQJFfIIoMdGAysrKhQ6DiCJIviUfx04cE0oQ9Xdcxdr7KuQLSmYWSz5qa48LJUuam3tQVlYhX1Ah8Hp9qK6u+nTr+qkzXrRaDczmdJjN6XA6e9HY2A23WxXx10zzq7S0FC+/cgCP7tyNY4ffwqULZ3B38frbBgxfqj+LRYkGPLrrabz7+u+w+0u7cfTYUdSfO4VEgwFDHg9G/aPQqDVINBpxfXAQKSnJMTuQeHh4GC/s24eiklJsvSWJpouPR17hGuQVroG9qQH79u2P2ftERESkZLIliOrr62U5b3Gx9JkBRER3YkwywrjIgP6uq5KSRP1dV2FclBixW9wDQFKSEfHxiXA6e2E2z76Dm9PZC73eoLjt3mtqTnyaHJr5GoKv19d3Rvw10/xKTU1BkiERHzub8cDnnsQn19y4VH8W9efrMDrqg0ajxbIVOdj2wGNYvCRlUsvYEiAAaNRq5FqKYJ6UUHK22NBUf3ahL21BHThwEEUlpbO27QVfP3DwIJ7evTscoREREZFEsiWIvvOdv4RKpZr38x46VDXv5ySi2LN50xYcfm/858lMSaL+rqvwtPehckfkVyqWlW3BkSPj1zxTwsTp7IXN1oPt25V1zQMDHoyMDN1WOTQdszkNNls3GhtdE/89HaVeM8lj166d2LdvP4DxhMWmz+6447pgy9iXvvTFGatj8ouKkV9UHLPVMX19bgwMDt12b6aTV7gGTQ3n4Ha7OZOIiIhIQWRtMQuI7AkrgRwJJyKKTVqdFjvur8TJD0+grb0JyVlpMJqSEaceH2DtcfWjv6MXxkUGVO6ohEarXeiQ50yn02LbtkrU1p6E3e6CxZKOrKyUifk9HR1uOBw9SEgwYPv2SmgVds0Ohw0Wy812sYGBG3A4uuFyfQK/fwxqdRxMpsWwWDKQlJQAAMjLM+Hq1QA6OoYi8ppJHnq9Hnv37sGBgwfR1HAWhavX3dZi1nTxHJKMhvF1rI6ZUV1dHQrXrBM6pnD1Wpw6Vcfdv4iIiBREtgTRc8/9WK5TExHNC61Oi4qKrRj0DMJqt6LzTDP8vvHdyjJMmVh739aIbiu7E51Oi/LyCng8g7DbrbBarZN2AMvEpk0Vim2xcrm6UVxcgJERH2prmzEy4oPFkoHi4qwpQ6prax3Q67W4995VyMpKgdVqxcMPPxqR10zy0ev1eHr3brjdbpw6VYe3D56esuPWU08+gZSUFFbHSNDqdOKRnZuFjslZmY+3D56WKSIiIiIKhWwJopKSErlOTUQ0rwxGAzas37DQYYSV0WjA+gi7Zr/fj7GxAI4cuYSCgmW3DZ+eOqS6B0eONGLr1iL4/X4AkXnNJL+UlJQZq1iirTpGji3ofT4vtDqd0DFanQ4+nzek9yMiIiJ5RPwuZkREFBvUajVqahx3TA7dKvh6TY0DarU6HOFRlIqW6hg5t6DXasfPo4uPl3yMzzuenCIiIiLliFvoAIiIiKRISUnBjRteydvWm83puHHDGzNtPiSPaKiOCW5Bv9ycj8e+8CzyCtdAFx8PlUo1sQX9Y194Fstz8rFv334MDw8LnT/XbEZbq13omLYWG3IlDpwnIiKi8GAFERHFvO6ubpy/cB6Dgx6MjQFxcYDBYMS6z6yFKSNjocOjCSrk5WUKHZGXl4ne3jEA47ugORw2uFzdk2YQZSAvr4AziGha0VAdI/eQ7dLSUrz8yoFZzz9Z08XzeOrJXZLXExERkfxkSxD95je/keW8zzzzjCznJaLYMzQ4iKr3DmNMBaTlZiLTZJ7YxWzA1Y8Tp2oQFwAe2FGJRYmJCx1uzHO7+7B+fYHQMdnZqbDZrDh+/ChGRoZgsaSjuLhgylDrmppj0OsNKCvbzF3M6DbB6hiR5IeSqmPCMWQ7NTUFSYZE2JsaJN0ne1MDkoyJrO4jIiJSGBkTRP8uy7b0TBARifMMeGBz2NDt6p60S1cGCvIKom6XLqmGBgfxzh/egakgC0uWpU15Ta3WYMmypViybCmuXenF2++8jYcfehiJhti8V0rh9/uh0YjNE9Jo1Lh+/ToKC00w3/IL+9Sh1r2orq7Ctm2V0OmYJKKbIr06JlxDtnft2ol9+/YDwIz3yt7UgKYLp7F37x6hmIiIiEh+ss4gCgQC8/5/RCSdz+vDsWNHcezEMdyIH8WKDatg3lKEFRtW4Ub8KI5+cBTHjh3FqM+30KGGXdV7h++YHLrVkmVpMBVkoeq9w2GKjKajVo9X/YgYHfVDp1PDbJ75OZvNacjPT0dt7cm5hEhRaHJ1jBRKq45pdTqRk5sndEzOyny0Op1Cx+j1euzduweX22x4/eX9sDfWwzsygkAgAO/ICOyN9Xj95f243GbD3r17hAdhExERkfxkqyCqquIvU0QLyef1oeq9KiRlpyInM2vKa2q1BsmZS5GcuRT9XVdRdbgKO+6vhDZGKie6u7oxpsKsyaGgJcvS0NvaDVd3N2cSLSCTKQOdnW7JQ6oBoL29D8uXS/tF3WxOg8PhgsczyJlENEUkV8eEc8i2Xq/H07t3w+1249SpOrx98PT4+2t1yDWb8dSTTygmcUZERES345Bqoih18sMTSMpORXLm0hnXBV8/+eEJVFRsDUdoC+78hfNIyxUbdpxmzsC5j87joQcfkimquYmFAcwWSz5qa48LJYjs9i5s3pwvef2qVemw261Yv35DKCFSlApWxxw4eBBNDWdRuHodclbm39wmvsWGpovnkGQ0KK46ZiGGbKekpAi1pxEREZEyMEFEFIU8Ax54rg/eVjk0neTMpWhrt2LQMxgTM4kGBz3INIkNkE3KWAKXvUOmiELn9fpQU3MiJgYwJyUZER+fCKezd9aWMQBoaelGQoIOSUkJkt8jKysFVqt1LmFSlIrU6phIH7JNRERE4cMEEVGE8UyuFBnzQx13s1IkmNyxOWxIzpbWPhWUnLUUVrsVG2KgcmJsDIhTiw07jlOrMTYmU0Ah8np9qK6uQkFBeswMYC4r24IjR6oAYMYkkdPZi/Pn2/G5z62d+NrAwA04HN1wuT6B3z8GtToOJtNiWCwZE0kkjUYNv19szhHFlkirjon0IdtEREQUPkwQEUUIn0ClSLerGys2rBI6v9GUjM4zzTJFryxxccCY3w+1WvqPwDG/H3GyjvUXV1Nz4tPk0OwDmAGgtvYkyssrwhCZfHQ6LbZtq0Rt7UnY7S5YLOnIykqZ+Cx0dLjhcPQgIcGAhIRFiItTYWTEh9raZoyM+GCxZKC4OGvKZ6e21gG9Xot7710FlUoFtWDykEjJuAU9ERERSSVbgui73/3Op/+fCs8999wdvh6KqeciihW+iUqRNOSYc6a8ptGqkWNOQ445DW2fVoqM+kZDqpDx+2KjcsJgMGLA1Y8ly2aezzTZQPc1GAxGGaMSMzDgwcjI0G2VQ9OJpgHMOp0W5eUV8HgGYbdbYbVaJ81dysSmTRUwGg04e/YMnM6raGnpRkHBsttmF02tsurBkSONyM01wWTiIHKKLpE8ZJuIiIjCR7YE0YULFwAAKpXqtq+rVCqhLeuD6289F1GsGK8UGU8CzST4+plz7SFVyKi1sVE5sbZkLU7W1QgliHqd3diysUzGqMQ4HDZYLNKHNQPRN4DZaDTMeC0WSz6OHDmEkpLsWQdbB1+/cKEd27dHTvsQkRSRPGSbiIiIwke2BNGaNWvumNCZ7utEdGeeTytFbq0cmk6OOQ3nL3TA09M/6w5mU97H1Y+MGKmcyMjMQFwAuHalV9JW99eu9CIuAEVtce9ydaO4uEDomFgcwBysEpLCbE5HY+MVmSMiWhiROmSbiIiIwke2BNFPfvJPQl8nojsLpVKkIC8D1pZuoQRRf8dVrL2vQjC6yFV5/w6884d3AGDGJNG1K71wWTvwyMOPhCs0Sfx+PzQasYqvWBvA7HDYUFS0TOiYwsJlYauyGpg8cH6iRW584HyktwHSTX19btTV1aHV6ZySkNm4sXRBEjKRNmSbiIiIwodDqokULpRKEYvFhEZrF/q7rkpKEvV3XYVxUWJMbHEflGgw4OGHHkbVe4fR29qFNHMmkjKWjO9W5vdjoPsaep1diAuo8MjDj2BRYuJChzyFWj0+ZFmrlf5jfHTUH1MDmJVaZeUVGDiv1Ub2rnOxbHh4GAcOHMTA4BAK16zDIzs332zparXjd78/gCRjInbt3LnQoRIREREBUFCCyO/3w+PxAACMRmNM/RJDNBP/WGiVIjqNBp72PgCYMUnU33UVnvY+VO6onFOckSjRYMDjn38cru5unPvoPFz2DoyNje9yZjAYsWXjJkW1lU1mMmWgs9MtuX0KADo63DE1gFmJVVbeiYHz6bcNGJ86NHt84Py2bZXQ6ZgkijTDw8N4Yd8+FJWUYustQ6F18fHIK1yDvMI1sDc1YN++/ViWKVYlSkRERCSHBU0Qffzxx3jrrTdx7tw5dHZ2Tnlt+fIVWLduLR555FHJu/QQRSN13HhlgUZggPToqB8ajQb331+Jkx+eQFt7E5Kz0mA0JU9UyHhc/ejv6IVxkQGVOyqhieFKBVNGBh568KGFDkOIxZKP2trjQgmi5uYelJVVyBeUwiixymp84Hw6zLMMnA++Xlt7EuXlFbLFQ/I4cOAgikpKZ91WPvj6+4ffwGOfZyURERERLawFSRCNjY3hV7/6FV577VUEAoE77mjW2dmBy5c78dZbb+Gxxx7DN77xJ4iLi1uAaIkWVrBSZLYdzCYLVopodVpUVGzFoGcQVrsVnWea4feN71aWYcrE2vu2xlRbWTRJSjIiPj4RTmfvrMkGAHA6e6HXG2Jqto3SqqwGPh04L/WPHmZzGhwOFzyewZh6bpGur8+NgcGh2yqHppNXuAZVb74Ct9vNIdFERES0oBYkQfQP//D3eP/99ycSQ3fddRcKCgqQnLwEANDffw02mw1tbW0IBAJ47bXX0NfXhx/84G8WIlyiBRWsFBFJEN1aKWIwGrAhSrY2p5vKyrbgyJEqAJgxSeR09sJm68H27bHVRqi0KqtQBs6vWpUetqHZND/q6upQuGad0DGmZctx6lQdh0cTERHRggp7gujo0aM4fvw4VCoVcnNz8e1vfxv5+XceImqzWfHTn/4Uzc3N+OCDD3D06FFs3bo1zBETLSzjp5Uibc5eSUmitk8rRVgZFP10Oi22batEbe1J2O0uWCzpyMpKmRh43NHhhsPRg4QEA7Zvr4y5gcdKq7JS6tBsml+tTice2blZ6JiUpSa0Op0yRUREREQkTdh7tt55520A4zOG/vf//udpk0MAkJ9fgJ/85J+wYkUWAoEA3n77rXCFSaQoZWVbYLP1os3ZO+O6NmcvbLZelJWJ/XJCkUun06K8vAKbNlXg2rU4HD5sxVtv1ePwYSuuXVNj06YKlJdXxFxyKGj8s9MD5yyfnWCVlZyfHSUOzab55/N5odXphI5Rq9Xw+bwyRUREREQkTdgriFpaWqBSqfDUU08hISFh1vUJCQl46qmn8JOf/Bitra1hiJBIebRTKkUuzVopEssDp2OV0WhgG9IdKKnKSolDs2n+abXjW9nr4uMBAP3X+tBYfw5XOj/G6KgPGo0Wy1bchbuL12PxkvGZQ36/H1qtWFKJiIiIaL6FPUE0OjoKAMjNzZV8THBt8FiiWKTVaXFfeQUGPYOw262wWq3wj/mhjlPDZMrEpk0VbCsjuoNglZVn8mfHP554CX52wjEEWmlDs0keuWYz2lrtuMu8Cker3sSN69dxd8l6bLi3HFrdePKordWOI4fewKLERFRUfg7uqy7krVq10KETERFRjAt7gshkMqG9vR1DQ0OSj7l+fWjiWKJYZzAasI6VIkTCFrrKSmlDs0kepaWl+I+XX0b9uVMoXrfxtq3udfHxyCtcg7zCNbA3NeCtAy+i+3IHnnl69wJFTERERDQu7AmiLVvuw4sv/l988MEH+MxnPiPpmPff/wAqlQqbN3OuChHRfBgY8MDhsMHl6p5UTZOBvLwCbqkuE6UNzY40A5+48e47Bxc6DEnaWxuRlb0SriutcF2ZuT1eNebFjev9qKs9Fp7giGjO4nXxAMR2KyQiigRhTxA98cQuHDlSjbfffgvFxWvw2c9WzLj+/fffx9tvv4WMjAw8+eST4QmSiChKeb0+1NScwMjIECyWdBQXF0zM4+nsdKOm5hj0egPKyjbH7GBrOZWVbcGRI1UAMGOSKDg0e/v2ynCFpngpSxKx63Hl72Ta19eHHpcdjz31lORjXv/dfmz9bAlSUlJkjIyI5stHHzUvdAhERLIIe4IoMdGAf/zHH+F//s8f4u///u9x5MgRVFY+gPz8fCQnJ0OlUuHatWuw2Ww4fLgKNTU1yMvLww9+8DdITORfUYmIQuX1+lBdXYWCgnSYzeYpr2m1GpjN6TCb0+F09qK6ugrbtlVCpwtfkigWqprmOjQ7Fu5RpKs7XYfC4vVCxxQWr8epulN46MGHZIqKiIiIaHayJYgeeGD2v3oGAgHU1taitrZ2xjV2ux1f+cozAIBDh6rmLUYiolhSU3Pi0+TQzO1Nwddra0+ivLxC9rhiraoplKHZsXaPIllraxse2SnWEp+Tm4e3D56WKSIiIiIiaWRLEAUCgXlbF1yjUqnmFBMRUawaGPBgZGTotsqh6ZjNaXA4XPB4BmWtTFF6VZOcpA7NjuV7FIl8Pi+0OrEt67U6HXw+r0wREREREUkjW4LomWeekevURER0i9lajxwOGywW6btnAcCqVemw262y7vyl1KomJeE9iixa7fhW9rr4eMnH+LxeaLViSSUiIiKi+SZjgugrcp2aiIg+JbX1aHBwEMXFBULnzspKgdVqlSly5VY1KQnvUeTJzc1BW6v9tu3tZ9LWakdubo58QRERERFJEPYh1UREND9EWo/Onu2BRqMWOr9Go4bf7w85vkitalIS3qPIU3pPKV5+5YBQgqip4RyeevIJGaMiIiIimh0TREREEUqk9ejixXaMjvqh1Ur/sT86Op7UERXJVU1K43J18x5FmNTUVCQZDHA0NcAiIUnkaGpAktHALe6JiIhowcUtdABERCTuZuvRzMmhoGXLUtDe3if0Hh0dbphMGULHBKuasrMNqKxcDbM5HVqtBiqVaqKqqbJyNbKyEnH9+vWwVzVFGr/fz3sUgXbt2onGC6fhaGqYcZ2jqQGNF07jiV07wxQZERER0fSYICIiikCirUcWSwbs9i6h92hu7kFenlj1ikhVU3z8eFWRiFCrmiKVWs17FIn0ej327t2LzjY7Xn95P+xNDfCOjCAQCMA7MgJ7UwNef3k/Otvs+OpX9yI+Xr/QIRMRERGxxYyIKBKJth4lJSUgIUGHlhYXVq40zbre6eyFXm8QGnQsOlA5WNUkJZ6g9vY+pKSkSl4f6UymDHR2umE2S08GhlL5RfNPr9fj6d274Xa7caruFN4+eBo+3/huZStzc/DUk0+yrYyIiIgUhQkiIrqNZ/Jw4TE/1HE3hwsbuDMSAPF7NHn9ZWsbEuOHpgxsFhVK61FZmQVvvnkecXFxM1b4OJ29sNl6sH17pdD5Q6lqOnnSJpQgstu7sGSJ2NDmSGax5KO29rhQgqi5uQdlZRXyBUVCUlJS8NCDDy10GERERESzYoKIiCb4JA4XLivbDI1Wu9DhLgjRe3Sn9ac1XuzYUXDbeq3APQ22HokMnY6LUyE+Xo/6+k5cvNiJoqLlyM5OmYi/vd2NxsbLGBsD7r+/UigeIBxVTT1ISNDB7XYLxRXJkpKMiI9PhNPZK2neVCiVX0REREREABNERPQp38SW6WnIMedMeU2jVSPHnIYccxranL2orq7Ctm2V0OpiK0kkeo+2bPksPvjg+G3rVbh9G/rgPdVJvKehtB45nVfh94+ipCQLqakGOBzdsNmuwO8fg1odB5NpMT772QL09Q3igw+OCcUDzLWqSTXjtTidPbDZurB1axGqqhqF3iPSlZVtwZEjVQAgS+UXERERERHABBERfWp8uPB4gmMmwddra0/ivvKKMESmHKL3qLr6MIqLl8+63jzpnpZLvKehtB41NnaipCR74v3Wr7/zrKCkpATheIDQq5oSErTo6OiD3d4NiyUDWVk3q5o6OtxwOLqRkKDFtm1FUKlUMTeAWafTYtu2StTWnoTd7oLFkn6He9SDhAQDtm8Xr/yabGBy66R/fNj1XFohiYiIiChyMEFERPB8Olz41qqY6eSY0+BwXMKgZzBmZhKJ3qPUVCPUasyaHAoym9PgcLjg8QxK+kVctPWosfHyRNWSHPEAoVU1tbe7kZGRjPXrzRgYuAGHoxtW69SqprIyy0TSqrW1JyYHMOt0WpSXV8DjGYTdboXVap2UwMnEpk0Vc0rgeAVaJ+eSgCIiIiIi5WKCiIiEhwsDwKpV6bDbrVi3foPw+yltCLZnwAObw4ZuVzf8Pj/UWjUyTBkomBSP6D1yOLpRVLRcKI7gPV0v8Z5Obj0Ktoy5XJ9MSa5YLBno6xuE3e5CSckKWeMJpaqpqekyysvH5xYlJSVMW9UUFOsDmI1Gg+TnIZV3onUy/bYd6ObaCkmRr6+vD3Wn69Da2jaxC1tubg42lm7kLmxERERRhgkiIhIeLgwAWVkpsFqtQscobQi2z+vDyQ9PwHN9EMnZaVixYRXi1GqM+f3w9PTj6AdHYVxkwJbNW4Tvkcv1CYqLs4TiEb2nOp0WW7Z8FtXVh6FWA0VFy1FcnDWl9ej9963w+wGtVosVK8R+mRONJ5SByn4/0Nc3OFEhNNt6DmCef+Otk+mzPrNQWiEpcg0PD+PAgYMYGBxE4Zp1eGTnZmh1Ovi8XrS12vG737+CJKMBT+zaifh4/UKHS0RERPOACSIign9MfLiwRqOGf8wveb3ShmD7vD5UvVeFpOxU5GROTeSo1RokZy5FcuZS9HddRdXhKvhHR4XukX9sLLR76pd+T71eHz744DiKi1fc9su9VqtBbm46cnPHKz/OnnVibCwgazxAaAOVT5w4JrSe5s/Ap62Tt1YOTSeU1kOKPMPDw3hh3z7cXXIPLIVrprymi49HXuEa5BWugaOpAS+8sA979+6FXs8kERERUaRjgoiIoI4brzjRaKUnNEZHx1vDpFLaEOyTH55AUnYqkjOXzrgu+HqPvVPoHqnj4kK7pwIDmEUqP8bGxlBT40BFRZFs8QChDVQO1wBmut1c2kvnu9VtofT19eH06Vo4na0YHfVBo9HCbM5FaWlZzLZQHThw8I7JoVsFXz9w8CCe3r07HKERERGRjJggIqKJ4cJSByoDQEeHW/KwYKUNwfYMeOC5Pnhb5dB0kjOX4qqzGw6HC4VFyyQdYzItRkeHG+Zcee6paOXHypUm2O1dGBi4IamdSzSeyUQHKss9gJmmF672UiUaHh7Gq6/+HkND/bjnnruwdWsZdDoNvN5RWK1XcPDgizAYluDxx5+IqRaqvr4+DAwOzpocCrIUrkFjwzm43e6YTagRERFFCyaIiGhiuLBIgkhkWHC4h2DPxuawITlb+rUCwNKcDFjtlyUniCyWDLz/vlUoQST3Pc3Ly4TD0T3rIOhQ4rkT0YHKcgxgppn5/SG2lwq2HirN8PAw9u//V5SV3YWSkuIpr8XHa1FSchdKSu7ChQvt2L//X/Hss1+PmRaqutN1KFyzTuiYwjXrcKruFB568CGZoiIiIqJwiFvoAIho4Rk/HS7c5uyVtL7t02HBUqt7XK7ukAYku1zdQsdI1e3qhjE9WegYoykZfn9A8j3q6/PA74fk9aIDmEO5p9nZqbh82S1LPBSZ1OrxVj4RobQeKs2rr/7+0+RQ9ozrSkqyce+9d+G1114JU2QLr7W1DTm5eULH5OTmobW1TZ6AiIiIKGyYICIiAOPDhW223lkTGm3OXthsvSgr2yz53OEYgi3C7/MjTvAX3Di1GhqNRugebd++Q9L64ABmoXsaYuWH1+uHU4Z4KDIF20tFhNp6qBR9fX0YGuqfNTkUVFKSjcHBa3C7xe5TpPL5vNDqdELHaHU6+HxemSIiIiKicGGLGREBALRThgtfmnVY8ORt6D0DHjgcNrhc3fCPjQ+vNpkykJdXAIPREJYh2CLU2vGt7NVq6T8Cx/x+aLQa4Xt0p/UBAD7f6JwGMAcrP7Ra6dcwOurHokWL0NExJDwQemDyM56YDzT+jFllNC4S71GwvdRslt6uONfWw4V2+nQt7rnnLqFjNmy4C3V1NXjwwUdkiko5tNrxrex18fGSj/F5vdBqxZJKREREpDxMEBHRBK1Oi/vKKzA4eVjwRMJnfFjw5LYyn9eHmpoTGBkZgsWSjuLigolkQ2enGzU1x6DXG5CWli7rEGxRGaYMeHr6Z93BbDKPqx8Zpgzhe3Sn9ZetV2CI189pAHOw8kPkF/vgPV2/foPkgdBeic+4rGxzzO4wFsn3KOnT9lKns3fW3fCA6Gg9dDpbsXVrmdAxhYXLUFNTI1NEypKbm4O2VjvyJA6pBoC2Vjtyc3PkC4qIiIjCggkiIrqNwWiYdTi0z+tDdXXVp1vX50x5TaNVI8c8vqV9m7MXjY0uuN0q2YZgi8q35OPYiWNCCaL+jqtYe9/NeKTco8kmr6/VHMfDD2+VfOydzLXyQ8pAaO/EM06/bbc0rVYDszkdZnM6nM5eVFdXYdu2Suh0ykqAyC0a7lFZ2RYcOVIFADMmiYKth9u3V4YrNFmMjvqg04n980en02B01CdTRMpSek8pXn7lgFCCqKnhHJ568gkZoyIiIqJwYIKIKMLM1s4VLjU1Jz5NDs2c9Am+Xl9/GW3OXklJItEh2KKMSUYYFxnQ33VVUpKov+sqjIsSw3p/ZxOOyo/xZ5w+6/mDr9fWnkR5eYXk80eDaLhHuintpWKth5FIo9HC6x1FfLz06/B6R6HRRPZ1S5WamookgwGOpgZJW907mhqQZDRwi3siIqIowAQRUYSQ2s5VVrZ5ynwgOXgGPBgZGbqtcmg6OeY02GwuNDa5Jv57OjcHPMtbpbB50xYcfm+8amKmJFF/11V42vtQuUN5VRNyVn4MfPqMb62KmY7ZnAaHwwWPZzCi249ERNM90um0KC+vkNx6GMnM5lxYrVdQUiJ9DlFT0xWYzbkyRqUsu3btxL59+wBgxiSRo6kBjRdO46tf3Ruu0IiIiEhGTBARRQCRdq5gG4tWxjYWh8MGi0V6axMA5OWZcLUvgI6O68JDsOWg1Wmx4/5KnPzwBNram5CclQajKRlx6vEB1h5XP/o7emFcZEDlDvnjCYWclR+hPONVq9Jht1tnbV2LFtF4j6S0Hka6e+65F6+++pJQgujMmY+xc+fTMkalLHq9Hnv37sWBgwfR2HAWhWvWIyc3b3y3Mq8Xba12NDWcRZLRiK9+dS/i4/ULHTIRERHNAyaIiCKAaDtXbe1J3CdjG4vL1Y3i4gKhY7KyUmC1WvHQw49KHvAsN61Oi4qKrRj0DMJqt6LzTDP8Pj/UWjUyTJlYe99WRbWV3YlclR9zecaxgvcoMqWmpiIxMRkXLrRL2ur+woV2GAxLYq6FSq/X4+ndu+F2u3Gq7hTePngaPt/4bmUrc3Pw1JNPxtw9ISIiinZMEFHI+t1unHj3+EKHEfWGh4fR9nEz4m5kotPWKekYm60LI9dGoJfpr7ofNzlRoxqBSqWSfEwgEMDHTVdwIu7m94wxzgjEjf//13sH8VHv2fkOVUhynBH4dGfnYRnj8bj78cYbR2U5N5AIABgdBS5fHsDly6dDOsvFi63w+YaFn/GlS1cwOirXtSkL71F4DQ4Ozdu5Hn/8Sfzbv/0rAMyYJLpwoR21tR9jz56vz9t7R5qUlBQ89OBDCx0GERERhQETRBSy5aZU/NEf3bvQYUS9s2fPoGJTqtBuVa2tPbh2LU62VpF3EoawY0cBtFrpP0J8vlEkL0qY8+5dFB4aTWjPWKvVh/yMByYPYJ+oghofwH6nKijR9fNtIe5RLHvhhdfn7Vx6vR7PPvt1vPbaK6irex/33HMXCguXQafTwOsdRVPTFZw+/TGMxiXYs+frbKEiIiKimMAEEZHCKbGNxWTKQGenWyhp1dHhhsmUIVtMNL/C+Yy9AgPYtVqt8Hq58HMQ2fR6Pb74xS/D7Xajrq4GNTU1GB31QaPRwmxeiV27nmYLFREREcUUJogo5ix01YEov98PjUYtdIxGo4bf75cpIsBiyUdt7XGhX4ybm3tQVlYhW0w0v8L1jL0TA9jTb9sNTKvVwGxOh9mcDuenA9i3bPksPvjguOT127ZVQifTwPa53qNI+1kUrVJSUvDgg48sdBhEREREC44JIooZSqk6EKVWj8co0sYyOjr+y6ZckpKMiI9PhNPZO+P26kFOZy/0egN/6Y0g4XrG4wPY02d9j+Dr1dWHUVy8QvL62tqTKJdpYHuo9yg+Ph7Hjx+NuJ9FRERERBTd4hY6AKJwCFYpZGcbUFm5GmZzOrRaDVQq1UTVQWXlamRlJaK6ugper2+hQ54QbGMREY42lrKyLbDZeuB09s64zunshc3Wg7KyzbLGQ/NP7mc8MODByMiQpOQKAKSmGqBWQ/J6szkNw8OD8HgGheISIXqP1q3bELE/i4iIiIgourGCiGKCaJWCnFUHopTazqXTabFtWyVqa0/CbnfBYklHVlbKRCVER4cbDkcPEhIM2L69MuoqIWKhPUjuZ+xw2GCxSP++dji6UVS0XOg9Vq1Kh91ulW1gu+g9+vDDyP1ZRERERETRjQkiino3qxTMsy/G+C9mDocLHs+gIn7RV3I7l06nRXl5BTyeQdjtVlit1knJkkxs2lShiHs4nyK1VTFUcj5j0QHsLtcnKC7OEnoPuQe2A9LvUaT/LCIiIiKi6MYE0ST/8i+/wssvvwwA2LNnD55++st3XHfu3Fm88soB2GxWDA8Pw2QyYcuW+/ClL30JCQkJ4QyZJBCtUgDkrzoQVVa2BUeOVAGYub0m2MayfXtluEIDABiNBsXcKzmJDlSWc0ByuMnxjEUHsPv9Y4ob2D7ZbPcoGn4WEREREVH04gyiT126dAmvvPIKVCrVjOsOHHgFf/VXf4UzZ07jrrtycO+992JoaAi//e1L+Na3/hSffPJJmCImqVyubqxYIbZVcVZWClyubpkiEhdsY+noGMKhQxfR2toDn28UgUAAPt8oWlt7cOjQRXR0DEVlO5dSiLQq5ueno7b2ZJgii0zBAezS18cJrQfkH9guIhp+FhERERFR9GIFEYDh4WE899yPkJKSgvz8fJw8eedf6pqbHXj++ecRFxeH//E/fojS0tKJ4//rf/0bnD9/Hj/96T/jv/7Xvw1n+DQLJW4TH4pYbOdSErYHzb/gAHap87VMpsXo6HAjN1d6FU44BrZLFS0/i4iIiIgoOrGCCMCvf/1rXL58GX/xF9/GokWJ06777W9/i0AggAceeGAiOQQAer0ef/mX30FcXBw++OADtLe3hyNskki0SgFQVtXBrYJtLA8//Cg+97nH8PDDj2L9+vVMQshsLu1BdGcWSz4cjh6B9RlobLws9B7NzT3Iy5M+50hO0faziIiIiIiiS8wniC5c+Aivv/4aduzYgY0bN067zufzoa6uDgCwbdv22143mUy4++67AQAnT56QJ1gKiVK3iafIwvag+Td5ALsUfX2D8PsheX04B7ZLwZ9FRERERKRkMZ0gunHjBn784x9jyZIl+OY3/3TGtZ2dnRgeHgYA5OXl3XFN8OvNzc3zGyjNiWiVAqCsqoNoNDDgwdmzZ/DOO2/hzTdfxzvvvIWzZ8/A4xlc6NCmxfYgeZSVbYHN1jNr0ufmAPYdQuvLyjbPZ7hzwp9FRERERKRkMT2D6Pnnn0d3dzf+7u/+G4xG44xru7vHqwAMBgMWLVp0xzVpaWlT1pIyKHmb+FgTyVvEB9uDtFrpPzbZHjS74AD22tqTsNtdsFjSkZWVMvF90dHhhsPRg4QEw8QAdtH1SsGfRURERESkZDGbIDpz5gzefvstVFRsxebNs/+F+caN6wDG5w1NJ7jF/fXr14Xj+dnPfoaf/exns64rKMgXPjcpf5v4WBDpW8SLDlQG2B4klegA9kge2M6fRURERESkVDGZIBoaGsQ//dNPkJycjD/7sz9b6HAAAN/61rfwrW99a9Z1X/vaV8MQTfQJpUqB5tfkLeIHBm7A4eiGy/UJ/P4xqNVxMJkWw2LJmPilubb2JMrLKxY26EkslnzU1h4XShA1N/egrKxCvqCiTHAAu1zrlYA/i4iIiIhIqWIyQfTzn/8Cvb29+MEPfoDFixdLOiYhYbytLDiH6E5u3LgBANO2oNHCiuSqg0gX3CJ+2bIVOH68CSMjPlgsGSguzprSYlZb64Ber8W9965S3BbxbA+i+cKfRURERESkRDGZIDp58gTUajXeeOMNvPHGG1Ne6+joAAC8++67OHfuHFJSUvD97/8AGRkmAMDg4CCuX79+xyRQb+/40FS2lChbJFYdRDqHw4acnKU4cuQSCgqW3VaFM7XFrAdHjjQiN9cEu92qqGfF9iCaT/xZRERERERKEpMJImB8R6L6+vppX+/u7kZ3dzdMpvHE0IoVWdDr9RgeHobdbsdnPvOZ246x2+0AAItllSwxE0Uql6sbHk/cHZNDtwq+/vHHV3H9+lhI79fV1Y36+vMYHBxEIBCASqWCwWBAScm6iWRvKNgepCwDAx44HDa4XN2TKnAykJdXwAocIiIiIiJBMZkgeu2116d97Uc/+hEOH67Cnj178PTTX574ularRWlpKd5//30cOVJ9W4LI5XLh0qVLAIDNm7fIEjdRpPL5fPB61ZLn95jN6XA4uuHziW0RPzg4iOrqw1CrgaKi5cjKskxJ3pw58yH8fuD++yuRmJgYyqWwPUgBInk3PCIiIiIipYrJBFGovvjFL+GDDz7AoUOHcN999+Gee0oBjM8l+slPfoyxsTHcd999yM7OXuBIaSGxquF2gcAYLJblQsesWpWB+voOyesHBwfx7rvvYO3au7By5dQqIa1Wg9zcdOTmpqOlxYU//OFtPPjgwzAYQn8egUDgTl8N+XwkTaTvhkdEREREpFRMEAmwWCz4xje+gV/+8pf4/ve/j+LiYiQnJ6Oh4SLc7j5kZWXhz//8LxY6TFogrGqYiQorVqQIHZGVlYL6+k7J66urD98xOXSr4OvV1Yfx2GOPC8UE8DkvtMm74c1EqbvhEREREREpFRNEgnbtegJmsxmvvPIKrFYrhoeHkZ6eji9+8Uv40pe+xB3MYhSrGmamUsVBo1ELHaPRqKFSxUla29XVDbUasyaHglauNKGp6Qq6u11CM4n4nBdWcDe8W+/9dMzmNMXthkdEREREpFRMEN3ie9/7Hr73ve/NuGbduvVYt259mCKiSMCqhplptRqMjvqh1Ur/kSOyvr7+PIqKxFrYCguX48KFc8jIeEjyMXzOC8vhsMFikTbHKmjVqnTF7YZHRERERKRE0v48T0TTulnVMHPSIMhsTsPw8CA8nkGZI1MOkykDnZ1uoWM6OtwwmTIkrR0c9CArS6yFLTs7BYODHsnr+ZwXnsvVHVKrosvVLVNERERERETRgxVERHPEqobZWSz5qK09LnkXMwBobu5BWVmFpLVjY4GQWtjGxqQPlQ73c+aw89v5/f6QnrPfL7YbHhERERFRLGKCiGiOXK5uFBcXCB2TlZUCq9UqU0TKk5RkRHx8IpzOXkkVOE5nL/R6g+REiEqlCqmFTaVSSV4frufMIdjTU6vVIT1ntVosqUREREREFIvYYkY0R6xqkKasbAtsth44nb0zrnM6e2Gz9aCsbLPQ+Ts6xFrY2tvF1ofjOQeHYGdnG1BZuRpmczq0Wg1UKtXEEOzKytXIykpEdXUVvF6fUDyRTu5WRSIiIiKiWMYEEdEcBasaRMRiVYNOp8W2bZXo6BjCoUMX0draA59vFIFAAD7fKFpbe3Do0EV0dAxh+/ZKoeoYrVaHxsbLQvE0NV2GVquTvD4cz1lkCHZ+fjpqa08KxRPpLJZ8OBw9Qsc0N/cgL0+s8ouIiIiIKBaxxYxojoJVDSLzdWK1qkGn06K8vAIezyDsdiusVuuk+TqZ2LSpIqT5OitWrEB7uxMtLS5JW923tLjg840iO1vadumA/M+ZW7jP7marYo+k5+B09gi1KhIRERERxTImiIjmSO4BzNHIaDTM64BuiyUfLtcVnD//MQDMmCRqaXHh/PmPsWiRXqiyRO7nzGHn0qxffw/effcdjI0FJD3nBx98JIzRERERERFFLraYEc3R5AHMUogOYKbZJSUZkZhoxN13r8DFi514883zaGmZ2sLW0tKDN988j4sXO7F69QoYDElCz0Du58wt3KU5e/Y0iouzcfmyG4cO1U/TqliPy5fdKCnJxrlzpxc6ZCIiIiKiiMAKIqJ5UFa2BUeOVAHAjPNjggOYt2+vDFdoMSP4DIqLs5GQoMGFCx346KM2BAKASgUYDHrcc08ObtwYDfkZyPmcOex8dsE2vLw8M/LyMjAwcAMORzes1ivw+8egVsfBZFqMsjILkpISAABO58WYasMjIiIiIgoVE0RE8yA4gLm29iTsdhcslnRkZaVMbE/e0eGGw9GDhASD8ABmGk8MOBw2uFzdk2YWZSAvr2DiF//Jz+DGjUFYLBm3PYMLFy7P6RnI+ZznuoW7lHsU6W5tw0tKSsD69TPPbIrFNjwiIiIiolAwQUQ0T+QawBzLvF4fampOYGRkCBZLOoqLCyaSMZ2dbtTUHINeb0BZ2WZotdqwPAO53iPUIdhLl6bh+PGjku9RJHO5ulFcLLYjWVZWCqxWq0wRERERERFFDyaIiObZfA9gjlVerw/V1VWfbvs+tUpEq9XAbE6H2ZwOp7MX1dVV2LatEjrdeAIkHM9AjkHbk4dgB9unXK5PprRPWSwZE+1TdrsLfr8KRUUm4XsUidiGR0REREQkHyaIiEiRampOfJocmn7WD3BzFlBt7UmUl1eEITJ5BIdg2+3d6Oq6hpERHyyWDBQXZ02pCKqtdUCv1yIzcwlGRkZRXLwiZu7RXNvwiIiIiIhoetzFjIgUJziMeLbER5DZnIbh4UF4PIMyRyav9evvQX19O1asSEFlZTHM5nRotRqoVKqJiqDKymIsX56Cjz5qR3y8NqbuUbANT0RHhxsmU4ZMERERERERRQ9WEBFFmFgcRixFNAwjPnv2NNavz5l1DtHKlSZ0dPQhO3up0Pkj/R7d2oYnRXNzD8rKKuQLioiIiIgoSjBBRBQhRAc2R7JYHEZ8s2pq5l25gq5f9yIrK0XoPSL9HgXb8JzOXkmVU05nL/R6Q9QkTomIiIiI5MQEEVEEmMvA5kgUi8OIRaum/P6xqLtHUqrjysq24MiRKgCYMUnkdPbCZuvB9u2VYYmdiIiIiCjSMUFEFAFibWBzLA4jFq2aUqvjouYeiVTH6XRabNtWidrak7DbXbBY0pGVlTKxvqPDDYejBwkJBmzfXhnx1XREREREROHCBBGRwom2HpnNaXA4XPB4BiO2tSY4jFhk1kykDyP2+UaFKoJSUgxob+/DypUmyce0t/chJSU1lPBkE2p1XHl5BTyeQdjtVlit1kkVR5nYtKkiYr/3iYiIiIgWChNERAoXiwObI2EY8XwPCw8ExgQrggKw27uEEkR2exeWLBH7XpLbXKrjjEaDor7HY2GAPBERERFFLyaIiBQuFgc2K3kYsXzDwgNCVVNu9xAWLdLB6eyRdIzT2YOEBB3cbrFt4uUULdVxsTRAnoiIiIiiV9xCB0BEM4vFgc3A+DBim60HTmfvjOuCw4jLyjbLHlOwHSo724DKytUwm9Oh1WqgUqkm2qEqK1cjKysR1dVV8Hp9ks+tUsXB4eiWvN7vH0NZmQU2Wxeczp4Z1zqdPbDZulBWZlHU98VcquOUQs7vCSIiIiKicGKCiEjhggObRSh1GLGI4DDijo4hHDp0Ea2tPfD5RhEIBODzjaK1tQeHDl1ER8dQ2IYRi7RD5eeno7b2pORza7Va6HSaWZM9NwUQF6fC1q1F6Ojow6FD9dPco3p0dPRh27YixMWpFPV94XJ1Y8WKFKFjsrJS4HJJT6TJTc7vCSIiIiKicGKLGZHCxeLA5iAlDSOWux3KZMqA0TgKm63r0+Onf95OZw/8/gA6OtzIzU1HeXkhBgZuwOHohtV6BX7/GNTqOJhMi1FWZkFSUgIAoKXFpagh1ZFeHRctLXJERERERAATRESKFwkDm+WmhGHEcg8LDz7nrVuLcOpUM+z2blgsGXfYwr0bCQla3HdfAWpqHMjNHY8pKSkB69fPnKhQ2pDqYHWc9MHcyqqOi8UB8kREREQUvZggIlI4JQ9sjiVyDwsPPucrV/olVQS1tHTD7x+L6CHVkV4dF4sD5ImIiIgoejFBRBQBysq24MiRKgCYMUkUHNi8fXtluEKLGeFoh7r1OU9XEeR09uL8+XY8+OAanDhh/3T9zC1pNlsXtm4tQlVVo8AVyCvSq+MivUWOiIiIiGgyJoiIIkBwYHNt7UnY7S5YLOl3aD3qQUKCIWwDm2PNXNuhBgY8cDhscLm6J81RykBeXsFEtZfIc05IWIT4eK3klrRt24qgUilrSHWkV8dFeoscEREREdFkTBARRQglDWyORaG2Q6WlpeP48aMYGRmCxZKO4uKCiQROZ6cbNTXHoNcbUFa2+dOdzKQ957Nnz0zEI3VIdWtrj2Las4IiuTou0lvkiIiIiIgmY4KIKMIoYWBzuEmpvpFbKO1QDkcPfL4A7r4747adrrRaDczmdJjN6XA6e1FdXYVt2yqh041XfwUCgTuc8ebXbo1HypBqJbVnBUVydVykt8gREREREU3GBBERKZbX60NNzQnJ1TdyCqUdanjYh+LiFbOuD75eW3sS9967WfI1R3J71mSRWh0X6S1yRERERESTMUFERIrk9fpQXV2FgoJ04eobuYi0QzU2uhAfr5WUOAiez2brxuHDh1BUZJJ0zVu2fBYnThyXFI/S2rPuJBKr4yK5RY6IiIiIaDImiIhigBJatETV1Jz4NDkkvfqmvLxC1phE2qHS09OxdKnoOwSErvncuTMR254VCeZ7sDifAREREREpGRNERFFMSS1aIgYGPBgZGbqtimY6ZnMaHA4XPJ5B2RNeUtuh3nnnLXzmMwWSzzswcAMqFbBypUnS+uA1j4yMRGR7lpKJfm4itUWOiIiIiGgyJoiIopQSW7SkcjhssFikD/4FgFWr0mG3W8PWojRbO5Tf74dGI307c4ejG3l5YrtbTb7mSGzPUqK5fG74DIiIiIgoksUtdABEJA+RFq38/HTU1p4MU2Szc7m6sWJFitAxWVkpcLm6ZYpInFo9XnEilcv1ScRfczSI5M8NEREREdFcMEFEFIVutmhJH5A8PDwIj2dQ5sikEa2+AQCNRg2/X3pCRm4mUwY6O92S1/v9YxF/zZEu0j83RERERERzwRYzEnL58mW89dZruHDhPPT6ADSaq4ofdhyLIqFFaybB6hutVvqPqNHR8ZkvSmGx5KO29jjMZmnPQa2Oi/hrjnSR/rkhIiIiIpoLVhCRJIODg/i7v/s+nnvub7Fy5Siee+5xlJdbsGNHAVJSxlBTcwzvv38MPp9voUMlRH6Llmj1DQB0dLhhMonN8JFTUpIR8fGJcDp7Ja1ftCge7e19Qu+htGuOdJH+uSEiIiIimgtWENGsBgcH8Vd/9Z/x+OOrsX371omvq1QqWYYdR+KW7EoT6S1aotU3ANDc3IOysgr5ggpBWdkWHDlSBQAzti05nb0YGhpFc3Ov5F3MgPBecyx8LiP9c0NERERENBdMENGsfvzjf/g0OVQ047rgL8C1tSdRXl4h/D6RuiW7EkV6i9bk6hsp82Cczl7o9QbFJSp0Oi22batEbe1J2O0uWCzpyMpKmfi+7uhww+HoQUKCAZWVD+LDD0/A6eyRlBhzOnvCcs2x9LmM9M8NEREREdFcMEFEM7p8+TL6+11TKodmYjanweFwweMZFPrFNZK3ZFeiYIuWSAWO0tqVRKpvbLYebN9eGa7QhOh0WpSXV8DjGYTdboXVap1UgZOJTZsqJj4r69ffg3fffQdjY4EZK4laWlw4f/5jPPjgI7LGHmufy2j43BARERERhYoJIprRW2+9hkcfXSN0TChDW0W2lgZCr1KKBlJafcLdoiVH+5FI9c327ZWKr14xGg2zfibOnj2N4uJsXL7sRnOzCxZLxh2uWxIBNgAATh9JREFUuRsJCVqUlGTj3LnTsn4OYu1zGS2tjUREREREoWCCiGZ04cJ5fPnLjwsdk5WVAqvVKnn9za2lzbMvRuhVSpFOpNUnXC1acrcfiVTfRLrg5yAvz4y8vAwMDNyAw9ENq/UK/P4xqNVxMJkWo6zMgqSkBACA03lRts9BLH4uo6W1kYiIiIgoFEwQ0YxGRkaQkKATOkZ0aCu3lp5dKK0+crdohbP9KBAI3OmrIZ1LqW79HCQlJWD9+pmTM3J+DmL1cxktrY1ERERERKKYIKIZxcfH48YNLxYtipd8jOjQVperG8XFBUJxiVYpRbpQW33kbNEKR/tRLA1IVtrnQGnxhEu0tTYSEREREUnFBBHNqKRkLWpqmrF9+92SjxEd2sqtpWc211YfOVq0wtF+FGsDkpX2OVBaPOEUS62NRERERERBTBDRjB599PN47rm/FUoQiQ5t5dbSM5uPVh8pA5LDHdNsYm1AstI+B0qLZyGIfm7kGNZORERERBQucQsdACnb8uXLkZxsQnV1o6T1oQxtDW4tLSKWtpZ2ubqxYkWK0DFZWSlwubplikj+mG5WKM0+KBgYTxINDw/C4xkUiklJlPY5UFo8Sub1+nD8+FHU1h5HSsoYduwowKOPFmPHjgKkpIyhpuYY3n//GHw+30KHSkREREQ0LSaIaFbf+c5f47XXLs6aJAoObS0r2yx0foslHw5Hj9Axzc09yMsTm48SqZTY6iN3THOpUIpUSvscKC0epQq2QmZnG1BZuRpmczq0Wg1UKtVEK2Rl5WpkZSWiuroKXi+TRERERESkTEwQ0awMBgP+1//6J5w82YO/+Iv/wHvvXcL16yMIBALw+UbR2tqDQ4cuoqNjKKShrZO3lpYi1raWDrb6iJC71UfumJRYNSU3pX0OlBaPUom0Qubnp6O29mSYIiMiIiIiEsMEEUliMBjwt3/7Q/zVX/13tLZq8N3vvor333fg8GErrl1TY9OmCpSXV4S8o09Z2RbYbD2z/jIaapVSJFNiq4/cMSmxaioclPY5UFo8ShOLrZBEREREFL04pJqELFu2DN/4xrcAAK+//n/x8MP3zst5ubX09CyWfNTWHofZLL3lSnRQuNJiitUByeH8HEgZqMzP5czCMaydiIiIiChcmCAixeDW0nc2udVHSqVCOFp95I4pWKEkkoCKlgHJcn8OvF4fampOYGRkCBZLOoqLCyYSPp2dbtTUHINeb0BZ2WZotVp+LmfgcnWjuFhs5lJWVgqs1sidlUVERERE0YsJIlKc+d6SPRqUlW3BkSNVADBjQibY6rN9e2VEx6TEqqlwk+NzEByoPD4zxzzlteBAZbM5HU5nL6qrq7BtWyV0Oq1s8US6WG2FJCIiIqLoxAQR0TyT0rojSomtPnOJabZ7pMSqqWggMlAZAGprT6K8vCIMkUWmWG2FJCIiIqLoxAQR0TwRbd0RpcRWH9GYRO6REqumItnNgcrm2Rdj/J47HC54PINMvE0jllshiYiIiCj6MEFENA/m0rojSomtPlJiCuUeKa1qKpJxoPL8YyskEREREUUTJoiI5gFbd2YX6j1SWtVUpOJA5fnHVkgiIiIiiiZMEBHNEVt3ZjfXe6TEqqlIw4HK8mArJBERERFFCyaIiOaIrTuzm+s96urqRn39eQwODiIQCEClUsFgMKCkZB0yMkwyRR1dOFBZHkocIE9EREREFAomiIjmiK07swv1HjU1NeH111+FWg0UFS1HVpZlyi/eZ858CL8fuP/+SiQmJsoUfXTgQGX5KHGAPBERERGRKCaIiOaIrTuzC+UejY0FcP36daxbl4OVK6dWCWm1GuTmpiM3Nx0tLS784Q9v48EHH4bBoNxfwgcGPHA4bHC5uiclDzKQl1cQluQBByrLj62QRERERBTJmCAimiO27swulHtUU+PAunV33ZYculXw9erqw3jsscfnFKccvF4fampOYGRkCBZLOoqLCyaqoDo73aipOQa93oCyss2yth9xoDIREREREc0kbqEDIIp0wdYdEbHWuiN6jwYGbuDGDS9WrpR2j1auNEGtBrq7XaGGKAuv14fq6ipkZxtQWbkaZnM6tFoNVCoVtFoNzOZ0VFauRlZWIqqrq+D1+mSNp6xsC2y2HjidvTOuCw5ULivbLGs8RERERESkHKwgIpojtu7MTvQeORzdyMvLFHqPwsLluHDhHDIyHgolRFnU1JxAQUH6rBU7wddra0+ivLxCtnjmMlB5oVvkiIiIiIhIXkwQEc0RW3dmJ3qPLl92o7g4S+g9srNT8NFHbSFGOP8GBjwYGRmC2WyWtN5sToPD4YLHMyjr94boQGWltMgREREREZG8mCAimgdlZVtw5EgVAMyYAAm27mzfXhmu0BRD5B6NjIyGNPg7EAgtNjmqYxwOGywW6VVlALBqVTrsdmtYBh1LGagcbJEbr4KamugKtsiZzelwOntRXV2FbdsqodMxSUREREREFImYICKaB3Np3YkVIvcoLk4V0uBvlUosJjmrY1yubhQXFwgdk5WVAqvVKnSMnMZb5NIktsgFZG+RIyIiIiIi+TBBRDRPRFt3YpHUe3To0B/Q0eFGbq70Cpz2djcMBqPk9XJXx/j9/pCqoPx+v9AxchkY8GB4WKRFLh12+0XZW+SIiIiIiEgeTBARzTMprTuxLnDHXrCbXysuXouzZ2uEEkRNTZexYcMmyevlHiCtVqtDqoJSq8WSSnIZb5GbfV7UZKtWpYWtRY6IiIiIiOYXE0REFDYiLV1+P9DS4sLKlaZZz9vS4oLfD2RkzL4WCM8AaZMpA52dbqHd7To63DCZMiSvl1N3dxeKiwuFjsnOToXV2iRTREREREREJCcmiIhigOgQZjmGNou2dJWVbcHx40cAYMYkUUuLC+fOteH++x+QHEs4BkhbLPmorT0ulCBqbu5BWVmFUFxyGRkZCalFbmRkRKaIiIiIiIhITkwQEUUx0SHMcg5tFm3pqqk5gdWrs3DxYicaG6+gqGg5srNvDrVub3ejsfEyxsbGsGZNFhoaPpLcAhaOAdJJSUbExyfC6eyd9ZqB8d3b9HqDYub3BAKBkFrkAoExGaMiIiIiIiK5MEFEFKVEK3a2bPksPvjguCxDm0Np6bp0qRPLly9BYeEydHdfw4ULHfjoozYEAoBKBRgMetxzTw4yMpYAANrbpQ9IDtcA6bKyLThypGrimqbjdPbCZuvB9u2VQueXk0qlCqlFTqWKkzEqIiIiIiKSCxNERFFKtGKnuvowiotXyDK0OZSWrsLC5XA4urF+vRkZGUsmEkHTEWkBC9cAaZ1Oi23bKlFbexJ2uwsWSzqysm5WQXV0uOFw9CAhwYDt2yuFq7LkpNXqYLd3CyWIHI5uaLW6kN9TjtZGIiIiIiKShgkioigUasVOaqq0X8JFhzaH0tKVnZ0Cm+2K5PUiLWDhHCCt02lRXl4Bj2cQdrsVVqt1UvIjE5s2VSgy+bFs2TJcvXoFTmePpPvkdPZMHCdKztZGIiIiIiKShgkioig014odKUQqdkJv6ZI+z0akBWwhBkgbjYaI2v7dYslHb28XbLYuAJjxXjmdPZ+uUyMvTywRKNoKKdLaSERERERE0jFBRBSFlFaxE3pLl/R5NiItYJEwQHqh262SkoxISDAgMzMBHR19sNu7YbFk3KFFrhsJCVqsXGlCV9ewcGyirZAirY1ERERERCQdE0REUUhpFTspKalob++bcbv6W7W39yElRXqyQbQFTKkDpJXUbhW8R/n56UhNNcDh6IbVegV+/xjU6jiYTItRVmZBX99gSPcolFZIkdZGIiIiIiKSjgkioiiktIodIAC7vUsoQWS3d2HJkkTJ60VbwCYPkL54sRNAAF7v6MQuaTqdBoAKixcvCdsAaaW1W91pyHZxcdaUCqKampaQh2yH0gop0tpIRERERETSMUFEFIVCGcLc3u6GybRY8nqRih23241Fi3RCA48TEnTo6RmQdP5QW8CGhobQ29sLnU6Du+9ecVv71KVLl3H1ai+GhoaQnJwsdO5QKLHdSs4h26G0Qoq0NhIRERERkXRMEBFFoVCGMDc1XUZ5ufRf1kUqdvx+P8rK8nH0aCMAaQOPt24twptvnp91TlCoLWDXrvXjvfcOYd26nNsqm7RaDXJz05Gbm46WFhcOHz6E++9/AEuWJAu9hwilt1vJMWQ79FZIaa2NREREREQknfR+EiKKGJOHMEvhdPbC7wf6+gYlrxep2FGr1YiLU2Hr1iJ0dPTh0KF6tLb2wOcbRSAQgM83itbWHhw6VI+Ojj5s21aEuDgVFi1ahI6OIRw6dHGa9RfR0TEUUnvTkSOH75gcutXKlSasW5eDo0cPC51f1FzarSJVsBVShFhrIxERERERScUKIqIoFcoQ5hMnjgmtl2pyy1t5eSEGBm5MO/A4KSkBANDa2gOTKQPr12+Y9/amlpZW6HQayTORVq40obHxCpxOp+QKH1Gx2G4VSiuk6DByIiIiIiKShgkioih1pwHDt29R3jNlwLDoeqlubXlLSkrA+vUzJ1omt7CJtjfNtkX8xYsXsGbNcsnnA4CiouWor/9ItgRRLLZb3fp9EUwculyfTEkcWiwZE4lD0WHkREREREQkDRNERFFMdMCwXAOJJ7e8zTaAGQh96LTULeJ9Ph+yslKEzp2dnYLz59uEjhER+s5zkdtuFfy+sNu70dV1DSMjPlgsGVN2SuvsdKO21gG9XovMzCUhfV8QEREREdHsmCAiigGiFThyDCQOpeVNhMgW8S5XIKRqnUAgIHSMiFhtt1q//h68++47WLv2rjsOCw8+t5YWF86f/xgPPvjwAkVKRERERBTdOKSaiMIi2PIm19BpkS3iVSpVSMORVSqV0DEiLJZ8OBw9Qsc0N/cgL09sbpHSnD17GuvXSxsWvn59Ds6dOxOmyIiIiIiIYgsriIgobORqYRPdIl6rVaOjw43cXOnVOu3tbuGklYibbXg9kqqInM6eiG+3En1uZnM6HI6L8HgGI/q6iYiIiIiUiAkiIgq7+W5hE90ifvXqFbh06bJQgqix8TKKiz8TQnTSBdutxsYCM1bU3Gy3ekTWeOQm+twAYNWqdNjt1nlvgSQiIiIiinVsMSOiiOdydWPFCulDp1euNMHr9aGlxSVpfUuLCz7fqGw7mAWdPXsaxcXZuHzZjUOH6qdpw6vH5ctulJRk49y507LGIzfR5wYAWVkpcLm6ZYqIiIiIiCh2sYKIiCJeKFvEb91ahOrqSwAwa7XOuXNt2LHjgTnFOJtgu1Venhl5eRkTW75brVembPleVmaZ2PLd6YzsdqtQnptGo4bfLzY/ioiIiIiIZscEEREp3sCABw6HDS5X96SZRRnIyyuA0WgIaYt4o1EPvV6PCxfa0dh4GUVFK5CdnTKxvXp7uxuNjZ3w+fzYseMBJCcny3oNt7ZbJSUlYP36mSuWIr3dKpTnNjo6fu9Imtm+74iIiIiIgpggIiLF8np9qKk5gZGRIVgs6SguLphI4HR2ulFTcwx6vQFpaekhbRG/bNlyrF+/AU6nE/X1H+H8+TYEAgGoVCpotVoUF6+dc1uZ1GvweAZRXCy2I1lWVgqsVuuc4ltIJlNGSM/NZMqQMaroIPX7rqxss6zD14mIiIgocjBBRESK5PX6UF1d9enW9VOTNFqtBmZzOszmdDidvWhsdKGvLyCUaGhu7kFZWQUAwGw2yzJfSOQazp7twdhYQOj8k9utIrFSxGLJR23t8ZCfG92ZyPdddXUVtm2rhE7HJBERERFRrGOCiIgUqabmxKe/4KbNuC74en19J5zO3lnXA4DT2RuWLeJFrmFsbAw1NQ5UVBRJPv/oqB9xcXE4fvxoRFaKJCUZER+fqLjnFulEPzu1tSdRXl4RhsiIiIiISMm4ixkRKU5wYLOUpAEw/ouuXq9FY2M3nM7eGdc6nb2w2XpQVrZ5PkKdlug1rFxpwo0bXgwM3JD8Hk7nVfh8PmRnG1BZuRpmczq0Ws2nLXLjlSKVlauRlZWI6uoqeL2+UC9HNmVlW2Cz9SjmuUW6UD47w8OD8HgGZY6MiIiIiJSOCSIiUpxbBzZLYbGkIz3dhI6OIRw6dHGaLeIvoqNjCNu3V8peTRPKNeTlZcLhkL6Fe2NjJ0pKVkiqFMnPT0dt7UmheMJBp9Ni27ZKxTy3SBfK911w2DkRERERxTa2mBGR4rhc3SEPbH744Ufh8QzCbrfCarVOmseTiU2bKsLWnhTKNWRnp+LSpc5Zdy8DgMbGyxNVQlKYzWlwOFzweAYV16Kl02lRXl6hiOcW6eby2SEiIiKi2MYEEREpjt/vh0YjtpX55IHNRqNhwbd+D/UavF7/rDN5nM5e2O0ulJSsEDp/sFJkoe/NdJTw3CLdXD87RERERBS7mCAiIsVRq8eHLGu10n9EjY6OV5woRajXsGjRInR0DMFud8FiSUdWVsrE0OmODjccjh4kJBig0+mwYkWKUEysFIl+0fDZISIiIqKFwQQRESmOyZSBzk630PbnHR1umEwZMkYlZi7XsH79hlnbrd5883VWitBtouGzQ0REREQLgwkiIlIciyUftbXHhX7JbW7uQVlZRUjvNzDggcNhg8vVPSkZk4G8vIKQZ9/M9Rpma7dipQjdSbg/O0REREQUPZggIiLFSUoyIj4+cdZZPEFOZy/0eoNwMsfr9aGm5gRGRoZgsaSjuLhgop2rs9ONmppj0OsNKCvbLLx7ltzXwEoRupNwfXaIiIiIKPpwm3siUqSysi2w2XrgdPbOuM7p7IXN1oOyss1C5/d6faiurkJ2tgGVlathNqdDq9VApVJN7A5WWbkaWVmJqK6ugtfrU9Q1WCz5cDh6hOJpbu5BXp7YDlcUeeT+7BARERFRdGIFEREpkk6nxbZtlaitPTnrwObt2yunVPhIaRmrqTmBgoL0Wassgq/X1p5EeXlF2K5hNqwUoenI+X1HRERERNGLCSIiUiydTovy8opZBzYHSW0Zu/vuYoyMDMFsNkuKw2xOg8PhgsczKJxgEb0GEWVlW3DkSNVEjNMJVops314Z0vtQ5JHz+46IiIiIohMTRESkeLMNbAZutoyNVwVNTfwEW8bM5nQ4nb344INjKCpaJhTDqlXpsNuts8YxHSnXICqclSJyDPIm+cnxfUdERERE0YkJIiKKCiItY2NjY+jo6ENenvSBzVlZKbBarXMNc97JXSki5yBvIiIiIiJSjphOEFVXV+PMmdNobW2F2+2Gx+NBfHw8srKysHnzZnz+848jISFhyjH//u//ht/85jcznvfXv34B2dnZcoZORJMMDHiEWsZWrjShpcWFgYEbSEpKmP0AABqNGn6/fy5hykqOShGRqqzq6ips21YJnY5JIiIiIiKiSBTTCaI333wDjY2NyM7OxqpVq2A0GnHtWj+amhphs9nw7ruH8JOf/ARLly697djc3JVYuXLlHc+bmJgod+hENInDYYPFIn27dwBYtSoDDkc31q+XllQaHR2vyokWShnkTUREREREyhDTCaJvfONPsHz5ciQlJU35+sDAJ/jbv/1bXLx4Ec8//zy+//3v33bs5s2b8JWvPBuuUIloBi5XN4qLxbZvH28ZuyJ5fUeHGyaT9JY0pVLiIG8iIiIiIlp4cQsdwEIqLCy8LTkEAElJi/HVr34NAHD27Jlwh0VEgvx+PzQaseqe8ZaxMcnrm5t7kJcnloRSmmDLWHa2AZWVq2E2p0Or1UCl+v/bu/O4qut8j+NvhAMoi4CxiGKeYssULdNEXAgEp9RqzHtbnZmaaVqc22pO3bG0Oy1qNWYzzVhTTevYTDZ5XbqiUpkSpIktpMBBUUFjUUKQncO5fzCQJw6rHLbzej4e83jg7/f7/s7n8OGM8fb7/f6cmpeMJSaOVUiIh3bt+kSjR7ecPdmWpo28AQAAAPQ/Dh0QtaVpKYnB4NrLlQBoj7Nz4wyYzqivN8tisXTo2tzcYrm7e/b7mTGdWTI2btwInThR0qn7h4T4qbCw4FxKBAAAANBLHHqJWWsqKyv15ptvSJKio6NtXmMy5eiVV/6q8vJyeXh4KDQ0VFOmRGvIkCE9WSoASYGBQcrPL5HR2PF9iPLyStTQ4KTc3OI2A5Pc3GJlZRUpPj6xO0rtNWzkDQAAAKAtBESSvvjiC3300UeyWBr0/fff6+DBg6qsrNSkSZN0++2/sjkmLS1VaWmpVsc8PDy0aNEiJST0718kgf4mLCxCaWk7OxUQ5eQUafr0WH377dfKzi5UWFiAQkL8mvfjycsrkclUpMGDPRUfn9jvH+HORt4AAAAA2kJAJOnYsaPavn2b1bG4uDjdeedd8vCwXlIyfHiwbrvtNk2aNFmBgYGSpKNHj+of/3hXaWlpWrVqlQYNclZ8fHyP1Q84Om9vL7m5ebQ7G6hJ05KxYcP8NGNGrMrLzyg7O1OZmZlnPdFruKZOje33y8qasJE3AAAAgLYQEEmaP/86zZ9/nerr61VUVKTPPvtMf//7O9q7d6+WL39cUVFRzdcmJCS0GD927FiNHfuEXnzxT9qwYYPWrv2LZsyY0akZBy+++KJefPHFdq+LjIzo8D0BRxIdPU0ffdQY9HZ2yZiXl6cmTrzM7jX2pp7ayDs6OraTlQEAAADoC9ik+iwuLi4KDg7WggUL9OSTT+nMmTNaseJp1dTUdGj8woU/06BBg1RaWqrMzM49yWfRokU6cOBAu//z9fXtylsDBjxXV4Pi4hKVl1ehpKQMHT5cpLq6elksFtXV1evw4SIlJWUoL69iQCwZ6yw28gYAAADQFmYQteKiiy7S+eefryNHjig7O1vjxo1rd4y3t7d8fHxVUnJKxcXFPVAlgLO5uhocZslYZ7GRNwAAAIC2EBC1wd3dXZJUWvp9h643m82qrKyQJJ5mBvQiR1gy1lls5N15ZWXlMpmyVFhYcFbQGKTw8EiHDRoBAAAwcBEQteL06dM6dOiQJGnkyJEdGpOamqrq6mo5OTkpPDzcnuUBQKewkXfH1dbWKTV1t2pqKhQWFqCoqMjmUCw/v0SpqZ/I3d1T0dExAy4UAwAAgONy2IDo6NGjysnJ0fTp0+Xq6mp1Lj8/X88/v1p1dXW66KKLZDReIEkqKirU119/oxkzZrQYk5KSoj/84TlJUlxcvPz8/HrmjQA4Z44yU4SNvNtXW1un5ORtiowMkNFotDpnMLjIaAyQ0Rig3NxiJSdvU1xcolxdCYkAAADQ/zlsQFRa+r1WrHhazz+/WqGhoTrvPH/V19epqKhIOTk5amho0KhRo7R06dLmMWVl5Vq5coVeeGGNQkNDNWzYeaqtrdHRo0d1/PhxSdKECRN077339tbbAtAJjjZTpGkj77S0FIdcMtYRqam7/x0OtT3Lqul8WlqKZsyI7YHKAAAAAPty2IDo/PNH69Zbb1NGxjfKy8tTTk6OzGazvLy8NGHCJZo2bZpmz55tNVMoIMBf119/vbKysnXixHGZTCbV19fL23uopkyZoiuuiFNsbKwGDeLhcEBf56gzRdjIu3VlZeWqqalo8fPQGqPRXyZTocrLzzjs9wwAAAADh8MGRD4+Prrppps6Ncbbe6h+9avb7VQR4Dj6wpIuR58p4ihLxjrDZMpSWFjHN/GWpNDQAGVnZ/K9BAAAQL/nsAERgJ7XV5Z0MVMEthQWFigqKrJTY0JC/JSZmWmnigAAAICew1ooAD2iaUnXqFGeSkwcK6MxQAaDi5ycnJqXdCUmjlVIiIeSk7eptrbObrWcy0wRDFxms1kuLs6dGuPi4iyz2WynigAAAICeQ0AEoEd0ZklXRESA0tJS7FZLYWGBRo7s3JMGQ0L8VFhYYKeK0Bc4OzfOZuuM+vrGJZIAAABAf0dABMDufljS1XY41MRo9Fd19RmVl5+xSz3MFIEtgYFBys8v6dSYvLwSBQYG2akiAAAAoOcQEAGwu762pIuZIrAlLCxCJlNRp8bk5BQpPLxz+xYBAAAAfREBEQC762tLupgpAlu8vb3k5uah3NziDl2fm1ssd3dPNi4HAADAgEBABMDu+tqSLmaKoDXR0dOUlVXUbkiUm1usrKwiRUfH9FBlAAAAgH0REAGwu762pIuZImiNq6tBcXGJysurUFJShg4fLlJdXb0sFovq6up1+HCRkpIylJdXofj4RBkMht4uGQAAAOgWLr1dAICBr2lJl9HY8X2I7L2kKzp6mj76aJsktbl5dtNMkfj4RLvVgr7F1dWgGTNiVV5+RtnZmcrMzJTZ3BhYBgYO19SpsYSFAAAAGHAIiADYXVhYhNLSdnYqIMrJKVJ0dKykxqegmUxZKiwsOOsX9SCFh0d2+Rf1ppkiaWkpys4uVFhYgEJC/OTi0jjbKS+vRCZTkQYP9mSmiIPy8vLUxImX9XYZAAAAQI8gIAJgd2cv6erIo+6blnS5ublp586PVVNTobCwAEVFRTYHOPn5JUpN/UTu7p6Kjo7pUoDDTBEAAAAAaERABKBHdHZJ17RpM5WcvE2RkQEyGo1W1xgMLjIaA2Q0Big3t1jJydsUF5coV9euzfJhpggAAAAAR8cm1QB6RGc3/923b++/w6G2ZxwZjf6KiAhQWlpKD70TAAAAABh4mEEEoMd0dElXWVm5amoqWswcao3R6C+TqVDl5WdYEgYAAAAAXUBABKDHtbeky2TKUlhYxze0lqTQ0ABlZ2eyVAwAAAAAuoAlZgD6nMLCAo0c6depMSEhfiosLLBTRQAAAAAwsBEQAehzzGazXFycOzXGxcVZZrPZThUBAAAAwMBGQASgz3F2bnyUfWfU1zfuZQQAAAAA6DwCIgB9TmBgkPLzSzo1Ji+vRIGBQXaqCAAAAAAGNgIiAH1OWFiETKaiTo3JySlSeHiknSoCAAAAgIGNgAhAn+Pt7SU3Nw/l5hZ36Prc3GK5u3vyiHsAAAAA6CICIgB9UnT0NGVlFbUbEuXmFisrq0jR0TE9VBkAAAAADDwuvV0AANji6mpQXFyi0tJSlJ1dqLCwAIWE+MnFpXED67y8EplMRRo82FPx8YkyGAy9XXK3Kisrl8mUpcLCApnNjRtwBwYGKTw8kplSAAAAALodARGAPsvV1aAZM2JVXn5G2dmZyszMPCssGa6pU2MHXFhSW1un1NTdqqmpUFhYgKKiIptDsfz8EqWmfiJ3d09FR8cMuFAMAAAAQO8hIALQ53l5eWrixMt6uwy7q62tU3LyNkVGBshoNFqdMxhcZDQGyGgMUG5usZKTtykuLlGuroREAAAAAM4dexABQB+Rmrr73+GQf5vXGY3+iogIUFpaSg9VBgAAAGCgIyACgD6grKxcNTUV7YZDTYxGf1VXn1F5+Rk7VwYAAADAERAQAUAfYDJlKSwsoFNjQkMDlJ2daaeKAAAAADgSAiIA6AMKCws0cqRfp8aEhPipsLDAThUBAAAAcCQERADQB5jNZrm4OHdqjIuLs8xms50qAgAAAOBICIgAoA9wdm58lH1n1Neb5ezcuVAJAAAAAGwhIAKAPiAwMEj5+SWdGpOXV6LAwCA7VQQAAADAkbj0dgHAQFNWVi6TKUuFhQUymxtneAQGBik8PFJeXp69XR76qLCwCKWl7ZTR2PGNqnNyihQdHWu/ogAAAAA4DAIioJvU1tYpNXW3amoqFBYWoKioSLm4NC4bys8vUWrqJ3J391R0dIwMBkNvl4s+xtvbS25uHsrNLe7Qo+5zc4vl7u5J6AgAAACgW7DEDOgGtbV1Sk7eplGjPJWYOFZGY4AMBhc5OTnJYHCR0RigxMSxCgnxUHLyNtXW1vV2yeiDoqOnKSurSLm5xW1el5tbrKysIkVHx/RQZQAAAAAGOgIioBukpu5WZGRAuzM/jEZ/RUQEKC0tpYcqQ3/i6mpQXFyi8vIqlJSUocOHi1RXVy+LxaK6unodPlykpKQM5eVVKD4+kZloAAAAALoNS8yAc1RWVq6amgoZjcYOXW80+stkKlR5+RmWB6EFV1eDZsyIVXn5GWVnZyozM/OsvayGa+rUWH5uAAAAAHQ7AiLgHJlMWQoL6/jGwpIUGhqg7OxMTZx4mZ2qQn/n5eXJzwcAAACAHsMSM+AcFRYWaORIv06NCQnxU2FhgZ0qAgAAAACgcwiIgHNkNpvl4uLcqTEuLs4ym812qggAAAAAgM4hIALOkbNz46PsO6O+vnFPGQAAAAAA+gICIuAcBQYGKT+/pFNj8vJKFBgYZKeKAAAAAADoHAIi4ByFhUXIZCrq1JicnCKFh0faqSIAAAAAADqHgAg4R97eXnJz81BubnGHrs/NLZa7uyePKgcAAAAA9BkEREA3iI6epqysonZDotzcYmVlFSk6OqaHKgMAAAAAoH0uvV0AMBC4uhoUF5eotLQUZWcXKiwsQCEhfnJxadzAOi+vRCZTkQYP9lR8fKIMBkNvlwwAAAAAQDMCIqCbuLoaNGNGrMrLzyg7O1OZmZkymxufVhYYOFxTp8ayrAwAAAAA0CcREAHdzMvLUxMnXtbbZQAAAAAA0GHsQQQAAAAAAODgCIgAAAAAAAAcHAERAAAAAACAgyMgAgAAAAAAcHAERAAAAAAAAA6OgAgAAAAAAMDBERABAAAAAAA4OAIiAAAAAAAAB0dABAAAAAAA4OBcersAAOiPysrKZTJlqbCwQGazWc7OzgoMDFJ4eKS8vDx7uzwAAAAA6BQCIgDohNraOqWm7lZNTYXCwgIUFRUpFxdn1deblZ9fotTUT+Tu7qno6BgZDIbeLhcAAAAAOoSACAA6qLa2TsnJ2xQZGSCj0Wh1zmBwkdEYIKMxQLm5xUpO3qa4uES5uhISAQAAAOj72IMIADooNXX3v8Mh/zavMxr9FRERoLS0lB6qDAAAAADODQERAHRAWVm5amoq2g2HmhiN/qquPqPy8jN2rgwAAAAAzh0BEQB0gMmUpbCwgE6NCQ0NUHZ2pp0qAgAAAIDuQ0AEAB1QWFigkSP9OjUmJMRPhYUFdqoIAAAAALoPm1Sjy1xchmjjxrTeLgPoETt3fqO6umo5OTl1eIzFYtGnn5pUX3+eHSsDHMOgQYP15Zc5vV0GAMhgGNzbJQCAXRAQocvmzJnf2yUAPSYp6RMlJIzTkCFuHR5TWVmjbdtydM01t9ixMgAAAAA4dywxA4AOGD/+EqWmdm72wmef5Wj8+EvsVBEAAAAAdB8CIgDogLlzr9Xmzd90asyWLd9o3ryf2qkiAAAAAOg+BEQA0AEjRoyQj0+gkpMPdOj65OQD8vUNUnBwsJ0rAwAAAIBzR0AEAB20ePEj2rAho92QKDn5gDZsyNDixQ/3UGUAAAAAcG4IiACggzw9PbVixR+UklKk++57Vzt2fKvKyhpZLBZVVtZox45vdd997yolpUgrV/5BHh6evV0yAAAAAHSIk8VisfR2Eei4X/7yNr366mu9XQbg8E6cOKFNmz7QV1/tV01Njdzc3DR+/KWaN+9alpUBAAAA6Hd4zD0AdEFwcLDuuGNRb5cBAAAAAN2CJWYAAAAAAAAOjoAIAAAAAADAwREQAQAAAAAAODgCIgAAAAAAAAdHQAQAAAAAAODgCIgAAAAAAAAcHAERAAAAAACAgyMgAgAAAAAAcHAERAAAAAAAAA6OgAgAAAAAAMDBERABAAAAAAA4OAIiAAAAAAAAB0dABAAAAAAA4OAIiAAAAAAAABwcAREAAAAAAICDIyACAAAAAABwcAREAAAAAAAADo6ACAAAAAAAwMEREAEAAAAAADg4AiIAAAAAAAAHR0AEAAAAAADg4AiIAAAAAAAAHBwBEQAAAAAAgIMjIAIAAAAAAHBwBEQAAAAAAAAOjoAIAAAAAADAwTlZLBZLbxeBjrv66nny9/fv0LXff/+9fH197VwRehM9dgz0eeCjx46BPg989Ngx9KU+e3p6ac2aNb1dBoABgoBoABszZowOHDjQ22XAjuixY6DPAx89dgz0eeCjx46BPgMYqFhiBgAAAAAA4OAIiAAAAAAAABwcAREAAAAAAICDIyACAAAAAABwcAREAAAAAAAADo6ACAAAAAAAwMEREAEAAAAAADg4AiIAAAAAAAAHR0A0gC1atKi3S4Cd0WPHQJ8HPnrsGOjzwEePHQN9BjBQOVksFktvFwEAAAAAAIDewwwiAAAAAAAAB0dABAAAAAAA4OAIiAAAAAAAABwcAREAAAAAAICDIyACAAAAAABwcAREAAAAAAAADo6ACAAAAAAAwMEREAEAAAAAADg4l94uANby8vK0b98Xys42yWTK1rFjx9TQ0KBf/OIXuvnmW2yOSUiY1aF7L1myRAkJiS2OZ2dn691339U333ytiooKDRs2TJdffrluvvkW+fr6ntP7gW1d6bMklZWd1nvvvae0tDQVFBSovr5ePj4+uuiiMbr22msVFRXV6lj63LO63uMyvffeP5WS8pkKCwvk6uoqo9GoK6+8SgkJCW2+Jj3uWfX19fr666/1xRd79dVXX+n48eOqrq6Wt7e3IiIiNXfuHF1++ZRWx6en79P69e8rKytT1dXVCgwM1LRp03XjjTdq8ODBrY47fvy43nnnHe3fn67Tp09r6NChuuSSS7Vw4S0aPjzYHm/VYXW1x0VFRdqzZ49MpmyZTCYdOXJEdXV1+slPrtSDDz7Y7uvyWe5ZXelzQ0ODDh48qL179+rLL/fr2LFjqqyslIeHh0JDQ5WYOFtxcXFycnJq9XXpc8/p6md5z5492rVrlw4dOqRTp06qvLxcLi4uGj48WJMnT9aCBQs0dOjQVl+XHgPob5wsFoult4vAD/785z/rgw/+1eJ4W79Urlq1qtX7FRcX6csvv5STk5PeeuttBQYGWp3/9NNP9dRTT8psNisiIkJBQUHKzs7Wd999J19fX61e/bxGjBhxbm8KLXSlzydOnNADD9yvU6dOydvbW5GRkXJzc9fRo0d07NgxSdIdd9ypBQsWtBhLn3teV3r83Xcn9NBDD6mwsFDe3t666KKLVFNTq8zMg6qurlZCQqIeeughm79w0OOel56+T7/97W8lSX5+fgoLC5O7u7uOHj2qI0eOSJLmzJmje++9r0XP3n9/vdauXSsnJyeNHTtOvr4+ysjIUElJiUJCQrR69fM2f+nIyMjQI488rOrqao0ePVqjR4/WkSNHdOTIEbm7u2vlylUaM2aM3d+7o+hqj//1r/f1l7/8pcX9OhIQ8VnueV3p8/Hjx/WLX/xckuTl5aXw8HB5eXnpu+++U1ZWliRpypQpeuyxZTIYDC1ekz73rK5+lleseFrJyckKDh6hoKBADR06VGVlZcrKytKZM2fk4+OjZ555VqNHj27xmvQYQL9kQZ+yZcsWy0svrbUkJ++wHD161LJixdOWWbPiLW+//VaX7rdmzfOWWbPiLUuWLGlxrri42DJ37hzLrFnxls2bNzUfr6+vtzz9dOPrLlp0t6WhoaHL7we2daXPjz661DJrVrzld7/7b0tlZaXVuc2bN1lmzYq3zJ6daCkqKrI6R597R1d6/JvfLLLMmhVvefDBByxlZWXNx/Pz8y0/+9lCy6xZ8ZYtWza3GEePe0d6errl8ceXW77++usW5z7++CNLYmKCZdaseMu2bUlW50ymbEtCwixLYmKC5fPPP28+XlVVZXnoocWWWbPiLY8/vrzFPauqqizXX/+fllmz4i2vvPKK1blXXnnFMmtWvOXGG2+wVFdXd9M7RFd7nJKy2/KnP/3RsnXrVsuhQ4csr732qmXWrHjLs88+2+br8VnuHV3p8/Hjxy2LFy+27NnzuaW+vt5qzJdfftncxzfffLPFPelzz+v6/1+bLKdOnWoxprKy0vI///O4ZdaseMt//ddvWpynxwD6K/Yg6mOuuuoq/frXdyguLl6jRo2Sk1PXW1RbW6uPP/5YknTllT9pcf6DD/6l6upqXXrppZozZ27zcWdnZ917773y8PBQVlaWvvjiiy7XANu60ucvv/xSkrRw4cIWy0/mzJmrESNGyGw2N//LZRP63Ds62+MDBw4oMzNTgwYN0gMPPCgvL6/mcyNGjNAdd9wpSXr77bdl+dHET3rcOy655BI99tgyjRs3rsW52NgrlJg4W5K0fft2q3Pr1q2TxWLR7NmzNXny5Obj7u7uevDBxRo0aJB27drVPDOwybZtSTp16pRGjhypW2+91ercrbfeqpEjR6q4uLjF66HrutrjqVNjtGjRbzR79mxdcMEFcnZ27tDr8VnuHV3pc3BwsJ555hlNmjS5RX/Hjx+vG264QZK0Y0fLzyN97nld/SyHhobKz8+vxZjBgwc3/7188OBBVVRUWJ2nxwD6KwKiAWzXrl06c+aMvLy8NHVqTIvzu3enSJKuuCKuxbnBgwcrOjpakpSSstu+haJDXF1dO3Tdj5el0Of+oSnYCwoKUnBwy31kLr30UklScXGxMjMzrc7R474pNDRUUmPPmtTV1WnPnj2SpLi4+BZjAgMDdfHFF0tq2a+UlMY+x8ZeoUGDrP/6HjRokGbOjJUk7d69q3veANplq8fngs9y39SVPrc1hj73PV3pcVMwOGjQILm4WG/rSo8B9FcERAPY1q1bJUnx8bNahAuVlZU6ceK4JCkiItzm+PDwCElSTk6OHatER02aNEmS9NZbb6m6utrq3IcfbtHx48dlNBqt9h+hz/1HVVWVJMnb29vmeXd3d7m5uUmSTKbs5uP0uO86fryxL2f/63N+fn7z5zc8vLV+NR7/cb+a/tzeuEOHDp1D1egMWz3uKj7LfVdX+tzaGPrcN3W2x7W1tXrttdckNf4DTtPfzxI9BtC/8RSzAaqgoEBfffWlJOnKK69scb6wsKD564CAAJv38Pf3b74Xet+vf32Hjh49ps8//1w333yTLrroIrm5ueno0aPKy8vT5Zdfrvvvf8Bqqjt97j98fHwktd6HkpIS1dTUtLiGHvdNJSUl2rYtSZI0ffr05uNNPfD09NSQIUNsjrXVr8rKSpWVlUlqvc8BAY3jSktLVVVV1eaT0HDuWutxV/FZ7pu60ufq6mp98MEHkqRp06zH0Oe+pyM9NplM/+6pRaWlp5WdnaXTp08rIiJCDz642OpaegygPyMgGqCSkpJksVgUHh6uCy64oMX5ysqq5q/d3W3/EtH0y0VlZaV9ikSn+Pr66rnnntOaNWuUnLxDn3/+efM5f39/TZhwSXPI0IQ+9x8TJkyQk5OTSktLlZKSopgY62Whmzdvav767F7R477HbDZrxYqnVVFRIaPRaLX/RFVVYw/c3d1bHW+rX2d/3drYs/tfWVlJQGRHbfW4q/gs9z1d7fMLL7yggoICDRs2TDfddKPVOfrct3S0x0VFRdq+fZvVsUsvvVT33XefzjvvPKvj9BhAf0ZANAA1NDQ0/0vIT37ScnNq9E/Hjh3To48+qtOnS3XPPfdoypRoDRkyRDk5OXr55Zf00ktrtXfvXj311FMd3hAVfUdwcLDi4+O1Y8cOPffcs6qqqtLkyZNUU1Or5ORkrVu3Ti4uLqqvr7f5mHv0Hc8//7z2798vb2/vVh9xjf6NHjuGrvT57bff1vbt2+Tq6qqlSx+Vt/fQdseg93S0xzExMdq+fYfMZrNOnjyp9PR0vfnmG7r99tu1ZMlvNWPGjB6uHADsgz2IBqD09HQVFRXJzc1NcXEtN8eTpCFDfvgXjerqKpvXNO2J0toyCPQcs9ms//mfx3XixHHdf/8Dmjfvavn7+8vDw0Pjx4/XihUr5efnp/T0fVZP4KDP/cs999yrmJgYlZeXa+XKFbruuut000036tVXX1FMTIwuv/xySZKX1w/7FNHjvuXFF1/U1q3/Jy8vL61cuVIjR460Oj94cGMPfryP2Nls9evsr1sbe3b/6bX9tNfjruKz3Ld0pc/r16/XG2+8LoPBoOXLl2vs2LEtrqHPfUdXeuzs7KzAwEBdeeWVWr36eTk5OenZZ59RSUlJ8zX0GEB/RkA0ACUlNW5OPW3adHl4eNq8JiAgsPnroqIim9c0PckhMDDQ5nn0nIMHD+ro0aMyGAyaNm1ai/NeXl7Nm1jv35/efJw+9y+DBw/W8uWPa82aF3TLLQt11VVX6frrr9czzzyrpUsf1ffffy9JMhqNzWPocd+xdu1abdjwgTw9PfX00ysUGhrW4pqgoMYenDlzptWlBT/0K6j52JAhQ+Tl5SWp9T4XFTWOGzp0KMvL7KQjPe4qPst9R1f6vGHDB3rppbUyGAxatmyZJk2abPM6+tw3dMdnOSgoSOPHj1dVVZX27dvXfJweA+jPCIgGmLKysuZHIV95ZevLyzw8PBQcPEKSlJWVbfOa7OzGx26HhXXffwCja5r+A8Pd3b3V5WMeHh6SpPLycqtj9Ln/GTNmjH7+85/r/vsf0K9+dbsmTJigyspKHTp0SM7OzpowYULztfS4b/jrX1/W+++vl4eHh1asWKGIiAib140cGdK8h1B2dmv9ajweFhZqdbypf+2Na3pcM7pXR3vcVXyW+4au9Pl///d/9eKLL8pgMOixx5bp8suntHotfe593flZbvr/89LS0uZj9BhAf0ZANMB89FGy6urqFBwcrKio8W1eO21a4ya4H3/8UYtzVVVVSktLkyTFxLScsYKe1bQBYnl5ufLz821ek5mZKanxX7TORp8Hho0bN6qmpkYzZsyQr6+v1Tl63LteeeWv+uc//ykPDw+tXLlSERGRrV5rMBg0eXLjzIKPPkpucb6wsFDffvutpJb9atq4/JNPPlZDQ4PVuYaGBu3c+Ymklk9NwrnrTI/PBZ/l3tWVPm/atEl/+tMfm8OhKVNaD4ea0Ofe052f5draWmVkZEhSi+Vp9BhAf0VANMBs3dq4vGz27J+0u5HtT386X+7u7kpPT9eHH25pPm42m/XCC2t05swZRURE6LLLLrNrzWjfmDFjmkOiP/zhD1b/UtXQ0KB3312nAwcOSJKuuMJ63yn63H+cOHHCqreSZLFYtHXr/+mNN16Xl5eX7rjjzhbj6HHv+dvfXtM//vEPeXp6dviXjRtuuFFOTk5KSkrS3r17mo9XV1frueeeVUNDg6ZPn65Ro0ZZjUtMnK1hw4YpPz9fr7/+utW5119/Xfn5+fL391dCQkK3vDc06kqPu4rPcu/pSp8//HCL/vjHFzoVDkn0ubd0tsfff/+9Nm3aqIqKihbnTp48qZUrV+jUqVMKCgrSxIkTrc7TYwD9lZPFYrH0dhH4gclk0gsvrGn+83fffafTp0/L399fw4YNaz6+fPnjVn+WpJwck+666y4NGjRI77zz9xaP3bRl586deuqpJ9XQ0KDIyEgFBQUpKytL3333nXx9fbV69fMaMWJE971BSOpan/fv36/HHntU1dXVGjJkiCIjL9KQIYN1+PBhnThxQpJ044036bbbbmvxevS553Wlx//61/t6+eWXFRYWJn//AEkWZWdnq7CwUD4+PnrqqadbnY5Oj3veZ599pmXLHpMkhYeH6/zzR9u8bujQobrjjjusjr3//nqtXbtWTk5OioqKko+Pj775JkMlJacUEhKi1auf19ChLZ9+lJGRoUceeVjV1dUaPXq0Ro826siRXB05ckTu7u5auXKVxowZ0+3v1VF1tcenTp3S8uXLmv988uRJnTx5Uj4+PlazPO+5594Wn2k+yz2vK33OycnR3XffJYvFopCQUYqMbD1sWLJkSYtj9LlndaXHBQUFWrjwFhkMBl144YUKDAyUxWJRcXGxcnJyVFdXp2HDhunJJ5/ShRde2OJe9BhAf8Rj7vuYysqK5qVCZysuLm7e0E6S6urqWlzTNHvosssu61A4JEkzZ87U8OHDtW7d35WRkaFDhw7Jz89PV199jW655ZYWS1nQPbrS50suuUQvv/yy1q9/X/v379e332bIbDZr6NChiomZpnnz5rX4F6wm9LnndaXHF198saZPn67MzEwdOXJEkjR8+HDdfPMtWrBggTw9bW86L9Hj3nD2fl/Z2dmt7g0UGBjYIiC67roFMhqNWr9+vTIzM1VdXa2AgADdcMONuvHGG1t9ss3YsWO1du1Leuedt5Wenq7du3dp6NChSkhI0C23LFRwcHD3vUF0ucd1dXU2P/+lpaVWswQrK1vOTOCz3PO60ueKijNq+jfWvLxjyss71ur9bQVE9LlndaXHPj4+uuOOO/XNN1/ryJEjOnbsmGpqauTp6anIyIsUHT1FV101p3kPyB+jxwD6I2YQAQAAAAAAODj2IAIAAAAAAHBwBEQAAAAAAAAOjoAIAAAAAADAwREQAQAAAAAAODgCIgAAAAAAAAdHQAQAAAAAAODgCIgAAAAAAAAcHAERAAAAAACAgyMgAgAAAAAAcHAERAAAAAAAAA6OgAgAAAAAAMDBERABAAAAAAA4OAIiAAAAAAAAB0dABAAAAAAA4OAIiAAAAAAAABycS28XAAA4N0VFhfr73/+u9PR0nTx5UnV1dZKk5csfV0pKirZv36bAwEC9/fY7LcbecsvNKiwsVEJCopYsWdLTpQ9Ib775ht566y1J0vbtO3q5mr7lwQcf0Ndff62oqCg999wferscAAAAnIWACAD6saKiQt199906ffp0b5cCAAAAoB8jIAKAfuydd97R6dOn5ezsrFtvvU3jxo3T4MGDJUmBgYFKSUnp5Qox0DFjCgAAYGAgIAKAfiw9PV2SNHVqjK6//vpOj7e17AwAAACA42GTagDox06dOiVJGjlyZC9XAgAAAKA/IyACgH6saUNqFxfnXq4EAAAAQH/GEjMA6GeSkpL07LPPWB176623mveBkdThp5K19RSzr776UosXL5YkPfvssxo3Lkpbt/6fkpKSlJeXp7q6OgUHBys2NlbXXbdArq6uNl9j1apVVk9SO3nypNavf09paWk6efKk3N3dFRERoWuvvVaTJk1ut+aKijPauHGj0tI+1/Hj+aqoqJC3t7fCw8OVkJCo6dOny8nJyebYhIRZkqSFCxfqZz/7ufbv369NmzYpM/OgSkpKdN555/XYsrva2lp9+OGHSklJ0dGjR1ReXi5PT08ZjUZdcUWcEhMT5exsO/j7cd/y8vL03nv/VHp6ukpKSuTh4aGLL75Y//mf12vMmDFt1mE2m7Vx40YlJ+9QXl6enJycFBw8QvHxcbr66mt06tQpLVx4iyRp8eKHNHv2bEm2fw6bvr9ne+uttxUUFGTztZt+FlJTU3Xy5Em5ubkpPDxc8+dfp8mT2/9Z6Iwf/zxHRY3X1q1blZS0VceOHZPZbFZISIiuueZaJSQkNI+rq6vT1q1btW1bko4fP676+noZjRdo/vyfaubMWJuvVVBQ0OJ7tmvXLm3evFmHDx9SdXW1goODdeWVV2ru3HlycWn8zzGLxaKPP/5IW7Zs0bFjx1RVVaWQkBBdddUczZ07t9WfawAAgO5AQAQAaFddXb2WLv2d9u7da3X88OHDOnz4sJKTk7Vq1TPy8/Nr8z5ZWVlauvR3Ki0tbT5WU1OjPXv2aM+ePbruugW68847Wx2fnp6uJ598QmVlZVbHS0pKlJaWprS0NE2ePFlLlz7avFl3a1577TWtW/f3Nq+xl0OHDmnZssdUWFhodby0tFT79+/X/v37tWXLZv3+90/I19e3zXvt3r1bK1euUHV1tdV9UlJSlJqaqkceeUSxsVfYHFtRUaFHHnlYBw8etDpuMmXLZMrWJ598onvvva9rb7IdGRkZWr58mdUT+Gpra7Vv3z7t27dPv/71r/Uf//Gfdnnt+nqzHnvsMaWlpVodz8rK0qpVK5Wdna1FixapvLxcy5Yt0zfffG113YED3+rAgW91/PgJ3XTTTe2+3gsvrNGmTZusjh0+fFgvvviivvrqKy1d+qjMZrNWrFihXbs+tbouJydHL7ywRjk5Jt1//wNdfMcAAADtIyACgH4mJiZG4eHhkqRf//p2SdK8efM0b97Vzdd4eXl162u+/vrflJWVpYkTJ2revKvl7++v4uJibdy4Uenp+3T06FE9+uhSvfDCH1ud9VJTU6Mnnvi9KioqdMMNN2jy5MtlMBiUmXlQ69a9q5KSU3r//fUKCAjQ/PnzW4zPyMjQ737336qvr5evr6+uueZaXXjhhRo2bJhOnTqlTz75RMnJO7Rnzx6tWrVSy5Ytb/X97N69W7m5uTIajZo//zoZjaNVU1OrQ4cOdde3rFXHjx/Xgw8+oIqKCg0ZMkRXX32NIiMj5e/vr7KyMqWmpmrLls3KysrSY489qtWrn2+eYfJjR47kaufOT+Tn56cFC/5D4eHhslgs2rfvC7377ruqra3V6tWrNWHCJfLx8Wkx/sknn2wOhy6++GJde+21Cg4eodOnS5WcnKzk5GStWfO8zddu+jnctGljc/jx8st/bXHdeeed1+JYSUmJli9fJicnJ/3yl7/S2LFjZTC4KCMjQ2+//bbOnDmjV199VZMmTdbo0aM79o3thNdf/5syMzMVHx+vK66Ik5+fn/Lz8/XWW28qLy9PGzZ8oOjoKdqwYYMOHPhW8+bNU0zMNHl7e+vQoRy9/vrrOnXqlN5443VNnTq1zRo3b96kzMxMTZ48WVdeeZUCAwNVXFykdevWKTMzU7t371ZSUpJycw9r165PFRcXp7i4OPn5DdPx4/l68823lJd3TB9++KGmTZvWoVl2AAAAXUFABAD9jKenpzw9Pa2O+fj4yGg02u01s7KyNGfOHN133/3Nx8LDwxUTE6PnnntOW7f+n7Kzs7Vly2ZdffU1Nu9RWloqFxcXrVy5SlFRUc3HIyMjNW3adN1zz3+puLhYf/vba4qLi7MKNOrr67Vy5QrV19dr0qRJeuyxZXJ3d28+HxYWpilTpigqapxWr16t3bt3a9++fZo4caLNWnJzc3XJJZfoiSeetFoad3Zd9rJq1SpVVFQoNDRUK1as1NChQ63OX3bZZZoy5XItXbpUmZmZ2rYtSVddNcfmvUwmk8LCwvXMM8/Iw8Oj+fiYMWMUHDxCK1Y8rcrKSiUn79B11y2wGvvZZynau3ePJGnatGl69NHHNGjQD1sTTpo0WRdeGKqXX37J5ms3/Rye3aeO/gzm5+crMDBQzz+/xipAioiIVEREhB544AGZzWZt2bJFixYt6tA9OyMzM1N33XW3VRAZFham8ePH69Zbf6HKyko9/fTTOn36tJYtW66YmBir68LDI3TXXXeqoaGh3RozMzM1f/583XXX3Vb3uPTSifrVr36pwsJCvfrqKyovL7dZU1TUDzVt2rSJgAgAANgNm1QDANrl6+urO++8y+a5u+++uzkk+PEymh+bM2eOzRDmvPPO0x133CFJqq6u1vbt26zOf/zxxyooKJCrq6uWLPmtVTh0tquumqPIyEhJ0rZtSa3WMWjQID3wwIOt7ptkL998840OHPhWkrRkyZIW4VCTSZMma/r06ZKkpKRtNq9psnjxYqtwqElcXJyGDRv279fNaHF+8+bNkiQ3Nzfde+99VuFQkwULFigsLKzN1++qRYt+Y3N20dix45p7mJHxjV1eOzIy0uYsNT8/v+YwqLS0VDNnzrQKh5pccMEFuvjisR2q0d/fX7ff/usWx93d3ZWQkChJKisr61BNGRkt+wgAANBdCIgAAO2aOXNmq6HM4MGDNWPGTEnSkSNHVFJS0up9Zs/+SavnYmKmNc+MSk9PtzqXmtq4V0xUVJTNpVJnGzdunCTpwIEDrV5z8cUXt7pxsj2lpn4mSQoJCZHReEGb144b1xikZWdnyWw227zGaDTqggts38fJyUmhoaGSpO+++87qnNls1tdfN+6rc9llk1r9njo5OWnWrJYbT58rT09PXX755a2eDwtrXEL547q7yxVX2N6TSZIuuODC5q9b27tJki68sPH73l6N06ZNb3WJ4Nm9i42Nbbem8vJynTlzps3XAwAA6CqWmAEA2hUeHtHm+cjICG3c2Ph1bm6uzc2qDQZDq2GGJLm4uCg0NFRffvmlcnNzrc6ZTNmSpC+++MLmk7Js+f7771s91144Yy/Z2Y3vIy8vr8Pvo76+XmVlZTY3qw4JCWlzbNNeVFVVlVbHT5w4oZqaGklqd4ZQ035X3WnEiBE2Zyw1+aHuqm5/7cbXH9nqOU/PH2ZjjRzZ+nUeHo1hZns1jhw5oo3X+mGpaEdrqqysbLHEFAAAoDswgwgA0K72Zu34+PwQXpSXl9m8xsvLq9UNrH98n/LycqvjZz/1rKOaAhDbtfTOL9hdeR9S6+/Fzc32rK4mTk6Nf803NDRYHT/7++vjY3uZW5OhQ306UGHnuLm5tXl+0KDGx7n/uO7u4u7e+us3fc+ktuvsaI1t9ajpHp2pyV7fEwAAAGYQAQDa5eTk1P5F7d+lyyObllhNmjRZt99++zlX0tbsFXtq+uX+ggsu1MMPP9zhcbb26gEAAAC6EwERAKBdbS3XkqTS0h/Oe3l527ymvLxMZrO5zVlETfdpWmLUxNvbW6dOnVJ9fZ1dn9Zmb03fm+rqql59H2d/f0tLT7d57enTpXauBgAAAH0BS8wAAO3Kzs5q83xW1g/nR48ebfOauro6HT58uNV7mM1mHTp0yOY9mjZbzs7OVl1dXQcq7pvO3jS6rc287S04OLj5CW4mk6nNa5v2TWpN98wuAwAAQG8jIAIAtOvTTz9tdR+cqqoq7dy5U5J0/vnnNz9a3ZZt21p/ZPvu3bub98a59NJLrc5FR0dLkioqKpSU1Prj6/u6pvdhsVj0wQf/6rU6nJ2dm5/29sUXe1vdG8lisWjHjh1t3stgcG3+ura2tttqBAAAQM8iIAIAtKukpEQvvbTW5rmXXlrbHDDMnTuvzfts3rxJGRnf2Lz/yy+/JElyd3dXQkKi1fmEhET5+/tLkl5++aXmR7S3JiPjG3311VdtXtMbLrvsMkVGRkqS/vnPf2rnzk/avD4397BSU1PtUsucOXMlNW6AvWbN8zY3P16/fn27M4yGDfvhiXX2eiw9AAAA7I89iAAA7QoPD9emTZtUUFCguXPnyt8/QMXFRdq0aZO++OILSY3Lp+bNaz0g8vHxkZubm377299q/vzrdPnlk2UwGJSZmaV16/6uU6dOSZJ+/vNftHiku6urq5YufVSLFz+oqqoqPfTQYl1xxRWaOjVGQUFBslgadOpUiUwmk1JSdis3N1eLFv1G48ePt983pYseeeS/9ZvfLFJ5ebmeeOIJ7diRrNjY2OZHv5eWlionJ0dpaak6ePCgFiz4j+aZR91p+vTpmjhxovbt26fdu3frgQfu109/+lMFB49QaWmpkpOTlZy8Q5GRkcrMzJRkeznZmDEXN3/9l7/8WTfddLP8/Pyarw0KCmr36XUAAADofQREAIB23XrrbVq//j3t3btXe/fubXE+JGSUfv/7J9oMAtzc3PToo4/pd7/7b7377jq9++66Ftdce+1PtWDBApvjx4wZo2effU5PPPF7FRcX/zvASG719Tw8hnTgnfW84OBgvfDCH/X448t15MgRpaWlKi2t9VlCQ4bY730sXfqoHnnkYWVmZurbb7/Vt99+a3U+NDRU//Vf92jRorslSa6uhhb3GDFihGbOnKmdO3dq37592rdvn9X5t956W0FBQXZ7DwAAAOgeBEQAgHYZDC568smn9OGHW7R9+3bl5eWpvr5ew4cP18yZsVqwYIHc3NzavU9ERIT+/Oe/6L333tOePZ/r5MmTcnd3V0REhK699qeaPHlym+PHjBmj119/Q9u2bVNaWqpycnJUVlYmJycnDR06VKNGjVJU1HhNnz5dISEh3fX2u93IkSO1du1L2rlzp3bv3qWsrCydPn1aDQ0N8vLyVkjISI0dO1YxMdMUFhZmtzo8PT21evXz2rjxf7VjR7Ly8/Pk5OSk4cOHKzY2VvPnX6djx441X+/h4WHzPg8//IjCw8O1a9cu5eXlqaqqyuaSNQAAAPRdThaLxdLbRQAA+p6vvvpSixcvliQ9++yzGj9+Qpfus2rVKm3fvk2BgYF6++13urFC9IQdO3Zo5coVkqQ33nhTwcHBvVwRAAAA7IFNqgEAQKs+/vgjSY17SA0fPryXqwEAAIC9EBABAOCgTp48qZqamlbPf/jhh9qzZ48kadasBJubVAMAAGBgYA8iAAAc1L59+/TKK39VbGysoqLGKzAwUBZLg06c+E47d36ilJQUSZKvr69uvPGGXq4WAAAA9kRABADAv1VVVamgoKBLY0NCQuTi0v/+Wi0tLdWGDRu0YcMGm+f9/IbpySefkLf30J4t7Efy8/NVV1fX6XE+Pj7y9fW1Q0UAAAADS//7L1kAAOwkOzureWPuzuqPj3OfMmWK7rnnXu3b94WOHj2q06dPq7KyUp6enho1apSmTJmiuXPnaciQIb1dqh5++LcqLCzs9LiFCxfqZz/7uR0qAgAAGFgIiAAANo0fP0Hbt+845/ssWbJES5Ys6YaK0N2GDh2qefPmad68eb1dCgAAAHoZj7kHAAAAAABwcDzFDAAAAAAAwMEREAEAAAAAADg4AiIAAAAAAAAHR0AEAAAAAADg4AiIAAAAAAAAHBwBEQAAAAAAgIMjIAIAAAAAAHBwBEQAAAAAAAAOjoAIAAAAAADAwREQAQAAAAAAODgCIgAAAAAAAAdHQAQAAAAAAODgCIgAAAAAAAAcHAERAAAAAACAgyMgAgAAAAAAcHAERAAAAAAAAA6OgAgAAAAAAMDBERABAAAAAAA4uP8H9a9jIN4CzZ4AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 444, "width": 580 } }, "output_type": "display_data" } ], "source": [ "viz_cmodel.ctree_feature_space(features=['flipper_length_mm','bill_length_mm'],\n", " show={'splits','legend'}, figsize=(5,5))" ] }, { "cell_type": "markdown", "metadata": { "id": "dVZzVtuwTYpF" }, "source": [ "The color of the region indicates the color of the classification for test instances whose features fall in that region.\n", "\n", "By considering two variables at once, the decision tree can create much more pure (rectangular) regions, leading to more accurate predictions. For example, the upper left region encapsulates purely `Chinstrap` penguins.\n", "\n", "Depending on the variables we choose, the regions will be more or less pure. Here is another 2D feature space partition for features `bill_depth_mm` and `bill_length_mm`, where shades indicate uncertainty." ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:48.393561Z", "iopub.status.busy": "2024-08-24T11:23:48.393265Z", "iopub.status.idle": "2024-08-24T11:23:48.686028Z", "shell.execute_reply": "2024-08-24T11:23:48.685308Z" }, "id": "kbSAHR9q5pGP" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABIgAAAN5CAYAAABjRQDxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3yb9bU/8I+GLcmWZVkjTmxne8k7IQNIQgIFwrqMQu+lrLbQRdPeyyqXXijQ0lIawg8KpYXeQlltKZc9EkLCJglkWXYSy06cxEk8o2HZliXbWr8/HIk4tjVsTevzfr144eh5vs9zJDmOfXzO+Qq8Xq8XRERERERERESUsoTxDoCIiIiIiIiIiOKLCSIiIiIiIiIiohTHBBERERERERERUYpjgoiIiIiIiIiIKMUxQURERERERERElOKYICIiIiIiIiIiSnFMEBERERERERERpTgmiIiIiIiIiIiIUhwTREREREREREREKY4JIiIiIiIiIiKiFMcEERERERERERFRimOCiIiIiIiIiIgoxTFBRERERERERESU4pggIiIiIiIiIiJKcUwQERERERERERGlOCaIiIiIiIiIiIhSHBNEREREREREREQpjgkiIiIiIiIiIqIUxwRRkvmv//qveIdARERERERERFMME0RJxmbri3cIRERERERERDTFMEFERERERERERJTimCAiIiIiIiIiIkpxTBAREREREREREaU4JoiIiIiIiIiIiFIcE0RERERERERERCmOCSIiIiIiIiIiohTHBBERERERERERUYpjgoiIiIiIiIiIKMUxQURERERERERElOKYICIiIiIiIiIiSnFMEBERERERERERpThxvAMgIiIiIiKi+HG73eju7obD4YDX6413OEQ0BoFAAJlMhpycHIhEoqjcgwkiIiIiIiKiFHTo0CFs3boVdXV69Pfb4x0OEYUgMzMD1dU1OPPMMzFv3ryIXpsJIiIiIiIiohSj1+vxzDN/hUqlwvLlK1BcXIyMjAwIBIJ4h0ZEY/B6vbDb7di/fz92796Fr776Ejfd9H3U1NRE7B5MEBEREREREaWQQ4cO4Zln/oqamgX47ne/G7V2FSKKPJ1Oh0suuQTPPfccnnnmr7j11tsiVknEIdVEREREREQpZOvWrVCpVEwOESUpkUiE7373u1CpVNi2bWvErssKIgBOpxPvvvsuPv30Exw9ehQDAwPIzs7G3Llzcf7552PVqrNHrdm9exdeffU1NDU1YmBgALm5uVi+fAW+/e1vQyaTxeFZEBERERERBeZ2u1FXp8fy5SuYHCJKYiKRCAsWLMSWLV/g6qu/HZG/zymfIDIajfjFL+7CkSNHkJ2djfLyckilUhw/bsSePXsglUpHJYhee+1VPPXUUxAIBKioqEROjhJ79+7FP//5D3zxxed49NHHkJ2dHadnRERERERENLbu7m7099tRXFwc71CIaJKKi4vxwQcfoLu7GxqNZtLXS+kE0eDgIP77v/8bx44dxQ033IBvf/saiMVfvyQDAwNobW0dsaa5+QCefvppCIVCPPDAb7BkyRL/uffe+0vU1tbiD394DPfee19MnwsREREREVEwDocDAJCRkRHnSIhosjIzMwEM5yMiIaVnEP3zn//EsWNHcfHFF+P6628YkRwCAKlUisLCwlFrvF4vVq9e7U8O+c69/fY7IBQK8fnnn+Po0aMxeQ5ERERERESh8nq9AMDdyoimAN/fY4/HE5HrpWyCyOVy4d133wEAfOtb/x7SGqfTie3btwMAzjnnG6OO5+bmory8HACwZcsXEYqUiIiIiIiIiCi6UrbF7MCBA+jp6YFarUZ+fj4OHz6EL774AmazGXK5HJWVlVi8eAmEwq9zaK2trf7SrfF6douLi7Fnzx40NzfH5HkQEREREREREU1WyiaIDh8+BADQarX461//F6+88oq/3BIA/vWvf6GwsBC/+tWvMG1aLgCgs7MTACCXy8ft2dVqtSPOJSIiIiIiIiJKdCmbIOrt7QUANDc3o7GxEZdeehmuuOIK5OTkoKmpEU888QSam5tx9913489/fgpisRgOhx3A8Lyh8fi2uLfb7WHF8+STT+LJJ58Mel5paUlY1yUiIiIiIiIiCiZlE0S+aiGXy4Wzzz4bP/vZz/zHFi48Db///e/xve99Dy0tLfj4449x3nnnRTWeNWvWYM2aNUHPu+mmG6MaBxERERERERGlnpQdUi2Tfd0idvHFl4w6Pm1aLpYuXQoAqK3dPWJNoC3kuG0kERERERERESWblK0gmjFjxpgfj3WO2WwBAEyfPjyLyGazwW63j5kEMhqNAIDc3OkRjZeIiIiIKBm1tbXh7XfegV5fh8HBAUgkUtTUVOOySy9FXl5evMMjIqITUjZBVFRUBIFAAK/Xi97eHkybNm3UOT09PQC+nitUUDATUqkUAwMD2L9/P2pqakat2b9//4nrF0YveCIiIiKiBGez2bB27cMwWbpx5tkXYM2dV0EilWFwwIH62u34zYMPQaPOwX/f+XNkZsrjHS4RUcpL2RYzlUqFiooKAMDu3btHHXe5XKivrwfw9WDotLQ0LFmyBADw0UcfjlrT1dWFffv2AQCWLVselbiJiIiIiBKdzWbDHT//OUqql+KWux/CkjNXQSrLgEAggFSWgSVnrsItdz+EkqqluOPnd8Jms8U7ZCKilJeyCSIAuO666wEAL7/8MhoaGvyPu91uPP30U+jo6EBGRgZWr77Af+zqq78NgUCAjRs3YseO7f7HBwYG8Mgj6+DxeLBixQrMmjUrdk+EiIiIiCiBrF37MFac+29YfOaqgOctPnMVln/jEqx9+OHYBEZERONK2RYzAFi4cCG++93v4rnnnsNtt92KkpJSqFQ5aG5uRmdnJyQSCf7nf/4HOTk5/jVFRUX40Y9+hKeeegp33303qqqqoFQqsWfPXlgsZsycORP/9V+3xO9JERERERHFUVtbG0yWblwXJDnks/jMVdjy8ftob2/nTCIiojhK6QQRAFx77XUoKSnF66+/jsZGA/bvb0JOTg7OP381/uM//mPMSqArr7wKc+fOxauvvorGxkYMDAxg2rRpuPrqb+Pb3/42dzAjIiIiopT19jvv4MyzLwh+4knOXLUab739Nm7+8Y+jFBUREQWT8gkiAFi0aBEWLVoU1pqFC0/DwoWnRSkiIiIiIqLkpNfXYc2dV4W1pmrhUjy59t0oRURERKFggogm7Om//hWDTle8wyAiIiKiBCKSpGP9O/8CIAhjlRciSToe//NT0QorYiRpYvzo+9+PdxhERBHHBBFN2KDThUv+/T/iHQYRERERJZDcnTtRpKuESBj6jxpujwsHDHuwOMyq/nh495V/xTsEIqKoYIKIiIiIiIgiJkephNVihlqTG/Iaq8WMHKUyekERUViuu+5adHV1jXhs06bNcYqGYiWlt7knIiIiIqLIys/Lg8nYGdYak7ET+fn5UYqIiIhCwQQRERERERFFjCwjA5L0dFhMXcFPBmAxdUGSng6ZTBblyIiIKBC2mBERERERUUTpSkugr6sHAKgCtJpZTF0wHu9ATXVVrEIjohCsXn0B+vr64h0GxRgTREREREREFFFicRpqqqtgaGyC0dgBjXYGlCo1hEIRPB43rBYzTMYOSNIlqKmuglicFu+Qiegk119/fbxDoDhggoiIiIiIiCJOLE5DZUUFHA4H2tracMDQDo/bA6FICJVSiXJdGdvKiIgSCBNEREREREQUNTKZDIWFhfEOg2hMHR3tWL9+A+rr69He3ob+/n4IBAJkZ2dDoVAgPz8fhYWFqKysQllZGYTC4TG+nZ2duP7660Zcq6qqCo888v/Q2dmJ1157Fdu374DJZIRUKkVRUREuvfRSnHnmsqAxORwObNy4Ebt27cLBg83+Vi+lUonSUh1WrVqFM888EwKBIOi17HY7Nm/ehN27d+PgwYPo6emBy+VCTk4OtFotqqqqsXTpUpSXl49YF+4uZpGIub+/H++/vwE7duzA0aNH0dvbC7fbjaysLGRnZ0OrnYb58+ejoqIcVVXVTDBHARNERERERERElHLef38D/vCHP8Dlco06ZjQaYTQacfDgQXz22WcAgH/845/QarUBr7l16xY89NBDcDgc/seGhoawa9cu7Nq1CxdccCFuvfVWf6LpVB9//DGeeOLxMef/dHZ2orOzE5988jF0Oh1++ct7A8bz/vvv46mn/oz+/v5Rx44fP47jx49j3759+OijD/HSS38P+LwCiUTM+/fvx913/w+sVuuoY93d3eju7kZLSwt27NgOAPjv/74L55577oRjprFxFzMiIiIiIiJKKa2treMmhybq2LFj+M1vfjMiOXSq99/fgL/97dkxj73++mt48MHfhjQc2mAw4D//82cwm81jHn/uub/hkUfWjZkciqRIxOx2u/Gb3zwwZnKIYosVRERERERERJRSPv30k1HJofz8fJSVlUMmk8Fu70dbWxsOHz6MgYGBkK7Z3d0NANBoNFi0aBHcbje2b9+Onp6eEee98sorOOecczB37jz/Y42NjXj66adHXXPOnDkoLi6B2+1CXV0dTCaT/5jJZMLatb/H73+/dsSabdu24e9/H10RJBQKUV1djfz8fLhcLhw8eAjNzQdCem5jiVTMBkMDOjo6RlwjOzsbNTU1yM5WYmhoEF1dXTh8+DCTSFHGBBERERERERGllOPHj4/4c2lpKR577A8QiUQjHne5XDAYDPjss0+RlhZ8t72qqir89rcPQiqVAgB6e3tx++23oaWlxX+Ox+PBm2++iVtvvc3/2AsvvACPxzPiWmvW/BSXX365/8+Dg4O4//77sHPnTv9ju3fvRn19PaqqqvyPPfvsM6PiKigowK9//QBmzpw54vHW1lasX/9e0Oc1lkjFfOp7IZFI8MwzzyI7O3vUPVtaWrBlyxdQq9UTipkCY4sZERERERERpRSZLGPEnwcGBmC320edJxaLUVlZiTVrfgqlUhn0uj/96c/8ySEAUCgU+P73fzDqvB07dvg/7u/vx+7du0YcLy0tHZFoAYYTJ9ddN3r7+c8//8z/8dGjR0cko4DhyqH77rt/VHIIGE4c/fCHPwr4nMYSyZhPfS88Hg8slrFb5+bMmYNrr70OCxYsCDtmCo4VRERERERERJRSFixYgNdee9X/55aWFvzHf/w7Zs+ejYKCmZg5swCzZ89GeXkFNBpNSNfUarWYO3fuqMcXLlwIkUgEt9vtf8xoNKK3twcKRTYOHDgw4hgw3L513nmhDWFuaGgYse5U5eUVmDNnTkjXClUkYy4vL0d6ejqGhoYAAE6nEz/60Y+Qn5+PWbNmoaCgADNnzkRpqQ6zZ88Oafc2mhgmiIiIiIiIiCilLF26FMuWLcOWLVv8jzmdTjQ3N6O5uXnEuaWlpbjuuuuwdOnpAa853o5iaWlpyM5WjqqK6enphUKRjZ4e68SexAm+2Uenfuwza9boyqHJimTMCoUCN954I5566in/Y16vF62trWhtbR2xLjc3F9/85jdx2WWXj2oHpMljixkRERERERGlnHvvvQ//9V+3YP78+QHPa2xsxC9/+Ut8+uknsQksTIF2TUtUp8Z85ZVX4aGHfo/TTjsNYvH4dSxdXV3485//jCeffDLaIaYkVhARERERERFRyhEKhbjkkktwySWXwGq14tChg2htbUVbWxsaGhpGtGt5vV4899xzWLly1bjXMxqNYz7udDrHrLjJzlYAwJizjWbPno2FC08L6XlIJOn+j8e61tGjx0K6TjgiGbPPaaedhtNOOw0OhwOHDh3CsWPH0N7ejubmZtTW7h6x69x7772La665JuT2PwoNE0RERERERESU0pRKJRYuPG1EguOhh36HDz/80P/n1tZW2Gw2yOXyMa9hNBpx+PDhUXOIamtrR83r0Wq1UCiGd+kqLCyEUCgcsSOY2+3GzTffHNK8nZOvXVpaOur4vn17ceTIEcyePTvotUIVyZhPJZPJUF5ejvLycv9j69evx6OP/j//nz0eD5qampggijC2mBEREREREVFK2bp1C5599lkcOnRozOMejwc9PT2jHnc6nQGv+8c/PoGBgQH/n/v6+vDXv/7vqPMWL17s/zgzUz5qV67W1lY89tij47aPGY1GvP32W/jJT27G3r17/I/Pnj171EBqj8eD+++/D8eOja4k6urqGjO+YCIZ8/HjXVi37mHo9foRVUInG2u2ktM5FHbcFBgriIiIiIiIiCilWK09+Oc//4F//vMfUCqVmDNnLqZNmwaZTAq73QGDoWHUgGS5XI7s7OyA162vr8eNN34Pp522CG63Gzt2bIfVah1xjlAoxGWXXT7isRtu+A5qa2tHVOSsX78en376KSorq6BWq+H1etDd3Y0jR46gvb193Bi+970bcd999454rLW1FT/4wfdRVVWFgoICOJ0uHD16BI2NjdBqtfj+938Q8HmNJVIxO50ubNy4ERs3boRUKsXcuXORl5eHjIxMuFxOHDlyFAZDw6h1BQUFYcdMgTFBRERERERERCnLarVCr68Net7FF18MoXD8JhytVgubzQaj0Yj3398w7nlXXXUV5s2bN+KxsrIy/PCHPxyxkxcA9Pf348svtwWN7WRnnnkmrr7623j55X+OeNztdqO2tha1tcGfaygiGbPPwMAADAYDDAZDwPN0Oh0KC4smdA8aH1vMiIiIiIiIKKWEMifnZOeccw5uuOE7Ac+ZMWMG7r//V+POKAKA8847Hzfd9P0xj1155VW4++67oVAoQo5r7ty5UKtHz+G56aabcOuttyIjIyPka01EJGIO972YP38+7rnnl2GtodCwgoiIiIiIiIhSygUXXIB58+ZBr9ejqakJx44dhdlsht1uh0AggEwmw/TpM1BaWopzzjkHFRUVIV134cKF+Mtf/hevvPIKtm/fDpPJCIlEgqKiYlx66aVYtmxZwPWrVp2N008/Ax999BF27tyJAwf2o7e3FwMDA5BKpVCrNZg1aybKy8uxaNEizJ07b9xrXXTRxVi5chU2bdqE3bt34eDBg+jt7YXb7YZSqYRWOw1VVVVYunRpWK9dpGPOy8vDCy+8gF27dsNgMKCl5TCMRiNsNhvcbjekUik0Gg3mz5+PZcuWY/ny5RCJRJOKmcbGBBERERERERGlFIFAgJKSEpSUlET82lqtFmvWrMGaNWsmtF4qleKiiy7CRRddNOlYMjMzcfnll+Pyyy8Pa91LL/09rPMnG/OMGXm45JI8XHLJJRNaT5HBFjMiIiIiIiIiohTHBBERERERERERUYpjgoiIiIiIiIiIKMUxQURERERERERElOKYICIiIiIiIiIiSnHcxYyIiIiIiIgoDNOnT8emTZvjHQZRRLGCiIiIiIiIiIgoxTFBRERERERERESU4pggIiIiIiIiIiJKcZxBREQ0QQ67Ha3tbbBau+F2eyASCaFU5qAgvwAymSze4REREREREYWMCSIiojC5XE40NBrgGBxApiYb6sI8CEVCeNwe2Hv6Ud+wBzKJFGWlOojFafEOl4iIiIiIKCi2mBERhcHlcqJWr4cwS4Lc4gLIVVkQioa/lApFQshVWcgtLoAwS4JavR4ulzPOERMREREREQXHBBERURgaGg2QaRWQq7ICnidXZUGmVaCh0RCjyIiIiIiIiCaOCSIiohA57HY4BgeCJod85KosOAYH4HA4ohwZERERERHR5DBBREQUotb2NmRqssNak6lWoLWtNUoRERERERERRQYTREREIbJau5GRnRnWmgylHFZrd5QiIiIiIiIiigwmiIiIQuR2e/wDqUMlFAnhdnuiFBEREREREVFkMEFERBQi0Ymt7MPhcXsgCjOpREREREREFGv8qYWIKERKZQ7sPf1hrbFbbVAqc6IUERERERERUWQwQUREFKKCvHz0m3rCWtNv7kVBfkGUIiIiIiIiGnbdddfivPPOxdq1a6Ny/bo6Pc4771ycd965qKvTjzr+wgvP+49TchLHOwAiomQhy8iATCKFzdIX0lb3NksfZBIpZDJZDKIjIiIiiq+hoSE4nc54hxE1aWlpSE9Pn9Q16urqcMcdt/v//Nhjf0B5eflkQyOKCCaIiIjCUFaqQ61eDwABk0Q2Sx8cxl4sqKmJTWBEREREcTQ0NITrr78GFos13qFEjUqlxIsv/mNSSaJNmz445c+bmCCihMEEERFRGMTiNCyoqUFDowFdxh5kahTIUMohPDHA2m61od/UC5lUigU1NRCL0+IdMhEREVHUOZ1OWCxW/P3vP0FGhiTe4USc3T6Ia6/9E5xO54QTRIODg/j8888BADKZDA6HA5999il+8pOfTLoyKRHccMN3cMMN34l3GDQJTBAREYVJLE5DVUUVHA4HWttaYW5uh/vEbmVKpQrzyyvZVkZEREQpKSNDgszMqZcgioQtW76A3W4HAPzkJ2vwyCPr0NfXhy+//BJnnXVWnKMjYoKIiGjCZDIZigqL4h0GERERESWBTZs2AQDmzZuHCy64AK+88i8cO3YMmzZtYoKIEgITRERERERERERRZDabsXv3bgDAN77xDf//n3vuOezcuQNWqxVKpTLgNbZv344333wT+/c3YWBgABqNBqeffjquuupb0Gg0Icdy4MABvPfee6ir08NkMgEANBoNampqcOWVV6GgYGI78L7wwvN48cUXAQCbNm0e97yhoSGsX78eW7ZswZEjLejr64NcLsfcuXNx9tnn4Pzzz4dIJJpQDDQ5TBARERERERERRdFHH30Ij8cDoVCIc84ZThCdc8438Pzzz8PlcuHjjz/GFVdcMe76p576M1577bURj7W1teG1117Dhx9+iN/85rdBY/B4PPjLX57G66+/Dq/XO+JYa2srWltbsWHDBvzsZz/DxRdfMoFnGdzBgwdx3333oqura8TjVqsVtbW1qK2txXvvvYsHHvgNcnJyohIDjY8JIiIiIiIiIqIo2rx5uKKmqqraX+0zY8YMlJWVYd++fdi0adO4CaLXX3/NnxxSq9W4+upvo7S0FENDQ/jqq6/wxhuv4ze/eQCDg4MBY/jjH/+Id955GwBQWVmF888/HzNmzIBUKsHBg4fwxhuvo6WlBY899hhyclQ488wzI/X0AQwntG6//Tb09/cjIyMDl156GUpLS6HVatHb24tt27bhvffeRVNTE+6995d49NHHIBYzZRFLfLWJiIiIiIiIoqS5uRmHDh0C8HV7mc83vnEu9u3bhwMH9uPIkSOYPXv2iOPd3d3429/+BgDIzc3F448/AZVK5T9eVVWFRYsW4Re/uAtut3vcGHbt2uVPDt122+248MILRxwvKSnFueeei7vvvht6fS3+9KcnsXTp0oi2eq1duxb9/f0oLCzEQw/9HtnZ2SOOL1q0CKefvhT33HMPGhsb8cEHG3HRRRdH7P4UnDDeARARERERERFNVZs3Dw+nlkgkWLFixYhjK1euRFpaGgBg06YPRq3dtOkDDAwMAAB+9KMfjUgO+SxYsAAXXXRRwBhefvllAMCKFStGJYd80tPT8dOf/hQA0NXVBb1eH/Ca4dizZw8aGvYBAO68885RySGfxYuX+F+jjRtHvx4UXUwQEREREREREUWB2+3GRx99BAA4/fTTkZmZOeK4QqHAkiVLAAAfffQRPB7PiOO+wdZZWVk488xl495n9eoLxj3W39+P+vo6AMCKFYF3S5s9e7Y/edPQ0BDw3HBs27YVADBz5kzMnTsv4LmVlVUAgP37mwJWRVHkscWMiIiIiIiIKAp27tyB7u5uAMPtZGP5xje+gS1btsBoNEKv12PhwoX+Y4cPtwAA5s8vDNjuVVhYiLS0NDidzlHHmpub/YmnBx/8LR58MPhAawDo7raEdF4o9u/fDwA4duwYzjtv7NfhVC6XC729vRxWHUOsICIiIiIiIiKKgk2bhtvLFAoFFi9ePOY5S5eeDrlcDuDrdjSfvr5eAIBSqQx4H5FIhKysrDGPWa3WMCL+2sBA4KHX4ZhoDMEGb1NksYKIiIiIiIiIKML6+23Ytm0bAKC3txcXXjh+G5jPF198gZ/97D8hk8lGPC4QTDyOk9vWbrnlFpSVlYe0bryE02RimDdvPu66666Q1/l2fKPYYIKIiIiIiIiIKMI+/fRTDA0NhbXG4XDgiy++wHnnnQdgOEljsVjQ3W0NuM7tdqOvr2/MYwqFwv+xRCLF3Llzw4opErKyhmMYGHDE5f4UGiaIiIiIiIiIiCLM116mUqnx4x//OOj5//u/f4HRaMTmzZv8CaI5c+bCYrHg4MFmuN3ucecQHTx4cMz5QwAwf/58CAQCeL1e7Nu3F+eeG9oMoEgqLCxEQ8M+dHR0wGKxjLkbG8UfE0REREREREREEdTR0YF9+4a3dV+xYjnOPvvsoGsMBgPeeON16PV6mEwmaDQaLFy4ELt370JfXx+2bduG5cuXj7n2/fffH/e6SqUSOp0ODQ0N+Oijj/Cd73w36EyjSDvjjDPw9ttvwev14o03XsdNN30/pven0HBINREREREREVEEbd68CV6vF0DwreV9zjprBYDheT2bN28GAJx//vmQSCQAgKeffsq/I9rJ6urqsH79ewGvfc011wIA7HY7fv3rX8Nms4177tDQEN56662w2+MCWbRoEUpLSwEAr7zyCj799JOA5x8+fMg/v4lihxVERERERERERBHkS/AolUpUVlaGtKasrBwqlRoWixkffrgZV199NXJycvCd73wXf/nL0+js7MRPfnIzrr762ygtLcHQkBPbt3+F1157DRqNBoODg+PuFrZ06VJcccU38cYbr2PPnnrcdNONuOSSS1BeXgGFQoGBgQG0t7djz5492LLlC/T19eH888+P1MsBAPjFL/4HP/3pGvT19eE3v/kNNm/+EKtWrUJ+fj6EQiGsViuam5vx5ZfbYDAYcNVV38IZZ5wR0RgoMCaIiIiIiIiIKCLs9qm5LXk4z2vv3r1ob28HACxbthxCYWiNO0KhEMuWLcM777yNlpYW7N+/H8XFxfjWt76F48eP480334DJZMIf//jEiHXZ2dn45S9/iQceeCDg9W+++WZkZWXh739/CRaLBS+88MK450ql0pDjDlVeXh4ef/wJ/OpX96OlpQVffrkNX345fpVQRkZGRO9PwTFBRERERERERJOSlpYGlUqJa6/9U7xDiRqVSom0tLSg523evMn/8YoVK8K6x4oVK/DOO28DGB5yXVxcDABYs2YNFi1ahDfffANNTU0YHByERqPFkiVL8O///u/QarVBry0QCHD99dfj3HPPxbvvvgu9vhYdHR3o7++HVCqFVqtFYWEhTjvtNCxbttzf2hZJBQUFeOqpp/Hpp5/iiy8+R1NTE3p6euDxeJCVpcDMmQWoqKjAsmXLUVRUFPH7U2ACr68xkpLCTTfdiGeeeTbeYQAAHv/zU7jk3/8j3mEQEREREcXMu6/8C/95c/AdqRLV0aNH8dBDD+Guu+7CrFmzInrtoaGhcXfSmgrS0tKQnp4e7zCI/CL995kVRERERERERDRp6enpTKAQJTHuYkZERERERERElOKYICIiIiIiIiIiSnFMEBERERERERERpTgmiIiIiIiIiIiIUhwTREREREREREREKY4JIiIiIiIiIiKiFMcEERERERERERFRimOCiIiIiIiIiIgoxTFBRERERERERESU4pggIiIiIiIiIiJKcUwQERERERERERGlOCaIiIiIiIiIiIhSHBNEREREREREREQpjgkiIiIiIiIiIqIUxwQREREREREREVGKY4KIiIiIiIiIiCjFMUFERERERERERJTimCAiIiIiIiIiIkpxTBAREREREREREaU4cbwDICIiIiIiouQ3NDQEp9MZ7zCiJi0tDenp6RNe73a7sXXrFuzcuRMNDQ2wWq3o6+uDRCKBUqnE3LlzUVZWhhUrzsKMGTMiGDlRaJggIiIiIiIiokkZGhrCddddh+5uS7xDiZqcHBVeeumlCSWJtm7diqeffhrt7W2jjtntdtjtdrS3t2PLli343//9XyxduhQ33fR9zJ07NxKhR9zGjRuxbt3DAIAXX3wJ06dPj3NEFAlMEBEREREREdGkOJ1OdHdb8JvHnoVUlhHvcCJuwGHHPbfcCKfTGXaC6O9/fwnPP/88vF4vAKC6uhpLl56OefPmQaFQYHBwAGazBXv21OOrr75CZ2cnvvrqK2g0Wtxyyy1ReDZEY2OCiIiIiIiIiCJCKsuAbAomiCbq/fc34LnnngMA5OTk4O6770Z1dc2Y565cuRI33/wTfPLJJ3j22WdiFyTRCUwQEREREREREUXY8ePH8cQTTwAAMjIy8OijjyE/Pz/gGpFIhG984xtYunQp9uzZE4swifyYICIiIiIiIiKKsNdeexVDQ0MAgO9978agyaGTyeVynHHGGeMet1gsePPNN7Fz5050dnZgYGAASqUSOp0OF198MRYuPG3MdZ2dnbj++usAAHfc8XOsXr0au3btwptvvoGmpibYbDao1WosWrQI11xzLbRa7Yj1dXV63HHHHSMe813vZOvWrRtVKeVwOPDWW29i69ataG1txcDAALKzs6HT6XD++atx+umnB31drFYr3njjdX8r3tDQEFQqFSoqKnHJJRejoqIy6DVofEwQEREREREREUWQ1+vF5s2bAQxXD61evTpi1/7www/x2GOPYmBgYMTjRqMRRqMRn332GS644ELccsstEIlEAa/1zDN/xcsvvzzisc7OTrz77rv44osvsG7dI5g9e/akY25uPoB77rkHZrN5xOMmkwmff/45Pv/8cyxfvhy/+MX/jDvjaefOnXjggV/DbrePeLyrqwtdXV348MPNuPTSy7BmzRoIhcJJx5yKmCAiIiIiIiIiiqCWlsPo7e0FAFRUVEAmk0Xkup9++gl+//uH4PV6MWPGDFx22WWYNWs2lEolOjs78f77G7B9+3a8//4GZGZm4Mc/vnnca61fvx4NDftQVVWFiy++BAUFBbDZbNi8eRM2bdoEq9WKRx5Zh8cff8K/pri4BH/5y/9i69ateO65vwEAfve7h6BWq0dc++RdzUwmE+6880709fVBIBDg/PPPx6pVZ0OhUODIkSN49dVXcejQQXzxxRd4+OG1uPvue0bF2tzcjHvv/SWcTifEYjEuu+wynHHGGZBKpWhubsbLL7+Mzs5OvP32W5BKpfjBD34w2Zc6JTFBRERERERERBRBhw4d9n9cVFQUkWv29PTg0UcfhdfrxQUXXIBbbrl1RIVQUVERVqxYgWeffRb//Oc/8MYbb+Diiy/BzJkzx7xeQ8M+XHTRRbjlllshEAj8jy9cuBBisRgbNmyAwWBAc/MBFBYOPweZTIa5c+di//79/vMLCgoCbnP/pz/9CX19fQCAW2+9DRdeeKH/WHFxMVauXIm77/4f6PV6fPLJJzjvvPOxZMmSEdd47LFH4XQ6IRQK8cADv8GiRYv8x0pKSnHWWStx6623nEg4/R/OO+88zJkzJ4RXlU7GuisiIiIiIiKiCOrp6fF/nJ2tHPc8j8eDw4cPj/ufy+Xyn/vOO++gv78fGo0GP/vZf47bPvad73wHGo0GHo8HmzZtGvfeKpUaa9b8dERyyOdb3/p3/8d79uwN9FQDMplM2LLlCwDA4sWLRySHfNLT03H77Xf4n89bb7054nhjYyOampoAABdddNGI5JBPVlYWbrnlVgDDr+nbb7894ZhTGSuIiIiIiIiIiCLI4fh6To5UKh33PLvdjh/+cPx2qBdffMlfnbNt21YAwNKlp487pwcY3glNpyvD559/BoOhYdzzzjprxbjXmTlzJmQyGRwOBzo6Osa9RjD19XXweDwAgAsuGJ0c8pk+fToWLjwNO3ZsR319Pdxutz9htHv3bv95ga5RUVGBWbNm4ejRo6it3T3ueTQ+JoiIiIiIiIiIIkgmy/B/fOow6Ylwu904ePAgAOC9997Fe++9G9I6i8Uy7rHxWs985HI5HA7HiGRXuA4fbvF/XFpaGvBcna4UO3Zsx8DAADo6OlBQUABgeJ4TAKSlpaGwsDDgNUpLdTh69Cja2trgdDqRlpY24dhTERNERERERERERBGkUCj8H/f0WMc9Ty6XY9OmzSMeW7t2LTZt+mDEY319fXC73WHHMTg4OO4xiWT8yiYA/p3A3G5P2Pf18c0eAgClUhnw3Jwc1ZjrfB9nZWUF3ZVNpcoBMLyLnM1mQ05OTrghpzQmiIiIiIiIiIgiaP78ef6Pm5ubJ309X5sWAFx44YW44opvhrQukSpoxpp1FOYVIhIHjY8JIiIiIiIiIqIImjNnLhQKBXp7e7Fnzx4MDAwEnEUUTFZWlv9jrxeYO3duJMKMupPj7u7uxrRp08Y9t7v763a4k9f5Pu7r6x0xm2gsFks3gOFklFwun3DcqYq7mBERERERERFFkEAgwDe+cS6A4UHUp7aMhSstLc2/bfu+ffsmG96khVoNNHfuHP/HjY2NAc/1HZdKpZgxY4b/8TlzhpNhTqczaDVWU9PwNfLz8xOqeipZMEFEREREREREFGFXXXWlf5ewZ555ZlK7gQHA6aefAQA4duwoduzYMen4JiM9/evki9PpHPe8qqpq/yyj999/f9zzjh/v8u9WVlVVNaJKaOHChf6PN24c/xoNDQ04cuQIAGDBgoXjnkfjY4KIiIiIiIiIKMKmTcvFmjVrAAD9/f249dZbsHfvnoBrvF4v+vttYx775je/CZlMBgBYt24dWlpaAl7rq6++xKFDh8IPPAQqldr/cXt7+7jnaTQaLFu2HACwY8d2fPDB6Eoqp9OJdevWweVyAQAuu+zyEcdLS0tRXFwMAFi/fv2Ibe99+vtteOyxRwEMD9f+t3/7t/CeEAHgDCIiIiIiIiKiqLjooothMpnw4osvwmw249Zbb0VNzQKcccbpJ+YUZcHt9qC7uxsHDhzAZ5996k/8CIVCiMVf/8iek5ODn//8TjzwwK9hsZixZs1PcP7552Px4iXQarVwuVwwmYxobGzC559/ho6ODjzwwG8wb968caKbuMLCQqSnp2NoaAjPP/8cxGIxcnNz/a1nGo0GEokEAHDzzTdDr69FX18fHnlkHfbu3YNVq1ZBLs/CsWPH8H//9woOHjwIAFi5ciWWLFky6n633nob/vM/fwan04l77rkbl112OU4//XRIpVIcPNiMl19+2V+hddVV30qaGU2JhgkiIiIiIiIiiogBhz3eIUTFZJ7XDTd8B/Pmzcdf/vI0Ojo6oNfXQq+vHfd8gUCARYsW4Qc/+CE0Gs2IYytWrMCvfvVrPPzwWvT19eHdd9/Fu+++O+Z1hELhpAZjB5KRkYHLL78Cr7zyLxw4cAB33fXfI46vW7cO1dU1AACtVou1a9finnvugdlsxoYNG7Bhw4ZR11y+fDnuvPO/Rz0ODCekfv3rB/DAA7+G3W7Hq6/+H1599f9GnXfppZfhpptumvwTTFFMEBEREREREdGkpKWlISdHhXtuuTHeoURNTo5qwoOPly9fjjPOOANffPEFdu7cCYOhAVarFTabDRKJBAqFAnPnzkVZWRlWrlw1Ykjzqc444wy8+OJLWL9+PbZv344jR1rQ19cHkUiEnJwczJkzBzU1NVix4qyAu4ZN1ve//33k5+dj8+ZNaGlpQX9/Pzwez5jnFhYW4W9/ew5vvfUmtmzZgtbWVgwODkKhUECn0+H881fjjDPOCHi/RYsW4fnnX8Drr7+O7du/QkdHB5xOJ3JyclBZWYlLLrkEFRWV0XiqKYMJIiIiIiKiJOew29HW3o5uqxUetwdCkRA5SiXy8/P9M0uIoik9PR0vvfRSwIHFyS4tLc0/dHoiRCIRVq5ciZUrV046lszMTHzrW9/Ct771rbDWTZ8+HZs2bQ7p3Jde+nvA4wKBABdddBEuuuiikK4nk8lw9dXfxtVXfzuk88eiVCpx44034sYbp24iMp6YICIiIiIiSlIulxOGxiYMDg1Bo52OIt1MCIUieDxuWC1m7DMYIElPh660BGIxt3ym6EpPT59UAoWI4iulE0Rr167Fpk2jp6if7L331o/4Irdx40asW/dwwDUPPvggFi8ePViLiIiIiChSXC4n9Po6aHPzoNLkjjgmEoqh1uRCrcmFxdQFfV09aqqrmCQiIqJxpXSCyKe8vBx5efljHhMKhWM+npeXh/LyijGPnTpIjIiIiIgo0gyNTWMmh07lO25obEJlxdjfvxIRETFBBODCCy/C6tWrw1pTXl6BO++8M0oRERERERGNz2G3Y3BoKGhyyEelyYXR2AmHw8GZRERENKaxy2OIiIiIiChhtbW3Q6OdHtYajXY62traohQRERElOyaIiIiIiIiSTLfVCqVKHdYapUqNbqs1OgEREVHSY4sZgLo6PQ4fPgyHww6FQoGSklIsWbIk4AT+9vY2/O1vz8JqtUImk2HOnDk444wzkZ2dHcPIiYiIiCgVedweCIWisNYIhSJ43J4oRURERMmOCSIAmzZtGvWYSqXGHXfcPu5uZPv27cO+fftGPJae/gSuv/4GXH311VGJk4iIiIgIAIQiITweN0TC0L+d93jcEIrYQEBERGNL6QTR/PnzUFS0BgsWLMC0adMwODiIQ4cO4YUXXkBDwz7ce++9eOihh1BdXeNfo1Ll4JprrsEZZ5yJGTNmIC0tDceOHcNbb72JzZs345ln/gqPx4Nrrrkmfk+MiIiIiKa0HKUSVosZ6hCHVAOA1WJGjlIZvaCIiCippXSC6Morrxrx54yMDJx22mlYuHAh7r//PmzduhV/+tOf8fTTT/vPWbx4yaiqopKSEtx5539j3rz5ePrpp/DSSy/iwgsvRE5OTsixPPnkk3jyySeDnldaWhLyNYmIiIhoasrPy8O+xsawEkQmYyfKdbooRkVERMmMNaZjEAgEuOGG7wAADh06iOPHj4e07oorrkB2djacTid27twZ1j3XrFmDhoaGoP+Fk3QiIiIioqlJlpEBSXo6LKaukM63mLogSU/nFvdERDQuJojGMWvWLP/HJpMppDUikQj5+fkn1hijEhcREREREQDoSktgPN4RNElkMXXBeLwDOlaiExFRACndYhZIb2+v/+NwftPiWyeTZUQ8JiIiIiIiH7E4DTXVVTA0NsFo7IBGOwNKlXp4tzKPG1aLGSZjByTpEtRUV0EsTot3yERElMCYIBrHJ598DGB4LtHMmTNDWnPgwAG0trYCAEpLS6MWGxERERERMJwkqqyogMPhQFtbGw4Y2uFxeyAUCaFSKlGuK2NbGRERhSRlE0TNzc04fvw4li5dCpFI5H/c4/Fg48aNePbZZwEMzxUSi4dfpoGBAWzcuBHnnXceMjJGVgjV19fj4YfXAgAqKiqYICIiIiKimJHJZCgsLIx3GERElMRSNkHU1dWF+++/D1lZWSgsLEROTg5sNhtaWlr8Q6nPPvtsXH/9Df41LpcLf/zjE3j66adQWFiIadOmwe12o7W1FS0tLQCAuXPn4p57fhmPp0RERERERERENCEpmyCaN28evvnNb2L//v04duwY9u3bB6/Xi5ycHKxYcRZWr16NpUuXjlgjkUhw7bXXnVhzFEeOHMHg4CCysrKwcOFCnHXWWTj//NVIS2N/NxERERERERElj5RNEM2YMQM33/yTsNakpaXhu9/9bnQCIiIiIiIiIiKKE25zT0RERERERESU4pggIiIiIiIiIkpQnZ2dOO+8c3Heeedi48aNE77O8IZLw9fp7OyMYIQ0VaRsixkRERERERFFztDQEJxOZ7zDiJq0tDSkp6dPeL3T6cTnn3+OHTu2o6mpCVarFXa7HZmZmcjNzUVJSQlWrFiBmpoFEApZy0GxxwQRERERERERTcrQ0BCuue4a9HRb4x1K1GTnKPGPl/4xoSTR559/jr/85ekxK3d6e3vR29uLAwcO4N1330VBQQF+/OMfY+nS0yMRdtJ44YXn8eKLLwIANm3aHOdoUhMTRERERCc47Ha0trfBau2G2+2BSCSEUpmDgvwCyGSyeIdHRESUsJxOJ3q6rfjmb7+PNOnEq2wSlXNgCK/f/Vc4nc6wE0QvvfQSnn/+Of+fFy48DWeccQZmz54NuVyOvr5eHDvWii+/3Ibdu3ejtbUVzz77t4gniFavXo3Vq1dH9Jo0tTBBREREKc/lcqKh0QDH4AAyNdlQF+ZBKBLC4/bA3tOP+oY9kEmkKCvVQSxOi3e4RERECStNmo50mSTeYSSM999/358cUiqVuOeeX6K6unrUeQsXnobLLrsMhw8fxlNP/RlWa0+MIyVigoiIiFKcy+VErV4PmVaB3NmaEceEIiHkqizIVVmwWfpQq9djQU0Nk0REREQUlMlkwpNP/hEAIJVK8cgj/w+zZs0KuGbu3Ln43e8ewkcffRSLEIlGYIKIiIhSWkOjATKtAnJVVsDzfMcbGg2oqqiKRWhERESUxF577TUMDAwAAL7zne8GTQ75CIVCnHvuuQHP2bVrF9588w00NTXBZrNBrVZj0aJFuOaaa6HVasdcs3HjRqxb9zAA4MUXX8L06dNHHL/99ttQX1+PqqoqPPLI/4PJZMKrr/4ftm3bBpPJBIlEguLiYnzzm1diyZIl48bmdruxefNmfPzxRzh06BD6+vqQnp4OpTIH06ZNw4IFC7Bs2TLMnj17VFw+5503+vmfHPOpsba2tuKNN97Azp07YTabMDg4OOJ8s9mMLVu+gF6vx8GDh2CxmOF2u6FQKFBcXIxzzjkHZ521ctzh4HV1etxxxx0AgHXr1qGysgrvv78BGzduxLFjx+B0OpGXl4dVq1bhyiuvmtQw83higoiIiFKWw26HY3BgVOXQeOSqLHSZeuBwODiTiIiIiMbl9XqxadMHAIarhy666KKIXfuZZ/6Kl19+ecRjnZ2dePfdd/HFF19g3bpH/MmXidq7dy/uv/8+9PR83eo2NDSEXbt2YdeuXfjhD3+Ib33r30etczgcuPvu/8GePXtGPO5yuWC329He3ga9vhbNzQdw7733TSpGn61bt+B3v/udPxl3KrfbjWuu+TY8Hs+oY2azGdu2bcO2bduwYcP7uP/++4N+j+d0unDPPXdjx44dIx4/dOgQDh06hA8//BBr1z4MlUo18ScVJ0wQERFRymptb0OmJjusNZlqBVrbWlFUWBSlqIiIiCjZtbS0+JMrlZWVyMjIiMh1169fj4aGfaiqqsLFF1+CgoIC2Gw2bN68CZs2bYLVasUjj6zD448/MeF7WCwW3H//fRAIBLjppu+joqICaWli7N27Fy+99BJsNhueeeYZLF68BHPmzBmx9oUXXvAnh04//XScc843MG3aNKSnp8Nq7UZzczO+/PIrAAL/mmXLlqG4uBjvvPM23nnnHQDAX/7yv6Pi0mhG/0Lv+PHjeOihhyCVSnHttdehsrISQqEQTU1NoxI9NTULsGTJYsyZMxdKpRJ2ux0dHR3YsGE9GhoasHv3LjzxxOO4887/Dvj6PPfc39DU1ITTTjsN//Zvl0Kr1cJoNOLtt9/G7t27cOTIEfzyl/fg8cefgEgkCuUlTxhMEBERUcqyWruhLswLa02GUg5zc3uUIiIiIqKp4NChQ/6Pi4oi90ulhoZ9uOiii3DLLbdCIPg6ybJw4UKIxWJs2LABBoMBzc0HUDjBX2a1trYiNzcXjz32hxFJmZKSUpSUlOC2226D2+3Ge++9hzVr1oxY++mnnwAAVqw4C/fee++oay9evATf/vY16O3t9T8ml8shl8uhVCr9j82dOzekWDs7O6FWq/H4449j2rRc/+M6nc7/sVAoxLPP/g35+fmj1ldXV+OCCy7A888/j5deehGbN2/GNddci4KCgnHv2dTUhIsvvhi33HKr/7Hi4mIsW7YMjzzyCN5/fwP279+P9957F5deellIzyNRjN1gR0RElALcbg+EovD+KRSKhHC7R5coExEREfmcnABRKnMidl2VSo01a346Ijnkc3LL1549eyd1nzVrfjpmxU5FRSVKS0sBAHv37hl1vLu7G8Bw1VQgCoViUvGd7Kabvj8iOXQqgUAwZnLoZNdddx2ys7Ph9Xqxbdu2gOfm5OTgxz++ecxjP/nJT/yJLl81VDJhgoiIiFKW6MRW9uHwuD0QhZlUIiIiotRit9v9H0ul0ohd96yzVow7AHnmzJn+tqqOjo4J30Mul2Pp0qXjHi8qKh73Hr65O5988sm4M4EiKS0tDStXrgxrjcfjgclkwrFjx3D48GEcPnwYR48e9SfEDh06GHD9ypUrx31PZTIZzjprOJ6WlhZYLJawYos3tpgREVHKUipzYO/pD7qD2cnsVltEfxNIREREU8/JM4cimSiZOXNmwONyuRwOhwMOhz3geYHk5+ePu5sXAGRlDX/f5HA4Rh0777zz8fe/v4SGhn24/vrrcNZZK7FgwQJUVFSMaCGLlPz8/JB2DPN6vfjwww/x/vsb0NjYiMHBwXHP7enpHfcYABQXlwQ8XlpagrffHv748OHDSTWsmgkiIiJKWQV5+ag37A0rQdRv7sX8ssBl00RERJTaTm6h8rVdRYJEErgayZfYmUw7vEQiCXKP4fa2sXYFu+6662A2m7Bx40ZYrVa8/fZbePvttwAAc+bMwfLlK3DppZciJycyv2yTy+VBzxkaGsL999+PHTu2h3TNoaHxk0cAgia6Tv5FYl9f4GRTomGCiIiIUpYsIwMyiRQ2S19ISSKbpQ8yiZRb3BMREVFA8+bN83/c3HwgjpHEllgsxu2334GrrvoWPv74I9TW6nHgwH44nU60tLSgpaUFr732Ku666y6ceeaySd8vUKWTzz/+8Xd/cqiqqgqXXnoZioqKkJOTA4lE4r/Gbbfdij179sDr9Qa83ljzn6YKJoiIiCillZXqUKvXA0DAJJHN0geHsRcLampiExgRERElrTlz5iA7Oxs9PT3Ys2cP+vv7kZmZGe+wYmb27Nn47ne/h+9+d7iCZ+/ePfjoo4+wadMmOBwOPPjgg3j++RegVqujGofX68WGDRsADA/OfvjhdeMmlfr6+kK6ZrCKMKv16+NZWZEbxh0LnLJJREQpTSxOw4KaGnj6BtHV1Aqbudc/uNrj9sBm7kVXUys8fYNYUFMDsTgtzhETERFRohMIBDjvvPMBDM8g8iUpUlF6ejoWLjwNd9zxc/zwhz8EAAwODuKrr74ccV40KnP6+nr9g6LPOuuscZNDDocDx44dC+ma+/c3BTze1PT18Tlz5oQWaIJggoiIiFKeWJyGqooqVJVXQuISwdzcjs6GozA3t0PiEqOqvBJVFVVMDhEREVHIrrzySv9uV88//xyOHj0a0jqPx4MPP/wwmqHFzYIFC/0f9/T0jDiWlvb1sOmhoaGI3O/kWUyBhoVv2LAebrc7pGt+9tln4w65djgc+PTTTwEMV1FFu0Iq0pggIiIiOkEmk6GosAiLFy3B6UtPx+JFS1BUWMiZQ0RERBQ2jUaDNWt+CmA4OXH77behrq4u4JojR47gF7/4BV555ZVYhBhRvb292LZtW8AZPrt27fR/PH36jBHH1Oqvd/vq6OiISEzZ2dn+QdYff/zxmImnpqZGPPfccyFf02Kx4Omnnxrz2NNPPwWr1QoAuOSSfws73njjDCIiIiIiIiKiKLjgggtgMpnw/PPPwWq14o47bsdpp52GM888E7NmzYZcnone3j60tbXiq6++wo4dO+DxeDBv3vx4hx42u92Oe+/9JaZPn45ly5ZDpyvFtGm5EIlEsFgs+PLLbf5WO41Gg9NPP33E+rKycv/Hf/7zn3DNNddCpVL5W8+mT58OkUgUVkxCoRDnnPMNvP32Wzh06BBuvfUWXHnlVcjPz0d/fz+2b9+Od955GzKZDGq1Gq2trUGvWVxcjHfeeQednZ245JJLoNVOg9F4HO+88w527hxOgBUWFuLf/o0JIiIiIiIiIkpRzoHItAYlmsk8r+uuuw6zZ8/GX/7yNDo7O7Fr1y7s2rVr3PPnzJmDH/zgBxO+X7x1dnbitddeHfe4SqXGr37161EV2vn5+Vi5ciU+/fTTMV+jF198CdOnTw87nhtv/B727duLgwcPYv/+/fjd7x4ccTwrKwv33nsfnn/+uZASRN/73o149dX/w44dO7Bjx45Rx2fOnIUHHvhN2MmsRMAEERERUZJw2O1obW+D1doNt9sDkUgIpTIHBfkFbIMjIqK4SktLQ3aOEq/f/dd4hxI12TlKpKVNbB7hihUrcPrpp+Pzzz/D9u07sH9/E6xWK+x2OzIyMjB9+nSUlupw1llnobq6Oim3Us/NzcUf//hHbN++Hfv27cPx48fR3d0Nh8MBuVyOWbNm44wzTsdFF1087o5ud931CxQXF+Pzzz/HsWPH4HA44PF4xjw3VJmZcjz22B/w2muv4tNPP0VbWxtEIhG0Wi2WLl2KK674JrRabcjXS0sT47e/fRDr17+HTZs24dixY3C5XJgxYwZWrlyFq666ChKJZFIxx4vAG6hBkBLOTTfdiGeeeTbeYQAAHv/zU7jk3/8j3mEQEU15LpcTDY0GOAYHkKnJRkZ2JoQiITxuD+w9/eg39UAmkaKsVMdB2kREUfbuK//Cf97843iHMWFHjx7FQw89hLvuuguzZs2K6LWHhobgdDojes1EkpaWhvT09OAn0pRTV6fHHXfcAQBYt24dqqtr4hvQCZH++8wKIiIiogTmcjlRq9dDplUgd7ZmxDGhSAi5KgtyVRZslj7U6vVYUFPDJBFNeQ67HW3t7ei2WuFxeyAUCZGjVCI/P5/VdERxlJ6ezgQKURJjgoiIiCiBNTQaINMqIFdlBTzPd7yh0YCqiqpYhEYUcy6XE4bGJgwODUGjnY4i3UwIhSJ4PG5YLWbsMxggSU+HrrSEiVIiIqIwcZt7IiKiBOWw2+EYHAiaHPKRq7LgGByAw+GIcmREsedyOaHX10GRrUKJrhpqTS5EQjEEEEAkFEOtyUWJrhqKbBX0dfVwuaZumwsREVE0MEFERESUoFrb25CpyQ5rTaZagda24DtwECUbQ2MTtLl5UGlyA56n0uRCO20GDI1NMYqMiIhoamCCiIiIKEFZrd3IyB57l4/xZCjlsFq7oxQRUXw47HYMDg0FTQ75qDS5GBwaYjUdERFRGDiDiIiIKEG5TwzfDYdQJITbPbntYIkSTVt7OzTa6WGt0Wino62tDYWFhVGKioiIUkV1dQ02bdoc7zCijhVERERECUp0Yiv7cHjcHojCTCoRJbpuqxVKlTqsNUqVGt1Wa3QCIiIimoL4HSQREVGCUipzYO/pD2uN3WqDUpkTpYiI4sPj9kAoFIW1RigUhZ1gJSIiSmVMEBERESWogrx89Jt6wlrTb+5FQX5BlCIiig+hSAiPxx3WGo/HHXaLJhERUSrjv5pEREQJSpaRAZlECpulL6TzbZY+yCRSyGSyKEdGFFs5SiWsFnNYa6wWM3KUyugERERENAUxQURERJTAykp1cBh7gyaJbJY+OIy9KCvVxSgyotjJz8uDydgZ1hqTsRP5+flRioiIiGjqYYKIiIgogYnFaVhQUwNP3yC6mlphM/f656p43B7YzL3oamqFp28QC2pqIBanxTliosiTZWRAkp4Oi6krpPMtpi5I0tNZTUdERBQGbnNPRESU4MTiNFRVVMHhcKC1rRXm5na4T+xWplSqML+8kj8I05SnKy2Bvq4eAKDS5I57nsXUBePxDtRUV8UqNCIioimBCSIiIqIkIZPJUFRYFO8wiOJCLE5DTXUVDI1NMBo7oNHOgFKlHt6tzOOG1WKGydgBSboENdVVrKYjIiIKExNERERERJQUxOI0VFZUwOFwoK2tDQcM7fC4PRCKhFAplSjXlbGajoiIaIKYICIiIiKipCKTyVBYWBjvMIiIiKYUJoiIiIimEIfdjtb2Nlit3SfNKcpBQX4BKyuIiIiIaFxMEBEREU0BLpcTDY0GOAYHkKnJhrowD0KREB63B/aeftQ37IFMIkVZqY6zWYiIiIhoFCaIiIgiiNUbFA8ulxO1ej1kWgVyZ2tGHBOKhJCrsiBXZcFm6UOtXo8FNTVMEhERERHRCEwQERFFAKs3KJ4aGg2QaRWQq7ICnuc73tBoQFUFtwAnIiIioq8J4x0AEVGy81VvCLMkyC0ugFyVBaFo+Murr3ojt7gAwiwJavV6uFzOOEdMU4nDbodjcCBocshHrsqCY3AADocjypERERERUTJhgoiIaJLCqd6QaRVoaDTEKDJKBa3tbcjUZIe1JlOtQGtba5QiIiKiRCYUDv8I6PV64xwJEU2W7++x7+/1ZDFBREQ0CazeoHizWruRkZ0Z1poMpRxWa3eUIiIiokSWkZEBAOju5r8DRMnO9/c4MzO87wXHwxlERESTMJnqjaLCoihFRanE7fb4WxpDJRQJ4XZ7ohQR0cQ57Ha0tbej22qF58Tndo5Sifz8fA76J4qQnJwc5OXNwI4d21FTUxPvcIhoEnbs2I78/DwolcqIXI8VREREk8DqDYo30Ylh6OHwnNhhjyhRuFxO7Nm7F/saGyGWZKBIVwld1UIU6SohlmRgn8GAPXv3coYbUQQIBAIsX74cdXV1+OKLL+IdDhFN0Oeff466ujosX74cAoEgItdkBRER0SSweoPiTanMgb2nP+Q2RwCwW21QKnOiGBVR6FwuJ/T6Omhz86DS5I44JhKKodbkQq3JhcXUBX1dPWqqq7gbJNEkrVhxFjo7u/CPf/wDO3ZsR3l5BWbPngWpVBaxHzSJKLK8Xi8GBhw4cuQo9u3biwMHmrFy5UosX74iYvdggoiIaBJ81RvhJIlYvUGRVJCXj3rD3rASRP3mXswvq4xiVEShMzQ2jZkcOpXvuKGxCZUVFbEIjWjKEolEuPrqqzF//nzs3LkDGzasx+DgULzDIqIQSCTpKC4uxve+9z0sXrw4otdmgoiIaBJYvUHxJsvIgEwihc3SF9Lnoc3SB5lEynkulBAcdjsGh4aCJod8VJpcGI2dcDgc/BwmioDFixdj8eLFcDqdsFqtGBgY4O5mRAlKIBBAKpVCqVQiLS06lbRMEBERTQKrNygRlJXqUKvXA0DAz0WbpQ8OYy8WcCgpJYi29nZotNPDWqPRTkdbWxsKCwujFBVR6klLS4NWq413GEQUZ+xxICKahJOrN0LB6g2KBrE4DQtqauDpG0RXUyts5l7/4GqP2wObuRddTa3w9A1iQU0N57dQwui2WqFUqcNao1Sp0W21RicgIiKiFMYKIiKiSWL1BiUCsTgNVRVVcDgcaG1rhbm5He4T866UShXml1cyMUkJx+P2QCgUhbVGKBSFvXMfERERBccEERHFhcNuR2t7G6zW7pN+iM1BQX5B0v0Q66veaGg0oMvYg0yNAhlKOYQnBljbrTb0m3ohk0pZvUFRJ5PJUFRYFO8wiEIiFAnh8bghEob+LanH4w5790giIiIKjgkiIoopl8uJhkYDHIMDyNRkQ12Y93Uipacf9Q17IJNIUVaqS6pECqs3iIjCl6NUwmoxQx3ikGoAsFrMyFEqoxcUERFRimKCiIhixuVyolavh0yrQO5szYhjQpEQclUW5Kos2Cx9qNXrk7LahtUbREShy8/Lw77GxrASRCZjJ8p1upDOddjtaGtvR7fVOtzOJhIiR6lEfn4+k/ZERESnYIKIiGKmodEAmVYRdMcv3/GGRgOqKqpiERoREcWBLCMDkvR0WExdIW11bzF1QZKeHjS543I5YWhswuDQEDTa6SjSzRyeXeRxw2oxY5/BAEl6OnSlJUn3iwgiIqJoYQM3EcWEw26HY3Ag5O3g5aosOAYH4HA4ohwZERHFk660BMbjHbCYugKeZzF1wXi8A7rSkoDnuVxO6PV1UGSrUKKrhlqTC5FQDAEEEAnFUGtyUaKrhiJbBX1dPVwuZySfDhERUdJiBRERxURrexsyNdlhrclUK9Da1sqWLaIUM5WG2FNwYnEaaqqrYGhsgtHYAY12BpQq9YiKH5OxA5J0CWqqq4JW/Bgam6DNzQtakeQ7bmhsQmVFRcSeDxERUbJigoiIYsJq7Ya6MC+sNRlKOczN7VGKiIgSzVQdYk/BicVpqKyogMPhQFtbGw4Y2v0zg1RKJcp1ZSElBx12OwaHhkJqVwOGk0RGYyccDgeTj0RElPKYICKimHCf+EY/HEKREG63J0oREVEiSYUh9hScTCZDYWHhhNe3tbdDo50e1hqNdjra2tomdV8iIqKpgDOIiCgmRCeqAMLhOdFaQkRTXzhD7GVaBRoaDTGKjJJJt9UKpUod1hqlSo1uqzU6ARERESUR/uRFRDGhVObA3tMf1hq71QalMidKERFRouAQe4oUj9sDoVAU1hqhUBT2LzCIiIimIiaIiCgmCvLy0W/qCWtNv7kXBfkFUYqIiBLFZIbYE51MKBLC43GHtcbjcYfdAk1ERDQV8V9DIooJWUYGZBIpbJa+kM63Wfogk0g5NJQoBVit3cjIzgxrTYZSDqu1O0oRUbLKUSphtZjDWmO1mJGjVEYnICIioiTCBBERxUxZqQ4OY2/QJJHN0geHsRdlpboYRUZE8cQh9hQp+Xl5MBk7w1pjMnYiPz8/ShERERElD+5iRkQxIxanYUFNDRoaDegy9iBTo0CGUv71NtZWG/pNvZBJpVN+hyKH3Y7W9jZYrd1wnxjGrVTmoCC/gFVTlHJ8Q+zDSRJxiD2NRZaRAUl6OiymrpC2ureYuiBJT+fXXSIiIjBBREQxJhanoaqiCg6HA61trTA3t5+UIFFhfnnllP5G3eVyoqHRAMfgADI12VAX5n2dIOvpR33DHsgkUpSV6qZ0gozoZL4h9qEOqQY4xJ7Gpystgb6uHgACJokspi4Yj3egproqVqERERElNCaIiCguZDIZigqL4h1GTLlcTtTq9ZBpFcidrRlxTCgSQq7KglyVBZulD7V6/ZSvoiLyKcjLR71hb1gJon5zL+aXVUYxKkpWYnEaaqqrYGhsgtHYAY12BpQq9fBuZR43rBYzTMYOSNIlqKmu4tdZIiKiE5ggIiKKkYZGA2RaRdAfgn3HGxoNqKrgb7Zp6jt5iH0oSSIOsadgxOI0VFZUwOFwoK2tDQcM7f42RpVSiXJdGT9/iIiITsEEERFRDDjsdjgGB0ZVDo1HrspCl6kHDoeDP8RQSigr1aFWrweAgEki3xD7BTU1sQmMkppMJkNhYWG8wyAiIkoKnO5IRBQDre1tyNRkh7UmU61Aa1trlCIiSiy+IfaevkF0NbXCZu6F58QuZR63BzZzL7qaWuHpG2T7JREREVEUsIKIiCgGrNZuqAvzwlqToZTD3NwepYiIEk+qD7EnIiIiiicmiIiIYsAd5hbewPDgaveJCopocdjtaG1vg9XafdIP4jkoyC/gD+IUN6k4xJ6IiIgo3pggIiKKAdGJrezDSRJ5TiRsosHlcqKh0QDH4AAyNdlQF+ZBeCJGe08/6hv2QCaRoqxUx1YeIiIiIqIUwBlEREQxoFTmwN7TH9Yau9UGpTIn4rG4XE7U6vUQZkmQW1wAuSrLn7gSioSQq7KQW1wAYZYEtXo9XC5nxGMgIiIiIqLEwgoiIqJThNp2Fc55LpcLvWZrSFt4+/SbezG/rDKizw0AGhoNkGkVQWPxHW9oNKCqoiricRBRYnPY7Whrb0e31eqvgMxRKpGfn88WVCIioimICSIiohNCbbsqnl+M/Qf3h32eyCGGzdwLuVoRNBabpQ8yiTTiP4Q57HY4BgeQO1sT0vlyVRa6TD1wOBz8gZAoRbhcThgamzA4NASNdjqKdDMhFIrg8bhhtZixz2CAJD0dutIStqASERFNIUwQERHh67YrmVYxKnnia7uSq7LQZ+rBzt07oSzQBjzPZunDzt07kZ2n9p8ny85E1/5WQADIVeMniWyWPjiMvVhQUxPx59na3oZMTXZYazLVCrS2tXJoMFEKcLmc0OvroM3Ng0qTO+KYSCiGWpMLtSYXFlMX9HX1qKmuYpKIiIhoiuAMIiIihN525ejphzJfE1J7ljJfg4GT5g6JRELkFhfA0W1DR+NR2My98JzYpczj9sBm7kVXUys8fYNYUFMTlR+6rNZuZGRnhrUmQymH1dod8ViIKPEYGpvGTA6dSqXJhXbaDBgam2IUGREREUUbK4iIKOWF2nblHHTC7XKH1CIGAHK1An2mHjgHnUiTDCd7RCIhtPPz4Bx0os9oRe/xbni9XnhdHmg0GlSVV0a1lcsd5k5qwHBllPtEIouIpi6H3Y7BoaGgySEflSYXRmMnW1CJiIimCCaIiCjlhdp21We0IksbXntWliYbfUYrVAXaEY+nSdJGPGYz90LkEkX9hyzRiVlJ4SSJPCcGcBPR1DDe8GmXywWNdnpY19Jop6OtrQ2FhYVRipaIiIhihQkiIkp5Vms31IV5Qc8b6LNDOUMd1rUzlHL0Hg/enpWhlMPc3B7WtSdCqcyBvac/rN3U7FYblMqcKEZFRLEQbPi02dyKgcEhKHPUEIlC+xZRqVLjgCH6X7uIiIgo+pggIqKUF2rbldfrnVB7ltfrDem8WLRxFeTlo96wN6wEUb+5F/PLKiMWg8NuR2t7G6zWbrhPVCcplTkoyC9gmwpRlIQ6fNps6sIBwx4UlVZCJA7+baJQKPLPUiMiIqLkxgQREaW8UNuuBALBhNqzBAJBSOfFoo1LlpEBmUQKm6UvpCSRzdIHmUQakcSNy+VEQ6MBjsEBZGqyoS7Mg/DEa2/v6Ud9wx7IJFKUleq4KxJRhIU6fFp94njL4f2YX1QW9LoejzvsxDkRERElJv6LTkQpz9d2FYw0KwP2HltY17ZbbZBmZYR0XqzauMpKdXAYe2Gz9AU8z2bpg8PYi7JS3aTv6XI5UavXQ5glQW5xAeSqLP8PlUKREHJVFnKLCyDMkqBWr4fL5Zz0PYloWLjDp9WaXDidQxgYdAQ912oxI0epnGSERERElAhYQUREU8Jk2pZCabtyDjrhcXvQ3WpET6cFAoEA0qwMZGmV/h3KxtJn6oFmTvChr5Fu4wpELE7DgpoaNDQa0GXsQaZGgQyl/OtqHqsN/aZeyKRSLKipiUg1T0OjATKtImjVku94Q6MBVRVVk74vEQFt7e1hD5/WTpsBY1cHZs6aF/A8k7ET5brJJ5GJiIgo/pggIqKkFom2pUBtV263B+aWTrhdbmRps6Eq0J50fRtMLZ0Qi0VQzZk+qkXMZu6FWCwKmEACItvGFSqxOA1VFVVwOBxobWuFubn9pMSaCvPLKyMWj8Nuh2NwALmzNSGdL1dlocvUw62ziSKk22pFkW5mWGuUKjWMnYGHT1tMXZCkp/PvKRER0RTBBBERJS1f25JMqxiVfPC1LclVWbBZ+lCr1weshikr1aFWrwfwdRWL2+1B1/5WKHKVkKsUY1xfAblKAZulF137W5FbXOBPEtksfbC2mZCdF3jXM18b14Kamgm8ApMnk8lQVFgU1Xu0trchU5Pt/7Nz0Ik+oxUDfXZ4vd4xq7Ey1Qq0trVGPbZEwcHdFCljbWHvdDohFIrCuo5QKILbM/7waYupC8bjHaipnhqVfmO9bjlKJfLz8/l3kIiIUgYTRESUtCLZtjRW21V/dx8U00Ynh0ZfXwF4AVNLBzKVWf72rEULF2H/wf3oMrfGpI0rUVmt3VAX5o2qxlLOUI9bjZWhlMPcPPW3zubgboqUQFvYN+7Vw+NxQyQM/ds+j8cNt9sFs6kLSpXafy2rxQyTsQOSdAlqqquS/vMy0OtmtZixz2CAJD0dutKSpH+uREREwTBBRERJKRptSye3XbUcaYF7yAW5OnByyH99tQK9Xd0QD3hRdVJ7VqzauBKZ2+2BF1507W8LoxorH+4pvnV2JCvgKLUF28JeoVTBajH7dygLhdVihlqthmvQjgOGdn9VjUqpRLmubEp87Qr2uqk1uVBrcmExdUFfVz8lEmJERESBMEFEREnp1LalUITatiSTySAWi6GYrgrr+orcHIhcolE/OMWijSsRjNcmJRAIYDrcOWZy6FS+46aWzlEznaYaDu6mSAm2hb02dwZaDjaFlSDyDZ9O9kRQoNax5oMHA75uPr7jhsYmVFZUxCJsIiKiuGCCiIiSkq9tKRzhtC1F+/pTSbA2KbfXDQy5gyaHfOQqBXq7rMhWhJcATCYc3E2REsoW9lKJDGnidJhNXSEliabC8OlgrWN79+6Dx+vBnPmh7cCm0uTCaOzk30EiIprSpvavZ4loynKf+E1wOIQiYchtS9G+/lTha5MSZkmQW1wAuSrL/7r52qSkikwocsOsxpqmjEK0iWMyFXBEJwt1C/s584ph7GyH2dQV8Dzf8GldaUmkQow5X+uYIluFEl011JpciIRiCCDwt45lKrKRO6MgrOtqtNPR1tYWpaiJiIjijxVERJSURCcqVMJJ4nhOtD0lwvXHkow7WYXSJjXQZ4dyRuDd3E411auxWKFGkRLqFvYisRhFpZVoObwfxq4OaKfNgFI9NYdPB2u5A4D+3h7kFcwK67pKlRoHDPw7SEREUxcTRESUlJTKHNh7+oPObzmZ3WqDUpmTENc/WbLuZBVqm5TX62U11ilYoUaR4nF7Qt7CXiQWY35RGQYGHDhgqIfx+NQbPh1Kyx0AuD2hv24+QqEIHv4dJCKiKYwJIiKKqFhVwRTk5aPesDesBE6/uRfzyyoT4vo+ybyTVahtUgKBIObVWIkuHhVqNDUJRcKwt7BPS09DWno6Fi9aFMXI4iPUljuRMPzXzeNxh53YJSIiSib8V46IIsLlcqJ+bz3qDXsxmOaBujAP08tmQV2Yh8E0D+ob9qB+bz1cLmdE7ifLyIBMIoXN0hfS+TZLH2QSachJqmhf3yecnaxkWgUaGg1hXT+arNZuZGRnBj1PmpUBe48trGtPtBorWfgq1MIx1V8TmpgcpRJWizmsNVaLGTlKZXQCirNuqxVKVfCW1kxFNl83IiKiUzBBRESTFsqg4tziAgizJKjV6yOWJCor1cFh7A2axLFZ+uAw9qKsNLTdamJ1fV+LVqhVSnJVFhyDA3A4HGHdJ1pCbZPK0irRZ+wJ69r95l4U5Ic3QDaZFOTlo9/E14QmLz8vDyZjZ1hrTMZO5OfnRymi+Aq15U6bOwPG4x1hXXsqv25EREQAE0REFAHxqoIRi9OwoKYGnr5BdDW1wmbu9c+H8Lg9sJl70dXUCk/f4IRas6J9/WTfycrXJhVMmiQNIrEINktvSNedaDVWMolVhRpNfbKMDEjS02EJsjuZz1TYwj4QX8tdMFKJDGni9KC7uvlM9deNiIgIYIKIiCYp3lUwYnEaqiqqUFVeCYlLBHNzOzobjsLc3A6JS4yq8kpUVUx8R55oXj/UFq2TZSjlsFq7w75XNITTJqWeMx29XVbYzIGTRBOtxkpG0a5Qo9ShKy2B8XhH0CTRVNjCPpisrCxYzaG1js2ZVwxjZzvMRr5uREREAIdUE9EkTaYKpqiwKGJxyGSyiF4vFtdP9p2swhnkLRIJkVtcgA7DEfSbepGpUSBDKf96tzarDf2mXsik0oQaxB1Nvgq1hkYDuow9fE1owsTiNNRUV8HQ2ASjsQMa7QwoVVNzC/ugvF4Yu9qh1gbexQwY3tWtqLQSDXt2o6uzFbkzClL3dSMiIgITREQ0SVZrN9SFeWGtyVDKYW5uj1JEySPZd7I6uU0qlCSRo6cfiqwsFM0vQmtbK8zN7SftdKfC/PLKlGvf8FWoORwOviY0KWJxGiorKuBwONDW1oYDhqm3hX0o+mw2uNwumI1dISWJrN1mCIQCCAC4Bu0p+7oREREBTBAR0SQlexVMPPlatEJtzwMSbyerslIdavV6AAj4PHxtUr5KmGhWeyWjaFfAUeqQyWQoLCyMdxhx43a7IBalwdjVDggAtWb8JJHZ1AVjVzvEojS4Pc6Uft2IiIgAJoiIaJKSvQomXhx2O1wuF6xdZvR0miEQCJCeIQUADNkH4PV6IRAIIM3KQJZWiTTJcGtDv7kX88sq4xn6CGyTIqJE4vUA2rwZUCrVaDm8H8bjHdBOG91yZzzegbS0dBTpKmG1mNHRdjRiMTjsdrS1t6PbavX/+5ijVCI/P5/VSERElNCYICKiSZkKVTCx5HI50dBogGNwAJmabOSVzxmRTOk9boUoXQzNnBkQALD32GBq6YRYLII0OzMhd7JimxQRJRKlSg2RUIz5RWUYGHTA2NUBY2c73B4PREIhMhXZmDO/BFLJ8NclpVodkQSRy+WEobEJg0ND0Gino0g3c0RSap/BAEl6OnSlJUyWExFRQmKCiIgmJZxBxT6JVgUTKy6XE7V6PWRaBXJna0YcE4qEkKsVkKsVsFl60bW/FbnFBZCrFJCrFLCZe2FtM2HRwkVxij44tklRKmB1SGITCgUQCkX+P0slMsycNS/IGhGEQsGk7utyOaHX10GbmwfVKW1tIqEYak0u1JpcWExd0NfVc+g1ERElJCaIiGhSwh1UbLP0JWQVTCw0NBog0yqCvk5ylQIAYGnphHb+8ABwuVoBCATYf3A/qiqqoh4rEY3E6pDkIBQNvyciYejf4no8bghFouAnBmBobBozOXQq33FDYxMqKyomdU8iIqJIS+kE0dq1a7Fp0wcBz3nvvfVIT08f9fj+/fvx8ssvY8+eevT390OtVmPp0qW49trrkJOTmq0zlLomMqg41TjsdjgGB0ZVDo1HrlKgz9gD56DTP39IrspCl6kHDocjJRNsRPHC6pDkkaNUwmoxBxxOfSqrxYwcpXLC93TY7RgcGgqaHPJRaXJhNHbyazkRESWclE4Q+ZSXlyMvL3/MY0Lh6EG6n332GR588Ldwu90oKSnB9OnTsX//frz11lv47LPP8OijjyE/f+zrEU1FHFQcXGt7GzI12WGtydJko89ohapA638sU61Aa1tr0FYuh92O1vY2WK3dJ80DykFBfgF/ICEKE6tDkkd+Xh72NTaGlSAyGTtRrtNN+J5t7e3QaKeHtUajnY62tjbunEZERAmFCSIAF154EVavXh3SuSaTCQ8/vBZutxu33HILLr74EgCA2+3Gww8/jA8/3Izf/e5BPPHEHyEQTK6fnSiZcFBxYFZrN9SFeWGtyVDK0Xu8e9Rj5ub2cdecOgRbXZj3daKupx/1DXsgk0hRVqpLyUQdUbhYHZJcZBkZkKSnw2LqCuk9s5i6IElPn9R71W21okg3M6w1SpUaBwzjfy0nIiKKByaIwvTGG69jYGAACxcu9CeHAEAkEuG//uu/8OWX29DU1ISdO3di8eLFcYyUKD44qHhs7hPDbMMhFAnh9XpHPeZ2e8Y8P+gQbFUW5Kos2Cx9qNXrU7aaiygcrA6JnFgN+NaVlkBfVw8AAZNEFlMXjMc7UFM9ubluHrdnxGDsUAiFInjG+VpOREQUL+H9tEL44ostAICzzz5n1DGZTIYzzjgDALBlyxcxjYuIEpvoRBVPODxuz6hKRM+JqqyxhD4EOwsyrQINjYaw4iFKRd1WK5QqdVhrlCo1uq3W6ASUhFwuJ/bs3Yt9jY0QSzJQpKuErmohinSVEEsysM9gwJ69e+FyOSNyP7E4DTXVVejtsaDJoIfZ1AW3xwUvvHB7XDCbutBk0KO3xxKReVFCkRAejzusNcODsfltOBERJRZWEAGoq9Pj8OHDcDjsUCgUKCkpxZIlS0YNp7bb7WhvbwMAlJQUj3mt4uISbN68Gc3NzVGPm4iSh1KZA3tPf0g7vfnYrTZIszJGPaZUjh6EH/4QbA68JgoFq0MmJ14DvsXiNFRWVMDhcKCtrQ0HDO3+qiWVUolyXVnEvvbFYzA2ERFRNDBBBGDTpk2jHlOp1LjjjtuxePES/2NdXZ3+j6dNmzbmtbTa4WGynZ2dYx4notRUkJePesPesBJEfaYeaOaMbG3pN/diflnlqHMnMgQ71IHXRKnMVx0S/rbprA4B4j/gWyaTRb3VLx6DsaMtVu2ARESUWFI6QTR//jwUFa3BggULMG3aNAwODuLQoUN44YUX0NCwD/feey8eeughVFfXAADsdod/rVQ69j+Ovn807XZ71OMnouQhy8iATCKFzdIXUpLIZumFWCzyb3E//FgfZBLpmN+cT3QIdqCB10TE6pDJSJUB3/EYjB0tLpcThsYmDA4NQaOdjiLdzOGKOI8bVosZ+wwGSNLToSst4Qw7IqIpKKUTRFdeedWIP2dkZOC0007DwoULcf/992Hr1q3405/+jKeffjrqsTz55JN48skng55XWloS9ViIKDrKSnWo1esBIGCSyGbpRW+XFbnFBSc91geHsRcLamrGXDPRIdjjDbwmomFTsTokVlJpwHesB2NHQ7zaAYmIKHGkdIJoPAKBADfc8B1s3boVhw4dxPHjxzFt2jRkZHz9m56BAQcyM+Wj1jocw1VGGRkZo44FsmbNGqxZsyboeTfddGNY1yWixCEWp2FBTQ0aGg3oMvYgU6NAhlL+9Tb0Vht6j3dDlC5GbnEBBABs5l70m3ohk0oD7jrmG4IdTpIo0MBrIho2lapDYi2Vtn/3DcY2NDbBaOyARjsDSpV6RPWNydgBSbokYRMr8W4HJCKi+GOCaByzZs3yf2wymTBt2jRMm/b1P5jHjx/H3LmjE0RGoxEAkJsb+m8aiSh1iMVpqKqogsPhQGtbK8zN7XCfSNRkZSmgUijRZ+uDsakVIpEQSqUK88srg/6wOdEh2GMNvCaikaZCdUg8pNqA71gOxo60VGkHJCKiwJggGkdvb6//Y98/fJmZmcjLy0d7exuamvZj7tx5o9bt398EACgq4tBXIhqfTCaL6HDoiQzBHm/gNVG0JOvg26lQHRIPKTvg2+sd/VAcwghHKrUDEhHR+JggGscnn3wMYLhVbObMr8ujly9fhldeeQUff/wRLrjgghFrHA4HvvzySwDAsmXLYxcsEaW88Idgjz/wmijSpsLg22SuDomXVBvwncyf56nUDkhERONL8l/RTFxzczO2bt0Kt9s94nGPx4MNGzbg2WefBQBcccUVEIu/zqNdccU3IZVKsXv3bqxf/57/cbfbjccf/wNsNhtKSkqwaNGi2DwRIqITykp1cBh7YbP0BTzPN/C6rJRDdCn6fINvFdkqlOiqodbkQiQUQwCBf/Btia4aimwV9HX1cLmc8Q45IN+26YsXLcLSpUuweNEizC8sZHJoDPl5eTAZO8NaYzJ2Ij8/P0oRRU+yf56nWjsgERGNLWUriLq6unD//fchKysLhYWFyMnJgc1mQ0tLC44fPw4AOPvss3H99TeMWKfRaHDHHT/Hgw/+Fo8++ig2bNiA6dOno6mpCR0dHcjJycEvfvE/EAgE8XhaRJTEHHY7WtvbYLV2++cSKZU5KMgvCOmHz1CGYIcy8Jookjj4NnVNxQHf47VJ9vf3R+3zPBatmSnbDkhERCPELUF05MgRrF//Hvbs2YvOzg7Y7XZ4x+jZPtXGjR9E5P7z5s3DN7/5Tezfvx/Hjh3Dvn374PV6kZOTgxUrzsLq1auxdOnSMdeuXLkSM2bMwD//+Q/s3bsXBw8ehEqlwqWXXobrrrsOOTkc+kpEoXO5nGhoNMAxOIBMTTbUhXlfJ3V6+lHfsAcyiRRlpbqgSZ1AQ7BDHXhNFCkcfEtTZcB3sPaxAbMF3d1mZOeoIRIF/vY61M/zWLaspVo7IBERjS0uCaKXX/4nnn/+eXg8npCSQj6RrMqZMWMGbr75JxNeX1xcjPvuuz9i8RBRanK5nKjV6yHTKpA7WzPimFAkhFyVBbkqCzZLH2r1+pArfyI9BJtoIjj4lqbCgG9f+9hYFUK+9jG1JhdmUxcOGPagqLQSInHgb7GDfZ6Hek+LqQv6uvpJv3b5eXnY19gYVoLIZOxEuY6tykREU0nME0Sffvqpf76PQCBAZWUl5s2bD7lcDqGQbVlElFoaGg2QaRVBB0v7jjc0GlBVkZi/YSc6FQffEpD8A75DbZP0JVdaDu/H/KKygOcG+zyPdWvmVGwHJCKi8MU8QfTGG68DGJ7l89vf/nbMreKJiFKBw26HY3BgVOXQeOSqLHSZeth+Q0mDg2/pZL4B38kk3DZJtSYXxuMdGBh0QCoZ/+t0oM/zeLVmTpV2QCIimriYJ4gOHz4MgUCA73znu0wOEVFKa21vQ6YmO6w1mWoFWttaE7J9bLJDtmnq4eBbSnYTaZPUTpsBY1cHZs4a//vcQJ/nE23NPHL0KMQi0YSHWU+FdkAiIpqcmCeIRKLh3yTOnz8/1rcmIkooVms31IV5Ya3JUMphbk6s9ptIDtmmqYWDbynZTbRN0tgZ+Ot0oM/zid5z37EW5M+cM6lh1sneDkhERJMT8wRRQUEBmpqa0NvbG+tbExElFPeJb7rDIRQJ4U6g9ptoDdmeKlK9qoqDbynZTbRN0u0J/HU60Of5RO8pEolH/F2bzDDrZGwHjDaH3Y629nZ0W61obDTgRz++GTU11bjs0kuRlxfeL3uIiBJVzGu4zzvvfHi9XmzduiXWtyYiSiiiE1U24fCcSDIkinCGbMu0CjQ0GmIUWXy5XE7U761HvWEvBtM8UBfmYXrZLKgL8zCY5kF9wx7U762Hy+WMd6hRdfLg21Bw8C0lGl+bZDiG2yrH/zod7PM8GvdUaXKhnTYDhsamsK5Lw1/P9+zdi32NjRBLMlCkq8SsecVYc+cDyNLOwm8efAj33ncf+vtt8Q6ViGjSYv5TxoUXXoiKikqsX78e27Zti/XtiYgShlKZA3tPf1hr7FYblMqcKEUUHt+Q7WDJIR+5KguOwQE4HI4oRxZfvqoqYZYEucUFkKuy/JVivqqq3OICCLMkqNXrp3ySSFdaAuPxjqBJIt/gW11pSYwiIwrO1yYZDqvFjEzF2PPlQvk8j/Q9fVSaXAwODU35r8GR5HI5odfXQZGtQomuGmpN7omZagJIZRlYcuYq3HL3QyipWoo7fn4nbDYmiYgoucW8xUwsFuPXv/411q79Pe6//z6sWrUKK1euQkFBAaRSSdD106aFXqZORJTICvLyUW/YG3KCBQD6zb2YX1YZxahCN9WGbEdKOFVVvvOrKhJjN6CTWygmMuR2LBx8GxnReG+SWaxej4m0SXa1t0KlzYXb45rQ5/lE7mk83oE584MnVzXa6Whra2P7WIgMjU3Q5uYF3VFu8ZmrAABrH34Yv/7Vr2IQGRFRdMQ8QQQAcrkcl19+BQwGAz755BN88sknIa/duPGD6AVGRBRDsowMyCRS2Cx9ISWJbJY+yCTShPlhcKoM2Y4kX1XVqfOYxiNXZaHL1DPp7akny+VywtDYhMGhIWi00yc15HYsHHw7cdF+b5JNrF+Pk9skQ9l23mLqglQmhcDjxAHDngl9nod7T7OpC2lp6ZBKgl9bqVLjgGHqfg2OJIfdjsGhoZDeA2A4SbTl4/fR3t7OmURElLTikiD605/+hLfeehMA4PV6Q14nEAiiFBERUXyUlepQq9cDQMAkkc3SB4exFwtqamITWAimwpDtSEvGqipfC8VYvyWfzJDbsXDwbXhi+d4kg4m8Hs4h56QrjXSlJdDX1QNAwGSBr30sEu9DqPc0m7pg7GxHkS60ylKhUBT27LtU1dbeDo12elhrzly1Gm+9/TZu/vGPoxQVEVF0xTxBtHnzZrz55hsAhr9RXLZsOebPn4fMTDmEAYbrERFNRWJxGhbU1KCh0YAuYw8yNQpkKOVfbxNvtaHf1AuZVJpwO4D5hmyHkyRKtCHbkZaMVVWhtlD4jhsam1BZURGL0FIe35uRwnk9vAB27toNcVrapCuN4tEmGco9u9pbIZFKUaSrhEgU2rf0Ho877MR+quq2WlGkmxnWmqqFS/Hk2nejFBERUfTFPEHkqxyaOXMm1q17BDk5iTFslYgoXsTiNFRVVMHhcKC1rRXm5vaTtkRXYX55ZUK23/iGbIczQymRhmxHQ7JVVYXbQqHS5MJo7Ix7S1wq4HszUrivh1qTC2NnO2bPKx7RejXRyqt4tEkGu2d2tgLSTEXIySFgeJh1jlIZ0TinKo/bA6FQFNYaiVSGwcGBKEVERBR9MU8QHT16FAKBADfccAOTQ0REJ5HJZEk1vDnZh2xHQ7JVVU2khYJDbmOD781IE3k9tNPzYOzqwMxZ88Y8PpHKq3i0SY53T4fdHvYwa5OxE+U6XSTDm7KEIiE8HveJXctCMzjggEQijWJURETRFfPvSMXi4S+y+fkFsb41ERFF0MlDtkORaEO2o8FXVRWOeFZVdVutUKrUYa1RqtTotlqjExD58b0ZaaKvR39vT8Bzknnr95OHWYfCYuqCJD19Sn8NjqQcpRJWizmsNfW7v0JNTXWUIiIiir6YJ4hmzhzu5e3utsT61kREFGFlpTo4jL1Bk0S+IdtlpVP7N9cFefnoNwX+gfRU/eZeFMTplyYTaaHgkNvY4Hsz0kRfD7cn+Ovhq7xKRrrSEhiPdwRNEvkGaOtKSyJ6f4fdjubmZuzYuRNffbUdO3buRHNzc1Im3E6Vn5cHk7EzrDVbP9mIyy69NEoRERFFX8wTRKtXXwCv14uPP/441rcmIqII8w3Z9vQNoqupFTZzr/8HVI/bA5u5F11NrfD0DSbckO1oSLaqKl8LRTg45DY2+N6MNNHXQxTCBijJXHnlG2bd22NBk0EPs6kLbo8LXnjh9rhgNnWhyaBHb48lorvcuVxO7Nm7F/saGyGWZKBIVwld1UIU6SohlmRgn8GAPXv3wuVyRuR+8RBuhdaOrZ9Ao87hFvdElNRiPoPowgsvxNatW/Hhhx+iuLgEl19+eaxDICKiCErWIdvRUlaqQ61eDwAB5zP5qqoW1NTEJrAx+FoowplhwiG3scH3ZqSJvh6Ziuyg5yV75VWsB2i7XE7o9XVj7ig30SHgiUpXWgJ9XT0ABByQvmPrJ/jiw3ex7uG1sQqNiCgqYp4gqq+vxxVXXI6eHiv+/Oc/4eOPP8KqVWejoCA/pKFuVVVVMYiSiIjClWxDtqPFV1XV0GhAl7EHmRoFMpTy4QoItwd2qw39pl7IpFJ/VZXDbkdbezu6rVb/D3Y5SiXy8/OjmlzLz8vjkNsElUzvjcXSjcMthzHgGIDX64VAIIBUJsW8uXMjtiHJRF4P4/EOzJkfvKVqqlRexWqAtqGxaczk0KkmMgQ80fgqtAyNTTAaO6DRzjgxC8uLAYcd9bu/wpZP3odWrcK6h9ciM1Me75CJiCYl5gmiO+64HQKBwP/nxsZGNDY2hrx+48YPohEWERFRxIRaVeVr0xgcGoJGOx1FupnD1QweN6wWM/YZDJCkp0NXWhKV38Cf3EIRyvbhHHIbO8nw3gw4BqCvr4MAAuTOKIBSrf7689dsxv79B+CFFzXV1ZBKJ7ezU7ivh9nUhbS09BFb3I9nKldeRZrDbsfg0FBI7wEwnCQyGjvhcDiS9uvGWBVaRw/tx5Nrf4kFNdX45f/8gm1lRDRlxDxBBABer3dC605OLBERESW6QFVVidKmEWoLhW/IbU01K3ljJZHfmwHHAHbu3o2CmXOg1o7x+avNhVqbC7OxCzt37caihQshlU0uSRTq62E2dsHY1Y4iXWVI1030qrh4VRiOpa29HRrt9LDW+IaAx6K6KZpOrtDqOnQQ/3nzj+McERFR5MU8QfTww+tifUsiIqKEkyhtGuO1UJxcyWQydkCSLknqWSLJKJHfG3193ZjJoVP5juvr63D60qWTumeor4fL6cK06fkQiYJ/m5vIVXEulxOGxqa4VRiOpdtqRZFuZlhrlCo1DhjaoxQRERFFUswTRNXV1bG+JRERUUJJtDaNWA+5pdAl4ntjsXRDAEHQ5JCPWpuLro5WdHd3T3omUSivR1qaGPq6eoiEwoSrvApVolQYnsrj9kAoFIW1JtmHgBMRpZK4tJgR0dTlsNvR2t4Gq7X7pJkrOSjIL+APmEQnJGqbRqyG3FL44vHejNfa1G21IjevIKxr5c4owKHDh3FahIZWB3s9ErXyKlSJUmF4KqFICI/HDZEw9B8hpsoQcCKiVMAEERFFhMvlREOjAY7BAWRqsqEuzPt616aeftQ37IFMIkVZqS4hvxkniiW2aVAiC9ba5HZbYLWYoMxRh9TGBQBKtRptx1qiG/hJErHyKlSJVmF4shylElaLOazd5DgEnIgoeTBBREST5nI5UavXQ6ZVIHe2ZsQxoUgIuSoLclUWbJY+1Or1/q29iVIV2zQoUYXa2mQ2deGAYQ+KSishEgf/dlIoFE14k5LJSMaquEStMASA/Lw87GtsDCtBlOhDwImI6GtxSxD19PTgww8/xN69e9DR0QG73QGPxx1wjUAgwAsvvBijCIkoVA2NBsi0CshVWQHP8x1vaDSgqiLxZj4QxQrbNChRhdra5EsQtBzej/lFZUGv6/G4AYEAzc3NCbEbVyKbcIVhQ1vUX19ZRgYk6emwmLpCqnBK5CHgREQ0WlwSRB999BEef/wPcDgcAELf9p7b3BMlHofdDsfgwKjKofHIVVnoMvXEpBSeKFGxTYMSUbitTWpNLozHOzAw6IBUEvjrudVshlAogFiSkRC7cSWyiVYYDg45Y/L66kpLoK+rB4CkHQJORERji3mCqLa2Fr///UP+pFBubi7mzp0LuVwOgYC/GSVKNq3tbcjUZIe1JlOtQGtbK4oKi6IUFVFiY5sGJaKJtDZpp82AsasDM2fNC3iesasdRbrKEYmkeO7GlcgmWmEoSU8f8TUlWq+vWJyW9EPAiYhobDFPEL388svwer2Qy+W4665fYMmSJbEOgYgiyGrthrowL6w1GUo5zM0ctkupi20alIgm2tpk7Az89dxs7EKaRBKwyijWu3ElsolWGGYqxv9lTaRf32QeAk5EROOLeYJo//4mCAQC3HDDDUwOEU0B7hPfEIZDKBLCzWG7lOLYpkGJZqKtTW7P+F/PzcYuf/VQMLHcjSuRTaTC0Hi8A3PmlwQ8JxqvbzIOASciovHFPEHkOfFNRHl5av92aCqw2Wyo37073mFQnJnaO+Fw2iEQhj4jzOvxot/Yy88fSnlijxeGulq43C7I5QrIMjIhFIjg8brhsPfDZuuFWCTG9NxcNNTviei9h4ac6O3pGd4kwuuBUCBERoYM2dnZSEtnS0isJNL7YGzvADy7IRSEniTyeN3obD2KAVv/qM/f3h4rhEIhtLkzcGDv3pCu19/fi22ffQ6NNrS5dlOVqb0Dtu4eZGYqgp7b398Lh90OOINfl69vZNhstniHQEQUFTFPEOXl5eHQoUMYGBiI9a0pwuRyOaoWLox3GBRnMkUWBtM8QXcwO5nN3IuC6TM5g4joBF+bxvDuQ24IxULMnD0TeVHY3cnlcsLQ2AQAmFdWMcbskE4IODA46hLxfchQKCCWZIRVuWI2dUGeLcfAwAAGHAPwep0QCATIysmGTJ6JkorqsGbpuD0uHDDsSfnvL8qqnNDX1UM7bUbACkOzqQvo9KJm6ZkQiYK/znx9I+No84F4h0BEFBUxTxCtWnU2Dh48iJ07d6CyMni5MREltoK8fNQb9oaVIOo392J+Gf/+E/nEqk3D5XJCr68bcxtzDgyOnUR9HyYzPH2sROZXX22fUMuaJ4QWZIfdjrb29qhu6R5PoQyC7mpvhUQmQ5GuMqTkEBD660tERKkp5gmiSy+9FJs3b8Lrr7+OM89chpKSwP3SRJTYZBkZkEmksFn6QkoS2Sx9kEmkU+IbeKJkY2hsGjMpcSoODI6uRH0fIj08faK7cQWaa+ervBocGoJGOz3qW7rHU7BB0AIBMGd+cURfXyIiSm0x/xdCJpPht7/9LWbOnIXbb78Nzz77LA4dOoShoaFYh0JEEVJWqoPD2AubpS/geTZLHxzGXpSVcqtuolhz2O0YHBoK6Qd/YDg5MTg0BIfDEeXIUkuivw+60hIYj3fAYuoKeJ5veLqudPxf9Pl24wqH1WJGjlI55jFf5ZUiW4USXTXUmlyIhGIIIPBXXpXoqqHIVkFfVw+XK4ShPEnAV2G4eNEiLF26BIsXLcL8wkKoVKqIvr5EREQxryACgGnTcnHnnXfi5z+/A//618v4179eDnntxo0fRDEyIpoIsTgNC2pq0NBoQJexB5kaBTKU8uHfHrs9sFtt6Df1QiaVYkFNTdL/VpcoGbW1t0OjnR7WGo12Otra2rhLUQQl+vsQSmuTydgBSbokaOvbZFrWxpKolVfxEunXl4iIKC4Jotdffx1/+cvT8Hq98Hq9Ia8TCELfJYmIYkssTkNVRRUcDgda21phbm6H2+2BSCSEUqnC/PJKtpURxVG31Yoi3cyw1ihVahwwtEcpotSUDO9DsNamcl1ZSF/PI9myNpHKq0hv6Z5oIt0SSEREFPME0VdffYWnnvozgOGET2VlJebNmw+5XA5hGNtkE1Fikslk3J2MKAF53J6oDQym0CXT+xCJ4em60hLo6+oBIGASw9eyVlNdNebxRK+8ipdIvb5ERERAHBJE//d/rwAANBoNfvvb32Lu3HmxDoGIiCjlRGNgMIUv1d6HSLWsJUPlVTxEsiWQiIgo5gmiQ4cOQSAQ4IYbvsPkEBERUYz4BgaHM6+EA20jLxXfh0i0rCVT5VWsRaolkIiIKOYJIo9n+B/qwsL5sb41ERFRyuJA28SQyu/DZFrWEqXyymG3o629Hd1Wqz8Jk6NUIj8/P+5JmEi0BBIRUWqLeYIoPz8fzc3N6OuzxfrWREREKYsDbRMD34eJiXfllcvlhKGxCYNDQ9Bop6NIN3NEG9c+gwGS9HToSkvYxkVEREkr5g3tZ599DrxeL7Zu3RLrWxMREaU0XWkJjMc7YDF1BTzPN9BWV1oS0fs77HY0Nzdjx86d+Oqr7dixcyeam5vhcDgiep9EF+/3IRnl5+XBZOwMa43J2In8/PxJ39vlckKvr4MiW4USXTXUmlyIhGIIIIBIKIZak4sSXTUU2Sro6+rhcjknfU8iIqJ4iHkF0eWXX45PP/0E7733HhYuPA1nnHFGrEMgIiJKSfEaaMvqi5E4WDh88ay8MjQ2QZubF/S+vuOGxiZUVlRM+r5ERESxFvMEkcVixm233YZHH30U999/H1atWoWVK1ehoKAAUqkk6Ppp00IvLSYiIqKRYj3Q1ld9MdYP2L7qC7UmFxZTF/R19SmTEOFg4fDFY0t3h92OwaGhkJJSvriMxk44HA6+f0RElHRiniC67rrrIBAIAABerxeffPIJPvnkk5DXb9z4QZQiIyJKfA67Ha3tbbBau+F2eyASCaFU5qAgv4A/jFBYYjXQltUXgaXSYOHJDniOR+VVW3s7NNrpYa3RaKejra0tZd5XIiKaOmKeIAKGE0NjfRyML7FERJRqXC4nGhoNcAwOIFOTDXVh3vCuPm4P7D39qG/YA5lEirJSXUpUX1ByYPUFAZFtMYx15VW31Yoi3cyw1ihVahwwtEcsBiIioliJeYLojjt+HutbEhElNZfLiVq9HjKtArmzNSOOCUVCyFVZkKuyYLP0oVavx4KaGiaJKKhYbNcdj+qLyTyvRN7CPFlFq8UwVpVXHrcHQqEorDVCoQgetydKEREREUVPzBNE559/fqxvSUSU1BoaDZBpFZCrsgKe5zve0GhAVcXkZ2/Q1BTLgdGxrL6YzPPiEO3oSfYWQ6FICI/HDZEw9G+ZPR43hKKYbxRMREQ0aUn/r1d/vw2bNn2ATZs4m4iIph6H3Q7H4EDQ5JCPXJUFx+BAym0bTqGJ9Xbdsaq+mMzz4hbm0TORFsPBoaGE+vqVo1TCajGHtcZqMSNHqYxOQERERFGU9Akio9GEhx9+GOvWrYt3KEREEdfa3oZMTXZYazLVCrS2tUYpIkpm4VRzaKfNgKGxaVL3EwiA1pZDaNxbi331u9C4txbHjh7CwOD4CYCJVF9M5nnF+jVJJZNpMUwU+Xl5MBk7w1pjMnYiPz8/ShERERFFT9IniIiIpjKrtRsZ2ZlhrclQymG1dkcpIkpWsazmcLmc2LN3LwABMjLlKCqrRFnVQhSVVSIjIxMtB5tw8EAD3G7XqLXhVl9M5nlNhQqXRNZttUKpUoe1RqlSo9tqjU5AEyDLyIAkPR0WU1dI51tMXZCkp3NmFRERJSUmiIiIEpj7xKDccAhFQrg5IJVOEatqjpNbtnSVC6HWjm7ZKi2rgTJHjQOGPXC7RiaJwq2+mMzzmgoVLolsqgx41pWWwHi8I2iSyGLqgvF4B3SlJTGKjIiIKLLiss09ERGFRnRiK/twkkQetwciDkilU8RqYHSoLVvqE8dbDu/H/KIyABOrvpjs80rFLcxjtVvbVBnwLBanoaa6CobGJhiNHdBoZ0CpUo8YZG4ydkCSLgl5FzYiIqJExAQREVECUypzYO/pD3lINQDYrTYolTlRjIqSUSyqOcJt2VJrcmE83oGBQQfsfb0wHu9ATXV4O/BN9nlNhQqXUMV6tzbfgGd1iJ8PQOIOeBaL01BZUQGHw4G2tjYcMLT7k2sqpRLlujK2lRERUdJjgoiIKIEV5OWj3rA3rARRv7kX88sqoxgVJaNYVHNMpGVLq52B5sa9kMvlE6q+mOjzEgiGWzgb99TC4/VCJBQiU5ENbe4MSCXj/6CfiBUuofC1/o1V3eVr/VNrcmExdUFfVx+RSpj8vDzsa2wMK0FkMnaiXKeb1H2jSSaTobCwMN5hEBERRUXyfYdDRJRCZBkZkEmksFn6QjrfZumDTCLlb7JplFhs1z2hocRqNcQiESorKiaUkAj3ebldLhwwDA/QnpE/C8XlVSEP0AYSt8IlmHjs1sYBz0RERMmFCSIiogRXVqqDw9gbNElks/TBYexFWWni/vad4icW23VPuN3L4w1rzcnCeV5ulwsHGvdAO23GhAZoA8m5hXk8d2vjgGciIqLkwQQREVGCE4vTsKCmBp6+QXQ1tcJm7vXPQPG4PbCZe9HV1ApP3yAW1NRwQCqNKRbVHL52r3BMtmUrnOfVcmg/tLl5UGuDD9DWTs9Dy+H9Ix5P1gqXeO7W5hvw3NtjQZNBD7OpC26PC1544fa4YDZ1ocmgR2+PhQOeiYiI4owziIiIkoBYnIaqiio4HA60trXC3NwO94ndypRKFeaXVybdD60Ue7rSEujr6gEgYDWJr5oj3IHR8RpKHMrzGhh0wDk0GDQ55HPyAG2pRDbh1yQRxGoHu/FwwDMREVFyYIKIiGiCHHY7WtvbYLV2n5SsyUFBfkHUftiRyWQoKiyKyrVp6ov2dt3xGkocyvPqaDuKGXmzwrquVjsDbUcOweV2JvUW5rHYwS4UHPBMRESU2JggIiIKk8vlREOjAY7BAWRqsqEuzBturXF7YO/pR33DHsgkUpSV6pLyh0ma2qJZzXFyu1co824i2bIV7HmJRSIo1eEP0O5oO4qamuqkrnCJxQ52RERElPyYICIiCoPL5UStXg+ZVoHc2ZoRx4QiIeSqLMhVWbBZ+lCr13MmECWsaFVzRLuNLZjxnpfpq+0TqqIRCoVJnRwC4tf6R0RERMmFCSIKS1tbG958+03srqtFenomcnduj3pLDVEiaWg0QKZVQK7KCnie73hDowFVFck3s4RooqLdxjZRqVxFE6/WPyIiIkouSZ8gmjNnDj74YFO8w5jybDYbHlz7IDpMXZizrAxnrrkYBzc1QF2Yx5YaShkOux2OwYFRlUPjkauy0GXqgcPhYAKVUkoiDiVO5SqaeLb+ERERUfJI+gQRRZ/NZsOtP78VM1focPbiZf7HBRCwpeb/s/fv0W3d553o/cWdIEAQBC/gDRQpESIpU5RsOYlpOaosxUyadCZtmkzapk7TtJ1Oxz2r7WqamZ64Zzpz0rRxLr2cuk3S6XnbZKad9k1bx0k8llzJ8UUhHcu2RMsiSFAiJYAgARAgCIAAiev5gwJFiiSwN4jLBvH9rNW1GmLvjWdfKBMPnuf50b602/DpZCIBXVO9qGPpGg1wzjk5WJqqUrGHEkcjEcy5XFgKBDYSUA1GIzo6OrYlNyq9ikbMue6k3K1/REREJH1lSxAFg8v413+9gGvX3sb8/DwikShSqWTWfWQyGb75zW+VKELK+MJTX4DlvQPofldf1u3YUkOVLtfw6aAvAMWqEtp6HRQC205qjXr4pguzVDQRrUsk4piwTWItFkNTcyusA5YtLWzvTExAo1ZjoL9v4wuLSq2iyedcdyLV1j8iIiKSjrIkiF566SX8yZ/8MSKRCAAgnU4L2k8mkxUzLNrB3Nwc5hfdWyqHsmFLDVUqwcOnfUG4p5wwH+4UlCSSK+RIFnipaKJqlkjEceXKVTSb27clehRyJRqbzGhsMsO/6MaVq+Nbkh2VVkWzl3PdiRRb/4iIiEg6Sp4gmpiYwB/+4ReQTqeRTqfR2NiI3t5e1NXVQSar/EGQ+80zzz6D7pNHRO3DlhqqRIKHTzcaABngn11A86H2nMdN3WlRI6LCmLBN7pgwuVfm9QnbJI4ODgKovCqavZxrNsVu/SMiIqLKVPIE0T/8wz8glUpBo9Hgt37rt3DmzNlSh0AivHn1LTz8xIdE7cOWGqo04odPGxDyLiO+FodKk/0DZCQQhtHYUIgwiapeNBLBWiwmqEUMWE+ceL0LW6paK6WKphDnSkRERCRGyRNE16+/A5lMho9//GeYHKoAa6trUOb4AHwvttRQpXG65kQPn65rqkfIG4Cpsznrdiu+IA4dOSromLsNx+7s6OQHPiIAcy4XmppbRe3T1NyKubm5bRUzUq+iKeS5EhEREQlR8r6HcDgMAHjwwQdL/daUB02NBom1uKh92FJDlSYQWEJtvU7UPrVGPVZDkazbhP0haDU1OZM7iUQc49fGMT5xDWuqFBp729F6pAuNve1YU6Uwfv1tjF8bRyIh7neRaL9ZCgRgNDWK2sdoasRSIFCcgIqoms6ViIiIpKHkn+IbG9f/2OG86crwwLH74Ry/KWofttRQpUneaS8RQ66QZx2wH/aHEPUGcaQ/+xLZmeHY8joNzIc7oTfVbcSSGY5tPtwJeZ0Gb125wiQRVbVUMgW5XCFqH7lcgVQFVrVW07kSERGRNJS8xez+++/HuXPnMDVlR19ff6nfnkT6yX/7k3jyD/4v9Lxb+L0S01JDlEsp2q4Ud5ayF5MkSiVTSCdSCPuCqDXqIb9zjEggjJXFILQ1Nbj/+PGcQ24FD8e+8/p12wSGBsu7shIJF41EMOdyYSkQ2HjGGoxGdHR0FK1tsBzvWSpyhRypVBIKufA/X1KpJORyGaanpyvqmuR7rjIZKu5ciYiISBpKniD62Mf+HV588UV8+9v/f7zvfe/jHysS19HRgbYmM2Zfn0T3u/pybi+0pYYol0Qijuu2CUTXVqFrqkdjb/vdJMzyCsavvw2tpgZH+gf2vNKQ0diAyPJKziTNZpFAGE2NjVAkFPBNuzYlr0w4dN9RQb8D4odj18G9uMwhtBUgkYhjwjaJtVgMTc2tsA5YtqyU9c7EBDRqNQb6+wq2UlY53rPU6urqEPD50NgsbHAzAAR8PiQSSSg1tRV1TRqMRgT8PjQKHFKdTCRgn7wGQFZx50pERETSUPIWM4vFgv/8n38XPp8Pn/3s72B2drbUIZBI/+dn/084X7Fh9vXJrNsJbakhyqXUbVed7R1YWVwWtc+KLwizeacBsru3nd0rn+HYukYDnHNOUftQaSUScVy5chWGehP6Bo6hsckMhVwJGWRQyJVobDKjb+AYDPUmXLlamNlS5XjPe0UjEUxPT+P1y5fx2ms/wuuXL2N6ehrRaLRwb5JOw+sWt0qm1+1C78Bgwa5JSc4TQEd7Oxa9C4K2TSYSsNveRnNLGwaOPlCW+09ERESVr2gVRF/+8peyvt7VdQCTk5P41V/99+ju7kFXlwUajSbrPjKZDL/9258pZJgkgF6vx1e/9FX84VN/iBdf+Wd0nxxA57FDSCOdV0sNUS6lbrvS1tZCq6lB2B8SVEUU9oeQTCQxddO+p+qmQGAJjb3tomKtNerhmxb3AZlKa8I2iWZze87lyTOvT9gmcXRwsOLeM6OUlUuhcBgqtRq+Rbegyhqf1w2VRoMaze4Vd0KvSakrtLS1tdCo1fAvunPe19mbU2g2t+esrCrG/SciIqL9o2gJovPnz0OWYxK1TCZDOp3G7OwMZmdnsm6bTqeZICojvV6PP/hvfwCXy4V/+c6/4IdPfx9qtQ6+aZeolhqiXMrVdnWkfwBvXbmycczdhP0hBJxe1Lc3ou6e6p9MdZPeVIewP4S3rlzJmjTNdzh2kkNoJSsaiWAtFsv5gT7D1GSG17uwp+e3HO+Zkalc2ik5lalcaWwyw7/oxpWr4zh+bGhPyZNUMoUDfYcxbbsGAFmTRD6vG163C9aB3DPxcl2TUp9nxkB/H65cHd+IcSera1HEY2uC2+4Kef+JiIhofylagqilpSVngogqT3t7O574tScAAH/2l1/Dux58d5kjov1mL21X1l5r3u+rVKpw//HjuG6bgNu7DF2TYcfh08lkcsfk0L2EVDflOxxbITKpRKUz53KhqXmn1sPdNTW3Ym5uDr29vRXznhmlrlySK+SQyWWw9h/F7MwUvJ55NLe0wWhq3FLN456fg1whh3XgKBQKYX/qZLsm+Zxn78GDex4WrlSqcPzYECZsk/B659HUvP1c5+duo629S9DxhJwrERERVa+iJYj+x//4n8U6NBHtY+Vsu1IqVRgaHEI0GoVzzrlt+HTHISumbtpzJocyclU35Tsc22hsELw9ldZSIADrgEXUPkZTI+wT+T+/5XhPoDyVS5sHNx+yHsHqWhRe9zy8Cy4kUyko5HLoDPVAOg1r/6CoFcB2uyb5nOfCvBPX3rmO5tb2PbeiKZUqHB0cRDQaxdzcHOwTro2Ek8lohFKhgLGxUfB5ZjtXIiIiqm4lX8WMiCgbKbRdabXaHauR7NP2glY3dbZ3YHzimqgE0YoviENHcrfMUHmkkinI5QpR+8jlCqT28PyW4z2B8lQudbS34x2bbaO1rEajhaXr4Lbt3gm8UbBrks95mls7EYmubGmB22srmlar3fG6Lb72o7LcfyIiItp/mCAiIkmRcttVoaub8hmOrdXUcG6IREUjEaRSKdjefgupdHqjmqXZ3JZ1SHIqlRSdFN1MrpAjlUqKqpbZ63sCxa1cikYiu7ZnCRncrJAX7prkdZ6NjfBe3/08Czksulz3n4iIiPafkieIRkYeg0wmwze+8Vc4cOCAoH1cLhc+9alfgEwmw7lz54scIRGVk5TbropR3SRmOHbUG8T9x4+Len8qvs2rW7V1dMHYuHVGzOyNSahUanQfPLzjPJyA34cGozHv99/cdiXUXt8TKE7lkpCVwtRK5cZS97sliXSGegR8PsGDm4Hdr0m+55lMZa/QKdSw6HLdfyIiItp/WEFEtI9FIxE4XXMIBJY2zdJpQGdHp2SrUKTcdlWM6iahw7G1NTVZV0Sj8hC6upVv0Q37xNuw9h+FQrn1P72L3gXcNzAg6P12qqyp0+sRWJ4XlSAQ8567KXTlipiVwjwLLiwv+XYd3LwSXEZoeUlUgmi3a5LveSrkuf+daGpuxa1bt6BUKvMeZn1v250Qhbj/REREtP8wQUS0DyUScVy3TSC6tgpdUz0ae9vvJhyWVzB+/W1oNTU40j8guYSDlNuuilXdlGs49qH7jko2oVfthK5ulfnwPjszhUPWIxs/9y+6oVGrc97fXJU1/qUl+LxuQQkRoe+ZS6ErV8SuFBZc9uO+gSM7Dm4eHLwP0zdu5GxFy8h2TfI9T50h+7yyZCKBgH8Ra6urMLd35j3MWltbK6jtLqNQ95+IiIj2n4pIEC0vLwMAampqyhwJkfQlEnG8deUKtM0GmA80bXlNrpBDb6qD3lSHsD+Et65ckWRVilTbropd3bTbcGySJrGrWzU2meH1zGN1LYoajRb+RTe8nnkcPzaUdT8hlTVGYyNs16+sv0+WJJHQ9xSikJUr+a6IBmDXgdcD/X24cnV8Y/vd5Lom+Zyn1zOP7kN9u76eTCRgt72N5tb2bcfNZ5h1oc6ViIiIqpvkE0TRaBTf+c4zAID2dnHDYYmq0XXbBLTNhpxJjMzr120TGBqU1ocFqbZdSbm6qZpFIxG4XHNYWl5COpmCTCFHQ30D2ovcSpnP6lbNzW2Yu3UTiWQcGrVG0CpWQiprFEol+o8ch33qGtwLTpjbOre1XS165wW/pxCFrFwpxopoSqUKx48NYcI2uWsrmpBrIvY8fYtuqFTqrIPJZ29O7ZgcupfQYdaFOlciIiKqbkVPED3++M/v+PPf/d3/DIUi+9DHeDyOQCCAdDoNmUyGhx4aLkaIRPtGNBJBdG11W+XQbvSmOrgXl/c8JLUYpNp2JdXqpmqUSMRhs00gHl9Fe7sRB7o7obgzFNznC8NmexsqlRb9/f1F+UCc7+pW83O3cfz4MUHPr5jKmkySyHbtLaxGQrC7t7Zd3TdwpOC/M4WqXCnWimhKpQpHBwcRjUZ3bEUTek2EnqfP64bX7YJ1YPeqwdW1KOKJmOCKJKHDrAt1rkRERFS9ip4gcrvd236WTqexuLgo6jgDAwP4d//u3xUqLKJ9yemag64p+9yLe+kaDXDOOSXb2rSXtqtiDOmWanVTtUkk4rh69Qo6O41oMbdseU2hlKPFbECL2QCPO4Sr41dwbKjw9yLf1a3kcrng5y+vKqXWdiTWInjXgw+K2i8fhapcKcaKaJtptdpdK42EEHKeXvc84vEYjhx9YMfV6jK87nk0t7SJev9c1VKb7fVciYiIqHoVPUH02GMjW/73Cy+ch0wmw/DwMHQ6/a77yWSAWq2GydSII0eO4P7774dMJit2uEQVLRBYQmOvuFbMWqMevuns38JXmmIP6ZZqdVM1sdkm7iSHsrf6ZV632WwYHCzsSneFXsVrJ8WqrCmkQlSulOJa7lWu8xy87wimb9zA8pIva5XRSnAZ7Z1dot671PeUiIiIqlPRE0S/8zu/s+V/v/DCeQDAL/7ip3HgwIFivz1RVUmKXIIdWP9glhT4LXwlKOWQbg6VLo9oJIJ4fHVb5dBuWsx1cLmWCt5KWehVvHZS7MqaQtpL5UoprmWhZDtPIa1oyVTl3FMiIiKqLiUfUv34448DAIxl+KOOaL9T3KmSEZMkSt2pfNkv9sOQblq32/DpRDKB9najqGO1tRnhmnPiUAETeoVcxWs3lVBZkxGNRDDncmEpENj4d6jBaERHR0fOxFwprmUpCGlFSyYTFXNPiYiIqLqUIUH0yVK/JVHVMBobEFleEbUMeyQQhtHYUMSoSmc/DemuZrmGT9++HUAsrkJjox4KpbAPzU1NejjnnAWNs5CreO2mEiprEok4JmyTWIvF0NTcCuuAZUtC5J2JCWjUagz09xVspbB8rmWp5GpFa2xslPw9JSIiouok+WXuiUi4zvYOjE9cE5UgWvEFcehIYWezlEuuId3xtThC3gBWQ5GN1REVKiVu3ZpFf7+0KhGqlfDh00FcHb+NY0e7oFDlThIpFHKki9CiI2Z1K6djBhq1GtPT04KqagDpV9YkEnFcuXIVzeb2beevkCvR2GRGY5MZ/kU3rlwdzzqoulAroknFbq1o0UhE0veUiIiIqlfJE0Tj4+Oi95HJZFCrVdDp9DCbzVCpuCoQ0U60tbXQamoQ9ocEJYnC/hC0mhpJfgufj92GdCeTKfhmF5BMJFHXXA9jW+OWVcf87iWMXxvPe2g1FY7w4dOG9e0n53HfYEfO4ybvtKgVWs6WIp8PXrcLKrUag0MPAnIIrqoBpF9ZM2Gb3DE5dK/M6xO2SRwdHNxxm0KtiCZ1Ur+nREREVL1KniD6zGd+e0+rkSkUChw6dAgjIyP48R//IJRKFkERbXakfwBvXbkCAFmTRGF/CFFvEPcfP16awEpgpyHdyWQK7iknDGYj9CbDltfkCjn0jQboGw0FGVpNeyN++LQBLtcSViNx1NRmv2eLi2E01BenlXJbS9F1F9Zia1AqlTAYTei29qNGc/fDvZiqGkC6lTXRSARrsZigJAewHrvXu5C1pbMQK6JVAqneUyIiIqpuZcmupNPpvPdNJBKYnJzE1NQUvvvd7+Lzn/88WlqEl2kT7XdKpQr3Hz+O67YJuL3L0DUZUGvUb6mYWVkMQltTU7HJkGgkAqdrDoHA0qbl5Rsgk8m2Den2zS7smBy6F4dWl5/LNZfH8OkGuFxLONibPak0Px9Af39xWykzLUVvX7uGltbCVNUA0q2smXO50NTcKmqfpuZWzM3N5VztbC8rolUCqd5TIiIiqm4lTxB96UtfRjKZwN/8zd/AZrOhsbERp06dwuHDfaivX58dsry8jKmpSbz88svw+Xzo7+/HJz/5C4jF1jAzM4uXXvoBZmdnMTs7i8997nP42te+DoVC3JKxRPuZUqnC0OAQotEonHNO+KZdmxIpJhy672hFfgufSMRx3TaB6NoqdE31aOxtv5v4Wl5BCmm47XNosXZAoZAjvhZHMpHMmRzK4NDq8lpaXsKB7k5R+6wPn/Zn3cbjDkGl0pbknhajqgaQZmXNUiAA64BF1D5GUyPsE64iRVRZpHhPiYiIqLqVPEF07Ngx/N7v/R4mJyfx4Q//JH7lV34FarV623Znz57FL/3SL+Mb3/g6nn32WfzzP/8zvvCFL+Dhh0/iE5/4BP7mb/5/+Lu/+zvcvn0b5849jw9+8EOlPhUiydNqtbAWcFnvcshUC/mXlhBbW0NDZ9O2VcrkCjn0pjroTXUI+ZbhnnLCfLgTIW8Adc27D63eia7RAOecs+KvWyVK30liipFr+LTHHYJzLoBjQ8f3GJ0wxayqAcpTWbPb8vWpZBJyubgvZ+KxOOKxGF6/fHnLsYQO7ZaC3a5Hvuew36uliIiIqHKUPEH0/PPP47XXxvCe97wHTzzxRNZt1Wo1fv3X/w8sLCzg9ddfx/e//z186EM/AQD41Kd+EdeuXcP4+DheffVVJoiI9pl7q4WglKGhuRn6xuzVQHWN9ZBBBv/sAuKxOIxtjaLet9aoh2+aFQ7lILuzlL3QpeuB9RlT8WQK7oUgmpr0UNw5xuJiGC5XAGq1FseGStdKuZ+qanItX59IepBKJaGQ5/5TIplIYPbmFOKJGNo7u2Fs3NpOJXRodznluh6VcA5ERERE2RR+SZcczp17HjKZTFRC50Mf+gmk02mcP//Clp+PjLwfAHDjxs2CxkhE5ZVIxPHWlSuQ12lgPtwJja4GqWQqZ3IoQ99oQDyW2DaPSAj5nQQDlV5DfQN8vrCofRYXw2g0NWIlLMOVq05cfn0WV646sRKWY2DgKAYHj5b0w3oqmRJdVSOXK5CS2DOXWb7eUG9C38AxNDaZoZArIYNsY/n6hsZmBHy+nMdKJhKw296G0dSI/iPH0di8/Vh9A8dgqDfhytVxJBLxEpyhOEKuh9TPgYiIiCiXklcQ3b59GwDQ3NyUY8u7Mts6HLe3/LyrqwsAEAoFCxQdEUnBddsEtM2GjcHR+bSKGVqM8Du9opNEqTzanKgw2ts7YJu8trGEvRCZ4dNSaU+SK+SCq2oyUqmk6ERmsQlZvr7Z3IbZG5NobM4+b2n25hSaW9vRWKCh3eUg5HoA0j4HIiIiolxK/hdpLBYDAHi9i4L3yWwbj2/9Rk6pXP+WtqampkDREVG5RSMRRNdWN5JDALAaiqC2Xi/qOLVGPRQKBSIBcRUpkUAYRmNxlkOn7LS1tVCpauBxhwRtX8rh00I1GI0I+HNX1WwW8PvQYDQWJ6A8CB20XaPRQqVUw7fo3nWb1bUo4olYzuRQhqnJjLVYDNFoVFTMxZTP4HGpnQMRERGRECVPELW3twMA/vf/fk7wPs8999yWfTN8d0rbM6ufEVHlc7rm1mcObZJOp/NqFZPLZVjxiaswXPEF0dkhbiUtKpz+/gE45wI5k0SZ4dP9/f2IRiKYnp7G65cv47XXfoTXL1/G9PR0Xh/Q93qsjvZ2LHoXRL3noncBHR0domMtFjGDtrsPHoZ3wQWfd+ckkdc9j+aWNlHvnxnaLRV7GTxOREREVElKniB673tPIZ1O47XXXsPXv/51JBKJXbdNJBL42te+htdeG4NMJsOpU6e2vH7t2jsAtieOiKhyBQJLqK3XbfmZTCYTPaMllUxBqVBAq6lB2C+sIiXsD0GrqZFURUq1USpVODZ0HF7vKt568zbcC0EkEykgDSQT68Oo33rzNrzeVdw3cBQTtkm8Y7NBqamFdeAoBoYegHXgKJSaWrwzMYG3r10TNA8mkYjj7WvX9nwsbW0tNGo1/FmqajbzL7qhUasl9cwtBQIwmoQNd1colbD2H0VgaRHXx9+Ab9GNZCqBNNJIphIIBvyCj5VhNDViKRDII/LiEHM9MqR2DkRERERClHwG0cc+9jH867++AJfLhX/+53/Cyy+/hFOnfgxWqxVG43rVQCCwDLvdjpdffgmLi+vtZW1tbfjoRz+2cZxkMokXX7wImUyGEyceLPVpEFGRJHeYGVRTV4vIchh6k/DZNJFAGHX6OvT29uKtK1cAYEvb2r3C/hCi3iDuP348n7CpgJRKFQYHjyIajcI154Rzzol0MgWZQo6GehMGBo5CpVLiypWrO86FyQwNbmwyw7/oxpWr4zh+bGjXYdWZAcSFOBYADPT34crVcQDI2pbkX3TD65nH8WNDQi9NSYgdtK1QKnHw8BFcH7+MxFoE9gnXxuyvVKryh3bvl8HjRERERLmUPEGk0WjwpS99GU8++TnMzMzA6/Xin//5n3bcNp1OAwC6u7vx+c//ATQazcZri4uLeP/711cxu7eyiIjWRSMROF1zCASW1pcPV8hhNDags6NTUhULmykU8m2DpeuajVicXRCVIAp6AjAZ6qFUqnD/8eO4bpuA27sMXZMBtUb9+ofXZAqRQBgri0Foa2pw//HSLYcuFVJ+RrRaLQ71Wnd87e1r1wo2NLjQA4iVShWOHxvChG0SXu88mprbYDRtXdZ90TsPjVqTM9lUDvkO2lYolOjt7d3y89cvX674od2VNng8GolgzuXCUiCw8W9pg9GIjo6Osv9OU+Xgc0REVJ1KniACgObmZvzFX/wlvvOd7+D73/8eHA7Hjtt1dnbiQx/6ED784Z+EUrk1VLPZjMcf/2QpwiWqOIlEHNdtE4iurULXVI/G3va7CZHlFYxffxtaTQ2O9A9I7sOp0diAyPLKlmoflUYFhVKBsD8oKEkU9gehUCsQCq+3limVKgwNDiEajcI554Rv2rUpGWLCofukswpWqVTyM5LP0GCvdwHRaHTbfS7ksTZTKlU4OjiIaDSKubm5LVU1JqMR9w0ckewzlxm0LXSwNLD7oO1CHqtcKuUcEok4JmyTWIvF0NTcCuuAZUtS8p2JCWjUagz090nud5qkg88REVF1K0uCCAAUCgU+8pGP4CMf+QgWFxcxOzuL8J0Pc3p9Hbq7u9HU1FSu8IgqViIRx1tXrkDbbID5wNbfIblCDr2pDnpTHcL+EN66ckVyVTOd7R0Yn7i2rR2ssbsV7iknAGRNEoX9QQTdAZgPd8I76dzymlarhXWXipRqUunPyF6GBt9b4VLIY+1Eq9UK2k5KOtrb8Y7NJiohsuhdwH0DAzsfa2JC3LE887jvyBHB2xdbIa9HsRS6TZKqE58jIiIqW4Jos6amJiaDiArkum0C2mZD1nk7wN15PNdtExgalM4MFG1t7cZg6c3noFDIYT7cCf/sAkKeAOqajdtaxULeAJQqJcyHOyG7sw9tV+nPyFIgAOuARdQ+RlMj7BOuoh5rv9g8aFtIZVW2Qdva2lokEgn4vG40Nuc+ls/rRiKRkFR1Vb7XA+k0pqenS9KiU+g2SapOfI6IiIifnoj2kWgkgujaas4P/hl6Ux2ia6t5LQdeTEf6BxD1BretPqZQyNF8qB1NPW2IRdfgst3G7as3sDDlQCy6hqaeNjQfaodCIUckEIbR2FCmM5Cu/fCMFHJoMAcQ72ygvw9ez3zO1dgyg7YH+vt2fD0aiUChUMLrdsGX41i+RTe8bhcUCqWknjdg/Xp43C74vDnOweuGZ8GFdCpVkNX1hMinTXItFpPcNaby4nNERESARCqIpOKv/uob+Md//EcAwKc+9Sl84hM/v+X1b37zb/Gtb30r6zH++q//X3R1dRUtRqJsnK456JrqRe2jazTAOeeUVOtVrsHSa+Eo1sJRaGrUMHW37lgptOIL4tCRo2WIXtr2wzNSyKHBlTaAuFQKNWh7zuVCs7kNRmMjZmem4PXMo7ll+7G8nnmoVGpYB44isOQT3MJXUuk0vN55eL27nwPSwFpsDc2t7dDVGeB1z8O74EIylYJCLofOUI8DBw8jEgoWrEWn2G2SVB34HBEREVDGBFEymcRrr43h7bevYX5+HtFoBKlUrm9kZfjSl75UlHjeeecdfPvb34ZMJttYPW03Bw8ewqFDh3Z8TafTFSM8IkECgSU09raL2qfWqIdvWnrtMvcOlnZdvwXI0pArFKipq0VTTxtUmp0/WIX9IWg1NZJqU5GK/fCMcIhyaRRi0HamhU8hV+KQ9QhW16I7Jk26D/WhRrN+LCm28E3YJtHS2gFTkznrOczdmkFjk3kjYdTc0ob2zq4tiaTZG5NQqdQwNZkL0qLDNkkqBD5HREQElClBdO3a2/jiF78Ij8ez8bNsSZlM0kYmkxUlntXVVXzpS0/BZDKhr68Ply5dyrr9yZMP45Of/IWixEK0F8l7locXQq6QIynhdpnMYOme7u6NwcrZ2qPC/hCi3iDuP368dEFWkP3wjBR8iLLEBxCX214Gbd/bwlej0cLSdTDrPlJr4bu39Wa3c1hdiyIei8HnXUBza/u2Z2rzkF/fohveBRcgk+VcES8XtklSIfA5IiIioAwJotu3b+N3f/d3EYvFkE6noVQq0dHRgbo6A+Ty4iSAcvnrv/5rzM3N4fOf/wO89NJLZYmBqBAUd1qwxCQAUneWe5e6XG1nkUAYK4tBaGtqJLfqlpTsh2ek0EOUC3Us2m4/tPAJbb3xuucBGdBs3p4culfmda9nHrdu3YJSqcx7mPV+uMZUfnyOiIgIKEOC6O///u+wtrYGuVyOX/iFT+GnfuqnyvqH9tWrV/Cd7zyDxx57DO95z3uYIKKKZjQ2ILK8IngAMYCKGuZ8b9uZb9qF5J3khdFowqH7jvKDew775RkZ6O/DlavjAJA1sZMZonz82O6rsBXyWLTVfmjhE9p6EwosQa5UCD7XxiYz3PNOLC0H0NbeBeuAZUsr2jsTE9Co1Rjo78ua8N4P15jKj88REREBZUgQXblyBTKZDD/1Ux/Bz/3cz5X67beIRqP48pe/jIaGBvzar/1HwfvZ7dP47//9rxAKhaDT6dDb24uHHhpGbW1tEaMlyq2zvQPjE9dEffivxGHOmbYzEm+/PCOFGqJc6GPRVvuhhU9o600ymYC5vVPUsc2tnYhEV7Zcn82taP5Fd85h1vvhGlP58TkiIiKgDAmi5eVlAMDJkydL/dbbfP3rX8fCwgJ+//f/K+rqhH9YGhsbxdjY6Jaf6XQ6PPHEE3jssZFCh0kkmLa2FlpNDcL+kKAEAIc5V5/99IwUYohyMY5Fd+2HFj6hrTep9PrQXjGMjY3wXt99yG/mmmUbZr0frjGVH58jIiICypAgMhqN8Pl80Gg0pX7rLS5fvozvf/97OH36UcHJqra2dnz605/Gu971bpjN6//xvHXrFv7hH/4XxsbG8NRTT0EuV+Ds2bOi43n66afx9NNP59yuv79P9LGpuhzpH8BbV64AAIc504722zOylyHKxTwWrav0Fj6hrTdyGfIa8pvMsYKrqckMr3ch6zDrSr/GJA18joiIqOQJovvuG8TLL7+E2dkZWK3laRFZWQnjq1/9CoxGI379139d8H6PPfbYtp8NDg5icPDzePrpP8czzzyDr33tL3Hq1CmoVOJaEJ544gk88cQTObf7pV/6tKjjUvXhMGfKhc8IlVKlt/AJbb1RKJV5DflVyHMP+W1qbsXc3NyuyctKv8YkDXyOiIio5Amij370p/Hqq6/gX/7lX3DmzFkoFOK+bSuEv/iLv4TX68WTTz6J+vr6ghzz8cc/iWeffRaBQAA2mw1Hj0prXgdVFw5zplz4jFApVXILn9DWm7r6BgR8PjQ2ixvyqzPk/jvEaGqEfWL3VjSgsq8xSQefIyKi6lbyBFFfXz9+7dd+DU8//TR+//d/H5/5zGcKlqQR6tKlV6FQKPDss8/i2Wef3fKaw+EAADz//PN48803YTKZ8LnPPZnzmAaDAUZjA/x+H7xeb1HiJhKLw5wpFz4jVEqV2sInpPWm2dyGWbtNVILI65lH96HcreNyuQKpZPZWtIxKvcYkLXyOiIiqU8kTRN/61rcAAP39/XjttTH8/M9/Ag888AAsFgs0mpqc+z/++OMFiSOZTGJ8fHzX1xcWFrCwsLAxa0jI8SKRFQDgamZERET7iNDWm2QqCd+iW9BKUL5FN1QqNWo0uasxUqkk5IrcrWhEREREe1GGBNE3IZPJAAAymQxra2sYGxvD2NiYoP0LkSB65pnv7PraU089hRdeOI9PfepT+MQnfl7wMUdHR7G6ugqZTIbDhw/vOUYiIiKSDiGtNyqVEleujkOG7EN+fV43vG4XrAPC2tEDfh8ajMbCnAgRERHRLkqeIAKAdDqd9X9Lkcfjxvj42zh16hTUavWW1y5duoSvfvUrAIAzZ87CZDKVI0QiIqKqEo1EMOdyYSkQ2EjWNBiN6OjoKNqclFytN7kqjbzuecTjMRw5+gAUCmF/hi16F3DfwEChToGIiIhoRyVPEJ0//0Kp37IggsEQvvjFP8Kf/dmfore3F42NTYjF1nDr1i3Mzc0BAI4fP47f+I3fKHOkRERE+1siEceEbRJrsRiamlthHbBsScK8MzEBjVqNgf6+kq+0lKvSaPC+I5i+cQPLS76sVUYZ/kU3NGo1BwMTERFR0ZWlgqgStbQ04+Mf/zgmJ6fgcs3BbrcjkUjAYKjHQw89hEcfPYPTp09DLmC5WiIiIspPIhHHlStX0Wxu35ZgUciVaGwyo7HJDP+iG1eujpdtOe5slUZChl4D68khr2cex48NFTS2clReERERkfQxQXSPz372s/jsZz+77ecGQz1++Zd/pQwRERERUcaEbXLH5NC9Mq9P2CZxdHCwFKEJJnTotUatKWiCS8qVV0RERFR+TBARERFRRYhGIliLxQS1ZgHrSSKvdwHRaFRylTFChl4XMuZKqbwiIiKi8ilrgujNN9/E+fPnMTFxHX6/H7FYDN/4xl/hwIEDG9uMj49jdnYGtbU6vO997ytjtERERFROcy4XmppbRe3T1NyKubm5rIOlyynX0OtC2Q+VV0RERFRcZUkQra6u4qmnnsKlS68CuLuKmUwm27atXC7Hn//5n0Mmk6G/vx+dnZ0ljZWIiIikYSkQgHXAImofo6kR9glXkSKqDPup8oqIiIiKpywTlT//+f8bly69inQ6jcOHD+NjH/vYrtsODg6iu7sbAPDqq6+UKEIiIiKSmlQyBblcIWofuVyBVDJVpIgqw14qr4iIiKh6lDxB9MorL+NHP/oRAOA3f/O38P/8P3+OX/mVf591n0ceeQTpdBrj4+OlCJGIiIgkSK6QI5VKitonlUpCrqjuFUaXAgEYTY2i9jGaGrEUCBQnICIiIpKkkv/FdP78CwCAs2fP4oMf/KCgfazWwwCA27dvFy0uIiIikrYGoxEBv0/UPgG/Dw1GY3ECqhCsvCIiIiIhSj6DaGpqCjKZDD/2Y6cF72MymQAAy8vLRYqKiIiyiUYicLnmsLS8hHQyBZlCjob6BrR3dHJGSRa8boXV0d6Od2w2NAqcpQMAi94F3DcwUMSopC9TeaWQC/+zj5VXRERE1afkCaJQKAgAaGwUXuosl6//gZJK8ZssIqJSSiTisNkmEI+vor3diAPdnVAo5EgmU/D5wrDZ3oZKpUV/fz+XxN6E1604tLW10KjV8C+6BQ1c9i+6oVGrqz4Zl6m8EpNYY+UVERFR9Sn5V0M6nQ4A4PMJLxFfWJgHANTX1xclJiIi2i6RiOPq1Stobtbi+P1daDEboFDKARmgUMrRYjbg+P1daG6uwdXxK0gk4uUOWRJ43YproL8PXs88/IvurNv5F93weuYx0N9Xosikq6O9HYveBVH7LHoX0NHRUaSIiIiISIpKXkHU0dGBYDCImzdv4D3veY+gfS5d+iEA4NCh3mKGRkREm9hsE+jsNKLFXJd1u8zrNpsNg4NHSxFa2UUjEcy5XFgKBNbnuyjkaDAa0dHRgRs37LxuRaRUqnD82BAmbJPweufR1NwGo6lxfWZOKomA34dF7zw0ag2OHxtihRZYeUVERETClDxB9J73vAfXr1/HM898Bz/90x+FWq3Ouv3bb7+NH/zgRchkMgwPP1SiKEkIn38R18ffLncYRFQEyWQCy8sByFM6+NxLgvYJ+Ffw9ltvQaEo+X9aSiaVTiG4vIxUKg1NjRZqtRoyhQzpdBpLi34sOOeQSiaApJ7XrcgUADQyOdyOWThvTCGdTkMmk0GlVqNWq4UilcbUdVu5w5QMWToFx40peOac0NRodt1ubXUNa6sRGBsa+N94ol34/IvlDoGIqChK/tfov/23H8a3v/1tBAJL+G//7b/is5/9TzAYDNu2SyaTOHfueXz9619HOp1Gc3MzRkbeX+pwKQutWo2jxw6XOwwiKoKFBRe6D9bDaKwVvE9gKYLVNRlaW9uLGFn5JJNJzM7MoL3zMOp2+O9WRigYQHDZh+7uJigUspzH3e/XjaQjmUzC6ZxDIhGHod4EXZ0eMpkc6XQKK6Ewgst+KE216OwchEIhbtUzompy7fJYuUMgIiqKkieIdDodPve5J/Hkk5/D66+/jk984udw9OjQxut/9VffQDyegN0+hZWVFaTTaajVajz55O9BqeS3q0REpbCysoLm5iZR+9QZauGb3b/fqjqdczAYG7MmhwCgzmAEIIfT6ceBA6acx93v142kQ6FQ4MCBLsRiMfj9PrgcPqRSKcjlcuj1OlgslpyV3URERLR/lSXj8sADD+Cpp76EL37xj+B2u3H58uuQyda/ZX399dcBAOl0GgDQ3NyMJ5/8PfT395cjVCKiqpRKpSB2hWuFfP+uNhmLxZBIxHMmhzLqDAYEl32IxZJQq7NXYuzn60bSpFar0draVu4wiIiISGLKVpIzODiIv/mbv8WLL76I0dEfYmpqCoFAAKlUCgaDAb29vRgeHsZjj41ApeKASSKiUpLL5UimADFdJsnU+n6VLFNZEQ6vbKmsSCaSMNTnrgbazFBvgt8XQmtb9qTSfrhuRERERFT5ytqzpVAo8L73vQ/ve9/7yhkGERHdQ6fTIRSKiJpBFApGoNPpihhV8dw7m6Xd0rR1NktwEbF4ArV6PRQCkzm6ujq4HLlbxyr5uhERERHR/sGvLImIaBuTqQl+f0TUPv6lCEwmcXOLpCAzfLpWV4cOSzfqDAbIZXLIAMhlctQZDOjqPgh9XT1cjltIJoW1g8lkcqRS6ZzbVep1IyIiIqL9hQkiIiLaRq1WQ6lQIRCICto+EIhCqVBX5IBb4cOnDTA2NMLjdgk6bjqdglyefRWzSr5uRERERLS/MEFEREQ76ui0wOdbyZkkCgSi8PlW0NHZWaLICief4dPJZAKxeCzntiuhEPQ6za6vV/J1IyIiIqL9p2gziB5//OcLfkyZTIZvfvNbBT8uERFtp1Ao0N19EHNOJ/y+FZhMtagz1EIhXx+sHApG4PdHoFSq0d19EAoxE60lwu/3iR4+XV9vQjCwhKZmc9btlpZ8UMhSCCwp9911qzS7DR83mRpZvUVERER0R9ESRG63u+DHlMmyl+oTEVFhKRQKdB04cOcD9iJ8s4sbH7B1Oh06LQcq+gN2OLyCdou4+T+6Oj0CS76s24SCQWjUGrS1te7L61Ypcg0fdzgcUCpV6OzsYKKOiIiIql7REkSPPTZSrEMTEVGJqdVqtLa2lzuMgkulUpDJxHVbZxIMuwkFgwgu+9Hd3Q2FQlHx101o9Y3UqnQyw8d3mi8luzN8vM5gQCgYxOzs7Mb9IiIiIqpWRUsQ/c7v/E6xDk1ERFQQcvl6skdMkiidTiGVSiEUDEJXp99SkRJc9kOpVO2LZIPQ6pv29ja4XPOSq9IRM3w8s/2BA12lCI2IiIhIkoqWICIiIpI6vV6HlVBY8JBqAOvb19UhmViFy+HbUi1jsVj2ReuYmOqb6elpmJpaUF9vzLpdKat08hk+Hlz2IxaL7Yv7R0RERJSPik8Qzc7O4t//+1+BTCbDuXPnyx0OERFVEJOpEQ6HQ1SCKLjs3zeJoN2Irb4Jh4PbEkQ7bVeqKp18ho8b6k3w+31obW0rUlRERERE0sZl7omIqGqp1WoolSqEgkFB24eCQSiVqn2dHMqn+iaZTCAWj+XcLpGIIxbLvl0hhMMr0NXpRe2jq9MjHF4pUkRERERE0lfxFURERER70dnZgdnZWQDImhTZPHxaKKkMbhYTRz7VN/X1JgQDS2hqNmfdrlRVOvkOH0+ldh8+TkRERLTfMUFERERVTaFQoLu7G07nHILLfhjqTXsePi2V5dXziSMcXkG7pUnU++jq9Ags+QRt53Lk3m6v8h0+LpezsJqIiIiqFxNERERU9RQKBQ4c6NqotNnL8GmpLK+ebxz5Vt+k07mrb0pVpZPv8HG9XlfEqIiIiIikjQki2jdisRh8vkWEV1aQTqUgk8uh1+nQ2Ni0r+eFEFWa9STMIlZW7rY76XQ6mEzl/11Vq9V7bn/KZ3n1trbWgrei5bvMe77VN0K236lKpxjPw16GjxMRERFVKyaIqOKtt1A4sJaIo8ZQC0ObCTK5DOlUGmuRVcw6bkGjVKGz01KS5ZWJaGfJZBJzTgcSyThMplo0NzdBIQeSKSAUisDpvAWlQo2Ozs6K/V0VO+C5VqeHb9ENh8NR0Fa0vSzznm/1jba2VtB2mSqdYj4Pm4ePCzmPahg+TkRERJQLm+2poiWTSczM3ISsVoWG9iZo9bWQy+WQQQa5XA6tvhYN7U2Q1aowM3MTyWSy3CETVaVkMonZ2Zsw1Ktx8GATjMZaKBQAZIBCARiNtTh4sAmGehVmZyv3d1XMgOdkMgWX8xYam1rQYelGncEAuUwOGQD5nRawDks3anV1mJ2dFXVN9rLMu8nUiOCyX9S+y8t+GIwNObcLLvthMjWW5Hno7OxAcNmfc4W6zPDxzs4O0e9BREREtJ8wQUQVzel0QF1fC60++zfXWn0t1PW1cDodJYqMiDabczrQ2KiD0ajNup3RqEVjow5zTmeJIissMcurexZcMDY0os5Qn3W7OoMBhnoTnM65osSRkVnmfXP1jRCh4DIUCiXUquzVN5urdErxPGSGj0dWQphzzCIUDCKVTiENIJVOIRQMYs4xi8hKqGhzoIiIiIgqCRNEVLFisRjWEvGcyaEMrb4Wa4k4YrFYkSMjos1isRgSyXjOZECG0ahFIhmryN9VoQOeY/EYkqmEqBawhIh/v/a6zLuY6ptFrxu1uuzJqM1VOqV8HjLDxy0WC5KJVbgct+CYvQGX4xaSiVVYLBYcONDF5BAREREROIOIKpjPt4gag7DkUEZNnRY+3yLa2tqLFBUR3cvvX4TJJO531dRQC79/Ea2tlfW7KnTAczCwhPo8W8CEDNHe6zLvmeobp3MOwWU/DPUm6Or0W+YjBZf9UCpV6O3thcs1j3AwkHW7TJWO1+su+fNQiOHjRERERPsdE0RUscIrKzC0ifuApdFpEZwXN1uDiPZmZWUFzc1NovapM9TCN7tYpIiKR+iA52gkAlNTs6hj6+r0cDl8BY1js3uXec9U36yvMuaDy+HbssKaxWLZGOosdDugup4HIiIiokrCBBFVrPWl7GWi9llf3SxVpIiIaCepVAoKkQ3NCjk22p0qidDl1cVW9wBbW8AKFcdmuy3zLrT6Ruh21fQ8EBEREVUSJoioYsnkcqRTaVFJovXtOXqLqJTkcjmSqfXVqYRKprDR7lRJhC6vnmnByrcFrFBxZBRimff1CqJFrKysbFQQ6XQ6mExNW45b6c9DplIqHF7ZUillMjXu6foRERERlVvFJ4iam5vwmc/8TrnDoDLQ63RYi6wKHlINAGsrUeh1utwbElHB6HQ6hEIRGI3Cf1dDwQh0Ffq72tnZgdnZWQDYNTmjra3dcwtYIeIA7g6Q7u7uFnzszZLJJOacDiSScZhMtWhuboJCvp7UCYUicDpvQalQo6OzEwqFomKfh2QyCadzDolEHIZ6E9otTVtmLTkcDiiVKnR2dnDoNREREVUkaXwdtwc6nR4jIyMYGRkpdyhUYo2NTVgNRkTtsxqKorFR3OwLItobk6kJfr+431X/UgQmU2X+rgpZXj0aWcGSX9xMneCyHyZTY0Hj2Osy78lkErOzN2GoV6OzswGr0QRmZryYsnswM+PFajSBzs4GGOpVmJ29iWQyWZHPQzKZxOzMDGp1deiwdKPOYIBcJocMgFwmR53BgA5LN2p1dZidnUUymSxbrERERET5KloF0fj4eFGOOzQ0VJTjUuVRq9XQKFWIhiOCqoii4Qg0e2yhICLx1Go1lAoVAoGooKXNA4EolAp1Rf+u5hrwfODAAczPLxS9BUzMoOl8zDkdMDXUYnk5Cp8vAkN9I9ot+nsqa3xQKmUwmWox53Si68CBinsenM45GIyNOe9V5nWncw4HDnSVIjQiIiKigilagugzn/ltyGTiBggLce7c+YIfkypXZ6cFMzM3ASBrkigajiC2HEFPz8FShUZEm3R0WjA7u/67mi0pEAhE4fOtoLt7f/yuZhvcXKoWsFxx5CsWiyGeiMHvj8FgbN52DrI7lTV1BgNCwSD8fu/GfpX0PMRiMSQSccHtgHUGA4LLfsRisYpOchIREVH1KeoMonQ6XdDjFSPhRJVNoVCgp+cgnE4HlpYXUWPQQqPT3lmtLI21lShWg1FoVCr09BzkXAiiEtsyuDiZgnthGR5PEKYGHRpM+ruzaoIR+P0RKJVqdHdXx+9qpgXM6ZxDcNkPQ70Jurqt1TfBZT+USlXeLWDF5PcvApDBYGwSXFkTXF6E37+I1tZ2dHcfxJzTCb9vBSZTLeoMtZJ8Hvx+Hwz1JlH7GOpN8Pt9BU/KERERERVT0RJEX/rSl4t1aKIt1lsouhGLxeDzLSI470c6lYLsTgtFa9cBfotLVGK5Bhf7FsPw+UKQyRVQKNZXu+q0VN/varFbwIopFApBLleIrKzxIRQKobV1/dy7DhzYSCL6Zhe3rH4mlechHF5Bu0Xc/CNdnR4uh69IEREREREVR9ESRMeOHSvWoYl2pFar0dbWXu4wiKpeZnBxY6MORmP9ltcUCsBorIXRWLulfUhq1TGlVowWsGJLJtMwNggfmg2sV9b4Fj1bfrZ+7tL4t3unJewTiQQS8YSoZJVMJkcqlSpipERERESFV/HL3BMRkbTMOR13kkPZBxBnXs8MLqZKk4auTi9qD11dHXyL7iLFk7/sS9iH4HG7oFAo0dLaDoU89wKw6fR6comIiIiokvCvFyIiKphYLIZEMi5odSpgPUmUSMYQi8WKHBkVngwymbg/I9a3l9Y8wdxL2Nej09INvd4Al+MWksnclUEroTD0el3xgyciIiIqIFYQEZEgK+EwFtwLWIvFgDQAGaBRq9FqboVOL66KgPYvv38RJtPuKwruxNRQuzG4mLLbMvR707wek6mp5PN6FAoF0umUqCRROp2SXDuh2CXsPW4X2to7s24bXPbDYrEULEYiIiKiUihaguhb3/pWUY77+OOPF+W4RLSzeDyGGzdvAjKg1qiHXtewZZU4h8sJADjUcwgqlarM0VK5raysoLlZ3EDfOkMtfLOLRYpof8g19NvpvAWlQo2Ozs6SJWDq6vRYCYVQZ6jPvfEdK6Eg6kS2pRVTPkvYLy/7EYvHoFbtnJALBYNQKlWSGLBNREREJEYRE0TfLMqy9EwQEZVOPB6DfXoa+kYDtHVb2yVkchm0dTpo63SIhlZgn7bD2tsL1S4fmqQgs9JdeGXl7kp3Oh0aG0tffbFfpVIpKEQ2Lyvk4EDfLMQM/Z6dvVmyod8mUyMcDoeoBFFwOSCpypp8lrCvrzchGFhCU7N522uhYBDBZT+6u7sLFCERERFR6RS1xSydThfz8ERUZDdu3twxOXSvzOs3Zm6i/3B/KUITZX0ArQNriThqDLUwtJnuVkFFVjHruAWNUoXOTovk2l8qjVwuRzK1nrgQKpkCB/pmIdWh32q1GkqlCqFgUFAFjhQra/Jdwn7J70GqqXnTIOswgst+KJUqdHd3898RIiIiqkhFSxCdP/9CsQ5NRCWwEg4DMuRMDmVo63SIBMJYCYclNZMomUxiZuYm1PW1aNBvrXSQyWXQ6muh1dciGo5gZuYmenq45Ppe6HQ6hEIRGI3C5xCFghHodBzou5O7Q7+FVekYjVr4/SuIxWIlScR0dnZgdnYWALImiaRaWZNKiZuhBGSWsE/D5bi1MQdKr9fBYrFIKvlFREREJBaHVBPRjhbcC6g1ikv0aI16LLgXcEjfW6SoxHM6HVDXryeBssm87nQ6cOBAdwki259MpiY4nbdEJYj8SxF0dm6veJHSQOZykfrQb4VCge7ubjidcwgu+2GoN0FXp6+Yyhq5XJ7XoG2lUoneXun8O0dERERUCEwQEdGO1mIx6HUNovap0Wnh8wWLFJF4sVgMa4n4tsqh3Wj1tVgKLpas+mI/UqvVUCpUCASigpa6DwSiUCrUW663FAcyl0slDP1WKBQ4cKDrTkLPB5fDVzGVNXq9DiuhsOAh1QCXsCciIqL9iwkiItpZer0FSwyZXAaUafTYTtUmgAw1htxJis1q6rTw+RbR1sYl1/PV0WnB7OxNAMiaJAoEovD5VtDdfXDjZ6UeyCz1KqVKGvqtVqvR2tpW8vfdi7uDtoUniLiEPREREe1XTBAR0c5kQDqVFpUkSqfSQOEXL8wqW7XJjRtu6GvFJYg0Oi2C8/4iRVsd1tuODmLO6YTftwKTqRZ1htq7VUDBCPz+CJRK9bYET6kGMldKlRKHfhfXfhi0TURERFQoRUsQ/c7vfObO/yfDl770pR1+no+txyKi4tGo1VhbiQoeUg0AqytRaEr4wSlXtQmQXxVUmkuu75lCoUDXgQMbFTq+2cUtFTqdlgPbPmSXaiCzVJeN3wmHfhdfpQ/aJiIiIiqUoiWIrl69CgCQyWTbfi6TyZBOC+9DyWx/77GIqHhaza1wuJyiEkTRQBiW9s4iRrVVrmoTmUyWVxWUjNUXBbPediSsXa9UA5mlumz8Tgo59Jt2VumDtomIiIgKpWgJoqNHj+6Y0Nnt50QkLTq9HkgD0dCKoCRRJLRyd78SEFJtotdrsBaJQitioOzaShR6Vl+URSkGMkt92fh7FWLoN+VWyYO2iYiIiAqlaAmir3zlq6J+TkTSc+jgQdinpwEga5IoGlrBii8Ia6+1VKEJqjZpbNRj1uETlSBaDUXRamH1RT72OvD53oHMsVgSft8KwitrSKXSkMtl0Os0MDXqoFavV3GIHcgs9WXjd7KXod8kTiUO2iYiIiIqFA6pJqJdqVRqWHt7cWPmJiKBMLRGPWp02jtzetJYXYkiGggDAKy9VqhUqpLFJqTaRK1WQKNUIBpeEZQkioYj0HAArWiFGvicGcgMpOF0LiGRSMNQ34h2y9Z2H4fDB6VShs7OBgAyUQOZK2HZ+HvtZeg3EREREZFQkkkQJZNJhEIhAEBdXR3/wCWSCJVKjf7D/VgJh7HgXoDPF1xfyl4GaNQaWNo7S9ZWtpnQ5b87O02YmfECQNYkUTQcQWw5gp4eVl+IUciBzzqdDsHlFfj9ERiMzdsGBstkctQZDKgzGBAKBjE760VDQ62ogcyVtGz8lhjyGPpNRERERCRGWRNEt27dwve+9128+eabcDqdW17r6OjEAw/cjw996CfQ09NTpgiJKEOn1+OQvrfcYWwQuvy3QiFDT08znM4lLC2vQGPQbamCWluJYjUYhUalQk8Pqy/EKuTAZ5OpCTM3b8LUZM655Hjmda/HjZ6DwpN6lb5svJih30REREREYpQlQZRKpfCNb3wDzzzzL0in0zuuaOZ0OjA358T3vvc9fPjDH8av/up/kMwf6ERUfmKW/1YoZDhwwIRFbxjLwVUEg1GkUynI7gygbe1i9UU+ijHwWaZQ5EwOZdQZDFhaEtf6xWXjiYiIiIh2VpYE0R/+4Rfw8ssvbySGDhw4gP7+fhiNDQCAQGAJk5OTmJ2dRTqdxjPPPAOfz4cnn/y9coRLRBKUz/LfwdAqLGzFKZhCD3z2+31oaBA3H6ihoQl+v0/wYGEuG09EREREtLOSJ4hefPFFvPTSS5DJZDh48CB+67d+C319/TtuOzlpw5/+6Z9ienoar7zyCl588UU8+uijJY6YiKSIy3+XX6EHPofDK2i3iDuerk4Pl8MneHs+N0REREREOyt5z9Zzz30fwPqMoT/+4z/ZNTkEAH19/fjKV76Kzk4L0uk0vv/975UqTCKqAB2dFvh8KwgEolm3yyz/3dHZWaLIqkOhBz6nUinIZOIOKJPJRQ+Q5nNDRERERLRdyRNEN27cgEwmw8c//nFotbm/vdVqtfj4xz8OALh582axwyOiCpJZ/ju4HMfNG4sILEWQTAJIA8kkEFiK4OaNRQSX41z+uwjuLksvXLaBz3L5+lL2YqTTKdHz6fjcFEcsFsPCwjymp6cxNTWF6elpLCzMIxaLlTs0IiIiIhKg5C1miUQCAHBQxKozmW0z+xIRZXD57/Ip9MBnvV6HlVBY8JBqAFgJhaHXix8gzeemcJLJJJzOOSQScRjqTWi3NEEmW0/2rYTCcDgcUCpV6OzsYLKNiIiISMJKniAym824ffs2VlZWBO8Tiaxs7EtEtBMu/116hR74bDI1wuFwiEoQBZf9sFgsgre/F5+bvUkmk5idmYHB2LjtvslkctQZDKgzGBAKBjE7O4vu7m4miYiIiIgkquQJokceeS/+5//8H3jllVdw/PhxQfu8/PIrkMlkOHnyZHGDI1HCoQCe+Ye/K3cYRLQHyWQS0UgEsXgc6VQaMrkMapUK2tpaQR/klwMB/EijQI1WlXPb1Wgca2tJ1BuNu24TCASgUtVAU1OT83hrq6uIx1dhzHI8Ki6x9+uVfz3H+0VEFS8cCpQ7BCKioih5guijH/1pXLx4Ad///vcwNHQUP/Zjp7Nu//LLL+P73/8eWltb8bGPfaw0QZIglq5G/MzjZ8sdBhHlIZ5IYHJyAvHYKtrau9HYWAelQoZEMg2fL4R51zJU6hr09Q1Apdz9PxXxRALj41fQ0WGA2bx75Y/bHcTcXBBDQ8dzH+/qVTS1tMPU3LLrdn6vB4seF4aOHct6PCqeSDSKiQkbDh8ZErzP1PVxDAz0o1bADEIiIqn6X9/613KHQERUFCX/q1qn0+OLX3wKf/AHn8cXvvAFXLx4ESMj70dfXx+MRiNkMhmWlpYwOTmJF144j9HRURw+fBhPPvl70On0pQ6XiGjfWU/CXEFHpwFmc/OW15RKGczm9WSP2x3E+PgVDA0dRzwex7xrDoHAEpKpJBRyBYzGBrS1d2Bo6DgmJyfgmnOgvb0ejU2bkk2LIbhcy1BranImhwBApVRi6Ngx2Gw2LHrn0djcBqPJBLlcgVQqiYDfD593Hmq1uijJoUg0uut5MqmxlcvlQmNzq6h9Gptb4XK50HvoUJGiIiIiIqJ8FS1B9P73j+TcJp1OY2xsDGNjY1m3mZqawic/+TgA4Ny58wWLkYioGk1OTtxJDmWf9WM2G5BKpvHmG5ehVivQ1l6PrgOdWyqNJm3XNiqNMkmkuTnnluRK/8CgqOSKSqnE0cFBRKJRuFwu2CfmkEqmIFfIYWpowMDAQMGTNVsrqrKfJyuW1i0tLcE60ClqH6PJBPvEXJEiIiIiIqK9KNpfuel0umDbZbaRyWR7iomIqNpFolHEY6vbKod2kkikMD+/hAMHTDC3bk0m7VZpdOhQb8FirdVqS1Jpkk9FFZNEWE/aycUNnJbLFUglU0WKiIiIiIj2omh/4T7++OPFOjQRkSRUYjvSvGsObe31gradnJxHR6dJUKXR+vYTGLzv6J5jLDUxFVWZ7SvxPAtNrpAjlUpCoRD+p0QqlYRcIS9iVERERESUryImiD5ZrEMTEZVVJbcjBQJL6DqQuy0oGk0gHkvmTJpkmM0GzLsciESjkk2O7URMRRVQuedZDA0NDQj4/WjMMkz8XgG/Hw0NDUWMioiIiIjyJa1PLkREeSpVNU+ltyMlU0koFbnbdeddfrS1G0Udu62tHvOuuYK2mRWbmIqqDDHnWYlVZkK1t7djYsImKkHk8y5gYKC/iFERERERUb6k86mFiCgPpa7mqfR2JIVcgUQyDaUye5IoEIig64CwqpqMxqY6zM059xJeyQmtqNpMyHlWcpWZULVaLdRqFfxeD0wCkkR+rwdqtariE2NERERE+xUHARBRxcpU8zQ1aXD8fgvMZsN64kN2t5rn+P0WNDVpMD5+BfFEYk/vd7cdSXjbVTy2ikg0uqf3LSSjsQE+XyjndslUWlCl0WZKhQzJVDLf0MpCaEXVZrnOs9TPZTn19/dj0eOC3+vJup3f68Gix4X+flYPEREREUkVE0REVLHEVPN0dBgwOTmxp/fbSzuSVLS1d2DetZxzO4V8vdpFjEQyDYXIVa3KLVNRJUau8yz1c1lOKqUSQ8eOIbjsw9T1q/B5PUgmE0in00gmE/B5PZi6fhXBZR+Gjh2r2GopIiIiomrABBERVaRyVPMEAktobKwTtU9jUx0CgaW837PQarVaqNQ1cLuDWbczGmsFVRpt5lsMwWisrAHEQiuqNst2nvuhykwslVKJo4ODGBgYQCIWgX3ibUyMvwn7xNtIxiIYGBjA0cFBJoeIiIiIJI5/rRFVoFIMvpX6cN1iDxfeSTHakcqhr28A4+NXAGDXREZbuwkT152CEx0A4HIFUKsz4I03Xs/6zEjp2Wpr78Ck7Zqo85yfX0Zf/+DOr5XhuZSKWq0WvYcOlTsMIiIiIsoTE0REFaQUg28rZbhusYYLZyN0wPNmUmy7UimVGBo6jsnJCbjmHGhvr0djU93d+7wYgsu1jEQCcLuDgpIn7oUgYrE42jvkOHRo52em95AV0zfsknq2NldUCTpPdxAqdc2uiaxyPJdERERERIXABBFRhSjF8uqVtIR7Oap5Mu1IYqpNpNp2pVIqMXjf0Y1qnrk555Zqnv6BQahUqpyVRsB6cuj2bR9OPNgDpfJu5/LmZ2betYw337yMg4daJPdsCamoAtaTQ3NzQQwNHd91m/1SZUZERERE1YcJIqIKUYrl1StpCfdyVPMUuh1JCmq12qytTbkqjRxOPxRyGe5/4MCW5NC9/EthHDzYIslnS2hFlVpTkzNxtV+qzApFSu2ERERERJQdE0REFeDu4Nvm3BsDdyo2HIhEo4I/hJXiPQqpHNU8hW5HqgTZKo30dXWQy9aTQ9lEownEY0mYW4UPbi71syWkokpILPupymwvKqVVlYiIiIju4l9lRBXg3sG30WgCc3N+LAUiSCVTkCvkaDDWoqPDBK12/dda7ODbShuuW65qns3tSAZDLeZdfgQCESRTaSjkMhiNtWhrNyEYjORsRyqmQldu7FRpdOPGNDo6cyc25l1+tLUbRb1fuZ6tXBVVuezHKrNINAqXy4WlpaW7/940NKC9vX3HZ6mSWlWJiIiI6C7+RUZUATKDbxOJFCYmXIjGktA11aPJaoJMLkc6lUIkEMbb1+eg1Sgx0N8mevBtpQ3XLVc1j0qpxH1HBnH16hXI5T5YLI3oOtC8pR3pnWsOpFIyHDtW+g++pazcEPrMBAIRdB0QVpmWUamDm/dTlVk8kYDNZkMsFkdjcyusA52QyxVIpZII+P2YmLBBrVahv79/y7NUSa2qRERERHTX7gMjiEgy1gfYpnHlym3IDXqYD3dBb6qHXK6ADDLI5QroTfUwH+6CvE6HK1duA0iLGnxbicN1+/oGMDcXhNsdzLpdZrhwX9/Ant8znkjgnXeu4UC3CQ++qwfmVsP6vBnZneqIVgMefFcPDnSb8M71a4gnEnt+TzGxjV+9gqYmDY7fb4HZfE9sZgOO329BU5MG4+NX9hyb0GcmmUpX3LO1F+V4Lgstnkjg6pUrMNQ34vCRITQ2t0ChUEImk0GhUKKxuQWHjwzBUN+I8atXN56lu62qwtsJ47FVRKLRYp4OEREREQnACiKiCqCQK3B9wgVtsxF6U/Y2sMzr1ydcogbfVuJw3UIOFxZKytURpY5N6DOjkMsq5tkqRGteOZ7LQrPZbGg2d8DU3JJ1u8zrNpsNRwcHK65VlYiIiIjukt5fpUS0jU5fh0AwgNZuYR+89KZ6LHgCMBqMgt+jUofrFmq4sBBSHuRdjtiEPjNGY63kn61Ct+aV8rkstEg0ilgsnjM5lGFqbsGidwGRaLTiWlWJiIiI6C4miIgqQDoN6JuNovbRNxuBVeHbV/pw3b0OFxZCytUR5YhN6DPT1m7CpM0l2WermEOVS/FcFprL5UJjc6uofRqbW+FyuSqyVZWIiIiI1nEGEVEFCIVDqG3Qi9qntkGPYDgkfPtNw3WFkPJw3WIJBJbQ2Fgnap/GpjoEAktFiuiucsQm9JnRapVQqRVwL0jz2RLTmtfRYcDk5ERJ4iqXpaUlGE0mUfsYTSYsLS1ttB2KUe5WVSIiIiJaxwQRUQVIJZOQycX9usrkcqSS4r6V3w/DdYtJytUR5YpN6DNjatDj5k2P5J4tDlXeLpVMQS4yYSOXK5BKpjbaDsWQQqsqEREREbHFjKgiyBUKpFMpyER8aEunUpArxH3Iq+ThuoUYLpxLsQd57+Ucyhmb0GfmgQcexPQNu6SeLSm3DZaLXCFHKpWEQiH8HqRSScgV8opvVSUiIiKqZtL5dEdEu2owNiASWIHeJPxDV2QpjIY8vpWvtOG6hR4unE2xBnkX4hykEFs8Hs/5zEjt2eJQ5e0aGhoQ8PvRKHBINQAE/H40NDRsaTsU8ixWY6sqERERkVQxQURUATo6OvD29bdFJYhWfCEcPJL/t/KVMFy3mMOFd1KM6ohCnYNUYhPyzEjp2ZJy22C5tLe3Y2LCJipB5PMuYGCgH8B62+H4+BUAyPo8ZtoJh4aO7yVcIiIiIioQJoiIKkCtVgutpgZhf1BQkijsD0Kr2f/fyosZLpzZfvC+o3m/XzGqIwp1DvnGBgA3bkzv2Dp28+Z0Sa9vORS7Na8S1Wq1UKtV8Hs9gpa693s9UKtVG895JbeqEhEREVUzDqkmqhAD/UcQ9YYQ9mcf8hv2BxH1hjDQv78HSJdruHAhB3kX+hxExeYMIp1KYdJ2DTp9CkPHOvGuB7sxdKwTOn0KE++MIxpd2ffDmzlUeWf9/f1Y9Ljg93qybuf3erDocaG/v3/LzzOtqv0Dg1hZkWP8qhOvX57F+FUnVlbk6B8YxOB9R5kcIiIiIpIQ/mVGVCFUSiWOHz+OCdsE3F4HdE0G1DboIZPLkU6lEFkKY2UxCG2NFseP7/9v5cs1XLiQ1RGFPgehsanUGqTTaTS3aGE2m7ccI9M6thJehU5XU7DYpIpDlXemUioxdOwYbDYbFr3zaGxug9FkWl+tLJVEwO+HzzsPtVqNoWPHdn3OpdROSERERETZ7e9PkET7jEqpxNDg+pDfubk5LNrnkUomIVco0NDQgIP3Hd33bWUZ5RwuXKhB3sU4ByGx3bw5jU5LfdakSCAQQdeB5l1fzyc2KeJQ5d2plEocHRxEJBqFy+WCfWIOqWQKcoUcpoYGDAwMVMV1ICIiIqoWTBBR3qIrUbz64o/KHQZBDiANd8gP921/uYMpGdecA9HlICBmvnAacLkCiAbTRYho/T5Eg37MC7wPpTuHu7E5brqx6HWjta0e09ezxbaE6PKKhK5v8aTTKVy/Og2DQQO9TrPrduGVNQSDa2hrbcOrnmr+ty+F+ZAP87d95Q6EiKgsoiuV1U5NRCQUE0SUt57ubnzw/Q+VOwzKIhgMwW6fhNu9gGQyCYVCAbO5FYcP96OuTl/u8Pbkuee+h8fO9kOlEv7PWDyewAsv2PDB9z9axMiEK8c5vPHGZRw9YkRPT/bhw889dwWPnT1S0ddXjFgsjrGxS4hGw7BaW2CxmKBUKpBIJOFw+GG3e9Da1Iyf+jcnoVKp9vXvFhERZffs2li5QyAiKgomiIj2oVgsjtHRV7G2tgKrtQVDQ/0bH3adTj9GR3+Amho9hofXP+xWIrO5FU6nP2eiYzOHww+zubWIUYlTjnNwuxcwNNSfczuzub7ir68YarUKp06dRigUxtSUDTabbVPipw0PP3wadXV6xGJxvPTSi/v6d4uIiIiIqhMTRET7TCwWx4UL59Hf34Kenp4tr6lUSvT0tKCnpwUzM15cuHAeZ86MQK0u/QfZvVZgWK19GBt7SVQCY3rag+Hh03uIurDKcQ7JZBJKZfYl2oPBKOLxJN56axbXrjmhUMhhNtfDam2FwbD7zBmpXd981NXpceLEgzu+Vim/W0RERERE+WCCiGifGR199c4H2OwDhjOvj41dwqlTp0sQ2bpCVTcZDHXQaHSYmfHmPFcAmJnxoqZGL6n2n3Kcg0Kxfq13ah1bW4tjbGwaa2txWK2tOHGie8u9GRuzo6ZGhYce6t2W+JDi9S00qf9uERERERHthbzcARBR4QSDIaytrQhKNgDrH2RXV8MIhcJFjmxdpgKjq0uPkZFB9PS0QKVSQiaTbVRgjIwMwmLR4cKF84jF4lmPNzz8CCYnPZiZ8WbdbmbGi8lJD4aHTxbydAqi1OeQaWu719paHBcvvoOurkaMjAztcm+GYLE04uLF61hbu3tvpHx9C0Xqv1tERERERHvFCiKifcRun4TVKrxdCQB6e1swNWXbta2mkApdgaFWq3DmzAjGxi5hasq963BhrVaPs2dHJDkTptTnsFtb29jYNPr723O2u2VeHx21o6urSfLXV6zdWh/j8bikf7eIiIiIiPaKCSKifUToAOLNLBYTbDZbkSK6624FRk/ujbGeJLLb3QiFwlnbloQOF5ayUp7DTm1twWAUa2txwbOQenpa8M47c/B4khVxfYXI1fr41ltOnDhxv6hjlup3i4iIiIioEJgg2uSv/uob+Md//EcAwKc+9Sl84hM/v+N2b775Br797X/C5KQNq6urMJvNeOSR9+Jnf/ZnodXuPsCVqNiEDCC+l1KpQDKZLFJEdxW7uinbcOFKUapzGB5+BBcvngeQScQtwGoVt/rYkSMdWFqS75vkUK7h09euOSX7u0VEREREVAicQXTHO++8g29/+9uQyWRZt/unf/o2/tN/+k+4fPl1HDjQjYceeggrKyv4+7//OzzxxH/E8vJyiSIm2i4zgFiMRGK9UqXY3O4FdHaaRO1jsZjgdi8UKaLqlWlrczhWcO7cNczN+av63ghpfVQo5JL93SIiIiIiKgQmiACsrq7iS196CiaTCQ8//PCu201P2/H1r38dcrkcn//8H+CrX/0qfu/3/i/87d9+E/fffz8cDgf+9E//pHSBE91jtwHE2TgcfpjN4qpH8iHl6qZqlGlre/jh00gk0lV7b4QOnzab6yX7u0VEREREVAhMEAH467/+a8zNzeE3f/O3UFur23W7v//7v0c6ncb73/9+vPvd7974eU1NDX77tz8DuVyOV155Bbdv3y5F2ETbWK19sNs9ovaZnvbg8GFxc4vyIeXqpmpWV6dHTU1N1d4boa2PVmsr7HZxFVOl+t0iIiIiIiqEqk8QXb16Bd/5zjN47LHH8J73vGfX7eLxOH70ox8BAM6cObvtdbPZjPvuuw8AcOnSq8UJliiHzQOIhZiZ8aKmRl+SOTJSrm6qdtV8b4S2PhoMWmg0KszMCEvAlvJ3i4iIiIioEKo6QRSNRvHlL38ZDQ0N+LVf+49Zt3U6nVhdXQUAHD58eMdtMj+fnp4ubKBEIgwPP4LJSU/OJNHMjBeTkx4MD58sSVxSrm6qdtV8b8S0Pj70UC8mJ+dzJolK/btVbMFgCG+8cRnPPfc9fPe738Fzz30Pb7xxGaFQuNyhEREREVEBVfUqZl//+texsLCA3//9/4q6urqs2y4srLcW6PV61NbW7rhNc3Pzlm2JyiEzgHhs7BKmptywWltgsZg2lux2OPyw2z3QavU4e3YEKpWqJHHttLx6NqzAKJ1qvjeZ1keVKvd/DjUaFR599AhGR+24dm0O993XIYnfrWKJxeIYHX0Va2srsFpbMDTUv3GuTqcfo6M/QE2NHsPDJyv+XImIiIioihNEly9fxve//z2cPv0oTp7M/S1vNBoBsD5vaDeZJe4jkYjoeJ5++mk8/fTTObfr7+8TfWyqPpkBxKFQGFNTNthsNiST6zNjzOY2PPzw6bJ8uL93efXdZCowzp4dKVVoVa9a702mva6nJ/ccImA9SdTV1QSPJ4GlJblkfrcKLRaL48KF83dWd+vZ8ppKpURPTwt6elowM+PFhQvncebMCNRqJomIiIiIKllVJohWVsL46le/AqPRiF//9V8vdzgAgCeeeAJPPPFEzu1+6Zc+XYJoaL+oq9PjxIkHyx3GhmJWNwWDIdjtk3C7FzZ9YG/F4cP9++IDe7FJtfKs2KzWPoyNvSQ4QQSst9cND++PRNBuRkdfvZMcyl5Rlnl9bOwSTp06XYLIiIiIiKhYqjJB9Bd/8Zfwer148sknUV9fL2gfrXa9rSwzh2gn0WgUAHZtQSOiwlc3sQ2mcKRaeVZM1dxet5tgMIS1tZVtlUO76elpht3uRigU3tfXhYiIiGi/q8oE0aVLr0KhUODZZ5/Fs88+u+U1h8MBAHj++efx5ptvwmQy4XOfexKtrWYAQDgcRiQS2TEJ5PWuDwXeDyv7EBVbIaqb2AZTHFKrPCu2am2v243dPgmrVXhFFQD09rZgaspWVc8NERER0X5TlQkiYH3lmvHx8V1fX1hYwMLCAszm9cRQZ6cFNTU1WF1dxdTUFI4fP75tn6mpKQCA1dpblJiJqlG21rE333ydbTC0Z1Jor5NSi6TbvYChIXEr1FksJthstiJFRERERESlUJUJomee+c6urz311FN44YXz+NSnPoVPfOLnN36uUqnw7ne/Gy+//DIuXrywLUHkdrvxzjvvAABOnnykKHETVZNcrWOvvHIR6XSKbTBUEOVqr5Nii2QymYRSqRC1j1KpQDKZLFJERERERFQKVZkgytfP/MzP4pVXXsG5c+fw3ve+F+9617sBrM8l+spXvoxUKoX3vve96OrqKnOkROuEViVIqXoBENY65vevoKFBJ+q4Um+Dkdp9qEalbK+TaoukQrGeoFKphP+JkEisP69EREREVLmYIBLBarXiV3/1V/G1r30Nn/vc5zA0NASj0Yi3374Gv98Hi8WC3/iN3yx3mESCqxIeeOBBvPHG65KqXgCEraDkdi9jaMgi6rhSbYORYhUJFZ9UVwozm1vhdPpFrezmcPg5f4+IiIiowjFBJNJP//RH0dPTg29/+9uw2WxYXV1FS0sLfuZnfhY/+7M/yxXMqOyEViVMTS3g+eefw4kT3ZKqXhC6glI8nl8bTDye2Et4BSfVKhIqLimvFGa19mFs7CVRCaLpaQ+Gh08XLygiIiIiKjomiO7x2c9+Fp/97GezbvPAAyfwwAMnShQRkThCqxLm55dw//0Hcn4ILHX1gtAVlNLpdF5tMOl0ai/hFZxUq0iouKS8UpjBUAeNRoeZGW/O5xJYX92tpkbPNkgiIiKiCicvdwBEVDh3qxKyf6gLBqNYW4vj0CGzoOP29DRjdTWMUChciDCzcrsX0NlpErSt0+kXdWyHww8gnUdUxSH0fmWU8j5QcYl5zjMsFhPc7oUiRbTV8PAjmJz0YGbGm3W7mRkvJic9GB4+WZK4iIiIiKh4WEFEtI8IrUqw2xdgtYqbF1Kq6gWhKyjJZDLY7Qsi22AWIJPlzouXali0lKtIqLikvlKYWq3CmTMjGBu7hKkpN6zWFlgspo3ZWA6HH3a7B1qtHmfPjnA2FhEREdE+wAQR0T7idi9gaKhfwHbSHfAsdAUllUoBtVqJmRmPoCTRzIwHarUSicTuCaJSD4sWer82k+qgbRKnElYKU6tVOHXqNEKhMKambLDZbJsSpm14+OHTbCsjIiIi2keYICLaR4RWJSSTKclWLwhdQclsrkddnRaTk/MAkHX7mRkPJifncfCgGaHQzv/slWNYtNSrSKh4KmmlsLo6PSvWiIiIiKoAZxAR7SOZqoTc28kFbbdZqaoXrNY+2O0eAdu1YnbWg0cfPQKHw4dz58Zx86YH8XgC6XQa8XgCN296cO7cOBwOH86cOYLZ2UUcPrxzxY6YYdF9fS0YG7uU1/ltJvR+bVbqKpJyCgZDeOONy3juue/hu9/9Dp577nt4443L+2IGk9DnfLPpac+uzy8RERER0V6xgohoHxFTfSPV6gWhKygZDFpoNCo4nX6cOjWAYDAKu30BNpsLyWQKCoUcZnM9hoetMBi0WVdaKteS45VURVJKpW71KweuFEZEREREUsMKIqJ9REz1jd0ubjWkUlYvCF1Bqa2tAW+9dQszMx4YDFqcONGDD37wOP7Nv3kAH/zgcZw40bORHMq20tJehkXvBatItsu0+nV16TEyMoienhaoVErIZLKNVr+RkUFYLDpcuHAesVi83CHnjSuFEREREZGUMEFEtI9srkrIvt169c2NG25Bxy119UJmBSWHYwXnzl3bpXXsGhYWVvGBD3wQDkck63YOx0rWlZbKteS40PuVUQ1VJOVo9SsXoc95rueXiIiIiKgQ2GJGtM8MDz+CixfPA0DWD9mZ6hu5XJZjwPN69cLZsyMFjzUbMSso7XWlpXIOixZ6v8p1H0qpXK1+5cSVwoiIiIhIKpggItqjYDAEu30SbvfCpg92rTh8uL8sH+wyVQljY5cwNeWG1doCi8W0McPF4fDDbvdAq9XjAx/4IN588zKmpq5l3a6c1QtCV1Day0pL9y45npln5HYvb5lnZLW2wmDQAijcsGgx92u/V5HspdWv0lfZ4kphRERERFRuTBAR5UnKg3RLWX2zH2SGRbe3N2BsbBpra3FYra0YGrJsuadjY3bU1Kjw0EO9cDqXCjYsmlUk69zuBQwNiZuvZLGYYLPtbRYUERERERExQUSUl8wg3fVZKVvbYTKDdHt6WjAz48WFC+dx5swI1OrSV36UovqmkuxW7dXR0YkrV16HzeZCf3/7tpa7rffUg4sXrwOQ4+TJRwsaX7Xch92Us9WPiIiIiKjaMUFElAcxg3QBYGzsEk6dOl2CyGgnuaq9xscvY2VlFcePd+Vccr6npwWpVBrXrrmqoqqnlO5t9ROiUK1+RERERETVjquYEYl0d5Bu9uRQRk9PM1ZXwwiFwkWOjHYiZNn0hx46hNpaFQ4dMgs65qFDZtTUqHhPCyzT6ieGw+EvWKsfEREREVE1YwURkUiVPkhXakO1i01ItZfdvoD+/nZRx7VaC39Py3FvpPQ8WK19GBt7KWcV12bT0x4MD58uXlBERERERFWCCSIikSp1kK6Uh2oXi9Bl093uZQwNWUQdu5D3tBz3RorPg8FQB41Gh5kZr6AKvZkZL2pq9PsysUlEREREVGpMEBGJVImDdKU4VLsUlStCq72SyVTZ7mk57o0Un4eM4eFHcPHieQDImiSamfFictKDs2dHShIXEREREdF+xwQRkUiVOEhXSkO1S1m5IrTaS6GQl+2eluPeSOl5uJdarcKZMyMYG7uEqSk3rNYWWCymjWfE4fDDbvdAq9Xj7NmRfVPtRkRERERUbkwQEYmUGaQrZk5KOQfpCm2zyujpaYbd7kYoFC54606pK1eEVnuZzfVluafluDdSeh52o1arcOrUaYRCYUxN2WCz2TZVmbXh4YdPs62MiIiIiKjAmCCifaNUw3YrbZCulIZql7pyRWi1l9XairExe9Hu6W7PZjweK/m9kdLzkEtdnV4Sg92JiIiIiKoBE0RU8Uo9bLfSBulKZah2OSpXhFZ7GQxaaDQqzMx4BCWJhN7TXM/mO++4sbqqQUdHg+BKqb3eG6k8D0REREREJC3ycgdAtBeZlqWuLj1GRgbR09MClUoJmUy20bI0MjIIi0WHCxfOIxaLF+R9h4cfweSkBzMz3qzbZQbpDg+fLMj75kMqQ7X3UrmSL6u1D3a7R9C2Dz3Ui8nJedy44c66ndB7KuTZ/ImfuB8HDjTh4sXrWFsT9mzu9d5I5XkgIiIiIiJpYYKIKpqYlqW+vhaMjV0qyPtmBuk6HCs4d+4abt70IB5PIJ1OIx5P4OZND86duwaHY6Xsg3QzbVZiFGOottu9gM5Ok6h9LBYT3O6FvN9zc7VXLhqNCgcPmnHtmqsg91T4s9mCvr42vPbatKBz2uu9kcrzQERERERE0sIWM6pY5R62WymDdKUyVLtclStilk2/edOHD37wJ7C6uraneyr+2WyB3b6AYDAKg0Gbddvbt30wmRoFHXcnUnkeiIiIiIhIWpggooollWG7Uh+kK5Wh2kIHRm9WiMqVfJZNV6lUe7qn+T2brbDbF3DiRPak0tTUPBoaxB17M6k8D0REREREJC1MEFHF4rBdYaQyVLuclSulrvbK/9l0Zd1mZsYDrVYNv9+fd2xSeR6IiIiIiEhamCCiisVhu8KJabOanPTg7NmRgscghcqVUlV75f9spnZ9fWbGg8nJeTz66BGcP399T/FJ4XkgIiIiIiJpYYKIKla5WpYqUT5tVoVWTZUr+T6bmWHY2+/NArRaFc6cOQKZTFbQtruJiXnU1ioRicSQTKagUMhRW6tGJJKAXm8o+5B1IiIiIiIqDSaIqGJx2K44UhiqXS2VK/k+m+3tJiwtrcBmc20ka8zmegwPWzeGV9+86SnYM5xOpyGXy9HV1bQtKTU15SnIexARERERUWVggogqlhRalipROYdqS6GSqRTyezYX8NBD1pyrmAl9hoPBEOz2SbjdC5sSga04fLgfGo0GFy6cR39/y7aV1lQqJQ4ebMHBgy2YmfHiwoXzOHNmBGp1Zd4LIiIiIiIShgkiqljV1LK0n0ihkqnYxD6bN264UVOjypkcEvIMx2JxjI6+irW1FVitLRga6t9IwDmdfoyO/gDRaBxHjrTljG399TTGxi7h1KnTOc+DiIiIiIgqFxNEVNGqpWVpPypnJVMpCH82PXjrrVs4dqwr6/GEPMOxWDxrZVBPTwt6elpw44YbdvsCuroaodFkrwzq6WnB1NQ1hELhik/cERERERHR7pggoopWDS1L2VqF+IFdusQ8mx/4wIfw5puv4+bNa1u2W1pawfj4bfj9K0inAa1Wi/Hxq7ve+9HRV+8kh7JXBh06ZIZcLsNrr03j1KmBnOfS29uMqSnbvk7oERERERFVOyaIqOLt15YlIa1CNTV6DA+frMjEVzUQ82xu3m5iYgJra6tQq5U4cqQDJ08eznnvg8EQ1tZWtlUO7aanpwV2+wKCwWjO1raurkbYbBN7uxhERERERCRpTBDRvrGfWpaEtgpxiHBlEPps1tXpcfToMXg8btx/f/e2SqBs995un4TVKnwoNgD09rbCbl/AiRPZk0pKpQJra2uijk1ERERERJVFXu4AiGg7oa1CPT3N6OtrwdjYpRJFRsWW7713uxfQ2WkS9V4Wiwlu93LO7RKJJNLplKhjExERERFRZWGCiEhi7rYK5V79ClhPFKyuhhEKhYscGRXbXu59MpmEUqkQ9X5KpQLJZO7Ej8Phh0zG/1wQEREREe1n/IufSEKCwRBGR1/FoUPCEgQZvb0tmJqyFSkqKpX82sTW771CsT6jSIxEIgmFIvd/Buz2BahUalHHJiIiIiKiysIEEZEExGJxvPTSixgbewmxWARdXY2i9l9vFVooUnRUKvm3iS3AbG6F0+kXta/D4YfZXJ91m5kZDwCgvb1d1LGJiIiIiKiycEg1UZndO5D6u999M89WIXHVI8USDIZgt0/C7V7YtGJX665Ls1cDodck/zaxJKzWPoyNvYSeHuEVSJOTLpw82bfr6zMzHkxOzgNQ4PDhflFxSRGfTSIiIiKi3TFBRFRm9w4lVijkSCSSUKmE/3qutwqJSywUWiwWx+joq1hbW4HV2oKhof6cS7Pvd2KvSaZNLJ97bzDUQaPRYWbGK2iG0Y0bbsRiSYyO2mG1tsJiMW3E5nD4YbcvQKtV4dAhM+bnVys6gcJnk4iIiIgoNyaIiMro7lDiu8uMm831cDr9oipB1luFWosRoiD3VkFtlm1p9v0sn2uSaRPL994PDz+CixfPA0DWJNHMjAdvvXULx451wWyuh92+AJvNhWQyBYVCDrO5HsPDVvh8YUxOenD27EgeV0Aa+GwSEREREQnDBBFREQhtZdlpKLHV2oqxMbuoJMH0tAfDw6cLFb5oYpZmB4CxsUs4dep0CSLbqpQtRvlck+PHT4huE9t879VqFc6cGcHY2CVMTblhtbbsUBnkgVarxwc+8CG8+ebruHlz8U5VjWXLdqOjN6DV6nH27EhFV9VUyrNJRERERFRuTBARFZDYVha3ewFDQ1tnuxgMWmg0KszMeAQlCmZmvKip0ZetBWinKqhsenqaYbe7EQqFSxZzqVuM8r0mMplMVJvYTvderVbh1KnTCIXCmJqywWazbUqGteHhh09vbC90u0pVCc8mEREREZFUMEFEVCD5tLLsNpT4oYd68eKL1wEga5JoZsZb9hagvSzNfuLEg0WK6q7N96WxsRV2+wImJra2Uz300CH4fOGCtRjt5ZoIbxPLfu/r6vSCrq/Q7SqR1J9NIiIiIiIpYYKIqEDyaWXZbSixRqPCo48ewWuvTWNqamHbEOHbt32YnvZKogVopyqoXCwWE2w2W5Ei2mp09FUcOtSI27cXYbfPw2pt3dJO5XT6MTZmR02NCocONRakxWgv1+TEiQcFt4mV+95LndSfTSIiIiIiKWGCiKgA8m1lMZlMuw4l1mhUOHVqAMFgdMsQ4XQ6DY2mVjItQHtZmr3YgsEQotEwbtxYRn9/+7brvLWyK7Oku3zPLUZ7vSZi2sRod1J+NomIiIiIpIYJIqICyLeVxeNJwm7PPmvIYNDixIm7iafz569hePi9kkkQ7GVp9mKz2ychk6XR17c9OXSvzOtTUwt7bjEq1DXZz+1fpSDlZ1OIUg5VJyIiIiKSlzsAov3A7V5AZ6dJ1D4Wiwl+v29jKLEQ5R5IvZPM0uxibF6avZhcLheA7HOcNstsl9kvX1K+JtWkUu9DLBbHSy+9iLGxl2AypfDYY/34iZ8YwmOP9cNkSmF09Ad4+eUfIB6PlzVOIiIiItpfmCAiKoC9tLIMDz+CyUlPziRRZijx8PDJvYRacFZrH+x2j6h9pqc9OHxY3GyYfMTjMRw+LO7DvtXaing8tqf3lfI1qSaVeB8yQ9W7uvQYGRlET08LVColZDLZRkvkyMggLBYdLlw4j1iMSSIiIiIiKgwmiIgKINPKIkamlUWtVuHMmRE4HCs4d+4abt70IB5PIJ1OIx5P4OZND86duwaHY0WSQ4kNhjrJVkGl0+m8KrvS6dSe3lfK16SaVOJ9EDPsvq+vBWNjl0oUGRERERHtd5xBRFQAmVYWoa1MwNZWlkofSlyopdkLTSaT5VXZJZPtPXcu1WtSbSrpPuQ77H6vQ9WJiIiIiAAmiIh2JWZArNXah7Gxl0QliKanPRgePr3lZ5U6lDhTBSW1pdk1Gk1eQ4o1Gs2e31uq16TaVNJ9yHfY/V6HqhMRERERAUwQEW0Ti8UxOvoq1tZWYLW2YGiof+PDpNPpx+joD1BTo8fw8MmND5ObW1lytYYA0mhlKTQpVkG1trbh9m0fDh0yC97n9m0fWlvbCvL+Urwm1ahS7oPbvYChIXHzjywWE2w2W5EiIiIiIqJqwgQR0SaZAbHrM0C2tnlkBsT29LRgZsaLCxfO48yZEajV60miSmplKSYpVUFZrX0YHX1JVIJoetqLhx8+XdA4pHRNqpnU78Neht0TEREREe0VE0REm4gZEAsAY2OXcOrUaQCV1cpSLQyGOtTU6DAz4xHU/jczs35/pFBNslfz8wsYH38L4XAY6XQaMpkMer0ex449gNZW4QkzKp3MsHuxLZEKhbikEhERERHRTpggIrqjEANiK6WVpZrcreySCajs8lZ8ZVc4HMaFCy9AoQCOHOmAxWLdkqS8fPmHSCaB971vBDqdrtzh0iZ7HXZPRERERLQXTBAR3VHIAbFSb2WpJtVU2RUOh/H888/h/vsPbGurU6mUOHiwBQcPtuDGDTf+9//+Pj7wgQ9Cr2fCUioKNeyeiIiIiCgfTBAR3cEBsftXtVR2Xbjwwo7JoXtlXr9w4QV8+MM/VYrQSAAOuyciIiKicmKCiOgODojd//ZzZdf8/AIUCggeyH3okBkTEy4sLLg5k0hCOOyeiIiIiMqFCSKiOzggtjCCwRDs9km43QubqnRacfhwPysdimh8/C0cOdIhap+BgQ5cvfomWlt/vEhRkVjV1BJJRERERNLCBBHRHRwQuzexWByjo69ibW0FVmsLhob6Nz7UOp1+jI7+ADU1egwPn+SH2iIIh8OwWKyi9unqMuHKldniBER5q5aWSCIiIiKSFiaIiO6wWvswOipuQKzd7sHDD58uXlAVIhaL48KF8+jvb9m2CpxKpURPTwt6elowM+PFhQvncebMCNRqYUkiViQJk06n82qRTKeLFBDt2X5uiSQiIiIi6WGCiOgOg6EOq6tx3LjhFjTH5cYNN1ZX40xSABgdffVOcij7YN3M62Njl3Dq1Oms27IiSRyZTJZXi6RMVsSgiIiIiIioYsjLHQCRVASDIWg0StjtC5iZ8WTddmbGA7t9ARqNCqFQuEQRSlMwGMLa2oqgVZeA9STR6mo463XLVCR1dekxMjKInp4WqFRKyGSyjYqkkZFBWCw6XLhwHrFYvFCnU7H0ej0cDr+ofW7f9kOvrytSREREREREVElYQUR0h90+ib4+M9rbG/Daa9OYmlqA1dq6w4DYBWi1Kpw5cwRO5xKmpmxV3QZit0/CahXelgcAvb0tWa/b5oqkYDAKu30BbvcykskUFAo5zOZ6WK2toiqS9ruhofvxxhujOHhQ+L2YmJjDgw8+XMSoiIiIiIioUjBBRHSH272AoaF+qFRKnDo1sJGYsNlcWxITw8NWGAxaAIDFYoLNZitz5OWVuW5iZLtumYqk9vZOvPTSBNbW4rBaWzE0ZNnSYjY2ZkdNjQoPPdQLu92NUChc1e1+bW2tSCYhqkUymQSXuCciIiIiIgBMEBFtSCaTW4b8GgxanDjRk2WP9SG/yWSy2KFJ2r3XTQilUoF4PIE33ri8bfh0PB5Hd3cTLl58B/397duGhm8deu3BxYvXcfCgeV9Ucu11IPfZs4/h+eefA4CsSaIbN9x4661b+PEf/1DBYiciIiIiosrGBBHRHQqFIq8hvwqFuOTIfpPvdUsmYzCZUtuGT7/1lhOrq7odk0P3yrx+69YiIpHUns6jnAo1kFuv1+MDH/ggLlx4Adevu3DkSAe6uu62SN6+7cf163NIpYAf//EPQafTlfAsiYiIiIhIypggIrrDbG6F0+kXtcy9w+GH2dxaxKikL5/rdvu2HwcONG/ZJ1MZND7uQCyWEHy8np4W2O0LiMcrs5IrM5B7febS1oq1rdVSXly4cB5nzoxArc6eJPrwh38KCwtuXL36Jq5cmUU6DchkgF5vwLve9TDbyoiIiIiIaBsmiIjusFr7MDb2kqhEx/S0B8PDp4sXVAXI57rduLGAhx6ybvt5MBhFIpHE2hrw3e++uWUgdWbu0056e1sxPu7IK/692GtLGLB1IHc2Ygdyt7aa0dr644JiICIiIiIiYoKI6A6DoQ4ajQ4zM15BS7bPzHhRU6Ov6sHIQD7XzYOaGtWWhM/aWhxjY9NYW4vj+PED6Opq3HUg9U7VMxaLCePjzoKeVzaFagnLDOS+t3JoNz09zRzITURERERERcEEEVWEQlRqCDE8/AguXjwPAFmTHTMzXkxOenD27EjB3hso3XkWmtDrduOGG3b7As6cObLxs7W1uKiB1I8+egQazdaki1KpgEwmL+AZ7a6QLWF2+ySsVuGVVwDQ29uyLwZyExERERGRtDBBRJJWqEoNodRqFc6cGcHY2CVMTblhtbbAYrk75Nfh8MNu90Cr1ePs2ZGCvCdQ+vMsNCHX7Z135lBXp8GZM0e2JEzGxqZFDaR+7bVpnDo1sOU1sUOy96KQLWFu9wKGhvpFvb/FYoLNZhO1DxERERERUS5MEJFkFXp4r1BqtQqnTp1GKBTG1JQNNpttUzVPGx5++HRBq3nKdZ6Fluu6pVLAj/3YAGQy2cY+wWAUa2tx0QOpg8Holha1Ug0LL3RLWDKZhFIpbhU8pVKBZLIyB3ITEREREZF0MUFEkrW5UiMYjMJuX4DbvYxkMrVleLHY4b1C1dXpS9LGU6whxXuVb7vbbtfN7Z7fVuljty/AahWX2OntbYXdvoATJ+4maUo1LLzQLWEKhUJ09VMisX4viIiIiIiICokJIpKkTKVGe3snXnppAmtrcVitrRgasuw6vLgSh/dKcUhxsdrdzOZWOJ3+LdVCbvcyhoYsouJbb7FybfzvUg4LL3RL2E7XJJdSVUsREREREVF1Kc1UVyKR7PZJdHc34eLFd9DV1YiRkSH09LRApVJCJpNttF6NjAzBYmnExYvX0d3dhKmpyprNspeKlGLItLt1dekxMjK4yzUfhMWiw4UL5xGLxQUf22rtg93u2fKzZDKVZ4tVCsDdYeHDwydFHSNfhW4J2+ma5DI97cHhw+KSVERERERERLmwgogkye1eQCgkFzW8+NatRUQiqVKEVzBSG1JczHY3g6EOGo0OMzPejf0VCnleLVbpdBrnzl0r+LDwXArdEnbvNcnWSmkwaEtaLUVERERERNWFCSKSpHg8jlhMIXp4cTxeWcN7pTSkuBTtbsPDj+DixfMb+5vN9aJbrG7f9kGjqcXDD7+35ImSYrSEDQ8/gn/913OYmpqHTIZdWynTaSCZlOOxx95fiFMhIiIiIiLaggkikqR0OgWrtUPUPr29rRgfdxQpouK4tyIlVwUJUJwhxcFgCKOjryIWW8N3v/vmju+7k2wDmHeiVqtw5swIxsYuYWrKDYulAVNTC6ISLjdueHdcSS7fodpiWK19GBt7SVS8Qgdo9/aaceiQecvPNq9id+OGG5OTi0inxUZNRERERESUGxNEJFEydHaaRO1hsZgwPu4sUjzFkalIaW9vwNjYtKBh3E7nUsGGFG8eSN3b24yuLuuu76tWb2/jyqfdTa1W4dSp0wiFwpiasmFlJYYbN9zbkiM72anFqlhDtXeyU5uc2HjvNTr6KgYGzDmPd+iQGXK5vGSr2BERERERUXVhgogkSSaT59V6JZNV1tx1q7UPP/zhD2CzuXact7S5gmRmFTyJTwAARSpJREFUxoOLF68DkOPkyUf3/N6ZgdTrM4e2tpXt9L6PPnoEGs3WBMte2t3q6vQ4ceJBHD16DBcvnodcLs+aJMkMpD57diSPc/DiwoXzOHNmZMdElxj3tsmJifdeUlzFjoiIiIiIqlNlfZqmqqFSKZFIiEs8iB0eLAUGQx3W1hI4fLhN0DBuq7UVa2uJgiQHhA+kbkFfXxtee21622uFaHfLtJ05HCs4d+4abt70IB5PIJ1OIx5P4OZND86duwaHY2XbQGoxQ7X7+lowNnZpT7HuNd57SW0VOyIiIiIiql6V9WmaqkYxhgFLUTAYQk2NSlB7FbDeZjQ97d1zBYn4ypX1IeDBYHTLTKJCXfN7285sNtumOUJtu84cKlf1TT7x7kRqq9gREREREVH1YoKIJKmYw4DLZachygqFAocPi6sgsVrFDYbeSX6VK62w2xdw4sTdhMxernm2odJCzm0v1Td7uXabZdrk8iWlVeyIiIiIiKi6MUFEklSMYcDlkm2I8vPPX0Vnp1XU8QpRQZJ/5Ypr43/ne80LNVR6P1Tf3LuKnRDFWMWOiIiIiIiIM4hIsoaHH8HkpAczM96s22WGAQ8PnyxRZMJlhih3dekxMjKInp4WqFRKyGSyO0kBWVkqSPKvXEkByP+a57oePT0tGBkZhMWiw4UL5xGLxYtwDtKpvsm0UopRia2UREREREQkfawgIsnKDAMeG7uEqSk3rNYWWCymjWoTh8MPu90DrVafcxhwMWVrlXrzzdezDlFWKORlqSDJt3IlnU7j3LlreV9zMUOlAWRd0n0/VN/sx1ZKIiIiIiKqTEwQkaQVahhwMeRqlbp06QdYXV3F8HDnrscwm+vLMow7nyHgt2/7oNHU4uGH35vXNS/0UOn9MMh8P7VSEhERERFRZWOCiCrCXocBF1qmVWq9GmZrwiPTKtXT04IbN9y4ePE6Hn30CDSa7dU2VmsrxsbsJa8gyady5cYN754ScoUeKr1fqm+Ghx/BxYvnASBrkijT1nf27EipQiMiIiIioirCGUREeRDaKnXokBl9fW147bXpHV83GLTQaFSYmfEIet9CVZBsrlwp1fu63Qvo7DSJ2sdiMcHtXtjxtXKcQzFkWikdjhWcO3cNN296EI8nkE6nEY8ncPOmB+fOXYPDsVLWVkoiIiIiItrfWEFEJJL4VqkW2O0LCAajMBi0215/6KFevPji9Y1td1PoCpJSV64UY6j0fqm+kXIrJRERERERVQcmiIhEyq9VqhV2+wJOnNieVNJoVHj00SN47bVpTE7Ow2ptRVdX48Y8o9u314dx19YWdhi32CHg0egqxsev7jiMW0jyohhDpTefw8TEPGprlYhEYkgmU1Ao5KitVSMSSUCvN1RE9Y3UWimJiIiIiKh6MEFEJJLbvYChoX5R+1gsJthsrqzbpNNAIpGCw+HD5OT8liRHKpXaS8i7ElK5otFo8MMf7j6Me3T0B6ip0WN4+GTWBEwxh0qn02nI5XJ0dTVtS3JNTQlr3yMiIiIiIqpmTBARiZR/q9TOSZ61tTguXnwH/f3tOyZPgsEo7PYFuFw+fOc7/4La2lpRlTtC7Fa5InQY98yMFxcunMeZMyNQq3dOEhVjqHSu+A4ebMHBg8LiIyIiIiIiqmZMEBGJlH+r1M4z4cfGpndMDq2txTE2No21tTis1lYMDVnyqtzZC6HDuDOvj41dwqlTp3fcphhLuhcyPiIiIiIiomrGVcyIRMq0Solx+7YfZnP9tp8Hg1GsrcV3TA5dvPgOuroaMTIyhJ6eFqhUSshkso3KnZGRQVgsOly4cB6xWHxP57STu8O4cydzgPUkzOpqGKFQeNdthocfweSkJ+fKY5mh0sPDJ0saHxERERERUbVigohIJKu1D3a7uLk2NpsLbndo2xLmb745g0OHzNu2362q6F49Pc3o62vB2NglUfEIkd8w7hZMTdl2fb2QS7oXIz4iIiIiIqJqxRYzIpHyaZWqqzPi/vsf3DYIOhaL4eTJxi3b71ZVtJuenmbY7W6EQuGCLoWe/zDu7AmYQi3pXqz4iIiIiIiIqhETRER5GB5+BBcvngeArEmiTKtUphrm3kHQ3/3ud7YNvLbbF2C15l65a7NMZUwhl0jPfxh3UtC2e13SvdjxERERERERVRO2mBHloVCtUpmB15u53cvo7DSJisdiMcHtXsj7fHayU2y5rA/jFpe0yZfU4yMiIiIiIqokrCAiylMhWqUyA683t5MlkylJVMbsFFsuDocfZrO46qd8ST0+IiIiIiKiSsIEEdEe7aVVymrtw9jYS1uSHAqFHIlEEiqV8F/PYlTG7BRbLtPTHgwPny5oHLuRenz5CAZDsNsn4XYvbEo2tuLw4f6CzpciIiIiIiK6FxNERGW008Brs7leEpUx+QzjrqnRlyyRIfX4xIjF4hgdfRVrayuwWlswNNQPpXK9hc7p9GN09AeoqdFjePhk1pXdiIiIiIiI8sUZRERlNjz8CCYnPZiZ8QIArNZW2O3i5glNT3tw+LC4Fb3yiW03mWHcw8MnCx5DNlKPT4hYLI4LF86jq0uPkZFB9PS0QKVSQiaTQaVSoqenBSMjg7BYdLhw4TxisXi5QyYiIiIion2IFUREe7TXtqDMwOuxsUuYmnLDam2BWq3EzIxHUBVRMStjdorNYjFtVLc4HH7Y7R5otfqsw7iLRerxCTE6+ir6+1tyVkFlXh8bu4RTp06XIDIiIiIiIqomTBAR5amQbUH3DrxeWUnijTdmkUqlceiQedf9MpUxZ8+OFPr0do0tn2HcxST1+LIJBkNYW1tBT0+PoO17eppht7sRCoUle05ERERERFSZmCAiykOmLWi98mPrh/tMW1BPTwtmZry4cOE8zpwZgVqdu3pl88DrWCyOsbFLmJ6+JonKmL0M4y4Fqce3E7t9Elar8FlTANDb24KpKVvFnWsxcbg3EREREdHeMUFElIdStAVVcmUMCeN2L2BoSNzsKIvFBJvNVqSIKguHexMRERERFU5VJ4guXLiAy5dfx82bN+H3+xEKhaDRaGCxWHDy5En85E/+FLRa7ZZ9vvnNv8W3vvWtrMf967/+f9HV1VXM0KmMSt0WVImVMSRMMpmEUqkQtY9SqUAymSxSRJWjWFV8RERERETVqqoTRN/97rO4fv06urq60Nvbi7q6OiwtBTAxcR2Tk5N4/vlz+MpXvoKmpqZt+x48eAiHDh3a8bg6na7YoVMZsS2IshHT7qRQrFe7qFTC/ylOJNaPWe043JuIiIiIqLCqOkH0q7/6H9DR0QGDwbDl58HgMv7Lf/kvuHbtGr7+9a/jc5/73LZ9T558GJ/85C+UKlSSELYF0U7yaXcym1vhdPoFrVaX4XD4YTa3Fus0KgKHexMRERERFZ683AGU08DAwLbkEAAYDPX49Kd/CQDwxhuXSx0WSRzbguhemXanri49RkYG0dPTApVKCZlMttHuNDIyCItFhwsXziMWiwMArNY+2O0eUe81Pe3B4cPiEpT7zV6q+IiIiIiIaGdVnSDKJtPCoVKpyxwJSU2mLUgMtgXtb2Lanfr6WjA2dgkAYDDUQaPRYWbGK+h9Zma8qKnRV30VjNu9gM5Ok6h9LBYT3O6FIkVERERERFT5qrrFbDeRSATf/ObfAgCGh4d33MZun8Z//+9/hVAoBJ1Oh97eXjz00DBqa2tLGSqVAduCaLO9tjsNDz+CixfPb7y2m5kZLyYnPTh7dqQgcVcyVvERERERERUeE0QALl++jIsXLyKdTmFpaQkTExOIRCJ417vehV/5lV/ecZ+xsVGMjY1u+ZlOp8MTTzyBxx7jB7j9zGrtw9jYS6ISRNPTHgwPny5eUFQ2ex1arlarcObMCMbGLmFqyg2rtQUWi2ljfpHD4Yfd7oFWq8fZsyNcrh0c7k1EREREVAxMEAG4ffsWXnjh/JafnTlzBv/hP/wadLqtrRxtbe349Kc/jXe9690wm80AgFu3buEf/uF/YWxsDE899RTkcgXOnj1bsviptDa3BeVqKQLYFrTfFWJouVqtwqlTpxEKhTE1ZYPNZtu0AlobHn74NJ+fTVjFR0RERERUeEwQAfjIR34aH/nITyORSMDj8eCHP/wh/u7v/idef/11/P7v/1cMDQ1tbPvYY49t239wcBCDg5/H00//OZ555hl87Wt/iVOnTon6pv/pp5/G008/nXO7/v4+wcek4mFbEGUUst2prk6PEyceLFRo+xar+IiIiIiICo9DqjdRKpVob2/HRz/6UfzBH3wB4XAYf/RHf4i1tTVB+z/++Cchl8sRCAREL2n+xBNP4Pr16zn/r6GhIZ9TowLLtAU5HCs4d+4abt70IB5PIJ1OIx5P4OZND86duwaHY4VtQfsch5aXHod7ExEREREVHiuIdjEwMIADBw5gdnYWU1NTOHr0aM59DAYDjMYG+P0+eL3CPrhQ5WJbEAFsdyoXVvERERERERUWE0RZ1NTUAAACgSVB2yeTSUQiKwDA1cyqCNuCqhvbncqjUoZ7B4Mh2O2TcLsXNiWQW3H4cD8TyEREREQkKUwQ7WJ5eRk3btwAAHR2dgraZ3R0FKurq5DJZDh8+HAxwyMiieDQ8vKRchVfLBbH6OirWFtbgdXagqGh/o3kldPpx+joD1BTo8fw8Em2oBIRERGRJFRtgujWrVuYnp7Ge9/7XqjV6i2vOZ1O/Mmf/DHi8TgGBgbQ03MQAODxuDE+/jZOnTq1bZ9Lly7hq1/9CgDgzJmzMJlMpTkR2sBv6qlc2O5UXlKr4ovF4rhw4Tz6+1vQ09Oz5TWVSomenhb09LRgZsaLCxfO48yZEajVTBIRERERUXlVbYIoEFjCH/3RH+JP/uSP0dvbi6amZiQScXg8HkxPTyOVSqGrqwtPPvnkxj7BYAhf/OIf4c/+7E/R29uLxsYmxGJruHXrFubm5gAAx48fx2/8xm+U67SqEr+pp3KrlHYnKo3R0VfvJIeyV5RlXh8bu4RTp06XIDIiIiIiot1VbYLowIFu/OIvfhrXrr0Nh8OB6elpJJNJ1NXV4fjx+/HII4/g/e9//5ZKoZaWZnz84x/H5OQUXK452O12JBIJGAz1eOihh/Doo2dw+vRpyOVcHK5U+E09SYWU252odILBENbWVrb9e7Sbnp5m2O1uhEJhPh9EREREVFZVmyAyGo34uZ/7OVH7GAz1+OVf/pUiRUT54Df1xcOWvfxIrd2JSstun4TVKnxgOQD09rZgasrG54aIiIiIyqpqE0RU+fhNfXGwZY8of273AoaG+kXtY7GYYLPZihQREREREZEw7IWiirWXb+ppZ5mWva4uPUZGBtHT0wKVSgmZTLbRsjcyMgiLRYcLF84jFouXO2QiSUkmk1AqFaL2USoVSCaTRYqIiIiIiEgYJoioYrndC+jsFLdanMVigtu9UKSIKp+Ylr2+vhaMjV0qUWRElUGhWK+2EyORWG/hJCIiIiIqJyaIqGLxm/rCutuylz05lNHT04zV1TBCoXCRIyOqHGZzK5xOv6h9HA4/zObWIkVERERERCQME0RUsfhNfWGxZY9o76zWPtjtHlH7TE97cPiwuLlFRERERESFxgQRVSx+U19YbNkj2juDoQ4ajQ4zM15B28/MeFFTo+fgfCIiIiIqOyaIqGLxm/rCYsseUWEMDz+CyUlPziTRzIwXk5MeDA+fLFFkRERERES7Y4KIKha/qS8stuwRFYZarcKZMyNwOFZw7tw13LzpQTyeQDqdRjyewM2bHpw7dw0OxwrOnh2BSqUqd8hERERERFCWOwCivRgefgQXL54HgKzDlTPf1J89O1Kq0CpOpmWvp0f4HCK27BHtTK1W4dSp0wiFwpiassFmsyGZXE+oms1tePjh00xWExEREZGkMEFEFS3zTf3Y2CVMTblhtbbAYjFBqVyvhnE4/LDbPdBq9fymPgertQ9jYy+JShBNT3swPHx6y8+CwRDs9km43QubPhC34vDhfn4gpqpTV6fHiRMPljsMIiIiIqKcmCCiisdv6gtjc8uekKXu723Zi8XiGB19FWtrK7BaWzA01L+RqHM6/Rgd/QFqavQYHj7JRB0REREREZHEMEFE+wa/qd+7fFv2YrE4Llw4j/7+FvT09GzZVqVSoqenBT09LZiZ8eLChfM4c2YEajWTRERERERERFLBIdVEtCHf4bqjo6/eSQ5lrzzq6WlGX18LxsYuleJ0iIiIiIiISCBWEBHRFmJb9oLBENbWVrZVDu2mp6cZdrsboVCYrX9EREREREQSwQQREe1IaMue3T4Jq1X4YGsA6O1twdSUjS2BREREREREEsEWMyLaE7d7AZ2dJlH7WCwmuN0LRYqIiIiIiIiIxGKCiIj2JJlMQqlUiNpHqVQgmUwWKSIiIiIiIiISiwkiItoThWJ9KXsxEon1mUZEREREREQkDUwQEdGemM2tcDr9ovZxOPwwm1uLFBERERERERGJxQQREe2J1doHu90jap/paQ8OH+4vUkREREREREQkFhNERLQnBkMdNBodZma8grafmfGipkbPJe6JiIiIiIgkhAkiItqz4eFHMDnpyZkkmpnxYnLSg+HhkyWKjIiIiIiIiIRQljsAIqp8arUKZ86MYGzsEqam3LBaW2CxmKBUrg+wdjj8sNs90Gr1OHt2BCqVqixxBoMh2O2TcLsXkEyuD8o2m1tx+HA/K5qIiIiIiKiqMUFERAWhVqtw6tRphEJhTE3ZYLPZNiVh2vDww6fLloSJxeIYHX0Va2srsFpbMDTUv5G8cjr9GB39AWpq9BgePlm25BUREREREVE5MUFERAVVV6fHiRMPljuMDbFYHBcunEd/fwt6enq2vKZSKdHT04KenhbMzHhx4cJ5nDkzArWaSSIiIiIiIqounEFERPva6Oird5JDzVm36+lpRl9fC8bGLpUoMiIiIiIiIulggoiI9q1gMIS1tZWcyaGMnp5mrK6GEQqFixwZERERERGRtDBBRET7lt0+Cau1RdQ+vb0tmJqyFSkiIiIiIiIiaWKCiIj2Lbd7AZ2dJlH7WCwmuN0LRYqIiIiIiIhImpggIqJ9K5lM/n/t3XlcVeXa//EvkzKKgILiEBgKOVSaqaiZKeCc2dFTmjaeU6k9nexY5/g0nMomPc39mofHLI/Vk2Wp5YSlQpADphIxKZSogCGjm40M+/cHD1t3e28mJcD9eb9evoJ1r2ute63L1YbL+76XXF1dmhTj6uqi6urqFuoRAAAAALRNFIgAXLBcXGpfZd8UVVXVcnFpWlEJAAAAANo7CkQALlhBQd2Uk3OySTFHjpxUUFC3FuoRAAAAALRNrq3dAeB8KSkpVUZGmvLyclVdXTsKJCiom/r1i5CPj3drdw+toG/fcCUmbldoaOMXqs7MzFdk5NiW6xQAAAAAtEEUiNDunT5dqYSEOFVUnFLfvoG69NIIubrWTi3KyTmphITv5O7urcjIUXJzc2vt7uIP1KmTjzp29FJW1olGveo+K+uE3N29KSgCAAAAcDhMMUO7dvp0pWJjN6t3b2/FxAxUaGig3Nxc5eTkJDc3V4WGBiomZqB69fJSbOxmnT5d2dpdxh8sMnK00tLylZV1ot79srJOKC0tX5GRo/6gngEAAABA20GBCO1aQkKcIiICGxwdEhraVeHhgUpMjP+Deoa2okMHN40bF6MjR05p06ZkHT6cr8rKKplMJlVWVunw4Xxt2pSsI0dOafz4GEaZAQAAAHBITDFDu1VSUqqKilMKDQ1t1P6hoV2VkZGn0tIyphA5mA4d3DRmzFiVlpYpPT1VqampZ61T1V0jR47l7wQAAAAAh0aBCO1WRkaa+vZt/OLDkhQWFqj09FRdccXQFuoV2jIfH29yDwAAAAA2MMUM7VZeXq569vRvUkyvXv7Ky8ttoR4BAAAAANA+USBCu1VdXS1XV5cmxbi6uqi6urqFegQAAAAAQPtEgQjtlotL7avsm6KqqnbdGQAAAAAAcAYFIrRbQUHdlJNzskkxR46cVFBQtxbqEQAAAAAA7RMFIrRbffuGKyMjv0kxmZn56tcvooV6BAAAAABA+0SBCO1Wp04+6tjRS1lZJxq1f1bWCbm7e/M6cwAAAAAAfocCEdq1yMjRSkvLb7BIlJV1Qmlp+YqMHPUH9QwAAAAAgPbDtbU7AJyLDh3cNG5cjBIT45Wenqe+fQPVq5e/XF1rF7A+cuSkMjLy5eHhrfHjY+Tm5tbaXQYAAAAAoM2hQIR2r0MHN40ZM1alpWVKT09Vamqqqqtr31YWFNRdI0eOZVoZAAAAAAD1oECEC4aPj7euuGJoa3cDAAAAAIB2hzWIAAAAAAAAHBwFIgAAAAAAAAdHgQgAAAAAAMDBUSACAAAAAABwcBSIAAAAAAAAHBwFIgAAAAAAAAdHgQgAAAAAAMDBUSACAAAAAABwcBSIAAAAAAAAHJxra3cAaO9KSkqVkZGmvLxcVVdXy8XFRUFB3dSvX4R8fLxbu3sAAAAAADSIAhHQTKdPVyohIU4VFafUt2+gLr00Qq6uLqqqqlZOzkklJHwnd3dvRUaOkpubW2t3FwAAAAAAuygQAc1w+nSlYmM3KyIiUKGhoRZtbm6uCg0NVGhooLKyTig2drPGjYtRhw4UiQAAAAAAbRNrEAHNkJAQ93/Foa717hca2lXh4YFKTIz/g3oGAAAAAEDTUSACmqikpFQVFacaLA7VCQ3tKqOxTKWlZS3cMwAAAAAAmocCEdBEGRlp6ts3sEkxYWGBSk9PbaEeAQAAAABwbigQAU2Ul5ernj39mxTTq5e/8vJyW6hHAAAAAACcGxapRrO5unrqq68SW7sbf7jt2w+qstIoJyenRseYTCbt2JGhqqouLdgzAAAAtDRXV8/W7gIAtAgKRGi2KVOub+0utIpNm75TdPQgeXp2bHSMwVChzZszNX363BbsGQAAAAAAzcMUM6CJLrtssBISMpsU8/33mbrsssEt1CMAAAAAAM4NBSKgiaZOvU7r1x9sUsyGDQc1bdqMFuoRAAAAAADnhgIR0EQ9evRQ585Bio1NadT+sbEp8vPrpuDg4BbuGQAAAAAAzUOBCGiGxYuXaO3a5AaLRLGxKVq7NlmLF//zD+oZAAAAAABNR4EIaAZvb289++wLio/P1333faytW3+SwVAhk8kkg6FCW7f+pPvu+1jx8flatuwFeXl5t3aXAQAAAACwy8lkMplauxNovDvuuF3vvfd+a3cDZzl27JjWrftC+/fvU0VFhTp27KjLLhuiadOuY1oZAAAAAKBd4DX3wDkKDg7WXXctbO1uAAAAAADQbEwxAwAAAAAAcHAUiAAAAAAAABwcBSIAAAAAAAAHR4EIAAAAAADAwVEgAgAAAAAAcHAUiAAAAAAAABwcBSIAAAAAAAAHR4EIAAAAAADAwVEgAgAAAAAAcHAUiAAAAAAAABwcBSIAAAAAAAAHR4EIAAAAAADAwVEgAgAAAAAAcHAUiAAAAAAAABwcBSIAAAAAAAAHR4EIAAAAAADAwVEgAgAAAAAAcHAUiAAAAAAAABwcBSIAAAAAAAAHR4EIAAAAAADAwVEgAgAAAAAAcHAUiAAAAAAAABwcBSIAAAAAAAAHR4EIAAAAAADAwVEgAgAAAAAAcHAUiAAAAAAAAByck8lkMrV2J9B41147TV27dm3tbjicwsJC+fn5tXY3HB55aBvIQ9tAHlofOWgbyEPbQB5ah7e3j15++eXW7gaACwQFIqAR+vfvr5SUlNbuhsMjD20DeWgbyEPrIwdtA3loG8gDALR/TDEDAAAAAABwcBSIAAAAAAAAHBwFIgAAAAAAAAdHgQgAAAAAAMDBUSACAAAAAABwcBSIAAAAAAAAHBwFIgAAAAAAAAdHgQgAAAAAAMDBUSACGmHhwoWt3QWIPLQV5KFtIA+tjxy0DeShbSAPAND+OZlMJlNrdwIAAAAAAACthxFEAAAAAAAADo4CEQAAAAAAgIOjQAQAAAAAAODgKBABAAAAAAA4OApEAAAAAAAADo4CEQAAAAAAgIOjQAQAAAAAAODgKBABAAAAAAA4ONfW7gBwLmJjY7Vnz24dPnxYJ0+eVGlpqTp27KhevXpp1KhRuu66GfLw8LAZm5S0V599tkZpaakyGo0KCgrS6NFXafbs2XZjJOno0aNatWqV9u1LUnFxsXx9fTV48BDNmzdX3bsH240zGAxavXq14uJ2Kj8/X+7u7oqIiNDMmbM0ePDgc74Xrak5eVi58gN9+OGH9R73vffeV+/evW22kYeGvfPO2/r0008lSbfeeqtuummuzf14FlpWQ3ngWWgZy5cv15Ytm+vdZ8OGr9WhQwer7enp6fr444918OABnTp1SgEBARo+fLhuummu/Pz87B6vsLBQH330kXbt+kEFBQXy8vLSoEGXavbs2erbt6/duMrKSq1Zs0bffrtNx44dk6urq/r06aPp06/TmDFjGn/RbUxzcrBp0yY999y/6415+umndeWVw2y2kQP7KisrtX79em3f/p1+/fVXGY1G+fr6KjQ0VDExMRo79hqrGD4fAMCxUCBCu7Zu3VdKSUlR7969FRYWJh8fHxUWFunnn1OUlpamjRs36fnnn1eXLl0s4tas+UxvvvmmnJycNHDgIPn5dVZycrJWr/6P4uJ26sUXX5Kvr6/V+ZKTk7VkyT9lNBoVEhKigQMHKjs7W1u2bNbOnTu0bNly9e/f3yqusLBQ99+/SDk5OfL3D9CIESNUWFik3bt3a/fu3VqwYIGuu25Gi92nltbcPEhSnz4X6+KLL7Z5XC8vL5vbyUPDfvrpJ3322WdycnKSyWSyux/PQstqbB4knoWWMmDAAAUH97DZ5uxsPZB6x44devrpp1RdXa3w8HB169ZN6enp+vLLL7Vjxw69+OJL6tHD+ng5OTlatOg+FRUVqXv37ho5cqRyc3O1c+cOff99vB5++BGNHj3aKs5oNOof//iHUlJ+kre3t4YOHary8nL9+OOPOnDggGbOnKW77rrr3G9EK2pqDiQpODhYAwYMtNlm67NEIgf1OXHihJYs+ad++eUX+fr6asCAAXJ3d1d+/gkdPHhQ7u7uVgUiPh8AwAGZgHYsJSXFVFxcbLW9uLjIdN99fzNFRY03PfnkkxZtGRnppujoKFNMTLTphx9+MG8vLy83PfDAYlNU1HjT448/ZnXM8vJy0w03/NkUFTXe9O6771q0vfvuu6aoqPGm2bNvNBmNRqvYRx99xBQVNd70wAOLTeXl5ebtiYmJppiYaFNMTLTp0KFDTb7+tqI5efjggxWmqKjxpg8+WNGkc5GHhpWXl5tuueVm04033mD6178eNUVFjTd99NGHVvvxLLSsxuaBZ6FlLFu2zBQVNd60cePGRsecOHHCNHXqFFNU1HjT+vXrzNurqqpMzzzzjCkqarxp4cIFppqaGou4mpoa091332WKihpvevbZZ0xVVVXmtvXr15miosabpk2baiooKLA652uvvWaKihpv+utf/2IqKioyb09LSzNNmzbVFBU13pSQkNCUS28zmpODjRs3mqKixpuWLVvWpHORA/uMRqPptttuM0VFjTetXPmBqbKy0qK9vLzclJGRYbGNzwcAcEysQYR27ZJLLlGnTp2stnfq5Kvbb79DkrR37x6LttWrV8tkMmnChAkaNuzMEHV3d3f9/e+L5ezsrJ07d+rXX3+1iNu8eZMKCgrUs2dP3XbbbRZtt912m3r27KkTJ05oy5YtFm2//PKLvv/+ezk7O+vvf18sd3d3c9vw4cMVEzNBNTU1Wr16dfNuQhvQnDw0F3lo2HvvvaejR4/qvvsWydPT9sgTiWehpTU2D81FHs6/L774XEajUUOGDNGUKVPN211cXPS3v/1NXl5eSktL0549lv8/27VrlzIzM+Xt7a177/2bXFxczG1TpkzV4MGDVV5eri+++NwirrS0VOvXr5Mk3Xvv3yxGY/Tr10833HCDJOk//1l13q/1QkMO7Fu9erWOHPlVU6ZM0bx5N8vV1XICgbu7u8LCwqxi+HwAAMdDgQgXrLofDt3czqxtUFlZqV27dkmSxo0bbxUTFBSkAQMGSJLi4+Ms2uLj4yVJY8deYzUk3tnZWVdfPVaSFBe306ItLq72OAMGDFRQUJDVOceNGydJSkxMUFVVVeMurh2xlYdzQR7qt3//j/ryy7WKjo7W8OHD7e7Hs9CyGpuHc0Eezr+4uNp7es0146zaPDw8FBkZKcnWM1H7fWRkpM11Weruad29r7Nr1y5VVlYqMDBQAwdaT6eqi/v555/122+/NfVyHAo5sK2qqspcAJs168+NiuHzAQAcF2sQ4YJkMBi0cuUHkmT+gV6qXZ/AaDRKqv2XQVv69eungwcPKjMz02J73ff1xUnSoUOHLLYfOtS4OKPRqKNHj+qiiy6yf2HtjL08nC0jI1PvvvuOSktL5eXlpbCwMI0YESlPT0+b+5MH+8rLy/Xcc8/Jz89P8+cvqHdfnoWW05Q8nI1noWXs3/+jsrKyVF5uUKdOnRQeHqFhw4ZZLU5tMBh07NhRSVJ4uL17E66tW7faeCYO/V+7/TipduHe8vJycwGjoRx27x4sHx8flZaW6tChQ3bX3mnrGpuDsx07dlT/8z/vq6ioSB4eHgoJCVFk5Eiba95I5MCejIwMFRcXKyAgQD169FBW1mHFxcWpoKBA3t7eGjRokK68cphFMYfPBwBwXBSIcEHYs2ePtm3bJpOpRoWFhfr5559lMBh05ZVX6q9//Yt5v9zcXEmSt7e33V+6unbtarGvVPuLQ0lJiSQpMDDQZlxgYG1cUVGRxQ+fdcexF+fl5SVPT08ZDAbl5h5v1z/0NDYPZ0tMTFBiYoLFNi8vLy1cuFDR0TEW28lD/d566y3l5ubqsccel4+PT7378iy0nKbk4Ww8Cy3j91NZJMnfP0CLF//d4k1YeXln/p7buze2nona7483Ks5kMikvL08hISGNiquLLS0ttTpne9LYHJztp59+0k8//WSxrUOHVzVv3s268cYbrfYnB7ZlZR2WVHsN7777jj799FOLBfM/+eQThYWF6fHHH1dgYO3IHT4fAMBxUSDCBeHXX3+xepXuuHHjdPfd8+Xl5W3eVl5ukCSLue2/V/fDisFgMG87+2t7se7uZ4a0GwwGq+M0dE6DwaBTpwx292kPGpsHqfZfZW+//XZdeeUw83DyX375RZ988rESExO1fPlyOTu7aPz4M8PbyYN9e/bs0YYN6zV27DUaNWpUg/vzLLSMpuZB4lloKRdf3Ed9+y7U4MGDFRgYqIqKCh0+fFgrV65USspPevTRR/Xss8/qsssulyQZDOXm2LPv3dlsPRNS7aix2jjb9/TsKU+Wz1P9cWf3xWA4ZXeftqqpOZAkf38/zZkzR5GRI9W9e3e5ubnpyJEj+vLLtdq6davee+9d1dTUaM6cORbnIge21RVsMjMzlZqaqmuvna4ZM2bIz89PaWmpevXVV5WZmamHHnpIb7zxplxdXfl8AAAHxhpEuCBcf/2ftGXLVn3zzUZ98MFK3XXX3dq9e7fuuON2HThwoLW75zCakofo6GjNnj1HYWFh8vHxkY+PjwYOHKilS5/UddddJ0l68803VFlZ2QpX0r6cOlWmF154Xp07d9Y999zT2t1xWM3NA89Cy/jTn2ZqxowZCgkJkaenp/z8/HTFFVfopZde0siRI1VVVaXXX3+jtbt5QWtODq68cphuu+12RUREyNfXV56engoPD9eDD/5Dd95Z+6r5jz76UIWFha1xSe1O3WihqqoqXXPNNfqv//ov9ezZU15eXhoy5AotW7ZMHTp0UHZ2tr799ttW7i0AoLVRIMIFxdXVVcHBwZo5c6aeeupplZWV6dlnn1FFRYUkycOjdqh03dx6W+r+FfLsYdVnf20v1mg886/PtmIbc04vL9tDudubhvLQkHnzbpazs7OKioqUmppq3k4ebHv99Td04sQJ3XPPPXbX5/g9noXzrzl5aAjPwvnn5OSkm2++RZJ0+PAh5efnS5I8Pc+MbDj73p3N1jMhnRlNYe+e1sX9PrbunPXloq4vLfEmvNZiLwcNmTFjhnx9fVVZWWn1JjlyYFvd/+slWbyZr05gYJB5If19+5IsYvh8AADHwxQzXLAuueQSXXTRRcrOzlZ6eroGDRqkbt1qp2+UlZXJYDDYnFt/4sQJSVJQUDfzNk9PT/Milfn5+br44out4vLza+N8fX0thrIHBQUpIyPD7g/Ap06dMg+tPvucFwpbeWhIp06d1Lmzn06eLDDnQyIP9sTHx8nFxUVfffWVvvrqK4u2I0eOSJI2btyopKQk+fv766GHHuZZaAHNyUNDeBZaRu/evc1f//bbbwoMDDSvvyJJ+fn5Cg31too780xYvmWpW7du5lzYUhfn5ORkEVt3f+srkNTF1j2zFwpbOWiIi4uLevTooeLiYv322wmLNnJgW/fu3W1+bWufgoKTksTnAwA4MEYQ4YJWN5e9qKh2KHrPnr3M29LT023G1G3v2zfMYnvfvn0bFRcWZhkXFta4OHd3d/Xs2bOeq2m/fp+HhlRXV5vXevj9D6bkwbbq6modOHDA6k/dNIzc3FwdOHBAP//8sySehZbS1Dw05ng8C+df3bos0pmRJ15eXgoO7iFJSkuzd2/SJJ2593Xq7rH9e1ob16NHD4tfihvK4fHjx1RaWipJuvjiMJv7tFe2ctCUuLNHxkjkwJ6+ffvKyclJklRSUmxzn+Li2u1194XPBwBwXBSIcMEqLi42v0a17ocJNzc3DRtW+8aUbdtirWLy8vLMb00ZNWq0RVvdgrPfffetampqLNpqamq0fft3kqTRo6+yGffTT8nKz8+zOue2bdskSSNGRMrV9cIb1GcrDw1JSEiQ0WiUk5OT1StvyYO1tWu/1JYtW23+qXv71a233qotW7bqo49WSeJZaAnNyUNDeBZaxnff1a614unpqV69epm3jx5de2++/XabVUx5ebkSExMl2Xomar9PSEiwmMpUp+6ejh5tGTds2DC5ubkpPz9fycnJduMuueSSdvd69YbYy0F9MjIylJOTI0mKiIiwaCMHtvn7+2vgwIGSpKSkJKv2qqoq8xqBERHhkvh8AABHRoEI7dYvv/yi2NhYnT592qotJydHS5c+ocrKSl1yySUKDe1jbrvxxtlycnLSpk2btHv3LvN2o9Go559/TjU1Nbrqqqsshr9LUkzMBAUEBCgnJ0crVqywaFuxYoVycnLUtWtXRUdHW7SFhIRo5MiRqqmp0fPPP2+xDs+uXbu0efMmOTs7a/bs2edyO1pNc/KQn5+nrVu32oyJj4/XCy88L0kaN268/P39LdrJw/nDs9D6eBZaRmZmpr7//ntVV1dbbK+pqdE333yj999/X1LtmjZn/7I5Y8b1cnd3V1JSkr7+eoN5e3V1tV555WWVlZUpPDxcQ4cOtTjusGHDFBYWprKyMr366isW592wYb327dsnDw8PzZhxvUWcj4+Ppk6dJkl69dVXLEZ4ZGRk6JNPPpEkzZlz07ncjlbRnBwYjUZ9+eWXVm+Jk6QDBw7oiScelyQNHDjQqkBEDuybO3eeJOnjjz9WSkqKeXt1dbXeeutNHT9+XJ6enpowYaK5jc8HAHBMTqa61xsA7cz+/T9q8eLFcnd3V1hYmLp06aqqqkrl5+crMzNTNTU16t27t5555hmLtSUkac2az/Tmm2/KyclJl156qTp37qyDB5N18mSBevXqpRdffMnmIrPJyclasuSfMhqNCgkJUUhIqLKzs5SdnS13d3ctW7Zc/fv3t4orLCzUokX36ejRo/L3D9CgQQNVVFSkAwcOyGQyacGChZoxY0aL3auW1Jw8ZGZmav78u+Xh4aGwsDAFBHTR6dMV+uWXX3T06FFJ0uWXX64nnlhqc+oBeWi85cuXa8uWzbr11lt1001zrdp5Fv4Y9vLAs9Ay4uPj9dhj/5KPj4/CwsLk5+ensrIyZWdnm9c4ueaaa/SPf/xTLi4uFrHbt2/X008/pZqaGkVERKhbt25KS0vT8ePH5efnpxdffEk9evSwOueRI0d0//2LVFRUpO7duys8PFy5ublKTU2Vi4uLHn74EavRK1LtL9z/+MeDSklJkY+Pjy6//HIZjUbt27dPVVVV+tOfZuruu+9umRvVgpqTg7KyMs2YcZ3c3NwUFhamwMBAVVdXKycnR9nZ2ZKk0NBQPfPMswoICLA6Jzmwb9Wqj7RixQq5uLgoPDxC/v5+yszMVG5urjp27KhHHnlEw4ePsIjh8wEAHA8FIrRbRUVF+vrrr5WcfFBHjhxRUVGRqqur5ePjo5CQUI0ePVoTJkxQhw4dbMYnJe3VZ599ptTUVBmNRgUGBuqqq8Zo9uzZNhdkrHP06FGtWvWRkpKSVFxcLF9fXw0ZMkRz585TcHCw3bhTp07p449Xa+fOncrPz5e7u7siIiI0c+YsDRky5JzvR2tpTh5KSor16aefKi0tXceOHVVJSYmqqqrUqZOv+vXrq2uuGaexY8fK2dn+IEfy0DgNFYgknoU/gr088Cy0jOPHj2vt2i+Unp6u3NxclZSUyGQyyc/PT+HhEZowYYL5zU22pKena/Xq/yg5OVmnTp2Sv7+/hg8foblz58rPz89u3MmTJ7Vq1Sr98EOiTp48KS8vLw0cOFBz5txktW7R2SorK7VmzWeKjY3V8ePH5erqqj59Ltb06dN19dVXn9O9aC3NyUFlZaVWrVql9PR0HTnyq0pKSlRRUSEfHx/16dNHY8aMUUzMBLm5udk9Lzmwb8+ePfr888+VmvqzysvL5efnp8GDh+iGG26wGglUh88HAHAsFIgAAAAAAAAcHGsQAQAAAAAAODgKRAAAAAAAAA6OAhEAAAAAAICDo0AEAAAAAADg4CgQAQAAAAAAODgKRAAAAAAAAA6OAhEAAAAAAICDo0AEAAAAAADg4CgQAQAAAAAAODgKRAAAAAAAAA6OAhEAAAAAAICDo0AEAAAAAADg4CgQAQAAAAAAODgKRAAAAAAAAA6OAhEAAAAAAICDo0AEADhvVq78QNHRUYqOjmrtrjTK3Lk3KTo6SsuXL2/trgAAAACtigIRAAAAAACAg6NABAAAAAAA4OAoEAEAAAAAADg4CkQAAAAAAAAOjgIRAAAAAACAg3Nt7Q4AAC5cZWVlWrNmjXbu3KG8vDy5ubmpT58+mjx5isaNG1dvbG5urr744nPt3btX+fn5qqmpUUBAFw0efLmmT5+u0NA+DZ5/165dWrt2rdLT02Q0GtWlSxeNGDFCM2fOUpcuXezGzZ9/tzIzM9WrV2+9//779Z6jpKRYN954oyorKzVt2jTde+/fGuxXfXJzczVv3lxJ0uLFD2jChAnauXOn1q9fr8OHD8loNCo4OFiTJk3S1KnT5Opa+1FuMpn07bfbtGHDBv36668qLy9Xr169NHnyFE2dOlVOTk42z1deXq4ffkjU3r1JSk9PV27ucVVUVMjb21u9e1+kyMgRmjp1mjw8POrtd1xcnLZs2az09HQVFxfL1dVVvr6+6tKliy677DKNGBGpiIgIq7jffvtNa9d+ob179+rYsWOqqKiQj4+POnfurJCQUA0dOlSjR4+Wl5fXOd3X39uyZbO++WajsrIOq6qqSt26ddOYMVfr+uuvl5eXl/lNfPPmzdPNN99yXs8NAADQFlEgAgC0iOPHj+uf//yHjh07Zt5mNBq1f/9+7d+/X99/H68lS/5bLi4uVrFbtmzWiy++qMrKSovtx44d1bFjR/XNN9/o1ltv1ezZc+ye/80339CaNWssth09elRr1qxRbGysnnzyKbuxkyZN0quvvqojR35VSkqK+vfvb3ff2Nht5n5OmDDR7n7N9corL2vdunUW2w4fPqzXXntN+/fv18MPP6Lq6mo9++yz2rlzh8V+mZmZeuWVl5WZmaFFi+63efyHH35IBw4csNpeXFysgwcP6ODBA/rqq6/01FNPq3fv3lb7VVdX6+mnn9KOHZbnrqysVHl5uXJzc5WcnKxdu3br9ddft9jn4MGDevjhh2QwGCy2FxUVqaioSNnZ2fruu2/l6+urESNG2L9JTVBVVaWlS5/Q999/b7E9Oztb2dnZio3dqmXLlp+XcwEAALQnFIgAAC3iqaeeVG5urqZOnaqrrhojLy8vZWUd1ieffKKcnBxt375dAQEBmj9/gUXcDz8k6t///rdMJpM8PDw0c+ZMDRkyRM7OLkpJSdHHH69WcXGx3n//fXl7e2vatGutzv3552vMxaGAgADdeONsRURE6PTp0/rhhx/0xRef68knl6qiosJm38ePH6+3335bFRUV2rx5U70Fok2bNkqS+vTpo/Dw8ObeLpvWr1+n1NRUDRs2TJMmTVZQUJBOnMjX6tWrlZqaqri4OG3atElZWYe1c+cOjRs3TuPGjZO/f4COHs3RypUf6siRX/X1119r9OjRuvLKYVbnqK6uVmhoqCIjI9WvX7gCAgJkMpmUn5+nuLh47dixXbm5uXrssX/pzTffUocOHSzi161bZy4ODRw4UJMmTVZwcHe5u7urpKREhw9naffu3TIYTlnEnT59Wk899aQMBoM8PT01deo0XX75Zerc2U+VlZXKzc1VSspPio+PP6/39PXXXzMXh0JCQjRz5iyFhITIYDAoPj5O69at05NPLj2v5wQAAGgPnEwmk6m1OwEAuDCsXPmBPvzwQ/P3S5b8t9VUMoPBoEWLFunw4UNydnbWm2++pdDQUEm1ozvmzr1JBQUF8vDw0AsvvKiwsDCL+Ly8PN177706ebJA7u7u+uijVfL19TW3FxYW6uab58loNCooKEivvPKq/P39LY6xb98+LVnyT1VXV0uSoqNj9OCDD1rss2zZs9q6dau8vLz0ySefqmPHjlbXm5mZofnz50uS5s+fr+uv/1NTb5mVs6eYSdL1119vVUQzGo36y1/uUF5enjp16qTS0lLdffd8XX/99Rb7nTx5UrfddqsMBoMiIyP1xBPWhY+cnBz17NnTbn+SkvZqyZIlqqmp0f33/12TJk2yaL///kU6ePCgIiIi9NJLL9scESZJJSUl6tSpk/n7ffv26cEHH5AkLV36pN0RQtXV1TIajedlillmZoYWLFggk8mk/v37a/nyf1vldceOHVq69Anz90wxAwAAjoJFqgEALWLEiBE21xny9PTUokWLJEk1NTVav369uS0+Pk4FBQWSpDlzbrIqDklSUFCQ7rzzTkm1hZK6ETx1tmzZLKPRKEm66667rIpDkjR48GBNnjy53v5PmlTbfurUKcXFxdncZ9OmTZIkNzc3jR8fVe/xmqNr167661/vtNru7u6u6OgYSbWFl4iICKvikCT5+/tr1KhRkqTk5GSb56ivOCRJQ4ZcocjISEnS999bj+Y5efKkJGnAgAF2i0OSLIpDklRYeNL89aBBg+zGubi4nLf1hzZs2KC6fxdbtOh+m0W/MWPGaNSo0eflfAAAAO0JBSIAQIuIiZlgty0iIkIhISGSpH37kszbk5Jqv3ZyctLEifbX8xkzZoy5aFAX8/tj+Pj4aOTIUXaP0dB6QZdeeqm5ePL7IpRUu8bOtm3bJNUWw84exXS+jB59lXkR6t/r0+fMIt1jx461e4w+fS6WJJWWlqqsrKzBcxYVFSknJ0dZWVnmP3XXdujQIav9/f0DJEkJCYkqLi5u8Pi/j5POFNpaWlLSPklSWFiY+e+fLdHR0X9IfwAAANoS1iACALSIhtbjCQ8PV3Z2tnJyclRZWSk3NzdlZ2dLkrp166bOnTvbjXVzc1NYWJj2799vjqmTlVX7/cUXh9U7oiUsLExubm5WC2GfbeLESXr33Xf0448/Ki8vT0FBQea2hIQElZSUSGqZxaklqWfPHnbbvL29zV/36GF/FJC395nRNwaDwSKuTnJystau/UJJSUkqLS21e6y66z1bTEy0Dh48oGPHjuqWW27W6NGjNWTIFRo0aJC6du1q91gDBw5U9+7ddfz4cb3xxuvati1Wo0aN0qBBlyo8PFxubm52Y5vj9OnTOnbsqCSpb9++9e7br1+/83puAACA9oACEQCgRdRX4JEkPz8/SbWvZy8rK5Ofn5+5ONFQbG187dSx3xc0SktLGnUMFxcX+fj4mKdI2RITE6MVK/5HVVVV2rx5s+bNm2du27ixdlRRly5dNHTo0Ab72xwdO7rbbXN2PvPaend366lSdZyczgwWrqmpsWr//bpR9bG1qPfEiZN07NhxffrpJzp16pQ2bdpkHhEUHBysyMiRmj79WnXvHmwR5+rqqqVLn9QTTzyuX3/9VWlpaUpLS5MkdezYUYMGDVJ0dLSuvnpsvYW+xjp79JSvb+d6922J0WAAAABtHQUiAECLcHJyaninFog9c4xzPoT8/Pw0fPgIxcfHafPmTZo7d66cnJz022+/ae/ePZKkqKjo81LAaA1JSUnm4lD37t01a9YsDRw4UIGBgXJ39zBf14oVK7Rq1Ud2j3P77bdrypQpio2N1b59+5Sa+rOMRqOOHTumNWs+05dfrtWCBQs1bdo0i7iLLrpIb7/9jhITE5WYmKADBw7q2LGjqqio0J49e7Rnzx599tkaPfXUU+aCIgAAAFoGBSIAQIsoLCxUYGBgve1SbTGobtqTj4+PRVv9xz9pEVOnblRQYWFRvfHV1dX1TqeqM2nSJMXHxyk3N1cHDuzXZZddrq1bt5hH40yYYH+tpbbum2++llR7z1555VW7o64ac5+CgoI0Z84czZkzR1VVVUpLS9P27du1YcN6nT59Wq+++oouuSRCYWGW07tcXFw0atQo82LaBQUF2r17t7766itlZKQrIyNdL7/8kh577PFzutazp9YVFxfVu29T1lICAAC4ULBINQCgRdRNF2qovUePHub1ZuoWDs7NzVVRUZHd2KqqKmVmZlrE1AkJCZUkHTqUaX6NvS2HDh2qd/2hOldeeaV5LZ26qVN1/x00aFCDbwFry+rWb7rsssvqnZKXnl5/Ln/P1dVVAwYM0IIFC7RkyX9Lqp1KuGPHzgZjAwICNHHiRL3yyivmtYISExNtTm9rig4dOig4uHaaW0ZGRr37pqenn9O5AAAA2iMKRACAFrFly2a7bWlpqebixODBQ8zbhwyp/dpkMtX7ZqsdO3bo1KlTFjG/P0ZpaakSEhLsHqNuDaGGODs7m9/ItnPnTu3evUs5OTmSWm5x6j9KdXXtKCij0Wh3n8zMDKWmpjb7HIMHDzZ/XVLS+JE5rq6uuvTSSyXVjvZqzBvYGtuXzMxMq8XNz7Zly5ZzPhcAAEB7Q4EIANAiEhIStH37d1bby8vL9dJLL0mqLb5MnTrV3DZy5CgFBNS+/vw//1mlrKzDVvH5+fl6++23JEnu7u5WRZqYmBh17Fi7aPNbb71pc7ra/v379fXXGxp9LRMnTpSTk5OMRqOee+45SZKnp6fGjBnT6GO0RT161L4lLTk5WUePHrVqLyoq0rJly+o9xtatW+sdqbV3717z1926dTN/ffDgQZvnrFNZWakDBw5Ikjw8PBq1cHlDJk+eYl7f6sUXX7A5Kmnnzh2Kj48753MBAAC0N6xBBABoEf369dPTTz+t/fsPaMyYMfL09NThw4f16aef6MiRI5Kka6+9Vn369DHHuLm5adGiRXrkkUdkMBh03333adasP2vw4MFydnZWSspP+vjjj83Tz+68806rN075+fnplltu1dtvv6Xc3FwtWDBfN944WxER4Tp9ulK7dv2gNWvWqEuXLqqoqKh3Kludbt26afDgIUpK2mt+69mYMVfLw8Pj/NysVhIdHa3ExAQZjUb9/e/368Ybb1TfvrWveE9J+UmffbZGhYUn1b9/f6WkpNg8xrJlz+rtt9/S6NGj1b//AAUHB6tDBzcVFhZq794krV+/TlJtkWfcuPHmuH37krRq1SoNHDhQw4cPV2hoH3Xu3FkVFRXKycnRhg3rzVPBJk6cdF4WAu/Xr58mT56sDRs2KCUlRffcs1CzZv1ZISEhMhgMiovbqXXr1ikiIsI8aup8LJgOAADQHlAgAgC0iIcffkQPPviA1q37SuvWfWXVftVVV+nuu+dbbR8+fIQWL35AL730ogwGgz74YIU++GCFxT7Ozs669dZbNW3atTbPPWvWLOXn52vt2i/022+/6f/9v1ct2n19ffXII49o6dKljb6eyZMnKSnpzGiYiRPb9/QySRozZowmTJigTZs2qaCgQK+99ppFu7Ozs+6+e77KykrtFoik2kXF161bp3Xr1tls9/Ly0kMPPWS1aHlNTY0OHDhgHilky8iRI3XHHXc04arqt3DhPSooKFBiYqKys7P1738vt2jv1q2bliz5b91yy82SJDe3Duft3AAAAG0ZBSIAQIvo3r27Xn/9Df3v//6v4uPjlJ+fLxcXF/Xpc7GmTJmi8ePH242NiYnRpZdeqs8//1x79+5Rfn6+TCaTAgICdPnll+u6665TaGgfu/GStHDhQg0dOlRr136htLQ0VVRUqEuXrho2bJj+/Oc/mxeebqyRI0fJw8ND5eXl6tWrtwYMGNCk+LZq8eIHdPnlg/X11xvMC3f7+/tr0KBBmj79OkVERGjlyg/sxr/zzrv64YcflJycrOPHj6mwsFBlZWXy9PRUr169NHToUE2bdq3Va+pnzfqzQkP7aN++JGVmZqqgoMA8msvf31/h4eGKjo7W8OEjzuv1urm56Yknlmrz5s3auPEbZWVlqbq6WoGBgRo1arRmzZplMWrIy8vrvJ4fAACgrXIymUym1u4EAABtXU5Ojm677VZJ0l/+8lfdcMMNrdshtJjk5INatGiRJGnZsuVWC6EDAABciFikGgCARti0qfatZy4uLoqOjm7l3qAlbdv2raTaN6n169evlXsDAADwx6BABABAA8rKyrRhQ+1bz0aOHCV/f/9W7hGaq7i4WGVlZXbbd+/erQ0b1kuSIiMj5e3t/Ud1DQAAoFWxBhEAADYUFhbKYDCooKBAH364UqWlpXJyctLs2bNbu2s4B9nZWXr00Uc1ZszVGjJkiIKDu8vJyVl5eXlKSEhQbOxW1dTUqGPHjrr99vO3ODYAAEBbR4EIAAAb3nnnHW3Zstli27Rp16pv3771xh0/flxGo7HJ5/Px8VGXLl2aHOdIzte9NRgM2rjxG23c+I3N/T09PfXII4+qZ8+eze4rAABAe0OBCACAeri5ual79+6aPHmyrrtuRoP7P/fcv+t9bbs90dExevDBB5vTRYdxPu5tv37heuCBB7V7924dPnzIPOXM09NTPXr00NChV2r69Onq3Lnzee49AABA20aBCAAAGx588EEKNhcgDw8PxcTEKCYmprW7AgAA0KbwmnsAAAAAAAAHx1vMAAAAAAAAHBwFIgAAAAAAAAdHgQgAAAAAAMDBUSACAAAAAABwcBSIAAAAAAAAHBwFIgAAAAAAAAdHgQgAAAAAAMDBUSACAAAAAABwcBSIAAAAAAAAHBwFIgAAAAAAAAdHgQgAAAAAAMDBUSACAAAAAABwcBSIAAAAAAAAHBwFIgAAAAAAAAdHgQgAAAAAAMDBUSACAAAAAABwcBSIAAAAAAAAHBwFIgAAAAAAAAf3/wEJj0QOd4a1dQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 444, "width": 580 } }, "output_type": "display_data" } ], "source": [ "viz_cmodel.ctree_feature_space(features=['body_mass_g','bill_length_mm'],\n", " show={'splits','legend'}, figsize=(5,5))" ] }, { "cell_type": "markdown", "metadata": { "id": "dl50QFXBUhIF" }, "source": [ "Only the `Adelie` region is fairly pure. The tree relies on other variables to get a better partition, as we just saw with `flipper_length_mm` vs `bill_length_mm` space.\n", "\n", "The dtreeviz library cannot visualize more than two feature dimensions for classification at this time.\n", "\n", "At this point, you've got a good handle on how to visualize the structure of decision trees, how trees partition feature space, and how trees classify test instances. Let's turn now to regression and see how dtreeviz visualizes regression trees." ] }, { "cell_type": "markdown", "metadata": { "id": "_lmlW71CzP9v" }, "source": [ "## Visualizing Regressor Trees\n", "\n", "Let's use the [abalone dataset](https://storage.googleapis.com/download.tensorflow.org/data/abalone_raw.csv) used in the beginner tutorial to explore the structure of regression trees. As we did for classification above, we start by loading and preparing data for training. Given 8 variables, we'd like to predict the number of rings in an abalone's shell.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "7qIzJwYsbpmo" }, "source": [ "### Load, clean, and prep data\n", "\n", "Using the following code snippet, we can see that the features are all numeric except for the `Type` (sex) variable." ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:48.690747Z", "iopub.status.busy": "2024-08-24T11:23:48.690066Z", "iopub.status.idle": "2024-08-24T11:23:49.078531Z", "shell.execute_reply": "2024-08-24T11:23:49.077761Z" }, "id": "CzFEh3sOzRbK" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TypeLongestShellDiameterHeightWholeWeightShuckedWeightVisceraWeightShellWeightRings
0M0.4550.3650.0950.51400.22450.10100.1515
1M0.3500.2650.0900.22550.09950.04850.077
2F0.5300.4200.1350.67700.25650.14150.219
\n", "
" ], "text/plain": [ " Type LongestShell Diameter Height WholeWeight ShuckedWeight \\\n", "0 M 0.455 0.365 0.095 0.5140 0.2245 \n", "1 M 0.350 0.265 0.090 0.2255 0.0995 \n", "2 F 0.530 0.420 0.135 0.6770 0.2565 \n", "\n", " VisceraWeight ShellWeight Rings \n", "0 0.1010 0.15 15 \n", "1 0.0485 0.07 7 \n", "2 0.1415 0.21 9 " ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Download the dataset.\n", "!wget -q https://storage.googleapis.com/download.tensorflow.org/data/abalone_raw.csv -O /tmp/abalone.csv\n", "\n", "df_abalone = pd.read_csv(\"/tmp/abalone.csv\")\n", "df_abalone.head(3)" ] }, { "cell_type": "markdown", "metadata": { "id": "L6RmA-2YXWYr" }, "source": [ "Fortunately, there's no missing data to deal with:" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:49.081816Z", "iopub.status.busy": "2024-08-24T11:23:49.081561Z", "iopub.status.idle": "2024-08-24T11:23:49.087968Z", "shell.execute_reply": "2024-08-24T11:23:49.087415Z" }, "id": "rmvDHSKpX715" }, "outputs": [ { "data": { "text/plain": [ "Type False\n", "LongestShell False\n", "Diameter False\n", "Height False\n", "WholeWeight False\n", "ShuckedWeight False\n", "VisceraWeight False\n", "ShellWeight False\n", "Rings False\n", "dtype: bool" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_abalone.isna().any()" ] }, { "cell_type": "markdown", "metadata": { "id": "FvmbvEfCbubB" }, "source": [ "### Split train/test set and train model" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:49.091257Z", "iopub.status.busy": "2024-08-24T11:23:49.090661Z", "iopub.status.idle": "2024-08-24T11:23:49.126512Z", "shell.execute_reply": "2024-08-24T11:23:49.125869Z" }, "id": "hiERDOZg1X_p" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2935 examples in training, 1242 examples for testing.\n" ] } ], "source": [ "abalone_label = \"Rings\" # Name of the classification target label\n", "\n", "# Split into training and test sets 70/30\n", "df_train_abalone, df_test_abalone = split_dataset(df_abalone)\n", "print(f\"{len(df_train_abalone)} examples in training, {len(df_test_abalone)} examples for testing.\")\n", "\n", "# Convert to tensorflow data sets\n", "train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(df_train_abalone, label=abalone_label, task=tfdf.keras.Task.REGRESSION)\n", "test_ds = tfdf.keras.pd_dataframe_to_tf_dataset(df_test_abalone, label=abalone_label, task=tfdf.keras.Task.REGRESSION)" ] }, { "cell_type": "markdown", "metadata": { "id": "KhVF32ZorzcE" }, "source": [ "### Train a random forest regressor\n", "\n", "Now that we have training and test sets, let's train a random forest regressor. Because of the nature of the data, we need to artificially restrict the height of the tree in order to visualize it. (Restricting the tree depth is also a form of regularization to prevent overfitting.) A max depth of 5 is deep enough to be fairly accurate but small enough to visualize." ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:49.129606Z", "iopub.status.busy": "2024-08-24T11:23:49.129149Z", "iopub.status.idle": "2024-08-24T11:23:49.629422Z", "shell.execute_reply": "2024-08-24T11:23:49.628740Z" }, "id": "7RZQNlzc1n3T" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "[INFO 24-08-24 11:23:49.4411 UTC kernel.cc:1233] Loading model from path /tmpfs/tmp/tmpu2s76oqn/model/ with prefix 571755d398de4f74\n", "[INFO 24-08-24 11:23:49.4661 UTC decision_forest.cc:734] Model loaded with 300 root(s), 9264 node(s), and 8 input feature(s).\n", "[INFO 24-08-24 11:23:49.4661 UTC abstract_model.cc:1344] Engine \"RandomForestOptPred\" built\n", "[INFO 24-08-24 11:23:49.4661 UTC kernel.cc:1061] Use fast generic engine\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rmodel = tfdf.keras.RandomForestModel(task=tfdf.keras.Task.REGRESSION,\n", " max_depth=5, # don't let the tree get too big\n", " random_seed=1234, # create same tree every time\n", " verbose=0)\n", "rmodel.fit(x=train_ds)" ] }, { "cell_type": "markdown", "metadata": { "id": "4moHNWt_ZM_W" }, "source": [ "Let's check the accuracy of the model using MAE and MSE. The range of `Rings` is 1-27, so an MAE of 1.66 on the test set is not great but it's OK for our demonstration purposes." ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:49.633705Z", "iopub.status.busy": "2024-08-24T11:23:49.633132Z", "iopub.status.idle": "2024-08-24T11:23:50.230326Z", "shell.execute_reply": "2024-08-24T11:23:50.229386Z" }, "id": "3O3vZ4qx18FJ" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "MSE: 5.4397759437561035\n", "MAE: 1.6559592485427856\n", "RMSE: 2.3323327257825164\n" ] } ], "source": [ "# Evaluate the model on the test dataset.\n", "rmodel.compile(metrics=[\"mae\",\"mse\"])\n", "evaluation = rmodel.evaluate(test_ds, return_dict=True, verbose=0)\n", "\n", "print(f\"MSE: {evaluation['mse']}\")\n", "print(f\"MAE: {evaluation['mae']}\")\n", "print(f\"RMSE: {math.sqrt(evaluation['mse'])}\")" ] }, { "cell_type": "markdown", "metadata": { "id": "bWZrhDfTfPQ4" }, "source": [ "### Display decision tree\n", "\n", "To use dtreeviz, we need to bundle up the model and the training data. We also have to choose a particular tree from the random forest to display; let's choose tree 3 as we did for classification." ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:50.233612Z", "iopub.status.busy": "2024-08-24T11:23:50.233346Z", "iopub.status.idle": "2024-08-24T11:23:50.248679Z", "shell.execute_reply": "2024-08-24T11:23:50.247869Z" }, "id": "mUqC6IGB2VWU" }, "outputs": [], "source": [ "abalone_features = [f.name for f in rmodel.make_inspector().features()]\n", "viz_rmodel = dtreeviz.model(rmodel, tree_index=3,\n", " X_train=df_train_abalone[abalone_features],\n", " y_train=df_train_abalone[abalone_label],\n", " feature_names=abalone_features,\n", " target_name='Rings')" ] }, { "cell_type": "markdown", "metadata": { "id": "MMOM77IXatzF" }, "source": [ "Function `view()` displays the structure of the tree, but now the decision nodes are scatterplots not stacked bar charts. Each decision node shows a marginal plot of the indicated variable versus the target (`Rings`):" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:50.252064Z", "iopub.status.busy": "2024-08-24T11:23:50.251562Z", "iopub.status.idle": "2024-08-24T11:23:53.461554Z", "shell.execute_reply": "2024-08-24T11:23:53.460289Z" }, "id": "n0aIEGkm2qOd" }, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "G\n", "\n", "\n", "\n", "node3\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:50.412301\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node6\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:50.488943\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "leaf4\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:51.777012\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node3->leaf4\n", "\n", "\n", "\n", "\n", "\n", "leaf5\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:51.830528\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node3->leaf5\n", "\n", "\n", "\n", "\n", "\n", "leaf7\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:51.884804\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node6->leaf7\n", "\n", "\n", "\n", "\n", "\n", "leaf8\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:51.940508\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node6->leaf8\n", "\n", "\n", "\n", "\n", "\n", "node2\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:50.569313\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node2->node3\n", "\n", "\n", "\n", "\n", "\n", "node2->node6\n", "\n", "\n", "\n", "\n", "\n", "node9\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:50.816611\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "node10\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:50.647801\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node13\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:50.732645\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "leaf11\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:51.994762\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node10->leaf11\n", "\n", "\n", "\n", "\n", "\n", "leaf12\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:52.058543\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node10->leaf12\n", "\n", "\n", "\n", "\n", "\n", "leaf14\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:52.115292\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node13->leaf14\n", "\n", "\n", "\n", "\n", "\n", "leaf15\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:52.173871\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node13->leaf15\n", "\n", "\n", "\n", "\n", "\n", "node9->node10\n", "\n", "\n", "\n", "\n", "\n", "node9->node13\n", "\n", "\n", "\n", "\n", "\n", "node1\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:50.907899\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node1->node2\n", "\n", "\n", "\n", "\n", "\n", "node1->node9\n", "\n", "\n", "\n", "\n", "\n", "node16\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:51.535518\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "node18\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:51.002456\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node21\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:51.081140\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "leaf19\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:52.233949\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node18->leaf19\n", "\n", "\n", "\n", "\n", "\n", "leaf20\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:52.291920\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node18->leaf20\n", "\n", "\n", "\n", "\n", "\n", "leaf22\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:52.614469\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node21->leaf22\n", "\n", "\n", "\n", "\n", "\n", "leaf23\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:52.674560\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node21->leaf23\n", "\n", "\n", "\n", "\n", "\n", "node17\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:51.178944\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node17->node18\n", "\n", "\n", "\n", "\n", "\n", "node17->node21\n", "\n", "\n", "\n", "\n", "\n", "node24\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:51.443455\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "node25\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:51.279284\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node28\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:51.353965\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "leaf26\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:52.742979\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node25->leaf26\n", "\n", "\n", "\n", "\n", "\n", "leaf27\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:52.798075\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node25->leaf27\n", "\n", "\n", "\n", "\n", "\n", "leaf29\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:52.851994\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node28->leaf29\n", "\n", "\n", "\n", "\n", "\n", "leaf30\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:52.919533\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node28->leaf30\n", "\n", "\n", "\n", "\n", "\n", "node24->node25\n", "\n", "\n", "\n", "\n", "\n", "node24->node28\n", "\n", "\n", "\n", "\n", "\n", "node16->node17\n", "\n", "\n", "\n", "\n", "\n", "node16->node24\n", "\n", "\n", "\n", "\n", "\n", "node0\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:51.651479\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node0->node1\n", "\n", "\n", "  <\n", "\n", "\n", "\n", "node0->node16\n", "\n", "\n", "  ≥\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "" ], "text/plain": [ "" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "viz_rmodel.view(scale=1.2)" ] }, { "cell_type": "markdown", "metadata": { "id": "OvTpoqiVcTES" }, "source": [ "As with classification, regression proceeds from the root of the tree towards a specific leaf, which ultimately makes the prediction for a specific test instance. The nodes on the path to the leaf test numeric or categorical variables, directing the regressor into a specific region of feature space that (hopefully) has very similar target values.\n", "\n", "The leaves are strip plots that show the target variable `Rings` values for all instances in the leaf. The horizontal parameter is not meaningful and is just a bit of noise to separate the dots so we can see where the density lies. Consider the lower left leaf with n=10, Rings=3.30. That indicates that the average `Rings` value for the 10 instances in that leaf is 3.30, which is then the prediction from the decision tree for any test instance that reaches that leaf.\n", "\n", "Let's zoom in on the root of the tree to see how the regressor splits on variable `ShellWeight`:\n" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:53.519109Z", "iopub.status.busy": "2024-08-24T11:23:53.518150Z", "iopub.status.idle": "2024-08-24T11:23:53.880342Z", "shell.execute_reply": "2024-08-24T11:23:53.879413Z" }, "id": "AmG_4hkHRDqM" }, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "G\n", "\n", "\n", "\n", "node0\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:53.630302\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "" ], "text/plain": [ "" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "viz_rmodel.view(depth_range_to_display=[0,0], scale=2)" ] }, { "cell_type": "markdown", "metadata": { "id": "m_WduAzdRlLK" }, "source": [ "For a test instance with `ShellWeight<0.164`, the regressor proceeds down the left child of the root; otherwise it proceeds down the right child. The horizontal dashed lines indicate the average `Rings` value associated with instances whose `ShellWeight` is above or below 0.164.\n", "\n", "Decision nodes for categorical variables, on the other hand, test subsets of categories since categories are unordered. In the fourth level of the tree, there are two decision nodes that test categorical variable `Type`:\n", "\n", "" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:53.890952Z", "iopub.status.busy": "2024-08-24T11:23:53.890667Z", "iopub.status.idle": "2024-08-24T11:23:55.068487Z", "shell.execute_reply": "2024-08-24T11:23:55.067648Z" }, "id": "U_X6pekdSGbT" }, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "G\n", "\n", "\n", "\n", "node3\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:53.995982\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node6\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:54.093351\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node10\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:54.184873\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node13\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:54.280720\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node18\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:54.363978\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node21\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:54.698704\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node25\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:54.794257\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node28\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:54.871566\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "" ], "text/plain": [ "" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "viz_rmodel.view(depth_range_to_display=[3,3], scale=1.5)" ] }, { "cell_type": "markdown", "metadata": { "id": "dS28snShRRTX" }, "source": [ "Regressor nodes that test categoricals use color to indicate subsets. For example, the decision node on the left at the fourth level directs the regressor to descend to the left if the test instance it has `Type=I` or `Type=F`; otherwise the regressor descends to the right. The yellow and blue colors indicate the two categorical value subsets associated with left and right branches. The horizontal dashed lines indicate the average `Rings` target value for instances with the associated categorical value(s).\n", "\n", "To display large trees, you can use the orientation parameter to get a left to right version of the tree, although it is fairly tall so using scale to shrink it is a good idea. Using a screen zoom-in feature on your machine, you can zoom in on areas of interest." ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:55.080655Z", "iopub.status.busy": "2024-08-24T11:23:55.080369Z", "iopub.status.idle": "2024-08-24T11:23:58.273186Z", "shell.execute_reply": "2024-08-24T11:23:58.272151Z" }, "id": "oLFUeZbhcJvc" }, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "G\n", "\n", "\n", "\n", "node3\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:55.183829\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node6\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:55.282249\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "leaf4\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:56.603933\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node3->leaf4\n", "\n", "\n", "\n", "\n", "\n", "leaf5\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:56.661357\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node3->leaf5\n", "\n", "\n", "\n", "\n", "\n", "leaf7\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:56.719321\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node6->leaf7\n", "\n", "\n", "\n", "\n", "\n", "leaf8\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:56.778429\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node6->leaf8\n", "\n", "\n", "\n", "\n", "\n", "node2\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:55.360662\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node2->node3\n", "\n", "\n", "\n", "\n", "\n", "node2->node6\n", "\n", "\n", "\n", "\n", "\n", "node9\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:55.604539\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "node10\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:55.438590\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node13\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:55.522917\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "leaf11\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:56.835901\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node10->leaf11\n", "\n", "\n", "\n", "\n", "\n", "leaf12\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:56.898179\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node10->leaf12\n", "\n", "\n", "\n", "\n", "\n", "leaf14\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:56.955096\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node13->leaf14\n", "\n", "\n", "\n", "\n", "\n", "leaf15\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:57.012885\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node13->leaf15\n", "\n", "\n", "\n", "\n", "\n", "node9->node10\n", "\n", "\n", "\n", "\n", "\n", "node9->node13\n", "\n", "\n", "\n", "\n", "\n", "node1\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:55.694338\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node1->node2\n", "\n", "\n", "\n", "\n", "\n", "node1->node9\n", "\n", "\n", "\n", "\n", "\n", "node16\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:56.353536\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "node18\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:55.790365\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node21\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:55.870816\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "leaf19\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:57.071623\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node18->leaf19\n", "\n", "\n", "\n", "\n", "\n", "leaf20\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:57.130246\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node18->leaf20\n", "\n", "\n", "\n", "\n", "\n", "leaf22\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:57.187429\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node21->leaf22\n", "\n", "\n", "\n", "\n", "\n", "leaf23\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:57.250000\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node21->leaf23\n", "\n", "\n", "\n", "\n", "\n", "node17\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:55.970130\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node17->node18\n", "\n", "\n", "\n", "\n", "\n", "node17->node21\n", "\n", "\n", "\n", "\n", "\n", "node24\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:56.256362\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "node25\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:56.076722\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node28\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:56.163236\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "leaf26\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:57.320540\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node25->leaf26\n", "\n", "\n", "\n", "\n", "\n", "leaf27\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:57.377132\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node25->leaf27\n", "\n", "\n", "\n", "\n", "\n", "leaf29\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:57.431686\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node28->leaf29\n", "\n", "\n", "\n", "\n", "\n", "leaf30\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:57.499139\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node28->leaf30\n", "\n", "\n", "\n", "\n", "\n", "node24->node25\n", "\n", "\n", "\n", "\n", "\n", "node24->node28\n", "\n", "\n", "\n", "\n", "\n", "node16->node17\n", "\n", "\n", "\n", "\n", "\n", "node16->node24\n", "\n", "\n", "\n", "\n", "\n", "node0\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:56.475593\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node0->node1\n", "\n", "\n", "  <\n", "\n", "\n", "\n", "node0->node16\n", "\n", "\n", "  ≥\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "" ], "text/plain": [ "" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "viz_rmodel.view(orientation='LR', scale=.5)" ] }, { "cell_type": "markdown", "metadata": { "id": "sHkVF5fxbjUs" }, "source": [ "We can save space with the non-fancy plot. It still shows the decision node split variables and split points; it's just not as pretty." ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:58.322048Z", "iopub.status.busy": "2024-08-24T11:23:58.321732Z", "iopub.status.idle": "2024-08-24T11:23:59.782928Z", "shell.execute_reply": "2024-08-24T11:23:59.782127Z" }, "id": "5rpKz3C-hhTI" }, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "G\n", "\n", "\n", "\n", "node3\n", "VisceraWeight@0.00\n", "\n", "\n", "\n", "node6\n", "Type@M\n", "\n", "\n", "\n", "\n", "leaf4\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:58.398529\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node3->leaf4\n", "\n", "\n", "\n", "\n", "\n", "leaf5\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:58.491032\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node3->leaf5\n", "\n", "\n", "\n", "\n", "\n", "leaf7\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:58.547967\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node6->leaf7\n", "\n", "\n", "\n", "\n", "\n", "leaf8\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:58.605168\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node6->leaf8\n", "\n", "\n", "\n", "\n", "\n", "node2\n", "ShellWeight@0.02\n", "\n", "\n", "\n", "node2->node3\n", "\n", "\n", "\n", "\n", "\n", "node2->node6\n", "\n", "\n", "\n", "\n", "\n", "node9\n", "ShellWeight@0.11\n", "\n", "\n", "\n", "\n", "node10\n", "Type@M\n", "\n", "\n", "\n", "node13\n", "ShuckedWeight@0.19\n", "\n", "\n", "\n", "\n", "leaf11\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:58.661736\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node10->leaf11\n", "\n", "\n", "\n", "\n", "\n", "leaf12\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:58.723408\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node10->leaf12\n", "\n", "\n", "\n", "\n", "\n", "leaf14\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:58.781308\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node13->leaf14\n", "\n", "\n", "\n", "\n", "\n", "leaf15\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:58.840322\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node13->leaf15\n", "\n", "\n", "\n", "\n", "\n", "node9->node10\n", "\n", "\n", "\n", "\n", "\n", "node9->node13\n", "\n", "\n", "\n", "\n", "\n", "node1\n", "Diameter@0.25\n", "\n", "\n", "\n", "node1->node2\n", "\n", "\n", "\n", "\n", "\n", "node1->node9\n", "\n", "\n", "\n", "\n", "\n", "node16\n", "ShellWeight@0.32\n", "\n", "\n", "\n", "\n", "node18\n", "ShellWeight@0.25\n", "\n", "\n", "\n", "node21\n", "ShuckedWeight@0.31\n", "\n", "\n", "\n", "\n", "leaf19\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:58.898902\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node18->leaf19\n", "\n", "\n", "\n", "\n", "\n", "leaf20\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:58.957350\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node18->leaf20\n", "\n", "\n", "\n", "\n", "\n", "leaf22\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:59.012016\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node21->leaf22\n", "\n", "\n", "\n", "\n", "\n", "leaf23\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:59.071531\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node21->leaf23\n", "\n", "\n", "\n", "\n", "\n", "node17\n", "Type@M\n", "\n", "\n", "\n", "node17->node18\n", "\n", "\n", "\n", "\n", "\n", "node17->node21\n", "\n", "\n", "\n", "\n", "\n", "node24\n", "ShuckedWeight@0.41\n", "\n", "\n", "\n", "\n", "node25\n", "ShellWeight@0.37\n", "\n", "\n", "\n", "node28\n", "Height@0.21\n", "\n", "\n", "\n", "\n", "leaf26\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:59.138309\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node25->leaf26\n", "\n", "\n", "\n", "\n", "\n", "leaf27\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:59.193402\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node25->leaf27\n", "\n", "\n", "\n", "\n", "\n", "leaf29\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:59.247382\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node28->leaf29\n", "\n", "\n", "\n", "\n", "\n", "leaf30\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:23:59.314543\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node28->leaf30\n", "\n", "\n", "\n", "\n", "\n", "node24->node25\n", "\n", "\n", "\n", "\n", "\n", "node24->node28\n", "\n", "\n", "\n", "\n", "\n", "node16->node17\n", "\n", "\n", "\n", "\n", "\n", "node16->node24\n", "\n", "\n", "\n", "\n", "\n", "node0\n", "ShellWeight@0.16\n", "\n", "\n", "\n", "node0->node1\n", "\n", "\n", "  <\n", "\n", "\n", "\n", "node0->node16\n", "\n", "\n", "  ≥\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "" ], "text/plain": [ "" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "viz_rmodel.view(fancy=False, scale=.75)" ] }, { "cell_type": "markdown", "metadata": { "id": "QuA-7t5fgy1D" }, "source": [ "### Examining leaf stats\n", "\n", "When graphs get very large, it's sometimes better to focus on the leaves. Function `leaf_sizes()` indicates the number of instances found in each leaf:" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:23:59.795730Z", "iopub.status.busy": "2024-08-24T11:23:59.795451Z", "iopub.status.idle": "2024-08-24T11:24:00.035926Z", "shell.execute_reply": "2024-08-24T11:24:00.035246Z" }, "id": "3GtflGu3gYeY" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAFlCAYAAACDRTcUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AABkyElEQVR4nO3dd3hUZf7+8XsS0oEEEkogCVUCoYN0WMSVqiiggLqWL7iWFTtYVlSwN1ZEjb9dsa2INLEhXUEMHUU6SQwCSUgPySQhlWR+f2QzJKaSzJxJ4P26Li9P5jznOfcM0z5zznkek8VisQgAAAAAADtxcnQAAAAAAMCljcITAAAAAGBXFJ4AAAAAALui8AQAAAAA2BWFJwAAAADArig8AQAAAAB2ReEJAAAAALArCk8AAAAAgF1ReAIAAAAA7IrCEwAAAABgVxSeAAAAAAC7ovAEAAAAANgVhScAAAAAwK4oPAEAAAAAdkXhCQAAAACwKwpPAAAAAIBdUXgCAAAAAOyKwhMAAAAAYFcUnijj4YcfdnQEAAAAAJcYCk+UkZWV6egIAAAAAC4xFJ4AAAAAALui8AQAAAAA2BWFJwAAAADArig8AQAAAAB2ReEJAAAAALArCk8AAAAAgF1ReAIAAAAA7IrCEwAAAABgV40cHQAAAABAw5CUlCizOcPRMWrM27upWrZs5egYEIUnAAAAgBpISkrUzJkzlZeX5+goNebm5qaPP/6Y4rMeMKTwPHTokCQpODhYbm5uNdomPz9f4eHhkqRevXrZLRsAAACA6pnNGcrLy9PIiTPk7efv6DjVMqfEa9uaT2Q2Z1B41gOGFJ5z5syWyWTSBx8sVrt27Wq0TUpKinW7jRs32TkhAAAAgJrw9vOXX+sgR8dAA8PgQgAAAAAAu6q3hWdRUZEkycmp3kYEAAAAANRAva3qkpISJUleXl4OTgIAAAAAqAu7XONZUjT+WWpqqjw83KvcNj+/QPHxcfr0009lMplqfE0oAAAAAKB+skvhefvtt5e7zWKx6J//fOqi+xo9erQtIgEAAAAAHMQuhafFYrmo2yvi6uqqSZMmady48baKBQAAAABwALsUnnPmPF7m7wUL3pTJZNKdd/6f/Pz8Kt3OZCouOJs391Xnzp3l4eFhj3gAAAAAAAPZpfAcM2ZMmb8XLHhTkjRs2DCu2QQAAACAy4xdCs8/e/PNBZKk1q1bG7E7AAAA2EhSUqLM5gxHx6gxb++matmylaNjAPgTQwrP3r17G7EbAAAA2FBSUqJmzpypvLw8R0epMTc3N3388ccUn0A9Y0jhCQAAgIbHbM5QXl6eRk6cIW8/f0fHqZY5JV7b1nwiszmDwhOoZwwvPE+cOKHDhw8rISFe2dnZKioqqrK9yWTS7NlzDEoHAACAP/P285df6yBHxwDQgBlWeMbExGjBggUKDz9e420sFothhWdSUqLWr9+gPXv2KCkpUdnZ2fLx8VGrVq3Uu3cfjRw5Uh06dKh0+71792rdurWKiIiQ2WyWt7e3goODNWHCtRo4cGCNMhQWFmrdunXasuVHxcTEKCcnR76+vurXr58mTZqs9u3b2+jeAgAAAIBxDCk8U1JS9NhjjyojI8M6l6eHh4caN24sJycnIyJU6ZtvvtZHH32k3NzcMrcnJycrOTlZR44cUXZ2tu6///5y2xYVFWnhwoXasGF9mdtTUlKUkpKiHTt2aPz48XrkkUervK9ms1lz5z6tiIiIMrfHx8dr7dq12rRpkx544EFNmDChDvcUAAAAAIxnSOH5xRdLZTabZTKZNH78eE2dOk0BAQFG7LpaS5d+rk8//VSSFBAQoAkTJqhLl2B5eXkpIyNDJ05Eafv2HXJyMlW4/SeffGwtOjt37qxp06arTRt/xcXFa+XKFYqKitL69evl7e2ju+66q8I+CgsLNX/+PGvROXz4cE2YMEFNmjRVePhxLV26VOnp6Vq06G35+fnV+AgqAAAAANQHhhSe+/btk8lk0jXXjNajjz5mxC5rZP/+/daic/To0Xrssdlq1KjsQ9KvXz9NnTpNBQUF5baPjY3VqlWrJEldunTRW28tlJubmyQpOLirhgwZotmzH1NkZKRWrVqpcePGqW3btuX62bx5k44cOSJJmjjxej300EPWdV27dtWAAQN1//3/UHZ2tkJDQ9W/f385Ozvb5DEAAAAAAHsz5DzX1NRUScXFXX1RVFSkd95ZJEnq2LGTZs+eU67oLM3FxaXcbV99tVqFhYWSpFmzHrAWnSXc3d01a9YDkoqPaq5evbrCvkuK1yZNmuiee+4pt75t27a65ZZbJElxcWe0ffv26u4eAAAAANQbhhSeTZo0kSQ1buxlxO5q5Ndff9GZM2ckSdOnT7/oI4gWi0U7d+6UJAUGBikkJKTCdiEhIQoMDJQk7dq103qNa4nY2FhFR0dLkkaOHCl3d/cK+xkzZqx1eccOCk8AAAAADYchhWeXLl0kFRdZ9cXPP/8sqXi6lsGDB1tvz8jIUGxsrDIyMqrcPiEh3nokt1evXlW2LVmfkpKihISEMuuOHDlcql3vSvto3ry59brYo0ePVrk/AAAAAKhPDLnGc9KkydqzZ4/Wrl2nq64aZcQuq3X8ePG0Lq1atZKnp6e2bPlRy5Yt06lTp6xtSgYbuuGGSXJ1dS2z/enT0dbloKDAKvdVcsRTkqKjo+Xvf2EC5tL9lG5XWT+xsbFKTk5WTk6OPDw8qmwPAAAAAPWBIUc8+/fvr+nTp+vgwQNatOhtnT9/3ojdVqqoqEgxMTGSJG9vb4WGhurVV18tU3RKxUdoP/jgAz3++OPKysoqsy45Odm67OfXosr9tWjRssLtJCklJblUu5r1Y7FYlJKSUmVbAAAAAKgvDDniuXnzJgUFFV8HuW7dOu3evVsjRvxFgYGBcnd3q3b70aPH2DTPuXPnVFRUJEk6efKkIiIi1Ly5r+655x4NHDhQrq6uioiI0IcfLtbx48d17NhRLViwQPPnz7f2kZOTbV328Kj4uswSpa/bzMnJKbMuO7t0P1Ufwayqn+qEhoYqNDS02nZduwZfVL8AAAAAUB1DCs8333xTJtOFeTDPnj2rb7/9psbb27rwzM3NtS7n5+fL3d1dCxYsKHOqa69evfTmmwv00EMP6Y8/TmjHju06fvy4unXr9r/tLkyv0qhR+RFvSys9Im5+fl6ZdWX7qfqfo6p+qjNr1izNmjWr2nZ33TXzovoFAAAAgOoYcqqtVHx6aG3+s4c/X685btz4Cq+vdHNz08yZM6x/b9v2U6k+LhSB58+Xn+OztNJzgLq6lj3CW7afqk9BrqofAAAAAKivDDniuWTJ50bspsb+fErrlVf2r7Rt37795OzsrMLCQkVERJTqw9O6nJOTW9GmVqWPsP55356epfvJKVcU17QfAAAAAKivDCk8W7VqZcRuaszV1VU+Pj5KT0+XVHbwn4raent76+zZszKbzdbbSw8EVHqAoIokJydVuJ1UdmCi5ORkeXt7V9uPyWSSn59flfsEAAAAgPrCsFNt65t27dpZl4uKCqtsWzIQkbOzc6ntg6zL0dExVW5fMoKuJAUFBZVZV7qf0u2q6qdFixYc8QQAAADQYFy2hWfPnr2sy/Hx8ZW2O3funPVIp6+vr/X21q39rX8fOnSoyn0dOnRYkuTn56fWrVuXWdejR89S7Q5W2sfZs2cVGxsrSerevXuV+wMAAACA+uSyLTxHjBhhXd6xY0el7Xbs2GEd5KhnzwtFoslk0tChQyVJMTHROnbsWIXbHzt2TDEx0ZKkIUOGlhndV5ICAgKsR0G3bdtW5jrO0jZt2mhdHjZseKV5AQAAAKC+MeQaz9tvv63W25pMJn322RIbpinWsWNHDRgwUPv27dXWrVs1ZsxY9evXr0ybs2fP6tNPP5FUPJXJ2LHjyqyfMuVGrV27VkVFRQoNfU9vvbVQbm4XRpvNy8tTaOh7kopP050yZUqFWaZOnap//etfyszM1OLFi/Xggw+WWR8XF6dly5ZJktq0aavhwyk8AQAAADQchhSeiYmJNW5rMpnKTKPy5yOEtnT//ffrwQePKSsrS88++4ymTJmigQMHydXVVRER4Vq+fLmSk4sHDrrzzv8rN6BPQECApk2bpuXLlysyMlKPPPKwpk+fLn//NoqPj9OKFSsUFRUlSZo6dZoCAgIqzDF69Bht2LBBR48e1Xfffau0tLMaP36CmjRpovDwcC1d+rmys7Pl5OSkWbNmlbnWFAAAAADqO0MKz9Gjx1TbJjc3R7GxZ3Ty5B8ymUzq1KmzOnToYNdcAQEBevHFF/XCCy8oLS1Ny5cv1/Lly8u0MZlMuvXWWzV9+vQK+5gxY6bS09O1YcMGRUVF6eWXXy7XZty48ZoxY0YFWxdzdnbW88+/oLlzn1ZERITCwsIUFhZWpo2Li4seeOBBDRw4sBb3FAAAAAAcx5DC8/HHH69x21OnTulf/1qgU6dO6ZZbbilzLaY99OjRUx9++KG++eYb7dixUwkJ8Tp//ryaN2+u3r17a9KkSerc+YpKt3dyctLs2XM0fPgIrVu3VhEREcrIyFDTpk0VHBysa6+9rkbFore3txYtekfr1q3Vli1bFB0drdzcXPn6+qpv376aPHmK2rdvb8N7DgAAAADGMKTwvBjt27fXG2+8qfvuu09vvPG62rVrV24KEltr2tRbd9xxp+64485a9zFo0CANGjSoTjmcnZ01ceL1mjjx+jr1AwAAAAD1Sb0c1dbDw0M33XSj8vLytGrVSkfHAQAAAADUQb0sPCWpS5cukqTffvvNwUkAAAAAAHVRbwvPkoFt09LSHBsEAAAAAFAn9bbw/OWXXyRJXl5eDk4CAAAAAKiLell4bt26VcuXL5PJZFKPHj0cHQcAAAAAUAeGjGq7YMGb1bYpKrIoKytTUVFRSk1NlcVikbOzs6ZPv9mAhAAAAAAAezGk8Ny0aZNMJlON2lr+d3Gnp6enHntstoKDg+0ZDQAAAABgZ4YUni1btqy28DSZTPLw8JS/f2v16tVLf/3rNfL29jYiHgAAAADAjgwpPD//fKkRuwEAAAAA1EP1cnAhAAAAAMClg8ITAAAAAGBXhpxqWxGLxaL4+HhlZmZIkpo0aSp/f/8aD0IEAAAAAGgYDC889+3bp++++1YHDx5UXl5emXVubm7q3buPbrjhBl155ZVGRwMAAAAA2IFhhWdBQYHefPMNbdu2TdKFaVNKy83N1d69e7R37x6NHDlSjz/+hFxcXIyKCAAAAACwA8MKz1dffUU7duyQxWKRs7Oz+vXrp65du6l582aSpLNn0xQREa79+/fr/Pnz2rZtmwoLC/Xss88ZFREAAAAAYAeGFJ579uzW9u3bZTKZ1Lt3H82ZM0etWrWqsG1SUqIWLFigAwcOaPv27dqzZ48GDRpkREwAAAAAgB0YMqrtxo2bJEkdO3bUq6++WmnRKUktW7bSK6+8qk6dOv1v241GRAQAAAAA2IkhhWd4+HGZTCbddNNUNWpU/UHWRo0aaerUqbJYLAoPP25AQgAAAACAvRhSeKanp0uS2rULqvE2gYHFbc1msz0iAQAAAAAMYkjh6e7uLknKyMio8TaZmZmSiqdYAQAAAAA0XIYUnoGBgZKkn376qcbbbNv2U5ltAQAAAAANkyGF55AhQ2SxWLRx48YaDRa0efNmbdiwQSaTSUOHDjMgIQAAAADAXgyZTuWGGybpm2++UVpamt56618KC/tZY8eOU7du3eTj4yOTyaS0tDQdP35cGzdu0L59+2SxWOTn56cbbrjBiIgAAAAAADsxpPD08PDQSy+9pCeeeEJZWVnat2+f9u3bV2l7i8Wixo0b68UXX7JeHwoAAAAAaJgMOdVWkjp3vkIffLBYw4ePkMlkksViqfA/k8mkESNG6IMPFlvn8gQAAAAANFyGHPEs4efnp+eee06pqak6ePCgTp06pczM4pFumzRpqvbt26t3797y9fU1MhYAAAAAwI4MLTxL+Pr66uqrr3bErgEAAAAABjPsVFsAAAAAwOXJLkc8s7KydOjQIUlSy5Yt1LnzFTXe9vfff1dycrIkqU+fPvL09LRHRAAAAACAQexSeH788Udau3at3N3d9c47717Utq6urnr99deUm5uryZMn6777/mGPiAAAAAAAg9j8VNu0tDStX79ekjRjxgy1a9fuorZv166dZsyYKYvFou+++05ms9nWEQEAAAAABrJ54blly48qLCyUr6+vJk68vlZ9TJw4US1btlRhYaG2bNli44QAAAAAACPZvPA8cOCgdS5OZ2fnWvXh7Oys4cNHyGKx6MCB32ycEAAAAABgJJsXnidP/iFJ6t27d5366dWrpyTpjz/+qHMmAAAAAIDj2LzwzMjIkFQ8V2ddNG9evD3XeAIAAABAw2bzwrOoqEiSZLHUrR+TqWx/AAAAAICGyeaFZ9OmTSVJZ8+m1qmf1NSzZfoDAAAAADRMNi88W7f2lyQdOnS4Tv0cOnSoTH8AAAAAgIbJ5oVn3759ZbFYtHXrFuXk5NSqj5ycHG3Z8qNMJpP69u1r44QAAAAAACPZvPAcOXKkTCaT0tPT9Z///LtWffz73/9P6enpMplMuuqqq2wbEAAAAABgKJsXnkFBQbr66qtlsVi0fv16vf3228rLy6vRtnl5eXr77YVav369TCaTrr76rwoMDLR1RAAAAACAgRrZo9P775+l8PBwnTlzRuvXr9OePbs1YcIEDRw4UJ06dVajRhd2e/78eZ04EaU9e/Zo/fr1Onu2eFChtm0DdP/999sjHgAAAADAQHYpPJs0aaJXXnlFzz77rKKjo3X27Fl9/vnn+vzzz2UymeTl5SV3d3fl5ubq3Llzsvxv7pWS/wcFBenFF19S48aN7REPAAAAAGAguxSekuTv30ahoe/rww8/1IYN662n21osFmVmZiorK8taaJZwc3PT+PETNHPmTLm7u9srWpUWL16slStXWP9esGCBevfuU+U2e/fu1bp1axURESGz2Sxvb28FBwdrwoRrNXDgwBrtt7CwUOvWrdOWLT8qJiZGOTk58vX1Vb9+/TRp0mS1b9++DvcKAAAAABzHboWnVFxIzpo1S7fddpu2bt2qQ4cO6Y8/TigjI0M5OTny8PBQ06ZN1bFjJ/Xq1UujRo2St7e3PSNVKSoqSqtXf1nj9kVFRVq4cKE2bFhf5vaUlBSlpKRox44dGj9+vB555FE5OVV+Oa3ZbNbcuU8rIiKizO3x8fFau3atNm3apAceeFATJky4uDsEAAAAAPWAXQvPEt7e3po0aZImTZpkxO5qpaioSG+/vVCFhYXy8fFRenp6tdt88snH1qKzc+fOmjZtutq08VdcXLxWrlyhqKgorV+/Xt7ePrrrrrsq7KOwsFDz58+zFp3Dhw/XhAkT1KRJU4WHH9fSpUuVnp6uRYvelp+fX42PoAIAAABAfWHzUW0bqm+++VoREREKDAzSuHHjq20fGxurVatWSZK6dOmit99epFGjRik4uKtGjRqlhQvfVpcuXSRJq1at1JkzZyrsZ/PmTTpy5IgkaeLE6zVv3nwNGDBQXbt21aRJk/X224vk6empoqIihYaGqrCw0Eb3GAAAAACMQeEpKSkpUZ9++qkk6eGHH5aLS/UHgr/6arW1CJw16wG5ubmVWe/u7q5Zsx6QVHxUc/Xq1RX2U1K8NmnSRPfcc0+59W3bttUtt9wiSYqLO6Pt27fX7E4BAAAAQD1B4Snp3XffVU5OjkaPHqPevXtX295isWjnzp2SpMDAIIWEhFTYLiQkxDoP6a5dO8sNphQbG6vo6GhJ0siRIysdUGnMmLHW5R07KDwBAAAANCyXfeG5bdtP2r17t5o0aaJ77723RtskJMQrNTVVktSrV68q25asT0lJUUJCQpl1R44cLtWu8oK3efPmCggIkCQdPXq0RhkBAAAAoL64rAvPrKwsvf/++5Kkv//97hqPqHv6dLR1OSgosMq2JUc8JVmPblbUT+l2VfWTnJysnJycGuUEAAAAgPrgsi48Fy/+QGfPnlX37t01fnz1AwqVSE5Oti77+bWosm2LFi0r3E6SUlKSS7WrWT8Wi0UpKSk1zgoAAAAAjmbIdCr10eHDh7V+/Xo5Ozvr4YcfkclkqvG2OTnZ1mUPj4qvyyxR+rrNPx+pzM4u3Y9HrfupidDQUIWGhlbbrmvX4IvuGwAAAACqclkWngUFBVq4cKEsFotuvPFGdejQ4aK2z88vsC43auRSZVsXlwvr8/Pzquin6n+KqvqpiVmzZmnWrFnVtrvrrpkX3TcAAAAAVOWyPNV22bIvFBMTrZYtW+q2226/6O1dXS8UgefPF1TRsrjIvbBd2SlXyvZzvtb9AAAAAEB9dtkVntHR0Vq+fLmk4vk3qzvFtSIeHp7W5Zyc3Crb5uZeWP/nfXl6lu6n6tNnq+oHAAAAAOqzenWqbVxcnMxms1q3bq1mzZrZZR9ffbVaBQUF8vf3V15enrZu3VquzalTp6zLv/12QGfPpkmSBg8eLA8PjzIDAZUeIKgiyclJ1uU/DyBUemCi5OTkKkfVLenHZDLJz8+vyn0CAAAAQH1iSOGZlpamsLCfJUl//etf5eXVuMz6M2fO6OWXX9KJEyestw0dOlSPPTZbTZo0sWmWkusq4+Pj9corL1fbfunSz63LS5Z8Lg8PD7VrF2S9LTo6psrtY2IurA8KCiqzrnQ/MTEx6ty5c7X9tGjRgiOeAAAAABoUQ0613b59u9577z19/fXX5YrO/Px8Pf300zpx4oQsFov1v507d2revOeMiHfRWrf2l6+vryTp0KFDVbY9dOiwJMnPz0+tW7cus65Hj56l2h2stI+zZ88qNjZWktS9e/daZQYAAAAARzHkiOevv/4qk8mkYcOGlVu3adMmxcfHyWQyaciQIerbt6/279+v3bt36+jRo/rpp6266qpRNsvyxBNP6IknnqiyzWef/VdLliyRJC1YsEC9e/cps95kMmno0KFas2aNYmKidezYMYWEhJTr59ixY4qJiZYkDRkytNyULQEBAQoKClJ0dLS2bdume++9r8y0KSU2bdpoXR42bHiN7icAAAAA1BeGHPGMjS0+TbRbt/LF2ZYtWyRJffr00fPPv6BJkybrhRdeVN++/WSxWPTTTz8ZEfGiTZlyo5ycih++0ND3lJdXdoqTvLw8hYa+J0lydnbWlClTKuxn6tSpkqTMzEwtXry43Pq4uDgtW7ZMktSmTVsNH07hCQAAAKBhMeSIp9lslqRyg+Lk5eUpPPy4TCaTJky4tsy6cePG6bff9uv33383IuJFCwgI0LRp07R8+XJFRkbqkUce1vTp0+Xv30bx8XFasWKFoqKiJElTp05TQEBAhf2MHj1GGzZs0NGjR/Xdd98qLe2sxo+foCZNmig8PFxLl36u7OxsOTk5adasWXJ2djbybgIAAABAnRlSeGZlZUmS9QhhiePHj+v8+fMymUzq169fmXUl10Omp6cbEbFWZsyYqfT0dG3YsEFRUVF6+eXygxWNGzdeM2bMqLQPZ2dnPf/8C5o792lFREQoLCxMYWFhZdq4uLjogQce1MCBA21+HwAAAADA3gwpPD08PHTu3DmdPXu2zO0HDxYPqNOuXbtyo9c2alQcrT4f4XNyctLs2XM0fPgIrVu3VhEREcrIyFDTpk0VHBysa6+9rkbFore3txYtekfr1q3Vli1bFB0drdzcXPn6+qpv376aPHmK2rdvb/87BAAAAAB2YEjhGRgYqPDwcP3yyz4NGjTIevv27WEymUzq1atXuW1KilR7zedZlTvuuFN33HFnjdsPGjSozP2qDWdnZ02ceL0mTry+Tv0AAAAAQH1jSOE5cOAgHT9+XGvXrlVQUJB69OipTZs26fTp0zKZTBo+fES5baKiiq/t9PX1K7cOAAAAANBwGFJ4Tpp0g9as+U5nz57Ve++9V2Zdt27d1KdPn3Lb7N69WyaTScHBwUZEBAAAAADYiSHTqXh5Ndbrr7+hzp2vkMVisf7Xo0dPPfPMs+XanzhxQhEREZJUbtAhAAAAAEDDYsgRT6l4AKH3339f8fHxSktLU/Pmza0j11ZkzpzHJUl9+/Y1KiIAAAAAwA4MKzxL+Pv7y9/fv8o2nTp1UqdOnQxKBAAAAACwJ0NOtQUAAAAAXL4MP+JZVFSkAwcO6PjxYzp7Nk15ebmaMWOmfH19rW0KCgpUWFgoJycnubq6Gh0RAAAAAGBDhhaeu3fvVmjoe0pKSipz+9Sp08oUnuvXr1NoaKjc3d21fPkKeXh4GBkTAAAAAGBDhp1qu27dWs2b95wSExNlsVjUtGlTWSyWCtuOHz9BXl5eys3N1Y4dO4yKCAAAAACwA0MKz9jYWL377ruSpD59+ujDDz/SqlVfVtrexcVFw4cPl8Vi0a+//mJERAAAAACAnRhSeH711WoVFhaqXbt2evnlVxQUFFTtNj179pQkRUVF2TseAAAAAMCODCk8Dxw4IJPJpClTpsjFxaVG27Rp01aSlJycbM9oAAAAAAA7M6TwLCkeO3as+dyc7u7ukqS8vDy7ZAIAAAAAGMOQwtNkMkm6uCIyIyNDkuTl5WWXTAAAAAAAYxhSePr5+UmS4uPja7zNkSNHJEn+/v52yQQAAAAAMIYhhWevXr1lsVi0efOmGrU/dy5L33//vUwmk/r06WPfcAAAAAAAuzKk8LzuumtlMpl06NAhbdy4scq2GRlmzZs3T2lpZ+Xs7KzrrptoREQAAAAAgJ00MmInnTtfocmTJ+urr77SW2/9S/v27dWIESOs648ePaoTJ6J05MhRbd26RdnZ2TKZTPrb3/6mVq1aGRERAAAAAGAnhhSeknTvvfcpP79A33+/RmFhYQoLC7MOOrRo0dvWdhaLRZI0ZcoU/e1vtxkVDwAAAABgJ4YVniaTSQ899JCGDRum5cuX69Chg9Yis3Sbbt1C9Le//U0DBw40KhoAAAAAwI4MKzxL9O/fX/3791d2draioqKUnp6uoqJCNW3aVJ06dZa3t7fRkQAAAAAAdmR44VnC09NTvXr1ctTuAQAAAAAGMWRUWwAAAADA5cthRzwB4FKWlJQosznD0TFqzNu7qVq2ZBRxAABgHzYtPJcsWWLL7qxuv/12u/QLAPaQlJSomTNnKi8vz9FRaszNzU0ff/wxxScAALALGxeen1mnSLElCk8ADYnZnKG8vDyNnDhD3n7+jo5TLXNKvLat+URmcwaFJwAAsAubn2r75ylSAOBy5e3nL7/WQY6OAQAA4HA2LTw3bdpsy+4AAAAAAJcARrUFAAAAANgVhScAAAAAwK4oPAEAAAAAdmX4PJ6FhYXauXOnfvttv06ePKnMzExJUpMmTdS+fXv169dPQ4cOk7Ozs9HRAAAA7K4hzfMbHR3t6AgALhGGFp47d+7Ue++9q9TUVOttJaPgmkwmHTt2TOvWrVPz5s31wAMPatiwYUbGAwAAsKuGOM8vANiCYYXnV199pf/859+SiotNk8mkVq1aqVmzZpKktLQ0JSYmymKxKDU1VS+88LzuvfdeTZlyo1ERAQAA7KqhzfMbG3VY+8PWODoGgEuAIYXn8ePH9Z///FsWi0Wenp669dZbNXbsOHl7e5dpZzabtXHjBi1btkznzp3TBx98oG7dQtStWzcjYgIAABiioczzm56S4OgIAC4RhgwutHr1l7JYLPLy8tKiRe9o2rTp5YpOSfL29ta0adP19tuL5OXlJYvFotWrvzQiIgAAAADATgwpPA8fPiKTyaTp06erXbt21bZv166dpk+fLovFosOHDxuQEAAAAABgL4YUnllZxSPX9u7dp8bblLTNysqyQyIAAAAAgFEMKTybN2/ukG0BAAAAAI5nSOHZr18/SdKhQ4dqvM3BgwclSX369LVLJgAAAACAMQwpPG+6aapcXV21YsVyxcbGVts+NjZWK1eukLu7u6ZNm2ZAQgAAAACAvRhSeAYGBuq5556TJD300IP66qvVysjIKNcuMzNTX331lR5++CFJ0jPPPKvAwEAjIgIAAAAA7MSQeTwff3yOpOLpUs6cOaP//Oc/+s9//qPWrf3l4+Mjk0lKS0tXQkK8dZs2bdpo1aqVWrVqZSW9mvTmm28akB4AAAAAUBeGFJ4HDx6UyWSy/m2xWCRJ8fFxio+Pq3CbuLg4xcXFWduWMJlMslgsZfoDAAAAANRfhhSePXv2rHeFYkREhPbu3asjR44oOvq0zGaznJ2d5evrq+7de2j8+HHq0aNnjfvbu3ev1q1bq4iICJnNZnl7eys4OFgTJlyrgQMH1qiPwsJCrVu3Tlu2/KiYmBjl5OTI19dX/fr106RJk9W+ffta3lsAAAAAcBxDCs9//estI3ZTY4899qgOHz5c7vaCggKdOXNGZ86c0aZNGzV69Gg9+uhjcnFxqbSvoqIiLVy4UBs2rC9ze0pKilJSUrRjxw6NHz9ejzzyqJycKr+k1mw2a+7cpxUREVHm9vj4eK1du1abNm3SAw88qAkTJlzkvQUAOFpSUqLM5vJjG9RX3t5N1bJlK0fHAABcQgwpPOub1NRUSZKvr6/+8peR6tmzh1q2bKnCwiIdP35MX375pVJSUrR582adP39eTz89t9K+PvnkY2vR2blzZ02bNl1t2vgrLi5eK1euUFRUlNavXy9vbx/dddddFfZRWFio+fPnWYvO4cOHa8KECWrSpKnCw49r6dKlSk9P16JFb8vPz6/GR1ABAI6XlJSomTNnKi8vz9FRaszNzU0ff/wxxScAwGYuy8IzMDBQM2fO1PDhI+Ts7FxmXUhIiK65ZrQeeeRhxcbGauvWrbruuonq1atXuX5iY2O1atUqSVKXLl301lsL5ebmJkkKDu6qIUOGaPbsxxQZGalVq1Zq3Lhxatu2bbl+Nm/epCNHjkiSJk68Xg899JB1XdeuXTVgwEDdf/8/lJ2drdDQUPXv379cbgBA/WQ2ZygvL08jJ86Qt5+/o+NUy5wSr21rPpHZnEHhCQCwmcuy8HzppZerXO/t7a17771Pzz77jCQpLOznCgvPr75arcLCQknSrFkPWIvOEu7u7po16wE9/PBDKiws1OrVq8sUlSVKitcmTZronnvuKbe+bdu2uuWWW/TRRx8pLu6Mtm/frpEjR9bszgIA6gVvP3/5tQ5ydAwAABzC8MKzqKhIp0+fVnx8vHJyclRUVFjtNqNHjzEgWVm9e/e2LsfFlR9512KxaOfOnZKkwMAghYSEVNhPSEiIAgMDFRMTo127durBBx8sM9BSbGysoqOjJUkjR46Uu7t7hf2MGTNWH330kSRpxw4KTwAAAAANh2GFZ25urpYuXaoNG9YrI+PiBlhwROFZUFBgXXZyKn9aa0JCvPVa0YqOhpbWq1cvxcTEKCUlRQkJCfL3v3Cq1ZEjh0u1613R5pKk5s2bKyAgQLGxsTp69GiN7wcAAAAAOJohhWdOTo7mzJmtqKiocvNyVsdR07AcOnTIuhwUVP7UqNOno0utD6yyr8DAC+ujo6PLFJ6l+yndrrJ+YmNjlZycrJycHHl4eFTZHgAAAADqA0MKz6VLP9fvv/8uSerWrZsmTLhWnTp1lJdX4yqnGHGUoqIirVix3Pp3Rae1JicnW5f9/FpU2V+LFi0r3E6SUlKSS7WrWT8Wi0UpKSnVFqoAAAAAUB8YUniGhYXJZDJp4MCBev75F+plsVna6tWrFR4eLql4apMuXbqUa5OTk21d9vCo+LrMEqWv28zJySmzLju7dD9VH8Gsqp/qhIaGKjQ0tNp2XbsGX1S/AAAAAFAdQwrPlJQUSdKkSZPrfdF58OBBffTRh5IkHx8fPfTQwxW2y8+/cA1oo0YuVfbp4nJhfX5+2XncyvZT9T9HVf1UZ9asWZo1a1a17e66a+ZF9QsAAAAA1TGkCvTx8ZEkeXs3NWJ3tXbq1Ck9//x8FRYWytXVVc8++5yaNWtWYVtX1wtF4PnzBRW2KVF6oCJX17JTrpTt53yt+wEAAACA+sqQwjM4uKskKSYm1ojd1Up8fLyeeupJZWZmysnJSXPnzq1ytFoPD0/rck5ObpV95+ZeWP/n02k9PUv3U/Xps1X1AwAAAAD1lSGF54033ihJ+vbbby56VFsjpKSk6Mknn1BqaqpMJpPmzJmjoUOHVblN6YGASg8QVJHk5KQKt5PKDkz054GHKuvHZDLJz8+vyrYAAAAAUF8YUnh2795df//733Xs2DG9/PJLysrKMmK3NWI2m/XUU08qPj5ekjRr1gM1mje0XbsLU6xER8dU2TYm5sL6P0/NUrqf0u2q6qdFixYc8QQAAADQYBgyuJAkTZ06Tf7+bbRw4Vu69dZb1K9ffwUEtJWbW9UjwkrS7bffbpdM585l6Z//fEqnT5+WJN111991ww031Gjb1q395evrq9TU1DJzflbk0KHDkiQ/Pz+1bt26zLoePXqWandQo0aNqrCPs2fPKja2+FTl7t271ygjAAC1FR0dXX2jesLbu6latmzl6BgAgCoYVnimpaVpx47tOnfunCwWi3bt2lnjbe1ReObm5mru3LnW+UVvvfVW3XzzzTXe3mQyaejQoVqzZo1iYqJ17NgxhYSElGt37NgxxcQUf3gPGTJUJpOpzPqAgAAFBQUpOjpa27Zt07333ldm2pQSmzZttC4PGza8xjkBALgY2VlmmUwmvfbaq46OUmNubm76+OOPKT4BoB4zpPDMyDBr9uzHdObMmXpxjWdBQYHmz5+no0ePSpImT56iGTMufhqRKVNu1Nq1a1VUVKTQ0Pf01lsL5eZ2YbTZvLw8hYa+J0lydnbWlClTKuxn6tSp+te//qXMzEwtXrxYDz74YJn1cXFxWrZsmSSpTZu2Gj6cwhMAYB/5uTmyWCwaOXGGvP38HR2nWuaUeG1b84nM5gwKTwCoxwwpPL/4Ypn1NNERI0bo+uuvV8eOndS4ceNyRwCN8MorL+vXX3+VJPXp01fjx4/TyZMnK23v4uKigICAcrcHBARo2rRpWr58uSIjI/XIIw9r+vTp8vdvo/j4OK1YsUJRUVGSik81rqgPSRo9eow2bNigo0eP6rvvvlVa2lmNHz9BTZo0UXh4uJYu/VzZ2dlycnLSrFmz5OzsbINHAQCAynn7+cuvdVD1DQEAqAFDCs9du3bJZDLpr3/9q5544kkjdlml7du3W5cPHPhN99xzT5XtW7Vqpc8/X1rhuhkzZio9PV0bNmxQVFSUXn755XJtxo0brxkzZlTav7Ozs55//gXNnfu0IiIiFBYWprCwsDJtXFxc9MADD2rgwIFVZgUAAACA+saQwjM1NUWSNHbsOCN2ZygnJyfNnj1Hw4eP0Lp1axUREaGMjAw1bdpUwcHBuvba62pULHp7e2vRone0bt1abdmyRdHR0crNzZWvr6/69u2ryZOnqH379va/QwAAAABgY4YUnk2bNlVqaqo8PT2N2F21Nm/+weZ9Dho0SIMGDapTH87Ozpo48XpNnHi9jVIBAAAAgOMZMo9nz57FU4acOlX5dZQAAAAAgEuTIYXnTTdNlbOzs1atWqX8/HwjdgkAAAAAqCcMKTyvuOIKPfbYbMXGxuqpp560jnALAAAAALj0GXKN54IFb0qS2rVrpyNHjuiuu2aqY8eOCggIKDPvZUVMJpNmz55jREwAAAAAgB0YUnhu2rTJOl+nyWSSxWLRH3/8oT/++KPK7SwWC4UnAKCcpKREmc0Zjo5RI9HR0Y6OAACAwxlSeLZs2dJaeAIAUBdJSYmaOXOm8vLyHB0FAADUkCGF5+efLzViNwCAy4DZnKG8vDyNnDhD3n7+jo5Trdiow9oftsbRMQAAcChDCk8AAGzN289ffq2DHB2jWukpCY6OAACAwxkyqi0AAAAA4PJF4QkAAAAAsCuHnWpbWFiorKys/w0OYamybcuWrYwJBQAAAACwOUMLT7PZrG+++UY7d+7Q6dOnZbFUXXCW2Lhxk52TAQAAAADsxbDC8+jRo3r++fkym801LjglMQ0LAAAAADRwhhSeGRlmzZv3nDIyMuTh4aHx48fLy6uxliz5TCaTSY8++pgyMzMVGRmp3bt3KT8/X927d9e4ceONiAcAAAAAsCNDCs9vv/1WGRkZcnFx0aJF76h9+/Y6deqUliz5TJI0btw4a9vU1FS9+uorOnz4sLp1C9Hdd99tRETgspOUlCizOcPRMWrM27sp13sDAAA0UIYUnnv37pXJZNLYsePUvn37Ktv6+vrq5Zdf0b333qMvv1ylK6+8Un379jUiJnDZSEpK1MyZM/83uFfD4Obmpo8//pjiEwAAoAEypPCMi4uTJPXr1896W+lrNwsLC+Xs7Gz9283NTTfeeKPeffddff/9GgpPwMbM5gzl5eVp5MQZ8vbzd3ScaplT4rVtzScymzMoPAEAABogQwrP7OxsSVKrVhe+MLq6uliXc3Jy1Lhx4zLbdOnSRZIUHh5uQELg8uTt5y+/1kGOjgEAAIBLnJMRO/Hw8JBUfGSzRJMmTa3LCQkJ5bbJzy+QJKWnp9s3HAAAAADArgwpPNu0aSNJSkpKst7WuHFjNWvWXJJ08OCBctscOXJYkuTu7m7/gAAAAAAAuzHkVNuuXbvq999/V0REhP7yl79Ybx8w4Ept2rRJK1eu1KBBgxUQECBJOnbsmFatWiWTyaTg4GAjIgLAZS86OtrREWqkoeQEAAAXGFJ4XnnlAH333Xfavn17melRbrzxJv34449KT0/X3Xf/XR07dlRubq7OnDmjoqIimUwmTZ482YiIAHDZys4yy2Qy6bXXXnV0FAAAcIkyqPC8UtdcM1pFRUWKj4+Xv3/xKJodOnTQQw89rHfeWaTCwkL9/vvvZba7/fY7NGDAQCMiAsBlKz83RxaLpcGMchwbdVj7w9Y4OgYAALgIhhSejRo10hNPPFHhuvHjx6tHjx7atGmjTp06rcLCQrVt21bXXHMNp9kCgIEayijH6SnlB6QDAAD1myGFZ3UCAwN1111/d3QMAAAAAIAdGDKqLQAAAADg8lVvCs+MDLMyMjIcHQMAAAAAYGMOPdU2LS1Nn376ibZv366srCxJkqenp4YMGar/+7871bJlK0fGAwAAAADYgM2PeCYnJ2v69OmaPn261qz5rtJ28fFxuv/+f2jDhg3KzMyUxWKRxWLRuXPn9OOPP+i+++5TVFSUreMBAAAAAAxm88Jz3759Sks7q8zMDI0cObLSdi+//LJSU1NlsVgkSS1atFDXrl3l4eEhi8WirKwsvfLKKyosLLR1RAAAAACAgWx+qu3x48ckSX369FHTpt4Vttm9e7ciIyNlMpnUuHFj/fOfT+vKK6+UJOXl5em9997Vxo0bdeZMrMLCftZVV42ydUzA5pKSEmU2N4zrlKOjox0dAQAAu2lIn3Pe3k25vAyXBZsXnidPnpTJZFK/fv0rbfPjjz9al++99z5r0SlJbm5ueuyx2YqMjNSpU6e0c+dOCk/Ue0lJiZo5c6by8vIcHQUALksNpdBoKDkbquwss0wmk1577VVHR6kxNzc3ffzxxxSfuOTZvPBMTEyUJHXs2LHSNocOHZQkeXl56eqrry633mQyaezYcfr3v/+f/vjjD1tHBGzObM5QXl6eRk6cIW8/f0fHqVZs1GHtD1vj6BgAUGcNsdCA/eTn5shisTSYz2NzSry2rflEZnMGhacdNaQffC7lI+A2LzzPnTsnSfL2rvg024SEBKWlpclkMqlnz55q1KjiCJ07d5Ykpaam2joiYDfefv7yax3k6BjVSk9JcHQEALCJhlZo8MOfMRrK5zHsqyH+MHUpHwG3eeFpMpkkSefPF1S4PiIi3LrcpUuXSvtp3LixJCk3N9eG6QAAwKWooRQa/PAHGKeh/TB1qR8Bt3nh2bRpU509e1axsWcUHNy13PqjR49Zl7t0Ca60n+zsbEmSq6urrSMCAAAAuEw0lB+mLnU2n06l5NrOsLCwcussFot27dopSXJ2dlaPHj0q7ScpqfhaUR+fZraOCAAAAAAwkM0LzyFDhloLzM2bN5dZt2rVSiUmJspkMqlv377y8PCotJ9jx4qPjAYGBtg6IgAAAADAQDY/1faaa67RsmVfKCUlRQsWvKnvvvtWbdq0UXR0dJkRam+88aZK+7BYLNq5c6dMJpO6detm64gAAAAAAAPZ/Iinu7u75s59Ru7u7rJYLIqMjNRPP/2kP/74QxaLRZI0duxY9evXr9I+9u7do5SUFElS376VtwMAAAAA1H82LzwlKSQkRKGh72v48BFydXWVxWKRxWJRq1atdM899+rRRx+rcvvPP/9cktSsWTOFhITYIyIAAAAAwCA2P9W2REBAgJ577jkVFRXJbDarUaNGatKkSY22feONNyUVD0AEAAAAAGjY7FZ4lnByclKzZhc3Mm1Vgw4BAAAAABoWuxeeuDiJiYn6+uuvtXfvHiUnJ8vFxUX+/v4aOXKkrr/+Brm7uzs6IgAAAGwoOjra0RFqpKHkRP1E4VmP7Nq1S6+99qqys7Ott+Xm5iozM1ORkZFav369XnrpZbVt29aBKQHHaSgfeA0lJwDAsbKzzDKZTHrttVcdHQWwOwrPeiIq6ne9/PJLysvLk4eHh26++Rb16dNHeXl5+umnrVq3bp1iY2P1zDNzFRr6vjw9PR0dGTAMH8wAgEtRfm6OLBaLRk6cIW8/f0fHqVZs1GHtD1vj6BhooCg864n3339feXl5cnZ21muvvV5mNN++ffuqbdu2Wrx4sWJjY/Xll6t0xx13OjAtYCw+mAEAlzJvP3/5tQ5ydIxqpackODoCGjAKz3ogPDxchw8fliSNGze+wilkbrppqjZu3Kjo6Gh9/fXXuvXWv6lRI/75cHnhgxkAAKBhonKpB3bs2GFdHjt2bIVtnJycNHr0aH300UfKysrSgQMHdOWVVxoV0SGSkhJlNmc4OkaNcE0fAAAAUDkKz3rg6NEjkiR3d3d16dKl0na9evUutc3RS7rwTEpK1MyZM5WXl+foKAAAAADqiMKzHig5WtamTVs5OztX2i4wMLDUNqftnsuRzOYM5eXlcU0fAAAAcAmg8HSw/Px8mc1mSVKLFn5Vtm3SpInc3d2Vm5ur5ORkI+LhIplT4h0doUay0oufP+S1D/LaF3nti7z2RV77Iq99kde+GkrO2jJZLBaLo0NcztLT0zV16k2SpKuuukpz5z5TZfupU29Senq62rdvr8WLP6zxfkJDQxUaGlptu3btgtSmTZsa99sQpaWlqVmzZo6OUWPktS/y2hd57Yu89kVe+yKvfZHXvhpa3tpq3LiJFi1aZJO+OOLpYPn5+dblmoxS6+LiUm67mpg1a5ZmzZp1ceEuUSEhITp27JijY9QYee2LvPZFXvsir32R177Ia1/kta+Glrc+cHJ0gMudq6urdfn8+fPVti8oKCi3HQAAAADUZxSeDubp6WldzsnJqbZ9bm6uJMnDw8NumQAAAADAlig8HczV1VVNmzaVJCUnp1TZNjMz01p4tmjRwu7ZAAAAAMAWKDzrgXbt2kmS4uLOqLCwsNJ2MTEx1uWgoHZ2zwUAAAAAtkDhWQ90795DUvFptJGRkZW2O3ToYKltuts9FwAAAADYAoVnPTBs2DDr8saNGytsU1RUpM2bN0uSGjdurD59+hgRDQAAAADqjMKzHujatat69uwpSdqwYX2FQzN/+eUqRUdHS5ImT55co6lXAAAAAKA+oHqpJ+6//3498sgjysvL01NPPalbbrlFvXv3UX5+vn76aavWrl0rSQoICNBNN011cFoAAAAAqDkKz3qic+crNHfuM3rttVeVnZ2tjz/+uFybgIAAvfTSy2WmYMHFmzVrlqMjXBTy2hd57Yu89kVe+yKvfZHXvshrXw0tb31gslgsFkeHwAWJiYn6+uuvtGfPHqWkpKhRo0Zq06aN/vKXkbrhhhvk7u7u6IgAAAAAcFEoPAEAAAAAdsXgQgAAAAAAu6LwBAAAAADYFYUnAAAAAMCuKDwBAAAAAHZF4QkAAAAAsCsKTwAAAACAXVF4AgAAAADsisITAAAAAGBXjRwdADDa4sWLtXLlCuvfCxYsUO/efRwX6H9Gj76mRu169eqlf/3rLTunqdrs2Y/p0KFDF7VNfXmcCwoKtHnzZv388zadPHlSmZmZcnZ2lp+fn0JCumvChAnq3r27XTOkpaUpIiJC4eHhioyMUEREhDIyMiRJo0eP0RNPPFFtH0VFRYqJiVF4eLgiIsIVERGhkydPqqCgQJJtH29b5M3NzdW+ffu0f/+vioyMVFxcnHJycuTp6amAgABdeeWVuu66iWrevHm9yVzVfbn77r8rISFBktSqVSt9/vlSh+fduHGjFix4s0b7mzPncY0dO9aheUvEx8frm2++1v79+5WYmCiLxaLmzX3Vv38/XX/9DWrfvn2tc5aIiIjQ3r17deTIEUVHn5bZbJazs7N8fX3VvXsPjR8/Tj169Kxxf3v37tW6dWsVEREhs9ksb29vBQcHa8KEazVw4MB6kdfI15wt8p4+fVq//fabIiOL38vS09Ot/fj4+Cg4OFhXX321hgwZKpPJ5PC8f7Z//6/64YcfdfToEZ09e1ZOTk5q1qyZOnbsqL59++qaa0bLw8PDIXkTEhJ0++23XdQ+6/K+ZsvH197vD+fOndPevXsVERGhyMhIpaamKD09Xfn5+WrcuLGCgoI0cOAgjR8/Tk2belfb39GjR7VmzXc6fPiw0tLS1LhxY3Xs2FFjxozV1VdfXaeslwIKT1xWoqKitHr1l46OcdlxcnJS27YBjo6hxMREPfPMXJ06darM7QUFBYqNjVVsbKw2bdqoSZMm6f77Z9X5y01lpk2bWuc+fvjhB7355hs2SFO9uub9448/9MgjDysnJ6fcuszMTB0/flzHjx/X6tWr9eijj+qqq0bVaX+SbR7jyvz3v/+1Fp22Ys+89mCrvGvXfq/Q0FDrDyYl4uLOKC7ujDZs2KB77rlXkyZNqvU+HnvsUR0+fLjc7QUFBTpz5ozOnDmjTZs2avTo0Xr00cfk4uJSaV9FRUVauHChNmxYX+b2lJQUpaSkaMeOHRo/frweeeRROTnV7qQyW+Q18jVnq8d32bIv9OOPP1bYT0JCghISErRt2zb16tVL8+bNq1ERYM+8JTIzM7VgwZvauXNnuXXZ2dk6c+aMwsLC1K1biDp37uzwvDUVEFC7z2xb5jXi/SEiIlyvvPJyhevS09OVnp6uQ4cOadWqlXryyac0YMCASvv67LP/aunSpSoqKrLelpaWpl9//VW//vqrtmz5Uc89N0+urq61ztvQUXjislFUVKS3316owsJC+fj4KD093dGRKjRx4kRNnHh9pevd3d0NTFOxOXMeV25ubpVtoqNP66WXXpIk9enTV35+fkZEq9T58+fLFJ0dO3bUjTfepICAAOXk5OjIkSP68stVys3N1TfffCNfX1/dfPMtds/VsmVLBQYG6tdff72o7SwWi3W5UaNG6tChg86fP6+TJ0/aOmIZtcmbnX3O+gW4e/fuGjx4sLp06aKmTZsqPd2s7du3a/36dcrOztarr74qT08vmxw1qkvmykRF/a6vvlotV1dXNWrUSNnZ2TZIWJYt8r766mvy9fWtdH2LFi1q3fef1Tbv1q1b9fbbb0uSvLy8dNNNU9WnTx+5uLjoxIkorVixUnFxZ/T++6Fq1sxHI0deVat8qampkiRfX1/95S8j1bNnD7Vs2VKFhUU6fvyYvvzyS6WkpGjz5s06f/68nn56bqV9ffLJx9ais3Pnzpo2bbratPFXXFy8Vq5coaioKK1fv17e3j666667HJbXyNecrR5fJydnde3aVd2791CHDh3UvHkzeXv7KCsrU9HRMVq79nudOnVKhw4d0rPPPquFC9+uVXFvy+fDuXNZevLJJ/X775GSpGHDhusvfxkhf/82cnJyUnJysg4dOqTt28MuOqct8/r5+emDDxZXu6/ly5dpy5YtkqQxY8Y4LK9k3PuDVPx+2KdPH11xRRe1aNFCzZs3l8ViUUpKsn7++Wdt375dZrNZ8+Y9p3fffU+dOnUq18f333+vJUuWSJLatGmjW265RR06dFBqaqq+/vprHThwQHv27NGCBW9W+Zy61FF44rLxzTdfKyIiQoGBQRo2bJiWL1/m6EgV8vHxUYcOHRwdo0r+/v7Vtvnhhx+sy6NHj7ZnnBrZuXOntegMCQnRW28tlLOzs3V9//79NWTIED388EM6f/68VqxYoalTp5VpYyu33Xa7goODFRwcrGbNmtXqNKh27dpp1qxZ6tIlWJ07d5arq6s+++y/dik865rXZHLSyJEjdfvtd6hdu3bl1l955ZUaOHCA5s+fr6KiIoWGvqcBA/5bpyPOtniM/6ywsFBvvbVQRUVFuuWWW7Vhw3qbFZ62zhsQEKDWrVvbJFtF6po3NzdX778fKkny8PDQwoVvl3nfCw4O1siRV+nRRx/RyZMnFRoaqoEDB9XqVMXAwEDNnDlTw4ePKPd6DgkJ0TXXjNYjjzys2NhYbd26VdddN1G9evUq109sbKxWrVolSerSpYveemuh3Nzc/pe3q4YMGaLZsx9TZGSkVq1aqXHjxqlt27YOyWvka85Wj+/s2bMrfb/t16+/Jk6cqJdeelHbt2/XsWPHtHv3bg0dOtRheSXpvffe0++/R8rFxUXPPPNsuTzBwcEaPny4/vGPf5Q5CmZ03pIfJ6tSWFiogwcPSpI8PT01bNhwh+U18v2hd+8++uKLyr8Pjhx5lXbs2KH58+epoKBAS5Ys0fz588u0ycjI0IcfFhf2LVu21DvvvCtv7wtH5AcNGqz58+dr9+5d2rp1q6699tp6cemRIzC4EC4LSUmJ+vTTTyVJDz/8sFxc+M3FnoqKirRlS/EpUx4eHho+vHYfYLZ07NhR6/LNN99S4RecLl26aNCgwZKkrKwsRUeftkuWO++8U4MHD1azZs1q3UfXrl01adJkhYSE2P20nbrm7d69u5555tkKvwCXGDp0mPV5EhcXp6ioqFrtq4QtHuM/+/rrr/X775EKDAzU9OnTbdavZJ+89lTXvHv37rWedTJ58uQKvxR7eXnpvvvuk1R8utrGjRtrta+XXnpZI0deVWlR4+3trXvvvc/6d1jYzxW2++qr1SosLJQkzZr1gLXoLOHu7q5Zsx6QVPwlfvXq1Q7La+RrzlaPb3U/8jk7O2vq1GnWv48cKX86Z03YKu+RI4etP7DOmDGjyiLYZDLV+kdMW+Wtzv79+61HK0eMGFHu+V1Ttshr5PtDTf5dhg0bpsDAQEkVP+/Wr1+vc+fOSZL+/ve7yxSdJft46KGHrEfoV65cWauslwIKT1wW3n33XeXk5Gj06DHq3bu3o+Nc8n777TelpKRIkkaM+Eu9OD24oOC8dbmqI7Zt2lxYV3ob2F/pX4Dj4uIcF6QCiYmJ+u9/P5VU8uOVba6julxFRkZYlwcMqPwUz969+1h/WKntF+qaKP25UNFzz2KxWK/hCwwMUkhISIX9hISEWL+g7tq1s8wp8bZUXd6a99PHJv1Uvx/b5PX09LQu5+fn1ylTVWqS99tvv5VUXADdcMMku2WpCVs8vj/8sNm6PHp07U6zranq8ta39wdJ1qOpFT3vdu7cIan4+VnZD+0tWrRQv379JBV/R7LHZRoNAYUnLnnbtv2k3bt3q0mTJrr33nsdHeeysHlz6Q8wx59mK0mBgRcGSoiPj6+0XVxc8TqTyVSr0+RQe6UHkKjtwCz28s47i5Sbm6trrrnmsj1FypZKRsCVVOVRU2dnZzVp0kSSdPz4cesRR1sr+9wrfwQkISHeejSostMuS5SsT0lJsfkgVCWqy1u7fuz3mrNV3p9+2mpdDgwMqlOmqlSXt6CgwPpDRL9+/a3FT2FhoZKSkpSQkGDXwriiPCVq8/hmZ2db70/r1q2rfY7XVXV569v7Q0xMjE6cOCFJ1h+WShQUFCg8PFxS8Q9PVf0oWfK4FhQUKDIy0i5Z6zvON8QlLSsrS++//76kik9/qI9+/vlnbdu2TYmJif8bjr25uncP0ZgxY9WnTx9Hx6tWTk6OduzYLql4OPb6coR51Kir9cknnyg7O1srVizXwIEDy51iExX1u/bu3SNJuvrqq+Xl5eWIqJetQ4cOWpeDguz3pfJibd26VXv37v3fj1f3Vb9BPbBgwZuKiYlVRoZZnp6eatOmjfr166eJE693+EBfkspci1VyilpFLBaL9chAyaiY9nhulJ4eqqL+T5+OLrU+sNz60kp/MY2Ojq7RNfEXq7q8Ne/HmNdcXfKazWadOXNG69evs55O6e3trb/+9a82zVhadXn/+OOEtbDs0KGDzp07p//+97/avHmTsrKyJEkuLi7q2bOnbr31Vrv/WFXX58PPP/9sHTDwr3+9xm4jupeoLm99eH/Izc1VSkqKdu/erZUrV1iL2ilTbizTLjY21nr9bnU/hpReHx19ukF8p7M1Ck9c0hYv/kBnz55V9+7dNX78eEfHqZHTp8teV5iTUzxs+ObNmzVs2DA9/vjj8vJq7KB01QsLCyv1AfZXu3+A1ZS3t7eefPIpvfrqKzp69KgeeGCWpkyZorZtA5Sbm6OjR4/qyy+/VEFBga644ooGU2BcKk6cOKE9e4qL/g4dOlR5bZqRMjMz9f/+X/GPV3fddZd8fHwcG6iGSgYJkYqPHmRkZCg8PFxffvml/vGP+3Xdddc5MF3ZL5uHDh1Sly5dKmwXFRVVZkqQpKQkmxdIRUVFWrFiufXvkSNHlmuTnJxsXfbzq3pE4BYtWla4na3UJG9NGPWaq03equaK9vb21vz589W4sX0+B2uSt/QPERZLkWbNul9nzpwp06agoED79+/Xb7/9ppkz79LNN9/ssLzVKXuarX3PUqpJXke9P1Q3F/LNN99cbi7OlJQLr/EWLar+Ua/0aOL2eG9oCCg8cck6fPiw1q9fL2dnZz388CP1pgCqjLu7uwYPHqK+ffsqKChQ7u4eMpvNOnTooL7//ntlZGRox44dyszM1Ouvv6FGjerny7fsabb2vU7kYg0dOlShoe/ryy9XacOGDXrjjbLzYDZr1kx33vl/mjBhQr24LvVykZ+fr7fe+pf1V+MZM2Y6ONEFH3zwgdLS0hQSEqIJE651dJxq+fv7a/jw4erWLUQtWxZ/yYmPj1dYWJjCwsKUn5+vRYvelskkXXut44rPAQOKzzgoHoTnS40ePbrcGSlFRUX65JOPy9yWk2P766JWr15tPVVu+PDhFX7JLb1fD4+q3xtKv3dUNI9mXdUkb3WMfM3ZIm+JSZMm67bbbrPr2Us1yZuZeeFU0BUrVig/P18DBgzQnXfeqQ4dOio7O1thYWH66KMPde7cOX300YcKCgrU0KHDHJK3KklJidYiPySku90vMalJ3vr0/iBJnTp10qOPPqrg4K7l1mVnX3iNu7tXPaquvd8bGoL6+c0VqKOCggItXLhQFotFN954Y72fnkSSli1bXuEvuP3799ekSZP19NP/VFRUlA4dOqQ1a9Zo8uTJDkhZteI5y4qPtHTr1q3WE1DbS0FBgTZv3qxdu3ZVOOhHWlqafvzxB7Vu3bpWw/Sjdt57713r9S6jR4/RkCFDHJyo2KFDh7Rx44YG8+PV8OHDNGbMmHI5g4O76qqrRmn37t16/vn5On/+vP79739ryJChat68uUOytmzZUtddd52+/fZbpaSk6JFHHtbdd9+t3r2L5+mLiorSkiWf6ZdffpGLi4v1mrC8PNteN3fw4EF99NGHkoqnsnrooYcrbJeff+GatEaNqh5YqvQ1Xvn5eTZIeUFN81bHqNdcbfNemCvaoqysc4qMjNCaNWv03XffKiEhXo89NtsuI0DXNG/peazz8/PVr19/vfjiS9bLN1xdXTVx4kR16NBes2fPVlFRkT766CMNGTLUpu8jtng+/PDDj9bPQ3sf7axpXke9PwwbNsxaCOfn5ykuLl7btm3Tjh3b9corr+gf/7hfgwcPLrNN6Wt5q5sxwdX1wnuDrd/LGgoKT1ySli37QjEx0WrZsqVuu+12R8epkapOG2rWrJmee+45zZw5U+fPn9c333xTLwvPH3/8wfoLen072pmTk6O5c5/W4cOH5eTkpGnTpmvs2LHy9/dXfn6+wsPD9fnnS3TkyBHNnz9P99xzr2666SZHx77kLVv2hdavXy+peG62Bx980MGJiuXn5+vtt4t/vJo8eYo6duzo6EjVqu4U/MGDB+u2227Tp59+qtzcXK1fv15/+9vfDEpX3j333Kv4+Hjt3btXsbGxmjdvXrk2Xbp0UXBwsNasWSNJ8vS8+Hn6KnPq1Ck9//x8FRYWytXVVc8++1ylxUzpL4znzxdU2KZE6YFTXF1rNyVFRS4mb1WMes3VJe+fr4vt2bOnJk68Xi+++IJ2796tWbPu16JF75Q5ddHIvH+ewuruu/9e4bQcPXr01LBhwxUW9rOio6N18uRJm72X2Or5UDIljIuLi6666iqbZKvIxeZ1xPtD48aNy3wXCw7uqlGjRmnz5s168803NG/ec3rssdkaO3astU3p50J1I+GX/gHLzc2+06DVV/Vr2EDABqKjo7V8efH1A7NmPVCrCYXrI3//NtahuOPizlinK6lPjPoAq40lSz7T4cPF82/Nnj1Hd999t4KCguTi4iIvLy/1799fCxb8S3369JHFYtHixR9YR7GDfXz//ff6+OPiU6UCA4P08suv1JvX6xdffKGYmBi1aNFCd9xxh6Pj2MyECddaj7hUdg2dUVxdXfXiiy/p0UcfU6dOncocCfLx8dGtt96qhQvfLnN2QuPGTWyy7/j4eD311JPKzMyUk5OT5s6dW+VInh4eF6bxyMnJrbSdVPZomK2ezxebtzJGveZslbc0V1dXzZnzuNzd3ZWcnKzFiz+wUdq6PR98fHzUufMVlba98sorrcsRERGVtrNn3sqEh4crJqb4etUhQ4bY7brZ2uR15PvDn40ePVp/+ctfVFRUpPfee7fMqLuli93c3KpPn7XHe0NDwxFPXHK++mq1CgoK5O/vr7y8PG3durVcm1OnTlmXf/vtgM6eTZNUfESgPr8ZtGvXTnv37pUkpaam1IvRKUtERERYB0YaPHiwdYjz+sBisWjDhg2SpICAAI0ZU/HRWGdnZ9155//pwIFHVFRUpE2bNuof/7jfyKiXjS1btujdd9+RVDz68euvv16vRp1euXKFJKlfv37avXt3hW1KvkTk5uZa32d8fHzUt29fY0LWQrNmzdS0aVOZzWalpjr+xysnJydNmDBBEyZMUHZ2ttLS0uTm5qbmzZtbp/coPWiLLQbASUlJ0ZNPPqHU1FSZTCbNmTOn2mvvSh9ZKz2YSEWSk5Mq3K62apO3Ika95myVtyLe3t4KCemu/ft/1a5du3T+/Pk6j3dQ1+dDdZ/Dpduazel1yirZ9vE1YkyGuuR1xPtDZYYOHapt27YpNzdXv/yyT1dfXTyqcunBxpKTq35PLT2gkC2P1jckFJ645JScyhAfH69XXnm52vZLl35uXV6y5PN6XXjW52vMjJx8+mKlpaUpMzNTktS5c+cq25Ye6CAmJsauuS5XO3fu1BtvvK6ioiI1b+6rN954s959CJecLrlx40brFA6VMZvN1veaXr161evCU6q/7yOenp7y9PQsc1thYaH1zAN/f/86F0pms1lPPfWkdS7fWbMeqNH7Vbt2padBqPp9ofT7Rl1H4K1t3j8z6jVnq7xV8fEpfg7k5ubKbDbL19e31n3VNm/79u2tyyWXl1Sm9PqKTse9GLZ8fM+fP2+dF9XHx0cDBgyoU7aK2DKvEe8PVfH29rEuJyYmWpcDAgLk5OSkoqIi69HjypReHxRUP0ZuNxqn2gINSOmpVnx968/RzuIPsJ8kFX+ADRw40LGB/qT0h311E0yfP3/hGo26fklAefv379dLL72owsJCNW3aVK+//rratGnj6FiXjfT0dJnNZkmq0xd2oxw8eMB6WtvIkVfVqa9z57L0z38+ZX0fveuuv+uGG26o0batW/tbH6/qTlE+dKj4lH4/Pz+1bt3aIXlLM+o1Z6u81Sl9mUldfiiuS95WrVqpZcviaXMSEhIqHKyuRHx8nHW5Lp/btn589+zZY31tXX311Tb/vDPi+WDL94fqVPa8c3FxUdeuxaPdHjt2rMw13n9W8t7h4uJSp9GdGzKOeOKS88QTT+iJJ56oss1nn/1XS5YskSQtWLDA7pM720J8fLz2798vSWrTpk29Os127969Sk9PlySNGmX7D7C6atKkiTw9PZWdna1jx46psLCw0oylv1TW5Usjyjt69KjmzXtOBQUF8vLy0quvvlbmyEF9snnzD9W2ue22vykxMVGtWrXS558vNSBV3a1du9b6Jbmu19zZm8Vi0WeffSZJatSokSZMmFDrvnJzczV37lz9/vvvkqRbb731ouZVNJlMGjp0qNasWaOYmGgdO3ZMISEh5dodO3as1DVztR/BtK55Sxj1mrNV3uokJyfr+PHjkoqLvz8fAaspW+QdMWKEVq9erezsbP32237169e/wnbbt2+3Lvfo0cNhef/MnqfZGvF8sOX7Q038/PM26/KfZ0oYOnSYjh07puzsbG3fvl2jRo0qt31ycrL1O1zfvn1r/dxt6DjiCdQDu3btqvJIXFpaml544XnrL2kTJ15vVLQaMXLy6dpwcnLSoEGDJEmpqan64ouKi4TMzEx9+OFi69+DBg2usB0uXlRUlJ55Zq5yc3Pl7u6ul156+bL9xdceEhISFBX1e5Vtdu/ebb20wM3NTWPHjjMiWqUyMsxlpiIorbCwUO+++66OHj0qSbr55lvKjXRaUwUFBZo/f561r8mTp9Rq3sopU260XlcWGvqe8vLKTpWSl5en0ND3JBWfLTFlyhSH5jXqNWeLvLGxsfrtt9+qbHPuXJZeffUV6+fgNdfU7rPGds+HKdYRTf/973/r3Llz5dr88MMPOniweIqxQYMGWY+SOiJvaRkZGdq7d4+k4iKquktQLoat8hr1/rBx48ZK91Ni9eovreNrtG7dWj169Cyzfvz48fLy8pIkffTRh8rIMJfL+84771hPu542bVqtsl4KOOIJ1AOhoe9p0aLzGjFihLp1C1Hr1q3l6uqqjAyzDh48qLVr11pPj+vRo4euv77+FJ6ZmZnWwVfat2+vK66ofHQ/R7rtttu1a9cu5ebm6rPPPlNk5O8aM2b0/6ZTKdDx48f01VdfKSmpeGCQvn37lhmN0JaOHDmsM2cunH5V+kMqLu5MuWsKSw/dXtqf25UehXffvn1KSLhwHUrbtm3KfVgalTcuLk7//OdTysrKkiTNmDFDXl5eOnnyZKX79PHxqdM8fbZ6jI1S17yJiQmaM2eOQkJCNHjwYHXs2Ek+Pj6SpISEeP38888KCwuzHu2855576nTWhC0e3wMHDuq9997VVVeNUq9evdSyZUvl5+fr5Mk/tHbtWuvzecCAgbr11ltrnfWVV17Wr7/+Kknq06evxo8fV+Vzz8XFpcI5iAMCAjRt2jQtX75ckZGReuSRhzV9+nT5+7dRfHycVqxYoaioKEnS1KnTaj2PsS3yGvmas0Xe1NQUPfHE4+rYsZOGDRuqK67ooubNm8nZ2Vlnz6bp6NEj2rBhg86ePSup+LOmtkfQbPV8aNmyle68804tXrxYJ0+e1IMPPqBp06arY8eO/zvyFVZqmg9P3XffPxyat7SfftpqLeBtfbTTVnmNen9YsuQz/ec//9aIESPUo0cP+fu3kYeHh3JysnXy5En9+OOP1gLXxcVFjz76aLkzppo2baq///1uLVr0thITE/Xggw/qlltuVYcOHZSamqqvv/5KBw4ckCSNGjWqQZxlZy8mS1UnpgOXqPp2qm3JKXvVGTFihB57bLbdhjyvjTVr1uiddxZJku6++25NmzbdwYkqt3//r3rllVesRXxl+vTpq+eee85uI/O+8cYb2rx5U43bV3ba5+jR19S4j9Gjx1R7Cnpl6pp348aNWrDgzYva5+2336477rjzorYpzVaPcVVseaptXfMePHhAc+bMqXY7d3d33Xfffbr22usuOmNptnh8f/75Z7344guVbmMymTR27Fg9+OBD5eZNvBgX8zqRVOW/Z1FRkRYufMs6SnZFxo0br0cffdR6dPRi2SKvka85W+St6fNXKj5yOGfO49YfVi6WLZ8PUvERrhUrVlR6naePj4+ef/6FCk/Nrglb55WkBx98QOHh4XJyctKyZcvVvHnzWmWriK3yGvX+UNPvXy1atNDs2XPUv3/Fp1RL0n//+18tXfp5pc+FgQMHat68+XXK29BxxBOoBx5//AkdOnRIx48fU3x8vMxms7Kzs+Xh4aEWLVooJKS7xowZU+sPLnsqmbvTycnJOrx4fdWvX399/PHHWr9+g/bt26vTp08rKytLzs7OatasmYKDg3X11VfX6doswBGuuKKLnnrqnzp27JgiIyN09uxZZWRkqLCwUI0bN1a7du3Vt29fjR8/vk5Hkm2pZ8+euueee/TbbwcUExOt9PR0mUwm+fr6qnfvPho7dqy6devm6JhlODk5afbsORo+fITWrVuriIgIZWRkqGnTpgoODta1115X7wZXawi6d++hV199Tb/9tl+RkZFKTk5WWlqa8vLy5Onpqdat/dWtWzeNGjWq1tdJ2stdd/1dQ4YM1Zo13+nIkSNKTU2Vq6urAgICNGTIEE2aNEleXvXnx+LY2FiFh4dLkvr372/TotOWjHp/ePXV17Rnzx4dPXpEcXFxSktLU0ZGhtzc3OTj46NOnTpp0KDBGjlypNzd3avs684779SVV16p7777VocPH1Z6erq8vLzUsWMnjR07VldffXWd8zZ0HPEEAAAAANgVgwsBAAAAAOyKwhMAAAAAYFcUngAAAAAAu6LwBAAAAADYFYUnAAAAAMCuKDwBAAAAAHZF4QkAAAAAsCsKTwAAAACAXVF4AgAAAADsisITAAAAAGBXFJ4AAAAAALui8AQAAAAA2BWFJwAAAADArig8AQAAAAB2ReEJAAAAALArCk8AAAAAgF1ReAIAAAAA7KqRowMAAADHS0pK1BdffKH9+/crJSVFBQUFkqT585/XsGHDHJwOANDQUXgCAFBLBw8e0Jw5cyRJt99+u+64404HJ6qdpKRE3X///TKbzXXq54033tDmzZskSUuWfK7WrVuXWb9x40YtWPBmue2cnZ3l5eUlLy8vtW7dWl26dFGvXr115ZVXysmJk7MA4FJA4QkAwGVu6dKlMpvNcnZ21owZM9WzZ095eHhIklq1amX3/RcWFiojI0MZGRmKj4/Xb7/9phUrVqhly5a6+eabNXHi9XbPAACwLwpPAAAuc/v375ckDR06TNOnTzdkn//3fzM0dOhQ69/Z2dnKzMzU77//rl9++UXHjh1VUlKS3nnnHe3evVvPPTdPbm5uhmQDANgehScAAJe51NRUSVJAQIBh+/Tz81OHDh3K3T548GDdfvvtOnr0qF577VUlJCRo7969evPNNzR37jMymUyGZQQA2A4XTgAAcJkrGUioUSNnBye5oHv37nrvvVC1aNFCkrRt2zbt2LHDwakAALXFEU8AABzswIED2rRpow4fPqy0tDQ5OzurZcuWGjBggKZMuVF+fn6Vbnvy5Ent3LlDhw8f1unTp63XajZv7qvu3UN03XUTFRISUm67igb6WbJkiZYsWWL9e/ToMXriiSdsd0cvkre3tx5++BE988xcSdLy5cs0fPjwcu3y8/O1du1abd8eptOnTysrK0uenp7y9vaWv7+/+vXrr+HDh5cb7AgAYBwKTwAAHCQ/P19vvvmmfvppa7l1p06d0qlTp7RmzRo9/fRcDRkypFyb0qPqllZQUKC4uDOKizujzZs36+abb9Zdd/3dLvfB3gYOHKjAwEDFxMQoIiJCKSkpZQrx1NRUPfnkEzp9+nSZ7TIzM5WZmanY2Fjt27dPqampuvfee42ODwD4HwpPAAAcwGKx6IUXnteePXskSYMHD9HIkSPl7+8vk8mkiIgIffnlKiUlJenFF1/QwoVvKzg4uEwfhYWFcnd316BBg9SnT18FBgbKy8tTaWnpOn36tL755mslJiZq+fLlats2QOPGjbNuO2zYMHXp0kWSdM89d0uSJk6cWGYE2SZNmtj7YaiWyWRSnz59FRMTI0k6cuSwrrpqlHV9aOh71qLzr3+9RsOHD5evr6+cnJx09uxZRUZGaufOnQ7JDgC4gMITAAAHWL9+nfbs2aNGjRrphRde0IABA8usDwkJ0TXXXKPHHntUp06d0v/7f+/r7bcXlWnTqVNnLVu2XI0bNy7X/4ABA3TDDTfomWee0f79v+rzz5do9OjRcnYuvo6zcePG5bbz8fGpcMAfR7viiiusy7GxZ6zL+fn52rVrlyTpppumVnhEc8iQIbrzzjuVkZFh/6AAgEoxuBAAAAazWCxasWKFJGnSpMnlis4STZo00d133yNJOnr0qGJjY8us9/b2rrDoLOHi4qJ77inePjExUSdOnLBFfMM1bdrUupyVlWldzsjI0Pnz5yVJPXv2rHEfAADjUXgCAGCw06dPKy4uTpI0YsSIKtuWLqiOHz9WZdv8/HwlJSXq9OnTOnnypE6ePCmLxWJd/8cfDbPw9PBwty5nZ2dbl5s2bSoXFxdJ0g8//KDCwkLDswEAaoZTbQEAMFhkZKR1+eGHH6rxdmfPppW7LScnR99887V++uknnTp1SkVFRZVubzY3zNNNs7NzrMuenl7WZVdXV40cOVI//PCDwsJ+1p13RmjkyJHq1au3unfvXuXRYACAsSg8AQAwWHp6+QKyJvLycsv8nZCQoMcfn6OEhIQabZ+fn1er/TpaRobZuvznAY8eeOBBZWWd0+7du5SYmKiVK1dq5cqVcnJyUufOnTVy5Ehde+218vKiCAUAR6LwBADAYKWPSr744ktq1apVjbbz8fEp8/frr7+mhIQEmUwmjR07VlddNUpBQUHy9vaWi4uLTCaTioqKNHbsGEkqc9ptQxIVFWVdDgwMLLPOy8tLL774osLDw7Vt2zYdPHhQJ05EqaioSJGRkYqMjNSqVav0/PMvVDifKQDAGBSeAAAYrPRAN40be9VqJNno6GgdOXJEknTLLbdoxoyZFbbLzMys8PaGwmKxaP/+/da/e/ToUWG7rl27qmvXrpKKrwM9ePCgNm3aqO3btys9PV3PP/+8PvvsM7m5uRmSGwBQFoMLAQBgsE6dOluXjxw5Wqs+Tp8+ZV2+6qqrKm0XGRlRq/7ri7179+jMmeIpVLp166bmzZtXu42np6eGDBmiefPma9KkyZKks2dTrYU6AMB4FJ4AABjsiiuuUIsWLSRJ69atVX5+/kX3UXoE15yc3Erbff/99xcfsJ4wm81atOjC3KU333zLRffRt2/fMv0BAByDwhMAAIM5OTnplluKi6j4+Hi9/vprVRaf586d0zfffFPmtrZtA6zLmzZtqnC7NWu+086dO+se2AGOHj2qBx6YpeTkZEnSqFGjNHTo0DJt4uPjdPDgwSr7+fXXX63LrVu3tn1QAECNcI0nAAA2cOLECW3cuLHadn379lHLlq103XUT9euv+7Vjx3b9/PPPioqK0rXXXqvg4K7y8vJSdna2YmKidfDgQe3atUuurq6aNGmStZ/OnTurffv2OnXqlNau/V5ZWZm65prRat68uVJSkvXDDz8qLOxnde/eXUeP1u50XntKSUnRyZMnrX/n5OQoIyNDUVFR2rdvn44du5B58ODBmjPn8XJ9JCUlac6cOWrXrp2GDRumLl2C5efn+791ydq27Sdt27ZNktSpUyd169bNzvcKAFAZCk8AAGxg586dNTq6OH/+82rZspVMJpOeeeYZvf9+qL7//nvFxcVp8eLFlW735xFtTSaTnnzyKT3xxOPKzMzUtm3brEVWiQ4dOujZZ5/TzTdPr9V9sqdPP/1En376SZVtWrVqpZtvvkXXXXddle1Onz6t06dPV7o+MDBI8+bNl8lkqlVWAEDdUXgCAOAgjRo10kMPPayJEydq3bp1OnjwoJKSkpSTkyMPDw+1bt1aV1zRRQMHDtCgQYPLbd+5c2f9+9//1rJly7Rv3z6lpqbKw8NDbdu21V/+MlI33HCDXF1dHXDPLo6zs7M8PT3l5eWl1q39FRzcRb1791b//lfKyanyq4J69OipBQv+pV9++UXh4ceVlJSs9PQ05efnq0mTJurYsaOGDx+hMWPGNIjHAQAuZSZLQ53UCwAAAADQIDC4EAAAAADArig8AQAAAAB2ReEJAAAAALArCk8AAAAAgF1ReAIAAAAA7IrCEwAAAABgVxSeAAAAAAC7ovAEAAAAANgVhScAAAAAwK4oPAEAAAAAdkXhCQAAAACwKwpPAAAAAIBdUXgCAAAAAOyKwhMAAAAAYFcUngAAAAAAu6LwBAAAAADYFYUnAAAAAMCuKDwBAAAAAHZF4QkAAAAAsCsKTwAAAACAXVF4AgAAAADsisITAAAAAGBXFJ4AAAAAALui8AQAAAAA2NX/B2fb3zbZSS1uAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 178, "width": 463 } }, "output_type": "display_data" } ], "source": [ "viz_rmodel.leaf_sizes(figsize=(5,1.5))" ] }, { "cell_type": "markdown", "metadata": { "id": "fecr-p8jeHPj" }, "source": [ "We can also look at the distribution of instances in the leaves (`Rings` values). The vertical axis has a \"row\" for each leaf and the horizontal axis shows the distribution of `Rings` values for instances in each leaf. The column on the right shows the average target value for each leaf." ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:24:00.039202Z", "iopub.status.busy": "2024-08-24T11:24:00.038952Z", "iopub.status.idle": "2024-08-24T11:24:00.301210Z", "shell.execute_reply": "2024-08-24T11:24:00.300536Z" }, "id": "RqoC8NDAdYnH" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA64AAAOPCAYAAADL9pzhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeZwcV33v/U8tvff07PuMFkuWtdqyjbyDTWyMbbxgsxOMDQQS4ObhJpD7PCFsCYSbhITkXgLk5gYw4BADxoAtLGMwlhd5kY2tXZYtySPNvs/0vlTVef443T0z0mgZzYwW+/fmJUbqqTp9prp7XN/6nXPKUEophBBCCCGEEEKI05R5qjsghBBCCCGEEEIcjQRXIYQQQgghhBCnNQmuQgghhBBCCCFOaxJchRBCCCGEEEKc1iS4CiGEEEIIIYQ4rUlwFUIIIYQQQghxWpPgKoQQQgghhBDitCbBVQghhBBCCCHEaU2CqxBCCCGEEEKI05oEVyGEEEIIIYQQpzUJrkIIIYQQQgghTmsSXIUQQgghhBBCnNYkuAohhBBCCCGEOK1JcBVCCCGEEEIIcVqT4CqEEEIIIYQQ4rQmwVUIIYQQQgghxGlNgqsQQgghhBBCiNOaBFchhBBCCCGEEKc1Ca5CCCGEEEIIIU5rElyFEEIIIYQQ4hRYtGgRhmFw5513nuqunPYkuAohhBBCCCGEOK1JcBVCCCGEEEIIcVozlFLqVHdCCCGEEEIIIYQ4Eqm4CiGEEEIIIYQ4rUlwFUIIIYQQQghxWpPgKoQQQgghhBBz5Etf+hKGYWAYBgDj4+N8+ctf5vzzz6eqqgrDMLjrrruAo68qvHHjxnI7GzduBOAnP/kJV199NfX19YRCIc455xz+x//4H4yMjByzXwcPHuTjH/84ixcvJhgM0tLSwtvf/nYeffTRafs9nZ///Oe8/e1vp62tjUAgQEVFBWeddRZvfOMb+fznP8/mzZtndrBmwJ63loUQQgghhBDideyVV17h2muvpaOjY1bteJ7H7bffzt133z3l8Zdffpmvfe1r/PznP+eJJ56gqalp2v1/97vfccstt5BMJsuP9fb28stf/pL777+fr3zlK0d9ftd1ed/73sdPf/rTKY/n83mSySSvvvoqTz75JBs2bOD5558/wZ/y6CS4CiGEEEIIIcQ8eOc730l3dzd/+qd/ys0330x1dTWvvPIKCxcunFE7n//853nqqad4+9vfzgc/+EEWLlxIf38/3/zmN/nVr37F3r17+bM/+zP+67/+67B99+/fz80330wqlcK2bT7+8Y/z9re/nVgsxo4dO/ja177GX/3VX3HxxRcf8fm//e1vl0PrFVdcwR/90R+xZMkSIpEIw8PDbNu2jYceeojx8fGZHaAZkOAqhBBCCCGEEPNgx44dbNiwgWuvvbb82IUXXjjjdp566im+8pWv8Fd/9VdTHr/uuuu47rrrePjhh7n33nv53//7f1NfXz9lm09/+tOkUikAfvrTn/L2t7+9/L03vOENvPvd7+bNb34zzz777BGf/yc/+QkAF198MY8++ii2PTVGXnPNNfz5n//5cQ1ZPlEyx1UIIYQQQggh5sGdd945JbSeqAsvvJDPfvazhz1uGAZ//ud/DoDjODz99NNTvt/T08MDDzwA6Orv5NBaEg6H+fd///ejPn9fXx8Al1122WGhdbKampqjtjMbElyFEEIIIYQQYh784R/+4Zy08/73v/+IiyZNruDu379/yvceffRRXNcF4Pbbbz9i++eddx7nnXfeEb/f3NwMwAMPPMDQ0NBx93suSXAVQgghhBBCiHlw7rnnzkk7y5cvP+L3Jlc5E4nElO/t2LGj/PdjDVF+wxvecMTv3XHHHQDs3buXpUuX8uEPf5j/+q//oqur66htziUJrkIIIYQQQggxD6qrq+eknXA4fMTvmeZEpCtVV0tGR0fLfz907uuhjvb9D3/4w3z2s5/Ftm3Gx8f53ve+x/vf/37a29tZunQpn/70pw+r9s41Ca6z8KlPfepUd0EIIYQQQghxmrIs61R3Yc787d/+LXv37uVv//Zv+YM/+INymN63bx9f//rXWb58Of/2b/82b88vwXUWksnEsTcSQgghhBBCiFNgcsV3cHDwqNse6/sACxcu5LOf/SyPPPIIY2NjbNq0iU996lMEg0EKhQKf+MQnePHFF2fd7+lIcBVCCCGEEEKI16BVq1aV//773//+qNs+//zzM2rb5/Nx2WWX8S//8i/86Ec/AkApxb333jvzjh4HCa5CCCGEEEII8Rp01VVXlefA/vCHPzzidlu3bmXr1q0n/DxXX311+e/zteqwBFchhBBCCCGEeA1qa2vjbW97GwD33nsvv/jFLw7bJpPJ8LGPfeyo7dx99904jnPE7z/88MPlvy9evPjEOnsMR757rBBCCCGEEEKIM9rXv/51HnnkEdLpNO9617v4+Mc/zq233kosFmPHjh38wz/8A7t27WLdunU899xz07Zx++2385nPfIbbbruNyy67jCVLlhAMBunv7+c3v/kN3/72twGIRqNzdu/aQ0lwFUIIIYQQQojXqKVLl/KLX/yCW2+9lVQqxTe+8Q2+8Y1vTNnmi1/8Ip7n8dxzzxEMBqdtp7+/n29/+9vlkHqoyspK7rnnHtrb2+f8ZwAZKiyEEEIIIYQQr2lvectb2LFjB3/8x3/MwoUL8fv9NDY28ra3vY2HHnqIL33pS8TjcUAH0EPt2LGDv//7v+emm25i5cqV1NbWYlkWVVVVXHLJJXzxi19kz549XHfddfP2MxhKKTVvrb/GfeQjH+Y73/nuqe6GEEIIIYQQQszKNddcwyOPPMIVV1zBE088caq7cxipuAohhBBCCCHE61hPTw+PP/44AJdccskp7s30JLgKIYQQQgghxGvY3r17j/i9TCbDnXfeSaFQAOCDH/zgyerWjMjiTEIIIYQQQgjxGvZHf/RHpFIp3v3ud3PhhRdSU1NDIpHg+eef51vf+lY52H7kIx9hzZo1p7i305PgKoQQQgghhBCvcc8//zzPP//8Eb9/6623Hrba8OlEgqsQQgghhBBCvIZ9/etf5+c//zm/+93v6OrqYnBwEKUUDQ0NXHLJJdxxxx3ccMMNp7qbRyWrCs+CrCoshBBCCCGEEPNPFmcSQgghhBBCCHFak+AqhBBCCCGEEOK0JsFVCCGEEEIIIcRpTYKrEEIIIYQQQojTmgRXIYQQQgghhBCnNQmuQgghhBBCCCFOaxJchRBCCCGEEEKc1iS4CiGEEEIIIYQ4rUlwFUIIIYQQQghxWpPgKoQQQgghhBDitCbBVQghhBBCCCHEaU2CqxBCCCGEEEKI05oEVyGEEEIIIYQQpzUJrkIIIYQQQgghTmsSXIUQQgghhBBCnNYkuAohhBBCCCGEOK3Zp7oDQoj54Xkevb29dPf00d03SC5fIOD30dpUT2tLEy0tLRiGcaq7KZDX6kwjr5cQQghx8klwFeI1RinFzl272bR5K1lCmMEqguEGrIBNwnXo2hvH29FJkAyXX3Qeq1auOOUn2WdSEJjLvpZeqyef3cJIMk86r8jnHTwFpgH+Pb2E/dupifq54uK1p8Vr5TgO27ZtY+fuV9h/sIdsvkDQ7+OsBS2sWnE2a9euxTRfm4N5zsTP1nw5kz6zQghxKgwMDLB582Y2b97Mc889x3PPPcfw8DAAd9xxB3fdddcJt51Op1m9ejWvvvoqAAsXLqSjo2NW/d21axe/+tWveOyxx9ixYwd9fX2YpkljYyMXX3wxH/zgB7nhhhtm9RyzZSil1CntwRnsIx/5MN/5zndPdTeEKEun06zf8Ag9cahqOgvL9h1xW9cpMNq7j9ZKgxuvv5pwOHwSe6pNHwRiWJaN6zpk03G87NhpEQTmuq/pdJoHHvwtO1/tZyyRxfXFMAKV2IEohmmjPAcnl0TlxrEKcSqjAVaf1cRNN1xzSl4rz/NY/+BDPLTxWXJWNWa4gUCkGsv24ToFcqlRvPQAAXeU6666mBtvuG5GAfZ0D0Jn2mdrvpxJn1mhne6fLSFeq472uZptcP3MZz7DP/3TP5X/Pdvgescdd/CDH/zgmNu99a1v5Z577qGqquqEn2s2JLjOggRXcTpJp9Pc87P1ZAOtVFTXH/d+idFBQvlu3nPbjcc8wZ7LE6DJQSDWsJDB/l4G+3sZHR3BcRxs26a6uob6xmYaGlsZ699/yoLAXIeWdDrND++5j90HRijY1QRqFlFwPPL5PLl8Hs/zME2TgN+P3+/HZxtkRzrwO2OsXFTDB95z20k9BkNDQ/zzv36HvmyYWOu5WD7/Ebd1CznGu7bTHErzZ//tI9TV1R217TMhCJ2Mz9Z8ma/PbGXjItLJcRJjI8Tj47iug2XZxGKVVFTVEI5WMdZ36j6z4sz4bAnxWjb587RgwQKWL1/Oww8/DMwuuL744ousW7cOn8+Hz+cjkUjMOrhec801PPLII9TU1PDOd76Tq666ikWLFmHbNi+++CJf//rX2bNnDwBXXHEFjz322CkZXSXBdRYkuIrThVKKn963niG3ZkYn1iWJ0UHqrBHedduN0564lE6Annj2Rbr644wlcyQzuXLAioYCVEUDtDfGuOLi84+r2njPz9aT9jfT19PNKy/vIeP5cYwwnmGjDBNDeZjKwVZpQmaes5edQ1NLK5FC73EFgbka0jrXoUUpxX/ecx9Pbz+AVbOMghFiPJHAw8IwbUzTxjAMlFJ4noPyHExcKisq8KkM7sjLXLpmIX/43ttOyknm0NAQX/7aN8nFVhKtbQMUuWyafDZDLpedCNmBIP5giEAwAkByuItgfBef+4tPHjG8Tg5Ckdo2dmzbQm93F8lkEg+FiUE0GqW5tY1z115IfKDjpAeh+f5szZf5GCFwz8/Wk/G3kMmk6OzYi2NFjzhKwHaTtC9aSigUIVzoOaXh/fVIRggIcep98YtfZN26daxbt47GxkY6OjpYvHgxcOLB1XVdLr74Yn7/+9/zN3/zN3znO9/hwIEDsw6uH/rQh7j00ku54447CAQCh30/nU7z1re+lSeffBKA73//+3zwgx884ec7URJcZ0GCqzhd7Ni5i988u5e69uUn3MZQ50u85eKlrF61csrj6XSa+x/8Dc9s3UfP4DgFAijDBgwUoE91FYZy8JGlpa6SS9Yu5eYb3jLtCVApCHQl/Wzd8iJDCZe8VQnKA68Abh6UAsMAyw+mDwwTvztGXYXNeWvPpy2aP2IQmMshrdOFFqUUiUSSRCJJPJnCdV0syyIWjVBRESVWUVE6KNOGlu07dvJ/7n4AVbOSZM4g54LlC+Flx3CzcX3irzxyfdvw8ikM0wbTAuXhj9TStuZqjJFd/PEHbmLN6lVHfU1nW23zPI/P/83XGPadRbS2jVRijPGxYTzDj2EHMS0/GCYoD8/No5wspspTWVVLpKKK5HAXtYX9fPkLf3HYMS4FoZTdxObNz9Lf14sK1WMEa8FfgWH5UG4B8glUdhgjM0hjUzMXXXQxUbfvuIPQbI/BfH625stch5bS56A3E6Gnq4NkwUegZhGmdeRlMjy3QHakgwqfQ0vbIppDqZMe3ufT6Tz89kweISDEa9lcBNevf/3rfPrTn+acc85h27ZtLFu2bE6C6/HYsWMHa9asAeCmm27i/vvvn9fnm44sziTEGc7zPDZt3kp187mzaqe6eQmbNm+dUnlJp9N89+6f8PSWV0k5Fi5+XNfF9RyU55WDq2GaWKaBYwZ4dSDF4O9eYGhklA9/4N2HnQDt3LWbfX0pXtz+HGNODKUsyA6DPwbBGrDDYFigXHDSkBuD3Ch5O0xvwiDz9CbOX7OSnbt2HxYEJg9prVj4ZizXIZ/NkEwlJ1UGKwhWNmBZFr94YgfPPv+1Iw5p3blrN93jirr2elAwMDjIga5eMpk0hXwOt5DTgdswsXwBfP4AoVCYhW3NNNTXU1FdT3fncLmvnudx/4ZHKAQaSWUUruFHZQdJ9O3EUyaeYYLnAeBkxlG58UN6ZDCeUUQCjdy/4RFWr1p51Ar5bBcRWv/gQ/RmwlTVNzHQe5C8a2KFGjFy47ipIXLFkG0YJnYgihWMYQQbGB0fJ5WMU9fQQu/BPtY/+BA333jDlP6t3/AIXXGbp566Hy9Yj9H2Rkxr6lVewwcEKyHWhnJz9A2/zK/W389ll13G+g2PHDUIzcUxmM/P1nyZHFpq244dWizbR137coZGB/nxfeunDS07d+3mwFCO3v5unHAboaraY7ZrWj7C9WeTSQ5z4NWXyTfUTfuZPdOc7gt0lT5bMw2tABXV9SRGOeZnSwhxahw4cIAvfOELAPzbv/0bfv+Rp+3Mh9WrV1NXV8fQ0BD79u07qc9dIsFViDNcb28vWUKEj1JVOR6W7SNLiJ6eHlpbW1FK8eN7f8ljm/eQUUEct4Dr5HS4DFeBLwKGhVIuqpDCy41RyIxgWiaua/P4c3uIBH/Jnbe/t3wC5HkeTz77Itt37WU0HwI3BYFqqFyCYRb7bxT/KHSIDdahvAIkOlH5MUa9ENt37aE65E45KSwPaa1Yib82ykBf16TKYAVYJq7yyGXzqOSIrgzWLWU4l+QrX/vmYUNaJ4eWQqHAnpf3MTjQTyY1hkMAzwzimiFQJhgeVsbFTI2RHB0gMT5KQ0Mj5yxbMiW0dHd3c6BvnGysHcczyQ7t1AHY9cC0UQa62jzxZQqvkMHxTDJmFQf6uuju7qatrW3KNlPnIa7ByeRIJJL0DvdNrQ7H2gmEgvzm2b3semnfYdU2x3F4aOOzRNvexEBvJ65dgXLGSHa/gLIrIFCJGanW/fYcsoU0jA1gOPsIVrZQsKsY6O2kpnklD218fEple+eu3WzbP8BzL+5E1azGjDYd8/1pWAGshjV4yT42bXqS/PmrWHmEIDS14njuYZ8NHxAMR4EWXKdwxGMwX5+t+TIfoUV/ZrcwOJzCCbfhj5ZC6/ENGfdHa8kDg8O9PPnsllMyj3KuqqNz9b6aT1Mutp2AQy+2CSFOH5/4xCdIpVLcfvvtXHXVVaekD/l8HgDLsk7J80twFeIM193ThxmsmpO2jEAV3T19tLa2sn3HTn79xO9JO37yThZCDVCzUAdME6YkTH8EQg0or4CX6CCXGUTZBr9+4vdceP4azl2zGtBBYPe+bgbHs2B6UHkWRqCm2N4hw3VLzYN+zsqzULkRGN/P4Hie3fu6y0HA8zz++V+/QyZyDtmCRz6bxAo3Yjg53HyWXCaB8hSGaWDbASx/GMOuZnR8DL/l4UXO4Z//9TtThrSWQotPwdZtOxjs6ybnmhSsGrBDGHYQY9JQWac4VDbnZMgn4uTSCbK5DOetWV0OLTt27iJNBYWCR3ZwB7l8AQwTTylQJsoKgmHrNo3D/6PgeS6Zvh2o+mV4RNm+Y+eU4FqehxhowfUbbNmxBwcfhh3E9kUwbZOc5xEfyaEGxrEpsKC1iUFXHVZt27ZtGzmrmuToEI4RJDf0Cq4ZxqxdjWke8p8Oy4/lC0O4DuU5ZOKdWMlBAtWLGBsdwmdVs2XLFi644AI8z+OJp1/g+UNDq1LgZFFuTg8ZLw0XN30YVgDsIBgGZrQJD3j+xR20VgcOC0JzWXGcr8/WfJmP0NLb20vvcIKkGyJcDK2HDxmf7sJQX3nIuD9aS3JwhN7hxLyH98nmsjo6H5XsuXYmjhAQQhyfe+65hwcffJDq6uopqwmfTC+++CLxeByAFStWnJI+vDZvtifE60h33yDBcGxO2gpFYnT3D+F5Hj+45z7iaZd8wYWqczCqlmLYATBN9K+O0gmNof9tmhh2AKPqbKg6h3zBJZ52+cE991GaSn+gs5tX9h3Q25dDq4lSBsotoJwsqpBC5ZP6q5PVjytDtx+ogcqzAJNX9nXQ2d0L6CGt3akA6bxHwQijDJvkcDepRJyca+LZlahADZ5dSc41SSXiJIe7UYZNwQiTznt0pwKsf/ChiePa04cZqGL37pfo7dpHygtQCDZhVrRg+MIot4CTHqWQGsJJj6LcAoYvjBltoRBsIuUF6Ovcx+7dL2H4dWh5ae+rZFSI3PA+ctkUnlJ6MapALYQbMUKNGJFmjEgTWNNU+RTksilyw/vIqDB79nZMfKtYbUtaDXT2jrK/ewQ72kQoVk8wXIHt82NaNrbPTzBcQShWjx1tYl/3CJ29oyTMBtZveKT8Wu3c/Qp5I0wu75Ad2ocXasGqWqzn3B6FYdpYVYvxQi1kh/aRyzvkCbNz9yuADkIbn9mCG2zUoVUpVC6Ol+rDK6RRpg/lr0QFa/RX04dXSOOl+lC5OCiFGW3CDTay8Zkt9PT0HHYMTrTimPG3TjkG8/HZmi8ToWXJrNophZbSMejs6qF/aJxgzWI812Gg9yCj40nMcBO+SB12IIpp6/eWafuxA1F8kTrMcCOj40kGeg/iuQ7BmsX0DY7TVfzMzrd0Os1P71vPbzfvI9B0LjVtK6mqayEYjuILBAmGo1TVtVDTtpJA07n85tm9/PS+9aTT6cPamuv31XwpXWw72pzm4zF5hIAQ4tQbHR3lv//3/w7A3/3d31Fff2IXJ2frq1/9avnv7373u09JHyS4CnGGy+ULWEdZJGUmLMsmn8vT2dnJy/u7KbgKqldghGt1FfB4GKbevnoFBVfx8v5uurq6ANj8/AsUPANC9RiBGpRhoJwcFJK6ymaYYAXBDumvhqkfLyRRTg5lGDq8huopeCbPbv69HtL66DO4gTocK0I2NUYmm8OMNGKFazH9EQzLh2FaGJYP0x/Rj0cayWSzZFNjOFYEN1DHQ48+g1ecY9rdN0ginePg/j1kqYBIC5gW+XgvhWwKR1kofwwC1Sh/DEdZFLIp8oleMG2ItJChgoP795DM5OjuH6KnbwgnnyWbHMbzQPliEG7BiLZBqA780YkFqab79WxaeB5kk8M4+SzdfRNBaOeu3RwYLtDRM0pahQnF6jCOsWqyYZqEY3WkVZiO3lEODBfYuWs3APsOdpMtKPLxflS0HTNUfXyvf6mroWpUtJ18vJ+so9jXqU+C9+/vYCSRxaxdBp6DSg+gPAfCDRihGgxfeMrrZfjCGKEaCDegitvjOZi1yxhJZDlwsGvKMegeVye0+i8UK47jqnwM5uOzNV/mK7S89PJeVKAGgIHeThwzgi9SexzvLQtfpBbHjDDQ26kfDNaw++W9s+rf8ShVR4fcGmrbzjnmMSlXR90afjxNeJ3r99V8mY8RAkKIU+8v/uIv6O/v59JLL+WjH/3oKenDz372M+69914ALrzwQm677bZT0g8JrkKc4QJ+H67rzElbruvgD/h5ctPTZPIFiLbrEDrjXxXF8BptJ5Mv8PgTmwDYun0HmH6oWIBCQSGlFzeyIxi+IIZpY0z+n2lj+IJgR/R2hZTer2IBmH62bN/Otm3biDsh8p5NNjmGZ1dghaqPHbQNEytUg2dXkE2Okfds4k6ILVu2AJDL5dn78ktkCkC0BScTx8kXMMKNOmD5I8WQaYPlx/BH9OPhRpx8AScTh2gLmQLsffklcrk8mUyW3OhBPNdDBaqLgbVWrxp8XIfVjwpU47keudGDZLIZoFRt28Jg0sCxY/iDMxuS6A+GcawYg0mDTZu3oJQiHk/g5FK4VnjGobXc3VA1rhXGyaWIj+vhRff/agOEmjAMCy89iPJVYASrMY7xehmGiRGsRvkq8NKDGIYFoSZ+fv/6ScdgbiuO8/HZmi/zFVoGh0cxg9UMDfTg+WJY/pm9tyx/GM8XY2igR7czNDInfTySua6Ozlclez6cSSMEhBDH5/HHH+e73/0utm3zb//2b6dk+P7u3bv50Ic+BEAoFOKHP/zhKZtGIMFViDNca1M92XR8TtrKpOK0Ntbx3AtbwQpDbDEn/mvC1PtbYd0eMDAwDKF6HfacNFgBDF9ADzr20AsymZP+KP24ARi+AFgBvZ9pQ6iegYFhduzaQ8YLkM8XUP5KTF9oZr30hVD+SvL5Ahk3wI7dL+tjkUkxMtCFirThZuI6YB1nIDZCOmC5mTgq0sbIQBeZdAqnkMHNpVB2GKNiAfhmOOfNsDAqFqDsMG4uhZPPArra1j2SJ+nYMw6tJf5gmKRj0z2Sp6enB8cpkE+PYcbaT6i9EjPWTj49huPoAHigqxeCtajMMPgrMWb4ehm+EPgr9f7BWg4UK7nzUXGcj8/WfJmv0JLO5MgXHL2i9AxDa4nlD5N3TfIFh1R2/qrOMPfV0TNp+O2ZNEJACHFsuVyOj33sYyil+NSnPsW5585u/vqJ6Onp4YYbbiCRSGAYBt/97ndP2fxWkOAqxBmvtaUJLzs2J22p3BitLU0c6OyEcJOe0zoLhh2AcLE9IO+4ehVhJwNWUFfNPPS82dKfycl18uMeensrqPcPVJN3XHa9vB/XDOIa9oxDa4npC+EaNq4VZPfL+wH0/Fj8eMpDnWDAUv5KPOWRw08qMQ6l6l3FopmH1hJfWO8P4BYA6OzupX+8QChac2JtFoWiNfSP5+nq6cM2FMqOHHNO67EYpo2yItiGHoKdzOgh4cr0zfiYltv0hVDF+/smM/oYzMtCSvPw2Zov8xVaQqEgifg49glW3UvsUDXx+Djh0Ox+pxzNfFRHz6Tht2fSCAEhxLH97d/+LXv27KG9vZ2//uu/PunPPzIywrXXXlu+P+w3vvEN3vve9570fkwmqwoLcYZrbm4mSAbXKcyqKuA6BYJkaGlpIZNzoHqOqkPBOjJjxZMpw9TzNw1Lh1CD4587a+rVew0slGGV2xlPpHDcKnyzPLm0glUUMiOMx5MA9PUPgh1DGf7ZBSwnC3YFff2DeqGrQBVG6Nj3wTxqu6FaVKCKvJMC9DxEwx875rzDY7Zrmhj+Snbv2UvAH9AXCeaCHdDtAZ4C3BwEWmbXZqASMiN6RWZKFceGWXZU0xXHQd5w4flz/tmaLwG/j4TrMLu6oDY5tAT9No5SBObgveUqCPrnoofTm4/bF83H+2q+tDbV07U3Xrwlz+xkUnFaz56/EQJCiGP7+7//ewCuueYaHnjggWm3SaVS5a/33HMPAA0NDfzBH/zBrJ47kUhw3XXXsXPnTgC+/OUv88lPfnJWbc4FCa7T+OY3v8k3v/nNY263fPk5J6E3QhydaZpcftF5/ObZvdS1Lz/hdkZ79/GWi8/DMAw8bH2f1rngi+j2QA/9VQU9N3QmobXEMAFP76/0LVOy2Qz4/DNva7q2TT/ZrB5+O5bI4Jkh7MDshl8agRhuysdYIkE6m4XQWWDOcm6IqRe4ymSHARgaHsP0z80tRkx/mKHhbvzhKOYIKOUdc/7p0SjPwzQMApEKAGzDwzXMWbUJes6rMkzs4qHM5QtYgbmtOM7HZ2u+zFdoqaqswFAjKKVm1X+lFIZXoDI2j8Ol56E6Oh/vq/nS2tKEt6MTmP0FEj1C4OzZd0oIccJK90z93ve+x/e+972jbjs0NMT73vc+AK688spZBddMJsNNN93Ec889B+jFoT73uc+dcHtzSYLrND75yU8e11WFj3zkwyehN0Ic26qVK9j10j6GRgdPaG5XYnSQ1kqDVSv1vAXD0BlzrpTOd01D4bk5QE17n9Lja8wE5YCbwzQUAdtEKXdO+qk8B38xCSVTaazAYpRyMTjxG20r5WIFKkmmusgXFFRU6bKjqZi4pdCMWtT7B6rJpfWrlEpnMH1z8+vcNG1SmSwVkTAVlSESqSF80ROvODnpISoqK4mG9QWBymiQATevF9uaTXhVHrg5KqO6kjtfFce5/mzNl/kKLZ6niPo8cvk0vsCJX8xy8mmiflWukM+H+aiOztf7aj7Mx+gbIcTrS6FQ4B3veAePPfYYAH/yJ3/CP/zDP5ziXk2QOa5CvAYYhsGN119NMNdNYnRmQ9ESo4OE8t3ceP3V5YqK3zL0IkhzwUkTsPWvmmjID/kkeB6qeNuZmVKeB54H+STRkJ9gKAT5xNz0tZAkFNJzTw0DTJ9fF0e9EwzGnotpoG/rYoBnmBiWH8M0imNmZ3oSr0OrYRoYlh9VDL7hUACvMDevl1dIEwn6qautIhYOEDAKuPnUCbXl5lMEjAKxcJC6Wj1HsqW5CQoJfRukWSjdRqmlpRmYn0XKYO4/W/NlcmiZjUNDSyAUIRbw8BvOCbftOgX8hkMs4BE8wcXDjsd8zPM9kxboKo0QGO3dN6t2Rnv3cflF8ztCQAhxbEqpY/5ZuHAhAAsXLiw/tnHjxhN6Ptd1ef/738+GDRsAuP322/nWt741Vz/OnJDgKsRrRDgc5r3vuJE6a4ShzpeOeZLpOgWGOl+izhrhPbfdSDg8cULZUFcJudETD2wlngvZERpqKwFobGrUgbiQADXz8Ko8r3hbnAQ4aZqbGmluboH8uL4X6Cwoz4H8OM3FE/ZgwEY5WXy+gK7wzvRYeC4oR+/v5QgFfPhtC0O5GEap2FhcNnkGDFOHakO5+GxdCa6vrcbNjM6sf0fgZkapq6th+bKlUEjQumAxZnZkxuHVzacwsyO0LlgEhTgrzlkKwHlrL4DcKMrNlxeXmnknCyg3B7lRzr/gQmB+FikrmcvP1nyZr9ASDPhpaV1AWI1jetkZh1fXKWB6WcJqnJbWBQSC87c403wsTnQmLdAFeoRAa6Ux44ssJSdrhIAQ4uS66qqrMAwDwzDKiy1NppTiox/9aPlere94xzv43ve+d9pdwJKhwkK8hoTDYd51243s3LWbTZu3kiWEEagiFIlhWTau65BJxVG5MYJkuPbitaxcufywX0xvWLuGg4+9jHIy+n6lJzikVTkZyA5x4cWrAaivb+SVvm4oJMEO6fuSenrI7NEWFtIBV4FS4OV11baQoq6xjcb6GipiWZKj+/HVLjuBfmrO6H4qYjU01OmVeRsbGjh4cAyMhfj9QQqFHJ7rYpi+ibHP03ZWobwCpgE+f1BvmxujcWEDSnnEc3GMcE1xyLNXrLlODq/HcT9TPMjHqa3W80aXL1vKMzsexXMdzFlUnDy3ANkRVixbS1trM42VOxjKJVm45Gy6OvaRy6ewI3VHnZ+qPA8nPUTAKNC25GwKmTiNlX7aiifskUiYhvp6BhIHoXKx3smawbBGt6AXd0p00lBfTyikF86a72GSc/XZmk/zMay5tamezkScyrERLNMgmcuTy+Wx/eGj/mxKKZx8moAF0ZBB1PMIV1TS2jg3t+yZznzM8z3Tht+WRgjc87P1JEaZ0fugPELgthtPu5NVIc5ETz75JHv37i3/e2ho4t7Ie/fu5a677pqy/Z133nmSena4z3zmM+V5tKtXr+azn/0su3fvPuo+q1evPhldm0KCqxCvMYZhsHrVSlatXKFXxezpo7t/kHwurysIZ9fR2nI2LS0tRzw5ue6t13L/b57ByY7ohZAsHzMLr0oHjOwIdn6Et91wve6bZRGIVJLLjuh7sQaq9b1Zy9VX45DnKQ6nVegA6OV1JTg3QiBSCabF8mVLeWpPnPzQCE56GCs88xV73fQwfi9FLFZdrgwuXNDGlv07cQtpLF8Ynz+I6zq4Tl4P0S0vMGQACqW84qrHCtv2lYcsuoU0PifOgvbV1FZV0PFcL4ZqRxmlEKoXQJoYNFwKsdMMIzYMwMNQLuSGWbVW97W9rYXGukoGR14lXH/iC6pkRzpoqq+krbWZ5uZmWmv8ZEcdsq7D4qUrGB7sZWS4E9cMgi+EaQcwDAulXDwnB4UMppelvrae2vom8rk0UduhtdpfPmFvbapn3cWX8tCGB/Hy9Rh+A+U5+tZJR5vzqjyUk8NQHiqfxMoNse7N19PaWAXMzyJlh5qLz9Z8mo/Q0trShNrRyTmr38COF57CCrdRMEKMJxJ4WBimjWnaGIaBUgrPc1Ceg4lLdUUFPpXBznRzzvmXkRjcT2vLiV9cOpb5mOd7Ji3QVVIaIbB+wyN0dw5T3bzkqKHbdQqM9u6jtdLgxpM0QkCI14P/+I//4Pvf//6039u0aRObNm2a8tipDK4/+9nPyn/fsWMHF1544TH3UfO4ZsGRSHAV4jXKMAxaW1tpbZ35arMLFy5kYUstr44dQPnC4I+BZXN8sws8fb/SfBwzdYCFLbW0t7cDEAkFqW2qpvfgSyi3GnJj+pYrgRgGJqo0dLa8bpGhHzc8yI2DmwW3gOEkqF1wDtFglvbWZpqq/BBYQv/BPbgwo/Dqpocx4vupW3AOTaFUuTK44pyz2fjCAUYTnaiqszFME8uysSwbz3NRnos3aXiyZZoYpg/TnFjISXkeJDqpjEVYufxsLEPxm6fvJl9IYwYqyoHVME0MpY9d6b8D0//nQGEaoPIp/O4Yl150E6Crjc21FWT6UmSTw/ijMw/v+eQwUStHc21FOXhdftFa4pteojceJw/UNjRTW99MIjFGOpkgkx3Fcz1MyyQUDBGuq6eiogoMyGfT2G6c+grF5RetLZ+wt7Y0Yezo5Jq33shvHrofVbMaI1gF+RTKtPWtkkyruEKYQnkuKBfDczBsPyobxxjdyTXX3YzhjNHaMhEmTtZCSrP5bM23uQ4tpYqjaVmsvuAy9ux4Hqdg01S/mILjkc/nyeULeJ6LaVoEQj78/jA+2yA70kHI53DO+ZdhWta8Vxznqzp6pizQNdmZMEJACCFmSoKrEOIwpmny8Y/ewee/+i/kM7V4hgFeSFdHy7dymRxii1VCT+lhnG4GMzOAvzDIxz/638snQ/W11QRHktS1rWCoazcquhhMF9IDKCug27f85dCCm9dzGd2cvm+r52KkDlLXtoKgXaCurmZSZdDGXnoefR27yGeGsavPwjCP/CtOeQ7O6H78Kk3T0vMOqwy2tzazoLWRbEc/2cwghOrLw5lN0wLTOupaw8rzUJlBQqRZ0NpEW0sTjY2N1ER/xFC2B9dajGkHUJh45VWRzYlRyNNV/ACcPHa2l5qoyfnnn19+va64eC2JJ3fR299FHmYUXvPJYexMF/UNdVxx8cry61U6YQ9EK+gZTBCPpwlFa6iIVVERqzriz51JjBALQEtzNU2BxJQT9lK4qKw/m7dcdzO//fV63EA9Zs0yTMPUc41dR7/+hqGr0pYPZVp4Iy9j5Qa55rqbqauvJ9fXOyUIyTBJbS5Dy6EVx1UXXM5ATwedHdvwrCi2v5JQNIph2ijPoZBN4sV7cN0kSxadTX3LQgzDYKjzpXmvOM5XdfRMfV+d7iMEhHitu+uuuw4bDjzXppuvOp1jLdh0vO2cahJchRDTOnfNam58y5u4/+FNOKaJCtSgvIIOkKZVvJ2NHiaLcvViRF4Bw8th5EawEy9z47Vv4tw1E3MgSnMxG1rX4XouY7378HyVEGnRTblZKExaBMi09PBRKwCpXszCOFUty2hoWUim6zlWLDu/eLKqK4NO3KHl7AtIDvcy0v8Cni+GEazG9E+cWHv5JCo7ilmIU9e0iGjNcvxekvro1Mpgc3MzbbUB0t5iujo7yBkGXqAK0zr27Sw8N4+RGyOY76VtwWLaat3yyeHbb7iaH/x8I4VANa5ZBYaNZfp0hVWpYsX1CAs2KYXtjOHL9fP2W6/GnDQvuBQy/ZFl9HR1kBgcIViz+KhzXj23QHakgwqfQ8viZTSHUlNC5uQT9vbmFrIFg4PdfTj4MOwgti+AaZp4nodTyKGcLDYFlrQ2E/R5hPM93Hj91BP2yeGisX057739Izzy6/X0dz+BF6rHCNaCv0KHVbcA+QRedhgjM0hTcwtXX/sRLMs6YhCSYZLaXIaWQyuOja2LaWhZRGJskMTYCPF4L67rYFk2sepKKqqWUFFVX273ZFYc56s6eia/r07nEQJCCDEThjoVA5RfIz7ykQ/zne9891R3Q4h5k06n+T/fvZvHnnqBnL8eIu0oK4AydKBUGBgoPbdTuRhuFlJdBPKDXHX5BXzsQx+YcsLW3d3Nv/9oPYPZEMGaxQz2dTE60Ek+NYIKVIKvEuwwuprrFVcgHsfIjeOP1FLd0EZ9UxvZkVepD2b42PtvpLW1FaUUP71vPX25YmUwB8FINanxQVLxIbKpBJ7nYJo2wUgFkVgdkcp6sqlRXRmsr6ApkOBdh1RFduzcxYZNL9E1UmCwv5ucCuGEGnV4N6yJOapQnOOqw7ud6SdgZKhvaqWt2sf1ly9n9aqVAHiex2e/8D/ZO1jAiSzEsSvwKAb0SfNmnY6HUZniQg7FX9NWIEqkupml9T6++jd/OSW4ll6ve362noy/hUwmRWfHXhwrCv5KfMGpVTHy49hukgWLziYYChMu9BxxBdx0Oq1P2McV1U1LSGWyJBJJ4qk0ruNg2TaxSJiKiiiRUJDRvuIJ+/VXT9te6fUacmvK4cJ1XV58/hl6u7tIplJ4nodpmkQjEZpb2zj/DZdgWbrGnRgdpM4aOez1OvQ5jrfieMVFMkzyWErvrWyg9YQqjidrdWWY377K+0oIIU4dCa6zIMFVvB6k02l+uf5hfvfEs/QOjuIG68FfheELoQwbQzmoQgbyY1jZQVoaanjzFRdxy43XHnby53ke/37XPezvS5H1N+OP1pJKjDE2MkQ2OUY+m8ItZPUtbwwTyxfEH4wQjFZRVVNHpKKKfHKYYL6Xs5oi/PGH3lc+KSyHtsDxVwYXTKoMTneyOjkQdw/EGRjoJ5saxzEjeHYUzwqVhzWbbgbTSWJ7KYKRShoaGmltiE0biIeGhvjS3/0vBjMBHLsaJ1CHZ9gojPK9WYHivxSmKmDnhrGdURpCOb74/32Kurrp7wc5OWRWNZ1FOjlWrIqNT1TFYpVUVNUQjlYx1rf/qCFz8rGYyxP2kxWElFKTKo5DExXHxjpaW5pkmOQMTLmAMZOK4zHeW/Nhvvsq7yshhDj5JLjOggRX8XpRCi2PP/0C+w90Mjg8SiqdxXUVlmUQCQepr63mrIXtXHnphUcNLTt27mLDk7vo7R/CCbeV52Lmsiny2Qy5XLZcbQsEgviDIQLBCDAxF7O5oY7rr1hZrmKWzHVlsNTm5EB8oKuXTCZNIZ/DLeR1ldWwsHx+fP4AoVCYhW0tRw3EoMPr17/xHxwYyuNaQVwrgmeF8cxA+VY5ppfDdNNYbhLLzbGwzs+f/+kfHTG0Hvp6zUdVaC5P2M+kICS0M6nieCb1VQghxLFJcJ0FCa7i9WYuQkupitmbiei5mAV7ZnMx2xbRHEodcZjofJyszkcgBl2BXv/gQ2x49BlSTgDXCOi5w+Xxxy6WyhGxc9zw5kt52w1vPWx48NGcCVUhCRdnpjPhvVVyJvVVCCHEkUlwnQUJrkKcmPmaiznZXJ+szmfA8jyPLVu2sHP3K+zv7CWXyxMI+DmrvZlVK85m7dq1MwqsZyIJF0IIIYQ4GgmusyDBVYgTN19zMeebBCwhhBBCiJNPbocjhDglDr3XpEOIcLSK2sa2KVVMJzVEPtV51HtNnkxyawkhhBBCiJNPgqsQ4pSZy3tNCiGEEEKI1y4JrkKIU06qmEIIIYQQ4mhe26t9CCGEEEIIIYQ440lwFUIIIYQQQghxWpPgKoQQQgghhBDitCbBVQghhBBCCCHEaU2CqxBCCCGEEEKI05oEVyGEEEIIIYQQpzUJrkIIIYQQQgghTmsSXIUQQgghhBBCnNYkuAohhBBCCCGEOK1JcBVCCCGEEEIIcVqT4CqEEEIIIYQQ4rRmn+oOCCHEfPA8j97eXrp7+ujuGySXLxDw+2htqqe1pYmWlhYMwzjV3RRCCCGEEMdBgqsQr1H5fJ6NGzfywtadvNrZR67gEvBZLG5v4oLzVnH11VdjWdaM2pyvMOg4Dtu2bWPn7lfYf7CHbL5A0O/jrAUtrFpxNmvXrsU0j2+AiFKKnbt28+QzL9I1nGEsDcmci6sMLEMRDXRRFYa2+jBXXLSWVStXzKjPc9lXMf/kAoYQQgjx2mAopdSp7sSZ6iMf+TDf+c53T3U3xBluroOQ67r83+/cxW83vUBGVeDYUTzDD4YJysNUeWwnSchIcM3lF/DRj9x5zABbCoOPPf17XtrXzeBYmlQ6h6cUpmEQCQeorwqzcmk7b7zk/OMOg57nsf7Bh9jwyFMMpU0yKoijbBQmBh624RAystRFFNf/waXceMN1Rz0W6XSa+x/8Dc/s6KJnHLIOuK6H53kowABM08SyTII2tFQqLlndzs03vIVwOHxcfX1o47PkrGrMcAOBSDWW7cN1CuRSo3jpAQLuKNdddfEx+3oynEkhe64DZuk9u2nzVrKEMINVBMMxLMvGdR2y6ThedowgGS6/6LwZX8CYD2fS6yWEEEKcbBJcZ0GCq5iN+QhCnZ2dfP4r/0RvKoDnqwYnAbkUqAIoBYYBhg8CEbArMAujNEdyfPlzn6a9vX3aNtPpNL/81cNs2PgcvYMJcHPgFnQKLFGA5QMrQHN9BddftY5b3nbtUcPg0NAQ//SNf2dXZ4q0qoDcCOQSoJyJjQwbAhXgryFkxlnVHuXTf/ox6urqpu3n9+7+KU+9NMpY1iRfcMDzdHueA8rT4d20dbumid9nUxX0uGx5NR/6wLuO2N+hoSH++V+/Q182TLB+GT07HyE5OqDbxNAHwDCJVjfQsuotZAZeojmU5s/+20em7euh5jqwlN9bv3uG8YKfnBHGVTYKAwOFZTgEVJpKX57r/uCSUxqy5yNgptNp1m94hJ44VDYuIp0cJzE2Qjw+jus6WJZNLFZJRVUN4WgVY337aa00uPH6q495AWM+nIkXRYQQQhzdwMAAmzdvZvPmzTz33HM899xzDA8PA3DHHXdw1113HbMNz/N46aWXprSzbds28vk8AI8++ihXXXXVrPt655138v3vf39G+3zve9/jzjvvnPVzz4QE11mQ4Pr6M1dVoclBKNK0nP7OfSTjcQruRBDyWSbRWIzG9mUke3ceMwh1dnbyZ5/9W8ZVAxSS4KQh0gShevBX6MCqCpBPQGYQUn1gh8EXpdIY4J+/+leHhdd0Os23/u/3efipnahcUj8YrAV/DKxAuYqLm4N8HLL6F7IRiHLtZav4xEfvmDYIDA0N8dm/+UdeHfVDZkT3yRcEzMMDMR4UsvpnCNWwuDrPV7/wmSnHQSnF9+6+hwef6SSet1BOrhjY88XQ6hYbM8CwiuHVD4EIhh0g5ne54ZJ2PvSB9x72+g0NDfHlr32TRPBsunc+iufkIdoG4UbwV+m2PAfyY5Duh2QXpu2nddWbiWVf4XN/8ckjvmblivOjz5ByArhGUF9cKIVhpbBUloid4/o3H1/AHBoa4uvf+A/2DuRJE8PFwHM9Jv+qNwwD0zKxUISJs7TBz5//6R8dV8iey8ro5IAZa1jIYH8vg/29jI6O4DgOtm1TXV1DfWMzDY2tjPUfO2Cm02nu+dl6Mv4WMpkUBzv2knEsHII4mOXwbuNhkyVkuyxYtJRQKEK40MN7brvxuKrvc3UMJv8uiLWei+XzH3Fbt5BjvGv7jC6KyFBpIYQ4NY72u/V4g+v3v//9o4bDUxlcn3rqKS699NJZP/dMSHCdBQmurx/leZObtzCcVGRcPznXLA8/DVgeIStPXdTg8mPMmywFoXRkOX29XWRzDvijYIV11bIUWtwCuGnIJwkGbJqa24ikXpo2CLmuywc/+qcMZCshNwzRdqhcBtkBXcnMpwAXsMAfgUANBOth/GVIdkGglobgOD/4v98oDxtWSvGtf/8uv3j4GchnINIIgTrwMuBkihVMinnQBDsEZlA/f6of/CHefu0lfOJjH55yLDzP48/+vy+wqzMPiV6w/WBaEIiBL6oDcfkY5HQIz8XBc8HJQ0UzK9v9/PPf/U05xG3bvpOv/OuPGXUikE1AIQFeHoI1EKgGX1gHVuVCIQ25UciOgOkDXwyCUartNJ/7b+/h3DWrpvT183/zNfaNWgy/+iJULYHYSoi/Atl+cPMTlWzLD8FGiC2B8ZdgfB+1i89nSbXLl7/wF4cFzlLAPDCcJ698pBOj5HNZHYJLTBt/IEikohofBRbWHT1gDg0N8YWv/gudySh5/HjlCyGePn6ld6xpoReVV5iWgZ8CCyqS/PVf/vcjtl36DDzxzIt0D4wwGk+SSmZwPYVlGkSiIapjUVobao5ruHgpYKb9zfT1dLP3lT04dhVGqAY7GMMwbZTn4GTjqMwItjPG0rPPoamllUihd9qAqZTip/etpzcTobvzVQbHc2SJkFc2jrJx1cRn1jL0UHS/WSCo0tRXBmhtX0xzKMW7brtx2r7PdXW49LsgF1tJtLYN1y0w3rmDxHAnmXQS5SkM0yAUjlJR205l+7lYlkVyuItgfNdRL4qciUOlhRDitWTy79QFCxawfPlyHn74YeD4g+tdd93Fhz70IQB8Ph9r1qyhUCiwfft2YO6Ca3d3N6Ojo0fdZnR0lKuuugrP81i2bBl79uyZ9fPOlATXWZDg+vqQTqd5YMNv2XlgjNF8EM8MYthBbF8A0zTxPA+nkEM5WUw3Q7U/y6pF1dx0/TWHnViXgtDBbA19/YMQqAJ/ZbECaBWrbUVK6aDlOZAfh9wYTY31LAiOHBaEvvXtf+fnj24B14G684vVv14dUEO1YEcngpuThMywDrThZl01HHoRLJtb37yWT3z8YwBs3bqdz3zpH8F1oWKxrta6Wd2evxKs0ESbbkb3MTMMVlBXdxOvgmXxj1/6DOedt6bc15//8gG+dfeDkB3X24aKIdoOFgMVTCRiioE1A5khHTbdDASr+MQHbuDWW27C8zze94E7GBlLTVRXLZ9us+GC4tDm3KSAGSiGYwuSByA9pANzqJrz2uBrX/6r8n9s7l//IHff/ySj/V3QsE5vnxnWgdgO68Bero56usqdHdHHKLoQBjZT3djOB26+gptvvKF8DIaGhvjS3/0v+pI28dEhlFvQFdxQnQ7S5ZAd1z93uh/DsolV19Mcdfji//epwwKL53n8v5//Crv6TPLKD7j64oc/Cr6K4utSer2yOtznk8WLJRZ+I8/KJo+///LnDgvZ6XSa+3/1G57Zspve/mFyVjWuvxrPjqAMC0O5mE4KKz9KwB2lqaGGS89fyc1vm37ucClgdiX9bNuyhaQKY1efRW54H7nxPpxcqjy02w5ECFQ2EahZSmF0HxVmmnPXrqUtmj8sYO7YuYsNT+6iq6ePwbSPtIqQVwGUYaHM0mtV7gWG52EoF7+RI2ykqA8XaGtp4vorVrJ61crDjsFcDj8u/S4Y9p1FqKqZ3l2PMjbQiQo16lESvkmf2UISMoMYmX6qGtppXvlmMmO91Bb2T3tR5EwbKi2EEK9FX/ziF1m3bh3r1q2jsbGRjo4OFi9eDBx/cN28eTPPPvss69atY+3atQSDQb70pS/x13/918DcBdfj8e1vf5tPfOITAHz5y1/mc5/73El53slkVWEhjiKdTvPDH/+c3b0eBbuaYKwG45CTRNMC2+cHKlCex1ByhKf3jDEW/zm3v+fWKSeC6x98iP1DLkPpYYg0F8NPKUzkAW8iYGHqxq2AHp5rh+gb6MMJK9Y/+FA5COXzeX7x0EawIlC7EsZe1sGq/iLwsvqkN90/McfTDuqhrrElOlyOvQw1K2B4F794aCN//LGPYBgG//Av39JDdCsX67myoXoILwOzODxYebq/hqFPsv0xCLdCukeHrYo2GH+Vf/iXb3H3d7+FYRg4jsN3//M+yKT1z17RDsFq/bNSHHLsORPHoBTo7bBuzxeBxAHIjPDd/7yPW256G11dXYyMjulwW+LlAEMf00DV1OPspCE3roc2hxvAXw1jewCPna96dHV10d7ejuM4PPDrxxnt64Ta1TD4e30hINqiq8t2uNg/Q/fXc8AJ6IDopPX2NSsZ7dvBA7/2ysN8Pc/jH//l/9A1lCUVH9PHoHIZWJZuB69YGLXBboRwE1Sdgxrfy/hAJ062in/8l//DV//mL6cElgfWP8iugwnydo2uivtj+oJD+WJAiU+/BwJVus/pXsgnyJt+dh0c54H1D3LLzTdO+Qx894c/5pkXXmJcVZOPnA/5Ibz4ADhpDOWiiq+RGa4mE1xIeuggw799iuHRET70gfccFoZ27trNvr4U23dvJR9ZTHZoL7muXTrwB+ogtKA8BLvgpCmMDpDs2U2gsgmjbinPP/ccuRVL2blrdzlgep7Hk89uoW9gnN64QcqI4ZoBlGGinIy+OKC8iU4YJoblw7BDZLEouBZOfATbHuTJZ7dMqUBOHn7sGCle3Pw4GcePY0VwCE0MP04ksQ/2E7bztC9ayqAT4cf3rZ+2Orz+wYfozYQJRYK8/MTdOMEmVPObMOyA/tlLw+YV+jMSacZzsoyM7yXxxN0suvBt9MbDU34XHLmvk4dK27qvYyPYB3vKQ6WP1teTRYY1CyFeS0rhcjYuuugiLrroojnozez94Ac/AHQl+fbbbz8lfZDgKsQRKKW47/4NbDuYx6pcQCh47JM5wzQJx+rIZ8Ns7zzIffdv4A/fc1s5tD34yFMMJYN67qkdLVYxc2D6dUA1Lcpnq54LXnG4sGnr7UONDCV7ePCRp8pB6Ne//jVKWRBqgPH9UHWO7szYy0BxYSLPneikWZzjia2DW6BGB7dQAypxkIcffphzzjmHge4eiLWBk4XKJXq4rVsAZRQrjYry0FPlTQTOSLOuyI7vhWAdA91ddHYeZMGChTz//PNkxxMQCEyEVq+gn8MfKwb06UJmsTobrNbPOb6P7HiC559/npf2vFIuzk5hh3XoRk36vg12QAd7z9XDpL0sVC6F0ZdwvAoee/xJPvCH72Pbtm10dHRAuA1GX4JQo55nG6wqDmkO6eHB5Xm++WLlOQm5MT0MefQlCDXT0dHBli1buOCCC3jgVxvY9WoPmUxeV4SDNcVApaZW3ksVd+Xof1efA6F6UgMvsOvVNA/8agO33PQ2QC/udM8vHiJvNeoAX7FAH08D3T/DRF8cKCleeDAsiLSBLw6Jg+StGPf84iFuuvEGTNNEKcWP7/0ljz27jURgGW5uFPqf1a9TsBZ8C3VoLVYFvcwIjO4jG26kEFjExme2EQ4GufP2ibnDOmC+yEuvHCBr15PYvwmCddBw4cTrPvnn9sf0cO/oInLJA+T2b6Ki9TxeemU/1SG3HDB7e3vpGYrT2T9OwrcAzwji5ZN6FIJB8XhODa5KuahCFiwb5YuSUNV09h8kEjDo6emhtbUVpRTrNzxCwqijZ//LDCQc0mYDhcQATroPN5/W7yXTwvKHscM1xCvqib98gIYKm5b2Razf8MiU6rDjODy08VkCteey/7kHcGvWYISbwfLraxelN2z5fWuCGYCAH6N2DYV0Hfufe4BF57+VhzY+W/5dMLmv3fv36KHSRhQHHx423qSKs4nCxE/SzZN4aV95qPShfT0ZylMxnt3CSDJPOq/I5x08BaYB/j29hP3bqYn6ueLimd/CSgghxOy88sorPPPMMwBceeWVLFy48JT0Q5YlFOIIduzcxbM7e7AqF+A/jtA6mT8Yxowt4NmdPezYuQuAbdu2caAvoStdvrAOOYYJgSoMX6QYgqxi0LDA8uvHA1X6MTej9wtUcaAvwZYtWwD4xQO/0iGpENcBMzMCiQ4ojOnKWsUiqDtPh6S68/S/7aD+frxDb1+5RO9v+rj357/kRz/6L90fy4LYYt2+WwCUDn7+Ch1cQg3FxZoq9OOlubmmD2Jn6f0tPz/44X8C8ON7fw44OqgEKvWiTFZQVzQrF+sQZxUrTlYxYFYu1t+3g3r7QKXeH4cf//RnPLbp2anzQksMmFiQyZwU4EqrABsQWwgVC3V4DdVDZpRHn3gagN//fisoS88TDtRCuF6H7egC/fy+iP45Das4VzaiH69YoLcL1+v9sgOgLF7YsgPHcfjZ/b8mk0pDw9qJ17bUVmmhKydTHN7sTbRdfK/QsJZMKs3P7v81nqeD2AsvvMBQEr1ftF2HPdPSYccoXp8sB8LiRQzDnrhY4o/p/ZwMQ0ndHsD2HTv59cZniPvacUdf1gGt4RKMmlUQbS0Oda/QX6Ot+vGGi8FzcUdfJu5r59cbn2H7jp3ll6W3t5eX9vcyljVIdL0AlWfr4+Xl9Uvji+oh06HS0Olo8SXL62NbeTaJrhcYyxq8tL+Xnp4eADq7ejhwsJsEdXiGDy87qudEu/mJ+b2lha+MSReH3Dw4ObzsKJ7hI0EdBw5209XdC+jq8IGhHPv37ubguMXIyAjxV58inRyjEGhE1Z2HaroYVXcehUAj6eQY8VefZmRkhIPjFvv36v137tpdPgbbtm0jTYwDWx7GrV6DEWlDmT69CvbEjZv06AYmvWc9hTJ9GJE23Oo1HNjyMGli5d8F5b6+souuEYe4qiTthcgTwjFDKCuCsqMoK4Jj6sfTXpi4qqRrxGH/K7sO6+t8S6fT/ORnD/CTBzexq2OY7nGDMa+afGQxbuxs8pHFjHnVdI8b7OoY5se/epKf/OwB0un0SeujEEK83pWqrQAf/OAHT1k/JLgKMQ3P87j/oUcpRNpmHFpL/MEwhUgb9z/0KEopXty6HceK6pN8N69PyO0IYExbMIRSwcXQ2/mi5aGvjhVl63YdiA929ep5iv4YpAcgO6grk02XQ+0aHTCCVcWKZpX+d+0aaLpM/zs7qPfzx8DycbCrl8ce2wiBqA5epk/3xBfW1dRAcX7n5NBmh/XjkWa9HUo/HqiFQJTHNm4EYMfW7eAL6fmchSTEFunwWAoScEjILB6FUsiMLdL7hRvBF2Lblu0c7Ow+wtEz9KJOyS4Y3QMju/XXZJd+vLg4Ef4KHc7tEBiU2/v1bx8uHvuwrpBXLNAh3TjGr03D1NtVLChW1sOAwUO/3sCWLVvo7RuC2AJdRbSCevtCSofy4lzm8p/8uH68kNLbWUG9X2wBvX1DvPjiiwD8buPjxdscVetgbxVfG+UAnv5ZTVu/JqVhqBRvFWRYevtApd7f8PHb323E8zx+eM+9jDpRvLEOqDobalaCL6SrrDAxZLxYyVSGpV//mpVQdTbeWAejTpQf3nNveVXjA53dHOgZID34qh4ibQd0vyKtky4I+Iv99U9cEIi0FN9rAahcRnrwVQ70DNBZDJi797zCaBpcO4qXjRcvtLg6/Fl+Pc+3NOc7UFOc9+ufGPruFvCycVw7ymgadu15ZWL48eAwvXGT8a7t5Byg9UrMysUo5eEle/DGX8VL9qCUh1m5GFqvJOfAeNd2euMmfYPDPPnslvIx2Ln7FcaHeigEGiDaiipVQq3iaAjTmgitpjkxSqK0cBoGRFspBBoYH+ph5+5JfR0YpC9hkjZiOGYY0x/D9IUxLT+GaWEYJoZpYVp+/bhfb5c2YvQlTPoGBqf0dT6l02l+eM99PL29g+FsELtxLaH6ZQRjjdiBCJYvgB2IEIw1Eqpfht14HsO5IE9v7+DuH98n4VUIIU4CpRR33303AOFwmHe+852nrC8SXIWYRnd3NwcHs0RiDbNqJxJr4OBglu7ubn732CYdWpWnQ6jpK29nGMVRnYf+mTwazvTp/ZQHgSp+++jj+nGnNKxY6aBTt7oYMMK6qjY5AEIxFNo6ENSu0tvnx/X+ngtOcTilXQxJBsWT/erjC22Bar29gf67HZx4boor/bpZXZH1x/T3DEuH8nxC31InM6S/5hP6ccPS2/ljej83q9shD/n0NPM40asHZ0eK82MX6KpyxQL97+wIDG/TgZ3icNRQbbEKrE+Gx0figKsfjy0sBtAZsMN6v1At4DI+EueJp57RVc7YWTqEujk9FDo3qiuhdkRXGUsLNdkR/XhuVG/n5vR+sbPACvDkU88C8Putu/SbJdJarNwWh3Gb/knvgdKbyZh4D5h+SrfdKYdHw+D3W3fR2dnJrr09eLk4VC/XC3kZ5sSthQyzGISLf0rDx5Wr/x5uhurleLk4u/b20NXVpfv6woskk4nisPDgxLBjw8Qwj/wHw5rYtrhfMpngued1dbjjYCdZsxKVT+rjZKCHc4caMALVGHYIw7YxLEt/tUMYgWo9aqB40QI3h8onyZoxDh7sLA4/TtDZN06i72W86pUQqscb3oWbHkbZYVTFQlTlUv3VDuOmh/GGd+ntqleS6HuZzr5xeoYS5erwK692kk6MQtUK9FxWa9IFhaMp3Ye4uCp01QrSiVFe6egqD5Xu7o+TNavAV4HpCx/yS2QahqG381WQNavo7o/TMxQv93W+KKW475cb2LZ3AK/iLEL1SzGto89eMi0f4fqz8SrOYusrA9z3yw0nJWALIcTr2eOPP66nTgG33norFRUVp6wvElyFmMaOnbtxA7WHLcQ0U4Zp4gZq2b5jF8NjcX2CbPnLobUUUMu5rjhCsJwx1KRtQO9n+cEO6faguDpUWN+Gpm6NrvIZNhNzUCc/06SGUXq7SJPeLzc8seCQ6dfzVA1DBygrNLMf3Arp/QyjuGpy6d6Utj4GobriHExDB8x0vx7mavr09sHq4n4+/Xi6X29XmvMYqtPtYFMOYoeyQ1B5Vnlhq9JxI1irH69ZpefWjr6khxpHWovDnYvHyDB0dTh21sxDa7kPYb2/LwSGwZNPPl2swoaK83dHdd8jrRjBOgxfBMP2FcOVT/87WFcMlKbe3knr/SNNPP7kJgDG44niMOtiEDWtiSHCx2IUK3yo4i19ahiPJ3niyU3kHUNXO8NNTNxKx49h+TFM+5BwaWNY/uJrXaygh5sgWEfeMXj8iScB6Ojs0RcHIk3F1zE8EU6P1s3SNnZY7xdpgnyaA8UKeVd3P8r0F+eMmxCswQhUYVh2sWpZGnY7uZJpYlg2RqBKHz/T1OHVDNDZ1UdnVw+vHuwlMdKDql4B2WGUk4Xa1RhVSzBCdToAW379NVSHUbUEalfr7bLDqOoVJEZ0O6Xhx93dB/FCjcX3Ram6WlJcoKs0D7n098njMkpB3hfCCzXS03WgPFQ6bddiBGIYlo+ZMCwfRiBG2q6dMlR6vuzYuYtntr6CVbMMf7R2Rvv6o7VYNct4Zusr5akYQggh5sfkYcJ33HHHKeyJBFchprVn3wHscPWctGWHq9mz/wCuU6xSFUPQRBhl4sS6tIiOMXFiXfqUGhMNgmHq9kBXSQtJPQQ40kw5NEyNvIcwpm4Xadb7F5LF+YDFgBmIzTy0lljF/csBE11tNAy9IBCerqx6jp5fGqgu3gvWnqhA2aFiBbdeb5cZ0vtF2ijf2qY01PSwH9E4egXPtPXQ40iLHkKMpxersgN6f6WK83gPv0/mUds9VKhOt6MU8WRa36bHK+hVjYM1GMHa4wtXwVodrvJxvX+wjnhCV4eVq3S12DCYuEfrTBSHoxYvNCjXY9MzvweUHs5bXDjKsHzHFzCt0pDk4v5K8eQzzwNwoOPV4rzoynJonYlyePVXQrC2fBV4PJmYmMsarMWwg4cEwqP9+KbePlhLae7rWCKphx+PjeEF6lDZYVSkBaNyMYZ59IsChmljVC5GRVpQ2WG8QB2jY2Ps3vMKAIl4AkKNGKXPOaDvtevpkQ+6lamVck8V58B6E302TAg1EE8k2L3nFcaz6PfUDENrud+WT1+4yOqh0vPF8zzu3/AIbqhpxqG1xB+txQ01cf+GR6TqKoQQ8ySbzXLvvfcC0NraytVXX31K+yPBVYhpDI/G8QXm5pYQvkCY4dH4xD1GMSaF1lJIOZqJk1uj9P+eO7EgUWk+XPUKDq2sHjtgTdq+esXEfDqrGBr9VYf1ZkahzV9VrHYWT/RNu1iJRd8PtbSwz3ENQa7S22eGi8OX64ohtzR08rCdjtFksc+BKj2EeHw/+ConKpW2T1cMJ/VtRpXByX0PN+r2SnM2c+M6XPnCMwtXvrAOV7nx4nBz/6TvByYufEzTn2O/XsULJpYO7j29/cUgr0cIGNMNxz7qcSjNf/ZDpEG3B8RL1eFA9QmPaNCvWzUEq4nH9ciDZCKph5X7YzqEHus9dXijej9/DNw8yWSCjoNd5PM5/T6rWIARnNnFLCNYrd9bpk0+n+PVA50AZAuqOKKg2EdVvAXSlIsXk4Z2T7qIoQdLTIRX/FVk83Cgs4uCVYXlm93vLcsXpmBVcvBg56zaOZru7m4O9o8Tqlsyq3ZCdUs42D9Od/eR5rkLIYSYjV/84hfl/85+4AMfOOy+4SebBFchpqMUxhxdxTeUwijd4qKQmvjGTD/8k7cvpJi4ZYZbvCfsxDDXmQcsQ+8faZ5YddZfMTehzR+d/EOAL6YXHgpU6vmah+x71IBlBfV+uTHdTqlSOPk2JzNUDq92WA/DLVXTzIAOR5O3m2m7JYGaiSG0Xh58YR1CTyRc+cJ6/rKXZ8qwZuVMGR58Yq+XXb4NTTqX0/M/i4v5nAjDLK6SHaonnc0BoLCOb770sRuHQI1uD3BzaX17KX/libdtmHp/VcDNpenq7kLZUfBXzDi0lpsMVoO/AmVH6erW83wdtzj/GFNXUQ2Ov8+Gqbf3Sotu+XFcj/6BYb3Y2mxvE2MYEKimb3Bkdu0cxY6du3D9dcec03ospmXj+uumrFothBBi7pwuqwmXyH1cp/HNb36Tb37zm8fcbvnyc05Cb8SpUFtdweB4HH84Nuu28pk4NdXFEJgb05VS23/M/aZlmvoWH/mxiRNd09a3Xik6kYClirdVIVRfrGKaUxePmk2bhn9SX03KKw4XQ+vxtF3aRnme3s/MAlndnucC09wOZ6aibdD//KRK9kT1cTaVQd3n4i1+PEfPwQwsmF24ClTrYdOlwK4UFDLFe7MeO7AesZ/KK7ZTnP9sR49/ruwRG7fBrpjUjgV2dE5yq7Kjuj0oDqXNz00g9vLgKZKpNIYR0rfrmY2Kdoz4QZKp4tDu0m2JPK94+fhEhnYXhxYrF6U8MrkCRE5wWP+hfEGyqcLctDWNPXs7sCOHD8E/EXakjj37DnD9nLQmhBCipL+/n4cffhiACy+8kJUrV57iHklwndYnP/lJPvnJTx5zu4985MMnoTfiVDhn6SJ2PL4fattm3ZaTGuKcC8/iV6UFVVJdenGgE5Xqony/Vyje6qOSYw2NPbbiQkqWf+L+lnPBy02sK6M8vSKwv1U/44kGLH8MMoPFIZaFWYWVcsA2bb1YjiqesCtVrj4rzzuh8FpuuxRUnExxWvFcpDal2yu3r+fNGqGaE2zSRGXGdGhTLihbz2ud5bAgwzRRpl1c6Rgwi/dRLRYMT5hHcU5v6aKID5wceA6KE+u38jx9caGQA9NHPudCtPaYc1qPxTBtVLCWfGqg2HdH3zc5WEU5eM+YCbjlOc8KhWnMzSgR0wB1xJt0zd7waAJ/ZNGctOUPxRgZPTgnbQkhhJjwn//5n7iuPg861YsylchQYSGmsXrVSqz8EJ47u0qe5xaw8kOsWb0K07J0IMwnULmxE2pP5cb0LWI8F8tXPJk2jClzPMth6XjbnLy9YU1Mey0kivcBnUWbytELPpUydamaWRzOeMLtloZDek5xqOV0of3oJ97K8w55/uLwzdJjbh4K44c/90z7Cvp2Q24xEDtzdO/JUmgF/brlE+DlUZMfnwHlZHRoLSSL84bRi0DNBa8w6T3ggpPWr84Mj+lEe57e30lPvKfs4n1sk3o47gm/Xskuvaq17ce0TD00fbbTBpRePKs0NyjosyDTX/5ZTkhpv2w/QZ9FRTiEyqeOvs9xUvkU0bmq3k7HMFCzHdJcpAwDNTdNCSGEmKQ0TNjn8/G+973vFPdGk+AqxDRaW1tZ0FhJZmjfrNrJDO1nQWMlra2tRAPFlVatICQ6ZhxeVW4MEh3FobIWEX8xuHruYQHj8FA2TXvTbeMViiubunpYs+tQWsV05m16OqzlRovDeYt9VZ4eLjubvrq54lBLt3gLmKPvN92fwxTSOlyV2nPyuqo7KQCf2HFVkB3Q7dkhXWnzCjMOVpPbxyvoduxJ4cJJgzIgOzbj8KqcDGTH9P5OmvL9WPPjqNJrd4KUp9spz51G6Xv0lsz0OEzePjvMxFxv9Jzc/Lh+73ICr1duTO8fagDl4Q8EMKzApL6fIOViWAH8AT30vKq6GpI9KM/RHT+hY6BQXgGSPVTV1NDcUIvtjOPNcqSE5+axnXGaG06scn88aqtjFHJzcwGnkEtTWz37KR1CCCEmbN++na1btwJwww03UFc3N9M7ZkuCqxDTME2Tm6+/GivTRz45fOwdppFPDmNl+rj5+qsxDIOq6spi4EhBsBmSXajx/cWT1yNTnoMa31+sBDXr/T2HqppKvYGTLQaDw09+ZxTclKfnzjpZHbIwId1bDJ3eDNssht90H2AV20MH90JSHwc19ec+7r4qZ+I4lm65MlteoVi9m3TvW8uC9ABMU8Wa0XHNJyE9qNuzLL2i7vj+cjszUd5+fH/xvq2lSrvSi1WlusBXAbk4KjtyzNCpPBeVHYFcXO+X6ioueqUIBwP6ooObO/HFr0oXKXKjuj0gHPLraqNXmHjlJt/m5Yi8csDT1doCZPoJh0sXLhzwslCxEBIHDquWH/P1Kozr/SoW6nZwqa+rnbjoMptjAOA5NNTpW7+0Njfq/o/snLiH7iGfsyMfg+Itf0wLRnaBV6C1qYHzz1uFmRvCVM6sLoqYysHMDXH+uatOqI3jcc6ShTjp0Tlpy0mPcs5ZC+ekLSGEeK266qqrMAwDwzDKt5E7mu9///vlv58OizKVyBxXIY5g9aqVXHLeSzy9/WXyLJvR/QbzyWHckZe59LyzWb1KT2ZftnQZB5/aApVLdECoWKTnJQ5vR/kr9K1jfBE97FO5Opjlx/QQ0HCznsea6NC3aOnvYNmFa/WTeQ6k+/UJt3G0e7cejdIn2OmB4tBLA5yUfu5Cqtgv7/gW6lFOcbGg4v7O5BWQlQ5yrgNkwQ7ObPEf5ehg7RZ0O0rNfhVVr6CHRbvZqY+bfh1aE69C9fLp7xV7PG3HO3Q7ph+fz6Lgr4VUp15cKVRXDhlHm5M5JYhkhnRlMNKOrzxcvPj6YUOqRy80pRxID6Bsf7FK7y+uPlxcxMgtXqDwRcAXLA6xLd5qyVC0tjTzSvcgODmUaet5njOZm6s8fVHGyUJmkNbWZgAuXXc+j2zer8N39TnlOw7rzDZ52DrTXpMoPzS+H5wCl118AQDVFSFGsyMQaYXoAoh3gn8MKtowsKa9vKGfwoVEl36vRhfo1bQTB6iuCLFk0QJe2Z7CMOrwSgF0hscA5WEaCuWmWbJ4AQANDQ0YgUFU/AAq3IQRbZl0D1eX8mfYnHxIJt3f1TRRyR6IH8AIVNHQ0MCa1auoeOB3ZHL9FIItKO/Y99yd2lUPQxXw5foJBRTnrll9/D/nDK1etYJfPLrthOeOlyjPw8oNs2b1W+awd0IIMTeefPJJ9u7dW/730NBQ+e979+7lrrvumrL9nXfeOW07h263ZcuW8t8feuihKUF06dKlXHHFFSfaZQBc1+VHP/oRADU1Ndx4442zam8uSXAV4ggMw+C2W64nlbmP3Qf2k86MEKxZfNRbOHhugexIB35njNVnN3DbLddjFINVY2Md4UiUdLITKpdCslOfJFetBC+jT5yzw5Rva2KHIVgH4XYddPMJHU7H9xKORGlsLK4kHAhBqk8PdfVHiifWMwlzxdBTSOl2AmHIpfQw2colE1Uof0VxrmLxvpLlkKyKcwC9YpA0dVU1cUAv9jSyi4mTbqWHt6a6dNtODkynuHrv0fqsdOXOc3X7qe7iMFkF5gkMtSy16aT1XFbX0V0sJHV7gM9vUfDVQLJbz50MN84svHoFfUEh1Q2BGnxmP831VRwsJKD6HBjdpbcL6eE3x1UlywzB+MtQvRLSfTTX66p7XU0VQ7kx3W52RIfXYI1eJdrLF+frpieCvukDK6QvhuTjeihzoXh/1dE91NVUcelFF/DKLzfpiyWVS1E2GIZ9fLdx8jyUcvTrmzgApsXlF18IwLvf9Q4eeeqLxeBeC8G6yZFswiFJc8o/s0N6fyfJe9/zLgCuvOIyfvHYLoidpRc9svz68zS0AxWI6ffiIReGVH5cV5sDNRBbrG8zlE9Cup8rr7yMCy48j43bfkvOLWDaAZQqVmkN6+gXTIoLexkGGKYBTo6gSnLRGy4DoL6hiXDoFdJ2GDXwex3eoy2lg1cMq2pSaDX0iknFQVIq2QMDv8cI1RH2OdQ3NtPa2srZi1rZ8WoPgVAteQxcF8yjDKUvv1xuHssAv5GDdA9nL26ltbX1mPudqNbWVhbUB+mMDxCtajrhdlLjAyyoD85rX4UQ4kT9x3/8x5TK5WSbNm1i06ZNUx47UnD90Ic+dMTn+Pu///sp/77jjjtmHVx/85vf0NvbC8B73/te/P4TvBPGPJChwkIcRTgc5vb33salaxZRG8ji9G8hM/gymfF+nFwKt5DDyaXIjPeTGXwZp38rdYEcl65ZxAfecxvhcLjc1vJlS2lobMLKD+mwEFsMGDCyQw8lNQMQaYOKJfqrGdCPj+zQYS22GPJxrPwQDQ1NrFi2FIClixbq4DX2UrnCc9zDGidvP7YHXIelZy2kub0dPBPiByDSosNbolP31yje0qY0t7Y0dLEUmBOdevtIi97fM2ldoCtNOucW52hmhiZWxy2kdAXQKxT7ria2c7P6+6VQnBma2M6Axe3NE8M5J/OcYrvF+bBK3zoEN6cfz43pyq3n6JWPDQMKcc5q15XBlcsW63vQeo6u7qX7iwsiHWtocnG133S/3s9zwB9l1TlnsW7tGsgO6lBVsxri+2F0z7EXQfIKerv4fr2f5YPskG4PWLfuDTqAFVK6auhkdHhN9em/m7YObsFq/dW0i9v06e2cjN6vkIBcnIsuWseVb7ycgL84rDefADePcrN6+LFXGrY76U/xMeW5KDerw3I+AZk+Av4Ab3rj5QAsWrSIlvpK/XqMvgzZoXJgVUf5U3r7kB3S+ymPlvpKFhTfWzfccJ0OqpkBfbx8EYg06QskVlh/5sY79L7jHfrfVlh/P9Kot/cKetRBdpibbnobC9pbWdgUxSyMgedgGCamWQy+nlN8X6lJfyYeN00LwzDBczAL4yxsitJerDoHgwGWLV+FL+DHDNfAwO9RAy+inBz6VjfF+xOX/5iAiXKyqIEXYeD3mOEafAE/y5avIhgMYJomt9xwDTVRP4y9QsDIEfT7UW4Oz83jeS6q2E+lFJ7n4rl5lKu3Cxg5GHuFmqifW264pnzBbT6YpsnN170ZX6qLfPbE5rrms2l86S5uvu7N89pXIYR4vfnhD39Y/vvpNEwYJLgKcUzhcJh3v+Mm3vO2K1i5qJbWSkW1OYo/1YEVfwV/qoNqc5TWSsXKRbW8521X8O533DQltAK0t7XQ0lhDy+KVGKO7IDeMEa6HqqVgR/SJdPxVGHtFf83H9eNVSzFCdXr70V20LF5JS1MNbcWT4MsvfUNxfmKPDozle3u6EyFwCjUR4kpBMtmt9/dVcMUl63jLH1ylK7/5UUj1QrRFh52RnfqkPztaDI9Kf82O6sdHdurtoi16v/woKIdr3vwmAJpaGvXQ4UCVDiDZId2PUiVTOcUhrBn9tTQP1vTp7Ur7BKrASdHc0sQdH3jfkRfPKQ0tzif08cwn9L9VscLqZnT/S8c/l+DDd+pf0u+49WYdgurfoOcQxzv0n+xYcT5s/pCQndePZ0d1YI936P3qL4TMAO96x9t561uvxc4N6u1MH9St1cer/zkY3a3nBBdSuo+FlP736G79fdMubu+DQgY7N8gNN+i7V15y0Rv0b/PcCOSG9VDhQJXuf7pfXwBJ9+tQNvnfmQFdTY626f1yY2DCpRevo62tjRWLajGizTCyTR87w9SVSjeL8goo10N5qvi1oANrIaW3yydgZBtGpIUVi2ppa9O3ljJNkz/70z/Gzg/q4fFj+1DF8D7dQPfyY15Bbze2D/xV2PlB/uxP/7gcWhYuXMjiBc36s5MdAS+PYfrBF9WV3XAzVCyA2CL9NdysH/dF9XZeXu+XeJXFC5ppb2+nubmZ5YvqqAl5WF4GQ+m52ZZlY1qWvrMPbvmPaYBpWViWDcrBUAUsL0NNyGP5ojpaWnRVtbWpnrb2RdRWBPGF6zBjbfp9ffA3qL7n9RDi3BiqkNJf4wdQfc/Dwd9Cdhgz1oYvXEdtRZDWtkW0Nuqq/epVK7nsghVUR2yM+D5IHiQaDhIOBgnYJhau7hMuAdskHAwSDQUheRAjvo/qiM1lF6woT2+YT6tXreTiVS244wdnHF7z2TRe/CAXr2o5KX0VQogTcdddd6GKFwuP58+RzKSNQ4cVl2zcuLG8zaJFi47a7//8z/8sb3vxxRfP4gjMPRkqLMRxMAyD1atWsmrlCnp6euju6aO7f4h8Lo8/4Ke1sY7WliZaWlqOePW/ubmZ5toKMoUU1srL6HzpGdzsMMSWYARiEIxNzZilUbhuDhXfj5UdpH3lZVQHsjTXRsonwW+84nL+64EnyauoDo6gK0hWUP+9NIx3csOlYb5uFlL9ej87it8s8KY3Xo7nedx97wY8O6SHeoIeKlu5VIdKJ1Uc1uzqYZN2UN9bNdxYHCbcqfezQ5heniuvfCMA11z5Ru7+5SY9bDXSoocj51N6FVfbXxyCOem+lsorhs9c8b6thYn9nBxvefObuPjiSzAsC2VGwbLB8OkD56uYqDZOadPRFWrP1UNDMXQVNBfHNvOsW7cOgHXr1hHx/Tup3CA0XgIDzxdvZxSHQEwHIis4MfTUzeqfPRcvLnCV1vtl+oj4HN7whjcAsKi5hv3j+/Gqiyfc0TZd7cwO6cWQUj26emmaeji0vwpiS/VrWLwfrJnYz6LmGtrb2wFY2N7K8hUreemll/X2mX79elSv0K+VkyxWrYuvly8I/gY9HD0/prd385AZYvmKlbS3NmOaJre/5+10fusnjFYuxBvZAaFGqDpHD1s9dDVrwyoulmXqqmamH7NyIdVWgtvf8+4pn4vzzl3N2669nAd+8yxe5Qr9mvQ/hwpW6yDtq9BteQ6qkNDHJTuqhzIHajDHd/O2ay/nvHMn5mGapsknP3Ynn/vbfyab6NQvta8CfOHi/Nxp/nNnFE8ICmldbU50EiTBJz/2Z+VFLK64aC1j2R1s3T9KyjPxrCDKK1ZGSxXY4odVKa84R9zDMgwMN0fESLByYTVXXLS6fAxaW5pQOzq5/M1vZePD60mGqvGCMZzMODhpvLG9E3PFDQMMG9MXgIoW7HAlJhBVo1z+5hvJjnbS2rJM/ziTpjfs6hgmnkmQHdiK54thBirx+aPF4+ri5sfwkuNQiBP2W8Qqg6xaXDtlesN8MgyD226+ntSPf87u3h7S+SpC0ZpjzvXOJEfwO2Osavdz280np69CCCFODxJchZgBwzBobT2x+V+maXLFxWtJPLkLp3+IJRe8lf4D24n3PYUK1UOwVp+wl+fg6TmvRmaQWH07jSvfSiDfQ31tHVdcvLJ8wtbe3s7KJU1s7XJR2XEY3qVDZWyxDj7lRXXKSVgHt0Jah8tUH9hBjGAlK9ss2traUEqxesUStr10AELNkOzR/Qk36sDmr9T9La0e4xUrpaleHYJyCQjUQaaX1SuWlKttb77qTfxo/RN4TkYHkXALuGlIHtTh1w4fHgadtA6CoTo9LzMzAE4W0/K46so3Yts2f/Kxj/LtH/6qOCzUr4d9+iuLIbU4x7O0DJBpF+c62roiWkjp45Ed4qMffHf5Xpu2bXPH+27lW3evh2A9tFwJozuLC1jl9FzIKcfV0xXcXEIPUW1Yp29Zk+jgjg/cWm73Tz56B5//6v8il2tABeuLtwj1inNS66bOnVRqIrwDBh5GbohAvpc/+einyu+B5uZmVi1tY2AkzshgB1SdDYXivGlfRK8UHKybeL3cUnV4WB8HpSDeQU1DI6uWtpUviqxZvZJrL1vOhme7SFQvxU0PQO9j+niEaieGHXuOrvZmhvVFgEAlVvVSKqwM1168nDWrp1bFDMPgw7e/n2ymwO+e3kLB3wCxJfr4ZYeKIweKoc0OgB2FihpIHcCXH+APrriAD9/+/sNCy7lrVnPTtVfyy18/SR4DwvXgRlFWQFeqTXvi9fKKq1O7OX3BIT2IP9fLTW+9csrCRKtWrmDXS/vwh2vY9vJBxjJZVKAKBXrBJuWhlNJBF329wQCM3BhVIY9zly2hLZph1coV5Tabm5sJkiEQCHLVtTfy1GO/YTxrYMaa9SribgHl5vVrhYlh+TEsH4ZpY+WHqQwqLrvyRgKBIJApv14wMb3hgQd/y479fYwlsmTdPPnCEF5uoNxX2zTx+xXBUIDqihCrzmrkphuuOWykyHwKh8Pc/p5beWDDb9nZMcJoPINnBjHsILZPD3/2PA+nkEM5WUw3Q50/x6olVdx0/cntqxBCiFNPgqsQJ1H5JDiyjJ6uDlRzO23Lr2C4ezeJoW5yqVfLK20GghVUNLdS2/oH5McPElVDtCxeRnMoNeUk2DRNbn/vbRz8X99nNLgQFe/XQx6Lq9YSqNJhsxyIk3pIaGZQP+avxIg1Uu32cPt77yhXmu54/zv5yj//B6NjgzpgqjyM7oNAVAdsK1isvKlitTEBuSQEKnRISvdQXV3JHe9/ZzlgtLW1sebsNrbuG9WhJzOgF32qXKpDi5PSAUh5OhTaQR2QrVCxMjig+1xIsObstnIgfvvNN/LIxqd4ubdXVzBLQ23tsA7vvmBxPm1x3mw+qYObYenKYaqXZe3VvP3mqSvn3XLzjWzc9Cy7Dm6HmnOh7jwdckurArvZib5aQV2RrHuDrvxmR2FkOysX13PLpHbPXbOaG9/yRu5/eBNOzbmoYB2eKs4bVu4Rp9CahoeRHcIe3c6N175xSrjSF0XOZzRj8fstWxkf3acXZoo064CWHWVq1b04h9IK6VseZQapqqlh7ZpzueLic8uvl2EYvPcdt5DJ/JSnXholbjeTdxohH8dLdoP3qj5+pgWmH9Mfgepl+G2TmC/HZcsbeO87bpm2KhYOh/nEx+6gpaWJh373NP3Dz+MF6ooLYVVPBGInpau3uSEaayq57qbrePuNb502tBiGwQfe9y5S2TyPPrWFTDKtL6D4InoBsEODaym05oYJkebNV17EB973rin9NQyDG6+/mnt+tp51555N71Ccva92kVd+lB1Cmb7iBQwXwytgFDL4jTxLl7TTXFdBuNDLjdffOKVN0zS5/KLz+M2ze6lrX87V193Ky7te5JWX91AwQni+CAQqmbgwlMMsxPE5Gc5etoJlK8/DMA2GOl/iLRefd9jxLU1vWLVrN08+u4WRZJ50TpEvuHhKYRoGfp9FOGBQE/XzxovPZ+XK5aekehkOh3n3bTexc9duNm3ewlAyQcbNkSuYKAWWAVHTIxTKUxc1uOKidaesr0IIIU4tQx1tULU4qo985MN85zvfPdXdEGeYdDrNPT9bT8bfQiaTorNjL46lq5i+YBTDtFGeQyGbhPw4tptkwaKzCYbChAs9vOe2Gw87aVdKcdcP7+HBJ7aR8C3AzSaKQ2tLt0kpzXUtrQhcXBU43IAViFJROMgNbzyXO29/b/mEsNTmrza+wHgircNvoGZiDqpXoFQRwvTpgGgFdfAsJKmsCPO2qy6Y0ibAtu07+fI3fsRYIgfRhYA7sZiOHdZtTQ6ZTrp4z1a/fq7kAaoqAnz+T9/PuWsm7jU5NDTE//uF/8nBEUOvKhuoLrZTXECnxDCKgdXTc3CzYyyoUfz93/zltDfYHhoa4i//+h84OJjHCzfrVWtNa/oFsIqL8RB/FTPdy8J6P1/94v84rN10Os3/+e7dPPbUC+QCTVB5Nsq0Uco4bLS4YSgMrwDjewnk+rjq8gv42Ic+MO174Kf3racr6efFF35P/8AAqpCHcK0ePmyHKAchJ6MvBKSHMXx+GhsaOP+CC2mL5nnXbTceFgrS6TT3P/gbntnRSc+4QV7ZuJ6ph9mW+2lgmR5+w6G1Ei5e3cbNN7zlmFUxpRQ7d+3m8WdeYPfLHQyMjJPO5PBchWkZhEMBGmoqWbFsEVdecuFxhZZ0Os0vf/Uwjz75e7oHRnCsCJ4VLt4SqPTeymO6aWw3RWtjLW++/AJuedu1R+xvOp1m/YZH6B5XVDWdxeDQMAODw4zGk7iOi2VbVMeiNNTXUl9Xy1jfflordeidrs3S6zXk1lBRrVcIV56it7uDwf5eRkdHcZwCtu2jurqa+sZmmlsX6VWKgcToIHXWyLSv16HPc6LTG062M6mvQgghTj4JrrMgwVWcqENPgtPJMRJjI8Tj47iuXvwlFqukoqqGcLTqmCfBpTa/e/dPeHrrq8TdCvL+BlR+HJVLHlYZNAJRDH8Mf36QmJXg0vMW8+EPvPuwtkttPvXifkYTKZxCDqxIcX5nYCIElCpXbgrbF6S6Isxl5581bZtKKb539z386qlXiY+P6cprqEkPv3VzTNxWpxiyrYBeYTnTB/lxYpVVvO2yxXzoA+897CR2aGiIf/zf/4et+4ZwCOjKsC9yeBgupKCQwCbHeUvq+Mz/88fThtbJ7f7T//53dnQMknVMXVEOVBcr2XohHl25G4XMEEGfYvWiOj79/3zsiO2m02l+uf5hfvfEs/QNjuIEGyBUh+Gr0MHYc/X8zswQdnaA5oYa3nzFRdxy49HD1T0/W0/a30xfTzd79uwmnc6SLxQmqrkGYFj4fT7C4SDnnLOKppZmIoXeaS+KTH7ddu7azZObt9A1mGY0rUjlVXk6bsRvUB02aKsP88aLZl7Bm+vQUurvE8+8wN6OXoZG46TSGVxPYZkGkXCIuuoYSxc186bjDMSlNjdt3kqWEEagilAkhmXZuK5DJhVH5cYIkuGKi9Yes83S65UNtJbD6/FIjA4Syncf9fUSQgghXmskuM6CBFcxG3N9EgyTKmNb9tI7HCdnRHHtGJ4ZRGFgoDC9LJYTJ6CSNNdVcsl5S45aGZvcZvfgOLm8Q8Fx8DxXDxM2DUzTwmfbBPwWrQ3Vx9Xm9+7+KZt2jzAynsTNxnWA9cf08NXyHNdMcTXgcaxQjJpYlMtX1PChD7zriG17nsf6Bx9iwyNP0zuWJ+OYeMoCQ4EyMA2XkO3RXOXnhqsv4203vLU8//RoJtp9isGEQ6YArqtQxSNrWQYhH9RX2Nxw9eXH1W652vj0C+w/0Mng8CipdBbXVViWQSQcpL62mrMWtnPlpcdfbSxfFGk8i4H+7iNW8BoaWxnrP/ZFkUP7fCZVxeajv3PZ5uTXq7p5CZZ95HsFu06B0d59M3q9hBBCiNcKCa6zIMFVzIX5qjQ9+eyLdPbHGUvmSGVyuJ6HZZpEQgGqogHaG2O88eILZlRpmss2Jw8/7R6DTDZDIZ9BOflyddiw/fj8IULBEG1VxnEPPwUdNLds2cLO3a+wv7OXXC5PIODnrPZmVq04m7Vr1x5XYD0Z7c7Xe2AuL4qI+SOvlxBCCHFsElxnQYKrOJ2d7pWmUnvzOfz09e5Mq46+3snrJYQQQhyZBNdZkOAqxNyQE3YhhBBCCHE0cjscIcQpN5v74wohhBBCiNe+mU/wEkIIIYQQQgghTiIJrkIIIYQQQgghTmsSXIUQQgghhBBCnNYkuAohhBBCCCGEOK1JcBVCCCGEEEIIcVqT4CqEEEIIIYQQ4rQmwVUIIYQQQgghxGlNgqsQQgghhBBCiNOaBFchhBBCCCGEEKc1Ca5CCCGEEEIIIU5rElyFEEIIIYQQQpzW7FPdASGEOJN4nkdvby/dPX109w2SyxcI+H20NtXT2tJES0sLhmGc8jaFEEIIIV5LJLgKIcRxUEqxc9dunty8heGkIuP6ybkmCjDIE9iXIGS9RF3U4PKL1rJq5Ypjhs1Sm5s2byVLCDNYRTDcgBWwSbgOXXvjeDs6CZLh8ovOO642hZhMLooIIYR4rZDgKoQQx5BOp3lgw2/ZeWCM0XwQzwxi2EFsfwDTNPE8j0whx2g+S18yQ/dDz7Hqpb3cdP01hMPhI7a5fsMj9MShqulcwrZvyvd9QDAcBVpwnQK/eXYvu17ax43XX33ENs9kErDm9hjIRREhhDi1BgYG2Lx5M5s3b+a5557jueeeY3h4GIA77riDu+6666j7d3R0sHjx4hk958KFC+no6Dih/i5atIgDBw7M63PMlgRXIYQ4inQ6zQ9//HN293oU7GoCsWoKBZd8Pk8yk8TzPEzTJOD34w9U4vfVMpQc4ek9Y4zFf87t77n1sKCZTqe552fryQZaqW2rP2YfLNtHXftyhkYH+fF963nPbTceV3g9E4Y1S8Ca+2MgF0WEEOLUa2xsPOnPec4555z05zyZJLgKIY7b660qppTivvs3sO1gHrOyHc816OsfIpfL4hQKuK6DUgrDMLAsG9vnIxAIUhmrwPWH2N7ZyX33b+AP33Nb+bgopVi/4RGygVYqquuLj3kkxoZIjI0Qj4/jug6WZROLVVJRVUNFVT2GYVBRXU9iFNZveIR33XbjEY/1fITB+WjzZASs0/09O9fH4GRdFBFCCHH8FixYwPLly3n44YePe5/W1la2b99+zO3+5//8n/zoRz8CdCV3tm655Ra+8pWvHPH7fr9/1s9xoiS4CiGO6fVaFduxcxfP7uzBqD6H8USG+Pg4uVwGzADYIYyAH8Mw8ZSH6+TJZzKkkwnSqSSxykpi0Vae3bmH83buYs3qVQDs3LWb7nFFXXs9SikGejro7NiLY0UxApXYgWaMgI3yHOJjSVT/Pmx3K+2LltLQsoiK6nq6O4fZuWs3q1etPKzP8xEG56vNyQFLKY/46MBRw/tMAtaZ8J6d62Mw3UWR43W8F0Xm0+l+keFMJcdViFPjC1/4AuvWrWPdunU0NjbOeOivz+dj9erVR93GdV02btwIQEVFBbfeeutsugxAVVXVMZ/3VJHgKoQ4qtfrsEPP87j/oUfJh1qJjyWIj43imQHMaAsYU+8kZgCG5YdAFJRHLjPC8GA/hUI1sVAr9z/0KKtXrUQpxabNW6luPpdCLsueHc+TLPjw163BzMbJpcZIjPTiuR6mZRIIVRCI1GIGF7G/8wCDfd2cs/oNVDcvYdPmrYeFrfmots1Hm5MDVrSqjv7uV2cU3pNjOmB1HXj5sHk2ixYt4k/+5OPl92xl4xqcTI5EIknvcB+u62JZFrFohIpYO4FQ8JS8Z+fqGEwOmZMvikw8z/FV84FjXhSZz2Nxul9kOBPJcRXi1Prrv/7reX+O3/72t/T09ADwzne+k1AoNO/PeSpJcBVCHNHredhhd3c3BwezJIOKsZFhjGAtpv84fhbDxAzXofJpxkeGMWtrOTiepbu7G8MwyBLC57rseOEpCqFWXDdD397n8OwoRqAKK9QOpoXnueTyKVSiG9NJUlnfTtoKsePFp1h9/mVkCdHT00NrayswP0OQ56uCVwpYlQ0V7Hxh0wmF9+6BYXbt2s2BAx1TntfzPO752XoygRZcv8GWHXtw8OnFtHwRTNsk53nER3KogXFsCixobWLQVSf1PTvdMQjUn4vPOvQ/ywHsQARoxHML7O/smHIMSiHT87zyRRHghKr5hmEc8aLIfHm9Xhibb3JchXh9+MEPflD++1wMEz7dSXAVQkzrTB92OFs7du4mpSKMDuvQahxPaJ3E8IdRoPcPRdi+Yxe1tbUYgUr27HienL+B+EAHeUL46tdgm4f/Ojb9YYjWo1yH0bED+OknVtvKnh3P09K+mO6evnJwnY8hyNNV8GZiujZLAStau2xW4X3FuetIJFOHPefo2DhJq4Ge3lESOQhGm/CZUyvkpgW2zw9UoDyPfd0jxALQUt9wUt6zhx4DJ9xGqKr2mPuZlo9w/dlkksPlY1AKmb29vWQJEbZ9U6r5Mw3DvkDwsIsi8+X1fGHsSOZiWK8cVyFeHxKJBL/4xS8APdroTW9606nt0EkgwVUIMa35CC1nkpf2HiCedlF29PgqrdMw/GE8J008M86e/QdYWPBIxbOMZxSJxAG8SDv+cA1KKZz0CG42jpNLopSHYZjYgShWMIYVqsZfswQnPcLYwAHcihhViXG6+/MAU6ptswktk6ttk4c1z8ahFbze3l4yKkjv7q2zCu97d2/Fwzxs+1xB0dEzimPHCMWO/boZpkk4Vkc6m6ajd5RchZr39+zkY+CE2/BHjx1aJ/NHa8kDe3dvpbmhmp6eHrp7+jCDVRRy2VmF4dXnX4YRqJpyUWQ+vN4vjB1qrob1ynEV4vXj3nvvJZ1OA3D77bfP2Wf28ccfZ+3atezbtw/XdWlsbOSiiy7ife97H7fccssp/d1w+H/1hRCvexNBaMms2imFFqXUHPXs5Onu7SfnuJihmlm1Y4ZqyDkuXd39ZHN5ursOkEqm8CLtWKFq8uPdJDqfJzU2QFYF8CLtqNgSvEg7WRUgNTZAovN58uPdWKFqvEg7qWSK7q4D5LI5gHK1zSsOQc7YDYTql2IeFloP6VsptNgN7HjxKTzXLVfbSm1ahwwxnCnL9pXbBOju6WMsnmI8oxgbOIATbMZfcxbGNKF1MsOydXgPNjM2cIDxjMJ1vcO2K3jg2DH8wZldbPAHwzhWjMGkwabNW+b1PVs6BomCPePQWuKP1pIo2IyNp8rVuUCogj07nj/hMOyE2tiz43mC4Qq6+4dOqF/Hq3RhbKbhqqSiup7ucR32znTpdJqf3ree327eR6DpXGraVlJV10IwHMUXCBIMR6mqa6GmbSWBpnP5zbN7+el968snrJPJcRXi9WPyMOEPfvCDc9buq6++ytatW0kmk2QyGTo6OvjJT37Crbfeyhvf+Ea6u7vn7LlmSoKrEOIw8xVaziQjI8Ng+g9biGnGDBNMPyMjw+QyKRKpLHkzhOmPkOrZSiadwqhdjVW9BCtch+ELY1h+DF8YK1yHVb0Eo3Y1mXSKVM9WTH+EvBkikcqSzeoT1+6evvIQ5NmGFvyVOggVK3hzoVTBA+jqHWBgcLAc3u3wzC4M2OGacngvFAqHfd9TxoxDa4k/GCbp2HSP5Of1PdvVO8Dg0BDBmqmrSyrlkUsOE+/fx2DHFvr3vcBgxxbi/fvIJYcPC9PBmsUMDg/RVRxSOjLQMydheGSgh3wuf8I/37HIhbEJpWG9Q24NtW3nHPN3bnlYr1vDjw8Jr3JchXj9OHjwII899hgAl112GUuXLp11m36/n5tvvpl//dd/ZePGjbz44os8+uijfPWrX6W9vR2ATZs28Za3vIXx8fFZP9+JkOAqhDjMfIWWM0kmffj8yRPnkUmnMQ2DZCqFFW0i1bMDL9SCVbX42NVG08aqWowXaiHVswMr2kQylSr/Au/uGyQVH5+T0JJOjNPdP0R33yDBcOyE2jpUKBIrV/CGhoZIZwrkzdCMQ2uJHa4hb4ZwvcNPrM1jHMtj9jVaQ/94nq55fM8ODQ3h2bFyRVwpRXK4k549zzDQ100878MJtePFzsIJtRPP+xjo66Znz9MkhzvLgcK0bDw7xtDgIH6fTefBfYeF4ZkK1iym8+A+fP7ZXbQ6Grkwps12WG/G38r6DY+U3w9yXIV4/bj77rvLn/25qrZu3ryZX/7yl3zyk5/kyiuvZO3atVx11VX85V/+JTt37uTaa68FYPfu3SdlxeTpSHAVQhxmvkLLmcRTQCExN40VUv8/e28eJ1lZ3f+/715r73vNvm/AsGvAiCLoAELCV4WoURSjMZhFozGJMRqzfqMx30RxBZev+gtGxS86CC4IUZB9mZ1h9unpvXqrve72/P54qmq6mZ7p6ekemIbn/XrVq7ur7j333OdWVd/Pc85zDqEQjGfGCa16ikN7EImF6NHGGZnRo42IxEKKQ3sIrXrGMxkASmWX3p7DcyJaensOUy6VKbsexjSpxieLYZi1CF4+nyeXL2I1LJ6VTathMWF4bKows1x7o+k6ml3Prt17Z2XnRBQKBYSVBCDwygzuf5LRsQxG61nYzSuxEq3odgzddNDtGFaiFbt5JUbLWYyOjTO4/0kCT6aJCytJoVgkauuUQ2fa9PDp0A2TcugQtU7fGiY1MSaZ67ReNa4KxcuHb33rWwA4jsMNN9wwJzYbGhqO+1oymeS///u/aWqSE85f+cpXcN3Tl5lzPJRwVSgUx3C6RMt8wnYiUBpHhP6s7IjQh9I4thOhVPYRwiPQojMWrVX0aCOBFkUIl5IrfSsX87habE5Ei6vFKJUKOLZFEMzu3KsEgY/t2IAUbaFTP22UeTo03UToxly4dwy6HSM9PHpabAMyfdywpGg98PQprfMdPPC0FK+GVRHrGpiRufHPjEh7pwk1MXZ60nrVuCoULw8ee+wxnn32WQCuvfbaEwrOuaS+vp4bb7wRkJPQTzzxxAty3ImoqsJTcOutt3LrrbdOu92aNatfAG8Uihcex7bIBj5zkSw4UbTMJxob6kkPW4jMYbSGZadsR2QOo1sOTY0G+WIZPSgT1nfMzrlEB/rIIPmijLoZuk5ozE37itCIYmgaqY5WjuzNVHo9zo5iPkNqZQsAfhCi2fWztgmgaadJuOom+WLptNgGZKuRMY/04W2nvM7XB9KHtxFv6CAWjVF0AxzbQoQhmn7qc9IiDHFsi5I3RTR7jii7Hobz8p4Ym9i+aDZMTOtV46pQvDw4XUWZToZ1645W3H8xijQp4ToFt9xyC7fccsu0291887tfAG8Uihee0yVa5hNrli/kQDaDXxpGlBrRIjOPkIrSKJSGMe0oq5fVMzSSQXMaMA2T8BQFhghDTMNEcxrQhCxOFAiBYcyNiDMMk0BAqquDcHs30DVrm6I8Rqprpfxd0zFMGyHErErqCyFmXzjrOIRegXj09E22tDQ34e58FlfEsWezzrc4gjV2hNaz11J2PRYt6OLQ4AixulP/vBVzIyxe0IXrzuUa78moibHTk9arxlWheOnjeR533HEHAG1tbbzhDW94QY//YrfJUqnCCoXiGFJdHYSlsTmxJUXLLCOMLwIXXXAeVjCOU78AMb5fitAZIEqjiPH9OPUprCDDxReej2nqYMWJxWJowkNMtUbzRDbDEE14MmJnxTBNKVYjkRimHs7Y3lT2TT0kEo3R2dlJhCKBf2zl3pkQ+B4RinR1SQGciMWIRyP47rGtPGaC7xYw9NPzDzQojtLSMrs2SCeiq72FoJyF2KmtbawRayUoZ+lqb8GxLZoaGqhzwC2d2ti6pQJ1DjQ1NJxW0ZLqaKVUyMyJrWI+Q6p9/k2MnY60XjWuCsVLn7vvvpvh4WEA3vrWt2KaL2wMcufOnbXfq//XX0iUcFUoFMdwukTLfGLjxo00WCUs28ZOdiAyhwjHDky75lWEvtwucwg72YFl2zRYJc4991xisSRaZV1mPB5HxycMTi4dLwxcdHzi8Tgg13jGEzIi7jg2qfZmirmRWZyxjLal2ptxHBtd17nkonMY7ds3K5ujffu45KJzarO0Lc0NOEaIY3DK76/A93CMqVdhzraFRxh4UBph7arZtxY4HrZlYEbriFjmrMYgYpmY0TosU5eipZhh1cplmH5mxuLVLRUwA7l/sXB6RYuaGDs9dQTUuCoUL30mpgm/853vfEGPPT4+Xov2xmIxLrjgghf0+KCEq0KhmILTJVrmE6Zpct2myxDj+4nWt+I0pNDxIb2NcGwfYSGN8AqIwEV4BcJCmnBsH6S3oWs+TkOKaH0rYvwA1226DF3XicdjJCIWvltA0zTi8TgR20YEZcLAJQwDKbyEQAhBGAaEgYsIykRsm3g8jqZp+G6BRMQiFpXrWlMdrSSi9pxE2+IRuyZa1q9bS6peIzs6dEo2s6NDpOo11q9bW3tuzaoVCDdDY2MDeliasXALfA89LNHYWA8iOOZ14c9ubWpp5CAdrfUsSHXOys6JcP0Q04nPyRiYTgwvEDXRYlkWG9atIqYVKGTS00bhRRhSyKSJaQU2rF2FZVmnXbSoiTFOS/EzNa4KxUubkZER7r77bgDOOussNm7ceNL7XnbZZWiahqZpHDx48JjX7733XorF4nH3z+VyvOUtb6lFe2+++WYcx5mR/3OBWuOqUCimZP26tex8dh/p0aFTatcwlWiZb7zx6k08/NgW9o0fJtqwBCeapJgbI/TLCHcMURwEQkBHN2w0w0JPdhJNNKAbJv7YQVa0mrzx6k2AXNsY7xkmDEN838MwLWxbPnw/IAjkQ4gQXdMxTAPDsGopwSBvKm09JG5Ca4vs2Vpdj7pq5Uq273wOtwR25OSLNdWibWtXkR3YU1uPqmka12y6nDt+sJnsKDN6H2RHh4i6PVxz/TWTJi4Wpjppr99OujBGW2sLw8MjlMsuph074QSHEALfLeAY0NzaQik3gmVolJ+3na4J3NzwKfWzdXPDJIwync3J03rT3jeQZsnixXQPz34MlixeQu9AmgvPP7cmWizLYv3a1QwODXG4px8fC82MYFoOuq7L959XRvglTDyWpzppa20B7YURLdWJsZ8/upeWhWtO2c5o3z6uuHh+ToydjjoCalwVijOLBx98kL17j7ZWS6ePVureu3cv3/jGNyZtf9NNN53Q3h133FFrQTPX0dZ/+Zd/4W1vexvXX389l156KcuXLyeRSDA+Ps5vfvMbvvSlL3H48GEAVq9ezSc/+ck5Pf7JooSrQqGYktMhWuYbuq7z4T99L3/3v/+TwYyOFmsj2bKA0C8TuCUC3yUMQ3RdFhwy7Ai66RAUxwgzvXRYQ3z4T/8EvVKEaUFnG62HSwQ5yJVLBL6sCgpgmsYkgToV1UhbzIHWRIxUh7wm1UiLrsGGdat4bs9+MpkC0UTTCQtAiTCkmBuhzoFVa1ehaxwjWmKxGDf+r2vYfM999HQP09i5vObz8Xwc7dtHql7jmuuvketxJ9DZ2UmqyaY06lNyS7S2tpDPFxjPZgkx0HQTXTfRNK0SdfYRoY9OQGMySTwewy0VSJg+tnnse8syTczCEVyYkXh1c8OYxSO0trVw6cXrTuv7tux6tLcvZjx3iMIsxqDOgfb2DtzyoWNFiwZtba20tbaSyWbJZnNk8gUC38cwTeqaYiSTzdQlk5Nyrl8o0fJynxg7XcXPXu7jqlCcSdx2221885vfnPK1hx56iIceemjSc9MJ12qasGEYvO1tb5sTHycyMjLCbbfdxm233XbcbV796lfzne98p9bP9YVGCVeFQnFc5lq0zEdaWlr4xEf/hM9+/jYOjeYI/XaEGUM3I1iRhKxsK0ICv5IyXExjFAdY3Cj40Af+hJaWo2sFU10dNMS6KQU6pu2QzZdnHGlLJqMkjDINMVFL53y+aDnVaFu6+9kpRUssFuPN11/Djp27eOixLZSIojkNRON1sgpx4FPMZxDlMSIUufLijaxbt2bKc5K+biTz0LP0ZTK4JYjHY8TjMcplF9d1KbseYRig6wZO1MK2YziVYkHV6HBrUjCSiDMyPDmN2bE0Fi9bRe+Rg2SHRog0LT1hf9sw8CiNHCRp+XQtXUVnNH/ab9qr1V9XrVxWi5CfyhisWruKwCvXCilNKVo0qKtLUleXJDWNXy+kaHm5T4xNTOs90XfqdDw/Qv5yH1eF4qXKnj17ePTRRwG44oor6OiY2+Ucn/nMZ7jvvvt4+OGH2b17N+l0mrGxMWKxGF1dXVx88cX83u/9HldeeeWL+v2gidlWsngZc/PN7+b227/2YruhUJx2hBAnLVouvej4omU+E4Yhm39yL/fe/wh5EScw6sCMIjQNTQjwixhBhriWZ9NrXsnVV72+FmmdaOOr3/wuevM6dj23H89M4gfaSUXa6pNJTENgBVnWrlxKOLyL9950Y22chRB8787NpIOmozergqmjbfEYyWRiUrQtOzpEizHCm6e5aRVC0NvbS09vPz0Dadyyi+3IdbGprg66urqmvfZVX/vLSXqHsmTKzCg63NWapMPJ8uD//Ixdu3ZN2m716tWcd/GrKdpdFIt5ug/uxTcSYNdjRRJouokIfbxSDtxxzCDHoiUriURjxLxebngBJlwee/xJHt2bpaGlC8/zZIR8hmOwauUyLMtidKiXV6xMctGF5wNQKBS44webKTmpUxItL8T5T6RQKMiJsXExs4mxTZfP+4mx7Tt2zjqtV042rWDD+nWTnn85j6tCoXjpooTrLFDCVfFyYy5Ey3wnDEOeeeYZduzaw/7uPsplF8exWbawk/VrV7Jx48ZjBOtEqjer9R3LJwkW1/OPjbTZFrZtY1vmJMEy3r/vuDer80W0VH0tOl2UPO2kosOLUp1ErJCYKwXml770xWOKTCxZsoQ//MP3127aGzqWUciNkR0bIZMZJwh8DMOkrq6eZEMTsUQDY/37X9Cb9p6eHr7/s8dpWlC5foKTjpAvmhAhBxg5spM3XXkhqdTReOp8Ey0v14mxKSebZsB0k00v13FVKBQvXZRwnQVKuCoUipky6Wa1oXXGgiU7duKb1fkkWib52rGcfLF03OhwPBphtP/kfT2Tb9qrkXen4+zJ12cGEXKQ16/cv3VS5H0+nP/xeDlOjL0Qk00vx3FVKBQvTZRwnQVKuCoUilPhmJvVkxQsJ3uzOp9Ey+n29Uy9aT+daaITOVPPX3GU+TTZpFAoFC8mSrjOAiVcFQrFqfJC3KzOJ9Eyn3ydC053mqhifjGfJpsUCoXixUIJ11mghKtCoZgN6mb15c18WpOseGF4uU3gKBQKxUxQwnUWKOGqUCjmAnWz+vJFpYkqFAqFQnFyqD6uCoVC8SKjaRqpVGpSZVjFy4O57JGrUCgUCsVLGSVcFQqFQqF4EdE0jQ3r17F+3doJkfeho5H3lS2kulaqyLtCoVAoXtYo4apQKBQKxRmAirwrFAqFQnF89BfbAYVCoVAoFAqFQqFQKE6EEq4KhUKhUCgUCoVCoTijUcJVoVAoFAqFQqFQKBRnNEq4KhQKhUKhUCgUCoXijEYJV4VCoVAoFAqFQqFQnNEo4apQKBQKhUKhUCgUijMaJVwVCoVCoVAoFAqFQnFGo4SrQqFQKBQKhUKhUCjOaJRwVSgUCoVCoVAoFArFGY0SrgqFQqFQKBQKhUKhOKNRwlWhUCgUCoVCoVAoFGc0SrgqFAqFQqFQKBQKheKMxnyxHVAoFArF6SEMQ/r6+ujp7aenf4iy6+HYFqmOVlJdHXR1daFp2ovtpkKhUCgUCsW0KOGqUCgULzK+77N161Z27NrD/sO9lFyPiG2xbFEX69euZOPGjej6ySfICCHYsXMXDz22hRJR9EgDkVgbhmOSDXyO7M0Qbu8mQpFLLjqH9evWnrSAVWJYoVAoFArFi4EmhBAvthPzlZtvfje33/61F9sNheIFQ4mWuR2DMAzZ/JN7uff+R8iLOIFZB0YEoeloIoSghOFniGt53vCaV3DNVW+YVsAWCgU233MfvRlo6FiGYVrH3TbwPUb79pGq17hm0+XEYrHjblsVww8++gwjOZeCK3Bdn1CAroFtm8RsjaaEzaUXb5yRGJ5vqM+BQqFQKKZjcHCQxx57jMcee4zHH3+cxx9/nOHhYQDe+c538o1vfGNaG7t27eK+++7j8ccfZ9u2bQwODpJOpzEMg/b2di688ELe+ta3cu21187Z/53NmzfzjW98g0ceeYShoSGSySQrVqzgTW96E+9///uJx+NzcpxTQQnXWaCEq+JMZi5vrqeO4NVhGCZB4FMqZAhLY6cUwZtrX0+Xzbkeg3Q6zWc/fxuHxnTCSBvCjKGZEXTDBk0HERIGLsIvofkF9OIAixsFH/rAe2hpaZnSZqFQ4I4fbKbkpEg2tiKEIJvNkc3myOTyBEGAYRjUJeIkkwnqkknQIDs6RNTt4Ybrr5lSvBYKBX78k1+w48AAY9kSgVWH5tRjOgk03USEPn45hyiPY3gZ6hMOG5Z18MarXndCMTzfON2fA4VCoVC8dDjR9//JCte3v/3tfOc735l2u1e/+tX84Ac/oLm5eSYuTiKbzfK2t72NH//4x8fdZsWKFfzoRz9i7dq1p3yc2aCE6yxQwlVxJjLXN9cTI3j17Uso5MbJjo2QyYwTBD6GYVJXV0+yoYlYooGx/v0nFcE7Hb6eLptzHcVMp9P83f/+TwaDdrRYG2a0Ee0EkVQRBvjFMURhkDZjgE989E+OEa9CCL5352bSQRPJhlYGh4Y43NOPj4VmRjAtB13XCcMQ3ysj/BImHotSHbS1tpIdG6LFGOHN118zaTwKhQLfuuNOdh0awTMbsRsXUciNU8hlKBaLhGGIrutEo1FiiTpiiXrKo4ew/THWLWni7Tdc/5IQr6fzc6BQKBSKlx4T/5cuWrSINWvW8LOf/Qw4eeF600038eyzz3LJJZdw1lln0dHRQWtrK6Ojozz77LN8+ctfZvv27QC88pWv5MEHH5zR0qIqQgiuuuoq7r33XgDOP/98PvjBD7JmzRqy2Sx33303n/vc5yiXyyxevJgnnnjiuJPopxMlXGeBEq6KM42JN9d1bYsZGuhjaKCP0dERfN/HNE0aG5tobe+krT3F2MCJb66rEbyi3UWxmOfwwb0UfRvfiONjI9DQEJi4mEGemOmycMkKotE4Ma/3uBG85/s6Vymtp8vmXEYxwzDkrz/xL+zLJrEal2LYMYQIcYtZvHIB3y0jwhBN1zFtB8uJYUfr0DSNwC3gjR5geTLLP/3dX07657R9x05+/uhe6juW89ye/WTL4MQbyGdHjysy48kmSvlR6hxYtXIZ4/37uOLiFWxYvw6Q/8i+c8edPLztEHrjSrL5AsNDgwSlLIFfAL8MCEAD08EwYxiRJM2tbSTjMcLRPbzyrMW87cbrX7TI41xE3p//OTi4/znGRkco5Au4bhkhBJqmYdsOsXiMhsYmlixbdVKfg7n2VaFQKBRnBp/4xCe48MILufDCC2lvb+fgwYMsXboUOHnhWr13Ox5BEPCWt7yFO++8E4C77rqLa6+9dsa+fv/73+fNb34zAFdccQWbN2/Gtu1J2/ziF7/gDW94A0EQcMstt/D5z39+xseZLUq4zgIlXBVnEtWb64LdSX9vD3v37MY3G9CiTZiRuqMpnaUMojiC6Y+xYuVqOrpSxL2+Y26uqxG8vmKc3u6DDGZ9inoTbnEMvzhO4BYhDEA3MOwoZrQeO1pPNBylLWnStXAJndH8MRG8ib7OZUrr820GgcuBnU/S132QsbEx/DDA1A0aGhroXLiEpesuwjCME9qcKop5oLuHdO8h8plhvHIRRAiajuVEidc109q1mCULU8eNYt7147v51t1PYneeR27f/biZPoLAh9CXtgwHEgtA18GIoFsxNKeeeF0T0bpWQq+I2/cUv3/1+Vz3xqsBKXi++s3vojevY9dz+/GMJNnxYUaH04RGDOwYuhk5moLsl8AtoAcFGptbSNY3Y4VZ1q5cRji8k/fedCOaprFt+w6+/O0fE9SvpK9vkNJ4D2E5C7FWiLai2XWgWxB6CDcDxSEoDKE5SaL1KTo72zDG9/C+t7+RszasPx1v++MyV5H3iZ+D7kP7OLh/L7l8DhGV0XLNqQfDgsBDlMcRhUG0Yj+JeJIly1awcPHy434O5tpXhUKhUJy5nIpwPRkeeeQRXvnKVwLw4Q9/mE9/+tMztnHNNddw9913A/Dcc8+xcuXKKberpi5blkV/fz9NTU2n7vgpoKoKKxQvAYQQbL7nPsbCerY+8htyIobdeTGWmyMoZSiPHkKIEE3TMZ0EZn0KzVrNroN7OHL4EGdv3Mjme+6bdHO9Y+cuDqXLHOk7zGA5STGbo5x9GmE3okWb0GKLQDch9PHcLG5mhGL6AMVkOyXRQGnvLtzOdnbs3FWL4E30teSkpBgcHOLQkT6KxQKeWybwyjUxaFgOlu0QjcZYvKCzIgY5xteJNmN1TTz2wF0c2LeP0G4gNGNoRisYGiDIjPscGd7Fk489zNLlyzn/VddQyBxrszoGPeOC+o4Gtu7YyZ4dT1IYT0O8A6KLoaEeTbcQoUe5PE45M8hI3/10721m5foLWLt6JT39w7Ux8H2fu+55AL3xPNBNSqPdiNLI5ItpRqHzlRB64GYIC0MwsptMvp5iLkVD+2L0xpXcdc8DvPHqTei6Tl9fH0URpf/AYYqhw8CRfXiag163BN3NEpbG8b2+2kSDbsXQnTqIt5EeGyIzto/2roXsO3CYjmSU3t5eOjs7+dE991E2mxk4fJDSaDdavAPRci5acRhRHEFkeqhFXK0YWqQN0bgWRp+jMLibHq9Ae3MzP7rnPjasX/eCia3Jab0b8CtpvX093c9L623BTjTw80f3svPZfVNG3qufgwMHn+XggQME8QUYi16JZjqTD2oBkQaoX4zwy2TTO9i57WkKuTHcJUuP+RxM5WtDx9nEnpclYAGRWALoIvC9E/qqUCgUipcfyWSy9nupVDolG0888QQg17AeT7QCvOENb+A73/kOnufxox/9iJtuuumUjneqKOGqeEnycku527FzF/v682zbtQU/uRxD+OR7tyDMJDj16PFGqERcS14BxgbR/H1E6rsoaC088fjjlNeuqN1ch2HIg48+Q/9Qlr6sRW5EikC942J049j0W81OQKITEXiUx/bi9e8jaEphmsM8+OgzkyJEE8Xg9p3PMjQ4QDE/Tmgl0ZwGjEQcdAPCAM/NU8yNkRsdJDs+SltbO6tXLZ8kBifatGIhd3378xRJoMVTCDOJsJOEegQ0A0SAFpYI3SzCirPn0BBHDn2ey6+5kZ6cmGQzDEMeemwLiZZ1PPbYYxzc9ThBrAt98ZXHiBYNJomWfHo72x75GdnxUc4/7zweemwL69et5ZlnnmHMi+BE6xnp2YXwi8deTAF4BWnVTKA1NiG0dTC2Gy+9ixG/QGPXasbSEZ5++mnOP/98enr7GSsIRnIugwMDBJFW8HJ4A1sRtnwPaE5zbaLB9wuQT6ONHsBIduBZTfQdOUjQ3k7E0Ojp7ScMQw71jTFY9CiNHEI0n43wM9D/GCLSBJEWqEuAZoLwwc0hysMwvg8Rb4emDZSGtzLIYrRCnp6eHhYsWDB3b/rjMDGt19fyPPPYr/CNRKWYVCeaIz8HmbEcYmAfZpBj4ZIVDPlxvnvn5kmR9+rn4HB3P/v370druwAz2SUvU+BB6CPCoCrd0XQDdBPNdDA7ziPMdrB//xMYhsGDj7rHREonZgk0L2id9twM06Jl4RrSo0PH+KpQKBSKlyd33HFH7fc1a9acko1qteP29vYTbjfx9V/96ldKuCoUs2Halh27+4jZ215SLTvkzfXTPLvnEH58EV62j0CPoTdvQNef9xE3bAwrBrEWROhTzHRjhAWIL+LZPftpjAasX7eWvr4+etNZjgzkyGZGoWEVRlzeWJ/wht2wMJrXEuaHyKaf44jbSNyG3t5eUqnUJDG4Zet2hgZ6CMw6rLazMZ/vK6DbMUi0IgKfwvghug/tpVQusmHtmpoYFELw0GNb0J0Ofvb/vo3rtCKibYSRDpnCqemTCh+JMIGwmyBw0cx+iqUhfvb/vs3lb7yxZlPTtFoUc+/WZ9i/4zFoOw8jmZr2emimg9FxPmG2h/07HsM0dVZ01dPb28tjTzyFiLYx3reHYPQAmDF4vnjVdXDqQYjKOHsQFqBuCUTbCNJbGNd0nGgbjz7+JOeffz5H+gYZHM2RHs4T2A2E44cQZgya16OFPsIvE7r5WiRb0y20eBckTfzsEfTCMCS7SA8NYYZxevqHGB5OM1IIKY4ekFHUzH5wmqD94mOjjQB2Uk5e+GUY3w+F/YjG1RRHdjHS2MK27TtOKFznYrKpGnnPai30HniOnGfhtJ6NZTz/veVgOnGgnTDw2N99kKTl07VgyaTIe19fH0cGx9i751m0tovRk10Iv0Tou3IiRDPBMEHTEEIgwhB8F7wiummjJ7sIuYC9ex6lPhGpfQ4m+lpNbZfPhWTH0sct+pRsaEXTNJKNrWRHp84SUCgUCsVLn3Q6zZ49e7jtttv4+te/DkBLSwtve9vbTsleIpFgbGyM8fHxE2438fWdO3ee0rFmgxKuipcMU7fsaMCMy5YdfuhTKOcYHR+nPz1MT/pBNuzaO+9bdvT19fHs/j6yfoSwPIBILMSINk67n6abGA1LCYujuJlufCPCs/v76O3tpftILwe7+8lkPGhYhR5vndkNe7yVEMiMPcfB7ixHevpIpVI1MdizZy8DvYfQ6pdhx6ZfH6EZJnbTcvzCCAM9+7FNk1SjTGkFyAc2v/7Jf1O2mhDJZeDICDNuBuFmEX4BRCB9N2NodhLsOoSxCGElKYcBD/zkv3nVa15XExc9vf2MZH32bHsE2s5Dr4rWmqCsrEkVAjStIghNeVxNQ0+mCIE92x6hMflaenr72b2/Gy/owBt5DprOgsLgFGdbsQNSeBNFhIGMwuoWNG3AG9mG3rKG3fuPAJAeHmE0k6ccGIj8YUgsROgmIj+EMBwwHTQzenSNa+iBW0ALymjRZkRYTzB+mDDSzGgmz1BaJ5fLkhkbRkRaINsNjavRYm3TXyvTgea1iMIgjO5GRFrIjA2za+8BNk2x/dTrO9swHJNs4HNkb4Zwe/dJre+spvX2DfTgxxYQbZi+LYBuWMRaV1LMDXPowHO4bS21yHv3kV527dhKGF+EmeggKGXle8hKyGs+6cQBHcAGIeQ6Yj+LkejAzy9i1/atHOm5qCZcq1kCLQvlGu/B3oN0H9w7TXR4CwuXrKCtawnJxlZ6uoePm4KsUCgUipcWl112Gf/zP/8z5WstLS388Ic/pKGh4ZRsr127locffphdu3YxNDREa+vUWUC/+tWvar8fPnz4lI41G5RwVbwkeH7LDqd9DfY0UZbhkYM8vO0g49k753XLjkPdPXT3pQkjLYjEQvSTEK0T0aONhEBYOEJ33xDdPX3s2r2HkUwO4XRixJpP7YY91kxQbGIkI+1dfNEF9PT2M5oP6T60F61+OeZJiNaJmLEmfKD70F5i9gp6evsB2LV9C/nAgoaV4DQjSmko9MsooF0P0ZZaqjBeHlEahsxBiHWgRVoQdZAffoZd27fQc84SUqkUR/oG2brlMcJol4y0CoEIyuC7CN0E3UDTLTkeQiBEgAg8NK8Ipo1mOOjJFEG+n21bHue8ZUkyuSLlsQMQbQfTkT6dBJpugJNE+CVAQLSd8ugBspXXc9kcmUwGIYB4ijDwZMpxvA1NACJEiFCeP6DpNjgR0CAsZdCEhx5PIQp9ZFwo5A32HziE8FwwyictWif5HGtDAIw+h/Bc9u8/9h/cXK7vrKb1Dg3n8WMLsBMz62VnJ5pxgaHhvlp6+45du8kVA/SOdQTlHBiRymTCdCevgRWFwCMo59Cb15E7cIjtu3Zz8UUX1DIPGjvPxiuX2L39iRlFh4f6e1i94QIaO5dPyhJQKBQKxcuPP/mTP+HjH//4rNrTXHvttTz88MMEQcDf/M3f8OUvf/mYbfbs2VOL7oLs+/pCM/NGPwrFGYYQgjvvuoetewcJk8uItq5AP+bmbzLVKEuYXMaWPYPcedc9zNcC208+9TQeNqGRmLForaJHGwmNBB4Ojz/xFAcPH8HzAvSGpZUbdkfeiE93c1y9YTccecPesBTPDThwqBuAI32DdB8+hLAbZyxaq5ixJoTdSPfhw/T0y16l3d3diMQiGUUd2w1BCZo3oNUvR4u2oJlRNMOWP6MtaPXLoXkD+EW5vV2HSCyiu7ubw70DAPQPDJLPjKO3bAARINw8hCHYcTRL2kM3ZBRTN6R9Kwp2HBGGcnsRoLdsIJ8ZZ2BgkFIxD24O4p2VSYCZfQVrZkTuF+8EN0epUABgZHiIoJRDGFEpWq0k2AmE78mUbqHJSHDlIYQmn/c9NCcBVpIw8BBGlKCUIz00QHpoCAwbIs0zFq01f2NtEGkGw2Y4PTm6XF3fmQ6aaF6w+oSti2DC+s6gie/euZlC5dyr9PX10TecJRc4MxatVexEM7nAoW84S29vL9u2bUPEuxCBf/KidZLTFhgRROAj4l1s27q15muJKGEQsP2p31A022b0vVU029j+9G8Ig4ASRzMPFAqFQvHS5etf/zrbtm1j69at/OpXv+Kzn/0sK1eu5POf/zzvete7GBgYOGXb73//+2sZQV/5ylf4/d//fbZu3YrrugwPD/Otb32L3/7t3yafz2NZ8n9hsThFnY7TjBKuinnP9h07eWTLHoymVacUZTGaVvHIlj1s3/HC5+rPBd09AwRhgF63cFZ29LqFBEFAd08/R3p6INpK6HuzumEPfQ9irRzpkTfWQ+lhstkMVuOSWflqNS4hm80wOJRm545thEYUYl2I8ecgkUKrW3I03fY4aLqJVr8UEim5X6yL0Iiyc7sUF7u2b5MRWcNEuAUp4qzo9GJT06WANWyEW0AzTIh1sGPbVkK3INOYzbgUoaeAZkbAjIPTSODmAchks4hyptL6pg6BjgiFnHAwLDAqArv6MIzK8w4iFAh0sOsIjRiinCGTzZIvleRERP2yU/KzRv0y0DRyxaOVDqda33myJBtbKdopNt9z36TJpu4jvQykx4k0LZ2Vu5GmpfQPjXOkp4+B9IgU3pox889AFcOS+ztNDKRHAejp7Udz6tm9/YlTjg770QXs3v4E2PW1zAOFQqFQvHRZunQpGzZs4KyzzuJVr3oVH/zgB9m6dStXXXUVmzdv5sILL+TIkSOnZLu+vp677rqLtjY5Uf3tb3+bc845B8dxaGlp4R3veAf9/f380z/9Uy0deWI14xcKJVwV85owDPnRPfcRRDtmFWUJoh386Hk3wvOF9PAwRFqmFWrToekmRFtIj4yQy5cQVt2c3LALq458Qc7KpYcGCez6OfE1sOtJpwc5fLgbEWmHfDckF6M5DTOz5TRAcjHkpZ3Dh+WX/uDwMERbEG7xqACcCVVh6BYh0sLg8DCeH0rhas0yLd2KgdOI58v3azZfBDMixTIyAizHfxo7WsVP3ZD7GTaYEbKFEoHvQ7R96kJMM0AzHYi2S3sVqus7ZypaqyQbW+kZl2tjqzz73F6E0zRt1HI6dMOESBO7nttLyRVgROXYzgYzAmaMkhcC0NM/RD4zTtYzZ/W9lfVMCtlxegbSs/NPoVAoFPOSSCTC17/+dWKxGN3d3fzFX/zFKds6//zzeeaZZ/jABz5wTHXhCy+8kM2bN/OXf/mXtRThxsZTy/KbDUq4KuY1PT09HB4YJ9qyfFZ2oi3LOTwwTk9Pzxx59sIRBKEsNjQHaHaSIAjwA4HQrTm5YRe6hR9IgZXPF9CsxBx4CpqVIJ8vkB7NyxRYMz5j0Vqz5TTIKKZukB7LSV/LQqZ5avqsxLvQdDAj5F1wA2RrGn126xE1XQOnHrcyrmEowK5HYFTSgU9u7WyNSlVogQF2PWEQEgpNRhvngkiztAcT1nfO7jNbXd9ZnWwaGh49qaJkJ4MRbSSdHiEEhGFPnyI/HZqGMGzCyrxYqezS23N4TqLDvT2HKZfKs/NPoVAoFPOWlpYWLrnkEgDuuusuPM87ZVudnZ187nOfo7+/n76+Pnbv3s3Y2BiPPfYYV199NUeOHKn1il2/fv2c+D8TVHGmKbj11lu59dZbp91uzZrVL4A3ihOxfcdOArtlTqIsgT19y44zEd20QLfnyJiNYdgYujvj9ZcnMIpeEWpeIKbsA3tKVg0LzxeUg1C2lGnZMDuDyYWQ76fsy6iYqJz/XEQcBYCQS2QxovIXfRbjG4ZgRKU9kALLTsqDiBCYoXCFyn4CYScRgSaj4masYn0274VQVnKuRNmr6zufX4hpphimVVvfmUqlKBTL6LONZFfQrRj5kott6hTmKgtDCBxTXpdyMY+rxXDm4HvL1WKUSoXpN1YoFArFS5ZqFeBCoUA6naazs3PWNjs6Oujo6Jj03JNPPln7/aKLLpr1MWaKEq5TcMstt3DLLbdMu93NN7/7BfBGcSJ27z2IGT/1KmoTMeMt7N53aMqWHWcyrc1NDGbco21ZThUhEIFLS3Mjvl9GC91KC5lZfE2IAC10iThSpDiRKLrnI8JwUm/VGZsNA3R8ItGYbBXjzE36sXDqIS9TWi1d4KJBGIAxG5EZABqmoVGWv8qKv1XVOWN7IdUGulVJFYtGEb6J4SQRXqVYwkwmCAIPgjK6kyRws0SjESzTxBchsgnyqbkq/ZVi2jLl9enp7UePNMzC4FE0p4Ge3n5SqRTxWJSBsj/9TidBGPrEoxEaElHGvRyI5pOuAD0lIkDzstQnZAaDoetyPfJc+GpEMVRFYYVCoXhZMzFjMJGYm8y2qfje975X+/2GG244bcc5HipVWDGvGR7NYkfr5sSWHa1jZPSFL+09WxZ0tWPhEvqzq+4W+kUsXBamOmhubEBzsxyN4J0CIgRCNC9LS2UdREtTPdGIjV8cnZWvfnGMqGPT3FSHrglZaZdT9LNGCFa8pv0bkxEICpW+rcEpmgzk/n6BxqSDZSCrCht6LcI5M3uh3M/Qwc1Ke0ghpGGApqHZMQhcKWCnu3YilNsFrtxP09A0A8MwqKuLgZ8/etxTobqfn6ehPg7I9Z2R2Nx8ZqPxutr6zpbmBln8ag4I3QItzY0sXJhCKw/JpcKnGnkVAg3QymkWLZIVGwMhMIxZCOEJGIZJMP+W5isUCoVijjhy5AgPP/wwAIsXLz5tRZN27tzJd7/7XQBe97rXsWrVqtNynBOhhKtifqNpiDmKNghNQ8zDwMWF552DGebQkX1ETwUReOj4mEGOC8/fyIJUF3pYRHNzUvzMVLxW9tHcPHpYZMECmbKyevliTDxsIyQ4RZERuAVsI8TUPFYvW0zEmV0q72Q0ohEZFUt1dUExjWbaEPozF69hAKGPZlpQSrMg1UVdMg7FQTT0GaYKh9IHIVOMNXQoDlFfJ2dVE/Eouqheex3NjsuItptHeEWE71ZEdAhhgPArwtbNo+ly++q/A124JOJR1q1chuaOHhXYoZyIOHl/K/uJEM0dZc1KuZ6z7HoYs0yRrWIYJm7ZBWDNqhUIN4M4VZFdQbYyGmft6hWsW7ceozQk+/cSzly8CgGEiKCEURpi3TqZzh6JxDD1cE58NfWQSHR+9qBWKBQKxfF57rnn+OUvf3nCbcbHx3nrW9+K68r/he94xzum3O6mm25C0zQ0TeOBBx6YcpsT1Xnp7u7muuuuw/d9HMfhc5/73MmdxByjUoUV85rmxjqGsgWc6Oxnl7xygebGuYkEvZAsWphiQUuE7nyB0NRkFukM0kRF4KGFZXS/yILWCAtTnSxZsoTI1m5KfgHdiiA0S95ka8aJ05GFkGmRGmjCQ/gFInqZJUukaNmwfi3/7/6tNC1YTnqghwAw7JO/6Q7cArqXoak9RfHI45y14UoWpLrYNV6NNp/qesyKyAqKpLqkyF6zbgOP7/wpoVeSY+C7FeE4TbVeAYSejLSZDqFXRC8Osnb9G4hGYww+sZfQL6NX175OZaAmaIR8CFFpY6OhoRP6RbTiAGvXrwBA1w1srYAnfIRmArpsm2M4aKGPCH0I/Fo6uabp8j1S7c1bEVia8LG0IrpucMG5Z/HQrgfw3FG0aIssghRqoFd9m2qcJyy61QSapiGKo1iiwAUb5VoYx7bIBj5zsdI5CHxsR67vXpjqpL1+O+ncCLG6U18+UMyN0F5vs6CrAw1YsGABh4Z3YbRvRIhQDtXJpA2LQEZaNQiGn2XBghQLu2SVRsexSbVH6B6eva8L25txHBVyVSgUijONBx98kL1799b+TqePVoDfu3cv3/jGNyZtf9NNN036u7e3l8svv5xzzjmH3/md3+H888+no6MD0zTp7+/noYce4vbbb6e/X7ZE27BhA3/5l395yv7+4R/+IUNDQ/yv//W/uOCCC2hoaGBoaIj77ruPL33pS2QyGXRd5ytf+Qpr1qw55ePMBiVcFfOa1csXs/03PdDQPv3G0+AXRlm9cfEcePXC0tnZyZrFLYw+l6doJPBDl8Dz0M3otCIz9IsYmsA0NKKUWbO4ha6uLhZ29bNk8WL29IwR6gaa04BmOIRhUFlfqTFZuByNRum6AUEZyuMY3hhLFi9iQafsC5ZKpVjUGqE7P0Jb50LSg724+SJmtPGEa15FGOAXx7CNkJbOhRQyaRa1RkilUixfuoTdTw0RlrPokXqEOJGwej5yW03TCUvj6GGJFcuWABCPRenqSnFkZAe0n4dmORB6Mvqm6dL+xOrAoaiMQ4hmGLJglggRIztJdaWIRqNccO5Z/PqZA/iju6D17ONfHxFWxLEmH0YlyqpVXhvdjWFKcQnQ1NSIk04TCB+hGQgmCCzDOvFERlVgIdCEhyPyNDe2cNlll/HV7/yIfFDEdwuVVGJkf1g00MLJAr6isUFUqiZrCLeAGRSJiQyXX345AKmOVo7szRCJzX4NTjGfIbVSCr/Ozk5STTalUZ9SqYAdmXkU0i0VSJg+qUabrq4uANasWUP617+mkO3FSKYQ6ISiGn0/vnjXNQONkCDbQzwcYc2aV5HqkkUuUh2tHMlmqXPKFGbha50D8YhNqv2F76WnUCgUihNz22238c1vfnPK1x566CEeeuihSc89X7hW2bJlC1u2bDnhsa6++upaW5xTRQjBo48+yqOPPjrl601NTXzhC194Uda2VlGpwop5zYb1azHKw3OScmeUhzlrw7o58uyFQ9d1Lr1oI2sX1WO6aSxDI+I4CC9H6BUIfRcRBjJaFAaEvkvoFRBejojjYBkalptm7aJ6Lr1oI5qmkerqYFGqnaaoj66FaG5GClHDQDcMdA00gtpD10A35NpIyuNobgZdC2mK+ixKddRu2HVd59o3vAYrfwTfc2nrXERjfYKw0I+XT+OVctK/wCf0XbxSDi+fJiwM0FifoK1zEb7nYhWOcO0bXoOmaVx0/jlEzBCtPIrwyzKaiI4UEMd7X1TW36KjabrcrzxKxAi56IJzASkuzrnwt7DLA4SZnlq0VbMiaLqBpolKCrF8aJqQz1sRGZUVIWGmB7s8wNkX/BapdikGY1aI6Q4T5vuPn3pqyFRiTdcqxzoqWsN8P6Y7TMwKa2KwraWJWCRCPBxBEx4aAl0zZHEtUVlne8xDviYFlhSt8XCUWCRCa2sztm1z+SXnYnrDmP4Ywi0gqJyjrh3V3JVT0DRq/gqEFK3+GKY3zOWXnFtb05nq6iAsjc3yXV85dHls0nvrkos20poQmH4Gd4aVdt1SATPI0JoQXFL5HHR2dhI3yrz69b+LPb6DMNsDwsPQDXS9+jkAjRANOY+h6waGboDwCLM92OM7ePXrf4e4Ua6J4VRXB2F5jFUrl83K11UrlyHco2OgUCgUipcOl1xyCT/96U/5yEc+wmte8xpWrlxJXV0dpmnS1NTE+eefzy233MKDDz7I5s2ba5WFT5W/+qu/4kMf+hAXXnghHR0dWJZFa2srr3jFK/jnf/5ndu/e/aKKVlARV8U8pxbBywySaDj1m7f8+GAtgjcfWb9uLTuf3Ycda2Lrc4fJlS3ide2EIiTwPQK/jAhl6qZhmRhmFF3TKWcGSFgeZ69fxoJEkfXr1gIyehXTS7zi0tfy6/t/St5eSKhrhPkBMBwwHNnWRpNFhoTvQlBGBGV0K4qOIO728orXXImRPVC7YQfYsH4dF69/lod3H8ZlEfFkA/FkA+VSHrdUpFzOEoYhuq6TiEawI004EVnYxy0VCDOHecX6Ljasl5MMixamWNpRx56hAK80gog0oZmOFK8VUVXpdgrolSChXosWCr8MpREsPWBpex0LUzJVONXVgba9m9dd8xZ+9qM7CDTQE50yiqkbgDF1xnBFFIa5PoyRZ3jdtTeiu6OkutZg2zZXXHo+P3n0EIzuxA+nWJNcSeWdbBMEAeQHMEd3YkWTXHHx+poYXLNqBQ9vO0wYlNGsgLyvEYQBhlFtxSMqGrkyBhqgSf/DoIyhCeJWgB2UcExYu0qmIP/BzTfx6FMfYdzuxPUzeMUiwm6oVFnWjkaBAVGdKAgCNHccS/OwbYN6f5Q/uPmva6fS2dlJhCKB72HMoiVO4HtEKE56b1U/B04iSe9QlkymQDTRNE00P6SYG6HOga7ORjqcbO1zIMXwOfz80b1cee2N/PIn36dYHEI0rUYzbNB0dF1Hth8SMtofhoRBCUb2EA1HeO21N+Ll0lxy8TloFbVfHQNdgw3rVvHcnv0z9nXV2lXoGseMgUKhUCjODL7xjW8ckw48EyzL4sorr+TKK698QXy55JJLav1gz1RUxFUxr5kYwZtp1KKKWypMiuDNRzRN45pNl9Ogj3Dh2StZs7iJYOwAXnYQ4ZexbYdINIZtOwi/jJcdJBg7wJrFzVx49koajRGu2XR57fyrN+zlzACXXXE1jQxilvsxYw0Ylo0uXHDHoTQC7ji6cDEsGzNah1keoJFBLrviasqZQS656JxJ46ppGtdfu4mzF9nohV4KmTQiDHEicZINLbS0L6CtcxEt7QtINrTgROKIMKSQSaMXejlroc31126aJALWLGmhOelgax6URhHl7NF0W60SDdSqgo1a9FKUs1AaxdY8mpMOa5a01ERAVVw0NrVw5bU3Yo9tIxzcQuiVKoWSnh/JlMWYQq9AOLgFe2wbV157I41NLZPExR/cfBPNVo5o6wqZaWzXQbQdYh3yEWmesLQ1RIiA0CuipXdgZZ4j2rqCZivHH9x8U21MFy7ooqO1gXgijlnsIWmHxBxbFmYKyojKumNd1ytLWgP5vFck5tgk7RCz2EM8kaCzrYEFFfFuGAaf+tgHcca24NgmiXgEs9yPXhpG83IQlGRaeFBC83LopWHM8gCJeBTHNnHGtvCpj31wUgXd6ntrtG/frN7zo337pnxvXbPpchLBIAs7G1measLP9VPMDFEqZPE9Gc33PZdSIUsxM4Sf62d5qpmFnY0kw8FJnwOQYjhVr6EjuO7G97JyQR1m368Q6S2I7GFEaQThjsuf2cOI9BbMvgdZuaCB6258LzqCVL1WE8PPHwPLsli/dvWMfF2/djWWZU05BgqFQqFQvFTRhJir7uovP26++d3cfvvXXmw3XvYIIfjOd+/k4d0ZjPpFM1ovVovgrarjbTdcP+9vAAuFApvvuY+ecUFDxzKG0sMMDg0zmskR+AGGadBYl6CttZnWlmbG+veTqpc3+89fFyGE4Ht3biYdNJGob+G5nU+zd89uXD1JaDeAFZfRRxGAl0d3x7DDLCtWrmXVunPIjadpMUZ48/XXTDmuhUKBH9/zC3YcHGXUixLqETQzgmk56LpOGIb4Xhnhl9CDIo12mfVLGnjjptcd4+v2HTvZ/KvtbNk3Qt4z8AIINEtGh3ULdLMWHZapvR74ZQw8LAPiVsA5y5u45rc31CK5Vbs/f3QvLQvXEAQBD973Y44cPkAYbYdIK5pTL22HPqI8DqUh9OIACxYt5dLL34hhGKS7n+WKi1dMstvd3c1ffOJfKTduhPI4xdFuQqcZEWmWQlYzQfjgZtBKw+jlYaKNi8Cpwxl9hn/9u79g4cKFNXthGPKVb9zB/v48eb2ZzHAPLhGshsV4fojruvhBgBAy6m4aBrZtYxk63vghbErUNaeIh8Ms64jzvnf93qRr1t3dzd/+478zKlqIpjYSeGW8cgHfLdd68pq2g+XEMCybYs8WGrU0n/rYByf5OdV7K9k489Sm7OjQtO+t6uegsWM5+WKJbDZHJl8g8H0M06QuHiOZTBCPRhjt33fcz0HV3h0/2EzJSZFsbCUMQvbvfoa+IwcZGxvD931M06ShoYHOBUtYtnojuqGTHR0i6vZww/XXnPDzVRsDAZls9ri+1iWTtQj3dGOgUCgUCsVLDSVcZ4ESrmcOhUKBb333h+zqC3HNhpNOubP9MdZ26vz+Db87qwXtZxJCCHbs3MVDj22hRBTNaSAar5P9HgOfYj6DKI8RocilF21k3bo1x73xff4NuwgFfT0HGRroY3R0FN/3ME2LxsZGWts76UwtQdO1E96wT+3rM6RzgmJgUw71avFbHD0kari0JDQuvejc4/paFQFHclG27j7MWCEg1AyCAAI0hNAQaHItpyYwEBgG6CKgIWZw9upFLEgUjxEBU4mLIAjY9cwj9HQfJJPJEIYBum5QV1dHauES1m58RS3CeCJxMVEMRjrPIcz342YH8UvZSoTUwIwksZNt6PF2Sn1bTygGt+/YyT0P7qRvII0XTeG5RcaHugnNBJpTj2EnZIpzGBC4OUR5HN3PUd+6CMuOYJV66GxrYdOl6yaJ7CpBEPDV27/Bfb95Gs9pR4+1Y8Wb0QwLEXh4+WHCwgBWeYDXXXIe73n3O0/Yq/T5762TZebvrdl/Dqr+1sRw5/ITpjkHvsdo34nF8AsxBgqFQqFQvJRQwnUWKOF6ZjGXEbyXAkIIent76entp2cgjVt2sR2bVHsLqa4Ourq6TipSczpu2E+Hr1URULQ76Utn2HPgCF5oEGJOrt4rBDo+lh6wculCOluSxLy+44qA0yku5lIMVkV2XzFO75GDZD0Tp3EJfilDOT+GW8wRBAGGYWBHEzjxBsxIkvLoIZKWT9eCJXRG89NG8IIg4L777uOpLTs4cGQA1/WxbZOlC9o575z1XH755ScUrBOZL++tibbmUgy/UGOgUCgUCsVLASVcZ4ESrmcecxXBU0zmdNywnw7mMlX6eHZPh7iYKzF4VLx3USzm6T64F99IgF2PFUmg6SYi9PFKOXDHMYMci5asJBKNEfN6X5QI3nx5bz3f57kSw1V7820MFAqFQqF4oVHCdRYo4XrmMtc3lgrJfBjX0yUC5ou4eL54L+TGyI6NkMmMEwQ+hmFSV1dPsqGJWKLhpMX76WY+vLdON2oMFAqFQqE4Pkq4zgIlXBWKM5fTJQLmg7iYLyJboVAoFAqF4mRRwnUWKOGqUCjOZOaDyFYoFAqFQqE4GcwX2wGFQqFQnB40TSOVSpFKpV5sVxQKhUKhUChmxfH7hSgUCoVCoVAoFAqFQnEGoISrQqFQKBQKhUKhUCjOaJRwVSgUCoVCoVAoFArFGY0SrgqFQqFQKBQKhUKhOKNRwlWhUCgUCoVCoVAoFGc0SrgqFAqFQqFQKBQKheKMRglXhUKhUCgUCoVCoVCc0SjhqlAoFAqFQqFQKBSKMxolXBUKhUKhUCgUCoVCcUajhKtCoVAoFAqFQqFQKM5olHBVKBQKhUKhUCgUCsUZjRKuCoVCoVAoFAqFQqE4ozFfbAcUCoUiDEP6+vro6e2np3+Isuvh2BapjlZSXR10dXWhadqL7eZp4+V+/gqFQqFQKBTToYSrQvESxXVdHnjgAZ7asoMD3f2UvQDHMli6sIPzzlnP5ZdfjmEYM7JZKBT49re/zRPP7GBgJIsfgqlDe1OSCzau513veheWZZ20PSEEO3bu4sFHnubIcJGxAuTKAYHQMDRBwjlCQwwWtMa49KKNrF+39qQF3HwQg7Xzf+wZhnOCYmBTDnQEoOHi7MsSNZ6lJaFxyQzPX6FQKBQKheKlhCaEEC+2E/OVm29+N7ff/rUX2w3FC4jv+2zdupUdu/aw/3AvJdcjYlssW9TF+rUr2bhxI7o+swz8XC7HV77yZZ7a+iwj2TKh0NA1QVPS4byz1/CBD/wxtm2ftL0gCPjq7d/gZ796goIrCIJQviAEVESPYejEbI0rf/sC/uDmm6YVsJ7n8dcf/yRbdh9BRJrBqgPDATRAQFAGL4NWGuac1Qv4p7//5LQCtlAo8KOf/JxHth+hL6PhaRGE4YBmIjQNTQgQPlpQxhIlOutCXrFhIddedQWxWOy4dqti8NcPP8W+I0OkxwrkCiWCEAwdErEILQ0xli9q41UXnztjMThXgrhQKPDje37BjkNjjLoRyj54gbxe1UtlGDqWoeEYgka7xPoljbxx0+tOeP6KycyHCQyFQqFQvDQplUp87Wtf4wc/+AFbt25lfHyclpYWNm7cyDve8Q5uvPHGOTnOgQMH+M///E9+/vOfc+jQIcIwpKuriyuuuIJbbrmF9evXz8lxXmyUcJ0FSri+fAjDkM0/uZd77n+EvO8QaJGKCKwINyEwRIm4WWbTa17BNVe9YVoB67ouf/qhv2DvwUEw7UnCEjj6t++yYkkb//HZf51WwHZ3d/OxT32avuEcCA0izeDUg2GDZoAIIHChPA6lYdBCOpuT/OPffoSFCxdOaXPr1q385Sc/jWe3QqQNtBACD0JPnjsa6BYYljxmaQjLHeJfPvkRzj777CltFgoFvv7t7/Hw7jFyoo7AiOLlRwncAvilo3bNCIYdw4o3YgQFElqWV65u4F1vf/OU4q1QKHDX3T/j/oe30ZvOEpoxQt1G0/TqlUKIED100f0CXS1JXvPKs7ju6iunFYNVQfyrh59i/6FuhkZGyedKBKHA0DXiiQitTY0sW7yQ337leScUxIVCgW9994fs6gvJuCaFkodbLuK7ZQK/BCIETccwI5i2g+NEiUQs6m2ftZ06v3/D756UeD0dUffTxVxPClWv10OPbaFEFD3SQCRWh2GYBIFPqZAhLI0RocglF53zkovmKxQKheLFZffu3Vx33XXs3r37uNtceeWV/OAHPyCRSJzycb7yla/wx3/8x7iuO+Xrtm3zb//2b3zgAx845WOcKSjhOguUcH15kE6n+eznbuPQsEugRwiMOKEZJ9Rs0HQQIbpw0f08RpDDCMosbrH50B+/h5aWliltPvbYY3zsU/8GmikFZaQO9GPFMGEJSuNSyAiff/zbP+eiiy6a0mZ3dzd/+hd/R7bgQbwDoq1gOqA7oJtH7YY+hGXwy1Acgnw/dTGL//OvnzhGvG7dupUP/+2/IhLLQNfBzYNpAQYVGVixqwEB+B7YcQhD9Pw+Pv13Hz1GvAoh+Pq37+Dex3spGq2U8sOQH4GwCIEv7dTsGmCYoEch3kQk3kw0GOINF3bxrrffOEkcFAoFvvL1/48HHt9NiQiabiMMG6FHEJpRO39NBGhhCS1wEUGZiFbmsgtX8953vfW4YrBQKHDX5p9x/4OP0Tc4gh/tgFgbml0nRXvoIdwMFAYxi/10tDby2lddzHXXHCuIhRB857t38tCzY4yXLfLZMdziuIxiRxrQzAToBoQBws9BaQy8DHa0nniygXrH45I1DbzthuuPK46qUfdfPPQUrlGPMOJohnlUvAc+WpDHDsZ53SXnnVTU/XRRnRS69/5HyIs4gVkHRgSh6WgihKCE4WeIa3necJKTQoVCgc333EdvBho6lmGYx4/+B77HaN8+UvUa12y6/KSi+adDDCsUCoXipcPg4CAXXHAB3d3dALz5zW/mne98J11dXfT29vLNb36T733vewBcffXVbN68+ZSOc8cdd/B7v/d7ANTX1/Pnf/7nvPa1r8VxHJ5++mn+9V//lb1796JpGnfccQdvectb5uYEXySUcJ0FSri+9Emn03zyX/6DoaKDbzVSNhoJxg7iF9IyMliJjGFGMGMtGA2LcfwxTH+UtmiZT/zlnx4jXqVo/TQIA6JNYEbBioNuS21VRQChK8WiX4TSCGgB//i3HzlGvAZBwFvf9X5GMmWoWw6RJrBiUhTXxPAEw0LI6KuXh9IoZPbRVOfw/339izUB43ke197wTvzoUukHGvg++OMQBhW9qldENVJsmfVgVgSQbmMWD/Cj735zUtrw1m07+Ocvfp9xvQtv7Ai4ozLV2IxNENgTfA198ApShNuNWA0LqA97+av3v4mzz5KpL0IIvvL1/8uPf/k0vlGHMGOEZlzaElWBPUFka/J53c+hBUXMIMMbX3su733XO44RGoVCgS9/7dv86jdPUYqkEE1rwSsSekU5LtXIuG6jW1GwImgju4iUenn1Jefx3ne9fZIY2rZ9B1/8r1+QLkfJjQ0irHq0usWgaYShQIRhbVtN19F16avIHELzxkk0tNHiFHn/772OszYcm/rT3d3Nx//hswyXHbCS+EInxCTUdKriXRchOj6mFiLcLC2RMn//Nx86btT9dJFOp/ns52/j0JhOGGlDmDE0M4JuHJ0UCgMX4ZfQ/AJ6cYDFjYIPfeD4k0KFQoE7frCZkpMi2diKEIJsNkc2myOTyxMEAYZhUJeIk0wmqEsmQYPs6BBRt4cbrr/muNH80yGGFQqFQvHS4wMf+AC33norAJ/4xCf45Cc/ecw2n/jEJ/jUpz4FwPe+9z3e9KY3zegYhUKBpUuXMjg4SCKR4OGHH2bDhg2TtslkMlx66aVs27aN9vZ29u7dO6vo7ouNEq6zQAnXlzZhGPLXf/vP7B3yKEcWUErvgXwanDiyrpmoBTHlL74UmbEWIi0rcUpHWNFq8U+f+qtahMh1Xa6+/q2ABbFWsJNSsDp1YNdJEVtN6fWL4GagnJHpvV4WCoOAz913/n+T0oY/f+uXueun/wP1qyDeKUUeOgRFKQqD0lGBZUTk+lQjCoQy8prvg/HnuO71r+YDt7wPgA995C/ZdjAnI4pBCOVRKVo1TQrMahTTroOmdTJ6m+uVUVOnCQwNQp+zliT47Kf/pTamH/3bf2b7UAx/vE/atCrnrFvy/HVLRnfDUKYj+0X5U/jglcBpxKzvZENrgX/9+79G0zS2bN3O3/7vL1LS6wjtZpkaHfhyzPxCRXhX0G0pkq1EJVrqorvDRMIMn/ro+znn7KNf+kIIvvq1/8uPfvYQfvP5CN0kLGcrYj2QAr46eaEblYkCHc1Jooc+5vCTXHvlJfzBu6UgDsOQf/63W9nSq5MdT0P9CrCT+J4P5TF5vf3ChAmRmBxfpwHTMsHNwvhekvUtnNMV8tcf/sAkod3d3c2HP/7P5LRmfGxCMyYjuVZcXvPqRENQlpMWbgY9yGPikRDDfObv/2pa8TpXabLpdJq/+9//yWDQjhZrw4w2op0gkirCAL84higM0mYM8ImP/skx4lUIwffu3Ew6aCLZ0Mrg0BCHjvRRLBbw3DKBVz6ahm05WLZDNBpj8YJO2lpbyY4N0WKM8Obrrzkmmj9RDIdhyMDAAINDw4yOZ/GDENPQaaxP0tbaTEdHB5qmTSuGFQqFQvHSIwgCmpubGR8fZ/Hixezbt2/KrKYgCFi2bBmHDx/m/PPP54knnpjRcb7//e/z5je/GYCPfexj/MM//MOU2/3iF7/giiuuAOBzn/vcvE4ZVlWFFYrj8OO772FP7xgluxP30MNSDDpxiLZBpEUKCt2UEUE3A6U0MADlLKVDDxN2rGdPbx8/vvsernvj1QD80R9/CEINEs1g10OsGSKdkDsAw7ukwKxGBo0IxFqgYTUU+6GoAyHkBvijP/4Qt33584AUw3fd/TNILoREhxQoblYKITsOZgLshlqUkaAEfk6KYKdBiudEB7hj3HX3z3j/H76HcrnMtp37Id4OXk6Kx4ZlMPZc5TwnoOlSLMc6oGEVjO+F8QNShJoRtu3cj+d5WJbFkSNH2N09jl8eh3IazLgUmU6T9C8MpMgMq2tnbYhEpNgojcpvrHIafxx2l+DIkSOkUim+dPu3KAYWwq6Tw5fvhXJWimLdkenGtUkGjk4COElwWgjNOorFIl+6/Vt84f/8S020bN22nc0/fxCv6RxCryTHziuCcCvrfP2j10s35TpfzUIEZQIjgmg6m80/f5CLLzyPc84+i56eHp7tHiOb9aF+FYEeQ4x1S18i9fI6xTuPTl54eXDHIHMIP9aGlujCqFtBduw5ng1Menp6WLBgASD/Af7N33+GbJDAM6MQa4dIM1roIYKyfI/WosMWmtOAiLYSltK4hUGyQYK/+fvP8LUvfnbKf7C1olePPs2RgQxjuTK5YpkwDNF1nUTUoSHhsLC9jkunKXoVhiGf+Y+v0O+1YjUuxrBjCBFSzI3jFvN4fhkRCjRdwzId7GicSLwOK95MYEXpH5X7/9Pf/eWktOEdO3fRMy6o72hg+85nGRocoJAbw/VD/FAQBP7Rj5dhYuoatqmTHR+lra2d1auW09M/zI6du9iwfl3tvDffcx8lJ0WioYXdz+1hz4EjeKFBiFnJaJA+DOcy7O8ZwdKfZeXSBaxauYLcGGy+575jxLBCoVAoXprs2bOH8fFxAK644orjLsUxDIMrrriC22+/nSeffJIDBw6wdOnSkz7ORKG7adOm42532WWXEYlEKJVKfP/731fCVaE405htVMj3ff7fT+6jqNXh9W+VabeJBdCwRoqT52MnIZGSkdGx3ZA7gtu/FdG8hP/3k/t449WbKBQKHNq/HxJdUvQml0BmP4w8K0Vf/TIZedUsEJ6MtBYHofcBcJqhbhlkA3BKHNq/H9d1sW2bn/3spzJymFwk18zmeqVgSy6Va2T9IrjjR6N4RkRG4ZxWKFeipLE2uX++n3vvvYeDBw9JwVvOgCag42KItsD4nmPPXdOlwBQ+YMvoa7QNBh6X42Em+OpXv8of/dEf8esHf0OxFEJpEIzY0cJRXkamN0dbK5HQyoSAl4PyiFzn69RJe4EHxX6KopVfPfgbLnnlxew/MoiIdMpzzO4HMwJ2Ql4XOynHpyoGQ08KewzwXSjvh0QKYcTYf6SP7u5uFi1aRBiGfOm2b1J2OqRoLWcrIr4kr5+VOLaYll8CNw2eTNMNnSRlp4Mv3fZNvvAfn2br9p2MZkqEkXZCDEhvl+K5dSOaPsXXsRmDaCsi6UP2ECK9Hb9xJbrTzGimn63bdtSE61du+zqDGR8/2g51SwEBhUFE6MpzDjwgBHQwLIRuyetmJ6BuKV7mAIOZHr5y29d5//veM8mNWgXoLfvoS2cIrEa0aDNmsg5NN/FDn8FShoG+EfYefo5n9/fzio17jlsB+sd338PeIR+7cym6FSU7OkgxNybXItdSmjUIIXDLlMpFsqMDRBMNJBpasRqXsrfvqUmTQmEY8tBjW0i0rGPL1u0M9h2hUCzgej7YjXL98IT3lufl8EpjFIujFEslSvkMpXKRDWvX8NBjW2rCuyqGY81xfvnAQ4wVAoRmEWAR6hYC42gSuhaghx5B4LF9Ty9HegZ45cXn0TM8WQwrFAqF4qXL8PBw7ff29vYTbjvx9V//+tczEq4nexzTNGlqaqK3t5eHH34Y3/cxzfkpAeen1wrFcaj1xXz0GUZyLgVX4Lo+oQBdA3t3HzF7G00Jm0svPn5fzGeeeYahcQ+vcFCKwNbzZAQL0PQJobvqHat8BYENzWdJ4Tb0JN7wQYZiSZ5++ml+/vOfSwHsJOXrg49DMgVtVwKVtFgRSNEKEGmUgrJ5A4zslNs3rZFCtBzj3//93/noRz/K//fd70G0WaaD5nsg2iFFZO4AWBXhFmmekCZalMLN65ORzkhlv1gHRJv5zh3/TT5fBNeS3xAdr5CitZYePAW6CZhgVFrjRFug7QLofwR8j5/+4n7+6I/+iEef3AqFfhkBjTbJ8zXj8hz1500IGI48p1i7HJvx/fLco02QL0FhgMef2komM04oTCmAs4flOUca5Tlb0UqKrDlhPa4vI82Roowel8bkfvFOQmFy9z338v73vZdDhw5xsHeEsH6NTBH3MnIsoy3SvlMvfa+ldudltWbDlmNcHAK/TBhr4mBvD93d3Ty1ZQee7xPaLTCyC+qWoUWaKtWO/aOpx9U3VjUFWTfR6pcjSiMwsouwYTVeroentu7kqk2vx3Vd7r3/N/hGG9QtrqUB4+el4I80ybF8fiS3OCDFuF0HdYvx3Qz33v8b3vued9VmiAuFAl/79n/zyJaDlKxmnNQrsaeYvDEjSWhIEfoe3ennSN//NOmRUd799rdMEq++73PXPQ+gN56H0EzSvfsJwhBNM+SkihmpTDRUrlfogV9CBCXyuXFKhSyNbQvRG1dy1z0P8MarN6HrOn19fRRFlJ49e+k9vId80UU4LWhtS9CO8ddBs+MQb0cEHu74AbzMMIFXxDZNUo1Rent76ezs5KHHtuA0rOSBXz9C3jcJiOBr0cp10dE0HdARhIQiJNAcvNDHFEVGCi4P/PoRXvVbF0wSwwqFQqF46TJxDWk18no8Jr6+c+fO03IcIQSZTAaQWXp79+5lzZo1MzrWmYISroqXDIVCgR//5BfsODDAWLZEYNWhOQ2Y8UQtKlQo5xgdH6c/PUxP+kE27NrLG686ti/mI489SbmQkzenredDrF0GgkIqaawTEEd/0QB0ELF2uV//w5QLWR5+7Anuu/8BiLTLdNDRZ6HtXCmg/Mo6Ut0EbUJv1Gp0MPSgcbUUcENPQ6wTrBF+8cv7+ehHP8pQ/wB0LpeCMNIM5WEpUhrWSIGI/rxqxXEpZAJPrm31x+V+hX6ItjHUtw8wwfShfp1MVzYjUvxNSyXFWfflfvVLYXgnhawU47v37AEfiDTI82taI9Oup0O35BiU0jJCbSWgPMCu3XvIZjIyHTjXW4mMd0lxaSXlWtla1eMqdqUgVlJub8akcM31gu7wxFPbALj3pz/DNxsgPwh+Vo5RrAMSCydcmwlrZ40IJJKQXAy5w1AYkC2H8j6+2cBP7rmHAwcPEtpdMp26bhlEmmRENPCOrpGdKOBFUKsCLQxLXjeA8b2EdiP7DxwA4P7776fgAm2LK62ORmTqccPZx4nkRiHaggh9ee6Ffmk7uZjC4CC/+MUveP3rX48Qgu9+/y5+9cRetJYNRJNt018q0yLWsR43O8ivn9xOPHIXN/3+0QrQzzzzDGNeBDtSz0j/AQQ6mhUHp74iAidiyAwHS6YSa+VxQi/PSP8BGtsXM5aO8PTTT3P++efT09vPaD7k0L6d5PIltMa16LHmaf3VDAutaRWiMEx2dBeH9u0ktnYdPb39ABRElGcef4ZsWcM34wgjgmbYk6PtFV81zZBZw8LGD0yCoERYzvDo48+wcWULvb29pFKpaX2aD6iWQAqFQjE1K1aswLIsPM/jV7/61Qm3nfj64cOHZ3SctWvX1n7/n//5H84///wpt3v66afJ5XKTjjNfhevJN8VTKM5gCoUC37rjTh7edpDhUgSzfSPR1lVE6toxnTiG5WA6cSJ17URbV2G2n8NwOcLD2w7y7e/eSaFQmGRv645nZXSvbpkUrQDh0dq0J3oQVmRSrF3u75fYtmO3LDZkxuX6y9aNUjCJ8KiAMpyjAla3KhHHmHxdhHL71o1yf1O2nAHkdgCaLdeBxjpl2m9VbNZSL6EWxdNMKV7qFsntS6Nyf5ARQzwpDutXVgpGzXCOq2q/fqW0gxSuYTEvz8+MnLxonUikRe5nRkA3CYs5+gaHZAqxpktRmUjJaKheEe08/+a5siZRt+R2iZTcT9MhcKU94PFntkEgZAEppxEa18hr6mWlmDRseW52Uv407Ep6c1YK3MY1cr/yKASCx5/exnimIH2162TUtlqIyYpVBH8l0lh96FYltbvyXvELcj9bpk1nsvJ9+6sHH5YTIiAjvfVL0eqWTS1aJ46EbqLVL5MTDEV53tgN/Oo3jwCyAvLPH3oGrWUD9kmI1onYSZkt8POHnmHb9h215x974ilEtI2xwW5EpdewFmmcQrQ+z1dNR6tE0oXQ5P7RNh59/EkAjvQNcvjQQbKZDFrjWrSTEK2T7Mea0RrXks1kOHzoED39Q/T09nO4f5zhTAnfSIIVRzOdKUTrMc7K7aw4vpFkOFPicP94TQzPZ4QQbN+xk69+87t8/2eP8+jeLOmwjYKzmHTYxqN7s3z/Z4/zlW/cwfYdO1H1HxUKxcuNeDzOa1/7WkC2Ffyv//qvKbf7r//6L7Zt21b7O5vNzug4mzZtqqX8fvaznyWdTh+zTRiGfOxjH5v03EyPcyahhKti3iOE4M677mHr3kHC5DKirSvQjRPfsOuGRax1JWFyGVv2DHLnXfdMusHq6+uVa/8a1x7tfXmy/jAhg7hxLdgJent7ZC9S4cmIoBmrRP1iJyGwzEpkMCr3S3RJO3q0cjKmTAkVnlyHG206eaGpVVJ2Ewvk/n5FWEJlLW585qJ1om07Lu3UCMBJSGE3U9FaJdIi93cSQIBXLEu/Y62QXCDHqfLVpun6cR8SXW6fXCD39/PSHtA/OCpb9dhxGe2tXh+nYUL7IkPa0Az5txWXr1ffAY2r5f7uKH2DY5Tciq+JRbLFj25LYYo2ja/VSLYt90ssAj9PqSwjvjt275Vp34V+aFiB5jTMaEg1pwEaVsj9nSZ27tpDGIZ867s/pBzpmrForWIn2yhHuvjWd39Y+3zt3t+NGxgEvgfRFjQrOjNfLRktDnwPNzDYvf8IAEPpYdL9hxHx1IxFa812rBkRT5HuP8zgUJru3gEO9gzh6TH5fTDNRMAx6CbYCTw9xsGeIXr6h07JrzOFQqHA9+7czC8e24fTcTZNC9bR0NJFJJbAciJEYgkaWrpoWrAOp+Nsfv7oXr535+ZjJgYVCoXipc4nP/nJmqh85zvfyT/8wz9w+PBhPM/j8OHD/MM//APvfOc7J3WIKBaLMzrGwoUL+cM//EMAenp6uOSSS7jrrrvIZDKUSiUeeeQRrrrqKu69995ZHedMQglXxbxn+46dPLJlD0bTKuzEzG5Y7UQzRtMqHtmyh+07jq4tKBWLUnAZ1jGCdXoxJBEg0xwTXdKezCGU0T0zWolsnuxHUJfbm1G5v2ycWvWoejJShM74Y63L/ezqWglNpt5G245Gc0+INuX5A3L/aIu0Vz2WFZWFqGZD/TJpB12m7JoRWYzKjJ7Yn4leTxSFZqWYlRmR9gCvWARCSCyRwtSKy4mDYyYYjrEsI+LVNaWJJUCIVyzIdixWUk4SGI5cuzoTX3VT7ic82aPVKwFQKMt0YiLNMxattWM4DTIdOiyTLwd0d3dzoGeUSOvs0okirWs40DPKkSNSYGZyRdxyEc2pn7ForflqRdGcetxykWxeiqLBgX7cAPSG2b239IZluAEMDQ5w4OAhip4mo9kzFa01gybYDRQ9jQMHDs7KtxeTakugdNBE84LVJ+xjC2CYFi0L15AOmviuEq8KheJlxite8Qq+/OUvY5omnufx8Y9/nMWLF2PbNosXL+bjH/84pmny2c9+trZPMpmc8XE+85nPcNVVVwHw3HPP8Tu/8zvU19cTjUZ55StfyU9/+lMuuOACbr755lkd50xBCVfFvCYMQ350z30E0Y4Zi9YqdqKZINrBj+6572jUVTMhOrlC28zE0AQi7dKeLmTVXLPSR3VaAXSMdbmfGZF29IqvYaWoT2IRz/9In6zIBl3uH1Z6k1rRSuRQm2RrOp+Pta3JSGBVoBi2HNfnF2Kaka/I/aPt0p5AFqeKNlEVrTOhdl7RJmmnOlMRepXCVk1He77OxFfdkvtFmqSd0CMIAil+Nb0mWmfsq15pwWLGpD1AhEL6W7d4RvaOoW4xhB4iDHnoN48QRNvRp6qiPQN0wyKItvPrB38DQDGfk2nPkYbZ+RppABFSyMt1O/39fTKCO0t/NcOCaAt9fb309PQSaLZM+52NTdMh0Gy6e3pnZefFYmJLoGRj64z2TTa2UrRTbJ74/apQKBQvA9797nfz6KOP8ru/+7vE4/Ha86Zpcu211/LUU09xwQUX1J5vbGyc8TEcx+HHP/4xX/3qV9m4ceOk2gJtbW187GMf49e//vWk799TOc6ZgirOpJjX9PT0cHhgnPjSc2dlJ9qynMMHHjjaF9OwpdiocCoCQ1TXoDrJSm/VghRxU0TtTmS/ZkduKfd3mo4WidJ0WYhnQnT0ZPytbiMmrpWN1EtRpOkztvd825PsVr9IdVtG9abwY0a+grSjW0jR2Q6aMWM/J/tLJcr8XPXZSnueSE20zthX3ZL7R1sg040sNmTPga+VKsrVr/AwBKdx2jWt09s2EU4jhHvZ/uxe9HjX9DudBHqsje3P7gXAdwtgGdOuaZ0OTdMRmo5flilP49kiOLOM5FdxGhnP9hKOZSDSNv2a1unQNBAw0D8/17hWWwK1LJyZaK2SbGylp1u1BFIoFC8/zjvvPO68805836evrw/XdUmlUkQiEQC+/e1v17Zdv379KR1D13Xe85738J73vIdsNsvAwACxWIyOjo5ar/M9e462M1y3bv5+DyvhOgW33nort95667TbrVmz+gXwRnEitu/YSWC3TLumdTp0wySwW9i2vdoXU6+1fpmdwAgrdjQwHVkMaEJLmVMSbZpRacVSLcqky76slXWVpy4yhbSj6bInqQhP2scT2hUhiMqNv2HI9brPO7eZ+0qloFGlP6szR7OHTlNFEFKZvKirTDTMwlczBnalX21txTSIMEDTj9Ne6ASIMKj+xtHwcFApgjUHmAlAMDicwWycm6qDZrSOwZFnAQj8UBY+mwv8Ui3q7AagmVH53p2N0BQCzYziFsEr+WhWaU5c1YIixbI3J7ZeSKr9cRs7z56VncbO5aolkEKheNlimiYLFy485vknn3yy9vtFF1006+Mkk8ljUoGDIOCZZ54BYNmyZbS0nGKNkTMAJVyn4JZbbuGWW26Zdrubb373C+CN4kTs3nsQMz43H0Az3sLufYfYBDL9NnCn2+XkCMrSXrXAToXZRTEjE14w5JrKoDz5+VPxs9qXNCjJ6riRRkQYnpJ4rfnqZmVfU6hoLTFpm5nYnhRxFUI+9AnR4TCstMCZIROjw1UxqRtSuJ7CZECV2jWz66S9MKy8rzQIfTnVMAPxKsJKexyQdip+64ZNqGmnfv5VwhB0TdoLQ7RTLcz1PDTNlOnMgDAj4OcRgY82iwknEfiy0FXlPW8YBrppIfwi2oTJkRnb9YvopoWpG5TQwMshQn9W0WwRSl8DMf8EW19fHyWixKZZ0zodhmlRIvqSagmkUCgUsyEIAu68805AFlr6rd/6rdNynPvvv5/h4WEAbrjhhtNyjBcKtcZVMa8ZHs1iR+vmxJYdrWNktFIiPCjJNiaI56Xqnjy1KGZ5TNqb6yhDLdVSVERRAMKfsb8yKlpZJ6sZ0l4QQHFw8jYztVmlNCjtgRRdfv6YbaezP+U2fl7aE5Wet1TbEc3weoXhhFa8wVFhLZCpzc8/nxlQ20+3Ks4FgAZeRo516CMC7+TOP/Dk+WqGnFSQzgNg2w4EZYQ4NT9rxxEBBGVsxyaZiBC4+el3OgkCN08iLgWmbdtgNyAyh2ZlU2QOgt2AVamU2FAXQwsDNCpjdSo2Aw+NEC30qa+LY5m6XDKQ7Z6Vr2S7wU5iWfPvX25Pbz/6bNcjV9CchpdESyCFQqGYC26//fZa79b3ve99GMbMs7CmQwjBJz/5SQAsy+IP/uAP5vwYLyTz77+oQjERTUPMkSAUmlbLaNUNDfL9FREzc/FaE60ihHw/uiF7hB4VHLMUg272aERYCJl6aTjgl2vi9aTFoPDlfoYjI6NCSJGV64UJAqB2Tidjs0pQlnaqu3lFKI3U0pCn2neqxxQbSztesTKu40dfAilepxNxIpwsWgHc8QmR9rBWYbjq30yYtH3oA6FMafeLcpIgKB2tVBt6iMBFhP7zzt1HBO5RP3RT7hcG4JdqKfItLQ3yOXdsdiLbHYcwoKW5kdXLFhIUR07J1vMJiiOsXrYAgNbGJEa0Ac0dR5ROzb4ojaC5GYxoPa1NcuJq/epliNIIlpNAC0ozFq8i8NCCEpaTQJRG2LBmGQ1JuR5d8wuI0ugp+jqK5hcAjcZkfNrtzzR6+oeIxOZmcjAar6Nn4Ng+gwqFQvFSpKen57iv/fKXv+TP/uzPAFi1ahV//ud/fsw2DzzwAJqmoWkaN91005R2hoeHKZfLU74WBAEf+MAHeOihhwD4q7/6K5YuXTqzkzjDUMJVMa9pbqzDK89NmwWvXKC5Ud6g1TW0QLEfylVBJGYYGazIofI4FPupa2wBTUBxiIni79SijQJKQ9IeSHFZiQ5L8VmW4maCz1OLQSG3CyqiFSHtBB6YJoQujO44iZE7wdiM7pJ2TLO2LaURcDMnYfcEuOPSDkIKzcIgk8aVypxDGB73UdXnE8+D4uCECYFAHmfiFqcaHXbHQQRE4wnpt5WUkw9+UUbiq718hahUifaORpOrvXw1TW7vZmWrndII0YRc17p2xWIQZSnk/eKpiWy/KPcPy6xdsYiLLjgPCgOnLISP2g6gMMDFF54PwFlrV6D5GczGZTC2f8biVZRGYGw/ZuMyNC/DWWuWA/CKC8/H9IYJQxcrmkQLywivMCk1fWqDAuEV0MIyVjRJGLqY3givuPB8zj1rHVpxCL1hOWQPz1i8itIoZA+jNyxHKw6x8az5VxCj7HoYs6whUMUwTNzyHC3BUCgUijOcDRs28Du/8zt89atf5Te/+Q1PPvkkP/zhD3nHO97BFVdcQbFYpKmpif/+7/+uFWuaKffffz+LFy/mz/7sz/jhD3/Ik08+yUMPPcQXv/hFLrjgAr7whS8AsGnTJj72sY/N5em9KKg1rop5zerli9n+mx5oaJ9+42nwC6Os3ijbibS2dzK274gUXm3nVwrryOJH09/IVwWlC6PPgtBpa+9gbHAQCv0Q+LKo0MQ9ZiIOAlfa8SvptyKAclamJEea5Zq/0AcvXxE8RuWhHU2rFZW1krpVWSOoQWkYypnKaxroUcgekRV7450n71+VfJ/cX49CWBWAJhQGwB2rtAU6hS/qoASlcWkHUwr4wgC4+Qm9aCtDMxO7bk7aqUTwNcNAlIZALJtUUAtmeL1EAKUhNMMk1dHMc0M2ZA5C4woojcqJAytZWZuqT9FxSMhoqpeV1yzaDKN7wXBItcr13Zf99qXcv+V7+LGOyiSGXEuqoZ14zWsYIhDgV1LjDQvTH+O1l72ejRs30mB9l1xuCKfu1D9fbm6IBqvEuefKyt9veP0V/Pihz2O2rEaIZQTjFUGYXHzCNa8i8CF7CNwsRuMyrFgd/vDTXH2VXK+zceNGWiJ3kC6OQLwDO1pH4JXw3Zy8foaJNuFzINOifRABpu1gWBF5XYsjtETKnHvuuQghuPfBrfilcYyWdYQjzyHKY5BceMI1ryL0IduN5hfQW9YRFkawggyvvPiC4+5zpuLYFtnAZ3YrXCVB4GM79hxYUigUijMfz/O46667uOuuu6Z8ff369XznO9/hnHPOmdVxBgYG+I//+A/+4z/+45jXNE3jXe96F1/4whfkUp15joq4KuY1G9avxSgPz0FUKMQoD3PWBhkRSXW0YDQtlQIxc2hCyqiY8JhkYfLzoSf3K/RjNC4l1d4Kpi5fHnt2iv1P2lMYe07ublY/vgaUh6VQraQkoltgRuUNu6ikpfpF+VNU1rKa0aPtZPy8FH7lEWkvLMsqtWYS0k9LEXrSPgu5ffppub+VkPYAI2ICNuSOyMhjMMOKrUFJ7lc4AtgYEZMFqQ7pe2bf0cJFMyX0IbMf3Ly0BzQ1NkiBfIrprDVKI1Aap6mxnldedB7oGrijUrRGW+QkRmlYRuf9wtFoa+jJv8vj8vVKf1FKo3J/Xee3LjoPkOX2G+0SFr6cZHHHoTyGEAEiDOTnY2K0OQzl8yKQEx7uOBg2lubTaJc477zzME2T6zZdRji6h8A9tayGwC0Qju7luk2X1UryL1q0iMXNNt54H06yBbN5pSx+NbQFMbIHURhEeAWE78qfhUHEyB4Y2oKmG5jNK3GSLXjjfSxutlmwQFZplP6+BqtwGOFl5WfaiuDE67EcB1MTaGEZ/CJaWMbUBJbj4MTra6JVeFmswmGu2/QadF2XYrjeQcsdhMBDb1mPZkZgeDtibB+imEb4RZnm7Rfl32P7YHg7mhVFb1kPgYeWO0hLvVMT7/OJVEcrpcIsMyQqFPMZUu3zt5qlQqFQzITbbruNd73rXaxfv56mpiZs2yaVSrFp0ya+9rWv8fTTT89atL7qVa/i05/+NJs2bWLp0qXEYjESiQSrVq3ife97Hw8//DC33347jjO7fuRnCiriqpjXpFIpFrVG6M4MkmjoOGU7+fFBFrVGatUuN561licP7yDrtkqhCJDokq1NNJ2pxasm1036Bbmuc+w5iLUSSyTZeNYa9h3Yz+G+SlQv2gaxtqP7TUvlWIVBuX/gHV2nYOrgVSJmeqW4UtVPTQeMya5qE45Z9bc8JsWQVwJTZ2Fniu6sK6OiTgekn4Fi1zRpl+JolDnfC9EOKYj9EosWSXGxetUqdh7MQq4PIi0y+mVEZdXdE/X1FKFMLw6K8meuD6wkq5d2cOVrLuH/3PpNyPXIiHOs4+ja0ZMh9OUERa4HApc3/a+3AtDe3srwoZyMjlrxWlucGeEX5P66SXt7A6+65Lf47t0PUao/B8YqPdWizbIFTViW0VevRK2li27Jtj9OIxBCMS33q19GZHwLv/2qSwAp2m647vV89c4HcZrPwXXlelmKQzIN3HAQ1XRkwkrV7MrxNAPNsOVM7PBubrj+9TWR+carN/HwY1vYN3oAGpdi2Cc/BoFbwBs9wIpWkzdevan2vK7r/OG73srf/p/vEETrcWINBJaDF21FuFkpOguDtTHQrCiak0BLdmI5EQwrgl8cwy4c4A//7G2TWqtU/d2b6cfXNEIjgm7Y6IYFhsXxyl6EgSvXt5b6WdFm1fw1TZPfvfp1fPPO+ylmDqHVLcZIdiESnVAeIyxn5KTChMkgPdYMznI0TUO4eUTmEFHy/O7Vr6uN63wi1dVBuL0bmH1PX1EeI9W1cvZOKRQKxTzgxhtv5MYbbzzl/S+77DLENMtd2tvb+fCHP8yHP/zhUz7OfGL+/RdVKCag6zrXvuE1WPkjuKVTiwq5pQJW4QjXvuE1tZvgszesI2EUqF90nowYju2DkZ1QGJIpm0G5UsU3rBTaKcvnC4Nyu7F9YCWoX3guCaPA2Wet56z164FQpoUOb6usy6z29TzeF1P1NU1uP7xN7k/I+nVrAViyqFMKnFxPpUBPtpKC6kn/BFIEVR8C+XzgVqJ3Wblfrgd0iyWLOnn3u26SIinWLsVnYqnc7nlrPqWLAWQPw+DTcOSXcrvEUrlftB2Kad77Xtk66nWvfTX4OWhcDcM7ZWpy6Mq1peXRSsTRP5rK7Bfk88VBuV05A8M7oGE1+FmueO2rueKKK+UwBi6MPldJxy6eYEwnjG1QlNuPPif31+ANb3gDAOedfRYGbuX8jlSi2TOIOvsFuV8YYOBy3tlnsXDhQtYsacMop9EaV8H4PhjdI98/uiWvrdMsRb3TXEkhtmSkeXQPjO9Da1yFUU6zZklbpeew5I3XXMXaVAyyh3CiMUy7ElGvTU6My7GsRnZFCLqF6URxonK/takYb7zmqppNXdf58J++lw5riGD8EF5++uwGEQZ4+WGC8UN0WEN8+E/fe4xgO+us9Vx16VoY24tfHMOwIkQSDTj1HTgNi7CbV2A1r8BuXoHTsAinvoNIoqEmWhnby1WXruWssyY3a6/622mncdxBzCBH6BcJA5cwDOQNgBAIIQjDQD7vFzGDHI47SKedPsbfN169iVWpRmJiDC13mDA/hCZCtEgjRv1ijOY1GC3r5c/6xWiRRjQRyu1yh4mJMValGieJ9/lEZ2cnEYoE/ux60Aa+R4QiXV2zF8AKhUKheHmihKti3rNh/TouXt9FMH54xuLVLRUIM4e5eH0XG9YfLZySSqVYvaAeMyzRtOK30GJNUpCln5HCNHMICn2VCGif/HtkJ6S3gJtDizXRtOK3MEWZ1QvqSaVSXHzBRqxkq9ynbikMb5dCNKj0eAWOTUXWpAAd3ia3r1sKhUGsZCsXXyjTRK+75ipZGdiwZDQuDOT+xSGZ+uvl5BrGoCx/ejn5fDFNbf3k2B65v/C5/rpreMUrXoGu+TJyXLdERmPtpBSiVlJGH42ofIQejB+Q7jasl9u5o3K/fC+65nPhhbKp9sazNxCvb5DHbj1LitCxvRBW1t56VaE6LH96hYqIFXK74R3QejaU0sTrG9l49gZs2+a6q6+QqdDCk9uN75dpvn5R+ifCo4/Qk8+XxuR2Y3vlfn6R666+olaO/qz1q0km4miGIX3JHZE/RcDxBWzlPCZsr5kGyUScs9avRtd1fv/G66nXRjCEh9a8QV76wSdkpLrQL99nXkH+LPTL5wefBA205g0YwqNeG+H3b7x+UrRR13U++sE/YlEih57ZjyHKxBpasaMJDNNGM0w03UQzTAzTxo4miDW0YoRl9Mx+FidzfPSDf3SMyGxpaeETH/0TltdlMbL7CbJH8PJpvFKO0HcJA5/Qd/FKObx8miDbg5Hdz/K6LJ/46J9M2ehc0zTefuObuPzcdszsftyxI4gwQDcsDDuKFUlgR5NYkQSGHUU3LETo444dwczu5/Jz23n7jW+adP5T+RspHiYWjGGHOcywiBaUICihBSXMsIgd5ogFY0SKh4/rr67rfPjP3kdnPST0ArbbT5g5RJgfJCxlEH4ZEXoIv0xYysjnM4ew3QESeoGuevjwn71vXkZbQZ7/JRedw2jfvlnZGe3bxyUXnTPlNVMoFAqF4mTQxHQxaMVxufnmd3P77V97sd1QAIVCgW9994fs6gtxzQaiiSa5bu44iDCkmBvB9sdY26nz+zf8LrHY5DTIbdt38MX/+gUjdIBdRzG9n8LwYai2uRHV6sHahLRcjVjzIqItsuJpo+jn/b/3Os7asJ6enh7+9cvfZ+eebimcms6SAq/QB9FWGWWz62Waa+hXKuempQCNdYLdCCPbwIyybuVC/uJ9byKVSuG6Lm988zsJnRbZd1QEMlIaT1ETUpU+p8DRYk0gU3oLA5Weoi56Oc1P7vw2hmFw5w/v4otf/x40rZFpv+UR+bASsgiSbh9dQxu6sriRl5PpunajrMo88izvf9ebuf53rwMgDEP+8TOf58Gn9xOa9RBfCGO7ZKpyrAXsportSl9aNwfuCBTSMl22YQ3ku9H9cS49dxl/85E/RtM0giDgbTf/EcNjJWnDqFThdRplGnI1dboafXQzMtqMkBMH7jDNDVG+c/sXasLV930+8Bd/R/9IiYKzCFEckdcm0ijtmZHKGuFq+q1XmRioiO/QR4s2ESsfpqMpwhc+83fouo4Qgm986w5+8uut5CPLCa06GQ0sj8qIsl+Sfmp6JVW7Ds1pRNcNdC9DvLSPq151Njf9/o1TioB0Os1nP3cbewddilp97fx1O1Ibg9At1cYhKsZZ0WbzoT9+z5Qis0oYhmz+yb3ce/8j5EWcwKgDM4rQNLRKSyYjyBDX8mx6zSu5+qrXTyvWCoUCP/rJz/nlY7vpzRgIuw7NSqDbUTTNQIiA0C0ivByam6GrLuS1F63i2quuOObzerr9rY7robRLoDu4wsLXbEKhI4SGpgl0LcQULrbmYYRlFrdMP67zASEE37tzM+mgiWRj64z3z44O0WKM8Obrr1HCVaFQKBSnjBKus0AJ1zOLQqHAj+/5BTsOjjLqRQn1CJoZwbQcdF0nDEN8r4zwS+hBkUa7zPolDbxx0+umvAkWQvCd797JQ8+OkQnrCPQIhhmhNN6Lm0vjl/OIMJAFY5w4dqKFSH0XgV/CCEvU6RkuWdPA226QkbEwDPnKN+/gwR2jDPQekgIn3gl1q6DUL9fK+YUJ6+ViUgRG2iCzVxY8smK0dy3m0vWNvO+m36vdBN76xa/w/37+uBRquiWjqwiINIHdANaEQk1eUVb1LY0AuizmE8qWOr9zxYXc8v73AvLG/wMf+iv2HBqC+uWyMJDuyJRoL1cp9FQRWEZEClorKddqFtMwvpeVi9v4/Gf/eZIg2LZ9B5/7v3dz8MgAwojLMTDikD0ohXrVdzS5PjPSAoklEOYh34cW5FmyoJ0/fsfVnLXhaKpod3c3f/bRT5HJu1Jc6rYUwNU1yRWTtbXIQQBCpkvXx23+/X//LQsXLpz0HvjR5p/w/fu2Mz4yQDmxisAry3RxK3a0uFVVEFcjuV4B4m0Ypo2Te476pnbedPkGrp2QglsoFPjat/+bh7ccIBPW4UcXIDSDat/go8j0bk34mMUe6vQMrzxnKe9++1tOKNxqou2XjzDu2ZS1KIGwEGhoCAzNwxFF6i2XTa89OZE50fYzzzzDjl172N/dR7ns4jg2yxZ2sn7tSjZu3Dij6KIQgh07d/Hgo8+w98gIw1mfbFkQhrIgctLRaE6arFjQxKsuPpd169bMSPzMpb/Vcb3n/kfI+w6B5lQmgqgkSgQYokzcLHPVSYr3+UKhUOCOH2ym5KRmJF6zo0NE3R5uuP6aaScbFAqFQqE4EUq4zgIlXM88qjfBDz32DOmcoBjYlEO9VuvG0UOihktLQuPSi6a/CZ4Yyc14DsXQQmgy5VLXTVmARQjC0EeEPlroETUC6qzSlJHc7Tt2svlX23l6zyBjw0OE5axMU61FXOtAs+RzbuZoxFWz0J0kDc2tnLuyjWt+e8Ok1OYgCHjHH3yAwZwpBaRhy/Ra/MpPAYTI6KAmK9tiyp+BC16WtkTA//3q52sRR5BRpr/4+D/RPTAufYy1S0Gt25U2K5U79jCUUVevAMUBKA6xsL2ef/37vz4m2lSdEPjVtgEOH+mXYtBpBKeukn5sHbUbeHIdallWyTUsh0ULOvjts9prEwIT6e7u5mOf+jR9w3kpAp0GKX61StEqtEqV5bKM8moanc1x/vFvP3KMaAUpVD7+qU8zELQz3LOLstFAmFxOWB5HuFk5CVAdVyuKZifRnSR69gBOMEZzai3txgB//7cfOUbAVKONjzyzl77hLGUtSWAlCc0YYAABul/A8LI4IkNnSz2vOGf5SUUbJ/o/lyLzdCKEoLe3l57efnoG0rhlF9uxSbW3kOrqoKur64yJ1s2ncZ1LCoUCm++5j55xQWPncgzz+E1yAt9jtG8fqXqNazZdrkSrQqFQKGaNEq6zQAnXM5e5vAl+fiS35Ov4wsAXWk0LmZrA1AIiRnDCSG415e5ILsqW3YcYHhnGK2YJA7/WU/Jo+rHsPakbJla0juamJs5ZvZgFieKUKXfd3d188K//gXE3Cma8ErWtprLChJAjEILvyeP5eertIv/+T38zpXhLp9N85j++zDO7uwn8UEYz7TqZxlpLvy3V0m8NU2fj6oV8+E/fd9wUyeqEwI5en76BETKjaUIhKoL4eVHM0EXXNOoaW+lsb2R9lzllaneVIAj46u3f4Ge/foKSK/ACMSGSKSOYlqERsTVe/9sX8p53v3OSWJ/q/P/+07dSTKyhnB1ipP8AodOEsJvASYJmyjXG5SyaO4JeHqGpYxlOsoVY7ln+5iO3HHccjkYbn6Z7IMNYrky+WCYIQwxdJx51aEg4LGyv41UXnzfjaKNCMdccnRzcQokomtNANF6HYZgEgU8xn0GUx4hQ5NKLNqr3rEKhUCjmDCVcZ4ESri8f5jKSW025K9qd9KUz7NnfTblcJvA9wsBDiBBN02WhGtPCcRxWLltEZ0uSmNd3wpS77u5uPv73/0ZfFkLMCems2tEWK0JIQegV0TWfziT8/cf/fErRWqWaIvmTX/yG/uEsxXJASFjTgjo6UcegoznJ1a+75KTXN1YnBEbcCONjY+TzOdxyCSEEmqZhOxHi8QT19fU0Oe4JU7ufTxAE3HfffTy1ZQcHjgzguj62bbJ0QTvnnbOeyy+//ISCdSLpdJp///zt9BVjJLs2UBrrIT/aRymfIQgDDN0gEq8j3thJpKGLbO8OOqMFPviBm09qfeN8ijYqFKDeswqFQqF44VHCdRYo4fryY65u1iam3DV0LGMoPczg0DCjmRyBH2CYBo11Cdpam2ltaWasf/9Jp9xVI46/ePApCmGEAIuwtghPQ0dg4BHTS1zxqvOnjThO5HStb5yr1O7TSW3d6AOPUjYa0WOtOPEmDNMi8D3K+RHCwhBOMMqmy17xklrfqFAoFAqFQvFio4TrLFDCVTEbTnfK3VxGHE838yl683Jd36hQKBQKhULxYqKE6yxQwlUxF8wn0aZQKBQKhUKhULwYmC+2AwrFyx1N00ilUqRSqRfbFYVCoVAoFAqF4oxE5bMpFAqFQqFQKBQKheKMRglXhUKhUCgUCoVCoVCc0SjhqlAoFAqFQqFQKBSKMxolXBUKhUKhUCgUCoVCcUajhKtCoVAoFAqFQqFQKM5olHBV/P/svXecXEeZr/+c0H06T84zyjnYspEDyCZ5DdgIm2yz5DXL7l3YS9jL5d6FxeyC2WVZdmHB9/4IBrNwwcbYYFs4YBsnybbkpDjKcfJMT890Tuec+v1RPa0ZaTTSJEk29fjT7pk+Ve+pU11zdL71vvWWQqFQKBQKhUKhUJzXKOGqUCgUCoVCoVAoFIrzGiVcFQqFQqFQKBQKhUJxXqOEq0KhUCgUCoVCoVAozmuUcFUoFAqFQqFQKBQKxXmNEq4KhUKhUCgUCoVCoTivMc91AxSKP3Vc16Wnp4eu7l66egfIF4pYXg8tjXW0NDfS3NyMpmnnupkA2LbN9u3b2bV7P4eOdZMrFPF5PSyY08zK5YtZs2YNuq7mwybLbI2BV9LYUigUCoVCoZgIJVwVinOEEIJd7bvZuGUrgylB1vGSd3QEoFHAOpjEb+yhNqSx7tI1rFyxfFIiI5fLce+99/L8yzvo7I1RcFy8hk5rYzWXXLSa97znPZjmmd0CXNdlwwMP8dAfnyNe9JLXAjjCRGCiIdjR08VDz+2nwvM73vbmy1l/7dsmJWBnQ2DNlsieybaWx8DmrcRSBTIFQaFg4wrQNfDu7SHg3UF1yMsVl535GJjtsaVQKBQKhUJxttGEEOJcN+KVyk03/QW33faTc90MxSuQTCbD/Q8+yq6jwwwVfORtKDoCx3ERAjQNDEPHY2hYhqDKm2PlvCrecc2fEQgEJrRt2zb/8q1/59mt+3CsRoS/Hrxh0EwQNhSSaNl+jHwvr12zhP/1hc9PKGCj0Sj//r0fc6C/QFarAG8EvAF00weaDsLFtXNQyEAhgV/EWVTv5fN/+wlqa2snbOuIwHrq2Zc4dLSDgdgQ6VQOxxUYukYw5KOuuooFc9t4/WsvPiOBNUZk2wEKRgW2biE0A004mG4erxOnwpvhbW88c5FdFoPPvUznYJbhDKTyDo7QMDRByDKoDEBrXYArzkAMZjIZ7n/gUXYd7mMokSXnaBQdDcdxRo0BA48h8BmCyrCPVQsaece1E4+BE8dWztaxhYHtHm+LqQtMzcFnOJMaW69ElNdZoVAoFOeC/v5+tmzZwpYtW3j++ed5/vnnGRwcBOCjH/0ot99++2ltZDIZHnroIR555BFeeOEFDhw4QCqVIhKJsGTJEt761rfy13/91zQ2Ns5Yu6PRKP/5n//J7373O44cOQLAvHnzeOc738lnPvMZampqZuxck0UJ12mghOufHjPhxctkMvz8zt+yu8clUTDJ5osUCkWKtoPr2GXRohsmHtPA6/XgszxUeG2WN+l8+IZ3nVJg7Nu3j//91W+R8jTjRhZDPiZfhTTgAjp4g2BVg1WFnthPqNjDP3/1CyxZsuQke9FolK984zt0ZcK4/gaMYB12sYBdLOA6TrmcbhiYHi+mx4udGsDI9dEaTPKP//uzpxSvmUyGezf8gcc3bqGzL4qtBxGaFzSQ/xMgQBMFTDdDS301b77yMq5f/5ZTXn80GuXfv/9jDgxAymhAJDuwM4Pg5I9fv2FhBmrQwq2EnD4W1Wl8/tMTi+xMJsN9DzzCczs76RoWFPIpnHwG184z8oXppoVhBfBaIVoq4fJVbVx37dXjtjWTyfDzO+6h/cggyaxDJm9TcE1szYsrdITQ0DSBrrmYooBXt/FbJhG/wcr5NXzohnef2u7I2LJ9ZGyDfCZJMZ/FsYsIIdA0DcP04LH8WP4QAdMh4smfdmyN8EoRgiMTDZu2bCOHH91XiS8QwTBMHMcml0ng5obxkWXdpRdOyus8W32gQvEVCoXi1cNE/w6ciXDdvn0769atI5VKTVguEonwwx/+kBtuuGEqzRzD5s2beec730lvb++4x5uamvjd+RfNUAABAABJREFU737HpZdeOu1zTQUlXKeBEq5/OpS9eE9sJm9UoQfqsYJVGKYHxy6STw/hZvqxnCHe9sbLTunFE0Lw/+68h017honnPWQyWfKFAsIMgBkAw4vMmeaCUwA7g2ZnsLxeAgE/FVaRdcsq+eAN7z7phrhv3z4+/+Vvkq+8EIpJSHaX9J8ARv+Za1IZCyDcDJ4wvvhWvv21/zVGvLquyxf/4evsHvCiVy6k6ICdz5aEcALsUWLQtKQn1qrGtPx4DHCHD7K8rsA3v/blk/oik8nwg5/8gsc3vUDW9YHuBasKrAow/KAZIBxwspCPQ24IRB6/nufNV6zlkx//0EkCKxqN8pV//g7HMnXk4x2yjq8WrEowrLJ3GCcP+WHIRcFXhVXRxtzAwClFdiaT4ae/uItNu2Mk4kPkUzFpwymWulMr9TFgeMCwsELVRCqqWLe8mo9/6H1j2iqE4P/dcQ+bth5kOCvIFHXy+BFouK6QbSx/VTq6rqEhsMgQ8Agq/Rrr1izkgzeOHQNjxpYTJhkfJp9NIUa+f8cujQMNDBPQ0DQNyx8iXFFJhZE85dgasb+rfTdPb36Zzr4Ew6k8qWwe13XRdZ2Q36IyZNHWEOGKyy6adPjxTIq2TCbDhgcfozsBFQ3zyKTiJIdjJBJxHMfGMEwikQrCldUEQpUM9x6ipUJj/TVXTSjcZ0sMz9T9RaFQKBTnD6Pv/3PmzGHZsmX84Q9/AM5MuG7cuJErr7wSgHXr1rF+/XrWrl1LTU0NAwMD3HPPPfzoRz/CdV0Mw+D+++/nmmuumXJ7Ozo6eM1rXsPAwACmafL5z3+e9evXA7Bhwwb+/d//Hdu2qa+v58UXX6S1tXXK55oqSrhOAyVc/zSIRqP8x/dvozcXINS8ilQyQTKRIJfLlR/afT4f4UiEcDhComsnTf4Mn/v0TScJoR07d/F/f/Uo0XyIdCaDYwRxvVWQG0Tkh6CYprzA0RNEs6rAV4NeGMJw0gQDAWqtFP/tA3/G6lUry3Zt2+b9H/krkoFlEO+Qgs8VYHoouTApi5aRn+2iPI/hh4o2wpk9/Pq/flAOG773vg386J6NUHsR+XwBkh1StFrV4KsCT/C4wCympVAcOR5uw7K8EH2Zv3z3FVx/3fpyW4UQ/Ogn/8XvHnyColEBgQYINIFbKAnCnBRvmg6GT4pO3QOZXsj04XGGeec1b+Iv/+Ij5X8URkT2zj4Te/AABOoh0AiDO6XIHo23AuovArsA2V7I9GPWLGJVg32SyBZC8NNf3MGDzx5iONpTsqVDuEXa91ZI0e0WoBCXbUx2yfZbESprm7jmtQv4+IduLLd1x85d/N+f/ZZoyiHlhijiAceR34lwwbWPt1U3ZT+ggW7g0YqE9BS1IYP/9tF3jRkDI2NrwK4mMRSV3mCnIMPEveGTJwQKSfkyvOimRaSqljozdtLYglEe520H6YkmcDxVaP5qTF8ETTcRro2dSyCyMYxijKaaCJevWXRKj/NoRkTbg398lljeIq9HsLEQGGg4mOSx3AQ1vgJve9PpQ7szmQx33L2BrLeZbDbNsSMHyNoGNj5sdARyIsDExSSH33SYM28Rfn+QQLGbG969/pTe7BExXNm4AMP0nLINjl1kqOfgGYnh0feXSMsFGB7vqe0W88Q7d5zy/qJQKBSK84ebb76ZSy65hEsuuYSGhgaOHDnC/PnzgTMTrs888wzf/e53ufnmm1mxYsW4Ze69917e9a53IYRg4cKF7N+/f8pRTx/5yEf4+c9/DsCvf/1r3ve+9405/utf/7rs1T3TUOeZRgnXaaCE66ufaDTK1751K7nwcpI5l6FYDNfwgeFD0z1lb5twi+Dk0J0cVdXVhH06/uRuvvyFT5UfLl3X5Z+/fSvbuk2S2QKOVYfIDkCqB0yfFGcnekbdItg5CDWh+esw8gOE/V4ubLb5+//x6fLN6evf+CZP7ohBYVgKspJHDSsiPbmUxA8CcMHOSE8mSE+c6QFvFW9YXc2X//6L2LbNR/7qcwz7V1N0NRjeD75qCLRBtk96LN3jYbLolvRs+ush0wm5GFQuxqMLKrM7+MWPvlsWG9u27+BL//Rv5I0KqFgq25SPSVGl61Jwj4hsXQPXlWLLqpafxfdiOXFu+cr/4MILVgNw732/5//79RPYqShULpaeWyGg6wnZJ6PxRKBpXckLC+QTMLwPM1THX7//jVx/3dvLRbfv2MUt3/8lscF+KGShciFUXwDmqcUFdk4K5vhB8PqprqnnS5/+cy5YvRLXdfnGv32PbQf6SLoVOHikUC1mQRTl932icNU9oHnAI8eIQZGwHufCRQ186Qv/HU3TymNra6+PeHwYUczIPgg0Sy8wuvyeyiHYpXHgFCDdA4U4midARUUlaxpzY8ZWJpPhJ7/4Nc9tO0LOU4O3ZhF2Lk0xm6RYzJfDjz0eC48/jGmFyA/ux28PcvmF8/iLD73/tKHdu3uLZM1m8ARK12uWvnsh12W7RShm8Be7WN7kPWVotxCCu+7ZQE82SFfHYQbieXJaEGH40UwfuuE9vi7bKSDsHJqTwScy1FVYtLTNp8mf5n3vXj/mH/4RMZyzWghX1SGES3I4ekovbriyDk3TSA4N4C90nVIMj9xf8pEVhGrOfOY6NdiJL9E+5v5yKl4pod3wymqrQqFQTJbJCtcz5b3vfS933303AC+++CIXX3zxpG309vbS0tKC67q89a1v5aGHHhq33Nve9jYefvhhdF2nq6trRtfWngkqq7BCcQpc1+U/vn8bKd8i+vqGKOIFfwPaiMDSjotBTVjgBnCFzWA8QSJepKF6Ef/x/dv42le+UP4D39sxTCofxvZUwmC7PJHHLz133pLIHAlptWWyI7Q4ZAYQmQHsykWkMsPs7UjS1dVFa2sruVyOp5/fBZoP3Jx88PdWSGFmWtJrqRvHQ1pdpySILOndzA+X3od4+vkebNvmpZdeYrjgo2gBQ3shsghyAxB9Efx10uPoCR1P+FRMSbEafUmG/IYXwNBeilVLGC74eOmll1i7di2u63LrD35C3rWgaoEUlcIuCSkNnJKgGhGujk7ZE5kflOeLLCA/2M6tP/gJP/j+v+M4Dr+850HsZBKqFst25eOy74QzzjeLDKXO9st+8oSgchH20H5+ec+DvGP9Nei6juu6/Ncd9xCL9sqw4JYrINgCHPdbj4cwfdCwFkJN0PMMsWgv/3XHPXxr1Qo5Bg51kMxZOB6tFHKdlv3vDZf69ASB6WQhHwXbB2YQxxsgmdPYe6ijPAbk2IoTz+QQ+RRE5kqvuGaWLI1MiJTeNQ0NE2GasmxuCJE4SjwOe4v5sl0hBHf+5l6eeuEA1KzEdRyGug8gDD+Yful1L53Bdotk48NoTg/+cBWFQC1Pv7iLoO9ePvbhG08SHNFolC9//d85lqvH8c9D8wRK1z7Km2oAeAALPAEyxQBbe/v4h6//O1/78udPEm272ndzNJqns/soA1kvrrcOw1+Ja+dxCjny2STCFWi6hmlaGN4Aur+KbHaYzqEh8rl2Cs2N7GrfzaqVcnZbCMGGBx8jZ7UQqqylr+swHUcOYBshNKsC02pCs6TXOTGcQvQdxHS20TZvEfXN80gNw4YHHztJDI/cXyYrWgFCNa2kYMz95aRxOG5Ycz2GZZJ0bDoPJHB3dkxpje9Mo7JgKxQKxdR505veVBauBw8enJJwve+++3BduVTp4x//+CnLfexjH+Phhx/GdV3uu+8+PvnJT06t0VNECVeF4hRseOAhjiVMBnNxHG8lmicoBZ9rI5yiFFMjHkdNR9NNNMMPukmxmKFnYJiCz2TDAw9x3fpr2b6znVgGiqYHYu1SUPprIdAC2KU1rVmOexs9EGyCYCukuyA3CLF2ipG5xDKC7Tt20drayj333IPrmuAkpQj21UjPlRWR3kUzcPIazxFRXIhLT2duAApJXMPPXXfdRUdXD0WzCob2Q6gZ4gcgUAeNr5OeMOGW1mIKKSZ91fJaKhZB4pAsH26Gof0UrSr++MRTrF27lqNHj3L4aDdULyutW3VLnjXAHwFvZSkEeUQQp6W4zQ7Jck6pn0JNHD66h46ODvr6+ojFhmXIsRmATI+sb/oZV2JqmgzvNTXZD8WkFOP+WmKxvrLI7uzsZOfeI1DMQcuVEGwp+6yFk5PtcIujvM4euUbZ8MlywRZoeh10Pc3OvUfo7Oxkx85dxIYzOL5qyMak4PeGwFsnRbRVUZq8KIX0jnjGDUuOjVwUnBCON0JseIjtO3bS2trK9p3tDCRdRHEYKhbKMaBpgIso98HovhAlMSvkuXwyQ6CIH2TA8ZbH1o6du3hk01bcypVkEzEczYfwN6Hp5kmTNwgXzCCua5PJDGOIPP6KJTyyaSuvuWg1F6xeVT77iOf5SLYOEWpDM+XablHMIOzcSf2qmT40TwDNG8LRvRxOCb7xb9/j375xc1m0ua7Lxs1b6e2P05c20UJNCMcmNdiF0L3ShlkBmo4QLnmngEgm0NwCvmAFItBEX6oLs3+AjZu3lsXRrvbddMUFFfVhdr20iVTRg1V3AR7jxH8+LUwrCDTgOkUOdRxhoLeLpavW0tU/OEYMj9xferIBqhuntkYoVNNKz+He8v1lNGPX+K7GzuZJJlP0DPbiOA6GYRAJBQlH2rD8Ph7ZfID2PQdPG9Y8G5yYBdvVfWimD9NrlSeQssU8Q4UcvaksXQ89z8o9B161WbAVCoVisuTz+fLPhmFMycbGjRvLP7/hDW84ZbnRxzZt2nTWhavK7qBQjINt2zz0+HPEcpYUrd4QQjiIfBLXKSI0mZ0Wjx8MC6Hp8vN8EiFc+YDtrSSWs3jo8edwXZeXt+8i7xiQ6JQiJ7JACoZCTHrcDI/0ulmVpTWJHvl5YUiKwsgCWS/RSd4xeWm79Ng+/tQzUtzohhR+vkoIt0FkoRRz3rAUVLop371h+XnFAgjPkeW9VbJ+Ps7jT25i94FjMhOx6YdkpxSaFQtkOKtwpdgxfCVR7CsJLVeKzYoFsnyyU9Yvptlz8BgAGzY8AJ7wcQGNK0Vv/UVoVUvRgg1o3hCaxyffgw1oVUuh/uJSqHCpnnDBE+a+++/nkceekCLHXyvDrjVT9p2mSXF1Ipopw241TfaHZsp6/loQgj889gQAT218BiczLIVgydMqiim5jjU/LIWkWzweympn5eeZXlkOZL2KhTiZYZ58ehMvbt1BwTUhNywnDaxKWaZ2NVrVIrRAHZo3WLr+oPy9ahHUXiDLWZWyXm6Ygmvy4tadALy0bRd2ISPHk69mlEbV0cr/Meo18kmpfzTKde1Clpe2teO6Lj+/87dkzToyyTi2WQn+WjSPX44VIRBOEeEUShM5AnRDHvfXYpuVZJJxsmYdP7/zt4xelXL//Q+wu8dGhOaAacm/q2QnbjGD0L0IbyXCVyPfdS9uMYOb7ETkk7J8aA67e2zuv/+Bss2enh66owm6oikINpFLD5PN5dGDDRiBGnRvEM3woOkGmuFB9wbl58EGsrkcufQwBJvoiqbojibo7u7GdV02bdlGqKaFnS89Q9asx1+3CP0k0ToW3fAQqFtM1qxn58vPEKppYdOWbeU+sG2bh57YTEXrBRPaOR0VrRfw0BOby7PkcDysecCpwvFWs3XnXtoPdtEZy5MRQYpmJRkRpDOWp/1gFy/v3INr1TDgVHHnPRvIZDLTatNkGMmC/ezeOIN2Fd5IC/5IHb5AGNPjRTdMTI8XXyCMP1KHt6KVqFPNs3vj/PzO357VtioUCsX5ypNPPln+efny5VOy0d4unykrKiomDP9tamoiEokAsHv37imdazooj6tCMQ7bt2+nNyEoWn50bxBRzEnvkjeIpp0ghjTQMGRYo3ARtkwwpHmDFO0svQnB1q1bOXjoKBQjcm1o5SrAAaHLzLf6iOdqtFfMK4Wf60jPHI4Uo7GdUDQ5eKgPgCMdPaAJGWY6InA9Qdm0CZLYCBe5JtUMSjeinYFihsMdPXh9QdAcufa1arm0DaNCQ0dfv1byvHnAEFJYekKy3tBusIv09cv1tI8//TR4Gkui2IKqJWj+WoQQiFEP3ydheNCqFiN8VRDbI+t7QvzxyY24QpPiNzsohb1uSHHuq4ehPSfb0k0ItcmsyLl+ucZVN2V9XxXPv/AyAE9ufFZuHVR7ofR+5gaPrz81faUQbO+oEOyCnGiwc6UQ4JKQrL0Qkkd4etNz5ApFEF7pRQ7UQtVSNH/1qa97pIsNL1QuQFiVsk8zUTCCHDx0GIC9+w+C65cTERpIwVr6qk4cr6PtCheEJr2ymivrp7vZs/8AHR0dHOqMkffNw7Gq0KwwIOT41nRAl/1WQrhC9pMoohkGmhXGQZDPD3Kos4vOzk7a2tqwbZtf3PMAduRydN1ApHoRuhf8jfJvq9zcUnZtPOAGEMJFFOJoqV60QC12ZCm/uOcB3vGOa9F1nY7Obo52dOEGl1FIDSO8FRge/2n7Fk3H8FfjFrPkUsN4/c0cPbaHzq4eALLCR8/ubdiBVryhkmdauBTSQ+TTw+SzSVzHRTd0LH8YK1iJN1iNpml4QzUUgAO7t9FUX0V3dzctLS1s376dvFFFYIJETGeC4fGSN6rYunUrF198cTmsOWXU090zRDIPvlAjnhPuA7oBpscLhBGuy8GuGBELmuvqxw1rng2EENxz34NsP1bAqJiD33d676mm6wQitRRyAXZ0HOOe+x48ZRZshUKh+FNg27Zt/P73vwdg9erVUxaunZ2dAGeUKbitrY1du3bR0dExpXNNB+VxVSjGYfvO3aRsC82qlKLV8Erv6gQiAJAhwx4/GF5EMYdmVZKyvexo38vQcByyUQg2A44Ud1Yl6KYMM9YNNF0f9TJKIZkeWc4TkvWCzZCNSnsgRZxhga9Cejs9wbINXPeUr3IZT1DW85XWxRbSFHIZ6Un018lQ1pG1shOu7kQeN3yl7XFCsr6wKeTSACQTeSlsNaRX1lcjBevpcsSNCFtfjaynAU6eZCJHOpGQyYuEI5/Ig80QagUrLD3B435HpVDqUJssr5dCczWTVEL2a2fHUXlcNyDTL9e5mgEINKL5a6VH2PRKL57plb/7a2W2YdMvy2f6Zf1QG8eOHSE6GJMeU08AqpafkWgd03R/dWkiIQCFOAODQwAMxWJybbEuEzFJ7aqf0XhFL5VHL421KoZiMTY98xw5AjiGH82KIBxHilPDKm37Y8j6Iy/DKG8HJFyBcBw0K4Jj+MkR4OmNzwDw0ksvEnfC6FYIke5HeCNoVhWaUQo/ZuTF8Z91Hc0w0awqhDeCSPejWyHiTpiXXnoRgN1795MqeijaLsJbgX4monUUuseP8FZQtF1Stof2vfvp6u5lOJEmWTTxhmoQQpAa7KB773P093aRKHiw/W24kQXY/jYSBQ/9vV10732W1GAHQgi8oRqSRZPheJqubrkv3q7d+9ED9ZNq3ynbHahj1+790m77bo4OFjnSPURGBPBHaiecvILjYjAjAhzpGeLoYJFd7bM/i75zVzubd3VjVMzBewaidTReXwA9MofNu7rZuat9llqoUCgU5zf5fJ5PfOITOI7M53HLLbdM2VYymQQgFAqdtmwwKJ0jp9tfdjZQwlWhGIfNL25HeCulh23kQX0ylB7gcW2Et4rNL2wjk05JEeMJlxMxjYjViRgRsZgBWc8TBt0gkxl1wzB90htbEq1lgTrG0AmGRwlYPEFZ3/TJY4VsWXBh+mQ47Zj2jP86XsiU9UaEXyEnP9d1KYjDrTL0d5RgPSO7QpS222mVdvSS2LIzMpNyuA0CdXI9pD7xOg9NN6SADdTJeoYpw311+V3btpAh1dmBkoivQfNXS4E1kV3DRPPXgL9G1ssOQKAB2xYU8gXpyY7Mn7RoLdv3V0NkPmgOhZxc11IoFEpCXTsuWifDiHjVNPCGKRQK7GjfLxOS+WoRji2/R8NzRnMXGNLzLRwbfLUU8bKjJK42PPgIwteAyMYQ3spS6PEZtleXE0PCWynr+xq4/4GHATjW0YljhHE0c9KitWze48fRTBwjzLFjHXT29DMQjeKrno9TzNN/6EWGhhMYdavx1izGE6pD9wbQTQvdG8ATqsNbsxijdjVDw3H6D72IU8zjq57PwGCUzt4BAA4d68YKVk2pjSdiBas51NFTCmveykBKwzYjUxKDthFhIKWxactWZnPDAdd1ue+hxykGWyfdzhG8vgDFYCv3PfT4rLZVoVAozlc+/elP88ILLwAyS/E73vGOKdvK5eRzmtd7+kggy7IAyGazUz7fVFHCVaEYh4HBGBg+hGZMXrSOYHhK9S36o4MIpyCT73h8JdE6uT8/TdelePX4wKpA2IXSER381RBokA62EcGqUxJ2+nHv2+jfR07vurJeoEHaQZcixV8nPacl0XqSiDxFG8tlNFPW99dJe6VzYfogPH/8OmdiF2R90yfDqEGGSvtqIVAvw2ongWZ45b6vvlppZwTTL0OB7Tz4pRielF1PQF67nS8lgwrIiRBvBCJzJmXrJCJzpB1RCl3WzNL3dIp1vWfCSLi6Lm0d6+qWkzcjn51mIuBke0YplFhDeCs51tUNwJ6DHWD6ELoHzetn8v8M6WheP0L3gOlj9wEZqjQ4nMQWJoavcpL2xmL4KrGFSSyeIhqN4poRhOvQf/hlbF8T3uoFMhJiAjTDxFu9ENvXRP/hlxGug2tGiA5I4ZorFCfcB3ZS7TU95PMFuY1MrEDKNqclBlO2SVesQHd394y0bzy6uro4NpAjGJme1zkYqefYQI6urq4ZaplCoVC8Mvjnf/5nfvzjHwNwySWXcOutt07Lns8nHReFQuE0JY8ng/L7pzZJPB2UcFUoxiGbKwAummlNy46sL6Q9Ucp066mYtGgt29N18FRIO6L08GzK9YFoulwSCKNCLidCPy5yXGR9f6O0pxkyPNmwjp93su0EWd+qOB6yq5W8mLo5ttxk7eqmtKNRSgrkhfDcSYvWsl1D1kf3jvIC6zKrsRWetGgt2/UEpCe0mAY0EJqcYJhiO8e0N9Ag7YH0lLo2xwfAVHGlHU0nk8mCWdqeZ7KidYSRbZjMoLQHpNK5koCvZOr/BOmyvmuTyshZ4nw+jxjZTmo6aDrCDJDL5chkMrhmiOixHbjBNszA5LzkZqAaN9gm65shMqXZaZ/Xg2MXp9fOEo5dxLK8dHT10Bcv4g9NzZM/gj9UTV+8QGcprHk22LlrN45VM+X74AiaruNYNezYqcKFFQrFnw4/+MEP+Pu//3sAli1bxgMPPFAO350q4XAYOLPw33RaLv86k7DimUYlZxqHW2+99YxmLpYtW3oWWqM4Fwi3KNcozsBDME5R2jNM+bCtTTOsTRPSzkjKc90jkxONMIUw0bKX1ldaJ6nppTW12rREtnBl9l/MklDTTOnZZPKi9SS7vtqSl9GWSammKC7LeAKlzMQyQQFOEXBKAmsaeCsh0yft6R4ZejsSoj1FytdfCmuWW8cYMimUbxrCpZBgZCsexxUlL/00PYO6BzSD0hIcKdh087Qh16dDM0yEbuIUS15nwfG/iemiG+AAmk4uPUQBH95JitYRzEA1hdwQenoIquV3vmBOM50HhvCFKqfd1Hw6xoJFTezZdwDNG5kRMah5K9i99wCXXfKaabdvPPYePIoZqJsRW2agir2HjnLNjFhTKBSK85tf/epX/M3f/A0Ac+fO5ZFHHjlpT/Op0NraSl9fXzlJ00SMJGVqa2ub9nkni/K4jsOnPvUp2tvbT/uqqpqZNUqK8w9d16CYmBljxUR5r0k8wVKiIWdKpoTrSJFijsruq5ulxElMM0wUMPxSaIwIIZg42++EbS3V0/TjXkzdlCGzM4EZKIkiUwrO0y6+PB1aSQyXxE8xAxgzM3mBJu2NrFWeCczA8ay+wpbZjJ0iwp7amhNhZ6W4trMyURXieCKt6VBKpKWVvMGuky/ZnwFcB9eVHlfL50Fz86epcGZobh6f34vf7ycz1Iuncu607Hkq55IZ6sXvk2FVK5cvxs30z0RTcTMDrFy+mOjgMLp3ZsaW7g0QLSX+mg0GhxJ4rJlpq8cKMDg0Q/dqhUKhOI+57777+MhHPoLrujQ1NfHYY4+dURbgM2HFCrnPeDwep7f31BE3PT09JBLynjvVDMbTQQlXhWIcQoEg5GIyucw0EI4N2UFpbwTdI5M2TVK8CteRIZb6CQlyhEC6h2ZAZAqntE+rBk725OOTtQdyi5jR21UIgXSPTQdRsuOWxGBoSu0sWxup5wkdF4OaXu6Dadt18mMFPO40bY58X/Ld4/FCtk+Gd+eGJy1ehZ2Ve8talZDpx+Px4vWYUIzPyFdFMY7XKz23uq7LLYhmgkICvTTRUFNVhemkcZ3Tr8+ZCNcpYDppqisr8Zp6Kfx4mp5czUCYASyPtHPBBRdgOUM4xem11SnmsZwh1qxZQzqTRT/N2tszRddN0tncjNgaFyHQZiihkibEtINYFAqF4nznscce4/3vfz+2bVNTU8MjjzzCwoULZ8z+FVdcUf559L6wJzL62Lp162bs/GeKEq4KxTg0NtTJh9XEkekZShwB3aSpoVaKDDsjPx8Rr07xtAJGuC7CKR4XrSC9dyXRgluAQmpM+ckwpnwxWdqPtCjDRoU7ptwZtXV0GeFCPl4KuwXcIjiy7dMSbsKVdlwbGNlH1j35es7UnmzcWO+qJ1DqD3t6dl1b2vEEQRTlGCiJ9zEi9LSM9FlJtNtpaQ8IhcNSDOaGpPc5n0Dkhk47OSJcB5EbknX9tbJ+IUE4EiEcCkBuEOFOT1wJtwC5QUIh6WHTTUtOCtnTtGsXIBdDL60XntPWgmnH0YU9rbGlCxvTjjOnrRXTMPBHarALmWm11S5k8IdrMEqRDaZp8rY3Xka8c/u07MY7d/C2N16GrusE/BZucXrtHMEtZgj6prcOeyJqqsIUsjMzeVHIJqiuCs+ILYVCoTgfeeaZZ7j++uvJ5/NUVFTw8MMPs3Llyhk9x3XXXVeODvzpT396ynK33347ICehr7vuuhltw5mghKtCMQ6rV61EE0VEPo7IDk7JhsgOIvLDaKLI6tWrwNAhN0jZhTUiQt0iwikgXLss/OTLlpmI3eLY8gjID0p7gIYjt1wZ5RqbkshEQHZA2sOFYkqK11PUG+91EoWEFFgj4swpQH5ICs+yeJ2kcCvVJT8kBbFwpEdzlCd38tdfEoNO7ngYq2GAVQPJw6eocyZ2kfWtGjB0IgEP5GOl80kRKi9non4Y6V/G1CM/JO0BC+a2Ahokj8i+8JcmXrL9iFwMUUyXJklKkyXFNCIXg2y/LOevk/WSRwCNBXNbaairRUdAsuP0++yesjNkfR1BQ20NAH6fTybtih+cms0R4gfBsPD7ZZj88qWLCQb8ePL98m93ChMNmijiyfcTDPhYsWwxjhAEA0EsgyknU3LsIpYh971zRnXj+mvfRpM/Q2rw9OuJxiM12EmTP8P6a98GQF1NFU52ZsJ7newQtbXTS/I0EUsXzcNOR2fElp2OsnTh9EK5FQqF4nxl69atvP3tbyedThMMBvn973/Pa14z+fwDb3zjG9E0DU3TOHLkyEnHGxsb+eAHPwjAww8/zG9+85uTytx11108/LDcgu7DH/4wjY2Nk27HdFHJmRSKcVi5fAnhTbtJuj6IH0aA3JvzDBHZQYgfRvP4CVtFVi5fQlUkyFB+CApp8JYysWlGKQzRlQ/5wkaKL02G12r6yWssCynIDVEVkTZaWxrpGOoBe7nMNjy6HZN5eLezkOmlraWRY0eOSe+bnQMzd3wN7WRwctJmbkhuCQM0NjXQm+mX+5CafqQo04DSljzjzqWNEm0jLycPmX4am+oZHE5QzMfkljbCPb6mlJE6JyI4SbALV9bJD+H1jGzd48g9Y9MdcsLBd/z7P+N+zQ1Kj3OwDVyH6697Oz/f8DxULJR9KkQpWZdeusaJ7Lqly9Fkf6Z7eOf16wG4YOUSXj4cxy2mIXkMwnPQPCGEJyS/B6dQWrNbGlu6R57fWykTM9sZWa+YRvcFWL1iMbmiy/aDm3DsFCIfQ7Oqx4Z8nw4hZD07heFmWLLkYgAqIwGS+TBkBxCZWrQpJOkRmQE5WeOtoNIvsxu2tTQxp6WB/cf6sfzVFNBwHMoe2YlwnQKGBl4tD8Vh5sxppLW5kcNHuzD1NFWRSqKDMRybSW1j49hFdDdHVU0VdiKFz388A6Ou63zu0zfxtW/dSgoI1Zz5OqXUYCe+RDuf+8KnyjPky5Ys4rmdj+M6Nvo0El+5ThFyMZYvWTNlG6dj1coV/O7RLTPSVqMQZfWqqe9dqFAoFLPFxo0bOXDgQPn3aPT4hN2BAwfK3ssRPvaxj435/eDBg7z1rW9leHgYgK9//etUVFSwc+fOU56zvr6e+vqpbTV2yy238NBDDzEwMMAHPvABXnjhBdavl88ZGzZs4Nvf/jYAdXV1fP3rX5/SOaaLEq4KxTi0tTSxYvF8Xtx5CDc8Dzd5TIZURuZNmA1VOLYMDy4m0cMt6MkjrFi1gNbmRl7/uku496l9kDoKlUtOyNaqS611Ol3gFiF1DBC88YrLAHjN2svouP8PkDgMVUunth5POLLduWFes/YtDA/FSNh5yEelWLGYnHh1clKw5QfBzhOplA/s11z7dn76i7shFxuzLQ4aEwi3kvgc8ai6NmRjkI3yjhtuZPOzm9jeOQCRBXLf2FFi8PSUxKCmS5GeHWDZ4gUA+LyCXCEOVSsgVvpHwnfmkxfkBqVXsHoVpI7h9wre//738/Nf/156OoPN5T1yEU5JFJ44CErXLMRx0ShsWT/Tzwc+8AEA1r3utfzmwU2kzGpEPgboCH8NWFVohu+U350QLiI/BNlByMfQrDBBEePKK9bR1dNHZNNOEo7ASXbIbrKqKI/VUyFkv4r8EFqyA0OHSCTCyuVLAFi6cC7duxI4gQaI7ZF2JyFeRWYAYnsg0IBhx1m6QO6J29TURGuNRcadR1fnYayKBbieMPlCHoEGmoGm6VKol64d4aAh8HktdDuJiB+mpXUerTUOzc3NWNYOWhp8dAwOU19Xy+BgjHy+gOkNoE0g4oUQ2IUMlgE1dbXkUjHaGmqwrLETKbW1tfzDFz7Ff3z/NnoO91LRegGG59RC2ynmiXfuoMmf4XNf+NSYTJJtrc001FYwEDtMoG7xGffnieRiR2isq6C1pWnKNk5HS0sLcxoq6IweJNgw9ez82egh5jRU0NLSMoOtUygUipnhxz/+MT/72c/GPbZp0yY2bdo05rMThevTTz9Nf//xRH6f+9znTnvOm2++ma9+9auTbivILMH3338/73znO+nt7eWb3/wm3/zmN8eUaWxs5He/+92MJYWaLCpUWKEYh6amJlprfSxcugwteQQ93IbusWDgJURsLyLVL8Mt7Zx8T/UjYnth4CV0j4UebkNLHmHhkqW01vpobm5m/duvlWGzxZzcHsWdZOihW5T1ilmw06x/+zXltnq8JiSOQmZg8hlbhSPrJY7i8Zo0NjfzwQ9+SHp2MwNSNBWSkB8es+Z1fFuuLFdIynqZfiik+OCffwiARfPnYPojED8sQ5HdUvZa4R5PtjTas1r2RJc+dx1ZL3EY0x9mXlsTf/bm10uRmBuUx0cE4IT94JaOlzzbriPFdG6Qq696AwBXXv4ayPSA6ZPiM3EY4vvLa15PbdqW5RKHZT3TB5k+Xv+6S/D5fLzu0gtgaH+pj+ySKB3xEo/0hXv8mkfW8I545AtJGN7P6y69ANOUwretrY2FbbUE/Baa4YFCHNLdkDqGyEURdgrhFhHCke92CpGLSi9ruhsKcTTDQ8BvsbCtltbWVtpamli0aBFmcRBPqA493YOIH0G4+VFtHP11jYR/5xHxI+jpHjyhOsziIIsWLaa1WYYUvekNV6Jn+zDDTdJLPrwPEdtz2jWvwi4gYntgeB8E6jHDjejZPq56k/y+dF1n3aVraKz00NA8Fy11DFLHCAV8BHw+LFPHwEETRQwcLFMn4PMR8vsgdQwtdYyGlrk0VnpYd+kaNE2jpbGOkN9LxAK7kKOurpaqcAC3kKSYT2MX87iOg3BdXMfBLuYp5tO4hSRV4QB1dbXYhRwRC4I+Ly0NJ29ZUFtby9e+8gXeeeVC8kf/yNDhzcT7DpFLDVPMpcmlhon3HWLo8GbyRx/nXVcu4mtf+cJJ2x80NTXRVBMmZOQppKa2vKGQGiRk5GmqCdPc3DwlG2eCrutcd81VGNneabXVyPZy3TVXTTiJoFAoFIoz57LLLmPHjh18+ctfZtWqVYRCIUKhEKtXr+bLX/4yO3fu5LLLLjtn7VPCVaEYh5GH4Dm1AeYvXoaROoSwcxgNF2MEatGcFMQPwdBeiB9Cc1IYgVqMhotludQh5i9expy6YPkheM6cOSxqqZbewGy/fNlZxg9nHY2Q5UbqaLCopbq8f1ZrUz0Xv+7PoDAsH+ozAzLB0pnYdQuy/PBeKAxz0Wv/jNbGOi5Ze3EpiZKA4T3SlG7K8Mz8kEww5NpS/Lm2/D0/JI/rpiw/Us/JcGlpP8iW5kauuurN0hOb6pIi1Ckc96aKE4Tb6M+dgiyf6oL8IFdddVXJ3lVYhgPJo6PEMKfZxkY7fnxEDCePYhkOV199NQB/8zefgnSPFMSeANReLD2k/S/K7z3bL6/bycv3bL/8vP9FWa72YlkvNwjpHv77f/8MAP/w91/E5wxJb2whJfvPtY8LQU07/hoRhCNlCimIH8TnDPEPf//FMeP1wze+B789QLhmrpxkcWXyIjJ9kO6FdJfcozbdJX/P9Mn1tm4R3WMRrpmL3x7gwze+B03TaGpqoq3Wx4KlF6EN7cEM1eOxAmixdogfQmSjCDuNcHLyPRuVfwuxdjxWEDNUjza0hwVLL6KtNHkDcPHFF1MZ1NBTR/FUtkGgWXq7+7YgBtsR6R5EIYUoZuV7ugcx2A59W2SIdKAZT2UbeuoYlUGNiy++uNwPK1csZ26Nh4VzGmibu4iAB5z+7bjxQ+jFYXymwG+Z+EyBXhzGjR/CGdhOwANtcxexsK2BuTUeVq5YXh6vbn6YJYsXYNoJCrkMwWCA5sYG6qoiRPwmHq2I7mbxaEUifpO6qgjNjQ0EgwEKuQymk2DJ4gWIwjAtzeOvB9J1nevWX8v3//VmPnXD63n9IpM6ey/B+EvU2Xt5/SKTT93wer7/rzfzjvXXHN9e6wQbV1y2hrqaKsxM56QFYSE1iJntpK6miisuWzPrYnDVyhVcfuFinNi+KbXVie3j8gsXs2rlillqoUKhUEyP22+/HSHEGb9O5GMf+9ik6gshTultfeKJJ8pl5s2bN2G7a2tr+drXvsaOHTtIJpMkk0m2b9/O1772NWpqJhF5NguoUGGF4hSsXLGc9j0HsUKthEJhDh86RKrvRYSvEs2qQg81oemGzMxaSCJyUbThA0Qqqpm//GJa6ytotJLlh2Bd1/nrT3yYL//L/yUXWiLDXQsp8NfLEFfdlIJH045711y7HMKKUwCrEl9qH3/9if9WfrBsaW6ktvoYi5ZfwIE9u2T9Qj0EW8D0lkKHteN2EVJw2nnpbcv2Q6aPRcsvoK6mgpbmRpqamrhs3RVs3vw81KyCod0y62zFYsCRbbGzx0NYdY9cs2oGIX4AslHwVsDgTi5bd0U5lK+pqYmwp8hr3/wOnn18g6zrr5P1dLO05nckXHZEyI6I47Tsh8RBLn/zOwh78jQ3N6NpGtde/Xp+98jziHSXvG5PQPbleKG9I5+N9HExA+kutHyMa69+PYYhQ61DoRALWms4NLQHvGEZbhuZD6E58vpyw7L/RtbVGgHwVkLFIrlFD8iQ6aE9LGitweuVIaCmafLtf/4HPvu/vk4RF4KtYFWVrl8/vo61HCJdEq75IUh34kkf49v/8g9lb+sIq1et5C2vv5QHn3yRSN2FFPIFskMdCLe0btqBsgcXwJVhsv6qNryWFz26jbe84VJWr1pZHq/rLl1DYtMe7KUX0XlgO7ZVi6/xAtxCGicXx00NyT7UTHRvACNcj+6djzO4GzMfpXXZRbTUBll36bLyeDVNk/e/8+3c9ssNEGxAq2rFTgdwC2k5rtJ94HYe79eR9bjBZnRvEDNYjZ4fguQR3v/n68eIOE3TWH/NVdxx9wbmNDdTX1fD0c4estkMxUISJzVYCss28Hi8eEJ+/P4a5rY24/O4BArdrL9mfbmtTU1N+Miia7BqxRL27T9EIpHBH6rGsrxYlpfx8tkK1yWbihGxYMnyJega+Mie1oup6zoXX3zxGDE+GUbuWd7gEro7j5AciOGrnj/hOlLXKZKLHSHssWmev4Qmf7p8z5pNNE3j3ddfQzp7D7uPHiKTPfO2eu1hVi2u593XX6O8rQqFQvEnhCbGk/iKM+Kmm/6C2277ybluhmIWyWQy3HH3BrJWM7mixtHOHoZig6TTKQr5HEIINE3Da/kIBkNUVY99CL7h3esJBAJle0IIfvjT/+K+P26lEFwECJm8yPTL7VIMX0m8uFL0FNNSIPqqAA1v+gDXvXkNn/z4R8oPbK7r8qOf3YlevYTnn3qQwwf2gq9WijerErwRaV8zSoI1K7P95odLnsIo8xct45LXvw03to9PfuxGNE1jx85d/PN3b2Ogrw+qV4Obl/X8tVL8ecNSHI6Er+YGS4I1AroFse3UNTTyvz9zU1kMAezc1c4jmw8Qz8GmR++T9gKNpeu3jovXEdHq5GVCq2wvZKOs+7PrqPDB1ZctKntbHMfh43/1WfrSBq6/SbbPEwbDRK7JPEEM44JT2qYmN4ie7aYh6PLTH3ynLFwBCoUC69/7UUTtGqhYgGb4EKM05VivtlZ+0wQIJyc9kNGtbPjNz8rCdYR9+/bxxa/8Cyk3BMEmsCrADJT26S19V25p+5z8MKR7CekpvvlP/4slS5accrz+5Od38txLe8h66rDqV1LIDJNPxbDzaYRw0TQd0wpiharx+ivID7TjLw7w2tcs4+MfuuGk8XrXPRvozYfp7IvTeWg3yeF+XF8deqAW3aoEwwNOETc/jJuJoucGCFfV0zp/Oa0NcvLmfe9eP0ZguK7LF7/0NXYfi6LVvwYtUIddLODmU7h2vuSBHpkUMdFNC90KYXq8iMwAov9Fls+p5Zu3/MO43sdMJsOGBx+jKy6oalxIOpsjmUyRSGdwbBvDNIkEA4TDIYJ+H0O9B2mpkKJ39PWPHq+1bctAQP/AAMe6erHxoJk+TI+Fruu4rotdzCPsHCZF5rQ0UV9XCxpEO/aMGa+zSfme5W0mm03TceQAthECbwUeXwhNNxGuTTGXgkIc00kxZ95ifP4AgeLJ96yz0d77H3iUnYd6iafyOJ7IKdtqFBNUhnysXNDAO679s7PaToVCoVCce5RwnQZKuP5pMJMPwSP2fvjTX/LEC3vJaNUIf7MUhU6utK3LiAfPkkJW96JlewiIGG9cu5RPfvzPT/lwXVE/j11bn2PvrhfJZwtS8JqBsQmbhCPFUG4Iy2+xdOXFrFxzOfH+I2MeroUQ/L877+H3j79AtOsgVCyQ3kE7LYWkKB5vq+YBbxCMIGQ6IX6IutaFXPvGtXzwhnePES0jYijqVOMLVfK7O39KNhmXYtOqKInXEfGel0mecoMEwpVcf8PHyKWGqTViJ4mhjo4O/u5L3yDuBHHNkPRimiUxrJuUhatrS7vFNBSG0O0UFUaab9/y9+Xw69Fs2bKFL33jP6H6Agg2grcCTRsnmVY5qtktrTHthcFt3PKlz3DppZeOO7Zs2+ZfvvXvbHpxjxQXnhDoPtB1cF1wc1BMYToprli7nC/+j8+d5Gkdb3zd9/tHePbldnr7Yzi+OvDV4QlUlPYPLlLMxCE3gJEboKm+hssvWs51b7/6lON19OTNkY5ukkN9ZFNxivkswrXRdBOP5ccfqiBc1cC8tpZTTt6MEI1G+cot/05nNI0baMasXYHQZASDOyprs67raLqBJhzsaDt6ppvW2iD/9KXPn7TOczRCCHa172bTlm3k8KNZlfiDEQzDxHFssukEIj+MjyxXXLqGFSuWjeu9Gz1ew1V15e86kUye8j4QCYfLYyM5NDDueJ1NRt+zKhsXkEkNkxyOkUjEcRwbwzCJRCoIV1YTCFUy3HtownvWbDPyXW3cvJVYqkAmLygUHVwh0DUNr8cgYGlUh7xcedlFp/yuFAqFQvHqRgnXaaCE658OM/UQPEImk+He3/+Bx5/dQfdgCtuswPVUIIzjnlHNyaIX45h2nOaaMG967Squf/tbxn2wHP1wHaqspb/7CIcP7KW/5yjpZArbccpRoqZhEAyHqG+ay4JFy6hrnktqODruw3Umk+Hnd/6Wlw6lOfTSw1IEB5tLHs3AcYFZzJTWcnaDnWXBxW/h4gVBPnzDuyYUQzmrhXBVHcVikScfuY+B3m6KxeNJqzweD3WNzbzh6uvweDwkhwbwF7pOKYY6Ojr4h699m/60gaN5wAzgGn4wvJSFq1NAd7JgZzBEkfqgw9f+4e/GFa0jbNmyha/c8h2c0BwIz5EC07BA9x73DruFknc4BaljGKlj/NOXPntK0Toa27a5++67ef7lHXT2xijaLh5Tp7WxmksuWs173vOe0wrW0YyM16efe5mu/hhD8RTpdA7HdTF0nWDQR1VFiJb6al5/+cVnNF5ncvJmhGg0yrf/80cc6IyRK9q4vvoJPLn9+Lwmi1qq+bv//pcTitYT+6K7u5uu7l66+qIU8gW8lkyU1NLcWA43n4gTx+uZcrrxOpvM9D3rbLV5ut+VQqFQKF69KOE6DZRw/dNjJh+syuJi88scPNbPwHCGdDaP6wh0QyPot6irDLBwTj2vv+zMxMXoh2shBMnhgVN6WsKVdWiadtqH60wmw/0PPsquI0N0J6B316PkM2m5LndEDNp5rECQxhVX0Vyhs3JeJe+4ZuJQvjFiqGnhhPtjOnaRoZ4zE0OO4/Cj227n0Y0vkSOIq49qZ+ldd/P4SHP1la/hE3/x0THhwaeiUCjwmc//Tw50xkqhvdWl0N6Sd9TOyGRH6R4Wt9XwnW9/86Tw4LPNbIzXmRZCruuy4YGHeOCPz5LIuhRsgeO45bBmw9DxmhoRv87b3/w63n7tW8cND55tZmu8zjZKDCoUCoXi1YISrtNACVfFTDCTD5az9XB9XLRsJZoSZB0veVcvL0O0dBe/UaA2pHHFpWceyjebXiHHcXjsscd4adsuDnf2USjYeL0m81sbuPjClVx11VVnJFhPpFAo8P3vf4+Xtu8hlszjCtA1qA5bXHzBMj796b8954J1NpktIeS6Llu3bmXX7v0c6ughny9gWV4WtDWxcvli1qxZc04E62heiV5MhUKhUCheLSjhOg2UcFWcj8zmw/VsiRblFVK8klDjVaFQKBSKs48SrtNACVfF+Yx6uFYoFAqFQqFQvFpQ+7gqFK9SNE2jpaWlvIeqQqFQKBQKhULxSuXcLhhSKBQKhUKhUCgUCoXiNCjhqlAoFAqFQqFQKBSK8xolXBUKhUKhUCgUCoVCcV6jhKtCoVAoFAqFQqFQKM5rlHBVKBQKhUKhUCgUCsV5jRKuCoVCoVAoFAqFQqE4r1HCVaFQKBQKhUKhUCgU5zVKuCoUCoVCoVAoFAqF4rxGCVeFQqFQKBQKhUKhUJzXKOGqUCgUCoVCoVAoFIrzGiVcFQqFQqFQKBQKhUJxXqOEq0KhUCgUCoVCoVAozmvMc90AhUIxO7iuS09PD13dvXT1DpAvFLG8Hloa62hpbqS5uRlN0865TYVCoVAoFAqF4nQo4apQnGNmWgwKIdjVvptNW7aRw4/uq8QXqMewTJKOTeeBBO7ODnxkWXfphaxcsfy09mfD5isVJd4VCoVCoVAozj5KuCoU54gRMbjxuZfpHMwynIFU3sERGoYmCFmdVAagtS7AFZeuOSMxmMlk2PDgY3QnoKJhNXY2TzKZomewF8dxMAyDSChIONKG5ffxyOYDtO85yPprriIQCJzWZmXjBQRMz5jjHsAXCAHNOHbxjGyeiG3bbN++nV2793PoWDe5QhGf18OCOc2sXL6YNWvWoOvndmWDEu8KhUKhUCjOlP7+frZs2cKWLVt4/vnnef755xkcHATgox/9KLfffvuk7D344IP88Ic/5Pnnn2dgYIC6ujouueQSPvnJT3LNNddMu71vfOMbefLJJ8+orBBi2uebCpo4V2d+FXDTTX/Bbbf95Fw3Q/EKJJPJcN8Dj/Dczk56EhqOGULzBDG9fjRdR7gudiGLKKYx7BRNEZfLV7Vx3bVXTygw77h7A1mrmVxR41hXLzYeNNOH6bHQdR3XdbGLeYSdw6TInJZGfB5BoNDNDe9ef5LtEZs5q4VwVd0ZX19yaAB/oWtcm6NxXZcNDzzEQ09sJm9UoQfqsYJVGKYHxy6STw/hZvqxnCHe9sbLWH/t286JgB07ITCPTCpOcjhGIhHHcWwMwyQSqSBcWU0gVMlw7yFaKrQzFu+z5cVV3mGFGgMKhUJxbpjo3joZ4eq6Lp/85Ce57bbbTlnmE5/4BD/4wQ+m9Yz0ShCuyuOqUJxlMpkMP/3FXTy7d5icWY23qgG9kMDJxcknuxDCRdN0TCuE6YughRvoTPaz4dkjDMbu4uMfet9JYkgIwYYHHyNl1NPdM0QyD1awnlw6RWZ4mGwui+u46IaO3+cnEApjBas52BUjYkFzXT0bHnyM9717fflGO2JztGgVwiU5HD2laAtX1qFpGuGqOpJDnGRzNNFolP/4/m305gJE5r6ZgMc75rgH8IUqgfk4xTy/e3oHm1/4Fp/79E3U1taetp9n6oG9PCHgbcbW0mzd8hS2EUKzKjCtJjTLRLg2ieEUou8gppOibd4iBuwgd96zYULxPlteXOUdVqgxoFAoFOcPc+bMYdmyZfzhD3+YdN0vfelLZdF60UUX8T//5/9k4cKFHDx4kH/913/l5Zdf5sc//jF1dXV84xvfmHZb165dy09/+tNp25kNlMd1GiiPq2KyCCH46S/u4OEXuhHh+Wh2mly8G9cIITxhhBEAXQNXoDkZtGIS3Unhq2hGmEG05GHeuraZj3/oxjEPmTt3tfPgpj30JDSKRphUMsFgdACnWMBxbXALIARoGuheDN3E8Hipqa0jFI7gcZM0hQXXrFvGqpUryjYf2XyA2rZlCCHo7z7CkYN7GY4NkE6lKRbyCAQaGh6vRTAUpLK6jnkLl1LfPA9N04h27OHqyxaVbY4QjUb52rduJR9ZQaimFccpED30EsloB/lcpizeLV+AcG0btQsuwTAMUoOd+BLtfPkLnzqleB15YH9688t09iUYTuVJZfO4rouu64T8FpUhi7aGCFdcdtGED+xCCO66ZwM92SDdnUdIFT1Y1fPQjVPP+blOkVzsCGGPTXPrPJr86XHF+9gQ7AUYJ4Rgj8axiwz1HDwjL+5Y7/B8MqVw8UQqPTZcPBwi6Pcx1HtmdhXHOd+9mLM1thQKhUJx5tx8881ccsklXHLJJTQ0NHDkyBHmz58PnLnHdd++faxcuRLbtlm7di1PPfUUfr+/fDyTyfCGN7yBF154AdM02b17N4sWLZpSe0c8rm94wxt44oknpmRjtlEeV4XiLLJjZzuPPrcfUbGU4vARivhwQouhmMYtpNGKURAOaAbCE0D3RMDfhJPqxcMAnkgrjz63l7Vr2rlg9UpAPkRv2rKVgZSfnPDR03GUbCqOW0yD7kWYfjDCUrQKAcLGLWQoZofoyaXwhyppampmIJVj05atrFyxHCEEm7Zso6rpAor5HO3bNnP04G7iiSR4IwjdB4YfNEBA3hGkhzL09+2gt+sI8xYuZ8WFl1HVtJD//N738XmNMf0QjSWILF+Pv7KJwy9uIDHYC4EG8LWC3w+6B9witp0l3TdA7+GfEqlpZM6aa8gC//H92/jaV75wUkhMOQR720G6+ocp2C6ObeO6jmwoGoO6Qadpsu9IN3sO9XL5mv2nDMHe1b6bo9E8PX1d2IFW/JU1p/2OdcNDoG4x2dQgRw/vo1Bfy6723WPE++gQ7JrW04dgG6aH2rZlRIcGJvTijg4Xd7waW3fuHRUuHkQ3dfKuSyKWR/THy+HiA444rXd4tjnfxSC8MryYszW2FAqFQjE5/vEf/3HaNr7zne9g2zYA3/ve98aIVoBAIMD3vvc9Xvva12LbNv/xH//BrbfeOu3znq8o4apQnCVc1+UXv/4dOW8TztBRilYjrp1HxPaAJwxWBcJfB5ohxWsxjZsbhmQHwl+Ha4Zwh45i+5r4xa9/xzdXrUDTNPmwHyswnPPR23uYXGoQoXvAWw244Nrg5kC4oOmgexBmAMwQTjFBeqibzmKexsZGukSB7u5uAHL48TgOL2x8iEMH9+EYIfBUg+mXL82Q9oQLwkHYWRAG8XSBnVs3k0kNsXbd2xgajjM82DemL7zBKioNk/Y//hQ30ARNrwMzALop7Y4oYuFAsAkiC0kkDtP+x5+y8JL19CQCbHjgIa5bf23ZZiaT4Se/+DXPvHyIRCaLXSgirCrw1YJulfvVcfMU83HymSEO5HL0D8aJxob4iw+9f8wDu+u6bNy8lYHBNHagFW/o9KJ1zDWGaigAA4M9bNy8tSxixgvBPlMmCsEeL1zcF2rEc4K41w0wPV4gjHDdCcPFzwavBDEIZydJ2XSZrbGlUCgUirOPEIJ7770XgGXLlnH55ZePW+7yyy9n6dKl7N27l3vvvZfvf//7r9p7uBKuCsVZorOzkwM9GVxvgoJZi0j1IjxBqFmFpo/zp2j6wV+LcG1EsgM3N0TBX4uVH+JAMkNnZydtbW10dPXQFy/QH+8nF+9BeKtk/XwMrArwVYMnOEYQU4jL42YQgUUu3kO/rqNV6HR296IBmlXB1uce48D+PQizEjwhac8Tkm3TPceFq1sEOwuFFBSGcQo6B/btxjQ8UoyegKZ7OLDlfkTNagg0guGjLFRdmxHvKJoGhiWPewK4mRoObLmf+Re/jYee2FxO1iSE4M7f3MsTz7WTzuZwfTWIqkY0TxBMC21UW4VbBF8tbjFNMdPL0PAgT25uJ+i7l499+HgIdk9PDz2DSVKOn8AkResI3lANqYEYPYNJuru7aWlpYVf7brrigtq2yQmLEcJVdXR1DJ7kxd3Vvpujg0V6EkPYZgR/5PRiSdN1ApFaMrkMR3qGyIfFSXZnk9nIgj1b7TwbXszpep1na2wpFAqF4uxz+PDhsjPhDW94w4Rl3/CGN7B37166urrGhCS/2ji3+0soFH9CbHzmOYp4ybkabqYXEWpBq5gvRavrgFNE2PnyC6cIroOmm2gV8xGhFtxMLzlXo4iHpzc9C8CefQeIp20ysQ6EGQI7A6YFtRegVSxE89eimX40wyvf/bVoFQuh9gIwvGBnEGaITKyDeNpm994DdPUOkBiKsa99K8IIgb8GQq0QagN/HXgj0kNq+OS7NyI/D7eVytQgjDD72rfilEJcRpNPDyOqV0mbugecPAhbikvDI9tljIhNWx7XPRBqRVSv4vBLD5IhwtatWwHYsXMXDz25hWQ6jROah1axCD3cjOavluLV8EoBbXjRPEE0fzV6uBkqFuGE5pFIpXnoyS3s2Lmr3MaOzm76onF81dO7+fuq59M7EKezq6cU1r2NqqaF07JZ1bSQTVu2lbP6HQ8X17DNCF7f5ESd1xfANiIMpDQ2bdl6VrIFjojBAacKx1vN1p17aT/YRWcsT0YEKZqVZESQzlie9oNdvLxzD65Vw4BTxZ33bCCTycx6G2H6Xsyst4UNDz42YZ8KIdi5q50f/exOfvOH59l8IEnUrSdjzSXq1rP5QJLf/OF5fnj7Hezc1T6urdkaWwqFQqE4N7S3t5d/XrZs2YRlRx/fvXv3tM67Z88eLrvsMiorK/H5fLS2tnL99dfzX//1XxSLxWnZni5KuCoUZ4kd7fspFgu4xRyE56L5qsAtIoo5hOsghCbFVeklhCY/L+bALcry4bm4xRzFQpEd7QcA6IvGGIr2IgTg5KBiPlpk3vhe3FGMCGIq5oOTQwgYivYyMBgjly/w8nOP4OCFQD2E54C/Fkzf8XBeTR/1MuTnpiXLhedAoA4HL5nU8Mkn1z0QbpUeVlxp17BKXlzz+Ev3yM9NnywnHAi3IvxNRHuOsGv3flzX5We/upt4Io2ILECPzAVfVSnkeKIOMND8VeiRuYjIAuKJND/71d3lB/Y9+w4grOoJEzGdCbphgq+a3fsO0NPTQw7/hMlyzgTD9JDDX56JHQkXT9nmSaI1ny+QTKaIDsboH4gSHYyRTKbI5wtjynl9AVK2SVfseLj4bDE6rLmjZ4hDXTHMUCP+SB2+QBjT40U3TEyPF18gjD9Shxlq5GBXjI6eIZJ6/WnF4Ewx4sWcrGgdIVxVR1dcerLHI5PJcNc9G3h0y0Gsxguobl1BZW0zvkAIj+XDFwhRWdtMdesKrMYLeGTzAe4aR7jP1thSKBQKxbmhs7Oz/HNra+uEZdva2so/d3R0TOu8fX19bNmyhXg8Tj6fp6uri/vuu4+PfvSjrFmzZtrCeDoo4apQnCW6+/pwBWjeCjSrElHMI1xRCoX1gHGCGDSM0ucWwhWIYh7NqkTzVuAC3X290m5XN242JoVa5SI0q3JS7dKsSqhcBJqBm43R1dlNJpUgMTQMVqUUod5wKeRXQ9MNNF0f52UAuiznDUN4LliVOLZz8klNv/Qy6x7ptdUMNHQ0NBmmXH5paJSEseErJW1yoGop+XScfUc66OjoYO/+I7i+evTIPPD4Tz7fRHj86JF5uL569u4/Uv6HYmBwCMNfNTlbp8DwVxGNxujq7kX3Vc6ITc2qpKtbjgEZLl7EH6ouH0+nM3T39jEwlCCRtSkKL67upyi8JLI2A0MJunv7SKePCyB/qJq+eIHOkt3ZYiSs+Uj3EBkRwB+pRTvN3nPlsGYR4EjPEEcHi6cUgzPFbHsxR7zOUaeamtalpxWd5RBkp/okr/NsjS2FQqFQnBuSyWT551AoNGHZYDBY/jmVSk3pfLquc9VVV/Htb3+bRx99lJdffpmnnnqK73znOyxfvhyQXuA3velNHDt2bErnmC5KuCoUZ4lMOguuK8Nd7bzMkmN4pEKbCA1ZTjdkvVAruI60B8QGB2Q5f92kRWv5FFalDPUFBgf7OXzogPSeVsyTYcCaURasE9oZEbCaIetVzJPrVE8qqJXCd71lsXrSNZ/wq4bcykeGEXvB38jRQwd4euMzFBwNKhdPXrSO4PFD5WIKjsaTT20EIJPNo3tmZh2l7gmQzhXo6h3AF4jMiE1/MEJXXxSQ3mHNG0HTdVzXZWAgylAyg+4N47GCmB4L3ZDfn24YmB4LjxVE94YZSmYYGIjiuq78/rwV7N57YEbaOB6vpLDm2fRiznQI8myNLYVCoVCcG3K5XPlnr9c7QUmwLKv8czabndL57rnnHh599FE+//nPc9VVV7FmzRquvPJKPvOZz7Bt2zY++tGPAtIj+9nPfnZK55guSrgqFGcJx7ERVqUUr7ophetk0EvhuK6LsKpwHLl2dHg4LgVdZM70GhiZA7qX4eEE+/YfBKsK/A0l0Tq5W4Wml7yk/gYZ8ntyCdA9x/WpDuj68Zemj/1dL9c6nhQqUEdsaIhnNj+P8NeiB6rHOc+ZoweqEf5antn8PADBgB/XPXl97lRwXZug30e+UMSYZujxCIZhUiiF+0YHh9G9AVzXpX8gShEvHit42qyCmqbhsYIU8dJfEq+6N0B0cGhG2jgeE4U1nylnK6x5Nr2YMx2CPFtjS6FQKBTnBp/PV/65UJj4npzP58s/n7hlzplSWVl5ymMej4cf//jHLF26FIDf/va3dHV1Tek800EJV4XiLGHqukxkpGmTF60j6IasbwYwDfnnW3QBX82kxeWJaLoOvhqKrmAokYZgo0xmNEW7mq4fT7J08sHjflZd5/S3opKApeR5NXzgCVGwdXp6ozIz8enWtJ62wQYEGqU9oLamErcwMwmA3EKG2poqLK+nPOEwXRzHxmvJGdh0JouumwwOxnB136Q9hIbpwdV9DA7G0HWTdDZ3+kpTZLyw5qlwNsKaZ8uLORshyLM1thQKhUJxbgiHw+WfTxf+m06nyz+fLqx4qpimyU033VT+/cknn5yV80yEEq4KxVnCY/lKSYymKbBKobgeS86ouUIDXw0446wlnQyOA74aaQ8drGpOH8d8OrRTeFxLTFYUj5TXdDD8CDTytkCzpieCRtCsKvKODL1ctmQRopBAuO60bArXRRTiLF+6iJbGOnKZxEw0lWw6QUtDLQABv0U6GSPvMOWwVsP0kHcgnRgk6Js90TI6rHk6nI2w5tnyYs5GCPJsjS2FQqFQnBtGJ2QanahpPEYnZBqdqGmmWbHi+FZp58LjqvZxHYdbb72VW2+99bTlli1behZao3i1EAwGoAjCzqNNdS0msj5AsLQvpG4YOGagtJ+qMzVh7DqyvhlAN0wcV4AZQJvm1JamgziVJ3SqwkXX0VwXKS/Fcc/uTGBYaKWLbmtpoqFiJ9FUjEBk6g/x2VSMhgovrc2NALg7O4DmaTdV5IdpaV4MQG11JckDXfhK55gqpjdAsnsPtYsnzl44HWRYc8uM2JJhzbP3D6fl9ZB0bKYnLyWjvZizEYLc0tw4K2NLoVAoFOeG0SJxz549E5YdfXwkkdJscLolSLONEq7j8KlPfYpPfepTpy13001/cRZao3i1EAr40eMuwimU9hSdwuOwUwSngI5LKCDXPlheDxlhl9a/lkIFJyNeXUfWK9W3vCaZYhEQyKAMl6kFZ0y13hlSTINTxPIGKczQWlTh2lhe+b00NTXRUu0lN2STy2WmtB6zkMsQMm1aqrw0NzcjhMBHFscuTsvb5thFfGRpbpYipaGuBje3S24XNJGH+3S4Dm5umPraC6Zu4zSkM1l0z8z80zPbYc0tjXV0HkjgC0w/7CqbTtCyWE6AyBDk+mnbhJEQ5AHWvuaiWRlbCoVCoTg3zJ8/n+bmZrq7u08blvvUU08B0NLSwrx582atTaP3lj0X/06oUGGF4ixRU12BKTLohomws1KETganiLCzcn9LN0NNdSUArY31UCytfdA9IOyS7dOFuLqynLBlPQA7Je0JRwpDabRk60xDZkfKlm4v4hQhzFMNwR2plxvANHSa6qqgkIDpZpcVAgoJmupl2LGu66y7dA11IYFpJyjkJrfetZDLYDoJ6kKCdZeuQdO0ks0LGeo5OK2mDvUcZN2lF5ZnPjUNAv4AxeGj07JbjB8l4A+Mmwh6pgj4LdziDK0dLmZmNay5pbkRNzc8I7akF1N6xGcjBHm2xpZCoVAozg2apnH99dcD0qP63HPPjVvuueeeK3tcr7/++lm7f9u2zU9+8pPy769//etn5TwToYSrQnGWqKutw0MBj1ZE102EnUMUszJEdyKEiyhmEXYOXTfxaEU8WoG6OpmN9PJL1kBhGNySl9TwSCVjS+8sri3FnnDlu2vLz+1iaVsaj6znFqEwzOsuvUiKzVx01PrOkQRKEwnY0YJVLzXdPe4FHnNNJZE5WfFaKi/cAmT6CIbCvPayi9Fy0VML5DNFOGi5KK+79OLyRytXLGdujYd5zVUEtAyZRPS0a16F65JJRAloGeY1VTG3xsPKFcfDdlauWE5LhUZyaGBKzUwODdBSoY2xmS24RCIBvG4WOxObkl07E8PrZohEAmSLs7fFTF1NFU52ZrIWO9khamtnZn3zeDQ1NZW9mNPhRC/mbCVSmo2xpVAoFIpzx2c/+1kMQ0bR/e3f/u1JW91ks1n+9m//FpDJk061Tc3HPvYxNE1D0zSeeOKJk44//vjjDA8Pn7IdxWKRT3ziE+zeLTPZv+Md75jVtbSnQglXheIsUVtXR3XQQLMzeL0GuuGRorSQLgnTwvG1pq6DsAvy80IahItuePB6Zf3qoEFtSbi+4cp1+NwE5IcBIUWhpst9WDVD/i5sKSCFXTpulI7rJREpID+Mz03w+ivXEfRbkO49LobLnJgB2J3gmAC3IF8n4mSPr3E9U/E6Uk7XYWgvaAa1NVVcue51WHYUt5A7/STAqRAubiGLZUd5/ZXryh9rmsb6a64i5PTT1lTFwpZq7FQv2cQAuUwSu1jAdWzsYoFcJkk2MYCd6mVhSw1tTVWE3X7WX3PVmNnPEZu+fNekBUZyaAB/oeskm4WizZy5iwiGgujpjkmLVzsTQ093EAyFmDN3EcXC9ITaRCxbsggtH8OdpnBznSLkYixfsmiGWnYys+XFnK1ESrMxthQKhUIxNTZu3Mjtt99efv3mN78pHztw4MCYY7fffvu4NpYsWcIXvvAFAF544QXWrVvHnXfeyQsvvMCdd97JunXreOGFFwD4whe+wOLFU8tP8LOf/Yy2tjY++MEP8qMf/YinnnqKrVu3snHjRr773e+yZs0afvaznwFQX1/Pd7/73SmdZ7qoNa4KxVmitameOW1tZI4Oks2bWL5KHGFiF4qIEY/nKJGnoYGmoekmpteDobmQG8avZZjT1kZroxSura2tLJtTxY6BOG7RD54gmq4hXAfQwDDkOxpShIqSc9QplRNQTKMX4yybU0VrayurVy7lua2HIHkUUbGwlAF2vIfZU819CemZTB4d3xPqFBDpHrRgE+COFa8T6WJ0RLoHUt3gDdHUUEVbWxvL5tWzo/cQwlyKZpT2eT1ThItwiujJwyybVz8mix9AIBDgxvesZ8ODj9GVEly0ahnpbI5kMkUincGxbQzTJFIdIByuIej3MdR7kDqfxvp3rycQOHlt7BibHYNUNS2ccF2iYxcZ6jlIS8X4Ni2vh+r6OoZiAxj+uSQGuyjkhvBUzkXTT32bF45NMX4ULzki9XMJMUx1fTNeM3rm/TdJ2lqbaaitYCB2mEDd1BMA5WJHaKyroLWlaQZbdzIrVyynfc9BokMDU9pzdTwv5mwmUprpsaVQKBSKqfHjH/+4LPZOZNOmTWzatGnMZx/72MfGLXvLLbfQ39/PT37yE15++WVuvPHGk8rcdNNNfP3rX59We1OpFL/85S/55S9/ecoyq1ev5o477mD+/PnTOtdUUcJVoThLtDQ3UllxjLa6LMfikC8k0HUvvmAlrmPjOA7uqC1tdMPAMAx03cTND6O5BSwPtFUEqKwIltfL6brOh294J9/4P79muOjDBYTplwIOACGFsRBydxoAXQpZ4RTBzqIXh6k04nz4hvejaRpvv+ZtPPfSf0LiCFhVCF81ml7aJue0uFIM52KQODr+2lPDgoFtCJDiVZf1GPUmL27sDyLdAwPbIDyHoNPPnLlz5PXf+G5u+e7PSOSiCF+d9MpqpT1vT4UQUlS7LnouSkQb5MM3fnRcb1MgEOB9717PrvbdbNqyDRs/AauSmqoGDMPEcWyy6QR2ooN8IstbLlvDihXLJvRcnWgzhx/NqsQfjIyxKfLD+JjYpkwilGTpqrXsfOkZKuvnUSxkiQ/swDVDaFYFhjckk3a5Dk4hhcjH0e0UVXVz8Hh9eHJdLL3odaQSsXISodmgqamJppow2d40udQg3lDNpG0UUoOEjDxNNeFZTw4x4sW84+4NJIeYlHgtezHfvX7M9zY6BHk2EinN5NhSKBQKxblF13Vuu+023vOe9/DDH/6Q559/nmg0Sm1tLZdccgl/9Vd/xTXXXDOtc3zxi19kzZo1PPvss7S3tzMwMEAsFsOyLBoaGli7di3vfe97ede73lUOXT4XaEJMN6PJny433fQX3HbbT05fUKEAXNflRz+7E716CTtffo6BQoS8a2IX8gjdi2b60AxvKXxXZh8Wdg7NLWB6LSzdps6bYNVFl+PG9vHJj91YftAUQvDTX9zBg5s7SYswju5DmEGZKVjTx+yZKcrrXW00O43h5ghqSa65rJWPf0jatG2b93/kr0hmgUA9VC0DXyWgj3JmnuwalZG60jPM0B7I9KPnenDtseHCmlWBaHwdJI9BoAGqlqGZ1in7Ttj5kr0+CM/BMmxqzAR/89F3cdmlaxFCcPvP7+CBp7eT9i3EtapLmZW1kng9oa0j4dGug56PEcwd5NorL+BjH77xtA/vQgi6u7vp6u6lqy9KIV/Aa3lpaailpbmR5ubmSQuA6drs6uriN394nurWFRTzOfbufIFk0cSqmoedS5BPD1PIpnAcB8Mw8PpDWMFKTF+Y/NBRwh6bpavW4rF8xDrbee9bLqGlZWa2rBmPnbvaeXBjOz19UexA66TEayE1iJntpKm+lmuuWMGqlStOX2kGyGQy0osZF5PzYl5z1bhezJ272nlk8wFq25ZNuU3Rjj1cfdmiCftgNsarQqFQKBTnAuVxVSjOEiPr5R7ZfIAL117J3h0v0J/MkgvWYLsurpPHLWRKnlFNelstD6buxecMUR82WLr6SuL9R7j6sgtPWjd543uuJ5u9i2f2DJEogl0sIHQvQveCZiLQ0BBowkZzC1IQ6y4RK8frltVz43uOZ6IzTZOP3PBO/s8v7kPkh2F4vxSwwRYEJtJvO9o1WhKCThHS3ZDph/wQmqmzbMliRGntaaFQoC86RNE1IRgibyyBdA90PYHw14OvBqyK41v75OOQG4RsP3gqoHIJls8kmO9i7ty2cpiopmnc8N7rSefyPLvtMIl0HNvfCroHoemgjWqrEGjCBbeAme0ioid47SVLueG9Z5aJT9M0WlpaZlTYTdfmaA+ex/Kx8uJ19HcfoePIDlwjhMdXQaCyEU03Ea5NMZfCzQ7ipo6ycN5i6prnomnaWdsKZST81htcQnfnEZIDMXzV89EnyLTrOkVysSOEPTbN85fQ5E+f1SRCM+3FnI0Q5PGYjfGqUCgUCsW5QHlcp4HyuComixCCu+7ZQNSpJlRZWxIXB8jYXmw9iK1ZMnwWMEUe000TMAvMKYmL1HCUWiPG+04IPRwhk8lw3wOP8NzODroTGgXXgyN0KTFLhnXA0Fy8epGWCFy2qpXrrr36JK+Q67r8j7//KjsORcHVwAqD6QdvBXgjYAZKyZ8csDNyS5pCHOwc5BOgC1YvqOXfvvFV9JLH13Vdfnj7HezvHKajN0beaqbgaNi5NBQTpb1Z82XxjmGBJwieCKYviNcQ+PLdtDZWs7i1kr/6+AfG9EP5+rceoGcwSV4L43jCuGYAMAAH3c5gFJNYIkFTbQWXX7hw3Ot/pTGeB08IQXJ4gORwjEQijuPYGIZJJFJBuLKacGXdmP47Ew/eTJHJZLjj7g1kvc1ks2k6jhzANkLgrcDjC40R2RTimE6KOfMW4/MHCBS7ueEcrsecKS/mSB/krJYphSCfyz5QKBQKheJso4TrNFDCVTEVTnxYPVNxcaYPq0IIdrXvZuOWrXQOZBjKCNIFgevKpZ9Br0ZVQKO1LsCVl140oVcoGo3y5a99m8P9WVyBzHrsDYPhk6J1RA0LB5ycFK+6B10TLGjw87Uv/x21tWPXS46EiXZ29TAQz5AnRNFbg2MXcewiwrHLdjXDxDA9GKaJpxDDIkVdZYDW5qZThomWr3/zy3T0JRhO5Uln8ziui6HrBP0WlSGLtoYIV1528atmbd/oSZGpevAmmhSZDUaH31Y2LiCTGj7l30EgVMlw76EJw29ficx0CLJCoVAoFK9WlHCdBkq4KqbK2XhYnSmvUDQa5dv/+SP2dMRI5xyEZpYWs56QRUnT0YRN0GewrK2av/vvf3mSaB1p1133bKAnG6Sr4zADsTi5goOtB3CNAK5uldf56m4e3clguhl8XoO66gpa2ubT5E+fVmD9Ka7teyV68EYmGs4k/PaKS1+dSYRUHygUCoVCcXqUcJ0GSrgqpsMr6WHVdV02PPAQDz72LLGMQ87WsB2BEAJN0zANDZ8pqA4YXHvV63j7tW8thwePx4lhoscO7ydbFBRsDdd1y3Z1XcdrCvwejbnzl5wXYaLnO69UD96f4kTDiag+UCgUCoXi1CjhOg2UcFXMBK+kh1XXddm6dSu7du/nUEcP+XwBy/KyoK2JlcsXs2bNmgkF62hUmOjs8UqaFFEoFAqFQqE4E84b4VooFNi5cyeJRJzGxiaWLZv6FgFnCyVcFYrpoQTW7PJKmhRRKBQKhUKhmIizsh1OX18f9913LwAf+MCfEwqFxhxvb2/na1/7J2KxWPmzhQsXcfPNN9PQ0HA2mqhQKM4BmqaxauUKVq5YPkpgDRwXWItraWlerATWFFFboSgUCoVCoXi1cFaE68aNT3PXXXexcOFC/vIvPznmWDqd5qtfvZl4PM5o5++BA/v58pe/xP/9v/8fpqm2m1UoXs0ogaVQKBQKhUKhmIgzW4w2TV588SU0TeN1r3vdScceeOD3DA8PA/DOd76Lf/zHf+Id77gOgGPHjvGHP/zhbDRRoVAoFAqFQqFQKBTnKWfFldnb2wPAkiVLTjr25JNPomka69Zdwd/8zd8A8NrXvpZ4fJinnnqKjRuf5tprrz0bzVQoFAqFQqFQKBQKxXnIWfG4jnhUq6trxnyeTqfYv38/AG9961vGHHvjG98EwMGDh2a/gQqFQqFQKBQKhUKhOG85K8I1m80C4LrOmM937WpHCIGu61xwwYVjjtXV1QGQTCbORhMVCoVCoVAoFAqFQnGeclaE60gW4cHBwTGfb9u2DYCFCxfi9/vHrev1eme3cQqFQqFQKBQKhUKhOK85K8J17ty5AGzcuKn8meM4PPWUXN964YUXnlRncDAKQFVV1dlookKhUCgUCoVCoVAozlPOSnKmdeuuYPv27Tz22KNUVVWxevVqHn30Efr6+tA0jde//g0n1dm3bx9wPGRYoVAoFAqFQqFQKBR/mpwV4fr2t7+d3/9+A8eOHeM3v7mL3/zmrvKxyy+/nKVLl55UZ9OmTWiaxvLly89GExUKhUKhUCgUCoVCcZ5yVkKFvV4v//qv3+KKK67AMAyEEBiGwZ/92Z/xxS/+r5PKb9++naNHjwKwdu0lZ6OJCoVCoVAoFAqFQqE4T9GEEOJsnrBQKJBMJolEIng8nnHL9PT00N/fD8AFF1yApmlns4lnzE03/QW33faTc90MhUKhUCgUCoVCoXhVc1ZChUfj9XqpqamZsExTUxNNTU1nqUUKhUKhUCgUCoVCoTifOSuhwgqFQqFQKBQKhUKhUEyVs+ZxjcVi7Nixg87OTlKpFNlshkAgQDgcprW1jVWrVqmtbxSKGcR1XXp6eujq7qWrd4B8oYjl9dDSWEdLcyPNzc3nbRi+QqFQKBQKhUIxmlkXrs88s4lf/epX5e1tJmL58uV84AMf4LLLLp/tZile5bySRFuhUOCJJ57gpW27ONzRS77oYHkM5rc1cvGFK7nqqqswDOOM7Qkh2NW+m41btjKYEmQdL3lHRwAaBayDSfzGHmpDGusuXcPKFcvPuC9eSf36SkL1q0KhUCgUCsXEzFpypkKhwLe+9S2eeupJQD5Mn7YxpQezN73pzfzd3/3dKZM3nS+o5EznHyOibdOWbeTwo/sq8QUiGIaJ49jkMgnc3DA+sqy79MJJiTaYWYHhOA4/uu12/vD0C2SLGrYLCEr/00ADUwe/R/CWK9fylzd97LQCNpPJcP+Dj7Lr6DCxvEU8XSRTcCkUBUKApoHXoxHw6lQGPVR5c6ycV8U7rvkzAoHAaft143Mv0zmYZTgDqbyDIzQMTRCyDCoD0FoX4IpJiuFXGjM5BmZ7vCpeWagJDIVCoXh1kcvl+MlPfsLdd9/N9u3bicfj1NbWsmbNGj7ykY9w4403Tst+JpPhoYce4pFHHuGFF17gwIEDpFIpIpEIS5Ys4a1vfSt//dd/TWNj4wxd0bll1oTrl7/8JZ5//vmyYG1tbeOiiy5i8eJFRCIRfD4/2WyWeDzOgQMHePnll+jq6pKN0jQuv/xy/vEf/2k2mjZjKOF6fpHJZNjw4GN0J6CycQGGeeqJD8cuMtRzkJYKjfXXXDWhaIOZFxgdHR186Z++RU8sC5oOgSbw14I3ApoJwoZCArJRSPcALk3Vfm75yhdoa2s75fX//M7f0t7j0DPsEM8I3GwM8nFwspSVq+EHqwLdX01FQKOp0mBFk8GHb3jXuP2QyWS474FHeG5nJ13Dgnw+i53P4tr5sk3dtDAtP5blp6USLl/VxnXXXn3afh3hlfDAPtNjYDbHq+KVhZrAUCgUilcfe/fu5frrr2fv3r2nLPOWt7yFu+++m1AoNGn727dvZ926daRSqQnLRSIRfvjDH3LDDTdM+hznG7MiXO+//36+973/RNM0ampq+OxnP8ell1562nqbNz/Hd7/7XaLRKJqm8ZnPfJZrr712pps3Yyjhev6QyWS44+4N5KwWwlV1Z1wvOTSAv9DFDe9ef0oxMFpgVDTMJ5PNk0ymSKTSOI6DYRhEQkHC4RBBv4+h3okFRkdHB5/94j+RyAkIz4HIEsh0Q34Q7AwIV4pZMwBWjRS1if2QPEbEp/Gdb37lJPEqhOD/3XkPT+6M0jmsYye7IDMI3rAUw4ZX2hQuOAUpigtJCNRghltorXR5w6paPnjDu8c8EGcyGX76i7vYtDvGcCJFMT1cOqKBVvIMI0CU3gFPoJLKihDrllfz8Q+974w8uU9vfpnOvgTDqTypbB7XddF1nZDfojJk0dYQ4YrLLjpnYc0zLTJPHK9CuCSHoySHYyQScRzHxjBMIpEKwpXVhCvr0DTtjMbrbPNKmGR4JaEmMBQKheLVR39/P2vXrqWjowOA973vfXz0ox+lubmZ7u5ufvazn3HXXXcB8Pa3v50NGzZM+hwbN27kyiuvBGDdunWsX7+etWvXUlNTw8DAAPfccw8/+tGPcF0XwzC4//77ueaaa2buIs8BMy5chRB8+MMfor+/n6amJr73ve8RiVSccf14PM7f/u2n6e3tpaGhgZ///Bcz2bwZRQnX8wMhBHfds4GoUz0p0TpCcmiAWiPG+969/qQH7hGBkbWayRU1jnb2kM1mKBbyOMV8WWQaHguP18LvDzC3tQmfRxAodJ8kMBzH4UM3/Q3RhAN1F0NuADL94K+RItUMgG6Ca0sRmx+E7CAE6sFXBwMvURsx+MVt/2dM2PCOnbv4/s8f5HDcg4gdBE8Qgo3gCYHpB32UcHULYGchn4JsLxTTaNULmV9R5NMfvobVq1aW+/Wnv7iDB549QnxoUApe3QB/PfhqpCgue4eTkBuEbL9su2FRUVXDta+dx8c/dOO4Qqbsyd12kM6BYXJ5l6IDwnURJV2s6ToeA/xenZa6Ci5fs+i0ntxyWPPmrcRSBTIFQaFg4wrQNfB6TQJejeqQlysuO31Y80xPiower6HKWvq7j9Bx5AC2EUKzKjCtEJpuIlwbO59C5OOYToq2eYuob55Hajh6yvF6Iiqs+fwW2rM54aZQKBSKc8enP/1pbr31VgBuvvlmvvrVr55U5uabb+af/klGl9511128973vndQ5nnnmGb773e9y8803s2LFinHL3HvvvbzrXe9CCMHChQvZv3//efFv81SZceH6/PNb+NKXvoSmafzHf3znlB05Ebt27eJzn/ssmqZxyy3fYO3atTPZxBlDCdfzg5272nlk8wFq25ZN2Ua0Yw9XX7aIVSuPj9cRgdGbD9PVn2Cgv49Mepic48HW/DiaF4GOhoshCpgii9+w8QUrqK9voKU+QqOVHCMwvv9/fsC9f9gEtRdC/IgUrJF5YPhA1xm7Q5ULrgt2DpKHIRuDinkQ3cb1b1nHp//mr2Qp1+Ub/3YrT+/L4g4fhnAbBJvAUwF2CoopKI7y5A7tkZ9phhSdbhEE6M2Xc+USP1/6wqfRNI3tO3Zxy/d+SWw4DmjSbsUiKaxlBx1v6shN0LVheD+kOgFBdWUFX/rbP+eC1SvH9Hcmk+Env/g1m7YeYiiRx3Fd8FWDt1IKbc0A4UiBXRiGbAzD0KiK+Fi3ZgF/8aH3n9KTef8Dj7LrcB/DyRyOJ3JKMWgUE1SELFYtaOQd146/xne8SRHXtek9tp+Bnk6GhmLYjo1pmFRVVVPX1ErjnKXouvwex5sUGRmvFfXz2LvzBVJFD1b1PHTj1LnyXKdILnaEsMdm6aq1xPuPnDReT2z3qRN0gWW4+I3CGSfoeiV6BWe6D2ajfbM14aZQKBSKc4fjONTU1BCPx5k7dy4HDx4cN0eJ4zgsWLCAY8eO8ZrXvIYXXnhhVtrz3ve+l7vvvhuAF198kYsvvnhWznM2mPGswtu3bwdgxYoVUxKtACtXrmTFihXs3r2bbdu2nbfCVXHucV2XTVu2UdV0wbTsVDUtZNOWbWMeXne17+boYJHOWB8DvZ0kCzp5owE8FmgmmqaDpiGEwBEuBWGTsXNYw4PkMwly+VbyVR52te9m1coVFAoF7nvwMQgvgPgBqFoO/jrAgEwP5GJgp4+vRTWDUswFmqBqGfgGYGg3BJq578HH+G9/9QkMw6Crq4sX93ThxochMgfC88FOQmyXFIGekDzPiMe1bwvkY2M7wBvBHTrEi3sq6erqorm5mf+647fEhodk++oukmtwXUe2s5g6OazZEwJvBVSXrmvgJWLDQ/zXHb/lW6tWlPtVCMGdv7mXx5/bSSIjIFgHwVY0w5KCtdSvCCHDnP21iFAOJ9VFNDbA48/tJOiz+NiHbzwprPnnd9zD7qMximYVVsMyvCeJQQvTCgINuE6RwdgRnt1xhHjyHj50w7tPElm72nfTFRfUttXhui77tj/LwX17sK0atEAdZrgJdA8Ft0giFefItr2YW55h4ZJlLLngtYSr6ujqGCyPgZHxGqpZws6XnsEOtOKvrEEIl3xqkHx6mHw2ieu46IaO5Q9jBSvxBqsJ1C0mmxpk58vPsPyCS04ar6P7YSRB11DBh6v70EwfptdC13Vc1yVbzDNUyNGbytL10POs3HPglAm6RnsFa1pPL7AM00Nt2zKiQwPcec+Gc+IVnOk+mA1Gj62pcOLYUigUCsX5wf79+4nH4wBcffXVp0ysaRgGV199Nbfddhsvvvgihw8fZv78+TPenje96U1l4Xrw4EElXEezb98+NE2btti85JJLaG9vZ9++Uy9oVih6enrI4ScwgQfoTDBMDzn8dHd309LSUhIYW+kdNug+dpAk1bhWFRgW0l8zsqITKbI0HTDBsMg7Por5IYpHD2JqC9m0ZSsrVyzn4YcfRmg+KMRLQrReCthsX2ktaw0Yc2U4ruuAk5Je1sQB8DdAZBFUChjag9B8PPzwQ1x77dvZum0HqXhChu4GWyF5FHQPRBbIprrFkmdVjGrrCehe8IZJxeNs27ET13XZse8YOEDTWrCqId0tw5q9EbAqZchw2TOagfwwJI/JsGZ/owyF7nmOHfuO0dnZWV6Xu2PnLh54/DkSWR2qlqL5ahC6t9SnrhTD4njfapoXdC9ahQ9hVZIY2ssDjz/Hay5azQWrV8l6QnDPvQ+y/UA/RvUS/KGa037nuuEhULeYQmqQbfv3Ebj3QT544/E1vqMnRTLJYZ754wbSWgXWnDfhMb0n2TP9lVA1F7eYZ8/RXXQe/SWve/P6MZMiPT09ZIWPnt3bsAOteILVpAY7GO4/hu1quEJHCBchBJqmoaVy6NE+TF1QWT+HYHUrReDA7m001VeVx+sIIwm6dve4FM0qfJFqNH3s960bYHq8QBjhukRTMZ7dO8xw4rcnJegSQrDhwccmHcoKUlglh2DDg4+dVa/giX1gRaooFh0KhQKpbKq8ftryevFaFXg9NRP2wWwwmxNuCoVCoTi3DA4Oln9uaGiYsOzo408//fSsCNd8Pl/+eTLbK56PjPMEOz16e3sBWLRo8bTsLFq0CJDCRKE4FV3dvei+yhmxpVmVdHXL8dvT00PnYJ5jRw+QEFW4vjoZzsvIw6EG6CURqI/93PDh+upIiCqOHT1A52Ce7u5ufvu7+6RA9NeAJwx9z0mRVncp1KyEYJs85quS78E2+XndJSVP6XOynr8GdC+/uft3ADz2xCZw0hCZD8kjsn6gVoYJC1t6Xa1q6TG1qscXrk5e1ncyPPr40zzx1EbcXAoqF0hP6lC7XONasxoqFso1rqZfJn0y/fL3ioXyuFOQ5T0hqFyAm0vx5FMbAfnA/rNf/obhVBGqloK/HqF7QNhStKLLUGTdUwpJ1kti1pbl/PVQtZThVJGf/fI35azlO3e189y2/RjVS/CWROuIFzPRd5CBI1vpO/gSA0e2kug7SD41WK7rDdVgVC/huW372bmrvdwlI5Mi+WyaJx++h1xoCf7mi9DHEa2j0T0WgZaLyYWW8OTD95DPpsuTIl3dvQwn0iSLJoYVou/gC/R3HSabK1LAj+2rR0QWQNVSRGQBtq+eAn6yuSL9XYfoO/gChhUiWTQZjqfL41Ver+Ce+x5k+7ECbqAZf6QWNCbsAzSNQKQWN9DMjo4C99z34Jity0a8glMJZYWSVzAuQ3bPBqP7wAk04RoBevujDAwlSGRtisKLq/spCi+JrM3AUIKe/gGEEcAJNI3bB7PByNiaKOT6TBg94aZQKBSK84PRGYJHPK+nYvTx9vb2CUpOnSeffLL88/Lly2flHGeLGReu6XQagHA4PC074XBkjD2FYjy6egfwBSIzYssfjNDVFwWgo6uHY129JHIGwl9fElElb6Wuyyw/uj7+72igmwh/PYmcwdGuXjq7e+noHgDNhWALDLwElYtkWK2vorTG1TxeXysJOMMHvkpZrnKRrBdsAc2lo2cAgL3790vhmItJb+eImA40SqE6kvBJM0ad4wR0j6zvq2Hv3v088dQzUngG58DwPgi1SWGrm2i6fsoXuinLhdpkveAc8IT441ObZL92dLBr32EItUgRCsgFtl60Uvi1hoYG8l3T0TRTCv4RN6y/HkIt7Np3mM7OTlzX5b4HH8PxN+IN1SCEIDXYQffe5+jv7SJR8GD723AjC7D9bSQKHvp7u+je+yypwQ6EEHhDNTj+Ru578LGyaOnq7gVvhGf+uAGnahXeiuZJjSdvRTNO1Sqe+eMGhCdCV3cvnT39DESjeMLN9B54nmQyiW1WoNVdgFG1ECNQi+YJoBleNE8AI1CLUbUQre4CbLOSZDJJ74Hn8YSbGRiM0tk7UD7fzl3tbN7VjVExB4/ln1QfeCw/emQOm3d1l8X7ca/gwkld94mMeAVnWwzC8T7Qwi0kklmGkhl0bxiPFcT0WOiGgabr6IaB6bHwWEF0b5ihZIZEMguhljF9MFvM1oSbQqFQKM49ixYtwuORE5NPPfXUhGVHHz927NiMt2Xbtm38/ve/B2D16tVKuJ7IiNAMBoPTsjMSqpXNZqfdJsWrl3yhiDFBUpvJYBgmhXwBgN179xONxnCDbVLwoUlxWvawnvinU/pMK4lYNNAM3GAbg9EY7Xv2y2K+WumNrFoqxdsYL+6pkF5cQi2y3lC7tFPSAXYuK/dmNUri2qqUr/EE6oQdYILhp5jL0tPTLRM8pY5AeC5YlcfF6UQtHSljVcp6qSMQbKKn5BF68qmncbDkOl8E6IYUrGO6URs1GVDugZKANWS98AIcLJ546mm6uro41hfHX7sQp5in/9CLDA0nMOpW461ZjCdUh+4NoJsWujeAJ1SHt2YxRu1qhobj9B96EaeYx1+7kGN98fJ+0l29A3Qf2U+KyKRF6wjeimZSROg5up+uvijRaBTHCBM9tp10JguRhRiV89H0icewppsYlfMhspB0Jkv02HZpZ0AKV9d1ue+hxykGWzEMY0p9YBgGxWAr9z30OEKIV5xXcKQPCv4WhpNZinjxWMHThtBqmobHClLEy3AyS8HfUu6D2WK2JtwUCoVCce4JBoO8+c1vBmTun1/96lfjlvvVr37Fjh07yr8nk8kZbUc+n+cTn/gEjuMAcMstt8yo/XPBjAvXkc45X+0pXl1YXg+OY8+ILcex8VoyDPTIkQ4KRhjNEzjuVT0x4+9JrxH0svdV8wQoGGGOHuuQa0zdovSChlvlVjIlJvRilguZsp5VLbe0cUsP1roH3LxMjOSrLonhU9sdVyjrpqzv5EH3YDulzzyhsmidDGXx6gmBbkp7wB+f2Ci36TG80nuLXoq6Ht3HJ4RjjxzTkOV1U9YPNvDYH59i5652HG8twnXoP/wytq8Jb/WC04tBw8RbvRDb10T/4ZcRroPjrWXHzl0AZHN5jhw+gK9h1aSu/UR8Das4cvgAuWyOTCZDJpMlORxDq1yC7q/6/9m77zi76jr/46/vOeee26b3TEkjCUkmIaFXVxBBSkCJoriwgmLZn7juWlddURZRf/bdddn96Yq6AgoiQSACQkCqQGghlZA+k+n9ztx6yvf3x/feOzPJpExJSML3yWMeSe6c8z3fe2YS5n0+3zKutoxwKaJkHoP9vSQSSRLZB3stLS00daUIhYsndQ9C4WKaulK0tLQcdVXB3D1Iuia+ERp34DatAL4RIuma+XtwqByqB26apmnakeGmm27CstS/89deey233HILTU1NOI5DU1MTt9xyC9deey22PTz9aKqLdZ/5zGfyKxVfe+21XHbZZVPa/lthyoOrph1OdTWVpBKxKWkrGY9RV10BwI5du4arlqPC3siQumf1deTnRgwdtkvYsXOXClxuHErm50PruKqYoM4rma8WQ8qFEmFmVw+O5kPrwbS7x0XU+YFw9j0HVIgtaBh3aB3ZbwoasmFY/cPc2TOgqsWGkQ2hHHxlWKjjRS7Mhiro7Blg89admJFyupvW4UcbsCJl4+qnFSnDjzbQ3bQOM1LO5m27AOjpbMexyw84p/VADMvGscvp7mpHIoh1N0G0dtyhNd9euBSitcS6m/JrWK3fsAnXLqNn94ZJ3YOe3Rtw7TLWrd941FUF12/YREIWkPGNCVeJTStAxjeIywLWrT90w4UP1QM3TdM07chwxhln8LOf/QzLsnAchxtvvJEZM2Zg2zYzZszgxhtvxLIsfvzjH+fPmew0y5G++93v8otf/AJQC97m9pQ92k35qsI5f/3rc5NaEbi7Ww990g6srrYGf30zMLGhnCPJdD91tWpRsdhgHMrCw3NOR4XVsexZjc2+JgwwQwz0DqnXw5Vgq2H0E6liSt9X54crIZGd3+h7KnTaxRNqN88uVvNh/ewWN8Hi4XA8UYal2pGq5Or4qCqssLK3bLx9NcDwwbcgUIjjQ0/fIF7GJkMIe5yBLceKlJFJ9RFMx+ntU0N14omEWu15KgTLiMfjBOwgjuMRKJ4xqeaM4hk4fdvwXRV+Nm/bhev6U3IPDNdh8/Zd1FTXYAaPnqrgG1t3kZRBQvbkVgS27AipeJDN23dx8RT1bU91NZXs3hojFCk48MEHkIzHqJtbMQW90jRN06bSxz72MZYuXcott9zCo48+mp9OaVkWl1xyCd/73vdGLc5UWjqxB9p7+tnPfsbXvvY1AObPn89DDz006SmcR4pDFlx//etfH6qmNS1v2rRphEjiuc6k5uJ5rkOIJLW1KgCnHAfIBjh8srMsD7I1AzUBNXe+zLYn1eJJiElVMaXvQ6QSerL1NoFabViMs8o6uuVsdbhItSddsCb/QzWg2pEjhvzn57ROtK8GAh8p1JxeCQz2tROYdvKkuhkomcFg2yv4Ner7qH8oiRmsOsBZB8cMRhkY6iEa9iBcccAhvAciDAvCFaSyw4q6ewdIDTpTcg9Sba/Q3RtgRkMDg57L5Ga4KoejKtja3oERmDPpbWGEEBiBMC2tW6eoZ3s7VA/cNE3TtCPLSSedxIoVK3Bdl7a2NjKZDHV1dYRCaoTcHXfckT+2sbFx0tf73e9+x6c//WkAZsyYwWOPPUZFxbHzcPOQBNfDsXrkoXTrrbceVEl9/vzjD0NvtP0xDIOzT1vCYy9upaJh/oTb6WvbxgWnLxnew9OT4CaRvoswsoszjUt2r1ffBTeJ76GGywamZuglgeL88FtV1Q1mr+dPMLxm/86adj5sM1X7QooRoV/6ap7vhAN2lmFk96f1CNsGjhHGnoIw6Bhhwraf7baJYRr5PVUnSkqJYRoIwySRTBMoqMb3MhjmxIOc72UIRCuIJzsBSCfj+Fb5lARi3yoknew96qqCyVQaglM0+0UYpFLpAx83QYfqgZumaZp2ZLIsK7+f/UivvPJK/vennXbapK7xwAMP8JGPfATf95k2bRqPP/449fX1k2rzSDPlwfWLX/zSVDd52N1www3ccMMNBzzu+us/dhh6ox1I48IFbHxjG919XRPab3Kwr4u6YkHjwuElwoXwkb4HmZha8GhChDrfdxHCQwojP7d1ogFT+tlhyGLEtjaGBb6LCp9icuHV91R70gMvCchJ9lWqdnJ99V3IDCD9qklUh7NtZwbAdyktLoT2qZkviBGktEh9jUJBmwLTJp5JEAhOfIiNm0lQELIJBmyGhjIEQlE8oVbBneh9NQWY4QIcTwXXgGXij1iUazJ8M0TAMo66qqApJNJJTUlb0klN+tnK/hyqB26apmna0cPzPFasWAFAQ0MDZ5111oTbevzxx/ngBz+I67qUl5fz2GOPcdxxk9vO7kg05cH1wgsvnOomNW2/hBAsu/h87rp3JYN9jCu8DvZ1Ec60sGz5slE//AVMg7QzCF4p0k0irPC4+yXdJHgOOEMETJO066nVgHOfH2dwyYdWGNWOCplp9ZENL7ljxxWMvDR4KdWeNCAzBG4SrMjE++omVTvSyPdHJjuh+DgmtTac9CHZiTAMQpFCDNE/NZVRQxCOqsURZk+vZffWNEHTxplgZcxzHYImGF6K2bOnsXl7M0ZSYofDJBIJpB8Y930V0iEcCePGB/NDjaIFBZCYugp5QbTgqKsKlpUUsbu9B0on/3TZT/ZQVjN1i2SM5VA8cNM0TdOOHrfddlt+79ZPfepTmKY5oXb++te/8t73vpd0Ok1xcTF//vOfp2TY8ZFIryqsHRMikQhXvX8ZFWYv3c1v4LnOfo/3XIfu5jeoMHv50PJl+X2DcwqiUUj1qCCYHlAhdBykm4T0gBrCm+qhIBoBNwXOoBrimjvO90cH0rHa2vMY31HtuNnqkvTAGVLBU7pjnjvyIz8sePSR6nwnng2uKbVIU6on3+a4+ypddb7vq/YAOxiEVD+keg/Y1v6uQaoXUv3YwSCRSITiaBAnPTSh9nKc1BDF0SDhiKquNi6Yi5/opLy8DMNPHfB7ak+e62D4KcrLy/CTXTQumEtFWTHhgIHnJIlGoxi4+N7BLVrkexkMXKLRKJ6TIhwwKC9TQ88rKiowvPSE72mO9D0ML01FZUW+KtjXtm1Sbfa1bePs0w59VXB6Qz0i2aWG50+C9FxEsovp0/ce0jWVcg/cQukWBvu6xnVu/oHbxefraqumadoRan/bqj3xxBP80z/9EwDz5s3jC1/4wl7HPPnkkwghEEJw3XXXjdnOmjVruPTSS4nH40SjUf70pz9x8smTW+/iSHbIFmfStMMtEolw5fJlbNi4iedWv06KMCJYQjhahGlaeJ5LMh5DpvsJkeTC05eycOH8MX/wq66qpGdHDww1Q8kcyMSQbgrsouyc17Hlhxf7jtpOp38reBlqqivpaW+FZBdEa9UWNiO2gTnowCF9Ndw22TUcgJ2UCoiFM7MV0vCoPWIPul2JasdJUVxaxICXVEE23Z/dGmh4mPOB23PVeU4cvCQlhapiXVwQoXPQh8GdEIgirfD4K7luUp0vfYqLogSDNsfNrGPd1g48a/z7d0I2ZDoxjptTRzCogv0JJ5xA8Lf3Iz2XqsoKenp6SaczWHZkv2FBSombSRA0obyyAuk5BL0+li5dSkdnN+s7WghaURxPhdBMxiGdSSMRIEyEMNT6WICUPkgPgSRkB7HtQL6KazlJjp+tVieurCinMJIknujFLpj4XFIn0UdhJEBldiGHo6kquOD4uTz54gaSfTsIlk98WHKmfwfRoGDh8Yd+waPcA7eVDz9OS3MPpdOO2+/3r+c69LVto65YsGyMB26apmnakWPRokW8853v5NJLL6WxsZFgMEhTUxP33Xcfd955J77vU1ZWxu9///v8CKrx2LZtG+95z3vo7+8H4JZbbqG4uJj169fv85yqqiqqqqZm4cm3gg6u2jFFCMGixoU0LlxAa2srLa3ttHR0kUlnsIM2dXMrqKudS21t7X7DR2V5GTQNqIAYLFGrAXtpSHYizaCqpBq2WnhISjV0NzdcN1CgtqdJdKrzTYuK8nKsYAA33gZli0CkwQge/B6mkA2taRVc421Y+VVaPRXmUt2qn25KzVM1g4xrUalUj2pHeFy+7BJuX7EKyhZCskO1E4geRJsjKrfJbghXQc86Ln//pQDMbKijc3OnCrVDu6GgHpkdhr2/ADtq6PHQbnW+FWBmQ5VaRGhwkPqqQpq7+yFUMq7w6rkOMt1PfVUhBSGbumo1RNSyLC4693T++MxaymadQmVlBfF4goHBQXxMhGFhGBZCCKSU+L6L9F0MPEoLC4lGVajo3bWO9517OoZhsKhxAX/8y1oKqubQ3dOL54JtB7DtAK7r4XnqQ0ofQxiYlolpBrAsM99Xw09RWl5KsnkzixddAED9tCqmT0uxubkPLxPBnMCWMF4mgeEO0dBQTl2NCqmHYhj+odJQX8uMGQ28ubMVN1w+7r1sAdxEL0ailRkzG6ivm3YIerm3qXzgpmmaph05HMfh/vvv5/777x/z842Njdx5550sWbJkQu0/88wzdHZ25v/8uc997oDnfPOb3+Smm26a0PWOBFMeXDs7O6a6Saqqqqe8Te3YJoSgrq6Ourq6CZ1fWVVFJLSbhGvCYDMgEKEyZLgqG1IzKkTJ7JY3RkBVOu1ihJdBJrrUecIkEgpQWVnJ35x1Bk889zoMbFGB0M+oyqtxECEru4IuGDCwFZwkf3POGQCcetopvLR2uwqKoVIVLn1XfRhWtrprDofssVb9llKdn+7n1FNP4YMf/CC3/+6+bF8Xqcqzm1R7vZqBMdr0snNtM6ri7MShYDr0rof0IB/+8IcBOOvM03hl0x/wQjWQaFP3LlQOdhHSV4tLjdE5dZ8zgypcJ9ogUICZauesM07LLyK04Pi5ZJxNdA/FcLzQQVdGTT9FZZHJguPnMtixZdQiQssuuYgXX/4BPT27KSivJxqNEI1GSKczZDIZ0hkH3/cwDJNgOIBtRwiO2PZlqGc308IJll1yEQB1dXVMrwzRPNRNVWXVqCquZZn5gLqvvuaquImBTqZXhvLf33W1NZREmqmvLqO5swdgXOHVyyTwkz00VJdRGlHt5RwtVcFp06ZRW1FEPOXT0vkmLvPGFV7dRC+y703qaqqprSg6rCv1TtUDN03TNO3I8Ytf/IJHH32U1atX09bWxtDQEJWVlZxwwglceeWVXHPNNQQCU7Hp3NvHlAfXa665Zsr/x/rnPz86pe1p2oFUVlZSVlKMFxekU2mItyDdIQhXI0w7Oxx3xDYh0gPfRWZiavGh9ABIj2A4RFk0RGVVFe8+92yeePpliO2ASDWEK1Qg81LDQ4dHVmCln/3wyO+zmuxW53sOf/vhqwD46HXX8dINn1NhMbYDimZDIKJCpO+ByO6hms+FYwTXXJU0PcgnP/EJQqEQZ515Cn99aT1EaqB4DiRaId6qKq9WKBu4s4NafSc7hzeurl08B+It0L+Vs848BctS/9ScsHgRxYUr6XN9pBWCRIcKxMFSdZ4Z3LtdLw1OAtJ9KhRbIYR0KS4MseSExflFhAwBSxYtYPOW7XT1J0mmXaSw9lkZFb5DxPSoLA9x/NzZGIK9FhEyDIPPfeZ6vvWDWxkCCsrVwj/BoE0waLO/5XuGenYTim3kc1+6ASNbTTYMg8svOo+f3/0EbqhoQlXcTCpBILGbyz/0rvy/tdOmTSMsksybs5CMu4Xu/j4cJ4kVLj1AJdvDTfZj+ilqyqLMmzMTv2fTXqHtaKgKGobBOacvZdDZiOt6dA1sI5PqI1AyY7/bBEnPxRnYhZnppaq8kJrqKs45feFbEhAn+8BN0zRNO3JcddVVXHXVVRM+/9xzz93vFqPXXXfdPue+HquO+H1c9dNl7a1QP62K6bPmkHjjTSisJJ3oV2HUiSMDUTUc2AyRD1heSi2Q5MRVWEQSLKwkKvuYPnMe9TWVzJo1i5pp5bT3udD5ClSdrIbS4g+H1FGhMvu9LwzAgGSnOg+DmmnlTJ8+HYDjjjuOwtISBuO7IVwGsV0QLIaCetWE72Urw7nkOtbfKQHx3RSWljBjhpo3eePX/pnlV11Lsv1FqDkdCmpVP1LdaqXgEYtMYQRU8IzWqvcz1ALtLxAOGtz4tX/OH1ZXV8ei+XN56fU3yURn4rsO0ovDUFwF4kBUtSWM4T1fnbi6t4aBsAswrAB2fCeLFs2jrq4OIcSorUUWLTiezq4umlraSWTSuNLF9UV+a1pbSCzLI2ILptfVUVVZAQK6m98Yc2uRiooKbvzSDfzkP2+jbUc7xfUnYAb2vQer56QZ2L2OaeEEn/vSDXtt/L2ocSGnN77B85ubyDB9XFXcTCqBH2vijMZaFjUuHL79I7ZXyYX3zr4h0vE2fCMIZgjTsvP31XMz4KUw/DQR26KytITj585moH3f26scDVXB3JxcO9pIsHkHXb0DpDpfxw8UIYLFmHYBGCb4Hl5mCJkewHBiRGyTypoK6hpmMS0c1yv1apqmadoRaMqD6wUX6O1wtKNfXW0NpcVNNDTU09TaiVFcRSadwksOqAPc9Oj8J1ELEnkZzHAxdjBE2Oujobae0pIC6mprMAyDL/zjDXzlm/8XzyiFzlehoA5KF4BpZTPrHsFVoLbU6dugwqARwPSG+MI/fiUfDgzD4Mavfokvf/Vm6N0E5YvUMOSe9WAXqY9AVC2uJD0Vuv2MGkosTMBX15CCG7/6pXy7lmXxw+98k89+5Sa8tr+qLWxKF6p9bUMVKgXmgruUqh0nDn1vwMA2TEvyw+/clK+25vr6vksvoKWjn5bO3TjRmUABfmYQKd1spXrE4k/CULchEMawCwGPQHwntTVVvO/SC/J93XMRoaqqSqoqK4kNDjI4OEQsnsBzXUzLoigaobCwgKLCwvzX8ECLCFVUVPCtb3yJlQ89wiNPPkHaLMWIVBKMlmFaasGkdLwXP9FF0OvjinPP4NJL3pOvtI4khGD55RcTv/s+NrW1ksiUEC4o228VV/o+yaFebLefxgab5ZdfvFc4zN+Dof5R4T2Z8XDcJJ6TyG8ZZBuCQEgQtiNMr5tGVWUFg/0Ht5DSkVwVHDknd8bs46maFqdpxxaSToaM042f7szfA8swsG1JOBpmxqx5hMIRIk4ryy4+PHNyNU3TNE0bHyGnsjz6NnP99R/jttt++VZ3QzsEfN/nf/73boyyeax/5a909SdIS5uMUYjvpHCdJNLLgC/BEAjTxgqEMQIhbH+IoEhTWRph0Uln4fe+ySevuyo//PO/fnYb9//5SWSgCqSjAm+kGsKVYBeCCKjXM4NqcadEhwqdIoBwOnnve87l05+6ftQP11JK/v0//x9/euRxFUaLZ0E0Gyyko4JpbqywGcheA0i0wMAO8D0uvfh8/vEzf7/XD+1vvvkmX/r6d0kk0+rcgnq1CFSgWM2h9V1wBtRiVEO7wXOJhG1+cMtXmTdv3l73VkrJnXet4JlXNtPe1UXGLEWGqxHSx/czCC+jgrAQSNPGMGykMBDJDmyvj5rKSt5x8vFcfdXyUX1NJBLcde9KUsG6CS0iNNa2SPv63lizZg0bNm1he3Mb6XSGYNBmdsM0GhfMZenSpWMG1j0lEgkefHgVG3b20eeE8Y0QwgphBYIYhoHv+7hOGummMLwkpXaaxpklXHbxu/fZz73ugeSgwvt478GRLpFIqDm5A5KSmtkkhvoZ7O8lFhvA81xM06KoqJjCkjIiBSX0t29Xc3IvPv+YeP+apmmadizSwXUSdHA9tq3fsJHHXtxKcdVM3lj3El29AyTTHp4I4hshfMNCSoEQEsN3MfwUpkwRDlpUlhUzf/GpDHTu5ILT54wa1plIJLj1Z7/i8WdexLOyiynlhsXi50MbGMPDZr00ptvHu//mdD79yY+O+cN1IpHg3//rf3jiL39VbQSCEJmmKqRWGAxD7anqJtU+qIk2cNIgBO867yz+8dOf2OcP7a7r8n9/8GOeeXkjvi+yc2f3mI9rmBiG5G9ObeSfv/i5UZXWsfp6+10r2LCjm+6eXgYHB/HtUmSgSM2fFaaqDrsphBPDyPRRWFRIRVkZi2ZXcM2Hlu/zHuQCy7gWEXqLAouUMjtvdA3dQ5KkZ5P2jfy3QNDwCZsZKgoE55x24kHNGz3a7sGhMnxvDzwn95zT9Eq9mqZpmnak08F1EnRwPbZJKblnxUq6vTIKSirobN2ZHXYoybgC3/fzww4Nw8C2JOGAYMaseVTWzmCov5sKs5crx9gOJJFI8McH/8zDj/2Fjp4YMlgCZjg7dDfXAQ+8JCLdT01FMRe9+1zed9l79hsuEokE9z34CA889Ci93TEwpAqr5ojw4jnZECsoryjmsksu4IrLLjqo0OK6Lvfeey8vvbaO3e29OK5PwDKorynj1BMX8/73v3+/gXXPvj740CrWb2+nL5ZkKJEgmUzjZDJI6SOEQcC2CYeDFEQilBVFaJxdzWWX7LviCEdnYJFSjpg32j08b7S6grramnHPGz0a78GhMtX3VtM0TdO0t4YOrpOgg+uxb8+hl1JKBvu79jnssLCkEiHEQQ29zIWLp/76Cm+8+SadXT0kUg6+r3JlJBSgqrKc+fPmce5Zpxx0uBhu92VeX7eBru5eUhk3X8UL2RaVFWUsWdzIuWed+paGllxfn31xDb1DGRJpScbx8KXEEAI7YBIJCsoKbN5x+sFVHEe2/XYPLPoeaJqmaZp2rNDBdRJ0cH17ONRDLw9VuDiaQsvR1FdN0zRN0zTt8NPBdRJ0cH370EMvNU3TNE3TNO2tc0j2cdW0Y83RsIelpmmapmmaph2rdHDVtHE4kvew1DRN0zRN07Rj1YE3G9Q0TdM0TdM0TdO0t5AOrpqmaZqmaZqmadoRbUqHCv/1r38F4MQTTyQcDk9l05qmaZqmaZqmadrb1JQG15tu+iZCCH7+8/9hxowZ+dd/+MMfIITguus+Snl5+VReUtM0TdM0TdM0TTvGHZahwo8++iiPPvooQ0NDh+NymqZpmqZpmqZp2jFkSoNrIBAAIJlMTmWzmqZpmqZpmqZp2tvYlAbXiooKANatWzeVzWqapmmapmmapmlvY1M6x/XEE0/koYce4le/+iWbN79BfX09pjl8iQceeICSkpJxt/t3f/d3U9hLTdM0TdM0TdM07WgypcH1b//2ap599llisRjPPPPMqM9JKVm58sEJtauDq6ZpmqZpmqZp2tvXlA4Vrqqq4r/+67+5+OKLqa6uxjRNpJQIIQAVXifyoWmapmmapmmapr19TWnFFVR4/dznPj/qtQsvvGDMbXI0TdM0TdM0TdM07UAOy3Y4mqZpmqZpmqZpmjZRU15xHcsXv/glYHjVYU07Wvm+T1tbGy2t7bS0d5HOOATtAHU1ldTV1lBbW5sfGn+wXNdl7dq1bNi0he1NraQyDiE7wOzptTQumMvSpUsxjCPjGdPR1FdN0zRN0zTt2CGknkQ6Yddf/zFuu+2Xb3U3tMNASsmGjZt4dvUaeoYkSc8m7RlIQABB0ydsZqgoEJx92lIaFy44YID1fZ+VDz3Cn1Y9R2uvQ0pEwAiCMED64KcJyQR15TaXnH8Wyy65aFyhcCpDZq6vD//leQZSJo4M4PogJQgBlgEB4VAc8rj4vDPH3VdN0zRN0zRN2x8dXCdBB9cj11SGtkQiwYMPr2LDrn760kGG0pKUAxnXx0dgILEtg1AACoKCUjtF48xSLrv43UQikTHb7O7u5of/8XNe29aLb1dBIIgauT/yr6MAfHBSGJkuTjyujC9+9pMHHLmQC5kPPfE8saRPxgXPdfMLpZmWhW1BUdjgkncdOGR2d3fzo5/+D1vbE6RcE9cIgRHCFwHVRQmGdMBPYflJQqbHnGlRvvAPnzjoURaHopJ9qBxNfdU0TdM07a2TyWT4zW9+wz333MPatWvp7e0lEAhQV1fHWWedxSc+8QnOOuusCbc/MDDAypUrWbVqFa+++io7d+4kkUhQUlLCokWLWLZsGddff/2EtiM9Eh324CqlZNu2rWzbtp1YbIB0OnPAlYOP1O1wdHA98kx1aEskEtx+931sbPPojhv0x33cwXb8dAz8zHDJ0bAxgkVYhTWURA0qoj4Lp5n83Yeu2Cu8dnd384WvfZvWZBEES1X4C0TBCmcrrkK166fBTYITV39O91MbifGjb//LPgNhd3c3P/qP/2FrSy/xZBrH9cCX7BWIDUHAMomGgsypL+MLnx07ZHZ3d/ON7/yE5n6BKyK4ZgGk+iAzqPqXqzkbQbALIViK5Q9hyQQNJZKbv/a5/YbXXCX7udWvkyKMESohFCnCNC08zyWViOGn+gmR5OzTlhxUJTtnqgNmvur+4hp6hzIkMpJMxsWXYAiwbYuILSgrsDnn9IOrumuapmmadmzatWsXl156KRs2bNjvcf/wD//Av//7v4/7Z4aHH36YK664gnQ6vd/jampq+O1vf8t55503rvaPRIc1uD766KPcfvtv6OzsHNd5f/7zo4eoR5Ojg+uRZWRoS6UdXKsQ3yxAmjZSGAjpI7wMhjeE5Q4SsgP7DW1SSu68ewXPbuylddAi2bsTUjEIRMAM7t0BLw1OAkJFhMtmUlvocs7CMq7+0PL8P0a+7/P3n/0yOwaiECpRYS9QCk4/OEmQLvkwKCwIhCFQDJl+cAYh1ces4gT/7z++v1fg7u7u5hvf/jG72mNk0mnVRqgU7GKwRgxBdtOQGVABFIkdDDKjpoib/+Xzo+6D7/v88423sLFpiEygAlI9kIlBpBrClarvRgB8RwXZZBckOsAuglA5QbebBQ0FfO9bXx/z4UAikWDlw4/TGoOiqpl09/TS2dVD38AgrudjmQalxYVUVZZTWVFOf/t26ooFyy4+f5+V7NzXbaoDZiKR4MGHVrFhRwf9gym8QBEiWIwVLEAYFtJ3cdNDyPQAphOjuCDIotk1XHbJvqvuRytdcdY0TdO0/XMchxNPPDEfWk844QQ+//nPc/zxxzM4OMizzz7Lj370I+LxOADf/e53+cpXvjKua9xxxx383d/9HYZhcMEFF3DRRRexZMkSSkpK2L17N3feeSd33303AJFIhOeee46lS5dO6fs83A5bcP3lL3/J3XffdVD7sgohRh336KOPHcquTZgOrkeOXGhr7hoiYxThhysRgUIww2Da5Me0ehnwksj0IEa6C9uP0VBZsFdoA1i3fgO33vlnmgdsMj3bVEVUWGAFQJiqCpojBEgPXAekA24Ku/w4Gooz3HD1e1i8qBGAe1f8kf9311+gaAaEq1QYzcRB+OB7KgTmguvAVlVtBXU9YYIVgkARf3/Vebx/+fvyl/d9n3/+l2+xbmsznuNDtAoiNSpcWmEw7BFzZzOqkpsehGQ7xDsxAwaL5zTwvW/fmA+Zf3xgJf9z159VaB1qh8JaKJkPZnZNtz3fP4DnQN8bMNQGBTXYTjefuOo9vO/yZaPubSKR4K57V5K0p9HWHWPrjt1kpI20wkgjgBo27SN8B+EmsUWGObPqmVZRRMRp40PLl40ZCA9FwEwkEtx+1wo27erFsUoJls3EMPe9rp3vOaR6d2K7/SycWcY1H1p+TITXQ1kd1zRN07RjyR/+8AeuvPJKAM4880yeeeYZTNMcdcwrr7zCmWeeieM4lJSU0NXVhWUd/Lq5d999N3/5y1/42te+xvTp08c85qc//Smf/exnATjvvPN44oknJviOjgyHJbhu2rSJf/zHzyKE4MQTT+STn/wUvu/z6U//H4QQPPLInxkcjLF585usXPkgzz//PIsWLeLGG79BaWnpoe7ehOngemTIhbYNO9pxItMRkRpksBSBQLL3MFn1uo9I9yETHQQSTTTOqhkV2nzf5zs/upXnt2XI9O7KDuW1AUNVFO1sKBamCqxeUlUdMzEVDr0MOHHsshmceZzNv3zxM3iex6UfuBa/7ASIVEGiZ3g4cLA4WxkNDbe540+Q7hn9ZkMVUHkiRu9aHl5x+6iQ+d//ew++Z0DpXBVag2VgGKjQviepgnK6DxLt0LcFw/T5P9deyfsuX4bruvzdJz5LdzIC7hBUnqiCtu9Cok1Va5044Kt7Eoiq6m5kGhgWJDuh6zWwCqgIJ7jztv/M91VKyT0rVrJ7KMzaN5voTxn4djHSc5Geg/SGq87CtBBmAGGYGJkYJWGfE+ZNp74gyZXLl40KRociYEopufOuFTy/bhdm2TzsgvKD+I5UMkM9eL1vcubiGVx91fKjOsSNrI6X1MzGtAL7PNZzHfrath1UdVzTNE3TjkWf//zn+clPfgLAAw88wGWXXTbmccuXL+e+++4DYO3atSxevHjK+3Lqqafy8ssvYxgGHR0dR/UuL4dlO5wHH3wQgKqqKr797e9gmiY7d+7Mf14IQVFRMaeeeiqnnnoqDz74AD/96U/56le/wk9/+p8EAvv+IUnTHlj5EBu3NeNEZ0PRLDBDICUSL1sVHB1cpRCAoYKdFcGRko3btvPAyofylcGWlhbWbukg0x9T7RkBNR81XAv4qjI6ao5rECIFEKnNBrteMENkenex1i+ipaWF7du34wdKIFAI8Q4V/IIlUDRbBV83AYkBFXyFqjjuxXcgUIgfKGH16tWcccYZuK7Lnff8Ed/xoGyeai8QYezAOnwfMCwIV4AVASnxezdx5z1/5PJll/Dqq6/SPZAG4ULVyepe9W1SIdcuBrsEIpWqAi1dNcw52aWqxJEaKJ6rwm7nK3RnPF599VVOOeUUADZs3MT2ziSvb28lLovwAT/ep4Zfm0FEMJqvDvueA04avDRGIExvGl5av43M7FI2bNzEosaFgAqYK+5/mLVbOzHL5hEuKAck6VScTCpJOp3C930MwyAYDGGHwgRDUSKVc8kM9fD6ljeJ3P/wXgFz/YaNvPD6FsyKReMKrQB2QTkZ5vHC6+tZsnhjvuo+lkM1/HYq2s1Vx1PBOsrrKw94TdMKUNEwn+6+Lu5esXKf1XFN0zRNO1ZlMpn872fPnr3P44477rgxz5lK5557Li+//DK+77Njxw4dXA9k48YNCCG44oor9iqTj+Wyyy7ntdfW8Nxzz/Lggw+wfPn7D0MvtaOR67r87t4HyQRKVWAzgkg/W7EThgpnYsT8SumraqZ0kTIbOItmk8n08bt7H+TyZZdgGAavr9tAX/+gase0oWim+tUZyAasEBgFIxZScsBLqXmu4QpVlR3YDl6Svv5BXl+3gd/ddRcEG9T8UmcQCmeqvsS2qTAbLFZVzVzFtfOVvd+wdNX5wTL+879/xhlnnMGrr75Kf1cvlMyG4uNU9TMrO0B6L8OvC3V88XGQ6qO/azuvvvoqTzz5jKrIFs9Q77XtOVVlLjsB7IgK8sIafv/SBX+aGvY81KSOrzwRCuphYDurnniKU045Bd/3eXb1GjbuGmLIi+J7aaRhI6LVo79OuX6aNhBVITY1gPQzDFlRNu7qp2T1mvxw1D0DZnywn4H+HnxhI6wQhlkIpoEnfdKpDHKoF0O2U1xSTrRw7IDp+z4PPPw4XriG0DhDa45dUE48XsMDDz/OosaFe4XEsYffVmEGLQY9l91bY/jrm8c9/Haq2pVSsvLhx0kF6ygsPXBoHamwtJLBPlj58ON7Vcc1TdM07Vh2/PHH53+/fft2GhvHfni9bds2QBXx5s6de0j6MnLxpoPJYUeyw7LRYm9vLwAzZszMvzbyhxjXdfc6593vfjdSSp588slD3T3tKPbqq6/SF0tC0VwVLKWrApAZQhg2QpjZwcHZ/4SJMGwVxoShjjdtKJpLXyzJq6++CsAzz7+kKqJGEApnAFIFtHCVqrxa4WwoNtWvVjhbka0arvIWzlDnO3Geff4lOrpjKvClB1SgS/WoobdljVA8G0Llqh3THm5/T0ZQnW/Yqj3gz4+uAjsMpfNGhVYASTao+262SuyC9NTrIwWi6nw7zCN/fpzX1m5Q14/UQcdqKGiAsoWqyhooUH0U2WHIwlB/DhSoz5ctUMd3rFbnGxavrVOLE7S1tfHGzm56EwLPzSDtIkS4dMzQOoowEOFSpF2E52ToTQje2NlNa2vrqIBphYvpbGuib2AII1JDIFqBFSzAsGwM08KwbKxgAYFoBUakmr6BITrbmrDCxXhhFTBzsydaWlpo6hggXHHc/vt2AOGK42jqGKClpWXU64lEgntWrGTV6m0Ea06grH4hJRW1hCIFBIIhQpECSipqKatfSLDmBB57cSv3rFhJIpHY7/Wmst0NGzfRMiDHHVpzCksraRlQIVrTNE3T3i4+/OEPU1RUBMD3vvc9PM/b65jXXnuNP/3pTwD87d/+bf74qfbUU08BEAgEmDNnziG5xuFyWIJrLpiO3EMoHA7nf9/f37/XOZWV6gel1tbWQ9o37ej2+BNPI0MVECpTIdSwEUZg9CDZ7MjgkS8KQBgBtWiRdCFUhgxV8NiqJwHYsG69qiZGqtWvdpEa1nsQAYtgiTp+xPnr1q0HX4AzpIbapnpVeC2aOXZA3RffVec7Q/mRxM89/4K6TqRq+DiZXehJ+tmhzJYKzUauSpod7ixH/EMaqYJINc/+9Tn6+wcgXA3dr6lKdtEMNaQ4P2c4G1hzHyNru1ZUHV80W50frqa/bwCApuYWdrYP4aHukwgM/ztwMEQgDMESPAx2tg/R3NKWD5jB0hl0tjXjGlEC0XLEAfbpFYZJIFqOa0TpbGsmWDpjVMBcv2Ejnl2x33myB8MwLTy7gnXrh5fDzw2/7fbKKK8/fr9zRmHE8FuvjLv3E16nsl3f93lu9euUTptccC+ddhzPrX79oBbm0zRN07RjQUVFBbfffnt+Nd9TTz2V3/zmN7zwwgusWrWKf/3Xf+Wd73wnmUyGk046iR/96EeHpB9/+tOfWLt2LQDvec97Dlk4PlwOS3DNBdaRPxSVlpbmF2tpamra65ze3p69ztG0Pb22bj2Ea1QQM4KIXLA0UAsTGblglf0191r2MCEMVcWUPoSrVXtAOh5XVVm7SA3hNUP5awrD2OdHnhnKLrhUBGaI9NBQNkym1a+FM1TAHS8zOKIdlVw9x1eLIons8A/fyd6DAMK0EYa1Rz8tNQTXCIw+XpgQmYbn+Pi+BDel+l80Izs0WIAws+2Ze7SpXlerHwt1fNEMdb6bVO0Bq195nTRBhBkad2jNEYEwwgyRJsjql1/LBsxyens68QNFmPb45lOadgQ/UERvTyeuXZ4PmJu37sSKTs08ECtaweZtu4DJD79N2nWsHFEZzhmrXSklsdggLS1tbNq8lfUbN7Np81ZaWtqIxQbzzxrGaretrY0U4QOG3wMxrQApwvohpKZpmva2cvnll/PKK6/w8Y9/nDVr1nDttddy5plncsEFF3DTTTcRiUT4t3/7N5555hmqq6un/Pq9vb3ccMMNgBoifPPNN0/5NQ63wxJcZ8yYAUBz83BADQQC+aHDTz315F7nrFq1CoDy8onNLdPeHmLxtKpAGtaI0JoNqvuVDbDkwqsFdgmxeHZivGlCqDi7Z6sKrXuF0zGMOsYMqfNDxao9L63mhQaL9wqtY4fgMeYEGqY6X1iqPVArEYfK1O99R90LM3BwfTWzVdhceA2VqvawIN0LpfPz84RzYfXA798cnl9cOl+tXJydTr99ZxO+MBGhkv22cyAiVIKPybYdTWzeuhNXhMl4xrhDa45pR8h4Bp4I5wNmT98gdnhqnkza4SJ6+waBQzf8dlS7Ejo7u3hlzXo2bmthd2+ahIziWCUkZJTdvWk2bmvh5TXr6OzsUiPb92i3pbUdY5JfpxwRLKGltX1K2tI0TdO0o0Emk+E3v/kN999//5ijjjo6OrjjjjvymWcqeZ7H1Vdfza5d6mear3/965x44olTfp3D7bAE10WLFiOlZM2aNaNeP/fcdyKl5JFHHuF///d/2blzJ2+88Qb/8R//zlNPPYUQglNPPe1wdFE7Snk+qgqZqx4eIFjtJXe8EQAzqNoDFboChapiCAcMbHvKH28XgVWQHaprAVINER5x3HjbVuf7w0OMzYAKybnQaoxv4r0wzOHwmtv31s9AuFItyCQOHFj3btNQ1Ve7ULXjqQcCnV3dYIQPPOT6wBcAM0xnVw/dfYMk0y5WeHJbZ1nhUpJpl56+WPYauRWoJ08KgRSHbvjtyHYdx2HDps1sb+nFKqghXFRJKFKIFVDzfK2ATShSSLioEqughm0tvWzYtBnHcUa129LeRSgyNcE9HC2ipaN7StrSNE3TtCNdPB7n3e9+N9/97nfp7e3ly1/+Mps2bSKdTjMwMMCjjz7KOeecw8svv8z73vc+fvzjH0/p9T/96U/zyCOPALBs2TJuvPHGKW3/rXJYguvZZ58NwIsvvkg8Hs+/fsUVy6murkZKyW9/eyef+tQn+cd//Gx+onJBQQEf/vCHD0cXtaOVn93vE8YfWnMMI1vbFOBnk6thZUPbBIJllsgNUw4WqUqpaUOoRP2e8Yfh4f6aqjJq2tkXpBo+LMS4Q+twX7NDfKWXbc+HaI26N5N5/4YB0WpyE3Iz6RRCjLHNz0TaxyeTTpJOpfDN4MTvZ649w8A3g6RSKQDKS4tw0lMzVcFJJygvLTpkw29z7foS1m98k4SMEC6qOKgKeaSogoSMsH7Tm/iSfLvpjIM5yfm9+f6aFpn0oVnmX9M0TdOONDfddBPPPPMMALfddhvf+973mD9/PrZtU1RUxAUXXMBf/vIXzjvvPKSUfOlLX+L111+fkmt/9atf5ec//zkA73jHO/j9739/1K8mnHNYguvMmTP5wQ9+yDe/edOoVbVCoRA//OGPaGxsREo56mPmzJl8//s/yC/SdDjdeuutLFy48IAffX19h71v2h68DLjxyX8nG4A7lK8MIiWYucWIJkOqKqZEBcNgBXjpSYQsoYYIB8uHq5aeA05MDR+eDGFBJqbugRlUe7VOxY21S1V7oEJ3Jr7/Uw6WEwfTJGAZ+HJq/inzpSCQ/cf9+ONm4Cam5u+4m+jj+NkzDtnw25bWdoxgCW9u2Y5rFWGHxjdk2g5FcM0i3tyyHWGrdoN2AM/be8X3ifA8FztoH/hATdM0TTvKSSn55S9/CcC8efO49tprxzzOsiy+9a1vAWrk1K9//etJX/t73/se//f//l8ATjrpJFauXDlqQdyj3WHZxxVgyZIlY75eXV3NT37ybzQ3N7Nz505836Ouro45cw7NXkYH44YbbshPZt6f66//2GHojbZ/PqS7gRmTbMeAdA/5pXoR+cWPpO9PKGjKXPVWjliF14qA9JFeJrtH6Xj5ql9WdDi4OklI9mS37ZmkVI9qL1Q8HDZ9f2LV7Nz7N4OQrdwVRAsYSvcjfVct5jRB0neRmX4KowVEoyEYSk24rVG8lGoPWNS4gD/+Ze2Ev/7DffUx0z0sXnQBL722ntDI1Z8nQQ2/7QKgpb2LoaRBLA2RoonN87VDEWKxBMWpDC0d3dTVVLJ7a4xQpGDSfU3GY9TNPXo3PNc0TdO0g9XR0ZHfCvRA80pPPvnk/O/feOONSV33v/7rv/jKV74CwIIFC/jzn/981K8ivKfDUnE9GA0NDbzjHe/gne889y0NrdpRRlgQb0e66QMfux/STUO8fbhqKV1Vgc1u85IPoQfbnu+T3zbGHQSZ3XpGOmqPVjeN9CYwdFJKdb4cuZWND4k28J1x93NUf31HtUOu76p9CcMh9GD5/nCtesSWOw21VQgzhIw1T6if+SZjzQgzRP20KirLKzAy/ZPebkVKiZEZoLJCBay6ujqmV4aIxzon1W58oJPplSHq6uoO2fDbdDpDS0cP4YKySbUZLiijpaOHdDpDXW0Nfqp/CnoKMt1PXW3NlLSlaZqmaUcyyxr+/3xuS9B9cRxnzPPG6/bbb+czn/kMALNnz2bVqlVUVBx7D4yPmOCqaRMiDPA96N/OcLV0vHx1vu8NVzGlr/Za9R1GhtcDBcPhY7Kh1Xcg1acCp+eqobigVhv2MkgngfT33pR6n3L9y8RUe7m23DT0b8v3YTzyx/dvU+1k+0ZmcPgYUOH1QG1njxkVITOD+RWQzzj1RAwkwh1CpiY2DFem+hDuEAY+Z55+MhWVlRQGHJxUbELt5TipGIUBh4rs9ATDMLj8ovMIxHeTSU1srmsmlSCQ2M3lF52HEOKQDb9NpRK4/sTnI+cIw8D1DVLJBNOmTSNEEs91Dnzi/vrpOoRIUltbO6l2NE3TNO1oUFZWlq90Pv/88/sNr0899VT+97NmzZrQ9VasWMFHP/pRpJTU19fz+OOPH7P/z31LgmtrayurVq3innt+z+23387AwMBb0Q3tGBAIeGre6NAuZKKb8YdXX503tAuC5ao9ANdRwdWJZ4cM51aXlUjfywfU0R/ZhY2A/FBjZ0i14zoqaKYHwE2qz1sRFUSdhAqwbhrpuap9z80PVd6Lm1TteCpQVFbXgF0GgzshpVZuHV/IRp03uBPsMqpqakD4kOwYfTx7BNgxPvLHjJTqUO0BS05YRJGdQQRLYbBp3OFVpvpgsAkRLKXIdliyuJH6aVVMb2jAGNo94ZDluQ7G0G6mNzRQXzM8r35R40JOb6zFG2gad3jNpBL4sSZOb6xlUeNCAOpqKkklJhewc5LxGHXV6mmqKcSo9QMmw/NcTKGC+9mnLaGvbduk2utr28bZpy1BTNEKzZqmaZp2JDMMg0svvRRQmefb3/72mMf19fXxz//8z/k/L1u2bNTnf/3rXyOEQAjBTTfdNGYbjz76KB/+8IfxPI+qqipWrVrFzJkzp+R9HIkO2xxXgC1btvDf//1fbNiwYdTrf/M3f0NxcXH+z/fffz933HE7kUiU2267bVKlc+3YNqO+nq3dGQgUQc8GJI2IUMXBzcn0fWSqG3o2qPO9DDOn57aqcVUwHNoNxbPVdjNiz71VR0Y0Mfpz0gcvBUMt2YDpApYKsel+tSKwsMCw1Yd0VcXXd8lXa8ck1fmp3vwrC46fQ9e6PnAy0L0eKhZBqCLbjYMI8qludZ4wIBBhwbx6Mqk4/UOtUO6o7Xb28a4PyMvAUCul2b/fdXV1LDquitU7hpDF0/EHW/FT/Yiihv3OeZW+i4w1Y3gJjOLpiEQHi46roq6uDiEEJcVN1CeSNA+2Q7RmXKv2eq6DH2+noTxESXF01JBWIQTLL7+Y+N33samtlUSmhHBB2X4rm9L3SQ71Yrv9NDbYLL/84nxoq6utwV/fDEz+SagafqumVXi+j+FNzQrIhpfEk2pea+PCBWx8YxvdfV0T2nd2sK+LumJB48IFU9I3TdM0TTsafOMb3+D+++8nkUhw00038corr3Dttdcye/ZsUqkUL7zwAv/2b/9GU1MTAOeffz4XXnjhuK7xwgsvcMUVV5DJZAgEAvzkJz/BcRzWr1+/z3Pq6+spKSmZzFt7Sx22iusLL7zAP/3TP7Jhw4ZRqweP5YILLiCdTtPe3sYLL7xwuLqoHYUuueg9al5m8WwQNvRuRPZvVnNW80NbR3zkKoNuGtm/GXo3qvOKZ0GijYsvfA8ADQ31ajhuekAN9fXS2VA5kmCvwArqOC+tzksPQCZGw/QGMFGhM9euHNGesNQiRlZYVWKtsFqFeE++lz2/X7UHnLSkEcu2IFKjhib3bIC+zdlhzvvhO+q4ng3q95EaLNvipCULeefZp0MmAX2bDu4LsS99b0Amwd+ccwagnkK+9+J3UVssEalejOIZWMEwdK/H79+Gn+hW1efsMGo/0Y3fvw2612MFwxjFMxCpXmqLJe+9+F0IIZg2bRphkWLeopOoDg0hkp046fgB57xKKXHScUSyk+rQEPMWnURYpPYaXhOJRPi7D13BmccXU2H2kom1kIx1kUoM4joZfM/FdTKkEoMkY11kBnZTYfZx5vHF/N2HriASGV4s6VANvw2Go9gygT/JYci+52DLBKHsqsRCCJZdfD6hdAuDfV3jamuwr4twpoVlF5+vq62apmna28r8+fO5//778/NMH3zwQT7wgQ9w0kkncdZZZ/H5z38+H1rf9a53cc8994z7Go888giJhHpo7TgOV199NYsXL97vxx//+Mcpe49vhcMSXHt6evjOd76N4zhMnz6db3/7O9x//wP7PD4SiXDmmWcC8NJLqw9HF7Wj1NIliwkGDRjYqiqNVoFaYbdjNbJvEzLZjkzHkU5a/ZpsR/Ztgo7V6jirQJ03sI1g0ODEpScA8NGPfkStruu7MNQM6Wx49VIq5MmRw4Kz+6j6jvq8l1bHDzWr850kn/zE9Zx80lJAqEWgMoOQjqnjx1PDlJ46H8EpJy8F4IRFC6ksNBFWEKK1KpwnOtR77NsEiXY15NlLq18T7er1jtXqON+HaC3CClJZaHLC4kaWXXqJ2ss2tkMdMxGJDnW+YfHeyy7Nv7yocSHnLJnBtFIbK9WJlIJA9QnY0QosP4kYakb0b0UMNWP5SexoBYHqE5BSYKU6qS2zOWfJjPzw29yQ1qGeFpac8g7qCx3CmTa8VD9OOo7rpPE9Nbzb9zxcJ42TjuOl+ghn2qkvdFhyyjsY6mnZ55DWSCTCB5dfxgcvOpVF1S614UFKjAECTjdGqpOA002JMUBteJBFNR4fuuhUPrj8slGhdWRfp3r4bShoU1s3nVTvjkm1m+rdSW3ddIKhYP61SCTCVe9fRoXZS3fzGwcM3Z7r0N38BhVmLx9avmyve6BpmqZpbwfvfve7eeONN/je977HueeeS2VlJYFAgHA4zKxZs/jgBz/IH//4R1atWkVpaelb3d2jwmEZg7tixb2kUqn81jcFBQfeXmHJkiX85S9/YcuWLYehh9rRqq6ujlNPPonnnn8ZGa6EskZIdcJQG2SG1MfIuaK5xY1EAApqIVQJQ02IoWZOPfMU6urqADjzzLNA/FhVc8sWwlAr2IOqqmlagJGtiKqFm9SWN74aFpzoUMHUikBsJwif0047DYBXXv+3bMW0V/VFumoYsmmDMLMfQrU3VsXQd/N7rS5/33vz9+D4hmKS7SEGBmLIgnrI9Kn3nuxTARkYNQTZ91SQtQvBLkEISXFxEcfXBKmrq0NKyexZtWxv6oSuV6DyZIhUH/wXJtGhzpM+s2fVUl/fMPwlyA2/Td7HxlaPrkGHoYEdSCsKdjFWQXX23vj4mRS+k0AkuykuiFBRWMjCWnPU8FsYMaQ1MUjjyWdT2bqT5p1bSbg2rhHFFUGk+qphyzSWHydiZZg+by6VtTMY6u8+4JBWIQSLGhfSuHABra2ttLS209LRTSadwQ7a1FVXUFdbQ21t7X4rjIdi+G1dTSXNgzEK+3tJDvVgF5SPu93MUA+FAZdIYTF11aOXz49EIly5fBkbNm7iudWvkyKMCJYQjhZhmhae55KMx5DpfkIkufD0pSxcOF9XWjVN07S3tfLycr785S/z5S9/edznXnfddVx33XX7/PxNN920z7mvx6rDElxfeuklhBC8//0fOKjQCtDQMB2A9vb2Q9k17ShnGAbLl11Ac0eMXTvWqBejtRCpVVXPTAzchKpUClOFSbsIgqXZOahN0L2G6bPnsXzZBfkftC3L4lOfuI6f/eIO6N8KZQtUAO5/U4W9QCFYIVQU8sFNgTOoAqtdCIGoGobspvnUJ67DMAxOOeUUogUh4tKGoXZ1brBEzQM1bTACo4OrXaiCrcwueeS7qEWdAkQDofzeX4ZhcPnF76Lld6vAqiLW14MfKoNgObhxtZiTn13sSRiqkmoXgFUNAgwBRaXlVFq9XH7xu/MLAdxw/TV87fu3kU4OQtdrUFAHJfMRZmDMGrEAtcVP/2Y1t9d3CEaLueH6a/YKMLnhtw8+vIoNO/voLa4knsyQTA/hJPvxpcQQgoBtEY7YREMVlAUzNM4s4bKL371XFS83pPWue1cy1A/VdbOoqp3JYH8Xg/29xGIDatEh06KoqJjCkukUllQihBge0rp82UEFLSEEdXV1+Ycc4zWyr4N9jCu87quvdbU1yPXNHL/oFNa/+lcyMK7wmhnqwUru5vgTz2Kwazt1tfPG7Pfewb1rOLjPraCudu4Bg7umaZqmadpEHJbg2tGhhhrOnz//oM/J/WCaTCYPSZ+0Y8eixoWce/ob/MWM0LxtDTLVA0Wz1bYudiEYJvmA6WeH9KZ6ILYdEW9m+twTOPfkWfmhpznL33c5T/zlWbbsaIKejVBYB9E6dX4mptrAV20bATVHNVwNiVYYbAEvwdzjZrL8fZcDKgxf97fv59b/XQHBakh0qlAdKs8Ga2f0vNaKpdn9ZFPqWpkhsKKQ7uC6a9+PMWKBoEWNCzlr8Rs890Y/AbuWwdgA6eQQ0i5QQX1ku9nqsJA+wUghhUVFFJuDnDW/ftQ9WLy4kcvfdSJ/fHozzmC3qjon2pHhKtVnu1iFYN+FzIC678kO8FXIDhRWc/nfHM/ixY1jft1yw29VFW8N3UMGSa+ItG8gpepy0PAJmxkqCnzOOe3U/VbxckNaVz78OC3NPZROO46i0iqKSqsYK2J6rkNf2zbqigXLDvOQ1rH6ur8FpQ7U19zcWcM0WXTSWWxe/zKDXb2EymZh7GffWN9zSPXupDDgcvyJZ2GY5gG3rplscNc0TdM0TZuIwxJc/ezKpv7BrHCaFY/HAQiHw4ekT9qxY+TQ03BRObu3rCHe9ixEa1TVMRAdDlhOHNI9EG8nWlhE/YnnsXiPlV9zDMPg5m9+hS//y800N7epKmK8HaLVYJdCsFhVSKWn5sMmOyDekd0GJ05DwzRu/uZXRgXMyy+7lKeff4l12zrBrgA8iO2CYKGab2sG8sNk8RxwhyA9qCqkdjFkulk8r4HLR8wZ3fMebGpLE7KKSXjlpBNDOOkknusipY8QBqYVIBAMEwxHiVg+RYEUC6aF9roHQgiuueoDJFK/5S9rwiTiMUgNQLJ7xKrGI4YfSx/cDIRKiEQLOW9pDddc9YH9Vt+mavhtztE0pHUq+5qbO/vYi1upaJhP40ln09m6k+ada0mb6nsnECpAGBbSd3FSQ5AZwPKGOG6mGi4thKC7+Q0uOF1vXaNpmqZp2pHnsATX0tJSOjo6aG9vY+HChQc+Adi8+Q0AKiurDmXXtGPEqKGn0ZPoSgboa3mDeP92HCdDLmAFAjbRkgpKj383lRFvn0NPcyoqKvj+t7/B937836zdsBHfM1SlNNE1PKQ39ysS3BSG6XPC0hP458//n/xqcjmGYfC1L36Wr3/rR2zvGEQSgMg0kNkq7sjtcAxLrS4ciUK6D0GC4+pK+doXPzsqDI95D3b20eeESdkRXFmIK0W+WUtILOERMl1K7fR+70EkEuGT1/0tNQ89xhOrN7O7vwIvncB3htQQ59z7N22MQBFmsJb6EsG7TpvH5ZdccNBVzKms4h1NQ1qnsq97zp3de7h02/Bw6dJiCkuOyw+XBr11jaZpmqZpRzYhD7RnxBT4/ve/z6pVj3HWWWdx003/mn/9wgvVnMKf//x/mDFjRv51x3H4+Mc/Tnt7G+997/v49Kc/fai7OCHXX/8xbrvtl291N7QRpJQjhp5Kkp69j6GngnNOO/Ggq22+77PyoUd44NFn6OpoJ5lKIXP70QACj3AoRGV1De+98G+49JL3jBkuc7q7u/nRf/wPbzT3Ek95SCw1Z9a0R1RcM+CmELhEQybzG8r4wmc/sVcYPhz3INfmsy+uYevuXnoGXQbTEt9XW+YWBgXlhRZz6st4x+kHf1+1qZVIJLjr3pWkgnUTmjurVwHWNE3TNO1IdViC6+uvr+FLX/oSQgi+853v5heVGSu4Oo7D97//PZ566imEEPzsZz9n5syZh7qLE6KD65FLSjklQ0/35Ps+a9asYcOmLWxvbiOdzhAM2sxumEbjgrksXbp0v4F1z7ZWPvQIDz/+PL0Jj5QrcD21v7EQAssUhCxJWcTkkvPPOmAYPhz34FDdV23qJBIJNXd2QI5v7uzF5+vQqmmapmnaEeuwBFeAb3/72zz11JNYlsUVVyznHe94B5/97D8ghODmm79FQUEBGzas509/eoj29jYAli27jH/4h384HN2bEB1ctakwlWFY02Bk1f3Ac2fPOU1vXaNpmqZp2pHvsAXXTCbDzTf/K6tXr97vD0i57pxzzjn8y798HdM093nsW00HV03TjmS6Qq5pmqZp2rHisCzOBGDbNrfc8m0eeuhP3H3372lrax3zuIqKCj784b/lsssuO1xd0zRNOybprWs0TdM0TTtWHLbgmnPJJZdyySWXsmvXLt58czP9/f14nk9RURFz5sxh7ty5ugKgaZqmaZqmaZqm5R324JozY8aMUSsJ76mrq4stW7YAcNZZZx2ubmmapmmapmmapmlHmLcsuB7Ia6+9xg9/+AOEEPz5z4++1d3RNE3TNE3TNE3T3iJ6qVJN0zRN0zRN0zTtiKaDq6ZpmqZpmqZpmnZE08FV0zRN0zRN0zRNO6Lp4KppmqZpmqZpmqYd0XRw1TRN0zRN0zRN045oOrhqmqZpmqZpmqZpRzQdXDVN0zRN0zRN07Qjmg6umqZpmqZpmqZp2hHNmuoGb7/99ilpZ9u2bVPSjqZpmqZpmqZpmnZ0OwTB9TcIIaa6WU07Ivi+T1tbGy2t7bS0d5HOOATtAHU1ldTV1lBbWzvu7/9D0aZ26Oivl6ZpmqZp2uE35cEVQEp5KJrVtIM21eFCSsmGjZt49sU19A5lSGQkmYyLL8EQYG9uI2Kvo6zA5pzTl9K4cMEB28+3+cJr7O5J0p+AobSHJwWmkBQEd1MSgfrKCOecdnBtjuS6LmvXrmXDpi1sb2ollXEI2QFmT6+lccFcli5dimGMb7ZAJpPhySef5NXXN7CjuZ204xEMmMxqqOGkJY2cf/75mKY5rjbh6HggkPt6Pbf6dVKEMUIlhCJVmEGLQc9l99YY/vpmQiQ5+7Ql4/56aZqmaZqmafsm5BSnzNdff30qmwNgyZIlU97mVLj++o9x222/fKu7oY0wdrgowjQtPM8llYjhp/rHFS4SiQQPPrSKDTs66IulSMkALiFcDCQCgcTCxyJFSDiUFAZZNLuGyy55N5FIZJ9tPvDQY7ywfjdtMYEjQkgzCMJCCoGQEqSL8NIEZIppRT5nLGrg8ksu2GebOb7vs/KhR3jkiRcYcCNkzGJcI4gUJkJ6WH4a2xug2E5w0blnsOySiw4YYD3P439u+zWP//U1nGA1RqSGQLQMYQaQnoMT78VPtBNId3D+WSfyieuvO6gAe+Dwbo47vB+q74GVDz9OawxKamZjWoF93yvXoa9tG3XFgmUXn3/Ar9ehpKvDmqZpmvbWSaVS/PKXv+Tee+9l7dq1DAwMUFFRwdKlS/nIRz7CVVddNan2f/3rX/PRj370oI791a9+xXXXXTep673Vpjy4vp3o4HpkGRkuiqtnkhgaYLC/l1hsAM9zMU2LoqJiCkvKiBSU0N++/YDhIpFIcPtdK9i0q5eBtEVKRJFmGGGFMEwbhAHSx/cySDeF8BKEZILioMvCmWVc86Hle7WdSCT41R338PzmfoZkEdKK4PkS35dI30cCAhCGgWEITEMg3DgFYpAzjy/ho9dcuc/+dnd38+P//AVbuyBuVeMOdeOn+8BNAj5ggBXGCJZiFZQTdTuYUyn4/Gc+TkVFxZhtNjc3841v/4R+KghNW0JqqI9MIobrOiAlCIFlBbAjRYQKSkm2vk6p6Obmf/kcDQ0N+/165cJ76wCk/ACuNJEjHggIfCzhETIcaovlAcP7oQiYiUSCu+5dSSpYR2Fp5T7b29NgXxfhTAsfWr7ssIfXQxHeNU3TNE07eJs3b+a9730vmzdv3ucxF154Iffeey8FBQUTuoYOrtpB08H1yJELF0m7lmQyTtPOrSRdc5+V0bDlMX3mHMLhKBGndcxwIaXkzrtW8Nya7QzIYny7FAIFDO1+jfRAK3iZfHDDtAkW11JQfxI4gxiZPorFAGcvnc3VVy3PhwIpJb+64y4eeamVVKAaTxo4jov0UuA5ID3IRVdhghlAmCECAQtT+IScDi46tZaPXnPVXkGju7ubb3z332hKVpGO90C8G4JFYIVVwEaotqWvgmw6BtFygtEKZoQ7+dev/tNe4bW5uZkvf/P7pMtOIpNxSSdi6j1LD3xn+EAjoPorBMFIEbZtEex9le//65fHDK/58P5GH32ZEK4IIo0gGBZCDH+9pPTBV5VnizSldooz55eOGd73DJi+79He0kRXRxt9fb24rotlWZSWllFZPY1pdTMRhthvwJRScs+KlXR7ZeMKrTmDfV1UmL1cuXzZYQuGR2t1WNM0TdOOFZ2dnZxyyik0NzcDcOWVV3LttddSW1tLa2sr//u//8s999wDwKWXXsrKlSsndJ2RwfXPf/4ztbW1+zy2vr6ekpKSCV3nSKGD6yTo4HpkyIWLtmSUluYddA2kD7oyWlkcpK5hFtPC8b3Cxbr1G/jv3/yRXr8cP1xD//Znkck+iNZCpArsYhABkA5kBiDRCfFWRLiUktnnYCTbKTN6+D8feR+LFzUCsHbdBr77339gMDgLxwM/MwRuGgJhMENgWOQDpu+ClwInCVYQwy4gYEJhegdf/T8f4ITFjfm++r7PP994C+s7g7gDzRAoADMMgUg2uFr5e4B0VXB1EuAmwI1jFTewqCrN97719fywYc/z+PgNX6IveDzxxBC4GdWfYIn6sKIqrEoP3Dik+yHVD1YQrCDRSAGl6c384tYfjBo2nAvvf3qhmTil+FYUzKB6AMBY4U6qsOylMdw4BfRxyRkNo8L7yIBZUFzBmxtf48033yCZAQcbn+H3b+ASIEPYhnnz5jNv4YkMDXSPGTDXb9jIYy9upaJh/oj++wz2d++zml9YUjmqje7mN7jg9Dksalw4we/wg3c0Voc1TdM07Vjzmc98hltvvRWAb37zm9x00017HfPNb36Tm2++GYB77rmHD3zgA+O+zsjgumPHDmbOnDnhPh8NdHCdBB1cjwzrN2zk4Wc3sru1na6kjW+XYoVL8XyJ53l4noeUPkIYmKapPgxwk/0YmT4qwxnqa2u4+JyF+XDh+z7f+eFPWd+cImNXMLjjOSiYDmWLwLLZZ8ByU9C7AYaaKZx1Nnamm0UNIf7lS59FSsk/f+O7bOwrxRFBZDoGVkSFTMMcURXNBtdcddT3wBkCN4EIFhGQaRaW9vH9b30tH5Duf+BP/L97nsZNxiBYBqFiCBSDFQIzoIJrvuLqququm4JMv6q89m0CPKrLiygrLQEgmcrQ7tWSkiEVcEPlUNCAMC3VvT0JkJ4Lg02Q7gUrQkikuPT0ev7+k9fnD1u7bgO33Ho3A2Y90i7Jz+sFIxteGXEPUKEVf3jeb6afYm83X7/hQ/nwnguYkbI6nnvyUbr6E7hmEdgFYEayFeFscPcd8BKQGcLyYlSWRDj73AtJ9LaMCpi+7/M//3s3wZoTMK0AUko6W3fStGMLSUfieCL7vZUtupsmAVMSDgimz5pLVe1MhBB4rkO6fS2fvG7vKvlUOlzVYT1vVtM0TdP2zfM8ysvLGRgYYMaMGWzbtm3MdT88z2P27Nk0NTVx8skn8/LLL4/7Wm+34HpIVhXWtMPF932efXEN7Z0DdMQtjMJaJAGGEgk8Pxv/ZO6HaB/hegjANCBoF0EgTMfgbqzOLp59cU1+rl9LSwtbdraRMuqJ7/grVJ+mKq0IFfx8T4Wg/LBeQ4VPKwxVJ0N0GoM7niNaexJbdu6mpaUF3/fZ0jKIE6lCpgYgVKaCpRgZWmFUaBMy+/liMIPIVC9OsJAtLYPs3r2bhoYGXNflt/c9jJv0wC5S1eBgiaq2GhbDgTAXXCVYfrYaG1KV3t714MbpaI/T0d4GgBkI4VXPAGcQSuchgqWqTzL/rvNkrquGBcWzkelS6HuTVCDCqmdfzS/W5Ps+t999H/2yTAVrEUAKI/v+RwbV3PsX2b5bSHw1gDhQTL+b4Pa77+P7ixYipeS51a8TLJrNqodW0J8JQrhO3YP8EOYRi09JH2QB2KW4mX7a+jtZ9dAKzrvwcp5b/Xr+e6CtrY0UYSJWACed4o11L9HdO0Ai7eGJIL4RxDNMkAbgY2Y8DD/FoEwymNhAZ9tu5i8+lUAwRIowra2t1NXVjfl9PBUrQG/YuImWAUlFw/hDK0BhaSUtzT1s2LhpzOqwXlVZ0zRN0w5sy5YtDAwMAHDBBRfsc7FK0zS54IILuO2223jllVfYsWMHs2bNOpxdPero4Kod1dra2mjtjtHSPQSl80k5EsdL4clsUBPGqB+e/WwV0/MkXjJFwDKwC+po6X6DaFDkw8XadevpTwdI9L4CNaer0Oo7arisG1dDbb2UCkHCUOHPCqvhs5atjq8+jXjLi8iyetauW09fXz8JUYBMxbKhNaLCbi5YjgqvkK+4YoCRDXdBiUz1kqCAp5/9K1d/+EO89tpr9PYnVRCN1ECkcnh48F5yQdAA01LB1gyogLcHTxqQGYSyBcOhdbiVff5ZAiJYiiydB72biMkgjz/+OBdeeCG7d+9m484+ZNkMdU0j+4+59LIffvY95xrOvu9s+JTCBAIQLGfjzmZ2796NYRgk/BCr//IQ/WkbimZAoBCMwIi8OjL0CcBEGjaYNlhh+mM7eeYvD3HaSUvz3wMtre0YoRKcdIrXVz9FV3+CtAzimMVgqWHoYsQwdDc7DB03iZOKkW7rJp16iiWnvhMRLKGltX2v4JpfAfrJF0mbpRiRKoLR+ZjhAIOuw+6tfTy59mmCv72fi849fZ8rQPu+z3OrX6d02gljfM0PXum040aF95zRC58tws0ufNbW0rzHUOkK7IISHntxKxvf2KbnzWqapmlvOz09PfnfV1dX7/fYkZ9/5plndHA9gPFt4qhpR5jm3a3sam7Bj9STciRp18eTBsIIILIL/eSrdkIghKFeNwJ4GKRdn5Qj8SP17GpqYXeLqjauWbeRRH8nFE6HyDQ1HzTeDrGt4MTBLoTCGVA8R/1qF6rXY1vVcU5CnVc4nUR/B6+t28jLazYgfVPNZ81VQ0U2PAqRHcbqqoDsu9lQLNTncx+BCATCSGny8pr1ADy66gl1TqgcotUQiO4jtI5BWOp4c4wFfCQQqR4dWrOZd8zkmn09XzcOlkKkGulJXnp1LQBPPv0sGatUzb81rOzc1Yx6ECB91Z/cQwAzpP6cW0wqtxiWYYEZJmOV8NTTz9LS2s6u5la6e+NQOBPsEoQVQBiGWkjZB3x/xId6TRgGwgqAXQKFM+nujbOzuZWW1nYAWtq7CIYL2bjmedq6+4lTgBOqwSisRQQiSM/BTfThxLtxE31Iz0EEIhgFtTihGuIU0N7Vz8Y1zxOKFNLS0T3qlnV3d3PjzT/g/me3EZzxLkpnnU5x9SxCBSUEQlFCBSUUV8+idNbpBGecxx+f2caNN/+A7u7R7QD56vD+FmI6GKYVyFeHc3LzZrvcUlxhs2b102zcvI3d/T6JwDQykVkkAtPY3e+zcfM21qx+Cs8I0uWWcveKlSQSiUn1SdM0TdOOJiNXCM5VXvdl5Oc3btw4qet+9KMfpba2Ftu2qaio4IwzzuDrX/86LS0tk2r3SKKDq3ZU27R5C3HHxjEiZFwJQgXWgyEMC0SAjCtxjAhx12bj5i0ANLd2qjBYtgjSAxDbrgJU2SJE6RxEpBJhRxGBkPo1UokonaOOl746Pj2g/uy7NLd0squlXaU6uyhbbbRQizA5e4TUwB5h1lHH5T5nF4GApt0qYL348hoV9KJ1quI77r/W2YrmXjcIFcpHHIaabqp+NUZ87Pl6TuEMMAzWrNsEwDPPvwShUvVefA+8pDopEB1enCpXeRZGNqSG1OeR6njfU6+Hynjqry/R3NrB5k1roWgmBEsQpjEcVvd8PyNlQ6wwDTWsuGgmb25ay+62TgDSGYeejhaam3eTMkpUFd0wyQy0kUkO4ngS1wjhGVFcI4TjSTLJQTKxNtW/aC1Jo4Tm5t30dLSQSWfyl+7u7uZbP7iVnsBsSmeeghmw9/sVMgNBymadQk9gNrf84Na9wmuuOjwVctVhUMODVz78OIOigqYdb7KjuROz8gTClfMIFVVjBaOYgSBWMEqoqJpw5TzMysVsb+6gacebxKhg5cOPo5dS0DRN094u5syZQyCgHiQ//fTT+z125Oebmpomdd0nn3yStrY2HMehp6eHF198kW9/+9vMmTOHn/3sZ5Nq+0ihg6t2VGtq3o0bKCXt+AgjMGJxn4MkBMIIkHZ83EApTU1q2fKWpl0qqHgptdhQQQOiZDbC2n/AEJaNKJkNBQ3qPC8F0VpamnYyFOtXwdMMqqDou+okI4Aw7Wwl2BjxYamhqLlhvL6b3SInCEaAwVg/AMlEUgWvcPnouZyTlQ/XWT5qyHLuY2RyHfn6yLxoWBCuJBaLAdDe1QtmNFtpTan3YoYAscd7H/0BQh1nBrNDtCWYUdo7e9i2bRsuYQhXD1dZyXVtRL/EHv00ht+XMAwIV+MSZvu2bQDYAYs3N7xCUoahoBY3GcNJpfACxUirEGllV2y2VIVYWhGkVYgXKMZJJdVCWQW1JGWYNze8QsBWX0ff9/nJf95GumghBeX14/qSFJTXkypayE/+8zb8EcG8pb2LUKRoXG3tSzhalK8Ob9i4iV3daXZtf5OkVUW4cg6Guf8HQ4YZIFI5l6RVxa4db7KrO82GjZumpG+apmmadqSLRqO8613vAmDt2rX87ne/G/O43/3ud6xbty7/58HBwQldb/bs2Xzxi1/k3nvvZfXq1axevZq77rqLK6+8EiEEqVSKv//7v+fnP//5hNo/kujgqh3VegYGyYjwcIVyIrKVzowI0zswBEAqnVJDbwd3QdEMRLhsfE2Gy9Rcy8FdECojlU4hM2lAqEAoVdVQmNkhrftryzAQZjZESi8fZFV7qEAWrhxznuqkCHO4SCnIhtWDYBj56qYAsEvwswW3dMpR99tLZxemskaE0/10JXeMsNR5XhqEIJ12WL9hvRoibYWGVzvOB+v9dnT4PUnU+ZFq1q1X/xMJBQS9vf3IaD1uYgBPBJF2EcIKqXnMueqwGFEdtmyEFULaRXgiiJsYQEbr6e3tJ5TNeysfeoS2ZGTcoTWnoLyetmSElQ89kn8tnXEwDxAoD5ZpWmTSmfzCZ109fbiReuyC8nG1YxeU44br6erp49kX1+iqq6Zpmva2cdNNN2FZ6v/L1157LbfccgtNTU04jkNTUxO33HIL1157LbY9XBBJJpPjvs4VV1zB1q1b+cEPfsDy5cs59dRTOfXUU/nQhz7E73//ex544IF89fdzn/sc7e3tU/MG3yI6uGpHtVQqg4d10MOD90UYFh4WqVQ2DBrZyp5dPO7Qmm8zXKb2evXSqj3DGF7QybAQxtirzO27j2Y2vPrZNrN/fYWpKq5jnrO/KuYBL6hyoGD8lVyhwqsEVSXN/lMjfUetUmyY+dA6vmaz4dUwITOI9B26uvvBLhsO2eNsM3e8AAiW0dnTD0B/Xz8ZI4rve/hmeHgu8IEekAihFn0KRPHNML7vkTGi9Pf147oujzz5IsX1k1tEqbj+BB558sV81TVoB/A8d1Jt5nieix20aWtro61nkCEvOO7QmmMXlDPkBWnrGRw1b1bTNE3TjmVnnHEGP/vZz7AsC8dxuPHGG5kxYwa2bTNjxgxuvPFGLMvixz/+cf6cwsLCcV+nuLh4vyv4L1u2jG984xuAWrPitttuG/+bOYLo4Kod1Rwno+Y8TgXfw3Ec9XuJ2ju1YGJVsbyCetWOBIStFnCS/rhDa44wTFV1deIgshXW3PDhUceNo4q5T1KFuYkOPxaGOl86w2HPcyHZDWZw3KF1uFlDvd9UN3gerjTUolUw/tCakzsvEMH11e93NLVAsBjXF8N77Y6rTRMCBer8YBE7mltYu3YtabP0gHNaD8QM2KTNUtasWQNAXU0lqURsUm3mJOMx6qoraN7dSkf3AKGyya1wGCqbRXvXQH7hM03TNE17O/jYxz7Giy++yBVXXEE0Gs2/blkWl19+Oa+++iqnnHJK/vXS0tKxmpm0T37yk/lw+9RTTx2SaxwuejucMdx6663ceuutBzxu/vzjD0NvtP0RSIQbV3MeJ7NnpMy2I7LzBmV2T9RJVnIxLNVOdmgwdhHE26Bk9sTbjLdn+5YLabltc5SJVDHHHMTpe0jpIybxfEtKHzJDw/3zXRU4fW/8QXCPvql2HECF9j33lh13X/f4c1tnL5gV2Xs9wb4apjo/00d7Zw8bNm3BiFRNopcjmo5UsmHTFk466STqamvw1zcDtZNuV6b7qaudy2NPPI0Mlh1wTusB+2mqhbQ2vbmV00875cAnaJqmadox4qSTTmLFihW4rktbWxuZTIa6ujpCoRAAd9xxR/7YxsbGQ9KHqqoqysvL6e7uPupXGNbBdQw33HADN9xwwwGPu/76jx2G3mj7Y5kmIj2EdJOIwMT3i5RuEuEOYYWyAcVz1LY1SCYeibLnWmHVHqjhpm4Cme5H7GN4735bTPeDm1CrB+cqzb4DTgxCpROu5I75/qQPmRhMcKg0oM53k1hGriouwPNgqBlKjpt4u0PNqh2ECsNOYp/DpcfFSeQXzRqMx/HNBgwroOZnTuTBiJQYVgDfDBMbirO9qZVgdP7k+wkEo2Vsb94MwLRp0wiRxHOdSW2J47kOIZLU1tbS1dOHGd7//nMHywyX0t3dMSVtaZqmadrRxrIsGhoa9nr9lVdeyf/+tNNOO2TX399w4qOJHiqsHdWKCgsx0r3gO8hcOBwn6TngZzAyvRQVZVdmNQP5Epz0c+F1XK1mz2NEe64KcsVzYGCnCqHjaTHdDwM71flOTLUHaluXZDdIidxzC5hx9HcvvgNeBulMbB9O6STUXNxkN0XFufsaVNvhDLWM+/3n2033w1CLascMqocCqS7UPZ/Y+1fnSdVO9vvI91ww7GzF0VdV/XE1qvYIMkwLDBvfc0hlJhcsRzKtAOnsFjuGYXD2aUvoa9s2qTb72rZx9mlLEEKQSKYxJvEwaCQjECGeyhz4QE3TNE17m/A8jxUrVgDQ0NDAWWeddUiu09XVld9Gr7Z28iOz3ko6uGpHtbraGgJCYqa7EV5q3OFVeg7CS2GmewgISV1tjfqEsMBNZvcCzYXQgw1F/nDY9T3VjjABQwUjYUDpfBjcjRzYgfT3v6iO9F3kwA4Y3K3OEwYkuxj+6yvVn50EEwlv+zzed8HPQHpg3OFVOgm1j63nQLKLyqrsP5SmCXaJGjbdt3li4b1vc3bYdQmYJoGAAYn2bAV6ou8/+7VKtKv2yBZYpZPttoXAV0O+D6pRD4E/vNKvdBACQnYAz53YA5Y9ea5DMDg8V7Zx4QLqigWDfV0Tam+wr4u6YkHjwgUARCNh/AN8bx4s33eJhkNT0pamaZqmHQtuu+22/N6tn/rUpzDNSUyh2o+f//zn+ZX93/nOdx6SaxwuOrhqR7X5c2cRLSxBJNoxhYvw0yo0Hag6JiXSSSD8tDov0U60sIT5c2YCuZ1lRLaSByoQ5UJO7mMk9Zr0/ex0zuz1U92AwAhkt17xXLW/q2lD6QJVMexehxzYhkx2I90k0suoX5PdyIFt0L1OHVe6QJ032KRCZW4uq2mCm4HBndlhrhLpewcMcKqvKuyNeb8ME/q3qqHOmUFksvfgQnayFzKD6ryBrRAqpLKsGMgOVTEtCFeoa/ZvGV9479+izgtXgGkhhEFDw3QVkgebEAhy4fXg3r8KrQKh7mt6QLUHhEJByAyMuB0WhsgujiU91Y+9PtTnDGGOnhuaGSAcCjF7ei3peN9++3Ww0vFeZjdMy/9ZCMGyi88nlG4Zd3gd7OsinGlh2cXn54cTVZSX4GcmVm3fk59JUFF+aBad0DRN07Qj0f7mkz7xxBP80z/9EwDz5s3jC1/4wl7HPPnkkwghEEJw3XXX7fX5nTt38tprr+23DytXruTmm28GIBwO89GPfvTg38ARSM9x1Y5qixoXEn3sRbDKGOzfilUyD2nZuJmh7Gq7FkKYqnwmJVJ6KjxKD8sOItwksn8rhUWlRM04ixepifF1lSU0u1IFsECBmpuaDaMqmAr2Dq97hD8nrs6XHnWVxcSTGXr9Qoi3QKhMzcmM1EC4WgUkZxAS3Sr8CFPNsbVLoWDm8PzKdL86P1BIWakKFaFwhJTjQrIHgh0Qqc4mb5kNpmPNa8j1Vaghwf7eVUDDCuBneiG2XQ1PBkh0Is2gCtKGnb+v+Bk1LNhLZ1fgtVRozfRSUD6D6dPVvI7CcICY76gFi8JV6v2keiHdhwwWq+2DAlH1/nOrJ2cGVDCVEjAhXK7aTw9QGA1wyqmnsH3ngxDbjoxUIILF+Yr3wbx/YRjI9IB6n24mP8ekqLAYM9aP76YwLFUtFIbAxFJPLqXM5n0fMNSXSJh7zSPx3RRmpp/CyiIaF8zlybVPA5NbqRfAT3TRuOBvRr0WiUS46v3LWPnw47Q091A67bj9Dk32XIe+tm3UFQuWLV9GJDI8NHj+vDk8/+ZrSN+f8ArQkH1AkBlgwfEnT7gNTdM0TTvaLFq0iHe+851ceumlNDY2EgwGaWpq4r777uPOO+/E933Kysr4/e9/n1+saTx27tzJeeedx5lnnslll13GkiVLqKpSC0Bu376dP/zhD/zhD3/IV1t/+MMfUldXN6Xv8XDTwVU7qtXV1TGjpoSmWBhfeiRi2yBYjl3UgJQS6bn4fhopJUIITMNEBIMIIfBjzZDuIRoJU1BYxPSiQP4v9Psuu4Sf/vZJqDxRrQIcnaYCWT7w7K+iK9QWOPE2CFdC12t84COX09HZxW8f2wwEoP9NKJmnwqsQ6tcDLS6U7lfnCRVKL33P+QBUlRfT1OWBn1JzPwFC5WCFVF/G7Gv2dTcJqR4VPPdgCknB9NOINb2kXojWqveTnfuKm1QpXhgqKFthFUhTPRBvhdgOiqafRoHbysLj5wKwcMFxvLC5W91PN6HacxNq5eH0kAqqo4KmBD/7YReAFVGftiIwsJ3G42ezeOF87i9dTXqoH7rXIysWZRe+UufJvb5eQlVYDQEINfy4ez2k+wmWVrNooVotvK62iq3dHaQHm6FkzqjFmYQQIES2p/sJdVLCYDN20KautpoTTjiB4G/vx3Myk9oSx3PSBL0+li5dutfnIpEIVy5fxoaNm3hu9eukCCOCJYSjRZimhee5JOMxZLqfEEkuPH0pCxfO3ytwN9RNo7p4Pd1DvUSKKibc1+RQL9XFNvW5Yfiapmma9jbgOA73338/999//5ifb2xs5M4772TJkiWTus7zzz/P888/v8/PRyIRfvKTn/DJT35yUtc5Eujgqh3VDMPg8ovP52d3PEjZtHmY3btJJPrxuvqQdjEEi7ACUVWh8118ZwgZj0FmAMsSRAoLKa6oR/S/yeUXX5b/4f2iiy7i1l/dg+8mIVKl5lAGClSVUIyYW5qX/aFfetn5pkPqvEwCI93Fe97zHlpaWvjdQ6uRhTPVIk0DWyFUofZ63d+2O74LQ7uzw46BUAlicCfnnauqbYsXNdL05Bo1H9fLqO1ynLjqqxVUbQuTfFiVnmrTTam+ZgbHHCocDNoE5BAlc95J/9Zn1XsKV6lwakXALlT3QvqqrXQ/pGOQ6oRkLyVz3omZ7mTG9Drq69SQ1ksveg8vvP7/1NxXK6rOCxSo38ts5ddzyFUxMQMQCKiwrkqaKpB7GUh1cdmlH6S2dhpLT1jCiy8+p0JzzyZktBoKpyMMa5/rQUs/O2w73qHOM02WnrAkH7Dmz5nFy1tj+IkYbrIHES4f38rCUiKTPQS8GNFwhPlzZmJZFhedezp/fGYtZbMmvjXMwO51vO/c0zH2UQkVQrCocSGNCxfQ2tpKS2s7LR1dZNIZFaLnVlBXO5fa2tp9rjQ4bdo06spsUn0uqVQCOzT+hZoyqQQFlktdqX3ULwihaZqmaePxi1/8gkcffZTVq1fT1tbG0NAQlZWVnHDCCVx55ZVcc801BAITX7Dx5JNP5o477uD555/n5Zdfpq2tje7ublzXpbS0lMbGRs4//3w+/vGP5yuxRzsdXLWj3qLGhZyx5A2eX7eT0uq5FGSS9Hc24fpJ/FQKmZTI7DxGSwgMIbFCAUqqZhCwQ/h9WzhjyVwWNS7Mt2nbNpdf+A7++PSbUHUyRGoh3QsD27JDhyNghoaHtHoptTiSM6RCXaQW8GHgTS6/8B2Ypkl9fT0nzKnh9da0GiqcHoJ0n/qwi1Ug3GuYbGzEPEsLQgXgDHHCnBrq6+sBOO2Uk3n0qZdwInUqYBsBVcUc3Kn6Eoiqob35vqZV2252/qLvjrnokG2Z1FUU0DKQpGzRMoaaV5Pp3aT6bher+bb5NjOqn6le7OJpFBy3DJFoo66igNqKonxoOeWUUyiOGAzEtkHFEhV8c2HVCKmq7cgQnRuKLKUKsUYgu7DTJoojBiefrIafNlSG6V3yDra8/iwkulSbqT5kqFgt4rTXfe2HVL/6mqX6QXjMPeEcGipD+b7mh6FXzCDW3YQvQAZLEAext6/0XUS6HzPRRGFFPdF0U34Y+rJLLuLFl39AT89uCsrrD/K7fNhQz26mhRMsu+SiAx4rhKCurm5CQ4PUSsVLiT33Bm2xGJkU4wqvmVQCy4tRWSg5+7Slx8xS/JqmaZp2MK666iquuuqqCZ9/7rnn5of5jqWwsJCrr76aq6++esLXONro4Kod9YQQLH/vxcSTK9i0aweeVcK0uafhpmKk4/1kkkN4nodpmtjhAoLREqxQIem+XZhDbSyeW8Xy91681w/Wf//J63lu9WfoGtgOxcepCqrngjuUnXPZowKVEGoVYisE0Tq1+JDnwMB2KkNx/v6T1wMqCHzkw8v51/+4k5hnqe1c/DRk4qOD5Mg9Q6VUhV07CkYQ3CGKAkk+8uGr8/2dMb2eOXPm8MaOFmTFIujdBDKqQquXGZ6/OnI7WimzldIkuHE1LzbRQThkU1tTiW3bFBeXUFRVieu205XsoLBuKWJWEamODaQGWvESifxQYdOOECqtJVT9LmRmECPVQWXUpaaqhnNOX5jvq2VZXP3BK/jZb/6IN9gMhdNVADbS2cDqZVdyzjIMIDtH2Qxmh942YSY7uPojV+QrjmeftpSY8wa+dzbb1r+oKr+ZQfX+rIFsxTn33rMrPaf71Q0RcNzis5k1rYSzTxseMpsfhj7kIsvrSfS34jqD+JFp2Sq2gRhRz5Vk76nvYiTasLxBIuX1FARcppeW5MOjYRh87jPX860f3MoQjCu8DvXsJhTbyOe+dMM+q61TqXHhAja+sY1gQSGtXYPEYgnCBWX7nfMqfZ/kUC9FQaidVkpNcDC/UrGmaZqmadpECbm/KK/t1/XXf4zbbvvlW90NLSuRSPDgQ6tYv72dgaE0XqAI7GICoQKEYSF9Fyc1BJkBTCdGSUGIxtnVXHbJu0ctSjNSc3Mz//TVW4gFpkNkGgTLyA+33XOocC4cpfsg0UaR08S/fffrozacllLyqzvu4sHndjCUNlTlVmT3eJW5YbLZhGnmhsia6vNOgoKgz2Vnz+Kj11yVD1i+7/OzX/2OZ15cQ/eghyxbpOa6xtshWKQCtRjxjEpmhwmnY2quaUEtonc9FYUG7zj9RP7+Y3+LEAIpJfesWElbMkpL8w66BtKkRBRphsEMYVp2fqiw52bASyG8BCGZoLI4SF3DLKaF41y5fNmohwK+7/PFr93Ehu2d+EVzEZEqZKBI9ct3s6tfZe+BMPJDnYUziEx0YsS20Di7ih9+56Z8eMv1tT1dSHN7P1s2vES8v0sNlZYGCDkc3KUA4YObJlpSxdzGU2ioKaEmOLhXX9et38DP7ngQWbqAWDxJYqAHNzWIHyhEBgqRZkTNlfUlwksgnEEMJ4YVKiJSXE5RNIzo28SnrrksX3HN6e7u5if/eRttyQjF9Sfsd86r56QZ2L2OaeEEn/vM9VRUTHzO6XglEgnuunclyWAtKUfQ1NKOSwBhhbACQQzDwPd9XCeNdFNYOEyvm0Yo4BPJtPKhPRZ90jRN0zRNmwgdXCdBB9cjj5SSDRs38eyLa+gdypBISzKOhy8lhhDYAZNIUFBWYPOO008cc1GaPTU3N3PjLT+iLR7ED9dk53iGs6vqZud4+tnFitIxjFQH06IpvvX1L4wKrTmJRIJf3XEPz23qpWfQUQVGK6yGwY7si5SqWuomMQxBeaHF2QvK+Og1V+4VBNZv2MiDf1nDa6++zEDKQEZrkEWzYLAFEp3Zam523qgVUdXjwjpEbAci3k5xyOPEk07lsvOWjhoynQ8tdi3JZJymnVtJuiYuQVzM7ABsiYWHRZqw5TFj5lxC4QgRZ9+hpbu7m69/64fsao/hhSqRkWmIQATMIFIE8vdVSAc8tcWRSLRhprqYUVPELTd+ca/wtmfA2tHUQk/bDoYGunEy6Xx1OGAHKSiuoHzaLGZNr99vwJJScuddK3h+3S6Msnm40qS/rxs3k8JzMmrrouzCX8K0MQM2lh2ipLQCS3j4vW9y5uIZXH3V8jG/z3zfZ+VDj/DIky+SNksxIpUEo2WYltrvNR3vxU90EfT6uPjcM7j0kvcclkrrnhKJhFqpeEBSWnMc8WSKwcEhYvEEnutiWhZF0QiFhQVEwyH62rMrFV98vg6tmqZpmqZNCR1cJ0EH1yOXlHLEojTdw4vSVFdQV1uz30VpxuJ5Hv9z269Z9dwrxGURnlmINEPDActLYXqDREWMC845hY9/7Nr9biSdSCR44KHHeGF9My39EE85uK6narjZocICsCyTaChAfYng9EX1XH7JBWMGgVzFsTlm8fpLz9EdS+NKQ60uHCpDBAvzC1TJ9KDagibVg2X4VBQGWXLq2TQUuXtVHHN9zYWWkprZJIb6GezvJRYbwPNcTNOiqKiYwpIyIgUl9LdvP6jQ0t3dzQ//4+e8sauTZNqDYBl+sAiMsBoi7PvgJzHSMUj3EA4GmD+jki9+9pP7rDgeioCVSCS4/a4VbNrVS8YqIVQ2C8dJk0klSadT+L6PYRgEgyHsUJhAwCbVuxPb7WfhzDKu+dDyA4Y33/dZs2YNGzZtYXtzG+l0hmDQZnbDNBoXzGXp0qVvSWAdKfdQ6GBWKj7ntLFXKtY0TdM0TZsoHVwnQQfXtx/P83j88cd59fUN7NjdQSbjYtsWs+qrOWmJWr1tf4F1pHx1ePUadncl6EtI4hmJ76vcFrUFpRFBfWWEd5x24OpwruKYCEyjrXkrWzZvJOVauNLClzJfGTSEwBIuIctl3vxGauqPI+q27XdI56EKLbmK40NP/JW+QYe04+N4HtKXCEMQME2CAYPSwgCXvuvsg6o4Hoq+Hoph6EerqX4opGmapmmadjB0cJ0EHVy1qTCVQWBkxbG4ehZdrdvpattNX18vrudimRalpWVUTqunsnY2Ax07xjWk81CFlkNRcZzqvh6KYeiapmmapmnawdHBdRJ0cNWORHpI56GlK46apmmapmmHn94OR9OOMUIIFjUupHHhghEBq2s4YM2toK52rg5YEzSZvVE1TdM0TdO0idHBVdOOUTpgaZqmaZqmaceKt3aZSk3TNE3TNE3TNE07AB1cNU3TNE3TNE3TtCOaDq6apmmapmmapmnaEU0HV03TNE3TNE3TNO2IpoOrpmmapmmapmmadkTTwVXTNE3TNE3TNE07oungqmmapmmapmmaph3RdHDVNE3TNE3TNE3Tjmg6uGqapmmapmmapmlHNB1cNU3TNE3TNE3TtCOaDq6apmmapmmapmnaEU0HV03TNE3TNE3TNO2IpoOrpmmapmmapmmadkSz3uoOaNrRxPd92traaGltp6W9i3TGIWgHqKuppK62htraWoQQb3U3AXBdl7Vr17Jh0xa2N7WSyjiE7ACzp9fSuGAuS5cuxTDG9+zqULSpaZqmaZqmaQcipJTyre7E0er66z/Gbbf98q3uhjaGqQ6YUko2bNzEMy++xu6OGP1DaYaSaXzfxzAMCsJBSgqCNFQXcc7pJ9K4cMFbFmB932flQ4/w8F9eIO4G8UQIhAAEIEFKTJkiaqW5+LwzWHbJRQcMm7k2H3nyRdJmKUakimC0FNMK4LkO6XgffqKToNfHReeeflBt7tn+VD8QOJoeMmiapmmaduzJZDL85je/4Z577mHt2rX09vYSCASoq6vjrLPO4hOf+ARnnXXWlFxLSsmKFSu46667ePnll2lvbyccDlNdXc3JJ5/M+eefz0c+8hFM05yS670VdHCdBB1cjzy5gPnsi2voHcqQyEgyGRdfgiHAti0itqCswOac05ceVMBMJBI88NBjvPD6Ntq6Y3iBUkS4DCtUhDAspO/ipmLIZC+m08u08iLOWDqHyy+5gEgkcsA+T2XA6u7u5sc//QW7ejK4IoiHhS8NpPSRUiKEQAgDQ/iYuFh+mhkVNp//h49TUVGxzzZ/8p+30Z6KUFi7mFTGIR5PkEyn8X2JYQjCwSDRaIRQ0CK2ez3Twgk+95nr99lmzqF4IJBr87nVr5MijBEqIRQpwjQtPM8llYjhp/oJkeTs05a8pQ8ZDjUd3jVN0zTtrbFr1y4uvfRSNmzYsN/j/uEf/oF///d/n9T/j5uamrj66qt59tln93tcX18fJSUlE77OW00H10nQwfXIkkgkePChVWzY0UFfLMFgSpLyTDKeQEpVdLRNScj0KAyZlBQGWTS7hssuefc+A2YikeCXd/yeF17fSSpQTrBiHoYZ2GcffNch1f0mYbeHM5bM5GPXfHCfbedD2/Ovsm13F939CYYSKTwfTAMKIiEqSiIcN72KdxxEaOvu7uam//vvdCZsXGwc18P3PXxfIj0Xiaq5CtPCMASGYRKwDCwcqiMZvvmVf9wraHZ3d/OtH9xKunAhaRGht28A3wiAEcAwAwghkFLiew74DobvUFZaTFAmCA1u5OtfumGf4XXPBwKOWYQfKAIrBMIE6YGbwnBiBLyBg3ogkEgkWPnw47TGoKRmNqa176+V5zr0tW2jrliw7OLzD+ohw9FCh3dN0zRNe+s4jsOJJ56YD60nnHACn//85zn++OMZHBzk2Wef5Uc/+hHxeByA7373u3zlK1+Z0LWam5t55zvfyY4dOzBNk2uuuYbLLruMGTNm4Ps+O3bsYNWqVdx3331s3bpVB9e3Kx1cjxyJRILb71rBxp29dMXSDGaC+GYIDBMQSAQCCUjwPQwvRWEgTWVxkMZZZVzzoeV7BRcpJb++/S4efnYDomIRdmEV6XSKoTcfxhnsVklYGCB9kJJAYQUF8y4hGAySGeyEnvVcdHYj1/3dVXuFgkQiwf1/epS/PL+O1p4hPKsYaRchzRBgAh7CSyEyMUx3gNryAs47czHvvfTCMQOW7/t87RvfZWtXirRv4zoZPNdBWhEwo2Baqr9SgueCF0e4CUzLwgoECRoZ5lSG+M7NX80P8fV9nxtv/gEdYjp9SYOMb2DaBXhOAjedVGE1+0TAMANYwTBmIIKXGcI2fErDPtWyiW9940t7DRse+UBgiGL8yDSklEjfQ/pe/jhhmOpDgJFoo4DYPh8IJBIJ7rp3JalgHYWllUjpM9jfzWB/L7HYAJ7nYpoWRUXFFJaUUVhSiRCCwb4uwpkWPrR82TERXnV41zRN07S31h/+8AeuvPJKAM4880yeeeaZvYbovvLKK5x55pk4jkNJSQldXV1Y1viWH5JScu655/L0009TWlrKQw89xBlnnDHmsa7rYprmUf2gWi/OpL3lJjucUUrJivsf5tVNzXQMBXDMQnzTQmIg/WxYwwdU0BQIfDNCv2eT6BoilWwmcv/DXH3V8lHXWbd+A489twZRcSLSLqb9xV+CNKCgDqpng10IwgLpQmYQJ9lJ32u/A+FTuvRqRPkiHnvuNU4+cTEnLF6UbzeRSPDzX/2WJ1/eTNIoQxYuQJgBpDBUH3Pvy4oi7FI8z2FXfxt3P/QcHZ3dfPKjf5sPGD/+8Y/YuXMnvX39dPcO4GMgjRCULYBwBfgueCnIZLL3wADTBjOKtIpxnX68xBDSttjS0seDf3qY9152KQArH3qEliGbfgN8M4TnJkkPNSMxsnNmQZVxJb6fxs2kEPRghYpwgmG64wlc32blQ49w+bJLRn297v7D/Tz98hZS4Vn4Zgg/HUcaNphBpDUcsoV0wU0j/AxGsIqYV8TTL28hGrp/1AMBKSUrH36cVLCOgpIKOlp20LxzK65ZgAgWYwWnIYJqWHesfwjZsQ3Le52GmXOoqp3JUD+sfPhxrly+7Kj+B31keC+vrzzg8aYVoKJhPt19Xdy9YuUxE941TdM07a3017/+Nf/7r371q2POKz355JNZtmwZ9913H/39/WzatInFixeP6zp33nknTz/9NAA///nP9xlagXGH4iPR0f8OtKNWfj7qC6+xuydJfwKG0h6eFJhCUhDcTUkE6isjnHPavuejrt+wkWdfXk/rUBA3UKTCm6cmtUojgDBygVAipY/wHfAlwrBIm0W0xnp59uX1LFk8n8WLGgEVpm+/+z7SoVpI9BFb90congMl89RkWd/LVlo9VXUNlUKkAkrnQ/8W+l75X4qOeyduqJbb776P7y9qzA+rvf2ue1j1/EYyBbMhWIpEIKWnQubI8Q8CFWZNGwqnk0gXsur5jYTD9/DJj34EIQQ7d+5k06ZNo2+IbapAHW8FKwxGAMzgyDsPziC4SbCLkHYpmVQnWAb3PfQ4l116Mb7v88iTLzAg5uEJm3SsCymz4d8MgGGDMeKfD98FP4P0MjipGO7/Z+/O4+ys67v/v77XdZ39zMyZNbNlJ2SHEGUTqCigRiMq6o0oVhBb70rt3bt3W5faim21tb/bLndLN6ui0DZUQcFgkKWCgOyQkGQSyJ7ZM/uc/Zzrur6/P75nzkySyTJLQgKf5+MxzuTMdX2u65yZYN7n813yKULxakZUPQ8+9sxhizVt3badnz/5MpnwYvOz8sEP1gI++L6pNXanygInBsTRbhofi0x4Hj9/8vA3BLa37aBzRFPVUMH2l54iVQwQqj+PgH3kf+JCOKEYMAffK7K3fT99PZ0sXfVWOg8NsL1tB6tWrjjp3+EzycTwXlF94tA6UUV1PcmhN0Z4F0IIIV5vhUKh/PWiRYuOedzixYsnPedk/cM//AMAS5cu5SMf+ciUzz/bSHAVr4vy/MZtHXSPKjwnjgrEcMIRlGXh+j7pQpae/jS7eobZeeC/uWTVrqPmN/q+z30PPEzXUJFiuAHf12DZ6EAYZTkoyzHzJcsdPBMQte+Cl8XzPbRdRddQJ/c98DCrVq5AKUV7ezv7OofQ8SqSB5+CxrdBqBL8HKjQeCAcW6nXL5rOpp+HxDkQaWB035NUzLuYfZ1DdHR0MHfuXF7Zup0HHn2BQvxcdLC6FFZ9EzSVM7Hhamgf/LzpcgarKcQW8sCjL3DJW9/C+eetYlK+C24OAlGww6V7dSbcq2tCq1Lms/bQwWry2R76XY+XX34ZpRT9mSDFiEMh1W/ytBM2IVKNdVwn3KzlgA6B44ObRrs58qP96GgV/dkgmzdvZu3ateYNgQ33ktLVeNpGO3G0ssHNoS0HLBulguWflwn0Hsp38e0ISgfRxVFSupo7N9zLX61aidaap57bQrz2XLa99CvcaCuRRC0A+XyBQqFAvlAoL/gUCgYJBoOEQkGi9UvIpgbY9vKvWH7ehTz13JYTzvc8Uxc8GgvvdXOnFlrHVFTX09l+dod3IYQQ4kywdOnS8td79+5l5cqVkx63Z88eAJRSLFmyZErXOHjwIM8++ywA73//+8uPF4tFOjs7sW2bxsZGAoFjTxk628iGi+K0y2QyfO+uH7Lx6f10ZCtxapYQqW4lHK/GCYaxnSBOMEw4Xk2kuhWn5hw6MlVsfHo/37vrh2QymXKtzs5Otr22n3ygFl8DdhSCFahQvBTcgmaeq7LMZzsIgaj5frAS7Ci+hnyglm2v7aezsxOAp371DBm7muT+X0H9WyAQMTUiDRCqBidqgqvlmM9O1DweaTDHBSJQ/1aS+39Fxq7miSd/he/7/PN37iIbqEcHE+AXAKvUEQ2agBmImyHIgbj5sx0031eW6WgGE2QD9fzzd+7imNPTlYJADCL1EG0wQ4bDdYd/jjZAuN4cpwKQHwU7Sj6f5+lnX2Dr9ldJ+VEK2VFznWAlBCrM81Wl/2xof/wDSq+xY44LVqK1ppAdJeVF2bbjNcAsIPDawX7cYDU6UGFqaw3BGMoOAsrMc/Xc0lxXZR4PxswcWK3RgQrcYDWvHeyno6OD7u5usjrM7h1bcKOtBOO1pNMZunp66RsaZTTrUtRBfCtCUQcZzbr0DY3S1dNLOp0hGK/FjbSye8cWsjpMV1fXpC+r1ppt29v49vfv5kcPPc+zu5P0+w1kQvPp9xt4dneSHz30PP96xwa2bW879s/nFPB9n6ee20J10+ITH3wc1U2Leeq5Laf13oUQQog3mhtuuIHKykoAvvnNb+J53lHHvPzyyzzwwAMAfPzjHy8ff7LGQivA6tWr6enp4eabbyaRSLBw4ULmzZtHIpHgQx/6EJs3b57+kzmDSMdVnFZaazbccx+/3N4PlYuIRKtOeI5lO0SqWyhk4vxy+14i99zHzTea+Y2bt2xlJGeh44HSnNAKM5T1xFVNMFQOGg0Fj5GcxZZXttLa2sq2nbsp9myDqkUmAAerTMcRZea0jg0VHlurdywYKwdCCdPx1D5ULqTYs5VtOy0OHjzIvu4hqF9iup6WY4bwOmGUNdmeWg4QMgHOzYGHOS/Wwr7u52hvb5/8qSkHYo0m/Fq2ea5H7ONaDsmBKOQGIVsELw8+bN3xGpFIDJcGtFeAcI3p3ML40GgsM2R6/AcLjIVYyxwf0ujcIK4K8vIrO/j1T8CTTz1NQVWg7Qj4GpwwGgVucbyTa9nlW0X7aL9U1woADtrNgR2hoCp44omnOGfJEoZH0ySLDuHKavr6+sl74AQrsI/ofCrAsm3zumrNUDJDJpOhtraG5MAgkZE0nV09tLS0HHbe4QsenUf0iAWPAkA4Ggea8dwiDz+7m7ade07bgkfd3d3kiBx1X1NlOwFyROjq6jrqNRBCCCHEyamrq+POO+/khhtu4KmnnuLCCy/kd3/3dzn33HNJpVI89dRTfOtb36JQKLB27Vq+9a1vTfkabW1t5a8HBwc577zz6OvrO+yYTCbDT37yEx544AG++93vcuONN874ub2epOMqTqut29p45JldULmI4EmE1omC0SqoXMQjz+xi6zbzl/XZ517EtSvQdhAVrDzJ0DqBHUAFK9F2ENeu4OlnXwCgveuQCZbx1lKHNWyGAxfTpdBpl4bORsxnyzaPF9PmOCdszou3ghWgo7uPBzb9HC9YB6hSZzKGCsaOEVrHKctGBWOmO1oa8usF63jgZ5uO+ZwIVYEdQikHVVqQykRXs4+rUk4pXFaZkBuuM+HTCnGot5eB4VF0MWc6yXYY0KXUFywNaR6bN1z6UJZ53AqWRhDr0jDlKLqYY2BoBIAXNm/Dc+JoVVqIaazj6gRKc2ed8WA81sG1A+b7pY4rdgitgnh2nBc2b6Oj+xB9/f0EE/M51NdPkSCBUOyEw3WVUgRCMYoEOdRnzu8b6Kej5+j/6G+4ZyP9Xg21rUuPu0ovTFjwyKvh7ns3HjZC4FTp7OrBCidmpZYKJejs6pmVWkIIIcSb1bXXXsuLL77IZz7zGTZv3synPvUpLr30Uq655hpuu+02otEof/u3f8sTTzzBnDlzplx/cHCw/PWXvvQl+vr6uPHGG9m6dSv5fJ6Ojg7+4i/+gmAwSLFY5NOf/jQvvvjibD7F006CqzhtfN/nrv/6CfnIvCmH1jHBaBX5yDzu+q+foLVmX0e3CY+hxNRD6xg7UDo/wv72bgAGew+aQBeMm66omzUBKxBDBaIoOzi+VYtlmz8HoiZcam2Ot0Pm/FgjAz0HeO7FLaZzq2xTxwkd/76OoJxQaWivDYEqnnlxyzEOtE1gHfuzhemOWqUuaelvvQITYAMxiDeZIcp4pDMZRkdGTJczWIEJraVuMqAs65gfpRs1x6PN+do39YCu3n50IA52qdOt7NLP7UT/KbLMcco259kOOhin81A//f39+E4lQ8Oj+Fb4hMHySLYTwLfC5nynkv4J71bOdMGjbLCFjZsePeVDbzt7+ghHpzbE6FgisUo6e/tnpZYQQgjxZlUoFPjBD37AfffdN+m/A3p7e7nrrrt45JFHplV/bA9YgFwux6c//WnuvPNOVq1aRTAYpKWlhS9+8YvccccdgJn7+pWvfGVa1zpTSHAVp01HRwd7erKEEzMbghhOtLCnJ0tHRwcjo2lwIqhAZEY1VSACgQgjoykACgXPdEwDleUQqgKR8XB2rDqWZWqNhd1AJYSqKRQ8Dg2Omg6mE55yaC3Xd8zQYgJR+gZGj3MgpaBa6l6WY6wyfx77ngKFVQqvc00w9DX5bHLsCZU7rIeF0+M9f8s67DzQ5Er1Mtm8mbdLKQifoNt8lLHh2Jj5ytlMnkwmQ9YLkPeYcmgdYzvm/KwXIJPNlh8fW/BoqqF1TEV1PZ0jZvXsUylfKGIftYLy9Ni2QyE/9ZUNhRBCCGGk02muvvpq/uIv/oLBwUH+8A//kB07dpDP5xkZGeGhhx7i8ssv54UXXuCDH/wgf/3Xfz3la4TD4fLXjuPwjW98Y9LjbrjhBt761rcC8NBDDzE8PDyt53QmkOAqTpsnf/UMfrihNMdw+izbxg/X88RTT+O5xdJQ1pn+Kpt5ma5b2orFCUOoxiyg5IRRU+zmKjtQGl5cMHWcMG6xWBr2OrOQbRZtClAsFo9zAyf5eijLjMrFgkhtaeVkjef5ZpVkZZVD61SMh1cLvLypB2Y15/Iw4Gn+HowttoWF77toLFI5Fyc4s7mkTjBKKueW96g9mxY8CgUDeJ574gNPgue5BEPBWaklhBBCvBnddtttPPHEEwB85zvf4Zvf/CbLli0jGAxSWVnJNddcwy9+8Qve8Y53oLXmD/7gD9iy5Rgj6Y6hoqKi/PWaNWuOO9z43e9+N2D+bXM2DxeW4CpOm207dmNFamallhWpYduOPfgTV7WdKe2beuYKpmuqrCmH1jHKLq0GbIcABZ5rtuSZbmAbq2vZ5jkfM6hMdSsWqzScOGBWIrZK3VI3Y0YJTzG0jt+nZRZYcjPjw4zRZhGoGb55gW2DlzdrOJUWcJrpFjRKKbTv45dC9tiCR9Pt4pZvdcKCR6dKS2M9ucxxOvBTkE2P0jKnblZqCSGEEG82Wmu++93vAnDuuefyqU99atLjHMfhz/7szwATKMeG9J6suXPnTvr1iY49cgGns4msKjyJ22+/ndtvv/2Exy1btvSEx4hxh5YR+U8AALMjSURBVAaHcRKzsz+kE6ow9WyHQjE1KzUppnAmDrfUXil0zoAdMnWwSos3zdJCPcWMqTdrLMCHYHVpPqsFoVpIdUDi2Btnn1Cqw9RR+wBw7AAUksxKh7yQxHEclFJYumDC6zRDNoD2PZQuYFnmd+BULHh0qlbqbWluxN/WDjTPuJbOD9PSPLW95IQQQghh9Pb2lhdOuuCCC4577Fve8pby1zt37pzSdSbuDTvZdjsTTfy+45y98e/svfNT6NZbb+XWW2894XG33PLp03A3bxy+r1FqdrqjSpkuWyQSoZAfRvsFlDX94Y3aL0B+mEikNIzXL4BfLK3FW9riZcp8FArtFcEvze3MD5iANIOuq/Y9yA+W5orOEr/0c7FDZiiu9s2CVfkBdHYQNY1Ouc4OgpuGYI3pvALRaJhUfhjt5qc9zxdAu3nIDxONhlFoYpEwuewQgVjttGu62WHikTBghmCbBY8apl1vIrPg0al7h7OpqYkwWTy3OKMOsecWCZOluXnmAVgIIYR4M5oYDMtT0I5h4rSvqQbKt771rUQiEbLZLHv37j3usXv27Cl/fTZvdydDhcVpUxEN4eVmpzvq5VLEY2FamxvMvNFkB+V0NGXanG87zG2ZMD8gXxp66Zf/Zwr88VMKI+YadsAMk80NTfM+S3KDpeG2xwooU3wd/AnPTXtmVWSlwU1B1RJIHjQhdAp0dhCSB835XhpKb1hUVMbNUORU+/SHeGvfnG9ZVFZUEI1GCTuaoO3jFabX0fYKGYK2T9jRREtvXpxNCx5ZlsVlF53PUPeeEx98HEPde7jsovNnPOxaCCGEeLOqqamhstKs9P/0008fN7w+/vjj5a8XLlw4pevEYjHe8573ALB9+3Z27do16XG+73PfffcBEI1GWbt27ZSucyaR4CpOm3MXzcNLH5qVWl66l3MXzuXCC1Zj4UEhic4PMfXwqs15hSQWPheuWQWAEwxCrr+0mBAmhJ5s0NLjoVX7LuQGcEJhQkHb7JeaPIB2s8evcazSbtYEwlCdqXcs/knea+k486r5UEyC7xIMBCDbb/ZRrV4G6U708F60e/zwpd0CengvpDvNeZYN2X6CpS5gY0MDtvKhmELnBqceXrVvzismsZXPnIZ66urqsL1RamobsIqjUw6vXiGDVTTn294odfVmBeGzbcGjlSuW01KlSA5Nr7ObHOqjpUqxcsXyWb4zIYQQ4s3Dsize9773AdDV1cXXv/71SY8bGhriC1/4QvnP69evP+z7d9xxB0oplFLcdtttk9b44he/CJh5tbfeeuukC3d+4xvfKHdcb775ZkKhGU6Dex1JcBWnzcUXroVMz3gYnCbtuZDp5ZKL3sLll11KxB9BRRtNIMwPcfLdUd8cnzyAis4h4o9wxRWXAVBVWQkoSO4vbSmDSXe+Xwp7PuMhWZs/j31v7GHLMuejqKqsYGFrPWZFXQeS7VMOrya0tpe3mTH1jvf0/CPu1z/8Pg8LrdqEyFw/4JNIVJkQmxsynd3qFWaV5MFt6KHd6PQhdCGNLubM5/Qh9NBuGNxmjqteYc7LDUMxSaI6AcD8uS2Egw52IIxKtZsQ6h9/Xsb48/HQuUFUqh07ECEcdFgwr5XWpgbq6+oojLTT0DQXx09TTA+gTxDete9RTA/g+GkamuZSGGmnvraO1kbzup5tCx4ppVi/7irC+c4ph9fkUB+RQifr110l3VYhhBBihv7kT/6EaNTsdnDbbbdx7bXXcs899/Dyyy/z9NNP8zd/8zesWbOGtrY2AK666ire9a53Tfk6F110EZ/73OcAePjhh7n88svZsGEDL730Ej//+c/55Cc/yR//8R8DZoGmYwXgs4XMcRWnzZo1a6iK/Cfpwb2E6s6ddp3C0F6qIro84X3JvDraDh3Cjc9HpzohN4KuaEFZY7/eE9+fGd+WRSU7UW4KFZ+Pk+1kybw6WltbAVi8YD4Dr/ZBbgid6UdF6w7vYvpgIt8xOryWhc70m+CnXRYvmM/bLlrDzrsehTmXwNBOSHWiw7UQrDzunFfte1AYhdyAWdioein0Psv7rr+Gn/3sZ5OfU/pcjiCTZDg98SvtQzELmT6i4SAL5zZzaFcSUgchGEPZIXS0ESJzzNDnYtLcj/bMYk6BKIRroHIhKIVCo708pA6AHWbhXDNkZvnSJfzi+V14+TxubA5ephudH4F4a+nnpSb5cWm0X4RUJ8rLYMfm4BT6qIwGWb50CS3NjSQqD5LNDZHNjtDQNI90cpiR4R58FQQ7jO0EzYJT2sdzC+DlsHSB6kQtsYoEhdQAFQGXRFU1Lc2NwNm54FE0GuVjH17Pxk2P0tk+QHXT4uPOefXcIkPde2ipUqy/bn35/2SFEEIIMX3Lli3jvvvu44YbbqC/v5+f/vSn/PSnP5302He+85388Ic/nPa1/t//+3+kUil+8IMf8Nxzz3HDDTccdcw555zDxo0bqas7u3cNkI6rOG0cx+GD696JP7wPNzO1OZNj3Mwg/vA+PrjunViWhWVZfPJj11GhBgmQQVUuRFsOaqANRvZBth/tptFeDu2mzfDXkX2ogTZzXOVCAmSoUIN88mPXlbtNl168FssJmK7hyB4TQi2r9HGMm7MoH6Mz/TCyB+wAlhPgbZe8lWuuuYagOwj5YahZaYJiqhPS3ejcILqYRntFtO+az8W06Uimu81xxaw5Lz9C0B3kmmuO987ceDf1WB/l43QpuCYPQDHFwkULuPiit5ohvV4Bkh3o0tYzKMyiTfG5JkDXrDCf43PN48ocor28mTfsFbGVz6WXmI2v57Y2s2BuI9FIGKfQjxNvxAqEUENt6ORedLb/8E5uth+d3IsaasMKhHDijTiFfqKRMAvmNtLa0kRTUxMRleOc5efjZDoopAaIVSRonruY+roaqiKKgJ/ELg4R8JNURRT1dTU0z11cDq1OtoNzlp9PROXKCxNNXPBoJk73gkfRaJSPXreeay4+h3zPKwx2tDHU10Uuk6KYz5HLpBjq62Kwo418zyu86+IlfFRCqxBCCDGrrr76anbu3Mk3v/lNrrzySurr6wkEAkQiERYuXMj/+B//g5/85Cc88sgjVFdXT/s6tm3z/e9/n02bNvHhD3+YlpYWgsEgNTU1XHHFFfzt3/4tW7duZenSs383FOm4itPq/e9bx9PPbmZP/3aoW4kTPfnVat3MIG7/ds5pquT971tXfnz1qpW8+/IL2PTkNnJRGy9ajRuuMcGvmEHlBsudQW2HUYEKVLSRgAW2N0o4d5B3X34Bq1eNLyt+/nmrSNz/FEOZrOk0Jvej84NQsQDlBI8ZXrVbMMODC6MQrUNlekjEQ5y/eiXBYJD3XXUZP3niNXSo0oS+bC+ke8zwWidi5pSWOoP4LrhZcHMQK3U7vQxqdBfvu+oy7GPthapLsVR7oBQmSk4c/lmKrlqXruVC9hBkesErcvU73m6e/70PM2jXoLNDoCx0uAZClaWVlo9xabTpoOYGIT+EitSQ8Ds4f7WZO9zU1ERzXQXpAnSMVJJL9WFZEbzaZehiqjTsePznpZwwKpxAVbRgZ3uxC6OEq+pprXJprqugubkZpRSXXXQ+Dz+7m1Vr38ar214g2TdIuGYhoXCMUDhGxST36ntFcoP7qQi4LL3gbYwc2s81F48vTDS24NHDz+6mbu6yYz7nExnq3nNY3dNBKcWqlStYuWI5XV1ddHb10NnbRyFfIBgK0rKkjpbmJeXXTwghhBCzr7a2lj/8wz/kD//wD6d87k033cRNN9100se/5z3vKS/W9EYlwVWcVpZl8fu/+1lu+8u/o29wJ4XcHAKJ+ROG9R5Ney7FkQOQ6aUx5vL7v3sr1oT9OpVSXP+RD5DO5Xlmy35SxUrsaDO+E8fXcbRWaErxTWksBRYuVqabOKNc8tYlXP+RDxz2D/iWlhZWnzOHZ/cWyKcOoWOt4OWg7yV0qBpCVRCIm/mm2oViCvIjkB+CcC1E5qDSHYTitaxeFCwvPf7Z3/g0T7/wv+gZ3YuqXATROeiJw28L6QnDbyMQbYRglcmfbgY9upc5kSyf/Q2zFdOCBQsoFArsO9CO7ysTfANRs+qwFR57BcfDLKUXYix8ejkznHnUdFtjFRHWnH8ezc3NrFo6j+deHaIQb8DLDplji2l0IGq2zbGDJhhrbTqzXt7sL1sYAb+AHW8gWOhj1dJ55edvWRaXX7yG5JNtuG4vfc4c8vk8bmo3vhNDh+LoWK15/tpDuVmUm8TK9+BEawmFKqkPJWmsn8PlF68o/8xWrlhO28499GeSrFx7GYe69tO+/xXydhyCVQTCcZTloH2XYi4FhREcL8XiBUuob55Parh/0oWJynWH+qioPsGc4km83gseKaVoaWk5q5e+F0IIIYQAUFrrY0zSEydyyy2f5jvf+e7rfRtnpf7+fv767/+NA/0FPDuMDlahQlXYwbhZidb38AopdH4EVRjB9nLMrwvye5//zDHH52cyGe7/2cM8s3k33QNJinYlfqACnOh4F9PNYBWTBLwRmuqquOT8xVz73msmHSa5ddt2bv/3n9M5YpNPD0Ewjg43mm1iimnTCR0LmU4YAjFwYqhcLxRShGLVtFR53PqJdx/WzW1vb+f3/ugbjATmQWQOOlSDUhZM2snUaO2h8kOQ7SXhHuRbf/5l5s6dWz7C933+/K/+jqee24LvxCGYMMN2o3PG92VVdqm+NvfseyaIZs08XgrDWG6Kyy46nz/+wu+ilDLP/3v30pmJUrQq8ItpdD5pnqsdASswHlz9InimO6xClViBKAE/SUs0w603X3fY89da88N7N9KdjdHVvp9DSZesXYNXyOIX0vhu3swntiwsJ4QVjGEHw0S8YRoqbJrnLqApkuaj160/7M2GTCbDhns2kgu1UFFdj9aa5HAfyeFBRkdH8DwX23aorKyiIlFDRaIepVR5YaLrjzFc9si6J+tEdYUQQgghxMmT4DoDElxnxvd9Nv7sQTb94hnSbghPhUzAKuUrtIet88ScPO99x6W8773vPqzTOhmtNdvbdvDksy/T3jvKcCpPOpvH831syyIWCZGIh5g7p5IrLl7LihXLjjlUUmvNv999L0+0DdIz4pHPjuLn0xCsgECFCW/ljmO21DFNYoXihCIVNFbZXLGihk9cf91R12hvb+dP/vyv6clF8MJzxuvZAcw4ZB+8UhgsJLHzvTSGs/zpV37vsNA6Zuu27fz9v21gf0c32oqZbrAdNGE6GDfd1/IQ5BwUSuHbK0AxhfLTLGht4vOf+Vg5ZGqt+fcN9/LEy7voTUcoWFE0Ct/N43sFc67W5jWwg1h2EMsJodAE/QxzYlmuuGAJn/jY0c9/LAxmg81ks2na9+8m4wZxrRiuCpU75I7O4/hpok6BeQuWEI5EiRa7jhsyN256lM4RPbWFidZdddxwearqCiGEEEKIkyPBdQYkuM4O3/fZvHkz23fsYm97N/l8gVAoyKK5TaxcvoQ1a9acMLAeSWs9YW5f//jcvjl1tDQ3nvTcvkwmw513/5i2bo/+pM9oOodfLOB5eRMstW8CoR3AtkNYTpDKeIS6CsWKJptPXv+hYwYXz/P49nfu4NGnXiajKvEDlfhWuByGLT+HVRwlqke5+vK1fObTnzrmvNaxkPn4c220d3biqaAZxhyIgRUqzXUtxUGtwc+bYcmYNwfmtrTw9otWHBUyM5kMd264l7YDg/SPuoy6EbNSrzI/j7GAaf7gY+kClU6OukqblQtquPH66475/CeGwUTjIjKp4WN2R6PxBMM9e08qDI69efHUc1vIEUGFEkRildi2g+e5ZNOj6PwwYbJcftGa4755cTrqCiGEEEKIE5PgOgMSXN8cMpkMP930CNv3DzFUDJPMuOQKHsWii681llIEAg7hoE1FxKY6WGDlggTvX3f1SXXbPM/j0Ucf5aUt29nX0Uuh4BIMOixsncPa81dy1VVXHXshpiPu884N97J9Xz9dXd2MJkfBjqBxwJoQXH2NwgUvS2VFJc3NTaxaVHfMkJnJZPjpzx5h294ehpN5kgVFznMo+ArtK5SlCVqasO1SEdRUV4RZuWgO73/viZ//qQyDs/XmxemqK4QQQgghjk2C6wxIcH3zGA9Ym+lPabJekLxvlUfKhiyfiF2gLq64/KILXrdu28SQOTiSZWR0mEw6TaFQRGsfpSyCwQDRWIyqygS1VdGTCpnjQ7A3M5gqkMlrCkWvHNyDAZtoSFETD3LFxVN//hIGhRBCCCHE8UhwnQEJrm8+Z0PAOpUh82x4/kIIIYQQ4o1HtsMRYgrOhu1FJt/Dc3ZC5tnw/IUQQgghxBuPBFch3qAkZAohhBBCiDeKqS3VKoQQQgghhBBCnGYSXIUQQgghhBBCnNEkuAohhBBCCCGEOKNJcBVCCCGEEEIIcUaT4CqEEEIIIYQQ4owmwVUIIYQQQgghxBlNgqsQQgghhBBCiDOaBFchhBBCCCGEEGc0Ca5CCCGEEEIIIc5oElyFEEIIIYQQQpzRJLgKIYQQQgghhDijSXAVQgghhBBCCHFGk+AqhBBCCCGEEOKM5rzeNyDE2aRQKPDYY4/x0pbt7GvvIV/0CAVsFs5tZO35K7nqqquwbft1rymEEEIIIcQbidJa69f7Js5Wt9zyab7zne++3rdx1nNdl1deeYXtO3ax92AXuUKRcDDAonnNrFy+hDVr1mBZUxsckMvluO+++3j+5a109AxS8HyCtkVrYw0XXrCaD3/4wzjOyb9v43ke3/7OHTzy1EukdRVeMIF2YqBs0B7KTWMXhomrEa66bC2/cctNJwyb5ZpPvkSWOK5TgVYBtLJQ2kfpIo6bJEKKqy8/uZoT+b5Pd3c3nV09dPb0kS8UCQUDtDTW09LcSHNzM0qpk64nhBBCCCHE60WC6wxIcJ0Z3/fZ+LMHefAXz5DWMTynEuxwObjh5bDdUWIqzXvecQnr3/ueEwZY13X5y//vr/nVizspOpVgR0y4VIAGtAdeloA3ytvWLuOLf/B7Jwyw7e3t/PGff4vubAw/MheKI1BIgl8E7YOywApAsAIClViZdpqiGf7sK/+HuXPnHr9mOogfqodgFQRiYIfAssD3wctDMQ2FEax8H02xwnFrjtFas71tB08+u5nBVIFMQVMouPgaLAXBoEM0qKiJB7n84jWsXLH8pAPsqQrDErKFEEII8UZx5ZVX8vjjj0/pnF/84hdceeWVUzrHdV22bt3Kc889x/PPP89zzz1HW1sbnucBsG/fPhYsWDClmmcyCa4zIMF1+vr7+/nrf/g3DgxbuMF6isU8biGHV8yVw6AdCOMEwwQCIZz8IeZXa37vtz9DXV3dpDVfe+01vvDVvyLlx8CJmDAYjIMVBssG3wM/B4UU5EfAzRC3M3zza3/IueeeO2nN9vZ2fvdLX2c0sAi8NORHIVQJTgzsAGaauA9eEdwJ37djVBb38rd/8UdHBc329nb+95e+zojdBLFmCNdBMQVuBrzC+IF2EJwoBOKQ64d0Fwm/m7/+xtE1x2QyGX76s0fYvq+XodEcOR3AJYyLhUah0Dj4OOQIqyKJihCrFjXy/vdeTTQaPebPaywMP/XcFnJEsMIJwtFKbNvB81xymVH83DBhslx20fknHYZPVd2zjQR3IYQQ4o1jqsHVsiwOHjxIS0vLlK7zta99jdtuu+2Y35fgKsokuE5Pf38/X/vm/6PXbSBfcClkhiGYgHACFYiD5YDvoospyA1DYZhgNEEo6DDHOcRXv/A7R4XX1157jf/1pa/jBuogUg/RRnCCpW6rotxy1dp0Xd0CZLoh20+g2Mff/sVXjgqvnufxyc/8Nn1+C+QGTEc1XAN22HRYlWVqa23Ctl8ENwf5QdORDddSb3Vy57/9Q3mIr+d5/PpvfJ5D3hyoOgfcrAm7fg7cPPgFc58osILghEzwDlWaMD6ymwa7lx98+++PGjacyWS4c8O97DgwyEjeIe2HKYx0UkgP4RdzaK1RSmEFwgRj1QSrmolZeapCLisW1HDj9ddNGl4zmQwbNz1K1yhU1M/l4J6ddHfsZ3h4CNf1cBybRKKaptYFzF+8kpFD+2ipUqxfd9Vxw/DEuonGRdhO4JjHem6Roe49J1X3bCLBXQghhHjj2bdvH+l0+rjHtLW1cf311wNwzTXX8NBDD035Orfddhtf+9rXAAiHw6xZs4a+vj727NlTvg8JrgKQ4Dodvu/z5a/+JbuGwmSzKXQggapaAPj4rov2vfKxyrKxHAew0CP7UMURIpE4S6pzfONrXywPG3Zdlw99/NPkVC0kFptwaQVKodUC1HjAZCxkeqCLkBuE4T2E9QA//o/vHjZs+PZ/+ld+8thOE3RjjRCqNkHSDo0H147HTA3GamvTIa1aDOkeUDYfvHIZt/7WbwLwj//0r/z48Z1Qfz5kB6EwDLkkqFKg1v74sGZllebQKghXmHAfqYG+LXzo7cv4XKkmmAD07xvu5anNexl046T791FID0N0DkQa0MFKUA5oF1UYhewhyPQSjCWI1S2kxklx2ZpFfOJj1x0WjDKZDBvu2Ug60Miuts3s27MLN1ADoQTKCaOVjdIe2s1BfhinOMjCxUtYsmINcbeH669bf8wwvOGejeRCLVRU15/0709yqI9IofOYdY/8XTuTu5gS3IUQQog3ry984Qv81V/9FQB33nknN95445Rr/PznP2f//v1cdNFFrF69GsdxuOmmm/j+978PSHAVE0hwnbr7fvoA37//GbJFCxLngBPDzWdgdL/panp5wAcsExDDtVC5ACcUNUNxh3cTCfh86tpL+MD73wfA1/7sGzy5+QDUrTbdVitgurZjQRUodzGBcpD1XdMlzfZB/1YuXzOfr/7xlwGz0u/6j96MDtVAtAmi9aU5qJHxTisKdt0NmZ7Dn2SkHlrfCZk+yHSj8oNsuvcHeJ7HBz72Gdz6i6CYgVSv6bRqz4TtUJUZHqwsE2C9ghnSnBs0AdYKQ3wOBKI4fc+x8YffK3ddt27bzj/94Cf0pQOM9O5Cx1ohsQzlBEovwcS/5goUaDcPwztR6S6q5iyhPlbkt379g6xetdK8Ylrzw3s3sn8Innniv8laVfiRJpSfxy9mTHd57HV1wliBKNoKYWW7iPijXHLFO1lQDR+9bv1hAXGsbr9XUw6tWvskh/tJDg8yOjqC57nYtkNlZRUViRoqEvXlGsmhPurswaPqTqx/qub4zpbTEdyFEEIIcWbyfZ958+bR2dlJPB6nt7d31v5//Y0cXGU7HHHSZtrBcl2XH//sv8kWIpBYjOtb0PkM5IdMRzOxEJzK8lBh3FET/jofxw1VQ/35OFWLyQ6/xo9/9t+8/33rKBQKPPnMZqg/DyJ1JuxCaT5rwQRT352wiJJTCralgGiHzHkVc3nymc24rovjODz44INoFYZA1ITWUGL8nLEQqP3Jn6iyzfEAxRF0IcNDD/0c1/VwA9UmtCYPmGAaqYfYHDMM2Y4eHVyjGcgnIdNrAnYyBxXzcQPVPPTQQ6xbtw7f97nvZ4/QN5xjZGAfumEtKjJn7GYmBO0SrQEfZQeh9jx0dA4jPS9BbRP3/ewRVq1cgVKK7W07eLV9iOdeeJ5CZAFae+jRA+a5heogHi13cSlm8PKDkO9BhxOknUqeeOzn5N96EdvbdrBq5Yry5be37aBzRFM3tx6tNYe69nNw/26yrj1hPq5j5uMOD+Ic7CLieMxbcA4NzQuoqK6ns33gqLpw+Bzf4WQOL1CJCiVwYnGU5eD6Lpl8iqGREXr6B+jsf5JVO3afcI7vbNJas3HTo1MOrQAV1fUkh2DjpkePGdyFEEIIcWZ79NFH6ezsBOAjH/mIvBl9kiS4ihOafB5eA3bIIem5dOwexd/WfsJ5eJs3b6Z/tIgfb8XPp+HQSxBvgfq1ZqjsWMj084AqzXuth+rlMPwqdDyG27AWK1xL/+g+Xn75ZbZt22o6lfF5Zu6p1maRIzdrQqAdNgspjQ0V9ovg5cwcVCdiFj+yw+b80QPcffcGPvGJG/nRj+8350SbTVAbC8RjQ3nHAuGx2CFzXrQZMgP853/dSzQShkANJPebUFq1GGJNZgjykbWUbQJ2IAahWvMcgxUwstucH6rjvp8+wLp16+js7GTnng5G+gfHQ6uy0Mo2HWyvFOC1Ns/JCpRemxBKe6jIHHT9BYwceomdKkdnZyfNzc088cxLvPTSCxRCLfi5IXOf9W9B2QHz/CfecqACog1or4BO7kfnhiiEWnnppReoq7DKvxO+7/PUc1uobjqPYj7Hzq3P0zeSJ6fiaDuCcsJYpfCutU/OK6DdHKl8huTOPRzq7mDZ6gupblrMU89tOex3beIc36JTTbBhKTo3Sj49THKwG9/zsWyLUKSCUKwWu3oBA0MHeHrrfkaS9x5zju9smxjcp+N4wV0IIYQQZ74f/OAH5a9//dd//XW8k7OLBFdxXIfPwzuP6BHz8AJAOBoHmvHcIg8/u5u2nXsmnYf39LPPU/BtNCE49CLUXwDBStNZtcMm7AUqJoTMQil45cxCRpEGOPQifv1aCr7N088+z0MPPwKxZSbg+S4URk0wi9RPEgYxHVcnYgJoYdR0e4OV5vzoHO7+0X184hM30t3VA4klEKk196W1Of94YXUirUvd3FoIVtDdtQsnGjcLRhXSULMUqhaZ4Kw15IehmDTd2LHucCBqXo9glRky7UQADYOvAmEOdA8A8MrWbfQPDKDjrSaEKseE92J6PLwHouOvq1csLQo1gg7EwIma8+It9A908MrWbSileGnLDtJeBO2PQNUSVKTOrM48mdLLoqwIJM5FZ/vxR3aR1hFe2rKDrq4uWlpa6O7uJkeEgOex5flf0pcN4gfrcSLVqEm2OrKcIITiaN8jmx2mY2iI/PO/5PwLf40ckXJdrTX33reJV3YfwqpeglfI0rP7eXwnjgolsCNzwbLxfY98IY1OdmK5Karq5+LFF7Jl1y6i9206ao7vbJsY3GdisuAuhBBCiDNfKpXixz/+MQDz58+f8hY4b2Yn+a9w8WY0Ng+v36uhtnXpcRePAbCdAHVzl9Hv1XD3vRvJZDKHfX/ztp1oJwF9L0Ld+eNdzMgcVKQWFYyjnCDKDpjPwTgqUguROUApCNadD30vop0EL2/dSTZbNEN9KYW/YIXpdJaH9JYWYxr7GHtMWea4YIU5Dw2ROrLZ0nY0WpnQ6cTHO5VT+esyFhKduKmjwc27kO2BaIPpttoRMz924BUzj9WJQsU8872KeebPuUHz/UyPOb5qsTk/24ObLwLw4uateJ6GxDK0ssxcYd+FaEPpdY2h7CDKCpjPwZh5XaMN5rjcgDkvsQzP07yweSv7DrTT3tVjBkVXLUFF648dWo9k2eb4qiVooL2rh4MdXQB0dvWgQlXs2PwMvWkHYs0EYrWThtbDXk7LJhCrhVgzvWmHHZufgWAVnV1mfvG27W08s2UXVC5g+NB+hoZHsetXE6xdQiBejxWMYjkhrGCUQLyeYO0S7LrVDA2PMHxoP1Qu4Jktu9i2ve3kf8bTMBbcT/R36URsJ1AO7kIIIYQ4e9xzzz3lFYdvvPFGeQN6CiS4iknNdB5eNtjCxk2PMnHtr+HhFGR7zfBZJwShKlSkBmUfv/GvbMcErVCVOS/aDJkehoeT413awkhpcaMw5bA6NhdVWeMf5tmNf98Om/MKI6aOHTSHWI5ZMEmpCdvpjJWzyh8THz/irsfPHVvluJgDy4LEUjM3dGiHWeCoZqXpvo51Ve2g+RyuNY/XrDTHDe0w5yWWmjrFHACvvbbbDDm2gyboBivM63qCoKksGxWpMeE9N2jOjzWx69VdPPHEk3gEIVxnQujJdprHi5vzwnV4BHnssV8C0NnTR2pkmPa+EayKVuzg1Ibm2sEoVkUr7X0jpEeH6eztx/d97t/0KMVALcOHDuCGmwjWLEJZJ/69CtYsxg03MXzoAMVALfcf8Ts72zq7erDCiVmppUKJcnAXQgghxNlBhglPnwRXMamxeXhTDa1jKqrr6Rwxc2PHZHI5M0Q13gyhalRgaqFFBaJmnmW8GbwcmVy+tJCRaxZOssPjgVRZmF/vI4NlqXM61pHVfmlf1qCpMxbQ7ADYsfH5rDAhrJ7wTsc/K0wdOwAUzUJMoSoY2gmxZqhcAJZzWBg+8gPLMcfFms15oSpTB9NxHR5NQrjBDH0OVU3zda0y54frGRpN8tqefeaeqxZPPbSWC1ulznKA1/bsBSCXL7Dnte3o2Nwph9YxdjCKjs1lz2vbyefydHZ2cqBnmEwmix+bixOtmVI9J1qDH5tLJpPlQM9webGEU6Gzp49wtHJWakVilXT29s9KLSGEEEKceh0dHTz22GMAXHLJJZx77rmv7w2dZSS4iqOMz8NbPKM6Y/PwxjpYfiFnhvUGYlMOV2NUIGrmo0bq8AsZs3pwMW3mqWr/sCG9xw2DYI5TypwXrDR1/NJKweWVeMdrTek+j7yGskw4DjfC6F4zFDiUOKkwXD4mlDDnje6F8BxTDyj6ysydtQIze12tADghir5F/8AwRBpQTmha9cp1nRBEGugfHAEgl0kxktMEYnUzqhuI1TGS02SzabZtbyNTsClYkSmH1jFOtIaCFSFTsNm6bfuM7u148oUi9glGGJws23Yo5AuzUksIIYQQp95dd92FX/q35qc+9anX+W7OPhJcxVFO1Tw833dL80qrZnaDwSoIJfC1B7pgwiuUh/ROKQyODekFU0ePzXH1THeYqYfWidcATB3tgRM2qyc70XJonXK9UMKcrzD1AF8rc++hGb6uoSrwPXytKbi+Gao8G8K1FIouANlMCj84+UJMU6EsCz9YTTadZOeufeQKLoHE/BnVDCTmkyu47Ny9f0Z1jicUDOB57qzU8jyXYCg4K7WEEEIIcerdeeedAIRCIa6//vrX+W7OPrKq8CRuv/12br/99hMet2zZ0tNwN6ffqZiH19LSYobkhifZ+mXKRS1TxwpDMQ9uauwb0wqD2vcB39TxJ4TY3KAZljxTuUFTzw5CMQWJJTMKwzreCn0vm/muYEKx5ZxwTuuJa9toyzEdaMsxne3ZEIiZ7X2AodEMKlg9K2VVsILh0WGGhofNIlQnmNN6wnqWmUvd1d07K/c3mZbGejp2j5ZW4p6ZbHqUliUz61wLIYQQ4vR44YUXaGszi0CuX7+e6urZ+ffQm4kE10nceuut3HrrrSc87pZbPn0a7ub0M/PwGmallpmH12f+oJTZU3U2jO3NatlmbqabRYUqplVKWRY6nyptpVMKf75nVgD2l6FxphU0te+bVXuzPaae5ZmFkCwH7fvTr2k5po4udZq9Auji+DY606X90j63BWwniD9bixRpjV16XbN5FycQQGs9o1X0tNY4gQDZgks2X5h5t3lMqIpsrnt2ak2ipbkRf1s7MPM3RHR+mJbmJTO/KSGEEEKcchMXZZJhwtMjQ4XFUU7ZPLwJCx3psbmkUzR+XmmIr6XM0NnkQbQ3vfl+2itAst3UscbClDZ7qiYPTut+y8cnD5o6+Gb/VCcyyXOZYk0wW+OUnq9l25AfLS+iPG0aKIxi2Q7hkANu2tz3jPjgpgmHzbBzBVTEIriFzPFPOwG3kKEiFjFrX9n2+GrQM2UHsZ1T935eU1MTYbJ4bnFGdTy3SJgszc2zMCJACCGEEKdUsVhkw4YNANTX17Nu3brX+Y7OThJcxVFO2Tw87ZfC0NgfZxDcimnTcfR9CNWaP2cOTTm8aq8AmUPm/FDt+OJMKBM0052lfV7N9U/unksJMj9szveKlP+qHdHFPJmakx8zXicUiZm9WP3ihPufIt9H+wXIDRCKRJnXOgfyQ6V6003E2pyfH2J+6xwAaqsrcHAJ2Uw7vHlukZANDi411RXUViem/abFUXfsFahNzFL3dhKWZXHZRecz1L1nRnWGuvdw2UXny95vQgghxFlg06ZN9PWZEYgf//jHcU7hm+RvZBJcxVFaGuvJZUZnpVY2PUrLHDMPLxJyIDdw2AY10wluCiA/YOr5num8Rush3QOZPnQxgx5bsOmYNT10MQOZPnNetN7UKZ+nzR6xbhaGd5XD68T70ccLdflhc56bNXXQpr6bKW3ZM/lznOzj6IM9U6cUWuprEuYaw7vN98fm7J4UfzzsDu8BO0R9TYILL1iNVRyB/EjpOU41vJbOyY9gFUe4cM1qAJaeswA33U9tbQ2Wn5tyePXcIpafo7a2Bjfdz9LF82ltaYZiesb7r2qtoZhmbuup7WKuXLGclipFcqhvWucnh/poqVKsXLF8lu9MCCGEEKfCdPZuveOOO1BKoZTitttuO0V3dnaRuC+Ocqrm4S1ZNI9X9vWga1agrMBhUehku68KTGcw3WPqbX0VCiOQOMcEucwhs8hSuAHthMyiQMoubXujTejTHrg5yPVBIQPROrNS8fBuGJt3qpSZS+oXwcvDyB6zym681Tx+PGPHe3lzvuWU5vcGzbDh3ABEprc/LmAWeypmTD3ggtXLOfh0J+T60Nl6VKTO5Fbll1L+ZO9P+YflUZ3tN6+HHeGC1Qu5/LLL+K8HniBTTKICkdIKxvoYtSapDeDm0IUkEZ3kiisuB2DVyhX85JHnQPs01NcxMDBIPl/ACUaP2z3UWuMWMoRsqK2vA+1hF/pZver9VHf18Pi2p8nlUwTD05vnDFDMpYg5RVYsO7XzRpVSrF93FRvu2UhyiCntlZwc6iNS6GT9deul2yqEEEKcBYaGhti4cSMAq1atYu3atbNWO5VK8aMf/eiwx3bv3l3++kc/+hF1deMLOa5Zs4Y1a9bM2vVPNwmu4igT5+HNZEucI+fhXf2Ot/PKnh+bTmTNCibMJjWBdJIaasL3y4Z3g1/gmndeySvbdptFlXwNwQSoIBSTMLoPgjFw4mY147Hg6uVMsC2kIRCH6BwIRE2ntTBaXv02Fg+T9osQa4LsIbOCb37IfASrzL6vgdhRQ38BsyCTVzT1Ig2Q7iFWEaGqooquXNHUCMTMnNqpcjPmfK9I85wEAJdc9BY2PbOHQrwFhtrQrDDhtRxMT9DRzvbDUBvEWwjmurj04rcyd+5czp0/h7aeQxQtB8I1KCeKPqzWxBA7sSNuod0M5AYJFg9x7vw5tLa2AtDS0sK8OVV09O8hNmcp9fV1pNMZRpJJfGyU5WBZDkoptNb4vov2XSw8qisqiMXMa5bu3cW8OVW0tLSglGJ+Q5xdA6N4Tnhav7OeW8QqjjK/IU5rc+OUz5+qaDTKxz68no2bHqWzfYDqpsXHvW/PLTLUvYeWKsX669YTjU5vv14hhBBCnF533303+XweOPlu68nq7+/n5ptvPub3/+AP/uCwP3/1q189q4OrDBUWRzlV8/CuuuoqQnYRMr3o7PgwSTXh85EfE78PmPMyvYTsItdccw1VVRVgRyF90CzQE4ybzmh0DlhBM6c202PmmmZ6zJ+toPl+uMYcbwch1Q52xNQDrnnHrwEW+AWINZuurpsxQbVYqjmyp7zX62G0b46PNZuOKxbvuepKrnrHr5nre3nI9Jp6Jz0EV5vjM73mfDfN1e/4NcC8e1Yf19jKh8RiGNqJHtxh5rwer6JfRA/ugKGdkFiMjU99XHPBBRdgWRafvOEjVKgRAhRR+WF0bgC0RmGVfiZ++cP8vCzQGp0bQOWHCVCkQo3wyRs+Uv4dsCyLa9ddhZ3toZAaACAWi9LcOIf66koqIw4BVcTyswRUkcqIQ311Jc2Nc8qhtZAawM72cO26q1BK0dTUREttiObaKH5ueFrDj3V+mObaiKlzmhY8ikajfPS69Vxz8Tnke15hsKONob4ucpkUxXyOXCbFUF8Xgx1t5Hte4V0XL+GjElqFEEKIs8rY3q22bfOJT3zidb6bs5t0XMWkVq5YTtvOPfQP9U1pKOOYyebhBYNB3nvVZfzksTb0YJsZMhypN2+fHK8pWPq+zvbBYBtKwXuvugzbtnnL+Sv4761D4BZMqIs2ghUAO2AC5NgCTmN9W8sqDR22TIAFE0K9AqB56wUrAbj55pv5yYOfMV3bYJUZIlwYgWwfhCpLXdzj7JsaNx1GvAIUR7nlllvo6uriP3/8EK6zyAz1zfRCoGLC3raTDf0sDW/ODZtOcjENdgzHHebKXzPB1XEcPrTuSn6w8UUyvoNbs8w8p+5foSN1JqAHKkpDn11TJzcI2X6I1EHNMhx3lKhK8aF1V2KVhkuvXrWSd7/9YjY99jzZ2Lm4SuOle9BO2MyptUOM9cS1ly8F6hx2IIxjeUTSe3n3lRezetXKw57RqpUruOT8nTy99TUKnEswXgtAKBQkFApyvMG+hdQA3uBrXHr+ElatXGF+PSyLyy5aw+hTO3F9m/7UKEUvfNLDj20/R32lTWOlqXM6h+AqpVi1cgUrVyynq6uLzq4eOnv7KOQLBENBWpbU0dK8hObmZhkaLIQQQpyFnnrqqWmdd9NNN3HTTTcd95gFCxbMeI2Ps4kEVzGpUzUP77OfuZlnXvjf9Lh16KEdJowmlqCs0jDJSUafardghgfn+lHhShqdfj77GTMs4qp3vp1fvPBv6LoLzCJLKBPUnOh4cNUTgquaEFzdrAlwmT6INaL6X+bqd14HmG7Yecvm80qHB7l+E4gj9RCsBi9rgqdfNPu+OtEJtS0zjNhyTHhUNuctm08gEGDu3LmsWLqAV/a3Q81yc13tm05qIGK2uLGC48Oa/ULpWllzLTcH0QYY3MGKpQvKw28B3v++dTz9/BZ2jTpkC2m8SB1+fB4qN4DOHAL34Pg+r04YFaxE11+A5WWw/TTRcIBzKh3e/77x5dmVUlz/kQ+QzuZ45qWdpFQCv2IBnufjeTl0MV1+XZVtYzsOdiiGlTxIXA9z6SWruf4jHzjqd0ApxXUfWEc6ey87Duwlkx0kXLMQ6zhbMPlekdzgfoLuMKuWNHDdB9YdVnfsjZZQvIJwX5K+4SzZvItWzjGHHyu/SNT2qK8N01JfQWMo+boteKSUoqWlhZaWltfl+kIIIYQQZzql30wxfZbdcsun+c53vvt638YplclkzDy8ET21eXjrrjrmkMb29nb+z1f+khFnLr5XMHuQTuwMKgf0EZ3BUBWWHaDKPci3/vxLzJ07FwDXdfnkb/wO/brJhMt0r+m2RhrMgkKWY+qNTZbVruk6ujkzd9UrQmwOZHqoU938+3f+odxxLBaLfOD6mykmzjfhNRAzW+bgmxpHzve0HNAWFAZMZzRcR2B4C/fd/T0CAfO6vbJ1G3/2f/+JYTUHKhaZhZq8nLlX5ZRXCgZKi0mV7tUOmyHQyb0kdC9//Pu/xXmrVx32uvb39/O1b/49h2gl79rkc2m0HQYrNL5AlNbm3v08yssRCscIOR4NdPDVL3z+sAn8E38H7n/gYZ5+uY2eQ4MUAzX4oQQ4MRPcfQ/cNFZ+mEBxkKaGWi65YDnXvu+a4w5rzWQy/PRnj7Btbw8jqTxeoBKCVQTCcZTloH2XYi4FhRHs4iiJeJiVi+bw/vdePWndTCbDhns2kg01kysqDnb2kCloXG3jalV+78JRGkd5RIOKeS1NhAM+0UIX18swXCGEEEKIM5YE1xl4MwRXMEMqt7ft4KnntpAjggoliMQqsW0Hz3PJpkfR+WHCZLn8ojWsWLHshMMa29vb+ZM//2sOFeIUg/UoN4/vZkpDdn3AAjuI5UTRTohAoY+GYIo//crvlUPrmJ/cv5Fvb3iQQuUK07UsjpptXJww2DFwQpTHG7t58NImDIaqIFAJXpbgaBu/8bH38MFr1x9W+5VXXuEPbvu/+DVvAT8L2QEIVpiAbQdNB1P7pSHBSSgkIVILVgRr8EX+v9t+n/POO++w1/KOOzew8dFfMWo1QKQRgjWQ7yvtTXtEdzgQg1AdFIYg20Olf4j1V72Nmz75sUlf4/7+fv76H/6NA8MObnw+biFPsZDDd1209lHKwnIcAsEwTiCAk25nfsLl9377M5OG1iN/B5545mU6Dw0yNJIinc7h+T62ZRGLhamuitPSUMOvXbL2pH4HJtZ98tnNDKYKZPKaQtHD1xpLKYIBm2hIURMPcsXFF5yw7mFvtDQuJp3NkUymGE1n8FwX23GojEWpqIgTi4QZ6jnxGy1CCCGEEOL1J8F1Bt4swXWM1nrCPLz+8Xl4c+poaW6c8jw8z/P49nfu4NGnXiZvJ/CcKrDDaGWhtA9eDtsdIeQNc/Xla/nMpz+FbR89r9T3fb7wlT9ne/soxfg5Zuiu74Fv5lzi5U2nUSkzL9MZ60La4GYIpHazcm4l3/zzr5S7rRO98sorfOlr/5dCdB5UngvFYdMl9nLjw2/tsJn7GqiC0V0EMwf5i68eHlrHZDIZvnvn3fzqpTaGcgHcYI0J0E60NG+0FLK9vBlGXBjFKQ5SHS5y2VtWcPON1x83ZPm+z8afPciDjz1Dyq/AD1ajAzHABjxUMY1VGCJuJVl35aW8773vnvR5T2a2fwdORd1T8UaLEEIIIYR4fUlwnYE3W3A9VTzP49FHH+WlLdvZ19FLoeASDDosbJ3D2vNXctVVV00aWCfq7+/nT77xN3QMeuQD1fiRVkCbAHsky9Sysp2EikO01tj86Zf/93E7jsVikS//8W288loHfrTZDEUOVJiFoPyi6bZmD2Flujh/6Vy+/qdfLQ8PnszE4bddvQNk/QiuFcVXTrmLa2kXx88QsbK0zKk7qeG3E/m+z+bNm9m+Yxd727vJ5wuEQkEWzW1i5fIlrFmz5qQD69noVIVsIYQQQghx+klwnQEJrmeW/v5+vvX332Z3d4pcEVynEh2oxLejZkEm7WF5GVRxFMcdJRyAc5ri/J/P/8ZxQ+tExWKR733ve7yweTu9g0k8T2Pbijk1Fbx1zUpuvvnm4wbWiU7V8FshhBBCCCHeaCS4zoAE1zPP2DDZTf/9NKN5i4Jn4/l6bNYstqUI2h6VIZ/3vvNtUxome6pIZ1AIIYQQQojjk+A6AxJcz1xv9mGyQgghhBBCvJHIPq7iDcmyLNauXcvatWtf71sRQgghhBBCzJC0nIQQQgghhBBCnNEkuAohhBBCCCGEOKNJcBVCCCGEEEIIcUaT4CqEEEIIIYQQ4owmwVUIIYQQQgghxBlNgqsQQgghhBBCiDOaBFchhBBCCCGEEGc0Ca5CCCGEEEIIIc5oElyFEEIIIYQQQpzRJLgKIYQQQgghhDijSXAVQgghhBBCCHFGk+AqhBBCCCGEEOKM5rzeNyDEm53v+3R3d9PZ1UNnTx/5QpFQMEBLYz0tzY00NzejlHq9b1MIIYQQQojXjQRX8YZ0qsLgbNbVWrO9bQdPPbeFHBGscIJwtAE75JD0XDp2j+JvaydMlssuOp+VK5ZLgBVCCCGEEG9KElzFG8pYGHzimZfpPDTI0GiKdCqL52tsSxGLR6iujNPSUMMVl1xw0mFwtkNmJpNh46ZH6RqFRON5RJ3AYd8PAOFoHGjGc4s8/Oxu2nbuYf26q4hGozN8lYQQQgghxKly5ZVX8vjjj0/pnF/84hdceeWVUzpnZGSEjRs38sgjj/DSSy+xf/9+MpkMiUSCVatWsX79em655RYSicSU6p6plNZav943cba65ZZP853vfPf1vo2z3mx1MTOZDPc/8DDPbN5Bd+8AXrgeFa3HCVeBFQC/iJsbQWf6sHN9NDbUcOkFK7j2fdccNwxODJlVcxaQSY2QHB5kdHQEz3OxbYfKyioqEjVE4wmGe/bSUqWOGTIzmQwb7tlILtRCRXU9Wvskh/uPWbMiUY9SiuRQH5FCJ9dft17CqxBCCCHEGWqqwdWyLA4ePEhLS8tJn7Np0yY+9KEPkc/nj3tcY2Mj//Ef/8E73vGOk659ppLgOgMSXGdmrIv55HObGUhpsl6QvGehAQWEbJ+IXaAurrjsojXH7WJmMhm+e+fdPPPSTnLBBkINK/BReG4Rz3XRWqOUwnYcbCeApTW5Q9uJFPu49C3LuPnG648bMrPBZrLZNAf37SJb1BQ9hed5aA1KgW3bBGxNJKCYt3AJkUiMaLHrqJCpteaH926k36shnqjjUNd+2vfvxrXjqFAVTiiOshy07+LmU+j8CI6XYu6Cc2hoXkBquJ86e5CPXrf+hGH+bJo7ezbdqxBCCCHE8ezbt490On3cY9ra2rj++usBuOaaa3jooYemdI277rqLT37yk1iWxTXXXMN73vMezj//fBKJBB0dHfz7v/87d999NwDRaJSnnnqKNWvWTOv5nClkqLB4XWQyGX666RG2HxhmqBDGt8IoJ4wTDGFZFr7vky3mGSrk6Ell6XzweVbu3M371119VMDUWnP3j+7jl89th/o12OEaUukUvuuifQ/te+VjlWWjLBvLcQjXraCQG+SXz24mGr6Pmz75scPCkdaajZseJanq6Nz7Kv2DI6RzLkXXxXV9XN/FHdgFxQwohQKUUhzc+SLnrrmclrkL2bjp0cNC5va2HXSOaKoaKtj+0lOkigFC9ecRsI/8qxjCCcWAOfhekb3t++nr6WTpqrfSeWiA7W07WLVyxaSv7dk0d7b85sWzmxlMFcgUNIWCi6/BUhB8tZtocCs18SCXX3z8Ny+EEEIIIc4ECxcuPOExd955Z/nrX//1X5/yNQKBAJ/97Gf58pe/zLx58w773gUXXMD73/9+LrvsMn7nd36HTCbD7/3e7/Hf//3fU77OmUQ6rjMgHdfpyWQy3Hn3j9nR7VN0EgSjVWQGDpIe6iabHsH3fSzLIhKrIlbdRLR2PvnMMEF3mOVNFp+8/kOHhddXtm7jL/7uO7g1F+A6cYq5DL5bADsEdghlB0BZoH20VwQvD14OywkRCEdx3BTO4Mt86X/dwnmrV5XrbtvexqYn2+jo7ObQUJpMNkuhUESHqiGUQDtR/L0PQPbQYc/PClZQs+hiGmpitDY3se7yFaxauQLf9/n29+/GqjmXHVuex422EozXnvTrVkgN4GQ7WH7ehfiDr/GbN33sqBB3+NzZRdhHzJ2dyHOLDHXvOe6w5lMpk8nw0589wvZ9vQwnc3iBymN2ne3iKFXxEKsWNfL+9x795oUQQgghxNnC933mzZtHZ2cn8Xic3t7eU/ZvmwsvvJAXXngBy7Lo7e2lrq7ulFzndJCOqzittNbce/8mXjlYQFW0kup5lYHuvfh2DJwwqHh5d+FsqsDg8KtYu1+itmkRVuNStrZ3cO/9m/jE9dehlML3fe7ccA/5UBO+ClNMD6OtMCo2x4TVIyg7CMRA+/i5EQrpYXQ4jhdq4s4N9/BXq1aW6z757GZ6eofpOtRPKlvAD9VB7TwThC0LpSyw7KOu4SuL4dERvGIWx7Z58tkCK1csp7u7m6wO071jy5RDK0AwXksB2L1jC00N1XR1dR02F2Li3Nna1nq01oyOJkkmU4ym0nieh23bVMZjVFTEqayooG7uMvqH+rj73o2nde5sJpPhzg33suPAIEWnmtCcZQRP0HUeGNzP01v3M5K8lxuvv07CqxBCCCHOSo8++iidnZ0AfOQjHzml/6a58soreeGFF/B9n3379p3VwfXof9kLcQpt297Gs9u78EPVdGx9mEO93XjBGnR0DrpiHiSWQM1ySCxBV8xDR+fgBWs41NtNx9aH8YLVPLu9i23b2wBob29nb8cAXmwuhUwSHUygItWThtbDKAsVqUYHExQySbzYXPZ2DNDR0QFAd3c3Xf2jtLd3kExl8CvOQVWdgwpGwQmC5Rz7GnYYv+IcRlMZ2ts76Oofpauri86uHoZH0ySLzpRD65hgvJZk0WF4JE1nV0/58bFhzblQCxWJeg4d6uPFzdto29NJx2CejI5RdBJkdIyOwTxtezp5YfNWDh3qoyJRTzbYwsZNj3I6BmBorbn3vk28svsQfsUiIvXnYB0VWg9n2QGi9UvwKxaxZdch7r1v02m5VyGEEEKI2faDH/yg/PV0hglPxcTFm2z76IbL2USCqzhtfN/n/gd/QdZO0Ln9cfI6jIq3oOrPx0osxorUoQJRlB1EBaJYkTqsxGJU/fkQayGvw3Ruf5ysneD+B3+B1pqnfvU0xUAtxWwawtWoQGRK96QCEQhXU8ymKTq1PPHkUwC0d3Sxf/9Bkuk0umopKtoAdsCsxHTCohYq2oCuWkoynWbfvoN0dHbT0X2Ivv5+wjUnnvdwPOGahfQN9NPR01d+bGzubDieYPuOV9nbOYgTbyRSWU84WoETCGLZDk4gSDhaQaSyHifeyJ7OQbbveJVwPEHniJlveqpt297GM1t2YdecO62us11zLs9s2VV+80IIIYQQ4myRSqX48Y9/DMD8+fOnvAXOVI2tbhwIBDjnnHNO6bVONQmu4rTp7Oxkf2+G/v1bKFgxVM0yVNVClHX8bpuyHKzEQlTNMgpWjP79W9jfm6Gzs5OtO3ZRtKLgRKYcWsv1AxFwIhTtKFt37AZgx6u7GBwcwIs0m2HHkwwJPi7LRsXm4EWaGRoaoO3VXfT39+M7lSfsLp64tIPvVNLfZ4Kr7/s89dwW4nXz2db2GhkdJVJZh7KO/9dbWRbRyjoyOsq2Ha8Rr5vPU89tOaWdTN/3uX/To3iRxhl1nb1II/efpg6xEEIIIcRsueeee8orDt94442ndNHJBx54gFdeeQWAd7/73VRWVp6ya50OMsdVnDbbtu9geGSYXMHHalyBCldP6XwVrsaqXUGu5wWGR4bZuq2Nrt4BfGshTjgxo3tT4QRetp/uXjPfYP+BgxR8G6rOmXpoHWOZ8wvJAxzYf4BEdTU6UDOj+xyjAxVkskMApbmzEXr2HcR1KgmGpzZPIhiOUsjBnn0HaayIHDV3dqKZblvT2dnJwd4RYgsvmNI9HilSt5iD+x6js7OT1tbWGdUSQgghhDhdTtcw4cHBQW699VbADBH+0z/901N2rdNFgqs4bXbs2kdyuA9Ve96UQ+sYFa5GVS0kOfAKO3bvI5vLQTx24jmtJyxsgR0jk8oB0NHRgY7MwQ6EZ1TWCoTxInNo7+gkUVNrhhvPhgnDlju7ehjOaEbzEK2c3uT+YDjK6GiGsO3T2dVzVHCdrS12tm1vwwvWzUrX2QvWsXXbdgmuQgghhDgrdHR08NhjjwFwySWXcO65556S63iexyc+8QkOHDgAwFe+8hUuuGBmTYMzgQRXcdrs27cPbUWwqhbMqI6qWoA/tIt9e/ehfR9mGILKbNvUA0ZTGaioP7k5rcejFETqGE0eJBqNokbcWbhRUL5LNGJCakf3IfqG00RmOHc2Eq+hb3AfnRPmzsKRW+ycR/SILXYCQDgaB5rx3CIPP7ubtp17Jt1i59Xd+3Fis7OanROr49U9B1g3K9WEEEIIIU6tu+66C7/0b81PfepTp+w6n/vc53jwwQcBWL9+PX/8x398yq51OskcV3HaDA0NQazphHNaT0RZDsSaGB4eJhRwwM3Nzg26eVMPKHhAsGJ26gYrKHiautoaLD9XDsfTpX0fy89RX2fmiPYPDOJb4RPOaT0RZVn4Vpi+/oHyY2Nb7PR7NdS2Lj3uvrAAthMwW+x4Ndx970Yymcxh3x8YShKMzM78imCkksGh5KzUEkIIIYQ41e68804AQqEQ119//Sm5xpe+9CX+9V//FYArrriC//qv/zrrVxMeIx3XSdx+++3cfvvtJzxu2bKlp+Fu3jjyRQ+VmN6CPEdS4VpyI3tomtNA3/AQMH/mRfND1NQkTH1lm31aZ4GpZdPa1ED9wRyHUoNEK6ffdcymBmlIRGlprAdMuNRWbFbuVVtOee7sYVvsVNdPqU5FdT3JIdi46VE+et368WHDSqFnaRECrRT61K1nIIQQQggxa1544QXa2syOCOvXr6e6enrT5o7nm9/8Jn/5l38JwNq1a9m4cSORyPQWLz0TSXCdxK233lqezHw8t9zy6dNwN28cyg6CPUt/eZwIygmyYMF8dj27B9/NYjnTr+27Waz8EAsXmGXCw0GbjJcH7YGawbtU2gMvTzjk0NLcSCLaTs6DTC4z5UWUAAq5DJUhSEQtWpobS9fwwStO/x4n8opQWql3bIudurlTC61jKqrr6WwfYHvbDlatXAFAbXUlfckMocjMu9nFfIba6rN7dTwhhBBCvDlMXJTpVAwT/sd//Ee++MUvArB8+XJ+/vOfn/WrCB9JhgqL0yYSDptQNNMtTEo1ouEwy5cspLKqAob3Tr+u1jC8l4rKCpadswCApjk1qMIwauz706yrAFUYormhhqamJiIqy+KF83DcUQq5zAlLTFTIZXC8URYvnEtEZWlubgYwc2eLszNkVhWTRCOR8hY71U2LZ1SvumnxYVvsLF08HzczNBu3ipsZYumiWei0CyGEEEKcQsVikQ0bNgBQX1/PunWzu0LHnXfeyW//9m8DsGjRIh555BHq6mZnTZEziQRXcdq0NNahdB7tz6w7qP0iys/TPKeeVSuXUxkLE1Zp/Ezv1EOm1viZXsIqTVU8zOpVpjN44ZrVWNlDgG8+plF37Fwr28db16zCsiwuu+h8Uv0HWLXiXKIqQ2a0/4RzXrXvkxntJ6oyrFp+Lqn+g1x20fnl4bd1dXVY7ii+N7OFn3yviOWOUldfT3d3NzkiJ5zTeiK2EyCH2WIHYNXK5dj5gVmZ52vnB8o/LyGEEEKIM9WmTZvo6zOLX3784x/HcWZv0Ou9997LzTffjNaa1tZWHn300XJz441Ggqs4bVYtP4eAlzTDZ31vekV8D7RHwE+yavliWlpaWNAQoa75XILpfehML9o/uQCnfRed6SWY3kdt0xIWNETK28BcdtnbCPnDkB3EsiwUvrnvk6uMwseyLMgOEvKHueKKywFYuWI5LVWKXGqYlcuXsrilBjfVQ3a0j1wmiVss4HsubrFALpMkO9qHm+phcUstK5cvJZcapqVKsXLF8vLVWpsaqK+rIze4byqv5FFyg/upr62jtbGezq4erBnujTtGhRJ0dvUA0NLSwrz6MOnRQzOqmR45xLz68DH3mxVCCCGEOFNMZ+/WO+64A6UUSiluu+22SY956KGHuOGGG/A8j4aGBh555BEWLFgwC3d8ZpLgKk6by992CYHiIEHHMl3XqYZX30P7RYKORaA4yBWXXYplWVz7nncQdvtpXnIh4VwHDO/Cd7MmmGp/fHiy1mjto30X383C8C7CuQ6al1xIxBvg2ve8o9zFnDt3LkvmN2In90Exg7IsLGWb8Kq94w55Viizwm8xg53cx5L5jeW9RpVSrF93FeF8J8nhPhoa6nnrmtWsWNxCa02IqJUh4A4TtTK01oRYsbiFt65ZTUNDHcnhPiKFTtavu+qwPVJbmhtJVMaoCLgUUgOT3tOJFFIDVARcElUxWpob6ezpIxydnXkRkVglnb39AOWfVyDdMeWh0uV7zWUIZDoO+3kJIYQQQpyJhoaG2LhxIwCrVq1i7dq1s1L3mWee4UMf+hCFQoFAIMDf/M3fUCwW2bZt2zE/hoeHZ+XarxdZnEmcNq2trSxujLA7O0QwVEvRLaI9D2UFjr9fqtZmeDA+wYCNlR9gcWOkHAZXrVzBxSt38vSr/TQvvYTUwEEGe17Gc6rQ4Wp0IG4WWNIeFFOo3BCOO0JN40Litash1cHFK5vLCwiBCVifvOEjfONvvk0q3YGOtaKdMLbtmPmaWpdy62ThVaOKGVS6g7ga4ZM3/MZhASsajfKxD69n46ZH6WwfoLppMZWVFVRWVjBZ/9Bziwx176GlSrH+uvVH7Y1q5s7mOGf5+ezY8jwFIBg/+dWbC6kBnGwH55x3If7gazQ3N5N/5iXs0Oz858G2HQr5QvnP4z+vgxSYN6VFqgq5DP7oQS454uclhBBCCHEmuvvuu8nn88DJd1tPxoMPPljedrBYLPKJT3zihOd873vf46abbpq1ezjdpOMqThvLsrjxf3yQcLadoHIJBRwspcHPo72CGeJb7pCazqj2CuDnsZUmFHAIKpdwtp0b/8cHy2FQKcV1167jvHlBnFwP0aoGFq99F63z5lMTyhPN7iOc3Ek0u4+aUJ7WefNZvPZdRKvqcXI9rJ4b5Lpr1x3VvVu9aiXvvvISovl27GwXVmHU3I/2QIFlKRSTBG7fw852Ec238+4rL2H1qpVHHRKNRvnodeu55uJzyPe8wmBHG0N9XeQyKYr5HLlMiqG+LgY72sj3vMK7Ll7CRycJrWOv62UXnU9qoJNVa99GxD1Epm/XCee8+l6RTN8uIu4hVl3wNlIDneW5s6FgAG+Gc2bHeJ5LMBQs/3niz8vKdE1pnq+V6Trmz0sIIYQQ4kwztnerbdsnFS7FsSmtZ7rE65vXLbd8mu9857uv922cVbTWfO+uDfz8hS6oXAROlHwhj+9rfD1+zFgosUoBMRQMgZuB0b28+63N3Hzjx44KLplMhp9ueoTt+4cYKkbwrTDKCeMEQliWhe/7uMU82s1heVmqg3lWLkjw/nVXTxoIx2p+9867efqlHaSpxI80ou0I2gqirQDFV3+ITvcedo4VqqSu5Rze9pbl3Hzj9cesPfE16erqorOrh87efgr5AsFQkJY5dbQ0N9Lc3HzCkKa15of3bqTfqyGeqONQ137a9+/GteMQrCIQjqMsB+27FHMpKIzgeCnmLVhCffN8UsP91NmD5T1Xn3v+RZ7dnSRRN/PJ/UN9XVyypIKLLnzLYY+fip+XEEIIIYR4Y5LgOgMSXKcnk8nwvbt+yNOvDpOzawhVNuJr8DwPz/PQ2kcpC9u2sW0bS2nyo72EvUEuXZrg5hs/eszgorVme9sOnnpuM/0pTdYLkvcttDajkUOWT8QuUBdXXH7RBaxYseyEoTCTyXD/Aw/z9Mtt9BwapOhU4QWqUHaYfNcL+LnhUqfYQ2mXisoEH77uw1z7vmtOa8DKZDJsuGcjuVALFdX1aK1JDveRHB5kdHQEz3OxbYfKyioqEjVUJOpRSpEcMnNnr5/Q0e3s7ORHDz1PTevMh+MOdrTxkXddOOlCSqfi5yWEEEIIId54JLjOgATX6ctkMtz/s4d5Zls73aMWnhNHBaI4wSjKstC+j1vIoIsZbDdFc6Xm4lWtXPvekwuDs9HFPLLe9rYdPPHMy3QeGmRoJEU6ncPzfWzLIhYLU10Vp6Whhl+7ZO3rFrAymYyZOzuiqW5afNztbA6bO7vuqsNeV9/3+fb37ybUeN6MtsTx3CL5nlf4zZuO7pBPNNs/LyGEEEII8cYiwXUGJLjOzFgYfPK5zXT0ZRjKaNIFje+DZUEsqKiOKlrro1xxhnTbzoaANd7F3EKOCCqUIBKrxLYdPM8lmx5F54cJk+Xyi9Yc83Xdtr2Nh5/dTd3cZdO+l/72nVxz8TmykJIQQgghhJgRCa4zIMF1dpwNYfBsNNPXdeK82Yrq+ilfPznUd9i8WSGEEEIIIaZLtsMRrzulFC0tLZPOgRTTN9PXdWzP2Q33bCQ5xJTC69i82fUSWoUQQgghxCyQ7XCEEMc0tudsnT1If/tOPLd43OM9t0h/+07q7MHDFnsSQgghhBBiJqTjKoQ4rrE9Z0923uy7Lj72vFkhhBBCCCGmQ4KrEOKElFKsWrmClSuWT5g32zc+b3ZJHS3NS2Q+shBCCCGEOCUkuAohTprMRxZCCCGEEK8HmeMqhBBCCCGEEOKMJsFVCCGEEEIIIcQZTYKrEEIIIYQQQogzmgRXIYQQQgghhBBnNAmuQgghhBBCCCHOaBJchRBCCCGEEEKc0SS4CiGEEEIIIYQ4o0lwFUIIIYQQQghxRpPgKoQQQgghhBDijCbBVQghhBBCCCHEGU2CqxBCCCGEEEKIM5oEVyGEEEIIIYQQZzTn9b4BIXzfp7u7m86uHjp7+sgXioSCAVoa62lpbqS5uRml1OteUwghhBBCCPH6kOAqTtpsh0GtNdvbdvDLp19i74F2+gaHSKdyeL7GthSxeJj6mmoWzZ/Lr126lpUrlp+w/ljNJ5/dzGCqQKagKRRcfA2WguCr3USDW6mJB7n84jUnVfNUvganquaprCuEEEIIIcTpprTW+vW+ibPVLbd8mu9857uv922ccuUw+MzLdAxkGc5AKu/haYWtNPGQTSIKrfVRLr/o5MJgJpPhvo0P8Ysnn6Pr0CBesBYdrkZbYbAs8H2Un0PlhrALAzTVV/POKy7mA+vfRTQaPWbNn/7sEbbv62VwNMNwRpMtWhQ8azy42j6RgE911CZREWLVokbe/96rj1nzqNfguc0MpDRZL0jes9CAAkK2T8QuUBdXXHaSr8FYzaee20KOCFY4QThaiW07eJ5LLjOKnxsmTJbLLjr/pEP2qaorhBBCCCFOzsn+2+rtb387jz322IyutW3bNv75n/+Zxx9/nAMHDpDL5aiqqmLlypVce+21/MZv/AYVFRUzusaZQILrDLwZgmsmk+H+nz3MM9s66B5VeE4cFYjhBCMoy0L7Pm4hiy6msd0UTZU+l6yay7Xvvea4AfNfvnsXj//qJbJOHTraDE4IlAPKHj9Qe6BdcHOoTDcRt58rL1vLb95841G1M5kMd264l7b9A3QNFRgpBMH30L5bOkIB5lddWeY6VcE8zTUhVi6s5cbrrzt+IN70CNsPDDOYD5FKpchlMxTyWbTvoyyLYChCOBIlHotRE8qzckE171937ECcyWTYuOlRukahsmEefV376evuYGhoENdzcWyH6uoa6ptaqW9exEjvPlqqFOvXXXXckD2xbqJxEbYTOOaxnltkqHvPSdUVQgghhBAn73QF129+85v80R/9EZ7nHfOYuXPncv/997NmzZppX+dMIMF1Bt7owTWTyfC9u37I068Ok3NqCFU0Ytn2MY/3PZf8aC9hb5BLlya4+caPHhWGtNZ8+7s/4P6HnqQQXwLhGrQdRlkOWjmgLMohU/so7aI9F+XnIDdIMLWLa991Ob/x6V8v/wdBa82/b7iXx194lY7RAK6vKbdYtQ/l8ApYpWv4GpTCsRVzK4v82luX8omPXXfUf2QymQx33v1j2ro8+oeSjI4M4Acq0YFKVCCCxkbhoYtZVHEUqzBKZVUNdTWVrGi2+eT1H5o0ZG+4ZyOZQBPd7bvZ89pO3FAtKlqPE64CKwB+ETc3gs704eQHWHzuMprmnkPM7eb669ZPGjLH6uZCLVRU15/0zzk51Eek0HnMukIIIYQQYmrG/k35W7/1W3zuc5875nGxWIyFCxdO6xr/+Z//ycc//nEAgsEgt956K1dffTV1dXXs2bOHf/zHf+TJJ58EYM6cOezcuZNEIjGta50JZI6rmJTWmg333Mcvt/dD5SIi0Sq01mSzWQqFAq7roU32w3FsgsEgkXCESHULhUycX27fS+Se+7j5xo8dFgZf2bqNjQ/9knx8CUQawImAFUQrBSiTWcvB1UbjgKXRfgCUQx6fjQ/9kosvXMv5560GYNv2Nn75/DYODjv4vmvO9fIQjEGgEuyQ6eRqzzzupsDNgB3E9S0ODGl++fw2zl+9jNWrVh72Gtx7/yZe2pOkt6+fglWBX7kcPzeCzoyA22OCsbLAiaCCFVhVzQxlukmnDpLL1hG7fxOfuP66w0L2xk2PMuRW8MqzD5NWVQRa344e7SY/3EMxv7dcMxCKEqxoQNWvZOeBHXQc2Md5b7mUjZse5aPXrT/sdR2rO9XQClBRXU9yiEnrCiGEEEKI6WtoaGDVqlWnpPbXv/718tf33nsv73vf+8p/vuiii7jhhhv48Ic/zL333ktvby//9m//xu///u+fkns5HWQ7HDGprdvaeOSZXVC5iGCkimQySV//IMl0jryr8AjgW0E8AuRdRTKd41D/AMlkkmCkCioX8cgzu9i6ra1c0/d9/unbd5BzaiEyBwJxEyot24Q/ZWF+JZX5PPaYZZvjAnGIzCHn1PJP374DrTW+73Pfzx5m/+4d+D0vwqFnoe9FGH4VhneBX4BsH6S7zGe/AMEqqFhguq9eFt+Hg31Z7vvZw0wcgLBtextPbt5PV08PuVAzRd/CO7QVne4GL1c6qvRXyMuh0914h7ZR9C1yoWa6enp4cvN+tm0ffw22t+1gT3eSF595nEz0HAq+Rf+r/81o30FyRR/PjuA5cTw7Qq7oM9p3kP5Xf0FR22Si5/DiM4+zpzvJ9rYdh/28trftoHNETzm0jqmorqdzRB9VVwghhBBCnHlGR0fZvn07AGvXrj0stE701a9+tfz1008/fVru7VSRjqs4iu/73PVfPyEfmUcwGKN/YAAPC6yQ6Vr6rukKji1NpCzT0bQCZPJF8vkBEokq8pF53PVfP+Gbq1aglOLAgQPs6+xH118IgQozJHas06pd8L2j61p2ae6rZY4PVKDj89jX+Tzt7e0opXhx6260m4di8vAnol0IVUGsebzj6qYhPwKFHghVmzCc7sKzIry4dTednZ20traWAvGjdPWNUAg14w93gPJN2A1UmrpOdELdjKmrRyA7gJcdQscb6err4r6fPcqqlSvQWvPEMy+zc8cO8rFFpLra8JUNwUpUKGFqBmLjNYvmXnXeJjvaT36kl3jDInbuaCMR0eVFlXzf56nntlDddN6Mfu7VTYt56rktsliTEEIIIcQZrlAolL9etGjRMY9bvHjxpOecjSS4iqN0dHSwpyeL0zqHoaERfBUoDbPNlAKqA1bQhE6tJ4TZPFgBPBVgaGiEqqo57OnYTUdHB3PnzmXTgw/iB2sgVDMeWv0ieIXx7qoqdVvR5sMrgM6BHTTnWAEI1eAHa3jggZ/R0jqXVNYvBd4jWKVz3DTlcc1WAOItoOZD6iDkhiBSD+keUgWfza9spbW1lc7OTrbu7iRHNTrZae4tVAfxVrO405GcCIRrzWJQqQ7I9eMnO8kFY2zd3UlnZydKKV7be5ARL0ym51W0E0NF55iaSqG1X3o9AWwIVqFC1eaxVDt+5hDJnlfxKqt5be9Burq6aGlpobu7mxwRosdZiOlk2E6AHJFyXSGEEEIIcWaqq6ujpqaGwcFB9u7de8zj9uzZU/566dKlp+PWThkZKiyO8uSvnsEPNzA6mjIdQS8P6NKc0WgpRNoThvEGzePBGGPzS31lm/PD9TzxlBmW8MwLm01IdCLmQm7WBFfLGQ+ldsjUs0Pjj1mOOc7NmvOcCETqefqFl/nvx58wx6tJfpW1b8JrMAHhGvPZCpo6uX4zx7ZiHhRGys/rkV/8EoAtW7czkiqgC2lTq+ocVOUCE1rHRjRb1oQPSqObHVTlAqg6x9xCIc1IqsCWV7Zx4GAHBzp6yIwOo+0IqnopxFtLqx/7gDLP1XbMZ5R53PcgPhdVvRRtR8iMDnOgo4f2ji4AOrt6sMKJWfnZq1CCzq6eWaklhBBCCPFm98Mf/pAVK1YQjUapqKhgyZIlfOpTn+IXv/jFjGv/z//5PwF46aWXePDBByc95s/+7M8AcByHz3zmMzO+5utJgqs4yrYduymoKJ5WpuNph0ph80S/LmaRIuwQeAU8rSioGNt2mHd6+gaTZniuUmZoLcoEybGQqmzz2NhHafix+X7QPOZmzPmhavqGUuzZe8B0JCe9Hae0+JMz3il2IuYeIg2lLrEL8Xkm5GrNnj0HAHj62RfxtGNCe+JcM5R3LKyWk+sRz53xEKtCCUicC14eTzv86rkXefGlzWQKZiElVbPUDDXWGpwA2IHxFY/H5vdajnncCZSOi6JqlqK1JlOA5198CYDOnj7C0cqp/ZCPIRKrpLO3f1ZqCSGEEEK82bW1tbFjxw6y2SypVIrdu3fzgx/8gHe+85186EMfYmRkZNq1v/zlL/Pud78bgA9+8IP8/u//Pps2beL555/n7rvv5sorr+RHP/oRtm3zD//wDyxbtmy2ntbrQoYKi6P09g9ToBlluWCHTXiairHjvRwFz+HQ4BAAruebsOZmTTCzQ5N3So+ixoOtlzPnO1Fc18Mt5qAqYDq/k5ynrMnrax8IJUy9/AiEKqFg9mcF2H+wA1wbEktKoXUsUAP45ZHME2/RfHsswGpUKIGOtcDQLvYfSJHPF/AKGahdBU5pLuuk930kC2zLdF6dGFTMwxvYxsF203HNF4rYodn5q2zbDoX82T3/QQghhBDi9RaNRrn22mu56qqrWLZsGfF4nL6+Ph5//HH++Z//mYGBAX7yk5/wgQ98gIcffphAYOpTvmKxGBs3buQHP/gB3/jGN/jWt77Ft771rcOOue666/jiF7/IhRdeOFtP7XUjwVUcJZlKQcw1iyJNNbSOsQPljmYymTKPacx8WPRRofVYARMoDaNlPOy6GVNHA3osTJ5MABw3dj1NGEKMz5Et1esfHIRIsxlKXA6tPkycSjvxlsfWlMIvPV4aPlwxD5L76R/sw/OKJrjHWsxre1KhdeL1bHOdWAuM7KG90wTXUDBA0nOZ2QxXw/NcgqHgLFQSQgghhHjz6uzsnHTP1GuuuYbPf/7zrFu3jpdffpnHH3+cf/qnf+J3fud3pnWd5557jrvuuuuY81wffvhh6uvrOffcc6mqqprWNc4UMlRYHKWQTZsFjQKhmRUKhMBNkc+W5ol6rplPOravKiZAHi+0HnWMKm2NUxgx9ZSGYPwkO7eT18YOmyHEwbipB/jFAoQbULaZa4pfCq0T57Uy4WPi4z7meJQ5P1yPXyyQzeYgMqc0T3aKoXWMZZvzIw1ks2bOb0tjPbnM6PTqHSGbHqVlTt2s1BJCCCGEeLOaLLSOmTNnDj/60Y/KXda///u/n9Y1fvSjH/HOd76TX/ziF6xevZof//jHDAwMUCgU2LNnD9/4xjdwXZd/+Zd/4dJLL6Wrq2ta1zlTSHAVRykWsyYYzvjXw4L8KMVCaVElr2CG5Vqmo3eiwHqk8vFW0NTxCuYaTmj6QXCsbrDSBOLyc7bNUGJlmRCqKIXVk2BZpQatX1qNOAHYFD1t5tfa079Xc2s2hKpNPaCluRE/NzyzmiU6P0xLc+Os1BJCCCGEEJNbtGgR11xzDQC7d++ecqjs7e3lpptuIp/Ps3LlSn71q1/xwQ9+kJqaGgKBAIsWLeJLX/oSP/3pT1FKsWPHDj7/+c+fiqdy2khwFUfR2oJsv9naZSZ1fBdy/aYemDmauQHw3SmH1jHKsswQ5NyAqVfa23XGlAXBitJqvpQWRgqaYcqKqXd0lQmv2vdLi0vZplvsRJmVNwScWPmempqaCJPFc4szquq5RcJkaW5unuH9CSGEEEKIE1mxYkX5687Ozimdu2HDBtJpM6rxy1/+MrFYbNLjrrrqKq666ioAfvKTnzA0NDTNu339yRzXSdx+++3cfvvtJzxu2bKzey+kY7GDEYq+B6P7IXHO9AuN7gffww5GxgoDGpIHoXoGdZMHTZ2xenaUw1dKmhrt+2Z1YTsy/qDC1NRuuUM8ZcoCv2DqKIVtW5ho6TOz8Gom2tqlzq1lWVx20fk8/Oxu6uZOf7W4oe49XHPx+SilTnywEEIIIYSYkZn8m2vHjh3lr9euXXvcY9/ylrfwyCOP4Ps+r732GhdffPG0r/t6kuA6iVtvvZVbb731hMfdcsunT8PdnH6xaJicaoJUBzpSZ1bVnSKdH4ZUB8SaiNFhHrRDEGuFdBc6XIOK1Ey9bnYQ0l2lOn2YwOpPO7eahZ/80pY6E4p4RbPisO+ilY2axlBk7XumO+zlwCsSj1aT8zKga8YXKJ7WTWvwMlREx4P2yhXLadu5h/6hPiqq66dcMjnUR0uVYuWK5TO4MSGEEEIIcbLa2trKX091xJvjjMc41z3+KMlicXxU3sTzzjYyVFgcpbWx3gybtYMwuMOE0CnQ+WEY3GHOD1XQ2tRgvqGASL1ZCGl4lwmhhy3Tezy+OX54lzk/Um86mtqFYsrs7TqVe/T98dDqe2YYbzFl6gGKIhSSJnj6RRNCp1TfA79ozi8kURSZU18DxbTZG/akn/eRfHN+MU1D/XjwV0qxft1VhPOdJIf6plQxOdRHpNDJ+nVXSbdVCCGEEOI02LdvHw8//DAAixcvpqWlZUrnL1y4sPz1E088cdxjf/nLXwLm34sLFiyY2o2eQSS4iqO8/fJLsPJDOHPON8Fr6FX0yL4TznnVvose2QdDr4Lv4jScj5Uf4sor3mYO8D2zoFLlQhM6R/agh/ej3QLHDnI+2i2gh/fDyB5zXuVCE95812xjkx8a387m8DsqB9QjP8y33dI8WQf8/GF1ElWVkOkx3c1SCNVecfzcY74GPtorlkKrZ+plekgkKlm9cgVWfqAUhr3Scz754F4O2b6LlR/g/NUrDzsiGo3ysQ+vp84epL995wnnvHpukf72ndTZg1x/3Xqi0ehJ3osQQgghhDiWn/70p8ftgvb29vLhD3+YQqEAwOc+97mjjrnjjjtQSqGU4rbbbjvq++973/vKDYevf/3rx5wj+6//+q+88MILAFxyySXU1tZO9emcMc7eXrE4Zdacv5r4j58gnR8l0Hwhxd7NkD0E+UF0KAHBKgjETJdSe6aLWBiB/LAJZWgCzRfiZ4eI23nWnLfKFPbykB+A2BwTPlMdJizmh9DBKrOy71F1R0srHGMWYoq3mm5w6qCpZwHZgWMGV7Rf6saq0p/HhhZrE4Itp9QVzZg6pSC56JxzefHl7VAYglDN+H6x2jOLTamxrXDG+OZa5f1gffMc8sOQ7mHxBStZufxc4r98iWQxjUKhnTDKCqDL4XWy95HM9xQW2i+i3By6mCYeLLJi2blHHR2NRvnodevZ3raDp57bQo4IKpQgEqvEth08zyWbHkXnhwmT5V0Xr2HFimXSaRVCCCGEmCWf//znKRaLfPjDH+bSSy9lwYIFRCIR+vv7eeyxx/iXf/kX+vv7Abj88stPaorikZYtW8bNN9/Md7/7XTo7O7ngggv43d/9Xa644goqKipob29nw4YN/Md//Adg1kb5xje+MavP83ST4CqO0tLSwgVLm/nV7iF0oIJA8yV4I3vxR7vMFi+F5OGr7Gq/NCc0j1XZgl21EF1IYeWHuGBpc3nog2Vr/HQPVC8zIbVqEeQGzQrBxTS4mVI9xueA6tK803AthGvMnqvahXQvlq1pbmqgY7jUyT1KKaz6/nhRpUor/o6tdOyCm4V0J/gerc1mfuiCBQt58eWdMPgaNF40HkqVY2ppD5hk+LCmPNwY7cPQa4DNgoULmdvazPKlS3hp50H86pXg5U0YdcKMhdbSLrKAVXoJLEzXOYPSPspS2JmDLF+2hNaWpkl/fkopVq1cwcoVy+nq6qKzq4fO3j4K+QLBUJCWJXW0NC+hublZAqsQQgghxCnQ1dXF3//93x93j9YPf/jD/Nu//RuhUGha1/jHf/xH0uk0d999N319ffzRH/3RpMfFYjH+9V//lSuvvHJa1zlTSHAVR7Esiw+89520/2ATB0e60DTjVJ+DrlqEzhzCzw6iixkT3pSNCkSxKppR0QaUZeHnRiHdxdxqxQfe+85yOHrr2jU898o+SLWbjqsTgegcs7epmzEB0suVAqJlQqoTMVvI2MHxrWqS7ZAf5sK3XMAlF1/E3/3Lf46HxSMp+xgLIenScONiqes7DIVRPnLdxwFoqK+jdv5KBg5uM0Ofq5eZ/WK9Qin42ofPq9WlMKt9c69u3pyXPUTt/FU01NfT1NREa30lo+kCu7oPoCoXgLLxCikTiC0HpWywFPgeWpcWd9IuthMy1xjdzzmtdbTWV55wEr9SipaWlinPmRBCCCGEENP3/e9/n8cff5ynn36avXv30t/fz+joKPF4nLlz5/K2t72NT33qU1x66aUzuk4oFGLDhg189rOf5Y477uCZZ56hs7OTfD5PZWUlS5cu5eqrr+Y3f/M3aW1tnaVn9/qR4ComtWrlCq5Yu5PHtvbTPdiNV0xhxRqw4o1Y8cZJz9G+i5fswXaTNNVFuWJ1HatWju9PddOnfp3nfueLZpucUDWEEiaMWo4Jhbrq8CG/Y51RNWFF3/wwjB6AYpbP3PJpmpub+bt/voNJ06n2TTCdeL72zEdpSDP5YUgeMOfrPO95z3sAaG1qYOmy5bw4Okw+ud8cG2+FyBxQY/NePcY7uZYJrBozrDrVAaMHCCVaOXfZMloa67Esi8svXkOy2IbrtnNgoB0vVIsTrQXt47su2i+CZ7bPsZSNFQyCCuNnBrDzA8xvCDC3tZnLL14h3VIhhBBCiDPQ29/+dt7+9rfPqMZNN93ETTfddFLHvuMd7+Ad73jHjK53NpDgKiallOK6a9eRzv6Ytq4I3QMZksN78J04BKJYThgsG3wP381BMYNyU1RGIzQ11rCi2ea6a9cdFq4WL15MIhFjODM83sUMVZUu6Bxni5jScOH8iDkvN0wiEWP+/Pkopbj2vddw//0bzdxb3zX3ZQVNMPYL4yUmDj/2CpDpgtwohOugfwvXvvea8t6oLc2NVMfaOXf1hex85VmKyQ7Ij0Js0NQNxMEJm/vWnukWF1Ome5vuhcIogYp6zl19ITUxm5ZmE/bHtq0Jxs4n3r6PfZ2HSA4nIRgHJ4LthEurJfv4bg4/OwqFFBVOloULammZu5CmSFq2rRFCCCGEEG8qElzFMUWjUT55/Yf46aZH2L5fM1ioZng0QyY7SjEziK81llKEAw7RihCJikZqQgVWLkjw/nVXH7VKrWVZfPkL/4c//MrXIdtnAlp0DsRaxocBT8Z3zd6tmV5znpfly1/4o3Io/txnP8NTz77EwEgO6i4wKwTnBiGYMAsuOZHxBZ/crAmghWEzZzY6B/pfprY6zuc++5nyJZuamoioLMuXraDguhzYvYNcqh+Gd5vFoQIxM5S5FDLxcqXFpJIQCBGuaWXBOctZvuxc/IEd5WG9Y9vWbLhnI/MXLaWhKc3BfbsZTI2QLSYp5C18bUYLR2yfSMCnpjrA/IVrCEeiRItdrF+3XrqtQgghhBDiTUVpPbb6jZiqW275NN/5zndf79s45bTWpVVqN9Of0mS9IHnfMgvzKghZPhG7QF1ccflFFxx3lVqtNX/3D//MAw8/DnYFRGpMCAxWmo7pkSGzMGI+ihnIDoKb5H3vejv/67f/52HXaG9v53f/8E8ZzeShcj5ULAI3ZVYl9vLl+bjYIXMtJw7JvTB6gMpokL/9q68yd+7cw+512/Y2Hn52N1WNi9n52h46Du5nZLAbv5DHdXNHDWt2nDBWMESipomWeQtYdu5iRnr2cM3F5xw2ZBogk8mwcdOjdI5oEo2LyKSGSQ4PMjo6gue52LZDZWUVFYkaovEEwz17aakyoVe2rRFCCCHE/9/encdXVR16///sM+dkJglmYJAZAgg4gAqKE1IUVGwdK9Wr3ra32N6qVK19VGyrtr1Wr7X8Ojg8VutTZ23FqYgTgoAiMwKCCiEDJGTOyZn23r8/DjmCkJCQ6SR8369XXpycvc9a62SxId+z9lpL5Gij4NoOR0twbWLb9n6r1FZ8vUrtMdkU5Oe2epXaQCDAQwv+yjsfrAB3aixQejNit9469puPapkQDcbmodomROo4e+okfvKj7x8yvBUVFfGLu/+H0sq62PY1yXmx24DdKV9vexOph2AFNJSCYZPXJ5V77vrZQaG16f0+/9JCKsw+pGbksKe8nB27SqmrraKxoZ5wqBHbsjAcDjzeJJKSU0hNy2Rgv3z65mRTV11OtrOSSy4+9Ajp1x8IHH7bmikTtW2NiIiIiBy9FFzb4WgLrh0pEAjw8r/e5F+vvUFlTRA8yfvmuRpfz0e17dhqweEGsjKSmHXet5h9wbdaHHE0TZNHHnuCf3/wCcGwRSQa5cDJszZulwufx8H0qSdx/bVXx+e1NtfOZ15cSNBbQGpmDthQW1dHXV09tQ0BzGgUp8tFWrKf1NQU0lJTwYC6qnKSwsVcdvHMw46QdtQHAiIiIiIivZWCazsouLZP04jje0s/Yf2Gdewp30swbMdvQfZ5DPrmZDF2zHGcOfmkNo04mqbJ4sWL+XTtRr7ctZtwOIrH42JQv2M4ftxozj777BYD6/72v603M28ITpe7+XqjEapKt+u2XhERERGRDqTg2g4Krh2jJ4w46rZeEREREZHuo1WFpdsZhkFBQQEFBQXd3ZRmGYbBmNGFjC4ctV/ILv86ZA/LpiB/WEKEbBERERGR3kbBVaQNekLIFhERERHpbRzd3QARERERERGRlii4ioiIiIiISEJTcBUREREREZGEpuAqIiIiIiIiCU3BVURERERERBKagquIiIiIiIgkNAVXERERERERSWgKriIiIiIiIpLQFFxFREREREQkoSm4ioiIiIiISEJTcBUREREREZGEpuAqIiIiIiIiCU3BVURERERERBKaq7sbID1HOBzmvffe49O1G/myqIxQxMTrdjKofy7HjxvN2WefjdPp7O5mioiIiIhIL6PgKodlmiaPPPYEi5etJuI9Boc/F3faRAynm0YzwsqSSpZvW8Ej/+9fnH3qBP7zumvaFGCDwSD//Oc/+Xj1enaVVRI2LTxOB/1y+3DShLF8+9vfxuXSX1URERER6dluvfVWfve738W/f/fddznjjDM6tI7S0lIKCwuprq4GYOrUqbz33nsdWkd3UBqQFhUVFXHnPQ9STTa+wedhREJEQgEC9TXYloXhcODy+PH0HYPTfTxvrlrLik9/xi9/cSP9+/dvsexoNMpv/ucBln66GcuZjGW4MfABBkRt9u4IsP6rD3nihbeYfPxIbvvZTQqwIiIiItIjrVmzhgceeKDT6/nxj38cD629iea4SrOKioq45a7fUZsyFkfGYKp376SmqpKGoEXI9hF2pBCyfTQELWqqKqneXYQzczC1KWO55a7fUVRU1GzZW7du5ZI5P+CD1V8RdSRjuVLBk4HtzYx/4cnAcqUSdSTz/uqvuGTOD9i6dWsX/gRERERERNrPsiy+//3vE41G6du3b6fV8+qrr/Liiy92ah3dRcNXvVR756Oapsmd9zxIKGMcoXCUSLAB25UO0UYIVUM0CLYFhgNcPmxXMpYrnbq6BtxOCztjHHfe8yCPLvifg+rZunUrN/3iXkIkgScNHD5wusAwwLb3nWWAwwGGHww3WCHqwzXc9It7eeCe2xk+fHiL79+yLEpLSykuKaO4rJxQOILX46YgN4eC/Fzy8/MxDKOdP2URERERkcP7wx/+wMcff8zIkSOZPXs29913X4fXUV9fz9y5cwG4//77+d73vtfhdXQnBddeZv/5qCF3DiT1xfCMBZ8brAilRXUs2/rRYeejPvLYE+w1M4mEokQdfojWQ00RROrAioBtAjZggOEEhxvcqdgNuwhH6gljUW9HuPLKK5k0aSI33XQzELs9+NY77iNke8GbCS53rBh3CnjTwZUcK882IdoAoRqwqsDpBU8moZDFrXfcx/NPP3LI24Zt22bjps9YsmI1u3bXUl0for4xhGVZOBwOUpK8ZKR46X9MGlMmTWB04ag2BVgFYhERERFpi507d3LHHXcA8Oc//5l33323U+q5/fbbKSoq4swzz2TOnDkKrpK4YvNRH6DCysI45kwMlwcMJ4bhwCCWD/H1gdR+hKJBXvt4Mys+nccvf3HTAfNRw+Ewi5euJpI8iigeqNkJgTKIhsDp2Dcqau9XswFGCIK1ECwDMwj7zqgMwZdffhU/897f3k99GPClg8MF3ixI7gdWKDaKG6oGLMARC8P+YyBlADQUQeNecKdTHyzn3t/ez52/uO2A9x8IBPjX64tYvnY7pRW1mO5MjKQsXKlpGA4XUSvKnmAtu0sr2bZzK5u/KOPk8Z9zwXnT8Pv9Lf5smwLx0pVrCZKEw5eBz98Xp9dFnRll17ZarA1F+Ghk8sRxbQ7EIiIiItI7zZ07l/r6eq6++mqmTp3aKcF15cqVLFiwAI/Hw5/+9KcOLz8RKLj2EkVFRcy787c0pI7FmZqPw+HGsqLY0TCmFcW2Y3fiOhwuDKcLpycVq+94yutKmHfnb7n/l7fGw+t7771HwEglahlQsxUCe8CwY7fu+nNjYdKTDg4PWGEI10BgNzSUxG4f/oaamhogtnrwkpVrwdsHnG5IHxJrVGNZrCznvq+mW4ZtEyINsRHXfXNeqd4Kbj9LVq4lGo3GR10DgQCP//05lq/9iqA7C0/+yTjC9ZjBWkJVO7BtC8Nw4PKm4EovwHCPoGjv51S8u5qKyiquverSZsNrIBBg4RuLKamFjNzj8LvcBxx3Az5/CpCPGY2waMU2Nm3ezswZZx82EIuIiIhI7/Xcc8+xcOFC+vTpw/33398pdUSjUf7zP/8Ty7K49dZbGTFiRKfU0920OFMvYJomd/z699SnjMWZ1h/bsggFagkHA0TCYaJRC9O0iEYtIuEw4WCAUKAW27JwpvWnIWUsd/z695imCcAnq9cTtpP2jbSWgGFB+rEw8Hw4ZiKkDgRvBrj9sT9TB8aeHzgjdkvvNzQEAgC8/PLLYDvBkRQLrdEAmOFYIPWmgTsZXH5wJcX+dCfHnvdkxM6LBmKvcySB7eT5558HYqOhz77wTz74ZBvhtBE4fRk0lKyloXoPQduLldwfO20IVnJ/graXhuo9NJSuxZWUQThtBEtWbePZF/6JbdsHtT0QCPDMiwupMPuQ1W8Ezm+E1m9yutxk9x9JhdmHZ19aSGDfexcRERGRo0t1dTX//d//DcBvf/tbsrOzO6We+++/n3Xr1jF06FBuv/32TqkjESi49gJ/fewJ9kQycaX1IxpsIBIKYlkWNg5shwdcPnAnxRZRcniwcWBZFpFQkGiwAWdaP/ZEMvnrY08AsGnrFxCNQP1OcDgh7xTIOT52a2+oGuqLoGoLVH4W+7O+KPa8wxMLm9/Q2Bi7dfid9z+Mjagm58YWeXL59wVWf+y1hgOwv74V2XDsKzMpdp7LH3tdci44PbHygPUbNrJo6RrIHE6krpTGQANG1hiMtAHgSiZqmkTCIaKmCa5kjLQBGFljaAw0EKkrxc4YzqKla1i/YeMB7bZtm4VvLCboLSA1M6dNfZKamUOjp4CFbyw+ZCAWERERkd7tlltuoaysjMmTJ3Pdddd1Sh3bt2/nl7/8JQALFizA5/N1Sj2JQMG1hwuHw/z7g49xZI8mEqzHNE1swwWe1FggdHligdNwxv50eWLPe1KxDRemaRIJ1uPIHs2/P/gY0zSpqq6Fqu2x4Jh7MvjzYnNc966DYGUsQKYOiI1+pg6IfR+sjB23Ige1MbpvJLeoeHds8SWXNxZwPSmxeaxNCz0Z++a1Nn3Fg6wV+96Tsm9U1guuZIqKd2NZFk89+zJBd1/CtbuxkvIhOY9wYwORUIiobWA7fOBKwnb4iNoGkVCIcGMDJOdhJeUTrt1N0N2Xp559+YCQuXHTZxTX2G0OrU1SM3MoronNjRURERGRo8eSJUt49NFHcblc/PnPf+60tU9++MMf0tjYyGWXXca5557bKXUkCgXXHu6dd94h6MrBtiwsy4rdZutO2jdP1ALLxLai2GYU24qCZe7bxsbYNwqbFBudtSyCrhzefvttwoEGIAQZQ8GXDVWfxRZO6jMaI3Mohj8Hw5OM4fbF/vTnYGQOhT6jDznH1TZjz5mWFRs5dXhiqwhjxL4cHgynB8PhwnA49vtyYTg9sfObznWnxL73pmFaFkVFRXyxqxLLtrFSCojiJBo1MTwpGB7/vtc794ViZ6wejx/Dk0I0GiWKEyulAMu2+WJXJbt27QJiqwcvXbmWzLwh7eqfzLwhLF25VqOuIiIiIkeJcDjM97//fWzb5sYbb2TMmDGdUs+TTz7J22+/TVpaGg8++GCn1JFIFFx7uGUrVoE3GzMajY18Ot2xsBqNYJvWvrV/HbERVxzYxIKkHY3EQqzTDS5/7PXeLJYu/yS29Y0nBTJGQtVmSM7HyBgcW6W4BYbLA85D3Z4QG3HFdsSOe9L2rRTlwnC6MRwt/zU0HA4Mp3vfyLERe73TC7aTpcuWE3b4MQ0/pu3CdngxmoJ7i4UaGG4/tsOLabswDT9hh58lHy4DoLS0lCBJh53TejhOl5sgSZSUlLSrHBERERHpGe699142b97MgAEDuOuuuzqljoqKCm6+Obbd5D333ENeXl6n1JNIFFx7uO27dmM5fbG5ow4XthmJje45XODcN9JoGPsGLI3Y987YbcO2bWObkX3nerCcSXyxazfghJQCqN8BqQMwkvq0s5X7QqRhfH17sMON4Th4/9gWS3E4v76N2JMKBqz/7HMsC0xvH2ynLxZw21Km043t9GF6+2BZsfIAikvKcPgy2lRWs3V4MyguKeuQskREREQkcW3evJn77rsPgIcffpjk5IPXf+kIN910ExUVFZx44on86Ec/6pQ6Eo22w+nhAoFGrAwXTpcX24zGtqwxWvF5hEFsFNa2sM0ohsuLZbhoCDTGRjOdPnD5OyC0NlUGYMdGhR3ONofWeEkOJ7btjJWDTUlZOZanAMPhbnNojZfpdGNbbixPOiW7iwEoLivH5+97ROV9U1JyGsW7yzukLBERERFJXA8++CDhcJjBgwfHdqd45pmDztmwYUP88TvvvENZWWyAY9asWa0KuiUlJTz11FMAnHXWWTz33HMtnr9nz554OwYNGsSkSZNa/X4SiYLrISxYsIAFCxYc9ryRI7t/jyQzGgXAtqzWh9b9GQ5w7Hs9YEWjscWPzDCk9OuYRsbbZMTCstHOv3bGvsWmMAiHw9hJyThcSe0sMgnLmUw4GFtcKhSO4PR2zOXhdLoIh8IdUpaIiIiIJK5QKATAF198wRVXXHHY83/1q1/FH3/55ZetCq7h8Ne/V/7ud7877PmfffZZvC1XX321gmtvMnfuXObOnXvY86677touaE3L3IZJYzRALBQe4Z3fhiO2BU0kgMuwYo+9GbHbiS3rsHNQD2+/hYnMg1cdPiJmeF+5BrazFXNaD8fYV86+pno9burMKO2b4RpjmlE83pbnB4uIiIiISPM0x7WH8/v90Lh33whkOxhOCO7Fn5wUWxnYnRI/1DQa226GAZHadpUZf12kDgwH/iRvx7Rtn6byCnJzCAZqO6TMxoZaCo7pnA2nRURERCRxPPHEE7F1ZFr42n/BpnfffTf+/LHHHtuqOo499tjD1rH/jhZTp06NP/fEE0908DvuOgquPVxaRhY07sEyQ+0qxzJD0LiH9Iys2GrD3xi9tfdtmdOS2PFDbPuy78JxOJ2x/V73jbq2NbzGzzfDEKzE6XSSmpoC0cZ4HUfMtiHaSFpqKgAF+blYwer2ldlUdKiagvzcDilLRERERHq/J554AsMwMAyD+fPnd3dzEoKCaw+XnpoMvgyo3Ny+gio3gzeDtJQUcBpgNh7ytKYAe6ivZu27jTctJQkwoL6IpoDb2kD89Tk21O8CDNJSkijIzcVp1mOZ7ZtDapkhnGYd+XnHAJCXl4ePRsxo+25tNqMRfDSSn5/frnJERERERI5mCq49XLLfiy/tmNioa/2Rbbli1ZdB4x586ceQnOwlLSMTgjUdNh/V6YxNpR46+FiINsS+gpXsPzrbukBsx163r4yhQweTk9OHtCQgWBUbKT4SlgnBatKSDHJysgBwOBxMnjiOqtLtR1bmPlWl25k8cRxGe+fgioiIiIgcxRRce7js7Bx8dh3+/idBxbo2h1ervgwq1uHvfxI+u46crGxOHFcYu/22cQ+HvPW3jZKTYyv+Tj5lIoYdAYcH6otjYZPW3i5sxc6vL47tAWtFmDzpREYOH0q6D3yOCFa4ru3h1TKxwnX4HBHSvTBq+ND4odGFoyhIN6irOrKtbOqqyilINxhdOOqIXi8iIiIiIjEKrj1cTk4OqR4br8tB0oBJGHvXY+1ZixVtec6rFQ1h7VmLsXc9SQMm4XUZpHpssvv25ZwzTwc7CqFKCNXQ3vCanpYGwLixo8nISIPGMvDnQqAManfsWyG4aX5sU11Njy0wQ7HzAvte17ibjMw0xh03hv798snNySAnzYnHqscO12Ob4cPPebVtbDOMHa7HY9WTk+Ykt28G/Qry4qcYhsHMGWfjCxW3ObzWVZWTFC5m5oyzNdoqIiIiInHz58+PL5Z0xhlnHPKca665Jn7Okc5xbXr9e++9d8RtTSQKrj1cv7y+DBg4CEdgF/7kVPyDz8ThMGDXe1i7P8Wq3YkVqsUKB2J/1u7E2v0p7HoPp8PAP/hM/MmpOALF9B84iH65OUyYMIEcfwg8adBQHAuvdmtHMg8OjCkpsf2oCgoKOG5YP7weL9Ruj4VQVxJUfQY1X8ZWR44EIBqM/dm4N/Z81ebYef5cqN2O1+PluGH9KCgoIC8vj7ysVDJ8FvnHZOMzAhihamwzGAumVjS2SrJtg21hW9HY82YjRqganxEg/5hsMnwWeVmpB81F9fv9XP7tmWQ7K6ko2nzYOa9mNEJF0WaynZVcdvHM2KrPIiIiIiLSLtrHtYcryM8lI30n/XPSKaouxp/aD++A42kMNmLWFBEN7MGu/TJ2C63DieFOxuXvgzNvLEm+JJxEsOp20T8nncz0ZAryc3G5XFx24XT++soKwr5+scWUvH0gKRscrv1WHDaIB1XbAisKTn8s8DrcGFaIvn1S40t7OxwOLjzvbHZVvknR7krCNdtiZWYVxuathupic1htM7Y9jzsJ/FngGgB1RdC4E6/boN8xfbjwvLPjK61NmTSeug83Ed29m4LcftQ3hqncW4FpeLGdHnC4YwtE2TaGFcEwwzjtEH2yckhJcuMO7iKnbzZTJhUecnTU7/dzycUz2bjpM5auXEuQJAxvBknJaTidLkwzSmNDLXaoGh+NnDtpPIWFIzXSKiIiIiLSQRRce7i8vDySjCDDx55A+NOPKG8owfBkkpaSiekfiWmamKaJbVsYhgOn0xn7ckC0sRrCVRyTHGX42FOwKrfGRxxnzZzBhytWsakySDhlYCy8hmvAkwruZHB4YwHWtsAKQaQBwnWQPgRSzsAT3Uthn2p++6v/g8Px9cD+mNGFTBm/mSUbkinbU04wtBcrWAneDPBk7AvHzljQDjdAoAJC23AY4EvykNs3hyljchgzujBe5ujCUWzavB1P8nBKdn2FabgYMmwUDYF6AvV1NAYbsEwLh9NBUnIS/pS+JPuTCVZ9hd+Mkj9oOHlJDS3ORTUMgzGjCxldOIqSkhKKS8oo3l1OOBTG4/VQMCybgvxh5OfnK7CKiIiIiHQww7bbuwHm0eu6667lscce7+5msGHjJhat2EZ632PZvP5jymtCBI1kbGcSOH04XZ54yDSjYTCDGGYAnx0gJ93LyLEnUbPnK6ZNGnpAIKyoqODO+/6X4lAuIXcfTNOAQCmYQWKjrU0jrjY4feDPw+m08UYq6ect4+6f/5Ts7OyD2hsIBHjq2ZfZVGJSUVlLTfVeTBxYtmPfvfixAVLDMHAYFk4s0jOyye6TSmG+kzmXzT7oFtxAIMAzLy6k0ZNPY2MDRV9tI+pMAU86bl8KhsOFbUWJBOshXIPLrGfAscPwJfnxR0p0W6+IiIiISAJTcG2HRAmutm3z/EsLqTD7kJKRzZ6Sr9j51TYao06ieInixMbAwMaFiYsQSS6TgccOIyd/IPXVFWQ7K7nk4pkHjRZWVFTwwB8fZVu5TaMnH9PwxAImX59nYMcCph0iKVzK0ByDm264/pChtUkgEODVN95m41dVVIZ91NfXE2wMEA4FsS0Tw+HE4/XhS/KTkpxMH2+Y0cdmMGvGOc0GzEAgwMI3FlNcY5ORO5hAfTV11ZXU1tZgmlGcThdpaemkZvTBn5JBddkXFKTHFmBSaBURERERSVwKru2QKMEVvh5xDHoLSM3MwbZt6qrLmw1uqRk5GIYRX/22pRFHy7JY+PqbvPnecmrCfkLOVEynn9jaXhZOM4DXrCPdE2DGGadw/nnTD7g9uDm2be+bN7qGinqbRtNDyHLER1y9DoskZ5jsFIMpEye0at7o12Uefi7qlImaiyoiIiIi0hMouLZDIgVXOHDEMTNvCE6Xu9lzzWiEqtLtbRpxtCyLNWvWsPGzz/miqJRQKIzX62Fw/zxGjxrG+PHjWxVYv8m27f3mjVZ8PW/0mGwK8nOPaN5oZ5QpIiIiIiLdQ8G1HRItuIJGHEVEREREpPfRqsK9jFa/FRERERGR3kbBtZcyDIOCggIKCgq6uykiIiIiIiLt0vYJiSIiIiIiIiJdSMFVREREREREEpqCq4iIiIiIiCQ0BVcRERERERFJaAquIiIiIiIiktAUXEVERERERCShKbiKiIiIiIhIQlNwFRERERERkYSm4CoiIiIiIiIJTcFVREREREREEpqCq4iIiIiIiCQ0BVcRERERERFJaK7uboCIZVmUlpZSXFJGcVk5oXAEr8dNQW4OBfm55OfnYxhGdzdTRERERES6iYJrO9TW1fPyq28eNQGrowOmbdts3PQZS1euJUgSDl8GPn9fnF4XdWaUXdtqsTYU4aORyRPHMbpwVK/++YqIiIiIyKEpuLaDZbipsPr2+oDVGQEzEAiw8I3FlNRCRu5x+F3uA467AZ8/BcjHjEZYtGIbmzZvZ+aMs/H7/Z33ZkVERERE2qG2tpbXX3+djz/+mE8++YTi4mLKy8tpbGwkIyODwsJCzjvvPK677jqysrKOuJ5AIMCbb77JokWL+OSTT9i2bRv19fWkpaUxfPhwpk+fzg9/+ENyc3M78N11H8O2bbu7G9FTfefyq7jwujvj35vRCFWl2ylIN7o9YEWjUdatW8fGzz7ni50lBMMRfB43gwfkM3rUMMaPH4/DcfgpzgcGzME4vxEw99fa9x8IBHjmxYUEvQWkZua0+j3VVZWTFC7msotnKryKiIiISEJ6++23mTZt2mHPy87O5u9//zvTp09vcx3r1q1j8uTJ1NfXt3heWloaf/3rX7nsssvaXEeiUXBth28G1ybdGbAsy2Lh62/y5nvLqbdSsTyZ2K5kMJxgmxjRBhzhKlIcdXzrjJOZed63mg2w3wyYtm1RV11BXXUltbU1mGYUp9NFWlo6qRl9SM3IwTCMFt+/bds8/9JCKsw+bQqtTeqqysl2VnLJxTN71ai2iIiIiPQOb7/9Ntdeey1nnnkmJ5xwAv379ycvLw/Lsti1axcvvPACL730EqZp4vF4WLlyJePGjWtTHR9++CGnnXYaAJMnT2bmzJmceOKJZGVlUV5ezksvvcQjjzyCZVk4nU5effVVZsyY0Rlvt8souLZDc8EVuidgVVRU8MAfH2VHjRszZSA4vRgOFw6HC8MwqNn8OtGGcsAG2wIzREZaMg//7wNkZ2cfUNb+ATMlI5s9JV+x88vPqQ1ECZpOwqaBbYNhgMdp43OapPndDBg0lL75x1JfXXHI979h4yYWrdhGdv+RR/4+izYzbdJQxowuPOIyREREREQ6g2maOJ3OFs955ZVXmD17NgCzZ8/mpZdealMdy5Yt46GHHuKuu+6isPDQvxP/85//ZPbs2di2zZAhQ/j888979MCPtsPpJKmZORTXxOaGdoWKigru/u3DbG/IxkwfjispE7c3GZfbi8PpxHA4MAN7idaVEq0rI1q/h2hjDVV1Ie7+7cNUVFQcUN7GTZ9RXGPj86eyYdWHfLpmHV9VWOyNpNPg6ouZ3B8rdSBmcn8aXH3ZG0nnqwqTT1evY8OqD/H5Uw96/5ZlsXTlWjLzhrTrvWbmDWHpyrXoMxcRERERSTSHC60AF110ESNGjABgyZIlba7j1FNP5dlnn202tAJceOGFXHzxxQBs376d1atXt7meRKLg2olaE7Asy6K4uJiVH6/i5Vff5JkXX+XlV99k5cerKC4ublU4syyL+//wV8qsApxp/XF7k1v9aYrh9LDbLuD+P/wVy7Li5S1duZaUrAJWL3+HrTurqTNycGQOxZWWj8uXgcPlw+H04HD5cPkycKXl48gcSq2Rw9ad1axe/i4pWQUHvP/S0lKCJLU4T7Y1nC43QZIoKSlpVzkiIiIiIt0lNTUVgGAw2Gl1nHnmmfHH27dv77R6uoJWFe5E+wesgoKCA4515Eq9r772BtsqwJM3sM2h0DAcuNIHsq20gldfe4MLZ51PaWkpjbaPHWuWs6MiDOmDcXlTD1+Ww4k7LQ8zlMKOii9wrVnOwP758fdfXFKGw5fRpvY1W5c3g+KSsoN+riIiIiIiiW7Lli2sWbMGgJEjj3wK3eGEQqH449aMBCcyjbh2sqaAtb9AIMDzLy3k7ZXb8eYeR59+hWRk5+Pzp+D2+vD5U8jIzqdPv0K8ucexaMU2nn9pIYFA4KDyo9Eo/3zzfRxZI494JNPpcuPIGsk/33w/NgJcUkZVTT1f7NwN6YNxtiK0HlCeNxXSB/PFzt1UVtfH339xWTk+f9oRtfGbkpLTKN5dcfgTRUREREQSQCAQ4PPPP+eBBx5g6tSpRKNRAH760592Wp3vv/9+/PGoUaM6rZ6uoODayb4ZsJpW6q0w+5DVb8Rhw6bT5Sa7/0gqzD48e4jwumbNGqqjKXiS0tvVTk9SOtXRFFavXs2u0j1s27yRaPLANofWeLu9qUSTB7J9y0Z2lZUDEApHcDo7ZpDf6XQRDoU7pCwRERERkc7wxBNPYBgGhmGQnJzM8OHDufnmm9m9ezcAt912G1deeWWn1L127Vpee+01AMaOHavgKi3bP2DZts3CNxa3ef9SiC321OgpYOEbiw+Y97ryk9Xgz2n3CmGGYUBSDis+/pQ9e/ZQHQR3Wl67ynSn5VEdhPJ9F6bX48Y0o+0qs4lpRvF4PR1SloiIiIhIVxo/fjwrV67kvvvu65SVfkOhENdffz2maQJwzz33dHgdXU3BtZPtH7CaVuo9kv1L4dArFW/5oghnUp8OaavT34ctX+5iV1ERtq8vhqN998EbDie2ry9FRUUAFOTmEAzUdkRTaWyopeCY7MOfKCIiIiLSTS666CLWr1/P+vXrWblyJf/4xz+YPXs2a9as4YorrmDhwoWdUu8NN9zAJ598AsDVV1/NrFmzOqWerqTg2smaAlZnbQVT1xDE4fJ1RFNxuHzU1TdSVVOH4cvskDINXyZVtfUAFOTnYgWrO6RcO1RNQX5uh5QlIiIiItIZMjIyGDNmDGPGjOGkk07i8ssv56WXXuLJJ5/kiy++4MILL+SJJ57o0Drvu+8+Hn30UQBOOukkFixY0KHldxcF107WFLA6aysYhwGG3TG33xp2FKfDoCEYwXB7O6ZMt5eGxggAeXl5+GjEjEbaVaYZjeCjkfz8/I5oooiIiIhIl5ozZw6XXHIJlmVxww03UFlZ2SHl/uUvf+H2228HYqsVv/766yQnJ3dI2d1NwfUQFixYQGFh4WG/GupqWixn/4DVGVvBAPTtk0YkUNUh5UYCVeT0ScXhcGBgdUiZBhZOZ+yvmcPhYPLEcVSVtm8PqarS7UyeOK5T5gOIiIiIiHSFCy+8EICGhgbefPPNdpf3j3/8gx/96EcADBw4kEWLFpGd3Xum1mkf10OYO3cuc+fOPex537n8qhaPV5VuZ9qkWMCKbQXTt0PaF1upOLZS75hRQ/ns/S8ge3C7y7Ua9jDmxKE0BDZQZYawzDAO55EvgGSZYVxWiJTkr29lHl04ik2bt1NRVX5Ec33rqsopSDcYXdizV0UTERERkaNbTs7Xvwvv2LGjXWX961//4nvf+x6WZZGXl8fixYvp169fe5uYUDTi2km+GbA6ayuYyaeegjNYhhVt39YwViSEM1jGaVMmM3zwAIxQFU4DbOvIRl5ty8JpgBGsZPig/vHnDcNg5oyz8YWKqasqb1OZdVXlJIWLmTnjbI22ioiIiEiPVlxcHH+ckpJyxOUsXryYSy+9lGg0SlZWFosWLWLIkPatq5OIFFw7waECVmdtBdO/f38GFWQR3L2hXWUG92xkUEEW/fr1Y9JJx0OgjCSfB8OOtDm82paFYUdI8nqgcTcnTzzhgON+v5/Lvz2TbGclFUWbDzvn1YxGqCjaTLazkssunonf72/z+xMRERERSSTPP/98/PHYsWOPqIxly5Zx4YUXEgqFSE9P56233mL06NEd1cSEouDagVoKWJ21FYzD4WDO5d/GEywmXFNyROWFa0rwBIuZc/m3MQyD8ePHk55kE6n6kuTkZBxEsczWjehaZhgHUZKTk4lUf0l6ks2ECRMOOs/v93PJxTOZNmkoobJ1VO7aRFV5CcFAPZFQkGCgnqryEip3bSJUto5zJw3jEoVWEREREUlwTzzxBMFgsMVzHnzwQV5//XUABg0axGmnnXbA8ffeew/DMDAMg2uuueaQZaxZs4bzzz+fhoYGkpOTee211zjhhBMOeW5voDmu7WDbNsFAPY0Ntdihanw0cu6k8RQWjjzoVtaC/FysDUVA+1fCja1UPCz+/dgxozn39Im88f4qwoAnvfV1WGYYytdw7tSJjB0T+3TG5XJx0YyzeOqVDzD92SQn9yEcjhAKh7AxwHBiGA4MwAZs2wLbxMDG5/Hi8biJBiqxqr/koovOwuE49OcjhmEwZnQhowtHUVJSQnFJGcW7ywmHwni8HgqGZVOQP4z8/HzdGiwiIiIiPcL8+fO5+eab+fa3v82UKVMYMmQIKSkp1NXVsX79ep5++mmWLl0KgMfj4a9//StOp7NNdWzfvp3p06dTXV0NwK9//WvS09PZsKH5uzD79u1L374ds+ZOd1BwbQeHHSHbWd6qgLX/VjDt2RLnUFvBGIbBZd+5kIbGIMs/XU+gvgzfMWNwuA6/sJIjGuD0SaO57DsXHtD2WefP4KMVa9hesRGyR+Px94kF0qiJaca+bNvCYThwupw4nW5crtgFFw1UEq3YyNC8NGadP+OwbTAMg4KCAgoKCo7gJyIiIiIiklgqKyt55JFHeOSRR5o9p1+/fjz++OOcc845bS5/yZIl7NmzJ/79jTfeeNjX3HXXXcyfP7/NdSUKBdd2SEtNYfbM6a06t2krmEUrtpHdf+QR17n/SsX78/v9XDvnMrL7LOKj1Zso27EY05cDvhzc/nRwuLGtg+fYZqSn8h9XXXbQLbgOh4N5P/0B83/zEOWVmwkHj8GdMRCXyxUPqN9km1EiNTsgsJvc5Cjzfjq32dFWEREREZHe6K233uK1115j6dKlbNu2jd27d7N3716SkpLo27cv48ePZ+bMmVx66aWaBtcGhm3bdnc3oqe67rpreeyxx1t9vm3bPP/SQirMPke8FUy2s5JLLp7Z7Miubdts3PQZS5avpnhPJVU19TQ0BDEti707NxAJ1h1w/qhRo/jDHx5uts6KigoeePhRdlSEMZ0+bE86hjcdpycFHE6wTMxwPXaoBiNcg9MMMjDbw00/vr5X7RslIiIiIiLdRyOuXahpK5hnXlxIXRVtCq/xlYpbCK1NdRw8b7SCcCjM0iUN1NdW4/G48XhitxEfe+yxLdabnZ3Nr++6hYWvv8kb7y6nIRLBjNZBwEnTJFenbeK0QyS7Q5x37imcf950jbSKiIiIiEiH0YhrO7R1xLVJIBBg4RuLKa6xycwb0uKcVzMaoap0OwXpsdDbnbcTWJbFmjVr2PjZ53xRVEooFMbr9TC4fx6jRw1j/PjxCqwiIiIiItLhNOLaDZq2gtm46TOWrlxLkCQMbwZJyWk4nS5MM9qqlYq7msPh4Pjjj+f444/v1naIiIiIiMjRRcG1m2grGBERERERkdZRcO1m2gpGRERERESkZZqQKCIiIiIiIglNwVVEREREREQSmoKriIiIiIiIJDQFVxEREREREUloCq4iIiIiIiKS0BRcRUREREREJKEpuIqIiIiIiEhCU3AVERERERGRhKbgKiIiIiIiIglNwVVEREREREQSmoKriIiIiIiIJDQFVxEREREREUloCq4iIiIiIiKS0BRcRUREREREJKEpuIqIiIiIiEhCU3AVERERERGRhKbgKiIiIiIiIglNwVVEREREREQSmoKriIiIiIiIJDQFVxEREREREUloCq4iIiIiIiKS0BRcRUREREREJKEpuIqIiIiIiEhCU3AVERERERGRhKbgKiIiIiIiIglNwVVEREREREQSmoKriIiIiIiIJDQFVxEREREREUloCq4iIiIiIiKS0BRcRUREREREJKEpuIqIiIiIiEhCM2zbtru7ET3VBRfMIicnp7ub0etUVVWRmZnZ3c2QVlBf9Szqr55F/dVzqK96FvVXz9KT+islJZWHHnqou5vRaym4SsIpLCxk06ZN3d0MaQX1Vc+i/upZ1F89h/qqZ1F/9SzqL2miW4VFREREREQkoSm4ioiIiIiISEJTcBUREREREZGEpuAqIiIiIiIiCU3BVURERERERBKagquIiIiIiIgkNAVXERERERERSWgKriIiIiIiIpLQFFwl4cydO7e7myCtpL7qWdRfPYv6q+dQX/Us6q+eRf0lTQzbtu3uboSIiIiIiIhIczTiKiIiIiIiIglNwVVEREREREQSmoKriIiIiIiIJDQFVxEREREREUloCq4iIiIiIiKS0BRcRUREREREJKEpuIqIiIiIiEhCU3AVERERERGRhKbgKiIiIiIiIglNwVVEREREREQSmqu7GyBHr2nTzmnVeccddxy///0Dndyao1tVVRVbtmxh8+bNbN26hS1btlBbWwvAtGnncsstt7SpvJUrV/L666+xZcsWampqSE9PZ8SIEZx33vlMnDixM97CUaMj+uqtt97i/vv/p1X1zZv3M6ZPn96uNh/NtmzZwsqVK9mwYQM7d+6gpqYGp9NJVlYWo0ePYcaMbzFmzNhWl6drq3N1RH/p+up8DQ0NrFy5ki1btrB161b27q2gurqacDhMSkoKAwYMYOLEScyY8S3S0tIPW97GjRt59dV/sX79eqqqqkhJSWHw4MGce+50zjrrrC54R71bR/TX2rVrmDdvXqvqmzNnDt/73tUd+RYkQSi4igiXXnpJh5RjWRYPPvggb775xgHPV1RUUFFRwdKlS5kxYwY//emNOBy64eNIdFRfSee76aYbWb9+/UHPRyIRiouLKS4u5t//fotp06Zx44034Xa7my1L11bn68j+ks61Zctm7r33nkMeq66uprq6mnXr1vH8889x6623cdJJJzVb1pNP/o2nn34ay7Liz1VVVbFq1SpWrVrFO+8s5s4778Lj8XT4+zhadGR/ydFNwVW63axZs5g164Jmj/t8vi5sjfTt25f+/fuzatWqNr/2//7fx+O/WA8dOpRLL72M/Pw8SkpKee65Z9m2bRtvvPEG6ekZXHfddR3d9KNOe/qqyX33/YasrKxmj+fk5Bxx2Ue7vXv3ApCVlcXpp09l7Ngx9O3bF9O0+OyzTbzwwgtUVFSwaNEiotEot9/+i2bL0rXV+Tqyv5ro+uo8OTk5jB8/nmHDhpOTk0OfPn2wbZuKinI++OADPvzwQ2pqarjrrjt5+OE/MmTIkIPKWLhwIU899RQA+fn5XHHFFQwaNIi9e/fy8ssvs2bNGlasWMH99/9Pq/pbmtcR/dXk5pvnMWLEiGaPZ2RkdMI7kESg4CrdLiMjg0GDBnV3M45qV101hxEjRjBixAgyMzMpKytjzpyr2lTGrl27eP755wEYPnw4DzzwIF6vF4ARI0ZyyimncPPNN7F161aef/45vvWtb1FQUNDh76W364i+2l+/fv3Izc3twBZKk/79+3PttdcyZcppOJ3OA44VFhZyzjnT+OlP/5tdu3bx7rvvMnPmLI477riDytG11TU6qr/2p+urc4wbN57/9//+0ezxqVPPYOnSpcyffxeRSISnnnqK+fPnH3BObW0tjz76CBD7EPAPf3iY9PSvb1OdNOlk5s+fz/LlH/Huu+9y/vnnM27c+M54O71eR/TX/vLycvV741FK9xOJCFdffTUnn3wymZmZR1zGSy+9iGmaAMyde0P8F+smPp+PuXNvAMA0TV588cUjb/BRrCP6SrrGr399D1OnnnFQCGqSnp7OD37ww/j3S5Z8cMjzdG11jY7qL+l8zfXR/iZPnkz//v0B2LDh4FvA33jjDRoaGgC4/vr/PCC0NtXxk5/8JH7r/XPPPdfeZh+1OqK/REDBVUQ6gG3bLFu2DID+/QdQWFh4yPMKCwvj/zF99NEybNvusjaKJKJx48bFH5eUlBx0XNdWYjlcf0liSUpKAiAcDh90bNmypQD4/X6mTJlyyNfn5ORw/PHHA7B69WoCgUAntVSg5f4SAQVXEekAZWWl8flhh7t1rul4RUUFZWVlnd42kUQWiUTijx2Og0cldG0llsP1lySOoqIitm/fDhD/UKdJJBJh8+bNQOxDn5YW2mq6riKRCFu3bu2k1kpL/SXSRHNcpdt98MEHvP/+++zevRuHw0FmZh9Gjy7k3HOnM378+O5unrTCjh07448HDGj5P5z9/0PauXMneXl5ndYuObz77/8fiop2UVtbg9/vJz8/n+OPP55Zsy4gOzu7u5vX661bty7+eMCAAQcd17WVWA7XX9+k66trBYNBKioqWL58Oc8992z8FvuLL/72Aeft2rUrvopw//4t9+P+x3fu3KHfSzpQa/vrmx5//P9SUVFOVVUVXq+XY445hnHjxjFr1gX069evK5ou3UTBVbrdjh07Dvi+sbGYkpJiFi1axOTJk/nZz35GcnJKN7VOWqO8vDz+ODu75VUyc3L6HvJ10j3Wrl0bf1xbW0ttbS2bN2/mhRde4L/+60fMnDmzG1vXu1mWxbPPPhP/furUqQedo2srcbSmv75J11fnO9y+uZdffvlBe7FWVHx9feTktPwBwv4rP+u6ar8j6a9v2rRpY/xxJBKhvr6e7du388orr/Dd736XOXO+h2EYHdZmSRwKrtJtfD4fJ598ChMmTGDAgP74fEnU1NSwbt1aFi5cSG1tLUuXLqWuro7f/vZ3uFz665qoGhu/nveTlNTy9kX7b2/U2NjYaW2SluXl5TFlyhRGjSqkb9/YL2alpaUsWbKEJUuWEA6Heeih/8Uw4Pzz9ct1Z3jxxRfjtytOmTKF4cOHH3SOrq3E0Zr+aqLrq/sNGTKEG2+8kREjRh50LBD4+vrw+ZJaLEfXVddoqb+a9OmTxZQpUxgzZgx5eXk4nU727NnD8uXLefvt2DZVTz31FJFIVNuC9VJKAtJt/vGPZ0hJOXgk9YQTTuCii2Zz++0/Z9u2baxbt45XX32V2bNnd0MrpTXC4a/nfblczc8VAg6YSxQOhzqtTdK8KVMmc+655x70ifSIESM544wzWb58OXffPZ9oNMqf//xnTjnlVPr06dNNre2d1q5dy2OPPQrEtgT7yU/++5Dn6dpKDK3tL9D11dUmT54c/xAhHA5RUlLK+++/z9KlH3LvvffyX//1I04++eQDXrP/4j9ud8u/Cns8X19XoZAWDWqvI+kvgOHDR/D0008fNIgxbNgwJk+ezPnnn89tt91KQ0MDzz77DGeccUaLe8FKz6TFmaTbHCq0NsnMzOTOO++M/wP1yiuvdFGr5Ejs/x97NBpp4cwDFzfxeLwtnCmdJTk5pcXbqE4++WSuuiq2N2wwGOSNN97oqqYdFb766ivuvns+pmni8Xi44447m93eSNdW92tLf4Gur66WkpLCoEGDGDRoECNGjOTMM89k/vz53HLLrZSWlnLXXXfy1ltvHfAaj8cTfxyJRFssf/8Pj7xeTwtnSmscSX9BbMXhlu68GzlyJDfc8GMgthr7P//5Sme9BelGCq6SsPLy8uPL0JeUFFNRUdHNLZLmJCX5448bG4MtnhsMfn28ael7STznnXd+/Jfv/RekkfYpLS3ltttupa6uDofDwS9+8YsWVwvWtdW92tpfraXrq/NNmzaN008/Hcuy+OMfH6a2tjZ+zO//+voIBlu+/VfXVddoqb9a68wzz8Tvj/2bqeuqd1JwlYQ2cODA+OO9exVcE9X+i1fsv+jFoZSX7znk6ySxZGZmkpaWBuja6ygVFRXceust7N27F8MwmDdvHqeeOrnF1+ja6j5H0l+tpeura5x66qlALHx+8snH8ef3X+isvLzln//+CzLpuupczfVXazmdzviqwk3biEnvouAqCU2rwvUMAwfuv11AUYvnFhV9fbw120lI99H113Fqamq47bbYrXAAc+fewLRp5x72dbq2useR9ldb6PrqfOnpGfHHu3fvjj/u168fDkfsV+Ciop3ffNkB9j8+YMDAFs6U9mquv9pC11XvpuAqCW3/rXKysrTnXaLKzc0jKysLOPztOevWrQcgOzub3NzcTm+bHJnq6mpqamoA4n0rR6ahoZ6f//y2+L9n1113PRdeeGGrXqtrq+u1p79aS9dX19h/itH+t/m63W5GjoytXrtp06YD5od/U9N153a7W1xJWtqvuf5qLdM02bVrFxBbgVh6HwVXSVilpaV8+umnAOTn52uz9gRmGEb8Fp+iop1s2rTpkOdt2rQp/un1Kaecqk9GE9hrr72GbdsAHTKn72gVDAb5xS9+weeffw7AlVdeyeWXX97q1+va6lrt7a/W0vXVNT744P3440GDBh1wrOm270AgwIcffnjI15eXl8d/D5kwYUJ8/qR0jpb6qzXee+89GhoaAF1XvZWCq3SLjz76CNM0mz1eVVXFL395d/xT0FmzLuiqpskRuvjib8dvvVqw4I+EQgduxxEKhViw4I9AbB7KxRdf3OVtFCgrK2Pbts9bPGf58uU8/fTfAfB6vUyf/q2uaFqvE4lEmD//LjZu3AjA7NkX8x//cW2by9G11TU6or90fXWNt95664AtbQ7lxRdfYOXKlQDk5uYyZszYA47PmDGD5ORkAB577FFqa2sOOG6aJn/4wx+wLAuASy+9tKOaf9Rpb3/V1dWxdu2aFl+/efNm/vjHh4HYB36zZs1qX6MlIWkfV+kWCxb8kYceinLaaacxalQhubm5eDweamtrWLt2La+99lr8NqoxY8ZwwQUKrp1pw4b1FBeXxL/f/z/wkpLig5amnz59+kFl9OvXj0svvZRnnnmGrVu38tOf/jeXXXYZeXn5lJaW8Oyzz7Jt2zYALrnk0vgCCtI27e2r3bvLmDdvHoWFhZx88skMHjyEjIwMAMrKSvnggw9YsmRJfDTo+9//vu52OEL33nsPq1atAmD8+AnMmPEtvvzyy2bPd7vdh7wudG11jY7oL11fXeOpp57kL3/5M6eddhpjxowhLy+fpKQkGhsDfPnllyxevDj+AYTb7ebGG2/E6XQeUEZaWhrXX/+fPPTQ/7J7925+/OMfc8UVVzJo0CD27t3Lyy+/xJo1a4DYarXjxo3v4nfZe7S3vxoaGpg3bx6DBw/m1FMnM2zYMLKy+uBwONmzZw/Lly9n8eK344Mdl1xyiW7r7qUMu+lfT5EudNVV323VxPvTTjuNm266ucU9X6X9fve737Fo0b9bff6iRW8f8nnLsnjwwQd48803m33tt741gxtvvDE+giRt096+Wrt2DfPmzTvs63w+Hz/84Q85//yZbW6jxEybdk6bzj/mmGP4+9+fPuQxXVudryP6S9dX12jt7xA5OTncfPM8TjjhhGbP+dvf/sbTT/+d5n4dnjhxInfdNf+AvV+lbdrbX2VlZcyZc9VhX+9wOLjqqqu46qo5mi7RS2nEVbrFz352C+vWreOzzzZRWlpKTU0NgUCApKQkcnJyKCwczbnnnkthYWF3N1XawOFwcPPN85gy5TRef/01tmzZQm1tLWlpaYwYMYLzz5/JxIkTu7uZR7Vhw4Zz220/Z9OmTWzduoXKykpqa2sxTZOUlBQGDjyWCRMmMGPGDDIzM7u7ubKPrq2eQddX17jvvt+wYsUKNm7cQElJCVVVVdTW1uL1esnIyGDIkCFMmnQyU6dOxefztVjW1VdfzYknnsi//vVP1q9fT3V1NcnJyQwePITp06dz1llnddG76r3a219ZWVncccedbNq0iS1bNlNRUUFtbS3hcJjk5GT69evHuHHjmDHjPC1M18tpxFVEREREREQSmu4nEhERERERkYSm4CoiIiIiIiIJTcFVREREREREEpqCq4iIiIiIiCQ0BVcRERERERFJaAquIiIiIiIiktAUXEVERERERCShKbiKiIiIiIhIQlNwFRERERERkYSm4CoiIiIiIiIJTcFVREREREREEpqCq4iIiIiIiCQ0BVcRERERERFJaAquIiIiIiIiktAUXEVERERERCShKbiKiIiIiIhIQlNwFRGRo1JZWRnTpp3DtGnn8NZbb3V3c0RERKQFru5ugIiISFusXbuGefPmHfKY1+slLS2NwYMHM2XKFM4662w8Hk8Xt1BEREQ6mkZcRUSk1wiFQpSXl7NixQp+//vfM3fujygrK+vuZomIiEg7GbZt293dCBERkdbaf8R11qxZzJp1QfxYdXU1X331Fc8//xzl5eUADBo0iD/96c84nc5uaa+IiIi0n24VFhGRHisjI4NBgwYd8NyECROYPn06P/jB9ykrK+PLL79k6dKlnH766d3UShEREWkv3SosIiK9jt/v58orvxv//tNPP+3G1oiIiEh7acRVRER6pf1HYsvL9xx0vKysjDlzrgJg3ryfMX369AOOP/nk33jqqacAWLTobcLhMK+88jLvvvsuxcXFAAwYMIBzzpnGrFmzDnsr8oYN63nxxRfZuHEj9fX1ZGVlccIJJ3LJJZdQUFDAzTffxLp16zjuuOP4/e8fOOj14XCY1157jQ8/XMKOHTuor6/H7/eTnp5OXl4exx9/AlOmTCE3N7dtPygREZEeQMFVRER6JZfLdcjHR6Kqqoqf//w2tm/ffsDzW7ZsYcuWLaxatYq7774bh+PQNzI988wzPP74Y+y/rERZWRmvvbaQd999hzvuuLPF+vfu3cutt97Cjh07Dni+rq6Ouro6du3axccff8zevXv5wQ9+cITvUkREJHEpuIqISK+0c+fO+ONjjmnfKOT8+fPZuXMnF100m1NOOZnU1DSKiop4+um/s3PnTpYv/4jXX3+dmTNnHvTa999/j8ceexSA1NRULrvscsaOHQvA+vXrefbZZ7j33ntIT09vtv4FC/4YD61nn30OU6ZMISsrC4fDQWVlJVu3bmXZsmXteo8iIiKJTMFVRER6HdM0ef755+Lfn376ae0qb+vWLfzmN79h3Ljx8eeGDRvGiSeeyPXXX0dVVRWvvvqvg4JrOBxmwYIFAKSnp/PQQ3+goKAgfrywsJDJkyfzk5/8mF27dh2y7nA4zEcffQTAd75zySFHVE855RSuvvpqamtr2/U+RUREEpUWZxIRkV6jurqa1atXc/PNN7Ft2zYATjvtdMaMGduuci+88KIDQmuTtLS0+NzYL7/8koaG+gOOL1u2lKqqKgDmzPneAaG1Sb9+/Zgz53vN1l1bW0s0GgWIj9Q2Jy0trcXjIiIiPZVGXEVEpMd66qmn4gsofZPP5+P882dy/fXXt7ues88+u9ljw4YNB8C2bUpLyxg6dGj8WNNqxg6Ho8Uyzj77bP70p/+PQ22tnpaWhtvtJhKJ8PbbbzNp0iTtSSsiIkcdjbiKiEivNHjwEGbPnt3uhZkA+vfv3+yx1NTU+OPGxsYDjn311VcA5ObmkZKS0mwZaWlp5OXlHfKYx+Nh6tSpACxZ8gFXX/09Hnnkr6xYsYL6+vpDvkZERKS30YiriIj0WLNmzWLWrAuA2LzWiooKPvjgAxYvfptNmzYyb97NPPzwH8nIyGhXPT6fr9ljDocRf2xZ5gHHmoJlRkbzCy81SU9Pp6Sk5JDHbrjhx9TXN7B8+Ufs3r2b5557jueeew6Hw8HQoUOZOnUq559/PsnJzYdjERGRnkwjriIi0mNlZGQwaNAgBg0axNChQzn55JO55ZZbuPnmeUBsy5kHHvh9N7ey/ZKTk/nVr37Fww//ke985xKGDRuOw+HAsiy2bt3KI488wjXXXMOmTZu6u6kiIiKdQiOuIiLS65x77rksX/4RS5Ys4aOPPmL16tVMmDChy9vRdHtwdXXNYc+tqTn8OSNHjmTkyJEABAIB1q5dy7///RYffvgh1dXV3H333Tz55JN4vd72NVxERCTBaMRVRER6pWuvvQ6HI/bf3OOPP9YtbRg48FgAyspKqaura/a82tpaSktL21S23+/nlFNO4a675nPRRbMBqKzcy4YNG464vSIiIolKwVVERHqlfv36xRc12rx5M6tWreryNjSN8lqWxTvvvNPseYsXLz7kisJtrQdaN3IrIiLS0yi4iohIr3XFFVdiGLHFk55++ukur3/KlCnxhaGeeurJQy6+tGvXLp566slmyygtLWHt2rUt1rN/KM/NzT2yxoqIiCQwzXEVEZFea9CgQZxyyiksW7aM9evXsWHDesaMGdtl9Xs8Hv7rv37EfffdS01NDT/+8Q1cdtll8TasX7+eZ599Btu2KSgooLi4OB60m+zZs4d58+YxcOBAJk+ezPDhI8jOztp3rJz333+P999/H4AhQ4YwatSoLnt/IiIiXUXBVUREerUrr7ySZcuWAfD3v/+d3/zmt11a/1lnnUVpaSl/+9sT1NbW8sgjjxxw3Ofz8X/+zx08++wzFBcX4/F4DlnOjh072LFjR7P19O8/gLvumn9Q8BUREekNFFxFRKRXGzFiJMcffwKffrqKVatWsWXLZkaMGNmlbfjud7/Lcccdx4svvsDGjRtpaGigT58+TJgwge985xIGDhzI448/DsS2vtnfmDFjuf/+3/PJJ5+wefNn7NlTTnV1FeFwmNTUVAYPHsyUKadx7rnnNht6RUREejrDbs9qECIiItJu0WiUiy66kFAoxHe/+12uueY/urtJIiIiCUWLM4mIiHSzpUuXEgqFADRHVURE5BAUXEVERDpZcXFxs8fKysr4y1/+DEBmZiYnnnhSVzVLRESkx9AcVxERkU527bX/wcSJkzj55EkMHHgsPp+P6upq1q5dw8KFC6mvrwfg+9//AU6ns5tbKyIikng0x1VERKSTTZt2TovHHQ4H11xzDVdccWUXtUhERKRnUXAVERHpZMuXL2flypVs2rSRqqpq6upqcbvdZGVlM27ccVxwwYUMGjSou5spIiKSsBRcRUREREREJKFpcSYRERERERFJaAquIiIiIiIiktAUXEVERERERCShKbiKiIiIiIhIQlNwFRERERERkYSm4CoiIiIiIiIJTcFVREREREREEpqCq4iIiIiIiCQ0BVcRERERERFJaAquIiIiIiIiktAUXEVERERERCShKbiKiIiIiIhIQlNwFRERERERkYSm4CoiIiIiIiIJTcFVREREREREEpqCq4iIiIiIiCQ0BVcRERERERFJaAquIiIiIiIiktD+f8Aix8AAQgY7AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 455, "width": 471 } }, "output_type": "display_data" } ], "source": [ "viz_rmodel.rtree_leaf_distributions(figsize=(5,5))" ] }, { "cell_type": "markdown", "metadata": { "id": "lQp_iRmkef04" }, "source": [ "Alternatively, we can get information on the features of the instances in a particular node. For example, here's how to get information on features in leaf id 29, the leaf with the most instances:" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:24:00.306325Z", "iopub.status.busy": "2024-08-24T11:24:00.306038Z", "iopub.status.idle": "2024-08-24T11:24:00.337875Z", "shell.execute_reply": "2024-08-24T11:24:00.337248Z" }, "id": "nJN9Zol1ekh9" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DiameterHeightLongestShellShellWeightShuckedWeightTypeVisceraWeightWholeWeight
count672.0672.0672.0672.0672.0672672.0672.0
unique<NA><NA><NA><NA><NA>3<NA><NA>
top<NA><NA><NA><NA><NA>F<NA><NA>
freq<NA><NA><NA><NA><NA>328<NA><NA>
mean0.5145090.1780880.6522470.4127510.629519NaN0.3130771.445691
std0.0334350.0162950.0403790.081410.150842NaN0.0707330.280846
min0.370.1250.510.31950.4145NaN0.12550.9585
25%0.4950.1650.6250.350750.519NaN0.2648751.246375
50%0.510.1750.650.393750.60175NaN0.3041.37925
75%0.5350.190.6750.4550.702375NaN0.3541.5985
max0.630.210.81.0051.2455NaN0.592.55
\n", "
" ], "text/plain": [ " Diameter Height LongestShell ShellWeight ShuckedWeight Type \\\n", "count 672.0 672.0 672.0 672.0 672.0 672 \n", "unique 3 \n", "top F \n", "freq 328 \n", "mean 0.514509 0.178088 0.652247 0.412751 0.629519 NaN \n", "std 0.033435 0.016295 0.040379 0.08141 0.150842 NaN \n", "min 0.37 0.125 0.51 0.3195 0.4145 NaN \n", "25% 0.495 0.165 0.625 0.35075 0.519 NaN \n", "50% 0.51 0.175 0.65 0.39375 0.60175 NaN \n", "75% 0.535 0.19 0.675 0.455 0.702375 NaN \n", "max 0.63 0.21 0.8 1.005 1.2455 NaN \n", "\n", " VisceraWeight WholeWeight \n", "count 672.0 672.0 \n", "unique \n", "top \n", "freq \n", "mean 0.313077 1.445691 \n", "std 0.070733 0.280846 \n", "min 0.1255 0.9585 \n", "25% 0.264875 1.246375 \n", "50% 0.304 1.37925 \n", "75% 0.354 1.5985 \n", "max 0.59 2.55 " ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "viz_rmodel.node_stats(node_id=29)" ] }, { "cell_type": "markdown", "metadata": { "id": "UmVioRJsfXR4" }, "source": [ "### How decision trees predict a value for an instance\n", "\n", "To make a prediction for a specific instance, the decision tree weaves its way from the root down to a specific leaf, according to the feature values in the test instance. The prediction of the individual tree is just the average of the `Rings` values from instances (from the training set) residing in that leaf. The dtreeviz library can illustrate this process if we provide a test instance via parameter `x`." ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:24:00.341007Z", "iopub.status.busy": "2024-08-24T11:24:00.340603Z", "iopub.status.idle": "2024-08-24T11:24:03.441173Z", "shell.execute_reply": "2024-08-24T11:24:03.440305Z" }, "id": "B7S2xj-Z2wpf" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/models/shadow_decision_tree.py:335: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/trees.py:1351: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/trees.py:1356: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/trees.py:1324: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n" ] }, { "data": { "image/svg+xml": [ "\n", "\n", "G\n", "\n", "\n", "cluster_instance\n", "\n", "\n", "\n", "node3\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:00.389434\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node6\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:00.466944\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "leaf4\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:01.764286\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node3->leaf4\n", "\n", "\n", "\n", "\n", "\n", "leaf5\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:01.818389\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node3->leaf5\n", "\n", "\n", "\n", "\n", "\n", "leaf7\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:01.874190\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node6->leaf7\n", "\n", "\n", "\n", "\n", "\n", "leaf8\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:01.929986\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node6->leaf8\n", "\n", "\n", "\n", "\n", "\n", "node2\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:00.545798\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node2->node3\n", "\n", "\n", "\n", "\n", "\n", "node2->node6\n", "\n", "\n", "\n", "\n", "\n", "node9\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:00.807867\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "node10\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:00.640117\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node13\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:00.723745\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "leaf11\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:01.983968\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node10->leaf11\n", "\n", "\n", "\n", "\n", "\n", "leaf12\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:02.048089\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node10->leaf12\n", "\n", "\n", "\n", "\n", "\n", "leaf14\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:02.109645\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node13->leaf14\n", "\n", "\n", "\n", "\n", "\n", "leaf15\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:02.167928\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node13->leaf15\n", "\n", "\n", "\n", "\n", "\n", "node9->node10\n", "\n", "\n", "\n", "\n", "\n", "node9->node13\n", "\n", "\n", "\n", "\n", "\n", "node1\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:00.899394\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node1->node2\n", "\n", "\n", "\n", "\n", "\n", "node1->node9\n", "\n", "\n", "\n", "\n", "\n", "node16\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:01.521589\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "node18\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:00.993362\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node21\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:01.073154\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "leaf19\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:02.227719\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node18->leaf19\n", "\n", "\n", "\n", "\n", "\n", "leaf20\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:02.286804\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node18->leaf20\n", "\n", "\n", "\n", "\n", "\n", "leaf22\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:02.343716\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node21->leaf22\n", "\n", "\n", "\n", "\n", "\n", "leaf23\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:02.406426\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node21->leaf23\n", "\n", "\n", "\n", "\n", "\n", "node17\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:01.167494\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node17->node18\n", "\n", "\n", "\n", "\n", "\n", "node17->node21\n", "\n", "\n", "\n", "\n", "\n", "node24\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:01.429909\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "node25\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:01.268044\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node28\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:01.342755\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "leaf26\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:02.474090\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node25->leaf26\n", "\n", "\n", "\n", "\n", "\n", "leaf27\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:02.528620\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node25->leaf27\n", "\n", "\n", "\n", "\n", "\n", "leaf29\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:02.582912\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node28->leaf29\n", "\n", "\n", "\n", "\n", "\n", "leaf30\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:02.649230\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node28->leaf30\n", "\n", "\n", "\n", "\n", "\n", "node24->node25\n", "\n", "\n", "\n", "\n", "\n", "node24->node28\n", "\n", "\n", "\n", "\n", "\n", "node16->node17\n", "\n", "\n", "\n", "\n", "\n", "node16->node24\n", "\n", "\n", "\n", "\n", "\n", "node0\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:01.636805\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node0->node1\n", "\n", "\n", "  <\n", "\n", "\n", "\n", "node0->node16\n", "\n", "\n", "  ≥\n", "\n", "\n", "\n", "\n", "\n", "\n", "X_y\n", "\n", "\n", "Diameter\n", "\n", "Height\n", "\n", "LongestShell\n", "\n", "ShellWeight\n", "\n", "ShuckedWeight\n", "\n", "Type\n", "\n", "VisceraWeight\n", "\n", "WholeWeight\n", "\n", "0.29\n", "\n", "0.10\n", "\n", "0.38\n", "\n", "0.06\n", "\n", "0.10\n", "\n", "I\n", "\n", "0.04\n", "\n", "0.21\n", "\n", "\n", "\n", "leaf11->X_y\n", "\n", "\n", "  Prediction\n", " 7.14\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "" ], "text/plain": [ "" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x = df_abalone[abalone_features].iloc[1234]\n", "viz_rmodel.view(x=x, scale=.75)" ] }, { "cell_type": "markdown", "metadata": { "id": "ZaYbnEc9ganl" }, "source": [ "If that visualization is too large, we can cut down the plot to just the path from the root to the leaf that is actually traversed:" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:24:03.489214Z", "iopub.status.busy": "2024-08-24T11:24:03.488936Z", "iopub.status.idle": "2024-08-24T11:24:04.277037Z", "shell.execute_reply": "2024-08-24T11:24:04.276064Z" }, "id": "x7FWiRMcfBIk" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/models/shadow_decision_tree.py:335: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/trees.py:1351: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/trees.py:1356: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/trees.py:1324: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n" ] }, { "data": { "image/svg+xml": [ "\n", "\n", "G\n", "\n", "\n", "cluster_instance\n", "\n", "\n", "\n", "node10\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:03.632757\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "leaf11\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:04.030766\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node10->leaf11\n", "\n", "\n", "\n", "\n", "\n", "node9\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:03.718412\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node9->node10\n", "\n", "\n", "\n", "\n", "\n", "node1\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:03.809733\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node1->node9\n", "\n", "\n", "\n", "\n", "\n", "node0\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:03.904073\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node0->node1\n", "\n", "\n", "\n", "\n", "\n", "X_y\n", "\n", "\n", "Diameter\n", "\n", "Height\n", "\n", "LongestShell\n", "\n", "ShellWeight\n", "\n", "ShuckedWeight\n", "\n", "Type\n", "\n", "VisceraWeight\n", "\n", "WholeWeight\n", "\n", "0.29\n", "\n", "0.10\n", "\n", "0.38\n", "\n", "0.06\n", "\n", "0.10\n", "\n", "I\n", "\n", "0.04\n", "\n", "0.21\n", "\n", "\n", "\n", "leaf11->X_y\n", "\n", "\n", "  Prediction\n", " 7.14\n", "\n", "\n", "" ], "text/plain": [ "" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "viz_rmodel.view(x=x, show_just_path=True, scale=1.0)" ] }, { "cell_type": "markdown", "metadata": { "id": "rs1sKf6mgnoO" }, "source": [ "We can make it even smaller using a horizontal orientation:" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:24:04.293389Z", "iopub.status.busy": "2024-08-24T11:24:04.293099Z", "iopub.status.idle": "2024-08-24T11:24:05.349241Z", "shell.execute_reply": "2024-08-24T11:24:05.348404Z" }, "id": "yNIIDqMA5V96" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/models/shadow_decision_tree.py:335: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/trees.py:1351: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/trees.py:1356: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/trees.py:1324: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n" ] }, { "data": { "image/svg+xml": [ "\n", "\n", "G\n", "\n", "\n", "cluster_instance\n", "\n", "\n", "\n", "node10\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:04.439068\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "leaf11\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:04.837169\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node10->leaf11\n", "\n", "\n", "\n", "\n", "\n", "node9\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:04.525053\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node9->node10\n", "\n", "\n", "\n", "\n", "\n", "node1\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:04.615371\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node1->node9\n", "\n", "\n", "\n", "\n", "\n", "node0\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-08-24T11:24:04.711348\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "node0->node1\n", "\n", "\n", "\n", "\n", "\n", "X_y\n", "\n", "\n", "Diameter\n", "\n", "Height\n", "\n", "LongestShell\n", "\n", "ShellWeight\n", "\n", "ShuckedWeight\n", "\n", "Type\n", "\n", "VisceraWeight\n", "\n", "WholeWeight\n", "\n", "0.29\n", "\n", "0.10\n", "\n", "0.38\n", "\n", "0.06\n", "\n", "0.10\n", "\n", "I\n", "\n", "0.04\n", "\n", "0.21\n", "\n", "\n", "\n", "leaf11->X_y\n", "\n", "\n", "  Prediction\n", " 7.14\n", "\n", "\n", "" ], "text/plain": [ "" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "viz_rmodel.view(x=x, show_just_path=True, scale=.75, orientation=\"LR\")" ] }, { "cell_type": "markdown", "metadata": { "id": "8KoIVLEZgxQa" }, "source": [ "Sometimes it's easier just to get an English description of how the model tested our feature values to make a decision:" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:24:05.365386Z", "iopub.status.busy": "2024-08-24T11:24:05.365108Z", "iopub.status.idle": "2024-08-24T11:24:05.369872Z", "shell.execute_reply": "2024-08-24T11:24:05.369254Z" }, "id": "qfldMHE6fptn" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.25 <= Diameter \n", "ShellWeight < 0.11\n", "Type not in {'M', 'F'} \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/models/shadow_decision_tree.py:335: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/dtreeviz/interpretation.py:54: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n" ] } ], "source": [ "print(viz_rmodel.explain_prediction_path(x=x))" ] }, { "cell_type": "markdown", "metadata": { "id": "wnldbOEbfgXj" }, "source": [ "### Feature space partitioning\n", "\n", "Using `rtree_feature_space()`, we can see how the decision tree partitions a feature space via a collection of splits. For example, here is how the decision tree partitions feature `ShellWeight`:" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:24:05.373633Z", "iopub.status.busy": "2024-08-24T11:24:05.373412Z", "iopub.status.idle": "2024-08-24T11:24:05.653727Z", "shell.execute_reply": "2024-08-24T11:24:05.653085Z" }, "id": "RH7UhZnIBJUN" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABF4AAANZCAYAAAA25vrJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOz9e3gcV50n/r9PVd+7pdbVltyylIsTJ9i5WCYZiCzjJBgYMjszC3sBQgKOE9ghM8vO7D7DfpkH2Bl4hsvvNzA7SyAkcTLAl2GZAQaYnYHFIZjIcjIJlmPHIRc7jiVLlmxZl5bU96o63z/aane3ulutdndXV/f79Tw8wa2qcz6fzzlVUp+urhJSSgkiIiIiIiIiIio7xewAiIiIiIiIiIjqFRdeiIiIiIiIiIgqhAsvREREREREREQVwoUXIiIiIiIiIqIK4cILEREREREREVGFcOGFiIiIiIiIiKhCuPBCRERERERERFQhXHghIiIiIiIiIqoQLrwQEREREREREVUIF16IiIiIiIiIiCqECy9ERERERERERBXChRciIiIiIiIiogrhwgsRERERERERUYVw4YWIiIiIiIiIqEK48EJEREREREREVCFceCEiIiIiIiIiqhAuvBARERERERERVQgXXoiIiIiIiIiIKoQLLxby8Y9/3OwQiIiIiIiIiGgNuPBiIUtLi2aHQERERERERERrwIUXIiIiIiIiIqIK4cILEREREREREVGFcOGFiIiIiIiIiKhCuPBCRERERERERFQhXHghIiIiIiIiIqoQLrwQEREREREREVUIF16IiIiIiIiIiCqECy9ERERERERERBXChRciIiIiIiIiogrhwgsRERERERERUYVw4YWIiIiIiIiIqEK48EJEREREREREVCFceCEiIiIiIiIiqhAuvBARERERERERVQgXXoiIiIiIiIiIKoQLL0REREREREREFcKFFyIiIiIiIiKiCuHCCxERERERERFRhXDhhYiIiIiIiIioQrjwQkRERERERERUIVx4ISIiIiIiIiKqEC68EBERERERERFVCBdeiIiIiIiIiIgqhAsvREREREREREQVwoUXIiIiIiIiIqIK4cILEREREREREVGF2MwOgIiIiIgKk1JiYmIC4XAYHo8HgUAAQgizwyIiqjqeD8mKuPBCREREVKMMw8DTQ8PYf2AYEekBVBegR+EWYezeNYCdgwNQFF7ATET1j+dDsjIuvBARERHVIMMw8Pg3v4NjYyH4unfAa3emfqYnYvjhgeN4/Y3T2HPv3XyzQUR1jedDsjrOSiIiIqIa9PTQMI6NheDv3Q417U0GAKh2J/y923F0NIShg8MmRUhEVB08H5LVceGFiIiIqMZIKbH/wDB83VsLbufr3or9Bw5BSlmlyIiIqovnQ6oHXHghIiIiqjETExOISM+KT3azqXYnwoYbExMTVYqMiKi6eD6kesCFF6p5MzMz+Na3vomZmRmzQ7GkeqhfPeRQLY1eKyvnb+XYqfzC4XDyxpHFUF2IRCKVDYiIyCQ8H1I94MIL1bzZ2Vl8+9vfxuzsrNmhWFI91K8ecqiWRq+VlfO3cuxUfh6PB9CjxW2sR+F2uysbEBGRSXg+pHrAhReqeT6fD3feeSd8Pp/ZoVhSPdSvHnKolkavlZXzt3LsVH6BQABuEYaeiBXcTk/E4FEiCAQCVYqMiKi6eD6keiAk7z5kGXv33od9+x43OwwiIiKqggO/GsIPD7wEf+/2vNssjB3Ge27fgrftHKxiZERE1cXzIVkdr3ihmhePxzExMYF4PG52KJZUD/WrhxyqpdFrZeX8rRw7VcbOwQHc1OdFcOzwik969UQMC2OHcWOfF4M7BkyKkIioOng+JKvjwgvVvNHRUXz4wx/C6Oio2aFYUj3Urx5yqJZGr5WV87dy7FQZiqJgz7134723b4EyeRCh0WcQGj+C0OgzUCYP4j23b8Gee++GovDPOSKqbzwfktXZzA6AiIiIiHJTFAVv2zmInYM7ko9UjUTgdrsRCAQghDA7PCKiquH5kKyMCy9ERERENU4IgZ6eHrPDICIyHc+HZEW8FouIiIiIiIiIqEK48EJEREREREREVCF8nLSF8HHSRERERERERNbCK16IiIiIiIiIiCqECy9U886cOYP//J//CGfOnDE7FEuqh/rVQw7V0ui1snL+Vo6diIiIiPLjwgvVvGg0ipdffhnRaNTsUCypHupXDzlUS6PXysr5Wzl2IiIiIsqPCy9ERERERERERBXChRciIiIiIiIiogrhwgsRERERERERUYVw4YVq3vr16/GJT/x3rF+/3uxQLKke6lcPOVRLo9fKyvlbOXYiIiIiyk9IKaXZQVBx9u69D/v2PW52GERERERERERUJF7xQjVvfn4eP/7xjzE/P292KJZUD/WrhxyqpdFrZeX8rRw7EREREeXHhReqedPT0/jqV/8XpqenzQ7FkuqhfvWQQ7U0eq2snP9y7OfPn8f4+Dhee+01jI+PgxemEhEREVmbzewAiIiICDAMAwDwtUf/Foq3C1BdgB6FW4Sxe9cAdg4OQFH4eQkRERGR1XDhhYiIyGSGYeDH/+enAADZcTO8665M/UxPxPDDA8fx+hunsefeu7n4QkRERGQx/OuNiIjIZE8PDePEVAQAoNocGT9T7U74e7fj6GgIQweHzQiPiIiIiC4DF16o5rndbmzfvh1ut9vsUCypHupXDzlUS6PXyor5Symx/8AwmrreBH/XNVBszpzb+bq3Yv+BQ7znCxEREZHF8HHSFsLHSRMR1Z/x8XF8+bEfwtv31lW3DY0+gz+5/z3o6empQmREREREVA684oVqnq7rCIVC0HXd7FAsqR7qVw85VEuj18qK+YfDYUB1QRoGtEQU8uJNdnNSXYhEItULjoiIiIguGxdeqOadOnUKv//7v4dTp06ZHYol1UP96iGHamn0Wlkxf4/HA+hRhOcn8et/+HOE5yfzb6xHLfU1KiIiIiLiwgsREZGpAoEA3CIMXYsX3E5PxOBRIggEAlWKjIiIiIjKgQsvREREJhJCYPeuAYQvvF5wu9DkcezedRuEEFWKjIiIiIjKgQsvREREJts5OIBru5NfIcq+8kVPxLAwdhg39nkxuGPAjPCIiIiI6DLYzA6AiIio0SmKgt+967fx85/+HygXXkAoMgWoLkCPwiPCeM/tAxjcMQBF4eclRERERFbDx0lbSKM+TlrTNCwtLcHn88Fm41rhWtVD/eohh2pp9FpZOf/l2L1eL86dO4dIJAK3241AIMCvFxERERFZmLX+KqWGZLPZ0NLSYnYYllUP9auHHKql0Wtl5fzTY+/p6TE3GCIiIiIqG16zTDXv7Nmz+NSnPoWzZ8+aHYol1UP96iGHamn0Wlk5fyvHTkRERET5ceGFal4oFMKzzz6DUChkdiiWVA/1q4ccqqXRa2Xl/K0cOxERERHlx4UXIiIiIiIiIqIK4cILEREREREREVGFcOGFiIiIiIiIiKhCuPBCNa+jowMf/eh/QkdHh9mhWFI91K8ecqiWRq+VlfO3cuxERERElJ+QUkqzg6Di7N17H/bte9zsMIiIiIiIiIioSLzihWre4uIifvWrX2FxcdHsUCypHupXDzlUS6PXysr5Wzl2IiIiIsqPCy9U86ampvC5z30WU1NTZodiSfVQv3rIoVoavVZWzt/KsRMRERFRflx4ISIiIiIiIiKqEJvZAZhB0zQcO3YMv/718zh69CgmJiYQjUbR3NyMzZuvw+/8zl34rd96y4r9vvWtb+Lb3/52wbb37Xscvb29lQqdiIiIiIiIiCykIRdejh07ik984hMAgLa2NmzduhUulwujo6N49tln8Oyzz+Cuu+7Cxz/+XyCEWLH/VVddjauvvjpn216vt6KxExEREREREZF1NOTCixAKBgcH8W//7Xtwww03ZPzswIFf4vOf/zz++Z//GVu2bMHu3e9Ysf/AwG24994PVSvchudwOLBp0yY4HA6zQ7GkeqhfPeRQLY1eKyvnb+XYaW2klJiYmEA4HIbH40EgEMj5QQ8RERHVBz5OOoe/+qu/ws9+9lNs27YNX/rS/y/1+vJXje655x5TFl74OGkiIiLrMgwDTw8NY/+BYUSkB1BdgB6FW4Sxe9cAdg4OQFF4+z0iIqJ605BXvKxm06ZNAIDp6WmTIyEiIqJ6YBgGHv/md3BsLARf9w547c7Uz/REDD88cByvv3Eae+69m4svREREdYa/2XOYmJgAkLz/Sy4nTpzEY489iq985ct45JFv4KmnfoFwOFzNEBvKyZMn8O53/zZOnjxhdiiWVA/1q4ccqqXRa2Xl/K0cO63u6aFhHBsLwd+7HWraogsAqHYn/L3bcXQ0hKGDwyZFSERERJXCK16yzM7O4uc//78AgMHBwZzbLN+AN53X68WDDz6Y854wdHmkBBKJBPiluNLUQ/3qIYdqafRaWTl/K8dOhUkpsf/AMHzdOwpu5+veiv0HhrFzcAfv+UJERFRHuPCSRtd1fOELn0coFMKVV16Ju+76nYyfd3dvwH333YdbbrkV69evBwCMjo7ie9/733j22WfxpS99CYqi4s477zQjfCIiIqpBExMTiEhPxteLclHtToQMNyYmJtDT01Ol6IiIiKjSuPCS5q//+q9x5MgRNDc349Of/gzsdnvGz3fv3r1in61bt2Lr1s/hoYe+ih/96Ed4+OGvY+fOnSv2LeShhx7CQw89tOp21123ueg2iYiIqDaEw+HkjXSLoboQiUQqGxARERFVFRdeLnrooYfws5/9FE1NTfjiF7+45k+a7rnnXvzkJz/B/Pw8XnnllRWPqS7kwQcfxIMPPrjqdnv33remmIiIiMh8Ho8H0KPFbaxH4Xa7KxsQERERVRUXXgA8/PDD+NGP/hE+nw+f//wXsGnTNWtuo7m5GS0trZidneHTkMqst7cXjz76GLq7u80OxZLqoX71kEO1NHqtrJy/lWOnwgKBANwiDD0RW3Fj3XR6IgaPEkEgEKhidERERFRpDf9Uo0cffQQ/+MH34fV68YUvfAGbN5f2dR5d1xEOhwBc/GSLysbpdOKKK66A01n4u/GUWz3Urx5yqJZGr5WV87dy7FSYEAK7dw1gafJ4we1Ck8exe9dtvLEuERFRnWnohZfHHnsUf//3fw+v14svfvGL2Lz5upLbeuaZZxCNRiGEwLXXXlvGKOncuXP4q7/6K5w7d87sUCypHupXDzlUS6PXysr5Wzl2Wt3OwQHc1OdFcOww9EQs42d6IoaFscO4sc+LwR0DJkVIREREldKwCy9PPPE4vve978Hn8xW16HL+/Dk8+eSTiMfjK342PDyML3/5rwAAd9xxJ9ra2ioSc6NaWFjAz372UywsLJgdiiXVQ/3qIYdqafRaWTl/K8dOq1MUBXvuvRvvvX0LlMmDCI0+g9D4EYRGn4EyeRDvuX0L9tx7NxSlYf80IyIiqlsNeY+XQ4cO4e/+7u8AABs2bMCPf/wTAD9ZsZ3f78dHP/pRAMDCwiK++MUv4G/+5n9i06ZNaG/vQDwew+joKCYmJgAAN998Mz7+8Y9XLQ8iIiKyDkVR8Ladg9g5uCP5iOlIBG63G4FAgF8vIiIiqmMNufCyuLiY+v+vvfYaXnvttZzbrV+/PrXwsm5dJ/7jf/yPePXV13D27AROnDgBTdPQ3OzHW97yFtx++x3YtWsXP6kiIiKigoQQa356IhEREVlXQy68vPOd78Q73/nONe3T3OzH/fc/UKGIiIiIiIiIiKge8fIMqnmtra143/veh9bWVrNDsaR6qF895FAtjV4rK+dv5diJiIiIKD8hpZRmB0HF2bv3Puzb97jZYRARERERERFRkXjFC9W8cDiMo0dfQDgcNjsUS6qH+tVDDtXS6LWycv5Wjp2IiIiI8uPCC9W8iYkJ/Lf/9t9ST4+itamH+tVDDtXS6LWycv5Wjp2IiIiI8uPCCxERERERERFRhXDhhYiIiIiIiIioQrjwQkRERERERERUIVx4oZpns6no6OiAzaaaHYol1UP96iGHamn0Wlk5fyvHTkRERET58XHSFsLHSRMRERERERFZC694ISIiIiIiIiKqEC68UM17441TeP/734c33jhldiiWVA/1q4ccqqXRa2Xl/K0cOxE1LiklxsfH8dprr2F8fBy8mJ6IaCWb2QEQrUbTdFy4cAGappsdiiXVQ/3qIYdqafRaWTl/K8dORI3HMAw8PTSM/QeGEZEeQHUBehRuEcbuXQPYOTgAReFnvEREABdeiIiIiIhoDQzDwOPf/A6OjYXg694Br92Z+pmeiOGHB47j9TdOY8+9d3PxhYgI/KoRERERERGtwdNDwzg2FoK/dzvUtEUXAFDtTvh7t+PoaAhDB4dNipCIqLZw4YWIiIiIiIoipcT+A8PwdW8tuJ2veyv2HzjEe74QEYGPk7aURn2cdDgcxokTr+Gaa66Fx+MxOxzLqYf61UMO1dLotbJy/laOnYgax/j4OL782A/h7XvrqtuGRp/Bn9z/HvT09FQhMiKi2sV7vFDN83g8uOmmm80Ow7LqoX71kEO1NHqtrJy/lWMnosYRDoeTN9IthupCJBKpbEBERBbArxpRzbtw4QL27XsMFy5cMDsUS6qH+tVDDtXS6LWycv5Wjp2IGofH4wH0aHEb61G43e7KBkREZAFceKGaNzc3h//9v/835ubmzA7FkuqhfvWQQ7U0eq2snL+VYyeixhEIBOAWYeiJWMHt9EQMHiWCQCBQpciIiGoXF16IiIiIiKgoQgjs3jWApcnjBbcLTR7H7l23QQhRpciIiGoXF16IiIiIiKhoOwcHcFOfF8GxwyuufNETMSyMHcaNfV4M7hgwKUIiotrCm+sSEREREVHRFEXBnnvvxtDBYez/5UGEpCd5w109Co8I4z23D2BwxwAUhZ/xEhEBXHghC2hubsa73vXbaG5uNjsUS6qH+tVDDtXS6LWycv5Wjp2IGo+iKHjbzkHsHNyBiYkJRCIRuN1uBAIBfr2IiCiLkFJKs4Og4uzdex/27Xvc7DCIiIiIiIiIqEi8/o9qXiwWw+nTpxGLFb57PuVWD/WrhxyqpdFrZeX8rRw7EREREeXHhReqeWNjY3jggfsxNjZmdiiWVA/1q4ccqqXRa2Xl/K0cOxERERHlx4UXIiIiIiIiIqIK4cILEREREREREVGFcOGFiIiIiIiIiKhCuPBCNU8IwG63g08mLE091K8ecqiWRq+VlfO3cuxERERElB8fJ20hfJw0ERERERERkbXwihciIiIiIiIiogrhwgvVvNHRUfzBH/wnjI6Omh2KJdVD/eohh2pp9FpZOX8rx05ERERE+XHhhWpePB7HyZMnEY/HzQ7FkuqhfvWQQ7U0eq2snL+VYyciIiKi/LjwQkRERERERERUIVx4ISIiIiIiIiKqEJvZARARUXVJKTExMYFwOAyPx4NAIABh4jOMay2ecjE7L7P7J7ICHidERFQNfJy0hTTq46QXFxcxMjKC/v5+NDU1mR2O5dRD/eohh2opVCvDMPD00DD2HxhGRHoA1QXoUbhFGLt3DWDn4AAUpXoXQlYinlqYK6XmVa7Ya22ciWoRjxMiIqomLrxYSKMuvBDR5TMMA49/8zs4NhaCr3srVLsz9TM9EcPS5HHc1OfFnnvvrsqbjVqLp1zMzsvs/omsgMcJERFVG3+bUM2bm5vD97//fczNzZkdiiXVQ/3qIYdqyVerp4eGcWwsBH/v9ow3GQCg2p3w927H0dEQhg4OVyXOSsVj9ly5nLzKEXutjTNRLeJxQkRE1caFF6p5Fy5cwDe+8TAuXLhgdiiWVA/1q4ccqiVXraSU2H9gGL7urQX39XVvxf4Dh1DpCyErGY+Zc+Vy87rc2GttnIlqEY8TIiIyAxdeiIjq3MTEBCLSs+KT3Wyq3Ymw4cbExERDxVMuZudldv9EVsDjhIiIzMCFFyKiOhcOh5M3jiyG6kIkEmmoeMrF7LzM7p/ICnicEBGRGbjwQkRU5zweD6BHi9tYj8LtdjdUPOVidl5m909kBTxOiIjIDFx4oZrn9Xrxlre8FV6v1+xQLKke6lcPOVRLrloFAgG4RRh6IlZwXz0Rg0eJIBAIVDTGSsZj5ly53LwuN/ZaG2eiWsTjhIiIzMDHSVsIHydNRKU68Ksh/PDAS/D3bs+7zcLYYbzn9i14287BhounXMzOy+z+iayAxwkREVUbr3ihmqdpGubn56FpmtmhWFI91K8ecqiWfLXaOTiAm/q8CI4dXvFJr56IYWHsMG7s82Jwx0BV4qxUPGbPlcvJqxyx19o4E9UiHidERFRtXHihmvfGG2/g3//7f4c33njD7FAsqR7qVw85VEu+WimKgj333o333r4FyuRBhEafQWj8CEKjz0CZPIj33L4Fe+69G4pSnV8LlYrH7LlyOXmVI/ZaG2eiWsTjhIiIqs1mdgBERFQdiqLgbTsHsXNwR/KRqpEI3G43AoEAhBANH0+5mJ2X2f0TWQGPEyIiqiYuvBARNRghBHp6eswOI6XW4ikXs/Myu38iK+BxQkRE1cBrKImIiIiIiIiIKoQLL0REREREREREFcLHSVtIoz5OWtd1RKNRuFwuqKpqdjiWUw/1q4ccqqXRa2Xl/K0cOxERERHlx3u8UM1TVRVer9fsMCyrHupXDzlUS6PXysr5Wzl2IiIiIsqPXzWimjc+Po7//t8/gfHxcbNDsaR6qF895FAtjV4rK+dv5diJiIiIKD8uvFDNi0QiOHz4MCKRiNmhWFI91K8ecqiWRq+VlfO3cuxERERElB8XXoiIiIiIiIiIKoQLL0REREREREREFcKFFyIiIiIiIiKiCuHCC9W8zs5O/OEf/hE6OzvNDsWS6qF+9ZBDtTR6raycv5VjJyIiIqL8hJRSmh0EFWfv3vuwb9/jZodBREREREREREXiFS9U8xYWFvDkk09iYWHB7FAsqR7qVw85VEuj18rK+Vs5diIiIiLKjwsvVPPOnTuHL37xCzh37pzZoVhSPdSvHnKolnLVSkqJ8fFxvPbaaxgfH4dVLo608lyxcuzFsOqcagRmjg3nBRERNQKb2QEQEVHtMAwDTw8NY/+BYUSkB1BdgB6FW4Sxe9cAdg4OQFG4Zk/F45yqXWaODecFERE1Ei68EBERgOQboce/+R0cGwvB170DXrsz9TM9EcMPDxzH62+cxp577+YbIioK51TtMnNsOC+IiKjR8LcZEREBAJ4eGsaxsRD8vduhpr0RAgDV7oS/dzuOjoYwdHDYpAjJajinapeZY8N5QUREjYYLL1TzXC4Xrr/+erhcLrNDsaR6qF895FAtpdZKSon9B4bh695acDtf91bsP3CoZu/DYOW5YuXYc6mXOVWPzBwbzgsiImpE/KoR1byNGzfib/7mf5kdhmXVQ/3qIYdqKbVWExMTiEhPxiX/uah2J0KGGxMTE+jp6Sk1zIqx8lyxcuy51Mucqkdmjg3nBRERNSJe8UJERAiHw8mbWxZDdSESiVQ2ILI8zqnaZebYcF4QEVEj4sIL1bwTJ05g9+6348SJE2aHYkn1UL96yKFaSq2Vx+MB9GhxG+tRuN3uEqKrPCvPFSvHnku9zKl6ZObYcF4QEVEj4sILEREhEAjALcLQE7GC2+mJGDxKBIFAoEqRkVVxTtUuM8eG84KIiBoRF16IiAhCCOzeNYClyeMFtwtNHsfuXbdBCFGlyMiqOKdql5ljw3lBRESNiAsvREQEANg5OICb+rwIjh1e8Wm0nohhYewwbuzzYnDHgEkRktVwTtUuM8eG84KIiBoNn2pEREQAAEVRsOfeuzF0cBj7f3kQIelJ3gRTj8IjwnjP7QMY3DEAReGaPRWHc6p2mTk2nBdERNRohJRSmh0EFWfv3vuwb9/jZodRdfF4HNPT0+js7ITD4TA7HMuph/rVQw7VUq5aSSmTj32NROB2uxEIBCxxyb+V54qVYy+GVedUIzBzbDgviIioEXDhxUIadeGFiIiIiIiIyKp4DSfVvMnJSXzhC5/H5OSk2aFYUj3Urx5yqJZGr5WV87dy7ERERESUHxdeqOYtLS3hF7/4BZaWlswOxZLqoX71kEO1NHqtrJy/lWMnIiIiovy48EJEREREREREVCFceCEiIiIiIiIiqhAuvBARERERERERVQgXXqjmtbW14Z577kFbW5vZoVhSPdSvHnKolkavlZXzt3LsRERERJQfHydtIXycNBEREREREZG18IoXqnmhUAjPP/88QqGQ2aFYUj3Urx5yqJZGr5WV87dy7ERERESUHxdeqOadPXsWn/zk/4OzZ8+aHYol1UP96iGHamn0Wlk5fyvHTkRERET5ceGFiIiIiIiIiKhCuPBCRERERERERFQhXHghIiIiIiIiIqoQm9kBEK3Gbrdjw4YNsNvtZodiSfVQv/QcpJSYmJhAOByGx+NBIBCAEKJqsZjd/2pKHe9az6tYVp7vy7HbbDaMj4+vaSzqZfzI2oqZh4ZhYGRkBPPz82hpacG2bdswOTnJudtgeM4iokbDx0lbCB8nTY3MMAw8PTSM/QeGEZEeQHUBehRuEcbuXQPYOTgARancRXxm918p9ZqXFZUyFhw/qgXFzEPDMPDIY0/gqYPPIWFvh1Td0JemYMQW4F/Xh65AHxQjxrlb53jOIqJGxYUXC+HCCzUqwzDw+De/g2NjIfi6t0K1O1M/0xMxLE0ex019Xuy59+6K/MFmdv+VUq95WVEpY8Hxo1pQzDy8YaMHx158CaOLHji6+iHsTkTP/CsScEC0XAOpReC26djyputgaHHO3TrFcxYRNTKe1ajmnTp1Cv/u370Xp06dMjsUS6qH+v3D93+I7//9d2Fr2pDxhxoAqHYn/L3bcXQ0hKGDwxXp/+mhYRwbC8Hfu92U/tdiLeNtpbyKZdX5/vTQMJ57eQInnv8pokuzGT/LNxb1OH5kPcXMw/2HXsSpORtcvbdBcbiQmDmBBBxQOm+AsLuguFsR0VSMjZ3h3K1jPGcRUSPjwgvVPF3XEQwGoeu62aFYktXrJ6XEM8+PQNfigDTybufr3or9Bw6h3BfxSSmx/8AwfN1bC25Xqf7XqtjxtlpexbLifF8eC3f7VdBiobzzPH0s6nX8yFqKmYdSSiyGIjCargJk8t/x2Tcg2jZnbKc4/bgwOw9cnKucu/WF5ywianRceCGimjYxMYGYdK26nWp3Imy4MTExUfb+I9Kz4tO5avVfKfWalxWlxsLmKLhd+lhw/KgWFDMPg9NnIR1tgN0NXY/DiMxBOpog1Kz5rigwhB3BYBAA52694TmLiBodn2pERDUtHA4DSuE/1FJUFyKRSPn7V1df+KlU/5VSr3lZUSljIaXk+JHpipm7WjwC2FyAUAHDgNTj+fcRKhKadunfnLt1g79ziKjRceGFiGqax+MBjFhxG+tRuN3u8vevR03rv1LqNS8rKnksOH5ksmLmrs3hBrQoIHVAUZJXuuTbR+qw29L+NOXcrRv8nUNEjY5fNaKa19PTg//5P/8GPT09ZodiSVavXyAQgN+j4Po79sLV1JF3Oz0Rg0eJIBAIlL1/twhDTxRe/KlU/2tV7HhbLa9iWXG+L4+F3d2ELbv/U955nj4W9Tp+ZC3FzEN/5waI+CyQiEBVHVDcrRDxxeSVL+kMA4pMwO/3A+DcrTc8ZxFRo+PCC9U8t9uNN73pTfz0o0RWr58QAu+6821APFjwu+GhyePYves2CCHK3v/uXQNYmjxecLtK9b9WxY631fIqlhXn+/JYRKZPoKmzL+88Tx+Leh0/spZi5qEQAk1eN5TFU4BI/tvRdiXk7KsZ2xmxIDraWoCLc5Vzt77wnEVEjY4LL1Tzpqen8fDDX8f09LTZoVhSPdTv+uuuhXHhN7hwYmjFp2V6IoaFscO4sc+LwR0DFel/5+AAburzIjh22JT+12It422lvIpl1fm+c3AA13QCrx14HJHg+Yyf5RuLehw/sp5i5uHu227AVW0aomOHYMSjsLdfAzviMKZfhExEYUTm4Lbp6O3dyLlbx3jOIqJGxnu8UM2bn5/HD37wA9x559vR2dlpdjiWUw/1W1hYwKuv/AZ779+B468cREh6kjfp06PwiDDec/sABncMQFEqs5asKAr23Hs3hg4OY/8vq9//WqxlvK2UV7GsOt8VRcE77rwdP/nH72PDumGE5rtWHYt6HD+ynmLnoWEYeHTfE3hq6CeI29shVDfUpdMwZo6hZV0funv6EB57lnO3jvGcRUSNjAsvRGQZ2/u34T/+h3+ffCxlJAK3241AIFCVS5IVRcHbdg5i5+AOU/qvlHrNy4qW32z8wQMfhsfjKWosOH5UC4qZh4qi4A8++gA++sBejIyMIBgMwu/3Y9u2bZicnOTcbRA8ZxFRo+LCCxFZihDC1Bunmt1/pdRrXlZUylhw/KgWFDMPFUXBm9/85ozXOHcbD89ZRNRoeC0fEREREREREVGFcOGFap7f34x/829+F35/s9mhWFI91K8ecqiWRq+VlfO3cuxERERElJ+QUkqzg6Di7N17H/bte9zsMIiIiIiIiIioSLzihWpeNBrFiRMnEI1GzQ7FkuqhfvWQQ7U0eq2snL+VYyciIiKi/LjwQjXvzJkz+NjH/gBnzpwxOxRLqof61UMO1dLotbJy/laOnYiIiIjy48ILEREREREREVGFcOGFiIiIiIiIiKhCuPBCRERERERERFQhXHihmieEgMfjgRDC7FAsqR7qVw85VEuj18rK+Vs5diIiIiLKj4+TthA+TpqIiIiIiIjIWnjFCxERERERERFRhTTkwoumaRgZGcEjj3wDDz74Mfz+7/8e3vWud+I//Id/j0996lP41399tuD+IyOH8clPfhLvfe97cNdd78Z99+3B448/jkgkUqUMGsvo6Cjuv38vRkdHzQ7FkuqhfvWQQ7U0eq2snL+VYyciIiKi/GxmB2CGY8eO4hOf+AQAoK2tDVu3boXL5cLo6CieffYZPPvsM7jrrrvw8Y//lxXftf/BD76Phx9+GEIIbN16A1pbW3D8+HF897t/h4MHh/CVr/w1/H6/GWnVrXg8jtHRUcTjcbNDsaR6qF8t5SClxMTEBMLhMDweDwKBQEn35ChXO9lKrVWl4qmkXDHXwlxZSy3Ttz1//nxFY88VF4BVYy0mn3LNH8MwMDIygvn5ebS0tGDbtm2YnJysyrw08xioZo3NVi95lKKRc6f6w/lMtDYNufAihILBwUH823/7Htxwww0ZPztw4Jf4/Oc/j3/+53/Gli1bsHv3O1I/O3nyBL7xjW9AURR89rOfw6233goAiEaj+PSnP4UjR47gf/7Pv8anP/2ZquZDRJVnGAaeHhrG/gPDiEgPoLoAPQq3CGP3rgHsHByAoqx+EWG52imXWounGIVi3rr5qpqMK7uWubaNBKcAAL8+fARXX3112eqeqy+pRRCZHQMUFZ7WnpyxAlg1n2K2KSYPTdPwyGNP4KmDzyFhbwdsbmiRIIzQV+Bv60RX33VQjHhF5qWZx0AxfQPlqbHZrHiuKZdGzp3qD+czUWkacuFl27Zt2LZtW86f7dp1Ow4fHsHPfvZT7N+/P2Ph5bvf/S6klHjXu96VWnQBAJfLhf/6X/8b7r33HgwNDWFsbAy9vb0Vz4OIqsMwDDz+ze/g2FgIvu4d8NqdqZ/piRh+eOA4Xn/jNPbce3fBPzbK1U651Fo8xVgt5qcOD6W2q6W40msJIPe2ngng6NN46vDrCEe/U5a654pLSgNnjv8KC/p6SHcPWhQ3NgYCgBCpWE+eOg0pJV48E86bTzHbFDN/NE3DH//pn2F0wQPHFb8Lp92JyOIsjCYAigPzcy8jNjaBLW+9C4aulXVemnkMFNN3uWpsNiuea8qlkXOn+sP5TFQ6HhE5bNq0CQAwPT2dei2RSOC5554DANxxx50r9lm/fj22bNkCABgePliFKImoWp4eGsaxsRD8vduhpv2RAQCq3Ql/73YcHQ1h6OBwVdopl1qLpxirxdzUdT0A4MgLR2sqrvRaFtoWAJq6ri9b3XP1NXPmZSzEFNi7tsHh60QwomNmdi4j1oMvTuLgkZMF8ylmm2LyeOSxJzC64IGr9zYoDhfi0SVoBiCczRB2F5R12xCRLoy+8uuyz0szj4Fi+i5Xjc1mxXNNuTRy7lR/OJ+JSseFlxwmJiYAJO//smx8fBzRaBQAcO211+bcb/n1kydPVjjCxtLd3Y0///O/QHd3t9mhWFI91M/MHKSU2H9gGL7urQW383Vvxf4DhyClrGg7qym2VtWKp5yKidnpa8OmgffhhZdeq1rMa63lz395MOe2Tl8brt15D5y+trLUPVdcUkpcGH8VtvbrUq/ZnE24MDObse+SbT1CkVjB/ovZZrU8DMPAUwefg6Or/2KAQDwSgnD4MrYTbVswM3Ei1U6l6lNKDpXsuxw1NpsVzzXl0si5U/3hfCa6PFx4yTI7O4uf//z/AgAGBwdTr09NJb977/P54PF4cu7b2dmZsS2Vh8/nw2233Qafz7f6xrRCPdTPzBwmJiYQkZ6cVyakU+1OhA13auG2Uu2spthaVSueciomZpvDjY6+mxBXmqsW81pqORdREYzInNvaHG609bwJNoe7LHXPFVd08QJ0mw/Cduk1oSjQpYpoJPnhQjQShVTcMOzNiC7O5Gy7mG2A1efPyMgIEvZ2KA4XAEDX45CKCojMP0+EzQHD7sfChbNFtVsMM4+BYvouV43NZsVzTbk0cu5UfzifiS5PQ97jJR9d1/GFL3weoVAIV155Je6663dSP4tEwgCS93PJx+12AwDC4fCa+n3ooYfw0EMPrbrddddtXlO79WJ2dhb/9//+DO9857syrkKi4tRD/czMIRwOJ28cVwzVlfex8uVqZzXF1qpa8ZRTMTHHI4uYPnUYXrejajGvpZa6sENIPefPlmPvvGo7HO6my657rrh0LZ47VqFAN5Jx6bqeXPhQXTC0WO48itgmpUAe8/PzgO3ShxnSMACh5m7H5kIintZOBeqTV5mPgWL6LleNzWbFc025NHLuVH84n4kuD694SfPXf/3XOHLkCJqbm/HpT38Gdru9Kv0++OCD+M1vfrPq/1pbW6sST62ZmZnB448/jpmZ/J/4UX71UD8zc/B4PIAeLW5jPZpagK1UO6sptlbViqeciok5EVnAmaP/F1okWLWY11JLVSagiNwLL8uxJyILyRcus+654lJtjtyxSgOqklzwUFUVkAagR6HYcn+yWcw2KQXyaGlpAbRLH1YIRQHyLExBi8LuSGunAvXJq8zHQDF9l6vGZrPiuaZcGjl3qj+cz0SXhwsvFz300EP42c9+iqamJnzxi19ET09Pxs/d7uQncsv3eclleWU331eRiMh6AoEA3CIMPVH4E2c9EYNHiSAQCFS0nXKptXiKUWzMAOBSYlWLeS21bHXr8LtFVeqeKy5XUwdUbQky7QoKaRhQhQ6XO/lJpsvtgjAiUBILcDW152y7mG2KyaO/vx/2xAyMePJ3q6o6IAw9ueCQRmpxKIkgmjs2FNVuMcw8Borpu1w1NpsVzzXl0si5U/3hfCa6PFx4AfDwww/jRz/6R/h8Pnz+81/Apk3XrNimq2s9AGBpaSnvV4mWn4K0fn1X5YIloqoSQmD3rgEsTR4vuF1o8jh277oNQoiKtlMutRZPMYqNGQB+a/tNVYt5rbV8x+07qlL3XHEJIdDRsxnazCup1/TYIjraM7+W5tPPwet2Fuy/mG1Wy0NRFNyx41bEp0YuBgg43F7I+FLGdnL2JbQHrkm1U6n6lJJDJfsuR43NZsVzTbk0cu5UfzifiS5Pwy+8PProI/jBD74Pr9eLL3zhC9i8Ofd9VHp6Nqbu7/Laa6/l3Gb59Wuu2VSZYInIFDsHB3BTnxfBscMrPunREzEsjB3GjX1eDO4YqEo75VJr8RRjtZiXpl4GAGy7+aaaiiu9loW2BYClqZfLVvdcfbVvvB7NTonE1BEklqbR7FbR3taaEeuOrd0Y7N9UMJ9itikmj4/cvwdXNEcQHTsEIx6Fw+WDTQFkbAEyEYVx/gjcIoq+695c9nlp5jFQTN/lqrHZrHiuKZdGzp3qD+czUemEbOBnfT322KP43ve+B6/Xiy9+8YvYvPm6gtt/9rN/gaeffhq//du/jT/5k/+a8bNz587h3nvvgWEY2LfvcfT29pY93r1778O+fY+Xvd1aNzl5Fo8++hgeeOB+dHdvMDscy6mH+tVCDoZhYOjgMPb/chhh6UneYE6PwiPC2H37AAZ3DEBRVl/LLlc7+ay1VpWOpxIKxfzmm9+EY0eP4IEHHqj6XFlLLXNtGw/NYPr0i3j/+9+H3/03v1O2uufqS2oRRGfHAEWFu7UnZ6wAVs2nmG2KyUPTNDy67wk8NfQc4vZ2wOaGFgnCCJ2Dv60T3X3XQxixisxLM4+BYvoGylNjs1nxXFMujZw71R/OZ6LSNOzCyxNPPI6/+7u/g8/nu3ilS+FFFwA4ceIEHnzwYxBC4HOf+xxuueVWAMn7vnz605/CkSNHMDg4iE9/+jMViblRF16IaomUMvlIxUgEbrcbgUCgpMtpy9VOudRaPMWo1ZjXElc1c8jVF4BV+y8mxnLlYRgGRkZGEAwG4ff7sW3bNkxOTppWn2rNp2rW2Gz1kkcpGjl3qj+cz0Rr05ALL4cOHcJnPvNpAMC1116Lvr4rcm7n9/vx0Y9+NOO1H/zg+3j44YchhMCNN96IlpYWvPjicczOzmDjxo34ylf+Gn6/vyJxN+rCSyKRwPz8PFpaWqr2pKl6Ug/1q4ccqqXRa2Xl/K0cOxERERHl15DXgS0uLqb+/2uvvYb9+3+e839DQ0+v2Pe97/13+OIXv4g3v/nNOHXqFA4dOgS324X3ve/9+OpXH6rYoksjO336ND7wgffj9OnTZodiSfVQv3rIoVoavVZWzt/KsRMRERFRfjazAzDDO9/5Trzzne8sef/+/u3o799exoiIiIiIiIiIqB415BUvRERERERERETVwIUXIiIiIiIiIqIK4cILEREREREREVGFNORTjayqUZ9qZBgGNE2DzWaDonCtcK3qoX71kEO1NHqtrJy/lWMnIiIiovwa8ua6ZC2KosDhcJgdhmXVQ/3qIYdqafRaWTl/K8dORERERPnxIzWqeePj4/iv//VPMD4+bnYollQP9auHHKql0Wtl5fytHDsRERER5ceFF6p5kUgEx44dQyQSMTsUS6qH+tVDDtXS6LWycv5Wjp2IiIiI8uPCCxERERERERFRhXDhhYiIiIiIiIioQrjwQkRERERERERUIXyqEdW8devW4Y//+E+wbt06s0OxpHqon9VykFJiYmIC4XAYHo8HgUAAQoiqtFtMrQzDwMjICObn59HS0oL+/v4Vjy8uNYfs/TZs2ICzZ89mtANg1W1K7UvTNHzgA3dD0zRIKYvqK3ubYvrPVR8p5ap1LcQq8zxX7sDqNazUcVFrSsmzXmpTL3kQERGVm5DLf5lSzdu79z7s2/e42WEQUR6GYeDpoWHsPzCMiPQAqgvQo3CLMHbvGsDOwYE1vREvd7uapuGRx57AUwefQ8LeDtg8gBaGPTGDO3bcio/cvweKopTUV3aMUnViYXYawelRNLd2wt/ZB2HEEJ4bBwwd7rZewObKuU05+oIeRWR2DFBUeFp7itqmmFxzjYWRCGN67CUsRRKApytnXW0263/OkSt3qUVWrSGAihwXtaaU47RS54xqq5c8iIiIKoULLxbSqAsvwWAQw8PDGBgYgN/vNzscy6mH+lkhB8Mw8Pg3v4NjYyH4urdCtTtTP9MTMSxNHsdNfV7suffuNb0BWWu7+WqlaRr++E//DKMLHji6+qE4XJf6iEcRnxpBX3MYN2x5E46PR9aUw4oYbQ6MjU9gIaJDVZ3Q515Fs9OA9G/CQigKsTSOZhcg/ZuwGDXStpHYuHUnDC1Rcl/ahRdhi0zB1dyJkO6E9PXA73MDEliIXoqnyakDEliMCUhfD1p8bmzsCQBC5M0111gYhoaXDnwHUaUNsmMrHA433C4XIC7V9YrmCL78pc+tuvhSy/M8V+5SGjhz/FdYiCJvDW/s9UJKiRfPhMt6XNSaUo7/Sp0zqq1e8iAiIqok/gakmnf+/Hl85Stfxvnz580OxZLqoX5WyOHpoWEcGwvB37s9440HAKh2J/y923F0NIShg8MVbTdfrR557AmMLnjg6r0tY9EFABSHC67e23Bq1oYnnzm+5hyyY5yZncNCRIfd7YficMG+/ibMhgzMTr4Oh68T9q5tqX+nb7MQE5g98/Jl9aU0b0Tw7G8wN78Ie9c2OHydmA2GMLsUy4xnIY7Z2ZnUNsGIjpnZuYK55hqL0ReeRFRpg7LhLVAdPmi6RDyRyKjr6QU3Ht33xKpjXcvzPFfuM2dexkJMKVjDgy9O4uCRk2U/LmpNKcd/pc4Z1VYveRAREVUSF16IiC6TlBL7DwzD17214Ha+7q3Yf+AQir3QsFztGoaBpw4+B0dXf4HOAKPpKiyGogXjy+4rV4zTM7OwOZsy9tN8V0FfOpfaL/vfAGBrvw7T46+mXiulr+Vtddc6QCbz0nUDukh7QygB3R2Arump7W3OJlyYmc2ba66+DcPAzOQpiHU3p14Tig3xeDyjHUdXP54aeh6GYeStay3LlbuUEhfGX4Wt/brUa7lquGRbj1AktqY5ZTWlHKeVOmdUW73kQUREVGlceCEiukwTExOISM+KT3uzqXYnwoYbExMTVW13ZGQECXv7iitd0ul6HLC7IR2tWLhwtui+smOMRqIwpAqR/vUg3QBUJ+BoghGdW/HvZcLmhG7zIbo4U3JfMraY/D82B3Q9Dl2PQyo2SCjJflO5ugBnc6p/oSjQpYpoJJoz11xjsTB1EtLVDmFLq6sAJESqLyB55Uvc3oaRkZG8da1luXKPLl6AbvNB2C69ll3DaCQKqbhh2JtTY5rLWo+LWlPKcVqpc0a11UseRERElWb9u/0REZksHA4nbyZZDNWFSCRS1Xbn5+eTN3wtQBoGIFTA5kIivkp8aX1lx6jrOiBWPiEJEMmbsepxIPvfWW0bWqz0vvTE8o6AYUACybwgLl05s5xrdv9CgW7oOXOVUq4Yi0QsBNi8OQokVn6yb/MgGAzm2Lb25ZqHuhbPPTfTapgan+wxzWUNx0WtKeU4zTWfVtunFlXq3EdERFRvuPBCNc/tduPGG2+E2+02OxRLqof61XoOHo8H0KOrbwgkn/RRZB6ltptdq5aWFkALF9xdKAogdUCLwu5YJb60vrJjVFUVkJlfqUk+TlYCehRCdaz4d3bbStpVFGvuy+4GnH5AUQBFgQCSeUGmHmubyjW7f2lAVdS8uWaPhd3pBbRQjgLJlY/Q1cKr3jC3Vud5rnmo2hy552ZaDVPjkz2muazhuKg1JR//FThnVFulzn1ERET1hgsvVPN6enrwV3/1ZbPDsKx6qF+t5xAIBOAWYeiJWMFL7vVEDB4lgkAgULF2hRAratXf3w974hsw4tG8XzdSVQeQiEDE59DcsaHoHLJjdLldUIQOaRiprwApqgLoMSC+CMXVmlyUSPv3MqnFoGpLcDW1l9yXvfVK2Px9gOJM5gRAGBoAIxlHKtcoEFtI9S8NA6rQ4XKnXVGT1X/2WDR3bYI48iSkFr30dSMJCMhUX0Dy6UaOxCz6+wvcYwe1O89zzUNXUwdUbQlSi6W+bpRdQ5fbBWFEIBILqTHNZa3HRa0p9fivxDmj2ip17iMiIqo3vMcL1TzDMBCPxy17Y0qz1UP9aj0HIQR27xrA0uTxgtuFJo9j967bVl4NUcZ2c9VKURTcseNWxKcK3GNEAMriKTR5XQXjy84hV4yd7W3Qlu+1cpFt6RRU3/rUftn/BgBt5hV09mxOvVZqX4qqQA2PAyKZl6oqUGXaV10EYItMQLWpqbb12CI62tvy5pqrb0VR0N59FeT5F1KvSUODw5F5FU98agR3DN6y6qN0a3We58pdCIGOns3QZl5JvZarhj79HLxu55rmlNWUcpxW6pxRbfWSBxERUaVx4YVq3uuvv4677no3Xn/9dbNDsaR6qJ8Vctg5OICb+rwIjh2Gnsi8n4WeiGFh7DBu7PNicMdARdvNV6uP3L8HVzRHEB07BCOe+dUAIx5FdOwQrmrTsPu2G9acQ3aM7W2t8LtVJCJBGPEoEueOos2roL37asSXppGYOpL6d/o2zU6Jto3XX1ZfsbEhxCdfQJMjhsTUESSWptHm96KtyZnRV2uzA21tHaltmt0q2ttaC+aaayz6bn47XMYsjLPPwogvwaYKOOz2jLpe0RzBA3v3rDrWtTzPc+XevvF6NDtlwRru2NqNwf5NZT8uak0px3+lzhnVVi95EBERVRK/akREVAaKomDPvXdj6OAw9v/yIELSk7zppB6FR4TxntsHMLhjYNWrHirVrs1mw5e/9Dk8uu8JPDX0E8Ts7ckb7mphOBIz+O3BW/HA3j1QFGXNfeWKsU11QY2ex8L0KFpbO+Fv6YMwxuGJjQOqDldTL4RyAbasbcJj/3pZfTW7PYgA8HscaImfA2IX4Pb0AKprRV/Qo/DOjqW2CU1MF8w131hcceUmXBh7CYvjY4CnC7EcdbXZrP3rNl/ubU0OeBKFawig7MdFrSnlOK3UOaPa6iUPIiKiSrL2X4JERDVEURS8becgdg7uSD5mNRKB2+1O3XvF7HZtNhv+4KMP4KMP7MXIyAiCwSD8fj/6+/sz3hSV0le+GDds2ICzZ89mtANg1W1K7evQoUP48z9/CR/8t3diYGCgqL6ytynUf/6x+DiklAXranWF5iFQuIaVOC5qTSnHaaXOGdVWL3kQERFVChdeiIjKTAiBnp6emm1XURS8+c1vrkhfufbL1U4x25TS1/r161P/XX7DV0o8pfQthFi1rvUg39xYrYaVOi5qTSl51ktt6iUPIiKicqufj+KIiIiIiIiIiGqMkFJKs4Og4uzdex/27Xvc7DCqLpFIYH5+Hi0tLbBfvGklFa8e6lcPOVRLo9fKyvlbOXYiIiIiyo9fNaKaZ7fb0dnZaXYYllUP9auHHKql0Wtl5fytHDsRERER5cevGlHNm5w8i7/4i7/A5ORZs0OxpHqoXz3kUC2NXisr52/l2ImIiIgoPy68UM1bWgphaOhpLC2FzA7FkuqhfvWQQ7U0eq2snL+VYyciIiKi/LjwQkRERERERERUIVx4ISIiIiIiIiKqEC68EBERERERERFVCBdeqOa1t7fjvvvuQ3t7u9mhWFI91K8ecqiWRq+VlfO3cuxERERElJ+QUkqzg6Di7N17H/bte9zsMIiIiIiIiIioSLzihWre0tISDh06hKWlJbNDsaR6qF895FAtjV4rK+dv5diJiIiIKD+b2QEQrWZychKf+cyn8bWvfR3XXHON2eFYTj3ULz2HTZs2YWJiAuFwGB6PB4FAAEKIsvQjpVy17WK2MdPExAQ+85lP40Mf+jCuu+469Pf3Q1Ey19hLzaGU/XLtsxznWuq8YcMGnD17tmA7XV1d+P73v4/vfOf/xd13fxD33HMPVFVdS/mKjrm7uxtHjhzB/Pw8WlpactZ5rfIdq4ZhYGRkJKMvIURF5mquvso1f4pRzeOrHo53M+MrZ9+VyqPWx89srA8RVQPPNUlceCEiy/j14SP427/7ASLSA6guQI/CLcLYvWsAOwcHSn7jaxgGnh4axv4Dw3nbBrDqNpf7xvtyaJqGRx57Avt/OQQA+N7Pj0L5xXHYE9/AHTtuxUfu3wNFUUrKoZj6ZO+Xb5/w3Dhg6HC39ULY3KvWWSpOBKdHsTA3DX9nH5rbOiH0WEY7UnFh9I3XEJqdgFTsAIC/++dn8b0f78e2Ldfgf3z6k3A4HKvWMFfMUosgMjsGKCo8rT0wFCemJkYRPD8KxdkM1dcFoUcy6myzledX6/KYPnXwOSTs7YDNA2hhIPxV+Nx2dPZugWL3lGWu5uurHPOnGKXMsVLVw/FezXpVsu9K5WFmfayA9SGiauC5JhPv8WIhjXqPlxMnTuBjH/sDS1+xYaZ6qN+rr76KP/zDB3HFzXei85pBqHZn6md6IoalyeO4qc+LPffeveYTuGEYePyb38GxsRB83Vtztn1jrxdSSrx4Jpx3m1L7LwdN0/DHf/pnGF3wQG3qwdLx76Jp24dg83XBiEcRnxpBX3MEN2y5HsfHI2vKoZj6ZO+Xcx8pMTY+geBSBGJpHM0ugY1bd0IIJa3OHkiJVJ0Vmx1njv8KCzEFautm6HoMzW4VkEAwlGynySlxQWuDJlyQNjcwfRiYeh7q9R+AcLRAP38YbXIK39r39YKLL7liltJI9h8FpK8Hfq8bC4uLiGgqhM0NOX8CdsTh2vhbkIkY4lMjuKI5gi9/6XMlLb6kH6tXXnllakwdXf1QHC5AApFoFPF4BOLCcbiMWWzZdTcUxXZZczV9/qT6Wq5Lav6EccOWN615/hSjlDlWqno43qtZr0r2Xak8zKyPFbA+RFQNPNes1BhZEpGljRw5CgBo6ro+48QNAKrdCX/vdhwdDWHo4PCa2356aBjHxkLw927P2/bBFydx8MjJgtuU2n85PPLYExhd8MDVexuEPXNxQXG44Oq9DafmHHhy6Pk151BMfbL3y7XPzOwcFiI6HL5O2Lu2YSEmMHvm5Yx2hkZOYvilqdR+M2dexkJMgX39TVAcLtjdfswGQ5hdiqXaOR9MILF0HsLVBsXmhvAnFxeNxXEIuwu2wABmRRf+/LN/WbCGOWNe7r9rGxy+TlwIhhGO6VDcrRB2F5TOG5CAA4mZE6k6n15w49F9TxQ7dHmlj+nyQkg8kYCmS6gOH5QNb0FUacPYC09m1LCUuZqrr2Wp+TNrw5PPHK/IMVDKHCtVPRzv1axXJfuuVB5m1scKWB8iqgaea1biwgvVPIfDgb6+vqK+KkArWb1+Uko8f+QYXM2dEGr+qwh83Vux/8AhrOUiPikl9h8Yhq97a8HtlmzrEYrECrZdSv/lYBgGnjr4HBxd/QAAIWxQPO0QIrNWRtsWLC6FYBhG3raycyi2Pun75dtnemYWNmdT6t+29uswPf5qRl+hcAwhdX3q3xfGX4Wt/bpLjUhA1w3ownnp301XAdGZS3UXNsDZChk6l3pNXbcdI8dPQNf1nPHninlF/xJIwAmJzO8ki7bNiM+eTvXl6OrHU0PPF6xzPsvHqs1myxjTZfF4HEK5NK5i3c24MHkqo6+1ztXs+ZOTBIymq7AYipb9GChljpWqHo73atarkn1XKg8z62MFrA8RVQPPNblx4YVqXl9fHx57bB/6+vrMDsWSrF6/iYkJwL0ON//On8DjX593O9XuRNhwJ7dfQ9sR6VmxEp8uGolCKm4Y9mZEF2fK2n85jIyMIGFvT12poHo74N9+P1RvR2obQzeS9ytxtWNh6vW8bWXnUEx9svfLtU80EoUhVYi0S0mFzQnd5kvVNLp4AYajGYbiRjQSRXTxAnSbD8KWdmmqHodUbJBQYOgGYvE4hM0FOJqB2HyyXXc7lDd9GMLdeek1uwuGax3279+fM/6cMWf1n9ASgFAB1Q6pJy7loTogHT4Y0TkAyStE4vY2jIyMFKxZLsvH6szMTMaYAskxlBBIX/cRtswxLWWuZs+fXHQ9DtjdkI5WLFw4W1S7xSpljpWqHo73atarkn1XKg8z62MFrA8RVQPPNbnx5rpEVNPC4XDyZlzFUF2IRCJlbVvXdUAogOqCocXK2n85zM/PJ2+EWkDykwQB2LzQYqs8qjgth1JqL6VcsU+qhjn2Wa6prsWT+wkFuqFDLv87PQ/DSC5+QCSvrjGMZF6qCzDimW3bXICe9prdg5mZ3G+kc+WpZ/UvDQkIgeTnFVlXs6guyPS+bB4Eg8GcfRUj15imxjBb2piWMleLmj/Ldbe5kIivMr8rcAyW2nYpfdX68V7NelWy70rlYWZ9rID1IaJq4LkmN17xQjXv5MmT+L3f+12cPHnS7FAsyer183g8iATP4fm//x8IzeX/tB1A8k7pbvea2oYeLbiNqqqANAA9CsVWeOV+rf2XQ0tLS/JJNxdpS+cwd+gr0JbOpV5LPrJPAloINqevcINpORRTn+z9cu2TqmGOfZZrqtocyf2kAVVRL/07jVAUQOoAJIQQF6+gkcntlORX6WT4PIyjD0FGLgBq2tfrEmG0t7fnDD1nzFn9C0UAUiK56JL1q1OPQqT3pYXh9/tz9lXI8rEaDoczxhRIG8NsaWNaylzNnj+5pOquRWF3rDK/K3AMltp2KX3V+vFezXpVsu9K5WFmfayA9SGiauC5JjcuvFDNk1IiHA43zPf/ys3q9QsEAnCKCHQtdvGNb256IgaPEkEgEFhT224Rhp7I/8m2y+2CMCJQEgtwNeV+415q/+XQ398Pe2IGRnz5F5y8eKXHpVopqpJcHIjOoLnr6rxtZedQTH2y98u1j8vtgiL0i1eoXIxSi0HVllI1dTV1QIkvQDEicLldcDV1QNWWINOuOlBVB4ShQcCAoipwOhyQWhSILwDOlkv5G3EgEUq9JhNRKNHz2L17d874c8ac1b/dZk8uPugJCNV+KQ89DhFfguJqBZB8CpAjMYv+/gL3TMlj+VjdvHlz1pgmx1BAZqy9SC1zTEuZqyvnz0qq6gASEYj4HJo7NhTVbrFKmWOlqofjvZr1qmTflcrDzPpYAetDRNXAc01uXHghopomhMBvbb951e1Ck8exe9dtF68MKL7t3bsGsDR5vOB2Pv0cvG5nwbZL6b8cFEXBHTtuRXyq8D1FlNnjaPJ5Cz6yLzuHYuuTvl++fTrb26DFFlP/1mZeQWfP5oy+fB4nvPq51L87ejZDm3nlUiMCUFUFqoxd+vfiKcDVvqLuwtedek0/fxj9W69JXs2QQ66YV/QvADtiycWPNHL2VTjarkj1FZ8awR2Dt1zWoxHzjanD4YA0tEt9n38BHd1XZfS11rla1PwRgLJ4Ck1eV9mPgVLmWKnq4XivZr0q2Xel8jCzPlbA+hBRNfBckxsXXoio5vVvuwkAsDj18orVcz0Rw8LYYdzY58XgjoE1t71zcAA39XkRHDuct+0dW7sx2L+p4Dal9l8OH7l/D65ojiA6dggykXmvEyMeRXTsEK5qTWD3zlvWnEMx9cneL9c+7W2t8LtVxJemkZg6gmanRNvG6zPa2dG/CTu2dqf2a994PZqdEolzR2HEo9AiQbT5vWhrcqbaWee3w+5bBxmdhaFFIIMnAABKUw9kIgptYhhtcgqf+dQnC9YwZ8zL/U8dQWJpGh1+DzxOFUZkDjIRhTH9IuyIw95+TarOVzRH8MDePcUOXV7pY7p8NYrDbodNFdDjSzDOPgOXMYvem9+eWcMS5mquvpal5k+bht233VCRY6CUOVaqejjeq1mvSvZdqTzMrI8VsD5EVA0816wkpFW/f9CA9u69D/v2PW52GFV34sQJfOxjf4Cvfe3ruOaaa8wOx3LqoX7LOey9/yM4/sophKUnedMuPQqPCGP37QMY3DFQ8lUGhmFg6OAw9v9yOG/bAFbd5nKucrhcmqbh0X1P4OdPDWFp9ixc3dugqCociRncMXgrHti7B4qilJRDMfXJ3i/fPpG5ccDQ4WrrhbC5V62zVJwITo9icW4azZ198LetW9GOVF0YPfUaQrMTkIodCE1CtGyCqi2if+s1+MynPlnU49RzxSy1CKKzY4Ciwt3aA6k6MTk+iuD5USjOZqi+Lgg9klFnm620+9ZnH6vLY/rU0HOI29uTN8HVwkB4Ck1uOzp6t0Cxe8oyV/P1VY75U4xS5lip6uF4r2a9Ktl3pfIwsz5WwPoQUTXwXJOJCy8W0qgLL9FoFGfOnMHGjRvhchV5h2xKqYf6pefgdDqTj6mLROB2uxEIBMp2iaKUctW2i9nGTOFwGPv374fT6URHRwf6+/tX/FIrNYdS9su1D4A113nDhg04e/ZswXa6urrw05/+FG+8cQpXXnkV3v3ud+f9etHlxtzd3Y0jR44gGAzC7/fnrPNa5TtWDcPAyMhIRl9CiIrM1Vx9lWv+FKOax1c9HO9mxlfOviuVR62Pn9lYHyKqBp5rkrjwYiGNuvBCREREREREZFWNc20PWdb58+fwN3/zNzh//tzqG9MK9VC/esihWhq9VlbO38qxExEREVF+XHihmhcMLuCf/uknCAYXzA7FkuqhfvWQQ7U0eq2snL+VYyciIiKi/LjwQkRERERERERUIVx4ISIiIiIiIiKqEC68EBERERERERFVCBdeqOa1tLTgve99L1paWswOxZLqoX71kEO1NHqtrJy/lWMnIiIiovz4OGkL4eOkiYiIiIiIiKyFV7xQzYtEIvjNb36DSCRidiiWVA/1q4ccqqXRa2Xl/K0cOxERERHlx4UXqnnj4+P4+Mf/M8bHx80OxZLqoX71kEO1NHqtrJy/lWMnIiIiovy48EJEREREREREVCFceCEiIiIiIiIiqhAuvBARERERERERVYjN7ACIVqOqKvx+P1RVNTsUS6qH+qXnIKXExMQEwuEwPB4PAoEAhBBl6aeYtg3DwMjICObn59HS0oL+/n4oSmXWsEvJVQgBr9eL559/HsFgEP39/RBCZLSzYcMGnD17NvXv7u5ujIyM4NSpU3C5nNi2rR8bN24s2FexseXaDkDGa11dXdi/fz9mZmbQ3t6Od7zjHUXN11xtV2q+Z/fV3d2NI0eOFJwHax2/5dgVRcH4+HjB/YppO3ub7HGv9vwuZT4XM38q2U6lzjeljE0lz33lUu0YK9GfWXWu1fGt1jFQK/mSNaxl/nCuUa3g46QthI+TpkZmGAaeHhrG/gPDiEgPoLoAPQq3CGP3rgHsHBwo+Q1iMW0bhoFHHnsCTx18Dgl7O2DzAFoY9sQM7thxKz5y/x7YbOVZyy4lV03TVsQnEyEgNIHmZj86ezYDNicWZqcRnB5Fc2snmjo2Ymr0VczPTAGuDsDRDOgxiNgM2v1O7L3nA9j1tsGMvoqNLd924blxwNDhbuuFoTgw9sqvEQqFAE8XhMMLJMJQouexbcs1+B+f/iQcDkdZ6lOusTAUJ6YmRhE8PwrF2QzV1wWhRzLmgaIoJcVXTF4A1ryNVDPH3d/ZB2HEqja/SxmvXPtILYLI7BigqPC09lS0nWLqXMocy46nmLGpVCzlVM1jslL9VTsHs/s1K65azZesYS3zh3ONag0XXiyECy/UqAzDwOPf/A6OjYXg694K1e5M/UxPxLA0eRw39Xmx5967S/pje7W2b9jowdEXj2Ns0QtHVz8Uh+vS/vEo4lMjuKI5gi9/6XOXvfhSSq6apuGP//TPMLrgScUnpUT0zL8iIW2Qnm54nAqam5qwENWhqk5oM68gNvMadGcnZMtmCEczFEWBYrNDanEYM8fhiEzgd3e/FXs//MHUYkoxsX3og+/H3377u5nbSYmx8QkElyIQS+Nocho4P34Suqsb6LwJQrFDEUj2n4hCP38YbXIK39r39YzFl0rOhdXGQrE58NJvXkFEUyFsbsj5E7AjDtfG34JMxBCfGkFfcwQ3bLkex8cja4qvmLxu7PVCSokXz4QLbOOBlLi0jc2BsfEJLESS467PvYpmp8TGrTthaInU/D724ksYXfSUfX6XMl659pHSwJnjv8JCFJC+HrT43NjYEwCEKHs7K2pYpjm2Ip4ixqZSsZRTNY/JSvVX7RzM7tesuGo1X7KGtcwfAJxrVHM406jmnT59Gh/60L04ffq02aFYUj3U7wc//Ef88Iffh725J+OXJwCodif8vdtxdDSEoYPDa2776aFhHBsLwd+7PW/bTz7/Bk6di8LVe1vGm1IAUBwuuHpvw+kFNx7d98TakyshnuxcH3nsCYwueODqvQ0ysYjg899A7OxhJOCAsu4mqL51CCcEpucWYHf7oThcSAgnNOc6oGUzFHcHhOqAIQFD1yBsDqjr+5Hw9GD/oRdTfRUb26P7nlix3czsHBYiOhy+Tti7tuH8zAJ0uKB0vwWKzQ2h2C71b3fBFhjArOjCn3/2L9dUH3tzD37wg+/jhz/8x7KPxejYGUQ0FYq7FcLugtJ5AxJwIDFzIjUPTs058OTQ82sav+W+nn/5LE698BRiofmc+x18cRIHj5ws2PbQyEkMvzSV2ma57svjbl9/ExZiArNnXk7ts//Qizg1Z6vI/C5lPufaZ+bMy1iIKbB3bYPD14lgRMfM7FxF2smuYTExl1KLYsamUrGUUyljXGv9VTsHs/s1K65azZesYS3zh3ONahEXXqjmJRIJnD17FolEwuxQLMnq9ZNSYvhfDyMRDUEaWt7tfN1bsf/AIazlIj4pJfYfGIave2uhjbCgrIcUtoJtO7r68dTQ8zAMo+j+S4oHmbkahoGnDj4HR1f/xTZ0GNF5JObPQLRtvtS2zQNNNwCZ7Ccx9wbQthWAxHJWQlEhDT21j2jbgsVQFD//5TAMwygqNm/XFvxi6PkV203PzMLmbErlqXsCgGrPqGl2/+q67Rg5fgK6rhddH2loSERDGH5uZE1zYUU72X1JiZnZeShOf8Z2om0z4rOnU30ZbVuwuBQqOA+y5+pyX672KxFbms07z5ds6xGKxPLmJaVEKBxDSF2fei297sts7ddhevxVSCkhpcRiKAKj6SqgQLlKmd+lzOdc+0gpcWH8Vdjar7uUg7MJF2Zmy95OrhquFnMxcsVTzNhUIpZyKmWMa62/audgdr9mxVWr+ZI1rHX+/PyXBznXqOZw4YWIatrExARi0rXqdqrdibDhxsTExJrajkjPik9D0gWDQUibB3D6YUTn8m6nOFyI29swMjJSdP+lxANk5joyMoKEvX3FlQrS7oVQk1/RkVICQgUUOxLxKLTQDKS9CcLuBhQ7YCwvyglIiNQfIcLmgHS04vx8DCMjI0XFloguImFvQ0K79IdMNBKFIVWIi5fzxiNLgN0HOP1AbD5t76z+7S4YrnXYv3//muoDAFHDuaa5kC27r2AwCEPYgaxLkoXqgHT4YETnYOhG8h4irnYsTL2et+3suZrqy7byfjapfCJRSMUNw96M6OJM7m0WL8BwNMNQ3IhGoivqnorZ5oRu8yG6OIPg9FlIRxtgd0PX43n7L2V+lzKfc+0TXbwA3eaDsF16TSgKdKkiGomWtZ3sGhYTcym1KGZsKhVLOZUyxrXWX7VzMLtfs+Kq1XzJGtYyf+YiKoIRyblGNYdPNSKimhYOhwFl9TfaAADVhUgksra21cKLOomElly0UF2QBd6YAgBsHgSDwaL7LyWelIu5zs/PJ2+Emk1JexMvJSAEIBRIqQNa7FI/QgFk2lUMQlzaHgBsLmgygWBwvqjYdC0O2DzQ065c0XU92c9yOMalmsLIqml2/3YPZmaSCw1rqo/iXNNcyJbdV2oe5LI8N6QEIACbF1psqXAHaXO1mLxSNVRdMLRY7m20eLIdoSTrL5FR9+z+DS0GLR4BbK5kbqtdzbLG+V3KfJZSrtgnlVe25TzL2M6KGhYRczGya5F9TGS3a2ix5AVIFYilnEoZ41rrr9o5mN3vaioVV63mS9awlvmjCzuEXOWcuYxzjaqICy9EVNM8Hg9g5H6juYIehdvtXlvbev5PkgHAbrcBUgf0aOoKkry0MPx+f+FtLjOelIu5trS0AFp45c/TFzSWFzOkASFUwOa81I80Mt8Api96AIAWhU2o8PtbiopNtTkALQxVubRIoapqxuKOUGyAjCTbU7Jqmt1/Ioz29nYAa6yPEVvTXMiW3VdqHuRycW4kH08pAS0Em9NXuIO0uVpMXqka6lEottwLkarNkWxHGpfqL/Msplxsx+YAoEWTua12g8E1zu9S5vPy/0+Xyitbep5laidnDYuJeRXZtcg+JrLbTY6xrEgs5VTyGNdQf9XOwex+V1OpuGo1X7KGtcwfVSYAUeTCC+caVRG/akQ1b8OGDfjLv/w8NmzYYHYolmT1+gUCAfjdCq4d/CCcTe15t9MTMXiUCAKBwJradosw9ET+hR2/3w+hhYFYEIqrNe92RjwKR2IW/f39RfdfSjxAZq79/f2wJ2ZgxJN/kKiuVni3/HsIQ0tdoSOESL6xNhKwO1ywedshEouQiUjya0aK/WLLMvlln4sLH1KLQ8TnsK7Fif7+/qJis7uaYE/Mwm67tHjicrugCB3y4hUVDrcPSCwBsSDgbEnbO6v/RBRK9Dx2795ddH2cTe24dvCD8HvUNc2FbNl9+f1+KDKx4qoQqcch4ktQXK1QVCW5CBOdQXPX1Xnbzp6ry33ZXT5ct2tPznnucrsgjAiUxAJceY4DV1MHlPgCFCMCl9u1ou6pmLUYVG0JrqZ2+Ds3QMRngUQEaoGFxVLmdynzOdc+rqYOqNoSZNqVPtIwoAodLrerrO1k17CYmEupRTFjU6lYyqmUMa61/qqdg9n9mhVXreZL1rCW+dPq1uF3C841qjlceKGa5/V6ccstt8Dr9ZodiiVZvX5CCLzr7W+DKqOw2fO/+QhNHsfuXbel3rQX2/buXQNYmjxeaCM0G+cgpFaw7fjUCO4YvOWyHktYVDzIzFVRFNyx41bEp5L33hA2JxxtV8HZsQly9tVLbWth2FQFEMl+7K1XArPHAQgsZyUNHSLtk3U5+xKavS684/YBKIpSVGzhqZdw5+AtK7brbG+DFltM5amGJwA9kVHT7P7184fRv/Wa5NUBRdbHZnfBJqP47bfvXNNcyLaiLyHQ3tYCI5b5VRs5+yocbVek+lJmj6PJ5y04D7Ln6nJfkQsn0bLh2rzz3Kefg9ftzJuXEAI+jxNe/VzqtfS6L9NmXkFnz2YIISCEQJPXDWXxFFCgXKXM71Lmc659hBDo6NkMbeaV1Gt6bBEd7W1lbydXDVeLuRi54ilmbCoRSzmVMsa11l+1czC7X7PiqtV8yRrWOn/ecfsOzjWqOVx4oZo3MzODb33rm6n7PNDa1EP9trzpOijBE7hw8uCKTzD0RAwLY4dxY58XgzsG1tz2zsEB3NTnRXDscN62337Llbh6vRvRsUOpK0uWGfEoomOHcEVzBA/s3bP25EqIJzvXj9y/B1c0RxAdOwRtaQaR0YNQm7phRxzG+aPQl87DY5fobG1GIhKEEY/CLmOwxc4D86/CiFyA1ONQBKCoNkgtDuPcCOzhcbz9thtSfRUb2wN796zYrr2tFX63ivjSNBJTR7CuvRk2RGFMPgtDi0Aa2qX+E1FoE8Nok1P4zKc+uab6zJw8CBE8gTddfx0uV3Zffb0b4bbpMCJzkIkojOkXYUcc9vZrUvPgqtYEdu+8ZU3jt9zXtesETg59C5GFCzn327G1G4P9mwq2vaN/E3Zs7U5ts1z35XFPnDuKZqdE28brU/vsvu0GXNWmVWR+lzKfc+3TvvF6NDslElNHkFiaRrNbRXtba0Xaya5hMTGXUotixqZSsZRTKWNca/1VOwez+zUrrlrNl6xhLfOHc41qkZB8hpZl7N17H/bte9zsMKruxIkT+NjH/gBf+9rXcc0115gdjuXUQ/2Wc9h7/0dw/JVTCEtP8iZrehQeEcbu2wcwuGOg5KtNDMPA0MFh7P/lcN62DcPAo/uewFNDzyFub0/e0FYLw5GYwR2Dt+KBvXtgs5XntlnFxJOdq6ZpeHTfE/j5U0NYmj0LV/c2CEWBWJpAs9+Pjp7NEDYXgrPnsTA9iqbWTjR39GJq9BXMzUwBrg7A0QzoMYjYBXT4Xbjv3g9g187BjL6KjS3fdpG5ccDQ4WrrhVScGH3leYRCIcDTBeHwAokwlOh59G+9Bp/51CfhcKz8+kuhGLZedxX2PfZI2eZ7dl9SdWJyfBTB86NQnM1QfV0QeiRjHiiKsubxA4BXX30Vf/iHD2LrzbdCeLty7gdg1bZzbZM+7v7OPggjVrX5Xcp8zrWP1CKIzo4Bigp3a09F2ymmzqWcb3LFs9rYVCqWcipljGutv2rnYHa/ZsVVq/mSNaxl/nCuUa3hwouFcOHFugsHZqqH+qXnsGnTpuRjBSMRuN1uBAKBsl0mKqVctW3DMDAyMoJgMAi/34/+/v6K/eIuJp5sy2/eP/zhPdi8eTP6+/shhMhoZ8OGDTh79mzq393d3ThyZARvvHEaDocD/f3b0NOzsWBfxcaWazsAGa91dXXhySefxMzMDNrb27F79+7U14vWWp+TJ09WZL5n95Ws2ZGC82Ct47c8zx966GvweDwF9yum7extsse92vO7lPlczPypZDulxFyMUsamUrGUU7VjrER/ZtW5Vse3WsdAreRL1rCW+cO5RrWCTzUiIksRQqCnp8e0thVFwZvf/OaK9F9KPNmW3yTfeuutGQsP2e1k//vNb74Fb37zLWWPLd922a+9613vKrrvtcZQDrn6Wm0elBpfMfuVuo2Z87uUehQ7fyrVTqXmWCljU835Xqpqx1iJ/syqc62ObzWPAaJirWX+cK5RreD1VUREREREREREFcKFF6p5Pp8Pd955J3w+n9mhWFI91K8ecqiWRq+VlfO3cuxERERElB/v8WIhjXqPFyIiIiIiIiKr4hUvVPPi8TgmJiYQj8fNDsWS6qF+9ZBDtTR6raycv5VjJyIiIqL8uPBCNW90dBQf/vCHMDo6anYollQP9auHHKql0Wtl5fytHDsRERER5ceFFyIiIiIiIiKiCuHCCxERERERERFRhXDhhYiIiIiIiIioQrjwQkRERERERERUIXyctIXwcdJERERERERE1sIrXoiIiIiIiIiIKoQLL1Tzzpw5g//8n/8IZ86cMTsUS6qH+tVDDtXS6LWycv5Wjp2IiIiI8rOZHQDRaqLRKF5++WVEo1GzQ7GkUusnpcTExATC4TA8Hg8CgQCEEDlfB5BzW7NzSM9lfHwcp0+fhhACfX19CAQCOHv27GXnka9OpcRYjrou1yoSiWB8fDznvoZhYGRkBPPz82hpaUF/fz8UpTLr8OWqT7F9jY6O4uWXX8bo6Ch6enpW9FVMPMWMxYYNG1adP93d3Thy5EjBOqf3df78+Zo812XXI1deQoiyjfNqY1TKnMreJ9f4FRNvMcdONed8KcyOr5rnn0qpZA3NHh+yDs4VImvhwgsRZTAMA08PDWP/gWFEpAdQXYAehQsh9HR1YOLcTOp1qUUQmR0DFBWe1p7Utm4Rxu5dA9g5OGDqH9SGYeBXTx/E937wY5ybC8FwtEIKB4zQFFQZQ/uGq+FvWwehxxCeGwcMHe62Xgibe9U88tVprbnnaudy6moYBgDga4/+LRRvV8a+d+x8C1555TX8cvh5JOztgM0DaGHYE9/AHTtuxUfu3wObrTy/FspVn7X2NbsYBwB850dP4ae/OJjqC8Cq8eTbJn1uQHUhOD2Khblp+Dv70NzWuWL+SNWJqdFXEJydhuJdD5vbD2iRjDorirKir0hwCgDw68NHcPXVV5v+ZjR7DA3hwOQbx7AQDEL1dUN1NQFaBAh/FT63HZ29W6DYPSWP82pzZsfAW3Fw+Jk1zansNqXqxMLsNILTo2hu7YS/sw/CiK0ar6ZpeOSxJ/DUwefyHju5xrTWzodmxldMDct1/qmUStbQ7PEh6+BcIbIm3lzXQhr15ronTpzAxz72B/ja176Oa665xuxwLGct9TMMA49/8zs4NhaCr3srVLsTACClgdGjTyEYiqNlw3Xou+JKSEicOf4rLEQB6etBi8+NjT0BQAjoiRiWJo/jpj4v9tx792X/AVDKHDAMA/v+9v/FL4ZfQMzZBVvHmwDVgeiZf0UCdkj/VbBJDR1+NwAgGIpALI2j2SWwcetOCKHkzSNfnQCsKfdc7UhplFxXwzDw///K32D/z/4P3vT2j6B53ZWpn2nxKF569qdIhGbhuebdUJ3uS/vFo4hPjeCK5gi+/KXPXfabn3LVp5S+oosX8OLPvoob3vWHcDV1YGnyOG7s9UBK4MUz4bzx3NjrhZQycxspMTY+geBScm40OQFAYjGuQm3dDF2PodmtAvLS/GlySgQXFhGDG6L1esCIw6YA7qY2GIkY4lMj6GuO4IYt1+P4eCQjntDsBF782Vdxxc134i1bespSn3LVVagqXjrwHUSVNojOmwHFBpua/GQ1Ho9AXDgOlzGLLbvuhqLY1jzOq82ZxbMvQiycBpqvhG9DcXNqRZs2B8bGJ7AQ0aGqTuhzr6LZKbFx604YWiJvvJqm4Y//9M8wuuCBo6sfisN1Ke6Lx06+MS0UXzVV85jMpZgaluv8UymVrKHZ40PWwblCZF08Ioko5emhYRwbC8Hfuz3jl/nMmZexpNnh6r0NiwkVM7NzmDnzMhZiCuxd2+DwdSIY0TEzOwcAUO1O+Hu34+hoCEMHh03L5eCRk4i5NsDetQ3C5kRi5gQScEDpvBGqwwfD5sOFYBizCyE4fJ2wd23DQkxg9szLBfPIV6dC++SLMbudy6nr00PDODEVSW5rc2T8bHzyPOL+LZDNV0JfzLyHiOJwwdV7G04vuPHovieKKe+a81pW7rlRTF9DIycx/NJUwW0OvjiJg0dOZo7F7BwWInpqbszOXsDcYhz29TdBcbhgd/sxGwxhdimW2ubCfASRcAjKum0QdheEsxmaAcSjS6k6n5pz4Mmh53PGAwBNXdebeuwAK+s6+sKTiCptUDa8JZmXakNCM5DQNKgOH5QNb0FUacPYC08CWPs4rzaOmnDj9IIHmu/KoudUdpvL42l3+5Pjt/6m1PFeKN5HHnsCowseuHpvy1gwAFDUmNbK+bBax2QuxdSwXOefSqlkDc0eH7IOzhUi6+LCC9W89evX4xOf+O9Yv3692aFYUrH1k1Ji/4Fh+Lq3rnj9wvirsLVfBwCwOZswfWEm47Xl1y/MzGbs6+veiv0HDuFyL6xb6xyQUuLnvzyIUDiWilFKifjsGxBtm1PbCcWGBJzQdQO4GKKt/TpMj7+aEXN6HvnqlG213HO1k11roPi6LrfX2rcdV7/1P8DpbU3vDDOz81Ccfoi2zYjPns4Zl6OrH08NPZ/6ulIpylWfUvtyelsz8pdSIhSOIaQWnjtLtvUIRWIZ8UzPzMLmbEq1o2saNHcgNVcgAV03oAtn6t8J94bU9suEw4d4JJTaz2jbgsWl0Io6p8dermOnFNl1NQwDM5OnINbdnLmdUJAenlh3My5MnsrIq5g8Vpszy8eFo6t/xbGQbrXjNH08l2Uf79nxGoaBpw4+B0dXf95+gfxjmi++aqrmMZlLsTUsx/mnUipZQ7PHh6yDc4XI2rjwQjWvubkZb3/729Hc3Gx2KJZUbP0mJiYQkZ4Vn6BEFy9At/kgbMnXhaIgEV1CQnhTry2/rksV0cilG4OqdifChhsTExNVySE9l2BEwnA0p2I0InOQjiYI9dKVIBISECoMYYOuJ+8NImxO6DYfooszOfPIV6dsq+Weq53sWgPF13W5Pae3FZ1XboPN6Un9LBgMwhB2QFEgVAekwwcjOrciJsXhQtzehpGRkYK5FVKu+pTal83pycg/ungBhqMZhuLOqGG6aCQKqbhh2JtT4x6NRGFIFWL5ayuROcDpB+yu1FzR9TikYoOEAkM3kIhHIewewOEHYvOXOhAKpKJC1+MwdCN5Hx9XOxamXs+IIz32ch07pciu68LUSUhXO4Qt7UoFmVxHkhCpP+6FbWVexeSx2pxZPi4Uh2vFsZCu0HGaPZ7Lso/37HhHRkaQsLevuEojXaExzRdfNVXzmMylmBoC5Tn/VEola2j2+JB1cK4QWRsXXqjmzc/P48c//jHm5+fNDsWSiq1fOBxO3qAti67FV75u6JBqjl/8QoFu6JmvqS5EIpE1Rp1prXMgHA7DkEpG3FLPkYeUgBCAUID0T1lVFwwtlrntxTzy1SmnArnnaidnrYGi6rrcXiK6hKnXnkEiupT6WSKhAULN2FdeXDxYweZBMBgsnFcB5apPqX1l55+qaa4aXqTrenIOpI176rWLUvNHqKm5Ig3jYl2Tiw/SuLiPzQVk1/fifslFCgHYvNBiSxmbrBi7Mhw7pciuayIWAmzejG0kLuYhBDIue8mR12p5rDZnMo6LAuOY3ld2m9njmb1PxvGeFu/8/HzyJrAFFBrTfPFVUzWPyVyKqWHKZZ5/KqWSNTR7fMg6OFeIrI0LL1Tzpqen8dWv/i9MT0+bHYolFVs/jyf5NJJsqs2x8nVFhdBjK7aFNKAqauZrehRut3vltmuw1jng8XigCCMjbqHmyGP5TaM0gPRPwvUoFFvWwtLFPPLVKacCuedqJ2etgaLqutxePBzE6V//BPHwpTcvdrsNkHrGvulX/mTQwvD7/YXzKqBc9Sm1r+z8UzXNVcOLVFVNzoG0cU+9dlFq/kg9NVeEolysq4QQAkK5uI8WBbLre3G/5KM+JaCFYHP6CsZejmOnFNl1tTu9gBbK2EbgYh7Li5fLcuS1Wh6rzZmM46LAOKb3ld1m9nhm75NxvKfF29LSAmjh/P0BBcc0X3zVVM1jMpdiaphymeefSqlkDc0eH7IOzhUia+PCCxEBAAKBANwiDD2RuaDiauqAqi1BXvxEWBoG7C4f7DKUem35dVXocLnTPmVOxOBRIggEAtVJ4qJAIAC/W0CJL6RiVNytEPHFjCs9BAQgdShSg3rxjbLUYlC1Jbia2nPmka9O2VbLPVc72bUGiq9rqj1t5ZUsfr8fikwkr7jQ4xDxJSiu1hXbGfEoHIlZ9PcXvhdDIeWqT7n6cjV1QIkvQDEiGTXM2MbtgjAiUBILqXF3uV1QhJ68qgXJ+YNYEEhEU3NFVR0QhgYBA4qqwO5wQSbCQDwIOFsudSANCEOHqjqgqEpy4Ss6g+auq/PGbdaxA6ysa3PXJojoDKSW9ge/AAQAcXHRCQCktjKvYvJYbRyXjwsjHl1xLKQrdJxmj+ey7OM9O97+/n7YEzMw4vnf7NT6mFbzmMylmBoC5Tn/VEola2j2+JB1cK4QWRsXXogIQPJT2927BrA0eXzF6x09m6HNvAIA0GOL6Oxoz3ht+fWO9raMfUOTx7F7122pN2bVIoTAO27fAa/HmYpRCAFH25WQs6+mtpOGBjtiUFUl+S4SgDbzCjp7NmfEnJ5HvjplWy33XO1k1xoovq7L7YUv5LjHhBBob2uBEQtCzr4KR9sVOeOKT43gjsFbLusRlOWqT7n6EkLA53HCq58r2JZPPwev25kRT2d7G7TYYqod1WaDLTKRmisQgKoqUGUs9W975Gxq+2UyvgSH25vaT5k9jiaft2CdzTp2gJV1VRQF7d1XQZ5/IXM7aWRc7CLPv4CO7qsy8iomj9XGcfm4iE+NrDgW0q12nKaP57Ls4z07XkVRcMeOWxGfKnzfkVoe02oek7kUW8NynH8qpZI1NHt8yDo4V4isrfZ+uxGRaXYODuCmPi+CY4czPlFp33g9fPYEomOH4LPraG9rRfvG69HslEhMHUFiaRrNbhXtbcmrKPREDAtjh3FjnxeDOwZMy2WwfxOcsbNITB2B1GKwt18DO+Iwpo/BiC9B0ZbQ4fegze9FfGkaiakjaHZKtG28vmAe+epUaJ98MWa3czl13Tk4gGu7k5cWZ1/50tO9Do7gSxALb0Bt2pjxMyMeRXTsEK5ojuCBvXuKKe+a81pW7rlRTF87+jdhx9buwtts7cZg/6bMsWhrhd+tpuZGW1sHWpsdSJw7CiMehRYJos3vRVuTM7VNR4sbHo8XxvkjkIkoZGwBNgVwuHypOl/VmsDunbfkjAcAlqZeNvXYAVbWte/mt8NlzMI4+2wyL12D3abAbrNBjy/BOPsMXMYsem9+O4C1j/Nq42iXEVzRHIFt6Y2i51R2m8vjmYgEYcSjSJw7mjreC8X7kfv34IrmCKJjh1ZctVHMmNbK+bBax2QuxdSwXOefSqlkDc0eH7IOzhUi6xKSzxqzjL1778O+fY+bHUbVjY+P46tf/V/4wz/8I/T09JgdjuWstX6GYWDo4DD2/3IYYelJ3shNj8KNEHq6OzA+NYPIxdelFkF0dgxQVLhbe1LbekQYu28fwOCOgbJ8elnqHDAMA08PHcT3vv9jnJsLQXe0QgoHZGgKioyhfcPVaGlbD+hRRObGAUOHq60XwuZeNY98dVpr7rnauZy6njlzBp/73OfQ1LoehqsjY987dr4Fr7z6Gn558HnE7e3JG15qYTgSM7hj8FY8sHcPbDZb0fVda16VmBvZfc2FDZx94yVsuHILWj1Kqi8Aq8aTb5v0uQHVheD0KBbnptHc2Qd/27qc20yOvozg7DQU73rY3H5Ai2TUWVGUFX3Fli7g3KkXcPcHPoDf+73fNf2T/+wxNIQDU28cQzAYhOrrhupqTt67IzyFJrcdHb1boNg9JY/zanNm4La3YvjQM2uaU7naDM6ex8L0KJpaO+Hv7IMwYqvGq2kaHt33BJ4aei7vsZNrTCs150tRzWMyl2JqWK7zT6VUsoZmjw9ZB+cKkTVx4cVCGnXhhcwhpUw+ujASgdvtRiAQgBAi5+sAcm5bK6SUGB8fx9jYGKSUuOKKPmzYEMDZs2cvO498dSolxnLWtVBchmFgZGQEwWAQfr8f/f39FfsjrVz1KVdfpW4DZI7Fhg0bVp0/3d3dOHLkSME6V7M+pcqOMVdeQoiy5bFaTUqpWfY+ucavmHiLOXZqfUzNjq+a559KqWQNzR4fsg7OFSJr4cKLhTTqwouu64hGo3C5XMknU9Ca1EP96iGHamn0Wlk5fyvHTkRERET5WesjBmpIp06dwu///u/h1KlTZodiSfVQv3rIoVoavVZWzt/KsRMRERFRflx4ISIiIiIiIiKqEC68EBERERERERFVCBdeiIiIiIiIiIgqhAsvREREREREREQVwqcaWUijPtVI0zQsLS3B5/PBZrOZHY7l1EP96iGHamn0Wlk5fyvHTkRERET58S87qnk2mw0tLS1mh2FZ9VC/esihWhq9VlbO38qxExEREVF+/KoR1byzZ8/iU5/6FM6ePWt2KJZUD/WrhxyqpdFrZeX8rRw7EREREeXHhReqeaFQCM8++wxCoZDZoVhSPdSvHnKolkavlZXzt3LsRERERJQfF16IiIiIiIiIiCqECy9ERERERERERBVSkzfXjcfjOH78OBYWgujq6sZ1111X9j7OnDmDw4d/jddeO4ETJ17D2NgYDMPAhz/8Ydx99wdz7vOtb30T3/72twu2u2/f4+jt7S17vERERERERERkPVVfeDl37hx+8pMfAwDe//4PwOfzZfz8N7/5DT772b/A7Oxs6rWrr96Ez3zmM1i/fn3Z4vinf/on/OM//rCkfa+66mpcffXVOX/m9XovJyzKoaOjAx/96H9CR0eH2aFYhpQSExMTCIfDSCQS+MhHPor29naMj48jHA7D4/EgEAhACFH2/i6n7VztSCkxPj6O22+/A+Pj47j66quhKErB/TZs2ICzZ8/m/fdyuyMjI5ifn0dLSwv6+/shpcTPf/5zzMzMoL29Hbt378bU1NSq+60WT656rLZNsTXN3q6trQ3ve9/7EAwGMT4+njPmm2++GS+88ELBHEodLwAZr3V3d+PIkSMZfQFYtYbF9GUYRsZ4veMd71hxvjAMI6Ovbdu2YXJysuCY5tqmlPmc3XeuOfb2t78dR48exfz8PFRVxUc+8pGijtVyHXPZbblcLpw7dw7BYDAVsxAio6+uri7s378/o+6qql5236vlsbxtKBTC4uIimpqa4PV6cx7f2W3kGotijlsABc8tubYp17m1mJiLUc65Ug6V/H1hZl61jvUiIjKXkFLKanb4gx98H9/4xjdw9dVX4+tffzjjZ6FQCHv2fBjBYBDZYfX19eHrX38YNlt51or+5V/+BePjZ7Bp0yZs2nQNvvvdv8OTTz5Z1BUv99xzD+6990NliWMt9u69D/v2PV71fsk6DMPA00PD2H9gGBHpAVQXoEcRnhsHDB3utl4ImxvQo3CLMHbvGsDOwYGS/pgv1N9a287VjtSimB5/FQsLQcAbgLB7AS0Me2IGd+y4FR+5fw8URcnYT6pOLMxOIzg9iubWTjR39GLhwhgW5qbh7+xDc1snoEVx/sxvsLQUBbxdgM0LGV9CfO4NGFAhvN2A3QMZDwHhKXjcTvRd/xYII4bpsZewFEkAni7A5lk1nlz1AFBwmx0Db8XB4WdWrWl2zaTiRHB6NCvXWEYNYXMjHpyAEVuE6lsPh7cN0CIZORRzjs09XhFEZscARYWntQeGcGDyjWNYCAah+rqhupogE2HoC2MAFNiae4AcY5rdf76+zpw8hsWFBUhvAMLhBRJhKNHz2LblGvyPT38SiqLgkceewFMHn0PC3g6puqEvTcGILcC/rg9dgT4IPXsueKBFgjBC5+Bv60RX33VQjPia57OmaRl9w+aBEV9CYu4UDNjS5tgSZGgKQrXD2X41hB4FQhNobvajs2czhG3t82ctx3N6bcOGG2fPjiM4Ow1pb4Ld1QxVaED4HHxuOzp7t0AqToy+/CzCkRjg6cpZd4fDsea+V8tjeduf//IgpmYWMTcfhGFrgmKzw6no0ELTaG7thL+zD8KIZbRhGMaKsSj2uE0/b0J15Ti+ohlz/nLGYrX5s9pxcrk1roZK/r4wM69ax3oREdWGqi+8fPKTn8Thw7/GBz/4Qdxzz70ZP/uHf/h7PProoxBC4Pd+7/exbds2/PrXv8Y//dNPIITAxz/+X/Dud7+7InF96Utfwv79P+fCSw1aXFzEyMgI+vv70dTUZHY4NcswDDz+ze/g2FgIvu6tUO1OQEqcfuN1zE2dgk0B/F4HNm7dCSEU6IkYliaP46Y+L/bce/ea//DK2d9Fa2k7VztSSrz0m1cQjhkQ4UnYjAhUXwfsLVcCEohPjaCvKYwbtr4Jx8cjyf1sDoyNT2AhokNVndBnX4VcPA009cHWdh10PYYml4KFsSOISCdEUy/sdgecvhYsvPYLSEcT4OuDUFUIZwskAKlFgekjUJdG4fI0I2rrgOzYCofDDbfLBQjAiEeT8TRHcMOW6y/Fk6MeN/Z6ICXw4plw7m3OHodcOA0096Fpww15a/qhD74ff/vt76ZqptjsOHP8V1iIKVCa+hCfO4WWdb1YiiQu1RAJJOJhSJsPsvU6CCMOFQaaWtfBSMQQnxrBFc0RfPlLnyv4pi73eBnJ/qOA9PWg2ePEwsmnEFXbITpvBhQbVAXQpg5DF3bAG4CqAE3tyU9cl2uY3X+uvgzDwAtHX0RcVyDCUxAyDqXrFgghIBNRaFP/Cl90FOu7u3E20gJHVz+E3YnomX9FAg6IlmsgtQhcqgbMn0ybC3YAgGYIQHFAzr0Mt4hiy1vvgqFrRc9nTdPwx3/6Zxhd8MDR1Q/F4YKhG1h46QeQ7nVA+1YI1QEIAUBA6hpw4QUgPAV7Uxf02BJk6/XwetzY8qbrIIRImz9eSCnzz581HM/ptfWufxNe/vV+RKULom0LhGpLLgoZGqTigJg5Dqc2g1g4CN3XB3Rug7C5oABQVAUyEYV+/jDa5BS+te/rqy6+rOXcAQCPf/M7ODq6hPm5eSxpdtjar4NQnQhHwtCiS1CFBkdsGs0uiY1bd8LQEliaPI4bNrpx7MXfYHTx0likYih03EqJsfEJBJciEEvjaHICgMRiXIXauhm6HkOzSwHmT2AhJiB9PWjxubGxJwCkjVcp59Zc8yc75lKP03w1rsab7kr+viilnUbBehER1Y6qn2WnpiYBANdee+2Kn/3qV7+CEAIDAzvwsY99DG9961vxR3/0R9i5cyeklDh4cKja4VINmJqawuc+91lMTU2ZHUpNe3poGMfGQvD3bk/9cTUzO4dgcB6x07+E4u/FQkxg9szLAADV7oS/dzuOjoYwdHC4LP0tW0vbudoZHTuDiKZC9a2Dsu4mJDQd4Vd+AiM2D8Xhgqv3Nrx+Lopf/Pp0ar+Z2TksRHTY3X4oDhek/ypElTbA5oHicMHu9mP6zCsIG06o6/uheDqgGcDi2POQjmaIddshPB2QUCATIQgIKDY3lO7boKs+hNAEZcNboDp80HSJeCIBAKl4Ts058OTQ8wXrMTRyEsMvTeXdRvNdidEFN3ThLljTRx57IqNmM2dexkJMgX39TZBGFNFT+3Hh/CTCCZGqYTyhwUhEITq3QbG5IRx+6FAQXgqmcji94Maj+55Y83il+u/aBoevE9OvP4uw0gZlw1sg7C4I1Yb47OvQhRNK5zYonnUwhB2RhQsZNczuP1dfr712Egk4oXjXQ3TeBKk6Ycy/DgAQdhdsbddhKXgBr4/PwdV7GxSHC4mZE0jAAaXzBgi7C4q7FaG5CYR1e2ouxLXkmApnc3KbddsQkS6MvvLrNc3nRx57AqMLnlTfALD0xq8g3eshut8K4WgCICANA1DsEHY3RPdbAVcHEgtTMC4ch2pzIKKpGBs7kzH2B1+cxMEjJy/7mMuu7fjrxxCVyZyFzQEIBdLeBAMKhBBQNrwFYemGbmuG0n1bcv5AwABgGDJZ98AAZkUX/vyzf7mmvlfLY3lbTbixpNlhX38ThM2JeCIB3RBQ3K0whBPSf1Xq/Lbcxv6nf41T886MsVhW6LhdPpc4fJ2wd23D7OwFzC3GYV9/U+pcMjP5OmbDMjXngxEdM7NzJY1FulzzJzvmUo/TfDWuhkr+viilnUbBehER1Y6qL7zMz88DANra2jNeD4WWcOLECQDAO9/5joyf7dp1OwDg9ddPVT7AIpw4cRKPPfYovvKVL+ORR76Bp576BcLhsNlhUQOTUmL/gWH4urdmvD49MwvVcem+Q7b26zA9/mrGV/l83Vux/8ChFV/vK6W/bKu1nbMdKTEzOw/F6U+9JPx9qe2X/yuFigVlPXDxtemZWdicF6+IkkA8EoJYdzPis6eT2xsS+uIk0Hb9pb5sXhiLk0DblkuvOXyQWgTLERtSAkIF/Fdh+UWh2BCPxzNyMdq2YHEpBMMw8uYaCscQUvPfq2p6ZhaOrv4VY5TO170VTx18Ht6uLal2L4y/Clt75k3INUNC2jypekhfDwCR2a69CYloKJWXo6sfTw09XzCH7PHK7t8wDOhL5yE7bszYRi6eAVo3X2rM0Yx4NJQRT3r/+foKLoaAtLmBlusgF0Zz1EtJtROffQOibXNGO4hMQ/qvufSa6oI0MtsQbVswM3Ei1fZq89kwDDx18Dk4uvozXtMXJoDOmy/1pdiQLLpcDgjwX52aywCgOP24MDuf8dqSbT1CkVjBY7WY4zm9tlJKXJh4DSL9GAAgpQHYk18Pk1ICzVckrwRKa1dAJLe7SF23HSPHT0DX9aL6LsTXvRU//2Xy6xHeri0r5ng8HodQkld8CIcP8UgItrZL5zfDMLC4uAgjK69suY7b9HOJlBK6pkFzB9KGS0JfmoLmuyq1j83ZhAszsxltr/Xcmmv+5FLKcZpLKef+UlT090UJ7TQK1ouIqLZUfeElEokAAAwj8w+zl176DaSUUBQFN954U8bPOjs7AQCLiwvVCXIVzz77DL73ve/hX/7lX/AP//AP+PznP48PfOD92L//52aHRg1qYmICEenJ+EQrGonCkCqEcunmecLmhG7zIbo4k3pNtTsRNtyYmJi4rP5yWa3tXO0Eg0EYwg6kXfYslOTXQGRsEQBgROYApx/S5kEwGEzLNbmPrschFRXC5oJ0+GBE55AInQecLYDqSL2BMiIXAGdr8lP+5b6EAggbYFxcWIlOA67W5H06tOjFjQAJAUNPvvExdCN57xFXOxamXs+Za3TxAgxHMwzFjWgkuvLnF3NQHK4VY5QuoUkk7G1IRJdS7eo2H4QtayyEDRBq8k2oHoOweZILFrH5jFylYkMinoxHcbgQt7dhZGQkZ98551lW/9r8acDVkbw/yfLf8dF5wNEMoTpSLwmhAqoDWuzSonV6/7n6mp6eBlRHct/ldlQHYG9K5SWN5JVIcDYjsTAJIzIH6WhKbpcKeh5w+JPzw9CTbziEAqg2SD2RVkIHDLsfCxfOAlh9Po+MjCBhb8+4UiEx+wbgvliPZIQQEMnFvOU3zkYCsHsAZ/OlxhQFhrAjGAwmQ45EIRU3DHtz3rlRTIxA5jgGp89C2lsyjgHI5NAtzw8jOg/YfICzBTJt/lzc9NKCpN0Fw7UO+/fvL6rvQlS7E/NhA/NRGxLRxYw5ZugGJASwfGoTCqSiwhAidewsTJ2EdHcAqit1nGbLddxmn0uWzzWwu6Dr8UuvOZoB1ZlqWygKdKlmHNtrPbfmmj+5lHKc5lLKub8Ulfx9UUo7jYL1IiKqLVV/qpHP58PCwgJmZjL/cDx69CgA4Oqrr4bb7c65b7E37auU7u4NuO+++3DLLbemnrA0OjqK733vf+PZZ5/Fl770JSiKijvvvHNN7T700EN46KGHVt3uuus2r7oNNaZwOJy8YV4aXdeTbyazqS4YWmzFa8uLoqX2l1eBtnO1k0hoyTelOSy/qZZ6PLmfUJHQNNhsmblKw7jUhuqC1OOQWuxiXwJy+c2vHgNsOfJQ1EtXGmgxQHUn25Ppb+AuXT2S/K8AbF5osaWcsevacswKdGPlFQEZ45VrjNK3s3lSP0+1m02I5P+kTMYtlOR2RjxrOwVSpsVzcTErl5zzLKt/mYgkFxHS6iz1WNo2F2sFJBeGDC2zk4v9Nzc3r5wb8XjuuWFzARffFKeuWlGcMLQIpKquaCc9HiklBOTFe64oALLepNtcSMTT5m+B+Tw/P5+8EWoaIxFa8VpaJJf+KxRAyV48S85vIG1+FJgbxcQIZI6jFo+sOAZk+hhBSc4ZRU1ulz1/0o8nALB7Vvx+z9f3agypQAr7yjkm0+NbDuPiQtbF+iRiIcDmxYqrvNLzzHHcZp830881ywtlqdey2851bK/h3Jpr/uS1xuM0rzWe+0tRyd8XpbTTKFgvIqLaUvWFl76+Prz44os4eHAYt92WfEKDrut4+unk/V1uuummFfvMzCTvA9Da2lrVWLPt3r17xWtbt27F1q2fw0MPfRU/+tGP8PDDX8fOnTtTN2osxoMPPogHH3xw1e327r1vTfHWC4fDgU2bNpm+8FbLPB4PoGdeRaGqyYUCodigetenLsuHHoWSfXWEHs274Flsf3kVaDtXO3a7DZBZb14UG2D3pq4aEKojuZ/UYbfZUrkuE4pyqQ09CqE6IKS42JeEWL7YT3UCWo48DB2wXXxjZ3MCeiTZXsZClkw9ijP5XwloIdicvpy5qrblmA2oysrFg4wcco1R+nZaOPXzVLup3G1QPJ0whJJcdBEiGbc0ktspWceRNDKuIIEWht/vRy4551l2/3Y3kAgjvc5CdaZtk/aGWeqX5mVW/znnhsOxcm4AyTG8eEWLsNkBVxsgE8l7kaiOFe2kxyPSF6hgYMWFoFoUdkfa/C0wn1taWgAt82unit0LaGdzbp92yUZyfGQCcLYm5zuQmt9A2vwoMDeKiRHIHEebw73iGEguohgX4zOS8WiJ5HbZ8yf9eAKARBjt7e3IZy3nDkUka7Jiji0fbxlh6Mmr5C7Wx+70AloI6cdptlzH7YpzSdq5ZvkqvEtzKqvtXMf2Gs6tueZPXms8TvNa47m/FJX8fVFKO42C9SIiqi1V/6rRwMAOSCnxi188iUcffRTPPvssPv/5v8S5c+cAADt3vm3FPq+99hqAS185qkX33HMvFEXB/Pw8XnnlFbPDqSvLjxLv6+szO5SaFQgE4BZh6IlLn4S73C4oQofiakNz/4ehejogtRhUbQmupktvjPREDB4lgkAgcFn95bJa27na8fv9UGTi0tcwAMDRBHvbtbC3Ju+poLhbgVgQ4uKbj+Vc5cV9VNUBYeiQWhQivgTF1Qq7d13y6yh6PPV+V3F3ALE5SO3Sp/hSGoDULr3BdHUC0bmLix0XPz2Uyc/5FTV5ClXU5Bs+EZ1Bc9fVOXN1NXVAiS9AMSJwuVd+CrmcgxGPrhijdHabgD0xC7vLl2pX1ZaSV/QAUD0d8Pffl3z8ttSTN0dVnZBaGIgFk1+3SstVGBrsF7/aYMSjcCRm0d+f+x4TOedZVv+2liuA6IXkE6GW35O6WoD4AqQeT70kpQ7ocdiclz7hT+8/V1+dnZ2AHs+4QkfqcSCxmMpL8XYBG3cnF0yau6G4WyHii8ntUkG3APFgcn4oavLNszQAXYNQLy2aSy0OJRFEc8cGAKvP5/7+ftgTMzDil97s2NuuBCIX6wFg+QqR9DfyUOzJxSotCtuWD0O42wHDgCITqTfXLrcLwohASSzknRvFxAhkjqO/cwNEYj7jGFj+Fs/y/FBcLYC2BMTmIdLmz8VNU+MsE1Eo0fM5P6TI1XcheiKGFo+CFpcGu6spY44pqpK8Sil1wZABYehQpEwdO81dmyAiF5ILMWruP3VyHbfZ55Llcw0SUagXF/cUdysQXwD0WKptaRhQhZ5xbK/13Jpr/uRSynGaSynn/lJU8vdFKe00CtaLiKi2VH3h5a677kJvby+klPj+9/8Bn/nMpzE0lHxa0Vve8hZs3rzy6zTDw8MQQuD6669f8bNa0dzcjJaW5BU509PTJkdDjUYIgd27BrA0eTzj9c72NmgX74sCANrMK+js2ZzxKW1o8jh277ot76fCa+kv22pt52xHCLS3tcCIXbqMXs6+CkfbFRlXmAipo9k4d/ErIlm5CsDh9kKefyG1n1AE1KZuYPblS31pIShN3cDsS5deiy9B2NyXvmghRPJNcvDUpTeYhrbiCixl9jiafN68j+QUQsDnccKrn8tbr872NsSnRlaMUbrQ5HHcseMWhKZeSrXb0bMZ2kzagq8AbKoCsfzpuQDE0jhWfEKfWITd5U3lFZ8awR2DtxTMIXu8svtXFAWqbx3EhWMZ24imjcDcq5caiy/A4fJmxJPef76+/E3e5BvhZfOvQDT3ZeYVPAkBI9WOo+1KyNlXM9qBuxMieCL1mqJHM+6HBABy9iW0B65Jtb3afFYUBXfsuBXxqZGM19TmAP4/9v47TK/jOuzHP3PL28t2bEMlQQIkSBSqEiRFisWOY0eWbUmWZTuSaDtfKS4/O44tKy6yk8dxpNiJXGTHNqU4iWOruElyI6lKgKIUEYWdBAhgF1hsL28v996Z3x/z1m0oXCzafJ4HEvd9554550y575x7Zi7TR5r1Sx/t9PqWKwGZV6HWTwFkJUNPV0ejfwMkgkni0fCqY/V8xnOrb4UQ9AzdhGodA9TOOvJyCDemZWVPgay2yVUoXa5GMPU0+3Zt11kj51H3ahTGn+Oh+/bz4L37KUw8v6SPh0KhxjY1Vc0Tisbx55rzm2VZJJNJrEV2LWa5cds6lwghsB0HpzTW0lwCJ9GPk28e+B9UcvR0dy2x4ULm1uX6z3JczDhdjouZ+y+GS3q/uAg51wvGXwaDwXBlse6Bl1AoxEc/+jHuuusubFsf/GjbNg888AC/+IsfWlL+mWeeYWRkBIDXve71663ueRMEAcViAaildxrWjOPHj/Fd3/UvOH782LkLX8fcc/d+dm+Okxl9uvGEq7urk2gwx/yBj1E+9TVSYUXXRh3ADLwK2dGnuX1znLvv2r8m9dW5ENnLydm8aSNRJyDITyGnjmJXZym89Hn8/CSyWqY8+iQ3bIjwwOu3Nq7r7uokHbXxShlktYzInCAi58AvIqtl/FKG3o07iNkVgslDyOIMjgXJTa9HeDnU1NOo4gwCiXDjKBTSLyHHn8QO8sRFDnn2KWQ1j2MLQrXthHV9tnV6PHjP61f1x137buSuXQMrlnHyJ9mSKmGr0qo+/Ykfe1+bz7o37iQVVniTR/HmR5k/8DE63AoxVzV8GHIdLDeKmj6szz6pZrCRxBLphg1bUiV+/OH3XXB7NeqfOIyXn6b3hjcRU/PIs0+hvDIq8Al13YCtKsjpw8jiFJbyiKZ62ny4uP7l6rrpphtxqSALk6jpo4iggtWhsxWUV8Y79ShMPc2mbofy6JPIahm3ezsuVeT0syivjCzNE+8cIuZ4jb7gOoKQG0JVsrrM1GGioszmHa+7oP78Ez/2PrakSo26ARJb34IoTaLGv4Gq5gClt8NJD+WVUOPfgPIMTiiK9+3/hj/zElEnYNOmje39Z9cAd++78TWPucW+Hb7hdqJC26z8qs4g8XLY6LdCybPfICZK2EEWOf6k7j8oLMCyBMor448dpEtN8Gu/8uELqvtcdtTLOqpEwvXwJo+i/Aoh18WxFLI0j6UqiMyJxvxWl/HgPa9jW2e1rS3qrDZu63NJNT+NN3GYrq4eOlMhvMmjjbmka+AGuuJWo8+nojbdXZ0X1RatLNd/Fut8seN0JR+vB5fyfnExcq4XjL8MBoPhykGoy/j+uGq1Si6XI5VKrXgmyvj4OFNTUwDcfvvtlywi/9GPfpTHHnuU9773vbznPT98wdcfOHCAX//1jyCE4C//8tN0dXWd+6IL5OGH388jj3xyzeVe6Rw7dowPfvADfOITf8j27dvPfcF1jJSSJw4c5LGvHKSoYvrAvMwEx49+neEt2+kY3IFwohCUiYkiD963n7vv2r/ik9OLqe9iZC8nR/llZs68TDaTIQh1Upl+kUjfTiKizFvvfgM//vD7sCxryXWZuSmy0yMkO3tJ9WwiOzNKbn6aVO9m0l19KL/E9OkXyOXLEO8HJ46q5qnOn0RiIeKD4MZQ1QIUJ4hHw2za+SaErDAz+jy5kgexfn0Ipl8k5M2uqs9ifwCrltl/55s5+OQ3zunTxT5TVpjM9AjzU2fIz53lxr0PEolGGz5UiSFwolQXxpDVHHZiA6F4F/ilNhsc59xHfy3fXiXKc6Ng2UQ7h5EixMTJZ8hkMtiJAexICuUVCLIjgI2TGgY3vsSHi+tfqa7Tx58hl82i4kOIUBy8IlZ5ipu3DvD8s0f4vd/7Pb7ytQN8+YlvUXW7UXaUID+BrGRJ921mYHgz+OVFfSGGX8ogC5Oku3oZ2LwTISsX3J993+dPHvlUo26cGLKax5t/FYmLiA/U+lgeVZhA2C7h7htQpTkq0y/S3b+ZgW279ZlGF9h/LmQ8t/q2IKOMj59hYXYK3BROJIUtfChOkoy69Gy6FWWFGX3xKQqlCsT62/y+b9d2fu1XPnzeZ3FdyNxRL/volw8wPptjYWGBwElhOy4hK8AvTJPq7CXdu3lJe0kpl7TF+Y7b0vwZkAGRrk16bpkeWTKXtPb519IW5+o/5xonr9XH68GlvF9cTruudIy/DAaD4crgsgZeriTOFXiZmprkmWee5Z577lnyw/LgwYP89m//V3K5HPff/wAf+tDSzJ21wAReTODlfFFK6VdJlkpMTk7y67/+Ef7gDz5BLBajVCoRjUYZGhpas0Bma32vRfZycpRSfOELX+D3f//3+Mmf/Cm+53u+Z8mPxMXXDQ4Ocvbs2RX/rss9dOgQmUyGdDrNvn37UErx2GOPMTs7S3d3Nw888AATExPnvO5c+iznj3OVOV+fLi5XKBT4yZ/8t3zoQ7/EzTffvKzOe/bs4ciRI6vacLHtBbR9NjAwwOHDh9vqAs7pw/OpS0rZ1l4PPvggJ06caJsvpJRtde3du5fx8fFV23S5MhfTnxfXvVwfu//++zl69CiZTIZ8Ps/v//7vnddYXasxt1hWJBJmcnKSTCbb0FkI0VZXf38/jz/+eJvfV9tedL51n8uOetlisUg2myWVShGLxZYd34tlLNcW5zNugVXnluXKrNXcej46nw9r2VfWgkt5vzDbZVbG+MtgMBguL9dt4OXYsWP87u9+vPH3+Pg4mUyG3t7etjcyfOQjv053dzfHjx/nAx/4/4hGo9x44410d/dQrVYYGRlhbGwMgD179vAbv/EfL9nJ8CbwYgIvF8O14L9rwYb14nr31dVs/9Wsu8FgMBgMBoNhZdb9ddJXCsViYdm3D01PT7cdjut5HgB9fb28613v4uWXX+Hs2TGOHTuG7/ukUmne9KY3cd99b+Xee+816ZoGg8FgMBgMBoPBYDAYGqx7xsu///c/fxFXCUIhl3g8ztDQMDt37uR1r3vddRfkuF4zXiqVCuPj4wwMDBAOhy+3Olcd14L/rgUb1ovr3VdXs/1Xs+4Gg8FgMBgMhpVZ98DLQw89iBACpdSye9aB8/q8o6OTf/Nv/g1vfetbL7HGVw7Xa+DFYDAYDAaDwWAwGAyGq5V1Txm57bbbuO222xgeHkYp1Qiq9PcPsHPnTnbu3El//wDQDLgMDw+za9dtbN26lVAohFKK+fk5/st/+S0+/elPr7cJhnVmcnKS3/7t32ZycvJyq3JVci3471qwYb243n11Ndt/NetuMBgMBoPBYFiZdQ+8/PZv/w7vfvcPsbCwQDKZ5IMf/CCf+9xf8Wd/9md8/OO/y8c//rv82Z/9GZ/73F/xgQ98kEQiwcLCAu9+9w/yR3/0P/jbv/07/sN/+GV6enpQSvGpT32SkZGR9TbDsI5ks1n+6Z/+kWw2e7lVuSq5Fvx3LdiwXlzvvrqa7b+adTcYDAaDwWAwrMy6B17Onj3Lb/zGryOE4OMf/12+93vfTjKZXFIumUzy9re/nY9//HcRQvCf/tN/4syZM9i2zVve8hZ+53f+G4lEAqUUn//859fbDIPBYDAYDAaDwWAwGAyGc7LugZfPfvYzlEolfvAHf5Dh4eFzlh8eHuad73wXpVKJz372M43P+/v7+Zf/8l+ilOLo0SOXUGODwWAwGAwGg8FgMBgMhotj3QMvTz/9NEIIdu267byvuf322wE4dOhQ2+d79uwFYGZmZu0UNBgMBoPBYDAYDAaDwWBYI9Y98DI7O3vR187Pz7f93dHRAYDnea9FJcMVTmdnJz/4gz9IZ2fn5VblquRa8N+1YMN6cb376mq2/2rW3WAwGAwGg8GwMs56V1g/LPe5555j586d53XNc889C0A8Hm/7vFwuA5BKpdZWScMVRU9PDw8//GOXW42rlmvBf9eCDevF9e6rq9n+q1l3g8FgMBgMBsPKrHvGy6233opSik9/+i8ZHx8/Z/nx8bN8+tOfRgjBLbfc0vbdyMgpAPN08BqnWCxy9OgRisXi5VblquRa8N+1YMN6cb376mq2/2rW3WAwGAwGg8GwMuseePm+7/s+hBDkcjl++qd/ii984QsUCoUl5QqFPF/4wuf56Z/+6carNb//+3+grcxTTz21bEDGcG0xNjbGz//8zzM2Nna5VbkquRb8dy3YsF5c7766mu2/mnU3GAwGg8FgMKzMum812rXrNt73vvfzyU8+Qjab5fd///f4gz/4fQYGBkin0wBkMhnGx8dRSqGUAuC9730vu3btasg5e/Ys3/zmN1FK8frXv2G9zTAYLilKKcbGxigWi8RiMYaGhhBCXLQsgJGREaLRKENDQwBrJv9C9FiLOlvlRKNRAEqlErFYjMHBQc6ePbtsHYvr37BhA5/97GeYnp6mt7eXd77zXdi23SZbKcXo6ChKKbZs2cLw8PASnetyC4UCuVyOZDJJNBplcnKSTCZDR0cHu3fv5vHHH2d2dpbu7m4eeughbNs+p62+7/OZz3y6TUfHaZ+2pZQcOnSIhYUFOjo6SCT0lsxvfvObZDIZ9u3bB9BWZu/evYyPj19wWyyuazm7hBBtZfbt24dlWavK2bNnD0eOHFn1muX6j5SSRx99tFH//fffz8GDBwE4ePAg27ZtA2gr88ADD3D06NFV61qOIAja5Dz44INMTEy06QPt42pwcJCxsTFOnTqFEILNmzczODjI4cOHl22LqampZetezvbFdQ0MDHD48GHm5+fxfZ+tW7c2tueea3xc6Ng8n/IXO95Xu+5CZC4u22r74nmjLmdxv9y3bx9CiBXlXIivWueHeDy+LnPuWrPa3LvW9qzU1peiXxkuD5e7TS53/VeKDgaDYf0Qqr4qW2e+9rWv8olPfKLtwNzWH1d1Ojo6+MAHPsh999237jpeaTz88Pt55JFPXm411p1jx47xwQ9+gE984g/Zvn375VbnkiKl5OtPHOSxrx6kpGJgRyAoExVFHrx3P/fcvf+8Fomtsv72i//I80e+xY17HyQai1KcPwMyINq1CeFEL1r+etpU7wPvf/gneO7lE5RUjIV8hfnZKfBydHZtQMkquYUZ0r2bSXX1IoIKUVHkgbfcCcDjX3uSkorhK4dXn/06VU9BrB/cOHhFKE0QcSRbdr6RQi7L9MQonhXHiXZgiwCrOs+Gzjjv+v638ZZ77gLg608c5NGvHGBiNsf8QgZpJ/ACSVAtgl/ECiUISvOowEPE+hHhBHhFrPIUe2/dzkd+9cOEQqEl9pbLZX7m536Bk2emUNF+cGPgFRGlCbYO9/Hx3/kojuPwx3/6Kb584Ft4bjfSiuDNn9B1VxaIDOzFsm387BgqqGCntyDcOEF+AlnJku7bTP/QZixZOWdb+L7fVhdOlHJuFlmYBDeGiA2AX0Tlz+A4LqGOTdqvfhHXm+Wtd72Bn/ix9wEskVPNzxIUprDDKdz0ICIot11jWdaS/hNUC5x55WnyFQnRDeDGkJU8FCcg8MDLQvoGKM+CEIjEMNhRVHFc+z++gUiyG/xSW12Lg1oA1WqVj/zGb3L4+WPISB84MVQ1C6Vp4qkuNm2/HUtWKM2NgmUT6xxG2WEyc1PMjh0nUAorMYiww3iFWYLSHE4kjRXfgCxMtrVFJTvJ8aNf5/0P/wTveucPNPrY4rHTOoaVFWb85DNkMxmI9qCsMCrwoDyDJRThVD+d3X2I6gLZ+ekl42NoQzdnJmYoEz/n2DyfsbySzufqY6vJXjyGV5O5WI6yw2TnpslMj5Dq6EFZIRbmJsFN0tndR0ciTIQC+BVePnkGP9Sj29grQGGMVCpN7/DNYIfJTI8s68Nz+WpiwWcuX0H6Hpafo7MjTX93kofuu+uSzLlrzWKfts293f2kOzqJWaU1uYes1A8iFBju72FscnbN+tWluucZVudyt8nlrv9K0cFgMKw/ly3wAvptRE8+eZBDhw5x6tQpcrk8AMlkgs2bN7N37z7279+/7MLkesQEXq7twIuUkk/+2Z/zzGiBxMAubDfc+C7wKuTHn2P35jjv+9H3nPOG3CpLRLp44fE/5rbv+LfMFiGTLyHyZ0hFBBt33YMQ1gXLX2+bXn75ZX7yJ/8tW/bcT++NdzE2OUO2FOCEkxBUKZ75f6jyHNFtDyFllXTUZuPwEIFX4cQzX4XKPFtf/71gCZ7+wu+hUjdC7z6EG2nUobwyTB+C+Zexe3ZAx81YkS6Ukji2IOII/NkXCFcnuP/OPQA8M1pgYX6BvO9id91MPjODFC6EkijfgxN/B8mNui7LBhROKILyygRTT9OlJvhfj/xh2xxXLpd5x3veRzm2FXr3YTnRpj/9EkwfIlI4wcaNGzlTSBDq3wdOiPwLf0MQ6YX4IBz/K+yb3omI9eJ7FZh9HrsyjZ0YILAiiI7tKL9E1Am49ZYdSL+6Ylv4vs/P/sJ/YCQbI9S/D+GGyc5OIIUDVgjmXwIvB3YIrDDEB7GEItW7UWcRVMtUJw6xOVVEScVoPt6Qk5sdQwoXZUcQC69gyQrJLftRfqV2TYnbbt3Jc2dKjf4TBFUO/+Mf4cc2Qe8ebCeKVBIQKL8CZw/A3HPQdRvEeiA2ANKD7ElwE9C5A2QVS/mkuvtRnq5rS6rE73z0P7UFX6rVKj/y8P/HvBjA7rsD4UaQpQUkAmW5MPcSTpClt6eLXMVCJYZJJ6KgYGY+Q6AsyI/hCA8vOoyyQig7jFg4hpU/jUpuxuq8qdEWW/qTPPfPf8CWPffzxluGUUrx7Olic+woxeiZscYYToYlmenTlO1uVHIrOGGEm0B4eYLAg/wZrKCMJSSWGyfafxtBUCEdtRkeHmLk1EkyZ18inQix+fa3IoS14tg8n7F8+6YYStGu83mM99Vk+9USJ7/1txDpZNvt92KHIivKBNrlOCFGz4yRLQXYdojS2LdR5TliN34Hwg7hV3KkIjaZhTmKsydwHYfYZh08Kp/+Jp5yULEBoiFBSk6Qq9rYnTc3fLhxeIhgmbHTsGekwLzsJO/ZOOEkwrJQfgV/9iUSrqezvbYk1nTOXWva2qb/1va5V3r4sy+RCisGb34jhYkXXtM9ZKV+oJRk5OiXyRSqdAzuYPOWrVB7UHex/epS3fMMq3O52+Ry13+l6GAwGC4Pl3VEu67LW95yLz/7sz/Hxz/+u3zyk5/kk5/8JB//+O/ycz/377jvvvtM0MWA49j09PTgOOfemnE18/UnDvLMaIH0pjvabsQAthsmvekOjo4UeOLAwQuS5YSihKIpMrkC2VJAKNGL27+XbEUwd/rFi5K/3jYdfeZZnFCU1OAuFnJFsqUAN5pGWBae7yE7b0HGNxLkTuNG02RKAbNz8yzkilRSO6mEB8lMnOD5x/8nKnUjYnA/wo0CAhSgQLhRRP8bofNmgmoRK9YDloWwHfxA4SkLt38vlfAgjz35LAcOH8cXUfK+i7thN+ViDilcRLgTIRyYehpSWxD9b0DYrg5MIAj8KsKN4AztZ0708+v/8TfbbP2Zn/sFyrGtWAP724IuAJYTxRrYTzkyzPGzBSKb7sQKRSiNPEEQ6cXqfxPCiYGbIFAWQSCxQkmsgTcRhLupZsawem9DuBGsaCcl32Z09PSqbfHHf/opRrKxRl2F7BxSOIhwWvusby/4Fe3Dvr2I+AakFaawMKl1DkWIbLqTYzMWx8dbdM7ONPxlOVFEz26kFaY49VLjmhPzIR5/4v+19Z9XDnwWP7YJa+BOLCfWCLogLN2mfXvBcqE0hejdg4hvgPIMOFpX4UYR4TRSOBSyc426TmWj/Mkjn2qz/SO/8ZvMiwGcof066FItIBGIUEq3Rd9e/GqVqfkibv9eQole5rIVpucWkFYEK9aD1bebamAhCxM1W2OQvoEg3KOzhVraYmJymlA0RWpwFweeHefA4eNtts/OzbeN4Zn5PKWqQPTcBk4EEUqj/BISgRXtwerdg/QKBLjIrl342I3xMTJ6mrxnE9l0J3nPbcwFK43N8xnLTxw6zsHnJy54vK8me2HiBJXIIJXUThZy7YcOL5a5WE7dX240jR/4jXnCz4wiLAs3mmYmU6TkWzhD+wmsGN7sMf2PEFbfbuxEH8X5MWZyAe6G3VihSNscs5qv/MRW8p7dmKsAhBPG3bCbvOcSiOiaz7lrTatPF8+9dVuyFUFm4sRrvoes1A9mT79I3neJbLqTnGczO9fMlL7YfnWp7nmG1bncbXK5679SdDAYDJcHE0o1XPFs3bqNv/iLv2Tr1m2XW5VLhlKKx756kMTArlXLJQZ28dhXn2S1RLXFsmId/ex7+y+RreqnrnWc7h1Mn3m5Tdb5yD9f1sompRRHXzjO3rf9IrGOfqZn55p2KKiWCohQAtF1M9W5UyilcMJJZmbnmJ7RZZ3uHYyfep5SsQC9+9oraN1OrST07IHSLFLKZhHLoVqtAtpvuUKZfKHM9OmXcLp3oJSiWi5ASL/aXkoJhbPQuxuEo+UCWC4qCBpy7b47OPTcMYLaZ77vc/LM1FIdW1VEQWobynJQUiGlxFs4Db17tK7RHqxdPw7xDe0Xdu2CoNxmlxVOMzO3ADXfL24LKSVfPvAtnVWjGwO/UkKEEm3tgwCSG5ttGErhV0rNvxUEia1IJVBSLfFXg86dePMnm/V33UouX2joHAQB2fkp6N3b6hBUSyOKSDfs+FEQFioItKzSDHRs14Xr5UIJ/EqpYXuofx9ffuL/tdV1+Plj2H13NKvyirDEdkEQG27I8UUI3/fbfZS6AUoz+twyAL8MvbtR2ZGGrVY4TaZis+97P0Sso5+8s4FCqdI2Llr7vlIKLzoItousFiCUaMp24039lELFhxCW3ezD4SSzcwsNWcvNBdDsD1LKc45lpRSFYoWCvWHFMq0y63WtNk8opZg58zJO947GmF5N5qNfOdAmp+GvFeYJFHiEG/1HdN1MZfYklbmTiK6bmz4szeAntrZ2nyX6LOertrlqEXWfx/tvXbM5d61Z3DYr2dPafy72HrJSP2jtA7DU73UupF+tdp3h0nG52+Ry13+l6GAwGC4fJvBiMFwBjI2NUVKxJU8/FmO7YYoyuupbT5aTVS6VkcpuPHUF/eQ1cBKUc7MXJP98WSubWuUstiMIqijL1tkOdggVSiDL8zoTJhD4UjWezFYKCxDbUMt0WYZacES4UYj2ojKnmt8JvbiXgUQJFxXqxJMCX9kIJ4xfKYIdQohaVlZuFKI9CCdSS4kXWr7QmRlKBrW6IshIH4899hgAn/nMp1HR/iWZLm34Jb2wDndQyU3hL5yCSA+W3bJtChC1LBClAhSyYRe50aYsy0IKl0wms2xbHDp0CM/txqpt76iUSyjLAdGSfVZZgFAHOFGQemEvLBtlh/FKevuoVy0j3BhEOvEKU0v9VXezHdJBm8IcMpBgR1CRbrITrwIwe/IQKtrX8I9CoURj10HjM5y6rSehMg+hNDgRkEFrZSjLoVopaVeEIlTdLg4dOgToA3llpK+xHU0FHspyEK23zcoChNP6rJpKSfcPJcEONRbzSga6H4RSurz0wHL0Z25Sf7aoLcqlMsqKIt1UY3wu7vt+pYhw4xBKofyi1qsmm9qWobp+wo2ipN/swwqkcJHS165YZi5o7Q+HDh0651gu52aQoRTSilIulVcst7iPrTZPlHMzBE4C4YQRlkWg7GVl226Y+ZJNpqQaclr9tdI84fme7su2q89hskMoy0bZUd0X6z4MpcCO6PI1Fuuz2Feer5bMua3Ufe6V82s25641q829rbT2n4u9h6zUD1r7ACz1e50L6VerXWe4dFzuNrnc9V8pOhgMhsvHur/VaDHFYrHxZojWJ7Ercfvtt6+DVoYriZMnT/DhD3+Y3/zN37xms16KxaI+XO18sCOUSqXzllVcmOCFL3+S8LbvxI51LpEl/coFyT9f1sqmYrFIuVzm5b/5z2x+4w82F5WAkrI9CGBHUIFe/CthNbIQdFkPIvFVlNDhCkAfrukXF30vmk+fnAhKeqha3Ur67XoERXBirZfS+rhcqZYcDTfG7Kxe8E5PT+uDdFdDBrXFom474ZfarlGlGdSrfwPbvhcRTut6VdMuvEV+Fjae7zf/bmmLhYWFNjtUve42fSo6qCHsZmZPTW59Ya+vs3R/8CsoO7JUTkv9yq9neghw4vgVHcCplrKNbA4tuKXN6pSm9dk6qRu0rW5V61cPfi2yXbYGY5xYIwg1Ozvb3hZKsuRZhaxqm2py6lkU2hc6G6bRZ+yILq9ksw/bEaj1VwBVyfDKl/6abW/+oYa/6uMzCIJFfb/W5+xwM6DUIlst0k9JqQNidX2EDa333OXmgtrnCwsL5xzLgV+vyyJo9elytPSx1eaJhsw6q8gOhItQze9a/bXSPKEsVYvaWUDNF8KpbQusC6r1n9a2XEmfFl8tbq9lqft8jebctaa1bc5pT2v/uQh7VuoHS/oArNwPzrNfrXad4dJxudvkctd/pehgMBguH5ct8PIP//D3fP7zn+fkyZMXdN0///Ojl0gjw5WK7wfMzMzg++f4MX8VE4vFIFj5KXEbQbnxKs/zkaVkgF/OEVbL+C8oYznhJZ+tJv98WSubYrEYyi9TLWX1Gkm1bgGyoNWuoNx4Ui2UpG1rieWCV1hFCdEs7xf12SBtqOZrHv0yQsjGQk9YTrsedgz8idZL29Iy2l4X6RXp7u4GoLe3F7xTq+gIWDYElUbbCeHrtzI16grAy7f4STRN84vgDiwyK8BtfZtPS1t0dHToa+qSLLvdTtAH6vpl/XnrwkwFWJbTcp3U/cEJL/VXK0FZZziImtJ+ASest+2EoinwWvwq6sGU1pQXpdvZL4Ib1Ytov6xlLQ72qADLavnML5JOpwF0m7T6VbQszhu2h7RNNTlC1H0dNNq70dZBWZcXVrNtgnL7Il/6BJV8s5+3jE/bthf1/ZoPgwqEO5o61jO3ANWin85UaOnDKoDW7IXl5oLa5x0dHeccy7ZTr0tiW+c4j6ulj602TzRk1llFtq08EC3b+Fr8tdI8ISxRC961BNWU3xYMa/QfpZa+5nWxPi2+Wtxey1LzuVyjOXetaW2bc9rT2n8uwp6V+sGSPgAr94Pz7FerXWe4dFzuNrnc9V8pOhgMhsvHum81CoKAX/u1X+XjH/84J0/qvfzn+89guFYZGhoiKooE3jJPnFsIvAoxq8TQ0NAFyxIE+slvDeVXsP28fq3uBcg/X9bKpqGhIcJC/1AJh0NYommHbYcQMgAlUUEVUc1jRTpRUuLaCscSKClRfoVwvAOKk6jFGR916k/HvRKUphHpLc3vFAgUlm0hlIeozuNaCkcEKL+CE45BUEXVF3fJTfpMj9qCTQuoZeAoWXvDESivjFWe4sEHHwTgne98F6I0od9etBJOVAcWKguEk304HVugPINc8mOuVpewEVgNu0huahaREkt5jWDD4rbYt28frjeLrNb8H4kipN++iA13QHVBb4GydBBByQARVHCjOmDihiL6fJTyPG68b6m/6hoHVahmceJdWLalF8jlWVL9NwDQvXUfojTV8I9AIFRbYhONIExlAZJbIdwJ1YxePLcu1lSAkD6hsP5hK6tlQt4c+/bp82weeughrPKUftsVIGwXIX1Ua/Al3AGVDPglQuGo7h/CgqCKqAXxhGXrflDN6vKWC9LXn3m5ZtBESiylM4TC4RBClrC8bGN8RqKRtr7vhGuvPK5mEU5M61WT3Vgg1/RTXglhOc0+LMBSXiMwttxc0Nof9u3bd86xHEn2YFWzWLJEJLryE93FfWy1eSKS7MH28zoDSkpsESwrO/AqdEYD0lHRkNPqr5XmCddxa8ErD2G7+jsZIIJSI3NO9+8sBGVdvsZifRb7ynVEW3stpu5zN5JYszl3rWltm8X9r5XW/nOx95CV+kFrH4Clfq9zIf1qtesMl47L3SaXu/4rRQeDwXD5WPfAyxe/+EW+8Y1voJSio6ODd73rB/mVX/kVPvrRj/Gxj/3XVf999KMfW291DYZ1QQjBg/fuJz/+3KrlCuPP8eC9dy598noesjo70viVXONvf/YleodvbpN1PvLPl7WySQjBG+/Y0/i7t7uraYeAUDSOquZRcy8T6tqCEIKgkqOnu4veHl3Wn32JgS23Eo3F9SujW2ldtAsLpo9AtLvtNY5K+o03rPmzL5GMR0jEI/Ru3IE/+xJCCEKRuF6ggb42PgjTR/UT9HomiPQQdnPxH0w9zb5d2/XTZMBxHLYO9y3VsVVFBGRPIKSPsASWZeF2bNR6t7I4FX/uObAj7a9brWTo6epoZGcsbgvLsnjrXW+gOnGo3hg44Siqmm/qI2pvhsqdbrZhNYsTjjb/FmDnT2IJhbDEEn81mH8Rt3Nrs/6550gm4g2dbdsm1dkH04dbHdIIctT/1v9vI+xaFkq0BxaOtXwJqprHCUcbtlcnDvHWu1/fVtfeW7cTTD3dFO3GYIntCrt4piHHoYrjOO0+yr6qz/wRQmvgRGD6KCK1uWGrrGToSDcPLk0Ek8Sj4bZx0dr3hRC4pbMQeFihOFTzTdm1zC6dgSMQhTGUDBp9OKjk6O7qaMhabi6AZn+wLOucY1kIQSIWJh5MrlimVWa9rtXmCSEEPcM348++1BjTq8l86L672uQ0/LXCPIEAl0qj/6i5lwl3byXctRU193LTh9EenPzJtsSqxfos56u2uWoRdZ8XJ55fszl3rVncNivZ09p/LvYeslI/aO0DsNTvdS6kX612neHScbnb5HLXf6XoYDAYLh/rHnh5/HF9iOTmzZv50z99hIcffpi7776HPXv2sHv37nP+MxiuVe65ez+7N8fJjD695GlI4FXIjj7N7Zvj3H3X/guT5esntx2pJOmoTTU/jTdxmFRY0bVx50XJX2+b9u3VYz838SIdyRjpqI1XyujMFsfFmn8Bq3AaO7kRv5QhFbXp7uqkIxkjnH2RcOUs6f5t3PrAexHZ46izB2uZL7U38gid6aImvgkLL2OHYsjiDEiJCnwcW+AKiTdxmHDlLA/eeRt377sRR5VIuB7e5FEisSSW8lCVeZTyoe8OyJ5CTXwLFXi17QsK2wmhvDL+2EG61AS/9isfbrP147/zUSLFk8jxg0syX6RfQo4fJFI+w/ahBOXRJ5HVMtHNd2OXZ5ATT6EC7WfbAtu2kNUccvwp7MosofQQcvpZlFdGluaJOgGbNm1ctS1+4sfex5ZUqVFXPNWFpXxULZNCTR0GJ6x9OHUYVZjEkhXiHXqrlqyWKY8+yfYeyY2D8abOqZ6Gv6RfQs0cxZIVYn07Gtds6/R48J7Xt/Wfm+56B05xFDn+JNIvYgm9hQYldZtOP6MVj/ahpo+gCpMQ6QFf66q8EqqSwVI+8VRXo64tqRI//vD72mz/yK9+mC41gT92UGcnheJYKFQ1q9ti6jBOKERfZxxv4jBefpquZJjerg4sWUYWZ5BTRwnZEiveX7O1CJlXsSsz4BXb2qK/X/ssP/Eid+0a4O59N7bZ3t3V2TaGezoTREMKNfMsBGVUNYNwolgoZGkGOX0Ey41j42HNPYdD0BgfmzdtJOkGlEefJOF6jblgpbF5PmP5rn03cteugQse76vJ7ujfRrhyllBWj/3VZC6WU/eXV8rg2E5jnnDSm1BS4pcy9KRjRB2JP3YQWxZxu7frf1SRU0cJ8lPEOofoSTl4k0eR1XLbHLOar5z8SZJu0JirQGeHeJNHSbgejiqt+Zy71rT6dPHcW7clFVak+7e95nvISv2ge+NOEq5X66sB3V3Ns8outl9dqnueYXUud5tc7vqvFB0MBsPlQah13sPztrf9K8rlMr/0S7/Evffet55VX/U8/PD7eeSRT15uNdadYrHIsWOvsH37TXp/7DWMlJInDhzksa8cpKhitcM3y8REkQfv28/dd+1vy1g4H1n/9NjXmM1XiaY2YIuA0vwZkAGRrk0IJ3rR8tfTpmKxyMsvv8z0zCxff/LbFFWMhUKFhZkp8HJ0dPWhpEd+YYZU72bSXX2NOu6/904E8PhXn6SoYvjK4cSzX6fiKYj168NavSKUJog6ks0730ghl2F64jSeFceJdmCLALs6z4bOOO/6gbdxz913AfDEgYM8+uUDjM/mWFhYILCTeIEkqBbBL2CFkgSlef3GlFg/IpwAr4hVnmLfru382q98uJGF0Eq5XOb/93O/wIkzU6hovz7k1SsiShNsG+7jv//OR3Echz955FN8+YlvUXW7kVYEb/4EgVfGinQQTm1ASI8gO4YKKljpLQg3TpCfQFaypPs2MzC8GRFUztkWvu+31YUTpZybRRYmwY0hYgPgF1H5MziOQ6hjs/arXyTkzfLWu9/QCGosllPNzxIUprDDKdz0ECIotV1jWdaS/hNUC4y98jS5SgA1/8hKHooTOtMn1qe3FRXO6jfZJIbBjqKK49r/8Q16W43fXpfjLD32rFqt8uv/8Tc59NwxZKRPH7xczUJpmniqi8033Y4IKpTnRsGyiXYOgx0hMzfJzNhxpFSI5CDCDuMVZglKsziRDqz4BmRhsq0tZKWAKkzw3d/1EA/c/9ZGH1s8dlrHsLLCTJx8hkxmQb+NywrrQF95BktIwqkBOnv6EJUFcvPTbeMjKooM93dzZnyGEvFzjs3zGcsr6XyuPraa7AfuvRMFfKk2hleTuZyczNwU2ekRkh09KMslMzcFbpKOnj464mEiFBBBhZdPnMEL9eg29gqI/BipdJqe4ZvBDpOZHlniw3P56tGvHGRiwWc+XyHwPWw/S0dHBwPdSR56612XZM5daxb7tG3u7d5AuqOLuFVak3vISv0gSoHhgR7OTMxSWqN+danueYbVudxtcrnrv1J0MBgM689lC7z8wR98ghtvvHE9q77quV4DL9cjSin92sFSiWg0ytDQ0EWnnC4nC1gz+a9Fj4ups11OBKV0oCIajTI4OMjZs2eXrWNx/Rs2bOBzn/sc09NT9Pb28Y53vAPbthtlIhF9hsDIyAhCCDZt2sTw8PASnetyi8Ui2WyWVCpFNBplYmKCbDZLOp1m9+7dfOlLX2J2dpbu7m4efPDBxvai1fB9n89+9rNtOi4ODkgpOXToEJlMhnQ6zZ49ezhy5Ejj7/qZJa1l9u7dy/j4+AW3xeK6lrNLCNFWZt++fUt+QJ6PzouvWa7/SCl57LHHGvW/9a1v5ctf/nKbPkBbmfvvv5+jR4+uWtdyBEHQJueBBx5gYmJi1XE1ODjI2NgYo6OjKKXYsmUzAwODHD58+ILa4nzG8MDAAIcPH2ZhYQHf99m6dSuxWAwhoFRafXxc6Ng8n/IXO95Xu+5CZC4u22p7JBJp80tdzuJ+uW/fPoQQK8q5EF+1zg+xWGxd5ty1ZrW5d63tWamtL0W/MlweLnebXO76rxQdDAbD+rHugZcPfvADvPrqq/zWb/0X9u7du55VX/Vcr4GXmZkZ/u7v/pa3ve176enpudzqXHVcC/67FmxYL653X13N9l/NuhsMBoPBYDAYVmbd89juvfdelFJ885tPrXfVhquU+fl5/vIv/5L5+fnLrcpVybXgv2vBhvXievfV1Wz/1ay7wWAwGAwGg2Fl1j3w8r3f+3a2bdvGF77wBZ599tn1rt5gMBgMBoPBYDAYDAaDYd1Y98BLKBTiP//n32L79u384i/+An/yJ3/M8ePHqVar662KwWAwGAwGg8FgMBgMBsMlZekrHC4x3/EdDzX+WynF5z73OT73uc+d9/X//M+PXgq1DAaDwWAwGAwGg8FgMBjWnHUPvCw+y/dCzvY1J31fn6RSKb7zO/8FqVTqcqtyVXIt+O9asGG9uN59dTXbfzXrbjAYDAaDwWBYmXV/q9H//t//6zVd/yM/8qNrpMnVx/X6ViODwWAwGAwGg8FgMBiuVtY94+V6DpwYLo5KpcL4+DgDAwOEw+HLrc5Vx7Xgv2vBhvXievfV1Wz/1ay7wWAwGAwGg2Fl1v1wXYPhQhkdHeXHf/zHGB0dvdyqXJVcC/67FmxYL653X13N9l/NuhsMBoPBYDAYVsYEXgwGg8FgMBgMBoPBYDAYLhEm8GIwGAwGg8FgMBgMBoPBcIm4ZGe8PPZY87XPDz740LKfXwytsgwGg8FgMBgMBoPBYDAYrmQuWeDlYx/7WOP1z63BktbPLwYTeLn+EAJc18W8TfziuBb8dy3YsF5c7766mu2/mnU3GAwGg8FgMKzMJX2rkVJq2SDLxb7B+rUEbAxXLzfeuJ1/+Id/vNxqoJRibGyMYrFILBZjaGjoquiT5/KflJJDhw6xsLBAR0cHe/fuZXx8vM1OoM32wcFBzp49u6ovzuUvpRRnzpxhZGQEpRRbtmxheHh4WTmRSJT//t8/TiQSRUq5pO7z0U8p1Wbnvn37sKz23ZaLfbFnzx6OHDmy6jVBEPDoo48yOztLd3c3Dz30EJZlnVOf89F5cZmBgQEOHz7cpo8Qoq3Mpk2b+Z7v+R7+/M//nGg0ynd/9/eQSCSYnJwkk8ms2MaL/b6cXUopPvOZTzM9PU1vby/f933fz1//9V81/n7nO9+FEIJHH32UmZkZbNti9+49HD16hCCQ9PR0c8stt5LP5/n7v/8ipVKJvr4+3ve+9/OVr3ylrS4hxAW31+7duzl27Dg/9EPv4dix42zZspXx8fG2PjY4OLjEh77v89//+39r2PHTP/0zPPvss5w8eZJQyGVwcIhUKkU+nyeZTBKPx5e01+DgIKOjo3z+839HLpdj69atvOMd72RycpJCoUAulyOZTBKLxQAolUrLtvvf//0/LDsGzpw5w6lTpxBCsHnzZoaGhtqu6+vr45FH/pSpqSl6e/v4zu/8Ts6cOc2JEyeJRqNs27aNPXv28Pjjj7f5GWhr5wcffJCJiYk2nePx+HnPdxcyT/q+z6c//WlOnTpJMpniX/2rf8WmTZuW+HVsbIyRkRGklESjUVKpVJtOi+tcrm3ONbZW0nOx7zdt2oQQotF+rdfV9SgUCmSzWcrlMgBbtmxZ0l51u1rbdPH812pXNBpt6zf1elebs9LpNBs2bKBcLl+2e9bVet80GAwGg2GtEepioyDnYHJysvHfGzZsWPbzi6FV1vXGww+/n0ce+eTlVuO6Q0rJ1584yGNfPUhJxcCOQFAmKoo8eO9+7rl7/5IF4dWA7/v88Z9+ii8f+Bae242yowT5CWQlS7pvM/1Dm7FkheL8GZAB0a5NYEfITI+QnZ8m3buZVFcvIqi0+QJY1V937X8zTxx4kk//zReZzCqkHQdZwarOs6Ezzru+/2285Z67lshRdpjs3DSZ6RFSnb2kezdDUKY0NwqWTaxzeNkyyi8xPfo8+ZIHsX5wYuAXcb1Z3nrXG/iJH3sfwCJfRPAyZwkqWex4H6FEN/iltmuklHzkN36Tw88fQ0b6wI2BV4TiOMlYhOHtexFu5KJ0Fov8rqww4yefIZvJYCcGsCNJ8ItQmCCRiNC38RakCPHK89/GL+ch0q3tDKpQmgIhsGI9uJEUyi8iC1Oku3rp37wDS1bb2s/3/WXtkvmz4JchsUnLzp4Ay9I+deMN2/HKEOsBJcGJ6vZXAVSzuuOVF8B2ID6or6tmoTQNdhgSw1hBCVU4iyUg1LkF4cbPq70qC6eRlTzEehFuClWaAi+PHe0inOyFoIqXOUPglXHSm3CiKZRXoDRzUusaH4JQArwCFCa076JdIAOwLISSuIlu3HCUiMrjVwqkezeT7OwlMzvB2RPPIJUN8YGaPwpQnMDGx030IMIdSK+A8Ms4sU46u/sgKJOdHm1r98Vj6WtfP8Cn/+rvmJwvIEOdKBFCFiawVYXuwRtIpLs59vzTut2jveAmwC9AcQqEo+0KilCeAb8KiQGscAeykoPcCMKNIuID4MZQVa2z64Ad6UCEO7Acl65EmP4OZ9X57kLmyXK5zM/87C9w4swERHohlISgAqVpLFlhcNMNpPu2kJ0ZZXbqLNLtQDkxvHIevBxuJE5f7wb6OxyG+3s4MzFDmTjKCrfNT8nOXnLzq4+/lfSUUi7xfaBs/NICrizQ27+JdGcXMavEA2+5E4DHvnqQidkc09MzVEUcYTvYQiIqc1jKo2foZlJdfWTnp5gdO06gFFZiEGFHsIICG1KCd739u7n7rjs5cPAbPPbVgxRllMzCPPOzE+Am6ezuoyMRJkIB/AqvnBrDc7vBiVItZghyZ7GcEFZiiKCaR3g50l29DA4OE7NK63bPulbvmwaDwWAwXCyXLPBiWHuu18DLyMgIv/Vb/5kPfeiX2Lx587rWLaXkk3/25zwzWiAxsAvbDTe+C7wK+fHn2L05zvt+9D1X7I/I5fzn+z4/+wv/gZFsjFD/PoQbpnz6m3iEEB3bUX6JqBOQSibJFEqI/BmSYQBFrmpjd95MEFRIR202Dg8R+FXy489x+6Y4SimePV1c3l9nn0NlTzJVjlNJ3Igb60bU/Kb8Cv7MC4SrE9x/525ANORUCwu88LX/g7vlftxEP8H8yyTDASjIVQQqMUw6EQUF2XKAbYcJ5l8m4QbkZkYp292onl2EQlGikQgIkNUy1YlDbE4VkVJyOp/QvnDC5E4dRFphVMdNiKCMpTyS3UMor0J14hAbE3lmZmaZtwaw++5AuBEAZGmBIPAgN4or8/RseyO5imzokwxJ7cNVdE6FJSp9I9lCGZE/QyKkGjaI3j1gOTg24BXwPA+VGyUiyhSLRQh3QqQHznwFBu/Wi207rBffQiEsGyF9RDgN8y8SFWVuffO/RAY++fHn2DUc5Utf+doSu/xqBRVUYPY5yI/roE96G/TuBScMSiFUgPIrcOZLEO6A1DYdyAil9R4ar1z7rhM6bwZh1f7ZYLkw/6IOynTvBGwojCFkhfS2uxGWWKW9QmSOfQXlJqBzBxQnYfSfoGc39OyBoIQISliWQ6AEojAOsoLTvxcvOw5WWAeMAg/69ukgUVCFmaOQG4XEZggnoGM7YGHPHgE7jNN9E64tUF6BwtmjEOqA5GYdVAqlEYDyyzB9COZfwd2wC2lFIH0jjuuiyvNghYjGkrV2V/Rs3MHxJz9N/7bbef2OAaSUfPnJo1TC/Tg9t4Adqo1TF5Xehi2reBNPQ7gLOneCrIL0IJTSAaOZo9ofGx8ELweZ4zrIlL4ZzjwOqS3QswfhhrGEhQSUV4Lpw4jcCMk9P4IlBH4lR9IN6LDm2b1l6Xx3IfNktVrlHT/0XsqRjdC1CxHt0v0g8FBBFRZegdxp4hGbanSYIHWjDmJZLna0AyV91NxLWF4et3MLKn+GdCLMptvu5czzT5CtWHp+8iu6nzoxbGf58deRiLJxeAiEaNPzX//wu/nU//q/fOngEe377lso+wo/UAhhIctz2NnjdHfGGbzpTZz6f3+HCncQch3mChCkb8JyY4AkKC2gvCJWZQbLLxLq2Y4XKAJlQX4MV/hENr4RlMIrzhLOH6cvUkCkthIfuIWzLz9FtmLhdO8Ay9VtEbHIjnyboi9wu28i1jFAPl8gUAIlfZg+ooN+N/wrhJKoueeJijI7XvcghckXLvk961q4bxoMBoPBsNZcVXe8V1555XKrYLgMVKtVjh8/TrVaXfe6v/7EQZ4ZLZDedEfbj0cA2w2T3nQHR0cKPHHg4Lrrdr4s578//tNPMZKNEdl0J1Yogjd7DI8QVu9tCDeCFe2k6Amm57OEEr24/XuZm5thPlfF3bAbKxTBjabJlAJm5+Ybvjjw7DgHDh9f0V9+Yisn5sMUZJRQorcRdAEQThi3fy+V8CCPff3bHHx+oiFnbn4OrzCDHYroujfsZi5bZW5uFrd/L6FEL3OZAnP5Cm403Sgzc/YERasTa/BN2KEEfqCoeh4AVihCZNOdHJ91OH56tuGL4tRLSCuM6NmN5UQR4U6kcCllZxrXHBudZk704wztbwZdqgUkAivag9W3D89KMDn6Qps+DR/Wdc5WmMsW2ssUJHPjrzb83mqDcCMI26FaLuIFYMV6sDfso5jP6yyUntvBsqEyp4MJtovo3Y2I9YDlorBRtQwUq28vJRVh5KVvN9rvH770JPOL7PK9KgqBCCURA2+GaLcOLAzeqbMlhAVKohA6uya9Dbp2ghtDRLoQwkIgIH8akpug93adRaOkbvdwCuFEEL17IZyC4iQi3ofo24uyo+THn1+1vfJnn0G5CUTfXoQbhfIs+CVIbtL6RbpQwiHAxor1IXp3gxPBO3sI3AQivkEHtOywDkwIAU4E+t8Aqc1QmkL03I5wopAfJbAi0LuHQITxCFGYOQXhTsSGO7SfhaUX/AJt18CdEOvDK+exem/HCsXwKiUCEUY6CXxs3A27yVYE82dfobgwQbzvJg48O87jT3ybSmQQt38vwgm3jNPbsUMJvMxpCHchevcgnLAOdFkuyKq2feBNENsAU99GxDdAz20682DsS5DarNswFAMEst4eTgQxuB+V2kLh5S8iLAs3mibn2fiJrcvOdxcyT/7Mz/0C5ehmRN++pr+kr/0ViiP69oIbp0CKILlNbyWyIyg3iZQSYWv7AydOKTuF1Xs7ec9l5MjjZCtWY35SwqLk2ygntuL4q89fi/X84z/9FAcOH2/43lOWDrrYDlgWVqwH2XkL89kqZ57/OpXIIAUZZbYAsmsXViimg7tSotykzujp2E7gxCnMjhIQwor1YPXtxiOEN3sMYVmEEr0UZJQT83quXJg40bBJOOFGW0yffomiiuEM7UeKMIXsnA4qWq5uv/43QmyAYPwphBNqjPUzrz6zLvesa+G+aTAYDAbDWnNVBF6ef/55PvzhX+KnfuonL7cqhusIpRSPffUgiYFdq5ZLDOzisa8+edFnF603Ukq+fOBbhPr3AdrO6txJRNfNbeWUE8MPJChdJvB9/OgQtJjphJPMzM41/s47GyiUKiv6Ynp2Dtl1K0F+csUydtfN5PI58nZzW+H8Qqa9kIIgOkTgB1qOgiCQBKL5I19KSeCVUV3N9hOW0x7AU+B33IqSgV4kKYU3f1JnD7QSSlEtF1BKIQOJCgLoau8XyivqhW+drp3I/ARKajuX82FghQlqPq7jJ7Y1/LOcDQAqqCCdWEMuoIMaKtDbSwDKc5DejlJKl3ETOpPDTWhdAdF1K7Njxxp1FYtFVPdt7XUpCZbTrKvjBrBslJQt9Uu9gM6dgo6bAQFOrKGbUkoHXjp31LbClLRwJ6K/EzUXdGyH0kzTpq4d+JnRhg+XtJdU+Asj0HVLs57ieF3xlv+3tD51mzp26GwgN9Us03kz5E4Dtg4KCUe3saygan2D3Ch07kApibAcKtWq3ibV2l/cOPglXa0AhdLBkOSWpj9q7dfaH53uHcxPjjTE5Ow+cvkcTteOhm2t41RJBfkx6LoFRa0eqPm33Gz3nt1QnEDJQH8XHdCBjt59zTZGaH2VonGyb+9eguIsQRBo/WpjffF8dyHz5D99+QAnzkxB+katS0MB2ei3Wq6C9DaUX0ZW9bgSlq1taLThTVCapVLMY3fdzOz4Cez6HKagWipghdMN/y43/hbPX3U9v/TEtygUyzrLBB28Flb7kXgilMCPDjI7fgKr8yaC/AR+YmtbOSUDhGVDSI85mb4JilMEVnOeEl03U5071WivID+B7LqV6ZlZZs683NChKVMR5MZ1cLOuR6XUGKONNuzdA/kxZG2cto71S3nPulbvmwaDwWAwvFau6MDLoUOH+Pmf/3f83M/9LE8//fTlVsdwnTE2NkZJxZY8sVuM7YYpyihjY2PrpNlr49ChQ3huN1aovj1mHhVKIuxQo4xeDOstIF61jCzNQzgNboQgaAYuhGURKJtyqUy5VEZZUaSbopybXVJvuVTGD4R+4h5KIsvzy+qnvCIq0kOA25SL3VYmCKrgRiCcQpbnCYIqynJQWMhALzT8hVMQ6UHUF/dQWwiLRhnP93QmQ6QHPzOCX5iFUKrNFwBC2GCH8CtFqnPH9TkiTrQZfAg8lOUgalOqAoQdhnAH1dxEw8+tPpSBRGGhLKfhUxlInXlR889yNqjA04ssYYECWZrTcp2o3l5SP7fSTWhZ9VWmsPR10te+CjyEE0K6abIzZ5kZeQEV7dN21eqSQQCI5mGYQUVn1kQ6deCiYa0FlYwOZAihAw2W08hqoTKnt7/YIZ390rrNCFlrmNqZMKGULl/3YShFNT+9bHtVsxMQ7tDZHgCVBXDi9VbTmTjSq+lj64ADNReFO8HLNhvZDum6q/O1EkrrE+2F/KiWXesbOtandHArnNb113wmGn72tJxKRtflJpDlhfb2o9kfhRNG2jqYVqlUCbwqKtKDrPl+8TiVxSltu906P4mWdtaZXTgRiPZA/rTWrTims2CcSFPnxv80/0M4UYhuwJt+vtZ99Fj3fNU2313IPDl6dgaivQg31rBf9xHRDPhUFmr9Odb4XI8rUQsQ6UCrbq8kyi8QBAEq0o3ydUBRzwc2WFbDv8vNYa3zVx3PV1RFHN+K6TYJatlci8+DFRbKDiHDXQSFcZST1HNbDaWUvg6tvxKONjGcBi/XGGPCDqFCCWR5XusYSoEdoVrM4Yl4s2/X9SvodscO6aA4AlUf1y39QDgRve0wN1prz+ZYv5T3rGv1vmkwGAwGw2vlkr7VqI5SigMHDnD48CGmp6exbYf+/g3cffc93HrrrUvKHz16hE9+8pO89NJLjesB7rjjjvVQ12AA0GdmtPyQXhU7QqlUurQKrRELCwu1RY1GBdWldtafmgoLpYJmGWFDLdjQQFgEMqhFGyywI0i/sqTeIAhQwgKlgy8qWH7rmAqq4MRRiKbcRaseJaXWpS7Hrv1dX5hRO6vCjWk7Wp/kt5aRtc/dmM4CEaGV21zY+nwJr6AX90JQX1rpxWNrHLu2BLKjSL/c7ueaD5VVS4lo8amqp0nU7FrWhkZdun4VVHSAQNjNekEvzERdF9Foq+b1tXZ0InjVEtVybbtSS12q9dq6ncIGO6qzZ7TSuois1hbzUgc5oFaHPr+jza+iXr9oUa+ehhDV5es4EWRQWba9pKV93EBWtd1t7SD1IcD1YEpdLyfSCE6o+v86EW1XqPa3QPvEKzYPCq5LVvX6mmOpzb56sK/ul3rgZ1H7tfbHuu4yCHQQzYk3+8aicar8Srvti+tvS02LgVebn4KyzsppOH6VjAM3hqrm2+QGMmib7y5knvS8QPtLLBorrcNb1seJnntE65e1vqnqkSInoseS9PWcUeuTjflBX6SDICvNYXWbagRBoLfl1QJajTG5LLXMLq+kdWnMCYvnHJp9wo7qftf6fX0eU9R8KZDKx7KXBi+UX26UUahaZlUtS2txW7a2OzTGer3OS3HPulbvmwaDwWAwvFYueeBlcnKSX/3VX+XUqZNLvvubv/kb7rnnHj70oV/Ctm2y2Qy/8zu/wze+8Q2Axuuo77zzTt797h/i5ptvXiLDcO3T39/PL//yr9Df37+u9cZiMb1IOR+CcuN1n1cai/3X0dGhz6CoIezQUjvri28lEcJullFBbRHbgpLY9YW2khCUsZylCwbbthH1xUFQXpJV0qaPX0CgGnKtUIL4jrdhhTt0GcvSutTl1P+m+Qp74Ub1gnnxAqi1jFWz0ysi3I366fJKba4ChOXU3rIzAUo1F4WiJZChP6jZWcJyIu1+rvlQ66DafNr4rGbXsjY06lIILIQdRvmlmv2uPsx26C3gV2pr68WBk/r1tXb0y7ihKDKSAP9UW11i8cJc1P1eagY4hKiJC+m3HglLBw1smnXYbrtflawFJloX3bX/8Eu6fB2/3FiALm4vS0S0LnWskK5/y3fpczUQWgcpwVZNfbC0rpbb0lpCf1bLJNBjAD1W4v1adosNQtTqC5pjqd3PoqmTX64FUtwl7ada+qNlWWze991Ekt0wm9NvJ6r3jUXjVDhhVLDCorWeRdLwYc0G0Iviaqbl+1WCL14Rkepuk2tbNkHLfHch86Tr2lAsNjOh6vW3Vl/3s5I1DVu+rPVN3S+l9mskrbf3+IXGnNKYH2rXCyF0uy43h7XOX+h5CukhasG+xphcFgV+EeEOQ35h0ZxQD74060EI3V8tt31c1ucxRc2XCks4DR1aEU6kUUZggajNIWJxcBHd7u5Ay996rNfrvBT3rGvlvmkwGAwGw1pzSQMvnufxy7/8HxgZGVmxzNe//nX6+vp429u+l3/3736OqakplFJYlsW9997Lu9/9Q2zZsuVSqmm4wkkmk7zlLW9Z93qHhoaIiiKBV1k1bTrwKsSsEkNDQ+uo3fmz2H/79u3D9f4HslrGCumDdEU1hwqqzYWLEPrHvPRwQxEUYb1lwitj270NWUpKbBEQidaCC7KE8LJ64biISDSCYyuolqGaw4p0LquvcGOI8gw2XkOu7TrYiZsah/Hadki/JaeSxYp0IhAI6QMSy9ZlnI4tMPIkyi8j3FqQQOnnxPUyruOi/AVEeQYn/ZC2u5pt8wWAqr3pxgnHsN0bKY0+hfJLiFAtIGC7COmj9PG6elkYVKCyQCipF7xWtLPdhwIEEqSv7QGtV1Bp+EeEO5bYIGy3mTkhbKxoF3IiowMWblwvXHv3wukvaVlWvN5Y+jrLQXg+wnZRfhXLy5DqGUR1D3DymS9ru9y6PjZB4DWC4NhhvcWoPA8beuotBsjaFoqsXmxKT9fl1AIo4S6oHoGgirLdZuClHixC6YWjl9evlw53aZWDClT1Ac/LtheC4plvofyKDpqFO2oH627RagkLYbl6u5EMQW0cK4DKfPOMF9CZLtUshDpB+douv6TPcBm6Vy+Ua33Dcly9wI50wcwzun43WusrdT/X7AqndV1eD1Ziq/ZjI/PFRqB4f/GfGfKnIJQjKrpg4iglVSJIZLFzE40MERlZQBVfQQgLZYGKz0Pl5KLAIlq+33LmR2oOwpNQ+Qaka3ZWZvTWI2icD9OUIrQd6Vmc8CwsHK21l09kJIzwcnR/5hgloBv4N9mz8NKh5pa0ZVBKQTxLniLIKUTFbalRgq+35SihIJYB9WItcwSo1H+qKIRvNf0cy4Edwy45BIk57PIEVGq+8j0IdBaY5evAShBeAO8F7Hy46RvlEx1t3yJUTk7r7Vrzx0FYOgOpLUun5rXAg2QOm0mCWBa8lxFByxkvrQEw5aM8G+JZECexyk07RCSHVXlV6xhZgMrL2JaCUBHmX2qvW0EQm4fKiVr7KZTywXNoDbyoWrsLdxJR+oauJ5YlPncaNava2nAtuZD+cKl0MBgMBsOVjTWwhfC7/93lVmPduaSBly996UuMjIwghKCvr4/3vOc9bN26FcdxGR0d5bOf/QzHjx/nC1/4Ai+88AKTk5MA3HXX3bz//e9neHj4UqpnuEqYn5/nS1/6Evfffz+dncsv1i8FQggevHc/f/3V50hvWnmbW2H8Ob7vvjtX/ZF5OVnsP8uyeOtdb+Cfvn2IyCatd6hrK+W5lxG9zYNVhV/Etq1agEBgOw6iNAZiY6NMUMnR393V+DsRTKKi4RV90dvdRfH5A4jEhhXLBHMvk0wkiQWTgD40tTMRZuz4AaJDd2CF4jrDvzSGcuyGHNu2QFUAfWinZVnYboRg7jkYuhMAJX3CoZZMGwHOwvNIy2681tTt3Io3/6I+lLRONUsoEkcIgbAFwrZRc89B7K6mqPq2jFBtMT/3IlaiX2dpoPvTYh/aqgI1H9dx8idQNf8IIZbYAOgMEL8ITrrpx9yoPrujmtVv5wl3QOaYflsQaN3sEHh5fcYGoOaep2doe6OuWCxGcfZZGG6xS1h6K4ft6jfMLLwKMmgEwYQQKGpbmJJbYOFlrYdf1PXUgjYqsVEvItNb9bYdrwh+WZ8lovSWLbVwDKI9TZvmXsJJb2r4cLn2cjo248+9AH17dT2xDTDyzzD8Fh0oEvXsiGLDbrHwEirSowNFdpcuM/8yJDcCtUW28mHuObDCzVeeJzfB/EuIvt2NvlSJ9upXYffVDqv1CuBEqSdKCIQO/OROIbq2tbWfEnHCoRBDxRluDCZ0Qk6x0OwMISCYaOkcgCo2kxpCAOWlCRmLkzTCgKrJsYAIwOSqu4ygVi4Yb/+stkqWpzKNj4YB/AznRQRgdvW63ZaKoL2sWlyuCAFLfdVa1l9U3m8vxuKkJRegAkFLWyynr2ip16kJksuUayUEUGov59DMQmxtY4t2HVplqFJTp5WScurtXv/OBYqnG1+3tuFaciH94VLpYDAYDAbDlcYlPVz34MEDAPT09PDHf/wnfOd3/gtuvnkHN9xwA/fddx+///t/wC233EK5XOb555/Hsiz+/b//9/zqr/6qCboYGszMzPA//scfMTMzc+7Ca8w9d+9n9+Y4mdGnCbz2tO/Aq5AdfZrbN8e5+679667b+bKc/37ix97HllSJ8uiTyGoZt3s7LlXk9LMoTx+mG3MVvZ36YFNv4jBdXT10pkJ4k0eR1TJ+KUMqatPd1dnwxV27Brh7340r+svJn2Rbp0fcKlHNTzcOpwVQfgVv4jDhylkevOd13LVroCEnERZUz3yDanYcWS3jTR6lMxWiq6sHb+IwXn6arnScrmQYr5RplOkZ3EZMzSPPPoWs5nFsQcjVWRiyWqY8+iQ3dvts39jT8EWsbweWrKBmjiL9Eqoyj6U8oqmexjXbN/XSxST+2EGUp9PqrVAcC4UszSCnDuHKPBs23dKmT8OHdZ2TYbrS8fYycYvugRsafm+1QXllVODjRmK4tkAWZ5CTh4glEnrhNvMMlOZg7Ot6y1Hgo6aPooozevsEASIog7CRU4eJijKbd7yu0X7fdf+ddC6yy3FD+jSJag41/g0ozUI1gzr7JMor6af6wkKgINoHmRMw9yJ4RVR5DqWkzqhIbNRvDZp+Rgdd6tkWlSzKL6OmD0MlC7ENqMIUauowIiiRGLh11fZKDN6O8POoqcP6rA0rDNlXYfZZrV95DqF8bAJkcQo1fVRvuRjcB14eVZhETR/R2UHpG3UWhF+G8W9BdgSifaiZZ/R2rsQmbFmG6SPYqoJLlXjPFqgsoCaf1n5WUp+todB2nX0SilO40SRy+hlktYgTjmKrCpafxyHQ5wYZDAaDwWAwGK5ZLmnGy6uvvooQgne8453L7uO1LIt//a/fyy/+4i8ghOCBBx7gwQcfupQqGQwXhGVZvO9H38MTBw7y2FcOUFAxfUZCUCYminzfffu5+679jafvVwuO4/A7H/1P/Mkjn+LLT3yeqtuNsKPY+VPI2Wfo6NvMwPBmRLBArHIG7IBIahPYEZzpEXKnPk9n72bSsT4Ko6fbfAGs6K/vf+t+9t/5Yzxx8Ek+89dfZHJaEdhxkBXs6jz9nXHe9SPfyz1339Ump5TTh2amq6conzpEZ2cv6Y7NEJSJz41CZYZobFjrV54iOz2iy3RtpjsVZmb0eXJnRiHWT8WJgV8k5M3yL+5+Az/+8PsA2nwRcqJ4mVMEM89gx/sIJbqpnnq57RopJb/+H3+TQ8/9FUGkTx+C6xWxiuMkYxGGt+/FsmdwW/XprOnsraJzx2aEPNP0e3oT3Z23MXHyGTKv/hV2YgArkgK/QLgwQTIRoXf4FqQI8cpz38YvHdGNvPAKCAdKUzD7LFasBzeSQvlFZGGKdFcvA5t2Ujz9rbb2e++PvHuJXcIrovJndUAisUm/LWX+FZ1ZE+sHN64PJy6eBa+igw+lmdqBtGH9d7X2BqG5l/R18UHts2pOb+exw5AYxpp7HlUYwxYCt3ML1bGnztlekUiEyvxJ5Oyz4CZ1PfkzkD2JHe0inOyFoIqXOUPglXHSm3DmnsHx8pRmTmr94kMw8ZTOWCmM661HkW4ojEHJQsy/jJvoJhSOElbT+OOnSPduJtXVy0KQ4uyrR3X98cGaPwpQnMDGJ5TqhqCI8qYhdxwn1klndx8EZXKnRnE6F6dgGAwGg8FgMBiuJYRqvE5h7fme7/luqtUqH/3oR9m9e8+yZTKZDO94xw8ghOA3fuM/8sY3vvFSqXPV8/DD7+eRRz55udVYd44dO8YHP/gBPvGJP2T79u2XTQ+llH5VZqlENBplaGjoit1e1Mq5/Cel5NChQ2QyGdLpNHv37mV8fLzNTqDN9sHBQc6ePbuqL87lL/39GU6d0tsRN23axPDw8LJyDh48yK//+kf4tV/7CHfeeeeSus9HP6VUm5379u1bEjBb7Is9e/Zw5MiRVa8JgoDHHnuM2dlZuru7efDBB7Es65z6nI/Oi8sMDAxw+PDhNn2EEG1lstksP/MzP83evXvp7e3ju7/7X5JIJJicnCSTya7Yxov9vpxdSik++9nPMj09RW9vH29/+9v5m7/5m8bf73jHOxBC8NhjjzEzM4Nt2+zevZujR48SBAE9Pd3ccsst5PMF/v7v/55SqUhf3wbe+9738tWvfrWtLiHEBbfX7t27+b//9//yf/7P/+aHf/hHeM973sPExHhbHxscHFziQ9/3+fjHP96w46d+6qd49tlnOXXqFK7rMjw8RDKZIpfLkUqliMViS9prcHCQ0dFRvvjFL5LNZti6dSs/8APvYHJykmKxSDabJZVKEY3qbUilUrlxXe6jH8A5++rqA9lgMBgMBoPhGsDaspPoz/3e5VZj3bmkgZeHHtI/nv/4j/+EzZs3n7PcH/7hH7Ft27ZLpc5Vjwm8XN7Ay9XKteC/a8GG9eJ699XVaH/lL34bOX6KcrnMiRMn2bZtK5HIeb6S12AwGAwGg+EqwhyuewVg2/a5CxmuO+LxOG9605uJx+OXW5WrkmvBf9eCDevF9e6rq9H++o+P+bNn+ds//EM+8N4P0Dk4eJm1MhgMBoPBYDCsFVdUxsu5yl3vXK8ZLwaDwWAwGAwGg8FgMFytrEvGy+c//3k6OjrWpNyP/MiPrI1ShqsG3/fJ5/MkEgkc54pK0roquBb8dy3YsF5c7766mu2/mnU3GAwGg8FgMKzMuvyy++IXv7Dq9/VDHc9VDkzg5Xrk5MmTV92ZDVcS14L/rgUb1ovr3VdXs/1Xs+4Gg8FgMBgMhpW55IGXtdzJdDW8QcZgMBgMBoPBYDAYDAaDoc4lDbx87GP/9VKKNxgMBoPBYDAYDAaDwWC4ormkgZfdu3dfSvEGg8FgMBgMBoPBYDAYDFc01uVWwGAwGAwGg8FgMBgMBoPhWuWSvk7asLZcr6+TDoKAcrlMJBLBtu3Lrc5Vx7Xgv2vBhvXievfV1Wz/1ay7wWAwGAwGg2FlzPsqDVc8tm0Tj8cvtxpXLdeC/64FG9aL691XV7P9V7PuBoPBYDAYDIaVMVuNDFc8Z86c4UMf+kXOnDlzuVW5KrkW/Hct2LBeXO++uprtv5p1NxgMBoPBYDCsjAm8GK54SqUSTz/9NKVS6XKrclVyLfjvWrBhvbjefXU12381624wGAwGg8FgWBmz1chguAQopRgbG6NYLBKLxRgaGkIIcd7XRKNRQC/E6tcDjI2NUSgUyOVyJJNJ4vF4m+zF9Q4ODjI5OQnA5OQkN9544xI9Fl/T39/PY489xuzsLN3d3Tz00EMIITh06BALCwt0dHSwd+9exsfH2+o5e/Zsm70r6TswMMDhw4dZWFggmUwyOzvL3Nxco67FZ1sopVpsmCAUCnH48GGq1Spbt27ljjvuwLKsNlvy+RyHDh0iCCQ9Pd3ccsutlMvlVf125swZTp48wYkTJ4lGo2zbto19+/a12dlqV/2zVns6OjrYt28fSikeffSfOXHiJPF4jLvvvodvfvMppqen6e3t5Z3vfBe2bbfJ2bBhA5/97GcuuAzAZz7z6cZnu3fvAeAf/uEfuOmmmxrt9/TTT3Py5ElCoRB79uxhenqahYUFfN9n27atRKMxJicnyWQyy7bx0NAQUkoeffTRWt/oYseOnTzzzFEqlWZbaNsfbes/tm03fHzq1CkAIpEIqVRqSZ9Ip9Ns2LCBfD7PF77weebm5kilUtx2222Mj08ghGD37t309/dz6tRJjh59Btu22Lp1GzfffDN/8Rf/F4DPfvYzvP3tbyeZTLW1dRAES/STUvKnf/onjIyMkEqleNe7fpC5ubmGL/bt2wfQNgZ2797N448/3iZHKdXWFu94xzuZnJxsGydnzpzh8OFDDZ/t2bOHxx57jJMnT1KplBs6fvvb32Z+fr7RPvF4Ysk8IqVs6FT3W7lcPu++unfvXs6ePcvJkyeZn5+jq6ubzZs3I4RYMvfo8aHLdXR0EovFGu03NDSEUqrNP3v27OHIkSNt40IIsWR+WmneaC0zNjbGyMgISim2bNnC0NBQ23X1Mq12bNmyheHh4YbuIyMj+L7P2bNjtXmhZ8l8U/dn3e9bt24lkUgsms/ynDhxEsdx6OzsZM+ePRw6dIgjR44AMDw8zLZt2xpbxup+rNu6eD5czr7h4eFz3i+W42LuO69FzoXWt1b6rbXc1rlJCMGmTZuWHQMr1XGp7LoQLlWbGQwGg2HtMIfrXkVcr4frHjt2jA9+8AN84hN/yPbt2y+3OqsipeTrTxzksa8epKRiYEcgKBMVRR68dz/33L2/ESRY7pqijJJZmGd+dgLcJJ3dfaTjYUoLZ1DSp6rCLGSySCeJ5bh0JcL0dzg88JY7AXj8a09SUjGUHSY7N01meoRINMbkqee5cfc9dCVDDT2ANl0DXEZefIpiqQKxfkQojqzkIT+KE4oS6tgITgy/lEEWJkl39bJh0w7yCzNkpkdIdfaS7t0MQZnS3CgIm6qdZD5fRfoelpcFoJRfQISSBH4V5Zch2otw44igjFWeYu+t2/nIr34Yx3Ea+s3lqhw/+nXsRD9B4COivYhQCvwiETnPg295Mzt33szjX32Sl149Q75QhFAH2A74ZShNYwlJqHMLTijS5jelFJ/+67/j9Pg8ntMBdhi8PJRnEcqnc+BGBoa3YMkKxfkzIAOiXZtQVpjxk8+QzWSwEwPYkSSqWqA6f5JACYj2gpOA0hT4RYj2QCgFXgmK40RDFltveSPKDnPi+aeolMsQ6wc3Dl5Blwm7bLvl9WBHePXYi5QzE+AmINqny+TPgGVDfBDsKORGQVagmkF070IIgSqcRSiJig8i3ATKK6CKkxBUdP+M9kJQQvglRKQDN5JCBRVkfpxUOs3A1ttRfokzrzxNviIhugHlRFHVPBSnwXYh2o1VmQcvh1QCkRhGhOLgFbHKU2zs70LYLlPzRapWnEBZqMDHVQUcEVAulbATG8CJ4ZUyqPyktivSrf0RVKE8C9KDUFoPnMo8CEv7TLhQOA1KQTgJ2VOQ2gZejnDIZdctN/PAW+7kS1/+KkdeOI6M9IEbQxYzkDsFoXiL7/NQnAQETucWQpbCz51FBRXs9BaUHaU68zJKKUR8oDlOciO678QGwI3V2nCCcMhh6647yc+cYWp8FN/tgFAK6ZchMwJC6HqjPRB4MP8ihFJYoTjKCiFCKYTt0BF32TaQ5KH77uLON7+RP/3kn/HlA9+i6nQReGX8chbhxuno6mOgN01pYazZV+0wEyMvkZmbxopvwImm8UsLeNmzCJSuP9yFshyElyekivT2byLd2UVpfoxcdp5MUVJ1UiivDF4BK5zCjSbo7YhRzYyRL5Qh3q/9kxlDVnLYiQ2E4l3gl6A4QSLq0rvpVoQTJTM9QnZ+mnTvZlJdveDX5g3LJtY5jLLDZOammD37KoEIY8X7EaqKLEwjZJnuDRtJ920mOzfN9JmX8AOFtMIQ1n3NpUIqVAEZkPVjVHKTqEBCbAO4cYRfxK5Ms/fW7fzyh3+B//m//pwvH/gWJZIEOKjAQ3gZ0qkkHXEbIRwWyjYLRR8V+OBlkV4Zqnnd3tEN4EZ1u5emsC0Ip4fo6tmAqC6QnZ/GifdSCWxk4CG8LGFbUS4VkeEurHAaZAWrOs+Gzjjv+v638ZZ77lpyv1ir+85rkXOh9a2Vfmttt5SSr339AJ/+q79jcr6ADHUSSIFfzuKqMr39Q6Q7utrGknCijToW33fXyq5L4YNL1QYGg8FgOH9M4OUqwgReruzAi5SST/7Zn/PMaIHEwC5sN9z4LvAq5MefY/fmOO/70fc0fuC0XhPvv4WzLz9FtmLhdO8Ay8Uv58AvooRNdfolqMwTu/E7sNwISkr8So6EG+DNvALVeba+/ntx3AijZ8bIlgJsO0x1/FuURr/Bru/4INFUH/nx57h9UxylFM+eLpIY2AWW4PA//hF+bBP07kU4EZASderv9SK/61YsxyUkqvhSgBVCzb2I5WcJDbwOx40QzL9MMhyAgmxZUHU6EW6cWKobISyymTmCuWMQlKEwoRfVG15fq8sDFJYAOfU0nXKCt957N8+PlUn038rJYy8wc/Sz0HeHvkZ6WCisSBq/moeRxwkne/B9D9/pQHTfAnYIpaReGHklyJ1EFCdI3vp9SK9IwvGpjn2TYqlENTKI7NiB5cYAgQqqqPICZI+DDIj37ySdSpEplBD5MyTCktz0acp2N6J3D1gOtlBUTx9AuQlIbATLgdnndLClcwfIKshAL9KkD7PPIgpnUSiID0HPHoTtgAL8gl7c5Uaw/CwqdYOWa0chcwz8CnhFHWRIbNQBh7MHIDGgZb36V3DjOxBuDCUDyJ/WC8KBNyOEpQNeM0chcwqcKKS3QseNCMtBBGVQAcKNw/QRQt4MXjmHH9/UpqOyHK3HzFEdqBi8B7InoDgO0T6cwTcghMDLTsDEk4hoD27vTqQII0IJQODlJiB7Uj9x7bgJJT2YPw4CSG+HUEIHV4QNSsL8S5A7DU4Mum+DwhkdlClO6AV1921QWYDjn4GbfghCSZg5iiiMISJdyEoWe8t3YoWieJ4HL/wZdO2A3n1Q74dCQODDzBHIjcHQPXpBPfs8VnlKB1nSW6BnL8IJo6SEU1/U9XftQtgu2CEAlF+B6UOwcAyR3oLqvAUR7QIlUCe+oO1MbobOHQgnhCpOwyt/AZu+U9vkRnEG34RQClnJEBFlhlMVpk88TTG0kVD/PqqTR/EIIbpuRggHWclgyxJuOIYonCEZVmSyOSpEEZ07QVZRfpFAAnMv6WBRehtWtBOlhNapvICTf5WQpahENxJkRnWgyXbBCUPHzYDQQaqZoxBKY6U34zgO/vSzSDuO6tyBkFUsJG4kRdUrI2aeIxLMkewZJu852J03EwQVUhELFo6RrQhUYph0IgoKZjIlfOEgMidw8VA9u/G9KiwcwyqO4UTTVH2FLC+gYgNYXTuww3FQCr842xhDzL0IHduhrza3KQUo3XdmDmMtvILdvQPSNyKtWv8UFtKrIEcfRYQ7IbkJ5cRwol0gLLzsWRh/UgfM+l6PcCO6r6oAVS3C7DNY1VlEpBs7lIDO7QReFcexiCa6KI0+SdXzIbkZK96H69hEIxFUUMGfeYFwdYIH9u/h/f/6h88ZPLjQ+85rkfOvf/jd/M///RfnXd9a6bfWdkspeeR//h++dPAIlXA/TvdOyqUCvgThJpB+GTvzCi4lVOcOrMIYqYhg4657EMIiqJY58cxXoVK774aia2LXhXCp2sxgMBgMlwYzwxqueHp7e/nJn/wpent7L7cqq/L1Jw7yzGiB9KY72n7YANhumPSmOzg6UuCJAweXvWZh4gTZioW7YTfCCSMsC+XEKPk2vhSorluR8Y34mVEAhGXhRtMsFDwK8e1UwoNkJk4wOzdPthTgRtNYoQihgdcR6ttJYWGqoceBZ8c5cPh4Q9dXDnwWP7YJa+BOLCeKQKDGvwHRPsTAmxDhJNKvUPEVIpzSi4zePXhWEi8zihWK4G7YzVy2ytzcLHTciHKTSCeB5wcUSyWkFcbq26sXJ24C+vYAUi907RAgUMLCGdrPvOrlH792SPslV2R+dhw6tiP6Xqf1C6WQCKRXRBQnIb2VsojjOyldh639L7AQoSSEYtBzOyrWT+Hk13CjaeanT5OtWlQiw6iuXVhuXOugAhACEe9DdO8CO0JhdpSZTJFQohe3fy8zkxMURQpr8E0IN4KwHSpTz6JCSUTvbkR8A2RHIJRE9O1FuFFEOK2zOIKKzvAZeDMq0g1WFDHwZoQbBctFBSUUAhHrQWy4A+mmUcUpRKRLy+m5HVQAsoro24eI9cLss5AYQAy8WS8Eh+8Dy0EJGxHtQfTt0z6fewkQCCeiy4Y7INKhgy5uHNB9TgkHVIA1+CZKxTx+bCPWwJ0IJ6wDQ5aDEJbWZ+BNOugw+yxiwx2Q3ARejmDuVWRVP/0nfQOqaxderf8gLIJqQV/f/0aUHUWVZnSwwbKh5zaI9ej/FlYzmNFzGyQ3avu9LPTu1pkvkS7of4MOkEQ6dBDIjSLcmJYfH0RKiejYhiqM6cH38l9A1w7EwJ3a9yrQvrHcml1vhuQQTD+NEBbWwJuQThJC6eY1wtKL71i/bsNwEiUsHUCq+YfePdCxHeUksWJ9COHosVULeIi+WgBHoTNvhu6F1EZ9nQyQC6+CZWFFOymrCGdyUeZFP3a8lyB3Go8QVu9tCDsElgV2CI8wgZ3QfXWhRKlYwOrbi3AjKCeGlEL7OtKp288Oo7ySDrwJB6LdBOkdFD0ISnMw8CYISigFovt2hB1G2CFUaRoVSkPP7RDppjI/QmDFEL17a+M0jVQWlUoBO5TAGnwTRZFkZmoCd8NuPW9E08yOv8pcUeH27yWU6GUuW2F6Pot0Evq63tupKgdv7lWsUAyrbzdBbIhSZpKgkofkRqy+fSgrhAx8pFfUfTTWq4NDHTci+t+gsxUQut0QYIcR/W8iSG3Hy0/roEutfwKo/GlIbkJ23IRyEhBKI5UkqOR0gDG9Dfr2gqg9v1JS96FwErHhDchQN0FhhqBzJwEhrKjOqChOPIcnwrDhDTo4KD38QFH1PIQTxu3fSyU8yBOHjrfdL9bqvvNa5PzJI5+6oPrWSr+1tvvrTxzkwOHjVCKDuP178XxPB13CKT3eQjGCzp0UgzCisoDbv5dsRTB3+kUAFnJFKqmdjfvuWtl1IVyqNjMYDAbDpcEEXgxXPB0dHbztbW+jo6PjcquyIkopHvvqQZ09sgqJgV089tUnUUq1XaOUYubMyzrTpYVqtYoIp6mWC4hQAtF1M9W5UzQS1RQEgSQQYZzuHUyfeZmpmVmccLIhwwrFiN3wHcxPjjSuyzsbKJQqKKUIgoDs/BT07m1cI6WEwlm9sNUG6ifldqzFZonovgVvfgQlldYlOkTgB1SKea2v5VCtVvWCwnJQAIlhHWxx4noLQt0Wy0UFOmNGpW+gWPGRUjI1PYssziI2PYhwm/UTSiCrBVR2BNWxA0oz0HFTXTv0o3tV28qR0HX17CHIjRP4AX5unMD39bWtyEBnq4C+LjEMxUmqKqR1k0pfl7yh6QupID+u6xeOzoIoTULnzobPlapt6ZBVlJL679QWsJ2W9lR6C5Db8krhzp1QmtYy63KSG0EI3Y+CAMoz0LMblNI+6tndDHDVt+933QL5MzoDpnYtlqN18Iq6bquWWRJKoLwiMpD68+5dDd8oYdMUWqNnNxQntI6dO0ApVPakXhSXpvRnTrSRaACgvCK4Sd0+HTfpTJbCtLbNiTf7hbCb/kFB5036muwpkErrm76hVl7obJha8E3VP+veDeVZVOomVHYEr1rVsnr3NX2qWtq9YdceqGRQlbwuk95Sy6SqtamUOoDRs7t5jeXWFuBK6+QXtZzSNFIpPbbyY7quznrfq2Wa2DEduHPiOlMqMYTMNMetCKcplqtYfXdQmT1JZe4kouvmNpWVV4RwmqrnoZTCiw42bQRkEOgmKE4163fjqKBSbxoEAunEUImNqMJkbXwrSAw3yiildCZV505QEikDLbMxBmnIxq809Utu0+NHNsdFkJ/AT2xrlAmsMH4gEVbz/BXVcRMqf6ZpR/omnbEifaiNYWHZyCDQgRcnrusoTul2VrJdr/r5HFL3A1XJIO1m1oJSqjm3AMqJNOVXCzrLq+uWxjymEM3+Ri0jrOtWCMoEgUTVgjm4cbz5U6jUDdq+2lgTlk21Wm3U73TvoFCq8OhXDrJSYvLF3Hdei5x4/6186Yn/d971SSnXRL+L1XcluUopHv3KAQrFir7nKqiWCrVMvNZyQNfOxj23fo9VSjE9O4cTTrZ99lrtuhAuVZuZJHiDwWC4dJjAi+GKJ5vN8vjjj5PNZi+3KisyNjZGScWWPE1ajO2GKcooY2NjbdeUczMETkJnFNSQgUQh9ILQDuksCDuECiWQ5XkAgqCKshwUFkq4eCKOXy4gWvfXeyWqc8fxRZhybpZyqYyyokg3RTk3y+zJQ6hoH5bTXHSQG4Voj07L10LAchGWhawFWRQg7DCE03iFKYKgCm4E5SZRfqG2RUSvjfViROigghOFcBqqWb34lJ6uQ+gn0dIvI0IxVLiT8dFj+swPNw6ZE3qLTA2BhfKLOrjg5fXZH3ZYby8CaF1GCks/AbdsiPZQmTyqAz2hDoQTAmGhkKh6Bk49sCAsnd0T0nV4vodXmNKZAqEoKtC6y+K4zh6xI/r68oz+21nUH4SlzyNRvg4EuQkId0Jlrt3PwqKxcHe0jylP18pUmz6sLEB+tHaeTAQF2kezz+p+I5r9QNih2jWz2r7KgtbR1YsNJb1mO6EXjjLzij6Dx4nqTCBYehCjUnqbTrQH8qPNeixHnwETStUyKWywHGRQRQVV/X1NP+GEdcDCCWvbRC1ohtVYINfbEjus29pyIXcSIp36GuVr3fyyzuzxK0CtL7i1s2xK+uwkznxJZ6k4kfa62voN+vtoLxTPQnVBn9kT7tBZNqDPh2kdJ3rE6q1RUta2Ljk6EyechtK0HlvhFIQ7tK+ou1xAUEbNvYQKKrqvugl9hk5loSFfWWGEZaMsG2VHmzIAFXj6nBZho7ColAo6EBfSfaURYPJLOnPHdrXOwtL+rI1FBfozJ6q3xuVPQzitM3jqZSoL4KYbc5Yqz+m2dsJ6HNU9WRt7KvD0uSmhGEQ69TgCZGleB5nsMDKQtXlP66Ok32wSO6TbrrJQi6cKvV3RieqznOqOVIH2v7B0/4j21tpHLAq+iMb/CTeiz2iZf7n5dWUB3KSux3K1T5Wqjd2Cbj8n3JhbGtvUWqW7UYj0QGFM+0IB1SyqZq8OcVl6Dpc+CqGDnegxId0UC0XJ2NgYy3Ex953XIscr5/DcLjx/9cV5vb5Dhw6tiX4Xq+9KcsfGxsiUFLLWX/V91G6bL5VSejTbIaSr77nCCRM4CbIzZ5HKRlhW47NybvY123UhXKo2uxS6GgwGg0FjAi+GK57JyUn+y3/5rcabba5EisWiXnSfD3aEUqnUdk3gV5dc33h6qmTtjAvVuF4F+smokrXvak9blR3WT4BbkJUMxZe/iJQS6VcIgtqC3I4g/QrVUrY9wwIgKOnMgaY2zfR8lD6XpL5wsSPgV5q61M6HaadWtm6LHdEBhHqAoc1wCVhgR6mWi0jp6xjEyD9BNdNeVgZ6ASPr/hNNeYt/Z9brcmL6YFjhaF1bszeW+21a8xVSZxAov1yry6KxsPfLWlZdVFDR57Esh2VpG+sLRDsCfv1Jt2r78d/AjmmZy/nQL7a3VTUDp7+ks1iWyIk25chKTed6VkE9w0TU/tOCarHWN0Qzo2QlZzkxfZYO1AJQjq7DjtTsopFR0+y3LWIsC6xQiz6Lqmutz4loWV5R21TP1AEd0Bv9Z6jmWi6pZcL4JX1tNbeoz6slSTwN3Jrvpa/raZxJhLa31fdtLqml99Tbs+77oFQLMkVY0lcbutf6ubC1T+rjvZaVpP3nNM6SaVZZGzsAQugsFGHpuoIqjZQjFdTqb6lbWC2BiVpbC1uPL782V7WWqfefWl0E1ebfix0iajo3xnakkQWjgubYrWcCNgI2jQBOPZtJ26HqvnWiOpC5uM66z71is53FkgZqx43p86Dq1O1Rsm3uQ0ndF+xoi31Wc35uQ+jgi1/S9tXPlVkyN9RtFe0ZB3YEqewVXy9+Mfed1yIn8KvgxAhkcF71ZTILa6LfYl6r3cViEamshoy2+aiOUs0gfMs9FzuCVym1z9O1e+n51r8WXKo2M6+yNxgMhkuHCbwYDGtALBbTh8aeD0GZaDTado3thJZcL+pP4msHNjaepgblxlNuYdW+QyGEQASVpdslGvVWsZywfn2qkhCUsZwwoWhKH7zaih3Vi62mNs3tEwhEa4AjKEPtTBr9NL2sF9FttC5QAn2NFaJ+JkK74bVFSFAiFIlhWbUF/HLUzkzRi9NyQ7+6yu0q1OryizqlXPla19bF2HKL75qv9FNvfT6KrqtlketEtKy6KDusF9jLIWsLOWE3feHUF9CLn8rXCIqNc2uW+NCJLWqrVnsXyyk15Vjhms71H+T14Fg9CCH12TheAepbttoWrouc5Rf1IhO0bsrXdQTlml3oQJmwWvptixgpdSBJtSwQ2tayLfX55eZBxUGpIXcJjUtqW36cqL42lFzU5wUrrsm9mu8tR9fj674A1BbVLb5vc0lt0VZvh7rv7VrWiF9mxb7aUDuoBRVr410IkEHNf34jINOssiUYqBRWPSDll7WM+kJS2LX6W+puBBjqH9YCNEFF97Gg3F6m3n9qdWGHmn8vdoiq6dwY2+VGNpiwm2NXCKH/1fWpja/GfFOzQ9R965dAeUvrrPu8/nYpqKffrOBodDu3bjWp29MINtWDUbUMl6DUYl89U24xqhac00EaUcugWDo31G1V7RllQRlLBESjywdxL+a+81rk2E4I/CK2ZZ+zLEGZdLpjTfRbzGu1OxaLYQnZkNE2H9UR9WCzarvnEpRxw9H2+bV2Lz3f+teCS9Vml0JXg8FgMGhM4MVgWAOGhoaIiiKBt0KAoEbgVYhZJYaGhtquiSR7sP28fgtKDcu29KtehQ1BVT8vDaqIah4r0gmAbYcQ0kcgEcrTr+eNxBvngbRiBUUiyW4i0QhClrC8LJFkN91b9yFKU0i/ZTGQ3ASlmebWnto2BCUllqXPoxCACipQyeDG+7DtEHhlhJfTZ1QoCQqsxpNmVXt6XoJKRm8vkH5zEav002TLiaCqRURlnoFN23GjaZ2hsAiFRDgxvc3ITegsgaBS26YDLStKvf1I+vp8k9IM4Q27QXqI6gLKr4KS+iBerOaPbdDZGY1XxiZwHRc33gfleVS1VNuqAVZsQG9NCMr6+kiP/nvxU1Al9UJROHox5uX1tpVwV7uf60EiIbSMSgYitcOlrVDTh+EOSGzSW1j88qIEkaBtcaCCau2abm1fuEPr6Omn/MJym+0ECOljpW/S58v4Jb1VCJaeAVDf3lOagcSmZj3Sh1iv3lohfb1VSfpYdkgvYqTf0E/5lVowotJy7o8A5KJMAqUDAdWMLp/cCuV5fY1wFunWsn3IK2sfRfvBy8Hw/fpMGr/cXldbv0F/X5qG2KB+Pbmfr23R0uOP5Jb2caJHrPa9Vdu+o3y9+K5k9Lal5CaoZPXWn3rgpL4Ppa6+QvdVL69fMR3uaMgXsoKSAUIGiKDUlAEI20XUfC2QhKNxfeZLVfcVIWpBFycK1Uxtq5yojQ+vMRYF6M/8kg5IJDbqs268UrNMuAO8TGPOEpEu3dZ+RY+juidrY0/YLsJ29Rt/yvN6HAFWtFNn+gQVLNuqzXtaH1EPIgt0kMnLaV+IWj8sz2odg3qWn2oGNJXU/aM0XWufxdlkzWwj5ZVrZzK1nJcT7gAvp+uRnvapELWxG9ft51cac4tua9Uu3SvpbYfxocZuMkIpRM1encsj9RxuOQgUll072NevYHlZOmIWQ0NDLMfF3Hdeixw3ksT15nCdVQJYLfXt27dvTfS7WH1Xkjs0NEQ6KrBq/VXfR9vnSx0A1BlKlqfvucqvYPt5Uj2DWCJASdn4LJLsfs12XQiXqs0uha4Gg8Fg0JjAi8GwBgghePDe/eTHn1u1XGH8OR68987Gk936NUIIeoZvxp99qa18KBRCVTKEInFUNY+ae5lQ15bmU1EBtm1hqwr+7Ev0Dt9MX083fmVpoKJzw+bGdYlgkng0jBAC27ZJdfbB9OFGWcuyID4I00frBoIVQgTNp/tCWKjZF3A7NyNqwRinNIbt2IRjCa2v9AmFQoRcfV6DAH1ehFL6nITGeR7ohZZt63hD5jixsINlWfT1dmPHlnmjVTWPFYojUpsRCy/pM0YWXqlrR+MJtVJ6AetEYeYIdnIA27FxkwPYjqOvbcWym9u1vLzWN7aBkKjWHngLfV3u1aYvLKFf5bzwCihfP0GNboD5Fxs+F0Lop+9WSL8RqH5AbOC3tKfQwanWbIz5F/U5FbUsIiGEPohW1TIEbFsHemaOtj91t1ytf30tOPcCJIb12SG1a5G+1sGN6WvrmSPVPMKN6UWgEPq12DXfiFqGVRszR/WZKZalX/ksBCK1FTuc0K8jn38J/FL78TluTC+kldJ+S26EeK+2zS80bakveOvtOv+Kvia1RUf1hAWZV5dm5NTGGCiYPQqRbkT2FURqM25Iv0WL6UNNn4qWdm/YdUSfbRJO6DKZUzoIWm9Ty4JYv7a/Tu2NRo3AmROD6SMQ7cUSQo+txJCua77e91RbshYoHYzIjWGlm+NWVTLEIiHk1NOEu7cS7tqKmms5l6Tu10qGkKsztNzS2aaNgGXbuppYX7N+r6DfVNSoXWH5RUT+NCK+oTa+BeTPNMoIIXRAZv5FEBaWZSNifS1jkIbs1rOORO6EHj9Wc1w4iX6cfPPNMLaq4NiWelmABAABAABJREFUDj7Vr1t4BZEYbtqReUVnj1gO1MawkgGWbevXwvsFXUesT7fz4oyo+oHFlu4HIpzGaslEEUI05xZA+OWm/FBcv8lr7oXGPCYa2SrNwCVzz4MdwbYtRH1R7xVwO7cgsq9q+2pjTcmAUKi5dcyffYlENMxD9+1feq5Si44Xet95LXKKE89z/92vP+/6LMtaE/0uVt+V5AoheOi+u4jHwvqeKyAU1ffY9nLA3IuNe279HiuEoLe7C7+Sa/vstdp1IVyqNrsUuhoMBoNBYwIvhiueSCTCzp07iUTOc0/3ZeKeu/eze3OczOjTS55CBV6F7OjT3L45zt137V/2mo7+baTCCm/yqH6SKiXCLxJ1AhxLIeaexyqcxklvAkBJiV/K0BF3iRePEa6cJd2/je6uTtJRG6+UQVbLBPOv4kbTdA7d3NDjrl0D3L3vxoauN931DpziKHL8SaRfQqH063RLU6jxp1CVHJYTJuwIVCWrnxBPH8GVOdz0JmS1jDd5lM5UiK6uHlg4jvByWH4e17GJRaNYsoKcOtwMhEwdgXqGSaDfMiOUxB87SKeY4bvuvUP7JRmja/BG/eaVheNav2oWC6UXWLENkD1JRBVw/Kyuo3aOiUKiqjl9VsnMUURxgvjWt2i/9W4kFZKEy2OIueeQtS01onaejipMoWafg6BCvHsTPekY1fw03sRhejb0E1M55NmnUF4ZFfiE+25DeDnU9FFUYRJSm8HLo6YOo7wSqpJpnEmjvAJq/BuI8izIMmr8GzqbQHoIWy/iVHEGNfk0lpdBxDagynNazswz1M/eUFOHUMVp6L4NCuP6NcVSap+4cYQKUKUZ1NQh7fOuHYA+p0aNf0Nnb5QXYOE4yisAus8J5YOwkWefIhpL4BRPI8ef1NkNAp09pKTWZ/wp/YaX7ttQk0/rw2PdJHbXDbUFah9kXkXMPYdb6z8oiR2Ka99NfBMRlBDRHh3EUAHMPAvFGe0vJXVmRlDVn+dO66wDN6UDg+FOKM/BxLeaZ8zENuhzGbwiauIpROEslmWhFk4g4rUnuje/G+ZfRo0/qX1fz+iRXs2ub0BuDHrvQCmJHH8Ky8/pTJH6NUrCwJ06e2b8G6hKDqGkzh6q+YfpI5A5hvDzyOIUSvl6bMmqPjB66rDOEhHobKZYP1RyOhBq21gdN4CUyNI8EVFmY7JEl5ogKExjJzfiUkVOP6szX6SEoIpLBTvI677aESUWiyOnDqO8MsIvYlmqVs+Cbr+ggnCjtcwkH0qz2JkXiYXAjnbB+FNgR/Xui9ln9BuQgioi2ouoZmDmGSjPEurcjC1LqOnDtXGawRKScCROUM0jz36DmMrRs6Efb/IoslrGL2XoGriBrriFN3EYLz9NVzJMb2cKy8/r66afISR83K4bkNUicuoodnGMWHqDDu7lTiOnDiFkFct29LwgAz023ITu3xPfQvklqJ/TUsueUhNPYWeP4SZ6sVSl0T8BRGIj5EaxFl5B+HmoZrCEhR1O6iyozAmYOgyqHk3U24VUJYea/BZWdRY73oM9/yI2VWRpHttSxPp34aoKTH5LZ/NZLo4tdIDar+BNHCZcOctd+25su1+s1X3ntcj58Yffd0H1rZV+a233PXfv5+59NxKunMWbOIzruDgWuv2lRFaL2PMvErMrqHAH3sRhUmFF18adAHQkY4SzLzbuu2tl14VwqdrMYDAYDJcGocy7464aHn74/TzyyCcvtxqGVZBS8sSBgzz2lYMUVUwffheUiYkiD963n7vv2v//Z+/Pg+W6rsNu9LfP0PN0h74jcAcQIECABAlQpjhKJCXSlp3YiSXZSRxLluSkypKTqjj1/F6cF2dwqr5YX73P8VefHVdiynZsx9Hk2ZbFeQJFDQQIEAQBggDuxZ3n7r49n2G/P9bp7nuBCwqgQIIgz68KhdvdZ++91tr77NNr9dp7yy/elyhT8eMUC6sUVhbATpPr7SObiFIvTKN9l4aOUiwW8awMpmXTlYoykLP46P13o4DHn36h3W5xdZHS0iTprjzZ/CjKb2ySA9gkq4fN+ddepFJrSPZCJInfKEP5PFYkTiS3HawEbq2IX1kg251nYHQP62vLm9rBq1NfPQ+GScNIUyg38VwHwy2Bhlq5gIqk8dyGOPLxPMpOorw6Rn2Rgzfv4t//u1/BsqxN8q2t15mfPIXbrIjDF8mg3CpRf42H7r+LvXt289jTL3DyzDTlSgUiXXLaSbBcxFA+ka4x7EisbbeH7r8bX2u+8vW/4PzcGo6Vk1/RnQrUV1DapWtwJ0Pbx1Beg9raNPgese4RtBFl/twxisUiZmoQM5ZBN8s0187haSTTw0rJccpuVTJyImlZ9lKdIx5RjO+9E6woZ155kUajLs6wnZT2q3PEoxY79t4BZowzp1+jXpwXRzLeJ9eUp+QX/+SQ7B2yPglI4MWIpsGpoiuzEoBJDqPslAR9qvPBJp8RycxxqyivjorlsGMZtNfAL8+RzWYZGN+PdmvMvP4S6w0P4gNoKy6/DlcXgzp6MBpr4Kzja3FYVSQJThWjvsDIQA+YNotrVZpGEk8b4LmyNE551Go1zFQ/WAk5xaq8IJlHsZ5gHxdHlpX4jgRclJIlWirIOFEWVKbFYU72d44qry0SjdjcvHc3D91/N088+TRHXn0DP9YHdgK/WpSTiSLJDbYvSyAJhdU1RsTQeOuzaK+BkR1Dm3Gay3J8rEoOdu6T9UmxRWKos7dIdZ5oxGTHzfeyvjzF4tx5XDsHkQy+W4fipASy7JSMD8OWTJf6MoYVRRsRVCSLMi1ySZsdg2l++MF7uevOD/LI7/0BTz73HRpWN55Tx60XUXaKru4+BvJZ6oWZ9ljFjDE3+RrF1SWMZD9WPItbK+CUZmVZj52EaI+ciOSUiegq+YHtZLt6qBdmKBXXKFZ9HCuD79TBKWNEs0TiKXpzCZqlGcrlOiQHxD6FGfzmOmaqn0iyW/qiOk86btM7sg9lxSkuTbK+tkQmP0q2uw/t1trzRrxrG5gxCqsLrMyewVdRVHIApZv4lSUMr073wHZyfWMUVxdZnjqJ4/v4Rgyi3SjTxqZBNtIA7VFyEtRLC7IEsxWUdKuYjSUO3ryLf/tvfpk/+MM/5onnvkONNB5yCpNyimQzabqSciJXoW5SqLhozwWnhN+sST/bCbmP7Li8ri1iKk0st42ufD+qUaC0toSVzNP0TDzPwXCKRE2o1ar40W6MaBb8BmZzjf6uJD/9iZ/gQ/fde9Hz4mo9d36Qeq60vasl39XW2/d9nn3ueb78tb9gYa2CF+nC8xVuvYSt6+QHhsnmujfdS8qKt9v4yBbP3auh19thg7erD0JCQkJCLp8w8HIdEQZerh+01nLcY61GPB5neHj4+6bwbiwTi8VQCmq1ers8yBGS1WqVUqlEJpMhkUhsqvvCdoeGhpidnX1TOS4sMzAwwOOPP87Kygo9PT089NBDKKU4fPgwxWKRbDbLgQMHmJube9N2LiXv4OAgR44coVgskk6nWFlZZXV1td2WaZpvIl8Mz/M5evQojUad8fFxDh68vf2FsXVtuVzmyJEjeJ5Hb28PN920l0aj8aZ2m56eZmJigrNnzxKPx4O6D27Sc6Nerfc26pPNZjl48CBaax599FEmJs6RSCS57777ePHFF1leXiKf7+OTn/wkpmluqqe/v5+vfe1rLC0tXtE1AF/96lfb7/3kT/4kTz311Bb99xLnzp0jGo1x6623sri4SLFYxHVdxsfHSSTiLCwsUCyWtuzj4eFhfN/nscceC+ruZs+emzh69CjNZpOxsTFuv/12tNYbrun0acvG58+fR2ufWCxGJpO9aExksxn6+/spl8v89V//NSsrK2QyGfbv38/c3BxKGezfv5+BgX4mJiY5evQopmkyPj7G7t17+Ju/+RvW10t0dXVz//33k06nN/W153kXyef7Po888rtMTk6Szeb4qZ/6JKurq21bHDx4EGDTPXDrrbfyxBNPbKpHa72pLz7xiU+wsLCw6T6ZmZnh8OHDbZvddtttPP744+2x8sADDzA8PMyRI0coFArt/kkmkxfdv77vt2XKZDIMDAxQr188Z1xqrB44cIDZ2VkmJyfbfTo6OgZwUT3T09Pt67q7u4nHO/03PDyM1nqTfW677TZefvnlTfeFUur7zk8XyizXzDAxMYlSipGREYaHhzeVa9l1ox5jY2MMD28L6ptmYmIS3/eZmZnG83x6e3svmm9a9tzK7i25KpUK586dw7Iscrkct912G4cPH+bYsWNo7bNt23Z27NhBIpHYNIe3dL1wPtxKv23btr2lJR9v5bnzg9Rzpe1dLfmudr2b5ybN6OgocPE9cKk23i69roS3q89CQkJCQq4eYeDlOuL9Gng5ffo0n//8L/Dbv/3f2LVr17UW57rjvWC/94IO7xTvd1tdz/pfz7KHhISEhISEhIRcmjCvMCQkJCQkJCQkJCQkJCQkJORtIgy8hISEhISEhISEhISEhISEhLxNWNdagJCQkJCQkB+Uxp/8//DnJuit1/kvo9D71S9Se5efhHYhG2VvjO8h+o//9bUWKSQkJCQkJCQk5CoQBl5CQkJCQq57/LkJ/InXiAB7EsD8OfxrLdQVskn26yxoFBISEhISEhIScmnCwEvIu57R0VF+//f/gHw+f61FuS55L9jvvaDDO0Voq5CQkJCQkJCQkJB3F2HgJeRdTyQSaR/nGHLlvBfs917Q4Z0itFVISEhISEhISEjIu4twc92Qdz1zc3P8l//yfzA3N3etRbkueS/Y772gwztFaKuQkJCQkJCQkJCQdxdhxkvIu55yucwTTzzBxz/+iWstynXJe8F+7wUd3iner7YyBscAqNfrnD17jh07xoldZ/ukbJQ9EegTEhISEhISEhJy/RMGXkJCQkJCrntaJwBNnz7N/+fzv8Bv/79/mV27dl1jqa6M61n2kJCQkJCQkJCQSxMuNQoJCQkJCQkJCQkJCQkJCQl5mwgDLyEhISEhISEhISEhISEhISFvE+FSo5B3Pd3d3fzsz/4s3d3db6m81pqZmRmq1SqJRILh4WGUUle9zFblBgcHOXLkCIVCgVwux4EDB5ibm6NarRKPxwGoVqusr6+TTqdJJpOX3Zbv+xw+fJhCoUA2m6Wvr4+pqSm01oyNjbFt2zYAGo0GH/vYj3L+/HlmZ2c5d+4ssViMbDbL+PgOkskkALVajUQiwdDQELOzs5t011q328rlchw8eBDD6MRtL9R7aGiIqakpnnrqSSqVCjt27OChhx5mfn5+U72O4/Bf/+tvsLS0RD6f51/8i3/J008/zcrKCj09PTz88MMYhkG9XufDH/4wr7/+OmtrazQaDbTWxONxMpkMiUSirUMsFmN2doZHH32UtbU1enp6uO+++xgdHePEiROsrq7S09PN7t17ePbZZ6hUquzYMc7DD/8wAI8++k3Onj1HMpngwx++n+XlZYrFYltvpdQmXfv7+/nqV7/S1uGnfuqnUUrx6KOPtvX4yEc+whNPPBG87mbv3n3U6/VN/b6V3T3P4ytf+TJLS0v09uYZGxvjxRdfxHUdbr75Fvbt28fU1BRKKUZHR9m2bRuZTIbdu3fzG7/xfxGNRrn33vu4/fbbWVpaauuxb98+/st/+T9YXl6mp6eHT3/652g0GvzVX/0lq6urZDIZHnzwI7iuu8nOtm3z1a9+lenpKSKRCB/72MdYXFzE83x6e3v56Ec/yksvfY8vf/nLVCoV0uk0O3fuolqtMjIyQqPRoFAoUCis4TgOWmt6enq45Zb9nDx5ktXVVQxDcdddd1Gt1piammqPn/379/PNb36TpaVF+vr6+Pmf/2cYhsE3vvENvv3tFykUimzfvg3TtLjllv08/fTTzM7O4vs+Tz31JNVqlWQyySc+8UmmpqYoFossLS3S39/P2Ng4SilKpRKZTAbf9zl69Cjr6+t0d3fT1ZXD931OnjyJ1pqurm56e3s5cuQwjUaT0dFR7rzzTtLpNM8880z7Prz99ttpNpv4vk9vb0+73wuFAidOvEqlUsFxXF566SWq1QrJZJK7776byclJ5ufn27ZPJpO8/PIRVlZWWV8vsWPHDkZHxzhz5gwTExMYhuLOO++iXq9j2zZdXV0cOHCA2dlZJiYmWFlZwfM8SqUizaZDJBIhl8vR09PDyMgIr756nOPHj2NZNvfcczdKGUxMnKNWq7Fjxw2Mjo6yuLjYHj+teaxSqVxyDMt9OMuhQ89TLBYZHR1j3759OI4DyLHnvu/z9NNPsbCwQCwW49ZbbyOZTJLJZNpzoe/7PProoywvL2MYBsPDQ6ytFSgWC8TjCXbs2MHtt99+0X3ZmnvX1tZwXZexsVEmJiaxLIuuri4OHjyI53n87u/+DxYXZUw99NDDPP/8c5vmBNM0N823KysrnD17hmQyRT6f5+GHH8Y0zfYcWKlUKJVK1Ot1tNbEYjHq9ToAlUoZ07TwPI8dO8ZJJlOXPd9v9ayZnp5mYmJi0/1/pXW91Wfd1Sp/ufVs9TlwVdp+O7hSu1zNfmh9t2g9099NdgkJCQl5P6O01vpaCxFyeXzuc5/lkUe+dK3FuG7wfZ9nnzvEY08foqYTYMbAqxNXVR66/x4+dN89m4IHb7XMVuV8I8r8zCTFxUmMaAYj2Y9fWcBvlMjkR0jEIqytzON6oNAY8W4My6Y7FWUgZ71pW67r8t9/9/d48vnv0LS68Zw6TrUAdhIzmiZiGxjNNRIRTTKewCHG0tICTWJoMw6+B80CaMCrYkdiRDP9dPX0gVentHSeTFeebH4UvDqLUycol+uQHAArCW4V21nhwXvv4Oc/+2le+Na323prM8ra8jzz517Bw4LEAFgJcMpQXSAZjzK69y58p8rrR5/DV9HONdV5cKsQ60XFcii3CtU5oraJkRrAJYpTK+HXC6AMlDIgksLEw8LBjOfAa1IpLkMkC2hwa2CnwLDBq0v9dhLcunwW64FIGpx1qC6C9kWeSBrcClSXwYpiZ4awlAuVWTKZLPltu9FGhDOnX6NenJc24n3QKEN5EuwERmoQrAR+owi1JbDikBgUGWoLGGgiXaOYdoSYLuM2KmTzo2S68/jNGudOfJta05cyZhRqi4F9eiCSgeY61JcxIimiuWEMr0ptdQq/WYdIQq6zkuA1oL4MvouZzOPVCuA3IZ4Xud0qVBfAbUK8X/Ig3ap8ZkZRfhOcMrpeBDMCSdGL2qL0a7QLzDg0VsWu8V6w0+BVRW9scCpgbRgPG9tEgxWFRF/wWU3q1oDWYjffAe0G18gYpDIPzbLIFEmJTcwINIryebQL8IMxkBYb+k3pZ6fa6TOnIPXH8yg7iXbKUF0CtxGUM6RuZYktG+vg1UAZIo+dEv0qM/JevC+QuSmyGAb4PigFngt2DDChsgy6AZGk2MVOtu8TNJAcQinQlVkpl+gDOy5/V+ZkrNpJiPfI+HbWpb1IFgMXnAoq1oVvJtBOBeorUm9iAKwYuGWor4ET6JIaln5wKtAsSZ9aCWisgO+g4r3Y8Sw0VvEb68Sy0pe+56CcElELPNch3budSnmdtaUZuQ/tjNiitiz2i2RQdgJdngXThviAtNtcl/GiNXYiQ18+z/rqLOWag473o5Utn3t1iHW161WNVSxdo6u7l77te9BmhPnJkxRXlyDWg29E8Wur4NZQ8R6UHcfUTZzCFCgzGM/xYDxW5b6IZMCpYjQWObB3J8PDQzx96LuUGxrf8yCaA8NG+Q3M5iojgz3kevpYKlRZWlqmqZJoZYJTRTfWQHuAIf2lfVQ0i2HZ5JI2OwbTPPzAvZec77d61jzz7PN8+et/wcJaBT/SBUYUw6vQn1H89D/8e3z4Q/d+37re6rPuapW/3Hruvecunj/0rYs+r65Ng+8R7x5BWfG31PbbwZXa5Wr3Q6HcYG1lEZx1unoGyOa6SBi1a26XkJCQkJAw8HJd8X4NvFQqFU6cOMHevXvb2RnfD9/3+dIf/DHHzldIDd6MaUfbn3lOg/LccW4dTfKZT/1M+4vIWymzVTnDivDqiZPUXBNlxdGF16E0iU6PonK78Oe/i7IT2IaHa8QhuxM7EiUWjeA21knbHjljjVvHLm7LdV3+1S//WyZLCez+AzTnX6bhG+jcbpQVBaeMgY9lx3CWT6LXTqHjfeJIpEch1oVSBtptwvQT4kBkd2LaNiYeGBHiiTTe2inSEY9iaZ26jqHSI9h2hHi6G5TCb9Zpzr9EojFFfscHSA/fgmlFmJicYv7430qwoOcWkcmwQCPO3/JRrOp53GoZevdC/qA4xLOHxHnu2iNOmtfEsGx814X1SWisQaIf0mOwehxQkBmH9QmUGUFnboCll8WBzO2G9bPyBbZrt7TvlCUooBWU3oBGAYYfAL8uzqCyxDmuTIlDm9sp5ZQNhdehUcAMHHCdGCIRNahWa/hWQhzU4mlxYItviFy9t4EVRTVLaGWAEYG118QxHrxbHP2V46jaAlZ6EN+IYHXfiG0qUlHF4vG/wU8MQc8totPyUXGCczeK0+9WJSigbCicRDlFdHIcSucALY5pS3eUBC1WT8rnyobtHwHtSBDOToLXhJVX5POem6WsMiX45ATtVeelrv4PwtJLYt/cLvls6QjEusX2rXpjXRK8WPwerJ+H8X8AkbgEU5SCZg3O/TmkR6B3vzi/ypTP3LroXJmXIEl2TMaKFZW68eX95aMSPOi7XQIghdPgN8DOSiAikt4wBiritDtVqMxKPa1x1XtrULcrTrLnwsoxWJ+C0R+VgIcyoFGS+yY5CD37O/Isvyz2SA6JrWM9oov2Ye2kBBXslIxDKw6FCXDWoPumQK+YjAnPgfIM1BagsgB9H5DrK1MSQOq/E+ZeAKckgZLcjcE4NaS9+prcH80ybHtAxrZbkfGnTChPSTt9HxAb1tdg7ZTcD5GM9EMkLeOhNV67b4bqrLTvO6hICpLDYFgYkQTpVJra+UO4nsbI7cBbOYmvga6bZAxoNxiDWmyxfl7GRXaH9L1hyjyk/Y7869NSJjsmMrkNkcdOis7ak+ujWagswvo58Jsk+veiimeo6Rg6MYQ2LNHPSkDXjSi/ifZcWDkudaXHZLytvBqMlWD+8V1UvBvt1GRsF05DYhgSPdC9T+Y17YOzjnbqUDiNWj+D1XcrfnY3WlnoRgmNkj5fn4L6EmR2QNdulGmj0ChnnZiqsz3T5Lbx1EXz/VbPtUd+/4944tDLNKIDWL17RRZA+z5OdYVY5Qwf/cAYn/30pet6q8+6q1X+cutZn30FVZqAzDipoeBzrTk/PUOxXEOVp8nEFNtv/hBKGVfU9tvBldrlqvbDwD5mFpYp1TysaBp8B3flJJmoZmj3B6nMn7hmdgkJCQkJEcLZN+Rdz+zsLL/yK/+G2dnZyy7z7HOHOHa+Qnbk9k1fZgBMO0p25HaOTlZ47vlDP1CZrcpNnp+i5poY8S6UHYPsDXixXrAT6MoMxLL4doomUYz8foxIAtfTOK6HHc+y7pi4qfEt2/rvv/t7TJYSxEbuxlufookFPbdg2AmUMlGRLL42aLoOqns3Oj0CGDD7nPzSqgxx0irTkN4OvbeAHcf3wfEVvpXCxcTuv5XlQo1atYLZfxAj0YvrQ7NeBsCIxDDy+1lVAxSqHqYdZWV1jcU3vgWJIdTgXeKggTimSqEiKdTAHbjxbRDNoIbuQdlxcagiKVTfAZQdR0WzUsz3UfFuVP5W+UV/6nEJgthJ1OCdkhVhRiB/QIIzZkT0cYpgxqWcaUt2TDQnDqyhoOtG0b06h4p1i1OKhmQe8reKI1ueQUUyIk/+VvBdPGzouRkz1UelofGVjYp1yzW9+yWrJLUdNXQ3KiKZG1oZqGgWZcdQ+QPiKK6eEFsM3omO53FKsxh9B/BUFG0lWDh9CD+wIWZEHFUrgcrfKvYyo+JIWnFpJ38b2kpL8CeSEGd15mlxYlHi5FlxCahkxsFOQHVGHE3DlGBEJCkBiMw4pLZLu4YpGQvaFQd68G4JHsx/S4IMvbdIwKCxKkGXnn0SoIikpb/cIJNi4IOQvQGWjwBKHF2t5XX2BvncjEl7rXR4KwYDd0qWhxmF/jukL1FBIM+XuvMHITMi2RyNtSBzYxvMPCn19N4iuihD5DJjYrv8bUH2UDdq4IMoKxbIFgQwrBgM3AGZMVh+GdUKbqy+KgGPwbvkGmXI2LMSMnYSeRlnzrrIaUY6wQwrsI0VA78qQZfBu+W19qR9pwyTfyPBhfQwFE5BLCd1RLMw95wEBtKjMu7NiNjMsOXejuUkiJTIS7DEjMg/KwrxblT+NmmvdFb0jPeIjRL5TmaUMmSc5W+TNuuLcg+4FemL7A0SVIx142NSnnsV10hgDN2JW57HV7bIG++W+0oZgS1saSu1TYIe0QwqHgSo3CrKMFCJXug7KDaOZlADd0gd1VkZez23yL0TzUq99TWIJFADH4RojurcMaqejeq6UfSsr8q907tf7oFIVjKTIhnpr1gOSpMXzz+GhW6uo6y43Ie5XdAsovoOtgMdMqay0k4sh87sxI0NgBlBu7VgvCIB5WS/ZBrlbpDySklQJpqjrmMUVd+W8/1Wz7Xnj7xBIzaEPXCgIwugDINIKk8jcxPPH59707re6rPuapW/3HpcFWeilMBNjbc/X1ldo1TziKTy2AMHKDUUq1OvXXHbbwdXaper2Q+F9SqlmnyHUIaBsqLY/bdSaiiK82evqV1CQkJCQoRwj5eQ9xxaax57+hCpwXvf9LrU4M089vQhPnSfXHelZZRSF7elNSurBYx4f0cepyrO8dwLaK1h8F6Yex49eHf7GmVYNJtNIhEbK5pmeWWVneOb2/J9nyef/w6RsR9Ha01z9Rw6/0Mow9wspJ1EN9bwVVN+rZ56oiWJfOHXWpzFwXvFOaivoK0kyq2gDFPksC2c+BCqXkRrjQoCJ83aGpFYGoBmrYLZdzsrM88wuueHWFhaxq8swY4f78iiLPmFfePrnlugPIP2JCDD+nnY9uCm/kMhjipKnOzMOCwdlkyF0R+Wa2qL0P9BtO9DeTrIWkjC+vdg8F46yXyBznZKggxaSWbG3CF0KxDRLElbyoLsTlj4bltvqUdDegTf8zAMC20lJIMiyN7Qvi/X5HZ22vVqEO1umx4FdO+DqSfQ/q0ow5D+Wf8Gvu9jGJbsC1FdhvG/L4V8V3Qbuq9jG7cmy2h8J2hLQXYXnzf+NyOpOHAKRgHzcXAjKFehCXTIAPEScBqa3xPZfBeaFpgl6E6DfgOadqfPzCaoCDSBtJZAS7Qbmq8GnxchkwHnZCdwAuC6nQyWrqBcc6p9n5AK6nGDLB1viz0Iuj1IFsD92gYjBuW1Jw59xpeMEgVkE3LZKBA7w3mnxm/bH+mMIysh2RzNirzO3sCmlE/tSdDId0Tn3lvh3F8F/YuMv1bfGKbU1e4fDQTOeHVhsx5deyT4OXgvnA/ux97bLmg3srlM721w9i8k+yaSgOyNsPwqJHoliweCrBpXqgDRKZKR4Nnqa8GSO0PuC5TYqGsPzD4v2RdKSRAktR0aJyQIkdkR2ERJ1srMM+jcnqDPtqG9Bira1W7fLU5ijdyP1hpdWZCAkp0SiTbppaWO3E5ZdlSaRGd2SPuNNbSVkOFjJSE7Disn0NqQjKvqogTojA1fWeyUZGFFcyJr7kZYPYnO347vVNHRrs48F4wdrXWnrtbSsdoCDN/fvt/bdQfzIsqQoOX6FNrzUObG+VaL/OtTUkdjBd9zwWugo93QXJClZ0tHYPAeWbJnJaQdBVr7mNEsy6sLbNu3j8eefqE931+I1ppHn3qeSrWBNbznos9bWNE0Fa//knW9lefjhXut/CDlL7cerTXL06eIDNzN8orsywWwtLKK1ZpXAatnD0vTh+jevrfdzvdr++3gSu1y3733XNV+uNAuLTba51rYJSQkJCSkQxh4CXnPMTMzQ00nSF7wC9KFmHaUih9nZmYG4IrLbNu27aK2isUivrLbqbzac9CGhWG29ldxUG4VHcmgzGjny74CjcL3fAzTwNMmjqvxNrR1+PBhHLuHaCSGV13Ft2QPjrYzSuB8KQNJZlMoK4aOpDdooCQzIJJBBb+Wa2UBWtLjfVkW0KjXUHZCHLdGQTIelIE2TDyvKW0ZJsqO4dtZlucmaBbmIN4bZA90mms7vSpIsLPjsg/I+jlxEqM5kaXlWPuOLIdRJlp7UoUZOG+GLUuL6i0douj6kjhKVlwCKIFuuiNAIIshTnVrqUskDc01WbJj2JJJYNjyC3YkI3aKdYv+0azUr108F3G6zcBBNyOBA9gtQZxWoEkFWRIbVnMqM4KO5sQxT/bLUrR4HkrnITeGvz4le41YMckUctY7faW11G1YKENsI3YF/AYjMc0etSINJQBW2RxVCGjFVHSt00e69X6187qFccHrKMBC5z0bIKhr43Ut0+sN5fT8peu5FBeW21h/q2w7ZlGT99v6RzZfrwzpt9qKZDu09o8xbNqBk43CWzEZq5UpsX+8V95rjdVgvLWzG2i1EZEAmRUXMc2IXOeWZSlWYkDug7aBtkg+tWKy30h5Crp3S9loVu7J1v2gFOiNHaRkKaEVl/JOJdiPpKOXMmy0nZZ9nqJyX0s2TkKCPK33QTJlohm5V6NBdoeWLBYN7T1lMGyoF9qZWDLufWkvkLMdwDSjIpNbg2YBFe2SJUGte0kHy9+iOQmKBPvCYEY3xfVQSurSnuinDLGXWxXbNkpgZzrLgtBBhkxWMp/QkhETzYmeG6s2zM0yWXGpe/2cBI420lzv1OFE0U4ZZdgitxmReziQQ3v1Tp2tXlMGvrIpV+tYG+b7C5mZmaFY0/iRDJZ16eeUMgw8I85azdyyrrfyfNxYxw9a/nLrqa8v41kprEgMr1qjXpMNin1tYm5YKqOsKK6Vor6+QjzTe1ltvx1cqV0OHz581fqhXqtfZJcWF9rnnbZLSEhISEiHMPAS8p6jWq0GX6wvAzNGrVYTp+AKy2zVluMEv/K30D5tp8qMAr44+EGZVgxAUJ1sCWXg+d6mtgqFgjg2gPaawVKHC3+1apVXnc+MC77YbWi/vRRAS5va9wOn3g0cspj8qt8W0QTfDxyGQE8rRqNRw/frbfk2oTbI1XJYrYT8km1GZY+UC3UwJHBEK6OjXZexWQdF4OBERR7v+/S9MgFP6jVjsrmrrWjvx9GS04p2AijttoIgSksmZaBlwYDI0HI4W7/sX5iJ1DJBsBGk2B6wEmi3Kp+5tQ021GL7jYEsNgSwWtdoJdepLZz3kAsIlhP5jow7o9XvBDcjF4+51lhFXzC+tezJYm7hOCkzWD60ATO4l7SWAN3Gei7147OdCMYKQVuRDe217vWWzBvENsxgM+HgPr6wASsm9bXlNWSe0Hrz+yB2cqqdewC/074v41NrNt+Hbfm2UkwFy62anbbaAUodBBOtYAPg4D65IMDcsZvZ0b2V0eQ3QSUl48y6YC7wG8G8GdjMb24x/7TEDMZGazzYrXFwAa06Wve874JlS/8rs22jtp4XRBp1oIfjulgb5vsLqVar+NrYHOS7FMrAN+wt63orz8erWf5y6/HcDc+p1vMweE5t1Y7vNi677beDK7VLsVi4av3ged6bz/8b7fMO2yUkJCQkpEP4TT3kXY9t2wwNDWHbl/GFE+Ro4Zaz8v3w6sTj8bdUZqu2bNva7HBtdFS8hmQxGJF2mc1xkw2p7trHDPbfaLWVy+Xk11wkc0I2i70wXWDjUozgM78ZbMQaOEQb2u9ko0ibyjACOQKnw613fl2H9q/LyjA6erp1otE4hhFry7cJvUGuVppC61dpMyoO0oU6tJbuqOB6FTiSLaelpYMmqKPRWdbwZv2ovU60y6uDFWTa6NYX10BOtxFkQWxsy98Q0BIHUbWuN6MSNAl+5Rfn/gLHu2UCtxZ8YVYiv1tFtRx6K77BhirInNioTyuTYEOliiBTYOP7IVsTOPaGLePO3+CwqKA/Wv3bojVWN/UNSP8EmQ0XNeNtDsCCjKHWnizOBfW0E1aCfXVaZZ0NzpxpS+Cm3V7rXqczLlv1+J5c19oP58K0Ire+2YHXvgQlfO9ix96rdQJA7UBE0L4h41MpUBvvw7Z8W6UzaWl/Y1ute6t172hXrmnto+M1tqhLBXYO7KAM6R8juBeM6AX3Dp33WjYzIlvMPy0xg7HRGg9OdUOW0sY6gzqUCub3YO5sBd+MDfdwa37YpIXoYVvWpvn+QhKJBIbyL+85pX0M39myrrf6rLta5S+3HtPaMJcHz0PTNLee57w6xoVZQG/S9tvBldolm81dtX64pF02lG/b5x22S0hISEhIhzDwEvKuZ2xsjD/4g//J2NjYZV0/PDxMXFXxnC0cog14ToOEUWN4ePgtldmqrWw2i6GdIHCAbGzqu/hePXD0HNkfpFmSvRJUx3lSaAxTsk5M5WFbalNbBw8exHZW8Jt1jHgXhlu+yCGR5BIfCfb4aDdIbb/p07KRJVrS4psltNdEa5/WqSNKuyjDQqGJxuKyN02zGOyhIPUq38M0I5hmBOV7aKeO4RTpHRwjkhuE2rK02UK3lNsw1Tg12eMhPQ6xXmgUJIOn5ZAYNmgHtCcBIJClRLndoCy5tq1DA2L54NSiWnDMcimory1AW345ljhwHpvrEOkS58h3gr0olDhJzVJnuUU0FxxRXANlYbZOsvGcTnAmMSB7mDhVec+wxa5thzIQwWvK0qVEv2TMuDU5IjczIok+6e1QWxIbGqYEzFr6BJuo4rtov7XMKFhWZgTZDSGXRiP3peeIXesF6dNWH8qarQ0XI2OhtgzJ7ZAakb9bWRjo9niTzI0NmRdeM9ijKHjXa8p1VgqULUvT2tkTG9qN98Dez8j/bl3GRmq7fGalZBw2i50sNK2DskHQAi33tFuT8nZSxoXf0Uv7TrCELdeR161Bsyr3Qet9kABkoyT3aqMY6O4HQUdk+VGzKOViOQl8tAKQQaabhk37LcmR3IV2W1r7ImOrH5QpS6QaBTnePJgv8Rqb48xaByeSmUF3+MGx7Qm5p6MZcEpod0OgKtYV2K8evA6WEl6QLaF9b4NMKjjifEnscCGRdKcOv4GyU0FGVVT6yU535NioJ5352tAOqURs03x/IcPDw2TjCqO5UaeL0b6P4dfointb1vVWn3VXq/zl1hNL92K6ZfxmHVN5xOIxYvEYhvI6ey4B2m1gumVi6Z7Lbvvt4ErtcvDgwavWD1vZpcVG+1wLu4SEhISEdAgDLyHvOZRSPHT/PZTnjr/pdZW54zx0/92ycexbKLNlW0rR053DbxQ78tgJWHoZlRnFyI6hiqcgtQ1VeL19jfZdIhHJLPEa6/T2dF/UlmEYPHjvHTTnD6OUItI9jiqdESdhI04FZUUx7IQczdra9yBYuqOUklNRCqckYGFGUV4d2STWEzmUwq7NtnUE0M0ykXiy7eNF4km8xZfoGd6FMgz6870Yybwc69xWrLXUYcPrlVcAhTJNyZxJj8DqiU39J5kgwfIOZcjJR6ltcsrM2km5Jt4HxdNSR2pbcExtRXRbO7Vh88BAZ6dMO0OkcArSo1LWCWyDFvmKb0Cib1Mfg4L18ximKVW4lU1BFckAUlB4oz2eZIlGOVBKqmf1VUgOBplFSP+YUQzDQPsusVhMTnZZPiqFDEt0WzvZkcWKi/OojEA2DcXTnPdSnHRTnCTPSdXf/ndKDXJKDcprN8NJJ8FJP8dJNSDXkpe//S4pr4PXrX9+d+caL8NJJyn/tz/PcdJNB+0NbKi3j5MEcrgpKbexXicp76v+4LqBi/85SU42IpvrVgNyfUt2Ny16+V3yN3n528twXvW0x4AcU12VfosEm6YWz7RDFmLgYKkIQdbF8lFIDEh/GYYcF738spTwvQv6J+iLZvHirJG1kxJAKZyC3Ji8t7zhPmm3u4HllyX4ZwZ7jRRfl9NxNHJEMmzKrlMyECVIUZ6SYJ6VAHy5L9BB2ZNyz7UzOSpyPRoyo9Aav2i579LbZUNZpaA8LZktbqXdvpUdRa/K/aaS/bLRbPtea23+u2EJZOEN0TUzGtyXFdkLp50RVoHiuSDw6kuWSaKvU66FUw6WCwa6FV6XPaZKZ+SUN6c1F7T6Jrh/WnVpV/ov3g9rr23ebNQpgxVDKQOFhuXjoKwLNtYNrO5U5JS0pcMow8IwLZlT3YrI55REjqWXAz1bc41GKQO/UaS3O0dl/tVN8/2FKKV4+IF7SSaiuCsnt7wG5PmR8hYuWddbfdZdrfKXW49Sit5tu2nOH6a3p7NpbL6nG7ex3n7trpwkv233pna+X9tvB1dqF8Mwrmo/XGiXFhvtcy3sEhISEhLSQWl90VqFkHcpn/vcZ3nkkS9dazHecc6ePcsv//L/iy9+8f9kx44dl1XG931+73/+MUcnK6QGb950VKPnNKjMHWf/aJLPfOpn2hvhvpUyW5UzrAivnjhJzTVl89TC63KCR3oUlduFv/BdlJXANnxcIwbZndiRKLFoRL402x45Y41bxy5uy3VdfumX/79MlOLY/QdoLrxMwzPQud2yiaRTxsDHisRwlk6i106ho1konoXRHxUnShlotwnTT0g2R3Ynpm1jImnx8UQab+0U6YhHqbROTcdQ6RFsO0I83Q1K4TfrNOdfItGYIr/jA6SHb8G0Ikycn2L+lW9IBkjPLSKTYYmf4VRg6WWs2hRutQy9e+U4YDMKc4ckq6VrT7D3QxPDsvFdV04mqS1AaQLGfyJwEpGTjtYnUaaNztwgjqoy5fSX9XNSb9duad8pB0sMFJTOyMa5ww+AXw9+NbckK6AyJY55bldwvLEtDl2jIOnckTQ6MUQialCt1fDNhARYiqclg6F4RoJDvbfJkbvNEloZkk2z9ppkDQzeLY70ynFUbQErPYRv2FjdN2KbilRUsXj8b/ETg3IClDIkAGAl5OQWryZBKTvIniicRDlFdGpcHFa/DqVzcMPH5Rd9ECdz9aS8r2zY/hHJKvKDjUy9pgTEShNyLHTXbrGlWxG93KpkaaCg/4NywpQZFTu5VXEqY12SldSqN9YlWQCL35Og2Pg/gEi8s9SrWYNzfy5BgN79wR45gYPv1kXnyrwExrJjMlZa2Ub48v7yUdkwte92sUfhtGRzFF4XWeK9G8ZARTIdnCqUZyVo0ViT7KPeW4O6XXnfc2H5mIy10R8V518Zkv0x/SQkB6Bnf0ee5ZfFyU4Oia1jwTHJ2hfHv7ku8jll0bMwAc6anACUPxjseeJKRs3ZPxe71gvQ9wG5vjIlfd5/J8y/IPWlhmQ8tI66VqbYYvU4NMuw7QEZ225Fxp8yRR/fkXrx5fq1U5KxEcl0jr72mp3x2n2zHOfsSsaeiqTkuGdlYUQSpFNpalMv4Lo+Rm4H3spJfI2ciBTramfUobXYYv28yJXZIX1vmDIPab8j//q0lMmOiUxuQ8rawT3Q2lg6moXqkhyP7TdJ9O9Flc5Q82Po5JBsHL52Su6drhtRfhPtuRIAtRKQHpPxtvqqZKa05h/fRcW70U5NTiQqnIbksGQide/rbNjrrKOdOhROo9bPYPXdip/djTYsdL0kO0C5ZShNQX1JdO7aLZmQaJSzTkzVGck2uXUsddF8v9Vz7Ut/8Ec8fuhlGpEBrN697SOlte/jVleIVs7w0Q+M8dlPX7qut/qsu1rlL7ee8uwrwUlbY6SGgs+1Zmp6hkK5hipPk4kptt/8IZQyrqjtt4MrtctV7YeBfcwuLFOseVjRNPgO7spJMlHN0O4PUp0/cc3sEhISEhIihIGX64j3a+Dl9OnTfP7zv8Bv//Z/Y9euXZddzvd9nnv+EI89dYiqTgSbW9ZJqCoPPXAP9917z0VfQN5Kma3KaTPK3PQkxcVJjGgGI9mPX1nAb5TI5EdIxm3WlhdwPUBpjFg3pmXTlYoykLN4+E3acl2X//HI7/Hkc9+hYXXjOTWcahHsJGY0TcQ2MJtrJCKaZDxBue6xeP6EODnRLnEUm4UgVb+GHYkRzfTT1dMHXp31pfOku/Jk86Pg1VmaOsF6uS7OppUEt0rEWeHB++7gc5/5NN968dub7LW6PMf8uWN42BKAsRLicFYXSMajjO69C9+p8vrR5/BVtHNNdV6c+FgvKpZDuVWozhG1DXQkS33pNCozJstwgmwPFUlj4GHhYMZz4DWpFJfFidTIZrutU4u8utRvJTt/x3ohkmrLh/ZFnkhGHPXaElgx7MwQlnJR5Vky2Sy923ajjQhnTr9GvTgvTnW8DxplKE+CHcdIDYGVkOyn2pI40IlBabe2gKF8IrkxLDtCVJdxGxWy+VGy3X14zSrnTrxIramljBmV47Pdqjj1kYw43/VljEiSaG4bplelujqF36hI8CU9Kvp5Dagvg+9iJnvxakVxLuN5kdutiu5uU379VzrY1yMFRhSlm3IMbr0oe5QkB6W/aotit2iXBJ8aq+Kct+r1qqI3tgQ7LKvT1+02gzR7KyqZCFYiWNaxSHufotaGqdrbfE1lTgIMZlT6MJIJTphagtq8ZJi09t+w08Fms01p16kGfdYPTkGCEfE8yk5IgLC6JLLZaTBVsO9KcPxwoyTjRykJ2tgpGSuVGXkv3h+clhQsKzPMzl4yngt2FLCgsgy6Idk3iQEJgNWWJDhmZyQjS2l0ZU6WMiX6JQDkuXKsdWuT3nivjG9nvX3KkIkrp+vEuvHNYNlgfUXuicRAsHFtWQIdTrA/SWpbcDJPRbJmzLjYurEcBCJ6seNZaKziN0rEsjIOfM/BcIpELYXrOqR7t1Mtr7O6NCN2s8UJpLbcPqFIRRLo9Rnpr/iA7LXULIv+WmMnM/T15llfnaFcc9HxfrSy5XOvLgEdOwN+E9VYwdJ1urt7yW/fA2aUucnXKK4uQqwX34ji11ZlL6V4L4Ydw9AOTmFK+iQ5JP1Vne+M30gGnCpGY4GD+3YxPDzEU89/l3JD43tecFKUjfIbmM0VRgd7yfX0sViosrS8TJMkOlgypRuFIDPJkD7WPiqaxbBsckmbHYNpfvjBey8532/1rHn2uef58tf+goW1Cl6kC4woplehP6P4qZ/8e3z4vnu/b11v9Vl3tcpfbj333H0Xh1741kWf19amwfeIdY+ggg3Lr7Ttt4MrtcvV7odCpUFheRGcdXI9/WRz3SSN2jW3S0hISEhIGHi5rggDL1cWeGmhtZajF2s14vE4w8PD3zfV9q2U2arc4OAgR44coVgsks1mOXDgAHNzc9RqNVlWoqBarVEqlchkMiQSictuy/d9Dh8+TLFYJJPJ0N/fz/nz51FKMTIy0j4u8tChQ/zH//gf+MVf/EW6u3s4e/Ys8XiMdDrDjh07SCQSKAW1mmy6NzQ0xOzs7CbdtdbttrLZLAcPHtz0Be5CvYeGhpienuKpp56mWq0wPj7ORz/6EPPz85vqdRyH3/zN32RpaZF8vo9f/MVf5JlnnmFlZYWenh4eeughDMPg0KHn+Y//8T/yz//5P2dsbIxGowEoYrEomUyWeDze1iEWizI7O8ejj36TQqFAT08v99xzD2NjY5w4cYLV1VV6errZvXsPzz77LNVqhbGxcR5++GEAHn30USYmzpFIJPnwhz/M8vISxWKprbdSapOu/f39fO1rX2vr8MlPfhKlFI899lhbjwcffJAnn3wyeN3N3r17qdcbm/p9K7t7nsdXv/pVlpYW6enpZceOHbz44rdwHJdbbrmZm27ay8zMDFprxsZGGR7exsmTJ/mX//JfsGPHDpLJJPfddx8HD97O4uIipZLosW/fPn7913+d5eUlent7+dSnPk2jUeev//qvWVlZIZPJ8uCDD+K6DqCIRqNks1ls2+ZrX/sqU1NTRCJRPvaxj7GwsIDv+/T29vKRj3yEl156ia985ctUKhXS6TQ7d+6iVqsyMjJKvV6nWCywtlag2WwCmu7uHvbv38/Jk6+xurqGYRjcddddVKtVpqenqVTKjI+Ps3//rXzzm99kaWmRvr5+Pve5z2EYBn/3d3/Ht7/9IoVCke3bt+M4TZ566in+/t//cQ4cOIDneTz11FNUqxWSyRQf//jHmZ6eplgssrS0xMBAP6OjoxiGEfRzBs/zOXbsGOvrJbq6usjlutBac+rUKXzfo7u7h97eHo4cOUKj0WRkZIS77rqTVCrNM888zfT0NFprbr/9dhqNJr7v09PTw759+6jX6xQKBV577TUqlTKO4/DSS4epVMrE43EWFhb4whd+kd7enrbtU6kUL798hNXVVdbXxR5jY2O88cZpJiYmA5vdSa1Wx7ZtcrlcMNfMMjExwfLyClprCoUCrusG12Tp7c2zfft2jh8/zokTr2KaFvfccw9KKSYnJ6hWa+zYMc7o6BiLiwvt+6A1j1Wr1UuO4dZ9eOjQIYrFAmNj4+zduxfHaaKUwfbt29Fa8/TTT7GwsEA8nmD//ltIJpNkMtn2XOj7Po899hjLy8sYhsHw8DBra6sUi0Xi8QTj4+PcfvvtF92Xrbm3pfPo6CiTk5NYlkUul+PgwYN4nscjjzzC4uIC+XwfDz/8MIcOHWqPuYceelgy3TbMt2trq5w5c5ZkMkk+n+ehhx7CNM32HCg2KVKvyz4ykUiEZlPGQLVawTQtPM9jfHycZDJ52fP9Vs+a6elpzp8/v+n+v9K63uqz7mqVv9x6tvocuCptvx1cqV2ubj/ISWP1ev1dZ5eQkJCQ9zNh4OU6Igy8vLXAy/ud94L93gs6vFO83211Pet/PcseEhISEhISEhJyacKcw5CQkJCQkJCQkJCQkJCQkJC3iTDj5Tri/ZrxUqvVOHfuHOPj48Tj8WstznXHe8F+7wUd3ine77a6nvW/nmUPCQkJCQkJCQm5NGHg5Tri/Rp4CQkJCQkJCQkJCQkJCQm5XgmXGoW861laWuJ3fue/sbS0dK1FuS55L9jvvaDDO8X73VbXs/7Xs+whISEhISEhISGXJgy8hLzrKRQKfP3rX6dQKFxrUa5L3gv2ey/o8E7xfrfV9az/9Sx7SEhISEhISEjIpQkDLyEhISEhISEhISEhISEhISFvE2HgJSQkJCQkJCQkJCQkJCQkJORtIgy8hISEhISEhISEhISEhISEhLxNhIGXkHc92WyGv//3f5xsNnOtRbkueS/Y772gwzvF+91W17P+17PsISEhISEhISEhlyY8Tvo6IjxOOiQkJCQkJCQkJCQkJCTk+iLMeAl511Ov1zl9+jT1ev1ai3Jd8l6w33tBh3eK97utrmf9r2fZQ0JCQkJCQkJCLs37NvAyNTXFn//5n/HFL36Rf/bPfp4f/uGHeeihj/LHf/xH37fs4cMv8Su/8it8/OM/yY/92I/y2c9+hi996UvUarV3QPL3H1NTU3z+87/A1NTUtRbluuS9YL/3gg7vFO93W13P+l/PsoeEhISEhISEhFwa61oLcK34q7/6K/7sz/70ist9/etf43d+53dQSnHzzbfQ1ZXj+PHj/Mmf/C+ef/45fuM3/ivZbPZtkDjk7UBrzczMDNVqlUQiwfDwMADT09NMTEyglGJ0dJRt27ahtebw4cMUCgVyuRwHDx7EMIw3rUtrzUsvvcTZs2eJxaIcOHCQoaEhHnvsMVZWVujp6Wb37j08++wzVCpVxsfH2bdvH41Go12HUuqiuoeGhpiamuKpp56kUqmwY8cOPvrRhzh69Ogl5VtYWEBrfVG9ExMT/Mmf/C9KpRIjIyN89rOf46mnnmJ5eRnTNDhw4CDpdLpdBsD3/U22OHDgAHNzc1SrVeLxOFprzpw5wxNPPI7juPT0dPNjP/ZjVKs1arUahmEwMjKC4zh86UuPMDs7Szab5YEHHsD3NY1Gg3Q6TbPZpNlssLCwAMChQ88zOzvL2toa3d3dxONxMpk0a2trPP744ywvL5NKpXjggQdpNBpYloXneezYMU4kEuErX/kKy8vL5PN5fvEX/wV//ud/xuLiEtFohA9/+MMUiyWefPJJ1tdLjI6O8tnPfo5XXnmFtbU1HMchlUqyvLzC1NQUpmkyNjZGT08PL7xwCNd1ufnmW9i3bx/nz59nbW2Vrq5uYrEY1WqViYlzxONxUqk0jUaDarXKd77zbVzXJZ/P8yu/8m+JRqNorZmenmZychLf94lEIrz66qtMTJxjfX2dVCpFT08vIyPbKZVK1Ot13njjjUCecXbv3g3AI4/8Lvv23Uwul2Ni4hwTExNkMlmi0SjpdIrjx1/Ftm0GBgbI5/MsLi5w4sSJ9ti78867WFtbQ2vN2NgoO3fuolBY44knnmB2dg7TNNi1axflcplGo8GuXbv42Md+lHPnzvLlL3+ZWq2GZVnce++9NJtNcrkc0WiMarXCysoqp06dwnVd4vE4e/fexOTkeSqVCn19fTz44IOkUin+8A//J+VyhWQywc6dO5mensFxmnR399Db20Mmk+XUqVNorenqymHbEY4efRmAP/uzP+NDH/oQ9XqdY8eOtu+dvXv38eyzzzA3N4dt2zz44IPcdtsBvv71r7O8vBTIs49nnnmaarVGKpVk7959RCI2R44codFokkjEueOOD7K2tkpfXx/pdIZ6vc7i4iIzM9NEozF6e3v48IfvJ51OA1Cr1YjH43iex9NPP9W+3/fu3cv58+dZXV1hcXEJgL/927+lVqti2xF2795NOp2mUFgjl+siHo9Tq9U4c+YMa2urpFJp9u/fzxtvvMFrr52gWq0yNDTEzp27GB4epl6vc+7cWWKxOOl0mnq9zsrKCr29vUSjUUqlEktLS/T19ZHJpEkkEhw79gqmaTA2Nk5vby9ra2scO3aUSCRCX18fn/zkT7GwsLBpPpqdnW3f/wCVSoWzZ8+yvr7envsGBwf5yle+zLlzExiG4s4776Jer2PbNl1dXRw8eBClVHuui8ViLCwsUCwWL3vObc1RW82ZMzMzF83rwJu2t1GeRCLB4OAghw8f5uzZs0SjUYaGhkinUxw5cgTP8+nt7eXhhx/GNM1NclQqFdbX10mn0ySTyUvO7W+mw8bPvt9zbGPdl2r7B+UHle9q1XE1eafauVbthYSEhIRcO963e7z87d/+LdPTU+zcuZOdO3fxJ3/yv3j88cf5uZ/7OX7mZ/7plmXeeOM0n//851FK8Wu/9p+54447AEkP/9Vf/XccOXKE++67j1/91X//tsj8ft3j5fTp03z+87/Ab//2f2PXrl1XpU7f93n2uUM89vQhajoBZgy8OpXVKcqlAlXHxI92gRHF8CqYzVWazQYkh1F2EtwqtrPCg/fewc9/9tO88K1vb6pLuzUWz5+gUCzjRrrBToPXwK/MgduA5CAqkkE3S1BbAjMO8T5wy9AokMzmGRvfQcKosm2gl5mFFWo6gTajFFcWmJt4Ddd1ITkEdhKCeoxIimjXdpRXx3ZWeOCeHyKXS/P7X3qEnbd+iHh2ALw6MSoM9Gb55uPP0tQWxPNgRKA6D24d4r0QTYNTh/oiqUScPTfewEfvv5uTJ1/nqUPfxbF70GYcrzyP3yiRyY+QiEaYn53ErRbBikBiQORzKlCZB68BqWGUHUOXpkG78nmsFwwbnBLUlsEL3k8EctWWoTwJVhoiaTBt0B5EMoABfgOaZbBTYEbFpk4VIklUvBeNArcm71kJqc8wITkAdkLer8yC70FqG0RSInN1Xj4zE2BZEMlJG04NytNgmmK7SEZ0qy6Bsw5WHJUaRGsD6svgNyHWI7o4laDPI5DoBysObhUqC1iqyfD2cVZqJg3fxlmbBN+BSBJ8LTL7rrRn2FKvUwZlipy+K//cdUhuC+ybEp19R9oFiHWBlRLZ3JrIZqfAq8s1GrnejIHWoB2REw3RnLTn1WXcWQkZv7VFkcVKiF2tBLgVqC5KH7l1sVe0G/DFXnZa+surSf9F0oAJlWkwLBnfLftUl+Q9Owe1Bel/OyFj1bCk7UYBjKiUj3ZLG1Zc7GxEpc+0K2WCe5LKrNgknhcbuBUZH2Y0kNWFRkls4jXAMMT+VkJkaBYBBc2K9EdqO0RTwZiaB+2Q6B0jGs9QnD+N77md+6JZEr2UKePBtKA0AalRqduwpE2nKu0qU9rWWsa8nZZyXl3sZ8Wlz5pF6Ss/sJEZl7b8prwX7xZ7NApST7RHPmsUpL5Yr+jvlIN+rUN6FGKZ9n0RsRU7br6PytoMpbUlMvkRMGOsrSzQKM7jNGpgJSHRizIj6HoBqgud/lCm2Drodzsax26ukErY9Gy7iYXZCYprq+hYHjuextTNN51z8erEVZWPfvhuAB5/5oUNc+YiyzOn0MrGSA205/WkUSWZiBLLbWd+5twF7TWgMk8qFaNv+160EWX27FGKhTWI9aLtFNqpyxyBlvFjxVBeA7O5ym37dvHRB+/niWe/xfzKOmuFIr6VxrBsulNR+rMm2wZ6mZ5fpk7yTXXY+NlD99/Dh+67B8MwLvkci6sqw/09TM0tsbBavqjtgZy1qZ6r9fy8Evmuho4/iA5vVaerxTvdXkhISEjIted9G3i5kC9+8Ys89tijbxp4+bVf+088++yzfOxjH+OXfulfb/psYWGBT33qZ/F9n0ce+RIjIyNXXcYw8HJ1Ai++7/OlP/hjjp2vkBq8GdOOgtZMTk2zdPY7aCJY3TtJ5AYAKK0t4DkOqjpD1NTEtt+JUgq/Wac5/xKJxhT5HR8gPXwLph1F+x7HX/gbqp6FTo1gWBHMWA63soLWWpzC5jpkd4pTZERg7TVoFGHoPmgWYO0UJi693TlKVYfc0B5GxsY5PzXN/MIyWlnyhd9vQuYGccgNG9ZOotwK2Z0P4DsNqqf/BtOO0Vh8lVt+5BdJdg+jtc+5I4+xOH0GMmPQc4uUXfiOOEXZG6RerVHxHrRbh6WXsepzmIkevFqRxK4fxYjEqE99G4cIZHfiz38XrUQGunZB/iDKiqFBnHivCSuvQGlaOsKypf2uPeLsoSRoUFuGwimxy8AHQSkoz8EbX4HcXnFO472Qu1EcN2WJ3L4DxTPi4GsfFJAaFqczEjjZTh3WXhVHeuRhsIPAQm1J2q/MihPbH7Tr1mHxJSidg20/DMkeuX7iryHaBd17JYihTHl/4duiW3JY6lufEEc5uwucImDB3CFI9ovdzag4174rAZCVV6B4FmPXJ/AnvykOMCoIilTFkc3tkv7WQfDCbchYaK5L2+tTUJuD3gOQu0EcfDMOy0eln1PbRd7VV8UuuRslGKF9kdWtw8oxqCwETnoP7YBL900ipzLE5l4TCqfFYc+MBUEMFfRb4DQ4FVh6WeQauBPKUxDNSr87ZbGzlRQbFE5B8Sykx6Q+pYIgkyl6Lr8MhTckAJYeFruatuiDEjmWjsDqccjeCLGc3B/RHJz/ZqDDPnlfA4vfkz5IbRcbQBBgMqB4WvTLHxSbzDwT1Dcq8kayIp/XFLmbFdG5tgRjPwZ4IvPqcVifFvnSw9B7m/R5syT/u3UonRVbZ8bgja/C+I9LUKU6L/arL0tfJbeJjaNZ6Nod2C/oC9+H4hsyJnpukfuwUZBx6jfFvsqQAApa7BjNyjy0+JLMP+lt0sfKlGuUAfU1GSvlWdj5UyjTlDlh8SUovE5y9INY3XuolVfRho3v1PFcB8ozYs+BD4qNlg6LrRPDoHwJXNkp0b9wSq7p3oex9iq6cAqV243RfwBlxtC+i2UqoiY05l4i2dw857bwmnXOHnsaGmuM/9A/wLJjTE5Ns3zuML6ZhNQwth0hnu6mWqvhVNYw18+gSxP4qbF2e77vopoltPbR6+eJqTqqvkqVNLp7LyqSlmDu0suiU3JYAmVmBGVIUFIXTmMUz5Af20/Fi2L17EFZUbTv49bX0Y0i/vo02VSE0f0PooL7xW3WOPedP4dYFzv2348ZiXX0cxqU545z62iST//Tf8zv/+GfbH6OAWjNxMQ5irOvYdQWITuO3XtTp+3GOmnbI2escetYks986meuyMHf8vl5JfJt1U+R+JXXseG6K9Xhrer0g7ZzrdoLCQkJCXl38L5danSlOI7Dd77zHQAefPAjF33e39/Pvn37eOWVVzh06HlGRv7JOy3iexalFIlE4qql3z773CGOna+QHbm9/d7K6hqrc2fQdhdG/ha8RolmvYzreviYGMludLyH5tqrmCunifTeiBGJYeT3szrjYFc9csGXp8mT36PqR6B3P4ZhoZsl3Moy2rBR0SwketGLR+RX+8TNKGVC/gB66QisHEf13QZmBG/mEMulGJkd97FeKzJ5foqllQLaSqBiXZDslzKVaVTvflEkfxt66WXKs8eIxhLozA4cM45aeV2cRGBl6jUWF+YhewMqfysAuvCGOG+tenQUmmV0s4QRycDgnbhz38Ktr2NmxvHWp/AAh4jYa+0NdCQNa6egaxdq8O6OwbUnbdtJccJqK4AWB7D3ltZFwT+CbIQErL7G56t/xojtgKrAGGAHe1/YC+C9IsEVZYIX1JFR4tAqE2Un0fqMBERcA6UMtOlA3ggCFl8RPX0XTIVSFmRBuxWonQQrcHh6NWTr4P8pyslJllIfYJdBzYITqOA1IOOhrIS069Yhi8jhvwImkrkwoFB2Da0nwNWIEoH8PQoydSj/LvTHQK0BfhDY8YLMlVfBb9lMgelBWknASJmQqsrn0XOcN8r8duRHoHBGHMSem8XZXzoiWT1B/0vGxroEVay4BEjmviWOf6xL2s7fJpknyoRIWpYyoKTO5aOSZTF4Nyy/IoGq7A1StRWDgTskeLJyFDLj0u9ORWSJZKQPrChkd4gdYznJymiuS0aGkZR6evdDfVUydPIHJNhGkAmEkjK5G2DthMg8eLfUMf8CxLqh99YgqwYovL55zNeXgSCIgZL6l49J8ExryIxIBo5hScBAIePalHud5eMybpWS9gbuFBsP3Am1v4FIBjVwp/S0G+iuTLADey8fg8qcBBztlOibuwHmXpQMka7dQdApJe056xJIi6QD+9mBHMegMiP9tfRykCWF9O32B+T+awVvem+RYKXviH69t6BQQbA0CETFA1tjwPm/gx1/TwKqyQFQirrRTcxz8Y0YnttAa0PmufR29PIxCcxpLcGq3ltEbl8y2pRhQiSJ7rkFVo5DbQGduxHtexDrRgX3oDItXM/FNC3MZJ5VxyGi+tpzbovCepVG5iYoTVCcPwvJQVbnzki2R17mGrdRolou4qkoZqoPF9Cuh5HIt9vDa+BhYMS6MBO9VM98A6wkqu82yXjUPpQmwYyh8jJ+dKMoAS4Vkfd7b8WvF1leWyez6462jMow0MqgrmPEBn6I8toJVqdeo2dkn+gwf5ZGbAgyYxTWq/T0dAIvph0lO3I7Rydf4r//7u9xcsHb9BwDeZaVHRMjv5/67MvErATKirbbtuNZ1mtFUj3jHJ08x3PPH+LDH7qPy2Wr5+dW8v2PR36P1+Yvlm+rfmrpfrk6XnjdlerwVnX6Qdu5Vu2FhISEhLw7CAMvl8n09HT7pIkbb7xxy2tuvPFGXnnlFd544413UrT3PDt37uQv/uIvr0pdWmsee/oQqcF7N72/uLyCV55HDcmXHBVJ0ayt4XpukHUAyjDRmRtoLn0Pu2cXCkWzVsHsu52VmWcYvUm+XC9Pvw4D94hTAWCn0M05+eU5kIHcTpj/Dvge2jQlJtK9D6aeQPv7xUlB4yWGQWusaJrllSl8z4dEpiN4dicsfAettQSmlIKum3Cnn4JoHDV0L4ayIPoJkrlBtNYsnn9NHIfuvYBCaw/Wz0u2TYtWFkmzhI5kJDTQexuc/Uv09g/TmH9BMmKG70NrjS5NQvdBcbrzBzv2hmDJRETe8H2gJefuDT2gRCb8juOZ3s6IPsoeXZWZygIIsjr0Opsb2YDN5ms2xDXaf5tbvKe3+KxFa6bUtU79VDZf0/phUpcuKLNB1rZsZS5JW9ctrmnVvRUtudu+aAFUTJzcyjT03yHOvtay5GP4fkSBQHA7CY3VIPAA9OyT7JTKAgzdJe+51WD5TTCODUsyFXK7YOG7UnfXbsnqyeyQftaeBAi6Aye/a49c59XbdbXr8Royzua/Jdkfdgoaa8H9QBCsiUB6u7xWZpCp0upIBekR2PETsPaGtGPGZbnT8IdERxFedBu6wKmxk0HmQuDsdu2BmWcl82Pw7vYyMslSanYyQ1AdvfvvhIm/6thV+1I+tyMYLlqCINFusXfLBl17YPY5uOUXArv5EmRCS0aOlZRlP62gpluXABQ6WHbmiDxdezr2794L009Cz35ovhbcf1rqGfqQvC5Nyntde1rSBX0SLGtTptgltxOmnkR7HhgK1idh4G68+jLNWhmi3eh6SQJRdmqz/aBja68hGUvaQ2tT5i3DkvoXvos245A/iJ47hO6+sR1wV4ZFo9FArZ7DHLib5dU1Rke2twPKAEsrq1jRbujZw9L0Ifxue9O8DsHcXlnGSiaCeK+GnlvQS99D526QgKIj41xrX5YLar8zHn0XbVii/8bnSCQFtVV06x6pr4Jp4yW3debnwMDNWgUj2kWz2SQZyNq9fS8Ay9OnsAbvAcNmeWWVnp5uLiQ1eDNPPvs/2XXfz170WcsGlcIiqu82mnPfkufVBjvJ82SVneM389jTh/jQffde1g8bl3p+XkhyYB9PPPeH3PihT235+YX91L1970Xtv5mOF153JTpcyOXq9IO2c63aCwkJCQl59xDmMF4m8/PzAKRSKRKJxJbX5PP5TdeGvPuYmZmhphObUnvrtTpuvSy/SJtBgEAZ+CjAaKeAS3ZBFN9K4tfX8Lwm2jBRdgzfzlJanqW4NIsfyUp2Qcuj911JQVcbPHwzJr/0t/ZiQMmvktGcOMXNkmQamHGajZps6aAVupXKDuIMmFGpp1Foy6isKFhRfCMq+hgGvrIpFovU15ep1V2Idcl1KliesUF3pVQQxDGDbJKGSGjFJBulPIM245LBY0akvJ2Cwolgz5LAaVWKlmPf/trYWJFf+GNdsmRoExuiIK3lE+EXzh+cZqmzlwpIZkc0JxkmbLCvMkDZnWVHVjzYl8aSsn5TPlcXPDYU0ueRrCyTMyPSXrNAJ7CjJHMl3i+BDe1KcG9jXdqVAIIVC8oXA5ksCSr4juytE80Fy5wawfhQFwTfguyqSEJkqEyLHlYcVDAWG2ty37Tud9/p6KYM2hWakUCfuOyxYtgbPledJW2ta+00+HXZ76MyLR/VV4I9dRJiAz/QU3ubbWBGgjlhTcopI9inKCOyN1YD3WMSdDFaZVsCBPfbRvubEekX7cj/jRWxYSQrnzULQdZMrmOLTR0L7SVHVlz2XFo7KcuS7AzKjoNh4/mgvbrUZXTGiDLsYA+giMwVLTu3MpTQEsAFGWOBjZQdh0gGXV/bJI5uFPHttMy5wZzWol6r42sTZRgoK4qjkjilhc3zOsh4NCy07+J7DTBsac9OQaOA9hy0YUmGHKCri5KBZacC+VVHfzPSHitKmdInGNK3blXsbKdoVjsB09ZzA8NAo9DKxrNS1NdXqK8v41kplBVFGQaeNqnXLj5a3HE1jt2NU98cnG3ZwPddeTZZMXQkhb/RjtCu23E1VT/OzMzMRW1sxVbPz61w6usin3vxSvYL+6ml++XqeCGmHb0iHS7kcnX6Qdu5Vu2FhISEhLx7CDNeLpNarQpALBa75DWt0xyq1eoV1f1bv/Vb/NZv/db3vW7Pnt3f95r3IpOTk/zar/0n/t2/+1VGR0d/oLqq1Wrn1+wAz/NkfwXzwr41QF3wxVEpsGJorwlmsAQEwIrhNGvyHdyMXRAw8MXBajlzWnecVc/pvIbAoayLk2eKs+f7nmSVtIIhbXSw1CEmTvEmOW20IV/sdG0F78xfUsn9A8xMSuoxNwQPveYWutNZxqP9znt2QhwKM9J532uK01QvtDMKOiGUDbpB4Czb0v7GbJNNjbb+NAljw1cB35H+aY1JryFjayuM4Nd9FXSOFZcxqpTcI5fcb0AF4zkYh1uNbb8p40d7oNXFARytN91PeM4GmVpL0Tz5bOO4bAf4AuorcO6vJRvMczrLp4wN947X7AQIQeoyWkEMHcgSCG6YshFtK3MFtfnzjWO2JbcV3Ccb7b1J5sDOG2UCCT6d+XP0jp8Islm8YB8gA5wN/aa9C+aClui6PUfJMqxAJt8NZGt0bIiWawxzsy0urlT+bwVfnHXpy3aA1eyMD7VFv5pR8Fpzn79hDG2ou/XajARZOWweTy18tzNXKRPHddsfeZ63qW1tRmUvmgvmNt0KJOFv6NOWnE2wfDrzjkK7jWBONzvX+82tbWaYsgk2OsicioIy0a2xDGh/w3MDOXkIM4bvSoB7k7zKwPO9i5rxPFl26LuNi99XxuY2zOB5dSGtus0YtVrt4s+3YKvn51Z4bhOsxKVl3zhGAt23vG4LHbfkCnS4kMvV6Qdt51q1FxISEhLy7iEMvLwL+MIXvsAXvvCF73vd5z732XdAmncfzWaTyclJms0tvjxeIYlEQgIbGzBNU74wexf+suhvDjqAODZuvZ1Jgg6+WLp17Ehc/EOvvtnhxAiWQ7SyOVSw50IdEvbmII1bkxNPjIic9OL7GIak4yut0Wz8Iqs6SzaMC36t1g7KD76w+i40ChhKY1oRlNayUWvbAJEtdCdIw7/gS7JTlY1ha+WO7mYkOKEmJZt9skH1VjZCOysgKr++e9Utgi6tRlt/egSbmYT8IBi29E9rTLZOEdoK3wezFYDwZTwSBD6U0XGKL0IHpxYF49CtB5veBmNdEZzoFOwR0wo8bKTlvG8s35YpyGzBDDZP9kB1NhPdNEb94KQhvyF1WHHRY6MTaEaknnbbgW6m7siysT7V2CBzENzwW/f4hgHektutQnIwaCuwd1tmY4MDf4Fj6taD04da70vGmci2od+UeXGwVSNLgFr1GHbn71h3MN/0idxuXWQ2bGnL3eL+b1faWiITjIdkcDpXq4z2QBvBhs/64n71Gp25YtMYujDyqiXwETU22PKCec2wOnOV9rCtzlcY09wcJFZeA2UloLG+qQrVXtZoBLGfVgC5Ie21gjKBTMqKBnP6hrnQiGxtM98LgoRBkDzQXW0IdKqNzw1kCZL26hhWNLDBhnq1j3lhcK6lq1sNylzwvvY3t+HVL8j42Vy359XbPxp9P7Z6fm6FaUXArV5a9o1jpK37FtdtoeOWXIEOF3K5Ov2g7Vyr9kJCQkJC3j2EgZfLJB6XDIHWPi9b0fpl4lJLkUKuPcPDw8RVFc9ptFN9Y/EYVixFY7mE9pryJVX7GGh8fLT2g+VGGrwGhlvBiHWhUCjfQzt1DKdIpncIAKP5JJ7XCNLOVXv/Clnnj7zXOoo3kqX1y692g+NcE/3SVn0NvBqR6ABaawyl0V4T7Xuy3EgFm8Q2S7IEAYJ65KQbwzTkl87g4LJ0KkUs3Us8ZuGU1tBuQ3SN5mQvF68JZoT2QWfaa/9qqwDfrcuJQ9vuRZUnQYs8RHMScOk+CJN/JQ6JFes4IPidcEq0R5Y6uDU5MnqTQ7AhcyFw8s47UVk20ViTE2KsqCyLaMlnXDCFaS1HUluJjuPpO51+8JviNGktv9xHMsGv/nYggUJrX+qIZOksKdGd/Tgaq53jnDcSLOmRTWcJlnClAyc52CujVYe6wOHcuKxDI1kb0S45tclOi6x2mouXXgVlW/U76+L8eQ2IZjlv94isznpwFLItexYtvhTYM8Imx1o7oNIytpyyyBHp6gTWdGlzlkBLBK8uwY5ITpxnZz3opyCAg5askdpCEHixaC9patWlLPDLMn6c9WCJjE97CRLIkp9CIdgjpWtDIORCmyAnWEVycgT5/LelTCSDVoaUbZaCbK1IsPTH6dTXqtBryj/flYCB37omGKutYIyio7cRk5ONhj4sksR6YOF7wf44XbQzTVr707Rs4DVlD5u2Gr5kCBVLIns8D42XxD6tPm0vddqQPbLR/l4zWLI1Kv9He4BVKBbls0hOZGkWAltsHNOtu1bJvebW5OjrbR+VAI9TQjs18B1M20abMfBXae9Powy077Qzf1rzC9oJAkutAEWQ9eE15FojKvU2S7KJ+AZxVDSLWl2XOVc7ZLPZ9sexeAxDeZLt4TvYuoKfGceZmenM6yDj0XdRhoVC4fsFtFNDOWWI5iTI7bvBvA8q0Qdz35P7IdYtYyGaFf29ZnvjWq294D5E+tZKiM2dMpHEUFtO04ygfA98H4VGaQfTLRNL98jnblnmcMPGVB6x+MXZEbalsJ1V7Fhq0/stG2BY8mxy66hmGWOjHZGsG1N52JYiatQYHh6+qI2t2Or5uRV2LC3yWRdH1y/sp426X46OF+I5DRJXoMOFXK5OP2g716q9kJCQkJB3D2Hg5TIZGOgHoFwuU61WtwyuLC0tAdDfP/COyhZy+SileOj+e/jTp49vOlGgr7eH84UB3NVTqPwt6GaZaDyJ4Xo0AydQ+x6qdIZI91h7v5ZIPEl15iX6hzubF/Zuu5GF5dfRPftRhgVOGWVG0U4ZollxzAtvyGkhhtn50Xz1VUgOya+VzRIahVmdAbUDr16it6eLpZUCXmv/F5DjY+P5DRs3alh7DatrjGgsQX31lDhEojxKKfpGbqL06vdg9QTkb5W9DNIjsndD+1Sj4HhjK9bxaZdflr1hCqeJdo8DUF89hZG/BZUZRVcmxLFaOtzeAFQBuuVgKitYZuCLvmunNp9qpJT8cu674oCtT/Hb8bshcgMUDsvGo4MfgLolJ+l4wdKuSJpO8EHB0jOy/8LAB9CNEuiGnKBiJ9DlWVBxOd7XTkjd9VXQRtvJ00tHgyOGdwfBJy3HDjd6UWMPo1cOiQ69+8UBbjmotbNQr8r4aZSgdhrqBip/AO2sSz3rR6EaQQ18sHNyTGsJWevv+e9AwYOuHeIo1xsia70KvTe3RnLneqcCpikb19pJWHoFyhMwdi+YebAsOYa48EbnVKNEvxxhnr+NtgPsVDYvQVp5VQISyX45mSZ/QJxJp9I51chzJGhQOC37/ygl/Zoe6QSJWrqtviLBm7WT0u9mTJzZ1qlGhil2X345KG/IiUQbl3TYSQmerU/JCUPtzIENgSu31vlbKRknib7APqkgGKZkw9qNYx7auok8lnyeGZW+K7wubbo12vsftYMTuqP3yjG5jlZWRRCcKZxFBceMaysuupvxTnBt7aTsgVN8oyOLnRDdylPydzzQI39A7OKUA3mdTgBr7WTH/qsnILVNTjlCdZZTxfs6/ZAZhdL59ut2+NNvZXhokaXwhgQmTMls0elRWDqMmdtBJJ6i0Si3jyxu92tLFq0797sZbQc92/OW70r96RGUHUcvHUZlRjZtKqp9l2g0Ct3jVBdfYmDHwYsCkfmebuZW1qE0weC23ZDs5XyxM68D6GaZSCyJ53so05I6Vl5BZUY7G/naCbSzLoGe1vKp0oQEXuwkSnui/9opCE41olmWOJKVCPo0jvYczMo0Sm1YJqzkuVGvFYmlunBXTjC4bfeG58du5hdPojJjDGyxsS5AZe44D977Q5ycf/Wik3FaNojEk9RnXya64XnVwmusM9DTTWXuOD/5wN2XvXnrpZ6fF1Kdf5WP3PdDvDa39XUX9tNW7b+ZjhdedyU6vFWdftB2rlV7ISEhISHvHsINFC6Tbdu2t/d3ef3117e8pvX+rl073zG5Qq6cD913D7eOJimefwnPkeU4Pd1d9AzegHIK+LMvYuomkViKRCqLgYdfWYCVY0SUi92zCwC/WcdfOka3nieXMNt1je75AAmzCcsv41cXUfhYyV6UdtHVZfTSy+KYxPvBqaDduhwL3ShCz83o2jJ6+RXMaILeTIz6+RdI2R6jI9vp7+1GuVV0ZUECBL4LyW3oRhHtVNFLL6PcCqmh/Zjp7ajSOezy2U3692y/ib7+QSieRS8eFuc5u1McyuVj4mQ15Nd0Fcngu3X8uRex6vNEYzFU6Rxmejt2zy5smvhLr6CSwyhnHVKjsHYaPfeC7K8AwS/7gfM2/6JkIjh1KJ2VY4i91hr+4AtmbVmOO9a+nMwCkAiWbdRWJRNo9TVQwWadjVLnRJyVV8EKTh6ZezHYvFgCG7pRAoKjlItnITEEaMnY8Rpi08UjEvTJBSeXeY5kSxTegJ7b5JjbgQ9KsGbpZZG1lQGR2QFuRdptFIP+rcqRulhSb9dNUJlHz7/YyW5oBSbcGsx9G4pnMHZ/Qk7iqS2Jk9qsSPnl45Kp4jsSdHAq8rp4Vhy/ykLHnuVZGWfNkji/XlP6t7ok/eSUYemo9EWzJPVZccmomH9R2veDzKtGUfRtHWvdypDyGnIMcDPIUJl7QerNjHcGnFuXYFJxAnpulT5ZfkUyj3xPspm039GjPCP7BdVWgwBIsATDrYv89dXOGHGDJVR+sE9TbVXqAAn0zb0QHOF994Y+WxEdsjeIzVvv+Z7Y1a1JW0tH5O/0mIy/9SA44awH9kLabtm1uS62rS5Ke2jpk/lvBdkii+j5F+W+MIJjzLUnGWDzL0r5VJAZ4QSZP4UzEuyqLgZHgGfls+Vjgf0cyazSnthi+Zj0SXJY9GoUOsuWrERwkpor2TPNkvRDYkjqWj8PS0fRXrABcDuguCJtl6dh5Eck6OLWoTIPa6eI+atYpoXh17EsC1NpmY/mXhTb53bJiUBuVepp1kRGp4L2PXSzAiuvyHvxflThdVTpDVR9VdrRoD0Xy1RYeHiVJbr1PFm92J5zW+TSCaKl14g2ZskO7GjP64a7jr94FL+6jGVAIpXFMjReeRFr/QxWdQqqS+32lBnFxIf6Cv7CYRLpLEmjCksvy4a/2g/uqTp66Si6uiz9pSzpC6+OXj6K0VimtyuNs3BUsliQbBOlfWKqjj//XVK2Q/f2mzo6DOwg2pglUnqNXHrzDzye06B0/iX2jyb55z//mYueYyDPsrTt4S8dI+Ytg1vd1LZbK5KyPazyOfaPJrnv3nu4ErZ6fm4l3z/73NbybdVPV6rjhdddqQ5vVacftJ1r1V5ISEhIyLsDpdvrCt7ffPGLX+Sxxx7l537u5/iZn/mnW17za7/2n3j22Wf52Mc+xi/90r/e9NnCwgKf+tTP4vs+jzzyJUZGRq66jJ/73Gd55JEvXfV63+2Uy2WOHTvG/v37SaXePO34cvF9n+eeP8RjTx2iqhPy67tXp7o6RblUoOKY+NEuMKIYXgWzuUqz0YDUMMpOglsl4qzw4H138LnPfJpvvfjtTXVpt8bS1AnWCmXcSLf8ou018Ctz4iAlB1HRTJAZsSS/fMf7wC1Do0Aq28vo+A0kjSrbBnuZnl+hFtRdWJ1n7twJXNcVB8tOihNVW8KIpIh2bUd5dSLOCg/c+0OMjY7wN994DCszhBlNy7pxKvT3Zvnm48/Q1LY4YoYtJyq1ljVE0+KU1xdJJeLsufEGHrr/bk6eep2nnv8uTbsHbcbxyvP4jRKZ/AiJmM38zHncakGWBSUGRD6nApU5cVJTwxh2DL80LZkwdkKWvxgRWeJTWwLPk3KJvLzfKEJ1ThwbOxEsWXBRkSwaQ/bzaJaljBks9XCqEEmi4r1olOjlVIJjeZfl1//koNTnVKEyK05qapscDetUoDovn5lxyRyJdAV72dTEETVNsVUkLbpVl9pHDqvUoBxFW18W+do6VoI+jwSnQMXFKa3MYymH4ZFxVqomDd/GWZsQJziSlKUuhhW8zgR/O+KIK1PqDZYwYMeDzUnrIq+VkGtrkpUnp+ykRDa3KrLZKbm+tig+t+8Ge/Jo6ScrTjtQpczOcjkrIfapLQT2TUByoKNXdRFQwZ4dVnB8sh8sX0p39hhqloPlVKacRGRYkjmysR7DArsLavOdpTjxXnnfkXsHKxkst6pLOSsudjaiUD4vjnE8374nqcyKXvE+sYFbkfFhRgNZXRl/WgXLtYzOSUPa7wT3mmWxcWo7RFPBmJoD7ZLoHSMaz1Ccfx3f8zr3RbMkY0YZwWlEyc4G1F5wcpHXCPbGCfZRiWSCYFNgPyMiJyk1yyKTGQtOlAr60E5K/zSLki3k+5K5YUTlOr8hmVVes3MSUqw3yEwpy3hw6pAehVimfV9EbcX4zfdRWZthfW2JTH4EbcZYW1mgUZzHadRkLCTyKDOCrhdkfmn1hzLF1k3J2olE41jOCum4Tfe2m1icPUdhbQ1ieax4WoLhbzLn4tVJqCofuf9uFPD40y+0PyusLLAyfQrfsDFSA+15PWVUSSaiRHPbWZg5e0F7DajMk07FyG/fizaizJ09SqGwBrFetJ1CO3WZI9AypqwYymtgNlc4sG8XH/3IAzzxzLeYW1mnUCjgWRlMy6YrFaU/a7J9sJfpuWVqJDfp8NH770YDT2zQofXZQw/cw3333oNhGJd8jsVVlW0DPUzNLjG/Wr6o7YGcxcMb6rlaz8/Lle9S/XSldTz0A+jwVnW6WrzT7YWEhISEXHvCwEvA5QReTp8+zRe+8HmUUvzn//yf+aEfugOQfV9+9Vf/HUeOHOG+++7jV3/1378tMr5fAy9vJ1prOd6xViMej7fXU09PT3P+/Hm01oyNjTI8vA2tNYcPH6ZYLJLNZjl48OCmL0Zb1SVlXuLcuQkikQgHDx5gcHCIxx9/nJWVFXp6utm9ew/PPvss1WqF0dExbr75ZhqNRrsOFeyBsLHuoaEhpqeneOqpp6lWK4yPj/ORj3yUo0ePbinfVrK16p2cnORP/uRPKJWKjIyM8pnPfIann36a5eVlTNPkwIEDpFKpdhmQL40bbXHgwAHm5uao1WrtzLAzZ97giSeexHUduru7+dEf/TGq1SqNRpAZNDqK4zg88sgjzM/PkU5n+MhHPoLnuTSbDqlUEsdxaDSauK5Lb28vvu+RTCZZWyvQ1ZUjHo+TTmdYW1vjySefZGlpkVQqxYMPPki93sCyLDzPY3x8nEgkwle/+lWWl5fI5/v4whe+wF/8xV+wuLhINBrlQx/6EMVikaeffppSqcjo6Cif+cxneeWVVygUCjiOQzKZZHV1lfPnz2NZJqOjY/T09PDCCy/geS779u1j3759TE1Nt/s3GpWTKc6dO0c8HieZFL2q1Qrf/va3cV2XfL6Pf/Nv/g3RaDToq2kmJiYBsG2LEyde4+zZs1QqZRKJJPl8nu3bt1MqlWg06pw+fRrTNBkbG+Ohhx7mG9/4BuvrJbZvH6G7u5tz584yMTFJNpslGo2QSqU5fvw4tm0zODhAX18/8/NznDhxgnq9TiqV4s4772R1dRWAkZFRbrzxRtbWVnniiSeZm5vFMAx27dpFuVym0Wiwa9cufuRHPsbExDm+/OWvUK1WsW2Le++9l0ajSXd3F7YdoVarsra2xsmTJ3Fdl1gszt69e5mcnKBarZLP53nwwQdJJlP80R/9EeVymWQywa5du5iamsZxHHp6uunp6SGbzXLy5Cm01nR15YhEIrz++mlAs2fPTezbt49Go87Ro0eDsRln3759PPvsM8zNzWHbNh/5yEe49dbb+NM//TpLS0skEgluuukmnnnmWarVKqlUkn379mHbEV5++Qj1eoNEIs4HP3gna2tr5PN5Mpk09XqDhYV5pqdniMfjdHd3c//995NKpVAKarU68XgM1/V49tlnqVTKjI+Ps2fPTUxPT7O8vIxSiq6uHFNTU0xPz2DbFnv23EQqJWO+u7ubWCxGvV7jzJmzrKyskMlkuPnmmzl79iwnTrxKrVZjcHCIXbt2Mjw8TL1e59y5CWKxKKlUmkajwcrKMr29vUSjUYrFEktLS/T19ZFOp0kkErzyyiuYpsn4+Bjd3T0UCgWOHTtGJGLT19fPJz7xCRYWFjbNR7Ozs8HrGFrL6S1nz55lfX2daDTKwYMHGRgY4Ktf/Srnzp3DMAzuuutOarU6tm2Ty+U4ePAgSqn2XBWNRllcXKBYLF32nNuao7aaM2dmZi6a14E3bW+jPPF4nMHBQY4cORzM6TZDQ0OkUmlefvllPM+jt7eXhx56SDaH3SBHtVqlVCqRyWRIJBKXnNvfTIeNn32/59jGui/V9tvx/LwS+a5WHVeTd6qda9VeSEhISMi1430beDl9+jT/9//9m+3Xc3NzFItF8vk8PT2djd7+w3/4j5tef/3rX+N3fud3UEqxf/9+crkcr7xynNXVFbZv385v/MZ/3bTh39Xk/Rp4WV1d5Zvf/Dt++Id/hO7urde8h1ya94L93gs6vFO83211Pet/PcseEhISEhISEhJyad63eYzVaoWTJ0+2/xWLRUA2yN34vuM4m8p9/OOf4Nd//df5wAc+wNmzZ3nhhReIx2P8o3/0j/l//p/fetuCLu9nVlZW+NKXvsTKysq1FuW65L1gv/eCDu8U73dbXc/6X8+yh4SEhISEhISEXJr37alGt956G4899vhbKnvw4O0cPHjp3ehDQkJCQkJCQkJCQkJCQkJC4H2c8RISEhISEhISEhISEhISEhLydhMGXkJCQkJCQkJCQkJCQkJCQkLeJsLAS8i7nlQqyX33fYhUKnmtRbkueS/Y772gwzvF+91W17P+17PsISEhISEhISEhl+Z9e6rR9cj79VSjkJCQkJCQkJCQkJCQkJDrlTDjJeRdj+M4LC0tXXTCVMjl8V6w33tBh3eK97utrmf9r2fZQ0JCQkJCQkJCLk0YeAl51zMxMcE/+Sf/mImJiWstynXJe8F+7wUd3ine77a6nvW/nmUPCQkJCQkJCQm5NGHgJSQkJCQkJCQkJCQkJCQkJORtIgy8hISEhISEhISEhISEhISEhLxNhIGXkJCQkJCQkJCQkJCQkJCQkLeJMPASEhISEhISEhISEhISEhIS8jYRHid9HfF+PU7a931c18WyLAzjB48Vaq2ZmZmhWq2SSCQYHh4G2PTe0NAQs7Ozm67RWnP48GEKhQK5XI6DBw+ilNpULp/P85u/+V9ZWloin8/zD//hT3Lo0PNUKlV27Bjn4Yd/GIBHH32UlZUVenq62b17N3/913/N+vo6Y2Nj/PRP/yMMw+Dw4cOsra3hui4jIyMcPfoyruthWSYHD95OMpkEoFqtUiqVqFarnDt3jng8zo4dO7j99tvxfZ8vf/l/s7CwQH9/Px//+Cf40z/9OouLS0SjET784fuJx+N84xvf4Pz5SSzL5sEHHyCdzpDJpFlfL5NKpSiVSszOztJoNBgfH6e7u5vf//3fo1gssn37dn7xF/8Ff/7nf9bW+6d+6qcB+PKX/zcnTpwgGo1y//0P8Pjjj7GyskJvby8/+7OfYmpqir/6q7+kXC6Tz+f59Kc/zeOPP8758+fJZDLcf/8DTE9P8Xd/93fUarW2bq+//joA2WyWH/mRj+G6Ls888zQrKyskk0luuOEGXNcln+9j3759pNMpHnvscV544RCu6zI0NMSnP/1zfPnLX2ZtbZVYLM5P/uQ/ZMeOGzh+/Djf/vaLFAoFenp6ME0Ty7KIxxNs2zZMqbTO6uoqSsGOHTdwyy238PWvf43l5WXi8Ti33HILy8srnD79OqZpEo/H6e7u5oUXvoXruiQScQ4ePEilUmF5eRmtNYODg+zatYvJyUnK5QoDA/3ceuttuK7LH/3RH7K0tIRpmmitaTabRKNRbrvtAD/xEz9BPB7nq1/9CqdPn6bRaGBZVrverq4u9u7di2GYlEpFfN8nkUjQ39/Pa6+9hu/73HjjjfzIj3yMI0eO8PzzzwEwODjIBz7wASYnJ5mamsLzPCzLxnVdajUZ6+l0huXlJQzDZN++fXz84x/nT//065w7d45arUZfXx/nzp2jWq1SLpfp6uoim82ybds2yuUKhcIa0WiUnp4e+vsH+O53v8P6+jrpdJoPfvBO9u/fz9e//jUWFxcxTZN7772Pv/mbv6ZUKhGJRPixH/sxbrvtAP/jf/x35ubmcByHfL4Px2kSi8WIxWL09ua54YYdRKMxLMtiZWWZnp5eVlaW6e7uDu6XBHNzc5w7dxbHcdi9ezef/ORPMTs7y+rqCtlsjlqtimEYnD17lkQiiW1bDA0NUSwWyeW6AnukOX36dZ5//nmWl5fJ5/P8+I//OKZpMTExQSwW5cCBg2zbto2ZmRkmJyfRWrNt2za+9a0XWFhYpNlssHfvPgzDoNls0mw22bFjB7fddhuPP/4YZ8+eI5lM8MADDzIyMoLneXzlK19maWkp0PUGyuVye366cL5szX2VSqVt60QiAdC+v1p/t+Y9pdRF82Y8HkdrzeTkJEopRkZGANqvR0dH2bZtW7vspebgSqVCqVSiXq8DMDY2xvDw8EVzr1Jqy3l7Y/3f7/PLeRZsNe9/vzreCm9F1mvZ1jspb0hISEhIyHuVMPByHfF+DbxcLXzf59nnDvHY04eo6QSYMfDqVNemwfeId4+AFaO0ukRxaZJMV55sfhS8BkvTpyiVipAcRtlJtFOBygyZTJb8tt14yuLUK9/Fb1Yhngc7DbVFcMoQ7YJIVv6uzoMyUKlhMKPoZgma62CnwIxDfRma6xh2BDMzjKct/GYZaitg2GBGIJIBZWDiYOkanieBKew02EnwXVRjBd0oSZnkENgJqBegsSptxfPg1qAyB14DUiMQTQcyLgAKkkOYho9XXgSlRA9tQnkSrCgkBqQ9pwKVedAeZG6Q1+sTco2dhFivyOGUoFGASE5eVxfAq0NyBKw4rJ8FZYhskTS4dajMAhrifSK3U4J6oEMsD24FqovSwZEc+HVp04yC70KzBE4d/CZEklK3EZH366til3g/eDXRoVkBOwaJPrGn34T6iujkOmBYYEch1g1WCpx1+dxOQKxP9Kktgtbg+2DaYgffg2gWlC3Xu1WI90gbXkNk8R0ZJ8qE2hJ4jpSNd4OZkL7z6hDrASsh46YyD4YJ0Yy0GclIebcmdTo1sU00Lf3nNUTXSAYsGSvUFqFRFB2Sg1J3bRGaZYjlRCavBrVl6Tc7C80i+I3OWG+WZOxagT2dddHBikN8AHRTyjsVMKKQ2gaN4HWsR/rMrUk5Iyq2cKtgxWQsRjLStteQPleWXO/W5D42bDAt0SeSEbt7jsjpNeRv34dYl4wnw5Rr7ZTcU74rbStLrneqnevdKlgRkSMajN2WfdFSpnXvmhFI9gf3RU3ud7cejOkUqjaPqRRWqg/fStJcPinlEwNif6cq94XvgBGHaErad2tBHRmRr7aEcitoZUufte7D6jzgE8mNEtdFHrz3Dv75z38GwzB49rlDPPrU88yvrLNWKOJbaXytwK1h+jWisSjNRhMiabp6+silosRVlY9++G4AHn/mBWo6QaHcYGl+BqeyjBlLo+0sbnkB5Tex0gNY0RSGV6U/o/jpf/j3+PCH7m0HgDbOwXMFh6W1Ks1GHZwSlh1BuTUMXHqHd5Pt6UN5DWJU2DbQy8zCyqZ5O66qPHT/Pdx7z108f+hbF83rrc8/dN89FwWgLnwWaDN60byv/Mab1nE1n0FXu52r1dY7KW9ISEhISMh7nTDwch3xfg28TE9P8xu/8X/xr/7VL7Ft27a3VIfv+3zpD/6YY+crpAZvxrSjoDXnp2colmuo8jSZGOjsTtbrPqYZxVs7RTrqU1L91JoaVZ3DVi7RbXfQmP4OjrbQiUFiNlTnjkK0G7puAq8Jy8fE0c7tEqe1WZYgh2lDYhC0K06lnREB106JU+27EnxIDYkjbZji1K29LsGPzA6pQxkSXKivwvqkXNt/B8qron1PHLX1SXE409th7hAM3iMOXuG0tNVzi7S3elycvZEfkfY8B1aOQmUhcKwTUofrwflvQNcuyB8MnOJg+nAbsHQYCmdFlmgasuNiD6UAJTLX12DtNQlA9OyTtktTEuBIb4PumwPnWMHi90TH5JDoufBdGLoXEv1QeF0c0vxB8FyYfkwCC323i/Pr1kQ3tw4L35bATf8HOjYzLAlQFF6Xa/rugPoSFN+QckP3iS1A+nPlVVg9IU5u763St/UVqc+ISDmvIfL4TVg6AuvnIT4IsQx07w10eklslrtRnGh8kcP3YO2kBJrsVBC0sSAzKkGXtdfk+tyNUr/nwMorEvRwKxKo6t4nutdX4Pyj0H0LNFYk4JG/XYJhkQx07ZG+cyoSLGsUggCXgv47pB/NqLTl1eS6SEb0XDslumZ3SN/6TQkW2Ing85NSX89+CRoVz0hf9N8h166egMI5qTc7DrndoLSUtVNi+6WXoLoSBCwTEsyz4zJ+nAq4TajOBkGcCJSnxabZHSKzsw7TT8HAXeIoVmblGrcudSQHRd7EgMhoJTv9XDwj48qIiM1jfXK/RTOirxmRtpyKBJvWp6BRhuqM3Ov52yQI0sKtw/LLUDgj/ZgbkyCn24Cpx+Re6j0gwT6U3B/nH5X7rjInQa9oWu6LSFqyDAwbPfciKCA1LGMgmkMp0E49uA/fIHnzP8ZfPsZousotN+/llakqhbUCZdfG6t5D3dU4nicBoqWXwYxide8knu3DbZTJxk0G+3o4990/h1gX4/vvZ3Z+meW1Ir4RAzOCu/QqrE+isjegc7sw/CYRyyCWyuFUV4lVzvDRD4zx2U//DIDMwZMV1rwuVisenpXAMCJov4m3dBya66hoFtOvkh8/yPZtQ0wee4pipUluaA+jY+PBfAKe06A8exxdmoDMKOmhW2ReD/CcBuW549w6muQzn/qZTcGfTc8CK8L56RlKNa8972eimu03fwjfdbas46o9g76PrNeyrXdS3pCQkJCQkPcD4dMy5F1PrVbj2LFj1Gq1t1zHs88d4tj5CtmR29tfIFdW1yjVPCKpPPbAAVYrPqtzZ7DjWYxIDLv/VpZLLtW1GcxUH0bfrThEqE0+h0MEo+9WzFQf1eUJiHaj+g6irJg48JEU9OxF2XFUrFuyFQwT1XdQMhgscVSVFZV/+f0iqFtDDX5QsjeUGWQ6FCCSRA3eKU6gdlGRjDjNdgIGPijtrU+Kg+y7YMVRA3fKL/SlCck+sBMoKyZtmdHg+pRclxiAhe9IsMGOoQbvgmSf/LKev1V0mH1SHMXBuzcHXVAoOy7vp7eJE5m9AZW/LQheKJRpo5SBivdA735QPtQWpB07Jg5k30HJAlEGlM6K09y7H+K90lZ9Sdq1YtB7i9iwfB5qcxKQ6r1FAkqG3Qlq1BYhe4PUo70go8KSz+2kBJ+sOKy9Kk74wJ2SzVI62xk8ZkQc78yoONbRjDjdZlQCMHZc6jdjsH5Oru+/Q7I6/CDAZVhQnhJ79Nwsepq29LFS0nZ+v5RxqhKYG/igONXl8+KA9+4X3SMZ6btoVjJSol1BG0GgyPckkGZa8n52hwRMokEddkJsHEmD9sWOg3dL4GP+RdFrY1utQIIVk7KpYQlwWFF5bUVFPysG+SAoVZ2Vcr37xb7FN6Te/AGxX2pYAhlWRIIcQRYX2pUgg50Ay5Y+teOBnUxUNCtlsjdI/ZG0BClNGXNYMQn8VWYDmaLQtVMCh9GsBCuU0bk2kpHrDEv6rWev2MOKyjVokTd/QNpVSmQxLLFX/wfAWYPczqC/NgRdWjYbuBNyN0jWTySNSvTC3LPBvSTjXxEs2/AdqM5B780yDiMpCfTFcijTRgN67XWwk3LvRLKd7KDgPlRD90BuJ9XX/5LYyN2cWajzxPcmcFWcsmtj99+Kow1cT2OYEXRtCd9OQ/8H8FQEp1HFjmcp1jymzxyjERuikbmJ6blFVksVfCOGimbQKrBBYhCyN2BYcXQkg+NpnEaVSCpPI3MTzx+f47nnD7XnYDc1TqGm8a0UhhkBBRpDxmosB5EUvpVmZe4Mkye/R9m1iY3czbpjsrK61rkt7ShuapzJUhxPxTcFBlqfZ0du5+hkheeeP3TJZ0HrObBx3i81FKtTr12yjrfCVs+g7yfrtWzrnZQ3JCQkJCTk/UAYeAl5z6O15rGnD5EavHnT+0srq1jRdPu1m9qBV16gnQSmwU2NQ22l/Z7q3o1TmIauGwH5VZDaUpDRIG2xPimvtY/WWt6rLUNuV6fuSAb8Zvu11lqcbjTa1x0Hzk5JpkLXHrnGirdEE2fLTgFKshjWJ9G+L59acbmma7f8it4qpIK2cjdCZQa0lut6bxWHz/cA2U+B7pvBb6B9D+04EtDJH9xoWamwJT9AZkze79ot72kPDKujZ0un9AiUJtGeFzjC453Mg5YNu3Zf0FbwWet11x4onYdScG0kK1kLLXwtfdO1J1jKUpUMBDvVucawxGmuzAZLVqzAluc7bWktbbScfd+TAE8ks8kGdO2WDAjflSBI9gYJbChDypQmIbW902daS5BI+506cjdKnTrIhDFjEkTZaAutJaCU29Oxk2EF9WxEyXjpugmaBcjukus2YgWZJC35K7OShdJuywvsWpcsnPXz0HubvNaBnJGsZLW0+qV7L5RnOvbbaM/We9lxCUpc2B9uVQIfaLGV72+SWWst13v1YAxPQ3JYrnGrm3XTvlzrBteCBClSwyKvnezYvTUWtN/px579EjDN7dls05ackYwsP9N+J7h2KXpvE50KExfcSzJ+Lko71cjYyIxJO9pHowBDAnit8WCn5GK3yqbk1fxBtFPDcRy0MimqPpanT2L1iC7NZhMV3Je6JPOV9j1UJEWzVgENZiTFyszrWD17sKJpVlYLuJ6Pikh/+Z4rsuRvA7cWaKLwrUS7DiuapmL28+jTL/DoU8+TGryZpZVVPCOK2tivvocyTMjtEXm6bsRdn2d5+vW2zFY0zfLK6iYzLa2sEhk4yNL0KS6VvJsavJnHnn6hPRdf+Cy48DkAYPXs2VTnxjreCpd6Br2ZrG+Vq9HWOylvSEhISEjI+4Uw8BLynmdmZoaaTmz61a5eq+NrE9VKP/d8+UU+ksYPAhWO64jjG0lL1gkACmI9qMDJ88szklViytIlGgWwMygrKteiobEmzqkVE8cPBYYhezv4jlTrO/IrfyQrTjJa6myuSX2tJQ7KlGU6bk3KB06zMmyRsx7sw6FM2ntZRDY6FYHjaEVlmVMz0MuKyfKG8nSQyR8EeeJ5cW6Xj8gSHyu2qa5N2yu61f8/e38eZfd13Xein/P7/e58ax4wFGYQnEmQoCRKBEmRkigP8RBLsZ22EzuyOklbXt1rdZL34s56tiU5zysvL8N6TluOE1NOHDtuW7Y6lieZkMQRJCWZADGQBAgScxVqrjtPv+G8P/bvDlUYCEIkgAL2Zy2sqnvvGfbZ59xbON+7zz5AJHVMPPYLfcQYpxtVUHxLjmgl8rLJh44P5VgHckTFrNzUGnndSUhEhJuMj1+1jxnFUQCpge5rOLH/Vtjkpro5eKCbR6e11LXHy4jNxhF7Om32eMBNxvlOynHUUVaOTTUWJNdIbxvQOTIhbcTii5uQOl5K5sYvx+sr0e2nMSfjCuvL/dRebx0XeTL/fjnObeMuH3dbIHIS4i9jJLoobAsY8fwZR8rUZ+PcMOmetRsfIet93I4Easyf789mQQSPRE4EC6e7hsWGhEQTJQfEXzaM++gZW7s/xxF/20B81J733jXSiVCJj+alR+J1c4F10K7jeGJ/EPstqnfnp9dOY0T4ah/HO7+lLl5ajrtFTZje2/NeWvEeatMqxdFU+a5fsbKOkt05N+25wSwbu0lkILuG5qnnITWAjUJaZDBeiiiMRRxDPB99GDeFxcg/xyUMW9hmkSgxiDUJSVlkvLieIyJGbIvxYsGy3b9xiIy0YRyHyMkwWwwp1i1+YAlCIxEu8cCttbGoZORzLtEnn6+OR+TlJY8NYByH0Lo06pKIt/0Z7iTThF6eRnnhQp7ETaSoRRkmJyfP+1uw8u9Ax39ealmbvW1cCRf6G/ROtl4p70VfV9NeRVEURblZUOFFueGp1WoioPQQtiMtYuQbOwNuGhtHTdjIxsdA0t1IChvJJqv9OGguFyOiVvdxW8DoPGd6ohuMbP46UQo2FiTSkr+jnd8l7G3fSlXHkQ3peQJCWsobp9u3jQWcZcQb2HZfbbys5K4Qh0gbXlZyQATl849RrCQKJULBy8q42m1cCOPKEZN2AlXT44teH0I3aqRje4+44LiSjLW3XRvG/Yfnzft54oNUuoAv0pJLpG2Pm4rFMtONRrkQXkrK2yje7GdkrUR+t40L9d/7hbGbEWEhaNfL9ET6IHPsZs/3k2F5OScWhsKWrNnzvpWO17zjdKNXvGzXD73zZ1yJMmn35zjLI3U6j3vG0Bt91PZn25fGoyMkdsyJfdYel3FY7pge2v25KZlnLx3P+4ry7feRjeRnHDF20YXZft+4GfFzIvZHb7NtO+NIE4nQuQwScSSPX7qM91J7vcS2936WrHw/d3y4YuyJnCTvdsU3Ufw+6XzWgcxR5/MqjsIyLkSRfA566W7UnnG79awV4a79/jK98x+LcVHUeS3EJbIuYRhiVwqW1vaIkHQ/b40nCch759Q4hJEItMs+w900UdC8uD/dNPV6/by/BSv/Dqyss6zNuI0r4UJ/g97J1ivlvejratqrKIqiKDcLKrwo1z3j4+P87//7P2F8fPyK6mezWdk09uC67rKNoml/ox424ugSME68EQka3agC40gOjvZjLyWvt3GS3ccWZGPbfs72bCatCBWd//THG/qgEef+MPK629t+vEGPouVCRZuwEW9Eo27f7XGt/UhP5Ev7uERjeSRFUOtuCE3cV1CTiBKvryvKXAwnjiwIarH4Y87bC3awYbzBzoodvUJSrw8hFqQyMPF4fLynZ5MWhRJF0NtuO6qlLRb0Em/aVhhzAV804ptsYnvCpvjdxnNoL9QOIsQ5ye7GM6x3I3PabVyo/14dIKxLFIfXrldfvjF1UxKVstJPFimX7BNfufFG303Kmj3v+td4bURRHBkSz13bD73z1xax2v1FEcuEkahXHKM77pX+bPvSBtJ/rx/bPmuPq1fYWUm7v7Ap8xw06OTLSfbBxk9IfpT2+6h93Kv3SNSFaL9vwrr42Y/90WtGR1Qw8fqtXbitlfiSh4VE/8XfSx3bB+P1Etve+1kSrhAYOj5c4Su/KrmgQvGNE79PTG/0kNv7eRULIDYEx5HPwaCBMUbq2LBbz8SRQe3310pxtCNOyWsuIY4JcV0XYyOW+b8t+LRpf97aAMLm8muLbYQbi6fLPsPDBo53ieiMsEEmkznvb8HKvwMr6yxrM27jSrjQ36B3svVKeS/6upr2KoqiKMrNggovynXPwMAAP/iDP8jAwMAV1Z+YmCBjaoR+d8OSzqRxTBjnRAHHjTdxrTJOegiAhJeQ/3y24uMeAFhoLGDjb7md/ISE64dN2UCkBsEvYYMmnYiC1JAcEQjixK/tza4N4sfE1y3X4qMEg1IvbEJySNoLW3Q2qtaPj2EEnU2DjXyxMz0q35a3j2hEoWzyxnbF3/bHG5ygKd+8J+NxBQ3Jh5LfEO+BjGxS63OQ2yA3r9Rmlm/0scu3r14WcKRO51v1C2xqbBTnW2nCwC2SR8OvdL+5j33YiZhw4qMhw7f1RCzYbiSJX5ffbRR/g58Rf3pZuSa5/RpRNxqml7Apfm/nGglb8XGXoa49QV1strEw0GmzNxKlJcd6kn3dnCONJTne0s6D0m4Dejab7SNZVqIrGkvim+SgHKVpFpZH46THZFxuZrmf2uvNy0iSWye+LSnRJ3OyUnRyvFi48uNcM1ZyEbntCI54/mwkZTLj4peg0bN240127+OwKfalR8/3Z2pQ1qNfjQWM7hoWG/z4WFIxPk4XH5nrjdJo9xdF3Sug28fBnIT8HLm7m2jXxpFYYVOOfYUtGfcFN9xxJEezKGJjfU6udaZHZGrbaS30bZYy/vniy7L3RtCQo1pOCtbu7nkvrXwPZTAjd0N+ndjgV7p+xcRHEbtzbttzg+1+lgDWr0NthtTmR6BZxDguSerYoInjOpJVxhLPRxkbNtsHjTBRiOsmMakBHL+Asb7oLDaI60UixsS22KARH1tLdObHsdKGjSKcqM74gMtAxpDwDJ5rMUR0NRwTZ7mx8jnnl+XzNQpwggrG+nGzEa4JSWckEqP9GR61GrhBhXTfyAXmU27gyTp1JiYmzvtbsPLvQMd/QXNZm71tXAkX+hv0TrZeKe9FX1fTXkVRFEW5WVDhRbnuKRaL/OVf/iXFYvGK6htjeOKx3VTOHV72/NjIMEGz3HnsVY7j5td0v2E14FVOQGak85xdPEpicINc7wxyjWZmTK7Jjfuib7M8Nk732+LMKBSOddtuleRWo/ixMSa+FtdIpE37G3G/An1bYOmIlIm/sTcQHwOqAFau8e3bHOcqkHIG4ttsBuWK2bAuwRXGyDXKuQkwcY6J+QNyO4kjG11jjFz17KQwjotJJGSjPrev17O0d0+dcZVOyvNLR+U540IUdMfZHlP5NPRvxrS/cS6ekGuRpTHx4dLRbldBE+YO9HwLa2TM/ZvktqGlo7JZ742ycIzMzdIR8aeXja9RrnTLRAEU3pIrq9vXeS8dkeS/nXVgpI/i2/EVxnHS21ZpmQ9YOiq357QFjeLb3SMYjittVM5058yYOF9Iz6a+8Cadoxo2TuKbXbPcF8aICFI40vVT+xpykDWycDgWt+rxVdSDUDwm5XoJ6l0BYumo+KHQ25cb+zUtEQx9m+R6ZDfdjZJp569pz8vi65LAtu2/Xn+2nyueiKNgVsxHJ4LExLdAOctsNsZIeTcdr+ENkiS6nVOnPaa5A7EQVpE+Cm/GayIhiX+9TPwe65E92j5sz+PCQck/VDjS47D2Mb2szL8XX+2+cOh83/Yy/6qMaXDLiveSrJ9OTEdQxy4cjteiL++nVkk+SyTcTZIOt9eDX6EdebMsMmRuHyaRIZFIYGzIgJ1ldMPtBAsylmQyiY3fl6ZfPq+M42JbFZKZnGi2rQojE7cSLBwhbJYZGR7Ecx1sS+bLcT2xZe5VEYwQGckJap02wmaZfDjDJx97iE8+/jCVc4cZGxnGjZrY3nl1XGwUQuGI2LP0Jom+tYxuuLVjc9gsMzoyvMytYyPDtKb3MbbhtuXj76F67jBPPPZQ57N45d+ClX8HAIKFI8va7G3jSrjY36BL2XqlvBd9XU17FUVRFOVmQYUX5bpndnaWf//v/x2zs7NX3Majj+xm5+YcxdOvdL7FGxkeYiDj0qrM4U/vZzjnMLJuO369SNRq4M8cYLTfIzs0QViZJZo9QIIWmc2PkKBFNHuAsDJLdnQLNJews/vk29/0mGyIFl7H+nVsY1E2cFGInd0H9UXZXEYtbNCUf3MHxVAviz33bUmsakM5UpIahFYVe+5liXwwnuRuMK580z79bWhVZBPeKsXRFg3s9EsSCZAZg+mXoDyJDRrSV9iMy1ew0y9DbVquQI5C8BvYcy9BdRYyY9i5AzKG9R+DpWNw7sX42/r2f7atfMN+7kUonwW/AcW3sXOvxlEWFhv6WBth6wswfxCsA5k12HMvSvnKFMzug/qCCAH928TG+YMShdEqyRgq56Tv+UPiw/wmyKyT65/nD8mGPPJjUcQRgaL4trRjXIn+iAJ53a/Khjmow9BdIu5Mfxsai9J/m7AFzZLcSjT3qvye7O9GdvgNaT9sQN9WKT/zHRHSnHR3U57fKP5YOCzjDOPIJGtjYemg1ElkJYpj+tsS0ZHfJPbOH5Sxt0oyd80iNAoyxwuHuhEtzSKc+YaMY+EQFI/LLTjNorThx1E3rXL3eNG5F2XNrv2w2N/bV1sEDBpStzIpQkbQlMdhU8YXNETwaBYhu17qzR8U/w7cIuXm9svrlUkRhNp5X1ql+LiKJ4KfXxP/zB+SiCYbgg2xzaLUaYtgrbKsnVDWHEFDIoYmn4barNi49JbcUtQsim5io27ZVklsjwIZ98Lr3Wis4tuyxpslsTto9UTQBOKvmb+BxJCId9PfPv8IUdCQdVt4G0wSWmVsbR7WPRq/l16S91tb0GmVZe4mX5D5a1VEFG0UsKEv2aGGbgW/Ku/RVrEb3RW/D+3UXii8RfbWH6Fx+kW2r0nziQ9uxbN18gkff+YACRPhuYYobGEyYzh+GWb+Bte2SKSyBPUi/RmXDdvvJdWcIll6gw3rxhkeyOFEDWyzhLGxD2rnoPg2UVDHtEokXEMilcWvzJEsvcHuu9fxyMO7O5/BXuUEg1mDE1SIwlZ80i6StdooQKuCE5QZXredzbd/gHzCp3H6RfKJkJHhoe7b0m/iVU6wpb+Oa+vnRWeEfpPS6Ve4d3OORx7efdG/Be2/A72f+/0py/DGOy7axpVwob9B72TrtezratqrKIqiKDcDxuo9gKuGz37253jyyS9fazOuOseOHeNzn/t5vvSl32THjh1X3E4URTz/wl72PL2Xms3GyWgb1JfOQhSSHt6E8TIUF2cpzZ2ib2iMgbHNEDaZP3uUUrGIzU9gEjmsX8VUJukfGGB0w22ExuPooe8StWrxLSd9crTAr8hRo+SAbKJrM/LtdX4C3CS2VZbNlpeXb+Eb83LcKZHE7Z8gtB5RqyIbdceLb+DpB+Pg4pOwdYIgIggD6TORhSjENBf4+f5ZNqVsLMQ047wJcS6G9jXGUbyZbCd+jdpHFwA3Id9ih75oLMajcwSq3UanTnzcJU7k2U3y23PrSnvD6sTt9PZtnG40S/tWJtvTrnFlY+wmOd0yfKm4Vo6yBDXxKUaiOqK6HBlyUnIcpVUEvyl5YJL5+HafpGy4GwuS0yazRqKBqudko5vIQnZMcnFELZkTvyZXBzseJFKQHpY588txO1lIj8sY6rMyriiS/CBeSsadGhQfNmLhLTMic9Y+AhMFkBiQ6Jj6rAgPXhoyw3L8p7kgZdMjslZaFbHZ8SDVL322BaHiW2J/GEcVpPpkHYaN7lXYnqwV6rMiSiSykFsnz9dn46NrQ91jUu0bsxIDIgxGrXit56VsY06uBM+My7qvz8U3Y62Rozn1+fjoTFLEpGb8OD0qfQcN8aeT6t5K1U78mhyIc4q0JDLKePHRrTgXi5MEN75Zx0nKFex9W8TGoCnPR6HMG1H3Fp5En7wvoqB7bCmMBabIyviDqswh8VHCWNikEd+iYzw59tWYl/nOrZV15ddF0GyLsak8pn4O1xi8/BoiL0dr/ojUz64VH9QXRET08uLLZJ+Ir0FdfN2e3/ocJqjKjT+5dXF/VemPiOTgZrK2yMce+RD/8LOfwXEcnn9hL0996wXOLZQpFAqEXj+RBYIGblQnnU7SbPqYZB+Do+MM5lJkTY1PPPYQFvjmMy9Ss1kKlSZz05P41XncdB82MUBQmcFETby+dXipPG5YY02/4Sc+9UN89JGHJTKw5zP4qaf3cq7gM7dUxW82sX4JL5HEBHVcGzCy4TYGR9ZI/hCqbFg3ytnpBeo9n9tZU+OJx3ez+6GPsPfFl877XG+//sjDuzv9X+pvwcrPfRM1L9nGe/k36L3u573q62raqyiKoig3Oiq8rCJUePnehJc21lq5LrNeJ5PJdM6n9z63fv16pqamlpWx1rJv3z6KxSIDAwPs2rULY8yyemNjY/z6r/86c3OzjI2N8WM/9in27t1LrVZly5atfPKTnwRgz549LCwsMDw8zG233cZf/MVfUC6X2LJlKz/xEz+B4zjs27ePQqFAEARs2rSJAwcOEAQBnudx//33k8/nJC1HvU6xWKRer3PixAkymQxbt27lrud+F3vqje/ZX9cb5xL9/Op8HmthcHCA7//+HyCKIp5++mnm5+fI5/Ns334LQRAwNjbG3XffTS6XY8+ePbz00ov4vs/ExAQ/+7P/gD/6oz9kcXGRdDrDpz71KbZt28bhw4f5zne+TaFQYGRkBMdx8LwEmUyGjRs3UCwWWVxcxBiHbdu2cc899/DVr/4Jc3NzZLNZ7rnnHubm5nnrrbdwHEM2m2VoaIiXXnqJIAjIZDLs2rWLWq3G3Nwc1lrWr1/PLbfs4OTJk9RqNcbHx7n//vvx/Rb/7b/9HvPzc50NTrPZJJ1Oc//99/MjP/KjZDJp/viP/5g33zxGs9nAWsv09DSpVIqRkRHuuONOXNehWCxirSWTybJu3Vpee+01oiji1ltv5fu//wfYv38fe/e+SBRFTEys54EHPsDJkyc5e/YsYRjgeQmCIKBer5HJZBkY6Gd+fh7Hcbjzzrv41Kc+xf/9f3+VEydOUKvVWbNmTfx7jUqlzNDQEAMDg2zYsIFqtcLS0hKpVIrR0VHGx8f57nf/hnK5RF9fPw8++CHuvXcnX/3qnzAzM4Prejz88MP8xV/8OcVikVQqxd/6Wz/Efffdx2//9n9mamqKIAgYHR2jUilz9uxZ7rjjDjZv3szWrdtIp9N4nsfCwgIjIyOd9177/TI9fY7jx4/j+z633XY7P/7jP87U1CQLC4sMDQ1RrVZxXZfjx4+Ty2VxXY+JiQkKhQLDw8NkMmny+T7eeusYe/fuZW5unvHxMX74h38Y1/U4deoUyWSSXbvuZ2JiA1NTk5w8eQpjDOvXr+fll19idnaW+fkFXn75JX76p3+awcFBfD9g69Yt7Nx5H9/4xjc4efIE2WyOxx9/nI0bNxKGIV/5ylc6nzdbt26jWq12Pp9Wborbn321Wo1SqUR/fz/ZbAZrodFokE6nMQbq9Ubnc69zzHLZ52aaKLKcOXMGay2bN2/G2u7jLVs2MzGx4aJHUJbbUaReb+A4Dps2bWJiYuK8z15jzAU/t3vbf6fXL2XHpT73349jNFdi67Xs62raqyiKoig3Kiq8rCJUeHlvhJebhfq/+1+JTt54wouz5Q4y/+Q/XGszrltu9vfLah7/arZdURRFURRFuTgaI6pc92QyGe699169slJRLoOb/f2ymse/mm1XFEVRFEVRLo5GvKwibtaIF+XK0IgXRVEURVEURVGUa493rQ1QlHciiqJObhNN5Hf5OOu2AJJzVa5zMazWY/m9Y2iPS7kwN/v7ZTWPfzXbriiKoiiKolwcFV6U6563335b8x5cAan/6Z8CN0beiBthDFeLm/39sprHv5ptVxRFURRFUS6OfqWmKIqiKIqiKIqiKIryPqHCi6IoiqIoiqIoiqIoyvuECi+KoiiKoiiKoiiKoijvEyq8KIqiKIqiKIqiKIqivE/oddKriJv1Omnf9ykUCgwODpJIJK61OauOG8F/N8IYrhY3u69W8/hXs+2KoiiKoijKxdFbjZTrnkQiwdjY2LU2Y9VyI/jvRhjD1eJm99VqHv9qtl1RFEVRFEW5OHrUSLnuOXduii9+8YucOzd1rU1ZldwI/rsRxnC1uNl9tZrHv5ptVxRFURRFUS6OCi/KdU+lUuX555+jUqlea1NWJTeC/26EMVwtbnZfrebxr2bbFUVRFEVRlIujR42UVYe1lsnJSWq1GtlslvXr1zM1NUW1WqVUKtFoNADYsmULGzZsIAxD/uiP/pDZ2VlSqRSPPfY4fX19TExMYIxZ1ma1WqVcLpPP5ymXy9TrdZaWFhkaGmbLli0YY6jVapRKJer1GktLSwwODlKt1iiXS9TrdQYGBhkZGWHLli2EYcjXvvY1ZmdnyGZzPPTQQ2QyGd544w1qtSqDg4OsW7eel19+iSiKGB4e5s4772RpqUChsITv+4yNjbNmzRq+9a1vMT8/x9jYOD/1Uz/FxMQEv/3b/5mTJ08RhgH3338/R48epdVqMTAwwN/9u/8Tc3NzPPPMMwAcPnyYjRs38uu//v9jbm6OdDrDvffeg+8HHD16BDDkclmeeOIJfud3fodqtcrIyAhf+MIXmZmZ4U//9H9w8uRJrLWkUikOHTpEGIZks1l++Zd/hf/+33+fs2cnSSQ8HnpoNyMjIxw5coTp6XM4jsP69RM8//xz+L4PwL337mT79u1MTk6STqfZunULmzdv4U/+5E8oFgtkMlnuuusuMpk0i4tLALz22musX7+eX/zFf8709DTpdJrHHnuMWq3Gc889R6vVIpVKcc8993Lu3BSO4zI8PMRjjz3GwsIiTz311zQaDdasWctnPvMZnnzyt1lcXGRkZITPfe4X2LRpE1/5yh8xNzfHyMgIfX39vPDC84RhyLZt27jrrrtZXFzkjTdeZ2FhgWQyybZt25mfn6NWqzE+Ps6P/MiPYozh6ae/xezsLGNj4wwNDfH1r3+dSqVMNpvlvvvuw3U9Dh06SKvVYt26dXz845/gr/7qL2k0GuzYsYPv//4f4ODBg5w4cZxcLse6det5661jHDx4ENd12bVrF//oH/1jPM/rvB9SqRTPPfccAF/84hcYHh5mw4aNbNu2jUwmQyKRYGhoiF27duE4zrJ1XywWmZqapNXy2bp1K/fddx/f+MY3WFhYYGRkmDvvvIt6vc6JEyfwPI/BwUHGxsbYv38/8/NzjIyMkkql8DyPhYV5jHFoNhvk831MTU3iOG6n75XvvyiK2LdvXye/yf3338/U1BQnT57EGMPmzZuZmJhgamqKWq1GJpMBoFarUS6X6evri320jtdff72zVlKpFI1Gg2w2u6y/d/pcabdfr9cvWrdt89LSEkEQsG3bVnK5/CXH1fb7xfqfmZkBYGZmhu3bt3fGezn2Xw5hGPLUU0/FczrCJz/5SVzX/Z7aXC2s/LvxXvhTURRFURTlctHkuquImzW57rFjx/jc536e//P//A3OTc+y55m91G0W66Qozp2itDSHlx2l2oJWswF+CS+RxCOkVVsgCF1I9oGNINkPjkvaDbl7+xo++fjDAOx5Zi/TC2UWlwq0/IigVYVEPzaRx0Q+NBchbGKMwbhJoshivRxEPgQNad/LQhRCYx78GgRNSOYgtxYSWXmuNiNl3DS4CfArYAykx+Rx0IDGEjguOAlI9YNxIahDswiJHKSGoFWEZgG8tNS1ATQWIGxBegS8jNTxy9JO5Qx4eXCTkF0DNoRWWdrzMuKbZlH+uQnIrZPXWhWoTIqN2TVSNmxIX14WvH6onwNrIbcGEnnwq1Cdlv69rDzvxGNoVaSMcaE2LX1lxsB4EFShURBfpobFN7VpcDyZt/JJyG8Avw7JPGTGIahB5RyEdUgNQHpUygdV6cvLSF9+PFY3A/UFedz2RTIvc1M9J/7LTkBYlvnLjECiD6IW1OfiuR6QthoLUi+ZkzG4KfFpfTYuNwjZ0bj/Snf+EoNQO9v1mZeFVknaS+QgPQ5hFWpz4CSlndo0WF9e7/RVgvocrgnYfvdDnHnrMPVKIe6vBJk14o+wJr5P9mMSeRJuSDoqctvWDVg3xUzJZ3q+gt9qiP2uB40SYCE7jknksK2y2OckcLJjWONi/YrMV9smvwrVKVlv7TkNe9ftsMxLc4FcLscdt27nicd288aRozy997v4CVm3Qb1AUD6H43okBjZg3DRRs4jTXGR4bD24SZYWpglCMFiczDCOm4CgRqM4DU6CoHQWk1uDkx5icHicdWODZJ0aTzy2m0cf2b1M/IiiiOee38ueZ/ZSizIUC0ssLUxDoo+hkXEG8ykypls3iiL+02//Dt98/ts0wgRB4EOiD+N6DOYSbFvXx8c/+hGOHHmzZ1xZCGok/AU+9vCH+Ef/82fwPO+8/hfLLd468Bxrtz9AvbJI/9AYA2ObMVFzmQ0XE28uRqvV4vNf/DX2v3aMKD3e+TxyGrPcf9cOPv/L/4JkMvk9f1Zfj/T6t26z8tkbNr4nfyqKoiiKorxbVHhZRdzswssT3/9DnK2kya+7G8dLcObws5QaDq3kGL51MF4WN5HGRj528QjhwlHZfNoQ0sMwfDvGTWKjEFpFHL/IoFmEZoFEbpRKkMBvVPD9ENu/DdJDGCcBRNjQh6UjsPgGZNfB0O1QPiEb46HbZIPvV6UvJwXTL8nGeOMTkMwC8TerQQPm9kPpBHh9kB2BwdtEwCECLweLr4NxoH+riCitgjw2CSgdh/o8jN4rwkHxuNQduEXEk+pZEQMGb5MuvSzMfBfmXoHR+2H4Llh6IxYphkUESfSJbZUzsnHGgbUfkudmX5ExZoZFtDBGNtZOEhaPwNJrMLAdRu8TwQMrG+7aHJTekvEO3ykCUbJfhI2lo1A+BX2bIbdexp2OhZZWRYSrKOgKLH2boLEIp/4StvyQiC+FYxA2YeQesdEgz3s5EXMSeREblo6If0Z3QuEtea56DrLjMHKXCBjEH4FhAIuHYfEo9G+BkbshPSRjtlbaWXwdSqchNSj1vDT0bxeBBmQOatNQOiUC2+jdIoq5afHb0lFpo38bjO0UkaSxIOvHTUPhTbFxzQfl59yrslYSsR+G75R5b9vUWISFwzI2JwX9m6Re4Qhs/ztQOydjHLgFHEdesxFO8U0s4PVtIPRyWC8vgmLoy3ppLMGaB8G2unZ5achtlL6JxPb2mgwb4kY3Cdn1IhI5rozLSXXna+x+EQwXX8NtLZDwPILkELlND+Ek0tTLC7SaDSIcqJzFtS28tQ8QRBG2WYSF13GCCk52lNDJwMAtJJIpfL9F1KphIx+mXoDyadzbfgInt56oWSTjhdy+YyvV6dfYuTnHZ37mp3EchyiK+PJ//X0Onq6SW3snU0dfptR08EZuFwGnWWYg47J+zSiV6de4Z2OGg4de52QpQxRZQjeLGb4N4yYhioiaRdKmQbT0Fn5tieyOH8RNZTqfZVGrQWt6H1v66/y7f/0vcRyn039+3d00SnMc+uvfIHPHp0n2byBcOkp/yrLx7keJAp/KucPL7L8cWq0Wf/+z/wtLZh3u+AOYRLrzmvUbhLOvMGyn+d0nf/OGE1965ze/7m7cRKrzWug3r8ifiqIoiqIoV4L+T0O57hkZGeGxxz/GyUUY2PQAbiLFwpk3KDUd7MA2QpOE1BDWeERRKBvI/CbIT4hgkRqAkTsxrlzPahwXkx4mSgxQMGuomiEKxQJ4WYLIwPAdmMywbKawgMG4KRi8RcSQzDDUpmRDO3avfHtsDCbZJ5vR1hKM3y+CRP0cHdEFZPO67iOysbctEQ68tIgWblqiJRJ5WPugPN8qisiRGpTHQ7eKGNCOOBm7T4SG6iQmOyqCTCIHrcVYCIlgaAfkN8ZRCUWJKMlPSD+pQdkgN+YhNYBZ95DUL52QDbWblvrJQdlUx9EnJpGRqJH+rSIStMeAgaACiTSse0jar03LT2PAS4mYkl0j7WZ7IkVSg2Jb3yYRMKIWZs0DImoYF8Z2SSSOl4bRe8Seme9InXUPyXiI5LExMi+jO2UM1Smp0yxIe+s+Iv5rHzUwLibVJ2LL0A5I9WMyI7J+MFLOTYpw0L9ZxK9EFtZ+WMYa1qVM2JSImLUPyjhLJ0WwSvaL3X2bxGfZ8Visq8jz7fkdvVeeL76NaUeSpAahf7P4wkvFy8lKf5lRWWtDOyCRkrWZGRV/tArgpjFjO+M16sncViaJ3AzO2o8QuHmiKJL1jZHInpG7RcBpzIqP6vLTjN2PyQzHog+Y9JDYPHKX1PUrsh6zw7Im3bT4oj1fXgrKJ8Wv4/cRkqThDcHofQRhQKtRoeX7WDeNkxnFGbuP0KRoLR7DcZMYL4sduYfApAgigzN2L04yS8sPiKyDSQ9DbVYEuPEPYJ0UOA5OZoh64DJ5bpaBTQ9w4FSV51/YC8Bzz+/l4OkqA5seoDB9nFLTIbFmJ8ZLYRyHRGaAYj2kUK4xsOkB9jz3NxwvpHBzY4RuFmfsnvhzgk5ftTBJI78D27+VsHxm2WeZk0yT3vQQJ0sZ/vOTv7OsfzeRotKMSE58iGT/WpxkmsSanZSahsUzb+AmUufZfzl8/ou/xpJZhzexe5noAmASabyJ3SyatXzhV3/tsttcLaz0by9X6k9FURRFUZQrQYUX5bpnaGiImu8wuPkDgJzVnz97FG/4dlr1KpGXxWAwjivRLBZs0ICRnVCdlCgBG3UCGzokB4giCDLrCYOAxsJxotyGODqhN/2RkapBXTbytTk5SjOwXTazsbBiQTa21sqGc+g2KJ+RxysZuUeiOtyMbNpBNrnl01IPREgIm9ImJhYBgKE7oHJWxAiQaIbaLDaKxIqh26VfLydHcYwDW/5WNxJj6I5YIOgndqjYkhyQMQzdJuVKp0XoCWpiQ9SSNgEbhtLe2C7xbRvHlSiXRD629VYRdayN/yHRLqM7xZ8QR8I0Y7/Fv/dtAGNkTBbZvK/fHfsiZvBWsWHw1thfORm/tbQFMxwPBneIX6NIIpIGtse29syxcbHWxnN8n/hz2bwZOgto6HaJYslvjOctJ2O2yFwmcnG/t3REi46f21Ef5VPit7ZQ08vQ7VA+LWMvn5F5Hrojtqc3J4Xt9j/YjniaEfFm/IPSd3sttcdrrTw/cAuRjbDJfgh9LLa7xhN5iZgqx8fTKmfFJpBSXgbigBtpMxSxo+17G4mdXoZlDN4m47IW3Jysy/xGSORp1as06xUZczLfrTN8O7Z0FhtZrF/DJvogCrG5DV0vWAtOPH/1WRi+CzOxe1nXTmqA+cUCWEt+3d3seeZFoihizzN7ya+7u/uZMnI7K/FSfcwvLBJFEeVymXDoTlqLJzDDt51XFsB6GcBghm6jtXiSCwWVJtfu4pvPf5ennn6B/Lq7O88vVVpkt3wUp8cH3sjtzJ092mmnbf/lBKuGYcj+147hjj9wyXLu+APsO3yMMAzfsc3VgrW2M7+X4t34U1EURVEU5UpR4UW57jl27E1m5kvYeIPfKM8TenkiY4iM2xUkMFgMoV+TYx1RU779NyZ+LVrWrnEccFNYHKyXw2IwXlrEg96NtkGOmZiEvJ7IiBDgybfHy/IzRi2J4GhHSCT6JPJgGfHmNTMGlVPxkQ1HIkiS/VIPZEPbPlbSrmcc8JJSrlWQ59x0z+Oefv2StB2FIkBhxHaiuN3Yb345tjl+7CbFf4lM94iTDeWn40iflVPiWy+93FdRIJtx48T9pERYaC7JOJoFSMTRH8aL/epIn2FDfnd6oiVaBYmkwEj0SNDoutFxxIawFvsmzosT+SwTKNyUiAnlExIt5GXjMvHkGkeKh02xPZGRKKnG/Ip5ax8Xq8d5VpJd+40X298ee3wMKTUg8wAiyrhJeT7RJ9EZvfPQsTee38rpOP/PkMw5xMlAe/+110RWjms5rggf8wfBzWKW1UOOvyUHxCfWYowr/QV1OQZmPIzjSsRKakCOriUHpExbOGsfMYp88UgUynpODki0VxTKPMRrwCwbV/x+aJVkXIkcNpCjRTaKwE1gev4smdgXUX0W63iYdmSUl8GGfiw2xu/vZkH8ZsAWjxPZUI4IxmslMgmKxSJuIkUtyrBv3z7qNoubSHU+U4y3PCoC5HMitC7zp17HZkYhaBAl+rqRLj3YKBKfOgkRs5J5osbSeeWcZJqW289csdWJxGjUG4R+gL/0NlHPOjdeitDL0ygviBtj+ycnJ89rdyVPPfUUUXr8vEiX88aYSBOlx9mzZ887trlamJyc7MzvpXg3/lQURVEURblSVHhRrntOnz7DqSPfoVlZBCAMJO+EjaLuUZA2xsjG07hxhEYW2ZwSawMrvtV0XPkWv70B7t0ELysaxaIDkrPCXORCMBvFm992NEIa2pu/TpnYnkRW8pgYR+yO/DjnSE9bpqctGeDydtttreyn/dg4Ilyc+DOJ0nBSsYjSY38UxmLTcr9I2Xjc7Z9tR/r1biSHoWtj2+aO/0yczLIZ99XqCFbSblvcigUiEF8YR46mhL7YHdRkDK3Scv942eV+MO7yCJy2fW5Kct+4meX99vq013Y3I0LEhYha3cibdjuOE/vVXf68m+3OS9TTvpeOhZqL3CjjpsVe44otveLWheiUc8RHk0/DCqEREFvax4p660aRlO+sfyvtBbXla7ITSdTrw7b4k4agRUcEw5xvshuvy6gV5wxyY7+1++2+/zpVvbQkOsbprp9Y1LHWdoXJqCntN4tw/M+gVV3uA+PiB0HHjkKhIOXpfqZc3L8OrWZFooui4KJlO/aY+D3jprEXWUfWzRD0mBeGIVGrQvX1rxI1Cuf5LQqayx7X6/WL2xuzsLAgnzOXQyIr5W8QarXapee0l8v0p6IoiqIoypWiwoty3ZNOL//Ps+tJdIRpCwK9uzsbbwJtKLlRghqdDaCBZRtOgCjEYGSTbaPlm/ZlRZ14c4ps8GxwYWONIwJCezMYNCR6YFmZ2B6/JtEVNhK7nURXoGi3ZXvakgEub7fd1sp+2o97/RNFYrtxl9vv9IgePX6RsvG42z/bjkzEm/K2SZ1cKbHNHf9ZERjam3cn2Y1aiaJuPdsj/rSPqwTNeIxet82Vvg5qy/2wbBPf47KwKRvQsL68316f9trejk65EE5SEinTM+62qGLD5c+Hte68OD3tBw3ZFF5oXCA+S2Tl9bBOzwK+MJ1yvTv5C2z43fYa633PhLGo5vSsfyPtednla7ItAC3zYSx2Bo04MsfE47LnmxzG69JJSvttsarTb9f+TtWgISIcUXf92AhwJJKnI36lpP0OUqZ3nIn4JiHCBoODg53y7c+Ui2Ijkqm83MrkeBct27HHxu+ZsHHByBgAE9bxesyTa50vIq6FDZzeaJyw0bny+lKMjIzI58zl4Nek/A1CNpu99Jz2cpn+VBRFURRFuVJUeFGue8bHx4H4W2kg3TeKG1RwrMWxYc+mzWKwuIn4KImTkiSocc4Ps2K520hybBgiTFDFYCU3TBRvGjuREIgoYn153a/L5i8WEJYFTzjJbr6SsBUfHxpcMSIjRzvqc5DfLJtPG8XHkkrdDbNxY0HIduvZSKIKWqW4XSObi87jnn4T/d22AawvtuN0hSaQfsNm93HYEv/59VgU8uPNsR+LL0bsrs/HPujxleNJREC8MSZsSoLg1JCMIzUoR2+CRhyBE4tDYRxxYCPpO2xIveRgnOtmRdQQiC31eYkqaW/2I1/a7N3Ahk2J+unbKrf1BPFRtPbktvP/uKnubUrNolzFvHzFyA8vI3MXtrr2t28usu2xGxljsyjzAN0omqAh85MdXz4PHXvj+c1vEp81luJIkjiigt5/7TVRkxuOorB7jCqoYJfVIz6SVhSfGIO1ofTnZeLjRIHkSQp9sT23IS7fiiM5iNeUHx+noeeq8CIkh2Ihz++sAbtsXPH7Idkv4/KrGC+NQyRCaugvOxJoY184mXFMFGCTfXJcLahj3ITUiX1hUoPx+0fGb6Kwk1CbKMKxPgMDA4R+k6xTZ9euXWRMjdBvdj5TbG9USduGKMI1IaOb78TU58FL4/jlC0ayGMcRn0a+5J1qVXDSQ+eVi1oNkmGJsYEkoS99pjNpDOcLcTZo4gYV0n0iirTtn5iYOK/sSj75yU/iNGax/qUFCOs3cBqzPPHEE+/Y5mphYmKiM7+X4t34U1EURVEU5UpR4UW57mnnp6jNv915PLrhNoLFIyQzOZygJvkUolDyUxgkF8vCAchNdK9nXvnte6uI40CiPoXreaRHtuFUz8qmP+qNaLFS1cvA/AG5iSe3Fopvx5EjsrU0IJEQxsgmdOko9LWv313B/KH4m/N6fEQE2Tz3bZJ6IGKBm4qjK2w3OmLpDUlm2n5cfAuy4/Em1MgVyn0b5dt5L9uN3Mitlxt5lt6IbxIqtR0strSKMoalo1KufxMsvSlt+NU42kAiPYzrQnYtzO1bHmEShXIUxK/Etr4pAoYx3Y1732bxYzv5aqvUzYvT/r18FqyVMV0oUgnkiuPsWvnZ9n37BqJOZEYgVxn3bZKoDuPKvMHyObahrDMvA/Ovij/Pi4qJHy8dkSicSnxjTVCNj78gc+lX437fgsx4NzLIGBnb3H7xgXHieSguH9fSEejbJGPv2yjzvPRGbM8FjkgFVenLOJBbI7lwQK49b6+l9niNEZuKb+EYB9MqxXlVTHeN+xUoxGs3qMhaWzoS9xiLhu0TPlEgPq2c7frexMeQghVHNwpHZVzGQFgVYaZyBvwKyUyOVCYvY25VunUWj2D6N2Acg0lkMX4ZHBdTPdv1gjESudYeWzwvpn2kDYiaRUaHB8EYqucO88RjD+E4Dk88tpvKucPdz5SFI6wkbJYZHRnGcRz6+vpwl14nObwVu3j0vLIAJpAIJbt0lOTwlhXrSGhN7+Pjj3yQTz7+MJVzhzvPDw0OnFc2WDjC2IbbOu207b9QuytxXZf779pBOPvKJcuFs6+w6+4dcdTNjYExpjO/l+Ld+FNRFEVRFOVKUeFFue5JJpNs2rSZOzbkKZ5+hdBvMrLxDvpTFlM8jmtb0FzC2ADHcbFhC6dyGiqTsrlrFmHh9U6iTRuF2MYijl9kyM6QtUty7CCo4TkWlt7A1hfjb7Rls2vDpmxuSyegvgjZ9fIN/txBCeW3FtsqyyY5OQSz+2WDn1nHss1y0IBzL0H5JJgkLByS56JABJ/MuGx8p78tzycHJK9FsyBHb5belEiB9Ihs6OdelW/4cxuwtXlJqupXITkcCwsOVM5JZIZfhcSAtF+ZlJ/Ngogl6VFoFbHnXpRy/Vuhf5tERiwdk4SoYUvabJWwfl0iZUonYOa73TFg5SYcvwHnXpT2s2vlp7UyhlYFajPSbm0uvtknjmRoleUGoliUsDOvQH1BhI1kv4gMQUOEq7AFax6U6JFzL8ZijyNtWCvzMn9A/JpbL3VSg9LeuZfEf53cNCG2WYaFw2JXs4StL3SParUjmOb2y41PmVFpf/plGaubkTJtIWX62zLO/i0irrXiKJ/yafFZbbZ7g1DQjOe3IfMX1GFgO9avSmRNswilU+KLoEknd461EvEzu19s9puyNv2q5CLJroewgZ07EK/RQF7LT+CEdaLpl/DCCo7jyPrGiri28JrcaJWORaPMOAR17Nx+bH2Rdj4d21gSmxdek7qJPlmPtcXlUUvt+Qqa0LdF/Dr7Ki4t0kEB5l/Fcz2S6TzJRBITNojq80Rzr+LaJsnhHURhCxvUMAuH8GwTz7FEcweJWjWSCQ/HRNjGokQRNebBy4jwEkVE9SUyXsjEunFKp1/h3s05HnlYbj169JHd7Nyco3j6FQbXbqM/ZfFnDmCDJjaKCOpF+jMug31ZSqdf4YlHP8C2oRZhdQ43qhHNHepGvsR9Zd0W6eoxTOkEbt/GZZ9lUatB4/SLbOmv8w8/+5ll/Yd+k6GhIbzsEGGrTtRq4M8coD9lGd54B6HfPM/+y+Hzv/wvGLbTBJN7z4t8sX6DYHIvw3aaX/mlf3HZba4WVvq3lyv1p6IoiqIoypVgrN6huGr47Gd/jief/PK1NuOaEUURz7+wlz1P76Vms1gnRXHuFKWlObzcKNWmxW82sX4JL5HEI8CvLeKHrmzsbSSbd8cl7YbcvX0Nn/zYwxhgz9N7ObdQZmlpiaZvCVtVbKIfm8hhogCai5KvwRgcN0UYRdh2os2gIe17WRExGvOy0Q0akMxBbl2cSLcmgkP7Gmk3IWKBMZAei3O8NOTIiBPf0JMaAFzZvDcLslFPDcmGtlkQQSI9KoJPY15EmPSIRC4E9fjIUV6OXVUnpa/sWrHTL0uSWC/OM9MsQFMiIMTmnIgHlbPdel6cKLexIOP1+qA+LfVza6UvvwrVc3Fujow83zmOEicodTy5CtpNyA1BxhNRpVEQX6aGxTe1c1I2u1b6axXFP8m+bjRJZUr8lhoQXzhxW61KfPWxK2P14rHW5+NooiRk18j1xX5NbA6bkN0AQVl+z4yIoBC1RARpi2GJXDzPdZnj9i1HrYpcaRw05EhNdjTuv9Kdv8QA1CZFwMitkaNSfjyuRE7WQlgTUcrxRESrTcvxnkRvX2Woz+GagO13P8SZtw5TrxRE/PGyohkmBqStoA7JfkwiR8KNSEdFbt+2AeummC76zMxXaLUa0qbjidiDhewaTCInomJ9AVwPJzuONS7Wr4gImMiLTX4VqlOybjNj8VG5Rs+6HZZ5aS6Qy+W449btPPH4bo4cOcrTL3yXVkLWbVAvEJTP4bguiYGNGDdN1CziNBcZHlsPboLCwgxBCBiLkx7GcRMQ1GgUz2Him8HCZgmTyDM0PM7asUFyTo0nHt/NIw/vxnGcC36uVKMMxcIihYUZSPQxODrOYC5F1nTrRlHEf37yd/jmc9+mHiYIghYk+jGux2AuwbZ1fXziox/hyNE3e8aVhaBG0l/gY498iH/42c/gxflmVn6u4aYpLs5SmjtF39AYA2ObMVFzmQ299l8OrVaLL/zqr7Hv8DGi9Hjn88hpzLLr7h38yi/9C5LJi+Q0WuVcyL+Eje/Jn4qiKIqiKO8WFV5WETe78NLGWitXhdbrZDIZ1q9fz9TUFLVajVKpSL3ewHEcNm3axIYNGwjDkK985SvMzs6QSqV57LGPks/3MTEx0Qkvb7cpbZTo6+ujXC7RaDRYWFhkZGSEzZs3AYZ6vU6xWKTRaLC4uMjQ0BCVSoVKpUK9XqO/f4CxsTE2b95EEIT8+Z//OTMz0+RyeT7ykY+QzWZ5/fXXqdVqDAwMsH79el5++WWiKGJ4eIg77riTYrHA4uISQRAwOjrK2rVr+da3vsX8/BxjY+P81E/9FOvXr+fJJ5/k5MmThGHIfffdx5tvvkmr1WRgYJCf/MmfZH5+noMHDwKWnTt3cs899/If/sN/YG5ulkwmw7337sT3Wxw5cgQw5HI5PvGJT/Bf/st/oVqtMDIyyuc//3lmZmb42te+xsmTJyRVSyrJwYMHCcOQfD7PL/3SL/EHf/AHnD17Fs9LsHv3Q4yOjvH6668xPT2D4xgmJiZ49tln8X0fYww7d97Htm3bmJycJJNJs2XLFjZv3sxXv/pVlpaWyOVy3HXXXaRSaRzHIZfLsnXrVu64407+j//jF5meniadzvD4449TrVZ57rlnaTabpFJp7rtvJ1NTUxjjMDw8xGOPPcbCwiJ79jxFvV5n7dq1/IN/8Bm+/OUnWVhYYGRkhM997hfYuHEjf/zHf8zc3CwjIyP09/fzwgt7CcOAbdu2ceedd7G0tMjrr7/OwsICyWSKW27ZzuzsLPV6nbGxcX7kR34YYxyefvpp5uZmGR0dY3h4mK9//a8ol8tkMll27bof1/U4dOggjUaD9evX8/GPf4Kvf/2vaDQa3HLLDr7/+7+fQ4cO8vbbx+nry7N27VreeuttDhw4gOe57Nq1i3/4D/8Rnud13g/JZJLDhw/zzDNPs7RUIJ/Ps3HjBrZu3UomkyGRSDI4OMiuXbsk0mXZui9y9uwkvu+zZcsW7rvvPr75zW+ysLDA8PAwd911F/V6nRMnTuB5HoODss5fffUAs7OzjI6OkkqlSCQ85ubmcV2Xer1Of38fk5OTuK7L4OAQu3btIp/PL3v/RVHEvn37KBaLDAwMcP/99zM1NcXp06ex1rJly2bWr59gamqKer1OOp3GGKjV6pRKJfr7+8lms6xbt479+/dTLBbp7+9n7dq1NBqSOLW3v3f6XGm3X69fvG7b5kKhQBAEbN26lVwud8lxtf3+bj7X2o/fyf7LIQxD9uzZ01nzTzzxxA11vOhSrPTve+FPRVEURVGUy0WFl1XEzSq8vPXWW/zTf/pP+Lf/9t9xyy23XGtzVh03gv9uhDFcLW52X63m8a9m2xVFURRFUZSLo/G1ynWPtZZarYZqhFfGjeC/G2EMV4ub3Verefyr2XZFURRFURTl4qjwoiiKoiiKoiiKoiiK8j6hwouiKIqiKIqiKIqiKMr7hAoviqIoiqIoiqIoiqIo7xOaXHcVcbMm1200Gpw5c4aNGzeSTqevtTmrjhvBfzfCGK4WN7uvVvP4V7PtiqIoiqIoysVR4WUVcbMKL4qiKIqiKIqiKIqyWtGjRsp1z+zsDL/+67/O7OzMtTZlVXIj+O9GGMPV4mb31Woe/2q2XVEURVEURbk4Krwo1z3FYok/+7OvUSyWrrUpq5IbwX83whiuFje7r1bz+Fez7YqiKIqiKMrFUeFFURRFURRFURRFURTlfUKFF0VRFEVRFEVRFEVRlPcJFV4URVEURVEURVEURVHeJ1R4Ua57BgcH+fSnP83g4OC1NmVVciP470YYw9XiZvfVah7/arZdURRFURRFuTh6nfQq4ma6Ttpay+TkJLVajWw2y8TEBMAFnzt79iynTp0iiiKSySSvvfYaR44cIZPJ8OCDD/LEE0/wjW98g+PH36ZYLDI6OkoqlWLr1m1s2bKF6elp9u17haNHj2KMYWRklFtv3cGbb75JrVZjbGyMRCLJwsI8b775JmEYkUh43HnnnczOzlKr1XAch3vv3cn69ev49re/TalUYnh4hIcf3s3XvvY1arUauVyOBx/8MDMz0+zfv59qtUomk+GDH/wQvt/izJkzpFJp7rzzDnbsuJWvf/2vKBQKpNNpxsfHOXLkCL7vs379ej71qU9x7707+fznf4XZ2VmMMaxdu5YzZ84QRRFjY2M89NBuarUaX//616nXa2QyGe64407CMKDZbBFFIc1mk0QiQalUwnVdAHbsuJXp6XN4ngcYbrnlFqy1HDp0kEajQT6fZ8eOHSSTKQAKhQLZbJYoCimXyyQSCW699TaazSanTp0EYGBgEGMMhcIS+XwfGzZsYPv2bVQqVfr6+shms1hrOXHiBPv372NxcZGBgQF2736YtWvXcuDAqzQaTfr6+ti8eTPPPfcsjUaTdDrFY489Ti6XY2ZmhkKhQBAEbN68if3791MoFMjl8jz++ONMTEywZ88eFhYWGBkZ4eMf/zjf/OY3mZ+fx3Ud7r9/F319fUxMTGCMASCKIvbt28fS0hJBELB161ZyuRwA9Xq9sw7b5S93LRtjlj2fyWQuq822PYVCgcHBQXbt2oXjnK+fr+xz/fr1TE1NnWfD5dj5Tq9dKe9Hm1eDq+0nRVEURVEUZfWjwssq4mYQXqIo4rnn97Lnmb18svIm42EVbEjQquM4Lo6XAuOAjYiCJlEUEeJgrSEKfbChvO54gCOPIx+sBePK86b9fAA2AmMAA06i07bUiaQONi6DPG6XafcFcdn49yiMyzpSF9P92e7PePKz3dey/nttNvJcp7wFG3T7lI7icblABGEQ29bTZhSCjTjdcvjS4qBUS/WDl4PAh8ppcBOQGZO+gwYk8+CmxU+toowhDCDZJ3025gAXMsPgZaXPVkleaxbEnuw4eGkIauBXwMuLTY05CH1MepCEExL4dSI/npNEGtLjELXAL0t/XgZaFWknqINJQm6N9FmfA2Mw6WGsm4L6otTzspAZBScJfgnqC9JWdg00i9CYh0QOMuMy3sYs+WyG22/dzhOP7eaNI0d5eu93aZgBApPE+nWoz+AQkRyYYGRsLYP5FBlT44nHdvPoI7uXiSC9a7lus+LLsEHG1JhYM8LZ6XnqNkuxsMTSwjQk+hgaGb9gm0EQ8J9++3f41gvfwU+MyNiCGgl/gY89/CH+0f/8GTzPI4oivvHNp/nzr+/BZMdxkjlKi3MU507RPzTGwNhmTNRc1j5wUTs/8dGHAPjGsy+e99qFxvxu3+PvVZu91Ot1Tpw4wdatWzuC1nvBpex+r/z0ftmuKIqiKIqiXFtUeFlF3OjCSxRFfPm//j4HT1fJr7ubf3D8SSZqZ661WTcUR4I+fnFmFNKjMP4BETHOfhPyE5DfAqW3INkPA9vBTcrrNhLxonBUxA/HFbEjtwGyYyJepAZFaAma0l5qEPq3i3iSyEFqQMSfpaMQNmD4blg4AKWTIrJgoXIWhm+H0Xth4bC0N3SbiC6lk3Dia7D970BjAconRcvKrhFhJ79BBrjwuogsfRthcIeIPDYEHGiVofim2Di6U9otvAlBHbP2QWzYhLlXcetTJExAkN2IM76TyKQwjksUBoR+AxYO4zbnSG39GEO5BOvXjFKZfo2dm3N85md+GsdxzlvLbkKig7CWkydPUJw6Qn8ugeO4lFsu3sjt4CQImmUGMu6yNv/+T/0k//QXf4lTpSzJtbtwkunOfEatBq3pfWzpr/Nv/tUX+d3f/0O+/fpZTr76Te75vl9goQaleojrpgiXjtKfsmy8+1GiwKdy7jD3bspiLRw6U1tuJxC06pz4zv+A9BDb7n0Mt6ff0G9SOXd42Zgvh4v65XtocyXHjh3jc5/7eb70pd9kx44dV9TGu7K71eD4wWegucTWD/5tvGRXMHm3Y3o/bFcURVEURVGuPZrjRblueO75vRw8XWVg0wPLNjbKe0giC/3bIGxC+RQsHBLRZeQeaM6J6DJyJ7gpES2S/XGUD1Im1QeJPKRHwEuJwJIc6LZfPQv5jVLWTUrUTCInbbhJGL1HogFqk5i1H4b+reAXJUJl6FZY8wGoTkkEz+g9cV1H+gQghLGdMLBNyrSK8jgzDLVzIvT0bYLRezGJHBKt5GLcJCY7AsN3ieDSXMR4acyYCDC2cAzHS+Os+zChSdNIjGPHHyAkiXE9oigksuAk81ImPUYwe5BiPaRQrjGw6QEOnKry/At7gYuv5YXFJSq+S3rTQxQKBZbKLRJrdmK8FMZxSGQGzmvz81/8NU6VsqQ3PbRMdAFwkmnSmx7iZCnDF3711zh4ukrf2jsAKJTKlOohicwATjJNYs1OSk3D4pk3cBMpBjY9wPP73mLva9MXfM8Vpo/TTK+n2X8HhXJt2Wvt+r1jvhwu9R6/0javBpeyu1Cu0ey/g2ZqPcXp48teu57HpCiKoiiKolw9VHhRrgustex5Zi/5dXdfa1NucIxEkWChfEZEjtH75AhPbVbEDxvFR7ViEjmJfHFcGNgB9VkRbypn5aiS48ZHr6yIOUO3SZ2wEYsyK4Lqhm6D8mmstRJ5EvoSSTN2v0TFlE/BwC0i/KwkbMjPwdt6jlBZ+VedASIYuh2QNSVDdrFIEbysCDOlU9i2XUO3d+yx1sp4+rcQRRYbHx+zUYhx3K4dY/fhF87iJHLMLywCkF93N3ueeZEoii66lucWFvFSfVhrCYOAIDNxnnu8VF+3zbV3sf+1YyTW3H/JWU2u3cW+w8fIrb2r89xSoYiX6lve9sjtzJ092hlrtdak6q45rz1rLfNnj+KN3L7MnpW0x3w5gZOX+x5/N21eDd7J7vac9vp2JdfbmBRFURRFUZSriwovynXB5OQkdZtd9m1yFAbX0KIbGDfZFURSAyI0+DWJbnGSnPex0M4xEwVSN9EveWYSeTnWQ5z/prkkr7lJOd7jJrs5aqJgef+JfmgV5JhQegTSsR2touSB8dJcOCWpJzlo3ASkhyCRkaNHzaJE6aSGpH2Ic+CYbn4ekD68rNRrFmV4XgqS/djmIra5KG0k8hC2RLCJIiymO07AccXusHyG0Lo06g3cRIpalGHfvn3nrWWARr1BZF2M4xDVl8T3iTRh2FrhbqfTZqXWIEqPQ1S/5JRaxyFKj1MtLnSfQ/pa1raXIvTyNMoLNMrzRMl+IidDo95Ybmt5ntDLdyJx2vaspD3mycnJS9oHF36PX4h30+bV4FJ2985pr29Xcr2NSVEURVEURbm6eO9cRFHef2q1mhxB6WEmMUSjUQcnQVSbx8mOAhAFTdk8A7adCNZxMV4WMN1Ihs7PeMNsQynrJuPEumHPEZaeb6KjQDb3TgLClogD7QS5pifqoZegHif1TcTRIQnZ5Ac1CbVwEnLEpcMK23rtc5Lgyo1Cy2zuRKH0JOsN6vJ8R9iwcT89Y45CEUXSw5x2xId4aWgZMIluomAvHY/xAuNznDjZryNHjKIgTiDqd23q+IpuYmLbm1y4B6+nrpeOEwbbWFRJrZwREU/cjPjFWnnVzUiy37ApPnDcbv+dFsyKx/FYnJQcS2rjpsX+tj3G7Qg3tje5ci+JLNavQXqYsJ1Q2U1TLBbOW8sAYdhNxmzDlpQxLkTReWUxDmEU4vuB9LNCnFmJjSJIZPFbdbxsDjeZvfhaddNEQVO84aY7fS2zNWgtH8MFyvS2V69fWhiCC7/HL8pltnnBqq7LwMBA55au75VL2d07p9K5+PbChr3zmN5r2xVFURRFUZTrAxVelOuCbDbbPUYS82drvp/jS/vx1n0IRuS5sLZI5dxhnDUfAMcjqM5C4XVIZDBrPgTxNb0iJgR0bgsCiXAovy5HXYISlE7AhseRDX+88cdIEtby25JgtnS0m+A1bPXkM1mxqV/6G7nBJzMGi6/C4HYgCYVDYH2J8Fjzgbhw1L35qPc4Tdu+ge3gDclrzSUoH5HjMIn++LYiT8bmJGDpFemr/Lbc4FOfkyM7bZGmWYBECtKp5UeIgkb3hiTjxIlxGzImewHxJYrAjQWUoClRIWFDIk/a/nCTcRt0b2dq38S0Moom6KkbNGIRJJ6rUDauy+SazBjc84/j25Li6JOwLr51U7GAEXb777QQrXhsZSxRM47uiQkb3UiZoCG2Ox5gMRfziV/DJDaCjXDbx5DCBgMDg+etZZBNdfsmKuMmpYwNRQhaSdxmIuFJP27y/DK9I3Mc8GskkhlyQ+u452/9Pzh++tyFC4cNuR0MG9vQY3/bVi+5fAwXKNPb3uXcwHOh9/hFucw2L8S2bdv44z/+kyuqeyEuZXfvnAI9vr0AlzGm99p2RVEURVEU5fpAjxop1wUTExNkTI3Q735bnO4bxQ0q2J5vkE1qAMcvQtjEYDDJAYmSaBbOjwqwEbJ1j4WYoA5+XcST/Caoz3cFiN4omdSQXIvsZSRiJazHAoLfs8nqiccIW93yUXylcnJI+gubEFk5QtOxz+na1Wtrr33n2TzYjcJoixlBU5LSuln5md8kP9ubRBuJoNS+ArstQoSt+HpoI2JPFErS3VYpFkBWRGC0RSzHk7p+ScQfvyJiUHscqSF5LWxJn2ErFndW5Ixpt5EcjK9xXoBGbEdyAIIKBI2VMTI9diQkWqaxJL5Jj8ixnbApQlXbz+3rvHvzakRhfLV1XeqArK9WCZMaxqSGpQ2/Am5SDhg5DmbFfEWh2O32bcQ1IelMmtBvknXq7Nq167y1DJDOpHFMiI0inMyQ+N5v4K4QVWwUddrMZ9M4jVlwLr1hN1GE05glNzByXl/L2g6auEGFdN8I6b5RnFYJJ6qTziyP6Oh97/Xas5L2mCcmJi5pH1z4PX4h3k2bV4NL2d3r517fruR6G5OiKIqiKIpydVHhRbkuMMbwxGO7qZw7vOy50Q230Zz6LsXv/hZhdY6oVWF04la8ynFsFOC4nkSaWANLRzr15ArhOEQhCmUjXTkD/ZvjI0EGcuth/tW4LHHkhwOEkoC1cEyiSMpn4wiNFPjVtnV0NuJLR8UGNwXFY3JLUFiX/owDA1uk/NLRnhHHb732ESG/2rXP8aTpVlES4GbHwRgZjXFjMcWBpTcgNyFXIvdtksiJvs1QeEvKxOIBzUV4/XckWiQKYjuMXLnc9oGXlX6W3jw/J4tf7YpKxWOQGYfScbnCOajK88YRQahvs7TvV+V4Rlvg6WXpKPRtknmaPyCRL8k8zO2X40J9m6H4lghqbeoLMoYgPqpROBoLOm6cR8ZAbo34ddk6AGwoAopBRJfyaejfjGnbtXSkY48xRsZTOonjGEw7QsVxsb1HbeZeJTG4AetXGR0ZBqB67jBPPPYQjuOct5bbjI0MEzTLGGNwPQ+vPnmee8Jmudvm9Gvcf9cO/Jn957XVS2t6H7vu3kF1+jVqhRn2f+3/S38qImiWl5ULFo4wtuG2zljz2RS5cOa89trvvWDhyDJ7VtIes7nQUawLtHkxv1xpmxfi5MmT/OzP/gwnT568ovoreSe723Pa69uVXO6Y3mvbFUVRFEVRlOsDFV6U64ZHH9nNzs05iqdf6Xy7PLLxDnKJiKhRwK/O059x2Xz7BxjOOZiFg9j6Ik5ujeTlKJ/Gzu7HtmJxxDiyOa/Pw9yrEiXRvxU5ThPBwK1QPA7T35HoEePGx3giyKyVo0j1eXlt8Q2Jkoh8iQyxViIr5g/K49QYFN+WKIbUiDxfmxMxplUR4aJyRoSGsNmNWrGBlFuIN3X922Tj31iA2f3yWnocWmVsO3IkqEv5xpLcRNQsQN+WuP5WeX3mOyJ6OEk5WtMqyvjnD4po4qZE4Bi5ByqTcq10akzGsvB6HKnTHmsoAsbCIWiWRdBpLIpfmoVYXInJbZBxLhyKI2sqIsLYMPbXIYnIyU5gp18WHycGINEnos/M34gYFIVS1q/KfLTiK6etgbkDMm9RIBEycwegvgjZdSI0lU/D/EGsX439HGLDFra2AIuviX9Sw9iggZ07AEEdM7iDKGgQnXsZ1zZI+7OY2VdwaWHDAMdxcQxErYqUacyRGL+X/ozLYF+W0ulXuHdzjkce3n3RtQwwMjxEXyKkcfpFBgcHGepP4s8c6ESWBPXieW1+/pf/BVv66zROv0jUWn7kJWo1aJx+kS39dX7ll/4FOzfnKE0dollZZCCfZSDj4teLRK0G/swB+lOW4Y13EPpNSqdf4eFdt/Dw3evOsxNgcO02Us0pkqU3GOzLLnutXb93zFf6Hv9e21yJ7/tMTU3h+/47F75MLmX3YF+WVOkNUs0pBtZuW/baux3T+2G7oiiKoiiKcu0xVu+3XDV89rM/x5NPfvlam/G+EkURz7+wlz1P76Vms+CmqRXO8fbB59mw9XaG1t8Kbhob1KkvnqZaa1CJMrSiBK3iOdmcexnJCeImJV9LbVY26Ym8RLC4KTnO0liEVkMiRbykRHK0jxdVZ0RYSOSBSKIybLzR9zIiHrTKcSJYVyI/vDTgdIUILxMnofUgDONku3VpKzUiP/2KiDs4kIuFA78MtXkIWuC6cjVzajBOCizHquQYUrwBNI6MK5GXo0K1OWnX8SA7JvYVjkB6NE70Gx/7SfXLddCBD5XTYk9mTNoIGpDsk/FFYTwmK+JNsh8w0JgTuzMjMlYbiVCDiXOxOJBdI8l4g7rY5OXlqFBjDsIWJj1E0gkJ/DphK4xvS0qL2BS1xBfJPmmz8KaMIfIlKXBurQg69TmJCEoPY92UiDB+WaJ4MqMiPvkl8XOyX2xqFkTcSuRkzEETGrPksxluv3U7n3x8N68fOcrTL3yXhhkgMEmsX4f6DA4RqYEJhsfXMphLkTU1nnh8N488vBunJ1/LhdYyYYOMqbFh7Qhnz81Ts1mKhUUKCzOQ6GNwdPyCbQZBwH9+8nf41vPfoZUYkbEFNZL+Ah975EP8w89+Bs/ziKKIP/rKH/Pkb/8nbtn5KJmBtRQXZynNnaJvaIyBsc2YqLmsfeCCdmZNjU889hAW+OYzL5732oXGfKXv8e+1zV6OHTvG5z7383zpS7/Jjh07rridd2P3xx97CAN843v00/tlu6IoiqIoinJtUeFlFXEzCC9trLVyjWu9zszMDF/4wuf5jd/4Etlslnq9TiaT6eRLmJw8y8mTpwBIJhMcOnSYN998k3Q6xYc//GE+/vFP8M1vfpPjx49TLBYZHR0hmUyxfft2Nm/exPT0DPv37+PoUTkKNDo6yq233srRo29Sq1UZGxsjmUwxPz/Pm28eJQxDkskkd9xxB7Ozs9RqNRzHYefOnaxfP8HLL79MqVRkZGSE3bt387Wv/Rm1WpVcLseHP/xhZmZm2LdvH5VKhWw2y4MPPkiz2eLMmTOkUinuuOMObrvtNv7qr/6KQmGJTCbD+Pg4b7zxBr7vs379BJ/61I9xzz338oUvfIHZ2RmMMaxdu5bTp88AMDY2ykMP7aZWq/Hnf/5nFAoFBgYGuPfenfi+j+/7hGFAs9kkmUxSKpU6G8MdO3YwMzOD63qdx9ZGHDp0mHq9Rl9fH7fccgupVJooiigWC+RyeaIopFQqkUgkufXWHbRaPqdOncRay+DgEGApFAr09fUxMbGBbdu2UalU6O/v7yQdPXHiOK++eoCFhQUGBvp5+OFHWLNmDU899RR/9Ed/yE//9N/jgx/8IM8//zyNRoN0Os1HP/pR8vkcMzMzFApFgiBg06ZNvPrqqxQKBXK5HI8//jjr16/nG9/4BgsLC4yMjPCxj32Mb33rW8zPz+O6Lvfffz/5fJ6JiYnOkZAoiti3bx+FQoEgCNi6dSvZbBZjoF5vdNbhpY6Q9K7l3vK9z6fT6ctqs21PsVhkYGCAXbt2nbehb2/ef+VXPs+aNWvIZDKsX7+eqamp82y4HDvf6bUr5f1oE95/8eL99JMKL4qiKIqiKDcmKrysIm4m4aUX3Yx8b9wI/rsRxnC1uNl9tZrHv5ptVxRFURRFUS6OCi+riJtVeKlWq7z++uvceeed5HK5a23OquNG8N+NMIarxc3uq9U8/tVsu6IoiqIoinJxVHhZRdyswouiKIqiKIqiKIqirFb0ViPlumdhYYHf/d3/ysLCwrU2ZVVyI/jvRhjD1eJm99VqHv9qtl1RFEVRFEW5OCq8KNc9i4uL/Lf/9t9YXFy81qasSm4E/90IY7ha3Oy+Ws3jX822K4qiKIqiKBdHhRdFURRFURRFURRFUZT3CRVeFEVRFEVRFEVRFEVR3idUeFEURVEURVEURVEURXmfUOFFue7J5/N8/OMfJ5/PX2tTViU3gv9uhDFcLW52X63m8a9m2xVFURRFUZSLo9dJryL0OmlFURRFURRFURRFWV1oxIty3dNqtZicnKTVal1rU1YlN4L/boQxXC1udl+t5vGvZtsVRVEURVGUi6PCi3Ldc+rUKf7BP/hZTp06da1NWZXcCP67EcZwtbjZfbWax7+abVcURVEURVEujgoviqIoiqIoiqIoiqIo7xPetTZAuTmx1jI5OUmtViOTyQBQr9fJZrOsX7+eyclJTpw4weLiIrOzswBMTU1x7Ngx5ufnqVYrbN26jUajwZ49T1Eul1mzZg2f//wXePbZZzl06CCNRoOJiQ0AvPnmmywuLpDJZLj77ns4e/YMs7OzZDIZPvaxj9PX18ehQwdxHAdjHKyN+O53v0sURQwODvLhD3+YdDrD2bNn2b9/H2EYsmHDRlKpJDMzMwDce++93H33PTz11F9z/PhxUqkUP/RDP8zk5CSvv/4aURTxgQ98kI997GO89NJLvPbaaxSLBSYmJmg2mzSbLQqFJay1ZDIZ6vU6npcgnU7xkY88hOd1366jo6Ns3rwZYwy1Wo1yuUxfX55SqUy9XsdxHDZu3Mi5c1N89atfBeArX/kjfvRHf5TTp09TKpVIJlMkEgmmpiYpl8ts27adBx54gI0bN2KMWTZHyWSSF1/cy9zcHGNjY/zET/wkrusyOTlJtVqN++8jm80um8uJiQkAJicnqVQqnDhxAs/zGBoaYteuXQDs27ePpaUlgiBg69at5PN5JiYmMMa849pp93GxsleDK7XnehuH8u6w1nL27FlOnjyJMYbNmzezYcMGnUNFURRFURTlPFR4Ua4qURTx3PN72fPMXuo2S6HSZGlhFvwyQyNrsLjMT75JGEGQGMC6GWiVAfiX/+Y3wXjgZSD0wd8DiRxkxsDp49yJEn/7Jz8jr6fHIKrDvrfAAgZI9kPZ5cg3XoVWReo6ltf+0+9BFEJuLThJaC5B1IT0KHhppqerHPmDP4ewGfc3Chim35iEsCWPE3289a3X+eqffRPcBGTXgU3wm3+wB5pF6ZsUx//kz/ijr/4VeElwU5Ae5lihBK0S1BekbmoQSi5E6diWgEOnvyXlwwb4VUhkMMbFC8s4rkuUHCK0DoQtrF/BRhEE9dhWeZs/vXc/T794ANLDMo6gBs0CeFlIjcDLxzG/80eMDvXx0IMPMDW7SCVI8fYbf0OrFUJ2rdTzT/I7f/A1MkmH4Q23UayFRIFPVF/EYvBcGB5dR//AII2lM1gcCjWfYrGETQxg3ASObWFq/wYcD7JrCE0K69cxjXkGBvrYtnkD3/exR3j0kd04Tjcw729e2c9/+e9/Qt1mwU1D2CBjajzx2O7zyl7ttXy59lxpPeX6IIoinn3uBf7wT/6UmaUqUXIInBROWGVNv+Enf+yH+OijD+scKoqiKIqiKB1UeFGuGlEU8eX/+vscPF0lv3Y3CzPzlBIh3uZ7IfSZnjpAUDgJ2c3Y/EZMsh+T7MNWzkHxbejfChioz4uQMnY/jNwFbhIaS+C4gAuFoxA0YP3DMPc3Uqdvi7xuDCT6wEZQeBMaC7Dp+6A6KeKH8WDoVhi8FaIW2BDcLNRnoXJG2spvhuKbUmbodikX+lB8C3Lr5J8NIT0ifTYK0tfSURGEvAT0bZK6bhKshZlvx3U3guuJIBHUxJ7KWelj4BYRXnChNoVtlfBHH4DaJAQV8UciB+deBuvD4O2QHYPaPBTegMEdXXttBMk+EZoKxyCsw7oHsc0Sc0uv8aff/C4jazaxeHY/tv8W2LQLk8iIrZGPDVvUFw4yeeYMfXd/msgP8VtN8YFtsNDKsnjiLWxuI43SHDY1irv1MRwviY1C/DPPwcCdkN+McQxedgSMwQYNirOv8sbbZylziLdPnOQzP/PTRFEEwLdeeZuxHY+QS6Q66yr0m3z1mcOdsldjw7tsLa97+LLtudJ6yvVBFEU8+V9+j2/ufZVmai3etjsxnsyhjSKmawv81lee5e0Tp/i5n9U5VBRFURRFUQS9TnoVsdqvk37m2ef56jOvMbDpARYWFjm3UCaRGQCg1fKpzx4lqs7A0G0YLw2JPNgQa8E4HhZg5rsiRPRvgdF75flWSQSBZJ90FAWw+Bq0qhJpMnoPNOYBRx47LmAhjMsl8tC/Gc4+B6kBWPPBrtGtkrTnxJE284ckMiU7BmP3xYUsLBwWsWU0fq65JDalh+XYTn0B5g9K9MvANrGpTfFt8Gswerf05VelrjGQzINxYP6wiCrpERFfvCwUj0MiK75YeA2SA0AowtTwXVLGGCidjNu/R2ytL0ibqX6MEe3VLhwCN4UZ2C7+XHwDlo7A0O2Y9bu7tkaBtGFcqTf9HYhaeBO7Ma60Fc0dwg3LhJGDSWQIwxDG7sMxBscxBHOvYYMmZmxn7OMyxnFx033dbqZeZqw/wdDoGJ9+/C6spbN2Lkbx9Ct8+vG7+Oijj1zGavze6F3L78aeK62nXB888+zz/M4f76EU9ZNYs/OCZfx6kYHWcT7zox/ROVQURVEURVEATa6rXCWstex5Zi/5dXcDMLewiJfqbrSbzSa2fBYGtgNWxBBjsDaCtugCkJuAyIfhO8FGWGsluiWRQ8JgLDgJ6L8FqlMwdFvXCC8Tiy5Gjh8RiUBRPg1RJCJFfuNywxN5EToSeREbBrZDcxGG7+gZXAS1WRjY0X0uOSBHk+Kx42VgYKscYRq8tdcxUD4V22mkD0+OnpDsl7ZBonDKp7vROkFDolcqZ6WNwR0isBRPSTRNIi9iURT2tB/3ZxB/2ajr16HboTKJjQKxPT8BJgGj96+YyAhrPPGzMTC2E6rnsPTktRi6Fb9wFju6k6B0FobvxCBzaa3Flk7ByJ3xfAHJPNavQY8EbMbvY/7ccbJr7mTPMy/y1NMvdNbOxcivu5s9z7zI+60lr1zLl2vPldZTrg+stTz19AtUa028kdsvWs5L9VF11+gcKoqiKIqiKB1UeFGuCpOTk9RtFjeRolFvEFkXE4fhR2GEbRZFnHBTIpwYE4sOBhqL8Ob/JeJG5EtOF+PIa2FTBAbTXsrxZj6M85sYI3VMfHynvbu3odRxkyJwVCdFcPAyUr6NDcUmY6TpsNnTf0yzKHXdVLf9dttBXaJEjCsRKOlRCGs9dQuQ6JeyEI/bSq4XYwBHmnRTIrr4pa49jiPPteLnHE+ODnnZrn2tovT99lfFjzYQQcXEAhRRbG6i05YxRvyQWwNRo8cXMh+m42eD8TKQGRMxpT0DQU0ic1pLkq/GjY9iALY2C6lBjJvqTBXGASdBFAtVAMZLY9MjVBfOslR3mVuq8Ma3nqRemrvoGnMTKWpRhsnJyYuWeS/oXcuXYqU9V1rv3XLmzBn+t//tf+XMmTNXVH+1836Nf3JykmLdEiX7O8eLLoRxHCInw1LdfddzeLPPnaIoiqIoyo2KCi/KVaFWq0kSUZCjJz3ChbVWxImOwOHGLwAYea02LYKIDUVYaEdu2KhbvpfI75azUbe/ZV9Axzt/NyURJF5axIzeb6nb7ds4Q2/UkuM9vWWiltQ1LH/euGIvsa1tQSP0z6/bS2+fpsdoLyV1O/6J4uiYuD3jxIJNjz8iXwSZ2rT40UYyxrbo0esPLx2LThZwxH+h31PI0hvY0q2XxQY9YlIY+yhogJvpqW+wQTN+bgXG6Ub3dNrNETQrhCZBEEJl4QxR0LqAAT24aer1+qXLfI/0ruV3pMeeK633bmk0Grzxxhs0Go13LnwD8n6Nv1arEVnn8ubQOERO4l3P4c0+d4qiKIqiKDcqKrwoV4VsNhsnhgXXdZdtso0xIg6EzVgoCeMXYLkyEIsyQS2ODCHesIfnd+gkuuV6N/XLhIO47bApokPQ6B456nQZt2/ax5iSki+lt4yTlLqW5c/bsBtZYpGxBXURR1bW7aW3z7b4BBA0pW7HP04sbsTt2UiEkl5/OAkRQnrbjqJeLaRL0JDy7UiYoBa3bbqFL3RyIqhhvGz3sRv7yEtL5FGPymO8VPzcCnrFsU67VbxUHtf6OCY6v86FCBud68nfL3rX8rux50rrKdcH2WxW1uHlzKGNcCJf51BRFEVRFEUBVHhRrhITExNkTI3Qb5LOpHFMKFceA47rYFIDIkqEzTiyxcYb8Z6dvuOJMFCfi4UUK9Eq7UgO6JZ3M5Jk1sY5X2wQJ4aNRQATiz9hS47q5CbkWE5Qj8UHuuU6ghDSX6f/mNSA1A2b3fbbbXsZsduGImQ05uWWpE7dQTk+1BZH2kl1w9gHRN0jTn5ZjiW17YkieS4ZPxcFEkET1Lr2JQcgqPaMx5Mbj9qROPFHgI38Tlu2LRBVZ8Dp+XY/ng/b8bPFBnWoz2H6N3eKWS8rt0Ulh+QoVXyEyAAmOw7NAjZs9gTSRBD5OG73+IYNGpjGArmRDQxlQvKXPp0DyK1AWafOxMTEOxf+Huhdy+/Gniutp1wfTExMMJAxOK2SRG5dBBtFOFGdoUyoc6goiqIoiqIAKrwoVwljDE88tpvKucMAjI0MEzTLnddTqRSmb4Pc8IMBvwLWYowTCyYx1UkRRhZfB+PE+UjSchMQ7eNAPpTegtx6ucK5TVCXZLOdIzOO3GrUt6l7xKiyIreCX5GjBX5FxIri25Aallt/OoNzIDsOxWPd51rFTm4TY4z0XTwBTkqulu46Bvo2x3bG0T5BQ/pslbpRIEtvip1+WZ7z0nLrUH6DtFE4JrcbDWyWJLx+Jb6NyYXsuuX9WcRfxukGvCwdgfwExvHE9vKkCDTz+1dMpIOxsYBlLcwdgNw6TK9AtvQmicENmPkDeP0bYPF1LDKXxhgRaRZep6O8tCqYRHZZ9I2dfZXRdduoz7zOE489xIc/sCLJ7wWonjvME489JP5+H1m5li/Xniutp1wfGGP45OMPk8umCBaOXLRc2CyTD2d0DhVFURRFUZQOKrwoV41HH9nNzs05iqdfYbAvy0DGxa8XsVFEwkS4YQ3TXMAU35Jku62yRJwk+2DicRFFQh/w5CrluQPYIL5xKApEqGhV5drmVhXWPCjRH9PfhjCUyIpWUdoIWiI2tJPbzh/uHneaPyjiR6sU55TJSQLdme/K68N3Sb25V+NyZciulzbnDkgS4LZdNsTW5kVYKZ2SKJXyaemjHeXSv03snN0H9aU4D4srRxoaBZg7KL+nhuJoFiMCUKsIXr9cce2XJJlw/zaILMztk4gfgKE7YeBW8V99UYSpoA5+DRs0sPOH5HHfZmx9EeYPQGOWkc33YUpvYaf2Yv34eFCce8b6Nez0y1Cdom/7R/FcQ9SqEc0dxLN1vHQ/6WiRpOdgWuIrEyctdkduB7+Endsv/dkAN5UHJNIlmnqZdDjP4PAI927O8cjDu/mB7/8kH37oYZpLp8+LGAn9JqXTr3TKXg161/K7sedK670b1qxZwz//57/ImjVrrriN1cz7Of5HH9nNI7tuIdWcwp/evyzyxUYRfmWOZOkNdt+97orm8GafO0VRFEVRlBsVY/W+y1XDZz/7czz55JevtRnfE1EU8fwLe9nz9F5qNkuh2qQwPwt+mcGRNVhcFiaPEkSGwBvAehkRVZpL3eM1XhrCAPyiXIucGZNcKa2SHHHxMnJ7UNQQwaSdpDY5INEyUQtaFRFU3GSceDaE3Fppp7kk1z6nR7vRNPVFEV0SORE4MNBc6N5ylMhLm9UpaTO7DlxPIk/a4o5JQuVUfMNRUiJi0iMi+LTKUF+QnCqpQYmMsYFcXR2F3duBwqbY42UwjosXlnEclyg1RGgdCFtYv4KN4siZzGj3eFJtWoSk9IiMI6iJbV5WoniCKqa5yNhwPx958AHOzSxSDlIcf+O7NFsRZNdKPb8GtXNkkobhDbdTqoWEgU/UWARr8FwYGl1L/8AQzaUzWONQqPoUiiVsYgDjJnBsC1ObjiNy1hKaFNavYxrzDA70sW3zBr7v44/wyMO7cdq3X61YO7hy7XbW1Hji8d3Lyl6LtXy59lxv41DeHVEU8dzzL/CHf/ynzCxVCZND4KRwwypr+g0/8akf4qOPPKxzqCiKoiiKonRQ4WUVcSMIL22stXK9br1OJpPGWrnRI5PJsH79eiYnJzl16hTz8/M0Gg2mpib55Ce/jzNnzjA/P0+1WmXbtq00my2eeuqvKZVKrFmzll/5lV/hueee5dChQzQaTTZskBwLR48eZWlpiXQ6zT333MOZM2eYnZ0lk8ny8Y9/jHw+z+HDr2GMwXEMUWT57ne/QxRFDA4O8uEPf5hMJsOZM2fZv38fQRCwadMmUqkU09PTANx7707uuece/vqvv87x48dJpVL80A/9MFNTU7z22mGiKOKDH/wQjz32GN/+9su89tprFApFJibW02w2abVaLC0tYa0lk8nSaNRxXY90Os1DD30E13UlZY3jMDIyzObNWwCo1+uUSiX6+vool0s0GvIt/KZNm5iamuIv//IvmZqa5O677+aJJz7J6dOnqVTKJBIJkskkk5OTVCpVtmzZwgc+8AAbNmzEGLNsjhKJBC+99CJzc3OMjY3z4z/+47iuXJdbq9UolUr09/eTzWaWzWU7x8Xk5CTVapUTJ07geR6Dg4Ps2rULgH379lEoFAiCgK1bt5LL5ZiYmFh2TKNQKPDss8/y0Y9+lIGBgZ61kzmv7NVm+Vq+fHuutN470eurwcHB77m91cbVGr+1lrNnz3L69GmstWzZspmJiQ3f0xze7HOnKIqiKIpyo6LCyyriRhJe3g3Hjh3jc5/7eb70pd9kx44d19qcVceN4L8bYQxXi5vdV6t5/KvZdkVRFEVRFOXiaCy0oiiKoiiKoiiKoijK+4QKL4qiKIqiKIqiKIqiKO8TKrwoiqIoiqIoiqIoiqK8T6jwolz3ZDIZHnjgATKZzLU2ZVVyI/jvRhjD1eJm99VqHv9qtl1RFEVRFEW5OJpcdxVxsybXVRRFURRFURRFUZTVika8KNc9YRhSrVYJw/Bam7IquRH8dyOM4Wpxs/tqNY9/NduuKIqiKIqiXBwVXpTrnuPHj/O3//aPcvz48WttyqrkRvDfjTCGq8XN7qvVPP7VbLuiKIqiKIpycVR4URRFURRFURRFURRFeZ9Q4UVRFEVRFEVRFEVRFOV9QoUXRVEURVEURVEURVGU9wnvWhuw2vjX//pfs2fPU5cs8xd/8Zckk8mrZJGiKIqiKIqiKIqiKNcrep30u6QtvNx1112sXz9xwTL/5J/8Ezzvvde0Vut10tZaJicnqVarlEol6vU6MzMzvPrqfiqVKvl8no997GM0mw3K5QqpVJL16yfI5/M888zTnDp1iqWlJTZu3EgymWTt2nWMjY1x1113UalU+MM//L84ffoM9XqNwcFBisUirusyPj7Ozp33YYyhVquybdt2wjCgWq3yyiuv0Gw2GR0dZffuh8lkMpw7N0Wz2aS/v5+tW7dSqVTp6+sjm80CUK1WOXHiBJ7nMTQ0xK5duzDGcPbsWU6cOMHS0iKDg0PUalU8L9EpA/DKK69w4sQJUqkk99+/iw0bNjA1NUWtViObzTIxMYEx5h192Fse4OzZs5w8eRJjDJs3b2bDhg3ntRMEAZVKhXw+/76sy6vBjTCGq8XN7qvVPP7VbLuiKIqiKIpycfR/dlfID/zAD/J93/d919qM65ooinju+b089fQLTM+XmJ2dpRkloFUBG0J2DLwcTFf4zoH/BGED0iNgIzAGwhakBiGRgzDHiZljEDQgCiGKwE2A40B2HLwxiKosTpcgMQg2w+yJJQ4f+0tpJzEAzisQlMFNQRRI/Sl45vCfQVADvyL2GAdaJZxECg8fYxxCXKIwgtQgxk3g4uO2/gOeE9EMIIhcIi8PbhKiECco4yWSRM0yUVCHRD9kRsBJwn/fg+cXGF+3icE1WzBRk4yp8cRju3n0kd04jnOeD/c8s5e6zYKbhrBBbfEs5dISVd/BpobBSeGEVdb0G37yx36Ijz76cKcdz/MYHBy8JmvgveJGGMPV4mb31Woe/2q2XVEURVEURbk4Krwo7wtRFPHl//r7HDhVobBkWah6+MMfgJnvwMAWGL0PvLQIIDaE0Ie5fVCfh+w6EVQGb4X0IDSLMPkcTDwKtWkonYJGAYa2w+hOqW+tCDRYWHpTRJz1j0DhKJRPQ2MJ0usgPQRhFfIbYeh2EVyMA14WwiYU3hSbxj9EtPQarVYZvDyk+mH4LlwvheNAUC/QahbFFlOGNfdCog+S/RjHIQqatBaPQOsEDGyG/s0k+jcSRRGRDWnVF5kqHCFMLrHpnseJAp+vPnOYt0+c5DM/89M4jtPx4cHTVfLrHiaXSIG1nD4zyZzNENkzeGmHzKaHMMZgo4jp2gK/9ZVnefvEKX7uZ6WdqakpfvM3f5Of//mfZ/369dd0XVwpN8IYrhY3u69W8/hXs+2KoiiKoijKxdHkusr7wnPP7+Xg6SqBybBUDQn7d8DiG5CfwKz9MMZLS0FjRPgwBsbuh2Q/GAsjd0mEiHEh8qF8UsSV0Xsht1aiXEbvBceVdpJ5iWBxUzB6j0SGVM9Imb4NkBkDAxBAfpM8bwNpP9kv7SQyMHK3tNOYFVEnMwY2wozei3ETREAYRlgvJ2LN6E7IrYfGEiY9hHFcwGDcJCRzkFsHY/eBlyOoLRABxng42XHsyD3ML1VYPPMGbiLFwKYHOHCqyvMv7F3mw4FND+AmUgAsLC6xWKpiE3046z9MYDL4C8fElY5DMj9Gs/8OXjh8rtNOtVrl5ZdfolqtXqXZf++5EcZwtbjZfbWax7+abVcURVEURVEujgovV8iBA6/yH//jf+Tf//t/x5NP/jYvvPACrVbrWpt1XWCtZc8ze8mtvYu5s0cIM+uJggCaSxLpAnQSC9kQHA/CuggZAH0bIZHvaTHOWeJ4Ur5vkxzpCZvg1yRyxrjdcgBDt0mki7UwcIvUrS/IMaah26RMUIujZHr6MK6UL5+RCJa+jYDFGleOOGGwUYDFiljkpWFgO9Tn6U2XZG0k/Y/uhKAOyX5sUF/uqGQ/fmY9s2eOdurm193NnmdeJIoi9jyzl/y6u5dVmZtfJAwjTFL8Y4Zvo7V4clnfXqqPqruGPc+8iKZwUhRFURRFURRFubboUaMrZM+ePec9Nzw8wj/7Z/+UD37wQ9fAouuHyclJ6jaL0ygTkMa6SaichswYJpHuVV0AR472GA9aJRFCErllGsoyohC8DKQGYuEkL2LJysS0blLyqjSXINknbQY1SA7GeVh8MAmJtkGqW2sk2sZNSRRMc1H6SvbLcadkXoQfjNjsxPW9tBxFahbkKJO1cfl+jJfGRk2MDbFuSkSYWGAyxoVEjlbTo1FeINM/iptIUY0y7Nu3j7rNyvGimEa9QRBZrONh2na7SWwyT9RYws0My3OOQ+hkWKq7TE5OvhdTqiiKoiiKoiiKolwhKry8S7Zv38aOHb/A/fffz/j4OM1mk+PHj/O7v/u7vP76a/zyL/8y/+pf/St27rzvstv8jd/4DX7jN37jHcvdfvtt34PlV49arQZumjBoidiAkaS4iezygtaKwGIjOerj10T0MJ5oMhcSX2wkQouXEfEDLlIQEUTClrzupmKRJNVtx7lEwJeXlogaNxXnoml1bZZfOqINIEebop6Ip6glzwEYJ46QcSUpcC/GxToJoqC5rK1isdCtHxOGIRazvN+4vA1XRFsZh8hJUK+viLJRFEVRFEVRFEVRrioqvLxLPv3pv7PscTab5YEHHmDXrl18/vO/wosvvsiXvvSb/NZv/dZlt/kLv/AL/MIv/MI7lvvsZ3/uXdt7LchmsxA2cL0kJmwCVsSL+sLygsZABBL1EsqNP2Ezzr3SUy6Rk0S5ifjGoagVH9/piwtc5DhN0JDoFmzcbgRtgcM454sg59VNSYRL0BDb2jZbACPttQl7ykA8lkZsXoTBYG0ITjeCRV4LMZGP46WWtTUwMNitH+O6LgYbR92wrLxxk8ufsxFO5JPJZMjlcvzjf/y/MDo6evHxXueMjo6u+jFcLW52X63m8a9m2xVFURRFUZSLozle3iOMMfzMz/wsAMePv83s7Ow1tujaMTExQcbUSKT78GhgwpbcVFSfw/q9YoIBojh3SyBHevyq/OvVUhI5GN8lPx1XRJdmUY7sWNu91aiXsAV+CVJDcS6YKvh1aBXkNScB1u+IJ1LdSr9hU449pYalr1ZJjjbZOGoFK3ZEcf2gAc2SXH0NIs6kBqBVwgYNiALJERM2JVInxtoQ61dJOgHpvhEx22+Sders2rWLjKkR+t1ImHQmjecYTBR07Q5bmFYFJz3UbTeKcKI6Q5mQiYkJhoaG+Dt/5+8wNNQts9q4EcZwtbjZfbWax7+abVcURVEURVEujgov7yGbNm3q/D4/P38NLbm2GGN44rHdVKdfY2zD7bj1KRzPExFk/lUp0ynsypEhNyM5WEAS2/qVboNBHQrHoFWR8uXTIp64KTm+FDTiKJAe8WXpqCThNQaKb0kfmRGJdFk6KmW8rAgy0K1rQynftxH8stiCwdgwvkHJYhwPgxEhJmhA8W3IjGJ68swY40j/8wdEbGmVMD2iCwCtEon6FOMbb+vUrZ47zBOPPYTjODzx2G4q5w4vqzI2OozrOtiW+McuHiU5vGVZ32GzTD6c4YnH5JrpcrnMs88+S7lcvuw5vN64EcZwtbjZfbWax7+abVcURVEURVEujgov7yGlUqnzeyaTuUTJG59HH9nNzs05PFtnKOfilt6C4TugMomdflkiQSCOWInk59x+iS7BwMJr8S1EoUS3nPxLaCzA/EGoTENtVn6P4mM3fgVCX6JK5g/JMZ3cRilTPgv1uVhb8aByRp438S1JrZK049dh4bC0kx4X0aQ+J3lY5g9iQx8HcF0HE1RFKJo/ANUpSA9jG0vYSAQgG7agVYXqOZh7FYIqXnYEB7A2IKrNYhYOMTqUZ3jjHYR+k9LpV7h3c45HHt69zIfF0690Il9GhocYHshh/DLR1Et4tk5iZIe4MorwK3MkS2+w++51nXamp6f5l//yV5menr5Ks//ecyOM4Wpxs/tqNY9/NduuKIqiKIqiXBzN8fIe8swzTwOS42Tjxo3X2Jpri+M4fOZnfprnX9jLU996gUToMzf7XRpuCorHofAWZMcl6iSoi0ARNiE9IkKGcaB0QqJk2vExU8+LQBKFkp9l6W1pK7tGcsj4VRFRvJxEmZz4U4lICVuQkKM/BBWJlJk/CEtH5DiR44qI4lfAzUnS3eJbOF4aDx8TNAj9RaLScWxqiMhN4OHjtRbwnIhmZPBnXiby8uAmsVGIE5TxEkmsrRMVj2BrU4TFN8FJYlolEn6B8XWbGBwaonb622RNjU89vptHHt6NEyf97fXhnqdfoGqz4KYZiRpknbOUzRLVhkPr1NPgpHDDKmv7DT/xEz/ERx95uNOOoiiKoiiKoiiKcu1Q4eVd8NZbbzE7O8uDDz6I67qd56Mo4q//+q/58pe/DMCP/diP4XnqWsdx+Oijj/DoIw8zOTlJrVajVCrSaDSYmZll//59VKtV8vl+HnvsR2i1mpTLFZLJJBs2TJDL5XjmmWc4cuQIrxfgA3dvZWhokLVr1zE2NsZdd91FpVLmD//wDzl9+jT1qM7gukGKxSKuW2F8Yg333XcfIDctbdu2jSAIqNfr/M3ffJdWq8XIyAi7dz9MNpthcnIK32+Rz/exdetWKpUK/f39ZDIZjIFqtcaJEyfwPI/BwUF27dqFMYazZ89y6tQpFhYWGB4eolqt4nmJThmAV155hZMnT5JMJtm1axcTExNMTU1Rr9fJZDJMTEwsOy50MR/2lgc4e/Ysp0+fxlrLli2bmZjYcMF2FEVRFEVRFEVRlGuDqgPvgpmZGT7/+V+hr6+PW265haGhISqVCidPnuwk03388cf5+3//Z66xpdcXxhg2bNhw3vOf/vSn37HuHXfcybFjx/jc536en/u5n2PHjh3nlfnCF774rm26UN8f/OA717vttvOv9N64ceM7Rjh98IMf5IMrOriQTy7GxXx4OX0riqIoiqIoiqIo1w4VXt4F27Zt41Of+hRvvvkmZ86c4bXXXsNay9DQEI888ijf933fx4MPPnitzbzhSCaT3HLLLSSTyXcurJzHjeC/G2EMV4ub3Verefyr2XZFURRFURTl4hhrV97Dq1yvfPazP8eTT375WpuhKIqiKIqiKIqiKMplotk3FUVRFEVRFEVRFEVR3idUeFGue9566xg/+IM/wFtvHbvWpqxKbgT/3QhjuFrc7L5azeNfzbYriqIoiqIoF0eFF+W6x1rwfR89FHdl3Aj+uxHGcLW42X21mse/mm1XFEVRFEVRLo4KL4qiKIqiKIqiKIqiKO8TKrwoiqIoiqIoiqIoiqK8T6jwoiiKoiiKoiiKoiiK8j6h10mvIm7W66SbzSbnzp1j3bp1pFKpa23OquNG8N+NMIarxc3uq9U8/tVsu6IoiqIoinJxVHhZRawW4aX5B/+W6NzJ96VtZ90WUv/TP31f2lYURVEURVEURVGU9xrvWhug3HhE504SnXzjWpuhxMzMzPB7v/d7/L2/9/dYs2bNtTbnirgRxnC1uNl9tZrHv5ptVxRFURRFUS6O5nhRlBucUqnE17/+V5RKpWttyhVzI4zhanGz+2o1j381264oiqIoiqJcHI14UVYVzWaTv3n+eYwxbN68mfXr17N//34KhQKDg4Pcf//9TE1NcfLkyU6ZDRs2AHD27FlOnTqFtZYtW7awYcMGjDFXZIe1lsnJSWq1GtlslomJiStuS1EURVEURVEURblxUeFFWVW8ffwkX3z23+KN3wmVs0RRgNe3Hi/dR1AvEJT/DY7rkRjYgHHTmKBCzpQxjkc1yhK5OYiaOK0l1gzl+MlP/ygfffRhHOfygr+iKOK55/ey55m91G0W3DSEDTKmxhOP7ebRR3ZfdluKoiiKoiiKoijKjY8KL8p7jlm7hdmZWRaXCuClwcuBicUIvwrGgJMALDhJeT4KIKyDBcImuClIxPUiH+oLkB7mtONBIiKYfR3G7oaxnQROgjAoY9MB0dB9RJWzWNsiP/ERGmdfZi7sw2Y2kkplyPaPgDHYoMnM/Ov81u/9D94+cZKf+9m/946CSRRFfPm//j4HT1fJr3uYXKJ760joN/nqM4d5+8RJPvMzP63ii6IoiqIoiqIoigKo8KK8D7w88SF+7Q9exg48AOs+gjemwCQAADbuSURBVKgpQPE4+HUYvUceN5cg8CE7LmVaZZh7FfwabPq4iC7GhVYF6q9Cbidk+qDyAjSWoG8zjpfF+hWiMMS4aZxkP2RGieYPUDnxLDaRh9G7MI5L4JdpNSokM30YL0Vi7f00Zw7w/L632LF9Lx999JFLjuu55/dy8HSVgU0PnPeam0gxsOkBDpx6hedfeOe2riZDQ0P83b/7dxkaGrrWplwxN8IYrhY3u69W8/hXs+2KoiiKoijKxdHrpFcRq+E6aWstv/jL/2/2vXoIbvlx8JLtF2DyWVj3MLjt5yKonYPseomCiQKonoWlt2Djx8EGcWRMp3XAQPWcCDQjd0PfBmgsAGDSwxjjAhAFTTj+p7DlB3GSOcBgbYDnl8gPrYU4HYsNmtip57lt4xD/8pf/+UXztFhr+X998f+DXfcwbk+ky0pCv4kzvZdf/aX/p+Z8URRFURRFURRFUfRWI+W9ZXJykrdPnIbsWjlmhJF/zSIk+ruiC0hEi5OCoCKPbQheHlL90CrEdS2ELSifkZ+RD14W0oNyJKmxBDgi0JjucjZBDTKjGMelo7IYh8i4hGGrW85LESX6KdQiJicnLzmuus1eUnQBiXypRZlLtnW1qdVqHDjwKrVa7VqbcsXcCGO4WtzsvlrN41/NtiuKoiiKoigXR4UX5T2lVqvht1qSn6WXqBULMStwXIhC+d1G8thNQ+jHuouFZgHe/hP5aSNwHHCzItRYX6JlYtHFLusv2/sMEJeLouU2uGki61Kv1y85LtwL2H8h3PQl27raTE5O8s/+2T+7rsSgd8uNMIarxc3uq9U8/tVsu6IoiqIoinJxVHhR3lOy2SyJZFKS6PbiJCFonF8hCkVsgVgUCSFsgJuITxatOK7TFk7CmuR/MQkRZ6yIKZ3SThKCWu8zgO0KN72EDRwTkslkLjkuwgvYfyHCxiXbUhRFURRFURRFUW4eVHhR3lMmJibYvnUT1KZjocXKv9QA+CU5LtTGRhA15XgRiJASVKBZguQgnZwuvTgJEVQaBbn5KD0ERHIEyXYjWayXhfo8NgrpRL3YCMeGuD3HnWzQxPFLDGYdJiYmLjmujKkR+s1Ljj/0m2Sd+iXbUhRFURRFURRFUW4eVHhR3lOMMfzAJz6KIYK5fXTzqxjo2wRLR7uFW0WJWDFxLpegBqVTkmTXBstytiyj+LaUcTwc42C8OLqkJ8rGFI7g9k/glN/GRiEWixPUSGZyy7ScYOEI+UyKTz6++5LJcI0xPPHYbirnDl9y/NVzh3nisYc0sa6iKIqiKIqiKIoCqPCivA88+shufuyHf0BElnMvgd+UoJP+rXJcZ/4A1GZFaMmMSq6W+gLMHwZcuWZ6+jvdo0nGQCIvYsv0y1A6CdUZKJ8iCmoYN4XrupiwQVSfJ5p7FSdqkt/6URL4MP8qtjaL50AyLdE1NmjiT+8n1Zzi4V3///buPK7qMv////McFjks4gIKIiomuICWZjamuGbTt5qxMnOalnFq+jifm02b9vm1TTNli9mUY1NOTdk0bZqVS2XlVm6MWoGluAAuiCAuCILAYT3n9wdxlOAg6nmfwzk87rebt4Hzvrh4va4uGc7La+mj5JEjWpTXxT1DVJyT2mjlS211pUpyUjWoZ0iL+nInf38/RUREyN/fz9OhnDdfyMFd2vpYeXP+3hw7AAAAnOM6aS/iDddJ17PZbFqz9mu9OO8V2Uzt6m45CgiWqsqksry6bUUh3erOcqkuryu2mP3rtiKZ29VtHZJNCo6s24pUY/1p+5JVspvk32WAVHpINluN/MNi5B8UphrrSdWcypfZz08B4bEy+QXJXFOqEPMpyeSnMluIbH4hkq1SflVF6toxRFNumqhRySNl/vm5L83ktXFTilZ/k6Jye/BPBwFXKNhUrgljRyh55IgW9wUAAAAA8H0UXryINxVe6tntdmVnZ2vBggU6fvy4QkND1K9fP+Xn5+vUqVPy8/NTZGSkevbspR07dqisrFShoaEaM2asJGnr1q3KysqS2WxScnKyRo5M1uHDh2W329WrV09FR3fTtm3bVFxcrPDwcA0ePFiHDx9WTk6Oo01MTHdJUl5errKzD8pkMqlHjx7q3r37eW8JstvtdVdMW62yWCyKiYlhexEAAAAAoBEKL17EGwsvrnDgwH49+uijevbZZxUX19vT4XgdXxg/X8jBXdr6WHlz/t4cOwAAAJxjTwRavZqaWhUUFKimptbToXglXxg/X8jBXdr6WHlz/t4cOwAAAJyj8AIAAAAAAGAQCi8AAAAAAAAGofACAAAAAABgEA7X9SJt9XDd8vJyZWVlKj4+QcHBwZ4Ox+v4wvj5Qg7u0tbHypvz9+bYAQAA4ByFFy/SVgsvAAAAAAB4K7YaodUrKCjQggVvqqCgwNOheCVfGD9fyMFd2vpYeXP+3hw7AAAAnKPwglavqKhIixYtUlFRkadD8Uq+MH6+kIO7tPWx8ub8vTl2AAAAOEfhBQAAAAAAwCAUXgAAAAAAAAxC4QUAAAAAAMAgFF7Q6rVv315XX/3/1L59e0+H4pV8Yfx8IQd3aetj5c35e3PsAAAAcI7rpL2It10nbbfbdejQIaWlpenYsWPq0qWLhgwZotjYWElSbm6uDhw4oBMnTqi4+KQsFovi4norKipKFRUVCg4OVkxMjEwmk4czAQAAAADg/Ph7OgD4HpvNpnXrN2rBOx+ooKhMtsAOUkCoVLtb5v8sUWiQSYEB/iouq1J1VaVkbidZIiS/dlL1RpkrCxXeKVLdYnsrxK9CY0YM00W9eykmJkbt2rXzdHpep7KyUvn5+YqOjvba8fOFHNylrY+VN+fvzbEDAADAObYawaVsNpve/Pe7mvuvhTpe01m22Aky9fqlzDHJMvcYL1vPa1RiilJBUZmq7e2kzgOlPjfIFDtepm4jpR5XyRZ7tU5WWZS9f69quw7X4pVbNW3a/yg7O9vT6XmlnJwc3X33H5STk+PpUM6bL+TgLm19rLw5f2+OHQAAAM5ReIFLbdiYojWb01UZ0EXqPFBmS4RMP00zu90myS4FdZDadZTa95Spy2CZ/ALrvthkksnsJ5OlkxR5scpNYcrbuUFhUf0lSdt++NEzSQEAAAAAcJ4ovMBl7Ha7Vn2zSafKrLKH9ZACQxs2sNVINRVS2VHJZJY69pfsqvvjOMbFVPfHP0T2sItUkL9fNptNkrQ19UdxJBEAAAAAwJtQeIHL5OXl6XhxlWz+YTIFWBwrXSTJLpvs9lqpxiqZ/aSgjpL/mWcYmBp+aDLLFGCRLbCjyk7kSpIqbO2Ul5fnnmQAAAAAAHABCi9wmfLyctXYJPkFqdHUskuy2yV7bd1qFz/LGQ+c+KldbbVVJrOf5NdOVqvVmOB9mMkkBQQEyJsvh/KFHNylrY+VN+fvzbEDAADAOa6T9iKt/Trp3NxcPfniAuUUVMjeOUmmwA6OZ3bZZK+pkMqPS8X7JH+LFHW5TPUrXRq807DXFWmqSmQ6nqqExKHq0C1eZQc368E/3Kju3bu7NS8AAAAAAM4XK17gMjExMYoMD5S55pTs1VbZZXM8M8ksk8mvruBiq5UqiqSayjO+2t7wQ7tN9mqrzFVFah91kWqrKxVstiomJsZt+QAAAAAAcKEovMBlTCaTrho7UmEhFplO5UhVpQ0bmP0l/yAppKtkt0lFux1n6Z6uu/x02m5NmUyn9ikiurcqTxVoxxd/1+DEeJlYg3/ODh48qP/93z/q4MGDng7lvPlCDu7S1sfKm/P35tgBAADgHIUXuNSo5BGacMVAtas+Jp3YIZu1wLHyxWQySzJJFSelypNSyUHZj22Tvbaq7ovtdtlttbJbC6XjPyrYfkoxiaNUkrddFWUnlZSU6Km0vFpVVZX27t2rqqoqT4dy3nwhB3dp62Plzfl7c+wAAABwzt/TAcC3mM1m3TX1Nl3Uu6cW/OcDFRxaJVtgR9kDQqTaKpkrTyg0SArsGKzi0gpVn9ghFWXKbomQ/AKl6lKZKwvVoVNnRcf2kf/RzRo39CIt+GGtzGbqhAAAAAAA70LhBS5nNps1bsxojR09Srm5h5SamqaCggJFRkZoyJAh6t49VlLdYbwHDx7U8ePHVVJSrODgYMXFxalLl66qrKyUxWJRTEyM9u7dqwUezgkAAAAAgPNB4QWGMZlMio3todjYHk0+j42NVWxsrJujAgAAAADAfbhO2ou09uukjXLq1CmlpaVpyJAhCgsL83Q4XscXxs8XcnCXtj5W3py/N8cOAAAA5yi8eJG2WngBAAAAAMBbcVopWr2ioiJ9/PHHKioq8nQoXskXxs8XcnCXtj5W3py/N8cOAAAA5yi8oNUrKCjQ66+/poKCAk+H4pV8Yfx8IQd3aetj5c35e3PsAAAAcI7CCwAAAAAAgEEovAAAAAAAABiEwgsAAAAAAIBBKLyg1QsJCdEvfjFcISEhng7FK/nC+PlCDu7S1sfKm/P35tgBAADgHNdJexGukwYAAAAAwLuw4gWtXk1NjU6ePKmamhpPh+KVfGH8fCEHd2nrY+XN+Xtz7AAAAHCOwgtavQMHDmjy5Jt04MABT4filXxh/HwhB3dp62Plzfl7c+wAAABwjsILAAAAAACAQfw9HQB8n91uV15ensrLyxUcHKyYmBiZTCZPhwUAAAAAgOEovMAwNptNGzamaPW6FFntwZJfkFRbIYupXBPGjNCo5BEym1l0BQAAAADwXRReYAibzaa3/vO+tueUKTR6pEIC2jme1VZXasm6dO07kK3f33ErxRcAAAAAgM/iOmkv4k3XSa9bv1FL1u1UeI9LnbYpzknVpLGJGj0qudm+amtrVVFRoaCgIPn5+bk6VJ/nC+PnCzm4S1sfK2/O35tjBwAAgHMsNYDL2e12rV6XotDopGbbhUYnafW6/+pstT8/Pz+FhITwRuQ8+cL4+UIO7tLWx8qb8/fm2AEAAOAchRe4XF5enqz2YPmdsb2oKX4B7VRusygvL6/Zdrm5uXr44f9Pubm5rgyzzfCF8fOFHNylrY+VN+fvzbEDAADAOQovcLny8vK6g3Rbwi9IVqu12SZWq1WpqalnbYem+cL4+UIO7tLWx8qb8/fm2AEAAOAchRe4XHBwsFRb0bLGtRWyWCzGBgQAAAAAgIdQeIHLxcTEyGIqV211ZbPtaqsrFWy2KiYmxk2RAQAAAADgXhRe4HImk0kTxoxQaX56s+3K8tM1YcwVMplMbooMAAAAAAD3ovACQ4xKHqGLe4aoOCe10cqX2upKleSkalDPECWPHHHWviIjI3XPPX9SZGSkUeH6NF8YP1/IwV3a+lh5c/7eHDsAAACcM9nPdpcvWo277rpTCxa85ekwWsxms2njphSt/iZF5fbgugN3aysUbCrXhLEjlDxyhMxman8AAAAAAN/l7+kA4LvMZrNGj0rWqOSRdVdMW62yWCyKiYk5p+1FJSUl+vbbbzVs2DC1b9/ewIh9ky+Mny/k4C5tfay8OX9vjh0AAADOsdwAhjOZTOrevbvi4+PVvXv3cz7T5ejRo3r++dk6evSoQRH6Nl8YP1/IwV3a+lh5c/7eHDsAAACco/ACAAAAAABgEAovAAAAAAAABqHwAgAAAAAAYBAKL2j1goKC1L9/fwUFBXk6FK/kC+PnCzm4S1sfK2/O35tjBwAAgHNcJ+1FvO06aQAAAAAA2jpWvAAAAAAAABiEwgtavaysLE2YcKWysrI8HYpX8oXx84Uc3KWtj5U35+/NsQMAAMA5Ci8AAAAAAAAGofACAAAAAABgEAovAAAAAAAABqHwAgAAAAAAYBCuk/YibfU66aqqKh0/flyRkZEKDAz0dDhexxfGzxdycJe2PlbenL83xw4AAADn/D0dAHyT3W5XXl6eysvLFRwcrJiYGJlMpvPqKzAwUDExMS6OsO3whfHzhRzcpa2PlTfn782xAwAAwDm2GsGlbDab1q3fqMefel4vvblEr324Ti+9uUSPP/W81q3fKJvNds595ufna/bs55Sfn29AxL7PF8bPF3Jwl7Y+Vt6cvzfHDgAAAOcovMBlbDab3vrP+1qybqfs0SMV0nO4QroPVkjP4bJHj9SSdTv173feP+fiS2lpqdauXavS0lKDIvdtvjB+vpCDu7T1sfLm/L05dgAAADhH4QUus2FjirbnlCm8x6XyC2jX4JlfQDuF97hUPx4s08ZNKR6KEAAAAAAA96LwApew2+1avS5FodFJzbYLjU7S6nX/FWc6AwAAAADaAgovcIm8vDxZ7cGNVrr8nF9AO5XbLMrLy3NTZAAAAAAAeA6FF7hEeXm55BfUssZ+QbJarS3uu1OnTrr99tvVqVOn84yubfOF8fOFHNylrY+VN+fvzbEDAADAOZOdPR9e46677tSCBW95Oowm5ebm6qU3lyik5/Czti07uFkP/uFGde/e3Q2RAQAAAADgOax4gUvExMTIYipXbXVls+1qqysVbLYqJibGTZEBAAAAAOA5FF7gEiaTSRPGjFBpfnqz7cry0zVhzBUymUxuigwAAAAAAM+h8AKXGZU8Qhf3DFFxTmqjlS+11ZUqyUnVoJ4hSh45wkMRAgAAAADgXv6eDgC+w2w26/d33KqNm1K0+ptNKrMH1x24W1uhYFO5bhw7QskjR8hspt4HAAAAAGgbKLzApcxms0aPStao5JF1V0xbrbJYLIqJiWF7EQAAAACgzaHwAkOYTCZuLQIAAAAAtHns+QAAAAAAADAIhRcAAAAAAACDUHgBAAAAAAAwCIUXAAAAAAAAg1B4AQAAAAAAMAiFFwAAAAAAAINQeAEAAAAAADAIhRcAAAAAAACDUHgBAAAAAAAwCIUXAAAAAAAAg/h7OgBvtX79en366XLt379fNTU16tatm8aNG69JkybJ359hBQAAAAAAFF7Oy/z587V06RL5+fnpkksukcVi0Q8//KA333xDW7Zs1uzZz6tdu3aeDhMAAAAAAHgYhZdzlJKSoqVLl8hisejFF19SfHy8JKm4uFgPPTRT6enpevvttzVt2jQPRwoAAAAAADyNM17O0cKFH0iSpkz5jaPoIknh4eG69957JUnLly9TWVmpR+IDAAAAAACtB4WXc1BQUKCMjAxJ0rhx4xo9T0oaqMjISFVXV2vr1m/dHR4AAAAAAGhlKLycg71790qSwsLCFB0d3WSbhIS+kqR9+/a6LS4AAAAAANA6UXg5B0eO5EuSunTp4rRNZGSkJCk//4hbYgIAAAAAAK0XhZdzUF5ulSQFBQU5bWOxWH5qW+aWmAAAAAAAQOvFrUatwKuvvqpXX331rO369evrhmgAAAAAAICrUHg5B8HBdatZKioqnLaxWq0/tQ1pcb/Tp0/X9OnTz9rurrvubHGfAAAAAADA89hqdA66do2SJB0/ftxpm/pnUVFd3RITAAAAAABovSi8nIM+ffpIkkpKSpSfn99km8zMjJ/axrstLgAAAAAA0DpReDkHkZGR6tu37pyVr7/+utHz9PQdOn78uAICAnT55cPcHR4AAAAAAGhlKLyco1tu+a0k6cMPFykrK8vxeklJsV5++WVJ0sSJ1yskJNQj8QEAAAAAgNaDw3XP0YgRI3T99Tdo2bKluvfeP2nw4MEKCgrStm3bVFpaqsTERE2dOtXTYQIAAAAAgFbAZLfb7Z4OwhutX79Oy5d/qn379qq2tlbR0dEaP/5KTZo0SQEBAYZ8z1//+leKjIw0pG8jFBUVqWPHjp4OA7hgzGX4EuYzfAnzGb6E+Qxf4StzOTQ0TPPmzXNJXxReYJgBAwZo165dng4DuGDMZfgS5jN8CfMZvoT5DF/BXG6MM14AAAAAAAAMQuEFAAAAAADAIBReAAAAAAAADELhBQAAAAAAwCAUXgAAAAAAAAxC4QUAAAAAAMAgFF4AAAAAAAAMQuEFAAAAAADAIBReYJjp06d7OgTAJZjL8CXMZ/gS5jN8CfMZvoK53JjJbrfbPR0EAAAAAACAL2LFCwAAAAAAgEEovAAAAAAAABiEwgsAAAAAAIBBKLwAAAAAAAAYhMILAAAAAACAQSi8AAAAAAAAGITCCwAAAAAAgEEovAAAAAAAABiEwgsAAAAAAIBB/D0dAFq/9evX69NPl2v//v2qqalRt27dNG7ceE2aNEn+/uc+hTIzM7Vo0SLt2LFdZWVl6ty5sy6//HLdeutt6tixowEZAKe5aj7v3Zul7777Tmlp25SdfUCnTp2SxWJRr169NGbMWF177bXn9fcDOBeu/vl8pq1bt+rxxx+TJA0ePFhz5rzgipABp4yYz//9b4q+/PIrZWTs0alTpxQaGqpu3bpp6NDLdPvtt7s4A6COK+ey1WrVsmVLtXHjJuXl5aqyslLt27dXQkKCrrnmWl1xxRUGZYG27tChQ0pN/V6ZmVnKyspUTk6ObDabpk6dqltvve28+01LS9XHH3+ijIw9qqioUNeuXTVyZLJuueUWWSwWF2bQupjsdrvd00Gg9Zo/f76WLl0iPz8/XXLJJbJYLPrhhx9UWlqqpKQkzZ79vNq1a9fi/jZs2KBnn31GtbW16tu3r6KiopSZman8/Hx17NhRc+f+XTExMQZmhLbMVfO5trZWV1/9S0mSxWJR37591aFDRxUUHNeuXbtks9nUr18/PffcbIWGhhqdFtooV/98PtOpU6d0991/UGFhoex2O4UXGM7V87m6ulqzZz+nDRs2qF27durff4A6duygoqIiZWdny2az6ZNPlhiYEdoqV87lkpJiPfjggzp48KAsFosGDBig0NBQHT58WFlZWZKk66+/QdOnTzcyJbRR9XP55y6k8PLJJx/rtddek8lkUlLSQHXs2EHp6ekqLCxUbGys5s79u8LDwy809FaJf46FUykpKVq6dIksFotefPElxcfHS5KKi4v10EMzlZ6errffflvTpk1rUX8FBQV64YU5qq2t1f33369rr71OUt2b2BdeeEFr167Rc889q3/84xWZTCbD8kLb5Or5HB+foClTpmj48OEKDAx0vH7gwH49/PAj2rNnj1577Z+aOfMhQ/JB2+bq+fxzr776ioqKinTdddfps88+c2XoQCNGzOe5c1/Shg0bNGLECD3wwIMNfpG32Wzas2ePy/MAXD2X3333PR08eFDx8QmaPXu22rdv73i2detW/eUvT2jZsqUaO3asBgwYYEhOaLt69eqlyZMnq0+fPurTJ14LF36gNWvWnHd/e/dm6fXXX5fZbNasWU9r2LBhkqSKigo98cSftW3bNs2b93c98cRfXJVCq8IZL3Bq4cIPJElTpvzG8X8ckhQeHq57771XkrR8+TKVlZW2qL+lS5eooqJCQ4YMcRRdJMnPz0/33XefQkJClJGRoe+//96FWQB1XDmf/fz8NH/+fI0ePbpB0UWS4uJ66+6775YkrVu3TjU1Na5KAXBw9c/nM23atElr167VTTfdpL59+7kmYKAZrp7PaWlpWr16tXr16qXHH/9zo389NZvNvEmFIVw9l3/4YdtP/U1pUHSRpMsvv1wXX3yJJGn37l0XGjrQyDXXXKP/+Z9pGjduvHr06CGT6cJKBwsXLpTdbtcvf/lLR9FFkoKCgjRjxkyZzWZt3LhROTk5Fxp6q0ThBU0qKChQRkaGJGncuHGNniclDVRkZKSqq6u1deu3Lepz06YUSdLYsY37s1gsGj58uCQpJWXT+YYNNMmI+dycPn36SJIqKytVXFx8wf0BZzJyPhcXF2vevL8rNjZWv/vdVFeECzTLiPm8fPkySdKNN174WUdASxkxl3/+jzvOtG/vm1sz4Duqq6v17bd1837cuPGNnnft2lWJiYmSfPe9IIUXNGnv3r2SpLCwMEVHRzfZJiGhryRp3769Z+2vvLxchw/nSZL69k1otr/67w24iqvn89nk5dXN9YCAAIWFhV1wf8CZjJzP8+bNU0lJiR58cEaLf+EHLoSr53Ntba22batbJTBw4EAVFhZqyZJPNG/e3zV//nytWrVKVqvVRdEDpxnxs/myy+pWBXz44YcqKSlp8Gzr1q368ccf1KlTJ11xxfDzDRtwi9zcXFVUVEiSEhKcvRese91X3wvyzwBo0pEj+ZKkLl26OG0TGRkpScrPP3LW/o4ePd3GWZ/1/R05cvb+gHPh6vncHLvdrsWLP5RUtwyYN69wNaPm8zfffKONGzfohhtuVFJS0oUFCbSQq+dzfn6+o7Cye/du/eMfLzcqtLzxxr/06KOPafDgwecbNtCIET+bp0yZooyMPfr+++912223KjExUaGhocrLO6ysrEwlJiZqxoyZCgnhIH+0bvXv70JDQxUcHNxkG19/L8iKFzSpvLzul5SgoCCnbeqv+yovL2txf3V9Nn1N2On+ylscJ9ASrp7PzXn33Xe0a9cuWSwW3XXXHy6oL6ApRsznwsJC/eMfL6tbt2668847LzxIoIVcPZ/PXBXw0ksvKj4+Xq+88qo+/fQzvfba6xo2bJhOnjypv/zlCeXm5l5g9MBpRvxstlgsmjXraU2ePFkVFRX6/vvvtW7dOmVlZap9+/YaMmSIIiIiLjx4wGBWa937u5b9/fDN94IUXgDARVavXqX33ntPZrNZM2bMVPfu3T0dEtAic+fOVWlpqR588MFmfykCvElERISee262+vbtK4vFoosuukhPPTVLvXr1ktVq1YcfLvJ0iECzTpw4ofvvv0/Lli3T1Km/1zvvvKtPP/1Mr7zyiuLj4/Xuu+/q/vvv99k3qoAvofCCJgUH11Uc6/fiNaV+6W5wcEiL+6vrs+m91af7a3r5GXC+XD2fm7J+/Xr97W9/kyQ98MADGj169Hn1A5yNq+fzqlWrtGXLZl133XWOGzIAd3H1fK7/F1NJuuqqqxpt9/Tz83PcrJiWlnbO8QLOGPG7xpw5c5SRkaGpU6fqt7/9raKjo2WxWNS3bz89/fQziouL0/79+/TRRx9deAKAgSyWuvd3Lfv74ZvvBTnjBU3q2jVKknT8+HGnbeqfRUV1PWt/XbqcbnPs2DHFxTXei1rfX9euZ+8POBeuns8/t3HjRj333LOy2+26//77dfXV/+/8AgVawNXzuf72gIyMDM2Y8WCDZ0VFRZKkrKwsx7PHHntcnTp1OvfAgSa4ej5HRUXJZDLJbrcrKqrpA07rDz4tLCw813ABp1w9lwsKCpSWliqp6RtB/f39lZw8SgcOHFBaWpp+97vfnU/YgFvUz/nS0lKVl5c3WVw5/V4wyq2xuQsrXtCk+utwS0pKlJ+f32SbzMyMn9rGn7W/kJAQdesWI0nKyMhstr/4+LP3B5wLV8/nM6WkpOjZZ5+RzWbTvffep2uuufbCggXOwqj5nJmZqe3btzf4c+jQIUl1vyjVv1ZVVXWBGQCnuXo+WywWde8e+1OfxU22qX/9zNUxwIVy9Vw+duyY42NnKwBCQupWzpw6deqcYgXcrXv3WMdW5sxMZ+8F616Pj+/jtrjcicILmhQZGam+feuuvPv6668bPU9P36Hjx48rICBAl18+rEV9jhw5QpL0zTeN+7NardqyZYskacSIkecbNtAkI+azJG3evFlPPz1LtbW1uvfe+3Tddde5LGbAGVfP5yeffEqrV69p8s/MmQ9JkgYPHux4LSrKN/8lCp5hxM/nUaNGSXK+lSg1te71+u8LuIKr53JERGfHx3v27Gmyze7duyWJn8to9QICAjRsWN28//rrtY2eHz16VDt37pTku+8FKbzAqVtu+a0k6cMPFykrK8vxeklJsV5++WVJ0sSJ1ze4wm7Tpk26887f66GHHmrU3w033KigoCClpaXpiy9WOF6vra3Vyy/PU2lpqfr27auhQ4calRLaMFfP561bt2rWrKdUW1ur++6j6AL3cvV8BjzJ9b9v3KCwsDB9++23+vzzzxs8++abbxy/9F9//Q0uzwVtmyvncpcuXR2FnPnzX210xe6aNWu0fv06SdK4cY23IgGesGzZMt155+/1/POzGz37zW9ukclk0sqVK/Xdd986Xq+oqNCLL/5NNptNycnJ6tGjhztDdhvOeIFTI0aM0PXX36Bly5bq3nv/pMGDBysoKEjbtm1TaWmpEhMTNXXq1AZfU1ZWpkOHDjW5FD0iIkIzZz6kZ599RnPnztWXX36pqKgoZWRkKD8/Xx07dtQjjzwqk8nkpgzRlrhyPhcVFenJJ/+q6upqRUZGaufOXdq5c1eT33fatGkKDw83Ki20Ua7++Qx4kqvnc3h4uB577HE98cSfNW/e37V8+TLFxvZQfv5h7d27V5J066236fLLL3dHemhDXD2XZ8yYqYcemqmcnBzddded6t+/v9q3D9ehQznKzs6WJI0ff6XGjx/vhuzQ1mRlZenll+c5Pq/fQrdixQrHTgVJ+utfn1TnznUrtEpKinXo0CF17NixUX/x8fGaNm2aXnvtNT322GMaNGiQOnTooB070lVYeEKxsbG67777jU3Kgyi8oFnTp09XUlKili//VDt37lRtba2io6M1ZcpvNGnSJAUEBJxTf6NHj1Z0dLQWLvxA6enp2rdvnzp16qRf/3qibrvttib/kgKu4qr5XFlZqerqakl1B4GtXr3Kads77riDwgsM4eqfz4AnuXo+X3rppXr99X/pgw8+0LZtadq8+b8KDg7WsGHDdMMNN7K6FoZx5VyOi4vTG2+8qU8++VjfffedMjIyVF1drbCwMA0dOlRXX321Ro8eY1wyaNPKy8ua3OZ2/PjxBodI1/9O3BKTJt2kuLg4ffzxx9qzZ48qKirUpUsX/eY3t+iWW27x2RuNJMlkt9vtng4CAAAAAADAF3HGCwAAAAAAgEEovAAAAAAAABiEwgsAAAAAAIBBKLwAAAAAAAAYhMILAAAAAACAQSi8AAAAAAAAGITCCwAAAAAAgEEovAAAAAAAABiEwgsAAAAAAIBBKLwAAAAAAAAYhMILAAAAAACAQSi8AAAAAAAAGITCCwAAAAAAgEEovAAAAAAAABiEwgsAAHCL2267VRMmXKk5c+Z4NI4jR45owoQrNWHClVq5cmWj5ytXrnQ8P3LkiAcidJ0ZMx7UhAlXasaMBw37Hu+88x/HeAEAgMb8PR0AAADwHlarVWvWrNHmzZu1f/8+lZSUSJKCg4PVtWtXxcXFacCAARo69DJ16dLFw9G6VkbGHt1zzz2SpEmTJumPf/xfp2337dunP/5xmuPzd955R9HR3Zy2f+GFF7RqVV0R6M03F6hnz54uihoAAHgahRcAANAiu3bt0jPPPK1jx441elZcXKzi4mJlZmZq5cqV6tixoxYv/sgDURqnT594WSwWWa1W7dixo9m2P3++Y0d6s4WX9PS69h06dGizRZcZMx7U9u3bNWjQIL344kueDgcAAJeh8AIAAM4qNzdXjzzysMrLyyVJw4cPV3LyKHXv3l0BAf4qLi7R/v37lJqaqh9//NHD0RrDz89P/fsPUFpaqvbu3Sur1SqLxdJk2/pCitlsls1m044dO3TVVVc12fbEiRM6fPiwJCkpKcmlMVPAAADA8yi8AACAs3rrrbccRZeZMx/SL3/5y0ZtLr30Uk2efLNOnjyp9evXuztEtxg0aKDS0lJls9m0c+dODR06tMl2O3akS5JGjRqtdeu+0Y4d2532WV+kkaSBAwe5NmAAAOBxHK4LAACaVVtbq2+/3SpJSkhIaLLocqYOHTpo4sSJ7gjN7ZKSBjo+PrNgcqa8vDwVFp6QJE2ZMsXxWlFRUZPtz9yWNGjQwCbbAAAA78WKFwAA0Kzi4mJVVlZKkrp1i3FZv4cOHdJHHy1WWlqaCgsLFRISosTERN188xQNGDDgrF+fl5enTz9drrS0NB07dkw1NTXq1KmTBg4cpIkTJ6pv374ui7Ve//79FRAQoOrqaqfnvNS/3qNHD/Xp00ddu3bV0aNHtWPHDo0aNaqJ9nWrY0JCQtS790WNnldVVemLL75QSkqKDh7M1qlTpxQaGqq4uDiNHTtOV111lfz8/JqMpaXnpqxevUpffvmVDhzYr5qaGkVFRWnUqNG68cYbFRIS4rix6Pbbb9cdd/yu2TGqqqrSsmVL9c033ygvL88xFldeOUG/+tWvGsU6Z84crV69yvH59u3bG92Q1LVrV7333vvNfl8AAForCi8AAKBZ/v6nf13IyclxSZ+bNm3S88/PVkVFheO1kydPKiUlRZs3b9YjjzyiMWPGOv36jz5arLfeeks1NTUNXj9y5IiOHDmiNWtW67e/vVVTp051Sbz1AgMD1bdvX6Wnp2vPnj2qrq5WQEBAgzb1hZf681qSkpJ+Krxsb1R4KSsrVXb2AUlSYmKizOaGi5H37dunv/zlCR09erTB6ydPntS2bdu0bds2rVjxuWbNelodO3Y853xqamo0a9ZT+u9//9vg9ezsbGVnZ2vt2jV6/vmWX/9dVFSkRx55WPv27WvwekZGhjIyMpSamqonn3yyUZ4AAPgyCi8AAKBZ7du3d6za2L9/nxYtWqSbb775vN88Z2cf0Pr169SpUyfddNNkJSQkyG63KzX1ey1atEhVVVWaO3euLrlksDp06NDo6xcv/lBvvPGGJKl379667rpfKSYmRqGhocrNPaTly5dr165dev/99xQeHq4bbrjhQtJvZODAQUpPT1dVVZUyMjIaHYhbvwWp/vXExCStXbu2yRUy6ek7ZbPZHP2eKS8vTzNmPKiysjIFBwfr17+eqH79+ikyMlIlJSXavHmzVqz4XBkZGXriiT9r7ty/NyiStcT8+a86ii69evXSTTdNVq9evVReXq6UlE367LPP9PTTs1rc31//+lfl5OTo+utv0PDhv1BYWHsdOnRI77//nnJycrRly2Z98cUXuu666xxfc+edd2ry5Mn6299eUGZmphISEjRz5kMN+v15cQsAAG9C4QUAAJzVxInX61//el2StGDBm1qx4nP94hfDlZg4QH379lN0dHSL+8rKylJ8fIJeeOEFhYSEOF4fMGCAunWL0ezZz6m8vFxr167RpEk3NfjagwcP6t///rekum0vt99+h0wmk+N5QkKCxowZqzlz5mjt2jX697/f0pVXXqmwsLALSb+BgQOTtHBh3cfp6TsaFF4a3lA08Kf/rXt+4MABlZWVKiQk1NH+zHNiBg1qWHiZM2eOysrK1KdPH82e/bzCw8MbPB86dKh+8YvL9fjjj2vPnj1atWqlrrnm2hbnsXdvlj7//HNJdWM/Z84LateuneP54MGDNWjQxZo166kW95mZmaHZs2fr4osvcbwWHx+voUOH6g9/uEtFRUX67LNPGxReIiIiFBERoaCgIElSUFCQ4uLiWvw9AQBo7VjnCQAAzmrSpEm6+uqrHZ8fOXJEy5Yt1TPPPKM77rhdN988Wc8887Q2b94su91+1v5mzpzZoOhSb9y4cercubOk02efnOnjjz9STU2NEhISGhVd6pnNZt1zzz0KCAiQ1WrVxo0bziXVs0pMTHKs9vn5Kpb6QkpERISjGNWrVy+FhYX9dBPSrgbt678+KChICQkJDV7ftWunJOn//u//GhVd6l122TAlJydLklauXNVkG2dWrFjh+G/1wAMPNii61Bs1apRGjBjZ4j4nTry+QdGlXvv27R2HMtcXoAAAaCsovAAAgLMym82aMWOmZs9+XpdddlmjA1KLioq0bt06PfHEn3XPPdMdqz6aEhcXp969ezf5zGQyqU+fPpKk/Pz8Rs+3bNkiSUpOTm6y6FKv/vBZSdq1a5fTducjODhYF11UF+POnae3CknS9u11hZTExETHayaTyXFY8JnXSldVVSkzM1OS1K9f/wbbhDZvrtv+Exsbq7i4pseqXv0WpczMDNXW1rY4j7S0bZKkPn36qFevXk7bTZgwocV9jh8/3umz+Pi6wpLdbld+/pEW9wkAgLdjqxEAAGixSy+9VJdeeqnKysq0c+dOZWRkKDMzUzt2bFdZWZkkKTMzUw888IDmz5/vWL1yptjY2Ga/R/22IKu1vMHrR48e1cmTJyVJCxYs0IIFC1oUc2Fh09c4X4iBA5OUlZWpsrIy7d+/31EsOn2+S8NroZOSBmrr1q0NVsjUH85b39+Z6gsyhw4danTDjzM1NTUqKSlp0SG7VVVVOny47sah+Pj4ZtueuRLnbJr7b3vmdi+r1driPgEA8HaseAEAAOcsJCREw4YN0+23365Zs2Zp8eKPNGPGTMeb68LCE3r77beb/Np27YKa7dtkqvv15MyVJJJ08uT5FVAqKyvO3ugcnXkQbn2xpbS0VNnZ2ZLU6MDd+s8zMzNVVVUlqeE2pZ8frFtfYDpX9dd+n01p6emtPuHhHZpt62ybU1Pqz2lpitl8eoWSzdbylTkAAHg7VrwAAIALFhgYqKuvvlqdO3fWo48+IklKSdmkBx54wGVXB9fWni7E3Hbb7Y2uZnamuWLA+Ro4cKBMJpPsdru2b9+h66+/Qenp6bLZbAoODm60lSohIUEBAQGqrq7W7t27dfHFFzsKNv7+/o6tSPXqi069e1+khx9+uMVxRUREXGBmAADA1Si8AAAAl7nssssUGRmp48eP69SpUyopKWnySujz0b59e8fH/v5+Hr35Jjw8XD169NDBgwcdBZT6FSyJiYmNik2BgYHq27ev0tPTHTch1Z89k5CQ0Ohg27CwulwrKqyG5BkaevpmpeLik822LS4udvn3BwCgLWGrEQAAcKkzz3Vp7gDccxUdHe24CWnnzp0u6/d81Z/jUlRUpNzcXEcBJjExyUn7utd37Nihffv2qby87gybgQMHNmp75gHDhYWFLo89MDBQ3bp1k1R3vXdz6s+bMZor5woAAK0JhRcAAOAyFRUVysnJkVR3+8+Zq1QulJ+fn4YNGyZJSk1N1cGDB13W9/kYNOh0weT77793FCh+fr5LvfrXd+3apR9//MHx+s/Pd5Gk4cOHS6q7AWjp0iWuCrmBwYMHS5L27t3rOJumKatXrzbk+/9cYGCgJDkOHAYAwFdQeAEAAM2yWq3605/u0ZYtWxodeHsmm82mV199xbGSY/jwK1y+iuGWW26R2WyWzWbTrFlP6fjx407b1tbWau3atc22uRBnFkyWLPlENTU1CggIUP/+/Ztsn5iYJJPJJKvVqs8++0xS3TXdTRVqhg4dqn79+kmSFi9erPXr1zUby4ED+7V58+Zziv+aa651/PeZO/elJg/m3bhxg1JSNp1Tv+erU6dOkupW+djtdrd8TwAA3IEzXgAAwFnt2bNHf/7z44qIiNAVV4zQgAED1LVrF1kswSotLdW+fXv11Vdf6cCBA5Lqbj2aOnWqy+OIi+utadOm6Z///KcOHjyou+/+g6699lpdcskl6tixo6qqqnXkyBHt3r1LGzZsVGHhCf3rX28oMjLS5bFERkYqKipKR44cUX5+vqS6q5nrV278XGhoqHr27Kns7GxH+969ezu2T/3cI488qnvuma5Tp07p6aef1po1azVmzBjFxMTIbDbr5MmT2rt3r7Zs2azdu3frppsmO1bKtERCQoKuueYarVixQrt27dI990zX5Mk3q1evXiovL9emTRv12WefqV+/ftqzZ48kY7cDDRiQqJUrV+rkyZN67bV/avz4Kx1j4+/vr65duxr2vQEAMBKFFwAA0Cw/Pz916tRJhYWFKigo0KefLtenny532j4mJkaPPvqYoqKiDInnxhsnKSgoSP/85z9VVlamxYsXa/HixU22DQgIcFoIcYWBAwfqyJEjjs+dbTM68/mZ23qa2mZUr1u3bnr55X/oySf/quzsbG3Zsllbtjhf1RIcHNzywH8yffo9OnHihLZs2aLs7Gy98MKcBs+joqL0yCOP6ne/u0OSFBBg3FiOHTtWixYtVH5+vpYsWaIlS05vseratavee+99w743AABGovACAACaFRgYqIULF2n37t1KS0vT7t27lZt7SEVFRaqqqlJQUJA6d47QRRf11vDhVyg5OVkBAQGGxnTNNddq+PAr9Pnnnys19Xvl5uaqtLRUAQEBioiIUFxcnIYMuVTJyckKDw83LI6BAwc1OAPF2cG6p9sP1Oeff97g8+Z0795dr732utavX69NmzYqIyNDxcXFstlsCgtrr9jY7kpKStKIESMVHx9/zvEHBAToqadmadWqVfrqqy914MAB1dbWqkuXLhoxYqQmT57cYJWLs9U5rmCxWDRv3stauHChUlO/17Fjx1RRUWHY9wMAwF1MdjbRAgAAwIn09B164IEHJEnPPz9HQ4YM8XBEAAB4Fw7XBQAAgFNff/2NpLpzVhISEjwcDQAA3ofCCwAAQBtVXFys0tJSp8+/++47rVhRtzVq+PDhCg0NdVdoAAD4DM54AQAAaKOysw/oiSee0KhRozVkyBB16xYtk8mso0ePavPmzVq7do1sNpvatWunO++8y9PhAgDglSi8AAAAtGHl5eX66qsv9dVXXzb5PDg4WH/+8xPq3r27myMDAMA3cLguAABAG2W1WrVx40Z999132r9/n2PrUXBwsGJiYjR06GWaOHGiOnTo4OlQAQDwWhReAAAAAAAADMLhugAAAAAAAAah8AIAAAAAAGAQCi8AAAAAAAAGofACAAAAAABgEAovAAAAAAAABqHwAgAAAAAAYBAKLwAAAAAAAAah8AIAAAAAAGAQCi8AAAAAAAAGofACAAAAAABgEAovAAAAAAAABqHwAgAAAAAAYBAKLwAAAAAAAAah8AIAAAAAAGAQCi8AAAAAAAAGofACAAAAAABgEAovAAAAAAAABqHwAgAAAAAAYJD/HyGbP/x3kmnQAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 428, "width": 559 } }, "output_type": "display_data" } ], "source": [ "viz_rmodel.rtree_feature_space(features=['ShellWeight'],\n", " show={'splits'})" ] }, { "cell_type": "markdown", "metadata": { "id": "f-XveSErcsl0" }, "source": [ "The horizontal orange bars indicate the average `Rings` value within each region. Here's another example using feature `Diameter` (with only one split in the tree):" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:24:05.659066Z", "iopub.status.busy": "2024-08-24T11:24:05.658485Z", "iopub.status.idle": "2024-08-24T11:24:05.854136Z", "shell.execute_reply": "2024-08-24T11:24:05.853476Z" }, "id": "Nstj5J6uBVvj" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABF4AAANZCAYAAAA25vrJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeXgc1Zkv/u+p6m51t1ZLliy5hWWDhU1sDJYxi2UZYxC5CXNnMpPJdgkkxpAEmAkJk5twybAEuAS4ExJywxLA9o9kshCSuVmeZDIWMca2jFkssDEBLLAtWW3JkiVr7b3q/P5oW1KrW9UttUoldX8/z8PzYFXVOe95z6mW+u3qKiGllCAiIiIiIiIioimnWB0AEREREREREVGmYuGFiIiIiIiIiMgkLLwQEREREREREZmEhRciIiIiIiIiIpOw8EJEREREREREZBIWXoiIiIiIiIiITMLCCxERERERERGRSVh4ISIiIiIiIiIyCQsvREREREREREQmYeGFiIiIiIiIiMgkLLwQEREREREREZmEhRciIiIiIiIiIpOw8EJEREREREREZBIWXoiIiIiIiIiITMLCCxERERERERGRSVh4ISIiIiIiIiIyCQsvREREREREREQmYeGFiIiIiIiIiMgkLLzMIrfddpvVIRARERERERHRBLDwMosMDg5YHQIRERERERERTQALL0REREREREREJmHhhYiIiIiIiIjIJCy8EBERERERERGZhIUXIiIiIiIiIiKTsPBCRERERERERGQSFl6IiIiIiIiIiEzCwgsRERERERERkUlYeCEiIiIiIiIiMgkLL0REREREREREJmHhhYiIiIiIiIjIJCy8EBERERERERGZhIUXIiIiIiIiIiKTsPBCRERERERERGQSFl6IiIiIiIiIiEzCwgsRERERERERkUlYeCEiIiIiIiIiMgkLL0REREREREREJmHhhYiIiIiIiIjIJCy8EBERERERERGZhIUXIiIiIiIiIiKTsPBCRERERERERGQSFl6IiIiIiIiIiEzCwgsRERERERERkUlYeCEiIiIiIiIiMgkLL0REREREREREJmHhhYiIiIiIiIjIJDarAyAiIiIiImtIKeH1euHz+eB2u+HxeCCEsDosSoBzRTR7sfBCRERERJRldF3Hzl2NaNjRCL90A6oT0AJwCR/q19diXV0tFIUXx88EnCui2Y+FFyIiIiKiLKLrOrY89zMcaB1CXsVa5Npzhrdp4SD+Y8dBfHjkKDZefy3f0FuMc0WUGXh2EhERERFlkZ27GnGgdQiFC1ZBHfVGHgBUew4KF6zC/pYh7NrdaFGEdAbniigzsPBCRERERJQlpJRo2NGIvIrlhvvlVSxHw449kFJOU2Q0FueKKHOw8EJERERElCW8Xi/80h139cRYqj0HPt0Fr9c7TZHRWJwroszBwgsREWW87u5u/OQnz6G7u9vqUIiILOXz+aI3Z02F6oTf7zc3IBoX54ooc7DwQkREGa+npwc//elP0dPTY3UoRESWcrvdgBZIbWctAJfLZW5ANC7OFVHmYOGFiIgyXl5eHq688krk5eVZHQoRkaU8Hg9cwgctHDTcTwsH4Vb88Hg80xQZjcW5IsocLLwQEVHGq6iowB13/C9UVFRYHQoRkaWEEKhfX4vB9oOG+w21H0T9+jUQQkxTZDQW54ooc7DwQkREGS8UCsHr9SIUClkdChGR5dbV1eKCqlz0te6Lu5pCCwfR37oPK6pyUbe21qII6QzOFVFmsFkdABERkdlaWlpwyy0344knnkR1dbXV4RARWUpRFGy8/lrs2t2Ihpd2Y0i6ozdx1QJwCx/+4Ypa1K2thaLwM1qrca6IMgMLL0REREREWUZRFFy+rg7r6tZGH1vs98PlcsHj8fArKzMM54po9mPhhYiIiIgoSwkhUFlZaXUYlALOFdHsxWvSiIiIiIiIiIhMwsILEREREREREZFJ+FUjIiLKeNXV1WhoeNHqMIiIiIgoC/GKFyIiIiIiIiIik7DwQkREGe/YsWP46lf/GceOHbM6FCIiIiLKMiy8EBFRxgsEAnj33XcRCASsDoWIiIiIsgwLL0REREREREREJmHhhYiIiIiIiIjIJCy8EBERERERERGZhIUXIiLKePPmzcO3vnUH5s2bZ3UoRERERJRlbFYHQEREZLaCggJcddVVVodBRERERFmIV7wQEVHG6+3txe9+9zv09vZaHQoRERERZRkWXoiIKON1dXXhRz/6v+jq6rI6FCIimgJSSrS1teHQoUNoa2uDlNLqkIiIxsWvGhERERER0ayg6zp27mpEw45G+KUbUJ2AFoBL+FC/vhbr6mqhKPxsmYhmFhZeiIiIiIhoxtN1HVue+xkOtA4hr2Itcu05w9u0cBD/seMgPjxyFBuvv5bFFyKaUfiKREREREREM97OXY040DqEwgWroI4qugCAas9B4YJV2N8yhF27Gy2KkIgoMRZeiIgo47lcLqxatQoul8vqUIiIaBKklGjY0Yi8iuWG++VVLEfDjj285wsRzSgsvBARUcarrKzEQw89jMrKSqtDISKiSfB6vfBLd9yVLmOp9hz4dBe8Xu80RUZElBwLL0RElPE0TcPQ0BA0TbM6FCIimgSfzxe9kW4qVCf8fr+5ARERTQALL0RElPEOHz6MT3zi73D48GGrQyEioklwu92AFkhtZy3Ar5YS0YzCwgsREREREc1oHo8HLuGDFg4a7qeFg3Arfng8nmmKjIgoORZeiIiIiIhoRhNCoH59LQbbDxruN9R+EPXr10AIMU2RERElx8ILERERERHNeOvqanFBVS76WvfFXfmihYPob92HFVW5qFtba1GERESJ2awOgIiIiIiIKBlFUbDx+muxa3cjGl7ajSHpjt5wVwvALXz4hytqUbe2ForCz5aJaGYRkg+5nzU2bboBmzdvsToMIqJZJxKJYHBwEHl5ebDZ+JkDEdFsJ6WMPmLa74fL5YLH4+HXi4hoxuJfn0RElPFsNhuKioqsDoOIiKaIEAKVlZVWh0FElBJeh0dERBnv+PHjuOuuu3D8+HGrQyEiIiKiLMPCCxERZbyhoSHs3fsKhoaGrA6FiIiIiLIMCy9ERERERERERCZh4YWIiIiIiIiIyCQsvBARERERERERmYSFFyIiynhz587Fl7/8FcydO9fqUIiIiIgoy/Bx0kRElPHmzJmDf/zHf7Q6DCIiIiLKQrzihYiIMt7AwABefvllDAwMWB0KEREREWUZFl6IiCjjdXR04IEH7kdHR4fVoRARERFRlmHhhYiIiIiIiIjIJFl5j5dIJIIDBw7gjTdex/79++H1ehEIBFBQUIAlS5bib/7mGlxyyaVxx/3kJ8/hpz/9qWHbmzdvwYIFC8wKnYiIiIiIiIhmkawsvBw4sB/f+ta3AADFxcVYvnw5nE4nWlpasHfvK9i79xVcc801uO22r0EIEXf82Wefg3POOSdh27m5uabGTkRERERERESzR1YWXoRQUFdXh7//+3/A+eefH7Ntx46X8N3vfhd//OMfsWzZMtTXXx13fG3tGlx//RemK1wiIkqTw+HA4sWL4XA4rA6FiIhSIKWE1+uFz+eD2+2Gx+NJ+IEoEdFskJWFl5UrV2LlypUJt61ffwX27WvCn//8n2hoaEhYeCEiotmlqqoKTz75lNVhEBFRErquY+euRjTsaIRfugHVCWgBuIQP9etrsa6uForC21QS0eySlYWXZBYvXgwA6OrqsjgSIiIiIqLsoOs6tjz3MxxoHUJexVrk2nOGt2nhIP5jx0F8eOQoNl5/LYsvRDSr8BUrAa/XCyB6/5dEmps/wLPPPoPvf/9RPP30j7F9+1/g8/mmM0QiIpqADz5oxsc//jF88EGz1aEQEdE4du5qxIHWIRQuWAV1VNEFAFR7DgoXrML+liHs2t1oUYRERJPDK17G6OnpwbZt/wUAqKurS7jPmRvwjpabm4tbb72VX00iIpqBpATC4TCktDoSIiJKREqJhh2NyKtYa7hfXsVyNOxoxLq6tbznCxHNGiy8jKJpGh566LsYGhrCokWLcM01fxOzvaJiPm644QasXn0x5s2bBwBoaWnB88//Env37sUjjzwCRVFx5ZVXWhE+EREREdGs5PV64ZfumK8XJaLaczCku+D1elFZWTlN0RERpYeFl1F+8IMf4M0330RBQQHuvvse2O32mO319fVxxyxfvhzLlz+Axx//EX7729/iqaeexLp16+KONfL444/j8ccfT7rf0qVLUm6TiIiIiGi28Pl80RvppkJ1wu/3mxsQEdEUYuHltMcffxx//vN/Ij8/Hw8//PCEK+jXXXc9fv/736O3txfvvfde3GOqjdx666249dZbk+63adMNE4qJiIiIiGg2cLvdgBZIbWctAJfLZW5ARERTiDfXBfDUU0/ht7/9f8jLy8N3v/sQFi+unnAbBQUFKCqaA4BPQyIimmkWLFiAZ555FgsWLLA6FCIiSsDj8cAlfNDCQcP9tHAQbsUPj8czTZEREaUv6wsvzzzzNH7zm18jNzcXDz30EJYsmdzXeTRNg883BOB0xZ6IiGaMnJwcLFy4EDk5xvcOICIiawghUL++FoPtBw33G2o/iPr1a3hjXSKaVbK68PLss8/gV7/6FXJzc/Hwww9jyZKlk27rlVdeQSAQgBAC55577hRGSURE6Tpx4gS+973v4cSJE1aHQkRE41hXV4sLqnLR17ov7soXLRxEf+s+rKjKRd3aWosiJCKanKwtvGzdugXPP/888vLyUiq6dHaewIsvvohQKBS3rbGxEY8++j0AwIYNV6K4uNiUmImIaHL6+/vx5z//J/r7+60OhYiIxqEoCjZefy0+ecUyKO27MdTyCoba3sRQyytQ2nfjH65Yho3XXwtFydq3MEQ0S2XlzXX37NmDn//85wCA+fPn43e/+z2A38ftV1hYiC9/+csAgP7+ATz88EP44Q8fw+LFi1FSMhehUBAtLS3wer0AgAsvvBC33XbbtI2DiIiIiCiTKIqCy9fVYV3d2ugjpv1+uFwueDwefr2IiGatrCy8DAwMDP//oUOHcOjQoYT7zZs3b7jwUlZWis985jN4//1DOH7ci+bmZkQiERQUFOLSSy/FFVdswPr161mBJyIiIiJKkxBiwk8ZJSKaqbKy8PLRj34UH/3oRyd0TEFBIW688SaTIiIiIiIiIiKiTMTLM4iIKOPNmTMHn/3sZzFnzhyrQyEiIiKiLJOVV7wQEVF2mTt3LjZtutHqMIiIiIgoC/GKFyIiyng+nw/7978Fn89ndShERERElGVYeCEioozn9XrxjW98Y/gpdERERERE04WFFyIiIiIiIiIik7DwQkRERERERERkEhZeiIiIiIiIiIhMwsILERFlPJtNxdy5c2GzqVaHQkRERERZho+TJiKijLdo0dn4xS9+aXUYRERERJSFeMULEREREREREZFJWHghIqKMd+TIYXzuc5/FkSOHrQ6FiIhoykkp0dbWhkOHDqGtrQ1SSqtDIqJR+FUjIiLKeJGIhpMnTyIS0awOhYiIaMrouo6duxrRsKMRfukGVCegBeASPtSvr8W6ulooCj9rJ7IaCy9ERERERESzjK7r2PLcz3CgdQh5FWuRa88Z3qaFg/iPHQfx4ZGj2Hj9tSy+EFmMZyAREREREdEss3NXIw60DqFwwSqoo4ouAKDac1C4YBX2twxh1+5GiyIkojNYeCEiIiIiIppFpJRo2NGIvIrlhvvlVSxHw449vOcLkcVYeCEioozn8Xjwb//2b/B4PFaHQkRElDav1wu/dMdd6TKWas+BT3fB6/VOU2RElAjv8UJERBnP7XbjggsutDoMIiKiKeHz+aI30k2F6oTf7zc3ICIyxCteiIgo4508eRKbNz+LkydPWh0KERFR2txuN6AFUttZC8DlcpkbEBEZYuGFiIgy3qlTp/DLX/4Sp06dsjoUIiKitHk8HriED1o4aLifFg7Crfj5VVsii7HwQkRERERENIsIIVC/vhaD7QcN9xtqP4j69WsghJimyIgoERZeiIiIiIiIZpl1dbW4oCoXfa374q580cJB9Lfuw4qqXNStrbUoQiI6gzfXJSIiIiIimmUURcHG66/Frt2NaHhpN4akO3rDXS0At/DhH66oRd3aWigKP2snshoLL0RElPEKCgrw3/7bx1BQUGB1KERERFNGURRcvq4O6+rWRh8x7ffD5XLB4/Hw60VEMwgLL0RElPHmzZuHf/mXf7E6DCIiIlMIIVBZWWl1GEQ0Dl53RkREGS8YDOLo0aMIBo2f/kBERERENNVYeCEioozX2tqKm266Ea2trVaHQkRERERZhoUXIiIiIiIiIiKTsPBCRERERERERGQSFl6IiIiIiIiIiEzCwgsREWU8IQC73Q4+WZOIiIiIphsfJ01ERBlv8eJq/OlP/2l1GERERESUhXjFCxERERERERGRSVh4ISKijNfS0oKbb/4KWlparA6FiIiIiLIMCy9ERJTxQqEQPvjgA4RCIatDISIiIqIsw8ILEREREREREZFJWHghIiIiIiIiIjIJn2pERERERNNOSgmv1wufzwe32w2PxwMxRc98N7Ntmh6zdQ5na9yU+bg2rcXCCxERZbzy8nL867/ehfLycqtDIcp6uq5j565GNOxohF+6AdUJaAG4hA/162uxrq4WijK5i7LNbJumx2ydw9kaN2U+rs2ZQUgppdVBUGo2bboBmzdvsToMIiIioknRdR1bnvsZDrQOIa9iOVR7zvA2LRzEYPtBXFCVi43XXzvhNwJmtk3TY7bO4WyNmzIf1+bMwewSEVHGO3XqFH7961/j1KlTVodClNV27mrEgdYhFC5YFfMGAABUew4KF6zC/pYh7NrdOKPapukxW+dwtsZNmY9rc+Zg4YWIiDLeyZMn8eMfP4WTJ09aHQpR1pJSomFHI/Iqlhvul1exHA079mAiF2Wb2TZNj9k6h7M1bsp8XJszCwsvRERERGQ6r9cLv3THfeo6lmrPgU93wev1zoi2aXrM1jmcrXFT5uPanFlYeCEiIiIi0/l8vuhNHVOhOuH3+2dE2zQ9Zusczta4KfNxbc4sLLwQERERkencbjegBVLbWQvA5XLNiLZpeszWOZytcVPm49qcWVh4ISKijJebm4tLL70Mubm5VodClLU8Hg9cwgctHDTcTwsH4Vb88Hg8M6Jtmh6zdQ5na9yU+bg2ZxYWXoiIKOPNnz8f999/P+bPn291KERZSwiB+vW1GGw/aLjfUPtB1K9fAyHEjGibpsdsncPZGjdlPq7NmYWFFyIiyniRSAS9vb2IRCJWh0KU1dbV1eKCqlz0te6L+xRWCwfR37oPK6pyUbe2dka1TdNjts7hbI2bMh/X5swhJJ8bNWts2nQDNm/eYnUYRESzTnNzM2655WY88cSTqK6utjocoqym6zp27W5Ew0uN8El39OaPWgBu4UP9FbWoW1sLRZncZ4Nmtk3TY7bO4WyNmzIf1+bMwMLLLMLCCxHR5LDwQjTzSCmjjzv1++FyueDxeKbsUncz26bpMVvncLbGTZmPa9NaNqsDICIiIqLsI4RAZWXlrGubpsdsncPZGjdlPq5Na/GaIiIiIiIiIiIik7DwQkRERERERERkEn7ViIiIMt7ZZ5+N3/72d3A6nVaHQkRERERZhoUXIiLKeKqqIjc31+owiIiIiCgL8atGRESU8dra2nDHHd9CW1ub1aEQERERUZZh4YWIiDKe3+/Hvn374Pf7rQ6FiIiIiLIMCy9ERERERERERCZh4YWIiIiIiIiIyCQsvBARERERERERmYSFFyIiynilpaX4p3/6Z5SWllodChERERFlGT5OmoiIMl5RURH+7u/+zuowiIiIiCgL8YoXIiLKeP39/XjxxRfR399vdShERERElGVYeCEioox34sQJPPzwQzhx4oTVoRARTYqUEm1tbTh06BDa2togpbQ6pFnLqlya2S/XB9HMxq8aERERERHNULquY+euRjTsaIRfugHVCWgBuIQP9etrsa6uForCz1JTYVUuzeyX64NodmDhhYiIiIhoBtJ1HVue+xkOtA4hr2Itcu05w9u0cBD/seMgPjxyFBuvv5ZvrpOwKpdm9sv1QTR78AwkIiIiIpqBdu5qxIHWIRQuWAV11JtqAFDtOShcsAr7W4awa3ejRRHOHlbl0sx+uT6IZg8WXoiIKOM5nU6cd955cDqdVodCRJQSKSUadjQir2K54X55FcvRsGMP7+lhwKpcmtkv1wfR7MLCCxERZbyzzjoLP/zh/8VZZ51ldShERCnxer3wS3fclQxjqfYc+HQXvF7vNEU2+1iVSzP75fogml1YeCEiIiIimmF8Pl/0RqmpUJ3w+/3mBjSLWZVLM/vl+iCaXVh4ISKijNfc3Iz6+qvQ3NxsdShERClxu92AFkhtZy0Al8tlbkCzmFW5NLNfrg+i2YWFFyIiIiKiGcbj8cAlfNDCQcP9tHAQbsUPj8czTZHNPlbl0sx+uT6IZhcWXoiIiIiIZhghBOrX12Kw/aDhfkPtB1G/fg2EENMU2exjVS7N7Jfrg2h2YeGFiIiIiGgGWldXiwuqctHXui/uygYtHER/6z6sqMpF3dpaiyKcPazKpZn9cn0QzR42qwMgIiIiIqJ4iqJg4/XXYtfuRjS8tBtD0h29oaoWgFv48A9X1KJubS0UhZ+lJmNVLs3sl+uDaPYQkg91nzU2bboBmzdvsToMIqJZJxQKoaurC6WlpXA4HFaHQ0Q0YVLK6COE/X64XC54PB5+fWSSrMqlmf1yfRDNbLzihYiIMp7D4eCNBYloVhNCoLKy0uowMoJVuTSzX64PopmN150REVHGa29vx0MPfRft7e1Wh0JEREREWYaFFyIiyniDg4P4y1/+gsHBQatDISIiIqIsw8ILEREREREREZFJWHghIiIiIiIiIjIJCy9ERERERERERCZh4YWIiDJecXExrrvuOhQXF1sdChERERFlGT5OmoiIMl5JSQmuv/4LVodBRERERFmIV7wQEVHGGxoawuuvv46hoSGrQyEiIiKiLMPCCxERZbzjx4/jzjv/F44fP251KERERESUZVh4ISIiIiIiIiIyCQsvREREREREREQmYeGFiIiIiIiIiMgkfKoRERFlPLvdjvnz58Nut1sdCtGkSCnh9Xrh8/ngdrvh8XgghLA6LMY1Q1g53nT6NivudNvl+sns8QLZOWayFgsvRESU8RYuXIjnnvuJ1WEQTZiu69i5qxENOxrhl25AdQJaAC7hQ/36Wqyrq4WiTP8FzIxrZrByvOn0bVbc6bbL9ZPZ4wWyc8w0MwgppbQ6CErNpk03YPPmLVaHQURERNNA13Vsee5nONA6hLyK5VDtOcPbtHAQg+0HcUFVLjZef+20vlFgXDODleNNp2+z4k63Xa6fzB4vkJ1jppmDK4qIiDLe4cOH8Y//+EkcPnzY6lCIUrZzVyMOtA6hcMGqmDcIAKDac1C4YBX2twxh1+5GxjWD4zKLleNNp2+z4k63Xa6fEZk4XiA7x0wzBwsvRESU8TRNQ19fHzRNszoUopRIKdGwoxF5FcsN98urWI6GHXswXRcwM66ZwcrxptO3WXGn2y7XT2KZMl4gO8dMMwsLL0REREQzjNfrhV+64z6VHUu158Cnu+D1ehnXDIzLLFaON52+zYo73Xa5fhLLlPEC2TlmmllYeCEiIiKaYXw+X/Smj6lQnfD7/eYGdBrjmhmsHG86fZsVd7rtcv0YyIDxAtk5ZppZWHghIiIimmHcbjegBVLbWQvA5XKZG9BpjGtmsHK86fRtVtzptsv1YyADxgtk55hpZmHhhYiIMl5lZSUee+yHqKystDoUopR4PB64hA9aOGi4nxYOwq344fF4GNcMjMssVo43nb7Nijvddrl+EsuU8QLZOWaaWVh4ISKijOdyufCRj3yEn2DRrCGEQP36Wgy2HzTcb6j9IOrXr4EQgnHNwLjMYuV40+nbrLjTbZfrJ7FMGS+QnWOmmYWFFyIiynhdXV146qkn0dXVZXUoRClbV1eLC6py0de6L+5TWi0cRH/rPqyoykXd2lrGNYPjMouV402nb7PiTrddrp8RmTheIDvHTDOHkHxW1qyxadMN2Lx5i9VhEBHNOs3NzbjllpvxxBNPorq62upwiFKm6zp27W5Ew0uN8El39OaQWgBu4UP9FbWoW1sLRZn+z9EY18xg5XjT6dusuNNtl+sns8cLZOeYaWZg4WUWYeGFiGhyWHih2U5KGX0cqt8Pl8sFj8czIy6FZ1wzg5XjTadvs+JOt12un8weL5CdYyZr2awOgIiIiIiMCSFm5M2hGdfMYOV40+nbrLjTbZfrJ/Nl45jJWryOioiIiIiIiIjIJCy8EBFRxissLMB//+9/i8LCAqtDISIiIqIsw68aERFRxisrm4evfvWrVodBRERERFmIV7wQEVHGCwQCaG5uRiAQsDoUIiIiIsoyLLwQEVHGO3bsGG655WYcO3bM6lCIiIiIKMuw8EJEREREREREZBIWXoiIiIiIiIiITMLCCxERERERERGRSVh4ISKijCeEgNvthhDC6lCIiIiIKMvwcdJERJTxFi9ejN/97vdWh0FEREREWYhXvBARERERERERmSQrr3iJRCI4cOAA3njjdezfvx9erxeBQAAFBQVYsmQp/uZvrsEll1w67vFNTfvw61//Bu+//x4CgQDmzZuHtWvr8LnPfQ4ul2saR0JERKloaWnB/fffh7vuuhtVVVVWh0NEREREWSQrCy8HDuzHt771LQBAcXExli9fDqfTiZaWFuzd+wr27n0F11xzDW677Wtx9wP4zW9+jaeeegpCCCxffj7mzCnCwYMH8Ytf/By7d+/C97//AxQWFloxLCIiGkcoFEJLSwtCoZDVoRDRaVJKeL1e+Hw+uN1ueDyeKbsPk1Hbyfo1M67JxpzumKyKK922zYo5Hbquo6mpCb29vSgqKkJNTQ0UJbUvEWiahm3btqG7uxslJSW4+uqroarqlMQ1W83Gc5VoMrKy8CKEgrq6Ovz93/8Dzj///JhtO3a8hO9+97v44x//iGXLlqG+/urhbR980Iwf//jHUBQF99//AC6++GIAQCAQwN1334U333wTjz32A9x99z3TOh4iIiKi2ULXdezc1YiGHY3wSzegOgEtAJfwoX59LdbV1ab8RnYibV91+RoAwIsv70nY79ray7C78RVT4ppszMniSjYms3KZbr7MWgNmrq1IJIKnn92K7btfQ9heAtjcQMQHe/jH2LD2Ynzpxo2w2RK/tQqFQrj3vgfx5jvN0J1lgN0NhH344dP/jpXLqnHv3XfC4XBMKq7Zajaeq0TpEFJKaXUQM833vvc9/PnP/4mVK1fikUf+z/DP77//PuzcuRMf+9jHcPvt/xJzzIkTJ3D99ddB13Vs3rwFCxYsmPK4Nm26AZs3b5nydomIMl1zczNuueVmPPHEk6iurrY6HKKspes6tjz3MxxoHUJexXKo9pzhbVo4iMH2g7igKhcbr792wm+cDNsOBXD4wA4geAqLVn8CNsfIV8O1cBADx9+G6D8KFCxC3vypjWvSMYeDGDx+ELL/KFBQhfz5509oTKblMllcSfo2aw2YubYikQi+/s1vo6XfDUd5DRSHc6TfUAChjiYsLPDj0UceiCu+hEIhXLfpKzglKqCWrYKwjxwrwwFonftQLDvwk81PZk3xZTaeq0Tp4mpMYPHixQCArq6u4Z+Fw2G89tprAIANG66MO2bevHlYtmwZAKCxcfc0RElEREQ0u+zc1YgDrUMoXLAq5g0TAKj2HBQuWIX9LUPYtbtxStvuHfAhWHAegjnz0ddxOK7fiHDhaL8bkbxFUx7XZGNW7TmI5C1CS78LmnBNeExm5TJZXMn6NmsNmLm2nn52K1r63XAuWBNTdAEAxeGEc8EaHO134ZnNW+OOvfe+B3FKVMDmqY0pugCAsDth89SiR5TjO/c/OOG4ZqvZeK4SpYuFlwS8Xi+A6P1fzmhra0MgEAAAnHvuuQmPO/PzDz74wOQIiYhoIioqKvCd79yHiooKq0MhylpSSjTsaERexXLD/fIqlqNhxx5M5KLsZG13dffAlpMPW8lSdLW9H9O2lBIn296Ho7wGJ7t7pjSudGI+E7ejvCYu5jPbxhtTOjGnG5dR32atATPXlq7r2L77NTjKawz3c5TXYPuu16Hr+vDPNE3Dm+80Qy1bZXisWrYKTQeboWlaynHNVrPxXCWaCiy8jNHT04Nt2/4LAFBXVzf8846ODgBAXl4e3G53wmNLS0tj9iUiopkhLy8Pa9asQV5entWhEGUtr9cLv3THfUo9lmrPgU93DX8Qlm7bAX8AulQhFAXClgPNlofAQPfI9oGT0Gx5UBxOaFJFwB+YsrgmG/PouBWHMz7mJGNKJ+Z04krWt1lrwMy11dTUhLC9JO5Kl7EUhxMhezGampqGf7Zt2zbozrK4K13GEnYndGcZGhoaUo5rtpqN5yrRVMjKm+uOR9M0PPTQdzE0NIRFixbhmmv+Znib3+8DADid479wnnmUtM/nm1C/jz/+OB5//PGk+y1dumRC7RIRUVRPTw/+67/+jI9+9L/FXM1IRNPH5/NFb4KZCtUJv98/JW1rmgaIUZ81qk7okeDI9kho5FihQNMNrjqYYFxGkuUjJu6xMScZU4wpzGWyuJL1bdYaMHNt9fb2Rm+kmwqbG319fcP/7O7ujt5INxV2d3T/DDcbz1WiqcDCyyg/+MEP8Oabb6KgoAB3330P7Hb7tPR766234tZbb02636ZNN0xDNEREmae7uxtbtmzBRRetZuGFyCJutxvQEn9CHUcLDH+glW7bqqoCcuTrH9ACUGwjn7arNsfIsVKHqhg83neCcRlJlo+YuMfGnGRMMaYwl8niSta3WWvAzLVVVFQERFL8UDXiQ2Fh4fA/S0pKgHCKx4Z90f0z3Gw8V4mmAr9qdNrjjz+OP//5P5Gfn4+HH34YlZWVMdtdrmi1+sx9XhI5U1Ud76tIRERERNnK4/HAJXzQwgZXSCD6ZBK34ofH45mStp0uJxShQeo6ZCQINTIIZ/7IG1xn/lyokUHooQBUocHpGufT+EnENdmYR8ethwLxMScZUzoxpxNXsr7NWgNmrq2amhrYw93QQ8aFHT0UgCPcg5qakXvBXH311VACnZBh42NlOAAl0In6+vqU45qtZuO5SjQVWHgB8NRTT+G3v/1/yMvLw3e/+xAWL45/1Gh5+TwAwODg4LhfJTrzFKR588rNC5aIiIhoFhJCoH59LQbbDxruN9R+EPXr10AIMWVtl5YUIxIcQKT7PZRWLolpWwiBuZVLEOpowtyS8a+Im0xc6cR8Ju5QR1NczGe2jTemdGJONy6jvs1aA2auLUVRsGHtxQh1NBnuF+powoa61TGPMFZVFSuXVUPr3Gd4rNa5DzXLq6NXfGS42XiuEk2FrC+8PPPM0/jNb36N3NxcPPTQQ1iyJPF9VCorzxq+v8uhQ4cS7nPm59XVi80JloiIiGgWW1dXiwuqctHXui/uE28tHER/6z6sqMpF3draKW27KN+NnP53kRM8jsLys+P6tUs/Fhb4YRs8MuVxTTZmLRyEbfAIFhb4oUr/hMdkVi6TxZWsb7PWgJlr60s3bsTCAj8CrXvirnzRQwEEWvdgYYEfN23aGHfsvXffiWLZgYi3Me7KFxkOIOJtRLHswD133TnhuGar2XiuEqVLyCx+ztazzz6D559/Hrm5uXj44YexZMlSw/3vv/8+7Ny5Ex/72Mdw++3/ErPtxIkTuP7666DrOjZv3oIFCxZMebybNt2AzZu3THm7RESZrr39OJ555lncdNONqKiYb3U4RFlN13Xs2t2Ihpca4ZPu6M0ytQDcwof6K2pRt7Y25qqBqWr7yvVrIAC8uGNPwn5r11yGxj2vmBLXZGNOFleyMZmVy3TzZdYaMHNtRSIRPLN5K7bveg0he0n0hrsRHxzhbmyouxg3bdoImy3x7TNDoRC+c/+DaDrYDN1ZFr3hbtgHJdCJmuXVuOeuO+FwOCYV12w1G89VonRkbeFl69Yt+PnPf468vLzTV7oYF10AoLm5GbfeeguEEHjggQewevXFAKL3fbn77rvw5ptvoq6uDnfffY8pMbPwQkRERJlCShl9tKzfD5fLBY/HM2VfDTBqO1m/ZsY12ZjTHZNVcaXbtlkxp0PXdTQ1NaGvrw+FhYWoqalJ+U2+pmloaGhAd3c3SkpKUF9fnxVfLzIyG89VosnIysLLnj17cM89dwMAzj33XFRVLUy4X2FhIb785S/H/Ow3v/k1nnrqKQghsGLFChQVFeHttw+ip6cbZ511Fr7//R/E3M18KrHwQkQ0OeFwGL29vSgqKpq2J9YREREREQFZ+jjpgYGB4f8/dOjQuPdsmTdvXlzh5ZOf/EcsWrQIv/71r/Hee+8hEAigrKwMn/3s5/C5z32OTzQiIpqBjh49iltuuRlPPPEkqqvjb6BORERERGSWrCy8fPSjH8VHP/rRSR9fU7MKNTWrpjAiIiIiIiIiIspEvOsQEREREREREZFJWHghIiIiIiIiIjIJCy9ERERERERERCbJynu8EBFRdjnnnHPwxz/+CTYbf+0RERER0fTiX6BERJTxFEWBw+GwOgwiIiIiykL8qhEREWW8trY2/Mu/3I62tjarQyEiIiKiLMPCCxERZTy/348DBw7A7/dbHQoRERERZRkWXoiIiIiIiIiITMLCCxERERERERGRSVh4ISIiIiIiIiIyCZ9qREREGa+srAxf//rtKCsrszoUohlHSgmv1wufzwe32w2PxwMhRNrHptMuAOi6jqamJvT29qKoqAg1NTVQFCXpNislG3M6caeT63TnwohZY0qHmeNNJ9dmxpUOK9fPTM0J0VQTUkppdRCUmk2bbsDmzVusDoOIiIgygK7r2LmrEQ07GuGXbkB1AloALuFD/fparKurHfcNtNGxV12+BgDw4st7JtwuAEQiETz97FZs3/0awvYSwOYGIj7Yw924ovYiSAns2PNG3LYNay/Gl27cCJtt+j9XTJbLNZddgme3PJdwTMniTifXa2svw+7GVyY1x8kYzVM6Y0onLrPaTaVto1yne06YJZ0xmZ1Pq3JCZBYWXmYRFl6IiCanr68PjY2NqK2tRWFhodXhEFlO13Vsee5nONA6hLyK5VDtOcPbtHAQg+0HcUFVLjZef23cmx/DY0MBHD6wAwiewqLVn4DN4Uq5XSD6Zv7r3/w2WvrdcJTXQHE4R/oN+dF/ZDcQ6Eb+0r+FmuMetS2AUEcTFhb48egjD0xr8SVZLge8b6Pz8BvwOc5CTsWqMWMyjjudXA8cfxui/yhQsAh58yc2x8kYz1MaY0ojLrPaTaVtw1yneU6YJa0xmZxPq3JCZCauZCIiynidnZ34/vcfRWdnp9WhEM0IO3c14kDrEAoXrIp50wMAqj0HhQtWYX/LEHbtbpzQsb0DPgQLzkMwZz76Og5PqF0AePrZrWjpd8O5YE3Mm3kACASDQOmFQMEiBLo/iNmmOJxwLliDo/0uPLN5a6ppmBLJctkrynBKlEPNLY0bU7K408l1RLhwtN+NSN6iCc9xMkbzlM6Y0onLrHZTadso1+meE2ZJZ0xm59OqnBCZiYUXIiIioiwipUTDjkbkVSw33C+vYjkaduzB6Iujkx3b1d0DW04+bCVL0dX2PhJdWJ2oXSD6Kfj23a/BUV6TIGggFBgE7PlA8UcQPtUCqce37SivwfZdr0PXdcOxTZWkuZQS3T29UMtWIdRzNGE+gMRxp5NrKSVOtr0PR3kNTnb3jBv/eHNhxHCe0hzTZOMyq91U2k6W63TOCbOkO6YzzMhnOm0TzWQsvBARERFlEa/XC790x33SPJZqz4FPd8Hr9aZ0bMAfgC5VCEWBsOVAs+UhMNCdUrsA0NTUhLC9JO4KCgAIhwKAYocQCoSaA+QUIjwUfwWb4nAiZC9GU1OT4dimSrJc9vX1QRd2CLsT0pEHPXAq4X6J4k4n14GBk9BseVAcTmhSRcAfSNjveHNhxGie0hlTOnGZ1W4qbRvlOt1zwizpjGk0M/KZTttEMxkLL0RERERZxOfzRW9kmQrVCb/fn9KxmqYBYtSflqoTeiSYUrsA0NvbG71BawJSj28b47Vtc6Ovry/xtimWLJfhcAQQavQfqhNSC43f2Ji408m1FgmNHCsUaLo2fr8J5sKI0TzFmcCY0onLrHZTadso1+meE2ZJZ0xxpjif6bRNNJOx8EJERBnP5XJhxYoVcLlcyXcmynButxvQEn+CHUcLxJw3RseqqgrIUV/x0QJQbON8qj2mXQAoKioCIr6Euwslvm2M13bEN2030U6WS7vdBsjTb1q1AITqGL+xMXGnk2vV5hg5VupQFXX8fhPMhRGjeYozgTGlE5dZ7abStlGu0z0nzJLOmOJMcT7TaZtoJmPhhYiIMl5lZSW+971HUVlZaXUoRJbzeDxwCR+08DifvJ+mhYNwK354PJ6UjnW6nFCEBqnrkJEg1MggnPklKbULADU1NbCHu6GH4t+U2R1OQA9DSh1SCwLBPthzy+L200MBOMI9qKkxvv/IVEmWy8LCQigyDBkOQIQGoTjnJNwvUdzp5NqZPxdqZBB6KABVaHC6xrlyZpy5MGI0T+mMKZ24zGo3lbaNcp3uOWGWdMY0mhn5TKdtopmMhRciIsp4uq4jFApN2w03iWYyIQTq19disP2g4X5D7QdRv34NhBApH1taUoxIcACR7vdQWrkk5lijdgFAURRsWHsxQh0J7s8iAIczDwgPAD1/hX1OFYQS33aoowkb6lZP2yNok+ZSCJQUF0Hr3AdH8cKE+QASx51OroUQmFu5BKGOJswtKR43/vHmwojhPKU5psnGZVa7qbSdLNfpnBNmSXdMZ5iRz3TaJprJWHghIqKM9+GHH+Kaaz6ODz/80OpQiGaEdXW1uKAqF32t++I+edbCQfS37sOKqlzUra2d0LFF+W7k9L+LnOBxFJafPaF2AeBLN27EwgI/Aq174q6ocObkAF1vAf1H4CxZHLNNDwUQaN2DhQV+3LRpY6ppmBLJcjkHnSiWHdCGuuLGlCzudHJtl34sLPDDNnhkwnOcjNE8pTOmdOIyq91U2jbKdbrnhFnSGZPZ+bQqJ0RmEpLP6Jo1Nm26AZs3b7E6DCKiWae5uRm33HIznnjiSVRXV1sdDtGMoOs6du1uRMNLjfBJd/SGl1oAbuFD/RW1qFtbO+6VI0bHXrl+DQSAF3fsmXC7ABCJRPDM5q3Yvus1hOwl0Ru5RnxwhLuxvvYiAMCOxjfitm2ouxg3bdoIm81mRroMJcvlZZdegs1bn0s4pmRxp5Pr2jWXoXHPK5Oa42SM5imdMaUTl1ntptK2Ua7TPSfMks6YzM6nVTkhMgsLL7MICy9ERJPDwgvR+KSU0Ue8+v1wuVzweDwpX95vdGw67QLRN2ZNTU3o6+tDYWEhampqht+IGW2zUrIxpxN3OrlOdy6MmDWmdJg53nRybWZc6bBy/czUnBBNNRZeZhEWXoiIJoeFFyIiIiKyivUfDRARERERERERZajp/xIsERHRNFu4cCF+/vNfoKioyOpQiIiIiCjLsPBCREQZz263o7S01OowiIiIiCgL8atGRESU8drbj+O+++5De/txq0MhIiIioizDwgsREWW8wcEh7Nq1E4ODQ1aHQkRERERZhoUXIiIiIiIiIiKTsPBCRERERERERGQSFl6IiIiIiIiIiEzCwgsREWW8kpIS3HDDDSgpKbE6FCIiIiLKMnycNBERZbzi4mJ87nP/w+owiIiIiCgL8YoXIiLKeIODg9izZw8GBwetDoWIiIiIsgyveCEioozX3t6Oe+65G0888SSqq6utDodoSkkp4fV64fP54Ha74fF4IISYtuPNalfXdTQ1NaG3txdFRUWoqamBoihJt1kdt1mMxqxpGrZt24bu7m6UlJTg6quvhqqq0xKXUd/Jcmm0PZ0xJTs2nbjSEYlE8KtfPY+uri6Ulpbi05/+DGy2kbdj6axrq9btTD1fZmpclL2ElFJaHQSlZtOmG7B58xarwyAimnWam5txyy03s/BCGUXXdezc1YiGHY3wSzegOgEtAJfwoX59LdbV1Rq+aUv3eLPajUQiePrZrdi++zWE7SWAzQ1EfLCHu7F+zUUQAnip8Y24bRvWXowv3bgx5o3sdMZtFqN8XH7ZKhxvb8db73wA3VkG2N1A2Acl0ImVy6px7913wuFwmBJXKBTCvfc9iDffaY7r+8Jl1bhqw3ps37U3YS7X1l6G3Y2vJMz1FXWX4C/bX8ZbCdpNNiajmFYuq8bd/3oH9r76+rhzbBRXOmsgEAjgttu/iSNtnZCu8uG4hL8DiyrL8L1HHsRP/v0XCec42bq2at3O1PNlpsZFxMLLLMLCCxHR5LDwQplG13Vsee5nONA6hLyK5VDtOcPbtHAQg+0HcUFVLjZef23CNxnpHm9WXJFIBF//5rfR0u+Go7wGisM5cnzQj4H3/gA4C5G/aB1Uh2uk31AAoY4mLCzw49FHHphw8cWsfKTLKB+RgA8DB58HChZALb8Yin1kmwwHoHXuQ7HswE82PznlxZdQKITrNn0Fp0QF1LJVEGP77ngDylArLrz6Jtid7uFtWjiIgeNvQ/QfBQoWIW9+bK7DQT/2/+Un0BzFUCoundCYksbUuQ85Q4dRtawOBZUr4ubYKK501kAgEMCnrt2IgHsRUFoDxTZq3Ub8wIl9EL3vw1m+Ao6KVTFznGxdW7VuZ+r5MlPjIgJ4jxciIiKiWWfnrkYcaB1C4YJVMW8uAEC156BwwSrsbxnCrt2NphxvVlxPP7sVLf1uOBesiXkDCgCBU0eBwkXA3AsR9Mfer0lxOOFcsAZH+114ZvPWCcU8FXGbxSgfvrZXgcJzIOZdAili/6QXdidsnlr0iHJ85/4Hpzyue+97EKdEBWye2pgCBwBIxQaUXwItbxE+eHNbzDbVnoOIcOFovxuRvEVxuf7gndcQyV0IlK4EpDahMRnFJOxOKOWXIOBehI4Ob8I5NoornTVw2+3fRMC9CEpFbUzRBUD03845kHOWIlRwbtwcJ1vXVq3bmXq+zNS4iAAWXoiIKAs4HA5UVVWZdsk90XSSUqJhRyPyKpYb7pdXsRwNO/Zg7MXN6R5vVly6rmP77tfgKK9J2Hb41BFgznmAowChwFDCuBzlNdi+63Xoup5SzFMRt1mM8qHrOrR+L1B6IaDYITUtvgEAatkqNB1shjbO9snQNA1vvtMMtWxVwu1S1yAUFSi9EP1dx2LmQkqJk23vw1Feg5PdPWOO09F/4ihEyUcARx5k2JfymJLFdCYulNbExZQsrtEmugYikQiOtHUCpfFzCAC6lMBAK1BaAy0cGLfdROvaqnU7U8+XmRoX0RksvBARUcarqqrCs89uRlVVldWhEKXN6/XCL91xn+iOpdpz4NNd8Hq9U3q8WXE1NTUhbC+J+9QfACJD3YCjAEJ1QAgVUB2IBOPfmCsOJ0L2YjQ1NaUU81TEbRajfIR7jgCuuRA2JyAEIJRoYWEMYXdCd5ahoaFhyuLatm0bdGdZ3FUlQPTNr4QAIKDYnJDOUnS3vju8PTBwEpotD4rDCU2qCPgDw9u6jh+FzCmEUHMgoEAqNkgtnNKYjGIaHZdic8XFlCyu0Sa6Bn71q+chXeVxV7qMdNwF5BRB2F2AYkfQP5Rwt0Tr2qp1O1PPl5kaF9EZLLwQERERzSI+ny96w8hUqE74/f4pPd6suHp7e6M3FU1ARoKxbQsVUo8kbtvmRl9fX2pxwLx8pMsoH3p4KG7buJ/g293o7u6esri6u7ujN4dNRMpoIegMmxvBwMDwP7VIaCTXQoE2qlgUCvoBdXSBQgEwzpVLY8ZkGNPYuMbElCyuOBNYA11dXcZxRYIjYxYqdKN+x6xrq9btTD1fZmpcRGew8EJERBnvgw8+wN/93d/igw8+sDoUorS53W5AS/yJfBwtAJcr9tP2dI83K66ioiIgkvjrJcKWE9u21CCUcW6gG/GhsLAwtThgXj7SZZQPxZ4bt23cR+WGfSgpKZmyuEpKSoBxvgYEIaJFjjMiPuQ484f/qdocI7mWOlRl5BHPjhwXoI1+M6xj3LcqY8ZkGNPYuMbElCyuOBNYA6WlpcZx2XJGxiw1KEb9jlnXVq3bmXq+zNS4iM5g4YWIiDKelBI+n4/f6aaM4PF44BI+aOGg4X5aOAi34ofH45nS482Kq6amBvZwN/RQ/JsnW24JEOqH1EKQUgO0EGw58VcS6KEAHOEe1NQkvqeGGXGbxSgf9uJFgP8kZCQQLShIPXpflTFkOAAl0In6+vopi+vqq6+GEuiEDMfHJYSAgAQgoUcCEIEulCw4b3i7M38u1Mgg9FAAqtDgdI1coVA6fyFEsA9SC0JCh9AjEKo9pTEZxTQ6Lj3ij4spWVyjTXQNfPrTn4Hwd0SfXpSIsxQI9kKG/YAeRo4rN+Fuida1Vet2pp4vMzUuojNYeCEiIiKaRYQQqF9fi8H2g4b7DbUfRP36NXFXQqR7vFlxKYqCDWsvRqgj/v4sQgjY5ywCTr0LhPrhcOYmjCvU0YQNdasn9KhYs/KRLqN8KIoCtcADdL0F6GEINfGVElrnPtQsr4Y6zvbJUFUVK5dVQ+vcl3C7UNTo/Wa63kJB6VkxcyGEwNzKJQh1NGFuSfGY4xQUzFsI2f1XIDQIMc5XdBKNKVlMZ+JCV1NcTMniGm2ia8Bms2FRZRnQlfieQ4oQQP4CoKsJqt05bruJ1rVV63amni8zNS6iM1h4ISIiIppl1tXV4oKqXPS17ov7hFcLB9Hfug8rqnJRt7bWlOPNiutLN27EwgI/Aq174q70cM5ZCPQfAU6+hRxXXsw2PRRAoHUPFhb4cdOmjROKeSriNotRPtyVlwD9H0KeeBVCjnlKTziAiLcRxbID99x155THde/dd6JYdiDibYy7ykToEeDEq1AHj2DxyqtjtmnhIOzSj4UFftgGj8TlevGyi2EbOgp0vQmI2GJRsjEZxSTDAegdr8LpO4Lyck/COTaKK5018Nijj8DpOwK9vTHuyhc94gcCpyBOvQ9H/6G4OU62rq1atzP1fJmpcREBgJC87nrW2LTpBmzevMXqMIiIZp3m5mbccsvNeOKJJ1FdXW11OERTQtd17NrdiIaXGuGT7uiNJbUA3MKH+itqUbe21vDKj3SPN6vdSCSCZzZvxfZdryFkL4neRDbigyPcjctrL4IAsKPxjbhtG+ouxk2bNsJmG+feLybHbRajfKxbswrtx4/jzXc+hO4si97INeyDEuhEzfJq3HPXnXA4HKbEFQqF8J37H0TTwea4vlcuW4wrr7wCL+3cmzCXtWsuQ+OeVxLm+oq6S/CX7Tvw5jsfTHhMRjHVLK/GXd++A6++9vq4c2wUVzprIBAI4Gu3fxOH2zohXeXDcQl/B86uLMO/PfIgfvqzXySc42Tr2qp1O1PPl5kaFxELL7MICy9ERJMTCARw7NgxnHXWWXA6U3zqAdEsIaWMPkrV74fL5YLH45nQZfTpHm9Wu7quo6mpCX19fSgsLERNTc3wGyajbVbHbRajMWuahoaGBnR3d6OkpAT19fVT+vUiI0Z9J8ul0fZ0xpTs2HTiSkckEsELL7yArq5OlJaW4VOf+lRMQSWddW3Vup2p58tMjYuyFwsvswgLL0RERERERESzC6+zIiKijNfZeQI//OEP0dl5wupQiIiIiCjLsPBCREQZr6+vH3/4w+/R19dvdShERERElGVYeCEiIiIiIiIiMgkLL0REREREREREJmHhhYiIiIiIiIjIJCy8EBFRxisqKsInP/lJFBUVWR0KEREREWUZW/JdiIiIZrfS0lJ85Ss3Wx0GEREREWUhXvFCREQZz+/3469//Sv8fr/VoRARERFRlmHhhYiIMl5bWxtuu+2raGtrszoUIiIiIsoyLLwQEREREREREZmEhRciIiIiIiIiIpOw8EJEREREREREZBI+1YiIiDKeqqooLCyEqqpWh0KUkJQSXq8XPp8PbrcbHo8HQgjL+zYzLl3X0dTUhN7eXhQVFaGmpgaKoqS8fbJjSqffZPlI1nY6+UxnTEY0TcO2bdvQ3d2NkpISXH311TGvlcliNivXZubDzHlKZ0zpjNnMdtPJdTptpxO3We0STZaQUkqrg6DUbNp0AzZv3mJ1GERERDRFdF3Hzl2NaNjRCL90A6oT0AJwCR/q19diXV3tlL1pm0jfV12+BgDw4st7pjyuSCSCp5/diu27X0PYXgLY3EDEB3u4GxvWXowbvngdtvx/Px13+5du3AibLfFnh0ZjunLdZXj3vffxUuPrE+73itrVOG/pEvxl5ysJ87Hmskvw7Jbnxo35xhu+gD2vvDqpeTYa04Z1l+K99w6NOyajXIVCIdx734N4851m6M4ywO4Gwj4ogU6sXFaNu//1Dux99fVxY15bexl2N74yqbhm4hynO0/J1rXRmJIx63UiWbtGc5ws18lyadR2OudEOq9dVr4eU+Zj4WUWYeGFiIgoc+i6ji3P/QwHWoeQV7Ecqj1neJsWDmKw/SAuqMrFxuuvnfI/9g37DgVw+MAOIHgKi1Z/AjaHa8riikQi+Po3v42Wfjcc5TVQHM6RmEIBBI6/AdF3CGLOEjjKV8VtD3U0YWGBH48+8kDcm1ijMYWDPryzfSsirkrknnXJBPv1Y6hlD2yRPiy//HOw5cTmY8D7NjoPvwF/zlnjxLwP7uAxlJ59EfI9509ono3GFAkF8M7e/0R4qAfu6o9DHRVXslyFQiFct+krOCUqoJatgrCPxCzDAWid+5AzdBgLlq1FYeUFcTEPHH8bov8oULAIefMnFpdVcxzq2Ad56n3IwnPhnH9Rwn5dwVaUnr0KBZ4VE5qnZOvaaEzJmPU6kbTd4wch+48CBVXInx+7biNBPw6+/HNE7EXIXbAGimPs2kuy5g3aTuecSOe1y8rXY8oOXDVERJTxjh49ii984XocPXrU6lCIhu3c1YgDrUMoXLAq5o98AFDtOShcsAr7W4awa3fjtPbdO+BDsOA8BHPmo6/j8JTG9fSzW9HS74ZzwZqYN6cAoDickFJDwL0Icm5Nwu3OBWtwtN+FZzZvndCY2t7ZibBrATDvYkQQ+5XDZP1GtAhQeiHC7kq0fXggLh+9Pg2nRDmU0hUJY1ZKV6BHlKPXp014ng3H1N6JUOEyyIJF0AaOTShX9973IE6JCtg8tTFFFwAQdieUijUIuBfhRGtzwpgjwoWj/W5E8hZNOC6r5lifWxPtV2qJ56l8NU6JcvT1dE94npKta6MxJWPW60SydiN5i9DS74ImXPG5/vAAwu6zgLkXRs+PUVJZ80Ztp3NOpPPaZeXrMWUHFl6IiCjjhcNhHD9+HOFw2OpQiABE7yHQsKMReRXLDffLq1iOhh17MJUXKCfru6u7B7acfNhKlqKr7f2EfU8mLl3XsX33a3CU14y7Pdx7DCitQSgcBsZp2lFeg+27Xoeu6ymNSdd1dLcfhii7EEKxIRQKpd6vBEL+IQhHHkTxMnR7m2PGLKXESe8hqGWrEPIPxcd8+ni1bFXcsaMlyqfhPEmJ7p5eKDmFEMVLEOo5mrDtRLnSNA1vvtMMtWxVwliizetAaQ36T3VC07Qx2yROtr0PR3kNTnb3TCguq+YYMvp7AKU1CPe2xbR7RigUglq2CifbDyfcDiSep2Tr2mhMyZj1OpFKu13dPXCU18S9BpxZ86J4GYQjL37dp7Dmx2s72ZjMeu2y8vWYsgcLL0RERETTzOv1wi/dcZ+sjqXac+DTXfB6vdPSd8AfgC5VCEWBsOVAs+UhMNA9JXE1NTUhbC+JuyLgjEjvUcA5F4rNBQkF4UjiQqnicCJkL0ZTU1NKY+rv+ADSWQJhcwICkBDQtZE3v0b9aloIUlEBoUDYHNDtheg/eXx4e1/XcUh7EYTdCamo0LTYN/xnjhd2Z9yxoyXKp9GY+vr6oAs7oCgQqgPSkQc9cCqlXG3btg26syzuSpdhMvo+WrG5IF1l6D7yZszmwMBJaLY8KA4nNKki4A+kHJdVcxyOhCGhQLG5AGcJIn0tMcfrmg4JEZ1HZwn6Oz5MGFeieUq2ro3GlIxZrxPJ2j3zOqA4nHGvAcNr3uYAhBK37pOteaO2k43JrNcuK1+PKXuw8EJEREQ0zXw+X/TGjalQnfD7/dPSt6ZpgBj156HqhB4JTklcvb290RtwjkOG/dEbvAKAEMafKtvc6OvrG/6n0ZjCwSHAljvqJ7FtG/UrdR0Qo762YnMiHBoZcyTkB2yn+xUqMOZqhpjjxxwbZ0w+DccUjsTGpTohxxR9RmKOzVV3d/fIeBOQkABOP8HFnouQvz9muxYJjcQlFGj6yBUxyeKybI51CZx5Ko3dDRn2xY5ZjhqzLReR4OD4cY2Zp2TrOsaYMSVj1utEsnZjXgfGvAbErHkgbt0nW/NGbScbk1mvXVa+HlP2YOGFiIiIaJq53W5ACyTfEYg+VcPlSr7fFPStqiogRxUPtAAU2zifAk8wrqKiIiDiG3e7sLuAM2+IpTR+fGvEh8LCwuF/Go3JnpMLRIZG/SS2baN+haIActRXbSIB2EfdsNPmcAGR0/1KDRhz082Y48ccG2dMPg3HZLfFxqUFIFRH4nbH5KqkpGRkvAkICAx/dyQ8BIerIGa7anOMxCV1qMpIoSVZXJbNsSKAM4WYsA9iTOEpuu/p7ZEh2HLyxo9rzDwlW9cxxowpGbNeJ5K1G/M6MOY1IGbNA3HrPtmaN2o72ZjMeu2y8vWYsgcLL0RElPHmz5+PBx/8LubPn291KEQAAI/HA5fwQQsbfNqL6NM03IofHo9nWvp2upxQhAap65CRINTIIJz5JVMSV01NDezhbuihxG9wbEULgcBJ6BE/BHTYbfaE++mhABzhHtTUjNxTw2hMBeWLIQLdkJEAIAEBCUUd+RPYqF9VdUDoGiB1yEgISrgPBXNHXkcKS+dDhHshwwEIXYM6pvhx5ngZDsQdO1qifBqNqbCwEIoMA7oOqYUgQoNQnHNSytXVV18NJdAJGR7njaaIXvuhR/wQ/k6ULFoZs9mZPxdqZBB6KABVaHC6Rq4USBaXVXNst9khoEOP+IFAN2yFVTHHK6oCARmdx0A3CsrPSRhXonlKtq6NxpSMWa8Tydo98zqghwJxrwHDaz4SAqQet+6TrXmjtpONyazXLitfjyl7sPBCREQZLzc3F6tXr0Zubm7ynYmmgRAC9etrMdh+0HC/ofaDqF+/xvjKgCnuu7SkGJHgACLd76G0cknCvicTl6Io2LD2YoQ6Et/jQlEU2IvOArqa4LDbh7/5MVaoowkb6lbHPNLVaEyKoqCk4mzIzrcg9QgcDkfc9nH7FYDDlQsZGoTseQclnurYKymEwFzPudA698Hhyo2P+fTxWue+uGNHS5RPw3kSAiXFRdCDfZA978NRvDBh24lypaoqVi6rhta5L2Es0eYVoKsJBXPKolcSxGwTmFu5BKGOJswtKZ5QXFbNMQRgt9uBribYiyoTPg7Y4XBA69yHuRVnj/u44ETzlGxdG40pGbNeJ1Jpt7SkGKGOprjXgDNrXva8AxkajF/3Kaz58dpONiazXrusfD2m7MHCCxERZbzu7m785CfPRe9tQDRDrKurxQVVuehr3Rf3SasWDqK/dR9WVOWibm3ttPZdlO9GTv+7yAkeR2H52VMa15du3IiFBX4EWvfEXSGghwIQQoXTdwTiZFPC7YHWPVhY4MdNmzZOaEyVy9bB7j8GnHgNNsQ+pSdZvzbVBpx8C3ZfGyrPWRGXjyK3imLZAb3rQMKY9a4DKJYdKHKrE55nwzFVlMHR9w5E/xGo+WdNKFf33n0nimUHIt7GuCtfZDgAvX0PnL4jmLegOmHMdunHwgI/bINHJhyXVXOsnGyK9ivUxPPU8TqKZQcKi0smPE/J1rXRmJIx63UiWbu2wSNYWOCHKv3xuT5nBey+NuDkW9HzY5RU1rxR2+mcE+m8dln5ekzZQUg+D2vW2LTpBmzevMXqMIiIZp3m5mbccsvNeOKJJ1FdXW11OETDdF3Hrt2NaHipET7pjt7gUQvALXyov6IWdWtrJ/QJ+VT1feX6NRAAXtyxZ8rjikQieGbzVmzf9RpC9pLojUkjPjjC3dhQdzE2fuE6bH3up+Nuv2nTRthstoRtG47p8svw1/fex47dr0+43yvWrsbSpUuw/eVXEubjsksvweatz40b86aNX8Are1+d1DwbjWnDukvx3vuH8NI4YzLKVSgUwnfufxBNB5uhO8uiN70N+6AEOlGzvBp3ffsOvPra6+PGXLvmMjTueWVScc3EOU53npKta6MxJWPW60Sydg3n+PLL8N577487x8lyadR2OudEOq9dVr4eU+Zj4WUWYeGFiGhyWHihmU5KGX2kqd8Pl8sFj8czbZezG/VtZly6rqOpqQl9fX0oLCxETU1NzJuaZNsnO6Z0+k2Wj2Rtp5PPdMZkRNM0NDQ0oLu7GyUlJaivr4/5elGymM3KtZn5MHOe0hlTOmM2s910cp1O2+nEbVa7RJPFwssswsILEdHksPBCRERERFbhtVJERERERERERCZh4YWIiDJeXl4errzySuTl5VkdChERERFlmcnd4YmIiGgWqaiowB13/C+rwyAiIiKiLMQrXoiIKOOFQiF4vV6EQiGrQyEiIiKiLMPCCxERZbyWlhZ88YtfQEtLi9WhEBEREVGWYeGFiIiIiIiIiMgkLLwQEREREREREZmEhRciIiIiIiIiIpOw8EJEREREREREZBI+TpqIiDJedXU1GhpetDoMIiIiIspCvOKFiIiIiIiIiMgkLLwQEVHGO3bsGL761X/GsWPHrA6FiIiIiLIMv2pEREQZLxAI4N1330UgELA6FJoGUkp4vV74fD643W54PB4IIUzvV9M0bNu2Dd3d3SgpKcHVV18NVVWnJC6rjrUyLl3X0dTUhN7eXhQVFaGmpgaKktpnhkZtp9Ovlbk0q2+r5sHMMSU7F9OJO1k+jLank8tkcZmdk8lKd8xWsOp3CGU2Fl6IiIgoI+i6jp27GtGwoxF+6QZUJ6AF4BI+1K+vxbq6WlP+4A+FQrj3vgfx5jvN0J1lgN0NhH344dP/jpXLqnH3v96Bva++Pqm40hmTmfkwM641l12CZ7c8h+27X0PYXgLY3EDEB3v4x9iw9mJ86caNsNkS/wlr1PZVl68BALz48p4J93tF7WosXXoutu/cO+25XFt7GXY3vjLl82jVPJg5pmTn4r133wmHwzGpnFy57jK8+977eKnx9YT5uOGL12HL//fThPlav+YiQEjsaNw34Vymkk+jfKWbk8mKRCJ4+tmtk1o/VrHqdwhlByGllFYHQanZtOkGbN68xeowiIhmnebmZtxyy8144oknUV1dbXU4ZAJd17HluZ/hQOsQ8iqWQ7XnDG/TwkEMth/EBVW52Hj9tVP6h3MoFMJ1m76CU6ICatkqCLtzeJsMB6Cd2Icc32FULatDQeWKCcWVzpjMzIeZcQ1430bn4Tfgc5yFnIpVUBwj+dRDAYQ6mrCwwI9HH3kg7k2bYduhAA4f2AEET2HR6k/A5nCl3K8W9MPX/EfYc0uw7NKPwTZ6m9m5PH4Qsv8oUFCF/PnnT9k8pjoP/pyz4CifwnkwcUxJz8XOfSiWHfjJ5icTFhqM4o4E/Tj48s8RsRchd8EaKKPWTzQf+yBPvQ8UnYucioti8hUJ+DD4zq+AgioUVF02oVymlE+DfKWbk8mKRCL4+je/jZZ+NxzlNRMesxWs+h1C2YOrhoiIiGa9nbsacaB1CIULVsX8wQwAqj0HhQtWYX/LEHbtbpzSfu+970GcEhWweWpj3tQAgLA7oZRdiIB7EU6c8k04rnTGZGY+zIyrV5ThlCiHmlsa82YNABSHE84Fa3C034VnNm+dUNu9Az4EC85DMGc++joOT6hfbeAYZMHZCBUug7e9c0LjTSZZPiJ5i9DS74ImXFM6j0nnwafhlCiHUrpiSufBzDElOxdtnlr0iHJ85/4HEx5vFHfbhwcQdp8FzL0QES0Ss01xOKHPWYaAexF0e0FcvoLtr0MWng3MuxjBiIw71iiXyeJKlq90czJZTz+7FS39bjgXrJnw+rGKVb9DKHuw8EJERBlv3rx5+Na37sC8efOsDoVMIKVEw45G5FUsN9wvr2I5GnbswVRd7KtpGt58pxlq2arxYwv7gNIa9HUehdT1lONKZ0xm5sPUuKREd08v1LJVCPUcHTcuR3kNtu96HfqofCZru6u7B7acfNhKlqKr7f3Ytg36lVIi1HMEongJlJxCnOzpBRLEZVYuu7p74CiviY85jb6T9SulxEnvoWg+/EPAOM1OZh7MGlMq5yIAqGWr0HSwGZqmxfzcKO4z+RDFyyAcefE5kUAoMAiU1iB8qgVSH9mo6zrCvceA0gshFBtC4XDCfCbKZbK4RkuUr3RzMlm6rmP77tfgKK8x3G+8MVvBqt8hlF1YeCEiooxXUFCAq666CgUFBVaHQibwer3wS3fcp5RjqfYc+HQXvF7vlPS7bds26M6yuE+Sz5BaGFKxQbG5IB2FONl+NOW40hmTmfkwM66+vj7owg5hd0I68qAHTiXcT3E4EbIXo6mpKaW2A/4AdKlCKAqELQeaLQ+Bge6U+tX9pyAd+RCqA1AU6MKOvr6+lMabTLJ8nIlbcTjjYk6n76Tz0HUc0l4UzYeiQtNCCfeb6DyYOaZk5+IZwu6E7ixDQ0NDzM+N4h7Oh80BCCUuJ+FQAFDsUGwuIKcQ4aGRq6IivUcB51woqhOAgISCcCQc10eiXCaLa7RE+Uo3J5PV1NSEsL0k7kqXscYbsxWs+h1C2YWFFyIiyni9vb343e9+h97eXqtDIRP4fL7oTRBToTrh9/unpN/u7u7ojSrHI3UM/6mluhAMGvQ7Jq50xmRmPsyMKxyOAEIdPlaO84YfAGBzxxRAjNrWNA0Qo/7kVZ3QI8GU+pVaKLZdoSIcif2qyeh2pzKXMXGPiTmdvpP1Gwn5Advp7UIFjK5ImMA8AOaNKem5OJrdHd1/FKO4Y/IBxOVE6rFjwqgxybA/Ni4hxr9aYkwuk8UVZ0y+0s3JZPX29kZvpJuKBGO2glW/Qyi7sPBCREQZr6urCz/60f9FV1eX1aGQCdxuN6Cl+KhwLQCXy5V8vxSUlJQAYd/4OwgFwOk3aJofOTkG/Y6JK50xmZkPM+Oy222A1IaPFarBzT4jPhQWFqbUtqqqp4tgI3EptpFPto36Faojtl2pwT7ezUCnOJcxcY+JOZ2+k/Vrc7iAyOntUgOMbiQ6gXkAzBtT0nNxtLAvuv8oRnHH5AOIy4lQYseEUWMSdldsXFKO/1jiMblMFlecMflKNyeTVVRUBERS7DfBmK1g1e8Qyi4svBAREdGs5vF44BI+aGGDT88RfTKFW/HD4/FMSb9XX301lEAnZDjxH+xCtUPoEegRP0SoD3MrFqYcVzpjMjMfZsZVWFgIRYYhwwGI0CAU55yE++mhABzhHtTUjNxDwqhtp8sJRWiQug4ZCUKNDMKZP/Im06hfxTUHIjQQvfJF16HIcMI3imbk8kzceigQF3M6fSedh9L5EOHeaD50Deo4BbCJzoOZY0p2Lp4hwwEogU7U19fH/Nwo7uF8REKA1ONyYnc4AT0MPeIHgn2w55YNb7MVLQQCJ6FrAQASAjrsNntcH4lymSyu0RLlK92cTFZNTQ3s4W7oIeN+xxuzFaz6HULZhYUXIiIimtWEEKhfX4vB9oOG+w21H0T9+jXjf+I8QaqqYuWyamid+8aPze4GuppQWLYQYpwrBxLFlc6YzMyHqXEJgZLiImid++AoXjhuXKGOJmyoWx3zSNdkbZeWFCMSHECk+z2UVi6JbdugXyEEHMWLIHvehx7sw9ziIiBBXGblsrSkGKGOpviY0+g7Wb9CCMz1nBvNhysXGKfZycyDWWNK5VwEAK1zH2qWV0evvBnFKO4z+ZA970CGBuNzIgCHMw/oaoJ9ThWEMrJRURTYi84Cut6C1CNw2O0J85kol8niGi1RvtLNyWQpioINay9GqMP43i3jjdkKVv0Ooexi/UonIiIiStO6ulpcUJWLvtZ9cZ9aauEg+lv3YUVVLurW1k5pv/fefSeKZQci3sa4T5ZlOAC98y04fUcwb457wnGlMyYz82FmXHPQiWLZAW2oK+4Tcz0UQKB1DxYW+HHTpo0Tarso342c/neREzyOwvKzJ9Svmn8WRP8ROPregaeiLO5YM3NpGzyChQV+qNI/pfOYrN8it4pi2QG968CUzoOZY0p2Lka8jSiWHbjnrjsTHm8Ud+U5K2D3tQEn34JNjf2qmR4KQDn1Dpy+I1DC/XH5yqlYDdF3BDjxGnJsIu5Yo1wmiytZvtLNyWR96caNWFjgR6B1z4TXj1Ws+h1C2UNIPg9r1ti06QZs3rzF6jCIiGadtrY2/OhH/xf/9E//jMrKSqvDIZPouo5duxvR8FIjfNIdvVmiFoBb+FB/RS3q1taa8ulqKBTCd+5/EE0Hm6E7y6I3tAz7oAQ6UbO8Gnd9+w68+trrk4ornTGZmQ8z47rs0kuweetz2L7rNYTsJdEbdUZ8cIS7saHuYty0aSNs49xnxajtK9evgQDw4o49E+73irWrsXTJudi+c++057J2zWVo3PPKlM+jVfNg5piSnYv33HUnHI7x7x1kFPeGyy/De++9j5d2v54wHxu/cB22PvfThPlaX3sRAIkdjfsmnMtU8mmUr3RzMlmRSATPbN46qfVjFat+h1B2YOFlFmHhhYiIKDkpZfTxoH4/XC4XPB7PtFwarmkaGhoa0N3djZKSEtTX18dcvp9OXFYda2Vcuq6jqakJfX19KCwsRE1NTcpveozaTqdfK3NpVt9WzYOZY0p2LqYTd7J8GG1PJ5fJ4jI7J5OV7pitYNXvEMpsLLzMIiy8EBFNjqZpCAQCcDqd0/KHJhERERHRGTO73EhERDQFDh8+jE984u9w+PBhq0MhIiIioizDwgsRERERERERkUlYeCEiIiIiIiIiMgkLL0REREREREREJmHhhYiIiIiIiIjIJDPr4elEREQmWLRoEV544dfIy8uzOhQiIiIiyjIsvBARUcaz2WwoKiqyOgwiIiIiykL8qhEREWW848eP46677sLx48etDoWIiIiIsgwLL0RElPGGhoawd+8rGBoasjoUIiIiIsoyLLwQEREREREREZmEhRciIiIiIiIiIpPMyJvrhkIhHDx4EP39fSgvr8DSpUunvI9jx45h3743cOhQM5qbD6G1tRW6ruOLX/wirr328wmP+clPnsNPf/pTw3Y3b96CBQsWTHm8RERERERERDT7THvh5cSJE/j9738HAPjc5/5H3KM9//rXv+L+++9DT0/P8M/OOWcx7rnnHsybN2/K4vjDH/6A//f//mNSx5599jk455xzEm7Lzc1NJywiIjLB3Llz8eUvfwVz5861OhSaAlJKeL1e+Hw+uN1ueDweCCEs71vXdTQ1NaG3txdFRUWoqamBoqR2cXE6x6abD6O+k7UdiUTwq189j66uLpSWluLTn/4MbLbU/rzUNA3btm1Dd3c3SkpKcPXVV0NV1ZTaThZXOmNKR7J8pNO3Ub6StWu0PdmxoVAIP/jB94fH9LWvfR0OhyOlMZt5ToTDYTz77DPo7OxEWVkZbrzxJtjt9rTzkW6+0jk22TmRTttmnRPJ5snMfBHNJkJKKaezw9/85tf48Y9/jHPOOQdPPvlUzLahoSFs3PhF9PX1YWxYVVVVePLJp1L+ZZ7Mn/70J7S1HcPixYuxeHE1fvGLn+PFF19M6YqX6667Dtdf/4UpiWMiNm26AZs3b5n2fomIiGYCXdexc1cjGnY0wi/dgOoEtABcwof69bVYV1eb8pu6qex7w7pL8d57h/BS4+sI20sAmxuI+GAPd2PD2ovxpRs3jvv3SyQSwdPPbsX23a9N+Nh082HU9xW1q3He0iX4y85XErZ98epV+Po37sCRtk5IVzlgdwNhH4S/A4sqy/DYo4/A6XQm7DcUCuHe+x7Em+80Q3eWDR+rBDqxclk17vjm7fifd/zruG3/4yc/gR27X0sY15rLLsGzW54bd0xLl56L7Tv3Tvn6CQQCuO32b44b8/f/7SG89vq+Sc2VUb4u/MhiXLlhPV7a/WrCdtfWXobdja8k7Peqy9cAAF58eU/CY2tWXoCNN34F/X4NcJcD9lwgPAT4OlDgUvHjJ36Ib999X8IxV82fixXnL8PLrzRN+Tnx+f/xGdz8T19D56mhuLhKi9z44vXX4uU9b0w4H+nmK51jL71kNe574KFxz4m7//UO7H319Um1neycMDrPjdZlsnm68YYvYM8rr5qSazNf64nMMu2FlzvvvBP79r2Bz3/+87juuutjtr3wwq/wzDPPQAiBv/u7T2DlypV444038Ic//B5CCNx229fw8Y9/3JS4HnnkETQ0bGPhhYgoAw0MDKCpqQk1NTXIz8+3OhyaBF3XseW5n+FA6xDyKpZDtecMb9PCQQy2H8QFVbnYeP21U/4HuVHfkVAA7+z9T4SHeuCu/jjUHNfIcaEAQh1NWFjgx6OPPBD3RjMSieDr3/w2WvrdcJTXQHE4Uz423XwY9+3HUMse2CJ9WH7552AbNSYtHETvsbdweP/L0AqrgdIaKLZRY474ga4mOH1H8MLPtsYVX0KhEK7b9BWcEhVQy1ZB2Ee2y3AAkY43gJ53geLzgLIEbXfugxhowcr/9mU4nO6YuAa8b6Pz8BvwOc5CTsWqmDFpQT98zX+EPbcEyy79GGyjt6W5fgKBAD517UYE3IsS56OzCWp/M865YD0Kz7pgQnNllC895Id29M+wuYpwwdr/DvuYeRo4/jZE/1GgYBHy5o9ZI6EADh/YAQRPYdHqT8DmiD22p6UJH775UnQeSmsg7CPbZTg6x+h5F8g/B/BcGjvm0BBw+P8B+VUoWLQGqmPqzolg+z4E2vcDc5YCZati4wr5gNb/AnIKULPu7+LWx+Dxg5D9R4GCKuTPPz9uHozyFQn5ceS13wLOOTh7xXqoY9ZPWsd6D+DowV0IuBfBNu+iuHNCO7EPOb7DqFpWh4LKFRNsO3pO+HPOgqN8VVw+h469Cpvfi2Ubvgh7zph8GazLVOYpN3QMpWdfhHzP1ObazNd6IjNN+2rt6GgHAJx77rlx215++WUIIVBbuxa33HILLrvsMvzzP/8z1q1bBykldu/eNd3hEhFRBujo6MADD9yPjo4Oq0OhSdq5qxEHWodQuGBVzB/pAKDac1C4YBX2twxh1+7Gae27rb0TocJlkAWLoA0ci9mmOJxwLliDo/0uPLN5a1y7Tz+7FS39bjgXrIl545LKsenmw6jviBYBSi9E2F2Jtg8PxLXdduhNaAXVEBW1MW+4AUCxuaBU1CLgXoSv3f7NuH7vve9BnBIVsHlqY95gAoj+21EQfbM/d0Vc20J1QJRfAllwNt579Y9xcfWKMpwS5VBzS+PGpA0cgyw4G6HCZfC2d044X0Zuu/2bCLgXQRknH6LiUmgF1Wg71jLhuTLKlxzyQhSdDa14BT48Grv2VHsOIsKFo/1uRPIWxfXbO+BDsOA8BHPmo6/jcNyxR97eBRSfBzG/Nqa4AQDC7oKoWBOdp8EjcWNG11tA4WKg/BIMBSKx+UjznAjlV0f7dc6Jiwu+dqDoHKB0Jd55tzk+H3mL0NLvgiZcCefBMF8dhxF0zkew4Dz0Dvim9NiOQGF0/eSWJzwnlLILEXAvwolTvgm33evTcEqUQyldEX+eQwXmXYyw6yx439kZd6zRukw2T2puKXpEOfpE2ZTn2szXeiIzTXvhpbe3FwBQXFwS8/OhoUE0N0dfJD/60atjtq1ffwUA4MMPY38xWKW5+QM8++wz+P73H8XTT/8Y27f/BT6fL/mBRERENGFSSjTsaERexXLD/fIqlqNhx564ryub1reU6O7phZJTCFG8BKGeown7dpTXYPuu16Hr+vDPdF3H9t2vwVFeY9h/omPTzYdh3xII+YcgHHkQxcvQ7W2OOT4SicDvGwJKa6I7j6e0BofbOhGJjLzx1jQNb77TDLVsVcJDpC6BwbZo2xF/fOu6Big2oPRC+HrboWvaqIOjc6GWrYqbByklQj1HIIqXQMkpxMmeXiDBPE1m/UQiERxp6zydj3HoGlBaEx9zkr6N8iWlhOxvAYqWAjmF6Osfihvzybb34Sivwcnunrjju7p7YMvJh61kKbra3o85NhQKQZdKSnMMxQY9FBoZqq4DQ16g9EJAsUf/naCJyZwTUkrokWC034FjkGPOCQy0RK+EcRQiGI7EbD8zZkd5Tdx4k+XrzDZbyVLYcvLH3T7ZY/sGoueT7G9JuPZk2AeU1qCv82jcmJPG5T0UPSf8Q3HzEAqFIBQbRNmFONl+OGYuzki0LlOZp1DPEahlqxKea+nkyyguoplu2gsvfr8fAKDrsb943nnnr5BSQlEUrFhxQcy20tJSAMDAQP/0BJnE3r2v4Pnnn8ef/vQnvPDCC/jud7+L//E/PoeGhm1Wh0ZERJRxvF4v/NId98noWKo9Bz7dBa/XOy199/X1QRd2QFEgVAekIw964FTcforDiZC9GE1NTcM/a2qK3vti7KfFqRybbj6M+ta0EKSiAkKBsDmg2wvRf/L48PaOd3cC7nnxVxuMjdvmgnSV44UXXhj+2bZt26A7y+I+1T9D950AcgqjbSs2QBt5Qy+hA0IAEBA2F+AsRfvhkatxzsyFsDvj5kH3n4J05EOoDkBRoAs7+vr6Us6XkV/96nlIV3n8VR9j4hb2+JiT9W2Yr2AvYI+OSQgVUB042dU1vDkwcBKaLQ+KwwlNqgj4AyPb/AHoUoVQFAhbDjRbHgID3cPbW974LeAuN5hjCYnolS9wlwPHXxrZNNAKuOZC2JwQQkAKBYFgIK6FyZwTft8goNij/eYUAoGTsfk4PcdCUQHVidZjI1cBnRmz4nDGjTdpvk5vE7YcCEUZd/tkju3q6gJUR3T92POj4xidaS0Mqdii55OjECfbj6bcdl/XcUh7UfScUFRoo84nXdMhIQABCJsT0lmC/o4P43KeaF0mm6fh883uTHiupZMvo7iIZrppf6pRXl4e+vv70d0d+4K3f/9+AMA555wDlyvxC/3oO6hboaJiPm644QasXn3x8BOWWlpa8Pzzv8TevXvxyCOPQFFUXHnllRNq9/HHH8fjjz+edL+lS5dMKm4iIqLZzOfzRW+umArVOfwhj9l9h8MRQIw8cQSqE3LUm5sYNnfMG5De3t7ozShTMebYdPNh1LfU9dgx2ZwIh0aOD/n7ojczPbM/gHGfMWJ3o6tr5Gs93d3d0ZuGjicSBNTT24UKyNFXtMS3HQwMDP8zZi7GzIPUQrH5EirCkdivwAyb4Prp6uoyHtPouMfEnKxvw3xpIcAWO6ZQODyyOTJqzEKBNuoDT03TADHqs1fVGb2S5LSQrw+wp/gEOHsuMDRSmIPmH7O2RMIrKQBM+JyQmjZqjl0xhTnoY+ZYUREMjowpZsxjxgskyVdk7Pox2D7BY8Oh0MiYbM7YMQGA1DH8ObnqQjA4sj6StR0J+UfWiFCBsVcIjT5zbbmIBAeR0Jh1mXyeRucj/lxLJ19GcRHNdNNeeKmqqsLbb7+N3bsbsWZNLYDoi+HOndH7u1xwwQVxx3R3Ryvac+bMmdZYx6qvr4/72fLly7F8+QN4/PEf4be//S2eeupJrFu3bvhxdqm49dZbceuttybdb9OmGyYULxERRTkcDixevNjyAj5NjtvtBrT4Tz0T0gLjfoAz1X3b7bbY4oAWiF5VkUjEh8LCwuF/FhUVAZEUv6Y85th082HUt1CU2DFFArCPujmqw1UI9Iy80TZ8sGvYh9LSsuF/lpSUAGGDMdtyAO30dqnFFoAEYosYYR9ynAuG/xkzF2PmQaiO2HxJDfbxnpI5wfVTWloKhI+Ov8PouMfEnKxvw3ypDiASOybHqL89VduoMUsdqjKSS1VVT7+hH+lXsY1cPeVwFwL9Q+PHOVp4CLAXjIrLBUTaR+0gx78B6gTPCaGqQOj0mDR/NAdnKGPmWNeQM+pmwzFjHjNeIEm+bGPXj8H2CR5rdzhG1m0kEDsm4HSx6Ezc/tgxJWnb5nCNrBGpAaPmIfpI5lEnVGQItpw8JDRmXSafp9H5iD/X0smXUVxEM920f9WotnYtpJT4y19exDPPPIO9e/fiu999ECdOnAAArFt3edwxhw4dAjDylaOZ6LrrroeiKOjt7cV7771ndThERDRKVVUVnnzyKVRVVVkdCk2Cx+OBS/ighYOG+2nhINyKHx6PZ1r6LiwshCLDgK5DaiGI0CAUZ/yHRHooAEe4BzU1I/dEqKmpgT3cDT1kXEBJdGy6+TDqW1UdELoGSB0yEoIS7kPB3PnD28vPWwf4TkSfbGMUd8QP4e/Apz71qeGfXX311VACnZDhxGNW3POAYF+0bT0S8yZUQDl9rwgJGfEDgS5UnL1iePuZuZDhQNw8KK45EKGB6Cfxug5FhmPe8CfLl5FPf/ozEP6O6NOLEjgTtwzHx5ysb8N85RQB4eiYpNQALYS5o/5OdubPhRoZhB4KQBUanK6RqwicLicUoUHqOmQkCDUyCGf+yL0Xqy76BODrMJhjEa0nhf2ArwOYf8XIpvwFgP8kZCQAKSWE1OHMib86azLnhMudB+jhaL/BPsA56qqcnCLg9BxLXQO0ABacdVbcmPVQIG68SfN1epuMBCF1fdztkzm2tLQU0ELR9RMeiI5jdKZVO4QeiZ5PoT7MrViYctuFpfMhwr3Rc0LXoI46nxRVgYAEJCAjAYhANwrKz4nLeaJ1mWyehs+3cCDhuZZOvoziIprppr3wcs0112DBggWQUuLXv34B99xzN3btij6t6NJLL8WSJfFfp2lsbIQQAuedd950h5uygoICFBVFf8l3jfqOLREREaVHCIH69bUYbD9ouN9Q+0HUr19z+tPcaehbCJQUF0EP9kH2vA9H8cKEfYc6mrChbnXMJ/+KomDD2osR6miK2z/Zsenmw7BvAThcuZChQcied1DiqY453mazweXOjT5O2Oh6l64mnF1ZFvO4YFVVsXJZNbTOfQkPEYoA8iqjbdtc8a0rarQg0/UW3EUVUNTRV8RE50Lr3Bc3D0IIOIoXQfa8Dz3Yh7nFRafvFxNrMuvHZrNhUWXZ6XyMQ1GBrqb4mJP0bZQvIQREQRXQ+x4Q7ENhQW7cmOdWLkGoowlzS4rjji8tKUYkOIBI93sorVwSc6zD4YAi9JTmGHoEyqgrCRVFAXI90Scb6eHovxM0MZlzQggRvVKlqwnIPyt6ddaobcivAk69B4T6kGO3xWw/M+ZQR1PceJPl68y2SPd70IID426f7LGF+dHzSRRUJVx7wu4GuppQWLYwbsxJ4/KcGz0nXLlx8+BwOCD1CGTnW5hbcXbCK5MSrctU5slRvAha576E51o6+TKKi2imm/bCi8PhwCOP/B+sXbsWqqpCSglVVXHVVVfhW9+6I27/AwcOoKWlBQBw0UWrpzvclGmaBp8velmm253id7aJiGhafPBBMz7+8Y/hgw+ak+9MM9K6ulpcUJWLvtZ9cVd6aOEg+lv3YUVVLurW1k5r35UVZXD0vQPRfwRq/lkx2/RQAIHWPVhY4MdNmzbGtfulGzdiYYEfgdY9cZ8eJzs23XwY9W1TbcDJt2D3taHynNgrNLRwEGeduxJqfzNke2PclR56xA+9vRFO3xH84NFH4vq99+47USw7EPE2xl3JIcMBINQP9LwLnDwQ17bUQpDtr0L0H8bSS66Ji2sOOlEsO6ANdcWNSc0/C6L/CBx978BTURZ3bDrr57FHH4HTdwT6OPmQ7Xuh9jej8qyqCc+VUb5Ergey9zDUngM4Z2Hs2tPCQdilHwsL/LANHonrtyjfjZz+d5ETPI7C8rPjjj37/Dqg513I441xV77IsB+yfU90nvIWxV/tU3oh0Pch0PEqcp2xXzNJ95zIGWiO9hs4FX9FjrsC6P0Q6HoTy86rjhuTbfAIFhb4oUp/wnkwzFf52cgJHoej/10U5bun9NhyZ190/Qx1JDwn9M634PQdwbw57gm3XeRWUSw7oHcdiD/PoQEnXoPdfwyeZevijjVal8nmSRvqQrHsQKHsnPJcm/laT2QmIS18DlcoFMLAwAAKCgrGvSdKe3s7OjujN2ZbsWKFaZXNRx55BA0N2/DFL34R1177+Qkfv3v3bnznO/dCCIFf/vJ5FBcnrtCmY9OmG7B585Ypb5eIKNM1NzfjlltuxhNPPInq6urkB9CMpOs6du1uRMNLjfBJd/QmjFoAbuFD/RW1qFtbO/79JEzse8O6S/He+4fw0u7XEbKXRG88GfHBEe7GhrqLcdOmjTFXfowWiUTwzOat2L7rtQkfm24+jPq+Yu1qLF26BNtffiVh26svWoXbv3EHDrd1QrrKozeBDfsg/B04u7IMP3j0ETidiW8AHAqF8J37H0TTwWbozrLhY5VAJ2qWV+Nb//N2fPOOfx2n7VL84yf/Hjt2v5YwrssuvQSbtz43/piWnIvtO/dO+foJBAL42u3fHDcfj/7bQ3j9jX2TmiujfK1cthhXbliPl3a9mrDd2jWXoXHPKwn7vXL9GggAL+7Yk/DYlRdegI03fgX9fi369CJ7bvSeLr4OFLhU/PiJH+Jf774v4ZgXzp+L889fhp2vNE35OXHt5z6Dm//pa+g8NRQXV2mRG1+8/lrs3PPGhPORbPtV69dAAvjLOPlK59hLLl6N+//3Q+OeE3d9+w68+trrk2rb6JxYv3Y1PrJ0Cf4yznlutC6TzdOmjV/AK3tfNSXXZr7WE5nF0sLLTJKs8NLZeQIHDryNdevWxd2csbGxEd/73r9hYGAAV155Fe64I/7KnanAwgsR0eSw8JJZpJTRRyr7/XC5XPB4PNN2yblR37quo6mpCX19fSgsLERNTU3Kbw7SOTbdfBj1naztSCSCF154AV1dnSgtLcOnPvWpcd9Qj6VpGhoaGtDd3Y2SkhLU19dHb4KaQtvJ4kpnTOlIlo90+jbKV7J2jbYnOzYUCuGxxx4bHtNtt90W87ew0ZjNPCfC4TA2b96Mzs4TKCubh02bNg1/kJtOPtLNVzrHJjsn0mnbrHMi2TyZmS+i2SRrCy/Nzc344Q8fG/53e3s7+vr6UFpaGr2L/Gn33vsdlJSU4IMPPsDNN38FLpcLixcvRknJXIRCQbS0tAw/Q/7CCy/Efffdb9odtll4ISKaHBZeiIiIiMgq0/446ZnC5xtK+PShrq6umJvjhsNhAEBZWSk+85nP4P33D+H4cS+am5sRiURQUFCISy+9FFdcsQHr16/nZW9ERERERERENGzar3j5n//zG5M4SsDhsCM3NxceTyXOO+88XHTRRVlX5OAVL0REkxMMBtHe3o6Kigrk5ORYHQ4RERERZZFpv+Jl//79EEJAShn3Hb0zNaBUfl5UNAdf/vKXsWHDBpMjJiKi2S4nJwcLFy60OgwiIiIiykLTXng5//zzIYRAT08P2traAEQLKuXlFSgqKgQA9Pb2oaOjfbg4U1lZiaKiOfD5huD1ehEMBnHqVA8efvghdHV14TOf+cx0D4OIiGaREydO4N///d/x+c9/HvPmzbM6HCIiIiLKItNeePne9x7Fvn378L//9wPIz8/HddddhyuvvAr5+fkx+w0MDODFF1/Ev//7T9Hb24ubb74Zq1dfDE3TsHv3bvz4x0/h5MmT2Lp1Cy699FJUVVVN91CIiGiW6O/vx5///J/427/9WxZeiIiIiGhaTftNUo4fP4777vsOhBB47LEf4hOf+Pu4ogsA5Ofn4+///u/x2GM/hBACDzzwANra2qCqKi6//HI8+uj3kZeXByklfv/730/3MIiIiIiIiIiIkpr2wssLL/wKfr8fn/3sZ1FZWZl0/8rKSnz605+B3+/HCy/8avjn5eXluOaaayClxP79b5kYMRERERERERHR5Ex74WXfvn0QQmD58vNTPmbFihUAgKamppifX3jhSgDAyZMnpy5AIiIiIiIiIqIpMu2Fl+7u7kkfe+rUqZh/FxUVAQDC4XA6IRERUYabM2cOPvvZz2LOnDlWh0JEREREWWbaCy95eXkAgIMHD6Z8zMGDbwMAcnNzY34eCAQAAAUFBVMUHRERZaK5c+di06YbMXfuXKtDISIiIqIsM+2Fl2XLlkFKieef/yXa29uT7t/efhzPP/88hBD4yEc+ErOtpeUoAPATTCIiMuTz+bB//1vw+XxWh0JEREREWWbaCy//8A//ACEEBgYG8NWv/jP+8Ic/YGhoKG6/oaFB/OEPv8dXv/pV9Pf3AwA++cl/jNln7969CQsyREREo3m9XnzjG9+A1+u1OhQiIiIiyjK26e5w+fLzsXHjDdiyZTP6+/vxox/9Xzz++I9QUVGBwsJCAEBfXx/a29shpYSUEgDwxS9+EcuXLx9u5/jx43j11VchpcTq1RdP9zCIiIiynpQSXq8XPp8PbrcbHo8HQgirwzKMK92Y02k7nb51XUdTUxN6e3tRVFSEmpoaKEpqn58l69eo7XA4jGeffQadnZ0oKyvDjTfeBLvdPiUxpxOXpmnYtm0buru7UVJSgquvvhqqqqbUdiQSwa9+9Ty6urpQWlqKT3/6M7DZbCn1m26ujeJOdqzf78e3vvVNnDp1CnPmzMHDDz8Cl8uV9piS5TLZdqM1kmxMyeKebK7TWVvJ4jLzdS+duNJZt8nm2Ei6r3tG2808F60yU+MyUzaOOREhz1Q2ptnLL+/AE088EXPD3NEvlmcUFRXh5ptvwRVXXDHtMc40mzbdgM2bt1gdBhHRrNPc3IxbbrkZTzzxJKqrq60OZ9bTdR07dzWiYUcj/NINqE5AC8AlfKhfX4t1dbUp/3E8XXFddfkaAMCLL++ZVMzptL229jLsbnxlUvmKRCJ4+tmt2L77NYTtJYDNDUR8sIe7sWHtxfjSjRvHfaOabJ7WXHYJnt3yXMK26y5ZiVdffx1dp3yAuxyw5wLhIcDXgbI5uXjmqR/B7XZPKuYbb/gC9rzy6qTiWr9mFdq87dj/1w+gO8sAuxsI+6AEOrFyWTXu/tc7sPfV1xO2vX7txfj1b36LI22dkK7y4WOFvwOLKsvwvUcexE/+/Rem5PrSS1bjvgcewpvvNMfFfeGyaly1YT2279qb8Njly87DtV/YBF1xxs2FogdQUT4Px7v6JzymZLm8845v4MGH/i1hzCuXVeOb3/gabv3q7eg8NZRwjXzx+s9jR+NrCcd08epV+Po37hh3Lh579BE4nc4pPxeN1taGtRfj+s9/Dv/yzTvHjesfP/kJ7NideEzpvO4lO2eM4lroKcPy5Uux85U3J7xuQ6EQ7r3vwXHn+N6774TD4ZjUmk/2ume0/cp1l+Hd997HS42vT/m5OBN/P1kZl5myccxGLCu8ANEK+Z49jWhqasLRo0cxMDAIAMjPz0NVVRVWrqxBbW3tuCd8tmHhhYhoclh4mTq6rmPLcz/DgdYh5FUsh2rPGd6mhYMYbD+IC6pysfH6a6f1DyrDuEIBHD6wAwiewqLVn4DN4ZpQzEZtR0J+HHntt4BzDs5esR6qwxnb9vGDkP1HgYIq5M8/f0L5ikQi+Po3v42Wfjcc5TVQRrWthwIIdTRhYYEfjz7yQNybkGTzNOB9G52H34DPcRZyKlbFtB0cGoDv7Z8CxecBpTUQ9pF8ybAf6GqC2t+M//jlc3HFl2QxB9v3ITd0DKVnX4R8T3w+jOLSQn70H94JBHuhLvwYFMfouAKInHgDTt8RLFxeh3zPipi2QwEf3vzzU5D5C4GyVVBsI8fqkeiYRM/7sJd9BC7PxVOa6/62A2h5ZxeC7rOhzlsFYR9pW4YD0DregDLUiguvvgl2pzvm2JOH38CRAy8bzgV63gXO/hQUd2HsmE68AdF7CM6KFXCUx+YyEvRh4N3fAs65UOdfBmVsTCf2AT3vQRadC1vF6riYIx1vRPs1iuvU+1j58X9CjjsvZky9x97C4f0vQyusBkprEs6F03cEL/xsa1zxJZ1z0Wht6aEAAsdfR+jEQcg5S4GyBHF17oMYaMHK//ZlOMbMUzqve0nPmeNvIHji7fHjOvEGMNCK/OWfgW1UXMnWbSgUwnWbvoJTogJqWYJ12bkPxbIDP9n8ZNx7saSvL8ffhug/ChQsQt78BL8nDF4Xw0Ef3tm+FRFXJXLPumRKz8UZ+fvJwrjMlI1jTsbSUdrtdlx++Xp8/eu347HHfogtW7Zgy5YteOyxH+L22/8FV1xxBYsuRESUNptNxdy5c2GzpXbpNI1v565GHGgdQuGCVTF/SAGAas9B4YJV2N8yhF27G2dMXL0DPgQLzkMwZz76Og7HbEslZsO2Ow4j6JyPYMF56B2IvXmzas9BJG8RWvpd0IRrwvl6+tmtaOl3w7lgTcybDwBQHE44F6zB0X4Xntm8dUIxq/Yc9IoynBLlUHNL49r2vftroPg8iIo1MW/GAEDYXRDza6EVVOOmr/zThGNWc0vRI8rRJ8omHJd/qA+YeyFQcDb0gdYxcTmh5JYj4F6EjmBhXNvvvvpHyIJzIMovgVBj/7ZUbC6I8jWQc5YgPNg15bnuOOVDwL0IStmFcfmUig0ovwRa3iJ88Oa2uGOP7N8xai5cMdthcwIVa6LFj8O/iRsToEDOWYpQ0Yr4XJ74K1BwNkTZSkg9EpdLUX4x5JwlgIwkWANOIKcw2m/J8ri4hN0JUbEGmLMEB196Lm5MbYfehFZQDVFRG1NEOBO3UlGLgHsRvnb7NzFWOuei0dpSHE6EQyHIOUsh5q2Oi0uoDojySyALzsZ7r/4xru10XveSnTMhxR2Na+6K+LiECpRfAhSeg6HWV+KONVq39973IE6JCtg8tQnn2OapRY8ox3fufzDu2GRrPiJcONrvRiRvUeLtBq+Lbe/sRNi1AJh3MSKI/Z2d7rk4E38/WRmXmbJxzMlkR3mJiIiy2qJFZ+MXv/glFi062+pQZjUpJRp2NCKvYrnhfnkVy9GwYw+m66LaZHF1dffAlpMPW8lSdLW9nzCu8WI2altKiZNt78NWshS2nHyc7O5J2LejvGbcfsfrW9d1bN/9GhzlNYZjd5TXYPuu16Hrekoxn94B3T29UMtWIdRzNKbfcDgMSA0orQEEgPGmsLQGnaeGovunGLOUEqGeI1DLVuFkTy8wNh8GcUkpEQn6AUcBULwUsr81brvsbwFKa9DXPxSbS02D/1Q7UHohoNgAXUsQnQ6U1kAG+6BFEm2fXK6lrqP/xNFo2+H4p6pJXYNQVKD0QvR3HYtpOxgIALac6FzEHznyv6U1gGqDHgqNjEbXgSEvUFoT/f9Ru+u6jkh/G1C8DLDnjxsXSmsA34mYmKLbJDBwLLpdC8Sva4no2imtQTgYQCQyUtiJRCLw+4ZOj8ng9aG0BofbOmOOTetcNFhbAKBrOvTB49G4ZOx4T+8QXTulF8LX2w5di18jk3ndS3rO6Dr0/miuZcQfnzGpA4odKL0A+uBx6Fp87InWraZpePOdZqhlqwzjU8tWoelgM7RR40265k/PhaO8JuFrIjD+66Ku6+huPwxRdiGEYkNo1JpONqbZ+vvJqrjMlI1jTgULL0RERJQSr9cLv3THfXo1lmrPgU93TdtTpIziCvgD0KUKoSgQthxotjwEBrrj9hsvZsO2B05Cs+VB2HIgFAWaVBHwB+L6VhzOcfsdr++mpiaE7SVxn4CPpTicCNmL0dTUlFLMQPQhBrqwQ9idkI486IGR++0FW14G3OWnr2IY/+aHwu4C3OXYvHlzyjHr/lOQjnwIuxO6sKOvry/luEL+QUg1B0JRIdQcwFEAOWo7gr2APT96RYDqwMmuruFNxz/cD7hKIWynxyQEJEa9YTtdKRB2F+Cah2DngYTxTybXXcePQuYUQrG5IBUbpDZSqJJSQkIAEFBsTkhnKbpb3x3efmj3z0bNRTTSUUEDiN4f8cxc4PhfRrYPtAKuuRB2F6RQEAiOrMtw/3EgpwjClgMIBRgTl65pkGfy4ZwL2XckZky6rzN6vN0VfdOvBROM/Exc89D29kvDP+14dyfgnhd/9c4Yis0F6SrHCy+8MPyzdM5Fo7UFAMGeD6NrxO4ChAIpRxUaoAMiOk/C5gKcpWg/HL9GJvO6l+ycCfS1AzmFp3NtA7SRQoSUGiCU6BqwuQBXaXQcYyRat9u2bYPuLIu70mUsYXdCd5ahoaFh+GfJ1vyZuVAczrh5AIxfF/s7PoB0lkDYnIAAJETCYtJkzsUzZtLvJyvjMlM2jjkV0/5Uo7F8Ph86Ojrg8/niKuqJrFixYhqiIiKiTHLkyGHceeedePDBB3nVSxp8Pl/05nipUJ3w+/3mBnSaUVyaFn1zMjouPZLojSISxmzYdiQUu00o0EZdTRHTt1G/Cfru7e2N3lAyFTZ3TBEj2TyFwxFAqMP9ytFv5kIDgL0otX7tuejsPJFyzFIblS+hIhyJ/YqLYVz6qG1A9Gs2o7ZDC0V/drrt0KgrcUKBwehNQ1MakxsyODD+9gnmOhT0A+qZIoMCjCr4QMrTb+hH2g4GRvoO+/sB98IU484FBka9edH8o+ZCxPyNrYcDo2ICIFRIXR+V3jOXrCCat0jsFTEyEhw5XqhjrhAZ88m1PRdBf+/wP0P+vmis8T0lGJMbXV2dw/9M51w0WlsAoId8Y9ZufJFrdFyj5ynGBF/3kp4zkQCgnt4uVACjrrQZe5WAzQ09wdVLZ7aNXrfd3d0TOie6u0eKI8nWfMxcjJkHwPh1MRwcAmy5o/YW418NMcFzMcYM+f0UZxrjMlM2jjkVlhVe/vSnP+L3v/89jhw5knznUf7rv7Yl34mIiGiUSETDyZMnERnnKwSUGrfbDWiB5DsC0ScXuIw/1Z4qRnGp6pg3hloAim2cT+ESxGzYts0Ru03qUJWR4kBM30b9Jui7qKgo7g3vuCI+FBaO3Fg12TzZ7bbo14lO9zv6nifCkQ8Eh1LrNzyEsrIFKccs1FH5khrsY26MaRiXYgPkqD/OIwFg9L1aVEf0Z6fbdox65LXDmQeEU/xENeyDyJs//vYJ5tqR44oWQQBEiy6jioBCnC6+jLSd48wf3mx3FSAUTn0ukDNyLFQXEGk//Q8Zc/NKxe4cFRMAqUHE3Nxy1HfMwj4gd15MV8KWA3nmeKkBIifxsafjyikeOd7hKgR6jsfsPf6YfCgtLRv+ZzrnotHaAgDF4Qb620f9RMT+7+j3/mEfcpwLkNAEX/eSnjM2J6Cd3i41YPQ9T4SIjSvig2KvSNzQmHVbUlISndtUhH3R/U9LtuZj5mLMPADGr4v2nFwgMnrNy/EfOzzBczHGDPn9FGca4zJTNo45FdP+VSNN03DPPXfjsccew5EjR6KXWab4HxEREVnH4/HAJXzQwgZXbiD6xAK34ofH47E8LqfLCUVokLoOGQlCjQzCmV8St994MRu2nT8XamQQMhKE1HWoQoPTNfIp35m+9VBg3H7H67umpgb2cDf0kPEfr3ooAEe4B/8/e28eH0d1Jfp/q6p3Sa1dlizvC7Yxiy1jDDYmLGOSvPd+bzJvhszLJITFkARCwhLCFrYAYUsCJEAggCEMyZuZkLzMe7O8GQiEALYxYNksxjYG2xjbWlprS+qluqvq98dtdXd1VXdLlo0B3+/nkxms0+fcc85dqu6tW7fa2nJnRJSrp+rqalQrhZVKoOjDqIHarMw//XMQ6xRfpilxBoeVikOsk9WrV4/ZZzVYi6IPYaUSqFbKNmkq55cvWIliJLFMA8tIgh5FyZPjr4HUkPjKi6HT0NiYFU2efTzEI1jpTEyWhZJ3C6xkZtZWKg7xLvxN7rurDyTXjZNnoCQHMdNxFDONouUWhBRFQcECLMx0AiURoX7agqz8qFO+mlcXwtM8p4HM60qZumDymTl51TSI92Cl4iiWScCfa5fe8GRIDoidK5YJBX6pmoYymo9ED0r1TFtMaqhJ6KfiYKZAc1tQHPWriynHnp79a/OCUyHWlReTO2Y6jhLv5Oyzz87+bSJ9sVTbAvDXzRZtJBUHyxSH1mZQUDO7SyzRhhIRWmY528iBjHvl+kygugWSg5lcp22LjUpmt5FlZfyKR0QcBbi127POOgs10Y2VKj2+WKkEaqKbVatWZf9Wrs2P1oWpJxz1AKXHxXDzHJREr9jpY4GChaq5fGnuAPriKJ+k69Ph9OtQciTGPBY+9oWXf/3Xf2X9+vVYlkVNTQ1/+7f/kxtvvJF77vkxP/7xT0r+7557fvxxuyuRSCQSiSSDoiisOm0Fwx3vlPzdSMc7rDptefEnlR+zX431daSTQ6R7t9E4ZZ6rX8V8LmVbURQapswj3bsNIzlEQ32da9l6Z3vRcouVraoqZ5xyInpnu6vOKHpnO2esXGrb0VC2nhSF+roajO6N+Opm2Mr1er3ilYZIe+n3QCLtNNVWiN+P0WdFUfDVzcTo3khDXY39NZsyfimKgscfBD0KfdtQwtMcciU8HSLtVIcr7LnUNIK1LRDZLCavBU/gM78Sn5T2V6MV+frZgeRaUVXCk2YI2y6vdiiqJg6yjWwm3DjVZtsfCEA6KerCqZn7z0g7GGnUvC+BqqoKFa0QaRf/nfdzVVXxhKdA3xZIDRX1i0g7hCY5PvWqqApUTRVyLeBs16M7RCLteP0B2yd/PR4PwVBFJqYS40OknVlTmmy6E+qLJdoWgKqpqJWThV+Ky/RI1UTbiWwmVNOCqjnbyIGMe2X7jKqihkWuFU/QmTFFFYtfkTdRKye7LlK4tVtN01i8cC5G98aS/hndG2k7Zq7YpTJaZLk2n6kLvbPddUyE4uOiqqrUt8zC6t6MZaaLft32gMa9DJ+069Ph8utQciTGPBY+9oWXP/5RHM40ffp0Hn98DatXr2blylNZtGgRxx9/fNn/SSQSiUQiOXycunIFx0+vYHDPRsfTLCOVJLpnI8dNr2DlKSs+MX7VVIXwR7fiT+6nutl+xs9YfC5pu3kW/uR+fNGt1FTZJ7BGKolneBczwnE0Kz7ufH3jwvOZEY6T2LPO8UTc1BMk9qxjRjjORavPH5fPRipJLd3UWZ0YIxGH7dCCv4G+rVgd6xxPxK1UHGv/WrToDh575MFx+2yMRKizOqm2usftV7CiGno2QXQnapX9VQ8rlcAc6SQQ20Wzf9Bhe8Gy/4oS3YnVucF5vkc6jtW5DqV/O97KxoOe65a6EIHYLszuzY58KmYaujagDe9izuKzHLqzFp2WVxcFu0TSCdi/Dvq2wqy/dsQEJkr/dnwDbzlzOeloiO7E6t4kXuMqyKXV9RpK/3ZQPC5tIAHJQVFu7zsOv6xUAqtjHfRv55jTz3XENPWoxWjRHVgdazN+2v02O9YSiO3i/nvvoZCJ9MVSbcvUE3h9PpT+7Vhdrzv8sgwdq2MDSnQn85f9V4ftiYx75fqMz4oJv3recvplGdC5AQY/oGLayQ7dUu32lpuup87qJL1vrWsdp/etpc7q5OYbr3folmvzXivOjHAcz/AuV3mpcXHKwlPxxj+CrtfwYH89eKJ98ZN4fTqcfh1KjsSYy6FYH/M7PH/5l/+dRCLBddddx2mnnV5eQZJl9eoLWLPmicPthkQikXzqiMVi7NjxHnPnHiXePZZMCNM0efmVtTz3p7XErJA4RM9IEFJirDp9BStPWeF4Sn64/TrztOUowB9fXHdAPpey/RenLccCni9ie8Xyk1m7bv0B5SudTvPYmid54eXX0L314iDOdAxfqpczVp7IRavPt+0KGKvPq05fwcknLWPNk0+52l550mI2vPY63f0x8cUcb4U4RyTWSVNtBY898mDRvlTO59Xnn8v6VzcckF+fW7GEfXv3s/ndDzADTeKA0FQMNdFN2zFzufEH17LhtdddbZ92yon87vd/YOfeCFawOaurxDuZNaWJn9xzB0//5h8OSa6XnbiU2350F+3v7HD4vXjhHM4883T+9NKrrroLj17AV89djakGHHWhmgkmN09iXyQ67pg+t3wJ+/bvZ/MW91xed81V3Hn3T1x9bjtmLt//3uV8+7tX0t0/4tJGQpx37jn8+ZXXXGNaesISrrzqWnbu7Xb1+/577yEQKPJ1rAn0xVJt64yVJ3LOV7/CVVdfX8SvRv7mr/+KF4vENJFxr1yfKe1XAwsXHs1L6zeNu93qus4Pb7ujaB3ffOP1RXedlGvz5ca9UvIzP3cy727bzouvvH7Q++In8fp0OP06lByJMZfisC28PPTQL5gzZ87HWfSnHrnwIpFIJJJPEpZlic9GxuMEg0FaW1s/EVuGS/k1UZ8nYnsiZZumSXt7O4ODg1RXV9PW1jbmG9Zy5ZaynUqlWLNmDd3dXTQ1TWL16tW214sm4vNE/DIMg+eee47e3l7q6+tZtWqV7XWIUrbT6TTPPPMMkUg3jY1NnH322bZJ3KHMdSm/y+nG43GuvfZa+vp6qaur56677soeSjmRmMrlspy8VBspF1M5vw801xNpW+X8OpTj3kT8mki7LVfHpZjouFdKfij74uHik+rXoeRIjNmNj33h5ZJLLuaDDz7grrvuZvHixR9n0Z965MKLRCKRHBg9PT38n//zz/zlX36JhoaGw+2ORCKRSCQSieQI4mPf23PaaadhWRYbNrz6cRctkUgkkiOU/v5+/vEf/5H+/v7D7YpEIpFIJBKJ5AjjY194+dKX/opZs2bxL//yL7z99tsfd/ESiUQikUgkEolEIpFIJB8bH/vCi8/n484772Lu3Llcc83VPPbYo7z//vvoul5eWSKRSCQSiUQikUgkEonkU8TYTq86iHz+87lP5VmWxe9+9zt+97vfjVn/P//z2UPhlkQikUgkEolEIpFIJBLJQedjX3gpPMt3PGf7HomnH0skEolk4oTDYb7whS8SDocPtysSiUQikUgkkiOMj33h5Zxzzvm4i5RIJBLJEc6kSZP43ve+d7jdkEgkEolEIpEcgRyGhZevf9xFSiQSieQIJ5lM0tHRQUtLC36//3C7I5FIJBKJRCI5gvjYD9eVSCQSieTjZs+ePVx00YXs2bPncLsikUgkEolEIjnCkAsvEolEIpFIJBKJRCKRSCSHCLnwIpFIJBKJRCKRSCQSiURyiDhkZ7w891zus8+rVp3l+vcDId+WRCKRSCQSiUQikUgkEsknmUO28PLjH/84+/nn/MWS/L8fCHLhRSKRSCTjRVHA6/UygcuPRCKRSCQSiURyQBzSrxpZluW6yGJZ1gHZm8iCjUQikUiOXObMmcu///v/K/s7y7LYt28fsViMUChEa2urvPZ8Ajmc9WQYBs8++yy9vb3U19dz1llnoWkaAKZp0t7ezsDAADU1NbS1taGqube6S/ldLqZDpVvO73IxpVIpHn/8Mbq7u2lqauLCCy/C6/WOqdxkMskdd/yInp4eGhoauP76H9i+OlZKv1Q9AKTTaX77238iEonQ2NjIl7/8t3g8njGVW0q3XEy6rnP//fdldS+//Ap8Pt9BaT+l/ColK1dP5XTLyUvFPJF6mkg+ytVxOUrVc6lclvOrnG65mEvJy7XNUmXH43GuueZq+vv7qa2t5e677yEYDI4pHxNlIv28XL4OF/JeQuKGYh3oKkgZurq6sv89adIk178fCPm2jjRWr76ANWueONxuSCQSyWcO0zR56eW1PPfiWuJWCLQAGAmCSoxVp63g1JUrPhE3c0c6h7OedF3nllvvYNOWHZiBJvCGIBVDTXRz/NFzaG1t5s/r2kl568ETgnQMb6qXM045kQsvOJd16ze4+v0Xn1sOwB//vM41plNWnMwra9cfdN1Vp61g+cnLePyJp3jhldccfp++4gQsC15c94ZrTF/7u7/l4ksvp7t/BELN4K2A1AjEOmmqqeDcr3+VP6973bXcRccfyznnX0QirTp0Ax6Tp598jM1vvu3q9+krl/H8C39ms0s9LF44l2uvvpLvX3sDu/Z2YwWbs3Il3snU5jq6urpJmppruWt++RA33nK7q+7MKU38zV9/iRdfec01prbFx3P+hd8iGjcctsNBjcceeZCf3Pvzou1nSmsLL67b6Jrrr3/tK3zv6utd/ZoxuRHTMtnT0evq852338J3Lr/KtZ4aakJUhEJFde++41auuf6movn40a038c1Lvusac6VfYd5Rc3lz685x19OM1iaOOWYBL61370+l8jG1uY6u7m6Shnsd/+apNYTD4QMaYz63fCm/+vtfExmIOdt8bQUP3P8TrrvhFle/prXUMxKL0VNE9+EH7+fX/+ufXPviGaecyAXnncMTv3q6SF9dyoL583j+pfWubfOEJYv55iXfdW0DtZU+BgcHMbWgQ6aaCX7z1Bre2bL1kIy5pXJ9+inLeP6FF9n87vuu7eeG66/mV3//m6L5+saF59sWBz8u5L2EpBSHbOFFcvCRCy8SiURyYHz44YfcddedXHvtdUyfPt0mM02TJ576DW/tGaGy5Rg0b+6pqJFKMtzxDsdPr+D8r39V3jAdRg5nPem6zjmrv0W/0oLWtATFG8j5lYpj7FsH+iDh+f8dzZ97SmzqCfTOdoLJPTTOWkK49Ti733qCnW+9CMl+Zi79Eh5fTtdIJRna/zZKdDeEZ1I5+ZiDp5tKMrTvbbp3vkHcPxVf8xJUXyDPdpyhXS9BcpCqef+fI6bE/tdJdr4NdQugsQ3Fm/dkPBWH7o0wtJvFX/gm/mCFrdyBPZvZ0f58cd1IO/Rt5aglZ1I9dZHN71QyzpvP/z2Grw615STUvHqwUgnSnW9A31Zhu6kN1ZPvdww614E+BNM+j+IL2cvtegMGtrvrpkVMytCHLP7CN/EFcroipk3saH+hbEzUzsfTstTZfva/Colewgv+Es2fs23qCeL7XifV/Q5W3XxodPOrHfp3wJy/QfVX2mVdG6F/W3G/ujZArAdm/BfUvHyY6Th0lslHVzv0i5hoWmK3nRyBXX+AquloLUtRbeUmMLo2YvW+C7XzYNIJTtudGyDeS9XRf4mnIB/J/W+Q7Hobq3a+Sx2PwO5/h1AjTFpWtB5+/49PuS6+lBpj9HiM9ueehGAR2915uXZre7v/raxf/ubjCEw+wdYXxRiyEat/O9TMw9+ypEAeZ+TDdXjSgxzzua/g8dvHgcG9b7Jj4/MiX4VtIDEs6ik801mHeX7NWnQa9TOWHNQxt1SuU8k4b77yL6TjA2gzvoDqs7efdOfraNH38TUtdIxdo2PujHCce++5/WNdfJH3EpJyfKpq/b333jvcLkgkEonkU4iu67z//vvouu6QvfTyWt7aM0L1NPuNJYDm9VM9bQlvfjjCy6+s/bjclbhwOOvpllvvoF9pwdO6wjZpBrBSMWhcDOFZxHo+sMlUXwC1eSn9SjODfb0OvweGYiTDC0j6JzPYudMRU1oJsjsaIl0586Dqal4/AzGDfqUZtfE428QFIBkfhoZFEJ5Jon+3I6ZkMikmmJOW2iZrAIrmRWlZBtWz2bLu/zrK/eD994Ru8zKnrjcIjYugbgHv7+l2+P3+ltdIV8wQ+baMAt2AeFpftwAaj7dNfEVQvdDUBtWzIbbfWa6iZBcoCnUVzYfSvAwrPIttG/7NEdPObW9B3QKUlpPdY5p0orBtppztx0ijjLafiP0+V/UFSI30YNXOR2k+2dUvWk6G2qNg34t2XU8Q/DWi3PpjHH5hGSKPNbNgYJtT10qLmJpPdJSreoJQM1vYrpjktN2zGarnQPMyTNP+fFfxBqBpidBFccZkpoVf1bMY6SrwyxdAV3wiH2513Peu8KuxDTALyg2iTF4BdQv46rmrcaPUGPNO+59F22lyt42/WsTUcKzTr4HtGb/c2m2uzeum5uiLqi+AWX0UidBMTH+dQ5420tC4iFRoCns/eMsm07x+du/vzSy6LHLWU+d6qBH1hOa1iRRvEFqWQ90Cdr71ykEfc0vl+oNdH2HUHYdSMwtrZF+BXwFQFIzwXNJ1i1zzFZi2nN3RII+teXLcfk0EeS8hKcenYuFly5YtXH/9dXznO5ceblckEolE8hnCsiyee3EtlS3HlPxdZcsxPPfiugM+o0wyMQ5nPRmGwaYtO9Calrg4Jp7A4g9D3XzSg3uwCiaauq6jNS2hp2MnpmmfsEV6+/D4q/DUzyeyd7vNb8uy6Nm7HV9zGz29fY6iJ6JrWRY9+95Da1qCHh8Byy7TEyPgC0PtAlL9u2y2TcOEkQ4xubVMbMog/qZ4oGER+lAEw8hNNI10GjPen9UtrCfLsiAdh8Y2zFiPTdcyTaJdu1HqjwZfpVjwshVrwfB+YTsdt3llWpm8+6rFLouhPfZ8mSaMZHQVsApjMg1QPdC4iNhAB2aeX+l0GiM5nJnsOxHlmEIe6xb5ywozC3e+Sqg7mvSAvf0YhoGVGM2Xs02LPyliQq8P2PwyLQuGPxK6RsKea8sCIw7eSqhbCCOduRwhntwT64LGNizL3mazMZlpYds1l/vEYoLqFZksbCJWJh8j+219wgKsdDybDzP6kbCX55cZFfVkFdaxaUK8W8TjrRBtwG0caGwjkVbF4mFBTMXGGNM00Qc7M7YrRRstjHl4b6btJZxtb6Qjp2vYdbEsSMdETCNdjjEi2x8b2xx9EQv0+AiKrxKlbiG9+3bY++qo35k+YfPZMMRiZMMi0bYtw9lGMvlCUV0fWsCBjbmlcm1ZFoNDI2Ihq2Y+VvRDR0wM74PGNtLptKNtjeJrbuOFl1935PNQIe8lJGPhE73w0t7ezlVXfY8rr7yCjRs3Hm53JBKJRPIZY9++fcStkOPpVCGa10/MDLJv376Sv5McGg5nPT377LOYgSbHTgUAMx0DzYeiaCiaH3xh9OFITm6YWCgo3gBWoJ5oZ25HTCKewLQ0FFVF8fgxPJUkhnpz8qEeDE8lqi+AYWkk4omDogswGNmP5a0RfqkahpGbVKWT+TH5wBcmPZJbvIn3vA/BxswuERXyJzaWCSigKEIebOSj99qz4vffXp/TRcExazJToHoyOwhqeX/bm1lRZP9uLH81iuZHQcVSPVhGKqc60gH+moxfHsiLiUQvaAEUVUPx+MFbBcn+nHxoDwQbcjHl6VqYYjcMCoonCIFGOnbmdhbseuvPEMrb9VE4ocrkROSjATOaawOmkQTVC0rGL381+lBnVq53vg3BSdkdOfkLQpZlZlI9anuSeNUlW1GRXD5ULxi5hQbLTIHiyeXDXyMWB0aJfmCrp8LFF0uPguYXcm/YPZeegDhMVFEx0rmyzXQKFDWbD4Y/yukaSVH/eflIRnP5SA7ss9exqdvL9deiePwoqpaR59rHKIpXnGVy55132v5eaozZ88G7OduKKhYq8m0nIuCvzuTaY8s1o+0yzy8rT1fUhTfT5mtI9O2xlT3aH1VP0NEXDUPHUjWRT48P01tNtCe3myvr96hf+T4PvJetYyXTvt1WMUbztX39/3bI4MDG3FK5jkQi9vHHWwXJgdwPhvZAINdXiy0Iqb4AureO9vZ2V/nBRt5LSMbCx/Lim2VZvPLKK2za1E4kEkHTPDQ3T2LlylNZuHCh4/dvvrmZJ554gm3btmX1AZYscXnaJJFIJBLJARKLxcThd2NBCxCPxw+tQxJXDmc99fb2ioMd3TANUHJf2MATEJPpDOL+JfMlC08F6eRwVmYYhpjk5/lt5k1QjbSei1lRMUzjoOgCpPU4eEblmm3xxDLT9pi0AFaebUsfEQdZ5v5i/+/8D3d4Q+jxoew/9fhQLpdKoe6ofiYuT4BUYiSnm4yDlv+qhIrtlQ8jAaOveCgFMtMALfdlITwByFu0wYjnxaTYXwcpdNEbIpnIxZSKR4u3jyxKVtdK5u3UscyCegxipnOLZKY+VMZ2XrK9IUjl/MJI5vKlaJkFoLxyVXu7Ja9cUjGxayRbRuECWTqnXzKXQj9/4UYsHo32CXEgqs0vW9sL2fJhpeO5OlY1+yKXmci1aQBVdd0lBIC3gp6eiO1PpcYYPTFit62o2HJiJEEbbdcFuTaSOZ/d5JjCVxDjR8o+dtn6Y2FfNE3H+JPSc/o2vwt9To3Y25aiiHy5fXjHW0Eq1u0iIOvXeMbcUrlO6bojJtsiaipm66umy46snG6IwcHBMfs1EeS9hGQsHPKFl66uLm666SZ2797lkP3hD3/g1FNP5dprr0PTNKLRQe69917Wr18P5D5HvXz5cr7ylb9j3rx5h9pdiUQikXwGaW5u5oYbbqS5udn291AoJCZsY8FI2D6vKfn4OJz1VF9fL2723VA1sPL8SidQtdwTT/EkOTPZSY/gyTv8VNMKJ2gJVE9OV/P4cjFbJlreRHkiuoA4iHd0QmsZuYkfoGReO8i3reTZVnwVMJz/hUrF/t/5c91UDF9wcvafvmAVI0N7M+WS2UmSj5KLK53AG2jK6fqDYlKfxcS2cVsLiNcpMjHbZKomFl9GSSfsZ1poQUiP7viw7IshhesOqRj+wLTsP73BMOTtUnHHyuoqFY15ttWCeoyj5k3wVV8VxEo9Gc+fSMegIpdrNH8uX5YBSt6TeEV15iOU99VQbwjiPXllFNSTmrejqGQuhb6Sl08FheyiWDoGFS12v2xtL2bLh+IJQjqzo8M0wJPnlxqAdN5rdaYJWpHP96ZGaGhotP2p1BjjC1TYYxrd2TWK5gcjM0ZYhYui/ly7dJOTt2ssnUD12q9Rtv5Y2BfVgnylE3jzDqK1+V3os7dCvF6X9csCtXi+vKFqd1nGr/GMuaVy7fX5HDHZFk29IRjO9VXVlssC0jGqq0v4fRCR9xKSsXBIXzVKpVLccMMP2LVrJ5Zluf7vpZde4okn1tDd3c23v/1t1q9fn11wOf300/nlLx/lllt+KBddJBKJRHLAVFVV8bnPfY6qqirb31tbWwkqMYxUsoimwEglCalxWltbD6WbkiIczno666yzUBPd4iyXAlRPCAwdyzKwjCToUXyVuQmdqqkoWFipBEqil3Dz7KwsEAygKgaWaWKlk2jpYQJV9Tl5VQNaehhTT6ApBoFg4KDoAlQ3TkZJDQi/TAMtb2Lj8efHpIMexVNRl5UHG+ZAPCK+emKZtkWb7FN1yxLyeISpR+XOPplz7Mk5XdcJvRfMtJAn+5kz//isqHHyDJTkIJaRxMJEMdMoeRN+taIFkgMZv9L2yVqgXpxzYhpix0BqCPy1OXnVNIj35GLK01UY3TlhiR0XiQgts47Lymce9zmIdWViwrmYlMmJyEcPajjXBlTNL17/sDJ+JQfxVeUm3r7mYyGesW1ZmUWL0WLUTKpHbXeJLwxlK6oxlw8zJRYAsi55wUrn8pEcsC+AhGfb6kkpmNwqvjAYSSFPRd1zmc6cK2OZaHmLBarHK873yeSDyqk5Xc0v6j8vH/5wLh/+mlZ7Has+e7nJfqx0Ess0MnL7gbGA0I11ct1119n+XmqMmTb76Jxty8zs+MmzHWiE5GAm12lbrhltl3l+KXm6oi5SmTY/QKBuGvmM9kczHXf0RU3zoZiGyGdaR00NEm7ILb5l/R71K9/nmqOydWxl2rfbdpfRfM07+X84ZHBgY26pXDc2NtrHn9SQeBVulKppkMj1VZ/P57AB4utGvlQfbW3uZy8dbOS9hGQsHNKFl+eff54PP/wQRVGYNGkSV155JQ888AAPP/wI1113PXPmzMGyLP7lX/6FO++8g66uLizL4pRTVvL442u47rrrmTFjxqF0USKRSCRHAP39/fzud7+jv7/f9ndFUVh12gqGO94pqT/S8Q6rTlue2cEg+bg5nPWkaRqLF87F6HY5a07JfGUjGYW+bXiqp6EUPDX2+XwY3RtpaJnl+IRoY30d6eQQ6d5tNE6ZZ/NbURQapsxD72ynob6OQiaiqygKDa1HYXRvxBessM23FEURT8r1KPRvxVs702Zb1VQxmYy0ZxYVXBYarDT0bMZX1Sh254zm0uNBDdZmdQvrSVEU8VpGpB011GDTVVSV8KQZ4jPE+jBKwSs4iqpA5WRh2xO0eZV9Kq4PQv92qJpmz5eqit0ikfbM21KFC0KamLhGNhOqaUHN88vj8aD5K4WuC6IcVchDTSJ/WSEiDn0Y+t7FU2NvP5qmoQRG8+Vs08ro61qRTeCrsfmlKopY1Ii0i/NtFMWuqAUhNQx9W6Ci2bZzQFVVsQMm0u5YdMnGpHqEbddctkJks/iKUyZOu34mHxWTbX1CIbOrJZMPNTxV2MvzSw2LelIK61hVIdgk4kmNiDbgNg5E2gl4TPx++1kcpcYYVVXxVTdnbA+LNloYc+WUTNsLONteRUtOV7Proiji1ZlIO0rFJMcYke2PkXZHX0QBX7ACSx/G6ttCfetce18d9TvTJ2w+axr468UXqDKvMznaSCZfpRY4DmTMLZVrRVGorqqA5CAMbEMJT3fERGUrRNrFp6KLFKt3tnPGyqUf22eb5b2EZCwc0ta4du0rADQ0NPDoo4/xhS98kXnz5jN79mxOP/10HnzwIY4++mgSiQRbtmxBVVW+//3vc9NNNzFlypRD6ZpEIpFIjiB6enr45S8foaenxyE7deUKjp9eweCejY6nVUYqSXTPRo6bXsHKU1Z8XO5KXDic9XTLTddTZ3WS3rfWsfNF8YbExDe6k1DDbJvM1BOYna9TZ3VSXVfv8LumKoQ/uhV/cj/VzbMcMXmtODPCcTzDuw6qrpFKUhPSqLM6MSNvYer2mPzBSjEhi+4iUDvDEZPf74e+rdD1em6nRwbLSGF1bIDBD1i4/L87yp095yih27nBqZuKQ/dm6NvKnGlNDr/nLDwRz8hukW9FK9BNiAl331aIvCl2CNiCqofudhj8AEKTC3QzX3zp2wqRdoeuZehYHRtQojuZv+y/OmKaNf846NuK1bHePabO14Rt1etsP5oHa7T9NB5lk5l6Am9FA0r/dqzO9a5+sX899L8HrafZddNiBwV9W6H3HYdfKJrI48BOqJnv1FU8IqbO1xzlmuk4DHwgbI90OW03LBJ57tyAWrAQaaUS0L1R6GI5Yxpd0BncScWkAr/0BD5LF/lwq+O6o4VfkXYKpzhWKo61fy30beU3T63BjVJjzDFtn4PBnaINudgmMShi6nnb6VfNPJFn13YbF4tUfVvxqYajL5p6AnXwPQKxXajJPofco3mgZzPe2F6mzD7OJjNSSWZOrkfp3w6Rzc56aj4ZBt6Hzg32c3pG/epYB31bmXXcKQd9zC2V69kzp6L1vYU1sBOlwr4zxEolwLLQojvw9G12zVdizzpmhONctPr8cfs1EeS9hKQcinUIv2f1d3/3FXp7e7n44kv40pe+5PqbTZs2cc01V4uVwlWruOqq7x8qdz71rF59AWvWPHG43ZBIJJJPHTt27OCSSy7mF794mLlz5zrkpmny8itree5Pa4lZIXFehJEgpMRYdfoKVp6y4mN7ciYpzuGsJ13X+eFtd9D+zg7MQFPmMNMYaqKbxQtnM3lyC39e147urc8eGupL9XLGyhNZff65rH91g6vfZ562HAX444vrXGNasfxk1q5bf9B1V52+gpNPWsaaJ5/ihZdfc/h92ooTsIA/r33DNaavfuVvufjSy+nuH4FQszgzIjUCsU6aakOc9/Wv8ee1r7uWe/xxx3LO+ReRSKsO3YDH5OknH+PNt9529fv0lct4/oUX2bTlfUc9tB0zl2u+fyVXX3sDO/d2YwWbs3Il3sm05lo6u7pJmh7Xctf88iFuuuV2V91ZUxr5m7/+K1585TXXmBYvOp7zL/wW0bjhsB0Oajz2yIP89L6fl2g/k/nzuo2uuT7nq1/hqquvd/VrRmsDlmnyYUefi89N3HH7LXzn8qtc66mxJkhFqIIPO3pdde+641auvf6mIvlo4vZbb+Kbl3zXNeZKP8w76ije3Lpz3PU0s7WBY45ZyEvr3ftTqXxMa66ls7ubpOFex795ag3hcPiAxphTVyzlqad+TfdAzKXNV/DA/T/h+htucfVreks9I7ERIgNxV92HH7yf3/zDP7n2xTNWnsj5557Dk0897So//ZSlzJ8/jxf+vN61bS5pW8w3L/muaxuoq/QyMDiIqYUcMtVM8Jun1rDl3a2HZMwtlety/fwH113NU0//pmi+Llp9vtgR8zEj7yUkpTikCy//3//339B1nXvuuYfjj1/k+pvBwUHOPvtvUBSFW2+9jWXLlh0qdz71yIUXiUQiOTDKLbyMYlmW+CxkPE4wGKS1tVVuCf4EcjjryTAMnnvuOXp7e6mvr2fVqlXZV2JM06S9vZ3BwUGqq6tpa2uz3WSX8rtcTIdKt5zf5WJKpVKsWbOG7u4umpomsXr1arxe75jKTSaT3HnnnfT0RGhoaOS6666zvQJSSr9UPQCk02meeeYZIpFuGhubOPvss7MTsXLlltItF5Ou6/zsZz/L6l522WW21zQm0n5K+VVKVq6eyumWk5eKeSL1NJF8lKvjcpSq51K5LOdXOd1yMZeSl2ubpcqOx+Nce+219PX1UldXz1133WU7APZQjrkT6efl8nW4kPcSEjcO6cLLWWetQlEUHn30MaZPn172dw8//AizZs0q+rsjHbnwIpFIJAfGWBdeJBKJRCKRSCSSg83hXxLMI38FUyKRSCSSg0VFRQUnnXQyFRUVh9sViUQikUgkEskRxsf/8ptEIpFIJB8zkydP5rbbbjvcbkgkEolEIpFIjkA+loWX//t//y81NTUH5XfnnHPOwXFKIpFIJEcM6XSa4eFhKisrD8uBexKJRCKRSCSSI5eP5e7zX//1X0rKRw8bKvc7kAsvEolEIhk/u3btkme8SCQSiUQikUgOC4d84eVgnt0rT4OWSCQSiUQikUgkEolE8mnikC68/PjHPzmU5iUSiUQikUgkEolEIpFIPtEc0oWX448//lCal0gkEolEIpFIJBKJRCL5RPOJ+py0RCKRSCQSiUQikUgkEslnCflpB4lEIpF85pk1axb//M//h0AgcLhdkUgkEolEIpEcYciFF4lEIpF85tE0jYqKisPthkQikUgkEonkCES+aiSRSCSSzzx79+7l2muvYe/evYfbFYlEIpFIJBLJEYZceJFIJBLJZ554PM7GjRuJx+OH2xWJRCKRSCQSyRGGfNVIIpFIJJJPOKZp0t7ezsDAADU1NbS1taGquWcnlmWxb98+YrEYoVCI1tZWFEUZk+1SuhOxO5Fyy2EYBs8++yy9vb3U19dz1llnoWnaQbE9kbLLlVtKdyIxlWsf5Wzrus79999HJBKhsbGRyy+/Ap/PB0AqleLxxx+ju7ubpqYmLrzwIrxe70Hxq5ztdDrNb3/7T1m/vvzlv8Xj8Uw45nL1VMr2RHQBEokEN910Y9avW2+9LXv2VLl6ikajrF59AfF4nGAwyJo1TxAOhyecj2QyyR13/Iienh4aGhq4/vof4Pf7x1QP5couFW+5tlcu16X8GhgY4LzzziWZTOL3+/nVr56ipqYmq1su5lLycvkoJZ9org/VGHIox9SJjCGl2kc53YlcN8vFeyivMYeST6vfnxUUy7Ksw+2EZGysXn0Ba9Y8cbjdkEgkkk8dO3bs4JJLLuYXv3iYuXPnHm53xkw6nebRx5/khVdeI+WtB08I0jG8qV7OOOVELrzgXNat38BzL64lboVAC4CRIKjEWHXaCk5ducJ2o5mPaZq89PJaV92/+NxyAP7453XjtluOUuWWs63rOrfcegebtuzADDSBNwSpGGqim8UL53LTDdfy6obXD8h2OUqVvWjhXP7ijNN44eVXXcs9adlSbr39Llfd4xbMRlHgzXc/GHdMZ5x6Etu2vcef1r7u2j7O+/pXuf2Oe4rm66orv8tF37qUaNyAUDN4KyA1ArFOqgIamkdjYFh3yJpqK/jlL37OGxs3ufp15qkns3Xb9qJ+fe3v/paLL72c7v4RV9sP3P8TrrvhFnbt7cYKNmf9VuKdTJ/cwHHHLuTP69vHHXO5elp+8jIef+Ip1/52+oqlzJ9/FC+8NH7dM045kS//zV9xzvkXkcbniFmzkhx3zDG8vX2Xaz1deMHX+ebF3wVfhUOX5DBnfeEsNrS/M+58HDtvJu9u3UbS1Bx2Ax6TNb98iBtvud21HmZOaeKn99zB3//6H1xjXnHi8Tz77POkFWe8HnQee/gBLrvyate2Fw5qfPOi1fx53euuuT5x6RKuuOpaV78aq0N0d3e750of4ac/voMf3HwbibTqGvPDD9zHxd+5wl2uGTQ1NfFRZ59rPu6+41auuf4m93bbUk9HVxdJ48By/eO7bueue+51H0Pmz0JRFN7cOv4x5PRTlvH8Cy+y+d33D/qYGovFuOhblxbt56XGkFOXn8Cjjz1RtH08+fgjtG9684DGxVLXzXLXvlNWnMwra9cfkmvMoWQi113JwUMuvHyKkAsvEolEcmB8Ghde0uk0V1z9Az6MhvA1t6H6ck+JTT2B3tlOMLmHxllLCLceh+bNPTU1UkmGO97h+OkVnP/1rzpuqEzT5ImnfsNbe0aobDnGppvW4+x67Z8hUMus405Dyyu3nN1ylCq3nG1d1zln9bfoV1rQmpageHN+WakERvdG/CM7mb5wJeEp48tHOcqW3fUGanQnx3/hW/gCuUOcjVSSwb1vsmfLKyQrZjl008kY1vu/h6oZaC1LUYvENG3hKVRPOb6gnhJsefX/kRrpIzT3v6D5g7k86wmSHW+QiryLWX0U2iSnz+mO16F/G9QtgMY2FG8wTx6HSDv0bYPZZ6MEww6Z0r+duW2nUz11kc2vVDLGlheeJB2cQsXUZY52m+zYSKLjTaidD01LipS7FWqOgualqJ78uEZg5x+gajrhmcvRfPaY9c6N6N1bMMJz8DQvHVc9Rfe9Rc/ON4j5pzv6m5GME9vxb3gr6ll40hfxFPSJoX1v073zDWK+qfhbljhiTux/g2TnW1C7AJoKcq3HoGs9JAdRZ34RzRey19PuVyC2q3g9dW2AWITQgv+OP1jlyHUqsgWjei6eSSfY8mHoccx9a0GPwrTPo9jKjUN3O/RvFfU0aYm9HtJx6NqIMrAdf/NxjphTiRGG3/1nCDXCpGVOn/Ntl2gDi/7LdwhU5GIyUkkGPtrMzjf/jFE9Fxrb7H5Fe2HPH8q06a1QNQcmu/m1UfQJt3oalUd3waz/gerPtR8zHYfON2Bguyi7qcAvPQYf/jsEG9zzkW3z86D5BGeuuzPy2vl4WuztOp0YwXrvt1A7F635BOcY0rURf8x9XEwl47z5yr+Qjg+gzfgCqi9o0013vUEgtosZx6ykapzXmFgsxv/4n+dihOcWrYtiY0giNszmf39AtA833Uw9zTvhLwiPe1zcSIX+EY2zTqCq9Vh7THqCnW+9CMl+Zi79Ep68fBipJEP730aJ7obwTConj+/6dTiZyHVXcnCR2ZVIJBLJZ57GxkYuvfQ7NDY2Hm5Xxsyjjz/Jh9EQgWnLbZMaANUXQG1eSr/SzGBfr+1GCkDz+qmetoQ3Pxzh5VfWOmy/9PJa3tozQvW0JQ7dgc6dJAOTSYYXMDAUG5fdcpQqt5ztW269g36lBU/rCtvEA0DxBlCbl5EIzaSzc9+4bZejVNmW5oeW5Rjh2Xyw4Z8d5Xbt2UEiNBO1ZblTt3MDVM+G5mVYimaTKd4AastyEqGZdO3Z4Yhpb0c3evVCrPBMjKGPbDLVFyCtVWKE56I0HOeaL1IjYpLYbJ8IAiieALQsh7r58OG/FugGUZqXYdXOY/eunU6/trxEKjgNJp1IGntMqi+AXjVXlBuodZbrDaK0nCTketQ2AQUgshmq50DzMkYSaWfMdYvERE9Rxl1PA3299CktqM1LHf3NGPoIKzwLvXoh+zq6nbpKE/1KM1pFo2tfTaqVIqa6BY6YMRLQ2AbVszEHdxXkIwBDO4Ruy3KnLqbQrZlN7KONjnKNyhmiDQSbHfkwE/3QtFi0v9i+gnKDUDNHlBtqctSD6glCRRNW7XxSlbMcMQ/v3Qw1s4VvmE7bdfOF7WCDSxsIoLQsh7oFvPXHR20yzetn73ubREwtK5ztY9dvs7nCU9jmg5k2vQBiH7m2PfzVmUWbY5251rzQvEzkpXOdMx8Kon4nLXX6Fd0h8ty4GKyUs9zmZaJcI+Gaa6X5RCG30s52vfdPUHsUSsvJWKrXJlO8AdSmRWIM6Y85+uoHuz7CqDsOpWYW1khhGwigVjSLMTVZPe4x9aJvXSrqafIK935eYgx56/knoXY+SstyMRYV5quiBeoW8EGfZ9zjolbRSJ/SzKDS5Lz2DcVIhheQ9E9msHOnI960EmR3NES6cuZBv8YcSiZy3ZUcXOTCi0QikUg+89TU1PCXf/mXtnf8P8mYpskLr7yGr7mt6G90XUdrWkJPx05M03T9TWXLMTz34jryN7dalsVzL66lsuUYx+8ty6Jn73Y89fPx+Kvo6e0bs91ylCq3nG3DMNi0ZQda05Li9k0DGtuIRj4aVz7KUa5syzJRUKBxMdH+bgzDsOlG+7uhsQ3LsvtkmiaMdELjIhTVI/x3sU1jm8MulkVv3wCqvxqlbh563257HZsW6YEPRbmpGBSEaxgGJPvFxNgyoSAf2X81toFlYKXsk0UyfulDEZtfpmnS27ETpUnEpOt6QTwWZjop7A59hOVST5aVKVcfwCywzcg+aFwEqlf8O99tS+wSo7ENhvc52kCpehr1W2ta4uqz3rcLpW4eqr+anr4Be74ydaE1LXHUQ9bv4X3CLyPh6IsYCfCFxdP94X1YZk6eisXBF8osYODUTcfEKzV1CyHZTzqvnizLIp0SubaGdjt1TQN81VA7D4b22OrCsiyxQDBaT4Xtw7Igugca2zBSiYK+akK8W/jkrYB03CXmTBsYdmkDFmIRo7EN07BI5cWUTqeJx0Yy+SjIcyyTi8bcmOkoF7K6VmE9myYM7xXytEs9WQaoHmhYBIleTLOwbXZk+rm9H5uWCcP7oe5o8FYWt93Y5rCb+01mgW2ky9auc/14MaDY2k5WNxWDxjYGu3c76nhwaEQsNtXMx4p+6PDLiooxZDA6UnTMdBtTU6mUeL2osfj1q9gYkk6lMFO60HU5esSyLBgSfqUNy97Py42Lmb6sNS1x9mMg0tuHx1+Fp34+kb3bHbo9e7fja24rel0slo/DyUSuu5KDj1x4kUgkEslnnmg0yh//+Eei0ejhdmVMtLeL8ysKnySPYhomFuKpvhWoJ9r5gevvNK+fmBlk377c08x9+/YRt0KOJ18AiaEeDE8lisePoqoYlkYinhiT3XKUKrec7WeffRYz0OR42juKZVlYKKieIFagkd49W8dsuxwly7Zy0z/VE8QKNtG7a1NW3LurHSsodgxYmd9nVQd2QrARxRMERcFCsU+6Mrbd7A4ODmIqXlBVFM2H5asUOxgy6NFO8NeIp8OqF9NI2tw2e98VZXuDgIJlc0z8t6IoQh6aBN2v5clNICMLNvLRe+1ZUbTzfaxAvXhKrSBiMnITo3hsGFRvbndBoqcgnyYomafawUnidZRRhvaIHRKeAIqiYCkqiWSubSZ1HRRV6AYaxO/HWE9Zv70Bh89mvB/LV4Wi+UBVMRUvg4ODjrpQvAFHPQDE+vaDLyz80nyQzvuyWjoOmg9F1VA8fvCFMUa6cvJd/xtCzS47XQAzBYoXRcno+msZ6tiSFeuxQSzNL3R9YUgMZGVGfAA0f65cbxj0nBx9CNRR3SqspH2iaSX7bDElY7lxNRZ5H/y1mTFEA8UjfC2MedSvZK8zttH2FWrmw/Z/z/61c+tLEJrkno/dv8/mqtRhoaN26bLvWiERAX91ps94xOJQLmLhk5Jr9wy8nxMPfZjbvaOo9sWXWJewO5oP1QOm7rSdtbvD5pawNSpvwMrfFdX3LgQz+VAUUMDMW3yxjBSW6hFt3ldNT8furCwSiYh6UDTRtr1VkBzI2U4OgLdK7MDRfPREIq75dBtTH3/8seLtFkqOIbs2P5dXx6P1mDc+JQfAV5VpewF27crlo9y4mO3L3oCjHyfiCUxLQ1FVFI8fw1NJYijXNkevjaovUPS6WCwfh5OJXHclBx+58CKRSCSSzzxdXV3cffdddHV1lf/xJ4CBgQFxIGARxFOpzE2pp4J0cri4MS1g+4x2LBYTB+u5YKR1u0xRMVyewLrZLUepcsvZ7u3tFYc+FsOyxMQDwBMimRgas+1ylCrbIq8eALwV6PHcJFSPR8VTf8CxwJGO5cmEPP8JrM12gd1UKg35ryZpASwjN5kz0wnQMpMeRc1MdPJIxXIxKaK0ongrxEQ8z7NsyN4QejwnSyVHwGOPyfbU2DByfmtBMOy7DvIcyhzymdeujXhBn1BsT7vF0/xcGyCVq+Ny9WT3u9Dnwj6hkUrnXnOy1UVBPQBih8+ovqKJ3Q054yXrkdRIQRvJwzIh/zwGT8CWT8so8MvMW0gw06BqBbp5iyOWkZN7XOrJ0HOv8iiafWdSKmF/zUdVC3YIGTa/SBcuQuThrSAZG8j+U48P2vJh+7WRKJ6rQrwVkCoYI4wkaKN9QrP3Gauw/RS0zXQsr20qdt10Ime3mG0lv82PuDick1t63uuf+nDB2KRgX901yU71tCDJZK5PpHTd3vYK2k9hHeuFu97yKRhTu7u7y9RF8TGksI4dmHn9UdXQ9Vy7Ljcu2vpyQT82DEOMlXm6Zjpn23ZtLHVdzOiO5xpzKJnIdVdy8JELLxKJRCKRfMKoqakRN/NFEE90MzfY6RE8/srixowEwWDuyWMoFBKTFBc0j88us0w0VXP9baHdcpQqt5zt+vp6sVhQDCVv0SIdwx+oKv7bcfpdqmylcKKTGsGXdxCtLxjOm0hZmd9n8BROsvImYIW2C+x6vR77BN5IiKfWGVRPQCxUQGYXScHtXubLJaPFuu7pz4sJX34+lVzIqRi+vANdvf4KSNtjyt99oGh5Cw+G2PngZDTmmHg1YxQtWNAnLNtBkIqq5nTTMch72l6unux+F/pc2CcMvHmf97XVRUE9AKgef06/cKGlcCGmUH/0Sy5uKCqYhRP8nK6iFfil5j3xVj3iVSObbt75IIqWk6dd6knzCZ1MTGreZ4dVbyAnA+Fj/g6U/JiNBHjybRe0w9QI/lBN9p++YLUtH7Zfa4HiuSokNSJ2eNj0/WCM9omCSbhS2H4K2mbmqzkZZbuuJ5CzW8y2ld/m3RYdcvL8Q5DxVRaMTQULRIpK9owdI44/76BZr89nb3sF7aewjn15n392UDCmNjU1lamL4mNIYR07UPP6o2ng8+Xadblx0daXC/qxphUsiBkJ0XdH5fnXxlLXxYzueK4xh5KJXHclBx+58CKRSCQSySeMtrY2vKleTN39hknVVLF/IpVASfQSbp7t+jsjlSSkxmltbc3+rbW1laASw0glHb8PVDWgpYex0kks00RTDAJB59MyN7vlKFVuOdtnnXUWaqIbK+WeD0VRULAw03GURIT6aQvGbLscJctWctMcMx1HiXdTP3NxVlw/sw0l3i1kmd9nVWtmQTyClY6DZaFgoebfzGdsu9mtrq5GtVJgmliGjqIPowZqs3JfuBmSA+ILIGYKVbNvM1frjxZlp+I4FoQyk2TLsoQ81gVNJ+bJxQKHlYpDPMLUo3LnOISb56AkerHSicxDbQtVy91qBkOVYKaEbnJQvBJky6cqXgtKxSHeJb4uM0rVNIj3YGXOyFAsk4A/1zb9Ph9YptBN9Ijfj7Gesn6nEg6f1WAtij4knpabJqqVorq62lEXVirhqAeAUN1k0KPCL0MXO0hGyewmsUwDK50EPYpWMSknn/k/INaZqacCVC9YKSwro5vsp6plYVbsC1WjGEmhq0chUJOVacEaMJK5clNR8OXk+KrAHNUdQvHX2avJX2eLyR/KLWKFGudAsj8zhhhgpYWvhTGP+uWvd8Y22r5inUxv+y/ZvzYvOBViXe75mPHX2VyVOqdi1C6TltsFgUZIDmb6TFosxOQiFj5ZuXZPzZycuGq6aJupOFgmSv7iWmiSsDuaDzMtFg8KbWft2r+6J2yNyntQqmfmhHVHQzyTD0u8T6eq+YuGXhQzLdq8PkhDy4ysrLGxUdSDZYi2nRoCf03Otr8GUkPiq0qGTkORg+ndxtQLL7yoeLuFkmPIzEWr8up4tB7zxid/DehDmbaXYObMXD7KjYvZvpxKOPpxIBhAVQws08RKJ9HSwwSqcm1z9Npo6omi18Vi+TicTOS6Kzn4yIUXiUQikUg+YaiqyhmnnIje2V70Nz6fD6N7Iw0ts4p+AnKk4x1Wnbbc/gRfUVh12gqGO95x/F5RFBqmzCPduw0jOURDfZ3jN8XslqNUueVsa5rG4oVzMbo3FtVTVA0i7YQbp44rH+UoV7aiqOJVlsgmwrVN4slpnm64tkl8OrVg14mqqlDRDJHNWGZa+O9im0i7wy6KQn1dDWZyEKtvO766GfY6VhU8NdNFud6QYyOBpmngrxWfsVVU+44E8n4eaQdFQyl82p3xy1fVaPNLVVXqW2ZhdYuYfD77TglFUcRT5Eg7VE3N7FIpjDlTrq/GvpNCVaGiVXzZyEyJf+e7rYDH4xG6la2ONlCqnkb9Nro3uvrsq5uJ1bcdMzlIQ11NwQ4OURdG90ZHPWT9rmwVfmkBR19EC4gFiP5tUNmKkjdx9oaCoMeE7ujv83U9IdBHoG8L+Gvx5NWToih4vCLXStUMp66qgT4I/duhapqtLhRFAcWbq6fC9qEoEJ4GkXY0b6Cgr6oQbBI+pUbAE3SJOdMGKl3awOjmkkg7qqbgzYvJ4/EQDFVk8lGQ51AmF5HcmOkoF7K6SmE9qypUThFyj0s9KZpYNOnZDIF62yKpaJstmX5e8CUvRYXKyeI8ltRwcduRdofd3G9Ef6Nikq1d5/rxJsCytZ2srjcEkXaqm2Y46ri6qkIsgA5sQwlPd/ilhMUYUh2uKDpmuo2pXq+XptoKW104HXMfQzxeL6rXJ3Rd1s8URRELXZF2PJpi7+flxsVMXza6Nzr7MdBYX0c6OUS6dxuNU+Y5dBumzEPvbC96XSyWj8PJRK67koOPXHiRSCQSyWeeQCDAggULCATG+K7zJ4BvXHg+M8JxEnvWOXa+mHoCs/N16qxOquvqHU+zjFSS6J6NHDe9gpWnrHDYPnXlCo6fXsHgno0O3ZrmWfiT+/FFt1JTZT/bpJzdcpQqt5ztW266njqrk/S+tY7dJ1Yqgdm5gUBsF83NreO2XY5SZStGEjrWoUU/YPayLznKbZ42l0BsF2bHOqdu8zIY/AA6N6AUfA3FSiUwO9YRiO1i0rS5jpimtDThG9yCEt2FVjXVJjP1BB5jGC26A6vnLdd84a2Avq3QucHxZNpKJ2D/OujbBtP/W4FuHKtzA0r/dmbMnOX0a+GpeOMfQddreCj4wouewD+0Q5Sb6HeWm4pjdbwq5L6weNqeT+OibL4qAh6byNQTePo2o0V3gGWNu55q6+qpszoxO1939DetaipKdBe+wS20tjQ5demmzurEGIm49tWAOSxi6tvq3AWgBcQkc/AD1PzdDGTqqWqu0O1Y57KDIDMhH/iA0FT7V7dMPYFneLdoA/FORz7UQC10i3IJ2Z9yW6m4OOS1byvEuh31YKbjMNKN0r8d7/BOR8yVUxbBwAeZibd9qmGl4qJd9W3N7RIpiNnqWAd9WznuL75hkxmpJFOPWixi6ljrbB8zv5zNle11p9Fy9wu7hKa6tj0Sg0IeeduZayMFnRvEobrN9t0yZjouFgn6tmJ1ve70KzxX5DmySSxoFZbbsUGUqwVcc211vibkisfZrqecDv3vYXWsR8k/xDiTS7N7sxhDakOOvjp75lS0vrewBnaiVBS2gQTmSKcYU/2D4x5TH3vkQVFP+9e69/MSY8hxZ54P/duxOtaJsagwXyMd0LeV2XXpcY+LxkhEXDetbue1ryqEP7oVf3I/1c2zHPF6rTgzwnE8w7sO+jXmUDKR667k4KJY8rtRnxpWr76ANWueONxuSCQSieRjIp1O89iaJ3nh5dfQvfXZswR8qV7OWHkiq88/l/WvbuC5P60lZoXEJM5IEFJirDp9BStPWVF094dpmrz8ylpX3b84bTkW8PyL68Zttxylyi1nW9d1fnjbHbS/swMz0JQ9q0RNdNN2zFxu/MG1bHjt9QOyXY5SZS9eOIe/OPN0XnjpVddyl524lNt+dJer7vELZqEoCpvf/WDcMZ1x6kls2/4ef3rlddf2ce45X+VHd95TNF/fu+K7XPStS4nGDfGll9EzRWKdVAVUPB4P/cO6Q9ZUW8Evf/FzNrZvcvXrzM+dzLvbtvNiEb+++pW/5eJLLxefnHWx/cD9P+H6G25h595urGBz1m8l3smMyQ0ce+xCXlrfPu6Yy9XTySctY82TT7n2t9NPWcr8eUcdkO4ZK0/k7L/+K845/yLS+Bwxa1aC4489lre27XKtp9Xnf51vXnypeAWoQJdklC984Qu82v7OuPNx7PyZvPvuVpKmx2E34DFZ88uHuOmW213rYdaUJn5yzx08/Zt/cI15xYnH85/P/ZE0fodtDzqPPfwAl115tWvbCwdVvvmNC3lp7euuuV56whKuvOpaV78aa0J0d3W650of4qc/vosf3HwbibTqGvPDD9zHxd+5wl2upZnUNIk9nX2u+bjrjlu59vqbXP2a3lJPR1cnSePAcn3PXbdz94/vPehjyOkrl/H8Cy+yacv7B31MjcViXPStS4v281JjyKnLT+CXj60hGjdd2ofGk48/wqbNbx7QuFjqunnmactRgD8WufatWH4ya9etPyTXmEPJRK67koOHXHj5FCEXXiQSieTIxDRN2tvbGRwcpLq6mra2NttNkmVZ4rOR8TjBYJDW1tYxbxkupTsRuxMptxyGYfDcc8/R29tLfX09q1atsm1XP5R+lyq7XLmldCcSU7n2Uc62ruv87Gc/IxLpprGxicsuuyz7yk0qlWLNmjV0d3fR1DSJ1atX217/mIhf5Wyn02meeeaZrF9nn322eJ1ogjGXq6dStieiC5BIJLj55pvp7e2hvr6BH/7wh9mdeOXqKRqNcuGFq4nFYoRCIR5/fA3hcHjC+Ugmk9x555309ERoaGjkuuuuw+/PnXFSqh7KlV0q3nJtr1yuS/k1MDDAeeedSzKZxO/386tfPSUOLc9QLuZS8nL5KCWfaK4P1RhyKMfUiYwhpdpHOd2JXDfLxXsorzGHkk+r358V5MLLpwi58CKRSCQHxo4dO7jkkov5xS8eZu7cueUVJBKJRCKRSCSSg4TcUySRSCQSiUQikUgkEolEcoiQCy8SiUQikUgkEolEIpFIJIcIufAikUgkEolEIpFIJBKJRHKIkAsvEolEIpFIJBKJRCKRSCSHCE/5n0gkEolE8ulm+vTp/OpXT9HY2Hi4XZFIJBKJRCKRHGHIhReJRCKRfObx+Xy0trYebjckEolEIpFIJEcg8lUjiUQikXzm6ejo4K677qSjo+NwuyKRSCQSiUQiOcKQCy8SiUQi+cwzPDzM888/z/Dw8OF2RSKRSCQSiURyhCEXXiQSiUQikUgkEolEIpFIDhFy4UUikUgkEolEIpFIJBKJ5BAhF14kEolEIpFIJBKJRCKRSA4R8qtGEolEIvnEYVkW+/btIxaLEQqFaG1tRVGUA9atq6vjnHPOoa6ubkK2DxeGYfDss8/S29tLfX09Z511FpqmZeWHKqZydsvJU6kUjz/+GN3d3TQ1NXHhhRfh9XrHVLZpmrS3tzMwMEBNTQ1tbW2oqjphv0rZnag8mUxyxx0/oqenh4aGBq6//gf4/f6DEtNE6qlcPaTTaX77238iEonQ2NjIl7/8t3g8nrKycvJy7VbXde6//76s7uWXX4HP5xuT34lEgptuujFr+9ZbbyMQCIwpJ+XqqZTfE/G5nH453ZGRES699NsMDQ1RVVXFgw8+REVFBQCxWIwrrricwcFBqqurue+++wmFQmPyq1w+hoaGuOiiC7O5fOyxx6mqqsrKh4eH+da3vsnIyAgVFRU88sgvqaysHFP7KWU7Go2yevUFxONxgsEga9Y8QTgczuqWkpfzuZy8VK5Lycrlo5zuRMaQeDzONddcTX9/P7W1tdx99z0Eg8Extb2JtOtyuuXkpWKayDWk3LhYqp+X0y13nThc9xkTvWZLDi2KZVnW4XZCMjZWr76ANWueONxuSCQSySHDNE1eenktz724lrgVAi0ARoKgEmPVaSs4deUK283NeHRPWXEyr6xdf0C2Dxe6rnPLrXewacsOzEATeEOQiqEmulm8cC433XAtr254/aDHNNFcnrBkMd+85Lt0949AqBm8FZAagVgnTbUVPPbIg7ZJYT7pdJpHH3+SF155jZS3HjwhSMfwpno5fcVSFsyfx/MvrR+3X2eeejJbt23nT2tfd9g945QTueC8c3jiV0+7lltOfsqJi3j+hRdJGKoj3oDH5Kk1v+Qff/v7A4ppIm2+XD08cP9PuO6GW9i1txsr2JxtX0q8k6nNdWiqxu79EYds5pQm7r7jVq65/iZX3RmTG6mtq+GtrTtd2+1VV36Xi751KdG44fArHNR4+MH7ueKqa139rq30MzQcJY3fIfOg85un1vDW21tcc7LypCU89PCjRevpycce5t77H3TtbwvnTmfnrt0MJcbvc1NtBff95C4uvvRy15gr/SoBv4+eaMJV90e33sRF37pU/L1ATiIKqgY+F1k6xppfPsR1N9zi6ld92M/wcIykqbnm48d33sZ3LrvK3bY+wt133so1191UVD5laiv7ugdd2881V13ONy/+rrtuIgpYEKh2tXvbD2/gxptvL6I7AIoG/ipX3Tt/dAvX/eCWoj7/+O7b+f61N7jnWh8G03D3KzXCT++5g+99/3p328lhsEwIhF11H37wfq74/nUk0uMfQ5afcCz/7z+fE38r0FXNBI89/ABXXHWta9urCmgYhkEsxbjbdX04QDKpM5w0XXUf+vm9fPu7Vxbt52se/QX/6x+fcY1p5UmL2LBhI5GB8V9Dyo2LJy1byq233+XazxctnMuZZ3yOP728wVV3+cnLePyJp4peJy684FzWrd/wsd9nfBbvfz6LyIWXTxFy4UUikXyWMU2TJ576DW/tGaGy5Rg0b94T6FSS4Y53OH56Bed//auOG4RyuoN7NhHrepfgpAXUTGsbl+3Dha7rnLP6W/QrLWhNS1C8eU/zUwmM7o34R3YyfeFKwlOOO2gxla2H/e9gRXdDeDpVk491yAf2bOb9TS9g1c6HxjYUb+6Jq5WKQ6QdLbqD//2PTzlunNPpNFdc/QM+jIbwNbeh+nIxm3qCkY824InvY+EZ5+H1h2zllvIrlYyx5YUnSQenUDF1mcNusmMjDGxHqZ2Hr3mJQ653bsTq345VfRSBySfY5Hp8mJG3fgO1RxWNl76t+JqPI1iga+pxRj5chyc9yDGf+woef053om0+uvct3tv4PFbNUdC0pKhfVM+FlhNRPTm5mRiC938LdfOhqc0uS8ehayP0b4O6BU55Kg6d6yA5iDrzv6D58stNkN7/GgxsF7ol8kX1UdC81C5PDMMHz5TN9ZzFZ1A7fbEtJ4mRYTb/v4fK6lI1B8/Uk239LTUShff/qbzPNfNhkkuuuzP5qhX5ssn1GOz5T/CFoflkFF/IXdetbD0Ge/4D/DUw6SSnbim/9Bh0rgc9CtM+79TtfB0G3ysec9cbpeuxeyNEd8HMv0INVObaRzoO+1+D6I7SMfmq3fORjWkeTDrBrpscgQ//HUKNMGnZ+OohFYfudujfCrXz3ftMXkxKXkxldcvVcbbNz4PmE4rmOtByPP4W+/hkJGNEd6+HoT0w80so/gq7brl6jLRD/w6Y/TfOmErlWo+JXAfrM7keRz3lyf2TjiXQutQWUyo+wvBbv4HaueO+hoxlXPxwy8skK2Y5rqtmKoHZ8Sqa3sfxZ34db8F4PLTvbbp3vkHcP9X1OpHs2EiF/hGNs06gqtV5bTxU9xnlYh7a/zZKdDeEZ1I5eXz3VpKDi8yuRCKRSD4RvPTyWt7aM0L1tCW2GwMAzeunetoS3vxwhJdfWTtu3bhazd7dO0gkU+O2fbi45dY76Fda8LSusN0cAijeAGrzMhKhmXR27juoMZXLZbpyJh9GgxhK0FW+e8fbWLXzUVqW226Yhd9BlMkrMMJzxRP8Ah59/Ek+jIYITFtuu6kFSKPBpBNJBaeyb8tL4/Jr75aXSAWnwaQThZ08VF8A019HIjQTs/ooR7mqL4DZ0EYiNBPLMhzyke3/KibzLSeDx16u4g1C4yKoW4CetpwxGWloXEQqNIW9H7zliGkibX73gA+rdh5UtLjXQ8tyMRmLd9oWTgDY8//EokvLchStIB+eIISahG7tPKduOg6NbVA9G3Nwd0G5AdAHhG7Lya5+0XySkKeiDjn7ni+d65aToW4B72/d5MjJmy/+uqRuNh9DOx39jQ+egboFmTZd2BeD0HC80PVVuMfkrxHyhmOcMY3shepZ0LQY0iMuuuGM7rFO3eEPoXo2NC4GI+HUbcz45fE7dVNRUWb1bIjtc+rq/aXrSSGz8HaC07bmheZlUDMHOl62iVRPEBKRorYZ+Uj41LQYDJd8TFoqdLGcugPboCaTD8tw6gZqhW790e4x1cwS8opJpWPqXOeiO7u4rq2Oh526zcuErhEvkmsV6haQrD7GMYYMxXWhXz0bejY7dVPRTK5Pcvrl8Yv+UHsU7PuTU7fpBKGr4NSN7sy0vTYwUy66bRldpUg/FzEnE8OOmIbf/89sX1Xc+mqJa0i5cbGzcx+J0EzU5mXOfm4Z0LiYdMUMPtjymkN3IGbQrzSjNh7nep3QKhrpU5oZVJo+1vuMstdsJcjuaIh05cxPzf3PZxW58CKRSCSSw45lWTz34loqW44p+bvKlmN47sV15G/WHItu/8Cg+P9dH1Jso6eb7cOFYRhs2rIDrWlJ0d9YpgGNbUQjH2GaputvxhvTWHIZ6e3D19xGZO92h10jnSYVi4qbcUqU2dhGd/8IqVTuht00TV545TV8zW2uKrquo6gelKZF9HTsdMRczC/TNOnt2InStAhF9aDruiPmVP8uaGxDT4w4c2WJcwZobCM1sNdWbjqdhlQsE68iflzQNkln5PEeDMOw2dXjIyi+SpS6hfTu2+FaTwfS5i3TJJlKi3KH3Nu8BUJu6JjpdC5f6TQYyUxMLrYtSzxdb2wDI4mVV88WllgA8IXFk//hj2xlG4YB+qDQtSycbSTz78Y20Aew8vJlpdOgD9lyXZiTrG4qTjqvbaXTaaxkfj1hq6csjW2geUjltZGUroPqyeWjsHlYFhiZxaaRDqyCdmmZJgx/lMlXwu6zaYpc1s4XOzxM3Skf3id00y66w3szumGnbcvKLYLFI2K8yJeZaVFm7TwY2mPz255ry9F+LMOAkY6M3HSWaxkiZw2LQB/ENPLbV0q0kUw+nfn4KJcPQ3exbQrdWIe9fRgGxLqgbiF4K8GIu+e6sc2R56w8M6Y68lEYU7LPXrZpgpXpb9ECXUcdp9xtN7Y57Gb1R0QbsArzZVlYKKB6xQLvyD6XehzI9DewN97RsUoRC1WpQfH7fL8wXdt1tk3XHZ3JtUvbg4zufmefyI85FrGNi0bagOSA8AnFvZ9mbBdeQ8qNi6ZpEo2IvpjfH7L6qRj4KlHqj2awe7ejnnr2vYfWtAQ9PuI6Duh9u9CaltDTN1DU74N9n1H2WmBZ9Ozdjq+5jZ7evqJ2Pkn3P59l5MKLRCKRSA47+/btI26FHE9jCtG8fmJmkH37ck9oy+km4gmszC4HUwuRGOods+3DxbPPPosZaHI+kcswesOteoJYgUZ692x1/d14YxpLLk1LQ/UFMDyVjlzueXcthPKf+LrfxCneIISaWbNmTfZv7e3tpLz1jieJAKZhigmGAoongBWoJ9r5wZj8ina+jxWoR/EExH08CqaRt3gy0gu+sHgSr/lIJ2O2slPpFBaqkAfqSQ9+mJXFP3o9G684oFCxR2ymQPVmdi7UEo+8nxUZho6laqCoKB4fpreaaM9+R+wH0ub37NkDWkCU66sSE5l8MjfXoh4miW3/o3S/YYtJLI/kTaoSfeALC13NJxaessmMg+ZDUTXxpNoXxozl6sKMvAPBTPtQFJd1Fyv3dD04Cfrfzcn633Hk2o3RmN5rfyH7tw82v1CgW4iIcLRd8tHzOdHe5yHUnPO5EDMFiie3syXWZZcnesBfI+SqVyxqjZLsF7n0+FFULZPPvF0e8S7wV2d0PWDqdruFuul4gV/enF/De3MyPQqaP1dP3rCYoI/S/3ZeP3aJeXgPBBtyuzGsdJ7QAlSU0Z0OwUbo35ITd79eMEbkkewrnQ/LEP1l1O5wri8S2y/yPKqreOw7MQrrIT9XIHaGaJmdQYX5EK3DHtPA9jzdIVAzur4CXbc6tu1syth2swti0SYv17GRXH8bHh4W+VAUMb4FG8SCyCj9W/P6m33RRvS1/JgmwUDedcRM5+W6wZ7r0VyOxlTYrs1Uge4ee0yYtpjj3bmYE11vZn1WFCUzTjivI27XkHLjYs+H72IFGsV1E8W+WGSksFQPCiqK5sfyVdPTsTsrH4zsx/LWoHgDWKqGYdgX8M14P5avCsUbwFS8DA4OuvpwsO8zyl6zh3owPJXi2mhpJOIJ1999ku5/PsvIhReJRCKRHHZisZg47G0saAHi8dxNczld8TQtM3nQfJjpZNHfFto+XPT29ooD/4qRuWkGwBMimRgq/ttxxDSmXCpq1m5hLvV4tLTf+Xgr6O7OTVIHBgbEQYUuWKNPZkfxVJBO5rbsl/IrlRwBT+7cAwpvuNPJXMyKhmXmTyLBMvNy7Q2Jp6KjMn2oTLxWzi9PQJx/krVrikNAszEFSOlF6mmcbT6p6+LA1YyubcJeiLdCTDpHSQ+LvxXD1G35sr3SYRr2mDIHOOZsF+arYNeBMJrxK2SfdOvDLrku8nTWG0KP5SY+emx87ZJUXn/Sh1zykT+BNfPqOCh2v+RjJEDLLDIomvh9Vqbb67Ewn0YStNCB6VomqLm2Z6sH08i1j6w8b5HCNdd5pGN5fbVgYpxZPMuSObg0S2qkuG0jVSamvHI8IdDzF/2SIo5R1MJ8JYvXA9hzUpiP/PHWLSaHbl5/M3S7X4omFjXcbBfaBdGe8nJt5vktdt/lj4vioNcsqfx6tC+gOXqONyTauu0XuWsMeWOXLZejMdle7Sqhmy08f0zN9XMzOZ5+br+GlBsX9cRwLpeFCzqWiW1arAVJJnN+p/V4rh4VDQp38Rj2cTGVtl9HbBzE+4yy1+x0vl8qhstOn0Phl8QdufAikUgkksNOKBRynFFQFCNh+0RmOV1N00BRUAM1YKZRPSV21RTYPlzU19c7b8Dzyb9pTMfwB6qK/3YcMY0pl6M3/kbCkUtfMFza73xSIzQ1Tcr+s6amxj5pyEPsUsi7SU6P4PHnDoIs5ZfXX+F4wpy/60Hx+HMxWwaK6iEfRc3LdSpmO0RS8VWViVfJ+ZVOoOY95VdU1T5ZSSfw+orU0zjbvN/nE5PBjC6qr+hvxUQ494lePJX2BY9CVJ8tX7aFFrVw4SBhnxR4CvNlnwyKf+VybVvw8FW65LrIZ1BTMXyh6pxqaHztEm9ef/JVueQjr1xFzavjuH1CCpnFp8xkxspbIASx+yG/HgvzqfnBiB2YrqLmJofpgnpQtVz7yMrzPtHrmus8bBP8gkWJwp1MqZh9Iu2tKG5b85aJKa+cdAzyDqnF4xdxjGIW5stfvB7AnpPCfBRO0gtjcujm9TfNZ/dr9JUlN9uFdkG0p7xcq3l+i4NQ88fFmH3x2ptfj/bFC0fPScVEW7f9IneNIX+HUn4uR2PKr6dSutnC88fUXD9X/ePp5/ZrSLlx0ReozOWycDFNURE7cTIYcfx5h+t6fMFcPVpGblFzVF2zj4tej/06YuMg3meUvWZ78v0y0fIXXA+hXxJ35MKLRCKRSA47ra2tBJUYRqrEbhTECfwhNU5ra+uYdQPBAN5QNVXHn4tPswhU1Y/Z9uHirLPOQk10Y6Xcb6gURUHBwkzHURIR6qctcP3deGMaSy5VxcDUE2jpYUcupx29AmJd4ssTwlNXO1YqDrFOVq9enf1bW1sb3lQvpu6MWdVU8RKPBVY6gZLoJdw8e0x+hZvnoCR6sdIJMUfEQtVytz+einrQo+JrK4aOx2+f+Hg9XhRMIU/04qmenpUFpy7NxmtlziyxRax6xZkOqTgk+wk2zsmKNM2HYhpgmVhpHTU1SLhhsiP2A2nz06ZNE+cupOLiKba/xv6DzIRD1EOX/TyXphNsMYmXevIWqgJ1oEeFrqHbJ4qeoDiXwzTETiI9ihrK1YXaeAzEM+2jcGfEqF9Wxq94F9QenZPVHuPItRujMR3Vdkb2b7MXnVGgW4iIcLRdMvXMnGjKmRDrzPlciOoFK52p4wHx6lY+gQZIDgi5mRKT1lH8tSKX6aQ4c8LQ7YtNwUmQHMzopu0LaIEGp27+QceqF6xUzq/KKTmZLyzO5xmtp1QUfDU5ee2xef3YJebKaRDvyeTEFK/15OVy9NwXUY8RqF2YEzctLRgj8vDXlc5HZqdK1m5lri8SmizyPKprpUUOitVD4aHQ3kxOUnFnPvLOFMqWXTMvT7cKzIyuXqDrVscFO/CgiF2AKnuuQxW5/lZZWSnyYVlifIv3QOXUnG7tgrz+hv01u8yCTy6mLqjJu46onrxc99hzPZrL0ZgK27XqLdCdZo8J1RZzsCkXc2DS8VmfxVkwBQskGdyuIeXGxYbpR6MkIuK6WbgAr3lRzDQWJpaRRNEHaWiZkZVXN05GSQ1gpRIopoGm2Rez1WAtij6ElUqgWimqq6tx42DfZ5S9Zlc1oKWHxbVRMQgE3XfHfJLufz7LyIUXiUQikRx2FEVh1WkrGO54p+TvRjreYdVpy+03TGPQbayvQ+9sp3HKvCJnPLjbPlxomsbihXMxujcW/Y2iahBpJ9w4tegnIMcb00RzqXk8eEPhzJkhJcqMtNNUW4HXm5sYqarKGaeciN7Z7qri8/mwzDRW92YaWmY5Yi7ml6qq1LfMwurejGWm8fnsN8yKouCtnQmRdnyBCmeuFISfkXa8NVNs5Xo8HrHwEGknu72+oG3iyciDDWJnTp5dX7ACSx/G6ttCfetc13o6kDavqCp+r0eUWzXd1a4CQq75UPOezqoej5hERdzrQVEUMRmMtIszMfIXZVDEzgo9Kj7bWznVVramaeKA0Uh7Jk+OlRfx/yLt4KtBycuX4vGIJ/J5uS7MSVbXG8ST17Y8Hg+KP7+ecJ3MEWkHI403r414fT6x6DGaj8LmoShiV0KkXXxBqvBJuKqKyXCkXZy7k++zqopc9m8Thw6rPqe8slXoelx0K6dkdKNO24oiFhci7RBsFONFvkz1iDL7t0PVNJvf9lwrjvajaBpUtGTkqrPc0ddpejaDrxpVy29fXtFGMvl05mNqLh+az8W2KnRDLfb2oWli0atvi3jFRgu65zrS7shzVp4ZUx35KIzJX2cvW1XF4lOkHcIFuo469rrbjrQ77Gb1K0QbUArzlVmAx0xBZDNUtLrUY02mv4G98Y6OVRZENoG3Wvw+3y9U13adbdN972Zy7dL2IKM72dkn8mMONdrGRc2jiYXiyCYcu6nycbmGlBsXVVUl3Cj6ouKy80PxhkAfxup9l+qmGY56amg9CqN7I75ghes44KubidG9kYa6mqJ+H+z7jLLXAkWhYco89M52Gurritr5JN3/fJaRCy8SiUQi+URw6soVHD+9gsE9Gx1Pb4xUkuiejRw3vYKVp6wYt266axP63vWkhjvHbftwcctN11NndZLet9ax88VKJTA7NxCI7aK5ufWgxlQul57hXcwIx9GsuKt85lHHovRvx+pY53iqbaXiWPvXokV38NgjDzrK/saF5zMjHCexZ51j54sHA7pewxv/iNaFp47LrykLT8Ub/wi6XhN28jD1BGqyj0BsF+rge45yTT2B2tNOILYLRdEc8op5/w3634OO9eKciYJ46d4MfVvxeRRnTJoHejbjje1lyuzjHDFNpM3PqNFR+reLL5K41UPHOujbCsFmsZsnn2lfhL7t0LEOq2Abu5mOQ6xb6PZvd+qOTvYHP0CtnlFQbkJMBPu2Qsd6V7/oeFXIvWHnrojWM6F/R/Fc718PfVuZs2CxIyfHn/a1kvWUzUfVLOdOs9lnQ9/WTJsu7ItxiLwpdPUR95gSA0Le844zpoopMLgTujcV7IQY1Y1mdN926lZOh8EPxCS14JwH0fYyfqWTTl1vWJQ5+AGEWp263trS9WQi5N1vOG0bKejcAAPvQ8tKm8hMxyHQWNQ2FVOFT92bQHPJR+frQhfFqVszHwZ2inwomlM33i90e991j2ngAyEfcdmRkx9T83IX3feL69rquNKp27FB6GpBd78sE/q24h98xzGGVAV9wq/BD8QXlwp1PeFMrl91+pVOij7T/x60nu7U7XpD6I7uQssnPEvEFGm37yzK6rZndK0i/VzE7A9UOmKqnPP5bF+13PpqiWtIuXGxubmVQGwXZucGZz9XNIhswjOym9kLT3To1oQ06qxOzMhbrtcJYyRCndVJtdX9sd5nlIvZa8WZEY7jGd71qbn/+ayiWPK7UZ8aVq++gDVrnjjcbkgkEskhwzRNXn5lLc/9aS0xK5Q9nDOkxFh1+gpWnrKi6O6OUrrHzJ/FmscfZfWF3+CdbTvHbftwoes6P7ztDtrf2YEZaMoevqgmumk7Zi43/uBaNrz2+gHlqxTl6mHF8pNZu259UfmStsV885Lv0t0/Ir4S460Q52TEOmmqreCxRx4U76a7kE6neWzNk7zw8mvo3vrseRK+VC+nnbKUo+fP4/k/rx+3X2d+7mTe3badF1953WH3jJUncv655/DkU0+7lltOvmLZIp5//k8kDM0Rb8Bj8tSaX/JPz/zeVff0U5Yyf/48XigS04G2+bHUwwP3/4Trb7iFnXu7sYLN2falxDuZ1lyHqqrs3t/jkM2a0sRdd9zKtdff5Ko7Y3ID9fW1bH53p2u7/d4V3+Wib11KNG44/AoHNR5+8H6uuOpaV79rK30MDQ+Rxu+QedD5zVNrePudLa45OeXkJTz0i18WracnH3uY+372oGt/O+ao6ezcuYtowhy3z021Fdz3k7u4+NLLXWOu9EPAH6AnmnDV/dGtN3HRty4Vfy+Qk4iCqogdKoWydIw1v3yI6264xdWv+rCf4eFhkqbXNR8/vvM2vnPZle629SHuvvN2rrnuRnEmjIt8ytSp7OsedG0/V191Od+8+FJ324lBwIRAravd2354EzfefGsR3T6x+8QfdtW980e3ct0Pbioa04/vvoPvX3uDe671IXFuTqDaKUuN8NN77uB737/OPR/JqHhtpojuww/ezxXfv45EWh33GLL8hGP59/98TvytQFc1Ezz28ANccdW1rm2vyq9imGliKWe55dp1fTiAnkwylLRcdR/6+b18+7tXFu3nax79Bf/wT8+4xrTypEVseO0Nuvtj476GlBsXl524lNt+dJdrP1+8cA5nnnEaf3p5g6vuySctY82TTxW9Tqw+/1zWv7rhoF+TyzHRa/Yn8f7ns4hcePkUIRdeJBLJkYJlWeIzifE4wWCQ1tbWMW+BddN9//33ueSSi/nFLx5mzpw5B2z7cGEYBs899xy9vb3U19ezatUq2/bsieSrFOXslpOnUinWrFlDd3cXTU2TWL16tW1reClM06S9vZ3BwUGqq6tpa2vL3hhOxK9SdicqTyaT3HnnnfT0RGhoaOS6667D7/ePSfdgt/nx1EM6neaZZ54hEummsbGJs88+W7xGVUZWTl6u3eq6zs9+9rOs7mWXXWZ7FayU34lEgptvvpne3h7q6xv44Q9/SCCQ2/VRKifl6qmU3xPxuZx+Od2RkRG+853vEI0OEg5X88ADD1BRIXaFxGIxrrzySgYG+qmpqeXee++1TUxL2S6Xj6GhIb7xjW8wMjJMRUUljz76KFVVuYNYh4eHufjiixkeHqKysoqHH35YnD8yhvZTynY0GuXCC1cTi8UIhUI8/vgawuHcQdCl5OV8LicvletSsnL5KKc7kTEkHo9z7bXX0tfXS11dPXfddZftsNRSbW8i7bqcbjl5qZgmcg0pNy6W6ufldMtdJw7VNXmiMR8uvyQCufDyKUIuvEgkEsmBsWPHjuzCy9y5cw+3OxKJRCKRSCSSIwi5p0gikUgkEolEIpFIJBKJ5BAhF14kEolE8plnypQp/OxnP2fKlCnlfyyRSCQSiUQikRxEPOV/IpFIJBLJp5tgMMjRRx99uN2QSCQSiUQikRyByB0vEolEIvnME4lEeOSRh4lEIofbFYlEIpFIJBLJEYZceJFIJBLJZ56BgQF+//vfMzAwcLhdkUgkEolEIpEcYciFF4lEIpFIJBKJRCKRSCSSQ4Q840UikUgkn1mS//BTzI7dNCQS3DUdGp65h3ggcLjdkkgkEolEIjkiUVtm4P/K9w63Gx87cuFFIpFIJJ9ZzI7dmLu34gPmh4DOXZiH2ymJRCKRSCQSyRGFfNVIIpFIJBKJRCKRSCQSieQQIRdeJBKJRCKRSCQSiUQikUgOEXLhRSKRSCQSiUQikUgkEonkEHHEnvHy0UcfsXHjG7z33g527HiPPXv2YJom5513Hl/96tdK6ra3b+R3v/s927dvI5FIMGnSJE45ZSVf+cpXCAaDH1MEEolEIimH2jIDgEQiwc6du5g1ayYBebiuRCKRSCQSyWFh9N7sSOOIXXj5l3/5F/7wh/89br3f//53PPLIIyiKwjHHHEttbQ3vvPMO//AP/4tXXnmZ++67n+rq6kPgsUQikRw5WJbFvn37iMVihEIhWltbURRl3HZGT83fu2MH115yMb+45mrmzJlT1LZpmrS3tzMwMEBNTQ1tbW2oam5zaCm/yvlcSj6RcsvJDcPg2Wefpbe3l/r6es466yw0Tcvqlip7IuVO1K9Suul0mt/+9p+IRCI0Njby5S//LR6PZ0y65XyeiF+6rnP//fdl/br88ivw+Xxjsp1IJLjpphuzsltvvc22SJhMJrnjjh/R09NDQ0MD11//A/x+/5jaTznbpfwupzuRXMdiMa644nIGBweprq7mvvvuJxQKZeUjIyNceum3GRoaoqqqigcffIiKioox2Y7H41xzzdX09/dTW1vL3Xffk304Vq6eSvlVyqex5GtgYIDzzjuXZDKJ3+/nV796ipqaGgBSqRSPP/4Y3d3dNDU1ceGFF+H1erO6XV1dnHPO17AsC0VRePrpXzNp0qQx5XJwcJDzzz+PRCJBIBDgySd/lb1fLZUrgKGhIS666MJsrh977HGqqqqy8u7ubs4552uYpomqqjz99K9pamoqKyuXr2g0yurVFxCPxwkGg6xZ8wThcHhM9dTf38+5534dXdfx+Xw89dTfU1tbO+Z6KhVzuXyUal/Dw8N861vfZGRkhIqKCh555JdUVlaO2a9S8nJjV6n2NZF+Xq7ccvJy43kpStkuNy5OhENpW/LZRbEsyzrcThwO/v3f/529ez9izpw5zJkzl3/4h//FH//4x5I7Xt5/fweXXHIJiqJw2223c+KJJwK5wWrTpk2sXLmSm266+ZD4vHr1BaxZ88QhsS2RSCSfBEzT5KWX1/Lci2uJWyHQAmAkCCoxVp22glNXrjigm5sdO3ZwySUXc8Hqb/DO9p0O22ecehLbtr3Hn9a+TspbD54QpGN4U72cccqJXHjBuaxbv8HVr7/43HIA/vjnda4+n7LiZF5Zu95VdyLllrW98iT++MKLbN6yAzPQBN4QpGKoiW4WL5zLDddfza/+/je88MprjrJPX7GU+fOP4oWXXh13uRP166YbruXVDa+76p624kSe+f0f2L0vghVszuoq8U5mTmnivp/cxWuvbzygejpp2VJuvf0uNh2AX6eefAK/fOwJhhIGhJrBWwGpEYh1Eg5qPPbIg/zk3p+72j7mqOm88+5W0vgcuh50fvnQz/j2Zd8jkVYd8oBmcuYZn+OV1950bT9f/pu/4pzzLypq+7GHH+CyK68mGnf6HdAM0oZRVPc3T63hrbe3HFCuj14wj6+eu1r4W2CbdIyf/fRuLrvyavH3QnlqhMu/eynrXt/savuYhQv46rmrMdWAQ1cx4gT9AWJpxbWefnrPHVx08Xfc/UoOgaKAr9LVp4d+fi+Xfe+aovm687ab+f41N4DPJSZ9hMqqCoaTOGRNtRV855JvcOPNt7vrJqJikAuEXXN5949+yDXX3VREdxA8Xtd4VTPBT+/+EVd879qiPl9/7ZXccde9RWz3A5q7X/oIN994LT+6+6eu+VLNBKauF9X98d238/3rbnSvJ30ITKuo7t133soPbr6taD399O4fcdkVVxeJaQgwIVDtavuhB+7luhtuce1PIa9FbHgY/FWuug/87Cdc8f3rivr18AP3cfF3rigqX3j0Ara896Hr2HX1VZfz7e9eSXf/iEO3PuxnYDCKofjH3c/LjeXXX3sVd9z1k6Jj6rVXX8n3r72BXXu7Xcfzn917T9Edqrquc8utd7jaPv7oOUxpbeHFdRtdx8VvXHj+mBd2Ckmn0zz6+JOu182J2pZ89jliF14Kueeee3juuWdLLrzcdtutvPTSS3zxi1/kyivt3x7v6uri618/B9M0WbPmCaZNm3bQfZQLLxKJ5LOMaZo88dRveGvPCJUtx6B5/VmZkUoy3PEOx0+v4Pyvf3Xciy/bt2/n0ku/zYxFZ9I4d6XNdlpPsOXV/0dqpI/Q3P+C5s896TX1BMmOjVToH9E46wSqWo8t0I2z67V/hkAts447Dc2Xu0k0UkmG9r+NEt0N4ZlUTj7moJVrpJIM738HK7obwtOpmmyXpxIxNj/7GGblNLRJJ6B4855cphIY3RtRB97D03A0gcknoOb7nYwT2/FveCvqWXjSF/EUxFSq3HJyPTHCm//xCGZ4lqtf6a43CMR2MeOYlVS1HlcQU5z2l/8ZKxmFaZ9H9eae5pvpOHRvRIu+z5zFpxMu0C1bT/veYvc7L5MIzcRTJF/+kZ1MX7iS8BS77WRshE3/8QiEZ0LTEhRvME83DpF26NsKdQvwNNttpxLD8N5vofYoaGxz6nZvhP5tULsAmlzkkXbo30HFcX+HL5h7am7qCUY+epV05F2oW+Bue9Sv8FHQstQuj0dh5++L+5XRnXn852iYeYK9DegJdr71IiT7mbn0S3h8OV0jlSTywevsfvul8n7VzINJJxSVL1z1Lapq6uy2d77O7rdK2O7aALEemP5FFH+FXdb5Ogy+566bHIFdf4Cq6dBU3CfCc6HlRKd83wYYfr98zDP+GqWy1i7b+yqMfOCuq8egaz0kB2Hq550xdW2EgW3FY9r5vyE8wz2mcm2vux36t0LtfGe7T44Iv/QhmPZ5FF/I3XaxOu7aAPEemOZSTx2vQXRH8Xx0rite7mieq+bCZJd62v8aDJWwvec/wReG5pNdYiqRDz0Ge/4D/DUw6aTi+TiQXI/qR3fBnL/GG8jPV4J0x2vQv71EvtaDHi2Zr9mLTqNuxpLxXWO6NkLfNqzao/A0L3WO9R2vi5jrRMyqJ+/6lxZlB2K7eOY3TzoWX3Rd55zV36JfaUFrWmKzbaYSGPvXQ6KHqgVfwuPPu07oCfTOdmaE49x7z+3jXiBJp9NccfUP+DAawtfcZrtuTtS25MhA7okaI6lUitdeew2AM8440yGfNGkSCxcuBGDt2lc+Vt8kEonks8BLL6/lrT0jVE+z3+ABaF4/1dOW8OaHI7z8ytpx2960+S1UzUNVy9EO23s7utGrF2KFZ2IMfWSTqb4AWkUjfUozg0qTQ3egcyfJwGSS4QUMDMUcPqeVILujIdKVMw9quZrXT7pyJh9GgxhK0CF/f9OzGJUzYdIyLNV+A6h4AyiTlmKE55JOp2w3jwDG0EdY4Vno1QvZ19E9rnLLyT/Y8M8Y4dnQshxLs8sUbwC1oplEaCadyWqH7tYdH2A1LIbq2TDSYc+XJwihFozwXPYOOcstV0+diWoSoZmoFc22m/isX83LhF+d+xy231r7B6iZAy3LQPMW6Aah4TgxufBVOmzz4X+KxY2Wk8FTmI8gBBuEbt1824QJEL9vORlqj2Jkx3/a8+ELkO7LTNZbljt0FW9Q6NYtgGTEafuj50r6pUxeAXUL2LX5T85cD8VIhheQ9E9msHOnTaZ5/ex+809QtwClmF+TThB+KbjIAygty6FuAVv+4+dO25tfELYnr3DGhAGNbVAzCwbedZabjolym5c5dXvaoXoONC+DgkVfkUvhE/EO95hGPixaF3gCOf2dzzh1h4vXI0ZCxFQ9G4Y/dOoGqoRuw7FO3e7XRLttPgkcY0QQKiYJ3ZpZ7jE1HCPk/hqnbb0XmjJ+xfa72G4WuuFpTl3LgMbFUD1LLIQV6sY7iudD7y9d7mieE/vdY0rsL247tk/YbVoMqUGnbt08oRtsdOoOfyh0GxeLOivU9ddk6mmhu1918zO2G5y2Na9olzVzYN/LBboBsShXtwCl5WSnbioq4qmeLeIrKHe0r33w9toDuMacgFU7DyzLdUzFSgu/mk+0LbqAGM/VlhUkQjO5/MqrKeSWW++gX2nB07rCYdsy0yhNiyE8i3iXvZ+rvgCBacvZHQ3y2JonHXbL8ejjT/JhNERg2nLHdXOitiVHBnLhZYzs3buXREIMlkcddZTrb0b//v77739sfkkkEslnAcuyeO7FtVS2HFPyd5Utx/Dci+sYz2ZNy7J4e9sHLPkfN1BRO7lQSG/fAKq/GqVuHnrfbptty7LQ+3ahNS2hp28ACmQ9e7fjqZ+Px19FT2+fo9yevdvxNbc5ZBMpd5RIbx++5jYie7fbdE3TJBr5CBoXoagalmk4c2KISagR3Ytpmo5ylbp5qP5q17KLlVtObhgG0f5uaFyMgoJlmTY9y7Kwoh9CYxuD0RFHPuIJHXzV4qnv0IcOOUNCN5bQHbJy9TQ4NAKNbVjRD11jskyRr2jkI1u+DMPAGOmDhkWgeMAyHW2EdFxMjof3Y5k5WTqdhlRMyFAAy+63acLwR0JuJJzxWpbQa1wM+iBGOlfPKT0FWBnbiP8uiDkrT8exUqmcLJUCI57nFy45yeh6Atl7o1EivX14/FV46uc72kAiHgdvMM+vAquWJXLY2AYj+0U7LSgWBSH3VRKL5RbR4vG4eN2gsc093nRcvEZRtxBiEZttK50GfUDoWqY914YhFvoajgfV65SP/ndjG5gpWy4BrGQSVCUbs6vuqL43gJWXTyuZBI+vuK6REDswaufDyD7RZkblpgnD+zN1nHDGFOsS7Vb1AKaz7WX6E6Zhs2sru7ENhvfayzUMQMn01XkwtMfp16htRbXXg2WJtuetFPU00mHXTaXATLnnw8z0vWLl2uop7aynVArMdHHbQx8Ku75qR06E38lMPj5yqYe9oo58YWdftvXzpKOvlbRtWWKhSvWIukz2Y+Tl0zCMbLt2tWulc/mK7nHUczZfKOi6nv3TmK4xmTGTkf22MXNUn5HOjF8uZeaVvXNvtxgr82LatGUHWtMSVxUrFQNvFdQtJF1wfRvF19zGCy+/7iorhmmavPDKa/ia3ceuidiWHDnIhZcx0tnZCUBlZaXtsLJ8Ghsbbb+VSCQSydjYt28fcSvkeKpWiOb1EzOD7Nu3r+Tvxmp7cHAQU/GCqqJoPixfJWaiPys34/1YvioUbwBT8TI4mHvSmRjqwfBUonj8KKqKYWkk4gmHXPUFHLKJlAuQiCcwLU3Y9lSSGOrNyno+fBcr0IjqCQAKFkrBjb4BiprZUdFIqm+3s1zNB6rqjLlEueXkvbvasYJN2aebVvb/ZEgOgLdKyDUfPZFIVrR//34s1Y+iasI3X5X4fb6urwrFG8RS/XTszz3tLldPkUgENJ8o11tgl8yCEAqqJ4gVaKR3z9asbNe7G7JPuMVBk4o9KFMH1ZN5ql2NMZK7P7C6N0FoUoFufj56wVctdDW/WDjIR1FQFCVTj5OIdWzOiuK7XoBQc+4Jt+s6ZUY3NAl6NuX+HNlY4Jc7QreZnWt/nf3baP0rqori8TvawPY//8ruV6Fjlr1tMrKnhN/NbH/hsexf3//zEwW28zBToHhF+/H4xQ6DkbwxpH9L3k6Fgjoc/jC700BRFFBU4adrPiZB5HW7oPOl4n6N6iq5mPjoP3KCfc8V103HQfPlYvKFIZHrM8Q6wZ9pP6pHtMVRhnY5223+BDg5AN68tpcaspdtJED1Zts1iZ483V7QAjm/vFVi8m+zHc7YDth9NnVQPPZ6inXl5JHXs23TgT4Imr94uRmy9dT9ml3QvaG47dF8eIR9R07SMVEX3qCoh2RuLCfRA75wnq7P3pcTPbldQ6rXsSMmW89Z2/ljrgWoeeNAI2bvtpy0ZwsEMzEp2BfR9Siofnv7yc9X5rej7fL9Df8nKyp3jTGNNJaiZX2yovZ+bA18YOtvlkt/ArHzxQo288wzuZ1gzz77LGagybl7ELAMMd6iqNn2k4p2OH6n+gLo3jra29tdy3Wjvb2dlLfesdPlYNiWHDnIF9DGSDwunqqU+gzp6Anw+U9gxsJDDz3EQw89VPZ38+fPG5ddiUQi+bQQi8XETfhY0ALi6fY4bCcSSd7/t/uYe8rfEaqelJWlUmlQcl9XQAuIm7cMlqHn/FI0UvlP3tK63WdFxch78meTF8gmUi5knmQqalbXTCezMj0xLA78y/qliJtoxWX3gieEmRpxL9ct5hLllvUrHhU7DnLGEUsamcm9oYvXLjLl6nlPpHU9Cao9X7aJpJnnt6qRzHs6W66eUrqeqwtPQPiRT17u8IRIJnITLj0+JHZZ5ELCNmm3zJxtLSSeXGcLHrbrFpLWxQQPhA0rvw0ULFh4Q1jJnF+WPgT++uK2C3RJ5923pIdK+2XTrUCP5SbOtvoHRxtIJYagqrm4vdFdPCDasJ5/P1UYcwXpkdzrNanEMFQV7GjLqpr2V4Q8AfsENxXLxTw6QR1dc0rF7f0JxXUH2qhP6MP2v+nDUNHk/ns3/ZG8hQZ9GMJT3X9rGY4xxNa+jKRoc5BpP3kLK6mYoy86Fgw9uf6EaR9/7O06aC/XTOd0IZPrvN0lhbZTebqWaW8/nqC9nvQhcbixG1baPkYUlpuPt0IclpxPalgs6LqR7/Oo3/k5MQ2x4w2K1IN9TLUt3BlJkcNRWeFOifx61gJiXMjK8topZA+YzYptY8xoHSs5nx35Khj7snYr0OO5BZ9y1xhbW/IUjC+M7koZbX9lvlboDRGJ5F557e3tLTo+WaZZ0CeC4rwYNzwhxwONUgwMDBSMAyUYp23JkYNcePkE8O1vf5tvf/vbZX+3evUFH4M3EolE8vETCoWcT/qKYSRsnzodi20rHSc+2I1lUEkmMAAA2D5JREFU2CcQXq+n4CY4IXZUZFA0X84vy8Cbd2Ce5vHZfbZMtLwbWZu8QDaRcgHxuczRiZSRQM07h8MXqIT07jy/8m+Ise9iSMdQvVPcy3WLuUS5Zf0KhiGVvyPUQsnfeKv5IJ2L2Zf3GV2fzw9m3g20kQA1ly/UPL9NA3/ep4HL1ZPX58vVRToh/MgnO6kA0jH8gdzkzBesgv68V5csbLm27Y4wYqDlLTp4KzNffimCx5ebwFkGKPm5Lpgop2Io4ZxtxVclvkwyFlIx8bpBttwq5w6Horoj+EK5fNjqHxxtwBuoIl3KLyVv50U6Js4ZyQmxxzyCx5+bhHsDlejFbCuqfUKbTkCgIfdvb0gc5kqmCDWvDr1BiOcthmDZFwfySY04FwZ8leOoixGxU2MsuooGVv4EP5FbqAPx30ZmwmsVLIh5QxDP22mS2TmRRc3ri6bh0ify23XcXq7qETqjpBP2s48KbeefD6Ko9vaTjotdQKP4qsQCiRuKx74YUlhuPqkR5yKLt0Su830e9Ts/J6oGowuMrvVgH1NtfVnzixyOyhy5zqtnIyHGhaxMgfx1mlQMKlpyYm8lVnaXXWEda/aFFrexL2t3BF9Fbowod42xLaakY+BpIR/FG8LKLtiWeW04FaOxMbdwWV9fb1tcstlVC3ajGXHH+TH5fo1+Tn0s1NTUOBaQijJO25IjB/mq0RgJBsUqZ+G7zPmMPoEt9iqSRCKRSNxpbW0lqMQwUsmSvzNSSUJqnNbW1nHZ9ivuY3d1dTWqlQLTxDJ0FH0YNZD7qogarEXRh7BSCVQrZbuZClQ1oKWHsdJJLNNEUwwCwYBDbuoJh2wi5QIEggFUxRC208MEqnK7GxqmH42SiGCmE4jFDcu22KKoYnJspeIQj+Ctm+Es19DBNJ0xlyi3nLx+ZhtKvDv7BFLJ/p8M/hpIDQm5odOQeX0XYPLkyShmEss0hG/6kPh9vq4+hJWKo5hJWibndj6Uq6fGxkYwdFFuqsAumddAsDDTcZREhPppC7KymUcvg3gEKxXPnZuSH5Tqy5wnEYfkIFpF3uJI02KIdRXo5uejHvRBoWskxdP/fCxxJoyoxy5CLYuyouDMMyDWKWSFec4ZEPJYFzQszv25cUmBX+4I3U5mrch9CXK0/i3TxEonHW1g3ufOs/tV6Jhib5tUuH0h0sqWPe+Mi7J/nfO5Cwps56F6wUqJ9pNOildHKvLGkNqF2Xp01GHldIj35PJhFTxVt+WjCxqX2gXNpxb3a1TXysXE1C/kBK2riut6gmDouZj0KARyfYZQMyQz7cdM2xcqq2Y6223+woy/BlJ5bc9bsEihBTLn2Yh2bVvE8teLc0xG/UoNga+mwHY0Yzth91n1gZW211Mob/GtcWm2bTrwVYszUoqVmyFbT00n2gVNy4rbHs1HWth35MQTEnWRiot68OfGcgINoEfzdHV7Xw40QHIgU08p587P0XrO2s4fcxVGz+cZ7TNq/fyctGEhxDMxFS4K+8JgJu3tJz9fozskM+1yzrK/zIrKXWNUzYNiGVmflLC9Hys1s239TXHpTyC+bqTEOzn77LOzfzvrrLNQE91YKec1XdHEeItlZtuPN9zi+J2pJ/Cl+mhrK31eSz5tbW14U72YeukHRAdiW3LkIBdexkhzsxj4h4eHi75KFMm8jz5pUolttBKJRCJxoCgKq05bwXDHOyV/N9LxDqtOW17y7Ak328uWLCompL6uBjM5iNW3HV/dDPsihaLgq5uJ0b2Rhroax86RhinzSPduw0gO0VBfV2BayPXOdodsIuWO0lhfh97ZTuOUefabXlUl3DgVIpuxTEMstBSGrWkQaUcLT7F9mnu0XKtvO2Zy0LXsYuWWk2uaRri2CSKbxCtGBbsGFEVBCU+HSDvV4QpHPoIBnzjHoX8bVE13yKkSuqGAzyErV0/VVRUQaUcJT3eNSVFFvsKNU2350jQNraIOejaLVx0U1bm7yBMUn2WtnIySt5PC4/GInQeRdkYn+/YFMhUqpwq5FnDGq2R2gEQ2ga8azZO/i8cLKBnbULjAkT3XI9IOniBK3u4ixesVrz5k/cIlJxnddMLxCnZjfR3p5BDp3m2ONhAIBsWrOxH38w+yZ6hE2qFisminBcViIeT6sO1BVzAYFE/CI+3u8XqCYkdD3xYINdpsKx6PmHRG2kFR7bnWNLGLoOfNzFkxqrMuyPikem25BFD8fjCtbMyuuqP6qQRKXj4Vv1+8WlJMVwuICXP/NqhoFW1mVK6qUDk5U8cBZ0yhSaLdmmlGzwmx6Wb6E6pms2srO9IOlVPs5WoaYGX66naomub0a9S2ZdrrQVFE20sNi3qqaLHrer1iEc0tH2qm7xUr11ZPHmc9eb1i900x21XThV190JET4bc/k4+pLvUwRdSRHnX2ZVs/9zv6WknbipJ5PSkt6tJfK3adZdA0LduuXe0qnly+wtMc9ZzNFxa+vF2EY7rGZMZMKibbxsxRfSqaM36VmIpG2pk1pcn2aWZN01i8cC5G90ZXFcUbEotufVvwFFzfRtE72zlj5VJXWTFUVeWMU05E7yx9dsuB2JYcOchWMUamTJmavbl47733XH8z+ve5c+d8bH5JJBLJZ4VTV67g+OkVDO7Z6Nj5YqSSRPds5LjpFaw8ZcW4bbctPh6Aoc6tDttTWprwDW5Bie5Cq7Kfp2DqCYyRCHVWJ9VWt0O3pnkW/uR+fNGt1FTZdzsaqSReK86McBzP8K6DWq6RSuIZ3sWMcBzNijvkcxafhTa8C7o2oBScz2ClElhdr6NFd+DxeB1P8LSqqSjRXfgGt9DaYj+boly55eSzl30JLfoBdKxDMewyK5XAHOkkENtFs3/Qobtg7myUnk0w+IFtOz2IJ6PEOtCiO5hS5Sy3XD01BwYJxHZhjnQ6nqRaqQRm5wbhV3Orw/ZxK/4KBt6Hjg2OMyWsVBwib0HfVtCHnU9pp38e+t+DjvW5VxXydWM9Qrdvm/NJfDoJ+9dD/3tUzP28PR96Ak/dbKHbsc6ha6XiQrdvK/gbnbanrirpl7V/LfRtZeai0525rgrhj27Fn9xPdfMsm8xIJZm56HTo24pVzK/ON4RfFi7yBFbHOujbysIvfNfF9hnC9v61LjsXMhPBgZ1Qc7SzXE9IlNu5wanb0CbaXecGxxkcIpfCJ4It7jFVTCtaF6QTOf1ZZzt1K4vXY3bxY/ADsTOnUDcxJHR73nbqNp0IAx9A56uOM1ysVByGu4TuwE73mHreEfLR3Rr5+OqhO+NXaLJTd7hT6Eb3OHUVTSwmDu6E6qOcuoGW4vnw1ZYudzTPgcnuMQUmF7cdahV2uzeBt9qp27dd6GZ3cuRROV3oRjY5drSIehrI1NMWd7/6tmVs9zhtGynRLgfeh9aVBboJcfhx31asjvVOXW9YxDP4gYivoNzRvjb72BUHcI15A6V/OyiK65iK4hF+db7mOIfFTMcxO9YSiO3i/nvvoZBbbrqeOquT9L61DtuK6hEHl0d3Epxk7+emniCxZx0zwnEuWn2+w245vnHh+cwIx0nsWee4bk7UtuTIQLHG803OzzD33HMPzz33LOeddx5f/erXXH9z22238tJLL/HFL36RK6/8nk3W1dXF179+DqZpsmbNE0yb5rY9dmKsXn0Ba9Y8cdDtSiQSyScF0zR5+ZW1PPentcSsUOagwgQhJcaq01ew8pQVB/QkaXh4mDfffJPhkRgvr9/osH3GqSexbft7/OmV19G99dkDAX2pXs5YeSKrzz+X9a9ucPXrL05bjgU8/+I6V59XLD+ZtevWu+pOpNxytk8/9SSef/5PbNryPmagKXvwopropu2Yufzguqt56unf8MLLrznKPv2UpcyfdxQvvPTquMsdS8x/LOHXjT+4lg2vve6q+7lTTuR3v/sDu/ZFsILNWV0l3smsKU3c+5O7eP2NjQdUT8tOXMptP7qL9nd2jNuvlctP4NFH1xBNmOIVD2+F2F0R6yQc1HjskQf56X0/d7V9zFHTeefdd0njd+h60PnlQz/j25d9j0RadcgDmsGZZ5zG2tfedG0/Z//1X3HO+ReRxudq+7GHH+CyK68mGjdcbaeNdFG/fvPUGt5+Z4trPs48bTkK8MciuV4wfx5fPXe18LfANukYP/vp3Vx25dXi74Xy1AiXX3Yp61/b7Gp74dEL+Oq5qzHVgENXMWIEAwFiKWcuw0GNn95zBxdd/B13v5JRsaPCV+Xq00M/v5fLvndN0VzfedvNfP+a69319SEqq6oYTuKQNdVW8J1LvsGNN9/qrpsYABQIVLvm8u4f/ZBrrruhiG6/ODPE48yzaib46d0/4orvXV3U5+uvvYo77vpJcdsoEKhx1b35xuv50d0/dc2XaibExLaI7o/vvoPvX3djkXoaEud8FNG9+87b+cHNtxWtp5/e/SMuu+KqIjENAiYEal1tP/TA/Vx3wy2u/SnkNYkND4M/7KI7zAM/+ylXfP+6on49/MB9XPydK4rIkxxz9NG8896HrmPX9793Od/+7pV09484dOvDfgYGBzEUZ38p18/LXWOuu+Yq7rz7J0XH1Gu+fyVXX3sDO/d2u47n9997T9GPmui6zg9vu8PV9qKFs2mdPJk/r9voOi5etPp82y6a8ZBOp3lszZOu182J2pZ89pELLxnGsvCyY8cOvv3tS1AUhdtvv52lS8X7oYlEgptuupFNmzaxcuVKbrrp5kPio1x4kUgkRwqWZYnPQMfjBINBWltbx/V60YHaNk2T9vZ2BgcHqa6upq2tzbbQU0q3nM+HqtxycsMweO655+jt7aW+vp5Vq1bZtqOXKnsi5U7Ur1K66XSaZ555hkikm8bGJs4++2zbze5E6mkifum6zs9+9rOsX5dddplti34p24lEgptvvpne3h7q6xv44Q9/aJt0JJNJ7rzzTnp6IjQ0NHLdddfh9/vH1H7K2S7ldzndieQ6Fotx5ZVXMjDQT01NLffee6/t9aGRkRG+853vEI0OEg5X88ADD1BRUTEm2/F4nGuvvZa+vl7q6uq56667sodyl6unUn6V8mks+RoYGOC8884lmUzi9/v51a+eEgd3AqlUijVr1tDd3UVT0yRWr16NN++VmK6uLs4552tYljhT4+mnf82kSZPGlMvBwUEuuOD8bL6eeOLJ7PlNpXIFMDQ0xDe+8Q1GRoapqKjk0Ucfpaoqd8ZJd3c355zzNUzTRFVVnn761zQ1NZWVlctXNBrlwgtXE4vFCIVCPP74GsLh8Jjqqb+/n3PP/Tq6ruPz+Xjqqb+ntrZ2TOWWi7lcPkq1r+HhYS6++GKGh4eorKzi4YcfprKycsx+lZKXG7tKta+J9PNy5ZaTlxvPS1HKdrlxcSIcStuSzy5H7MLLjh07+PnPf5b9d0dHB4ODgzQ2NooTszPccssPbf/+/e9/xyOPPIKiKBx33HHU1NTw9tvv0NfXy9SpU7nvvvsP2UnWcuFFIpFIDoy+vj7+8z//g89//gvU1dWVV5BIJBKJRCKRSA4SR+xeqFhshG3btjn+HolEsofkglgdzuev//pvmDlzJr/73e/Ytm0biUSCpqYm/uf//Apf+cpX5BeNJBKJ5BNIb28vTzzxBCecsFQuvEgkEolEIpFIPlaO2IWX449fxHPP/fGAdNvaltDWtuQgeySRSCQSiUQikUgkEonks4Z8GU0ikUgkEolEIpFIJBKJ5BAhF14kEolEIpFIJBKJRCKRSA4RcuFFIpFIJJ95KisrWLnyVCorK8r/WCKRSCQSiUQiOYgcsWe8SCQSieTIoaVlMjfddNPhdkMikUgkEolEcgQid7xIJBKJ5DNPKpUiEok4vlQnkUgkEolEIpEcauTCi0QikUg+8+zevZu/+7uvsHv37sPtikQikUgkEonkCEMuvEgkEolEIpFIJBKJRCKRHCLkwotEIpFIJBKJRCKRSCQSySFCLrxIJBKJRCKRSCQSiUQikRwi5MKLRCKRSCQSiUQikUgkEskhQn5OWiKRSCSHBNM0aW9vZ2BggJqaGtra2lDVia/3W5bFvn37iMVihEIhWltbURSlpM7s2bP5t3/7dzye0pc9wzB49tln6e3tpb6+nrPOOgtN08YU00R0y8VUTl6q7HQ6zW9/+09EIhEaGxv58pf/1paHicSUSqV4/PHH6O7upqmpiQsvvAiv1zsm2+XaR6myJ1JuuZgmkq9EIsFNN92YtX3rrbcRCASyuiMjI1x66bcZGhqiqqqKBx98iIqKijGVq+s6999/X1Z++eVX4PP5AIjFYlxxxeUMDg5SXV3NfffdTygUyuqWk5fKZ6lyAYaHh/nWt77JyMgIFRUVPPLIL6msrCwrA+jr6+PrXz+HVCqF1+vl7//+aerq6sbkdznbpeqiXD5K+dXT08M553yNdDqNx+Ph6ad/TUNDQ1Y3Ho9zzTVX09/fT21tLXfffQ/BYHBMbaCUDKCzs5Nzzvla9t9PP/1rmpubARgcHOT8888jkUgQCAR48slfUV1dnf3t0NAQF110YXYMeeyxx6mqqiorA+ju7uacc76GaZqoqsrTT/+apqamMcnL5aOU39FolNWrLyAejxMMBlmz5gnC4fCY6nhgYIDzzjuXZDKJ3+/nV796ipqamv+fvT8Ps6u6Dn3R31pr99W3qlKpbxAgQlMCBBKic7BPfN5797z4OLm5DrZBuMEY09j0NhiMQWDTGQOxQWBMnJzYcXLOuzfOCYoxBiTRWIXACCHUN6UqVV+7arere3/M3ay119p7S5RkSWj+vi9fjEaNMcccs9tzrLnmKuhW69eV2iKTyXDffd9naGiI1tZWbr/9DsLhcEG30niqNkdUmxcrrQXV5rZKHKn1eqp1qsZUdCWSPzWKbdv20XZCcnCsXHklq1c/e7TdkEgkkooYhsFPn3mOl157Ez3YAoEYGEmC+jCXXnAuX77qiqoJED8sy+KVV9ey5uW1pOwYaBEw00SVJJddvJwLVyz/yD8Us9ks373nPt7etBUr0g7BGOhJ1PQAZy1eyLdvv5mf/fwXvnW66Pwl7O/rY+OmbYese8nyczjl5EX89pX1vnW6YPn5vLZ2fdk6n7f0HO65d5Wv32ecMp/hkRF27x/CjnYUZEqqn7kz2nnowfv4+d//o69fFy9bwr7ePt55379ON3/req75xo0MjCYg1gHBGtATkOynvamGp378KH//D/9Ups5nY9vw8ro/+PaPL37+c9x734O+dfqzRXPZ19vL4FjykMutVqdbb76Rm279Njv3DRxyvJafczov/udLGIQ8fgXI8thDD3DNN24U/14iJ5tg5qwZ7Dsw5lvu9++5k6987RvEU6ZHNxa0SCZT/naNJI8/8gOuveEm4auPfPVPnuC2b3/Xtx2b6yPo2SwTacsjq49qPHDfPVx9zfUQ8ik7HQdFgXCdb33v+s6t3P29Vf662QTfu/vbfOfu7/v7nY6DqpXVffyxH3LDTbf5toViprAtq2y8vnfXHXznrnvL1GkcUCBS71vu3Xfdzt3ffwBLjXjkqpXmsYce4Nrrv1W2D2CZ/rb1BLffciP3rXrY36/MJNhZiDSXj2XZOsVzdfJvp9tvrVBuNsEN113NI489Vcb2BCj49gHVSvPA9+/mplu+XcEvGyINvuU+8tAqbrrtO75trJopLF0v206PPLSKu+65z3c81Uc1frDqXr7ytW+UbadAUMNQvG0cCVg8/dTjfPPm233HU1NdiIn4JIbiP0e88NzT/PKf/7XsunnVlV9g3fo3fNeCS1ecx3++9DIby6xf373zdldS6U+xXh+M7Up1qramH8nfAxLJkUImXo4jZOJFIpEc6xiGwQ0338HueIxQRzdqyPEkL5sm29/DnPoUDz947yH9mLMsi2ef/wXv7klQ23kaWrD4dNHUM0z2vccZs2u44vOf8/2xtW/fPh555GFuuOFGZsyY4ZJls1kuX/lVRpVOtPYlKMGiz7aexjywAXX8Q4JtpxLuPNtVJyOdYOK9f4L6OQQ6zvHqDmxAHfsQreUUol3neOKR2PsGgVQviy/9IsFw8Ym7qWeY2P9HlPguqJ9L7XRvneP73mX3plfJ1Mzz+G3pacy+N2FiD8z7b6ih4lNzy0jBQA/K6BZC0xYTme72y8gkmdj8PyHSijb9fNSSOhm9b8D4h9B8CrR1owSjDnkKBntgZDPhjtOJTD+7pM4p4jtfg/QwdSf/f9AcdbayabJ9G8gObsKsX0ig42xXnYx0Anvbr6F+LrQvKVtuaNppRLvOdZVrZpLEN/8viLSgTT8P1aUr2tgefh+aToZpS1ADRbmI1waU0S2EO04n3LnEZTuTnCD57t9D88n+8eh/q3K8DrwBySGY8xfedjqwAUY/gKZToL1EN5uA/vWQnYBZn0IJxdx2c/GgcRFMO9tb7kDOtp9fmQTs+BeonwPtPrqVbGcSsOffIdoK05aWL7fp5Irt6Gs7PQnbfwVNJ/nHcqBSvJK5eMUPPV6ZBOz8V6ibXTke9Quh81yvfP8bMLGt8pgZ3Qrz/ztKpNYtO7ABxsrUqdB/BmHGJ1FiDSWyP8DYFv9YZ5Ow+zcQbYH2pd545Mst22+ryV+H1DDM+guUcI1bVinW2STs+Q8I1UHHskPzq9DG4zDrv3h1K/UPl19iHvCXb4H5n0WJ1rll+Vj7jqdJ2P3vEGvzHxO5coNti4nNXOq7bkYze2ibt4T6rtNda4GeTrLxxaexamehTTvbdw1qtvv5+eqnPMmXI7VeH5ztDcQye2mbdzZ1XX92SGv6VH8PSCRHC9kbJRKJRHLY+Okzz7E7HiMya5nrhxaAGooQmbWMXfEoT69+7pDsvvLqWt7dk6Bh1hLXjywALRimYdYS3tmd4NXX1vrqp1Ip3n33XVKplEf23XvuY1TpJNC13PWjFUAJRlCaT8asX4gRaPTUKbl3PTTMR+lYiqUEvLod52PWL8RMjXh0DTSYdi56dCa9m17x1MlQouyKxzBq5/rWub+/l3RsLmrHUo/flg10LIWG+TD4tkumBqIoHUuxmxahZ1Iev1IH3of6eSjtZ2FbhqdOpPqg+RSUzmWuDYSQR6HtTGg+hayleWynMxkhr59Lenib269QBKNRxFqJNHnqZO9/DRoXQMdSFC3okinBKErn+aLciSFvOw1+KOrUdha26VOnxpPEhinW7kq65ONFrBO76WT06Ayv7c2/FkmXzmUQKO0/UdDjwnbHeZ54gQlt3dA4D0bf95Zb0y50Gxd4dbNj0N4t2ji531tux7lC19b92yncKOQtp3ltD7yZi/V5oJb26yhMy9s2vboT24VPbWeBrXt1G+YK3ZoOf7+mnSPk+Nju/U+RdOk8HwJhr24sF6+mhV5dIwHtZ0HDPEjs8+q2LxG6iuLVHdoADaLvUbKRU4JR0fbNp0Cqz79Oyb1C7jNmCIRFfZpOgv2/8+pGm4Vu8yk+/cfK9Z/5MLbJq1s/q2ysiefbqRvwaadIvdBt/TP/OlWQYxvCbsN8iG/z6laKdXK/0GvvhuyoVzcYzZV7hlfXTObaeD5M7vXq1kzLjaf5ZeauM4Q8GPVpp0iunRfB3t94dW1D6E4716s78r5oo7ZuwPLq5vqPPrbLd91UO85hVOlgfGTYsxZse/tFzNq5MG0ptmesRgh0LWdE6eDu791HKUdqvT4Y22rb6YwoHYwlzUNe06f6e0AiOVrIxItEIpFIDguWZfHSa28S6uiu+Hehjm5eevUtLMuq+Hd5bNtmzctrqe08reLf1XaexpqX13EoBzlN0+TtTVvR2peUKVw8NaStG2N8D7ZVtG2ZFubEfpFIUAKeJIXwXWyMzOQwpmm6ZNlsFkUNoLSfyVDfDlc8bNtmaN8WQh3dDA2PeOxalkV8cC+0dWNbpkdu2xaoQbGRSOz3xtoWG35r8gCWWZRZloUR3wfNiyFYh60nXWqGYYCZzW0g/OJlg5EUfiUOuMu1IZuehGAdNJ+KPrrbFU9sGyOTEroTe1ztaJompEeg9UxQA9i2t87YtvArO4ZpFOW2ZWOM7YbmUyFUK+rk7CI22GZG6JaUK8zaMLFLtKNpuuS6rotXRJzxcMhtwxAJkpzcqWvbNhi514SaF0Ny0NMHiO8Rurbu1rUsUU6oAZoWCb9LdXN9j+QAdknfsy1LbEzbusFMu22bJiQPFGINltfv/IY/ecBlW9jtFbEO1oKR9vc7H+uSfun2u8S2YUB2MhdLBbC9tidy8bL0knhYYGVz8TrZP17k/Ersd5drmpDoh9YzxJiy/eJBsVzdncSws9mibXz6gG2L+rSdBdlxUU9nnRK9/u2UH2v5/pMZzZXl8FtRfWMt2mmfo50y3lhO5sotacNq8mK/rhX2E/sPPtaWBRO7RZ8ONYBtu3VNU7zy09YNZspbrpkptvHkXm+d47tz48nw73tGyr/vOevf1g1m1tXOhTFTSKyUjKf0YG5OrQHDx++8XcsQc0oJ2WwWrX2JZ50orgNnoqia71oAoLUvoee9ra416Eit1wdl24ZsKoHWvoTh3q1l12y/Nf1I/h6QSI40MvEikUgkksNCT08PerDF83SrFDUUIRtspqen56Ds9vb2krJjnidbpWjBMEkrSm9v70H7/OKLL2JF2j2nK/JYRhK0kHgqGaonOzlYkGVHtkG0DSUQFfdZoPhsMHJPdKPT0AeLT6Qt08JGAQWUQAQ70kK8f3tBnp4YwgzUooYimLZGOpV2+TW0+33sSBtqIIqN4vpxaRk6KCqKogjfoq2up7+2bTn8aiUzvLUg0+P7IdyIEgiLTZsawDYdG4y+NyE2DSUYzW0tSjdkOijBwomK9Mieou1sGtQgiqKiaGEIN6AnBgryTDqFrQZysW7ATg4V7Y5uEbEORnMXJ6pig16sVPHpeXQa6QPvFtsp3u+okwZqEMvMFOOVTbja2M6UJLoyYxCqF3ItTGayKE/tfKUQj/yFjq6IjG6GqJCjlEjzsVI14Vu40d1O6dFiuWoY9AmHT6OghYu6wTqR4Ck2BMU2boOJHe46pYdETIJRkUwwHf1rYmdJrJWSWLv7DxM7i7LUAIQbUALCN9SASHiU+h2Men3O21ZUh98O26N/LIl1yQWaGUe8tJA44ZJHz7VxPl6hevdpCstwlNsKiWK/ZXI3RFuL5SqqSFyWIE7cTIPBt9yC/rUQ8zlxIios5gBH32Vsszuerjo5Tux5+k8TxD8sytODoEX8Y50e9LaTY0yQOiDkwai3DavJrSyoAYdfDSIpUTbWjpMpmTEI1hf90sLitaE8if0QbsqNp4CIQR7Dp40zo27boQb/8VSIZ6B4GqzkFBk42ik2DYYc65djzIACziTF5G7hc75OpX7nbefspna7T2nk1wol6F0niutABFA8a0HRdgQr0s6aNWsK/3ak1uuDsW2aWWxVE34FG4gPeWMN/mv6kfw9IJEcaWTiRSKRSCSHhbGxMXF53sEQiDE+Pl797xBfIEGr/OOwgBbxfZ2oHMPDw+IiwnJYptisAwQirg27rScgULy7AEXBdj7pdP7+Dcaws5MOWe4pd55ADUamKDeNbLHOiopZ8iQzm54sxlpR3KcsKLUtLjTE8RcFeTAmEg/56upp0BwbREVzPxk2JsRT27JYxVcxAhEsvdgWtpV7Ap9Hi4CRKZHnYq1FwXJsBPWEu51KkxjO/x2MYWWLmyrLKK2TO2ljW4bYDOV9Mt2bTNtytIWqYTkTUfpk5XgYkw6/FbeftuV+bSUQcSdArAzkX3tSNbFhLeia4t9cuqWbuWIbU3JyCTNTjImiuRMrerKkTiV+l/QfHG0s7DrbqcS2029fnx3lBEpsZycrj1UzW3zVS9HE2M3j7Fv5sg1nOzvqVFquniqZ15SSwe0gWCPu3HFSdcw4xmowJupZ8Ns5D2juhI9f/3Fu6C2jfKyrtZNTXiqrJrctd6y1mDupUynWVtb9ul5pvzfTRblaUq5lFscxeMeylXHrlp4OsS13vAx3sttFsMaduHGNGfc6gJEuqZNasf/YJf3HtVaUrBOudQA8a4HbdkysdzmO1Hp9MLZty9FHAhH0bIU1u2RNP5K/BySSI41MvEgkEonksNDY2Fiywa+AkXR96rQSsVjMvSGthJl2fao0T3t7OzfccKPrE6gALS0t3k2pE9Wx2THSqFrxKZsSrHE/VbdtFMcmyvVFSz2JEqp1yEo2s0aCQLgo1wKhYp1tC825yQZCkdpirHOnPQq2SzfKRtK7cczL9aTrQlc1GAHT8UPVNlFcm7s6kQQpi1p82mukXZfYKqUbJTPtuqdDccbaTImn0nmCNe52svP1cNYJR52KF1+qgdI6Wa4EkKIGwDaKPmnuCygV1dEWlonquF9GCdZWjkeg1uF3SUJMUd1Pxo20e0OhhosnHCzTfddKaWLBSEPJvTfONvYkLLRwMSZ2SUIsGCupU4nfJf0H50kOLSzu2Siolth2+u3rs6Mco8R2qLbyWNVCxc1yaWJKLUlaGGkIONvZUafScoNRb+Ky3Odq9YS4FNZJ1THjGKt6UtSz4LdzHihJHvn1H9URTzVQPtbV2skpL5VVk5eeCDKT4u+Lf0DZWKshd8KjtN9rjoRIaSJX1YrjGLxjWQ27dUvmVBFPR7wCFTb3ekKcIsrjGjPudcCTxLGsiv1HKek/rrWiZJ1wrQPgWQvctpNivctxpNbrg7GtqI4+YqQJhvxOg+UoWdMPx+8BieRoIRMvEolEIjksdHd3E9SHsbKVfxRZ2TQhfYTu7srvlufp6uoiqiQx9UzFvzP1DDE1RVdXl0fW0NDApz/9ac+Px09+8pOo6QFxj4sPaiCWe58/Bdk4odq2gizUvABSg9hGKveU0XYlKfI/mG09BakDBNsWF+1qKgo22GAbaZT0MPUd8wvySF0rmjGJlU2jKSaRqHsT0Dr7VJT0IJaREgfMHT+21UDxHgrbSEFqCGpnOvxSHX4NEW5ZWJAF66dDZgzbyIgEhWW4LrJVOs8V9x/oqdzWwv0jX1GDYOvCdmaMSPOsou2QeCJv25a4UyUzTrCmmAgLR6IolpGL9ThKrLVot2mRiLWevx/BKtnsiSe9+VhHpp1ebKf6DkedTLB0VwJNDdW42lgJN7vqRLgRsnEhNzOEa4vy6NwLC/HIH/F3RaTpFEgJuSdZlI+VZQrfMmPudoo0Fcu1Mu6NXrgJzExRV5+AUKOzISi28SDUzXPXKdIqYqKnxCkJZ8Knbm5JrG3vxtrRf6ibW5RF2yEzjm0I38SpC8fmN++3nvL6nLdtWw6/Hbab/qwk1iVP9sOOeJlZ92m0YK6N8/HKxiHU5GiLgKPcIagp9ltqZ0NqqFhu6YmOHLaeyt3zcY5b0LEckv1C7kERc4Cj79J4ijuerjo5kxSl/WcU6k8qyiNt4l4Yv1hH2rzt5EyORKcJuZ7ytmE1uRoCy3D4NS5ezSkb62KfJ9wIerzoV/7Oljw108VdNnpKJFmciaaATxuHm9y2s+P+46kQT6MwdxGbTimFdkoegFbH+uUYM2C7TyLVzhY+5+tU6nfeds5udPZyt1u5tcLWvetEcR1IIxI+7rWgaDuNmh7gsssuK/zbkVqvD8a2poVQLFP4pY9T3+qNNfiv6Yfj94BEcrSQiReJRCKRHBZUVeXSC84l21/5XfBsfw+XrjjnoD/zqCgKl128nMm+9yr+XaLvPS67eJnvD8/x8XF+85vfeI5La5rGWYsXYg5sKFO4eD+ewR4CDbNQVEeCQ1PR6qbD4EawDXFywuO7CoM9aLEWNK3k1EoohG0Z2AMbae2c54qHoii0zlhEtr+H1pbmUrOoqkp920wY7BEnRfzKtXQYfAdqpntjrWgw2INaOw1VK8pUVSVQPwNGNoE+gVJyUiIQCIinyINl2lhRxOmawR6UmmnucpXcE1p9AkbeJ9g02xVPFIVAOCp062a52lHTNIg0w9BGkQzy2fiiKMKvUCNaoChXVIVA42zxZZHspKhTyQEORQsL3ZJyhVkF6uaIdtQ0lzwYDIon5854OE8fBQJiw5uTO3UVRREbaT0h4h1r8/QB6mcJXSXo1lVVUU52HEa3CL9LdXN9j1g7SknfU1RVJHkGe8Q9IE7bmpa7w2Jj7jUP1es3edvTXLaF3S4Ra30SAhF/v/OxLv1CkMvvEtuBgDgNMthD/hSOx3ZdLl5qsCQeqkgIZMfF54T94kXOr5rp7nI1DWo6YOid3D0gfvGgWG6w5ItboVDRNj59IH+iYfBtcQeJ47O9iqpCTZd/O+XHWr7/hJtyZTn8ti3fWIt2muFop7A3lrW5ckvasJq82K8nhf2a6Qcfa1UVn+we3SLaSlHcupoGsY5cPKLecvN3wox+ALUzvXWun50bTwH/vheI+vc9Z/0He3J3QjkS0vkxM9iD2FqVjKdIW25OTUDAx++8XTUg5pQSQqEQ5sAGzzpRXAc2Ylum71oAYA5soPu0ha416Eit1wdlW4FQtAZzYAMtXQt912zwX9MPx+8BieRoIRMvEolEIjlsfPmqK5hTnyK9Z53naZeVTZPes4459Sm+tPKKQ7J74YrlnDG7hvE9GzxPukw9Q3zPBk6fXcOKC5b76g8MDPDIIw8zMDDgkX33zttptvsxetd6Tr7Yehp75AO0+FYCxpinTrGZ58P4duz+N1Cdx9zzuv3r0eJb0aLNHt0AJhx4k2BqL12LL/TUKWinmFOfIjC507fOHR1dRJI7sfrf8PitKkD/GzC+XXwtxYFlpLD730AZ3UIwHPX4FZ12KsR3YA+87Ukm2Xoaop0wshm7b53nKb6tp0QiamQzIdX02I6Ew0Ie30mkZYHbr2yawLiItZ0e9dRJmX4BjG2D/jdcF/7my7X71oty61q97dR2kqjT4Nsomk+dxj6Ekc2QHMAy3HWyjBQk+0S8Uvu8tk/5DIx8AH3rPPdC2HoKAvXCdv/rPqceckmbsR3QdKq33MSA0B3b5tUNNcJAj2jjkqfztp6CvjeFrhL0b6f0mJAPv+e13X4ujG2H/tfdd2zkdfvztjWvbt184dPg26AEvbrjO4VuwnsKRNh+S8jxsd315zD6IfStd90PVNDNx2t0q1c3UAMDb8P4DqiZ4dU9sEHo5k81OGldAuOi71H6NRw9BfvXCd1op3+dojOF3GfMYGRg/3pRr+mXeHVTI0J3ZLNP/8klqca2Q+Nir258T9lYU59vpx7Ap53ScaE79Mcy/ae8HCUg7I5vh/oFXt1KsY5NF3oDPe5TSXldPZkr9x2vrhbLtfF21+mxgu7kgdx42u5fp4F3hFxP+bRTOtfOW2Dmp726BITugTe9us2nijYqJGZKdHP9J9g4x3fdtPrfotnup6G5xbMWLDjrk2iTO+HAGyiesZrG6F1Ls93PXd+5nVKO1Hp9MLatwXdptvtpjGmHvKZP9feARHK0UGz5na3jhpUrr2T16mePthsSiURSEcMweHr1c7z06ptkgy2Fy11D+jCXrjiXL628QpycOEQsy+LV19ay5ndrSdqx3OWJaWJKkssuWc6KC5aXfSq3detWvva1q3nyyadYuHChR57NZrn7e/fR895WrEh74UJSNT1A92kLueO2m3n+hV/41umiZUvYv38/b2/afsi6F19wDqeevIjf/n69b52WLzuftevWl63z0nPP4XvfX+Xr9xmnzmdkeJhd+4exox0FmZLqZ96Mdn744H288It/LFun3v372VimTjd983qu+caNDIwmxBPoYI14mpvsp72phqd+/Ci/+Md/8q/z8rMBeHntH3z7xxcu/xzfv/9B3zqdfvJc9u3rZWAsecjlVmunW266kZtv/TY79g0ccryWnXM6L/7nSxiEPH4FyPLYQw9wzTduFP9eIic7waxZs9h7YMy33HvvuZOvfO0bxFOmRzcWtMRlk8Far10jyeOP/IBrb7hJ+OojX/2TJ7jt29/1bceW+jDZTJaJjO2R1Uc1HrjvHq6+5jpxCqXUdnpMnFwJ1/vUd5K7vnMbd3/vPnEfik88vnf3nXzn7u/7+50eF69y+OpO8vhjD3HDTbf5toVipMSnyMvE63t33cF37rrH33Z6FFAg0ujr8913fZu7v/8AlhrxyFUrzWMPPcC113+rbB/AMv1t6wluv+VG7lv1Q3+/MnHx+kqkuXwsy9ZpLFenBl/d22/9VvlysxPccN01PPLYE2VsixMrfn1AtdI88P27uemW2yv4ZUOkybfcRx56kJtu+45vG6tmEkvPlm2nRx56kLvuuc93PNVHNX6w6l6+8rVvlG2nQDCIoXjbOBKwePqpx/nmzbf7jqfmuiDx+CSGEvadI1547ml+9et/LbturrziC6x//Q3fteCSC8/jt7/9HW9v2uY7t931ndsJhUKede9IrtcHY7tSnaqt6VP5PSCRHC1k4uU4QiZeJBLJ8YRlWfT09DA+Pk5DQwPd3d2H5YeQbdvik5KpFNFolK6urqrHiaslXvKYpsmaNWsYHh6mpaWFyy67zHU8u1KdpqJbrU7V5JXKNgyDX/3qVwwODtDW1s5nP/tZ1w/pqdRJ13VWr17NwMAB2tunsXLlStdR+Uq2q/WPSmVPpdxqdZpKvNLpNHfddRfDw0O0tLRy9913E4kU709JJBJce+21xOPj1Nc38Pjjj1NTU3NQ5WazWR577LGC/LrrritsppLJJDfeeCNjY6M0Njbx8MMPi0soc1STV4pnpXIBJicnufrqq5mcnKC2to6nnnqK2traqjKAkZERPv/5y9F1nWAwyM9//gLNzcVX6yr5Xc12pbaoFo9Kfg0NDXH55X+LYRgEAgFeeOHvaW0t3keUSqW49dZbGRkZprm5hVWrVrku+KzUByrJAPr7+7n88r8t/PcLL/w9HR0dgHid8sorryjMEc8++5zrTquJiQm+/OUvk0hMUlNTy09/+lPq6uqqykCcGLz88r/FsixUVeWFF/7edVF5JXm1eFTyOx6Pc9VVK0kmk8RiMZ55ZjX19fUH1cZjY2N88YtfIJPJEA6H+dnPnheXvuao1q8rtUUmk+H+++9naGiQ1tY2brvtNsLh4h05lcZTtTmi2rxYaS2oNrdV4kit11OtUzWmoiuR/KmRiZfjCJl4kUgkko/GwSZeJBKJRCKRSCSSw408gyWRSCSSjz3RaJTTTz9dflpSIpFIJBKJRPIn56O9tCeRSCQSyXHEjBkzeOihh4+2GxKJRCKRSCSSExB54kUikUgkH3ssyyKbzWKVfJFEIpFIJBKJRCI50sjEi0QikUg+9mzfvp3/+l8/zfbt24+2KxKJRCKRSCSSEwyZeJFIJBKJRCKRSCQSiUQiOULIxItEIpFIJBKJRCKRSCQSyRFCJl4kEolEIpFIJBKJRCKRSI4QMvEikUgkEolEIpFIJBKJRHKEkJ+TlkgkEsnHnjlz5vAP//CPNDY2Hm1XJBKJRCKRSCQnGDLxIpFIJJKPPcFgkLa2tqPthkQikUgkEonkBES+aiSRSCSSjz19ffu555576Ovbf7RdkUgkEolEIpGcYMjEi0QikUg+9kxOJnj11VeYnEwcbVckEolEIpFIJCcY8lUjiUQiOcaxLIuenh7GxsZobGyku7sbVT08eXPbtunt7SWZTBKLxejq6kJRlIOWf1Tbpmny4osvMjw8TEtLC5/85CfRNO2I+Xy4/KqkW62dKsmrlZvNZnn00UcYHBykra2N66+/gVAoVJAbhsEvf/lPBflf/dVfEwgEplyndDrNnXd+p6B7zz3fIxKJFHSr2dZ1nWeeeZqBgQHa29u56qovEQwGq/pcTZ5MJrnhhusZHx+noaGBRx55lFgsdljKTSQSfP3r1zAxMUFdXR0//vET1NTUHJRfk5OTfPWrXyGRSFBTU8Pf/d1PqK2tLegODw9z+eV/i2EYBAIBXnjh72lpaTmoWI+NjfHFL36BTCZDOBzmZz97vnBnUbV4VCq3Wp3Hx8e54oovkk6niUQiPPfcz2hoaCjoViq7Wqyr+VUpJpXauJpuKpXilltuZnR0lKamJh544EGi0ehBxaNaG1dri0ryauO8kt/VdCvJM5kM9933fYaGhmhtbeX22+8gHA4XdKvJK80D1WJdaV6cyvpUre9Vm6+P1Np3JNdciURybKPYtm0fbSckB8fKlVeyevWzR9sNiUTyJ8IwDH76zHO89Nqb6MEWCMTASBLUh7n0gnP58lVXuH5IHgqWZfHKq2tZ8/JaUnYMtAiYaaJKkssuXs4Fy8/ntbXry8ovXLG8bPKnku1LV5zHf770Mhs3bcWKtEMwBnoSNT3AWYsX8t07b3dtFg6Xz6ctmsezq3/KlSu/zHtbdnjkl6xYym9f+n1Zv+789q28/sZbvrY/ceH5bP5gC79b+5ZvO135xct59mcv+LbjRecvobd3P+9s3u5b7rdu/AZf+urXiadMiHVAsAb0BCT7qY9q/OTJH3HHnfewc98AdrSjoK+k+pkzvY3Gxgb+uGXnIddpxXlLeOzHT2IQ8pQbIMvzq3/Coz96krfLxOvmb13PNd+4kYHRhEe/pT5CXW0du/uGPD7PndHOA/fdwy233+lbp87Wevb39YkYltjFSLL6J09w27e/619uQ4T62jp27fcv945bv8XKL39N6JTa1hOs/umTfH/VD339mtnRxJ5deyBc69XNJrjz2zdzz70PQsjHdjqOEgxga946Bchy//fu4qZbvl1WFxSI1PnG4+7v3MZdd9/nr5tNcNd3buXue1f51zk9Bmj+trMJHrj/Hm65466ybTG9s5O+obhvrK/56lV886bby/r1/e/dyV3fu9+3/6lmmuamRobiaY+svamGH6y6l5VfucZXVzFTYNvYPj6rVprHHnqAa6//Vpl4jIOqQci/jR95aBU33HRb2Xg8/sgPuPaGm8rKw6EQGSvgO84f+eEqvnT1tVhqxFsnK0UkFCFlKL66T/zoYa75xo2+c0hNCAzDJGNpHlkkYPHU449w9bU3kDZUX/lzTz/Fw4/+2HceWHzSbN7943vYWtQ31i889zT//C//y3devGT5OZxy8iJ++8r6Q57rL7lgKb/69b/6jtO5M9p56MH7+Pnf/2PZdfWqK7/AuvVvHPa1788vWgbAf/5+3WFfcyUSyfGBTLwcR8jEi0Ry4mAYBjfcfAe74zFCHd2ooeKTbyubJtvfw5z6FA8/eO8hJ18sy+LZ53/Bu3sS1HaehhZ0PLnUM0zufw87vgvqZ1M3/c+88r73OGN2DVd8/nOeH4KVbOvpJBtffBqrdhbatLNRgsU62Xoac2ADzXY/P1/9lCf5MlWfBz98hV3vvMScMz5B20kr3H5lUrzz259jhppRO89D9fErnNjBrMUX0DDjjBLdJJteeg4jOoOamUs97ZTe/weU8Q9RmhYR6ljikpvZFBO71mPHd6Mu+Eu0cMxVrrHvdYhvheZToK0bJRh1yFMwsAFGPxDy9m7UgOMpspGCgR4Y2QIn/TXBaK3Ldr5OsxevoH7G6a46JSbG+OP/frJ8uYM9MLIZaucRmLXc045G7+swXsbvbBL610F2AmZ/CjVYrLNl5GwPb4aGhdB5rrtOiXHY+avqfsXmwsxlbnkmATv/Fepmw7SzvbHq/wOMbYGmk6F9SXnbDYugs0RfT0LfesjGYdanUEIxt27/WzD+Yfl4HFgPmXGY9V+8ugM9MLrZ369sEvb8B4TqoON8lFBNiW6uf1SrU+0C6FrqlqcmYMc/Q9NJlWPdsAg6zi4vn/tZ1Jri6RjLSMGu1yC9u3o7NiyEjnO97bjnNxBtg2lLvboHNsDYB/62MwnY8+8QbfXXzZfbeDJMK4lXelL0n/q5VfrHSdBxjo9fb8FYmT5QEi/FES9bT0Hfm5XngcHcOJ//WZRoXZk+IOYId/9JQP96MRb9+m2lvuewrbSc4pnPzWwSq3dtBdtCN9xxOpHpZ5fMmykSu9cRMMY57aK/IRAullttrs+kJtn4myewG08qMyduQBndQrjjdMKdS3zW1Q3EMntpm3c2dV2Hb+0zsil2vvk/IdLEvNMvRnOuA3qGif1/RInvgvq51E73Wd8qlCuRSI4f5OiVSCSSY5CfPvMcu+MxIrOWuX4cAqihCJFZy9gVj/L06ucO2fYrr67l3T0JGmYtcf3AA9CCYYzaueyORzGVqK+8YdYS3tmd4NXX1h6S7W1vv4hZOxemLcVW3ckiJRgh0LWcEaWDu79332H3mXATgcY5KE0nef3a9CZGzRxoOwts0+OX2rmMdGwuB/Zs9eju2/QKenQWTDsXA/erUmoogm2bpGNzsVu7Pe2Yylow7VxomI812OMpl8QeaD4FpdOdRBDyqNh8Np8CTYtcGwwAJRBB6VwGzYtg179569SxlHRsLv39vZ46/fHffyzKne5frjJ9mSg3vtW12Sr4PbmnrD7ZMWjvhob5kHBfdKwGoigdOdupA546sSOXdOlcBoHScqPi35tPgclt3nKH3oaGBdCxlFLUQBTqZgrdmg7/WHcsFXIz4fUrG4f2s0Sdkr1eXT2e8/s8r19mCtpy8Zjc49VtWih0Y+1e3eR+odfeLeJaqtswt3Kd8vFK7vba7l0jki6d50Mg7NXNx8POenUDkaLtHb9yidRAFBLbCu1YMdZG0mt7fKuoc9tZYBte3VCN0G09w6s7sd2hq3t1284QusGIV7d/HTTm+o8W9OoW+ofXZyUYBS2cS5ycWTleO3/t1U33l41XUXcR7P2NVzfWLnQbF3h1M6PFsZjc79VtXiR0o23+darpgOZTsGtne+YBKzlY2XZONxOa5pkXDdOAtjPRYzPYt/1dl6zaXP/B7/8eu/EkMfeUjFM1EIVYJ3bTyejRGb7rqtp2OiNKB2NJ87CufWP9O8hEppOpP4WxiaS3TkqUXfEYRu3cQy5XIpEcP8jEi0QikRxjWJbFS6+9Saiju+LfhTq6eenVt7As66Bt27bNmpfXUtt5Wtm/GRweIdTRzeC+LZQ7FFnbeRprXl7nkleybVkW8cG9YuOhatiW6fkbAK19CT3vbcU0i/Kp+mzbNmMDe6hZ9H8wNpl1yyyL+IFdKC2nQqgWW3f/KBb6FrR1Ex8dcPllWRbDfTtQ2s9EUQNks27blmWhj+2Ftm6yug5Ot2xxqgk1CG1nwmSvqx11XRd/1ObfB2zLgklhGzODTUk75f8zJzcMo0TfFHUa3OsqN51Oi81cWzegQKndvO22bghG0dNpl8jld6lLlgW2BaEGaFoEE3v8+1fOZ8vhs5XNQCDkjkc53WAU2+GXbVkiydN2hoh3Sa0syxSvkLR1+/pk27ZIyLV1Q2YMq6RvYhnuOjniaRuGSIrk4lE6XjAzEKoXpwom97p1LQssvehXqWxitygz1CBenymV27avbqHsfLwUBdvRd23DAD3p6gMev/PxSA1iO+LhapO2bgiERNvlY51MiORIrh0rxjo7jq0XEySFdmxeDMFaMNNuvywLEn25/pPyyiZ7oflUoWukvXUyckmw5ICrTrZhQGYEWs8ENQC2WT4emTHx9846GQakh4TcSHl1nfHSAtiZYrxsXQcz6xsvj66ZxTZK4jWxJ9f3dG88sMuOxULfbOv29MuCfGJ3zi8b2yrqWpYNKCW2LX9dRcUyHbZtyKYSKKFalObFDPdu9fSRcnO9YRikkomyc5codxe0dWOapsduvmytfYlvuXkOde2zbZuhfVsItJxMIFzH0PCIrzzU0e2RVStXIpEcX8jEi0QikRxj9PT0oAdbPE/kSlFDEbLBZnp6eir+nZPe3l5SdszzVC1POpXGsjXUUAQzUEt6Ytj377RgmKQVpbe3+IS/ku2h3e9jR9pQAxFAwUbx/QGpBCNYkXbWrFlz2HxOTwxhKGGMib0YukE6VdyUD+7fhR1uQNHCKKjYagDbdDwNt8XPdzUQxY62M7zz7YIo3r8NO9KCEoiAAjaKaxNhjO2CSKvQRUV3bIoy2SwoKiiK0I+0ik1Snn2vQEycVLDzjjjJjECoPvc0PSQ2ykWXc8FUck+9p4mj/Xm5bWOjCL8ibQzv2VyQbX/thUK5lRB2O2DX/+0W9L1WXj87DloYRdVQAmEI1mFnRh1+i/RRwWfnKaB9awp2C5dUOm3n+lLBrz3/T1E2sQeirSiBnK6iis1snmQ/aLlTDsE6cRLAhQ2oxVNGo8V42Z461btPn4y+D9FpQlcp8dpIgRYq6obqRbvm0SeFPBgVsqzDr8wYBOtRAqJstLC73Myo8Ctfp5ITMXkK8ep/tfiPw+9AbJoj1qUXe1qAUozH+HZXpACUQt/rgL0vFlV3/bpK/yqJ9dimoijZD+HGYp2VAFjOduwT8mA0J3OM49QBCDcUddUSXUsHJSh0w43uUxpjHxZOfRTjUZJFdfm8xV2lyV0QbvL3yy9efb8rCgb/UGiLcijOce4cM5nR4hyhhkGfcMhGRJ93jEVXvzeS7r5XOibSo6L/BaOgRTBTxTnXSgz42B5zlD3m0p0c2VcQmWYWW9VAUVECIaxgA/GhYltUmuv7N79SOVaZMcecGSYz6U5y5MtWghFPuU4Ode1LTwxhBmpzfU/FtDXXGpSXq6GIR1atXIlEcnwhEy8SiURyjDE2NiYu/DsYAjHGx8cP2nYymRSX9pXBNE2xMQXQIlhGpuzfokVIpVIHZTubnnTXSVH8TywABGMMDxd/UE/VZ9PIYlkWiff/BSs7iek4bZPNpEBz/lBXERtLQS4VkPOrhmwqXpDpmQQEahy67mSSrafExY65+nqfODs2tIEY6MVYYkyIyyjLVlovxkQpPUFUEtdgjbhroSC2Rfxz5WbSRZmeqlKu03awRiQHnGRL9R1/bxviZEmeQMR3E1q0XYw12ckqfpXoGg6/zFTJeCrZONtm0a9ARMTWiW0XmyoYExeE5rFMb52c+nqi2AdKExi2CYpDV4uAs+865YEIGM5EQdb9upWqiZM3B1snJ8EayDhirU86fPbBdtQlKC4mrWhbL2mLSu3oibXDtpkB5+sjiipOUPnJFdX92qCZAc05/2huXduC/N0ZgQgYjs2vkXDHo3Tu8vhcMiaMdLGtVLX8vAfeseoZTxUI1riTK1a2GA9VE321IPMZi84+YpkiSQS5S15L1gFn/1M19ziuajvj0rXNYr+1Lcs9JgIR9GxxXqw012dT455YudJjVrY4Z6oaVsmYcJVdUq6HQ1j7TCPrlimqaw1yyUtk1cqVSCTHFzLxIpFIJMcYjY2NlTczToyk69Ou1YjFYmD6P1EDxCdA8xsSM40a8D9lkpc7PwtayXYoUuuuk3PzX4qedH1Sdqo+a4GQ44SDjebYFITCUbEZLGDhXBoV5yZdTxCK1hdkwXCN2JQVK+X67Ke43yNZqK9Lpqq4tgVGEpxPagN17g2+p9LBYkxsUzzFd3jtQk+IC1gLYsfG0UgSjhRlwWiVcp229YR4bcNJqFTf8fdKwL35M9KFV3886AlxeqRgt7aKXyW6AYdfWrRkPDmSaSA2W3m/jLTnDg8Rr7ztpHtzV7qhLdUP1jiSByUbbkUrSQ6k3fepOOVGWrxqVSg35E4OWKY4xXGwdXKiJyDsiHWw1p3wKMV5ckdPVk4Sl/YRLVq5HT2xdtjWwuKUUB7bKm7CS+V2yQZeC4PpnH9Mt66iQv51GmeiBERyVa8wd3l8LhkTzkSOZZWf98A7Vj3jqQJ6QpwuyaOGivEoTRCqPmPR2UdUjcIdOmZaxM+Js/9ZpnscV7UddukqWrHfKmpJwsxIEwwV58VKc30o2uCJlTPSihoqzpmWiVp6V4+z7JJyPRzC2ifWH4fMtlxrkEteIqtWrkQiOb6QiReJRCI5xuju7iaoD2NlyycbQHyFIaSP0N1d+S4YJ11dXUSVJKbuf5IlEo2gKiZWNo1mTBKpa/H9O1PPEFNTdHV1HZTt1tmnoqQHsYw04qUcdyIij62nUdMDXHbZZYfN50hdK2pu06ViEokWN1Vt0+egZMaxzQw2FoploDh/kCvix7tlpFBSA7TMPasgqu9YgJIexjbSYIsXqFStuKwGGudAekjoYhEMFO2GQyGxgbBtoZ8egrpZxXJnXAjJfmw9lds8lMQq3AzZuDhVY2ZdG9TCX9q2kCcPQPuSolxRULCFX+lBWmadUpDNv+DyQrmVEHb7Yc7/2y3ovKC8fqhB3EdjmdhGBvQJlHCTw+9cmivvs/M+lxmXFezmTw65IpJ//Sjv16z/V1FWNwtSQ9j5+zVsS7yelSfWIe4L0VPixIDDp7xnYAl5alB8ISYv8dQpDqHGomrTqZA6IHSdJ0VAnEYws0XdbFy0a55grZDrKSELOfwKN4IexzZE2eKuGEe54SbhV75OTpmDQrw6VhT/seUMSB5wxLr0hIZIGhbi0TDfFSnIvc6Wtz3zk0XVOZ+p0r9KYt24uCiKdeTuUMnV2TZEAqAg7xRyPZWTOcZxdBpkxou6VomuGhT3oOgp8UpKbHpR1niSuMvGFQ/Xlr7E50XuKtXOgcyov19+8eq8pChoO7vQFuWwnePcOWbCTcU5wsq4kzLhZtHnHWPR1e8DMXffKx0TkSbR//QUmGm0aHHOVWvafWw3OspudOnWNs8oiDQthGKZYFvYRhZVH6e+tdgWleb6jlMurByrcKNjzswQrm12ifNl23raU66TQ137InWtaMZkru9ZaIp7DcrLrWzaI6tWrkQiOb6QiReJRCI5xlBVlUsvOJdsf+W7W7L9PVy64pxD+rykoihcdvFyJvveK/s3bS3NZPt7aJuxyDc5ApDoe4/LLl7mPsVRwbaqqtS3zYTBjdhW6QmNIubABrpPWyiebB4mnxVFoXHabAAaG92ngxRVpX7aHOzh9yE7ieLzioWiqDDYQ31Tu8svVVVp6ZyHPbAR2zI8n8BWVZVg40wY7CEUDHr2aoFA7r6HwY1Q2+Vqx2AwKP5o0L8PKKoKtcI2WjiXsnDbBwry0k+OK6om6tQ201VuJJJ7Oj/Yg3eD6bA92AN6imDEvUlw+V3qkqqKkwXZcRjdAnWz/PtXzmfV4bMaCotXbZzxKKerp1AcfimqCjXTYfCdwisRTk01f2plsMfXJ3EvjIgX4UbUkr6JGnDXyRFPJRAQSY9cPErHi7ibJS4++Vs7062rqmKTnverVFY3W5SZHRf3+ZTKFcVXt1B2Pl62jeLou0ogIBJ5jj7g8Tsfj2gbiiMerjYZ7AEjK9ouH+tYDWQThXasGOtQA0qwmKQotOPIptz9NxHvKbKazlz/iXpltV0w8r7QDUS8dQpEhW6s3VUnJRAQiYqhjSJho2jl4xFuFH/vrFMgIO5wGuyBQNSr64yXaaCEi/FSgkGRJPSJl0dXC6EESuJVNyvX94I+J+6UsmOx0DcHezz9siCvm53zS0FRi7qqmjsl6LKt+uvalitZjQKhaA12dhJ7ZBMtXQs9faTcXB8IBIjGasrOXaLcOTDYg6ZpHrv5ss2BDb7l5jnUtU9RFFpnLMIY/gAzM0FrS7OvPNvf45FVK1cikRxfyMSLRCKRHIN8+aormFOfIr1nnefki5VNk96zjjn1Kb608opDtn3hiuWcMbuG8T0bPE/oTD1DYHInc+pTaHbKVx7fs4HTZ9ew4oLlh2R7wVmfRJvcCQfeQLFKvvyhpzF619Js93PXd24/7D6HFINQOEIw3e/1a/G5BBK7YPBt9+sJOb+svnVEkjuZNmuhR3fG4gsJpvbCgTcJ4H4338qmURSNSHInylCPpx2jIRUOvAnj21FLvl5k62momQUjm7H71nme4oon3IMwshlGt2AZJXIjjd23Dka2wJz/6q1T/xtEkjvp6Ojy1OnP/uLrotz9/uXa+9eJcusXCj9L/a6dVVafUCMM9IgLWWvcT5QtI4Xdn7MdneapE/M+K2R969yv2eTj0ZfTrV3gLbf1LFFm/xuUYhkpmNgrdBPe0xjC9htCrtV4/QrVF+sU6/LqBupzfr/u9UvLbfbHt4u4leqOfih0kwNe3dh0oTfQ4znRYuspGN9ZuU75dozN9truukyU3bfefe9MaTyUkFfXSBdtz/usS2QZKahZUGjHirEOxLy2GxbC+I7cWA14dbMJoTv0jle3br6I1+DboAS9ugPvCF097dXtWAZj20T/Kb0bxNU/vD7nT1gwslkknivFa+5nvLrhjrLxKupugZmf9uomBoTu2DavbrjJ0W+ne3VHtgjd3Gkfr+1+GNmMMrnbMw+osbbKtnO64ewBz7wY0AIwtJFgch8z5p/uklWb60++6G9Rxj4Uc0/JOLWMFCT7UEa3EEzt811XrcF3abb7aYxph3Xta+yYRzizn1B8M4117uS+qWcI2inm1KcITO485HIlEsnxg2LL75IdN6xceSWrVz97tN2QSCR/IgzD4OnVz/HSq2+SDbaI499GkpA+zKUrzuVLK6/wnGQ4WCzL4tXX1rLmd2tJ2rHcBYppYkqSyy5ZzvJl57N23fqy8hUXLC970qaS7UsuPI/f/vZ3vL1pG1akvXCBppoeoPu0hdz1nds9J0cOl8+V5JesWMpvX3q5rF/fueNW3njzLV/dT1x0Pu9/sIWXX3vLt52u+MLlPPf8C77teNGyJfT27mfj+9t9y/3mDd/gS1/9OvGUKV61CNaIewyS/dRHNX7y5I/49p33sGPfAHa0o6CvpPqZ29VKY2Mj736w85DrtOL8JTz6+JMYhDzlBsjy/Oqf8NjjT9Lz3lZf2zd983qu+caNDIwmPPqt9RFqa2vZ3Tfs8XnejHZW3XcPt95+p2+dprfW09u3X9y7UWIXI8nqnzzBbd/+rn+5DRHqauvYtX/It9zbb/0WK7/8NaFTaltPsPqnT3Lfqh/6+jWzo4k9u3aJu1JKdbOT3PntW7jn3lXizo5SeXoMJRjC1mK+sb7/e3dx0y23l9UFBSINvvG4+zu3cdfd9/rrZie46zu3c/e9q/zrnB4FVH/b2QkeuP9ebrnjLtGfPWUn6Oqczv6huG+sv/bVq/jmTbeW9ev73/sud33vft/+p5opmpubGBpPe2TtTTX8YNW9rPzKNb66ipkSr7H49B/VSvPYQw9w7fXfKhOPMXH3ia/Pkzzy0APccNNtZeKR5PFHfsC1N9xUNl7hUIiMFfQd54/8cBVfuvpaLDXiG49wOEzKUH11n/jRw1zzjRt955CakI1hmGSsgEcWCVg89fgjXH3tDaR9bEcCFs89/RSPPPZj33ngtEWzeefd97C1qG+sX3juaX79r//Ld1685IJzOPnkRbz0+/UfaS7/1T//Czv2Dfr2vR8+eB8v/OIfy66rK6/4Autff+Owr31/fvEybOC3L6877GuuRCI5PpCJl+MImXiRSE5MLMuip6eH8fFxGhoa6O7uPmw/wGzbFp/CTKWIRqN0dXW5jjJXk39U26ZpsmbNGoaHh2lpaeGyyy5zvcZzJH2eil+VdKu1UyV5tXKz2SyPPfYYg4MDtLW1c91117kSVIZh8Ktf/aog/+xnP1tIyk2lTul0mrvuuovh4SFaWlq5++67xetIOarZ1nWd1atXMzBwgPb2aaxcuTL3OlJln6vJk8kkN954I2NjozQ2NvHwww+LCy4PQ7mJRIJrr72WeHyc+voGHn/8cWpqag7Kr8nJSa6++momJyeora3jqaeeora2eNnq8PAwl1/+txiGQSAQ4IUX/r5wkXS1WI+NjfHFL36BTCZDOBzmZz97XlzEfRDxqFRutTqPj49z5ZVXFPrHs88+57rQu1LZ1WJdza9KManUxtV0U6kUt956KyMjwzQ3t7Bq1SrXpaWV4lGtjau1RSV5tXFeye9qupXkmUyG+++/n6GhQVpb27jtttsIO155qiavNA9Ui3WleXEqc3m1vldtvj5Sa9+RXHMlEsmxjUy8HEfIxItEIpF8NLZt28Y3v3kjDz30MAsWLDja7kgkEolEIpFITiDkmTWJRCKRfOyxbZtkMol81iCRSCQSiUQi+VMjEy8SiUQikUgkEolEIpFIJEcImXiRSCQSiUQikUgkEolEIjlCyMSLRCKRSCQSiUQikUgkEskRQiZeJBKJRPKxZ+bMmTz55FPMnDnzaLsikUgkEolEIjnBCFT/E4lEIpFIjm8ikQgLFy482m5IJBKJRCKRSE5A5IkXiUQikXzsGRg4wI9+9CMGBg4cbVckEolEIpFIJCcYMvEikUgkko894+Nx/u//+//H+Hj8aLsikUgkEolEIjnBkIkXiUQikUgkEolEIpFIJJIjhEy8SCQSiUQikUgkEolEIpEcIWTiRSKRSCQSiUQikUgkEonkCCETLxKJRCL52NPY2MhnPvMZGhsbj7YrEolEIpFIJJITDPk5aYlEIslh2za9vb0kk0lisRhdXV0oinK03cKyLHp6ehgbG6OxsZHu7m5UtZg3r+R3tTpVs11JXs22YRj88pf/xODgIG1tbfzVX/01gYBYdkzT5MUXX2R4eJiWlhY++clPomlaQbeSvJLdcn61tbXx1a9eDUAikeDrX7+GiYkJ6urq+PGPn6CmpuagbOu6zjPPPM3AwADt7e1cddWXCAaDACSTSW644XrGx8dpaGjgkUceJRaLFXTT6TR33vmdQp3uued7RCIRADKZDPfd932GhoZobW3l9tvvIBwOH5RutXilUiluueVmRkdHaWpq4oEHHiQajRZ0K5VdTXcq8mp9r5Jf8XiclSuvJJVKEY1GWb36Werr6w+LbqU2rtbO1dqpkl/ZbJZHH32k0Peuv/4GQqFQQbeSfCrlVqtztXhU6nvVxnm1Ok9lDqnUv6aiW23eO5LrSLUxU4lKfk3F7lQ5VtfdY9UviURy/KLYtm0fbSckB8fKlVeyevWzR9sNieRjh2VZvPLqWta8vJaUHQMtAmaaqJLksouXc+GK5X+yH6FODMPgp888x0uvvYkebIFADIwkQX2YSy84l6uu/ALr1r/h6/efX7QMgP/8/TrfOi07fynPPPt8WdtXfvFynv3ZC77yS5afw8knn8RLr7zua/vcc5Zww7duZee+AexoBwRjoCdRUv3M6WqjuamJdzZvx4q0F2RqeoCzFi/k9lu/xX2rfsjbm7Z65GecMp/hkRF27x/y2J07o51HfriKN9/a4BuPi5adQzQS4p57V0GoFmIdEKwBPQHJftATdHVNZ/9g3Nf2/fd+l2uv/xYDowmPblNtkNHRcaFTatdI8tTjj3DtDTdhEPLIVTuNpmrodtAjiwQsnnjsIb5yzXW+ugGyPL/6Jzz6oyd943XaSbPZ+O4fRduVlmul+ckTj3HtDTeRNlSPPKTqZDNZ8W8+uk889hDXXPdNLDXykeSf/PNPsH7DH3373v/5V5/hCyu/4utXkCx6OgOROm+sswkee+RBbrnjLl/dgJLFSJXXfeLxh7n73lW+bdzeVMP9936XlV+5xjeepONokTAmYd92+skTj3HNdd/09SuiWQCkTa+sPqrxxI8e5ppv3Eg8ZXrkNWGFVCrlG+eq5QYsnn7qcb558+2+dW6pj6IoMDSe8o3HEz96mAd/+Khv3zv9lPkoCrzzvv84/9aN3+BLX/26b53qoxo/efJH3HHnPf5zyPQ2mpobeXfzDl/b3779Zn7281/4zl0Xnb+E/X19bNy07ZB1q817Fyw/n9fWrj8i60i1teDLV13hShA7qbS+XXrheXzwwYf8bu1bh2x3qhyr6+6x6pdEIjn+kYmX4wiZeJFIDj+WZfHs87/g3T0JajtPQwsWnwKbeobJvvc4Y3YNV3z+c3/SH1uGYXDDzXewOx4j1NGNGio+vbayaTJ9G6jJ7qVt3tnUdf2Z2+9smh3vvgyZUeae898IhIonEEw9w0TvHxnY8QdS4ZmEOpZ4bGf7N2CPboHGkwh3nu2Sm5kUya3/RrCmhcXn/QUBp0zPML73Hba/8zJm/UJo70YNFMu29CTs/g8I1aN1LUd1+GXracwDG2DkA+zmRQSmnY0SdPilpzH73oSJPTDvv6GGaooyIwUDG9Di21hw1iXUd53uacf9m35L7/uvQvNimL4CJegsOwWDPTD6Icz776jROrftAxtg9ANoPgXaut26mQTs+BeonwvtS7x2B3K6TadAe7dXfuANSA3BrL9ACdeUyP4AY1v8y837PLIZmk4m0HmOK15mNom1839DqB46zkcJxdy6Az0wKnT9/f6DiPXc/+b1q/8PMF7Br2p1zvkdOe1zRGsbirHOpknuewN9YJO/7WwCdv87RFugfemh1SmTgJ3/CnWzof3s8rGsWwjTzy0vr18InSXy1ARs/yU0n1y5nRoXwbQKZc/7K5RYvVvW9ybEt5aJdVLEulw7FdqhTBtX8iubhN2/gWgrTFtato2VllPRpi0p6XsprB3/D0Rb0Kafjxp0j3Oj/w+5fltuTGyAsdx4K51DjBT0vw6pEdR5n0Zz9YE05sAG1LEP0VpOIdp1jmvuMtJJJt77J6ifhdZxLqrDZ1tPYxz4A9r4VkJtiwl1LjmkeW9y/3vY8V1QP5u66X92WNeRamtBtr+HOfUpHn7wXk+SpNL6ZmTTbHr939ETI8QWfhotHD1ou1PlWF13j1W/JBLJxwM5a0gkkhOaV15dy7t7EjTMWuL6kQWgBcM0zFrCO7sTvPra2j+pXz995jl2x2NEZi1z/dAGUEMRtJo2RpQOxpV2j99jE0ky9aeQCU9nvH+HS6YFw4wlTUaVDtS2031tW02LScfmYgXrPXJzYi92/TyyDYvp7Rvw2N67dzdm/UKUzvNcGyYAEvuhYT60n4WVGXOJlGAEGhdgNy1CiU5zbeQALFuBjqVCf7DH7XMgCrFOzPqF7JuI+rZj744PxX+0nu7a6AEQCEPn+dB0Euz9D6/tYI3YBLae4dUdeB0aFwjfNPfmRAlGxca1+RRoPtmra5vQdhY0zIPxD726ilLYfJbqKsEotJ8t5NjeeMX3FmKNPuHVbV4kdKNtXr9UtRjroR6vrpUWuh1L/f2KNufqfIpPrCPQuQyaTyG96R/dxYYi6GN7hG7nMq9ufIfwqa0bMLzlNi4QujXtXt2hHmjItZOienVzPpHc51+nvDzd77W99zci6dK5TNSvVLd9idBVlIrxYPf/8uqm+8vHQ3GMiaG3vbo1HUK3Ya5/naadK+S24RPrbblYnwW27mN7GjSfgl0/z9v3xrcX2skysiW6EYiU7x9KMCpOpDWfAq2ne+cQSxft3zAPa2y7x7bScT5m/ULM1Ihn7kruewMa5qNMW4rt6QMRlGgbZv1CjPr5hzzvGbVz2R2PYir+889U1pFqa0Fk1jJ2xaM8vfo5j26l9W1f3wDZhsXY9XMxJ/Yekt2pcqyuu8eqXxKJ5OOBTLxIJJITFtu2WfPyWmo7T6v4d7Wdp7Hm5XX8qQ4IWpbFS6+9Saij21du2zbZkZ1o7UsYGhmDEr8Gh0cIhOsItJzM4L4tLr9t22ao90O09iVkUwkorZIN2fQktHWjj+7Gtty62ZGdKM2LUMMNnrIt0yQ12ic2Rpbp8ZmJXdC0CEIN2Jbh8cs2s9DWjT2x2xNr2zZBDULbGZDYj2VZJbZ3Q1s3yXTWo6tndbAy7r93/W8bUITfZhrLKG40LduCRK5OZspVX9s0ITkIrWeCGgDbctu2LJjcW7DrKddMQbBWnMJJ9Im/L+iaIlHV1u3xufjflpAn+nzisacQa2zdp+yM0J3c6y7XtsG2RKxbRaxts9iWtmlCeljo2qbXL8uCyV7fOrs6W1s3qAHxOlMOQzcg1wdK/17Y3QfNp4qYGWlvrO3cpjxeUifTFG3YeoaoF5ZPH8j5hIWtuxMNLp/NrEtu63qJz2X6V1u3J5Ye29hu20ZpPIoUynC2k2PM2ZZVGBPYtiseRf1c/0kOuNs434blYu0Yb/iMY+J7Crq2kXI1u23boh19+0eu7Hy/N9N4eo+Rzo2ZU2Fir2t+EvZFnczkMKajTpZlYcZ7oe1MUIOedrBtGzu+B9q6MTIpT50qzXsg5txQR7dnvnXyUdaRamtBnlBHNy+9+pZnHii7vtk2wyNjqOEGlOZFZEd2+frlZ3eqHKvr7rHql0Qi+fggEy8SieSEpbe3l5Qd8zzZKkULhklaUXp7e/8kfvX09KAHWzxPN/NYqVHsUB1KMIKlBBkfHy/I0qk0lq2hqCpKIIwZqCU9MVyQjw/uxw42ogQj2KqGabqfSOvZNKhB8aQ53ICeGPCWq4VAVT1l79/+TvEEhaJg49gEZEYh2IASCKOoGqhhrEzxJIadnQA1LHSD9djp0WK5pgGKiqIoKIEoRNtgcnfR6cwYhOpQglFsNUzf/v2uOm16/d8h0lIh4oqwHYxCbBoMvFUUJfoh3JirUwDbcmzK49sK9RWXLirgqDOZYQjVC10tDEaqKLOyoARQVA0lEIZwIyQPFOUTeyDamitXFU/6nVi5mORO1ZjjuwoiM5kr1xFr9MmirpEALZQ7XVAPmWKssc1irIO5WCf2FOVjHzpOySh4MnfpIUedQ+465/60GOsOUtuLJ4xSe9dBbFrxFITTdGoAws7+ExDJozz6ZLH/hOog66jTZDGWiqKIeNruEzNAsf3717kFuQ1WQe48BTS4oeCz78WbJe1EwnGyIG/XEQ/6HU/SB/5QEg9HQCy9pJ1aRZIvT2YMgo6+lx0rqZMFOHQndhZlfrG2HPNEOjeWc7atTLxoNjkgxktBN4hlpAtyMzFQvn+AuC/HMd5wzk9mBlTnmGnAShXnJ7ERztdpGvrgpoJMH9kp+kAgIk4KKao7UZUeLfhla2H0VHG8VJv38nOuGop45lsnH2UdqbYW5FFDEbLBZnp6in2z0vo2Pj6OpQRBVVG0EHaoFssx51ayO1WO1XX3WPVLIpF8fJCJF4lEcsKSTCbFxXkHgxYhlUpV/7vDwNjYmLjksAy2mS36rWjoRnETaZqm+1UKLYJlFDeoRjZVfB1C0aD0Sbjl0Nci4NB1letTdjY9KS6r9MPKul/DUDWxKS3ITfFvAIGIKCtfbm5DVSAQ8yYx8n6pGpmsO5lkZCYgEBX/V+2rFMGYuOQzj5kRepDbsDviZSTFa0gFFHeywHC3E7bjKbttudspEAUz7dBNOfqAT4IDR0xK4mGb2aLP4B9rJfdalBZxJzD8Yp1NltTZ4VfpU18zU77OpQRrsJ2b9sxESTwdWFnQHH1L0dxtYRuO/hMF05GoMpIl48nHb4dPGAl/WV7ufHXLqOCzcAxXO+nJ8n96KLZziZMCgRjoJWMiUBwTrvYv9StY4peZqRzrEtu2w7ZtZECLltc1K4yJfNmu8VY6ZopfHkKLgV4cM64mDcaws47kiZ7wzKmuEwtmxjUvWs46VZn3XHNuyXzr4RDXkWprgYtAzJUQqrS+6bpREkv3nFvJ7lQ5VtfdY9UviUTy8UEmXiQSyQlLLBZzb3YrYaZdn8k9kjQ2NorNYhkULVT02zYJOi4+1LTSjU4aNVB8ghcIRcVx/ZwuJRcEKqpD30yL+0/8yvUpOxSpLb+xVEPFciGXaHHciaJqxdeTjLQoK1+uUpJ4MJIliQWHX5ZJ2PE5WoBAWFyWq/zZV8UJjkroJckU50kVT7KkJEmD7doLE3C3k2uj40nipNw/+gNRRx8oSYYIAxRiUhIPpfQkgV+s8yc+zLSoY0HZJ9aOC0zdyQPbm8jSwuXrXIqeQAkXL5NVwnUl8XSghsB09C27JMGoBBz9JwVa8XPH+S+1OJTLJ+D0BAQqJFL0BASLly8TqOCzcAxXO5VLTB6qbUXF007BkjFhFMeEq/1L/dJL/NLClWNdYltx2FYCYfEKXTldrcKYyJftGm+lY8aRiDGT4LhfxtWkehIlVFt0OVjjmVNdJ5S0sGteVJ11qjLvuebckvnWwyGuI9XWAhdGkoaG4mXVlda3YDBQEkv3nFvJ7lQ5VtfdY9UviUTy8UEmXiQSyQlLV1cXUSWJqVd4Qon4mkFMTdHV1fUn8au7u5ugPoyV9f8RqEabULIT2Hoa1dZdP4oj0QiqYmJbFraRQTMmidQVX7NpaJuOoo9h62kUy0Qr+bEdDEXA0sXXQzLjBGvaveWaWbAsT9nT558BqUHxZRLbRnEsMUq4CfRxbCMjTtVYGdRwcZOphOrAyghdPY4SaSqWqxXvT7GNFKQGoXZ20elwI2QnsPUUipWhc/p0V50Wn/cXkDwgbPtiC9t6Srzu035OUVTTAZmxXJ0MFNWxoa9fUKhv8a4Yx7IaboFsXOg6n+SD2LzaBrZlilMCmTHxGkueulmQGsqVm7tzxUn+Thk9BakhtIY5BZEWy5XriDXB4iaUQE3urpIUZOMQLsY6f0KhEI/UINTMKsobTyq2sV9CKNLqqHPJyZvcnxZj3U90/qcK4ujMZe52cpqOtkPG2X8Md8IoWFvsP9kJCDnqVFuMZeEOG6U0EUGx/TuWuQW5DXpB3uq4b6NtScFn3zsfStqJmpleu4540LG8KG8/uyQejoCowZJ2GoJah+1wI+iOvhdqLKmTSNwUdOvmFmV+sVYd80QkN5ZztlVn8izWLsZLQVdHdZx002ray/cPEK9bOcYbzvlJC4s7ZQpjZhw1Wpyf8glaUacDBNsWF2TB5rmiDxhpcTTGtkSSOa8baSr4pZgZglFH0qbKvJefc61s2jPfOvko60i1tSCPlU0T0kfo7i72zUrrW0NDA6qtg2Vhm1mU7CSqY86tZHeqHKvr7rHql0Qi+fggEy8SieSERVEULrt4OZN971X8u0Tfe1x28TL/OxyOAKqqcukF55Lt93+vXlEUQs1zMQc20Nrc6Hl639bSjJGZwBj+gLYZi1x+K4pCa9dJmAMbCEVrfA9ShCK1MNhDsGk2iurWDTXPxR7ZgpUZ95StahrRpk7x1SHV/SRbURSomwOjWyA7jqIGPH4pWggGe1DqZntirSiauNdi8B2ome76lKewPRsGe4hFQh7dYCgoEgqbn4PUsKfcwtP/wR7QIqiBYpJDVVSoydVJc7+qpGgaxNpgaGPxLg+nXFXFZjhn11OuFhV3k4xsgppO8fcFXQ1qphe+4OSNhwKoQl7T6ROPWYVYowR9yg4L3dqZ7nLzd6BYOgyJWCuaY4OqaeK+nMEeUDSvX6oKtV2+dXZ1tsEesAxC4eLGOhAMiI124atVpbGcASPvi5gFIt5YK0GhW19SJ00TbTj0Tu6uHNWnD+R8QkUJliS5nD5rIZdcCQZLfMa/fw32eGLpsY3ith0ojUeRQhnOdnImElS1MCZQFFc8ivq5/hNrd7dxvg3Lxdox3vAZx9TPKugqgair2RVFEe3o2z9yZef7vRbB03sCkdyYeR/qZrrmJ2Ff1EmLtYiTKDlUVUWr74LBjWDpnnZQFAWlfhYM9hAIRz11qjTvgZhzs/09nvnWyUdZR6qtBXmy/T1cuuIczzxQdn1TFFqaG7Ey49gjWwg1z/H1y8/uVDlW191j1S+JRPLxQSZeJBLJCc2FK5Zzxuwaxvds8DzpMvUM8T0bOH12DSsuWF7GwpHhy1ddwZz6FOk96zxPO61sGjMxSLPdT4M94PG7sS5GOL6ZcGY/DR3zXDJTz9AY02i2+7EG3/W1rY5uIpLciarHPXKtbiZKfCeh8U10dba7ZKaeYdas2Wjxrdh9r4tTM05qpsP4dhh4GzXc6BLZehrGtqGMbsFOHRD/7UBVbOh/Q+iXfOXFMlKQ7EOLb2VGXcq3HWfMPUk8+R9823vyxcjA/vUw+iHM/JRLZBkp8brHyGYYeser234ejG0TvpnuezTEKYYhoTvygVdX0WDwbRjfAQ0neXUtW+gO9Hh0bT0FB/4g5CjeeNXPLMTa9fpKXndki9AtnF5xVtoqxrq126urRoRu/xv+fiVHcnXe7BPrNOxfByObiSz+G3ex2TTBxllCt2+dV7d+nvBpsAdwn1ix9RSMbRW6iQGvbmu30O1/w/2KV1435xOxGf516svJIx1e2zM/LeLZt879Ol1e98AGoZs/nVImHsz+P7y6kY7y8bAdY6L1LK/uZL/QHd/pX6f+N4VcCfjEekEu1m+LhFapbuIAjGxGie/w9r2G+aJPD/agBkIlumlIl+8f4sTSZG68veudQ9Rccm18B2rjfI9tu389WnwrWrTZM3fFZiyF+HbsA2+gePpAGjs1iBbfSiC+/ZDnvcDkTubUp9Bs//lnKutItbUgvWcdc+pTfGnlFR7dSuvbjM52QuObUOI70epmumTV7E6VY3XdPVb9kkgkHw8UW34P7bhh5corWb362aPthkTyscOyLF59bS1rfreWpB3LXTiaJqYkueyS5ay4YPlhfeJ3sBiGwdOrn+OlV98kG2wp3FUR0oe5dMW5rLziC6x//Q1fvz9x8TIU4D9fXudbp/PPW8rq554va/uKL1zOc8+/4Cu/5IJzOHnRSbz0yuu+ts85ewk3futWduwbwI52FC7vVFL9zO1qoamphXc2b8eKtBdkanqA7tMWctst3+L+B35Iz3tbPfIzTpnPyMgwu/YPe+zOm9HOwz9cxVt/2OAbj9NOnsfqZ34qXpkI1YlXGoI1IqmS7Ad9khldXfQOxn1t33fvd7n2+m8xMJrw6DbXBhkZHRWvu5TaNZI89fgjXHvDTRiEPHLNTqMqKrqPLBKweOKxh/jKNdf56gbI8vzqn/DY40/6xuu0k2az8d13xatFJbqqleYnTzzGtTfcRNpQPfKQqpPNZHzrpFppnnjsIa657ptYauQjyT912SdY/4c/+va9v/7sZ/jCyq/4+hUki55OQaTBG+vsBI898kNuueMuX90AWYwKuk88/ih337vKt43bm2q4/97vsvIr1wh/S/XT4wTCEQwl7FvuT554jGuu+6avXxHNRAFSpuaR1Uc1nvjRw1zzjRuJp0yPvDYEyXTaN85Vyw1YPP3U43zz5tt969xSH0FVFQbHUr7xeOJHD/ODhx71H6unzkNBYeP7/uP8mzd8gy999eu+daqPavzkyR/x7TvvKTOHtNLU1MQ7m3f42r7jtpt5/oVf+M5dFy5bQt/+/by9yd+vSrrV5r3ly85n7br1R2QdqbYWfGnlFQQC3tfnoPL6dumF5/HBlg/53WtvHbLdqXKsrrvHql8SieT4RyZejiNk4kUiObLYti0+KZlKEY1G6erqOiaOE1uWRU9PD+Pj4zQ0NNDd3e364VfJ72p1qma7kryabcMw+NWvfsXg4ABtbe189rOfLfyIN02TNWvWMDw8TEtLC5dddpnr1YBK8kp2y/m1bds2vva1q3nyyaeYPn061157LfH4OPX1DTz++OPU1NQclG1d11m9ejUDAwdob5/GypUrCeZeD0kmk9x4442MjY3S2NjEww8/LC5szJFOp7nrrrsYHh6ipaWVu+++m0hE3H+RyWS4//77GRoapLW1jdtuu41wOHxQutXilUqluPXWWxkZGaa5uYVVq1a5LoasVHY13anIq/W9Sn7F43GuumolyWSSWCzGM8+spr6+/rDoVmrjau1crZ0q+ZXNZnnssccKfe+6664j5LgoupJ8KuVWq3O1eFTqe9XGebU6T2UOqdS/pqJbbd47kutItTFTiUp+TcXuVDlW191j1S+JRHL8IhMvxxEy8SKRSCQfja1btxYSLwsXLjza7kgkEolEIpFITiDkWTmJRCKRfOyZPn069913P9NLvngkkUgkEolEIpEcaY7Mi5sSiUQikRxD1NTUcM4551T/Q4lEIpFIJBKJ5DAjT7xIJBKJ5GPP8PAwP//58wwPDx9tVyQSiUQikUgkJxgy8SKRSCSSjz0jIyO88MILjIyMHG1XJBKJRCKRSCQnGDLxIpFIJBKJRCKRSCQSiURyhJCJF4lEIpFIJBKJRCKRSCSSI4RMvEgkEolEIpFIJBKJRCKRHCFk4kUikUgkH3tqa2v5xCc+QW1t7dF2RSKRSCQSiURygiE/Jy2RSCSSjz2dnZ3ceuttR9sNiUQikUgkEskJiDzxIpFIJJKPPdlslt7eXrLZ7NF2RSKRSCQSiURygiETLxKJRCL52LN7926++MUvsHv37qPtikQikUgkEonkBEMmXiQSiUQikUgkEolEIpFIjhDyjheJRFIW27bp7e0lmUwSi8Xo6upCUZQjrnu0sCyLnp4exsbGaGxspLu7G1VVD1o+FdumafLiiy8yPDxMS0sLn/zkJ9E0bcp+GYbBL3/5TwwODtLW1sZf/dVfEwgEDtovXdd55pmnGRgYoL29nauu+hLBYLCqz9XKzmazPProIwXZ9dffQCgUOijdSj6V88tJJpPhvvu+z9DQEK2trdx++x2Ew+GDilelsqvVKZlMcsMN1zM+Pk5DQwOPPPIosVisqgwglUpxyy03Mzo6SlNTEw888CDRaPSwxLrSWK0Uq2q61cpOp9Pceed3Cu10zz3fIxKJHJTtav22UrlT6bfV9KcS66nML9XaYSrzQDXbU5nrp1LnE5HjcV2VSCQSiUCxbds+2k5IDo6VK69k9epnj7YbkhMAy7J45dW1rHl5LSk7BloEzDRRJcllFy/nwhXLy/44noru0cIwDH76zHO89Nqb6MEWCMTASBLUh7n0gnO58ouX8+zPXigr//JVV7g2MYdi+4uf/xz33vcgb2/aihVph2AM9CRqeoAzFy9gemcnv1+/4ZD9uvC8bja9v5md+wawox0Fu0qqn7kz2nnowfv4+d//Y1m//vb/+muu/vr1DIwmINYBwRrQE5Dsp7UxxqwZM3j3gx0en89avJBbb76Rm279tm/ZM6Y1MzY2xkTa9Nitj2r85Mkfcced9/jqzuxoIZVKMjiW9Oi2N9XwxI8e5sEfPuoby5PmdPL+exsJRevI2iGPflgz6WhvZ0//iG+87r/3u1x7/bf849EQI5VKkcjavnV66MH7+NLV14oYl8jJTIKiQKjGKzOSPPHYQ1x7w01YasQjV600zz39FHffu8o3XrM6WxgeHmEyY/n69dwzf0fP2+/4jtUV53XzxFM/JW1qHt1IwOKF555m4zt/LDvOu886gyuu+irxlLeda8IKqVTKt04Bsvzi+dW8+8dNvrY/ceH5bP5gC79b+5Zvv/2//s/PsvLLX/Mtty6isWD+PP64Zech99u5M9r5wap7WfXgw7796/ST57J123Ym0oce62p1qjS/VJtvzz1nCTd869aPNA9csvwcTjl5Eb99Zb2v7QuWn89ra9d/pLm+2rxYqc4nIsfjuiqRSCQSNzLxchwhEy+SPwWWZfHs87/g3T0JajtPQwsWn26beobJvvc4Y3YNV3z+c54felPRPVoYhsENN9/B7niMUEc3aqj4xN3Kpsn0bYCxLShNiwh1LPHIs/09zKlP8fCD93o2CtVt/wF98H2shpPQpi1BCTrkehqz/02Y2EPd4r8mEImVlLsBe3QLdsNJRKaf7bKtpyaZfPcfoGkhtHejBoonIywjBQM9KKNbCE1bTGT6OR6/Ur1vkj3wHjSfAm3dKMGivq0noX89ZMZR534aLeSUpTEPbMAefh+aFsG0s91lpydg2y+h+WQfuykY7IGRzVC/AKYvdetmJmHbP4s6VdJtWEig6zxXLG09jbHrJRj/AJoXw/QVXv2BP0B8F8z/S9RQjTtefW/B+Idl4pHTndgNc/+/KOEat+zAH2Bsi79uNgl7/jeEG2HaeSihmFs3X6dGEUtvuT0wuhmaToZpS9zx0lPQtw6ycZj1Ka/tgQ0w+gGLzv5z6mec4RqrmeQkb695HmJtMG1p2VjPP/MSmud0e8b52J632drzUvk696+H7DjM+i9l6zzvjItpmbvEZVvPJNn00nMY0RnUzFzq6bfJfW+gD2yq0E4bIL4TZeFnCLjaydlvfWJppOCAiJfScqpnrJrZJNaOf4Noa8V4LTjrUppmn+Wqk5FJ8d7v/wEj2EjNrGWojvFUbX6pNt+O732H7e+8jFn/0eaBxN43CKR6WXzpFwmGYy7bE/v/iBLfBfVzqZ1+aHN9tXmxUp1PRI7HdVUikUgkXuQMLZFIXLzy6lre3ZOgYZZ70wOgBcM0zFrCO7sTvPra2sOqe7T46TPPsTseIzJrmWsDAKCGIljhZtKxuVgNJ/nKI7OWsSse5enVzx2ybUOJYNYvRGk7w7WRA7AVFWXaUqifT3LfG16/WrtJx+Zi26bHdmLbf0DTQpTO81G0knIDUZRp52A3LULPZn39yk4OQfMpQt+xiQTASENbNzTMxxrf5RIpwQi0d4uNL6prowfA7t+IpEvnMpRApEQ3itK5TOgm9np1e38HTSdB5/kogbBXd3pOd3KPJ5ZKMALpQZh2Lsqsy7x10gLQcR40LoADr3vihR4vHw9Vg46l0LAABjd4/EJB+NV+tld3chc0zIe2s8BMe3XbzhS6gbBHVwlGofU0IQ83euOVjUP7WcJ+sterW9MJzaewfSTgGavvvPkyNM4XbYnl0c3Hevsff+87znd88G75eJnJol+Te722c31gx7uveGzv2/QKenQWTDsXA80lU0MR9LE9uXKX+bRxULRT4wLsXvf8owQj0FI+lmogCqFaIW893dO/rNGtxXa09bJ12rn5TW+dtr+LHpsJrWdimIanTpXml2rz7d69u8X80nmeb52UjqViHsikPPOAgQbTzkWPzqR30yse24YSZVc8hlE795Dn+mrzYqU6n4gcj+uqRCKRSLzIxItEIilg2zZrXl5LbedpFf+utvM01ry8DueBuanoHi0sy+Kl194k1NHtK7dtG310J7R1k00nyvoc6ujmpVffwrKKm9Rqti3Lwojvg7ZucYqktGzTBDUIbWdixve5bGOLu0Zo60Yfc8tMw8TOjIvkCAqlG2ehb0FbN9bkfizTLTcNEzJjQr+kvrZtiwRBqF6cDJjc64mJbdtCN9HrjodhgJXN+QV+kbQhJ7ex9OIG1jJNcUKi7SxA8W8Hu6ir6+7Nr57VRSjauj3l2rYt4qEGoPVMSA5iWWZJ2SIe3nJtsHPt1HoGJPtEu+WlpgmJvpxflnu8WBZM9oo4hurBTHvGE0ZS6KaGXHYLcjOXBJvch+XUxRYJgFCDOHkU34NtW27did3Q1o1h2u7+Y5pYyUFxMihYC0bKW+9CrAOez3MbhoGZmSy0s9fnTM6vXP+xfPpnWzeoAbKZTOGfLMtiuG8HSvuZKKpPuboBZta3XOx8O+XaOD3s7vc22PmE4uReVywBLNuCyf2iDxgpV+e1LVu0Y/OpuXil/ftnWzemrmM4+qZt2wz1fojSvBglVEs2lfAdGH7zS7X51jJNUqO5vmeZvn+DbebmgQOeeSCbzaKoAZT2Mxnq2+Epe2jfFkId3QwNj/jbxn+urzYvVqrzicjxuK5KJBKJxB+ZeJFIJAV6e3tJ2THPU7VStGCYpBWlt7f4JH0qukeLnp4e9GCL56lrHiMxDKF68bRYC2FkvAkSyJ0SCTbT09Nz0Lb1+H4IN4on82oA23RsyCwTFBUURZwMibahj+wq6ho6dv5ESaQFY7z4ieTMgY0QnZY7baEAitiI523bwrYSjEK0jczIdpdf6QPvuPWdP+SNFGghFFUTp05C9VjJoYLYMrIO263uEw0Db0JM2C1cBum0nfvfSjAq7sjoX1eUjWwq+KQoitevHAXdvpInv72/h3AT7PhfkB4p0bUABUVRCjFhfIej7Pcd8Sjx2TJB0dy6k3uK8sndEG3N6apgO040pIcgVI8SCKOoGmghEd+CbR2UoNANN0Jin7tOZgbUvLwBUoPFUGYmQA072qkOMqNF3cwYhOqErhZh586dBdG29zdCuEn4pagiWWG5E1nOWO98419c/77z3d8X2lk44+w/CU//cfmFuw9se/3XBUm8fxt2pEWMBwVsFFeyIL13XdlyRf93t7E1trUYaiMNasA3loC4byc/VpUAlllMCJmJfgg3FNtRDYgEo2+dprHrnf8sSMYH92MHG1ECIVBUbFXDNN0JJfCfX6rNt/u3vwPRtsI4tksSsCIRpxTGambYEQ/TwkYBBZRABDvSQry/OE+kJ4YwA7WooQimrZFOuU9r5fGb66vNi5XqfCJyPK6rEolEIvFHJl4kEkmBZDIpLu07GLQIqVRxozgV3aPF2NiYuNSxDLaRKdZJ0bAto+zfEogxPj5+0LYtPQ1a1GG75ERCiW1LTxTllp1LqgDBmOvEjJ2dFBdolq2Uw3YghlVy2sbKlOo7kyMi0VBAi2A7NqHCb6VgG8NhOzshLhw9GII14vWePLpfnWz//x2sEa/ZONEnQAtDsg9K29Cm6DOIcoxirDGcZSuusuzS4wmBmLhQtVBuytEHSpJFZsY9XhRNxLdg3IL8fQ2BCJgl48W2im2hRd2vKtmGeAWq4FcUHIk9rGyxbFUjmy22oZ5JivIKfqlUinUmNY4TPRUv3/8sExTHnR1aRJxS8TFNsIZsspiU0TMJCDj7j/vkk5WJl+9fzn4JuTEz6RA7YxnzvPaFkRExBJEgcZ7CMDNCp+CWJtqmTJ0yybGi2WyqJNYalDvhUTK/VJtvs+kq8wCOmARjWFnH/FIar0ANRqYYL9Nw9B9FxSx3ogY8c321edFFSZ1PRI7HdVUikUgk/sjEi0QiKRCL+Ww6ymGmXZ+znYru0aKxsdGdHChBCYSLdbJNFLXCRY9GkoaGhoO2rQYdm2nbRHFciuj5PKiRRHVsKhXVsYnXkyiODZYSqgWfV5ccxkvsujdBarhU3/H3pckBM42iFZ/ECr/tgm3XBitU505KVEJPQLC++N9Bvzop/v9bT4iTFE6Cde7TJB4zjt2xnnRv8APOst0bUgVvO7k2/8Goow/Y7thr4ZJkSUlSS1GLm3DDkaRzyvNtYaZKkjgB9+slRkrccZJHDRXLtkxCoWIbBsMxUV7BL4tKsQ5HG3ASjNaX73+q5j71Y6bFSR8f0+gJQrEmh1817oQYtmucqOH68v1LcSfMxJipdYidsfTZ6AbCxf5jW66xKtrRUd/cibJydQrHGotmQ9GSWJvFZFspJfNLtfk2FKkyDziTiHrSdaG0UhovI0EgXIyXFnD0H9tCU9337bgomeurzYsuSup8InI8rqsSiUQi8UcmXiQSSYGuri6iShJTz1T8O1PPEFNTdHV1HRbdo0V3dzdBfRgr6//DNlDTAtm4+AKImSUQ9n9Sa2XThPQRuruL9xZUsx2snw6ZMfHVE8tAcWyMFTX31Ny2xd0TqUGCzXOKuoEgCpbwKz1MoGF2QRaediakDgi7to14KcORLMg9kbf1FKQGCTfPd/kVmXaGW9+ZLAhEwcxiW6Y4DZSNo8ZaC2I1EHLYHoLamUXd9nMhKewWTio4bef+t62nxKsdHcuKsubFBZ/EnSwlfuUo6HYudwu6LoL0sKesnNeAjW3bhZjQMM9R9qmOeJToqiIR5dKtnVWU184W97PoqdwJFUfiLtIK2Ti2kRGvlpnZ4qkKEPfG2LrQzYxBzQx3nbQwWHn5uHjNKV+9cB1YGUc7TYhXrfKEGyE7IXTNNHPnzi2IFpx6JmRGhV+2JU4IqY6kTUms5y79S9e/zz39okI7e2IdqPH0H5dfuPvAgvM+U5DUdyxASQ+L8WCLF+hUrfgTJjJzWdlylVySwdlOauPCYqgDEbAM31gC4vW1/Fi1DVRHslGr6YDMeLEdLUMktnzrdIA5Z/x5QdLQNh1FH8M2siKhY5lozkRUDr/5pdp8O33+GZAaLIxjpeTnnpI7yZQfq+EWRzw0FQW7cPeNkh6mvqM4T0TqWtGMSaxsGk0xiUT9T2T4zfXV5sVKdT4ROR7XVYlEIpH4IxMvEomkgKIoXHbxcib73qv4d4m+97js4mWuJ85T0T1aqKrKpRecS7bf/x4BRVEINs2FwR5CkZqyPmf7e7h0xTmuT3lWs62qKoH6GTDY4zqxUihb08TdGoMb0epnuD8TqkAwGITBHoKNbpkW0FDCDeITttj4TvOKCoM9qLXTXZvXvD7hRqFfUl9FUcRpgGwcRj+A2pmemCiKInRrutzxCATEhnSwJ18Fr1uQkyuoweJmX9U0cSHr4NuUnnRwKed0g0F3oiAYCvrf5pv3V1HFhnloI8TaUB1P8EXZIh7ecpXc6yE6DL0DsU7RbnmppomvBw32AKp7vKgq1HaJOGbjoEU844lATOhGW112C3ItIuS1M1BLEw1KUFxIPLoF6mflNtoO3brZMNhDQFPc/UfTUGNt4l4dfRICUW+9C7E2CIXciYJAIIAWri20s9fncM6vXP/xO+Ex2AOWQShcTHCoqkpL5zzsgY3Ylk+5wYA4PeNTLkq+nXJtHGlx9/vcXSYiljNdsQRQFRVqp4s+EIi6D4GpimjHkfdz8Yr498/BHrRgkICjbyqKQmvXSdgjm7Czk4SiNb4Dw29+qTbfqppGtCnX98qdSFG03DwwzTMPhEIhbMvAHthIa+c8T9mtMxaR7e+htaXZ3zb+c321ebFSnU9Ejsd1VSKRSCT+nNgrmkQi8XDhiuWcMbuG8T0bPE/ZTD1DfM8GTp9dw4oLlh9W3aPFl6+6gjn1KdJ71nmewlrZNGpmhEhyJ+r4h77y9J51zKlP8aWVVxyy7YCdRotvxR58B1sv+ZywbWH3vwHx7cRmLPX6NdRDJLkTRdE8tmsWfApGt2L3rccuOaZuGSnsA2+hjG4hGAr5+hWqbYWRzUI/f4IgT36DOr4dtWGOS2TraRjogZHNkD+R42T2p2FkC/StEycXXLop7L51Qrdmple36xIY/RD61ovTEqW6+3O6tbM8sbT1tDh9okVg9ANvnUwD+l+HsW0w7TxPvAjWl4+HZUL/GzC+DdqWePzCQvg18Aevbu0cGN8uEkolr7fYegoGNgpdI+PRtfUUDL0n5Jkxb7xC9TDwtrAf6/LqJvpgZDPzmw3PWD3j3IthbLtoy5KfCc5Yz/+zi3zH+byTTy8fLy1W9Mt5Igp3H5h3+oUe2zMWX0gwtRcOvEkA970iVjZNsHFWrtx1Pm2si3Ya24bS5Z5/bD0Nw+VjaRkpyE4K+dC7nv6lNi0stqPiTvo56zT3lHO9dZp/OsHkPhjaSEBzv8pYbX6pNt/OmjVbzC99r/vWye5/Q8wD4ahnHghgwoE3Cab20rX4Qo/toJ1iTn2KwOTOQ57rq82Llep8InI8rqsSiUQi8aLY8ttzxw0rV17J6tXPHm03JCcAlmXx6mtrWfO7tSTtWO4SzDQxJclllyxnxQXLyz6JnIru0cIwDJ5e/Rwvvfom2WBL4WLYkD7MpSvO5YovXM5zz79QVv6llVcQCPjf/1LN9hcu/xzfv/9Bet7bihVpFxdi6knU9ABnLZ5P5/TpvLJuwyH7deH53WzatIkd+4awox0Fu0qqn3kz2vnhg/fxwi/+saxfn/ubv+bqr1/PwGhCvGoRrBF3aCT7aWuMMnPmTN7dvMPjc/dpC7nlphu5+dZvs2PfgKfsmdMaGRsbJ562PHbroxo/efJHfPvOe3x1Z3c2kUimGRxLenTbm2p44kcP84OHHvWNZfdpC7nhuq9zxZeuJm2oHv2IZjCtfRp7+kd843Xfvd/l2uu/5RuP1sYYqWSCRFbxrdNDD97Hl66+VsS4RE4mLk7chGq9MiPJE489xLU33ISlRjxy1Urz3NNPcc+9q8rEq4Wh4WEmM7avX88983e8vfEd37F6wXndPPHUT0mbmjdWAYsXnnuad979Y9lxftaZZ3DFVV8lnjI9+jUhhXQ6helTpwBZfvH8av743iZf25+46Hze/2ALL7/2lm+//Zu//iwrv/w133LrIwrz5y/gj1t2HnK/nTejnQdX3csDP3jYt3+dfvJctm7dxsRHiPWlF53PBx9s4Xdl6lRpfqk2355z9hJu/NatZetUaR64+IJzOPXkRfz29+t9bS9fdj5r163/SHN9tXmxUp1PRI7HdVUikUgkbmTi5ThCJl4kf2ps2xafs0yliEajdHV1HfRR5qnoHi0sy6Knp4fx8XEaGhro7u52/ZitJp+KbdM0WbNmDcPDw7S0tHDZZZeh5V4vmYpfhmHwq1/9isHBAdra2vnsZz/r2tBUs63rOqtXr2Zg4ADt7dNYuXJl4VWeSj5XKzubzfLYY48VZNddd53r9ZFKupV8KufXxMQEv//977nooouIRqPcf//9DA0N0traxm233UY491pLtXhVKrtanZLJJDfeeCNjY6M0Njbx8MMPi8szq8gAUqkUt956KyMjwzQ3t7Bq1SrXRZpTiXWlsZrJZMrGqpputbLT6TR33XUXw8NDtLS0cvfddxOJRA7KdrV+W6ncqfTbavpTifVU5pdq7TCVeaCa7anM9VOp84nI8biuSiQSiUQgEy/HETLxIpFIJB+NrVu38rWvXc2TTz7FwoULqytIJBKJRCKRSCSHCflYQSKRSCQSiUQikUgkEonkCCETLxKJRCKRSCQSiUQikUgkRwiZeJFIJBKJRCKRSCQSiUQiOULIxItEIpFIPvZEo1GWLFniupBWIpFIJBKJRCL5UyC/1Sc57GT+8SGsvl1H2w2JRCIp0ALc1Q788gEynXMI/803j7ZLEolEIpFIJJITBJl4kRx2rL5dWLs2H203JBKJRCKRSCQSiUQiOerIV40kEolEIpFIJBKJRCKRSI4QMvEikUgkEolEIpFIJBKJRHKEkIkXiUQikUgkEolEIpFIJJIjhLzjRXLYUTvnHG0XJBKJxEU6nWbHjp3MmzeXmJyjJBKJRCKRSCR/QmTi5RB58MEHWbPmxYp/82//9htCodCfyKNjD/m1EIlEcqyxb+tWbv3a1Tx5y80sXLjwaLsjkUgkEolEIjmBkImXj8jixYuZPr3LV6aq8g0uyZ8O27bp7e0lmUwSi8Xo6upCUZSDklfTtSyLnp4exsbGaGxspLu7u9C/TdPkxRdfZHh4mJaWFj75yU+iadphKXcqtqtRqU7V7Oq6zjPPPM3AwADt7e1cddWXCAaDABiGwS9/+U8MDg7S1tbGX/3VXxMIFKfYqdR5Ku2UzWZ59NFHCn5df/0NrsRwJpPhvvu+z9DQEK2trdx++x2Ew+GDqnMlWbU6VWvjqbSTn3zu3Ln86lf/TG1tbUX9SuVWYyrtVK3cqfhVTXcq8ZjKWKzGkbR9LJYrkUgkEonk44ti27Z9tJ04nsifePnWt27iU5/61J+07JUrr2T16mf/pGVKjl0sy+KVV9ey5uW1pOwYaBEw00SVJJddvJwLlp/Pa2vX+8r//KJlAPzn79f56i47fynPPPs8L732JnqwBQIxMJIE9WEuXraEfb19vPP+NqxIOwRjoCdR0wOctXghd377Vl5/462PVO55S8/hnntX8famrYds+7KLl3PhiuVlN6OGYfDTZ57zrdMly8/hlJMX8dtX1vvaPXvJWXzla99gYDQBsQ4I1oCegGQ/rY0xamIx9vQNY0c7Cj4rqX7mzmjnkR+u4s23NpT1uVKdz1y8kE9cehG/e/WNQ26nFUvP5PevrGUibXp8ro9qPP7oD/nKNdeRNlSPPBKwePqpx/nmzbf71rm5PoKmqgyOJT2y9qYanvjRwzz4w0d963TGqfOxbXh383bfNv727Tfzs5//4iO1U6U+X03+iQvPZ/MHW/jd2rc85V56wbl8+aorXIm0QxmLlcfT2aDYvLx2g2+5V37xcp792Qu+utX8qtTnL73gXK668gusW//GR4pHJd1qY3Gqc9tUbB+L5UokEolEIvn4IxMvh4hMvEiOBSzL4tnnf8G7exLUdp6GFiyeUDD1DJP738OO74L62dRN/zOX3Mim2Pnm/4RIE/NOvxgtFHHpTvT+kYEdfyAVnkmoYwmqU55NEd/+MmTjaHP+AjUULchsPY05sIFwYgezFl9Aw4wzDrHcd9n13qukY3MJTDsbJRjxtT178QrqZ5zurXPfe5wxu4YrPv85z+bIMAxuuPkOdsdjhDq6XXWysikSu9cRMMY57aK/IRCOuuyO793I1p6XsJtOhrZulKCzzikY+ANM7IF5/w01VFO0a6RgoActvpUFZ15MfUk8TD1DfN+77N70KpnYPLRpS1x1tvQ0Vt/raNkRzvjE5wmW+FWpnbKpSRLv/gKaTvL3ebAHRjZD08nQvsSnTj0wWkaeScCOf4H6OdB+dnnbzacQ6Di7pE4pzP2vQ2oYdd6n0UIxVxsb/W+hxbcRal/sqZOVTZPY+waBVC+LL/0iwXBR19QzTOz/I0p8F9TPpXa6d0yMbH+dA1vX077wPFrmn++S65kkm156DiM6g5qZSz3lZvt7mFOf4uEH7/UkOaqNxXw7JUMzCXe662Skk0xu+iXUz6Z+9vk+5W7AHt0CjScR7jz7kPyq3OfTZPo2UJPdS9u8s6nrKpkjMine+/0/YAQbqZm1zDXO837FMv661cZiNarObVOwfSyWK5FIJBKJ5MRA/nqQSI5DXnl1Le/uSdAwa4lrgwCgBcMYtXPZHY9iKlGPfKx/B5nIdDL1pzA2kfTojiVNRpUO1LbTXZs1gNTECLSdBQ3zsSZ6XTIlGEHtXEY6NpcDe7Yecrn96QbSsbmoNR2uzXrBdsdS0rG59Pf3+ta5YdYS3tmd4NXX1nri9dNnnmN3PEZk1jJPnQzTgLYz0WMz2Lf9XY/dXTt2YDedjNKx1JVkAEDVoGMpNMwXCQenKBBFaTsTs34hew+M+/rcP5oUdW4/01NnbBPazsKomcP2TW96dCu1U+LDfxNJl87zUQLucpVgFFpPg+ZTINzgqZMSjELzyUIebfXWeeAtaFwAHeeBGvDqtp4hdIMxT50sU8/1n3lYY9tLdCOgKJj1CzGaz/S2ExpMOxc9OpPeTa944mEoUXbFYxi1c31jnQ23Mzkxjm6pHvm+Ta+gR2fBtHNFOQ7UUITIrGXsikd5evVzlFJtLI4p7YwqHWg1bZ46Zfrewm6YB9POJWO4n4GooQhW02LSsblYwXqPbjW/KvV5NRRBq2ljROlgXGn3xmP7u+ixmdB6phgfJbpq2+mMKB2MJc1DHovVqBbPqdg+FsuVSCQSiURyYiATLx+Rd97ZyN/93d/xyCMPs3r1M7z22mtks9mj7ZbkBMC2bda8vJbaztPK/s3g8Aihjm4G923BeajNtm2G9m0h0HIygXAdQ8MjHttDvR+itS8hm0qA7ZYZegZCDdB0MvbELkoPzNm2BW3dxEcHME3zkModn0hAWzd2fLfHLoBtmcL24F4sy/Ktd23naax5eZ1L37IsXnrtTUId3V4FG7KpBEqoFqV5McO9W126pmmSnRyEtm6wS8u0RXJEDYpkQ2K/yy8bwEhBWzfJkV6Pz7ZlET+wS9RZdyeiAPFvoVqUllMZH9iF7bRdoZ0Mw4CsiCUo2JS2kQ1GRsgn97nsFuRmOiffK9o0LzNNSPZD65m5pItFSScBM5XT7cO2nLLciZhgLTSfChN7XXLLsmCyF9q6RR1KukA2m0VRAyjtZzLUt8Md61z/CnV0e/pWntGxcfH/D+z29I/hvh0o7WeiqIGy83ioo5uXXn3LU27FsWjbDI+MiXYa2eUpVx/bC225cnXdXWcbsulJaOtGH93tjmUVvyr2+Zzf2ZGdaO1LGBoZE+3mkA31fojSvBglVOvpX/kxo7Uv8YwXJ35jsRoHM7d9VNvHYrkSiUQikUhOHGTi5SOyZs0afv3rf+Y3v/kN/+N//A/uvvu7XH755bz11pvVlSWSKdDb20vKjnmeyuZJp9JYtoYaimAGaklPDBdlE0OYgVqUQBhFVTFtjXQqXZCPD+7HDjaiBCPYqoZpFjeh2eQ4thZGUTUULQShekiPFQu2xf5MDUSxo+0M73z7oMsdHBwELYQaiEKwDjIOu4iNkY0ibEfaGN6z2bfuWjBM0orS21s8jdPT04MebPE89QcwzSy2qoGiogRCWMEG4kP7C/I9WzZAtC136kNxJ18sU+gpipBH22Byt0OugxoQsnAjfXu2usoe3L8LO9wg6qQGsE29WF9Tx1YDKKgoWhg71MBQ366CvFI7pXs3QGwaSjCauxBUcW2sMTMOvxogPegOipEELSzkoQZIjxZlEzsL8SjYdiYiLB2UYp2tRF8xHEauXFUTp3DCjVipAYftPRDJnbBRVFcCxDItbBRQQAlEsCMtxPuLJ2by/UsNRTx9C8SYsHMnWSwt5hoT8f5t2JEWlEBEhAoFy/Qm9tRQhGywmZ6e4smmamNxfHwcSwmKdgrVYjliaYztgkgrqhZBJMhUdKPYB/RsGtSgGBPhBvTEgLeAMn5V6vMAVmoUO1SHEoxgKUHGx8eLPuf7ViAEiurpX/kxowQjnvHixG8sVqNaPKdi+1gsVyKRSCQSyYmD/KrRITJ//jwWLryGs846i/b2djKZDDt27ODnP/8577+/iTvvvJNVq1ZxxhlnHrTNJ554gieeeKLq35188qIpeC75uJBMJsWlj2UwTZEQAECLiA1vXmZk3bqKimkVT6YY2RQEcnJFc2+qTUP8Wx4tgm1lyH/rQ5ysyP1XsIZsKn7Q5erZbNF2IAJmyakD24b8V0UCMTLpibL1R4uQSqUK/zk2NiYuBvXBtix3nQIR9GxRV09NiMtfyVet5NE/ji+dBMQlsQ7jxXYIRMim3adaspkUaPnXeFTE6RGHrjMvrkXJZIp+VWynrMNn/0oX66zFRCLGJTcd8rA4/ZJHT4qLdAsouE+8OOscxTYcuk67uTrh6JvoSUc7KVi2+2SJO9Y1GJnJwn+6+ldJ34LcmMjrayHXmNAzCQi461T2REMg5kpSVBuLuu4YM1oE29GvxekfRzsp7nJtyz2OXbGq4lelPg8IP7Ri/9GN4utErr6Vk7uTa5ZrrDrHi4eSsViNavGciu1jsVyJRCKRSCQnDjLxcoh85jP/3fXfsViMJUuW0N3dzXe/exfr1q3jySef4ic/+clB27zmmmu45pprqv7dypVXHrK/ko8fsVjMvRkuQdO04skMM43quONDC4TcuraFphY3w4FQFPKbZdsExyWSihYA27H5M9MoatG2goJIHiigJwhFZxx0ucFQSJQHonyt+LljYTx3akMBjCThSF3Z+mOmiUaL95I0NjaKUxw+KKpaLDdXdtBxkWgwWgdDuZMGNsXkT67GrmSJkYSaaU7jxXYw0oQi7o1wKBwVr+VAzo7q1nXaNlOEHZfrVmynUB1MDvnWt+hXrs5mErTOErkGdi5BYGbcG9JgDFLOEzK21+9CnVMogY4Su45Ymylw3j8TjMFk/oSMjao46qSUJHiMBIFwbeE/Xf2rpG+BGBNKMEp07iUodtY1JoLhGjASrjqV/XSwkaShoaHwn9XGYjAYcMQ6LU6K5esUjJYk6tzlKqp7HBOocBqjxK9KfR4QfpjF/hN0XMzr6ls5uat/OcdMyXjxUDIWq1EtnlOxfSyWK5FIJBKJ5MRBvmp0mFAUhc9//gsA7NixnYEB/2PhEslU6erqIqokMXX/J+CRaARVMbGyaTRjkkhdS1FW14pmTGIbGWzLQlNMItHixrqhbTqKPoatp1EsE82xUQzFGlDMDLZliifm2ThEGosFK7lUhJFCSQ3QMvesgy63ra0NzKz4EpA+AWGHXcT4UrCF7fQgLbNO8a27qWeIqSm6uroK/9bd3U1QH8bKejdWmhZCsUywLWwji6qPU986vSCftWgJpAbF6QTs4gkEEBfr2pZ4DUpPiYRE7WyHPAiWIWSZMTpnLXSV3TZ9DkpmXNTJMlC0YLG+WhDFMrCxsM0MSnac1s45BXmldop0LYHkAWw9lTtBYbsTRlrY4dc4RNrcQQmIUzC2noLsOESairK6uYV4FGy7NuVBsIt1VmuKSR01kCvXMrGNjJBH2x22Z0F6SOjaFqFQsU6qpqLk3mWzjTRKepj6jvnFOuf6l5VNe/oWiDERCIUJtZ9OkKxrTNR3LEBJD4vTOXbupR/NuzRa2TQhfYTu7uK9KdXGYkNDA6qti3bKTqI6YhlonAPpISwzTe4FJ4KBYh8IhiJg6WJMZMYJ1rR7CyjjV6U+D6BGm1CyE9h6GtXWXUmbQt8ysmBbnv6VHzO2nvaMFyd+Y7Ea1eI5FdvHYrkSiUQikUhOHGTi5TAya9aswv8eGqrwxFkimQKKonDZxcuZ7Huv7N+0tTST7e+hbcYi91N0RaF1xiKM4Q8wMxO0tjR7bLd2nYQ5sIFQtMb1doeiKASCYbEZH/0ApW6O52SAoqgw2EN9U7s4eXMI5TbU1cBgD0r9bN8TB4qqCdttM8t+zjXR9x6XXbzMpa+qKpdecC7Z/h6vggKhaA12dhJ7ZBMtXQtdupqmEaptE18sUkrLVHKvYegw9A7UTHf5pQAEojDYQ6y5y+OzoqrUT5sj6uzzapASjEF2Env4fRra54iTBo54lWunQCAAoZrcV5bs3EkkXLoEwkJeO8NltyDXIjn5TNGmeZmmQawDhjaCZSCWEFcnEa8QDfZAbSeK6pTlT3lMwsj7UDfTJVdVFWq7YLBH1KGkC4RCIWzLwB7YSGvnPHesc/0r29/j6Vt5mutjpLb/B80dczz9o6VzHvbARmzLcCV8nGT7e7h0xTmeciuORUWhpblRtFOzt9xg40wYzJUbDLrrrEAoUguDPQSbZrtjWcWvin0+53eoeS7mwAZamxtdibl837JHNmFnJz39Kz9mzIENnvHixG8sVuNg5raPavtYLFcikUgkEsmJg0y8HEbi8eKdFvIosuRIcuGK5Zwxu4bxPRs8T2lNPUNgcidz6lNodsojb+yYRzizn1B8M411MY9uY0yj2e7HGnzX88Q8WtcMg2/D+HbUOvdTX1tPY/WtI5LcybRZCw+53I7IOJHkTqxEP7buLtfW01j9bxBJ7qSjo8u3zvE9Gzh9dg0rLljuideXr7qCOfUp0nvWeeoU0AIwtJFgch8z5p/usTtn3jyU0S3Y/W/kTr44sEzofwPGt+e+IuQQGSnswY1o8a3MnNbg63Nnc0zUeWCjp84oGgy+TSCxi/mLz/XoVmqnmpP+K4x+CH3rxekSVyxTMPgejGyGzLinTraegpEPhDw15K1z+zkwth36X88lX0ptvyN09aSnTqoWFEmZ8R2ojfNLdNNg22jxrQRGNnrbCRMOvEkwtZeuxRd64hG0U8ypTxGY3Okba2v4fbJDH2Clhj3yGYsvJJjaCwfeFOU4sLJp0nvWMac+xZdWXkEp1cZiEwM02/2YiUFPncKd56CM74QDbxIOuDfzVjaNOrqJSHInqh736Fbzq1Kft7JpzMQgzXY/DfaANx7zTyeY3AdDG8X4KNG1Bt+l2e6nMaYd8lisRrV4TsX2sViuRCKRSCSSEwPFlt9FPGz8+tf/zN/93d8Ri8X49a//RTy1PYysXHklq1c/e1htSo5fLMvi1dfWsuZ3a0naMXFKwUwTU5Jcdslyli87n7Xr1vvK//ziZdjAb19e56t7/nlLWf3c87z06ptkgy3i9RMjSUgf5uLlS9i3bz8b39+OFWkXd3PoSdT0AN2nLeQ7d9zKG2++9ZHKXXruOXzv+6voeW/rIdu+7JLlrLhgednTMIZh8PTq53zrdMkF53DyyYt46ffrfe0u6T6Lr3ztGwyMJsSJj2AN6AlI9tPWGKMmFmV33wh2tKPgs5LqZ96Mdh7+4Sre+sOGsj5XqvNZixfwiUsv5nevvnHI7XTBeWfyyu9fI562PD7XRzUef/SHfOWa60gbqkceCVg8/dTjfPPm233r3Fovvm41OJb0yNqbanjiRw/zg4ce9a3TmafOB2w2vr/Dt43vuO1mnn/hF/5974JzOPXkRfy2TDtV6vOnnTyP1c/8lJVXfZn3PtjhkX/iovN5/4MtvPzaW55yL11xLl9aeUXZOb3aWKw8ns4GbF5eu8G33Cu+cDnPPf+Cr241vyr1+UtXnMvKK77A+tff8PX70ovO54MPtvC7MvGopFttLE51bpuK7WOxXIlEIpFIJB9/ZOLlENi2bRsDAwMsXbrU9RqFZVn8x3/8Bz/+8eNks1k+97nP8cUvep9AThWZeJH4Ydu2+BxqKkU0GqWrq8t1FL6SvJquZVn09PQwPj5OQ0MD3d3dhY2HaZqsWbOG4eFhWlpauOyyy1zjYirlTsV2NSrVqZpdXddZvXo1AwMHaG+fxsqVKwkGxb0chmHwq1/9isHBAdra2vnsZz/r2hBPpc5TaadsNstjjz1W8Ou6665zvU6TyWS4//77GRoapLW1jdtuu41wuHiRa6U6V5JVq1O1Np5KO/nJt23bxte+djVPPvkUCxYsKKtfqdxqTKWdqpU7Fb+q6Vbyeyq6U+VI2j4Wy5VIJBKJRPLxRSZeDoG1a9fy3e/eRV1dHQsWLKCpqYnJyUl27dpVuEz3kksu4ZZbbnVtIA4XMvEikUgkH42tW7cWEi8LFy6sriCRSCQSiUQikRwm5OekD4F58+bxl3/5l3z44Yfs3buXTZs2Yds2TU1NrFhxIZ/61KdYunTp0XZTIpFIJCWEQiEWLFhQ9vJciUQikUgkEonkSCFPvBxHyBMvEolEIpFIJBKJRCKRHF/IW+IkEolEIpFIJBKJRCKRSI4QMvEikUgkko8927Zt5dOf/gu2bdt6tF2RSCQSiUQikZxgyMSLRCKRSD722Lb4CpN8uVYikUgkEolE8qdGJl4kEolEIpFIJBKJRCKRSI4QMvEikUgkEolEIpFIJBKJRHKEkIkXiUQikUgkEolEIpFIJJIjROBoOyCRSCQSyZFm1qxZPP30M3R2dh5tVyQSiUQikUgkJxgy8SKRSCSSjz3hcJg5c+YcbTckEolEIpFIJCcg8lUjiUQikXzsOXDgAA899BAHDhw42q5IJBKJRCKRSE4wZOJFIpFIJB974vE4//t//zvxePxouyKRSCQSiUQiOcGQrxpJJIcJ27bp7e0lmUwSi8Xo6upCUZSD0jVNkxdffJHh4WFaWlr45Cc/iaZpB2W3mtyyLHp6ehgbG6OxsZHu7m5UVeRcDcPgl7/8/7d35/FRVff/x993JpPMTDYIJCQEhSAxKqgQFNSwVQXbr9iKaN2KG1VrtX6tW/1Wba32a621Vm2LrRa3alu1XxG1v7ZEEYGISwmIgGCAABITshCyzUwyy/39ERMYspCQuZksr+fjweMR5px7zuecnAzMJ+ee+7IqKiqUmpqqb3/7YsXExHSp7c7a7cl4uxJXT9ruLO6ezLXf79ef/vS0ysvLlZaWpu9+91o5HI4u9WvlXPek366UWyVa/VppII4JAAAAh2eYpmlGOwh0zcKF12jx4meiHQYOEQqFtHJVgfJXFMhruiW7Uwr65DI8mj0rTzOm53X4IbmpqUn33f+g1m0qUsiZJjnckt8jm69cE8dn6+wzZ2n5qg/abXda3ulaXbCmw37POH2q/vTM81q++iP5HcOkGLcU8Mjhr9LM03P16cbN2llSIdOV3tqv4S1T1qg0/eaRh/TRx2vbbfusGafrsy1b9W7Bx23aPXPaFF333as7TJJ0Nt5J47N115236o677lHxnvJ243r80YfldDqPqO17fnynnnvhpXbn42t5p+q4447V8pXdn+uZZ5yq5194SeX7GyR3uuSIl/wNkqdMaUPj9eTvHtOLf3m53X7PnDZF373mSr2/5sOIz3UgENBTf3r2iPrtyvrqbF33RE9+njpTVFSk73//Bi1a9KSys7MjHndnrBoTAAAA+gcSL/0IiZe+JxQK6ZnnX9KG3Q1KyJgguyOutSzob1R96UadPDpeV19xeZsPVk1NTVqw8HuqNjJkT5ssw3EgoWD6fQqW/Ue2ht2aOOdaOZzusHbrvvxURu1OKSlLCSPb9ltX8qnKd/xH3rijFJs+WbbYA20Hm7yq3b5CaqyVRp8jm+NA26GAVyovlL22SMecPEvJR50c1ra/0aNNy59VwDVK8UdNDWs31ORTU1mhxiR59ejDP2+TEDjceAOlH0nVW6WU46W0XNliXOFxVRTK6SnWqy892yb5cti53LtWtprP5Ug9QXEZp4TPR6NXnqJ/yBE/TONP+4ZiDi7zN6r+y40ya3dKSaOVOPLEsPlo9DZo3b/+ICVmSWmTZThcB/XbHLP2fSZn+kmKG3lKu/Platyt1LGTlZR5UsTmOhAI6Id33q1dtW7Fpud2q9+urK/O1nVP9OTn6XCilXixckwAAADoH/hfHtADK1cVaMPuBiUfPTnsA5Uk2R1xSj56sj7Z1aBVqwvaXHvf/Q+q2shQTGZeWKJAkkxbjJQ+VcGELG1bt6xNuwHDpZ21bgUSstrtd78nqGojXbbUk8I+dEtSQ91+KXWSlDxWatgTVmaLccnIOE3BpGzt+WJXm7b3bFopv+toacQUBWQPvzbWKefRZ2hnrUtPL362W+M1HM7mRFDK8TIyTgtLurTEZcvIk8+dpVtuvbPbbRspxymYlK1AzJA28xGs+0Jm0lg1JY9XSWl5WJndEadAQpZ21boUNFxt5mNTwRtS8jgZGVNl2B1hZYbDJQ0/SUo5Xo2Gs02/tlinbOmnqtpIV82+qojO9VN/ela7at1yHn1Gt/vtyvrqbF33RE9+ng5n6NChuuSSSzR06NBIhdslVo4JAAAA/QOJF+AImaap/BUFSsiY0Gm9hIwJyl/xvg7eXBYMBrVuU5HsaZPbbzsUlGGzS6kTVVvxhUKhUFi/lXu2KjY9V5VV+9qNq7Lkc9nTJqvJ2yCZ4WVBv0+KTZZSjpNqd6vNprdQUErNlWd/qULB4IGXQyFVle6QkTZRhi1GTU1N7cYem56r5as+Dov5cOMNBoNSU7WUmhsWbxupudqxp1yBQKDLbcts3vWi1FwFanbLDB3owDRNNe0rlpGSI1tcsir37ZcOmY+Kqn2KTc9VxZ6tbb6HTfUV0vCJkhEjmaGw60zTlAJeKTVXZl1J2Hy0aGpqkj1tsipLd4SV92SuQ6GQlq/+SLHpue3PRyf9tsTd2fpq0d667ome/Dx1xfDhw7Vw4Xc1fPjwnoTZLVaPCQAAAP0DiRfgCJWUlMhrutv8FvtQdkecPCGXSkpKWl9btmyZQs60NrszpOYPa6YMSYZsMU6ZzlRV7f6stdxXV6lgTIJssU4FTbt8Xl/Y9TUVX8p0DJHhcMq02RUMHvjQ3thQK9ljZdjsMuxxUmySzMYDH65NhSTDaN6t4UxV6Y4NrWW1ZdtkOofJiHFKhmTKUCjYNplgi3WqyZGiwsLCLo1XklS1WXKNkOFwyTQks4Psiy3GJdOVrldffbXLbYcCnuYxO1xSbFJzsqSlzFstMzZRhj1WstkUMhyqqalpLfd5fQqZ9ua5jkmQr66qtWz31rWSK7W5XaP5+xWWfAk1SbaY5vK4ZPn2fxkeVzAkU0bz98k5TLVl21vLejLXhYWF8juGtdnp0pV+pcOvrxbtreue6MnPU1d4PB598sl6eTyenoTZLVaPCQAAAP0DiRfgCHk8nuZDMrvC7pTX6239a1VVVfPhr+0xza8+yH8lxq1GX13rX4OBpgP9GjYFQ8GwywNNXimmpdwuhe2GCDa/1tq2Uwr5D+r7oIYc4f36GxukmPiDKhgd/4Y+xh2WwOh0vJJMf/1B5UabXSdhHG5VVBy4JehwbevgMcc4FQo2Hug32BT+PTTs8h+ym0bGV2+TdqdCgQPX+r114f0aUvj2otCBfu1uhQLhCYzmufvq+xwTr0Bj/YG2ezDX+/fvbz5ItwOd9Ssdfn2FOWRd90RPfp66oqSkRLfffnuvJjesHhMAAAD6BxIvwBFyu91SsP3dAG0EfXK5DpxbMmzYMMnfwW/ejUMSDwGP4pyJrX+1x8Qe6NcMyW4LP/8jJtYltXzIN4PSQQd22mz25tda2/ZJtoPOJjn4ybb+8H4dcfFSoOGgCmbHj8INeJScnNz6107HK8lwJBxUfkji6VB+j1JT07rctg4ec8Anm/3A7gPDHhv+PTSDchx0UK3dbj+wiyXoky3mwLUOV2J4v6YUNoGG7UC/QY9sMYecPWMYak3UBBoUE5dwoO0ezPWQIUOkQCdz3Um/0uHXV5hD1nVP9OTnqa8aiGMCAABA95F4AY5QZmamXIZHQX9jp/WC/ka5bV5lZma2vjZnzhzZfOXNZ48cwjAMGTIlmQoFfDJ8FRp29PGt5c7E4bIH6hVq8sluBOV0hX+gT04dKcO/X6bfJyMUlN0e21oWF58kBZtkhoIyg41SU62MuJQDfcsmmWbzE3l8FcoYe1JrWVL6OBm+KpkBX3NuRKZs9rZvIaEmn2L9+5Sbe+CMkc7GK0kadoLk3SvT75VhSobaTzKEAl4Z3jJddNFFXW7bFuNuHrPfKzXVKjYh9UCZa6iMprrmnS+hkGymPyyJ4XQ5ZTOCzXMdqJczcVhr2dE5kyVvRXO7ZvP3q3V3jCTZYqVQoLm8sUbOISPD47LbZMhs/j75qpSUfkxrWU/mOjc3Vw5/lUJNHcxHJ/1Kh19fLdpb1z3Rk5+nvmogjgkAAADdR+IFOEKGYWj2rDzVl27stF5D6UbNnnVG2I4Fu92uSeOzFSxf237bNrvMUFCqWK+k1KPCHjNrGIaGj8pRU1mhhg9LaXutYWh45rEKlq9VrCs+fBOGYcjucEpNNdK+LVLS0W13UtjsUkWh3EMyZLMf2O1gs9k0LGOszPL1MkMBxcbGqj1NZYU6c/qpYTEfbrx2u12KHdr8+OVONruoolBjR6WFPT75cG3L+OqpSRWFikk+WobtQAeGYSg2JUvmvq0KNdZoeMqQNrttUoelqKmsUKmjctp8D2MTUqXK9ZIZCE+6fNW2YlxSRaGMxMx2HxUcGxurYPlaDc8YG1bek7m22Ww6c9oUNZUVtntNZ/22xN3Z+mrR3rruiZ78PPVVA3FMAAAA6D4SL0APzJiep5NHx6tm99o2v9UO+htVu3utThodr+nT8tpce99PfqwUs0yBkoI2uzWMUEDa+6Hs9cUaN2lOm3YdpldjkryKqS9ut98hbrtSzDKFKja02fkQnzhEqlgn1eyQ4keFlYUCXpmlH8heW6RRR41u0/ao8TPk8H4h7f1IMQo/+yPU5JNv9/sak+TVtQuv7tZ4Tb9PikuS9n0ms/QDhQLhZ12EAl6FSgvk9BTrsUcf7nbb5r4tstcWKSawv8182BOPklFbrNiaTcrMSAsrC/obFVNfrDFJXtlNb5v5GJ/3Talmu8zSD2UG/WFlpt8rVWyQ9n2mONPXpt9Qk0+hso+VYpYpOWVYROf6uu9erTFJXvl2v9/tfruyvjpb1z3Rk5+nw4mJsWv48OGKienk1ikLWDkmAAAA9A+GyfMr+42FC6/R4sXPRDsMHCIUCmnV6gLlv1sgj+luPkwz6JPb8Gj21/I0fVpeu7sdpObH+v7sgQdVuLFIIWda82Gtfo9svnJNGj9OZ531Nb278oN2280743QVvL+mw35PP22qFj/7vJav+khNjmHNB64GPIr1V2nG6bnauHGTiksqZbrSW/s1vGUaOypNjz7ykD7+z9p22z5r5unavGWrVqz+uE27Z06fomsXXh22I6Wr482dkK0f3XGr7rzrHu3YU95uXI89+rCczvZvfTlc23f/z516/s8vtTsfX5t2qo7LOVbLj2CuZ+adqudeeFHl1R7JnS454iV/g+QpU9rQeD35u8f00l9fbrffM6dP0cKrr9SaDz6M+FwHAgE9vfjZI+q3K+urs3XdEz35eeqrBuKYAAAA0HUkXvoREi99m2mazY+P9XrlcrmUmZnZ5VsHgsGg8vPzVVVVpWHDhmn27NnNt990od3DlYdCIRUWFqqmpkbJycnKzc1t/ZAXCAT06quvqqKiXKmpabrooovCPsh31nZn7fZkvF2JqydtdxZ3T+ba7/dr8eLFKi/fq7S0EVq4cKEcDkeX+rVyrnvSb1fKrRKtfq00EMcEAACAwyPx0o+QeAGAI1NcvEM//vGP9eCDDyora2y0wwEAAMAgwt5mAMCAFwgEVVlZqUAgePjKAAAAQASReAEAAAAAALAIiRcAAAAAAACLkHgBAAAAAACwCIkXAMCAl5mZqUceeUSZmZnRDgUAAACDTNeezwoAQD/mdrt18skTox0GAAAABiF2vAAABrzKykotXvwnVVZWRjsUAAAADDIkXgAAA151dbX+9re/qbq6OtqhAAAAYJAh8QIAAAAAAGAREi8AAAAAAAAWIfECAAAAAABgERIvAIABLykpSV//+jeUlJQU7VAAAAAwyPA4aaCLTNNUSUmJPB6P3G63MjMzZRhGRK7trLwn/Ubi+mgIBoNatmyZqqqqNGzYMM2ZM0d2u721PFpj6o9ziWYjRozQbbfdFu0wAAAAMAiReAEOIxQKaeWqAuWvKJDXdEt2pxT0yWV4NHtWnmZMz5PN1v7mscNdOy3vdK0uWNNu+dkzz5Akvf3e+93ut6dxR0tTU5Puu/9BrdtUpJAzTXK4Jb9HTzz1oiaNz9ZP7rlLH3z4ca+PqT/OJcI1NjaqtLRUGRkZiouLi3Y4AAAAGEQM0zTNaAeBrlm48BotXvxMtMMYVEKhkJ55/iVt2N2ghIwJsjsOfGAL+htVX7pRJ4+O19VXXN7mg/fhrq378lMZtTulpCwljDykvMmnHRtWSI3Vyjr1fMXEurrcb0/jjpampiYtWPg9VRsZsqdNluFwtpaZfp8Ce/8jp6dYYyZMV2LmSb02pv44l2irqKhI3//+DVq06EllZ2dHOxwAAAAMInxKADqxclWBNuxuUPLRk8M+cEuS3RGn5KMn65NdDVq1uqDb1wYMl3bWuhVIyGpTvr/Oo8ak49UYN1I1ZTu61W9P446W++5/UNVGhmIy88KSLpJkOJyyxafL585SWWNyr46pP84lAAAAgL6DxAvQAdM0lb+iQAkZEzqtl5AxQfkr3tfBm8cOd61pmqrcs1Wx6bmqrNrXpryiap9i4hIVM+w4VezZqvY2prXXb0/jjpZgMKh1m4pkT5vcbrlpmjJrd0mpuaqpbegw5kiPqT/OJQAAAIC+hcQL0IGSkhJ5TXebXQ6Hsjvi5Am5VFJS0uVrfXWVCsYkyBbrVNC0y+f1HSjz+hQy7TJsNhkxcQrGJMhXV9Wlfnsad7QsW7ZMIWdam50urRr3S45E2WJckj1WlRUV7VaL9Jj641wCAAAA6FtIvAAd8Hg8zYeodoXdKa/X2+Vrg4GmA+WGTcFQ8EBZMCgZB/1o2p0KBRq71G9P446Wqqqq5oN0OxJskmJa5suuJr+/47oRHFN/nEu0zzAkh8MhHkIFAACA3sZTjYAOuN1uKeg7fEWp+Qk3rgMH4B7uWntM7IFyMyS77cCjku12u2SGwtq2xXSw4+KQfnsad7QMGzZM8ns6rmCPlQIt8xVUrMPRcd0Ijqk/ziXaN25ctv7f//tntMMAAADAIMSOF6ADmZmZchkeBf0d7Db5StDfKLfNq8zMzC5f60wcLnugXqEmn+xGUE7XgV0VTpdTNiMoMxSSGWiUPVAvZ+KwLvXb07ijZc6cObL5ymX6O0hyxA2R/HUKBbxSsEnDU1PbrRbpMfXHuQQAAADQt5B4ATpgGIZmz8pTfenGTus1lG7U7FlnyDjoHobDXWsYhoaPylFTWaGGD0tpU546LEWBxjoFqrYodVROWNud9dvTuKPFbrdr0vhsBcvXtltuGIaMpNFSRaGSk+I7jDnSY+qPc4n27dq1Szfc8D3t2rUr2qEAAABgkCHxAnRixvQ8nTw6XjW717bZ9RD0N6p291qdNDpe06fldftah+nVmCSvYuqL25QPSXQrrvYzxTV+qeT0sd3qt6dxR8t9P/mxUswyBUoK2ux8Mf0+hRrK5PQUKz2uplfH1B/nEm01NTVp27ZtampqinYoAAAAGGQMk+ef9hsLF16jxYufiXYYg04oFNKq1QXKf7dAHtPdfNhq0Ce34dHsr+Vp+rQ82Wzt5zAPd23eGaer4P017ZafNesMGZLeXvF+t/vtadzR0tTUpJ898KAKNxYp5ExrPnDX75HNV67cCdm69+679OFHH/f6mPrjXCJcUVGRvv/9G7Ro0ZPKzs6OdjgAAAAYREi89CMkXqLLNM3mxwt7vXK5XMrMzOzyrSWHu7az8p70G4nroyEYDCo/P19VVVUaNmyYZs+e3Xzo8FeiNab+OJdoRuIFAAAA0cJTjYAuMgxDo0aNsuTazsp70m8kro8Gu92ur3/96x2WR2tM/XEuAQAAAEQXe+MBAANeenq67rnnXqWnp0c7FAAAAAwy7HgBAAx4iYmJmjlzZrTDAAAAwCDEjhcAwIBXXV2tv//976quro52KAAAABhkSLwAAAa8yspK/fGPf1BlZWW0QwEAAMAgQ+IFAAAAAADAIiReAAAAAAAALELiBQAAAAAAwCIkXgAAA158fLxOO+10xcfHRzsUAAAADDI8ThoAMOCNHDlSDzzwQLTDAAAAwCDEjhcAwIAXCAS0f/9+BQKBaIcCAACAQYbECwBgwCsuLtZFF12o4uLiaIcCAACAQYbECwAAAAAAgEU44wXoBaZpqqSkRB6PR263W5mZmTIMI9phAQAAAAAsRuIFsFAoFNLKVQXKX1Egr+mW7E4p6JPL8Gj2rDzNmJ4nm42NZwAAAAAwUJF4ASwSCoX0zPMvacPuBiVkTFO8I661LOhv1GsrNmp78U5dfcXlJF8AAAAAYIDi0x5gkZWrCrRhd4OSj54s+0FJF0myO+KUfPRkfbKrQatWF0QpQmDwGDt2rF5/fanGjh0b7VAAAAAwyJB4ASxgmqbyVxQoIWNCp/USMiYof8X7Mk2zlyIDBie73a74+HjZ7fZohwIAAIBBhsQLYIGSkhJ5TXebnS6Hsjvi5Am5VFJS0kuRAYPTnj17dNddP9KePXuiHQoAAAAGGRIvgAU8Hk/zQbpdYXfK6/VaGxAwyHm9Xq1du5afNQAAAPQ6Ei+ABdxutxT0da1y0CeXy2VtQAAAAACAqCDxAlggMzNTLsOjoL+x03pBf6PcNq8yMzN7KTIAAAAAQG8i8QJYwDAMzZ6Vp/rSjZ3WayjdqNmzzpBhGL0UGQAAAACgN5F4ASwyY3qeTh4dr5rda9vsfAn6G1W7e61OGh2v6dPyohQhMHikpqbqppt+oNTU1GiHAgAAgEEmJtoBAAOVzWbT1VdcrlWrC5T/7mo1mO7mA3eDPrkNjy74Wp6mT8uTzUb+E7DakCFD9K1vfSvaYQAAAGAQIvECWMhms2nmjOmaMX1a8yOmvV65XC5lZmZyexHQi2pra/XRRx9pypQpSkpKinY4AAAAGET4VTvQCwzD0KhRo5Sdna1Ro0aRdAF62d69e/XLXz6kvXv3RjsUAAAADDIkXgAAAAAAACxC4gUAAAAAAMAiJF4AAAAAAAAsQuIFADDgOZ1OHX/88XI6ndEOBQAAAIMMTzUCAAx4Rx11lJ544rfRDgMAAACDEDteAAAAAAAALELiBQAw4BUVFWn27LNVVFQU7VAAAAAwyJB4AQAAAAAAsAiJFwAAAAAAAIuQeAEAAAAAALAIiRcAAAAAAACL8DhpAMCAN3r0aD333PNKTU2NdigAAAAYZEi8wBKmaaqkpEQej0dut1uZmZkyDCPaYQEYpGJjY5WZmRntMAAAADAIkXhBRIVCIa1cVaD8FQXymm7J7pSCPrkMj2bPytOM6Xmy2bjDDUDvKi0t1fPPP6crr7xKGRkZ0Q4HAAAAgwiJF0RMKBTSM8+/pA27G5SQMU3xjrjWsqC/Ua+t2KjtxTt19RWXk3wB0Kvq6+v1zjvvaP78C6MdCgAAAAYZPv0iYlauKtCG3Q1KPnqy7AclXSTJ7ohT8tGT9cmuBq1aXRClCAEAAAAA6F0kXhARpmkqf0WBEjImdFovIWOC8le8L9M0eykyAAAAAACih8QLIqKkpERe091mp8uh7I44eUIulZSU9FJkAAAAAABED4kXRITH42k+SLcr7E55vV5rAwKAg6SkpGjBggVKSUmJdigAAAAYZDhcFxHhdruloK9rlYM+uVwuawMCgIMMGzZMV1xxZbTDAAAAwCDEjhdERGZmplyGR0F/Y6f1gv5GuW1eZWZm9lJkAAAAAABED4kXRIRhGJo9K0/1pRs7rddQulGzZ50hwzB6KTIAAAAAAKKHxAsiZsb0PJ08Ol41u9e22fkS9DeqdvdanTQ6XtOn5UUpQgAAAAAAehdnvCBibDabrr7icq1aXaD8d1erwXQ3H7gb9MlteHTB1/I0fVqebDbyfQAAAACAwYHECyLKZrNp5ozpmjF9WvMjpr1euVwuZWZmcnsRAAAAAGDQIfECSxiGoVGjRkU7DAAAAAAAoop7PgAAAAAAACxC4gUAAAAAAMAiJF4AAAAAAAAsQuIFAAAAAADAIiReAAAAAAAALELiBQAAAAAAwCIkXgAAAAAAACxC4gUAAAAAAMAiJF4AAAAAAAAsQuIFAAAAAADAIjHRDqC/eu+99/TGG0u1Y8cOBQIBjRw5UmeeeZbmz5+vmBimFQAAAAAAkHg5IosWLdKSJa/Jbrdr4sSJcrlcWr9+vf70p6f1wQdr9NBDv1RcXFy0wwQAAAAAAFFG4qWbCgoKtGTJa3K5XPr1rx9Vdna2JKmmpkZ33HG7Nm7cqOeee07XX399lCMFAAAAAADRxhkv3fTXv/5FknTxxZe0Jl0kKTk5WTfffLMkaenS19XQUB+V+AAAAAAAQN9B4qUbKisrtXXrVknSmWee2aZ8woQTlZqaKr/frw8//Ki3wwMAAAAAAH0MiZdu2LZtmyQpMTFRGRkZ7dY59tgcSdL27dt6LS4AAAAAANA3kXjphrKyUklSWlpah3VSU1MlSaWlZb0SEwAAAAAA6LtIvHSDx+OVJDmdzg7ruFyur+o29EpMAAAAAACg7+KpRn3A73//e/3+978/bL3jjsvphWgAAAAAAECkkHjpBre7eTeLz+frsI7X6/2qbnyX273xxht14403HrbewoXXdLlNAAAAAAAQfdxq1A0jRqRLkioqKjqs01KWnj6iV2ICAAAAAAB9F4mXbhg3bpwkqba2VqWlpe3W+fzzrV/Vze61uAAAAAAAQN9E4qUbUlNTlZPTfM7K8uXL25Rv3PipKioq5HA4NHXqlN4ODwAAAAAA9DEkXrrp0ksvkyS9/PLfVFRU1Pp6bW2NnnjiCUnSt751vuLjE6ISHwAAAAAA6Ds4XLeb8vLydP758/T660t0880/0KRJk+R0OrVu3TrV19dr/Pjxuuqqq6IdJgAAAAAA6AMM0zTNaAfRH7333gotXfqGtm/fpmAwqIyMDJ111tmaP3++HA6HJX1+85vnKTU11ZK20Tuqq6s1dOjQaIeBAYr1BauwtmAl1heswtqClVhfA19CQqIef/zxiLRF4gXoRSeccII2b94c7TAwQLG+YBXWFqzE+oJVWFuwEusL3cEZLwAAAAAAABYh8QIAAAAAAGAREi8AAAAAAAAWIfECAAAAAABgERIvAAAAAAAAFiHxAgAAAAAAYBESLwAAAAAAABYh8QIAAAAAAGAREi9AL7rxxhujHQIGMNYXrMLagpVYX7AKawtWYn2hOwzTNM1oBwEAAAAAADAQseMFAAAAAADAIiReAAAAAAAALELiBQAAAAAAwCIkXgAAAAAAACxC4gUAAAAAAMAiJF4AAAAAAAAsQuIFAAAAAADAIiReAAAAAAAALELiBQAAAAAAwCIx0Q4A6K/ee+89vfHGUu3YsUOBQEAjR47UmWeepfnz5ysmpus/WrW1NVqz5gMVFX2uoqIibd++XY2NjZo0aZIefvhXFo4AfVmk1te2bUX6+OOPVVi4Tjt3Fquurk4ul0tjxozRrFlf07nnntut9tD/RWptbdq0Se+887a2bdum8vJy1dbWym63Ky0tTZMmTdKFF16k9PR0C0eCvihS66s9H374oe65525J4t/IQShSa+vf//63Hnmk87Xz4IMP6tRTp/Q0ZPQjVrx3vf9+gf75z39p69YtqqurU0JCgkaOHKlTTjlVCxYsiPAI0NcZpmma0Q4C6G8WLVqkJUtek91u18SJE+VyubR+/XrV19drwoQJeuihXyouLq5LbRUUFOi++37a5nX+Uzl4RWp9BYNBff3r50iSXC6XcnJyNGTIUFVWVmjz5s0KhUI67rjj9ItfPKSEhASrh4U+IJLvXc8++4z+8pe/KC0tTSNHjtSQIUPV0NCgbduKVF1dLafTqZ///Oc6+eSJ1g4KfUYk19eh6urqdO2139W+fftkmib/Rg4ykVxbLYmXkSNHavz4Ce3WueiiC5WVNTaSQ0AfFun3Lr/fr4ce+oVWrlypuLg4HX/8CRo6dIiqq6u1c+dOhUIh/d//vWbhiNAX8WtOoJsKCgq0ZMlrcrlc+vWvH1V2drYkqaamRnfccbs2btyo5557Ttdff32X2hs6dKjOPXeusrPHady4bBUVFenxxx+zcAToyyK9vrKzj9XFF1+s008/XbGxsa2vFxfv0F13/Y+2bNmiP/zhSd1++x2WjAd9R6TX1plnnqVvfOO/2uxq8fv9evrpp7VkyWv65S9/qT//+UXZ7faIjwd9S6TX16F+//vfqbq6WnPnztWbb74ZydDRx1m1tsaPn6A777zTipDRj1ixvn7zm0e1cuVK5eXl6Yc/vFXJycmtZaFQSFu2bIn4OND3ccYL0E1//etfJEkXX3xJ65uzJCUnJ+vmm2+WJC1d+roaGuq71N4JJ5ygW265ReeeO1c5OTlyOByRDxr9RiTXl91u16JFizRz5sywpIskZWWN1bXXXitJWrFihQKBQKSGgD4q0u9do0ePbvdWIofDoeuuu06xsbGqqKjQ7t27IhA9+rpIr6+DrV69Wu+8844uvPBC5eQcF5mA0W9YubaASK+vwsJC5efna8yYMbrnnnvDki6SZLPZdMIJJ0QoevQnJF6AbqisrNTWrVslSWeeeWab8gkTTlRqaqr8fr8+/PCj3g4P/Vxvr69x48ZJkhobG1VTU9Pj9tB39fbaMgxDNlvzfzEcjtjD1EZ/Z+X6qqmp0eOPP6ajjjpKV155VSTCRT/C/7tgJSvW19Klr0uSLrig5+daYWAh8QJ0w7Zt2yRJiYmJysjIaLfOscfmSJK2b9/Wa3FhYOjt9VVSUiKpeYdCYmJij9tD39WbaysYDOrPf35BPp9Po0eP1siRI3vUHvo+K9fX448/rtraWt16621tdu5h4LNybX35ZYmeffYZ/eY3j+oPf3hS//rXP/klxCAT6fUVDAa1bt06SdKJJ56offv26bXX/k+PP/6YFi1apGXLlsnr9UYoevQ3pOGAbigrK5UkpaWldVgnNTVVklRaWtYrMWHg6M31ZZqmXnnlZUnS1KlT+UAzwFm5tsrL9+q5556X1HwA6vbt21RRUaGRIzN1zz33tu58wcBl1fp69913tWrVSs2bd4EmTGj/EFQMbFa+d23atEmbNm0Key029rdasOAKXXLJJd2MFP1RpNdXaWlpa2Lls88+029/+0SbRMvTTz+lH//4bk2aNOlIw0Y/ReIF6AaPp/nN0+l0dljH5XJ9VbehV2LCwNGb6+vPf35Bmzdvlsvl0sKF3+1RW+j7rFxbtbV1ys9fFvZadna2brvtdo0ZM6Z7gaJfsmJ97du3T7/97RMaOXKkrrnmmp4HiX7JirWVkjJUl112mU4//QxlZGTI4XDoiy++0NKlr+vtt9/W4sV/UigU0mWXXdbzAaBPi/T6qq2tbf360Ud/rRNOOEHXXXe9jj76aH355Zd65pnF+uijj/TTn/5EixY9qVGjRvVwBOhP+DUUAAwy+fnL9OKLL8pms+m2227nH370yLhx45Sf/7aWLcvXX//6N91zz73y+Rr1/e/foCVLlkQ7PPRTv/nNb1RfX69bb7210w9FQHedeuoUXX31NTruuOOUnJwst9utnJwc3Xnnj3Tddc1PrnnxxT+ruro6ypGiPxs+fLh+8YuHlJOTI5fLpWOOOUb33/+AxowZI6/Xq5df/lu0Q0QvI/ECdIPb3Zz19vl8HdZp2VLodsf3SkwYOHpjfb333nt65JFHJEk//OEPNXPmzCNqB/1Lb6wtwzA0fPhwzZw5U0888YSGDh2qP/zhSW3fvv2I2kP/Een1tWzZMn3wwRrNnTtXJ588MSIxon/q7f93zZs3T8nJyfL7/frPf/7T4/bQt0V6fbXsjpGkOXPmtLmN226369xz50pqfvoRBhduNQK6YcSI5kenVlRUdFinpSw9fUSvxISBw+r1tWrVKv3iFw/KNE3dcsst+vrXv3FkgaLf6e33roSEBOXlTdMbbyzVmjVrdMwxx/S4TfRdkV5fBQWrJUlbt27VbbfdGlbWsguhqKiotezuu+9RSkpK9wNHn9fb7112u12ZmZmqqalRZWXHfWJgiPT6Sk9Pl2EYMk1T6entH9bbcojvvn37uhsu+jkSL0A3tDx+t7a2VqWlpe2egP7551u/qpvdq7Gh/7NyfRUUFOjBB/9XoVBIN9/83/qv/zq35wGj34jGe1fL7SH797Ndf6Czan19/vnnHZbV19drw4YNkqSmpqbuhIt+JBrvXS3ndLhc7oi0h74r0uvL5XJp1Kij9MUXu1Vb2/4TslpeP3h3DAYHbjUCuiE1NVU5Oc2PlVu+fHmb8o0bP1VFRYUcDoemTp3S2+Ghn7Nqfa1Zs0Y///kDCgaDuvnm/9bcuXMjFjP6h2i8d61f3/xITc4QGvgivb5+9rP7lZ//drt/br/9DknSpEmTWl9LT0+P7IDQZ/T2e1dRUZH27NkjSTruuON63B76NivW14wZMyR1fCvR2rXNr7f0i8GDxAvQTZde2nzK/csv/01FRUWtr9fW1uiJJ56QJH3rW+crPj6htWz16tW65pqrdccdd/RusOh3Ir2+PvzwQz3wwP0KBoP67/8m6TKYRXpt/fWvf9H+/fvbvF5XV6ff/e63+vzzzxUfH6+ZM2dFdiDok/i3EVaJ5Nry+XxaunSpPB5Pm342bNig++//mSRpwoQJJF4GiUi/d82bN0+JiYn66KOP9NZbb4WVvfvuu1q+/B1J0vnnz4v4WNC3casR0E15eXk6//x5ev31Jbr55h9o0qRJcjqdWrdunerr6zV+/HhdddVVYdc0NDToiy++6HA79A9+cFPr1zU1zVsQt27dGvb6d77zHU2delrkB4Q+JZLrq7q6Wj/72X3y+/1KTU3Vpk2btWnT5nb7vf7665WcnGzVsNAHRPq965lnntFzzz2nrKwsjRw5Una7XZWVldq2bZt8Pp/i4+N1770/0dChQ3tphIgmK/5tBKTIrq1AIKDf/e63+uMf/6Bx48YpLS1NwWBQe/bs0c6dOyVJWVlZuueee3tpdIi2SL93JScn6+6779FPfnKvHn/8MS1d+rqOOupolZZ+qW3btkmSLr/8O5o6dWpvDA99CIkX4AjceOONmjBhvJYufUObNm1SMBhURkaGLr74Es2fP18Oh6Nb7W3ZsqXNax6PJ+z1/fvbv1cUA0+k1ldjY6P8fr+k5sPh8vOXdVj3iiuuIPEyCETyveumm36gjRs/1bZt27Ru3Tp5vV653W5lZWXplFNO0XnnfZOkyyAT6X8bgRaRWltxcXG6/PLv6PPPP9cXX+zWrl271NjYqMTEROXm5mrGjBmaM+cc1uogE+n3rsmTJ+uPf3xKf/nLX7RuXaHWrHlfbrdbU6ZM0bx5F+iUU06xaCToywzTNM1oBwEAAAAAADAQccYLAAAAAACARUi8AAAAAAAAWITECwAAAAAAgEVIvAAAAAAAAFiExAsAAAAAAIBFSLwAAAAAAABYhMQLAAAAAACARUi8AAAAAAAAWITECwAAAAAAgEVIvAAAAAAAAFiExAsAAAAAAIBFSLwAAAAAAABYhMQLAAAAAACARUi8AAAAAAAAWITECwAA6Ldmzz5bs2efrRdeeD7aoQAAALQrJtoBAACAweGTT9br9ttvb/O6zWZTfHy84uPjlZqaquzsbE2YMEGnnXa6HA5HFCIFAACIHBIvAAAgqkKhkOrq6lRXV6eysjJ9+umneu211zRkyBCdf/75uuSSS2W326MdZr9QVlamBQu+I0m6/fY7dM4550Q5IgAAQOIFAAD0uvPOO0/nnffN1r97vV7V19drx44dWrdundatK9T+/fv13HPP6YMPPtADD/xcQ4YMadNOfv7bvRg1AABA95F4AQAAvW7IkCHKyspq8/qUKVN0ySWXaNeuXXrooV9o27Zt2rJli+6776f61a8e4dYjAADQ73C4LgAA6HNGjx6txx57XOPGjZMkbdq0SW+8sTTKUQEAAHSfYZqmGe0gAADAwHfw4boLFizQFVdcedhrdu7cqeuuu1amaWrYsGF68cWXFBNzYMPu7Nlnd9peaemXWr26QBs2fKLi4mJVV1dLat5xc/zxx+ucc87RqadO6bD/f//733rkkV9Jkv785xc1bNgwLV26VMuXL1dJyR7Z7XZlZWXp29/+tqZOPa31Oo/HozfffFPvvrtcpaWlMgxDOTk5uvjiS5Sbm3vYcZeUlOiNN5aqsLBQ5eXlCgQCSklJ0YknnqRvfetbysnJaXNNy1x0pqN5Kioq0j/+8Q998sl6VVZWSpKGDx+uiRMnav78CzVq1KguzU9KSoreeutNvfvuu/ryyy9VW1vb5e81AAADFbcaAQCAPmvMmDHKzc3V2rVrVVVVpa1bt2r8+PFdura0tFRXXHFFu2Xl5eUqLy/Xe++9p7POOlt33HHHYQ/w9Xg8+t///bm2bNkS9vqGDRu0YcMGfe9739P8+ReqvHyv7r77bu3cuTOsXmFhodatW6cf/egunXXWWR328+qrr+iZZ55RIBAIe72srExlZWV6++18XXbZ5brqqqs6jbcrQqGQnnrqj3rttdd06O/i9uzZoz179uif//ynfvCDH+jcc+d22lZNTY3uu++n2r59e4/jAgBgICHxAgAA+rSWxIskffrpp11OvIRCITkcDk2efIomT87V0UePVlJSompr61RSskdvvPGGdu7cqXfeeVsZGRm68srOd2X85jePqqioSOed901Nm5anhIREbd++Xc8//5yqqqr01FNPKTd3sn71q1+ptLRUl1xyiU455VQ5nU5t2rRJL7zwvBoaGvTEE48rNzdXQ4cObdPHK6+8rKefflqSNHbsWM2de54yMzOVkJCgPXu+0NKlS7V582a99NKLSk5O1rx581qvfeqpp1VVVaX/+Z+7JElXXXW1zjjjjLD2Dz2g+He/+53efPMNSdKJJ56kOXPmKCMjQ05nnLZv36ElS17Tzp079dhjj2no0JQ27R3s0Ud/reLiYs2ePVszZ85SSkqKysvLOZcHADDokXgBAAB92rhx2a1fl5Ts6fJ1KSkprbcHHSo3N1dz556nRx55RMuW/Vt///uruvDC+YqPT+iwva1bt+qnP71PeXl5ra8de+yxysnJ0Q03fE+hUEh33nmHGhoa9OtfP6rjjz++tV5OTo4yMzN1zz13y+PxaPnydzR//oVh7e/atUvPPvuspOZbghYsuEKGYYT1NWvW1/Twww/rnXfe1rPPPqOzzz5biYmJkqSsrCy5XK7W+sOHD2/3AOMWa9eubU263HrrbfrGN74RVp6Tc5zOPvts3X333Vq/fp0WLfq9pk6d2uHOoB07drRpJzs7u926AAAMJhyuCwAA+rSkpKTWr+vq6rt8ncvlajfp0sIwDF1//fWy2Wzy+XwqLCzstL2ZM2eGJV1ajB07VuPHT5Ak7d+/XxdccEFY0qXF1KlTNWLECEnSp59ubFP+97+/qkAgoGOPPbZN0qWFzWbTTTfdJIfDIa/Xq1WrVnYac2f+9re/SZKmT5/eJunSIjY2VjfddJMkae/evVq/fn2H7U2cOKnDdgAAGMxIvAAAgD7t4F0cXq/niNsJBAKqqKjQrl27VFxcrOLiYlVVVbUmdrZv39Hp9bNmfa3DsmOOGdulellZzfVKS0vblH3wwQeSmhMh7SVdWiQkJLTuZNm8eXOnMXekoaFBGzZ88lV/MzqtO3r0aCUnJx+2v7POOvOIYgEAYKDjViMAANCnHZxscbvd3bo2EAjoH//4h95+O1/bt2+X3+/vsG5tbU2nbXX0ZB9JYbcodVYvISFeUtsE0t69e7V//35J0uLFi7V48eJOY2mxb191l+odatu2bQqFQpKkBx/8Xz344P926brq6n0dlrUklQAAQDgSLwAAoE+rqalt/brlPJOuqK2t1V133aWios+7VL+xsanT8ri4uA7LbLYDO1ScTmeH9QyjebNxS9Kjxf79R5ZAaWz0HdF1LUme7vL5Gjss6873BgCAwYTECwAA6NO2bdvW+vVRRx3V5esWLVrUmnTJy8vTOed8XWPHjtWQIUMUGxvbejvPZZddqoqKijaPU+5NweCBRMx3vrNAM2Z0fvtPi86SPJ05OPFzyy236IQTuvakqM6SKzYbd7ADANAeEi8AAKBPKyxc2/p1yyG2h9PQ0KD33lshSTrrrLN0113/02Hd+vquH9hrlYMPEI6JsXf6NKJI9xcX57S8PwAABjN+NQEAAPqs4uJirVu3TpKUmpqqnJycLl1XUlKiQCAgSZo5c1aH9Xbv3i2v19vjOHsqIyND8fHN579s2rTpiNvp7FDegx1zzDGtdTdtavuEJQAAEDkkXgAAQJ/U2Niohx/+ZestQBdd9G3Z7fYuXRsMBlu/9vk6Pgflrbfe6lmQEWK32zVlyhRJ0tq1a7Vr164jaic2Nrb1684OEh4yZEjrI6+XL19+xGe+AACAwyPxAgAA+pxdu3bphz+8pfV8l5NOOknnnXdel6/PzBzZuqMjP39Zu+e3rFmzRkuXvh6ReCPh0ksvlc1mUygU0gMP3K+KiooO6waDQb3zzjtt6iQlJcnhcEiSSku/7LS/yy67XJLk8Xh0//33d3rLVVNTk5YuXaqmps4PIAYAAG1xxgsAAOh1+/fvV3FxcevffT6f6uvrtGNHsdatK1RhYWFrsuT444/XT37yU8XEdP2/LUlJyZoyZYo+/PBDffzxx7rrrh9p7tzzNGLECO3fv1+rVq3SsmX/VkZGhhoaGvrEjo+srLG6/vrr9eSTT2rXrl269trv6txzz9XEiRM1dOhQNTX5VVZWps8+26yVK1dp374qPfXU00pNTW1tw26369hjj9WmTZv0r3/9S8ccM07HHHNM69wlJia2nu8ydepUzZt3gZYseU2ffrpBCxdeo7lz52r8+AlKSkqSz+fTl19+qU8//VQFBatVV1enOXPmRGVuAADoz0i8AACAXvfmm2/qzTff7LTOkCFDNG/eBbr44ou7fIvRwW6++b/1wx/eovLychUWNidzDpaWlqaf/ex+3X33j7vdtlUuuGC+nE6nnnzySTU0NOiVV17RK6+80m5dh8MRdmtRi0svvVT33nuvamtr9YtfPBhWtmDBAl1xxZWtf7/hhhuUmJiol156Ufv27dMLL7zQYWxOp5MnFwEAcARIvAAAgKiy2WxyuVyKj4/XiBEjlJ2drQkTTtRpp53WetvMkUhLS9OTTz6pl19+We+//7727t2r2NhYjRiRrry8MzRv3gWdPh45Wv7rv87V6aefobfeektr1/5He/bsUX19vRwOh4YPH66srCzl5k7W9OnTlZyc3Ob6qVNP08MP/0pLlrymrVu3qqampvWg4UMZhqEFCxbo7LPP1ltvvaX169eptLRUDQ0NcjqdSk1N1bhx4zR58mTl5U1TXFyc1cMHAGDAMcz2bnoGAAAAAABAj7FfFAAAAAAAwCIkXgAAAAAAACxC4gUAAAAAAMAiJF4AAAAAAAAsQuIFAAAAAADAIiReAAAAAAAALELiBQAAAAAAwCIkXgAAAAAAACxC4gUAAAAAAMAiJF4AAAAAAAAsQuIFAAAAAADAIiReAAAAAAAALELiBQAAAAAAwCIkXgAAAAAAACxC4gUAAAAAAMAiJF4AAAAAAAAsQuIFAAAAAADAIiReAAAAAAAALELiBQAAAAAAwCIkXgAAAAAAACxC4gUAAAAAAMAiJF4AAAAAAAAsQuIFAAAAAADAIiReAAAAAAAALPL/AUiePJ2xSMOEAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 428, "width": 559 } }, "output_type": "display_data" } ], "source": [ "viz_rmodel.rtree_feature_space(features=['Diameter'], show={'splits'})" ] }, { "cell_type": "markdown", "metadata": { "id": "3caTuOEolAwy" }, "source": [ "We can also look at two dimensional feature space, where the `Rings` values vary in color from green (low) to blue (high):" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:24:05.859452Z", "iopub.status.busy": "2024-08-24T11:24:05.858851Z", "iopub.status.idle": "2024-08-24T11:24:06.191876Z", "shell.execute_reply": "2024-08-24T11:24:06.191242Z" }, "id": "-nEsJ-eXjLM2" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGYAAANZCAYAAABNwjgFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOz9dXwc57nw/3/umUUxs2RJlmRmtmN2HOY0nLRNIWlTOIVDz3Oep+f7O9TTPoVTSCGFNGnaUENtGBzHzAyyLVnMtNLy7sz8/pBjWxHasS3Hvt6vV1+Nd+6duWZ3Je1cc9/XpSzLshBCCCGEEEIIIYQQF5w22gEIIYQQQgghhBBCXK4kMSOEEEIIIYQQQggxSiQxI4QQQgghhBBCCDFKJDEjhBBCCCGEEEIIMUokMSOEEEIIIYQQQggxSiQxI4QQQgghhBBCCDFKJDEjhBBCCCGEEEIIMUokMSOEEEIIIYQQQggxSiQxI4QQQgghhBBCCDFKJDEjhBBCCCGEEEIIMUokMSOEEEIIIYQQQggxSiQxI4QQQgghhBBCCDFKJDEjhBBCCCGEEEIIMUokMSOEEEIIIYQQQggxSiQxI4QQQgghhBBCCDFKJDEjhBBCCCGEEEIIMUokMSOEEEIIIYQQQggxSiQxI4QQQgghhBBCCDFKJDFzifj6178+2iEIIYQQQgghhBDiDEli5hLh9faMdghCCCGEEEIIIYQ4Q5KYEUIIIYQQQgghhBglkpgRQgghhBBCCCGEGCWSmBFCCCGEEEIIIYQYJZKYEUIIIYQQQgghhBglkpgRQgghhBBCCCGEGCWSmBFCCCGEEEIIIYQYJZKYEUIIIYQQQgghhBglkpgRQgghhBBCCCGEGCWSmBFCCCGEEEIIIYQYJZKYEUIIIYQQQgghhBglkpgRQgghhBBCCCGEGCWSmBFCCCGEEEIIIYQYJZKYEUIIIYQQQgghhBglkpgRQgghhBBCCCGEGCWSmBFCCCGEEEIIIYQYJZKYEUIIIYQQQgghhBglkpgRQgghhBBCCCGEGCWSmBFCCCGEEEIIIYQYJZKYEUIIIYQQQgghhBglkpgRQgghhBBCCCGEGCWSmBFCCCGEEEIIIYQYJZKYEUIIIYQQQgghhBglkpgRQgghhBBCCCGEGCWSmBFCCCGEEEIIIYQYJZKYEUIIIYQQQgghhBglkpgRQgghhBBCCCGEGCW20Q5ACCGEEEIIIQQ0Njby3F9f4oNNGzAsE5vSWbJoEXfccAuZmZmjHZ4Q4jyRxIwQQgghhBBCjLK33n2bnz/1OI1Lx+L9xjJw2FDhKNU7a3jnn77B1z7zBVYuXT7aYQohzgNJzAghhBBCCCHEKNq1axc/ffZJKr+6FMvtOPm45bDhnV/Msam5/PiXvyM9OZWpU6eOYqRCiPNBaswIIYQQQgghxCh69MnfUX3XzD5JmdNZMU5q7pjBL556/MIGJoS4ICQxI4QQQgghhBCjpL6+nuawj2h20pDjInkp1Hd30NTUdGECE0JcMJKYEUIIIYQQQohRUl9fTyAvaURjQ3nJNDTUn9+AhBAXnNSYEaPmX77/f+k2vB97Pz1eL3FxMecgosuTp62b+PSE0Q7jY2lv6KKgrGi0w/hE8PkDxMS4RzuMUVNf1UTqmLzRDuOsBf1BXG75fSeEEJcSX2sHQQIjGhv0+fj5K88Qs+Gt8xyVEBdOliOO//3QV0c7jFEliRkxaroNL1MfmP2x97N3535KZpadg4guTzt+v5Gx980Y7TA+lvr/eZeMW6aNdhifCDXHqkkvKRztMEbNwZ++Sv4t80Y7jLPWeaSapKKxox2GEEKIc8jmC+D679+BaYI2xIIGw8RR20ni/7oN3e28cAEKcZ41/XXTaIcw6mQpkxBCCCGEEEKMElusm/jiPFx764Yc595VTeK4QknKCHEJksSMEEIIIYQQQoyi/BuXk/7afhyVLQNudxxrJu3tw+Rdv+QCRyaEuBBkKZMQQgghhBBCjCJHSgLjvno3+mMvEIh34JlXiJHgRvf4SdpShdsfpeRrd2NPih/tUIUQ54EkZoQQQgghhBBilDnTk5n4zw/ir6ynddt+Iv427LExpN+wktii3NEOTwhxHl32iZm1a9fyyisvU1lZSTQaJScnhxUrVnLbbbdhs53ZyxMIBHjppRdZt2499fV1hEIhEhISKCsr49prr2PhwoXn6SyEEEIIIYQQn3RKKWLH5hE79pPbQVAIceYu68TMo48+yosvvoCu60yfPh23283u3bv5zW8eY/PmTXz3u/+N0zmy4lrd3R6++c1vUl1djdvtZuLEicTFxdHQ0MCWLVvYsmULN998C4888sh5PishhBBCCPFxhdq6CNb31vtw52fiSEkc5YiEEEJcqi7bxMyGDRt48cUXcLvd/OAHP6S0tBQAj8fD3//9t9m/fz+PP/44Dz300Ij29+STf6S6uprS0jK++93vkpCQcHLbli1b+M53/i8vvfQiy5cvZ+LEieflnIQQQgghxMfjr2qg6s/v4mvz0q1663kkmh5is5MpvHsl7rzMUY5QCCHEpeay7cr05z//CYA777zrZFIGIDExka997WsAvPzyS/h83hHtb/fuXSf2d2efpAzAvHnzmDZtOgCHDh38uKELIYQQQojzoPtAJYf+5y/sbk1jjz6V41oRx7UiduvT2NOYyKEfPovvWO1ohymEEOISc1kmZtra2igvLwdgxYoV/bZPnjyF9PR0IpEIW7ZsHdE+HQ7HiMYlJMg0WCGEEEKIi40RDFHx27+xX5+E39b3JhtK4bUlsV9N4OgvXsKMREcnSCGEEJekyzIxc+zYMQDi4+PJzs4ecExZ2TgAKiqOjWifc+bMBeCZZ56hu7u7z7YtW7awZ89uUlJSWLhwwdmGLYQQQgghzpO29XtpIZ2INnh9wbDupo1kOrfJDGghhBDnzmVZY6apqRGAjIyMQcekp6cD0NjYNKJ93nnnnZSXH2b79u3cd9+9TJo0ibi4OOrrGzh69AiTJk3iW9/6NrGxcR//BIQQQgghxDnVumEfzWrMsOOaSad53T5SF069AFEJIYS4HFyWiRm/PwCAy+UadIzb7T4x1jeifbrdbv7t3/6d3/3utzz//PNs37795LaEhARmzpxJWlraGcf685//nJ///OfDjhs/ftwZ71sIIYQQQvQyAiEimn3YcRHlwPAHL0BEQgghLheXZWLmfGhvb+c73/m/VFZW8pnPfJbly5eTlJRETU01v//973nyySfZsGEjP/rRj4iJiRnxfh955JERtdj+3Oce/DjhCyGEEEJc1vRYN46uECF96O9pdjOELc59gaISQghxObgsa8zExPT+MQ0GB7/bEQgEToyNHdE+v/e971FeXs5nPvMZ7rnnHrKzs3G73YwbN55///f/oKioiMrKCp577rmPfwJCCCGEEOKcylw6jSyrZdhxOVoLWcumn/+AhBBCXDYuy8RMZmYWAK2trYOO+XBbVlbmsPtra2tj584dACxf3r/Lk81mY/HiJQDs3LnzjOMVQgghhBDnV+q8yaSrDpyGf9AxLsNHiuohaYYsIRdCCHHuXJaJmZKSEgC6u7tpbGwccMyRI+UnxpYOu7+WllN3VwZbphQb2zvzpqen54xiFUIIIYQQ55/mtFP65VuYZB0mIdIBlnVqo2WRGG5jklVO2dduR9n00QtUCCHEJeeyTMykp6czblzvnY733nuv3/b9+/fR2tqK3W5n3ry5w+4vLS315H8fPnx4wDGHDh0CICsr62xCFkIIIYQQ51ns2Dwm/v3dTC8OMcPYzTjrGOOsY8yM7mL6OJOJ/3Qv7vzhZ1MLIYQQZ+KyLf5799338K//+h2eeeZp5s6dS2lp78yY7m4PP/nJTwC46aab+7S3Xr9+Pb/73W9JTU3j+9///snHMzIyGTduHOXl5Tz66M/5j//4zz4JmHfeeYe1a98HYMWK/kudhBBCCCHExcGVnUbZV28n2uMn2Nx+8jFbrBT8FUIIcX5ctomZRYsWcfPNt/DSSy/yta99lRkzZuByudi1axder5dJkybxmc98ps9zfD4ftbW1hMPhfvv71re+zd///bepqanhc597kAkTJpCQkEhtbQ1VVVUArFy5ipUrV16AsxNCCCGEEB+HLT6GuPiRd9IUQgghztZlm5iB3lbUkydP4uWXX+HAgQMYhkF2djZ33nkXt912G3a7fcT7Kioq4rHHfsNf/vI827Zto7y8nEgkQnx8PLNnz+bqq69m6dJl5+9khBBCCCGEEEII8YlzWSdmAJYuXTbihMlVV13FVVddNej25ORkPv/5L/D5z3/hHEUnhBBCCCGEEEKIS9llWfxXCCGEEEIIIYQQ4mIgiRkhhBBCCCGEEEKIUXLZL2USQgghhBAXr0hXD0YghC0uBpsU4z0jZiRKpKMbFNhTEtFs+miHJIQQYgCSmBFCCCGEEBcVy7Lo3LKf5jWbMZSBinNgdQZxJMSTfeUi4icWj3aIF7Vwh4emtzbSvf8oKj0WAKvVT/LMiWReOR9bfOwoRyiEEOJ0kpgRQgghhBAXDcu0qHriZXyRLtSny9DSemfJKCBc203Vi2+TVj2J7GuuGN1AL1KBuhYqfvUs1lX5aDfOQ9lOVC4IG3RuaaDrB3+g5Cv34ExLGtU4hRBCnCI1ZoQQQgghxEWj+e2N+LQe1AMTUWl9ly5p+QloX55O+6GDePYcGaUIL15mJErlY8/BgxPR5+acSsoAyqGjLc7H+tRYKn/1LJZpjWKkQgghTieJGSGEEEIIcVGwDJO29btQN5WglBpwjLJpcGspTW9vvMDRXfw6tx3AmpSClhs/6BitNAUjw4n38PELGJkQQoihyFImIYQQQggxKizDxLOnnK5DFZiRKBoa5Mai3EN/RdVy4ohEgoQ7unGkJFygaEdHoK6F1s37CHX7sLtdpM0eT2xJ/oCJq7bNu1F3jBl+p4uyad24U2r1CCHERUISM0IIIYQQ4oLr3l9BzTOvY5QkE52eDg43qr4HtdaD9tR+bHdMRNkHn9ytUt1Ee3yXbGIm0u3l2K9fwhc1aZ08gWhmLro/QOrfNhHb8xYlX7gZV3Zan+dEPV5IG75zlUpzE/E0nK/QhRBCnCFJzAghhBBCiAuq+0AlVS+8SeSrsyDJdfJxa2wK1uICrHcq4Le7sX1xBkobeEmT5Y+gOR0XKuQLKuoLcPiHf6J24Vx8pUV9tvnKinE2tmD87FnGf/0unBkpJ7dpTgemPwJxQ78uli+C5ro0XzshhPgkkhozQgghhBDigrFMi5pn3yDy0PQ+SZmTlMK6sgQzzom5u3ngfXSHUF1hnJkpA27/pGt8YxNNk8b3S8p8KJSdQd3KxVQ9926fx5Omj8fc1jT8AbY3kzJtwrkIVQghxDkgiRkhhBDiPLNMi6gviBEMj3YoQoy6noOVGAXxkOwecpy5rAjj/WqsiNFvm/V2NemLZw1aIPiTzIxEad95GM+0iUOO8xfm42vpJNzZffKxtCtmwvoGLH9k0OdZXUHY00by3MnnLGYhhBAfjyxlEkIIIc6TcEc3ze9sp3PHYYi1Q9RE12xkLJ9F6qIpaDZ9tEMU4oLzHDlOdHLq4APqutHfP46q6EBpYPz3Jkh2oS0pgHGp8HY1zjZF+h1zLljMF1KouZ1weiqW3T70QKXoKSrAX1mPY1ZvnR17Qiw51y2j4dH1aA9OQqX0TX5ZTV6s3x+g4K5r0RzD7F8IIcQFI4kZIYQQ4jzwVTZS8dhLsDIf9U9zUY7eJIzZEaBxTTntm/dT+nd3oF+iNTKEGIxlGDBIUV+1rQ7be5XEXF+M/d6yk/VlorU9+F86hvn0IZLnTyPvSytQ+qU58dsyTCx9ZElbS9exon1nFKXOn4ItxkX9Y+9hJtuxxsaDBaq8Cz2kyLv7RuLLCs5H6EIIIc6SJGaEEEKIcyza46fisZdRX5iCyozts02luFG3lRH+oJbjv3+VkodvGaUohRgd7ow09JpKjMmZfTcc78S25jiJX5/Zr122LT+e+EemE/jTERzxsahLeLaZIyURR2s7WBYMs1QrpqUN5+JJ/R5PnFpKwpQS/JX1BOtbQClibs/BnZ85wF6EEEKMtkvzVoMQQggxilo/2A0Ls/olZU6nLcnH39RKqLXrgsUlxMUgZe5k9B1NYJh9HtffrST2tpJ+SZkPKU3hvn0sbet29JslcimxxccQm5WKq3bodta2bi9unw/3mOwBtyuliB2bR+qSmaQuniFJGSGEuIhJYkYIIYQ4x9o27UfNG/hiqY+F2bRt2Hv+AxKXLcuy8B6tof7lNdT+5W1a399O1B8c1Zh0t5OUWZPQnz/cOysEwB9BtXixjU0a8rnKZUMvSaTn0PHzH+goyrtuEbnvrkP3+QfcriIR8l59h7zrF12SBZCFEOJyI4kZIYQQ4hyzolFU7Ahqx2TGEmr3nP+AxGXJf7yBg//+ayrffpfmNB8tBVHqu6s49F+PUfv8W1gfmbFyIeXcuJwklYD9FzvhSDt4gmhpMSNKMmhZLsIdl/bPTcyYbIpvW07x0y+RuHs/Knyiy5JhEHfoKMVPvUjBgkkkz5SW10IIcSmQGjNCCCHEuWb1tsj+sHDpoEJRNKd0RhHnnv94AxWPv0D4c9MgK+7k48Y0MFYX0/7KESK/f5Giz906KjMulKYYc+/1+I7W0vz+FnzHG2Do7tknWUEDLeHS/7lJmlbGxPws0tbuoP3J57FMEwUkTCom++FbcGWnjXaIQgghzhFJzAghhBDnWGxxDr7ydtSEYS6cdraSvHDBhQlKXDYsy+L4H/9K+PPTIDOu/wBNYdxURs/je+nee5TEaWUXPkh6a6DElRUQV1aAZVkc+v/9AtMTQkt0Dvocy7KI7ukg/mtFFzDS0eNISSDvluXk3bJ8tEMRQghxHslSJiGEEOIcy1o5B96uwTKtQcdYbX5UjZeEyZfHBaa4cHxHazFSnQMnZT6kFNFVhTSt2XJOjmlZFpY1+Od9OEop0q6YRejduiHHRfa348pIw54Uf9bHEkIIIS42MmNGCCGEOMdiS3JJKhpD1x8Pwl3jUY6+rX2tZh/Wb/dT/Nnrh1/uJMQZ8hw8RnR6+vAD8xMJte7FsqyzWs5kRg26th+kce12It7eIrU2p4PMxTNJmT8F3TmCOkunSV86G89PjxB8uxbnyrx+PxuRQ+2EXq6h9O/uP+NYhRBCiIuZJGaEEEKI8yD/zpXY39hM63e3Yk1Ow8qLhaiJ2teB3h2l8LM3EFuSO9phikuQGYliOfXhBwLKrvW2rbaNbPyHDH+Q8p89jScnDs/dszAyEgDQOn14Nhwj8Xs7GPfVu89oZouy6Yz9yt3UPfsGPf+5A9usdLQ0J5YvQnR7O/aYOEq/fh+O5IQzilUIIYS42EliRgghhDgPlFJkX7OAzFVz6NpxhGBzO8qmk3DjTGLG5kiLW3HeONOS0RqqMadkDj0wGAWjNyFypo499hda5hXgm1fc53EzOZau66cRKG5A/fwZJv7zgyht5CvnNbuNgnuvJ+oL0LXjEOH2bmxOF4mfW4UzI+WM4xRCCCE+CSQxI4QQQpxHmt1GyvyJox2GuIykzJ1M839vIXxlMQyxVE5tbyBl9pl/Nv1VDXitaL+kzOlCE3Pw7q3Ds+coSTPGnfExbLFu0pbMPOPnCSGEEJ9EkpgRQgghhBhCoLaZniPVYBg4M1NJmFyC0i/e/gm2WDeJk0voePUYxvUlMNDsrDY/9vdryfjmp894/03rdtJ1xdhhx3kWldD0+o6zSsyMVNTrx7PnCFGvH1tsDInTyrDFx5y3432SRX0BPLuPEPX6sMW4SZhWij1hiALRQgghLhhJzAghhBBCDMBf3UjN068RdZhYk5LBrqF2H4Pn3yJz1XzSl84e7RAHlX/baiK/+QveP+wjemUh5J6oyxKKorY3Yl9TQ9EDN51Vd6NgWyeRnOG7iUVykwi3dZ3x/kfCCIaofeYNfJU12GamoSU6MDsiNP1gPbFjcsm/61p09+Btty8nZihC7XNv0HOkCmtGOiQ5oTNC4482EpObRcHd12KLdY92mEIIcVmTxIwQQgghxEf4KuupfPwF1GcnoeWelrxYBFYgSvMf9xDp9pJzw7JRi3EoStco/sLteHYfpvnFrYQ6u1E2DaIWybMmkPGNB866iK5m01GR6PAxRMyzql8zHCMU5tiP/4g2N4m4u2b16d5kXVVAeFMjR3/8JKXfeADddWadoS41ZiTK0Z/8kcjUBNTt89D6vFaF+Lc1cfRHT1L2zQfQY1yjGKkQQlzeJDEjhBBCCHEay7SoeuJltC9OQWXE9tuu3DZ4cDId/7OLpGnjiSnIGoUoh6c0RdLMCSTNnIBlWliGgWb/+F/9ksYX07q3ju4rE4cc595bS8L4wo99vI9qevUD1NQ4nItz+m1TmsK5KIdgyKDxb++Td/vqc378T5LmNzcSKYlBW17Qb5tSCjU3GyNsUPfSu4y557pRiFAIIQTAxbtAWgghhBBiFPQcrMTKjxswKfMhpWtwZT4t72+5gJGdPaWpc5KUAUhbOI34rVWoUGTwQYZJ0tojZC2bc06O+SEzEqVr50GcS4duNe9cnINn92HMEczsuVRZhkn7lr2oFflDjlMLcug+VIkRDF+gyIQQQnyUzJgRQgghxEXDf7yB5jVb8B2vB0CPdZG+aBYpcyejOe0XJIbOvYdhZtqw49SkdLwvXjyJGSMYpmPLPto27sTwhwCIK8knY/m8czqrxxbrJnf1AozH1tH8uSuw3B9ZLhQxSP/jZjKmjT/nLa4D1Y3ohQkox9BLpJRdRx+bhL+ynrhxY/ptN0MROrbup3nDLqK+AAqILcole/lcYor6z8T5KMsw8ew5QvMH2wi3ewBwZqaQtWwe8ROL+yyvGi2B+hbIjkW5h/65UbqGNi4F39EaEqaUXKDohBBCnE4SM0IIIYQYdZZpUfvsG3TX1cDKfNQ9c1GawmwP0LT+MM3/tYmSL991zi/0B2IEQxAzfFFcpSms0b/+BiDY2EbFL5/BmpaGenA8WrILy7TwHmjF++eXSCoZS+6tq1ADdWg6C+mLZ6J0HdsP3iIwIRvv+CxQCndlK3G7a8lYMousK+efk2OdzgiFe5eSjYByaZjh/rN6Qi0dHHn0WXomZtH9wFyMlDgwLZyHG+l6/g3S8nMouOOqQZMrUV+AY48+TSjNTvTGAsjrrdUTruoi+P56XO9tpuShOy5YInEwZiiMihnZa2W59QFfKyGEEBeGJGaEEEIIMeoa//Y+3cFW1Fdm9LkgVqlu1E0lmFO6OPbo04z/hwfPe5FSZ3IivpYeKEoacpzlj6Bso/9VKtrj703K3D8ereBUQV+lKdSUDKxJ6XQ9cRDbWxvJumrROTtu2sJppMydTNeOQ/Qcq8eyLOJyC0j+P9egO89P0V17UgJmS2BEY83WYL+uU4Y/yJFHn6HpztmEi9JPbdAUoYk5NI3PJvLMNvRXPyDvhqX99mlZFhW/eBb/gnSsuR9ZTlWYROQzSRhrqqj83QuUfOnOMz6/c8meFI/V4mckqTjVGsQ+/cw7dAkhhDg3pMaMEEIIIUaV4Q/Svm0/6s5xg85S0IqTsGam0b5x93mPJ3XBdNTG5mHHmZsbSJ079bzHM5zWdTswF2T2ScqcTmkKde8E2tbtwByqLsxZ0Gw6KfMmM+bOqyi862rSFs84b0kZAHduOvgtjPahkzNmZxC6DVx5GX0eb924m64Z+X2TMqfTFO13zKZt636MQKjfZu/hKkLx9E/KnH7s5YX4/d0E6ob/DJ1PzvRkbNixmrxDjrN6QtDkJ6Z46Lo9Qgghzh9JzAghhBBiVHVs3Y+andFbUHcIalEObRcgMePKSsUVl4i5pWHQMVabH7WhkbQrZgy83TDpOVhJx8Y9dO04RNQfJNzeReeW/XRs2ov/eAOWZZ2TeNs370GbP3RdFGXXYFo6nTsOnpNjAkS6vXRuO0jHxr14y6uxzHNzPqcL1LXQsXkfnVv2E2xsAyBr9UICz1ZgGeaAz7EMk8CzFWSuWthv6Vbrhj14Fw5TR0XX8M4aQ/uWff02NX+wjcjivGHjjizJo3nttmHHnW9ZqxdhPXcUKzrIa2VaWM8fJWPFvDNa5mZZFv7jDXRs2kvnlv2E2rrOUcRCCHF5Gv35t0IIIYS4rAWaWmHcCGq6xDsxoxEsyzpntVIGU/TZmzn6k6eItATQluahEpwAWFETc3cz6o1qij5zC7b4mD7Ps0yL5rc30rp+F2ZxEma6C+WNwjOvgabQZ2ahXDbY4UXripBz3VKSZow/6zjNSBR0hYoZQT2TMfEE6lrP+lgfCnd2U//8mwQamnBNSUE5NaIHAkT/FCB91QLSFs/82MfoOVxF9QvvE1A2urNyUFgkvL0Dt11R+KmVJBWV0vXoflw3FGIrPDVTKFrTTfCVapKKS0iZP6XPPi3LwohGMeOHXwoXLEjBf6St3+OhpnYYUzz8CYxJIvhB+fDjzrOk6eMINrfR9rPdWDcWo4oST/7smHXd8LfjJGbnn9F71rmrnLq/riMQG4s3Kx3NMEl4czMxCbEU3nklruzhC2cLIYToSxIzQgghhBhVStfAHFlbY8vivCdlAPQYF2XffIC2D3bQ+rOdmC4NZdOxugIkTi4l86v34UxP/khsFlVPvkI3XqLfngund8O5uQy1pQ4+qML+1dmoGDtWZ4C6P6wl0uMjfcmss4pTadqgM0c+yjLMYWclDSfc4eHY/zxJ/I25ZHx2ep/3wvCG6fjTTsLtneTcvPKsj9G5q5zKFz+g+sqrCaecKvbcAjhbWwn97m+U3Lua+LEFNL2+kUDHEbQEJ2Z3GEdKEnlXriRh8tiBdz7CWUpqsNdK08CwYLg8mGGitItjYnrWVYuILcyl+Z1NBFrKe5OM3jCOhHgyVywhcVrZiPfV8sEuatbtpvamq4kmnEqmti6eh6u2geDPnqPsoVvOaRcwIYS4HEhiRgghhBCjKn7sGDz7t8OUjCHHmQ1eHIkXrkCp5rCTsWo+6SvnYXj9mFEDW3wsmm3gVs2dWw/QHeoi+ukp8NHkkaawFuRjaoro84exPzAFleyGL02l+YebSRhfdFYdp5SuYYtxY7b5UWkxQ4890En8gklnfIzTVT/+Eol3jME1PrnfNj3OQcrnymj76UESyksGbFM9nKgvQPVz71J5y6cwYvqfTyg9ncrrb0J74gWm/n9foHTifRjBEIY/hB7jRHc5B923UgpHUjy2xi6i2UlDxhF3sJHEKVP6P15aQOhAC9asYZaOHWglvuTMz/98iR9XSPy4QoxgGMMfRHc70d2Dv1YDCbV2UvfOVqruvQ3L0T8zFczPofqmq9B+8zJT/vWLF0XLcCGE+KS4OFL5QgghhLhsJU4rg6NdWD3hoQeuqSVj2bwLE9RplFLY4mNxJCcMmpQBaH5/C9Frx/ZPypzGmpOLVduD5e09V+W0Ya3Io2Xt9rOOL2PJHKw1tUOOsbqCqDof8RNGsAxnEMHGNoxoYMCkzIeUrpFwXR4tazaf1THaNuylfdzEAZMyH4rGx9NVPJaObQcA0F1OHCkJQyZlPpS9bA5J7w+9xEjrCeKuaB1wJknmsrnY3q+FoerpRE1sG+rPehbU+aS7HL2v1RkmZQCa1uygdfb0AZMyHwqnp+LLSKPnUOXHCVMIIS47MmNGCCGE+AjLtOg5WEXjmh2EmjpA14gvyyd7xWxcOamjHd4lR+kaebdeSe2v3kN7eCoqrn9XH+OdKqxDbdRXvkPzW+tJmjGBtCtmYIuP/VjH9tc00fL+VnzHe9s9u3LSyVo6l9iygmGXTEU8XlrX7aBrTzlmMEw0FEJVdWIlu8A+SAJHU5jTszD3NINNw9zSgNUdot0XxRbjIm3xLOwJIzuncHsXzWt34DlwjEhXD1R2YltdhDY1vc8yHMsTwvzVXsbcfvXHmsXQtesQ7nnDz+pxlCTS+WQFlmmd8fHadhyic8U1w47rGDee1m2bSFs0/Yz2nzRjPEkbdhFec5ju5f1r+2jeIJmPfUD+LSsHXMrkykolaWwRnU8fJHrXRPjo+UUMbE/sI33OVOyJcWcU28Wua+9Rej59x7DjOiaW0br9MAmTBllOJoQQoh9JzAghhBCniXoDHPnJc/iTHfiXFWIUTAHDpHt/E12/eYmUsjEU3LnygtQ5uZwkzRiHZRrU//BdrMmpMD0N7DpWXQ/mO8dRDp24RyajZ8Vh+SJ0b2ug/Xu7yLlxBclzznx5jmWYVD/1N7pbmogsK4Db5oBShI534n9vDa7XbYx9+FODzsJo37iHhjfWEVmch/WlaRBjh1YfakMt2tuVmJ+dATmDLLuKc2D87SjavFxsd02EtBjwR2jb1kT7//sd2dcuI3V+/2U0p2t6cyPNW3bjX1JE+KsLwKGjNfXgfPcI9leOYrttXG+R4d2tcLCDgjuuHrzuyggZwSBa5vBFhpVSaC4bViSKco6gKPFpzEAYwzV8cV7DHTNgO+thY9M1Sr90B/of/krcj96ma2ExkZxkVMQgbm8dMfvrKbh1Jckzxg26j/zbV6O98h6d391IdH4uZkkyWBZ6eQf61kbSF80gc/XCM47tYmdZFpZt+EuHaIyb6Fm8N0IIcTmTxIwQQghxghU1KP/xs3QuKSAy87SWuLpGZGYeXdNziT69C+3FD8i/denoBXqJSp41kcSpZXRuO4hn4zGMQJBAdSOx95ThmHSq04uKd+BakY9jXhYNP1+L7nadcdKh5unX6XL4Mb46u+/So9JUIqWpRNfVUPHL5yj9+r39knBduw5Tv24zkW99pMBvZhzWrROwanPQfrsT86vzIGmAJEOTF21FIbYri049FudAX16ANS+bhl+sxxbjInFq6YCxt67dQWN5Od3fXNJnZo6Zm0jggTmEy1uIe3IH8WUFJE+dRtIdE4ZcgjVS9oR4/O0dw46zDBMzGEU5zvxrpi0hFltPD5HkwZdLAdi7u0c8s+ijNIedki/cSqilg5YNuwmUV6LZbCSPH0vybTeg2YeOW2mKvJtXkrVyPm3rd+Nb0wiaIn5MLin/dB22mOETS59Emt2GFghiuoc+P3tXN86zfG+EEOJyJTVmhBBCiBM6dx7BnxPbNylzOk3hvXM6bdsPE/UGLmxwlwnNbiN14VSKH7wVZ1ICMbeN7ZOU6TM21k7Mg+NpeOXdMzpGqK0LT1UNxi1lg9aDsRYXEHRF8R6u6vu4ZVH/yhoiD07tm5Q5XX4i1qpi1PvH+2+LmqgDLehL8gd8qoqxo312EvUvv4c1QAchMxKl8e1NdH9m9qDLpYxxGYQWFxNXmEfKvMnnJCkDkDx7EoHNrQPGdbrAvnbiJxSf1ayyzIWTSTu4f9hx6Yf2k7lw6FlFw3FmpJB/ywrKvng7JQ/eTOrCqcMmZU5ni48l65pFjP3C7Yz93G1krJp/ySZlANLmTiJx/+Fhx6XvO0TGx3xvhBDiciOJGSGEEOKEpjU78C8pGnqQrhGcm0/r+r0XJqjLlBEK0324Evu09CHH6WlurDgNf3XjiPfd+sEOolfkDVmkFyCyJJ/mtVv7POY7WoORGQOJQ1+AW7NyUHubIdq3lbV69Qja9EyUc/AEgEpxYybb8VfW99vWtauc8MQMGOL5AKGFhbRu3IXvWC3d+47hP96ANVTB2hGwJ8Xjzs3Gt75p0DFmIErPa/XElxbTve8YvmO1I27nHfF4scXFkFhxDEd7+6DjXM1NxLc0kzht4BlFka4eug9U0H2gorf2zjliGSa+irre8zpe/7Ffz0+ajMXTSdtzAFu3d9AxMZXVxJoGMYVDd60SQgjRlyxlEkIIIU4Id3kxsxKGHRcZm4J3c/MFiOjyFWn3YMuKG7AA60fpY+MI1LUQMyZ7RPv21zVizS0cfmBxMsFn+s4QCNQ2Ey0e/jOCQ4cUN3SHTv6/evMY2r5mbN+5YtinW2PjCda3EDu27+wtf30zoeLhC/Ba8U7CvgA1776DlujA6gxhNgdIWzKH9OVzzrpGUv6913Psf/6I2R0hbnk2WkzvrCHLsggf76bzT8cwAha1O7dhJblQ3jDaH7pJXTCNrNULUQPM3gk2tlH97Ht469rwxqah6QkU/OUvNC9bRk9JCWgnPgOGQcLRI+Tu2k7ZVz6F0vp+NgL1LdS/8h7B1nbU2KTeuP7ShSstldwbV+DOG7od+2Asw6TprY20b9yNmZ+AFe9AeUJojV7SF88iY8W8y6I1tC0+lrH3XYP1p7/SsGwh/qKCk8lNFYmQuPcwWfsOUvqNu0c5UiGE+OSRxIwQQgjxoZHeALeQ4r/nm1LDLpk5yTzD90NTMNJ985H9agqiI3yuL4LtucOoiAnNPVgRAyvdNaJkExYDz+hRH24cnnLpxHy67OTxzJ4wHa8cwv+HBsZ8+qaz+gzrLielf/cALe9upvX7e7Clu1BOnUizHytsEkmPxfjqFDi9s1YgQvNbx/E++gwlX76zT3LGf7yB8kdfoCJtCt7CySfP2RH0krNlD5nvv080Nxulazjb2kiaMpacb92DI7lvcsx3rJbjT7wEd5ahSk5bRmVZBI91UvHYsxTefxNxJQMvIRuMZZgc+8Uz+NIVxrc/UlPIG6bx1WP4ftdA0YO3XBbJmfgJRYx/+DbiX99Az5qNRNJTwDRxtnaQMms82f9wP7ZY92iHKYQQnziSmBFCCCFOcKYnodV0YhYMXXjUUd5KfJFM1T+fHGlJGE0+rIiBGqz19AnRcg/uu0c2WwYgbkwe3vJ2rMxh2hmXtxFTkNXnoZjCHLS/7MBYPsySt2AU3Wcw9v6rsbldODKSMYJhDv3bL7HCBsox9Dmp8i5ibu//GYsbk4trz068Mwapg/Th8zv9aHbVJwmkxTtw31NK4I9HaF+/i7TFM4c+h0FoTjtZ1y4m8+pFhJo7MCNRug9X0lxfgXHPpP4JJbcd46YyfH89SsPr68i9YRnQWy/n6C9f5HD2XEKuvh2swq44qgrm4Qx0M6F+M6VfuR13bgbaAF2ezHCE4394CfWlqai0mL6vg1Ko0hSsh6ZQ9YuXmPh/HkZzjLxTVOMb6/FlKIybB+jSFOfAuGMCPU8fpHXtdjKWzxnxfj/J3LnplHz+ZqL+IJF2D2gazozkM6rPI4QQoi+pMSOEEEKckLNyNrFrK4ceFDZw7agjbeHkCxPUZUqz20iaNp7wtqGXjEXrveiWHXfu0LVoTpe+eCa2DfUwVO0Ty8K+ppbM5fP6POxIT4bGHmj1DXkMtakWzW4jtjAHZ2YKSilsbicpsydjbWkY8rlWkxc9pOHOz+y3LXFqKY6KdpR36HbEzg8qcF/RP7GjlMJ1wxha39868hlJg1Cahis7DXd+Ju2b9xK9vmTIuj3G6iI6tu7DjBoAdO44TIc7vV9S5nQhdwKtifn4qhsHTMoAdG47AFPT+iVl+sSaFgNT03rHjpAVNWjfvBfj6iE6filF9LoSWtdu/9iv5yeNLcaFOz8Td266JGWEEOJjksSMEEIIcULC1GLifBautRUDD4gYJDy+jayVs9Hdzgsb3GUo86qFhN9rIlLRNeB2oyNI4PFy8m5dfUb7tSfFkzp9AranDgycnLEs9NcqiI1NJObEzCgzHKF9/W6O/vAJKE1G/+1O8AQHPkB5K9qmWqKREJW/epaew1UnL9ozr5yP+qAJ8+jAbaetriDW7w+Qf9uVA25XukbujStIeGwrBCIDjrHtrMV1rBnn3KwBt2tJLojXCTUNXmD3TIQa24gm2KHVj/XEXvjxFvj5NninEvynxei0YY5Nxne0BoCWDftojht+aVFrQgEtGwbv1NS6bgfRDj/B/9lO8Kc7ibxWgeXpn7hS87Np3zbyot2+yjqswkRwDZN0SHBipLoI1rcMOsQyLbr3V1Dx6+c4/P3fceQnf6R17Q6MYHjE8Qghzp1AfQvH//g6B773JAf+3x+pe3EN4Y7u0Q5LXMYkvS2EEEKcoDSN0q/eRsWvX8G7bwO+xYUYBcmoqIljfxOuTdVkLZlO1pWXx5KF0WZPiKPkK/dQ+ctnieQ0Y1+YiZ7mwvRGiGxrJbq3g4J7r+9XIHckcm5cDq+sof37W4guysWakAaaQlV2YltXR3xGBmM+eyNKKboPHaf6qb9hTMvAHJ+IPdUJ83Lgx5swZ2Rjzc6FGDu0+tDW16DafNi/NAPjTwcwptipX7sG9ZJJ8cN3YE+Kp+Sr91D5q2cxMppgUTYqzY3li8D2ZtjTRsFd1xJXWjBo7ClzJmJFo2g/+IDgnDxC03OwHDp6YzfONUdxGFESvjRtyOVSKsGJ4R8ksXSGQq2dGM09RNbU4V1URiQnCRWK4t5TQ9wPNsGqIljQm4CxEhwnjxv1BYgkDl+PJGJ3DRirEQxT8dsX6Daj9MycRLggBWWYuPbXE/+zXdjmZGK7svBUvZkEJ9EzOOeoL4iZMMIEbKKDqC8w4KZQWxeVv3wGI9sFi7NR6dkY/gjNO47R/O8byf/UVSROKxtxXEKIs2dGolT87hU8HT20TJ9McNo0lGkSW1lNy4+fJn1mGXk3LZU6cuKCk8SMEEIIcRrd6aDsq7fjr22h+f2dBDbsR+kaiePGkP5P92NPiB3tEC8rzvRkxv/vL9JzsJK29bsI9zSjOR2kzZhM8s0Tz6heyOmUUuTetIL0JbNp/WAH3ucqsUyLmNwMMj59O66sVAB8lfVUPfsaka/OgmQ3amsdVksPtsX5aCXJmDuaMP52GEIGKtGJviAHNa536ZLVE8Y+KRXnnCzCB9o49tOnKPv2Z3GmJTH+n7+A9/BxWjfuJNLdgOZ0kDJ9Isk3TRrROaUumErStDLaNu2h86WjWFED3W7DsCtivjJ92IsKyxNCPwdFWs1QhNqX19B54wyCM8b02eZdNQnfFWWk/XoNul2H2TlonjB6TG+rcVtsDI5IgIB96OSHPRJEj+3bntwyTY7+4lmaJ2fgXTy/zzbfknH4FpSQ+sQ63O/VYF95Ii5P8IwK09pi3WjdIYwRjFWe0ID7jvb4OfazP2F9aixa6WndtBKcqOvisBbnUvOLtyl02ImfMEzdIiHEx2JZFsd+9SJ1aWm0r17ZZ5tn+mQ8UycSfO091F8/IO/GpaMUpbhcSWJGCCGEGEBMfgZF91892mEIQGmKhMljSZg8RK2Ps+RITiD3puWDbq994W0iD0yG5N6LbmtyJuYPKrCuLUE5begL89AX9p+xY9Z2o8U5TraTdkxKw6z10bZuJ5mrF6A0RfzEYuInFp917HqMi8yV88hc2VsHx4waHPrXRyFsgnPw2TJmZxB8Js7M4dtuD6d98148E7L6JWU+ZLnstH1uKZk/fgMmpKEqu4i7v3c2UObiKWS8doDqmKQhj5HRXUPm0ql9HuveX0F3vA3v4kFmmth12h9YTNb3/oZtYS7KbcPa3ETqnKkDjx9A7Ng8tCc9vUvG3EMkyzxBtI4Qrtz+7bib392MdUVW36TMaVSCE+3BydT94W0mTPjiiGMTQpw539EaOsMG7fMGKXyuadRfsxz3H54lc9lsuREjLiipMSOEEEKIfiLdXvxVDQTqWrCGKpJ7DhmBEP7qRvw1TSOqvRHu6MZ/vIFgYxuWee4LrwYb24hYYcg9rTVzjB2rNAXjg5pBn2eZFuYrR3Ev65uwcVyRTfuGnQSb2+k+UEHXrnICdc0ni+FGun2nXvPoSOZp9KXZdJLnTSH45hCxWRbBV6rIWDb3nEzVb163k+7FpUOOsWKdhEoy0f60n9R5U062y06aOZ6UQCvO4OB1HRwhH2neBlIW9C223bhmK11Lhz4udh3/rCKMLQ1YrX7Y10bynEkjOzF66/mkLpiG/voQBcEtC9vfjpGxdE6/19MyTDp3HEDNG7pjmEqPwYjT8R8/VRTasiyCTe34jtcTausaccyXAsu0CDa04j/eQLhTan58EoU7T/xubmg9L7+bz1bDu9tpnTlMclbXaZ8ygdb1uy9ITJe7D//uBz09BAIDLwe9XMiMGSGEEEKc5D1WS+Mb6wh1daEy4yBsYDV5SZk7hcwrF6K7HOf8mKGWDppe/wBfRS32vN4W1uHaHuLHF5N1zWIcKYl9xnv2HqXx7Q1EIiGs1BhUIILqCJK+cAYZK+aevPD/uPzVjRhl/Wc6mLdMgJ9vhUAUfcUYlPPU1ymrI4Dx/GHsY+JwTEnr8zwtzkE0GuLAj57E0hTRzARUxMTZ6MGR4ALNxJEdhxk2iDb6SZ4zmYzVC9FdIy80nX3NYvy/eJrAS5U4V+efnLEDYHaHCL5chduRSsqi6Wf+gnyEZZhEIxHMpMG7IX0oUJZN/JsHyX548cnHNJtO6Zdvxfjp8xxPm0JPfMaprk6WRayvjbHNexn70A3ozr6fu1BbF5H81GGPGxyXTexbu9DWN1L0mVvOuHtQ1lWL8P3qWbx/OYxxzdjeWkIf6glh++sx4q040pbM6vfcSFcPKsXd5/MxGGtcIv7qRtxjsmn7YAdtH2yDBBsqzo7ZGUI3dTJWLiR59sQziv+TxIwatLy7lZaNu4mkxmK67djavLgcTnKuWkji5JLRDlEMo3t/BbV/20CgJ0TYHY9uRHAFvWQsnkbm6nlo5+h389kK1LUQuGrlsON8hfl0b9tB/7524lwJtXRQ9+pGuo/WEkpPh3CEu77weebPmsXn7r2PjIz+MxAvdZKYEUIIIQQA7Zv30fjuOvhUKWpMyakZAMEoHR/U4vnhHyj7u/tP1gg5F/zVjVT99nkSbson457pKK33mJZhEtjZyrEfP0nxl+7Cld2b5Gh6ayMte/cTuX085JzWZtkbpvGd43h+VkHJI3edu/a9A00q0RTYdczD7ZhbG1C58ag4O3QEwRvGvSIf55yBOyJZCjo/NZvQxFxQCveO47jf20fSXWNwFCWcfM3NYBTvB00c/cEfKPm7+0dcG0XZdMZ+6S6a395E+w92o+fG9l7cd4Ww2kKkL51L2tJZ56aw5Zm0h1aKpCllKL3vZG3NbkOzKbKCFeS27scbmwpKEetrx4p1otnMfkmZMwpRKfSOCCUP34krZ+Qt1U+GrWuMfegOmt/ZTNsPt2HmxGHFO1CeEFpLgIyls0hfOufk5/YjRz+DA4FpGBx/7HnCbj/uL09ASzyVkDNa/DS9sAF/TQO5t6464/O42JmRKEd++mfa8+Lp/toKzNhT525r6MT/l7XkNrWRtWr+EHsRo6nxzS3UfrCfquJZBIuTTz6uh0Nk7T1E574/Mf6bd39CWqurM/v9Js6Iv6qBI4+9TN28RXhnLwWt9+9ClWFQcfQo2779LX787/9BQcHgRfAvRZ+EnwwhhBBCnGfBhlYa3/oA9fUZqI/U01AuG2p1EUZiA1VPvMLYh+84J8c0wxGqfvs8KQ+VYc/qu5Zf6RoxczKxZcZw/NfPMv5fHsZ7tIaW3fuJfGUW2D6yGjvOgXHzOPxvVlL34rsU3HHVx47PnZeBtmlLv+Kv2ivl6GXJ2K4qxoqamO9Xo8rbiLm1FD07dtCkh+mPYKCdTMrYmj2kvrOX7G9O7TOzBUBz2UhYnYcvqYWaJ16m+Et3jThuZdPJuuYKMq9aiL+qESMQxBYXg7sg65x2GlE2HV3T0boDmAlDJ45iK1qJKxvf5zHLMDn6qxeo/dQqwtnp6F4/jpbeNuLe9GSM+FjsrZ1oj73E5P/7+T5FkR3JCdgauojmJA15XNexFjIXzTqrpMyHlK6RddVCMq+c3zuLyn/i9czPGiQh08uWGI/VHoCwMWSHLACtoodAfAuRxBAxt/Wvm6NnxBDzxUl0//oAMdsPXnIzZ2qef5vWslS6V/U/r2hOMk0PL0M9uoa4gmziygauZyRGj/dIDbUf7KN88gosve9n3XA4qS+eTrT2IO4/v03RA9eMUpTgzErF1dBMMHfgxPmHYuoaiCvIvEBRXV7MUISjj71M5dXXE075yIxUXcczfjx7k5P5h3/9Dk899ht0fXRnWV1IUmNGCCGEEDSv2QJXj+mXlDmdmptNoK2NcIfnnByzc9sBXFOT+yVlTucoiMdeFNu7fOmdjURuLu2flDmNsaoQz74jI6pRMxx3Xib2kIJm76kHg1HUgRb0VYUAKJuGtqIQoyOElugcMvER3NCAd+7Yk8t1EtaVk3x1fr+kzOli52YQ6uw4qzojStOILc4lYdJYYsZkn5f2rxlXTCd+Y8XQcQQjuA83kTijb2LGs+cIPXkZhLN7kyZGXAyB4jwCxXkY8b2fiUh6Mp7SAjq3H+zz3Kyls0lad3To4AyThG1VpC2adoZnNch5aBqxRae9nkMkZaB3qVbi9HGYO5qGHGd1BqE1iLf8OK7rBk86KE3hurWYlnc3nlX8FysjEKLrYCXdy8cPPsiu037DNBre2XzhAhMjVvf6ZmrGTOuXlDldc+54uvZXYpxBy/pzLXflbNJ37h16kGWRuucAmUsGKRAsPpaObQfoLCzun5Q5TSgzk5bUNLZs2XIBIxt9MmNGCCGEuMREvX7aNuzGV10HQExeNmlXzMCeEDfoc7oPVKDdOh+rPYC5qQ6r2QeaQpUko83J6Z01oxTWvEw6tu4n6+pFHzvOji27ib9r+FX8MQvTaXjybSKRKBSMG3qwrmFMzaB7zxGS500ecIhlmHj2HqFz9yHC7R6McBjd7cKRFE/y9AkkTu1dcmNGosSPLSD0o00Qa8ey6xDvQJUk91mSozSFdk0xPb/ZR8LD00BBaFsz4SOdYFjoaS5sefH4NzXDzCLSfvUeepcPu8dPzB0Lhj//BWl0bt1H1rWL+22zLAv/8QZaNu4h5PFhcztJmzkO3e2kbes+Il4/thgXabMmEz+xmHB7F23rdxJsbkPpGgllxSTPn3LWy4XSFk2n9XuPEyxMJTR+gCK3EYOMxzeSvXpBv/oSzZv30TFn4PfodJ0zxtP89iZSF55KsCRNH0f8O5vxbz+Of/YAbaZNk5QnN6LrGtV/fpXEcWNJmTsZzTny9urhdg+t63fgb2xF6TqJJWNIWTD1jGr+ZK1agOeHf8DMjUcrSOi33fJHMH+3n/QZk/C0H0e5hv5qrmfEEA77qXvpfbJWz8d2DpcVjhbPniP4puWBPvT94nBRGv5ntmEEw+el1pU4O0YwjL++Ff+suUMP1DTaU/Px7D5CysKRd0c7l+LGF5H0+iZ6du+na/oAv3ssi6x31pE6sQh7Unz/7eJja964j/ZFK4YdVzt+PH9543UWLlx4AaK6OEhiRgghhLhEWJZF0+vrad+yB+Zlwsre4qiBihbaf/QHkiaXkXvLqn53+s2ogWXXMJ45CHU9uK7IxTYjDQyL8L42Qt/bhLayEH1RPqS4iFR6Bzr8GTH8QYKNbSSnDN8u2pbqwrAZkOxC+8FGzM/OhLTBC86aKU4iPf4Bt/kq6qh64mXMvFjMpm6Id6Avy8dMcxPxRfBt20b9S++StmAGze9uxlQm2qI8tKkZYNOwqj0Y71YReXwvtnsno+y9F5P67ByMQJTOf9sEKKzZuZjLxoJdQ9V2o16rAH+E+IPVKAu0pbmod6r61VwZiJ7ipOuNI2RefUWf9y7S1cORX76Az26nbcpEIqUJOFrb8fzpdczMWMIrSjCT0lE9Ibo2b0Z74mVsMTacK/LQpydD1KJ9XznN/76RrGsWk7pw+rCx9IvN5aTsK3ejHn0G764aPItKiGQnocJRYnbXkLTuGFmLZpCxuP/d50i3j2ji4MnCk+OS4ol+5P1UukbZV+5C/eJZvPsb6bqihHBBCsowce2rI+HtA6gMF+H7xhOOWvTsPULjv60n98blpMwdOhlkRQ2qn36N7qo6ootysaZmgWHhPVBF039sJmvVAtKXzh7R62NPiqfkS3dR8atnMcsSUYtyej+7gQjm9ibY0EjOdctQgDLrR7RPKz2W4y1dtP3n78haMpPMK+edl9lQF0qk20c4efgC0iiFmejG8AUkMXMRMfwBDFfMqcLdQwg4Ygh3+y5AVANTmqL0kdvhF38hoaqW1umTCeZmg2kSW1lNxs69pBZlU/Cp4QsEi7Nj9PiJxA+f9IrEx9PZ1XX+A7qISGJGCCGEuEQ0/m0tHQ3HUf84B3X6cp/8BKwl+XQ9U4713Jvk33l13ydqCssbxJmYgvue2X0u8mxjEnCvKqDn1/swFKA0bO7hL6aHYkaiHPvpU6hYHcMbwZY89AwEoycMiS7sD8/ErOgk+sttGF+ZB0kDzxZQ3gh6Wv99+muaOP7ES3D/BMw/7Ue/vhRt8kdqj5SmYLX4aPzBOlRWHPaHZ6Lcp31dyo1HW5CL8WoF0d/twfaFUwWLiXFgJcdgPjynT/ceKzcBa34e6s1jqB0N2P5xPpquEX3rOJZpDbskxuiJ4A8FqH3+rZO1c6JeP4d/9GdqlizAX9xbIFH3+kjbtAX/p2dhlvTtCNUzLgOt3kP87zcTOzYRPaP3QthWmIC1Kp/mX21GKY2UBWd+J9uRksDE//U5uvdV0PTWDsLtHpRdJ2niWDK+di+OlP4zRQB0txPNH8SIG/qiXB/kQtwW62b8tx7AW15N49rthF7YRdTrx8qMwXpoBmScWiJnFCZhrCqi7pfrQVOkzB64bbZlWVT+/iV6Ug2Mv5/X52LTKEjEWFFI4292gVKkD9CJaSCu7DQm/MtDdO04RNuLO4l4fGhOO6nTJpD2D9dgi+9dqmd5R9Yi3fQbdK6aTOtVCwj95V0syyL7quFnXl2sbG4nts62EY3VvCE098hnLInzT3c50cKhEY11REPYYwZfwnIh6C4n4/7ubnzHamlcs4PA2o0oTSOuOJfsz914stC8OD80txNbIEA0bujvEbZAgJjYwZc5X4okMSOEEEJcAsKd3XTsPID6h9kDzsJQmoI7x+H50Q7SG9v6fPn0lVdjy4vDfV3RgHfelctG/Ben0PXf29DiY0m+/+MtY+rYuAeKXTgS4vBtaSbx6qE7L/i2NMOM3kKM2thk9NVFWG8ew7xzgJkPpoVtVzOJ37q236baZ9+AByZg7W1Bm5vTPynzoSQXuGzYPpqUOUEphe36EiK/3oV1uB01MQ0ramK8egzzWwv7tlQ+jXVVCVaLF2t/G0zLQBUnETrciWvi0BcqPVta8N0zC+3Pu8ls7sCZmULjW5tpmjLhZFIGIHXTVsJXl/ZLypx8aXIT8d02Hf2VoyR+/tRrp9w2Yh6aROP33idp9sSz6pqiNI3EaaUkTisd8XPSZ0+gbe8RWobptJO09whpgxS7VUoRP76Q+PGFdO44RM2e7UTvG2RGTIydyBdnUP+jNSRPHz9gW3XfkRp8IQ/GddMHngHgtBH5/HSavreRlLlTRjxzQ7PppMybTMogy+vixo0h8uzruKJFfZOqH2F6QhieCJHUJFCK+ttW4njsBdIXTcM2TILrYpUwtZT4H2+m+8pJQ866sDV24YhxXxLLty4leowLV2IMTm8nobjkwQdaFmntNSRMW3rhghuEUoq40gJKSy+vrj8Xg7TZ40k+fIjW2XOGHJd95Ag3LB9+ydOlRIr/CiGEEJeA1g92wBXZQy6NUZrCWpZLy9ptfR5veX8LrmsKh1wOoVw2HNPT0bxRXDnpRL1+Qq2dGIFTd0otyyLi8RJq68IMRQbdV8v7W7FNScE2KRXf5iaM7sEL9UY7gvj3tKMmpmO1B7C6QzAjA3WwFRp6IBTtG+e2BmLzc7DF973TFmxsI2KGUDlxGDua0BbmDXpMc2cT2oysAZMyp9NXF2F8UNP7nD3NWBPTIXboC3VzeTHGut7nqCUFdL1ajRU1Bx0fLO8iYijM/CT8y4ppXrsNM2rQseMwnqkTTp13OExMVS3RWYOfF0B0fAbRlgBGqx+jPYDZHcKyLDS3DduUVDq3HRzy+SNl+IOEWjuJ+gKDjkmZM4mE8mpsXT2DjtG9fpL2HCF1BDUpmtduJbpimI49cQ7McSl07S4fcHPTmi1ElhcMvSzDacOYmUnH5mGKiJ4B3ekgcWoZoQ+GXs7kfbWajpmTT8Zn2W10Th9H6/o95yyWC82eGEdcTgYxO6oGH2RapLy2j5wVw9QxEaMi9+q55NfsG7LFdHJLFfH5GdhHsHzx47BMi3BnN+H2LsxIdPgniAsqbdE0Ug8fRPcPvNwYwNbdTXpNNcuXLbtwgV0EZMaMEEIIcQnwVtSg7hmgCOpHaJPS8b7b94Iy2NBKXPHwdw4dU9KJHo9Q/t+/JRoNocXaMbuCONNScWWk0XO4AsupUA4doyNA3Nh8Mq+8Andu78wUf1UDTW+sJ+r1Yr1ehRWIYilF03/vJP1Lk3Hk9f3CHq7pofXR/Zi58Zg/3oqV4gZvGNUVAh3sz+3D6g5j5SdiLCtENXhxrWuk4JsP9IvdV1GHNSkF1RFEpbmHLLJqVXahzRmgkO1HqDGJWC299RLMyi7MSUO3YAUgLwE6eruSaIVJGJMzaP3lAVLvL0NPPLVEw7IsAnvaaX+5ip4vXQFAZHIWPeu2EW7tJJyajGU/rX10awfGmORhC6hqDd0oTeH92W5s6W7MkIEVNnBckYs+IQnv3qoRJUEG03PoOE1vbyDc2YWW4MT0hrG7Y8hYsYDEGeP6JP80h53i+6/FfOoN6m5aRvgjLa3tLR3kvfgeRXdeOaJZEpGObsgZvnZBdFIqPUeqB2w5HahvgZKSYfdhTEqne1016ctGVmtmJHJvWsnRHz9J0KrFuTS3z8wZKxjF+9cqerpsdK/suwzLW5KPZ/0usvnkLmcqvOdagj98kraoiW9uEWinFdf2h0h9YRfpyan9OnuJi0Pi9HFk7z+OcWQzNcUzMeynLTezTFKajjOm7RjF/3jfeYvBCIZoWbOD1o17ibjdWLqGzdND0uSxZK+ehzMt6bwdW4ycLdZN4Z0rMV54iepVVxFOTe2z3dnczIT31/Cdb/89DsflVUtKEjNCCCHEJcAyTRimVgnQO8bsf1dzJMVDlaYIebuJ/8IU3Jm9yybMUJSen+wikhTG/eUJaCeSC5ZpETnQTuVjz5B361VE/X6a3lmP6+ZCEh9cdPJ4RnuAwOvHaX10P3qaE3dpMpZlESzvwugJYzhtmMuLYVzaqfPrDKC9XYHq8JHwT3MwKj34Ht+FKyOD4m99euCLeNME/cS5D/c6WVbv2OFeD6XAH8V44TBWXQ9MHT6Z81H66mKi21w0/XQf9gw3jpxYTH+UQHkXkewkfF9ejPVhYVRdwzJNLNPC0vomYNQIYrbtrSf+tQOk3FKIa0LKydo20c4Q3W/XEtzShJ6Ve8bn8KHG19bRefAgrpsKiS8ce/LxaIOXxr+up+focfLuuLrPZy1+fCHjHrwR5wvvEQiG8RXmYClFXE0jLk1RcO81xJeNcLnBSOvfaqr352VA1oiKmPbuY/DZAWdDc9op+bv7aHj5PTz/sQOtOBaVGkO0I0zkWBeeKePpuG1m/8+vrmEZI6tPc7GyxboZ/837qfnLO3S/+zqBidkYbgfOVi/O2g4yl84mY8WcT3SR40uZUorC+67G/e42Et59B29sCn5nHDYzQlJ7AwnjChjz+fuxxbrPy/GjPX4O//jPtBQX0nn3LZjuE38DDIO4wxV0/ejPlH3+JmKKhu8CKM6/pOnjKItx4XphDQFD0ZOdA1GDrNZWcuMT+Ob//hfGjRumA+MlSBIzQgghxCXAnZ1OT7UHNUhB3A9Z1Z5+xQ1tCbEYLf6TBWEHEzneBQ4NPfPUuMBzR3HOysS1ou/Fs9IUjilp2AoTqP3+qyi3jbi/m9ZveZCe6ibuvon4X6nA6gljZMahNHCOScL7l2OY317Uv2ZLshvzjslEXj+K/+UK4j5VRsI/zsH3P/uIdHQPmJhxZqWh3tsLi3KxWvxYhjnosi+VGYtV5YHiIeolAFabHz3Njbs0kZAvjFnZiTVumMKRXUH4yGwdfU4O1uxsjCoP3vdrCOp2Ql9ZihXf9zz0qg7c2Wk4UhOwt3X0JptOJGgiSYnotV29SaUBLl615h7iX91P1jemosf1vQtpS3aSckcJnteriRzyDB3/YKe1q5zO8kPEfmVyv9fVlhOH/oWJeJ8op+2DHf06GsUU5TDxW/cRau7AX9MEgHv5rDMuwqk5HOAJQuLQPwN6dTcxWQMvebInxhNu8kLW0MstVLWHmOxBahR9DLrTQf4dV5Nz0woOf/9JGt0phEoyCazKAb1/TRwAV30LsTnnPpYLzRbrpviBGzD8QbxHqjFDEWwT4ogrLUBpUn3hYqeUImvVXDJXzMF3tIZIVw+a005c2TXo57ku0NFfv0jt7Ol4x39ktpuu451URlV2Buo3LzPpf39WahRdJOLLxjDpnz5NsKGVQH0LkZ1H+c9//f/IzT37mwOfdPJbTgghhLgEZCyZAx80Dj/wgwYyl/Qtupe+eA7B92qHfJplWoQ2NWIGo5ie3roypidEtKYb5/L8QZ+nxTsgxY7r5sIha7a4rysicqwLx5Q0HDMzCe1qwbhl/KCFdKG3mG7kUAdmIIoWY8d5fQHN724acGxsaT6qOQBBA600BWtf6+Axz8vF2Fg/7IwI4/0anFfk4piaTuztpWjb6sEYvF4MgFpfjbag/xdPpRRqTCJmvZfQLVP7JWUAYtZUkLl0DrrLSUJxLrEV1adiiYshnJSMXtE+4HFda4+SdO2YfkmZ0yVcVUC0p4eod/C1/4NpfnsD7k+NHTzZpSnctxfTumbroK+rMzOF5DkTSZ4z8aw6o6RfMRN9Q93QgwwTfVsjKfOmDLg5Y8kcbOuG2YdlYdtQT9qiGWcc40jpTgd5Ny4hpstLYGz+oEkZLIvUHQfJXNq/HfknlR7jInH6OJLnTSZ+XKEkZT5hlKaIGzeG5HmTSZw+7rwnZfw1TXijZv+kzGkiKUl0TCqjfeO5qwslzg1XTjrJcyaRkJN5WSdlQBIzQgghzgNPZTPlz6xn3+PvcvSFTfgaO0c7pEueOz8Td2wi5nvVg44xN9XjCOjEfmRpSNKsCYR3thDeN3DLWsuy8L90DFWagr4on9D2ZgDCO5pxzs8ecnmBFTYwPSFs4/p3HjK9YQLv1uB9uhz/C8fQcmIJ7WrBDEeJHOqAyZlDn7SmMGblEN7ZAoB9Uire8uNY0f7LOpRS5Fy3FOsPB9CW5GP89ShWW/8EhNUewFhbDYEwxtMHsQYpZmkcbIOj7ThnZWAZJuED7RCKop7a27tcqs2Pev0o6ul9qBcPwZE2+Nth2FyPWdtD9P1qLP+pAsmWZRF95hDhydlYcf3bAdvXVRBr2nGPyaZj6wEsTDLfWUvy+q1owd5EWfv8uTif2YPyfKTgrmXhONRMzPTUfvvt8xppCvf8dNrX76L57U1UP/U3ap5+na5dh7GGSDiFWjsxVKTPTKqBaHEOtGw3/sphEh9nKXXBVOx7et+XAZkWtmcOkTJn8qAXi0kzx2Ov8sK+5oH3YVnoLx8hsbQQR/LAbcDPlYTJY0n09BC3/9igY1LX7SQpOw1nxtm3II56/bS8s5mqD9/vnYeGfL+FuJi0bNhL69SBu7adrnPqRFokMSMuYrKUSQghxDnjb+5i96/ewIzV0Oemo2Kd9HT6afrt67jcMUz74lU44s/PGnMBRZ+9hYpfP0eoej8szUMVJaKUwqzxwNp67J0WY798V/9EilKoOBe+144TPtiOe2keelYslmkRLe8g8G4tZoIT/Z5JWAfbMI/1XviaXSFsJUlDxmT5I2hJzpP1TAAsw8T/UgXhQx1o83JQ07MgamLubML/ckXvsiaXbWQ1c9JjMdu6e09DU5h2OPLjJyn+4qewJ/TtzJQ8eyJRr5/mJ7agZmQReXQn+vwctAV5YNeIPrUfq9mPfkUe+v1TMN+rJvrDrejXjEWNT+3tatXsw3jnOBzvIuGr0wnvb8P/womk1d0TYX0d1nfWQKwda/EYrLHJ4I+ivXEMq8VPcPU4zIx4bFUdOH6wFX1aBlpxIubrlZjtAdTYNPTj7RiFKaAUenUnzrcOExfQSFk4nf3/+iu843LpmZQHU/JxVTZR8Ps/0zOuhPbli2hZtIjMH6wlsriQ8KIiiHFAdxBlV0N27PqQLd1F8/Ob0ZaOgalxEDXp3ruNuhfeIf9TV5E4tX877EhXD3r6yH6uVZqTiMc7orFnSnc5KXnkbo49+jSRsjaMxXmQHtubKDvYgv3dGpLy88m5Ydmg+9BsOqVfvZujP/szkUMdRJfkQVZ87xKx8nbsa2qIi0+h4NNXn5dzOJ3SNMq+cgfWT5/Fc7ye9jmTCWelgmXhqm4kfes+kp0Oij5/81nt3zJN6l54h669R4jOz8GcGg9Rk859O9FefJeC21eTOK3s3J6UEOdYqLObSFHxsOOM2BiM0OAdAIUYbZKYEUIIcU4EWrvZ/uOXcd5bhrMose/G+dmEd7Ww7fsvMvefbsMe039GgPj4NKedkq/cjfdwFc3vbSHYWI4FONKTyFy2kITJYwdcFqB0DWVYaN+ch7GnhZ5njmB5Qr11UAsS0K4tQS88keTxR1GO3mUVyqljBYZpR+q09RljWRbePx7CjHdh++eFfRI22qR0LE+I6M+39x5/JAKRk/FAb/ea4Opkjv74Scq+9el+xSbTl80mYdJYWtZuw6PaMNfWE1lTA6aFfk0x2oPTTiautHGpWNUejLeOY/1hb2/tlngHZm4CWtjA85/bIN6B7R8WoOIdWGED483jWNeUYi3su7zLnJ4F9d24frcL3+cWELpqPKErx+F+agf2l4+ibBrWglz04x5ifrsZolbvvOYEJ7FxSaReMYPq97dS/8h1mKfN9giW5tK1agZpz6xl7M9/jy3GTcK08eghG56fbu5tF6spVHBkMyBMfwS1KBdt1Wk1WE68LzW/epsC6Jec0ZwOLP/I2tIaXYFzXjT3dM60JCb88+fp2n6Q5j9tJ9rtRwGxY/PIvOMGYsYMX6DZnhDHhH94kK7d5TQ/v41IZ28775iCLLKuW03M2LwLVoTWFhfDxH94AM/eIzSu2Ua4wwMWuPMyyLlmEbFlBWcVi2VZVD3xVzxOP8b/WtgnCRqdlAHdIap/9S4FpkXSjMuvCKf45NBdDvTg8AkXFTWkeLS4qEliRgghxDlx6JkPsN9chO2jSZkTHDMyCHaGOP7aDspuX3iBo7t8KKWIn1BE/IThW2ef/hx3bgbBmm70Wdkwa/CLV2t7A44be+9O2qekEfhrJc55g4/XTtSVMZp96JmxRMs7MYIm+v1lA35JVolObI/MJvJfG6HWA/kDf55O7n97A477elvoRhu8oEC1+jEXZtD0xnrybruy33Oc6cnk376a/NtXA9Dy3lZa2irQlvUtCKuUQhUmoX1xBmaNh8gLRzD/rrclsRGOon/nfex/Nwd1om6Lsa4Wc1xav6TMSbkJWPdOxf2XPfi+shg0ReDeWeiPrsexugCeOYTx94uw3Kfq6tj+fJD0CdOoeXkt9V+5HtM9QFJT12i7axn5j71OyV3XnEw+5N+26uSQY//zJOHqbhxjhl5+493Wirp9Qr/HVaIT7aGp1P7kTRIm9a0l487LwGj0Y/ojaEPVBIqaRI504o2rIXnO8EsPzpZmt5GyYCopC86+7bey6STPnjhgS+0LTekaSTPGk3QOW0X7jtTQ092G8dCMgbtQJTiJPDyD2h+9RcKUEjTbIDVuhBhladNLSd56hMCYoeuTxJVXkDhp+Jk1QowWqTEjhBBiWEY4ihkZvB1rqMuHt6kD+6Sha1g4F+XQtO0I5gA1QMToylwxH96oHnI2g1ntQQWi2Ap6L+5tBQlYgSjRqu5Bn2OZFliK4KvVWJZF4IM6tFWFQ965VIlO1KQ0tD/sgaHaAB9pQ7cr9MyY3n2/XoVaXIC5pQE1P4euXYcxI9He/4V767lYUQMjFD5ZO8ayLNrW70ANUcAYQCtI7L1+beidPaH2NKFmZp5Mylimhbm5HmvZMAmx4mS0SBStpefEjhXBlWUYmxvQ5uagNp9Wf6WxB+1YJ4Y/RM/UwoGTMicDVLQtnkTjmu1YhtnnHAEyViyg+7X6QWvmAISOeTBM0HLiB9yuEp1QmkTX7vK+j2saybMmEnhz8PpGAKENDahJaXj2He2dyfMJY5kWRjA8RKvtT46mNVuIrBwzdGvweCfm+FQ8uw5fuMAuApZl9f78yN+pT4TEaeOIr2vA1jV4RzkVjZKxbTdZy2cPOkaI0SYzZoQQQgwo4gtRu3Y/desPYmr0diLRdAqWTSH3ignozlN3xruONqJPTBl2mrBy6mjZcfgaOokvOPOuK+L8iRtfSMKePDxPHEC7azzqIy2dzWOdRH+7B/eqAizLOvlex943gZ5f7yX2ngnYP1JvxgpGCTxbQWJpCYYvQPAvlRgNPmxFfcedHG9amLuaMNfVYnlCKMNC/+d3sbLiMG+bCGNOe97hVmzPHSDukWlYYQPfi8cwHDb0VYWY71aBAsutKP+PX2FhYpkmhi+MpWlYsS60iEnyrImkzp6E6VBoicMvr9OmZmAebcPKiUcd7UCfk3VqoyfUW7R3iK5HJ89zSgb60TbMjN4ESHRcBtbzu9FXF2G8dAQiBtqmWjTDQjns1L2xnp57Vwy738D4fDzPr2f/vx5HOW1Y/ihJ00rJWDGf+Mlj6dp7mK6nKkj8VBGas+8MiGB5J+1/Pob+0DCdhqal0n2gkuRZfWfVxORn0/rCbrQ4O64V+X1m1FimRWhzI4HNjdi+OgeeLifY0DqiZUUXg0BtM83vbcJbXo2KsWMFIrjzs8hcMZ+4soHbbl/sAnXNUDJ4F5sPRael07W7kuQ5ky5AVKMr3NlN8/vb6dh+EMtlh0gUR1wMWUvnkDxnonSHukgpXaP409dh/OE1am5YTTij7w0izR8g/9V3yF40BVfW0DePhBhNkpgRQgjRT2+9mFeIzs5AfW3GyVkB0a4gFevqqP3uQeZ86yYccb31O8yoCfaRfWlVdg1zqFkQYnRYEA2GMJp9GN/dhJqQipYTjxUyMHc0gidM9lWL8VXX4v2vndhmpKLibFjtYVREEfzzMUIxNvRpKSiHhtkQwCj3kLZkFhlXLgDLovHVDwgEGwdM4FlRk+hvdqPiHdjunoTK7C3ca4UNzG0NGL/chjk+DbLiUVvq0OwazjmZBN+rJXywHW1uDvrq4t59awrjJ9uIKY4nflUetpTemiymL0LPxia6N7Xg+dw8fLWddPzqOfTEwZffnE7ZNQidmC3x0c+8YYJjhBduNg11+t14TYEC7BqqrpuYsQk4/2H2yWVBnY/uw7KPYCmJpmG5dPT/07vcyoqYdO1pxvOzpyj41DXk33MdzW9uoOU/d+KamIQt24kZNAnu6iTS4UP/xlxU+tCdlbBpWNGB6zlo07MId4QJ/sdWnNPT0ZKdmN1hwrtaoCAR21dno9w2LLv2iZmN0LZhF81rNuK8toD4u+b0FoC2LKIVXdS88gZJpWXk3LR8tMM8c4qhZ8t8yK5hGZ+82U1nyldZz7Hfv0Tn8jL8/3g1lqP3EsnW7KH7vQOkbNtPyUO3o9nl0uliFFdaQNnnbsD+9NsElE5XUQGWrhHf1EJscys51ywkbeHZL20U4kKQ3y5CCCH6MKMGO37yV6KfKkUrSe6zTSW5UDeUEN7VxK6fvcbcf7wVpRQxGQlYW3zD7tuyLIxGL+7U89tmVpy5hlfX0m3zY/zDwt4uNgdaUe1+cNqxPjsTXDZafraD0ofvQnc76d53DCMYwj4mjoQbStFdDkItHfQcOo4ZMXBOSSLh7rGoD2tTKEXODct6Wy93h1AJfWeoGM8fRitMQr+6bw0A5dDRF+WjlaUS+cEWVKqrtztUs5dI2EBlJWC7aXxv0gSwvGEwTJKW5hA7r2+7bS3WTuKV+bjGJsATW/B8eyWRwlQSfrIWu2EO27XIrO/BmtC7TystBquuBwqTejcmOFFt/t7XbphuUqq+B3PGqZblqsMHMXbMmm7sY5NwX1XYZ7wtOwZHQzuRrKFbIttaPajEU4WBlV1Dn52NVZpCzc9epzT9HrKuvoKMVQvo3neMcHsXWqydnC8UUfHLZ7Gcwyd/rDovrvSsfo870pNRGwJoD09FC0SJ7GsBXxhSYtG/PvfUki/Lwmrw4kgdunbQxcBbXk3zB5uI+/rUPjPIlFLYS5KxfSURz28O4diQRNqiYWYaXWR0pxO6gpA0cNvwD6m6Hlzpl/Ysg0i3l2OPv0zjF5dgpPddxhfNTKT97nlE3zqA/ek3KLr/+lGKUgwntiiXyf/8GQK1zXiP1WKZJu6JM4gbX9SnyLwQF6vLPjGzdu1aXnnlZSorK4lGo+Tk5LBixUpuu+02bLaRvzz33Xcvzc3Nw4574IFPc//993+ckIUQ4rxq2VlJtCihX1LmdNqMLILbmvFUNJNUkkVCcSa0hzG7gmhDfNGPVnqIzUjGkSAtsy8mZihCx5Z9GP+8oPcuuq5gaiYfrUYSvraI5nc3Mebe60m9Ynq//TgzUnBmDJ08SFs0g+Z1lejXnVpGYXWHsCq70P95waDPU+kx6FcVYx5oRbu+FAb5fBobatFjbf2SMn3iLE4kZkIy/l11ROaOIZqTgG1PM2rmEEWPg1Gs8g64fXLvv+fnYzy6FW1Rb4ce5dBRxUlwoAWmDH5s/BE43kX07jmn4llfiW1BLuaaamLv7t8BJ2ZRNklPHMQ3s3+r6tMlbj6IfVH/c1CJTqxrxtD83mYK7r4Wzab367STtnA6LRurUVcPXiPHsizU5iZSv3FVv23u/Ez0HgOzI4BKcaPPzRl4H9UenElJ2JMGrmNzMWl8cx3uO8b2W9b3IaVruO8uoeVnm0hdOP0T1fElfdEM6jdUYVw3xHImy8K2sYH0r628cIGNgpYPdtJ1RUm/pMzpPFdOJO57bxDp9mJPiLuA0Ykz5c7PxJ0/xO9gIS5Sl3Vi5tFHH+XFF19A13WmT5+O2+1m9+7d/OY3j7F58ya++93/xukcWUvXxYuX4PEMXHSqp6eHzZs3ATB9+vRzFb4QQpwX1R/sx7qxgOEuMcxFOVSv3UdSSRZKKcZeP4djf9yJ+6FJqAGWXZjeCKHnKpjw2dXnJ/Ah+Bo6aNl9nGhzFy3v7iRl7nhs8cMs2RgllmHStfso/tpmlFLEFuWQMLkYKxLFv6+S+r01aHYbCeOKiCnO/VgXg+H2Ljq2HqBr92EMK4L6WznW1CwoTh54mcOUTLpf3oAVNU7NhDlNx4Y9tG07gBExiElPIvuW5TgST13EWJaFKzcD660NmFPS0Qp6Z02Y2xrR5ucMey7a/FyMNyr61Lg5uW9/BOPdKsx1NbgmJBOu82LPiSV0uJPg8W4wwZ4TQ8y0NJRNI2FJFr4nKzBTYzEy4ok+X469KAmV3D9paBkm0T8fwFwyBj6cVdMZwOoKEvn5TrTiJLT8ePTlY7B+vxcjP3HgmQiGiXpqL8HlJSdn1dj21OPYVo2ZHY/yhVGu/q+rnhGDK9lG4rp9eBZPGfC1cVU0EFtRh3br3IFfvKJEOp/diuZyYoUNUBDp8WMFQzizUnBnZ8DaFsyJKSfflz6vgWVhvXqc+NLCAS9MlVJkX7OY2j9+gPbwtD4tzE/uwx/BeuYoOffciGWYePYexV/XiEIRU9CbUOqpagQL4sZkkji1bNhZTOGObrp2HiTi9WOLjSF55oRzMhsn0tVDuKeb+IKxQ47TEpxomW78FXXElpwqIG1ZFr6jNfQcrcGMRnFnppE0a8JFsxQmZcE0mv9rG8bEVCgaOMmpv1FBQlH+WSfRzEiUrh2H8dW1oNltJI4fc9btvc+n9q378X1j1dCDlKJ7bhHtm/aRddXgCWQhhDhbF8dfh1GwYcMGXnzxBdxuNz/4wQ8pLe29C+XxePj7v/82+/fv5/HHH+ehhx4a0f6GGvfMM8+wefMm8vLymDJl4C9UQghxsQi196Cyhr8jqHLiCLzfdPLf2fPKCHV6qfnxHuxX5WOfnNZbjyFiEN7RQuTdesbfuojE4gt3JyvQ1s2e375NKBLGmJWBujKfpvYqmr67lfjSfMbcsxrNMbL6IhdC27q9NLy2AVWajDk2ASyL9k21GI+/ChYYs3Pw5MdDxKT19bexdUUYc891xBYP3Sb0o6I9PqqeeAV/SyssyEZbnoHeGY/aVI/a14xp1zHunNKboDmdrkGii6g/0OfivGPLfo4//TahpCQ8EyZh2my42lpo/c6viclNY/w37iFY30rNU3/FitdwXpFF8Ld7sObloi3Ow+oIoE1OHzZu5baBphH52XZsN5SixiSCaWE8dxjzYBvanCz0OycRCUZo/cNhTE8YfVwKTEzvTYQc7aLrlSoSVuYRtzgbrambxPcP45qSSjQ2m/APt6JWFqLPz0W5bFimhXWkg+jrFZjFKVhLC6E7hPb8ITjcSnhaLsa4DABse1qwH29Hm5qO/pPNmMuLsObmgtPWu7zpcBvq9aOEx2cRWVSMauom7omt2PxhnMvy0VNdGJ4Q3t/uR0t0EnvPeLT4U4WEE+4fh/XrAzga2uhaMo1Idu/MJN3jI2HjQeLLq3A+NO3kkq4PWaEokWcPY9b2EFo2Fm+6idYTxr6lCpQiWpSCc/s+9HgHKhqFx/ZhLs5DLchGxffenDKrPfBeLW7iKPjc1YO+P0kzJxDu6qHlf7ZjrS5ATU5H6RpWxMDc1YJ6p4a865YTau2k6vGX0EsS0Et7L/o7Nh0hcsRDW3Ih/oQ0kg7uJ+Hpd8m7cTFpi/rXhoj6AlQ/+VcCbW1YczJQWU4sTwetv9iJKzWFwvtvxBZ39snXSGcPeubInq9luwi3e04mZnrKq6l55nWMdBfRyamga2jVB6j/2/ukL55J5uqFo56c0F0OSr98F0cffZrorAyMhXnw4fLCGg+296qJNVwUfOHaM963ZVk0vrqR5ne30x5JoCvkQmGR+V458a4IxZ+9lvjxhef2hM6SZVmYloXlHr5odzgrgcChrvMflBDisnTZJmb+/Oc/AXDnnXedTMoAJCYm8rWvfY1vfOMbvPzyS9x3373Exn68KYtvvvkGAFddNfiXGSGEuFgomw4hA9zD/IkIGeiOvmMKr55J6sR8qt7ZTceL20CBQpExo5gx37gJd/qFqysRbO9h2w9ewvhUKVpZKqffv7dWFdLzfg1HfvwsZd+8C22A2R8XWvPb22jetR/1rVkot/1UvHNy0HtCRH69GysvDmtW7xKRyPw8Is1eKn7zImMfuJnYsXkjOk7UF+DIj57EXJ2LbWbfZQzaikLMrQ3oa6pQT+0hevcUKPlIfYlQFM1+KpnVsWU/lU+/Te3NtxJKO9Vpq2fcOFrnLyRz7ftE/uUX2Bzg/tx4bDm9f1OdS/IIbW4k9LMdmJ4QWunQS6Cg9yIKyyKhLJGex/diBXqLkmrzc7H/6+KTdQTMPS2Ymob9HxegTp+5MjsbKxil54m9GN4IWoydxC/0Lk1yAu7FeQQ/qCP0b+tBaWh2O860JHTTSXRPG+xt6509E+fE+39W93ZhOiEyp4CgL0zMz9ehhQ2M/W3oa6oAUP4wMfnZGKYDbXMtzvWVKMMk5pYSnAuy+1yku5cXEN7VQs/PdhP/tRlosb2vtXLoJH55Co41tcQ+8Q7oJz4hpoUqdGP75ux+S26siEHk0V0EZhUQvnden1lQ4aVjsR1swvXiPnq+thTX+grcrV1oEXBVG4R27seIRMCycGakkLV8MfGTxg5bqyFjxVziywppeX8LPS9vwVQKBSRNLSPjy/fQfaiS1m07iP321JPFjQGcc7IwvRF4dD91JFNVMgctEib0+nqMYIjMlaeWfhn+IEd/9CTGiizUrNlop52XtayAwM5mjvzoScq+9WlsMUPXUBmMsttOFXoehhUyUScSvN2HjlP17GtEvjAd0k4ldozZYFxXQvOfDxJ9wU/ebVeeVVznkjMzhQn/+CDtm/bQ+otdvS3lLXCmJ5G5fCEJk0vOqjZH7dPvULXxOOXBcVhK48Ppl+2BNBz+EJFfvELZF68nYVLx0Du6AJRSKNMEyxq2GLIKR/v9zRNCiHPlsvzt0tbWRnl5OQArVvRvPzl58hTS09NpbW1ly5atA44Zqf3791NbW4uu66xefeGn7wshxJlKnzKGxt3NqAXDzMLY1ULmlMJ+D8cXpDPlwdG/6Nj/1PsYN49FK+tfuFJpCrViDGHPUVrf30XmqtmjEOEp4Y5umtfuQH1r9oBLQFS8E/uXZhL5f1swJmWA+8QFbWYckS9Mp+o3f2Xidx4e0V34+pfexViShT6zfwFXpRT6vFwMX4SYdi/+Z/YT/eclp4rZtvqw2R3o7hMzKUyT439+i5pbbyOcOkD7c12nedlykh7/FTFfno6eHXtykxZjx72iAPeKAvxvVxHaXI82fejZVNZxD2iKxGvHkHjtGHxbmuk65MF2y6l6KVbYIPryEezfmIuK738XXLlsaA9Ox/e9TdiK+hah1pKcxNw4Fvf1xfh+to8xN1/XJ+EV7fFz4Pu/o+eRheDqP9PKinXg+/pS4r7/HoF7Z2PFO7EdaCR7bw/Fn7np5Lj6F97BF9uJa+HAdVgcMzKw/FECf6sk9s5T56Y0hfIZ5F17BWmLZwIQqGuh4pmXBqyDYqypIViWSXjxwMtxohOzCIYMXH87QOD+2agnt5E4LYHgew2UPHz3sPWCBuPOy2DMfTf0ezzi8dLy3ibi/n4GaoBCw1qcneSvTsH8jx140vIx7E6OTFqC/a03SZk1/uSSmoZX12LMS0WbPUA9HaXQZ2Vh+iM0/nUN+Xdec1bn4MpOw2jyYwWivTO1BmGZFtEDHcRdm49lmNT8+TUij8yAAZbE4dCJ3j+Zjp9sI6WqgZjCgd//C0mPcZGxch4ZK+edk/35qxtp3HyEw8GSARMdYeVkn78Y2+9eZdr3Hhl2qdqF4MrJwFHVRrho6Fl7CbvrSF4iy5iEEOfH6P82HAXHjh0DID4+nuzsgQv9lZX1fhGqqDj2sY714WyZuXPnkpJydl9whBDiQhqzYipqbR1WZPB2tpY/AtubyVk04QJGNnLBDi/eNg9q4gDJgtOoFQW0rt3VOxNjFLW8vxOW5A6YlPmQirGjzc1GbanruyEjFiMnFu/hqmGPYwRDdB8+jjZv8CK3ANoV+QQOdeLIj4VDrScft71TRcaSUzMXOj7YRTAtbeCkzAnuxgb0MYl9kjIf5VyRj1XZhdUyeGcvy7Iw/nYUS1NEWwMAdH/QgH5136SDuaMJbVrGgEmZDymbhlpVNOgdcqUpnKvzaFmzuc/jret3Elg4ZsCkzKmTsRFeVIR9cxWYFrHvVJC17NRrZkaidO06hPOKod8Dx/wsIoc7sIKnWhWb3giRXW2kzD21LNqdl4HNsPUuNzqNZVoYWxsJLRuiuCsQnZaDXteF8oYJrh5PcEMDjuXZtK7dNuTzzkbbup3Yr8gaMCnzIeW24V6cTWpj7/cvS7fRlFVK8/s7ATDDETx7jqAWDp04Vgty8ew/hhmKnFWsStdImTeF0Nr6IceFd7UQMyYXW1wMnj3lGCVJAydlPqQpIqsKaX5/61nFdbFreG0zVf70IWefRJSDzkgsXbvLL2Bkg8tZPofktw/1zpoZhN7ag6uxm7iLZAmWEOLSc1nOmGlqagQgIyNj0DHp6b1Z88bGpkHHDCcQCLB27VoArr767O7YCCHEheZOS6Bg0URqfrsP6zOT+y+P6AnDY3sou3k+thGsyx8NHQdrsaam9VniMBCV6MSK1Yl0dI9q+17PvgrUl4evQabPyMJ4oRxrWd/OOZEZ6XTsOoi/romOTbsxI1Esy8Kdk07G8vnEjS9EKYWvog6tLHnYu9TKoaMKEnHlxRA61IIxIR39zUpienRS5p+Ks3XbQbomTBpyXwk1x3HPTceyLKJHOvF90IBR78XSNDSbwjU3E1tuLNg0oj/YAjF2UKBNTENbXIDKjMUyTIxnDmF4o4QWF9P86wM4smOIesI40vvWAbEOtaGt6t9ZyOoOYW6sw9zR1FvzxbQwIwbR4x5sRb3vvWVaRPa3EfigHrM9gBUwOPQfvybtilmkzJ9C14FjhO8b/n2KzMgj5rFNuHbWofWEOP7bv2BGoqDbifrC2ItihkzCQW9iwD4umehxD/YJqZieEL5fHyT3llVozr6JocL7buDYL5/BfGACKsGBsaEOY3sTVtgk7v+twShOJbx4LMaYAYq8aorI5Gz0o61EZ+ZheKPYp6bR/c5++NSwp3pGPAeO4vr80MV0AVyz00naWkELvZ+tzvQCOnevJyY7lYY3NmBkObEPUGD8dMqmwdgkfMfrz7qeSeaVC/H86A+EEhpxLMjqNyMtfKCdyBsNFH7jgd44DxwlOmPw75YnTUzH++KGs4rpXPPXNNG4ZhveIzVYCjSlSJ45gcyls3CkJAy/g4/wHq3FQ//OYh/VFEigbWs5ybNGP7kfN6GI1O0HiDy/g45bZ54q8H2CrdlD5u82UPzAjaNeG0gIcem6LBMzfn/vnTaXa/B1x263+8TYwe/eDWft2rUEAgFSUlKYN+/spoj+/Oc/5+c///mw48aPH/6PoBBCjFTxNbOwu51Ufn8bjE/BKE4Ey0I/3IlW3U3ZbQvJmj30nfjRZISjWEPcle/DacMMR4cfdx6Z4SiMJF6nDuEB6l54w3h2HyO0JA/3VyaixTt6EyGVHureeRf35lTGfPomjEAIQ7NG9MdfOXXQQdV24/jPjSRMKCb/4atQ2qmLFiNqYA1TPFkzIuDQ6HmqHH+3hWfVNMLFvXfUtZ4gSS9sI+b9WmJuHotzZibKrmFFTcK7Wwg8tgsr1Y1V040F+B5ZjH68A/+YDMK1ndjcAywnChv9OhuZFR0YfzqIa3Euzm/NQnP3FvaNHu7A/9IxbMWJuK4pxPvbA5huO9qNZdjzey9Kzc4AzeuP0vrf24iGo1jO4V89/XAz9m4/MTcU45iVibLrWIZJeHcr3hePQ8wIE5o2jfDBdiLb2jBrfOTdeiWJ08r6DXPlpDP2oTup/PVzhPwBQqvHEf6HSb0ze0wL26EmXC/sITo+k9A1A1wIO22oD2fIOU8UPTZGVl/lTFiRKGoEr59y6mjGaTOFdDvhji6OHDlMYMlYkhtGdtPMcupYkbP/2dacdkq/fj81T/0V79pd2OemoaW4MHvCRLe1Y3fHUvp392M/0XnMDEfAOYIORpqCYfvenX8Nr2+kcedB2pZPIXDDLNA0VDhC664K2n/0R4ruWE3ilDP7PW9ZDFurBcBE6329LgJKKQrvux77X9cS81+v4Z2eTzAvGRWOkrC3AVenn6JP33TGRdaFEOJMXJaJmQvljTdeB2DVqivR9bMrLPnII4/wyCOPDDvuc5978Kz2L4QQg8lfNpncKybQsrOS7rpWlNJIWjCdtC8W9Lk4vxi5UuPRKyqHHWdZFlarD3vi4MtsLgRHagKhJh8qd+iLOqvJBykfuangC2N78xhxD0/Bln/q+Uop7GOTsBUnEnyhkvoX3yHY0IoV9o4oJqvZi5lkIz4ulYKv3IQttv/yDFdSHM72NrzFg8+CCMUm4n//IL7MFDq/OKfPRZutqQt3m4fE/z0P7bQ6Hsqm4ZydhWNyGp4f7sR76zTMrARifr+VaEka0XGZhG6bSuK/vo5lmH1mAKkUN1ajD5XR+55abX7MPx0k4ZFp6KmnzkFpCvvEVGzjU/D94QDdP9mFmpqJ7cq+BUlVsht1w1jMsnbM3+5Br/NglA1ei0KvaCPu/SO953RacVulazhnZaJnxeL7w4FBn386s95PXGYeyfMmEv/Z4iELsSpdw8DC+61lWMmnzSLSFNFJ2UTHZxLzuy3YNx4nsrDvjCKtqYdoUSpETZQvjNUTwXYefibsKQkYTT5sY4aeiWE0+Qi7Th3f5esikhxL+6dmY2v2YO4Y4TLzJj/2JWc+6+N0uttJ0edvJ9LVQ+f2A0TqfeguF8kPruxXg8eZmoRq8mIVJg29055Qv1lPF1rbpr3UHz5G/UPXwGnFzy2HnZ554/FPKMD67ZuMT07AnTeCWUAn6C4Hdm+YiBo6+ehWQdyZI9/v+aY0Rd5Ny8i+aiGd2w8SaOpAt9lIvHopMWPzZKaMEOK8u7i/WZ8nMTG9X8yCweCgYwKBwImxZ/fFpK6ujgMHer94XX21dGMSQnwyaTadrLmllN26kNJb5pM+rfCiT8oApE4ugGNdfepzDMQ62kFMfib6WXZuOVcyFs+A9Q3DjjPW12IuKOjzmNpYg2tRdp+kTJ/tSuG6pZiu3YcJdHag/GGszsH//gFYTV40ILzPQ97d1w6YlAHIu3U5SXv3DlmboaewmGi9j86bZ/e7k5701j4S7inrk5TpE7vLRvznJuFeX4mZl0R4/hhs+xqJTs4Cu054UjbmvpY+z9Hm52Ksrz35b/P9atzXFPZJyvQ5hqaIvXs8VmsQtXzMoOehjUtFzcrG+erQSRX3W4eJv2d8n6TM6Wy5cWDXMJqGnpFrdATRghoF911PwuThuyE1vrWBnuvG9U3KnE7X8N87C+d7R3uXcp2gvCH0ui6MkjTsu+twTE4hsqGZ9EWzhjze2UhfNJvwuuFnu3jfa6Ql7dTMoLTaQ3iv613WFM1MxAxbQ9Yjgt6EnB6wcOeem4t/e1I8Gavmk3vLSrKuWTRgYeT0hTOwbRi6Jg2AvqGO9PnTz0lcZ8MyLRre2Ejjpxb3ScqczkiIofnaOdS/ufGM9p25fAZZ9o5hx+XFdJK5YuYZ7ftC0F0O0q6YTv7NK8i5fgmxJfmSlBFCXBAX/7fr8yAzs7cTRWtr66BjPtyWlTV0h4jBfDhbZvLkyeTn55/VPoQQQpwdTdcoWDEFnivHMgdOGlj+CLxYQfbVZ9ZlI9TSRdvaPbS8vR3P7mNY0cGLJI9U0swytCov5tHBL2iMvS2YPWEY27dOiL6uBucVQ7fKVprCPisNPduFe9UYjKcPDLpUxQobRJ/Yhz0zBndO9pB1JlyZqbiS40nb3HvxZvd0kbh/H0m7dxFbWQmGQfzRI/gWjD1VtyFi4NpTQ/xre3D4A9jyhp4lpGfGYtMstKZuIguKwKbBifoioRWlGC8exeoOnRyvFSSAZWFsb8QyTMwDbTiGqfthWaBlxWD8chfGlvrez8bp25u8GOtrUbE2bI3d6PsHTi6orgA2jx9bYf/XzGgLENxQT2BNLfYJqXj/cGDQAttW1MT3xEESJ5dhhaN0bT9Iy7tbad+wh0h3/xlPZjhCz9EaopOHLihMjAOjKBXb4eYTT7RwPbeb0LISVE8Q95uHcYxNxDjsIWn2xKH3dYb8VQ2E2z0YxzxEDg3+OQ/vbyNYF8ab0vtdLba9kdhQB6HJp5aReK6cTPjpw1iRQT7DURPrmXKyrlp0Ts9hOM6MFGJTUtHW1Qw+qKEH2/ZmUhZOu3CBfYTvaA2BrCTMuCGKFAPB0ly8VQ0YgdCQ406XdsU0st0e3JZ/0DGZeiuJY1LPuuuXEEJcii7LpUwlJb3rZbu7u2lsbBywM9ORI+Unxpae8f4Nw+Dtt98BpOivEEKMlsLVM/A/1U3rr/dgXlOENuZEgVfDxNrfBq9XkXvdFcQWDXMxe0KopZPKJ98k6PMRnJKF6dBxbK/C8fQ7ZK6YSeaVc876zqrSNUq/ejtH/+dZzDndqAU5qNjepQBWdwhjTTXm7mbMr8w7NeukxYf+bhXKtNDihl8WoRclYLT6cc7OxGgLEP7pdrTrSlAlySileuuKlLdjvnoMOgJocUkUfLl/y+OPmvD392P8y6MkHTsEsXbUjAxw6Fj1VagP3oFIhM77FoJpkfD2PmK3VqJNTEVZFvbckc1K1fPj0dp8RLMSepMylgVKYWYlEJyWCz/cin5DKdr0DJSuYfvsVCI/3Y55pAMt0dFbCHYAVtjA/9IxIoc7cExJQ0txYzR0E36tAjU+FTU/F+uVoyjLwjElDeJsRMuS0J7cSrg0ncCdM7Hie1uHK28I52sHsWX0vdg1Wvz4nj2CGYyipp54bbojmB1BPN/fTuytpdjGnXgPLIvo0S58rx7HcNnxVjWx9//+mq6cAvz/f/beMk6O6073/56qau4eZgZpNKPRiJllktlOjIlDDm42uMni3f/eu3DvXcje3Q3zJg44cWI7ZpZtWczMNMzUDAXn/6KtGY2HZMcxpb5v/HH3qVOnqms0c57+/Z7HHcCpD5Hz5A4CFYVU37MRLZCujtGDEaxc3zjT0okwyzJReiOongFcT53ALMkEp0LgW6/gqs0k9VQHtX/6ARTHm/MnYvhkM82/2URMdTGUW4IoqqPwvqN41hTjWlc+8uxa4RTxzR1Edg1yrvFKVD1FXvdZ8lpO0P+lDXBJpV6iqZxQf5iMb+zFcUMtYlbOyP2TZwbhyWby5jeRvejNFZcuh6qP3sLZb/2KeE8Uc0Ml5L5awZQwEHs6cWxuo/ZTd6C9jVV6yd5BYsWXIYooAqMgC30ohOqZOkr6IqrXzaw/uxP+4ze0RHPos3KwRFpIdcokZc4+igsFMz57z+9zCTY2NjbvOf4ohZn8/HxmzZrFqVOnePHFF7nnnrG/HI4ePUJfXx8Oh4Nly5a+7vl3797N4OAAXq+XtWvXvlnLtrGxsbF5HQghmH3POgaOtHL+2QPEeo5hIFEsQcbsKoo+8348ZZe32Uh0D3Lq678leGcT5szRY1IACZ3Ubw6TGAhS9YGr3/B6XflZ1P/NR+jbfID+rx/E0gRIiSIVChY3YCzIYeAbe1B8LjAsNLebwnVL6JyiymYMujXiN+q9tgrHjEwSL7dg3H8M4XUgYzpaVQa+22YS+8kJaj9/D2KSNodLMYbDqB4N8+56mJk78roASBgovziMb8cZfAea8Xgljr9ZjnCqWGeHkDvbJp133Novig6vijIXsQoDJOaWopyP4Hj8bDrVKZpCCIl1qAfhm1i0krpJ+DuHcDbl4f3bZWN8ary3ziD5Sjvx7+/H/6kmHDMuqVLaUI4V1Yn84AjqPz+PedGLxbCI1ZbiteIjQ82eKKHvH0G9ezbazLEbYfm+Weg/PED4kXOIhDHyGcjyTMwbZsEDJ2nPCdB99QbkJT51PbMXkNl6jsTXfkHDX3wILeBFqCriciu3Uibu504hnRoIidY+jDiooSkKOfkzyLttEZp/knao18nw4TOce+BFzi+7klRgNPVssG4OeacOkf9Pu9ACLoSqIuM6pi5RVBezjr+ChkXBmnkMmjlYPte4uSMbZpOsyifjlRM4f30CvA6UoTiBWVUU3XYDvhlvT7Wy6nYy88sfYmjnEXp+sgdDT6WfraRJzuJGCr76sRGz4LcLoaool/m8CN24rH8HLsVTVkjj/7qX3Od2M7DjKIZU0kKsz0nJxqXkrJyL8jrntLGxsXmv80cpzAB84AMf5O///n/xwAO/ZunSpcycma6MCYWCfOMb3wDglltuxecb/eW5detW/vu/f0xubh5f+9rXJp372WefAWD9+vUj6U42NjY2Nm89Qgjy5laSN7cSyzB55VtPMecLd03r1/Fazv34cYIfnIdZnTv+TbeDyIcWonxvB7nHmwnMrnrD69V8boqvX0HRdcuxUjpCCJRLUo+UhTMpLClPb6xerWgY2HkQoy08qcfMRZL7e5HJUc8dx4xsHDOy0y1NKQtcKkIRpI4P4K+rvOzN2IWfPkLqQ7OheoIoZreG9fEFuP73ZpTSDBy3N41UFYmyAMb54Djz3tciLYl+egjjxvko7cPpypBLcBzpIrmxHrMqh/j7JSQN/N9+BTWWwvq7dYhv7cIaTqJkjd3cJ55vwVGXjfvKsZ49kG79cq8vR+oW+pGBscIMoPgcBL4wn+A/76Z/VRPxpmqkIy2OZP3Lr5C6hXAoRH5+AvXDc1AmMIMVbg3H5xajf2cfxq0NUJEJThVUBbmllbCnkK55EyQ6CkGwcgatUuL+1XPM/PStOLICKBEdEUki/eNFjEvxHOtj1l99HFdhTjqxSIh0PLnT8aZ6aZjJFM2/fI6z627E8IwVeiyni96mpfTXzaX+pceY/Rf3jMTVy1cT0oRTQwiBZer0H+kgsnZ8GpVenc9AdT5YFr6tp6kJO6i47co37RreKIqmkrt6Prmr56ej600TxeV8x3iV+OoqCLy4i6GrFkw5TsRTaEMRnHlZr/scjkw/5XdcQdntG7CSOkJV3rQqLBsbG5v3In+UHjMAq1at4tZb30c8HueLX/wC/+N//A3/+I//wEc/+lEuXLhAY2MjH/vYx8YcE41GaWtro6trcoPGoaEhdu3aBdhtTDY2NjbvJBRNRajK6xZlYi3dJB1MLMqMTC6Ibqyjc9Pe33OVaYQQqC7nGFFm5HW3a8wGJ3/9MpLPTV15Yg0n0NvCGO1hrNf4pwhVQXg0hJJuZ0pt6qRgwwSCwATEWrrQ3UwsylxEEQiXhuPG2jEbU+HWEPW5JPf0THmO1P7edGKQ14n7qePo9aN+MUp3CBFKYFZmj5xL7Q2jxHWslRXgd2GtrCD+0tj7I02L5J4e3FdMXVXhXl9G6nDfhF4wQlPw3FRD7tbDr1afCBzdQyhuN8ld3RitIaTHMaEoMzKHItCurUXZ0gIeR7oqSEp4oYXeuUumXNtw5QzCF7owwjGEIshfOR/3K1Mnkaktg7g0J57SfBRNRfW4UN1O1D+AaDC46yiDZdXjRJlLsVxuemsaGNh1FCFEWoh0OVBcoyJRwZqFZG47C5P48aQnkmTubKZo/eI39RreDBSHhup2vWNEGQBXXhbegA/X+a4px2XtPEHesqbfy/A9/W+W0xZlbGxsbKbhj/pfyc997nPMmdPIo48+xrFjxzBNk+LiYu66625uu+02HI7XH2X4wgsvYBgGVVVVNDQ0/AFWbWNjY2PzVjJ48AyxRaXTjjNrcon/8gBSyjdtE2ZE4vS/cpDBXcewUjqWlLCkiby1i3FkpStkMufV0f7wc8QeP4/nxupx57aGkwS/exjz9tmIUJLwf+0n8OWF41KDpCWJ/uIERl+M4JFz9G3eQ+R0C1ZKBymRhgWagupy4MgKkLdqEYneQYxF06TexHWElIjC8X4y6nW1xL+5FyXDiXP2eOErdXqIyNMtxD63GvfTx3FHY1jxFDqg9EXw/ngX8XsWjbQ2KV0hvD/fg/BoWItL0te1opzkt3ehbu3AvTr9OZqtYbSKAMI99Z9BwqHimJGFcT6IY9Z4Tw5nUx7qL0+Q9fQeMg+eRkkZmFISf/Qs2uwcxOLp/YtEbRbiF0dHW7RO9GFYDozpUiGFYLikkvDx82Qvm0PBusUM/ufPMHNbSS0bXwWkdIXI+MVBqj5zx7RrejPo33uKwZrpk52GKmbQv/t5AjWldL60l0RnOnzBVZhLyYbFBGbXULhyPvpPt9H70ZXgfM1nppsU/HwHBYsaR6pubKan6q6NJL/9AB13ryNVOv5nz3/oPLnH2yj66kfehtXZ2NjY/PHxRy3MAKxbt55169Zf1tiNGzeycePGKcfccccd3HHHW/NHj42NjY3NHx4znkTmX4ZQLwTSqaVbc94E/4TQsWZaf/4U3lUF5HxhFqrfgZUwiO3u48x//ISiG68gZ+kchCJwlRYS6Q2T/Oc9uFcUo5X6kbpF8mAf+rlhzNtnQ0MBErAeP0X4a3txNObiaMwFVUE/HySxp4fUnGKoc9J/6CCeaysJ3L0YoSqYvTESL7dhnB3G95m5APS/cozEvh7kndMYrCbNtO/LRLcs4EL700XE7jtMfFMr7uXFKFkurFCK+LZOzKhJcn4ZGd/bhqcmgPfqMlK7h/D+aCfquX70FVVgmGiHO3FuvYDWG0K7phrzxebRczpUzFsaiP9oH4mX23GvL0MmDITz8j4j4dGQyYmrNcyeGAJBoRjC/ZWFqDlupGGR2NpB/JlmtMXTC3pCCFAFHOxG292F2ptAz8i6rLXpmgsrmQJAcTmY9cV7OH/fo8S2tRBbUY6Z70PEdLz7OnH0xqj91O1vWnz0dJhJHdPhnHacpSgYwyGOP7eL/qVzSNyyAYTA1dHL8Ob9ZD67g7rP3YFwaDj/7Vki88uIzyxAIvCe7cV/oJWCtYsounr5W3BV7x3cRbnU/ckdqP/9CPFsH0PzazC9LhyDYXL2nMHn91H75XtQ3dN/hjY2NjY2vz9/9MKMjY2NjY3NVLiyM1D7+zGmG2hYiJTxpphaxtp6ab3/aXK/NBstezS9RXFr+NcW412UR883N6MFfGQ0VOPKySRU4ceqzSa6ux1lbx9SU7Aai+CuuaPGuZEUit9J8V8tILqvl+H7jpOaU4xZnEnqyxtwbTmHLxwl8JeLx7R8qQVefHfOQj89ROR7h8n46iI876vBMnTM7giyqXDyi/E6YDiBtOSEbWQiy432paVY7SFiD57EoYHi0XD4NZz5HjLcSQJfaETNdBF6oQ1/RKH4+jU4b8tiYPcRkvuGUV1OMlYtJ97Tz9DWkxgW0BeDsgwYTqD+4hDq5xYhXBrJ3R3IjggilLisz8Lsj+NcNP76rGCSyI+OEPjSgjGR30JT8KwvR6ZMUt1RlDlTG0xL3ULEDPIvCHI2XoWrKI8j//qLy1qbNx5GyxytjlG9bmZ+9i6SvYP07zhEsnUY1e0id8NafHUVb2k7jTPLjzMSmrbyp3zniwwtn8PwmoVjXk+WFtDxviuI7DuO+O5DzPryB8hfNZ+h3ccIH+lEAoHyUnL+v2tt8eAN4inNp/H/+yTRs20MHDiJkUjiyvCTd++tuIumaN20sbGxsXnTsYUZGxsbGxubKchdNpuuf7+f5IYZY9KAXovjYAdZ82e+KefsenwLmXdWjRFlLkXxOcj+2Ey6f/kiGQ2fIH/FfIZ/+zj6wmLk1TOYzI1D7GjDt7QAoSkoDhV9TjGxD77qyxHXce1tJfC3Syb14XHUZeNckE9yVzfudWV4rqki+V8HMK+qmfzeOFVkpgt5ehBRP/lmTxT7EaEk+X+zEGWCFiMpJYldA8z44kdH2rhKb14/Zkw2kNlQy5kHHkdsb0XeOQex+QLqlVUoJelj1OtmAGD82w7MgThq7uQm/VYwidUfR60Yb6yceKUd9/ryMaLMpbiXFpP8ziHklZVTCiLW/m5yls2l/M7RilxPbgbugV4SuZNXtwhDJ9DbQaBxfKS5qyCH0ls2THrsW0HR2nn0P7mfCwWTt3O5hgbQSNL7GlHmUoKLZpNxrp3o2Tb8MyvIW7OAvDVTm9baXD5CCPwzK/DPHN/+ZmNjY2Pz1vFHa/5rY2NjY/PHTaytl6HdJxjae4rUUHjScY4sPxlVxbg3T26sKsJJfM+foejK8eajUkpiLd0M7T7B8L5T6MORKdelh2LEO3tx1WVNOc5R5EWqBonOPjzlhbiEC/HiBdjfBQe7YCg+9oD+GNrONvwri7CiOsOPXCC+YTTpxrmvFdeigikTkgBcq0pJ7kib4CuZrrRXy6YpTGfDScRgHOvRU1hxHasliLmvC+tQLzKSGhlmPnYGd0P2hKIMQGRzN57y0hFRZjK8tWU4TAVxoBuePYuyvwtlAq8XcWUV0d+cTqdSTYC0JNEHTuHeUI4MpUgd7CW5rwejLZw2Sd7bg2vZ5KKDkuVCK/Vjvtwy6RgZTsFzLRRsWDrm9bIbVlBxeBfCnKROS0pKj+4hf9W8d2zscKChhkA8iLdn8sCE/JMHGF41f9q5+hfPpu2xV7D0aevW3lQS3QMM7zvB8L4TJPuGsHSD0NFz6aqd4+eRlxtRfjnn6upneO9xhvedIDUw/KbNa2NjY2Pz7sCumLGxsbGx+aNi+NBZOh7bgukGKjLAtOCxl/Hk51B+x5W4i8abvJbftp7wP/8c+sIkN9YjM16tZLEk2ske/I8dp+q2DbgLx6YTDe0/TcfjWzH9GmaZH0wL9ZGX8RbnU3HHFbjys8adK9U7hLM8cFltJ44qH4muflJDIWQ8jmP/MNrM9Jz6s2ewsr2YN9ZBdwTtqdPk3jMTvTXM0APnic0pwSrOSE9kWjj3teHYOHVKEaTFGJkyR0yOA/fUM/R325GRFNYVNZDhGrk3nOhDe+wkOXfUEj8xSOwftyIqMhHlAaRuIZ84A4U+FIeGc1Cix6PEjw7gnp0zUrVjhlJENnVgNpvUfOGDU64tfKqFzsc2IVwS95ICCMfQNYH544MoN9ehlI6KOuqiYsyuCOHvHsZ7a+2YyhejM0L0wTMY3VHMwQSxF9tQGvNBFchd3ci+WLp1zTW1KOK/exbBf9+LPphEu7oK8eq9kZZEnujHeugMlXdchyt/7HMTmFVF+do58MpTtM1ZSjyvcKQiyREOUnLyAEVZDkpuWDXt5/V2IRTBrM/fjvzPX9MZqmeoqg7r1VAFYRpktpzDP9DNUPnqaedKlBUSeeglDv/N98hZNpuy9637gwpSkbNttD+6iZSZwqrNAstCPvgcVsIkMbMaPeDHGYni++Uz5C2fQ8n1q6cVNCcjfLKZlgdfJpa0CAfyEBIyglvw5fipuvsqPGVvjSeQjY2Njc3biy3M2NjY2Nj80WAOhml57CWUj8xGyRuN8ZU3S+KnBjn99QeY+bnb8ZSN+oIY0QRnv/4bXBuKcVoWie+8guVxglND9EdQVIWMshKyFoxtY+p5cR9dOw+h39sIuaPnMm+WpI73Ef+PX1P3pTvHC0GKgrTkZV2PldQZ3n+SaH8X3o/OwltwyTVJiXFmmMg3d4Gq4CrwEbz/PJ6KEvyzZhIqf/VPANPC98MdaNIC8/LOi2REOBJOFaEJMrMEkW/vxPI4wKVBfwxXdYDMe2cRPz5EojeJ469WILJG27PkLXXIQz3I352j+qsfxUrq9Dy/jd6HDqDlebCSJjJmkbd6Ebm3LJoycnf4wEk6ntiE96N1qMX+Me/p54NEf3II7pmDUp018rp640ysY71EfncOhhMIt4qMm1heB6ZLQ7FAuakO0ZA7RiiTA3GMHxwgcUnS00QIl4p7bSmR351F7u2CTCdoCgwnwaGSUV1JxtyJ29+KrlqKv6KIwNM7iR3chuHzoyYTuBwKxVctIWf5nHdUBPNEOHOzmP1XHyH7+d0MvPgIui/9uTgiYbIXziJckAPWxBVLY7AkuubieOUaSo6fIXr+fmZ99YN/EHEmeOQsLQ8/i/6ROVCakY7p/s5+hhsbGFq6CHnJMyhSKYa37yX6nQeZ+ae3v25xZmj/Sc79djPnZq4g6b80UWoe3uFeEt98kLrP3IKvZnoTaRsbGxubdze2MGNjY2Nj80dBvC+IFYqi/c2KcTHJQghEfS7Wxxyc+/4jNP7jJ0c2va33P4u6Nh/X8nTbimd9OTKYRBoSJeAEh0Lsx8cZ3nuK7CX16XN19tP98j70P1sKr03/EQIaC0j6nJz7/iPM/p/3jtlgu0tz0VvC6XSnKTZ6UkoSZ4IYg71k/sMKVN/Y5CMhBI66bAJfXEDiv09T9aE7cWQFUN1OwsfPM7htO/qSClwvncFR5EGtLCB1pB9nU96U99HsiqSrYS7+/0AcTIl/TQmBK8owh1NgWCgZThSXSqolRORAP+oXlyIcY69HKAKxoAjL56T5p48w6y/upere92EmUxihKEJTcWRNXz1khGO0P/wc/j+bl/5MXoOjJpPAZ+YS+t5hxN+sRGij61AaC1AaC0j9xy7M1VUwOx98DpSvbcPxJwtQKsdHMItcD9pXlhL/j904ZmajFnrHjblI6vggojQD8+MLYCAOLhXyfeBQCf/oIMGDp8haUD/hsf66CurrKjBjCYxIDMXtwpExTYz2Owwt4KX8/espu3kNejCClBJHVgBFU2n/3Uv4z7QSXDx1spf3TAtRTzZSUenIr4feEwQe20LZ+9e/qWs1YwlaH3ga/UuLIfNVAfGZ8wSLKhlctWzceOl00rt+JcqmLWRs2k3RNZefDGWEYzT/ehOn5l6F6RzvJRXLKuBUwxqUHzzK3P/9mTcl6c3GxsbG5p2L7TFjY2NjY/NHQcuLR1A2Vo8TZS5FKctAFnsIn0j7guihGNHmTpxLi0bGCCFQstyoeR6ES0UoAveNlfRs2jMypmfTXlJXV40XZS6lKgs9QyN6bqwHh+pyktFYQ3R375TXkzw9jMzzoszJwzwfnHScVuJHqfCR6h8eSa/x11fj6AgjBmM4dzajbaxGzCtEP9yHFdWnPG/8xTYsU2KF0/4wiZfaoTxAdFcPQgi0bBdavgfl1Taf0MudKNfWjhNlLkWpy0FXdOLtvSP3wJWfjTM747KqQvq3HcC5qmhCUeYiaoEXR3021qGece/JvhiyLw51OeB3wrkhlBz3hKLMRYRLQ7myisSW9knHmANxzNYQ1rUzIMsDtTlQlpmuKFIExo0z6H5p17TXp3rduApy3nWizKUITcWZm4krL2uk0qVg3SJy9h1PtxNOhiXJ2HqY/qyakZe6cmfSv+Pom+rxAjCw4zDm0uJRUcawkPu6GVy2aMrjelcspnfLwcuudAPofeUAPYW1E4oyF0l5MxjOKGT44KnLntfGxsbG5t2JXTFjY2NjY/NHQe/B8yh/sQQpJfLsENa2duiJgKIgarNQVpcjCnzIpYUM7DlOxuwqQofOoi3IG/E7sYYTJLZ2kjo5CLqFkuvGvbIEx+xc9HgMIxJH83sIHr0At6ycdk360mIG9hzHP2Nsq0L++oWc/JefEXkpvelXs1z4VhThmZuLUBVSHREGf30W5ZPzkRGd6K+OEnv8PBIJcQNpAZZEuFWcc/PRmrJofeBJSiIbUD0uul7chRWNkvGvz6c9X7wOZExHujTC3ztM4LNzUbyOceuNv9yGMZhEWVGKfrQfaUpSZ4dRP72A0Hf2oeV78NSn/VKkJUkcHSBxbBDtg3OnvRdyaQFnv/Mr8lbOJ2/NIhyZ/knHpgaC9G3eS/DkOcxoAj2RQslwEtvXi6M6A+/a0gmrWNzLi4k81wqLRk175VCC5I8OEWsqw/PMWURbCGUwhvqBxmnXrCwsIvXEGXy31417zxpOEv72QawcL9RPEpldEkCPRDFiCTRveoMupSR2voOezXuId/YihMBXU07h+iW4i6euZvpDIS1J+Ng5erbuJdU/jNA0MmfXkr92Ec7sjDc8rzMng/wFs0g+9jKdN68D9TVCpmWR++grREUmSfeoB5ClakQ8OUTPt+OvqxxzSKy1m+6X9xJt7QbAV1FE0frFeCuKmI6B/UcxP3xJ9dL5QeJlJUjH+J+FMcv0ekjkZBFv77ms8wD07z7OwMy1047rza+id8dxsqepKrKxsbGxeXdjCzM2NjY2Nn8UWJYE08L8/gFUj4pvXRlaRSCdsHNkgMRPDyNm5cKCQsxYOqXJiCUQ/vSvyviLbSR2dKKsKUf99EJwKsiuCPGt7cSfuoDqcmLGk2h+DwjgcvwmAk6MWGjMS/1bDtH91DYyrq3At7QQ4dEwemJEXukk+OgF1BIfencc5aNzEUV+6I5Atgfl/bMwfnIYpS4XdV0FotAHcQN9Tyeph88iPBo9J/eQOtyP9Dnw3VoLToXEqeH0ieMGIs8Dy0sIfm0vzgUFuObnIxwKRnuExJYOZMCF+qn5WHu6iD3bjBlwI70u5IMn0T41j8GfHcWxuRPv/Fwiz7ehlfkRbm3S+O1LEX4nyqwAEXcfg//xEwo2rCB//fiUq+6nt9K/5xByRRGGyyIVCBBeW0+qKg9MiftEB5k/O4G72o///TPGnFv4nTCYQHZFkAkDY18P5rF+hm+YT+bjB9EMHXdTLlaWhjlF9c3IfJqC1CXBf9uD+5pKtEIfMmGQ3N1Nan8PVmkG1p8sgamuP+DEiifB68ZMpjj/gweJk0BfWwa3LwRLkjjRR/C+h8iqLKf8rmsRyltX8KwPhzn7nQdIFbkwriiF0hmQNEgc6mHg6z+ncNVCCq9e8YbnL7tlHeLxLbh/8BBD8+qI1pSDANeFTjJ2HSfkzqezsGnccSk1/fN2EcswOf/TxwgOBelf1UDimrQY6D7fxdADz5CZnUnNx26e0pfGiqfSFVMXiRsYnsnj1C/F8Hgw44nLvGqQyRSmwzX9vE43xuDlz2tjY2Nj8+7EFmZsbGxsbP4oUDQF/Xv7ca8owb1itGJCAO5lRbiWFBL9xQmMF1twZKa/9XZk+JAtOoltnSSPD6L9+XLEJe1JoioLqrKwjvWR+vnRUR8I04KUOXUrEyAG42PaUwZ3n6B3y27y/2rumNhoZ3mAnHtmkTw7TP/PTqF8ZRlK4NWEn6EEBJyYPzmMdvdslNpLEn6cKtpV1chV5Rhf3402OxfX2jIiPzmGY2YWVkRHDr/a2uN1QCiJsqgYpakAY28X+gtt6fShPC/KBxrTQhAg++PEVtSQunoWAK5Np3E/chbtK0sxTg4S/PkRcj5Wj2d2Dh3/c9e0fjkAcjiBku3Bta4U5/Ii+r6/D9XtImf56Ka8Z9NO+s+fgq8swvj+QYLza4iuGlutEl9UTXxBFTm/2Yl47Dz+W2tH3rOGEhgGxB9rRro0Yo1lJDYuIf8bz6MJi/xPz8ZVk8ngQ+cwh+JwiVHwhGtOGjj8XirvvInOJ14mOtgCAlSnBzm/BOvuOVMej5QQTKD63EgpOff93xJt8GGtaxg7bFEJ+oJiBh88AQ8+T8WdG6ee903CTKY48837id9QBXMuSQdyqsjVFejLSun50UEUl5P8tVO3+0yGEIKym9dStGERnU9to/tXzxJzZhB3ZnC2ZDmGY2JhxG3E0fyjVVEX7nuczkwXg7dtHEmwAojPrqStoYLoCwfgvseZ8YlbJ12L6vfAcAIKXv2Z9DtxhPsu6zoc4Qia//JbzRSvBy0Zx3BP7k8E4EhEcWRMPcbGxsbG5t2P7TFjY2NjY/NHQWZZPmqOe4wocylCEfjuqYdzQ2TPTyflZM6fgX6wj/jzLaifmDdGlLkUpTEfdUUZQ/tOIaXEkhL2dky7JmVzK/nL05t3aUm6HtlMzqdmjRFlLsU1I4vAulLktlFfE2tHB0JTUFaVjRVlLr02j4b2uUXEnzyPWurHs7GS+KZW1DI/DMSQwSTCo0GuF9kSRLg01FXlaPfOQ/vUAtT3zRoVZUwL80gfqdWjnh/JK+swpIDmEHSF8a8pwTM7nTblmZ2DnMDX5bXInR24lhSm1+tS8X6yga4nNyNfTe0xkyl6X9qN+GgjnB0iGfCNE2VGb6xg8M5lJI4NYQVHqypi27oZvHEh/Z/awMBH1hBfVI3nQDOKXyPrqlJcNWlPGf/SAuSO6T8/ubebrIUN+GdWUPdnH2HOP32ROf/4Req+8mHUs8ExJskT0jyMOz8X1e0icrKZhEPHWlc58VhFYN7eQPDUOVKDoYnHvMkMbj9EqjF7rChzKQ4V/d55dD+3HUs3fq9zaQEf5XdejdvppL2giZ78+klFGdVI4tPDeKvTLYDx9l6GB4YYvGrBGFFmBCEYvGoBwYGhER+jichfNh/10s+9Oht3Ty/KNJUwWiiCOxbDXXL5rWaFq+eS33Nu2nFFfRcoWjPvsue1sbGxsXl3YgszNjY2NjbvSeJ9QQaPtzF8uhMzqZMIRfBcVTHlMUJVcMzPZ2jvKSJnOxCaijs/FzErd0rTYABlfQV9mw8Qu9CNzPEhXrgAkdTYQVJCWxBO9sNLF6A/gqswLWAM7jiKVu5BnaaFxr+yCLmnE2lJrLNDWD1RrDODKMumjtQVARcU+km83IbwOUgd7EPqJu61ZZiPnkZKibqhAvOR00jDenW5EqsjjHVyAKs1iLQk5ost6PWF4HnVdyOWQj3bj16Th/FCM3JLG/4NJSPnDawvwXr2PDI+uamwua8LJeBEzUtvxGXKxOyKQp6T/q0HARjafQyxoADhVNG3tBNa2zDpfAAoCqEVM4lv7wLAaA6Rao+QbCgZM8y/7QzqcBzf8lFvEGd5ANU0sY5NXi0hwyl4qZ38NePbrVSvm4yGGtRHTqU/6wtD4w1uDQvHo2fJnj2D3ud30vrgc+hlvvT4nsgk1yTQV5XSt2Xf1Nf+JtG7dR/m6vKpB7k1zMY8hveffF1zSymJt/UQPnGBWEsX0pIIISjeuJTKvuPpn5WJD6S8/ySFVywaaVPrfnkvAysaJhZlLiIEAysa6H5576RDspfMRjvcN3r/FYFYXUbelu1Trqdo83aKr1ryuuLLc1c2kd/fgiMennSMJ9hPIDGM4nISPnGBZN/QZc9vY2NjY/Puwm5lsrGxsbF5TzFwrJUzj+0maepQ4oeUiTw/jJUyyCyb3EAzebiPxPOtSEUwlGsRev5lZEsILeBFqS+c9rwi00UqEuXsdx9CGiaiwIP4f9uxPjQXqrIQ21pRtrZCrgcRcCL7YyAEF+57Cn0oRLJvkIzrptkEA4pHQ/E6MF64AK+0IlQBbke64mW6Nc7OI/67U1gFfqwsL8P/th/3hlI0p8C47wjqLTNR5hSgf2cfyoxsrMN9yGx3OlEonITmYaRLI/7nVyAGY3ifPo6jeQBXbQYIQaojiJAS9RKfDkeRj6xryhn+5l6Uu2aPSTqSSQNrWztyTxeBL8zHiujEnr6AfnwQWZ2FzHDSuXk7A3uOoPncsCJ9rOyJolfmTnu9yZmF6M+0k9zdTfThMwzdvXKM34uIJFGiSdSC0RSpi+R9vIGebx7BHIyjLC9FONLvSymR54bht6cpv20jzpzx5reDu48RPtdJCotUSEExDFydR5GLixBX10B/DPXnR7CCcdqfehkCLggl0c4DPWHkUAKpW1hX1cD8sRVecmYO0ccmT4J6s5CWhaXrkDV5atBFzBlZRFu7yFk2TesW6fvXt3kfvZv3YuR6MLPcKKEkWk+E/FULKLhyKaXnOuHcPlrzZqM7R9t4HKk4ZQMnKS3zUnjV0pHXo23dJDZMb46bqC0iuvX4pO8rTgc1n7yNcz98iNQtM6CxADZU4fvZEYqeeYG+1SswA6Om1FowRNHmHRTlZZC78vVVtahuFzM/dTPyh49zoXI+kdySUWHJssjpPEtZxxEUl0rLlpfAoSI7IzhUF8XXrSWjsWbqE9jY2NjYvKuwhRkbGxsbm/cMba8c49zLB5F316OUjKa4oFtY/7hl0uPim1pJHhtA/dAcRMElPhEpk+QPDzK1U8xY5PoynKvKEQ4FqyWI8exZaA0hZuSgfWFRunLl4thIivCjp1GI41xZBJebthtNwcstZN1cjXt2Nr0/usxqBQnuqysRDpXonl5C9y7HeO4Ebg+467NI/PAg0qMh++MYbifys0tGo4MBYjo8fQbfj3agDcXIvaUKz4erRlOrUjX0/Mv+caf1LS1Ey3Ez/PQZjJCOKPZDTMc8P4xzXj6+Ly1A6ibBbx3CXFuFvHUOaOmiXgswOkKoP9yPtvx1JgBJ0M8HsbrC4FLJ2XQY64UjGPkBRFzH0T4IhjVhNYSa6aLwy/MIPddK7J+3I8oC6WGdMbwlRZR87Da8lePb4toeeYmulg567lmHmT36DIpEisyXD5Pxv15B1QRSN1Bvq8Pa3IYytwBlbTnCNfpnmeyPYTxwArMngtw485JruvxI5ncaUkou3PcYQ1aE6J8uQ2aMPlsikiT57GnCP2il9tO3k7HzKJnP7CJhqqQcHhxGAg86RVcvIX/dgtdVnTK6gOmHeCuLqfv8B+l86hUij25HlmciAe1CK/4LHRh5OZh+H1o4gkvXKblqCTnLm97Qenwzymn48p34H91CeP9BEoEcQOIZ7kdVDMT11SjLS0ai5gWgd0Zo+fWzFA8uI2/Nwtd9ThsbGxubdya2MGNjY2Nj854g0j7Auef3w5cWjfNoEQ4FUeLHaA2hVYzd3Ovnhkke7EP9wpKRDdDIcU4VdWUp1vF+lPlTV83IoQS4VLT1ox4hSmUmakM+lteJdk/juM2b8DvR7pmD+eAJzP4Eia4o/lUTe+BcxIrqWFGDnI/OwtuUh7QkxHRkTEdMEHE9Zo2nB3CsKsYxKwfF78B6+hjRe5fDT3fhVBQy/3Ix0d+cIuFyID+1cHxriNcBt81GefAY3gIH3oVjY6AVp4pQBWYohZoxtiXLNSOTwhlNmMEkxmCS4WfbCG+sh20X8DkUwj8+inFjHTRNEDdcmoF1VTXW0T6U2XmIYj/OC/2kaiaJob54zlNdYJngdOD485UIVUEOxZHDSXCqiOJGUl/bhTmcwoobKK+pOlL9DrLfX0vWTVXoXTGGf3Oe4tuuJWv+rAnPFzx8hu5zbXR+7KpxqVzS7WT42sVIl4OsVw7h+NwirC2tKEtLUNeMr5QSeV60P1mA/NY+zKpsmJX2LxGnB/FXlIwb/2YjFAXV6YKhOGRPnUyknRrCP2v+tHP2b9nPkBkhcs94LxjpdxG9rQn58FG6n9tByXWryV05l1TvEEYkhurz4CrMmVAA8VcW4z7bSWze1FUk7rOd+CYQ016LqyCH6o/dihFLkOodTL/24VwUt5Nk9wBmLIHm9460If4+uIvzmPkn78OIxkn1DoEiaP/dC6RW5aDMG+/to5T4kX86n+6v78BXU4andBL/HxsbGxubdxW2x4yNjY2NzXuCCy8cRG6smtQLRllTQfyltnGvJ15uQ7lp5jhR5iJibgHW2SFkbHKPFADzxWbUDWONW6WUWFva0G6eOeU36sr1M9DPDpPqiGBeYlY7EeEtXWlz3KZXN+qKwLe0AGvH1O0tcjgBXRG0urRBsHNJIY7+CGI4TuzmJuKb08enDg8g72ic0q9D3jiLxKkg8rW+KYBvZRGRVzonPVbNdKHle0h1x9HXzSTVUEjipTZM3ZpYlLl4zqVlWEf70klIa8oIbJ68JQUA08K/9QzC40C7s2EkFUpke1Cqs1BKAwhFoK0uw8x0E9nePelUwqGi+B2QVMicN4nhMND5wi56r1s0ZVR6qiALZUY2IseNbA6irCqb/LyqgnbzTJTNzSPX5NjWQf5bVCmRv3YR6ivjf2bGENdRTg2StWBiseoiUkp6Xt5D9KapvWBi181iYPvBdJKXELgKc/DVluEuyp30Z6howxJyt5+YuppISnJ3nKR4w5Kpr+cSNK8bb1UJ3qoSVI8LIQTu4jx8tWVviigz5lw+D97qElS3i1QiOqEocxHh1mBjJb0v7XpT12BjY2Nj8/ZhCzM2NjY2Nu8JBo61IZomr6AQs/MwQzqJl0c3mtKwMNojiBkTpxlBenOsXluD8d39yMTEyTPWgZ50NcfSsZUMsiMMeR5EhmvC40bO4XUgKjJxLimi7/vHsKITi0Dx44OEX+kkcM3YCovAuhLY3Yl1sn/C42Q0hfmjg3hvrh3Z3AohcC8txHmwA5nrw3Q5iDxwCpnlnrZCAreGVZtN8kxw3Fu+FUXED/cTOzzxWqy4Qe+3DhNfWwuKILmsitgLrVhLp/HXcapYV9dgfHs/VGfiSiXxvzSJOGNaZP9iO8IwUJIGoipz4nGAsqQYJaETfLmT+KmJzVXNiE7fNw5jKSrN9z/NwNaDnP3vRzj+nz/n1HceoHfTbtp/9yLR/iH0kqm9bwJHzqFuqMQ63IuysGikDWwyRFUmoi8KcR3t18fJnluPIysw5TFvFrnL5+I8HYKDXRMPSBg4fnSIkuvWjEbFT0Kisw8jy43MnObZ8jjQK7OJnptGELoEd3Ee2aWF5D21Z2JxRkryntpLdkkB7uLLT056OxjccxS5/DI8rZryCZ248Bas6K3FSur0bznIif/4Ncf++Wec+d4jRE61IN/FLXw2bx1GOErHI69w7J9+ytG//28u/OQJEl0T/y6ysXmnYbcy2djY2Ni865GWBFWMVEVMhFAE6ifnE//OPvQD/biuKkfJc6dFkWn8IdSlJVjnhjD+aStibTnq4hJwqsiuMNaWNmRbCPWGGePjtCM6InNqUWZkfVku1CIfVjRF1z/swb+2BN+yQoRbxeiJEXqhneTZINKj4SjyjjlW8Too+Nwc+r5/HHNXJ2JVOaLQBwkDa18X1u5OvDfU4GwauylVs1yI9nSFjunU0M8GkQV+LgeZ5caKjBeQFLdG/ufn0v+DY0Re7iRjYzmOEh8yaRLd10dkSyeWEHheOIXaPozaOoz0O9Mmw1ORMlFOD0AwgfkvO1BXlpJxuh3PsQ7Ca+tJVeWBJXEf6yDw4nFEQkdVFNRc/5Sfr3CqOD+/iNS/72Lgv0/irMsic30JWoEHK24Q3dFNdGsXwXlVxJfWkPWrXfT09hC+ogEzfyYilqJv51ncB1rRCyYX+C6ixhKILBfywvBlGesKIcCtof3nbnKb6im95Yppj3mzUJwO6r54D2e/9xtS+3rRV5dCSSD9WRzsQdvRQdGVKy7L+NaMxDEzp79eADPTjRGJv661Vt9zPeL+p/F+9ykGVtSTqE23LLnPdZG74yRZZYVU33P965rz7UCPRBGl0/+bIVQFVJFOs5pG3Hu3MHz4DM0/f5Z+XxH9gSpMjwNXMELfL14hQ9OZ9aU73jJR0ubdhZSSrse30vXsHtp6NPqHVKQUBLznqdp9lpxZxcz43G0oDnvra/POxX46bWxsbGze9QhFgGlNu0kRbg1lRRmBdgV53CTe2YIcSiKlnFacUfK95KwvYeDlNqxTA2BKlFw3vnWlpE57MfTxbT34HMhQavzrEyBDSczeKNbpYQr+fD6Jo4MM/eo0MmWhZrsIrC3Bu6KQoV+dxZpgTi3bTdFfLiB5cojwlmaMoSTGQALP1ZW4/nLJOP8UADOYQnrTm0BlOJ6u1Jki1vpSRCiJMsM74XtqhpO8zzbS9T/3MLi1B4YS4FCgIQ/1L1egeh1YT53Dvb8LszQDWRhAhJKTe7NaEvXH+/DUZ+P5ZCNWKEliWxe6YaDGUjif2o8VNdKfP+Dyecm7dhlZi2dz+us/m/5iFIGlQ//ChfiaW0n892mEZWG5XQzV1xP64DpKHn0S95kegrcvIVl/iU9Jjo/g7UuIrJxB7g8nN5i+iOl1I0PJtF9PaOq2tZHlhXVmfu6et8VPRAt4mfXnHyV6ppXeLftIDrQhNJWs2TPI+4tr0QITPwOvRfW5UcOXd71qKInquzwR5yJCVaj+8A0Udw/Qs3kfkb3pz8JXXkTRx2/FXTR9itc7Ac3nRYamj8WWlgTzvSPKhE9c4OzPX+Bk2SoMx+hnrzu9nA4UEAj3YH3tl8z+24+heV/fs2Hz3qfrye2cfXQfR856kXL0ZyIZUuk/BhUDPVipXzPrL+55Y8bhNjZvAbYwY2NjY2PzniCnoYyBY32Ipqk3r2J3D4UfuwVPSbp65Mw3f0v8/DCidvJqBykl7O0i83ONGFGdVEkA17LRtiUlw0n4/lOwcqxfiCgNQG8UGUkh/M7XTjs6f9xAtoRItYco+FwTWo4bxxVeAleM9x9JHh8i9FIH3iXj2x2EInDPzsE9O4fo3l5iZ0N4NkzeIpTY3UPqEysQQzFELIXeVILWPAjDiamrOVImypkBXHdVTzokur0bZUMF6nUzJnxfub4WszWI0hHCWFaOsuk8ctkkfisn+nB4VDxXpK9FyXDhva4KrqsaGSJTJpF/OUD9334G1T16r905WSRbgmNiul+LsbmNoXlzGV6xmOEViyccE6ssRxQpY0WZSzBLsjEDbhzdQ+hFkz9L4TnV+F4+hnZHPcY396JcUz3lRsFqCeIuyn9bTV6FEPjrKvHXVU4/eBLcpQVo/TFEOIEMTPFsJQ205kH8H50+On7C8xTlUnnXNW9wlW8/OYsbGfz5Q7CidMpx8lgfgd/j83gnIaXkwv3Pc7pk8RhR5lLCgUI6kiFyX9hD6c1r3uIV2ryTMWIJup7ZNU6UuZTWbhdZpwcoPdlMoGHy31s2Nm8ntseMjY3NHw2pSIJwWz/R7iGkNUF1g807Dikl8b4g4dY+ksPRKcdWXzUf8UwzMmVOOsY61odTc4+IMgBFVy+DJy9MaGQr4zpWRxhzUzOuPBdYEu/MTOJPXEA/NzziBaMW+lA0gXWkd8zxQhEoK8swnzo35dqtZ8/hqM3EWexDy5n62+DMm6ow++PET07+rbqVMAg+dgHnysnTe5L7ezEyPMhsL+4njoGqoC8sRW8qQTxxekojVfHUaVx1WZMaJpvhFOGXO1FWT765FkKgbKhCyXChnBlIv3iib8Kx6ivNeK6ceqMunCragly6n9pCsncwXVEAFF21Ep44P+HnC+nKA2NbF8FFcyef3LLwnW8htmrm5GNMi/jiCnIe2wHW5PfOMRzFOjWIDKcQZRlYOyc3SpamBU+cp+iKFZOf9/fA0g0SXf3EO3oxE5dX2fVGEUJQsHYR3qemjnb3Pnua3KVN03rW/L5YSZ1EZx+Jzj6s1OVVib0VuIvzcGpurGMT/yxAWoTkmRYKNix7C1f2hyN2oZOodJFyTd1G2ZddRd+2w/bvb5sx9L9ygM5ebVJR5iIXWlXaH932Fq3Kxub1Y1fM2NjYvOcJnu/hzJN7CXUPohT6kSkD0Z+gbHUD1VfPQ3VNHTFs89YjLUnHK8doffEQildB9TnQBxM43G6qrl1M/ryqcccEKvKpXtPEhe8eRH6wAZE/2mIhTQu5rxvzkTPU/P0nxh5XX0Fu4ywGfngY7pqFyPZgdUawXrgArUGUXDdK3CDeE+Pcvx9CyXUhnCrR/z4KgFaVgfvqSvwfmc3wP+9GvVVHWVw84nejrKvA+MEBjPuPod5aNybSWsYNzCfOoHRHUGZl4c6Y/llU/U5EhouBHx0j+86ZeBcXjGln0HtiDP7sJM5yP/FHz+H9QD3qJWKPNC2SOzqJPdkMmobvXzahxpOIlIn/pdNp34rmIPziMPL9DeC7pNInYSCePoPY0UZcQHx+Lu7ZYyOMU+0R+r9/DHFlFSIwjelxXQ7mb44jWoYxP7oA5du7kdekkItK4JJrEr3RcTHnE6HNzqbvR/vp2ncShxAUrl1EwRWLyT4zg6EfH4U76xCXVAJJ3cLa1ILpdGO5J1+rFolhZnqQnvFVTyKWIvDScXwHWhCFXmQoRsFPn2Pg9jWYGaPPoNANAluOkrH9BKbDBd/aj3ZnPdZz5yFpoKwqHyN0yeEE8renya6eQcac2mmv/fVghKN0PruDoQOn0AuzkIrA0T1ERl0lpdeuxFXw5iYOXSR//RLCP26D3xwiemMDeC99tnS8z50hsytJyZ+u/oOcHyA1GKTjqR0Ej58nlZNub3IODJDVVEvJdStwZk//nP2hqf74+zn9Xz/HjBooiwrHeGfJvhjyVycpWLEYb8XkKWbvJqLnO+h3TN9qZqkOdNWFEY7hyLw8Lyyb9z7Dx1oYGJq+1iCc0GwjYJt3NLYwY2Nj856ma/cZTjy+C3lbHaJ2JvLVDaQV02nZ3EbPv/2OZX9+K9oEGy6btwdpWRz67tMY7iTFn63DkT26YU50RDj74A7CbX3U3Dg+9rbyqnl4cgOc/cUedCfIEj9CN+H0EHmzShmoKsSZPd48svTm1bh3ZtP9o53oUkdGk/junoXjw/UjoodMGCR3dJHc2UXgSwuQUYPY786guRViPzsOeekNvzw1iP7cBZTabFAEsi2EHIqj5Xuw/mMXlAUg0w2hJLI1iLsmA103SO3swrOx4rLukTAtpKIQ3ttH8OHzeObkgUMheW4IcziJNCWKV0MBwv9vb9pYuNSPtEA/F0SvLyT+P65BDEQJfGcL6tXVKKvLR6LGLcPCfOgk1j++jKjJhgIfIpxENAfxLsxDvaGSoee76b/vDIoG7llZ4FRJtMVIOlxIvx9f/WWk31zUXqSELDfWF5YhnjiN8sxZZF0uOFRE8xBMkoY1bjpFEJ9RSrSimMC245xp6WTo679i1hfvxr0vj57vb8fKciLyPZA0kWcGyairIjWdZ4WUY4SiiyihOPnf3YRzeRHqXy5FuDWklKjbO3F//zGSgQCpkly0YBRPVx+KTyNRlE3HndeRtfUg2b85gqKAuasT8/kLiJpshNeBMpRCCZsUXbWS3BVTVPK8AVIDw5z8xq/pW1lP5Mu3IC+aYVoW3uOthL75a2beewu+mqlbad4IQhHUfOL99Lywk77/3IpRmomZ5UYJJ3G0DJO7fC7Ff7ryD1YtE+/o5dS3H6Jz8TJCd68E9dXzmCYZZ04T/PdfMuvzd7ztyU2OrAB1X/konY+9SOjZ3Sh12eBQkV0R1KSg+Nr1ZM2fOp78XYWUU0aoj0XYFTM2Y7Hk5P5kY7C9ZWze2djCjI2NzXuWaNcQJx7dCV9ahOIdW4kgvA7EdTUkMjs49NNNLPrsdW/TKm1ey7nH92BlGhTdPt6bxF3qp+zzDbR/6wSB8vwJK2cKFtRQsKCGSPsA8f4QiqaScXchDq+Lzd98ctLz5i5vxFOaz6mv/YLMv16C8hqPFeHWcG8oR8nzEPnpcTK+uAD/n8wj+oPDBK4pJ/x8O466bOScPNQ7GpDNw2BY0JSP1RJC6wuT+5V6UhdCWFEdxZuFs3rmyLfhkVc6SJwYwr9yYg+Ti1gJA2lKkBLfR2ZjxQ0i/3kQAeR+pgFnhZ9Ua5jk6WGkbuFdXsDQ75oJryjCyvFi3pYLrvSv/8C/vYD2gUaU+WP9ahRNQblrNtY1NZj/uYvsBdmoeZm4PjJjZL2OYh9dv+1AhKIMKznEa8vQV2Rh5GaQ/cxuPOeGUAt9U16LbA4iAk6s4lfFsgwX8oNNyLgOr94/0TyEyPFgdkVRi6eeL3U2SKI4l8jKBvS8DLKePUD3rCrcDzxH9YeuJ2dZE/G2HvShEIrTge/uMoSmMvx330PoOtIxccWS4feiDkYhZYBz9E+n3J9txXVDNercUf8XIQSOVaVoK0twHOtH/+VxFI9K9v+3BOFQiTx+geTmPfRfuYLhdYvwHTpD0XPbyF+9AHdxPprfgyMrgKei6E03qZRScuZ7D9Fx8zKSta95zhSF2Jwq2ouyET95lDl/+wnUKaqI3ihCERRds4LCq5YRO9+BEY2jetz4asumTFX7fbEMkzPfe5gL11xHMj9/7JuqSqi+gWR2DuK7D9H0vz71B13L5eDI8FH5oZsw40liFzqwdBPnmiw8pfnTH/wuw1NWQLZ+hoFpxgnLwKHHcQSm/nfA5o+LwIwSsnb0EZ3GW9znMnDmvP0VcTY2k2F7zNjY2LxnOf/CIeTGqjGtI69FrCgh2DlIYjDyFq7MZjIsw6Rr+wnybp68ckSoCvm3V9L87L4p5/KX5ZI/v5rcORU4vJe3wWz/zSbc11SOE2UuxdmUBwKM9jBCEXhum0lkaxcZN1YiAOuVNnCrKA15KE0FKI35qNfWkGyLYMV0XLWZeObm4ZqRNWbz51tdQupcEDM6td9FdGcPziVFuNeVk9rZhZbrwfO+GhyVXlyVAYQQuCozyLi6gszrqzAHUyTWzURfWY1ZXzgiymiHO1F8jnGizKUo2W6Uq6rRB5K4Z45dr6chG0+eiuXQGLxlBfGGCozc9B+9oWUN6Fs60qbJU2BtboW4ibWmauwbHgc05ENpBkI3EVdUEH+lfcq5pCWJ7+whvDhdSZCsK8UKuImWFxI82YwRjSOEwFtRROa8OgIN1SguB0JVyFlUT8aRU5NPrqrEqirw7m0eecnRPohDscaIMpcihECdk492dSWKU0E40tUZvusqCZw4h0jpIATR+XUMrlmI4vOQu2oemfPq8FYW/0GSQyKnW4hm+8aLMpdg5GUSnFvNwI4jb/r5L0UoCr4Z5WTOq8NfV/EHF0KG951guLRivChzCcnCQkKFJQQPTfEsvMWoHheB2TVkzpv5nhRlAPyzqggYYTQ9MeW4nOF2chY3/MH9h2zeXRRcsYjyYhOmqZupKDUpvWnlW7MoG5s3gF0xY2Nj856l73AL4ublU44RQmAtK6Jz5ylqrl/0Fq3MZjIGjrbirc9EcU79h7e71E98KMiFJ/dScdVYn6DkcJTWV44T7BxCKIKCuhJKVtShuhxYsSRtv34efTiM4naRvbCBjDnVCEUgDZNocxeZH5veaNW9qoTU7m60sgBqvhc0BaTEODuE8Dkw/2s34oYZKDNzYDiBtaMDmeGi+2sHybiqDP/ywpGNOoAxmCD4dCu6CZ3/coCsa8vxLy0YMwYg2RwivLmTwJcXAhD+ziHcV1TgnJ9P6PFzxM8ME3yiGTOsI1SBuyaD2LkQqS9sGH8Nm06jXDFxqovsj2Hs6EQOxEERRE73k3ltBUIbu3nOWldI7OmecW0IZnaAWHkRyiNncNw6c0KRwdzRnm7zyvdCyfj2MmI6yg/3oayrwDzYi35ymGRHEjXPjXt2JlK30M8FkYaFlufG7IhgqirZLx8ktKgOIzcDIzdAwbNbSblUmu97jIq7rsWZOz6dKXvBLHK/+QCJkkKSReM3vyKVwtPdg9YcJVWRi1GWjW/vebRXzZVlysTa241xNog0JWqhB21lCSLLjbqiFP3Z84R/cgzF78C1pAjX3Fy8Z1qJNqa9Y4Lz6+n7+RMUX7dq5JypgSD92w8Q7x1AqAqZdbVkL5mN4njjf7r17jjM4JIpDIxfJbi0jt77N1OwYeKEqqmQUhJr7qR3x1H0UAzN5yZ/aQP+usrXJTZJKYmd76Bn62H0YAxHwEPBqjn4ZlZMO48eitC39RDRjj5QFLJmltG35yT9S1ZNeRxA3+xGurftJWthw2Wv1eb3QyiC8vetJfHwdk6VLsdSxz/jntgw5eHzFG/8yNuwQpt3Mo5MP3nLG5gVOsWpFhcTtSzlZ6UorPCQOa/urV+gjc1lYgszNjY270kswwSncnnfwua6iTdPnfhj89aQCsXRci7P78dR6KG7s4W2/3mUmusWU7JmNsfu30LPyQ4GF88ivqQeYVq0nmwj8MT9eDwqimZhlcdxLQhgRXV6dmyj/YHnyV+/iO5NewBQPNP/alRyPViHLzER9DgIPd1Czt11qNkuzFCK0PPnSN13BOF3oqwuR72lDnSL0L4ugk/vIevGSryLCuj/2SniHXES62qxlteDbpLa18bwk3vJvqkS37JCjN44kS2dxE8M4f90E0ogfY9k0hj5r5kw6f/FGdQrq1DKAqBbxPd2IYeSqOf6MOaO9QwRCR2R6x3zmkyZ6L88hjmQILmqBqupElIGTkWj45/2kXN7Dd6mUZNOLdeNMonfQ/9NKxEPb8Hzjf04ryhHNKQrjWRzEOulFmRLEHQL4iGUR05gra6EXA/EdMSudsTLzYgMF6kHz2H4fAyuWU8yJxc1lSJz+1F8HW2krqnFqslDaRvCtb8frcBDZgX4H3kZ+qIk55aSumMOOFT62oaIfvdXBMqKqbrnhjEChwBcNZmUPvU04aoqhufPRc/OREmmCBw/Rc6BQzivKEUpriLv2y8QW1iJFowiFmVh7O5Cf+oC4foaonMWIVUVV0cP2d85glYdwHFnHQiBvKIKcyhB5OlmZH8MR8OoAGR5XFhG+rO0dIOW+58k3NaBsbIUuTYn/dwcOU7nU5spvfUKchY3TvuMTkQqGMGYwGPptZiZPszY1NULE84/GOTM935HRHPRN2s2elEALRYj/8k9+H71PDM/877L8m9J9g9z5psPEk6qdDqKSWl5OPoSFJ9+iQwtRd3nb8dVON6gWFoWrb/dxOCx8ww0NRCbPRthWWScb8XX1o1+5eSR6RfRMzLRQ/bvg7eanKWNVMeSOJ54hc7MKgazyrEUDWcqSlGwhdxEL7O+dCeOrOmfX5s/Pirv2YiV0gnsOceFNoXBiBMpIeA2qCy3yCvzUv+X97ztLYo2NlNhCzM2NjbvSYSqQMpESjntt6syquPweN6ildlMheZxYrVPHnd9KWbcIOu2WhS/g+bvH6Z12yl6S3Lp++KtYyo4UoXZeE624Lm2BO/CsdUQ7tk56N1ROv9rC8pHmuAnh5CGNa4y5LVYER3hHq1mkabE1CWK34GzMoC0JOEd3agry1Curx3zDCozspE36Qz95y4GHzpPck0tyY/NHrPm+Iw8EtFGzK9vZvjxC2gFXpwrism4eeZIco9MmQhFwTIsgv+8B2VDJdo1NWPWqczIRt4wA+/39hMTAqPpkvhsKSE6GpEsTQv9BweJN5aS+thYf5/4zHwSoQTW97aSrwg8jelNsRXVkROY4gKgKvTdsQ5nR39aSPnFMfA7IKaDhOIb1pO3diHDe4/R8btNsLMdJAi3iphbgMz1YLTH6Vu5imBT05ipY+XlaOEwFU88TLIsG311DfqqalwvnMZ9oBfnlxdjHehBbmoh+b4mcGmYldmkVlWTfO405g8eYsZn7xwxdlY9LoQF7r9egnN/DxmbnkEGk+BUUefk4vjiPPBoJP9rP70bViMQeI7vwtzfQ+JcjM5P3jEm1SlZWkBoyRxyX9xF5k+PISyJUpEJFZko8wqxTvSTdf8JQosbsXweMEwUBNKSnP/hQ0TKVMy7l495JswZOZjXVNP+vS0IFLIXv/6KDtXtQoklgKl9FkQihaK9vj8R9VCUk//5a5pXrSVWPtqKmASi1dW4enswv/VbGr58N6787MnnGQ5z8mv3c9I9i2jWqPgSd2USohBvYhjz3+9n9l9/CGdu1phjL/z8KTp06P7YXWPuXaKsmNKWDtR4HGMSH6GLqPE4qss2g387KFi/kKx5Myh4aT+D+3cgdQMtw0/RNQvIXnLr71UtZvPeJm0sfhPFG3vJf3IH4dOtICWughxKb1pBoKFmTHqhjc07EVs2tLGxeU8ihCCzqgB5ZmjasereXooXvblxtDZvjJzZ5USODCKtqXvF9aEkZtxEzXWjuDV815QykDLpu37puLaarK1HyF6eM06UuYijyEfeZxqRz51H5npIHeyddp2pPd0456e9RaxICnMwgfqZhQz+9ixSShInBjGEgnrDjAmFQeF1oG6swajOJXlj44SJJNLnJPrFtUiHhv9z83EtKR4Tp5za04Njbh6xx85BVdY4UWbkXAEnzs8swPvoEbh4X6VEieuwu3NknLW/h1RugNT68abLADLDTfjTqxh48PzI5xPa3gdD8anvVWke4YV1WEUBlBWlWFfWYP7FKvq37kPRVHJXzGPGn96NyPYj5hbg/Ie1qHU5WAMJQnWzxokyFzECAdquuwX3g0dGUl2SV89C97iwjvShLipCa8rDteXcJTdDEN84i7AjRejo2ZGXXUW5MJSEhIG6rAT3lxfi+V8r8PzNUpw31SKy3BivtDNUPZNI02zCTQ30bFiHsbuHzrtvmDhqWwgGrlhGIqKmBalLUBrycF5bSc62/QAEjp8js6mW0NGzRNUE5rW1E6fU+Jzon1lA+6Ob0lWBr5P8hfVkHTg/7bjA/rPkLHh9qT8dT2ylo2nBGFHmUpIFhbStXEvLgy9OOU/bw5u54Kgg6pk4sjvmzuKcu5aWB14a+/qFTga6Bum+YvWE9y5SX0vmyRPTXkfO6ZPkLa6fdpzNHwZndgZl71/P3P/9Geb96+do/NuPkrtyri3K2FwWnrICaj9zC/P/3xeY/x9fpOGvP0RGY60tyti8K7CFGRsbm/csNVfPRzxzAWlOHq1pnR3CZSkEyt/eeFSbtHmrNE2yaooZ3tY95di+J1vwLMoHw0JakuDmboJrGsd7/5kWGQfPElg91uzUSpqYw0msV2OYXdVpk1l1VTnxx88jU5Nveo3OCGZnBG1W+lv/+LMtKCtKUYr8yAw3qeYwoZc7EVdWj16baSGDSWQkNWKIa+zsInHD7Knvid+FPquA5L6xYpFMGCReasW1upTUvh7Ua2uQKRM5nEAmDKSUyEgKaziBNRQHIRA1mWhH00KMerIXT3UA0RfFag8h4wbGSy0kN0ztPyKzPBgV2SRODKL3xoifGEaxTFznuyY/yLTIfn4fSiyJtb0DubQUJOgBjdCRMwC4SwvQpIo8NYjsiWK81IwVlwwumtrjRM/KIunLQj0/mueSuKIO85W29HWuKce5q2VUkHqV6BW1dL20K31NUmJG4+QsnoP1dPOE57FMC2NbB+G6GWCmnw01FiPcUDuxKHMRIRhcvRAr4B33lrK0GP/pCyjROHk7DlO0YTE9L+/CuHJi358R/E6s+lyG958cu8aUjj4cxkwkR67LCMfQQ5GRfwOzFtTjP9uJNhCafMnxFDk7TlKwduHU67j03Emd4SPnCNZPLWhEKyuJdPSjByc2WzfjSYLHLjDomzqZLOgtJHyuAyMSG3mt88U99C6eP2nscripnoyTJ1BjsQnfB1CjEbLPnCZ3+cRioI3NuwUpJUY0jj4cfkMiro2NzVuPLT/b2Ni8Z8muK6F0ViUdPzmKvLse4R8tT5dSIo/1oz5yjvlfveVtXKWNHknQsukQHTtOgc+BNC2sQ2GwJFlrisd802WlTHoePEfkyABKjovwi+n2F8XnoGjbQczn9xJaNIvg8gak24k2FEHLd4/4xiRODRF6sQO9N44IOJGRFFqum8wNpXibcogKgazMJPRf+wl8ei5K1thNt35umNj9J/Hd2wiGReyZZvTeOOotr1YXNOWnq2V642iVmciBONbLLcijfahZTqRuYUV1LEAmLKzyyVs6LpJqKiV6/16MU4O4r6hAeDRC3z2EVhEg8sPDkDSxnjwL3VHwO5AD8XTrjM8BAqxwKp3EZFq42yOYR7txHusi6/1V6MEU/V/fA6pAKipW4fT+DYk5JUT3txI/E8GQCu6ryyj83Sv0Xb+CeH35mI2xEk2Q//AWXHUB2D6EVehD++ctCI8GDoXmn/4O4XCkDXPz/Yi4JPXvO5GApfkwAtOvJ1xZS9bZLszatLhqlWUhX63iEX4nIuBEhBLIrNF2Ras8m2TfEL0v7aHnlQMYmoLUVOgdwmgL4binIS206Sbmtg6MrR2YQqPwhZdQQzGiM6pRI1HCy6b3eklUFCND43NchUNFlAUo/+VTlG1YjKsgh2TvEFRMP6cxJ5fQsWZyljYSPd9Bx9M7iTZ3YXi8KMkkqgIYKUx/AFQFNRojd1E9RVctoeajN2Hd9wSdd64hVTZWkNYGwxT/ajNlN6x5XV4eic4+EoWFoE6TliMEkYpKYhc6yZw/3oQz3t5DxJ0NYprvDYUg5M4l1txFxpx0tWP0fCexDesmPcRyu+i/YhXlv3uIzutuIJUztiLHOThA1XPPUP3Ba1DddiuTzbsTyzAZ2H6I7pf3owuQmoYajpLZWEPJ1ctwFUxciWZjY/P2YwszNjY272lm3bYCz+ZjnP/GAWSZH6vYi0hZcLSfjIJs5vzFrXhybTPBt4t4f4i9//kYxrJCxFcXITwOBCAP99L7q2P0P9dGxqJ8VJ8DfSBB9MQQSo4LkeHEihlkXF+Jb1kRiiu9ITSjOuEtXQS+/zid916HsCxQ00JB8JlWIseHUW6eiVqVOdJiZLUEGXz8DKoiYZ4Xx73zMH53kuC/7EYt8+OozULqFqkDvSDA0ZhLYlsn+slBlAVFqJ+aP2ooqCpEtnaBpmKdH0Lef4zMayvwvm/xSBuSOZwktKmd0O6+y7pHUhWIxnyspnxCPziCKUFNGWiWhdqQRdySeK8sRynyEv3uYTwrigisL0XNeNUgWDeJ7u0j9EwrrgofqdO9ML+AoZ09JPqTKAuLUK6oIvXDQ5f3oakKsSODWJoDR4kbkeXB9bkFFDx0BPPZPURnV2I5NFw9g7g7+9E2VKAuKULf0oK70IvnI7NRc9Jx5NK0SB3qI/bgGczZWXDaIlWcRXJ+Ga6fXl5cs1TUcRUxY6omFDH+/YSOGUtxqrub4Xuvwsx4taLFMPEdOk/2f+1Gq/Rh9SYIN1QT+uSNY8Z4D13A//RZQisvo7JCCCZKCQFQDYOSZY0UrH81Ee5yq+1VBWla9Ly0j7bn9tFSOY/o4kUj1+2KDFF04TBmVia9V16JMAwyT59i8Gu/oO5Pb6PuE7fifPAFErpOeGYJCIG3tQ9PJEHZzevImjt9ctOlSNNETifKvIqlKMhJDKOlaWFdZjG3hRg/zzR+YrG6apREnKpHf4eZm0OoJG2IndHRjkeYVH74WgJ1E7di2di807GSOqe+9QADOZn033E1ZqY//YZp4jvZTPCbD1D7wWsJNFRPPZGNjc3bgi3M2NjYvOepWNdI+ZrZDJ3qIN4fRtFUsq9ZjTvb/3Yv7Y8aaVns++YTGLfNQKkb/RZPRlPw6CkKvjofNcNJ4vggRtJEK/ZReMcMhJYWP2J7ewisHZs0pPocZF1bgbPEh/zl83Tcex1mT4zovj4ip4Oon1s0zthXqcxEfnYh+nf3I16ttNDeV491Sx1yeweJC8PIQz0oH5qDgsCIGwi/A+199ePirGVrEOfSIhLbu+AXRyn8fBNa/lhjaTXLRfZttUQPDyKG42MqOSZCax1CKfSizMnHUZ0J/74bz+xsvAvzCb3YQcafL0E4FCLfPUTGuhJ8ywrHHC8cKv4VRbiqM+j73lE8N9QQf+wsCa8DZVkp2nXpigMBEEuBd+pqAe38AKLMj/uzi7B2dmC1BdHmFeD61FxkMInrzCDoCcTMXMSMGQhFYNx3GPeVFXg3Vo1dm6rgWliIoyaT4L/uJbGwjORt88GwUBNxhK4jpzFr9fR1Yc0f/VkWoQRcNEg2LBiKIwNjK5/c9+1l6KoFhFe+ppVMU4kumkmyqpDi7zzO8NomwuvmjhsTWzQDZ2c/7vYekmVj7/e4+zUUQvjGX4OUEnVIJ2/1/JHXVJcLhhOQ5Z5yTqU1hKp6aH1+PyfnXol8Tbxw0p9Ny5y1lJ3cRdb+/QwvWsRw4xziBYXw3YeZ83cfZ/ZXP0yie4BYcydYEvfCJjyVxa8r0voizoJsXH19I14/U+Hr68VVOH/C91wF2fhSwcs6p18P4S4cTQhz5ARw9g2Qys+d4ihQEOQvn0Pe8kbibT0AeK5qxFNacFnntbF5p3L+l0/RVVPG0LLXCMaqSrSxluayQvjlk8z+yodw5kxtAG5jY/PWY3vM2NjY/FEgFEFOQxmlaxooXlFnizLvAPqPtGKWeMeIMgDWjg78K4twFHpRPBreRQX4VxbjacodEVX8q4vBlOg9E/tFeOfm4s5QcHYNEqsqIvhkM+pdsydNWxKqgnbPHOTR/hEPGEVRUFeX4/hwE6I6GxEzUOYXoq4oRWkqGC/KJAzkyQE8N9SgOAWBNcXjRJlLydhQgnPz2UnfT98MiXNXC+rSdJqS8DlRb50JqkL4+Ta8d81COBSMzgikjHGizKU4irzp9yNJlGwXJE3UjaOGwerSIpw7m6dej2Hh2NWC9uEmhCJQFhZh7e9JCyCAyHShLi5O36O6HIQi0ulGLUE810zunaJkufHcWI2jbTj9gqZgFfvJODG1WavQdfytzRhzR9OmnNsvoC5P/791qBe9vhAu+axEfwQxmBgvylx6mbkZBNc0oZiTm1CH1zaRsfdYWoyYgqy9R3CsGu+ZIs8O4SnMQwv4Rl7LX7UAdVvblPNhSbRdnUTaB2iuXjhOlBlBCDpnLCTr8BF4tbIkmZ/PYHUtg7uOAuAuyiVneRM5K+firSp5Q6IMgCPDjy8/C09X59TjhofxWMakIogzJxNvXgBvYnjKedypMN6Ac0xkdvG6ReQdODr1QqUk79AxCtYtwFNWSM6KueSsmGuLMjbvevThMOHWHoaWzpl0jJnpp29ZEz2b972FK7OxsblcbGHGxsbGxuZtofWVo1grS5CmhXmoB/2RU+gPn0Jua8O/cmrzTwDf6mKiO7pJtYQJPn6Bod+cJfRsK8ZgAoDstYUU/+oFPCfasDQVkTfegPVSRLYbst3I9vCY1622EKI/ivX8ecx9XRiPncb44QH0b+wm9ZNDJP9tF/F/3U3in3ag5nnSRQOKgn9l0ZTn8y8vxH2gHfVc/8QDpMTz8CHUOXlj/JGUpgKSp4exJKiF6U19amcX/gk2/+POuaqY1K5u1LIAypKx/j3qyjLcO5pRWidJMrMknp/tSZvlbmpBRlIIt4a6tATz18fHJWnJuI7x/AX0r+9GAuEfHyV1cnBE+HotriVFaN0h1PMDuB8/Cjku8nduxzkwMOF4LIuSTc+gr6sGVaCe7sXz8z24tp+HlIXVHMR46hyJ1xgau545RWj51KbLAJFls/AdPDfp+2amj0RNIbnPbJtUnPGcbyNwoQVl0dhnQQaTWL8+Rd6qRXQ9vY2WXz9N+yMv4i7OR93bDWcHJz6plKgPnsCdk0Oyr5/cgQvkdJxGMfQJh1sOJ7GMPLxto2LPQGMTHU/vINY6tcH266X8plWUv/LypOa6SjJJ5QvPUX7L6innqbx9PTPCJ1DN1ITvq6bOzNAxKm8f6yeTNb+OzL4+fGcuTDp33o59ZJbmTxnX/fsS7+il49HNXPjVs3Q8sYVk7ySfpY3Nm0j/jiMMzKubtmIt3DSTwX3Tp5PZ2Ni89ditTDY2NjY2bwuJoQhWnx/rF0eRM3KxGgtAETgOdKP6p25fAUBTiO3pRW+P4F1aiOLTMAcSDHz/GFq+h8C15Sg+DRYWQd/Ukc4XEbke5FACyjPSm+ftbbCvm+z31xJ8ohleacW9thQxIxOzJ0ri5XZSTh+9C5aDEGScOUXyr3ficFko3qmvQXFr5N5aifzpLlJLKkiurkXmeNOb79N9uDedxpHlQLttrIggFAF+J0rOaLuLDCZxFE0cB34paoYznTglQSkeWzUm/E6cn5yL/0d7SC4oI7WyOt1mZUm0Ez24njpOyh9g6M71OLoGyfi3vWh1WWh3zUI+egbjv3anK3Bm5WI9eRa5pxPX8mK022eCLkke7CV633GkQyHj441oVZljz+9UQRX4XziOurgYUevDzFSpePC3DDfNZWjePEyfDywL/4Xz5O3bjZyTg1mZSeD/Po9a4EFdUgyL8rA6whg/PIC0QESSyDw/YjCG68XTaMd70BdO/q3yRSyPC6ZIdAMYfN8qSv/Pr3H0Bxles4BEZTEIgTYYImv3YfyHz6BdWzHiHSPjBtaeDsznm9E8PpofeYHY8nKsWV5ETMf58NMQSiK/ux+xrARxZRXkpp8JTg+gPXIaEYpjNuYTWF1DQBEkz/aR3HOM/oJausubxm3Mku4Ajsio2GgEAhiGzukHn8KlC2o+fuubIlR4q0qouX094oEH6Wuax3B9A5bTOeJvU3DoAOXXryBzzsRx7Bfx1ZZR+8ErUO5/gQ53OQO+EixFQ1gmudFOShOtVN2+bpxPhtBUZn3xLvj6Awy1tjMwfw56bjZIibujm/y9h8hxKtR8+n2/97VORGowyNkfP0bMshhomolZkoEjFCHnh7/DH/BR+/Gb0fxTi8M2Nm+UxFCIVNnUXwYASKcDSbqV8o1WyNnY2PxhsIUZGxsbG5u3BStlYm5uw/ryCrjEA0Q+rCAtOaaa47UYfXFCj1wg9xMNuGrGbvB9a0qI7uhm8GenIMeDUpeL1T1Ne8hFgkms3xxHPnIKxaMRWF6I82OzGPjJSXwfa0SruKQvvzEX94Zy4ps7kbv20XzT7URmzECLRJj5659Oew0AwqWhzsnDm+/E+Z0tkDLBoSDKM9CurUTUZE38x3PSHBvp7VSw4sa0lydNKx0pLtIiwbj1FPlx/vlS1D1duH60HSIpZNwgUVtM7y1rSZWnxZ94QwWh9fPIemYPGX+3FcUj0Aq9WC9ewLrvMM6mfHz/uHLUFBlwzs/HGk4Q+s5hQj86SsYnm9CqRu+nlBI0Bcen549cs9KYj3ptDXk/P0bWLw6DSwVNgWI/IttC7GlG2XMBxxcXIwpGW4KUxnzkVdUYT57D/73tSIcC2Z501LTPgZKYuMJkDJZETNOmhADFNCnwucnefpD4b59DeDUUnwPvmiK0q+aT3NGJ/i870pVUmsAxNw9TVQivqSC1qnqMkKIvLkdtGcTxrZ10PxelYPceNGGiCgvN7UT1q/j+ZglKYLSCyjknD/+NlWj3nUK9sI+OmrER44qpY2ijIqEwDKRTI/i5Fajn+jG+eT+zvnQPztys6e/JNGTNq2NOZTE9mw8w+PBvsEwTIQTZ8+so/NKdly0AZS+qx1dTQv6mfQzu2YNlmiiKQvaiWRRd9aFJ1+rI8DP7bz7G8L4TdG16BT0UQQCuojxKr12Kv77qD7IZ1YfDnPyvX9F+zQriNWUjr8eB0KLZ+I+fQ/9/v6T+Lz6M5p3aP8jG5o2guZwoyYmrzMYgJZiWLcrY2LwDsYUZGxsbG5u3HDOpk4omsP5qFfjHms3KGbnEDw/gnZ83ydEw/OBZsj84c5woAyCEwL+yGKM/TrQ7iSjLwGoJIpMGwjX5rz2pW8jzQ+TcVot3yajnRO/XD+H90Oyxoswl5/KuL8UaTJB97AiD8xZg+P1EyypInBjE0zi1EWlkby/KkjKUhjyU2iyMXxzF8dVlUx4juyOoXhWrO4ZMGAi3hqMxj9jePtyzpt74xg4OoM3KTkd27+pEXVk2boxwa2hrylFXl5H8PzvpvPd6jIKs8ZMpguHrl+IMR8mf58G1qBD97BDxJy7g+3DDhH/4K1luMj43j+H/2E/4VyfJ+uslI+OM80FEeca44xSvE+dnFiB+cwLzQhD5V6+2wkiJ8q9bcXx87hhRZuQ6FIHjphmk+uJY7SH40FyU+w4hbq0jsPss8YbyKe+V53Q7icqpvUc8J9vxzyxn5ufvRErJyf/9fdyfnjWSOgWgvX8mvH+0nSr2fAvJeWWkVtdMNCVmZQ58ajHZ3z/MoZ60L4+CydKS82T89fJ0DPprr1VTyLy3HvPfDjAQHiQRyBm5R5kDHbSVrxwZGzhzGqMx7UVk1uYRuqWBlt8+x8w/uXPKa71cHFkBym5ZS9kta3+veZzZGZTfvoHy2ze8ruMUTSVn2Rxylk1fFfVm0fLwi3SuWThGlLmUyOxaekIxMp7aRsXtV75l67L54yF77gxyntxGtLF2ynHuli685VMbltvY2Lw92B4zNjY273mkJSeNZ7W5fCzTGucj8rqON0ws00Raks6dp7EWFsMEm0xzbRXB59rS1R0TYAwm0AcTOOuypjxf4Mpy6IyAKlAWFGK+0jr1+ra14a7PJvxSO1bKRMq0ubClWzgmEIAuxXtlGTknDo94jfTOX8rwoy2TXgOA3hMj1RZBzHpVvCnwIkNJrDOjnhRSyjFzSCkxHj+Duz4L35ICEi+lK4EcTXkkzg5j9E/esiUNi/DzrTgXFaCfGkbGdazm4cnvx7khkoHAxKLMJQytm090SxcAyVc68FxfPeW3sUqmC2dDDlJRMJtD6bVZkvgzzShrJ48q1q6qQhmMQ1f6GM4OIvK9E4oyY47bWIXQTcTTZ5BXVMPsAlyd/Wh9l6T/vPot8gimRdZTe4g1TBGdbFrkvLgf9VV/FyEE+euWknxu8uosaUkSWztJXlU35ZrNugJcfolLpL8Bz3WFcCwunFCUuYhQBP5ryynsPjXyWmZPC4nCfExvuoVGGAa5h/ZirK0aGWM0FhHr6UcfDr92yjHrfjP+DX0v/ltsROOEz3cSbZhYaLtIcGE9QwdOYunTV7bZ2LxefDPK8YQiOHsm8eQCsCQF2w5QcuXSt25hNjY2l41dMWNjY/OexNJNOnecovmlw+jxFAhQVZXytenobM0zdSSwTZpUJE7by0fp2H4SS0qQEleGl+or51GweAaKOrW+H+kcpPmZffQdbkYKiZUwEaoAS6IEnCiHOpEVmRhrq2HGq9/yl2WgNxTQ96MT5H10Foo7/avKiulEt3cTfqkDFOj533tRvBr+tSV4FxWMS1xSfQ5Ut4LxD1vSbT+mxHSoKGsrxrQYSSmxdnXAjnbU+ixSJ5N0/8MehCIQXg1R5p+2H1/JdKF6FNRYDNPnI1FUxJC/GO0Hx8m9t37kGkbua0eE/h+dQPnQnHRykWFhPnwS6dYwfnUcZUUp4vwQsjuC0BSkIRFN+VgJE8sShF/uIO/js0k81ULCq+FaU4b37ln0ffcoeZ9qxFE01svCihsM/PQkyoxswr+9QNfa1eTv2A0/OYL20TkoNWMrbaRuYjx8msiqBVN+vgB6UTZWUEdaEqMtjG9m1rTHuObnk+pPkDo5iFrqJ3L/SWS+b1xC16WIHA/S60R++yDiM/MQp/pR5k2fpqOUBhAI5KkB5D1zQRHwoTkU3fcswSUNeI+3oobj6dctielz4+gNYjkc5D60g9SOU4SuaCIxo2Sk7UgkUhQ+uJmsRj/JfaNCWu7q+QQPnyLxZDOuayvGtHIBJHd1YXpcSP/Y+O6JsJaWkdE+TJ/uJC8jjmfp1N4sAM6mXHy/vQBSktHXRmH7cdruuD19HxIJSp97EnNFGVb+Jf5CQpCaU0jkTBvZS0b9jCzdYHDnUbqe34MeTQAC1alStGEheWvmo3qmv4aL8wzsOEL3C3vRYylAorkcFG5YQN7q+ajud/e/xdFz7URry9LPzxRIp4NEcT6Jjl68VSVTjrWxeb0IIaj92E2YP3iYtluvIFUy1nNMpHSKnt5Kflkh/lmTJ+TZ2Ni8fdjCjI2NzXsOPZpkz38+hlnpwXFvHa7cdGSxFUrSvq2Ltv9zjCV/djOe3MDbvNJ3NpH2AfZ960mslcWILy9EvGpmm+yOcPKlE7RtPc7CL9yI6pz4V0nn9pOcfXIXvuvKKLpzKfHDA4SeaCZwbQXeBflpwUFKkmeCDD95klRVDtZNs0AIrOvriP/uOF1/twv33Fy0PA/RrV34VhVR+DeLRsyB9d4YkZc6iG7vJu+zc8YJIFq2i8wbqogdHiDWncBoDSP+73aUhYWIbA9yKI7c2YniUiBl4ijykfmP1SjOdLxysjlE8PFmYvefxPuB+ik9Y4RTQZijvi8DjfPI2Pc83f+8H3dDNs5yP1K3iO3uSSdHLSyGrijGni7Mw33oeQG0dVWI0wM4TvaSeUsNzqoAQgislElsdw/Bp1uxPtAEAwkGfnoSkemC/b0kXmzDuaQQrSmPvu8cQQ040tHYqkLybJDE6WGkz4XeF6F73Tri1RXEqysoeeJZ3D8+DJmudEqTW0O2BNMx0wUZSMfl/ZkgNWWk4uSyvAscacEidXSA5EttiPpc1Nvrpz1WOjWGnAXkfnsvwikQt9df1vrQFDDM9H8BSgPgc+Bs7qfvurXoBWlBSIknCRw4SSB8gs7rbiSZm4u7q4v8p7aR4T5MbH41ns4+fOc6yNhQQsa6Ynr3jwozQlGo+ZM76fjdCwz/n3045ueh5LuwYgbGvgEcLi9q5tQVPiPX6tYQvBrdLixwTl/kLFQF1TSo3/FYutVsXhP+8+fx9nbg7e4kdc1M9OXjq4Ash4o0Ris5jFiCk/9+Pz0JD12e2aTy00KfZiTpfrmN4pf2U//nH5jWl8aIxtPzWBl05yxEf1Uw1PQEBduaKXppP/Vf/SDOnPFtgu8WpG5gXe7PiUPDMszpB9rYvAG8FUXM+pPbcfzyaeLAUF0V0qnh7RkgcK6NgrULKbpm+du9TBsbm0mwhRkbG5v3HPu/+zRyZR7uZWMTCpQMF+7rqtBrM9n79cdZ9T/vQtHUt2mV72yMeIr9334S66OzUcrHbppEkR8+0ED0xRaO/HQT8z+9cdzxw2e6OPfsHvK+OhfFo5FqDRN6qoX8P5s/JnFJCIG7LovC2gz6/vsk8W2tyNWVMJxAOdqH8mdLSXZESDxyirwJjH4dBV6y75pJZEsng/edJO8zo74SUkqMnjiuGZl4mnJxbu4geCqM8eUVWIe7YSCBeKUVsSAfeXKQwq/MR8sZa8zpqsog//NNDD1wlsQzF/BcP3G7grQk1mB8pGUEwD3Yj6MhB9+1FehHBkj0RRGqgvuueoRbJXV0AP1wN1HdweD/uAX30Xaytx/HW+gm5+PzxogUilPFv7oEd2MuPd84jBlKEfzKBoQA7UQPIpIkHkwisz1YV8xCOd5H4uFmWFgIUkUmJd1XrSNWUzFS9WEG/LR94Da0YIiMg8dx7+/G09lFcmM9qb9fhGNPK86uAWJzqqZ8VkRKRyR0hENFuFSsYBIlc+pqCrMjgtQtLLeG8r5Z0B6eXpQxLZRQnOpqcDcuQB8MEm4eRpk7ddWMTBgQ1xEZTmRXBEoCyF8fJ1RVw9C6sUa5lsdFcOU84rVllPzmSVpuv4tESQltt91OydNPkb/zMLk3VuC+ZyFCVTCDSRTn2IoPoamU3bGR4pvWEzxwitRwGNXtJOMzG9H8Ho7+3x+BJaetsBDnhkha6bljSQdmexitxD/lMWZfDKffzewvfYhkRx/nf/YY8XU1WKuyiDXUT3pOZ2cYZ0PWyP+f+dZDnNMLGMgoHTPO0Fx0ZNQSjGfBfzxA0z98EjHJv6FSSk5//Tecc1QwlDXWe8VwuOnMrycczkb81wPM+ftPIJR3Z3e9Mz8bz+b9lze2dxBnztRtkTY2vw+esgIa/+qjxDt6CZ9oxtQNPPNmkvHh61EuU0C0sbF5e3h3/ha0sbGxmYTghR6SMoVz2eSxkY66bKjy07P//Fu4sncXHVtPYC0sGCfKjGFDBcMdfcT7Q+PeOvfEbjLuqkHxpP8QDD/fRtbttZPGYAtVIe+DM1FfvpBOw9nSjHplJUqhH1IG3kX5Exr9XsS/pgQroqN3RUdeS54axlHqG1lDYF0paigB0RRyZQXyxjqsexcgjg2QdXP1OFFmZG1CkH1bLak9PWOTkC5BP9pPtLgMqb36h6+U5B46gGdFEUJVcM7Px3N1Fe4rKtDKA6j5XtzryzB64wzdswLp0ojXF6N2hcm5s3ZSkULLdpF1QwX4XcjCAFZBgNS6GSRvaCTxgYUkr52NvrqW5CeWgkdDvn828sPzkeuqcA4Nj4tSBjAyMxhct5xkSSGJm+eQunoWOFX0hWX4Dp2fNjLat+8sipKu7HAtKyaxpWPK8VJKEts6EUNxHJ+cj7qoCOvg5Pf2ItbBHoSqUHXvTZTdfiXlH7oea1fXtL5H5p4upCmx1lcjtrbCUBzZEmZo7aJJj0kV5hKeN5PM48fSLwhB19XXYMUl7jk5Iy1K4Vc6cRVMbFKtul3krJhL0XWryN+wBFdeFqrbhb+yGO1U75RrJpZCOTNA0ExX13SFs4hN4V0zsu4t3RRtXIMrJ5OMphn4akoxa3IxGosnFWVEOIGjJ4JvRtoMOdbSRXAgwYCvdMLxABFPLgMywPDBU5OOiZ3vIBhjnChzKeFAIUP4CR46M+21vVPxlBfijsZRg5Epxzk7+/D4ve/q6iCbdw+e0gIKrlpK8XUryVrUYIsyNjbvAmxhxsbG5j1F6+ZjqKsnF2Uuoq0ppmXz0bdgRa8PaUn6j7Ry7om9nHtiL/1HWn8vw903StvWY7By8o0ZpAULa0UxR3/6IqGWvpHXk8EYsaEQzqp0q5gV09E7o7imMetVfA5c5X7E/YdRtrdBtjsdoby9g8Da6T0Z/GtLiG7vBsCMpBh+6ByBq8cm72SsKUbdcckGd2YuQrfwLhjbjz/uWh0Knvl5pA6M31BbwSShh5tJ+LLI27OTwk0vUH3fT1DDYaK/OYXZFyO1v4f4MxeIP9+C0RzC7IkR+vYhUk4XrhNdiHCCzKcP41lYgHCkKxD07ijhTW2Enm4hurMbK5FuNfHOz0cxzakFE1UhtbwK9nVBVxhFWuRs3UnWjr2I1ARR0VKSeeQ4+rJLvAc8Dox5xeQ8uWvE1Pi1aP1Bsp/fj4ykTWqVigDJLe0YbZMbycafa8ESYqR16uL1Gr85MemzLocSWM+cR1lYxODu9M+t6nSAFOgPn0k/JxMd1xtFf7GD8Mxa0ATi/CDyyTMML2icUKS6lPCiBjJPnRidy+EgXFlF/MgAVtxg+PELBLf0EDrbRqJngOj5Drqf3UHXk1sZ3n9y0paVko2r8D96HBFOTHxi08L133vpDGUB6TVqwoSwTnLz5KKXfm4Y82RojE9MybWrCTx0FGKTxOgaFoH7D1F0zaoRMbBr0z46nFP/7AN0ucvofH7v5O9v2kenfwrz5IvjMirp2rQPaUnCJy7Q9fR2up7eRujouXeFUbAQgrLrV1H62MuISYx9RSJFydNbKb9h1Vu8OhsbGxubdwu2fGpjY/OeItofRL1iemM7tchHfHDqbzjfarr3nuPUw9tRyv2ImelvVTu3tmH9ajOz3r+SosVTx2C+mRhJPe1fMg2iNEB0XydHH9iEkhQ0fuQKLNPCUewd2eiZwym0As9leY+4ynxYXXEcN9WS2taG8ehpRNxAy/NMe6yj1E9sfx/RXd2En2sj8+ZqnBWB14zxIQ4Pjb6QNFACDoRj+u8pnKU+oieHcC4tQgiBTJkkdnYTf6YZoaqUZfagFbqxIjqpYQsr04uZ5Sb47/tQ3CoZG8uxQimGf3gMw+kmuLABy+PC2TpEwWNPobnAdWMFem+MoftPgynxLCpAzXZg9MTo+Zf9eObnkXlTFUqWGxHTkYHJPyPL50TZdBb2uJALihG3N5Db2kXujw8Rqq+jb90qUBRcXb3k7tyN0IDXxImnbpyN+5f7Kfj5Cwyvn0eqIt02JBIp/PvPkL3jKFqeE7PfZOD/7iWlOIkvbcT63hE8a4pxrykbSRIyOiLEn29BPx+EGdmo16fNbKVpgTvdBmV8dz/qxhpEbdbIPbb2dGG92Ix6VwMkTZLn054uRiyBmZVNfMCB74dHcGysRKlMV1XJuIG5qxN9cwcd12/EOTCEv7cF5hTClnZSd05eLTN6/zwIY+xGO5pdyPBze0k90MLwjHqSK+px9/Rw7F9/Riovi3DTDFAVfAdO4X/oRQqvWEzhFUvGPPueskKqbr2K5m8+T+yqWlILysChgpSop/twPHyMgQ6NnngemjAo9oYoy4lT9+UP0/6bZ4h1nsF1RQlqYbqaxgqnSG7rwtw3SO3nPjDmm3FfdSkV162Hr79I9OqZ6PNL0z47lkQ71YvvmdMUzG0gb8XckWMSPUPEnVMnDAEkHH6MockFuETvEPHA1JHkAHFPJsnzfRz5h+8TL84mXFsMgH/HAby/eY7Sm9aSu6Rx2nneTrIXNVA+GET52eP0rllIbEY5KAqYJr6TzRRuPUD5tSvw19mmqzY2NjY2E2MLMzY2Nu8pFE3FTF6GuaJhjUtMeTtp33qCsy8dwPPFuSiBSzwrVpRghVOc/OEuzGSK0lUNb82CZLp6ZyqzWyBtmFvoJeeeOlLtEQ5890nq3rcSmRz9pls4FOTlfCaA1C0cddm4lhXjWlWCORAn/G97kOb0n5eVNEk1h9Fy3eT9yRy0/PFijkxdYgAL4FCR+uV9K28lTJL7e0kd7gdVpI8TAveaUjw31oy5V54rK0gdHyD60Bm0P1+Gta2d4DOtWEKl69arSbwmlWVwwxJKfvkEel+c0LOt5NxTh2tG1pgxGTdWEXysmcGfnMRKGmnD3UlQesK4XzqDde98qL4kcWlZGbyvgYzfHiPjOz/GcjigwIdYWwq/65tgIkHiQwvRTvSQ+9Je1J4wSFAME8+qIjxfmkfoO4cwLYXe2zaQKku39YTWziFzy1Ey/nlvurrn1YoWmeVGvaMBpTFvVKxQBFig3l6PPDOI+VIL8pdH02lVEpQFhWifX4TI9mDu6x4RHhSHhjBMum64Bu/5FnIeOYhz8BgoAokgVD+L4btvx/T7cHf1ou3qpPCKJfRmBRH6BFVDr0VKxGsqcRQ9RdDKpP0jt4Ki4GlvI/fAXjo+djN63ujnFZ4PIqkTf/xl9HCM8lvXj5knc14d9SX59Ly8h+F/eRmpgDAsHNkZGAlweGIUelrT6UVXLCR/3QJUr5sZX/wQQ/tP0verXeihCEIIhKaRt3IBuX95K6p3fDte9uIGvOWFdL+0m+BTLyJVgTAsfLVlFN11A77qsdUxikNDmaatDEBIKy0+TPa+Q0MxDZg84RuAnKFWUh6Nnk9cg5kx6tEUWVKHEk2Q+sWLmIkUBWumTwh7Oym6ejkZdZVkbdpD+NntSFVBsSwyGmsp/pPbcBdP3PJmY2NjY2MDtjBjY2PzHqOwsZLWg53TmmTqB3rJa5z+29y3glQ4zpknduP984UjfiiXogSceD7bxOl/303+vCqc/umrR35fMqsLGD49iKjPnXKcPNiDuz698XeW+cn+VD1nf7IbSzewEgaKW0PNdWMMJzEj+qQeM5D2HokfHsD36dGNoprrQWvMJX5oAO/CqduNYvt6yby5Gt+KyVvZovv7MesvmSdpYCVNjL74hELOpSQO9VPwlflI06L/wfMoi4rQeqN4b564ksk5OxdMSex3p9A+tQAjmCQ2pI0TZdIXqtJ/zWp8v36UvI83jBNlIO3Dk3lrNYP3nUTGDPBMfi+9v9qHfK0ocxFNQd49BxHci1heBvPTFQpsbkVpH8Yqe825hcCYXYQxO31ffT/aTuYVxThmZP//7J1llBznmbavgmYc6GENz4iZJQuMMjPGuM6GOdlk+dvdLGUh2bAdBzZkO46ZY5RlMTPOjIaZmqno+9HSjMZDcgyR1nWdk3PirrdeqKpp9XvX89wPeiiFPpik+xNXoRQPbzx1p53BdYsYXLcINJ3CX7yCw6lh+cTc0esSBIRsO0ZbBLE2B7E288yNJQwK+/rwXXxR5pI5bFhlETkUIV5VTryqfDjl6h3RWdl1jdR+6U4cJXloiTSh/SdIVE+cZmNv6iAZGGks7D12jM7Lr8gIErpOwfo36brnSlT/6Apvhs1C+w0XYfnV8+QsmIazdORzaQtkUXrLZZTectmotRqGAQaj1y9LZC+ZSfaSmeO2GQtbfjZlt18Ot18+qeCaPb+a3DeaaLNNXLUuK96Fb/b4kTXZc6vJ3tFJl338fkRNoXDwOJ1fuwHdOTr6S3fZab/vUuQfPk/WnBosvom/1//UOMsKqbr/WuAshW0TExMTE5NTnDuvi01MTEzeB4ovmI66qwc9MXauP4Ch6ihvdVB20Zxx23yYtL59GHl5wZiizGlEh4y8rIC2t498KHOquGQewuvNE/rbGKEUxvF+nPOGxRtLkQspz0Z2bTGxDZ1AZuPoWlZAdH3bhGMmjw4i+G2IWSPf+tsvLiP8cnMm5WUctGia+I4eHPPHfyutRdLED/ZjzC8c+kx44yRGloPQqy0Tzi3dFkVPqNhKPUQ3diFeWomxtQPnZROnJlhm5cBAAmMwiXRlFc7u7nHbGpKY8dmp8Y/bRhAEvJeXIUzgvSG2hxBExhZlhjvCuHYa4puNw+OvLsX++vFx/WQgE4lj6Y8hV2XmGH+9lbTbPUKUGYUk0r9uIWpjGCMytteJtLoU7bXGEV4x79zUGj0xxN4krpphQaXgwoUEduwdsa53ijK2zh4cgo6jJCOyFF69Gmd9K1J4glRGw8C/aR+Ds4eFJHtHB7psIZ2dKa3tbjxJsrxgTFFmeGESPSvm0rV+fC+WsdYqCMKkm/qzaXM2Y72T3BVzCKS6ELUJoooMnZJkC4WXLh63SWDVXPLDrRP2kzPQSHRxzZiizNBQNguDy6bSs3HvuG3ORUxRxsTExMTk3WBGzJiYmJw3qCmFjq2NNG+sQ4mnwQBPsR8tksIwDARBQHZYqb12KXUP7sHxiVmI74jQMNIa8f89QvGCGlz5/j/NQt5B94EmLHdN7h9jWZhH928bqLxycn+M94q/upBAcT69jx3DuHXqqDQiI5hE+8kesm+txlANYls7iG3pQo+rGe8VIYSeUhE8Mq7lBbjXFtP3gwNEN3bguqBwlN9MqiHE4OP1uD87b9Rc5GI34hQPfT87Qu79M0b5wWjhND3f2YemQ/s/7MRe4cEIpTPinGEgFzixLwwQerEZ3etA+re3Ia2BTqZsMQbxUAqUY2TdXYsoiehpjfjOHiKbu9Ajmb5En5X2v9+GHlORr6xBtEmI/rErOZ1GEASsc/NQjvUjLS9GsElM+fGjhOfPIDJvGrpjeEPqrG/BvXJy42pLgRNREPD+yyto2U6kviiIIoZFIrWoFLE/BgsLJ+2HIg/0J6A9BMU+mJ2PtLsT+/OHSV49c1QVH7EngvvnW/HcORWA+Pp2EgcGCV04b9Kh0lMCCJKE9sA+pE/NHe1fNC0H49k61KdOIN9QO6Yoo//sEJV3Xw9A9EQLHa/uIN7ciUNRyHY4GLhg8ShRxtrTR+mLr1P52ZuG12GVKb5iBfovnqXjvmtHCyuaTs7Lm0k7fSSKM9Fbtp5uil98gdabbh5q5mpuJDa/CgwDR2M7vl0HsfQMIgigOWyE580gOquaeG0ZkTd2THqNxkIJR+nZsJf+nUfQNQ0B8E6voODCRTiKJ44ge9djBSN0b9jDwO6jIMOsno0M2vPpcZWRsg5Hqgi6Rk3oIAUXzMSWlz1uf7LLQcl1F5B+YRudnjKyo21Y03EAVNlOv2cKeZEmuhddPuncInMrGfzNeoqvXvXeF2piYmJiYnIOYgozJiYm5wXx3gg7vrceYVY2lj+bjjU7U7En1RBEfamJfQ+9ytw/vxRREileOQ1d0zj2L5uxzMjGMicAgoB2Mkh6Xy9Wn43BE+2oyTSy3Tr54B8welpFmiBa5jSCXUJNjx8J9H4z48611D+3nfZ/246+IA9KPaDoGId6oDVM9s1VWPIc9PznHhxzcsj58xnIp+5Luj5E6A/NhF9tJfJ6G+4LCnGvLSbyVjvhV1vwrClGzndmolh29qArOu5Pz0XKGTudyHZxKZGfHqTjH3fgnJeLvdaPoRvEd/WQao4g3DAVa5kf/cHdOHJsZN9SiTXXkUmPagjT9svjGH478popaH84iTg3H2nVFIScTBujMUTipXoSf7UN5/J8Evv7EWbnId43F/l0m5NBtFcboTWM0R07JepMjmCXMkIQYGQ7SV03B+eRHny/eJKuGy8jfcp7QlKVCaOmzkTKseG/qJjI251oVVmIH5sJMQV5Uyva7laM6lln1Q8WEfmBnVDqQ1tQjLGwEMuGJiz/7yXSKyrQpmQhpFUs25qx9EdwrCwifTJM4pE64rn5pMor0F2Tm0QjCAg2K6VXXUTbD15DLbAjLcwHSURtiqDt6SY4YyZyPIH7X7YhLylAKnZhpDWMnd3IQZXKu6/HWVHEyV+8QG9zP+1F04ktWoRg6BQf307Zwd8QnjeDdCAHMZ0m+1g9zkSCqs/chKN4ZEpSweUrQBAQH3qCZEk+kblTMWQJe2sXnr3HSeYGGJw9F+/xY2QdOIA1FkLxuoaiZQBEVUW3yOQ99ToSaWKXTSddkQuCgNQfxbmpDt8vDtJ1+xUYf0TwRPhoIyd/+zJ982YRuuMGdLsNNA33iUYGfvoMxSvnUHDp0nff8RiEDtTR+PvX6Fs8i/CfXYdhs4Kq4T7SQM2buwgafiL2AD4tSE6ql8LLlpB/2ZJJ+81ePIOuN3eS4xhg4JI1pPMzYpKlb4CsrXsQgzr6WXwHGzYLxljVxExMTExMTP6PYAozJiYm5zxqSmHH99Yj31qN5QzvDUEQsFRnIX/BT/TZkxz93UZm3rkGQzdo33SEgpurEKwiiaYghgGeEhfe6xYhWkSCb3ey74E/sOgr1/7pFnYKe7YbpTuGWO6bsJ3eE8ee/eF5LAiiQM31y6hYt4DO7Seoe2wbjkW52JcEsN9bi6Ho9PznHrLuqBnhiSIIArYaP4FqH8GnT6JEVVIJHfVQF0p7DOwSkR09IAvoPQlc98zAOmtiY0y9N5FJ55rtR0nrxB4+ATYJ8fpapPvyQTPQv7ONohsrcM8c3jwLgkBwdy/CvHykK6vQvrMD+YapiGd45wiCgFDpR/jcQtSnjxPb0oF0/1ykqe9oU5WF8Gk/2tMnUH9zCMEmD0VqTYTWE0eYFsikhQ0m0fO96FOy0OYUUvDTV2m/5zo0j4u010OqvRvXJPfF0HT0YBrHnFwc8wIM/r6e5PN1SNfVIl+RibxS28KwcJIS45qOqBvU/usSko0Rwgf7GNzeg3hxBeLt0xGfbyBxLEyiqIBIxQwsORGkrjSKy0P4pgvQ3C58O/ch94RgxsRDCYqKoOn450/FO7uaA9/4Pn2OAjAMUtmlRO69BMOaiW7rSyzFc+Q4tv0hbF39TKmtoOgLFyMIAs2PvU5rT5qWmWuHomMMQaJt+gqkdJJA42EK9hwid9lMcm5cg7OiaNz7U7BuOXkXL6XnlS30btmLlkoj26xkX7wIQZJJhbqR7Vay7l2HEorS8PArmTSvU/0pbg9ZG3ahVfgZvHrpiGgdLcdN5Lr5pKZ3Ufjoi4jyJA647yDZ2UfDw6/QdOt1qN4z/uYliej0amI15WhPvYTF6yJn6VmKcOMQb+ni5BNv0HzPNWjuYfNdZInonFpi0yoo+dXzlGeFyFk0g6xF0xGtZ7ee+p8+Q9es6QQXzB7xuZKbTc81l2B55CksPUFSk/hmyb0hLFned702ExMTExOT8wVTmDExMTnnad/SiDA7e4QocyaCIGC7rpKef99NdThOtLUfwS/iW5p5S+4dw3fEv7qQtv1HCDf14C3PG3X8w6Rs1SyObdqHPIkwo2zspHr1h1+ZRHZYmbJ2FsmBMGF3FMcp4SO2oxvH3NwxjWohc1/811fS9a+7cFxXjeOKCtKH+4g/fAzvXyxCbYkQ//1x1IbQpMJMamM7rtumIpd6MxE5B/qQv7oUwZuJ1tD2dOKu9o4QZQDUcJro8RDiX61A39mJUJszQpR553zFQjfGwsIRosw720g31KId7CWd70etC2KpHd/LxUhpKMcGkG+cjnG0D7U8G6wSAHqhF+XCSny7DjFw4VJiNWUkHtiEcX35hBWoEgf7EVzyUJusW6rp/OddGJdWIDgtSGtL0b61FeOaqaPSkUasZW8X3jnZiJKIs9qHs9qHMpgmWeBCzHNhuW0a6rf30LZq+agUodNEZ0yl5OHHiayePeFYrn0nyZqfSYESZQnfwul0ZuUSnV4zqq3usBNaOBd0nZpfPErBlRcgCAJqLEH/7hO0LLxizPloVjtdtQsRmm0U+z24KotHtXknoixScNUFFFx1waRtvTuP4GxtIV6a8RWKlZbjO3mMni+sHvf6pGsLSE0vIDf67iz92l/eQseaZSNFmTMwZJm2Ky/B/sTzZC+ZeVal6Mej7aXNdKxbMVKUOXMsq4XOWy7F8eTrZC+ffdZjxVu6CMdTo0SZMxlYvpist/fSWzlx6l329uMUXDDvrMY1MTExMTE5HzHNf01MTM55mjfWYb1g4rf/giBgWZZP28YjNK8/gG9N/qT9+lbn0fLWwfdrmn80uXNKEToSKMcHxm2jHB9A7EziKvDTvukYbW8dpv9o25A5r5pI07Wjntb1h+jaWY+aen/C/g3DINTQRfuGw1icDiKvtKL2J9HCacKvtiDYRBIH+zHUjBmtoehE3mqj72eH6f6ffQw+Xo+l1E1iUytqYwg9mMJQNGKPHCO1qR3HlRWkD/SitkYy5+sGyvEBkpvbSW3rROtPkN7TjZ5Q0TpiJDa1EXv8BIZDRj/ch9GVMXAVNreRs3b0MxLc2g3LixFEAX1LG9KqiStx6VvakS4un7CNIAhIa0tRPA4iTzVgjGM0bRgGsafqEJcVQ1pDeb6e5IUjhQhlSSnuw/VgGLiON2Fk2Qk+O9IE90y0aJrg882oYWXo3guigGtpPvqOjkyjpIqQ70J45uj4i4ikEJ89iqPIOcJUOXBJMcazJzDiCoLbijzVT86WCfxRDB1RUfCvH9+YVQrFyN14iIILFw19VnTJEgq27kKKxcc9L2/TTrLm1AyVgO7fcoC+vHIyzsbj01tQRfeGfRO2mQhD1QgdqKPv7T0Mbj+EEo4BULxuGcVbNyMmkwA4O9uIrZ02rihzmtiaqcT7xv/bfidaMkW4oZ145cTG0prbSSLbT6xuYuPqiVCjcWIdvWNXCjuznd9D0uUg0dx51n13vbWb3nkTR/MkykuQ+6PYj7WO28bW2IW7tQ/f3KlnPbaJ0FIzRQABAABJREFUiYmJicn5hhkxY2Jics6jJtLYsiY2WQUQSz1Edg4Q7wqSXVoyaXt7mYfe9U3vwwzfG4IosvCLV7PzO8+iLYliXVGI6MykCuhxhfSWTvSt3dh8LnY88CLSrGywinDkONqvotgDPqI9YVKzC1A9NiytSayPb6FgXgXTb16OZP3jvup79zdx/KktaD4LeqUPDAPDY6P7P/Yg2iWc8wMIUkaYCT7RgOiSUfsSSH4bjrm5WKcIJE+EUNqj6Kl+tIYwlqnZ2C8qJb2/Fz2YykRZpDWiD+xHnpqN2hJGnuJBmuJBT6dJPLAfI6ogeSzox/pIN0YQcx04lhRAJEH6d20Yggj9CWz5o9/4J7sTCEsy0ThGKIUQGDsq4DRGXEEYx+fmTMQyL7ZtJzBiaULf2oHzllosM3KGTGvV9iiJlxrRHBaEAhfp7+0ivm766FLUNhnsMq6D9eS+vhXhuioSx/vRfnkc3xWlWAoy8zU0ncSBfoIvNiNcVY34ZhN6TEHyZPw5bGVuolt7UR7aC4NJxFkBONSL/r97Ma6qhbxTCVKaDvu7EZ89BlOz6amP0fv6brJWFpB7aQn2Ug/560ro/v5OhKuqkW+sIevnh7D8IUL/0sUoWaeiujQN94mTBDZvRZ6ZhWfzEeRgjODauag5p1JOVA3nwSby1h+g8vbLseYMr92Wn035zReh//ZJutcsJ1ZbmSlBDVj6B8nduINcQaP087cOnRNr7yfqGt9s9jSqzYH2R3gxGbpB96tb6Nu8B6r9GPkOhD4VXn4LZ3EBU267gvKrViA8+xTtS5ZhDQ6QWlYxab9ajhstkTzreSiDEdQc/9D1mIhIfoBU9wDu2olFnPFI94dI5+dMKi4BxAtySXUP4JxExDlNonuA5Lx5EzcSBNpvvIryXz9OZPUsQkunop8S4oREGu+uE+Tsqqf287dNGEVmYmJiYmJyvmMKMyYmJuc+Bmfl5YGmI8oSgixmIjgsE/+QN1QD8Rz5se/I8bD8b26mef0h2r+zHxyZdBcSGoHZZXTrBvoVhbhqhtNmjLRG8Pv7CFX6SH18EZxaSwrgmpkk1tcR/p/nWfa1axFl6V3Np2PrcU68ugvun4WQ40AEjEgKfVcH/lurcC7MG3E/Eof7GXy0jsAX52ItGU6/8K4DdSBJ38+OYF2cj21pZlPnuKICtS1C9KEDZN1ZS/pEkGRzFO9XFiC6h81AnVdUoNQNEvvNEZTuBJ6vLET0D5vNOtaVo7aEiTx4gHh9CGf1yHQwQRJA1dHr+iGpTv4cne2zphpYk0kK/nI+4ddbib3aDE/UITpk9EgaNB3DKmMAKjLJu5egF4+dqiZGk7jbGklV52HVDcR755De20XPwycQEiqiXUILpxFqsxHvm4tQ6Eb9QwOCPPzsqv1J9LpB5DtnIkzLQRAEjCuq0Hd3ov1mX6ZMtSwipDSEmbnIn5mPUJC5T0ZSJfj0cdKP1FF0Zw2+xXnYCp30vdlO7PGjCA4ZTyyIs64ZXZTQrRakeALBKiAJOhxLIxoa7mOtOI62YkgSht2KJaXgn1ND4edvG1W9xzAMggdOktAcWN86Qs6rm1CdTkRFQdcEIqIXtxBECUexZmeumyCLE5YJf8cAZ9fujPk0/+Y5okIY4euLEOzDP4+MqyqJ7+3hxHd+Te1X72Z6cS7eV3cQbm8jrZ6FIPIu5yJIYkZAOwtETUOQ3t3f9jvHEjTt7NrqOsK7+B4RJBFBnbxv3eFA9nmodXjoffBlNJsFBBATaXKXzib/6/cgj5NmZWJiYmJi8n8FU5gxMTE553EV+lCbwsgVE3uwaIcGyJ1ai8UqEz3Yj2/JxOlMsQP95EydPLLmw8LislN99SKqrlyImkgBINmtbP7mY9jvn448ZWRZ39jLTSRml5C6ZIwQf1kkcelUBtJHqH9xN7XXTV5B5TTpcJwTz26Dry5CcA6bfOq/P0rWlWU4F4ws02uoOsHHG8j78lzk3NHRJnK2nbwvzKH7P/dimZo9VGJaLvHg+dICBr+7B9Fnw/PlBSPEhqHrUpOF+89nE3vkGIJvdAUXudSL98sLaP/RPqr/aXFGjDmFu8ZH7GAPHO1Dclsw6gYQasf2jwEQiz0YDUGE6vF9YwD03Z14Ly1B8lpxLcknVh9G/tuVkFARbRJ6wyCpDe3E/nz5kGA2FkJ/DM1rJ3TXcizNfThf2IV0wRSkhYWwsBAjpUJaR3IOe8oYwSR6KJ2p9nSK4B9ake+fg1g5PG9BFJAWFyEtLkKPp1F/vAfplmmj/HMEuwy3zyD2v/sJ7+nDtzCAvcRNyT1TaX+kDq3Ei3VRAYJNIn20n+DzzRheF7ZrKzLjaTrqv22l5lN3YM3yYAACApLTPm6UQ+TwSToPtnMie34mWsPQkXUFXZDQxcxPk0i8D+tDzzHjr+4GIGtGOTl/OEQkMLF3jD08gC3gn7DNOwnuOko0OYBw32i/FkEQEBbko4vQ/PCLVH/mNqrvv4a+jXtJHm4iXT2xR5W1oWdUVagJ2+f4sQbDiKk0um3iikW+ky24Ll1w1n2/E1t+DrbufgRFxbBM8JPQMHDXt+K8auVZ9+2fWoanoYnBRXMnbOeub8I7rZzCy1dQsG45WjwTXSQ57KPKppuYmJiYmPxf5dx4VWxiYmIyAVUXT0N5o3Vc3w0APaagHR6kYHE1pRfNJfhmF4Y2QXtFJ7Sph5I1762iyQeBIApYXHYsLjuhhm6MLMsoUcZQdNL7ekmtqZ6wr/hFNbRtPY5+lm/gAVo3HMJYWTRClDGCSeiN4xjDSDmxtxf7jKwxRZnTiA4Z99oiUps7Rnwu5TgQnDL2y8vHFGVOI5d6EbPsqI3hMY9LeU7ECi/h/X0jPvcuyEXf14V7mh8tpaO+3jzhcyQsLUR7oW7CNkZcQd/fg+zLRO6ILgtGfxKjO4bgsSJYJcRpOUiDcYTB8T1UAOyvHidZkzE+VcpyMbpjmVLcp+djkzN9niFwaG+1gENG6ci0Sx4bBLd1hCjzTkSnFfnaWozNbWOvWxAQr6im/63h+6NGFeLHg1iXFSLYMiKQdXoOFquAnE4jVWcjiAKCRUK6upq+zXuQPS4sHheyxzlh6knbS9tocVYOp9AIIqpkGxJlACLOXGIDcVLdGX8W39xavKFupHRi3H4BijqOUbzu3ZWR7n5rG8KVFRNGSglz80j29pEezDyD2ctm4zrYjhBPj9+xYZD15nGKLjx7YVSQRHKXzcS/79CE7extnTjd9lHRSO8G0SKTNX8a3r3HJmznaGzHFfBjfReVkQKr5pNz4AiCOkFama4T2HOAgrULgcxzKLscyC6HKcqYmJiYmHykMIUZExOTc56cmYV4LDZSL4xtiqrHFBIPHmTqTcsRZQlXgZ+8meV0/aZuhLHpUHtFp/Nnxym5YCY237kZIq+lVdo3HWX/z18l3RIk/K/biD9Th9aX2ZSqjSHUytyhCj/j4rCgFvuINPeO+NgwDAaOtLL3hy+w6a9/xaa//jX7H3yZYF0nHbvqERaPrJKiH+7FtTB3zI1rYn8/zkmikwBcS/JR9veO+txIqFhmjB/FchrbkoIxzx86fkExfX9oGTLFhUz6iz3PgTXXjjK3CMXtQH36xIg2w/NQ0F5tQu9LoD17YsxnzYgraA/uwbasgMShjGCQPNRPal4Jyv8exOjJiCWCICDfPA33T7eOK87YNjZgb+3DopwyajYMdMNA+dk+jL6xz9G2tqOdDKJfWEF8Xx9aJE3/b44jrp7Y1BhAqMlCbwmPKzoJhW7UhIaWUFGjCi0/OoT92qpRAotjaT7SOyqICfPyCB9pmHQOya5+mh95iVRnO1Xh/Uwd3I4/2oFgjC0cdsn5DO45nhlDEim/41KmHt6AlB7Ds8UwKGw5RMAn4p09sWB5Jmo8iZpKIuRPXKhcEAT0ebmc+N4jBPceQxBFSq5ZS8FDb48tzhgGWc/vJ8vlwVVbelZzibd00fC/z9O3/TD+bXso+fUTOOsb4VQKl6AoePcfZsqvHqPoyRdQBkO0PvUm6f7QWa/3nRRdsYL8fcdxnmge87i1s5fiP2ym/OZL3lW/Fq+LggvmMeXZVxCUMcQZTaP45TcJzCjHXjD537/Ju0cJRuh4fgOH//lBDv79Dzn6rZ/Tu34nWjL1p57auKT7M8/0gX98iP1/+2MOf+tX9G3ci/4+GdqbmJiYnKuYqUwmJibnPIIgMP8Tqzj08A76vrULeUUh4hQPqDrawX6Su7qYdddaCpcMV7ypvXkl9c/toPlf9uNZmoujxgsGxI+GiOzqo+ziOZRf9uGXnj4boh2D7PnhC1hn+Mn+3AykXDuGohPf1UPkoQNYlxci5jjQXROnOZxGd1lRk8M/atVkmn0/fBHdpuK/sIDcysymPn48yPHnNqAGo2CRGCHBJFUkl4Wx0FPjHzsTwS5hJMfYoIniWb0dF5zy2Oef7sZlQUnq1P/dDrLXFuKo8oFmoEUVBAF0t43k9XMwnjmA/q1tSMuLEMt8oOloh/rQD/aQuHw6tsOdWINJ1G9tRVxejFCaaWMc7EE/1IvzygqkPCfKW5lqOFpSQyv2EVtcivHQLsQyL/KiAgS7jDQzG89/vok6LY/U0jKwyYhdYRxbGrHnWPFeX0FiZ6YiFaoOLivabTPhwb0IFT6kBQVglzF6Ymib2zE8NvTPLoG6fuJbm4lt7EQPOJHP4lkQBAHBIoJugDTO9bZJdD3eQLw+jP26KqzzRqfgiG7rUATNUN+SyEROKoZh0PHcW/QfOoa6thTjuosQZRF7d5Qpr7dQfLiBE/5FKJaRUVeKaEGJD4sw/nm1VBkG8u9eJ+gvoD+rBEOUcMQGKeg5ib+6iIp7b35X0RZ6MgWOyZ9fAMFjZbA2l9j+A7hf3kzt52+jDJC+8yrxWcVEZxaBLGJtGcC37ST+2nLK7ls3qWeRoes0/fZl+tv66Fk0l9jqC0AQsHX1krV1N7nrtzK4cDbZO/aQmFlK3z0Xoma5EdIqvfsa6PveIxRfvIS8NQvPet2nkV0Opn3lY0gPPU18xyH65k9D9bmRYgmyD9bjHAxT89lbsOW/+8icwnXLECQR268eIzithkhZCQgCrrYOsg4dJ7B0JsXXrHrX/ZpMTv/2g3S8+BbKqikYX1wADgvpYJL2zU10/et2Ku+/AVfF5CXlP0x63tpN+xs76V0wh/AdN2BYLMihCP37D+N/ZRs1n74JR8nZpwWamJiYnE+YwoyJicl5gSiLzLl3GcnBOK2b6ols7UOUJQJTS6jvS48QZSCzCa25binll8ylfdNRwlt7QYDc8inM+cdLkR1nJ2p82KTCcXb/4AV891ZjLRtOXxKsEu4VhTgX5dH34GH0Ch9S/9m99ZT640ORQYZhsP9HL2Kb7SBrzcjqKq7pWTin+el9rongrw/AJ84Qrrw2lM6x38oLtkw1JjkwcTUjLZjCUHS0rhhSwRnRCbqBkdYQJon+0fuTiGN4zAz135dEAKyXlNG/pR1LRzJT9cljxTAM5P4YSCKJm+aRDCexbm9C2twJooBSmYty1VywSNjfbsD1iRkgCKS2daJubgFJwFrlx3ZtBYJFIrWrC8mbmYvstSK3R0msqCDy15ciH+vG9fBu7NU+7Dk2XF+eg9qbILa/EUPRsWRb8dxfixxwEN3WheI9FbUli5DWoNyP9jer4UgP+v4eSGsYWXaMu+YOVVcSumNY8504100h+EILek8MkcA4VyaDoeoYqj5uipFhGGh9CdTlBXhumz5uapnWmwDvyPtgJJQJTWi7X9tKX2cz6leXjPTcKfAg3jUT8Xgftb/cxdGc5SPSmRx6Anv2yGisrPlT8c2uJrjnGAMHT6IrGq7KbAL33oE1++xTbU4juRwYoeRZmT7rfQmU0kLCiyqIHmyFH/yO6d+4j6wF0xjceYTg3mYMVcNZkEvgy3dj8bkn7O80LY+/QVvKoOv260ZUSEoV5tF14xV4Dh8n8NrbdH1iHUrJ8H02bBYiS6cRnV+F9svXkZ0OshfPeNfXwOJzM+PrdxNv6aJ320HSzR3IDhuBdctw1ZZOboY9AQWXLCFwwVz6tx0i3JApDe+ekk/u39yH7Jq8AprJuyd0sJ72NzahfHUpnJGSit+OdlU12uJCTj70NLWf/9h7SoV7P+nfeZjmrYdovutmDOvwnFW/l+41yxmcXoPx4JPM+Iu7sPg9E/RkYmJicn5iCjMmJibnFfYsJzXXzBnxWcPOxnHbW1x2ytedm5ExY9H8+n4ca/JHiDJnIlolcv98Ol3/tRdJEBEiSQzP+KXEhYE41mgaV1HGfyTROoAmK2StqRq7vSAQuLac6L/vRe+KDlXuEWfnEX+5Af+15aM29oaqE9nQgX36xD/wI+vbMeblE3+1Gc89Z2weLSKpHV3YL5j47W1qSweue8ffdCY3d6CnNaxL8kltbMd+fTWix4pyfID4pjYsbXFIKmC3YHjtpC6dNqoPsTOMmFKHDIod68rHnsuGNnLuyIiBjrk5WF/aS+KqmSCJqDMKSC8rx5+l41mdEb+sxS6c80b784Q2dxO77YLMfwgCyelF2Pd1wcIimJWPPmuMFDHDQNrVRtbnZiH5bUTe6iC9sQ3jwrIJN9D63i7EmeOLN0bdABhgW1gwrihjGAap7Z1Inx5pOGts7yRn8dh+TXpKofft3ah/PYER8tRcpBUF5Oxpo9dTPrTO/FQXWYuuHNVclCWyl8wke8nMcddztkg2K87ifBL1gwg14z/Dhqaj7e8hedliAJKzpxCu6yW4+yjZy2aTs2IOOSvmjHv+eCjBCP2HT9J1323jlq2OzJyKo6kVeTA2QpgZmpvVQsfH1mL96StkLZz+R/uzOEsLKCst+KPOnQjJbiNv7ULy1r77iB6Td0/7c2+i/NmckaLMmeS5SF9TRecfNlF+z7Uf7uTGwNAN2p/bSOtt148QZc4knZdL1+L5ZL22g9JbLv6QZ2hiYmLywWN6zJiYmJicIxi6Qef2EziXThyqLTot2Kp8WKv9OJ8+MH45Xt3A8+QB8qYW07e/mVQ4Tv+2enxrJ/aDEQSBnEuK0R8/in64Fz2YwGgKQZ6LgV8dG+HPoqc10u1R1GCaxLHBcftUuuPEt3cjzAqgNofR45nUqvTxAfRQivSbLejh8SOAUts6wS4hBcb2BEof7keNq+gLi0jt7sG2ppjYkydQmkLocYVURxxXrRfXcwfHv16ajuOxPRiDCVL7e8f1Yknt60HrTSCeSt/SBlLYipzY/3B0qE1yZSWh9R1owfHXFNvVQ8pmR80f9mvRnHbE545DbHxDWWFzC7YiJ5LfRuLIALpiQEpF29I+7jlGNI32YgPSOF40RkpFebaedFWA5JaOMdsAGfPmAjeCf1gMNAaTsLGD3FUL0OJJwocaCO49TqK1G8MwGNx1GG1uHlgmjogS1pSSl2od+u+CWDO+6WXIng/eB6rgkhUYz57ESI9f3ll9pZHErBIM2/DGMbSqhs63d72nsXs27qN/zoxxRZnTBBfPw7N1fJNe3e0gUZBF9HjTe5qPyflNvLkT1SND7iR/N7PzidQ1nxN+M9FjjcTyA2iTRFBFptcwsPc4xlmUYTcxMTE53zAjZkxMTEzOEZR4EtFtQbRP/tVsr/QSDyrYWqIYD2wmedNc9PzhKBuxK4zjsb2IgzGC+TKD+/qJ/6oPFA1H5Rjltd+Bs8aP8GILxkv16P1JLNOykQocpNujdPztNtyri3DMzib4xElErw3Xn81i8Mf7UFcX4VpRgHgqLcnQdOL7+gi90IRlYT7qQBKKPWidMdJtURJvtyNJAuW3VNH8g73YbqjBMi176I2/HldIvd2GvqcbI6mR2tuDdU7ucOnopEpyayeJLZ1on10CHRESjx7AUuNHrQ8RCSkIqg4xhdiBPpwBJ/x2J/ErZ2LkDKdTiW1BHI/uAQHSy8oJbujC8nQDjotLsF9QjCAIGAmV5OZ2kru6EW+dRtd/78Ww2Ug7XCQChTh3N2MPpUhdOR3D7yB641w6v7+fnBsrsM84Y00JlfBbHQT3DtL72YyhqhhL4XrjCO5DLUiXlsO3t6DfPgtqcoY37NE04psnsZzsJ+sTM4isbyO6qRP35+YR/NUxUls6MQYSyBeWIbgzqUaGYWCcGEB9+jg4ZbS3W5AurUQ4VVHKMAyMphDKUydIrKjE8NiJ/34PcqELuTZrKAJHjyok32ghVRdE/lwm6sHQDYwjffDsSYpvuITWp98iXNdCrKIY3WLB3juAI5HClu1CW+qf9JnDa0MSdGQlSVG8hSJPkop7Pjb5ee8DrqoSCi5YQtcPdiDcWI1Q7htauxFMorzWRKpPIfjxNSPO0wIe1PDElbcmI9reS3ze5JE26bxc5GBswjbRsgCJjl480yve05xMzl+S7b1olWeR0icKGIUe0v2hd1XO/YMg0dFLuHDySC3DIqN5XCiR2LuqEGZiYmJyPmAKMyYmJibnCIIgTFim+UwMI5NOY5/mx1nqIPKTTeiSDPkuhP44RFL415XgvXA4vcR3axXd/7Rj/IiRM9ENUHSsy/OwrykZ4f+iRxWiPz9IdEM7WTdXEd7ajZRtx/PlBSTfbCHyr7uR8zLlbpXuOPLULNyfmUd6bw8IAkZcIfLgfoTabKRPz4dvb8c/Owdrlo3OV1uJPlmHlO/EUHSMgQS5y/LJ/8sFDOzqoeXVZuLPn0TMd2aMfXsTGAsK0b+0DFxWaAuDz4YaVZG+sAj9N4fwLMjBs2YOekol8lor6rZu5BO96E4rutOKMJgAi0Tympmoc4Z9d4RIEuWRPSReb0V0SRh9SYSlRchfXIy2r5ekw0vnVZeh5JwqU71Wx7f3EFnf3YRgExCyHeiawcATJxGMeiyFLvRwmnRYQXPa0FM62b/dghhOIA/EQDCQLi7H2NyGNC8PcVMzxuNHMPKckNIy8xRAw6D7X3ZhXVqA+8sLEV0WxISCEFLQNkUxNrZCkQecFoyOSMZU2GdH8FrR9vWg7e1ByHWCywJtYdQiH8nr5qBV5SIf6EBPGSQeOwkYyAVujLSGPpjClpuFEtMxfnEEZBGjJ4qragqBj13DyYdfpmvFXCIXLwVxOBhXDkYoefgF0EdWcRoPSVeZE91L4cULCVy0CFGepOrY+0hg9UIcBQE6X9tMvOMQep4r8wzGVCIraohdXzN2KtZ7rOosCALCGFXCRmEYk//tnoVPjsn/cUQBYewiZ6MQdANBPAeC5wVh3MpsozDOkTmbmJiYvM+YwoyJiYnJOYLstEHKQIukkTwTmxMnD/WTc/dUHLMyZWb9V5Yz+HgdelQlnU6T//8WIr7DX0AQBGy1fqKHB/DOn9goNnKoH6HQhePSslHHBJuEEUqR/7X5SNk2gi80YyRVRLcV57XVGFdWog8kwTBwZNmHRJ300QGEa2sRXjtJ/l8toPeBw+hHehEdEomOGM4SN1X3T0dLqKSDqUw1l1z7UKRJrC2GdmEFxpwCGDxl7JvjGLFZFg50gaIjf3oB+u+P4F0SwLM2410jWaz4b6jCd00Fan8SNZii79fHSayoJL1u+qh1Gh478U8sx/XAJhxZEkpCQ8xxQiRN6vU2Wu+8FcN2xn0SRUIL5xBaMBvXiZMUbdmE76sLkDxWjKSK2hkj/L9HCP/d5Rmj34SC47G9WFQQDBtChQ9jazvSlVVIizLlyo24AuFUpn22AwwD9Ye70VNxHNdXZ0o4J1S0qMLAn61C8zko/PZLqHYriWtmo/scYJcR+uMIiobus4PDgjAYR+yP4fj9fmKfXDEUlSPv7SBv6WymfOzyTBnpUBRBlrDm+BFEAUPTSfcHMTQdS5YHyW7j6P88TPvFS4jXjH5WVL+H3tWLyNt/DGPuJG/EezNvwWf87Sf+ZOKCu7aUmtpSul/bTkN7E+HLZqJlucZNM7K09GPL9b+nMX1VxXgam0kVThy1YG/rJF2QNXFfJzpw3TD6WTb56OAsL0LcsAXt8rF9xIZIa9AVxfoen9/3A1dlMf4nNxBaOHHkmJhMIccTH0p6o4mJicmHjSk5m5iYmJwjCILAlFUzib3dOWE7dSCJ2pfEPnOkUanv2kqSxwfxXDpllChzGtfqYgbebJ8wMsfQDAZebcN5a+2Yx9N7u3HMykYOOBAkEeeCQMYD5vQ6ZBEpz4mU7xoSZdSOaCb6oCuKY3YOloATz4XFGG82Y11VQufrbUPnSw4ZR6EL+6moGwA1rjK4uxdjXiHYZChwZyoUnRnBEFcQDnYj3T4DkirUD+JePbLy1On5WfKd2ErcIEukxzABHkIUSNw0l/TRQfSUjvZWC8qGdvqXLBopyowYQCA2tYqEPxu9J5PmIthllLogqZUVGZEFQADLiR7EefkogozWFAFNR1w4LGAITgtCgRsh14kgCgiSiHRdDaLbMiRepDd3oPlcKFV5uPY1Y7u0DLk/hmG3ZMpACwJGrgu90AtOa+a/s13IR7tJr6ocEh2EWBrLkS6Kb86kV8lOO/bCXGyBrKH7IEgitrxs7IW5SHYbya5+4on0mKLMaWIzqjDqBiE6vm8OgLShhcKLl50TER+B1Qtw1feiu2wTer/4N5yg8MIl72ms3BVzyDpyAkEZvxQ8QPa23URXji+6yL0h7PE0zvLRz7zJRwd7QQ5W2Q4tY1fRO42wqwP/vGmIlj/9O1pneRGORBzLQHDCdv79hwmsmGNGzJiYmPyf5E//bWxiYmLyEUVLq3TtqKdj+zGUWBKLy0be/GrUAyHixb04542OatHCafp+chj/DZWjNrCiTUJAwLl4fHNfa4kbKd9J9+8byL+lalT1FkMzaP/lMQy/DWkM80gjpZF8owXJLtH9H3sQPRYcs3OIr29DyndimZ4zes4DSaL/exhhdSm81ojvy5m3oq4l+YSfbSTxSiMpHVodEsmEQbwjDqKAt9JD0doCZLeF4987gC6AsKMdY2Xp6IUlFMQf70CwiEgVfrRdnTjm5kxYnSZxaID0/JJM5M07SSpYd7ZgP9COkFQQDANVNUhX5SLt7ib6mSvG7fc0gzNn4tl9CEuVn/TBPhK7e0l98ZRHSUrF/bOt2OYFSD5bT3xeNe79DYiXTFxZCUAo82GkdYy0hnJikMSrTciCQMG/Pweqjv2r87AUuNB/uoXoZy7AcNtG9SHvacW6s5XI31+W+SCexvn9t8ldNhfRevY/DQZ2HaF/dqY6lRSN49lzFOfJNgRVQ8nyEJk/nURFMb0XLSf/+9vRv7xszEoxwtY27O0p/Le+9ypL7weizULhZctRfrGJnvtXYdhGXxPv+mP4EgbeWVWkB0L0vL2LSF0zhqpjz88hf81inJXFk95PyWmnYO1CUs+9Qut16zDkd4xlGGRv3IGtrQvxmQjyslpii2ow7MPCoBSKUfzwesrumPy5NPm/T+nNl1H/iydRPjV/bBPgun6s69so+Nq9Y54fb+ygY/1uEp39CKKAt2YKBRcuwJrj/0DmKwgC5bdeivLwKzTdfBWaZ3SZeVd9E3nH6sj/xj0fyBxMTExM/tSYwoyJiYnJn4BgQxcHfvoqrtl+/DcUIPttqKEUfVub0BJpUq90k9zai2NVPpZ8J3pSJb6rl8S+Xvw3VWGfMU5ZXzEj0EyE//YaBn51jJP/tIucy0pwVvswDIgdHWRgUydCjgN51ujSzsrxfuK/O4FjdjbuVUVIbgtqMEVscxeCDomn6kjltmNbU4KY68CIK6S2d5E+0IeQ60DY0krgs7OQThnPijYJ0S5hSAKqINFSlyZ40TxSl+SBruM83kbPDw4gxpKkVlcg1/chv3QCdrShra2AEi8oOsLOdoRd7YhrS+FwX2aycWXSdDA9roy5AZCPdOJ+cj+uRQHcd1Rk1tmfJPxWB8kD3SiahHEW3ieay4l6OEH4+3tRIgqx2xciBhNY367HurMF54UlSNk2YrsHsPSGic8qx+8fLaK8E0EQwCET/sFe9KiC9JkFCHku5K4Y2muNRB44gPeTs/GsK0X8n/Wk5pVkBCibjNgVwb65ATmZRsu2I/bGkHe1YdvWSPaCmZTeftmk45+JEkui5WXj3XkI345DRJZPo+9jazCsEpauIN6tR8h6ayfdt67DeNPA+t/b0BYWos3LA6sEHREsG9txyA4qP/+xD9VTZjLyVi8E3UD+71eILC4nPrsYQ5awtg7g31SPx+ej8pM30/nSRvr2HEJdNQXjvukgiSRaQ0Rffg27ZqHqk7cgOSa+rwWXLsUwDKy//D0Ds6cRqSoHUcTe3oV/+15SooMTi69C1DSyD9ZT+OZThNbNQynOxbfvJO6jrVR87HI8U8ePXDL56OAsK6Ty7utoeuBZtKnZqEsLMx5c/XEsWzqQ+9JUfeFjWLyuEedpyTT1P3maUFKje+YcEnOWI+g6nuYmer/3OHnzqim5Ye0HEtXmmVpG9a0XIz3yLKHqcoLTa9BsNqyDQQL7j+BKJ6n9yseQnPbJOzMxMTE5DzGFGRMTE5MPmWj7AAd+9gpFn5mGNX/4babklAnc6MK3Kp/2Hx2ldt0yeg+1Enu9icRgBM+6KXj/dtFQxaMxMTJVf0TH+F/vgiTiXJyPJoLRl6Rvfz+xlgiWFUW4PjcftSmMcmJk6Wu1KUziiTryvjwHOWv4h7HVZcF6azXp9ij9PzuCe3EuyV2dJLvi6HEVLaZgn5GNZ1k+tqlZIyJY9ISKllShyEdwWjWhVbNHXqdFtUQXVBN49C1cu9uwV7ixzigm8lY70pNHwCKCw4I4Lw/pb1aCCMqWTJqW4LaitkQnvA+S24LUMrKijtTQh+f5gxR8dc6QgARgdVrIvXsq6ZYier5/ALl/EDVnYr8PORJF74hgeCREq4jnhYMIDglbtQ/bXyxAsEoM/PsuglcvJraoBve2oxiDPRP2CacqKQ0kMW6fgTw7MLRJEir9iJ+aj360j/AD+/F+ZSFZf7WY1K5ukq8cAkVHyrLhuLIUQ9WJ/OIwnp/txFtWTMn/+zRWv2eSkUdj9ThxHT2JJRql80vXYliHo2FSlQWkKgtwHGqm4JGXEAWRGX/3SQa2HST4h3p0RcUeyCbvlmtwTJm4hPufiry1i8hePJO+LfsJvZwp0+soyCH/7uuwF+bS+fImetsaUb++bGRa3fQAyvQA6pZW6n/8O2q/fPdQJbHxKLxsGYEVc+jdtJ/gpm3E2noIe/Noql5J2jVcgaaraj59JdOo/sOruIt85F8wn6zbrjwnUlJMzh3c1VOY8Q+fIbT3GP3rj6AlU1i8bgJr1uCeOjoyz9ANTvz4CVoLyxmYM3fEseCMmQSnTSf5xmsIz2+k5NrVH8icvbOqmP1Pn2Rw5xH69u5HSynYsjwUXLsSZ1XJOZHmaGJiYvJBYf4rbmJiYvIhc+KZrQRurRghypyJNeAg745KOjfWseDzV2MYBpv+4VHsM7InFGX0hIphGMS2deG5sGTCOSS2dDLlsim4qzLVcg5+cydingvRZ8MyPZv4M/UYio5gyWwmE883kHPvtBGizIg5F7vxXVtB8sgAOfdkPFtCzzUiZdtwXzC250VsSydSiYeozT1KlBlCFOm9fS2O7z9F9nXlSD4bnrXFdPzTTuS/XYkgv2Oza5EwGkMIM3JJvFCHcX3FuBti+6wcrM/tIXH1zKFNtev5g+T92bQRosyIdZZ6yLqlisLX19N6241jz/kUWXv34//MLOTSscu6pnZ2EZ1SSGxRJhUoPqsc9aGDSOsqJtyAGA1BhDIv8pyxzWLF6bkYbWFSm9pxXFqGfWUR9pUj70H8NyeovOd6vLOrJ1zDZGTNn4rrtW20/eUtI0SZM0nMKsPW3I2vbRDJbiOwdhGBtYve07gfJrLLQcGlyyi4dNmIz9V4kr6t+1D/avnY1ZoAY8UUko0hQgdO4J8/gZfR6bHcTgovX05qIEK9mM9g4dgGrqrNwck5FzKzdQc5yycvtW3y0USUJbIWzyRr8eQpgpEjJxkUbaNEmeHORFovugTnY49QcOGiD8yAV7TI5KyYQ84K87k2MTH5aGG6Z5mYmJh8iKRCcaKdAzin+Sds56z1EeseJBWMZfLvL5pD+JmmCU17Qy804VpeQHRDB1p4fKPVVF0QI5TGVZkRDGJNYXTNIPFKE+njA6htUSzTskm+1gyA1hOHtIa1dOKICsfcXFJ1IfSEitqbILaze1y/Gy2cJvxqK5psYXDlOKLMaSSR4OKpBF/JGASLVgnn/Fy0lxtGNDN0AyGaQn/uBMgiwswA4dfaxuoRyFSXEgSwvX4i029HCIsMliLXuOcAOBfm4ejpRQpFxm3jONmMtXcAMccxvOaBJEpDELUljKHpRF9rI7R2eBOkux0kS/LQNrWP26+h6GhPHkO6uGL8NsEkFLpJvt2GntZGHVdbwuitcTwzKzP/HYkTa2gjdrIdLZkat19d1Yg3dxKtbyU9kDEWTbT1kJhROsLvZCwiK2eixBND/62l0sQa24nVt6KEYxOee64ysHU/2uLCYTPncVDXlNL91o6z7ldXVIL7ThDML5+wXdrlJa5KxFu6zrpvE5Px6HhjFz2z503cSJLonz6D3k37P5Q5mZiYmHyUMCNmTExMTD5Eom39OKq8kxu8CgKOai+Rtn5sfhcla2YSbOwm9Os6PNeVIZ3hRaJF0oSePokWTJH7+TnYKn30/uAAWXfUYK0YHsvQdOK7eoi90kLt52eDbjCwt5eWx+qxTMtCawiRerMVwSmjtUcxUhpafwK52o+9xjfp2gRRwFrqJrati+iGDjAMEvv7cC4MDEWtGIZB+mSYwYdPIBW4SPcmSJVPnsaSqC4h+qvDKI178Fxcgv+aCmJ/vx01rSFdUYXgtEA0jZzrwDEri9iDexBumEr0qWMYKQ3vZVNGpHepfQkGHq3DOicXfWMDQkpFy3biqD2LdcoicpGLKb95gs4bryRVdMb8NQ3PoWME1m9BtuhEvr0L2+oSlP29oOpYCpwYKY3oyTAkdTTfyLfOvdetRP7ZS9gTCtLqKQj24Tkb3TG0hw9BgQuxenQalV4/iPpqI3pMRSv0QoGP4L/txDo3F+e6skxlqP29pF5opeozt5Ps6KPzpbdIdPYgTfGCrqM1R3BPLafwyjVYszPCnZZM0fHyZgZ2HyVdlINmlbH2hHDYbVg8TuLTpkx6zTS/C13XSQfDdL28idCRBsRSH0gCRlsYeyCHoivX4CwrnLSvc4VoSwfa8onT2QAo8ZIeCJ91v+n+ECmXD0Oc3G8n6M0j0dqFs3SSUuQmJpOQ6u4necnkz1GkeArh43s5f/5STUxMTM4PTGHGxMTE5DxAEARm3XcRbRsO0/Tj/Qh+C5Lfih5W0PpS5M4so+PoMXr+c0+m8pLPSt+DhxCdFqzVmSo+qeODCIC7zE3rkyeJNYTRdR1DFBGn5+C7a8YIAUWtCxL79RHSu7vHLDs9FnpCI3Gwn9xPzkR0yYRfaib8UjPWCi8YBkpzBFu+k9zLShg8EoLgxCWCz0QqceO8sZLIkycIvdKMYZFJtKSQ/2snQpEbwSJiSaj41pViye8j/PvDmdLVx4LEtnRiKXQh+axooTRaKIVY5sV9Yw2OKyqI/PwQ6oYgwiUTp4ANrdNup2f5UnLe3IYlFiYVyEVEx9bSiSgbuK6cgn11CfHnG1C2dpB93zSsxcNGw3pSJfJmO8UPvUD7n181FHFi2Cx0fuIq/G/tw/0fOxCmeBEtAkJHGKtNxB6wEa8do/LVjg6UDW3Ebp2PXnqGWJDWsG5pJPXPO5BtMt6pFZR+6S5SvUFaHn0e+y2VuGsXjBDv0nt7qfvur6n+3MeQPE6O/c9v6Z1VRviLIz1kLB395P/mTZh2ds+GAZz4zq8xLi1BvG7JcBqaYZBsCNLwyycpvfFyfO8xveqcxLTGMDnnMR9SExMTkz8lpjBjYmJi8iHiLs4meTKcMaidyEfEMEjUh3FfO1x9SRAEpqydRcmamUTbB1CiSWSnDU9Jpiy0mkhiVIItx44gi4gOiZafH0NaUpip8HL7NPSEinKkHxQd+8VlxB85huu2qViq/CPGFwQBS20W3r9YROR/dpOuC066NkM3UHsT5P/lgqHolKw7atGTKkpHjPiBPsRWmPKZmWgJld5X2hAL3NiaeyaNmrE3dGAtcSHlOnB/Yg6D/7yD8PwaBtctAl3H2jGAkEhT0LQBPaninJeLc14uSk8cLZgGWUAQwFAMJK+V0ItNyEsz73xFh4zv8/NQmoIkn65nspgZQ9NR26NEL6gmMn06cijElBefxbfUR7JdxX3/LKy12ajNYfS6QfK+Pn+UN5Bol/FdWYbo60R9eiNdd1w83L9VZvCyRQxevABrRz/+zYeYMj+bvCvLiB7qJ7FrAJYWD7fvjqG80UzkS2vB8Q6fF6tEem01us+O65nDlN1zHWo8ScvDz+P8/Cyk7JGeQYIkYluUj5Rr5+RDv0fMzaFr2VSiC2tGXQelKIeBi+fiON5KfHb5hNdMCsUw4km4fyZSzciKYoIgIFRnYXx2Hq3ffxln2Z9h8Y6ulnWu4Z5SSLi+Ha1ykqiZ9jDWrLF9hsbCmuPDGgsh6NqkUTP+SC+OKQvOum8Tk/Gw5mVh7+4imT9x1Iy7vQ1vmRmhZWJiYvJ+85H3mNmwYQNf+9pXueGG67nmmqv51Kc+yWOPPYaqnv1b3HeyZctm/v7v/55bb72FK664nFtuuZkvfemL/OY3v3kfZ25iYnI+YvO7cOVnET8RnLBdoi6EMy8Le9boDaogCHhKcsieVoy3NHeo0lH5xXOJ7ejHUePDUenFVujC6rciSCKWSh+CXUbKsmNfWYx97RRI60j5zlGizJmIfhu2VcXoKY106/ieKgDJA/3YqnyjKkKJdhlbpQ+tJ4kaVUl1xJAcMs5KD7YSJ1mbD0zYL7qOf+dRHCtPBc+rOroOgxfPPzWASLokl1RNEeH5tUS2dA+daslzYq/1Y6/0YavwYa/1IzoklM44cu3IDbWl3I+ug9I1sedJfHcvkdJyDEtGBFF9Pjovuoz4zn4kvw1rbUZ4SL3Viv/aigkNm90rCnD09COF46MPSiJKQRbOth5yL85E8rhmZENTCCM67CGkvt1K8rJpo0WZM1Dnl6DZJCKHTzKwZR+WpXmjRJkzkct9CPk24q3dRBeMH8ESn1eFva4DITm+pxGAb+tRJJ8VsWacMu+A4LPBqiL6Nu6ZsK9zhezlc5F2dIKqT9hO3tBK/polZ92vaJHJmluDv7t5wnbWeBinqJppTCbvC8UXLyLvwL6JG+k6uccOE7hg3ocxJRMTE5OPFB/piJkf//jHPP30U0iSxLx583A4HOzbt4+f/eynbNu2lW996z+w2cauzDEWiqLwrW/9O2+//TY2m43p02eQleVncHCQpqYmnnnmae6+++4PcEUmJibnA7XXL2fPj17E8lk71oBj1PF0X4KO/z2OI99P3TPbKV07C5t/bENawzAYONpGw8u7ifWG0FJpGv5hJ3k3V+KZlUPeteW0/fIors/MG7URT23pwLZ88jQU6/IilG2dDP7qGDmfm4OcNfp7UemIMfhYHYGvjF3RI/xaK4ai47q8lNYfHaL8G/MJXFFK0w8P4vA48G4+RHjlrNOLwtbYhX/vCeRwDCkYw5prQ3BbUDtjxB4+ApJA0UPPI6UUpLSCoGnoukAq10coHMNe6sJW7R81Dz2u0Pv9A4iVPkhqcEpEMlSd9J5u9IhCz/cOYJvqxzErm1RzFKUngSAJ2Kt8WMvc9D3fTs+1t47oN1lQgBbXcV1dTGpnJ+qBPpS6ILZ7p054bQVBwLs0gOvAScIXzBp5UNXI/+3r5KzKQ7RlxB1BFMi7uoyuB/cgfX4Rgl1GP9KHcv04URNpDcueVqxHuhCsAk2PvogkiTi/OHmVFsvKfCL9rTCRH5IsEbpoLvk/f4XuT1yBYR35s8La3o/vlT3YWvpQAw7EzW2IiwsRxhGrhKWFDHx3P4VXfTDleN9PZJeD3GVz6fnNIdR7ZkFcQdjSgtgSAsPAKPJiOCzYelV8c2vfVd9FVy4n+B+/JenykfCOTl2T0gmqj2+h/J7L3q/lmHzE8cysIuuVbUQOHmBw9hgVkXSdKetfJ3fR9A+sIpOJiYnJR5mPrDCzefNmnn76KRwOB9/+9neoqcmEaYdCIb7+9b/g0KFD/PKXv+RTn/rUWff5P//zHd5++21WrlzJV77yVXy+4YB4Xdc5duzY+74OExOT8w93SQ5zPn4pB370Kq452XhX5CH7raihNINvdRDe14f92mqEKR6664K0//dT5M+uYNotK4eiYwASvWF2ff95dK+A5+ISsrOL0KMKsa1ddP62ji6pnimfmE7WygL6vrUD27JCbBcUI7gtxJ6oQ60bxLGubNL5ii5LphqQptP9rd04VxTiWVGA6LGgDaSIrG8jfqAfQ9Hpf+gwnkunYJ+ZjSAKpBrCRF5pQQum0NMaam8c3TA4+c1d+FYWUHhjJZ1PnCR722Fcx1oIz60me+sh7DkW/KvykXKy0GMKse09hP5uM4YoYFszBbZ34nDoeK8pQ8qxo8cUolu6kA72oys6vT85gnV2Lv41Bch5TvSESnxnN7HNXThXFGCkNcLf2o71wlJEv43EE3XI07Nx3zcDLBLxp+pIvtyKeHEF4vIydFUnur8b7aEjxHMLUT2jK1RpLifpPzThXRAgZ3UBXb3xEfdrPORsG74XjpIqzCFdlIOgqrgONeHbchjJLjDwZi+OAgfOKh+JxjDBjR3onVH0b25CWFuKIQhjVgaSD7TjfPYg4pw8pEtLEewSRmcM5bVGor86gvv+WYiu8aNsxCwbgj5+FbDTRJdOI3v9AUp/8BzBZdOIzi4HTSP3t29hJAX6ps4hVbUcUU3jP9iA/w/bsd5YhTR/dPqa4LCgq6MrSZ2rFFxxAdqzCv3/9DbIBvZVJVivKQdBQDkxSPLNZhzTa9+1fYc1y8u0L92K+IMnGHTn0p1fRdrhQVJS5PY0kdvTSPnHLsUzffzqXCYm7wZBFKj9/C0IDzyFv7WJ7plzSebnI+g67qZG8g4dIDCrgpLrzn3R1MTExOR85CMrzDz66CMA3Hbb7UOiDIDP5+OLX/wiX/nKV3j22We46647cbkmz3Xfs2cPr732GuXl5fzd3/09svyOUH5RZMaMGe/vIkxMTM5b/NWFrPzmnXRuO0HH48eJdwfRJQPLxaV4r60ZiiiQCl1YLyii93cnMB7byIw7Mj+KU6E4O779DJ47KrCfmZKTD7YqH0p3nL4fH6Tlh4cQRJGyL8wi2Roj9PtjJLsT6NPzEKbmokcUpEnKaxhJFS2hIn1mAUKBm8TODhIP12EkVQSXFWqyMYx+8r40B9EuE93YQfTtDjDAUujEUu5G6pTIuayEzl+fQJBFDJeFwV29hBujGA4ZQdOxDQbJe3ErOX8+A8e0kWlGtkof6iUl9PzwIMrmdrLvrh257lNtlJ44vT86hJZUiR8aRDnch2iXkHw27LNzyPvGAiR3RozwXlZK17f2oKd1vF9diJRtx9ANIj89iDE1B8ullUN9CwDFHsSLy3H/aA9Fr75Ex2VXjhhfSiQp/eJs7MUudEVHDaUn9RIC0MIKzlo3xdt3o5wMgduKNDsXy+fnIWTZMfritH13J4JDBqcFq0vCyHMTvWsxlsNdWOMK6AacIQLJRzpxvnIU61eWIHiGS1kLeS7EuXlouzqJ/Hg/3i/NHzd6RQ+nMcSzyHg2DERRYMbX7qZ3414GH95AqmuQzjlLCVWOjBTpyg7QWzOXiudfwimLSLMDI7tKa2clZp0rCIKAKApYK30475k6ZJ4NIBW4sF1QTPKpBlofeZHSu655V33bC3OZ/c1PENx3nK4N+1Faoog2G4El08hdcTGSc/xUNBOTPwbJbmPql28nfrKdnPV7SOzehiCJeKtLyP/8TdgCZ1GFzMTExMTkj+IjKcz09fVx/PhxAC666KJRx2fNmk0gEKC3t5ft23eM2eadPPvsMwDceONNo0QZExMTk7GQrDIlq2eQPbWYHQ+8gPtr88fclAqigP32Wnr+ey/l3SGc+T4aXtqF45LCUeLEaSz5TrLvnUbw8XosHguOcm/mf5Vemh9tQL99FhzpJbmtDcs4fZwmtbUTYWo2Yrk/M+9VpbCqdOQcS72EX2km8MmZZN082pNk4NfH0JMagatKCR4ZJNUYQf7L5Qgu65DZmfbsCTy5llGizGnkgANbpQdbpXf8dec5yblvGgOP1SNZRISEQuHfLR6zrWiXER0y7k9MH0rzUo8NoFsk5DNEmRHrtMlYPrcA7z9uoiseR3dmQvqtfX3YsyTsxZmUs+iRATS7jXRDaMyUqjOJ7ejGef8sXDkO9Gia0Hf2IF9ZObTJF3KdyJ+aj/L0CfS75qD/5xYi37gII8tJqsiH2BtFPtyFOvuUwmYYOJ49hPWz80eIMmciLSpE7YiQ2taJffXYlaiUbT1IMWXCuQPYGzpxlRdj9XsovmY1Vq+bQ/s6Rokyp9HsDppWXE71k89hn5k74pk3dnWRNW/apGOeKyjBCIN7D+P+y/kjRJnTCKKA/aYqot89QKKtB0dJ3rvqX5AlshbNIGuR+WLH5MNBEARcVSVUV51dhToTExMTk/eHj6T5b319PQAej4fCwrFfFdfWZnwBGhrqJ+1P0zT27t0LwOzZsxkYGOCpp57ke9/7Lj/+8Y959dVXSSQS79PsTUw+GuiqTrwnQqwrjJb64824zwea3tyPvDrzXaT1J9C642g9MdTmMMrJIFp/5vvDsqaQpvUH0NIqPXtP4loycSUjW6UPBIFUZxwtnrmG/Rs6UNZWZHxDpgdQWqOo7dFx+9DjConXmhGvn9gjQ6jNJtUZI7KpnWRdkFRLhHRnDC2cMYV1X1TC4IYOvEvySdWFEGYGQDcwuqIY4RSGomPs78a1bPw1GYpG+mQY17KJzU5tFV4E4dS1jKsY45izptui4JCRCoejIhNvtyFeOHF6l2CTEZcWkb9pw6mJGRRs3EDBuuF/T3rW99C7dCH9z7ViaOObw8b39mIYIOVkvIZEtxVLtR/jUC+GYWAMJjC6Ywg5jkxa0YkB1LIsjKxhj4fU6ipsrxwDJZMCJJ3oRSxyI/jtp6ZnYAxk+jESw0KLtLqU5OYODGN0upLWGUNvjOLI8eM41jq0TmkwgtwTHDb7VTUCr++j6OJhc9uu9XvoqZ7Yw0Z1uIj7AxjH+4c+MxIKxvpWAqsXjX1OPEmyq590f2jMOX/YqLEEXS9txHJBwZiizGkEQcB6YSE9b21/38Y2NJ1U7yCp7gH01OTi2fmCrmqkegZI9QygK/+3v/dNTExMTEzO5CMZ2tHV1QlAXt74b64CgUx4dWdn16T9dXZ2DgkvR48e5Qc/+P4oIeanP32Iv/mbv2X+/Pl/7LRNTD4SKLEUDa8epX17E0KOAyQBvTtGYGYhNVfMxBkY7e1xvjNQ14kmugn963ZEtwUjqaGHUggiyLkODFVHj6lYFhfQd6QLJRQHv4xgmVxbt1b5SBzoI9kSxjUtm/jJCFw3O3NQFNA+NofIA7tx3zUdeWrWiLQbrStG5CcHMHw2xOyxzR4N3UDf3o6xqQ1Bkohu7UELpjA0HcNpy6zBLuK9sJhUb4KB19vQ0xpiUwjjwT2IPit6OI2mG1hy7RNWMFJ6EliKXAiWiUsIA9in+tH29mEkVAZ+V4f/2gok78jokfTJMJbpI6sEad1x5LLJCmaDODuA62AdUiJB4Zuv4bfH8MwrH55rX5LI7dOxRiMIDx4j764qJN+wabKhG8R2dNP/YjtyxchSypZp2cQ3tcHLDYgOOWPw259AkESEba0oS0f6iuglfpRFU3A+uIXEnQuRG/uRpudgqDrapla0LR3oLiuGXUbsiyEWupEvLkMs82HoBig6nLruhmGg1gVJPtZAxcdvxuJzk/72b4nsbcDe2YvosYBNhr44qVw/ciRF4fwZuE69XdcVFSWtojonTwEOBsrx1jcjTs/NiEa/OUrRFWux5oy8/rHGdtpf2UK8sxct14OQVLDEFfJXzSeweiGCPPnz8H4SrWuh49XNJPoGIZXCe+HYhtdnYpmRQ/zlg+95bDWepPv1bQzsPISW4wJRQOyN4p1WQeGly7HljV/16lxGCcfoeHkrg7uOkbK5AAFrMkrW/BqKrlz+rsqNm5iYmJiYnI98JIWZeDwjmtjt4+dnOxyOU20nLpsKEA6Hh/7/d77zbWbMmMEnP/kpSktL6ejo4Be/+Dk7duzgH/7h//HjHz9AScnZh4f+6Ec/4kc/+tGk7aZNm7jyh4nJ+UByMM7W77yOuqwQ4etLwH7qK0rT6dnfQ9933mDRJ1fhqxhdpeR8RU2kSfSFsU5z4/3qQtSmEMln6sm5Zyr2GdlDaR5aTCHyeiux/gjp6S7ExNl9fYs2CSHHQfczTZR/1QfGGV4kCQXpycNYZueQfKsV/el6LFOzQBJQG0JoPXHEAtdQNMc7MXQD7VcHkK0ijo/PHNFObQoTfaoOdX4RqekBBp47BgmN0JEBbGVesm6txlI0XGkqvr+P6FvtEy/GAKSz8x8RrBKOy8uxzs8jvbOLnv/ZT+Czs5DPqIJlvMOXZejcSTxhgMyGOJWk7PHfIaaSZF1XMvK8U/+3f80S0gd8pL63F1vAirXQgZ7USR4dJDaliPAlKylpPjw8J0Un+UYz1ikeHHdPQzwl5hiGgdoQJPbbY0hNAyjLykdMJ722Gj3LgfPn2xDSGsYlpSgP7CVVkkXqc6swvKf+vTMMpLo+nI/ux3JJGSgG0R8eRK7ygW6gHg9iz8mm6jN3YC/MRY3EIRHH43cj3zofwTM8H+uJAdRHDqPHzyj1bRggnGUwriBg1AXRf7APWRUpuu4yvDOrRjTp33aQlte30Hf9PNJVi4YqRInhBJE3jjLwwzpqP3cbouXD+TnT+/Zu2jfvInrDTLTyuXh+tHHMZ2gUovCeo3yUUJQT33uYyJIiUn+xGuynjJs1nciBTsI/fJSq+67HVVn8nsb5sEn1DHDsO7+j1V1Of9laDPFUBTJdI6uxjeC//4ZpX74Ve1Fgkp5MTExMTEzOXz6SwswHSW5uLv/+79/Cas28ma2qquKb3/xnPv3pT9HU1MRjj/2Or33tL866v8997nN87nOfm7Tdxz9+/x89ZxOTcwHDMNj54w2o11YjzsgdcUyQRIQFBRjFHnY9tJE1/+8qZMf41WTOJ/b/7DUcV1diW1mENpAk+VQ9eV+eMyK6AkByWfBfV4kl4CC1rw+1J4GhG5MapaYawzivr0Y9PkDn7xuwFTpJNQahNgfpkQM4VxRiX5Epma0HU6gtYdANbEsKEVwy4e/swYgpiGOY2OqvNGDxWnHeVD3qmFzuxfeFeYR+uB+l0IP28YWIP9+DPhij4C/njZq3faqf0NMnJ1yTnGNHaY+d9bptMwMIVgnbymKkIje9Dx2m4K8XDp1rKXIRf6sDLhw+T/TaMqlD+WOXJx9ae8MgmiTT+rnbcZ5owndkF9lrhjfEkktGHgyjZnmJzJlKZHYtto5e5FAEI0cmubwA3W4ja9NuLEXDYlH8mXosM3JwXjXS40YQBCzVWfj+ajHGf+4i3TqIPmWkz446txh1ThHWN+oQ32omtaiM1MXvSEETBLTaAJEvrMbz/Q1YVKi85xZSnX0IoojjkgKs2cPRCce+/UuES8qQLyp7RzcCwtQcLN9YRt+3tuGZWoFvdjWCRUbUFMR0Ct06uqz6mbi728mtqCJ31bwxN92J1m5aXt1M5xcuwnCMjHbSvQ4Gb1iA9voR7L9/lfI7rxx1/vtNrL6V9k27CH1hBZwqC64VelFPhkaVon8namMIe+EfLywYhkH9Q48TvLoGdeY7UrAlEXV+MaESHw0/eYaZf/3x88YY2NB1jn//cY5nzyHuHim4G6LEQHYZCbsP4fuPM/tfPoX4IUdHmZiYmJiYfFh8JD1mnM7Mj+BkMjlum9OpSE7nxD/OYTi6BuCyyy4bEmVOI0kSV111NZCp3mRiYjKaYH0vabc8SpQ5EyHfhbEgn7YtJz/EmX1wxHvDRAZC2FZmhJHUxjY8l5SMEmXOxLWiEDWSxlbsInl4YML+1d6Mx4pc4sF2YSnxhjBZiwLIbzdCfxxxMDEkygCIfhvWOQGs8/KQCl2IXhuOdWUIooBRNziib0PR0Xd24ry2ctwIE8Ei4b6xGunNkyAK6LfPQk/rY5YOFu0ythofif19465HdMhYil0kD/WP2wZA7UugRRXkKcNpb3KFD6nUO+JcW40PtSmMHkoNfWa/oAh9Y8uE/Ru6gf5WC13XXQyiQLy2nFhbEjU67PURWJVH9q4zUlcEgVRxHrEZVcRry9DtNtB0fPuPYT/lmaMnVJSjAziuGL8EsmCXcd1cg+ONE+M0EFAWT8GIKKQurBm7DYDTSuLKGeiigKMwF/+Cafjm1Y4QZeKt3aiJBNKFpeN2I7isSDfU0vbs+lPDC1jcTrLqj40/NiCoCp62JvIuWzpuJETHG9vov2r2KFHmTMIXTSN4vBE19sH7uHW8vpXo9TOGRBmA5MpK4hvbJ42GUTZ0kbdmyYRtJiLe1EHSLowWZc5AD7hJLi6mb+v+P3qcD5vI4ZOERM8oUeZMEk4/A/ZcgruPfogzMzExMTEx+XD5SAoz+fmZH8G9vb3jtjl9rKBgYnPNTJuCoY1JQcHYP5pOmwwPDEy8kTIx+ajSvLkBfXnR5A1XFNOypeGDn9CHQPuWYwi1HiJP1RP6zTES27uR88ZOGzoTx+I8tKjC4KMnUPsSGIZBqjFM8Il6Bn59jOCT9SQO9NH9g/2IHiuxR46S2tKOPDdA52P1GPWDiE8cxr58kjrZgHVhPkZcQXv8KMbgsJhtHOvDMi173FLLp5HLvIjhJETT4LFhFHhIN0XGbOu5dAqh5xpRe8feZOsJFaU9xuBj9ah947SJK/T94ij2q0aLG7aVRUS3dQ9/YICRVon+7yGMVMY41zo/DxqD6Ae7R50Pp9K3Hj2S8W/J8iFF42Rt2UM6y0Pjt/YyuLULQ9XxLQ7gb27GUdc89oXRDfJf2oBjYS6iMxP9ld7TjXVuYNJoIMu0bCwnepC3NcEYxsKWtxpIryifNMVGnVWEllTQ1bFNVjtfeBtx9ZRJU7vEuXkofQMM7DmKrmmkB8L4G47h6Bv7GgqaRvHmN4n5AwT3HB+zjaHpROtaSE2f5BkVRaILSj/wTbuWTGU8bipHCgh6gRcly038D+PcZyC1uQMpacFVO77ANRm9W/YRXz75+cnlZfRtO/BHj/Nh0/HmXjo9k6+ry1NG11v7PvgJmZiYmJiY/In4SKYyVVdnSrmGw2E6OzvHrMx04sTxU20neON4CofDQUnJFFpbWwiHQ2O2Of35mdE1JiYmwySCcYTciavtAAh+O0o8/SHM6IMl0R+h6e2jJHOdRFbUovudiDMSqK/UYXumifw/m4qcO/L7wjAMwq+1EtnYibiwEOZa6fr2XmSLhDXfgX9FAbLPihpM0/+HFiRBwL0sD8ltJXlskNSObkSriGu6h/CBQaS1k3tRCFYJwSLivKWG2Hd3ICwtRlo1BSOUQso9u3QJIdsB0RS4rRi5TvTQ2PfPkuck+55p9HxnH86l+XguLEby2dCTKrHt3UTXt2Gt9JE6Gab7v/biWlGAZ+0ZbbZ1E93Qge3yMqxjRF6JuQ60UBpD00kc6Cf0QjNYJKyLCgj/9y7sa6dgXZSP59NzCP94P/reHsSLyxGK3BkR53Av2ksNEE0hVPjIe30Tzp5evCvzsF+Xj6HmEdnZQ99zTQRuqKDiC9MxvreJ0JEGgsvmks7LBt3AeaKJnI27cZRYcV45FUPVSe/vJfHCSZzXjS41Pup6igJGlgttdwjXC6+RvGkW2vxihL4Yjs1NyNuaSNw8uSEtooDhsqKGYqMMdwHSkShi3uTpN4IkojvtHHpxP97H3kQXRJpnXEDlxlcJl5QzMG0OaY8PQdPwtJwk79Buot48InmFpAbHFum0RBLd7QBx8vdH6Vz3uP28X6iReKYS1hgiVeyOhfDrHagPHsB5YQlyTRYIoDWFSb/ViRQVqfzM7WfnXTQO6VAEPXf8aMLTGF47WvL8+X5UQhHSvsmf+bTNhdI/fvU4ExMTExOT852PpDATCASYOnUqx48f58033+TOO+8ccfzQoYP09vZisVhYuvTsQo9Xr17Nww//lj179nDTTTePOr57dyaFaepU06TXxGQsZLsFI66MleUyAiOlIk1QmvZ8IBWMsfXbz9F9x1LStSPFqOS8Uqz1Xeg/2kbRl2Yj+YfTmkIvNRPvSCD/7QUIFjETwfJ2C0V31+KsHrmx9i4MED06SNfvGwh8eS72Wj/ey0vp+9FBIgcGkfw2jPjkZXYN3QDdyBj7imBJpFAe2I0eTKEvnjyiEMCIKZlKPgBxBcE+fpSNrcKLpdRN8vggsc2dmapEVhHH3FwCX5qHnJW5HuFXWwi93EJ0SxeCZiB4rVjn5+H+wnxE/9ipYEZMRe1N0P6NrQhWEdFtAUXHtqIIy4wcUpvaCf/3LgxNR3DISDYB/eljqIMpUHWMtIb3wmK8l5fS8XfbyV3gJPtT80dsuO3TstCiCj3f3kvn7xvRsryoWMh+eStyJIoUTyBIIKkqWlhk4F/DIAgkawvQFlZhj51d6WMjrdNzyyWIaYWSh5/E9tQhLLk+8lcuYKA8TfIsxUshqSC6xn5hIFmsqGcxH8MwMBSdprnLsKTiVO16lZJjWwiunIvmcVC8622kWAIEgUR1CX03rSHn+U1oIQtS5djPkGizIiRSYx4b1TaWRrZNXknrvSDZbQixca6pRSJ2/zKSJ/tJbWxA/s1RJEHCOaWA4gvX4J5WMWkU1FmNfzb3NK2957E+TCS7DUlLo1omFnklLY1oGz+lzcTExMTE5HznIynMANxxx8f4x3/8Bx577HcsWbKEmppMZEw4HOL73/8+ANdddz0u13DJz02bNvGLX/ycnJxc/uu//mtEfzfccAPPPfcsO3bs4IUXXuDqq68eOrZ+/XrefPMNAK6//oYPemkmJuclxfNLCe9qgQr/hO2MXV0UzDv7ymbnIkee3k7PJTNGiTKnSVcXMLBuLrYXmsi7K/PdpPYnie3rR/r6MoRTwpTxQh3515aPEmVO456eRe5lJYRfaiLr9lpEq0Tg87Pp/Icd2K+sILWtC+uCicUV9dgAcoWPxLP1uG6pxToz89Zej6aJfHcPxvXVE24EtYEkekoDvx0UDaGuH9vt5eO219MaqfoQcq6DvK/Nw1Iwts+X97JS1HCaSJ4fkipOXcVxWdmYbU+T3tlJ3tVlZK8ZTplrfegIypF+rLNycV5bBddWjXlu9KcH8F9cjK3aT3x3D5YcO9k3lo8ZBSG5LeR9bT6d/7iDxptvxLBnNpSW/kGKXnqZxF+uBcD+291E5paTmpV5nqW+KIlfv4Xj4olTO9T2KIrDhWG1oFkttN15I1W/e5bpX7sXQRKRvS7CT75MetXYaxmaZ/MgosWCbB97w5u3eiFNL7+GtGLivzejMUjClZXxt7G7aFh4KVV7XiV8wVwQBGLzRr+Q6L7rCop/9jRZ81eN2adokbFl+bC0DaCUTFwC2renBf/Hb5qwzXtF9jixSDJibxQ9MEYpcEFAq8olVpmD/z83MO2Ld2Hxe0a3+yPJnjuN4K79RKsmjpqx7mnFP2fySN9zhcCSaQQ2NNNmn7gcdm6ojdzF0z6kWZmYmJiYmHz4nN+vnd8DK1eu5PrrbyCRSPDFL36Bv/mbv+ab3/wn7r33XhobG5k5cyb33XffiHNisRitra10dnaM6s/n8/G3f/t3WK1Wvve97/KJT/w53/zmN/nMZz7Nv/3bv2IYBnfeeRdLly79kFZoYnJ+UbCwFOH4AEb/+CaeRlJF2NBK+YXnb+SZmkjTd7yD+PwzRARVQ4ylQM34nGAYJKcVkjweRI1m3pJH3u5AWFM6LMrE0tAcwjt/4o2ab0keqWNBlFMCiWCRcK8tRm0MoQWTmSpM42BoOok/NGGZn4faGUOu8A2ZnIpuK1Kpl/TOrgnHT/yhCX1VGQgCwusNSF4ZBAE9qaLHlExEzhlE32jNlHT2WodEGT2uoHTH0dMjvVC8F5UgbWrBWDaF1NZO9DPMdw3dQI8rGEkVwzDQwymU3d24Z2WjqzpaQkWNKqjRNInnT2KM4dVyGrUtgjGQxFqVEcBCLzXju3ZsUeY0ktuCY0EeuRs2n5qQQe5bW1BXlUM8jRBNkb6gHO9rh4buu5brJu1ykJ7A3NgwDKIvNtM3f97QZ5rbRbSkkNCBjCGwb3Y1UkJDOja2xwuQqbz13CEKVswf/iiloMYSGHrmWvgXTkMIpdHrB8frBUM3SD/XSHfB8KZZcbiJZwVwNI5f/lzN9pIuzEGLxsdtU3jhYrL+cChTgnscbMc6cTid2PImFm/eDwrWLsH5h+MTzseyvwNnXs77KsoA+OdNxVrfj9A3QTpPSsX5ViN5qxe9r2N/kGQvn01upANZGb8Yg6SmyQ+3EFg978ObmImJiYmJyYfMRzZiBjKlqGfNmsmzzz7H4cOH0TSNwsJCbrvtdm666SYslndXjnfhwoX85CcP8cgjj7B37x62bt2C0+lkyZIl3HDDjSxadP78WDIx+bARZZG59y1n70+2od87C7F45MbGCCbhV4eouXQ6jpzJq6Wdq4SbekhVBkASsTb04Hv7KNb2AUS3FT2cQrdbkVMKssuCIEPvP+7EUukhHVIQLxqOgDBawrim+SdNWxAkEXuhk94f7AfFQNfJmMJaRFB0wg8ewHlNJfZ3GC/rcYXITw5ASiX5xAlEm0Tsh3sxFB3r8iJsK4pw3lhD5Ad7QRCwLsofMRdD0Yi/0Eg6pmH47Uj/tQkGk2gOmba/2QayCHYLgqrjnJ+Dd3Uh8T29RN/qwBpw4pibQ+ilJiJbujFUHRwyRBUkrxXfuim4luQjZ9sREwrCllbUy6sJ/2gfrltrUQ73k97djei0ZAQXTUePpEEUaHzgCHowBSLoaQPdY0dMKkR+uA/3n89GdI383lcagsQfPkruJ2aAqhN6uQU9qgyJNBPhWpiL+/et9KUV8l5/G0dLG0ZHF5YnD6NZbUiGiuGykvv91xj41IXoLhv9ty1H/vHreDQd65zcEeKPkVSJPHmSkJhFrHZkOe1gdTnB4y3452cEkupP3Ejdjx8jfudC1JkFI71RkgqOR/fgTAkErljJwPZDdL65i3QihWG1IMYS+GdVUXjpEirvv5GGnz6BdM8sxOk5I+eTUEg9fIxBPZdY9kivtlB2CZ6THSQqx4+2icypJXS8GXft2JFOvrm15B6qR//dDvpvWIBhP+PeGAa2w+3kPXeAyi/fOeb57zdZS2cRPFyP8eRBYteOrM6EYWDZ2473lXrKv3r3+z62IIlU3nMt9Q89R/ieBegl/pHHQwm8v9pD4Zol2AJZY3dyDiLZrJTfvQ71t69TV7iQlH3k9741FaOmcxdlt16E7Hb+iWZpYmJiYmLywfORFmYA1qxZy5o1a8+q7bp161i3bt2EbUpKSvjGN77xPszMxOSjR87UfBZ9fCWHfreLlGCgT8/GkASkxjBSb4Jp182hcNHE6SrnOrqmY8gSnjcOk3WoiezryrBVV6IFUwz86CAFi3MoXF2ExZ3ZhCpRhc4N7bS/1ooRTSO4T6WdqDqCfHZeEoJbRs53oSIiXV6FOCWTNmDoBsaRPuJPHCXxwknsFxQj2CS0tghKQxBBM3BfWIL7gkJER+afCy2cJrqxg8h39+D+3Dw8X5hP/MkTJF9twjI3gOCyoHXEUI70o5d4EdIa8gvHkW6ehlDhRxCEjCdJ3SDqC/UkZhcTc1qJfGsfNpdE5d8tpPnBQ4TeaMPw2JE+Phex1Dc836N9DDx5jGRdkJw7p4Lbmin9vbkFtdBD9MH9OK6sxPeXixHsmTnrwRSJN1tQGsNIn1mAZJMxjvSRfqGByEUziS+qxP3mEdR/3YGl1I2lJgsjrZHa1Y0ogHNeLrEtXSQP9eNcEMj43pyFkasgi8iJJBUP/Aoh20ba7aW9dAGxrLyMUGIYOEO9FB3fSe4/v0B6RiFKSRbRWVPg8TqkJ+qwLc5HcFtQupKkjwcZnDOLgdULR5nQGpKEfjriCnBXl1L7+Tuo//lTaE/sJ72kFMNuQWoNYjnajbumjMqv30DDQ0/Ta4j0XroWJefUhl7TcB8/yeD3f0/VHZdS9ZnbaPzfp1HQEBcVgtOC2hpDrwvSUziVvorRKSaGKIGmjfp8RBtZQk+OHykhCALld16J/bVtOP77FRI1+STzPUhJBfeBdpyBbMq/fNeIEt8fJIIgUPFn12N/aSN9/7EBZWqAdMCBmFCx7+/EVVxA2VfvweL9YIRjV/UUau6/kebfv0IKleSMAIgCtuYQlu4YRVetJnvRjA9k7A8S/9waptqt2B59jXifSL8tEwWYpQzgEtKU3X0JvtmTGwSbmJiYmJicz3zkhRkTE5NzC39lLhf8zeVE2oMEG/owdB335eVk1QTeU1WTcwVnvh/L0XacuVYKvjwbQRYxdIOBnxym5tZqsmaMLMdrcVsovaocT4WHYz/fj/HXKxBEASHPRWJ901mNGTsegppsxDtmjriGgiggzApgqfKjfW8nFk1DsspIC3MJtUXI+lgttsqRkSGS14rvqnIsJW5CPzuI58sLcN87Ez2SJn2kn+RzDeRdUYo4zUv0eJDooIH0+aVDKViQ2eAKtdlYvrAIHthD7MJaYl9eg/yzLSAKKL1JqMpGvn/uiCgcQRQQZgawVGUR/+9tWN5szaRD3ToLtrQgPXccz5cXIBeP9AAR/TZcN9aQ3N5J8lcHkT+9AGFWAFtVFr4f7EbJ9RK9aAbRtdPxPrMb35ZWfJeW4Ll3KmpPAiOpInqs+K6rQLRKJI8FUQeSyNkTG5ammiOQUrBcV0v0jT4a5lycESyGLwRxfx71i6+g/PAGNI8XTbBDlouOT8zEsMoUfucpBpcsRCnMIrayFKSxjZOd3X24CkY+O67KEub+6xeJNXXQv2EPeq+CvbCcvHtvR7RZaf7dq3S6vfSsekeKrSQRnVFDY2kRPPocM750G3P+7UvEGto48d3f0VE6k5SriOiCwnGrJjmjAyjlOWMeG2rT1YezamL/GkEQKLxsOQUXLSF85CTKQBjRa8H9hTVYsz4cQWbEfESBoqtXU7BuBZHDJ1GCEUSfBc/Fl2HxjuE98z7jLCtk+tfvI9nRS+xkO4auY79oHq6aycuan8t4ppYx+x//nHhLF4nmTgDsJQtxlhed1+syMTExMTE5W0xhxsTE5JzEU+zHU+z/U0/jfccZ8CIlUgTumIEgZza1ycMDeItdo0SZM8makYO3sIPw0T6EmQGEfBeqZpDqimMrGD/EP9EYQk9qyDdNG3eDIzgsiDdOJb25hcC1FcR39WCr9Y8SZUasY24usW1dqCdDWKr8iB4rUq4De4mLrDVFGIZB72ttSJ9eOEKUGTGuRcRy23Tsjxwl+uW1JJaW0/NyM4YOlo/NHDdNS7DLyHfOIvyL/RgLizKpWYaBbWXRKFHmTOxLCzNeNB1RxCI3gkPGekMN3vWH6f+zNSAKhG9chOO/erBVerEUuLCVj978O5fnE3mzjaybx3+LbxgG0TfaEC4pQ9nYSUvVqpGizJmIIu01S6g4/DZdX7tuRDRM6MK5CCGFWE3FuGNhGGQdPkbOX9835mFXeRGu8pGpamo8ycDBBnruv33cbjW3i+5lC8h+Yydlt1+Gq6qEwMWL6TqZIpo7fql1QdfwdzXSdvsEnmqqhvdoI1m3Xjp+mzP7lCV855CprWiR8c2r/ZONby8KYC+avJT5+YaztABn6dim6CYmJiYmJv+XMYUZExOTcUn0RenY0UQyksTmslG4qAxXwYf/lvrDJtEXpmNHPaH2AZRgFEeWG0EQEB0WRIuEf0qA/IVViJbMRtvQDfoOtTBQ14GuaXgKcyhYVEn/0XaCJ7swDANvcS6BeeWcfHEXgk0ktqUTS4kbx9xcElu7qL584ko8AFMuK+XI4w0wM7MhEy6vov1Xxyn74mwkx+ivcy2m0Pbz44hzAgi2ib/uhZps0o8fRU+oxLZ04rupiuSRAZL1IQzNwJLvwLkwD9E2LC54VhUR3tKBXOohta2T5B+aECUYWN9OqjuO5rIi+yeOKhHyXYiCgdgbJbWsnOA/HEWcmYvgnNjjSyj3YQgC2ozMtRC3t2H/xKwJzwGwX1BMclsb3JhJvxGqs7D+/jhCIo3hyKSJhddMY/Dlk+R+rIbY7h5SHUkEWcRV68E61Y/SkyC+tQvnvAC2MSpiGYZB8KmTaCkNeXY+8e1h0q6J/24Uu4u0ZMfaMUC6eFigiy2ppfA7zxCvKidVNEYFLcOgYP1msufUILscaPEkA7uOkOgZRJQl/DMqcNWUjhDltHiS1kdeZrC2atyIl9NEp1Yz+ItHmXLrJSROtqOnFfLajiKkEvRPmYY9GsQb7kQ0dBJWD8G8Mkob9yKJIAcjKGOZ8uoGhS9uJLByLqJt7Pts6AaRww1EG5ozUSEFeWQtmoFofXfebyYmJiYmJiYm5wOmMGNiYjKKdDTF/v/dQqQ/irw0H6HMhh5O0vqzt3E4bMz7+Ers/v97RoxKLMmeX7xJsCdEcHEF2vR8xLAX99vHkVQVyyVlCG6RzmMnOPb0NiovX4Az282RxzYiTnEjzMxCkAS6dh7k6O/exjErB/vsbBAFerbs4fAjb+GYlYP/xoyJb6ouSOi5RiRRwDlOWegzcRa6oDeO9uhhxIvKEcr9pBE4+c+7CVxbhndhHqJFRE9rhHf20P9aG7YaL8nCySvECIKAkONAC6dJd8fp//lRpBIP8qxcBFkg0RIm/G+7cS3Lx3t5ZqMvFzhRm8OE/2krnlnZZN1aBQaE9/QSOzYIS8aPqhgxdr4LYTCBHnAjGCBMmVz8EwQBId8JsUwlJiGhIk4iAgFIBU6Mfb0j+8l1IIUTqKeEGbXAR+zJQeJ/u5tQRQ1RfxlCQifrhQYcP69DsujYLy+j94FDuFYW4rmwCDnLjmEYpBvDBF9oJt0VB68VwilSzsmNggFSDh9SKApnCDO6w8bg5QsofPJFwnNnEFowG83tAsPA3tpB/s595GS7mXLjWlqefJOBPccYnFZDIpCDoGpkv7QNZ/AVKu+6AmdlMa1Pv8nAvuMkvXZSsyYXAw1ZQrfIHPqnn5Hw+OivqEJfeyHuhnpm7n4WqcyHfVUegiyjNPeQ2roPW242U754K/LPnmVgTi3B+VPRXQ7QDRyN7QS27CNQWkDRlSvHHDN0oI72J1/BWubCNssHokCoqZuub24gd9VC8i5bYaa3mJiYmJiYmPyfwhRmTExMRqAk0mz779cQLizCtfgdZakvKCZ9qI9t//06y79xKTav408zyQ8ANZFmy389R+eqGuL3LB+RThK/oBbb4Tayn9uN7QsLEeblYyRV6n9+AKMnhuer84dEgdSuLggnKfiHxUiezEY/urEDXdEo/KcliGdEgjgXBNATKr3/ugstqSI7J/5K1pIq1nwHvmke+h45iNIdx3F1JXJtFsFN7fS+vHuorTTFjaYaOArdkFQn6PUMkhqppgiIIq7PzkM6w0PFOi8P48pK4o8eI/hEA1m3VBN9vRWb18KUv5o/IpLGuzBAaFcPXfuDZzduSgOrBLqBruuIMWXyc07Nl1ORQgaZ8t7jpU2dxkhpCNaRKUVGUsM4o8KO67WjxALFtC+7COMMT5dwWRVyLErllpewq2BYJZTjCbq3782UUNYNDLuMsHIK0iemoP/HNrBKiNrZrUfUFTTL6GfAcNiQZIGyeIjIY88g6IBh4JiSR9E1K3DVlNL4yxfo0EW67r9jRBRMdGYtloEg6q9exJnjoT/fweBfXYH7tSOIqfRZzUuPxKm/7gbSgUx0kqOtFd9AO76vL0QKDAu01nkBnFeXk3jiJP1v72LGX91L/5YD9D7yElpaRTAMnBVFFN18Ma5xvGWCe4/T+eLr5H5pOpLPNnxgfgDv1VMY+PUxtGeSFN1w8VnN3cTExMTExMTkfMAUZkxMTEZQ98JBWBzAunjsPH/rrFzScZWjT+xl3v0rPuTZfXCceGE3vfOnEF88tpdHamYJwYRC9nP1WO+aman488m5aP+1DUPPtDGSKskXGyn4xvyhsstaNE1kfRv531iAaB/9lSs6ZBwrCujZ1sWUK8snnGP39m6QBXyL80j3JIjPyMG+KrPBlW+qxXHTyPbpfT2ktndgDCoY6yonjDIwgklIKoReasL7lYWIftuoNoIs4rxzOtEf7CW+t5fU0UEq/27hkFfOmXhm5dD9XPOkYomRUjFaQmglfuRj3dimZaPs7sK4vnbi+UbTGL1xqM5Elxi1OaT392JbMEa6zxmkdnfDjNzhfkIpjLiKdioCzNLch9Aep+2S60dVPgJQXW5OXnAV1a8+RdW9l5O9JJMSdew/HyZ9RSFi5XCpYt1nw5AEnOE+BE3FkMb/J1fQNdyD3XSVLR91zH+wkdqPX4V3VgXtJ5oprKgacTx8uIG+YIyu668Yc85Ktp/mG66k5LdPMvjJ60AUSc0sxP3UIcJzJ67iY+3uJe3zD4kyGAYlb7+O/wszkXJGC7OCJOK4tYr4g4dJtnZTcNkyCi5bNuEYp9EVlfYnXyHwF7OGRM0RfVsksu+rofc7h8hqm42jJO+s+jUxMTExMTExOdeZ+NWiiYnJRwpN0eja3YJ1ZdGE7SyL8umv60aJn90b93MdXdHo2FlPZOXE5qKJBWVojSH0WGbdgkVCXFNKclM7AKkdXbgW5Q2JMgCxzV24VxSOKcoYhgGAY2Ee/5+9+w6P47oO/v+dsr1hF71Xgh3slEhKVO+yLFm2ZLm3xDWOY8dJ/Et505z4Tey4915kyZLVZat3sfdOgiB6b9vrlPv7YymQEIAFFVvN73yeR88jLu7cuTO7BDgH554z8HQ/enruzBY9rTO8ZYjseBYzaxDZOYrjotqC67WtKEUby6D6bYijYwXHmk9146j3YlsUmjUo8xJJlnBcXk/09z0UX1k7a1AGQHYqeBcHMbf1Fzyv8UI/uVU1IEs4Hz6Cb20pkgTm/pHCxz3RhdkUhNPnN1dVkn6oE2GYc19jJIN2LIy84kzwRn+ym/iGBVMBDc/jxxhbOrMd9dl0l4d4eQ2Y+XNlhifJ5dLTgjIAbKpGPNWDurqMkoETBa8nOHSKzKJqxMtqqKjjUdxDYXxLGuY8dvCpXYysX11wzVowQLq2EsfJ/H3VaotRtCyO4dHpA09/Jl/6/+LndzC5evXUS57ubmz13lmDMi+RJAn7FTWMPrtjzjGzCe86irMtNGtQZmpuRcZ7eSVjr3DucyHOvnaLxWKxWCyW15CVMWOxWKbE+8Iodb4ZWz1eTpIl1IUhIh1jlLadWx2RN7J4/zhabWjadpZZyTKZxjJs/7EV06EgtZUhra1E29IPNzSjH5/E95b6aYdkjk0Set+iqT8bSY3kliFSO0YQhgAhkBwKSqWbQ988yLKPL8P2sgfTXDzHke8exnNVHal9Y3R97QB4bEizFPw9myRJ2JaV4Cy2E7+vHVORkReVTBsjTIHxyCmk9gmMUif2zZXz3i/b4hDJn2Xxry3cFab8hnqSXz6A4VCR11ZOy4ARQmBuG0TfN0rmo5tw/3IXit+GHskRvLmRyV8fBZuMsmx6VoQwBcbTPZi7hxH/eFH+xYkU8u2HmHSWIb5/lKIPLcpnNJ3FmEgT/8EhlHcsmmpRbjzZTXYoQ/KGfEBOGY/jaB8hcdNV896DcGMrp37+BCNP78bXVINYkc/c0X97HG3vGGgmQpGRDBPJFaVMHkO3OQhXNE8PoAhB0VAn5X2HGfno1dPv80iY6tufoeXD183ZoQogMzQxe2Hgl4kvWoD3aC/Zhfn3OPru9VT88FHCq1fi7enBMTaJUCRAIrZoAbZoEimjkaqqpnjPToLtR1FzGZAF8W+ncWyuwba0eNa1qc0B4refnHdN09Z3rB3XRbMUC34ZV1sxow8efEVzz0aYgujBdiae3UF2PIIkg6SoBM9fSfEFq1A9fzpbNS0Wi8VisbyxWYEZi8UyxdRO1/o4Fw45P/5PgKkZmOd63X4nwVtbcC4NkdozRuznBxHZ0/dBM6fVWgEQmjkV6MoNJJj48VE851dQ+lcrUbz57IjYY72YSQ17vY99/70Xf6Of4KJ89kX4eJhYVwzvdQ04WouYvLcTAFuBVtbTKBLpwxN4L6wkcX87mnkCaWMNkscG42nMF/uQnArYJHI9CRyO+e+DJEsg59tdFzy1x0bNB1vp/cFxjKe7kdZWQcCBmEhj7BjEDLjQK/z4v/oMygU14C/CHIqSeGocZ7OP7F3HMO5vR95Ui+SzI0ZTmFv6QJExr2pG2jeEODKWL4ichd5VF5IaOI7+b3twLAnhaPGCKcjuGsYYTCKtKkckchiPnMLcPoDQTLIrG3Dv6sJ9oAdHNInhVAtmnrzEVG2oC4NIS/2MPbQfsbIU7f+8SM7pYeKmy8k0VIEkIeU0vAfbCT2zi8re/ZT3HWGirBnN4cGWTVI63omn2oH/yjIcP/k9kytb0Yv9BI704ErlaP6z6/E0zZ3BJoRAyNI5rVnY7Uj6mYwivTyAURsg1HWU7PVLSTaezrpJa7i3d+M80MVkw0Ka770DzwVlOG9YPpUNpvfGyDzZS27nEJ4PLJ2xXU2SpFdcoNfIaUj2+RN58+f6w7JbTN2g+wd3I9lTlNxUibM2v4VRT2hEt/Rw8r/20vixd+KsLJlnJovFYrFYLJY/nBWYsVgsU1zFHszh5DmNFUMpnBu9r/KKXhvOYh+24dg5jbUPhVFXVyLbFbwbKnAtCzHyX3vR++NIxU60wSRqyZnftKunX5OqPUz86CjFH16CvWb6fXMuKiL2SC9Fb2vGtaqUzNFJRvoTANhWlVL67nwR5qH/3gcuFc/NLWR+14UQYt6HX30wiVldhJ4C1lQgl3owHz6Jc2ER+nAK58piHK1B4s8PYlvixxhMojYUDvqY0SySIpMbSuGoKtxNSo9ouBcH8V1TR3rfOPHHOvDWeVFXh5BsCtpElkS5G/WyBoyH2skeC+O9uArvxnxWR6Y9TOypfkTORPHZsF9TR/jJAXIJgVANjIsWYDSX4PrSc9jSScarFzFRuQDfWD/Fj3fiI4L3lgXIRQ60wxOI8SSy347979aBbiJ/eQ+qlMRxZSVqc4DJL+5FTSfRXYWvyxmdRC1z4txUjX1pCZNf3Em6vprhd1w5rfiusNuIr11KqrWemh/ei1PK0OzqRQk4cVW68K9ejC2Y3zoWWFsGXzmIkRG0fvrt+FpnL5B7NkmSkJGQM1lM59xb0ADsY+MYoTPFen2PHkTy2kh9cO30wI7LRu6SBejNxZR850V8n16FWjO9s5da58fzwaWkH+4kdc9JPLdMLxRupjQk5RyDnadp0STagB17deHvK/pEBuUPzGYZuPP32GtNSq+bvn1R9doovqoG9+IAXd+7k9a//QiKe/5uXxaLxWKxWCx/CKvGjMVimeIq8eKw29AHEgXHGZMZpJiGvy5YcNybhavYh8dlR+0PFxwnh5PYIwlsdWceHBWfndC7Wsk+2YNjYxXx5wenHePZVEnyhUGS24bxnF8xIygDYKvzoU9m0MNZJFnCtawY/9X1+K+ux7Usv1UkeyKMISTsbSU4lpciFzkwugsHk8x4DqMzgnxdM8o1zShXNCHX+lEcCkXX1yNiOYre0UL8sV7c71mCY1M1mS0D896v7JYBbBUuJp4qXD8GYPyxPuwtftSgE1dbMapdofqDiym/sYmy6+qpfl8r9pyO2RvD3DmI4rNNBWUAnK1Byj6+nPK/XEHJh5bgv6ga98IijJoAuSsWYbSUgiShb66npO8YAEJWiJXV4spEKfrcauwLQ6jlHlyX1eG+thHnBdXIbhuy34H71oWQMbC1FCFJEq5N5RR3HZv3ukq7j+C+IF8gWzgkhJAZufGyaUGZsxl+L+NXb8KQVOo/uYya97RQfFn1VFAGwBZyUnFTA64S3zkFZabuUWkA38F51iwEgX2HSa/PZ4ZIWQ333m6yN7fNmW1jOzmO47K6GUGZl0iShOv6JvSTEcz49HpTuW3DhM5rO+dr0BMpMrEU0ReG5x2beGaQkk1rznnul9MicZKdPZRcO/c9dtX58K8LMbHtwP/6PBaLxWKxWCznygrMWCyWaVqvW072zvYz23NeRmgm2TtOsODaZa94q8IbiakbjO7tpOuRffQ8cYC68xZQfvcupOwcrY11g5LfbKfoipoZ1+1YGMToTyCXujFNSO44U7jW0VqEHs6SeGEQz6bZO11JkoT/ilrCvz6B0GcvXht9fghMgWtz/mHSeUU9ybvbEXMUDBaGSfrXx7GVOOF0AEdoJsavD+NaGGDylydQip2k940j+R0oISdKiQulxEXmmb4575veFye3ZwTdlIifipNqj8w5NrJjhKwmyHTGEZpJ+NftlFw1s2BxaHMl4q4jqEUOvBcVLjwNENhciWtr57TXJMMgONiJKzoBgHdyGHuTf1p78tnYFocwemKI0y3FXRsqCPW14wyPz3lM8YmD2Gw6elcUkTVI/eo4yUX1CEfhcyUXNWLkTBLH5w4A+leVYCbTmPq5bxNMj0YJ7D2MbWLueUMv7kLOaUiZ/Ofbta8HfWU1FOiY5djVg3NT4RpSkiThOL+S7I6hqdeM4STa1lFKLlhd4MjpJrYfIrupgZzbSfyFwTnHZbtiJLcPE1y37JznnnGurfsJbCqd9/tX0QXlhLft+1+fx2KxWCwWi+VcWYEZi8UyTcnSKpo3t5L6+j5yB8cQZr6WgzAF2rEJUt/cT+3SWqrWN7y+C/1fEkLQ9cQBnv372zmw/xjH5RhHsxO0bz2CPZOj6utP4DzUP9VxByFwHB+i4ltPEGp14V03s0WvJEuopS5EJIPnQ8uIPTtA+K6T6JMZJEmi5M+XYmYMFO/c3Wbc68pxNAcY/Z/9ZI6HpzrECFOQPjBG7lQUsgbK6W1StuYinJfUEvvaXnL7R6e6EQkh0NrDxL+8B2+tG9/yYsRYCuPoGMZ/vog8mkRO6RQtL8a/pIj0cwOYo0n0/jgAnncvJnd4nOQdxzFGU1PrM1Ma6ad6SHxnP5IQmJMZtI+uo+/OU4w90oueOBPQ0iYzDP22k5Fnh9FvayPXl2Dsa/vxLwniXz2zYLCrzouc0hBpHdssGUUvZ6vxIk/k1yaNJ3H+eg/O3x+j+cqlNO5/itKuwzjjYewN7nlmyr93cqkLM5pDZHSyO4aQ0anf/jjF7QeRc9mpsfZYlOptz1Dcd5T0hgYm+zXCX9pFrjNGpnr2oNs0ioxWEqD7vn5O/vdBMr3xmetRZGwhJ0YiPf98nK4xAwxdeTWVd/8e/97DSLkz2Sv2sQnKHnwC+9A446vWUvbNJ/FsOYk6EsOoKbxlTdJNZG/hYBOAUuPFHE/n79/zA6R+cIzGD9+M6pv//r8kMz6JXuUj8d51TO6cYOI3HehjZ+6BkdSIPtHH6C/aMZ0OpPkKdReQG5vAWTP/2lS/HTP3p9F5zmKxWCwWyxubVWPGYrHMUH9RK8HGEjqfPMbEvaeQHAoia1DUXMqy286jqLlwN543suN3b6V/ZAzt8xvgrM492YsboS+K48f7adnbS/iunegSyELgbC2i6OZaHAUK7prxHPHvHUSyKxjJHImhJJmOGGhmPgQuxLw1YfxX14MiEb3nFGbGQHYqmBkDz6IikCVAIEwx1QXHsa4CpdpL9rl+Uvd1TL1PcqkLm0eh7C0NDN/VgfHEMSQF3I1+qj+yGOWs6y6+tIZMb5z+nxzG9f6lqHV+fJ9YQeqO48S/vhfJoSApEpjgXl9G8B/WIrIGQ/93HxQ50f5qI2Pb+pj86iHk09co7Ar6pnrEdUthPIWZ0ql5fyuuRv/s9y5nYGZ0TJuK0OZud/0SkTOQElnc//oUhs1BpHEBZa4Y2VQOqTGEq0HH82IHtJ5DsAQww1miX9+LpMiY66owP7cRSZEpeaGPkkfuQqgKaAbC50C7uoXU6qX5IAuQuW4p7u+8gKzNkWn1MhIw+ueXIkfT6D95noYPLMDVMH2rkKmZSOq51WeRJAlJCDIVFfTefDPBgwep/cndCFVG0g10j4dI2wrizS14OzsJLltIWUJlfFc3qaolhSc/h88sgMiZaEcmSbQfILh+GQ1/fTW2wCurPyWpKmgGOG3EP7mZzN4+kj9tR05rSDKYQiKzvo7cZy6h6H+e/4Oy9SRVwTyXz5kQiPmHWSwWi8VisfzBrMCMxWKZlb8uxMoPbcq3NdZNZFV+U29dAoh0DDPQ0Y/2qXWnAx0vUxsg+9HVqD8/hN2p4L2lhcwDJyn7YGvBazeTGkZax/+P5yNBPrjyL9txv2cxSmW+iGzyR4fIdcUKBncA9JE0ZW+px9tWjNAFkprvbpP9nwNkTBntyAT25Wc6xahVXtTbFuUzbHQBqkT6tycJ1LoRQpA8EUGSBa4qL7UfX5YPsryMs85H7UeX0PujY/i+sB4R1zC6Y1T+n3X5jlKmQFLPSrD0gWtlMcn9w4h11ZiXNmFe2gSns3bO3h4j7RuiZHPlnEEZgOjOUSYvynf28e4fp+iquoL3KLV/nMiCxQxtuniqpkumvALj+ccY+cL1YFPInN+M7RfP4r6u4FSYCQ1DFxj/55IZHcmka5qhzody+0FS71mFPltreFUm845V+H62n+iGFQXPpcSSyLqG6XVg+pyMfPhi5J88S+s/rpoKtmnhLBgyiufcC846yoI4RkbIlpczvmEj4xs2gmHk781Zn9tQ9ymKL1uBf1kzwaUttD/6NNr6+jnnNcp9GN0x1MZ5PrMHJ6m75TqKVi8qOK6QokVNjO/YQXxFNagy2vr6/NpMkf/v9OdP7g3jKJ2/pXYh3kUtxPbvxLuk8Dzpjiiu6pkZchaLxWKxWCx/bNZWJovFUpAkSSg25U0flAE49eR+clc2zR6UeUmlj1yxE6nUiX1RCDngJHsiUnDe+HOD2M+rzAevTgewnJfUkvldF5IiIykyjs01xB7vm9qiNBs9nCV3Kop3eXG+247tTDCs7Pp6xEiS9JO9U9vLziZJEpJNRqR0tMPjBNaVkjg0iWRXsIecFF9TN2tQ5iWOSg/OSjd6e5jslgG8F1UhO1UkWZoelDktcFkt8uMdZ4IxkA/InF2zJK0hv9BLYP3cD7dGWieycxTDZSdxfjPxbaOYmdnr5kC+dk7kyWHGl6+eVmjX19VB7No2sOWDK0aJF83lRDtZuKBz5qlezNbiudvEV/kwbSr68rlr35iVfiSbwDEwWvBcgR0HSG5smQqW6OUBMtUhUmd9viafGqTk4tWv6O9b1WVrqdi3B87+bCnKtKCMGovhHR/Ft6QJAHdzDfZIFnlk5naql2QubCF1uvvXXMxIBqMzTmBl6zmvdza+JU3YeiNIk6npX5ClqaAMQuB5qoOKS9b/QecqWrmQVHsMPTr3NiUhBBOPD1Fyyfl/0LksFovFYrFYzoWVMWOxWN70jFSO/T96nHBHvqOLzeOk/sKlVG1oRTmrIGv45BBSsYx03zHQTZBAVPtQkjnkcCY/KOQkVx1Ansx3pnLdvIDJ7x2g+P2LcDTMzPpIbBsmdWgC36enFzq1LS8h/btOov+4BWQJoRkI3WTiZ8cpfv+iqQyJl+jhLKNf2YenxU/nF/fks2VkCW9biKLzyxl/vA/ZLmFEsyR+fRzvbQuRXla41UzkiH9jH+U3NpLpSzD8mw7MnIHiVPEsmr+DVtG6UsYPj6N3RAh9unBHHVuFG1eLn9SP9mJ+aNVUQGRKSkP+zk7w2hj8VTu1H1k8I8BjJDV6vnoQzZDxP3IEJaUR29CK8t2jVHxsCWZCI/7cIJkjk/ktNaqMKUlMVi7AtNsp2b2Doo7jyIaOnMmQDDSSayjBKMlvDZq4eT3qD58h8IFFqHUz37vMiwNktw6CKcFAHOF3IQ3E8/ENu4K0rgK5N0Lm/Po5Oxe9JPvuVVR84xGG3ns9ufLi6V8UAv+uI7iGR5h42yXTvhRb3Uj4YAfuRUWEnx0m129Sd+sKwntO0P/gi+QmYiDla+H4W+uxrZ/elhrAv6yFkm2HyW7fyvD5G6et1TE2RvG+XXh7exAuO0e/9CPKNqwktKGNhnddh/7j+4n92XrM0pdtPRICqStMZjCL9NtTeG9unvGZNcMZkt87Qu2t1yLN0Y3qXEmyRMNt12L+4PdE//w8ROhlNWBMgfvhY/hlD/5lLX/YuRSZqndcQ9+3HqXmk4uwFU1vMy5Mwehvu7H7yvAunDujyGKxWCwWi+WPxQrMWCyWNy0hBIfv2EU2ozGx3It0y/lIskRuMs3JLb10/ss+1n76ejwVRXQ8uBM9p4NLxfzM+eCyQc5A2j2A9FQnNVfXUrqxglR/gqGn+ol1RTGTGkqpG++ftzH5i6MoXhve88qR3SraeIbk1mGkoAPvp1YhOc4EJnIHR8k8cIrAtfV4NlYgO1XMrEFy5wjxx3oZ/IfteC+oxF7vB80ktXeUzIlwPuulxkfpra3ILhUzZ5DaOULP1w+hLgrh3Bwit38E7eAYkeOTOM6vRG0KgCHynZKOT+JfV0pk6zDZ/gSGZhBYXUr6VGzGQ/VsZJeKfngcUxdIrvl/PPgurCD9jcPI//IsYn01ojmUf6A/MoZ0YBjJJiFtrCG+e4QT/7qPorUleJt8CCGI7R0ndizGyAUbiC1fgpzO4D98jMD+Q0RWVqP/y24Uu4zrmgZ8b2lGsimYSY3MlkGKnm8n0H4c9+U1OG9chuy2ITQD955RPD96hsjmRSQ3tmKU+Rn98MWYt2/B5ldxrS1D9qgYo2lSzw8ikhrj77kA23AU17YuIisWkbiuGVQFOZkmsPsIgRPdyEWzt4s+m1npR/KrVP7sQbI15cRXLsR02LFNRvDvP45e6WfyYxfPCGAJl51Mf4ru/zyIq6aSls/cSvvX7iY5Po55fSu0leezkKIZwi/2Iv/8UTxZmdB5Z7oSSbJEy0feiu2uJwnc+SsmFi4mFSqh6MQR3LFRstcuIv7RJaDISJE0yW09DP/HTlr+/B20vO+tdP3oIXKVXtKrKsGuIg3EULf0kvCUcmrV9VT3HiD7z7twbSzPt4rXTHK7RxFDWWpvuRb/0qZ578+58C1qoOmWa+j+3iNotQHSKyrApqAOxHDu7KNoSTN1H77ynD7L8wksbwHpavq+9iiuZi/etgCSKpPpSxLbPo5/xSKqbrn8TyJT0GKxWCwWyxufJArlKFveND784Q/x4x//5PVexivy6S99lrb3rf2D5zm49zAtq/+wNPr/l+356VZWfGDT672M/5UTDxygb3QS3rlk1oc1syuCcscJWq5axZH7t2P89UYIzFK7I61h+85Omq6rpWh5PtthfPswgy8O4/n06qm59e4Y6ce7EbEctqXF2NdXoBS7pk2ld0VJ3Xmcsk+3ofhmdmEykxqj3ziIo8mPEdfInowgbDKygPK/WYUScMw8Jq0z+s2DKAuCqKaJ/6pawnefItsVAwGyU0EtdqAEHChuFeeKEia+dxjhkHGGXBjRHPV/sxJlnmBL+PlBRl8YgpRO2afasFXM3blGmILh/9yDuKwRua0Mc88w5mACJJAbAsgryjGe6MI8PEa6spjwzetw7+7GfawfdSDK6PnnEV+6ML/l5ixqLEHN7XdjL7ZR9MkV0wJeLzEmM8S/tR/fny2fquEzta6MTuS7hxi/ZDmZ5adbcwuBrWcCz8Fe1OEIZkQwcMW1SEJQd+9daCUBhm+7FmGbeX/UySjVP3+Q9F9umplVMu3EAu8/PUr3+96FfTJMxYOPkVlaiVnsJbWuATPomfUw99aTVB8apunD12MP+uj4/gNEIuOIj609s4XnbENx5G/soPUv3o2nYeb2Kj2eYnz7IcL7T5B06CQ/ct6sLbHlgShFP9vDor9+P6rPQ+J4Nx0/vI9wSTVZu49weRO648xnW8llCY504srFcCRjVC+ooO691/1RgiQvJ0xB/GgnkWOnMHUDV2mQ4vPaXlGXp3M/l0ns0CkS7acQuoGjrITg+W2oHtf8B1ssFovFYvmjyDy0jW/+xRde72W8rqyMGYvF8qakpzX6tnXC/7dhzodDubEIY20Zx+7fjvHeFbMHZQBcNrT3raTvF/umAjMl51cQORJGPzGJbXH+NbXBj/cDS4n+506cV9TPWnsl/UgXoXe3zhqUAZA9NkLvW0jkrg7K/mol0Ud6SB0YJ3Rz86xBGchnshS/fxHjPz+BltQouqGRkg8unvPeZI5OYqv3kRtIkO1PENhQQXTHCKGLZylee5bJLSMoH1mNeSpM/MVBQm+fe8tI5ugkZokHdV0+OKBsrOHlIRTl6ibM/SOkF1QiHDaSG1twvXiKnlvfjh6YPQtF93mQVZnAh5bMGpQBUEJO3G9rIf1kD973Tu8sJDlV/O9fjP6Dgwwvq8lv65EktIYSIg0lhL7xNMObL0P3+/NdhySFkZuvmDUoA6CHAoxfsYGiJ0+SvW3VnPdDaR8jXVGB6XGR8biIrlqKUmyQurhwQVzvM8ep/fO3Yg/6MDM5oodOIf7lktmDMgCVPszrW+m96zEW/80HZ3xZ9bkpu3gNo8/tIvm3F80alAEwqwMkNzcw+uxuqm+4GN/iRkLrltE/aiNcOTMDxrA7GK9dDEKwbO8jVN10yasSlIHT27aWNeNf1vyqzD/9XDKBFQsIrFjwqp/LYrFYLBaLZS5W8V+LxfKmNLCjC1aXz6izMkNbKQYCFszTyaXUg+60kepPTL1UcXEV2osDQL5Fc+7gGNmtg0hulei395N6tIvMtkFyB8cQOQMznIGENmstmrPZq71gCrTRFK62YkRCw95SuPONrdyN7JBRFxQReXDugqxmWifyQBeKz4ZzURA8KolD44SfGkCbzMwYn+lPEN0xwsAvT6C7VMzeKGZXhNSOETIdkTnXE320D/mKxoJrliQJ5fJGXMfz99C1qwuhg6t/ENvk7HM7B0dQK93IRYW7EtmWFGN0xxDpmYWClZATW9CGrXdi+tx7ezB1lWxpvt27u7+PTG055jzZEcnFjaiHRyA7R1HijIbz7gNMnncmAzC2Yhme5ztQJhL5jJ2uMVw7O3Ht6UYJJ/Pn396BYpeIt/cCMPTgVsSy8mlt3Ge1rprM0BjZsdkLG0f2nSC3pAzshefJrqtlctfhqc9SxeXrqB44hppNz3lM+cBxAguqsflnzwB6PRjZHNH9J5jceoDYoQ5Mbe7i0RaLxWKxWCxvRFbGjMVieVOKDUYRzQHm/Z19WkdU++ct3gpg1BeRGU7hrslvWfE0+NC6Y6TuOoF+dAJPawBn0Imt2k3ySBgjmSOX1HBUuEnf245c7cNWfW7bLez1PvSR/AOwrdpzTrUsHPU+zBo/uf1jTP78BP5r67CV5c8nTEH2eJjIA12o5W7SBydQi12415SBKUjtHqP7/+6j7B3N+FeVkDwZZezBbrAr2Bp8ZMfSMJjCcXAItdyNsaqUiR8cwVbjJfShxajefAaQmdKIbxlGG05iqy0cgAKQGwO47j1O5RcfQA3YsK0uwq+dIvfobrKqi+GLLiRXXjo13jYRxtFYYMvQaZIsIVd4MMIZVNfM8bY6H+poDK2+BDmRwf38SRwHhuh9y9umxtgnJ8nWnEM7ZEVB93tw/3g7mbevwCw7ne1jCpT2Udz3HiReXk22qnzqEMPjZuTqS6n42mPIdgmqfFDrzxedfuoQwgRJBnH9AlJHxwFI9I3AivmLNGNXMH1ODn/pdjy1pTS++0ocpWeOS4+Mk6svmn8epw3TqWJmcyhOB47SIM3vvRJ+9Ti9tW3ESqqnOl/ZMkkq+o9ToaZofN+t88/9GjCzGgP3P0ns8EmcS4PIPhWjU6PvN78nuG4ZlddfPH/g1mKxWCwWi+UNwArMWCyWNyVZkcA4hxJZijS9pXMhhjmtpbSRMZB0gderUPxPa5FtZx7yTM1k4vE+Eu0RcNvw13gx0zq55Ln9tl4YAjOtE32oC3vt/MVlAcyUTvq+DoQqoedMct0xJIeC7FYxwlns9T5sNR5yJ6OUfXYltoozWQ1Fb20idXCckdvbGb79JLLPRsknlqOWOJn4wVEcjQFKP9mGfFbbaHFrC/Gn+hn5513IRXaQJIyMgbGhFtnnAFMUbj0O+fdIkQl+YjlKyVmZKdc3oHfHsP3i9wxcdRWZ6or867KEOJf3FfLv1xznlzI6vt8fwv38KaSURmTRMoZvvABhP7PFTMgy0jl+NhSHTMlSL/GfbUdPG+B1wmQS2a4gZXWyS0tnHOMcGUUudcMH2uDsDKDrFiC1TyD/5jBmLDfV0UiWpfw9PQemkDledwHudITMf/+axZ+7DUd5PitMkuVX8JkX0zoqBZa3sOQzRQQe2U5sz350lwfJ0LErgspL11BywUokdY7W4q8hM6vR8fVfYl/pofwfV04LwJg5g/jv++n87p00ffydVnDGYrFYLBbLG54VmLFYLG9KJa3lDO85BSvmyXiQQOqLITRjZkvnswmBcmwMz2Vnut303N5O0YUVlL6lYcZw2SZTel09QjPRbDKZzhihCyoYubsTYZgFHwaFKcieiKCPpgnc0Ejsdz0I3Zy1Zs2Z5Qkyp6LwwTa4/Qjlf7cSNeDATGqYOQPZY8OM5hj5771U/MM6FP/MGjfuthLUkIOxbxyi7POrULx24k/1oxQ7KbpxZl0RSZHxX1kHkkRi9yjGZBbj/1wMLhtiJIl5eAxlZfmM485m7B/BcX7F9KDMaWqDn+DHlyK+/TidH3w3KArp6kqyj+zBc21DwXlF1sAYSSHPMi9A7sQkpmyn78obMVyuWTOm0lVVBJ9+jOimFQXPJaezqJNxfJcsxH9ZDZmOCLHbu1n4nx9DaAaR3cdJPXOY6Loz89jHJggeOwqfWz/zcydJsLAE8wOrkH+4B9/NlwEQXNVKdOtu2FRXcD1EM4iMwFDtxP3ltCs2lO/ey/J//ggA/pY6XM88j3Ze4VbPUjiFKivIdtu0152VJTR/6HpMTUdPpJBVFcXrekN1KBp88GnsbW58l82smyTbFQI31hO5u5OxZ3ZSdvn5r8MKLRaLxWKxWM6d9Wski8XyplS2ohrpVAQRyxYcJ704iMPrQto1UHjCExO4S53Yg/kCvKZmEG+PUnxV4Yfk4qtqSe8cxXtNPZGtI7gXFZHaM1bwmMyhCdQKN2ZSw722DOeSIKndowWPyR4LQ7kXtTGIvKmGxPODQL6YsBp0ItsVwvecwntR9axBmalzH4vgu7QaxWtHmILk1iH81xa+Rt/F1ZDW89lHjnw8X9gVjCe6EAUyPIRmYG7pRwnOXS9GKXXjWBjAe7ITAD0YQM/lu1sVkt02iH112azBLK0jgul3okg6aiI+5zY2w+VGjcaxD48XPJd/9xGQmcrOcbYUoda6SXcPYwt4KL1sDfZoDNv45NQxwX0HkK5qKBwMrAtAqRt7ML8Vy7u0HmkwBqPJgusRT/cw6m+Yuq6UJ0RSU0l15T8TntY6bKNJpMnC87ie7aRs89yd8WSbij3oR/W531BBGTOnET1wAu/FM7tSnc13dQ0TL+4p+Bm1WCwWi8VieSOwAjMWi+VNSZJlltyyBn6wHxHPzTpGPNOLO2Ky+hNXIz94Ak7M8QDeH8N+92Hqb8oXsxWmoPMHx3G3FCE7C2/bUFwqzlovSJAdSqF4VCJ3dZDYOkT49hOM/Psuhv9tFxM/PkrmZIRsd5TI/Z2oVW5ca8tAgKPJT+S+TtInZi/mmuuLM/HTY4jjExj/8CziVJj4njGS24fzX++PM/Qfu8mdipLaOcLol/cRf3YAM3NmW5WZ0og+1U/4qUGi20YZ+PIBog91oRQ7UbxzB3IAJJuMo8mf75I0GAPNQD48ilzlxfjt8VkffEXOQP/JQeS2MrQTk7PMeob7/DICJ0/m/7+zB5HTif/wEMbQ7IGF3KFxMs/147xsZkBJH0yQ+PVxjKVl2NGoffABbOHZ72vxzh2kF9VQfu+TqBOzB4LcxzrxHjuF6bZjxM58zlzri5ncfXTqz43v2Ez1nQ+iRmL547r7oK1wNhGAeVED4f35a4/tP0WqoQr5WzsgPHsBXrF9AG3PJBPB6YWXh93VjO/Mr0eSJOrfcRWBH+5E7p7E8dAR3P/1NJ4vPoHrO1tQ9/Zj39KFtzdB8Ya2edf4WjM1ncnthzj6lV9y8J++y+F//xEDDz2PFokDkGjvxbGoCMlW+J8wis+OUuwgM1Q4UGqxWCwWi8XyerO2MlksljetilW1CFNw4D+2oq6rQqwoBbsCg3HkLUMESotY+enrUBw2lrx9E0d/8iLUBjAuasjX/EjkkJ/tRhmKUXdTI0bGYOSpASa2jOCtLMYoMs5pHYrXRubgOEIzMX12HAsCpJ8boPjaery3tiBJkOqMMfFoD+meOI4lQVJbh/FdVcfYV/ejFDsJ3raA2ANdJHwDeDdVoAQdmHGN+NP96EMpqj+yGE9rEXo0R+SFQcInw0Qf7iZy3ykwwHtxNd4LKpH9doxIluS2YUb+cw/B9yxEZA3G7+4ifl4Lib++BtPnRImk8T9ygNA51t9Qgg7k4TTKD/eAIiEJgfzOJZgPnUT/0jbkjdVITUVginwAadcQygW1yG1liDuPFJxb8tqwRWNU//YBVD1D+jMXwO27if7gELZGP871FUgeG+ZEhvTWQYyUDm4b8e8dxHVZHXLIiUhqZLYNoXXHwOfAuX+Q0s+tZPKHx2i46zek6msJL12O4XBii0Up3rMbNREjdtlKEucvpvLOR8jUVhBfvgDT6cAWjuLfcxRJEox85Coq734GM6NPZSMpPhvZ9JnAUcnmFRg5Hflnd5FsqkcS5pytqqfx2tHT+WCOls6SWlZPtqGc4JdexFxeDudV57s0DScxn+kjm1LpqtmEkKcHDHXVjpY801HMt7iRouZG9J/sJHbFUtKfbEM4VdThGN5njuE8NkTDZ96NPEeb8NdLZmick9/7LbEFVYTfsg69xI+cyeHb38nYV35J9VUbUR12ZO+5rVv22TDThbPqLBaLxWKxWF5vb6x/kVksFssrVLmmjvbn22lubmZ4Rw+mbuAtDVD30Wtxl+dbUCeHwnQ/toelf7sKI6kxumMILa6hulVCF5aRGnQzeH83nsoQoUW1rP/bC8lMxDn24AvntIZ0dwwhoOKf1hJ9oAtniZPyjy6Ztv3D01qEp7WIiecGGX+oB1PXSDzVT+CGRtxr83VyXCtKyHXFSO0axYjn0IZSOMucNHxx/dRctqCD0hsaKbqgkq7/2Itkkyn/wmqUIsfUudSQk8B1DXjOr2D0q/vR7HZGPn0Vpv9MPRYj5CF25XJ8d57bNerhLO4bWzBjWbJP9qCnNKRYFvXGhYhLs5jbBzCf7gFZQqrzY/vr85BcNsyTk0i+whk55kQGRWhk37qMdH2+gK2c0TE+uR5jOIG2ZxgyOsJvx7x2IZzuOCT+8Wly+0YRhok5mkKkNVzLS/CfX4G9Pl9QWdIFF//HLfQ/e5S+7c+RSWRwhnxUXLKM2Mk+MmMR4puWMPi5m3Ad78N/+ARSTsfwuYhcv45cdTEASjSF4jlTi0Ufz2DzT+8GVX75Gko3r2DwgRcZ6enCzOpTW7/mIk2ksZ+exxHwYB8aI3zZKmIbFhN8fA++H+0n4S0mq7iZ8K0iE5q9E5ZdS+EInlnP+Jb9jI0OM/L3b5nWNluvKiLy7g2kTo3S8aN7Wfz5D6DO0y78taJFE7R/5y76b91MrqZk6nXT7SS6cQmx1S0YP3uSqmUtGBOzZ8m9nDGRQX0Dtfa2WCwWi8VimY0VmLFYLG96kixRtWkRVZsWzfr1jgd3Un1zPa7yfGtpb1Ng2teDq0oIrSpl4M4+mq/P19yw+1xooxn0WA61QM2WXDiDNpGl/O9WY6Z0tJ44NX+3as6aHMUXVZE4FiHdFcPe5J8KykB+C4qjKYDj9PqEYTLyxd0YSR3VO71Aqy3kxFbuJvCO5mlBmbOpxU6E38n42zdOC8q8xCj1kdNAH0ujls79cG6mNHI9cZzvKUKSJbTjk8hIGM/3ob61FcnvQLlyZvFgAPPZHjybZxZoPVtq6xCpm5ZjvBSUGY5BIgvFbih2YyydpcDzYBwJ8H5gKZDffhb/0k6CV9ehBPL3I9efwOF24wz5aXnb+bS87Xye++bvWPapWwAovqiN2D/9hAndAFUhvaSe9JKZBXPtfWPYgzbkswIzqa3j1N9y3Yyxsl2l5h0XI2QY2T2E2FRb8Npt2wcped8NABStWUjgizsJX7IS7Crh689D6BDtdxAOFS7kW5noo3TT2/P3QjcYfHQLo5+9YlpQ5my55jLC6xsYfX4vVddsKjj3a2X4yR2MXbBkWlDmbMJpZ/BdF6P++DFswsBM68iuuf8Zo4+lISfjKAu9Wku2WCwWi8Vi+aOwasxYLJY/afHBCSaP9yNMQeJUdM5CoK4qDyYaicEwpm4y8MJxbC4nvd88hJGdfUuTEIKhX7Rjr/WihpwkXxwiuLlq3kKppZdXI5sC/xyFhY1IlszRSbInIjhXlBDdNjxjjDaRQZgCe/2ZDAp9MkP6yCSZo5MY8Rz6WBoNBa12+oOplNWxtw/jODJAfEU947/tnPO+CCGI3N+FfWPVVPFb12X1kNQQe4cRBQrVmqfCmB1hpNDcxX9zJ8NoYxmMBafbTRsmzt8ehEQOxlOzH2SYyHcewnF+xZnXdBNlQRHhe06hDSYRhkn8nm4arlqT/3ImR+8TB9AHwkxuP4JpmigOO8WrWwk9c2DO9aEblP5uG8ErzhSaTR+aQDZtuOvnriFTfslqbM/2QoHi1NKBYRw2J67qfCBC9boILKqjaMuZrV+JzUsoD59E0eeeJxjpx1fqmwpARA+eJLWgDOEqnKmUOL+J8W0HEEJgZHPET3QTO9RBZvC1r8kidIPJvcdJrGopOM7wu8lUhPAuaiJ6fw9CzPG5NQXRe7opu3zjH2V9eipD/FgXscOnyI4Wrpn0ehBCkOoZInaog8TJXkz93LZhWiwWi8VieWOwMmYsFsufpMTgJAd++Djp0SiuBh+TJyIY0RyZ/hOUbKig4oqaGS2tXY1eDv7kKVLDkzjqvNgqnahRBx3/3w7s1R7qP7UU+XQGQm4szch9XehJHdfqfFBBG0jg2VQxYy0v52ryI0yBrXL6FovcQILow93o4xnU5qL8nCfDpE2BZ0kIZ/WZ8dnBJPamfFAm2x0j+nB3PrOmwQ8maL89heK3k6sITh0jpbIEHjmA69ggcnMQnApiKEluPMnoNw4Sum0BttNZRZAP9EQf7sYwwX3JmSCSUulB5Ey8H20j8d29KDctRFpWOhW4EZqJuWsQ88kuXNc2Ev/qXjy3LcS2rOSsMQbZnSMkn+4n8bFNIEnIwzFcd+xDAEZbFerXdyDqAnDTIig5va7BOPKdh1AdMp7rmzBTGpnfd6EdmZgqUBy+uwN9OEXx4joCzRVs/+JvSQxOoLQEUZo99D21hZ7bH6doZSu1772S9LfvR35oO5MXt2H6zly/bXCCsoe2Elrlx7kwiJk1SL44RHrrBK2ff3fB99ge8lN/6+V0f+NxtHcshtbiM92hMjrSiz04do3R/DfT52m87TKyX70bJZkhfOEy9JCP6E3raLl/C/2ly0l6S6bmkQ2N0nA3NfoILX/5nqk5kgMjpJpmzzo5m3A7MBWJ7l//ntixLrLNZRhOG46hKI6MQdXVmwiunj0L7Y9NiycxijyIOTJ8zpZoKMOhujH7soR/2YH/+lrUs4J/2kiK6L09eKsaCa5b+getKxeO0XvPs8Ta+0gGyzElGXcijNtto+6mC/Etbpx/kleREIKxZ/cy9PBW4glBOi1htwv8HoOSTW1U33TRG66OkMVisVgslpmsn9YWi+VPTrR7lN1ffQDvimKaP7VuWm0QI6Uz/vseOn5wlJY/XzIVnDF1k4kdw7gWFtH0sbXTtg4ZaZ3Rh3s4+YWdOGo9mAkdI6UjJJHvVPRSgowkwRy/wX85ienjsqeiTPyqHfc7F+JqKZrKuhFCoJ+M0PfDY1S/dwHu5sC0c6WPTBK5rxP3uxahNpzZoiWEQDs6geuOE6gDYcyAi9LvPInjgirkmzZMazMtxlPkvrOHkS/vQy1xoZY4MeIaZkrHcVE17vNnyQKSwEzlEJKEtmMQ6YGTSFXefAbDYAKzyodsCpSQE1HuIbFnHOmudpRyN4bdjtkXRSChB9047juMOhxDOBSyVy1CbzudnWIK1KPDuL6yFco8SIkcUk7HcV4lnrc0YSY1Et/ch3djBSU3rZ3WpUcfTxP99Sme/9ufYb+4lqJPbESynymYa0azxH99ghNfup0lf/8+ip7ey8iPHyfnc6HbFOThMJJpoAqdbBcMf/cI2nAKvboIu2Fi5rR532M9kcaUFcyne1DuOYao8IJmIg0nMGoCGLoxYx7ZbmPRZ2+h6Mk9jP7gEbQiL6bThuqC5rH9GMOg+YLIpokzG6dk4zIqr7kKxXlmO5skSXAOH0M5kcGMJumpsJN86zWgnrk/ynic9G+2UT0epvLKDfNP9geSXsHfHYRAliXqP3gjk1v2M/b9nUgukH12jHAWWbJRdtkFBNcs/oPWlB0Lc/x/7qS7ainRNctBOvP5ciTCpH/xBI1v3Ujx+cv+oPP8bwkh6Prxw/Ru6eREtx3NOLM+WRLUDR8mdqybxf/f+63gjMVisVgsb3DWT2qLxfInxTRM9n79IbxtISrftWDG1xW3Svnbmxn57SmGn+ij8up87Y6unx/H1RKg+v0LZwQhFJdK5TuakWSJxKkoRTc3I7tVlCIHRjRL5L5O/FfWYav3kTgaJnRW1slsksfCCFUh1xPHXu/DzBlM/PIE3k+sRCmZXutFkiRsrUHkj69g4Dv7af771ch2BUeth/RvOkgdDuP7zGrkgGPGcfalJfg/7sT86QtoxV4cV9ajrJ6Z0SOVuLF9YRO5/7sD0+/EdnkDdpeKXOycdVuW3htDcigk7zqJ8dmNEHBCWoPJdD5gVOIGu4IxGCfxvV2Y51UjrlsIqRzGD/cSqagmfuvVCFXB3jdG2e1Pkfrz8zBrgtNPJEvoyypJfuIC3N/Zin1FCP9tZzI4Unccx395DZ71M7cUqSUuQp9YwshX9mFvDU4LygDIAQe+jy4n9q399P/2WWpvvZTyy9cQP95Lx08eIvbRDYgKP6RyyJMpUGTMUi+oMpnOCU5+736W/uMH5ty2lhkJ0/fIVqKfuRBcNqRkDil8ep4yLygy2ZNjdHz/fpb+/funr82mUnXNeVRetZ7syCRmTsNW5MMW8NC3v52gL4SsKjjKQkjqzHbu3oZqvNt3kV5XOJuj6FfbCN+8lsyahhlfM0p8jPz5ZuRvP42/uRZPc03Buf5Qqt+DEk8jpXPzbsHynxzCff1FSJJE8QWrCG1aSW48gpHOonpd2EOBgsefCyEEJ797Hycb1pIKzqxxlPUGOb7sEuT7nsTbXI2jNDjLLK+u8I7D9G09xeFTTs5Eh/NMIdE95MQUSTy/fpyG91/7mq/PYrFYLBbLubNqzFgslj8po3s7MYVJ6VsLP5SWXFvP+LYRhCkwTZPY0TAVb28uWB+m7Lp6zNE09iYf9jofit+OvdaHEc6iDSfxXlBJ+MUhhDH3b/6FEIw93AMX1BB7egCA1K5RbG2lM4IyZ1NKXNjaSojtztf/UL12jKSGfUPljKDM2dRqL/Y6D7aR6KxBmZdINhnb21vRO6Mo5W6UEtfcQYfHe8CpYJ5fmw/KALhsUO2HKl++ZTlAlQ+zMYgoPh2octsR712B/9AphKqAJOHqGCR3SfPMoMxZzJoijIYgjgVFZ14LZxDjadzrZikM/NI1qTJFb2sm+2zf7F+XJbzvaGVi++H8nyWJyOFO0lcuzAdlTq/ZrCnCrPTD6Swjo6mYrN9OsmNgznMPP7Wb5GUt+fsCCM9Z85zO0jIWlJJ1yCS7huZcn7OyGHd9BbZAfhub7HbgrqvAWVU6a1AGwLekCWfvJHIsPef6lIkE6mRy1qDMFJvC5DXLGHx6x9xj/kgkWaZk/TL8u9oLjlMn4zhjKdxNZwpKS5KEozSIu67ijxKUAUh1DZIwbbMGZV5i2uwMVC1k+Kndf5RzvlL9D27hZI+dlwdlztY3bGdy93GM7Ll1sbJYLBaLxfL6sDJmLBbLnwTTMBnb38XxO5/HXu6a0cXo5RS3irPWS7IrRrIvga3cjRoo/Jt62angWhgk8dwg/ivyNVeyHVHMnMn4D49S+qk2nG3FDP7iBFXvW4ikTH9gEkIwen8XufE0nJggF84w9u2DmDkT1zvnr+VhP7+KyN0nKNpYQWzXCJJNwbGhat7jXJuqMMbmfkh/idQaQggIf3kvjlo3YiIDqozaGsS+oQrZZyfzbB9KMkcukkNcMHvx4mnXfFED0nPdiPNPdycKuZAVgaNziGxzFZ5DnaQ/PX9XoNzFLSR+vQszoaEPp9COTxK4sGLeQsuOlgDGL08gDHNaTSG9L07yuSH0oTRGDrp+9jg1N24kvK+d3F9vnnc9qfNqGNtxhNxYhMFHt6En89lCrooSam+9nOjBU2jXXDzvPMnzahjfcQRPY+W8Y1/OSGUY33qQiQMdmJqOI+SnYvNKvAvrqb3pUvQfPc/wRy9CeGYG7nyPHiK5sXnec2RbK0jeuQthiqn6QK+W8kvXMfnfvyBbESTTOrOTlxxPUfWrp6l/x5Xzvu9/qLFthxkuaZh3XKSsgfD+R6h/5xWv6npeLjcZIx3JktHmLqwNIJCYiKjEj3ZRtGrha7Q6i8VisVgsr5QVmLFYLG96ZkZj6z/9GneTh7IrqkgMzdHN52UUn43Bh7tJdMVwLy0+p2NsIQfZ0TTZjgjxF4bQhlK437aA1D3tjPzHblxry8Au0/kfewheWIl3WQhJlkh1RJl4rA8jY1D+jmY8rUVgCuKHJxl9qAePf+6sl5dIAQfZwSQ9X91PpisOLhXZVziYBPltO9IcXZemzS9LyE4Fpx1K15birPViagax/eOEv7IbVBlHuYvaTy7j5L/vwfDOf24CDqSUNr3kSZGTijueJrmyGTmrgXv+eYTbhhASiZ1jZC5vxWZzogbnP06SJGSvDZE1kNwyImsQ+fEx0lGF0cblpFeWIpkmY4O9THzxTsjlwDZ7Jsq09ThthHfuJdLVhXJtI0pdAHSTzMERjv/P7WCIc5vH70Rrn5h33MtN7DhC3/3PMbFwMZHzNmPa7TgmJxl/ZDf+e5+l9RM303DFJpSvPkF8bQPJlbWYDhXbSIyiLadQByNMLC3cxhwASUKXBH13/p7ad177qgZnVI+LhZ++Dfl7d5PcfZLJ81rRSgLI6Rz+A534D3bTcMsV+F+Dgru5eBrNMf/3BKEoCPNVX84MRipNzji3pOdUSmAk5w/MWiwWi8Vief1YgRmLxfKmlp5Iog3FWPDJZXjqfSR74kRPRM7p2OxIGlejn4pNFUw+PXhOx2gTGVJHJtCGUjiubkQN2Mn85DD1n1hGz3cOkTkRRil1oxuCsUd7ie6fAAmMaA7v4iIq3jG9HXBocxWx/ROY0SyKq/C3ZBHJ4qr2YMZzONeWkz06iRnPzRucMaNZxDk8TwtTIBsmDZ9fOe0BvOTyWkKbq+j/7hH8y0LIDgXFY0OL52C+gFI0g/BMz16SohlK37uAUEJj8qCOlMwhPAWuQQicvz1AdlMjuSvzmUVyNIMeScx/TUJgJjQkh4IwBZHvHWHIv4CJtuXTxk0uWEq4aRG1LzyG7ZETaNcWyGAyTFz3HUS5pgll8/SsIeWSBuQL6tC/swf7U+3kLmstuD4pmsHmnXsL22zC+07Q9egOOt9+K6bzTMZEyuOhp7YWb1cX5tfuZMnfvo/AshYmth9k8qEjmDkdR3GA8qsuItE5QDQamf9kpkDGJKmP0//bx6i95epXtNZXyh7ys+QLHyJxoofhF/eTi8ZR7DaKV7QSuvEKFMc5BAP/GOvwu7FNpEnPszNKMnTkVzmTaDaK24VdObeIkNsjoXhe2WfMYrFYLBbLa8uqMWOxWN7UTv3uELVvb8JT7wPAXeslN5JGTxTummOkdLSJDCXX1eNbVYI2mkaLZAseY2YMUiciBN+V3xJgX1JM7nddVL1rAcn2CLbzKzHjGq7bFiErMuV/s5rSv1yB/5p6HKWuGUGZlxStLSW3ff7AUG77IKXry1nwF21oXVHMrE5u2/zHZZ7pQ8Rz+Y5JBYgTE7gXBmbNipDtCjUfXcrEE/2YmknR2lLk7bPXbjmbtL0fseas7VYTKYhmcC0rxnt+BZ5lQWxbuwrOobSPgUOdCsoAaCuqie8Ynfeasu0RlDofkiKjHZsgbviYWLB81rFCUei78CpsW3ohNXdNDvXwEGqpc0ZQ5iWSTUb9+Gqcz3dAVi+4Ps+OPkrPO/eWzkII+u59hq5rrp8WlDlborGR0cYWRp/fh+JyUHbJOhb9xbtY8rn30fyBt+JtqSW0ZjH+XT3zdkJytA9jawzgvnUBsZOdZMcj57zW/y1JkvAtamDBR25k6efey6K/eCelm1e/ZkEZgLINy6iYKPy5BAiO9hB8HbYI2UN+3EEnTptRcJwkCYoDOv4lTa/RyiwWi8VisfxvWIEZi8XypqVnNMaPDhFaUzr1miRLlF5YyfgDXflsiZxBujdObO8YyWNhtIkMAGMPdFG0sSIfhNAEjnovAz8/gZ6aO6Az8mA3AnAtDgKC+G+Oow/Ekf02Jl8cwnVRHWprkOQvjqKWu1CD+QfnxHMDhC6de9uIf20p2sFxjNG5t2AZoyn0Q+OE1pViL3LgqfGilrnJPNePWSCgpPfHMXpjSD4b5u7Zi8wCCM1APHySkkvmrlkjOxW8bSHie8YIbihH2d4Hkcyc4xmIIXVFYOnpAqpCIN1zDNvpLUhCCHIjKezPdiD3TM45jeOJE2SvnP7wK4pcaGV+kjtGClyTSfiuDhwX5DsKJZ4eYqR55dzrJR+cCde2Ynt+7ody55MnUK4q/KAr2RWUVeXYt3Tm/5zIovSEkQeioOczHZT2URw5cDfMXZT55XLdwySLyzA8noLjJpcuZ+zF/XMGruzFATzFQdx7e+aeRDMo+v1+PBdXIckS9gsrGH/+9Sl0+1pzN1bhVQw8k3N/vhQtS9XgccovW/MaruyM6hs20dqQo1Bv9PryHKF1i5EdhWtuWSwWi8VieX1ZW5ksFsubVnIkjrvOO62oK0DZxdXEv3+Y7v/ci5HQcJW7QZFID6YQMpi6id1vJ3RVLUN3dpA8FsZW40GkDTr/bQ/ulgBl19djP9322kjpjN3fRezQBJLPxsi/7sJR5UGaSJOToP9bhzFTOtrBMdzvW0Lsn7biu75haj3aQBJ369x7ImS7Qs37F9L/3QO43rkQtTU4VdxUCIHeHiZzVzvNH1iEfLpuSdGiIGaVh8Sz/cS/ugf3+5eiNvrPHGcKtCMTpO44jrq2DH3PKPITnZhpHWlDDZLtzD0To0n0nx6kZEMZrgZ/wXvuWRQkfmCcwPnlVL+zhYHv7EB7Zxs0FuVbZQOYAo6OIt93HPNDq0CWIJpBuvsoajiJ5JIY+eYhcuMaKcOJXhzC/qMDyE7Qrm1FX1U9NY96eAilP4rRNLPeR+LW1cjffgEzpeO7sBLprJou+lia0V+dIptWkPaOotb5MEfTZFaVzphnxrxVdYReeAJjWTlmTdGZLxgmtn0DKONJ5GrfvPPIy8tw/uwg8uFxCGfJBoJIpoE7MolZ7cM9nmTBX79r3nnOlhsKE66ev3W14XKhKzbMTA7FNft2s6b3vYXc//yS8XiG5KYF02riKKMxin+zHe+aYtSG/GdXXRgkuaf3Fa33zaz1EzdhfPkOenKLiZTVg3zm74wzHqbp5A7q33YRjpKi12V9wfVLqT3ag2mepL3bTs446/2TTOoqczQu8VN322tbmNhisVgsFssrZwVmLBbLm9cc2QDZ8TSZ4TQVV9cRWleGfLrNsTAF0cOT9Nx9Cs0QdP/3fgI3NlL+9uap4I4wBZnDE3R/9SCuJj9IkOlLItwqwhSUXFBB6MIqZIdyegmCdEeU4Ts7MPcMkzkVwXFx7bQOtoXaZ7/E1eSn4uZGBn92BMVnR23KPwzrnVHcFS5aP7oEV9VZWRKnnxHVRSFyxyIkfnAA2WVDbfQjDIF2MgIyCN0kezKGZAhEJIvyXA/6Y51IjUVgVxBjKWQJpHiWkgJZPVMkiO8dRxvLYC934fSoiJ/sybeFbgnlgzInxhG6QKr2IW3pQQwkYCSJe2kRwc+vZPQHJxjLBBnZuB7d5Z6a2h6LUPXw87iePImo9aOemsCoDyJctjNBn7O57cQ+tRntsWPE/n0v9gYfsiyRndDIpmRGV22gTBzB3p8g8k/bMM35i/ECCEkCQ+D6zT6QJIyaIjBM1I5xzICzUILCjHslDInBurWk1lROXYOkawRPHccl2qcFk85tcacnPtfzF9iqpHpcLPrc+zjyL98l8MJxsk2lmA4V+3AUVdfwXFGLo+2sbDSJebc+/SmxFxex5G/fg/e+54jt/T2JojKEJONOhHH7HdR+8Gp8C+tft/VJkkTDB67F27SP4MNbScR10hkJuw18boPSzSuouuFCZJv1Tz2LxWKxWN7orJ/WFovlTctd5iPdn5jWyleYgs4fHKXh/QvxNk3PUpFkiaK2YhxlLo799z5KPrkcx8syRCRZwtVWglrhZuwbB3G/ZzG+liBIkLrjOAimgjKQfzhyLyii7q9W0PuV/dj9NnLhNJlhA+8FVQjDRGgm6c4Y7ubClUT1aA5Jllj40SXkwvntSa4b6rH5Z9bWiJ2MoisSKdlJ8t+vA0Ngf74DZTCGsEnoN9bluyg90U5ggYfAlUuR3CrJLUNEH+7CUe1GafCjFLtQyj3E/3sXufEM9pLC7Xfj7XFGV6+maOd+Khb4CWxswlnrRY/kyA2nQAbHTbUoLpVMT5zorhHSHoni/3sesiwz+VAvY6KcwXUbZ8yd8xfRfcn11L/wCIrfRfIzFyE8dtzf24rSE8aoD85ckMtG+sY20tcuxfHgYTKjNibPX08uFALDoGb7i5z3H+9EmCYv/Ms9OMITZIOFu+14h/vRNtWRe8sSpIkkymgCochkblwOLhu+/3oSMZxAqvAWnMc8PsFY0zJSZdO3hwnVxuTC5WheH7ZvP8jSL9xWcJ6z2csDBI4PEFuypOA4OZNByc2dLfMS1e3Ev7AeY4WK361CzkS+uBilfOZWKa0jgqvm3Ldd/SmwFflo/uD1GOks6d5hhGFgLw3iKJ3ls/g6kCSJ0otWU7J5FZn+UbRYAsXpwN1QNSOT0GKxWCwWyxuX9VPbYrG8adncdoItZUQPnmk3HDsWxlnlmRGUOVt2LI1zUXBGUGba3GVu3OvKMcbSSLKEJEm4bmwhsmUYMUvradVrI3R5LTa/Hb09Qq4vgRHLkdo/jqj1M/FM4SK9whRMPDOIbU0ZkcOT+BcF8S8KzhqU0eI5Ep0xUidjpG5Ynk9lUGVyl7aSfs9aMu9ag762Dn1lDak/20DqSATZZ0NWZSRVxrmxGte1TdiXlEw9gNsvqGLy6f6CazQ1k8ieCcLrVhFbsZjw7glcdT4kScIWdOBZHMSzMIjqtSEpEs4GH4ljEdyrSpFlGaGbJLaNMrRk3dwnkWWGVm5EPjo+1akpd0EjjsePF1wbqoxyYoKxTRfmgzKA/2Q75W11KHYV1Wlnyc3rKT2+v/A8pkmw+zjaJc0AiGIP+uJyjNbSfFYQkLlsIfoT3QWnEYaJvm2YyZa5C/vGqxtIJHXSA2OF13QWe1Ml3uEh5EyB2j5A8NhRSje2TW1tK6Ts4vPQtoxiawliWzJ7UEYIgfb8MGUXrT/ntf4pUVwOvAvr8S1pesMEZc4mSRKu2nL8S5vxNNdYQRmLxWKxWN5krJ/cFovlDcXI6vQ+d5I933+e3d9+hmN372FkXx9Hfr2T3d96hn0/fIHBHd2YpwuoNl/fRs8dJ8kM5wvnTu4YofSCyoLnGN8xgvei+bfteDdVoO0cnvqz7Lah1PlJd0RnHe9fV0riSBhXrRfbmnLGf3SUxPYRpGuaSScMJp+fPTgjTMHwbzowEhpKY4Dh5wdJnJr9HEZGp+MHR3GuK8MIeHA+dQLfj7bi/cZzeL71PJ4fbsV9xx7U/QM4HzuK574DCN1k4vZ2Ig90EnmoG/vGmQV+7WsqiJ+IEts3PvsadZO+7x0lHSpBMgwiq9vIJGF8joCTEIKhe7pIVBQTPxgGIHM8TLysGqEWLkSaCwQxsyBNJFEPDOD+3WHUznFsL3bOfoApcPzmAPGaxqmiuI7xcWr27qDlulWYhsnI7lP07z2Fd3iAos4Tc8xjUrPtaYw1lQjv3Jkm2opqjN44xq45rt0w0X90gIm6Vkx74YyVkbqFjL5wpOCYs0myTM1bLqTh0d8habMXqnYNDFB+4ihlF68+pzndjVXYVS+ZJ2fvsiWEIPNgN56qKhzloXNeq8VisVgsFovl3FhbmSwWyxvGwPYuTty/H+fKYhybi8EwGby7g+GjfYSuqMF7fgVmWqd/Txft9+1j2XvPw19fjCng+Jf3EzqvjOxkBnuo8MOwFtdwFRceA6CEnJiJ6W2TpZBzzlbcsj2/xckWsGPYFdQ15aR+342t2AUfWcn4Tw4QPxqm5OIqXE1+hClIHA4z8cwAeoUP4VbJbR/GNAQdPztBYFER5RdV4Sx3Y2R0JneOMvr8II5VpSS3j+BwqHi8XhKHY4gqH/LGGvDbIZLF/kwHjKfw3NSCfGU1uSPjJF4cRAiQgtOvXQhB5okeTM1k5N5OYnvHKL6kGketF6GZxPaNMfn0APbmAKVFEq5f38nk0qWYNoXBw0lix45SfkklrmY/mJA4Osno00PEy0JErl+K+s0niDzQhT6WImObvcX0y+lON/6vPoutJYDz5hawSch3daAdGCBzxSKMhhCYJrbDw9ifPEkiVMXo5k3YJycpOXqIUH83az99Ndlwgu1ffoBUUynRtfWI9Q2U/GY3/v5OxhetIB0qQxImvsFeKk4dRk4liN90VeHFqTKpG5bj/eUuzN3DKFc2ItX5QTcxD45iPNqJmTQYveHGea8z5/GRjZ57xgxA8fnLMDJZ1LvvZHxZG9GWBZh2O/ZwmNIjhwiMDdP66VtQPa5zmk+SJBo/cjNdP76H5HcPY7uoEltLEQjQjk+Se3YId3EZde+9/hWt02KxWCwWi8VybqzAjMVieUMY3NHNyScPU/I3K5DdNsyswfjX9lNyRS2BdWXTxrpbAmjhLIe/tRMMQeDtzbjaiknvGSN3YBw9oeEomfuhVHUpmHENgoXrqZgJDck5/dukiOeQnbN35BGGAFOgT2bI7hxBcqj5Oq0JDancg/zx1eQ6Iwy+0If4bRdIElJjAOmdy/JBndEkvo+vQO+JEf/OAUYPhJk8HkMgIWs6IqMh7DLa9mF8l9bgXlnC6LcPI72/DaX2rG1ZVT7kJSWYXRFSvzqM/y9W4r66EdcV9cR/eIjMg52437Zganj6wU7MaJbAP5wHkoR2fJL+X7VDWkf223EuLKL4Y8tQT9/TostrsP/4BJlcjqE/v55I9zjxF49ju6cHJIlsfQnRt29CryrC1jNOtqGEkUkZb3ccW3nhLThT71E0gfe9i7EvPpOhUfQ3a9BPRUg+cgRjIIFa5MBV5yFratgGByi59w7sfjeNmxdR8bHzSQxMsOfHTzH4kc0YpWfes/G/uxp7xwgVD+/CvjWGrchLYFEtlZ95Kye+fle+nXWhorymwP5EO+F1y0nXVVL0xGHs4ycRqkyqroro266j6ucPgzBBKlzcV82ksbnnDxK+XNnFawiubGXk+X2EH3sYkdOwBf1UXrSCwIrrXvFWFtluo+ljt5LqHmT02R2kHjwMkoS7vpLqW2/EVVv+itdosVgsFovFYjk3VmDGYrG87kzd4MR9+wh9Ph+UAUhuGcS7JDQjKPMSW9BB1UcX0/uNQ7jXlCJJEp4NFUg2mbFtI3gK1I8JrSplbOsQ9rrCLY+TO0awrTxzfpEz0E+Gcb+zedbx8YMTuBcESJ6MUvXFDaBKDP39dswdAyg3tCJJElJzEJpn1qgwHunAvip/LrXej/u2RYztTdJ36yWnB5hU/8892NIpnMuK8V9ey9hPjiHduBC5dvZrlRuLENc2k3qkG++7FiEpMr4/W070iztwXlKLHHRiTKTRjk3g//zaqYd5OeBAdquU/f3aqaLKZ5NsMmUfWcjgP+5AHYqQayxlrHH2NtTuXV2k2+oIPXYA31+tQfvKQQaXGyDPHbBQUwkcSg7boun3SZIkbC1Biv4iSOa5PpyxDOU3NiIMQe//Pcjqv7gOV+mZe3HojhcYfu+GaUGZ0xORW1DB5F9V4Hv6GC24qHnrBQAEljcT3z+Atm7uzB71+Aia6mbykny9lXRz7YwxiYUN+Pq7idfN/ll5SVl/B6XvmlkI+VzYinzU3LCZmhs2/6+OfzlJkvA0VtPY+LY/ynwWi8VisVgslnNj1ZixWCyvu+HdvdiXBFE8+aCMEILU1mFCF8+shWIkNXLjaYyUjr3Mhb3STbYjij6RQQ9ncbYVEzsWJjOanvN8voVFpPaMoY/PPcZI5EhsGcKx4cwaMk/34l9Vgmyb+a3TzBlMPNoLqoxrTSmSTSa9ZwxbvQ+xfwQRnjtTRESzmLuGcK4/0/HG3laCq38UOZU/Ts5qxNcsQCDjv7wGI54jN5BEWloy97yGiVQfIHdiEuP09iuRNbCvKSf5SBfGRJr0Ez3Y1pQjYrl8BynDJPNkD75La2YNyrxEUmV8l9UQvHfXnGOUsTiOE8NIuoGjrQQl6MSxNEjxqaNzz6vrVOx+Efem0oJtqR0bqojtHUPoJpIiEbionK5HdqOn81vPEgOTpEwTraZwTZTEhmbGtx1BGPmaRRWXrcXz9CnI6nMeY3uig/DmNQXnjW1qo+zwHiR97nmcE2N4tSSelnNoU26xWCwWi8Vi+ZNlZcxYLJbX3UTHKPalZ7IjzJSObFdQz+pIFD84weTTA+hJDcVnx4jlUP12HGVOJn54BHuNF2EIjHgOR2sR7d86RNMHF+FtnJ5NkhlOcfJHRxF2mdEv76P4Y8tmdGfShpNM/PQ4rhuakb02hGaSebqXzLP9FL97AUKIad1utHCWwZ8dR/XZSA+mKPnkchJbhkg8M0DpZ9rI9SWZ/M4e5Pctn5HdYg7EMX5xCM/NrUiuM9+SJVnC1hrEt+0Y7s5B1FQa4bWDTWbirlO4WgJIraFZu+6IaBbz2R7EgRGUkAObRyX+nzvALoMsI7tUjMkM0UMTmIaAaj+pIxGksQSSEEiGies9C2bM+3LuFSU4n+xHHY2hl02/Llv3OKEfP4/hdODd143jqnyAy3dTIxVfPwhCMNm8FKHkM2fUZILSE/sIDHQhgk5SRxUy23fiXF+O86IaZNf0H1eSXUGp8JAbz+CocONdHqLrd/sYPdaPtzJIoCJEbHHhItAAwmVHL/aQm4zhKC3CWR6k+rJ1mN/dSvx9axChszoUCYHSPoYyFCNbPXsm10u0shDpRbU0PfMwPZsuR3ef1VpbCDxD/TQc3k7r524+p85JFovFYrFYLJY/Xa9aYObLX/7vP/qckiTxuc/99R99XovF8voSpkBSzno4NQSc/rMQgtH7ukgPJvHf3Iy95swDbq43TuS3p7DXein9ixX5Q5Ma8cd70eM5un56DAmJwPIQkioTa4+QjWQRWZPA2lJ8y4uZeKiLaNrAsSiIMAWZo5MYkRxKnQ9jMEHi4Bja0UlwKKhtpQz/rhfuPoVvRTGSKpPtS5AbSWGaApBwLgsx/C87MXMGsioTvb8LVAkRyyB+eQjdrsCCEKgSnAwjSeC9tRVbc9GM+2L0x/Db03DzIqjxIwEmkOmLot13DAyDl28IEiNJjB/uI3BpNe6/XzNVkNjM6CS3DRN/YQjn9Y0k7uogdWkr2to6OD2GjIZ9ew/OR4+hR7LYSt2F3zhZAiEo+faT6AE32eZykCTs7SMYdhcDN9+AsNmoeeDh/FhAcqoE/7IN9f5uSp84TLyiFqEJ/KPdZN+yhMRHrzpT3yWVI7O1C9fX9hH4ZBuy3zHj/MIQZ9ZS5IC/Oo94Z4TYPe3YQ3NvZ5s+jzyVMQPgrilDmsjg+vY2zFIPZl0RGCbqkRHyRYOkfIvyeSSXNlMRibJk15Ok7G4SgWJk0yAw3I+nKkjT37wDR9kbr/WyxWKxWCwWi+W19aoFZh5//PE/6m8BX/oNtRWYsVj+9PgqAwx3T+I8XVNE9towYjnMnEFszxiZsTTFH18+Y2uNvc5H6V+2Mf7dw6R2j+JeW4bsVsmdjFLx7hYmHuoFm0y8L05mNINjUzVKb4zAAj8lV+TrgniXhciNpQk/N0j8WJjQ+xdhq/SQOR5m8s4O2FiNeusyiGQQ/XFEazGSz0E8mcMcSSIGRgm+sxlnc4CRf99D0dIgY6eiVLy9GW9bMYljkwz9vJ3Sjy3D0VJEpj3M+M+P475xAeraMpQKz4z7AZDZMYTpUOET66aCGlNqAxifXI/87Z0Yu4dQ1uYzQ4RuYvx4PyXvXzgjC0h2qvguqUEtdzP206MkPn4BZt3LggJOG7mLWzAq/Yx+dx9V/7Cm4HambFcMw+sgfctqbLcfIuWqRKgqE9euRg8GpsZFlizG2zmS7/RDPjjjf2cLImvgPzJO4r5OEp+6ALPyZYEUt53s5Qsxyn1IPz5C4DOrpn6uCFNgDCexne7AlemOQbl3qo6P+MxanP+zE/vJEXILChSuNUyUsRj2YL4OjZ5Ic/JHD9P/0WvQQz7sAxPYxqIIRSa7bhVGwEPVV+5FDcfQg4UDP+6BEYJtjVRecx6p7mGyI2EkRcbTsnHqfBaLxWKxWCwWy6sWmCkrK7PSsy0Wyzmp2dhM978fx3tFDZIiI8kSrpUlRHaMEHluiOJPzgzKvERSZIK3tTLxoyO415aR7YhiCzrQJ3OUbKjAuyBA+3eP4P/MaiSPjeQ3Rij++JJpc9hLXaS64hT/2VJs5fksEUmWkJqKUK46Xby1zINUNj2IIpPP0EETpPeOI6kSqs+OMAT+NfliuJmeBM7FQRyngxKOBUVIJiilrjmDMkII0k/0Yn7yvJlBmZcoMuZ7VmB8fxfymgokScI8MIKrNTAjKHM2M6GhrayeGZQ5i7GwjFypj+yJMM7Fc9doiT/WixZwY3vyFKNXX0qmZvatQ9HlSyi+4zCuy+unvY+SQ0EkNHLr62YGZc6iL69C29aF0RNDbcgHfLQjE7ib/CintziNPzsI17SemduuoN62hMBDhxgrEJhxHuonsLgB2ZGvbzT6/AHC61rRi/PrydWUkKuZXscnunkZRdsOMH7thXPOiykIHjhB6RfefbqobiWexvm3VlksFovFYrFY/t/zqgVmfvWr21+tqS0Wy5tcYjDKwPZOsvEMNredqnUNVK5rYPw3pwi8swVJlvBcXMPYl/dhq/KgFDnQRlKkdo1gxjRkl4JzZSn2Bh+SJKEWO5GcKmPfPIg+kkJ2KmQ6ozR9dAl9d3cgyZD46SGMuI7qUjj1z7uQbflaK0WbKnE3+0GRpoIyAPHtI0ib6gEQmoG5dxh6Y/mCtNVe5DWVSE4VeVMN8TsOQ1LDv66Mvu8dpuSqWsYe7SVxZJLsYArnwiIi93fiXlMKsoQacpC6/RjeT61C9tln3B/9ZBjTbYeiwu28CbkQdgXRGUZqDsHOQbw3Ncw5PLlzhIn7u8l+4oJ536PMJQuY/P0hqmYJzOR6Ykze10UmbqBMRDHcTnKXBgju2ocjMomQFbJuH2omjaxlMVxuEuXlKF/dBxU+JFnC2eLFvrKM9M4Rsh/cMP96NjaR3taLryGAMZEmc38HdR/LB9gmnh0kh4JSH5h2jFwfwD4eQw4nMYMzg2DKWJyS3x+i+q9umXptbNsRYh+5quBaUiubCDx9AFdHL+mWWbo3CUH541spbmvG5p9nO5jFYrFYLBaL5f95VvFfi8XymsnG0uz/wYvktCz+jeWoLW60uMbhe3ZCWuAp8zH5jUO4L6vGuTSE56IqtMEk4985hEjpFG2swN5ahJHQiDzSQzSeI/iBxdjK3Sh+G2ZSp+i2BUiKzOSvT3DqW4dxLQggJQwMjxMlkUBVZSouq8YecqInNEaeGWDs3k7U2ukP7kYki1Tqxtjah/lkN/a2UuzLQyBJaCcjZP9rG/LGGqSL6zBG0jR+to3scIrwliHGnh5CdikobpXgO5pRihyYsRzR+zoxIlkcrUU4FoeIfG0Pjs01ONZXIrlURFonu3OIzOM90FYx+018uSofxs8OIq5oQoQz2MpcM4ZkOqKM/ugYRsiDJMuYpd5ZJprOLPGij2eY/OVxvBdXY6/1oY2mGP3BMTSnnezmVkyvHXkyheOZDhp/ejuuTZWoS1wkn+hC9zrJXtCM8HhwPN+N0jHJSMNCko4qMAWBnT0EHtiNJHREcP7ghVnqxZjMkH6sC23HMJXvXoCZ1un78THSCQP5wytnPU4t91L5nacIX7GM1Kp6sCnI8QzebacI7O5mwYevn1bnxdR0THfhgJiwqUzecB6V9zxHakkTE2uXopUUgSlwdfZRuv0gJZUh6m+9eN7rslgsFovFYrFYrMCMxWJ5TWjJLDu//ARF19VQvnL61hD/2jJSHVFGbz/FklvXMrirm7F7ushF0yhOlbK3NxNYWzr9mDWlpLtiDHz3MCWfXA4m+K+tx9EUYOTLe7F5bJS9byH9t3eg3bIc+8/20vDuVoKrp88TWltGvCNKx3cOk+2M4mjKZ11IDgX9hV7knihFf7sOyXnm26VtUQjX1Q0kfnEE8+EcarEDR5WHVGcMIUBxyARvasK1rHjaudzryok/3U/meJjgihIcDT4SW4aJf3XPVNtn9+pSgre0MHEgck73VcRymLqM8Wg3qjAwUzpK4ExJ4Gx3jJHvHyH1wfMwWsvwfPkZpJSG8DkKzApSWsNW7cG1ooToA11ow0m0jCD1Zxswms+8fwagnd+AemAA+XeHyeqCxHvXYTTmr91+72EyKRcDN7wL5DPrSlbVMrw4S+ujd0LOOFOAuMB69MEkoieKalcZ/MlxpFo/bK5DXlg851Y3WRes+dDlDO/rYuTLj5JLZrAX+SjbuIySf7gI1fOyIIwADBOUmS3Rp1Fk/G2NNC6tZ/CxF9GiSQA8TZVU33YJ7sZKazuvxWKxWCwWi+WcWIEZi8Xymuj43WE8G0vxvSwo8xJ3S4DiG+sY2NbJqo9tpveZdrpfPIZ7eWhGUOYlrkY/Fbc0M/7bDrThFPY6H7n+OMZomsZ/O4+ubxxC+8Bq1LsPUXlt/YygzEt8LQEa3tdK7y9OUPHP6wFwLigi/twAvn88H2mWoIFkk/F+YCnR/9yJZ0kRABM7x9GqQwTXFc0IyrzEe2EV8af6MbMGSsBB4Np6AtfWTxsjNAPpvq75AxZZHXMwTdfHPwiKQmjbLrzbRwlcVTs1ZOyX7aTfsQqjNd/eWV9WiW1PH7mLW+aeF3Ds6cXbFsLVVoKrrYSBL+0j9bYl04IyZ9NXVJOeTKF0T04FZeShGBwLM3DRW0GeGegw7Q4idS24dvWibWosuB777l6UTdUE+nOs+PCVbP3S3fBnqwoWJxaRDErKINhaRWhhNUveeQHPffN3LPvULXMe419cj/toD6nlhddTdKCLsk1tBFY0Ezp/acGxFovFYrFYLBZLIfP8StBisVj+cIZmMLy3l6JNhbfneJcXE+2bJB1J0f3UMbS4RvCS6oLHeJYEMUZSOJeFQJGY+OkxijZXkhtLoztUKHYhjyQpvWB64VUhBEZGR0vkEEJQtKIEcga5wUT+6zkd5wXVswZlXiIpMs5L60AXpE5FyWgStnAC99qyuY+xybjXlxF/qq/AGAVbsQPp2a6C186zPcRbW0DJrzG2oJnEU32YKQ0AbSyFkdTRV565h7mNDdhf7IS0Nvf5Yxnse/pwnQ5k5YaT6FENY3nh4rW5TY0ofRHQDABsz3Qy1tw2a1DmJRMty7E/cRJy+tzrCaewHRtG6YrRdPkq7H4XRXVliL3DBdfDE93UX7z8rE5OJsIwEULMeUjV5Wsoee4w6MacY9TxKO7+cfzLmwqf32KxWCwWi8ViOQevWsbMe9/7nj/6nJIk8Ytf/PKPPq/FYnl1xfvD2CtdyPNsV9HDWYQNtvzzwyCBrdSJ4iz8bUqSJFxNftK9CYb+diuyXSG2c4zEgUn0xhAcGsFd70Nx5M+tJXL03dNJ5NAk2GQQIDQTV7ULT5OfyZ8ew17tJX08gu+za+a9NvuqMhJP9hDZOQaSgu5U6fvyYWRh4N9Yjm9TBbJr+jX4r6ln+F93IbtUvBdVT8v6EKYg8cIgRtpAPTiM7lIRm+qnd2cyBTzbhfxMF36PE29XF7EFCwh0nEKt9TL6lf2UfKqN1M5R9KUV044VfifZKxbi+d4WUh88D1E0vSaNNJ7A860XETmDof+zC8lrQyQ1cmvqYb6tOXYVo6YIeTiOWVuEcnKcxKWXFDxE8/oJVzYT/PoLpD62ccYWK3k4hucnO1CK3ZRVlhFals8GWvKui9jxX/egyxLSqvJp24aEbsJjXXgjUPO+ZUwc7uXk4wdJDIbJCdj3+e8RWNZI1ZVrcVVNzwBy1ZRSuW4Rxq+eZuiWzZju6euxDU5QfedzLPjI9QWzdSwWi8VisVgslnP1qgVmRkZG/uhzWvv1LZY3H2EK2u87gDnPd5tUe4ShX5+k+Mpa/OvKyA2nmHhs7qySl8QPTZA6EaX0pkb8q0qQ1Hx2RronzuhDPaRGEkju068NJzn+1YPYL6rB/0+tyO58i2RjMkPmmT6iO4cQOZ2KGxsZC2en5ip4fWmdXNwgsWEJ0Y1LMU534ZETafw7jxP88kEqPrUENXimlolsV3AuDhJ7oo/4Y724N1SgBp3o0SzpvWMozUX4P70KgMQ9HWj/2oW5sgKK3TCeQto3hNwSRP2XC5AcKiKWxfFMDyKVwHVeNakDY4x8cTc4FcTymhlr1s6rR7hseL67BaPcl9+eJAS2/QMoqSzKbYtQF5UgTIE4No7+qyOgnOP3X5uCZJj5/zcFokC2zEsi9YsIbunA+8Un0BuLMRaVgimwHRpEmUxhM6F++TIar1k99XPA7ndx3t/czOFfPk3s8R7MlaUIjw15IgMHx6hY08yCT23g6J1b6O0JM7J5DdnqsnxwyTDxtHcT+db9NN64idD6xdPWU339BmwBD47v/Y5UbSnJ6mIkwyRwvA+XgKaP3oC74RyLM1ssFovFYrFYLPN41QIzV1xx5as1tcVieRNpf/AAKQ8YgxmEELMGWLXJDMN3nKTu08uxhfIBDDXoIDuUnPMYgOxgktF7Omn4wirUl7WddtX7qPvkUgZvP0nq0ARGzuDE1w/h+bPlqA3T2yorISeemxeg1HhJ39+BGnBgL3OhD8SxF81dJFcIQfT7hxl7+4WklzVM+5rpdRG5dBWZ2jL47laq/27ltAyL3GAKUxf4P78GoyNKNqkhFXvwfrYe2WObGud79yKS97aT29oLqgzrqlD/bgOS+8wYye9AfWsrRlMR0TuOIuwy5uc2wG+PoXRNzrp2va2KxPJKlFPjKANR7I8fx37rIuQVZ7JPJFlCWlqK+uE21Ie6yM55J6ZuCPJgFDOUD06ZITeOaJhs0cyW22dzhsdRl5egrCnF/Olxoo4qSg4fpHbTQoqvqaOkrR5ZnZltZfe7WP3J68hGkowf7EFP53C0uCl9x5UoDhudj++nayzFwDuvmZ5xpMgkFzfR3VCN+NXDOMuCMwItZRe2UbppGfEj3aSHJpAUBd97r8JVO/c2NYvFYrFYLBaL5X/jVQvMfP7zn3+1prZYLG8SRlZnYHsX7i+sI/XjQ2S647ga/TPGhZ8dJHRl7VRQBkD12rCXu0mdjOJpLZp1/smnBii7qXFGUOYlkiRReUszHfvHGXioG2VZyYygzNmc51WS3TbE8ANdlF9fz+BDvdiXzl7sFkA/GSHt888Iypwts6Ca5IFSMocncLXl59JGUui6wLygHv3wJM6LZma1vEQYJtreMVzLQ2RyEupNC+ccqywvw9zSj7GwFMp88PF1yF94Cmk8gSiZpUW2JGG0lCIcNpyVXpSVs2eBSM1BlPRxpHCqYGtrpXsS4XMg/Pn3Ub+wnuKtRxhcfeGcxwCUHt+P8tZqlJYQalsxZBWKltaz+H0XFzzuJY4iD9Wbl0x7zTRMup88zOCH3jY9KHP2GJeD4cvOw/f7HSz8xFtnfF2SZfzLm6xaMhaLxWKxWCyWV5VV/NdisbxiiaEop35/hOP37qP7qRPk4plZx43s60NZXoxkk7Ff2cDgHR0YSQ1hCuIHxhl7uIfRh7uJ7hjBt2pmAKT4qlpG7jqFnphZqNbUTJLtEbzLZ+9+9BLZruBdU8rY1mGcl9XNe23Oi2rI9CVItkcRE2kSPzmEMZ6e/T482kt08/J554yct5TIi6P5dWcNxn92HDOpIdZXk3q6l+T9HSQfOkX6qV6MyTP3UghB6u52QJAdziBf1jDvuZTLGpC7w/mWz4+dxLApuH+yY+7iumkN9y92Yru2ec45JUlCvbYZ94+25ztFzTYmmcN9x17kZHaq+K++ogpvbBjP0Nxb0kLth7CTwXihFxHLYttcTemJgyx6y2oAksMRTj20h2N3bqXniYPkYqkZcySHw3T+fg8n7tlG71MHyUwk6LhnG2m7ncCOQzi7BmCOgr/pxmoSvaMYqdk/wxaLxWKxWCwWy6vNapdtsVjOWXo8wf6fbCWja8hrSpFKbYiJSTq/dIziljKWvXs9ij3/bcXI6nQ+fhTpgnwWhq0pgLiinlNf3IMkSTgWBXGczoSxLyii60v7KL22nsD6M1tFXPU+St9ST+9XDhC6sgb/mlJku4IwBbGdIyhO5ZwKsLprvcR2j6GUuOYdq1Z6AImcAP91DRjRLInvH0Dy2/G8fymy34ExkSb3fD/GcIpceXDeObWKIPpkhuTuUaKP96Fd2AC7B5G/th3hUkl73IiQCymaIf3Dw6ghB84NlWSf6UMfTOBo8pE9FUetnCXr5WWkSi/SQBzlX55FDTmIrqpDimXwfukpMm9Zit5WBYoMmoHtwACuR48hlbuRWwpfh7KyHOXxLvz//TSp65egL6s8M8+ePpyPHcd7VR1mWkf6+nOkr1yIvqyK9CfOp/pb24iODjCxYBm6O38NjmiYkiN78aTHSV+7CDmaxvzWXuRaH4oqYw+42fqv9xIdSzNglKBjwyVFqXxgPyWLKljxZ5eQS2TY/+MnSeQ0IqvrMUNOXHs7sd+zk8TCZlKrVyKZJv5dxyh5ZAvjV20k0/yy7CRJQg/50aJJFLdzliu3WCwWi8VisVheXW+IwMzY2BiTk5Nks1kWLlyIwzF3TQeLxfL6SE8k2f4/T2F7RzPuhdNrhojL64g+28/Orz3NeZ+9DCFg59eeQgRkRPZMpobI6ihBJyUfW4biPVMjxbO+HCOpMfGDI5g5g+BZra19K0pwVHuJPD9I5z/vApFvOe1p8M+ZBfFyRtoAIRC6OW9BX5EzcLT48V95JrvGd1ktqb1jhL+4A6FI2Dw2Ki+vYajChZzVML2FAz5SVsOI5JhsT2C8fxUEnMiPdCDeugixrmqq25EAjIsbMHcPov38CJKmo4acFK0sYTKmIzIGOOb5tp01IKtT9P+tR++KET+UZPJ9F+A42Efg0YO47tyXD6iYZr6WjGEiN869vWvadbjtlJcFoCPGxINHEZKEBLhL/KQMk/SDp0CSUAwT372HMH69Fzw2JCEoM/sJ7ehGZExERscMutCuaSXVtjy/HiB3xULsL3TiOjzOln+9l+N6AzE1BKfLy4SBQVFD5fFBkv96L5qRY+TmNWQX5j8vvocPout2Bj7xfoTtzOcrvnwRajRO5T2/Y/Ky9aRbp2dOyTkN2f6G+HFosVgsFovFYvl/0Ov2L9FUKsVdd/2Gxx9/nImJianXf/CDH1JfXz/152eeeYYXX3wBj8fDZz/7uddjqRaLBTj0652oNzZiWzizkKskSzgurSUTy9HzTDvCFKgNLkLrS+m/swMuqsVM5Mg+2Uv5365GnqUFtuKxUfLxZYz+1158K4qn1Y2xlzgpe1sTueEU1dfW4230I4Tg2H/uRZvIYCsunOkQ2z0KSOT2jeJYV7ibTm7vKK4lM6/RvboUkdWJPdjFks+vQnWraEmd0UNdRC5eUXBOz4FORI0P49b8tifpnqOISxsR66tnDpYkxLpqSGq4jgzS+JdtAGQHU0T3DKFe2lDwXMbuQRzrK5DdNmxNARz3nALDJNtWy2hbLSVff4LogiVEVy0DQI3EaLz9ToQpCmYfiawOvRFa/+N6nEXzZ+4AHPv1c4SrjGn3PPbTo0RX1KGvnKWujiSR29yM8kwXvalaYvZZigZLEkNqNcpEBu9y31RQRh2MYDs6Qv+7bgZlZqFgPeBj8Ja3UHP7vfQ1VcPpYsJKIoUtncUWmln7yGKxWCwWi8VieS28LjVm+vv7+fjHP84dd9zB+Pg4QgjEHL/5Xrx4MS+++CKPPfYYhw8feo1XarFYADLhFImxOLalheu52C+rpfvZdvqeP0nw8mocVR5kAXpXlOzWQTybKmcNyrxEdqp4NlUSeXF45hoGkhjRHJ4GH5Cve1JyYSVjD3cXXFOqIwpOFckmkX6kC/FSK+dZmPEc2oEx3Gtn77zjXl8+LUmnbFMFRbuPI2Vyc84p5XQCzx1Ceuvpor05A+nAMOKCwvVuxKZachNZzNM1XSQhEM/3TstAmnFMRkds6Uc63dpacqnYWwK4d3dNjYm+dSXBbbuRtPw8epGfnMuDuWuo4HqM5/pAVc85KANQd+kK9KcHEHr+npvxHNpgAn3FLAGp06RYBjNtErHNXXQZYMheh619DMz8G+J5vp3w+tWzBmWmrsHrIdlUj+do59Rroe0HqbhoxZydvywWi8VisVgsllfbax6YyeVy/MM//D1DQ4M4HA5uueUW/u3f/n3O8RUVFaxcuRKAbdu2vUartFgsZ5s4Ooyyonjeh1fZZ0c4ZRS/inp6q1LVuxeQ+uXRfMBjdem853KtLiN+ZHqL58xAgoHvHqbhva3T1uCp95E8EWX8kV6EOTO4m+6KMfjLdopuW4B7XTlymZv4dw4gZilga0azJL57gKIbG5Htsz/cS4qMY0mIwYe7EUKgemzUXVNDzc8eRU7OLB4rpXOU//ARpEY/1J3eLvRUJ6I2ALa5AwgA2BRES4h0VxyAZGccx6YqjB/sQ6RmFkMWyRzG9/fiuLAa/VR06nXvDY0EnzmC81C+AK/WUIrWEKT6zvvw7z1Ew69+g5rLov/2OMbB0ZnzCoG+dQDjiS7O++uZnYsK8VQUUb1uEemfHEVkDfSTYbSllVNbt2ajto8RlooLjgEwZBtZ4UAZz98f+8lRkgvm756UWLwAd0cfCEFwx0FKxyYou3TVK7ouoRtM7jzGiS/9gsNf+A6Hv/Adjv/7Txl/8RDmXEWW/8iMTJaxZ3Zx/N+/x9F/+gZH/uEbdHzzV8QOdcz6d8FisVgsFovF8sb1mm9leuihBxkcHMTpdPI///NVWlpa5j1m3br17Nu3j6NHj74GK7RYLC9naDo45gkknCapCiZnslIcFW7qPraEnq8fQnbOP4fsVNBG00R3jyI0k8iLQ2iTWdBMOn94jNKLq7AXOchFsow+N4ha7SYdydL5b3sIrC/DXu7CSOnEdo9haCbFH1uGrdyNJIMYS2F3qUT+aSv2tlJsi4IIQ5DbP4rRGSX4noW45+vy5LYxvmWI6LEwpRdU4gg6KKmQkb78W1LNVaSW1YMk4TrRj/toD6LEBWuakJ7tQnq+BymnYy4tP6d7KRwq4nSHI6GZONdWkNk2jPHFbUhLS1EWBgGBcTSMODaWz5BZWYZ+aPzMer12iv6iDfn2Y2hPHCK+tpnMkipCD+8jkDyJ6yMtKCUu9P44se8exHjgJPLmWuSAA3M8jfl8HyJrsO5zb8VfN39g7eWa37IO9Sk7Pf93LyJow2ye59o1A8M8t8+aKSlIp+8PApDn/12DabdhH4/Q9P27CbRU0/TZdyCr53Y+ACOdpePrdyGVSfhuqcZW5QFAH0sTee4wY0/touWvbsXm95zznK9UdnSSzu/ciXN1EaFPLEAJ5OuyZbtjjDz5HONb9tDwkbe/ouuyWCwWi8Visbx+XvPAzIsvvogkSdx0003nFJQBaGrK/xZ0YGDg1VyaxWKZgyvkgY75//4JIdDGU5hyfnviS9ktjsr/n737Dq/jKhM//p2Z26ukq96LZcmy5d57HDuddEgggdDDEjoBdlkWdlnqj14SCJ0AGyCkV6c7ceJuy92yeu/l9jozvz+uLVmRdOWQ2CFwPs/j58F3zpw5M5JvuO99z/vasVW4iPeEMFekLjQb7wlicBrp/0sjOavziA9GKP70AhSrgc6fHyHUESDhi6HYjZS/r5qmu+tJ/+h81ECc8L5+ou0BJLOC87oKTIWOsXVF9g1QdGUpmStz0eIafc91MvpKF7qq40wz43ebZgzKAMQ7/EgfWoiWbafnQC9Sawg924Xx0xW4dnZhe2QHRrcJW6GVkEVHGwyg/fUo+opCtI8sheODyHu7OZucBrnXj3FdckuPId2E9xdH6duwmkB1OfaTrViaBwAIl80ldFEJziMn4bcHMGZOLKAuu8yk/Vst6mAY2/4+Ys92YXtHJebF40ESQ6GTjK+vIVY/TPBvDcRGY8iqTs2711OwtuYsVju9kgsXULRhHs0P7yHc3k00xVgtw4bN0D3zpLqOOREi7E4WXtZsRgy+AAlX6q1Wpv4h0t1WZn3kbX9X8KT55w9gWubEsWZirSJDlhX39WWE6wZp+vFfqfrie8+qY9hrpccSNP/+z7hvKsFcPvHfkrnUhfmDLnyPttP558cpvvltb/j1BUEQBEEQhDfeed/K1N7eDsCSJUvP+hyXK1mUMRAInJM1CYKQmmduHmrjKHo49TaNRMMoqBqOIgfhJt+EY2mrcwm+NPMH7tBLPRRdU45iMaAmNLSoysi2bgxuEzk3VhL3xSi4upzcLUXYS12ogTixNj+Kw4hjQwHuq8pxXVIyFpQBCB8awpJpIXNl8sO0bJTJu7iYOZ9aQM1nF1L+gTmYbAZiXanfY9TRKHFfHHl2BlK6BWVTKfLbZqNsLkPJdWC4ugrzp5eimCQK31tN5qYiLHk2zHMzkHQdsh2woTQ52UAw9YMYDCEHY5hPZWTYSp2ErC4Cc2eBIhOcU87QBSsYumAFoeoyUGT8C6oJG+wYy9OmnFLJtGIscGIocU0IypzJVJVB+n+uwJhnY847177uoMxpskGh4uoVWPqCSIHpQzNqZRYO1YuiTd6udSa76kPLcaA5koWfwyvLcR2cuQ5Zxp46Sm/e/HcFZYItPSTU0KSgzJmsCzORswz4jrRMO+b1CB9twbzAPSkocybn5UUEWtqIj/rPyRoEQRAEQRCEN9Z5D8yEw2EArNbU7WXPFI8n/w+6wSDamQrCm0FWZEo3VRG5t2Ha+hVaOEHk3gY8NRkUXVJC/71NqGcEcuxz0lH7QoSPDE15PkDk2DBqTxD33Awy1+XR/0oPcoYZ/+EhQk1erCVOVFVnaHcfAOGeILoOI39pQItOrhsDoKsavgebybskdbHd/IuLGf3TybFiu1PNM/Tb40gXlaestSNl29FMCtHuIO5VOaiBOOqxIaQ9XdA6Ai0jaPlO5D8egvjU1yKuovzhIPjihBpG0XWdQEeEkdUz10IZWbOI8NGRKY9poTihBxuwbk79LACsW0oYaUldEPi10DSN9mcOYjKbcPxkO3L71GsklsBgkpmVaJi2HbqsJ6iIN2A2MVb8N7ysFOfJRkx9A9OuwX34OKZ4FGt+6sLC0xnYth/7+qkLQ5/Jtj6HgW17/65rzCRyuAn7utTbwSRJwr4mm8HtB87JGgRBEARBEIQ31nkPzJzOfuntndx1ZTptba0ApKdP0TpVEITzomzLHDKdTsJ3HSbROp4No2s6sUMDhH9UR1qum4z5Hlzlboo2F9Hx/YP4Dw6OtWIuvHUuw787ge/xNlT/eCcjNRDD92Qb/geaqfy3eUiyhL3IgWxUUKMauizReedRBp9sJ/ddlfQ+20nnA814jw5jLnVhX5PHwPfrCB8ZGgsc6bpOtMlL/08Ogwa2EmfK+3PPzSBzSRZ939hH5NjwxHkaRun7zgFiUQ1lef7MD6vQRaw/jGI3IskSuiyBy4ThZ3swP3YCR64Fo9OA/N1XoH5wPACh63ByEPm7ryA5jOgXltDxSAeNX91HpCtENG/mGi/R3EwS7QHCT7SgBZJBbT2SIPD7o/i/tRvCKkpR6mcBYChyEOrzzjjubJz483ae/eSvqD9Uj39JJizPxX7vARzfegal6VQ9HE3HcKSH9J9sZ841y5m9Ipd56lHsCe+E5+OODbJAPcz8dy2nqCiL3F9uw9g6iG42MvKBteQ98iTuvQeRouO/Xwafn9znX6bk+DFMRel/931E+4cxnsWzMxU5iPZNE3h6nfRYHEN66vbwAMYiO9GBwRnHCYIgCIIgCG++856CUllZye7duzl8+DDr1q07q3OefvppJEmipmbOOV6dIAjTkSSJue9axuCRHpq2HifQdxzZakALxvHMyaXiw+vo3duOfqoNc87KXByFDjqf7aDlb80odgNqWEWSwGmWGfjhQTjV1hlVJ2t1LuW3L0SxJt+WtIQOuo7BKGNYkUd0Rze++hGGn+5AsigM7uxDCycwlblwrMnDVOQg8EIXo39tRLYb0EIJJKsBNRhHTuho8enbZJ+WuSKH3mc7Gd45gP7nBmSbMTlPgQO9IgN9fx96JIGUouU3AAkNyZC8N13V0eMqclTF+fllKJnJbEHrpiISLV6CTzWT+O0BsBggqiKXulFuqEYuPxVAuKAUfSiM+p09SIkEutmY+ueUUDHlWDH0BfD9704MbisJXxjXZSU4bqmi91v7Ia6BIXVcXo9rSDOMORsHf/kUfe29aP++FtxnBBQ2V0CvH/sdu5EUBUWSyajKp+IDF+EsyYL1kLekncyHD+DvakBXDMhqHM/cQirfdinO4kyKgLzD7TQ8c5Bg7wi61QRaguLGemL7D6JZzKBpmAwy5RfOo+ADK3np50/+3fciKTIkZv490hMaUoq23a+Hrk+s3zTtuPi5W4MgCIIgCILwxjrvgZl169aza9cuHn/8Ma6//jqys1OnZN9//30cPnwYSZK44IJN52mVgiBMRZIksmrzyarNR0toqPEEBrNxrMhpPBij+elDZK9K1uCwFzqoumUOuqajRlUUk8zB7x7AWekmZ3MhWiz5IVc2yZM+aI7UDYBRxlHkILCjB9sN1UQfa0I3ymR+fH4ya0DT6fnSLrSYiqnYScZ7qtE1HT2qIpnk5AdpwPtgMyP7B8jZVJjy/kYODCItz0d+2+xkxsypNZ+eJ5FmQX24AcM7pg8S65qOfmIIyxWFRLqShYgJJXB9Zgmy0zRhrKHMjfvW+aj+GN6v7US+dRGGsskZHZLHirI0B/vxZvxL56a8B0d9C645LnLfVsLISz34XhrEfkkJjo0FAFhmu4kdHsC8PC/lPLED/eTOOovsoBS8jb30HWtH+8/1ycDTq+U60T6zCuVb21n37VswOiZmgnjmFbNqXjGaqqHFEihn/K6NjaktxlM7eYyu66jROJIso5jemP/UOavLCB/sxrk59e9R+OAQzuqSN+Sar2bMTifa6MVSmZZyXOTQKOmzF56TNQiCIAiCIAhvrPO+lWnz5s2UlZUTi8X47Gc/y+7du9FfVUdA13Xq60/wzW9+g7vuugtJkpg3bx7Lly9/w9ezbds2PvvZz3DNNVfztrddwa23fpi//OUvJBKpi5y+2tatW9myZXPKP3v27H7D1y8IbxbZIGO0miZ8UE6fnU2kP0K4PzRhrCRLGKwGJEWm6NISuh5uBUAxKyhmZVJQJjYaxXdkmKwrSwl1BnDPy0AfiaCFVWyLsjDl2JFNCpJJAYkJRYUlWUI+da3TlDwbfU93pMya0RIavdu6kdYWjc0jvXqe9cVoRwbQo9O/P+iH+rCVOjE4jAw91UncF8O8tmBSUOZMitOE5YIi9Kdbpx1j3FRM+s6DkJimLg0gxRNk7D+CZ30yMOZamkVkJIB93XgQxrE+n+jzHejq9M9Cj6lEtndjsJinHXM2jt+7Hf3iWVMHZU5Lt6ItyqPx/p3TDpEVGcOrftdmGiNJEgaL6Q0LygBkrV9I6JX+aesQQbIWUfD5XrI2nX2B+9fCurCK4NM9k/67eSY1ECN6ZIS0JSLLVBAEQRAE4a3gvGfMyLLM//7vV/nUpz5FX18f//VfX8JsNo99MLv99s8SDofHCv7quk5eXj5f+tJ/veFrufPOO3nggftRFIWFCxditVqpq6vjV7/6JTt37uBb3/o2ZvNr+2CSn5/P3LnzpjyWmfn3FZwUhH9Euq7TX9fJyYcPEh441c1ISn6or/vWPipvrsJdlUb38130bu8ey45BAjTovK+JwusqpgzKnPzhQTBI2KvSiXWHMJpkRra2QiRB9MgwvSd2Yyx2oPniSBL4n2gnvG8A5yXFWOZ5JnyAj7b48P6tCWlRDg2/OEblh+YgmyZu8dDiKo0/O4q2OBc5ffrC5JJBRipPI/qd3ZiuqUSakzmWnaGfHEbd2ozeHSBkM9D4tX2oQ2E0Rca8cursFM0fI/xyN9EDg+hRFT0YQ//2DlSjGUYiyWvm2jFdWIg0OwPT/Azy/u9xvMtrcR08jnFwNPnMstLxLZxD+ssHMJIg3OTDsCCTcIsPS006klFG9UbxvdRHYN8QhOIEfnkYxwdrJ21X0qMqvl8dIbKkmL7jHZReMrHgcGQ4QNsLR+jd14SmqihmI4UrZlO4vgaTY+Kz83cPo39o/rTPc+yaqwrp/eNh/tHDCAanjaxNyxj+xSEyPlSNbJ74e6QnNEbubiBtfhWWnL+/lk0qxuIsaMnEe18r7mtLJwWr1ECMoTuOk3/tFmSjKJgvCIIgCILwVvCm/L+27Owcfv7zu7jjjp+ybds2IpHI2DGvd7zYpCRJbNiwgU984pM4nTMXXHwtXn75ZR544H6sVivf+973qaysHLv+5z53O0eOHOF3v/sdt95662uad+7ceXz+859/Q9cqCP9otITKru89Q0yNknlNCbbZaUiSRKTdz8gL3UTbA7Q92krkt2EUq4GczYVkrs7FYDOSCCUYeLGL3qc6Gdk3QPYFhdhKHOhxjeG9A3gPD2EssJE+L5f2Hx7CUupgeP8gnouLSd+Qh2I10PXr42i+ONmXFE249uCTHXgfbMZ1dTkkdAIvdhHvDqIXOJEW5hL4w2EOfXkPGStzSKtOA8B7fIShl3vQPTbki8pnvHfdY2M0qxDLi/1YHm7CcFkZ+tMtYDWiXD4LqTy5Hq11FOn5NqTGEZgi0yN2eBDf/U3411YR/NgSUGTSf7aNWNDAQM5cQmXJQK7NO0jOA8ew29ow3FiJedc+0g4dwn9pLfESDwCmlkEynqzDqgbx3FKJ95U+hp7qIH1dHrLDSHDfAIMPdjJQuwjv1ZegmUxk7X4Fz1d2YVmWhXFOBugQOz5M9NAg4QtmE5+XR+KPdRPW3L2jnhMP7yK4vpzop9eB2YAUiOLb2Ubb/97L/PdcgGdu0Rm/KHrqbJnTrEa0s6jd8o8gZ/MyZEWh75s7sSzIwDzHDRLEGv2E9w7iWbuA3MtWn7PrS5JE8S1X0XXf0/R/vQ7bqmyMRTZQdSKHR4ke95J/zWbSFv+jh7kEQRAEQRCE0960r9NcLhf/8R9f5P3v/wC7du3k5MmTjI6OomkaLpeLiopZrFq1isLC1Hv5/1733PN/ANxww41jQRkAt9vNJz7xCT796U/z0EMPcvPNN2G3O87JGgThrWr/ndtQSswUX109IePFUuwk7z1VeHf3MfJMJwankTmfX4zRNb6Nx2AzkHdJCZlr8jj2jX30bG3DmG5BksGYbaPk3xdjykzWGnGvyKHtO3XIZhn3siwMThPdd9djzreTeUXJpGsXfriG0Z299P+xHjnTgmN1HqbZbgZ+eQL1bydQP7uGhM1I795uBvcmu+YkCl3oHyjA8LejKDMUVAXQByJEV+biu2ABjp0nSL9nL4aNhRgvqZgwTi5Ng/elwYvtBH53DNdnFo+tN9HixftIK/2fuBjNlcwySb/jBYZNhQyVV0+YJ5SWRUvaBjI7j5P9gzoCl9QS3DBxTKw8i6GPbsLxwjEMT3aS+5EawgcHGHywBUwKo0cjNF/7TjTreEbLwIo1DC1aRtqhA2TfXYds0AmuLCP2hYVgMqA0DmJJs42NHzzSzrEn9zH6qfVgG/956g4zkc2ziS4p5ODPXmDZRy/FWZQMKklGBYbDkDF9FlJy8hAGS+qixv9Isi5YjGdNLcO7jhE81AW6jquogtIvX4VifX3bv86GJMsUvv1iEpesY3jHQcL7+pENBjIql5L2jiokgyj6KwiCIAiC8Fbypuc55+TkcOWVV53Xaw4ODlJfXw/Apk2TCwrPm1dLVlYWAwMD7Nq1e8oxgvCvKtjnw983SumHl0zbGca9PAf/gUE8s9wTgjJnMjpNmDIsZL29Aus0rawNLhP5H5hD718aGHqqE88lRcR6QuS9e/a0105bmUvg0BDmVXlY5yUzSvRwAvWd8+HUNiV9TTHxV52nyRJ6fxAp2z7tveuBGGp3gGhxNgCBldXYj7Rgrph+24qyvpj4oX4SzV6MFWkA+J9oY+jGVWNBGWPrIKpXZ2he9bTzDBbOwd3XTqx0+i2RgY012I93EWv3Y12QRfjYCL49I7Rfd/WEoMzYPZtMDC9dQTivkIKnHyd28XiWheOVVko3LBz7+4kHd+J7z5IJQZkJzybdhve6Wk4+uocl/3YpAK7cDEZebEW/OnX2hvxsM4VLZqcc849GNhnJXLeAzHUL3rQ1GJw2si9a9aZdXxAEQRAEQXhjnPfiv/8IGhsbAXA6neTlTV37YfbsKgCamhpf09zd3V389re/4Qc/+D4///nPePLJJyZszxKEt7rmrcdI31I4Y7tez0VFjOwfpP+FLrofbWVodx+hdv/Y8ehQBE3Vpw3KxIcj+PYPEB+KoEVVgidHGH6+i/QN+Wd1bd9DLYT29BE6OIguS1DlSXmOdlEFiT8dnbYorq7pxO87iXfV3Albk0YvWEj8xa6Ucyubywg92QpArGGERF8YZTiI0u8DwPZCA4O5VSnnAOgvmYf1hYaUY7xr5+B9sRcAa62HuM2OarXhaGzEWV+PpbcXXlU4Npyfj2Y0IfkiEFcxPV2PsXkYXU9uWwt0DhE1SGjZqbeUqrOz8HYOEQuEk3+XQdrRCT3+6U861g/dfiLhyPRj3mLUcBRvXSPDO48RqO9IdvgSBEEQBEEQhGm86Rkzb4be3h4AsrOzpx2TlZUFQE9P72ua++jRoxw9enTCaybTT3j3u9/DjTfe+BpXKgj/ePxdI2ReMHMtFkuJk0hfiN5nO7HPzSASSdC/vQc9opJ3WTGyUcFaOvmDfrQ7yOCDLajeGOk1GUiyhNlsIOyPEG7ykbFh5hbOlhInqj9GsCuMNhhGiqpIL7SibyyF6YI6C/PQX2pD+8lepGurkYtdY4f03gCxR5oIONLxr5yY/REtyUZ/JJhyPVKZm0Srl5Fv7kZXZKQF2aR198KLx1AVA9pIjFDNkhnvK+TOxNhwOOWYWGkmsecOAqB6YxgUlcqH78E6Nx3ZJBM5GiK2LU7v4pX4K08FgySJcF4ulr8dxNA6TLQih9FlZex+5SiWP24jvSSTWMlZFLOVJNQCN+E+LyaHlehwgND1C7D9aCf6NXPQF+eB8dQ2m3AcaXs70jPNhG5cRGDva3uv/UeUCEbo+dtzBE60kjY3HaPNwPCBCB13B8m8cBmZFyyeMagoCIIgCIIg/Ot5UwMzmqbR1tZGT08P4XAYTZu+BelpW7Zc9LqvGwolv821WCzTjrGeSvsPhVJ/4DotIyOdd73rXaxatZq8vDyMRiMdHR089NCDPPPMM/z6179C0zTe9a53vaa13nHHHdxxxx0zjquunvnbdkF4I0iylLLV8hgdZItC+f8sm/BhNDYYoef3J7AXO0gEJ24oCrf56f3tCWa/uxpXpXv8vKvLCfUGOfT9OnT1LLIPdJCsRmxXJuu+aKE4wfsbif35MNqNtdMGZ/RcJ+qODtTfH0VRE2hZDgjGSRhMjK6ZR2he6aRzJU2bsrjvmdSTw2A2knjXAih2TzimdPqQfrh3UhbL1AvUk9k/qZxaT2Iogu/JNnKuqcC6MHNC957ESBTT7/fQ5/cyuHg5AHIwSiLLxOCXrhoPngBSNE7o7peRbGcXUJA0fbzFuCSBLKM6LGgnRzBsbUL32JLPbDRCvCITg80Eqp6yFfZbQSIQpvE7fyJ/YxZVNy6e0GY9HojT9JdjdPUOUvDOi0RwRhAEQRAEQZjgTQnMRKNR/vSnP/HEE4/j8/le07lvRGDmXFi2bDnLli2f8FpVVRWf//wXKC+v4K67fs4f//gHLr30UtLTz76N6m233cZtt90247gPfOD9r3nNgvD38FTl4js4hDlv+losAIFjw2Mdk85kyrRQ9LFaWr62Dy2WQNeSH8p1Taf3d/XM/bdabPmT57bl2sldm4//4BDmKY6fKXh0GEPpeMaLbDPiuKka/2+OEtvXjb60YPJJuo5+fJDOT1+H6nGR/tguVJORwOoaNHuKIO7xDuRS97TH9ZiK9tcTqJ9ZNVbjZoJCF9LCbJyDnYzmz0p5X87BLuIV09eYAbAc68ZS5mT49yfIuLkKS9Xk9xtDupm82+agfe8w/oISollZWPp6Gbj18glBGQDdbGTk+mVk3fkM6NMHtQBIaMjtI9jzktd0FXqIPHKE4O2b0O0miKvJ7VKShO62gCIj9/mx37GdjE0zt9X+R9b5pycp3JJDzsqcSceMDiNV75vNsZ8dw3uggbTFb616OoIgCIIgCMK5dd5rzESjUT73udv5y1/+jNfrRdf1s/7zRrHZkh+OzmzT/WrhcPjU2NQfAM/GNddcg9vtJh6Ps3fv3tc9nyC8mUo2VTP6Yg9afPqsGV3XGXm2i/SNU287ks0KmZeXoNhNBA4PARA4PIRrlnvKoMxpBRcU4H2ld8ZrDz7bhWnDxI5ukiRhf1s58ottU5/YOEwsw43qSQZ0fGvnYT/ShmaZutgtAJpO2jMHMKydfnuVuqcHbWHu1EGZ02u7uIycjmOgp8hE0jVyWo8QWpcieKNquF86ga3SBYo0ZVBm7JpGGc/lhWQd2Y+z4STIySDMlNOm24l7nCiNg9NfGzDt6yB7QSnKqXlMTiuxteXJoAyAUUH32NEzbHAqo0TLcZKo8GBNf/3vtW+WuDdIpLOP7BXTb4+VZInSq0oYfHb3eVyZIAiCIAiC8FZw3jNm7rvvPk6cOAFAaWkpV111FZWVs3E6ncjy+YkT5eTkAjAwMDDtmNPHcnMnf/v5WimKQkFBAV6vl8HB6a8pCG8FZpeFwlUVdN55hMKPzkM2Tvx3q2s6ffc2YfSYsRZPXyzWtTSLvnub6PnjSQxpZgL7ByneMEUmyxmMThO5q3Onv7au03dfM3q6BcOpGjFaKE5sVw+JugH0SALFH4Ovb0O9ZBYszIO+IPJTjUgnBtGdNrLufQHvyrnEirIIzSsh8y/bGHzHenh1C2JNJ/O+lzD4gqhPNMPFZeivdKJ3+JJbqQqcSGuK0J5rRf/Q0tQPNcuOMjeN4iMv0z53Dbz6vVDTKG7YgZJpwPncUUbfsWLyGFXDc88OnHPdRJt92FbM/N5lmZuB/f/2YOztI56fhrF7hHhhxpRjvVcvIeuOZwjethYtzzXpuNI4iOvZRiq/cO3Ya8MNPcQ+tnrGdcTWVdD7ShsFa2tmHPuPyFvXSNZSz4xblOyFDhL+AIlgBEOKLCxBEARBEAThX8t5D8xs2/YCADU1NXznO9/FaJz6G9pzadas5DfOPp+Pnp6eKTsznTxZf2ps5RtyzdNbtqxW2xsynyC8maquW4R+r07Tl3aTtj4X5/xMkCXCjV6Gn+3EXOSg4P2pWyRLBhnZYcBxUTEddx7BYFYwXlE647WLLy+l58VXaPn6PtJW5WCvyRi/9vYe5PI0rO9Mtp2OHR4gcn8DaatySXt/FYrDSHw4ysiL3fjuP47616PgNKNcVoF8QzVGScLSNIL12Z1EZTP9N16A66Uj5P/oQQJLZxOuzAdZwtLUg/vFw8jRGP6PrsZ91ytI/xfEfVkJlmtLQYJogxff345BOAHOFFk3p5/HdVU4vrqd6h0PMVhQRcCTfF9yDHeT1XUSqToN6ZIaLE+1kPu/D+NfV0W0OhlkthzvwbmzAXuVC2OWHf8T7aS/c+btMpIsoWgJ1KJcVElCCsWmHZvIdaMVZ5L+q13EKzwElxehO8zII2HsO9qwjkRY8pkrMaclM19CfV4iI4Fp22ufSXeaiYenv/Y/OjUUxuY8u/+WGZ0mtEgMRGBGEARBEARBOOW8B2a6u7uRJIl3vOOGNyUoA8mOS1VVVdTX1/Pcc89x0003TTh+5MhhBgYGMBqNrFixfJpZzl5DQwOdnZ0AVFdXv+75BOHNJkkSc96xhPJL59Jwfx2ddx7B4DKhmGScVW4s1RlISursAS2qgizhWJ2HfWUuA9/eR3Qkii039ZaWeCCO0WWi8BO1jO7oY+jJduLeGAkdbB9egJKR/MAbbxgm9mgzZbcvxOAaDw6Yc23kvmMW6Wvz6PjZURKqhjw7A8mafD+S5mZhmZuF8kwrOfc8T+97tuBfOQfHnpOkPXcQY88QZpuO88NziB0dRvn5y9hW5JJ+ffmEjAlrrQdrrYeur+1DHYmAfYYAhTeCrOiEVpbgiIXI2vUcjhw3eQuLcW1eTe/hNmJPdGByOMl7xzy8vaOMPH0cXdMw6BAxGYgdGSZ2cDDZHWl45vbTekJDMSvkuGJ4j4yip5mIzc6ddrwhobLsk1cQHvDRuaeBeCiK2Wml+OJlpFWNtzGP+cLs/9FDGNzJFty6K3UQQhoJYXZOv9XrH53BZSfSO3NgSdd1YqNRFBGUEQRBEARBEM5w3gMzRqORWCyWslX1+fDOd76L//7vr/CXv/yZ5cuXU1mZzIzx+bz8+Mc/BuCqq67GbneMnbN9+3Z+85tf4/Fk8p3vfGfs9UgkwtatW9myZQs228SMmEOHDvGd7/w/AObNmycCM8I/FbPTwrxbVuLZnUv30SZ89aMUXldB58MtuJZkpTzXu6sf68JkIVtJlnBdW0H3M52kz5l6K81pvS9141yWjWI34tmcrCOjRVWavrEf+YwATPSRZgo/UD0hKDNh7fl2sq4qY+jFbhIvdaBcWjHhuHFzKVpjHea2fqKlOfg2zkcKxyi+4wHSbl+GJEtIJgX1QO+koMyZ0i4pYuiFFrSbF6S8L2lbG/41swlcXJtc/8IizPfspOqaZQDkrZiYATN9+CSZrbL3rsdwrEvdWjxcN4BjXgY5by8nfHQPtro2ApfOn7LWjDIcxBxOYM/PwFHgIWth2bTztj1Th2t9NpqmE9rRQuTi1NlTjp3tFG9clHLMP7K0RZWc/NpLlLytJGV3KX+zD3OuByVV3SJBEARBEAThX855D8wUFRVx4sQJRkaGz/elJ1izZg1XX30NDz74AJ/4xMdZtGgRFouFAwcOEAgEmDt3Lu9973snnBMMBuno6CAWm/jNaCKR4Kc//Ql33fVzZs2aRXZ2Nqqq0tnZSWtrKwBlZWV86Uv/dZ7uThDeGIFuL5HREAazAVeJB9kwsa5JoNfL6Ml+YuE43qOjOGY78R0bhoRO4MgwjnlTB1kS/hiDz3WQdl0FkRMjyewZg4Svw0/f7l7MLjOSImEvcmCwjL9NRYYidD/bSel/LZ4wn2xWcM73EHmqFetl5SS6AyhGecbOUa5FmQw83IK2qwv54vJJH6qNG4twv3KU/tIc0HU8T+3Bsjp3bFx0exfOi4tT1haxLcpk5KEWtC4fFEyuzQJArx/92CCGyvF7jZVnEdN0vM19uMsn14uJ+cIEupPvo46CDExnZJzYctzYXA7C+wawThMg08IJ/Fs7yL1xFqFGL84FGURbI1j3thJa86otnJqO5+EDVGxZMOleE+EY/vYBdE3HlpOGOc1G7+56Sv59AbquM/TNOqLLitEzpv5ZKC1DWPqDZNQUTnn8tYoHowQ6BtF1HXte+tjWqnNJsVlwzCmj65kuCi+a+j60uEbL/a3kXHvxOV+PIAiCIAiC8NZy3gMzF110EcePH+fFF1+c1F76fLvtttuYN28uDz30MEePHkVVVfLy8rjhhhu57rrrznqrldls5qabbubkyZN0dLTT1tZGNBrF6XSyePFi1q9fz0UXXfymbd0ShNeqe2cLTVuPotsVDJkWtJBKvN1P/soyZl1Wy+Cxbk78ZR/xcAxzliX5J8fC6MEhJAnci7IYuL+Z+HAE96rcsSK9uq4TavDS9bsTSLJE4Il2VF8MxW7ElG3FUmCn6Z4GjB4zllwbkbYAaVXpFF9RQqgrRP3vjhMuz6Ljtw3kv6Mcc24yQ823f4BQ/QhxbxwtmEDJtWOvnL6F9WmSImHMsKD2hdD9UST3xC0mUmU6pr81ovhCZDy9F1fCj+3C8ewPtdOP5eLUAQVJkcl6XzV9P92N9o65sCAXTgeANB2O9MND9QzdtJq0hw6ccaJEbFY2Q8c6JgRmAl3DHHtwN97uYaKlyYwjc8sAaUWZ1FyzHHtushPT/A9exO7vPEB8KIxjQwGyWRn7GcRa/Qz/4QSKzUjXn5uQStygJbNinC8eJzo7FzUrWbhZGQrgeaSOYo+b/NVVY+uIjARofmgnwyc6ccxyIykSofYARqsVySghW5LXK7x5FvrPtxO4ZiGJquzxe09oGPd34HjsOEu+cN2MhXNnEh700fjgDkaberFVuECGSGsAq8fNrKtW4io9t1maBTdspumHfyERaqFgSyFG+/j7fbArQNOfm3EuqsVZVXxO1yEIgiAIgiC89Zz3wMxll13Otm3bePrpp1m0aDGbNm0630uYYMOGjWzYsPGsxl588cVcfPHkbzuNRuOk7BpBeKs6cf8B+tv7cH2wCoNnPFChRRIMPdtFz38/gq4msOTZqbhhLuYzxqiRBD1PtjO8fwBdh5Hnuxh8rA1zvh3JKBPtD6GrOq4FmSgOA+FGHwWfmI8pezzbQ4upjGzrxr9vgKLbFxA4Msy+/96DnGEmJsmEL68h2u8n8seTGK/2EYYAAQAASURBVNGQEhqKQaLwQzUYM8wMPdfF8BMtWFefXUc1xapgL3cR+tMR9FsXIylnZAXpoITCFP7mMWzr8rCsnTN5q4o+8zWM+XZ0p5nocS/mRxvQi9wggdTuJVqWje/Dm9Ds5hnnGW3sZc+vn6H/miVEq1bA6WCGrtN/ogfvDx9j2a1bcJflYHJYWPnv17HtP+4m9HIPxkIHkkkm3h1CMkhoKnD5bOTK9LGgiFHTMRwbJPdHW0kUZ2GIq5hjCWZtWUDeqqqxceEBL/t/8BC5l+ZT845FE55ZsNVH86+O468bxLkwE/vsNMo+VE3vkw2EHziIWuQGVUfpGMXsMZO/tgZbzsxBtFQC3cPU/eQRMq4sovRdC8d+RrquE27yceiXT1B940Yya0te13VSkU1GKj59I/1P7ebgtw9hzbWiWAxEBkJgsJB9yUbcC1K0OhcEQRAEQRD+ZZ2zwEx/f9+0x2677WP84Aff59vf/hYvv7ydTZsupKioCItl5g8m2dmvv321IAhT66vroL+5l/SPzp0UgJAtBsw16YR39GDNs1HxkcljFIuBwqvLUSwGvKNR7Gvy0IJx/Nu6URxGrHl2DJqOc4GHgQdbKP7UfKRXbY+STQqeLUUoNiP99zaT/75qjOlmeh5qw5BjwlDfT2zDLLzzCzDsaSfjlQZKPl07FhzI3FKEY24Gvf/XMOP96gmNaFeQsv9cQv/jbfifaka6dPzDs14/hLHIgfPfJm/hAVCKXUTqR7CvSFXxBSInRoiVZjFy4yqkcAzDgB+ARJYT3ZqsN2KpaydWdMbWL13HdLKPzMuSrbbVaJx9v3ya7g9vHMtmGSNJROfk051hZ+9dT3PB/74T2ahgsJrImJ2PeZUdg8OEntCQbQba7jyKcttSJM/EgruSLCHNy8LwscUYf3WYpZ+6Ekf+xO1ouq5z8GdPUPSuMpyVaZPu1V7qovoLizjxnTosJU6M6WbM+XZK3l+NGowTGwiDJGHOLaP37kYyaopSPruZ6JrOoZ89Ts77Zk1qzy5JErZZbgo+XsPxHzzPyv+68XVdayay0UDu5avJuXQlka5BtGgcY7oDk+f1BZ4EQRAEQRCEf27nLDDz7ne/e8Yxuq6zfft2tm/fftbzbt361OtZliAIKTQ/dRzHtaXTFjANvtCFwWGk8LqKlEVOczYXMvDVvbivLEMucGDMs9P3//YjyxJlX1xMz90nybqqdFJQ5kzu1TkMP9dJwhfDXpWO0daFtDiH+KMNxNaWgyJj299B3nVlE7NcAEu+HUmWiHQGsBQ6prlCcguUvSYD2ayQfVkJvq/vR99SjmSQ0XUd7ekWJIVpt9mY1uTj++UhbMtypn0euq7je7wd7zvXJf9uNREv9rx6EI4X6xl9+7LxuU/2YTYquIqTNWK6dzXgn180OShzhkSOm0B1Hj17GylYldx2VLJpAScefYnCj80FYHhbN9LivElBmTPJ+U70qgyCXcOTAjPehh4MbnnKoMxpRqeJnAsKGN3eQ9bbSsdeV+xGrKe2+MRHoiT6o6RVpS5QPJOhI+2YCq2TgjIT1pNmxrU6m66Xjr6ua50tSZaxFr25Be4FQRAEQRCEt47pPxW9Trquz/jnbMedOV4QhHMjFogSDUYwTRPI0DWdyMlREoEYnfc10fDjQ3Te30x0MDxprGyQcVWn0f+jOvq/d4CB7x5ASmjoCY2RF7oJt3ixzkqdRSBJEu7l2fgPDAKQviaX0FNtoOlY794D4TiGoQCW0qk/kGdfXUb3b08QH4lOeTzc7mfw8XY8p4q1ymYFW6UbvXEkGZR5sgmjXUHvCaJrk99/dF0nvqcXSZbw/q1x2jGj9zWTGInieKURpnof03Vcj9SRyHSQyEsDQOn3kfGHl5l/w1o0VaN3bxMnHtmDobkPz+9exHKoHVQteb6mYz7eTdbdL5F3x1MY+0ZofOIAWkJNPreqfEwGG333NdHzYBt9T3YirSxI+ewB9JV5dO48Men1np0n8KxO3XELwLMqB/+e/imPJQJxuu86QeX1a193bZnuncdxrpp5Pe41OfTsqn9d1xIEQRAEQRCEc+GcZczcfvvnztXUgiCcA/FAFMU9dRtfXdPx3teEYpDI3VKEqyYDSQJ/g5fmXx7DXuqi6B0VY5krcX8M37Fh9KiGqdJN+pWlmDItqIE4Iy/1oMd0Qie92KvSUq7JkGYmPhQBwJhmIpqVQf9lq0h/bBeObz6Dkm6c9oO9tdxFzvUVtH23DueiTNLW5KI4TcQHI4y+3EO42UfhrTUYM8Zr5BjdJgJH+tEfrEdWdTy3L6D3v3bj/d+dWC8pwVidzHRJNI0S3daJJdNM8RcW0Xd/CwPf2Y9tQwHWOcniu5GTo/if6oB0C45PLUZ+rAXztx/Dt6mGaFVucjvPyV4czx4jkenEe/1SDN0jOLY3YD3QRu0Na7F4HLz4X/9HvDyN+HtqkdMsyKMR0na0oT92kNG3LSLjiTocBVayNmRj9OSS8McZfbGH7V/6E7Xv30LarFxMnnQ69rYzuHARmfIIxrSZt41KaRZigcik12OBMK609BnPVywGtIhKz+8acK/LxpRtRQur+PYM4N89SOV1a8haUDrjPDOJB8I4zmI9BoeRRCT+uq8nCIIgCIIgCG+0cxaYueiii87V1IIgnAMGmwnVF5vymO/BZkwxldn/u2LClh1zlhXPqhw672um/Z4GSm6uQo2qnPzhQXQdCj40B9sZW16MGRbybnKSeWkx7T86TP57q7CWTdNCGkh4Y8g2w9j/jrsdJDwuBt6zBWPPMMW/fzzlPdnnpFNwaw3dvzpOrDeEGlYxuIy4V+SQe2MlkjIxqBMfCBMLy0TevQLTjlaG/tSAblTQIzqmbj/hnT2gg6XATva7ZmHOT7ZizrtxFrH+MD33NOC9vzn5PKszsL13Hsqplt3uD85D7Q9h2dpG7JE6rB4n6SVZ6IWZ9Df3Yf3ek8hGAwXziqn6zi1EfSF2/fARIu9fAPlnZAWlW6EsHanLh+enOyi8sQLXGS2xjRkWrO92EhsMc/jOp7EX59MaNtF583tAlklvOAq+GKRP7ED1aro3inGKgsRGu4W4d+rfkzOpURWjw0rZmqV0bjvCyEg3islI9sIK5n5lC0bbzMGhs2G0W0j4YhMKSE+5nmAcxWRAe0OuKgiCIAiCIAhvnPPelUkQhH9MZpcFk8VEvDuI8VTAASAxGCZeP0rlfyyeso6KJEkUXldO/ffqCHcF8J0YBZsRz4aCCUGZMxkzLBR8eA699zRSevvCKcfouo53dz9FH5sHwMArA/jWrhg7Hs/LIJKdQbjNj7Vk+voi5gI7ajhB7s2zU2aKaDGVQFuQ0L9vAaNC5Nr5GL7/AlFXJpLDQvE8G7nXV0x7vinbihpKoJS7Ma/MwzR/8vYaJduG693VxE8MY945yoJbNk47X93vniVybdXEoMyZClxoN83He6BjQmBmbD2ZVjLeVkTrvT3JoMypzKLRWXOw7OjCeFn5tNcG0F5sJ7tm8v3mrqim5ZkduGs9U5w1bnhPP9mLK8isLTmn3ZDyllfTtuMAthm2xnl39JO3oor25ukL0wuCIAiCIAjCm+Gc1ZgRBOGtIRGJ42sfJjQYIH9pKSN/PEmkYZTESHIbS3B7D9kb8lMW+5UkiZxNhfS90EX/9m7U0SjuFamLn1oKHKDp+OsG0WLqpOPenb0oTgPhVj8jL3UTHoii2sygjec8DK2ZT8/9rVPWdxmfpx/NbKD3vuaUtaoGnuoktqgQjErynrwRYkuKQFPpq11K133thFt9xAYjY/PER6JEOgLEhyP49g+i2YyonQGM8zLH5tVGIiQ6/ajD49uCDFXp+LqGCPV7p1xL1BfC2zUEczKnPD6mJotQe4BEYOotOv7GAAOLl4631Qa81TUkdvWhj07epnSa3hckUT9CcDgw6Vh6VT7xgRjBVt+05yeCcQae7aHwgvmp1/8GyFxQQrQ1SKRr8lrH1uOL4X2pj4L1c8/5egRBEARBEAThtfqHypjp7+9j+/aX6e7uQpIk8vLyWLlyFfn5r69rhyAIE+m6TufLzTQ/c4KEluDIvTuJDoZJBOPIRoXI420k/HFUGYiquD+zYMY5XTXptN+bLIJrKXYim5QZz7HXpDPwaCv9D7Rgr0nHs6UQZImuXx8n0hNCUmT6n+tG13QUf4ji3zyKJil4l1Yxuq6WSFUhgy3dKD8+RP57qydkxGhxjZGXehh8tgs1rhNoC9H92xPkvGMWBodxfFxEpf+pDoabQ4RuXYShrgvj883oCUg47RjiUYoefZC4EVoeaEfRdCRfBF0HzW5GT7PCcBiGQxjSzSglLpAguq+P0AtdqEjobiuSL4Kiqtg2FGBalgMlDl7+xn1kL6lg9mWLsXrGM2P87YNoFekTAipTkiX08nSiXQEMVZPrrARbggQ3TcxW0cxmutZvpuAnz2J+zxzkkvFME13X0RuGif7lJINXrsaxZ3KxXEmSqP23S6n70cPkX12Me75nQtAu3B2k7fcNlF+5csI9nSuSLDP/1kupu/NRst5eir0mfULdoUhHgN67G6m6cT0mZ+rtToIgCIIgCILwZjingRlVVXnyyScAKCsrp6amZtqxf/jD3dxzzz2o6sRvzn/xi19w9dXX8JGPfORcLlUQ/mXomk7db14hkohQ8qHZmDPHP6yGe4J03teMrdBO3hWlNPzoELGIOnOAAECS0CUJyarAWTbakY0yGRcU4l6RjW//AC3fOoAWU5FtRmzXz8a0OHusoLCe0Iju7SP6WDPF8X4cv3iUrg9cxtAly3F+tZ7mbx3AnGXBlGdDC2sE60fQdIgsKyF6xVxQZCIvNBD4n71Yix0Ycu0kgnFCzX6iS4sJ37oY0+PH0dtD9F66iXjWeKDDMOLD8/wuLNYY2s3zYDSC9HgDakwn9J7lIEtIg0FsDx7G2OcjcF8j4aE44ZuWoWWPByekwQDxR45ibfaimw30v30ZgzGVwe88xPKPXYqz8NT2IF1PmaE08SFKTFs4RddBmpwYGSouocN8GTn3v4wpdhKl3I0UjaN2BIhluBi6eQua2Qi7JndlArDnprP4s9fQeN8rdD90AGdVGpIiEWoLICsmZr9jI56aorNb/xvAWZzJ4k9dTeP9LzP4QBu22WkgQ6TFj8liZd4tW0iblXfe1iMIgiAIgiAIr8U5DcwcOXKYH/3oR0iSxDe/+a1px/31r3/hD3/4w5THdF3ngQfuR5YlPvzhW8/VUgXhX0bz08eJSTFK3jt7Ukcja56dWR+dR9PPj9L8i6M4q9MZ2tFLoNFLxtLUW5MCTV7MFS6irX5iPSF0VRsLqkwn1OQj87JiJIOMa1k2g1s7kGIKtg/WYiicmG0hGWQsK/Mw5NsJ/f4o+RcVof5tGwNbliFZjWhpRuJXVxF+oB61O0j0oiriG2aBYXwN0U2zQddR9rcxnG0mvqIM9UYPKDKGvR1onWF6b7gU5InrTqS76LtmM9mPvoDt+TbYVIr+rlrk+45jfrqe6MXV6Jl2gh9Yge37LxAbjBP64Kpk0OQMeqaD4HuXo/9xD4aWQRIbFqN6HHTluNlz55Ns/OqNyAYFe34G0t9GUz675IQ6Uusopsumziq0FtiwdnURqKycdCySk0vbFddh8PlwHzuKbbCT4fdeiupO1hey1zXhLpq+jow100XtrZcQ84fxtfajqxq2zenYc9NmXvc5YM9NY8FHLyfqDeFvG0DXdewXpWPLTl17RhAEQRAEQRDebOe0xsyBA3UAZGdns3jx4inHDA4Ocvfdd4/9fe7cuXzmM5/l61//Brfccgt2ux1d17n//vvp7Ow8l8sVhH96uqbR9kID+deWTttmWpIl8q8sJdjixzUnDcVtovfpjpT1WQD6nu/CvqEA+8ocDGkm/HVDKcfHBiMkvDEspwr3hhu9yEYZw1zPpKDMmQzFLuQSFwaLgtXnI+O5/UiRKPQFkVxmlJUFqOUe4hfOnhCUGbvuilISIRVz6xBqRSacCh6Znm9i8KK1k4Iy4w9GYnDzatjeAZqezCJ622xMu9tAHU9ZkeIq4bcvnBSUOXOe8NXz0aMaakYyCJIoTCdQmUPf3iYArB4ndrcdWkZSPkNaRjBnmDCmT13UOG2+i6y9u5OZM9NIuFxY+3vxXrZkLCiDrpO58zhlm2pTXx8wOa1k1paQtbDsTQvKnMnstpE5v4SsBaUiKCMIgiAIgiC8JZzTwMzJkyeRJIlVq1ZPO2br1ieJxWJIksTq1Wv4/vd/wCWXXMKyZcu46aab+e53v4fRaETXdZ555ulzuVxB+Kc3fHIAa4kDg82Ycly4M0DG8hyG9/STsbmQuC9Gz6Nt0wZnep/uIAGYylzY1xUQG40x8GAL0Z7glOPVUILuXx8n623jASLvzn50WcK0pmDG+zBvLGJ0Vz+Za7Kxd/ZinpWGqTaT+E/3oj7Xlqzl8pf9KPX9k4ISusNMbGkxSjSO9bGjoOvIfX4SRjOJ9OlbdwNoVjORvCxoPhUwMRvQy9IwHE92+pF7fOhpVvR0W8p5dKeFREkGxrbx4NXoqlm0vDy+dWjONSsx//kYTFekdySM8ts6PKtypjycCMQZfrwLT4aF7H27p11L+oF9YJWIFZ3q7KTreJ7eT1ZuGva8yXVrBEEQBEEQBEF4Y53TrUxdXV0A1NTMmXbMzp07x/73hz70oUnf4ldUVLBlyxYef/xxjhw5cm4WKgj/IqK+CCbP9C2jT4v74lhyrQzvH8S+Khddh3BviMafHCZ7UwHO6nQkCfwNXnqebCeu6nhuq0WSJBSHkczbahn86SHaf3QY9/Js0tbnYfRY0EIJvLv6GXmxm8zLSnDMyxi7ZsIfQ4uqKBmWGdcnZ1qJ+mKYMs3YqtPArBA9OoLBZcKysRA5w4LmjxPe2UjigYME3rMcLX88eyJ0aQ2EY5h2tmJoHiI6J5dE2tkVqo25XVj80fEXMm1Y/m8/4XcvBVlCy7BPf/IZtCwHij/C6X5KqsdBzBseO+4uy2HBjes59OMXiK/MR11RAC4z+KIoO7ow7u6m/LKltD94kGh7EPfaHAzpZtRgAt/Ofrzb+6i6dg3Zi8ow/uxpnI8+SE/tIkKFhSBJ2Lo68ezejWxI0P/+LaBqWBu6SHvmAG5FYv4Xrz2r+xAEQRAEQRAE4fU5p4GZkZFhAHJycqc8Ho1GaWxsRJIkSkvLKCiY+pvypUuX8fjjj9PRIbYyCcLrYbAaSQQSM45TrArBtgCRniDe3X1Imk7JTZVE+sIMvNBF5/3NoIG10A6KhOOiogldmIzZNnK/vJzgnj5G/tbE6M4+UHUM6SZci7Mo+cwCDC7ThGvKFgXJKKMF4yiW1G9NeiCObFFQgwkks0Jw3wC2d1VjmjuxvbRprodEpx/pNzvxf2g1Ws6p4IssEbpsLu76PiwOGfn5k4Qzpq+nMuEZhiNgOSOIE07gvWIBzoeOEl9VghSMTn/yGaRgDM0ynrkkByMo1omZTJm1xaz7yg10bD9G168PkQjFMNjNFK6YTeF/r8NoM1O4bg49O07S+dtjxAMRFLOR3KWV1HxxAyZXsrDzso9fjLe5j4anDjOy/Tn0mApWibT12QSaYljvfAAkCVOxg7S35xN8toe2p+oov3zpWd2LIAiCIAiCIAh/v3MamInFYgCYzVN/Q9/Q0ICqqkiSxNy5c6edJycnmaofDAbe+EUKwr+QjNnZHPrjLrS4hmycfiejo9xF10Mt5F5aTO/WDtyrcxna2UfOpkIcZRO3+4weGqR3zwDW6owJr0sGGceqPKJHh8nckE+sJ0TCHyPzsontm09zLswk/nwXsT29WC8pS3kf0Ve6cC/MZHRXH7rNgOWikklBmdMMhU6cN1SiPnyYwIfGt1WadrRiXpqL/dJSdE1H/9pe5FAEzTZ9xo4UT2Bt6YJ3nppH1eDoAJGLlxKryiPzrueRVA3CcbCm2C4WTaA0DxF7x6rx+9/TSuGSiklDjXYz5RcvovziRVPfn8VE0QXzKLpg3vTrliTSKnJZ9m+5NOw8Qs/Wg3hun48kSzg3TR5vKnHR+a06CtbWYHan3pYlCIIgCIIgCMLrc05rzFityW9rR0dHpzx+4sR4PYXZsyd3DTnt9O4mTZuuJ6wgCNPREhqR0TCxQBTFpJC7sIj+5zqJjUZJBONT1o3p2dqBOdOKbFRwLc0mY2MB/du6SYTik8a653mIt/iI94amvL59fT79D7Vgm52Gb3c/CW9synHOBZkkRqPEd/Sg+abPOtG8UeIHBjDnWFGDCaINXsyrp+5KdJphdjqGkSDSyKk1hmKYn23ANDcZTJJkCeuqHDK270s5j3vPYZifBaezg17pIFKZi241oWY4iOeloduMWLdO3Wb6NNPzjYTnFoCSfHOT/RGce1ooXFsNJIs0R30hor4Q+qn3vUQ0TmQkQCI6+WfwWozsb8W2KS9lO27JKGNbm0PnC4df17UEQRAEQRAEQZjZOc2YycnJoaWlhePHj03Zlamu7sDY/66pmT5jZnTUC4Ddfna1GwRBgGC/n8anjtN3qAuD24ye0NCjKpIOMV+Y0f0DoIMOZK3Px7MqBy2h0fzr4/hPjlLwtjICTV5c6/MxuE14Livh5I8PU/HBOZgzrWPXkWSJ/EuKaP9BHZ6PzMN8KqNGj6sEXu4h+GIPkqbR9evjqFGVtu/VUfhvczHnTfz3HBsIJzNXEhqBn9Rh/+A8lJyJY9SeIIG7DpK+OoeePzdiqnSjmQ1IRoVUJEnCWJOB0jqMquq4fr8T0PHffQLXe+dgKHRi3VRI+s+Poj+3k+F1S9GNZ7w9qiruPUdIa2iAjy9LZsq80oG2sxvvRzePDQvPLcTx5CFs3UGGnzxB6MJKOHNtCQ3TMycxvdSMlO4k++uPEZmTi7Oxn/k3rkHXdE4+tJvOHfVo9lNbvbwRZKOReEJDd9mRA2GcOW5mX7IAT03h2f9CnBLqHCbznTOfZ6nNYPjPnUzO4REEQRAEQRAE4Y10TgMzc+fOo7m5mUcffZRrrrkWm208Jb6vr499+/YhSRJZWVkUFxdPO09TU7KFbG7u1LVqBEGYaKi+j/2/24H90iKyrlqCdKptdGIkSuCZDqydCrUfn49iMRAZCtPxWBtHnmwnHoyRNtdD9oYCZIOMrupjWR3u5dkoNgONvziG0WXCWeFC13S8x0dAlpB0nfDDLYyMRrEuzCS8fwBnrYfST83H4E4GGbS4xuBjrbR9/xDGTAuOmnSQIFjvJdYfQouqyCYZwnH8P9qPkmnFUO1B13XihwfR/TFkGXx7B9DjGpI/juxI3WHqNBmwbT2B0QC5byum654m4gkd/2+PItuNGOd4kGUV9+F6XIcbCM4uJu50ovgC2I80g8eSzJZ5rAGO9BOdlcPoRzejW8dr5egGmbxllcy5ZgUn7t9Jz7eeI1qTQ9xlRh4MohzvIzinhP4v3IBuNCBFYjh316PEezHaLbz8jfvwryom8pkN41uhwnGMO1oxvNJBz9suIOF2YO7qZ+S+XVQ09FB11bLX9LuhqxqSchbJkoo0lq0jCIIgCIIgCMK5c04DM5dccgmPPPIww8PD3H77Z3nf+95HXl4+7e3t/OpXvxqrL7Nly0Up56mrO4AkSZSXl5/L5QrCP4XIaJj9v91B+m1zMZyR2QJgSDeT9vZZBF7spv7uemo+PBeLx0rle6ppe6SFoSNDlH+whtHDQ4zWDWLJsRJp82MtSRa7dczLwDEvg3Cbn2h3EEmSyLlpNpIs0fa9Omo/Pp+9X95Fon4Uz0VFpK/Nm3B92SiTfXU5aWvyaP1uHTGDjCHNjOuGLIx5dgbvPAxGBdsiD6H9A8S7Q4S3tiCbDaStz4WEjsFpwphpwT4nHV3Vafn+QXRdn9TR7dXUVi/5F+WRtiKH+HAEORrH9M65GBbkoPcGiL3SiRRWyfjKCkDHdXwYPeiDUgOBZonhC+cix1S0HCPRi5ZMCMicZmsfJq08D9moUHPDGqquWcHg4XaO/OklBpZU4vvsenTTeCBJt5jwra8lWpBJ4iePE/zActRZWRMntRqJb6pELUoj769P0PHB64kW5tD6rsvR/rIVZ14D+cun3wr6aiaPg1i7H3OFO+W4WJsfe65oly0IgiAIgiAI59o5DcxUVlZy+eWX89hjj9HU1MSXvvSlSWPS0tK57rrrpp1jaGiIAweSW55qa+efs7UKwj+L1hdOYt2QPykocyb7ujwGX+khMhTB4kkWuy2+vJTBvf3E/THcczPo/FsT5bfW0PybE6Sty5sQ+LCWOMeCNQB99zZhy7MxfGiQjHkZjLb4JgVlzmTKsuLZXEhUA/vK8Uy4jFuq6f2fPXg+MAf78lzU0Sh9Pz2EpIHngsJJnZwALHk2EidHMFZlTDp2mjoURo4kSFuRLCQ+8mIPpnwbsWiyQ5WU64B2H46bqpFOFUU2zR8PkCR6giiBCMH11dNeg7iK43AnuTesG3tJMRmQDQqhijy8WyZv5zxNjsaIV2VNDsqcQavMQityYWvsIDS7BBSF7kvX4njomdcUmMlYWMrwtrYZAzPhF/upfOeFZz2vIAiCIAiCIAh/n3Na/BfgYx/7OJdddjkAuq5P+JOensFXv/o/OByOac+///770TQNWZZZvvy1pewLwr+KQK+P+ocOcehPu2l9oQFj6fT/piBZc8W6Jo++HT3jr8kS2atyGdnTjyRL5G4povuBFuwlTgYebp2ySDBA4OgQ4ZOj5F9TTvfzXWiqTvqG1MV4AdJW5xLe0w9AYiiC78k2/E+0ITuM+B5tQYupDP72ONZLyzBfWkrHz4+ixdRJ82RdUkz43pNo3ijqYJjgk6347m0g8GgziU4/eiRB6PdHyTrVDSp4cpTA4SFy3zELaWc3ekJD3daGFE1MqmlzmnVdAe6X6jF0jUx9M5pG9p93UbKxBsU0Md7d9OIxhpanCOgAzn0niV0wa6ZHRmJdKa6Dx8b/nu4ibDQR6Bom0D1Mw4M7OfanF2h8aDfB3qnXaivLRPbphE49+6kEnu/GarXjLJ4+UCQIgiAIgiAIwhvjnGbMACiKwqc+9Smuvvpqdux4hf7+fgwGI5WVlaxfvx6LZfrWtAAWi5nrr7+ejAwPLlfqb3gF4V9N1Bdh3y+3Ew1Hca7KwlBoJjO3mNEHmvHJEhm3VKOkTd2u3pBtJbJ/Ygt6W46N4aZRADLX5uFvGCVQP4Ix3UzXz4+SsbkQ6yw3kiQRGwgz8nwX4QYvlbfVYnAYCPWFCPYEKVyVM+PaFbsRLaoy9MujqEMR0lbnYip24Cx1MrKtm94v7cK4Lh+52EXwR/tB1Wj55n4yLy3GtTgLySCjBuMET4yg+qIMf2MPmtuKf20VaoEdORDB+dcGlH4/2RfmYS6w039/M4GjwxR9dB6GDDPqQBDpGy9jyreh501fXFx2mnB/sAZ+/SKBBSUE1s5Gc9tA0zAf68bz3HGKKvOZdenkrJjoSJB4lmuKWc/4WYwGCWc7U44BULMcWLzBCa9FMtwcvOtJsEg4V2ViKDIRGh2l7ldPYLLamP+hizC7xut7SZLE4o+/jf0/ehhvow/bhjyM+cl7j7X5CT7fgzEos+DjV8y4HkEQBEEQBEEQXr9zHpg5rbS0lNLS0td83rvf/Z43fjGC8E8gFojyyneeJu3yQrIXZk44lrYmD/+RYfp+coisTy5AmWILkB5WMZgmdjNKRBJo0WRWykjdIN6jIxjTTRjTzAROeun61XF0VUc2ypjSzWStz6f02nJko0LcF0PPsKHZjWiRyZktr6aGE+jhBO7aDNJWTSzs7V6RQ6jJS+edR4k+10HaOypxrMol3hvC/2IXA4+1n74LEr4YmtWM94pFhJaWTZgnvLwcU0Mv/OYl/PsHyNhYQOkVJcgmhaEXujA4TWR/cj6JwQgjT3akXK8h30HG7Ysx3HUI58FW0EALJ7Bnu1lw8wbcZdlTniebDMiROJpt+iC0ZjIgReLo1tSFjKVIYmK3KEAfDWBbloZnS9GE19PW5OGvG2TPdx5g+Reuw+QYv77RYWHZv1/PwP5m2u47yMiQP5lFleVi1uYlZNaWpGynLQiCIAiCIAjCG+e8BWYEQXhjnXj4EI512ThfFZQ5zTkvAzUQx/dIC+k3VU06HtnXT976iVuO+nb2EQ/FAWj/cwOzPjqPUJufRChOxQdqUq5naE8/6txs1EIXIy+14pg7fc0XgN6/NJK+IX9SUOY0W4WbvPdV0f9QK45TY4y5NtLeMbGeSv9vjtOfmzcpKHNarDKXkXeuwF53krTVyXnUUILhpzvJ+dJSZIsBY4GC2h1ADyeQrCneFk0yeKMU/MdiZIsBPaEx+P8OTgh6vFrBwlJ6DzYzfMGCaceEqoqx7ukgdtHkn9OZDPs6CVSWjv1disWx9Q2Q/rGp69c4F2aS8MVpfHgXNe/aMOGYrMjkLJtFzrKZt1AJgiAIgiAIgnDunPMaM6/27nffzHve8266urrO+pz+/r6x8wRBgEQ0Qf/BTtzTBDVOcy/LJtrgRQsnJrwe7w2i9oRwV4933Qm0+ZNBGUWif1sXis2AvcRBxvJshnb0kgjEp72OGknQ+2IP6upiqMkm1B4gNhCedrwW1wgeHSbjwsKU63fMzQA92eZ7KrqqEW0LEFyfOqARqS0i1B0i4YsBMPJSN7YVOciWZBBGUmRsS7MIP9+Wcp7ojm4s1Wnj5xlkrBvzaHv+0LTnFK2bQ9q+BuTQGfegack/pwRryzC/0Aih2PQXD8Uw7WjDv3C8Xo1712HSlmUiG6d/K3evymHgYCtqdPqfnyAIgiAIgiAIb57znjHT19eHJEkkEomZB5+SSKhj5wmCAL72ESzlrpQfyAEkRcJelUasxYelJpnBEusMMPqbY8x5f83Yvylfs5djdxzGuSaHxHCU7ifaQIND/7kLLa4hKRKHv7yL7I0F5GwuwmAbf+uI+2KcvOsYsWWFSH86hNTuRU1otH23juJPzsecP7F2ixpJ0HnXMUx5dhRb6rcgSZJwzvcQbRzFsGy8bo0e1wjt7SfwbAdRtwPdnHoLEJJEuKaAUKMX2+w0Rl7sIfNj89HjKsE9/YRe6kaLqOhRFd+uPowbC7Gsykc6FYDRdZ3Y3l7i27vI/tTEzBfbQg+DPzkx7aWNdjM11y5H/fVWRuaV4DjcjBxPvv9pBoXA/HLSjrVTsHQWvXftwPv+5ejuiR21JG8Y6692M7R+WXJLlKbj3n8Mz/4j5P73opS3LhtlrOVOfO2DpFdO3ylLEARBEARBEIQ3h9jKJAhvQVpcRTadZcKbBKHDQ8T7Q4T3DpDoD5M2y02wM4Cvycvg/gF0oPT91XQ92AJmhcJb52ItTRas1WIqvj0DDD3VQXAwwpGv7Cb7ggKMTiPeYyP4T44Sr81FeqEVvTYH7dM1kG0n2jRM6x0HMLmMpK3MRTJIhJt8+A8OoWk6torUBXFPk00yanw8u0QLJxi68zDOYidFV5ZSvzeQ4uxxqkFh6Ll2eu9tQk/o6KrGwA8OYqtwUfShGoyn2oYnfDGGn+ti9Ou7MG0ohLhG/EA/xjwbWZ9cgGybGASSTApaPHVNncyaQkwP7cYeHiHy4eXo6clivNJoGPvzjZgjUaquWkZ2cx/Hf7aDWJ6TUGVyi5rpSC9yyzCh8mKkhEbGi/vIONaII8OBcWEGsllJdenxNSZmrvsjCIIgCIIgCML595YIzASDyS4kZvPU3WUE4V+NLctBtCt0VmNjXUHsRQ6GH2+j8LZ59P+5EUOmmbA/hmSQKXpXJdY8O12PtGAucZJz46wJ2WmySSFtTS72OWl0/OQw2e+ooO+BFkxrCjCsKcR2YQm+Ow+hXV4J60vHL1yRQfx/LiTeMERoayNy8zDupdmUfGEBoUYfg4+2oev6jJlwka4glrXjHdmGf3Oc3DV5ZK7OJe6LYXi0C3QdZpjH1D6MtCAH18YiAr84yMgf6sm8sBD38olFew0uE9lXl2GrctPzh5PoZoWcTy5AcU/9/hPvCmJN0XVJ13X2/ORxvJdXE19QMPFYmpXINbWolZns/sljrP3Pt5OzqIzh41142wYAcF+6HHtBOgP7W4gGI5iL7eRcfQ0xX4hD//dMyns+LdYdxJp5doEwQRAEQRAEQRDOr7dEYObZZ5MfPnJyZm7BKwj/CmxZDowGA9Hu4KStQmeKDYRJjEQp+dwitJhK8OgIliwrRddPLPiqRlWGd/dT9uWl0wZKjBkWPJcWE2nx41zgIZ5hxlidgdoXRMqwTAzKnKnSg17pQbv3KIpVxZxtx5xtJ3hkhHBDcmvRdBKBOJE2P+73JgMzsQ4/iqqReaqIr9FlwpZuxNg2RLx06iLIALI3hNkbwHJBNZIkYVqQjbare1JQ5kyOORnYKtPQ3eZpgzIAoZd6mbVx4bTHR050EXSZJgVlzhSfl0foQDdDRzvIrC3GU1OIp2Zi/Z2iC+ZN+LvJZYVI8mdsypq49elMka4gBsWMbYaW3YIgCIIgCIIgvDnOeWDmc5+7fcrXv/vd72CxTN/JBCAWi9Pb28Po6CiSJLFkyZJzsURBeEuafUUtR/60n8KPz0O2TN7OosVU+v7QgKIoeI8Mk7u5iJM/OkT5B+eQCCUY2T9AdCRKfDhC3BvFXutBMqTeHuVclMXgI20UfHQuXfc0YpybSeDeBjSPDemPh5BsCrrTgl6RAWVpySyWUByprgdJkRh+vhvHIg/+3QOE2vxE7q6n9N8XY3BMrhGjqxpdvzyGFlXRwwk0wPdA86ROUsWXFBK8Zxc9t21Bt01uC05CxXPPDmxbisaCTmqLl6yLiiaPfRXP5kK6/nhy2uPho0Po3VGy5pdMO6Z521ECq0tnvFZgTSnNLxzBM7eIoaMdjLb1A5BWko1nbtGU7asrrlhG4x92UfCxOcimKX4HIir9/9dE9bXrZry+IAiCIAiCIAhvjnMemDl48CCSJKHr+thruq5TX1//mubJy8vjxhvf+UYvTxDesrLn5VMxHKTxe4dIv7QQ54JMJEVC13QCh4cYeaKT7Oo8+o/00Hr3CTyrcpCMEkN7+vH94SRSjpVYZxBptgeMRnJLHDNeUzbKKE4jstVAvC+M97v7UBfkQo4DgnHk3Z0YZB3lZB+xgIqWYUXpC5C2NAtzsYVEegk9v65HVXVYV4w6EqHlm/vJelspriVZyEYZXdMJnhih/74W4rKEXptF9//sAbOCYlGwFU7MEHJUuCm7OA/px1sZ3jKP8IJiMCig6ZhP9JC29SD2+elYlo13sNIGw5gLps80Os1cYEcbjuL9WzP2jXkYMpOZKYmRKKGXekgc9bHsM1chydMHtEIDPrT81F2jANQCN4GuIbZ96U8kipzEZyU7Zhm3H8Bwz4tUX7uK3KUVE87JWVxOZNhP+/cPk3FpAY5aD5Isoas6/oODjDzRRemWxWTOLZ7x+oIgCIIgCIIgvDnOeWCmtrZ2wtaIQ4cOIUkSlZWVKTNmJEnCaDTh8WRQUzOXjRs3YrVOn64vCP+KStZXklGeRdMzJ2h9cF8yMKPqZFbnMGvTHE4+eZS8D1djTDcz8EgriZBK3GHEsiqHYKMfw3+sQbIaUJ9uRotqM18Q0KIqnb+tR11djH5pJZyRyZHYVEbiaD/mB49RdFMlPXfXk/POShxzxttye7YU4T80RM8DrcgfWwobihl4oY3++5qQZAnJqGDIsRIbDqNnWODwIPKmUpQLS+E3dVOuM3NZNo5iB93PtzPyeB26LKMFYhjnerBfX46hdOI2Hskoo8Vmvl8tpmJOs1NUWknbbw8RD0UAMJiNFG+oJf8/qzHM0BFKNioQm7nwrhRNEIvE0L6wBpzjW6diq4qI+aMc+dUeEtEYhWvmTDivZPMC0mcX0PZMHa337QdFAlXHU1PEolsvw1HomfHagiAIgiAIgiC8ec55YOZ73/v+hL9fdNEWAD73uc9TUjJ9+r8gCGfHWZjGwveuBEDX9GTGhKbx3H8+Qv5tczBlWtF1Hd++AawLPFiX5dD/6xMon1mBdKrdtlSVyeij9aSvS91OOdYfRld1ojku9MtnTz1objZRVWPg2XaKPzWf9h8fxv5fS5CU8awS53wPekKn7/4TyO9bgPSOGvRrqol/fTtpFxXhXJdPtNFL/52HkdcUYthSBoBW5WHowAC2osnZPZYcG+U3VgAVDO7spa81iPX6qdeoVGfg2zdA1uWp34P8B4bInFdC4bo5FK6bk8z805lyW9F0cuYWM3ywm8gFs1KOM+7vRFuWPyEoM8ZpJvaRxdR/byfZC0oxOSYGqV3FmdS+fzMw/jsgCIIgCIIgCMJbw1n2233jbN68hc2bt+BwzLxtQhCE1+b0B/L+Q91Yyp2YTm29CdaPAuC6vBT/i91IF5aMBWUA5GIX8bBKpCN16+mhpzpIRFW0i1MHGajNITIQAVnCXpWG/+DQpCHORR6k3gC6L5pcu1FGuXwW3q3tAJjKXaDIKKeCMgDSsnyG9gyQCManvbSW0Oh5rB3DGVuXXs24JIeRbd2o4cS0Y/SEhve5Hoo3zR+/viS95qBHyYa52Ha0QnT6axFTMW9rhA2l04+xGkmsLKDjxeMpryeCMoIgCIIgCILw1nLeuzJ9/vOfP9+XFIS3pKgvQtu2Brp2taAlNNSoCjJIgGRQSCvNoPzCatIrsyZ1Uuo52Il9yfgWlsD+QRSnCS0Qx79vCP3QKDzeimSUMSzLRVmVj3T5LDruOELRx2uxvKr+iq7pDG3tIDYYRnOYwZ26cDeShLogl+DxEVxLshjd2Ydrcdarhkg4F3jw1g+hLEsW9JUX5aLeewKARH8YOd8BOqjPtKDv7YG4CnGNI9/YR9nNs3HPyZgwpxZXOfmbk3hzs7DdU4/rYwuRX1VYWI+pRP/aSMbsArp/dpz8W6tR7BPHaDGVjjuPEvHH2fG9h8mZX0LZhbXYc9JS3/cUTC4rs7Ys5OSvdjH6/uVgfdXWp0gcx89fQV+eD2mpn6u6JI/ePx6n4rLFr3kdgiAIgiAIgiD8Y/qHbZfd3d2N1+slNzeX9PT0mU8QhH8igyd6Ofi7nWSuz2PWZ2sx2IxoCY3Rg4P0be0gbUkW9mInRx/ahys7nfnvXjEhU0KNJTBZxv95J8JxYhGNrj+3M3TtOsJVhSDLyMEIzj31uL+3F+OV5Rg8Fnp+X4/iNOJekYNsUYh2B/G+0otiNxAfjULO2bVd1s0G9FgC2WpAn6bGimJR4IxaL2d2hdJjKrqmo/5gF47VuTg+OR/FYUTXdCJHhmj5axMGcyv5WwqRFRnviVEGj4wysrKG0bW1ZN39NNr/24Ox2oO5Jj0ZLGr0oh4dpnTzAsq2LKRnZz0N39mFdbYL6xw3kgSBYyN4D4/g3TAH/0drIK4yUNdO948fp/rihRSvr3mtP05KN9WimAyc/N42YtXZhCs9IElYGgYxH+sDdKIXlM04D2YDaixF5o0gCIIgCIIgCG855z0wMzIywksvvQjAhRdeiN0+cUtTV1cXX//612hqahp7bfXq1XzmM5/F6XSe17UKwpsh0Ovj4O93UfGJeZg94xkUskEmY0k2afMzafr5EUwuExUfm0fHnxs58UAdc65bNDbWmm4n1BPEWp4MoiTCOsH0dPrfexGcUetFs1vwblxAcG4peb97EqQEs/57KdHWAP7DQ8R6Q6gRFfucdCylTuxz0mn+0RFUXU+2wk5B6Q9iWOAi1hvCkD5F3RQg0hdGWjAeeNVHImPFhHUdpL4g2Z9diDHHNjZGkiWs8zOxzM1g8BfHaN3eB94o/sxsBj91Pbox+bYmo+N/3wrk0QjG1mFMx/soWzSLiv+9FMWUHJO3soqcZZX0H2ih/0ATfcc7GbpwLqGrNoDxVPtpo0JoWRnh2kK0nz+PxW0je0HpTD/GSYrWzqFg5Wz69jUz0tqPDqRXlZF782b2/uxJon1BKE1LPUl/EGuG2AYqCIIgCIIgCP9MznuNme3bt/PTn/6UBx54YFJQJhaL8cUvfpGmpiZ0XR/788orr/CVr3z5fC9VEN4UjU8cJe+q4glBmTPJRpnS91bTu7UDgKIbKuje00Y8FBsbk7ugkKFnOoFkrZRwb5iBd184IShzpkSWm5GNC1ENRsINPqzlLrKvKqPw1rmUfHI+ue+sJG1VLsY0M+ZsCzSNpL6JSAK5YRBHTTojL/WQtmpyvRc1nCDU4EWqGt+OpG5rw5CVDOKEdvfhvrpsQlDmTJIi43lfNQyE0UajDNywfiwoo3iDGEYDaMUZJBYUENk0G5MmUXnNyrGgzNjzVGRyl1YQCsbou2UdoXVV40GZM+gWI303reL4Q3tS33sKskEhb0UlNTesYe4Na8hfNRvZoFC2bi6m7R0znm/a3kHp+rl/9/UFQRAEQRAEQfjHc94DM/v27UOSJNasWTPp2FNPPUVPTzcAq1at4qMf/SgrV65E13WOHj3KCy88f76XKwjnVSKaYKi+j7T5qVscG50mbMUO/PWjSIpM+rIsuna0jB3vO9pNPKLR8fOjdNx5hMCsQnRT6rbO0aIstNEInb87gf/wEP6jQ4y81IN3Zx/xkWSB3mhvCLU/hHLPYYhMs6VG11HuPYq10M7Ao61IJhlz/uSaNT1/bUJaWzTWrUnr8qO90oXn/TVoCY3w/gHsy7JTrlm2GLDMchHNSgfDqYCLquF58GVim2Yls3o0Hed9hyjfsmDKwrihPi9tT9XhbRuEhJpM1ZmCoXsEc1M/4VCUnp0nkx2a3iCZ84sx9YTg5OD0g04OYuoJkVlb/IZdVxAEQRAEQRCEN99538rU2Zn8VnjOnMl1Gp577jkAFi5cyP/8z1cBuPrqa/jCF77AgQP7eeGFF9i48YLzt1hBOM+io2HMWdYJraWnYytxEukL4ZqTjq3Egf+kDy2hceA3r9B/qAvPAg/mHBsjh4YJF6foUNQ7TO6jO7AlouRcWIBslBl9vptQdxB3dRqmbBtdPz2MGlbBKOFamk2kN0Tg/21Hva4G5mSNbT+iy4f84HFMsTiW2nRCJ0ZJDEfx7RvAtSRZ/DfSEaDvkTZibivSBSXo0QTa7h7URxtxX1aMlNAZuusoktWANEXmyquZZ7kJuR2g65jbB0h/ag96RTrx5cXI7SM4Hz9BYVE2xRvnTTgv0DnEwT+9jD8UY7SiGHXJPKwvtOC+dx/+i+YSWVqafD5N/bgeqkNTjITLChmeW8W+Z47jeLyOuW9fQVZt6pbbZ0OSZZZ94nJ2ff9host8qKuLwHYqkBaKo7zSgXlPL8s+cyWSfN7j6YIgCIIgCIIgnEPnPTDj9XoByMzMnPB6NBrlxInjSJLEZZddPuHYJZdcwoED+2loaDhv6xSEN4OkSOiqNvNAkluUZHPyw7uW0JAkie3f3Iql3Mb8b61CPtUOW5ck2tWpi++aOgcp+suzzHv/bFzl7rHXiy4tIeaNUf+bY7jKjCz5ynKGDw/R/LdG3Ktyycq0EGn307e1jdAfD4HDhB6OY8owk72lEOdCT7JT1CUlxL1ROu84Qt8jrYCEHkkk21Q7g/C1l8EfQ0fH4DISfLkX/1MdONbkogViU655koSO65XjpO9rTMaHonEkXYVvPIM908Wsi5eQNX9i8MTXNsCuO56i/W0biRaNB628gBIIkf3gcyj+CPFcN64H6ui7djPx7PEtV6PrFmMY8RH569PMD8XIX1F5dmtNwepxsuaL19H2/BE6vr8L3ZZ8e5ZCCYrWzqHki2sw2mfohiUIgiAIgiAIwlvOeQ/MBAIBAORXfet7/PhxEokEkiSxePHEVrC5uckPTqOjo+dljYLwZrFm2IiPxEiE4hhsqbcejR4eovTmKgB8h0cwS2ZMBWaKrq+YMM5V6Sbt4VYCK6onTqDp5N/7PAs/WoPtVVuNAExuEzW31XLo2/tJm5OOZ34mikmm5Q/1FH16AZZiJyUfmkMiEKPpy3so+fR8LEWTC3Qb3WZKPruQ5m/Xob93Pkq+E1QV+kKoPz+A49OLMebY0Pwx/D/cT87nFqF4LIQPD6N6oyjuqQsHnxba149J0bjg6+9EMRnQ4iqJcAzFYpxUTwaS26j23vUMrddfNCHYcprqsNF7wyUU/Pp+7LE4Xe+9CtU1ueBuIt1F6zsvR/7dg2TWFGJyWlOu82wY7RZmXbGUisuWkAgnt48ZrOYpt2AJgiAIgiAIgvDP4bznxFutyQ8vw8PDE14/ePAgACUlJZO6LxlO1Y5QlJm3NQjCW5kkyxStqWBwW0/KccFWH5IiY8m1ERuNEmzyMXi8j/wrSyeNtZc6sQQCGPpHJ7xuaegirdg+ZVDmNMWkUHhxMT3bugBIq85A0iHaExwbE27y4ZzvmTIoc5psVsjcUgC7kzWkFEVBiiTQYxqKzYCkyKjNXqw1GRgyrUiShH1NHv7nu1I+h3hPMNmKW9fHMo1ko4LJZZ0yKAMwfLyTYJZnyqDMabrRQLggh2BV6ZRBmdM0m4XhhXNof/FYynW+VpIsYbRbMNotIigjCIIgCIIgCP/kznvGTFFRESdOnGDv3j2sWLFi7PXt219CkiTmz58/6ZzTQZz09PRJxwThn03Z5ipe/tZTmLIsZCxNFr+NDkUYeLEb3+Eh1JiGFlPJWp/P6JEhWn9XjxZTUSwK9d+pA/Rk/Vo9GRBJq82g5LICEn98ms53b8HcNUjGnuOYBrwUvrdqxvV4FmfR9sh4YeGcFTl4Dw5hzksGdPwHh3Cvnr6GzWmupdn0b92PtjgXfWszWtMIkqTg/+5ebNfPJlbXT9qmgrHxjjW5DPzoEMFXerCvzps0X+jAAKN/bUQyyui6zu7vPcjsq1bimVuUMpjRsaeZwXkzbz0y+oIMbVk54zjv/Eo679vKrMuXzDhWEARBEARBEATh1c57YGb58hUcP36cxx57jOLiYubNq+Wpp56ira0NSZJYu3bdpHMaG5O1ZTyezEnHBOGfjcFiZNXtm9n/i+0MvdiLMdNEsMlHwZYiyv9jKbJJJjoYoeuZDlp/cwIUibxLislcm4fRZSIRiDP4Sg+D23vJu6wYNazS/UgrngoXys8eIm1hFrk3FdP7eBsGe+rtUgCyQYYzGhAZHSb0gfDY37WIimKf+a1ENsoQiiP99Rhpl5Vg+VA1yBKxNj++J9tJNPtgU+HYeMmokHlbLcN3nyDwSi+OtXkYsq1owQSj9zUhWw2k3zwby5xk5kus1cfJbXuRH9vDkk9cgdE29RaoWCSGZk29PQpAjsfPapxqNaNFzrIejiAIgiAIgiAIwquc98DM1VdfxSOPPMzw8DA//elPJxybM2cOCxcunHTOzp07kSSJqqqZv90XhH8GJoeZlZ+5kMbHj9K1r5lFX1qGYh7fymfJslLxztnkrM3j+F1H8azOxegyAWBwGMm9qBjPylwafnSI4psqqfzEfI59bR+zPjIXZ2UakKz9EhkI4yx1pVxLIhQfKyQMEB4IoZy6FoDBZSI+GMFSMP2WH4BEII5kkMn5/KJkYeBTzKUusj4yj+DOXkbuOUnOfywZy3iRrQYyb51HvC9EaGcvkRMjxDoDWGoySHt7xcR5yt2Yy90Ed/Sy78ePsuLz106ZOWNz2zCM+okW5qRcr2q1YBjxozqn3+oFYBzxY3SnHiMIgiAIgiAIgjCd815jxm538O1v/z9mzapE1/WxP/Pm1fKlL/3XpPFNTU3U19cDTCoKLAj/zHRNp2N7EzW31U4IypzJUeSk8OJi+qeoxWJ0mSi9pYruR9oY3tNPzoUFY0EZgIwVOfS+1D3jOvpe6SVrWXJLla7r9O3oxbU0a+y4e2U2wzPUggEY2daNfWPBhGDKmewrczHk2ogcGZp8Lzk23FeV476iFElnUlBmwjyrctHcEkNHO6Y8XrK2iuwDx2dcr2azkL770IzjMg4cp2ytCBoLgiAIgiAIgvD3Oe8ZM5As8HvnnXfS09PDyMgIGRkZY52XpnL77Z8DYNGiRedriYLwphs42oO9xIHRaUo5Lnt5Dp1f3U3BlaVIysRYq63YiRpJMLi9h6rbF048VuRAAwYP9JO5KHvKuaPDEXq2dTH/c8mgaPdznRgyLSjO8S1QBqeJaFcQ/6EhnPM9U84TG4ww+nIvOV9MXYfFdVERI39uwDp/6m2LvqfacVwwfXDnNOv6HFqfqSOztnjSMWdRJi6TjON4C4E5ZcjBMJauftA04p404lnpKN4AzrZ2JKOMub2XaPHU70+mviHSmtrJu2XmWjSCIAiCIAiCIAhTeVMCM6fl5eWRlze5qOeZKioqqKioSDlGEP4Z+btGcVZM3+noNMWsYE43E/fHMaVNroliL3XiOzoyZYCn7ANzaPjRISL9YXLXF2CwJt8SdE1n+PAQrfc3MevmKiQJmu9tYKhuEHOujdav7SPtggIUh4HBh1rJu6mSnrvriV9ajHtNLoplfB7/wUF6/9KM66oS5Blq2piKnCT6w/if7cS+Ng/5VKaQrmqEDw4SOTyM88KiGZ+JqczFYG/TtMeX/dsWYt98gNCOfRiiESxz0pEMEtF9AeIBFSkUI+u9lRg9FrjjGQaWL8Y/fza68dRbZkLFcbyZ/O37WH7bxdN2gBIEQRAEQRAEQZiJ+DQhCP+oJAld02ceB+ga03Yi0rXkdsGpGJ0mZn9mIf3PdXLg63sxp5nRNJ1IXwgAU7qZtgebiYcSeFbnUvPlZchGmbg3Suvd9UT9MQpunYspx4pyfwtyKEHbNw9gyrKAIhHrCZGIqKgamApnDjLpug46aB1++r/RhSHbiiRLxPvCWIrsoOtwNs9khiHxUBRZT5B7WR6W2swJzy7eF2LoF0fx3tOIucCJxaKQu2M/Wdv3o+YmM4KMg6PkzC+m8vNXYvXMfF+CIAiCIAiCIAjTeVMDM5qmUVdXx/HjxxgeHiEajfC+970fj2d8O0Q8HkdVVWRZxmRKvaVDEP6ZZFRkcuLRDvIvKEw5Lh6ME/fHMDgmZ6Pouk6gwYtiMRAdimD2WCaNMdgM5F9RSt6lxdT/8gQds0qwtA/i7h/CPS8dz8pcTBmWCcELo9vMrNtqabjjMLGBMGowjjXfTsGVZeRdVkJsOIKu6vhOjBAajaGjE64bxFSYukBw9OQo1jInBe+rRlc14kNRdE3HmG5GNiv0P9RC+PAQxrzUxXYjx0dwl01d3FfXdep+/iSu98zCXDa58LExx0b27YsY/O4hqjYtx1GQgSXDgRZXCQ/5QdexeJwiS0YQBEEQBEEQhDfEeS/+e9rOnTu55Zb38B//8e/cfffdPProIzz99NMEAoEJ45544nGuuupK3v726wmHw9PMJgj/fNIqMomNxAj3h1KO632xi4xVuVNmzPiOj2DNs5O9IZ/+ZztTzpMIJQh2hwitqcR3QQ36aJS8y0sxZ1qnnFuSJQqvLmP0uS5Gnu0iZ0M+kGyvbcm2YcmxMfhKH+nr8sjcUkRoZy96XJ32+rqu43+incyLk1uVJEXGlG3FnGsb29KUcUEBwe096Akt5Tzh53sovXDhlMdHG3og3TBlUOY02WrAviWfgaNtWDKSwSTZqGDPTcOely6CMoIgCIIgCIIgvGHelMDM448/xle+8mX6+vrQdR2XyzXtVotLL70Mu91OJBLh5ZdfPs8rFYTzQ9d0+g52sfunL/DiVx/n5W9tpenJY5ReWMWRH9QRG41Oed5Q3QB9O/rIWp8/6Vi4K0Dr705gzDRjzrcxtKuPgZd7ppwnEYxz/I5jDF2xGGQZU9sQmavzZiyyaytyEh+OQEzFWZ0+fj+qRuvd9djmpGH0WFDsRtLW5DJw5xH0+OSgiq7r+B5pRZZ0rLPc017P4DLhXprF0F1HpwzO6LqO/+E2HC437vKpCxp37z6JZeXUxYUn3NuSLPrrWmYcJwiCIAiCIAiC8Hqc9699Ozs7+clPfgLAwoUL+djHPk5xcTEXXbRlyvFGo5G1a9fy5JNPsm/fXjZv3nw+lysI51xoKMien7yAOd+K58JcLDlW1IjKyN4BBh7sAlni0HcP4FmQSdaKHBSLQqQ/TM+2bqKjEbSYSuvdJ8i5sBBTmpm4L8bA9h4CzT5ybp5NpC1A451HsBTbGdzRm2ydvbEAS74dLaYyuHeAwX2DDF66kPCCZBcjORTDlH52WwcVk4Kj3El0IAw6eI8OM/BSN44FmWReWTo2LvPSYoaffYXBb+7HujoH89yMZB2aFj+RF3tRgzHyP1w9YzAo68pSGj6/k54v78KxqRDrvAyQJKLNXgJPdaBIBpb81w3TzhMLRpCd02fLnCYZFWYsViMIgiAIgiAIgvA6nffAzP3334eqqpSWlvL1r38DozF1lxaA2tpannzySRobG8/DCgXh/IkFo+z6wXPkv70U1xkZJwa7kdyLi3AvzKDhe4dY+N8rGNo3QMfjbWgxFVOamcJLitE0jfo/1sPsNJp/cxxjhgVjhhnnkiyybp6NJEs4az1kXJBPx08Ok3lFCQaXiaGXe0m81I2uQ7AzSN8HLiBeOp5FojnMRAYGZ1y/ruvEA3H6nutiaFc/st2IrTqdwk/Ox/iqDlFaJFkras1/XEr7S40MP9KNrmo489OY9+H1HPzNy6j++IzXVIMJJKNM1ucXEdrRi/eBFnRdx5hnJ/OjtUTqhjj4y6dY8okrpgzOmJ1WQtNkIE1Yb1RFkt603Z6CIAiCIAiCIPyLOO+Bmbq6OiRJ4tprrz2roAxAfn4BAAMDA+dyaYJw3rU+d5L0lZkTgjJnsubYQYZQZ5Cc1XnkrJ7YXv7A/9tP+vtrCB8YIGNLERkXFEw5j2I3UnDrXDruOELZfy4m952VY8eC9aPEnjtC//s3jr0WLcpg+NH9FF5dNm23J4Bgqx+l0AmKRNaaHJy1nmnHjr7cg6vEg8lpYdZl8yYcU6MJ/D0BEs92YZ/mWYzN82I3ppp0DG4zrktKJh13bClk+K7jjJ7sIb1q8havglXVHL5/G7ZFWSmvE97TT87SWSnHCIIgCIIgCIIgvF7n/evg08GV8vKKsz7HYkl2kolGZ/6WWxDeKnRNp/OVZjxrcqcdo0ZV4uE4J397nNGTI8T9sbFjoZ4gKmDMtRHeO4B71dRdiE4zppsxZVsJN3onvG6b7cY86EP2nioyrOukPXUYOdtCX4qCwVpCo+P+Zowbi7BeXMrA1o5pxyZ8MYaf6qTmHUtQYyrD9X10vHCSvgMdRH1hune1ksi1E+0NEW7xTTtPfCTKyCu9aN7YtGMAbBtzaXm2bspj7rIclAhEToxMe74aiBF8rofijfOmHSMIgiAIgiAIgvBGOO8ZM6e3FryWIIvPl/ygZrenbpErCG8l8VAMxWbAYJucOZYIxum4vxnv4SEMFiOmbCsdz3QQ7Qtjz7dTfHkpwa4AptluNH8cg9uEYpn5n7Nttptg/Si2yrSx1yRJwjbLhbHHS1yH9L/twdzST1TR6HmmAzWUIPfiognzR/pCtP65Eb06A2N1BgD+nhDeXX24lmYjKcl/57quE2720f3rExSumUXLc/X0HOhAR8dQmqzzov1fAEVWkMwKaW+fRdfv68m6vATX4qyJ8zR46flzI2nvnM3oX1NvazRXpjH4l+kL9y78yKXs+f5DqBdGsS3LRjLIY9eJtfrx3dPEnOvXYPU4Z3ymgiAIgiAIgiAIr8d5D8xkZmbS1dVFT08PtbW1Z3XOkSNHAMjLy5thpCC89cW9UU587yB6QqPo+goylmQhKeOBA3/9KEd/egjZKGNYMHN3oQkkGNnWjXt5DqZs69jLckwl7YF9GBUN98Y87LeuIN7iZ+j/TjI8GGXwG/ux5lhRTApRb4yEqmO6sBjLwvHOR5Ik4d3Vx+DjbVjLXEiKTKTdj2wzgA5du9tI6CrWqyowL82ecE+JhlHidx8j4Y2S+Yn5+J5oY+DRNqzlLpAg2h5AybKQ/t5qjIWO1/2MrR4nK75wLY0P72bgawcwlTmRFJl4VwCr28mCW7aQNmv6TCZBEARBEARBEIQ3ynkPzMyfv4DOzk6efvopLrroohnHB4MBHn30USRJYuHChed+gYJwnhhtJhLBOIlQAoNt/J9i06+PAzrlH6zBUT6xe5AkSbiq06m6fSEnvluH3jiK/LZSEt5YsriuRUl5zfBJLwVXlNL1y2OUfnExkiSh6zqRVh95N8zCPDttLKvNXOEm55ML6P9BHfbbFqEHYoTr+lHDKs6PLpwwb6LDjzHHSvEn5qNGEkS7gqDpZF5ZgtFtpvn7B4l54zhumouxIm3SPRlnp+O+fSm+7+7BtjCT9HdVoYUTxHuCoOo4rrSiuJPFhKONXoz5qbPnok1enIXT17sBMLtszL15I4lonEDHEFpCxZbtxpLx+gM/giAIgiAIgiAIZ+u815i54orLkSSJQ4cOsXXr1pRjfT4vX/nKVxgZGUZRFK644m3naZWCcO5JskTR6gqGXu4dey3cFSARjGMrdU0KypzJlGEha10eWiBOvDeEdUkWozt6px0Pyfossb4wWRvysebaCJ0YTV6zwYsh24qlKn1SFyPFZcKxsYDYzm4MJS6sV1ag+WJoI5EJ4yJPtZJ1cVHyHIsBW4UbW2UaRreZaG+IeCCBocA+KShzJjnNjHldIYFTz0O2GjCXuzFXpo0FZQB8T7RhX5c6ey78fC+lFy5MOeY0g9lI2qxcMqoLRFBGEARBEARBEITz7rwHZmbNquSaa65B13W+//3v8bWv/S/btr0wdvzo0aM899yz/PjHP+aWW27h8OHDSJLETTfdRE5O6uKmgvBWU7ppNiM7+vHXj5IIxem4rxnZZiBr9czbaDLX5KGHVYZ+dgTrkiyGX+wh1DRe2Dc2GKH/wRY6f3aEzjuO0P79OvIuKkSSJLLW5uHb009sMEzPPY04ryid9jr2FTnEDvQDyewW84o8Yvv7x45HX+qEgRCOeRlTnu/d0w9OE5ZVkzskvZp5bQGBbd3omj7lcf8zHTAcI3pgcNoxgWe7MGmmKTsyCYIgCIIgCIIg/KM571uZAG699SPEYnEeffQRXnrpJV566aWxb+p/9KMfjo3T9eQHr2uvvZabbrr5zViqIJxTJoeZFZ/exMvfegpNVZGtBtRQHFOGecZzjS4TilkhfZ6Hvh8exLYwk+4/NmAtdaBHVdShKFnr83GszAEdvIeH6H2ig/hoDPcCD5FWP20/PETGLXMwFUyfKSJbDHBGEERONxNvGiV+fIjw1jbU7gCFH6iatq12PJAATUdOn/meZLsRPabS8419uDYXYp2XgSRLRJt9+Le2Y7faWPvlKzj5wAEGvnsQ68Y8LDXpyTFNPsLberGa7Sz86KWTsn8EQRAEQRAEQRD+Eb0pgRlJkvjEJz7BmjVr+POf/8yhQwfHgjBnjpkzp4abbrqJ5cuXvxnLFITzou9QF5ZcGzmXFNL2uxM4y9wk/HHITn1eIhRHsSjMetdsSq4u49gdh0n4o4SOxvD8f/buO7quq8z///uc26vqVe/dcu92nNiOU0kPIQQIAQYIDGQIMBCGGdoPGIahDi0h1G9I6CWdkOYkjkvi3iTLktV7v5Luvbr9nN8fSmQLNTuxZTt+XmtlsXzOPnvvcy2x1v1472evTCfnI/MnhBO2LAdpm3Jo+lUN4YEQMV8E9ztKsJQkzDiOHo3DCRmHNhwmfrAPw2iE4pvyGT7ipeuhYxR/IwlVnbwIz2g3oKsKmi+KYZb63XoohiXBRkpZBr1PtTHyWDOKquDOSWLZu9aSWOwBYP57VhHoHqH5xaN4X65l1BvAU5nHwls2klAkK+uEEEIIIYQQ54+zEsy8bvny5SxfvpzR0VHq6+sZGhpC0+K43W6Ki0tISJj5C6MQ57tYKErjszWU/9dSGu49zLyPLSQ0EKT/lW6cxTP//A+80kPq8rH0xmQ3segzS9n5HzuwptvIubV4yhUjqkml8EPzqPrKLuI5bkaebcWxauYgI7CnD9OC46c/xXb3UPGpxVhfO9XJVZJIoMmH9/kOUq7MnfR8wjIPQ4e9hF7twlSWNONY4Ve7yFqRT/nNS2ZsB+DIcDP/3WOh7cs/3MziD89eTFwIIYQQQgghzjVzXmNmKna7nUWLFrF+/Xo2bryUZcuWSygj3vJ0Tafx2aMkLkslMhgCHZx5LlIWpeJvGCHYFZj22Zg/St/LnWRccryOiqIq2DxWMq7Om3Ebj2pSSb04EyXDQcwbIXh4AF3X0TWdWH+QaM8oWjgOgBaM4Xu+DcslOQCED/ZiMgG6Tvy1NgBZ1+bjfblryvGsuU6MJoVY4zCxDv+089JGo4SeayF/Y9m0bU5GxBfE3+klPDT95yeEEEIIIYQQ54qzumJGiAtRLByj6fmjtG5rIK7FKXx/OQM7e0icN7aaRDGolL63nNofHyb//eW4TjjCGiDYGaDp1zUU3FSE2W2e0HdkJIq7YuZVKQBJi1Po+0kVtiw7/kcaGPpDHXFNR8l0ohhV9L5RzDlOYj0BLJflodiM+H51mGjdEIYcFzV/boK+UdxlCWRfkYOz2I0WjBGo8WKvmDjfcM8ohGLokTi+nx3C+Z4KjP90AlS8O4D/V1UoKFiT7G/oc+0/3ELT03sJ+0YxJ1mI+aMoGMi/bAmZa8uk5owQQgghhBDinCTBjBBzKDoa4ZXvbcZc6SLnswvp+XMDQ0cG6dvZS87GbGCsdkzjX+pxL0qh57l22v/aMBa2KOA/NkyoL0T6mgw8y6cpQnMy+YOq4Mh1UPLxhQBEBkN0PNXK8EgM5YOLQVGIHupF+9tRwju7CDzSgLapEP3dS4jbTGN9xDX6q3oYua+akveWoSjQ9UAtqsWAa1EqilEh1OwnMhDCsDaTxNUZ+P9Yh/+hIyhmA6Z5yaAqxOqHQNOxv6OU8J+Ooev6KYcosX4/9X/fQfYtBdjzXOPXQ71BOp+oYqCmlQX/cvm0BYqFEEIIIYQQ4myZ82Dmu9/9zik/oygKJpMZh8NBdnY28+bNIz8//wzMTogza9+vduC42EPC2rG6LorNQP/efuy3z2N4azsAtf+vBs+l2aSsHmsT8YYYbfGj6zqpF2WiWg0c+7+DZF+Ri+WfTjoyuUyMtvhwFLhnnEegcQRblmP8z+ZkK4XvLaP1kUYG/16PekMZhiXpqLluot95lfhNFbDmn+rHGFRYnEkkO4H6e3eiGFQu/dbbiQYjDDcNoMd1HBe7GazrpaW/DzXRivtfF6H5I0SqBtC6AyhOE473V2LMdKINhTFaTaccyvTsb8NkUSj+xHxU48TdmdY0GwUfLKP1d/U0P7ufwquXnVLfQgghhBBCCHGmzXkw8+yzz56WLQVlZWV89KP/yoIFC07DrIQ48wK9PgJeP3lri8evxUai2N5eirE8icCj9QzXeYn4ouOhDIA5yYo5yTqhr7TLcuh6uYOCG4smXNfjOj2bOyj60PTBjK7r9G3ppOij8yfdy7mugMGv7UG/uhjFbEBJsaFeVoDmC6NP0RcAqXaia3JJrvNisBgxWIxYlx7fjmRLdlD/1WrMV+WjGFVUpxnrmsnHM0W2dVKwvnTaeU+n8Zlq8u8omxTKvE5RFLLfXkjdtw9RcOUSlClOjhJCCCGEEEKIs2XOv6GkpaWRlpaG2+0eKzj62n8Gg4HExCQSE5MwGo3j1wHcbjepqanY7fbx67W1tXzmM//O5s2b5/oVhHhD2nY04r7o+PYjLaoRbPVjrEhGURTM1xZy9IEaUtdlzNpX8qo0+vf2TbjW8UIbWlwj1B2g/5XuKZ/TdZ2OR5uw57uwpFgn3VdNKkmLU9AOH+/bsC4HdU/njPPR1+URCkSmvGe0mci7uJjQ72vRtanjnWjtIBweIPuioinvTyc4ECAei2HLdMzYzmg3Yi9wMlg783sIIYQQQgghxFyb8xUzv/3t76ivr+frX/8agUCAG264kSuuuILCwkLU1/4lW9M0mpqaeO65Z3n88cex2Wx86UtfprS0lP7+fl54YTO/+93vCAaDfP/732PhwoWkpU1Tb0OIc0RoOIipYGwlSXQoTOfPj6BYDON1T8wLPURfasfisc3al8F6PLz0NYzQtrmNQM8oBqNKdChMz5YOhqsGyLgiF3u+C3QYqfHSs7kdk8tE/h3l0/Zt81hhJDT+Z8Vugqg284ScZuKx+LS3S65dSPQv++j+v/2YNuVgWpQKqoLWPUp0Wyc0jLDqU5dhtJpmffcThYeDWDyTA6apWFItclKTEEIIIYQQ4pwz58GM1+vlC1/4AqOjAb773e9RWVk5qY2qqhQXF1Nc/DHWr9/Af/zH5/jCF/6Ln/70flJTU3nnO29j2bJlfPrTnyYSifDYY49x5513zvWrCHFKjFYjkdEYMX+U9h8fpvCGQhoea57QRs1yEAtEZ+1L13Ri/ii7v7wTY4Yd+4ZsLM0jBLd34V6bjue6AgJHBml9pJFIdxAtpqEaFYr/dQGOAteM2wmj/hg4j29F0mOzhDIA0TjKDFWHFUWh8p3Lye0Youn5owz8fS+6rmNNslG6oZyM2/Om3Yo0E6PVRDwQO6m2sdE4Rot59oZCCCGEEEIIMYfmPJj561//gtc7yHvec/uUocw/q6ys5JZbbuH3v/89f/nLn/nXf/0YACUlpVx11VU8/vjj7Nu3F3hjwcyWLVt4/PHHaGxsJBaLkZWVxaZNl3HLLbdgNL65j2fnzp188YtfAGDp0qV8+9unXvhYvHVkLM7l4CO7CTWMkHNpDqnL0mh7oYNYhx9jthMA4yIPfS+3kbTUM2Nfw1UDWBelkHRHBTC2Rcn7uzo81xcw+GwbnusLcC5IwbkgZfyZlm/vx+iYubiurusM7OtD/diK8WvagR70itQZ56Mc7CZt4eS6Mf/MlZ3IovevmbXdyXJkuIkMhon6Iphc04cuWkxjpNrLgndkn7axhRBCCCGEEOJ0mPMaMzt27EBRFFasWDF749esWLESGAs6TrRy5SoAenp63tBc7rvvPv77v79OdXU15eXlrFixgt7eXn75y19wzz2fJRwOv6F+AXw+H//3f98/LYWOxflJ13ViwSjRQARd04n4QkR7g/gPDZB+0ViIkXVxFqHH6okNh9GjGmqek2D3KKPt/mn71WIanf9oxbYqHS0cRwtECe7rRQ/HCLf5sWQ5GNndS8wfRYsc316UuCGLziebx2s3TcW7rx8tzYGSMHbakx6NE/97PVr5DMFMJI55czNFmypO8RN68xRVIfeSUjqfbJmx3cD2blIqczHaZMWMEEIIIYQQ4twy5ytm+vv7ATCZTr6WxOttX3/2dSkpY6sBQqHQpGdms337dh555GFsNhvf+973KS0dOw1meHiYe+75LFVVVTzwwAN89KMfPeW+Ae699yd4vV6uu+46nnjiiTfUhzg/xSMxWrc20PJSHaigGBRigRhmt5WUxamE+oP07eqh4/k24uE4BlUh8NVX0E0q6KBaDdT94BAlH5uPszhhQt8xf5SGn1UT6Q0S/20t8VAck9OEFtEwGFSGX+lGTbEyUjOEIakTYhomt4mUjVm4VngIVA3Q8rs6cm8twWAxjPer6zrevX20/r0V5RNjoanuixD7+X4UXcf45yr0zQ3EryiGBenweuA4Esb84EGKLinBkTHzEd1nSv7lFTT8xxFMzhYyrs5FNR3Pm3VNp39HN4M7Bln1H28/K/MTQgghhBBCiJnMeTBjtVqJRCIcO3aM8vLpC5CeqK6uDgCLxTLhejQ6VovD5Tr1L4R/+MPvAbjttneNhzIACQkJ3H333Xz605/mscce5b3vvR2Hw3lKfW/bto3Nmzfzzne+k7y8fAlmLiDRQIRXv78ZV5mLeXcvwJI49jMbD8Xo2dFN+zOt6LrOSPIwlXctxJpqo+mRRrpe6SLp1hJsi1JQDCrRrgDNv6+DQIykFR6MFgOBphFG6oZIqkwhPhIh+6o8PKvSMZjHApbQQJDWv7cw0OTD+OWLUe1jgWas00fXk8cwPNmMFoph8tip+sou3OWJ2HKcxEZjDLzagwboKzNRdnah1Q1A7yi2awuwrhpb3RNr9zH6SD2x5xvRFqVjbvVh6PZTft1CstcUnpXPG0A1qJiyEzFrCdR8fT8JC5MwJZuJ+WMM7R8gqSSLlZ+7WVbLCCGEEEIIIc5Jcx7MlJaWsmfPHv74xz+wYcMGXC7XjO1HRob505/+iKIolJWVTbjX3t4GQGJiwlSPTqu/v5/a2loANm3aNOn+ggUL8Xg89PX1sXPnrinbTGd4eJgf/vAH5Obm8v73f4AXX3zxlOYmzm97f7aV9EvTSVs98chrg9VI1qYc3KUJHPnJYYreWYrBYmDgYD9dr3aT/p/LMZxQI8WU6cDzmaVEe0cZ/F0dWm8Qk83Ikv9cQfWPDjL/3xZhS7dPGMOaYqPsfRW0v9BO+59r4AOLAFCzXCh3LkX70xHsCUYSrytAj2r4t3fR8VQztmuKcNyzAj0YI7yrm/CWZuy3VWBekDJhK54xx4Xr35YQ/O1R3G0BCi6fT3J52jmxXU9RFcrfeTElN66m71ALUV8IQ5KJimsux+w8uVObhBBCCCGEEOJsmPMaM9dffwMAfX193H33J9i9e9e0bXft2sUnP/lJent7Abjhhhsn3N+9e/drgc3Jrbx5XX19PQAul4vMzKkLlr7eZ0ND/Sn1/cMf/pCRkRH+/d8/g9ks/0J/IRlp9RKLRiaFMidy5rpIW5tO785uAJoeayTp1uIJocyJTGl2PJ9YhB7XKP9QJf17esm8JGtSKHOi7EuzMfQF0AeC49cURUG9pYLA7l70aBzFpOLamI37slyIxlHdFgzpDrS+IM47KrEsTJ0ycFEUBds7yxhu85JUMnWbs8lgMZGxsoTcTQvIWlsuoYwQQgghhBDinDfnK2bWrl3Lddddz5NPPkFnZydf/OIXcbvdFBcXk5iYCMDQ0BANDQ2MjIyMP3fttdeyZs3x01wGBwfZsWMHuq6zcuXKU5pDd3cXAGlpadO28XjGTsXp6uo+6X5ffPFFtm59mZtvfjsLFiw4pTmJ81/rtnrS189+MlHm+myO/qwaz+p0QoMhbFGNkccaATDmurAtHtvO9DotEMXkNOPMd1H76yMs+tyyGftXFIXsSzJpeaoebl+Aoo6FJ4rJgDLfQ/DQAPblYz/7jnUZ9P7wENbL8tGDMeIdfoxlSTP3bzFgKE+i73An6UtzZ31fIYQQQgghhBDTm/NgBuDuu+8mPT2dhx56kEgkwvDwMPv375/Q5vWTY0wmE3fccQfvete7J9y32+386le/BiA1deajfP/Z6OjYSgKrdfp/TbfZbK+1DZxUn4ODg/z4xz8iKyuLD37wg6c0H/HWMDoQIOmirFnbWZKtREejdD7fhlFVcTQF8JSPFbLurR2g7/EmnFfnYV8ztvImPhTGmm6j5qFaov4oJsfshbMdWQ70lzqJfXMHhpvLMVS+9juS4SA2ePy0MYPTjB7VANB8EdRU28mtgkm3ERw4ud8NIYQQQgghhBDTOyvBDMBtt93GlVdeybPPPsu+fftobm7G7/cB4HS6KCjIZ+nSpVxxxZXjpy+dyGq1zhiszLX/+7//w+/385WvfOW0zuvee+/l3nvvnbVdRcWpbecSp5/BbCAeis/aTotpaBENf+0Il35jPSb78aAlc0UG0dEou+/bhz+i4VyfBQaVkRY/8fUpGK1edE0fXwUznXgojl6cTPyKEvSf7QZNx7DAA6EYimXiqUW8dnq2YlbRQ7GTe9lQHKPrrP3fhxBCCCGEEEK8ZZzVb1ZJSUncdttt3HbbbXM6rt0+thpmpmO2g8Hga20ds/b37LPP8uqrr3D99dezePGS0zLH1911113cdddds7b70Idklc7Zlr4oh949bbiLZy5G3b+vD3Sdlf+2fMKR1a8z2U2s+sRyXv7vHdiWpBJuGiFanop+RQnqsUGGarwkzU+ecYyulzuIrimERCvax1YR/8ErqBUp6Pt7sH2wYrxdqHoQY9HYfJUEC3oojjYURk20TNc1uq4TP9hPyicXzzgHIYQQQgghhBCzuyD/yTs9fWyLSF9f37RtXr+XkZE+a3/bt28DoLa2ls985t8n3PN6vQAcO3Zs/N4XvvBFkpNn/mItzj+ZK/Koe+wgkavCmKcJNrSYRtvfm8lZmz1lKKPrOoqiYDAbyF+fS9f2Tny7+9A/tnrsfixO65NNJM5LmnbVTLAviK9xBFa+tnrHbUGv9BD7RwMmhwGjZyyY1OMaI8+2Yn372GlniqJgWZdF8PkWHO8om7JvgOiRQZwpTmzJs4eWQgghhBBCCCFmdkEGMyUlJQCMjIzQ1dU15clMdXW1r7UtPel+6+rqpr3n9/s5dOgQAJFI5FSmK84TBpOB+e9eyZEf76XiY/Oxptom3I+HYhz5WRXRkQgFm/LHr0f8EVpfbqN1WzuxSAw9pqMaVRQFNCCuKZA81pc6FMK2KJna/1dD6R3lGMwTw53R7gA1P60i/cocOg73EFs89rOtLclE+c1+Uv59bJWLFokz8MsjkGTFmO8ef96yLgvf/YcIPtWI9erCSeFPtHaQ2CONrPjM5aftcxNCCCGEEEKIC9k5EcwEAgGCwSCaNnt9jrS02VewzMbj8VBeXk5tbS0vvPACt99++4T7VVWH6evrw2QysXr1qln7++pXvzbtvWeeeYbvfvc7LF26lG9/+ztveu7i3Ja+OBvVqFJ93x6saVaSFiajqAq+Jh99e3pwrUrDNBQZXy0z0jbC3p8dwFboRDdAzs1FJC1PQzWp6JrOyJFB2v7WSOjZeuJXlqAoCjnvKKbnuXb2fXUXKYtTcea50KIa/Qf6iQyHybujDD2uozT1HJ+Y2YAhwUy4YYSR59oI7utDy0uA4ShD39uLZUU6qt1IvHeUWH+QWJuP0CvdWFamY8h0oI9G0fb2YbVaWP6Zy7GlyGoZIYQQQgghhDgdzlows3fvXp544nGqqqrw+Xwn/dwzzzx7WsZ/97vfw//3/32FP/3pj6xatYrS0rGVMSMjw/zoRz8C4MYbb8LhcI4/s23bNn7961+RkpLKd74jIYuYmmd+Jhu+dh2Dtb0M1vehxzUyKwuIDsRQksyY0+34Ovw4Mxzs/dkBMq7Lo/vpNio+uxSj83ghYEVVSFiQgqsiidqfVuPbZUU3qcT8UTKuzCXt0iyGDgzg6x1FMaikvy0PR6ELRVHoeaEdzXM8PFG6fOjeCIPPt6MVp6B/5VKwjY0V7/ETq+qBvggkOtH/JRvDX6sxfnQpkeeaUB9tpPCycjI/vB5HhnvS+wohhBBCCCGEeOPOSjBz770/4fHHHweOH4t9Mk7qGN+TtG7dOm666WYeffQR7r77EyxduhSr1cr+/fvx+/3Mnz+fD3zgAxOeCQQCtLW1yVYkMStFUUipSCel4vgKL7PTwp5fbCXj9lKaXmolIctJyroMvPv6yX1nyYRQ5kSqUaXk/eVU/eAwsZVZ9G7vJvvqPFSTgeSVaZPa67pOz4sdxD+xdvyaZXsbSz+4ln1/P0z41vkTH0h3oqcfDyCVR2owXJSNYjdhvLEM3aBicloklBFCCCGEEEKIM2DOg5kXXtjMY489BoDZbOaiiy6itLQMl8uFqqqzPH163XXXXSxYMJ/HHnuc6upq4vE4mZmZ3Hbbu7jlllswmab+oizEbGLhGN372ug93IH3WD86GqGhMIoKg5s70EaiDDcOUfyJBfS/2o2zbOaTnExuM/Z0K0OZbnofPoK72E2oJ0gsEMXkNJG4JBWjY+znteupFqIZbkh6rS7NlmYSUpykL87G/WIdAzva0C7KnXqgJi/qkV7Ua9ccv7Yuh+ZfHyZ/4/QFgYUQQgghhBBCvDFzHsw8+eTfgbE6L9/5znfJysqa6ylMsGHDRjZs2HhSba+66iquuuqqU+r/jTwjzl9aXKP24YO0v9KIYoDwaBRLspV4IE7GxZk4c5xER6P0vtpNNBRDC8exZTpOajWYM9PB8N5OtDQ7Db+qIXFdBqZEC/7BEF3f2Y892zlWl2YgQuxTa6E3gPp8A8qhHgYVne4D7az66Dq2f/9FAl0+ohsKINU+1nkggvJKG+rOdkx3LkE5oaiwkmQlNiqrxIQQQgghhBDiTJjzYKapqRFFUbjjjjvOeigjxOmkazr77t+K2amiqKAkmnEVuLC7zBS9oxjVdDzsyL06n13/uQPFqKJFZi96DYCmYTrSi+eGAhI/Pm9CmJN6TT6Dm9vp/0crmtuM8VtbMdiNuC7JxPGeNYSOetn7i+0sv3Mdl3zucjpebabqxzuJqQqKSQVdR12dheHTq1DsE1eK6ZqOcvI7DoUQQgghhBBCnII5D2ZisRhw/MhqId4q2nc0YjDrxEJRdINC0iWZhA8PUvyu0ilXxNgzHcSDMUK9QeLBGAbb9L+Ouq7j3ddP0qXZJK2fHGgqqkLKFbnoMZ1wOI77+olHXdvmp5D8gQr2/XoH1/zoneRdUoxqVKmqbYeby1AM028j1OsGSSxMOcVPQwghhBBCCCHEyZjboi5ARkYGAMFgaK6HFuKManmhjsIrCuirGSDp6lxGtnWTf23BtNuUsi7Noee5dpJXptG7pXPGvkeqB4mHYqRcOU1tmNckX5pNcH8/TFFU2zo/GcVioGN3CwCZK/JQagZhNDZtf7qmo2xuofjyeTOOK4QQQgghhBDijZnzFTPr1l1Ma+vv2b9/HwsXLpzr4YU4IyL+MLquER4KgQKO+Ul4n27Dke2c9pmkBcljtWZ8EQJNPszJFlJWpU9q528cpvUPx7CVJaCaZs5SVasBa56TSKsfS+HEU5QURcGxLpMDv3oFLRIna2U+i25bxr4f7cbwiRUobsuE9npcg7/W4klPJLE49RQ+jTNL13WGGvpp2VzDcPMAANFInPatNWSuLsVgPiuHzU0S8vpp31JFz+56tLg2dqT5smJyL12INXn6nwshhBBCCCHEhWXOv8Hceus72Lz5eR5++GE2bryUvLy8uZ6CEKddLBTFZDcSC8XRNZ3OX9SgGmcOURRFofyD86i+7zAxX4SeZ9voea4dz/pMzClW4v4o/Tu6iXrDaBENk9t8UnNRrUb0aerWqHYjap6LusYOjj19hLWfupSEFAejP9qLXpyItiAVDCpK6wjs6SZ7RT4VNy85rUfVvxm6plH14E58fV7Srsgm6/0FKKpCuD9I35Z6Wp7dx7JPXo8t9ewe7d2zr5G6v2wj89JMFn5+EUarkXg4Tu/OHvZ892GKb1xL5urSszpHIYQQQgghxLlhzrcyORxOvvnN/yUpKYlPfeqTPP74Y/h8vrmehhCnldllJTgQwpJoQdd0UpZ70CJjIc1MFIOKM89F4uIUYoEotjQb3l09DLzcRaQzQNHbi1nx9TWUf6iSYFvgpOYS7QtiSLRMfa8zgCHTifXtJag3FbLjBy9iTbSx8b9vYP7SIjKagqTX+ihOTGTDl65h3i1LJ9SqOdtq/7qPqBqi5O4FJFQmj8/Nkmoj55ZCsm/NZ+8PniAWjp61OQ7Vd1P/yHYW3rOIrEuzMVrH8m+DxUDm+iwWfm4xTf/YyUBN+1mboxBCCCGEEOLcMecrZu64470AhMNh/H4/9957L/feey8JCQlYLFN/mXydoig8+OBDczFNIU6J0WIkoSCZ4eYhrGk20i/NIdQeYOBgP6lLPdM+p8c1+vf0YnSZWfBvi3HkTr3FJXFeEtof6ogOhzElTP97EukLEg/HMaXbJ48V1Rjd04v7S2sAMFUkE6/wMtoaQDWoZCzPI2P5ubuCLeIP03OgjXlfXj7tCh5XeSIJi4bo2nGU3EvPzlbJhsd3UnJHKWbX1CucTA4TpR8oo+GPO0mZlzPHsxNCCCGEEEKca+Y8mOnp6ZnwZ/21IqVDQ0OzPnuubKcQb02RQJj+Iz3Ew1GsSXZSKtJRpzitaLhlgLZtTcTDMdy5SeRfVgoaJBV7OPZUFXm3j21RSbssh6Zf1ZBQmojJaZrUD0Drk804ShIId41OG8rA2M9+7tX5dD5QS+4nFk65ikWPa3T94RjOK45/2dd1nUjjCNG+IKO7e1A9dlTn8cDAdEkWgR/sp2NHI4qqkFiUij3NddKf2Vzq2N5A8tr0WVfwpK7PoOn+qrMSzIQG/YR9flyFM29TcmQ70eIRAj1DONIT52ZyQgghhBBCiHPSnAczV1xx5VwPKcSMIv4w1X/cw2BDHwmLkjHYjISPhDj00E4KNpZRdNU8FEVhsL6P/b/YjhaLkboiDUOigc5DjdQ+dgBFVUhfnAHoOF4rumvLcpB5bT6Hv7+fgpuKSFqQMh4qhPqCND/eSDQYJ+WidAIzHFf9uvSLMuh6uYO2HxzC844ibHljAYqu64SaffT8tZHIcBiHxYiu6QT39eF/phVrqhV7jhNztoOho0OM/vwQlreXYki1YUixocXiDPd1o2saTc9XY7JZmPfOFbhyk87YZ/5G+LqGcC6fPTQyJ1kJDfpofvYA+VcsntNAN9AzhDPv5IItV4GL0S4JZoQQQgghhLjQzXkwc88998z1kEJMK+IPs+Nbz5J6WSbzbl8+YTVGbDRGx18b8f1mhOxV+ey9byul/1JB8sKUCV/2IyMR6n9zFF2PE49qY6cZvSZpmQdLmo2e59tp/HM95iQL8VAMXYfYaJT5X11F48+qMTtmL+yrKArWJCvDDUN0/u4YxDSMLjOxkQiGFCvO6wpQ7UZ8m9sZfKgWa4qV8k8sxHxCvZkcXWekxkvzTw9g/8gi1DQ7RquRvGvzAci/HkYahtn/0y0s+vDFJBadO6cxqao64bOdsa3VwEBzE4GHvFTesXHOwplTmaMW11EMsgpQCCGEEEKIC925ca6sEGfJoQd34rkyi+Qpjqk22o3k3VFK0y+Osu/+rcz7+AISShMntTO7zVR8bAH7/3v32FHOhwfwXJw1ft+e46TgAxVokTixQBTVbGDoQD/BrlFGqgchpuNvHkHX9Bm36eiazkj9ELnX5NPfHcR1fQFaKIZqM6Jaj/8qu67IRe8dpfzTiycdr60oCgmVyZT8SwUNvzmC5R2l2DMn1qNxFydQ8fH5HPrpdi75+vUo6pzXCJ9SUmkaPVWtuCuTZ2wXaPFh9djIf18JjT87Su/eRtJXFM/JHF15qYzUD6O/djz2dHRNZ/iol/Kb0+ZkXkIIIYQQQohz17nxjUuIsyA0FGSkc4ikldN/OVYUhcQVqZiTrVOGMq9TjSpFt5Zgcpnpe6kTLTZ51YRqNmBOsmKwGuh+tg17toO+FzsofHsxrnwXgwf7Z5xv/95eDIlmjFYjgb29oOkYk6wTQhmAwJYOst6WPymUOZGjwI0lwUT4iUZyLp1cgNaeYcdV7Kb3wLlzclDGinxGqrzEAjOfuNTzfBueS7NRFIXM63Jp2XxgbiYIGG1mksqz6d/bN2O7wUP9uAvSMbtsczQzIYQQQgghxLnqnAhmvF4v+/btY8uWLWzZsoV9+/bh9XrP9rTEW1zvwQ4SV6TOus0l2O4n69LsWftLnJeMFo5jSrLQ+PPqSeFMbDRG9/NtVH1xF1owRvvDjYx2BLCm2si7sYjmRxrxNY5M2fdIwzANfzxGynUFtL/QjsVuYvCnVWijk0OKcN0QiYtSZp2vZ006hkCUxMqpa8mkrUmje2/LrP3MFYPJQNnNS2m4t3rKcEbXdbr+0YIW1kiYP7aqxp7jJOIbJRaMzNk8S25aQ9vf2xk+NjTlfV/zCC0Pt1B689o5m5MQQgghhBDi3HXWtjLpus7f//53HnvsUVpbW6dsk5eXx0033cQ111wrJzKJ0y4ajGB0zv4roAXjmNwnUQNGVcZWsZhV9KjO4f/aSdrGLNyVSQSafXQ/3Ur62gwW/8cyzIkWIsMRul7q4MD/7KHk9jLmfXwhtb+sxuqxkb4uE7PbTGQoTM+ObgLtfrSohv9QP+GhMCvuXEJoKMTRb+3HujQVy6IUFKNKtM0P4fisJxcBmJxm3EXuaX+3TE4TseDMq1PmWtbqAtB1ar6+h8TlqSQt86AYVYJtfvq2dmLNdFB0Z+WE9zc6TcSCEYy22f8OTwdrkpNln7qBgz/9B+akTtLXpY39fY9E6N3RS6g3wtK7r8fmcc/JfIQQQgghhBDntrMSzPh8Pr785S9x5MgR4PiR2f+stbWVH/3oRzz//PN8/ev/jdM5/XHCQpwqS4INb8vArO2MbhOh3uCs7bTYWF2R7MtyOfa7OnI/tRB/tZe2x5uIdgdZ8vnlWJKtx8dPslBwcxGZG7Ko+uFByj9YyZIvrGC4boj+Pb3EAlGMDhNZm3LwHhnA3+wj1OhDAUJDIXLWZJO5NIOOXZ30be1Bi2skpTsIWoxokTiq2TDjfMMDIcwzBE6hwRBmt3Xa+2dL1ppC4uEo7fvq6Xu5Ez2uY0mzUXRnJZbUiVuDdF0nMhzG5LBM09uZYU9LYM2Xb2PoWBddrx4l4vdhclgp2LSapIpsCZqFEEIIIYQQ4+Y8mNF1na985ctUV1cD4Ha7Wb9+A/PmVZCUNLb9wOsd5OjRWl5+eQvDw8McOXKEL3/5y3z/+9+f6+mKt7CMJTnUPnaQzOvzUY3T7+qzpNnofLSZrE2Ta7GcqH9vLylLPTQ/3kTG+8uxZDqwZDoIHRui4sPzJ4QyE/pPtlJ6RwWtTzRR+W+LSCxPIrH8+PYiXdM5+otqln5pBdU/OUw0HqHxmSZy1mRjsBjIuySXvEtyx9trMY3BPb2kXpQ543wHtndR9v55097v2dpN8VVLZuzjbMlYWUDjM9XM+/KCGVcH+Y8N48pOxWAxzeHsxiiKQlJZFkllWbM3FkIIIYQQQlyw5rzGzAsvvEBVVRWKorBp02U8+OBD3H333VxxxZWsWLGCFStWcMUVV/KJT3yCBx98iMsvvxxd16muruKFF16Y6+mKtzCjzUT6omx6nm2bto0WjdP/Qhd6XKdnR9e07YJ9QZofbkQ1QHgkgiXHQajNz9Ar3cQGwriKZ9624ip2Ex4KE/aGJ93rfL4Nk8uEv8VP5oZsbNkO/H2jdO2Zej4FG/PpfaadqG/6uiqDu3tQjSr2DPuU94eOeokOx0gq9cw477PFZDeTWpk1899dJE7noy0UXr1sDmcmhBBCCCGEEKfmLAQzmwFYtGgRn//857Hbp/5iCGCz2fjc5/6DRYsWoes6mzc/P1fTFBeIebcuI9wQpP2vjURHJgYZo20+6n9URc7KQjJX5NP453paHm8kNhobbxPyhqj+ySEO/u9eHCUJBP1RCMdp+PyreB9tInxoEGeea9atK4qi4CpwM9oZGL8W9UVofriBwcMDZKzPItDuJ6EsEeI6xgQzh39bTcPTjcRCx+ej6zqjfaPEglGO/u9+Rmq9E7YKxkMxep5ro+epdqLeKIOH+tG1E+5H4nS93EHTHxtY+rEN5/SWm4p3riBYN0r7w42TQqhAi49jP6om+6IFJJbMvHJICCGEEEIIIc6mOd/KVF9fj6Io3HDDjSf9zI033sShQ4eor284gzMTFyKDycDqT22iafNRGn5QhSnRjMFuJNQXxOK0Un7NYpqfO0pCoZMNX72YLV/eysDuPqzpNtBhuHGY3NtKKPzX+SiqQsdjTThynJS8uwxLshVvzSAD+2Y+Ovl18Uic+t/X4sp3Ew/FCA2ESF+XyfxPLqb3lW40VQNNBwUwG4gGYjS+3Ebjs8040u0YzAYC3QFsuQ5KPrEQXYOeZ9to+2M95lQrWjBOfCRG9uoCLvnS2wh5g9Q/VUX97+pwFyWiazqjHQHSl+Wx6nNXYTkH68ucyGA2sOJTm2jZXEv11/fizE3AYDMQ7gticTkpv3k9KZUzbz8TQgghhBBCiLNtzoMZn88HQGZmxkk/83pbn2/qo4SFeDNUo0rxVZUUXTmPQI+PeDiGJcGKNdFOzV/3k1TiovT6EgCsCRYqb5uHNdnG/l8epPgjlbheqwczfHiAUIuP+XcvHq974shx0vSnenRdn3H1ia7rBFr9VH5sIbqmo5pVbGn28X6GagbJWJ+N98ggugJKggW3zcrS965G03W8tb00v3qMsv9cisl1vKBv0Z2VxAJRIoMhvAcGUAeh4u1LADDZzCz98Dp2/2IbxVfORzGo2D0uDLMUDT6XqEYDhVdV0lrTyYJ3b3rt786OJdFxtqcmhBBCCCGEECdlzrcyORxjX5gGBmY/Ded1AwODE54V4kxQFAVnhpuE/GSsifaxbT27Wyi6unC8TcFlBdQ/NbZ9yJhgHg9lAHpf6KDg7cUTitGaXWbs2Q6GqgdnHHuoehB7tgNHjhNnngt7hmO8n/BgiNGuUdwlbrpe7iTYMYpqN1Fy+TzceUkk5ifTfaid3HeVTAhlXmd0mLDnusi6Nh9v8wAR/8Q6NqpRxZ2XjCs78bwKZU6kKAqOjCTc+R4JZYQQQgghhBDnlTlfMVNQUMChQ4d45plnWL16zUk988wzz4w/K8Rc6a/pJnVeCgaTgXgkTueuLjr2deHv9HHkz0dJuez4aTux0RjRkQjOPNekfvKuL6TmvsNUJFlwZE8+8j3QGaD+93XMv3vxpHtRX4San1aRf1Mhxx6sJR6Jo6bZsY5oZC4bO4kpGowQHArgyB8bO+IN07u1E1/DCLqmY8uwk74hC3uOk6TlqXTvaydvffGb+myGmwZoeamWQM8IqkElpSKD3A2lWNy22R8WQgghhBBCCDFuzoOZSy65hIMHD7J9+3YefPA33HHH+2bc4vHb3/6Wbdu2oigK69evn8OZigtdNBDBkmhhoHaAQw9W4ZyfhDHdiuINERgcJSPh+OqUeDCGOWHyahUAe4ad8g9XcvRn1SSUJ5K+LhNzgoXIcJiurZ0M1XjR0Wn4Yx25V+VhS7cTD8Xp3dVD364eEiuTaPprA1F/lLgKxrjCii9sGj/iOzoaxeS2oOs6nX9voX9fP+ZLsjHenoNiUAg3DdPwlwasdiPusgSigcknP530ZxKMcOCnLxPTY6RuyCDl2jT0mMbQoUFe/dYz5K4vo+iqyjfcvxBCCCGEEEJcaOY8mLnmmmt59NHHaG9v43e/+x3btm3jyiuvoqKigsTERBRFwev1cvToUZ577lmam5sByM3N5Zprrp3r6YoLmNlpoWvPCB27Oyn+5CIGd/fga/WTcVsJXQ/WEh06fhKQwWYkMjz98dTOPBdLv7ySwYP91P+2llhcB6OCFtfRTAoWp5mEpal0vdJNqDdIuDeIFtNQTAp9e3vRdDCWJeO6Mh+tM8Dun23j4nuuQDWqmOwmoiNhOv/RircriPM/VqIYju9SNC9Jw7wkjdALrfS+3Eny1alv6PPQ4hp7f/QiCSuTSb14Yo2o9E3ZeC7JoOnnR1GNKgWXVbyhMYQQQgghhBDiQjPnwYzRaOR//ud/+Nzn7qG7u5uWlhZ+8YufT9te13UyMzP5xjf+B4Ph/Kx/Ic5PKfPS2f+r7RTftQCD1UD/qz0UfmE5Ld87SN6txfRt6yJpuQcAo92IKcGMr3kEV4F7yv5Uo0rKUg9NjzWR8pklqA4Tuq7T9z97KflwJaYEC55LshjY1UP3zh5S71oEQHwoTO9PDuP80IKx1WV5bkLNPrr2tpK9ugCTzYzFbaPv1R5c/7V6QihzIuumPHw1g5jsU6/smU3PvjaMqcZJocz4+5kMFHy4gqPf2E/OxcUYLaY3NI4QQgghhBBCXEjmvPgvQEZGBj/72c95xzvegcPhQNf1Kf9zOBzceuut3H//z0hPTz8bUxUXsNDgKKYEM458F/07uklYk06oM4DJbiRpWRrh3iAjNd7x9mmX5dD8SCN6XJu2z84tHZiK3WOhTExj5B8tmFwmeK3QbzwUo/PpVmIjY6tv9JhG3B/F4DIROXj82G3ThmzqnjmCrukAODxuTKsyUIwz/0pbry6gecfUx87Ho3FG2rwMN00uEAzQ+uJR0i7LnrF/g8VA4vJUOl9pmrHdVIIDAYYa+/F3DaPr+ik/L4QQQgghhBDnozlfMfM6m83GRz7yUf7lXz7IsWPHaG5uYmRk7Chtt9tFQUEhpaWlmEwm+vr62L9/PwAXXXTR2ZqyuMAMNw+SsDAFgECLj4TLcwi1+HFXJAKgWg00PXCUnLcXkbzCQ8L8ZPwNwxy5r4ri95RhTbGO9xUPx+nY3EbPoQGSPlzJ0KMNBHb1oqbaUEwGqr59AGuShdhIBMeVuQz/o4WhRxsJ7O9HyXKiW81EHmskvLsH+5X5GPPd+AYCbP7C4+RfXExoNIxpbeas72QsSsD/+7oJ17RonJo/76VnXyu2HAeqQSXYGcCZmUjJdQtx5yUDEPKOYsua/cQjV0UCw3tP/tS17r2tND5TTZw4phQrcV+U+HCUvA2l5G8qR1HPSn4shBBCCCGEEHPirAUzrzOZTFRWVlJZOX3B0P379/Pd734HRVF45pln53B24kKm80+rNhRA1+G1YtWqUSWhPJFg/TDVf2/BVZqAYlQJ9AY4+L97sGc6sGc6iI3GGKoZJB7Xsc5Ppudb+7BszCHhS2tRLGPb83RdJ9YwTOyPR9E1nXggxqjThuE/1qJYjONt9IYhfL+vwf62QhSrgaTPLKLr+XZGmwexMXsw88+FtkPeUQaP9JBxTS7zvrgU1Xx8Pr7aIfb//GXmvXMlaYtmXinzz2Po+vSrhk5U98gBehu78NxeiCXDPn49NhKh56k2+u/tZtnHN6BOsz1LCCGEEEIIIc53Zz2YEeJc5c5NouHFGgDs2Q6Cx4axFbrxPtNGxhW52Atc+Gu8LP/aauKhOP5WH3pMJ//KPCypVkY7A0SGwqhmA4EuP4Y4xDsD2G8pxbxs4tY8RVEwlSTi+tRyhv93F4ZrizGsz5/URilJQvm3FYz+3y4MZgMGhwn3jYWEO/zE6rwYcycf132iWOsI9rTjR3bvuX8ree8tJfG1lUEnjuWuSKL0kwuo+b9dJORdjdllJdQzijXd/s/dTuA/NkJCXsqMbQB69rfR29BF9scrUQwTAyOj20z6u4rpe6SJ+scPUXbzkln7E0IIIYQQQojzkfwztBDTcGUloMQVgp0BUtdlMryjG0u+k/BAiPBAiIzLc9AiGsO1QxhtRhLLk0ian4zVY0NRFBzZTpLmp6CoCqYEC+mXZxPTlUmhzIlUpwnrNYUwGJq2jeI0o15WgCHpeBHfpPeUEXqxbbzmzHRiWzopee3EpKGmAXSTPimUOZEpwULqhkxat9SRt7Gcvpe6Zuxfi2kM7uol66KiGdsBND5TjeeWgkmhzIlSrs2jY2cT8Wh81v6EEEIIIYQQ4nwkwYy4oA01DXD4t7vY/eOX2PeLbbTvaKTpuaPs+enL7PrxS8T8Eervq0LXdGzpdlr+Zx96LM6xHx/CYDPiKHZT9+sjhPqDU/YfHgxx7MGjZF5XQLA3hHlDzqxzsqxMRzvUN2MbdUUmkWYfw080ERsMYUy0YEq1Evz90WnDmcgrnZiHoqQtHNvy1PZKIykXzV5UO2VNOl27m8lYmUegboTB3b1TttPjGi2/qSNnXQkm28wnP4W8o0SjUSyz1KxRzQbsFYkMVM8cCAkhhBBCCCHE+Uq2MokLUngkxN6fvoxu1Em/JIPktERigRjtLzcwUjdE7nUFuAsTGGly0vJEI0e+tofEymRK31WGyWWi99Vuqr+2B8/6TAItPg59Zz9pa9PJWJeFOclCZDhMz/Yuenf2kHd7GY58F73bujCUWGedm2IyjNWzmamN2YBiMWBPsjD4s2pMeU6sKzwo+4cJ/t9+DBuyMS9IAVUh1jxC/OVOLGGd1XdvHC+mGx4JkpiSOut8DDYjsXCMnd9+FkOiia6nWxk60E/apmzseU60qMbwwQH6XuwibVEuxdcumLXPiC+EKWn2zwLAmGwm4pt+BZEQQgghhBBCnM8kmBEXnGgwwqvfe56c63JJWeKZcC+hLJFQX5DqnxzC+QEXCSUJmKxGKj69EMcJqzvybyhkuNaL1hVC0SDponTURAtHH6ghHohisJtIWuFh3heWY7CO/ZoZbEY0f3TW+emaDrNsSdLjGgoKSZdkknhxBn2PN+Pf0U3p+gpS52XQ+EItAy8cQtc0XFkJFF+1kOTytAnFf002MzHf7PMJD4aIh6KkX1+KuyIJXdPxHfXS83w7od6xlUJxf5RFH1yHZ+HJFQk22szE/ZGTaqv5YxgzTSfVVgghhBBCCCHONxLMiAtO03O1pKxInRTKvM7qsVFx53zqf1+H0W6k5I6KCaEMQM+Objxlqcy7tYLgYJBdP9lL+X8tw3NJ1rTjOrLsDL7UhmX5zNuHIof7UDwzF9jVD/fieO3YbkVR8NxQQLBhBGuCDVdWAovfu2rG5wGyVxZQ92LV+JHg02n9wzGybijEXZE0Np6q4K5Mxl2ZPN7Gd2yI5udqTjqYsaU60EMa0cEQpuTpV87ocR3/oUFSbl57Uv0KIYQQQgghxPlGasyIC4quabTvaCRj/fQBCoAjx4miQrB3FHdpwqT7PVu7KLy8AABbsg1Hqp2hff0zjKszuKePeM8osabh6dtF44SfbkYfmn7rjh6Joz/XRMrG4++gKAqp1+XTtrNpxvc6Ucq8dCLdQUbb/NO2ifoiBJp8pM5Si8ZVmkhoZJRg//R9nUhRFAo2zWPgyVZ0ffrVQUNbu0itzJy1Zo0QQgghhBBCnK8kmBEXlJA3iDnJgtE++2KxpAUpmBMtE7b/AMTDcdB0rCfUSFl4x3x6nmpl4JXuScV3Y/4ojb+uwZBmw+QyEXjoCJGqvkmBhDYUwn//IRwr01B8EbTqyW10bwjtZ/tIWZ2GNXviKh57aQIjbd6T+hxgLBxZ/tFLqP/JYUaOeieNFR4IcexHVTgL3Kgmw6z9uSuTGGqcPpz6ZzkXF2PRzPT+qZF4MDbhnh7X8L7YweiuAea9c/lJ9ymEEEIIIYQQ55szupXpoYceOi39NDQ0nJZ+hNA1fcbjmU+kmlQUw+TsUtcn92FxWVj7mVUc+dtRap5uw70wGYPVQLAjgK9phJSr80hcn8lowzCJt5Uy8lwboccbMc1PAZNKvN2PNhDEfVUejhVpBDZ3kLirl5En6omXJoNVRenwo3iDpF+dS8Lyyduw/jlAOhmunEQSSz14t/TT8bcm3POTUIwqwRY/sZEYeReV0tfQcVJ9KQYFPT5zbZwJ7VWFJXdeQsPT1bT970GsJW5MyWbigTiBai+eBVmsvudKjFapLyOEEEIIIYR46zrDwcyDb+jLohBniiXBRqgviBbTUI0zLxgbbhghMkVxXIPFQCwUJxaMYbQd/xUyu8ws+cAiooEoA7WDxCNxOjuCeG4pImFFGlokTmwogjnXiefO+cSHw4QbRtDjGsb5SZgLXCiKQnwojI5OxoIslt6xisO/20MwFCLpmmys+a5pf6fC3aNYE22n/JkY7WYWf2AdwcEAQw396HENxzI3CQUpRAMRWl+uGwu01Jl/l0eb/TiWTd72NRNFVSi5ZgFFV1UyWNtDZDiEwWok5dYMCWSEEEIIIYQQF4QzvpVJ1/XT8p8Qp4PBbMCzIJOB/X0ztov4Ivg6/MTQCfYFJ9xTFAXPyjTaX5l6JYnJYSJjWTrpS9PwdfhwLxk7knp4V++En2VDggX7Mg+OlelYCt3jgYt/SwdKhoOG545icdtY8O4VRNtHZwxlAIa3dFG4seykPoep2JIdZK7MJ2tNIQkFKa+9i5mEvGRGambeIhXuDxL3xUnIT56x3XRUg0pqZSZZawtJX5oroYwQQgghhBDignFGV8x85zvfPZPdC/GGlFw9n1e/vxlnngtb+uTTj+KRODW/OIL5qgJ0DY7cX8Xizy6dsDomY2M2Vd/dT1JJEgl57kl9aDGN/b86RMLGLBSjSrgzwMBz7egmFe/v6kh6b/mUK1BCx4YIHRpAj2kouQl4G/tJLvGQWpZO/yPNpN5cMGU44zs0QLQpQObteW/y05ms+LpF7LvvJWyZdsxTnKAUD8Zo/nUtZTcsPe1jCyGEEEIIIcRb3RkNZhYvXnwmuxfiDbF7nCy7cx37frINz5p00i/OxJxgRovG6dvdS+tzbairMtCODqK3+XDmODjwjT1kX5lL2uoMDBYDiqqQsCCZXd/fTe76HPI35mFLtqHFNLr399DwbBOWBUk4lqTQ+0Qzw6/2oMc1XItTUFWV/h8exHl5Ltb5ySiqQqwviP/lDsJHh8j9+AJafnwYxWMj5B0FYOF7VrL/VzvovPcIiZdlYa9IRFEUwp0Bhl/uJtocYPWnNqEaZy/Se6pc2YnMf+9qqn/4Ksnr0km9KAOj00Q8HGdwdy99mzspvnoBaUtyTvvYQgghhBBCCPFWd0aDGSHOVYlFqVzy5Wto29ZA9fcPEfaFMJhUtCQL1n+ZT/hv9aRUJJD5/rKxAGQgRP/WTvZ/Yw96XCM+GiNpYQqLv7gCb/UAe+7fT2w0BpqOYlIIecMEekcZfLEDLabhKHJjTjBjK0/CvcxDsNWH98VOhv82Vtja6DKReHEmWTcWjhUW1nQIxjBaxrb0qAaVZXeuw9vQT+NzNbT8qREAa5Kdwo1lZL43b9aaOW9G6rxM1n7hGtq31lP/w2q0SAxFVUlfmsuqf78CW4pj9k6EEEIIIYQQQkwiwYy4YJnsZgqvqKD15Xou/q+1GKwGtn5nF/EWH84UM1lXHd8WZEmxkn1TEdk3FQEQ6hml4f5qLMkWMtdnk7k+e8ox9n19NwUfrMCW6cBXN0TXix24l3mw5bmwvb98ymf8RwYx5LuJHfWS/J608euKopBc4iG5ZPKJTHPB7LRQ9Lb5FL1t/lkZXwghhBBCCCHeis548V8hzmX9R7pxZTmwe+xYXBYSc91Enm8h84rcaZ/RNR2DTUW1Gxio6p+2OPVwnRfFrGLLHFtN4ihxE+0NEurwT993XKfvH20oCRbSFmRhtBjRYhqxcEyKYAshhBBCCCHEW5CsmBEXtIGabjKWpqFrOl17uwn2+iEQw/pPRYF1Xce7v5+2v9QTj2hj242MKrW/rAEF0pZ7yL+pGLPLDID3yAC1vzhCxeeXEe4L0v1iB0OHBsCg0PbDw+R8bD62wolFg+PBGJ2/rUOzGTHVj5C4KZOt//0PoqMRVKNKPBwne3UBBZvKsCZOLloshBBCCCGEEOL8I8GMuKBpcQ1Uhb337weLSuF7yjj24NEJbXRNp/nBowxVDWIpTyLl2nxMGWOrYLRInNHdvfQ+1kjf7j7SL8pg8PAAsdEYqtVAqDdIy18acF6dR/qNRSgmlWhngK7f1kJUI2F1GqrZwOixYQL1w2gxjaTCFFSngf6GDko+UDp+clQ8FKN3Zw87vvUcyz5yMYmFKXP+eQkhhBBCCCGEOL0kmBEXNHuai6bnj+EqTyD/xiJ0XScejBMPxzFYxk446n6mlZHaIRwXZ5FwQ+GE51WzAee6TKxlifR8Zz99e3oxWo2kLk+ld1cfLX+pJ/WTizEkWMafMWU5SPvcMiJdAYb+eAxtMIhqNJBzfQG2LDuNP6sh+/Jccq6auJ3KYDWSuSGbhPJE9t23jYu/cDVmpwUhhBBCCCGEEOcvqTEjLmie+ZmM9o2Sd/1Y4KIoCpZEM4M7ewDGjtB+uRNNB/d1BdP2Y/TYcF+Tj2o14FmVjvfwIEaHEdc1BRNCmROZMx14PrGIeEij5OML8FyciTnJgsFmIPvK6Y+etmc4SLs4g9Ytx974iwshhBBCCCGEOCdIMCMuaL0HO0hfn8XgoX5anmii+fFGQv0heje3E+oZZejgAIpJxbkhG0VVZuzLsSadaCDGYPUABquBeFjDtjR1xmcUo4p9VTrdz7YBMPBqD1mXZqMoM4+VflEG7a80ndrLCiGEEEIIIYQ458hWJnFB663qZLhjkOC8JJyliWhRDYPVQPkHK6m9rwpLug1UBVO2Y9a+VKsRxaAQ9UdwZDmJ6qMohtmzT3Oei8jObgAiAyFSShNnfcbkNKHF4rO2E0IIIYQQQghxbpNgRlywml+qIzDsZ95/LcfoMAGgxTR6n2vDVehm0eeWUfdADeigh2cPQXRdR4+PHWmtG1W0iHZS89DCMVTT2AoZ1aQSD53kWJocny2EEEIIIYQQ5zvZyiQuSOGREPX/qKbs04vGQxkA1ahiSjAT6PBjdpkpurUEYhqBV7pn7TPS7EMxKCSWJhFo9YPZQLRndNbnAtu6SFmTAYC7MpneXT2zPjNcO0RCQfKs7YQQQgghhBBCnNskmBEXpJaXjpF6SQYG6+RFY54N2bT9owVd17FnOFBNCpEW34whi67rDD/eRDwYw+gwYVzsgbiG75nWGecRaRkhPhLBljF2JLarMomhGi+h/uD0Y2k6HU+3UXjZvJN8WyGEEEIIIYQQ5yoJZsQFqftgO0kr08b/rOs63n19HP3GXtp+f4zhGi97Pv8KbU+3gNEAOvT94CDR7sCkvvS4hvcPdcSGI2BU6DvqxbwpF4wqWjDG8JPNU247irT6GHjgKM51GQxXe9FiGu1/bCCp2EPNT6oI9k4OgrSYRsPv6nClJ5Fc5jm9H4oQQgghhBBCiDknNWbEBWe4ZZDRPh8GqwEYW4HS+LNq8MdZ+K5KkkqTUBSFiC9Cy0uthIYi2G4oIvx8K73fPYAp24FjbQaK2UCkxUfglS7UDAeuz69i+Ms7sH5sMagqqtVIyocrGXq4ke6v78axMh1jhh0tFCO4tw8tFCP1zvlE2vwMv9LF4PYestcUUv6BRXjr+zh0/06sHivJS1JQTCqBNj8D+/rJWVtE2Q0LZz25SQghhBBCCCHEuU+CGXFBCQ0F2XP/Vmw5DoJdozgL3bT/uR6H3cKiuyaGHWaXmdLrS+irGyQ0GiPh/7uISOsw4aeaGf5HCxhU1Cwn7s+vQk20oodiENcwui3ocQ3NFwEg6dYStECU0b19RNt8KGYDCTcWYs5zARB4pZvEtBQW/PtKjJaxX8nksjQ2fO06Buv66K/pIh7TSM7MZMFX14y3EUIIIYQQQghx/pNveOKC0vxiLakbMzCnWOnb0oktw87wgQEu/d8N065AWfiueWz7wR6sV+RjzkvA/K+Lp2wX3tWNmuUEQDGomOalMHqgH8fyNFSHCef6rEnP6DGN6GEvC7523aTARVEUUsrTSClPm/ScEEIIIYQQQoi3BqkxIy4YWixOy5Z6tEic6FCYQKuPjsebyF6ThWqY+ldBi2mM9o1i0HV89x8iPjB1Ud74QJDgU004bi4Zv2acn8LwXxuID4enfEbXdXyPNpG9Mv+kVsEEB0dpfbmBxmeP0rWnlXhk9mO1hRBCCCGEEEKc22TFjHjL0zWd+qeqaN3agGteIqrZQMwfRVUVvLt6ybilfPIzuk7Ts820bm0jtSKFsmuKiQaidPz0EGG3GcvtFRhSbOiROOE9PQSfaMD6tkKMeW70cJzwzi7CTzeTeVUOvT88iOvqfGzLPCjGsQAo0uEn8HQbLpOVebdPvQLndSHvKId/u4tA3wjJyzwY7QaGano58pd95FxUSNn1i1BUqTcjhBBCCCGEEOcjCWbEW5qu6xz8zauE9RDlX1iKwWIYv5dxdR7DVYPU/bGe1MpUbCm28WeO/KGGWDjOxV+8COMJR2qXXl9CX3U/+7+9h5hZhXAc1aiMBTTPtRB+oRU9GEM1KhgtBrw7eyEcJ7ilA+9f6jG6zKgoWBPtlF9WQeby3BmL+Ia8o7zynefJuzmfksWlE9rGI3FaHm5k/y+3s/TOdVIMWAghhBBCCCHOQxLMiLe07r1tBHw+Cj8yb1JwoSgKiQtTUAwKBx+sYs2nVwLQV9VPcCDI8ruWTbkSxTM/lRUfX8re+/ez8vvrUFUVLaZx6Lv7cW7IYODJVir/YxmqxYAe11AtBrRwnCPf2IPZbmLBrStJrUg/qfkfenAneW8vIGVx6qR7BrOBwttKqPvVUTpebSZnbeEb+ISEEEIIIYQQQpxNUmNGvKU1bj5KxrV5M64mSahMJjwaIdAbAKDlxRZKri+ZcXtQclkyVreFwUMDAKhGlYKbihg9NEjixZn07+hCNakYrEYURaF/WxfJK9PJvD6f5hdrT2ruowMBRr1+khelTNtGURRyr8s76T6FEEIIIYQQQpxbZMWMeMuKhWOEhoPYc5yztk1a4aHhmSbQdbyNQ+z+8V5AR1EgITeB/E35eOanTghr8jbm0fFSB6lLPAAklCcSevAonluK6fpVDRlX5gHg3d/HwM4eyj69BIPNQNvv6yeNP9I+RP3mWvprugEwu624U52kLvfMukXJnuEgFo4SCYQxOywn+/EIIc4ALRLDu/sog1v3ER0OoCgKjvJcUjetxJ4rJ6wJIYQQQojJJJgRb1nxcAyjffYfcV3X8R0bJtw9Sv6NRax+TwmKQSXYF6R7SweDB/pp3dJK4zNNLL9rKSabCQCz04QWPn4ykqIoKAYF1TZWXLj/lW76t3dhMBsovXvR+FwUVUHXdRRl7H+P/O0A7dWdaJvyUG5ag2JQCfWPMvq7aoqKT+6LnNFuJB6OgQQzQpw14b4hmn78FxIrXJTfkYct3Y4e1xg4NED7g49hLykk652XST0oIYQQQggxgQQz4i3LZDcTHgiia/qM25J6nmvHoCgs//9WoZxwbLbNY6PwHSWkLPHQ8FAteetz2X//AVZ+agWKouDr9GNMMI+316JxdE0nOhACINwbJP/2MmyZjvE28deCnNe/mB17+ghtXYPwqRUTjuxWUu1wUTb+ruFZ31PXdcLeMCYJZYQ4a+LBMI0//DOl7ykgoSxx/LpiUEld6iFlcSp1D9TR8+R2Mq6/+OxNVAghhBBCnHOkxox4y9I1DV3XGa4enLZNPBynf2snFXdWTghlTuQuSSB1TTpaXMNoNTJY50XXdNpebqPgxqLxdr27enEuTmV4azfZ1xeQfWPhhFAGwLunl8zlY1ucYuEYTS8eg/fOn3JsdWEa/Qf70WLajO85dNRLYkEKRovkrEKcLQPbDuFZkTQhlDmRoiqUvq+UwR2HiIciczs5IYQQQghxTpNgRrxlde5uxVOZStdjzcRGY1O28e7tI2VxKqrJMOX912VcnEn7jg7yL82jdUsrDU81otqN2F8LXiLDEdqfacVa4ma0bojEJZNPUYoOh+l9rpOCTeWvza8FfbEHZYqx9XAMvd6LnuGk+bGmaecVD8VofbiJ4ivnzTh/IcSZNbj1AJmXZM7YRjWqeFak4n21eo5mJYQQQgghzgfyT+ziLcvfOUzGkjQ881Op/fZ+ct9Vgqs8cXwbUcQbom9LB/nXFszal8llRtd13AVuBn/lpf/oAMu/vhpd0/FWDdD4twasFQn0/PYYSUtSiY/GUN1j25x0TWe4apCuR5pZ8O4V2FPGwpzhjiH0gkRO3GSlh2Lw5DGo6Se5MhlTtp2Bvb1EvSHyby7GmmIda6frDNcN0fzXRooum0di0eQgSAgxN3RdR49GMZ+wtXE67iIXfTW9czArIYQQQghxvpBgRrxlKaqCFtdx5biIjoRp+W0dWlTDnuVAi8TRIhqWRDN6XD+5DnVAAxSIaxqHvrufqC+KYlaJR+IYGkZZ/6Vr6N7fSsMPqjA4jagmA+H+IMmlaay8awOu7MQT5qdC/Pg2JT0UQ//JHnLXpJN12ypU49iCtsIbC+l6sZ1D396H0W7CmmQlNBDCnZ3I4jvWklQsoYwQZ9tJ/r8IelyfdtukEEIIIYS4MEkwI96ykko8dLx6jJq/HiWhIonR9gALP7cUdDCYDZgSzAweHGDwUD+py2c+/SjYO4rJZqKvuh/3ohTc85Poea6d0g/NQzUb6N/eTUqSB0eak+KrKim6ch4hbxAtFseSYJuy/oun1EPHznpYljF24bE68i5KJ/vSnAntFFUh67JcMi7NpvZnR/CU5pC/sQSTbfZ/nRdCnHmKomByOxjtCoxvb5zOYNUQ9vnL5mhmQgghhBDifCD/bCfestIWZjFQO4Cm6djT7WRckoXNY8eWZsecaEFRFJIXpTB8bIjIyMzFODs3t5O3MZemzc14NmaRuCgVLaahGFSMThPDe/vJXXe8ELCiKNiS7TjSXNMW5U1blIXSNIw+EkYPRqFukKz1WdPOQVVVCt9RTNfuZgllhDjHpFy6ko7NnTO2ifqjDNUOk7isbI5mJYQQQgghzgcSzIi3LEVVcKS7sSRbGarxkrYmY8o2hbcUc+Qnh4j6o1P20/1yJ8H2AP1HBoijY7CNBS0pq9MZ3NNL089rKLpiHkab6RTnp7Lwncvg5wfR9vWQuiRl1i0OVo8NDBAcDJzSWEKIMytpRTmjfdD54tThTDQQpfon1WS+faNsZRJCCCGEEBPIVibxlqaaVMxWM8HuUUyuqYOTlCUe9LjOwW/uIWlRKmmr01HNBkbb/XS91IEe0YhHNWxZDjwr0zj2w0N4NmZhcpnperKFshsXUXhZ+RuaX+ayXLS4xsHf7MJyVc7sDwAml4nYaBSS39CQQogzQDEaKLz7Vlp/+Th9ew6RuSEdR44TLRKnf98A/fsGyLhpA0kr5QQ1IYQQQggxkQQz4i3NmmhnsLkXo9NE2BseP9Xon6UuTyNpYQqtTzZT9eNDqKqCwWLAmmzFXZlExsVZmBMtAGSsy+LIvYdQnCaSijwUXV7xpuaYvTIfNJ2umuaTah/2hjG7LG9qTCHE6WewmCm86x2EOgcY2Lqfnr19qEYDzspyKr46H9VyaqvqhBBCCCHEheGCD2a2bNnC448/RmNjI7FYjKysLDZtuoxbbrkFo/HkP57q6mo2b36e+vp6ent7GRkZwWAwkJaWxtKlS3nHO24lI2PyVhpxZhVsKqP3Rx2kLE6lZ1sn+TcWTdvWYDYQHImgO0xkrkoj77rCqdtZDMz71wXs+cKrrPn3TadlnhlLczj6yAG0qIZqmn6bQ6DDj8lqxpJgOy3jCiFOP2tWCtm3XX62pyGEEEIIIc4TF/RG9/vuu4///u+vU11dTXl5OStWrKC3t5df/vIX3HPPZwmHwyfd165dO3niiScYGBggNzeXdesuZuHCRfh8Ph577DHuvPPDHDx44My9jJiSI82FoqgM7O+j55Uu+nb3MFQzSLB3dLyNruv423x0bG5lsGoQ/BEyN2TP2K/RbiJxfjLBweBpmafBbCRzeR5tT7VM20aPazT/tZGiKytPy5hCCCGEEEIIIc6+C3bFzPbt23nkkYex2Wx873vfp7S0FIDh4WHuueezVFVV8cADD/DRj370pPrbtOky3va2ayatiolGo/ziF7/gkUce5lvf+hYPPfRbDAbDaX8fMVFwIEDdY4cYPNZLUlECgS4/0YiOd2cfJpeZQG8ATdNw5LkYqR3C7rRhT7SSkZPIYIuX3le6ybo8F0VVph0jZVEqw21eMlfknZY5V9y8hN0/fommP9eT87Y8TK7jJy+Ndo/S/JcGUksyyVh6crVohBBCCCGEEEKc+y7YYOYPf/g9ALfd9q7xUAYgISGBu+++m09/+tM89tijvPe9t+NwOGftLz8/f8rrJpOJj3zkI/z970/S19dHa2sLhYXTb6cRb56/e4TdP3yRshuLKbspn90/2EPu+lxyL8nBYBoLxXRd58DPDmIcgas+uxFbwvHaM2F/hIOPH6H2/mrKP1o57Qkq+mmet2pUWXn3RpqeO0rVdw9h9VgxOkyE+oMoukrRVZVknaYQSAghhBBCCCHEueGCDGb6+/upra0FYNOmyTVCFixYiMfjoa+vj507d03Z5lQoioKqjn25N5nMs7QWb4au6+z76VYW/csCkooS2XPvPorfVkTmyswJ7dq2tmMxm7joQytRlImrYixOM6ves4Q9fzpIxzNt5Fwzdeg2eLCfgrWn94QV1aBSfHUlRVfOw985TCwUxZJgw+6ZPRwUQgghhBBCCHH+uSBrzNTX1wPgcrnIzMycsk1Z2djxxw0N9W9qrHg8zkMPPUgoFCI/P5+srKw31Z+Y2UBND450G0lFiYz2jxIeCk0KZXRdp/XFVpbesnBSKHOiRTdU0vtKN3pcm3Qv6o8yVOPFnZt4ul8BAEVVcOUkklTikVBGCCGEEEIIId7CLsgVM93dXQCkpaVN28bj8QDQ1dV9Sn339vbwwAO/AcDn89HQUE9fXx9ZWdl88YtfGl85I86MjlcbyVmXja7rNDzVSNaasSAsGozS8UonfdX9hH1hLDYz9qSZTzYy20ykFiRTde9htLiOalJJnp9M6pJUan9xhKSFyXTtaaP46tO7akYIIYQQQgghxIXjggxmRkfHTtKxWq3TtrHZbK+1DZxS3yMjPp577tkJ10pLS/nMZz5LQUHBqU1UnLKIP4JigG3ffJVYJIZnoYeOVzuoe6IBz+o0ct5eyGiHn3C176T6s7msDCYqOC/JQg/F6d/dQ8vX9+BZ5iFpXhKR9tAZfiMhhBBCCCGEEG9lF2QwcyaVlJTw3HPPo+s6AwMDVFdX85vf/IaPf/xj/Ou/foybb775lPq79957uffee2dtV1FR/kan/JZiMBs49FA1qbcVE27103u4l5FOH4v/axlGu2mska4zvHPgpPoLDI5iWuLGmDwW4iXcWITr8lwG7juMrumkZGXM0oMQQgghhBBCCDG9CzKYsdvHVsOEQtOvdggGg6+1dbyhMRRFITU1lQ0bNrB8+XI+/OEPcf/9P2XRokUUFxefdD933XUXd91116ztPvShD76heb7lGFRc6zJwViZjSrHS9t2DLP/qquOhDGDPcuAfCBAcDk04jemfxcIx+psHUW0ajhXp49dVh4nkjy6g57/3MP/6lWf0dYQQQgghhBBCvLVdkAVP0tPHVjn09fVN2+b1exkZ6dO2OVlOp5N16y5G0zReeeWVN92fmJquaQzW95F4yVix30j3KInzkjC5Jp6EpSgK6eszOfBoFbo+/aHXh56swbU6jcixYbRQbMI9g9uMpTSBQPfJbYkSQgghhBBCCCGmckEGMyUlJQCMjIzQ1dU1ZZu6utrX2paeljFfr2czNOQ9Lf2JyUJDIQwuIwbb2EKwULOPlKWeKdtmbMjGHwqx67f7CQciE+5Fg1H2/e0w7c39JF+bhyXbQawnOKkP65JUBhqnD/eEEEIIIYQQQojZXJBbmTweD+Xl5dTW1vLCCy9w++23T7hfVXWYvr4+TCYTq1evOi1jHjiwH4CcnJzT0p+Ygq4Tj51wtLUO052GragKpR+cR+fmdv7xPy/gSnHgznYTHAnR3ziIc5WHrI9XohhUiGmEagYx57sm9qEooE2/4kYIIYQQQgghhJjNBbliBuDd734PAH/60x85duzY+PWRkWF+9KMfAXDjjTfhcDjH723bto0PfvBfuOeeeyb194c//J6hoaFJ130+Hz/5yY+pq6vD4XCwYcPG0/siYpy3eYBIXxAtEgfAnO1g6NjQtO0VVSH7ilwqP7OYge5hAkVmlIuSyfvyMlKuzUcxqOiaTqQvSGBXD9Hu0QnPxxpGcOcknclXEkIIIYQQQgjxFndBrpgBWLduHTfddDOPPvoId9/9CZYuXYrVamX//v34/X7mz5/PBz7wgQnPBAIB2traiEQik/r79a9/zQMPPEBhYSFZWVkYDAb6+/upr68nFArhcDj40pe+TFKSfJE/U449cQij3cDI7l4S12XiWpJK8xPNxG+OY7AYpn2uZ3sXSRuzcS1OnXQvcMSLKc+FdUEK/i0dJN02trVNC8UI1wyR+d7cM/Y+QgghhBBCCCHe+i7YYAbGTjxasGA+jz32ONXV1cTjcTIzM7nttndxyy23YDKZZu/kNf/2b5+gquow9fX17N+/n2AwiN1up7CwkBUrVnD99TdIKHOGBXp8mGwmhp7rwJrnwprrJOmyHGp+XkXlvy5ENU1eIDZ01EvPzh7y7lky6V6kL0j33xpI+ch8jKk2hh9vAkCPxhn69VFK3zYf1XjBLjoTQgghhBBCCHEaXNDBDMCGDRtPenvRVVddxVVXXTXlvRtvvJEbb7zxNM5MnIr6f1ShqCq2ZBsL75jPnvv3Y1+QTMIlmYRafez98qvkXluAZ2U6qklltCtA90ud9O3pQTOpeLd2kbg2HYPTRMwbZmh7N8N7+ki6oxxTxtiR6YpRxb+tk+DL3RRcVEzBxtNTGFoIIYQQQgghxIXrgg9mxPlv8EA3seEgS7+8ktr7qnBlu1j/5XV07e6i7idVaJpG4Yfm4d3TR9tTLcRDcRSDgmpUUV0m7BdnEYlptN5bhRaKozqM2Felk/b5ZajWsV8RXdeJ+yIkDKosu3sTdo9zllkJIYQQQgghhBCzk2BGnNfCvhDDNf0s/+pKVJMBxazi7/bjzHCStSqLI38+yrwvLsecZMVZlEDuO0smPD/a7qfht3WkfW4Z7ivzph+nbghPZQYLb1txpl9JCCGEEEIIIcQFRApkiPNa48t1ZKzPRDWNFffNvDSb2seOoes6x/7egC3fhWo2oOtTH2ttz3GiohOe4fQmPa4R+EcbJZfPOxOvIIQQQgghhBDiAibBjDiv9dZ1kbLEM/7n1BVp+HsCvPAfL9HyYgv6aIz6Hx3i6Df30b+tCy2mTeqj5MOV9P+smuDhgUkBTtwfZehXR8kszyK5LO2Mv48QQgghhBBCiAuLbGUS5zUtrqEalPE/t/+jlchIhKJ3lZK6JBXFMJY9hgaCtD/TSsN9fRR/bP74ChsAS6oNg0Fh6Pe1YDJgX5GGYlaJtvrRe8KUXDWPgg1S6FcIIYQQQgghxOknwYw4r7kzE/C1jGD12Biu89L5QjtLv7gCc6JlQjtrio2S95TT9nQLbX9uIP/2svF7sdEoelxn/hdXoOvgqxti8NVeMvPTmfeJpSiq8s/DCiGEEEIIIYQQp4VsZRLntZIN8+h8vh2A5ocbKbi5aFIoc6Kcq/IINAwTHYmMXxvY3o29wIkpwYI50ULSUg+R/hBlNy6SUEYIIYQQQgghxBklK2bEeS0hJwnFaKTj2TaCPaN4Vs1cB0ZRFNJWZ9D3cidZ1xUw2uaj65lWyj+zBABd02n97THy15dgtJy+Xw9d0+g91MlAbQ96XMORkUD2mgJMdvNpG0MIIYQQQgghxPlHghlx3su4rJC+F1tQTeqE2jHTsWfa6frDMUYODhAcCFLwvgqs6XaGDg/Q+2w7qUXplFyz4LTNr+dgB0f+uIek4kTSFnlQTSrDzUNs+9o/yFyVT/lNi2VljhBCCCGEEEJcoCSYEec91aiy4pMbefGzj6LrOooyc8gRD8bJvSgbs9NM/VMNdP6tgZYHa0lfksPid68hsTDltM2t+0A7dY8cYPW/r8CaZB2/nrbQQ/E1hVT/vobDD+1i4ftWzTpvIYQQQgghhBBvPVJjRrwlWKwWUMDXNDJr2/7dvaQvTqPw8gJy1+WQsSQd1aCy7M51pzWU0WIaNX/cy8q7l00IZV6nGlQW3F7JaO8Q3vr+0zauEEIIIYQQQojzhwQz4i0jHo7T/HAjuqZP28bf6iPmj5JYmAhAweUFdO7sQrGoDLcMntb5dO1tJbUyBUvC9MWIFVWh6KoCmjcfPa1jCyGEEEIIIYQ4P0gwI94StJiGYlYJ9oxS+6sjxCPxSW18jSPU/uIIiz+wcPyaNcGCJcFCxrpM9vx0Kz0H2tH16YOdU9F/pIv0ZTMXIwZIqUhhqGngtIwphBBCCCGEEOL8IjVmxFuCFtNQVYV4JMbQUS97v7ST1GUe7NkOtIhG/+4ewkMRXBkOHBmOCc+qBoXYaAx3uYumrTV07Gxm6Z0XoahvLrfUonEM5tmLESuqIvVlhBBCCCGEEOICJStmxFtC2/YGtKiOxWlh3efXcOk31pNenILBr2PRVBa/byGbvrkBd66b2ofrxp/TNZ2QL0Lvzm5c+S7KP1qJ4tKp+ev+Nz0ne5oLX5tv1nYhbwijzfSmxxNCCCGEEEIIcf6RYEac93Rdp/7JKhw5ToquLMSR5sBgMpC5MpPitxVReEUhriwXiqJQfnMZvYf6iI5GAeg93IdqMZCyJp1YWENRFAreXkjXvjaiwcibmlfuJSW0bZ19a1Tb1nZyLi5+U2MJIYQQQgghhDg/STAjznuBthFQdGLDEbLXZM3YVlEVstdk0bmzk/BwmJqHa4mGYqRenEnfzu6xNgYVzyoPHa+2vKl52VMcuHKSaHymedo2w83DdO3pIfeiojc1lhBCCCGEEEKI85MEM+K8pes6B/64k45/1KNpOqpRxWidvWySK9tJ7+F+dnx3J8k3F2LJsKOoCvHQ8YLB9mwno/2zb0OazcL3rWGwboSDvz6Mr+N4fxF/hIanmzj46yqW/9sG2cokhBBCCCGEEBcoKf4rzls7f/kyXdXtZFydR/9LHWhx7aSei4fjBEbDZN61AHOqlYFnWkFVOHHHkRaOYzDNXrh3NgazgVWf2kjX3jaO/LGW4ODoWLFfg0rORcVc9IWrMDumP05bCCGEEEIIIcRbmwQz4rzUX99LV3U7xR9fgDnRzMDLXRjtRkbaRnDnumd8tn1XF6k3FmBOtRIbjqAF4wQ7A7gKjz83sL+f8muXnpa5KqpK1sp8slbmj9Wb0ce2VAkhhBBCCCGEELKVSZyXqh7dizXDjiPfhSnBgjXdRnQ0Sv0/GmcstuvvDhAYGMVWkgDA4OZ2POsy6HqymaxLswEY7QoQGYyQVJx62uetKIqEMkIIIYQQQgghxkkwI85L3tZBkleljf85//3lxEJxhluGqX24Dl2bHM74uwPs+tEe0m4vBWDwxQ7CzT5CbQGig2H0uM6Rew9z+Nv7iQejbP3qUzQ+d/RNn84khBBCCCGEEEJMR7YyifOTCoYTCv2ak62U37OE2u8foHVrG527usi9JAd3rpt4OE7b1jb8XQF0dEb299H1m1oMVgPaaIyEilRGGKT1r42U31RKysdTUFSF0HCYtpfb2f71p1n+8fW4chLP3vsKIYQQQgghhHhLkmBGnJcUFELdAcAzfs1gNWLQVbKXZpCY7ab9UBeD1YM4ku0svX4BaeWpDDR5efH/tpG6OJXkkmSyVmXS8HQjKeXJLPnw4gnbjKwJFkqvLyZtsYe9973MRf91FWanFOoVQgghhBBCCHH6SDAjzktFF5fSuOMYGW/LHw9Tel9oR1VVVr9/OaqqMO/KsknPpRYlU3ZZMWGi5K3PJRaM0fFKJxu/sX7a2i8JeW5yL8mi5aVjlF634Iy+lxBCCCGEEEKIC4vUmBHnnXgshq5DdDjCkW/soWdzO6Ntfvpf7qJkQyHqLMV1yzeV0La1A4DWLa1krshANc78q5BzUQ4dOxpP2zsIIYQQQgghhBAgK2bEeebVn2+h+1A7aaUpLL5pPrFwjNatHfQ93Y6qqKQWJM3ah9VtAU2nc1cnzS+0Mv8982Z9xuQwAaDFNVSD5JlCCCGEEEIIIU4PCWbEeePFbz2F0aBzwzevwuIwj19fdGMl3Ud62fGrPWgx7aT60jQdb0OQtMU5J/2Mrukoihx1LYQQQgghhBDi9JF/+hfnhWOba4iNhtn4yXUTQhkARVHInJ9OxeXFNO9sm7Uvb+sQFreVhXesImNZLr0H+2d9xt/lx+y2TluHRgghhBBCCCGEeCMkmBHnhfrnq1n2zoUzbiOad1UZ3TV9BIdDM/Z18LEjlN28CADP/EyGW0YIDgZnfKbpuRYKLis/9YkLIYQQQgghhBAzkK1M4rwQ9oVJrzh+NPZAs5djLzbS3zCAruu40pyUbCyiYFUOz31rC1d+fgNWt3VCH7quc+jRI/j6gyxZlguAoipUvnsFe36yl5V3L8OaOPEZgMZnmwl6o2SuyDuzLymEEEIIIYQQ4oIjwYw458VjMQxGFUVR0DSd3b/dj6/bR8WVpax631IUVWGw2UvdC40MtnoxmFSe+OKz5C7PpmBVLgazgcEWLzVPH8OcYGPdl69GUY+vvElbmIWu6ez87h5S5iWTsSwdg1nF1+Gn7eV2nFmJrPzEBin6K4QQQgghhBDitJNgRpzzDEYj8WiceDTOgb9VYTCqXHbP+gmFeFMKk1n7oWSad7ax908HicXjDI746PnDfqL+KI58J+FIlEu/dPOUY6QvzsYzP5PufW107elEi2nYU50s/7eN2FOdc/WqQgghhBBCCCEuMBLMiPOCyWnh2MuNdNf0cc1XLpv2dKSC1bm0H+ikr2WQlEWpGGxGOje3Y02zYXO6ZhxDNapkrcona1X+mXgFIYQQQgghhBBiEglmxHmj+slaFlxXgaIqtOxuY7B5CKPFSOFFeThTHePt5l9Tzo4H9tD5XDuKArFQjN6uAJf+z41ncfZCCCGEEEIIIcRkUjRDnPN0TUdVFdyZbgZavPz1009Q/Vwdo9EwgwPDPP2NF3jyK8/hbR8GICk3kVgwRtQXoeSaYhRdofKdy7G4Jxf2FUIIIYQQQgghziZZMSPOG4HBAJFIhLX/uQZ7qn38uq7pdO7q5Llvb+GyT19CckEiuq6jqArZq7Ooe/QYORcVnsWZCyGEEEIIIYQQU5NgRpzzFFVBi2lgVFh9zyoMJsOk+9lrsjE5zWy5dwcXf2QVFrcFo91IcDBIPBwnODCKI33mGjNCCCGEEEIIIcRck61M4rygA/PeWTEplDlR2gIPRoeJvX8+xOjgKKXXl9DyYivZizJoeaFu7iYrhBBCCCGEEEKcJAlmxHkhOhrBMz911nb5m/Lw9QQwOc3EgjGG6oZYfttieg91zMEshRBCCCGEEEKIUyPBjDin6ZrOvoe2oxoVFHXqI7JPZE20ohgVUKDmL7Ws/cByLA4z6PoczFYIIYQQQgghhDg1EsyIc9rhv+5hoLaHeExDi2uztg8OBDGaDIT6ghS/r5xtv9hFcDh0UqGOEEIIIYQQQggx1ySYEees0cEAnftasLgtWBxmeg70zvpM8+YWMuel4cx3k7wwhYQlyez54wHSl+bOwYyFEEIIIYQQQohTI8GMOGc1banFkWSn/PJiAGr/WkssGJu2fdeeLmKjMVr2dJCyygNAxvpsOo/0kndp6SmN7e8eYaCul5FWL7om26CEEEIIIYQQQpwZcly2OGd5m/oJ+UKklXkwGAy4Mp1s/+YrLL1zMe5c93i7eDRO60ttHHuyntL1hbQd6CQejANgTjBjcpqxJNhmHU/XdTpebabp2RqMNgO2FBsRf4TRnlFy15dQeEUFqkGyTCGEEEIIIYQQp48EM+KcFA1GGOkcwmQd+xGNhmMM9/pIuySTqj/XoEc0nFlO4pE43mNedB3m3VpO49PNREejE1a5nGyYUvPnfQS6vSz96ELsqfbx6xF/hPq/N7Lnx1tY8W8bUI0SzgghhBBCCCGEOD0kmBHnpL2/2UFirpt4ME77gU5i8TgLP7UUc4KF7MtzCQ0ECQ+EUIwqRe8vY6RxhNaHm1j12ZVs/+8d+FtGAIiMRFBQMJgMM47XsasFf9cgyz++dFKhYLPTTOVtFdQ+XEfd44eoePuSM/XaQgghhBBCCCEuMPJP/+KcExwaZaRjkBXvWYy/P0DVkzXkXJ2HOcEy3saaYiOhLAl3UQKqyUBieRJGt4lQf5CiqwoZrh1Ci2l0v9xJ3vqSWcdsfraGebeWz3h6U8m1xXTubCYejZ+W9xRCCCGEEEIIIWTFjDjntO1qonBtHo4UBxggFIiQflHmrM+lXZxJx85Oym8uo+nZZjqeaWVw3yCV/7USgGggQtv2Bry1vWhxDUeGm7yNpagmAyg6jnTHjP0bLAZS56XQf6Sb9MXZp+VdhRBCCCGEEEJc2CSYEeeciD9EctZYsd5oLI6u6xjts/+oWpItDPojmOwmAHq293Dxf12F0Wai+YU6mp87StHaPJbeUIFqVBlo9lL1qx0oFhPWJMssvY+xJlmI+MJv/OWEEEIIIYQQQogTSDAjzjkmu4XgSJiGbc1Y3GbUkEo8HMdgmblOTHQkgslmIhYeO1J74e0rsSbZaXnxGP37Wrn2y5swWo7/yCdkuiham8e+vxymo6b7pOYW8UVx55re+MsJIYQQQgghhBAnkBoz4pyTszyfxu2tHP77UVb9+0oylqTTt7tn1ud6d/SQtSKDjlc70TVIrcwgFo7R9MwRNty1ZkIoc6Kl71hAZDhCcDA4Y/9aTKP3cB+p82ffViWEEEIIIYQQQpwMCWbEOcfhcaHr4FmUislmIn9jHp3PtRMbjU37jL/VR7ArgDvfTcNTjaQvzcFgNtLxShP5K3OmDWUAFEWheF0+NX+pRdf1ads1b24hfXH2jH0JIYQQQgghhBCnQoIZcU5KyEsibVEaALYUGyXXFFH9g4MEe0YntNN1HW/1AHW/OEL5TWXs/N5utLjOgveMFfwdqu8ja0H6rOMtuqkSb52Xqt8eIToanXAvHo3T8HQTPQcHKL9l6Wl6QyGEEEIIIYQQQmrMiHOVDsoJsWHOmmzMTjPHHjgKBgVHrhMtqjF01IvBZMDsMNH4j0YylqUTDagYzGP1aHSdGY/Afp2qqhitRpyZqez45k4S8t3YUmxE/FEGjg6QsSyXNZ+9DINZfmWEEEIIIYQQQpw+8i1TnJN6a7oxp6qklKeMX0tb4CFtgQdfhw9/d4BYMEaCx0H93xtZ/JmVJBYkcvThOty5x59xZiXQVz+ApzhlqmHGjXT7sCbYKb66kqIrKxis6yPsC2G0mlhw+1oJZIQQQgghhBBCnBGylUmcc0a6htDjcTpf6USLa5Puu7JdZC7PIPfiHKL+GOllqYy0+ohH43Tv7SFrdcF429xLimnY1oKmTV87BqD2xQbyLi0FQFFVUirSyVqZT9rCLAllhBBCCCGEEEKcMRLMiHNO9aP7KdtUhNlhpurBavRpQpW+qj4Gjwyy/LbFdO7o5ND/qyJvQ+mE4rwWtxXP4mz2/P7AtP20Heikt95Lxoq8M/I+QgghhBBCCCHEdCSYEeec8EgQd7oL1aBiUgzs/M4uuvf1oMU1dF3H1+Gj+ndHqH+0nks/uQ5XuhN/tx/FYKb4bZWT+qt4x1IiGHjuO1tpP9A53o+3bYhXf7OPQ0/UsvJTGzGYDGfhbYUQQgghhBBCXMhkj4Y45xjMRvoaBwkOBln57sWoRpXaFxo49sgxdF3HkWKndH0Rue9ejmpUiQSjmJ1mfB1e+qq6SFuYNaE/RVVY+L5VDLcM0vR8Lfv+Wo2u69hTHeRuKKX8fWtQDZJRCiGEEEIIIYSYexLMiHNO0aZ57Pnly8y/ppymV9tY8e7FrHn/8mnbN73SSsbKDHIvyWH3D/bgmX/9lCcxJeQns+hDa8/k1IUQQgghhBBCiFMiywTEOcdkNZKQ7ab00iI6DnYx1D6Mrh+vDxOPxgn7w2gxjWgwSu0L9eStz8WWbCMh301fVddZnL0QQgghhBBCCHHyZMWMOGcE+v3UPVdF8456sual88zXXsRsNbHt3p1ouk5aeQr+wVECA6OYHCbCIxG0uIama/TX9JO1Oou0JR4GartJW5Q1+4BCCCGEEEIIIcRZJsGMOCf01naz5zfbyN2QjclsJC07mcvuWIvNZQUgHIhQ9VIdvcf6WfGp5dhT7eiaTn/NAEcfrqVlezudu7vJvTgHLTb5iG0hhBBCCCGEEOJcJFuZxFkX9I6y5/9tZfknltCzq4dL37eGVTcuHg9lACwOM8uvXcBlH7iIA/cdQItrKKqCZ34qF31uDcR11EQTjc824Uh3n8W3EUIIIYQQQgghTp4EM+Ksq3+xhvzL8wgOhEhMdVGwOGfattkVGWQWp9F7sHf8msFiYMG7K4l6wwS9IVLnZ8zFtIUQQgghhBBCiDdNghlx1rXtbiJ7TRad2zpZdGn5rO0XXVpOx7bOCdcS8hOI+aN41qTTs7/9TE1VCCGEEEIIIYQ4rSSYEWfV2GlLOkarkUBPgKTMhFmfScpMIDQYmnTdke7A7DQRHAycgZkKIYQQQgghhBCnnwQz4qxSFAU9ruNt8BIeChMJRWd9JhKKopom/+jGQ3F0TcdglprWQgghhBBCCCHODxLMiLPOkmjj8ANVFK3Lo3ZH06zt615tQjEpE65FA1ECvQFG6kdIn6FGjRBCCCGEEEIIcS6RYEacdTF/BFeKg5KNRVS9WEsoEJ7UZmzLE0TDUaperCM4GCIeiY/fb3q+mcT5yUS9UZJKUuds7kIIIYQQQgghxJshez7EWRcJRFh0QwUjXT4Sc9w88f3NXPOJS/EN+Dn8fC3dDX2oBhVd09GBgotyGe7xMdwyQlJxIi0vtdJ9uJd4KM6Kj21AUZRZxxRCCCGEEEIIIc4FEsyIs0rXdVSDgsFiJB6Nk5ibSFppKn/52t+xuaysvXUZl9+5DkVViEViHHu1mX3PVGNNtNC2rY2D/+8Quq5jdtpY+rGLSchPPtuvJIQQQgghhBBCnDQJZsRZpSgKug7D7cNkL86k7oUGEjJdeApSuPrjGzAYj++2M5qNzFtfQv6SbP7y1adQ/Crh4TA5N5ax6JrlZ/EthBBCCCGEEEKIN+aCD2a2bNnC448/RmNjI7FYjKysLDZtuoxbbrkFo/HkP576+mPs3r2bffv209zchM/nw2azUVBQwMaNl3LttdeeUn8Xkvy1xdS/3ETl28oJ+yPU/KOOW790zYRQ5kR2t41LP7CWV57cjynHgj3DNcczFkIIIYQQQgghTo8LOim47777eOSRhzEYDCxZsgSbzcaBAwf45S9/wauvvsL//u+3sFgss/YTj8f52Mc+BoDNZqO8vJzExCT6+/s4cuQIVVVVPP/8c3zzm/+L0+k806913inaWE7DS0fZ/L2tmJ1mEpKdWJ0zf+658zPZ/MvtLP/QxfTFhudopkIIIYQQQgghxOl1wQYz27dv55FHHsZms/G9732f0tJSAIaHh7nnns9SVVXFAw88wEc/+tGT6q+0tIzbbruNtWvXYjabx683NTXy+c//J0ePHuX++3/KZz97zxl5n/ORrukc/NMuOve3UnRxAcHhEJ2Hull5w6JZn1VUBXe6G0eqi75uCWaEEEIIIYQQQpyfLtjjsv/wh98DcNtt7xoPZQASEhK4++67AXjssUcJBPyz9mUwGLjvvvvYsGHDhFAGoLCwiDvvvBOAl156iVgsdrpe4bwWj8fpqm3DaIxz3dcuR1EgrmqUv6OMeDQ+eweAFoujmgxneKZCCCGEEEIIIcSZc0EGM/39/dTW1gKwadOmSfcXLFiIx+MhGo2yc+euNz1eSUkJAOFwmOFhWd0B8PQzT5NanMiSm+fT1zBAf5uXRf+yEM/8VBr2t876fMgfJjAcwpEiW8OEEEIIIYQQQpy/Lshgpr6+HgCXy0VmZuaUbcrKygFoaKh/0+N1dHQAYDKZcLmkUK2u6zzyxMMsurESgNoX6im+tghFVbCn2jG6TLTXdM/Yx4FnjlBwSSmKqszFlIUQQgghhBBCiDPiggxmuru7AEhLS5u2jcfjAaCra+aAYDa6rvPnP/8JgNWrV0/a6nQhGhwcRDPGcaTYx/7cMkRyWfL4/YrbynnhN6/Q09Q/5fPVLx3j2J5Wyt+2cE7mK4QQQgghhBBCnCkXZPHf0dEgAFarddo2NpvttbaBNzXWQw89yJEjR7DZbHzoQx8+5efvvfde7r333lnbVVSUv5HpnRXBYBCzzQSMBVeKqqAo/3979x0eZZm3cf+cJBNSSSEdCARSIAXpiEgXsbCCIpa18ej6uO+LiyK4r21tWBB0UVdd3V1dH3VXxUKx0lQEBKQpCQlJCISaQCAhIT2ZmfePmIGYQggzc0vy/RyHx5L7vuaa3w0X2czJVU7NfPEN99WAGf21+q0N8gvwUd/hvdTJt5OKj57UzysyZJV0yWNXyaNThxy+AAAAAIB2hE+2TrRy5Qq99957cnNz0+zZc9StW7ez7mPGjBmaMWPGGdvdccftbSnREEFBgSo9XlYXyvwSyFiqLHLvdGojX79IP1340DAV7y1WzvbDslRZVFFYIXdvd4XHRcnszcwjAAAAAMD5r0MuZfLxqZsNU1lZ2WybioqKX9r6tuk91qxZo+eff16SNGvWLI0ePbpN/bRHvr5+6hkdo4LsuqVK0QO76tCPhxu1M5lMCuwVqISp8ep7Yx9VHK9U6dEyHck4LJvN5uqyAQAAAABwuA4ZzISHR0iSCgoKmm1Tfy8iIvys+1+7dq2effYZ2Ww23XvvvbrsssvbVmg79vtpN+nHd39STWWt4sf2Vu6KXFUWNR+U7ft2v0wmqXOon9zcTSrKPe7CagEAAAAAcI4OGczUH19dUlKivLy8JttkZWX+0jburPpev369nnnmaVmtVs2ceY+uuOLKcyu2nUpMTJRPQGctf+ZblRw5qSE39tfmhVuUtzVfVovV3q6yqFIZH2Yod0WuakprFDekhzy9PbR7dQazZgAAAAAA570OucdMaGioEhISlJmZqW+++UY33XRTg/tpaakqKCiQ2WzWsGFDW93vhg0b9NRTc2WxWDRz5j2aNGmSo0tvVwIiguTfvbN+XpyuihMV8vDyUMaHu5T23k55BXaStdammrIamdxNsllt8gv0kUx1GwWfzCtU6kdb1O+6IUY/BgAAAAAAbdYhgxlJuvHG3+vxxx/Thx9+oKFDhyourm5mTElJsV5++WVJ0uTJU+Tr62d/zbp16/TWW2+qS5cQLViwoEF/mzZt0ty5T8piseiee+7RlVcSyrRGj4tidSw7Xx4BZsX9oa88fMxy93RXZVGlrFUWeQZ2kqe/p0p2Fyvj76k6uCtf5UUVGnPPRfrxvZ+Uv/OQ0Y8AAAAAAECbddhgZsSIEZoy5WotWbJYM2f+SQMGDJCXl5e2b9+u0tJSJSUlafr06Q1eU1ZWpgMHDqi6urrB9aKiIj3xxOOqqalRaGiodu5M186d6U2+71133aWAgABnPdZ5J6hHF1UUV6jXzXHyDvWxX/cJ82nQrnNsgHzCfVWUV6KAKH/5h/mp3+S+SvsyXZ1HRrq6bAAAAAAAHKLDBjNS3VHUyclJWrp0mXbu3CmLxaLIyEhdf/0Nmjp1qsxmc6v6qaqqUk1NjaS6TYNXrlzRbNtbb72VYOZXbJICE4Nls9pUuOOYjq7NV+WxCrl5uCmgT6DCx3SVd6i3wkdHKnfRbg2YliJJCukVrJLDJ+RvOfsNmvHbYamq1eFNuTr0w25Vl1TKw9us8IHR6j4qTp7+XkaXBwAAAABO1aGDGUkaPXqMRo8e06q2EydO1MSJExtdj4iI0MqVqxxcWcdgs9nkZnZTdUm1dr2appDuQRoypZ+CugfIUm3R/m2HlPFGugL7d5FvTz9FJIYrIKqzpLrjtD19PGWttZ7hXfBbVZx7XD//Y62C+3dR79ti5dXFSzVlNSrYeEQbnvlK8dcMVOSQHkaXCQAAAABO0+GDGRjLZrOp6mSVMl7eocFT+6lrv1PLkty83dR7RE/1HBattW9sVMHhMkV262K/b7XaVFVaJTezuxGl4xyVF5zUz/9Yqz5/TJRPlK/9uqe/p7pO6K6w4RHa+dLP8vA2KzQ5ysBKAQAAAMB5OuRx2fjtyPvpgDw83dQ9JbJBKHM6dw83jfzfYSrZdULdB3Y79drUfIUmRMjkZnJVuXCgPV+mKXpyjwahzOnMfmYl3NlX2Yu3u7gyAAAAAHAdghkYKuPLHTJ7mdVnfFyL7dzN7uoxrLuO5RyXJNVU1urnJRmKm5DkijLhYLWVNTq+K19d+oe02M47zEfuPu4q3lfoosoAAAAAwLUIZmCosuOlMskknyDvM7aNSg7Xsb2FOpZzXKueX6vYCUkK6tHljK/Db0/FsVL5RvnK5H7mb0Gd4zqr9GCRC6oCAAAAANdjjxkYzmaztbKdlJd2RBXFtbrghmEKjY9wcmVwGpNJrfxjl81qk0wsVwMAAADQPhHMwFBmL7NMJptOHi2Vf5hfi20PbD2kPlf2U+y4RBdVB2fxCfVX+eEyWWuscjO3PGumOOOEoocmu6gyAAAAAHAtljLBMFarVTXlNaoqq1b68qwW21aX1+jgz3kKiWWWTHvg7umusAu6qeDHIy22KztQKpPJXX5RAS6qDAAAAABci2AGhik9dlKRSWGyWqw6vr9Ie37Y12S7msparXnlB4X1D9PBrbmuLRJO0+vyZB1acVAlOcVN3q88XqnMNzPU57rBLq4MAAAAAFyHpUwwxDffrlbBnjzFjY1RJ19Pefp56qdPd2rvD/vVZ0KsArsHyFJtUe6PB5SzNle9roiRdxdvZS/OUeLv+svNg0zxfNcp0FuD7hmv7a9+J5+uPgofGSGvEG/Vltbo6MYjKvz5uJJuu1CBvVo+uQkAAAAAzmcEM3C59T+s0zsfv61h0wcqL+2IaitqFdUnXJfcM1LH9hQqZ22udq3MlpuHu8ITQhTUI1A1ZTUyuZvk5mXS5rfXatgfRhv9GHAA3zB/jXhsko6lHdahNTmqKqmQh5dZ4YN6KHHqCLl7uhtdIgAAAAA4FcEMXMpqteqNN9/QRfcNkqePWVv/+7OCewQpcWK8JCmkV7BCegU3eE1CrVVfPL5SVptNF9x5gTIXZapo/3EFRXNUdntgcjMptF9XhfbranQpAAAAAOByrAeBS23btk0B0X7yDvCSu9ldnv6eirkwWsf2FKr8REWTr3H3cFOvi3qotqJGZXml6jE+WrtXZ7i4cgAAAAAAHI8ZM3CpXVkZCu4TKEuNRRnLs1VRVKl9mw/K7O2hk/ml8vT1VOLl8YroG9bgdVFJ4Tq4I08l+0oUd1Wscj7PNeYBAAAAAABwIIIZuJTNJllqLVr9wlpF9AnT5HkT5enjab9/PLdIW/77k04eLVXc6F726yaTSSZ3k2w2m0wmU11HAAAAAACc51jKBJeK6x2n3d/sVY+h3dVvSmKDUEaSuvQM0vjZI5Xzfa6O7y20Xz+SWSCbzabO3fxVmF2owOjgX3cNAAAAAMB5h2AGLhUXF6fK0irFj+nVbBuPTh7qd3WiMlflSJKsVpuyv9+r8mMVihwSqdzVBxQ7LtFVJQMAAAAA4DQEM3Cp9T+sV/zY3jK5mVpsF5kYroI9x2WptmjjW1tUXV4j31BfZXycKbNnJ3XpFeqiigEAAAAAcB6CGbhUYdFx+XTxPmM7k5tJZi+zvnxildxqpcmzxmvohGTVHKpUzckqVZwod0G1AAAAAAA4F5v/wqX8/fxVdaL6jO1sNpuqTlbpd7PGKaR73X4yIdHBihnYXXt/Pqi1L6zQmAcul6dvJ2eXDAAAAACA0zBjBi510fARyv5uzxnbHd9bpNDoYHsoc7qYC7opaWRvZa/Y6YwSAQAAAABwGYIZuFRBQYFklQ5sPyypbmZMRXGlSo+VqbaqVlLdZr+pS9LV75I+zfaTODJWBzbtlbXW6pK6AQAAAABwBpYywaVSd6YqdnyMfvo0TQd/Oqyi/cVyN7vJ7OWhsuPlCuwWoMqSKkX1DlN0clSz/Xh6m9U5zE/lx0tdWD0AAAAAAI5FMAOXslhqZfbykE+gt2S1afTdw+XbxUeSZLPalJ9xVJvf266wHo2XMP2am7ubrFabs0sGAAAAAMBpWMoEl+oZHaOsb/YoLC5Ew+8YYg9lpLqTmCKTwjXxkXHa/Hmqjh8sarYfq8Wq4vwS+QT7NNsGAAAAAIDfOoIZuFRERLgqiiqUNKn5/WM6+XoqZXKifl6Z0WybvdsPKiQhQh6dzM4oEwAAAAAAlyCYgUu98uor6j2yp9zcTC2269o/Ugcz8mW1NN7ct/joSW34ZLviL09xVpkAAAAAALgEwQxcqqikSAFRnc/Yzs3NJLmZlPpNpmqrLZKkipJKbfk8VcsWfqNBd4yUf/iZ+wEAAAAA4LeMzX/hUp08PFVdVt2qtpZaizYu/kk7VmdJJsmjk4eiL+qtcY9MkqdvJydXCgAAAACA8xHMwKWunjJVb3/8phIuiW2xXdH+E/IJ9VH8qG4qTC3Rhf87xjUFAgAAAADgQixlgkvFxvZWZUmV8tOPNtvGZrNpx2cZih4brchBESrMPaaq0koXVgkAAAAAgGsQzMCltm3fppgRPbT29Y06nJbf6H5tVa1+fHe7TN5uCh8QJpObSSGJXXQ8p8CAagEAAAAAcC6WMsGlamprFNQ1QH4hftr07nZ18vVUj8FdZfY268ThEh1OO6JuF0Up+fJ4mUx1Jze5md1krW18OhMAAAAAAOc7ZszApbpFdVPuugPqGh0mL/9OuuCP/VTrLZVWV8ovvrMufvwi9b6yt0ynHad98sBJ+YX5G1g1AAAAAADOQTADlxo4cJCK80p0+fRR8vP1Vk1ZjaJHd1fMhJ6KHBQhd7N7g/blBeWqLbcqsHuwQRUDAAAAAOA8BDNwqR9//FH9Lu4jdw93jbpqiNLfzVBNeU2TbS1VFu34d5oSf9fftUUCAAAAAOAiBDNwqbwjhxUWHSRJ6p4QqYsvH6TN8zfr0MbDstRYJElWi1V5W/O19on16jqgl7oOiDayZAAAAAAAnIbNf+FSnTy9dLyy1v518vA4RfUK0+ZVqdrw+UbJJMlqU8+kbvIwuStuXF/jigUAAAAAwMkIZuBSQwYP0V9f+1YDxiXarwWHB2jiTRdr4k0X268dzytS/sEieXRiiAIAAAAA2i+WMsGlevfuLTeLh/L2FrTY7ofPf1LM2AQXVQUAAAAAgDGYjgCXmzPrz3rg4T/LJ8hTx4+ckKXWKpO7Se4e7koaFiub1abi8kr1GRZjdKkAAAAAADgVwQxcbv2Gdaq2Vsvd5qYL/zBYEX3DZDKZVFVWrd1r9mrXyt0aPmOc3NyY0AUAAAAAaN/45AuXWrlqhT5fuUyh8V00/s+jFJkYLpPJJEnq5OuppCsSdOkDo7X5ze9VfrzU4GoBAAAAAHAughm4jM1m03/ef09VVdUacusAubmZmmznH+6npMvjlb0q3cUVAgAAAADgWgQzcJnU1FSZvGzq1j9SHp7uLbbteWG0Dm3dJ5vV5qLqAAAAAABwPYIZuMzhw4fk7u2moB6BZ2zr4ekus49ZNRXVzi8MAAAAAACDEMzAZdzdPSSrZKmxtKq9tdYqNw+GKAAAAACg/eJTL1wmJSVFFUXVOvRT3hnblh4rk5uHuzw6mV1QGQAAAAAAxiCYgctERESoa0RXlRaUqTivpMW2O7/MVO+xfVxUGQAAAAAAxiCYgUvNnHGvTNVu+u7FH3TyaOPjsG02m9K/zlJxfrl6jIg1oEIAAAAAAFzHw+gC0LEEBgbK7OkpD193fbtwnUJ6dVH00G4ye3mo+FCJMpZnySe0s0bOulTuHi2f3AQAAAAAwPmOYAYuY7PZdO/99yhmQjfFjoqRzWpTXvoRHU7NV22VRb7BPuo+MEq5mw6qoqhM/hEBRpcMAAAAAIBTEczAZbZt2yaLb7ViR8VIkkxuJkUlRygqOcLexmazqSC7UGmfbNXwGeOMKhUAAAAAAJdgjxm4zHsfvqOkKxNabGMymZQwIVbHdh9VTWWNiyoDAAAAAMAYBDNwmcOHD6tL7y5nbBfSO1juZjeVH2+8OTAAAAAAAO0JwQxcxuTmJpvFesZ2NotNJpnk5s7wBAAAAAC0b3zyhcv0TeijQ6n5Z2x3aEe+aqpr5RPi54KqAAAAAAAwDsEMXObmG25V+meZstlszbax1FqV9U2Oug+J4bhsAAAAAEC7RzADl+ndu7cSovtq0/9tk83aOJyx1Fq1/o1NstRYlDi5v+sLBAAAAADAxQhm4FJ/eehRRZq6admDy5W5erdOHCxW0YET2vllppY98LWKDpZo7MOT1MnPy+hSAQAAAABwOg+jC0DH4u7urkcffkxHjhzR3f/f3cr6dq9ks8nTz1uDpl+siJSuMplMRpcJAAAAAIBLEMzAEOHh4Yrs0139bh1sdCkAAAAAABiGpUwAAAAAAAAGIZgBAAAAAAAwCMEMAAAAAACAQQhmAAAAAAAADEIwAwAAAAAAYBBOZYLLWSwWbdiwQUezD+n7Bcfk6eel7sN6KvKCaLm5kxUCAAAAADoOghm4VE5OjuY+84TC4oI1dvpQ+Qb6qKyoXOnrcrTzk+0aetdoBUYHG10mAAAAAAAuQTADlzl48KAef+pRjf1/hqlLt0D7df8uvoqIDdWxA0X6+rXvNOLeS+QX3tm4QgEAAAAAcBHWjcBl3vy/f2rIDckNQpnThXQP0sU3DFT60u2uLQwAAAAAAIMQzMAlioqKlLM3R9HJUS2265HSVSf2FarqZKWLKgMAAAAAwDgEM3CJPXv2KDI+VCaTqcV2JjeTIuNDdeJgkYsqAwAAAADAOAQzcAmr1SqTW8uhTD2TySRZbU6uCAAAAAAA4xHMwCV69OihIznHztjOZrPpyJ5j8o8McEFVAAAAAAAYq8OfyrRmzRotW7ZUe/bsUW1traKiojRu3HhNnTpVHh6t/+0pKSnWhg0blZ2dpezsbOXk5KiqqkoDBgzQ/PkLnPgE54ewsDCFBYcrP6dAEb1Dm22Xv7tA3sG+8gn2dWF1AAAAAAAYo0MHM6+99poWL/5U7u7u6t+/v7y9vfXTTz/pX//6pzZu3KB5855Tp06dWtVXamqann+eAKYld9x2p56a/6QmzrpYfkE+je6XFpbp2//bpMF3jjKgOgAAAAAAXK/DBjPr16/X4sWfytvbWy+88FfFxcVJkoqLi3X//XOUlpamt99+W3fddVer+gsKCtKVV05SXFysYmPjlJ2drZdeetGJT3D+iY+P18w/3qsXF/xVsRdFK/7iGPkEeKm8uELpa3O0a32OBtwyXEE9uhhdKgAAAAAALtFhg5n33/+vJOn662+whzKSFBAQoJkzZ2rWrFlaunSJbr75Jvn6+p2xv8TERCUmJtq/zs3NdXjN7cHgwYP1+iv/0NfLv9b7T/9XJg83efp4qtuFMRr36FXy9PE0ukQAAAAAAFymQwYzx44dU2ZmpiRp3Lhxje4nJ6coNDRUBQUF2rTpxybboO38/Px07dRr9X32D+p362CjywEAAAAAwDAd8lSm3bt3S5L8/f0VGRnZZJv4+ARJUk7ObpfVBQAAAAAAOpYOGczk5+dJqjspqDmhoXUnB+Xl5bukJgAAAAAA0PF0yKVM5eUVkiQvL69m23h7e//StswlNTXn1Vdf1auvvnrGdn36JLigGgAAAAAA4EgdMpg5n8yYMUMzZsw4Y7s77rjdBdUAAAAAAABH6pBLmXx86mbDVFZWNtumoqLil7a+LqkJAAAAAAB0PB0ymAkPj5AkFRQUNNum/l5ERLhLagIAAAAAAB1PhwxmYmNjJUklJSXKy8trsk1WVuYvbeNcVhcAAAAAAOhYOmQwExoaqoSEus1yv/nmm0b309JSVVBQILPZrGHDhrq6PAAAAAAA0EF0yGBGkm688feSpA8//EDZ2dn26yUlxXr55ZclSZMnT5Gvr5/93rp163T77f+j+++/37XFAgAAAACAdqnDnso0YsQITZlytZYsWayZM/+kAQMGyMvLS9u3b1dpaamSkpI0ffr0Bq8pKyvTgQMHVF1d3WSff/rT3fZfFxcXS5IyMzMbXL/55ps1bNiFjn8gAAAAAABw3umwwYxUdxR1cnKSli5dpp07d8pisSgyMlLXX3+Dpk6dKrPZfFb97dq1q9G18vLyBtdPnCg+57oBAAAAAED70KGDGUkaPXqMRo8e06q2EydO1MSJE5u9v3LlKgdVBQAAAAAAOoIOu8cMAAAAAACA0QhmAAAAAAAADEIwAwAAAAAAYBCCGQAAAAAAAIMQzAAAAAAAABiEYAYAAAAAAMAgBDMAAAAAAAAG8TC6AHQcNptN27dv1+KlHyt33z6VVZSpcP8RRY+KU/SwXvLoxHAEAAAAAHQsfBKGS9TW1urZ555RUXmBLry8n66Iu0gmk0lFBcXatHqHvnvqCw2/d7x8u/gZXSoAAAAAAC7DUia4xN9efVkeQbWaNnOiouOjZDKZJElBoQG67IaRuurmMdrw4mrVVtcaXCkAAAAAAK5DMAOnO3bsmFLTf9aYqUPtgcyv9UqKVkK/njrw414XVwcAAAAAgHEIZuB0X339pfqP7tNsKFPvwvEXaN93WS6qCgAAAAAA4xHMwOn2H9ynqJiwM7YLCgtQdVm1CyoCAAAAAOC3gc1/4XQe7h6y1FrO2M5ms6m2skY73tlyVv2fLC1Vdlp5W8vr8GxFtcp5b7vRZZwTryo3HV38s9FlnBcs5RUqSD1hdBmGCah1V/niTUaX0Wbe5ZWqTDtqdBkAAAAOE+HJATAEM3C6ARcM1I8/rVWPhK4tttu365D6JfXT4w886aLKAAAAAAAwFkuZ4HRjxoxV5ta9qiirbLaNzWbTxq936Jop17qwMgAAAAAAjEUwA6fz9PTU/9x6uz5c+GWT4YzNZtM3izYqLCBKKSkpBlQIAAAAAIAxWMoElxg3brwk6a0n3lLCgJ7q3T9a7h5uyttboJ+/36UBFwzS/3v/3Wc8uQkAAAAAgPaEYAYuM27ceF188UitWfOdftqyXbW1teoR3VPPz/ujgoODjS4PAAAAAACXI5iBS3l6emrChEs1YcKlRpcCAAAAAIDh2GMGAAAAAADAIAQzAAAAAAAABiGYAQAAAAAAMAjBDAAAAAAAgEEIZgAAAAAAAAxCMAMAAAAAAGAQghkAAAAAAACDEMwAAAAAAAAYhGAGAAAAAADAIAQzAAAAAAAABiGYAQAAAAAAMAjBDAAAAAAAgEEIZgAAAAAAAAxCMAMAAAAAAGAQghkAAAAAAACDEMwAAAAAAAAYhGAGAAAAAADAIAQzAAAAAAAABiGYAQAAAAAAMAjBDAAAAAAAgEEIZgAAAAAAAAxCMAMAAAAAAGAQghkAAAAAAACDEMwAAAAAAAAYhGAGAAAAAADAIAQzAAAAAAAABjHZbDab0UXg3F111e8UGhpqdBmtVlRUpKCgIKPLAByC8Yz2grGM9oTxjPaE8Yz2or2MZT8/f7300ksO649gBoZITExUenq60WUADsF4RnvBWEZ7wnhGe8J4RnvBWG4aS5kAAAAAAAAMQjADAAAAAABgEIIZAAAAAAAAgxDMAAAAAAAAGIRgBgAAAAAAwCAEMwAAAAAAAAYhmAEAAAAAADAIwQwAAAAAAIBBCGZgiBkzZhhdAuAwjGe0F4xltCeMZ7QnjGe0F4zlpplsNpvN6CIAAAAAAAA6ImbMAAAAAAAAGIRgBgAAAAAAwCAEMwAAAAAAAAYhmAEAAAAAADAIwQwAAAAAAIBBCGYAAAAAAAAMQjADAAAAAABgEIIZAAAAAAAAgxDMAAAAAAAAGMTD6AJw/luzZo2WLVuqPXv2qLa2VlFRURo3brymTp0qD4+zH2JZWVn64IMPlJq6Q2VlZerSpYuGDRumm266WUFBQU54AqCOo8by7t3Z2rx5s7Zt267c3L06efKkvL291bNnT40ZM1ZXXnllm/5uAGfD0d+bT7dp0yY98sjDkqQBAwZo/vwFjigZaJYzxvMPP6zXV199rczMXTp58qT8/PwUFRWlwYOH6JZbbnHwEwCnOHI8V1RUaMmSxVq7dp0OHTqoqqoqde7cWfHx8briiit10UUXOekp0JEdOHBAW7duUVZWtrKzs7R//35ZrVZNnz5dN910c5v73bZtqz7++BNlZu5SZWWlwsPDdfHFI3XjjTfK29vbgU/w22Oy2Ww2o4vA+eu1117T4sWfyt3dXf3795e3t7d++uknlZaWKjk5WfPmPadOnTq1ur/vv/9ezzzztCwWixISEhQREaGsrCzl5eUpKChICxe+qK5duzrxidBROWosWywWXXbZREmSt7e3EhISFBgYpGPHCpSeni6r1ao+ffro2Wfnyc/Pz9mPhQ7K0d+bT3fy5EndeecfVFhYKJvNRjADp3P0eK6pqdG8ec/q+++/V6dOndS3b6KCggJVVFSk3NxcWa1WffLJp058InRkjhzPJSXFuu+++7Rv3z55e3srMTFRfn5+Onz4sLKzsyVJU6ZcrRkzZjjzkdAB1Y/jXzuXYOaTTz7W66+/LpPJpOTkFAUFBSotLU2FhYXq3r27Fi58UQEBAeda+m8W/2SLNlu/fr0WL/5U3t7eeuGFvyouLk6SVFxcrPvvn6O0tDS9/fbbuuuuu1rV37Fjx7RgwXxZLBbde++9uvLKSZLqPuguWLBAq1ev0rPPPqO//e0VmUwmpz0XOh5Hj+W4uHhdf/31Gj58uDw9Pe3X9+7dowceeFC7du3S66//XXPm3O+U50HH5ujx/GuvvvqKioqKNGnSJH322WeOLB1oxBnjeeHCv+r777/XiBEjNGvWfQ1+0Ldardq1a5fDnwOQHD+e3333Pe3bt09xcfGaN2+eOnfubL+3adMmPfbYo1qyZLHGjh2rxMREpzwTOqaePXtq2rRpio2NVWxsnN5//79atWpVm/vbvTtbb7zxhtzc3DR37lMaOnSoJKmyslKPPvoXbd++XS+99KIeffQxRz3Cbw57zKDN3n//v5Kk66+/wf5/LJIUEBCgmTNnSpKWLl2isrLSVvW3ePGnqqys1MCBA+2hjCS5u7vrnnvuka+vrzIzM7VlyxYHPgXg2LHs7u6u1157TaNHj24QykhSTEwv3XnnnZKk7777TrW1tY56BMDO0d+bT7du3TqtXr1a1157rRIS+jimYKAFjh7P27Zt08qVK9WzZ0898shfGv3rq5ubGx9g4TSOHs8//bT9l/6ubxDKSNKwYcN0wQX9JUkZGennWjrQwBVXXKH//d+7NG7ceEVHR8tkOrdY4f3335fNZtPEiRPtoYwkeXl5afbsOXJzc9PatWu1f//+cy39N4tgBm1y7NgxZWZmSpLGjRvX6H5ycopCQ0NVU1OjTZt+bFWf69atlySNHdu4P29vbw0fPlyStH79uraWDTTijLHcktjYWElSVVWViouLz7k/4HTOHM/FxcV66aUX1b17d91223RHlAu0yBnjeenSJZKka645972WgLPhjPH8638Aak7nzu13+QfOfzU1Nfrxx7oxP27c+Eb3w8PDlZSUJKl9fw4kmEGb7N69W5Lk7++vyMjIJtvExydIknJydp+xv/Lych0+fEiSlJAQ32J/9e8NOIKjx/KZHDpUN87NZrP8/f3PuT/gdM4czy+99JJKSkp0332zW/1hADgXjh7PFotF27fXzTBISUlRYWGhPv30E7300ot67bXXtGLFClVUVDioeqAhZ3x/HjKkbmbBhx9+qJKSkgb3Nm3apJ9//knBwcG66KLhbS0bcLqDBw+qsrJSkhQf39znwLrr7flzIP9UgDbJz8+TJIWFhTXbJjQ0VJKUl5d/xv6OHDnVprk+6/vLzz9zf0BrOXost8Rms2nRog8l1U0x5sMtHM1Z4/nbb7/V2rXf6+qrr1FycvK5FQm0kqPHc15enj14ycjI0N/+9nKjIOaf//yHHnroYQ0YMKCtZQNNcsb35+uvv16Zmbu0ZcsW3XzzTUpKSpKfn58OHTqs7OwsJSUlafbsOfL15bAB/HbVf7bz8/OTj49Pk206wudAZsygTcrL636Q8fLyarZN/ZFm5eVlre6vrs+mj0I71V95q+sEzsTRY7kl7777jtLT0+Xt7a077vjDOfUFNMUZ47mwsFB/+9vLioqK0u23337uRQKt5OjxfPqMgr/+9QXFxcXplVde1bJln+n119/Q0KFDdeLECT322KM6ePDgOVYPNOSM78/e3t6aO/cpTZs2TZWVldqyZYu+++47ZWdnqXPnzho4cKBCQkLOvXjAiSoq6j7bte7vRvv9HEgwAwAusHLlCr333ntyc3PT7Nlz1K1bN6NLAlpl4cKFKi0t1X333dfiD03A+SQkJETPPjtPCQkJ8vb2Vu/evfXkk3PVs2dPVVRU6MMPPzC6ROCMjh8/rnvvvUdLlizR9On/o3feeVfLln2mV155RXFxcXr33Xd17733tusPs0B7QTCDNvHxqUst69cDNqV+erCPj2+r+6vrs+n13af6a3qKG9AWjh7LTVmzZo2ef/55SdKsWbM0evToNvUDnImjx/OKFSu0ceMGTZo0yX66B+Aqjh7P9f/iKkmXXnppo+Wk7u7u9lMht23bdtb1Ai1xxs8b8+fPV2ZmpqZPn67f//73ioyMlLe3txIS+uipp55WTEyM9uzJ0UcffXTuDwA4ibd33We71v3daL+fA9ljBm0SHh4hSSooKGi2Tf29iIjwM/YXFnaqzdGjRxUT03gtbH1/4eFn7g9oLUeP5V9bu3atnn32GdlsNt1777267LLL21Yo0AqOHs/1px9kZmZq9uz7GtwrKiqSJGVnZ9vvPfzwIwoODj77woEmOHo8R0REyGQyyWazKSKi6c1X6zdlLSwsPNtygRY5ejwfO3ZM27ZtldT0iaYeHh4aOXKU9u7dq23btum2225rS9mA09WP99LSUpWXlzcZvpz6HBjh0tpciRkzaJP6I39LSkqUl5fXZJusrMxf2sadsT9fX19FRXWVJGVmZrXYX1zcmfsDWsvRY/l069ev1zPPPC2r1aqZM+/RFVdceW7FAmfgrPGclZWlHTt2NPjvwIEDkup+kKq/Vl1dfY5PAJzi6PHs7e2tbt26/9JncZNt6q+fPrsGcARHj+ejR4/af93cLAJf37qZNydPnjyrWgFX6tatu32pdFZWc58D667HxcW6rC5XI5hBm4SGhiohoe5Iv2+++abR/bS0VBUUFMhsNmvYsKGt6vPii0dIkr79tnF/FRUV2rhxoyRpxIiL21o20IgzxrIkbdiwQU89NVcWi0UzZ96jSZMmOaxmoDmOHs9PPPGkVq5c1eR/c+bcL0kaMGCA/VpERPv9lyy4njO+P48aNUpS80uVtm6tu17/voCjOHo8h4R0sf96165dTbbJyMiQJL434zfNbDZr6NC6Mf/NN6sb3T9y5Ih27twpqX1/DiSYQZvdeOPvJUkffviBsrOz7ddLSor18ssvS5ImT57S4Ii+devW6fbb/0f3339/o/6uvvoaeXl5adu2bfryyy/s1y0Wi15++SWVlpYqISFBgwcPdtYjoYNy9FjetGmT5s59UhaLRffcQygD13L0eAaM5PifNa6Wv7+/fvzxR33++ecN7n377bf2DwVTplzt8GcBHDmew8LC7UHPa6+92ugY4VWrVmnNmu8kSePGNV7qBLjakiVLdPvt/6PnnpvX6N4NN9wok8mk5cuXa/PmH+3XKysr9cILz8tqtWrkyJGKjo52ZckuxR4zaLMRI0ZoypSrtWTJYs2c+ScNGDBAXl5e2r59u0pLS5WUlKTp06c3eE1ZWZkOHDjQ5HT3kJAQzZlzv5555mktXLhQX331lSIiIpSZmam8vDwFBQXpwQcfkslkctEToqNw5FguKirSE088rpqaGoWGhmrnznTt3Jne5PveddddCggIcNZjoYNy9PdmwEiOHs8BAQF6+OFH9Oijf9FLL72opUuXqHv3aOXlHdbu3bslSTfddLOGDRvmisdDB+Po8Tx79hzdf/8c7d+/X3fccbv69u2rzp0DdODAfuXm5kqSxo+/ROPHj3fB06Ejyc7O1ssvv2T/un553hdffGFf5SBJjz/+hLp0qZvdVVJSrAMHDigoKKhRf3Fxcbrrrrv0+uuv6+GHH1a/fv0UGBio1NQ0FRYeV/fu3XXPPfc696EMRjCDczJjxgwlJydp6dJl2rlzpywWiyIjI3X99Tdo6tSpMpvNZ9Xf6NGjFRkZqfff/6/S0tKUk5Oj4OBgXXXVZN18881N/kUGHMFRY7mqqko1NTWS6jYqW7lyRbNtb731VoIZOIWjvzcDRnL0eB40aJDeeOMf+u9//6vt27dpw4Yf5OPjo6FDh+rqq69hZi6cypHjOSYmRv/857/0yScfa/PmzcrMzFRNTY38/f01ePBgXXbZZRo9eozzHgYdVnl5WZNL6AoKChpscF3/M3FrTJ16rWJiYvTxxx9r165dqqysVFhYmG644UbdeOON7fpEJkky2Ww2m9FFAAAAAAAAdETsMQMAAAAAAGAQghkAAAAAAACDEMwAAAAAAAAYhGAGAAAAAADAIAQzAAAAAAAABiGYAQAAAAAAMAjBDAAAAAAAgEEIZgAAAAAAAAxCMAMAAAAAAGAQghkAAAAAAACDEMwAAAAAAAAYhGAGAAAAAADAIAQzAAAAAAAABiGYAQAAAAAAMAjBDAAAMNzNN9+kCRMu0fz58w2tIz8/XxMmXKIJEy7R8uXLG91fvny5/X5+fr4BFTrO7Nn3acKESzR79n1Oe4933vk/++8XAABomofRBQAAgPahoqJCq1at0oYNG7RnT45KSkokST4+PgoPD1dMTIwSExM1ePAQhYWFGVytY2Vm7tLdd98tSZo6dar++Mf/p9m2OTk5+uMf77J//c477ygyMqrZ9gsWLNCKFXUh0b/+9aZ69OjhoKoBAMBvAcEMAAA4Z+np6Xr66ad09OjRRveKi4tVXFysrKwsLV++XEFBQVq06CMDqnSe2Ng4eXt7q6KiQqmpqS22/fX91NS0FoOZtLS69oGBgR02lJk9+z7t2LFD/fr10wsv/NXocgAAcCiCGQAAcE4OHjyoBx98QOXl5ZKk4cOHa+TIUerWrZvMZg8VF5doz54cbd26VT///LPB1TqHu7u7+vZN1LZtW7V7925VVFTI29u7ybb1QYubm5usVqtSU1N16aWXNtn2+PHjOnz4sCQpOTnZoTUTcAAA8NtAMAMAAM7JW2+9ZQ9l5sy5XxMnTmzUZtCgQZo27TqdOHFCa9ascXWJLtGvX4q2bdsqq9WqnTt3avDgwU22S01NkySNGjVa3333rVJTdzTbZ32II0kpKf0cWzAAAPhNYPNfAADQZhaLRT/+uEmSFB8f32Qoc7rAwEBNnjzZFaW5XHJyiv3Xpwcqpzt06JAKC49Lkq6//nr7taKioibbn77sqV+/lCbbAACA8xszZgAAQJsVFxerqqpKkhQV1dVh/R44cEAffbRI27ZtU2FhoXx9fZWUlKTrrrteiYmJZ3z9oUOHtGzZUm3btk1Hjx5VbW2tgoODlZLST5MnT1ZCQoLDaq3Xt29fmc1m1dTUNLvPTP316OhoxcbGKjw8XEeOHFFqaqpGjRrVRPu62TW+vr7q1at3o/vV1dX68ssvtX79eu3bl6uTJ0/Kz89PMTExGjt2nC699FK5u7s3WUtr921ZuXKFvvrqa+3du0e1tbWKiIjQqFGjdc0118jX19d+4tItt9yiW2+9rcXfo+rqai1ZsljffvutDh06ZP+9uOSSCfrd737XqNb58+dr5coV9q937NjR6ISn8PBwvffef1p8XwAAfssIZgAAQJt5eJz6UWL//v0O6XPdunV67rl5qqystF87ceKE1q9frw0bNujBBx/UmDFjm339Rx8t0ltvvaXa2toG1/Pz85Wfn69Vq1bq97+/SdOnT3dIvfU8PT2VkJCgtLQ07dq1SzU1NTKbzQ3a1Acz9fvFJCcn/xLM7GgUzJSVlSo3d68kKSkpSW5uDSc65+Tk6LHHHtWRI0caXD9x4oS2b9+u7du364svPtfcuU8pKCjorJ+ntrZWc+c+qR9++KHB9dzcXOXm5mr16lV67rnWH29eVFSkBx98QDk5OQ2uZ2ZmKjMzU1u3btUTTzzR6DkBAGjvCGYAAECbde7c2T7rY8+eHH3wwQe67rrr2vzhOjd3r9as+U7BwcG69tppio+Pl81m09atW/TBBx+ourpaCxcuVP/+AxQYGNjo9YsWfah//vOfkqRevXpp0qTfqWvXrvLz89PBgwe0dOlSpaen6z//eU8BAQG6+uqrz+XxG0lJ6ae0tDRVV1crMzOz0Ya99Uuc6q8nJSVr9erVTc6wSUvbKavVau/3dIcOHdLs2feprKxMPj4+uuqqyerTp49CQ0NVUlKiDRs26IsvPldmZqYeffQvWrjwxQYhWmu89tqr9lCmZ8+euvbaaerZs6fKy8u1fv06ffbZZ3rqqbmt7u/xxx/X/v37NWXK1Ro+/EL5+3fWgQMH9J//vKf9+/dr48YN+vLLLzVp0iT7a26//XZNmzZNzz+/QFlZWYqPj9ecOfc36PfX4RcAAOcbghkAAHBOJk+eon/84w1J0ptv/ktffPG5LrxwuJKSEpWQ0EeRkZGt7is7O1txcfFasGCBfH197dcTExMVFdVV8+Y9q/Lycq1evUpTp17b4LX79u3Tv//9b0l1y2puueVWmUwm+/34+HiNGTNW8+fP1+rVq/Tvf7+lSy65RP7+/ufy+A2kpCTr/ffrfp2WltogmGl4wlLKL/9bd3/v3r0qKyuVr6+fvf3p+9T069cwmJk/f77KysoUGxurefOeU0BAQIP7gwcP1oUXDtMjjzyiXbt2acWK5briiitb/Ry7d2fr888/l1T3ez9//gJ16tTJfn/AgAHq1+8CzZ37ZKv7zMrK1Lx583TBBf3t1+Li4jR48GD94Q93qKioSJ99tqxBMBMSEqKQkBB5eXlJkry8vBQTE9Pq9wQA4HzAXFEAAHBOpk6dqssuu8z+dX5+vpYsWaynn35at956i667bpqefvopbdiwQTab7Yz9zZkzp0EoU2/cuHHq0qWLpFN7r5zu448/Um1treLj4xuFMvXc3Nx09913y2w2q6KiQmvXfn82j3pGSUnJ9tlCv54FUx+0hISE2MOqnj17yt/f/5eTnNIbtK9/vZeXl+Lj4xtcT0/fKUn685//3CiUqTdkyFCNHDlSkrR8+Yom2zTniy++sP9ZzZp1X4NQpt6oUaM0YsTFre5z8uQpDUKZep07d7ZvGl0fUAEA0JEQzAAAgHPi5uam2bPnaN685zRkyJBGG7gWFRXpu+++06OP/kV33z3DPmukKTExMerVq1eT90wmk2JjYyVJeXl5je5v3LhRkjRy5MgmQ5l69ZvjSlJ6enqz7drCx8dHvXvX1bhz56mlSJK0Y0dd0JKUlGS/ZjKZ7JsZn35sdnV1tbKysiRJffr0bbAMacOGuuVF3bt3V0xM079X9eqXQGVlZcpisbT6ObZt2y5Jio2NVc+ePZttN2HChFb3OX78+GbvxcXVBU82m015efmt7hMAgPaApUwAAMAhBg0apEGDBqmsrEw7d+5UZmamsrKylJq6Q2VlZZKkrKwszZo1S6+99pp99svpunfv3uJ71C87qqgob3D9yJEjOnHihCTpzTff1JtvvtmqmgsLmz6m+lykpCQrOztLZWVl2rNnjz1MOrW/TMNjr5OTU7Rp06YGM2zqNw+u7+909YHNgQMHGp1Q1Jza2lqVlJS0ahPg6upqHT5cd2JSXFxci21Pn8lzJi392Z6+nKyioqLVfQIA0B4wYwYAADiUr6+vhg4dqltuuUVz587VokUfafbsOfYP34WFx/X22283+dpOnbxa7NtkqvvR5fSZKJJ04kTbApaqqsozNzpLp2/UWx/GlJaWKjc3V5IabQhc/3VWVpaqq6slNVwG9euNf+sDqLNVf6z5mZSWnlpKFBAQ2GLb5pZRNaV+n5imuLmdmuFktbZ+Zg8AAO0BM2YAAIBTeXp66rLLLlOXLl300EMPSpLWr1+nWbNmOexoZIvlVFBz8823NDp6ujkthQVtlZKSIpPJJJvNph07UjVlytVKS0uT1WqVj49Po6Va8fHxMpvNqqmpUUZGhi644AJ7oOPh4WFf6lSvPpTq1au3HnjggVbXFRISco5PBgAAnIFgBgAAuMSQIUMUGhqqgoICnTx5UiUlJU0eed0WnTt3tv/aw8Pd0JN7AgICFB0drX379tkDlvoZMElJSY3CKE9PTyUkJCgtLc1+klP93jfx8fGNNt7196971srKCqc8p5/fqZOhiotPtNi2uLjY4e8PAEBHw1ImAADgMqfvK9PSBr1nKzIy0n6S086dOx3Wb1vV7yNTVFSkgwcP2gOapKTkZtrXXU9NTVVOTo7Ky+v20ElJSWnU9vQNkAsLCx1eu6enp6KioiTVHV/ekvr9bpzNkWMFAIDfGoIZAADgEpWVldq/f7+kutOLTp/lcq7c3d01dOhQSdLWrVu1b98+h/XdFv36nQpUtmzZYg8wfr2/TL366+np6fr555/s13+9v4wkDR8+XFLdCUaLF3/qqJIbGDBggCRp9+7d9r1xmrJy5UqnvP+veXp6SpJ9Q2QAANoTghkAANBmFRUV+tOf7tbGjRsbbch7OqvVqldffcU+E2T48IscPgvixhtvlJubm6xWq+bOfVIFBQXNtrVYLFq9enWLbc7F6YHKp59+otraWpnNZvXt27fJ9klJyTKZTKqoqNBnn30mqe4Y8qaCnMGDB6tPnz6SpEWLFmnNmu9arGXv3j3asGHDWdV/xRVX2v98Fi78a5MbB69d+73Wr193Vv22VXBwsKS6WUI2m80l7wkAgKuwxwwAADgnu3bt0l/+8ohCQkJ00UUjlJiYqPDwMHl7+6i0tFQ5Obv19ddfa+/evZLqTm2aPn26w+uIiemlu+66S3//+9+1b98+3XnnH3TllVeqf//+CgoKUnV1jfLz85WRka7vv1+rwsLj+sc//qnQ0FCH1xIaGqqIiAjl5+crLy9PUt3R0/UzP37Nz89PPXr0UG5urr19r1697Muzfu3BBx/S3XfP0MmTJ/XUU09p1arVGjNmjLp27So3NzedOHFCu3fv1saNG5SRkaFrr51mn2nTGvHx8briiiv0xRdfKD09XXffPUPTpl2nnj17qry8XOvWrdVnn32mPn36aNeuXZKcu9woMTFJy5cv14kTJ/T663/X+PGX2H9vPDw8FB4e7rT3BgDA2QhmAABAm7m7uys4OFiFhYU6duyYli1bqmXLljbbvmvXrnrooYcVERHhlHquuWaqvLy89Pe//11lZWVatGiRFi1a1GRbs9ncbFDiCCkpKcrPz7d/3dwyptPvn75sqKllTPWioqL08st/0xNPPK7c3Fxt3LhBGzc2PyvGx8en9YX/YsaMu3X8+HFt3LhRubm5WrBgfoP7ERERevDBh3TbbbdKksxm5/1ejh07Vh988L7y8vL06aef6tNPTy3hCg8P13vv/cdp7w0AgLMRzAAAgDbz9PTU++9/oIyMDG3btk0ZGRk6ePCAioqKVF1dLS8vL3XpEqLevXtp+PCLNHLkSJnNZqfWdMUVV2r48Iv0+eefa+vWLTp48KBKS0tlNpsVEhKimJgYDRw4SCNHjlRAQIDT6khJ6ddgD5bmNv491T5Fn3/+eYOvW9KtWze9/vobWrNmjdatW6vMzEwVFxfLarXK37+zunfvpuTkZI0YcbHi4uLOun6z2awnn5yrFStW6Ouvv9LevXtlsVgUFhamESMu1rRp0xrMkmludo8jeHt766WXXtb777+vrVu36OjRo6qsrHTa+wEA4EomGwt1AQAA0AZpaamaNWuWJOm55+Zr4MCBBlcEAMD5h81/AQAA0CbffPOtpLp9XuLj4w2uBgCA8xPBDAAAABopLi5WaWlps/c3b96sL76oW3o1fPhw+fn5uao0AADaFfaYAQAAQCO5uXv16KOPatSo0Ro4cKCioiJlMrnpyJEj2rBhg1avXiWr1apOnTrp9tvvMLpcAADOWwQzAAAAaFJ5ebm+/vorff31V03e9/Hx0V/+8qi6devm4soAAGg/2PwXAAAAjVRUVGjt2rXavHmz9uzJsS9t8vHxUdduRSBJAAAAzElEQVSuXTV48BBNnjxZgYGBRpcKAMB5jWAGAAAAAADAIGz+CwAAAAAAYBCCGQAAAAAAAIMQzAAAAAAAABiEYAYAAAAAAMAgBDMAAAAAAAAGIZgBAAAAAAAwCMEMAAAAAACAQQhmAAAAAAAADEIwAwAAAAAAYBCCGQAAAAAAAIMQzAAAAAAAABiEYAYAAAAAAMAgBDMAAAAAAAAGIZgBAAAAAAAwCMEMAAAAAACAQQhmAAAAAAAADEIwAwAAAAAAYBCCGQAAAAAAAIP8/2376HDpzOr5AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 428, "width": 563 } }, "output_type": "display_data" } ], "source": [ "viz_rmodel.rtree_feature_space(features=['ShellWeight','LongestShell'], show={'splits'})" ] }, { "cell_type": "markdown", "metadata": { "id": "SPLzkfDDlqwr" }, "source": [ "That heat map can be confusing because it's really a 2D projection of a 3D space: two features x target value. Instead, dtreeviz can show you this three-dimensional plot (from a variety of angles and elevations):" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "execution": { "iopub.execute_input": "2024-08-24T11:24:06.197358Z", "iopub.status.busy": "2024-08-24T11:24:06.197080Z", "iopub.status.idle": "2024-08-24T11:24:06.680020Z", "shell.execute_reply": "2024-08-24T11:24:06.679090Z" }, "id": "PtsRRc8gip99" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABSMAAAT4CAYAAADjONfkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOz9aZBcd3rfe/7Okif3rH3FTgIkQYDEzm713mTL4Rk5ZN+JkD0hzdWM9xeOGE/EeOwX7fA4wpa1RPhG2B75Kq5laySFZUvjG2p3q1sttdxqWZaaBNndXFFV2AtA7ZVZay6VZ5sX4CkWCgWgCqjcv58IRhfQIHhIVFVmfvM5z98IwzAUAAAAAAAAANSY2egLAAAAAAAAANAZiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAAAAAAAA6oIYCQAAAAAAAKAuiJEAAABoO77va2NjQ0EQNPpSAAAAsAUxEgAAAG0lDEN5nqdyuaxisaiNjQ2FYdjoywIAAIAku9EXAAAAADyrMAwVBIF831cYhvJ9X0EQKAxDhWEo13UVi8XkOI4Mw2j05QIAAHQsYiQAAABaUhQgo7+i6ccoSkrajJKWZSkIArmuK8dxFIvFiJIAAAANYITcswIAAIAWEU06bp2CjH4+2g9pGIbCMFS1Wn1oZ6RlWTJNU6ZpEiUBAAAagMlIAAAANL2dbr3e+pdhGDJNU4ZhyDCMzclISTJNU5Zlyff9zb+iSclqtUqUBAAAqCNiJAAAAJrSTrdhbw+QUYSU9NiYaBiGbNvejJqe58kwjAeiZDwel23bREkAAIAaIkYCAACgaUShcesUpKTNj6NQuHUKci+iKGma5o5R0rIsOY5DlAQAAKgRYiQAAAAaauseyN3ehv2sor2R0e7JKEpGPyZKAgAA1AYxEgAAAA2xmz2Qu70N+2k9KkpG12ZZluLxuCzLIkoCAADsA2IkAAAA6mY/90Dup+1R0nVdmaa5GSVt25bjOERJAACAZ0SMBAAAQE09aQ+kpH2/DftpRdcQXe/2KLn19m0AAADsHc+iAAAAUBOPm4CsxR7I/RJdz05RcutOyej2bQAAAOweMRIAAAD7JroN2/f9hu2B3C/bo6TneURJAACAZ0SMBAAAwDPZzR5ISZvBrpkD5E6iIBmLxR7aKRn9eOtOSQAAADwaMRIAAAB79qg9kFGYlJpnD+R+MQxDlmU98qAbz/OIkgAAAE9AjAQAAMCuteoeyP20U5SsVquyLOuBKBmPxzdvRwcAAMB9xEgAAAA8VjvtgdxPO0XJaI9kFCVjsZgcxyFKAgAAfIwYCQAAgIfsdg9kK0xB1vranhQlXdclSgIAAHyMGAkAAABJn+yB3DoFGf18u+6B3E9ESQAAgCcjRgIAAHS47QfRdOIeyP20NUpG/12DINg86MZ1XTmOI8dx+O8JAAA6DjESAACgA7EHsvYMw5Bt2w/E3u1RMpqU5L8vAADoFMRIAACADhGFxq1TkJI2P26lPZCt5FFR0rIsBUFAlAQAAB2FGAkAANDGHrcHshNuw47+fZvB9ii5dadkFCUdx1EsFmu7PwcAAIAIMRIAAKAN7WYPJLdhN8aTomS1WiVKAgCAtkWMBAAAaBPRBGT0FwGyuRElAQBAJyJGAgAAtLAn7YGU1Na3YbeD7VHS87zNE7m33r5t2zZ/fgAAoOURIwEAAFrM1j2Qj7sNmwDZWqIoaZrmA1Ey2vdpWRZREgAAtDxiJAAAQItgD2RnME1TpmluRsgoSkZ//kRJAADQyoiRAAAATWw3eyAlybIsSQTISDOdov20tkdJ13VlmuYDUTIej8uyLP7cAQBAyyBGAgAANJlH7YGMwqTEHshO8rgoGQTB5qQkURIAALQCYiQAAECTeNwEJHsgEf3ZR6E6ipI77ZQEAABoVjxTAQAAaKBous33ffZA4omiz4cnRcno9m0AAIBmQ4wEAACos93ugWQKEo+yNUpuv32bKAkAAJoZMRIAAKAOotC4dQoy+nn2QOJpGYYhy7J23CkZ/di27c2dkgAAAI1GjAQAAKih7QfRsAcStfC4KBmGoTzPI0oCAICmQIwEAADYZ+yBRKPsFCWr1aosy3ogSsbj8c3PPwAAgHoiRgIAAOyDnfZAStr8mD2QqKedomS0RzKKkrFYTI7jECUBAEBdESMBAACe0uP2QHIbNprBk6Kk67pESQAAUFfESAAAgD3azR7IrRESaDSiJAAAaBbESAAAgF3Y6TZs9kCi1WyNklFQD4Jg86Ab13XlOI4cx+FzGAAA1AQxEgAA4BGi0Lh1ClLSAx9zGzZakWEYsm37gc/v7VEympTk8xoAAOwnYiQAAMAWW/dAPu42bAIk2sGjoqRlWQqCgCgJAAD2HTESAABAe9sDKXEbNtrL9ii5dadkFCUdx1EsFuNzHwAAPBNiJAAA6Fi72QMpSZZlSSJAov09KUpWq1WiJAAAeCbESAAA0FHYAwk8GVESAADUCjESAAB0hMdNQLIHEthZFCWDIJDv+/I8b/NE7q23b9u2zdcNAADYFWIkAABoW9Ft2L7vswcSeAamaco0zYeiZPRjy7KIkgAAYFeIkQAAoK2wBxKonUdFyeh2bqIkAAB4EmIkAABoeY/aAxmFSYk9kMB+2h4lXdeVaZoPRMl4PC7Lsvh6AwAADyBGAgCAlsUeSKCxoq+vKEJujZJBEGxOShIlAQBAhBgJAABaCnsggeYSfc3tFCV32ikJAAA6G88GAABA09vtHkimIIHG2W2UjG7fBgAAnYkYCQAAmlIUGrdOQUY/zx5IoHltjZLbd0pGP7Zte/P2bQAA0FmIkQAAoKlsP4iGPZBAazIMQ5Zl7XjQTRAE8jyPKAkAQAciRgIAgIbbzW3Y7IEEWtOjoqRlWQrDcDNKxuPxza9xAADQvoiRAACgIaLQuHUKUtLmx+yBBNrLTlEy2iMZRclYLCbHcYiSAAC0MWIkAACom617IKO/tv48t2Fjv0RxG83nSVHSdV2iJAAAbYwYCQAAam43eyC5DRvoLERJAAA6EzESAADUBHsgAezG1igZvWmxPUo6jqNYLEaUBACgDRAjAQDAvnnSHkhJ3IYNYEeGYci27Qe+hwRBINM0H5qU5HsHAACtixgJAACe2eMmINkDiUbjc661PCpKWpalIAiIkgAAtDhiJAAAeCrRbdi+77MHEsC+2x4lt+6UjKJkdPs2318AAGgdxEgAALBru9kDKUmWZUkiQAJ4dk+KktVqlSgJAEALIUYCAIDHetQeyChMSuyBBFB7REkAANoDMRIAAOyIPZAAmtFuomQ8Hpdt23xvAgCgCREjAQDAJvZAAmgVUZSMvmd5nifDMDajpGVZchyHKAkAQJMhRgIA0OF2uweSKUgAzcg0TZmm+VCUjH5MlAQAoLkQIwEA6EBRaNw6BRn9PHsgAbSiR0XJ6HZuoiQAAM2BGAkAQAfZfhANeyABtJvtUdJ1XZmm+UCUjMfjsiyL73MAADQAMRIAgDbHHkgAnSh6YyWKkFuj5NadkkRJAADqixgJAEAb2mkPpKTNj9kDCaATRN/fdoqSO+2UBAAAtccjLgAAbeJxeyC5DRtAJ9ttlIxu3wYAALVDjAQAoMXtZg8kt2EDwINRcvtOyejHtm1v3r4NAAD2HzESAIAWtNNt2ARIANgdwzBkWdYjD7rxPI8oCQBAjRAjAQBoEVFo3DoFKemBj7kNGwB2b6coWa1WZVnWA1EyHo9vvrkDAACeDTESAIAmtnUP5ONuwyZAAsDT2ylKRnskoygZi8XkOA5REgCAZ0SMBACgCbEHEgDq70lR0nVdoiQAAM+IGAkAQJPYzR5ISZv7ywiQAFAbREkAAGqHGAkAQAOxBxIAmtfWKBl9nw6CYPOgG9d15TiOYrEYURIAgF0iRgIA0ACPm4BkDyQANBfDMGTb9gNvHm2PktGkJN+zAQB4PGIkAAB1Et2G7fs+eyABoAU9KkpalqUgCIiSAADsAjESAIAa2u0eSKYgAaB1bI+SW3dKRlEyun2b7+sAADyIGAkAwD6LQuPWKcjo54MgkMQeSABoB0+KktVqlSgJAMA2xEgAAPbJ9oNo2AMJAJ2BKAkAwO4RIwEAeAbsgQQARLZHSc/zNk/kjqJkPB6Xbds8HgAAOhYxEgCAPdppD6SkzY/ZAwk0XvR1CTRCFCVN09wxSlqWJcdxiJIAgI5EjAQAYBfYAwkA2CvTNGWa5uZjRxQlox8TJQEAnYgYCQDAY7AHEgDwrB4VJaPHGMuyFI/HZVkWjyUAgLZHjAQAYJudbsNmDyQA4Fltj5Ku68o0zc0oadu2HMchSgIA2hoxEgAAfXIb9tYpSIk9kACA/Rc9lkSPO9uj5NbbtwEAaDc8ugEAOtbWPZDchg0AqKfocWWnKLl1p2R0+zYAAO2CGAkA6Di72QPJbdgAgHrYHiU9zyNKAgDaGjESANAR2AMJAGhm0eNQLBZ7aKdk9OOtOyUBAGhVxEgAQNt60h5ISdyGDQBoKoZhyLKsRx5043keURIA0NKIkQCAtvO4CUj2QAIAWsFOUbJarcqyrAeiZDwe35zqBwCgFRAjAQBtIboN2/d99kACANrGTlEy2iMZRclYLCbHcYiSAICWQIwEALSs3eyBlLR5GxsBEgDQqp4UJV3XJUoCAFoCMRIA0FIetQcyCpMSeyAB3Bd9fwDaCVESANDqiJEAgJbAHkgAAD6xNUpGb9AFQbB50I3runIcR47j8LgIAGgqxEgAQNNiDyQAAI9nGIZs237groHtUTKalORxEgDQDIiRAICmsts9kExBAgDwiUdFScuyFAQBURIA0DSIkQCAhotC49YpyOjn2QMJAMDubY+SW3dKRlHScRzFYjEeTwEADUGMBAA0zPaDaNgDCaAW+P6BTvSkKFmtVomSAICGIEYCAOpqN7dhswcSAID9QZQEADQbYiQAoOai0Lh1ClLS5sfsgQQAoLa2R0nP8zZP5N56+7Zt2zwOAwBqihgJAKiJx+2B5DZsAPXA9xXgYVGUNE3zgSgZPV5blkWUBADUFDESALCvdrMHktuwAQBoLNM0ZZrmZoSMomT0OE6UBADUCjESAPDM2AMJAEBr2h4lXdeVaZoPRMl4PC7Lsnj8BgDsC2IkAOCpPGkPpCRuwwYAoEU8LkoGQbA5KUmUBAA8K2IkAGBPHjcByR5IAABaW/QYHr3hGEXJnXZKAgDwNHgEAQA80faDaLgNGwCA9hU9rj8pSka3bwMAsBfESADAjnazB1LS5osQAiQAAO1la5Tcfvs2URIA8LSIkQCATY/aAxmFSYk9kAAAdBrDMGRZ1o47JaMf27a9uVMSAIDHIUYCANgDCQAAnuhxUTIMQ3meR5QEADwRMRIAOhR7IAEAwNPYKUpWq1VZlvVAlIzH45vPIwAAiBAjAaCD7HYPJFOQAFpdtGYCQO3sFCWjPZJRlIzFYnIchygJANhEjASANheFxq1TkNHPswcSAAA8qydFSdd1iZIAgE3ESABoU9sPomEPJAAAqCWiJABgN4iRANBG2AMJAAAabWuUjN4YDYJg86Ab13XlOI4cx+G5CAB0IGIkALS4nfZAStr8mD2QAACgEQzDkG3bD9ytsT1KRpOSPD8BgM5BjASAFvS4PZDchg0AAJrJo6KkZVkKgoAoCQAdhhgJAC1kN3sguQ0bAO7jRG2guWyPklt3SkZR0nEcxWIxnsMAQBsjRgJAk9vpNmwCJAAAaFVPipLVapUoCQBtjBgJAE0oCo1bpyAlPfAxt2EDAIBWRpQEgM5EjASAJrF1D+TjbsMmQAIAgHYSRcloF7bneZsncm+9fdu2bZ7/AEAbIEYCQIOxBxIAAEAyTVOmaT4UJaMfW5ZFlASANkCMBIAG2M0eSEmyLEsSARIAAHSOR0XJ6A1coiQAtDZiJADUCXsgAQAAdm97lHRdV6ZpPhAl4/G4LMvieRMAtBBiJADU2OMmINkDCQAA8HjR86QoQm6NkkEQbE5KEiUBoDUQIwGgBqInx77vswcSAADgGUXPnXaKkjvtlAQANC++SwPAPmEPJAAAQG3tNkpGt28DAJoPMRIAnkEUGrdOQUY/HwSBJPZAAgAA7LetUXL7Tsnox7Ztb96+DQBoHsRIAHgK7IEEAABoPMMwZFnWjgfdBEEgz/OIkgDQZIiRALBL7IEEAABoTo+KkpZlKQzDzSgZj8c3n6sBABqDGAkAj7HTHkhJmx9HwZEpSAAAgMbbKUpGeySjKBmLxeQ4DlESABqEGAkA27AHEgAAoLU9KUq6rkuUBIAGIUYCwMeiExnZAwkAANAeiJIA0HyIkQA62k63YbMHEgAAoL1sjZLRm8/bo6TjOIrFYkRJAKgxYiSAjhOFxq1TkBJ7IAEAANqdYRiybfuB54JBEMg0zYcmJXkOCAC1QYwE0BG27oGM/tr689yGDQAA0DkeFSUty1IQBERJAKghYiSAtrabPZDchg0AANCZtkfJrTsloygZ3b7N80QA2B/ESABthz2QAAAA2IsnRclqtUqUBIB9QowE0BaetAdSErdhAwAA4LGIkgBQe8RIAC3tcROQ7IEEgM4VvREFAE9jN1EyHo/Ltm2eYwLAHhEjAbSc6DZs3/fZAwkAAICaiaJk9NzT8zwZhrEZJS3LkuM4REkA2ANiJICWsJs9kJJkWZYkAiQA4BM8JgB4VqZpyjTNh6Jk9GOiJADsHjESQNN61B7IKExK7IEEAABA/TwqSkbPWYmSAPBkxEgATYc9kACA/cLjBIBa2B4lXdeVaZoPRMl4PC7Lsvg+BADbECMBNAX2QAIAAKDVRG+QRxFya5TculOSKAkAnyBGAmiY3e6BZAoSAAAAzSp6nrpTlNxppyQAdDq+EwKoqyg0bp2CjH6ePZAAAABoVbuNktHt2wDQqYiRAOpi+0E07IEEAABAO9oaJbfvlIx+bNv25u3bANBpiJEAaoY9kAAAAOhUhmHIsqxHHnTjeR5REkBHIkYC2Fc77YGUtPkxeyABAADQSXaKktVqVZZlPRAl4/H45pv0ANDOiJEAntnj9kByGzYAAACwc5SM9khGUTIWi8lxHKIkgLZGjATw1HazB5LbsAEAAIBPPClKuq5LlATQ1oiRAPZkp9uwCZAAAADA3hAlAXQqYiSAJ4pC49YpSEkPfMxt2AAAAMDebY2S0fPtIAg2D7pxXVeO4ygWixElAbQFYiSAHW3dA/m427AJkAAAAMCzMwxDtm0/MASwPUpGk5I89wbQyoiRAB7AHkgAAACgcR4VJS3LUhAEREkALY8YCWBXeyAlybIsSQRIAAAAoNa2R8mtOyWjKBndvs3zcwCthBgJdCj2QAIAAADN70lRslqtEiUBtBRiJNBhHjcByR5IAAAAoDkRJQG0C2Ik0AGi27B932cPJAAAANDCtkdJz/M2T+SOomQ8Hpdt2zyvB9CUiJFAm9rtHkimIAEAAIDWE0VJ0zR3jJKWZclxHKIkgKZDjATaSBQat05BRj8fBIEk9kACAAAA7cQ0TZmmufkaIIqS0Y+JkgCaDTESaAPbD6JhDyQAAADQWR4VJaPXCpZlKR6Py7IsXhMAaChiJNCi2AMJAAAAYLvtUdJ1XZmmuRklbduW4zhESQANQ4wEWshOeyAlbX7MHkgAAAAA0ievCaIIuT1Kbr19GwDqie86QJNjDyQAAACApxG9PtgpSm7dKRndvg0A9UCMBJoUeyABAAAA7AeiJIBmQowEmshOt2GzBxIAAADAftgaJbfvlIx+vHWnJADUAjESaLAoNG6dgpTYAwkAwLOIHk8BAA8zDEOWZT3yoBvP84iSAGqGGAk0wNY9kNyGDQAAAKARdoqS1WpVlmU9ECXj8fjm3VkA8KyIkUAd7WYPJLdhAwAAAKinnaJktEcyipKxWEyO4xAlATwzYiRQY7vZAylp8/YHAiQAAACARnhSlHRdlygJ4JkRI4EaeNIeSEnchg0AAACgKRElAdQSMRLYR4+bgGQPJAAAAIBWsjVKRoMWQRBsHnTjuq4cx5HjOLy+AbBrxEjgGUW3Yfu+zx5IAAAAAG3HMAzZtv3A3V/bo2Q0KcnrHQBPQowEngJ7IAEAAAB0mkdFScuyFAQBURLArhAjgV161B7IKExK7IEEAAAA0P62R8mtOyWjKOk4jmKxGK+LADyEGAk8AXsgAQAAAOBhT4qS1WqVKAngIcRIYAfsgQQAAACA3SFKAtgLYiTwsd3ugWQKEgAAAAAetj1Kep63eSL31tu3bdvm9RTQwYiR6GhRaNw6BRn9PHsgAQAAAGDvoihpmuYDUTJ63WVZFlES6GDESHSk7QfRsAcSAAAAAPaXaZoyTXMzQkZRMno9RpQEOhMxEh1jN7dhswcSAAAAAPbX9ijpuq5M03wgSsbjcVmWxeswoAMQI9HWotC4dQpS0ubH7IEEAAAAgPp4XJQMgmBzUpIoCbQ3YiTazuP2QHIbNgAAAAA0VvRaLBociaLkTjslAbQfvrLRNnazB5LbsAEA6Cw83gNAc4penz0pSka3bwNoH8RItDT2QAIAAABA69oeJT3PI0oCbY4YiZbzpD2QkrgNGwAAAABaSPTaLRaLPbRTMvqxbdubOyUBtC5iJFrG4yYg2QMJAAAAAK3PMAxZlvXIg248zyNKAi2OGImmtv0gGm7DBgAAAID2t1OUrFarsizrgSgZj8c3Xw8CaA3ESDSd3eyBlLT5LhgBEgAAAADa005RMtojGUXJWCwmx3GIkkCLIEaiKTxqD2QUJiX2QAIAAABAp3pSlHRdlygJtAhiJBqKPZAAAAAAgN0iSgKtjxiJumMPJAAAAADgWWyNktEddkEQbB5047quHMeR4zi8pgSaDDESdbHbPZBMQQIAAAAAdsswDNm2/cDar+1RMpqU5HUm0ByIkaiZKDRunYKMfp49kAAAAACA/fKoKGlZloIgIEoCTYQYiX23/SAa9kACAIB6i94EBQB0lu1RcutOyShKOo6jWCzG61GgQYiR2BfsgQQAAAAANIsnRclqtUqUBBqEGImnttMeSEmbH7MHEgAANAJTkQCACFESaD7ESOzJ4/ZAchs2AAAAAKAZRVEyei3red7midxbb9+2bZvXsUCNESOxK7vZA8lt2AAAAACAZmaapkzTfChKRj+2LIsoCdQYMRKPtNNt2ARIAAAAAECre1SUjAZxiJJA7RAj8YAoNG6dgpT0wMfchg0AAAAAaAfbo6TrujJN84EoGY/HZVkWr3+BfUKMxAN7IB93GzYBEgAAAADQjqLXu1GE3BolgyDYnJQkSgLPjhjZwdgDCQAA2ln0fAYAgN2IXgPvFCV32ikJ4Onw1dNhdrMHUpIsy5JEgAQAAAAAdJbdRsno9m0Ae0OM7ADsgQQAAAAAYG+2RsntOyWjH9u2vXn7NoDdIUa2scdNQLIHEgAAAACAJzMMQ5Zl7XjQTRAE8jyPKAnsATGyzUS3Yfu+zx5IAAAAAAD2yaOipGVZCsNwM0rG4/HN19wAHkaMbAPsgQQAAAAAoD52ipLRHskoSsZiMTmOQ5QEdkCMbFFRaNw6BRn9fBAEktgDCQAAAABArTwpSrquS5QEdkCMbDHbD6JhDyQAAAAAAI1DlAT2hhjZAtgDCQAAAABAc9tNlHQcR7FYjCiJjkaMbFI77YGUtPlxFByZggQAAAAAoHlsjZLRnY1BEMg0zYcmJXktj05EjGwi7IEEAAAAAKA9GIYh27YfWLcWBIEsy1IQBERJdCxiZBNgDyQAAAAAAO1pe5Tcevt2FCWj27d5zY9OQIxskJ1uw2YPJAAAAAAA7elJUbJarRIl0RGIkXUUhcatU5ASeyABAAAAAOgUREl0OmJkjW3dA8lt2AAAAAAAQNpdlIzH47Jtm1aAtkKMrJHd7IHkNmwAAAAAADpbFCWjw2w9z9s8kTs68MZxHKIk2gYxch+xBxIAAKC+1tfXdOXaNV2bmtZnT5/WkSNHGn1JAAA8FdM0ZZrmQ1Ey+jFREu3CCKPFhXhm0SlYUZSM/tNGEZLbsAEAAJ6d7/u6e/eO3hob091iUdWhQTnd3XInJ3UoNPTjr72mbDarIAhkGIZisVijLxkAgD2LImT0eBZFSKIkWh0xch9FMdL3fUkiQAIAAOyjpaUlfXj1qt6dvK31rpxiIyNystkHfs3G6qqCGzf1fCKpz5w9q66uLmIkAKClbY2SpmnKsqzNKBmPxzd/DLQKYuQ+2hojt96ODQAAgKfjuq5u3r6ty2NXNOt78oaGlBwclGlZj/x7wjDU2tycrFu3dW5kRD92/oKSyWQdrxoAgP0VrX/bHiWj/3UchyiJlkGM3EdhGKparRIjAQAAnkEYhlpcXNS7E+P6aGpKpd5exUdHFEuldv33e56nIAhUnp1VemZGnznxgl49+TJTkgCAlrabKGnbHA+C5kaM3EdbY6QkWY95xx4AAAAPqlQqunbzpi6PjylvWwqGh5Xs65Oxxzd4oxi5ub9bUvnuPXUtLuqLp1/RC8eP86YxAKClPSlKRrdvA82IGLmPiJEAAAB7EwSBZmdn9c74mK4vLqjcP6Dk6IjsePypf8/tMTJ6TuZXq6rcvq3BUllvnDuvgwcPcjsbAKClRQfo+r6vMAwfiJK2bW/evg00E2LkPopiZHSSNl/wAAAAOysWixq7dk3vXLuqlVRSGh5WoqdnX+Lgo2JkxC2V5N28pcOmqdcvXlJ/f/8z/zMBAGiknaJkdNo2URLNhhi5zzY2NoiRAAAAO/B9X/fu3dPl8THdWVvTxuCAUsPDMvd5j+PWGPm4Pd4bKysKb97UqZ5effbceWW3ncwNAECr2R4lLcvaPNjGtm3F43FWlaDhiJH7LLpNmxgJAABw38rKij68elU/unVTa9ms7NERxXO5mv3zdhsjo19bWVyUPTmpi4eO6NKrryr+DLeIAwDQDB4XJWOxmBzHIUqiYYiR+4wYCQAAILmuq9uTk3prfEwzGxtyh4eUGhqSWYfnR3uJkZt/TxCoNDOj1PSMPvfiizr90klOIwUAtDyiJJoRMXKfbY2RpmmyFB0AAHSMMAyVz+f13sSEPrh3V6XeHsVHRhRLp+t+HXuNkZHA81S+c0fdhSW9fvacnjt6lBdpAICWR5REMyFG7jPXdeV5noIg2PzCBgAAaGcbGxu6fvOm3hof16Ip+cPDSvX3y2jQi5pniZERf2NDldu3NVzZ0FcuXNTIyAjP6wAALS8MQ/m+ryAIJGnz9G3DMOQ4jmKxGFESNUeM3GfESAAA0AnCMNTc3Jx+MD6mibk5Vfr7lRgdkZ1INPrS9iVGRtxiUd7Nm3ou5uhLFy+pt7d3H68UAIDGeFSUNE1zc1KSnoFaIUbuM9d15fu+fN8nRgIAgLZTKpU0fv2a3r52TcuOI40MK9Hb21TPefYzRkYqS0sybt3WK/39+sy580rX+dZzAABqYXuUjIIkURK1RIzcZ57nyfM8YiQAAGgbvu9rampKb4+P6/bKkiqDg0qNjMiKxRp9aTuqRYyMft/y/LycO3f12tFjOn/6NCdvAwDawuOiZHT7Nn0D+4UYuc+IkQAAoF2srq7qo2tX9cMbN7SWzcgaGVG8q6vRl/VEtYqRm79/EKh0b0qZuTl94eVTOvnCC7LqcEo4AAC1RpREPRAj9xkxEgAAtDLP8zR5Z1KXx8c1VS5rY3BQ6ZFhmS0U22odIyOB56l8e1K9q6t6/ew5HTtyhOd+AIC2QJRELREj9xkxEgAAtKJCoaD3Jib0wZ1JFbu7FBsdlZPJNPqynkq9YmTEq1RUvXVLo56vr1y8pKGhoZr+8wAAqJcoSvq+L8MwHoiS8Xhctm3TPbBnxMh95vv+5iE20RcoAABAM6pWq7px66beGh/XfBjKHxpSanBARos/f6l3jIxU19fl37ipE6mUvnjhorq7u+vyzwUAoNaCINiclNwaJS3LkuM4REnsCTFynxEjgdYxMzOjH/zoXa2tFdXb06WLF86rr6+v0ZcFADUVhqEWFhb0w/Exjc1Mq9zXr8ToiOxkstGXtm8aFSMj5XxB5u3bOjc8ok+dOaNUKlXXfz4AALVClMR+IEbuM9/3N2/VJkYCzWlpaUn/26/+um5OLii/ZkmmLSP01J/zdfqlI/rr/7f/Cy8cAbSdcrmsiRvX9fbEhApOTOHwsJJ9fW35gqHRMTK6htLsrBL3pvTp54/r3KlTijXp6eMAAOzV9igZRUjLshSPx1lbh8ciRu6zIAg2JyMb9eQXwKOtrKzo53/pX+nGtCEztsMuNH9Vp59L6v/1//y/K5FI1P8CAWAfBUGgmZkZvT12RTcLBZUH+pUaHZXlOI2+tJpqhhgZCXxf5Xv3lJ1f0BdPv6IXjx/n5G0AQNvYGiWjCckoTjqOQ5TEjoiR+4wYCTS3X/33v64/+B+3ZcZyj/5FbkE/+1Of1U/8H/9i/S4MAPbR+vqarly7pneuXddqJiVzZETxrq6OeTHQTDEy4ruuKrcnNbC+rtfPndfhQ4c65s8DANDewjB84PTtKEpuv30biBAj9xkxEmhexWJR/+irP6f5Yv9jXwCGoa/DPav6xZ//fzO9AqBl+L6vu3fv6K2xMd0tFlUdGlRqeFhmBz75b8YYGfHKZVVv3dKhUHrj4iUNDAw0+pIAANgXT4qS0e3bQOc9O60x3uEGmtedO3e0WnrybQKGYWmtfP+Ah+Hh4TpdHQA8naWlJX0wMaH37kxqvSun2IFROdms2vtG7NZlJ5OyX35Z06ur+o3v/7leyuX0+fMXlMs9ZmIfAIAWYBjG5l9RlHRdV6Zpbt7OTZSERIysKYZOgeZy/x06SbsYkAlCQ77v1/yaAOBpuK6rm7dv6/LYFc36vryhQSXPn1OaJ/YtI57LSWfP6Mrioq7+0Xd04eBBXXrlVSXb6FRzAEBn2holowi5PUpu3SmJzkOMBNAxenp6lEqEWqk+/teFYSjH9tXV1VWfCwOAXQjDUIuLi3p3YlwfTU2p1Nur+PPPKZ5KKd7oi8NTS/X3K+zr05szM3rvW7+nz554Ua+cPMnJ2wCAlhedrr01QkZRMlqpQpTsTMTIGonGkgE0j9HRUY0MZrR8pyrDfPQNjKFf0skXjiiT2eG0bQCos0qloms3b+ry+JjytqVgeFjJixeUaaI9iHg2hmEoPTqqYGhIf3T3rt7+xtf15VfP6PhzzzXVvksAAJ7GTlGyWq3KsqwHomQ8Hudxr0NwgE0NbGxsKAgChWFI3QeazPvvf6B/9b/+lta8fhnGww90YeCpL1nQV//R39PBgwcbcIUAcP9AvNnZWb0zPqbriwsq9w8oOToiO84M5G408wE2u+FXq9q4PamBUklfOX9BBw4cYC85AKBthGG4GSWjbmJZ93f7x2IxOY7Tco/d2BtiZA1Uq9UHvqgANJfv/cmf6j//l29pcS0uM5b7eJI5UOitaqjL1d/+6/9nnTnzaqMvE0AHKhaLGrt2Te9cu6qVVFLGyIji3d2EqD1q9RgZcUsleTdu6ohl6/VLl9TX19foSwIAYN8QJTsXMbIGiJFA85udndF3/uhP9KP3PpLn+XIcW5/59AV96YufV29vb6MvD0AH8X1f9+7d0+XxMd1ZW1NlcEDp4WGZ7Ax8au0SIyOV5WUZt27r5Z5efe78edaIAADaClGy8xAja2BrjDRNk2kGoMlFL1YBoJ5WVlb0wdUJvXvrltayWdmjI/dPWMYza7cYKd3/dyovLCh2544uHT6ii6+8qji37QMA2kgYhvJ9X0EQSJJM09yMko7jyHEcXre1CWJkDbiuK8/zFATB5hcOAACA67q6PTmpt8bHNLOxIXd4SKmhIZncSbGv2jFGRsIgUGl6WumZWX3upZM69eKLsm3OpAQAtI9HRUnTNDcnJeksrY0YWQPESAAAEAnDUPl8Xu9NTOiDe3dV6u1RfHRUsVSq0ZfWtto5RkYCz1P5zh31FJb0+rlzOnbkaFv+ewIAOtf2KBkFSaJk6yNG1oDruvJ9X77vEyMBAOhQGxsbun7zpt4aH9eiKfnDw0r198sgGNXc1r1T7RojI/7GhjZu3dLwRlVfuXhJIyMjjb4kAAD21eOipOM4isVidJcWQ4ysAc/z5HkeMRIAgA4ThqHm5mb1g/FxTczNqdLfr8ToiOxEotGX1lE6KUZGquvr8m/e0vPxhL508aJ6enoafUkAAOwromT7IEbWADESAIDOUiqVNH79mt6+ek3LCUcaHlait5fnAA3SiTEyUllaknHrll7pH9Rnzp1TOp1u9CUBALCviJKtjxhZA8RIAADan+/7mpqa0tvj47q1vKSNoUGlRkZkxWKNvrSO18kxUvr45O25eTl37+pTx47p/OlX5DhOoy8LAIB9FUVJ3/dlGMZmlLQsS47jyLZtekyTIkbWADESAID2tbq6qo+uXdUPb9zQWjYja2RE8a6uRl8Wtuj0GBkJg0DFe/eUnZvXF0+d1ksnTsji5HYAQJuJHveDICBKtghiZA34vr95iE00KgwAAFqX53mavDOpy+PjulcuqTo4pPTIsEzCTlMiRj4o8DyVb0+qd3VVXzl3TkcOH+FFGQCg7WyPklGEJEo2H2JkDfi+vzkdSYwEAKB1FQoFvTcxoQ/uTKrY063Y6KgcdvA1PWLkzrxKRdWbtzTq+/rxS69pcHCw0ZcEAMC+2xolownJKErG43HuYG0CxMgaIEYCANC6qtWqbty6qbfGxzUfhvKHhpQaHJDB43nLIEY+XnVtTf7NW3ohndYXzl9Qd3d3oy8JAIB9t1OU3Hr7NlGycYiRNRAEweZt2jwBBgCg+YVhqPn5ef1oYlxjszMq9/YpMToiO5ls9KXhKRAjd6ecz8u6PamzwyP69NmzSvL5DgBoM2EYPnD69k5R0rbtRl9mxyFG1gAxEgCA1lAulzVx47ouT0xoyYkpHB5Wsq+Pd8lbHDFy98IwVGl2Vol7U/qx54/r7KlTinEiPACgzTwpSka3b6M+iJE1QIwEAKB5BUGgmZkZvT12RTcKBW0MDig5MiLLcRp9adgnxMi9C3xf5Xv3lJ1f0JdeeVUvPP88L8oAAG0nipKe5ykMQ6JkgxAjayAMQ1WrVWIkAABNZH19TVeuXdM7165rNZOSOTKieFcXU5BtiBj59PxqVZXJSQ2sF/XG+Qs6dPAgXyMAgLYThuEDzxe2Rknbtjd3SqI2iJE1sDVGSuITGACABvF9X3fu3NHl8THdLRZVHRpUanhYJruB2hox8tm5pbK8W7d0SNIbl15Tf39/oy8JAIB9t1OU/N3f/V397u/+rn7sx35MX/3qVxt9iW2JZ+IAAKDtLC0t6YOJCb13Z1LruZxiB0blZLPiRmxgd2KppGKnXtbUyop+/c//TCdzOX3+wgVls7lGXxoAAPvGMIzNicgoSr7//vv65je/yZ0BNUSMrIHoE9YwDDF4CgBAfbiuq5u3b+utsSua8315Q4NKXTivNFNxwFOLd3UpPPOqriwuauI739GFgwf12qtnlEgkGn1pAADsm61RslQqSZKy2WyDr6p9ESMBAEDLCsNQi4uLendiXB9NTanU26v4888pnkop3uiLA9qEYRhKDgwo7OvTmzMzeu+bv6fPvfCiTr/0EidvAwDaimEYmzEyk8k0+GraFzGyRhjnBQCgdiqViq7euKG3J8aVty0Fw8NKXrygDFOQQM0Ypqn0gQMKhof1h3fu6O1vfF1fOnNGx489x15OAEDbWF9fl8RkZC0RIwEAQEsIgkCzs7N6Z3xM1xcXVe7vV/Llk0rEmYEE6sm0LGWOHVPlwAF97eZNDV25oq+cv6DR0VHekAcAtLwoRjIZWTvEyDqITnIEAAB7t76+rvHr1/XOtataSSVljIwofvSIsjy2Ag1lOY7SL76gpWJR/+ndH+nohx/q9UuX1Nvb2+hLAwDgqTEZWXvEyBqJ4iMH2AAAsHe+7+vevXu6PD6mO2trqgwOKH3mVSXZTwc0nVg6rdgrpzW5vKxf++9/otN9/frsuXNMlAAAWlKxWJTEZGQtESNriGlIAAD2ZmVlRR9cndC7t25pLZuVPTqi+AsnRIIEml+iu1vhubN6f35BY3/wbb125KguvPKK4qxSAAC0ECYja48YCQAAGsp1Xd2enNRb42OaqVblDg0qdf6c0pbV6EtDiyiXy6pWq8rlcrwZ3GCGYSg1NKhwoF//Y3paP/q9b+jzJ1/WqRdflMXXNACgBbAzsvaIkTXCE2EAAB4tDEPl83m9NzGhD+7dVam3R/FjRxVPpcQMFXbD930tLS9rqrCgkuHLt0xl5qZ1fPSgUqm0JPZ2N5JhmkofPKhgeFjfnryjtybG9frZs3ru6DH+TAAATY3JyNozQpYa1oTnefI8T77vy7IsnnQBACCpUqno+s2bujwxoUVT8oeHlervl2Gajb40tIAwDFUulzWbX9D8+qq8TFyxXFqmc/9Gfn+jKn9xRT1mXIcGhuQ4jkzTlMnnV8N5Gxuq3rqlkaqnNy5c0MjISKMvCQCAh7iuq76+PknSW2+9pddee63BV9SeiJE1QowEAOC+MAw1NzerH4yP6+r8vMp9fUocGJXNHjnsku/7Kiwt3Z+CNAOFuZScTEp6xPOrarGkcGFFQ8msDg6NyHGcOl8xHqW6vi7/5i0dTyT0xQsX1dPT0+hLAgBg09LSko4cOSJJunLlik6ePNngK2pPxMga8X1fruvK933ekQcAdKRSqaTx69f09tVrWk440siIEj09vEGHXQnDUKVSSbP5BS0U1+Rn47JzGZmxJ28ZCsNQQRDIXVmXvVzSod4BDfUP8HysiVSWlmTcvKUzQ0P69JmzSqfTjb4kAAB07949vfzyy5KkO3fu6NChQw2+ovZEjKwRYiQAoBP5vq+pqSm9PT6u2yvLqgwOKDUyIivGedjYHc/zNqcgy7akXEqxdPKRU5A7CcNQYRAoVCiFkre0Lqe4oWMDI+rp7iaIN4kwDFWam1Pi7j196thzOnf6NFOsAICGGh8f37w1e2lpSd3d3Y29oDZFjKwR3/c3b9UmRgIA2t3q6qo+vHpVP7p5Q2vZjKyREcW7uhp9WWgRYRiqWCxqJr+gfGldXjahWFdapv10Zy1ujZGGYciQocD35eVXlamGOjZ8gBMym0gYBCrdu6fM3Ly+eOq0XjpxgpO3AQAN8c477+j111+XdH9/pP2Uz0XweMTIGgmCYHMy0jAMYiQAoO14nqfJO5N6a2xM05WKNgYHlR4ZlklEwC55nqfFQl7TS4uqxAwpl1YsldjTFOROdoqREX+jKj+/ql4zriPDo0okEs/6r4F9EnieKrcn1bu6qq+cO6/Dhw8zxQoAqKvvfe97+smf/EklEgmVy+VGX07bIvECAIA9KRQKem9iQu/fmVSpp1uxI4flpNPi5krsRhiGWl9f10x+QYVKUX42odhor2J2fSK2FXdkjfZrqVTW0t0bGkl16cDQMJMPTcC0baWOP6/1SkW/M3ZFBz/6UG9cvKTBwcFGXxoAoEMUi0VJ4g6KGuNZFwAAeKJqtaobt27qrbExzUvyh4aUunhBaSb/sUuu62qxUND00qI24qaMXEr24KCsBk2+xVJJhamkpleLmrsxocM9/RrkkJumYCcSsl8+qZm1Nf3mW9/XC+mMvnDhorpY/QAAqLG1tTVJUjabbfCVtDdiJAAA2FEYhpqfn9cPx8c1Pjejcm+fEi+cUCKZbPSloUWEYai1tTVNFxa0VCkpyCUVO9irWJPcym9IcnJphZmUbi6tavp6Xkc55KZpxLNZ6cwZTSwu6vp3/0jnRkb1qTNnleR7EACgRpiMrA9iZI1sfQLLWk4AQCspl8uauHFdlycmtOw4CoaHlLx4URniDHapWq3e3wW5nNdG3JLZlZY9OPjMuyBrxTANxfu65Hf5migsKJOf13MjB5VOpxt9aZCU7O9X2Neny7Oz+uBb39SPHT+hMy+/rFgs1uhLAwC0mfX1dUlMRtYaMRIAACgIAs3MzOjtsSu6UShoY3BAydOnlHDYBIndCcNQq6urmi4saLlaVpBNKnawX47VOrc9m7YlZ7BHpY2q3p+9oz4roSMjo4rH442+tI5nGIbSIyMKBgf13bv39M7X/6u+9MqrOvH885y8DQDYN1GMZDKytoiRAAB0sPX1NV25dk3vXLuu1UxK5siI4s8dU6xJJ9jQfKrVDS3kC5peyauasGV2p2Unco2+rGdixx3pQL8KxbKWJq9rJNOl0UEOuWkGpmUpffSIqqMj+vrt2xocH9Mb587r4MGD3FoPAHhmTEbWB8+oaiR6MmQYBrdpAwCaiu/7unPnjt4au6J7pZKqQ4NKnTujFKEFuxQEweYU5Iq7cX8X5KF+OW12+EssnVSYSmjq40NuDvUOaLCvn0NumoDlOEq/8IKWS2X95w/f15GPPtTrFy+pv7+/0ZcGAGhh7IysD151AADQIZaWlvTBxITevTOpYi6n2MEDcrJZcSM2dmtjY0Pz+UXNrhRUTTqyelKyE+19wrFhGHK6MgqzKd1aWtX09UUdGxxVd1cXk3hNIJZKKnbqlO6trOjX//x/6GSuW5+/cF7ZbGtP5wIAGoPTtOuDGFlDPEEFADSa67q6ceuWLo+Pac735Q0NKnXhvNJMdmGXgiDQysqKpgoLWvOrCnIpxQ4PtN0U5JMYpinn40NuxgtzyizOcchNE4l3dSk8c0ZXFhd19Q//UBcPH9HFV15RIpFo9KUBAFoIk5H1QYwEAKDNhGGohYUFvXd1Qh9NTanU26v48ecVTybFMRzYrUqlorn8ouZWl+SmHFl9adnx7kZfVsPdP+Sm95NDbuyEjgxzyE0zMAxDyYEBhX19+vOZGb37zd/T5158UadfOsm+TwDArrAzsj54VK6DMAwVhiGTkgCAmqpUKrp644benhhX3rYVDA8pefGCMh02wYanFwSBlleWNZVf0FrgKuzqzCnI3dg85KbEITfNxjBNpQ8cUDA8rD+8c0eXv/5f9eUzZ/X8sWPs+wQAPBaTkfXBs6UaIj4CAGotCALNzs7qnfExXV9cVKW/X4mXTyrBlBb2oFwuay6/qPm1ZblpR9ZARjEn1ujLagmxVFLhoU8OuTncO6ABDrlpCqZlKX3smCqjo/razesauvKR3jh/QaOjozxPBwDsiJ2R9UGMrDGe6AAAamF9fV3j16/rnWtXtZJKyhgZUfzoEWV43MEu+b6v5eVl3SssqChfYVdSzpFBOXwO7dnWQ25ufHzIzVEOuWkaVjyu1IsvqlAs6j+99yMd++hDffniJfX29jb60gAATYbJyPogRgIA0CJ839fdu3d1eXxMd9fXVRkcUPrMq0rGmGDD7pVKpftTkOsr8tJx2YNZpiD3iWGaivd1yevyNZ6fU3ZxXsdGDnDITZOIpdOKnT6t28vL+v/+9z/Rqb5+fe78ef58AACb2BlZH0YYhmGjL6JdeZ4nz/Pk+74sy+KdcQDAU1lZWdEHVyf07q1bWstlZY+MKJ7LNfqymkIYhlpeXtbde9OqVDYUjzs6fGhU3d09PO5u4fu+CktLmiosqGQGCnMpOZmU1Kb/jcIwVBgECnV/Z7ehxvx7ehtVBYsr6reTOswhN00lDEOV5+fl3Lmr144e0/nTp/nzAYAOF4ahuru7FYah/vRP/1Sf+9znGn1JbYsYWUPESADA03JdV7cnJ/Xm2BXNuq7coUGlhoZkWlajL61plMtlXX7nh1pZ3VDFsyRZknzFbV+5jKPXLp7r6ImnMAxVKpU0W1jU4vqq3Excsa6MzFj73xjTLDFSkkJJXrEsI7+m0Uy3RgaHOOSmiYRBoNLUlNKzc/rCyZf18osvyuL7LAB0pGKxqJGREUnSu+++qzNnzjT4itoXMbKGiJEAgL0Iw1D5fF7vTUzog3t3VertUXx0VLFUqtGX1nQqlYr+9M/e0tK6IcN0Hvr/w8BVd9rX5z/7KSWTyQZcYeN4nqfC8v0pyLIlKZdSLJ1s2ynInTRTjNx6Te5qUfZyiUNumlDgeSpPTqp3ZVWvnzmrY0eP8twdADrM/Py8jh8/Lkm6fv26nn/++QZfUfsiRtaQ7/tyXVe+78s0TZ5wAgB2VKlUdP3mTV2emNCiKfnDw0r198vgceOR3v/gI43fWJBhJR75a0K/ouNHe3X+7Kt1vLLGiKYgZxbntVhel5dJKJZLd8QU5E6aMUZGwiCQu7SmRNHVscERdXHITVPxKhVVb93WqOfpKxcvaWhoqNGXBACokxs3bujcuXOSpLm5OQ0ODjb4itpXZz5DBQCgwcIw1NzcrN4ZH9e1+XmV+/uUOPmiEuwseyLP8zQ1PSfDevzEo2HFNTu3qGq1Ksd5eHqyHXiep/xSQVOFBVVsQ+pKKTYwKIu41bQM05TT1yWvy9NYfk7Z/LyeGzmoFBPQTcFOJGSffEnz6+v6zctv6UQypS9evKju7u5GXxoAoMaik7QlTtOuNWJkjfFONwBgq1KppPHr13R54qpWknFpZESJw4eU4fFi19bX1+V6hvTEaTdDVc/Q+vq6ent763FpdRGGoYrFdU3nF1QoF+9PQY72Kmaz566VmLYtZ6hXxY2q3pu5rYFYSoeGRjhEpUk4mYx05lVdKxR044+/q7NDw/r02bNEYwBoY9FJ2qZpdtyan3ojRtZQFCIJkgDQ2Xzf19TUlN4eH9ftlWVVBgeUOvOKkrFYoy+tZe12x0wY3o937cB13Y+nIBdVcUwZTEG2BTvuKDwwoMViSfnJ6xrNdmtkgENumkWyt1dhT4/emZ3Vh7//LX36+ed19uVTbTttDQCdLIqRmUyGjlNjPMsBAKBGVldX9eHVq/rRzRtay2ZljQwrfuJ5kSCfTTKZlG0FqgahnjQd6VhhS08yhWGo9fWPpyArRfnZpJyDvXI47betGJJi6ZTCVFL3VoqavTGhI32D6u/tY+d4EzAMQ+mREYVDQ/re3bv6wTe+ri+cOq2XTpzg5G0AaCNRjMxmsw2+kvZHjAQAYB95nqfJO5N688qYZjYqqg4NKnX+nFK8YN038Xhc/X3dmpwu7niSdiQMXPV0Z1ryNhvXdbVQyGt6aVHVuCUjl5Y9OCibd+nbmmEYcrozCnMp3Sgsa+r6oo4Njaorl2NCowkYpqn0kSNyR0f1zclJvTU+rjfOndPhw4f58wGANhDtjGRfZO0RIwEA2AeFQkHvTUzo/TuTKvV0K3b0sJx0WtzIVxsnXzyhxfzbKlUtydgh9IaBUk5VL598pf4X95TCMNTa2pqm8gtarpY+noLsU4yQ3XEM05TT3y3P8zS2OKvc4pyOcchN07BiMaWPH9dapaLfHvtIhz76SG9cvMipqwDQ4tbW1iQxGVkPxMga2voOabvsqwIAfGJjY0M3bt3S5fExzUvyh4aUunhBaW6rrLlcLqdPXTyjt3/4voplQ6ERlwxTCgMZ4YbSiVAXzr3SEifgVqtVLRTymlnOayNhy+xKy05kmILE/UNuhnu1XtnQ+9O31e+kdHh4lH2FTcJOJGS//LJm1tb0m29+Xy9mc/rChQvK5XKNvjQAwFNgMrJ+iJEAAOxBGIaan5/XD8fHNT43o3JfnxIvnFCiBW8FbnX9/f1640uf072pKd2evCfPq8q2LR0+dESHDh5o6lOJgyDYnIJccSvyc0k5h/rlELKxAzsRV3jw40Nubl/TaLZHIwODHHLTJOLZrHT2jMYXF3X9v/2Rzo6M6lNnzrTkiggA6GTsjKwfnsEAALALpVJJV2/c0OWrE1pyHIXDw0pevKgM02sN5TiOnjt2TM8dO9boS9mVjY2Nj6cgC6ombZk9admJHE/I8EQPHnKz/vEhN0Pq7+3lkJsmkezvV9jXp8szs/rgW7+nz5x4Qa+efFmxGMeWAUAr2HqaNmqL5741FN2mbRgGt2kDQAsKgkAzMzN6e+yKbhQK2hgcUPL0KSW5RRJ7EASBVldXdC+/oFW/qiCXknOYKUg8nfuH3GQV5tK6XljS9PUFHRsaVY5DbpqCYRhKj44oGBrUf7t7T+984+v64ulX9MLx40RjAGhyTEbWDzGyxnhSCACtZ21tTVeuXdMPrl/XaiYlc2RE8eeOKcb3dOxBpVLRfCGv2ZWC3GRMVl9GsXh3oy+rQ7T/m8CGaSre362q6+lKfka5xXkdGznAITdNwrQspY8e0cboiL5++7YGx8f0lfMXdODAAV4fAECTYmdk/RAjAQCQ5Pu+Ju/c0eWxK7pXKqk6PKTUuTNKsZMNexAEgZZXljWVX9B66CnIJRU7PMAUJGrGitmyhvs2D7kZcNI6NDzCITdNwnIcpV94Qculkv7z++/pyIcf6MsXL6m/v7/RlwYA2IbTtOuHV1gAgI62tLSkDyYm9O6dSRVzOcUOHpCTzYqX8diLcrms+cKi5laX5aYcWf1p2XE+i1A/0SE38+slLd6+qgPZXo0MDsmyrEZfGiTFUinFTp/S3ZUV/fqf/alO9fTqs+fO84IXAJoIk5H1Q4ysseg2jDAMFYYht2UAQBNwXVc3bt3S5fExzfm+vKFBpS6cV5rpNeyB7/ufTEHKV5hLyjkyKIfH+ibTOX8ehiQnk1KYTuruyrpmr4/rSN+Q+jjkpmnEu7oUnj2rDxcXNf6dP9DFQ0d06dVXFY/HG31pANDx2BlZP8RIAEBHCMNQCwsLendiQlemp1Tq7VX8+POKJ5PiJSD2olwuaza/oPm1FblpR7HBrGIOp+WieUSH3AQfH3IzxSE3TcUwDCUHBhT29enPZ2b07u99Q59/6aROvfiibFaDAEDDMBlZPzza1QFP+gCgcSqViq7euKHLE+Mq2LaC4SElL15Qhikh7IHv+1paXtJUYUFFI5ByKcWODCrOY3xDhWGgSqWitXJJYRiqO5NjwmwL0zTlbDnkpis/r2MjB5VMJht9adD9Q4jSBw4oGBrSH9y5o7cmxvX62XN67uhRJlkBoAHYGVk/RhiG7X/cYAO5rivf9+X7vizLIkwCQB0EQaDZ2Vm9Mz6m64uLqvT3KzE6IptIgT0Iw/CTKcj1VfmZuOyutMwYU5CN5nmu1ksllaoVhTFTVuL+n4lfqiouS12ZrCzTUqhQhmF20I3aj+dVNhQurmogntahIQ65aTb+xoYqt29rpLKhNy5c1MjICK8dAKCOBgYGtLGxof/23/6bXn/99UZfTlsjRtaY53nyPI8YCQB1sL6+rvHr1/XOtataTiZljo4o3t3N917sie/7yi8tabowr5IpqSulWDop8XnUUFunIF0FMuKWLCf20J9L4HryixtK2wll0ilZlk2M3CKU5K6XZBbWdSDXo5EBDrlpNm6xKO/mTT0Xc/Sli5fU29vb6EsCgLbnuq76+vokSZcvX9alS5cafEXtjRhZY8RIAKgt3/d19+5dXR4f0931dVUGB5QeHmZ6DXsShqFKpZJm8gtaLK7JyyYUy6Vlxtho02ie56pYKqm4ZQrSeFI8C0N5larCsquuVEbpVEoGSfIBYRjKXV5XbLWso/1D6u3hkJtmU1laknHrtl7p79dnzp1XOp1u9CUBQNtaWlrSkSNHJElXrlzRyZMnG3xF7Y0YWWPESACojeXlZX147arevXVLa7ms7JERxXO5Rl8WWoznecovFTRdWFTZ1v1dkExBNlwYhqpUyh9PQfoy4vaOU5CP+Q0UKlQYhPIrriw3UHc6q3g8QZLcJggCuflVpcqenhs+oGw2y/PVJhKGocrz84rfuavXjh3TuVOn2YsKADVw9+5dnTp1avPjgwcPNviK2hsxssZ839/cG2maJu84A8AzcF1Xtycn9ebYFc26rtyhQaWGhmRyiyH2IAxDFYtFzeQXlC+ty88mZHdlZNp8HjXaU01B7uTjGKlQkmEoDAL5paqcwFB3JqcYk9MP8V1P/uKKukJbx0YOcMhNkwmDQKV7U8rMzekLL5/SyRde4PZ6ANhH4+Pjeu211yTdn5Ls7u5u7AW1OWJkjREjAeDZhGGofD6vd8fH9eHUPZV6exQfHVUslWr0paHFuK57fwpyaVGVmCHl0oqlEkxBNtj9KciK1srFx+6C3ONv+kCMjH4n3/MVlKpKWTHlPj7kBg/yyhsK8ysaiGc45KYJBZ6n8u1J9a6u6vWz53TsyBEmWQFgH7z99tt64403JN1/zmjbrOqpJWJkjfm+v3mrNjESAHavUqno+s2bujwxoUXLkD80pFR/vwy+j2IPwjDU+vq6ZvILKlSK8rNJxXJpGUxBNty+TUHu5BExUrr/U37VlUquMomUMqm0TGLOA7YecnMw16vhgUGm8JqMV6moeuu2Rj1PX7l4SUNDQ42+JABoad/73vf0kz/5k0okEiqXy42+nLZH6q2x6J1K3rEEgCcLw1Bzc7N6Z3xcV+fnVenvU+Lki0qwHwt75LquFgt5TS3lVY2bMnIp2YODsng8bqgdpyC76ruj05BkOzGFjq31yoaKhbK6Uhklk0n2SX7MkORkUgrTSd1ZXtfM9XEd7R9WX28vz2mbhJ1IyD75kubX1/Wbl9/SiXRaXzx/gdsKAeApra+vS5Ky2WyDr6QzECMBAA1XKpU0fv2aLk9c1UoyLo2MKHH4kDK86MUehGGotbU1TecXtFQtyc8m5RzsVYyJrobzPE/FUvGTKch0THaD/1wMGbITcYXxUMulotbKRXVncopzW/ImwzDk9GQV5NK6VihoqrCgY0OjHHLTRJxMRjrzqq7lC7rxx9/VueERferMGaVYZQIAexLFyEwm0+Ar6QzESABAQ/i+r6mpKb09PqbbKyuqDA4odeYVJTlYAntUrVa1UMhrZjmvjbgtsyslOzEom1jSUM0wBbkbhmHITicU+L4WSyuKl2x1Z7LsitrCtEw5A93acD19tDit7kVbRznkpqkk+3oV9vbo7dlZffD739Knnz+uc6dOcVgTAOwSk5H1xbOsGuNdYwB40Orqqj68elU/unlDa9msrJFhxU8cFy+XsBdBEGhtbU1T+QWtuGX5uZScg/1yLHaKNprneSqWSypulJtmCnI3TMuSmU3KdT3NrRaUjiWUS2fY972FFbNljfRppVzRe1M3NRjP6tDwCMGrSRiGofTIiILBQX3v3j398Btf1xdOndaLx4+z8xMAnqBYLEpiMrJeiJF1xFlBADqV53mavDOpN6+MaXqjIndoUKnz55TixRH2qFrd0Hw+r5mVgqoJW2ZPWnYixxOaBntwCtKXEbebcgpyN6yYLbPLVmmjqtLSonLJtNKplAw2Sm6KJRMKDyY0t1bS4s0JHezq0xCH3DQN07KUPnJE1dFRffP2pN4aH9Pr587r8KFDDEoAwCOsra1JYjKyXnjuDgComUKhoPcmJvT+nUkVe7rlHD2seDotjqPBXgRBoNXVVU3lF7TqbyjIpRQ71C+HibWG23kKsvW/wg1JdtxR6MS0WqlovVBSdzqreDxBkvyYIcnJphRmkrq9vKaZ6+M6wiE3TcWKxZQ6cVyr5bJ+58qHOvTRh3rj4iUNDAw0+tIAoOkwGVlfxMg6MQyDyUgAHWFjY0M3bt3S5fExLUjyhoaUunhBGcIR9mhjY0Nz+UXNrhTkJmOy+jKy412NvqyOF4ahKhsVrZVafwrySQzDkJ2MK4gHypfW5ZTuH3LDbcmfMAxD8Z6cglyGQ26alJ1Myn75ZU2vruo3vv/neimX0+fPX1Aul2v0pQFA02BnZH0RI2uMJ2EAOkEYhpqfn9cPx8c1Pjejcl+fEi+cUDyZZAoSexIEgZZXVjSdX9BaUL0/BXl4gCnIJtCuU5C7YZqmzExCnudrfn1ZKctRLpORZXJbcmTzkJuqq4/y0+rO2zo6zCE3zSSey0lnz2hscVFX/+g7unDwoC698ip/RgAgTtOuN2JkHRAkAbSrUqmkqzdu6PLVCS05jsLhYSUvXlSG73vYo0qlorn8ouZWl+SmHFn9adnx7kZfVsfrpCnI3bBsS2YuqXLVVXkpr0wipUwqLbND/3vsxHJinxxyc++mhpJZHRzikJtmkuzvV9jXpzdnZvTet76pz554Qa+cPMmfEYCOxmRkfREjAQB7EgSBpqen9fb4mG4WCtoYHFDy9CklHafRl4YWEwSBlpeXda+woPXQU5hLMgXZJDp5CvJJDEm2E1Po2FqvbKhYKKsrnVEykWSf5BaxZELhoYRm14pauHlVB7v7NNQ/wCE3TcIwDKVHRxUMDemP7t7V29/4ur786hkdf+45TpAH0BF833/gMYmdkfVFjAQA7Mra2po+unpVP7xxQ2uZtIyRYcWfO6YYE0HYo3K5rLn8gubWVuSlHVkDGcUcJnIajSnIvTFkyE7EFcZDLZWKWvt4n2ScN2Y23T/kJq0wk9LtpTXN3CjoaP+went6uHOoSZiWpfTRo9oYHdV/vX1LA1c+0o9fuKjR0VH+jAC0rY8++kh/9a/+Vf3Df/gP9TM/8zOybZvJyDozQk5VqTnXdeV5noIgkGVZPLADaBm+72vyzh1dHruie6WSNoYGlR4elmnzXhb2xvd9LS0va6qwoJLhK8gl5WTShK4m8NAUZCImo9Wn18JQoUIplGQYdZlYDHxffqmqhGGrK5OVbfF9crvA9+UVVpWqBHpu+AAv+JqQWyrJu3FTRyxbr1+6pL6+vkZfEgDsu5/92Z/V1772NUnS888/r69+9av6uZ/7Od24cUP/4T/8B/31v/7XG3uBHYAYWQfESACtZmlpSe9PTOi9O5Mq5nKKjY7I4UUj9igMQ5XLZc3mF7WwviI3E1csl5bJFGTD7TgF6cTaJw43IEZGfNdTUKoqE0som85wy+sO/Korf3FFPYajoyMHlEgkGn1J2KayvCzdvKVTvX363Pnz3LYIoK1MTU3pl37pl/Qbv/Eb8n1fkmTbtjzP0+/8zu/op37qpxp8he2PGFkHruvK9/3NnQTESADNyHVd3bh5U5cnxjXn+/KGBpUaGpLBC2nske/7Kiwt3Z+CNAOFuZScTKp9QlcLa8spyJ00MEZK9/+x/kZVKnvKJTNKp5Kq/1U0P7dUkfKrHHLTpMIwVHlhQbHJO7p05IguvvKq4nF2xwJoHzdu3NC/+Bf/Qv/lv/wXRWns5MmT+rf/9t/qS1/6UmMvrs0RI+uAGAmgWYVhqIWFBb07MaEr01Mq9fUpPjqiWDLZ6EtDiwnDUKVSSbP5BS0U1+Rn47JzGZkxblVttAemIENfRqLNpiB30uAY+cllhPLKVVluoO50VvF4giS5TSjJXS3KWirqUHefBjnkpumEQaDS9LTSM7P63EsnderFF2WzrgVAG/nwww/1mc985oGf+/Ef/3H93M/9nC5dutSgq2pvxMg68DxPnucRIwE0jUqloqs3bujyxLgKtq1geEjJvj6mILFnnudtTkGWbUm5lGJpDj1pBh0zBbmTJomRkSAI5JeqcgJD3ZkcE4A7CMNQ1aU1xdc3OOSmSQWep9LkHfUuLen1c+d07MhR1hAAaAvFYlEjIyOSpNdee02XL1/e/P/+yl/5K/pn/+yf6fTp0426vLZEjKwDYiSAZhAEgWZnZ/XO+JiuLy6q0t+vxOiIbG65wh6FYahisaiZ/ILypXV52YRiXWkONmoCHTkFuZMmi5ER3/MVlKpKWY5ymYwss0Pi8B4Evi83v6pMNdSxoVEOuWlC3saGqrduaXijqq9cvLT5Ah4AWtXc3JxOnDgh6f6t27du3dJXv/pVvfXWW5IkwzD0Mz/zM/qn//Sf6vnnn2/kpT7E8zy9//77euedt/Xee+9pampKlUpFuVxOL774kv7SX/oJfepTn37o7/uN3/h1/eZv/uZjf+9//+//gw4fPlyT6yZG1gExEkAjra+va+zaNf3g+jUtJ5MyR0cU7+7mexH2zPM85ZcKmiosqBIzpFxasVSi80JXE+roKcidNGmMlO5fUlB1FZZcZRIpZVJpmXwNPYRDbppfdX1d/s1bej6e0JcuXlRPT0+jLwkAnsqNGzd07tw5SffD5ODgoMIw1De+8Q199atf1Ycffijp/iE3f+tv/S3943/8j3XgwIFGXvKmH/7wB/pH/+gfSZJ6e3t14sQJJRIJTU5O6vbt25Kkn/iJn9Df//v/jwde/0Ux8rnnnn9kYP2bf/Nvqq+vrybXzQhDHWz9Aw/DkAAAoOZ839fdu3d1eXxMd9fXVRkaVPrMq0pxayD2KAxDra+vaya/oEKlKD+bUGy0VzG7g0NXk4imINdLRVWjKcgubpFvdoYky4kpdGytV6oqFsrqSmeUTCSbKpo2muXEZI32a7lU0bt3b2g4mdOBoWFucW8iTiYjvfqKbi4t6daf/LFeHRjUj509p3Q63ehLA4A9WV9f3/w4msg3DEM/+ZM/qZ/4iZ/Qb//2b+uf/JN/ohs3buhXfuVX1Nvbq5/7uZ9r1OU+wDBMff7zn9f/9D/9n/TKK6888P9973t/rJ//+Z/XN7/5TZ06dUo//uN/4aG//7Of/Yx+9mf/r/W63E3ESABoI8vLy/rw2lW9e+uW1nJZ2SMjiudy4qUb9sp1XS0WCppeWtRG3JSRS8keHJRF6Gq4h6Yg0zHZFusWWo0hQ3bCURgPtVQqaq1UVHcmp7jjNPrSmkoslVCYSmhmtaj5mxM61N3PITdNJtHTo7C7Wz+am9dH3/59ferYMZ0//YocPpcBtIhisShJMk3zoUl8y7L00z/90/qpn/op/dqv/Zr+zb/5N/oH/+AfNOIyd3Tu3LnNqc7tvvSlL+sHP/ihvv3t39d3vvOdHWNkoxAj64RpSAC14rqubk9O6s2xK5p1XblDg0qdP6c0L9SwR2EYam1tTdOFBS1VSvKzSTkHexXjc6nhHpiClC8jzhRkuzAMQ7F0QoHva7G0okTZVlcmK9viaXrEkOTk0gozKd1aXtP0jYKODQyrp5tDbpqFYRhKDQ8pHBzQn9y7px9+4+v64qnTeunECcIxgKa3trYm6f5U5KMeV2KxmP7O3/k7+tt/+2+31GPP8ePHJUkLCwsNvpIH8SynDqJP1Fb6hAXQ3MIwVD6f17vj4/pw6p5KvT2KP3dM8VRKzEdhr6rVqhYLeU0v57URt2R2pWUPDsrmcavhmILsHKZlycwmVXU9za0UlIkllE1nOK14C8M0FO/NKejyNZFfVDq/oOeGDyiTyTT60vAxwzSVOXxY/uiovnl7Ut8fH9NXzp3TkcNHeC0EoGlFk5G7eTxpte9lU1NTku7vk9zJtWvX9au/+u+0tramdDqt48eP69Of/jGlUqmaXhcxEgBaSKVS0fWbN/XWxLjylil/aEipixeU4cUq9igMQ62urmq6sKDlallBNqnYwX45Fp9LjRaGoTY+PhGbXZCdx4rZMrtsFTeqKi4tKpfMKJ1KqrmO4Wks07LkDPaoUnX1wfxd9S7GdWR4lENumohp20off17FSkX/v7ExHfjwQ33l0msaHBxs9KUBwEOinZHRvsh2USgU9Id/+AeSpM9//vM7/po33/y+3nzz+w/8XDqd1t/7e3+vprd1EyMBoMmFYai5uVm9Mz6uq/PzqvT3KXHyJSXi96ejPM9TfmFB1WpVsZit3t4+9jThkarVDS3kC5peyauasO9PQSZzjb4s6P7Xcqlc0jpTkB3PkGTHHYVOTKvlstYLJXWnM4rHEyTJLaJDbpZKZS3dvaHhVE4HBjnkppnYiYTsl09qbm1Nv/HWm3ohndYXL1xUV1dXoy8NADZFMbKdJu1939cv/MLPq1gs6tixY/qJn/hLD/z/IyOj+ht/42/o0qXXNDQ0JEmanJzUb//2f9abb76pX/qlX5JpWnrjjTdqcn1GGIZhTX5nbArDUNVqVb7vyzAMbrcBsCulUklj167p7atXtZyMyxgZUaLnk/1YQRBo/Oo13ZmaVcm35YemTCNQ0vQ0MtCr0y+/xAsySLr/uRJNQa64GwpyScVyaRk8HjXcjlOQTowpyGcVhgoVSqEko/VnCoMgkF+qyglMdWezitl8b98ulOSuFmUtFXWop19D/QM8525C5Xxe1u1JnRsZ0afOnFUymWz0JQGAfumXfkn//J//c335y1/Wd7/73UZfzr74l//yX+rb3/595XI5/at/9a918ODBXf+9v/zL/x997WtfU3d3t37rt/5TTV5TMhlZZ7RfAI/j+76mpqb09viYbq+saGNwUMkzryi17QEgCAK9/cMfaWppQ6HTK8M2FK2HLyvUzfmSVtfe0Wc+dZEg2cE2NjY0n1/U7EpB1aQjqyclO8E0SjO4PwVZ1vpGiSlIPJFpmjIzCXmer/m1ZaUsR7lMRpbJwSCRrYfc3F5a08z1vI4OjKinu7vl9nu1s2Rfn8LeXl2endX73/qmPnP8hM68/DLPVQA01F52RraCX/7lX9a3v/37ymaz+sVf/MU9hUhJ+p//55/V17/+dS0vL2t8fFyvvPLKvl8jMRIAmsDKyoo+unZNP7x5Q2vZrOyRYcVPHNejnprfvXdPU4WKFO96aOLHkCE5aS2U1zV+9ZpeOfVyrS8fTSQIAq2srGiqsKA1v6ogl1Ls8IAcJoQajl2QeFaWbcnMJVWuuiov5ZVNpJROpWXyObTJMA05fTn5Xb4mCgvK5Od1jENumophGEqPjCgYHNR3793TO9/4ur54+hW98PzznLwNoCG2nqbd6n7lV35FX/va7yqTyejnf/4XdPz4iT3/HrlcTt3dPSoU8jU7hZsYWUeGYTAZCWCT53m6PTmpt8bGNL1RkTs0qNT5c0o/4Yl4GIa6fuuOQif72FsPDSetqdkFnXzRk23z7b7dVSoVzRcWNbuyJDflyOpLy453N/qyIMn3PBWZgqy/Nn3KZUiynZhCx9ZaeUPrhbK60hklE8mWvx19P5n2/UNuyhtVDrlpUqZlKX3kiKojI/rG5KQGx8f0+rnzOnTwINOsAOqqXSYj/92/+9/0v//v/0XpdFq/8Au/oBdffPGpfh/f91Uq3f9vUqtTtXl1Wgc8mAKIhGGoQqGg9ycm9P7dOyr2dMs5eljxdFq7TROlUkkVN5QRe3y0NGSoEthaXl5Wf3//s188mk4QBFpeWdZUfkFrgauwiynIZvHJFGRJ1dBjChL7zpAhOxlXGA+1VC5qrVRSTybLAWbbWHHn/iE3xbKW7tzQSLpLB4aGeZOuiViOo/SJE1oulfU7H36gQx9+oDcuvcZzFwB10w6naf/qr/47/c7v/I7S6bR+8Rd/US+++NJT/17f//73ValUZBiGXnjhhX28yk/wKFwnBEmgs21sbOj6rVt6e3xMC5L84SElL15Q5imike/7CnY5/xKE93892ku5XNZcflHza8ty046sgYxiDvu2msHOU5DEIdSOYRqKpRMKfF8LpRUlyra6MlnZFk/zt4qlkwrTSU2vrGvuxoQO9/RrkENumkoslVTs1MuaWlnRr//5n+lkrkufv3Be2Wyu0ZcGoM21+mnav/Zr/0G//du/rUwm8/FE5OND5Pz8nN5//wN94QtfeOhNzD/7sz/T//K//EtJ0uuvv6He3t6aXDPPUgCgRsIw1Pz8vH44Pq7x2RmV+/uUeOGE4s94cmQ8Hpep3QVG2wyZkmkTvu9reXlZ9woLKspX2JWUc2RQDm92NRxTkGgGpmXJzCZVdT3NrRSUcZLKptMyDWJbxJDkdGUUZtO6ubSq6et5HRsYUTeH3DSVeFeXwjOv6srioia+8x1dOHhQr716hlvsAdRMK09G/vmf/7l+67d+S5I0Ojqq//pfvy7p6w/9uq6uLv3dv/t3JUmrq2v6xV/8Bf3rf/2vdPz4cfX19ata3dDk5KSmpqYkSWfPntXf//t/v2bXTYxsgDAMecIDtLFSqaSJ69f19rWrWnIchcPDSl66qMw+fd3H43H1ZFOaLlZlPmbiKgx9pexQ3d3d+/LPRWOUSqX7U5DrK/LScdmDWaYgm8T2KUgzFZNtE//RWFbMltllq7hRVbGwqK5kRqlU8v7hZpB0f5o03tclv8vXeH5emfy8nhs5qHQ63ehLw8cMw1ByYEBhX5/enJnR+9/8PX32hRf1ysmT3GIPYN+18s7I6PAdSbp69aquXr26468bGhrajJGDgwP6a3/tr2li4qqmp6d07do1eZ6nXK5Ln/70p/XlL7+uL33pSzW9e8AIOVGlLlzXled5CoJAlmURI4E2EwSBpqen9fb4mG4WCtoYHFByZERWjaYS8/m8/uwHH8h1+nb8fhIqlL2xrLMvHdGRw4drcg2oHd/3VVha0lRhQSUzUJhLycmkmLRrAjtOQTox/myaTRh+cmig0bkZLgxD+eWqTDdUdzqreDzesf8tHsfbqCpYXFWfndCR4VHF4xww1WwC31fpzh315Av60pkzOn7sOW6xB7BvTp8+rTt37ug//sf/qJ/+6Z9u9OV0BN5WAoBnsLa2po+uXtUPb9zQaiYtc3RE8eeOKVbjMNHX16dXXzymDyZuacPKyLDjm1MvoV+V7a3r+YODOnzoUE2vA/snDEOVy2XN5Be0uL4qNxNXbLhLsRgP1c2AKcjW1cnxzTAM2am4giBQvrQmp1RUdzarmM109VZ23JEO9KtQKmtp8rpGMl0aHeSQm2ZiWpYyx46pcuCAvnbzpoauXNFXzl/Q6OgoQx4Anlmr74xsRUxG1onruvJ9X77vMxkJtDjf9zV5544uj13RvXJZG4MDSg8Py2zAi5bl5WVdvXFL+aUVBYYlIwzUlUnqheePqb+/n+81LcDzPBWW709Bli1JuZRiafYNNgOmIFvYlslIvg9+wvd8BaWqUpajXCYjy7QafUlNJwxDuatF2cslHeod0GBfPxN4TcgtFuXdvKVjsZi+fPFSzQ5YANAZ+vv7Va1W9d3vfldf/vKXG305HYEYWSee58nzPGIk0MKWlgp6f+Kq3rszqWIup9iBUTlN8u5Z9D3GsizFYky8NLswDFUqlTSzOK/F8rq8TEKxXFomU5BNwfc9FUtbpiDjMZk20aalhKFChVJIjNwulORXXankKptIKZ1Ky+S/0UPCIJC7tKZEsaqjg6Pq7uric6kJVZaXpZu3dLqvX589d46pJgB7Vq1W1d/fL0m6fPmyLl261OAr6gzEyDohRgKtyXVd3bh5U2+Nj2s+9OUNDio1NCSDKQk8Bc/zlF8qaKqwoIptSF0pxVJMQTaD+1OQG1orFe9PQcZtWXGmIFsWMfKJwjCUX6nK2AjUlc4omUh29C3tjxJ4vrz8irKuoWMjBzjkpgmFYajy/IKcO3d06chRXXjlFfZ+Ati1QqGgo0ePSpLGxsb00ksvNfaCOgQxsk6IkUDrCMNQCwsLendiQh9NT6nU16vE6KhiyWSjLw0tKAxDFYvrms4vqFAu3p+C7MowadckoinI4kZJAVOQ7YMYuWthEMorb8j2DPVksnJqdPBaq4sOuem3EzrMITdNKQwClaanlZ6Z1edPvqxTL74oy+L7OYDHu3v3rk6dOrX58cGDBxt8RZ2BGFknxEig+VUqFU3cuKG3J8ZVsG0Fw0NKsncRT8l13Y+nIBdVcUwZXSnFkgkm7ZrA5hRkuahqwBRkWyJG7lng+/JLVSUMW12ZnGwizo7cYllGfk0jmW6NDg5xyE0TCjxP5ck76l1Z0etnzurY0aN8HwDwSGNjY/rUpz4l6f4+/q6urgZfUWcgRtaJ7/ubh9iYpskibKBJBEGgmZkZ/WB8XNfzi6r09ysxOiKbiQc8hTAMtb7+8RRkpSg/m5TTlZbBi/qmwBRkByFGPjXf9RSUqso4SWXTaZkGz1m323rIzeHeAQ1wyE1T8jY2VL11SyNVT1+5eFHDw8ONviQATejtt9/WG2+8Ien+MAFvMtUHMbJOfN/fnI4kRgKNt76+rrFr1/SD69e0kkrJGBlWvLubF614Kq7raqGQ1/TSojbilsxcWnYyzqRdE2AKskMRI59JKMnfqEplT13JjFKppAw2Sj5k6yE3xwZH1cUhN02pur4u/+YtHU8k9KWLl9Td3d3oSwLQRP74j/9Yf/kv/2Ulk0mVSqVGX07HIPkC6Bi+7+vu3bu6PD6mO+vr2hgaVPrMq0py+jSeQhiGWltb01R+QcvV0v0pyIN9chowBel5ntaLRbmuK8uylEmn5DidPd3r+56K5bKKlY+nIJMx2Ta78IDdMCTZcUehE9NKuay1Qknd6azi8ThJcgvDNOX0dcnr8jSWn1M2P69jwxxy02ycTEZ69RXdWFrSzT/+rs4MDenTZ87y5wRAklQsFiVJmUymwVfSWYiRdRK9S8q7pUD9LS8v68NrV/XurVtay2Vlj44qns2KLIGnUa1WtVDIa2Y5r42ELbMrLTuRkd2A7+9hEGhuYVFrxZLcwJRkSgplF1aVcCyNDA8p1kGxfccpyK6kTB57gadiGIbsVFxBEChfWpNTKqo7m1XM7pzvK7th2racoV4VN6p6f3ZS/XaSQ26aUKKnR+H5bv1gbk4fffv39annnte5U6c4tAnocGtra5KkbDbb4CvpLMRIAG3JdV3dun1bb42PadZ15Q4NKnX+nNLs7sNTCIJgcwpyxa3IzyXlHOqX08CVG2EY6N7MjNbLgUIzIWPLp7Yvab3q6869aR05OCq7zYMkU5BAbZmmKTOTkOf5ml9dUsqOK5fJyDJ5TN3KjjsKDwwoXyypMHlNo5kejXDITVMxDEPp4WGFg4P6k3v39MNvfF1fOHVaL504wcnbQIdiMrIxeGQE0DbCMFQ+n9ePxsf10dQ9lXp7FX/umOKplJhNwNPY2Nj4eAqyoGrSltmTlp3INcWD5+rqmtbLvmQ5O942aZiWNoJQcwuLOjA6Uvfrq7XtU5CK27KZggRqyrItmV0plauuykt5ZRMppVNpvu62MCTF0imFqaTurRY1e2OCQ26akGGaSh8+LG90VN+6Pak3x8f0lXPndfjwYe5kAzrM+vq6JCYj660ZXk91BB7UgNqpVCq6dvOmLo+PKW9Z8oeHlLp4QRme9OMpBEGg1dUV3csvaNWvKsil5Bxu7BTkw0IVllcUmrHH7m8zTFulSkWe57XNZE5zTUGG8queqqUNhUEoK2bJSSdkNNXnCrC/DEm2E1MYs7VW2dB6oazudEaJRJJ9klsYhiGnK6Mwm9LNwoqmr+d1bHCEQ26ajGnbSh1/XuuVin5n7IoOfvSR3rh4UYODg42+NAB1EsVIJiPrqz1embQYDjAHnl0YhpqdndUPxsd0dWFBlf4+JV4+qQT7mfCUKpWK5gt5za4U5CZjsvoyisW7G31ZO/I8X54f7uoFrReYqlQqLf0EqxmnIH3X1dr8itxqIC8wJBkyjFCx/JoS2aTSvVlO7EZbMwxDdjKuMB6qUC7KLpXUk8myf28bwzTl9HfL8z455Oa5kYNKpVKNvjRsYScSsl8+qZm1Nf3mW9/XC+msvnDhgrq6uhp9aQBqjMnIxiBGAmgppVJJY9eu6e2rV7WcjMsYGVHiyGFleNGPpxAEgZZXVjSVn9d64CroSil2eKDJpiAftpc3tcKwdd8Ee2AK0m70FOSW63JdLU8XVPVtyYjdPzdIUiipGkreyoYC31d2oJsgibZnmIZi6YQC39dCaUWJsq2uTE42+/cesHnITWVD783c1kAspUNDIxxy02Ti2ax05owmFhc1/vvf1BdfelmvnT3b6MsCUEPsjGwMYmSdGYbRsi8KgUbxfV9TU1O6PD6myZUVbQwOKnnmFaXa/FAO1E65XNZ8YVFzq8tyU46s/rTseOMj125ZliVDocLwya3LMsOWukU7moJcLxe10SRTkNutza98HCJ3jtaBYau87iqR2VAslajz1QGNYVqWzGxSVdfT3EpeGSepbDot8xFfJ53KTsQVHhjQYrGk/OR1jWa7NTLAITfNIvB9lWZnFZ+d07GBIR0dHW30JQGoMU7Tbgwe9eqE3TDA3q2srOija9f0w5s3tJbNyh4dUfzEcZEg8TR839fyyrKm8gtal68wl5RzZFBOC35/Nk1TmXRKhbWqZD36oTwMQ8UsKZlo/iDm+55K5bLWm2wKcju/6sqtBvcnIh/362SptLyuLmIkOowVs2V22SpWqioWFtWVyiiVTMpgo+SmBw65Wbl/yM2RvkH19/ZxyE2DuKWyqlNTyiwv64vHjun0j/8FpqSADsFkZGMQI+uIIAk8meu6mrxzR2+NjWl6oyJ3aFCp8+eU5nYvPKVyuazZ/ILm11bkpR3Zg1nFnNZP2r093VorTssNrR0fX8JQsoKq+vt7mvZW4VaYgtzOLVfv74h8Ui8wTHnVqnY1vgq0GUOSnXAUxmNaLpe1ViipO51VPB4nSW5hGIac7ozCXErXC8uaur6oY0Oj6srleN1QB2EYqpzPy5ye1pBMffrll3X08GGmVIEOw87IxuA7LYCGC8NQhUJB709M6P27d1Tq6ZZz9LDi6bTYpISn4fu+lpaXNFVYUNEIpFxKsRadgnwUx3F0YHhA07MLqvqWZMZkGPfbl0JPtjz19eaUyzXfE6tWmYLcSRgGe/z1uztoCDXAVpyGMwxDsVRcQRAoX1qTUy6qO5NTjNjzAMM0Fe/vlut6GsvPKrc4r2MjBzjkpkZ811V5elrJ+QWdGRrW+U9/Rn19fXyvBjoUk5GNwTOBBuHFCSBtbGzo+q1bujw+pkVJ3vCQUhcvKM0tSngKYRhuTkEurK/Ky8RlD+UUa+PdoqlUWkcPOVpeWdXK2vrmTuJ0Oqme7n4lmuj27DAMVf34ROxWmYLciRWzZRqhdpMkDeP+4R5ApzNNU2YmIc/zNL9aUMqOK5fJyuLx/gFWzJY13Kv1yoben76tfietw8MjnFC+TzbW1uTfm1J3sagvvvCiXrz0qaZ6nATQGOyMbAxiZB1F8ZEDbNDJwjDU3NycfjQxofHZGZX7+5R48QXFEwmmIPFUfN9XfmlJ04V5lUxJXSnF+tprCvJx7FhM/f196u/va8pbgn3fV6lcaskpyJ3EknHZ1qqqT6iRRuAp0ZWUuCkV2GTZ9/dJlquuykuLyiZSSqfSLfemRK3ZibjCgwNaWC8pf/uaDmR7NDwwyO3DTyEMApXm5hSbmdXhVEqfevmUDhw4wG5OAJuYjGwMHtHqjGlIdKpSqaSJ69f19rWrWnIchcPDSl66qAxfE3gKYRiqVCppJr+gxeKavGxcseFuxWId/rDWJF9P7TIFuRPDNJXMpeQtlRU86hCbMFTMDpTIpet7cUALMCTZTkxhzNZaZUPrhbK60xklEknS/RaGJCeTUphO6u7K+seH3Aypr7eXkLYLXqWijakppQoFfebwUb36+hvK5XKNviwATYidkY3R4a/aANRSEASanp7W2+NjurW0pMpAv5KnTynJ7UZ4Sp7nKb9U0HRhUWVb93dB9g/KaoPI1Q7abQryUVLdGQW+r/JaVV5oScYnYcAIPcWsQF3DPTJtDt4CHsUwDNnJuMJ4qEK5KLtUUk82KyfWft8znsX9Q26yCnJpXSssaer6go4NjSrHITcPCcNQlaUlaXpaA16gT518Sc9/7gttva4FwLMJgoDJyAYhRtYRTxjQKdbW1vTR1av6wY3rWstkZI6OKP7cMaYg8VTCMFSxWNRMfkH50rr8bEL2aI9ihJ6m0M5TkI9kGMr0dymRrqq0UpRbqd7/adNQMptUIpeSYfH5CeyGYRqKpRMKfF8LxRUlDFtdmZxsvoYeYH58yE3V9XQlP6Ncfl7HhjnkRpICz1NpZkaJuXm93Nevixdf08DAAK+9ADxRqVTaXKPHZGR9GSELDOvG8zx5niff92VZFg+QaCue52nyzh29PT6me+WyNgYHlB4elsl+Izwlz/O0WMhremlRlZgh5dKKpRJNcytyp3toCjIR6+BJwPD+yc18bjaPMNx8ccHzrdbiu67Ckqu0k1Q2nZZpcEvyTrzKhsLFVQ3E0zo01JmH3LjFoqr3ppRbXdXF4yf08okTxFkAezI3N6cTJ05Ikm7cuKHnnnuuwVfUOagEAJ7J0lJB709M6L07d1Ts6lLs0EE5mYw67ykx9kMYhlpfX9dMfkGFSlF+NqnYaC9TkE2iI6cgd8XgnBpgn1ixmMKumIqVqoqFRXWlMkolkzL4IntAdMjN/HpJi7ev6kC2VyODQ7LafKI0DAKVFxZlz8xoJObo0y+f1KGDh9r+3xtAbUQnaUtMRtYbk5F15Pu+XNdlMhItr1qt6uatW3prfFzzoS9vaEipwUEZLFTHU3JdV4uFvKaW8qrGTRm5lOwkU5DNgilItBwmI9tCGIbyylVZbqjudFbxeJwkuYMwDOWurCu2UtaR/iH19bTfITd+tary1JRSi4s6feCgzr74knp6ehp9WQBa3HvvvafPf/7zku7fsp1MJht8RZ2DycgGCcOQJ8d4rLW1NZXLZSWTyaZ4lyYMQy0sLOhHE+O6Mj2tUl+vEieeVzyZVLzRF4eWFIah1tbWNJ1f0FK1pCCbVOxgr2JMNzSHMNTGA1OQFlOQAOrKMAzFUnEFQaB8aU1OuajuTE4xVsA84IFDbvJLmsq3zyE3leVlhVPT6t3Y0OsvvqQTn/6M4nGeeQLYH9FJ2pZlKZFINPhqOguP5HXW6k8IUFthGOrKlSv65v/4H5oqlxTEEzI3KjqQTOkvff7zOnnyZN0/h8rlsq7euKG3r06oYNsKhoeUvHRRWT6X8ZSq1er9XZDLeW3EbZldKdmJQaYgm8QnU5BlBbbRtidiA2gdpmnKzCTkeZ7mVwtK2XHlMllZbTb996xM01R84JNDbrry8zo2crDlJn0C31dpZlbxuTkdz3XptbPnNDw8zOsoAPsuipGZTIbvMXVGjASaRBiG+t1vfUt/cPu23FdOy8p1bf5/4ysruvHH39VfnLytv/IX/w81/0YZBIFmZmb0g/FxXc8vqjIwoOSpl5XowOXonSqaWqxWq7JtW7lc7plu+QqCQGtra5rKL2jFLcvPpeQc7Jdj8UKyKew4BZlgChJAU7FsW2aXrXLVVXlpUdlESulUmu9V21gxW9Zwn9YqG3pv6qYG4pmWOOTGLZVVnZpSZnlZXzx2TKd//C8ok8k0+rIAtLEoRjbDnYidhhhZR1FAorhjJz949139wZ1J+Z/5jKxtnyNWV5f8z3xW337zTR16911dPHeuJtewvr6usWvX9M71a1pNpWSMDCt+7IgyfM52jDAMdffePV2bvKNyaMk3LZlhoETg6ujBUT1/9OieomS1uqH5fF4zKwVVE7bMnrTsRI4Hnybx8BSkLdvmJFIAzcuQZDsxhTFba5UNrRfK6k5nlEgk2Se5zf1DbgY/PuTmmg7mejU8MNhUh72EYahyPi9rekZDhqFPnXxZRw8fls2t+ADqoFgsShJvfDQA3+WBJhCGoX7vv/93eZcuPfLdfcMw5J05o2/+6Z/qwtmz+xa1fd/X3bt3dXl8THfW17UxNKj0mVeVjMX25fdH6wjDUB+MjelWflVBdlCGef/Fii9pPQz00UxB+cKyXjt/9rFBMggCra6uaiq/oFV/4/4uyEP9cridrjlsTkGWtBG4TEECaEmGYchOxhXGAxXKRcXKJXVnsnJizT39V2+GJCeTUphO6s7yumauj+to/7B6e3oaesiN77qqTE8rMb+gs0PDOv9jn1FfX1/DrgdAZ4pO02Yysv6IkUATmJub1WIsJjP1+IkkM5XSgm1pbm5Ow8PDz/TPXF5e1gdXJ/TurVta78rJHh1VPJtVMzyFX19fV6lUkiTlcjmWCdfJzMysbi2uKOgelLFtvsQwTCnbq9m1gq7dvKkXjx9/6O/f2NjQfH5RMysFucmYrL6M7HjXQ78OjXF/CrL88YnYTEECaA+GaSqWTijwfS2sryhhxtSVycpuoum/ZmAYhpyerIKutK7lC0oV7h9yk81m63rX1sbamv7/7P1njGVpft95fo8314Z3mZE+s6qyqrqyfFd3tWNT4qo55EqaBVZmZgXtLgRpVpiFZuVATEvQaEASO4AICQKI1WBnCMhgBVKiKNNNUuymml3N7rJdNk1lpavMDHu9Of559sWN9OEyMyLujYjn86KBzoiKOBFxzTm/8zfZ9RuUu12+euIkp156RZ3nKYrSN6oysn9UGLmDVHu2spZ2u02yyeHiqZ+7PdviYSVJwuUrV/jJubMspCnx+Bj+C8+TG5AT9kq1ysefXqSVZCSWA0jsOGQk5/P0qZPkcrl+H+KeJaXkwpWriMLwA0HkPZ+XL3P1xhzHjxzBMAyEENQbDW5WlmiJGFH0sWbHVBXkoFBVkIqi7BO6YaAXPeIkYaFRIW97FHI5dE29H91N13XssTJRkvLx8k1KyyZHpma2dcmNFILuwgLW3Dyzvs8rT51mZmamr5WZiqIooGZG9pMKI/tEStnvQ1AGiG07GGmC2MTnGnGE42y+flFKSaVS4b1z5/j4+ud0R0Zwjh7B9v2BqIK8ZW5hnnfPf0Y8PI52V4tVDNwIA2rvvMdrzz1LsVjs30HuYUEQ0EkFmrF+e76m6YSGzeLiIrHIWGjWSHwbYzSH6ZR35mCVDakqSEVR9ivDstBLFp0wplNdpuTn8T1v3Rtt+5FhmRhTI7SC3pKbcSfPgS1ecpOGIdGNG/jVKq/NHubZb/yMOo9TFGWg3L1NW9lZKoxUlAEwMzNDodGgkiRo68xqlElCvtlkenpmw68ZhiGfXrrEm+fOUjEMsskJ/JdeJD+Ad6GjKOKn5y+SjE3fnlN4N931CIwJ3v7wI772xVfVnfRtkKYpcpXf/d2kFIgoIIo6fLJ0HXdiRFVBDhIpieKYVrejqiAVRdnXNMB0baRjUQ8CWtUu5VwBx3FUJHkf0+stuVlodVm+fIGZ0shjLbmRUhLWanDzJmOp4NUnn+Tol7+CpWaRK4oygFRlZP+oMHIH3b1NW1VGKnczDIOvnTnDb164gHb69JqfJ86f5+vPv7DmCaKUkvn5ed45d5YLS0uEoyO4Tz2J6zjbdehb4vMbNwi9wqpB5C2aZdPRLarVKqOjozt4dPuDZVnoIl31YzKNScM2qQjJ8g5MFrGmxrC3saVL2TxVBakoirI6TdOwfAeRCSpBEzswKOeLWGpT8z00wC74yPy9S25Ghoc3PWZKpCnduTnchUWeGhnlxRdfZmxsTI2pUhRloKmZkf2j3okVZUB88ytf5dz//r/z0bmzaCdOot0VOMosQ356gWfDkJ95/fUH/ttOp8O5ixd568IFGr4Lk5O4h2bJ75ITwM/nF9CGJjb8vMTPc21uXoWR28DzPPKWSSVN0EyrVwUZdkmTNpmlkQ354PXepO2wrYbN99sDVZCmqoJUFEVZg27o6HmPNE1ZbFbxTYdivoChKvvvcXvJTTHHhWqF3CaW3MTtNumNGxRabb55/DhPPf/its6fVBRF2UqqMrJ/VBi5w9TdQWUtlmXx//hLf4nf+b3f40ff+wOaY+MkjoMVRZSWFnntqdP8wp/9r2+3uWRZxo0bN3jz3FmuNptEY2N4X3gGbxe2wWRCwAYtwgCaYZIk0Q4c0f504vAhquc+JXG8lSpIFzlaAuOut4o4oFzc2c2byh2qClJRFOXRGaaJXjIJooSgtkzBzZHzfXUj5z66oeOMDRHFCR9XblKumByevLPkRgpBsLSEOTfPlGXzxaee5MCBg4/c2q0oitIvamZk/6gwUlEGiGVZ/NlvfYv/6md/losXLxIEAb7vcezY8dsDxRuNBh9duMB7ly/RKhQwp6dwThxn90WQd1imicyye6pBVyOTBG/AW853oyzLqNZqLLRqWAWDtpUiC8P3BsRSQBxStA2GyuW+Heu+pKogFUVRtowGmI6FtE1aYUi72qWcy+O6nponeR/DtjCmRmgEIe9fv8SY4TKaSQr1Gi/NHOALr3+FoaGhfh+moijKI1OVkf2jwsg+kVIipVTVRcqqbNvmqaeeuv3/kyTh4mef8ZOzZ5mLQ+KJCfznz5DbI3egD89MU5tbhtLwup9nBy1mj5zaoaPa26SUdLtd5itLLHVaZAUHc7LE+MFhvFaHSr1OIiVS00FKLCRDpSKlYlG9bu0QVQWpKIqyfTRN6y1vcQTVoIMVdCnni9i7sMNkuxlxgtGu012ukEmDl868zAvPPqeW0iiKsuupmZH9o8LIHaYu4pXNklJSrVZ5//w5Pvz8c7pDZezDs9i5HHa/D26LzUxNcf7KVTppAc1c/cRWBl1KhkapVNrho9tb0jSlWqtxo7pEYAJFH2t0HOOu16ZCIU+hkCOOE4TI0DQdx7ZBvX5tP1UFqShbQq0JVDZL03WsnIvIMpbadVzdopQvYO6RG76PSmYZYnEZd36Bct5j8slD+ONnkELwxpWbfPCdf8vXnjrD8aPH0NXsTUVRdqlWqwWoysh+0KRa67yjkiQhyzKyLMMwDBVOKg+IooiLly/z5rmzLAHZ5AT+2BjaHj/Rq9fr/PiDj+gWhtD9HNxqlpIC0W5Rjtq89sLzanHKI5BS0ul0mKssUQnapHkXq5RDV9tEB4bIMjp3V0G6pvr7KMpjkFLCyimuOtdSHkaWJIhuQt72KORy6NrePv+6nwhC9JvzeLUaEwcnGDl2ECv34EKaLIoJPv2csUbKN77wEtPT0+q5pijKrjM6Okocx3zve9/j61//er8PZ19RYeQOU2GkshopJQsLC7x77hznF+YJRkdwp6cx91nw1ul0+PTKFeYrNTLL7rUHpwkHpyY4dujQ7bmZyuakaUqlVuVGdYnQ0qCYw/JdVeE4KFaqINtBhzBLwDEwHVWBqihbQYWRyuOQQBbGEKaU/Dy+56Ht4YmSUkpEpYY1v0BBCqZOHKA4M4lublwdGre7JOeucUTz+eqZl9UMSUVRdo04jhkdHQXgrbfe4sUXX+zzEe0vKozcYWmakqapCiMVALrdLucvXuStTy9Qs22YmsQdHt73j4skSQjDEE3T8DxPbWd8CFJK2u02c5UlqmGHrOBiFfNom7igUHaGqoJUlO2nwkhlK0gpSYMYI5GUcwUcx9lTkaRMUuTcIu7SIiOjZSZOHMQderRxOEGlDuc+59nhGV79wvO3N28riqIMqmq1yuHDhwE4e/YsTzzxRH8PaJ9RYeQOU2GkIoTg5s2bvHX2LJfrNcKxUbypKQxV9ac8hiRJWK5WuVlbJnL03ixIT1VBbhUpBd1uQJqm6LqO53mYDxMg3l0FmSbgqipIRdlOKoxUtpLIBFkQ4UiDUr6ItctvIIlWG/3mPLlOm6mjM5QPz/Tekx6TlJLOzUWciwu8evgUzz55Wi25URRlYF27do2nn34agOvXrzMzM9PnI9pfVBi5w1QYuX+1Wi0+vnCBdz67SCufR5+ewlGbiZXHIKWk1Wpxs7pELeySFTzsUg5NVZJuGSkl1VqNerNNohkITUOTElNm5FybidFRjHUuSkWW0Q0DWkEXYYLuWittbzv7vBdpikgFmgaGbakQVNnzVBipbIcsTRGdGN9yKOYKGLtonrcUArFUwZlboOSaTJ6YJT85ui0zyUWW0bl8k+LNBl996gzHjxxVS24URRk4Z8+e5ZVXXgF6+wvUotSdpcLIHZZl2e25kbquqzfmPS5NU65eu8ab585yIwiIxsfITU6qlkzlscRxzHK1ws16hcgx0Es5TNdRAdOWk8wtLNIIU6Tt3hMfSoA0wZUJszNTGMZdz+kBmgWZhhGdeoc0lQhdBykxZIbru3jl3J5fjKXsXyqMVLaLBLIogSCh4ObI+T76AD/GZBQhb8zjV6uMz4wxeuwgdiG3I987i2K6Fz5nopnyjedeZnp6eke+r6Ioyma8+eabfPOb3wR61+1qNNjOUmHkDlNh5P5Qq1X54Px53r92jU6phDU9hZ3P9/uwlF1MSkmz2eRmdYl6HCAKXm8WpKFeQ7ZLu93m+nIdnLXnXsk0oWRpTE9O3FcFeWsW5M5XQd4Stbq0Gl1S2wP93pMrLYlwZEppYkg9hpQ9SYWRynaTUpKFMVokKOcKuK47MPMkpZSIWgNrfoF8EjF1/CCl2am+3QyP212Ss1c5quf56vMvUy6X+3IciqIod/v+97/PL/7iL+J5Ht1ut9+Hs++o8qw+UCfFe1Mcx1y6fJmfnDvLohCkkxP4LzxPTgXOymOI44ilSpWbjQqxa/aqIL1ivw9rX6jUG0hrg2UFpkW722KpskxM1quCLLl9r5LJkoR2o0vq5lgtDJWWQ5TqtCsNCuNq86miKMrD0jQN03OQjqAatLGCDuV8EbuPMxJlmiEXFnEXFhku55l45ijuSLnv1x523sd+6UmuLNe48sbv8eyIWnKjKEr/tdttAAqFQp+PZH9SYeQOu3Uy0O+TAmVrSClZWlrivfPn+OTmTbojw7gnjuN4Hk6/D07ZtYQQt6sgG0mEKHpYB0exVbC9Y7IsI04zNGf137mUkImMNMvQ0HBIcUs+j10FKSVxJyTshkghMSwDL+9hONZDfe2g2SU1nXX/G2laxGGESFM1OkJRFOURabqOlXMRWcZSu46nWxTzBcwdbPcTnS76zXn8ZoOpw9MMf+1FTG/wzkS90SHkl8q8d2ORT37/d/ji4Sd45smn1JIbRVH64lYYmVcdjH2hrj4U5REEQcCFzz7jrQvnqVomYmIC76UXKaiQWXkMURSxWFlmvlEl9iyMoRymqwYp94OUYtUZj0II0ixDSAm6hmbqgI6mazxuEJkEEa1KkxQTYawsmYkywqCFZWoUx0qbXE4kiYMY6W58lzc1LOJuhFtUpwOKoiiPQzcM9KJHlCQsNirkbI9CLoeubc+NRCkkolLFvjnHsKUzeXyWwszTAz8LWNM08gcmEFOjfP/yDd757gW+9tQZjqklN4qi7DBVGdlf6upDUTZJCMHc3BzvnDvHxcoy4dgY3umncG2734em7GJCCBqNBjeqS7SyGFH0sWbHVBVknxm6gSZFb1HNXVWQaICho911calLgf6YcxfTMKKx3CS1fbj7wlXXSbFI0wS5UKM0ObzxhaYEudlgVNMRmXj0A1cURVHuYVgWsmTRCWO61WWKfh7f89C2aKKkjGPk3ALe0jKjkyOMv3Iap7T7LqR1w6BwfJbkYMzvXDjLxIWP+eaZl5mcnOr3oSmKsk90Oh1AVUb2iwojFWUD7XabTz79lHcufkrT99GmJnGOHCKvqiCVxxCGIYvVZeYbNRLfxhjJYTrlfh+WskLTNFzbohsGCN24UwV5//NeSkyZYT1WO5ykXW2RWvcFkXczLaIkI2oHuMUNtqBqoLHJ3XRSoBvqVEBRFGUraYDp2kjHoh4EtKpdhvIFbHuDOcTrEI0Wxs058lHA1NEDlM+8irEH2ptNx6bwzHHqrQ7/6qM/5tjZAl8585JacqMoyrZrtVqAqozsF3UFssPunhWpFpkPrizL+Pzza7x57hzX2m2iiXFyX3gWbw+c9Cn9I4Sg3qhzo7JESyTIkqqCHDT3bMS2NYwwQpr5VVu2QaInIV7BW+Pjm5NFCanQwFz/cSBNm6AV4BY3mk2pYXs2SZIgzfVfs8wswfY3CDcVRVGUR6JpGpbvIDLBcreJ0zUo5YtYm5zTK7MMsbiMO79AOe8x9dQhvLHhPTl73i7ksF96kkvLNS698bucGZvl5WeeU0tuFEXZNqoysr9UGKkod6nX63x44TzvX7lCq1TEnJ7CKRRQjdjK4wiCgIXKMoutOknOxhjNYTnqUTUwpCSKY9pBhzBLwDYwiy6OrqFZBq1qm8RwwDS5HQKKDCON8FwTr/R4YV4apaTaJmZBajpC9OaE9WZUrs0r+ISLDdK7j/n+L5cmWLahltcoiqJsM93Q0QseSZqy2KySs1wKuTzGGjcjRTdAn1vAr9WYmJ1g5CtnsPz9Ecr5K0tu3rmxwEe//zu8dvQpnnniSUz1XqUoyhZTMyP7S72qK/tekiRcvnKFn5w7y0KakkyM4z1/htwObkFU9p4sy6jX61yvLtEhQ5Y87EPj2HuwmmG3uqcK0gTdsTAtj7vDOzvnUbZMgmaHKOggNQ1NSkxTxxvKYefW31i9GXKzLdWsfKtNfLphWxRKPq1GpzeH8r4LXi2JcWRMYWz44Q5WURRFeWSGaaKXTLpRQre2TMHLkfN8dE1DSomo1LDm5ikjmTxxgOIrT6Lvw/PR3pKbScTkGN+/dIO3v3OOr59+gaOHD6slN4qibBm1Tbu/VBi5w261VWgrJx1Kf0gpqVQqvHfuHJ/cuE5neBjn6BFs31dVkMpj6Xa7vSrIdoM052COF7Bs1d4/MKQkjmNaQYcwTcDtVUHq61QaGrZFfrRMXkqk6G3Z3sptpaZtYsiIbBPHrrFxVeQtTsFHNw269TZJDFLXQYIhUxzfwS9vYhmOoiiKsqU0wHQspG3SCkPaC01K7YByo8nIaJmJF07hDpX6fZgDQTcN8idnSQ7F/M75j5k4/yE/c+YVJicn+31oiqLsAaoysr9UGKnsK2EY8umlS7x57iwVwyCbnMB/8QXy6oJceQxZllGt1bhRXaKrC2TRxx5RVZCDZNUqyPy9VZAb0jS0bahQMR0bU2uRSbH2AhtAS2O8/MPNp7Q8h5LnIJIUkWWgaZiWBZsMNBVFUZTtobW7eDcXcFoNnCEf6+gIoweP4ObUHN/7mY5N/tnj1Jpt/tVHP+L4uQJfOfMypZIKbRVFeXRqZmR/qTCyD/bi0OlBJqVkfn6ed86d5cLSEuHYKO5TT+I6j7P9VtnvpJQEQcBcZYnldpMk72BNlrAs9bI6OCRx9HBVkH2haeTKebJqu9dSvdp7RJZiyxS3UHykb6FbJrp6bCqKovSXEGhLVZz5BTxHI3dsAmviEJqukUYJnyxcZsj0OTg5g2Or89T72cU89ktP8tlSlUs//C5nxmZ5SS25URTlEanKyP5SVybKntXpdDh38SJvXThPw/dgchL30Cx5FQYrjyFNU6r1XhVkYABFH2tkHEc9rgbGllRB7jA751IQgna9Q6pbSNPuHa4Q6GmMpQlKE2U0Q1VxK8qabo2/Ua/HyqAJI4y5RdxKhdx0Ce+Vwxj5ewM007EwDwzT7AR8cOUCU8VhJscmMA11uXY/f2wYOTrE29cX+FAtuVEU5RGpmZH9pV6x+0hKiZRSVUpuoSzLuHHjBm+eO8uVRoN4fBzvC8/iWWpmn/LopJR0u13mlhdZDtqkeRdrsqyqIAfKLqmCXIdT8LF9h7AVEHW7SCnRDQNvqPfvKmBRlAdJIYjbId1WF5H1wkjD1PAK6nmj9JmUUG9h35zHzULyR8dwzpxGM9cf92HnPKTvMd9os/jZWQ6OTDIyPIK+zhiP/UjTNPIHJxFTY3zv0nXe+c45vv70Cxw9fERdWymKsimqMrK/NKm2qOy4JElI0xQhBIZhqDfMLdBoNPjowgXeu3yJVqGAOT2FU3y0dkZFuSVNUyq1KjeqS4SmBiUfYejUGk26YQiAbZkMl0t4nq+ey32wWhWkbhkMchWkFAKRCTStN5x/kI9VUQaZSDOaCzUioSMN+07wKHsVxbYpKY6X9+U2YqWP0gx9YQl3cQmv6JA7Po4xXHikcwSRCaJqG6crODx5gEKhgKbeM1aVhhHhhc+Z7Eh+5swrTExM9PuQFEUZcNPT07Tbbb773e/yJ//kn+z34ew7KozsgyRJyLKMLMtUGPkYkiTh6rVr/OTsWebikHhiAn9iQl10KI9FSkmn0+ZmZYlq0OlVQZbyaIbO4tIyjU5AqltohgloIDL0LMazdGamJjHU428HrGzE7t5VBWnbA7+UJYsTuo0OcZQiNR2QGEi8godbWGNWpKIoq5OS+lyFUFiwShurlKBlCZ4lKE4MqfhG2X6dAHNuHrfZID87jHt4HN21t+RLZ3FKvNyiIG0OTR3Ac9WMxLXEzTbJ2WucsMt85fmXKKriBEVRViGEoFwuA/DGG2/w2muv9feA9iEVRvaBCiMfnZSSarXK++fP8eHnn9MdKmNPT2OpzYPKY0qSZKUKcpnQ1tFKPpbn3g6IlpaXqbQCpOWyaiVblpAzBAdnptVzepsIkdENAtpBl2yXVEHeEndCWrU2qeUi7w5OpERPIlxdUBwfGvhAVVEGRdINqVc6ZKa76sd7Z7cSMw0Zmihi2mpci7INhIRKFWduAc+U5I+NY00Noenb01KdBBHpUpsxr8TMxBSWqR7Xa+kuVtHPX+fMxCFeeuY5XHf11wpFUfandrvN9PQ0AO+//z7PPvtsn49o/1FhZB+kaUqapiqMfAhRFHHx0iXePH+OJSCbnMAfG9u2kz1lf5BS0m6vVEGGHbKCh13Kod1X3ZhlKZeu3SC1fNYLvvQk4MD4MDkVjm+h+6ogHQPDsXbVc18kKbWFOomTW7P6UUsicjbkR0o7fHSKsjs1F2p0UwP01avRb4WRWpaS9zTyI6o6StlCcYI+t4C3XCE3kcc7OoFR9HfkW0sJcasL1YDpoTEmRsbRd9F74k6SQtC5voB7eYkvHT/N6ZNPqCU3irJPCSHuea2cn5/n5MmTAFy6dIkjR47069D2LfVqrAwsKSULCwu8e+4c5xfmCUZHcU+dVHc2lceWJAlL1Qo3a8tEjoFezGGOj2OuERQ1m21SbaUtex3CsKnWGyqM3AL3VkFq6I458Bux1xI0u6Tm+os0pOUQBW1yWfZAGK4oyoOyJAVj4xZYqRtkSbIDR6TseVJCs409N48bdskfGcN59km0HV5mp2ngFH1k3uNGrcHCxQqz49MMlctqnuR9NF0nPzuFmB7jDy5d5+2VJTdHDh9WxSCKss/843/8j/ne977H3//7f5/nn3/+9vIaUNu0+0VVRvaBqoxcXxiGnL1wgbc+vUDNtmFqEnd4WP2elMcipaTVanGjskQ97vaqIIsPVkGuZm5hgXokQd/4gsNOuxw7PLsVh7wP3aqC7BKm8a6sgnyQpHp9mdjdeEufFkeUCxZOYWeqa/YLmWXEQYTMBJqhY3uOCnz3gPqNZULNXTPkv1UZiRTkjJTixNCOHp+yh2QZ2mIFd34BP2+ROz6BMVocmPPSLM2Il1v4ic7hyYPqhug6ekturjHVgZ95/lXGx8f7fUiKouyAVqvF6dOnqdfrAPyZP/Nn+LN/9s/yF/7CXwAgCAJV8NQHKozsgyzLbs+N1HVdtVbc5/r16/yL//z7iJMnyE1N9ftwlF0ujmOWqhXm6hUi1+xVQbr2Qy0LmVtYpB6KVZck3EvipAFHVRj5UHbzLMgNSUnlRoXE3fiOq5YmFBzwhzYOLpWNSSHoVJtE3YQUA6npaFJikmJ7FvmR4i4Puve3bq1Fq50izdWrI2+FkXoaUxpycPMq5FceUhBi3FzAq9fIHRjCOzKO7jv9Pqo1pVFMstRmyPQ5ODmDYw/usfZb1GyTnr3GSbfM68+pJTeKsh/84Ac/4Nvf/jbvvvsuAIZh3M5j0jQdmBtM+4kKI/tAhZEba7Va/O4bP+TTNME9cQLD3ppthMr+IIS4XQXZSEKyooddyKEZj/Zcazab3Kw2kWssSrgtSyg5OtOTE4/0ffaXXhVku9sl2DNVkKuRVD9fJvY2URmZRJRyJm5RVbU8LikEzYUaYWogV1nwoKUJjpFRmty+RRPK9hJpRu1mlcT0Vr251Du7FdhpwPDMiPo7K5sjJVQbOHPzuDKhcHwCa3r4kc8fdpqUkHQCskqXqcIwk2MTmBveSN2/uksV9HM3eH7yMC8+/QVVGaUoe5yUkn/37/4d/+Af/AMuXrx4+99/6Zd+ib/5N/8mpZKa3b6TVBjZB1mW3W7VVmHk2qSUXLx0id99522a01PkptWWYmV9URStVEFWiT0TvZTDdB+/MkAIwaWrn5OY/joVlRIjCZidGlcns+vY+SpIiRQSpOyFEX14DWkt1ekK894t2qswwzbDE2X0HZ4/thdtVDUHoKUxhZyJP6wqUXersNmhVQ96G7Xve25LIbDSkMJIDifn9ekIlV0jSdHnF3EXl8iN5vCPjmMM7d4ZYlJCVG+jNyIOjk4xMjSMrqnrjdXcWnLjXV7iSyee5vTJJzDUKA9F2dOSJOFv/I2/wW/8xm/c/reRkRF+6Zd+ib/6V/+qupbbISqM7AMhxO3KSE3TVBi5gTAM+cFbb/Hu4gLWqZNYahaOchchBM1mg+uVJZpZjCj62AV/y6tgms0Wc5UqYtVAUqKlESXPYmpinD3RXryl7syC7IRdEgS6YWBaJpbvbE/FkpTEnZBus0smJGgamhQ4noNX8tF3cJtmGsXUl1qk7tqvXVqW4hFTnBjesePas+TKnE5j9Yq5uz/PzgKGD4z2JaRWtkbU6tKpd0iljtB6AYIhMwxNkB/OY3mOupGprK3Vwbo5j9tpkT88inN4DN1+sJp6txKZIKq2cQLB4YkDFAoFteRmDSJN6Xx2naHFDl9/+kUOHzqkXjsUZQ/7jd/4Df76X//rjI2NEccxjUYDgNnZWf7BP/gH/MW/+BfVjYltpsLIPlBh5KOZm5vjP/7xj1gsFckdPqxarva5MAxZrFaYb1RJPAujnMdwtredv9lsslipkWoGUl/Zri0yTJlQzPmMj42qE9e73F0FGYuUbhCS6SaZYYEGWpZhpgle3sUr59iyEFdKmot1whSE7cBd1SBammCmIaXR4pZUzW5Wt9ai00nInAcDMi1NsLOI0sQQuqlOeh5XFsVUF1u9arkNGGnI0HgBc5tfO5RtJiVJEJFGCWgapmPe8zdVr8vKPYRAW6rizC3guxr+sQmsiTKavncfJ1mcEi+3KEibQ1MH8FxVLbyWNOgtuZnuanzj+VfUkhtF2aP+6T/9p/zdv/t3eemll/jOd77Dr/zKr/BP/sk/IYoiAJ5++ml++Zd/mW9961sDdR6RpikffPABb7/9Fu+//z43btwgDEOKxSKnTj3Bz//8t3jllVfX/O/fffcdfvM3f4vz588RhiETExN8+cuv8+f+3J/D83b2vUGFkX2gwshHl6Yp73zwAT+4+Cny+DHcIbUdc7dqt9tcvnGdhWoVicQ2TY5MzTA9OYm5RtWaEIJ6o8GNyiJtkSBKPlZ+66sg1yOEoN1u0+4GSCSubVMqFtc85v3nwVmQEmhWWqReDvT7wzaJHgb4jk5uuMBWBJKdSoNOtBJErnqIAjvqUJ4c3sHwTxK1A7qNLik6QtPRAEOk2I5JfrigNjxvkTSMqS1tLozU04jhsccc5yAlIhO9r2f0ZxSA8iApBayc4Q7SRYTSR2GEMbeIW62QnyrhHh3HyO+vUC4JItKlNmNeiZmJKaxVZuoqPVGjRXr2Gqe8YV4/8yKFglpyoyh7ya/+6q/yP//P/zPf+MY3+IM/+AMArl27xt//+3+f3/iN30CI3rndl7/8ZX71V3+V1157rZ+He9u7777D3/7bfxuA4eFhTpw4geu6XL16lStXrgDwrW99i//+v/9/PnD+81u/9Zv8+q//Opqm8fTTzzA0VOajjz6iWq1y8OBB/tE/+rUdnZupwsg+kLJ3sa7CyEdXr9f5zg//iMuGjn/sGLqlTqZ2mhCCxaVFlup1pJSUcjmmJ6ewNvhbSCn57MplLiwuEI8OYRQKaJqGTFNktU6u2eaVZ54hn78zxy0IAharyyw06yS+jVHKbXsVpPJwhBB0g+6DsyAl1OYqxE4e1nytkxhBh/JI/rEr1GSWUZ2rbbi9WktiCq7Wh83VkjRKEGnv9d90LBVCbjGRpFTn6qTWxiGDmQYMTZYxHmFOp0gzgmaHqBMhVkJ0Q5N4BR+n4Knq/T5TYaQC9IYn1lvYN+dxs5D80XGcAyNo+7gKXUqIWx2ohswMjTM+MqauRdbRXaygn7/BC5NHePGZL+A4aku5ouwF3/72t/m1X/s1fuEXfoF/9+/+3T0f+/jjj/mlX/ql2/+uaRoXL17k6NGj/TjUe7z33nv8+3//O/zpP/1neOaZZ+752B/+4ff55V/+ZYQQ/K2/9bf42Z/9E7c/dvHip/y1v/bX0DSN/+l/+oe8/PLLQK/b8Nvf/h957733eP311/n2t//ejv0sqpSnz1QW/GjK5TL/52/9PGcvnOf3f/o+nYMHyE1O9vuw9o35hQU+/OwiYd5HFPK9YrZWg7PXP+fI+AQnjx5b8+Lv8xs3OFddRh6ZxbzrczTTRBsfpVMs8McffsiXnztDN+hyo7JEmwxZ9LAPjWOri8oBsspG7KKDeddFTRpFpJqxThAJoJHZDkGzS2Hs8cLIuBuR6hvfnJCWRdBqkmUCIQS6oeP6DpbrbHNlm9YLXNW1zLbRLRPT1EiFWP9xJwSmoWFYDx9KZHFCY6FOjAWmx62K3lRK4maM0w4oTe6eDbyKsuekKfrCMu7iEn7JwX96HGO4oIJpem9xTjGHzPtcr9WYv7jMofFpyuWymie5Cn98BDk6xE8+n+eD3/1tvnziaZ5SS24UZddrtVoAFAoPFiacPn2a3/7t3+aNN97g7/ydv8Ps7OxABJEAZ86c4cyZM6t+7Gtf+zrvvPMu3/3ud/j93//9e8LIf/Wv/hVSSn7u537udhAJ4Lou/8P/8P/iv/1v/xv+6I/+iGvXrjE7O7vtPweoMFLZxTRN46lTT3D44Czf+/GP+ej9D7BPnsDc4VkH+83c/DzvXr2MODqLZhjcPhXL5UhGh7kwt0B64QKnT5164L8VQnD+2lXksXWGgmsaDVPjBx+8Q35qDHO8gLWHhsnvBUIIgqBLK+iSGaC7Fmb+TiBztziIEZtpAzNMkm7w2MeWpdkGwWfvJlAaJ5BKMtvptY4LQdQOMesdiqMltdG6D0SaErYC0iRFQ8P2bOyc+0gVhrlyjmS5Taa7rN76LzGyCH80v8bH1yaFoLlYJ9bdBx9rmoY0bcIsRVuqU5oceuivryjKY+gEmDfncVsN8rPDuK+fQHdVJ8VqNF3DHSmSlTIuLs/hVxY4PHmQnFoU+QBN18kfmkbMjPP7n13jre+c4xvPvMChWbXkRlF2q06nA0A+v3Y31Ze+9CV+8IMfEASPf42yU44fPw7A0tLS7X9LkoQ333wTgG9842ce+G8mJiY4ffo0H374IW+88UNmZ//8jhyrutpSdj3f9/n5b3yDZz//nP/04z+mOjZG7uAB1SK3DbIs48NLn90OIu+naRpyepKrl69xsNmkWLx3vk6lUiHMPdi+KIUga3dIWk1SA8R4gTQKGR4tq/lrA+NOFWSYxshVqiBX/a+EBDbzXNyav7OmaSDFOgfUa5OWpgmGDrfGChg6wsoTpymN5QalsbJaJrNTpKRdaRIGCZluIQ0LJATNCLPeITeUx3nIuW6W71IoZbQbXVLdBuOu050sxRQx+ZKP7a8xV1JK0jAm6ITITKAZOl7OxXRt4k5IIo3e42cthkkSJ2RxiqFupijK9hISKr2FNJ4pyR8bx5o6qM4DN8kwDbzJMkkU88nCZYbMHAcnp3HWmru8D0gp6XQ6uJ6Ledf7h26a5E8dJpwN+Tfn32f63Ef8zPOvMDY21sejVRTlUbTbbWD1ysi7aZqG7/s7cUhb4saNG0BvnuQt169fJwxDAE6ePLnqf3fy5Ek+/PBDLl68uP0HuUKFkX1w6w6apmmqTXsLzR48yP91cpIfv/cuf/zee2gnTuAU1bDprTS/sEBYyKGv05qiAcnoMJdvXOcLxafu+Vi72yHzXEx6o7xkGJG0WqRRlyzvIidLsNIyKZN4pX1WBUL9tFoVpLFGFeRqDMuAIAM2CGSk2JLqAtt3MDpNUlavhEmTFGmaaFKgrRYSmSaJ59NtdMiPqNeP7SdpLdXpJhrSubcaRxgGsZRktQ4lwH7IQNIt5TBdi6DRJQ47vRsbUmK7Fl6ptOZ8UpGkNJcaJJqOsBwwdZCCsN7Fki2kkAhj4+U4qW4StgJyIyqMVJRtESfocwt4yxVyE3m8F2cxirvngnHQmI6NMTNMsxPwwdULTBWGmRqb3FftyGmWUqlVuVldJnJ0zChjdmSc0eERdO1OuG16LvnnTrLUaPEv3v0vPOGP8KXnXtww1FAUZXBspjJyt6lWq/ze7/0uAK+//vrtf5+fnwd6P+taweqtmyq3PncnqDCyT1RJ//awLIvXX36FJ48e4z++8UNuug7esWMq0NoiC7UqsrjxiZZeyLO0cOXBf9d0ZJqRNpu9KkhTRxQ9GB9bJduSqiqybyRxnNDudh6qCnI1Ts7FbNVIbYf1AkwtifHyGwc8GzFsE1OHNMvg/ue9lL0bQJqGEYdopTVOPhybuNZFCqEqa7ZZGsaEsUDaawQImkZm+7RrbYZz7kO/JpiOTWHc7v3thUTTtXW/hkgz6ot1Evf+ze86wjCJRAa1KtLzNj4UTe+NDVAUZetICc029tw8btglf3QM59kn0dRojS2hab0bPzLnMl/vsPjZJxwcnWJkaPieMG6vCcOQucoiS50mWdHFOjCMbegIIfisVufmxWUOT0xTKhbvmavplArIV57i3GKFT//Lf+KFqaO88PSzasmNouwC682M3I2yLONXfuWX6XQ6HDlyhG996+dvfywIukBvPuRavJVRd91ud3sP9C7qnVvZk0ZHR/lv/qtf4MNPPuEP3nmX6MhhPNVC8diElJsK0u//DCkl3W6XZtAhWV4gnR5FTpVhrTbYTGCio+sqjNxJj1sFuRrNMHBdm04UIp01KttEhpXGOPnh1T/+cN+R4mgJsVAjwUPe1V4lpURqGmYcYLgWrNM+KywTkaRqa/s26za6ZMYGv2NNI9VM4k740NWRd38Nzdj4cdxttEls974g8i66gdQNsiTFdDaq9l0JPxVFeXxZhrZYwZ1fwM9b5E5NYIwW1c39baJpGu5QHlH0uVJdZq66yOGJAxQKhT2z5EZKSbPV5HplkbZMkGUfa2TsnuWKuq7jjJRISinnlucoLC9wZPLAPZVFmqbhT4wix4b58efzvP/d3+b1U8/w5IlT+6qqVFF2m71WGflrv/ZrvPfeexSLRb797b+HZQ1+Z44KI5U9S9d1vvD00xw7fIjf+9GPOL+wiHPiOKa6W/nIir7PjTAEb/0KNhHFeLZNmt5pdwlMkMM+mjGMKPho68zjk92A4WIRtfhhJ6xUQQYdgmT1jdiPKzdcQCw3CMMO4u6gRwpIYuw0pjhe2rIqRN0yKU8M0ao0ScKQTLd6YVSa4KQJFPJouY1DLTVEY/ulSQr2xhWxwjCJo/jRw8hNkEIQhQmsNUfyFteFboK0zXWDEF2muGoRhKI8niDEuLmAV6+ROzCE96Xj6L46j9spuqHjjRXJ4pTzy59TXLY5NHVw3eqaQZemKcu1CjdrFSLPwBzNb7go0TBNjMlhOlHMB3OXGbNzHJyYxrbv3Ey7veRmepzf++wKb33nLN945kVmZ2dVaK4oA2izMyN3g3/6T/8p3/3udygUCvzqr/4qBw4cuOfjnte7gXJrbuRqbi3p2cn5mCqM7JNbb0pypW1QvUltn3y+wJ/+2T/BpStX+M5bb9KcmiQ3M6N+54/g4NQ0n73/U9Kh8poxoQTk/CKu6/D2p2fJCi7m9BDWSvg4aepcX14iKxXRVlkAIYMQXwgKeXURv51W3Yide7wqyDVpGoXREm4Q0W11yRKB1Hprbby8h5MfXvWx8Dh0y6Q0OYxIUpIoBiHRdJNWC7JNBJFammKoBTaDZZvT4SxJEbrJRs8BzXEwuwFCiFUXeQEgBJYmsDwVmmwVkaREnRCRCTRdw8m5ajnQXiUlVBo48/O4pBSOjWO9OLPl7xPK5hm2iTc9RCeI+PD6p4x5JWYmprDM3fMcDIKAucoiy90WWcnDOjCM85CPKdOxkQfGWOp0Wb5ygZniMFNjE/dUQOqWSf6JIwSHQn7r/E85cP5DvvH8q4yOjm71j6QoymO4FUbu9srIX//1X+e3f/vfks/n+eVf/hWOHz/xwOdMTk4AvZ+52+2uGjje2r49MTG5vQd8FxVGKvuCpmkcO3KE//v0ND98+y3efu+nGKdOYquqlYfieR7TpRJXl5bRxu49qZJZRtpqE1crmDIlnBjHznkY94W+rutyYHSUueVlEstE2jboOjJNMcKIvGkxOTGJtodnE/XP9ldBrknTsHyXku8Cshcs7cANAd0yce6aJWYFEVmSwnrzxeIE2zLXDpqULWMYOohs7bboFZrIMLc7eJJsLovXDXTHRE9DhO4/+DgWGVYWUZgoqbm3W0BmgtZynTjKSDUTtN5CIbPVwLI0Cmrz/d6RpOjzi7iLS+RGc/hfmMYY2t0XiXuN7TnIgw6VVofKpXPMDI0zPjKGPqDzlYUUNJu9VuwOWa8Ve2z8sS6ANcDO+Ujf4/NGm/nPznFoZIKR4eFVl9zM15v883f+kCdyo3z5uRd3ffChKHvFXqiM/Gf/7P/Db/3Wb5LL5fiVX/kVTp06ternHTjQq2gPw5ALFy7w3HPPPfA5Fy5cAODEiePbecj3UGFkH6nKvJ3nOA4/86Uv8/TCAv/hjTdYKBbIHTmsllQ8hKdPniL5+GPmP79BNjKMhkbcapBGAZmtYw95TE9NYZprv7y4rsfhmQO9yrxuF5Fm2IZJcXxiV8y32G2EEARhQKvb2f4qyE3R+vatc6U8SaVJVizCas/7TGB2OvhjpZ0/uH3IK/pEtQBhr1etKjFFgpPb3u3mhmWgZyliE6mkoevkyx7dZpc008ikjgYYZFiWRn6srKr2toAUgsZ8lVCaYN1bZZpikWYpYr5KeWpY3TzYzVodrJvzuJ0W+SNjOKefQFfPn4GlaeAUc8i8z/VajfmLyxwan6ZcLg/MPMkkTViuVZmrVYh9A2Ns41bsh6VpGk65gCjkuFircuPiEkcmpinet+TGLRfvLLn5/n/khZmjvHBaLblRlH6K45gkSYDdWxn5v/6v/4x//a//Nblcjl/91V/l1Kkn1vxcy7J4+eWX+cEPfsD3vvcHD4SRCwsLfPzxxwB86Utf3s7DvocmpVRjsfogSRKyLCPLMgzDUMFkH2RZxrsffsh/uXCO7NgxvOGtWJ6xP8RxzOVrV7lw83MCW0PkPUzPYbhYJJ/LqarGgbBKFaRjqeAdSMKIVrVF5rhI1+mFkplAi0LMKKIwUsRUi2t2hpTU56qEWLBqu59Ej0PyOQt/aPvvXDcX6wS6DcY692qzFE9EFMeHAEkaJYgkBTQMx8JQW323TLfWotVOkeY6z8c0Ie9BfrR8zz9LKW639qtzrAEkBNpSBWduEd/T8Y+OY02U1dKnXShLM+LlFn5qcHjyADm/f11H3aDLXGWJStDubcUu5nasajNLUrJKk6IwODJ54PZm2rtJIehcm8e7ssxXnvgCTxw/oZbcKEofVCoVjhw5AsC5c+fWrCgcVP/b//b/5V/+y39JPp9fqYhcO4i85dNPP+W/++/+Gpqm8Q//4T/kpZdeBnpzJL/97f+R9957j9dff51vf/vvbffh36bCyD5J05Q0TVUYOQAajQbfeeOHXJIS78RxDFWZtyopJa1Wi5uVJWpxF1HwsIo5VY0yYO6vgtRcC8My2M3LgGSWkYQxUkh0Q+/N4XvM10wpBHEnJOyGCCHRdQ0352L7rgpsV3Hr9xW0A6SQoIHruzh577FbZGWW0VysE2camWnfqVhNU8wsxsvZ5IYL7MRjOIsT6osNUj/fawd+4GAFZrdNebykKh+3m5RUry8TG96Gz3cr6TI8M3LPTEEVRg6oMMKYW8StVshPlXCPjmNs42IqZeekUUyy1GbYynFwYuae5S7bSUhBo9HotWLrAso+lu/17awnDSPEcpMxJ8/BiSls697fg8gy2ldvop29zn/9pW9w6NDh/hyoouxj165d4+mnnwbg+vXrzMzM9PmINu9HP/oRf+/vfRuAkydPrvkaUiqV+Ct/5a/c82+/9Vu/ya//+q+jaRrPPvss5XKZDz/8iGq1wsGDB/lH/+jXKJV2rjtMhZF9osLIwSKl5Pynn/J7P32PzoEZ/MlJ9TdZEccxy9UKN+sVIsdEL/mY7uOHQcpW2ptVkDITdOot4jgls22krqEJgRHFeDkXr5hTj8MdkEYxzeUmqWEhbWclpJMQx5hJRKGce/wt11KSBBFBq0uWZADYno1b9Hf8BlEaRjQrrXt/XinQkhgzjSmMFLBc1V633bI4obbQJDU33tqrpxHDoznMuxYGqTBygEgJtSb2/AJuGpI/Oo5zYARNzfrcc6SEpBMgKl2mCiNM3rfcZSslacJStcJcvULsW5jl/MBUpksgbXfRKm1mSiNMjo4j44Tw6hzefIszs8d55uQT5NTsekXpi08++YRXX30V6BUmFYvbOwpoK/3u7/4u/8v/8v/e8PMmJib45//8Xzzw7++++w6/+Zu/yblz5wjDkPHxcV5//Sv8uT/353Z0kzaoMLJvVBg5mIIg4A9/8mPer9WwTp7A2uEn5KAQQtBqtbhRWaKRBGRFH7uQU5ssB8zgVEFKZNZ7K9EMbUu+v8wEjaUaseeBY9/7JSVonS6eFORH1JKQ7STSlPpCncTNrb5kRkqMoE1pOIflbRwa7Rb3V4JquoaX97BzqnJ2p2RRTHWxRbbJMHJo1L/nMajCyAGQpugLy7gLi/hlF//4BMZQXv099gEpJVG9g96ImB2dZmRoeEv+7hJJ0A24WVmkGnbISm7v/HRAX5eFEETXFnA+vsGTVpmfe/nLnDh6bN256oqibL8333yTb37zm0Avl1HjEvpDvRL2yd1vyFJKdWI2IDzP4//wta/z7I3r/Icf/5jq8BD+7OzAnuRstTiOWKxUmGtUiV0TfSiH6RbVC8UgkZJWu02t1SBOU3TbwC3lMPswXkAKQdjqErZDxMpFv66Bl/dwCt5jPW869VYviHRXafPSQOZ9wlYHuxti51SL33YJGl0S211727Wmkbk5OvUOZc9hN48DuJum6zgFH6ewP29IDQLdNNClINvM50qhNmoPkk4X8+YCbqtBfnYE9ysn0Vd7LVf2LE3TcIfyiKLP5coiN6uLHJ6YoVAoPNKSGyEF9UaDG5UFOrpEK+cwx8cG9vxUZoJsroJ9dZnRXJ7xL76AqLZ46+LHFPwcMzMz6tpPUfro1iZt3/dVENlHg/oarih9NTNzgL/8C7/Imz/9KW+88y7ayRM4Ozg/YScJIWg2m9yoLNHMot4syIOj2PskgN0thBA0W00WqhUSy0B6Lvg2WpoRVZrYlkluqLBjwblIMxqLNWLNQtp3tUtLSdyJcTpViuNDjxQQyEwQxyls0L4kfI9uq42dc9krIdggkUIQhTH4GyyO0XVSqZHFqZqjuINEkhJ3I4QQGKbRm3e6h6rXNcPAckySJIP1LhSEwDRR8577TUioVHHmFvBNSe7YONbUwX1zM1dZnW7oeOMl0jjl/PLnFCsOhyYP4Lqbq6SPk5ilaoX5RpU4Z2FOFLEHpBV7NSKIkFeXcBebjE9PMvrqi1i3bphOj9HpBPzmuTeZPefxtedfYVgtz1SUvuh0OsDu3aS9Vwzuq/k+oO6IDTbLsvjSSy/x5LFj/Kcf/pDP7QW8Y0fR90hrRRRFLFaWmWtUSTwLYySP6ezNwHX3ujMLshMGtMKAbLiIZpl3ojfbIvNdgiBELNcpjg1tf9uylL2FI4aLvH/rsKYhbYcoM2gu1SlPDfOwQWESxmS2vfF/ZuhkshdeqkVKW09mAqHrbObvJ3SDLFFh5E4QaUZruUGSSjLD6j3fgwSz0cXxLPLDxT0zuiBXzhEvNEj1NZbYSImZheTGtn/TurKGOEGfW8BbrpCbyOO9OItRVBXFyr1M28ScHqITRHx4/VPG/RLT41NY5oPvGRJJt9PlZmWRWtRFlHs3yZ0B3bQupUTUWuhXlsgHGVNHD1F6+plVb8ZaOQ/z+ZN8ev4K17/z2/z5P/kLjI6O9uGoFWV/a7VaABQK6vyhn/ZGqrIL3QoiVSA5+IaHh/nzP//zfHzuHP/5vffoHjqEPz7e78N6JEL02lxuVpZoiRhR9LFmx1QV5IBZbRZk0EnIyr0gclWeS5QKok6Ak9/eC8EkjEik/mAQeRdpmCRpTBrGvYVHD0NK5GZfG3WtN+ri4b6DslkPMVVavZ9tP5FmNBZqxKaLdO99/iU4pHGEWKxRHN+BmxI7wHBsiqMFWsstEs0Cw7zzc6UJpkwoDO2teaW7gpTQaGPPz+OGXfJHx3CefXLt9ydFWWF7DvKgw3Kzw/Klc8wMjTM+Moau6wghqDXq3Kgs0jVBK/uY3u5oxR7J5Zk8cRJvtLzme6FIUzqfL2J9XuX54Sme/7kvMjIyssNHrSgKqMrIQTGor++KMlB0XeeZp57iyOws//mP/5izCws4J09iOrtjo2oYhixUlllo1kh8G2M0h+mU+31Yyj3uVEGGSYx0DIyig6nriCQllWx4oSd9l6DRwsl7bGfbctAKycyN538J0yZoBRQeMozUDB1dxIiNPlGClgnVBrhN7szsk2z0eDKyFMNWW0G3W6faIjacNW8ESMshjAOcdrBn5l3avsvQtEnYDAg7AVL28kjHd/CKQ+gqANs5WYa2WMGdX8DPW+ROTWCMFtWNCOWhaBo4pRyy4PN5rcaN8wvkbI92GpEWbIypIvYAdyGt24q9irjdJb4yT2454KuHT/Hkz3wZz1OzrhWln27NjFSVkf01uK/0ijKA8vk8v/jNb/Lc1av8p7fepDExjn/gwECeiAshqNfrXK8u0ZYpsuipKsgB9GAVpImRuzdMTKMYsYn2V83QERrITK5std6mY04zsDcOGKVukKXRQ399y7Ux6q3eUpz1fowkxbIMFUZuF03Dy7kkUQT2OpVnWYpl6XtmhMWgkllGHKfIDWatCcul2+rgFLb3psRO0k0Tf7iAP6wuGvoiCHsLaeo1cgeH8L58HN3bHTdjlcEkZa/LohOEdIlI9ASn5DGUz2EM4HvJw7Ri3/r8YKmGvLLIRGbzyqlnmH3loFqUoSgD4lYYqSoj+2vwXu33iUEMr5TN0TSNw4cP83+bnuaNt9/mrXffQz95AntA7qwEQcBCZYmFVoM0Z2OM5bHUHLcBI0nihNYqVZCrfrYEqW1u/2SvYfkhemsfgaZr3C5PWvdg5KO91mkaru+StrvIvL96niIlRqeDPzQYz7vtJDNBEkZIIdENHct1emvLd4Bb9Inma0SpAavM9kJkWFGX3LiaN7vdkjAm0zdx2qZpCKkhUrVhWnkMUkKlgTM/j0tK4dg41osze2pJkrLzhJCEjTbNepPYMqDsobkFHEBkGYvtOp5hUcoVBiK4e6RW7OsLWFerPDkyzfNnvqZasRVlAKnKyMGgwsgBIOX2BgfK9rBtm6+/9hqnFxf5D2/8kPl8Hv/IYfQ+nDxlWUatXudGdYkOGbLkYR8ax1ah90C5XQUZdMl0uWoV5GoM00CPkg0jRiklmtj+tmXHdwg7CdJavzJGT2PcwqPNcvOKObJqk7DVRvh+L3wLImQ37C2syTJMz94Tc/HWIoWgU2sRhQmZYfUCaSkwa21c38Ev57f959d0ndJEmeZSgySJyCwbdAOkQE9iTJlRHCupTcY7Qd662bCpT2W7b0ooe1SSos8v4i4ukRvN4T83jVFWlSPK40njlE6tRbvdJsu7aNOlB86XdcNALxpEScpCo0Le8cj7efQ+vM8/bCt20gmILs/hL3f56uEnePKbr6tWbEUZYGpm5GBQYaSiPKbx8XH+L7/wi/z044/4w3feJTp2FG8H7oJKKQmCgPnKMkvtBknewRovqCrIgdOrgmwHXbpJBI6BUbDXrIJcjbnStpxsVGkYxTju9gd0Ts7DalaIzXW+l5SYIsHOFR/tm2ga+ZEidiek22wSBQmZZZOZDrqtoxsGochIlpr4vo0/lGevtKRCL4hsLNSIDBv8Ard+NgkkSNIoJFuuUxgtb38gaRiUJofI4pSwHSCyFE3XcMper0pzDwfCg0Q3dXSZkW3iczWpZqkqD6nZwZqbx+20yB8Zwzn9BLo6n1Aeg5SQdAOa1SZBmiLKPvrsyIbhomGZyJJJO0zo1JYo+QU819v2d/jHacUeTy1eOfUMh16ZHYiKTkVR1qcqIweDCiP7TNM0VRm5BxiGwQvPfoETh4/w3Tfe4LP5BdwTxzHsjZd8PKwsy6jWatyoLtHVBbLoY4+M46hAYKCsVgVpbqIKclWahl/waTXbiGJ+1UBSZhlmJ8AbKz/2sW94OIZOfihPs9YhdXzQ7gs9pMCMuuSHCo8ZiGhYroOsd5DFErpuoGtwu2Fd18lMk07QRTe6uMW9s0ClW2v3gshVq081pOMRhF3sHVtUomHYFrlhFU70i+nYmLTINhiRoGUpjmurMFLZmBBoSxWcuUV8Tyd3fBxz7HBvFIeiPCKRCYJmm2atRWIbMOSjuxYPE9FpgOlaSMekHnRoBR3KuQLOJuZVPyyZCbKbFexrj9aKfea5rzI6Orrlx6UoyvZRMyMHgwoj+0TNjNybisUi/6ef+zk+/ewzvvvuO3RmZvCnJh/77y2lpNvtMl9ZYqnTIis4mJMlLLVFdMA8fhXkWpy8h8gE3XqLzHfBsdDQkEKghTFmEFIcLu7YEhE751HSNdrVNik6Qu9dZhgiw9AE+ZEC1hYsOIjaAbFpo62xPRg0hOfTbbVwC/6eqNKTQhAFMeTWv1srHZduq72nFpUo69A0/KJP2gzInDUCaCkxkxBvaL/P8FQ3edcVRhhzC7jVKvnpEu6rhzHyqqVUeTxpnKy0YndJCw76TBn9MWeMapqG6TuITLAcNHECg3KuiLkF5zr3tmJPbaoVO7wyT26po1qxFWWXU5WRg0ElGX2kAsm9SdM0Th4/zuyBA/yXN3/Ce++/j3XyJJb/8NVLaZreroIMTKDoY42OY6jHzkDZ0irINWl4pTy2lxC0uiTtLr1l0xpuzsEdH0Lb4dYgy3MZmnFIw4QsTkEDw/YwHYut+tmDdgDeRnctNVLDJO6G2OtcSOwWaRSTmiYb/g41HYGOSDO1yXqfcAoeuTSj2+mQWQ7yrpBeS2LMLKY4nMdQ7bXK/aSEWhN7fgEvDckdHcc5cxpNLTlSHoOUEHd6rdihWGnFHh7e8vNU3dDR8y5JmrLYquJbDkW/gP6QN3sfqRV7uQZXlhhLzF4r9suqFVtRdjs1M3IwqKsXRdkmruvyJ7/yVZ65eZP/8Mc/ojJUxj90aMPWOSklnU6HucoSlaBNmnexpstYKmwYMHeqIIMk6m3E3qIqyPUYtkV+ZJCqnjRM18Z0t34kAVIi4ME28NU+VTfJks1M0xt8UvRi5k19rhr1sc9o+EMFbD8maHZJgqC32AiJ4zt4hTK6qphX7pam6AvLuAuL+GUX/+kJjKHVx30oymaJTBA02jTrLRLHgBEf3Xm4VuxHYZgmFE26UUK3vkzRzZHz/A0fz4/cin2txqmhSV74wldUK7ai7CGtVgtQlZH9ps5YFWWbTU9P85d/8f/IW+//lDfeeRdx4jhuufzA56VpSqVW5UZ1idDSoJjDGlNVkIPmUTdiK49o0znb+nP0dhPdMNCk2NSPrgnx0JUhyu5nOjaFMZuVFdsrLz974/GvbJFOF/PmAm6rQX52BPcrJ9G346aRsq+kUUK71qTdCRAFF20LWrEfhelYSNuiGYa0a11KuQKe4z7weY/Tiv364VOc/hnViq0oe5GqjBwMKozso1t346SUyI225Cq7mmmafPGFF3ni6FG+88YbXJ1fwDt2FM006XTa3Fxeohp2yAou1vQwlmqbGjD9qYLc9zQN09RJRQb6+s8JI0uxnL2xwMZ0LEyREUuxflWoSLEsfcfb85WHJCVpGBN2Q0Qm0Q0dN+9u0TgDTWWQyh1CQqWKM7eAb0pyxyawpg6qZUbKY5ESonaXVq1JKASy7KGNjNDvPUeaBqZnIx1JNWhjB53b8yQfrxX7aQ69fEi1YivKHqZmRg4GTar+rr5JkoQ0TRFCYBiGCiP3CSEEP/3gA/7Nj97gSjlPOjnSmwXpuXumsmuvWLUK0trELD9ly8SdgEYzQrjrzFwVAjtqMzQ9wl7524TNDq1OvPJzr/YzSYxum/JIHtPd+u2iytbIkpTWUoNE0xGW3QuXhcBIY0wExbGSmve5LXo3eW+VF+/586soRp9fxFuukJso4B0dxyg+/JxqRblbb2lem1ajSeJaUPbQB3gerYgTxKVFCtebHBgZZ+bUsQ1asbOVVuwqJ4YmeeHUaUZGRvb+64Wi7HNCCMorXYpvvPEGr732Wn8PaB9TZ8B9pt7w9g8hBHNzc7x94WMuNZbxnj3IxGKF5eVFsvJRFUQODFUFOUhs38XphIRxiLQfbMFCCsygTWG0wF4JIgHcok+WZHSDDsLx7qoMlZBlGFFAvuipIPKRSbIo6c0Z1cCwTQxray+yRZrSWKyTuLl7K3t1g8y0yLLex8sTO798StkDpIRGG3t+Hjfskj86hvPsk2hqZqjymNIoplVt0ekGZEUXfWaoL63YmxbE6NeWcRca5CZHMF48TKOT4WcBjig+UOGYdAKiq/P4i7dasb+sWrEVZR+51aINqjKy31RlZB8lSUKWZWRZpioj97BOp8PZixd459J5mkUb49A47lDp9t+7dWOBSz+9QGtiAm1mUj0O+kRVQQ4wIWlXm0RRSmrZvWBHSvQ0wRQphZHCHg3lJEk3otvskmYrLdtSYNsmXtHHdNT8t0eRBBGdeptUamR6L7gxRIqlQ24of/v3KoVAJCkSMEzjoQPD1lKdLhaY64ScSUTelOSGi4/64yir2sOVkVmGtljBnV/Az1vkjk9gjBb31s+o7LhbrdjNapMIgSz7aL4zuPfJpYRqG/NaBacbkz8ygT0zcns7vJSSqN7GaCQcHJ1iuDxEWKkjLy8xlpq8euppDs2qVmxF2Y/m5+c5efIkAJcuXeLIkSN9PqL9S4WRfZSmKWmaqjByDxJCcPPmTd46/zFX2hWSA8P4ByZXwq0HZUnK3IcXuLFQIzl+FL2ghunujFWqIB1LzdcaUCJNidohaZqhaRqOZ2N5zr6oKpaZ6M0W1jX1+NyAFAIpVv9dxZ2AZr1L5ubg/t+jyDCDDsXhPHEYE3VjhGEg0dBFhmXp5Mp5jE20KcosozpfI/U3qtiVWJ0WQ9PD6u+6pfZgGNkNMecWcOs1cgeH8I6Mo3t78SaMspNEKug2WjTrLVLPgrKPbg9wdW0mYK6GfbWCl3PIHZnEGCms+RzP4oTgo8/JXazyxdkn+earX1at2Iqyz3366ae88MILACwtLTE6OtrnI9q/VBjZRyqM3Hva7RaffPop71w5T7vsYs5O4A5tvuIlqNa5/NYn1PIFOHxQte5tEyEEYRjQvFUF6ZgYtqqCVJTdLI1iuo0OSZyuVJFKTEvHL/pYnoPMBNW5GqmfX3sxUJaiNerIQgEsm3teE7IUM+pSHMpj+auMDLj7WIKIWiNAOBvP7TPCDkMjmws5+05K0igmSzI0DQzH2vL29q2xR8JIKaHSwJmbx9VSCsfGsaaH0Qa5ZVbZFZIwpl1t0glCspKLXvQG+4bISiu2vdAgNzWCd3gc3V87jBfdCHF1CXehzfSBSYrjw8RXljlIideff/X2vDhFUfafn/70p3zlK18BIAgCXHf9czpl+6gwso9UGLk3ZFnG9evXeevCx1wLGqQHR8jNjD/yUgIpBEsXrnLt4ueERw6jjwxt8RHvV5IkSWh3VRWkouwoKUnCCJEKNF3DdOw1t5o+qrDZod0MyCwPefdNHJFhxCE530YzNJqhgNVmj/YOFNlqkhg2pmujr7bBXQrMbpvhqfXnPCZBRK0RIp2N55AZYYeh4RzGgLfdx52ATq1NikGm6WgSDJlimRr5keKAham7PIxMUvS5RdylJXKjOfxj4xhl1TGhPB4pJVFrpRVbk4iyj55zBvc27Aat2A9+uiSrtNCvLJOPJAeOHaR8YPyeeZed5TrRJ/M8M3aEF585o2ZFKso+9MMf/pA/9af+FKZpEsfx7jtH2EMGuA5/77v7gS+lVE+EXabZbPLxp+d57+qndEZ8rOMTeKXZx/66mq4z/sQRygcmuPrOxywtLCGPH0EbqAu93eNWFWQr6JLeqoLMeagqSEXZbpKw2aXbCsh0E6GvVCvWO9iWQW64uCWhZBJEtJshqbtKWKMbZG6OTtDFyBLIl9b+QlmGQENaNlkq0O1Vjk3TSS2HsBXgrRMOGaaBkaWkGx69RBPZwG/UDpsdWo2AzPZvV5VKIMUhFRnpQp3yeGkgA1UpBFLrtewP/Kt+s4M1N4/bbZM/PIrz9BMDvb1Y2R1EmtGtt2k2WqS+BeN5dNtkYHtv7m/FPjq1biu2TDPSGzWsaxUmCgVmnjiBN7z6HNXcaBn/9RKffL7I2f/8b3j12LOcPvWUmh2pKPtIu90GIJ/Pq/ylzwb77FdRBkyWZVy7do2fXPiYm0mb9MAIuS+fJr/FVT4Adt7n+FdeZOzaHJc//IjO9DTa5Lh60dyU+6ogbV1txFZ6hCQOQqIwBgmmaeDkvS2v1FMknUqLbiwQ981NTPFI04R0oUZpYuixf/fdRod0zWrHnsz2kM1w3fmiMo7JrE3M4LNswm5r3TBSt0xMQyMV2b2btB84sBTbMQe67VYkKZ1Gl8zOrf770w0Sy6O53GBoenQgZrjKTBA0u4SdELny2NM18AoeTt4brPfRTKAtVXAXFvFcndzxccyxw2j6AB2jsislQUSr1qQbRoiih3ZwGH2QH1f3t2K/fHJTrdjOQptDByYZ+9LzvTnSG9A0jdLsBGJ6lB99don3vnOWrz7zModmDw3Wa4OiKNviVhipNmn3nwoj+0y96e0OjUaDDz89x/vXPqMzmsM+NYFXPLzt31fTNMqHpnl2cpQb759n7v2PSU4eQ/dVW8lq5F0bsVUVpHK/uBvSrrfJbAdpu72HRZrRXWrg2Ab54eJABCl7QRJEdKMU4eVY9flnWsRAu9qkOP7ooyhEmpGmAtwNAk1NQ+gmWhLDWoGjEGCaIDd4GGgamxlwkxvKky41155RKQRmFOCPr1OtOQDCVpfEsNf/pegGaWqQhBGW19/ZSyJJaSzWiTUL6eTvHLcUJO0YuxNSHC+j9/vmVBhhzC3gVqvkp0t4rx5Bz6m5VcrjkVISNbs0ak1ifaUVezzPwN7uWGnFNq4u4wZJrxX7idlNtWLnIsnBowcoP/P0Pa3Ym6WbBuVTB0hmI75z7m3Gzn/A155/TS2zUJQ9rtPpAL3KSKW/VBjZR7eCSBVIDqY0Tbl67Spvnv+Ym1mXbHaU3OunKfShlcNwbGZffoaRxQqX3jlLY2gYbXZGzTsEVBWksiYpiYOINE7J4oQoThFD5Xu3KJsmmesQdAPkcoPCaEkFklsgaAYIZ4MbAaZF0g0RafroM3azDKlt7jVZM020OEKuFUbqGkiJhtigWlNu6vaG6dgUh/O0qm0Sy+4txNF0kAItiTHTmOJIYUAXwNwRdSOwcht+XmZYRJ0+h5FS0lisE1negxWpmo6wXaI0pr3ceKwQ/HGOj1oTe24eL4vIHxvHfv60WlanPLYsyejWW7Sa7V4r9kQe3dpFrdjHZzCG126ZvL8Ve/qJE/hrtGI/LMtzGDpzhFa9xb9++/c5kZ/ktTMvk8tt/LqnKMru02q1AFUZOQhUGKko96nVanxw4Rwf3rhMdzyP89QEfmEwTkhy4yOc/tkvsnj2Ep+/9wHRsSPo5cGuqtkuqgpSWU/U7vZaSy0LYZikmY5mWOjVOlo+h+beG0hJ3yNqtfDCGHMTbV7KOqQkSTNYbebifVLTIglinMIjno7oGre3lGz0qbqGIQTJGq3Tmu1gdLoIx12/lTGJcXKbe4xYvsuQYxG2A6JOpzcfWtdwcy5OfnhX3FCSsMmAXqPfOxHjbkiimeu2xkvTJg4T0iTB3KkgOE3R55dwF5fwh1z8ZyYxhrZmVpWUvU3ySIlhW49UIabsTlJCGka0qk26UURW8tD3ZCv2Ms5Ci9kDk4xvshX7UXjlAu5rea7MV/nse7/NCwdP8dzpL2AN+A0jRVEejqqMHBwqjFQUIEkSLl+5zE8ufMKiFiNmR8h95WkKA3ihqJsGk8+cYOjQFJff+ojqwhLy6GE0az88nVUVpLKxsNmh3YnJCr22a5EJhK2DYZJJgdlpo0uJdl8Fl/A8uu0uRRVGPpZeILXJi2FNQwjxyN/LME0MBKncqLe6t/m5NDFEY6lBYjm9SsVbxyklZClWFpMZ69zUkAIziXCHN19VpxkGXimPV9qdJ7263qvmXLXV/G4y6/sSiKAZIMyNKzNT0yZqhZjD2xwydLqYNxdwWw3ysyO4XzmJ7m7Nkh+RCRo3K9TmqiTSAE1Dz1IKwzlGZse2LbBR+k8KSdjq0Kw1iQ0NWfbRvPzgVkHe3YodJuQPb6IVu9pGu7xEPhQcPHaQ8jOndyRo1zSNwtQIYmKId67M8cF3PuXLT77AiWPH+z/aQVGULaFmRg6O/ZBeDCzVnt1/lUqFDz49x4c3rxBOFHGfncHP7Y55jE4xz6lvvELt8nUuv/8hwcEDaOOje/Jxpaoglc0SaUanHZLli3dyJiHvBCmaTporYLUbaI6zUlm3wjRJk2znD3qP0TQNTQp6NXXrP0c1ITDMxwhnNA2v4JG0I8Q6S2y0JML1HQzbYmhyqLfcpNtCrjwudClwcy720BjNpQYxEkzr3uMXGUbYpVDO76uFR17BI2pGSGv9kM/MEpxCeWcOag1CCLA2ERjoOlkWb9NBSKhUcecW8CxJ7ugE1tTBLa2CzZKM6x9epikcRGHizugJCd2gS+unVzjw1MyuDcCV1d1qxW4222Q5G22yiGYag3sm9Cit2DdrWFe3vhX7Yem6TvnoNOmBhO+d/4h3Pv2Irz33KtPT0zt+LIqibK27t2kr/aXCyAHR79am/SRJEj67fImfXPiYZTNFHBwj95VnBrIKciOapjF89CDFqXE+f+8T5j9aQhw/+kDF1+4kSZKUdrejqiCVTYvaAZntPJiB3f3/NY3MdtDCEE0tg9o8KXuLaVpdsrRXzWgYOn7R71Vh3bpg1DQczyFJE1g3aJSYWYLlPd6dabfgEwc1wjhC2A9Wg2lJjEuKV+5VM2qGgT9UwC/nEVnv59AN/fbxlyaG6DbaRN0QoZuggS4yTF0jN5LHdPdXxZmdc7EaHeJ1NoNraYxtGxgDUaG/icrclXb5LRXF6POLeMsVchMFvBdnMYr+1n6PFfPnP6eh55D3z7TTAM+na9ncOHuDw88fw7QH4W+iPCopIQlCWrUWQRSRlfw93oo9sa2t2A/LtC2GnjlE1O7y22f/iIPnSrz+/KuUy+V+H5qiKI9IVUYODnWGouwLUkoqlQrvXfiEs/OfE06VcM/M4u+J0A5Mz+HIa2cYvbnIpffO0RofR5uZ2vqLrR3Qq4IMaQUdVQWpPLQojJD+vScXmkavWumuHEVYNoRduDuMzISat7YKmWUkQUSn3iZFR7g+rAQciciIGyF2s0txvHy7+ssr+oSLdVLDXLO9V4tCXM95/IoxTaM4PoRRaxF1W6S6hURDQ2KIBMezyQ0NPfh9NG3VCkfdNMiPlMgJQRYnIEG3jEdesrPbabpOabzc21Ct22BY92yo1pMYxxAUxvqwEOY+ju8QhwnSWr/aVs8SnPwWvP9LCY029tw8bhSQPzqG8+xTaNb2Vc4mQUS7nSCHhtf+JNMksPM056sMz45v27Eo20cKSdBs06y1iE0N9ngr9oFjBxl6+qmBrTp38j7OS8dZXKrzL9/4jzwzdoSXnn0e190b1xGKsp+omZGDY3+eWQ8YTev/0Pe9KooiLl6+xJuffkzFlnBwDP/k7qyC3IzC9DjPjA8z99Gn3Pjph8QnjqIXdsML7UoVZNAhiCOkbagqSOXRSB6YHagbBlqWING5E2o/GG5rYbhrxjTsBJFmdGot4jglFjqZZqFLid5uo7kuOA7oBsL1CZMIbalOcWII0NAtk8JQnlatTWp7YJrc/p0LgRaHeKbEHypuzcFqGrnhIn5ZkIYxIhNouoblFtEeMWDWdH3fVUGuxbAtypPDhM0uYaeDXHmO6Rp4RQ8379878qBP3IJH0KmTWPe12N9NCkyRPl7lVZahLSzjLiziF2xyT4xjjO5MO2lzoU5kb7xUT3g56vOLKozcZbIkpVNr0Wp1yPI22lRxYAM64PFbsU8dxx8p7ZoRQ7mxMv5oiU8+X+Ts7/8Wrx57ltOnnur7vFxFUTZPVUYODhVG9tFueePdbaSULC0t8e75jzm/fJNwqoz//BFyA9Lysd1002TmuScZOdTk0tsfUfPycGQWbQBPlFatgvS8TW5uVZQH6aYBaQZ3X7xpvflPWZaBYQAamsjg7pAqTrDSGNvfDeH99hNpRmOhRmx7SNclTVKkYSIApMSMAnSRoXk+oIHlEAcJaZRgOr2qNNt3KVsGQaNL3AmQut7b+KuDX/Cxc+6WP9c1Xcfyd3GlipQkYYRIb4Wp9sC8duumgT9cwB/KI1eWDvWC3sF5vdZNk1zRo93skjreg1W5QmBFHQqjhUc7B+uGmHMLuPUauYNDeF8+jr7D5xZJlCA3M2dV1xFC3ejeDW63YlebdJMYUfLRZ4fRB/lc6FFasa8t48z3WrHHXjuDvUtfqzVNozQ7QTY9yo8+u8R73znLV595mUOzh9S1naLsAmpm5OBQYWSfqTetrROGIZ9eusibn35CzdPRZsfwnnoWe5/+jt2hIk/+zKssf3qNq+99QHj4EProOm1dO0ZVQSrbx8u7RM0QYd5bOWRYBiQZWZqCbmBEIVrB71U4hSFWmlAcLW9JdZfMMoQQaJqObg5WWLNZ7UqT2PbAtMiS9PaiFwA0jdT1MYM2RpquLHqBzHYIWgEF505QYlgW+dESCLnyO9HQDI3d+DvZVlISNDoEnZBMNxG6jiYlRr2D45jkhh69wnPLadrABKSrcYs5NF2nU2+TaQaZ1lvwYcgUU5PkxopYzkMsTZISKg2cuXlcLaVwbBzrxZm+/T0M04BgExvopVT39QacEJKw2aZZa5JYem8rtlvYc63Y+pVlckHWa8U+Pbit2A/LMA3Kpw6QzEZ859zbjJ//gK8+/xqjo6P9PjRFUdahKiMHhwojlV1NSsnCwjzvXjjLhcoc8fQQ3svHyT3MhcYepuk6Y6cOUz4wwdV3PmFpYQlx4giavfO/H1UFqewEy3WwGx3CJAHLuudjhmWgCx0ZhphxhNkW6KaBl/ewvcJjPxZvLXdJM9mruhQSA4lf8HpVgLskgBNJSpIK8Hu/PynEqotLMttFD0O0/MrvWTfJonD1L6pr6GssP1Ek7UqDbsrKvFNt5V8hxSVNEtKFGqWJocEJJAeck3exfYckjMmSFE3TMB0Pw7Y2/yxMUvT5RdzFJXKjOfwz0xjl/ldRFEaL2JUFYm+D5ThhQGG4/8erPCiLU9r1Fu1WhyzvoE2X0Iw9tBU7E6Q3qlhXK4zn88ycPLarWrEfluU5DJ05QrPe4l+//fuczE/yxTMvk7t/wZSiKANBzYwcHCqMHCBSyj37Rr3VgiDgwmcXefPiJ9TzJvrsON7pZ3HU729VVs7j2OvPM3Z9nssffEJ7cgJtenIHHm+qClLZYZpGcayMXKwTpynSceDW400IjCjElhnFQxOPvzjlLkGjQyeIEbncPS3iWSZIOl28MCY/XNwV4XsSxKTmXUHuWhechtlbAnR7e7HcwZ9PkkYJQbNLEqcA6IaGn9+e9u/tFHdCgkQi3dUuXDWwbCKgU2uSHy3v8NHtYhpYrt1rdX+Yx0OzgzU3j9ttUzg8in36CXTb2vi/2yFOMYenZ8RxDGvdWJQSN2hSPjm7swenrElKSLoBzWqTME3Jyt7ea8UOYsTVJZz5FgdnJhjfxa3Yj8IrF3Bfy3N5vsrF7/02Lxx8gudOP4t1143RNE25dOUyb1/4EEPX+dqZLzIxMdHHo1aU/afVagGqMnIQaFJtTumrJElI0xQhBIZhqDByHUII5ufnefvCx3xWXySeGSZ3cBJjgC4SdoMsTrjx/nluLjdJTx5Dz21QXfEIVq2CtMxdFRAou5yQRN2AoBXcnpumG3qvStHf2rAqCUIajQBRLK5Z/Ki1OxQcA7c4+JUSQb1NMwZWNhJnaUoquBPq3sXqttALhd5svjii6PQuyLaVlLSrTcIoI7MdMFaW4wiBlkTYIqU4Xl61FVAK0Wtf1fWBeT2qz1V6C0nWDcclZrfF8OTQQLdIDw7ZWwy4coa74blVJtCWKrgLi3ieTu7YOOZYGW0AlvKsJu6GXPvgKh1/CJz7wp4sw25WmDxQZujA+u2iUkLcCWgu1EniFNMyKI6XcAq5QXl67HpCSILGSiu2bUDZR3cH+Lx1tVbsmZGHa8U+ML5nWrEflRCC5pV5rKttvvzkC0xPTnHuswv89Np5kgmf/JFxRJLS+eQmR+wRvnzmFYrFLVropijKukZGRkiShO9///t87Wtf6/fh7GsqjOwzFUZurNvtcvbiBd7+7BzNooUxO4E7vHfbPXZKd7nGpbc/oVEqw+yBLWj/W6UK0rFUW6HSf1KuhITb85rRWKgR+fdWRK52DFajztDkyMCEYGuJ2l0a7QTp9DaLSylXlmbc30whsTsttFIJALPbYmhiaNsvQru1Fu0oWzm+VX6XWYoTB5Qnh1dmgEqS7l0t9JqGJgS2a+EV/L7e0JJZRnW+TupvHOBqUUC5YGPvxMZ3KUmCiCiIAYlhGjg5bxcFDJsMI8MIY24Bt1olP13COzqBntsdlVxJELHw6U263YTI9JCAJRJcLWX08ASFsdK6/30aJdz85BrdWBI5+d5yryzDjrv4hmD6qYOPt3F8n0vjhE6tRbvdIc276GV/sM+H7m/FPjq1cSv2zV4r9nAuz8zxg3u6FftRSClpzVe58scfEnVDpl84xeSJ2QdeRzsLNeJzC3xh8hgvPnMGx1HPO0XZLlEUMTY2BsDbb7/NCy+80Ocj2t9UGNlnSZKQZRlZlqkw8j5CCL77g+9zrj5PcnCE3MyEqoLcYiLLWDp3mWtX5giPHsYYKj/011BVkMp+JrOM6lKDrLT+hT+A3m5TLniY7mDPtJVCUJ2rrgRkvedxlmVkadZrzV6hpQmWSNF8Hz3okM/ZeKXtnb8jM0F1/t5jW40WBZTzNnbepVNp0k0EwvVWtqmvSBLMMKBQ8tcJ+Hrt4CJJAQ3DMTGsrXsfEmlKbbFJ6m3i9xaHlHMmTn7rq9nvloQR7WqL1LAQlt0Lb7MUI45wHHOXjBtYJ4yUEmrN3kKaLCJ/bBz7wMiurThNwpio1e1tuXftTVU1ZnHKtfcv0XTKD1ZWAsQR+W6VQ88dxXTUeddm3a40rTUJs7S3FTvvDPa5/f2t2IfHN9GKvYw932R6ZoLxozP7qhV7M0QmaFxf5MZnVwkciX54GK3okC63KWkus5MHcN17f8dSSJrXFjGu1HntxHM8ceIUxi59TVKUQVapVDhy5AgA586d49SpU30+ov1NzYzss4E+QekzXdc5PDXDxdoCwndVELkNdMNg4vRxhmanuPzWx1QWlpDHDqNteLHdq4LsBF26cYi0dYy8jTnId/0VZRuITCA3OXtS6HqvTXjAabqO69l04ghp9y4yb10U9TZra6BpmFGAbluYnRZ+0cMtbm9IBhB1AjLTZqMqV2k5dFsdskzQTUHkVgn7LIvUNGk1WpQt84H3mLgb3tnIvLJ8x2gGWDrkhwtb8p6k6TpIwZ25m2vThUDf5tfYNIxoVtukucI9bePSNEgdhywKEUt1imPlXRBI3idN0eeXcBeX8Idc/GcmMYbWrvzaLW7NxXwYlWuLtIz86kEkgO3QzkosXZ5n6omDW3CUe5vIRK8Vu94icQwY9tEda+9uxT56gKHTT+6iSumdkYQxy5duMHf9BtmYj/XcBG7uTuhoTQ/T7oZ8+PkFxv0yByZnMFZe0zVdo3R4gmxmhP9y8QLvfOdjvvaFVzl44MCuf41SlEFya5M2qJmRg0CFkcpAe+rUExw6cJD//OMfcuHGOdzTRzHVpuwtZxdynPz6S9Su3ODq+x/ROTiDNj72wAmQlIIgUBuxFQV6VZFRJ0B0Q2SSgWmgeR5Yq7+1anInF7w8ntxQgWypThh2kY4Lmo5hGOiGjoxjjKCL45q4eQfbd7d0GdB60iRFGpsIAXW9N6utHSAK61Stahqp69NtdimM3vm8qN2l1QjIvHxvHuaKDMhERrrYoDRWfOz3I03XsW2TNMtWZl+uRWKIFMvdzvY9SavWJs3l15xfKR2XqNshDqJdUQ0lpUQ02zhzi3idNvkjI7hfOYk+4NXJ20lkguZyC1meXP8TXZ92fY4sSXvdDsoD0iihXWvS7gRkBRd9prztNwweSybgZg372kNsxV5pxR7388ycOIY/qlqx7xfUWsx9epVqo46cLeF86TDWajOLpezdkNQ0gihEiOx2GHmLYZkMPXmQ5FDIvz/7Y6bO+3zt+S8yPDy8Uz+OouxptzZpg9qmPQhUm3afpWlKmqaqTXsDUkouX73Cd9/7MZ0jo+QO7sQm6P0pDSOuv3eO+VZAeuIYuuc8WAXp2IM9+0hRHoeUZGkGUqKbxqpBW9js0GkHZJZDLDWkaaKJDCOK0HXQSve1skow6zWGJ0dW5hhu6kDI4hSRZWiahmFbOxb69b69JOoEBM2ADAANpMBxLLxif2YtdqpN2pkB5sbV22argXAchL9xxabVbDA0NYym64g0ozZf61UHrlWtKAR22GZo+vFngGZRTG25tRJ8rva1JFoUUPDMbW2DT8OIej0gy22wZCnLcKMupYlBvTiWZGFCdOUmxuc30KWAsRxmwWVoaojy9Mi+ruiKWl0unVsgLo5s+LlWs8qREyPbv5RqF5ES4na314otMkTZR8+5g32f6RFasbOryzi3WrGPzGDvklmqO0UIQfPmMjcvXqVjpOiHh7HGCqtem4hMEDXbaM2Y0VyJyZFxXHdzv8+g2iT8ZI5TpQN88bkX8TfxfqYoytp+8pOf8LM/+7NAL4dR4xD6S93qVHYFTdM4evgIf3lyij96501++pOPcZ45irUNm6D3O9N1OPzFLzB0c4FzP36P+UKeeHoczbNUFeRDkkKQxSnQC7X0BxaAKJuzMvttmx97MhMErS5hEPZmI2qgpRm2beIXc+gr1UFRq0u7E5PlS6CBkWakQiJNm9S00eMIs95EK5fuZFlhiOM5mwgiezMKg2aHOIwRpgWWhSYletLCcW38cn5nQklNw8n7OHkPmQnkyhbqHQ1E72O5Nnoj7P1e1pNlGIZGqm/uJFPqOlJINL1XFZnaDuu2Tes6qW6SBBHWY1YIGo5NoeTTarTJHPfOdnAAkaHHIZ6l423BJnaRZr35l1qvAufuOYlJlJBtZh6mYZClYmUx1CC9H0gIY+TVG4iL19BGSiRPH0PeOk8Qgm69RWv5MgeeOdz3ar9boVar0iRLBZZjUhgrP3TL9cN/341HAtz+XE1DlSz03GnFbpI4JozswVbsWq8V2++mHDx6ULViryKNEiqXbzB37QbJiIP5zChufvX3gDRJSGodrEBwcGiM0aMjmA/5+/SGi7hfKnDxZoVP/+Df8tKhp3j2yaextnB2saLsJ7cqI33fV0HkAFBXxn129x00KaWq9tuA67r87Je+wtNzc/zHN/+I6nSB/JGZvl4c7yUSSdANWKgusdyuwwtTjM7VaX32GcHxI6Dmdm6KzDK6jQ5RFCMsq7cAIk2xNA2/mBv4BSYDQUribkjQDsiEADR0Dbych53b+rZgmWU0lurEjgND5TvX6rK3FTVeblAcKmDaFp1ml6xwJ2jUTQN9pYIRQ0fYDlmWYkQRmuP0gsgkwh8rr3sMWRTTqrVI0oxUN0iLJaC3+dkwDIycTxpGJIs1SmNDO1idrKEZxjbtIn84tudg1NoIKe5pn76XxIhDHN8lTgWbylKkvJ2rhd0IvI0rwYRlE3YfP4wEcPIepmXQbXaJu0HvZ5MSw9Dwi95KVdKj/wWyOKFTb5MkArFy8q1nKbZtkivn0S3z4UKnQXgw3CIENNrYc/PY3TbNJCJ8+TTcv5FW1xGFEo2uiXH+OgeePtyXw4XeJuyb5z4nyAxiLwe6iRakOHPXyOdtJk/ObFsIZLoORhZvZkwpZhZvezg66O5pxS666DNDu6QVexkv5266Fdu81Yp9XLViryZstJn/7HOWl5eRB4vYr83irnJDQyJJOiFZPcCXJodHpyjOlNA33RHxIE3TKM6MIiaHefPydd7/7nm+8tSLHD1yFF1d/yjKQ7k1M1LNixwMKowcAOoN/+FNTU3xl771Z3jr/ff40Y8+Qn/6CK5qI3pkmcio1WvcrCwQ6gKt5OKMrLQfTgzj1zvU37tM2yuQHj4I6k75mkSa0Viqkfg+DPn3XOxlaUZSb1Eo5nbFvLV+kULQWm4Q6zoin7vzeBOSJAixFmsUR0tbWGkqaVYaxL4P92+O1QDHIjULNGtN/JxHatkPXMSbtkmWZoi0t+AlMy2MZhvT6vaqGcfK6waoaRTTrLZIXZdMRqSF4u3vIaVBmmXINMP0XGJNo11r3TPjcN/QNApDeRq1DpmXWyWQlGhRiGsbOAWf7mKd1F1rU/YKITB07U64K2FTaZumIbOtW0hkODaFMRspRK9KU9O2JHBOwohmpUXq+ODfec4IJGmakizWKY2VMC0DPU7Y8CeSsvfb6eu5i4Q0Q5tfxl1YwCvY5J6YoNnNEzREL4i864bCPf+ln6Oz3CTuhn15HU6CiGsfXqVdGoO7Zo5KICgUiNpt0o+ucOCZI9sSepm2iZ+3CeLowcD2ngNN8BwDy9vOOaWDScpehXSz2iRCIEs+2sgIxiCfrt/fiv3yqU23Yh+cnmD81TOqFfs+Ukiac8vc/OwabRmhHRnCfvIY2irBohCCuNmBRsSwV2Ry8ii+v8F7z0PSDZ3y8WnSgwm/d/4Dhi58yNfPfJHJyQ3mvyqKctutMFLNixwMKoxUdi3TNPniCy9x8vBR/tOPf8BcaYncyUOqpWSTJJIgCFio9KogZcHCnsyveqfXKOcY/uppcpfmqf/0Q7qHZ5GjgzovrJ8krUqDJJ8He5WXV9MgKxVp15uUbUs9VtfQrjaJLBt5/4WUriFzHrFl0VxuUJ4Y3pJAJItTUrQHg8i7GTqZ4xJ2AqSzerusYRoYWu8CRpoGpg5Dk8ObqOKUtGst0mIB2WqTefeG2GiAaSCSFCEEuusQ1wNklt3TZrtfWL5LCWjV2mS62WvZ1jTIUsw0xvVsckMF0DRs2yCNk3WruvUwwC943Pqla4beq7bb6O8mBMY2PId7rfBb87WkELQqLdL7FvGsfCcwLRJd7z2fJocx6h2Et/4FtBZFePmtvcjePAmdEOPmPG6jTv7gEO6Xj6OvBGaNtxcQI1P3jmtdJZSM3ALNhTojhyd2/IbwwmdzdAoj9wSRdxP5PM16SmOuwtCBsW05hrHDE3Q/vEZgjsNqryFC4LYqjD05vS3ff1CJVNBdacVOPQvGfHTbGqhC4HuoVuxtkcUplas3mbtynbhsYT45gltc/TUvS1LiehuzkzFTHmX0yCjWNo+AMB2LoWcPEbW6/NZHf8jhc8O8/vyrFIvFbf2+irIXqMrIwaLCyD67dRKsqiMf3cjICH/+536Bj85+wvff+ABx+iCeCsrWdKcKcpFQz+6tglyHpmu4x6cYnx6m+f4VWovLxMcOr3lBtR9lcUqqaasHkbfoGqnnErUDvLK6K3c/kaTEmUAW1qnGsU3S2OpVNuUePxQJOyHZehVCK6TnkLbacP+nCglhgIxi5MqMQk1kdyrcNgiW0jAmNQwwdGQqkGtcyEjDQKQZuq2T2Q5xEOHk9+fcXMt3GfZ6v4M4iAGJ6Zo4+aF7Atr8UIF0oU4MqwaSehDg6txTIeflXeJ2hHTWf2wZSYRbGtCTWSmJg4ig0SGSvXmYuiHRVotVdINUM0nDGL/g0ep0EGstsUkzrCTCWXWz6+ZnET4cCZmEah1nbgFXS8gfHcd6ceZ25aiGBlrvqXh/+H87i9S4HUhKyySJg952W9k7B9uJ07A0Suh2E+T4+hVoWaFIbW6O8szYthyXk/eYOTXFzQtzBHYe6eV782ylROu2caM2U8cn9817VBLGtGstOt2VVuyDQ4Pd/vpIW7FrK63YOdWKvYao1WXhs89ZWlxEzBSwXzmI66zRih1EZLUuXmZwfHSS0nT5sVqxH4VT8HFeOcHNxRr/4o/+Pc9OHOPFZ87gbOJ8RlH2q1szI1Vl5GBQYaSyJxiGwReefoajhw7zuz/6AZeuL+M/daQv214HVTfo3q6CFHkLZzK3ahXkRnTfofTqSfybVeoffUJnchIxPTFgiwz6I9pkqIXrENbq++ZC72GEnaC3xGMDwnUIOt1HCiNFmhK2ApI4AXqVDbJU3DhG0bVeaJEldwJDIZDNJqntIvJ3bdCWEhGF1BdrlMZKGOsMm4+DGGHbvSqX9S5mdA2RrqQpKwtX9jVNw/bddVttNcOgPFGmXW0RtwIyy0ZqvTmcZhLj+g5+uXTP65ftu1iNLrGwYa0FOGmCZYCx3o2HPom7Ie16m8ywyOKMxM1DJtHSBMPQV6o5732c9eZfhhRGS4isTbfV6j0Pb72HCoEWRVhpQmmsvBICStIwptvqksYr+9Y1DS/v4uS8LWgxlxCn6HOLuEtL+KM+/plpjNKtoPROgHgrZNVgzcU62sr/SIBMYLj67d+DlHeWZG3nW1nY7BDbm7iBYOgkmkEabd/MxtxwkSPP+zTnq9QXFhCZRNc1SuMlSlNHMderFN8DpJRErd5W7AjZ24o9uttasU+u34odxoiry9hzTQ5MTzDx6nOqFfs+UkraizVuXrxKKw7gcBn71Oqt2FJKomYHGiFlJ8/U+BF83+/76W9+fAg5Wuajzxf55Pd+iy8e/wJPnnxCLedQlFW0Wi1AVUYOisE7i1aUx1AoFPizf+JP8elnF/m9P36L9olJclNj+/bu76NWQW5E0zTsmRHGxkt4H39O8/1PCI8fgX1apXWLEAI2s+FQY3NLNfahLM3A28TFt2n0FsY8DCnp1tsEUYzwXGSpFwbLWos0Tnrd0Ja5dnGX7C2r0eKY5NYcwmaLxM0h75tfqUmB5rkkODSXGgxNrf28k7fCE22ltGszBWZCoFuDd6GRJSlhq0sU9hZkaBq4vouT9/rWCqgZBoWxMiLNSMMIISSGaWO5hVXDX03XKY6VaCw1SCwHLJs7AzwFWhJji4TieJmN/1A7K+4ENBtdslvBeBTDSigo0e/MHr1/3qqmrwTdGv5QASeXELS6JK0uEtB1DS/vYfsrm9ylpF1tEiaCzPHAXfnbSkkSRVjtKsXR0iPeEJTQ6GDdnMcN2uQPjeCcfgJtJfi9VQW5WpVncSRPp9uFtSo76f3F7LBN8eA4dxVLIpF3vTBvUygpJXKzX1jrVSpuJ9M2GZ4dZ3h2fFu/zyARaUa33qbZaJH6Fozl0W1zb23FrnfQLi+T6yYcPHqQ8lNPbstIid0sSzNqV+e5efkaUcHAOD6MU1599mKWpsT1DkY7Yao0wtihw9gDVuyg6RrFQxOImVF+8OlF3v3OJ3z12VeYPXhw314DKcpqVGXkYFFhZJ+pN4itp2kaJ4+f4ODMAb7/5o/46PpZ3GeOYnn7527w/VWQ9iNWQW5Es0wKzx3Bq7aov3eRdrFMNnvg9sXvfqPreq99aqNzVLlGu6Sy+QvwR7hG79bbdIVADBfR7v4L5D30ICLDIk1SzLWq3cII13fRdI1Wp42wHDLdeDCIFAJdytvLJ1Jz/ZZywzTQsgypWWiWgZYkyNUudOSdAMaMIqzy0MP/EjZDSpIwJmgHiDQDTcNx7Q0DxbDVpdMKSB0PCt6drxXHBAs1CsOFvi7D0E0De5M3TAzbojwxRNjqEnZbSK1XCahLiZf3cAr5Ld/o/tiEpF3vkBXuqtC9FXDfCl0No7dkyRBod88PkOKeZSmGbZEfWXtBUrfRIchA+Pne8/WuQF267j1zXTdXISkhFWhLFZz5BTxPJ398AmP80J1xNuuEkLeUp0eofXCN0PPXrjKOYlwtwy2uBJYrVZHy7irJFVt9jmY6Nmba6I0NWI8EPU1Vd8cWSsKYdrVJJwxXWrGHd7yt9qE80lbsXiv2mO8zc/wIudGyus64T9wJWPzsOgtzC2TTOZyXZnDd1Z9nSRiR1jo4ic7RkXHKk0MYA35+q5sGQ08eIDkU8h/O/YTJ8x/wtee/yMjISL8PTVEGgpoZOVhUGDlA5DbfAd9vPM/jT331Z3j62jW+8+aPaMwOkT88vWdPzHpVkPWVjdhbVwW5GeZwgZGvn8b/dI7GTz+ke/QIDO2/QdpOziWot8k2aqsLe+2hyoMc1yYM4zXnJt4WxdgPMa9UpFmvInIliLz3m1rorS4ZK4WJQj7YoiUkZhDijJXRTR0pJa1aE+HddWdVyl4QqUnMu0IEYbsE7bVbyp2c29v67LlovofZ6pBYxQefuyJDN3UIQhzH2pJNy/eTWUZzqUFiGAjHg5zR65aNIrpLdXJ5D7fwYKAXd0Pa7XClIu+uD2ga0nFILJtmrUXZ0HdNwKKbBv5QAb+cR2Sil7Xp+sCOpIi7IZll3z4+kQqkYaDFIZnduxmnAegGWSowrTuPHz2J8MqbC2qlEL2g2rSR9Xqv7X3lY5rrgOOCYZBYDlEnuBP6rf7VIIgwbi7gVqvkZkp4rx5Bv91K2qtQ3OzNG9tzmTg4zNyNBeKhMbg/PA9Ccq0KM88cutParWlIrReoyrs2qUvJ7ZB1q/7kTjGHI28SZ9nqi2NWaEGXQtnflm3a+0mvrbZLo9Yk1ldascdHBrcKEh5+K/Y9rdjjTLz6hS2ZpbyXSCnpLje4efEqjaDda8V+/Qj2Ks8vKSVxu4uoB5RMn+nRQ+Ry+UF92V+T5bsMP3+URq3F/++t3+NUcZpXv/AiuXWqxhVlP1CVkYNFhZHKnjc7O8tfnpriR+++xVt//BHWM0exC3vnzXinqiA3ouk6/qkZnJlhmu9dobVgkxw9tO4W273GsE1MKcnidO0lNneFWsqDbN/FaHZIhbd2ZZMEIwjxRjYfeEedAOE5q4YaGhqU8lj1FmnOJ0u5tzoyExjNNvmif7sy0CvliYKY1NQhS3tfR9MwLOPBINPQ120p14z/P3t/GiNJmp93gr/XbjO/3eO+MvKo++jqk90km+pmg6ORNNJACxEUoGMEYhZYQQIkAfogQZAwO0tJACEOsAIHO9COBtiRQEmAVkNIox1SpIY6yO5mk80+quvMqrwz7vDb3M73ffeDRUZmZMaVWZGZnln+A/qoKA8Pc3Nzc7PnfZ7/Y+K6NnIUoUs+hudi9QfIUglt3Y2/ilxiKomnckpT9VO/9tOilaK33SX1Swc/twLwPaTnMhwMEELgHmhT1ox6ITIoH51aNgS5FzDqj6hMHe24G0uEeCbaZpM4RdmFaJGnOQrACzAHPZR20YZBoa9phJSwP/c0x9YK65SzCeNeSJYrcttEVarst5ArhZHGWEkfqhW06xIN+4eIkbpQ/Tt9nPUNfJlQujCD87lX98uHTuOCvBclJclghNaaoF5i2bHZvr5FjEluFfNYnTSiFDjMvrmK7R0UdwTFPFiNLkpt7m7pPU7tTy5KCgHTK9Mk13dIp2YOF7ZziT/o0Hxj5ZP9sU8xMpeMOgMG/WERxZ4tY9jPTxQbIO8M96PYS+eXaHxjEsW+H5VLOjc3WbtygzgQmKtNnMbho5uUlCTdEGOQMlNpMLO8gvscFDT6jQrej5f5eH2Xy//nr/KFlVf5zKuvY59mpNCECc8hk5mR48VEjBwThBATZ+RjxLZt/tCP/TivbF3i3377P7E941G+tDJ+MbtT8jRdkCdhln3qP/ky/s0dem+/Q7iwiJ6bGotte/wIKq0aartL5vvgOQfFmSzHHIRUaqVnQtx4KghBpVam3+sja9UHBUkNxmBI4DsYDyG6Z2mGLgVHShvCtqBRwRqMIMkQpcIlZsgcU2tKtdIDEWPDNDAN4+QbQKVPPNeUGhXUbo+kH6ICD9MyMcIQrYoZc0JKHAOCSoBXqT+Wz1MaxmS2c/QCghCoSoVRt4tb8va3oWiRN+Ck86ltkQ5CtFLP7Ln3QTR5nCGzQpA2HWuv+ONpnO+KawiZSRRi33knS2XsMCR3fZRpFW5VrdFaIWSOncbF/MtTHFNaKsL+iKxcQZsHP3/aMJBegE4T7GEIlfIBdyFoyHKMjW3czW2Chkfw+ixm42709EAk+xTILGfn+ib9zpDMC9BCYGYpHorp1RksxyKPM4QhcMuzWCeIC6KwYbKn2t4VJc8wul2ZqTOXZmytrZOU62g/KP6m0hjhEG/UZ/Gl+WOLmSYcThYlDNp9RkmCqvmIZymKXfZPF8Ve72Bdm0SxjyOLErau3GLz1jpyLsD+3DxecPhnP09Ssk6Ik8C51gyt2ebYR7EfFiEElYUp9FyT37tyix/+2gf85Cuf59KFi+PdGj9hwmNg4owcLyZi5FNmcgHxZJmZmeHP/7E/yXff/gG//dtvw+vn8Jv1p71ZpyaKIjZ2t566C/IkhBB4K9M4s3X8t2/Qf3ub5IUL8CmY22lYJvWZOqNeSNIZofZWn0UusU1BqVnBfA5W2x8nduBRFTDs9pC2fc8+zDGTlKAc4FXPPoYmLAvqFezdLmW/+JuG5R0ZK/YClyRMUNbx8VaRJifH8kUhZHtRwmg4QkrJnkKB6zq4pVIhpDzG74wojNCVe9ymeY5Okr2ZgwbCdcCyyB2HNEr2xRKVS9QpWzu1URQPmc/BDVA2ihn2QqRpoqy94yUaYUlJqV5+4vMxTcuCPEdhwL1zTC0bWS5jRhFWEqEMsxDZ0xF+JSCYbZx6cSQJI3LX3ZuheTjKcVHDBEOquz8chFjrG3iDPuWVFu5PvYCx58R8WBfkHfI04+aPrjEo1WBphTsCsATSLCO6tsXcfI3GwtRDPa/Yc0BqwSHR7bNp3W4sTRM0ynRutxlutQHuNlm/eP65b7I+S7TSxIOQfqdPaoCuB4jZMmN9hplEsc8crTVRu8/6RzfoDHroc3XcnzyPbR0RxQ4jVDeiYrhcaC1RqVSe+3syYRjULy2QL2f8xgc/5Pc/fJuvf/YrzM/PP+1NmzDhiTGZGTlejJ+K8Snkef/yGzdM0+RLb32OF1cv8H986z9yM9ih9Moqxv3tomPCOLsgT8JwbapfuIi/1aP7gw8Im1PI5fmTHVTPOMI0KTWrBEoVjqm9FuaJG/L02L5Hw3PJ4pQ8ydCA5dk4zcojHfu2Y5Nk2YMz5O4nzbFdB/sUriQn8LB6IalSRx/TWmOlCW6zefJGCoEdeNQC72409El9zrVGKYrXIRW6P0ABynXRtlFEcAdhYVR1XfI0x7lHgxX3FhEfg+DhRadxJA0j+oMIVa0eeO8VHqlSyO6AitZP1N3mlT3C9Q46qPCAM9O0UOUKaIU5GmJ6HmaaUG4d8thjiMMYvBJC6mPfb+m4GKMQt9fH3d7EtzWlizPYcyv7YwyOEyG1UnuC39HbtnH5NoNq8/DmbNsmm59na22NoBbglk43D/Ne9qPbQhcO5b2fnlV02y35zL24+Gi/PAGZSUbdvSh2yUHMVhC2Nb5nlztR7Gs7eMnDRbGDMGP5wiSKfRhKKXq3tlj7+DojR2OsNnFaF46IYiuS/hDRT5ku1ZldXMTznv9F8vuxXJvmm6skwxH/27v/iZUP6nz1s1+mVnvGRqhMmPAI3BEjJ87I8WA81ZcJE54A9Xqdn/vDf5z3Pnyff/873yd6eYHS7MM5KB4nURSx2d5me9AZaxfkabBnakx9/TWCD27T+/47RBfPQ+35/xIQhnFiLHD80ahcAUXU+InGa4XA9t0zcZi5JZ9op0t+xNzIO5hRjF8/5bEpBJVmhV57QB6UHyykUAorHFJulB++bOZpLTYohe72yEoltGVzV4IRKNdFpBn2cHC3LZvixsbohihOcOpojaHkMy/Ka6kY9kJUvX74+2QYyGqVYbdLw3Me/2dGa9IoIRpE6CzH6ncLd6Ln7R2Td7dRSImpdTGGIM/2XH6n/1NKa4RlImRWuAQPef0izfDWNinfvM7sC7PUvngOc/94ObqQRuaSwVaH9nqbXAMaHMugudikPFU/ECfM4oQwzqF5zPxnYZDUG3Rut5l78eHFyP2nQUBRpv7YotsTTofWxXs/aPeJkgRZ85+tVuyyT+mFE6LYaq8V+9ouU77P0qXzlKYnUez7yeKUnau32bh5m3zKx/7MLF7p8GuFPM3IuiF2pFhpTNO60MJ6xr+HzgK3HOB+6RIb2x1+5bf/d96YucAX3vjsp1KgnfDpYeKMHC+eTWXjOUZrPbngeIIYhsFrL7/K6vI5fvPbv82Ht9/He+3CUxOQ7ndBGjUPt/lsuCBPQlgmpddW8JZH9P7gKsOtEtn55YNxwgnjg9bEgxFRGKP2RAAhJY7rEFSDh5rXOA4YlonnOowGI1QlOFyQDCNcQ2AeVT50CJbnUm8Jht0huQJ5J64rcywUpWb5gbKMsUQIDEOgB0Myv5gtWIhNxb/WWiM0YNvknrc/I/EOlgF5FIPnHnm+EkmCd8+syWeVIqp8wuswBNL1SMMY95D28bOiaD/vkgoL5fpI2yfPJUJJzDBEWyYqKIFSGGmClWeIeq3Y9nve34fFsi2yNEeb5v5zWYMh3vomVjxCVlzcF6dpfOXlu+LjMVHsLEm59c51Qq+Mml3cF/bjLGO42aO60WHptVWMvZ8Pd/okpVPcSJQCBjd3mEUfuwihtUZJhWEah16D3R/dRoO+J7pd6LJn17o94SBaaaL+XhTbElAPEH55fAtp4BGi2Bnq+vYkin0CUXfAxuUb7HY76JUq7k+sHiosajRpGKM6I0rCYbW1QG2pOrnHOoTSdAPdqvPOzW3e/Y1/xVcuvcmrL76CecrxKxMmPEtMZkaOF0JPWlOeOlmWkec5SilM05x8UT4ltNZcuXaVX//+7xKen6K0PPfE3ot7XZC6bGPXSpjPmNjzMGilSa5t0r28yWh5GT3TetqbNOEetFL0t7sklg3efa3WSYo1GlF5VkS2e9GaUXdIlKQo30PfmcuW5phRjGuZlJvVRxbLZJYj0wwA07b2RM3xOp9rpUhHMckoQWmNYRr4gYftuyTDiM7ugKTZgKNmAmqFmecE8Yhaq8ZoEJKmEmWYxWvXGuE4EPgH4ssiTXGymNpM45kvr+lttknKlZPHTUiJNwqpzjSOfIiWCpUXwq5hWw+3b7Smu9kmcXzYm6uqlSbLcjBMtJSY8QgzzxGODb6HuCMWZzleElGdrp/+7wHD3T4hFjg2WmnyOMXZaeNubaNdk2yuiSp5lAdtLr4wS9ConjgPUivFte9/zKA+Bf7h4osYDGhkIUuvrQKwfW2d9cyB8jHOyD28Wzd44QsvHPp9HvWG7N7eZRTGYJgIKanUSzSXWjjB0ULQfuu2vvsaRp0B3fUOeZZjmCa16SqVmQamPbmhf1RklhN2Bwz6IbLkIOrBsbHmp85hUezF1slR7Gs7BMO9KPbK3CSKfR9aaXpr26x9fJ1Q5BirDeyZw4VFpRRpP4ReQtOvMj81g3/EeWXCg6hc0vtojdJmytfe+DFWVlYm96UTnhuUUtTrdQC++c1v8pWvfOXpbtCEiTNyXJic6J8+Qggunr/Az88v8J+/+x2+/7vv4r5xAfsxrUxLJenuuSCjO7MgnxMX5EkIQ+BdmGNmvsHgB9fpb+2QXlotXFUTnjrDdp/E8Q5/P1yH3LYYtPs0Zi3Es7RyLgRBo4KX58TDiKw/BF24vLxmBdP+ZKURpm2N9SJCFiUMOgOk66JLpUJkloU4afVDvMBDmWYx//GI05CQChBIIehud4t4emXvNQeaPM0RWYbZ6SL2hCIrTbFtQWX62RciYW9c4GnO03ut1Ychs5xRLyTNcvSeO9zIMlzPwa+WThVlT0cxmWHtC5FQnFsNAUqAsG2UXcUc9BH1g7MtjWhEUHt4x6Zf8Yl3+uhc4mxu4nY6qFaF5NUltGtjGwam0JQjCJrVU80HDdt9RrZ3pBAJoCsVhusD0lGEE/hYtoWIslPMKdUIHkycaDS71zbZbodkjRY0Zvf/TRSO6L17i/lzU1SnDxeS7zg9AbJRxK13bxJZHnmpDmULlKK/E+Lf+oi5S/OUW9VDn2fCg2gNWRQXUew0RdaD5zSK3cW6vsOUN4liH0WeZuxeXWP9+i2ypov12hRe5fAIscwy0m6IFUoWG9NMnW9hj/H38bhiWCaNl5fJziX87+/9HrMf/JCvfe4rTE2NzxirCRMelTuuSJg4I8eFiTNyDMiyDCklUsqJM3KMWFtb499+5z/TWahQvrB0ZjfRURyxufvpcUGehnS9Tfftm4Qzs6iFuYNOvAlPFJVLOts9ZP2EQeZRTMXQp5+vQpJaOQABAABJREFUOOGpkicpvfYAWa8e/vnKcozdLqnjIj2/GI9nGvuim1CqECItE5TC7nShXj/U8aOVRqcZ9mhIqVbCLXnPXKz/OPrbXWLPP3nERJbhZwmV1sHPUp6k9HcH5KUS3N/UnqTY0YjaVO3EfdbbbBO7JbhvHqnWhShcRKgNjCTGsgQi8AvnahgSmIJS82HKazRIDe0uXL5KOgzJXzyHmm0e/PtJSrC9ycorS7jl04mdN96+SrfaAueE8SjDIXNGyszFBfIk5eMfXSdZWD7xd2ZFwuylg0Uxvc02t9f75LOzHLoPlMJdv825lxbwKke7L/M049r3rzCsTYFzyOKNkng7m6y8ND85V55AEcUe0u/0ySyjaMX2nTHzlt/HfhS7T2m+ib86c8oodo/5+VlmLy5OotiHEPdDNj+6wc7ODmq5irPcPPR8qNFkowTZHeFLk8WpWWrV+ngL18BoFBHFIxr1xoFZuONI1B0QvbPOS5V5vvLWFykdVhg2YcIzwvr6Oi+99BIAV69eZXV19elu0ISJGDkO5HlOnucTMXIMybKM7/zwe3z79keYb5zHrT3asNtDXZAl/1PhgjwtOssJ371FbzskvngejrkBnPD4iHohAwn4Jwww1xq716MxP4nYPwsU0eLSsW3isjuANCdvNkBpkPJuRbYhijl+AoxRBEmGWT3a+QNghiH1uo/1nDmesyimN0xQJ6yqG4MB9erB16+VorvRJqvWHhAR7/6BHGc0pD7X5DixsL22Q1Y5fNFAa43MJEprUAonjTFcBytL8cs+XjU49rnveSZIMoyNLbztHYKpEsGFGYZRwu7tXRLXRzouaI0TjfBNzdyl+Ydqr/749z8kXFw+eXuylMagzfJeVHvtvevsmgH6qCH0e4Li+VeXD7SaazRXv3uZ4T2zKQ8ljmlGPZZePXfkQ7avrLM+Euhyea9l+5AH5Rm1wQ6rn7t0/Ov7lCLTnGF3wHAQkpddjJr/fEexzy/RODeJYt+PVprBxi5rH19nIBPE+QbOTA1xiLCotSbph9CLabhl5lqzBEEw1pfUWmt6/T5rOxtEIgPHxBopVmYWqdfqY7/tw/U26sNtPr/8Cm+99gb2J0ySTJjwNLh8+TKf//znAdje3p44fseA58eqMGHCY8C2bX7i81/i5dWL/Ntv/Uc26tuUXjq3P0T/JO51QT7rjdiPG2FblD+zitcZ0PveFYblGvm5E24WJ5w5SkowT1HgdEwEdcJ4IbOMHHGsEAmgPA9z1EXkEm2ZYBx+rhJxjHQ8rBPunqTjEocx5edMjLQ9F6sXkmbZgYj0AdIMWyss7+BnKQ1jctc9WogEsC1ywyKP00cWcoUQWM5eCVGa4pqCUtnB9iqnXATT0Btir23iRUPKqy3c115G7JU71etlanNN4u6QNEqK0Rsr88Ui2yNsK0c0cx9A6QMuotkXFknfvsZASnStenDOaZLg7GwxvzJ1QIgESPohieWe/N3iuYx2U2SWH5peUErR3e6hZwrXpeCe8Qb3nhotm1gZxIMRbnm8BZMnhdaQjWL6nT5RlqFqPsZKE3Ocd84njWJfXKU005gYDu5Dpjm719dZv3aTtGZjvdzCqx5+HpF5TtoNMYcZ87Upps+t4tzvLh8z8lyy29llvbOF9A2c2YDALhayZC65snMbf3eT1fllguDxlZ19EoQQVBZa6LkGv391jR/+Hx/w1Ve/wKULF8fe2Tlhwr3cadKGSZv2uDBRRSZMOAWtVos/80f+a3743jv8h99+G/XqMsF089DHfppnQZ4FVqNC82uv4n+0Qe/7PyI6fw7drD/tzXoINONWWvIwCMOAicj4XCHTHHWKRRBhCLBNrOGQrHZEkY/SGFmO9k+xSGAYqFQ9whaPOUJQnaoXLdaOW7iI7+wrpSGOcbJkrxzm4D6MRzG6fPIFsHIcRr0QX2sM0zy0DMm2LbI8PzYuLoTAUJKgGmCf5HZGQ64Q27u4G5v4vkH50izmzLl9AUUg0EohpcSwTIJmlU96+1xplhkOQzjhxsAYDqnM3HWjmpbFypvnad/apnv7JrnjoYXAyFIC12TqhXn82oPu1TzNkady9QiUbSOz7FAxUqYZ0rIPfE72tcj7RMnMdslG8X4k9yRB6s4p+Hm7bFBKE/eG9Dp9MscsWrG9yni3Yo+SIoq9NSii2D/2MoZ/9IJdEcXewVnvsjQ/y8yXPoNbnkSx7ycZjtj6+CZbm1uohQrOjy3juYefy7I4Ie+M8DLBhdYsjfn62ItgcZywubvFTthBVF3cpRrufYtQpmUSzNXJkpR31z+m6VRYml0cW4FVGAb1i/PI5Sl+84O3+f0P3+Zrb32ZhYWFp71pEyacijszIy3LwjlpNMyEJ8JEjBwDJqukzwamafLZ19/k4soqv/6t/8zVtR2CV85j7l00TFyQZ4cwDIIXF/AWm/S/d5XB5g7pxXMPzlcbE2SaEQ1GpEnGnV4Dz/dwy/6piiieDJo8yUjCGKUUhmHgljws1+ZekcP1HUbdEco94Us6SXFOesyEZwrTNNAIDM/G7vWQfoBynD3LFxhJghlHCFE89kS0ei4Kaw7DsExqsw2SYUTU66H2vscNrfFLHm7j8LIepfTxLdxKo4chOkkZGQbJIEUoiaUVQTU4MF/Or/gk3RHSuk9wy7I7LTtgmZhZhhMcV6CiIUow1zbx2m1KizX8L5/HKN0RLwVCFI7CnVtF87Q2LYTMCUoeU0stvOqjz0Oszzdp/+gGSbl8tPomZeHQbM0f+LFhmkydm6O1PEM6itFaYzk21jHnJiEEQp1uwUWoRzuGD4iSeu8/ez/VWu+tWYkDL1flisF2h856h1wWIr7j2rQWWwTNyjN9rZinOWGnz3AYIsseYrF26oTJU+H+KPb5OZxXVxHHnPeKKPYuwTBl6fwSzW+8PIli34fWmnCrw+2PrtNPR4jVOs6LFw79jGmtSQcjVDei5pRYmFqhVCqPtUCvNQyHA9Z2NhjKGLPh47daJ26z7TpYS036w4i3r73PfHWK2enZ033PPgVMx6bxxjmS4Yhffe+3Wf6gxlc/+2P7LcUTJowrg8EAKFyRz/J36vPERCkZM7R+sPVxwnhRrVb5U//FH+WDjy7z67/zHdZnAzp2PnFBPgaMkkftJ17Gv7VL9+13CBcW0HPTY7V/o96QUZQiAx9KpX3hJosTou0OlXoF23+6MVWV5wx2e+SGgfT2IqJSE/dHmEpSbdUw9txVpmtja0VynONKgxlF+K1JxOFZwHQsjGGMPOFxwjAQeQ5WCaPuIkYxdEN04YcD10EEPpZS5HlWRLmPwUgTvOpJbrxnF2EYeNUSXjVAy0LcEqbgOGe0EAKUOlyQVArd6ZE5HrpcxdBqPxYtlSYfhJQyuV+EYnkOrhURxRHa8yGK0HGCsiy0MBBaYfZirPJh5x9duDg7fZy1DXyVUL44g/25VxF7ItGdxmiBoH1ri63NAWmzBY0Z7pzo4jhheHmTmdkRzaWZR9qPtucyPVdjc3ODbGb2wX0jc9yNdeYuzGEccXMuDOPUhTletYRzZZOI42dyIiW2yh+I2t/BcmwsmZEofWTpmtj7LyePcUrN/Z8W8yX1/j/nScqtd24w8krImXkwi/d9lCaEt3pU1tssvLJy5OsfR7SGdBQVrdh5jqoHGCstjDH6/n6ATxLFdn2WLp2bRLEPQeaSzvUN1q7eICmbmBebeI25Qx+rpCTphhiDlJlqk5mVFdwxX/iUUtHptllrb5E5GrsVELiHp6eOQgBu2UeXPDa6fbY+3mV5eoFmfXyPJ7cc4H7xIpvbXX7ld/4tb0yf54tvfg7Pe36/9yc829xxRk6atMeHiRg5JozrF82Ew+l2O2y2tzHzhOTDNbK6h/PWeYwjblomPDpCCNzlKaZnavjv3KD/wx2SF85D8PRjT8kwIkwyVL168J5WAL5L7tgMugNqlvnUGtNVLultd8mqZYRt3d1MC5RrI7Oc3naX2nRjz8UpqLSqyO3e4W2/SmMMBwQld98VPGG8MW0bC43M5fFzI+OEUrVEFkVkjgPlAKql4phRGhHF2ElMZa5Jb6tL5rhHijBIiaUk9rM0L1Jr0lFMNIxRUhZzEIOibOw4RxSIPRHyZLzAJY2TQ89fejAkc3207YDMD7piDIEslQmHA2wv3RPIBJVWDdHuE+3uktkOslRBC4HQCqE0wveJ8wy2u0VsXFA0p29s425uETR9gjdmMRt3BZd7I9kAw90em1tDsvmF+xaCBHge6fwCmxvrOL5L+b7m8NPSXJrBsHbZuXmTxAuQrg9o7GiEmyXMXpyj1DjO3Xl6TNuiXPOJhkO4NzKfJOhhWDh6bRsjTWnONff3w/0Iw6A+U2c0GB5dogOQZvjWntCgAa33R0pqrdFKcetH1+iWGqSGBcMEYaTYro3pOGQzM3S7XczLt5l/+YT28DFASUXUG9LvDooodjPAcO3nLootr+/grndZnJthdhLFPpQ0jNm6cpPNtU3kfAnniwt4R1wnZ0lK3glxElhtzdCcbY6tM/AOaZqxtbvNVn8XKjbOQpngE7phhRD4jTKqqri2u8H67iarcyuUy+Nb6liarhNM1Xjn5jbv/ca/4ssX3+C1l17FHGf384RPBe+//z4rKyv781jvzIyczIscHyZi5IQJpyTLMq5dv8bvf/g2uyLCXKlT+5nX+Kxh0Lu9zYffuUy42sJcnp6Iy48Bw7Wpfu4iwU6Pzvc+JGy0kCsLx0ceHydaMxqEqHrtaHONaZCXAqJ+ePAmXev98pfHHWON+iFZyUccIYYK2yIrBYx6IeVmhXQUI3OJ7zukUUg+Esi9uSqGlJgyJ6gGj1RUMeExoDUyzQpXvWEcOlsQoFQvk7cHyFrl8PKULMeOIoKZBghBGsaMun0UoKVE56pwZdkm6SihXC8x6A3I/UMaurMMOx5Rna6NlYv5OGSW09/ukVsWyg2KfaQ1aZJgDdqUG+UHilAeBbfsY220yT334LlLKnQu0Z4NWiO0PlQAlZ7PaDCieueGXghsx2bkaXA8DK1BF0UvhlP8vrZM4jjCvr1NZTTAG/Qpr7Rwf+rF/QW0e12Q97Nzc5tsavbo91IIsqlpdm5uPrIYCVCfa1GbaRC2+ySjBIBgpolXO761/VGYOT9H/PY1BsIA20Ktb6GANCijDRtzGBEMeqSVmWMTK43FKfrf/5iB7cBhwnsu8TpbzL6yhNiLuxfR7SKqrRG0r63RyQ1i20Xbe5/fvc+1iFL8soeq1xms3WIqTrHHdNEzTzLCTp9BGCErLsZifbydnI8Sxe6GiKs7BMOkiGL/9EtPbaFxXNFaM9rpsf7RdTqjAWK1gfPV8ziH7FetNWkYoToRFdNjcWqZcrky1l8bWsNoFLK+s0kvDTHqLt65s3cvGqZBMFMjTzPe37pCbbfEytwirjueC3xCCGorM6iFFr/z8RX+4P94j6+98SXOrZyb3BNNeCqkacrP/dzPkSQJf/tv/23+9J/+0/ti5MQZOT4IPalDfeoopciyDCllMWz+OZ2x9azS6XT44Yfv8t7tj8nmAsrnZnBKD96UyjTnxtsfcavbRb2+glmZiDWPCy0V0Ye36d3sMrpwHupPfoUrj1O6gxHqpFlpGqxOl8ZsE7QmHoyI4wQtipijicAvB4XQccYXbFopOptt8mbt2ItBjcbYamMYBspzihtirTGSFDNXeIGHYZoYlonlHZwxOeEpoTVRPyQexUUs1xAIqTCVIqgEe+eog+9TFiUMOgOk66K9PVejlBhxgpXnRVz/nhtrleX0d3pkll083rKKaG+SYMUxfuCQpTlZrlB7kX4jz3Eck1K9vB/9H3e0lHQ3O6RB+fCGZa2xhgOqjfKZjFzIooR+d4gsl/dHIehRRJ4rlOMipMSyraJQ6BDsfo/mwp1xIJruepskqBzuUlUKq93BW9/EH3ZY+uorOPPN/ec+ToQESKOYK++vkc6dXFDgrK9x4ZUFnBOLcsaDPM1Ye+8G3d0Bw5kFlOciFBgyx7JNnMDBbHdoWZK5l5eP3EdZknDrnRtE2GRBBWwLpMIcDfHSkIUXFwkO+Y7SaEbdAVe+d4X+8nn0YU5zqTCTBL/iYwyHzLuKqdXZs94Vj4zWkIYR/XafWO1FsUvueIsP90exz8+dHMVe72Jd26Hh+ixdWp5EsQ9BSUXn5iZrH98gDsA818Rqlg7dT0pK0v4I0UuYKteZbc3gjbmLXilNt1eUUyamxGr42L77xK6G0lFMvhMyU24xPz2HNebzSLMoYfj+GtOxw9c/9+NMTU097U2a8CnjO9/5Dn/8j/9xoigC4PXXX+f111/nn//zf843vvENfvM3f/Mpb+EEmIiRY8FEjBw/DnNBludbp3pvwp0uH/zB+/RnK5gX557bAodxQA5G9P7gGkPbJzu/UtwEPiHSYUQ3lXCIMH0/Zm9Atewz7A+RJRd8565OJDUMYxypqLYaR8deH4E8SekOInT16HiPpnCFMQixyh7c77rJJGZvSK1Zm8SyxwWt6e90SUwTXfIP3OxpqTCGIwLLJGiUuV+Q1EqRjmKSUYLSGsM08AOvENnue57uVoesVD78c6U1Rr9PrRpgOjYqy0EUEVjxjEWzRp0BA2XAcc2KSuGOhtTnT5gzeEryJGXUC8mULsTkJCUzLHBcTNs8Vuiwhn2aMw2EaaCynM7OgPy+VX6RZjgbW3g7O+hWGbU4hTUacm6ljl8rnEdHiWv3EvUGXL3RJZ+aPvGx1s4255fr+PcIb1pr8jQDNKZtn9n1jdaaUbvP7nqbLMkA8Ms+zYUmbiU41WsDuPHDK3RKdXLDQmuNYQhMxz6w/62tTc4t1Skd4/rUWhP1hkX5TJphmAa16RrlqePdgdd+8DHdYcpw+dyRjxFZjoPGMaEV9Vh85elHte9GsftkrgX1Ioo91twfxT4/e3wUO7kTxe4xNzvF7MWlU88l/TSRRQnbV26xcXsdORNgn2thBofv1zzNyLohdqSYb87QqjfHX1TLcnY6O2x0tlElC7cePDU3rNaQ9IbQTVmamqfVaGGc4TXj4yDuDhm9s8aL5Tl+/LNfolQa37j5hOePtbU1/t7f+3v803/6T1FK7f/8a1/7Gr/1W7/1FLdswh0mYuQYMBEjx4dOp8OPPnyXd25/TD4bUFqdPtBeelqUVKy9d5Xra5tkry1jNSZ28MeF1prk2hbdDzcYLS2hZ55MgVAaRvSSHH2K48Ps9DGURLbKYB3x+Q4TvEx/opjj/eRxSjeM0JWjL/6UUuSZxEiSYg6dd8gNZS6xuyH1ubMRYiZ8MkbdAaEGjjj2NBqjN6Ra8h85Whz1hgykgONcbkrh9PtnJtA9FbSmvb5LVjn5c2eGQxrN8pmK8irPUZkkjRKGOWj/5PPJvc5ImaR0uiNkUAKtMftD3PUN7CRCLbRQc839GL3ZbnN+rnysqHY/8SDk6tUdsumT3Xj29ibnz0/hVUrIPKe7vkt3q0du2YVQnWbUWhUai1NYn2Afyizn1nvXCS0X2agX8WgNhCPsToe6ZzL7wtKJzrU0irn63m2S+cXj/2CaUu/tsPLmhUfe5sNIwhHXPt4iCmPChZUivn0E5igicAymsyHzLy2d6XY8DHmSMez0GYYRquIhaifNU33KHBbFXmw9XBR7ZW4SxT6EUbvP+kc36PS76HN13IUG4pDrG40mDWNUZ0RJOCy2ZqlWq2PvLI2iiI2dLdpRD1FzcaulMxP+ZF7UyT1q27qSirg9xIk05+aWqYx9tF0z3GijPtjmc8sv8darb+Ict/g3YcIZ8+677/J3/s7f4d/9u3+3/7M/9+f+HL/wC7/AysrKU9yyCRMxcgzQWpOm6USMfErkec7Va1cfyQV5ElFvyOXvvke76mC+uIgY8xXgZxkVpwx+eJ1BqIqCm8cc+VG5pLPTRTZOuLFXGnOng666UD5eGDJ2BtRbd4pkzmYbuztdZPPobczTDGkaWN0BZqN8ZMGJ0R1Sq5SwxrzV8rlHa9obuydH73OJOwipzT5co+edv9FZ3yWr108U9o3BgHo1OLJxeNxReU5nu09ePnnUg4hj6oH1SAtUJ6FlMVLhRFE0ywlUSmWqeJzKcjqbHcQoxdvcxAhs1NI0ql5+oGzG2drk/PkW3kmjJe5BKcWV715mtLgM4pjvRK0Ibt/kwudfQGU5N9+9Tlito+vVu7MxtYbegKC9y/IryziPUEKmtebG21fo15tQOeR1aDC2d5iyFLMXjxcZu2s73OhJqJ8sznq3bnDp85fO9PpsuN3hWjdFRgkj20ftOYYOuyg3ooRqMmBlrkJlpn5m23AatIZkOGLQ6RMria4HiJI31uLHI0exr+9Sd1yWLq1QnkSxH0ApRf/WNrc/vsbI1hirDeypyuFRbKVIeyH0E1pBlbnWDP4pFlueJlpr+v0+a7sbjMgw6x5OyT+zpbY0Thju9ojTBDRUqhXKzdqRIzlOIs9y0p0hZe1ybn5p7FustVL0rm3iXB/wk698nhcunu05dcKEk/gTf+JP8B/+w3/Y/2fXdfkrf+Wv8Df/5t+kXq8/te36NDNZ6hszJtrwk+MBF+Rnpmmc8U2mXyvzxte+wNbHt/j4mx+QvrKANV0/078xocDwHGpfegF/o0Pvh+8znJ5GLc6faez5wN+zTGzTRKY5OEefSsUoRqDRwcniqApc0lH0UGLBSdtomQZ5lh9ZYKOURqCKFf9jRFDlOqRRMhEjnzJZnKLui5EehrBMcgpB+mHFba0UyjBO5TBWVtHI/qyKkePi6BSmgeM65EmCPqqgQIMVjwimqsU/hDH22gaNj66TLM8iP3MedeB9uCesrCROluAe45I+DMMwqE/XiHo9dL1x9Pb3+tSni5vq2x/cZDg9A6X7Iq1CQL3KyHO59f5NVt96+BvRUbtPaLmHC5EAAtT0FL1r12kl6bHnK6XU6QvQDAN9wuO11ow6/cINmuWYpkltukqpVTv2dRpTDdybG0RBaW9+5yGCpJI4o5BSaxGtn0wvlJKKUXfIoNcn82yYCjAce0w+MUdwTxS7vNDEO6kV+54o9uLsFLNffGMSxT6EPEnZvnKbjZu3yad87M/M4pUOP0/JLCPrhJgjyWJjmqnzLewxd5ZKKdnttFlvb5F7Amc6IHDO5jpM780KH3R65IbGrLs4QQ20ZtiJGF4bUJ9q4lVLD/3ZsmwLa75OHCX86OaHTAcNFmbmx3Z/C8OgfmEeuTTFv//gR/z+5bf52me+zOLiCe70CRPOiDtjAv7YH/tjvP3229y4cYNf/MVf5B//43/M3/7bf5u/+Bf/4sS1+4QZz7PVhAmPiQMuSCLMc3XKX3vxsa7MCUMw+8IyjYVpPv6D99m63UG8sjT+85WeUZy5BlNTVYL3btH7wY+ILl6AY2YmfhLKjTJyu0tWOXyunogSnDxDWsapRFFtGeRRfqbbWKqVydp9ZL1y+PxSrTEHI0TthH1kCHQ+WSx52mil0A8joGgF3Hn8aW91xlpuOFMM00BoxWkUHjPPMJ3H5zwpNyrI7Q5JpNDefYVWUmKORpTKHmZvgLu+gSdynNkqvTcXiHsxjMJiQcGyHngHzXab5vzJTq8sTuhtdEjiFGEIKo0yjcUpwnev0++b6GqFg8eHRvQHVNOQ5ourJP2QyLAfFCLvxXOJgjLhbo/K9NEC52G0N9rI5gnzKwWk9Tq9rQ6t5aPj5Y5rY3RDFCe4YrXGUBLjmFmoaRRz+/2bRK6PrDfAtiHP6e/2cW9ss/DCAv59i0xOycde65BONbHKAe7OFsnUNIi7IrIGRJ4TbK4z9+riXtF2cR5+XK69PEkZtAeEowhZ9TAWG89QK3ZO+fzsia3YshvCtW2CQVpEsb8+acU+jKg7ZOOj6+x2OuiVKs6Pr+LZD34ONJpsFKO6EZ40WZmap7ZYG/t5hkmSsLm7xc6wCxUbd6l6aOv3o1CI+QMGvT4EFuasj3vvvhMCpxmgaorOTg+r06M+08J5hJI0x3exV1za/RG7V99jsTHLdGt6bPe/6dg03jhHOoz41fd+h+UPqvzU5748caZNeOyEYQjAl770Jf7lv/yX/PIv/zJ/9+/+XXZ3d/mrf/Wv8g//4T/k7//9v8/P/uzPjpUz/ubNm3z3u7/Phx9e5vLlD7lx4wZKKf7CX/gL/Jk/82cP/Z3/9X/9//BP/sk/OfZ5//E//l+eekx98s07Btw52IUQE2fkY+JJuCBPwil5vPyTn2H25iaXf/cy0cUZzIXWWJ3snheEZVJ64xze8pDuH1xhGFTIV5ePdf49CoZlUZuqM2j3yYVAOncbis0kwbUtStN1ulvt0z2h0hhnfDyYjk21VmLQ6SN9D+05iD2Xj4hT7N4AGpVj3Z0A5PKR5xtNODuEYSCUOjTKeS9aa3SaMmwr5N7QbkMI/HIxR/K4Yi1hCgytkUqfKKIbWYZ1nPA07giBH3jkaXq0IxFASiwBpv0YF5EMQW2mUbSkD/tIwyyEKSmxlKQ6GlFa6xJMl7BebLG12SVOJFlQIzNKyFGC3bmJUS7BTCFqkeeYnTZNV1BfOLrNVEnFxke3GEQ5ab0GtTIoTac9wL2xzezKNG4npH/rJklQRpsWQua4oyHVWsDM66sYpklns0tWOzn2rBp1OpubDy1GpnF2qhEc2veIe8efd4NmDffaFpE+Yc7wcEi1dXgUFQrx7ua7NxjNzx+csWqZSG+aUVrn1uXbrLy8hHvPdYcTeHiiiG6K+RmcrV2s2zdJS2Wk64HW2NEIezhgarpMaap+9/VpvadUijNxSWoNySCk3+mToIso9lQLc5wvT+6PYr+weHIUe6OLdW2XpuOydGl1EsU+BK00/bVtbn98nVBkGKtNnNcvHLqftFIkgxH0YhpuhfnZ8/h+MNYRfq0hDIes7WwwyCOMuoe30jyzbc7TjGG7z2g0QlQd7OXqsTFswzRwZ8vIJGdnawvPdqlNNx9aHBeAVw1QZZ/bnTYbH21zbnaJWrU2tu+HU/ZpfvEiWztdfuWb/z9enzrHF9/43NjH+Sc8uwwGAwAqlQqe5/HX//pf5+d//uf5u3/37/LLv/zLXLlyhZ/7uZ/jl37pl/gH/+Af8NWvfvUpb3HBv/k3/4b/7X/7V4/0uxcuXOTixYuH/rtxKJSaiJETnlvyPOfa9ev83gc/eGIuyJMQQtBcmePzsy2u/eBD1m5fRr9+DuMUEd4JD49ZL9P82msEVzbo/eBHjFZX0K2Hu/k9CcO2qM02kGlOOkpQUmOaBs5UfT8ea9s2eZIj3ONPuUac4TwGYcf2PRqOTRLGxN0BWmuEELiBC7Uyw5MWQTSYUYL7kMLB00blkng4Io3ToinXNPFLXlHqMq5X5ydgew5Gd0C+9x4ehtYa3e6RCxNVLt0V4aUiixLsYYfqPcfngwj8kkcWx3DcXD8psbTEfMZd3l4lIN7qkBrmAYfzvgNNaaxwSGmqevgTKE0axcU4BAS2axex9Uc5xoTAr5Xxq6Wi5b4/xNnZIUgiyuencD/3MmmacfP9W0Qzc+C4CIqLOZFmJFGK2e/hf/RR4bZD0VxoUZ1rHNkwrbVm7f3rdL0y+lz94EsLPKJmk7Vbt1g6N830+TlGnT55JrEsj6A5c+CmOUszqJ7ieLDtvZbtR0BzsnlX6xPnsBmmQWOmTrq7i5xqHf6kMsfvd2i8fnTb9e6tbUatqaPLnhybeH6OrWubLL+2euBfzZ6fJbm8RrK0hJhtYU418Hp9iOPi+AkcSjjMvbiEYQi00nsLEaL43/1z96OJkiov3Fv93oDct2G6jOE86KwdKx4xiu2s9zg3iWIfSZ5m7F5bY/3aLbKmi/VaC69y+Plf5jlpN8QcZszXpphZXcV+nAs1Z4CUim6vw9ruJqmjsRsBgfcIM5UPQVOUGg7aPVKVF1HsqYcTAU3XwliqkQ0TNm+uU66UKZ8w4uEwDEPgtyrImuTjnVsEu5ucm1smeIQZvU+K0lSd4CdrvHdzh/d/41/xYxff5LWXXsGyJjLFhLPljjOyXL6bVGg2m/zSL/0Sf/kv/2X+1t/6W/yzf/bP+M53vsMv/MIv8Ou//utPa1MPsLq6ys/+7M9y6dIlLl16gX/2z36F3/zN3zzV7/7ET/w4f/7P/zePeQsfncmnfEyYrMyeHd1ul7c/eOepuiBPwnJtLn3pNWY2dvnwux8yXKxjrs4+8hDrCUcjDIF/aR53oUn/e1cZbGyTXlqFM519KDAdG/+Ihli/EpB0+2infPRNdK4wM/nYZu8J08SrlvDui6xrqYi32+SufaRzVIQxruMgjokpjhvxYEQYRijfQzeqxX7PFVkUYw1GVKdqGM/iha4QeL5HOIqPbtPuDZGmhVEO4N7ImWmgyz5patPf6VKfbR4pmLllH2erQ5pacNhxrRTmYEC5UeZZj3UL06A2XWew0yNNBblpIfeqjY00xUoTnIp3iDNYE/dHjMII6TjovePJGMaY3QGVegXroSN3GnKF2NqhtLmFH5iUX5zBnNkrLNKw+e4Nopk5hHP3uQVgOTaWY6MqPmxuMjdXprYwdaQIeYdwt0df2Ohm/fAHWCbp4iIbV29y4XMvUJk5+gbeNE2IEwij4rU4NgTBg4eIko8U/fXLPuEwhHLp2Bt9YxhSqp4sOLVWZsgv36K9uUleb8Add6zWMBzi9zssXprHPsKNqaSk3w3h/AnRcd9jtCnJkgT7HgeuVymxfHGO2x/dJClXUNUKoloGz8Xq9vDjiMXXzt115BoUyofW++7oexM1p72WzOKUYbtPGMdFFHu5Md5FEp80ir06iWIfRdwP2fz4Jtvb2+ilKs5XVvAOSUpoNHmUkHdHeJnBhalZGvP18T5ugDTN2G5vs9XbRVUs3IUywVmVBCpN1Bsy6PZQroHVcnHdRxe6BWCVXcySQ9iNCa/dptZq4FfLD73YYFomwVydLE55d+0jWm6VxdkFnCOuU582QgiqK9PI+Qa//q3f56PrV/i//JE/Mbk/nnCmDIdDoHBG3s/58+f5lV/5Ff7aX/tr/I2/8Tf4xV/8xSe9eUfyR//oHz3wz+K4QsFnjMm38oTngjsuyO9++EO29WgsXJCnoTrX4rNTX+L2O1e4/u0PkK+vYJ7iBmrCw2MELrUff4ngdpvOj94lnJ9Hz888EYec6dgEjsOoN0LXDrkxzxVGJ6TSqPKkhR1hGlSbNfq7PfKSB/49jq5cFkKk1pRa9Se6XZ+ENIwYRjGqUUXcM38Ny0RXSqRZTm+7R32mcezN7ONCphlJGCOlLByqvovtu6c+FoNaiXynSzIcoUv+gYt1nWboJEM0qkeLPY5FntiFSzI43M0ljEKg6+/0yBID5XpgmoXjLEkw04RKo4xp26TDCKUUQghs3z2zNni0RmY5WiqEUQj+j+vzalgmlVaV7mYbJWUxLsEwEGUX3ApRkpJvdahN1TH2BI1RN2SU5ahG/cDHVnkOSip6vQFVNJbrkMcpau912HujEg6+Fg1Rgrm2idduU1qs4X/5PEbpzvtTON/SMCIW5gEh8oHXYhioVov+zg71hbsimdZ6ryDl4D5sr7eR04fMVtSg+wP0TgedZgzTlI9+9z2mV2aozDQeEGezOCEdRuTbA7JqHS0EVjrAzDcxZluI+l1nqej1qbaOcJoeQhrFdNZ2GXYGyPaQZH4eQwhsrxBgD6AUzqBP5YhY0r0IIZh9cYlKu8/u7TbxdgqGgaEU1VaVxhvnDoiH95PFaRGpPsVxmQcB6TB+4Pn8WoULny0R7vTo7ewipcJ2LBqLdbzawdix2DsOtKAQ6DTovfdTa703+vRwl6TWmmQwotfukwqNqgcYMy3Geonpk0Sx7b0o9uwkin0/WmuGm21uf3SdQR4jzjdwXr546IK41pp0MEJ3I2pOifmpVUql4xcDnjZaQxSNWN/ZpJsMMeou7rmzOw5klhN2BgyHQ0TZxlosY5/htYQQAqfho6ou3d0+g06fxkyzSHU8JLbnYC036Q0j2tfeY6E2w8zUDOaYzYGVac7g+ibm7SE/Mf8Kb7706uRzO+HMuSNG3uuMvJ8vfvGL/Pt//++f1CZ96pmIkWNGcTF5dPxuwkG63S5vX36Pd25eJpv1Kb85Q6P0bLWymZbJymdeYKo9y4d/8B7dZgnzhfmnIpI87wghcJZaTM/UCN65Qe8HOyQvXDjSYXaW+PUyYhAR7QyQjoXeG2RuxBmW0pSbtUJseQqYjk19pkE8jIh3+mhDFMU2hoFf8p+tWLPWhP1wX4g8DGFb5J5LEkYPOEUf66ZJxaDdI0OjfBc8G5QmjmLM/pBKo3q6tnIhqE7ViQYhcbuHsiy0IRBSQZyiy6V9wewolO8yGo6oHXNzI0yT2myDPMmIhxEyKQRHz3exGyVGvSGDboh0naJURynMYRdLFOKeUhrDKMTWhzqGtCYeRkTDCGma6L05maaU+CUPrxKc/fGodSHI16uHN8/7Lpll0t/tUZ9tIvOcKE5R9erh6wemgaxW6G21MWwL6bgoIVBZjrHdwxBg2iae7+JnGe7mNr5KKF+cwf7cq/suZLFXr3xHQBx1Q1L/FMes4xAnGVmS0t/s0N3uoYr2E/ySS2uhiVcrLsaTNH/QKa406votMm2Q1ltox4FcksmcpBsTrH/M8mvn9h2D6Sjmxrs3CBvTxGWN8jwwBDlFAYu7vYWdS8RUA6TE7XapvXn+VG/NqNPn9tVNkpkWvNLCvLmJGYZkrSZ5mmGnOW7ZL/aQUli31phZmjq2cOZeBIJSs0apWSuuwZRCmMaJjtJ7nuATYxgGlZkGlZnTjcIoREmBFrpwSeq7G3L/PEmZy70ijSF5YMNsGcO2xluEfJQo9o1dnLUuK7NTzH3hDdzKZGH3fmSW076+wdq1m6RVC+vFJl5t/tDHKilJukOMQcZMtcnsuZWxb5lVStPr91jb2SA2c6y6jz/bPJMlXg1kUcKg3SNJE4y6i7Ny9HXGWWCYBu5MGZnm7Gzv4BoOtdkm1iPMk3TLPrrksd7tsfnxDivTizTqjad+aZcMR4yubBO0M37y0uu89IdfGPvjbMKzidb6WGfk88rlyx/xP//P/28GgwGlUolLly7x5S9/hSAYj+/IiRg5JkzEx9NzrwtyR48wnhEX5EkEzSpv/vQX2fjwBle/+T7Zq0tYD+EcmXB6DMei8tkL+Lt9ut+7zLDWQK4sHoy0njkCrxLglX2yKEHmEiHAqlUwHYunHXUVplnMqquV0GpvQeQZPC9lcYJ07GMLWgC07xB1+njVgCex77VS9Hc6pCUP7ovia9cizyX9Tp/aaUVpIfCrZfxKMVvwjoAS9kKkY0Mui7sn84gmd8tESXmKLRdYrkP5XrFKa/rbXRLbRjdqd3dfLsmjmNQw0FiYgYPQmjhKsPohleZpxFbNsN0nUgJdre1vu6a40cyjiGy3R6VVO9PjM4sTcss6MDPyAWyL3LLIooQ0TpGBf/Sho0H3h6SehxEEKK1RSqMdF8plzDDEurWG0euijZz65y8QrFw8UGgHD7oYlVIgTicjKaW59vZVkmYLvXoODAM0xFHE8PouzVKf6QsLh2/+zTViLLKgBJmEtIhdS8tANuoMfZ+b71xn9a2LCNPg9gc3GU3NIlwXL8+JwhjtuUWju2URz8xjrN/G8hycnV3mVmZOVQaUxUkhRK4uwp0Y/PIc7u0t7Js3SWp1pGmStzNcmeEM+swsTVGbfbRZcEKIhxpHYXsOZpyQnWKOpRVFOKWzmVF3hztiNXAwur0XqR12BoySBFX1EcvNsW3XBQo72+4Q6/oO7kNEsfX1HUr9ZC+K/eIkin0IyTBi6+ObbG1sohYrOF9axDti1m+WJOSdEU4K55uzNGYbY+eiu588z9lp77Le2UaVTJy5gOCMjgOtNfFgxKDdIzc1ZsPF8WtP9IrNdCzMxSr5KGXr1jqlUolKq/7Qoy6EEDgVnyjNuL5+k1IQ4B5X3PaY0Foz2umSXWnTki5ff/nzLH9l+Zm/j5sw3qRpSp7nwPHOyOeNb3/7W3z729868LNSqcRf+kt/iZ/5mf/iKW3VXSbf2GPERJA8nvtdkKU3ZqiXny0X5EkYhsHCy6u0Fme4/N332F1rY7y8dLhTZ8InxmpVaX39NYLLa/S+/yNGF1ah8ZgFYCGwA4/xnNoDIJ7p2aUyy1HWyQUMwjDQoiiEeBKvNxlGpK79gBC5j2Uia2WG3QG1Y2byPYAQ++KllgqZZOgoRe0JPUJKhG0hSv7BmaAn1XEfQzwYkZgW+l5XpVTo7oCsVEbbVhGvlBrLsdCWRSY9+rsDalPVY8XWZBARKdDlQ9x/hkCXAuIwxB6MztTVGodx4eY7AeV5RGGEzPNiFuJRjCKkYSF9H53nKEOAbWGGI7zbG7g722hPkE8HyJk669tdVmcb2L57rCPP8R2MwQjF8RfSSuakwwjx+ksHZ34KIPDJ/EV2Njaxbu9gmUYhXt85PsIReadPsniueC/vXJtIichz4kGEV/YZeSUGOz1c3yEW9v68RdOy8EuCZJSgAL0n7qVeQHDtBkuvr1I65Xm2s75LMt3cFyKL1yAwlmYxsgxzt48OR5jdHouXFqhevHhqR+RZYJgmlVpAPBhC9Zj3JE7wLXHk7MlPwoHotlLE/ZBeZ0BqgK77GDOlYuzAuPLQUWxNvtG5J4p9bhLFPgStNeFWh7WPbtBLQsRqHefFC4cu1GmtSYcjdDembHosTi1TLlfGfj0yimI2d7fYHfUQNQd35eELX45CSUnYHTLs9SGwsOZ8XPvp+omtwMFcdoh6MaPrt6k26gT1071PWZySdUc4qeBCa4HG0pOf96mkYnBrB653OF+b4/Nv/TRTU1NPdBsmfHq544qET4czcn5+gZ//+Z/ni1/8ErOzxSie69ev8y/+xT/n29/+Nr/4i7+IYZh84xvfeKrbOVE4Jow9YRjyb//Tb7Clh5jnGs+FC/Ik3ErAa3/oc+xcXePjb31I/OIc1tzZOiomFAjTIHh5CXexVRTcbHlkF84d75CaMMY83N3TqaOYnwStiUYRNE8QYGyTnEJQfVh3j8ol/e0uqeeR2QfLiESaYXYHGNUy3CkmSFKcRylx0poojND12sEfjyJyzy/EKwDDQGXZ3gw7wDTJK2WG3SFBxSeNM9Aay7ZwAm/P/aSJhhG6evx+0kFA1O0WczbRGIb5icdaSKmKmZgnYRooqYr/f5wrMkqQ1WIfKSlxeiHexiZmPEIGJuEbq8hKGSOKMQ2QcsStH13l/BdePvYQLjWruNe2iBpHlw8BqN0uRqN6ePnQ3rbL2RnaV68xtdAg7HTR0y3QGvXxdeLmFPqQ39W+S56kRP0RXqlMZ32boBqQlQ5e2JuWSVANUFIW+0trRKuOlYenFiI1mn57AJdahz/AthFzrWJ3bbmYlvlEhcg7tJanGP7oOpHrHF6MluW46+vMvHC4C/UskHlOeG8Ue66CuGdR5k7HzViJS58kij3TmkSxj0DlkvaNDdau3CApm5gXm3iNQ2bCshfF7oUY/ZSpSp3ZpWW8xyCYnyVaa/qDAes7G4Q6wWz4+NNnE8UGyJKMYbtHFI0QNRd7uTpWC7RCgF330FWXfnvI8Fqf+kwT95BxQ1pDEo5QnZiK5XNh6hyl0sOX4XxS8iRleG0Lay3ks8sv8vrXfopS6cmNyJkwAQ6KkZ8GZ+TP/MzPPPCz119/nddf/wX+x//xl/nVX/1V/qf/6f/FT/3UT2GfIqnyuJjcbY8JkxXdo3Fdl9nGFBu7A4Ja+bkXIu8ghGD6wiL1+SmufO8DNm+34bUVjMfUtvxpx6z41L/6Cv6NbXo//BHh4hJ6tjVmd28TTsJybIzBCH1Ci7GWCgOKdtrHjJKqmKl4ihsa5djIJHtIMVIz2O2RlkuFCzLJDhgftWOTmxXsfh/RrBduyijGe4QxECqXKNM8+Fo06DhF1e8RBgRow9iPjwMoYRDHKZkG5XvFLMRMYm518DwHt+QhDbOIEx/5UjU6iknTnM5Ov3huKXH2xC/zUQRWKOKrSoFxgpilCyet0Ebh6DpMBJUSZRiILMO7vY6zs4OarSPnK+S6RLwwD/c2IVomUa2KurWG/+FN5l5aPlIkN0yT5mydjZ0d5PQUhymXOk2xdncQr76AVnpvfOAhpSaGICmXMU2TUthlGAToLEOaFvJ+l6hSGFJCmqKEgUKgEonZHqCVQteDQ7fYMA8KhA9jyNVSFa7KU5yDtWOTJflDPPvZYbsuyy8vc/uDm8RBGVmvgW2DzBHdPl6/z8KlebzK2d58a/TeDLs+oyRF1TyM5ebeNVKxp7UuhEqVFfvGsC1M+2Tn+GPjUaLYvRH62jZBr4hit7724t5okwn3koYx21dusbG2gZovYX9xAe+I68U8Tck6I+xYca45Q/NiE+usisceE1Iq2t02a7ub5J7AmQ4InLP5TGmK2YXFTGeJWXdxputjffknDIEzVUJlkt3tXZy2TX22ieXYKKlI+iN0P2Gq1GB2aeWpiMxxPyS6skW5p/n6i29y8TMXnqroMeHTzafNGXkcf+7P/Xn+9b/+13S7Xd5//33eeOONp7Ytk2/zCWOPZVn8oS//JC9tXOLXfvc/0J13qF1aHKuVyseJ7bu89ONvMntriw+/8xGj1SnM5amJgP0YEELgnZvBmWvg//A6/be3i4KbE4Sth0HlOckwIt+b1+e4Lm7gnUqomnAylmdj7mak3UEhFgkQtg2Be2AWnIhi/LLP057VeTgPl6HOk4xMGPuuR9M2ybP8oLvXNJCuixUlGDLH95xHmq2m962O9yAl2rKOd+pJRZ5JDN9H2CbszSvTjk0eeIRhRN4ZoI8TA7VGd/tIy0LV6mjb3J+ZFWU5aXtIperjPEIhleu7JHGKLh//uyJO8HwXYQjSKEaX73NmKY3Z6eNdvYkwIGuUiL74ItgWzvWbROdWDwiRRRNysU/TZpNur01jMDpWuGquzJAnt2lvbJDVG+C5QCGmisEAv98hdS2GcY7aE+iE1li2ie06B+aMKdclzyRLr57j1rvXGYxSpOcj1N4xqHUhRGYZGEYhUgqx1+SskZ5HmCqy/hDb947/NCn5UIuJQojiM3walMKwn95n2S35rL51iXC3R2drC5lJTNOkNlWlcsbRca01UX9Iv9MnNQW6HmD4ZYwDe1+QpylhNyTXArn3WTcHMZaAoFbCPmJm4GPh/ij2i4uYjZOi2F2sazt7UewVyrPNyXXPfWitGe32WP/oBt2wD+caOF89f6i4q9GkYYTqRJSFw/mpRaqVytjv0yRJ2drdYnvYQVdsvKUqzhnNsFRKEfWGDDp9lGdgTXu4z5jQbdgm7kIxT3Lj5hqONKlYPotTc7QutJ64yFw0tXeQV3eZNSr8zMtfZnFxceyPswnPP/eKkZ92Z261WqVeb9Bu77K9vf1Ut+XZOuNO+FQzNzfHn/1jf4rf/8Ef8Hu//T7+m0v49effZn2H+tIMn59pcv3ty9z+9ofIN1YwT7hxnvBoGK5N9YuX8De7dH/wPuHUNHJp/pMJhroo5kjzHBk4CN8FrUnilNFWSKlSeiQRZcJdtFIMd/tIwyA3TJRf7E+Rppi7fQzPQVQCRJLiZDlu48msjBrmnovuMCHv/sfmOcZDit/xMEbd43owTAOLIu6thdh3Girbhk6XcrO6V9xzH1qTxUnRYp0XYrllW/jlAMuzAYFhGoj7i2+O0E6F1nfHDWZ5EeHOD3n9AnTJJ+2m6PzoUh09GJI7DsrzEHl+cFfaFrJWZdDrUXesU5Wj3IsTeJiDNrl0jy6yUhozTnDqhShi90ekd0TfXGJv7eJtbmF4BllNEL5wASPJ0LnC7O6SlSuFmCtlsZgmDIRWIOw7u4Gs2aC93mbhPjEyCUd01jvEowQhIKgELC2W6O30iLZjEGAIQX26ymBkEGYCeU+DudaaNJfkwwiv5GHeuUFVCmEIbNfh3Gcu8tF33ifxPexhH+k4GIZAqMLZq+5tOBUCYzRClAL0TAvz4xvktSr2Mc59MRhSn6kd+e8feLxh4Hk2SRzDCfM87f6Q4DHGoE+DYRhUphtUpk/XiP2wyDwn7AwY9IfkJQcxVz0Qxb6XLE7od0NkpXxg/ECOT55L8vaQaqOE5TqP1/31CFFsdWMXexLFPhYlFd2bm6x9fIPI15irTZzm4YvUSinSXgj9hFZQY25hEd8/eT7u00RrCMMh67ub9LMRRt3DWzm7uaB5lhN2+oTDEFGxsZbK2GNe0nMcMs/RUuE1A5zchLAoIXySSTKVSwY3t+FGjxdbS3z2i3+YRuPxnAsnTHgU7oiRpVLpU5OyPAopJaNRCPDUW7UnYuSYcO8XrNZ6soJ0BJZl8eXPf4kXVi/ya9/6LdrNNvWXlh66Ue5ZxXQsLnz+FWa2u3zwvfcYzFYxL86d2Bw84dGwZ+tM/XSF4P3b9L7/I6JL548vKTgKrRnsdklsE+rlgzePtoksuwzaIRWYCJKPii6iyollI4MAneX7MVrleSjXxeoPMTd2cD2X6nT9yUXwhcDzXMI4g2NuxJEKM1dYD+lYUurBuLBhGhh7MWm153ITlont2ocWv2gp6W60yaRCG3tN6pZJZpokgxB3KKi0agjTxDKNg85L00Dcae/eH1IHQheCkrrnOUWegX/IhY8AVS4hdrt7cen7zmlKobMcVSrfff77HyME0g+IBxGl5sPtQ2EYVOoV+t0Bslo+WPYDkEvM/pBKo7z/d6tTNfo3tzA7HZx4BItN5BfPIwWID65hDEeowEeZJnZPkdTq+++TlgqBRNx575RCCBClEtHW1t2XLRUbl28ySBVpvQH1FmjoD0OcW7u0WmUWX13Z24WC2+9fZzjVRGx3IMvgjoAoigIdZRrEYUxQCYqY33BIMD8HFGKa7dp4sy3k5auFbmwa6Dh5sNxHa9x+B2NlDjwXw3PIuj2suekHxDGtNSpO8Ns7uNNLD3WN05xvMlzvIJfnONLFPIrwDXDGXGB5FA5EsdMEVQvuiWIf8TtaMegMkbXaAwtoAsAyyWsVBp0+9dlG8VNx5N59hI1+tCg217bxezFLq8uTKPYRZFHCztXbrN9aI5/xcT43ixccvniVZxlZJ8QaSZYa00xdaGFZ471PlVJ0e11u72yS2gqr4RN4ZzMvXQPZKGbQ7pFkKUbDxVmpPrP3W1qDTDN0LPEsm3KpsR+B1i3FrfYOGx9vc252iWql+tgud7IoYXh1C3cz4ourL/PqN34a359cx04YP8KwEN8+DfMiT+Jb3/oWcRwjhODFF198qtsy3t9KEyYcQavV4k//kT/JD975Ed/8zz/AeX2e0tTpHRfPOuXpOp/9xo+x9t5Vrn3zA+Try5ifIpfok0RYJqXXV/CWQ7rfu8rQLZOfX3lQrDiGLE5JBVA+wvEmBLpRItwd4tzjZppwerI4IcVAuQ55LsG1i5trqWDPyafKAWYvL8S7T9Am/Sh4lYBku0Num4cfO0pj9EKCaomHlQWKeYeHvCBRFDTtG6PU4SKQlpLdW9tknous3tO6neWYUYxGE9sWot2n3KoRVEtknSGyXimOVUMgXAsjTVGuUwiFeY5p7QlvSqFFMdvR0ProcijbwhACNRqh77tY1HGC3GtrRsr9534A1yHphJQOKKOnw/ZdaoYg7A7JYb+R3MhyLDSlZqUQiqWC3S7+xgZ1nSFaHn0q5CLDvrmG41gYZRfZaRM1zu+9N/e9P6aBiOJC2BRir1DIPrDJGs36hzfp2D569j6HSb1KWquytb6BuLFFa2WWLE4IkxwWqhganN0O6fx9xRWGgbIt8jTD1gpPaJzg7o1juVFmOBhiLMwSrK0TTc2ghHHwnKQ17s4Wpu/C3u8a55bw3/kAZRvQaIBhFG7MUYIaDnF7HfJGlRsbfZzrm7TmW9TmmycWSAXNKo32gPb6Nmpu6uCsTYAwwl/fZP7Vc8c+z7OGVoqoHxZRbOuoKPbhpGGCdI8f/SEMA+m4ZFFSfOdojeaQuaIPw6NGsa/v0LAclidR7CMZtfusf3SDTr+LXqnh/sQq9iHfIxpNNoqRnYhAWZybmqe2WCu+I8aYLMvY3t1hs7eDKlu4CyWCM4oXF2MNQgadHtICs+7h+P5YDmg5DVpp8iRDpIqS61OqBxj3jTcRhkEwVUVmOR/t3KC847Iyv3ymjtioMyC+sk19ZPIzL73J+c+vjr3YPeHTzWAwAD4d8yK3tjb54Q/f5qd+6qdwnIMmiN/5nd/hf/gffgmAn/7pb9BsPt2CXKG1fsK3ZBMOQ0pJnufkeY5hGJ96+/DD0Ov1+PVv/habQUrt1aVHmoP2LBP1hnz4++/SqbqYLy0ixnwI+bOMVprk2ibdy5uMVlbQ06c7gfe3O6QVF+wT3pt+RNVxn0t3pMxysihGKY1pmjj3zXD8pPS3O8S+TyY12j669MIYRVgyp+I6+LUnK+DLNKPf7pG7DgR7cWCtIUoxRzGlcoB7/wzCU5CNYnqjBHUn2nuEDidGMWVD4NfucUZqTXd9l9B10MHhx12xzySm1jSaVQzbIhlGDIcjZBAUjc1SoTp98j0R0TTE/rk4z3KkBns4xKgE+/MiD8Pa7eK6DiOl0UGw75DU4YhMmGjTxBQa66iWaMDsdmnONh7eMa41ShYOT600Mi/mLZpOUfpBkmFsbOFt7xBMlwguzGDWDrpM74hrV793mbBSIe+FxNPTiP4AZTtk9Vox3zBNEey5Rx0TWyrcio+IYhrdXZZeXSXqDbl+c5ds8Zj4sda4V69z8c3zdNd3WdcmNKrFa7l6m9j1yVvNB8REq9unMehw7pXlA2JkFidcefcm6eoKejhC3bhNajpk1RpaCMw0wQ6HaN/DXV04IByZaxs0LU04iMgMm3gUFwJ4rYwx09qbbUkhJm9uM+WbTF+YP1GQ1FrTubVNe7tLWi4VgrdSOP0hvmUwd3EBe8wbgE+LzHKGnT7DQUhedhE1H/GQN/i9rS5JuXR8ERSAlHijEZUDC7nFyeOh9MD7o9irs6eOYs9Nt5i9uHSoW/vTjlKK/q1tbl+5wcjKMVab2FOHz3jUqigsoR/T8CrMt2aeevTuNIxGIzZ2tugkA0TNxdtzbJ8FMpeMugOG/QGULKy6h/EMXx8rqZBxipkLykEJ3/VPLdxnUUK6M2TKr7Mws4D9iPdJWmmGG7vIq22W3CZffOVNZmfnJgsIE54J/tE/+kf89b/+13nrrbf43ve+97Q356G4fPky//Af/j/3/3l9fZ1er8f09DStVmv/5//df/d/p9Vq8dFHH/EX/+L/Dd/3uXTpEq3WFGmacP36dW7fvg3AW2+9xX//3/8/nrqT+dOl2owxd07kkxP6w1Or1fjZ//K/5t0P3+c//s7vYb48Q3nu6ar8TxK/VubNr3+RrY9v8fE3PyB9ZQFruv60N+u5RBgC78IcM3MN+j+4xmBrm/TSeTihwVdKebIQCWjXJkuy50qMVLlk2O6RaZCeA6aJyBXmdhfHtig1KmcyZkDmEm2YaCWPdZZq2wYliUcxfrX0RF2opmNTn2mSjmKi7rCIqwKO5+JN1THuiA5a342ynmL7bN/F2O0h0xx9J5ItQPheUb6055w04xhv5qDDLosTEiHQx8zkU4GP6vbBc4iHEUGjglv2sRyLaDAiHYZow8BEY/a6aN/fd8yhFGaSYEQRRq1yrBCJ0hiGoNSqYA0jRv0+uQaJQKQpwvUwAg/zGCES7syqPP37qqUiHo6IR3HRFA4IKXE9B78SYIQR9toGXhRSPj+F+9rLiL0IqdiPuN79e3F/SOp7iNkWdsnH3G4jRzE6zQu3pSHQtoWyTMwwxlYCt1w4daxOl+ZC8f3VXm+TnTRzSwjSWo3+VocszaDk7f/cOL+Ad3sbde06abWKchyEUtiDAU63x7kfe+mAEAlgey7TMzU2b6+TL8xjri5j3doAlRXHpWeTVWfxSt4D+9hQisbSNLOBz9p718lLDXSrcWBmIQCmiZyfY/f2GsFOD9tz0Ephug72IedSIQTN5Rnqi1NEnQFZnCIMi2B+6bkQIe+42frtPlGWoWo+xkoL4xHPTVqr053XhLF3ntnz7Wq4s4pxx6Zw5NM8ShS7P4Krkyj2SeRJys7VNdZv3CJreThvTuOVDj/OZZaTdkPMMGehPsX06urYtxUrpekPeqztbBKJDLPh4882z8ypmCUpw3aPKIoxag72cvWZLryUWY6KcxxM6kENx3n4c57tu9jLDp1+xO7Vd1lozDHTmj61Y1ZmOYMb2xg3+7w6u8qbX/kytdqnJ4024fngzszIZ9EZORqFvP/++w/8fHt7+0ABTZZlAMzMTPNzP/dzfPDBh6yt3eby5cvkeU61WuPLX/4yX//6T/O1r31tLMxvk6uACc8FQghee+kVzi0u8++//Z+4sfYx1ddWHnr22rOKMASzLyzTWJjmo+++x/btDuKVJYxPyet/0hiBS+3LLxKsd+j+6F3C2TnUwuzZCFvPkVdd5ZLedoesUkI49t2bDRfykoscJaidLtXpxpnsO63V6UqGBGizmKd4lu7M0yAMA/cIB6TMcuLBiCROi9ehNZZlEpQDLN/Z23BNHqeMhtG+c09lEmnbRbmLc0d8VBhxgtXuISolzNGIcq38wOuNhjHSddECUHqvLXtvW4XYF5yk52HkGfk9B6jp2JRbtUKkUnr/hi8dxURhiJJFOYrrOUSZWThCj9s3UYJfKhrODdMstsW2MCwbfBdzFJEj0HGG5VqHC45Zhu0c3+x9L1pKettdMs9FN2sIIYpXKCXi1ibO7/2A+lyV2quLmNOrdxcODxEh7yAzibrjPCkHGOUAQ0rU7U3c0ZBkegoBGAgM28TxihIR0etTUhl+vbhQjsMYZk5emNClgFGvje1a+yMJio00MJZmMfIcszNApyOEYSDmmngqfUCIvENjaQrDbLNz7RpJUMKUOXGtCoChJJ7vYt0vIuUSJ0txSj4qk4RRhj6/eGRSXgOjcpVrP7qGWa8UBTxS4TsmU0vTBPUHbxYMw6DUen5ugJVSxP0hvc6AzBboegnDq5wqin0c+4VZJ7nAlNqbty0Q6Dunl3vQaH2fS/IRothys4t5rYhiL11cpvKF1jMtDj0uou6QjY9vsLu7i16p4fz4Kv4hi5h35oiqboSbCy62Zqkv1MfipvI48lyy09llo72FDAyc2RKBfTbpBK0hGY7od3rkSMy6izNTe3aj2BpkkqIThW+7lMvVM4hAC7xqgC57rHfabH60zbnZRWrV+pFfl2kYEV7Zwt/N+PELr/Lyf/EirvvsLwBN+HRyR4x8FmdGfuYzb/Ebv/Gbp358tVrjv/1v/6+PcYvOjokYOeG5olwu8ye+8Ue4cvUKv/nNb6IuNagsTX9qHKdOyeOVr77F3I1NPvzdy8QXZzAXWp+a1/8kEULgLDSZnq7iv3OT/g/eJb50Hg4RmQwhkPLBkpEHnjPNscbc1fAwhN0BWTlAHOJkEwgIPBKliAejTxzTM00TcvmgC+v+v5tlYFmQZp/o75016Shm0AuRpQCawb6Ik2c56WBEEKf4tRKD3R6pEKjAQ9gWujsksxy07RQCl5ToHLQAadtowNnpUJ6uFbPh7kPmOcqy90RIcWAmn9YarRVCGGCZ6DiGw2Y1CoEw755jnJL/gLtXa00YjtCl4HCBKsuxkgSn3iBPUvrdIbJePfCZEUkCSqEsiyzJsF37QXfeKMKvn/ZY0vR3eqSlAHFn4SaK8da3cDttmKuSf/VF+lttGq0qQhjFLjrFLa4aJSSjGADTMjEdC2N5HvfWJubtNdJGA1UuFXedcYLV71FWOQuvrDzy+brSrNK+vUt+f8mWZSGmG3e3uj+kcsyMYYGgPt+iOttg1O7TySJo76AX5jBs79BXb+7s0pxvIBBE3QFppXK0EKk1cTeEwYBMQYJZCKcqIYkl4eXbLCzPUHtOEw4yyxh2BgwGIbLsIhaKYqiz+pb2Sx5JmKBPGPlgxDFe+c454U46p1Aj9QGXpIZRinljB2f74VuxF6ZbzH7u9UkU+xC00vTXd7j98XVCMsRqA+e1i4dHsbUmGYTQjak5JRamzxEEpbEfMR3HMZu7W+yEXUTVxV2u4Z5R6aSSilFvyLDbR/sG5rSH+wy7bZVSyDhDZJqyFxDUgzMXmYVh4LcqyFrOlZ3b+LtbnJtbJthbnNJaE7X7JFd2aKUOX33ps5z7sZXiGmvChGeYZ9kZ+Tzz7J6xJ0w4AiEEFy9cZHFhkf/4nd/hg9uXqb55DvuIxsHnDSEEzXNzfGG2ydUfXGZ97SP0aytIA/qbbZIkxTAMyvUKpWZ10sT9CRG2ReWt8/jtAb3vfcSgUkeeWzogovjlgCxMoHqMy0mDEWc4M8/Hl6SWkiyXUD1eXNWBR9QZ4FUDPkmfq1/2SYYxuefBkdfMGjNJEM0KIkrG5tiXaVYIkfXqg85O20JVK4wGQ5L1XfKyD34hCGkpUblE7c2+1FJiSLX3iwJhCLTnkivJoBeSpTnlZvWAa1BmEvy9nKYQgC4KV+5YpIyieIYshzghtUx6W238kv9QZUtBrYxq94n7A5TvFyU2e25MEcVYSUptqoYwDMLusGi0vu+GVVTL2J0+uR+gLAuVy7szgpXGCIcEno3lHe/ARBfOongUk6Y5ODnGYIi3uYUlEzg3hXr95f2/nyQZ4W6P2mzr+KdF0765RXu7g4wy0vmpYv/kEiNOcT0Ha3kOJ4qxdrro7S3MUUx9rkFrsYlXLx8QOr2SxyiK7kbej0CEI/yyj1cr4V5dJ08SOMq9ojX2TpvGi4vH7yMKJ2J5qk6pVcP68Bad3TZyqnXQcZdLzJ1dGqaiNl/sH5lL9DE3rkl/hLm5RVqvk66uYpS8/fmGIo7xNjZZu7aOV/FwSyfPvdNakwxHyDQvRmlUSxhjduOs0aRhTL/dI5b5J45iH4ftu9i9EWkuj3ZHZhIrz7G9+79v7oqSWmvYGWJd38ZNJOXzMzivnCvm7h2x2Qej2EuTKPYR5GlG+9o6a9dukjVcrFebeJXDP+cyl6S9IcYgY67aYubcuQcKCcYNrWE4HHB7Z4NQJZh1D7/VOjPhNM8ywnafMBwhKjb2cnlsvs8fBZlLVJxhKUEjKONVPM6w3/5QTMsimKuTxQnvrX1Ewy5Tky7m7SGr5Rm+8MbXmZqampgZJjw3TNq0x5PJFcKYcO/JftIpdDZ4nscf/qlv8MrNm/y73/1PjM5XqJ6b/dR8sVqewws/9hrTNzb57X/xH9ldqJK8voyol9FS0e32sG9uML+6QNCoPu3NfeaxmhWaX38N//I6ve+/TXT+HLpZB8AJPOzhiCzJwT3itNsb4fveM31BfS95kiEd+0QXmTAMlClQubw7M/ERsH0XdzgiTxKk5R8ikmnMQYjwXUgyvNL4tJaPBiNkuXR0xFyADALkqI3w3Lt7dHRPw/QeCvaEvrvPpQIfOZREhoHe7e0VVoii5VprhFYIWcyVRCm0udeerDUiy4v/lTmy5CNqZRKpyKIYexhRnaqdLuouBOVWFS/OiIYjskFeRHOFKITNelE4I7OMHHG4iGIaiEYVazhCj0ZowwDXxpASU0qCSoBbPr4tNB3FRVu27ZArsPsh/vsfYRo5+sU51MXVu/tu739Us0r31uaJYuTutQ120hT5ygrm7R2s3oB8qgGWidI28SjB02D5HsbyHMb6FrOzNXKp2Ly+ib62iV/yaMw3cco+zfkmg5u7ZMeJkVrj9HrUzq0iECy8sMTND24SL87B/c2pUmLd2mBmunZkRPswhBDMvbiEv7FL++ZNUttBWxYiyzBGIypVn0qzgZbF2APLsTF6IeqQ59JKIza3SKamyCtlzCg6cKxqzyNaXoarV9m5vsXiq6tHv3Q0/Y02u+ttUtdBOg6GVNhXN6jUS0yfm3tqoqSSiuFOl7A3IksSlFaIRgkaJQzP4fGe5QXVqSq97R5ZEBycaayBJMWORpRblb3xCsXv7JNLWO/g3tjBL/kELyxhNkp71056/xr1zqiCA1FscxLFPo64H7L58U22t7fRSxWcr6zgHSHWZnFC3h3hpHC+NUtjtoF5Ro7Cx4WUina3zdruJrkLdisgcM+mSEezlyDY7ZHKFKPu4rSqz+w1vaZYiNSxxDVtKkEd237yIrMpTIw4o/32ZVRk8dNv/QRf+twXx3726IQJD8vEGTmeTMTICc89K8vL/PnZn+Wb3/1dfvjNDyl/ZgW3/PwUhByHkor3v/VDkrdW8EyB8dEGyetLUPHRZY90TnL78jpLAvz6RJD8pAjDIHhpEXepRf97Vxlu7ZBeOAeOTXWqTn+nSx6b6JJbxF016CTDCBN82znYcvyMsx/7PQ37DQqfACGoTNVRm23idoqslNC2BWhEkmFGMYZnIxwLexA9UOTytNBKkaU5lI5/76VSCM/FTLN9cUFLib4jNGhdNFrbVtHQfM+u14YJSkHJJ+0NyJMMy3VIwxjKHmacoDwPbZroeyL1QmuUYSCUwuz2oVXMVMQy0ZUSSZLS3+lRmzntzE+B5TlUjnEuyjS/O2/xMEwDUSsjlMZod6nYLmbZ3ZsPfPw2pGFEfxCBZeOtb2G0d0mXphh99XW0beGub+Cs7yIWpw7+omMVDtLjnnsU0+4PkS8uAgKx0MK9vAYI8matKK0JXJIwxrQMjK02TqfHju+RtRqw14YYhhG9q5tUHJO5F5aoGDt02h1085DjVYO5vklruoq5d+PolnxWXl5h88o6kVSklTIIsOIEJ4qZWpqm+gjHvhCC+vwUtfkWcS9k98Ymozghm66xa1p0uiHOjU1qzSrNxWmca5vEeuqB40KGI9CQVyqgZCHA33/smAbpzAy927dYQB+6oKHR7FxdZyfKkatL++MZJCD1FHGnT/Sjqyy/dh7zmNmJGk0yGDHqDlFK43gO5anaJxIxe5tttq5vkdgW0hCoqof2bMw8w08zfO/kY/WTYlgW9Zk60WBE3Bmhzb1zYZZjGKC0oNcJi2NIaPyyj4vAuLGLu92ntNDC/7FX9qLYem9kA3e3W+vis3pzB2etx/x0k7lJFPtQtNYMNzusfXSNfhYhzjdwXr54qFirtSYdjtDdmIrpsTC9QrlUHpd1syNJ05St3W22+m2o2LhLFZwzWgjQShP1QwadHtIBq+nhes/uNbzWmjzOIJWUHJ9Stf5UItD5ICa/uovdSbh4fonp/+pVhGHwwZVNPv61/y8/+fqXOL96/pkVeydMuJ9neWbk88xEjJzwqcBxHL72la/y8sYL/Nrv/ge68w61S4vP/cr91vvX2KhaiM+cwwaszhDrh9eJZ6rkF2bAMskvzbJxeZ3zb1V43DdInxbMkkf9J14muLlD9+13CBcWYW6K2kyTLEqI+iOkVAjAdhy8xl0x4XnBsExElJyoMWo0IpfHtrCeFmEY1PfEkkG3jzJEIV45NqLiYSQ51jCiMlUfGweq3ncinvQ4jbYsTHmP30zc0zihVOEULB7NUU8ofY9oOKLiOshcgutgpCFmHJNXKwhVNPEW7bpFqYU1DJG+ixUncI+QKFyHLMnIogT7kHmUjxVDIGwLO3BP4ajV6FwSf3ybYBRiOAZqeZr4YovMce7GsefnMG7cxG6lB14nUh2YiXkY3Y1dspk6+/vdMDBfWMC7vYv6+Dp5uYSyLMwwwrkZ47o2o2YdNTfFgfeqUiKrlOjsdODDm8y/tAwf3mJ4MyStNyDwird3GOJ2OjSbZZorMwe2xQk8ll8/TxrFJIMRWmnsZoBXPbpo5LRoqdi6vsGwUT1QUKOAeK5Jut0luXyTWqNCutshb9YLx60QGKaB7g1IazVAYyQp4ghhWpZL5FIRd4e41dIDc9NG7T67YYpcmeeBY10IaNYYCsHW1TXmX1g+9G8kwxHrH6+RWBZZpRgLILoR9vVN6s0q0xcXHq6VHc3u1Q02Njvk9TKqHhQLT3vPkQPhIET3QoLa478ZEqZJUK8Q1DRKSvI0Z9gLSe91S2qN3u2Tfetj7HDE7BdexH3t/lZssVdmpVFaI3sj9LVtgm7M4rlFWl+9iOW5E9HiPmSW076+wfq1myRVE/OFFl59/tDHKilJeyFikDJdbjC7vDz2RSFaFw2vazub9LMQo+bhnWuc2XEgc0nY6RMOhlC2sBYCrJNKmcYYpRQyyjByTc0v4Tf8Yh7zE0RrTbo9QF/rUFYWy5eWqX9+6sC9UOuFebKVlP/z/d+n/uEP+UOf+wmmp6ef6HZOmPA4mDgjx5OJGDkm7Dd0CjGJaT9G5ubm+LN/7E/x+z/4A37vt9/Hf3MJ/5hB/s86l7//AfJrL+7fqolGGeerr2B+tEH6rcvEry6im2XSwCbqDvdbXCd8coQQuCvTTM/W8d++Qf/tbZJLF7AD78kLN08By7Ux25JMqeOFvzTHcewzFAcFXq2MWwlIRzFJlKCVwkwlXtnfmyf4dG+atZRF07QQBwXF4xCFU/Heghnh2BhJirTtQvA5QtAVaVZEtwEci3wQ7j8ndxxPtoHd7SE9t4jgKo3Ic4wkRQUe2rXRveFeFPfu31GBSxRGZ3ZMm7aFMYyRUDT3xsX7J4QAx7k7a1KDyOUJDjYNcYq5tom4eRvXd5FvXkDuOeOtNCNPc7S5J8wIQdpoYG13Ect3BT7RGVBrHu8cD/shzN/nODQMjOVpjMUWVn9UCMZegN+DONcPCpH3bvlUg8GN27SihMVXzpGEIzrrHeLOLsIQlCoBtddWsI9pKHd8D+f+qPYnZOfGJsNaBX3Y/hACNdOgv75LI0kwtnvkg5C00QRDYGiw8hxcDyOKMWzzgTi+Vgq1N7NUari+3sa6skatWaW1PLP/fu+utclnjt5/aI2Wkt0bW3Q3OhimQa1ZYerCApZjkwxH3PjwFsnyArgOujdAb7dRUpO4LqPtHu3NNksvLVOaqh07bkJJRdQb0G33aA9HpJfmwTt8cUlVSkTdPl4p/0RjKR4KUYiJw15IXqsW8zlzibXexbmxi/A91MsXGMmMbpYyd8h5RCtNvtXFurZD07BZOL9I+XN3o9hq7zN65z+fZpJhxNbHN9na2EQtVnC+tIjnHn485GlK1glxYs1Kc4bWxebYF4Uopen2OqztbpJYCqvu4/vNM/tWzeKUQbtLnCQYNRd7ufpMGwdklqPiHBuDWlDBdVye9DWIlorkdhtxvUerWmPp9VcIGkdf79uuw/RnzhH1Qn71e7/BajDHV9760sRRNuGZZjIzcjyZiJETPnVYlsWXP/8lXli9yK9967doN9vUX1rCGPNZPA+LVpphFCNqB+f1CMPAenEBc6GJ9cNrxKUu6XSVUT+ciJGPAcO1qX7hIv5Wj+4PPiBsTiGX5/cLG55fBEElYDAIUUc4srRSmMMR/glCzyP9dcPALQe4JzTKPkmyKCEajMj1nhtS66JwJleF8HbMOcgQAhHHUKrd/aHnYA5HSHUwsnb/vjbjCFEp9sO9oorjOYwGIdowUNUSKIURpXCntdq2kc0qWogisu3aGGkG/l3HjrCswmF5RpiOjakVeXeAziXSc8Gyi30VjjCkRNg2OssBTTKMcEp3Zq1q9J6QJXpDnPVNvGxE6fw0u940+dQ0eN7efij+lojSAyMFZKWMur5ztwNJKpx2j+pr54/dbg3oKIVhVPx9z4FqUDyvYcDeopdIUtK1Nun8LCfdkGaNOp31NnMvBLilgLlLT/dYVlLS7wzQL6wc/SBdNMBvDmKsVy7i9EOs7U2kZaMNgdnpYmLAbOmuQH7nV5VCyeKzIfZE73xlllxpknaf8EdXWX5tFRAkWQ7eEc6xOEa+dxVpmaSL8+iSjwAGnR7b33yHueVpwkF0V4jc2CYLY9K5mbtjD4CkP0TebjPdHzF9Yf4BQTJPUoadAcNwhKx4pA2frBocKUTeoXAnR5Se4PdtHMbkvo9IMuwbu9hbffR0A/WZF/ZdwFrD4Np1ptMMc29cg0pz5M0d7FsdlqdbzO9FsbUuXJJaqX33u1YKLURxrnruv98OorUm3O6y9tF1+lEI5+s4L144dD9oNOkwQncjSsLl/NQS1Upl7EXcLMvZae+w0d1Gly2cuYDguJEaD4HWEA9DBu0+uSEx6x7ObO2ZzepofWceZI5vu5TLDSzryadfZJyRXd/FXA9ZXppj9icu4find9z6tRLely+wsdnhn/3Wr/LW8su89dpnJvMkJzyTDAYDYOKMHDcmYuQYMe4XIs8brVaLP/1H/iQ/eOdHfPM//wDn9XlKU7WTf/EZQWt9dCEGIMoe9ldewry+jfV7H6NWZmFl7glu4acLe6bG1NdfI/hwjd733yG6uAq15/sL0S17KCkZdQfIkg+OhWDP/R2nWKOYSq20f+P7PBP3Q8I4QVUCsO86X5RU0Bmg+kOMevVIfcpUCiHvjWLvfWdUStiDAVlQKkQwuEfo1pjDENM2EHslCTrLMfccWZbnYLb75HdEUMNAlfacdKlEmwbaKIptjnJxnrmTf+81SEA1Dp6PdZohtUIpgXA9cCz6aYY5aGNbBnmaYe528Ta3cBwov7ZE5dKrxULTuzdAGAd2r6BorI7DGOW7xX67d35pmmPf2GBuaRrrmGM0CSOSYUx2ZZusWgFhYA5CrBs7mPMNxNQ9YvsoKYpdSqeYeVb2ibZ3TrXbngTxYERWDo79XqHdJ88U6eIcgWVhTDcwp+uYcVrMLZ2uo66uIbPGATFSa70nRBafDavbx7gzQ9cQ6KkaoWWy+dFtZs7Po49sic6Q714hnm6Rzk6B1pgCMAyykk82N83ty1exhSiEyG6fbJSQnHuwXVyVAka2xW6vj7vRoTbXLJq7w6hoxVYSXQ8wWkUrdrrTQ/uneF8dh6wXnfy4s0Jr0tu7eJ0EM5aopRnkl5YfXPwQkNRqDLa7VCol9LVt/G7M0uoiU19/4cBnQAiBKQRaCJRSqHsEfaUUQmuEYTz317Uql3RubrJ25QZxycC80MRtzB7+WKVIeyH0E1pBjbmFRfwzdi4/DqIoYn1ni07UR9Qc3JUGxhk5FZVUjHoDBt0+2jexZn1ce7ydocehlSZPUkSqKbk+pXrjgRETT4KsN0Jea+P2c164sEzrG69jPGLEXQhBda5JeabOj67d5t1f+5CvvPJFLl24+FRe24QJj8rEGTmeTMTICZ9qTNPkc29+hovnVvn1b/4Wm7c71F5dwjyj1d6niWEauAhG8dFzuYQQmKszBDfbLG6ERN/9CPHaCsYxBRMTHh1hmZReXcZbatH73lWGmyWyC8vwpOJ6TxyBXyvjeCnRMCLth+wVsOJ6Lt507clFFZ8ieZwSRjGqWTm0rINWFWOzgx6EiErpQUEyybBHEU4lIBqEqErp7miPvWZepz9AIlC+X8SDZY6RxBieC5W7AokRxQT7BV6Ccr1Cut0tYt733mDuiZDFo4r/ElI94GYjzY6NCj8sSRiTWhZm4KOzvBBfDYExCFGGiazVikIdrRG2jTItsjjH/Og6QRzCxVnkm28QmQbrO10G719n8eVV3MBFJMnBZmHAtEz8kkcSJUgNSImQCvvaBm6eM7MyQ9A42rmbDEfc+OA2yco5YiHQe66THEikxFvfwMlyxHwTAHunj+O7pKfRcMdsYou+Ryw8/AGgtruky/OF23f/BYgDLkbTdzD6A5Rl7je/6ztCu9YYUYzX62BcOigQ6nqZ4U6HKaUQmSyeXwNhBGlWPM9ul6xcKoTIffH8nuPaMhldWCF47yMspVDbHdKlIxbhTAOlNHJuit1rtzBtk35vQOZZiKlSMYv2wAYePav1AGfQ13UqcglrbZybu3i7A9LPvYaslY4um1Iaozci/95tGucWWLqwTPULU8dGZIUQmKZZOKeV2ncZa9gfr/A8RrfTUcz2lVts3t5AzgXYn5/H8w8/D+ZZRtYJsUaSpcY0UxdaWGP+vae1ptfvs7azQSQyzLqPP3N2Uew8zRi2+4xGI0TVefaj2FKiogxTCep+Ga/kPfFjXmtNutVHX2lTNV1WXjhPZfbsZngahkHzwhz5UsZ/+uD7fO/y2/yhz/44c3MTE8OEZ4PJzMjxZLy/DT+lFK2F+rm7eBtnarUaP/tf/te8++H7/Mff+T3Ml2cozzWf9mZ9Ys6/fonu+2vw1uqRj9FSUb7V5XP/zX/FcKvDh9/5iNH5FubS9OQYfEyY1YDGT71KcG2L7g9+xGh5GT3Tetqb9dgwXYeyW7SyFt0qY3JcaU0WJ6RRgtIK0zBxAw/zFM3MD8NoGBaOyKNetxCImQbGehsjy4q5jYYJWmEmKbYpqMzUEaaB0QuJ2nuzHfecSuL/z95/PteRpWme4O+49qsVtKQKMrTIjEgVkZVZtd2lxqq2ZrqsrM16Z3et96/az2s2PVs102J2SnWpFBUpIiMzQzOoQACEvlq5Pmc/OAgCBEACJMgAg/iZpVkGca9f1+7nOe/7PEmCoQusRBL5Q5RtIXQ9Tb/eXbngBVhSbftmppgZB8cxSbwAZZmpILS9miKOwTLTQaJSaYv2rrRchUIf+rgP8J46HgqvP0QV8ghdw9Q0ZJIg/QCkQmbdVC81dFQYoW81MJZXEDpEszXCoYlxcXy7whHkZI1es8vGzTvUZsZoXV8lLOxfV83QcfMZZCLRV9cZHymQH69g5dwHegUqpVi5voI/NYlmW+jdIXEcp7+/Lcr4U5OIxSWsUhbR88jbFpZj0x8MwXpIJX5/SOYrshlQSuF3B8g4QTM0nHwW3TLQwgh5/4elgs4AWW8jBz7Geh1p24hD2gH1+Ukyn94g0gWRm0mrHBOJBmhxhNNsYoyVIbP/+1GpwLDVx3Ut/NUtZLdP7DpI2wYpMTo9VC6LiGOUaaY+q/dVACrDICoV0Vc2kJqGelDLYRwj2wGDJGYzGGJMlQ+1dDFMA+IY9IeI81HyZIM4hgHaYn1PKvbgs9uoYu7g21oUo680MO+00X3FuZFRXn7vrWP95N3W7Ae1bvOMi5JKKYbNLms3Fmn3u6i5EvZ75zAP8thEEQ18krZHRhnM1yYoTBVPrKLwSRHHCY12k7XmBomrYY1myFgnU0WkgHDg0Wt2CGWMVrKxasVT8zrwKMRhjPJjLM0gnylhmU9/Il/GCeGdFmKpw2i1wuSbr+IWn1yqvWGZjLw6i98b8t8+/Sdmvhzh3be+RT5/8nY7Z5xxUiRJwnA4BM4qI08bZ2LkKeJZfkn7OiCE4OXLLzI3NcM//vzHLK3epPDyLMYhxuPPAtOvXmThf/lbmhNltLH9A18lFca/fMELr7+AYZmUpkd5a7TM0ic3WPnFNZJX59Czp7+N6FlECIFzbozR8RK9jxbpbtYJL84f7oP2tUB81dkxOyRhRL/ZQVoauCZoOnEiCXo99A7kq6VU0HtMlJTEcQLWQx63moC8m4q2CpJEoukaZr6wp3rULeZwchmCgUfkB9uJ7CbWWAWhCYatPl4YkVjbFWdKQRSjeT6WgnytuE8UzZXyxK0esWOn7ZZq+3lkmSSJRAkdvT9EZNJqDxXFEMUIz8cydPSHbduR95VKha67g3uxncoex0SZDEITiCjCXt/CWd+AooP/wjiyWko/vgVGqwe77DZUpUC/1WNEE+Rtg2azjaqUDj4Enk9ORVQvzB7peex3+gSWA7aFAAzLIO77KE1LfQ/TSHLCXAHzyxVKxSxjl2eRUUzj80XCUuEBwrzCbLYpXTg4ffdJoZSitbJFa7NN5DokpoEWJ5g31iiNFLH8ID2f74ppg4BkcY04kyGqlJGlMugCs9FB3lxCn53Yf08zTYzRCuXYw2v0CW2HIIgQQqEriT5ZgfLBgwVl6MRRjKEJ4s4A/9wM3L1OpSSybZQAZ3EFf2YCYe6qXlQqrXxViiifw240kLmDB+3a0EPr9REyIh4tIHI1yFj3pUzvxck5eI0eyUMqhTXfxy0coZ37ENIArNSnVTONNJFXKWj0MRa3cIKY3LlxrF2p2Nm8izccQvaeuC36HsZiHaMxRBudQLwyT+bD3zDz6oP9UQ/j/tZtpRRqV+s2QqA9g63bMpF07myycnMRzwZtvoxVrR3qgxx0B9AJKLt5JsbPk8k8+rF+Wvh+wEZjk/qghShY2NNF7BPyUZdS4XX79FpdpAVG1cG2T4+X83FRShEHEQQJGcshVyig609/OJ0MQ8LFBsbmkLmZSUa/f+lEuxQehpPP4HzrAo3NNv/px/+VV8Zf4K1X3jj1KfBnPJ/cbdGGs8rI04ZQZ9HNp4YoikiShCRJ0raXZ+yF7euEUoqbC7f4x4/eR16qkJ86+MXzWWDY7PKL//ovtGfLyJemEHk3DXlY3ML5aIkLM1Nc/v6b+7avv9Xmy998QW+8gH5+/LkzpH/ahGstOp8s0R8dQ06OP9iX7YzHIoliuo0WlF3EARVKKojQuiGFkcoDxYejIOOYVquLPEr14MCnqOtYj1kNJ6MYrz8kCiIAdFPHzWW2J1YOGEAnkkGrgzcMkJaJcGxwbYQQSD9E9QZoAFkHNfDTFkzTQOgahlQYSUKmkMV6zERtlSQ06x2S0t4KC7XVJtENnPUNzEGfaKpKXCsiZILM3as41TyfTK+FNn9f21irz3gSU5keZeWLRXqaSVIp32vZjiK0VoesN2D6pbkH+kPuZuPmKptWFnIZgqFPlCiUbaHYFl8UaUVpEFJaXuKl77+2c5+t315j04+Rk6PsPyYKsdGgimT80vTxduIjoFAEvSGt9SadjTahEIhqGTFSgrtVg1Ii6i3cVocg65LMjkEQktxaxZuZTINfkgTpR0jLRNc1ND/EXVlDvzBzbznbGCvrzE1VsDIOQW/InS8WCS/NpuFID7j1iXqH0SiiMQzxxkcIwgTlWGk1qpSo3pC4kEXve9hbdcLzs2hRhF5vo/UGKNNIfUn9ADNJiIt5gtnJnW3UewO04QCZMZE5G9020QwdrTeglHMwHjLY7zc6eJqBOswLMIiwA4/iaInjzswkUcSwOySKEpRhAAoRhGRaQ/LNAdlijuz5cfRyLk0TV2q7ilMQ9AbcvrVBODWNXu9gLNbRpYGYmERUq+k11O4w9elv+f7//fdP5H1H7m7d3oWAZ8JPMvJD6rfusHZnlWQkgzlfQT+gWhfSZ0rYHqAPYsZLNUYqNcxTbvejFPT7PVbrG/QSD6PsYmXdE6tUTKKYQbtHv9dH5EyMkvNMB0VKKUn8CC1S5NwsGcdNJwKeMlFrQLzQJDNUzFyYoTIzeqz96vs+G41NwjhkZmwax3n8ggMlFe3FTeTtHt+5/BYvXHzh1KfCn/F8sba2xuXLlwFYWFhgfn7+q12hM3Y4EyNPEWdi5OnD931+9Mt/5cvhGoXX5jAPeRE97SRRzMYXt7n5yXV8P0AoGJsd59wbl8mNlg/9nowTVq/e5vbqBskrM+ils9L2J4mKYgaf36G7OcC7eA7yT67V5nmmV28RZ42dUJeDUMMAJ9EfO2FeJZJWvUVSPUILU8+jZFuYjynqHRmlGHb6+F6Ytn0bepqMHYRoQYCuaViOhZt1U4+v3pC4kEOYBpp+T0xQUqJ3+uQyDnb+MYRUpWiuNYgrpVSxSCTmVhP7i+tEIyXi2RHiynY1oR8iogi16xo5VIwcBlRaHSZfmN1ptWysNgnCVKw1DY3KeIVcrXSsQd3atTvUswUi3cAPt9OdD3puK0X26pecuzJNtlIkiSKEELTXm7RafcJKGXIuIGDoYTXbFLMOoxcmn/h7gEwSVr9cYiAFw2yWwDRRloHeG2A1O+jlPGK0wl3hTGzUyfX6eLZJGMZ4IzXk3TCeJEH1PMi5O1XFWrePOxyi7fZllBL35hLn37y4M8m1dn2ZRi6bJpA/AOvGHTKGTrtSgaybikB+mPp9aql4nuQyoGm4iyvIchF9q0FYqxIXsjvhTlp/iN1oYba7+Jfm0XwfEQUkBQeZd0ETiCjBtNN7hNnsUB6vPNxiQil6jQ6B2vZvvTvZkSQIL8CSMYVa8eiTe0oRekHqueuHKDv1gBVhgrlUx9roonIOjq0x89p5gv6QxlqTIIyJoxgVRlimQb6Ug/UO3q0Gau4CYnYGsrueL40Wld/+mnf/x3fJjZSOtm5HWv39qdt3LQxOq5+k1+qxdn2RZreNmiliT5cPnrRCEXkBSWuIk+hMVUcpFU8u3OVJkSSSVqfFamODyFKY5cyJVdQpIPIC+s0OfhiglWyMvH3qjvFxSOIY6cUYSiOfyeHYNk+7xUNJRbjeRi20KDtZpi/NkqsVj7Vfe/0ea/V1BomPUU6F4WBrQNUtMTU2eSI+pkkY07q+RqYJ33/9O0xOPvln2BlnHIXr16/zjW98A4B6vU61+vW1xnrWOBMjTxFxHBPH8ZkYeQpZWl7m73/1Y8JzeQpzY8/dsfHafa59+DntooP2wuSBL+ZnnBxxq0/nN7fpZwvE89P32hDPeGxknNBptBC1hwi9SkF9QOluEMZj0NlsEhYy94SJA38P9EaH8mjlqVUhD5pdPKWQ+cweb0SF2g6z6JPPuthZh9Z6g6iUP7R1XSmF3uxSfsxQokGzyzBKsJtt7FYTNVYgSUIGM9Np9R3b/pXDNI1Y7kqlNlptXD1B3O/32/eo9QaMXzzZKsP64jpr0mQoDJK7adwHESdklhaxoxA944Bjpf6GUUyxnEcC3sAHBW7WoTRRwTyCXYNCEfY9Ij9ECIGdcx9aubfn+0px57PbdPJ5KBcYdgckrnPvfFcK+846Zs5FjGzvUylxby0xMllh8eYaw9lplCYQSqFpGpom0nCeXevh3riNcWlu5z4mNhuMWxrV2Xupw8FgyO0bq0Tnpw6tChedAaVOj+EwILg0z25BQCmJkioNQBIa0rExGy2sjTrexTmktWu/KJWKrTJGNJoIlRDNTyAz6fklogjNC9B0gdgOZ8nqgkzxqJNxaRvnsDckibbbqXWdTN7BdI8uZEReQL/dJ7YsIk2gDB19q4dzfQVzGKFeOYeaqKW2Br0Bxs0l5GgVP+MS6RrKMtEGPvbnS2Q+XyZn29SKeXwJvdoIQb6ISBJyG2tUbI03/u03yNZKR9zG46GUItluLb9flLzrN/lVIqWku7LFys0lhnqMNl/BHMkf3Iqt1HYrtk/RyjJZGyOTyZ5678MwjNhsbLHZbUDexCpm0E/oXU4phd8b0mt2iHWFXrbRXeu0uLIcG6VSKxflJziGSc7NYT7IW/YJIaOYcKmJuNNjfHSEiYvTOLmjt/1LKWm1W6w1N4hNhVVx9wjPCvC7Q5Kmz1RlnJHqyXjFBwOfzuerTFDi3be+Q6lUeuxlnnHG4/Cb3/yG3/md3wHSQqMzO4HTw5kYeYo4EyNPN2EY8v6Hv+Dj5gK51+ewj/FC8HVAScXmjWVu3lomfHES4wSrJ87Yj5IS78Y6nYU63vwsqnp4BesZRyca+vRDD5F/ePWhag0pFotoj9luFw19OkPv8AAJgGFAJk7IVh4SanJCJGFEu9UjKecPDWlRSmE0O+QKWbpeiCo8RMD1ArJKkjl2NWkqftLsYC6v4m9uEb0yj5wZSYWWVo+g5xGOjaWjRD/AMXWklISatpNGn7m9iHFpcl/it76yxWy1QLZ6svs29Hxufb5Ma2Ts8LZcQK830OIQPQqxZkbvBbPECaLeIT/0mH5pHu0Ykw6DZoet5U0Cw0yFUKUwegOyjsXo/PiRxMxBo8PSVpdkcgyZJAyH4U4a+A5K4d5cxHhhfkdsNVbWGc87rA0j4rHanko3BQR9j0gIsCwQYK+sY42UwbERjTZF32Pqxbl9AlR7rcFGvU00NQq7vZqlQrR6ZFsdpq/MsfD5IsGFuQO3SUrJoNUnyThYa1soQyecGN35u4gTjGYLKwzQSi5x3oF2F2maSNdGG3igpWImmoaIY4yhh5uxyVXyT60tM/IDup0BSTGPDGO01RbmSgvlOkQzowgZY/f6aOdnUm/YxVUCTYNSnlhoaD0Pa7EBiUY0MYE0TSo/+5DMdI3LjsHExWmG7T66rlGaHTvxawPS+0d7aYPrH35Jc6uN0jRMIZh7cZbJV8/vsXX4qlq34yCisbDC6tIKUdXGnK9i5A6+lpM4IWz30fsRo4Uqo9URrCNaOnxVKAXD4ZC1xgadoI9WcrDz7ontZ5nItBW704WMkbZim8/u5KmS6USCCCVZ2yXrZtC0p7898SAgWmhgNXym56cYmZ84sn0IpOPJrcYWG5065HScUvaBwrOUCq/VR+9LZsemKRZO5n7Qr3cYfL7JSyPn+eZrb51IS/gZZzwKP/nJT/jjP/5jTNMkDMOvenXO2MWZGHmKOBMjnw3W19f521/8C4NJm+KFyTRp9jkiHHjc+PAqW6ZCXJlGe4YDfp4F5MCn+9vb9KRBeGEeTvng57QTDX36kYc4ZMC5G9UaUigW0B+7IkIxaPbwlETlM3srv5RKU669kMJI+alVCPUbXYaWgXhYJV1/iBWEBPks4iHnnlIKs9mlPHHU9hcFYYy2voWzuUmmmiFzfpRAKNYWNgiqZVQxrU5Kri/hFcsoy8QydKyMjUwkw4GPcm2srS1sA8T0yN6fCGPchVXOv3npiTxTF397nQ0rSzxSO/gDQYCzuExwaRar3sIu729FFo0uFT9g4oWZI/1mZ73J+maLaHZsn/BK38Nd2WLmxVmsBwikAMufLdAZqYFjk8Qxnh+hDhAxjc0mjqUjaumEiL5RZ9zSWA8lydj+7VakYloUxChdw1rfwtE1rDimVCtQnRk99DwftLrU72wRAIljI6TEGHgUy/nUG83QufnhNfyL84dWLCdxzLAzxF5exZufQWYdtCBE73TRQx9KGbRq/l4lqxdgDYeEYUxUyKcp9UohpELTBbqhI/wQKwgojpQeu1L64Sha601iy8a800TcaRBNjBDPjGxXB6eYa1vYOQeyGeLbq3jjo5gLa5jtgCRbIJqcSD1Vt3Gu3qRkQWF1k9/9k++RqTy59FulFJ/87S9Z6PTxXroAI6VUrA4jtFsrlK4v8fYfvkNufO+94mm1bvudPus3l6nX66iZItZM+dBJp8gPiFtD7Agmq2OUi2X0U+59KKWi022zWt/A12OMcgbTtU+sUjEOI3rNDt7QQxQszKLzTL8Ly0SS+CFaDPlMDtc+OcH2qCiliBp95EKTbKwxc2GW0lQN7RjvBJ7nsd7YpO110Is2TiFzrOOSxAneVh83MZmbmMF1H7/oQilFe7mOvNXh7Ytv8NILV878JM946vzN3/wNf/EXf0G5XKbZbH7Vq3PGLs7EyFNEkiQ7vpFpu9Ppftl5nonjmF999Gs+WLmK+9o07nPmpaiUorm4zvWrt/AvjqFPVM7E8yeIUopopUHrsxUGk5Oo8ZGnMCD+epKEEd1OF1F5mLehQm0NKI1WT0ggVPg9D28wRBoGUtfS1tYgwnYsMsXcU21VbK3ViarFQ6si76KiGL3VJakUEEdovzYabcoThwhz95YKvSHG6jpOv0turoo9N7IzsSEQxGFEZ6NJZ6uLFECSkPgRSamIrFVTf0YFUaOFqDfQCy7a3PjeytMwwrq9xsz5Cdzik0lPHLZ73Px4Ab9WIyqXdqo0UQq928Pa2iKcGEEWc9h31rDGypC9TyRUYN9Y5txL8w+tfon8gIWrS4QXpg5vC/cCciubzL1+8fCqVxTXf3GVzswkMpHb3n6gsk5aobbrs9rAw+320GZS30djeY2Z8RIrd+qE5w4XUBVpm6F9c5Hp85NkKvkjv9eEnk8SRAhNYGUze7w8N2+tsmna8IBjqpRCfvgZwcQYmu+hLIEqZ9Hy7n6rgSjGaHeJ8zmUaaBQO5V6u++zYuCRNwTOk/TyVYpotUFwdQ1NN5AzowxcG3nAb4owwl1ZRzMMkpU2aiiJ3DzJSxdQB0ygiCCk9uOfY71xidd8jxd/+NYT24xrP/2YT5t9wrdfOrjVudOn8uNf895f/C5mxn4qrdtKKrprdVZvLtJXIeJcGWukeKBYo5Qi6A+h7ZM3XKZqY2SzuVP/2I2imHqrznprC5k1sEsZ9BMK0lGkk9HdRodIxeglGz1rn/p98iDiKEb5MSY6+UwO23r6rZsqkYSrLdRih2ouz/TFWbJH8Zi++32l6PV6rDbW8VSAWXaxss5jCc+hHxJs9qm6RabGpk7GTzJOaN9Yx96IeO/17zIzPX02bjjjqfGXf/mX/Mf/+B+ZnZ1lcXHxq16dM3ZxuqPezjjjlGIYBt/+xjtcmr/A3/zsn2lWmpQuTz/TSYHHQQhBdX6C4niVhY+usbZyA/XyLNozGvBz2hFCYE3XGBkt4X66SPfjOsGlc5B5vqwCTgLdMtBkWgnxoKRs5cdYlnWCA2KBk8/g5NIwGJVIEAKjlP/K/NIeJkRufygdMMTyoW8MSsoHVGEoSCRiq4m1volrKbIXxjDHZne+IxDp7yEwbYva7Di12XGUUmlVlVIMW12aa3XCIG2zyeQzmOMlOq0u4WqdJJO2LJu9IVYUMX5+EvfIXn/Hxy3myGRtMAXW8h3kdnqxiCO0QhZ/rIosZCFJ0P3gXov2bgSE5QL9rTalqZH9f99Fe61BOFI+XIgEcG180yToDnAK+7ddKcXGzRX8MCS2jHuetP0hUiqETPYEFO0hSbDCkEy1gLveJPR8OKQCUwB6EFIo5cjVjtf2Z7kOuA4ySfDaPWScoJk6bjFPaaJC++oyYS5zsJ9ukiBWNtAMgZURJJM1xIMEmSQhUQocE/GAq0K5Nl67i5PPcOIBFnECq03spQZGFBNMj5LMjKViaHeQKkG7f1IqRGeI9ZvbGFKnc+ECg5kRDJkgDqnkVraFSiRqrELjF5+c7Prv3pQw4tYXi4R//O7BQuRWm+SLBTZaPf72//3fyJdyTF+aZvq1CzsBWFJKhFIn0rqdhDGNxVXWbt8hLJkYL1ZxCgc/O2WSEHYGiF7IaK7M2MzMM+EtdrcirjnsohUtrNmTC9KRUuF1evRaXaSjYdQcbPsxgsq+YpSCJAhRgcQ1bXK5womIbcdFBhHBYhN9tc/k5CgT334T6/6Jqgd9X0qarSZrzQ0SG6yRDDnrZI6L5ViYsxW6vSHNW58zWR5jpDryWEUyuqFTvTJFOOvzd1ffZ+TLLN9/67tUKpWHf/mMMx6TwWAAQC73fBUPPQuciZGnjLNZomeLarXKv//DP+Ojzz7l/Z98hPXKBNljDrqeZQzH4tK3XmFsrc6XH15jMFNBnx19ptt1TjOaZVB46wKZepf2b67RL1dJZicfLEyccR+CTCFHv9WFavbAClOVSOgFuE/Cp1OIY4WMPCl0QyeKYzCMB8oqIkqwHQvlB0jnwesthgHuPoFcgR+ir27gNBpkJgq478yi73juip1DcJgMdPe5KIQgWyke6KtZnRtj2OoReAFCE7gzI9j3BfM8CYQQlMfK+F6MuDKHHifpaNfQQWio7gCEwKy30Sr5QyualWUSBcFDf6/b6sOlh7dzx6U83Ub3QDGysbRBSwG5LCKKUXeDZSwTLYqRtoVMJJqhIwBt6CFcG1BoG3Uq4xUEgpHZUbzrq4TzU/cqQncTRtjrm9RenH3o+t6PTCT1xXW67T5hIYvSdbQ4xry9TqlaZGJmJBWXxkfgbohRECLbXej30bMm+uUJQsva38p+H9rAQzkODxUYNQ2p66kwelLixTBAW6xjb3XJTtVwv/MizY0mSrd2zhXTMgjiCEwzreJcaWLeaZFki2ihjjYzjsrn0PwA8aAuDaUQT6EZavPLJQYz4wdOsiS/+ZJgZYv+yxeI336Z7laL6kSV5u1VFv7qX/jmD9+kND+R+mCyPcHxiK3bQW/Ixo0ltra2kFN5rG/N4NgHH7c4CInaAywfZisjVC9UTn0rqVKKbq/Han2doQrQyy7uSOXkWrGjmEGry6A/QORMjOkc5jM84S6lJPEjRKTIORkypcxX0oEWdz2ihQZ2J+LiuRlqv/vSsapXoygNItrqNhB5A3s6h/MEzlUBOPkMKuuy3m6ycWOL2bFpSsXSYy3XyjiMvjXPoNnlr37x11wuz/HO6988kZbwM844jH6/D0A+/2S6ZM54dM7EyFPE7gHXGc8Ouq7z1muvc2Funr97/5/ZXG1ReGnmxFIKnwUKEzXeqpW48+ktln7+Jckrs+iFZ3fm/LRj1ApUf/cVMtdW6Pz2U4bn56H05Py/vm6Yrk1W5hjU+5A1Ee72wF9K1DBEeDG58uMH15xWkigGqZCdPkk2vU41XUu98XY9fxQK3fNxa0WSZo/AD9Mk6ANQcYIZBFile6nLtHtYa+s4kYc7XWZYrtIc+qhbq9iuTXm8glPInohgKDSNbLXIE2ygPZTy1AjDL27T2WyiavdVLUqJsdnACjzE1NThC4mTI/nQKTg0bXoPhk4ylPv+WSYJ7UaX5IUZtHYfs9khnNwOeLFMRBKgBSHSNHaEILPTRZybQl/ZoGxoFCfSY+zks0yfG2P11h2CcgFVKqQibBQjWl2cTo/JS5MP9a7cv46SO58v0CvkUC/M7miECZDIKptbLYqbLWYvTtFY2aK/uEqsKaSlI/IOznwNJ+eSJDFBo0dimYfbWsQJWpKQHCHwB0hFsscV9JSCRg9jsY4TxOTOjWO9PL9Tqe1kbPS2R7ItJBu2SbTWwtjqozc94pFRvFdeBSnRbt9Bnx7Hub5EMjuF5PB1M9braKMlxHqD2v2J8ydIv90nKuX3XdXyy0W8eofu776TBlMBUggwDNSlWTpTo3zwTx/w3p/mccu5nS1RUqLutm4L8UCLEqUU/Y0Wqzdu0428tBX7yoVDW7HDgYdqe+Q0m/PVafL5gxO0TxNJktBoNVlrbhI7AmskQ8Y6mTufIk1x7zU6BFGAVrKxZgunfp88iCROkH6EIQXlTA4nf4SJhxNGKUW42UXdbpHH5IWLcxS/WT3WxP1wOGS9sUHH76GXHDJzpadyXIQmyFTyJIWEhfoKbmOD2fEZMpnHe8fPVgpkvpdncbXB9X/433j73Gu8fOWlr6RK9YyvP3fFyLPKyNPH2RV/xhknRLFY5M//4E/5/NpVfvTTD9CvjJJ7gi/8pw3dNJh78wVGGl2+/PUXdGoZ9IuTD2yFPePREbpG5sUZ7OkqnV/fpr/pEp2bfWgV0LOPIgkioiACFLphYLr2sT00rayL6Vj4fY+wPkx94oSGm3GxRotfWev08VAoqbYH6HCUAVbQH9Lve8isg+h76TIsk0RKZBBhmPpOqrPo+zimgWYY5KtFVL1FmCQo197ZP0qllY/G0KNQLSISiba6gb2xSaZok3lxlK7ns9roEVaLMFIGIRgMA3p36mTVFhOXZ5/pyRshBFNX5nDubNK+uUSUzSBNAy2KyW81SUo5xEgZeXsN5QeAQOgaWrUI5TzoGma7R+7CxEN/S9cEJHJHzDmUKMY84F4waHQIi7n0einmMLfaJO0uyfZkhnBtRBghghCSBGeriS0lzso61ckq+dHyHvE4Uy5w7vUMvc027TtryDhBN3TKoyVy5y4cKyH8Ls3lDXq5LOqgLgNNIMcqdO5soa1sgqljz1aw8w7CunvupuunGybZjE2/2089F++/puMEo9sjV87TG4YkD10zhYiTR9qmu793txXbLWTIvjCNXs7tExSy1SLW0hbeSBmt0cO83cD2ErpujuCVCzshZu7n19EvpFWy+Ru3sV++SGvgkRwk/ipF7uoN9G9dIfvrq8z96buPtg1HQNc1SPbuTSUV8ac36f2b7+w9d5W6Vxmdcei+/gILv7rKq3/wLaRMvUzV9gekTK0ttANat5M4obW4xurCMkFeR79UxSkdfD3JRBJ0+4huSC1bZHxq6plI+Q2CgI3GFvV+C/Im9nQB64Ter5RS+N0B3VaXxFDoJQfLLT5lye7kUKT+0MpPsDWDfKaEaT79jgQVS4KVFmKpTa1YZuq1l8kcw2NeKUW322W1sY4vIsyyQ3bs5Kpfj4Nu6OTGi0RByNW1G1TsIlNjk5iPEfAnhKA4VUOOlfnw1k0++pvPee/VbzE/N/9MC+BnnD7OKiNPL1/3UesZZzxVhBC8fPlF5qZm+Mef/5jFlZsUX5nFeI4SpzPVAq//3tusX11k4f2rRC/PYFTObv5PCj2fofz9F8ksbtH++FOG09Oo0erXMuAmDkL67R6JLpC2mfoL+j56t4+bzeDkXY5T8SB0HbeYe6Kego+HIg4ivP6QOIoBMEwDJ+OQRDHe0N+O2lBoCNyci511Dz32kefTH3jIatourFkGRrOHDCOka6NMnTiKMcIYPQixNUG2mgpCQtcojJQJ+h5eq4vUtHT/JxLHsXGyDtbtOzjdNtmZMs67l9Bci9ZKna2+T3Jxem9FX94lyrt0Wj3U1UWmXz63b/ChUAS9Id2tDnGcYBg6hZHiU2m/Pi5C06jNjlOZHsXvDrZbeXUYL7Lw6QKBUkS1MnLbE0xEMUazg3VtGW28iivAOoIHbLFWZNjq3RPqVFrpGgYRSqaVkLquk91sUbg8ve/7gR/ea7fXBNr5SZyFNeJen6hcQro2aAIjDLFX1hmfqFCeHtlO4j14n+uGQWmyRmnyXnDR3WPX2WoThzGaoVGoFMiUH1xlJaWk3eyiLh3Q2q0AP0R1e0Qqpi4kpZkR9AdMHDj5LELzGLa7JKaJNIw0XCgMMYBctYBuGug9j0TKB1teRAmmqR9/ouKAVmztQZYHiaQcJWj/+/tw4QLa+YuQy1LyAnqtHpFUaL0BhU+vUqwWmJiqMvkXP+DX739McPkS/W4ftbs9P0nIf/AxTi2PubjO/FQNt/zknsm12TEy//oZ3oVd59/aFkGthNr9LhTFmPdPQkyNsvrbL3k5StAtA6nUjijJLlHybsBQNPTZvHmHjbV15GQe6+0pHOfg9604iohaA0xPMlMeoXa+inHKJ0GUgsGgz2p9nV7soZUcnNnyiQk1MkkYtHr0uz3IGhgT7qnfJw9CKUXsRxBKspZDtlD6StrtEy8kXGxibAyYnZ5g7HsX0knTo35/u/p1vbmBzGjYoxlyJ1T9+riYtoUxU6HX8/h04QsmSqOM1kYfq+VdM3SqL0zijw/5z+//He/W3+Kdb75zgmt9xvPOmWfk6eVMjDxFnM0CfX3I5XL8ye/9ITcXbvGP77+PvFQhP1V7bo6xpmlMvnSOyvQo1z/8gma2iXZ56sEhAmc8MkIInPlRRsdL9D5epPfpdsDNUVsPnwFiP6Tb7iLLWTB2pf26kCgYtAcoKU+xsHhMpKLX7BAqlQpYhXQgEgURw1YXoUDUijtVRkkiiQc+/tCnUCsdKJgMu0NkcZdPpq6h1QqInofW6KCk2tFyha6jZZy0VfdupaSm4RSyOPkMMpFpm2irg720jKMn5M6PYk5O3auaTCTNzRbJpdlDW4tVOU9/4DFsdneEz3Q7A1avLuMZBnGxAFkDopjm0hZukjB5eRrzIcES6m7lqPagWJKTRdM0MqV7Qs/mwipJuUBYKaLcewKUMg2isSqJ65C7scz4O1fu/U0p/E6fJIrTfV7Mom+3rhVGyzQ/XcDLZ0iAcBggDR3lmPeOeatHPBjSXKkzdnFvYqmmaSB3tfIaOtrFaayBh1HvoLbCVKjOudiuxeil6WPvuziMWL22hKdrxNU8WDmIEzqNDtbSBlMXp7FzB7f4Bb0BcTaz93yRCvoesttDmRpJKQNuHtUekMjkgWIkgJ11sbMOsR+SxAkIDSOXQzfuiVaZYoa4O0DerRq9HynRewMy1SOKeA9pxT6IpOehbm/iNj3empuioxyu395kkMuB62K6NpUoQv/yFsWVNV79H75N9eL0TujF90p5fvP3v2J1GNEZq5FkXOyNLezbd0DTSXQNNEH8xgX6my1yo0/AExcoTI1Q8DyGnT7i7v24OyS6z0pE6w/JFvcKLEITxDmXcOjhWvmdVG2pVNquTXp9DLbarN1apusPYL6M/f3zB97zFIpo4JO0PTLKYL42QWGqeGLhLk8KKSWtdovVxgahpTDLGTLOyXXaREFIv9nB83y0ooU5U3imvb6llCRehBYrim4Wt+wixNPvbojaQ5KFBk4/4YULs1RfHk0npY5IGIZsNjbZ6jXRCibOTOFUBmOmfpIuKuew0WqzeaPOzOgU5dKj3VOCvkd3YQurkfBvXnmPyxcunewKn/Hc0+v1gLPKyNPImTJwSnlsT6IzvnKEEFw8f4GpiUl+/MH7fHnnOoXX5jCfo8Rpp5DllR98g/qtFW68/yXBlUmMsSczADoDNMei+M4l3PU2nY+v0h8ZQU5NHM1j7jSjFP12F1nJgX7AtghQpSxes48V2eiP0TZ0OkiFSN/UYXe6poIYhaoW0IYheneAuFvhpGuoQobQC+g3OuRH9l5nSRQTC1JPv90EESoIiasFMLf/FsYIy2QYRIRbLYq10q7ADgVhhLG2ibO1RXYsh/vWFPouUeGu+NWrd4hK+Yeef0m1RGO9sSNGxmHE8meLDCfH9ibGuxAXcvSGHsufLTL7yjkMa/+xjoOQ9nqDTqOL1ARCKhzXpjpRxSnlnpowGYcRnfYA7dIMThgRDgOUrqE0AQpEnKTrPzlC0PcxMw7tlTrNjRZR1iWxDEQiMRc3KBQy1OYnQCksXTD87BbB5AhJzk2XNQxQpo7RG2K3u/D6eVpbHbSFVUbP3/OqzBSzmEtbRLur1QWQc9Fyu/a1F+CG0bH3VRLHLH9+m+FkBe7zDU5yLl4Qsnx9mdnLswdWgqpEou4OvqME1e2jhh5JzkJNFveev5rYK6w+EIHh2Ie+9FquQy6WDNo9kqwLlkF6Y1EQRBhDj1wx8/B7yxFbsXe2VynizQ767ToldKYvzFD8xghCE0xcmWem3uH2b66x9t+voQA363DxjQuM/Mm39lkbFKdG+J3/xx/QXa2z9sVtFj78nHoMg2+8hj4zTqaYI9J1rq5ucOf/+DmvvXWR2TdPftAvhOCtf/sOP/3rn9P9/luIQjadNNnVui26A1xSu4x930/UHmFRCIEuBEkiaS6ts3JrkSCjoZ0rY5ZGtkW0vftXSknYHUAnoOIWGB8/T+YIlcdfNWEYsdXcYrPTQOYM7MkcmROqVFQqtenotTpEJOglO7UkOZGlfzUkUYz0Y0w0ipk8tmXz1P0gpSLc7KButSiaDjOXLpAfPZ6f42AwYK2xQS/sY5QdsnMnV/36JBFCkKnkSAoJtxurrDc2mJuYPZKfpFKKQbPL8FaTUmjzf3nxbWa+NXPqg6POeDY5q4w8vZyJkWec8YRxXZff//7v8eLyMn//ix8zPJenMDf2TLxonARCCEYuTFOaGOHmb66ysdJEvDTz4Da1Mx4La7xErZYn88UdOh99infh/E5l3bNI5Ackln6wEHkXAUnWxu95ZCvPthiZhDGhkpDde8xkkqA0DYRAZm1EK0IP423hZBvXJvRCkjBC3yXUyThG3T+oTSSyOySu3CcYamnrN65FrGv0Gh2KoxXo9DFW19AbDVTBJJos4GUdLEPHIPWt3C1eeX0v9ep7GK617QGaUl/aZDhS3StE7ibjMhyp0ljeZOzC3lAYr9Nj5dYqwVgJrkzvtN0GQ5/B6halRpfR85N47R7N9SZhECKATCFLebyKlTk577jeVpuwUgCRhpAYtomMkrSdWgg010JoAmXpNJY3GHT6tBRpS/u2IKeAYLxKvdVl+MlNpJL40zUYL2FstDFbnbTtOpEYnT56PoN2eRp0HTlZofPlHSphtCPa2vkMdhwTPSCMCEDfalOZOH4lVnu1gVfN7RMid7AtgrlRNm6vM/PSuX1/1kwDMfRQ6w1kEiOLLqpWObBaUSTyRD2JnXwG0zHxeh5hL01BF0phuxZOrfDgBO3tVmxrq0tmtITzzUuYD7CNUFFMvNzAWm4yXasw8fpLuAd4yWVrRV7+N2/z8hG3IfVgGyH0Ar5caWF+/1uU7r/up8fpj4/w2x//gmwxS/X85BGXfnQKkzXe/aNv8+Hf/oJuIYdXKeDeWiGYnUAf+rgZm/zY/vNL+QFOEGLn750/kReweXOZ9ZU14vEs5jfTVmy1K6xHoUApkjghag/QBwlTpRq1c7UDvVNPE0qB5w1Zq2/QDnqIooNzgmKUlBKv3afX7iIdDWPEwbZO9z55EErd9YOMcU2bXK6MYTz9Z76MEsLlJmK5y9hIlclvvIZzjOBGpRTtTpu1xgaBHmOVXbLuV+MH+bjohk5ubNtPcv0mZTPP9PjUgX6SUkq6qw2i2x2ms2P821d/j1rt+ekcO+Or4cwz8vTy7D6NzjjjGWN2Zob/eezPef/DX/Dx+1+Se30OO3f6Z+pPCjNjc/m7rzG+ssWXv7yBd66KPj1y9gLyhBCGTvbVOZyZAe1f36KfyRPPz+yvjHsGCLd97h52pgjbJOz1vpJE5ZPE73vIA0IoZCL3HD+ZsdG8AHHfwFJmbPyBR3aXGHnQdaaGAUnGPrhyUSrYDjFho4F5exHLUPRNGLw2hSznEJqg54d0FtfIaBqTL8zutHQfn1RYSOKEXncAF2oP/nghR/dmg5HkXqBI5AepEHlxcn+QU8YhPj9O8/YmvV9+TlzOkYyVIGOBgmFnQOfmHcr5tALxJKonAy/Y690HaKYO3LePLJOw7+GZJsnM2H79SoCqFGgNfcwgQCtkiXpD4vNjIEGEMWiC4PwY9s01tCCGTBrkElULdDdbVKZHtxclmLgwydL1OwSz4/sFSQXaRpOSJshUChwHpRTtRht1gFflHjIOXpIQ+QHmtpWEkhKvO6DT6pDIiKhUgkyeQ8W8RKIDmn7Ya6xKrxfSKrvDWjZlHOP1PUI/BNL9Y2dsSsXsdnvkA86Du63Yt+tYQYTM2gyKNl2VwMIaepJQGS1TGK/snKNJz0MtbuE2hpyfn6L2g4tPxFP66s8+x/vma4ff7w2d4Tde44uff8q7T0CMhFSQ/MH/84/oLG+yvrDGrThEdHrY8xOHisjGl4tcfO08kIYtrV1fpNXrouaK2O+ewzTufU+p9JxTKhUsk/YQN9GYqY5RmigfKZ3+q0RKRafbYbW+jq/HGCUXd6x6YmJUHMUMmh0G/SGiYGJM5zBP+T55EEoq4iBEhIqs7ZItlR/Lp/BRSQYB4e0mZn3I/OwUo79z+VjXcJIk1Jt11lubqIyOPZ4hd8oF86Ni2hbGtEW/n/pJjhdHGBsZQ9M0kjCmvbiJWhnw0sRFXnn3d86EoTOeGmdp2qeXr8fd72vC3cGiEOKsTftrimVZ/OA773F57SJ/98sf0Z60KV6YfKa9eo6DEILS9CjfGC2z9PEN7vzyOvKVWfTs6U+yfFbRS1kqP3iZzK11Oh99ynBuFlV7tlrlUy/DI1wjj3IZSUUSRShA0/Vj+Ts9KeIohtz+ayINcdj136aBGvj7N9vQSfxozz/plonW6pEodpah/AB1f7iUVGjdIXgBRrON1WpCVqdv64iCS/LyHMLQ74l1tkVUzNFt9lBf3GbihVn69TbtrRbh0Etbk0UV0zYP37degGWnolg49Egyh4fw7CAEScYlHHg424Jfa61BMF45PFF+W7QYVvM407V7O0IApRxRKUt9aQttaZPq7NiDf/8oiO0234ehIIpi1Hjl0HNYxpKokENfHaLFCVKptOpTA2XcExSjsTL6ZhttPl1/lbHxG/09y7JzGWYvTbN2c4XANIkKuTTMJggx2z1K5Ty18zPH94oMQhLbTNfLC2AQpH/I2On/dn82nyHoe2i6Rr/Vo98bEOdsxEQJu5JJJyCwD1wDhUr9G/MHVCEphd/38AYeStNQQiCSBNs2cfOZPdWNft9jMPCQGRdVdRCk716RF+JttSmU8xj2AdWj97Vi2/NjrK5t4VVLqHJ+R2hTicRvdOh8cpOxahlrtUMRnZkLMxTfGnliz/1Bo0MbAYWHDLqKOdqxor/ZorvRZHVhjSSRFEo5Zl+7sMfD9VERQlCaHaM0O8bsq+f56f/2I5qlHBywbHFjmfHNJtmLE3z6z7/EsyTauQpWdX+4FZA6RvQ8ZMujZGUYG5kj42Z2/iilOpXekHEcU282WG9tkWQ1rPEsmRMSoxQQDX16zQ5BHKKVbKzqg0OjTjtJkiC9CF0KSm4OJ+s89e1RShE1ByQLTbIBXLg4S+mNkWOJoWka+gaNfhutaOHMFr8SMfVJIwAn56KyDpvtDqufrFHqW9SiLG9ffJXLv38JyzrrjDrj6XJWGXl6ORMjTxnP8gvDGUdnYmKC//DH/45fffRrPvjpVdzXp78+wRtHwLBMzn/zRUY2mlz7zZf0Joro58afG1H2aSM0gXtxAnuyQve3t+ltbBFenIeDBtqnEN3QUwHAeohQKBXaEe+hKkkrsXw/QG1XFoo4wdA0MoXswSLE00JAOqx8xOtBqn1antA0bNtk6IdwN0hFsVf0SyTWwipWu4NmKuK5GsO3Z1AoRHuA2etjrjbRZ0f3/aSq5On2PbxffEqUNdN2ctdE7/fxtSqxF2DqOtYBnrl6vXOvJVgp1FGPoRA7Wp9Sim67B1dmDv98q0+ctYkreZIw3tPGvr2XkDMjNK8uU5qs7oTGPCq5YpZWq5/6Oj6ITh9lW3CA/+VdkihCmjphNoPcaKbp51LuC+2QhQxypc7Ovx6i49u5DHOvXyToDRm0+shYYrkWuZnzj7zdSilkGJN8sUyiacTbvmFGo4EuE7SpKqKQARQqjOhstWj1+siSizZb3bl2bcMhjmK8Th+ZdRG7RGwVJ+i9IRnH2pdOq6SkW+8QWiaqck+AUUAcRAT1zo7AGHo+g6FPUs4jxD3ZVQgBGZvYMem2ehRrxXv744BUbGEZ3P74JsOZMUTG2XPFCinRBjHRzRb+B0t86z/8IZn7UqyTKKa9vEnsh5gZm9LM2GMHVgSdAXHhaAOuoWnyo//P3+O/eI7ofFo5L9o9bv71z5nIZ3jjj76DfkItvZlKge/92ff58K9/Rse2GcxNgG2i9YZkrt2mIMCZKHCru4H5xihO9mB/7SRKCDsDtH7EeLHK2Pl5DMNEymTPRH6awi3QNHEq3q1932e9vklj2EYUbezZIvYJiVFKKbzugF6zQ2KCUXawnWe78yYOY5QfY2kG+UwJy3z6z2QlJcFaG263qbg5pi+/QPaY4m5/0Getvk4/9jBKDtlq5Uhzq88ySinC5pB4oY05VAih4VgmY9WRMyHyjK+EM8/I08uZGHnGGV8RhmHw7W+8w6X5C/zNz/6ZZqVJ6fL0qUzOe1Lkxyq8+bvvsPLFAovvXyV5ZRa99Kw32Z5etIxN8TsvkFlt0v70cwYTE8iJ0aNVHX6F2FkHr9lBZh7yEjsIcI4QUqCShM5WmyhjQ62wZ/uTKCZq9cgXsifqH3gcTMsk9KN91WSarpFItdNWLYIIcYCAJfwQ+4Ak9UwxR7TVJtIE2GaqdSqFiBOsjQbujQWScobwjRlUMZeKS4lEhBHKNvFLY6jba4i1BmatiL6rmkclCUPbwBYQz9VQGQukQl+oY95aJTw3TqQkwg8xd7UGi0aXfJKQKactwaZjo3s+yf0rfwC65+8sS8ZJ6on5gHNZ1tvE0yOgibTa9i5Jgqp3kY0eSkqSMOLOp7eYeGHmwJCVo5KtFLCWNvDi8uHtsgqMrRa4NvFhC1IQ+hHSNpGmTqIrlKkj4wQ0haZp9yZyBHv2gdYdkDvEL1YgcPJZnKP4eh6ByAsIez7DF+ZScXWbmDIiiHCWVjFKmTQVOQgJpquY+Qz7n3iCbCmH5QUMe0MSpVCahpASQ9NwC5md9m52fAMF/VaP0LXhPksHAWCbxGaebqtHaaTEsDskKR0eLCM0jTifwesMyCmBcbuOEyXk5sf2pGIP6m38rIvYfa/o+xiLdczGEH18BN57m+jnnxAOvB0xMokTrv/0IxZvLONNVkkcC2MYkPmHDzj30jnOf/vlR66a0gwdkTz8CgoHPnGzi3z3DcTs+L19VsozmJ/k1rUlov/9R7zz5z88sfeSbK3Ie/+3309Ddm7cYbixSTT0kONZ9Is1zJnyHvF5N5EXELeH2JHgfHWc8kQJTbv3WV03UEqS3G3P357UkVKlgrN4+qKkUoper8dqfZ2BCtDLLm6temKP3CROGLS6DHp9yBoYkxmMU1Dd/6gopYiDCIKEjOWQKxTQD7VieHLIMCZYaqCv9JkcG2XiW29iH6ODRylFq91irbFOaEqscoac82x1pDwKSkq89S7RrQ7FTJ6Ll18kW00nfLzugP/22//OnDvOd9781pkodMZT5awy8vRyJkaeccZXTLVa5d//4Z/x0Wef8v5PPsJ6deJE2qOeFTRDZ+bVi9Smx7j26y9olRz0S5OHDkjOeDyEEFhTVUZGi7ifLdP96HP8i+cgd3Tj9d3IOCYOIpRU6IaO4VgnLm5qhoGl6/jDMPX4O4hYovsR1ujDXzR6zS5R3k0FufsxDWQlT7/ZpWQ9oLX4CeLkXPxGh8S19xRHarpOEkY7gTX6MECU73uhTyR6EGGV9/v9CV2nUCvRb3aIBj7CC3A+XsWIfJKqQzJdwL88lx6/KEYK0iCVWKIcE3SNcKKGvVnHzzk4Sm1XFyq83pC44GK6Fiq3nWiqQXJpFG2tg31tmWSkTOzYqW+ZF2I2O+SEYOLK7I5IYNgWrqkTej4c4Ju5g+fjWvpOBavYlayslCQOIqIwBlTqg6jrGGGcbkcQgwb4IarVQ642iSpFovkJMAyIY+JWH//6CiPVAuXpkUfykBSaxtjcOCu317aXfd+5pEBbb1BwLQbD8GAxUoHfH6IMLQ0IimJUxkY4JsKPUBkDmUg0tJ19IO7qc0mC1R6QnX0ynoC7kYlkbWGD6NwMSrtvO6MYbTAkdiyk78NMFWvgbwe8HIbAdB2KroNKkrQ6V2gITUNJid8b4g985LYYqQlBEieoQubQIyU0jcR18DoDEl3bV1W6hzjBXOtgfLpIcX6c3JUZ9FJ2n5jV3GiRjFcRSiHqXczbDYwYtOkJuHhp5zeGl2a5/fFN3pgeJYkTfvlX/8TqRJnk//q9HWEzBIIopvfbG3T+209560/ee6Rugfx4FWfrl/iJ3AlCuh8FdLdaFOIIJg/2Z5UvzLLa6rJ1bYmxF+ePvR6HolLrjUTFxBUT/a1RnJH8wb62ShH0PFTbo2hmmKzNbYsYYtdnJI1mk1sry/Q9H4BKocDcxCS5bA4h2BYk03PoabRuJ4mk2W6y2tggdgRmLUPGPrmJ1sgP6TU7+IGPVrQwZwrPdGeJlJLEj9AiRcHNkim7h/q8Pknink+00MBqBVw4N83ID146VmVw2oJfZ6O9hcrqOJNZcs/Bu6yMEoZLLeRyn9GxUSa/9eY+T3y3kMX5znnqG23+13/5z7w2/SJvvPz6npCbJElYXFpEKsX5+XNfyzb2M54+Sqkzz8hTzJkYecrYaStSCqXUqWgtOePJo+s6b732Ohfm5vm79/+ZjWyT4kuzaXvqc4JbzvPaD99m4/oSt372JdGLU+i150eUfdoI0yD/xjncRo/2b27QL5ZJZqcOHbzej4xj+q0esZRIx0QJ0LwArdPDzWZwHpAk+yjkykVko0UYJ5B17iVrKwXDCH0YUKgWHywwkLa7RkodLETeRRMkGQe/PyRTevqzqJph4NgWw+4AVcjeszbUBIauE0cJ2tBH2OZegSuRaK0+uVLuEEFYoQkoygRzeRWCIX1LEbw0ibbWJKiVkXcHtFGMSCTKMhBKoe7u7oyNCBOUaxIMAzKmQRLFxJoA2zjgkAvkRAlRzWJ/dAdh6LgbJtlynvLcGFbO3SP0SSkpVosMlteIzk0jDkjjJEmwVjcYuXhPZNN0HUvT8Ic+fhwjLQNy98RcGUtEIpGJxOgOEK0BoYJY05HVEvrQx1zcIJ6oomwTlc8QjZbZXFpHNwyK45Wd9N7jCJO5apEpYOPmHcJclqSQTVOaPR+r1aVYylEYrdL//Db+ZhtcG93UMW0z9cUMI2JdA0tH9AOM3oBopgzbracqiMA2kYlE13S09gCtlIUkwbi1zuj06FOptu/X24TFHGbOJe57SE0gggi91wMksugSjVbRhgFWu0+mWuSo9weh6zuflHFMp94hdmxUObdzvYd+hPJ89GY//fdD3p2UaxFstZHZg4VQMQwwl+qYm10YryAuTZJ5YRrjkCrp2AvQ19uYy230fB7t/HnEQZWohSyDa0MAbvzrx6yOl5Cvnd+fVWQaJG9fYelnnzPy22vMvnX5ofvnfnTLYObCBJ3bd1AXZg/8TDT00TfqGHPjiAe05YdX5rn+4ecnIkbGQUTj9iori8vEFQfjlSpO/uD9KmNJ0Bmg9UJG8xXGZmex7f3V3lEU8sEnH9M2BXKkjOaOoZRiudtn7eY1pjI5Xrz4ws7tMG3dJq0mfgLv10EQstncYqvbQBUsnOkC1gldf0pB0B/SbXaIRYJedrDGis9k+vJdkjhGejGG0ihn8jj57Ymsp4hSiqjeRy40yUmDSxdmKH2jdixx1/d91hsbtIadbT/I0qn0Kz1p4kHAcKGF1giZmpti9IcvYTzAbkQIQWG8TG60yBcLd/jib6/x7RffZmZqmuu3bvDbm5+QjJogFb++9hG/8+b3GBs7Af/mM55rgiAgjtPp3rPKyNPHmRh5xhmniGKxyJ//wZ/y+bWr/OinH6BfGSU3XvmqV+upITTB+OU5KtOj3PjwC7ZWWogXp9FOyLPqeUbGCcNWjySK0Q0dt5xHNw2Map7qD18mc32Vzm8/ZXh+Hg6oqtuzrCim02gTF92dJGdBWm2TKMWg4yHbyckKeZqgUCsTDn281oBEpWZ4Qikc18EZKR8pyTkcBEj3YC+yPbgWQb17gtugSMI4ba0VAsMyD02UBciUcoj2AO9uheT2C74WRth9DxIJWQflBWmFXRihx5JcKYexr0VbgR+ir27gNBpkJgq43zuPnnOp31xlbatFNFpC2nbqn6nSNmAhFdrAB1NDJAq1PcZQuo6QIC0jrUCMIpRtILa37aDBpLJM4ukyThBTyuSpzuwdYMgkoXlni06zQ+zaKEOgPrtBVKugj5bRLQukhHYXu9lmcn5sX3txsVqgtbSJvDSxPyHc0CBjo2200Bt9vHNTSEAKgbJMIlIx3V7eIBkpoReyoAnimTE2Pl+gvdkk2m59NXSNyliVXK10JKEvVy2SLecZNLsMugOUVNiuTfbKLBu3Vln0A6LxMnqrS1CaIE4kYXeI7VhEQZRWA2sCq9FB2QbEMm2vNzW0WMLAR+o6KpZYaw20Yhbr2gpj06PkR55Oa2Cn0UWO1NAAN4mJlhvIrEVSy6bVqAqQCqXp6Jq2q8366CiVekJGhRzC1PecZUoXJIUsygswOgMoHVz9IIRIJeXdwUJKoTX6WIt19DBGzdSQF6dB19Bvrx0oSiR9H3V7E/eDBcQ3XkW89cqBlgk7hBGGaZDECYvXl0n+9DsPlFyiNy5w4+8+ZObNFx5JNHvhe6+y9Z/+iXXbhOmJ/et/c5n80jLa//TDBy5HFHP0Bv5jTY773QHrN5bYqtdR0wWs787iHBLYEgchUWuIGSjmq2NUxyt7WrF3o5Tkg08+plHOoZcLO+3+Qgj0Yh5ZyLG0uolx+xaXz1/Y3ob0M1JK4GT8JJVK/cjWGut0oyFaycGZq5yY2CkTybDTo9fugauhjzrYz/A7kVKQhBHKT3AMk1y2vKc67qmtRyIJVpqw2KFWKDL18otk7w90ewh3W/CHyk/9IEcqz7Q4fBTu+kEGCy3sQOPixTnKb9aOVcWoaRrVC+P0y13+8if/B4N2j9m3LjHx3uyO/YvXHfJ/fPIPzHw5ynff/PaZiHTGI3PXLxLOKiNPI8/u0+xrzFk15PONEIKXL7/I3NQM//jzH7O4cpPiK7MYD6rk+pphZV1efO9NxhbXuf7za/gXx9AnTu7l/nlCSUl9cY1Ou0dUzqSVbl6CubpBLpth9NwkmmGQuTKNPV2l++vb9DZtovNzh6YS91pd4mIGcVCgjBCoYgav2ccKwpMNghECK+tiZd1UMFNqWyg4+nmRSAlHGfjcFS1OgHDoM+wNSDQt9TVUCq3TwzJNsqXcISKqwC3lcBIXf+ARD9L2Q9MyscerCE1LPdTiGIHAyGUxHJM9+0JKaPew1tZxIo/s+VHsN17asUCQcUK3N0B7aRZtvY3mh2k1pAKxnXyici4MfUQSp0IYIOIYpQvQdaJhuJ3yLTAaXVTt8Bc9mXeQnRZadu/xSuKYO58vMCjnUJen0zRmQA8jxEoDPruBaZuYtkWpVqDwyrkDqy/iKEZPEozNDvFYad9pIbM21lId78VzaI6F6nmoXT5g0rXx5ydwbyxjVAqphjsICF2bsJRFjJaAtJXWq3dwP2swfWX+gZUgO0dT08jVSuRqpe1DI7nz2S16I0Uo5RCAKQQsrhNO1FA5h2AQQJIgkgRzrYUxHKC2vSOjWj5tW44laAKjP8RdblAsZCmXCmQvHE0o3dl2KRk0OjTXm0RxjAAs26IyXiFTfnhgQxxEqG4PGQbIvAPnR9LtTiSEqYiraxqaYyKCR6sUC4cBsW0hzP3Xi0CAAplxkK0uWiIPFPsV6aSXHkYksYWx2sJaaiByLur8BLKY2akqVonECKKde5hSinizg367TlFpzFyYZeubgt/IVGx/EObtNWYuTtG9s4k3cbgv4s72uDbDnMOw0SG7fc4cB9O1+e5f/JDf/PXP2bp6k/7cNDgO+D75xTuUu31a77yEeEJBXUoquusNVm/eppeEiPky1ovnDxR2lYJw4CFbQ/K6w/naNPncw8+5RqNB29TQD5k8E0LA5CjL15e4EM9hmiZSKu76jCr1eH6SUkranTYr9Q1CU2KUXTLOyU0ex2FEv9llOBwiChbmTO6hlf+nGSVTP0gRSrK2S7aUOVRofpIkfkS42MBYGzAzNcbY9y5iHWWCchspJa12K23BtxV2LUPOfh78IBXeemfHD/LC5SvkHiGpXSlFv97lzvXbdP0B1mtFStVxtuoDgtUlZsansGwbt5DB/fYFmhtt/tcf/xdenbjMm6+8cRaAc8ax6fV6O///TNQ+fZyJkWeccUrJ5XL8ye/9ITcXbvGP77+PvFQhP1V7bgQ5IQTV+QkK41Vu//Yaays3UC/Poh2QxnvGwSgpWfniNv2ChXppKvWc2/5bNFGi1ewTfL7AzEvn0QwdPedSeu8K7tIWnY8/ZTA1hRqr7Q14CSNiwcFC5F1EKjx5/SH5J5VK/YhhBJomUpHuYSh1IhUOfm/AwAuQpdyeFvhEgeeHxFttCrXSod6UQtdxCwcLfGbGwdxeV5kkyDhJW1rjBG1jC3tjk0zRJvPiKHr1nieb2D4R+lttwmoBzbKwJ6toV5dJxipIte01d3f/mgbECcILEUmCytpp5eG9cT36wMdo9Uhe3F+FtYNSaEGEW9xb0bh+4w790dL+ajbLRDs3DrMjaNdXmbkye2hFnULRaXbQX57CvtPEuLpMXM4jHQuRSIx2H703JNj241XJdhXn7nNoOyhFlgvQ6uHbFrGlo5dyIHcFgpgGcqLKIDtk5eois69eOPa5OKh3GGTtPdssxspYro2x0SCJEpRpQLuPnrXQkoRwrEAyWkDf7GLc3kA6FkoI9L6H7oWMjNcYvzx3rPWA1LrgzheLDLM2cm5kpwrX9wIGW21y600mL8/tEzcVirDv0Wl2CURC7ArkeHVnn2qw/7yOk0duG/cHHrKYO/C61HSBiCVK05GujeYFcFCKeRBhK9BvbiC7PsyMIr9xEeXsv0+JRpfSaAliSXSnjrncYqpcYvL1F3G3K6bdcp7r/8s/0D0/hThg8iaJYmRvSPb6IpXvvUxvrYE84sSitM00zOMRsTIO3/p3P8Br99j4chnf6+Fkbcb+7F1aSxu8f6dOfEja+l2UF+CY+pHP7ySMaSyusnp7mbBoYlyp4hQObomXSdqKLboBtVyZ8elpHOfoISE3VpaRo6UDApDuIYQgLOdZWV/n/Nw8QqjtVu3UQxKO7ycZRTFb276AMmdgT2bJnJCljiINFuo1O4RJiFZ2sGrF054x90BkIkn8EC2GYiaHm3W/kvfYqDMkud3E7sZcOjdD9fdeOZYVUhRFbDW32Ow0IG/gTGVxngMrpaP4QR5pOVLSWt5i+eYioaNwz5coV6o7fzenLbr1Lp9c/5yXL7yIs+0ZnR8rkRsp8uXtNb742+t858VvcunCpTM/yTOOzFll5OnmTIw8ZTwvQtMZR0MIwcXzF5iamOTHH7zPlys3KLw2i3mMWdxnHdOxuPTtVxhdrXPtV9cYzFbQ50bPrpUj0F6r03N1ooJD1EvNm1GgGzqmbaFVcgylor60zuj5KSA955y5UazxMu7Hi3Q/qRNcOrcTJhJ6AdIxHyrUCcsgag/ZrkV6Ytt4XOyMg9fpId0HiKQK1CAAKeluNRGahuM66XV3jPMuCSMGQx9Zye//ngBci0gT9JsdCqNpRY2ME4K+RxiGO8fKzWe2TfT3LkMlCV5vSOAFSENDeD7OygZ5b0Dl8gSZ9y6h7YgsItXedi2j2+qhZrbDKwwdPe9itLpEpfyeqlBlpi3Ymiawb64hx4ppWIxSiCjGbHQRQUg0V92pajwIrethSoGdvxeWFPkBgzA6tK0WAF0nHCvTWmsweu7gMBaVSJSuIXQdfW4EPU4wm32U74Mm0KYrxMuKZLKKCBLEMNjbrqsUQqo0RblSJFndIhmvpkKsOkSxKWTw2n28dm8nDfyoNNYbyPnRA5epFTJoUQxxQhSFaLZO5Dgkk2n1TTJZhokSIohAKmKrgtroEg8PzeM+FKUUK1cX6Y+V4D6RGNcmmR2lW++g3VhmclvolInE6/TotHvEjgFVF6vi4A2Ch14fmufjHiOVdjdy+/gchNA0hEpSv23DgKF//4Yi6j0ynyxScx2y86Ost7p4U1XEAUIk7QG5zSY5J4N1s8m5uUlGfufCvkpvO+fy2jsv8ut/+RXDd99EbD+bIy9IPXUHHoVffko4WuCf//IfKWddNO1oNdf6wMd6xH21G7eUZ/5bLwHgtXss/Poqy9eXCTc6NCpFTMskW8ymFef3YdxY5sJrFx76G0FvyPrNJbY2tpCTOaxvzeDYh7RihxFRa4DhSWYro9QuVh8pMXng+2gPCrnaRmRd2u20MkYIga7r21WRyZ7W7TSJ+/DW7eHQS30BvS5aycGeLZ9YaIySCq87oNvqIC2BUbWx7eMLPqeJOIpRfoyJTjFTxLae/nurUopws4u61aRg2MxePEd+rHys90fP81ivb9D2u+glm8xc6bl4/4wHAd7tFqJ+ND/IQ5cTRmwurLFy+w5ixMZ9s0ome+9cSL1QPeKWT97IMHFubt+khNAElfNjxNNV3r/2Mb+9/gnff/N7TEw8YPLzjDO2uRteA5DNnlyQ2Bknw5kYecYZzwCu6/L73/89Xlxa4u9//hOG5/IU5saeixeiuxQna7w1UmL505ss/+xLkldn0fOPlgD9XKAUjZUthnMl0BTk7Hu+jokk8X0M3cCq5uh9vkotSdB2tQtrtknh7Yu4G23aH3/JoDpCMj2RtuQedQAmxGnTItEtE0NBuB38cT9KpknMen+ALKVt7UoqoqGH1u2TrxS3E6QfjtcfpkEZD7pObZNo4JNEEeEwwPMCkoyNKmZS4TBOCDp9LFLvwbtiTBrk0SZ2bQwS3DurGCJBXakycEZJtrpMK4W+XQV5UOiKlHvTdrWZEZzrK4goIagUdlK7ESD8EKfTw5wsoZTEurYCw5Cc65Av56m7AYlpkITxve/tJkkwV9pMvXZpz7r0Gx2i6l4hTyUJSZyAAqFr6KYOpSy9L5YZPXfwbhRC7KRpA2DoiNG94Q4qlihDRyCwJER+BHGC2g6zEMb2vjA0ZBSn/pmA0R0ipg5uv0xqRZobzWOJkQpFnCQ7FYgHYhpgGohaEbmwRvzN+zZciF3VfAqVd/A7beR91/HD8No9hra5X4jcvb61Iv32KsN2j9AP6A88koKDmCrtWAyYKIzOgDCKD7V3IIoxohjTffQ2qQfdTgzLSBPU5S7xOE4wVluYi3WMIKR2aZLKdnr7rFdh9dodfNMgKuVB1xBhhLmwTmG1zbmpcebPT1N4+8F+aNOvX8R0TD79pw/ol/J0sy7D/hBzMCQXhpj/5k2SmRF6StFf3ED+t5/B6xfRttv+D9zO7pB8onYqME+C5u01fvmPH9B7/Tzqf3oP7ZNbuLdX6H/zRYL+ELfvURy7d56rjSaV5XUmv/9vDl5Hpehvtli5fptuOIT5CvblcwcKxkpBOPSQLY8sJudqUxRmiscWhfr9HgrIZtL7o9qeTJBDD+IEDB0ts7fy7iC/y1SUNJBSbvtH3r137G3dVgq6vQ6r9Q08EaGXXdzR6ok90pI4YdDqMuj1IWtiTGUxn0Lg1JNCKUiCEBVIXNMmlytgPCAg6Ukh44TwTgux1GGkUmHqzVf3VeQ/CKUU3V6Xtfo6nggxyy7ZsefPD/LCxTnKbxzPD/IuQd9j9cYymxubGDM58u9Ooe2y2JCJxO8OkZ2QarbM2MzBIVW7MSyDkVdm8Hse/+fn/8zkl1Xefes7FArHmww84/nirhiZzWbPKmpPIWdi5BlnPEPMzs7yP4//Oe9/+As+fv9Lcq/PPVK7xLOKbhrMv3mZkUaHL399le5IFv3CxAODQJ5Xhq0uQyGh4OwZiAkAXUNlLGIvQgsjtIJD0B3gHiComGMlaj/Mk7m6Que3nxKOjyFyR6jWUdu/dQoF83ylSLfeIpIuONaOuqGkIvZC9KGPUcwgtqsnhQ4U3dRjsdmmWC2jHSa47CIMIjiCYC4di0GzS6hpxIVMOjiO77UF63kXGcSoRofCtn9cd62BPhyQWWwiahnUa+PIwr3f8jMuq9eWmX/90oFCJIBlmQz8CLLbAwRNQ7s0hbPZRr+xTOLaKENHHwboQw8tYyJbMegaWt7FVYL5Ny6BEHifLyD9mNA1SfoBytLTxHMFBDHWwhZjU2O4xb3iSrQt+ol2HxnFhIlEZqw0cKfVRwQRiRBohSyJlCjUgdsjNA3LMFKB0TlY5BOmjohiiBWG66DpGn4sUebe+4cIY5SugS4QQYiexJA9ZJDkWkR+ePDfTgDN0FFCPFDQF8MQy7WJiy5+d3AsYbS53iQZKx3+AaVQQ58AxZ3lNezZGlq1irbvuhYUagU6W10i19m+rnZKzsAPMT2PQu3oKdr3Y1pmGuhzSJuzEALTMlCtHkbPQ7+5gbnZQ8/ZmKUMtfPn9wT6mK7D3OsX8HtDuhst5EoTZ73L3NwU5/70G7jlowuBY5fnGH1hlju//pJf/pefoM+Noo2WEG++hrb9jBZCwPw4wR+/g/lffgr/rz86cGCklML+5VUuf+PKMffQ4XjtHr/8xw/o/v43EVkHAWivXyD3y6sYP/qQweVzeIUMerNL1tCxri1R2Wryrf/xd/ZVgyZxQmtxnZWFJYKcjn6pjFMaP/B3pVSE3QGq7VPNFJmYvIDrHm8Ssd/v89nN67TDgCjnggBjOSAaDAivLRDHMYltphXcUYweRNi1CuZoNRUVewNGirUDl303VVspucdPMooimu0W6+0tZEbHGsuQMU+uvS/0A/qNDn4YoJVszJnCiVVZfhVIKUn8CBEpck6GTCnzlQz6k2GY+kFuDpmbnmT0+5cwj2EVI6Wk0Wqw3twkccAezZCzvv6VVHv8IN3H9INsdLlzbYmu38U+V6J0ZXbPBEUSJfitAWKQMF4epXa+dqx2eQAn7zL+rfN0ttr8f3/yX3l57BJvvfrmQ8XMM55P7oqRZ36Rp5MzMfKU8bDZ3DPOsCyLH3znPS6vXeTvfvkj2pM2xQuTz/SL7HHJVou88btvs/7lIgs/+5LopWmMY6Ygft1przcgYx56DxGAck3CfoCpadvVIQcjDJ3sK7M4MwOsX90kXlIM33wBHvQC6YXYj5CY+zTQDJ3iSJlhZ0DQ7yAtI6008wIMAXrJRRwkeBg6suAy7PbJVUsP+ZXtSpujXJYCgjAiKudRGmAY976nFHEsEbpAJQnawh2cjS0ygx68NoN89WLqLbh7YQAZmyDnMGx2yW77JN5PeaxCd7NJsrsVVNMQ4xXMkRJJs4NCwGCIHMsTzlTTVOphiLnewVIKvzfALeaZujLH6rUlhu0hcS1HHCtkkKB1PezWkNGJMcqTI3t+P4kiBo0uSRwTV/IkgBaEmIsbJDmXYG4krf6TCr3Vg02f9kqd8tTe5dylMl5luN5GzR8sPOjVHEa9gywW0AwNTdcwAi9tJ9y1D41mF1XIIoIYZ3kdfW6UQw+kVA+996rtc+GuiCoQGLpO8KAqwrvr3PcROYfYi0iMJK06vTuwi2JEEGNZJoZtogwNmRzBD3UXYRCmad33k0hUd4DqDUhcEzlVSv0+D2jlvYumG5RGinh9j6DZQW7fH7Q4wc7YuCOlIyXeH4abdwlafRL7EJsIpdDqXbKfLFLJuJgjBYwLE5hZB6eQ5aBjmPQDjMUGk40B07PzjPxg8pFCt+Ig5JP//ituXVtm6xsvklQK6H6A+9e/wixnMd57Zacd3L0wRfLrm5h/80viH7yB2HX9qc4A+4MvuTxaZfTK8f0/D+P2b67Re/38nt8SQqB/60UyzS72Z4vEn1zD2GgxdXGGS29dYvQP3t7j+RkOfDZvLrO+tk4ykcV+exLnEOE/CWPCzgB9kDBVrjFy4TyGcfwWz263w8+/+IxgehQ9O7bjD5kohfdlgBdHyJnxnfZ4ILU32GjgLgxx5qawOwMmLr186G+kVZA6QiiGwyEbjU0agzaiaGFPF1OP0xN4F1dK4feG9FodYk2hl2ysTPGZrrZL4gTpR+hSUM7kcPIOX0UrRNQaEC80yQwl5y7MUnl19FjetGEYstnYYqvXQCuYONP5R/a2fZbY6wc58lh+kO2VOss3FgmsBOd8mVJlds/7Z+iHhM0hVqQxV5ugNFl67HFLfqRE7r0iN5Y2ufr3f8W3XniLyxdfQH+M58wZXz/uipFnfpGnkzMx8owznlEmJib4D3/87/jVR7/mg59exX19Grf4/NxoNV1j8qVzVKZHuf7hFzSzTbTLB4cIPG8oKfGGQ4T54Bc9AShDg4GPUas+8LMAejFL9YevEv7kY4yf/YbBlYskI6X9H5QKbRDg1B6cMCnjGBnLtNLFNI/e/n0CCF0nWymQkZIkjFBS0fMDGHtwVZmwDaKuj0qShwgr29LTYX6Du1DDYLuyRz9gHwiUUJhbDdw7q1iRR1LLMHz1HCLrYuv6jsR1P0m1QGu9dagY6RRzuEsb9HvDfRWcQtewy3n8jRYCRTJaQIQxwpMYlol5fow4lqxcX2X64jQySiiUC2TDCK/pE0URKpHoCPR8jjiM8XsD7HzaXhmHEcufLzAYLxOYOrGTHn8xCAgnqpjrTfT2gHjCBl2QlHL4hsF6q5OKyWP726az1SKFRpvuWhs1Xty/3zMW9rV1ZKV0d9fi5F2CgU8c+UjTQAsjjG4fPeNgbjbQLk0fHITiBcjNNqrZwwMWPrpOaaREYaSMbhq70qkbREnq5WhoOpWxKrlaicpYBa/eQU484LqTEqvnoUwDN58hiRIiL0Rut6YapoGZc3eqTjQ/xigd7/4n2G5vv3veBRGq00f6AbLgIKcraYVrnCDCh4epCF0nU8yRKWSR26E/mqafiJijmyaubTLsDpD5zL2B7t1W7NtbmF7A5JsXyM0fXKkH26nYW9up2InG5Nwk5qSZTkjIo/k57iYOI372l//M2vwUW+++QTReASGIAP/KPObiGqX/8xeY/8O3dyY5tHcuM/7pEuE//ZaBaaBcC9H3KAiNy9+8wugjBBE9aHuXb9xB/dn3DpSJRKWA8d6rGID26+tcGK0x/tK5ne8O6h1WbyzSGfRgvoT13jmsg5LKFUSeT9Ia4kqDi7UJSlNFhHg0UUcpyYdffE44P4l+n0AcbdYJHYtodBSGPrpt3RM2DJ14ahTvzibG5zd47fylh3hSKnq9Hiv1dfqJj15ycGvVexXzdzcO0uC0Y26HTCSDdo9+pwsZA2PMxT4gEf5ZQZH6ISs/wdYM8pkSpvn0E46VVITrbdTtNiXLZeaFi+Rqx2v9Hw6HrNXX6YZ99JJDdu54fpLPKifnBxmzdXuNldvLULNwX6/g5g72g8waLnO1eXLZ3Inq1UITlOdHSaYq/OLaZ3z0d5/y/de/y+Tk5HNxLM94OGeVkaebs1H7KeTs5nnGUTEMg29/4x0uzV/gb372zzQrTUqXp5+LGd27OIUsr/zgG9RvrXD9/S8Jr0xijD1YBPu6k0QxwrUwZPzAtlUgrTrrB3tCRR6E0AQT771K8tvraAs3CdfzeC/Mo2wrDX4JIvSeT76YPzQhOvYDht0BMQpl6GlFU5Rg2zZuMXtoSMWTQGgahmMTB+Gh7Z/3oyydJIoxHjL7bjs2sR/Bg8JyAPwQVc7tEyK1YYC1uo7VbpFM5AnenELfaiEsHVnJgQK/7+HmMygl05AObVcVj20SR4eHmgghmLoyx50vbjMsBahq4V61a5yQ3Klj94cYL8+kFZHb37mXsi3wXYNbv72ONl4hsUyElBhDH/wQXJtotJB6I8YJzZVN7DBm8tIMm7fXGE5WEYUMWqcPiYQElKmjbJNwbhT75jpaz0PmHbQgQmQtfLtMfXmL/EhpXxugEIKJF+Ywbq/S/XyVqJpFuRYkEqM1xAoTai/Ns7G8iTdWTX0SBdg5BytOSOodrLU6pVqBQq3E2lJMmNlf3avWm8TtPtFoCVXKouUzDJXCa/RofnqTifkJ6itbDDMm6lwNtoM8oihmdbOH+1mDyRdmyWw06WcHUDigDVBKjNsbjE6P0qm36fsRumttBxkdQJJgDkPs/PFaCnPFLMP2IPVG7fSRQiGLGdTo3gGj8COs41QMCoH2CKEkDyNTzKL1hnjNLlKCvtbC2uiiuRZWOcv4dy7vswK4i4oS4pUG5lKTqXKJ6rl57ly9zQf/9CviWgElBEajy/h4lRe+9fKhIv793PzZZ6xNjqEuzqCWN/YKr0IQzU/SDSNKH17D+O52hV7Gxinn+c4ffQe/0yf2Q8zM3QrOkyUJYxLLOJKdSVLMMugMkImktbzBys1FfFegz5exKrUD30+VVAS9IbR9Sk6OyfHzZDIZHldx2KrXGWZttPvOO6UUQb1FfH4KQ9eJzQR6A5Rrw917chyT5DNYPZ+ZqakDly9lQrPVZLWxQWiDVc2QtdNJDrX9Oyi1y02Sncmlo2xZHEb0mx2GQw9RsJ75VmylVPo8CyVZyyFbKH0lFWgyigmXmog7PcZHR5h4+3WcY1TzKaXodDus1tcJ9Dj1g3SfEz/I1rYfpP+YfpADn7Uby2yub6JPZ8l+d3LPs0lKhd8ZIjsBlWyJsemZfaE0J41uGoy8PE0w8Pnbz3/M2Jcl3n3rO5RKpSf6u2ecfu6maZ9VRp5OzsTIU8bdF70zQfKM41CtVvn3f/hnfPTZJ7z/k4+xXp048kDq64AQgpEL0xQnatz69VU2VpqIl2Z2JQk/XwhNS6uqxovEyw2ii2OHViYZd5oUSnmOM3AUmsb0G5foTbZofLGI/ZMPGU5MEI1UUkGxWjrUUzHoD+kPPVQxsyNwASQKhl5IuNWiWCt/NT6gJ3zbdXIufqNNYj+g6tMLYXeQjFIYrS7O6gZaEhDOlxm+fin9e5SgVrbQHBORSJRtkIQw6PQRuoYSAiEVmqZhOSaaVA+dmDAsk9lXztPdaNG8sUqipT6PWpKghxHqjdl7A/zdKEWysEUodJKLk6mILDQUim7GRvkhdr2bhkxtnwtxKUfsBSx9fptEANsel5qhowURCpB3/UiFIJwoY220iXQNYelgGyRhQFjIMGx2yW37Z+5GCMHouSmqUUy/3ibsR2i6IDs1tlOVaReyNO9s0dtokLg2oNC9gEIpT+XtKzttumNSsXZrjfj8+M4+UPUOUd8jvDiJ8EMsw9gRz9VoCb+YZeGTBcRcFTF+3/qZBmqqzCA3ZO36ctra/uUSXqtPXCumorWUiPYAs95lZKxCYayCYRsMb68TFxyS1mAnqEcruOhjRXBMxJ0WlbHqsd4dZJJg2CYsrRNPVZCjebAOPtaaF2KNnoJJHgVOkJC700ZrD9CqBfTX58mWc9udAQdUCA981O0tnHqfc7NTjPzON4mGAf/6n/+F1qvnUG9+d+d+o5Sit1Jn47/8iG///rcpTR+QeL572XHC4pdLyD96N/VhRBxYDR1cmCb+65+iv3MFYegw8HFcCyHEgSE1MpFsXVti6doyUZi2x8+/co7SzPGD6zRD3+NB+yDUwKdX7/Kbf/hXkrEM5lvj2K5FHIREXoBummmgFKn3W9gZoPUjJoo1Rs/Nn2iF3PLmBrJc4P4zUg49EsfamTgxHBtdKhyhE4cxCLAME6eSR/RDer3+noqYuy25m906Km9iT+XJ3jdxJkjvJUpsH8/douT2/xcHiJIKCAce3WaHSMZpK3ateBqtk4+MlJLEi9BiRdHN4pbdR652fRziQUC80MBs+Jybn2LkB1eOVc2XJAmNVoO15iYqI7DHs+Seg04aJRX+epdwoU3RyXPhhUf3gxw0e6xcX6Q96GGfK1C8PLPfD7I9RPRjxsoj1M7XnnqAkZ11GHv7HP16h7/62f+PK9XzfPO1t564GHrG6eWsMvJ08/W/C59xxnOCruu89dobXJg7x9+9/89sZJsUX5o9tjH0s4yVcbj8vdcZu7PJtV/ewDs3gj59cDXH1xnd1NGlQGZNnFIGrm8QTZX3hnB4IcZqG6sfUnnz/LF/Q2gahfEqhfEK8cBn8MUd+usb+JfOH+qDl0Qxg8EQVc3v1wwEkLGINUG/1SH/kBbvk0Y3dESYcJQmTRElaEd4wdZMg1whR6/ZS8Nldle1SQXDACsIiXWdZOhjbfZxNjeRZYf4pSp+ztkj2Gp+lPq8lTPozR5RIYsUAuWa6KYBUYIMY5IkJupGuJ0B+SOk8Wq6TmmyRnGyitr2HPR7Q5abTdQhlS+qNSCSimiuivDTlmxhaER+RGLqkCsQmAbO0ibahcl7X3RtBhNlxEp9j8igZSzkIEhVaS09Csqx0IYBuqUhtvedAmTWwR/6PGiOWzcNihMHe0eatsXYhSlGkiStiAUM294n3OZHSoQDn+Ynt4mKGVQph7xTJ7wwgTbwsRxrn7+gNDSCiTJOEO0TUe4iihm81oBw6DPz6nn8Tp/mWoNg6COEoFApUnzp3M5AW2gaahji22YqjFpGKhB2hlg3NjClpFop4uYzbNxcIfADhIBcMUdhtJKeG7uIgoBeo8vA95EFF+PiGGGSwEGto1KhtQdk85lHrlhWShJ5IUmcIASYjrW9Tse4L8cJrDSxluoIpfAdnWSiAEphez7Z+5Jyd1qxF+sUY43pizMU3xxB0zSUUvzrf/oHmt97GTFa2rMWQgiYHqFbzPLB3/2cH/6HP0wF20PobzTxa6VUYAScrEs48Pe39us6wWgVe6MFUzXcG6tMv/vGgctsL2/yq7/9Bd3xGuGF2TQMqDdk6ZdfUv6X3/LOn76LcwxLFk3XKOYy9JpdRGW/DYVSCnVjhfhXXyB6PW69MIKey1PKCES9RafZJTL0NG08iHAMnUImQ95wOV8dozxRfiJhJVEcIw66z8YJave/bz/fs5n91f3S1ImTCFAMBgPW6hu0wz5aycGZqzz03WBHlIQ9gmT6n/dat5VUeJ0+vXYHaWsYVQfbPl5Qz2kjiWKkH2OiUczksS2bp+0HqZQiavSRt5tkIo2LF2YpvXm8ar4wDNiob1Lvt9AKFs5M4bnoHtrnB/nOo/lBKqlo3fWDNBOcC0VKlZk9107kh4QtDyMUzNbGKU3s71x42uRqRbLvFlhYqnPtv/8V71x8kxdfuHLmJ/kccuYZebo5EyPPOONrRrFY5M//4E/5/NpVfvTTD9CvjJIb3++v9nVFCEF5ZoxvjFVY/Og6K7+8jnplFi37PM2KCspjNTbX25gzZbSsRbTRIfYilKkjYoluaBgFh4wwMd3H2TcCI+tS/OYlsq0enV/foJ8vEc9N7auo8/vDtPLtQeMZxyTqB8g43i/4KUXkBTutx4ZlYDr2ifjRCV3HNA2CIEbYhz8aVRhj6vqhLej3Y2UcSrrGsDck6g5TX8jttnQn4+A4Nv7122R7bYLXpgm+ew5lm6l3ndorjRpbbbSshV7LYXy4SJhzUTknrZjseWmLs7tdhRnGqFsdtnoeTs45tHV1zz5A7PhgCgEPUmaTjQ7RzMi28ei9f4/CaEf0loUMcr2JFkZpq/bdfejaKCHQt5ORNU1Lt1XTEIZ2b7s1wNJ31kkplVaeHUkyfjiarmNl9g/OFIrOap3WZoM4b6OmC2ibPeTSJso0cJo99JmRA8W5OIhIagXkjVV0Ke+FzdyHHCnQ2mhgZRz6rR6eFyC3QzhazQ5SScqTIygpWbm5QvLSLJYmwI+QQYDSBBgG8VQNY2mLfr1La+ATj5ZgNBXpep0B9c9uURstU5qo4fcGdJtdAk2hihm00SoaggwKrTdkWO8iXWsnzEeEEbofkS1ksTKPco9QeN0h3tBHOmYqICmF1uljSEWunEc3H1LZNAzQFrewt3o4o0UaeYtgrIAaye8IgOEwYLBRp7DVYmx+imS1ibnUZLJcZOqVF/elYrdur9MpZRCjpUN/VuQz9M6Nsf7FbabfuHTo52ScIHfdp9xChuFanThj7zv2ytyuUFxrUI4S8uP7/UJ76w1+9ne/pPPDbyJymXu3ylwGf6LG2kaT9//qR7z773/vWMfk0psvsPXRTYIfvLYjIigpkWsN1PufEOsx0bdnELUcopgjSiTLK3W0ehft3BiinEfGCYQJkR8jN7ucn5+kWnm41/CDiOOYOI4wDGNfwI1jWagwgvvtAQwdEd+zn1BKHSp8iDCdAFuprxPoCUY5Q8atHltS27GnuK9KMo5iBq0uw/4AkbcwpnKYz7DQpdRdP8gY17TJ5cqPFDz02OshJeFq6gdZzeWZvnKFbPXBfs73k4rP6/TiIUbJJlutPNMVqkflJP0g64tr3Fm4g6qaZF4v7/ODDAc+UcsjqznMjsyduB/k4yKEoDw3QjJV4VfXr/LR33zKe69/l5np6eeuSOF55qwy8nRzJkaeMs5ujmecBEIIXr78InNTM/zjz3/M4spNiq/MPrDC4+uGYZlcePslRjeaXPvNl/Qmiujnxp9pz6bjkB+r0P+ijbfRQxvN4eRH06q3JG0JVn6EWGgz+uLxqyIPwyjnqfzwZdwba7R+9RHD+VmolnZExdAPIP/wAUWSsQiHAU7h3iMqHHgMe32UpYOtp3qUFyI6PbKFPOYjiSV7cQs5okYLVcnea5ves2ISreORuRuAckR02yJvW6gkQSYJSIXR7mIv3MaxBMGYTfPSdNrmfIgnoFHvYXaHGJfGAIEQYN2pE8yNQiSROXunFVwEMfbtDeJzIwwsgzu3V5m9MIOdO3qljpVx0ft+GpZy/3MpTpBSoba9SEWSoOkOSsq0rfHu5wVEpRx6Z4gYuWcbITRBnHcx+x7YaRJ0NPC2hU0J4l7LuojlrnCVBNM20Tc7uE/IhkKhqC+s0o4DeHEc2fMIrq6T6Drx/BhSE+h9H375JdpIEXF+Ys9zWyYSbDNNaI8k2IcIE65F0PdY/OwW/lgZrszc229Ksdnq0/3sFq5rE0xWwTLRACeXCnoqjmGzQ9LqEyqFr2sYYYTW6qFZBrg2aqREUMqxdu0OrXoLfaSIGMsjTOO+8aLAyWexcy7hMEhbXQHTsrCK+UcU+xWDVhruo2qFPQNUmbEI44ROo0uxWtgvSCoFjR7G7TpOlJA7N4ZxZZblLxbwL40hsvbeasaMjRot0v/VApmf3+L1996i9v1vYh5i07H4xQL+pamHjpnjF2ZY+NEnDxQj7XwGo9sn2P5vzdApVoq0NzskldweEV7vDKBhUl3c4pv/7ncPfN/75F9+S+c7ryEOu1bHKtRfmGXhgy+4/DtvPmQL7lG7NMPc9Tvc+uAa0SvzsLqFWt1EmgnRKxXCixNofrTjvRf6IdFIEUaL2DfW0NCws1nsjIuW01DlEh9fXyCfzT9StUmz1eTG8iLtwEMZOiJOKFoOF2fmdgTOuYkJ1pYWUPf5oGoZF90PU2HX0CGMcO293q4qToibLUS3xcZIBns8S+YxW3J3V0lGnk+v0cGPAvSSgzWbBmY9q6/wSiriIESEiqztki2V0uCpp4wMYsKlBtpKn8nJUSa+/SbWMSaSlVK0O21W6+uEZoJVdsk5p8Be4ikQNAf4Cy2ck/CDvHmHzbWNbT/IiT1+kGrbDzLpBJQzRcanpk99C7Ru6NRenCKcC/j7z/+V0S9zvPvWd6lUnp9CjeeZM8/I082ZGHmKUepkqj/OeH7J5XL8ye/9ITcXbvGP77+PvFQhP/V8tS3nxyq8+bvvcOfzBZbev0ryyix66eRDAk4bQggmrpxja2GF/uebyJoLtoFKJFrTx0xg/Mq5tLLwhFBK0d1o0h72SCZNxLXPCfQs4dw0Trm4LVQdYUGaQEZy5z+D3oCh7yFq2b3nrgtISb/VJ6sUVvb4LUi70U2DfLlIr9lBOiYiY6XVTVKihiGaH5EvFdAfocoAFCKKsVY3cBoNMhMF3Hfm0HMu4cCjt7ACOQPty1WiWoGk4CKUQvNDjHo39XC0DbRiBtkekIwWUMUM7tU7JK5FUk5b3/W+hxYnJNNlVMEl6ftEczU2l9aZeenowrNuGmQzLq2uhyjeJ4xIdU+sjSS6YWxXDcn9x1fXU0/MXRiWQSIVSql0gK9p6JqGVBIRJChnOx2656HyLghQSVpNqmdMrL5H5uLMIXtZEQ0DkihCaBr/f/b+K0izLLHvxH7n+s/b9K6ysnz7nunp8TMEAQIksNwlCVDEkmJAG5SC0Bsf+QYyghF8IGMVYggiQoJ2SSl2VySAJVYECA/MYBww0z3tu3xVZlb6z5v7XXfO0cPNysqsyizX1d3V3fl/6I7Kz1333e+c//kbN599pPvdqN2nE45gaQzVGRK8v8no9Exqs9c6bQw2BGEs8a5t4Ly/griwr/n4Ng+rdarsPAJaKkbDAJ5dhLtLcoSAaoHAsxm9fQPmxw4eVilRV9aJqgWSk5MopcCxiA0DcxDg3NjEHCuDkqgwIp6pkMQxlfr9iUUhDNxchidxR0jCmEDKtJhpF0qqXdWrQBgGspJGGJQnKoDYs2K7q00yxSy5c3NYu6/vbbUIyhnE/qgJrRGNPtbNJnaiMU9PoxvXqc5NHklEAgR+AA9zr8i6RLs2/vtB7LTpX1+DYh4v5+HkPKqWyaDdI0oGaMdCDANy19c5P1nhzN/9yUPtkn6rRytKEA8g2tXiDMu/+x1OfeX5h45hEUJw5kvP4v/ed9n4jT8ifmYCdb6GWm+QzNSwogQ3n0mzM7UmSRJU1kMAyVSNQi8gU7ujghSmQTxV5cbaCs+dvfBQ23Ab127e4HJ7GzVdw8iO7f294Qe0lq+y1O1wZvEklXKF/NWrdAY+5j5yVgiBW6sQb7eIJ2qYicTdVWypICTpdlBRgLAkE+enyZaezMKF1pqg59NrdZCWxix7uJ7H/pve7uX9NInD7gspJWoUYypBOZNevx/H+DDpjYhvNHG7MUuLc9R/4sI98RL3fX2S0Gg32Wpvo3Mm3lSO/Ce4sfxhoZVmtNkjvtGh5OUfOw8SYNjqcevyCp1BF2exROkbd+VBJpKw46P7CRPlMcYW61ifsMxNO+OQP1Fl9e1bvPb2j/mpb/zVj3uTjvERoN/vA8fKyKcVn6y7yDGOcYxHhhCCUyeXmJma5ls//C6X165SfH4eO/PkSKinHYZlMv/8KcbmJrj0+vt0yhnM01N7Nr9PK4RhML40Ry2OGex0iIcxhmmRX6jj5J5snpXWms1LN/EdhXG2lpaSPDOFeauD/e51/G4dlU8boB84U1N3bHcqkfhDH1HPHU6kGAaimmXYGGBn3A/cxG25DuXxGpEfEHYClFIYhoGb9XDGi4/+/lpBu4+zsYkXj8idHMd98cLetScQuPks9XKRhu9jLI1jNfuo5T4ySlB5B2pZrM0uzsnUFq2jBOVa6KyD9izkfBUzTNVseqacWkRvfzyQGIJhGBIO/EdSR9bnJvAv3iRyrION4JaBiBNIFEYQ4ey+pxAGQh7MVRNRjLhbtSoM7CDGsMK957pZDz3wieMYbQowDZzNFnJ+DB1JRJjgeS72jS3GjyjxGDQ6NNYbRJaBciyEVFh+SLlepjIztndNaa1RUqYFFKbB/hqK1mYTPV0CrQnf38Q/N4e+rcwRgNLp8y2D4OwMxjvL2DvdPeWnZVvIUZwqOu9zf9G3mqhaEeOQtu6953gOcTmP3R3CPquxur5JOFlFlbMwDMC10ULsKlM1SdZBbTfRC2MwkZLUsj8i8oMPTNg/LPy+j9r9LJlIlFSptXzX/y9imcYCGALZHmBvdnF3+uRm6mS+dP6e8rH2dhO9tEvKJhJjrY290sIq5rDOziJ2F5iC8yPW37nG4hefPXLbHNdJ296LD/guhPGRk+04iHjjv3yfbX9Ef2kC452r9L7+Mn53gNXoUhqvUJ6spTbuMCbz+kW++PPfZPrZoxcE+pstRodYt++GsEyiYp6gO3hgUZ1Wmu76DmvXlhmKGPurJzhZe5ZRq8eg1adRyJIpZPcKfFQikaMIbZlYhpl+z8p54s1VPKUO3P+MUp7NtWWe1eqhC022dra41NmGpWmMu77DRtZDL81w9cY6xe0ck+OTfP6Z5/jB228yqBUxKqU9Z4M9Xse9eBXj5jq5hVnU0CfpdkBIKDkYyqJkuJRL5YfarvtBJhK/06ff7UHOwprK4Ny+LtIwydv/2/ubhqealEyiBB0kOIZFIVvGeYLFQw8LrTXRTh91o0UBmzNLC5Q+X3sk90oQBGw1t2kNOxglF2++jPEZcL+oWOKvdlArfcYnxph65SW8wmPmQa43uHV1mcBM8E6WKdfnD+ZBhjFh28cOBbO1CSqTH05G7IeJ9D7YJLzRYSY3wU+8+nOMjY09+IXH+FTgWBn5dOOYjHxKIYQ4VkYe44kik8nwM1//SS6srPAHP/hz/MUCxYVHb+b8JCNTKfDCX3mFrSsrXP/+JeLzM5j1T3/ruGnblKY/3IFX+9YWvqsxZ/dZooRAzFVwJgpY72zgX9pk4J1D3Cf7SSuNGASIfA4tJeFwBDnn/lZRISBjEQ0D3MIHJ1lvK+oehbg7CA2xxNjawd3aJltyyV4Yx6wW9r5vYnemepsIq85NYG42aV7bSVuTx4qIOEFudzDDGGdxbE8VJiwTEcaIUYTybCh4qMLB46OUQiuFoRQREpmxWH73GqV6mbET0xgPEeJuey5zZ+ZZu7JKlHOQtTzCttBxghlLrEYfd7x8h6AQAtM202w5y0zt6N0hTN9FsCQJeSEww4TBRgs9XgLTxCtksYKYqNXD2mihixlEkGCbGmcU4ay1mJgdP7RFu7myxc5giDwxfsAamyjF1nYX/72bTC7N0N1u0211UbvbZwPVyRr5sbTIJAxDRLaK2u6RZL07ROTuWUuZBp02lwPh3Bjmyg7mbTLSsZG3djBr+aOvWaVhu4c4v3D44/sPVbWA2exj3iYjRyESUiKSVGGplcbsDjCHI3TeJZoqYiR5rH0Oe+3YxFHCh0k5aCUJhgHBMCCOYnScoA2R5lBmHQ4oyAyB0ehjvb+GNUoY/9xpnGcW90ixuyGlQkQS88o29k4fa7qG+epZhHdQpaxqebrXOvfdzrkz86xeWyEqZFAXV5BX11FKITSY0zXMZ04gakWMK2ssnL33HMko4S9+40/YODcLS9OYQPbNaxjffYPBC6eJaiXaWy2qExWMdp/i21d45tz8fYlI2HXDPOzvsRD3jU5NopjmjXXWl28RVR3sZ2p4hTvXcn68gpIKEcepEj1KFxdcy0ZaDomh7owNhEA5NjpOEPvyGwWgLZMkkdj2w5ATmisrK+gT4/cQkft3S82Nc/n6MpPjE2QyGb7y4ktcX13h1uVlpOegBZhBxGylhoxj1i5dRZYcjHIGYZpYYUylWKBUKH4gMjAOIwatLv5ohFF0seeK916fIv2P0IA4nJR8WoZYWmuSMIZQknU88sUipvnRTwN1ogjX2rDSYaxUZub5Z8iWH40k6A/6bDQ2GcoAq+KRq3/G8iB3QmZOzDL+V84/Vh6kjBN2bm6ydnMVVbHIPlehvO/+oDVEfkDcGpEVLqfG5inkDykefMoh44TO8g5ydcjZyZM8/9WvU3iIqKBjfLpwnBn5dOOYjHzK8Fkiho7x8WB+fp5/OPkLfO+1v+Ct710i/8LCYzXsfVIhDMHk2QUqM+Ncfe19GmstxPm5NGftGI8FrRTdRhvjwhGEp2NhvDyHV9zG/IsfE5w/TTQ/eaDgQUmVtu1GCZaSjGTIaGeIjBOMiYcYPHo2UT98ImTk40PDYIS1vonX65Kbr+J97fQ+lVeaKSYOGdELBOXJOqWJGqN2jyiIELZNXDPp9PuoOAGdkrIi72KuNtGGgTAM1F3vp6REC9KsRUOAayNcC71Yo6s04XvXmb1w8qEISSeb4cTzpxl1+nQbHZJEYlkm2bkptnbaxBMH87gc10YOA1TWwNpqY5bzB4s8tMJa3qY+O06uWqS72aR9ZZ3EscAwcMKYmmtTWJzGHwbEHR/DMChUChTmJw/dZr/do9EfIE9O3TvzNwz0ZIXe6g6DH19CLUzA2dm9bYrihNFOh3yjw+Sp2T37ebzVIx4r33ueTIFONMJMz5os59KymtuPdwaU/IhEKdRE8Z4SJ5TCuL6DZdtE3v0nkcJIFaI6jJBRnJYmNXvEtbSgRg9DrFYfLIEseMT12u5+aZSp0e0+orBP1fkhQkYRvVafJOdCrUASJ2mhUphg+iEikanVPZE4a22c1SYq7yHna4QdH3fu8HtH2ordw3r7FmY3wDoxjnFh/miFslQPbEutn5rF+4Mf0L++jv/MCcK//gq4NiiFtbpD7ttv4s6MUV5tMP3f/rV7Xr/65hW2piqwryXefGGJ7EQF5+2bJH/xDtowMJs9lp49yam/8hLl2fEHHsNcvYT35jX8BzxPK4XVG+AV740bCXpDNq+usLOzg54t4Xx5jswR6k4tVVoQM0rIOC5OzkYIwSgI0mzhfRBKH17GlMiHbqf1fZ+hoTAeQJ4YtoVvCQaDIfl8HsdxObd0mjOLJxmNRoRRSHfQp+V3Ycxj8dRZEpnsqdgdx33sy11rCIc+vVaXWCepFXusdPC+okFplRbniDRyYD8pqYU+QBR/3NZtpRQyiDFiTdHLka1kHlrJ+iQhg5joZhNra8jczBSTX1l6JIeOUop2p81Ga4vE1ji1DHn3M5gHuTRP5cWxx1InRn7IxtVbbG1sYs5kyX5xCtO9Kw+y5yM7IZVMiYnpGTKZT978IPJDute3MbZjXjz5LOf+2llc97PjBjvGQRy3aT/dOJ59P4U4JiSP8WHDcRy++aWvcXbjFL//l9+iM+1SWpr+zJS7ALj5DBe+/hKtmxtc+cFlRqcmsKaqx9+/I6C1RkuJ2CXA9iPoDlAFG/MBg2Pr1DiqE5BrbuDuNBieOYkq5XdtnBKRSKwgxB7PIwwDXXDRm12SOMYynPueG2F8XGpyDVJDs4W7sY1nSvInx7GnZ/eO090qyPtBCEG2WmI/pVocBXQ2mwxubaIFGAgsYTMyTOQoJtnnfU+tuoAhEH6EsTvRMPoBYqyAcG0CpWmsbDK+OPNQeyiEIFspkq0cJIWFbbJ5ZZ14pgb5NDtNmCaeZZFcXcdKJJyb3z1MGrpD7K0OY2NlCrvqxsr0GOWpOnEQopXGcuy9rLCH1Sw3N5ok07WjJUiJJOkNiebGyFbvyk20LdR0nX6zh3lzI80t1KRkjHXY9SwQVqruQYg75TqtPnazR962mXz5LMN2n52Lm8QFD1lMCUFjEGJ3fOrTY/R0lyhR95KVtzc5jIjCOC09imIiKdP80GEAhoF1fQNtm8iyhyxl023Z2y+BNgVa6VRpbIiU5P+Q8r2UlCkRWckfOGZag3YtEtfG2uzgXd3CGoTIqTLh50+iPRtzq7NrIR8daDbXiSS51cRebTFdKuEWK9xanMCYuX/hgH2jwcTiifs+J+wNkZbJ4MWTxLN1uD0ZNwyShQm6ExVK/9v3WTizcE9jtdaa6+9cQ/7M5+/5NstynuSV0+hEYQnIfu8i57/2/AOt1LdRmKhSTBKGfR9xn0UVsbrNzMLEXqmE1pr+ZpO1q8v0ZYg4UcE5v3To73nagDtCdUbkI5PiIEHMH1SLOLaNEY7QtwvvkgRDKsRd148cjqhncw9NioRRhHrIEj3l2kRRCNyePGp832dtZ5O+HGGWPTJjtb1L/mEJ0SM/Tyn8zoB+p4v2DKy6h+veRfZqiOKIURSiAC1AKDAFZFwP27b33ec/fuu2TBLUKMHSBpVsAa/g8nFQonHHJ7nRJDOQnFmap/bMeLqw8pBIkoSd5g5b3QbkTbzpHO6nPGIHDuZBFr0cS6fPka8/bh5kn7Ury7T7XZwTRUpfnzug8pWJJOj40E8YL9UYWzyZXs+fMPidAf2rDfK+xdfOvsTiK4sf+N5wjE8+jpWRTzeOychjHOMzjKmpKf7Bz/48P3zzdX70nYtkXpglU/rsrBwJIagtTlOcqnPzjUtsrF1FPzuP8RnK03wQoqFPa73BoD9MrbdSkcm4VKfqZErpD7tMJDgPN+CzqjnqJ2bprG5h/fgdRsUyw6lxLNPAdC3MWn5vEi0A4VhoATKOsZyjTaY6fniFzpOBhjDG2NjG29khN5En87lZzOLBogV4OBLynnfXGr/do7PTSdWhlsHY7AS5WgnDMJBJwup7NxiYBkbHR+1m5imVtqWLUZxaIW0L4YeYpoHYJQJEPU//vU3qUj6UOvIoFMcquBmX5nqD4a1GWtQhFbaG8ngVKRXdq+uo3aKafClP5fTcPQSPEAIn83htnDKRBHEM9/nO6maPuFpA5TxknBxaQKRrRQbNHoVMhl7PRzgWIoiPeEeBEALDMNCJxJCKyURTPD23VwhVqJfJ10r4rR6j4Qi0xisUyS7MYhgGQsOg3UdN3kuuxaOQSEp03sEa+FiA7PspmTHwMZAktTzYFiQyzRgtZFAHchZTy69MJJZtYYwinIkPp7grGIxI8t4BItIwDFQiMbsj3OUGIowxpCT40hm4XSyhwW4NUFNl/HYfJ5tBDgP0zR28xoATc9OMfS1txa5Pj7Hz/deJpisQxuiVJjqKERkXMV9H2CbaD8mud6j/1OHlRrdx7Ufv4796jspMnX6rR9QZpiSZACOMsYXA/rlXWf+Ttzi3S+beRjQYETgWYt+xToKQXqNLYqWWdBwQkWSUs7jyp6/zwt/55kMTCM9+7Xl633qD4U+8gjjsOu0OqLx1mVO/8E1knNC6ucHazRWikoN1toJ3d9nULpTShN0hohtQy5WZ3FU8+T9+jUa7h1nM75EThjCw/Yg4iMBzMLs+7ljlwF1MA+Zmi6WFo5vG74Zpmgip7ucu34OQCsM0UUrS6rRZb24R2xq7miXnPbkG3CROUiv2YAgFG3s2jzjsnqhhOPIJtQTP3iP+NWkURD8MyMiEjLdLqIuPx7qtdfpbqUcSz7LJ5yofC6mklSba7qJvtClZHnOnlyiMlx+tTGw0YrO5TWfUxSy5ZOfLn4kF89t5kHKlz8QHzIPsbDRZvbpMYMS4J0uH5kFGbR8zgNnaBNWJKsYRURlPK7TW9DbbjK61mXAqfP3CN5iYmDwWFhxjD8eZkU83jsnIYxzjMw7LsvjS577AmRNL/Jfv/ymtaovy2dlP3IDkg8D2HE5/8TnG13e4/MMrDOermAvjn/nBTG+rxdbWDvF0BbFwxw4VDUMGtzapdwbUFiZTlUOs7vNO+xArstUixak60bMBW999B+/KFcJzJ5Gle1ctzayDGsXorI2+X1GCH+N9JKueGjoD7PVNvGBIfrGO+9z5PdXQo6ggj0I0Cli/vEKYc1AThVS5FUsGzT7O2jaTi9OoOC1gMfoB1vsDVM5FjRVQeXePxBWujYgSnJsN7MV9NlghUCWPoDe8R+34qHDzWabPzKOkRMZJ2oztWHv7X5ub+EDvfxRkHDPqDkmCCHk7y/GIY65aPeTSFEh9X/VsXC9i+DHmWhdmyjiXtkkmD7EBqjRPTxgCq9WnVC1Rm793P4UQ5GqlPWWcVirN8hSC/FgZ+62rhLViSirefuskIUoSdM5FxDItxxkvYG+3STyLaGk8zWDcK9DQKXHTH2FIhdrNuDSCGO3ZqTKyMySb+7CsmZpwFEJ933cvkbhrbbyrmyTVPNHJcVQ5h73ewuiPUNV0QmBttjGLGYRjEW/1UOt9ignMLc1TeumgDbE0M8ZcNs+lf/dtQtskWBhHeQ5mo433/cvYczXy231e/Mbn7/vbJRPJ2vIm+uUvYxrGXslMEsaAxiwV9pS5w1qRzsomlRNTd/ZWKfS+94+DkE6jgxwrHCgs0jmQ9QLX318l8+dvcPbrLz3U0awtTvNKEPHj3/8e/VPzRFNjKNPACEK81S1K69s88+p53v2jv6Td68BCmdLz87jFLH67x/alFZJYYtom5XoJN58l6g6RLR/PcMhls2Rsl36/xxuX3qMTjRjeaIFpYGU9DARxEKByHgqN0ehi9EewOLv3DdNSwuo2i4Uq1crDE4OFfB5nFBHcVYRzN7TS2H2f/rDP9c1ldN7Gnc6TfUJqOA3EfkCv1SWMI8yyi7NQui9DGEQBIQoOa2k3DMg4jEYRVhzfIf/ukyd5+zb0pIYYWqV5kCJS5NwMuXIWw/joFWEqlkSrLcRqj/F6jZmXn8d7UFHUPmit6ff7rDc3GekQu5IhN179pEUVPhYSP2J0o/XB8yATSePmBrdurKLKFplnj8iDbAdksDlZn6NQKDwV493RaMRoNKJSrjyQeFaJpLPSIF7uszQ2z4tf/DLlcvmj2dBjfGIgpcT30/CTY2Xk04ljMvIpxO0fBK3TidPT8ANxjE8/arUav/jX/xZvvvs23/vzt3Cem3poe9mnBaXpMV4eq7D6zjVWf3AJ+ew85seaQfjxIegN2NxqIM9M3TMoFDkXdWqSxo1t7K02hXoZ4+atPUvoUdBRgqUE1q5Cz8l6JLUsmVdncN/ZJNhpEiwtoPdN+IRnIfoBOjHRhkIcYp3VQYylBeZDWgAfHRoSidhq4m1tkclZ5M5OYNZPHFlI87hIwohbl5YJF+uwv2nZMtGzVYJqxI03r2BMVuBEDeFNYiWSoNVHdHzcrS7JuSmE1phrbaz2EGsizRjkdrEMoE0DJR+SQH4IGKb5gVSWD4skitlZ3mDoj4jL2VSZNAoIe0Mc18Fy7yULtNLpfifx/Qk510H5EZMzk2yub2FqhbXVJtnLxdRp+YwGwzIgTHDXGky+dPa+2xz0h7TWG/j+CG2ZiESSzWWpj1fYvrZBfGJij+SIwxjtWhg7XZy1BrqWJ67n0XkXaVloy0CEMUiV2mgNA20YyHIOqz0Ay0A5NsYggIyN2e6TzWcfS1nzMNBK77Vki2GIvdLE3ukhpioMnptLC0d2bdAq42CFMSKIsbY62HGC5dk4f3aRqUKFU587T/PWNjfevobx7nWmFiYZOzOPYZnIKKbX7BOcnmMwUULmPdi1KQeLU2TfuM60tqguTt1vc4mHI2Qhc7AV2jJxDiG6gmoBv90/QEbauQzWIEDvEmq9nQ5yvHBoc7rd6qO+do6rb60yvTlP4SGasgEmzi1wqtHh4vfeRu5mNZoCrDBiaGq+990+yQsz6M+dAqXoLK8jO0PEeAk1XgbbQocx3c0WTnOFjOehijmSggUiJly/jmx1cSbquEsnyEtJt99j1Pexmj10tYiqFzGiGFSeeEIx3GnjNjpkczkyo5hTs3PMTT9czMNtCGEwPz7Jxe025iHHQgN6FBItr+M6gh3Lx1t4ctEpWmtGvSH9VhdpacyKh+sVH8wIak0QRZB5QP2TazEKg3uViHukpE4jNJ5gnqSSChlEGAmUsnkyuczHMmeQfkh0o4Xd8FmYn2HiG2f3fucfBkopWu0WG60tpAfOWJa889kYe4WtIeGNDm4gPlge5Chk89oam2sbmNNH5EH2R8hOQNkrMjm5RCb7FORB6rSQaH1ngxEhwjVYa2wwPzFLqVi658sRhxHd6zvojYDnT1zgwk+e+0TmWh7jo8FtVSQcKyOfVhyTkcc4xjH2YJomLz//IksLi/z+9/6UrVyL0oV5zM9APs9tmLbFiZfOMtbocun19+mN5zFPTd1XyfFpROPWNnK+dicT724IUPM1mpe3KE5UKFTKdHf6mEeUzWitUWtdxqbG2Btdap1OxDI25itzZDd72O+8z2h8knh6PM09RGBXc8Q7A5QnMYrGnSIFqdDDCDNW5GsVHn9KdxQ0+CHm+iZeu01urkzmy0sYeyTh0YU0j4vW2g7BdBmRPcR2rDXqVoPw5BhGzsXbLUAxLJPsWJmklCPcbOO8tYpRzCK0RglBOIzAjzCGIWbGwZouI8IEq/zJGgIkUczq+zcIpkqwUEkJMED0R2jTIEwkSgYHbeA6JRC11Jhxgnm/CAaZFmDk62XmMg6NlS1a17cIRhHxZAVsC8PYtWg3+7jLW8wuzty3db21ts1Oq0M0XkRPpVmopm2m6uL1DuVCluBWgwCIMw6i0cWNIlTeJZoug2Uiuj7EqT3UQKSEZpQghgHaslCFDNo0kIUsZt/HlD4GGoGNaZlkijke9N3QShEHUVoCIgR2xkE8hLJKAEazj3OjgRlJ9EIdfXYGbRhYowAlwFAaBgGGH2JvdzAaPZwwwQ4SrKkahUBiVW2+/2evMTwzgz41CVJyc2WD3Pfe5oVvvMT2zQ22Tk2ROT+PpxRh3ycOktTiXyrg/PUvsPODi9x64wrzLx9NDgvDuKec5cjnanWPytK0TGYWJuktbxFNVEhc61AikjDG3eli/OSzBAKuv3GZF37mSw/8TK01P/rNP+NyGDD86ZdBQ+bSLdStTXqTLkwWMDwLY7KIqORSi6JtwlgJd6OVElFSYTsu9liV0SikP1miUqtimSajIGBol2C+jlxtwOom3twktm0TVwvE9SLO9U2ynkumXk3t9koRF4qIGxuczVdYfPbkAwmvOI5Y29xgZXuTREpMw2BubILZySkaF9s0tlsYY2kDstYa2R+SdLroJCRTspicm30sQuYwyEQybPcY9PqQs7Cmsjj2I2QWSokyxINJS8NIm+7lvdcN8ESt20mcoIMEG5NStoTrfPTRMlpr4tYQdbNFNoClU/OUH5FIi+OY7eY2O70momDjzubxPgMZf/fmQZ597DxIvzNg7coKrU4LZ7F0Tx6kShRBd4juxYyX6owtLGI/huLySSMtJOqw2dwkcRXeWJaim/6WykrCzZ1VvOYW81NzZDIZRj2f/rUdvK7gS2df5OSLi5/IXMtjfLS4nRcJx8rIpxWfrJnIZwjHashjfJwolUr8ws/817x3+SLf+s4PMc+Nkz8k2+zTjFy9xIt/9QtsXLrJje9dIrkwi1X9bPyQyShmFMeQfYASxDKJMzZBz6c2P0nw3nVC3cPYLaC5DS0V6laHguGR399QvDs52yvZmCzi1HKYl7aJ3mriL51AF7II08DMu9iRRrZGqF2PmyEE2VwWp5x5hJmcRkYJKtm1OTsWKpZonWaUmY6Vqt9aXdyNTTwdkz85hv25Z/YG+E9KBXk3lJT0un3E7OGKI+2HJIAaK6L3qbN2NwrLtUmqedQoRIxiooUaqpzlDhGlEf0A5+oW2UTgnvpwMgQ/LGxfX2M0XUaUD5J/5kQJZ6NFeHKS2I8w4xjDNImDiCRJMDwb0eyiHJvQD3AyDiBIwhgp5Z7S0Wv1KEykii03l2Xm/CITJ2fYvLRC951lEtcG08AIIrKey9QzJ+9rc+9vt1nfahDOV9COCYYGlSAGYZpvemqC9rUtJqsVnCCg0+6iMibx0jQ65965psMEww8RsUTW8mjD2G2H0RhRgtnqo4pZtCEwogSjlkdkHEgUVnx/SyxaM+wOCMMI5aX7h1QYOz6ObZErFw5/fSJhrYW72qTQ9wleOIGaKB94iu06xAMfci54Fu6VNbKhxJYCa2EcY6aKeO0GZqi5UXBJvvLF1P6++/p4qkb7hYi/+P0fQbuP+oc/lZLPhoFXynN3ymjywkmu/f7rzL105sgxlJPP4AYRgyA6kPt44JB0h6j3luH1K7wzVuHWjXWWnj9N5USaQ7b0+fOs/dafsva5U+jaId8hqcj/+Ts4L59IleLzdba/fx1gr/H5MMg44Tv/4+9ww9AMvnIe+9Y2mTevkpweI/pbz6KKOTANzN4QZ7uL3eyTTFVQnp2S8bJMbqND7tQ8AsHg6hWiU9Mow2Dg+5QKBfxgBDkPhCBeGENc3cDqDwlkjMhnMAE1Pw7rbYzxOpDmf7quizoxxdZah5NC3Ne102q3eP3K+4T1HObpMYRpEknF+80e195a57kTSxS6Xdbeu8nIFiQyQmRNbMekUCkyVq2lebcfEHEY0W92GQUjjJKLPV98rEVFrdXRi3J3P1eARgFHfM4HsG5rDTKM0KEiY7vk80Us66OfxmmlCDc6cLNDJZNj7swZcrVHI9J832ezuUU36GOWPbILlc/EvGd/HuT4+BjTj5sHqTXdjSarV1YYiSjNg3x+4cAxTKKYsO1jjmC6NkHt1NORB5kkCY1mg63ODqJgkpnJkrnrOjYti8JUmXAU8NY7b+KuK85WTvBTz32ZmZmZJ7ZQcYxPP46VkU8/hP546kePcR/EcTpBkjItZPgs/EAf4+nFYDDgj3/wbZZFl9Kz849kvfm0IOgOufz6+7TyFuaZmXtaRT9tiIY+N29tIvfnDN4Flch0Yr3ZZTaTozQzjlaK1uoWvVYbVXDBEhBKTD+hMlmnNFXnboVW48Ya/azEqt6lLuv4xG9sMMpXCBdm0O0RxVo1zad8zMCtaDjCH/hIU6BNE5UkMIoQZtoCTRjjbbcoDftU5mt4J2oEUhGFIUIY5Ep5vGLuQ7snh8MRy2tHH3d5c5uwnEEVsxDEZGxrL99u7zlRQvL2MvF8FVE7gjzvjijcaHD68xc+Emv1k0ASRty4dJPk/PShj6tbTSI/Jp6qYiQKjd4j16xbTcxWn/D5BZAgdhuptWfvla6IUUT2/VVqkzUmlu5VZWmt0xZiqXCy3j3H/Z7tkZJL33+L4YWplPy5G2GM2fKxghgzSrAnK/QGQ+JSLiUi995IQyTTcqAowRwGJNXCge+AiBOs7hBZK2C1h5i1HAgD0R1SzGSwjyoH0ppeo0PkWWkkwN0NJUGEPYwojpXv2NuHAcZKA3enT26mTubEOH5/yK1OHzV373UrgxB5fQtrpUlmvU32734JUcmjO0PMN5apbQ1pVPLE33zhyGMZt3ro//ht7P/j33ggmZT9g9f4Kz/1Ktnq0STxzR++z2v9PuqlU3cdDo360WXC1W3809OYxRzl2XFodPEurVIbRrzy33wdJ+vRWd3mj/+n36f5uZOE5+fAtUEprJUGuXdukDk5hvW5pfQYvHGT+Hd+DK6NskzMRDI9M87zP/0q5d1MVa01P/ytP+XqtVWGF2YxdYKpQ8JnZlGVHDpRaMPYveUJzMEIaxRhtPrEZ2YwDQOBwL10i+K5kyS9Af12h2huLC19H4aUsjk64ehA2ZPoDfGaA0ZTlQN5iO7lWxROn8DYn2cahMTvXCfnpUpcoTTj5TKLM3MUC+nxHgz6fO/9t5CnJw+8du8YS4l+7xYL1TpDFRI6GuUKhGGQ8TyymewHur9qDeHAp9fqEAuFWXaxss4HCmdMkpheFKbn+AEQo4hSJvvw91W927t990xsn3VbKYUMYkSsyXtZsl72YyFjVJQQrjQx1wZMTowztTSDm394Ik1rTa/XY725SSAi7EoGJ+t99vIgF2YZPzn1+HmQy1usXV9Blk0yixWc4l15kKOQuDXC0zbT9UmKxcdTXD5phEHIVnOL1rCDVXbwikdfx1op/PUu4Y0e1XyRYr4A2wmfW3qBC2cvHDdkH+Oh8frrr/PNb34TgDAMce5ThHmMjwfHZORTiCRJSJLkmIw8xlMDrTXXblznj9/8Hup0lcJM/TN3XWql2bm+xrWry4TnprHGyx/3Jn1oiEcBN2/cIjl1bymHjBOiUYg2BZgCc61NbhCRyWYYX5zByWbQShH0h2ipMG0rtbEecb3EQciti9cwz9bvzYNUGnWjQfh+m2h6jszS/GPv06g7wI8jdDELhiCJ4tR6pzVmo0v2xi1sFaAns2jDwI41VtZFjeXRWSdVoXVG2CPJxOI0meKTX2ENhz7La1tHkpHJxTXCxXpaXhLGZKx7yUjd8QkaXZJqFqOQSZVut6EUBAm2YeB0Rsy4WYoPmWP3caO32WQtCWDi6Bxb3egjtzokfoyu5REazGGAWc2hNcRBTDRRQWmNdqw0fkKACGLcG1vYJ+oYg5BSIJk8M/+BlK87126x3usRXzhInoo4SW3XwwiVdaCQwfYjCCKivIfMuOjUu5raiTVgGmlpigCzM0TlvDQ7UpPmNSIwu0PwbMyej1ErIPyQDAa5SgEZxSiZqo8t504TcNAfMtAS8vdpMvdDsrEmm4C93MBNJPkTEzgztT1iUGvN+sVlelkHNVFOj5sfYi43sLf7GNks9o+vkss6UMkjEknecTn9whmuv3Od1ZeXELWjycNo4BN8+y3y5+YxTk4Tj0KSKEYAlncwJzTzrbf4xpeepzBxtJJfRgnf/w9/xMa5WVi6c37kj6/iN7sMvnQOqzmgOlk92Lx+c5Opd1f48t/7KQzL5OKfvMZbO5sk/QClNEJrrJkq9vPziFoBpRTR//xd/FHC4JWziKUpEAbECfalVUrff58vfP1lTn75OVb+4l1+9KM3CYo24dfOAAoxCIjmxkDrveIcoUhbv4MYwxDYN7fhxAR6t8XdWmtg2TZxb0BYL6AK2fTeFURkhUlkGeAebF133lkmPD2N2Pd35+YWhalxzFxKNsXNLv7GNnE5R3lyHMuy0IDqDbA22pydmGZxboHX3n2TrbqLeRdJpTXIoU/S7iFlRMYyKFZKdAYDpG3u7pvCjCSlXI5q6dGal5VU+N0+/XYPnTGxKh6G84QWDbWmPeijD4vOuOt5xiimnC88WmLIrjzygHUbkDJBBWnOcjGbx3M9nnwUyYOR9APim02cVsjc4ixjC1Opg+AhIaWk2W6x2dpCZQ3cchbrSZ2bpxy38yCdEcyfWqAy9/h5kFvX1thY28CYypI7Ucb07tybtNYEvRGyE1Jy80zWJ8hmn4LMTQ2D4YCNxiZDOcKpeLh578jfVhklDFc6yNUBU1OTTJ+awd1dzJOJpHl1C7GR8JXnv8T83Nxnbh5yjEfHn//5n/OzP/uz2LZNFEUf9+Yc4xB8Nn4NjnGMY3wgCCE4dXKJmalpvvXD73J57SrF5+ex75e/9imDMATjp2YpT9e5/vpFttZaiAtzGJ9CpajtuZhhQiLVATIrCeP0xzxv7w0mrVGE9aQoMcIAAQAASURBVOwkUSS5dekGM6dP4OazZA5pxj7qs8bnptm+vIGYK2Lk3T3eUmuNyrpkZkuMBX0G718hWjoBj6goSMIIPwzR1TyIlFBVQmNvtXC3tjAyguR0AUEOfXocPYqIByH21gC3lrtzjis5oihh/eotphdnnzghaXsuhh8htT6UvBW75CmASCTGIWUtqtVHjRcxtcYIJUrFqcVQawQCx3XSiaRl0bnR+FDJyGgU0N1s4veHoDVO1qMyUcMt5h6Z6FO3yZjDHtQa3RulLdcZBxEluNXU0ipyY3f2f6OD8c4y8VgRZVsIpbF6PqZUWKcmEIUMupChf3WLSt/HKzyejV1rTbfRRtdvv14j/AjR8UEpZCmLrucBAVGCMgQKUFk3PcdhgrbMPTWktoxUISkMVMbF8ENUMbt3PYg4RiQS0QrRhkDv9DCFAM+ls9VCWrtkj9YY7T6u55Ap5hj5AdTvuoZVav/GSLMHrZ0+xpsrlE9MkTs3h1W595oXQjB9dh7z+hqDv7wC3QBTglEpk4kFpbUWn/uHf4PceAUZxnfiEIA3vvf2fYlIAGGaxFNVopVtBraJdM20FEeD0R5hSU2hWsLOuBh9/2Bm6CEwHYtXf/4neON3v8f2xVWGZ2bRGYf47ev4P/kSTmtArpxj0O6RRAkIcFyH7HSNnc0225dXmLywyMLLZ7jxnzcJfvErh35O/Ds/ZiBMOn/7VSzTxBQGoME2iZ9dpDVV4y/+5z9hc32Nji1J/toplB+jqzmsqxuE0/cSqvq2Ys4QGMIgqRexGz307BigiZVCCo2wzTTLcpes1qZBECdoTMwDP9viTpbhfki1F0shBz7+5k5KWI6iPdWfAMxiHlXIcfHaOpZh0hwNMfLlO9urFEl3QNLtg2dijHnYTp7RWoMwGiHqhQPWfKmhORwRbG8xPT7xQLIhiWIG7R7DwRCj6GDNFQ7k5T0RCIFr2wRRsleadCiihIzrPDpfuM+6rdHp4kGQ4Bo2+WwJx7Z3j8NHR7xorYkbA9TNFrnE5PSpecov1x/YcLwfURSleZD9FkbRxpsrPhU24Q8bWmlGWz3i612KXvYJ5UG2sU8UKH5tLi1P24WSiqDjo3oR48Ua409JHqRWmk6vw0Zjk9iSuNUMRa9y5PPjYYh/o41oRMwuzjLxE8/cQ1iblsn4uWmihZA/e++7VC4X+OrLX6Za/WxFSB3j0XA7M/I4L/LpxTEZeYxjHOOhkclk+Jmv/yQXVlb4gx/8Of5igeLCgycMnyY4WY+zX3mB8dVtrvzFFUYnxzA/bUpRIaiMV9nc6sJ0OoDUKrUrk3f3pkSiPcTOuQjLRFgm6nSNzasrLLxw9pFscblamWnXob22zWilBxkrJZYCRWWsSunlE2AIcmtN2m+/y3B6Cj05/tCfMRr4qIKXPn0U4ayu47RbqLpH9OrMni3WvLgOfoRGo8fyJI6FebOBffZOm65wLOSpMbaurLHw4pknmhtpmCaFQo5m10eU7yXCRCGD0fGR9QIm4lDLqk4kWoBt2zgZN22STusRDk4kbZMkkU9s2w9sA5rmzQ26/T5M5DCmayDAH0b4G5t4twymzi48kkXcsi2EH9z1QRq100NtdUnyLjpjo9EYAtR2F3Nh7E7WmxAQJ2jHwEjidPRjm6j5CjqIYWUHa6aGqOZJxou0N5tMPSYZGfkjlGcjEoXoDhHdEdq1kbVc2oC9H4ZA3z4PpoGOJdo2U3XkHnYZKK1TYlKqtDgpiNIsyShGZT1UzsNyLIRlEoUx0SDAEAJRyoFIrwKlIRmFRNttpLFbhKE1IkwQQbyrFE1wVho4zQHixBji2VmcqXGs8uHku04kyVqTyQ2fslfGsBWJ0pi2xeSFk5Rmx/fuj8ZdC1gPY82xMw46ihkNfJLJ4p0CK0AVMkSJpL3ToWKYlB0Ht/BgRZDtObzyt7+J3+px693rbL59iZW5MSqlPH5vQNcP0EUPnPQaiIOYUaNNZrzElTcuM3lhkUy5wGS5yM13b8EzswfeXyUJ0cV1ur/0UwilwYQoCAEwuwPcWzu44YjoJ8+wrWMMNwvjRYwrW+kZj2K059zWy4G+nVG7uxihNMIWSM+Brg9AkkisKIZaARKZns9dVZGQCiOfIekNUcq9o85KEkzLRMQJyrFSYlIqzFgidtWWwUaDaLYGCGzDuCfPUQiBWpjg8qWbqFJqu1VxQtLukQx9RNHBmC3sIzdHxJ6Nk/fuzYYUIPIZhv0R7W6HavleAkMDkR/Qb3YIZYxZdnFrpYf7PdCaKI4YRRG3jWG2ZeE57n2tn1nXIxkOUnL6bkJSa4gSHC1w7cezAGqlkWEEoSLreGSLJcx9xN3tbb1t0/+woKUiXG/DzQ71YomZC+fJPWJW9nA4ZKO5RT8aYFU8cp+1PMjVPuNjY0y/8uJj50H2NtusXrnJUId4J0uUn5+/Kw8yIWz7GCPFdHWC6qnqU2Fdlomk0W6y1d6CnIk3lcW7T6RJ0BoSXG/jBganTi9Qfan+QOWok3GZ/twJBq0+v/2Xv8tSeYFXXvj8caP2MQ7FbTLyOC/y6cUxGfkUYv8Pzv1Cwo9xjI8L8/Pz/MPJX+B7r/0Fb33vEvkXFh4pO+iTDiEE1fkJPjdRZfmtK6ytXUE/O49xWDbcUw1N2PdpbzYIhyMAvFyW8mSN0lSd4Xs36G/3YLxIHMbgWneIyK6Pu9nFOXfHym24NknOYtTpk7lPscdhcPNZJs+eSCexcYwQAstzD9z/nNk6Y+NlMu+s0HurSXh6EbIPuO60Jg4jTBXjbW5jBUOC2QLB6Tl00T1AbCTVPFZjgJ5JrcAq7yA3+1hBjNhniRKORZyzCToDMuUnu9panR1j8P5NIs8B7yBxZYwVsd67hfJsnCManIVhYPgR9lhm999HKGqk+tAmL62VTbpyhHFu7MAnm3kX8i5Bc8jGpZtMn39wK+9tZKtF7LVt4qnyHumg1lrEYUR8bhJ290X3RySzFdQoxr68gX16Kj2OcYLc7BCem0IVdgmaRGLuBufLsQL6yha2aSCKGUarrcfe/ySMUUpBe4AuesiZykG7/H5oUvWjIXZViaSKTs2dXMiUiQKlEVIjpETs9NCujXIsdNZN8yR7PqKYRSGQANU8ehBg9tO/pzsNmCaBUoggRnsWIpZopUBK3NUWIk6QC3X852ex1jvYcZI+fheUH6Ju7uDu9FmYm2L8qy8/slresy16oxBxn9epRGI1+1iDEUF/lB4jQ6SN81aqAFS1HPI/fJdTf+NwleJRyFaLnPnaiwRByOZ0lW5vSJB17rWuZxxUxsFvD2ms7ez9+fm/9iXC//RnbHV85HNziGL6vVM/uEKwcGfBJJESu9XFW93GcIGlMnFlHKFg9NYNsraJsK00v3aUkpZa6/Q6UBq9a9VOKUmdKmGzHkYY7V4nGhXFmHGCynpoy8S+sYmsFXbJa4EwDQzbQoURxm6OqNHoIbMeUklkEKIdC3u9BcXU3q0TSRJF6KyXWvaPsH4atsXIMaE/RK1plIwRZRezXjr4HdeQDANUMcP9SDWR9+g0+lT22bW10ox6A3rtLsoWmFUP13t4K6qSkp7vo0yR3hNuxxUkktAfkrFtMm7m8M0SgmIujx8EhH6INo1UpapTotezHTKu+3CE6F3bJIMYI9YUs3my1cxePqvWepeEvHMfOBiX/OTmBjKIiVZamOsD5mYmmPjK53Ae4bustabT7bDR3CI0E5xKhlym+pnJg/RvtDBu50F+4/xjZaurRNJY2eLWtRVk0SBzvkKlNL73+F4eZHuEqyxO1KcpzZaeijliFKYq2MaghVm0yc6X7pMHqfG3ekTXOhS9PEtnzlF4DOVovlog99U8m7ea/H//6DcfKk9Sa83m5iavX3wDx3L44otfOFbMfcpxrIx8+nFMRh7jGMd4LDiOwze/9DXObpzi9//yW7SnXcpL049k4/mkw3Jtll65wNhmk8uvX2YwU8Y8MfGJOAZaKTavrOCrCMZzGAtpTuGgHzBcXSNrOkydXcBe2aT/3hqhY2CUPUSisFpDLMfEPTuBsO4a+NWy9FpdvGKeOAjQOlUhGQ/Z+mnYFs59VtINx6L48kmyzR6dH19hUKogF2YOkIq7ewixRGxuU7h4FeZLcK5OnJsg0RJiec9rtG3CYL81XaAqGVTXx/RSglJGMXEUo2249f516nOTFMarjxVGfxhs12X29DxrV1aIShl0vQCOCYmC5gA3ktgbPTh7iGpPKcwgxtMaMXG0JQqAxoBS7ej8xceFjGO67S7G+fEjJ6JmLUfQDxl1B2Qfksw1TJNSuUBzs4ueKqek4zAgPj3B/rbw28SLKmSITtQQN7awzs+iNrvEUyV0bp9yaf/kxzSJT45hXN/BLB5UuT0MNGnBTa/Vw48ioqKHKpTRtnE0EQkIP8L1XMI4RgxD1O1cOrG7faaReldNAwwwe0MQgqRSQOxa1zEE2rXReQ+zM0SHMbqQSS3hWRej2Ufk0++D6g1RhoHKe5DYiFGCfXMbu9lHTZaIT4+jShnQYFoGcX4C8fYtkjBO91NrkmYf8+YO+UhTKeQJvAzdrRaJHzJ1fhHnERZlTj63RPPi6j1lMvvhd/q4NzYwUHjffY/hy0uorIu500WYJpbW5F6/Sqbgoh5S7au1prfeYOXd6/hDn85agyBrE1ZyaKlQ6y1QKi0t9yx0xsV0LIxShlEYEfSGeMUcpmPxhb/zE2y9f4Mrf/w+vkzANAgurpF88RxGnGBttfG2m4ixDOrFcdS+giJtaBLbxDQMtB8iagXs1SYql8FqD0nKub3rR0iFNgQiTPNuldI4/RDt2KgowV1roCcq6bXj2gjXwdruorLOXvajmfPQ7QHaNFP15E6H6Nwspm2jBz7GegsrjBlNlIl7XYqmkyomRyE528E5RPmntUb2BsTRCEGMUS1iHkES6iRBWWnZjnG/30khkI5JGIXYps2w3WPQ60PexprOYd39u/Og8600PX+Icu17vo9il9AeBREiCnazGQ/fpmwmQ1Z7xDJVFBtCYJnWo5GQGmSSpAsmmJSzRdyiy93kohCC2/Gx+kCgZEpKPglCMu6NSK438foJpxfnqP3VZ9Is3YeElJJGq8FmexudNXEns+Q/5QV/t7E/D3Lp1ALVFx8vDzIOIjavrbF5ax0xmSH76gTWXXmQYX9E0gko2nlOjp9MFwU+7mGmTlvRNxqb9OMBdtmjcB8VrIolw1sdkpU+4/UxZr7wIpmHULHfD0IIKnN1ilMV3rp6mbf/y3uH5klKKbm5fJMfXfwxo3xC8XSdYRTxH771n3h+5jwvPPP8cbHJpxS327SPlZFPLz4bvxifQDwNK13HOMbDYGpqin/wsz/PD998nR995yKZF2bJlD5bN/3iZI2X6l9g7b3rrHz/IvLZeczS41k8PypsXVnBz4E5UT/wd7OYgWKG4UYXbqwxeWaBepxw/YfvorMWwjQwT41huEf8fCjFsNHhRq8P2V31iR+Ty+Wozo4f3ez7iLBqRWp/5Rmyl9fp/vgd/KUTUC6SJqaPsNY38XpdcnNVNk+UiF4+kfI7sUTECfqQW6yIkpTc2cMuCZSkqqRgMEJbAjwTIR1ULUPLCGm/d5Wx6QkK408mu8jNZTjx/GmGzS6d1TYylhiWQalWpvCFZxg0u+y8t05czqYqPyEw+iPstk9tok5ru0UYxPcoK/eQSJxGn8JzRxNAj4vedhtdz/AgPl6M52lvNB6ajASoz08SXVqmv9pEjsJUJXl7RiYlYhTjuA5RLME00TkPZQj0MEB2BsiTYymp6xig1D0WUe3YSNvE3OnjPeR1qqRi1O3T7fRJXBNdzWK4JcydNirnYHZ8pCHQ3iETHT/CGgTkZyeQ2y3kcIS8uyTDNHavS7F77UriyQpC76oojd0cQq3RhiCp5LEaXSCDFgZojXQtRH+EjmKScj4ltPwI52YDe6tLPF8jquQRpkZVdieH8o4KS05X6Da7ZGKNvdxiqligNDbBxR+8yUapRXyyhrAtaLe49B8vMT09yYWfeAXjIUiN6WcWKf6732Ut6xDtqjcdN820NCwTrRTyT95AL1QJ/6sXMa9uU/rRJZQW6IyD2ezhtH28/+pzGMUMa+/cYvLC4n0/MxyMeO3/921ariA8N4Uo1UneNRjd3CCxppEig6zn90grYxhidH1k3oNRiCq43Hr7Gqe+8nz6uGkw9ewSU88uIROJlpJ3fvvbNNcb2JGPPlFGfWU+VXHeDZEqYh1tEKy28U5No2PBYKMBwxFJdfe3VKq0IMUPEFqjsh5xFOE0OmRnJgjfXUa6FiqfSZmrWCJcG29lGzVeRrpOuj9CYJkm9lYXvbaNnqpidEcYcR+3M8DcJTnlRnuvFMOyLLJeFveuybpOJEmnhxz0oWBjzOTJa8HwPr2YWutd8a/xwHGuiiXt9QZKK4yyiz1feuyFvjAOUZZ534UBPIeRH+I5D1A4CoFtPcbik9YkYYwOJRnLIZ+vYtsPeh+xS0rqe0jJ26pJIUSaqas1hvHg0kutNfF2D3WjTdFwmDu9SHHi0azUYZg2IzcHHYySg3cfJdynCXfyIDsUvdwHyoMcdYesXVmh2W5hLxQoHJYH2U3zIMfyVcbnTuAckhP9UWOvFb2xQWTEONUshUzlyMiaZBQzvNGC7YCZ+Rkmv3Ee+wlnrR+VJ5nL5bh09TJvXHsbJhzKr4xR2qf4zddLXL55i/d+7xJfuvAKp06e+kxcx58l9Pt94FgZ+TTjmIx8CnH7R+2YkDzGJwWWZfGlz32B0wsn+b0f/Bmtaovy2dnPRFj5bZiWyfzzp6m3J7n82nt0KlnM01P3Kgc/RMgoZtDsprZkyyRXKeLk7rUxR0MfX0b3EJH7YUwWGV5pEPkBTjZtQJQThfvujwpiwms7GJNF3Mny3sRRa82gFzC8eIPpU/OPXQxyN4RpkD0/iztbpfv6TQYbDkYUkbEUucVx7OlZhGGQuwZRbwSlLKZtIkaKdEKXZimm0FitIXqysPdngUAECSLrEQx8dNa+U44QxBgZG3Msj67l2L6ygzBN8oeoDZMwYtQdoKTCcmwylcIDB7yGYVAYq1AYu1fhWByvkq+X8Vs9RgMfDWSyeXJz6XcuU8qxemWVaL6KyHsHJ9ajCOvGDlMnpvcsypCeI7/do73Z3GsctG2b6mSdbPXhJ1uBP0JMPNjeZ2QdoqDzUO95G8IwmD53gt5Wi9W1JkyVEH4ISmMaBk7WwzANkr6f2qQNg6SWx2r00a6N8BzEMEDbZpq5d8i1rAoexmaH0uIMw2YXJSWmbZEp5Q9kdCZhRGtth06rQ5J3Mcq59LzuWsQyhSxJb4BZy0N3hB6EqIyTEoFKY/gRQioKtTLCMMhXisSbTcz2AFnN78u6BGwTYxRhdobI4m4zvd61bqNTe/dtO74AlfUQowidS8+9Nk1Ud4gcK2G0BjjLDYxYEk2VGc3WdglIjXNjO823LGXAEOn12vHJbPbghzdZ+Nrnmf7qy4R9n+//zreIfuosRjV3ZyC5UCN5YZbl11cJ/rdv8fJ/8837XudKKt7/s9cJTY39g3eJz8wQnp0lNDX+xg7Z/ojsOyvYIx//730tVcudmUSemUQMQ4gliWcjlxvYt5oYL54gSZL7XkPxKOT7v/nHNF9dxJircXvr1DMzWP/h+0RfPY/Z8VPyb/e7rvIeKudibffIvL9McLLOrcvLe2TkbWilGWy1WLu6TD8HjmUw/PriIart3eejEVGCEcYEGJi+JnjrOlYhhyklKIl3eY1oatfmrzVYZuq0H/i4yzsYUYK9vMUzMyd4v79DsrKDTiTCMnGrBaxXLyA7A4KVnZQoFQKzN2KyVKFzehZhm+hEIfIZrLlxhGGkxWF+iApCkl2lbRgEaQmV66KDkKTdRcUBouRiLKRWUWOnx9jYOFFjm9g0MA5Ti0uFESU4R5BwWoMaBKjOEJFEqIky7t33sMdAEEWQeTCRo02DKIkPVYA+LrRUJGGMiBR5L0uunMUwHnVcIHbvwXqPkNQahv6Adr9PIvRe3mfOy1AplO4hOlUiiW61EStdxqpVZl58lswjLpoOhgPWd9JmZKvskatVP+ip+UTg3jzIlx4/D3KrzeqVZYYqwF0sU37urjzIeDcP0ldMVcepnaw9klr1w4KSima7mbaiZwSZySwF+2jhQdgdMbrexuprTp6ap/78+Ic+J7idJ9lc3eHf/ub/A4TB9EuLjH1tHvMQxa5hGNROTpLMxnz/0hu8cfUdvvHSV5iYmDjk3Y/xScSxMvLpxzEZeYxjHOOJoV6v84t//W/x5rtv870/fxPnuWlyH4IV9GlGtlLg+Z94he3LK1z7/iXi87NY9UfLT3xUaKXYub7GYDBA1TKInIWWCe3lFWxpMHl6Htu7QxB1Npvo8ftPQoQQMJaju9lg7OQspbEajZ0B5tTh+6K1Jry6jZ4t4tSKBxQsQgjMUgblWWxcWWHh+TOPVF5ynz1P1SA5j9JXz5BZbeCPAnrBiE6jATsNvGyGQinPYL1FUvDAMLAcGxVF6ETtqZXMxgDhWamNN0rAMjGEwOiMkLU82tR3iEitMRtDrDPpgFUYAmOpSuPyJrlacU8hkEQx29fX8KMQWcmAaWD0BpgrG5THKlRmxh970ckwDPL1Mvl6+Z7H3FyW+bMLNFa2GN5qIwtpqYQxDPEMk7GTswcIYSUl6xdvMnIFeq6A2FXxJUHM+nYLb6PB9LkTDz8heohWkv008KNACEFxooq32cDIZe7kB+47jl7OIxgGqIydZrvJO0FrwjAwhiHiKCtxkCCGIRsrGyTlLNoyMfoJ1s11KmMVsqU8rc0mzVabuJRBLZRToiiW+GvbOI5Nvp4S8Z7tELR8jKIHpoEZxGipQGkMwyCTzeLuLhZYrkOhUqTbGyAaPbRjpfZYDUYQYyQJt5W6Ikn2sgTR7Jbd7Muadm3Mnp9avrVG+CFWo497dRuZdYlOjqMqeYwgSkk3qcAQJBNl7K0WSdHD3OiS+cE13HaAVStgFLLE/RG3XrvIj//wB0SVDMbvvUXmCyexTt2ZuAkhEJ+bZ/tbl9m+uHxfleI7f/ADrrsK9b/7IplE4l7ZIPrOO2mhkAYrjLG7Pv2/8zm01Ahr3z7uszonpydI3vgR5kyV3AMWOlZ+fInWmXGMuTst8vEootVow3PTFL/zLr2vXsDs+iQTpTSuUysQBlarh3dpjfDvvUr7N1/by/ROopjmjXXWl28RVRzsZ6qUCtMYf/wjjP4IdRfho9F7MaDOWhPDNRku1iiP1Qn7PQbdASKwMbIuVnuIcXOLpF5KVdCxxOqPsLpD9FwVsi5GJJAR5JSBvDB7Dzlk1EvY9dKunXrIdEfR6vewJ6uH3380hFstolFAPFvCGcTEnR6ha2F1hzgZG6uWxciW9646FUQUXAfHcZiuj3Frc4MIhbZNDMfGcKy0GCnW2KZDrDSY+86nVKjuCNX3ERkTczyDKe00i/qDkl27asyHYc20aSClhCcg3FJJmgdpSqhk83j5zAcWGdy2biul2Wxs45saqhnELrmpgW4YMWhsMVWpkvGySD8iWm5ibfsszE4z/rXT2IcptY/aD6V28yA3iWyNU82Qv08z8qcJTzIPsrm6zeq1FWRBkDlXoVIaO/CcaBQStUa4cjcPcvrxlcBPEnEUp3mQvSZG0SYzVzhy/Ka1ZrTVJ7zRIWd4XDh7iuJ4+SMT1wyaPVYuL9P1+3hfqmLkbLbaLYyuzVhtbC+P9W5Yjs3Ec/MEfZ/fefuPmLk0zpdfepVC4cMdux/jyePuro3jzMinH8dk5DGOcYwnCtM0efn5F1laWOT3v/enbOValC7MPxUrux8VDMNg8twJKrMTXHntPZrrTcS5OYy7WzifALRSrL9/g6BkYcyPY+0f9NXyxMOQW+9fZ/b8yT1CMhiOMGYebCk2Ci7BdgeAwliF1ts7qGoG45DBuOoFKMfAzDhHDlQN10ZWPQY7HYqTtUOf83DYLXTYZ1mLhgEb7TbJWA5xYmJP1TQchvgbHVwN+vImcr6Gk3FQcULsR+isg9kYYHd99Om0cMXojSBvYGz0sKp5oiTZI+gAxGYfK+8i7Dv7KSwTmTEJukMypTxJGLH6/g3iuRKiWGH/EFjOaJq3OsTXbjF+avaRG7m11sgoZtQdEAURCPCymQMKRifjMX12gSSKiXbLiexpF9u9u81Ys3F5Bb/mIWr5A1siPBvmq/hbXdbeucb0+RNYD7CJZfI5/P4Qsvd/nh6ED22FvhtCCITW6XEz7z12hmni5TJEoxA6Qww/Ro9CRH+EZRoIwyTx07IObp/DRCFGEdZ6i2RpCjVevFOUIxVBzmF9vYnR6RLYAnVuAu6a0KuMTdDyCTcbmDkvJQylwmj5qXLRTC25lmWRKRXuOZZOzsMZ+MR5Nx1QJzJVnHkWCBvdD8A2EVJj2SYqUUit780+TdkKDD/EWWnivbdKuDjB6JWTKMdOLd5yN67AttIJr9Io08C+3iD3rUsYrSHh0jiDcxMYfoT31i2+/+4ycrrC8Jtn0KUsxjAg+61LOL/zJsX/9ouYY3cmbvrFWa796cUjycj+VovVXhf1sy+m16xtYV6YI3Nhbu858SjC//ffIuu6RP0RVI4gGg2DaLZC4Uc3mP/Zrx88FnstxKnS88bFG/C3P3fnnCWS3tvXMcKYZKyAMg0qv/ca0ViZkZXa661mn+x7KwhDI0se7u++SRjHfOff/Q6VyRojYvRcCedLc2T23ePzpRzqyhqjs7OoQmZf+UhaQmOut7AbXZJXlrAiiSEE5WKJjlKEAsROD8MPURdmsGMFfR8QkHPRc5VUvdoPMKsl1t9fY7pcZXm7jXlUXqwGa6PL0ulnaFx8+1CCQGvwr94iyNuoE1PoIEZoH2ezharn0PMFYsC0zb17mg5jnEFAfXySVrdDe9hPF0AsAyUVMorRrYBavsjYdJ3BcMBGvwflPDpKkB0fPQowig7m3K4COYzxHOcJ5eJ9hISOhiSO0aME17CoZEu7WXRPchsEzU4b3xGIQ5wPhpvmfK7dWGeya5KPDM4uzVN97tGUaUmS0Gg12OrsoPMW3nSO/GdkHPck8yC3rq+xsbqbB/nKOFZmfx4khH2fpBNQsHOcGF8kl819/HmQwGg0YrOxRTfoYZVd8ifukwcpFf6tDtFyj3qpyvkXnyNb/miUaFppWusNVq+uEFgJ2ZNlarU7mZGqmGWr1WTr6g7zE3OUikWOOsBeIcv0F5fobrf5D9/6bZ6bPsuLz754nCf5CUEcx/z0T/80f/Nv/k3+8T/+x3ied9ym/QnAMRn5FOLYnn2MTwNKpRI//9N/k/cvX+Rb3/kR5rlx8pNPJlPvkwI3n+GZr79M6+YGV35wmeD0BOZRapTHRH+7RZAVmBOHr/oZORe5UGLnxhrT50+mfxTsa+q9DzR7hIxhmUyfXmD9yjJyJo9Rzt5pOZWKaLmJGM/i5u4fSG7Uc3Svtx6DjNxVgWmNvkt6J6OEjWurJEv1A63XACLnwqkxgtUWxdggWe8yShJyrk08HCE7Q3Qli54vI4IYocEyLNSlHQzAODeNDoJ0X0cRxmYfS2mcpYOqBgBdcIj8gEwpz9aNtV0i8hArlxAwV6F3o0Gu0T1U3XgYkiimu9mkvbZNmCSokocuuJi2hdXoY1xeJpPPYuczOI5NoV7Gcp37lutEgxEjJKJ270BNNfok2z20KYi0JHj/GhnboTpVJ1c9qHjWpORgYaxM650d9Hj+vte53h5Qnpp6qP0+DMVKiUZnCNXDB5iGaeDlPKzlJlOzU/SbHdqhRIynz3ekIg5jZBjuPt/E3OqRzNawJ3b3LYxRnSFqFCGLHnppDNka7BKgqWVyb1Ljh+hRjBwrpEosYaS2MK3Bj7BHMYVqMbVn3nVcZBzj94bEUqJdKy0y0TolZZRCunZqLTeAIEbYaS6caRnIWKYZmHsHVqeFKRfX0RmXpF4gPjlOvDSBduzU4S0ERpCkitJEwkjjrDYwN/t4ry8z+vwJhv/7r+yW5qRE5fDVJbx318j98Drh6Ym0+dk2iZ6fx76yif5336X8330NY/d8GKUswyhEJvLQhaibb14meHb2ntzOAxAQPDdD4eYO1myZOJcgjljQ0VJRTASFyRpJGLH+zjVuvHuVKElAQ6GQY/bUAlHeRdgWWmnkj68TvLuKGs+jc27aHH6rRTRbwW508f6kgSxmUKUMyWIF7901kokiUdZBhjGrSDa9AU7GZnameM9iU2miij8YkL14C5l1icfLYJqIIMLZbCGkQr2yBCptY9ZAuLaD3m5BNUc8W0UMQszWABFJ9EL9QMv37atPGAKZdZidnMK/eZ3tpIE5WUHsWxSSfoCx2uSZqQWKxRJiN3/w7sOfdPqEJqhKDrHVwRyOECUP94UZkt4Q2R8hPZsoSnAtCzOIyQiTyfFJuoM+rXiEqBdSVTm7k4xcBsqabmeI3etSLhQpdAa0r26AY2JUMxhjuwspWkMQ4QgD27JJZIKB2P3eHH2p3BcCDCGQu9EN931qIrGPKrC5H5QmCSMIFVnHI1csYT1kadsjf5SS9IL0OO/v7oKUmNFbfbjZxowkxYkJXvjqi4805giCgM3mFu1hF6Ps4M2X71829CnBnTzILkUvy9LpM+TvboN/SIx6Q9avrNJoNrAXihS+NnsgQ3d/HmQ9X2FibgHHffj28g8NGnr9HhuNTUaEuNUMhYmj8yBlmDC82UKtj5ienWTqq2ceqYX9g0Amku2bm9y6voquWOSer5DL3/vZhiHI1QvIkuRmYwWv6TI/OUcmc7TNvjheoVAvc2V5nYu/f5Uvnvscp5ZOH+dJPuX49//+3/OjH/2IH/3oR/z6r/86/+yf/bPjzMhPAI7JyKcc+mEIg2Mc4ymFYRg8c+4CC7Pz/PEPvs3y2jVKz80/sebhTwKEENQWpylO1bnxxiU21q4hnpnDeCIDNk17q4lx+v4kr1nwCG71SIIQy3PJ5nN0ewFm9f6WRtUbkc3feY6bzzJ3/iTt9R0Ga1sod9dGGklcZUC58GBbkW0iH5DrdhCpCjLlIg+7Hwr62y2S8fw9ROSBZ81WGL63yeJzp/fUOre3tbmyxeBaB+GYu0W0DqXZaZIooX1xC2s0gkxqNbTHC5jl7OGOv90cvziMGMURonj/86KnSrRXmg9FRkajgLVLN4k9QZS3UKcmUyZhq49ca5OECSrn0c0ITDPB0Rrn8k3yrsfE0syRatXOVhM1nr9nqpFc3yYWGrVUA8eCRBJFCkyL9VvbVIcBxbEync0m/XYvLQTSmnwhT6FYoHejhbF4OPEut/pksfGKj58dWp6q0n3/JnExc3gxCMBOn6zjMuwP8P0AvdNCbnYwJ8uIegEn6wLp91AHMbI9xH5pEd0fpSSkAFXOoope+reRQhU9UBoRJhi9APJpMYgeRsh6YS/PUYZJmskpUiVbbAj87pD8XSRuEkb0Ov20wdq2UuJkr+gixhgpVMYGw0BkXcwoQeZckjjBsq1U5ZhINOCst3FWmhijkPDUBCrjpsq7iTJiFEEhtbUbYYxIJGbHx77VhFARLk0SzWZw37/F8K9eAJVatxECEUTojMPoS6dAQ/E/v0Hv770KQYKz2iTz/eskiaL1f/sT7KkS2S+dwn5mBiwDLeWh56e50US8OnfP3/fDtExkvYC8tEXlc0u0t5rEBQ9y7p08WqkQ/QDvVpvnf/rrBJ0Bf/Hbf8pgqYrxs+cRuzmBzdaAxg+uMmwOsKQi+aM3GeYcBn/zJVTGQkmFdkyIJN67a7jXdxh97gThc7OYO31yf/guo2em8Tba2JZEL9VJKlmMfJaRH7J6cZn5ZxaxHButNGFviBtBph9jvnoe3RkSbrVQUmE6adFMsFhHWyZiEOMW8gQ3NxghiZ+ZIdn1ceuMg9zNr3WubUO1AIMAwhihNWbGRdoZTAFCGHz+uRdZXbvF9UtrRM5uk3sYU3cynFk6T7mUqiYnylVWugOsfeolDQSraSuyud1CVDwoF7BdFyEM7GoRS0qkH6L9kLJnUamO4TgOcZLQHg3TRY3Dbo5CQDHLzsoOo50ueCbF6RKhkChSdSUaTA2WYRBLRS/w0QKEBkNBxnVwbPexSMmM6zKII3DvQyZojaHAMh9+fKKlIgkijFhTyOTIVrIfOmEx8IfIjH2gJEwnEr3SRdzq4lYLuC+cQOQcmu/cOqAOvh/6/T7rjU18HaR5kGPVp0Gg96Hj3jzIF/Aeo+VZa01/u8PqlWUGiY97skz52YWDrc6xJGgPEUPJZHWC+tOSB6kU7U6bjeYmygV3LEPRPfoYRP0A/3obs5OwcHKOsZ+c/Mj2IxqFbFxdY2N9E2s6S+FLk5hHFSrug2mb5MaLdDfbXLl5hWfPPnvf76owBLXFSZKZmB9cfos3rr7N1178ClMfYBH1GB8ufv7nf56VlRV+9Vd/leXlZX7pl36JYjF1bBwrI59eCH3Mdj110FoTRVGaW0Nqez3GMT7p0Fpz7cZ1/vjN76FOVynM1D+TKuDu2g6X377CcKGGOT/2gY6BjGKWL13HOHevSu9uJBtdJr0S+fEq8Shk5eoNjLNHf77WGn1xh/kzi1jevcSpVimhhxBYjs3GlWVG4y5G7v4kq04k5pU288+fuf8G7yog91ux90PslnUIBDfeuEhyfpIHVTjr9Q5TmcKhrddaa5SUaabgvgGqRnPzx5fQ5+sPtLjJ601mpqdTy3jiY0w8OG/IeH+TxWdO3TdDUynFyluXkfNFgptN5IWJ9JBc2UF5FvQjwpNj6IyT8gBhghkpvKyH2R2Rb/rMXFg8dOC98s5VwqXqAcJIbnaJwhA1V7lDLGiNMYzIFHKgQb5zC0MB8xVEObv3PN0dYWx0yQiLUMbosSyi5KU22UGI2BmSdTzGl+Y+0KRdo/HbfTZWNohmK4hC5s62JhI2u9hbPVTOIZksI0qZtB24PUB0hpj9EOvUZKoybA4w1tpEWRsFSFOg8i44Vmo1jRKSag6921wtYrlXKGK2fUSUICtZtG3t2rHTBmzbde58vzQYzT7lWnnvXGul6Oy0kbXcAcWW1po4TlILeZRgdkcY9QJCGKhmnyTroV0LEUvMIMa8uYO13SOZLCNLGeydLmTsPdJGk7Znh2dmELHEavQw1zugBZydJYoVspQh871L6JrD6JXFXcld2uBNLNFZJz2+UUz9//6nNP8PX6H0H38EtoX/6kmihToiiHF3+mR/eJ3MIKRaLPBT/6e/c+g95s/+3X+m9bdevpPDegTaV9fIvH4T7+9+BZUoRr0B/sDfa703lCZnWkx99zpf+8Wf4bv/y+/R/9oJzMl7s4p1Iun+P79NfH4WqRTB184QBRHaMdFBjLq9mKE1uT+7iDGKGH75FMXffh3G86ilKtSyUMumJURSY8QKL5+F9pDaIKFYKmAOEybLY4xV62ztbPH29iri5GRKbmuFEILhOzcIn5mGYUjBy2KHCf31HZJTE2iR2s20YaCTBBErhGNhX95EYxDP11EZF6TEHUbYjR6ZXsDf+Oo3cZzb91+N7/t0ul22WjuM4ghDGExW68xMThGGEd+99Bb6zDSgSbpDonaHyB+gFqvgWinpHis818W66/6kgohqYlKvpPfSRrtFy4wxDole0IlEtn3UMEB4BvlSlsxtBb1OlX63ldWjMCREpgsg+68brSFMcA2TnJd9dEJSa/rDIbGVRgIc9jijiGImg/WgpmwNMklQQYylDYrZPK7jfWTjmWanRdNMMDwHPYzQN9sYjRHebBVnoXYnegIw3rvFN57/PKZpYhzSYH6bhFpvbpG4GreSfeJNx08rEj/Cv9lCbIfMLswyvjj1eHmQUtFa3Wb16gpJHryTZdzyQSIvGkVEbR8nMZmuT1Iulp+KPMgkTthpNdju7CAKJply7khSUWtN0BgS3GiTkTYLpxaoTNc+sv3wu0Nu7baPuyeK5GZLDx07kEQJo/YQYwST1Qlqleojl0gF/RGtd9eZtsf4ystfPM6TfIqxvLzMr/zKr/Cbv/mbe3976aWX+K3f+i1OnDjx8W3YMQ7FsTLyKYYQ4lgZeYxPDYQQnDq5xMzUNN/64Xe5vHaV4vPz2B+RpePjRjQMWHv7CqvvXyWOY4J3ryLHy+S+/hzuWPmx3lPfVQJwX5gCpdL7iZ1xKeULdFc7GHP3hotrrVErbUrF4qFEJKTNxvsfK9bK+M0mPICMVI0hlfpR4fe75OMhVuy9z93d1tu2IaUUSvBAIhJAZ23CUYTZ7tHdaiGjGMt1qM5N4GS9A+3S+5HLZWm+twGuhTANrGp2Vx25r4AhSrBCjVvIEvT99LxojY5lSppa1uETaDPNsrsfGTlsdJFlFzUIkWP5lLi63kDWcoiWT3SinpJFtw+ZbaItk3AUkKnmGIQJ/a0Wpal729Nv/87sbZrWyJ0e6vzEkYUPehgQCw0LZbzyQXWjKGXQRQ//6g4T9TFkkuCvDNBa42YzlE4u4DxmVmQSRnS3WvRaHdTutnq2g7c5IFhto3cJFCtRuLZNr5JFL94h3IUQZKpFZDFL0h3CO6tkCzlsz2GYsYlsg2SsiMqnRUcohej5GBqMQZCSkYZIibBdn6us5zG3emjXBstIS2XiVKl4wAcrQGUc4lGIm08nquFwhMw691hHVSL3Mk9xrLRBOVHgGBjVPFajB5sR9nobW0E4USL8ymmsnR6Z7Tay6JGcHAfHTG2bfoRzaYPcj64hMEkmq0QvnEJ3fSzTwizYGNe3yVxapf3ffRUhVbrJSqWKZMu4sx+OTXhyjOr/+F2CZ2cZfuPcnW0F4sU63dMTRN++hPv66pEETWmsQnO9jZi7f1xDbpRg7gwYbLWQu+ewWC2lBRwivQvYf/A2577wLNuXlhnMFw8lIiHNdXXOTxG9u0rw97+8d01oTUogS5WeW6lIxgoUvnMJSyeYJ0sEX15CaI0RJ7uFQSBcC2VKwoGPnXHo32jy/ORJatO1PaJ9dnqGbq/Hpb+8SFj2UMVMWio0GEHXp5gv4Dkuw+UdkqnS7UJ0LNMilqnFHK2wrm4TTVRTNbpjgVKYhgnlPFEug7nS4MatFc6ePJ2ehzjh7SsX6RoxeiyPkS2DUnRaTa7+eJVzc4ucqk3y7lvXkQUbmbdIJhxELwueDVIhorSVO0xilJIHG6bFQaX6MAwQ1Tu2R611SvC2fXQcY5RdrFpqk4tDSWbf+9y+94XRLhF5GCEkBHg2YRhjxSGu84jjBiEo5HIMRj6xH6FsE2GK9PgmEkMqcg8iIrUmiWJ0IPFMh0KusttY/dGSSoYQqMYQsbmDGSrcxTHsZ+bTWIcDm6v3yrIg/a1MC3AESZKw09phu9uEgoU3k8N7ChR6HwXCtk94o43j7+ZBvvCYeZBhxPb1DdZX1hCTLtlXxsjdnQc5GJG0A/JWhhNjT08eZBAEbDW2aPtdrLJDbqF05DHQSuGvd4lu9qjkipx55hny1Y/G8qq1prfdYeXyTQYyILtUonZX+/j9EI1CwtYIR1os1GcpzTye7R7AK2SY/uISve02//Hbv80zU2d56ThP8qnEwsIC/8P/8D/wy7/8y/zcz/0cQRDw4x//mHPnzvFP/sk/4Z/+03+6p5g8xsePYzLyKcRnUS12jM8OMpkMP/P1n+TCygp/8IM/x18sUFyY+FRf9+3lTX78R99Bn6/h/Nen8VwLVypGb67T+Y1v4bxwivIXz98zmXgQTNuCMLmnPe4wiFGCXbszUK6fmIab6/Te30aN5RDFXbtqL0Ds+JTLZWoLkw+9LdlqCXNlAxXEGEfYpXUiEQ2f4rOzdz9yTyHNgW3fp4K85zEhDnvJ4Z/fD2ncaqfKt5KHztkQBzRef4+s6zL//OkDpSJxELJ+eZnIM4nHCui8g0CTNH2MWx28k3WMnIsKYpJ3NylUSnTWdlBRgmp3iTc6qcJIa0QkMWt5zInSAfKGSB3IkjoMnZ0m4kSR5EYTTlQgStBBgp5yoOmnKr70QKUkQpCAVGjbIg5jnIkirctbFKdq9xzDXCnPqDOCsXRyoQcBKp8WRygpEX6EaAwRgxChIc700WGMOpEqorRS9163QqBP1GhfbTD//GkqT2D2NeoOWL++Spyx0AUHDIGRc0ksA2OzT7mYpzRVIxoG9Bod2jstwvPTmEGEZVvIRBJHMakUCwypkAWXyDGQY3mGQ4O4lE1JxdtQGpVxUZ6D2fUhZ6J327iB1FqdKFTOxfCj1MJtiFSZFMb3krmmgUrU3j8DP0BVsqgoAa3SJu8oQUuZTgwdC5VzUVkHw48QQmCvtbFXGghDkJgCI+uQG4XE765iLNThzDSyO0DvKjrN5hD38iZmJDG3esTFAkkxi1HIYgwi8tqAN1fIvnaV4WQRO58hieN0HxwnJdOVOrgfQYzOuAy/ee7gPu5G/gmtCb5wksFKi823rzH53NI95/PkC2dY+/6Pie9DRspEIv7iKpZlIP7wLeJXTyKnywS+j9HqUJQGubfXOH9ijqkLi3znf/pd+MlT972OnMUx9KVNEpEOgE3TRCUyLaPyI+ztLplL61DPoL56AlFwkE66kCBGMTrnIHYXD/Qu2aw1ZG0Pt14h43r7JvWai9eucCvukX95kcwwJPHTayfKZxjFkjCKcB2XZDSC3J1jYRgCG4skHGG0fKTnkJSziFhihAlmxsU0U7JZBBGZk7MsX11ncXYByzL54dtv0J9wsSr7F35MxEQZmXd5/fJ7lAsFSlMlWuEAFQYYyoAowWgNEbFE7yrshFQklonI6zsFWLHEtfctKuwWSmmtUf0A1RmCKTAqHsb+bDatD88r1jAKQ8g+QJnmWASjCPdx7NpCkM/mUFISxhEyVqn93XawM/bhiy8atFbIIIZIkXMz5Eq5j8WxpJUiXG9jXWng9Tt4XzqNUcke+duv/ZBKLo9hGHvCBn/ks9Xcphv0MSse2YWPrun448SBPEg3y9KZD5IH6bN+dYVGo4k1X6DwtZmDeZBKE3SHqG5ELVdmYnYe94hF3Y8UGgbDAes7G/gqwKl4FMbvkwcZS4bLLeTqkMmpcWa++DJu7vEWEh+4abuk4+bNdWpTY1Sma7Ru7bBydYUkL8idLVMvP9gBlL4XBIMRcTsgb2WZGz9JLpvlSbHAt/Mkry6vc/H3rvDF85/n9HGe5FOJL3zhC1SrVdbX1xkbG2NnZ4d/+S//Jb/+67/OP//n/5x/9I/+0YeW7XuMh8fxGXhK8VkYHBzjs435+Xn+4eQv8L3X/oK3vn+Z/PPzuPmjA6U/qRg2u/z4j7+D9XOnMfeFawvTIPvyLN4zE3T/l7cImkPsr57Hqjz8irMwDfKFPP1egFk6+thpqTD7Md5SgbA/pL3RYDQYggHECnvLR7RCDNMkk89SOj+N+Yi5nkIIpk4vsHZlGXWihJE/OGhVowh9o83UwgyGbXGwkAYelYTc/7mOYzMK4vtmRqp+QLzSQNfzqMWDVja1WKO/2ePqD9/l1BeexXJskijm1sUbxCeqiJyLpzTh0EcZAjldRI3l8C9vY2pQkcScqdDLu3SjkGQnzYZT5yfvtEpLRdIYYF1cxz4zhbBNdHdEvpB74CBWxklajqF1SnbtDFD1HGIQInftYCKSmBtdjH6AzqUqScOPkKbBaLxIMgpYe/c6tZlxvHJ+75gWx6u03ruGrqdZbyqIkWZa9mCsdxF+jJoooGeKCGEgQ4lYbcFqC2bKB1WV+8+LbRI7BtFgtKcEfFxEo4CV964ROSaJ66F31bdGd4TVD7BnK7RbQ/rvdJAlD+kaxNNlVMFFRglhf4iwDIRnI7ojRDvNXIumS8T9AC+OUeU8d1+DOknzDrVlIM08Zt9H1XJIz97LXJTFDNqxMPojYPeaF4BppnmG+4lmqRC71jAZRcRhhJRuSgD1A1TWQZaz6N2sRiOMMTo+IpbYK03cKEFMldFfPAWejTkIqLRGTC7NMmz22F7ZwBcDRG+IMQzxlptgW+jzU8jpMhIwbjTJ/eBdzF5EJpLUxiosXlgk+wsL/NGffA/TNlO18a7SWBgCnRw8Lu7NBv2ffvZe8kZpEGmepuXY+K8u8fa3X6N+Zo6N926yubyGkpJ8qcj8c6eYMh1W3lyGFxbuOedKKka/9zrZiof7869gbfXIvL1K9JfXU8LYD7G6AS/85JeZ+/w5AIJRCBkHHcTpd8W17iHKhWMhJotYWz2o5BB5D2MYYG+0cdbTnET1+RlUycPY6GIE0V5EAZk0o9MwjD3FmWGaaA/iJMblIM+2ub3Fst/CPDmOEGB6Ds6uOtApZ4nXm0Q5l1EwQt+WRO7fViFwtIE1jBlMVREqXXQyDQPTMFBBhAhiHMchjCJUKcPa5jqe49LLC+zKvjxIpUn6PlG7D7aAUxUa7T62JUgyHso2U9K5HyCCGFnLpwsp6asRQULc6mPWDAzbwhzF5Et3VNG2YeJv92AUIbIWxmQOYR9yX1P6UCJPqmT3mnvA2FcIlAFSyccmBA3TJGMe/XuplCKMQoIgRIcS4rSUpl6pkvE++jGKChPClSbmWp+ZqQmmvv4qr11+h7Zzr+16DxrEeptT82cwDINOt8N6Y5OACLuSITd+O4Lj0z3XOJgHWf9geZA7XW5dXqYf+7iLJcoX5g9YlPfnQU5UxqmfrD0VRIdWmnY3zYNMbIVbz1J0j3KnQDwM8W+0oRExd2KWiZ94FuuI4rAPCqUUzdUdbl1dRufAnczxzutvMPxDn8ozk1RemTjQPn7/99IEXZ+kE1LNV5iYXcD9kEqB7uRJJvzg8lu8eZwn+dTC930Afu3Xfo0rV67wL/7Fv2BnZ4df/uVf5t/8m3/Dv/7X/5qf+Zmf+Zi38l6srq7y2ms/4vLlK1y5cpmVlRWUUvzSL/0Sf//v/4P7vvb111/jN37jN7l06SJBEDAxMcFXv/o1fvEXf/G+xU0fF44zI59S3M6M1PrwgdsxjvFpwsbGBr//l99iMO1SXpp+KrJ0nhTe/r3vsjMH7omjFUBqFJH85iWqp07QLjmYZ2YOkhj3QTwKWL10A3G2fuhrtNaoGy3qxQoqSWh3OxhTeYyCl3ZtKI1sj2BzwPj8zD0tyY+KyA9orGwQRAG6kKpXxCDGESb1uUm8Yu6BhTT751fRYERns0kYhAghyBbzlCaqB0qQhs0u660GnLjXhnwb4Ws3kJ6FPj95pP1YbHQpt2MWXjzL9vU1OnmBqBy0IatEkkQRSiq41oCCi3tyYk+hOeoPUFkHPQwxbrbQZ8ZT2+Ptz+iNsNf7mEvj6PfWKRUKODmPfLWEmzt8kLD85iXUuTrhzSZRPQvtEbLkQZCQYKCKHva1HZKpckpOGgJ2FXjGIMBZ62AI8GYqGJ2ATALTZxf27JHt9R0avS5qoUq41UHFSWrNjRVyoYyQu3ZjAUQytfHGEmu1g3th9khlp17vMJMvk6t9sGvq5usX6biCZGn83nOXSJyr2xhBhBrLk5mrk6y1GXk2qpJDJkmqJtvpI6IEVcwgy3dKb8zNHkJp1HjaGJtonT6WyNTibN9p8bWa/VRRa6WN2CJKMAYBKutidn3k7YzQXdJIxOpA/prRGFCuFdEaujttkjhBORbaEGjLSPMZDQOVc9COhdkY4C7vYG92EeUs5tfOHcyWbPSZSAyqcxP0t1ts3VyH3hB9cYO4lMH/6WfBNDF6AWY5h8jtEuOJIvf/+T7f/OorzL58du/9futf/L/Y+gevogrZ1CK8OwHVfohy7dTKPAyp/1//kMb/+SfQ+5vilcYIYizHxtxt+9ZhQv1X/5jK7BjR6TqcrKelNs0B1rub1AwPjWCbhPDZGcR0JY02uNVEfP8KKonJ/v0vIsxU2aW2egRvr5LsDECAVfSoNEJOfeE5rr9zhY3lDaQlEEpjFhyE6+CemsB5fm5vcUR1fdq/9w7yG+dxAkl4ZQ0RhcjZAnqujMi7oNJ4BevKNoZWaEMQnZ9GCHabnQ2E0uhE7TVau8qgfLPDqYlpuqMBaNhpNNDnJ7EOURNpDcNr6/iOgS5ksFfbhGcnU6v/7uP4AQUnQ3RxjdFuzqUKIuxYATq1i7t2mrupQfR9Kistipks0bk6hmOjEkncHhD3h4i8hVH2wDQId3okWRvH84hkAo6JihK0KdAyzUJVleyBRRtiid0e4XguNSdDrVQhDmMGrQ79/gA/ozHGcveNzBCjmGIme8+4NklielG4jwC9D8KYopP5UIieOInp9wcoqTFMGyOz274ex4h+SMXLUitX+ChIvKQ/Ir7RxO3EzJ+co74wmbohSCfY33/nDYL5Cubd5JpSqJUGC3aesUqNjfY20gW3ksW0rYO/u7sXsBD3W/L75OGJ50FeWyHOQuZkGbdy8HjHQUTYHmFHgun6JJVS5akYw8pE0mg12OpsQ87EK2exDstL3UXQ8glutHFHgvlT81TnHs++/jBIopit6xtsLK9hjzu4Ezl66x26O13s+TzOWJaoE+I5HuWxCqZ99HhYJpJR20cPEibK49Sr9Y+cBA76I1rvbTBt1vjyy186tgA/JdBaU61WkVLyrW99i69//evs7OzwK7/yK/zar/3aXjfHT//0T/Ov/tW/4tlnn/2Yt/gOfvVXf5X/9X/9rXv+/iAy8jd/8zf4t//23yKE4Nlnn6NSKfPOO+/QarWYm5vjv//v/y+USh9sTP6kcUxGPqXYT0YeFjp9jGN82pAkCT9883V+tHaRzAuzZEqf/OazJIr59v/7P+H83WcfODgN/vAqL7/0CnEUcfXaCtG5aazx8kN9jt/usbm8hp7Mp7YtI7XL6UGI3uhTzhWwMx6N1g7W0uENxzpRyEsNZk4v4hxBij0KkjAiGo6ANKPSzriPZMVWUrJxeYURMm17zu2SBF0fc3tAtV6lPDO2Zw3cvLxCPwNiqnzPe6vmgPDyBuqZKSh4qaWwO4JIphmARS8lXqTCfmON0y+eY/XSTdSFo4lLtdMjHIXoSoZMLocwBDKKCWSSko8adM/HWOuiz03cIZG0RlzcwuwFOBMFzHoeYgmtEY40mDw9d8cKuYvmygYdJyUMRtt9lGsiMyk5pFojhB8TLdT2FINIlW63kfpmjUjivbFC5vOLqSKzOSDbCpm5sJgePzTdjSYbN24Rj2WhNURbJvH5CcRttuX2/5WGSKKzNtZym0wxh1E/Qs17q81MuUq28ngDcxkndNd2WF3fInp2BnF3qcVtjCLs99bQ5yfwXBe98/9n7z9jLMsS+07wd861z78XL7xN78pXdVXb6m6yu2klSqJIQdRohMEsMBKEBWYBjT4Jq53F7KfFzgIzgAB92MHuYAfSLEVZilQ32RTZbLY31VVZlZWVPsNHvHjeXXfO2Q/3RURGZkSaqq6qbHb8gUZXxnP33nfufff8z990GTo22pbQHoBtobNu2kp9H9lhb3bQnoPOeEghEQIUpBN6x9onYQGrM8S4EpPZt/JbO12M72C1hySzpZQUGuWyMSqxASCI8YYxhWqZznaDIElQRR9tyTSncGTdF8MI/+oGVrOHruaJT1QxtkX2Zg37xRMHzl376gZLZxcIN5rUv/cu9mQBMV2iV7QRb60RWTbDV05gci7WVi+NCegMyXz3Jtmcx7nsGM/+0qf23u/q17/P92/dpvfbnySOYow0OHfq2Hd3IFboYgZ7tYF7Z4fBJ07i1HuAwGQdgpMTiLMzWPcQ77ofUPpnf8LYf/cr6Xd3H/S7G4xdb3Hxcy9x563rtGotEDA2VWX79irRb7+IyLiYRDH4+jsME03w7Bx6dI7L5QbOn1zBc2yGnzvPsOCgSj4iTNJG7I0m4uwk7pUtcl9+FmuqiFGazv/0R5jzM8jJHGapAmNZMGksQ5Ik6XehNc6bK4jn5xDLTaITE8icl14nh2GqXt2dIMcKqzkgt9oid2YG3DQWoNtqYwWKTLWEP1t9YOgabejf3SKod7GzPkHRQ08WIVaIWJH3M2Q8n/abNwkuLqTjsDvEkTaRxYNK8H5AbquFanQoXphHhRFJGCJKHrLo7Y2duDskwqAzDrYGhcFYMs0q3d2nKEG2h+iJPHsngNJYnYCKtpkoVug22kQmwSr72FmX7qBP7Iij2+1jhasgn8s98JBSCe1geGDh5iiIIKboP0hofiAYQzQM6DZ7iFwGmfMQ97+/AdPqM5kpUPqQyiuMMUS1LuZ2g4JxWDi7RHnm8JKQwWDA5etXaSUhUTnNubWCGKc1ZCyXR7gSUXTIlHJI+2BB1r4jYR8C9nJYf1Zxbx7kwpklxuYnHrvk5F4kYczWrfU0D3LSI3uygp3dv+4bk2b+Jo2AnJ1hdnyafC7/VAhNozBkq75NvdfELrn4paMb3o02DLY6RCP7+uLZJQoT7z9X8VEI+wHr11eobW2TWcxjF1yad3cYDAK8U0X86fyBsR51Q6J6QKFUJD9WRN7zWBzGBI0BViiYqU5TKVc+dqt0t9aic6XGszPnefGZFz40ZeYxHg9BEDA5OQnAj370I15++eW9x959913+8T/+x/zBH/wBAFJK/tk/+2f8g3/wDz6Wbb0ff/iHf8jq6gpnzpzhzJmz/Mt/+S/4+te//lAy8saN6/zDf/gPEULwP/wP/zdee+01ID0O//Sf/p954403eP311/mn//T/8lHuyiPx8evHj3Eodn8IjrniY/y8wLZtPv3Ka5xdOsVXv/tnNMcalM7Pv68byacFUXcIJf+xVsnNRIag3WXm+TOUZye4+cZVamsNuLSAfMSKfrZSZDHj0dqs031nK7W7aUMml6WyMIdfzHH3J1exz1ePvMkUtkQsFGmubTN17kHb5JPC9lxsz9krpNH3587tfu4hVmxjDOvv3WUw5iGqeVAajUFYEjFeQFfz7NzegXVBZTYtKJk+t4h1Z53ulQ1UNZvaNZVGtobInR7CsyHvITbbUOtjih7GtyEyyBs18GzMYgVVzdLZqO+3Bx+BpNZFn66mBKlSCJnmM5K1d3cMUcwi1zvQGqJHZIyOEyhnsG2Je/IeJedYjrgXsvbubeYvnjqQXVmaqtK+ehNxYQIrVuiMjawPUGfGsW7WSco5TM5L+cKR6pTdcgYERkrUZBHd7GNNFhHVPMNOQNDukymllu18tYS7VcPOekSbXaKxlGBNrbfs51xaBoI4zVOcyBPdbeIfQUbKToA3/+SWOK0Utdvr9Pp9AqWI5ivp998PEFIisi73zvq00iSTRaxOgC5ZCKWxtpuo6SJqZpTRGasHVVdK772NcS10OGrA1oZkVOKSDuB7cxEPjgnjO8heCI7EqvfR5Szinok/hpQsHUTkx8tolRAGYaqiVAYxjNPtGka4y3WcnQ7JZAFNlvCZ2XR/hxHJWA6r2UeMjRZptjtkm0OcH96h/+4yuS+dw1qq0q01IWdjvnwe971t3K+/jbIskAJ7s4u/MEbm1ZPI2Qrbv/vGgX258OXX2Pn/bHPr//ddhhemsd9dJzoxTvD8AsaAe2cHuzUEKVHlLIMvpkpN2eyTubqB9/s/Jvzl5zHFTJodeWM7JUjvIyJNGBNf3SB6b4NurUvz3zSYPb3AS19+jdLcBPEwZHOnhhiRvoOvX6FbLRC9tHjguEaeTf9vvUrm7XWca+tYX3kGFYSYrMvwU6dQN2pk31sn/MQc5l99D+/SHDqKsBeK6IU85pm5/W9WgJv1cRkVCN3dIev66ADcEzN0lreJToynZGXOPaj+ixKsnS6xI+is1NL9F6AGMcaz6bc6YAyZ+YPKbSEF+ZPTuMJiInJYXasR+h5ePouX8ZCjsWZnPUQ/QNsWrpBEQiMOyaCzOgMszyUqeXRXN/FPjWNNlg4OWQPJIExjGXYLlrTBKH2wDG1E/Ithsv93bbC0YLDToWHAHvfxvH1iMZ/N0R30SVScNlbL/dcRJTikmY2HwZIWUhsO/5W4FyZVvj5hE+6R76Y0SRAhY4OOEmQ5jzyqVE+AKGdp7LQp5gs/VcLGJJpwrYm422K8XGb+hWfJlh++IJvNZvnkCy8zGAxoNpsMgyE93ScZs7HHMviFzKHbKPbs2WZUFjfahr2Fwt3f5J8NpHmQXeJbLQofMA8y6A5Yv7FCbbuGs1ig8Lk55D2qPKMNw/YA3Q4Zy5aZml/A9z+cHMUngoH+oM/Gzia9uI9T8SlUK0ceA52k9vV4ucvE+Djzn3iBTPGDxak8DL1Gl9Vrd+n0O+ROFMgWC9Rv75DY4J8uUho7fJHcLXg4OZdBc0jvTo9ytYy0LaLmEN94nJxYpFgo8LSM1sJEmfzrJW7c3eDq167zyQuvcO7MuY+dJP15Ra/X2/vvQuHgferFixf5j//xP/LHf/zH/KN/9I+4cuUKX/ziFz/iLTwav/Zrv3bg30I8egz9y3/5LzHG8Cu/8it7RCSA7/v8o3/03/H3/t5/yTe/+U2Wl5dZXFx8yDt9tDgmI49xjGM8VRgfH+d3fvVv8OY7l/n2N9/EfW72A9s8Py4IKVLC43Geq8xevpmb87nw2ReYWtni+veuMzw1gTU3/tCba9v3GD8xy/iJ2VGhDezeoAXtHjprY9sP/zGTBZ/ByjY6UY8sVXk4Hl5Is2vFPkqDMWh2GDiQ5FySTi+d1I5UeUJIXN9DnhyncWWT0tQY0kptoZMn56jGCb2dFlE3LfzIT0/RczNs1OuIuw0MoC5NHSAT9EwR0R5iXdvG5LzUuvGwe9tEYQTphD2I75nMabj3hkGAHsviKYGVzxINQxInJdNML3zgbWXeQ80X2FneYPrsPiFsey7VqUl2buykdv9bO8TDCHphaq/Me6PsxhF5uLdvaVmLCCL0TBl1dwdrMlX0mIk8zc36ngI5GgRQ8nAmC6heiMg4ECbgSFJmZUTc7TYJRwpyLjpRqCh+IGPUtAbkstk9W+HjQivN2pXbDMcziKUZzOVVdDWXZjd6NiZWiF6IzHvsM4kGnXOxVhuoQGHGciSOhRpLX0eU7NlfDxzvfojJe4h+NDrQEhUnaT6WEnuC0N3vUkQxJv9gc6aMEuzFalrs0xqipcBYAksZLB3iei7Z8TJCSoatPtq2EM0BxpZYrQHu3R3s9oBoqcrgs2fAtnDWW1jbHUw+g8j7mEhBEGG6Q+yf3KV4o85Lr79CaaLM9+pN7FFEQcqdirRY5cIUXJhKydJY4fzxe2S/eGHPsnzYmfm5/+qvUPjXf8rlb9+g/eVnUDkXMYyxEoWp5un++gtY9R6Zt1dTa7UjYCzP8LNniTda5L/6FsFfexkjBbkf3CL3pUv73217SHJtk+D7N4kvTKJ+7QLYFq2dARqbzb/4HksTU5z65LN7Y1htdwjC5CARCZhBhPJsjO8yeGGewtfexry3gRzLYTpBqnQsZlCbXeytNknZJZEhMicoL83hZjM0b26j5yt77c3GGPQgxFprM4fPc6+9yHevvoWYrFCcrdJ6axmzOIbybRDpuLJqPaxaB+nYRBMFVM7HKWVBQKwSRBDjrDTpb9TxJkqHLixZQnD6xAnOnz7L99+9TDApEdX9xRC3nCdYqeEsTadk3f3qQaURrR72Zh0Wx5BjRQij0bmrU1LUpEVTwrFSJe4oysGSaUZoSkze18bsO0hIW+RbQ0QnwKpkkHM53PKDCxBCCoq5HHGSMIzCvQUoS0oyno9tOUdfV4XAd10G0X48wKEIEzKu+/DrszGEUUQYR6PPt/BcF9uy916nkwQ1jLG1pJIt4OVd7myuIx9VNCIEyrUIwiEZ/4OTNyqIie7UsTb7LC7MMP36GZyjyNBDsJtv2Rp2CGWCM5sjk/Eeto4GsPf7a3ZbpzDpbxr3iCCecpXkTzMPsrfTZuXaXbpRH/dkifLFpQfzIFsDRC9hqjzB+Mnxh1qePyoYbWh32mzUN4msBK+SoZgZO/L5SRDTv92ArYDZhVlmPn8Bx/9w2qCNNjTX66zeuEtkxeROFPF6GTavbyIrDpnnx8gd8nt6P4QUZKpZIj+ktr5NJnE5f+IclcrR+/lxIs2TnCKZq/K965d586tv8/mXjvMkPw7cS0bm84cv7nzlK1/hjTfe4Hvf+x4XLlz4qDbtp444jvn+978PwC/+4pceeHxqaopnnnmGy5cv861v/QWLi3/no97EI/HxX0mPcSSOrdnH+HmFZVm8/PyLnF46yde+/ads5RqULi1ifSCC7KOHV8oheypVXDwqAPxuh9Jz+22BQgjGFqd5ZarKnTevsb5+HfPsEjL76InK/deOJIwxmUdf7oUAfBsVx++DjNzPgTyUhDQp4ZUEKUno5jP7Ftb70NjYIazYaJMg8u6B/TFKEwyHuJ6HNZalW2tRmt7P47Qcm9LMQQVSHMawHGKyDurU4dmdppRBIbBv7OAtVejt1I8s6TZmn/ATiUZ6o0m8uNfPPIKUewoklaT7wzBOc94OgSxlGKxto+IYy9knHUrTVaRtUb+5iZtNj4l4ewPlOxjHwuqFaN/Zt2drg4gVIkrt3bg25p4mZ5HziYate3dqb7uFFKlSth9BolJloWunuYZRmrEj0CkxKAVxGB0gI003wFnrMH7p1BFH8Gg017cZVlzE+P6NoxBilHMm0kIWAyaIEZ6D6AVYWx2MZ6elG3MVhJBYfoxu9FHj+ZSgdQ+OZzGI0sbgopcepyDG+GnG3u4k3Ox+tklLWbjHTg0glEYMY2TBT1/ju1i+i4wTRL1PvlTAyXr3rGgbht0+2pFYvQB3tYHOu4QvLTAsZLBrHbwb20SnJ1HlLO6tGpTz6H6A3GzjvblKfpBw7uJpzv43X8TxXeo311ATub0RZ9sWQaxSJfAuRsVZeqqIaQ8h76N7Ad4hk1BjDI1un+z/4ct4zqhp2pJIKalv7CBmy4jFcVQ3IPvjZYJPn9kb7slMmfD0JNbVdZzNDl6cYJ+dQu/0GH7nGskwIsxa6BdnkY0+8g+voF9ZQDk21sIYeq7CrW9cx3nzOtYgJkkU4TtrBM/OPrCdqhegy9lU8SoEw+fn8dabxJdmIFHIlTr+O9swV8BMZ1DPTqfZtYUMg3aIqvWZma7SvFMn0AojJXZiKOJwfvEU87NzgODS/EnevnEHXfSQs2VcKTA3a2lbvSVSYrDgERezqMkCRAodxliZtETKZD3imTLivQ16V1fInZtPH9s93tpgdyNK50tIafH6i6+wsr7G3XfXUQIwhjHXp2LnaHYjGlm5X8oTJchWDzkcYkmFe34Cq5jFVQmR1kT1bppHmnFG5GOM6PTTrEljEMpg2TbGApVE94+EdDGiFyKlQJQ8rBOldOFncP9z7z2xBI7j4DhPns/nux7JQBEdRUiGCS4Szz36NzAIA3qDQWqjt0bX3jghSCJsYZF1XAg1nuVQyVZwXQcQJEmckrSPcdutbUkSJ3t9Ve8HcWtAcruO31OcP71I9dmpJ/rNTZKEerPORmMbnRX4Uzny76NkJF23EHsOhpGYHnh6Scl78yDnFueY+sLF95cHqTWNlRqrN+8S+wb/dIXK2MH7g3vzIBeq01Rmyk+Fyk0pRaPZYLOxhckK/OksBedoJW3YHjK81cTuak6eXmT82ckP7X5aJYranU3Wbq8gKxbZc3mi7S6rb6/gzGbJf2oK63GyYUnHYBLGmECT9TJMnK2SRAl3t1foDnrMTs1g20/+3X8UsF2bqWcWCHpD/tOVP2XmvSqfPc6T/EjxMGXkvbAsi8985jMfxSZ9aFhdXSUIAgDOnTt36HPOnTvH5cuXuXHjxke5aY/EMRn5lOKYiDzGMaBUKvFbv/wbvHvtKt/4ix9iXZwkP/XxrYYaY1BhjHTsx7KPSylZeuYst97Zwn9p7sjnxZsdin6ezCFN2rbncOa1Z5jcrHPtR9fozZWxTkw9UUC6kGmpw2NBmSe8/phHFNLAsNWjvrpJYgt0zkkFduubeLbDxIlZ3MzBWV2/3cUsTR9K4ApLInIuUT/EyzoE7QElji4HAshVS4hEoycfbnszRQ9hDJlyjtxgSKczRBQfzM8UlpXmTSYaKcQeOWA7NlGsDkykRRAjClmMSoswBCBWWwgpibc6WHkvzcWLRySfa2FKHkF38ECZUGG8TL5aImj3iIYhcSFi4/YqMlZpo3MQp8U1ckRIOhbkU0uziZIDRNoo3HDvX27WR6yOSAZt4E4Dy5aYvIcRIII+whhUNQcZZ88CL4YxptlHK0AZrPqADJLpiycPlAw9DozWtHdaiEvT+8fPsZCRQnnWiABOt1vUOqmtM+ehZtPjZIfJHvEnPAeZcxE7PbQQaDkiDBOFHERpVuhYNj02eRe7MSS55/hIKVPSE4PQGrs7QBd8iJJ0Yj6aqFtRgpyo3LMTBtENyRbzD2SvRjsdrDs7ZMIINV8h/OQJtGXtkSDJdAmEwN5oo+YriEThNwe4yw28O3Vee+V55j9xgcFOm/e+8SNqqxtE3SGdcQ+3NYFfyOEXcgxqdUz+EMJG6f0xcGWTk88+eMPaXtmmX/EReT+9QRxN8oPuAJ1z96476qUTZP7dj1DzFZJSFpNxMEA4V2Hsf/s2RddF/LXnSTba9P/wJ8SvzJGUMiQlH4rptolugPsn12GyCAvT6XXn9TPc+d03mD+1wI3r2yQ7PdRrh5DaiU7VrrHC+A7JbIXMmys4N7Zw1xow5qM/M09iwL62ibRtpK1T0nzCIZSC9maDqVKZopOlUiyTy+bIZjPcy0jNzczhOi7fvfxjzIlSelzLGUSicaWFCmOStSZqYnTtdix0L8TKuNidEDaamIxDNFchCWKi2xs4QpBfnMTK+SSbLU5PzCBHtmPX9Th94hSnT5xCazXKH5VorXnr6hV6N9ZIJkuIJEYKjchaWDmBky9g5dPxZkkLozXKEojxg7Zok3dhs4sOYjw3VdA5tk2SJCS7x7QbpkpxpZETWcg6CJNO2EgU3vsgGh8LQpDPZgmikGAQpXEjo4UVqQ2+6+K73pHxGYPhkH4UYHLugWudUWl+sh6EICIWp+dw3YNEvBBi75x+JMz7u0c32hBttzG3m5Rsn8VzpylMHm2lPQxhGLK1s81Or4EoumQWij+VKJtd67bgYJ7kgYXF90FKJklCnMQAuI77gXI+782DPH1mibHn32ceZBSzfWuDtburMOmRe3mc7GF5kM2ArPQ5M75IIV94KpzAcRSzXd9mp1tHFh0yC4W9Irr7YYxhuN0lvNUiJ30unjtNaerJxtuTIBqGbN5cY3NtE382Q+6ZMq3lOjuXV/BOFCi/PnfkIuwD2641cRAjIkMukydbyeyRwFbGwl106XcHvHPrXWbGppmojj+WjfXjgJ/PMPvaKTrbLX7vm/+eS9PneOnZF4/zJD8C9Pv9vf/OZj+8GIKnAZubm0CqAD1qXycmJg4892nBMRl5jGMc46mGlJJnLlxiaX6RP/nun3N39Sal5xafmOj4IOjX29z50RW27q6m2YJRQrFc4tRLzzB2avahN3cLL11g43fvEBbruKcfJM2SRh/9Z8tc+mtfeeg2FKervDT+GmtXbnH3O1dRzy1hPWbGj1/MwdoGZuahMYiYRCNjjf1Ytp2HW7F3syB7tRbbW9vIUxWka7N3uzgDYT9k7b3bzJ49sdckreIEpRTiIe2JqQrNJmmFPNYMwaS5a9EjCFkRJIipImF3yNj8JP337qDOOg+Wb0iBzHqIWhf3npIh23WJe/1RA7MArZHtALkwjtYGWkO4uYO2JeFENiWubu8gOgGi6CM8CwKFFALl76+eG2MYNDu0d1qoOMGybUrjqULDmy6iBxFJOZM2FVsabQnMfcoDWe9i39MCqttDMvn9f9uei2c7BN2AeKuDnsinTdqWlR5AlWZFWqstjPYx1RziRhspBdbOgGLi4uV88icXcLOHS4a01vTrbTr1NlopbNemNDGW5lYKQdgfou/L47MnCtj1XpqxOAiQ3QARK3TOIylm0nGiNLLWTcuA7t3njItyLeRWF9El/U4ciSlnDhKzloSxLPZOD6TcV44lChnFiDjBlLLg2XtEpFAa2R4iLYnph+mYjBUy1mQLuf1jYAzUOjjLOyRrNcS5aYZLI2uwIF0k0CZV2QHJZJHMG3ex632ybyyTff0Z5IUFqrWQhVcvcuu7l7l16xa8NIP92edwogT5r39MT4cM1vqUJsfwrPR7pOCnCtmVJuKdDbi6xWCnj1XOUq5FTP/XDyoBmus1woUx7p/WJVGM8Zz9s63gY/suGSEJ6r09i6ewBNJ3yJbydL59k3CrRXxuHOp95NVNXEuSvDCHPlXFFHzCX71I5l+9iX45QOZ9hCUJT42RyWbJvHmNvlEcaigXqToWx0J2h3jXt3B7fYSl0J+aT3M4BWkm50glDCkhZGIFGQedaC7OnyF3SKHKvZgYn2BqfJJ63k1b5oXA9m0sS7Kzs0ZSvae4Yvf/tzuIRp/w7FR6PQBka4g1licZRCQ31skVckwol9PPnTj0c+WBXETD3NQUd7dWiOMh5GyE52K5TnotuketFScxApCujYlTBaeQIl0wSkZxC1FCLCVgsC0b33YYbLcgiBA5BzGVxUoU+DYCgbVbsBSpvWv1+4XRGmVGFm5hHVxYEwLf81OV5KjEUUiBLa2H/nglSbJPRO5mrisNgYJYoz0XhEUSKXrDPmP3kZGWZWEbiLU+0Fh/GKwgxi88vixSx4potYFY7jA1XmXulefT3+THhDGGfr/P+s4m3biPXfHJVcceacV+UuxHuxxm3YZd1f/jfG4YRdRbDQKdYEaqdBEqMo7LeKny2MrZvTzI2y0K7gfNgxyycXOF7a1t7CPyIIPOANUKqWRLTM8u4GeegjxIYDgYsrGzSSfsYlc88ksPyYNUmsFai+hOh2qpwoUXnyP3iPzRD4JBu8/a9WWazQaZpTz5CyXqt2uEtTr+qRLl58uP/X1ppUiGMVJLSpkCft4/Mvc0W8zh5zNsN3ao3aixMDU/Uh0+BazxIShOlimMl7i1vMl7X/s9PnnhFc6ePvvTLeI6xgF0u10gJeieBkXzh4nhcADw0AzbTCb97R4MBh/JNj0ujsnIYxzjGD8TyOfz/MaXfpWbt2/x9W99G3N2jMIjchR/Gth67y5vf/sHyE/M4H76mb1JX7/W440f/ojZWytc/PInj9wO23N49W/+Em/+4Z/TfqeGuFBFFj1MmKCvN3GbCa/81S+RG390LqZlWyw+f5bx5jTXfnSF1lgW6+zsI1ebLdfB93zCboBVPPqHSm33qEyOc/TN3EgBacyRKsh7C2mSMKK2vom8MHFgsrwLmfPQp8fYvLHM4vPnEELQb3SQvo0OYsgcTYoKS6LbA7zy+JHP2dtqrXHyGRzLIu48qJxBG0QQY2uBk/NRSuNmfOZOL7B+fYWkkoGJPMKx07zInR5uN8LugbiHjBRS4PkeQT+CrINcaWGPF9L8vu02tIeoxTIy72GkQPcjODsO2mDfrCMn84i8i1rvsLO2Saacx2jD+vW7xHkXM5lL7dJBRG9rGxp9mM5jtwOULqYEl2PSLMl7yEiRKOydHvLSvjrX2u5SOblw4DiNL0xz60fvksyXMBM5RJBAVqZkmRSQ80jOTmJf30aESVqW88wk+u0tSpOVh7ZmDzs9Nm+tkpR8zOx+lmOvVsNd3mD23FJKFN03lkUpg7i1jR1EmKyLKmUxWQcSs0eqyEGEow0i0XDPHFdaaR6eKXiISKEnUiXkwcExUgLbEmEMdqJRrR7SEkgEemRjlEGMsa10bCcaaxiR8X38fIYkSsAYZM4f2QVF2oi8XsddbpAp5fBPzbBcdJEnqlhxjFIjFdoou08og2wPce7Wcd/bSlWRr53DWhzH/09v8fwXX2PtrRvc3FzB+Y1Le+e88B38qRJRY4CZr9DeblCerqJ3WkSdFvK7d1AVn+TCBPKVeaRtYV/bIdOJufm9y5z93IsHrl36ngiCgziQoDlyvybEZR/7PvWwGC/QxDD0BfFvP4+ZK6evCWIIEtxv30a0hqiX50EK1AtzxO+s4X3ydLoNE3nCRsAn/+oX+M//y7+n++4myXMjVY1J8yJlmOAs13Fb/VQhWPFQv3AavVhJVZOjXZCtAabsI7Z7iFI2bZZ3PWzfIZ5WtNqtR5KRADnfpxEnD6hdpSZtXd9FpCBMMFttwouzYAmESa9BCNDDCAHEM2W42+Llz756H+l4EFEUsd2osd3ewRQcKuemaboaeQRJYowhUQorUviTJbQxJEmCThRmEKVxA1kXOYzRvkMURsSNFjJWuJUMetwDSyKCGOk6SMve/8KDmKznve9JnVaKQRgQK7VfiqMMrmWT8fyDKjchsO3Hn6IMgmGaKSvSc4+hSgm0jIvJpuctvoOqdWn3ulSK9xMkgkq+yFavf6gafhcmislYzmNZQ9UgJLpdx6kNObE0x+QXzj9RPp/Wmla7xfrOJpGtcCtZCg/JA/xpYd+6LcDog9bt0T3Aw1SSw2DIRrOOKftI2997ninAIIpZrW0xOz6J5x59LHSsGK62SJa7TEyMM/eJD5AHWe+k5SlBD+9kifKF+/IgE0XYGmC6aR7kxNOSB2kM3W6X9Z0NAiK8sQyFbOXIrG0VJvTvNlFrA2bmppj73DncJ8gffdJt62y3WL12l6EakjtZIlNKiwVNTuKfL1EuPz6Rm8QJepjgCJuxXEpWP44OV0pJYbxIUkq4U1sm0/BZmH5KSoUOgZCCsRNTJLNVvn/9bd782tu8/uJnmJ19MIrkGB8cu8rIo/Iij/F04OO/2h7jGMc4xmNCCMGZU6eZm5nlGz/4FtfWblB8fvGJAt+fBL3tJpe//QO83ziPvK80wJnIY//KWdb/7Da5H15h6dVnjnwfJ+vxid/6Cv2dNuvv3GSw0cdxHWZefIXy4tQTE6rZSoHnf/FVNq8tc/vbV4kvzmOPPzyHZuLkHKtXbqJOCKz7LJzGgNrp43QVpUuHWZ4fZcU+vJCmvdXATD18RVL6DknOZtjukS0XUHGMU8mitnuYpYdPvKz6gNypR+fvyFGbsl/IYYcRYT9MSZdR47Q04HouTs7DbLRwRo3YfiHHiefO0ttp07rVQCUKaUlK1TKFl2YJuwM2rq2jpguIcg49Uvs4kcLc2sFSIOZ91GqDZKuNOTGGyLgIy0L1Asg4e5Py5Ow49rUa8uIEopzBVIusXbmFloLkVDVtFg5j1GoD1QswWRdT8mC1iVvJ4l7fIjo5gch5SNdCD1LyTgQx7u0dmMilZCpgVpuU/Cxu9uCk2/acVPlbzaaKQ22gE2A8G+Fao4FiMOUs1noLcWYszSZcKtPc3DmSjAz7A9ZvraLOTiBce3+UOBbkPMJ+yOrVO8ycmk+zGwEShWoNiJp91FwJg0Dn/TT/jnSSLJVGBjGyH5ErFxi0BujmAONZyJwHjoUVacwgRscJou9gcqOxP7JkCiHScdsagDLomXKalznaRGEMOlHoXoC13cFybRzHJlPI7xGP7r2kST9A3t3B2+mSnx/H/8xFpO8SDYbQkliOgwwijCvQSVoc4my0se/soD2H+MQEhAmlH9zB64Tkf/9NXvqFVykvTPLWn3wH5zcvPrD4kP/USaL/8BZBxkGXfYadAcWJMTr/+3cYvDiDmi4gGwMYpHmtzplJzGtFbnzzJtb33ub0p57be6/CWBHnzh3U2YNh+67vIvt9zCizVvWDtDjlPoWYaA8QzR7RmI8YaJz/fB0zW0JdmkaVfEw5Q/grF/H+8ApmLIuZLsKFaaJ/d3mPjERrpOWSn6jwxf/qr/In/+FPaUylxBqJJtMcYDe6DDyNenYalffw3tsimSwcFFEmGrvex8wWkPUhpaksdAKiYZ9ICITShFZIp9PmzsYq3UEfKSST5THmZ+YO2OgWpudYv3UFygeJS8/zGEQJJkzSkiEBVndIPFlIS2NUml0oDNhSUnKyCClw8g5mAK12i/Hq/Qsqhn5/wMbOJq2ohyz5+Etp26ybJHS2N9CuM1ItH4TWGtEP0wZuIbCEwHJdku6Q2ICZTO3kQhnkrTrCt1MrdsYGBLY2mH40Oi/AxEmaLakh6/s4zvsru1AqoTNIz01xX75fqDTxoEchm3tfKiFjDLFSaRnLIMFYVjpO7y+tEmkpTxIolEoeIBQL+QLd7T6DfojIeg+uW8QJdjtgcmKao2CMIW72UbcbZAM4fWaRyouTT2QnTpKEWn2HzdY25Cz8mSz5j4EcS0lJOXJA3GPdhn1L+32kpNaazUYdqtkHfvcFIFwHPSbZ2NlmaWb+AZVlMogY3mnCdvCB8yCbqzus3LhD5Bsyp8qUKwfVhHEYEzYH2KFgvjpFZaryU7G8f1BopWm0GmzWt1AZ8CezFN2jF0yibsDwdhPZTFg8tcDkl6c/tDxIrTX15W1Wby5jcpA9VcBqKtaurGJN+mReGcfOPub3ZVLbuQ4SMo5PvlB6ogWIe2E7NqXZCuEg5L3V9xjLjjEzOfO+3+/Dhu3aTD4zT9Ab8rUrf8b0tTE+89KnKZV+Nss6n1bsZkY+LC/yLwsymXSxZjc38jAMh0Pg6bOsP51n6TEOFjaYJ81wO8Yx/nIjk8nwK5//MpeWl/mj736TwckCxaUnJ/UehVs/uIz16bkHiMhdCCHwP7fErX99lYWXLz7yRjY3XuLsF17+qWyblJLZCyeozk1y/cfvUl9vIC/O7xFO98P2XOYvnmLzxjKx6EHVR9gSEyrYGZLNZJm4eOqggnGkgHyUFfuoFexus4288GjlImMZuvUW2XKafyR9B6c5IKr3oXrITbgxiNt1HCkfy64vpCRfyNPuDLGLGWzPTVV4RiMQ++SOMVjNIdn5+b3XSsuiODVG8ZCs0mylyGLWY/vGKu33NlOFlDCp5Y9UJVnQLv1eSG9xHKecJegPU+ubLffVQZBmzRV9xFYPb7KE5dgMVQwzY9gZF9MPiW5toxbKmKUyhAmi1sXkPcJ+hBUl+LdrKFuiCxl0rBDNQdqfM1NAOg6m3kXW+pSLBcZPPdjs2G90MRN5pG1hhEjtpbFKJ4xBQsrcCkzFhw0BwwRtx/iVPGGzRRyGWI5Dv94m6Kc3PX4uQ2u7gTpZfdDuvvv95Dyi6TzdRhs7UgyW62hAlXzi+XKq8jQGOYiRjR5oIFFYno30HJQt6QYBsppDCDBRgu4MU8t0MY8/O4lWiuZ6DRUmmIIPjpWO2zhJbfKDGGbKDxAYQoi0EbySBznAVWl5QK/VAQSu7+LnfGRjgLNcx0sU+ZPTuM+dPHAuWbadFuUI8HM+Qb2Lu9XGqnVJqgWi5xYwGRcRJmRWmsyPV7lw4gQTX1kYFRetEc/mcA7LUc25FF6aR/3byyggyDoEjo3K2sjVJs4Pl9NyDM+GsxNEJZ/WVoPS505z69++xdJL57FHZVLjZxbI/MUbdOPkwLXEyfpYjTaxSm2s9tUN9IX7ch8M2H9xHRVHhK+dR80WMbFKj82b61ixIvyl82BbqJki7teuYs5NQt5LVZMj2HeaVJ59ltq1ZW68dQ3ZHpD5Nz9EjhcQZR/OjWMuLUF/iLAE7kqay2i8/bZkYo17s4aZLiCUwQ4U/Wvr6LFMSuIbA7Uhb7x3Bem7iIUK9lgWz3Fpt9rcemuds9MLnFhYBATFQoESDs1mD7uyr7Lwx4vYl28RlnxMzklV1oMItVRNzxVtIFZYBjzHPaAG09Ucaztbe2SkMZpWq8VafZPQUtiVLNlM9cDV1bZt5qoTrNdrJDkXkfFGeYeg4xg6Q2ylcar7Cw1Ga+JhiB7LplERnQDhW1hLRSzbwiQqPf5KAyIlBI3BTgyO7WD7Nra0HyDnHhvG0B0MIOMcavEVlsRkBN1Bn3K+8PAskfvfWqX7ZroROu9DIXOEsnf0fEuCSQ59TAjB7OQU240dejtdVNZJfyO1QQ5jfCOYnpg61GJstCbcaMGdFpVMnoX3YScOgoDNnS0a/Ray5JJZLCOfIBv6w8JunuTIFnFInuS+dbvb76EyNtbDFiAtC+VZDIYDcqNJ8V4eZB9OnVlk7PknI3B3kUQx27c3WL+7CuMemZeqZHP7iwpmVKQXN4dk8Dg9vkCxUHwqnL1JnFBr1Nhu7SALNv58/khS0RhDUO8T3GqRSSzOnl1i7JXxJ8oSf6Jti2K2bm2wcXcVZ9Ije6lIZ73FylvLOIt5ip+dOWB5fxiMHpXShJqcnyVbrmA9RB3+JPCyHu6iS68z4MqtK8xUZxgfqz7VeZIzr52iU2vxe3/xH7g0dZaXn3vpOE/yp4RdMvLnQRk5PT0FpPs8GAwOJRxrtRoAU1NHL6h9HDgmI59iHBOQxzjGw7G4uMjfm/5tvvWj73H5O9fIP7+Il/9geVa7UFFCbWML7wvPPvR5wrHQszkat9cZPzP/0Od+GPAKWZ75/MvU72xw4zvXCM5NY08frii0fY/5Z88SDYb06x1UoHBcn/zFuXvakM09zZpHWLFH16ZH2Wh2874eBWFbaJWWp+TGijSu7ZA5OwE3d0haQ/REHnJuOpNoDZHbPdysQ27s8Sd7ldlxujeW0wIKKdNSHw7eAJvNDqVy8chA+MPQr3cIhML/xGJKasr9Jua4E9BaaWKUwRofByHwMj7Dbn9ULHPvh4Mu+Ti1PrZjY5RGCzC+ha0N8a1tkqVKSmi9twVhgp4voWeKoA1qGGOvtnC0wcnYaWv3ZA7dDUlW2+RyOfKVIsULp44kcJM4RvgOKIN0UzWXsmRKYimNqPdTG+ou6dMYILb6MFdBF12ad7fo9QckFT/NKwRot4ibbayyi3VPSQDaYJRGWKOJriXY2ajhjpeIbQHTRbTWMFKbIkQ6BnIuojHALnpIxyZu9NHVLGiwXAsYkYc5HxMlhO0AP5/BchyqizME7R6DWj9V2QFSCvxMhiBvYR6iPjLakDgWejDAniqmuXJRQny7hry2SWmsxPhLZ/aIKq0USRCmeXeug+U6uEaQbLRwN9pkeiFh0We4NIHybESQINtDbG0Y78Z87v/4m+l+jDBodtHVB69tqtGn/cfvEpWzhK+fQktgGCMvb2Cvt4g/fYLgr59IFamJxn5vG/ur76I/dZJevYWZyPKD3/06bimH4znMnl7k7LPn+OF/+BHt15bQCIQQZPJZ8uUC7e0uBkPmyhrhb3/iwLbI793EWa0T/M4rmIlRi7kA5kpE82Wstzfwfu8nCCnRsyWi1xYxkwWstTZJq0//3/4Q7wsXyG/3ufLtN2lUfZLTVXTFQfd7RGNuWmhuFNIYnH6IqHUQUYKaLmHqfQxgdYbIfoiZKUI5g/XWOqacQ5+q7in+du3L0WQWa6WFCQfgasSwRy6bIX9xhvdurSOFYHE+JSRfuvQc37/8E7rDGGuyiLQtVHeINGnMg3GsPSs5o4zGtN0exCAmm0+Vw0prgjAgGg5QGw2EgXwmQzvooXMW3nSO7EPGou/5LE7N0ul2aO/00CPrbM51yedK1ILuwfO6PUQHCay2kAUXMV9Izztl0igDW2KMTkl+ZdJrAJAkiiSKyFsSPgBXEMUR2n5E1qAQGEsQJ8lj5QnqRKGCGEtB2c8xsAJi33koEZm+0CC0OVKBKYRkqjrJuEroDfrEcYKUknyljHtIi7eOEqLlOnKty+zUJLOffOmJ7kGMMfR6PdZrG/R1kOZBjv/08yA/KHadD2aUJ2kw+9bte1SSnX4fWXkMIiXr0O52Ee0kzYN0spw6d47CxPvLgwx7QzZurLK9tYW1kCf/2SPyINshZb/E9MzcXn7ax40gCNja2aI5aGNXPHJLpSPdJEZrBhttotsdytki5y5dJF/98NqZw37A+vUValvbZBbz5J6t0LyzQ+3tBt6pIuUL849NgGqtSYYxIoFCJo8/5iM/BJJQCEG2lEPnM2w1amzf3GZxaoFC4eltsS5OlCm8XuL2yjbX/uj3eO3cy5w7c+44T/ID4udJGTk/n8YTBEHAtWvXePHFFx94zrVr1wA4e/bMR7x1D8cxGXmMYxzjZxqu6/ILn36dCxtn+Nr3v0Fz1qN8evYDrxBHgwBR8h7rxthUPIJ27wN93geBEILxk7OUpqvc/sl7bK424NlF5AP5VIag06fXaKOVxnEdsmPFERH5eIU0T9KnaUmJSjTifrvc/VsVJVijCajtpY2pYS8kc24S3QuJtrvotTZIgZ33cM6Mo+62qSxMPPa2uNkMU7NTbL23hZ4vH7CXmljBZpt8BNXzCw95l4OIBkPq9Try/MQD40QAVtFHn5CEl9exR49bjo1lW2gp0oKF3ecLgXDsvUmIHkSYoo82BrXZQiUKsasA8+20uGOziwFMKYPJeyQnq9APodbDvzCVKp22+0zOTlFdelAJeT9s20YmYZq9uGtjBsRKC9EYoMsZcC0Yptl/VDMwVSRabUMzoJHLYF2aPpjHlXGIx3z0ejttxS34JJvttNnWEphhjJEytY8ujZEdK5MNQgaNfpoN6d4zdmKF6AbYrp2W0zQG6JKf5k/Galeks39MXRuVdxn2BmRLhZRUKxfIlA/emIa9AeaBypZ9GGNI4hiTsaEvEYMIZ7mOs9NFzpYxv3yR3kqbvIpx+wMaazX6w+GIxDXYkaJoLMbX2zS2G6hfeIZgVhAOAyh4ONm0IVg4Fu73bpL4Fpe/+m2e//XP7Y0HIQUmPnheqs6Q5n96h+BLZ1FSoDAwlkE3hyTVNF/U/fMbiOdm0sxPW5K8PI86M473H94mMdApZhicmiC/OIEJYu5evkx4eRkxWcT/9jWGLy6hlqopAbfWobzcgp/cITg7ieiHECbIRh//8ipipU78t1/CeNbemDajwDkhBWY8h+xHhL/5PLqaw/7eXZxv3wbXJrk0jWoOiP/Z1xHlMsOXxzBxiOm3MecrOKUZbGNIggi9Use/ss5YpUjHd9HPzGLX+2T6cZq/mM8yHM8hCj6iNUxVvqUM5u11TKLAkiRFL21TL3io8xPY725jposYAb1eQNxJqJya5PqVZeZmZrEsG8dx+dQLr7C2uc7ta6vEwjBotRAnxsiutYlnZdoWLgSEClwLYUAGCVKlRTH9YMAgDDCujUxiIg9uDreRSpIv5Jgen0I+xm+ObVmMlStUyhWCMKDVaTOMIsIoIg5DpC2Q0kK3BiSDIXIiiyh6+yTXiEsyxowiK1LC0UT7ClVhW2Bb9AYBRSmxrPc3ZQiiCOE/xmsdizCOjiYjTbpgYoYJnrSpZEujVmyB3+kQxGpUMHT0R8h+SClffKRSyrJsSoWjLZNJLyC+XcdthJw6Oc/ELzyDfYTy+zBorWm0mmzsbBK7Gq+aJe9XHvv1Hxf28yTZt26Lfeu20uqRBUAmVsQrHfQ7dU5cuPiB8iD79S6r1+/SHnTxThYpXVg8oEi/Nw9yslRl4sSpxy7P+VBhoNdPSeiBDnDH/LRZ/ag8yFgxWG6SrPSYmppk7pMv4f+UFt4PQ6/eYfX6Mp1+h9yJArlSkZ1bNZJt8E8XKY2NPTZprBKFGsZYxqKcLeIVHu+++oNCWpLCRJEkTri9fZds3WdhZgHPe4rzJJcmUbNj/OD6O2me5AufYW5u7tEvPsah+HnKjHQch9dee40///M/5z//5z95gIzc2trinXfeAeCzn/3cx7CFR+OYjHxKsac8etqWR49xjKcUMzMz/N1f/y1+8OaP+eFfXCXzwjyZ0vv/AZK2BZF+9BMBIoWV+/hvcJ2Mx7lPP8/UWo33vn+dwYkq1kJKlEWDgK3rd9GeQFY9hG0RBAHt67fwbI+J0wvIQ0jDe0lIrTTdnSaDbg+Mwc34FCcqexbP+1Ear7Cz08OafsSKdG1AaWH/hmvy1AJrV26ilMaq5MicusdmlSiSuy3KxRKZ4pN9v4XxMq7v0livMVhpgmuD1tgKKlPjFE4e3VB5GFqbdZguPPQ1MuemZTXDCDkq5BFSIoREWve9LgwPWp2MQUSKeLlOcn4CU/ShF2EKo9y+RGPfaWCCBDNVxFgC5doIW5C8s4krbaozExQmH2+Smx0rYl/dQZ+uEg1SAkHebqDHsqhnZ/bKZYTSmEoWqxsglluwUELtDLAWK+gwQqtRdp6dNvEiBepUFd5YTVuMx/MYX4IyqLkyxncQvbSUxGDw8zls16HX6BCrJM2W1AZhS6yCn9q9tUk/xx1NyO4jInchfIew1iNbzO/ZP41SBP2AcBikZEycoIoZpE4bZJXSaeEIjEiLtFXW2mjj/2QZO4xhMo+5MI2ZLCCkxJyssvXWKmRc1HwZUSghhjFypYHcahH1Q/xWgt8NaX7rXXqfPIkZzyHCBNPoYXkO3rVN8t0A7+9+irUf3CH7rbc49/qLAJQXJrH/9Do8tx903//eHYJPL2EqWdR2B2YKKYncjzDVHCbvEr+6iP2jVeIvnk4jGZQBz0YrQ/LCLJydxIkEsppHhTHNS1XMS1P4X79G8RMnyay3iH58Nx2LjkW2FfDyb/4ib/zZ9xn+ZAWUTkuxCj79r5yHjIuI4z2SQujU2okB51u3Cf/G82lpyZ/fgkGY2rZdG2FJRC8lqJudELIK59wcwt9v8BZCpPnA52Yx76yRL+YRvYjB3TbemWmse/LBnCCgu9OG69tpccxqAzVTSPNPI4Xc7CA2O6iLUynpP5ZF1AeIiRym4BF2Q4ZhgFPJsLm9xdxMen2yLIvFuQUW5+bp9fp8+9qbyJkpzPg4g+Vtwq0OSgrMZhs1UUAojeU5YFn0+j1Ck6RN19ttrG4fe7GCVcwgBAz6IZu1LWYmpx9ryccAtXqNThJC3kWW86lKrWGI1ppIR2JPF7AqdkoQ3+uo1wYLgQqi1Eq+i9E5cODJnsUwDMln39+UwRjzUIJwD1KgtXrw79qQhBEm1GRdn3zxwWy5sWKJQadBaMv0enHYtaAfYStDpfT+SD9jDNFOF3O7SU5ZnDu7RPkJrbFxHFOr19hq1yBv48/m8B7T3vo04SjrtiXliJC0HvgK9DAmvttGbw1xqjnmL53k9Avnn/izjTY012qs3LhL6Gj80yXKYwuH50EGMFedYmxq7KnIgzTa0GynJHTiavzxLEXv6PEYDyIGtxtQC1lYmmfqFy49VjTN+9629TqrN+4SWTG5E0W8XobN65vIioP/3Bi5wuNnxiZRjBoqPMuhnBv72Ehg27EpzVUIBwFXV96jmqsyMzn9vhdXPmxYjs3kpTRP8o+ufIPJaxU+9/JnjvMk3wd227R/HpSRAH/7b/8O3/zmN/na177G66+/zquvvgak6uv/8X/8f6C15vXXX2dxcfFj3tKDeDrPxGMc4xjHeB+wbZtPv/IaZ5dO8dXv/CnNaoPS+fn3dRPq5nzcRKD6IVbu4bYjcadD5YWnJ4OjNDfBKxMVbv3oXW5f+THByQlarRbuhSruPVZZK+dCNUvcGLBx9RYzF0+NjtW+pW53pb673WBnbQvGPMR4OnkeDgLa790il88zcXLuAVIuP1mhfnmHpOClKiEhkPbBSYrqBHhK4N6zym85NnOXTlNf3qC/sQ0lL7XfBQky0EzMTpKtFIjDCMu2nshW7eWzzJxbQiuFihOElFiu/USKz130213k/NQjn2eP50g228iTqZLTdmyiSMF9aiFZS8kJSIt9aKdZhvGJMUwpA1GSKhP33liSnK5iv7eNLGcxGQcZaZzpCs5ym8UXzj3RftmuQ9b3Uf0IN+sQ36mjKxn0ZD4t4WBUYBTEiIyDLniw2sK61UDPFVFhmI4p10pt54nChEmq+gsTNGBcG6MNqpKHe7JYTcVC7/SJhxFWwcGyLPLlAt1WBzGW2/UJ7j8/StKMQEiJMrk7Ob4PQoBroZJUfZuEEd1WB51zEeOj9x1GmCAmDqN0nDkWYkR26DjBubNDZjk9FqaaIfrkxVSludPHurKOe2YKjGFoFM7JMaxBjP3GCs4gwluqYn3pEsl7G2z9+DbyN5/FXW9T/P5NVMZB53zEMMK9WSNzZorMr7+QKntePcHy777B6U8+i+Xa5Ccq5JRFf6eHPZ5HD2OCnR58/hSq3t9TYZogSVVuTtqCrk6M4fxgGcIkVZAqhfXWOvFLc+hqDmsQ4ebSG/V+q4upZCHjEP7CGazvr5D7a69wr/5G13usfOc2k/PT1F6ZRk6MXvv7b6BnimlBU3uAKWdAk6r8Eo1Y76ZjaTyH/e07qcX9C2fSnMnmEHu1hUwSzLhP9OWzCNtGCvPATarRGhMrkmKG3ABefe2zrG9tcOPqXeK8g8qk+aJeKyQfKjaUIr40naogd9/DGPR4FtENsa9soZ6dRpcz2JudtEUeMBmHXr/PWDFLo91menI6dVzvZZul10jppIVMwrHIn54hmyiSZo/u3W2iiSKimH6u7oeEjS6WShAZC1GycbJ57NL+0ZU5j0E0IAiGZPxHq54arQYdYuRYDpNokp0+qjdE5h2ck+U05iFKEJaFUaO8V5MSxDLRKKXRzmisIFIiMlIk/RDLd9MsR6XRcUIQKYwxeI6L6zhPlOu4m2n5yEuRPpiPbpQmCSJMkOA7HtlsDt/PHLr4k8tmGQuGNPpDwoxJ90mOVJI6Jejt9pCluYUnLrUwShOuN+FOi/FiiflnL5Ebe7LJ7XA4TAuJBh1k2SO7WPnQ8v0+Ktxv3QZDMZenNugj8pm9r1y1hsS329BX+CfG8c4voFbrLE0+WaxNEiXU7mywdmcVU3XIvjBGJn9UHqTL6fEFCoWHLxZ+VEiShHqjzmZzG5G3yMxlyTxkHIbNAcNbTdwhnD6zRPXFiffdYv8oqERRu7PJ2u0VZMUiey5PtN1l9e0VnNks+U9NYXmPec4YQxzGmECR8TLkSmXsp4T087I+9pzDxtomq2+tcXrhJOPVB10tTwt28yS7tfZxnuT7xM+yMvL69ev8z//z/7T3742NDQD+4A/+gO9+97t7f//v//v/K9VqWjx69uxZ/v7f//v883/+z/kn/+Sf8Pzzz1Mul7l8+W0ajToLCwv8t//t/+kj3Y/HwdNxhTjGMY5xjJ8ixsfH+Z1f+01+8s5bfOebb+E+N0uu+mSrikIITr5wkXffuEXmcyeOfF680qKcL+GXjm47/KgR9QPe/bPvU9uqkYx79L79E5LZCtE1jT9dwJ0q7M0LDWCPZYlDRXerQXlu4gECq7vdoFarYV8aP2CBklkXM56nv97G3Fhm8uzi3mu11rTWa5g4IXp3A7NYSnMMBwbHc7EdB1Xv49SGTF889cBnWo7N5OmF1GbV7adKnjGbJEpobdbY2dhKy0Zihe9nqMxO4Bce/zuQ1j6JaTCEvQGtzTpREIAQ5IoFilNjD1UhGPHoiDIAq5rDXNvBzJQQvovtukTdHnjW/qS+McAW7KknEQI5iFFjzigvE0j0PgG3CyFQ00WszQ6cqCItCyuXQdN6XwTr5Kk5oiu3CKpZ5CAmWaiMSIRU3SaGcWq7H6lo9UwR8YMVzIkxSExK5GmD2elBa4iIFYQqLeKeK6FL2bQZ/H5ogyhlGDT6REGIMgZsgTIatrvIoo/M3v+60f4l+oAq7n7sqna0Sui2Ophq7sA4Fr6DbPRQeS8lXQWIfoi7vIO93SGeKRJ88gSyHeCgRwSnjZktpbbcG1tI3wZb4HznJn4xi5PzoOin2Zi9gMEbd4l+6QLyzbWUGDxdRU7ksVwb41ior5wj/reXyQQJZNPCoo6O+ON//q+w8xlsKZmYnqD71Wuov3KBZLVFlLGJtjoYCWgJm92UkMy5KSGZaHAt9HQRWe+jZ0qYQGHd2CH6rReQzQGyH+FOZVLCJYpS6z1p63IyCAm/dQ0cG5l1sU9PIqt52irixWeeofnnb6H+yrNpO/LuULME0rPR3RBcC9t1Uov2RpdkvgxK49yqE/7SOez1Ds5GB/IOnBvDVDLw9kZKqlsWcS/aU11rpSDW2ELiuxnEuI1uKCzLYmF2nvmZWZrNJsMgQEpJeabED9/6CepUFVHN7V/vjMGIEa1e9EnOpC32yaXpA+kUwpaoJCFotrnd6LPZaYEx+NLm1Ow8M1PTabN0dFDJJ20Ld6JEKePRublONFlAGIPV7iMqHqKcR4YJ1jDGHT+E0Mq7NLudR5KRSmtagz4UPOKNNjqKkSUPe3G/jEOatJmXUcs30kYKgdAGrfWomf4eltAYhGdhjIUaRKn9dpfYtiWxlCRJyCAMyGeyj03qea5LP44R7iMWjWKF53qoOEEHMSpIiOME41kEOqTVC5DNOqVcnkqxfB+JIJgYq+J2O9Q7bSIJiQS0xgoSCn6WmaWTCCHp9bvESZoFmfUzOI5DGEV0eh1ipZBCUszlcHGIlxtYGz3m56aZ+ewruNnHt3gaY+h0O6zXNhkSpnmQE09fHuQHxb3W7XwuT2Ozg/IS9M6Q5E4by3bInZrEHs8jhEANQzJ9zVjl8Gzr+xH2AzZurLC9uY01nyP3mRmseyzxxhiCzhDVCih5RWamz5DJPh15kGEYsr2zTb3fxCq5j8iDNAy2O0Q32xTcLM98gAzNx0E0DNm8ucbm2ib+bIbcM2VaKw12Lq/gnShQ+tzcoW6Zo7Y9DiKIDPlMjmzlwTb1jxNJnNBptOn3+tglF+ML3ll+l+LmKmdPnKWQf3qVc4WJEvnXi9xe2ea9r/0rXjv/CueP8yQfCz/LmZGDQZ+rV68+8PdarbZXRAOp2v5e/M2/+VucPHmS3/u93+Pq1asEQcDk5CR/+2//Dr/zO7/z1DVpwzEZ+dTiaV2pOcYxflZgWRavPP8SZ5ZO8bVv/ylbuQalS4tHthMehpnnzrBx4y7tH6/hvTT7wHkZrbWQ31rnmd/65Z/25r9vRP0h3/3dPyJ4eQL7C8/hJgpnI4/biRhutgmEQQcJ/lKqwNvdI2cyT+dqg/LsxAEFi1aanbWtB4jIXQjAmi3Rv1kn7PTxi3m01mxcvY0qCDIvTuOFCeFGh3i7D75NHCp0P2F8fpryM7MPJZIs2yJbKWIw1G6t0YuHWIsF7JGqzgBhP2T97grV8XFK04/R3n0PtFJsXltmSAKTOWSuAtrQbA1pvXuTysQY5dkHCVoASdqW+0iFS6KpTI7Ru1knmSogxnJ4GZ+wH6TZj/U+djvAO5+qLHWYYG41KFbL1HOkxFKY7LniDsAYTMmHlSZ6GGE5LipOIEoIewPcfObJcj5tm/lLp9i6tkzdkimZKEyqLtImzX7btRWOciVNxkFs9xBhAsqgOwFmLJuqIH0HPeOnx2lk2dVm1wIt2Kv7SdKW5sQWkLH2iEfbZEiCEDWMMGGCVc6m9l/bQvRCTJw2tx42NkcbiYgV0rIYdHrogv/gc5UGKZDdAJEovNs1LK1JFqsMz4ynxTZxgrPZgtP3jS8pEc0+zhvLWJ9awnUk6vom4WQ+bUcPY+RXN1DDCPn1q8TnJjHZtFnb/u6dtP37ly+CaxNfmiK6sobM+wzeuE10fhyzNEWmkKX/7hr1WxtYO12c/+X7DEyMfm4apvIQJxjbQkgQ7RBinR4jYzBJum+MrLiiF6XZn7aESJErFxBSkARxGlsggH6I/MYN4iAiFgpT9BHtHs6/uo0zU8Yfz2J5Di+8+iJv/bs3iF6cxRovIFdb6T57DtZ2FzGWRXhuSqxLkUYQLLcgTvDe2UTMleDVWcjcQ/jvuYTTQpMkiJBG4NkOrp/Za+lVJj5wPRZCMjZW3ft3HMdsdRpwZt/WDsAgTmMGbAkZG1PNwu0GojlI1aW7CBLESotetUjumQWUnyFpdOg2O2zfepf89Wt85qVPkLc9OsMQK3NQoSUEeKUsst5BZyU6byEFyOYAK+thTxQPvc+Tjk0YPzx/2BhobO8QtQeIKEKWPexDyBchwPJdpI6xLItIaYRroYYhZJ2D1xNt0qvEiKjVmNQ+v3uuq9F1zrUxDnSHA4rZ7GNZHV3HZRiGmCPs07ufT5AgIgvXdgkjQ2iBHMsfyHc0xtDoDQm2g9TOfh8hWSqUKBWKBGGQ5uxKie/5CCFotBq0B310xgZbYpRB7nRQQZQq0QsewrIx7SGd763ibg146aXnWPryc09036CUotFqsF7fQnngTWTJe0/fBPCnDSEEQkOpI9n41g2s2TL55xax78lnjltd3LUeL196/pG/m716h7Xrd2n1u7gnipS+sHDg2q0TTdDuYzoxE8Uqk0sncT4kC/MTwUB/0Gejtkkv6eNUfArjR0fA6EQxWG0R3+0xUR1j/hMvkCl+eONl0O6zdn2ZZrNBZilP/kKJ+p0dwlod/1SJ8nMPulyOglaKZBgjlaCULeDn/adq/hoFIe16myAKccsu+aV9ctcrZxhs9vjxe28wVZrk1OLJQ0uqngYczJN8m7dGeZKzsw/OS46xj5/lNu0XXniRP/7jr7+v17788iu8/PIrP+Ut+vBwTEb+DGCvqe4YxzjGE6NUKvFbv/wbvHvtKt/4ix9iXZwkP/V4K/LSkrz013+R9/70B2z+7juYM+XUMhwouNmiYGV47rd+6alSRV7+4+8SvDqFc7KKMYZ4GCJyLvZskdxsiH15i2CjRZJ1cSb3f6CFLcAVqCg+kAHZr7eg4j2E7BmJbqbyNDd3mCnmaa1towoCZybNirQyDtlT1dTyN7LtJts9bM95KBF5LzobdXo6wD41xsHpJ1g5D3lunPr1Om7GI1N6vFVQYwwb790hGHOx7lXOWmBN5DHjORq3GqlSZqZK2OnT3KwTDobAqNF1pYm9NPZQuk/sDKicOcGYlLQ367SvbCIdiRUrkt4Q6TtYU3nUTg/RjXASwcTSPL1mBy9rCMIEgUnz7pJRSUO6A/vKSiEgTghihQRcEpav3UIPUnWZ43sUxkoUJ8cOtDQfBsu2KU9X6bWbWJZNpGJExsWI1CaL2icT2e5BlCofdSWH6Awh52ESgxrLpPZYZUDrtGS4kZI+xpJpVp1SCJMuHiitEL598FiKtAVe2Ra6HUCth8w4qfU3SLCKAvkwVWSkcB0nzU0NIkThwZtS3R5gd4Zkb93FWJLw4jTJfHqNMInCqnWwa130YhmrNUytzM0Bzq0ashekxSxxAttdoqxH8tefTRWW12uI5TrKFuDbiK0unBpD3u1iNQYpcTeIsP5f30F/+iT64hThf7yCzrlEf/05TD9E/3iZzk6X5OwE+oVpOF9FfPsWnrFw1jtoZTDIlFOSEvIeotbHRAp8J81HXG+jLkxCpBCJRtR6+P/rD5CdAOV7DOYr2J8+AxgYRMh/d5n40gT6wiQOAnm3ARsdorxLsrxDVOtTJ8+5L7/K69NVlt+8xsr1BlGrTVTM4Oez+EszBN0BwVo7Jba6AfatGsKz4dIEvLq4p649AN9GDCJMIX3MxSKXyz5AqJt2H5G4fPuNHxAlMZaUzE9MMzc9i+u67NR30CUfy7ZJlEI0BojtXpqd6FjpsYgVejKPrmSwVtuY50YlT9rAzTrRiXEcy8EOEjo3bpKUMuipPMgCw07AH73xXebyFfTdBvJ8qqxMOn2iVhfjSuSkj79YQHWGWIMYVfCxPPfx8hMPgVaafqtLr9VhKGPkbC49Fx71OqCUydIbDAh7QTpWlE5t2AbQOrWa78aZRColZo8iiwTg2/SHQ4qPoSgSQpDPZOkOB2k0xb3va0D3I0Q3ZLxUoVwoMwgGNKIhsnwIISMEspBh0AtotJtUy4f9lgt8LwN7vIJhs7ZNz1LIifx+QZAxDG0wOYloB7gNDXc7OELin53FetXn1s0aE8PZx1LWRFHEdr3GdmcHUXDw5/JPRGL+LCMZRAzuNBFbASeX5nju185xa3OFnZUmOuekqtt+zGyxwplnXjxSuZjmQe6M8iAT/FNlytWDeZBJlBA2+8ihYbY6TfXM05MH2eq02djZILYV3liGon/0vWYSxPRvN2ArYHZ+hpnPX8B5oHTwp7RtxtDZbrFy7Q6BCsidLJEp59m5tYPJSfxzJcrlx1f9qjhBDRNsYVPJlnFd9305MT4MGGMIekPajRYJGnfMI58tPui+sS0K8yXi8Yit9Ro7l+ssTS8wOz331KoOLcdm6tICYT/ga1f+nKn3ynz25U9TLpc/7k17KvGzrIz8ecIxGXmMYxzjLz2klDxz4RJL84v8yXf/nLurNyk9t/hYQeCWbXHpK5/i7DBk+9oyQbeP4zpUf/mlJ7Z+f9gYtns02k2spdl0EcMwIqzS/5RFD//TC9iXN0m+ehnzK88gJu8plxHigcWPQaeHGH/0TarMe4R32mit6ew0cZ95UKEoLIk1UryJuSLt93YoTlcfeRNrjKG5tYN9sXrkM4UQWPNFGus15h6TjBw0OwRuaqPWgwg9sibKnIf0UwJLnhqj/s4W/XaXIQliKo/IpzZ33QuI7uyg3g3xzk8dStiq5oCMnZKBANXFacYWptBJap2UtkXUD4j6aZlKkouIwpDmRo0kiMDKpBlzIlUOGSlSoiD1xo0+RCOUTtVOsUZudFPbVMWF02USpdGWQ9wb0nznOpPzM+THyw89NtKxEUGMaPSRtU5KrjkSxnJQzabE10YH3Y9Rp6uIboRoDVGVLHopC5ZAtIaIbojJeykjYlmYgo9oB5DfJWXSvDGVjPIwA1Lb8TBOx64UqdLOsVO7+1aPnOtjLE1kJOFOD533kbnUYn0AWiPbQ5xcls5OkySOodZJCY2MiwSc5Try+ibq3ATJl85BpLA3Osi319LTR4AZy6DPjKcW5Ku3sVYb4Er0qTHU+AzGCMzvv40yhuRzp5CRwvr9t4nnSyRfOI0e5WhaN2o4318BSzD8Gy+kNn1ANAa4P1nD+vp76FqH6K98GmwL6z9fJ1yooH7xxb3vWieKZL6E2mjj/dF72MtNODNBFEQpuedIhCVSAjhWyNYAkXcRUmDd2sH942uYrEP86ZPoqQKh1ljv1XD/v99CjGWRQYx2LER9gHOrgbXSIjkzTvwbz6RxAYC8scM7V9cI/iDi2V/+NGMz4zRrdYb9Ifz+28izU5jTU8iNFs6VNTQaSi6m4sGpVL2o7ycizSiPtOTjbnfRpRxCaLxDJrlxFBHc3WR1cRJ7roRwLIaNLpdry1y5eZ1Lp87gOS5GCISUyJs1jCNJzk8cJEAjhbXWRnSClCDbzXBtDkkKPkhJJtT0dnZIzk/vK4IBsh7DvE+tl+BvxQzfvIvKWciyj5zNI+yUbNedIXlt4Rez1FXwSCJSxwkZ++DvUhLFtGoN2u02SVYiyy4GC2M/5uTfGAZBQKzTJnEjSNvngzglID37gErNJDptstcGMfoNecByOWpv10o9VmavbdsUszkGwZBktDBhwgQRKLKOx/TMwkiVZGh2OojKw39zZM6jU+sxVio/shm7P+jTI0FkPVQ/SFXalkQ7Em0MYquPudGAxFD+7Dmse3I81ckq79y8xqdePFpl0u/32axv0Qq62GWP3F+CPMjHRdgaEN5s4gzgzJklxp6f3CMGX65WCKNwlNtmyNxj7ddKI6TYIxlVnOZBrt5exYw5ZF+oPJgHOQyJmwN87XJyfJ7i/OHq4o8aSinqzTpbjW1MVuDP5PAfsuAXtYcMbjWxu5qTpxYZf3byQyOttdbUl7dZvbmMyUH2VAGrZVi7soo16ZN5ZRw7+5hqUjMqpQkSfNunXCji2E+BEnUEow39To92owMeeJMZ/MdouHd8l9KpMcJ2wM3N26zVNjizcIrq2PhTMb4Og5fzmX31JN1am3/x9d/ji89+hksXLn3cm/XU4Wc5M/LnCcdk5FMOcQg5cIxjHOP9IZ/P8xtf+lVu3r7F17/1bczZMQpzj3fD4WQ85l44+xFs5ZPDGIMxhp3rKySny3i77CMpqcRQ7wvoLIHz4gzWOzWyt7fob7RRF2fAsTChwrqv8XBk7nzkNuzySmF3gCg4j5yMSdsicSXxIHxkDlfQ6WNy9kPVmZBmWEZJmySK0yy+kYX6KLKzuVnHlG2GVzYwjsDk02xGsdNFGoG7UEHmPEKVkLgKd6F64PV23kdcmCZYaxJc2cB/Zt8yY7RG1fp4zYipiycPHishDqgTvVwGFcVs3VlDZyRJnKDDOC2luNtDn58Ay4KMnVqhe2GaCzgi8mRjkObtORZip4/Y6sDLs4hd4tcY4n6EP55DVHNsXd9E2pJseZ+IVnFCHIQAOBmfaBAS7nRIFiuo85MpuZhoZH2AvLIFC2XY6qQtxO0QVfDRBX+PYAMw5Qxypz8iNgDLpJbuXpgSh1Kku5CM1JbGIHoBypKpdVcKiDWiM0T6LrLgYxyZFq14NibnQDaHCmJ0rYP0bGQ5lypwewH0QoSBjugjChl0wUlJvloH50e3sZt97JcWiS9Oo06OpTZlz8G4Fo600UoTWWl7uHOrhr3Rwr69Q/i3XkIU98esiBXCGJJPLGDiGP8P3yX89BJ6vowZxikBpjQm6xH8tWexr9Vw/+Im0ZfOpcepkiG+MImu9ZDLTShn4J0NTMFFv7Z0YOzoREHWQec94t94FuffvoX6byqpsjRSaVFUJYOs9dGeg/uNm6hPLyGiBPerVwk/dwr13CzGSm3TBkgmC6i5Et4fvEP46iLJa4spqV3roX/9EvbNHbw/uEL0axcxGRfmygxsizuXd1j5v/+vcH4K8cmT2L96Htlo07+6hvzDNxCOQH96CZbKYElkqDDNPqLWh8UyeM6ojDe170sN0vfwLE2w0Ubnfez7ibkkoff2bfInJnHnqoS1NoONOjrvoisulBx+sHqNivEQwRC92QHXRi0csnDkWqilCnY/wlhiNAaB1TZ6pkzWclFbOyTnpw4SkZBut9YMo4DESShXi8QOROj0/NQGSxkqhSLFfAGtNY2tLmS9h19O+xGV4hhJktBtdhi0e0Q6Js4JxFIea3c7EoWJExIJlrSO/A0zymC0JhAKkXUQxoBJiSAMqQoyiNPzTYzs/HJ3oSP9XZEG5CHXc2OlzcmPWyBmSYus46EGMVJDNlMgV80dyJ5MkoREmH2VJqCjGNUP0UkCCCzPwcp5aZZkGJDxH25prbdbJCZBNyJ0xgFbQD/AvFdD1IdY5yewP3cC604D4R3cFyvr0dFN+v0+udy+A8IYQ7vdZn1ng0DGOJUM+cm/fHmQh8Fow3CrS3yrRcHNcvrcOQoT92d4pvBcD8/10EajlWa3d9tgMNoQDUK2bq+zvbGFNZcl9+mZA2Up9+ZBFr0Cp6ZOPzWZZ1EUUavX2OnWkUWHzELxSIWmMYag1iO41SKHy4WzpyjPjH1oZFcSxWzd2mDj7irOpEf2UpHOeouVt5ZxF/MUPzuTxmY8BowxJEGcttl7WXKlylOlHFSJotfq0ml3sfI2/lz2icldgcAvZfAKHsP6gLfvXqG0WeTsibPkc08fkaWVprW6Q3i7wzPz51iYe7IyqJ8X/Ly1af+s4piMfErxtK7GHOMYP+sQQnDm1GnmZmb5xg++xbW16xSfX8LJPJ1ZMQ+DMelEU48m83EUHcw9EymJyo7BKJMqpnYfKrhUXpih0BzS+O4NepMlMvnSAzfTXsZnOBjuqaKOgg4TbMdJiyacx7RMOTJ9/iOgogT8x7u51MawdWOZKAz3svJypSLl6fEHSM+g0yOKJZyqpOogwMQKHSbo9pDkx8vYE3kSW+BUD58AWbZNZqFKdGUT9eYGclRaIkNFdbxC6dL8Iyfrg1aXzeU1dNEmGYSI2TxWPiUtzNvbqMYAU8zA6LAKTJqX6KaWR2uri57KY12rIToBZi4lP0QYI92RitKzScIYN+MhT1fZubnJQrlAPAxprG4xGAwhlxI/Sa1LaAzq/ATatdIxNSr+UBM5tCWwrm6jJvKoSi5taYb0eO/1YYyUfFkX0Qn3lFZYIiV2jAYxep0lQAH9KFVujWcRUt5TsmRQvQhd62KURlQLSHfUYgxIz0HlFbobYFbqYEmsnIvJuShbpsRtEGOvNPG22piSj35xlkgI9O06spxFtIaYyfSGVcQamZWI1gDvxiaW0rBYQU3l0btqsihJlWP9KLUxV9Jtlmttksk8BDHu778DvbTIRY3nSM5PgmuTPDeD//vvpJ9ZzqSK5IyDrmTR1RxsdbDeXEP9yoNKh9SZLzCOhRjLIebLuP/7G8SfmIcTY2nxT6JxNtrYf3YLFsqY2gCu10hOjaOem0UaMIlJ7wAFMIxxf7DM8O+9iqz10/HbHKArWXAtkovT6KKP+8fXiL5wGvfyBma5SbvgYc5XcOMQ+0+v4JydxkkSomYf9StnwRJYsUK6Lo7nIPKSOOcRWxLx9ib6xTlEpLCGCSiNtCzKYxWsUgXeuoPcGaIWLGTWTwnLVp9kbYfceJ7MXJVgvUG/20VfmERY++NFj+dpNYeYGz3MSh390jxSiJQAMfceyPT/1VQe524Tca02KhwKyeRy5JSkW/AOEpEmtZzLVg9hgSi7yNkJ4m7EwtQMSZIQRhG9QZ9AR7R6HQbBkHKhRDmbp9keIEvZQwlJPYhwQs1afZVgMETmHEQpVfxKS2Lde/22LUQYY6RAaYVl2YdynGaY/ibsZj/u5vqxe4p6FgQGQjU6L83efgqTtqFbD7HAPtZSuTEko4bdrOORLxUfIJn3joHW6fVg9Lqo3kVJg8m64KS/QSpIkPUuFgKd1Ye+zy7iOKY/HKImcmlEQGsIt5qIfoxZKCJPj2G10uxeVckQt/t491llVdGj2+uSy+VQSrHT2GGzsY3KCPypLHn36SMrPgzoRDFYbqFWukyMjzP3iRcfO9tQilSxrY3GaEOv2WH9xgqtbhvnZIni6wsHylK00gTtAaYTMV6oMrl0Atf9cCzMT4rBYMDmzhadsItT8ckvPSQPUmkGa23iOx3GimXOP/8MucqHR4yE/YD16yvUtrbJLObJPVuheWeH7bfr+CdLlC/MP7ZqV2tNMowRCeQzOTJjGeQjVMgfJZIoptPo0O8PcEoO+cXCIxesHwUhJdmJPF7Zp7/V40dXf8xMeYoTCyefivGXRDHNO9uo1SHPLl7gmS99hUzm6ShrehpxrIz82cAxGfkU45iQPMYxPjxkMhl+5fNf5tLyMn/03W8yOFmguDT11J93uyoirfUB1bQB3GwG0djem+ju7kmuXKBf72JN5NLCDGOgH2P5DvaCx0TWgd+9QvbZU+jZEJndJ2YLExVa79YxE/mHCnrUdo/q1Hiq+IseTTBCmuf3qPxCAGmJtKn5EYg22kRBgDyVxyqVR1yDod8O6F2/zcTsNIWJSrq9SUKUxHB2NlWuGYO+voNpDKHkYybzMGmIdwbQDVGbDpw6XMEppMSq5mCjhx0ZpCUpzY2Tr5YeeXNsMNTurmMqHskgQJ6r7hVLJCttzCDC6kUpqTZdSBWFkYJhnJZhrHfAEVi9EFHxIIxhIgc5BxNpVC9MLeeOJAki3IyHcCwSR9DdarCzsY1ZLCFPpNZzpRRhs0tyZgIUKXExjEGINA9ylH2nzk6m5OIuEWlL9tjB3XgASImQXoixvbRlOxnlTSL2iQwD9CNkEKeFLHL3j2L/cZES3nosm3IV9+VlWraNynsYY3B9B+HbRPU+wpF4725g76Qqzui5GaQtEZsdhNIkvo3sh4jNdpqHWc7irLfx6xvYjsWg6KHPTYJt4f7eHfRnT+JECjOIUyI46+Gsd2G6iG1biO/dTXffEoSfOYEp+pBo7KtbeN+4SXJpmuTiJPEz09hXt4lfXUj3w4CIFMm5Cbw315GWRI09ONFPxWtmj+9Vl6YodNIJ4/Cr76GVTonosodINFatDwiCuw0G/8Un0mZrbZBCpPmtlsR6d4v4whSm4GOaQ+xv3UYOY/REAXWygiln0TNFjAD/D64Qf3IR9fxsWgRT8KDWJ7m+TfzuXcSFSfQXT6SN6cYgrm7jWFZK4BqwXAcxVUZtdhE/XEFnXJKCnxbT9AcMGgGe6zKfH+OZM+dZ29qgs9VDCMl4cZz3Mj3EyWnUMGLQaKdE5H3XbCEFyrfwLswyfGdl/++xRtb6iNZgFAEg0zKTgg+ujTVI8I2FlS0g80WCtRpqVwGbaER7gOz2ETkHZrJpdIEySMcmSgYYoN3r0hr2IOekCxPG0OuFdHc2cY2kmM3SrffQOTctTQFMlEAnhPaQ7jCA8SzWYhVhpzZiAB1rTC/AznqI0Tln+Q7JMAHfRiv1gFrJREmqOL3PqihIT929w+bZiEGMdCVmpGBDGywpj27+VRoTxUQmHU+u4zxwrTNKkwQRIjYU/OyoYffhCzNSyjRiwBiiegeVcSDrHPztyTrojI2p9+kPBuSyR080660GSd5FNIZwu4llW1inx2Ass2dbV9pgb6UKWqMOITdFqoJbWV+h1m0gHqGC+8uGZBgxuJ3mQc4tzTH1+YvvL9vQQHu9wcr1OwytGPdkiVJ18R43QRrXETYHyKFhZmyK6umxp0KFZ4yh0+mwsbNJKCPcSoZCtnKk60KFCf27TdRan5m5aWY/exYv++EtePfqHVavL9Ppd8idKJArFdm5VSPZNmkpTfXxVZgqUahhjGUk5WwRr+A9VffF4TCkXW8RxhFuxSM//tO361uOTWG+TFyN2FjfpnZ5h6WZRWanZx95DfswEPYDWre2seqaV86+wNlfPYPjPD0W+acVx5mRPxs4JiOPcYxj/FxjcXGRvzf923zrh9/j8neukX9+ES//9K007qogdy3ZcFCVIoRg8twC9r94Cz5xsOHZL2TRSjHc7KVKm/qA3GQhtVtd3kS93eAzf/OXsD2Haz+6Tm++jL00hZAC23UolEp0VtvY86VDb71Ve4jTV+ROFNMZbl+lCraHTNZ0mGApgf0YkxqvmIfldcwcR9rg4nqfqDtEnh7DvketIYTALmcwRY/atS0c38Uv5OhuN2ByRHwZ0Fe2MYnCvDyTZhfuHvfJHEQK9e4O0XIDd/FgIL2OEsIb22kxxmwWOVaARLPdaLKztsX0qXkyxaMny0G7j/Ilcb2HvFDd49/UTh+92UOfrEDZx9rqw9VtzMhOKYI4tSGXfczpsfTAtIZgW2m2oxCp6smVqH6MJQ7euOqszfaddeSzU1j3kBVRvYvOeZB1U9tqfYAVJGhtUOUsppJPiRylkZ0QYdsoo1ObazJSNe2Skpg0dFEIhDKjTMgkLSixR/b5Ybz3OpNxUtLAtVI1o21BN8AEaZ6kyTjgWWhj0FGMZVt7qlOtVKqqyrkkzQHOdoy/XEc6Ar00hrp0Om3MvlWHUJEsVdKMTT0q0IhinDdWcW/X8V9eQs0VGLoytaitN7Gv1TAZBzl3j93XGOSP1/ClJNIJ0rUQW12Gf+cV9GR+RDIa8G2SC1Mkz0zj/ad3MZ6FHs9hLzeRUmJihRxEFEoFgkGM19fEuyS9Ge1botLz3RiIEkSYIBwrbdG2FdlPLJH9xL6lu/2/fR/rtRPkvnIBIQTr/8+vw9z++asjhSUkQkis6zWGv3wB90+vI2s9klNV1FQBoQ3uN2+l4+ILZxCDiOjFWfS5ScTdBnIYY729hqzm4LV5VNZGXNlMVa7pyZfaya9u7Cm23VKOTDZL1/dgdgyRsVPSTQq0NiTdAGujx5nnzpPNZjl78vTePvX7PWhuIASE2810G4+yJ1syVQtWc4j1TpqludNHT+VR5ydG51CC3Rhir/fw3QwvnzjN/PwCV29e52armx7rRCM2W8gwRBQ9WCjuK/cStd8mLaDVbtGK+1jj2fRrag9QYQwZG3IWcawYdlqMFYpIZTFsBOnjQYIlBT0f5FJKQh6AEBhHgrFJegF2Ll1QEJaF7YEaxhghMF6awWeURsQaR0iSQzLTLMvCqCTNfR3lRxqlUEG0T4wPY8RhbgFt0mZ7mSqcIxsiHTPoh3i2TdbPoFVKZthaUskW8AuP37Br2w4OgmAQojApoToq3REAGTdV6UuBKfj0OgHjWh1KECRhRO/mFqLex5opYL8wgxjlEBoDwozOqck85uo2spxD3qegUcOQeKvJWkmTnSySe4gK7i8b7s2DPH16kerzU++LgFVxQu3uJqu3ltEVh+xzZSoFf8+qbTBEw4i4OcRTFkvjs5RmH3RpfBzQStNoNdiob6Ez4E9lKbhHFxbGvZD+rQayEbN4aoHJLz37WAuu7wdGG5rrdVZv3CW2E7JLBbxehq3rm1BxyDw3Rq7w+KRxEqWlNJ7lUMpVcBznIy2l2b2vPez8MsYw7A1p11soqfHGfPKZB0tpftpwMqM8yU7A9Y1brG2vc2bxDNWxMd53E9kTYNDq0b6xQy5w+fyF11h8beGpIOd/FqCUYjhMyyaPlZFPN47JyJ8RGGN+bm6AjnGMjxqu6/ILn3mdCxtn+Nr3v0Fz1qN8evapCKHftWHvKiJhn4QUjGx3o/9ZvsfciQWWf7KG+/LBDJlsuYCb9RnstIn+8AaWl2H4b64zd/40c3/rU3sE7EvjZdau3GL5u++hnl3EKmapLs2gb67Su1FHTuWQBT9V1wQxutbH7iumz50gDiMwhuJ4hc5qB2exdOSNZbzaYXxm8rFuJi3bIlco0G/0sasPTgQMEG22EQsFHO/wm28hJXKhRGNtm9kLJ+k02riLRcJQwTDEDCLMSzMPlqCIka34uSmiH29gz5T2spZMogivbWEWS5B3Ef2RLdoFsi5mMmHjxgpzp5fw8ofb2YLeAG2TWqR3P9uAWumkduWJXMrpTedhKodITPqEXUvlTzZTu3CYIFwLE6sDZCpCIDIOehgj7znWqhsiqhnse8gKrU1KbOQcaA6gk1rB48kijFRcYrcQKQQsiY4ThG/DbhrYnv119KbxqP1bppl8IlZpoYoBM4jQJX+/VMSWGJESlLIxTAkYS6RKz16EcXdzJtPnq1jdF1WgcdZaeG+uIgUkn5hHLd6T89kNEGFCcmp8ZA3XyFaAc2UDZxBBOYOYLRC/vQy/fAHpSqyNDv4ba5jmgGi6gLq9g+W7iEYf591tMpNF8r/+LK3ff4vg61dJPrGAni4c7l91LMIvncP/gytEr5/a+95sIXGkTWG6it5oY4IIESaYWJEko9IiR+5nSLeGmCh93GoMkZWDYytaaZB0hxT+zqtH3jcI10IFCa5jIxKN92c3UGfHiT5/KiWHhQDPIbk4hVxv4/3+2xgrJYnlT1bSJu+LE5hPL2Cc/QIUNV3EqnUxfhlxs56e6+NZrEoWYQRRfUDwzl2SS7P4rk85lydJErTRSCGw82VMNeaNa1f4wiufOjDxEkKkhSpA2O7D3NSh+3bPCxBjOTK1AZFOiM+MYyyB0On9lJ31kbkMeiImvLyxZ3dbnJnl1k9+gHbBHiQwW4Sp0r5Qd6T8FYlGehKjNTaCZr+DNZ7DGAh3OuisA6Xc3lknAJNTtIcRXkvhC5tEWlizWSIUQkcHCnb2rvNhAonG2BLj28RKIaMEYVlYvo2d81OLd2yQUmBJGy/nkqiEbhIdeoW1rbRl3IQxSInJpiVHwqRjw2iDClPCX+xeI7QhGUYpuWrMvjXcSsd20I+I2wGVfJFKtoLrOryfCXulUOLu5jraGy1KlPz0mqMNDGLkTg/yPo7noLOCbr9PqbCff5v0Q+LbdZLVBpmcwP3UCYKM3LOqj4YGUqSqSGyJ9m3seh9nYTq1lXcHxM0uRmrcqs/Yz4Br4qeBvTzI2y0KzsPzIB+FaBCwcXONzbUNrLks2U8dzIPECMLekLg5pODkODFxgmwmvZbtEpUf1z1YHMfU6jVq7R1E0SazkD+SBDLGEDb6DG+18COLc2eXGHtl/EPbdpUoanc2Wbu9gqzYZM/nibe7rL69gjObJfepqYPH+WEwEIcxOkjIuBnyxdKBDNePAkop+sM+g3CIJSWlfAl3FMmgtWbQ7tNutsEXeFMZMo9RSvPThBBpnqRb8Bju9Ll8523KGyXOnTxLNns0Mf1+YYyhs9Wkf6vJlDPGr178IlNTPx/Xn58mdlWRcKyMfNpxTEY+xdizLhwX2BzjGB8JZmZm+Lu//lv84M0f88O/uErmhXkypY9+RW1X/WgOsWLDiIQcZerdf4Ny7vMv0/v3f0b927dxXpxDjkpMjDHQGJL53iaf+KUvMPvcmUM/27ItFp8/y3hjimtvXKVdzWKdmWXizDzF7oD25g7D5W0AbNelUi0TWRGrV25iMmmGIYMYojR70T1ZORCUrsOEeLVDwc+TG3/8NvLq0jTBlVskQmCNZQ9McXUvxAiwLQv7CDISwMq5hFFacKMTheV7iG6P5HYdMVM4QAY+AMfCTOdJVhq4pyYAiDc76MkcouBhYvXATbxwbczJMWp315l/5vDjjRlZl+9ptDS9MGU8pkZjT4CwJCYZ5XHeS5hWMrDShrki3GkhtN7PZoQ0Ay9WECu0lAw6PaRloZt9vOfnDmyKGoSp/dgk6GkPvTBSXCZ6/3iPxpsYkYujQbjXvGuiJC2CGRGSohemRKYQEMapJbrso9shejyXki+hOpATR8ZBS4Hc6af7tfv33YOx94UKVJwgE4V3ewen0UPPFtFnqmlepGunpM3u5GWri5pP7fv2Rgf7bh3hSGTRo/zaGYzSdOoN7K++S+atDYQUuON5cr/9EsK32fp/f4fo7TUc2yEzXcb/9eeQI6WVEAJ5p0H4yaVU7blbCGLY/z4Sne7bRB7n8gZyYSy1O9Z65CtFEFDcHmDVArrTOfR7m5iLUwcmtSJMkMMYqlnizTbetW28/+K10SEyJBsdwn/3NtlfPHOgdERCqpwt36P6diQqUcj2EH1mnOSZmTQLc1eGpjVIgZ4ukpwYw317A7HSwJypok+UMSUfoTRam/S5AkzBQ662YBChpouYko8VKuRIZWeGMclcmQTQWiEA54HzxiEoZ9iqbTE7Pbv3d9/3EUGcklI8PMpGJBov7zEwXZJegHhxDu+oSaxno2dLrNe20Eaz3tgmU/aJXYUlLFQubX5Pr8mjxYBEgyUJ4gjZD8kIm9BPFclxe4DO2Ij7WmqN0ph2QNQYkvgWcSlDJpfBclyCTuvANSB9AYhgREZnnb1zyiiD8SUm1phBhJ11EZYk4/nY1v4+Ci3TxYMjIJVBWxLj2gilkWZ/cQspUDLNZ7SEQDhWqoj0LIQxaWnOaBtNmECokI4DNviO94Hy1YwxGEeiq1mQcl8NL9OSMeVZWI0BtueBJwiGAUVTIG700bfqZGPJ2TOLRPMzvNFdwyvmCbttjCUPnEuWJdFJkrauxxq3kCVp9og7PUTOwpr2oRMwVa5+KERAkiR0+j2iOEIIQc7PkM3mkB8D6aATxXC5RbLSYWJ8grlXHj8P8n70m11Wr92l2WnhnixS+vzCwUIipQnafXQnZrwwxtSJE7iOuxc9s1tyo3VaKCWl/MiImGAYsLmzSWvYwa545E8crYQ12jDYaBPeblPJFjhz4SL56tFq7Q+KaBiyeXONzbVN/NkMuWfKtFYa7Ly5jHeyQOlzcwdyNx8Gow1xEEFkyPk5cpXskZEMHxbiOKY37BElEXbGJlNOVdXNfhPb2IhI0O/1sfM2mfncYxdlfViQUpKb/P+z91/Pkh0Jeif4cz8ydMSVeXUqZAIJVQBKy+7qakkOySE52xyzodmazevaPvJ/4MO+Lm1m19aWxt19INnsJjnsZnc12V3VpQuoghap82bmlXFDx9Huvg8eV6VCAgWgUFX3M4MlMm/ciCP8nDj++SdqhK0Sw60RL7/zMxZa85xeOY3n/eJ5klrbUprkRp8zUyu88Pkv02w2f/EN/w3Ffl4knCgjP+04ISM/5ThZCTnBCT5ZuK7Ll176PE+sneW//uhv6U51aFxc/kQsQ/cW0sBxXkweUUE+DNJ1ePEf/TZ3X7vMzf9ymbQkwZcwSGnVGpz/xpdpLM+977aUp+o899ufZfvyOjd+8B75pSXC6Tph7XAluMhy7r5znXy2hHNp7oD8MIDux6gbHXirjSi7CE9iMo1rJDOn5qjMND6QxcZxXZYunaV9c4NoawfTmijqMoXeGuJMhQSV8vu/Y8lFZTmu7xENI+sizhTmgQU15sgfBmbL5O/u4TMhfroR4pIlJkkVbuV+e78seWQosjjBL92fOemXQsReAeERRVQ6sQ/eS064ElFMyMv9Jup6gFjv2yKVhSqm6mH2IqsmVMa2OQcO1Hyk4yCERI9SdF5QGI00Bj3KyHsRhTHkczWMFujm+0QVaGsXJskxgXug3AIgVyAFIlM2J1KC6EaIKAdfovspJrRNyqS2IdcSYOIgb9LIiW07tRZtHIko9ttYrf1ZbvXx73RwlEKttsiftuPafXsbMVVCDjJ0UtgGYm0wwwS3UHh3eziLDcxLKxgBzl7EcK9HrpVVXy41KA8TGr9/CffIcWh85RzdvT5mrUVp+dQBSWJyRdEdIWarCI0l90qTcyfEYUif1hB66Lkq/t9epfjiGeT2kGq5TFAroztjakPFk7//Fb77r/8z/huGfHeIfnoBU/ERowypNbIWoIYJzsu3UTfb7P6r71CaaxJKh+nWNKO5aYoJYb6P8pOnSF+5TT5p8Aa7oKHzwhJo52cObMnSdWxrd5zj7Axw7/QQJRc+M49+ZsFm+KWW4DYCays+uCdpRKbQ0xVMq4TIFPJIs6npjFFLLXAdilgdTQY9BjFTY/325jEyUkqHlZl5ru8NkFJS5OqY2u3gM5RVKjoI/FiRBs59uYnHXj9MCYTk+vYd0hqUluuccpqURkO227uknRGqUTpURBpjC2Qm+a0iKxipHLdUwhhj7c5zh/cTkxXobmKVuWUPuVxFBi6FNkTGWpy1mVzTR49BrtCCYw31x+BJDKCSHEeDe49V2XUchDIPXFsBO26peIffNWKib558/wgEIvAsuZ4pwOA4jiXL9OTekmucIEA2JkVMgaI76FP50Iohw96gB82SjTAwR0qHmKx9uA7USxTjBCfwyDeGpO+MmK7UWH7qSSrTNkOu3+/j7FoLd71cZTAeoQMX4bn2shQCV0iKToTsRTDvoUSKt1JFpzminzBbb1Ip3aM8znL6oz6jiQVQSkGjUqNWqT2y7OdgD41ht9NmlCaYiosoW5X7KBkge13mWlO/wPH7YCjijPhmF7Z+sTxIow29zT1uX71JLHKCMw2az68ee1Yp8oK0FyEizUJrjunz08fIc8dx0EaTZRlb21vc3tkkVwUCmGvNsLq4fKzR/CODgeFoyEZ7k9ik+K2Q2vzD8yB1rhivdyluj5ifn2XpCy8QfozRPlF/zN0r63S7HUprVWpPNWnf2CXdaROea9J8dumx54paTUppFNRLVUrV0ic6zzQYsixjGA1RKLySR1gpHZbVKUMeZQxGA9yqS3mhih/4n6hd/P3geC71lSZZlHJ3Y5udN9qcXlhjYf7Uh8qTLLKC7q0d1J2IS0sXePq3fufjGee/YThRRv7q4ISMPMEJTnCCB2BmZob/+Q//R15963V++L038J9ZoDL9+Eq+x8WxQhr7D/bfJz+/14r9OJCOZOXFJ1l+4aJVIBQFfqX0gRvDpZQsPHmaqaU5rvzsHfY2OjhPLiM8F4Nh8/ItipUabu04ySYAp1FCXpqHy3ssrK7Y9/Pch9qoHweO6zJ/fhWVF8S9EVopZEUSz/h08yF5nNjWWc97+LGaWL9KpRL9rR7yiSm0EOCKAzIGR9g8NQRojZQCo8xB0Q1M1EChY9U6cY7nug8ve6gHZKMHk5HlqTryBtBLYGGyevsAe5clbSyx5boOxhibI6gNMnCQaw0IHFvecbkDgWsVVZVJxqS272AyhVjv49RC8vaQIh9ArYSeq1tbdF7AILGqx0npyPENsWSoiDKk76BHqSUia4EtR8GqJsUwQcQ5eI4lIfePV7ME/QRT9Sf76djCikJb1afA7qnBEnBxbgmRsgc7Y0zg4G128G+2MRWP4slZdC20hTjCIPcixFSIbJUwG0PUTAWzPSBY7yDf2iT/xjnMl8/Ydl5t0He7qJKHnCpj0gwRuui1FvFmj+LP32Tqty/iLVh1ZvjELN6bG2Rlj3wqwa/Y86n2xpj5KkQ5ojYpy9geYvbt08aOOTMhh0UnsqrQfowUElmVqK0+3l+9B2HAT3/6c+KvnbZN27sjvL94B1ENMN98giJSqK0+7tU2bsOD//NnEIUheX0beWfEpX/8B7zyf3yH4qAUQpPf7KCVwfv5HcTuiOKFZfS5GUvwDlP0Qh2ZFrYpXEpEnOFd3cXpxZiVOuYLSxgFbA/t62oBCIWIc1tgs6+CnRA8FAo1XwWMJaSP5pbtk9YCjCfJixwpJUmSHBAPvucTeD65Ku67Ds6srLH56ivklRL57ggWD+/JxhhMewxbfZRw6Dg9THeMLHvoYYKohocEMsA4hd0hrjHImSr4NXQoD66/RrVGvVLl7tYm3Z0hulGC0LMkpNKIQYKT5gSzdbLctogHjmPzYwEzztC9GGEMsuzBYhVRdg+Jd0A4Dngupl9g9PGcXZMrq7B9FDyJTgtCP7g/UFcIQt8nSnPbJH30Mi5szqs2BpSxv7qvcra/fKAEdR1J6PnEQkFhMEkORuCUfLtfRz5WuA6ZKuChNPOjEScxypM4joPCfgdZgpTDewOgpaB4dwvZTlmaX+TZLz1PcM9iUL1eJ0g0WaHwPZ9WrUGcxKTDBCOAOMcdpYTGEC41cKshOleITkyzXKExN3OgdjdAlqX0+j0GSYSshzizZZuLqjV70Zju1oDF2TkC/+HfswbYbu8wdhTO7D2Eg+9iaoatvQ6n4GMlJI/mQZ49t8r0sx8yD7JQtG9ucvv6OrrpUrrUolk//j2XJSlZJ8ZXDqdnFmksNR7ayjwej3nl7dcopnzc83Vcz0YCbHbHbLzzc87OLnN6de0jIdC01nR7Pbb2tigCTThTph48XA1aRBnjG13YTVheW+bUb1/C9T+eEhFjDIOdHrcv3yRRCZUzDUrNKu3rbUxFEl5o0Gw+uFDvQVB5gUoKXBxa5Qa+/8kSfMYY4iRmFI/ABa/i4cuJawdDFudEnTFFUeBPhdRmGwhhiwajpCDwAlzH4ZPIaXxc+OUA75xP2o+5snWVuzt3Ob96nqlWi8fZzixK6d7YQe4WvHDuWS78/oVPRWP3rwuOkpEnyshPN07IyE8xTlSRJzjBLxeO4/DScy9wfu0sf/mDv2G70qFxaRXH/cXtIo9TSLNv1/qw9wIhBKXmL/4lHNTKPP31F9m7scmVH14mu3CKohKQuwan9vAHYuG7qJkSyTCisTDzC2/HPhzPpTrbZLDdoX1nC+ouepyCa1CqIBtmeIF/H/FptEbEBV4pJIljZJxj4sJaGa91DwmxQtvClJkyVHyk71rF6jBDGNBxhplk+jFK8TwPL3zwBFRrQ57mbN9Zp313Eykl9ZkWtdkpHM9FCMHMygIb126ihymyFiBrtglZxzmiZBWEYjIhP2q9RYAYpDizFZxaYNumkwJnqYp6bw/RCDALVUToWSt0f4zYi3AaZfKkoJAuZqGMOyGp9/kIagGyG6Onypa8nVioTa7YL68RaY6ph4hxBtEkl66fTE7QxFbaCC25EeeAQVR8hLBFJces5u5knzI1UbsWkNtzwH5z9DjFv7qNuzOgODdN9swpW4oiBaLQCN9FRBnO9hB5cQa0wXXB/9NXYa6K9+wCen0PvdjAD+wxLXYGOK5tQjfGHJBQMs2Ry3X055fp/MW7zP6TF2wjuesw9YeX2Pl//oDoZzsUT87jP71gs1O1RvRjXEfinJ6m2Bujd0eosgeuY0tFJhZr78YeXrOMGsRQaNK/uUyYSgoMt5+eQs1XKYyyJHKrhHrqFOJ6G+9/+wFOK0As1ZHPzsFqA9NNcEo+ztkp4te3+e//6t+y8vwFNjf7OI0Svb98m3y+RvHSEuZLqxQ39pBX27g/ukn2zScs+aUNIs5wd0c4cYZQCrPWQr9w6oCgF1mOMNbyL0apPT+etFml+5Z0QHTjiU1fWBLavcdi6djiGKdWwhjFcDS0KljfQfhWwZqlMePeAGcccS+p5Xk+X3j2BV5+81XSQZ+8FiIqPkYpuLJLEXpw/hSy5GOyAhk1MeME50YHcaqGqfiYcYYYxkhP4kyXMIFDhkHEBdvjHrLfpVaqMNVs4UhJEAYEgW201uPxAeHuVUJkvWzzejFk+1bmcYbpxYjAwZkp2QzGKIeyy7FAVXG4d9J3UZmCkpzcq8zhBXl0ZUqb45yjsREA3kMsjKEfomJNmk7iCiafqYrCEnL7nzNpWQdzSIju27V1QZHkmLxABj5OuXTQ6P1giA+dc57nBdqTuK6LKiaLGZNFGAPoQQI3uohOjMRQmavy7JdfIAjuv/8KITi/ssYbt27hnp3DkQ7VsEKQQ94dInyBXKwhxilLU7OEwYO/y0bRmL1+lxRFIQyEEjGMcdIcr1FGSIlTDTElxcbuDivzCw/N3UuSmLHJcWoPJr2EEMipEtu7eyy7HlI6NrfzEcfMGEOSJhRFYfPtghLuA87PfXmQT1ygNvch8yDjlK2rd9i8u4lcLFO5Jw/SGEjGEUUnsXmQc2eoVCqPJMDSNOXlt19DnG8Shv7B4qwRAn+qCq0K165u4HkeS6c+fKZ3URS0O222u7uIqkNpqUzpETmJaS8ivt7FG8O586tMPz/3sTlltNbsre9w59o6pgLls3WcnuHu23dw5kJKL83g3uuYeASKNEclBaEb0KxMfeINzFprojhinIyRgcSv+QeLtsYY0lHCuBOBC34rILhHhey4LsYxpEVKVghCL/iltFk/DEIIwmYZvx4S7455/cYbTG21OL92nnL5wdd41B8zuNqmNHb42lMvsfbZtZNSmo8B+2Sk7/snJO+nHMKcBBJ+alEUBUVRoJTCcZwTcvIEJ/glQmvNO5ff5TvvvIxzaY7q/NT7/9ID8Cgr9odRQX7SyOOUG6++xzvrd+m/tIAzV3/k602hca52WH32wiNf90HR32rT7bTxzk2ho4zx5V2UtOULouojqj5+OcT1fVTfFn6oXkKrUqe1Ms/621eRaw3Gb22ihMEs1W1G4/7kP8oQG0PwHcRK0yp03tlhyq+CY0srRr0B7gtLD1VEFllOlqZwu095ZQqnFmKURu2NYTdm/vQyulD0tttEg5EtAKp4yMUaenuMLrmYs1MHRCSGg4dWVSjICuQbO7jnmsiZQxWNUZr8rR3EasNatjM9sVP66GqAbpah5JG3R5hGiOu5CHlIghRFDhpML8a4DtQCqwzFIJIckWvEdAnhOJZQj3MYZTBTtuSgOGRRjDGwO4apEmiDRKB7ic2DOzqhU9oSWdpY2zc2H9HdHeL3RzjdMXq2AjM1W7QzW8U0Q4wyiFGGM0yR3Qg5W8YbJribPdy5shW3/teriM8sk9/YI//WRWS9ZBt6tcZdaR2c8yxNEb5D8O9fJ/j7FxFlD/PzTequT/n5JaJX7zB6a5O87uFP19Fpjn53Fy9WUAtwXliiL8F8ZgmTFuS7E6INLMkaOIh+TPnfv0H9K+etotgRyLka3f/H90m+dQH53CJGCPIit2RsrqFrFZS8tUFQEogvHpZTmU5MUPJxJhPU/E/e5tL0Grd7OwzjmOR3noDZIwsSxqA6EcXmgOC/voOXaYzrkF+aRZyqoE5VMfVJBMJE5YgQCEcgr7ShFqCXGpYwLnsQFVbF6jsgBO6721BoirMzCAzGdQ5Id5ErZDdBadCrU+Rxiiw0bi20hSlxhlaW5HQ3+vidIa2gyotPPcf01JEiIrsjbGxu8PJ7b5LNV1HjlKJegoWmbejNCtzCUKtU6Y2HCAzee1t4rRLUfJxmCS2x6kvPjkO5O6Y8Z5WWKs7xIsXS3Club29aJesjbsk6V8SbXZuJWveRc+WDMhqTKhvaOSmdOri3K3NoUzWGbBhD1SocjbZ2d1M6WviBJYalsETMJLJVKkPVeUROo4Esz4izFGUMyih7nbkSE7gcE6lNMk73SWqTFNBNaIYVYh/k++UIGoNsjzm9uPLo1z0Ew9GArWKMUwlJsxQlsUTp7hhzvYNQBnG2hZir4L6xSdUPqMmAFy4+Q7PRfMDmGK7evM61ziZFxUMXGbLq4TRCjFKIYcpso0W98uBFu26/RycZIhslkjy139/jzCp8tUEoQ9Cq4lQChBCoOKOhPGZa945Xi42dLZKqRD6kYVlnOfnQtqx7vo8jJI4RtGp1apXqsecCAwyGA7rDPsqTGE8gNIhEUfJ8ZlszuJPIhYM8yOlZlp5YpVQvYzAMBgPiOAIE9Xr9oEDmYYh6I+5cvkWn38U7XaOy1DyeB6k1ST9C9zObBzk990Ci+EG4fP0Kt90BwcxxS+UBKQkYpdDvdPjKi59HCpsB+rjPSmmSsr23TWfcw236hPWH5yQaY4h3hqTXetTcMqsXVql/SOL2cVBkOdvXN9m8dQdvLiA8VWGw0aO308dfqVJarR/L3n4UjDEUaY5JFOWgTKVU+cTJrkIVjKMxSZ7ghA6ef+hWMVoT92OiXoQsO/jNEMd//+3TRqMyhStdAs9HPERd+8tEkRVEm0PMSLM4tcDa8hqe52GMYbjbZ3S1w4zT4HOXXuTUqVOf2uf8Xwf8xV/8BX/8x3/M1NQUe3t7v+zNOcEjcKKMPMEJTnCCx4CUkqefvMTa8ip//cPvsH7nGo1nVx/LpvNYhTSfchJyH14p4MKXnqN99TbFa+ukTy5illv3WwQnEK5EKf2RboMqCrpbu3gXp4iutikkcLZlJyuhA+MctkaotI90HEtauQLhC/rDIcm7MUZa0o6yh1itYzJliZf93MOyjzk/jbjRhd0xxnPwI82p504fnKPdG3cZ9BNo3T+BK4qCLMvAc5AI5ERBKhyJO1dD1UPWX72Md6qOu1anFLTwi4KkO0J1Y0yUIXoJVHzYz7MUAq2UJQ6zAnGzR2mxTr4d2XzFiiUjhDGIwEFUPUwWYHoZYrpO0SxbBeFkG91GibwboZtlnElmpZACx3Ep0sTaN32gE9nf8SaEWjO0E4FCwTC1ikYBbI+sPbzsWdWi0gdFH7gOFAojpd22pLBW6UkZiOjGmFoIoYspFP7tLt6tXau6A9S5GeSleXutjDK424f1iZq10MhBQjCI8a8DK1XkZ+aRVR/TjfFmKpRv9pHaZ/DTu+hvXiAXkix00HGGLNmCEoFAXm3jtMLD8pEnZxj/+WXy9ojRKEJ/eQmTK7K7I8ytHqLuk5UN5m6f0l6DsBsT1UNy34G5qlWV5srm/kU5wY/Wcf7BU8SvbdH48nm85RbjH14nbwboS3NIV9rG6ElJC56E2QpqY4B5ag7vv1/B+dziAZErUoVsHGkJ/twit/78Kl4YkDw/d5yInIwhZ7qCyBXO88tUN8eI1QaDC03yRogIbA4iSttz6E9suJlCGmOVsHtj9P54Dl086aL7MeJmB99zURTIamiv/VFKSUtc18MruzjVJr03b5JEGUYrZOBb8nyU2Gs39CDLccYx8oVF+v2UV268zTPZuWP5kSBYXFji96dmuHbrOm8Ob8LSFIxSpIFyWCIsB5gkx22PMBSYxQqiGuLVS2ijydPUEoRCQJThlvxDhacvSZKM9Y07FMYwCW04BmPAJDmqG6GLHLfqIRqeVQbfQ7QzsZseOxX3nBc38ChGqb0uHHE4BmAiZ5yolA0IfbgwQVEcV0zfCzFRh3g+g/EQ4XsIKcijdNJsdPy1RhtrYTfY+5fjEIYhaTy2+/CI7ygdZzQfQuw9DgI/RI4GUAFfuqQ399C3ulD1kBdnkI3QXk+DFE9D7dkVTFbwyntv8IVLL9xnx0uSBNd1aHg+I5NThALQiO6YaliiNTP/UBI3zVI60RBnuozSCj1IbMRALbA5zIDJNOkwwYlSgpkaTugx3B0z3Zx64Hd5kmdI78HHp4gS8nEC9RCaPkYL5KTYZXc4YByPOTVjW3UNsNfZo69i5EwZ5+hn1SBKc9bXbzMV+Ti72X15kLvtXd69dZXUB12x0QHybkbNCXn63MVjx9GYSR7klZtEZIRnmjSfO54HqfKCpBchxopTU3PMnJ85lgf5ftBGc7e9jb+fwXwE1p0/WTFyHFTVodfr0mpNWUL4Uc9OBkbjEZvtLcZFhD9Vojbz8FIaXWjGd3sUN4fMTE3x1IvPUW58fHb5ZBSzcfU27e1dSqtVKs+06N7cY+fNPcIzDZpPLj+2AtRoTR7niNxQLVUptUqfaCmNwdhSmmhErnPc0CUsH+ZBqkIRdyPiUYJb8yitVD+QwlQKiQykbd9OInzPx3O9T1WepOu71NdaZOOUO5ubbL+2w4zTpNp3Od1a4Vuf/QOmpj6ckOEEHwzD4RA4yYv8VcAJGfkpxqedlDjBCX4TUa1W+Yff+iOuXr/Gf/v+D+HCFNXFmQder+9XSLNvxf5VvNars01qay5hb8z4x13yZ5atquce7E8WPkoMdzqImZDoepuiFSImqkDXGFSUY3wH4zkYR6LnrSrAdRz8UgkhIOnHZO9s4RgFa02cio/MFWqU2GKV0DlQy5nlOry2jYdk7aWnju1La3GW0TvX0SUPGR5pw8YqSAkcuNYhWGre97ic3e7C6TqmXkJOlICO61KZbaKnamR7I4r39lCX96A1tsrNsmcbedsRYnNEaalBuNoiSAvG19ro0EXMlDCFRvUzzDtdVNmHehnpufcRKjLwcEs+op9iRvnBBFuPbPamrAborLCfOTNRemljFVOZtaNSC6A5sWNnhf35MLWN6vXJeJiQWWQFSGkbefspJnStqqaf2HzFNCd4ZwevPUIv1CmeWUBOVTDjFOd2z77HRPkq6wE6znFc8EYxsgxuOUDGCu/uGHd1hqKbYX6yyZm5ZZ76/S+SxQnf+zf/he7fvEv6pRVM6KPjDDoRTiXA3ejhvnob9588c3CMRMmj2BmTRCn8wydBa8RfXrON3f/0KUtmaYMcZYy/t45fKIL/+g4sNyheXLLEbKFxb3Zwr+zifnEF59w0ZrrM+Ls3aCw0iF+7jXrmlL1PTI6XlBKtrAUXAaYR2HzHmQpON4GZMiYpcBxpC2QmcE7ViMcRTrOGuzBFvjOCWmCt+sagN/qId7aQSsP5GcZzZZZPL5FsbCNaZdJhZsfB/mcbAwqcO328hTpyukxxo4u63UdPl5DCwck1oZSULyzi18tEG12Ge2OYryGkJAxDPPfw+qidWyB/dx01W0MshFYRWHYPMiz923uIM00KYRAlB7VW4e0b12k1WpRKx3MBgyCgFJYon1nEqTUOhpsaRaTbWxjHEMyVSB2b+ao6Y6TnkA7GNotQCFAaqQzufAOtFFl3jMZAySV3DWJUoJMY13XxJyoXPUxRPWsvlM3QltcUGjfXFKpAxYUt/bnv1mctzCgzyRCND9rBAav8izKb92qwytgjDfb7xIRVKh/+zuMQP1prFAaxb0mV4sBub/Y/KykwCLTjIMs+op/gln20MTTLNTqDCNl4sHrOKIUzzmnMf/hIDt/38TNN/NYWTjumcapJ+vwiWSAwGESUI12JjHKqK/Z7VwQexVqDy7eu8eLTz1sV0nDARnuLSCe4rRJTswtMi8OFQSHkozhVALqDPtQsQZ11I0zo2r8f22CJqQVoZUjbQ8LZOsaxC3APsko/vBSlsETktFVzi8mY0IWiGKeoJCMtNKMoYqY5hed69PMYZ+r+c6F6CfmNProTk5VrfP13v3GM9Lm7dZe3Nm/gnp+2mYz7WIDhOOXHb/+czz31PNVShd1b29y5fouiLik/1aLVOH79ZUlG1o3wcsnazALNpeZD8yAfhSIvrLLzEcTbgV2/6jKOYlot++9GG5sXLA7b0o029AY9Nttb5K4imCpRDx9OAhVJzvhWF7MRs7iywOLXL36oIp/HxWhvwJ0r6wyjAeW1OpVGnfaNNsWOJjzboDn9cML0XqhCTUqsJI1SjbAWfrKlNMaQZimjaIQSk1Ia95CELLKCqDMmjTO8lk9ltfahLfZgF2GklOQqJ09yAj+YlHd9ep6jXd/FE4Lh9V2GexusNVc4+/RXae0P2hN87Nhv0z7Ji/z044SM/BXBh83fOcEJTvDRQwjBE+fOs7y4xHd++n0u37lC/bk1vFJwWEiznwX5MVqxjTEMt/bYePcmaRThhyELF0/TWJr92O8Xi+fX2L78FpXfOkfQHjF89SbJQgt9ZmZS/mKhO2NaUx9t8U/UH0FTUrjygIgErOqr4qM7ERow51owzAgrx+1YbqNEdrpJfqODc9FOnIXn4DRK6CjD9ArMfmyaMrjVkOXlZfzweKaYG/gsPrHG5pVbqGaAmK0gfBedFehOhBykBItN3HsmcDrK0EYj56uoUXbf/V06DlIBMyGVc7OYQUp2t2/LFaTAbZUppkuoQYIpFDL0qD41T7o1JLnRJ0dQzNQQcxUIrQXb5IpilCCUwakE1k7t2bbd2mzTtmwXiqg3RDTLyPIkXL5Q5IPYZmgamy9n4hziwtqyxYSwypW1au8rIXMFe5ElMNNJEYkjbBP4JBtSdKyi0+lF+Dd3kXmOXpumuDCLSAvK5ZB0nKBdiZ6vInfHsFTH3OnhvL2FLzTyVBnx0rxtSX9rB5IYlaY4//41Kl88RyXxeO6f/xbjdo+f/Je/xf0nz9Da7NP/68vkC3V0q4xMcuTrm4TVEO9bF8iiDBFYxZzJFEV3DP/gM5ak/rMrmC+vwMqRMV0YTDVAfm6Z/HYP850O/gsX8C/voDqRbehebeD+40sH+Zw0QvJhTO/f/4wizuzxLPRBiKDjueg0AzlR7rl2smXgQHEqOjHezD0P2kqD0ujZKo2FGYo0I+oOyN/egY0uou7DM7OY6TJKCPSdHltXb1OfaTK82YPpMpkDRghMWiALg9wa4pY95FwVAbjnptDjFKfk0azW8CshzhGFeDhXJ377DnnFRxhxH1HmlAIcA7VuRLrTxy15EHo44xQROohzLUvkAcaVRElC/VSZ25t3uHD2ifvuB6MkRtZ9hDbkvQF5f4iouDinSgd2WKk1SZah0hztJqhGYInkQlubuTIknZE9ftNlm185OZ4Sic4VucCSmXGBqHh27HmH9xWRKyqlClIIhuMxWTTJPBT7BViTFQ4NpIUlUQLXZm/uvyYrELnG9ezCg86UtcM/aLEL+z4l33/gz++F0oUlmPe313chzdEJlhx1HUw5sNuZKkQ/wUMgXQdPujTrDYq9gmFnjKn66H2VJgaRKpyoYHFmDucDKOKOIu9FFDf3mN9L6egE9wunEWWfeNDDqx0udJm9iGCUEz45f/BvbrVEZ32Lza1Ndgd7FIEhmKlQvaeQ5HG/dw0QpQlOozopCtNQfUg+smOzNY0vKZIM+Yj0K0dKlNYHsRgH+z5MbAnYZNOMNphYkSYRpuojamWbmpAoOjoi341wj5DCRhuKnTHFjT6O41A9N4v3YoXivV2SLDmwXydJzDu3r+M9NXffNgC4lYBipc73vv13TJfrNg/y8/M4RxfbDKTjmLwbU3PLnJ45Q6X66DzI94PY/x55v9cBGFviJoQ4+E4CS7brQtPpddju7UDZIVwoEz7EEg+QDRKi6x2cgeb02RVmvzX/kWSCPwhGGzobbe5eXSd3C8qn6/ijEttXNqHlUXqmSaX2eJZ2sASujgs84dKotPC8T1YlqI0mSZLDUpqqf7yUJsoZd0YorfGnAipztY/suVQIgbufJ5kn5EgCL/xElaAPgkoKxjd6qO2YmZUZzvz95zEG9t7e4l//1f+XC3Pn+YNv/P6JOvITwH5m5Iky8tOPEzLyU44TAvIEJ/j0olQq8Qdf/xaX1tf5yx99l/HpGtXl46qQYySklAdk5C+KZDDm1f/yXSJfIZ6cRlYq6Dhn8+WfEv6t4TN/9HXKU4/Oc/xFMH12ieB7r5B3I9yZKs2vnSO5vMPoR9fILi1Bs2xzz3bG1J889ZF+tjGGbG8Myw9+yDDtCFbqCMdmoqlJ8cJReM0Kqd/HJLlVjcFBEcH+Z5ApHC1wmoJob4DKC9zAo9Q8fKgOKiVWn7vAuN2nf3OPIi8QhcLzIHzq1AOLHvLdEbRCdCeGOKdQErdRPpyIKk22O4L5MvGVHaQRCFfiz9gJX94dY4QhN5rBG5tI18GEHqZZpliZQgOy5h+WstiaYzvBNQadZFZNN0gQuYamJUABtDAHRKTdmMkfubLv5UxsvI1g/2RAUlgisuZba+9+7uY+aem7kzKbIwdhmOJfbePd2sPMlskvzFPUQhwDTmHwq5ZA9ksBaZHZZumX1/Fu7OK8voH45hqsNi1pHBeIb1+DwEFdmoXPzKF3IkZvbBLqEqPdLq//1Q/g987hTVXw5mrIc9P0r29ZMqkVwIsvYv7bNUqOj+s7xJsjTOBQvLtjyaDpMmJ9gJmtHCciwZKsSkMtoHRunvh6F7kXw8UZRK7QNR9nqnygGDJbQ4rvXMc0AtTpFnqtirg9xAwSiqjAna3aghTftzmijkBIO8GT7TFGzyC2x/jTZeR+c3Oco97ZpXhtE5kphns93HYfZ2eEu9PFNH3yL68gpsrHz4Pvwukyw05MxQsobcX0RkNkPUSNrbrXPd1CNo8Q6plCJgVBLii17r8GpevQvLBI941bOM0qOqzY688Yiu4QZ3tMTTuIi/Pkt7bxyp5VVS9VjpF7+8e2UArqVdbf2eDc2pn7yC6jNclOj0Jl6LqHOBWAlAhV4AqrGhRC4EiBmVzjWhWT/MVJwY4PhQTZj5FHCDsENpJgs2+J9YaPXL7fXmgKjSdsC7RWCtd1KDKFziyRZTKFCB1LKqeFvayq/sG5MBiQ1vaOb1DjDK9WQhQKFRf2ujq6XcZAnBNIl9B//FbdA2iDSBQ60whlW7OREhHnNr91nOFVS/jNMro9pjpbBQRTjRbp7jbjnQFaTphzY/CQ1BtNgg9YFGC0IdvpY250qbshaxfOUftCi9FoxCvvvEFPpBRVB6IUkSncfkIYBtSfXDos1ioUWXdEWsTcirZoLLUIf1FC6QjJVYxTG5dxvEvp+MsLjVGatD1ESsn69l1C36dVa1I6sojVrNXZHQ+PFb8ZY9B5gTj6HRUXqFQhZsrHeGbjCpAuuhWSDxMbhbAVoW4N8FsVGs8u4x5ps9ZTAe29NqvLqwCsb97FzFceSEQW/YT4epusP8ZdCnDPzxxTFWltSAZjdC9jutpifmX1oaU/HxSu5+JquyAm3+fcyX5O81wT13HRRqOVJs1SdvZ26Yy6OA2P0nLdRl484IQZY0h2RyQ3epSNz5NPnKW58GBb/UcBVSh2b25x98ZtZMulfLFKvjPkzhvreItlKl+cP1b+80gYyNMcnRaUvJBqrfHQsqSPC0orojgiSqIHl9IME8bdMXgCfzogDN8/yujDQgiB63u2KCeL8BwP3/U/8blzPkyJrvegXzB3do7GpdPHviPmX1gmPZdw/We3+b//2/+Nzz/5El/7wtfuU/qf4KPDPhl5ooz89OOEjDzBCU5wgl8AWmsWFhb449/5B/zw5z/hrR9eofrsMn7VPmTs27A/yoejbBzzk//wbfRXFgmXmsd/uDZFvj3kp3/23/jCP/09wvrHk3ckpOCFP/gqP/nz71D81mncU3VKT53CX4wZvX6XcTlEuR5zSwu4wUdndzIY/DBg0B4gyg94X2MwuYaSZ4UWjkQVCu8ewYHju9Asoa91EIELGAhcq24MXcgVItMYKUjHMX0hkUohOgpx6y7N+RkaCzM2Z1BKanMtanPWgjPe67Mz2nsgEalzRbYzxAQSM2XHiO6MEHd6+HM1vLka2UYfneWIrECs1ZHlwBKUGwPMboRcquM0AvK9iCLR6GYZo8Eteahxhpi1KhiTKkCi8xwzyqyder8tXAgIXBwhGe71qbbqkzbfe4geDDqeWK4FBzZt/Iktal8ROV2akJ4wCZ6z5M1Uydq2Bym0Sohxgn9zD3d3gKl6mNUmxaV5QOAqQ6lRORZML4zB2ejjbQ8I3tyg8dk1Bk/PYs5PW0VZlGP+6irmK6vHlZorHk6zgqnW+eGf/jWmERBOHV4LfrWE0ypj5soH58m8sED8xl3qv3eJUqNKPojov7IFs1Wc0Ke41rUN03BA7E72FiPAFAV5VKCURv/l5YPcQNMMEX9wAbncxOyMLBH5B+cxxuBogTEKeaNny2GEIN8e4M7VMMZO0o02aKMxW0MkGi/wkKGLkAJjQF9tk/90A/PUDOaLywS5S/ztd0l+JGC1gfe5Rdu0e4T8Oji+wxTqJcRSnfxqn99+6Uv0BwNeX38P/7PLJO0B0d0BZi+25zMpEOOc01MLmEIw2B7gzdWPEyaAGsYs1qY5Pb/CrdsbJFkHKQQrUzOsPn2RN6++w+3eCCklqh4iqscnrMYAowzTHmMyRaef4EYR33nlhyy0Zjm7eposy7jb3qId9yj8FLPaOE4SGsiygjTLkI5EJ/lhUcI+yW6MJQIzW5Chq4HNxawFmCizkQhC4M9XUY4d9xpzLGrRZAWugmq5Sl7kjOIIAgdZ8SErULlthDepQmS2PObgejp60Pbh2GxWFWc45QAhpY1L2CfIDKA0pbBEKSg9tjtRSgeTKUymERq80Ed7jlUBG2PvF9qA7yIyhd8ooeOMshfYdmtVcHdnE1X3CGfusRsa6A0TivYu8zOzvN9G6VyR3ukg1wfMTU+x9OJzlI5k842iMYUpcAMHN7KEPGmBUJqiP0ZFGcKTZJ0RKkuRzQBvpUapVv1olG1iYpM3BlMoRNmzh/5BhGRSHEZWlFw8P0C6LklesNHbpRFUmG5NIbBjpDvoo4Icua8m1uYY0WxyDXGOmC7f/1kCG+eQa7KtEdmPtmhcWiL88rmDuI9jcB1b0jTBZnsH96nDBVNjDPnOiPh6G43CO9Og8lwLkxeMk5hqtYoqFElvDCPFqdYcs+dmPnICTCA4vbDC5e0NwqWHW1mLJKekHGrVGgZDHMds7G4yTEe4rYDaTOswYmX//nykOGV8t092o890vcnFZ5+m8oDFlI8KWZyyde0uW3e3CBdLVJ5u0rvdof3aOv7pGo2vLiHdx1PyGT0ppUk1lbBMudnC+YRbpYuiYBSPSPMUJ3QIG4d2cK01SS8m6kfIskuwUMZ5zMKdjwJSHs2THBN4AZ7r8nFat+2ieEx8vYenJIvn56m+WH/os35QD1n+xhlGW0N+8MpPeO3KG3zr89/kuWeeO2nT/hhwooz81cEJGfkpxv4N7UQdeYITfLqgJ0U0RVGgtS1n8TyPr33uy1zY3ua//ez7DJZCmucWPxbbyPUfv4n6zDTBvUTkBN58jfSLp7j8vZ/z3B999SP//H3UTk3zxX/wTd7+7iv0o3X0Sh2kpDTMqVztI+daOEu/+P5nUUJ/q824P7A8V6HRUY5U+liTJ3CYdQc2y0/uz97vedneGLoxTJdss7MUdgJ4o2PLJJZbaAwmcJCpwn9y9iCbz2hDZ71HcTNn+vTCgfpCa814r09/t0PS6eHEGf5MFdmw+Uk6V8SXt9GLNZgvWzu70gjXtaqa9R46ysh3hsgnp6xySk2s0YWC2TKi5lPc6GNihZ6vYYSwDeJSkO+MLaFq7DGyO6oxgwRmKofHRVr7sRcENrtpSjLqDAhK4fFJsdIU7THCGExaWAIymygk9zGeKCKlnDR6YI93MSEjjYGKh3O5jf/uXSQGfbqJeuqM/dnPtyDKLbEsxSERmeSY6zs4N3cgdNGXZuDaNtFeH71WO1DQmVe3ME/NwvYI8bc3rc22WUJ8fomiANkqk37hFOpndzmq4RFAY65Fb6eDnikjfRcW6+TfvWXfd5zC396gGoTEQqLTAj1IMXXf2tTBZoJOyiQAzHqP7C+vwjNz6N8+DQtVm8P35g7qP76NXqojDZjfPQeNELE1RExVYWcIl2YIvn2Z9EtrmEyRrXegYlvh98dm8N0bSNdOSgXGqjHX+3C9i/kHFzGX24hvXyeq+JgXT6GfnMPUSug4sdZv7R4WqxgDUY6jDdVqFc91yRZha3eH0ytrPC8Eb1++jFv3aKzNodMCNU6RBaytrPHEmfNorXnv+hU239pCt0K0JxC5wekmLDZnePL5J3Acl4VTC/ddf2cXV7l19Wd27OQKOGIDjQrMja4lzpshNCU6VRTCEIeGm1mbaz+6xczyPKbsMKooHOGgjl7mBlQ2sSV7DloZZJIjGiEZk8IlRxzcP4wzyULVBrUzRuyMEJ609u/QQ2tj7+XKYOLMFtIA0kDoBwShj9aGcRzbFvZCU0SpbRmveAckucm1jS3I9UFG6/4AOvak5znoJIV48hwohbWca4POlbXK5jmFUoRBgOe4D7dqG0OR2XZdd6QQUyVkYI93qB3SLMO40i7CACYtcDwXNUoJMsHcnC0V2ensoer+g0kvAU49ZNSLqUZjKuUHq1FUlJLd7ODtRJxZW2LuG/dn8+22d3nzzlXcS/OUgej6Xcw4xdQDVOCghhl7r13Db5YIVlt4FUsA6N0xvncPqQ2kaUKeF3b9JQgnJMWjIYBaqcwgzQ/ILTmxWIM4PFmZtosxs5Osx0QfxBJIz4Vpl343whu6NGp1pBQszZ3i7s4WRaCQFc/eOydjj8LgKIN2neNK2Al0LyW7OSLrxrgXp3GES+n8zP3fg/tIC8Ly4UqcNsYuYihNcrtHcmsPUffwn2ziNI5Y4aUkTzNGmz28XLI6c4rWYutD5UE+LpYWFrn72ibR3ohg+v7xo7ICda3DpQvP0uv32GhvksqcoFWiXrK2130C0ghz8Pciy4lv9VF3x8zPz+KeX6EQBTuDPaakplFvfKScVdQfc/fKOt1uh9JaldpTTfZu7pLstAnPNWk+u/TY8zqtNUWcIwqolaqEU+HHeg7uxX2lNKWHldLEuHX/A5fSfNTYz5PMiowsyQj98CMnbY02xFsj0ut9KuUSa0+uUnpAduuDIISgtlCn+kdVulf3+LOX/zM/evVH/L3f/nusrKyczPc/QpxkRv7q4ISMPMEJTnCCx4TWGqWUzSaakJBH27GllCwvL/PPF/8nXn79Z7z8g/eoPLdM2PjovgxVVrB5cx3/c08/8nX+2hTtn7xFFiX45Y/GSvUgVGaafO4f/w5Jf8Rgcw+jDeULdWrzU2TjmGs/e5edu3vISyuHSpAPgMH2Hp3tHZzFCv6KzcI02pC8fge1O0ZOl5FHV+AdAbm2xTkAytynlCnaI/LOCCZ5kbLi24lg6EKrjNgdo9a7iAvTMEhxyv6xkhAhBe7pFoMrbcJ2mfJUnXQYsXXjDroZIJYrMOtRoCk6I+SdHqXzs6TrHfRSHRG6liyUBjKNSibKlfkK2fUuohVAybN5bFJgcoXaHqPGBdpz0KcadpY9yi1h4jroYqIGTXJQ1hIrfRcT5bZl2xEHkVxCCowUqKKwbfCOLZXRhWKfGTGFIt8bY6oeIggx/dRuk4+1Ze+TjpmyhNGBrXE/+0uA0rh3e7aQRGv0Uh21UJ+cI2VtsiUXZ2cMz9QwowzTHePd2kNv99CnKsjfPo+OMpxru8gnpmy22sRCL6SAn2/Y9mnfgYszNndtmMJ/eBslBMn/XKWoehRFQdE/nrPmBj7N+WmGe30KE9sm73FG8VeXCQaKi89f4rVb30PvRRQ/30DvjuBP3rFEqBD2ODwxBc/P2+P87Wvof/YMLNbt/hlhCdkXFjBPz8G/e4uilyCbIebyLuLVbVSuIcmRowwdOPjfvUb++VX0XM1yIJ0IZ3uI+5N1vEAQPH2K9K+uYZ6YguUa5rUt9BNTiG9fhVShv3kGnpyFJMd9b49i1cH4lsRSvRhR9hGeg1Qa91aP1ulTB+SM0yyxc2eP0ytrzM3OMTM9Q3uvTbu3hzE+tcYcCxcW8CaEj+M4XHriSS4U57h9+zbj8RjXdVl86iL1Wp08z9nYus0wHiOFZLY5xdTUFL1+n9vbG+hOhElzaBtMdR7hSUtEXtuDMy17Pe4PWqdALNSIhhFO4OKsVdlIusjMpyg7iELD9gA9XUWGLiq3uaRIOx5FL0JIgd7PZ3TMIbEu7D2DXowYZ0hfIqdD2+RuczUm14SBtEA6koofECcpuSrIi4JhZPeRwEFog8rySdYjB/sghMB4EqR32EDv7hepHF43JlcHZU3Gl/ZHymCiScN16OIEPkgHpTWjLMHRUCtXjxVDGK1RSQ6ZphKUqDQqZOWUzW7b2vOFVXWHfkBeFKhC2ftmJ8ZzfaZKVeqtGkJIiqIgLlJk8GilvawFdHp9PNcW/TiOi+u6ZJ0R+kaHUmI4d36N1vNzDyQtjDG8c+MqzoUZhJSMrm9hJJiL0/Z+N0iQdQ+5NAsa8ijBKXuorKDs+ccURsPxiL1+D+UJjGuXjMSgS+C4zLVmDsbxw9CoNhi2N5ElD5UUCM8/yHw8sGwP04OiLqGwisF7+ATZLNFt96lXawdZdysLS4yjMb3egEIpRKoQmcEPfIzOST158DbGGPROTHG9B7lh+tIy2SVB6hlErtFpjlN+cNag7CTMrc4d/N3RhuHbm6RbA5yFMuHn5pHh4VTQYNBRTr45opz5PPHUaarV6ieSRehIh88++wKvv/MmvfYuzJZwQpudqjox7rDgzPwy69u30SVBab5M3T/+bHWQI2kgGydE13uIvYyVtSWic2XWuzsYFdgFA224cXuLIBU8+8RT1OsfPtbGGMNgp8ftyzeJVUL1TINSs0r7ehtdkZSeaNBsPv5zmCoUKs5xjEOzXCeoBb+UUpphNMRIg1vyKDmHluIizRl3IrI0w28FVNYergj8pCGEsI4Co0nyGIlD4Ae/MImrC010e0C+PqQ+XWf5s+fwH1Da+FjbKCVTF2apr7Vov7HF/+sv/jVPnbrI7339d09Kbj4inLRp/+pAmKMz6RN8qqC1Js9zlFK2dfeXHMx7ghP8pkIpdUBCHqy8H5lgSikP/juKvb09/vLH36E7Dc0nlj6SFePBZptXXvkpwTfPve9rk+/f5DPnnmHq7OIv/LkfFsYYuuvbXHn3OvG5OdzF6cd+aI26A7Y3NgiemL6vfbHoxww2+5hTVWToIfftl9qgrncwrRJyqowZZZRrlSNWLUP81l3MpVkYZehCY0LHKgr3P0IbuNFFlnycQUr54vwxy7UaJmTbA6sU0wJXSPJC4V6ax51MCrXWJKPIqqKiHHGjh5EC8fQcxphJE6+0eZX7RGehMZ0Isd5HPj1js9xGOSpWFMLaukXVls9QKEDYTMa4QNR96yrsJThTZYwE4Tqo9hjTCA9JnYMTYx+IXc/m6ZlC4Q4m3zczZYr2CGo+xhEHJTRmkGGqvp2Az5atarM3aYCFCWljEKMU/9oubm+EWWqgVxswyKwK9FTVHt+0wOxE0IkRcYF0JW53THWmiZkpE9ccZDNEDVOK9ojgT19Hll3MQhUaAeara/DD24hXt+Grq5gXTk1KXuy+oTW8fBfnxxvwj55EX9nDLQeET8xTnapbItRzDs6rygvyUYL4k7f54j/5XdzQ55X/9DcMV32yaY/0P72HfnYes9xAbA5hc2gt7f3UtoEDfHYRvrR6QLQSuhMyDHv8xzniX/0Ezk5ZAuOZeeRMBbMXobVGXO/A7QFmroK5O5rYZ4F+ghOnVP6vX8LsjKk3G/R/epP0vR2UIzBfWbME1oSQJSngaseOvWGGniqjpyt2/I0z3F6CNy5onJ7Dbx6SSzovKN0c88XnP/tY1yfA7t4u7928RuIZdNVDaIMYpJgot2PwVO1g4m+6MdFmB1kJcJYaJChyXWB6MQwzWKzZ0qNJczxgG9i7kzHSDHFaJczOCEoeojwh7CdKPZMV6L0IIyUq9KzSNiuQSW6VZ7UAU7FkLGCPWVzAMEUojWwGiLJrcxMr/iRq9Z57lTKYYWrHeujaczQZcyYrbPGLFJa4Vwazb68Gex3tqwqNzWykcoQQM1YZZ/JJXIIyBzbOg8btQkOu8SrHiQ1TKJzMUKtUMUZbIkNBrVShFJaORR+MxiN2+h1MxcMpeZM8WU3Rj9HjjFIQEHg+9VqNUlgCBKPRkO18iPOoybcx5MOEoh/hV0q2+GVzgHtryMr0PE+/9AzVmcYj7/+9Xpef3nkP7+w0aXvAYK+HKTmYfoxT95HNECqTYzjKJySexkWwcmpxsr3QG/TZiwfIZum+fESdFYheytLsPP77ZFwOJ8cqVbktBNvP+JyoXE0nQsxVkRO1efgQ0kP1YhZrUwfbdy/G0ZitURenVUbFKWme21KuOyOKdbsfznKNsBRQr9ZRStEb9WFrTHN1Hqd0/37k230WiwpPP/HUgVrv5u2bjJddwgvH1ZTGGNQgQfcz3DBAdjOeXjjLbr/DKB4jhWCmOc3KwtJD9+GjxHg85vbWXbr9LrrQBJ6HCB28ZkDYKD/Uim+MIe1ExNc7+Klk9ewqrcVp3rtxhS09IFg90lI9+VMlOcW1Di898QyNRuOB7/swaKXZu73DnWvrmAqUV+vE3YjOehs5G1I608AtP/4ibJHZ7/vA8amVq+9LmH/U0EYTJzHjeAwe+OGRPEgMeZQx3hujjC2lccvep4aEfBi0Vqhc2zxJz//AxLpKCqKbPYqtmOnlaabOzOA+bsbnYyLpx+y8fBe5q/nS01/ky5/7MmH48YkIfhPwz/7ZP+PP//zP+Rf/4l/wL//lv/xlb84JHoETZeSnGJ/2G/wJTvDrjH314z4JuY+jJKTjOI9cKJienuaPf/8f8vpbb/DD772B/8wClekP9rB733Ypfdwm+yg4kl/2epMQgqm1U7x0aoqbr11h8+5VzDOryCOknc6tMtDxjz/Ydu5u459p3kdEgrUEBttDsmGG0aBTZT9PCvz5JvntDsZ38fzjYeaqM8a0Spi0sFlgVd9O8KMMPAcjxUGmm7naofT508eIyGyzT96PEEs1ZKUJo4xiY4ReapDpApMIvMkDfFgtk45jq0KcCqGXIAuFHmfgO5ZEceShkmaSsWhu9lDvdDALNXSrinZSqAUHNsrJgbVEVdUDX2KGGaIVYqRA64kqT09y4AS2OfgoCo3RGl0oHM89KLjxfI9skFjbpu9Y2zNYsnZKwji3qs5eagkTvZ9jZ3B2Rvi3du0+zlZQz5w+/NxucjBuzeYQM8jQ9RBXa/zeGBFnyG6EaFSJPSB0ybaHEGf4P76J/B+fhKqPebeN/PmmLbR5bRteXMB8dvHQorqv2BTAZ5dQmUb+8A5UXLTSjL57mfEgw62XkLnGbZQpP7eMt9JCbQw5/9lnqC1M84N/839gfmuFeitk609ewXzzLGacIX58G/PVVfj62uF1uDVC/NVV6CXWOr2vst0v/ZGTc+xJe77jAtkIEde7kGpMw0O0qpZovdZBvLULv3PaltNEBeZaB97eJf2b66Ch7+4haiXcb5ybFLZU0T++gzk/ZT/7WgdON23phtbIToy81bHjXBucwMMv+ceISIAiSqmVHz9j9u7WXd7evIF7fhrvSGPtoDEiiWLk5ohmLcCthCitaasY3ZqCWz0clVnFbqpw5mqoZgG3+3a8lVwYpdBPEa5All2YKSFcBz1MLFFZchGutMUw+5eE7+Is1FFbQ5x+ZPc/dKBZRRQaM8zsEEkKmz/YSxCOQE6H1nIPUBhwJMKY4yRWYYlFjLHWaynsexpjr2OBJYM9Bz1MEaPMlo0Ejj3natIiP0zt6wLXkrVHYyXAtmmXvckwNrZhG/u9Ixxhc1K1wSiFcGzWo84KdKEock0+3MUzDlONJs1W84HPkdVKlVIYMhgNGeyN0UqRZhnCczCeZKQzRlnG3tYAF8nS3DzKvM/3jjEk7SE6dNC+JLm6g9weI6dCeKrBnV6f/MbbfKHx2UcSgMPRCFVxkVFK/+oGBALp+oilqj1OSsF2ahdCSi6m4mECjZAum902Zden1WiyNx7gTJcfaF2Xvouegq29XVYWlh5JTdQqVTzXY2t3h2h7BFMlmwGtDS4C5VvS2+QaVzoPVV8ZV1AUxQN/BlAuV6jFEcN+jJGS4s1dVKpxFmuEX1zGCIGTKmplq/JxHIdqUGa0t4s+VRwjI3WhKDb7NBOXxblZ3vy7nzFSCcHZBouXnuL29gYHCnilKXoJZpTj1SqUVloUw5i03+Md/xbOXAW30qTQhtu9Prff3GRtZolzp898bGpJg2G30+buziaJLNCOxq34uK5DVRhK8v57lNGGaLNPeqNPM6xy/slL1Kat0rHT7bCVdAmemAEOYzWEMSCEbQo/P8UbV97hqy998bEs20WWs319k41bd/DnAsqX6gw2+tx+7Rb+SpXaVxaOOzYeucOGPLUxCqWgRKXRPLD6f1JQShElk1KaUOLXA+T+Aq4xJMOEaL+UZiYkDH916AMpHZsnWSiiZIzvTWIt3udE58OU6EYfujlzZ2dp/Nbpx874/KAIGyVWvnmO4caA7/zs+/z8vVf5vS99i2effu5j+bzfBJxkRv7q4FfnbvIbjl82oXCCE/ymYJ+AVErdp4KEw0yax1UqO47DC899hrNrZ/j2D/+W7WqPxlPLHzpkv9SsYfZiOzl9vwWL3YjSZx7+RTza7XHnjcuM+wOk4zC3usT8pTPWuvsRww18zn/+aeY297j8yhX6cxWGvmTUG9gJuzGI3NCYnaJxapoiyymkJnjICrQQgvL5WbjeJtvt4Z+ePmjC1v0YLwN9rYdzdhpzpMi56MeYmouJc0TNqqSE7xzkuYn9YpLpEtxxKToR/ik7qSm6EdkwxrkwdTDJ1ZNmXFENAEM2zhG5VRxKKQlrFXShSKsavTVCJhrjSJxKgJk0gSKspdn0EvQoR09XMZUA0QgtIeJK28R7HwwIq7YycYGJ8sOsRinQ+6Uj9w4TgyVytEFlhW37LTQ6SzHGQ6c5TE1W5Y9+9zgSUfORtQDdiS0pWSjca7v4G11EI0BfnEKVfBjndr67n125FyPOtTB3Bph+ipMX+NcG4Dt4v3cRNUyQiSb+0Q3Eqzcxp2r4WiGMQX5zDbFoz4GYraDPtZB/9q4tjXlu/mCf7H5Ociv3N/sz8/D6NmLHYGo+5hunMfMVMgNSSPQgJ3/5BuGNXcobCUv/p8+yd+0u2XxAOF+j2B2hC4NZ7yGvdTFLdcRPNuCtXWu9XmvAbBnze+cQb+4ifrqB+fyiJW5caTPlhIJeYhu/l2qYzy6h6qFtxv7RLauA/aMnYKoMT8zAzT5ya4QjJPq9XcxaA3W2gV7vw1SZrOUSzITIWmDJmXFu7byBC50Y6qEl4ibnjJmKVa8Kmz0Jkvz2AJVkOEfy+sROxOrZfcX1g5o6DpEkMe/cvo735By5KogGfZTWGKMphMFplaDiM7i6RfOZVTq9LtrFjgtHoK62kTMVRCtE+yBdiV6swtUu4mbXLhJUXGu/1gYxzqFILfk4s09GHBIL+7DXo7HK3XDfJo21RxcKOhFinCMqHnKxgpBHciO1Hc/Cv+day7VVK4a2TAhnPzNQWFI/yhGl4/ZcU3JtJqSyKmAMdjzst9EXdvHjoLxkooq0OavYoiBtbJSDMXZP9+9VvoNOFdK3qi6zv40ItDGkumBjb4d2p8Pq0jKBf7+a0XFcWo0WtUqNOzsbiIqPMhpRD45FUhRJwfruJlOlOjj62HtYO6wlbbNehDIa83ob0R4RXJrHfeHUoQrVwNbGgO+98mO++tIXHkhIaq0ZR2PSfp9o0MOZ8mGhevzYajCBi0gLKIzNr/QMQrrIqss4ShltbiBapYdnaALSdcmdjDRN3rcROgwCTi+vWLVl1yo1ZehZNWlhLdae6+K5D//eFObhAgODHXt1USZ7q8Nos4NTdZDPzyPrPmSKwPGo1o4vzIl+ysXlM+Rdxd6dLUuKK4ObG+ZEhaQXczm+SulCi1Zz9uD3FmbmuLO5iSoUAoegWcNbm7bKt90hyfVdSmdnCOcPF06FhGCmhpmucvPGNvKW4OzamUcetw8DYwyvvP4ztuIOshXgT9VwJuo7YwyjOCPd3mRpfgEpJTpXjNe7FOsj5udnWf78i4S148rNW5t3cBdqiHvuF/uEvwCcwCMtCXr9Hs1m86Hbl4xiNq7epr29S2m1Su2ZFp2be+y8uUd4pkHzyeUHLp4+cF+1IU8yyAzVUoVyq/yJO+DyIrfXXDEppWmGxzKwD0ppKi7hQvnxCdZPHQSO62AcmyeZ5zmBHzwwTzLdi4iv93FzWDg3T+0zjcc+p7/QFgpBfbGOU5a0X9vmz7//l1RKVc6cOXMiTvoQOGnT/tXBCRl5ghOc4DceRwtpjDH3kZCPsmI/LhqNBv/49/4H3rnyHn/3vZdxLs1Tnfvg2TBBtUSz2mC4PcQ79fCMo6IbUTE+5an7X1OkOW/8xd8xSId4T0/hXpqiyDXXb6xz5f/zBk9+8UVOXfroJxoA9YVpzheK7/+7vyRdqeF86TyibicPRmm67THDt3pMLcwhyo/+ihJSUDk/i3Nlj2CvQLcHAJRrVeqfeRJdFHQ32oxvb2MCq/KTwxRRqmBC52CibN9MHJIQ+4Sk55C3R3in6ggg2+ojzzSPT3LjAtMIJo/vAlH2yMcpjufajDLAcR38ckha8qw9eN9miEBmGt2N0cqgGmX0VBWxFyPrgX1vbWzT8L3ckDaH9m5jEBUPM0itemqYWfunKxGBzY2k9gB7pcCSI45ExDneVBnhu7BjFWDk2v65r35UBuIcU9gyEPedDdzbHcypKvqzS7bUI1MQ5YfKwJJnm7S1QV5p476+gb44g1ltoVfrOImy6szM0FyeJ/ndCvG/+T7hchWz2kCHEtE8nFwKVyKWauivn0Z896b9HGXAYWLP3g/GnBA81QBd8ZBJgfmt09YePSF8tDZkNQfnKyvEf36Fi089Q1Atsf7WFZwX7OS9992rtjBkcRrzjTOHttq9CPGzTbjZw3xtFSoB5skZxN/dgs8tWiVcYawy72oH8VfXYK4KMyVrO35jCxPZIhOTFoj//RXMhSn4excwT80g/uoaeqaMPtuC99qw2sD80ZLd/kyRbo4Qe2NExbPHwJXWMn6rB6eqlgDbV69MCLmD/9cGM1sh2R1QWbG5qXl7SE37bOxssvHOa2gMwsB0vcmZpVXq9eOK7tubd9FzZfrjIUoaZMnBkQ7ZOIXApdAK4YBT8RhsdyiyBNONLSl6tmXzLYcZbI1gnGGaNhNNLFcRzdBuv+/YNnY5IRH0ZPwNEpvn6DrIicVYSIlR2hYPHZxjq3wiLSwZHOXIkotYqVll474KmsnxSZXNH3WO/Ls2mExB2T3k5Y9eh67NDzVJYZV6SWFJYU/a879/Ho6qH4NJEVSmDqINALsgsU8Y+84RIm9CsOfKEp9lD1MoiiizqtvAxWQ5Jlfomi3cAUiTgqt3b1EPyqwsLt2z4RadfofMsTEFxpOYYYpwpB1Xji21MXMVeu0RrpGYqk/WjSiiBCMtQSQ6CeJWF+G5OE0f58sryFSht4aI0ENMlRGOQMxXGDopb115lxeOKH6KomCvu8dmZ4fEzZFND+NodBBYwjYqDo812CzNwEH0UhtJsB9nADjlgChK8LXmfVFyGUXj9yUj99GsN6jX6oyjMXGaYIzEaAfpBe8bwSISRVg/TpIprRkMB+zd3Ca71ccpoD7b4KXf/gJSCN66eRlTLhPWKg+IKYkodwouPncBz7OZuNFwTPvWNrvdHeL5gvLn5nCPKCYNkI5jim7MimmRq4JuPIQiRu3GyFQxV6qxO9+gNH/8egco4oxoq0c6HPPz7T1ubK4z15rh9NIqteovpj7SWtPpdbmyfpU9RoQXWjj3LEQKIXDLATkp25vblPsSthOW15Y59dtP4wUPJoN7owHemfnJ6DcPSiyxSuhWwE6n/UAycrQ34M6VdYbRgPJanUqjQfvGLsWOJjyi1w3AAAEAAElEQVTboDndemzCSCtFEedIJWiUa4TV8BMlmwyGLMsYRSPbWF/yCCvHS2miTkQyTnDrHqXV6q9NTNh+nqQ2mjiLcaVL4PlgBMnOiORan1IQsnphmfL047sEflEYrYn6Y4peznRtiie+cQ6U4Yfv/JQ3rr3J1176KlNTU5/Y9vw64EQZ+auDEzLyU4yjbdonysgTnOCjx4MKaeCQhJRSHgTifxQPY1JKnr74FGtLK/z3H32X23dvUH96+QMrEc9/8Tl++lffxfn7F5APyIrSaUH2Nzd45qtfvP9nSvPz//jfyc6F1C5dOPYzb6aCfm6ed/785whHMn9x7YPt4GOgSDNe+/b3qf2z56gZQ//120RzDczZWYQj8eZrqDBm7/YWNB7vuEhXMr0wT1C9p9HQ95g/v3JgBReOpHd3l61oUhLzEAghbGOyZ1WJJp2Q1I6w1tkJTK5seczR27OyYyruj0DYc+4GviUnC41WCqSH7sWYforyXfRU7YA4EnFuCcLAtRmDCIw7UViJfRUVkxnUkQmMJyFVyKmSJSXaMbRCO4EfpDZPMXQAcfidIgTCtUSKzDWyaY+3LHloYckaR3oUeWFJoFzhJBn+3Q5OXmDKHmqlaYmT3di2R0+IUxPZnD7aY9w3t/EcjexFZBdmUU+fQiSWIJKlANoxYaNGHiUA5M8v4uXaZhyW7x/fUkrMXNkSnUluSSfPObSR7pNMk7xGMcowf/QEYrEGmyNbxuNLS+TkyjYtf3aRu6/e5PzXXyAdx8jKHNHbm0S32uj/5VmIlW1+ZnLsp8uYb51FfG8dXt2GS7OW6zndtITgUt2q2/7LdZsd+LtnIVGI6x3EGzuYUYZ4agbz0iIog7jSRtwewP/tB5gXFjGDBLPWwIxS+PySVTqWvIlF2cM0S5i9CHF1b3KOM+hNyD5Hws2e3Z7Vhh1b++SsMiAlouRS9CJUkqG2R3jdlD6afkvgX5rDnRCAu4OYnWtvcLa1yLnTZw/OwUZ7h3jJR/tYm/8EWlmSXIDNb214qNtdjMDmWUpgJ4L2GOM5CGGg4SNdYdvjQxcR5ZhacDxP8eCadiH0MO0xeA6+55EVCnxrTyXX0LQFUWKYYgYZQmLzIOfLk7xSZY+Fu58dqRHFxO7tO6Cx6iA1ISJ9aa8bjN2Pe7GvlNRYJXDVnzA/hT1n9351CI6RmEJ6Bw3HGKDsIe9V4kgxUUDnmL0YosIqp+sBemdkS14WaxPB5uR3fQdT8Rj2Utbv3mF1aeXYW2qt6I9G5CrH1IODcWJyZQlzR9rMRUeiqj7OICe6vWezN+fKiO0x4mYPGUjk6TpyLwZPwChFNSZy9HGOeHsLOV1BLtbJyw57vT5pmgKw3d6hPeog6j6llTolKdm53rOEkbYLImZyzxXjzBK4jRBCxyqduwnCK9lFmP3DW/bIRylu5cEkozEGpRWFUgxGKZ7jUq3UcB4j01kKQa1SpVaxapvQD2iPR1aN/BDoNKfkWZvxPrIk5dbr18i2R5QWGsx87TxuPUQXiis7W5QHmi8++xJvXH2XJLC5vGLyXSTaMXUR8JlnX8TzPOJBxN0rt2jvtXFX69S/uow88lnGGOJBhO6ltEoNTi2tHOQ+KqVI0xQhBEEY8NPXf4a3cv8CZrw7YLTdQSxUcVZnEWmBlgG7ac72e6/xxPwqa8ur73v87kVe5LT32mz3dhA1l7iuKM00kc6DFXhFPyG73ie+3uepL3+JU88tvn8Wtzik4cX+X4y5XyUpBYU6tNIbbehstLl7dZ3cLSifruOPSmxf2YSWT+mZJpUHLfI9BEVeoOMCV7i0yk18/4PnF/4iMMaQpAmjaIRxDF75eClNnuZEe2OyLLelNDO1X1tFnhQSGUiKLGfvchd9J2ZqdorFF88S1D65rEZVKKLuGDNSzLXmmDk3fcyiv/ziGqPukP/8kz/nTHOVzz3/OUqljz+z9dcBJ23avzo4ISNPcIIT/MbhUVbs/SzIX0QF+X6oVqv8D7/zh1y7fo3//oMfYy5MUVt4/GKX+sIMz33l87zxn34Mz8wSXJi1eV+FIr3ahtd3eObzLzJ1euG+39197xZxU1O9NPeAdwYZuNT+8Dzv/dkrzJ5f+UhKd45i863rqCcahBO129TXzlC62mbww6tkl5ZgqoLTKJHvjGEvwqw8uqXRKE2xF7Ont1F5gXQc6tNNKtPNg22XUiIDSyT5YQB3Yli6f7XUGEtUmELD3QGkBVpPyiMmNk0KbUkDx5J/Xr2E2uwDBhXZTDpKrrVUConWmizNELFBJopic4gZpuhaCb3UBMcBY22gxhjoJ7b1d3ds8+SEsOTDPgmpjSX/qt7+RtvJVaYt+Rm6ELrocQ7DzCqtfMcSkn1jcxcr/uHsLC2gEx9Y0QGckocepzY3UkpEL0Zu9vDXOwhPYGbKqOk6ouYhWyHmRh+hNPpqxyrZfAexM8J/bwd3Z4DMrTJTRwr9+SpiawS5sudHG0zdZywzSBJ0P0UtNdCv3kacbz04p04IhO9imqG1/dYmSjrPOa5AUxo2R5bEcSXmVt8qjJyJCjZwIQIKTeHA1qjDa//hbxhu7jH6f98l70Sob5y25M7R7RB2G9BgvriM/NN30BenLXHSDK1CsZUhvn0d85VV2B4iXt+223FuCi7OIDoxvLKJ2B7Bch0zUwZ/ogLdHWOemrXE4kLNEry5tuUudwe2abrkQS3A1EObd/rkDDSsmpaaD/NVGKe2yOZs60ghjMLzXVSUYvYiZNRBa0U7HyNqIWx18Hojygst3GoJFUqypTJv3LjOYNDn6Scv4fsBWZ5RFCAHhiJXaFdgQg+tNVJjCTgpbAHSKLUW9Pfa9jpKFSJ0ES0P5iZqXKWtonaY2d99mCraTEjmaoCJctzpMgbI0gKEVf2YfmLVelUPZ34yHvd1UXJyfeYa4hwRuNamHfp2LCbFQcO26zjkqpiQ+Pcrqo7Bc+y+icm+Z/txCQ95vRB2WHmuLbIRAqNAl5wHWgJNWmAmryO3C2eyHmAyhSkUZqF2XAG7DylgqsRoa0ScxMfKR/qDPrlQmNnKYWYm2IWNsocZZehuhJyyYzPNMqu83BkhNkc482Wcz56y47qf2ON3qoqYrR7eX5ohZrGKutWH9R6iVSIrO7zx7puIsovbCqlMTx3wp3le2H4uYzCtkt2Wyc+M9qxlv5dglGvV4AJkoXGOqtwdOTlf90eZFKogz21UgDGaIhDsqTF7W32alRqtZusYPWSwkQS94YA0y0BYArJZaxAEAfVqjdHOmGSc4lTuJ6Z0liMHGbNz9ru4iDOim102X7+Bf65F63eetFbz/dPlOoSLTZLymPduXOWrL36B/qDHxu42SZqiMkWtOk2tUmWw02P7xl2GRUxwtkHz0tqxsaMKRdIbw6hgrjnL3JnZ+wpRHMehXD5cxIvSBC88TkZmg4jRThfn4vTk2FqFep4XlBo1TK3E5SvrlMISczOzPA6SJGGrvU036uE0fSprTbTRqJ0+7j1EpDGGfCciu97HlQ6NczPo+Tpu03+s5xNXOmilD157jLA/QkrqOKccNMjTnPb6Nhs37yBbLuWLVfKdIXfeWMddqFD5wjzO42YmmkkpTVIQuiHVWv2Rdv6PA1pr4iRiFI8RvsSvecdKabJxxrgzRqMtCVn+ZJWavwzoTBHd7FPcjagt1Kh8dh4hHPDh/SJKPgoUWU7UGSNTweLUKVqnWg+db1RbNSpfrdK+u8e/++s/4TNnn+fpJy8dCCVO8GCcKCN/dXBCRn7K8ev+hXCCE3xSeJxCml/Uiv1BIITg/LnzLC0u8d2Xf8jlO9doPLuCV3q8lfbZ88t8ZX6KO29cZePPLlMohSMkK+dXWfnHf0BYf7DF5OZr7xD+1qlHvrcMPVgss3ftDrMXPrja4VFYf/sq/h+cPvi7kJLyhTmCxQaD1+4yrpbRF04hZiuISFF0I7ypB++LSnJGb20hawHZfIgMXIpC0d7r0b67zamzy5Qaxx9EpOvgeQ7Zeh/zxNRhy3ZaTFRQDmLShixW65g7Q5Jru7j1EHW3T7E5OCAFpedg1qYRhaboxZbkmOR2HTzMCqvSKzYGtoCjVKJohIhGAELavEZl7dBikFq1kyfRwxSdZjYHrBke5Fqijc2H3EsQrfCQgEgLnKolXPV4QkLuT+bhwObJKIOBbYIWhUb4NofuaE6c9F1EP4FhjLx+h9KNXVhron7nDOy36Q5SzO4YGY9xzrVQ77SR51rIOz2c79/EbXq4z05j3i0QVR95cYr8O3cQU6FVjiUFJiowQuJUfIrOGDVIbOuyJykGKU5SIHJ1bNsOxk3Fw6QFcpRbtZqUSG0n4HZ/JyTt5tCq7UouYsGWYIhMYboppjdGzJcRtcCSvBenuXLzFro3QJxrQSART89i7rWr738vS2FLj1YaiJs9mxPYTyFwEH/6jlWF/Yd37OsyZXM4L07D2Sm7zcsNxFs7mMttRCfBPDePOTdtP6MTWyIVrCrSAM3QEnbXOojz09a2awycbtltG0/UvPu5oRUfzrXgZh+emoE4RzrSZlPlHvXGNINAETcCqNat8grIxxndW1tQ9nDmqwhfYs41ufH2Jt3Xh0yHDfqDPsVmYBV1QiCGGWQjaIToig8apCMxdwf2mpgpWRIyzu0YKLk2BzLTEHBI9rq2DIRxbgnXo+SynKg7NZbMHOUAeK6HSnLyQQy9BGe+jFiuTiIIxDH1kZgUNaGNzYs9SipMlI3CtxmFeVHsh/3Z35UGox50J+IIETj5rP029UdASoETujipplap0hv0MUe+e8yEHDWZsmVkVf/gGEg1KePpxZhacCB8fWhOYj1gZ6/N2kQdaYyhMxzYIijnIb9TtcpDkxSYvQhzvYPrSNyVOnxpCdzJvbNQiDsDzJMzlpBPcmujPzg2AlYbqLd2cMYpeeiRT5eZnr3fdqiNRhljlYCOxOwT2/twBGaqhGhHk+MrcKQ8xh24jkOuzaFNf4KiKMhUcdCALnopfquKdCWmEtDtj9Fdw0zLbpfWms3dbRKhEVUPOSl8Gqc5494uFekzPzPLwtwp2p02o92RvQe4dpFFxAW+cDg1t4AeZfSvb+OPDFMzdUYvLRKemXnwcQf8ZoXR3h6D4YBqtYba2qAbDdANj+29OySv9pGBpHlhloW15WPPLHmWk3Yj3ARWZk7RWmg9MBvvcTHe6CDX6gdE5L0QUuCfmeLK9evMzsw8VO1nMIxGIzZ3txirCG8qpDZ7aG8u8uIYmWqUJrszJLs1IGyUmX52CW+iQI23e6gjKsZHYWVukWvtNuH8cZL1KClpjMZsjMlLVX729o8JlspUnm7Sv92h/do6/ukaja8uPXaBidGGIs0xqaYclKk0Wp84eaSUYhyPidMYGTqEjUOS0RhDMoiJuhEEkmA2uM8W/+uIYpwTX++jOymt1Sa1b8wfnFNtNP3xACd2aFTruB8DaZxGKUk3wtceazMr1GuPXmzfhxCC6eUZmqdavHP1Mm//xdt8+bkvsbKycsITPADGmJPMyF8h/PrfeU5wghP8RuP9Cmn2rdi/rEycUqnE73/tmzx1+zbf/vHfEZ2pU1+de6wHjKBW5tyXn+Pclx+vcc8YQxxH1Jvvb/NwVqp0N3c/cjIyz3L8B1hvnWpA88tnKN3q0v/RVfTqNF4lpNiMKVwH9x4bnM4KRm9vI5ZrhLNNWxKTJjY/ruEiGx6bN26zeG6NsHZIZvqVEK8UUPTGmPfamFM1m/WWa0tcbI1sttwF20wsT7cobnQpbncQM2XkYhUqnjVtdmPi211EbuBaBs/PTyzUdiKs+4m1YrsOuhLizAWUgxLj/hCdx9ZaqbTNynMlouJjohwtAFcgpstWMdaNMaGLrIc2x61qW29NL0E0AkTgYPoKOW0t2ipRiJkS5uikUGDVW60SDFNkoe3njWwbed6NcMo+0ncQu0Oq13dRG11UyUP93hOI1mGmlDHGHoPGNGZjiFkf4A4i/G9v486WYMbH/YcX0O/uYUoezm+tgRTI5RqyF6NLniWBSh5qN6K4sWf3t2bLGpzbPUTNQ2cF3OzhnGke5OCBtccLIXB7Kfrlu5i1Bu6kEEOlmSXkpIBxhnhn15IWmbLlJxXPEs7zZVu4s09Wug7EOTrJkb97BpPmsCURVR+zNT7IWjwgzfqJJXalsCTR7hix1kT85A5mkMKZFuaPLtjj7U8y7S63EX99A/PsGOarVhXZjeEbpzGX5qw6bd/zX/FhpgzXupb0mSofWHiZsSpDI7EKyMDBEbZZWmfKkuH7lvKSZ4/HzhgReLjVgHSUkl/bIVtsUV6bpxgNDiZkAtBlF3Wuhbjewcm1zf1zsC30lYCrt+9SnGlgGoHdHjHJdMyUVWJKAQtV9F5klY6zJUtCVjxYmOTfGWPPSyexBG5aWBKnGoCeNJLvRZbIrE/2RVmbuUAjA1tOo6OMohuhixzZ8BG1mj2/E3UjGthvV5/8L9ogcm15iKQ4eG/pSGQloEhyW3hzJJMVIQ7zHScEmcEcEi8am0NpJgpKY3ikuMYYq8QRh5mQRtjvI5UruzhSaLv/DXvvE8a+VkhxoNI0uYKp0vt+nCh5ViU3QRRHlhAW94spDzfRQJxhfnIXMUyQT8/gnJ9CSImcLN6BQPcjinpwcN2Z0REyUmmb1zlMcaZDXFfil0uEpQdbIbMsxYTugYIZbSwhefT8STBVHzHKEErj3VOG4zoORa6P7ZgxhrzID4hI4gJHysNxL8BtlBjsjannNTzPY6u9TRKCUz7+fekEHgQe42HCzl6b+ZlZ5qZnmVaKUTS2C4NSUpoqoToJ459sUHVDLl14gvpci5ff/DnuI/KeD87ZbJmbd9eJk4Rh1aBcQXy5jTsfUvutFUTJI40z7u5ssji3QBFnZN2Ysgg4d4ToyPOcOxt3ub29QaEKpJAszMyxsrBMGB4/D5WwRBRnB1mTKivs/tzznW0Kjece/q7juySOYjwa3zf510bT6/XYaG+Se5pwukQ9vJ+IdqSDURqdFqQ3B6jNMeVTDZpfPGMbr48em1Tj1e9/jngQlhYWufXzOxSNEm54P8FUDBJ6r6wTjg3xc01qT7bYu7nL7s6ezYN8dunx8yC1pohzRAHVUoXSVOmhDesfF/I8ZxSPyIoMp+TeV0oTdyOiQYxbdQmXyscs/b+uyLoJ8bU+MtFMnZui8uzifQp0KSRhNUQVBXuDDiUvpFqp/eJzA2OIxzFZJ6Hiljk/d5ZyufyhLPqO63DqySXStZTvvv19GpdrfP1zX6PRuD/j9TcZSZKglF05PFFGfvpxQkb+imC/VONkBeQEJ3h/7BfS7KsgP45Cmo8aqysr/PP5f8oPXvkJb/7wCtXnVgiqv7xsmI8rq1YKYZU0D3gAFkIQnp7Cn6/R/d51VCyZ+eYL7N7eJN0cI2dCa0fPCpIbPZgOkLFm9OYdq86qeDhzFSi5qEyh5wK2Lt/i9EuXDj9DSogVTslDjTLE5hDdSxBVHxE6iJkyYrVuyZCowIk1Ra6QF6aQzRJGgtifXNRDWDTo2wOIcsTbu5hWiJESlWtUOcDUy5BrvJa1wmWjjLBSJiW3xSjVwLbFaoPuxIhmYPPP1CQHEWCfNOzFiFbZPsIGLsYvMKltU5YV1zZo9zNb4LHf2utYi6qZtIYKIdAVH701sgRozUcGLjotkO9t4txsU1pu4D09Tzxfpcgm5Tfq8BoSgBEC0Ytxd/u4P7mNf6GBaHi4jQA1bRUY5q1d5LdsE6SQEu/iNMWPN0hnKuD7kBaY8aRsx7FZdUIKvMu7yKenYaWOGWWoOwNEI0Q2QoQ2OI6DuN2n/NwS6bU26f/vDczvPoGaK9nCjayA9QHix3eR82XoJpjpEqabWLJEGUw7glxbYmd9gNEG+fMtqDqYmz2M71g12Ja1tpmosATkIEP8fHNC7Ib2GF/Zw62G+PMtsnFB8fQ85g/O2deoIwTmE9OYVCH+23XMhWlLQK41D/IlD8jI/Ubl0IWVOtweQKts1ZLbI1umUg8s0dOOoJsgl5o49RLZOEEnOQxTS0SCJbO6Mcw45OtdzPYIHUiGSczo1euIRoBbah20ShdK231eaaA2BsiatV7q0KV/Zw/59BxEiVX/HXW0+Q5cmIY3dyyxv95HzJasFbs0sZrLI+yXEFZN3EtgvsIBM6YnhFvVh0GK2IutmhZBGIZopcn2xtCOyDWIqQDpBfZ+lSmrAK54liC897lJYluYHYlb9q1KEiYTU/s6xzN23OcTFizXB4U4Qk6UlUIcZ/9yaz03ubAK0P19EYKj6XSCCRFrmMQU2MWILM8skVxoGwXhS3vdOUcIUaVtu7h9I1SaH3lfHqyKNBySv0e2I0pjROghhUIrfWw2YAqNuDtA3OrjNHychgcNF7PasPdfQGmDKgocx8EMEhvPgDhsBs9s7qRMcpxGgFizE0KxGyOSglLrnnzfCcZJjKz4KG0Otv2A4GWfuBX22hikuL5v7+lHoOOcVrVO1InQ9QAn8GwWoCsm9/UckSiCmeOTVCGAikt/OKBWqRCjcMoP3k4ApxYybo/J8xzP83Ach0atji4U8e0+yfoGs1PTLL34PKXG4YJYnCY44fuXYzglj803bpOqArNhcNdqVL6ycKx4zQk9ksGIjbducWZ+hXOL5ymXDre51+/x8/feQM+EeE80cF0How3rnT7rb2zy1Op5FucP41zOLq3x6vYV3NPT9limub1Gj8IYyDRh4x4XR8khSZMDMrJQBe3OHtudbUxFUlqsUPIePu1UUY56t0ecFtTPz1L6+sIDlYjGGJxBTutC632PIYDv+bx06Xlefvs10rkQf6YKQpDtjhm+t42JEqbWWjRrTfau76IqktITdVqtI89f7+PcVYVCxTmOkTTLdYJa8EsppRlGQxQK795Smrwg6kYk4xSv4VNZrd533fy6wRhDuh2RXu/juS7z52cIp0vve14c16XUcMnTnN3eLrVSlVJY/sDn02hDPBiT9zKa5SZnl9cIgsfPGH0UhBC4JY9ut0ev3zshI+/Bfl4knCgjfxVwQkZ+ynFCPp7gBI+Px7FiO45zQEZ+2uD7Pr/1pa9ycfMcf/nyd+kthjTOLjwwQ+zDQAiB5/qocYZTebSqQG2Nqc082s79YTB/dpmN622CC/MPfY0seZR9j7Ozi+z+/Cbi9Ax6ukbU6aNihZQBcaEwcUE+4yJOTVmSY5RR3LF2aPdME2e6RHxnQH+zTX1+it0bG4zHQ/RCBWMKpAS1G4ErkacbyJq1w5pcQVQQlEuk17YQ02XEdNnaqbVt79UbQ9teHboHRTdqmGEyjZ6uYEJLnkhX4jZKBw/+ukioTTegOyRKUkQzsAqvXmyt2+4Rm+3BAQFZC9C9xObvTfL/hO9g9mJrISz7gMEU5sCaLZyJ5dWTB0TkhEmAum/j7XKFf6ON1x4gl+ror6+RbozxKj755V3EmZZVTuzzGMYgNvu4N/ZwApCnm/ClJcTW0GZcKgOBxHQsgSQqHqaXoN7cRW+McLoJzo9vo56as8ovIWxWYqqg4uOsd/BmfLjeQa81EHMVRD3AbI4QjoM3VcZsjZAvb+BfPEW11mLp7Cqv/tsfYUoTZV1m28DFczPIl06hf7KFeXUbLkyj1weW7KoHsFyzzcEGeHXLksKDDPG/nrfWzT95D6rexNar4acbiDjH/PZpaJYOSCXOT8FWhPn2VWuz/dZZW44D9jxGOby2ibjSxcxXMH/4hD1Oe5FVOU5sw/eVEu3nfdbs8QCszdt1bHFPUljrdi9F3ewgzk3bEpdacJjBuJ+jmRaY99romQr6wtxBIYpwJOyOMO/s4F2YxbiHJJuoeOhcQaHAdWyZTj2wJU6J/X1GmSUrXMe+rpcgfInoRYiFilVu7jNJAktS7RNqvmN/f6p0SEROPttoY+359QC6CY4S+IGP7sQU3QgRCuSpCsYV6CxHqAlZOCF0TaIsuTshn8XEymtyDWmBW7Pk2YPurbpQyLJn1Ya5tjZpVx7m5QlhCTxheTGhJucvLpAam+MYTNrkA/cwr3KSY2jVnZasISlQqSbXCSYrbDlMeaIM1NhjOjl20pXguTYewXFQvdSOs0wdZoIehTnURpu0OJ5VN5FS+p6HShLbRJ4pxK0ecmuEXKzifH7BHsPXtxFRfuz9kAKkQCmF0NqOI2Mw4xzZHiPHGU4rQMyHTOSfdiFKGerV6kFBjzGGOImJktjmM6YpbslHK7tYc/Q+aPnfiSpUAIXGm75HMV8o5KhgZn4RbTTdQY9xf4QyxUGxlVcO8GYeTC44oU+0F6P0REX9PjAVj/5oQK1SpdvuEN3oYLZiVtZWeParLxGW719QdKREaXOsdOf4aTPkexHDd7eIt3vUvriCN3+8UdtoTdFL0cMcrxxCEbO2tHrMjj2Oxvzs8hs4F6bx/MPpnpCCYKaGnqrw1uVr+J7HzNQMURzR7u4Rb/YYtLt41RC/Vj5YiJpsHDrKKYcPIHW0QUpJmqVst3fYG3ZwGj7l1cZDsx2NMSTtMcn1LmXt8dyZC1yNNgnPTD10/pNu9FibW/xA1vNatcaXP/M51u/c5up3rhJ1hnh1n8bpBkFRY7w1Yk/1Kb00i1v2DhcQjq7HHiyiHP5TkRWouCBwPBqVFp7nfeKlNHEaM45GGBe8sofvHD7b5UnOuGMJ81/3Upp9GKWJ747Ibg4oN0osPreIX//gJKAXeLi+yziOGHcjGtU6vv/+76OVIupFqEHObGOG2TOzH1lOaDyM2Lu2i9sTvHjhM5x94Syue0Ll3IvhcHjw/yfKyE8/TkbwrwB+3b84TnCCXxTvZ8X+uAtpPmosLCzwv/zhP+Hl13/Gyz+4TOXZJcLGh1vdG7d7rL/6Hu3bG3aSE6WM/+tlpv7+8eD8ozBKo28Mmf/K2i+yGw/E6vMXufMfv405O/NAdSSAGiR4WzFrv/8MK4Vi/Y2r3N1Yp/7sGk4lZPvyOnoqRJxtgjCHk7RmCI0QszWiuNHFPTuFmKvQvrVB1B+SVMBZncMFnKIgjRLksmvt0jd66LmytaQiCGsV1NBaPeTcEXWMMehr3YOmX5MpTOijp6voemgthcMMUQuQFd9OGvMcx3ORYn9/BWGtTBxFNpNN6wkBKQ6z547d9u2/ywkxs9+gLgIPJVOIC0ylACkxB8ozM5m4a1vKIaxqyWgDjsDpRAQ3dvFDiVhrwqUz1kqN5d2S212MMnaMaCBXOLc7eHf7uDMB+lLL2siZKPff3EGeqiIaIWajb3MYKx76zhD90w3k5xdxvrZicyD/dp381TtkSy2r8Buk0E/w73bxXIP7h+cssfzXNzGNEHNhGuFK9Ds7qFsD3HZCfarBGW+O5T/+KrpQ3Lqzjv+HT6DjHOm7dLd3ibf6qD+9gokL6KW2MOaJli2AyRTmRt+Ssv0EeW0P+b8+j/nubdT//nP8/8tnkRemUK9vw1Oz0IkR/QTz956wpUPFpEwkKSDX6Nky4iun4dXbuJWQPE2hm9qG7L0IU/Iw/+jiYetuz6o0yTVc3rNN5A/DfgHRs/P3F/oYoOZjzrbIr7bhqRmEJwEJoWuVs4PEEpZPzKCbJZsNOSHRTFZAs0ReC+BqG3Fh5jhJEtgIA+FKTDdGPjmHVtqqsxyrRjb91DZ5G9tazZmGLegJPUs4Yw7zSj3H/meMtXCrCTE5scALg81tFALhYMe072I2h2SuxIQSVipIVyKFtKSB1nY/tbF/SlsOY6JJM70UmLxAKIOjQTjOw7MVObRCo+34F65DkeSWfJ0cG+lIey1lCpEqXNelHIb4XkChcnrDod0218E4k/O0r/qclNfoKIdeiuO5hHN1TKGJB2N02bXHQZv7ctxMbrOBSwt14p2+FW4O0vvJyH315f533jBjtnVYWhZ4AYNshOO7+JEmvbyFSHLcsy3k11YmeY0GE+c4hcGRDkU7PsyMnUA4EuNKaI8tP+kI5FzJXv+Te5nYt7NnGhfBdNMq2qI4Yqe7h/YkhA5CQGYKitguoBy0k7tyn888HCuZst/p/uQ+rDU6ypCRYnF2ftJc7TA/PYvWmrvbmxR11xYGvd8jtYE0y5D193cmCN9h9//P3n8+SZKdZ77g7xyXoUXqzMqqLF3VuhtaEIIAQfJyOBQz987a7IxdW1vb3S/796ztrtl+2LE1Wxt1uTNDTRAkQQAN2RCN7urSMjMrVegIl+ec/XA8UlRVCxDVjW4w37buzqqM8HBx3MP9d573ea7vsLN1F1JD5ewM3oU5Hu6O2P7Rqzx37hLLS8tH3rPQnufuXodgvk4ep0TbA1Sc2u2LclQ/QVRcxEpI9eIq/szBtUFnirwbQ6QJmlX8U22EFCSRZjAY0GoeqAVv3b8DJ2o4BYg0Boyy6nNR3A/5Z9q8dfMGy8Mht3YeIBbKND61xmA8IotTsv6Y/OEQsVix30+pphyUjgQh2WVbZf9OsMud3ft47YDaTOttn1+M1ozX+2S3B7RqDS4+9xzVdqGeve9x/dp9vJPN/Xbx6banm31mVMjZc6ff9dgcrjzN2Ln1kO6dLRaXZwlfOslws09vvQ+rFeqfW0YeUpzuTyAI85iPgdFWOa1jRdkvUak3PnAgpLVmEk8YR2OkL/Fq/tFQmlHCuDPGSIPXCqmU/nmE0kR3B2QPxtQXayx8+hTuew0aepsSQhCUA7TW9MY9vMijXq3jOI8vV2U5k84YIsNie4H2ufYv5dV6uIZ7A7o3dqnmFb5w+bOsfGblI/M886uoY2XkR6uOYeRxHddxfSRr2n6d5/mHIpDmaZfrunz6lU9yfu8sf/Xdv6cz26V5fuUXSre+/d3XuXvjOv5Lc5Q/cxEhBfkwZvdb19n8//yQuX/5HP7c0S9qow3Dv73F6ecv7z/EPM0qNWtcfOFZ3vqLtwi/enYfrE0r3x2T/+0tPva1LxQPm5IzH7vM3HaH6z++RrddZhQPkaeraGMeUzYJASxWMTc6mEmKkAKFZkxKsHgQGOC4LqV6hWQ0IXdBnGtjbnQJn2ngeB55kpJNEoTkiELGdCLrJ7c9QddC9GwF0wj320+FEJiyh9md2HEZ2jCMPM0QeYrvOMTDMdFogsZYmFUkepr1YRFYE1gYsb9p9g/CkdaarlD3Gq3xSgGlaplhp2dDWgq4YzKDdoRN9Z7umDjDu9fBf9hDCINYqtlgk0eVHIFDfGUX6bmY3RHOlYd4/QlOK8T5xAnkTBmVZahpu32moBPT+N3nGE2GcH8I51qYboR5MMT5l+cRFd8+DfsO7ldO4awPkX95CzPKwJWIRoBs+JiJRt/oWjhxuo6cKPStjm2t3Bzz3OXnOfPvXsQvhfvHvnv3IWK2hAw9ZGi9JtNX76NP1NCfPwWJgjmrqOTBAPG3t+HSjM0m+fFDiFLE/+VlZMnF/NYa5o0d1M4YMRMi/uEeZpAi0hzz2VXw3QMVY2qTyJ2VGmaUkiLQLji3Ooj1PqbiYU7UoOTApblH1K7FPp8pPCXvdG3btzFHj4cy1lNxqUgonhIZZfclSY4IPChLTOAg4hy84pwSWHh2b4BeqGHmK/st+wDGkzYYqVBQ6pKH04vs73uxBYXDlDz07JhX2kLMwruQYWL9Rz3HwoqwAD1CgJPY10oBsbLQs10ugHuxfSXPfkY/tmrOXGOiDCHtOGec2dT1kgtNDxO6+y2jNk9IF5xAIMqeBYOF16DJLATdvz6kCs/xqNerjOPItqK/XSDH9P/GhszgSlxhk5CNMQet07lGImjUj4YduK7HTKNlwyNGiU3jduS+5SRxjo5z6486X4U4I+mMLdRPFTwcYXwHQhctxD4kMalC9GKCGQttvFqIPzYM4iG6H1sVaXG5EByASDNM8JWgduihrFIqs/36ffQwo+Q6tM4vM/IyMq3t+SI0aI3cGBKWSzTOL7L1oxuYE/X9QCmTa0QvRmQ5jjHItQYoTegF5CpHF+pLUVBJJ9bMNWfY63XpjwakuT33Xc/Hcz2k6yBqCsYxlMLiulWoWadlDBKBmwlCv4zatg+dUgpalRq1xRrOI8dVSkkYhAx1+q4gUueK0HNJs/wdO3ONMeRbY8ZXthD9hIXPX0BUPcYP9og29qya2Ze8eu3HLKzf48VLz1Kr2uO2urTCnZ8+oNe3ijXT8FFJQr4xxGkGeKsl/LkqZpAhXdcy7ChDdWOElpRaVdyF0tFtccSR+6A8z9nud/BXF1BpzuRhj7g73A/XcaRDeaFBMFOjn4wZdx9QvnzgVd2sNcjLOVE5Igpc0je2qD93gnKtfOR+yhjIRhGTB3uUyy6qJaiX3h5CqjRncrdL/mDM0tICK589T1A5qm5dWz1FrVLl5oM7DLOeVTvnBi8XXFpeZWXpvXs4xqOIjev32dneonSyRu25Fp07u+y8sUdwuk7z0ol37DwRxUSgwVg/yDjDpJpKUKbcKO932nxQlauc8WRMlMa4j4bSaBtKM+5NkKHEXwjfl3u4D1vlkyKUZjemebJF/QtzR8Dy0ygpJWGtRJ7n7PZ3KftlqmXb6p7FKVFnjJu7nJhZprHSeCo+ocYYeg879G90WQjn+O3nvsrc3NyvPVR+GjUNrxFCUH4Hq43j+nCUMO+HKdhxPbXK85w8z1FKfeBfesd1XB/GOtyGPb35/jAF0rwfpZTiZ2+8zqt3Xsd/bonKzLv7w6z/9BrXb75F7WtnH3vo1rmic3Wd6O/uMveHzxOsNEAb4tsdsp/usHr6DGc+++L7er3ZeusO1773U7KWh5kv2Qfoe0MqxueZL32C2uLMY+/RueKH//VvuaPHjF9cQi1UEe7bKC/6iVURZgYzSvHOzuI3Hr8pybOMNM8QoYu+3SOcrSOqPvF4glCa7Poe4mNLFhgOE/SNHroaoJtlmK9wJFlhv83WpuAySJHzlf3fm53IBmeELirKbAtk3bfpvRTt4YMEM8kR82Xbhj3JLBzAqpBIFd6svQnW44RQeITVCkZrknHEqNtHN4u0YiHsv+MU7+4u7u4As1RFz1Zw1scE52YPvNSKsAh1p4/JFU6a4b62jlA5XJqBhQoyN4gbHWTg4XzpNLm0ydf89U2qqaD9xy+RTiK6379FtjPC3OvjfPkU8vn5fVBrfS1j8r+5jT7ZgOfmMTsTC0Z9iXkwgG/cQXYj5JmmVX2uD2CphnuyycztDKfko5TCdT1OXDpDtVXn9RtvEnzRqmW6f/km46UQdaZpAeRS1Sob2yULfW91kX9xA3m+iTjZgIcj9JU95G+s2rbub95HX9lBNkuIVxZRN7uYa130//rigQ9kPwEMzmLNqjZ3x+ifbSG2xrDWRLy0hA4c2LABOcw9Mvb6iR0606CZ6x1YqUHoFSRJWFVYlMPVXXhu3irz4EBVOK1aAaG6ESLK4ER9X5Vm3tqFQUL+7KINxSneb5Q58EEUwiovlca9tmPXY7Zs16EXW6Xv9gin7KPmK1ZROUmRrRDZDPdbu/fVREoj9iIbhlPxYJJhZsqHKF/xQ66LFnJlW9aboYVwgwQxTBFlD1n1EIVfogldC/WKFmGYhsWw7zNJlFlFMgZyC/tlyUPkhqoX4nk+SuUMogmy9OTWOZVkaFEE2iDQqUJlNmBHeLb1W2BbtB0DJJpqqfzEVrz+cEAubAu0yZRNAtdgXIFsWqCu9iZoIXCaJWv3kFm1LXEOcYasBIjEKgHDdsUqO7HBGwulJoEfcOveHTIfqAeFutu2ZjNI8DLBmdVTOI6DznLS+x3EvQEIQ3/GULq8dKg9XpNmGdpohttd/F7KzLNWKTm8tU1/rwfnZhDjBJEqnIZvg6cKpa9XDQmKVkZjzH7Ij0pz9O4YIazlROYZC8IFmFhhhileOSB3QQ8TTNWDacDMIbU3QmCinHCoWFtefc/f82ma8qCzhTvzzg+meS9iqTbDcDJm6OU44ePBLdmDAfndAaLqk1cFjXqNoFGmd+sh4lQdWfX3x7jRGrMbUdszvHL+OVrNFsYYvvm9b7Mtx5AbVCfCPVnDW61ZVbPW6O0JLb/KcDwGLLAN2lXc8Mn2KsmNXT515oV9FdBoPOL7t16H+TL921uwWMFpl/YnQUyco7dGuAmk/QmNF1cfC7OZljaGvRvrBMKlfm6x2C5D2h+T9EbgGnzH4eTKibdNjM7GCeNbHeRexuraKgunl3DfAyhL0oQsy5BSUiqV3nML9HBvwP2rdxhGQyqnbVjQ7u1tMqkpnW3ivwfvwGkppcijDKmgUqoS+o/4QRbXvvfzfinLMkaTEalKcUsuru/t7wmtNFHvIJTGb4bvOfX7o1xZPyG60UNMFK0zbaor9admafRulcYJSS/BjRxaYYPl+SUqlepTadHXSrN3f4fJ7QFrs6d48fKLx56Qv2B9/etf54//+I+pVqtHWraP68NZv/5TJsd1XMf1a1HTNuyPSiDN0yzHcXj5hZc4c+o0f/Pq37NV7dG4fALnbdqctdLc/NHPqf6rC09U/0jXYfaZVQYxRH9+C1UvI6RgdnWZ1d/9ynuCnb9sLVxaY/7iKfr3txl3BkgpqP3mLNW55hNfH/WGDDb2iAZD2p9bwnlrg+FuFfXc0oFS6XDVfMy9AcJzrZrwbdp1HM+DKIEAaATkwxjhgwgchOPaNtP1AToH7buo5aYFIrNljuhmzOEfhA16cCUmyRGBa9V1AvAlKs6g5lvfwkMlPAdmyhCmmK2xhVhlz75OApnGxBl5d4LbKltfyzn7oCWkJKxVSCcxSZxbkLMzxr+3g5MrzKkW5vJpm9S9N7FQsxLiASrP0bkmu76NO4kJJjHm6jbykydQq3WYq9jW/UwhLs5iNoeYP72K/K2zqPUB8uc7hL/3LOm9DnqSUe8J8i1NP9YwW6RGToMtMoX63gb60hycbtqH9qqPGWewm4EQiP/lGfjGbcQzszhrDasK+rPr5N+5x/Cza7Q/fR7Hc9Bxxq2r2/APV8jGCf5vrKEGEck4xn3uNPlG1wafjFJEq/Al3Jsgz7URv3kaKQ3yxXnI5xAvLWJ+sIF5dR3my/BqivzXz2Bu92yYy/ThNdNgtFU7jjP0rQ7mwcACsxN1zJkWeI4NIDFY1d/yHNNWewvOirTo0LEgzpUwV4HdCFbcgzb9OLfqR6UP/g9WyQhWJVb10ePU/n4a0FG0Opt12yJOI7Rj6fBYExYaIgulpCttOErFg+WaXYEotX6EqbLJ56MEoRTidBMxU0P6bpHEagrwVCw7yglrZVSakw4T+/nTEBVj1xtZbKMyMEoxFd9CzzhHNgLEatX6eQph/QxHqb2WueLoeTf9Y+FHKBxpFXuufa3xHYQuNngaUOO4lDyfKErtdeERiCCEsB6bUpM7xdj1PasIzRWkWBWyAem4UDaMJxMaldqRUAilFCrNbfK04+GEIUJKjIRE5whXonYn6JINcFJZDnmxn6Swx0KCGcSIim/99Tpj/FqIE3jIWFFuW+/DC2fO0h8M2Ol1yPIIAE86tGp1GvMNTJwR39nC3YlZW1th4ctW+X715jXuX92GxQpeo2KDpoxEbY/x7g1pffKM3acGwrk66WhCen3XtmLPFH6Q3RgxyQg8HyE1WiqrchQCnSuSQQTjFBM6VvkdJ5iJtrDfdxChiwgc0t2JvW61QvRehAkddOAegJXCFkH0YxwZ0Ol3AQj9kHK5jHwCDNLaMJqM6A0HZElKspHghB5eJbQt+Ideq6IUX0nCsIQjHfq7m+jpZFeqyW73SR70ceYruM+1yTDI2z285ZD+rYfIcy3rIVzAc4p2aFPxoB7yk2tv8PlXPsXm7XU667uIsoNYLeNdbByoTTOFyA2O49G/s0fJCXDON/GqTwaFYNWGQSapVA9CcQQCrRTD21vI8y273w+P8dDFOdUku99DDR/vMDhcUghapxYZvXaPKH5IFhi0ypFVF7fsELo+C7NzTwSRcWdMfLNLkEgunF+j/crsL3SPFvjBPtx+tzLa0NnY5f71u2ReRuVUnWBcYuvqJqbpUn6uRaX23r0D8zxHRRkuLq1y4wCyT71fpxc8w9GQqqcEJY0xJGnCaDJCiSKUxj0IpcmznElnQjJJ8Jo+lZO1DwzG/arKGEO6ExHf7OMJyfz5GcK38X99n1aAZJSQdhICz8cLXesvK+QvDSLzNGf3zjbJ/QmXVy/x3Fe+Rqn0qwux/CjXVBl57Bf50ahjGHlcx3VcH9r6qAfSPO1qNBr88dd+nyvXr/KP3/ohzjMLVOdbj72uc3sDlktI/x1aVYSg+sIK46sjPv+//uGv5CZWCEHz5ALNk28fZjPe7fHWP/yAYTzCOVmlnw5BNfEvt6nc6ZD+43WSZ1cwj7SbY6xnXPjMDONrO2/rTykAPwxIJ0kBTLSFAp4k78SYkk+WClht2IePYWqBz5GbX3MAkDQgiwcT38GMUhuKEliPPSNtQI2o+wfvPbI2WCAXONAMEb48+HtPWJ/GVJFtDqjPNI/AD6M1Os8Idke437uJWK7BhVlMs7ihNQa2h8i9yHr9FaBUjjPkT+8j7+wQfnYZta7JP7WC+8oKZmuE2hljar4FV7nCzJYxF9o4375PI5Y8+wdfRaUp8UZMEDZY+O0XKLfrfP3//h+JlCTfHhdAVSBzY70Uf3O2UIrZtlfTTxCOQKzYm0fziRX09+7jnGrAXoRAIv/tc6jEHEmT1cYQNwXRvQ7D//BtRLtMdqaOiBML0QpPSlNyYHOMmCtbWHhpBvVn1yyMdCWy5qNfWcT8ZAu9NYKqj/76bZgrIxolxO2BTf6eJitHOTwYWG+7C7MWOIQubI7s5xbtkBgOQNy0orxIShcWLFZsSydK29dtja2/omPhy74ybOqVF7qIwLUKskQhKx56nEE3LtSROSbNbct21cdM1ZzFbjPq0IP0VIWpjFUlutIq9wYR3OtbGB46UPOQp20brkhtMIvOFOYQGxSAUCAihTNTsm3WqbLKSW0OwOH0lDHGrnMvRoSuhZCL5QNoy1RdJ+z+0gZLMR89bw5th8CqKKe+l65ERTmOkDiBs/9W13GQKeTD2LaTC4Eswox8xyURAu07CNf6rE59NIXrYpQN8XDL/sGHe5IkSwmDEKM0eZxiYoWTgzdbOfKwrLSy258WSdZFANb++oNVdeZFMI0GUfEtUFKapBchexELzZlDyxU06g0a9TrD0YjusE8uNP29Hv0f3iYYKi49e4Fzv/XiEWh06dxFVobL3Nm4z96DbQyGsh9wemmNW5EgyRXJOLEKuFBSujBD2XPIhhH5OLFjQGmCIKBSKhN6PuN+RKoiVOGX69VLqLky2hjMJMMou/1qe4So+Pa4S4loBphegqz4yGaI2ptgejE6sFYXZLqwrxBMvBztWig/iGNEr8NMo0m9evDwmWUZGztbqFAg2z6hCIlHE/I4Jd8dIF2H0nzdTrSMM7xcsDS3WAS5dNC5Ilvvk+9EqG6MXKrgf/4EbiWwY+LGLrLu07uxCWUXOclQd7p20qY4p5xWCdEKURjiNOE7f/YPDGWM/8oc/lylmJsoOj0yhRlkiNgQNquYeZcTssmDjT3c809OZzbGkN7r8vzq2SMwpFQqkXTHcKryGIjk0MQBMyUbiGTe5fu/CJRq1ipkocYpuTiOS7VcwfOOKoKNNkwe9klvDWiEFc5dvERttvG+ASOVK7Zvb/Lg9n2clkPpYo18Z8iD1+/jLpWpfGoB5z16BxoKP8hIEbgBreoM7iMJ4KL4xxT/HL5W7b/mXbY1z/MCYgk81zvy+mmo0ygagQte1cOXh0NpUsZ7Y/I8x2+HVOb+GYTSaEO0PiS9PaBcL7H03CJB4+0B/dP/fE3Sj8n6GdVqhbnV9v64SJOMm1u3qLlVVhZX8L0nq5ffrpJJwt6tbfR2xkvnXuTC71547Jw6rl+spp6Rx36RH406hpEf8nr0C+rX/QvnuI4Lfv0CaZ5mSSl59uJlTq2s8o3vfpP767epP3sC1z+4eRl3+sj5d59RlZ4DJUmepHilXzxt8P2u4VaH1/7s7wi+vEp98QRgb/wmqcJZreMZhRgluG/cJ2nUyJ5ZtGmzmcJ0IvxGCado0ZTvMGvt+p5VIWx2UKkhnySY0ENVA/SJlgWKk9wqlZR+Moh8dCgWCcnCgDtrVXn59hiDTbJ+chUPiaPUtslGufWQg/0QBykleA5O2T/6fTCKETc2qdx9iPfMAuqVE6S9yKZaTzILkfoJTuDgnG9jHo7Rd3YJ9kaYOEbf28P97TOYVkj+6gP4g0vkwxidKwtkdibWry+wydpmrkz+1zc4/YVPcfJjlw6O2cM9bn//dXY3Nhnt9XDkAp6SmL0E7Uuy2x30ah2TKKvOM9h9mirE6qFZ7LkyJlLoJEP/8CHOV05BLUDfG6LynOinG0zeeggXWuhnGsgLNfSVPdT1PbjQtnCv8OdDAHux/fMUZJa8/VRjA/Y1o9T60/18F+oBpuohzzYRCxXM7gQmKUTKQrpTDczLi7ZFegraJhlilBRtySWrCBTFWHAKoBhl1udRSlDYkJkos8eoEx0c+4UKxMpCxEFiW7VPNZFlb1/tLELPbt8kt4EquxPkyaJVzZXoewMLCxsBojvBLNSsGhIQ3rSl2kBq/RVlEYRi9sZwv28hbMO3Ke/TiY20uCb3EwtRRTE2HWHbbfsxjuOQbg3tGTfd7mlLtig+sxcjRqkF0MtV68s63Y8HZ9aBktKTFgT7B0DxiMlQATqnlpuHGJ0N11DKQhhjGE3G5GhE6OBKm5xrcoXJNF4ROCBLnm2hVgojD2EeU/hghq49N0On2J8O8TDGSQ2ulrQrNZySw4PO1mP3bdNUe7U3KbwFnYNtmG6zI8BxIVGY0EVPUpzAtcez5kMvfcJDr2F7b4dhniAmKeJ+H88AzQA9a3ije4ftH/T4+IuvHFHc1Go1nr/4zJEl9fo9pILem/fxTjTwT1T2x50xBp3mGN9BtkIw4AUhcZYTjceUHJeTs8vc29rAX2lahWx3ZKFvI0QEhcJMG8wgQe9MkO1SETZkg33MKEHMlBDGFOrbAkxnCjPKEJ7ECYvvvNDD1Aw7nR7GGBq1OlprNna20E0P13PJ44y0P8T40qpMywYV54zv7xF6AQuzc5RLZcbRhIe9XciBO2PoR8iqg3xuBlEPUVEKnRinn+CUHfzTLdLuBPXWLtIBsVrDKbv725dvjcm/fY/MOAQrNZJLZVy/hDN3oGIk0ehugtQQtOp4i9YPMnUi1NBwbuYEN67dx1mp41bD/WtWPo7J1wecaS2zOL945PhJKe01pnrI71hrcl2cv8XF1+QKMVMi7Yzxlh5pSTf2M5LOECM1znxA6/Tbe9bpXDG+1yW7N2Jhbo4Tn3yJUu3982tLo4TNGw/YWt8kWClTfa5J736H3Z/exV+r0fj8yntuVzbGkCUpJtGUgzKVZvltW86B4hojEEYcKCUPLWtqT/DovoriiO6gS64V0pXFmDbUqzWqlWqRLD9BBhL/cChNocibdMcYB/xWgP+kRPNfs9KZDaVJH4ypz9dY+ORJ3EfDut7Pz88VcS9CjxT1Zp3a2vxjnrR+4NE60SIaRVy58xbzjTnmZ+ffNbxm3B/TvbGDP3b55MVXWPv42juPueN6zzVtzT5WRn406hhGHtdxHdeHog4H0hhjHoOQv+6t2L9oVatVfv8rv8vNWzf5xne+h7nQprY0s+8TaLR594WAVd18CFt7jDb87C++Sfg7a3itgwea2nOLjP76Cs6FNv5KA32vi/f8HO7GkOQbV4nPLyJWmzDKCVcapDe7tBZmmeyNceeffGNitIZRhulliNk6mbDBMxL7QCBaZdKtEXqcFmDCYLTehwr7SQscginGIIzBqfn7D34YbNhLLDGpVUSJsneInJhCNSetYgz2AzuIMkSqkbUApxJipEPcG+MNE7y7uwTKECzU2X5mCc62cIXEW2mhR8m+UkeeaGOilOzKFu6Vh9QW6pjVMvJEm2irj7NURd0f2Nbq0LWKxvmKBUdl17ZrplbNIZohvLTEWz95nXK7zsmPXebBT65y/edvEHxikdoXnyX7uxvEuUbMhWRbQ6Tn4SDJaz5OxbNjNNPo3UnRCnvolsQU275lfyemKoiaT++b11Fphvs/XyLPcqRnW2mF72K0Ro0yxMORhZxRAZEF4EnMxtD66pWLtltt0DsT9D/ex6TKpkGv1m0I0eYI9fNdezzONBDffoD5wknMl9YsJAzdA9C4n6ytcJ+ZI7+6Z/00PQnbI2iWILHQ0GuWMZMcDOSeVf2ZGx3bUl4oQ/Ecu83LVUg15mdbMIgR1fr+LhLF5/rVALU1QudWeSZmy3bbigAjU3Jx7g/JZyp2XLrSAsHD+xqBszVEzJdha4RYrtlj7zxybZiO5XqA2JsgAutNalJlVWuFj2Nedq0nYF8ftB1nGtOPEVGGrPmIlardf75zpOXxCJSbXseKa5pQev+lRyYFpq9Th4DloWU45YDhZIwUAuUJ5CF/R4FAuC64kKU5OklxA9sOaaS21gb7qzFVXAp0kuFMAVmsEOOc2aVFsjylPxqitbGWDGl+JEhCCoko3kfJO6IEPbRStnxZBAApuxzp4PkBtD26gx6lMCwmqiXdvQ79m1u4vYSg5pP5Bt0OcRar9jqjDdubQ/7ute9wefUsp0+u8Wg93HrI6zeuEIkUOVdCzFXJ8wzd1fj1EtJ3STpjVOggKzZp3XNscJHju+C7RKOEBw83yR1DujNEO1i/Tykwg8SeE/XAjt+qD9qgu4WnqyvtGJkr27GX6aJN3Ib7iNC1ivPdCF3T+/cCQgjcdpm93R7VcoXxZIIK5T6ITAYTxEx4NACu7GMqOSaGKIkJ3ID112+jhxlhs0L9+RVkzWdvb88C0o2R3de9hNYLpxikVn2j9yawVIGFKqK4XutxRn67h9mLcNbqeBWfcKkJ3QSK4CU1TFC9BNfzqMw2cUL/yJSZKED62uopmvUGtx7cpXtnC+FZK4JmqcqZtWePJGgfDHuDH/rkygIdJORa7Vsf2HOlmBjwJJPBiPJS0yr+tCEdTEh7I0Qo8RYCcARON3si/MqjlPHtDtmDIXNLcyx+4lma7eY/qW01TmK2treI0hjP9ViYnadaOapumvTHPLh2l263Q2mtSvWZFru3t4m3dgnP1Gk+d+I9Q7ppKA2ZoVqqUG6Vf7H7oUNQUhv9jq3bg+GA3rhH0AyOTCSoTNHt9egMutRa1UdCaTRRP2LSmyBLzj+bUBoV5US3++RbEa2TTWq/sYbzlENp3vHz05y4E0ECzXaD6nzlHceUAMrVEqVKSK/bY+/mHivzKzQbR88DYwyDnT79mx0a1PjyM19gaWnp1x4qf9B1rIz8aNWv/xXt16COL1LH9etcTwqkgQMIOQ2kmf58XAclhODc2XOsLK/wzR++yvUHN6k/v0rzxDx3Xr0Jz77z+9U4xdUOjv/hawnp3tlEzfmUWkeVFW6jRGW+zuQ7D3A/ewInN2T/cA8zTvEkyG90SVs18lNzqFQwd3KFUr3C/TduoGvhkdAKneRk3QlZnJNLSXBxmVKjhjOOiPIY55C/VLBUR8UZ6fbI3nmOM/sg/aQHl1wDwqr9Coim+rGFbxWvgGPC+tLtTqDiIcq+fU9UhFfMlBCSA+BS9qyaqp9ANsHvjXF/tk7r3CqlS6uMo4i97T3SyQQxKRRFUuKVAtxqgOlHOD/fwO9HeHMlJp0JqhXgtNvFw62yPm3b1qtSj1JEI7BefV6hgIICslqPSmo+5mMLXH3zTXSmuHP7OvU/uLjvf1Y+O8P4mzfQn1zCWbFp0KIbIIrwFSGtH6BI1QHYE8U2F0pD1YsQuUb/dMtCJs8hWe8S/pvnMAKMZL+FFsB1HdSNPUzVtyrO0LWAwJH7YM3sRZg7PTAG9Z+v2HUJPegn6CI4RUiBONvCzKa2Lbfkw4kmZphBW8M0RTwv2rbHKWJjBMqQX9uz+0kbTKzgVhfmUoKTrf30eFOGfJTiuSFqb4xyJOLiLEIK9CEVIWDhzekm4noHU/KgeShJV2v05givE5G7kmx7bH0SFyoW3s2EiE6EWazgXNshP922QH3aEmyAYYR7a8+2y9YD68s4DbCZqn6nEHLaDm3AOBIPSWmmCkIQ7Q0xFR8ROuRJbtPNlUGNUuuNmSqcdoiYL4I0NJDk++PKEhpzwPWLbdzvIDUGsy+n5WjbNwJyY30vC/XuNKhHSoEQoIQhNxppHNQksWAJq2p0POsdKXwHk2UYoxH2BEQcXpn9i4fB5BrVjXBLAU41RE/GbOw8tN6IBXzD84k7QxzPJWhX9+/nZGoOrh3mYJlMW+gFdgwUr3GEpBQcqBmVyhmMR8Tr92zI1d0++mGfYKWOaTnEjsKEHiLJ0JsD3KU6suLjLtfJGik3dtaRUnLqxEmb2trvc/P+LTbGu3inG5Rqrf1DnqQJSinizgivHKKMRoQeJrUg0nOPPko41YBxZxdR9a1Xa5bvh9VQ8zFRDnuRTZKfKmcrnlWfpwqCoj0+N/vw0Chtz+Hi+iCqPvk4xa8dtGoKAZRdBqMhw8kYpx1gjA1oEe0QkyhMntpj6jvWfsCVaNew+/MHTPbu48y4zHzm7L7HcBRHiLKH1z74HlLbY9LumLAdMpnEmHGGeG4WM8pQEwshRaJwT9dxn2nb4x1rsmFMKCRqmJMMewT1MuXlt0/+VaOUesW+v9lo8kqjidIKlSsc13lH5ZWwxhY0anX6w4H1KC3Za6wxVg0tlCGohSSjFC0No8EQL4V0OMGpufgrlX1lYT6ImKk3jnxG0o+IbnaIHg7IA4O3WuFhMOThgyu4t+D08klWllfeE5TMVc4b166wN+4hZkNk2cHkmrvXNygbnxcuPkc6SLh//Q6xiiiv1Sk1q+ze3kGXJaVzDVqt9+6vNw2lcbSgUa4R1kL+Cez0oARI5Nu2bidpQnfcozxb3j+vdK5IowytNV7d3pcoYyf7tFJMuhOiYYxb8yitVo+C9F/TygYJ0c0+DHNaZ1rUnln6ACfLDVmUkXRiXCOZmWlRqpZ/oWEhhKDWrqHqivXddbb3tjm5dJIwCOlu7jG40WOlvsTnXv5tZmYeD2k8rqdTx56RH606hpEf8preuB4DyeP6dat3asWeekEeqyDfW5VKJX77N36TS/fu8fXvfQu9VsObQN6PcBtvf4Mevb7F2RcufSivL5s37uBdeFzxAdD6jbOYf7jB4P/xI/RMCfnKIv5qEzVJkXsT3J/tYH54j/pvvkylZdtWly+ssXHtDlk7QJRcsmFCLgSqEoDr4nsBpYadRfXLIdH2GFNSR7wmndDDrQVoo9GDBONJC7GA/XbtrGirHqbIAmaqboSRArlQsWooWXjEeY719OvEGJPaVtU4tz6F7lR1OSVGAjGK8df3cG/sEFxaQKzNUnvhNJtv3SKvSbxnZlD3JHmaI1slTKZIb29R2hxSDX2CRki0lzP+3j2kkqSvb+M96NuQhl6MzBXO2RbqH+6hoxxRr0DfplHvt6Ht9zRjE6qfn0e1a1z5mx/Q/rcvgCMYvfGQ7nduk40TdJqj/0sP2QjwPncCeaqJ+POb6OcXMEmO6cbIRoCO8gM4phTm4QjRjeCHCZxq2CTpVKG+u470XYhzlMc++FT3B6i/u4u8PGOh4FzJKp9GqU3rbhUhLq6FqOI/3YVWgPjM6gEoCV30vT76hw/tps5VMecCC08GadHWbeBmB+NIq2qb+h4mOcyWwPWgGmAWqxYkJWr/Nelb27inZ3CbIcJxMMagdkfoa7uYkw1Mr1DDOsKmoReQwmQafBexUkM+GFh1Z+Bikhw31lQXm0RGI9dqhM0A9WCE+vGW9U7sxnYdQhdR9fBu7KKrAaYawCTF6UdIDGKhDMs1C1BTeQDfJEcVilMlowAqHvkgIRsnlv2VLPjVuQJHoAcxphsjcoVcrFilq+EQhCsg39Rjc3q/41iwuL8vwCrkwAZKTVvwtTnwWdQgkiLwJ9UY376HTGMcSZblFmgpjRHGBtAUn6czjZ4kOIFrz3fPQacKJ7DfP0qrA1ChDCa2EwZCadwwRKc5Sdc+/AipcTKN5zs4vovvljC+Qx6lxLtDSrM1C9MUFjJHmZ1oyGzgyf72Gop9YC0MpGOTz2278cSqsPIc1kcERuCfaTI44ZP1E5wTNUTFRYZ2jJndiPTazj6QzNf7DFPDD3d+xpWb1whCn/JsjW4wpnRq7sjDvxAQBAFaazLpkG4Pkc0SLhLPL1SxFLCwOB46zTGhi6j69hg/ClEKyKq3x/Y1rkSUPGsFkSnErPVkRBlEIA/GnSf3ebgoe+S70REYCba9ftydoLTCkYI8StEY6Ezs+e87FlLHGXp9gNqJcSaa6nIT46Y0Xlg5EnamtH5MHSxbIcmNPs3lJuPbXWiF6I0h+fUebt0nONNAtoL9DgUpJbiQ3OnQ9NssV+Z5oPqU5pu8XRljEHsxS68cbb92pIPzTl7Qh6pZrdOfZDiOg+cLTK4tZEfg+O4+BJWDFDNOiZRGLtYJHwlCUVGKnwmqbfs9EG0PSW71qcgA1wUulKmuNi3QL0pnimvr9+kMejx/6dl3BJJKK374s9eIZySlU3MAJN0x4+0+WZyyuxtx+wdXmT+1wMIzyzh9zcabD5BzIeVX5n6htt08y1BRji892uWmVSg+rdufQyrJR6Fkb9DDL+xZsiQnjVKQArfk7MN8A8S9hKybkcYpXuufUSjNbkR8c4BrBHPn2pTeRYn4lFeAZGxDaULPZ2FujuCXtC1yXIfmYpNoHPPa93+A3IBPX/4kX/2NLx4Dsg+gpjDyWBn50ahjGHlcx3VcH1gdbsV+u0Ca41bsf3qdOnmSf7fwr3j1tR/Qay5w689vUvv98zjVx2+soqs7hA9zFn/j7K9gTd+9sjRFhk++kRBS4NVLuGfb8PICqp/g7CUEvk/p1Aru+TXyzpjhf/45eWeCfOUMTjmgtTRPZ2uXySBF1wJwHFxcwkap8Nwsbn6FoDrTZLTXQ1Q9ZOjt/8qth6TbI2TgWojoZRYiOsKqTiKr7nFqvlUcTjKrzmqVAIERukj7ncq6hFXt7EwwsoBQU9WYAIxG7owI7u0h8xxWG4gvnEaNcoJEsnN7nbzl4s3bfRUsN8jf2ERs9Aj2RngzAXI5wGym7L3VJ3tuEXN+nlK1ShqNyO/s4d3apvbZFeI7A+SnlpFYJSd134KSww9D04mDQYqb5DjzVcwoJyJHljx2/vxNRjd34fIM8uwq5t7AArRRRvKXt+xubIXob91FPD+Pu1JF+BJ9u48ZphbOKIP4+m2rdFssIZoh4vIMGJAzITIxxH92Deera4hWiN4eo19dx/m9c8iyhyl7qL+6ifnqGdtOXpmCjqJt++9vI2o+4kTNtmfnCnG2ZTVwmYLfOIke54WFgUSeqO/DSrM5wmxPEFUP0SohHIFZrNj06ptdzHwVTjYOFF+etCraVogpu+RXtlDNEMf3EHsT60EXOIilKhQeYqQKxhnGU8hKgMi0TWRvlRCZJjzVQic5+kaH+ZfXGK13cFZqZHlGfrNn3cpO1JDaoDsRQhvYHFqAulxFDlLEZt+23rcDRM2HSW7bjQ0HyrypSnVqPzBVLU4vzVJCLSBVCjNOkUtVC5+7MWaSIio+zrJVxJrE7s+ik9sui+IzUm1hs8CeQ5neh1xWKWgspMcgMgWZsmE7Rbq50Nq+znfsWI1yC2AdeTB+tbGKT+liEmWVYcHU71EWQTcZDhaUmazw1qRQgSa5VbmCDdsp++itEamKbRiVH1oPQ2HHUDKKcOKUoFkh8HwcKUnSMenOEKfko+PMJi2PM6uy9eXjKmtHFGnjCSbwmWz3UdKCNXG3h8wV/skZWs+v0h0PcPwaLFTIruzinGmiOzmmE0PZhWZAtt6358BcGdH0YZySN0JMyWMyHELg4D4BfAjAkRInDBhXEjzp4rme5aWThHSUYCQHQUhJZhWQj4QWmVRBr2jTrniIvIBqgwTj51ZNLAvQnOhDQVWFmk+b4h7BLvSIZ+h0XYXYb481WFWk8YQ9V4W919DbEfntvgWFQOnZWWrL83RevU7lEY/BfSuOw3/nSGvtkRvYiMh6Q9yVKuFLc1b5S+EbqA0kGtWLbVhRP+cTX34Fx3Ho/uSHxP0JfuNxT0UDJHe7rM0v47mPg7bpJO67qSNPr5zkh3feIJt3cMqP3AMY0OMUtT3GUZrwbJssisnylDxSgEBocBNNyfFZmFmwfpB3Bsw021x+6Xm6kx7Xevcpr808Bo6k51Bea7N7p8P99QecXFl92/W8v/6ASc1QnqthtKF3/SGJztCZIu9EhEslvBfajG4P6X33LRrn56h/bvltFaWP7U9ThNLEitALadUbuO77+Pj7CJTUWhOnCX7JY9IbIzyJV/WQU6W+sW3JcSdCZYpwpkxl4Z9HKE28OSK5PSAsByw9s0DQ/ABDaYwh6Udk/YxKucTsyhLeU2qBz5Oc/p0uyfqE06urhKsh63ceMPtglssXLh97Q77PdayM/GjVMYw8ruM6rve93i2QZtqKfQwgf/kKgoAvfebzXFw7y3/8q/8fb/zHK7jnmnjnWgjfQfUi8je71IMaz//xV3HeJmX6V11hucx4GOPNVh77nck1gysP8f7nSyAEbgqtlaOJ3G67Qvk3T1O/GtP7qx+z2w7Jn1/FvbRC/T2MM8d1qc+2iMcR6U7haYgBDZV6zc7mE1uVZD/FaI2UDn7ok2E93KR0UFmOqAVMZX/TlFWTKqvImz6tlzyrvmsGFlYKg7vRx7+3a1tnL7ShGRYQR5Df3WLu1Em6OzsEp2btfulHuHf2mNkdkt/rINbqOLMt0qu7jMYG85nTiEzTmG+TRQnUAvKXltBnW4i/vY6DRi9XcZ+ZJf/7e5g/vnwkuXqqjjNKIf7uFs6LC6Ct0kY2Avrfu8Pw9h7OvziLGWfk391APjeL/NQKwpXoSYr+zjr6e+t4rkBXPFReBAIZ2z4tPIF4bRMZSkStDP0UfecB5mYX+btn7UPeSQu48u+t4/3OWfIfbCAvz6Bfe4jaGtvU7tBF/+k1mxa7ULVhMOsD5MMRzJdgoYTZGNn20IFBv9WBC23EZ0/aY/3GrlUizpYsMApdC77aJcRSFXOrdxDm0rHKVyOtFx692L6+7O4rCOknuLNljDJ44xQzjEmTDPfZefKNoQU0RVo2qd73y9O9CMd1cTyHLM33IbXeGFJfbmOUJuoMcWsNsvUR8mwTp2rHEJMMkeQ2aTvOEcbAHYVsh7BQtqrSwi+ViocYpZh2kYINh8ghhwBiAcoliDS349aV6H6E3hhCppB1H7la2/ens2Ja16reMm1brQtBowWGLkSZ9RWcPqDr4rMEiMS27h5WmgptwGi7r9xCUag0OI5dWSktZDysNBQWNIqSaycNcrGvrEVgVZ1R0VJcbLuKMnSUYoSwkw6etLtiYs95Z86CaCnFgZrUc2yCcj8hHowRhYLWq4U4vYyFUgsdaO5vb6AdgRkltmX5sQudsWNJQ56kyE6CeNjHO1nH+eIq0nMwo5zOm/dRMwF6GFuQW/PRDwb259kycqUILqpaACmGKbLsINfqSCPxPI/IMXasTTwb+vU2IESUPPJJilsNSLpjFBrRDg61kBrUxLHhW1mCqAaYOLN/zrXd31N17FQpW/EsfB8kuK6HROKWfDtpmVooLItUIjEN9FD6iRYZOlMErocjHeJJgjbGTkhoTf5gRH53YFXaz8wg6wE6ViRvdeiWXNI8o7u9R2WmTuBbZWPg+0TjBA5lu6i9CWpjxN7ODWh7VJ9dhqpnIXdurH3EOMf0U3AcRC1EApWB3dcCwcefe5kf/vzHTHox7nwVp2RVpGlvgtkas9qY5+zamYOhgGFvb4/b63cZJhPbxp5pZustTp9Yo1Z9/KG72WyyGDS5vr6BM7UU0QY9TNG9CdIB34fy5VmSgU20d6XAJHbWQBjQiSLdjhn8PGFpeQF5vkY/GXF94xZb21uUn1t4R2gWnmhw5617rK6ceKI60hjDvYcPCC/bLojuWxuMtwagNaWTNcrPzxDfHTB6q0twskr9lTlMag7O23coozVZkmFSTTWoUG6WP9hWZ2GvY6PxiFznOMbBaxwEzxkD2TAl7sYIT+DNBPi+g4P8tQaROtPE9wYk90fUZqvMfXwV74MMpVGapBeRD3Pq9SoLJ+ee2n1wOkro3+qiOzmnzpxk8auL+8tWpxRXr13jzb98k8+88BlOnHjv3qbH9YvVsWfkR6uOYeRxHddxvS81VUFO/SCPA2k+2FpaWuL/+u/+T3z/Jz/kb3/6KqM3IoQjKdWqrHz1RSqzjXdfyK+wVp45y/a3vwOnH/fViW7vwak6wpWofkKpdhRYGq1J1weMNwfs9ofM/dbHaPcmDN5cJ33mBLTf2w2KcBxK9SqlegWV51ZJ4zjIYla7VK+gc4XBIKVz6EFZMemPyCYxKssQ1TImV6BBSoF2JBhtlVaOsG2pvsT0FLIX4W908bojm9j8mVWM79o07OIh3mR6v41VtAPMwz7unQ4lF+qn23gvL4KB5F6X4c8eMr62S/Y7l2lVa/iVEIRApbkFMlUXXQ6IVttUN/bQf3+XvOYjfYn+b1cxn1xBXJo58AxcHyJ+tIGzVsesVMl2J5TqdfQkZfCzTcSLcxhlUNc6OH90wcLX4gFQVnzEF0/CfBn9jduIa7vI6x3MQsW2x/Zj2Bhgxhnya2eQz8wgAguI9Pc2UP/xTZxPLmNaIazVMT/YIL/fx9zqYTSIFxeQnzuBcYUNvvn2A/TVPeQ4hbKLPN+Ejy2gf/zQvudsGxaqsNawMHRjhHl92/p1LlYQgWOh2BSepMoCHYC1Bua1h4Xy0ocHA1gt2sm1ttBsGp4TWG86owxiroLqRBbmrVRxZ8ro3QlqmNrPCRybgDtVJMYKnWmYWIik98bEu2OEI+nsjq3vZiBJ3tpBnG3aluPNIWY3sn6aNRvWQ8VDlmwas6j6tj1WGQvwpLAKOt+x/pJCHLQPawvgp22ygFXXQWE5IFDbCWiDrDiIWTu+0GAcO3Egcn0kKVsYY5c9fRAT9j+i8I/ch5XTVuxi/1GEbZBpq5R0bfqy9RIsxuckt8raknOkvdYCUbGv+hSBYwH1YaghBEaAzDR6nKFihXYFTrMEQthzvYBjphPZiYNM4bkuuTgqnzMGdNVD7U5wK1PVJ2R5ynA0pN1s4eGQqBxRCWBnYmGs79q1TZVNZe/FiAcDG/ozV0LOl5GFJ6YjrZI2zTPMrTFioYI429xXk4qyi9mNUK9vI8sesu7hzJXgVA3RTSDOMa5LMp6gohjjSeLhBDEUuIGHVwsfgzeOK8kzRT5KUGgb+HQkoAHbdt0KMTtjdKdIDG8GSN+xxzZVMEzt8alYOCfKHiSG2VKDfjLBKUucwyEfWpPk6b4q10xy/EfVfoAZZzQbsxZybW2AL8ne6qC3JzhLFYJPLtmJAmPQ2oAE0wpQkwS/VkKPYsYNj0k8oV6t4zouDgKVKcwwJbvdQ22NqFyaI1xropUiGU5Age/5ZL2YrBshSp5No5cC3/EIjEO96u0DOd/3+fTLn2Bvb487G/eZxH0AFpttTl08fyS0xWB468ZVNiZ7+Cs1yuX5Yl8beoOI71/9CZdXzrK8uHxkXwgEl85f5N6318l+voMO7OSDU/XwSg5SCsJmmaQfQdnB8Tw86eI6LmqUktzqo7sJbtlHzrrcTR5C7uPOhCitiIVLfOshYbVE/ZH2/mlJ10GVBMPhkHqt/tjvozhC+QL6CYOr24wfdqm+ModwBNHtAcnOhOBsnXAmxF68BHiQZAmh/2QVndaKLMqQOdTKVUqV0gfe6pznOePJmDiLcUIHv+7jlg5S1tN+QtKziezhUhlZXFu1No/Z0/66lIpzotsD8ocTGqsNFj+/9p4tB57K52c5cTfGTDTNVp3q6Vqhsv7lK+pOGNzs4kaSsxfWmH3l8fPBcR1WnlkhPhXzrTe+RfN6k8+88hmazeZTWYfjOqjjNO2PVh3DyA95HZ41MU/qSTmu4/qQ1TSIZgohp/WoH+QURh7X+1eu6/LZj3+ai6fP85ff/Tt6s5Lm+ZWPhBF6bXGGMPNI7nYJTrWO/C7rxYiZkvXAGmWEK+393+WdCd0f3SNZqKOeXSavD1CeQ+XiCuHKDP2f3mZc6aIuLKIKSC6kxA0OtWkf/qw4IR5ZDzJRtGILJKVqGa8UIJ/Q7iUch0q7gdGK3sM9hHDsjakryNMM4UsEDlorCw5ShbM9xPvZOm5JYk434fLJos3RPr6aIsmaXCNiRalUIr/1kHB7m8bZNtWXFo+24wsI19qoSUqvWcGthHjlcB8Aub5Htj7B9AUicJAXZkivPiSYD+GtPdzZMtkoRXz9Jvx404IqpRGLFZzPn0DOlW2CsIDxZge2JuiZEPnsLOrrd3B+5wzCc+w696PioBbqnLsD5CdP4FxsI1s+6s0OpuxBVkbnCvmVNQvzPAsDhe/gfHYFfaKG/t4G0pXIy7OI0w3Un95APDOH/PKpg1RnKWyStAT33z5jYVpgfQ71z3dtOMvFWZskO1+F+0MLRVqhbS/dHEEzxPgSoQuQNA2qmXYtDxL7WrCekbNlCzmKdm6EsO+Ji1AO30FHuQVJSqMnGfJ8C60NbruMXh9gzs/sq70snxMYz0F6rg0pud/Hb1VQ7QATSmTgYPoJ+v4AXGH9IWNlt90YRKwRoUIsVa2SyJM2ZbsXY7DBRFP/R9EOMbsRtEPEKMPsRQWAdPbHE3mRjJ1reDiyUDDIkXXfqgldeeAPmKkCGAobqCOtfyFFu+1+Cjl2f+JYIGWi3LZiTwNgpkq6yLbx4jkQOpAXqk7EQTiRwMLKVGGS3AKu6fKn2zD9WVrFppj6VmK3z0Q5JlLMNVpsd/dsC3umwHeRbmG7MEwRrkRWA0x+ODO3+Dhj0Ebb60Xo2pT20AXHbmcvHtLbHCIrHiggzsCR9pgndtKD3Qlc28MNJO5zs8jZkh3fAhik6Cu7pJ5E1APEQhkR1m37+s2u3W+nGohujBhnOPNlpAS5XLVAHAH1AL07IReZXUatUrTMK4TvomKF2h0SzlSRh31zcVDKkI1jxGzpsWumZejFGAFoBDYUqPCTFGDTsGdC6CaISCEbVnXsNUpMBhEegvzRBHIpkUagVbHcKMedP9rirOIMX0uCICTtR6Sv75Brg1wo4X9qyfpS6mIMGquuFFJgGj7ZrT4zJ+eI9kaoREEtoD8c0Kw28Aaa8VsPEBUX72SdYLVCON+wjgXSwYwymCi0cig3KnjnZshUTpzEKK1J84zk3h4r7ZOFl2Xh1Sgkc7NzzM3O8U51f/0Bm2mX8rmj7dBCCPxGGbcacuXqTSrlCo1HQmbyPCd0fCgbnJqLCKRN1xa23Twf2/Aap+SiE4Xup4xu7+BkgvqZNqUX60R7Qx7e22HuhZO4XnFOZSnubAm5WiNZH9G7tUXz7MJjzyymsEfIsuyx7TLasPdgh96bD/GXyvjzPrrWILrZRzYDSs+3cWr+oeUVY8GTJJP0MRiZ5zkqynBxaJUbBH7w9Pwg30sZSLOU0WREZjLc0KVUsYrnVKWoVJH1U9JRglv3i1CaoytotDlyvv06VD5MiW72MYOU1lqb6pcWPtB70DzOSLoxMoP2TJPyYuWpAF9jDKPtIaMbPSpumWcuXqIx13hXtWNYCTn9yTP0d/v86Xf+B+fmz/Py8y8TBL+cT+VxHdSxMvKjVccw8riO67ieSj2pFRsOIORxIM2vrmZmZvjf/c4f8bM3XufVb79O8Nwy5fbjKoUPW734L77Ij/7r3zDpx4SX5/c9ooS0fldsTajPtfcViQCi7EIoyDe75AtllMrY3duC+xs0F+dpfPoC6ffeIv7TH5A8v4JeqFsg2NMElTJh9eABOx6MiNMEp+7jugc3ikZpJsMxXpJSbtZ4uyceIR28wEdp60unlSoAjH29VAbnfgf/wZ6FLqdqmJKPWLGeg0LaVl2T2PRptEEMU0pv7bIwdpht1umuNam+sPS2+zDpRpj5euG3Ztd9sNMhiRNMK7QKMWNQowyVavyPL+B/cpHkH9dxVqokb3WRL83bYJii7dYGQCjM7oRgoUb209sErs/YGGRSqAcFqG8/wNztI9oWgppOZL0TRwnO105b4JUZq+hqBOR/dQvniyehFVpvuXFmFXwScB1k3YcvnCD/zrqFZ5FNiJXPz+2vl3AtkNTf28D5ypr1p3xjF92JMLmB0y0biCMF5noX0Y0QF2cOVH950dapDPpuH3He3YcXGIPpJTYEZX0ISxW43UdcmsFc7ViV5RSA5TY92oIZY4+jJ9HGwChFOBIZemilrSJwlMLOxLYsU7Q2+/IAxu2MkRWf6pl5RukEozX5vSF6lNj20CizSr92iPAd5HIV6gEiU5h+Ao1gX20pGgFme4KpepbPKW1bs5WG7YkdK46wfxcazDSNPMowuxNElCNnS7bdWxTt0WkBa/fbnoVtbU3yoj0a66HmFYrFKLe/P6RMNAYLsYJp0Aj230lWJKkXr1XG7hvhWKgZ5xZeTh/sfceC0rQIu5mej9iHfVN4D+5/ZlaoWAvVnjCw0+1Y78E4I09sYI0UAq/s49TKJHFil+HatkMOfa1pow9UMa604wXQgwSdZNAo2TRnz8XBRQurMjWdCDFIkIUS0vvkIqLsI6refsq2oFCOBg6sVG2bvLCfIwSYmg93+ohrezin6siTNbtue9a30J7DWGCdaQsyp6Euh8CsCB20cpk87NkgLt9BOhI5VgTSZUKOQFtf1eJ4y/34c3vMRC2w2685SGbfPxYCUw9gL8JUPByEnSAxGSdmF9nc3SKvKJxSQCGUxfd94uEEM0oIWgfJ5Fpp9DjFTaFJhd637xD3J0gh8M/WMQL0zZ6F8UtVO1Z2J5hRdnCvMk6JOyOa5xboXtskr6bkw4StzU3CxRq1jy+RF96obrWEmiTocYbejmgQkmQpwaVZnHLAaDwiUSkydJCOj3owIAg9Nuix+9r3+dhzL1EK31vyszaa2xt3CS8/7ss4LelI/JN1bt67xSvPvYzBsLu7y1u3r9FPR8iWh3ENucogFsh6gHAFKsrJJjE6U2SbY8x2jNeoMXthEb9ID9daM1zv4F9sk2TpPowUQhYTcwJvpUp2o0c2jPDrZfIkY/KwT9Qd2SCrccqV0TUuKGuzcfPebfYe7JJ0x4TzJcrnKhjp0L+6h3uiQuVT80dChA7K7CfcH/iCGvI0R8c5gePTrLTx/A+u5bdYCeIkZjgZYqTBK3mU3IPjmyc5aTclnkQEsyXKp57sB6mNQQrxa9G6a4wh3YuJb/Vxc5g526b8cvUD3DZDOk5JO9bjdm52hqAcPhU2bbRmsD5gfKtPu9ni5VdeotJ43E7o3aox26D+hTrb97b5L3/9X/jYxY9x4dyF42ekp1DHnpEfrRLmWG73oS5jDGmaopQ1Tj82vT2uD1MdB9J89KrX6/H17/4DW9WMxuUTH1rPyGllUcK9H13hwbWbiIaPcATpxpCJq2n+m5dwvIMHD60Uvc0dZNNDxDnj17ZJcofq1y7aB4Y7PfJugnuyjlvxyd/cJBYO2TPLGN9FDxNc41Bp1cnilPFohNt++4dG1Y8J/ZCg8ngIwbTyJGU0HiGbJfI0tQ/EoxTv3i7e7hCxXEMtVzH3h3gna+TrI+vbF7rIqm9vnrVBbA1xb+7i7I1o9yVf+j/+MXmS8r0/+zr1P770tp/fffUO27UQOdOkNteit7mDqnko19gWaKXsA4KA4P/9Q3zPUPm9M+AKJv/1OmqYYTKN/OwJxMUZyyqiHOEIhCeRP+8QKom+0WMQT3C+fMqCv/Uh8pUFGwxTgBmjNPr1HfSPHlrlJFgQFHoYR6C/dR/3jy6iowxzZQ99Zc9CMUcg1prWr29ziLnRQ8yVMZsjxFwZ+ewc8sV5C5k06N0x6nubyBfn0T/dRmuDWalb9aOU1p+v7MHGEJarFppMn1LyIgxFW3WXeWBfw16EGaVWPSlsW6EZJtAMrEXhTBk9yTBrTduCOlVSToNZVAHNRilOb4KZKOQrC+i9CPPWnvXP812YLWPmy1YBmGnoxYidCY4B92zbei5mOdnWyCqPBgmUvYP95Fu1o1ioFJ6kWKVgP4Z2yfqS5kV7shQW2KW23ZrQses7bUkfprblPTcwTi1wagWI0LWKwWkL+zT9Oi7a0vclTOJgu/dbvk0BWI0dRxV7/poC9jLO7L6YQti0SLKebsu0dds5BLcKdbEouxY4i+KzJ9m+OtKkykLTwofS5EWYUaqKtvACqvoOsm5VsWDHuhkkVkFZnItO6KJyjZwtI12537aO7xTCzwMYaUYpItWYXNnVLVsATKxsa3vNTnKYO11YH+JkOeHZNqpqx4JOi32UaxzpoNDot/aQ59t2fGYaap4Ftr0EaYxtnVbaHqfQtd/HcW5De+o+QgrrIxrlODPlA6inNSZTiESjo8wCz6LEdIzEOUKDqdrWf5xiHE0DZrRtH8/2xoj58kEq+uGk8OkBN7bdXWqs9YUUyNRwenkVIQS9QZ/BZLQPoU2mqQQhvuczmozJdXFfbAThALztnHajyVbSIT9VIfIVumpVymmaYiIb+iSEgIWKnSQBe75uT5CJoj7bRE8Uozu7mFkfd75MWC0jjU2nDoOQUXdA1o2pu2XOnjpDrVZjNBrxs2tv0M3GpC3Xhp7FOXQiO8ElBUnfTiKISHHp9AVOrZwkDN85sKPb6/CTjauUTrff8XXGGKI3d3h+7RK3N+6wE3fxVqr4zRICmMSRTQYvgqqEtBMD+caI9P4QqQ3ldpm5l9fwKgcTb5PtAaNojLtcwYkNjVpj//h1+l0b5CUEapgitxPKCw16d7Zxlis4rbA4BzJqTondn9wnH2d4QlI+VcdrB4xudYl2x3gnq5RONSB0inC3J5QyuI6FlGqcUfFKmERR9ktUSpUP/F7GaMMknjCOxtbzMfT2FX/GQDZJGXfGKK3w2wEEAo22EwKPLEsX6fHTdO9D+viPVBltiB+OSW71CUs+rbMzhO9wD/X0V8CQDGPSbkopDGnONPGDpwOnVabo3+0S3R+ztLjAyfOrBOWnE7iTpzmbVzeQHcnnXv4ci4uLT2W5/1zrhRde4M6dO/yH//Af+Pf//t//qlfnuN6ljmHkR6CSJNmHPscw8rg+DHW4DXsKIY8DaT46pbXmyvWr/ONbP8R5ZoHqfOvd3/QrLq00cX+E0ZqgVuEH/9vfkH1uCfdQwE3/4Q7UHfsgCKTfvEc5gzjwyZ5dJurHZEJTXmkhXfuQbjYGpNd3SE7PoVZa1oMyLJOMJ9D0Ee/QTmSMQe9GNBZmePsHB8Ngp4suO5jOkHCji5PniLUWLNZACrL1PjJRuCdroDXp9R4m9HCWyjibA7wHPdyWi5hkuD/a5Tf/D/+K2uIMKs351v/rTxiVM2TFx6+HVC8vHgn9iW53uP/9+1R+/2PE44jE1ehAYqSxIEEbqzLpTQj//gbemTrO1ojyV06SfGsDtTki/L0zJH//gGwvRp5uQsnF7EWY2z1qa7O0vnaR6EcbdF69Q/7JefSbu7h/cB4x/7haQO9MINfof7iH/NKqTSXPNGaQYh6OEGdb9ncX27DWQrasL5/+yTb6+xuIlxaQl2Zwyh5qY4hwJOr7G4jlGs7HFjGZRr36wCY6t8pwroU4UT/qH7gbYe4PEKcbFlZNW4LBwhNtIM2h4qOvdyw0W6wg2iULyfqxVRZOcgtTc4382CL6ehezWC1Spn372lzvh64ggOsdRDeyLca+YwNXwiIZepzaJOzDPnyOQHRi3JcX0RLM3gTTS6yaUWmbNF72kK3AgkSDbeneixALlUJhaKw6Ms5t22wRqDKFkEYZC7NcaSFjEXRhhglmc4zwJXKhYlXHFKrGKaiS4qD9OcoPIOdhoDDJrTJSSDvWPLmfei38A29HY7BgqFyk0xfA0vpLTgeQPaceVdoxsfDMpjFbWGkmOSJ0LbTLtf3cOMekyvq1+g5U/f3wcAOIsVWtUgvsPp6CzV5cgFMBwwRShZyvWDtRI/A9j1TZtnSNBQuMM3Q/KTxhHQjdfXgDoB+OEa9v4TgS//wM7koFvT4ku99DnKxbkOhJCxA11reyG2MGCfJ0w4LIrbGFmp7AaYWI0AJRlIF+gpgJAWHVs5PMqn4x0E3shEfZO6QS1aidiV3Xup0IMZPcgmjY9xiVZQ+tDO6cDWQyRbCVBboGYUANizbuaUAVHKhgC7Ww6cXgSLsOgWN9RgcJoXKYb89SKZXRxhBFEwbDIXGWFLYVglqlQtUtkTwYIDYjlleXWTx7gp9ce53hnIPfKBMnCaM8QoQuWZ5hBin64QiWKoiKjxXZCTs+U0X+xi5mZ0Lz0yfxV2ogIN+LWJlZwHVc4v4E3U+ZqbZYnLWBaQ8219kbdAFDNaxw7+E6zlIFYwxu4KKVZrw7wFmq4DStOllNMryBxusqnj996R3btB9ubXJlfI/SUvNtX6OVJu2NGd3dY3a+zYAI0fALBbBV5WfCBj3lexEmU2TbEXovxl0o49U9e/1NFCSa+soM1dU2jufSu7mFmvUQZfcojMT6PU7yGKfkYTAkP9lBuBLvYmu/i0FFGd4Yhq9tkJucyvkmfsljfKNPlmSE55t4C2XAWD9WgQ3beeTr1CiDIyXCCNQ4Q0w0C+05yqXyL+0HabQhiiPyPEdKSRiGuI5LkiZF+Ixtra9VqgR+gNaacTRmkkxwAgcv8A4mH4whGcSMuxPwwG+HuMGBylNpRa6KCZbiomO0wZEC1/Ee2+4nhf58GEvnmvj+kPTekEq7QutcG6/iv/sbn1IZrYn7MXk/o1arUG/Xn1piehZl9G53yB8mrK6tsnJmGfcppW4/WpPhhPWfPmC5tMyXP/fl42eof2KdOXOG3d1d/uRP/oQ//MM//FWvznG9Sx23aX8E6tdBsn9cvx41bcM+DqT5aJeUkmcvXubUyip/+91v8mD9NvVnT+A+5fYmow2DzV2ySYIbeNRX5v7JXkHSkUday5//ymf4/p99A752FrdVRmUZSud4YWiDk17fJhxmLP6Ly6hxyvZrDxjvxXhfO0cWpwRV1yYzrzQI5iq4V7aIN3okl5eIhiOMBKmsUghhFWePXouFEOBJ8jTD9d/mxjtT1Acp2XfuogPgxUXEYg2DwYwzzNYYmWT4F9oIR6K1wG14iFfv43VHOIFEVjzEnYywXub0x56ntjjD1pU7vPmdH6EuNFBVg2r55JFi/K0bBJ7HzG9dxChNdnWP2l4GuSGZRMjlGipOwCu+/gvw5L6+RfDCLM7pJulPtxFG4J5rkN7o4pYDgj+8hOpMGP35DVQvsX6KoWS82WX0f/tHXM+n2Wyxe62HmCkh5p/k1VNcK5ohYrWOudlDfnwJtRdZ1eM4xXzzHs7vnYVqYP3zUmXVlNc7tsX7R5vo9SE8O2tDIubKyN85g/6zm2TdGNEuoZdq6LkqYq1hAeK0/XfazrpYAQzm4dh663HQwmt/KGCSsO8T82XEbNmq6G52D5SHoU1DN1tj9Ft7Fh5d24Pn5u0yRqlV2xWQkDs9mwK9VIF+oZI907T7QwjrgfpwhLnTRzw3i2yEFpxVx+Q7Y+RixQIcAyLTiNMNZCN4JIQFC80EtqV6pXaw/VXfgshHDokIHQgczM7EAvpUIyYZouLhnGkU3pAFMJ3uo0lWPFAXijevaKPONUjnABROFYlGYJzCr2+S2dc7RajPVOU4BbbTVGxTLF88ssIGu05TCDZtD88NIrRw1aji+6mAxThFSI8nLfSYLR/4ZWa2jRopMEGhHu3HUAvs5ykD9RB6kVX7OSHEOXovQsyV0Zn9PnSFJEtzTJTZ9Su5iLmSPf6pbQXX2xNkmsP9Aa4D/uU2+e4YM++T3O5gdib22G2O9hWfVD3cFxbsfppkNrl5L4JBigwkzkLZAlQ5VZiCKAKTbCOtKfw1i455IVHK7pMjHn+jzPqI1nz73m5sj3srtMsXVp2oh6nd/lQjA2f/8Bht0NomZtvlFspYaX83BTYCbDBPIzjwGJUCYwxePUQ6Hlt7uyyJOeI0oTseIGs+blBBIMh7MTs/v8/2+oQXXnyOs199Cek6jMdjBiomaFi4F/g+k3iCyiwM1xtDO8kxPR9CB3V/hL7VQ1Zd/GfaCNFGhP4RNXe8N8aJYak9z+y5WbTW3Lh9k43eNu5CBe+kVUvf3+0SuRmlNKOxNk/SHzPc7eNfatkJiqJk6KJ0Tm2hyc+uvsUnguCJ4S5gPSlRT9aMqCwn6YxIxzFOwydYqTBSCanJkcomxRsDemCvGTpWpLf6IMGbLxO8NE+2PkT4Du7F9v7xHd0fEf10SP3k7P45aTKN5x79jisFIVmW2bCY0EUlGcHJNtJz0FqTPhii7gxRUhKslgjrHtGtAbEQhBcalBeOdhRoT0NmUJMMZzoBUcA6oQU6mnosa5bnFgjfY6v725aBbr/LYDy0E0IukIEedFBJhht6yKpVOyYqZdTdwqSasBzgl33CRmmfs2tliPsTJr0JsuISLJeeqNR0pIMjHbSZ+lXbc3UKHR91oLVnMHxYVZIqKUJpNic0VuosfvYUTvDBoQWdK+JuhB4rGs06tbX5p+ZHmQxieje7iIHm9LlTzD///npdxuOYvdu7eKnHytrK8bP/L1HHnpEfrTqGkcd1XMf1jnUcSPPrW9VqlX/5ld/l5q2bfOM738NcaFNfnv2ll2uM4f5rb3HvZ1cQcz6yYoMp1NdjVi6eZe1Tz//SJu3V+Raf+J++zE//6tvEdUm6EGB8RbYzgbf2qMxVmfu9ywhH4tZD6it14t6Q9Pt3iE+0oVI68EfzXdwXVyjvjPB+eo+h55OttKxyxi0ATF/hhB5OLTh6k+iIffBxpEYx8u4Owd6Y6uoswb/4NN31bfY2d1C7sRVclVyC+RqEDlmaIgZj/Nt7yDsdKifqBF9eRWQaLwwI21VG/+M6pz7+LNtX7/H6az8m+KOLqEmM6Q1Q49Q+uDzbRm2MSf6f36U1M8OFTzxP8GKZ7/6Pb8PnVq13I0cfbZw3twn6E+QnZm3i91KN5MoezkwJYo30XPQkY/jXt5DtEKfq4b84h3uqYVs+JznJDzbp/3DX+h++smb96abquenEhTYWasQ54kIb/bd30Keb+95+5noP5/fPWwhUwBD9D/cQpxo4v38BUfMsnHttC/3GLsyVrSfi1gRzqoHWIF5ahGGK2B4fgMipalvYNlOzM7EwRwjMja4NGZkrIeq25do8HFlF3s7Ewp+T1nNT3+xagFIuPPyEsHBzuWpB6d0+IlHwxg6m7kOrUFLuTGBnjGiFyBfn7TLPunZd7g3s+GqXbOv7iTqm6qN/voP5ROEFWg8wt3ro3D6Mi6qHONu0ALOX7IMmpLSt6KFzoPacqhUNB8cD9hVrBqwacZBi4hx6GtkIELMlqyqcKhzTosU5KZY39ZGcLmvqDanNgVfmYVjoFYnXuQWT9jVYOBjpg1ZnCjWkNvuwcL+mbdv5IXWlMfaztf0cndsWVAwWambGQt5E2fEwbZ8/1PZtpp+l7ZlhGgFiZ2whqyP34acRwh5fR1pIN84wfQvVMlOswySz69QKIVMW7k1FnJ0J8lYXqTX+Z1cQoWcVo1GG+smW3dbCH1LMlW3buTKwNSH/7jryQhuGCSKSuPNlxMnqgfJQsO/faId8QSWnxyDKEZ5jE8qLNnV5GEQqjZlkiJmSFZ92Y6uODNwDSGysyo6aD75E702QyweeXCbXCE8e4JRMIT3HTrLkuggzkZhBepAynyqMlFaFmmnyomXeaYVs7myDL/FmyhZuPRyh7gxwhWTm7CLOxwPuX9tlKVml6lbZ3HmImT1omxRC0KjV6fS66KRQ3Lo2CCy/2UNvj/FaIeEn5pBF+JeJc7JhguM55J0YvTHh9POXaZ1s0el0eO3nP2Fn2CV1cqTj4Owpqp4kbFWQDR+/PUO2PaF3a4s8TvHO1I+ASAAhBcrYoBLvVJ0b927xyrMv8aRqNpuYOxlm5cDnNI+sv2WepbitgHC2jtGa6EEP7YGo+QjftUFp2pB1c7IbA9TWmPInFvDX6qhOQrYxwrvUtiFTGPTDCLUXIVyJrjp0bj/EwUEQ4s2WCeuPtKQKQb1aYxJHTPZGNm3ek0yud8juDii1SjSenWWyPmCyPsbVZUovzFhP2yd4QgopwbVjTU0yZODa62yiEULihj46yqiEZcLglweR23vbRCLDmyvvX2eMMSReAsojG+aUvRCjDSrNwQNZccmUouQ5VgicKSbdCfEoxqt7lE5W39N9sBTyiXzxSVCy+Pb8UEHJfJQyudmHXkpzrUXtiwvWsuKD+vw0J+lEiBSarQaVhcpTgXfGGCZ7Y4a3egS5x8ULZ2gvvb1f69OoUW/E7o0dvInPJy59gtVPrB53Qf4Slec5UWRDE489Iz8adQwjj+u4juuJ9aRAmsOt2MeBNL8eJYTg3NlzrCyv8M0ffIfrD25Qf34Vr/RPS/YzxvDGX3ybgTOg8UdncQ49dOhMsf2Th/T+5Bu89Ee/+UsDydpCm8/9+39Bf32HK1//LkNvTGWtTe1fPov7SIuQyRT+ao3qhTb9b6+jBxn62WXE4cTW2Qp6pYF3axf3ekTy8ilMdfoAZlDjDL03xps5dON7SPGDMbAzwLu7S6gNldOL+C+c2Q/YmTm9zGQ4wjnX2G8lN2mOuNtBXtsgXC7hnwjJHjjMffGiBX2ZIrq5x+6371MeSPIk481v/QD9xSV27q5bBWcjQFaq9jklVmhHkG2OOPPycyw/fw6AyxsXeO1Pf4h6fgm5UsOUXGQ3wrvyEK/qUfq9cwjXwWiNKfuU3JBkfYzjSNTmiOTKrm0FBkq/d8Y+eBT7QJYcwk8tY9ZajP7jVZwwQK0PYKlqk3SnYEgZRM1HPxxDK9hvnxUN3wIKV8Ccfcg0gwT99/eQX12zkLCAR8JzMIsVCCT69R1AwKdPIEsevLWLiHJ0v0i3LlR3RhdKsX687wEpF6sFrLMqPb05wtwbWGDTDmG5iolzhDKYG137KJgrC2KKVl/Wh1Y1tlS1uyJ0Ma0A8dy8bcWOi1TnmgdrS3Cnb30uW6GFaZ6PONeyasuyZ+GfMbaVeraE3hwhWyHsTJChY0FoI7DAq59gPAmN0AIisMBsnGHGmf2Mqm89C0uuhYdwQKu0sbZ92xPILTh2lioWWLqyCIZRoAsgl2aQmAPIud+ai90WV1olKFiV0VTtKAsAOcntz4FzoMrNihZ2iuVOH2anQHOcHW3HjotllN2DNkewYyMtgKhbqFAnti3XTFvZhW2VNoPEemfuXxgOqWEPLdOUfUSU7Ycx4Uub7j7JbSs7IFqhVQ92YnToIl0HHefQDJHaYKQF79zpIXbGuKs1nC+egKLFX5Q96+HXja36uupZODr9Sq0XEx+BgwgkYn2As1RFVFzrc5pZQGzyQklarLsQwsI9sBMqmbYK34qPSK2yUYqiZd2VRft1oYAT2P3oyf1wqyKhZn8/GQGy4mNGGbqXWHVugU9E4RMqhLBKyxm7r6UnrYI01ZgoswrTqecoWE9M3/pG5qqY/DQZMpNMftxBPRjgeC7eTJnwVBNvtox0JGq1yq37d3jh0nM2bKxx9LFGSgff9Ui3h+A7ZD+3rdjuXInwEwvIqn9g0aANepyRb4xwJwLPcTmzdoFWs8XPr7zB5nAXb7mKma8QFl6fepLRX++QjmJk23rPuitVkrc6VnH+LioxrxLQi3ZI0xT/Cep63/OZrbXodMZI3yHqjDCOwWsFhKU6AsgmCfHeCMqOPc8F5L2I7MEIvZfgzAaUX5nDxC30bmw9HncnuKdq9rgoTX6jh6h4eBdbdlKkIOi6m5Dd7RP4PrL5hHs9ISiXyqj7I9IhZD/YobRYpv3KItHDCd3Xd5BzPtXfWEIGDnqSH/EifWRRtk3bd0nHMXqUIH3X7kMNupdQr9RoN1q/NJMbT8ZMdIrfejSRO8M4Asd3yXPNeHuAXwtwK86+Kk7nmlF/hIkMaZLitwIqbxNK808tUVyoD09zHkDJXx2QTDsx8c0eMjXMnG1TebH2S7fJv/cyZBObjO0ah5mZNqVq6SmF0hiGWzYZu1Gq8fzlZ6nPvH8hj8YY+jt9Ojf2aMgmX3rmiywsLB6rIZ9CTVWRcKyM/KjUMYz8CJUp0g6PL1bH9X7V4UCa6XiD41bsfw5VKpX47S98hUv37vH1732Lyek69ZPzv/D1ZuNnN+iLPs0vnHrsvdJzqH9ihcEPN7j93Z9x9vMv/9LrLYSgeWKeky9d5v7kDvVXlp/4OqfkobdTZMmjfKlNxanSefUWydk5WLEqs2xvTCZAfHoV2U8ov3GfbKZGem4BHImo+BgB+SDGaxSqu0ThVgTizjb+/Q7lVpXyM6dwm4/7JQopWTx/ks3rdxENF787JuxNqJ1s4v3mebo/u0f0V3eZ/4PnQUD/+/cYvLGJaofIZoBeKfOdv/pbRlt7yIc+zJZwl6qHHgYMxnNwqj7644bv/+e/5g9eOIuUksVnTtO6fwcW64yubZNmKd5sGe8rp5CNQ2oiRyL6KdWX1pDfuM386hoP/us1dNVBeJLy/3Jh3w+s+EhMqnA9D7FaR8wElEol/Lka/c1ddCAt0HEEQhc+cZmyadSSImzDIEapTbrtRHaZV/YQL8xbjztTJIH3YtStHqabYE424F8/g7nWtcAwt22xJrbJx6LqWyBVcvfX0TwYIs63D1RwUzDnF4ECjcC2X1d9C1OCHFPxbdu07yBOtC0wLN6G1piNEeZW1wbPTDIb2DNtzZ4pIcYF0AI400T/fGcf0AiwQHGxitmawKni4SfXNiX54QiqHvJEze4XsKrBqSIxtZ6BpuJZn0lPIpoBZpJZwBXaFk8zyW2i81gUyeRFq3I3RtR95GLtQDU5VflKYcFGlNk11UCpgIzaHACcactrog7elxwKxBEcpF97zlGPSUdYhdw0NMgrlukICKWFv1FeqCmLHea/zQRG0SpuuomFeVFuzwtHInKNKbn7zPHAu/DRE/TQ9cqTxbYf/QwzSqFaBAZJiXQl7mwZPUiQkcKUPIwrMNsR5m4XB4O71kBebh0sY66MudG1Kdq7EWK1ZoE7WCittG39f30H2fCRJRfnRBV0BXqJPZ4lD6EMvueRqdz6R3oHEwTW19PFjDIYWCCtezGB8GnWWoBht99FlgRagLLJM3Z8RDnUfcC2Tk9Z5P7xFcKqnGs+Yqww6cSOYwlmAsQ5QaWESnP0ONsPKZKetJ6uU0/STNt7Cqw6fR+mOgIVZ6T3BpiNEeXLM1S+dgYZuphcE+1MiK48YObSCn69xO79HfI8x/d8dBbvHy4DDMdD4mFEfncAxuBfauM800TkWDV2ZpWlup+guom1K8gN8XBCPtaMl+t8/Tt/z9hLcaoBk60OOlP4SzXc2RKy7OGfaxLd7FHyBKYqwHWQsyWy9cETh6pRGlcWkytCIEsucRI/EUYqrZhrzbB+9WcwHxAsVHAOTaAlw5g0SpAzJWTgkMcZ6b0h6uEEd7aEOx/inawjKx5KAK5A9RPrc1scF7U+QjYCnGnbtLETFaKYaKicnyW+0yNt1fBrRxWJ+Til9/oG+fqQ0mqZcK3J+G6fzhu7BKfr1C8to5LClsFYvCYfs17Y/1h0pDBK4eLQKFWQroMxBt/3qDarTw189YZ93Obj+zvLrao7TxSOL6Hm4VaspYsxkE8ykk6MyRWV+RqVxdr7CAef3Lw9/dMHBSWNNiRbY+JbAwLfZeHcHEG79ME9ixpDMk5IOwmhF7AwP08QPh0/Sp1r+g96RHeGzM3McvGTL1OuvX0g4S9bRhv2Nvbo3eyxUl/md175Hdrtdw6nOq5frKZJ2nCsjPyo1DGM/AjUMXw8rve7nhRIAwcQchpIM/35uH5969TJk/y7hX/Fq6/9gNdfvU79xVX8yntriTLGcO+nb1L7vZPveN2qvrTIxn+6xulPv/BLqyOnNXdhlZv/6WeYl5ee+NnhahP9rVvkw4SgXCaca7A4X6H/8y2GG33Uc8sk2yPEqTpCC9y5OlkrJNgc4r56g+TyEmqmhih76Km33s6I8p0epWt7VFdnCT/3DPIdkhuNNpjOhPqtLundLUhT5EIVHSni72+xurhA8PIJNv/+Lntbe8RzPnxqwT6E+w6xMuhqHV6sk//jfbzfO2dTUacpxcLCRKMNzsk6SSh48NpbnPz4M5Tbdcp45As1Zs/P0n2wjZgNkY+oVHQvxtWQPxzSrLZ5+Q+/TOMbP+LNqz9FnqxBrFHdsfVNrHmI3OC4LqK4PgQXZ4he36D+By+TJ3UmycSma0thoZ8vEbioq3sWpL2xi1itA8YquFKN3hyir+3h/JvLdp9tjtC3e1ZVtdqAi1VEu2zDOho+DJL994vQxTjSKjEFMMoQJcf6+y0WSs3p/sK+jUFq05jPtawa71Arq9kaI9qh9YyM8yM2hkZK21Z9r29VlYsVq9zMtFUJ7kUWpEY5tEMLxubKmG6MKBUz9gJEI7BwNs6hF9t1qfkIUUU2AhssUUAT2qEFckkB6ooEajNKEYtVCyTL1haBSbbvFUnJPryZbgJ7EbLkIpYqVm15wLIPQONUJejbVlowBwnXBhDmQNlYHFsOQ+ppWrXv2GNR8Q6WPwWacKCWnLZmTxWVAru8XNtj4goLaKfrOQWaYI9LovaPmZDgzZSRJZf04ajwAj10TTCHjApEAVp5ZJlPqmmidK73ofT0fbLkwSiHzgTn50OEMMgTVZzV+j5A0QVUFb6DThXsThBnW8VxxKpD8yJBPVE4dc8qYptFOJHS4DlIbUFyeb6BEJJcKYzRVq2LsJB8kCCMVSo69cBOBnguJeXTblowWgpL3N/eRDU9pO+QDxILONT0WFtPO7tPDu0zg7UGkAJjNEG1jE4VWZwy9RHNk8xCs0ShJxGUXXsNyAoP0bxQDT4Cl3Q/Ib89sB6prYDyJxYJTjQOdrUrcZeqqDCme/0hM5dXkKENG1maW+D+zW1oVzHaMN7oMLj2EFl2CC+1oFIEPSnAMQhlyLsJqhcjWtbHVkiB6SYEp5qo+0Nuppu4p8oEDfs7kWdopcnuj9BRhr/aACHwTtZIbgwQQRUTGmTNL47H46UTRbV0MFllwd/R/ZBlGdt7O+z0dxA1l7VXzrHX6xD3U3RJgSPQiSIdR/hzVdJ+RHq1R96L8E83KP/Gsv0uSDXp1Q5ezXplylaI2outd2wRXqUHKe6zMwengLGntyMlTuBR9SvIZehd2aR5cRGvXiLrRvSvbJH3J9RO1Jj79DnuvnGb5PoewdkG9dmD1lbhOuj8sJfoI+4LCnShNnc8j7BRIp+k+NKnXn/66jStNZnO8Z0DoGW0IZ0k6CTDLbs4Bag0mUanChUr0m6MCByCudCOQ8f9gIDgk3SSvO9+kkZpovtD0rtDKq0KKy8t49f+aR0z/6TPN5qkn5D1UyrlMrMnlvC8p4MtVJrTu9MleTBh5cQyJ75wGf8pAc4nfl6u2Lm3w+jOkLOLZ/nSb3zxWLX3PtWxMvKjV8cw8iNSx0DyuN6PeqdW7KkX5LEK8p9fBUHAlz7zeS5unuWvfvhNesshjTNL76pKiLpDVEU81iL9aElX4qyU6D/YprW29FTW2S+HzC4vM3x9i9oLi0/8zNqZGfrffMDC7zxr/853ab2yQnlrxN6rNxkbAStVvHIJx3VReY4+0cBZrFF6/SHpRp/04iJyFOO9/gA/yln+xGX8EzP7rdhPKp3mqHs7JD++RbbTofziAu3PvwAYknt98isdVk6vcfE3P4mQgtaJBb75V19Hfm4Fd75iE4eLynYsCJRfXSP/u7voL60iFPuAxwDSseEFoupx9VuvcfLjzwBw/pMv8tN/+CHh/3SBxsIM/a1dVM1DVm1gg8k1+d/dxU9Af3+Hk1/7LFpr6ottxOuQ3uqR7kSImm/bj0cZpWdncZ9bODgO55ok/9+r5IOYeDTBeAb3ZAMjjFXc5DZ4xPrNVZFJBne6yDhHdyLrd5hiVY53+uj7Q2uJOF+BlZqFJHGOud3FlDwL2jJl99HOxCovI4VxBc7pJmAfqtiL4PKMbasvQJsp0oHN7sSG2hSBRCbKrPoryWGQINYaFpRN07GLtuj9r+WlKmZjZL0dezHm4RhR96EZ2v06yeCtPesh2Qzg/gAobpI1NkU7U4i9yLaIh+5Bm7IQ0Ess/J0rQ66s6rHi27TiwjfRjDLMzuTA0zJ0rZpyrmwVog9te6bTDBDzhap3qjqcQqK8UIum6gAGuhJUfuDPqM1BeIwjDlous0LdOA26caX9/Tg7UDNO95fGLmsKPcHu01TZ9T5yYruQpwcsbPpv0UZuomLdfAdcgSgWKwtwKUseahpi40nbrp/pI56RQhZj4dD1TcS5/expFeNWuFPfRbGfBq4nGe69IfpGF3+5TPDxRYwUOBmkqcYUvpsS+zlG2n0szrSs4gowcYYYJogkR7oSUXUtMFIF1O0nVqnqS8RQUStVSDsxouohhbBzEY5dJzPOcBqBbc/PNGqQ4FQCwlqJeDdCa4OUgjAIcYWEcY4eZfZciAsorIsVng7yabu2NkXAkCiOsyBNUvQwse2tMyWkb1WoqoDEwoDqRLYFvFDdoTUqBcd3MAL0TkR2q2cnUlaqeBca1gbhbZSwTisk3ZmQjROMNkghqVQrlDJJ741N0u0ReQ3Cl2dxGtYLNtsegwIzydCjzIZjeQ5irYmQAimsorU230QMFKrt4y2UyfoRwaGvPuE7uGcb5Dd6qG6E07LnUxonyFsZCo2QEh1l6DRHHhpHKs7wsK3jAEZrxCSnXLZqrCiOeLizRTfq4TVDqqda+9+7S/OL5HnOJJqQpAnjOEMkkL62SxolVJ6ZQb4wizbajgVA+BLZCNC9BFF4N9vjZ9XgqhsjW+GBQ4EQCGPwPM/+HqtebSy0GW7GOFfHPLx3E6fiUDvdJJyrM94Ysqs71D++RBaYx/wgHU+ixrn1E9Xm4DKQaXSU278LXSh5eL5NHEeZ9y2x+HCYks41eZRitEYGEr8UWABfvC7tJahBhlu3AUFTX0TrE/1OMxdPvz6o1m2dKiZ3+uTrE+rLdRY+cwr3CR6f71dppUl6Efkwp9GoUTs5+8QwoH9KpZOU/s0Oajfj1JmTLH5lEfcpAc4nfl6csnN7m2Qj5pm1Z7n8W5cJgg8O6P5zrOFwuP/zMYz8aNQxjDyu4/pnVodbsd8ukOa4Ffu4AJaWlvjf/84f88Of/ZgffecalRdOENYfbz+eVh6nyNJ7+1oRJZcsyd79hb9AXfzyJ/jJn/wtvfF9ai8u2kRO7NhONofo9Zi2KjP53jrlV5ZxCmgaLFRprDWJvn4V44B55TTUXYJKmSxOyLWGFxfxNod437qGASqtFiu//YwNZHmbUoMJ5s4O5X6MO0nplDXt//PHj7zHn6thXllh+1t34Rvf59JXP8Vr//0bmE/N4s5XMFnhq+jbFllRtBHK2TJ54CBShbNaxyiNenMP9cYuynMsBBtlDCYxo+0u1fkWs2dXOD8Ycv2/X8H52BKNlTmS4YRoY4TaGpF/dx1nkCDPzzMWCa/+2V8jR4owLJG6Bucrp3FPHChVTJQRv7ZF+t+u4sxXMP3Yghkk8X9/i+xyBedcE9WLCwhhEMag//E+4ScX8dbqTP6365T+6DxCwHhyB/XWHqJaBB5JB7NUQyzXbMCLBKOxQGS5CrsR+sEQ4wjM9qRIuHZhmGL2YnQwQixVLOgq9t2RmhSehOPMgp5pKE1sbSpElGPqAcKAKUAl2QGM3C8pLADcm0A/tUEj0/AVIay6cbGKudeHrbGFfsrYlNsCEjiLFcRiBTPObOANWDC6NbYgrB1a2DxMrUrTOUxHBKLqY1ybSI4UFkBKCRsjZMlFzpYsnJp6MBpjt3m6DwIHgkOhCtpY1eO0Rfrw33nSQkNlrGLRYMHlFJxNfSWnkNA8+tBu9td7vxxpl31IgGdTnsTBXxhs4EmsLLh05X4LMJ7cB+ri0Mc5FR+1M7Kp3RXPBsSM0gPfyOlnTKHs1A8znrYqY7ezaGmnnxTjyKC3RjidCNmJaV9YRH66xiCJLABNcgLfRycxBO7+ZIXWmnRkrQiouDbhuxcjfYkzWwIX6wcZOggOvB+RwgLJTONIh5XFJZI0pTfsE/cHGLewWCi7OAsVCxIBIxxE6KF7MUq6FvxpjZQOcWIVcuVGiFaKSW+MHqaY0LG+kcX181Aqjt2/btHOPbRAzwjsfo1y6yHZtgFBsuySxzk6yaHk4NR820o/SKxfqTDEN7qY9TGi5uGcqltgpoyFqv0EM1cizzNc93HFuTNXZrLVp5RKpBHcff0mZismDyd4L7URoUAGcn/oCATZz3etF+dMCRrS8lbPvl9GGtHLqF6aZffKOv6zM2gMwndQaY4TeAghMcYCOmelRnpvgKcN6eYQsVDGn6uAgPheHyYOo+8+wF+u463W0L0EBhmZkXScMWHD+maemF1kMpmwsbPBRMf4rRL1+fZjIgRtNIPRkP5gQNoZM77RwQ1dglaJ0pk63nzZTqJMw4KkRVROO0TvRMhGQN5P7Nk0ye3cQmbDw/bPR2VwpHMgEs4NwheMb3UY3dqjde4El7/6HOPtAXvrHcyipPqpxX1v6FE0Ik8V8ghEFri+Sx7ldjsiq4I0UiBKHtKdnreCNE9xtYOIFV7No9PtkGQJICgFIbVq7ZcO95BSolKF7kcgDG7JQbp+4TiRo3ND1k1Q4wyn6lE6VX28g8MYBL+K++P3r3U7H2dEt/roTkLrZPMDD6VRWU7ciSA2NFoNqqeryKfUlh/1IgY3uzgTOH1ujbmX597X55t4HLN9YxvT0bx04SXOvngW1z1GLh9ETZWRvu8/0friuD58dXxmfATqWBV5XE+j3i2QZtqKfQwgj+tweZ7HZz72SS7sneUvv/t3dGY7NM+v7Ju5H3ltKbAKm/dQZpzjlZ7ujYLjubz8x19l/afXuP8/rqLLAulJ8n5Ko9Xm5d/6ErWFGTZ+dp07f/4WeQlk6KKHCb7yqDcalF45Sf/1+8RzdfTZObwwwAt9q65aDeDkHGZzyEx7/okg0mhDvt3DvbNLy/E4cfYk4eUyr/7Xv6D+ry898T1CCCqfP8XD/3aVpc1det0e7swKqhPtAzTTj22bYD2A3sQG0FycwWyOMYtVsr+4hZgv4/zL87ZNdyeynnv3hnzvL/6O5z/7CebPr3Ly5Uu0lue589oVdr79JtKTVFKFHqeYU7NooUn7E7QL2mQoN2dkcsSnVx9nSqELF9tkwwSzO6b0hROYKEdf7RO/tou6vYk+UUWebyMkqDt9zMMx7okq7koVETi4F9qkV/ZwZkuo7QlqkMFnTmBetuBCtEqImZKFF5r9UBoA0wrhbt+2bLdLOFXfAq3ZMnpNox+M+P+z92dBkqXpXTf4e9+z+u6xZ0TuW2XtVb2v6kYt1C0EDB9gDPoWbG4YM5nGuJANY8aVDN3JuJCNDGMw7jBuPkyfgQFCILWEhNRNL+pFXV3dVZVZlfueEeHh+1nf952L57h7RGZW9aKq7koRz0VVZmSE+9nDz+/8F3eljz7TlbyymVvXIQqhCqw4rVC+wDTnJLtQKY2dFpLxN7MuzxR9bqFIwVR/CTTu/hT97OqiAEYpUA7niQJQnexI6U5Wom4N0e0ITrQl83KU4XYTVCMUNWOVwehmADApcbmV/T8Divs/GiixsLpagLs9hMyiV2vo1WZVRMLCnr6/cAmq0ouHPmcoJfs3Eyu4qiCHNGNXmZt68d44FjbumcJxtoyZWWRRzhSXD3+sUQ/9f//XK0WeG2XSGF3zpUjIiSLIlVLQ4ipbtwp9bFYK4FDV7XlhBPQ2AtSkkCKblhSvoNTidQA1SAXE5VagZFqi2qIettbhdqa4V+6jBxnBkRr1M0tEG038Wsjw1T5u06GsKLvazRaD8QgXS6u0MSXuXtXUfX2Ajn30ZgMVagHDreghC7habP92BLsJjUjy2uIoomUajG0qma6+qrKeKwXmuJASppoPrYAsz3Fpwc7eDmvLqxhjoWIs2vMIOzH5JKsss7YqPVLz/SvbEzknMgPTAm+9vlBJLoGbFJh+im6F8jOFgdiTY32m4vUV+XcfYMcl3tEm3tNdUWfHvjQ5ZyXuyghvKaa8PkSd7kJDPXIzr2KP6Rs9WmWbP/8f3yQ41WblZ0/TxbHb36W3PcA2Auy0wOwkaKNotBrkSQE5GJyUIaUG+2CKlzhWLmxSjDNUJ5yrBAk1NjV4UYDWUvjiPCnuKtKS/J60UtvMkF8fUOxMUXUff6spD353U/KvDwlaMeGZJXTszQszzK0xtQ2YeinRSp12/Gh+nHMOYwx3795lfH8IvZzGZgf/k0cJ1uq40pBeH5Be2SM+u4TvBxhTSoO5VjgldmOdgd4t8JSijMDsJmitcKWb2/NneY6lKTHjHHNlxO5gh9rRBu0XlikSw43vXCM82aLz6aOPwKpGrUGSpeTTXK4HMyheWNy0FLUsoNdq8rvQOlxm0b6Hrh7y5L2EoFDc3hWLvW7Lfh+kE/r3h3Qbbbrt7o/sTnbOkaYp4+kYL9KompbSpGpsash2ptjSEixHhKsxlO4xUTKyvX6692bvnnU730tJLg/QqWHpzDLNF7Z+gqU0UKQFWS/BM4rl5S71zcYjv45+nHHOMdkeM7rcp65inrnwFN317nu630Z7I3bf3CFKIz72zEc5/rHjh/dUP+GZZUYe5kU+OXMIIw/ncP4Sz0wFOcuDPCykOZwfd1ZWVvilX/jbfPf7r/LV//Eq0fNb1JcP5jnF3SZ+rilHGf47ZAvZwmDuJnQ+v/6uL6f2PY5/6BmOffBp0sEEWxrCRowfh+xdu8crv/PHTPYGACwFXTbOnqJ7fIOoVefrv/37ZA6WP32G9K0dhl+5TP7cFmq5gTez8jiHGRbEpw/aP2xeYm7uENza4/jaCpsffH6uIr36tVfxn1l6RxWlUorwhTVe+Q//HQIlN2sH1CUOlxrsbiJgZ5RL2cKuofzyLdTpDvqFanumJSovReWy2Sb64Abf+09/xsdXOtSX27Q2lnnhr30K5xzWWG6/comr968w2RlimxobKcKPbOAdbzH5nSt4nzyKinzMdkK5PcFfa+AAs5NAoPD/6knM//UGBBpd+uggYOobgmeXUKGHV9OSTfnpLYKjTfLv7ZD+txtEP3ccfEX6zQfolzcwL2/in+1SvN6Tlt8iQZ3sVBCNhVW0uv9yt0aorSaqHogK1jqUUzhPoT0fdaKNudrHvr4rsKSX4qIKWPlKlIOhWJFdWgoESmS7OS12TDeqGqKtE7hrnCyPmxNJWaakkOKbap8d+B6FwMS9FOUrVCMWlZ5mAdlKJxZtv7Irw1zZRN0HfNzOFFb2tb/uuw91WSkwMzMCdjaChWpwppLSAqsEoDp5n4fbfh/2AFb5lM4iqtD9EQyPu6mbLb+rIKpz8h4zpWhpFzbvWC2s2uVBm/RsuV1SipLROgF1rWChCnXV/wPJN3R5CZMCmxmxtQda2uErUOr2UrFfNwLUtBTVaSOQZS4MqrCy7J6S8yeV4g29VBPI9/0d1PU9lLWEx1rEnzmKH/i4SUHv5jaB9mgd6TK83ENtNHEhTKdTnLGUw1wA4YMJapzhtSO8zTo6DiQXNa9s8g/bIedPAAQyqEaIzRb/PJiMCJohmS0ByeRTylH2MvC1wMIZTCwsQT0gNZbbD+6y3F6S/MTZrvN8ytigI5+yN5UHGp1IeGj1EEAFVWN4X4pibC+VcqdmIK3usSfXhl4ih5JWYpNG2pDL60MYZASbdWzdoHwBmc44GOfYUQ69BP9EC68TYRNDcXWAOtvFeV5VJOIo7k9Iv7+DTgz6I8eIVxsEfoDyND6w2llh9GCAHadE9ZjauWXCtqhhTV4yvT9gcHkH6j4q0DRX2rTPLKO0IhtMUcGsYEYLqN7/mUlVUForKe86vwQayrf2cKUleHFV1MiVBd9uNXFpSfFGDz1M8cM6ZjeBwtC4sMzI5TS73Ucy69IspT8cMOmPmF7uUYwyWk+t0v3UCaJazN5gTyzHvkd0ZonkzV2K7SnhWgPf83Gek+VMc6IwJB7C+TMXOHXsJFdvXOONy2+ijzfJd6b463VAyUPrcUF+eYDbS2mebuOtxyQ3xtjUEj7XoPv8sbeFVQpFPapRC2PyMqfIC/JpRjHNUb5H0Iol/qSXidI49Ko4AInTsKMCUkMZeTRXD2ZV60YEdej3RzCEbqf72GV4eKy1TJMpk3SCDjVBO6TtfEbJBBc4yklJtpeAgmApQteq48y4x66nK93cZv/Tnne2bst3PG6cc2QPpmSXBwS+z8a5VeKVn2ApDY58kpP1MiIvYH1llagevytmc2ctwztDJlcGLLW7vPziizSX3ju7rnOO/v0+vbd2WQ6W+dlnf5b19R+9/PFw3p2ZwchDi/aTM4cw8nAO5y/hzIpoZhByNg/nQc5g5OEczg8znufxgRdf5vSJU/zh1/6E+809Os8cm+f5KKU49cHneeurr7L082fe9sPY6Jt3OfbsU49VV75bo5Si1pUPI0WS8a3f/n2yRkntpVW6G+tgHcmNPpde+Q5rd7a48LmPcvaDz/HK176N9wsXqD21TrjVYfjKbZJmDXNhAxV4lHdHdFaX5rbLmRW71k85duooqz97Hj88eKPSu3Of8JOPb0y0qcATHfn4603ub99HNwLsOBfbpS/WS5RCxWK3NbfHKF9hr/QlbzAt8T57QiDPKIe0RK/XsdsJtUiABx88wo3vXOTpz33kwDbSnubGqxcxJyNsU2GSnNrfOisKpWmBzQ3+Sh1weKGHuTvGzKyqzqK7dRGXHWuTfeM+9voQGj61XzyFqvuYe1PKiz28Iw3CE/Kk2j/VJn+9x+SLN+HZVdxHj+I/vYq5uIu5M8G/sIS5M5FekbzKg9SAE5Wiq3ILXT8VJWJqMMMMHXhV+2rlKPA1+mQb+6370vR7eygqzajKTnMOFVQt6XsprNYEVNYDVKShHWK2p6Dl9dykKsVJS1l/X9SSbpzDtISVOm6QCTz0tYDLUQ6jDBV6aI1kX4Zaim5mWZaFFSWeQwDerMQFBLSVVcZhJIUgRP68acKNc1w/q4pKQjlWSrdQI3r7bM5q4bRwhVvkPj7cbrsfss7KTGYFOgeKTGZS030/p5jneuJpyV2clQk55GszYJkIGJSTtLJ/VypIMoNLS7FkZ0ayRLNyUYSzfxyyHKNClLOdoNo/su10aUWZlVWwsZDMQ6WBQSqrMSvVaYTojuTGucwKoHx9F3Vlj8jT+Jtt1LkOwf422Y6H14kpH0xI9yZEpUf2xi6D9QS1HFFOc5jkqKTAb4V45zowKXG+HANK67mCcL7dZ+to5BjFgnLgRwFFUlRWa40xBuWF6EJUZyrQss08hW4/BEysI4gCdKgpCkN/0MeWObYdopWATF2KKs7rxJKpuJdWCkkg9LDDKaQG3Y3QzUB4eyb27Pkx4WlUK4TcSLHNW3vYBwlKa6JzHdRTXewgw40nkslaVLBbK9Ts+Ush8QBe7GNij/ziLmUrgklJ2UvR7ZDwTJswChlEKYNxKmUjSYkZZTA1kg9Z86ifbBM0FxDfC31ax1cokhx7ROIPWu3uHDxp38NNF5+bNGD2ycI9z8eVJeV2Itei3FAOM2xSEr68LiVds2OjyidUjYDg6WXyV7bxMkNttUF4rINSAgB3dnscr9XmNtu9wR47d7axD6YETuH7is7fPAsOxukUi6UW1ZjkCV4suaHxiQ7ppV28TlTldio8rSi3U0I/ZtVrcP6pc2ilefr8BU4cO86fv/YKPZNSbk8lDvbqEG0tzZMtOFIjvTqCmkd4os7yxhJxuO9hyDtMURZM9sZS2hRpgiMNlFKS8Vla/GaIzSq1sqekvdr3CWohRWTxOiHGGjz9kCpRQdit0d8Z0m623/EzhCkN42RMmqd4sUfciRfXP6vxUhje7uM1fKL12txa7pw0vYNY+GfjrDzICXwfrd5Pn5vfzrot/91v3XbGktwek18bUm/X2Hpxi7D9kyylcWSjlGIvpx7HbG5uEL5D6d+PMrY0DG70mV4fcWRjg2c/8WHixg93vP5Y72ctu7d3GVzuc6x7jF/8yC+ytLT0nr3f4fxwc6iMfPLmEEY+AbP/ht5Vdp3DOZzHzeOs2LCAkIeFNIfzbky32+XvfP5v8vqbF/nSl7+J9+wGzXX5ELbxzCn697bZ+cOrtD9+9IBC0iQFo2/dpTmtcfKzz/1EltVZxyv/8Y9xz9VYOr+6+AdPUT+9TO3UEr0v3+CtL32L85/9MCfv73D99y8RfvIEXqdG95OnqV3fY/ClN0mWm8StNt3z6xT39vCv7dDVAcfPHqf94dW3VYs4Zw9CGyC5usvou7cp00Js1dMC00swzuCMwl0boJ9arm70U1QrRLfDCk4GcsN7ayg3/ye6cHdcQYAA3a3jjGTIBTXZ/tHpFe5+4/tccB8+8Dtkst3HtD2SKzsY3xH93HHJhANcalDNmVpHSnG8lRrm7gTla/RaTcCXA+dryle3af39ZyhNiV6V8hZvvU7w/Ar5d7eZ/ucr6ONtrNK4jx6lHJcEG030bibNr+Oc4IU1zK2RFC/UQ5RzolqsMjNxTopLdqYCnCaSeaibAa50lEkhSq1AChrcXiZ5goEUl9hXt1EbddRKTfLpJgUsR3C5j1Ogl2sCvmau4tUa7vYY1uuoUFf5nQLTZgU49q09UfXlBtdLcDcLAX91H92N4UgDhrm0Is/aqbWSzLFuJJbYabEoBrGVotJXKE/hCgRqVC3ZyteSuzfM0bGH7kaLYy811c9XoHEOJPfNjLPMSmlmMM9x0P49s3Tvz320CBWbAbOFcG//AS/fV9sHEvYXxDiqpmwnEHL/j46rBvDIq9ScyH7KDLoTSCt6K5wrCBXgMiO267yEQGMGmWzLyj6vm3LeeI1AAGdh5Vya53qCG+TYtESX0nJtJgXq5gDdS2m1mjz3mY9xbfsmtefWyYuc0WQiwNrT1fkNajki35nSTkPizSVKWzL4/gN0N8JfqeGdaoNWWCf2YDfOYSnGFRWQnCll59b0xf5SFjylCMMQqw3WOpRymMKQPhhKTADV8ZgZ9NLBm3ApDlGYpCSdpFI8ox1eqJnc7eMFPs5Weai+whYGlxu5FuzL+NONAHUkFkWjcRVULGSnVseOqgU4BcWNEeb6EOWDboT4W7GoqfdEVamXItyoQNV8/I0Gui6Q3RWW4o1epZIrUfUAk5SU9xO81RrhuQ5eO8JNC2pbLUCRDxKmdwc4T+Ev1Wmf7xCGEbt3HrB77R71dpPW8ZUD1776aov+nR7N48sHPhOFnTru5g4ca8p5UYKPh83kOmR2puT3JzgNejnG7KVyTWz4Uj40A14gysRcSqe0c8Rn2oS1mGhpofrTWpN7jr29HqAY39pjcOkBna0OS89vYZVjtz+cgzfd1EwnKc2ogSocNrBoT+PFAX4YEKZSKoSCci8lGDteev5p1tbWDoCpeq3Ox1/+KH/+lW9y8Y8vEp1o0T7bwUwKpleG+Gs1ah9YRfsajSLP8zmMLG1JlmUUpqzOQ0UUhJL7N04pC7lOzR4ueFquZV4rhBaY3RS/Hck5aJ0cs4UAJV3FRlhrH4WR1Umv6h7D8Yhup3Pw35w0kY+TMbnJ8Ws+tVptfk2zxpLsTZkOE/xmQPt0F4uV/TSLaaCKBHBQFobZxc3zNH4Q/ETvwYxdfJbXWv8ACPr21m2XG5LrI4pbE9pHWmx8/CdbSuOsJe2nlMOCVqvJ+olV/HeplKZMC/pX9yjuphw7cZSjf+U5gncJcD5uTGl4cO0Bk+tjzm+d53Of/VkajbfPUj+cn+zMMiMPlZFPzhzCyMM5nCd8fphCmkMIeTjv9mitee7CM5w8epz/9rU/5ebtK3SeO44fBlz42Y/Q+f4Vrv3+a5jY4rVCbFJC33DihQsc+9zTP7FMot0rt8k65iCI3DdKKTqfPsHd377IiQ89x7lPvUz74jKX//v3SFSBakWorGSpl7OZFBSbJd6XL7L1kBX7naa1vMTOgzF+W27k+l+9SrIzJPrEJtGKtKi6vGT6vfu4awNUM6C8tAtPLaGXY7Bgewm2lwl4agSYr9/B6wpQsSfbeFuzdmYn2YIOvCBAVWH/ytM4X2GNPdBMWaY5ToP1EFtndwExVCj25QPbK/LxmzHkBh0GAkqUotxNiT+ySfb6DibJxTp9rIk+0sDcGGGmlrIVo4608U530ID+/i5uNyPoxJjdBBX7uEIgn3+yRXFnIuB1ZmPNLa6fVRZRBRXEpZ9iAw99vA1NUZVq41PeHAi8O9UROOMpXGpwuwnmYg+1FKMiH7c9wU0K1PWBlD+0woWl3tO4+yOxYZ/uioLOOMnhG2bYN3vozRauITepbpyjQw31AGWsrNOkkJbr/a3SWgkgzS0qVAIMC4uqR6J4NE5yEGfgz8jNsttNYJCh2yFsNlAzcLdfIVRYsZQnpfybtIU8dOCzgJBwMNPRLr5nXgoTeHKz7pwcS84tXlfte01YKDmr43H+f8fBhuZAy/6rXpd9tnmGAlO8yqppbo9RsY/naSlZGWYC8IzDldL+PbelFxZCaaJ2mcFOCrzlWGz3sSg17Z7kAqpI8vvk2ChhUqJuDQhHOcsX1pgGHs1OhzdvXibzLf44JWzGhMMpo9t7omysmut1PYTYo/dgj0DXRFF2pkOw0dj3MMJhM4uqyqdcP5NG+GofV4JX2R9V5iWlBdRcce2MRWvFve37lBHoegV1EFsuaSnZrcaianL8uQpSG+tQkY9XD1GeItA+LvcwWQGZw+9U2Y6IAtlMC1yvxHMK1wrR9QCnweUWc38CSqG7kdidtcKOcvLXdjFXBwRnOtS/cEJstzdGmL0MZyzBqTbeWgMCAeB2lFNe6ROc7cqDhAp6ljuJFN7cGuEdbVD7SBsd+hLzsT0lbtYohzllLyHdmRCeX8brhNjCMJyMaVhLe22JcWPC9O4IdUfTOioK9WKSYXopQd8QHT94K6Q9TdxpkN+f4q3XUKVjqbvEZDph/FYPi8M/35FtqhV+PaDoRLjckF/qET61LNB5lGN7CTryCFZidM0X0LqTEtOojgbIhwnZZMrdG33c/QQXKsITDVxNo2se5Th7pDTLr/kk0yntVpvBaIiJNDrwUIFHHMXUfY/0/pB6UufDP/NpgodsxWVecO/KHe5cu0U/GLL1V08zvjZg/J1tgpMtGh9eF/hpHZ7n4QUeJi0pbUleFORljgo1XgV9TFoy3BvickvYrRHUIrQn4N2kJcVugt+N5a5TK7zlmLKXEq5J5qhzjmyYShSA9SRDN/DxOvoxmY3gRQHJKKFLZ3ZakeUZo8kIqy1+LaDmL4CvyQ2TvQnZJCPohjROth6Biq6KAdkPbH3vp3ObbGxJUZr5AxkclEZ+r/8gZeZ+naSZFiRXhpidlO6JLp3PnES/h+3RD48tDelegp1YOt02rdPNd+0+JBtnDC7v4fZKTp09ycZf3XjXWrcfN3mas33lAdndjOdPP8+Fz184bMZ+H86sTftQGfnkzCGMfELmUA15OA/Pfhv2DEIeFtIczk96ms0m/7ef+2tcvnKZP/rK13FPLdPeWmXz+bMcee4M090hRZrhhwGNtfc2PPxxc/2V12l8bO0dv0cpRfxclzvfe5PTH3+R9QsnWL9wgqQ/Ip+keGFAY1Vueqa7Q6J2/REr9jvNsRef4u4X/5j47ArTiw9I9kbUfuHMPiDryHcm+Oe6hC+tkfz+NfytBuXvXkZ98Aj6VAdiH9tLsYMU9/0d3Fs94r9+lvLaEDPOcdNyvi5BGKB9j3JvTLAiykbnxNr8sK3Nr4VSdFE6VDegvDEEJ6ol3Y5QxuJGmTT8zrZX1Srth4Gob8Y55s0e2TjFf2oJ/8QyTEvSr97DjHL0h46gP3YUz4K5Ppyr9Zx1qNwSr7VJb+3hLcXYuxP8Iw1ULRCLbFHl/9V87J2xtBqfWxJ1YG5EhbXRgLTEXOnjneqgQo/yxgCXG/SFFZgWst5K4WKF22yguhH2Yk8yBdOyKjAxcGckCsQKArnSonCwl4iVNhRgiqekCfupZbGSD1IBMxt1yZ5USmDYTrLIXgQBS0ryG+cqRK0gCnDbU8lRo7INa09UVdMCN8xRzqHbAXpNrPEk+xqPZzPL1ZwpMAsrRUD7HRa2Ug1WTc1KV5l9zkn8wEyZN1M+lnbRnk2lsqvs3W4GG2dWb4fAzApkzK3cs8POVcvoKlXkWIoulCf5e26SS+5h6AmsLCTfE19j7oznql0v9AnjiHyUiL2ygm74eqEEjXx0N5JSld0Eb6MqRvC1KNp2E3TNl0iE3QTv7gi/FeAfb6AmEaMso3Z+hfjICvloiCoK9m5tU+wlqHYgrxcJpDX3J+RXB6iaj3emjbdWF7tnbsjvjyvrvwA77SlsadHNADKL6aeVBdTiagGqcsDoODhgn8/zgqAoaUQxe8MBqW+IWnWSLJ1vZ63ABRpdizEPprhpKXmOYQX0I18yF7cnqEDjLzUEDrUjzLSg3EvwOrGoHqeFWOMDhSksKiuxvoJAY+9PpYW6anC2w5ziah/bz/BPtojOdigu7lF+d0cg8pG6wODMYG6PMXcmBM+uiHq4E6E8TXltSPD0EuXNMen3dvGWIoJjTbwXV1Cl6L1MWghcnZaMrj8gbsR4vo+32STfnVBe2Z0fi2U7IezW0IFP4/gyk+/ew9vNQSlacYNnjl6gdqbGN1/7c9LNkmi5MT9PWsdX2PnuDYpJzvKpDbTWBIVCowhOd3Fpie+FGGfwPJ9CgbdRB63IL/bwGj5eI8DfaoiCdvbRbKZGrk6F6Z0B2a0hZpjTPtql+7NHGRUT/EaAmRTcu3iP7pHOIkd2dg3WCqMEXi+1uyRpQjrOMIOMPNsj8kIubB5n89zmAXVhOk648+ZNth/cp3aiRfOFJe59Z4fJxV2i022WP7gqTdPGzkuqTF5WDwtgNB5jnJXrV2LBFihDpUiNccaR7SYEXizgHymJc0pR7EzRnRAd+3KOegqbWcpRBqHGq9T0KqoKsnLHtDcm7tTxH1a6zUTW1pFkCePpGHxF2AwO/I4rkoJJb0JZFARLMY3VRyHk/CXfJ/dZpSkprZkX+gDMeqTAkZcFge/jqbcHb8UgI7ncR01KumeWaT6/Of+84R6ybr8n65AVZL0UVUB3uUtjo/6ubd9pb8rw8h5B7nH+/ClWPvT2rpR3Y5JRwvblB9CHl8+/zJmXzxw2Y7+P51AZ+eTN4dn0BMzsAv5++UV5OD/dmdmwDwtpDuf9Mkopzp09x9Gto/zpN77Cm7feov3CcYJaNId4P61JhiOWV7d+4PeFR1oMv9M78LVat0WtK09XrbX0rtzhxqsXmQ5HeJ7P+qljHHvpKaJW/R1fu7HSYaW9Qv/btxm+9YD4F04d+PBs01Isf75GaUX8M8eY/pcrxH/lKNl/v0X+ny9LuQlOAB3g0pJOq4P64AoPvnKF4OWtA78jzCgnqsXzbMvy/oju2sojv0caq130qKS4N4BBALGAK/OtexB6AkW/cRf9syfEnVvdVHuBj80NOvTI/+wW3mpM/e9fwNyfUlwbYoyDnzmOXq5hLg9QuUW3QsqqkddOCmw/Q6+EZN/bRk8KasdaTMcJrlPitg16JcZcH6LPdSUj8v4E9eyqKPNA1IKmUo/FPpzuYK700U8tSVnJM6tzRd4s284VpgJmDrXZwF0f4i3H6E4kJSfjAvNgCp7C22ygu7Es7zDH3B1X8EoyOU1hYZBBzUcfaQpomGUwAgcaqWf268r67PJKzRd4AgKtg1DAlvLEDu4GGW6UoyNPCo0UC8Bo3AJw7h/rFgAr8CApZBvVAmZFIaqwuKIUVWhhwPNle1S2ylk2GtU2Jre4skBFAoCZWearVRUgWUHHrJQ/G3uwkGYGIa2TJmbjIBSbs3KI9XogilpV96VAxFjsuMAmJaoRoGq+KOesWPWzvYkoxiIfO8gEWtcDUYNW28qOC2FT9QDbS/FWYrF1T0vcMMe8sYPenhKsx4QvrUoRUmEpRzm2n1HcHWG6bQF9NZ+8KNGnmuhmpRJMSrFbe4rgTAeMFVu5qkSj7RDVDrG76TxqwJaVAjK36MDDX6lR3h7JukwLgXP74XF1nDvrSHcTlB9hzIhoszW3x2ZFLvuvUlG5orKONwPcuBDl5lK0ODYduGFOujPGX62jUGgnNm6TT6tjxket1QSeZqKsdNMCNxCYrVZrmJ2E8spADrdTbbznVlCBxk4KlFL455bQs9Kl6q299Tq2l5K/ukP44qrs85pH2Usp/ugmOvKpf+KIqMJdBcudRaWW/NYIW1j0Sg3/mWWU0kxvj7DXR3jHmoQvrknep3WYnZTs1pDwaAsbOBqbSzy/fv4Ru/LHXvwwV25c4/73tqt8XnCTkjMrx/CU5v7FHcqmz2injz7ZRCeWeq1BHEYMJyOKQo5nc38CmcGPNcHRZlWg5A5GGJRiyS/3UiZv7JBvT6h/YI3g2VXatWalkJVl8xoBnG4zvjnGlaU8BNh/TmmFsZYw8GnUG0QqgJpjY2WNe71trty+xo17tzi2cZS23+DO5VuMkhGN020a3S47V7bJ7xm8M03qWw1sYSkSOY68psA/W4hNuMgKuUYEHjrysamplNLINSHQ0C9BS8u4mRSUo3y+L5Qn2ccuN5STQh5oBZpykIq9vYpiULq6TqLwYo0OY9KdqUDEfZDRpAWe1TzYe4AONVF7EVXhHOTjlElvgvUgWooIa/F7DuDebhwOYxf57UopfO0/9p7OOScg0n+7z+8K7UNRlAeawGc/m28npFcGBEqzfm6FeK3+NiU3P3rr9g8eRz7NyXsZPh6rqyvEjXeplMY5xvdHjC4PaAUNnn/6Gdor7fe2Gbs3YvetbeK8xsef/jjHPn7s8L7qCZjDzMgnbw5h5OEczhMwh4U0h/MkTK1W4wuf+TmevnGDP/z6l5mebtM+8dNvFfxhsnaddei3+Z5sNOXb//GPKFY8wg+tUls+gisM9670uPnv/itnX3iW4x965h1f/9kvfJJv//YX2csLsSdWsjiXl5TbE3RL8r5MKdDOa4aUf76Nt1KTQpnK4lpe6mNujaAZcvf//HO6nzhNYBX23gRvsykcaJKjxiWNzbX5upXfvMPpj3/0keWa7AzIi5zos8dQGzHB8fYcIpmdhOSPbqB8jfnTW/gf3cKh0Lmjsdxl2B9Q3hhgv3uf2udPknz5LrYR4M6toFdr8xZafa5L8Waf4JllUVxNCtwgJ1AeHz7+LJ1OhzevXuba3VvQkXw/W1opzygs9mJPANhaXW44tRLF5qyxuREAVVt0I8TdT6AZyg1vWuL5HnaSQ+jhNUPhYtZCzcPdHosKsxNheyluWs5vjG0/w1sXpaPXDtHdCHNvIq3mexn6SAO1FFcqSCe29sLOC1JAIJibFJV12s4z1GZA1NnqRt5U0HRSYCeFQKlmIGqroCp9mRTyXkkp/49m2ZZVRiNy07+/Xwa/Kn5Bmq0Dz6deazB1U0pp5hB7sqelUGd2xzo7RAuLaoi91KUCUEkcKCnpmYvxrZPMRoeoImdfny9fZR8unaxLlUOpIrmhtrsp3lqtUo4xbzvXrRBaIbaXQuShQKx4TR/nKUwvQRkpABJgv29iX1SqVamTywzFrZHY3Hen+GVJdH4J71NHpBjl5ogyG0sO53qdYCnGDDN23rwjUQSBQy1H6NUa9kGCeTCVlnjl0KE8SCDwpVBpXKBiD7VcQ3kKvRxjdyXzUFWlREpB5AeUWYHRmtpGh7yfSFZiQ1rDbW4EajoHoxyvGaIaIWbiSLZH1FZaeL5HHEbkRSGFIc4JhG1HUvK0XJOypf3XtwqU4inK3ak8tKj76LVa5ZhXYvXeTQTIe9V5txRj7k8ot6e4awO8dkj09BJeN6qgtLxHeWmP4HwX3QkXx9NstEIvxfgn2+Sv76IbEeW9Cd5KjH+hi3KgV+tQfdaxoxy7m2F2U7xTbfwKbrrcYnKLt9XAO9WivDzArRpUTaze3loNtRyTX9ojPtkl0TmTZMI66wcPkyjm2fNPc8GcJ0kS+Votnlt0L1jLXn+Pbw1eob68jO95820Zq5Dk5jY4g98N8Y7UJUNzVshUHf5Ki4q4uDJA3c0wrRq+VtR//oQ0qo8LwiCgKEsWJ5UAyUw7wsAnudaXnF4UXnXNyLKM8WQsNuerffSoJGtaWs8sodCMb/f59te+iVZw/KWTqMTj8nfewrU9otNtglYNXRSU1QMTVfPBOcwkx1nQsYeKNMppbGYwo5xyzxIs1/C7opYvhhlmWuCvVMe2c9jcCsQeF5AZ9FLVyp5bCLUoZHtSehQ0Arl+enIO2cLgRVUmrFboVkA+zog6NWmmTwqKcUp9qU0Yh/tKaRzpIGHSn6JjTbgR44U/3dtcYw1FWcr5U7FD5xxZmaOVIvQPNqiXtvredxyxbs8Kfpx1pHfGZFcG1Nsxm88fIeo8XNyiUO4gkpzpc//CUNI5snFGvpdRCyM2NtaJHmqG/3HHGsvw9oDJlSFryys89aGXqbff+eHvX2Scc+zd32PvrR4r4Qqfe/bn5OHFoRjoiZnDNu0nbw5h5OEczvt4HldIs9+KfZgFeTjvxzl54gT/x8bf5avf/gavfvVN2i8dJ2zUfvAPvgfTWl0muzsi3mq/4/dlt4YcPXLska+XWcG3/v0foj65RvNYd/515Wlqz24QP7XG5d+7hBcGbL1w7m1f3/M9znz8Rcavfxs1spQ7I0xp5u3QWgVybpcCshwONzHU/+55AFxSkvzBDVxmCJ9bJdpoUo4yRl+/A/cT7J0B+mdP4nVqhFFEc3MNpTU2L8m+dJVj61ssnThyYJmcdbzyX/6E9t9+mqRMmA5G2FEuKkEH3kqN+t84y+TfXSRYrVP89uvo5Tp+q4GNM+zXr1LkGd6FFbJCoT68JTezxorar7osqchD1X3ssGrcrayazaUGb96+grlqYC0mvLBMqRzUPIEhmw3sXkp5bSgt1ae70oKN2Jh1PRD4Ny1EgegpKZy52kctxbjKnm0Lg26Ec0DoikqVGHqolRg7EgWid7KNqhRNWIe5O6F8s4/elEZys5vifI0+0RYw1hHl6dyqTKV0tFYg6cySaeyiURoWCkoQSFdYXFKI8jPw0M0AtdUUdaBCQGVVEiLbtypb2K9IrOChqxSJSiu5+fcVymjiIKRRa8yXodVosjfsS2kKSkDizOJcWfqxAg5dXlmlPW8OW11upCxnVoDjSdu78mV7uKQUMJeLChEFRD6q4c2BrNueyg2xpyQDM9CQW3lPkIKbqmFbtUMBxfWQ2UoordDNEDOSciC3l8q2UgiIrPmVBV6OPdVL0PdGeB54kQehj675eIGHa1b2780G/pqUFQGi0lxxmKSgfH0X/2wHc3OEijy8VtXK7ql5lqurGoKVVrjMYu6M0SsxblTgMkN5RyxkSoGKfXRch8QS1iN8z8dbblJMM4peirF2YW/39DzP0YFYvGOf6faQ2moLHQiQtM5SFiVpmYmSLfZFobfvc4OcBJWqtTpu1HK0yDCtLLQqDFGlxEOoTiSt0bfHlFeHKGuJ/8oxdNVuPmPOaET5mluxcJeWR6ZSGpf3J5RXhkQf3qD+mS05ricz9bLD9jNMPwMkz9M73Z4X8yiFZN2WRlSzocY/2cbcHqPPdRZM3df4x9sU9yao2CeZJo8uz2wTe95jb2C11jTqDYJ6jO9XNvdRQtIbg+dobLYotJH95eT8dtahbKWANZb8+oTizT5qUnD8558laEc8+N4NdE3s2M2a2N1934d9jmznoIyVgLtCYfsa70gdYxwmL7Chww99iptDvLoAxumdCdOvjiAv8VsB9afbpPcnXPqzi4RHmzQ+tYbfiHBI1rjSlSI70vIww7nqgY8TuJ3JAySUkvMi0BS7CbYV4dV8bGbw12qLfNjZshuH1w2xSfVgZzmuNo9cK1zbYocFOLmeaa2hdHhKHyje0rFPPpjKPncO5UFjqUFUlbNZY5n2piSjBL8VUDvWeMeW7Z/UGGsoTHnQbg1yPfPlGMmLnDBYgDtr7IEG77cdD4o0J72Tkt+c0F5vsv6xE/gPx3Y8/L7I9f2gSlL++6MqR52zZIOUop/TbDZYO7aJ/y7lUZrCMLi2R3pzwtbWJs9/+gJR/b3LZ7TWsntrh8GVAceXjvPJj36Cbrf7nr3f4bx3c6iMfPLmEEY+AXP4ROZ/rtlfSOOcO7RiH84TOVEU8Vc+8Wku3D3L73/zT+lvxXTObL6n2T6Pm5MvPcP3vv31d4SRrrTkFwcc+V8/+8i/3fneW5izdRr7QOT+Ub6m+fmzvPXvXuHIs2fe8SbICwN8PIJGjXGeE6zU8Boh5TDDqKqsBLmZN3cmxJ87LqUohSX5vasEz6/iH20S1mNQGm+5jt8ICTOPyX+9QviVPTJ/h/xEk15wH39oiAeO8x96juMfuPDI8vSu3cWsBtRWGwQ0UFozftCXG75GQPlWn+K1Xcgs5cUe2kJwacTayTajSY9oc4m8YeEzx0XlVqs+UswAmnWiklOIqvDuRCDDrTGNc0usrK8yfTBmPBrhtyEOYqZ5gsmNWERReN0Yt1ZQ3hyjfLHKss/CpnwNRZWr6BD4NcgkL7DpcFTt11VJgttvY64asJXv4R2T/D+Mm5cs6BVRiZmbY9x6Hb1ZZTWiRKk3e60ZFKSCgbOv+xXtsTPbspb31Er2q7G44ayMRUodqPliNd7fPA1Qq8Bebg7YFRcbAgGjMyt0pcYCAaSFKQ9khUmmsI/zrOSF1iqVZQVTqPtQSs6gWFeVAEqlZPtX2ZdULbkEAhJc1a5LaXEPpqLwi33Ztp6oHjFiQZ9b1pMSN7NfQ2XtXKwXrgLa41IKiGYZk1R2ZK1gWsp7+XqhwtxJcFqhtifomwM8XxF/alNatR3YSU75Wk/2RVLgbdQFmKRmASN9TTlIULnBW4pQhRG1X2Hn2ZP4osA1d6RhW3XihUJsmGN7GSry0EebUkahlEDLQcb4To/Yi0Tlivx+Dxsxfhww3RntUyXKOWULaf4100ygkQfTvTHaQVCPUDWfshCFqu2nqNgXm3u0z9K5j0S4aYlaiZllfbqsWndVgWlfSzP2n93FJYbgfIf4w2u4SSkK3Vlp0L7XtDsJejmeF7TPd6NzmO2E4soQrCM42yE41sSvh6A0rlIF2lFOOZAsUX+1jq4HZG/sojqV+tJV6tpZQ/vsGGkFuJtmrr6bneaqFVDeHOHlhrSWPXru/BDj+z42K0l7Y9LBBF3zCI/E6EC2awBkRU6eFXLOBBqblhTXRtK0HXsEscf6x04TdGJsLgVDdlTQiGvE0QyyKqIwIs9yvMgnH2eo0CNYrxNvNcjuTsje6GFDjQo98tEYU0K4XsdbjkhvjCjuTghaPkE3IN1NKHtjwpNN2i8tV8pDJ0pIX1XXEouzYKelKH2rbWrTEjMscM7hNQJ5YOBXpt9WgE0M+fYUb0UyP60xouAXalhBNYWqedhxMW+rnh0vyteoUGMnJX4YSA5ilW+Z5Zl8FjYOl5VoD1QoUQKB9mjEdcq8ZNqbkk3fvpTmpzlF+RgQuW+UVlhnsc6gq/zHhbb47cckJenVIeXdKWtn1tj8zCm84EcoblGqilt51LoN/EAoaY0h3Uux45J2p0Xr1DreuwR/i6RgcKVHcT/j5OkTbH7uBfz3UN1aFiXb17aZ3hjz1LELfO6znztsxn7C5zAz8smbQxj5hM0jT7cP5y/NPK6QBhb7fFZIM/vz4RzOkzCbm5v877/wd/jmd/+cb33lEo0Xj/1QDdTv1nSOr9P+Tpvht+7Q+uDmow2apaX3h1c49fyzBI+xFt343kXiv3nmHd9Dhx7qWIOdt26yfuHk235f+8gK+X8akJ4LCbdac1jkN0OKByP8dojyPMwoxw5zvM2mFGB8f0cUW6faaKcP2C1VIwQPGn/tNP3f/j7Lnzwp6iTjcDWHmxQUb6MGunPxCsHTy9WGcNjSEK00KHoJ0/9yFW+jQfyZY6hmSHlziLk3Jb8+5nq6TfyJ41I089auQCSHZNPFYqV1VUmLAEAEpPRSopNtbD8j9iK01oy3B4TnuyhPkU0y6mGN4XQkeWi7CXY3FRVYZTN100KyAWMPZqn+voZMAADG4i1FYoNt+Ni0hMxgA7Fuzu3HWgkw62eotRrm+lgAxsxKWBOVn6oHeM+twKgQy3Np583FTAuBcLMHRrkR+FpZWjFOLJuegkmBWq1LHl1usTtTqMpFvK2mwD3rROE5oziz8pfZ7p7lT+4vgxHKMy+eURUgnCluZXl9sErs+KGoS/JCyl5UadF1XzIOWTz8dMYutse4UkXFonCt3hIygaPOqXmMgEtNpYwzsl9GObRCMAKPXFJAWgoEiX1ZvpqPm5SYcVHlCy7UWfN8z8qWHukAp1XlFpCMQ7VSExA+206ewmXg7ozQl3t4Ty0RfPY47s2eKPkqWKKbIcHzKxTf3YG6T/TCGqBwrsQVEhNgh5mohDca6OUIu52I6nStJtCyKulwIPb+fib7soIQytPQCkQd2kuhG6ECKelQqzWxp+NhCotzlnJakE9SbFrIPhlnsj5JOVe+lkYUo/OG8MKifI9snOHuT2W7+QodztSmBjvKRUHYCBaxkWX1eVJLAQ3GyvFbWoFlwwL7YIrSoKwj+sAauh3hkgIbOFxm5VioGssB2Q8zyDz7uGos+e2J5L+2Q8JnlvBaoZSw7ErBkzKO4tYYSodxArr9DYH/5fYU3QgW9lUn122XlpKLiprnKapmgJ0U6GCRu6moYPawxGv96G27RVHwYPcBpiwosynxscYjDwRKU2KsxQs98hsj8mtD7Cgn6EQEdZ9mUOO5Z5/hfm+b5O4u1hj8xFEP4wPKOIB6XKcY5RSmwHmy/XQkx2201UQ1A0xe4gcBekMzeXWb5MYQrliijRj/SI3p7RHZICM63aaxXpcYgVk0QqAk8zG18/NFhR7KOTnupyU2M6jYw1uJRcVXWkw/Q/laYLyv0TFyDc0txNU56qqLkmO+vxRKlPHTEh1LOY0rrOSU1ny8UhPvbyV24FmFTQq0r9B1H6sVofKIogibWfq39yiNIVyKaKy9vyAkiCryh3nwqjxFWRrCYPEw4u0KZsphTnplgBsVNE406fzMcer1H/OzlJL/PGzdBt42T9LkJeleCqmlu9ShcbqJfpceLqeDhMHlPfTYcercKdZfWn9P73OyJGP7ygPyezkvnn2Bp75wgTB8d6zlh/OTm8lkwt/7e3+PX/mVX+Gv//W/jlLqsE37CZxDGHk4h/NTnneyYs+yIA9VkIfzJE8QBHziQx/lqd2z/N7X/pjeao/u+aM/ESuVUornf/FneO2LX6X3H94ken6ZaL0J1pHeGJC93ufkc09z/MOPZj7a0lA6Q732g5uz9WaD0fbeO8JI7Us7sr07QR1bKDWVr6UQZpSjWxHFpT10zSesx5i8pHijR+2vn5YbP1+RbY+wD1K0p0V14gmcC55dpn566YAK1FnHvT+5jv1Tw/nPfvjA8uRpilcXGDntj3AxhN066TfvEZzrEr64BoWhuNone2sIJ9rwhTW8wCe/NSFuRujQx2uG2LREOYVNDC7U6NBbsLLCYAcZ8ck24bEmerPF9NKAequOq4pdil4idr8YOu02u2/eQbdCgmeWJM/QV9J6vNWqWpdLVMMHp8QWG4ti0t4dowMP28+kebsdCggdZGJZDRfHnL09AuPwVmqo0yFMCuwoF3twpeRTrQgVehhXoKaFQN5c7PVqWuBCbw4gVWUpdqWTvDsHJAWzRmp7dyzqoNLidSLUUcn4pLCoQOFcZd+uFF8L4FEBQpBtUanXnLFid7RObPFqHwColJfz11LqwEOuNM/kE6CvFtCPfb9/clupDpnbBl1aQcZ6sIDApV0U8pTyfgrZfi43uMKiczPPbFSNQJa5ykadQTtXWty4kKKXul9BM1Wtk15YQBX4nofveeRpStEM5qpC5xzsJHC1jzYG73gL/dRpuDaQ9ZyfFIubb10PpDynOqasMZhbI1xS4nVjUYOVVqBkBZltZtDjYlEgZCRaQfkatRxjtxNpAu+l8vV6gFryZRv0Mymr6kSgNd5KjcmdCZ1Gi8GdvnBYraT4Rgnoc6NClLrNEBVWcQOZwWwnoiBuBFhXgURfoTvRQpFYNY2rlsPuZXMFISC5hp7C9VJUK0DFEa602HsTimtDAU+BInx6BXN/IuorY3Gz/W0sxcW9xWs6MPen8j25wSV1iusjzL0p/pE68Uc2RNlcQXbnHHZU4EYV/B3l+OsN7O5UoBmgGj6qMNiEBRtRSuz8833pRNU5O1WcE/CtmWc12mlBa7lFPf7h8+aSJOHezj32kiHBUsjmc8e4N9gRhfO+sc6SFQVumJF+v4efWo5/4CRBV0pVvCggfTBmkk05sXmct65fhqaPpwJGe0O8ZoivNM1GE8+TxvV2q8Pu3i7EGrOT4F2oY7ISl0uZUbhcp9xJmb6+ixlm1I42MHnJ9MoQvRRSe3mNYCWW65GpSqNYnMv4Clc4KaqprhU2NdhUIKT2KsAbi2JaBxpV80Xp28/wlmIRgDd8bD/HNQNmT0ecqdq298n8JLbAoHWAKxyhH6C1JkuyeSmas44yzTF5iRd5RF0BytZYgsDDKzwGDwbgQbgcEf0I+/JHGesW10mtfrzPKHZ/xMI7jEIdeD/f8yiMYVaU7Zyj2ElJrwzQDjpnu0TrNWxqiOKHcyF/jPmB1m1RK2Z7GZ5RrKx0qW3WeTfYr3OO6c6E0eU+kQt5+qlzLB1Zfk/B8nQ0ZfutB6iB5oMXPsDpD56eizwO58mb3/qt3+LLX/4yX/7yl/nsZz/Lb/zGbxwqI5/AOYSRh3M4P4XZb8V+u0KaQyv24fxlm5WVFX7pF/423/3+q3z1y68SvbBFffmdsxzfjdG+x/O/+GmmvSG3X73E6M0eSmuObG2w+X//lNieHzc/6ofiH6ASmPaGhOt10ltTsto24bOrc/VEuFInvTcieXUHd3uCagQUoxRnJcNNBR5uWpL+2S3ctMQ73sJqhbkyxT6Y0vjUMbyTLdK7wwMwUmlF97MnufvvL3Js7wK1pcXT4jCOGQ4SiD2SwZjwWBPTTym2J8QfPkX+eo9yVGCPt3GfOo6/HMtNS2JwnYDswUSUlFUxhxnl+KpSeeWL65ryFGpaUj+7LC2hPpTtgMn9IdkwJbtsYCmG2KOYTFA3eygfUQxWOZpeJ8JeHuC6UhgjbdOzBmFRgrlxjttNoBsRvrBKfrEHqoVqhJWCzOCyUuDVMMfdGuE/uwwKzM2RWLtXauiZ2q2Ck5oQCoO1VeFK1YasPIUbZtCOIBJFmJupy7SCfiYNxsZh700EfC7HCzt7Vs5v2F2GvIZjkW05ty2rhfXdF6XbXHmZGVkmJb8/nHGyXNZVxTWgTPU7Z9+NtXVO2sCjWQnN4lbUTcUuq5rBQm0Jsi9ygxvlAibGuWRjzn7cVlZ9VykPG8EiPxJQzUD2wyiHyMNOiyqGQNqIXWVnt8McBjm67uOt1LCDbK62zApH2Izx4oAiyVDtAFsYuDdB3Rygmz7+U110NxL1VaCxkY97MEXX9qk6q2W2w6xSAlqKawPISikOOtcVyLeXobpybLqigixKYSc5apChqnZuAm+h5ow8sSp3o8W+BpynJAs1rwqQluNKIeoxmk5w2qGX4rmCDZAG4lZQqVNZKEAjD68pDeFulKOWY9w4R6/WJP9vtkeN2MmlNCbC7qS4mj/PrHNpiV6pgRWwaO6O8Tcb1D66gY59XGooLu2JsjDQ6EaANo7i9R4AwfMrojadraMDc39C8uU7lA8SwmeWiX5mS87T6hucAzfKKbcT7P2E6EiL7P6Y2nIDLMTPrWJKQ3JpD71el315byrHNpUC2Th0zcdMSwGcM+g4yOe5krawUBiUhcAq/FyxdWbzMVfmxTgco9GIO9t3SVxKuFyjvb40PweWijZ7vSF+N0J7Hs5Yptf3SK8P0M7R6tY58rmTolTeN7UjLW782U3ujbdpXFgh9j2itMmDS3fRKzWshv5oSKfZxvf9+Wc/u53R6DaJtYBNv+ax/dY9pq/uEjYD6kdqpNoyuTHCP1Kn8akj8iDIVNcCv8qPrYldH61k32dGFIe5XTxciT20r+cA0uykleq2Uvki2a6zrzP7auTJ9V4ByqHmYHhx3XClRSmNrzz8aF+TtHFY48jHGc6UeLFP2IkWP2od2XYCiaNo+ERHaj+aJflHmNKWkuM8+zVe5eF6vkfgSaazsQbrKlWnp/HUu7ssnvbkvkA58ntTsitDwnrAyjMrhFVhkC0NHnpuaX9XRlVazBmUdJBPMvJeRugHrK+sEtWjd6cZ2zpG94aMLw/o1Nu8+PzztJbfWxXbcHfI7ls7NMo6n3z6kxw7dux9p6Y9nB99fumXfonvf//7/M7v/A5/8id/wqc+9SniCtIfKiOfnFHu0Pf7REyWZXOAdfgU58mdH1RIM7NiHwLIw/nLPv1+nz/42p/woFnQeeaYNOS+D+cr/+Z3CH7xBF7jnS084/9+jWfPv8DquUdLcGaze/k2l66/SusjW+x86SrTOwO8sx0BDpMSc7kvCkljSW4N8J5fJjy/RPbNe8SfO0nyB9eIPnMMb6sxt8S5RFRF+Zduoz3N8uYK3Q8/ugyTS9t0dps89bOijty9cofX/9vX2PMn1D57jLIQBV/2Z3cpHajjHTjVhdWaWKCRMowZs7KDDHdrSvPsMuM3dwjPL4PW2LQg7C7KipyD9FoPL9DUj3fmX893pkwvD3DHW3hHFlYzV1pp2+6nqMIQnO0I/NlNKK4McFqhT3ehG0luX2HlRjc3uNsjdM3DP7eEuT4U2JIbnO+hVqRR2E1L3O0RFAa9Ik3HaikWJdrsGJzfjIK5O4ZAo5uh2MM1ciNeWpQSm6kKPRxKFG2+misEpXm6FDVm5Iu9MTeyDUNPINFMxZVUkNTXB+19zuEMC8WXVjAtBE5XzcnAAoDOymdA/m7dHCZ4TuMpTS2KGU3GWO0kn3LODAT8utQIOJwdYyBKyVnmW1XSgga9XJP1q9bXjqRJWK/WFhmRTuzqdpjL5m1WmZiZmW9LV7WR61Y4zwO0oxyXG7ylWJbHIIVEk0Iaq3ODGySo20P8rQbeqTZqbsOWY0kFWopybg0JTnfQnWjmUMTcm2B6KbruQ2EFFHcjWd5hgZsWqI3GvEQHg+xbXwNOoOq4WADCorKcVxZXVQ8WRUWwyFENNG6cQ27x2jHlzhTlpDDK7pcIzNahgpN2J0F1oyomYHG+uJ1Ejk1fo5oBrnRzUdYcoCvASikMmZmrWu20wA5yGOUEJ9p4W3XwFpmcCjB3JpS3RtQ+tCFwd1KQfXcH/1wH51XwKtDY3ZTi8kC25fEG2tf4R5sVmHO4UhTKdlRA5FHeGtPUNRpxjDpWo77aYrffw2sFZEmGsxYzLih3UswoxzvWEkVxJOtqx5U1PJbzxk1KzJ0xwcn2olTKOBgVRGPHerjEB5//AI8bay29/h53d+9iQke8XCeIHn/NnyZTdrZ3mN4aUN6dYHxLfaNJ6+gSrc3uY+25RZJz/7WbrDy7Ra22uD6m/Qm9GxLDodshLjEsd5Yo04KdS7epN2osnV3HFZbxtT0mN3u4tsJfCklvj8n7OdHJFuGJFt5MTTtTGk4lK1R56oBCUgceJi1FTY2UISlfV8Veqsq6rSIX0lLOmVnRFU7U72kpil8tWZPK03L8UcVzUClTq2uA2clorrUOQFpbGNKdMSgIuhF+tIhasKUl30vJ+xlhJ6K+8t6W0uRljkVW31ZlY7P96KrzVmk935aAxI9YRxgEjygoS1tinP2BVm2HgxKiyqpvC0tyc8D48h61tRqdp7r4s88ezmFyizbQbDTfE5jmrCMbpuR7GfVajc5yhyCShw1y3fxRa24WY0vL4Gaf6fURG2trnDh/glrzvSs2dM7Ru9ej/9Yea/EaH3j2A6ytrb1n73c4P7350z/9U/7JP/knfO9735t/7R/+w3/Iv/gX/+LQfv8EzCGMfEImz/M5wDqEkU/WzCDyLA/ysJDmcA5HxlrL65fe4EsXv4X37AbN9aWf9iI9Mre/c4nL/Ws0P3b8bb/HpgXJf7jMp/8f/8s73nz0rt7l4uVX6HxaXsukJcm1PUxa4MUB9dNL6EjaWq///75KqaH5d84z/L3LuEATf+4E3uq+D++FxeYGLw7AOcb/5jU2PnyS7gePPrqMWcn4P9/k4//73+DGN1/j+uWLND91lPt/eAnv4xuU45TsbkKeGPRL63hb1VNl67DjHK+1gDwocElJ+foeRz90GpcZdt68B8sRNlTEq00pCBnnlPfGIuQ60z4AnIevPsCtN8XyG2uBac7hZtCr5uGuDvCXIlTsUVzcwz/fle32YCoqn0qNSFJCVkrRw/klbD/DGYt3XNbBTUtsv1LzKHCZFRXZ0RaqE6EjT0p75nblah0Li92VMg6cWF6ddZUyEaiyMF1SLFqdYx83ySE1qHYodtyqIZ3q5pXYE0WgdQLkTGU1DaqSlypvcyZvc8YusiMVkjVZ9+frBiyUZzCHkK4w0shdtYMrFJ6SYg1rLHgsGqdBgNe4mDcwAwtlo15AVuUpiEUh6ka52KrrPhQOQsnvtONcFHdU65CUuLEoKl1aqTlrvsDdtIKSuUF3F2Uus5+zOwl6JUbHFTgd5bhLPezVPYJnVwlPtDGeglAvdp8SWKAChbs7gftjwhfXKlBSHUN3xnjrNXQ7EohcARisFHowszhX9mcszNvRUQLAegmq5uGGlb2/KknSnUj2vbc4ZzCSlTezrOOYwz3la4IjTSxuoXKtsljn+yIpcUkpx+NsHKIIHuXotfoc5Crr8EIPk4uiFyM2eFXzcRrcsKC82MMOM4K1Oo2PbqEDH6qGZVcdaw6wk4Ly9R7xB9ZxxpF/dxu9USc+3oHSMn1rj/zWCK8dEJxq43dilK8xg0zUr60Ql5bYRGz62jjsrQmnVo7x4nMv8KVvf4Xm82sopdjp7wKQ3B5WKmOF1wnRzYD00oDgfBevFQrYTEq8RkA5ztGBR3G5T3CqjdcM58DI9FLy13psdFZ5/ulnadSbRPvyCYuyYKe3w/29B6iWT63beOTBmHOO8WTMzt4u6SihuD7E2zOcOXeasBvx1t1rAgIBPwxobnSIlxoHYFH/2jZZbGl1WtRrB+3FZVowujcg6Y8xhaER1OjW26TTBHUsJr0zJt0ZUzvZxGIZXe9jrCM+0yY83gQqpXhhJZNRqzmUlAb6Ra6p6WfSmB57omi1bg63bWbkPJhdeyyY7QRvvTY/p6jyOc1OQrBSkwSK3QRdC6i36mil559387JAhxqbWlRqRfnqwOQFZSrFOIHv0Wo0maRTjJO89LyfYbMSvxMSd2sE/g+OSfmLTGlKSlMVRiKfydUs9xfmal6ME+XoAQjosMWjQNLhyPL8HQtsAKxxBNqD3JFcHVLen9I51qF9qktJSZbn898DSiniMJKM0XeZQzpjSfsp5bCg3W7RWmrh+d5DPQVyIVMza/cPOWVWMri2R3Z7yrHjRzl69ijhY/K5362xxrJza5vhlSEnV07y4jMv0ul0fvAPHs4TPcYY/vW//tf86q/+6vxrTz31FL/5m7/JL/7iLx4qYd/Hcwgjn5A5hJFP3syKaGYQcjYP50HOYOThHM7/rDMej/lvX/tTbvojOs8dxw/f25uPH2VMUfKN3/597Etd4rPLj/y7zUrG//UtnvngB9l4h7xIgHya8rXf/l1W/v6Fd/xgZEvDlf/vlzn6Dz7A/T94k6LMcY2A+t8+X31DZXubZ3JJXl3+zXs0Uo/1z5179DULw+g/XuOZz3yMV7/yFZb/xjnKaU7/1XvsvHoX98F1vOdWKe9O0K0Q1YlQDmxSSvnBPkCklFhNzas9jn/s3HyZR3f69K9uC4wAwnpE60gXYsW4SPCr7E2Tlgwv7eKfE5t6nuSLxubSSuZY3YfUwI0h4NBrNbzlmkAVB1iLHRa4wuCt1rDTgvL1PaIPb5C/tkvw3Mo8P9EZgWy2n0LgoZrhvGxFt8OH8hllJWdWUjy9yJlUldJwZoOurMl2WggQrdRYuhNJBp+uGpUreOgmJSrSoua0bt42rmJPrOdJKXC2sgfO1GwH4gJyI8sQexU4W/y7CpQATesq+OlEHRXoOXCYWVwxTgBs6C2sxJVtWVU5cqhqG5SV3TP25687V3U6sNsVsPXUfJubXoZu+AL07ELV5/YyKanxtaxjlVsoSj0pOdJLkfx9xgLGBWYvxfM16soejDL8mofzNfrpKupAK3md0JuDQ1cYaVq/PSJYr6PbIXYo4I7C4G81UY1ArPu5xSXlXHlodxJYjqnIoGyzChS73FQFSuAGGa6fyTnTCARS55XVvDTozeZBmDjMRYVblfcs8jYFqqulSNScs3N8FkNQnff2QYI+Up/vr9k+tdsJ3mZDjk3jILfzpmeblthpjuqEmHtTykt9vGZAcLRJeLRFsZdgHyTUnlmdK9eMKbFWjhE7KSgv7Yna0zq01gSnu5T3JuR3xvgbdYJTbbFNpwXKFzWeHeVkb/Vx00IUmoEGC8o6lltLfOKDHyMMQ770na/ib9Yopjn9WzuoVoB/pI5uyIMZ28sotxPwFWZUoldropQN5BiyeynuQYrfjtBHJIfWFQa7PZVzLrcsba5KZm9qaPg1jm8cJSszepO+QK9OXSDUQ9dlYwxXb14jG6WY7SkaqJ1uowKP7OYQbRTx+Q7BiuwTmxTkdyf4pWblqSPz7XnvlesE59rUvZha/Hg1mMOR9iasTBocXznK6996lTvD+3ReXMV5MHxjl1I54meW8JZCUQpWh6fAd1Et6po3fyhmU4l0cFV0hssNyqtKaKoHKrPj06ZVm/bs0HICI/31GgsiJu9jtlOCtToUVuz49ZhgKT6gXjTGkAynkFnqay1sXlJmBTrQAvUMtOqi8CuSnPHOmNIUBEsxQTN4WxuyQEN5uPIXBQzGGvJCrvMLNaRbqCH9KsaiOhewovbUer+C3eH2qRtnU5qS0pm3VXQ65yj7OfZGghvmLJ1epnm8/ej3z0qB3gOWYgpDtpdgp5buUptmt/XQ/Yis90FSMIOS74wk83HG4Moetldy8swJjpw68p46YMq8ZPvaAyY3Jzx9/Gmeu/DcARXy4fzlnyRJ2NjYAMD3fcpSHtZ+4Qtf4Dd/8zd59tlnf5qLdzhvM4cw8gmZQxj55MzjrNiwgJCHhTSHcziPjnOOy1cu80ff+zruqWXaW6s/7UWaTz5NeeV3/oRpmBM8t0qwXMcVhvxKj/LigAsf+wCbz71z4/ZsXv3dL5GdhfqpR8HmbEYXt9n746uc+OWPUk5ybv9f36U4XRdlV6ABJTdzvsIWYnFlmOPHAdnvXuPUP/jQI6+Z3BoQXTIUWUZ2XJEMU3IcnFxCdSJG13axRZWX5Sm8Iw1U4InSBhZqGQdaKcpeincnZfPlBYBN9yYE9wxZ21E/ul+J4OgN9qQRVyuye2MmSUm42abMCvAVtqwyy3TVkNwQKGe/uw3GEr60tgAtFaRzSYkrHarmoTxN/uoO3tEGpAb/VHufLTQXS2EnRIW+KK6qwox5u3K4D/rMrOg7FWQrqzy0CsQpreeFKHa3alw2Dm+rWbVNz6UsAh3TUopncimembVyMyuemdmvK6CmAm8BO6sSjplll6RgRiBUoEW5N3sfI8BB7VuNudW6gp8qrJSSqPn3o0RZObd9exoyUeFhndjoZ3bjfNEUPS8imRSiyupGC4CYGVFldSNRb5Z2nks3a6DGMbc0z+9q82q/rFTqv9Libg6x37hLdKSBChT+mQ7ecg1zd0Lpa/RGo1KY2vk2V0qOWZeUuGt9se5OCnQzEDvsIEOv1WWdqxxMsZYLlDD3p6iNuqghZxtzdhxUVlaXGbFm52axvItDHjfOBa4eb8kh+2Aqzd+z7VfZ6Z2x6FBKfWw/Q6/V5vmjj8DI7QS9vk9Zp6ptvZOgKhWuS8v5OatiH9tPsaMcc3+Kv14n2KgTLdUpkwIXeWhPU9wZoZVHuNWcK2ttVoqdt7SYt/qEjZBimpPfHaO7Mf7JNv5mvVJ/Vo4P61ClAMIyN6hJQfvljQNA3WQlwRS8OwUby+u8cfUiwbEmxgmYLgcZytMEJ5qSB4k8UEhe2cHlFr8bYfMqq9TTctqUitbGEqYoKdKCYpKSD1N0zSNYrrF+Zgvtacppzuhen3yUsnZ0jdZSm8FowCRN5Dxw0mbdbXXwPZ9L3/4+6b0R0UqN+rklUWorKIoSPMiuDLH9nOZLa5h+TrY9mZdcKQPdk6s01tvc/94tguMNajZEOdCBT9SpHYBpzjqGV3coXxuysrVC7WSLO7fuMH4wxFupoY/EhBWItqWdq3lnxwGImtvNznPjMJNi/tBFhR52L52rpZWvBNA+BN9m+9MWFrOX4a/XFtDJVYAzMUSdGDcxLEVtgiCgN9jDYBcPKnJLFERkeU5hc7yaj1dFDoR+QBzF5OOMSW8KAYRLEX789g8iS1vK52qqc9AJkPQ9D600pSmxzlaXU4Xne++Y6WidJS8KaU+Yr+A+vOYcNpfMZjxRBM4fAFgBk151LbXGEnqP2rULU2Bmuc/VvrbOkm+nZJeH1JzP8vkV6kfeK9u1JStyrJWsjyAICLyAMivI9lJUDksrXertxju/v3Nz5ej+kWehB6FksjdleHkPP9GcOn+KtWNrP1Sz+I872VSasYv7OS+ce4mnzp5/Iq251lpu3rzBa2+9xqljp3nq3FOH9/s/4mxvb3P27FkAvvjFL/LP//k/53d+53cAuff+lV/5Ff7pP/2nLC+//efvw/nJzyGMfEKmKIp52clMTXc475/ZX0jjql/acGjFPpzD+VEnSRL+9Btf4c3sAe0XjhPUoh/8Qz+Bcc4xvLPDzVcvMR2O8DyP9VPH2Xz+DP7bZIs9btLhhG/+u9+j8bljRBuPtv2ld4ckf3KPIstZ+wfPobTiwX97k/JME6Md1H1RYVU3fGaYY3oJ0XKDoBsz/j/f4NT/8SiM3P3dN9lcO8nr3/oOwce38E4toduLbVvmBXmSUk5zirtTvNNtdC1AVzePzrp5K7MCsu9us3psncb6oixnfHGHD555gVcufg//TJOgvnj9bJrQ7/XRkU92d4zpxNAW+6VS0lBMabHWYUuDikQ5Zi/10IEo51Sg8TYa0rSsxT6qa74oD2Of8upAIKGvUVGV3dcJpRG7glO4yiprXNXC7YktuHLe4unqPrcCP0uxKAErGKuq8hw7zMQu3QjQrVBUbHW/uumqfj8r5spIZmCp+nnl6wUAdQgQK+wCSvq6UuVUCsrSQWkOqBjJq4y3mlepZEVl5zIjylKtRIU5AzdQqSp9AYpVZpxLS1nu0MNNC/memUJqLNtItapjPJPSm5kqFC05nLaXLtSznkAwlxTo5VrVZO4trMRz27KVHMZo3+9EJxBYxR7cGqHujwmP1mUZM0f4/CqqJu9j+hnF9SHqdFeyEjNRiuq6j7OVffmtPSiMKPfWavP95waiFKSUEhcV6EXeJGLjVuv1g7Ann4EeARAuN7KnM4GuB2YGtPdS2fehWKBVZ/F9s+VVSgkc8pR8f+zPG8fVTPGJADm38xCMrHJRbS+VkpoqUxGtsMOM4vu7lDdHRC+sEJztokpHGAXowMfkJWVpUJFGFQ775oDozNJM94QpS4g0ppcQD8EMc6bpFNvx8U910JEo8GbHqB3mmH6GCj28bk3I3k5K4/xDN37OYUYF5vYUPEW42aD0LQYrpTnVdS2/PiK60EVHnuRUvjkgPN7E60RoqzBG7P6+0lBC+sYenvbIJgnOB285Aq0wexluVBAvN4lWagRLETr0Se6N0J7G74R4UYBCsg7LSUbyxh7+7ZypTln62eNi/Z5tcmvmeYAOx+QbDyQfcyXG36jP1YVlP0MlDrubkQ8SdMMnWm1UINtiRwWNtTaNtTbTG30mN/bQDc3ykWWCVLN7u4e3EWPXfawPVjt05MtxYuxchTxvK5qJeAf54hLka1xuCZdibGkpdhP8Tky5l+Cv1lBaHyg8ErV0pY4dFXLMxlJ4pJREHNheRr1dxyaGmgpZX1mfv1+RFxhrKpt2Tm5y/Orn0yyjqJRKxSinHOeErYh4pf4DS2lmmY4iltwHcBFgiOKAhVoAqxyCoR889p4pK3LwkAdwM3np/sPUSBOPqhTRs3esnvLI75LS4QViZ/acxvce7YV1zlIagykN+f0p2dUh9UaN1fNrxCvvkXLPwTSdUpgSFVTFWc5RDAvy3ZRm1GD9yBpxo1J//5Av6tzivmb+RtXRM3kwZnx5QMOrcfrCaTprnfe2GXs4Zfutbbyh5uULL3P61JPZjF2WJVeuXuG7l14hXAlYP73K7s1dih3Dx176BJub71y6dTiLuXr1Ki+99BIAd+/e5ciRI3zxi1/kV3/1V3nttdcAWF5e5td//df55V/+ZXz//d/j/M/+2T/jD/7gi+/4Pb/7u//liQTws3n/74XDOZz38ey3Yc+s2IeFNIdzOD/+1Go1vvCZn+PpGzf4w69/menpNu0T6z/1BzBKKTpH1+gc/YsFoMftBh/8Wz/Pd//LnzBtPyC6sIRXDzGTjPSNPYKJx4f+zue58tVXmN7Yo35qGa8eUqQl8bklzCSn2EnmzbKUjjiuVVY888h2KkcZO1++SnY/5/6pAj59nODZR9fBD31sGeBqDnWsQX51gDrTFYiiRGEhCghHcW2Il0NjfdFWmDwY0Q1atNsdPvTcy3zr+9+hWE3xGyH96zuko0Ty8HDYiWQQ6m44t78FYYCO5OY+HSQCfRpixfTPdcXmPC4ob47wVmMBsoGW7EgjQMnlBpdIo7NaqaM3qtbW/VbnKvdS+RqbV0UtsybkGWCz++49TVUg4okSzg7ShdKoakOeQ8TCVnmHApicqxQ0ZaUmrN5HaSmfUYWd50cS++DbSm0nYNYt7vPk/1WDNoHcdDuves/UQCRqSldYgWpmH2SrVdmaRbUH0hIyJcCvrNSNhYVpCWFV1uMpKelZibF7mWRgzhSMQi0EHO4m4Gv0ciTvC5XqtKhyEavj1DhZ//3zkPvQAW4vhTd2UFlBdGEJ/6lN8DTFK9uVvVvUsUop0BCc6VBeG+DaEaxJk7TtpfBggjIW/3hT1j0z2NuTA4B3dny5sZXiGhbbW4WeFL3sK4vBV5BXALcwAqOSYg6f9q/TTLGIE6u8y6r8Tl1FEjg5LrXWKAemtEJa6oFA8pqAbVdalCftxsxKjvaBE1dasX4HGtUOcVphdxLKqwMUjuBYk+j5FcyNocDUwlCi8JzAGzcVIGO1wjhDQ3uEYchgNMJYQ3l5TPbdbfKNJtHZJcLaEqaU45PIw2Yldiz7WrdCgrNdiUWYFLheRu1xsEUpimEGAfjrMbVajb1RH68TVv+s8DsR6hTkV4bETy+R3xoTHG1g+jnl3SmgcMoRbDQIVhsoX2yxeZoRP9VFNSX2wfYzKJ00iTuwvgA9kxUYT9S8fnUTZ5KC7NoAez+hfbTDsCxobK0eAJEAxlSqRATaqlDjdSKCo80FIAR03UeFkN0f4x2pER9t4/mafHtKMUoxWcn469dQqWHp+XXaLywzeH2X/ps94jMd2p/eIje5QDMlal9bGkglMkB7i8IX5xw2M9jUYJOScLUutvZJIdcopFwqjCIYGjyjUVMrdugonP/eyPKM0lQK6cwQrtUk/7e0OCx2IorposxYW16h1WjNz5k0S8nyjDRPwYOgFlALapSmZDydgoYyKSjHOX47pH66hUOOO4+3h0ilKSsQ+ehnAGcR9fi+Ypn5fvFku+RFThiEB343WmfF6j3LQX70lSX7NRCbttr3yvMfUAp09aBOCQB97Fgobk3Jr49orDTY+thpguZ7Cw7GiRSU+XUpnStGOcVehh/6dI51KCei7P3RvN9VXmT1sG72+214e8DkyoDl9hIvvfQCraX3rsXYOVc1Y+/Ssg0+/cyn2Nra+ql/PvxxJssyLr75Bq9fe53mVp0znzo5z9JsdppMxwlfefVLdN5c5mMf+NhhO/QPMePxeP7n2fb6/Oc/zyuvvMK/+lf/il/7tV+j1+vxj/7RP+Jf/st/yb/9t/+WF1544ae1uD/SPPfcc2xtPZoHDzzxjOFQGfmETFEUc+vvoTLypz+zfXFYSHM4h/PeTZZlfPXb3+DV/nXaLx0nbPzlyf9xzjG49YC7F69SpBlhvcbmhdO0t1ZRSjHe3uPbv/dHLP8v5ylHGXf/+5s0/tbBLEgzLVBjS3tjheH9XZJL28QZrP3V8xQ7U3qv3GGym+AfXWHz48+Cgluvv0n92ZWDy2KtqBENeCim6ZTs3hg7LlGtEN2N8HyPcpxjewmqcBx58QRhI6ZMcrJ7Y5plxMvPvTxXJhRFweWrb/HalYvQ9gmPNfHaEbqE/MGE6Z0x6twSfhwQNuL5LVGRFhhncYHCDTLUIMVbraFaUhDhjKO42MNbrwscqxpizU4ilu1OiIp89JE6qnJAz8tgQCAKYmc0D6boav0etpG53FDem4jSTEl7uFIKvRSjGjNfX2VvnJXQOOaqTVA4UzVTh7oqkWEOqqgKJ7CuaqWdWa2dtDjX/IXd0dPybpU1fZ4BObPNzSBVYef5izOgBUqgpC/LMH+fwlat1CWqGUiJz74czP0qR4yo3vRyPFdTokT1p+qBvE8u4G5uES9lPWZt0K6yJOuOtFXPwWppcaGGexPUtT5eoPBqPnqrgTcranGQfe0u0ctrqHqAmxaYe1NRp+pKVRhW7cqpQbcC/CMNycWjOo4ChW6E2Eku8Mw49HJNskP3MvSRxgLyKdn/dpijluR7AMmhzIwU1qQVjBykeGv1g9DYgRvmAiyb4Xx9la/FNj4pUI0ALw6wRh4gWGMFVlbbVS/Hshwz0O3A9VIBslUZkiuruIFeilqKsPcmlDdG6FZAeK6LtxzjEilbsqMcu5sumuurHMyZWlfVfYqLe0RnupSjjPL+FHN/gq77xM+uoEKNGRd4sQ+RR3F3gq2UYbruo5ohXnPRHm6HOfn3dul+ZBMdPaR7cI7x97apnVsGHK2wQX80gKZ/AOYBpK/3INTkN8fouk94soW/FKO0kpzYnRRSi9+NSe8MiZ7qokOPci8TUFzFWcgF00mpEYASRSYOggTyq0PUuKR9ZoXG0TbK09y9cwezl9F85uDDm6Io5q9ppiXZ9SHhZgO/FWIyKepBgQ41+c0JwUqM34ow/Yx8Z4qq+5T9HCY58ckmGkVyeYgDGmeWWTm1DhrG0zFGgxdqrLOSGFCtiq1iCbxaIJmgmQVfoWs+5W5KVKlniwcJQTummGR4GXTbHTqtDp7ncW/nPrkq8ZoBusryy7KMfJJhJwXBUg2vXuWO5hYzKvCUIu7UKPcKTm4dxzlHf9inPxxglEWHGi8S23QchgR+QH9vQJEU2NwQLEX4rYNKRWcd2qm3LapJ8+xti2BMYRaxB5U9W/4oNvMZKJxtOs/zCPwAay2lk3PYuiqLYf8yzRu1q2uwmr3CPmXk7HtLi1KaQHsHci5NVpJcG1LendI52qZzegnv4XPhPZiiLJjmCV7oUQwyikFB1AipLdXmObLOWPLdjONbb1/M905jCsPgWo/kxpgjG+scO3ecqL54oKPVw0U/f7Fx1tG7t8veW3scqW/w8rMfYHX1/RPl86PMZDLh+xe/z5U7b7F0qsvGqQ38d8jS7N3rcfe1e5zbusCLz71IELx/MtXfb/O1r32Nz3/+8yhVKecfOgZ7vR6//uu/zr/4F/+CZrPJm2+++b5vWJ8pI//xP/7/8IUvfOGnvTjvyRwqIw/ncH7I+WEKaQ4h5OEczrs3URTxVz7xaS7cPcsXv/mn9LdiOmc239P8oZ/UKKXoHt+ge3zjsf/eXFvi7Isvcvk/v0r7s8cJfJ/88h7h2SVwjnKcw8jQ3lwFpWi02hRv3cQPYq79y29iV+sE59bY+OhzxJ3m/N7J137V3u1jjQAxD0UjjAligVeNep37lydEURNVC7BTizOGMFX4qkHYCMmvjMgZ0YjrPLd1npWVFdS+vCzP09y8d5tgrU7tKVnm6dU+Njf4qzHBSoQZ55hAkw0TwmaE0hqTCwClKKXteKM2B474GnD4J1qYmyNoBNJiXAvmRSHOOdykxN6bopfjquTiIdVjqCXLL/bwIg+znaAiT7IaXaWyLA3KWOztMXopwlurL7IOF3txUSZUtVm7aSFqR60EWNW8hfLGid169v2qskq7aSkQJ/KgqBSIVQM2epHHpbSCui9Zjp40bivABQIinXHoWMCfCipLeCIW9nmZT5Vh6TIjTdZaLQpThrncZHtVmY6rLJrtsNp2bm5NlDv/farLmW1xpjQyVlqUe6ksR1bO8ysXFkeDu9JH3x/jr8UEL66gmwHFGz10fXHD5dJybi83d8ZSZrNexz/WhMpO7/oZXiPAP9OR1tt2iE2q1urSgtJSXmMd/kpN1HvTEtUJcUpuzlVl4wfJ7VS+xg1SVFfA4KygSAqALK6fz6Hh7HAAcJMCrJU2cSXLr0D2ZSOYZ/dZT1W2ZPB9TZmVi2NFIRZ2gEmBHUveJTA/hkhLyWZ8kGBf7+EvR8QvrQr8c+CGhWQLBhrdjjC3xwLGq+2BXwFN62BSUD6YUN6fSGP3Wo3o2WXCtbpYvnH4NZ/85gizkwrEtQ7/dEcs6pkRuB1oSEpRMDd8Jm/s4rdCvEaI144odqcUuwlmkjN9cxcd+8SbAbpykJjSzpu800t7lA8SdN3DX4lxxpJd6lPUfJovrRO265SNiHKYMv1+D78bUj5IcEmB1wzxqvgFVzp0K8Brh6KWnBSYUc7klW1cP6PdbtE53sFsWApTMLyzR225iQ49DFWxyyPnvgCv/PYIXfcp+ynFg6lkp7ZkPxXDAjsqqJ/s4BRML/VwgDfRNE61caZGcmUINY/ohWX8Rkg9ENCa5ilGO7zQr35faJxd3FwrX2Omclx47Ri/E6CUQCKcw5YOM85RTqFHlvXmMt0j3QNCuM21I0yTKf1Bn9xkAORZRrxUx2/Wyac5Zke+7oU+8dKiadxEhvFkTK+/R6EK/HZAWFs81HHOMd6bkO9l4EO4EuM1ajyu8kRphSksvnOPwAPr7CIz9eHtb91DnwXk3HXOYXJpBtezfNxqTGkxWUYQLPanqNjd/OdnL/XYzxkPgcj515zDq34HlOOc5OoA28tZOrVE67MbaP8nd0+QTBLKJCeflsTtGs0TjYcK2pC/B4okTd62UOlxUyQFg6s9ivspJ06dYPPnnsf3fdlP1bXLOYd1dl4I9ReBktZYdm5KM/bp9VP8zCd/hna7/YN/8H04/X6f7772Cnf7t1k9t8Kzn3v6h7pXXD6yTHe9y93L9/gPv//v+dBzH+H0qdOHoqTHzGg0AqDZfHwG6/LyMr/1W7/FL//yL3Px4sX3PYj8n2UOYeQTMocXnZ/ePK6Q5tCKfTiH85Obzc1N/rdf+Dt887t/zre+conGi8eI242f9mL90OOso3ftLjdeeY1JfwhAe22FEy8/Q+fo2tte34++dJ643eDKl75LWHgMv3iD/NkRwckOcadJfWsZlGJ6aZvRH1+jtbVO8PQGx04uo9+mCKCzscrO9bvEJ9qEnk8U1R/JWUp3p5zaOM750+e59+AeSZbgaY+106t0O11+GGvXvQf3mbqM+llRL0wu9vDWYsJVUbvp5Yj06hC7m+BW6+QTsZA5rbC9BHd7hL8izcZYB0mJa/jzpmKbW1RToY+3pZCksKiwsi/HvijbdqXBWfl6DpKUp7H9DJeUeN0IXffxG6FYsEsrNt9xgZ0W6E4oqjeYg9D9pmJXWMgEEOjKDifg1OKcFYXkDMA55k22quEvbsp9B0H171Mpp1GzTEb36O9+BWIdnlvCEZBZLCiWK6yA00JUmVL8Y2UblhYVedIi7hwu8kRZV/Pn8NbZaj2NlMm43VSg2kyVGShsP0e3wkrl6RYFN5XakermW9V8UXpWBT4uMyjncFf2UDtTwvUa3gvLeFUbsZsUUvYQCcR1xlK+2UcFmvLeBDcuCJ5exiUl9t5E1E7dCL3VkH23mwqUyY2A1NiDQlWA2aHbAbZaDpdIxrOKKkt2rdqHleJVRR4qM9j7E7HRVyUUbjeT9Yi8hYJ0Nk6ySPVajVlm6BwwllYgQKgl4zLf955aoSNP8g2nAhHFPi/t57oTyjpMS2Hg04Ly6hD7YEpwvkv9c8fmlnc7KjDbiaxf9ebekQYEHi43eK1wDnicc5i7E5JXdlClJX5+RVTHgcYOclToYZICl5aU/YxyJyHYbBBsNXCFpbgzobw9kRgFI4UnqlIF+qu1KoszpOilTK/s4a/EhBe6UrTkK4o7E3oX76LrAfWnlwl8H4dj+M27OE9R+9CatLJXWbU2NxQ3xgy/eoelTx7D9z2s9tB1uU74dR/veKPKsqQC6KIMNYMcl5WUuynlrTE68PCUo1AFo/4Qf6OGDj2KzDC5eo8yyVF12WbE++EV5PenlNsJzjkppZ4KSA6O1PE36qKmTg1mmDP4+l3sICNcr9F4eominzF+fQ9/Nab2gVW8RgAWfM8jm+bEYUyW57JO87NaidK7sNjU4KzDq4WUaVqpW6vDb2qI6jXcsKRmAlZWlqnX6o+/ZCuo1+vU65KNWpYld3r3CJuicKuFj79FdNZSlgUPetvopkfcrC8U0Q6KYUbWFzWyvx4RVMrvdxxVZThW42mN78nDobe7/XHOLVTL1Ys4BETqUD8KDWH+u6AoJCdXHuioRV7mvh85mJKxz5796ILg+z55LyO93EfnjuWzyzRebP1EH5yarCTdS5jsDGkd7RCtt9/x3lHH+oeGkdkwZXC5BwPL6fOn2Hhx40Drt3Jq7hRTrlJHO4tyso1nxT6lKSmKAq01YRg+Fk6DZI9uX31Acivh6RNP8/M/9/NPZDO2c47t7W2+89qfM8j3WD+/xrMfeOZHvqfXWnP0/BZrx3Nefe07vP7Wa3zqI5+m2+2+Nwv+hM5kMgEERr7TPPPMMzzzzDM/iUU6nB9iDmHk4RzOY+awkOZwDuf9NUEQ8IkPfZSnds/ye1/7Y/ZWe3TOHz3wgfj9OGWW853/+MdkzZL6h1ZZXt/EOUd2Z8j3/uxrtIMOz/+1T89tcg/PyuktVk5vkfRHTHYG3L90nZ2v3cN2EobZXaYPhnjdBp2/+jyNs+tiK3vMmLwkH0wIJ4Z11WFyPyc+2UDvB5HOkeyM8XcMT794Ad8POHn85I+13tdv3UC3A3Tgkd0bo9oB/uqicVhpRXy2Q7mbkl/t45QiTeQG0VuJCc53pZymtNLq20uljbgeoFdrst89JVCnUgLOykmUEgWa8zR2J4FZLqSxmHEKhZXgcguekjw1rKV8MBFl00pMsNWYW5Rn4GrWdi0b1EmGYKUsyiu04AABAABJREFUnMeIaYVXDyjTQhReMzVdIcq7R+BVVdEqhTYV+Nh/g/ZQsYIDsWFn5qHXYQ7S5mUWhVik7VDUTSr2pT18/kJALvZg3Ynm7zPLu1SBRi/FAm+rZuyZAhTjqtZts1i+wi2arCuYRqVUdRoYZthv30WlJeGFLuHPbKGcFBHZQQa+xlwf4p9si7prL6O8NhA1a8PH3J3gn25jboxQocZfjQW6zpZ7ZtcMPFEszkCgbwXg5gYzyKWhWauqcdjiCmT9ZlCnamxXgKoHAn2rxm08hTJOyoeqApp5CZFC1LCxt4B9pai9/NinzIx86nayL+xOAu3F7sM4VGnxNxrzpuSyl+JKaZB2zlHeGpN/f1ca44/U0c8uodqRwGagvDXGZgZvo4FuBXMIbHcS3DBDHZO2bGcd5Z0JxbUhyleEZzv47ZBwrYHzRPWHguLWGJMW+EsxOvQIj7XwWoHkXUYe0ek2zjjKnYTy3nSeQuCUwhYWL/bxaj4sRfhbDfIrA8q7E8woR/laIiCaAcVOwvBb96id7lL2U5xS1F5afQQo6dAjONnCpiV7X75JtCWFNvHRJijw12qifqzyOnXkgZKG7uLNPm5cEB6tE7+4gh3k2MxgrMUME1Q7oBhmmEmOjn2U8ii2E1KtqdeD6th35NfHWGWJLnQFsBdWwLxzFLcnZFcGBMeaZG/1Ke9NqR1poDdirHWMXtkhPN6k9alNKQebndeqOiF9TZZnOA1633XA5gaXGIw1eM1wblt2sY9XgrGWclLApCRqRCx1VgQy/bDMQ1XnvX0b4IbkVRZJgbMWHWlUiGQfKnnglvUzikGGbvjEW3W0r+eOov325YPjMEVlifb13GZtnSMrCzQKp37Y1XC4kocKZx4zWoGy4AReKhR6Vs5jnTxE0si5XcXkztriH1dyk99PyG7uEYU+G+fXiJYPtqTjqnsH9R4ISxwUSU62l+FbzcrKMhZD3I1/4I/Olepv99LOkfSmDN/aIzIBTz11lpWPrTx2HZRSeBU8tqaCkizU+P1xnxt3bjCcDvFCD2scvvM4vnmczY3NRWbpNOXB5QeYbcOL517k/C+cfyJtydZabt++zXde/3OKKGPj/AZbK493wfwo45wUJo2TMcPR8BBGPjSzzMi/jPmar7zyHa5evUqSTGm321y48DQf/ehHn+jimtkcwsjDOZx987hCGlhAyJkKcvbnwzmcw/nJzsrKCr/0C3+b737/Vb765VeJXtiivvz+tO045/jOf/xj3IWIpQvH5l9XShEf7RAf7TD85h1e/4Ov8dxf+9Q7vlat26LWbbF8apPd6/e48dpbpMuK5meeJVxrPfYGwTkokhTTT4iNx9mVIywd7aKU4ubtm1x+9So2VuhGgEbUbutLazz14jn8ffldSTLl5t1bDCcjtNKsdJbZOrL1jjcJaZaiVwOcg3x7SvR098C/z6xx/kosbbn3Uwpn0cs1gmNtwGFzg+mlAgLrAbobCxDwpMlYL8Vybxh5lQitgmGh/J2aLw3XzqGtQ3maaL0Jg5K1zgq3Htyh1Cmml2GdRbdDdAUdlKcW8NFTUhIDcxWSiqqb5ml5wEY4K51xxkEwk6pVYLD2Az5yzUCn2wcUOXgjPrsxnnFHpSqrLUps14WUT7iklCbsJgLf9meu2cWLurREd+N9N6VqoegTFIBuBphRPldQztSXFJV1fvb9qrqRrxRpdioKU9VPUFf7+JEmONtGNQLsTkLxzfvoEy10oDG7KXY7EdXSKJftZ+3cym7GOV4nQhUWb7MBhcFNCtyoELBYkzIPFeoq01OWwxVGFKFVGY2qS+u28hW6FUgBTD9HhxrXzwS4xp40V1dK2dn2VIFGNwN03ccMc8pElllXAAyHKFZnRT0zlainscahtcJkVcZdRe1sledpjcb2Mrx6IKVMWqFDyQa1maG4MSJ/bRelFY0PrUvEQDvETgrSKyNcYrB7KQ4Inlpiln1JBZVFGanJ3+hBM8A+SNDLEeG5jgD0lkB9M85RsUe5m2AGOV7kEx5toms+yfd2BcCVdp4vagcZxa0xrrD4m9KwbAaiHC3vTSlujii6EdG5LmYvxeWW7P4UrxPhdSOCtTrKV/jrdcq9lHxnQn5nQu0Da/Om7tm1zeaG4toIM8oFhJ5sifXaOFxu8VZiWe99kQLlICe/tEd5Z0L9hRWCpzqU96ZgHeGpNjqubMejgvy2rEft2ZU57AuO5ZQPpkze2KFxYYWil+K0IzwhxS12bOfqY1B4qzGTb9wne2OP5oUl6s+vkN6ZkOykxOc6tD678vb2X8Q9b4wAfseilMYPfOJ2Dacgz3NsIW3aToFLLV7paEdNVk+tSg6isQxGA9IsBSCOYpqN5ju2DXueh0bjrD3wUMvkJUVSgHZVM7Yn56iGfJJTjHJsWuJ3QuJj9Tmw25/X+OiVrHrtoioDUgc1ckoplC/r4YyDxyy30qLGW+SMKqytVJE/YJSnwYArHCqQn1UoPL1InZipk9U+iOjmymlLdmtCdnlIZ7XNyge2CFvRgfew1pJmqTSIV4uoUURRRBj8BQGCg3ycku9lREHExtoaUU3eX4/1gfPm7cYW5rG/w511jO8PGb3Vp1Nr8eJzz9Fe+eE+Yyml8HzJHzbWgIP72/e5fOcyzeMtVtqrAikVlHnJjTs32O5tc2brDLuXdwnGHh96+kOc/PDJJ7IZ2xgzb8b2u5rNDxyh3qr/hV93Mpxy7817mIHlxQsvc/qDT2Zz+Hs9Mxj5g5SRT+L8wR/8wSNfW15e4R//4/83H/nIR38KS/TuzSGMfELmQNjzD/FL5nB+tHknK/bsid+hCvJwDuf9MZ7n8YEXX+b0iVN88Wt/wnZzj84zx+Z5Vu+X6V+/R1YvDoBIm5WM3njA+NYAjCVoxyS3e5zuDd8RqhZJxoPLN7l3+y7lkQbhz5ykVXv8DY2zjmw0xfVTlqImm+unaTTqzG7Wbt6+yfW7t6pWX0O+M6UVNXj6qRdY6i4tltUaXrv0OjtJXyzWyxGlc1zv3+fqd65zZvMUJ46deOwyBH4AJsWVBny1yFR0jnIvE4tjbuQW1VO4zBKf75JeHWKWc0xfwIVqR9AOqxKaSslRlaGo0DuYhVW66iZT1Bmz77GDDK/mEbdj/Mgnjx3DB3vQzyhLg16N8aOqMbuwlRXSoTwWqjtPWpznZTCzVmMEOLlq2bQvak4pCEE+ZXnIzajmEaXjfJ/Nsgp9fcDmLOqcfd8/yzdzAv7czP4diU3VDvIqd1JyItU+JeTDQhiX2wVwdfI+zrhHSkRwCLAONfgaO8jkz1WumpupIJUSa/ekxE1yuD9B3x3hhRr/WAP/ZFsUi9bB0SZ2L6O42KMs7TxT0ZUGb1mKZ3ToiSW1tATLPt5WlQs6yAQyL1Vt5kaawO1QYKJkVFZN1qNcIGQ3Eju5E1WjCj2xoKcGvRzJujhww0z2ZZXZaSeimFSRlPPouo9NpNzG36hjeinmblV0VK/aja3AMcwMlDjJQlViWWSWi2gcrqiKcgqL9j1sLhmfOCdw7q0+5vqI+Oku0fEm8bPL83zQ4ta4KmqRjFM7yPGfWZ4fr3O1rEOUi9eHmJ0Ez9WIznflmNGi3jTjApeUZNsJfi0g2GxU9kpvcRwqAZsuN5jdlHIvQ1eWf+VpihtjXGnRzZDwTFMeMlRW7uk3HxBs1vGP1AjPd8A6TC8jfX2X8EQLrxOhYx99tEmxl1X5rwCi0rWjnOxSH78dEp/r4tV9zDgXsFydT2YvxZWSFWp6KeWNMXZa4Nd8Wh/bINisk77aIzjWwF+O5bjVcsyjEGA6ysmuDIgvdMFCUA9hyWHCgtGrD1CeJnyqg8stNi3l4YenKHdTsitDVGZone1QDgry7QT7YEp8vkv8/DKUvK1tV6mFXRgHNimwqcKPAsJOtMiKRMCitRZjDbaAdlynu9yV338O+oM+g8kQr+7hNeU2b5SN6d8f0K63WOosPV5qqKDbbLM3HhC2YsqsoEwLsVs3PbSnMbmhmORYI6DXlpagExIuVVZtpebWaWcF2u0Tax+8rMwyH2cg/zHLpD1dCQQE5j+8zbDI9XV2WXU8/oUes644RxiG5EVRNXLPnxHgbKVMtaD92Vfl4UZ6fUhxe0pttcbKR7doL3Ueefk8z5mmU3To4TcWt9rOOdIsoyhyGjVR84p1ORfLv9KEYfS29xrOOrJhStHPadTrrB7dxA8PAsV2o8VoMpnb7R//Qg6TWBqdBbSxxjK61Wdydcja6hoXPvpB6u0fD6QprfCUx3A45PLtyyw/szJ3sTgcOIUXeITNkBv/4zrjbwz5X//W/8bm5uYTeX+b5zmX3rrEa1e+R/1IjVOfOD6Hw3+RGewOuf/mfYI84oPPfIRjx449kdvnJzV/GZWRZ8+e4fz5/xcf+MAHWF9fJ8syrly5wr/5N/+G1177Pr/2a7/Gb/zGb/DSSy//tBf1x57DNu0nZIwx80btQyj27sx+K/ZhIc3hHM6TOdZaXr/0Bl+6+C38547QWOv+tBdpPq/8pz/GvFgjPiIfjEav3Wf727fg3BLemSXwNK43pfjGXVrTgM/8P/8ufrSvuMM5pr0hd9+8zt54iDvZIdpaWlhlHxpTGPLBBD0u2OissL68dsDCYYzh2/9/9v4rSLo0vfPDfu97bPrM8vV5296NNwBmMPBYkCssdpdLs7uUSClWJKUIihGiQrrh8koXEiMkLi9IkVqJ0lKrEMU1wrqJHewCA2AMxnRP+68/78tX+jzufV9dPCdPVXV/7aZnMNODeiIGXfgqK/PkcZnnd/7m1ReZNgpqq61D1nBHNk5J7wx56szjrC6vAo4fvP4ygzilvt7i7Rd4zlrG1/e4tHiW0yff2ch57/5dvnv9ZerPLDK91Sd+rIvNLcnVfXQjwF+piWLPOoqtGfnWDDyFnRWoboxea6BCLXAs0BV0dM4d2IYX4hKolBeK2RxMOPDFtm2TApKCoB5S7MzQBQIN4wDVDCg8W0FIgS1eZdV1qcBSXS8LYBwHjdeZqVSPlfXaOVxeAi8tOY2qLpZWClFGOt52c9HOwWIJIua2Z7+80Aa5uNeHUssKdwAgM1O1Y7tpIa8TabFQO4deqh2Fn4dgqBvnYjGtl3mIgS7BjDpYprnSMjFoX0mr8n6KCjzsTLaBWBrlqe3GGLU9xRslBKebeMs1AYSFo7g9RDUC/PVGWZwCZm+GfTghfrKHyyz5gzHF5hTla8IzLXQvFmXmfiqfzYVDLcSPBKYuNbhxJirJQOMmRblQDueXDeRlmQ6pEXg4K44U8GCdKN0iXzIa59vbgW766FaIeTjFW62LmhKxmZv9VLaXc2IT7wqgQ5cK2zlzsfIenHW4vUTeh5XjSfkaXQ8oBgn5lX1pv2756EYIDqInuoRrDYGGd0d4zRAVeyRv7OEseKdbBGdaOIu8Zxy2n5Ff7+OSguB8G2+phhukBKt1WebYw+XSlk7kyXu3SnIynaN2rotVDt3wmb6yg7cQkz+UXC6/F6GbAf5qXcprHFWOZHS5I1DVOOwkRylIrw8JTjXxFwVIK09js4L0rQHhuZYUBvUzkgdj2Y9jKRHSoYdLC4KTTbxuiEtKgNsI0POyKAdmmJHdGGA2pwSLMeGJOuROoHMmx7mu+8SP96pjT3kKmxiBUKWiLr0xJFyto2sBQeBjZgWxCum/vkmRF4SX2mhPWt9nt0fkDyd4sUfjXJtilpPcHkPkET/WJehE5c0D2T+9xiOUaMbhl0q9vJ/S8GLSNCNYqb1r7AaUN9G3E06srIvCTcF+f59RPnlXm27ST2j6NeKoxmg6xlqDp33azRZxFGOs4f7DB1JK0wzxa151virSgmyUUkxylFb4vQiv7pfHh6tuTrz988nm5XXL2yJV3q0J+53vU45BVZZ2vf13zhiU76GVokgLsea/35TnkjiU9WSsWODnp0ff89FKY6whLwpMUpDeGmJ2E5qnWtTWGkRRSD0+msdZFAWzZEZu8qq0xlm5SeUfWi6TGTyrMdaClpiO+fnB5g5PaRr1xoEq2FjS/oxiWNDutGj32u9689Vaw/2NB/i9AC94tOYoHSQ0vTq97gImKxjc2ie5N+XkqROcvnyKMP4Ays0SfKdpitaabqdL8DYw+uqbr5L1cuJ2jbn811nHeGPM4NqAer3O6qVV7v7T2/xH/+5/RBR9dID3pznT6ZTXr7zOtXtv0T3bYe38Kv67rPMPOs459jb22Lq6TSfs8cJTn2B5+d2zxY/nYP7T//Q/5T/7z/4zfuu3fot/9I/+0U96cX6s45zjb/7N/4RvfOMbXLhwkf/qv/qvftKL9EPPsTLyYzTHJ6IfzRwX0hzP8fzsjNaap594irOnzvB73/o6d+/doPP06XeoBX4SM9rt01uRtr7RlW223tgk+J0nBIrMpxOhT7eZfHuT7/+Df8Gn/9KvAtC/t8X967eZhRZ9foFw8d3bE/NZStGfEuWKC4tr9Na76EdkdL1x7U2SrqOx0n3bbxRhM8Z/POD1N6/QajTJsox9M6a5vvjI11Ra07y4wPXXbrK+ui4ZjOUURU4YhKipJX0oGXbOCIgMTjbwOuUFhxOLsTNOMh4Bb7EG5bnXFU6ARGWRk8Zn5YBAo3xRwM0f4+YqwsA7EIXlFpUaitFEynEaHkGnhkssRol60WVFBY2csWKvnb+GK2FK6KFLOzi+qMPEMq4PZZQ5lOekxTkvf58LVLG5PVDdOHcAFstlFpFlaS/Vsk0OdeXIBb8Wy6AtQagbZpAZed1A4y1GVQGPy4y8n0mOaoZU/vG5jbVUl2KsXIAbhy1M+V5cBciqhbYOrT3MMJfW7oZG44l9uRXgdqe4H2zhB4rwqQV0vS0X2GEpC/UV/sUOxVt9TK3MrlSgWyF2c0r65r7sV74mONWUZnMEELlZISraQhqq1TyjsVxN1X89hepEuEGKbtawe4lA6YXagVIQBEIah9tPBIakBm+xBJzGYUYZZpCimyFaIzmQSkFqKUZTlOYAogBeIziSxWm2Z8xLadAHYBdKe6hy2N2Z/G0vFqVQoCnujki+t4kbpESP96h9+YTAcWsF2N8dQ2Ik4zPyUTWP9Eqf2rOLFDsJ1te4xOB8hXkwIb85QMW+2JEXY3QJcIthRnZ3LOrPSYFqBqI69TV2nOG3I0zNp3htl9APSbKE9NZQjiVfET/eRTfFIl5sTkn39/HXG+i4VElGHtmtEfETPWxpS5/D5OSNPbxORLBSI1hroEOf8EKb7OZQgFTkEZ5v46aFgHKvXNc1D78bCjgd5XhL84IguQmR3hpS3BkTrNYk7xVgZvBXaqgTDdBQPJhQ7CTkm1OC1QPFl8tNtf2cA3+pRr41o3mpVh2Hvu/TObvI8NYuUS0kuT9iem9E0A5pP71AvpswfG2XYK1B47Mrpb1XVZBuHl3w9nHGoQyYaQEGAuOxvrbOaDJidzggfARUdM6S5TnZ/gzPKB7sPkRZRaNWZ5xMqC0fVbPlSU42STFG7PXTZEzcrhO0QpT2SNOMBzsbuMJSb9So92rkNiA3BbY8T2SDlHR/htcMiNcaeKGHKcqmek9u3M9v1rhczj3zG0ja04+0PB96Q+8KIqEUW5afCSYXNWul8rYOT3vYwuG8OfC37wlx5+vdP/QZ6WnvkbmWZpCT3Rhgxxmts01qlyUz0ff80iYr51VnLZPZlDzPwNcCaZECKoejyHJMmhPUQ7Sv0b4mHaeETdkG1Xv1QAeSzzmejKmHNdL9BDuzdHsdWhea7/vetPZYW15jY3sDUysIGmH1N0WaU4xz6kGdRthk55UNip2McxfOsPYr60dAWpX7+A5JKzzYuM+te7dRDYUuYy3yWxm9Zo/HLjxGGIVYY9kf7rN0bhlQ2MIyuDNgfGtIe6HD5U9fJmqKkr12ocFbb73Fs88++57v7adlBoMBr77xCvf27rBwYZEnf+kJvI+YX26tZfveNjvXdlnvnuRXP/sbx5mQH3Lmbdo/S8rIdxulFH/9r//bfOMb3+DGjetsbW2xsrLyk16sH2qOYeTHZCqLxjGQ/KFmroKc50EeF9Icz/H8bE2z2eTP//Jvcv3GdX7vG9+GxxZon1j6iS6TLkGEM47tP7lD8DuPHwWR83HgX15k+No+b37t2yQYipUawQsrxI1HKwWcc6SjGa4/ox3UObl0tszJefRnRJZl7Iz2aJ5593WiPY/gRIPb9++Q5hnh2ns3liut0YsRG5sPOXXyNHme89bNt9ge7KG7Ac3zCwx297HTgunre3idsAKRLjHk+wl2ZlCtEL1cR3kKs50Q9mLSjTHOk4w+N7e2pkay8nqRNF5n9qDMZZ7T55dKktzg+ilma4rfi1FlUy7GUcxKoBb60m6tSrtqqYbEOXQ9OFiVsQAPOy0Ejs2bmssLa+fKfMG57dlXqMCXZS4szFylelGlYtEdhhPmAFJUCs15MQ5U+XwYJ0rPrCxOsVbUcaE0YNtJLlbkQ3uB7adorSrr71wRJNZ5T35fCl+V7Fii8Ctf3zlpDXeTnKAZY9IUvye5isZZ7Fv7cL2P3wnweiHRJ1erUg8p+dGH7OEKb72B2ZridSMBqqVi1O7MCE428E81K2WVHWSYrRm6FeAtRBTbiahBK5LLQV7n/P8vy4TsIBWl1mLtnY+Zc9lejNuZCoDcS6SVfa4uDT3sWMpuvMVYQKcWFZ0dZBSbU/wVee5q65lShWkFdOrFWllu5LDZQVOvmxSQWlTNo9ibYTamFLeG6IZHfL6N34so9hKyG0Ois210zcdfqaM7Icmre1BY4ucWSV7ZI3q6h51ITqPqafKbA/J7Y/zlGtFzS5KBOt8ZtMB7s5fgcivqzrU6OtBihy+VoMUwlbbm5TpqaglTRW4gfryHMxbdCFGeQjcDwmYHs5OQ3x0RPy03LnQzEFXypKDYnVHsSBu7jn1RRQL5wynprRG1J3p43Qg7yglPN/GigHxvhq77hKcaopY0AthNv7SylrENZpSR3x5idxL8hZjOl0+glCK92kc3A4LTTTk+jahOg5NNvF4kYFchy+JUBY6dkW2kGz75A/muqLWcM7zIo0AxvTMgH8yonWwQP7vI7N6E4cs7ROfatH/hxMG+OzPgidrP8zQmMRgrDduqjDhwmYXU4gU+XhRiBhlry6ugoNVokWYp4/2EoLTBg6jbk1mCmWQoK2A9LyQCYJAOMYUhdlKgYq1lsjMuC4lEMSd5t5pkPCPP8jKTUSCzV/OYMiPMDc16g9hFjHZGJMMZquFRP9vGKz+/bGEOIqOqGwNKoi3mkRalRbuKc7C2ugFT5YFWisj3ubZREHgBgSctza4E/JX6kDKjUIEpDOr9hH1G8i8fNc450u0p6fUBgeezcmmJaCFmls4ojEH5kKkcipxJYiXOwVmccmhf45ylGMtNIq/m45VuB1dY8jRHZxKsq2v+u5bzuAKS7QlFkbJ2Yo3G+kEW5weZIAg4uXaS8WTMcHeIdQKVozCiodokNyYMpzucf+wcy59crq57sizjwcP73N96gEW2XyOuc/bkWRYXlkDBtZvX2Jxu0X2ye7R477Rjujfluy9/l0899ykpBgo0RWoY3uozuT9h6eQSp37hafywbPIq13fYDtgf9D/w+/tJzc7ODj94/SV2ZzvSjP38h2/GfvsUhWHz1ib7t/qcX7/I57/88zQa7/3d63gePR+0TftnZc6cOYhJ2tnZOYaRx3M8P40zL6KZQ8j5vD0Pcg4jj+d4jufjO0opLl28xMkTJ/mD7/wx1+5do/3saYIfQXbPDzPd9VWmd/vY3MDpNip69EdusTmGu1PyIue63uXMLz6P/24WrMKSDiaoUcpKa5HVM2c+kLVpa3sTvRjxfhd9cbfO5t1tlFI0zr8/zA06EXs7fVbzNb7z8ncxKwHNUwctuPUTLfb29knuD7FJIcUf/Uxsr70If1WuGm1uUErKR/JxBiDt26Wdl8hDtUNZegW6Hoi6rBOJeiMX5Y2bFdj9FDKDqvn4p1uisstFtYgnpQi65pc28IPcOAGRiLptnIsFdF7Q4muU53DpQfMrzuEKh00LoFRw+brMQQOcJ5CytF67aQGxfxSmleARVSrw5qAiKXBJ+TpKchndNJcm8G6EbgQ4YzF7CSTy914rrKymNpH3YocpbpDhJoWAPF+gmhvnsjzO4SY5uhsJ9CzboeclKwoFicF5iqyfgKekdfz2EPVgRFDTeGvSaq3XGgLyDqkVD7MKQFSUtwrMOIdxhpsVeN0IvxdBZrCTHK8V4lKDHYnKyCYGlVlU5EmO6LwApgS0aKgKW6qmawv14Ei5UDWHmnFVM8QNUgGS2zOBj6t1UbZ6GpcUYkuPPYGy8xZz68jvTWQfiT1cYkSVWwiE1ZEnzxt58j87b0SWzFFvKSa/MSC/so/ywe8GRBe7ouoLNP5aHTvOSa/1CU+3KPYSzDjH64SY/YzZy7u41JC8vIuq+ZJdeWtM+ESP2hfWJdNTHZAOO84FQiL5i/7lHirQ0mSOKBJV3ZfKIudEKdu27F7dkLbtk02KexNMWqAijW6G0mYeengLEWYsalJvIRaR6mJMdm9UAnyP6GJb7PMlgA/PtDDDjOTNffyVuhyLqUE3Q+JzbTkfzO2+TgCn2UtL8JORvDyEaU58oUN4uSuq2cij2J5JDMRSrYThHFjwlShTw3Nted1eJC3WlYzaSbxBIVmfxtoSbOcMrm6Q7IyprdeIz7VJ7oyYbU8Jz7dpPdU7aGIvlxfrKjCOA20VnW6PyXRC1peCJj8K0FEIqcXNCtaXVg/O5QqWekvE0wn9/T6FkpzRZDpDeYqwHeHXDz5PbOHI9mboyGO6N6G+0GC4OUTVNHZW4LVCgk5QRQaYcY7pp9KQvlQ7aPZ2jmycs3lrE895RL2Y9oUumckFDOOwuZUWak9Xqmmb26p0BofY31OBnIe3YwXkC1GHq/kJ/T3G2aOFkVrpd/yJQuFrHz+ENC8LfoJHf6d3mRS3qLc9iTOW2YMx2c0h9U6NE8+dIGyLzX40GaNCBGA6R5EZueFVlqahFV7sVzcfHEBuMTODV6rnVVC2hVuHSQx+7FU3RuZTTHKyvRRPKZrLTezE0GjX33cdPWq01rRbbdqtNs45Jttjxlf7oDRPPfE43ZXuEZA2Ho946fUfEK5GdJ9aqGz12TTlysO3aG0+5OTaSTaGGyw+/s6me1DUFxooT/H6W6/z2JnH2Hlzh+nDKasX1jj3SxcOrOXOyanAgcJRpIYg9smyDN/3f6jrMeccd+/e5eadmxhTsNRb5sknn/zIbdzOOR48eMBLb7xI4k1ZvbzKU0tPfKTnBMjSnI0bG4zuT3ji7JP84q/+8sfOpv7TNj+LmZHvNcPhsPq5Vqv9BJfko80xjDyen8l5lBUbDiDkcSHN8RzPz+7UajV+40u/wu07d/jat/+I6fk27TMrf+rK8jMvPMGL/+L3sYs+6vTRL0fOOszDMfntPnlqiJ5aR680Ma9tP7I5tEgz8v0pQeo4t7jKwurCh2pTTLL0g2VpzfMKDXygC6BSGfjGtTexqwG1xaN3pAM/ZGVpmYfTgnR7gttJ8NeaqJpfFgWIqlA5OT/ryMOkmYiVAn2kBVqcxqVLQEPQq5HtznCRJ87iUQo4VCtEtQNAlZl8AqxsCYJUUGb5lR8NLhUFo4r0QdFOCZXstEDVvIpnzJWLdpjKdWRQWpG1vI6bFThfV+u6UjcmRqBjZgSseupAoV9YgVhKmq9dLmobFYn9jaRAOURNWFixjZdFIjYxVfN3sT0TO3lHYJ7LpDbbWYMqkGbryJNyHE/Jz7nFpQVmx0oGXwk45tDPTUWJGSzUyG/3cTf28QtL7ckuwReWQGmKzSnZnbHYkWNPFJqlJdiVeYxzKOkmhbzf/USaq3sRpAbbTwXI7mcCkxGgpZsh4MR6npSlNCUsqkBj2XwtMLIszCgsHG63rYDTof1aI8Cyn+Kv1yW/dCfBbE8lLsBTsm1nRoCkp9CtEN0MREmbW+woF9vwQiSWagm/w2UCiu0ogyHV/manOebWUF6jExKdaVQALLs7Jrsj9mZvKa6UpdNXdvCXawI9ZwW67mFScOOc/OEU3QqIP7GM8jTecq2EyoCvZPkGkg3pnWyS3xS7NQiYU2Fp/c8tbpQLpPc1BAp/IaZwfTCSi+mv1/EjyW81/ZT0+hCvE+Kv1fGXa2TXh9hJAQikN/0MHXtSBvM2MOQQ0O4txJidGeHZFuFCjPY8rLEop0SBXGa4Ousww4z01V3C9Tr1s038pRqeJzmntrRDF9szwgttAU3V9uYgC7U8f3jdiGI3xV+OBbKVdnIFUszTDCh2Zoze2KMWRTQvdCF2zG6NGF0bUH+yR60XyzE8Vz2XoM9m0taukBIUOzM0ohrFLCMqAnqNNoUxpHlKNs4EpAUeSZoQ+AHGGAbjAWkmx0EtjmnUGjzYeEjQDglaR2V/NrcUk1wy0CcpBYpsmqHqHmacS87rNMdMC1RQwkIH4WINbw7EgGKUke0mOOsIehF+uS+4StnsqhbveVSCK/MiK4V46g6ApK/eke06B4DKF9uuy2153LzbyA2SD1NOFwUhWZFhUlMpmh1UyuUgCPC9QyA3M8zuDMnvTmitt1j9/Bn82gHAmiVTVIgUTBkrpT6hh677Ygn3pIHcZfPPEckxJfTwlMJMcvy2bDNV3jhR5X5LmUWcDzPyfkoQ+bRXW3jljcskmVEU5kgMyocZZx2jB33GN4YstLq88PxzNHvvVI3lWc5Lr/+A9mMdgrflRYb1iPBiyODegJdff5nuE733VGkqNLdfvEH7fouFSY/1XzxBc/lt5XxKoef7jIPJtRGXfvsSILmbh4tDP8jcuXOHf/DVv49rO9rnW2hPc+Xhm/zTP/wnfOETX+QXvvALH/r7nzGGW7dv8fKVH6BajrVn12h2Tr3/H77PzCYJG9cekm7nPHP5OS7++sWPDEyPR+ZnuU37UfP7v/8vAajX65w+/c7s9o/LHMPIj8kc27Pffw4X0sgH3Dut2McQ8niO58/OnD1zhr+6+hf55ve/wyvfvEr7+dOEjT+9u4fNlR5Li+vcvnkVTkqOl8sMxe0B2f0hbrGGvbRA0G7gPSIw3jnIJjPs/pSWF3Nh6RStZvuH+jwI/EByu953xFbeiBvks/R9VaX5KKURLXBv7wHNc8tHfmfygtn+hGSc4CJN/NQyeamuq5q0tcILxPJcpHn1b5SO4kpJUwqYFJQXvxp8JQXVD6ZQ81DtQOCRp1CxJ5BnPoXFWSPqq0ZQwsXSgoyU1Bxhr1rhihJijvPqgl2FugSJoHK5AFW1A4ipAl22cRfo0gboCguBlmyt3GKnhdjz9MGbc6aEj7nFzgoBbONMshpjX6ypvsZp8LxQwGPNE7VNI0BHUqbipgXFxrS0F0cofQAtXSIFHqoeiPJwLBfVc1DkUkMxzCpga6c5XiPEyw32W/fQm2Pqn1wmuNiG3JHfHUuJTeyhAllfZj8Vi3moxUafi0XWDDPcMEXFPsFqHe9kU+BtKmpIVRb2OA/m9MPsJthxjr/ekB2hzIsTKqwqaFvJZcuf3bQoYeghTeYhMKV0tdoPfukp8BT+ao1iY4qdSrmPywRuzqGyHUmDs7cYo1ACiMtl1c0Q1fAPlslRlubIPlRc3Rewu94gXK9hBxkq8AjOtiR/cXuGnRRMX95B+xp/vYHXDvBXa/L3uwlmKlb8YnuGtxBT/9waxNIgr5s+Zmcmas+ZqJB1J5R1DRR3x9jtqSxbYaVBONAltEZUw9MStMQerhSB+mt14nPt8pgWwOMt1/CWYrIbQ7IbA4F5ocZrSrxBsZNIm3gQiBp3vgmMKHHNIEOHmuhUA9sJUaEngAYHxtGo1UiylHycUTwYk98e4fciwl5E8xPL0nA+P34OgWZRSPrYEuA7O99fyn3DWBQarx1gdlMR9pW5tV4UYXPL7PV9lHP4zYD25S7FuGDn5Q10K6T72TVSJTcDrCnLpsrV58piK2cESOvCSWqDDVAzR7veJm4JwNza3SY1GV7bQwc+1lr2xwM2d7bQWhMv1vCaIc5YRuMp/c0BeZ5Ra7VwxlFMcmxhJY8Xh98J8cIAMxEVtS0sbmTw6gF+J5TzSmoksqG8OeDVfMkzHGVkOwna14QrNby6X8JcUa9lRS77fiFKRxC14tz+rssDan5uxsj5TEf6Hcq/w6N9hcncAch9xzhsIeU+1lkU6gN/9oV+iPPnBZWiwtRaowNdAdFimjO7MSDfmtA61WLxCyeIa9GRTEbnHHlh8KNSEZnkeDVfPhfK7TxX3BLLTQiXSU4wlDerMtkm1Y0uQIcamxTYXDJco0ZM52QH/TYwK1HEjg87tjAMbu8zvTNmfXWVp75wmbj57t997m/cJ1yJ3gEiDy0J7ZMddu5ssxS/0wrqnGO6PWVwfR+fgMWTy5xfOs+nnvwUv/udf8Sl32w9ctsppdi7ucuJ1gm63W51vTa/nvsg8Vm3b9/i7/zu3+Hk509Qa9doLjYJogAeB/M5w0v/4kUm/3zMb/7an3vvlVZOnudcvX6V1669Qrwac/pzJ4nrH12xOOqP2XhrAzX1eOGJT3D606c/1A3l43n/+VlTRl67do2trS0+97nPHdlXrLV89atf5W//7b8NwF/4C3/hh75h8dMwH98l/zM8xwXoR+ewDXtuxT4upDme4zkegCiK+MUv/DyPP7zIV7/7dfonYjoX1t/l4udHP0/88ucY/7/2uPf9DfKHY8ykwJ1u4T61Dk4RhGF1AWBzg+eJ2iIZTFDDlKVmj7VTp4jjR7ejftBZXlzi5pW7sPzeX9KycUqv2eHUygle27xGcO69voQ77E5CvBaheiFzKpBPM6Z7E7KiQHcj/LMdTJ5htQABP/AfeYHqhT7Z/gyyUn04yfEaQQUlqyKb3GKGYlt1vqZ9aRmDZVakovp7lALUF0WXG2dl47Ss57mSxc6KA3Y1v4EVCtBUpY0bVzYt+1pAR2nLtbMCbUUV6IyrGpPtNC9brcUG6wqHyyy64R+UsJSE1RmHmxbYiZEctbqH6kiBhstMlWmoPEWxlx6ydYvKktATTqcUuhOJJXdaoMpiDl3zcKU9k3EuypSFuLQVCiTXrVAsl8MMlxSwOcYbpMTLdYq6h/eZFYKzbZSB2dV9vG4IUwF50aUu2b0x3ukmNrViZ3cWuyGtzLoV4p9qlhmaknnpMiNK0RIIq0DjL0SSbwmlRTojvzWSdRZoUYzOW7+dANzKhasot2OpDCys5GN6R9f14X3PzQoBCbkAY7RCt0NZ36UC0muGYjGeW1JHOcXDiSg7PclGdBbMfoKaepKBOcxwCuz2FHN3hPIVzU+t4C3XBPKUjcTp9QHpG/uVvV5HUpTkckvxcAprNYJuhMosZpiR358QnGjQ/Mop2X5z1VpSkG/OMIMUd2eEakd4qzUBwRtTWV6tqH9yGTstRDVmkVbquo9XLyGEdZKLOSskT7Tm4S/XpMhEl+vZIf9HgdcJye6MiZ9ZEEjbDnHIxYW/FFNsJxT3J/jrdUw/ww5S/FZIdKJxoBo2TnI0rSgqPaWZDqdktwa4rZTaap3mJ9ZwASRX+gSej3HzGyslvEiNgKbSmu5yW7bcO1FYU6p0y+MVK+DSjHK8yMNkBZMXt8lvDqmdblI70yLdnDF8c5/oVJPGZ1aIWhF5VkCuUFoU1ejyZyM3NjzfQ/seKocQH201tSgmiiLiSM7hmzub5KEh6tbKc/2MbJaVKkvJNi+2CrxQ9jkde7imRs08pndGKF/jd0N06KFqHs5Y8v0UXR4/NhP1tCskY7YwlqAbESxITIczFjPJyfcT8mGG8jRR2Q4PlMfM/DhxaF+JctZK67Ozkgcp6/Vtykcl50VVntMObrg8SkwnqkVl5Xv84ZIpZ+bgGIxyGFNUhSqB76HVe0Mch8NaKZ7SSlq3rbNY48gHKcm1Pm5U0DrXovNza2hfkduCbJrja029Jk3WRVFUALbITKmCn7+IOwIuFXKzykwKcLp6wzqQGzPe3K5eWLL9lHQnoXuiS+ts79GlNE7s9x9GFVokOf2be+QbCafPnOTkV54RMPc+82DzAZ2nuu/7uHilxnhnRGdNHuusY/xwyOD6kEazzvlnL1Lv1tm8skEySXjyySd5/drr3Pr9G5z5+XN4h2Crc47dGzsMvrXP3/irf4MwDEt4fHDTdH5t53neI8Hd5uYm//l/85/jLWvsLYkmmWxOWDyxxGOfv0ytXePxX32MV/7eqzx77zlOnXp3ZeNsNuONt97g6t0rtE81ufSlC+9oB/+w45yjvzNg861NGrT4/FM/x9ra2rHA6Mc0P2uZkZubm/zNv/mf0Gq1uHTpEr1ej/F4zK1bt9ja2gLgK1/5Cn/tr/31n/CSfrQ5hpHH87GduQ37uJDmeI7neN5v1tfX+bd+43f47ssv8r1vvEXjuVPE7R9vSLizjuHGLvWTy/DmLvaFNizW0VqhfQ8/DI58KTWbY9pRjLnb58zCCkuXFvG8H83HdL3eoOnVSIczova7KCScI70/4qnzz9Bpd6jdu0WyNyFeeNR6ckxu9zmxsC5XYZ4iHUyZ7I+xgUb3YoK4Xl2ABr5HkmeiOJwXH7xtFAoyR7hQI9uZYQcZXj2QIiCQzMn9BDKL7sZ4pyKYWeJaTH8sbbw8qiDo4AUg9nFJgYrF3jjPHVSxdwAdS9uvFM4o8DQ6Km22s+KIWk4FXmXztEPJuVORV5XKuMKVkKUEnzWvAibVhXfhcKXiTjd9dOwf5KxZJ3mMoUexNZX8tFiAl44FcNpxJiq4pig+7SATtd4gE/iIqDBVmWlmpwW6F4uCbw7pSju7Swt4MERd2yNo+vjdGhaLyQpUFlDsJeT3x6LO25wJyJ0W6LrAoOLhVBSe40zUer1IFIOhgD43zEplppS4uLTAW5a2a1mHubSSlvZ35Sm85VigsC8gVnUidKgPbPO+FiBUrkfdCETNmhmI/IP3d1goaREAORZLuRllUDhUXUAiIIBMKcxegop9vG6E8hW6I++n2J6hW6FA2bnV11NSPnO1j92aEp6qE51vEz9ZWhvLJnMVeFVhzBxw+2t1/IUYAo1LC/KHM7KbA2Y/2AFPEZ7v0PhKT54mMdgHE7yFSDLo9lJcISrT2gtLuJmh2E3IdwXuBycbotR14C3H5K/t4601xFY/yqUAqrS+q8iDQlHcGxOdacqNgcIIKPXVgeXZOPKHU6InulUJkyvB9tyWHpxukry+h0sM/kJEcKZ1sG/LaaQEVwKOzSAluTOCSUHtfIvgUrdqPs53Z/ieT749Qy+GZNtTit1EnsYcHGdFP5W8u0MFJwAus3j1AOcc2cYYShiZvL6H3U+prTZoPLlAspMwfHWP6HyL5vlVvMDDj32MlVxKHXuYaYEXS+M7DrQPLtAU/Qyv0IR+QGpSrLYMxoOyrEXRqDUwgSVq1LDGMtkeYZ1F1zx0w0cHsl8Xw4xilKM9hRcEmEkmr1Oqq81Q9nMcmGkuxSm5JXswRYUaHXroUFW5hC63OF+a3LO9hGKU4zV8olUpDlO+PrjZUyq1gdJmrcoogYO8VCnUeRRQkRtSSosN++Cmn6t+d+TvymZqhaKwRVXW5axFe1oKcebW7vLvs6Ig8ByelhIUY43keyLf/aU1XG5ozbePcxazn5PdHuEr6JxrE/RClOFokU0o+/poMqZVb1IUOSYvMEUh8QFagfUO8igfBVhLdXxVVqeV3JhJDdnODJc5/LpPY6lObbH+9ieopkhz6lFNXADvM+k4ZXBtD9cvOH/pHKvPrAIwnU1JsoRaXDvSlH1kHBhn0O+j0lNK4UUeeSKq3OHdAaNbI7rLXR773ONEh8r2slFGuy0ujr/4r/5Fvv5Hf8Af/91vEJ+p4Xd8bOaYXB9xZvEM/8Zf+59XSrYwDLHWkue5AOpynzwMJefXdHfu3OFv/w//V9Z/ZY2151YP9l/r2Luxzzf/3rf47L/6GZqLTU58ep0//u4f81dO/ZV3vK/RaMSrb7zC7a1bLF7o8cRXHv8RNGM7dh/usn11m6XGCl954VdYXFz8SM95PO8/P2vKyAsXLvA7v/M7vPXWW9y9e5fXXnsN5xy9Xo9f+IUv8eu//ut87nOf+0kv5kce5Y5ldh+Lcc6RZVkF3v6sSrs/SCHNMYQ8nuM5nveanZ0dvvrt32ewpOlcPlkFtf+oxmQFu7cf8uDWHbJOgH9+kfF4zN6oj3++9w4QZ43B7M0I7kz43HOfotftfqALkA87aZrwJy9/D3UqJu4eDcW3hWF6u8+pxiqXzkt2U55LjtTUzwhX6wSNCOcg7U8pNqesNZe5eO4C125c53r/Lv5qE68bV0qkt88sTUm3J8TrzUdexxa7CVE9wvpywayUorBGVH1DAZm6F6PrQaUkbDdaBIE0cdoA3PwC8NGuP3AON87xWyFmnAmEnC+vo2pphXkJjDuwW5cFJs65QyCyvAAq3IFaMS4zIY3YA9EKW5bF6GZQQTGXG3k8ZSbfSq200LqDC9myHMEVFrOToFuBqD+R919d9DrJVSTQeL0IHfliz57kuKy0aEZl2Uru0AtRBV7xFAwS3LV9fGPwz7QEMt4ZEV3qSGnKIEVpTXZ7iCsc4eWO2McDjc0t6Rt7mH0pbPEWa/gn6qhacJDnaBx2mB5sCyOgV9cDAbRzNWthMXsp3kIk68xTUtYzK+Si3kh2oIp9VN0HJcpRysZvlGQRujKPjm580MBdef7L9YqDQYq/UhMQXVjyBxN0rbTFRwfbwI5y7DATcBpqiq0Z86IOfIWu+ZhBRv7WPnZzitcKpBCm7hM/tSDgaP5ckxzdCATSZWJ9jS53UTUB5fmdMcW+WNRtagjOtCqbvteLZHsXlmJzRv5wggoU0RM9VOBR3B+DVgRnWhSbU9IrfYJ1aeLGgR3lAr1bAWaU41/sAEqUW62g2o/yq30wAt9w4PUi/LX6EWt0sZtA4cRGPskl+886gVBOfq8Djdfw5dgt1aUq0KUSTMCTnRRkN4a4UYYfaBoXutD0q5ZntMJmhuTVfU4vnmBjZ5M8tPgrMd5yrQKO1jqKzSn5/QnxMwty3JYWWpcZUf8GHtYYJt/eQlmHyi3hao1ar0G2OcMoh16NCVbrB+pbXTbCe1RZsK5wVVGRzQzFOK9g9PwGhy2tuV4zEEBVWMwow2WW5nqHdJRgjMHvhAIZHZhRhp2ZMndQWrltbvCaIX47qCBvMcgw4wy/HeE15Tgw5TIA+DVf1nsZX1CMM7K9FFdYgoWYoBtKqVeV6/jOE+a8DdvzPVEaZpKraYtHqyIr0DgXB9iD7+VVmZIE/5ZxrwIsIz+sOKXDkWZzlSgVrFaePvI5bQuLrz1pt/ZKdapD2sHnr+spnHWk98akN4YEdY/mmTb19aYIFzXYXLZjEB9VwJncSAGPB85X6EBhCzlnudxiM4MOdZVpKm9Y3tv8RpaOPImOGmak2wleoAmaIVErggKyfkL7ROdRklFRzO4knFhef888wenehOH1fRgZuisdWkstgiBkMBqwM9jBq3mkSUY+zmg3Ozzz5NOPVI394Z/8IUvPvX8T7+bNDfpX9qmHdZZOLbNycVUs7IeX3Tne/Luv8R/+9f/wSCt0URRcv36d0WiI7wdcuHCBdvsgS9IYw9WrV7l2+xqFKVjuLvHUk0+/wxWitSbPc/6L/9vfovdzXbxlTVh/p718vDXhztfu8KW/+iVQ8IP/58v8x//+/6b6/d7eHj94/SW2x1ssX1pk8cRSdePzhx1jLFu3t9i9ucfppTM8++RzR97j8fx458KFC+zs7PD3//7f57d/+7d/0otzPB9wjmHkx2jSNP0zCyMfVUhzbMU+nuM5nh92jDG8/NorfPPWK0TPnqC+8NG/MKajKZvX77C1uY092SI8s4Auv6g7B/v3Nujv91GrDbxujDUWO8rw9lLaWcBnn//Uj71NMU1T3rx+hf1pH9UJBUTNDHrquHDqHCfXT3D0ItOxt7/P7Qe3GU+nKKVY6HRZWVhmOB2zPxtCO2Rzske42nivXHuKtGCyMUDHfnWBDqXKa1pQa9UIGyEmN+TbCWSG6XCCq3vohVhgBkBu0WhajWaVk7M/6GMjBYF3NMpkLsap3k7ZHh16perQmwdzHdgKD70HO84PWpx9VSoIxeKJlfB9XSsLC8rWa5sYdCwXqUrJ38zhqW6IKtClRnLvamVLcyIW18piGh4AUpSi2JnJa85bw8ucNd2W9WhHeQVTKZyUECkBQHPLpCvz5XQrEvBVWNz9EdzYx4s04dmW5AtOC1Soyd/YI36ih/KVAEBfo2s+xdYUM8iInlwA68huDSm2ZgRnW3jdSNbB1ByoLavlFkCg21HVOmtnAhJ1T3IDMU4s5qnBWYfXiwTszAoBQOU2VJ6WbedEMSvKT69SN1Z/k5et2vGBzRuQoptJLtAwlnWUP5wKSC4bzVWoD6AwSKbm5lQUm5GH1wqEa27PSF/Zxe4n1J5fJLrYQSnJXyx2U+wkJzzfFhBdwkiA7MZQwOFqHW+5hp0VTP9kE3KDbkf4Z1voho+b29pLOGZTg91PRUnXCDADsdWHZ1sQeOR3RwTrDbF0n2niL8RVAQlKFKjptQFeN8T0MzlmPMkTNTsJKjMEpxp4C7HY2EON2UspdhKiyx05Dh2k1/pV+7fsf1L4RCLQyuuG6NiX7TAr5P0jCkWBkx7Fwyn5q/vo3FJ/ZoH6kwtk47RS9+GkeTi51sdNCjyt0bnCO9uAlg+BqnJEbVkgYpOC4uGU+KmeHBNlm/1ctTp7aQe/7lM71cRaR3JnTHyiTe1CG93wyWZZWe5zAMCcsZVV2SvPQ8UwO8iHDT38bnQA1UpVtJ2WNz5mhZxffDl27URKOnQrIOhG2MKSb88EXjZ8KbKat9srMGOxsfvlTYRiJ8HrhpJRWNrPvciTvEetsCWULCYFRT/FOQgWIvxSTTlXZosicn6ifPuU1vNAFKAC4LyyqXr++EeAtLJMaA6b1aNu9pWWa1eU5TdlSLAt36/29UFBlSsV5s7hheIfn0NH7xAUte6QvTcxpLeHZPcn1NfqtC528GoeNpUbM17dr26amUkhMOvQh1eeSCFQWAtL4CmW6ermU3l+0TX/AEBzCEaW+0u2l2JTQ22xJiAyitBKk+zOaAQ1xukUv+WLlbosdMmnGXZiWFlcqaz9b1+/k80ho2sDQnxSL0F3PcKFCOssw+0B+bTAD3yyWYpTDi/ysMZRjHNWe6t85lOfOQI5X3zlRdQJTdR4dBxMNskYXN/n4Z88QE0Un//3fu6RABDg4Q8esLK/xF/+H/3lR/7+UXPlrSv8w3/+D1AdmOZT9h7sMRsmFLOCJ889yb/7P/6fVm3Bzjm+/+L3+MHoB9QvxNiGfQdMns+N37vJ+cvnWbmwwkv/jx/wv/73/mM2NjZ46fUXmTBm9fIy3eXuR7ZN51nBxo0NhveGXDr1OE89/tTHut344zorKyskScLXvvY1fvmXf/knvTjH8wHnGEZ+jCbLsgrG/VmAkR+kkOZYBXk8x3M8H2X6/T7//Ft/wFYzp/PkqQ+VzwRyPhpv7XP/6i2G+QzO9ojW24/OgAKS0ZT92xukoymhH9Bttblw8iyLi4s/FjXku02WZQwGfay1RHFEt9Pl0RekB+OcZTAc8mBng6nK8bs1wkaMAnb2d5mQELQeDVOdc2S7Mzpxi0EyFIBRCCTwI5+wFqK0wqQF0zsDIi8gWKjjt2NR5OWpXBSiCMPgHfb1yWTCTOWiCMTNRSrVhXclXjEOZgVYWzY1U2WAuVKtd3gqRWM9EHXVvIhgXkaQW2n9PVxkcMh+jeJAuTjKUBYBBmWjNoCZCEjUjUNN1lX5g8KOM4q9FK8VoFuyntCUUCrDGStty6Fk5NmZkVbvwuL1YsCJLTg3UpKSW9TGGHVvSLAQEz6zgG6EuFxs5ihQjYD8B9vETy3IdhlKM7IqlXLJG3t4vaiEMYbwbEtyFa0ojcx+WpX2qLAErrmRHMtmcACWkW1kyhZfCitwsASCdlqqvbQWdZ8RsOkKASW6FRzAW4dYtOeW9VoJLibSeO3m8DgQSKsbgWzP0rpu9hJRapblEy6zog4sgaVLjag2uyH4SrIYbwzw6h7h6Ra6GZDdGhE/1j1oz54JzE6vDoge76J8LWrVmSF7OAHriB/vkd4ekvxgB3+1TnBRVKcuFYWc15EcRrObYHZm2Mzir9QITzcPAPgwk1IjrUQh62vCU02Bq/N1PQ/WdALT0zf3iZ7qwcwwe3UXgPB8G3+5VkFbOysEvmqFHWVkDyYl5FOkb+0Tnm7Jep1I27mueWLL96Qtt+gnEgnAgarQJAX5tT7plT7hUoyvFF7kU+s2mE1nYlfvzQHdFNvPiFZrhKt1plf65CV41VofNBe7UkFsBEild8bYSS6wVEO2MaO4OyJshcQnGuT7KeleQrBaJzzVJF6o4/ke2STF+QfLOi87mVuXbV6WQaWST6cjyWJ1qalayv1eJCpkrcj3U+y0kNbxZlAd87ZU+NqyxXuuqnRWtpOzknUZLNeYB4MWw7wsHDJSDmWkydmLPbQnDc1zFXAxysg2ZqhIEy4fKqUp78w4I4BPVKrwrlJyK//RnsZkBV7oYXJ7oCZ/1N+4UiRYAke8R3+u2MzI9/cS8JniQNVY3XA4bOk3ZdFQ6GHKArTDLys3cgzJ7RH5/QnNMy2aF9sCtQ+/pXIbepFXwVWt9EGeoXNk00xummmNcw6LO1DNz8/v5Q0TUc6XINI50s0ZZpITtAK82MeMcxorTcJAgGc2SghNyMrSCnmeMRgNmSZT2d+UolVv0Wq23nGdZ41leH/A9OaQpd4CC+sLXH14lfalLmEtBBz9QR8VaXbf2KFIclpn29SW68wjNk1mmdwdY7cNX/m5r1Q3P/f29njj/hssXF48si8k+zP61/dxU+it95h+f8wvf/GX+ad/8k858aVTtNc6FcjLk5wHL96nthHx7/yb/w5h+G5lOEfnyltX+H//s7+L1/V4ePMBQSfEOUvnbAflweD2kOH1EX/lt/4KX/qFLwPwX/+d/5qTv7bOtJgy01Pi9qMh6vDBkMErQ57+xad5+b97haefehpXN6w9tkar+9FzBdNZysNrG0w3E56++AyXL17+wO/7eH60UxQFCwsLAHzrW9/6mbAv/1mZYxj5MZo/KzDyUYU0cAAh5/BxDiOP53iO53g+ylhreeOtN/nDK9/Df3qNxnL3ff/GFIb92xvcv3mHtOnhne8RdB+dQekc5LME059RMx4nl9bodjp/qvDxo4wxBTt7uzzc28LUNWG3jv+2YHfnHA+3N8m8Ar8VHbE7mdxQDFIWGl06rTb7g30GsxF+O5SSBucw05xke0yRGerLbeq95iPta+++jIb90QDVCkRx45xcrB4GkRa5gJ8Zeeq6LxeYZXHCI2HkSKzPVBmS0uI9t2JW7c6lokcg47zpo8xBHKSVElCVsWuuVKnpegmKjKvKP+ZKK5QAsXxjUuZIKslOrPuVdfiwYs5biOXiXSPwKDGivF2qHaj6NkbocUp0oYN3qoGbFNiHE/RSDW8xFhVe+T7y13apP78EOIp+Jiq90kZtp6J0050Q28/w1+oCHQpRNnoLUQVsKZdvrnQy+ykq9iobLUpRPJyU+ZACX+wgFag233ZG1q/XjcTyrJBin33J2lSxh7cQY/sp3mJcAZBq2wMuMZh+Ksvd8LHDXIp6UBWIVc1Atsl8/y3Bqqp5omyt++Q3BtidGcF6nbBsqtYtuQA12zOxVq9JFpwd5+hedPDvJxvSjL01I7s7wuynkom4Vic828Zfr0s+Xyr2XNvPKPYSvE4o+andELQivzNGxx7+icaBFb6wpDeHmL2E6PGeZEkOS5hbvh2/F5VWc4/iwRgVenjLNaZ/skmwWic40zrSBm5HGboVVvmp2fUBXksyM/ONaaVGDRZj/G5YbStnHXY/xVuqSfFNIXmk+a0hdj8lPNUk6IWkr+8Tr9RRkUe2JeuofrqNyQqy/YT4RIPoRIPJtT7ZwwnOQXihI63dVLwev7Sxg5Q0mWlOerWPHRfYcU7tRAO/F5I+nFIkhtoTXaKTTcm4LC3X8x1G130pqCr3W1fCW4cUUM2jE+alV8oXFaXydKkKLuR5Qu9AXetESad8jd8RBaWdFRQDURxjHV47qI4JV1jMMMfOCoKVWnVOyTanUvLTDPAbPt6hsi6bW7KdpGq499sCQN+udK9+soeA5DvOtXO6RxWpQOFwqvzdoZsuR/7GCVBzzkkm71zleGQUrsyf1IHc3DCZQelDN3OcNGnjnDymPB5dbuYvI2poTxTgxTBldnWA3U9onG7SPN+pVObz7aq0qFJRpa27BL+g8HyvshubzGApLfZK1o2xpvpMqT4jnNxI0qVCOx9k5ANpaK+fauEyQz7MaC42pek8KzCTglpQY3lh6QN/vpncMLi1R3J3womTJzh96RRRLeKb3/smjcutqqAmzzMm6YTp1oTJ9oTuUwsCXD195KWcgWRrht5QfPmLX66O9deuvMZIj2mfajPZnjK81ifwQtYfP4Hna2794xv8tX/lr3H27Fnu3LnD733j93iw/4CoF2Nzgxs6vvjCF/j8Z7/wntbyw3Pr1i3+j//l/wF/2cdve1hjSfoJrfUmp754mlp5I2OyNeHmP7nFV574ZX79V36d//P/5f/E03/1KYwx3H14h/aJ9iN5+mx/xlv/4BpxHHL65Gle+LkXqL2L+vPDzGQ4ZePqBmZgee7xFzh/7vxHui7P85xr16/x+rVXaTc7fO6Tnz+2d3/I6ff7nDlzBoDXXnuNp5566ie8RMfzQecYRn6M5mcdRr6XFftYBXk8x3M8P+4Zj8f83re+zl1/ROfp0+8AbiDqhAevXWfj4QZmvUF0dhH9LhYhZx3paAr9hG7c5MTSKvX60azGn+ZJ04SNnS12xvuoTkjUbrxnvqZzjuF4xGA0xHquyjqMvIBeu0stPrAtJWnC/qDPpD/CJDnEHuFig3qr/kOX9gzHIzKvVO3MrdfzbzhWLmxV5mgEEUku5Th5ITmDUrnqjqh4XFZaMCMp95jDjrkKSoWSNzkHNc6UDdFKoZyD1Ii6x1MU/RSlQTdDdDMQSDktRG2Zi201PNGoWnnB4VKLGWclPJsDOIsdiO3SW4iqGAA7lWxIlxqBTeX7KfoJDDPcW3v4dQ9/TSzBXjuqrJqucBRX9/FW6+hWKLbacY5KcoLVukCtUYbNZN3quRV7kB1tpVdKMuhaIV4JWR0CDVVpi5+P2UkEGiLAzk0LvKUYM8mx/UxsvouxwK7MYqY5JEYslku1Mg9PWILpp2Inrkv5j54Xi8wXq1wOyu1jBpnk0NV82Ra5rRShdlrIshwCmjjIbw4o7o3RTqzj8RM9KSlKBKqImlLWefLanhTWOIcdF+heCBaS1/eIn1pg+tI2ZnMq6sWLHfwTDVGPJkYArFaYYSp5omWpjO2n6G5EdLFTgd3ktT1RKZbFOPNypdkrOwQnm5BbgrU6uhcxL5wxuwn55pTwTEuA4r0xwbk2029tUP/0ikQSGCdiPOtw4wLV8A+WY5yT3xtX7fA6UATrjWolK1+OEzvPM20FmK0Z+bU+LrXE55qi9nPSMlzsJajUVgVPNjNSNFMLiE41CJdjRq/uku0kpSJYUXt2UbZxZivw6crGaOUp0gcTsvsTzP0JzSfkpk+yOcU6iC+0ZdsasQfrMt9VFHNW9nGoSoWkeboQkDiH4ZEnx8NUYKSu+/hlxML8sfPcwGAxrmzt8/3LTHKCxZh8L63OG8FCJLDsbec0OxWbtT9XIU8Kgm5YWcUpcxfzfooZ5yWkFAXm/H/vBiMBeb/V4w7Pwb4/B7WhH2CtoTAGV1q8j0xZTObcfJs49FztqQ4e4yRpQuCtsRVQnp9DqgO7VITOAaIOpRjGlfuOA/KdhPTGAGUcrdNNgtLGrpRCR7pS9c7Pzc64aps7WwLKXKzbYTNCKUWeFKhA1oF/qKjHOUthbAU2AfJ+ikss+SQTC7xx+KGHMorIj4ijiNzITZUoiGg32/gfENQl4xm7b21jtjMuXDzPqcun8MMylmR/nzcfvEn34kL1+NF4iA0cW9/foLZep3mmVRUC6cPb14nlfPhany8+88UKepnC8NK3X+T6i9dpLDRZfXyNsBYyuj5A7yv+8m/9Zc6cOXtkGSeTCaPRiCAI6PV6H/j6zDnHH3z9D/h7X/0faD5Rp77eoL5WI2pH+HWf4d0Rd//gLhd/4yKN5TrWWNJ+xoN/+oD/2Z//G/zu136XM3/uFGEjZGNzgyLMqbVr1X5WpAX7N/fZubpL6AesrC3x+U9/4d1LfD7gDHaHbFzdJMwiXnjyE5w8efIjXZMmScKbb73J1TtX6J1qc/LiCUb9EXdeuc/59Ys8+/Rzx0rLDzj379/nySefBOD27dsVmDyen/45hpEfo8nznKIoqkaxj5px8dMwh63Yx4U0x3M8x/OTHucc129c5/de/TY8tkD7xNKR35vCcO1bL7OvU+JnTlQw6MhjckM2mKDHOWudJVYWlwiCj8sXSsdoNOb+zkPGJsHrxkTN+gcVcZTPAEUumVva8/DfdvPM5AXj/SGT0RiaAX4nQvseH+pFHvW61jKYjLGBwr3t40IrBbkjRNOoNRhNR9hQYZlnMB4oaOZg0k4KVM0/sDFqSqBW2qRnZVZhqWLEOgFKwxQd+gTdGKWhmOaYUSZ2W1M+b6BFgTdXQfUF7HmdiFocU0wysiyDmlflT84VfGglNuzM4i0I0JuXTbjcYCcFXi/E3RvB9T5ukFD/whq6JxdrVcHDoRZZlxiKmwNpL04N+Ru71J9exM0KKcYIFP6KqB8l09Gi6pL9SQnyXGqwZT6dv1qfswRRHXq6UpThKcx+Wlm484eTCp6qUgE6z9h0UDYNS3mHyy22n0q79UIk/5YZ7EDy+/wTB+rkw6pIKLdPZjG7iTRjl4omIbuisFKqtL8PM/RijN1NKG4McP0U3fSpf3FdwGDNLwGiqN0ID6BFemW/slBXuXKxx+QbDzGDDF33CZ9ewCvVlGqu/DKW7PYIO8oITkhmY5WrOsyw4xwzSAkvdkTZeH9SQVuQ/coZS/LyLsF6g+BcC1CS73fo2HKpIX2rT3i2Rf5ggtcOyW6PqH12BTUHR0pJ23cqilFXgfAMO84EKII0g7eCquRJXkAsyG5WkN8eoT1FdKqB343xmwFmVkhmrFbkewn5rRHNZxYEcBoBgsntEa6wxKeaDL6/hVIHNwPCi6KM9Bq+KPScwyaG9N6E/MEY39fUz7fJNqekG1N0JyS+1CVcKTPn5o3NmQFPo0uLP9ZhSlWhM072+8weRA1kBjPKxYLeDNCBFot/auSxxuG3pYwGrbBJgR0X4KsKlILkOFY3IRwEy3IMzwFXtb862RfNIJVMyroPlkqFaTIjNvBZQdCN8DvhQT5s4dDR/CQ4x/Hq8LPL+aQ8b8zV4e+4UVa2lHueR+AF5WFkyfIcx0GG4uHnnlva58c0zMGlqiC3zSUzd56TKCrUQ+++PBbR878plarIOSTfmpHeHBLWfBqnG/jtSLbj/DVLuAzg1UrA7suNIzst0DX5vFFQwVGXWoJ6SJEUOF+uP97+2QVgrSGfFuT9lHyQ0lpp43kaZRStepMwDAlDcQc4K5+B73W95pylPxgwK63abuboX99jtj0m7tWIOpI1u9hZ4tmnnqVWq3Hl2hXGzQn1Q26MwbBPURTsvbXLwnOLeOUxaXNbZmseeg+FI9tJ6U07PPPEs2zf3GJ8e8xjJx/j0rlL3Lh5g+39bQI/4LELlzl79tyP7JrzzStv8rtf+/+xkT2k91QPpxyDOwNmezPO/fJZOmc7AMx2Z1z/Zzd59t94Ws4Vs5zhlSFrOye4dPYyr0x/wJlPncFay4OH9zG+Qfsegzt9pjtTeme72NygxprPvPCZRxb3vNuYwtAf7FMUhiAIsIll+9oOnbDHC099guXl5Y+0PsbjMa+/+Rq3N2+yfH6R9bNrRyKCrLU8uPGQnZv7vPDkJ7l44eLPxDX/j3OuXLnCZz7zGUBiB3q93k94iY7ng84xjPwYzc8SjDwupDme4zmen+aZzWb8wXf+mGvpNu1nTxPUDrIQnXPs39nk5pvXsJd7hCe6oqiYpRT9KVGuOLm4Rq/7wZUCP+mx1rC3v8eD3U3yCIJenSD60QFUB+SzlNFunyRL0b2IoBkf2GF/VK9jLZPZlMJanK8OFFuFJQpCapEAuTzPGWdTCNUBBHCifFWeKnMKReknyh31Tiu3kxZsVfMlh7KwYtNW0hDsL8Q4HMX2TPIVU4sd53gL0oh8RK9knLR7J5bGSpvJ9ghV9yRPsrwo17GPChQqkowys5+i6kHZeFwqKq3FvLqL3psIAFqrk90aE35qRdSONbEg22EqxSeTXIBDoHGTHG8pxu2muKTAX67hL8TorkBUdJm/OM6l1Xlus55DRuRnM8ikUGMhlnzEaXHIsm1lGUoQoCItQKwboztlucZhi/Qow00K/LU6NhHVYmVNtw5dNofbpMAOMvyTR2HknG8oBVix8LrcCCj2NCY3BzZ9SihhLNmb+9iHE7zFmOhCGx15JK/vUXt2URRxiCLOlQ27zC/2FRXoc6koVfMHY4rtRKDU2RbBuXYFv+aqWNtPKXZmqEATnmmJ+uowLE5NtW5dUhCca2MHGaafEpwsFbUlHJ/+YEdUjqUa1cGhohKZYi+RRvB5O3nkET/Zq+DnvDleKSj6AhZ1zcdrB7hRWeqUG8kUBFRDVKnOOvK7I9LX94jOtohPNtD14GBjlOpjrxFUWanpm/v47ZBwKSZYFBVnvp+S76Ukd0boUBMs1YhPNsj7GdY5iRQoHF7DJ9+Ykt0a4Td84hMNilHO9OYQrx2KErIsbXFOgJSODtSQZlqIylDJzyDHtE0Mypcm93nWoy1cpZQECHqRHOuFk+OuLBrye9GR7WbLQqdgOZ47kMk2pmKPDjR+JxQQXyr4THmjAeuqohWXWTlP+VJOkw8ysI6gF+E1gkPbtoR7malyLw+OBuZHRHV0OCvbxPM9rHOHDhaqc0oQBPj6nTfdcpNTFKZSWMOhGx0l0K4KfYxD+5JracsbKkqrChhWluv565oy37WC/BJFMLs+JLs7pr5Wo3mxIy97CKbOz+W2BL3zMh1d5kPOb/643Fb5twr5ezs1+OU+XGQFQS14R5RKMc7J9lM8pfAbPipTdFodarUaUSjbfTId0x8OMM5U2zQOY7rtDmF4NFN5Z3eH/cEeuqYpZobJtT55P8ULPWpLdRYeXySo+1jjmG1PmT2Y8tzjzzGejUl7GXHrwG0wHA9Jpwn96/ssfXalukZ8B4x0YtXOdlOm35vwePcxnr34LE9cfuLHXqD30ssv8c/+5J+y+oUVslqGjhUGg7VS3HPzn99i/VNr9C4JSLr1L27TPddl4UKPYlZgBobdr+3zv/p3/yP+i//2b/HU7zxJ2AgZ7425+cpNRoMhvQtd2ustTGaY3pzyxc/+3Dsaud9tTGG4fus6u/0donbIeHfM5hvbmL7l5z79JX79V379I32n29/f55U3XmZrsMH65RWWTy6/5/Nlacat127jRprPffILLC0tvetj/6zP9773Pb7yla8A4iT9oFEBx/OTn4+mVz6eP/X5uANI51yVB3lsxT6e4zmen9ap1Wr8xpd+hdt37vC1b/8R0/Nt2mfkC75SioWza7TXFrj54ptsvPUm/qkevWaHE0vnaDYbfFys2FmWsbW7zdZwB9cKiE62qH/IEp/3GuccyXDKcL+P8RxeLyaKOx9ZBfluo7Sm2WhiraUocrmg9ZS0bR56zcD38RJNkUtJCMivta+lqbUsUqmKcODIdTqUF7WzAjIjSqmyLRkFrmwXdoUtlZOiZvQWIgFDDkpMJKxRa1QtwDnD+G5fSjSclscHulJU2n6O1xM1pm4EYuuNPNwwxV7bxx+nRGs1aDWJHuth+qmoO6F6L26Qkd8ZoRZrcKYjoDAzuDtDilsjsXqu1AhON4Gy8dZX2Exgqm4EVVFGxTYOrSevG1I8mGJ2ZrJelmuiPCwv/O00xw5zdCPE7GfodiRZiPYwCAG0wutGGOsoHk7QnVCUoPOW7txiJzmmbCnnEffWK7FX+SuXymOtcyhnD+ygClHy3R1hHozxOhHBeqO0QVPmMpblQFZsoDaRduHDBToYUVjZUU5+fyyFNys1ap9eoeiLOpYyC8/OCsxead/vRmAd4cUOFI783lhyIJ2oRf1eBIHGX6mRvLpHMM/hnGcalkVLNjP4C/GR7THfDyltzgBeJyK90scmBcFKHRVIY7a3IHZgV1jcOMdlBq8V4q3Esi/MCgHRgRaYlBnynQS7k5A+nFBszwiaPtFyTHyyiYo1XqkidKZsAs+MFCI1pMU8WIioX+iQbc8YvbonGXdl+VH9UkfiBsaynf1OwOStAcQe+cMZxcaE2qkGzSe6ZBtTRq/vE55s0Pj0Ml7kH7Qdg6idy3gErymAVIcCx1xRQllfyo2CZVmHZmbIdxNRcvpKoFagyXcTAcmhWI0p4xVsIjZzXRM1pZnmkIm1OHs4RUceXkMKmlxuJc6ghHX5fip/6yu82K/W2TxzNR+V+3qgCRfi0qr99n3ezTuK3n4UHD1Iq4eXJTOU6nHKZmsEWHm6zHS0Rn5mviotxli0LwUv86etchndXDUpv1Bead3OzcFzzCMt5ien+Y0IJaU6yopKFutIbg3J70+ordZof3JJHAnlDRJRjqtq+zonjefz/EmXi53fTPNyfxA1qypzaCu7eaApUoNyCmVUtV5wjnyYk/dTgiigvdrCi3yS3Rkry8uHGq8dWzvbpKSEvYjIOwB7eZazsbvJQnuBZkMUelvbmwymA1AwfrNPEAcsP7dM2AuxhaX/2h7J/ox4oYcHBI0OjfUGr732Oifa6xRJAa2DTRmHEckkke0xjxx5hNwoG+aMbgwZXR9wMjvJv/5v/ev4/o8fB0wmE/7J1/8xz/5rz3Bv8x71Zo3CFhSmABxRO+Lyn7/Em//9Fdpn2nihx9KTi2y9vE3vfLe8/pXPct/3+Yu/9hf57/7u36F2uoZf81i5vMTFlXM4HMkwYbgx5FPPf5owDOVGxPt85zCF4aVXXsTveoSNgL3rfRZXFnjiLz2JH3i89Y1r/A//8P/LX/rtv/yhrsWdc2xvb/PS6y8yLkacfGyV5z/5zAd6jjAKeeyTlxn1R3z9xX/BausEn3z+U8dN3Y+Y8XgMQBRFxyDyYzbHMPJjNB9XEDkvoplDyPkchpBzpecxhDye4zmen6Y5e+YMf3X1L/LN73+HV755lfbzpwkbNYo0Y3Rri9VZyAudZ3jwYBd7uUGj8XEAkY7JZMrDnQ362RjdiYnPLvxIP2NMYZj2R4wGQ2j4+Gs1wo+Y1/RhRmv9DhXKkVGKVrPJ/mAfa5zYbOcZZWVJAvCOiznngMQI1CotnsrXZWPr3GJImUnmSpurqnLXqmZXB556G/RVirAeMRmn+MsNdKDLz0xRDXmtANfwxWbciyFQ2I0x+q0ddGGonWvhv9BDeZrk1T2BRaWKyxm5OHXDjOz+GP3YooCUwsIkh2GK1w7xTjRgkgmA2EulWXl+QV+CBLGXqwr0ORRHqG0J93QrFPVg2cg73790IwSkodsWVtRw1To4tKLnCsnCodthVRJTPTTypAi9sNhRJv84B0Kz4uBxsXeQ21fJH8v/lvmMxe0hbi8hON2k9vPrKK1Ir/SPKL5cZnBJgdeJJDe0hH9YJ2BDK9KbA/L7Y4qdGdHFDsGTiyjnsMMMP/RRgYftiyrVbwZ4rQBvMcaORW1oNmeY/URyMec29ElOsSkt6NHjXbx2iB1lmL5YvslKdacnpTJemUmKL+ozNX+/ToAqUDYxK2rn23g1n3w/IbszIq55EhmAw1+M8cosRFVmE5odyXfVzsOklmJ7Rn53hBvnBL2Q8FyTcDGm6JeqzfU6xSCV7NRAowONVypKpcE8JVyIpBQKBPC2PfxuiA492eetQ++nzG4OpQinMEy/sUHz6QUaLywxuzNm9Noe8YUOrScWxH49f5uTvFLFVU3NSNu0jqQ8q9hPpZm9XpZEOQdOgQa/4ePqPvnODK8eoMpd0GuGmEmO53xZX7Ess1KihLOZodhNUDWfYLUGqKpMpRhlonwsQbhNDcVego58wsX4kBpQlN7ZdkI+SPHqAdF6HS/yqrbqg4+aA+A4Z/LOOpTWHFVDvm3KdeKskxgKAAu2MLIatMJYW+4/GZ72CPyALM/RwVxRrg6JKV2VtXmQxaqoSmNcuVyU5TVaXs9ZJ+fhQlrEUYpiUpBc7WP2Uxqnm3S/sIY3j6wolZNzq7so2J0cDyWU1LVy3/fK48CX2ASv7pcN7PI54YpyPToHBpqNOs7BeDzBZgXFKCdqxHROdSROxEE6SKj78SEQCfuDPpnOiJoRRVZgMvAjH601QRigFzTbW9sYY/C1x4Mr93HTglo3one+i4605Fwq8GOfheeW2P7OJq2Trcpy7UU+7Ytt9m7s4mcBzeUDGhmGIUEk57lkJ6G2WpdjpzyPpvspg6sD8nHG4qVlsrspv/6FX/tTAZEA33vpeyw9s0gQSfao8jS+DsjyrLyv4ghqAYuPL7D75i4rz63g1wNMqS72tEdeFJjUsLGxwRs3XufCY+eZxROoy42Rwb0B6SClETd57onnqddlHTjl0EofZH1mORtbG4wmI5RSdNtddnd26PcHuIeO1dMrfOLLz1flQABPfvlxXvna67z0g5f4xAufeN/365zj3r17vPzGS5io4OTja1xYOP1DrbtWt8Wzv/A0W/e2+N3f+4d88slPceni5R/quX5WZzKZAHwoO/7x/HTMMYw8nh/bPMqKDQcQcm7DPgaQx3M8x/PTPFEU8Ytf+Hkef3iRr3736+zGlmai+cXHnuPyJy4RBAFZlvGtF7/LD75xhcZzZ4ha9Z/0Yr9jnLP0+33u726QeIagV6deW/yRotM8zRjvDZjOZuh2RHC6LQqVn8JRStGo1Zlm0kDrSpuf1gqr3ZEuBWetqAdTg449yfvTCjvODopZ5h9z9sAKOLcwu0TyJ+fzCMEKAOk4xevFog5DbtBZayswpzyNbgYUb+zg92f444zmz6+DUuhWIK9dttg646TcJZemZeUrshtj1LmOLPv2FDWV0gu91hA1U6BxsYeaSjZevjHFawWSmVe2B8+LXaqP9Yp+lGBjVojF2FcHtk2njoBGFWgItPyTPqTgqbhJ+RpJIRl5sSdA91ARQ/W3sQ9lYUqxPRMF5XJcQUc3LTB7SbX+53qt4v6Y4uYACkN0uYv/eK+y7wosAnKLKxz53THa15idmTRbtwOBnoXFGkd2fUh2b4RNDdEzi/hLcQlCwE2N2HvHOXZ3gt+M8HsR4VKNfJxVr+USg/ULoqcWZL8pFVuqExE2Q4qdGdm1AboZYDOLGaT4i2L59tphtb11LOo7mxpcWNpTSwUl1korcmoEDnrSRFzspXixR35nTHSuhdcJK3jsrMOksg5B7Mzp7RHF/Qlh26f36WW8ho+ZFMxuDsl3U/CUANjlmqhGLWJZdg6XCxV2hSN/OCG751B6H38ppvFYFxQUo5z0wURKTnCYUU6+McPzFPHpBqodMbs5hMgnvtwhXopRRvY9HZU5q+Wy28QIfAw9iVGIysbtQYrNRAVaZVCCLNfOTNZjW3IY/W5E0U/R5WN0pDFDQ5Ea/DJ2oTq2Cysg9USdfC/FzEypgHSoyCNYiMm3ZtjESpmSp4gW4nKZy3VuLNm+lNL4rYDamVZV+nIA1Q/9l0PnoDJ/0RUOFb5N2n1onHUVsNSUNnTnsKZULHrqHU3YprCYLK3+3RqHs1ZuSFQvYw+OX+PA2ar12lmxa89/Jpfzo/JEieisJd2ckt4c4jlonm/jX2wTNOdt6WWhja/llBhqzMygy/PSvORIl/mwKvbKe0wCSVWpksSV1yCHPpusNQShj7KKdH8GQwPKUu/U8eoetrAUsxwzs7TrTXrd3sG6dI7BcIBRhkl/UoJaAfhalypiY7F5wfVrbzG9PSKo+bROCWh0Sqzh+V6OKyyNU03CbkT9RIPBzT4LTx7Yc726Bw1FkIeMt0Y0V+ZAUtFqthgvjRnfGREtxjjryPZShtcHoBWtMy3aqyeZ3B8RbPk8/fQz/CjGWss3v/kN/vG//MfsjfZE7e08PvXUp/kL/+pfoNfr8cqVlzn1GycB0J40Z2tP43sBWZFiC/B8WHhsgTtfv8vKcyvk40zgu3Fk05zhtSHOWF568H1OfHKNC81zAMySGZPJBKUUzTOS2zlvQJ/vl9ZZMHDrzi22djdpLteJlmOyScpL33mRG9+7xZOfeYJP/soLR/Ib56OU4tLnL/CNf/zHvPD8C+9689YYw61bN3nlysuEPZ9TnzxB40fwfXAymrK/OSyLkY6VkW+f0WgEQKvVep9HHs9P2xzDyOP5kc7hQhrn3COt2McQ8niO53g+jrO+vs6/9Ru/w/7+/jsCzMMw5Euf+yKPb17kq3/yB/TXQjqXTh5tG/4JTVHkbO/tsLG/jW14RGsNGj9ClaID0vGU0d6AzBVSerPc+bFYsZ21otRBLIQfdf16nmSE6XrZQDt/nUleFaa4qeQq6thDNYIjWWwuNahacGAzhKr9FU+hYlGa6XgOhFxp9UcKIA6hYFfIhb0OghISHLUKulmOuzVAb03wckP8iSXMblpmW+oKQpiBtFFn1/r4rQCtPOwoh9DDFg49THHpFL8boZdalcVxbpNUsY8bpKA8lK8kA1JRWv90Za2cq7OObAPHgW2aQ2pIpStnhMst+Apd9zH9tHp/b99fFNJO7LXD6jEKdcA+Dz82KBWqnbDcPgeAU9U8vCjG7CYCoTan2M2J5CSea+F1yjKbua1RIfAykrZsV1hcUtD57ArZ1oz0zT66G6Iij2JjSv5gAnUff71BvFxD14OqpMNsTKXMZZzjlUUo3kqMSw3ZnmREkhnwRBUYP7v4Tldtacf2V2piS99LcYUlWKlJ/qGvMZOc9K0+LhVFnteLRdGYGkzZ+D3P4lNaSm2ULwDbWUd0oiHW4dJKa/ZTseJbJ7mfuQUNxeZUSmlwhO0QHALuoqYUg5Tg0xaOcCGiuD/GP9mUUpg5KC/VmsWDCa0XBLIkt0bkeyneEz3MIJP3OSswgxw7zIjW6ix+aZ1iVjC7MULVPOJnlwiX43JbO1SkKjilAmmxV+W+7c23ybSoYgdUwwdXoHuRKO7m+7ECrxVQDDKKfWmyVp4uy5JsVdriCifQtgSRczaIoyoNCnoR+XZy0H7tqPIovZqHF3qlJb0sG8kM2V6CTQ1BN5LW8/KJ5w3dag7dDh8zh3+2VizeVtqyRWl4aAlLdaLknWqcs+S5oZTAVuAQwKSSe6gDffB9HidZq0oszirQh5ZPnmYO4+YrVEp1bNXKPs98lYxSAZP55pTkxhA/VHQvdgjaoSgei8NFOeX6rbp5ZD2aSSGqyPKYUYEWVfi8yWx+Lgg1NrUoyxEQCVIsxMxii4LeYpf6WgOlFLNkxiyZgXMEQUCj03zH9Ut/0CfJEsJ2SH25gdKIcniSU8wKikFGtpNAbmmfbrH2qRWKScHo1hBd0zRONbDljRubGYbXh9jCUlupsffyHtaW8VaUgD12qALYdQySfRprLfzQx/cD1i6sc/PbN7j/tbsopYgWanQuLxB1Inw8RreH9H9/l7/xl/7Gh7Kz5nnO/v4+IOqzN6+8yTdf/AajyYibt29iPMO5L53lsc9+Fq090lHKne/f4n/3v//f8r/4t/+XZFmGXxb+dVtdhqMhtW6NKAqlFKjIMYXBiwT84mD7tR3ap9r03xowuNGnFsR86S99icWlxSPLVotr1OKjgM7zRA0t603W7dXrV5m4MSefXWc2TNi6sk0+Kjh54QQnnl3l5rfvcvu1O1x4/vwj10G9VaPwcwaDAd1u9x3r5+q1t3jj+uu01utc+uJ54tpHz+Ds7/a5f+UhoYn5xJOf5sSJEx9bp+SPc46VkR/fOYaRx/MjmcM27OqC4xGFNPOfj+d4jud4Po4TBAErKyvv+vvV1VX+zd/8Hb73ykt854/eIH7uFLXuT+ZO7Ww2Y2Nnk73pANWNiM70KsvWj2KstcwGY4b7Q1ys8Jdioqjx/n/4w7yWMUzTRPKl5heRxhJ4PrUoRj+i9fR9x8F0NiVohIDDGIubEwXrsLsJXuShIp8wDCmMEbVFUdoPCwtO1EMuNRWUsGVjsvI1dpSJvTf2YK6AK9Ua6pCayBmLdgo3t2gespSqQY69sYueZERnm/hfWqe4K6UoXiMQO2S5Thyi+LPjvFSC+RBCdncIdR+vFuA1Q9SqWBUd8l4x7mh5iRZLrW6HApcmRdngbSA1UMLVd8DgObRUoOYKLgdoh5orRp2F0lU9t6/LC8+JgareS1WuM291nj/ukGpPaSkc0r1IoFNmcMVBMQ0gluCHE7I39vDbIY1fWMer+djEYHOLmrmyIVty+orthOBUAzJL8XBC/VzrYB0XhvxaXzIgTzWJnllElxfQdlZgMyvW7HEuys7CSS7ipQ6TqwO0p1C9SIpKcgE0ZifFXyqzHu18HTj5+VBBkL9UY3Z3G13zcJOc7LZYx4uBrND6xQ75PPsw9rGzAoyVEpnSsWsnOcnVIW6cY7o54cmGvI6GfDshXIhxuRSyFEPJMSwejCkeTvBCj/hkg9qZprzn1JDen5Bt7ZQbXMC48lWVq+jMSNSKTQEfxV6CTQyNx7tVdmPj6R6jV/bo/+FDotUaNjEwM9TW60SfWCS5P2Xw/W3CMy0an1mR/b7M3ZQCmhKkFlZA0Fjs2fPm7GIvqRTDAq59zCgnKBWszriD0pUSaPmdkHxXwKAuFaYut6jAFzVgWTBzJEt2ftzOlcxaif2+LLhiatCBImxHkDuUAaMsZirFKDhH0Ivx1vyD2xTlTQK0Qit1cP6Z7//Vcpct2n6pOvNFkWoyKZmZ26QpgaFY0ufHrareR2WtBpQvz2lSOZ7m/3NljqUt1+kBhZW/s6moK+eWa+VRKRIpm7F1eayld0ekt0fECxFLn1iSdUqppE1NZVFGUcLOo2ByruLEuMruP/+3ORyt3p/WYAz60M24YlqQbk/RCZw4d4ZaswTc5TwKdB0e5xw7e9tECxF+M6CYFOTDFC/yMVnB9NYImxREzRC/FVJbqaMDTbwcEy1E7P1gh2QnkbgCwIt9Oo936b++R+tCB2etZNyWcN06ixd6jM2YBg3W4xM8vPqAggJnHaO7Q5qDOr2sw9W7V6mfK1ApjK0juZ3Qc13+g7/yH3D+/KOBW5qmvPLqyzzYeojWmpXeCg93HvD6jdepLcbkecHNN27SXm7z/G8+h8rgCe8xsLDx4iZXv3qNy792magVceHLF1i6vMR/8d/+LZ597Fkm+xPay23a7Ta7d3aImiHa96jV6nhZRpLOmO7M8COP/Vt99t/aR2WK7nqbk5dOcPHUxXeAyHcbxUFMhXWW0WjE/mSP9kqLG9+8hWc9Tj9+mt5ql9FoyDAf8OxvPcV3/+6LnHr8FGH8aFAb1sQJM5/ZbMYbV97g+r23WDjd46kvP0YQfrTMQuccuxu7PHhrg07c44vPfInl5eWP9Jw/6zPPjDxWRn785hhGfozm8J2QDxLG+6cxcxv2cSHN8RzP8RyPjO/7fO4Tn+by2Qt89Vt/wG5vn85jJyVv6sc8zjmGowH3tzeYkuH3atRWfrRW7CIvmOwNmIwn0AoITjVQPwwM/IBjTMFoOpHsvyjgsHSsMJbhdEyr3qxueH3QKUyB0wfFDb6nMEkBqSH2fXJnK2unyQ21OMJYS5KmOGMkE68Vy0VP6GMLS76fiE3TOWluNha/E4o6bX7hX6qarLN4SoCJsrLfFFlO4HlgIb87QN8dEoaa2oUOtuNX7bAut5AYgosdAYTG4jLI747wIo/WEwvM3urTXuqSZwWmZ1END9eKUCXIccYJIFFKQKQ6pFwLpHVYbNGiYqTuYQY5xW5CcPI91AelVVSHojp1RqRMgeeRKYvyvYP8uPL9zDM2K6gBVG2883/3jkLa+b+7tMyynCtW50DFgR2lFDeHuH5CcLqFvtQhXIop7o1Rp6S1WvuSnekyg53kZHfGKBz5nTFkhubTi+iaR7Y5ZfSdTbxWSHCpQ9SKcbmpIKbOrORPbk3xWwHRYozXFCidbUwZv7xHfLZJcm1AeLEjjdLDTFRjaYG3JMpHVffl+90c3sxt7E7Ak448Op9aIXs4Jd9PMcMMr+ahIw8zzkWNd2tEeKEtClXrMJMcl1nsJMNNC4JWQHC+hZ0U5Jsz/F4k5SrNgHwg1v5iN8XsTNG5pXG6if94R+zhw5ygG1WW5XApZvjiDtpXxKdbqEgzvTYot7s0sJtJTnMlRtcDaqcaohR7OMWr+xR7KdleAoU0eM9e3yc+0aD1RJdsP2N0ZUB0tknriZ6AzlD2VaUUOvQOjq1y3ehYbJ02kaIcrMNfiqu8VmfkPWDm9E0d7HOHoJoC/GYgqrt5Yz2iCjYTc1B84hyufLwrjgJ6WyoA7TgnaIZ49QPQZ5WlGOfkswwdeWUpzaFz2GFQOJ85XJ+Xv5Q3FJyVDErti1pcFbIslPc25vED2kOiAyqloigbVQn1sAf/XilFnRMlbalgdKZskJ/fcSjzYnVZ1DVfeFdIdqZYyw/WizMWmxpm1wcUm1MaJxp0vriGNz9+nbR8q7C8gXMYElM9pHypEoB7AjaVX/3TkfWoDr0XZx06UGSDlLyfoRzUwphT50996M8QgOFoiNOQDTLS3QQ8aYMfvTXAZYbVz67QvtSVuIOZYXh9QOt8W272+JrWxQ6j6wOWFlcO2r99TW21zuT+GF2qfOdjMylJ6q51COKArfsbvPDkC2xe3SB9mPAbL/waTz7+VFXc8sorL3P/wQOiKOKxzz3GyZMnj1w/Wmu5desm+/t9Xn/zNW5u3mTp6SW8useDGw/Y+sYm+TTnmS89w2M/f5lbd2/ziV98ntG9Md/7Z9+n83Sb9U+sgYLmepN733zAza/f4uJXLgDQPtFm/efWGF0bY14taH+ljac9Tqye5MHmfWqLNYI4IAxDwiDg1ldvM9ubMbh2g5PPrrOw0qNVa3Hu9HkWegsfevsopdBo3njlTXY392AMF5+8SGuhWe0TnudhZw4/9Fh9cpk7r9/h0icvPvL5klFCrVZjNBrx2huvcnfnNqvnl3jul57+ofafw2OtZfPuFpvXtlnrneCXPvtr71BgHs+jZw4jj5WRH785hpHH86HngxTSHEPI4zme4/mzPgsLC/xrv/7nefXN1/njP/4B/tNrNJa6P5bXMqZgd3+PB3ubFLEmWqnTCH90X8ockE8ThnsD0jzD60aEZ388VuyjL+wYTadSQKLe/nmiBILWFOPphGa9Iao7FL7nve+yFUUuNkBrcYmB3BLFAX4nQmlF1IiY7k3EvhdorBY7dpAqikmOrwJ0rsjSXF4qd5BZwuUYHWiy3YRwpYbyPbyaIduZUezM8BcP8gxNWuBpjyiMxNY7zFB7Gd79EVHbR1/uSsOxEhClHJhZQbE9IzzRROVyVV7szii2EqK1OuFKDTsq0PWA0WxGbbWJF1ia621GO+MKZs6VhnO4Q/lxrjwl6sKaB+m8HEXhMkfQi8g2phS7M7xexOGrfrHhGvnbTOPK0pB5PEthTKm+lGV2U1Fvmr0Eb/HtDdCIjTP0pNwl9isQqUoLtsscntIURS75ilrJ6yuw21OKGwMwjuh8i/CFRZSnyW4NSe+O8dsB2Y0BXjdC1SVf0dyX0pVotUawGJPvJhTOMvj2Q+y0gMAjemYRrxdhRgVmnMk6zMXGbSc5fjMgvNgmvTsm76cUwwybFPitEL8XktyfgILsWh8CD93w0bGHTQxeaV9nVkgOpqcO1KKAS221gopBJvvXWp3odAO/Hco6zQzZxgylIb3alzbzmi95h1qhGz7eeoOgF4kisG0pRjn5TiKRApMcO8go7o4gkaxD1fRFiZk7zLhUX/1gh+hEg3C9zvRKH6/m03iiy/T6kGI/JT7dJFyri9I0NaQPpkzeGhCdbFC70BZAmhQMv7tdgjGDpxWtxzp49YDpjSHDN/vULndpP71QwSQzyVFl04rNDuWylrDGJkaAU1kWEyxG2NSKhby0nStfSw5qoKVIqBseAF91CEoqUJGH60uhk50ZvLYnQHaSi31Zacmis+5IqYzLRSWLAz/yoFa2YwOqbMbO9xJ0zSdab4iFX6lDm/uoSljeXFnyoqiyEeeW67k60haSTxr4AUorsjSrQKTY9A89p1ZSNGOoFIxiodeiFtYHkHYeIXFwrMt61L7CWXVQ5lRaukUhC86WCstSdW1GObMbA+x+SuNEg/rnVvAaR4up5lMBuApEyrnEWckarFTmOKrczEPnD2ccas6by2U2SUE+yEgeTNC+xg9Elbe+ulaBpDzPyLIMpRRxXHvf65jdvV1MbgjbIcUoY3p9SNgOOf1LJzGJYXhtgF8PqJ9ooENN63yb6YMJnTIfNSxjKExi0JGu4jvipZjhNQGX1Xovygzbfk7rTIt8krN1Y4urt6/wS5//ZS587sIRIKaU4rnnnue5555/x3I75/ju97/D73/r9wlXQ5JgxsQbMwtSNv7oIfWVOr2ne1x64RLpIOXKH17hyneucPlfuUyzsUT0eIxuKK5+9Tqrz69IzrFSnPrCCV7/u2+QjTPCpry3k588wfe+8SKX65fpP+zTXe9Sr9U5vXaG7b1thrsjsmnG5iubJBszXvjic1x6QvK4oyg6UhT0bmOMYXN7kwcb98nyDIWi2+4R2YjJg4TbL93hS/+Tn6PerpU5p9WuQhzXyLdzrLUsnV/k/nc2HgkjBztDQhvzvR98l93xNuuXV3j+2Wc+8rWuKQwPbj1k++Ye509c4De//LmyDPF4PugcKyM/vnMMIz9m85NUQz6qkOZRVuxjAHk8x3M8xyPjeR7PP/0s50+f5Z9/6w94cH+fzlOn8X5EmY1pmrK5u8X2aA/aIfGpDtGPsDDGOcdsOGG0N8D4Dq8XE8XtHz+ELCfLMwE07wCRh0ZBgWE4GUlDqxPbcRiExGH86FxJByY32CzH9zRhLcBv+EcuZou0wI8DPGPJhimejfG0ptlYoLZYBxyD4ZD9aZ+oE6N9zWh7KGUFqcGr+ahSDasCj2i9IYBqayaQKBYFXOj7ZNtj3Jt7tHYTapd7dH/+goA6UzCZTpmmM7n41xqdOqKFGlEjpNiRUpEwDnBBBrkjfTgTWHy+TbY9w00scaeG53v4vocpAeG8ybZaJWXDshvnJWATe6fNRXWlQg88D78TYYcZxYMJuh0KaLAOOzOQGcJuTDHNywZbUR3mRXGQRVdmINppga55FPspOPB60YEVG3cAdAqL3ziwvTnr0KWS1M6bfgtRW9kHY4rbQ7y6T3y2hdcKBbgkBuc7zKQQdZ2WN5/eGaF8Lfl8LR+1EJLen5BuTKVJeZyjOxHxC8uSwTcrBEqVikfTT8nuTLGTnOhUQ8pdNqbSQryd4Dd94lMNvEZAvp3gbCalN2WOo1+EFA8LXO6wjRy/JqpYO8llv5krRuccslR2JffGNJ7oiR1WU4EpHcn7Tu6NKAai+iq2ZgRLMX4nkpKWEk7lgxQ7zudrm+zmkOLOiHilxuKXT+B3QjCO6fUhya0xtfMt6o93pMgnMeS7CdM3+5hpTvOpBdKHko/Z/syKAO754Rl5xOdbhGs1ht/fJtuYoiKNVxPQ7GlFdKqJmRVMb4zQzYDocpdaO5TtllspOyoVu64oS0i0Qte8ChzaRGy95BYVaryGAEcv9Mh3ksoSP48O8BqBWMnLNmWHqmIsJPNcVecDN1f45ZZ8LyNoRxSTDGsE2s2LjLAOm0h2ZjCPapgZsSQ7yPYSinFO0AmJTtTxQk/+jvn36fnrUwoPDyCnA2narizZVkrngwO1pSoViUVRSE7ePF8SJ9DQzpWMcBh028zKyaCEmqra18qToStt3VUupatA5ryZWmmBqTY9UI3O8y3zvYTkxhCVGJrnW9SeW5TzZLl957BSjm9KS7arsv4OzlGu2n5zdaxz4ApzAC2VnMvm6la56WPI+ynpzoxGr0H9fBvte3i+pkgLNrY3aTfb7PX3KExe5WDa3NKo1VldXnt067RzzKZTimHG4KVtwmZI52Kb5plWtQ6CVsju97eIFuWzKGgGuMJiUlO1g3s1v/r/nZP3bY3DFpb6egNw2NxRTAvy7ZQ4jNj47gZepjh97iSNzQaXL324duWv/cuv8fLmSzzxlx/HKcedjTusrq6y/3CffJJx/1sPCGo+O2/uMNmc0D7XJh2lvPLfv8rJT57g3M+fI16I6Zxrs39jn8XLYp9WSrH09CKbr29x+rOnZB3UQ5y2/NW/9Nf4b//7/zujZ0esP7FOGIbUbZ3dq7vMxlNWVpb44m//eZqND3YjNc9zHmw8YGtrk53dHeq9GiceP4GnNTs3d3nje2+Q7xR8+TNfodfrUW/Xys++SppfOv0VnWaHyf5U9stD4F02s2N/o8+3/v53uHTxIvWzASeXn/7I1+RZmvHg+kP694c8dvYJvvirXyaKPnrO5J/FOc6M/PjOMYz8GM38pPenCSQ/SCHNsQryeI7neI7nvafdbvM7v/qv8Oa1t/iDP/4T1BMrNNc+WPbRO8cxHo+5v7PBKJ/h9WJqZxd/pHzQFIZpf8hoMIKGj79eJwx+/Dbzt0+aZej43T9brBOFvoo8yCVLaz55UZCXFu7DNr0izXGpISo0KE3cOZoHlo5S0kkihTWBBu2kB8E5Fjo9fH8OxhRxHOPnPn7oY40AC8/3SPopweI71RxBJ8I1xDZrdhPop8xuDlkNWzz1/AvUl9t8742XsNag8fA8AZZRS2CnmRWkD6bUzrYI2iHhosPMCrL9BN2OUPWQaKlWLh1E9ZgGMTOvBCeA2ZqglmoliJyvF8BIAy3jjGCtdqCcRJReZj/FC0CHATk5vudjpwaTZxXYUFqRD1JU4EmRykJUQgq58FNKWntNP0V5CjsuCE80sJOCYnMqwKfMf3O5NB3jKczODN2JmMdszhmkLnM5i9tDmBZ4vZD6c4sEK7XqvbnCYkY5yjnIDc1nF8h3Eop+ht8McIUjOlkXyDrLMcOMYjchB+qfWUUH0shrpgXg0IGHLUuNwm5E/XSTdGvK7OYY/3yb4HQbM8kJYh9yQ3JvjH1rgN+SkqRgoYbSiqKfUQxS/G6Ew5FvTdHd8ADYqnkxka22UXZ3jBnlxCcbeGUW4eFsRIejGGYC8DxNuF7HDDLCEw2qncJCtj0Fg6ght6eYB1Pq6zX8n1sj25iSb07xOyE2NRTDjGA5Jt9LcQ6iE3V07OG3Q/xOyPTNPs4JIG09v3QERB6eeYahLiGkQtN+bolikDG7M5IbHU/15BixQOHkuRwVvFW+FjBYxgjYzGLTAow8b9CTfSTfTspsRQFoXkPs1n4nFLWclkIWryG5mirypOWZI25gUW1aR7Y1wwt8fF9jtUcxziVbdJDiNQJpLi/k/BO0QnkurSSzcVaQ9Q02swS9kPpSeV6woDyNxlXFNHOV4+EbKEoJiJqr/VCuUhwrSiv0vMRKKZRyoqT2dGnjduAkt1F56sDi7emq7f5I7iMHSkY1XwfzOIf5jS4PlLWyXJ6qvv8L/HMlnLWYfkZyfYDva7qXuwSdQG4EzKFn5Enu5xx0ugPbN6bM2M0MlMegomxitrZSTiqotr8rlaM2MfhxgMkFQppZgfYUrfUmaE0yTmkuSkFNEAck44SHWw+JuhH1VkPKmqYFxaxgkk25fus6J9dP4vs+g9GANEsxaUH/2h7juwO6l7uc/MopAd+jnP6bfcJuKK3Y7ZD6ySb9N/bpPb0gr9kOMVMpazk4N5as10I+K8jHOX49wMwKAZHjjNH1EW7HsH5mjVOPnaK52KTICm5dvf3IY+7wTKdT9vf30Voxnc548fb3eOa3RdW3sbVB1ImYDqaErYDWySbpNOPK717l8d95jHO/chalFCYzZJOc3dd3efXvvcb5Xz3H0lNLPPzOwwpGAjRWG+y8snvk9Z1zLC4u8u/92/8+3/jWH/P1/+brpMxEgXmix5NPPc6pE6fes1RnMp2wtbNFlmXs7+3RH/UhgKgT0jhVY7I745v/n2+jC49PfOl5vvwXfgHtaV76Jy9TpAXDnSGd5U5ZInfwuYRzLCwskG5kPLj5gLgWV5b5nfu73Hj5Jsloymd/6ZM89cxT77uu329m04T7Vx8w2Z7x9KVn+fKvX/xQZULH8845btP++M4xjDyeR86jCmngKIT0PK+CkcdzPMdzPMfz3qOU4snLj3P25Gn+xbf/kJv3r9N+5jR+9Gib2tvHWsN+v8/93Q2ywBH26jTiD5+h9F6Tpxmj3QGzROBPcKZdqsh+MmPfIx/Z4aqL0uoa9tBo38MqyySZ0ohrmCSHzNKM6zS6dZRS3Hl494g9eLY/xWDFXj3PdjOWei3CWsX9rYecXFmvgGQUhqIqcg6ltKgLta7C84/YbB14WuAmg5T47oR6FNA9c4LPfv7z1et96skXeOmNl5k1wbY8pvlMbK17KSqxtFZajO4MsLkRZlXzCZbrhKs17LAgCg/2p1SlFLkhmc5wwxlOOXSgsTszsQLX/HkHBG6Yosp8vcMgEgBP4S/WyPZSap06caNJq97iweYD4Qr1AK8ZCPyxkpdpxjlu0wrUDTWmEEWjyQq8hk8xyGQ9BxrVlL+3mZH14CvstJAinrLQwg4yUcKVNtB8Y0JxtY/rz0R999wiwXIdV1gpl6n70qqbGLxmmc9YOJI7Y4KFiPBkHdPPMJOc0fe2MZMcvxEQXurQ/LUz8vqjHL0g0KvYS9BaYWcFQS/Cb4W4wjK7OSTdSQge7wnTHeXMC0Kc1ej1RunedTSe7JaKVEd4okH2cCKwMhGQXTyYEp6XhnOXW2xSyPesuo8ZZGigfrFNemeMSwTKmXGOU2JRx0GwWic81RSl4FRAW8V5cku+nWBGGcXDCXZnRrhao/PCosQHANF6nfFre0yu9Cm2E9k+gG4G2EnO8E+28Tsh8ZkmCqhdbJPcHOHFPl7r0RfUNjMM/ughdpQTX+oQXWiRbswYvbxLcKpB84tr6FAKcVxm8Zp+pcJzxqHL0hQ7K8R+GyqBroWUyOjW0UZrrx1g+inOBQeKynF5nGqBdEUqKlmbFOgyu9U5d2APdg4zysA4/Cig3q4xG86kMd1X0uy9PcUZh98I8OYN8iV8N6OcdHuG8pXkQTaDMmKxLJopcw7ngNiW0QlHC1oE7GmvPCYyUR2KXfngpOesk+zUEmLqEuJWfLFcMTazlW/ZlarOI685B4npQdZjBS6NA1v+uyq3S6SPqKvny5I+mJBcGxB1IxaeXySoB+VzlA8uS5mUFgInakhXFVrJOlSEtRBTHMoE9TRaScalKdWPNjF4kS9REGmBSaUxfbIzkvNZzUfXfcJmRNiUvNxslDPcGFLr1EgnKdksQ4eafJKTDlOwjqAdyg0fLRDuwe4DtFUEcUj6cEKyPSVaDmifPUExKwgaATrQBPWA2kqN0a0hk7tjGqebNE422P7OVgmQD06sWivyiSEf5djCke5LJEAcRST9GbpQjF4fkO6n5Ns5J8+tc/HPXaTWPriBZnLzSNWmc448z9nZ2eb3v/kH3Nm6RX2pjikMN165ycKFBbJpRtyMmcwmNLtNRnsjWidbFGnB1stbXP7zF2mtNw/EMJ4iqPl0znXonGlz6/duce43z1FMi6PHe+GOfG8Y3BvQDFsYY7h15xZ7kz0+/ZVPsXR2gagWEQbhewpt0izl9TdfJ7UzwlZAf39AmqQYDB4etU7M6OGIfJRz5oWT3PrOXW6/fodTj58E4Llff4bf/2/+iNsv3eW5X+1Uz/t2KLm2usob/+QtIhfzL//218mKjMZijVPnT3D5Fz7PwsK73EB2jv3+Ppvbm+R5RhCErC6v0et2jxzP4+GEe289wIwszz3+PGc+dfYj50wej8yxMvLjO8cw8niOzHtZsecA8lgFeTzHczzH88NPvV7nt37x17h5+xa/981vMr3YpXVq+V2/jOd5xtbuNpuDHVwzIDrRpPEjLMNxDtLxlOHegEIZdDciWun8qVmx32v0/ELhEcti7cHF9+G4sMOjgHw0w6SaTrNFrRmjDlm+2402w8GYqBuTJzmFNYS9+EAwWObPWU/hlIKWx+bOFifX5CJHKU2z1mA2TQgbEX4YYLOishDOxwEqK7B3+qgHI/7/7P1nsCTZYd+J/k76LF/X+/Z2ejxmMBhYArQASIqk6ES8txQpyARXT/s2FAzpgyIoafWBenpSrKSnpdnVSkstRYmiRJEQ6AkQIGYAjO+enmnvr791y1f6c96Hk1X33umewQw4wHCg+4/o6O57q7IyT57Myvzn3/gVm5nHl5BK4W+ZoxuiTqdDo9nAtRzay5uIkolEZ/f5kz7RdkDzZgNzzMWeq2BWHa12CjLi7RBj17YpBXE3RHoWZsVG5cqvrBcjMpD9GPp5K6hrIjKFNVPQ+ZDscqzLnW0xyjZRJ6RUqBHFIcoAq+6NGnBH+23MxCzaxBsDHMsny1JdomKaGEKM2p9lmCFbMRi56iu3uiJAOCZG2dEZlHnZTpZJCFKymx1MBaZUuA+MY88UCG/2YExiVvL3pAoVp5qIizPiax2sio13oExwpZ03nuuCFcM1sQ+UwbUwJzytcC3bpK2IdCvQKk/XwDtUgZyQzIKU8GoHJcA5VsOsuSMlnUolWS8Z2VfNmQLR+QbpsxsI29C5nnFGvDoAtE0TUyvdoostrEkfs+4gDIOsmxDf6WE6BsUzYwhT4MwV6T6/iT3hY1ZdhNA2d6OglX5pM8IoWHnZoSaW015CstInW+lhmILKiRrOh2fJOgnxah+ZSJ3zaOj1G1xu40z5+IcqOzZaBUhFcLNL/9UmxVP1XD0sNDH1mmMv6ycMrnXItkKcgk3h/gmC2z0657ZxDlUon6jvkH8yJ+l8i3sdzcN29KynIwDMgpW3Mu+cCxX697KfjpSJMpWoTqLVfRKkkno+C62aHTU050oomTdrq1ST6oatSbSgE4yUl2EjQCYSd7f6WWrLZ9KOSJoRwjFxJrydiIEsz3xUmogb5lMqSW7FV4AcuZBHsZHDkpo4A4S2le/OlBwdqMM/eclMbh8fEZb5QofKRGEaOTGal1aZubLSNrRCmqFCMieihuVZOQmqVZL5dijdrB3e7JIs9yjMFJh6cgYkOhpA5mrO/N5B7VpHkY+NMASmpRto0kQTooZtYaCt7sI2EQ4oQ9vTyUBGqS7WUYosTjESgegaDLp9vDEXDMjSFNM2kUlG0EhRmdQRGZ5g0OmTJVpBa3omMpEYhlaMJh0dqeBO+PohiwHdKy3SrZgDTxxAHi6DpxW/cSemfalF/XSdYbFQ+WCF1qvbZKGO7NAFQnrs026CN+ajMgg3A8Zmxhgfnxjt7zROaTdbeLgYPcHC0jyzH53B8e9+cLlxeYPTR3bUeq1Wi6e+8iWefv5pWr0WvV4Xt+Rx5JEjhCpgY20Lc8Zgu9ngM//rZ3jw2x+CCUmWpJiOgRCwdWGL8RPjlKZLxIME3x2S/XouWL6F7dp4dY/29bZWPe9C63qL6vxO1uWNP7nBqYOn+E+/8x+pLpY59qHDb7pxOk5iXjj3PMVpn/5WQr/RpzhVYLxaI2iH3HpmmUt/dJWF+2e573tOYpgGUycmefpfP8vatXVmDk9jORYzJ6dpXGqydniNmSMzez5j+P125avXGPcnmZgewxt3mDowSalcxHW9170+GwwGnL/wMlbBoDpZpmCXSOOEG2tXuXJdct/JM8RBzPLFVZzM4+FT72Fubu4djV37VsR+ZuS7F/tk5LsI36gT124r9n4hzT72sY99fOMhhODwwUPMz87xxWef5tXly5QeWMIpDG9uFYPBgNWtdZphF6Pm4R0Ye1u/B2QmGbS7dFsdlGdiTXk4zp+vywLHcQgSrVrZi1zFNCQjkwxzl41cJhkqTDGFgeNYFByXgle4a/n1ao2smdFvDIjTBKvuMMzmy1KJTCWmZaBMrcTEUvTigEazwXh9DBDUqzWC9VUSM8ErefS2e3nLb4rpWchuhLrWwm5HFJYqWO+ZouAVsD2H7q0WB8cP0+l0ePnyeVJHIkuCsBRhlXzS7Qi36GKOu0TNAGUbuCdrZInMiUg9LoZvYVuCZCtEZrrgIewEYAu88SJhGBI2ByPrq1lxdHRglGllXZjpQposz5nTQ8xdPLBjkAYBqZOy3WqiLE1ypd0EI8/pU5lWJpLp5uywO8jzKA2Eb5L1dIM0QLId5kSWJi+FKUa2ajlIMU2BVXU0yXOzQ3R+G5FKqk/OYJgmaS/WBJpnUjheJbjaAcfEGnO1GrObkG5rxadhCQzfovPcJqqfkHVj7Nki7ulxzJrLsPgkbWsSgjAj2wwwfQdTCPyDlVGWnEoV0Z0u3qEKg+sdbSEHrXpUaGIjFrlqEQzPwp4vYTt6W6PbPdJegn+oglm2MT1NrEXLPVSaYChFekcrPQxX5w8OG7HTfszgYluTZHEGRQuz7urxEwKj5CAdk6QRImyBDFOC832iC00MS+COe7jzReyqgzD0+FpVh8HlFoZjYtUdols9nEkfd65I2o5QmSaVzKKNsIy8hAbitQH2pI9Zssh6Wh2llCJtRpqojTIKh8qIMY/u+W26Vzu4hyp4k3dnucpEYjiGblqXag9JKeMMGUlAYbimziIUe+3/SkHaikCAPenttD4bAlXUJTbJdog1lu+rnNjUhDEIw9TKPannQTZI8aYLoHIit5fkFnStLnbGPd1snBOa0caAdJBilRy8ueJO2/bOKSvPrMwVn5IRMTkkWrVtWuQPMxiRpCpROxmseW7iqDBHkeeg7qgbZZoTu7bI8/Hy10qxQyQK3ZCNmZOy+TGqUn2s3PUAKP+vsIxcwaz/nw0SwqsdsmZE6UCZsQ/NjbI5Va50HSqmtRoyX0aW505KhWnoeAtdhKMwMkG5vGOnFWiLbtyP0VGe+ueGMLSqLoKkFVMseDhjDtLOUEJnzdqOVscm/RSZZBiWgV22tUq0aGslZyPUauUxF8PSSmCtVAzZPrtF2ghxSjYTp8YQiSCRCa7nkuWyULfqErciou1IZ0Pmynh/ukCwEVCc34lJSAYpIDBMQX+5R9ZMGXtwLidqFZ21DhtfXmPOnGN1ZZnHf/JxvOK9C1zSOKVxfpv3/ORjZFnGV77yZf7L7/0XBrJP/Uid+aNzuFWHoBFw7amrxK2Y9/71x5G2xPIt+hsDbv7pTdRFyfGPHxtdXzQubHP0E0f0+Szere7P4wHy78iJ0+Pc+KOblBZK+jvJNkjDlPb1NoefPEzYDXn1ty6gtiULH51n5sD0GyoBM5mxsbFBo7WFkoqCX6DRaNCLe7SuNbE8E6kUm1e2iDoxhZrPoSeWOPKBg1z4vcvcev4OBx9bwrJNjn74IC9+/izfffg7AKjMlDhUOMKVZ6+wfbvF0oMLlOollFKsX1/n/OcvIFLBEx99nLmDM3o+DrdbSpQQGELsUXyGYcC5V15i+ugE/q595PoOhUqBtWsb/Jd/+1959OTjPPnoh5icnHzdbd/Hnw37bdrvXvz5uuvYx5vG7uKYrxf3smLvF9LsYx/72Mc3D67r8u3v/winlpf5/We+SGuhgBzzWG2sExopVt2nMD1+T9Xf14s0Tug1O/R7uoDEWijvZIH9OYNjOwRRCPa91ZHAKF/OcA2dHxdmWLaJXfIwTIMkSLSi7p4QTNTHKUUlbq/d0cqpKHcGCLDzkpkRDIFVcWh125imSa1SwzBMZqdm2dzeJEojbMciHISolRDaAbZSlA7Xse8fR8YS17ApeD5ZkqHaKe60y/MXX6R4tEbBs9luN/EniiAEScmmf7ONHETY80XcqgMIRKBt0Fb+fz0QOpMy6kU4RYe4HVKaLQOKuBno30/6e4ndoo1VdYjXA61OlAqR5w2OWnvzvGghxIhEbPSaUDYxSk5u8wQV6uxKIok96eUKN0ZlF9HKANmLMSoOpmvqG/5BiuprMpSSJghkqO2zGIK0HZFcb5Pe6mKVHcqnx1BCK/OEEJQfmdQKKgHCNSmerpP1EpLNgCyWyESO7N1ZNyHrRKhIYi+V8KYKOtNvkIJjYPqWVlMOEqJbXQrHq1glG9fz6G92CK52dA6hKTRJXbSI1wZkscTIi2BGhNGweMbU80UYAlW0Ic2wai72mEe8GRBcblM4rdWFMkrwj1RJ2zHRSp/CydqIYJJRRnirR/sra5glB3fYVm1rcirrJ8QbAfa4qwmlRGo16I0+8fUO7rjHxLcvYFU0+SL7KeGtLlbVxZktgAD/YIXgSlsrO6UuGOqfbyIskduZM5RUeAdKuHNFvMUi3Zca2BO6CT1pR0QrfaLrXa3iPFQhHST0r3YxihbemXHcuSI7d/g7Uxc0wWsUzVFr+tCWPSyDMnxTq+AyTSwOVXW64MZEhnl7dU2rF0mlZhlzNadZ0lbhtBlhlhwdJxCkmI5J2ow1EWkITdhbAqfukvYSsoEuX9IFV5oUNByTbJDoZvtuQhZn2FWXwqGCLpRR7FHJjsjCvDRKJtruvGORztWSaa5IHP5c6hKZIUGrhjbtnDBD5tftcqi2zBXMtp5/Q/XhcG4OP1+lErHr4Y1uhc90hIRSmsC8ax/l6lEBhiWIGyHxrS6qn1I6VKbwwPhIcTosBtGN3QrDMBBKCxuk0uSt3nsCQ0lUpEiCGKUkQhjYtq3t2Hk5Tm/QQ5kK198hfFSmiFsR7eVtfNdnem6KbtBjo7VBhtQ5r22JVbL1+cbIVYeDhKQXY1ccrIJF2ktw6jkJOZxTmSRYGdC72sZQCrfkMPX4NGRgYrD18hb+vK9LraQmW/3pAt38WBveS9lVh2B9QLAmEJYg6ca0r7QwXYvtFxsUTJ+C69O+3iYZxDQvbVMMivzQh36Ihx96mOdfep4//r0/4vTHT2F7e5WESZTwyn97lW977KM89+JzfPGZL9CggbEgKDklOo0OVtOifrSGW3MZPz3O5stbPPdvn+f+T53B8i2KUwUW3z9P+2qH61+4wfQjUwB6Ppdsona059pAE9UGaZjhFBzsok3YiHjP9z3Gxs01sAxuf/EWxckSZ3/9LNF2xIFTi3z7//Ad2F+jtG99c50r1y/jj/kUJj2CbsDNjQ16rT6ObzNxdIy4n7B5eQuAqKvJyNKEJnoPPrHE1S9cZ+7MLI5vM7ZU59IfXCNNUizb0uRmocBf+8m/zoULF/jSH/8pje1Nev0+ftnj4fc9yPEzx3SUCvq4ynKxzvC4kkohskxHPQjB9ZvXGV+q7SEipZQ07rRYv7pJpVLmvsdPkjSSfSLyG4x9ZeS7F/tk5H9nGKoghyTkfiHNPvaxj3288xgfH+fM4jF+5+k/Zt0P8Z88RKFef9uWr4B4ENJttImyGLPm4o7/+bBivxGEEJT8Ir2gj/Cs/MZ6l/05U6hBiiUEsh3jeJpc2626UlJ9jVwmgWM7OI6D6+kbyTCORsUld73a0IUY7V6bcrGEaeq8spnJGZIoon1lFfdqhzQOYcqhdGZCExixoOgVcWyHNE7pXWpy/9H7OH/lVUrHaliuTZImSHTBS9SOEAUL78QYcSfS6qJ8203fIu4GectyTngYAuGZxGt9RKBwfAfTtogHMVJKTUTa9/heN4TOa5S6mVclEkWuklI5OaIY2VyVAGuqgBpZq/OsO8dEVFwYJHtbe4UuFDEqDkbNHe1XUJiOgyrZZBu6NMWsONgTHipISa+3kat9DNfEP1qldGZs1BotFzPitQHBlbYm09SOhdAs2SAEYU5YWnWXZK2vScupAs6xwqjcA9fAdAyStQFRJ9ZZkEULkToIJcg6CeFAYVYc3IWitj4nkvBWl2QzxJkuYPomVlnbJ2WqG8BFppBRhlVxdqbrMKMvHxNn0kf2U+KVvs63dDSpa9UckkaoyeaSra2vjRBMbRM3y45W7gUpIoQs0GovYQri1YFWuzZCVCvCmfCofMcCWScmWu5juGUM28SqOpgVh+BKm2QryElqXdgU3ekhE4lZcigeqejm7M0Qs6xb08MbXeLVAaX7x7HKNjJI6b3SRLYj3IJF5XSdeCuke24ba6ZA8bEpTM8i7cY7ROQbQCY7bePCFNhlR0+6nOAalvUYhm7SljJDZVrJaNWGyubhHzVq3kYIDM/UOZB5HqRd0bmfWZBi13RGIEC4OiDeDDEcA7viYFh53mG+3KQdkebZoPa4h1fRxTgyz1vc3eyM0GpfpSf+6ByicsXjcDvZ9ftRg/3uYppd26MYkou5utHIzwHD41vowhqVk6Kj5efHO0NV5q4TnFZF5oTsTqPNLuiHEsl6QHilhaEU1VN17DEvLwXaUWaOiEulMAytYkTp494UO+fiNEixLZsojhG2wLBNQJCkCc1OE8eysSwLaSqs3I4vE0ncipD9FK/q4x+oMdgesLyxgulaSENheXmTeZQRtyM9nz0TwzSwy46+Dwp1VqNhG7gFCySkQUJvZaDb6mcLzL5PW837t3vErQin7OrvBVM/BLMskyjWD68s39L7ADFqARd5HmbvZpfiRJHOq238gk+pVsKZdYhWQ47OHWPz4gZ+7PEj3/HDHD58ePQA7LFHHsOxHH73138HY8zAqdi6yKwviVYjPvz4R3jqy0/RMrYpHikyOzVDaa6I7dvEQcza8+tc/swVDn/PIYQhmLp/ksFWwNoL6yx9aBHDMnDKDvXjdbZ+e4ssykjDFGEaZGFG3EsoTPr6OEtlLtrVhH0WZ7RvtqlOVbFSC3fd49qXr4/m1tFTR3joRx6kXHp9ckgqSaPR4PK1S7R6LdyCQ7gZsLGcUpwoUJotUpopsPrKOl/+188xcWScEx89jFfW5N/5z15k/eImMyemcIs2k8cmWD2/xoH3LGIYAtuzSGNNRm7faPGBJw9gWRYzMzMcPXSU8Zk6s8emmJyduMt1IoTAzIuupJR7nqEoKUnTlHa3xcFDi4Au/du42WDzeoOJ6Qkeet8DeAUXJRWf+3dPEQQBvr+3LG8fbx/2MyPfvdgnI9+FGFlT3gKG6schCTnEfiHNPvaxj328c2g2m7x44RyXNm5iLJU5+aNPcqDd59ILrxDMDPCOTPyZCmSUVASdPp1mC2kLzDEP13t3XRBblkW5UCIIA1KZatUeoIIEkgzbtnCLDpZj3StqDjXIKE4W3/AzDEOMSI40y3Ib6L1fq1KJadpQMuh0O9RrY2RhQnxjC2ttwOnFWWa+92Fs3+XOyjJXb1/DqJgYJYMkjAjbPazI4MFj9+tcPU8XZGRJRmetzSAIsOoe9uJOC7hVtkk7MWZBMWSzRN46PSTiDAyEFNiWw9T4JJt93WYadgIMx7w3EYlelulbZM0I5WkywJAiL5vICRHDwHRM4q0As+blpUF5GU6UgamtrcIyoOSQbgy06lFqwkOZBmbN3XP9oiQ62xEwxjyyrYCsERI8vYoJFB+ZoHCgjFm0SJoR4fUu3pGKviG2BdaYi6o4xGuBJv2G+yeWDC63sMs2yUZIFmU4J+pYs0VkXnpilG0EEK8PyDZDbeE2BPFKH3vcw6q5JFsBMs4o3T9FJjKdJYi2A9sTPt6BCsHlFiS60dlwLQxTIEq2bu82GI0TgGxGWAdKOzmngDNXoPvcpiYuyzvb4Ex6RCt9giDD8Ey8o1UMz8LwcuWggng90MUckz4qk8TLfaJLLWQrwipZFE/U8OZLOL5DMpaSDRKCKx0KR6tg6es971CZwast7HEPZWi7f7TSx57wte39Shuz7FA4Xt0huqQivN2j89yGLuu5mFGfrWEcNeitd2m9sIVzsELpA7N75pwQuoDFcHc9GNilvBsWDykpsYrOzi+HnSuOmRd+SDJAWCDzVmmkXq+hikvlxMmoXMo0coJIIRyTZCvErjq5elFb4ZNWTDZIdRGNVNhVRzd2B1k+t7UiNmnpvFN7wsNw9XGlFYF51iQ76sQ9xF5eUjNqkh4NgFacjcpijCE5KXKLuv7skbXa0BbsPVZ2kc+1PcRjTkjmjfR7jvjha63dJCWoVOf0vhYqk0S3e4TX2jglh9rxmi5sKVg7qky1s0v19uoWcNPShNzu5SqlSIMEmUhSlWdWKn2eESZgm5i+STJIiYMEr+ppcqwZQqLwaz5G2SPsBKRKYJS0xT4NYp0RKvW5yfRNHNfNbf4ZhmtgV/PjTIJMM8LNkHAzIFofEC73qR6tMv6hef1gRumHCu6ES7AZ4Nf8nbmcSgzLwjJN0tz+PeRhhzmWSTcmbkeIFGq1KtXj1ZEdvbfWY/t6g+sXDH7ihz71usq5YqFItVTl1uot1r6yRprqgp6KW+XXG/+RwjGf8lyZXrNL40+2qS5VWfrgEqZjsvD+eW598TabZzeZfWwWBEzdP8GFX7/E3OOzOEUnb7lPmX1wls7VLpiC+qEqay+sUT8yhmmaZFGGzCSmbdJb62FiYvRM0tuSg8WDBM8G2MrhA9/1JPPH5yjVSkgl2draYnV9FaUUxUKRmakZev0ely5fpNPvEEYhpmVSnStz+P4DpEnKoB0QdSMGrQHxIKKz1qM6V+aRH76fW8+vsPLyOoffdwBhCI5++BAvf+YCU8cnQAjqi1WWX1oDIIlSslhiuzb99oCsrbAsi8/+wWeIjIC5YzMsTpx+w+ibUUyAECMBz/Duu9fr4ldckihh48YW23fazC5M8diHH8F2d1SswhDU56tsbGxw4MCB1/2sffzZsK+MfPdin4x8F+HryQq7VyEN7JCQ+4U0+9jHPvbxzYWUkuXlZZ698CLrWQf3UJ3x0zt5TaWJKg999L0sX7jO7S9dx7p/Frt2d97hGyFLM/rNDr1OF0o21lwR620svflmwzRNSsUSMpMkYYQKU2yjQECAVy+87vdjGiS4lnvPttG9EJT8AmGYkBkSYb+OJVyh25Qn9f7o3WziXe/j9zJOHFli/Mw0xq5xXpibZ25mlu3mNr1+D0MYVJeqVCoVhBBcvnYZfEHzzjZJmkLZwpks31UIYDimtjuKvHQiJzdMDGzHwdhFcIUi1UrQYXFtkmGO3buxfVgkYeRKQRllFMoFLMMiTCKUuevaQylkmGKP+6PMMGBEiqq8+EPYBqLsYPomhmMQrweIsqPXx8xFY1LlBRU6J02u9knONXCrNvX3TZM0IpKNAHe6gDAEzoTPYCtERRnC1YSpMDWJmqwNdOFGvprdZzZy9VsB+1Qdx7MwHAMZS92+XHVI1gYkawPcKY/Cg2OjLD6VSqI7faLlHlk3oXR8TFuElUnYCUakhulbGJaBf7hK7+UG2Wof46AubBBC50Jmg0Rbh4288dcUet138z+OHiOV7Kx/1k9ImhFZkOlsxykflao95HjSjLDHXZSA4HKL5Gob0zepP6JbsVWQEdzsMrjaxjo2TtqNR+Rq9+UGVtXBnSpg1hzdNN5NMCsOWSfG8Ez8gyXCG13sSV/bsEdHiS7fSLZCVCfBG3PxFwo4A4u4lVA6NEFa0QrEUePzMPog043Pe/INUchQjlqyAU0GKoVhmZiWQRKlGLYxmuMqkpCR5zPqduRhGzlK27bVsAQJndepMplHDeTz09A5kHZNK5eyXpJvnF5HM1fKZQNdRpX2EtJegulZ2GMupm/tdN7kLdPkuZV6v+4Uv+yGMGD4Rq141Me5UGpUYiNMQ9up8zxHkZfDCCFH9mlh6bZ1zF1srqF/tkcFKV77jx21MneJGvLxVWqkMpaJJLrRIbrZpTDlM/XENGbBhkwrC2Wg940mgdVIbDnKw8wzMLNeAo6FElplpm3quYLQ1PmKSiriboQwBHbJQRhaAR52B3QbEZZt4hQdEhL67d4O8RcLlNSqY9OzdCt7nJFFGaZnYnomdkmTQ0k3JtoKR8VD6SAlWO4xuNZh6olpau+bxanuanZWen+ZrkkWZhiGicwkQhpaKQiYpv5uCZrhqGV9OHadK22KxSKHHz0EQNgP2bywSe9ml6n5KR75toe59NuXqdVqe/ZEHMf8/h/8Pp//8udo9prEYYRUkvn3zVNdqiClYuvVBuuvrDE9Oc2x7zxKPygx8/gszcvbXPzNixz7vqNYnsXsozNc+I1LzDw6ozNifRt/3EP2JamV6u0xDPwxHztwqNhllm8u07rZZvzEBCoF13ZJ05RgPaDm1xkfHyfqRKxsrDJ5egJv2mX2yAx+UZO1m1ubXL5+Cbfq4Nc8EILN7jrn/uQlkiRlbKlGfb4CRoWwE9G806LX7DN+qI5dsOisdNm6sk3UiXjsUw9j2gYykxx8fJGrX7hO/3if0mQJr+ziFGz6jYHOnLWMEWG4dW2bqcUpokHMU7/6FQ4tHOK5a19h4cws5dq9CSsFtNtt1jfXSJIE27aZnpyhWq1imuYe63YURCxfXGPjSoPFw/Mc++iRvIDpbhiG2CME2sfbC6XUfmbkuxj7ZOS7DG+GkNxdSKPyrCe4WwW5T0LuYx/72Mc3D3Ecc/nqZZ67co6gKiienGSyOnXP1xqmweJ9R5iYn+bS86/Qr7Xxjk/fXYrwGiRhRLfRJohCjJqLvVS9qyji3QglFVkUQySpuD7F8SKmadLpttlutHXm1+7cSwXJIEYMFFPT02/qM6rlGr3NFVTZ2LkZTyVZmO6oq1KJ5dhk633U9W3sRsoDH/0g5an6634/G4bBxPgEE3lbKujv6WarycrWGoNiijddxPMLSCkJk/iuZYhdxIbILZtCCRzH3UNSZUmGY9s4tqOJFalGZM3I+mprS282SHdUTXJHvZcYFrGT6rZyOSyzEch2hOFaexWjeQGHijUJMmw2FnZu+XR3CnY04aaJFhlnCKVIrrfJ7nSxZ4r4D09gZ9pObk/69M9vE68NcPPyB3vCJ9kKceaKo308zMGM1gfIICFeGaA8k8KH5jAL9ohgBLTyM85Q3ZisGVI6XddNv6NxBWGbeRajIOumeFMFXV6QKUxhkvYSTablikdha8VdutxDRhJzpjgqHjE8C4Qg68Skl1v4C8UdCyvscsJqG294o0uyHWF4prarj3k7ZStKjRTBMtYlK8lqn/CVbUzLoPbIBGbB0iSaEBhFm8LhCkkrovn8Gu5sAe9gObcpa+ItWg9gM8As2ZrMVZC0IqyKg8o0yTYkIpVSJJsh0bUOAigcLCPHPfqX2xipReFkncKYP1K+9gd9okG85/rTKlhkoS5MEo6hCexEW4uFZSAHutjIqjh5g7UiidKcwMvnd5QhpMCte6Shzsk0XE0QyShXMBpa6SijTM+1JGPYaq7UMBNWj2m0Phg1c9tFe+Qu1qo+bd+WUYZZtPEXSznhqUaiTZW3Y4/KZLgXEZmPQZYrFCU7KlPUDj9oCt1kn+jcxNEihNAK5ERiOLsIxOFxOzq/i3vQn7vX4Wt8DwwLwaQiixPCq22yzRB/yqf24XlMd5hvqV3zpmfqhwqxJoG0gkwrTYfjZ5ccsiDBdV081yPLMgahVmrLNB01bctho7VtolJF3I5QiSRpRXoeFi2UpRh0BlgFC3+yiGHp/Zn0E5J2jOmZuGPecCiQsSTa2tt6bpcd4k5E71aXcLmPAdSPVilPFbSqWbx2SIbn0B0bergZUJ2qYhgmWZRiujqmI20k1GfGUbF2osXbEZVqhYWT87TWWtx5/g79Oz38iodXdLl57iYyznDHXBqNBjMzuuH5c5//HP/hs79G7USVie8aY9KeYLDVZ+35DZrXWix9ZBG7YDP9wBRhJ+Tsv3mZs79+jsOfOIwhBJNnJpGpZOWrqyx9cBHTNSlOFeit9SnPlXKi30Bg4Lk+7dUWJNBb69F5uYtYEXz85Ce5WbzBi7/2Ioc+egC37FEqlJhZmEUowdWvXuX2C7d5/EOPcfT+wzjuzsOujc0Nrty+xPiRcUzLwHIsrWhWMdNnJuk3BiDALeucTq/iUZ2vsPziKud+61XGFutMHhnjoR88w4U/uEx3vUdtoaLnhlQsPjrHyrl1jn2kqEuCqh5hO8LxbbrrPQr1Ar3NLje/codqocof/R+f46H3PsB9j54akaX3QhAGnH/1ZXAUlckSRccljVOu3LmIuio4c/oMvucT9gNuXVyhu96neyfgu3/6idG99PCBx2uPtdZah/EPjr/x8bePrxtBEIzI3n1l5LsP+2TktxDebCHN8N/72Mc+9rGPbzw6nQ7nLr7C+eXLMF+g+sQCRdf+2m8E/FqJBz7yGGuXb3PjqesYp6dwJvZebCkFYbdPZ7tNZkiMuovr//nPg3wzkFlGFiSYGVT9Iv6Yr2/Uc1TKVSzLptlsEpHttB3HkpJfpD5df9Pfd7ZtM1WfZHlzBVGykFGKQqtzMARpP0ZebeE2IkoH6nhHxiktFqlMj73p7UnTlK3tLdaaG6iCibdYJTEGmL6eD4Zh7LJv7tp/o8AqLT1KBylucS8RqZRW/kyVxxECqqUKW5vbgL6RNgr6ki/rJ2TtFLNkYVb1TboA0n6CDDKyQQIDUDZa1RdLVCIxTWOPxdgQhr7W0GzlXqJcKU0ijXLzGJWtqG5CcrkJ/QR7qYz3/jldCNKKUL1otAjvQJn+K02cOU3wGb5J0s/bj9H202SQEl5tkTYinBN13IcmEJah1XC5okwNEmQ3IdkYUDxdJ23HuAslbXnePcwKEHlTctlDlhNUJ9NN2KZFpVIiyzLaQVc3SW8MCG50MX0T90iJtBOTXmlqFWhu31XtGNMUVB4aJ94IiG73cA+U9xTTpL0ElbdXF07XMTxTExphStqMMHxrRPLKICV4eRu1HeDNF3GqLlbFHhW9RMt9hGXgzhX1eG0EeIfKOGMewjFHFmGraGMetonWBsTrA9yZIslGAIluq062Q5wJL2/47hPd6OCUHUrHa6StmN6FFmbdpfjYFI7j4pZ2KbcF+L6P7/sYeeZau9dBJQrTM0naEbIb72Q5kj9olwqraJM2NSEqbE3IyUyBypCJQg4ySuNFoizBrbq6mybPucuSBJVkKMuAVJfOGMOSFgUyk6hUIgcJwjS02rJk67HNcsK5pFvN4+2IrJ9glmzccQ/T2Zn7muDWf3QTdt4AvovEFGY+r+RuRxK6HCdXMI6IvdxuPbRmD1W6eyzUIlcP7rJhD9WEd53lX8s7qp2f6TzDves1elmmczQHV9rQiykfqeIerGAWrVFb+UhNmSseDVOQZYqsn2pbep4tKPLoh6HqLoqjHXGECWmUIIQgzYufhkrwLMy0ircV5wpJG6fikIVZnh+qS66CtQHuhKczPUs2dtEmWB+QdGLdEo8mhb2ZAsHqQD/8sAzClT69K22SdszsB2ZxxzwEkPRTOldauON+zg/nJHHe5J71U2zPJu7FRJshE/dNIEyDbq9DksYEmwGO5VCdqBL3I9p32shuxuSpGS7/0WUaV7dYeu8iJ7/9OIPNAStnV4lVzCtfeZWkFXPjyA2mp6f50lNf4tc/9x955K8/hPAEmdLOttrhKvPvnWflKys8/wsv8p7/8REsx8KtuDz4l+/nmf/1WRY/soRT1uf4yTOTnP/VV0jfO4dpG1i+RRZpxWbci0l6CV7FQ6YSG4eDhw9y7uw5fuqHfpoTJ06MHqxdvXqV3/n8ZwntEFmV3Nq8RbfRZe7YLD/w099PtVrdM4eiOOKl8y9ieIKVayskkS53cgse/pRLZaaMV3FZe3WDZJDglB16W322LjfIEknYChl7ssrYYl0rQe+fYfnsGrWFCnl8MRNHxrn51Tt58zwkQULUi6jNVrj8uWtMHZ3gK//2BSpelVP3neC+R0/h+fduIx+tdxTx0ssvMnl4jMLuc1kBSrUSg96Ap7/0NHVrgqJR5tHTjzP7/ln+7a/+n7Q3O9Sna/oYylWZ+jSrx3BrpcFYaZJKpfKG67CPrx/DvEjYV0a+G7FPRr6LMWy3HNqw9wtp9rGPfezjzweUUqyvr/Psqy9yZ7CJfbBO/SNHv67zsDAEsyeWGJuf5PLzr9BZ7uCengbDoN/q0mt1UAUTa9rDcb4FvtYVZIm2uDqY1IoVXMfl9ZQ9Bb9AwS+QJAlZliKEwHGcPaTlm0XBLzBVm2Blcw17zEU4JmoQo252cBoBxYUSYtZHZgZpP2PpwNKbWm4Yhqw3Nmj0mhhVB2+ximEaeJmkvd5FFXe4Y8d2iOJoREABWl1U8DS5JhVqkOFM7tw0KaWIOxEF08P39c8zmaGEwpnyR/mOKlOYRRur5pI2I7JurLMKFWS9BHe2iEDgmBZxGOscwZKJMAVpPyFpRZgSyEVShmGQxekoG2/Uuh1miNrQ7pgXeLRj4otNnfN5oIL7yNSoyANADZI9eYJm0dY5fWGGVbRGNl6VSpLNgPBKG6nAmi/inxjDrrlkQTqyBmetiKwZYdoG7pSP7MSYBZvwepfCqfpds0kpME2DTGW4jouczjBCqE5Wdr1GYRomaTsmvNGleLKGVdXtze6Uj1KQtiLirZDkxoDiA2M4dQ8FeAdKBFc6eZuzJt3irRBnpoC3lJOju0pAjIKFWXZItkOyTky22kd1Y0zLoPT4FMH1LoUjFZzpwojwBZD9hOBGF6tsYxRsnKkCcpBi2ntjGoQh8GaLxCsDRF+iGimT9Uk6so8MMqJ2THqugTtdoPrAONFqQOelBvZCkdKTM5qEE4JsoBW3UkrCOCROkxHZqqTCNi3SKNGKu+1URwLYJlbJxCxYIyWhTDPi7UiTQ9uhziq1dQ5fGmcIBIVaUWfoZvk2oEtQkm6E4RpkgxR73NORAqnSVl3XZKhAzDoxhm1iVx3MYSFWHlWQtGOiG10wBHbVwa6XRsekTBVCDCWMO8ThsF16VCRjgtil9NMKSC2BHZVA5Yra4Q4Teb7iUCW6Y6HeyyoKU+zKfxQ7xCCv/XsXJKPYiOFvBXnWpqELiRSKZCMguNzCRFBdLOOcGMNwTZSSGKYx2szhPtVtwno5hmWQxgkqby7fnZdo2AaWb+t9k0rSKNGxEPl2GgyV0pJwc0DWTynMFLSNOJJkUaaX45h4k/6oFygLM+JWhFW0scta0epN+ARr/Z1MyHyOWyWL5tkGspvgT3hMv2eKYG2A7dv6XJU3jiupsDxztI1qqNw1DKKNEN8v0HypQX1+jCTU6mIxEESrIWaqi7CaLzco+kUW/DnOv3Ke2yu36Le6PPaX30N/a8DZ/3AOwxHMv2+OQ/M6P3Dj5Q1+66u/yaUbl/jyc0/x4F97AK/q0R8MkDLDcIwRsTX3+Bz9jQE3//gWR777MABOyWH64WmufOYKJ3/0OKY0MSyD8kKZwfqA8kKJuBvnhGRGf01bnBGKwUbA4twiva0exazEyZMn90yfI0eO8JfqP8EXnv4TVprLnLzvBAeOLVEo3B0bMwgGPPWVpzCKeTmTkFTmyghTEHZCtq40iPsJk0fGKE+XWHllDRnrYqKZ45P49QKVqSKXv3CdqaOTIKE8XSJohxjCIE3S0T5VUke3RIOIxo0WE0fHOffbr9K41kR0Tb79ez7G6YdOvG48S5ZlbG5tEUYBpmGy3dymPl/ZS0Siz/et9TarlzcYNEMKZsKP/KXvHf3+O7/tu/kPv/1/88QPPIpXcFBi530KRTyIOPfHF/iRT/74PddjH28Put3u6N/7ysh3H74F7lr++8LwC+m1rdhD7JOQ+9jHPvbxziFNU65dv8Yzl16iV8jwD40zOXb8bVm2W/K574OPsHL+Oq/815cIlnysw2NYi+VRccO7Gkrpm9Uwo2C7lMoVLOvNKUhBKxtt+82//vXQDwY4Yz4iiBEXGphhQulQFffBiRHJ0r3cxBlYb6h2GOYYrWyt0stC7LpHcXxsj5rRNA1KXpFBN8SpaEuuaRi4jkMUJyPFVdZNsKsFsl5KFsRYnkMS6N/LRKGCjEqxTL2qSbYkTekGPUqTZZI0IYp1sQNSF3gI0C3TmwGqqJVNpm+NCKskyXB9lyhLRkosq2iTdiKyXoxZcXIuRBN/IxWXApVkmp+xdKmEagVEL6xjT/m4h8oYJUffYA9VcflYye0Q+3R9zxgKyxhZmZOtEBVkdJ9aA8/Ce2ASo+oQbwwgUaRdrYxLWxFppnCrHuUjdZIwJTPkaP1QQ2Jnl6psqLbMFEYGltA39GmQ7Fkf09SNub2rTfyjVey6p9Vfw9ISy8Ce8LAnPKKiRXS7j133Rsoyq+YS3ephjXuYJRuzbGOPedrSjRplb5KTI9l2QHK1TbLap3Smjn//GNGtHtFyH2+xhD3m7RCROXdlFG2KJ2p0nt/EP1LR+y9Xqiq5YztFanLMmfBxmiYf+MCHeOarX6V3voFhGZRO1Cg8MEFwq0f77DbOwTLlD83ly8stykLf2G+3m0iZIQwD27cxLRMpJUlf5/vJWBfD+LMFhKXJwSzMSNoRZsHGKtq51VeTDf50KScUc4t9PwUFg3afJIwxihbYELUj0n6MN1NAWAZxKyLZDDCHykqpSAeJzpEMM0zHxKm7O8RtlJK0Y5Kunuf2uC6lEYYYZUKOpkiuxBJWzogNSfR8nxmWJtZUJjXBqoazmx0rdr5OKn1teYyhLc4jQlLc01mt1I4Ze2+RZV44tafRmh3ijx2CZFjUpYQivtMnvNrG8Swmj09QnCjhOi4C6PS6ZMawRVmM7Om60GrXCplipGw0HGOkkFaZIgtT0n48jF7U62LtKvIxIW3rB09e1UUWbN0ObxiYRUs3X0tF0o4IVvu4Ez6GY2B6ej+mnRjpGHqfWTomIgsyLF/b9HvXO4TLfbJuzOLHD2qrL3nkhtL3SgpdpiOMXDWaRztkUYZMJMHygIIscHr+NGNnxtjc2mR7q4FSilpxkrmHH8RxdUP35soml758kes3rrK1toW0JBMnJ3ju/3qOoBmM9mvrVpupMxMc/LaDTJ6YpDoes3ZthcRK8OsFfbwKvc9emx88/+QcL/3rcxz5nsOjeTVx3ySv/tqrWIZFGqVYnoXl6vOvjCXBVoBdsGnfbLP+wgZLjy+herA0v8SgMeDGH9zkp3/0r+yaZ/ph6gvnn6crO0yfnuTw1IF7RpFEUcS1W9e4eecGbs3R96epQiFwCjZe1aM4UWDsQJ21C5tc+eINsjhj7ZUN3v+XH8ctu8gsAwFjB8c4/9lLekYLQRZnGIa+n01ydWpntYvpmCRhyspLG4yPjXH7D1cpFkv88E9+hIPHll73vlcpxfWb11nbXKU0VsDxbU1MttfxEg+34OL6LlJKtpebrF3ZpFKpcN/DpyiUC3z+V/a2Yi8sLPC9H/sBfus3/gsLZ2Y4cGpBK2ijmBvnb3Pn3Bqf+Nj3MTMze8/12cfbg31l5Lsb+2TkuwxKKX75l3+Z7//+HXn8vazY+wTkPvaxj3188zAYDDh/6RVeunmBbMqj8p5pJnz3bVu+UoruRpPlSzfoJQPGH52nu96mf72JOj39riYjVSZJoxgRK0pegWK9gGG8M2U7cRQSrrZwWwGIFP9gBWfGx8zVRTKTZJHEGy9ibZj3vDnbnQeZOBJ3rEDZq9/1uiHG62OkWxuEzQC75GDaJqZh4jsGUS8i6YQUXB83daiMjeM4LkkcMwgDrTxzLQq14p4Sm063M7JXOraDZVoMgkArt/LXCLT6MOvEyEjiTu7kaSm0wtFQuRU0X7ZddUlaMamhSS+VyhExIQSoRCKboc5mu9wkW+7hTnow7mEfqaEMsVNsMvwsAen1Ds6Yi2HumNRRChVLVCbpv9xg8GoT72Qd58EJnKqHMATJIMa0TeyiQ7IxgCBFdGIKp+pYto1hGhimIA0yrKpWGeqdlGdEknMsiSRtRqTbsS6xcWySfoTIBNX5OrbvjLZRDBQYYE/uWNwFoESugMvX35ktEN3pkzRDrdTspwjHGBGRWVdbUQ1XN2QP1VhIRbraJ7nRxRlzqZyokUx5usQokhi+pQtxym9AvFsCZ9pH9lPYFVWmEoXt2hhCkKUS2UuxfJve1Raf/60/ZBD3KR2qYhRMwpUBYTPCPVTBmxrfM9dHatZUanLdzolaCfEgQkYSMoXp6lZkw9Wt69FGgDPpY9imLhtxTeKG3ieGlc8LSxCt61w5JTVBa3iW3lEGxGEMgwjDNpFJhpsTkelAtwxbJZu0n+gcTPKIgpzAssoOCF14Em+GJN0Y07Pw5oqY/s45R6UKlelSlJ1CmZzMTTUJa+TqRgF6/2W6WAdT7ORJZjt2bGHkE84wIMu4i20UYoeEZO+vhgfFzi4YEqBDYjR/0DAk7/O5NCR+NfmsrehZkhHf7hHf7uGPuYzdN4ZXLlAulUb7OE5iTS7b+UMDsUt6mytJR9Gn+YQ3i9aefGJhCpC6idn0LYQtRpmiANFmQNKJKcwUKB6sgIJwI8Cpu1ieNSJrBQJ33CcNU+JWhFNzMRwDwzKwyg5JL8HNFdWmaxI3Q3qXQ+LtkMrBMuMfnqfx/KZWhufnsizKMPJGcTLIWilZJ6N7sYNdsTENExEJrL7JmaUzLM0vjbZ3dnaW2dkdcqnf63P55ctcf/YaW3c2kUJieAbujAMmbF3eIh7EzD8xx5HvPoxhGvQ3+yw/tcIz//JZHvvpx7CKNv4S+DcL9Db6lKYKOwT27u8YAf6Yn6tRUyzbQqGwcvWv7/sEQUgySBhsBVQPVLnz1DK1+RrrX95g7fl1Zg/PUjEqpOsZF5++SMWo8tM/+leYnJxESsnt27d54ZXnyfyE2ZMzLNRnUSgGgwFZlmHbNr6nvyvCMOCFl1+gMOMze2aKfntA0AlRSpIlGcvn1iiOF6jNV+is9WjdatG+0+HIkwfpLHfxyu5oG3Vx0q5NNQwa15tUZsrEQUISpEzMjXHh81eYOzTLxd+9ytr5TY6cOMQH/sKTLB5aeMNeBQW8evFVYjPk4AOLo9emaYJV0nmU1165QcEv0FnpMTE9wcNPPohX2LmOG1uosr6+xsGDh0Y/O378OH9j/n/k+Ref45n//DxJGmOZNveffJDv+onvw/d90lSXyg2FQvt4ezEsrxFC3FO1u48/39gnI98lUEqRJAm//uu/zt/6W3+Ln//5n+df/st/yUc+8pF9FeQ+9rGPfbxD2Nra4vlXz3KttYx1oEL1g4f3tCn/WZGlGds311m+dpO0LHCP16nUJgEoHBpnsNxi8yu3SY/UMeerb6rk7M8LZJqSBQmWFNQLZbyS946tv4xT4lsNBhdXKVUyJt+zgFl0RqRfLHWpjGmYlLwCdsmhvb5FmqYjK1iSJGw2tlhvb0BRExyu/bXnghCC6clpBoMBrU6LMI1G+W6VQonS3DS2be0ZG8dxcJx7N2QDBFGwp0HbMAw8zyNK4z1EoGEbOu9NCG3bHK2TvnnTCs0YKaUmCi0D4QgIUk2mFZ28aVYTQbIVojYDwlaIt1Sm+PgUwjSwuzGDq22Ub2FNF1BCYPgKmduPLc/EmfZHdlAhBPH6gPh2j3QrwBj3qXznASzf0Q3fBqSDhGQjwDYMVCgpTxaxChbhZsBgbQDTBWzPIksyrKJuAA7v9DCKFsl2iD3m5kpBiG71wBS4B0rYno1pmiS9mKQZsfbqChOHprRiCd2sbNVdbbvN8gZXqfaSR7nqSjgG6WaIUbKxxlyEbZBuadu14ZugxC5LsyS91SW+2cOtOcy+Z4HElShbE10qVZgFk3g91Z8vhC41Mc09Tt3hvrOqDtHtfl7gk2d/hhnCt0l6CTLJUL2U8FoHoRTWmQp2QxGuBVAwcY/XcGcLe3JC9cGiCUKdJ6rLXURezKLiFJVIDEsgU92ajGBU/KIyRbDcx3A0kSSDFIQg7WgSmNxWaxUsZCJJuzFZmpJ0Ipy6h2EK3bxtCGSSITOlS4Xy/EFhGyTtGKTC9C3sso2wTT0mqSTrJ6SDlGygy1O8+VJOQu6Slg4dRsPWbwEjS7UA4YicrNzJb8QQCDFsZFcg8t8Ni2iGZKUU2r5t7s1/HH728Od7io7y3+s5ptdPpfnxiF6XoT2aJF93w8DKm+qzROfIp2FKdKNDthlSPlhm4tvmR1EQWZjR7naolipIJEEUYvr62ME27sqmVUoroocKXgR3nbtllJGF6ajMSka5UrKXYDoGhSkfMVckWBsAkPQSrJKFmZddid3fo4YmN52aS9KJcSe0ItjI8zWRELdDmi9sIYOUyUemmLx/HGHoeThStQptCTcQOL4+/uN+jBM4fPCjH6TdbtPqtgCojFeYOjU1ytp/LbqdLs9+6RnWL64RhzFJkpAaKekgZWxpjNN/8aRuPZeK7UtNrv7OVQqTBRbeO09xqsTxv3CMzXObvPirL/HAj92PlJLpBydZO7fG0Y8d0YVsmc5MNcy9YyuMfL87miAfrPcRpkEYhnqOxgbhRsSdP1mhf7PP0sISTz76fh7+nodZW1tlu7mNZdoc/uRhJicnSdOUi5cucvbSi9hjNrOPTlMoFVBKcWflDrdXbpNkEUmakKUZJjZHDh5hq7lJ/WAVaUg2bm8ipWRsqYZT0t89US/ixtO3ufh7l1l6dIGTHzvK5pUGK+fWsRxzRMcbhs4f7mz0sPKoGZVJVs6uc/DxJVp32pTrJZYvrHHr2WVKbpG5gzN89//0XYxPvv6Dvt1oNLYYZD3mD8+w+9hSKNI4pbnaZvtOi5try3z/T38C5x653uJ1WrGLxSIffP+H+OD7PwToB5Jpmu6JT0vTdFQg+3pzah9fH3Y3ab+broH3obFPRr5LIITAtrWcvFwus7Kywg/+4A/yV//qX+Uf/sN/uC9L3sc+9rGPbxKyLOPWrVs8c/FFts0A79AYEw8ce1svguJByMbVZdaWVxBzBfzHp/G9vRfHQgiKC3W8yTLb55fpLN/BvH8ao/D6JNU7DoXOFwtTXNOmXqjjODZ3y4C+OUi7IcmNBs52xJFDiwweLrNqb2EV9Ri+Eeln5DcmQRCwtrVOc9DGqDkUlupvucFcAMVCgWKhgEJb39rdNp1+l27QQ0mF6zjUyjV8743D+GEnym7PZwjuIh0VCmXoNuJ7rZMQAs9xyVRGkqSadIwkbsnDqdqkcUYWZCQrPdTWANs2cWaKTD52iDiJSbMUoQy8iQqFwKMuS6ze3KDT65C5Bs64R2Wxgl12kTIjTTOSZkRwrU28EeAfHcOdKI9uzJOebmjO2jFGkOEWLArTRexdx4Y/WSCLU/pX2ljHTKRSWKaBW/VJtiOitQFZL8GqOhimQbTSQ3gm7lwB8iwyJSUGBlOL07TKLTYvrTJ+eAq36usyDCcnQRC7ovu0NXHYAiwHmjR0Z4u6BAlN4qRoFZk74RNthcgw063ijZDigTKVj84jgxTLtZFJQhTEO/vPNhGWgVmwNNEjhG4sN8SITlMKrSZ0zJwEyjAQiEDhWA5BKyBa6emm8qkChcNlVDulfXEba7ZA8YlpTNskS3W5jlnQBU67rckIneVpOFrVmQWp/kzbwKlpJVGUtyZnuU3a8C1M19SxA4OEpBlhVxzsmkMWZahEIZOMpBWRtiNt5UUTmYZlkLSjUdu2U3EgJ5bSdqTz/qoupBLhazJTqxglhqNfF7dCskGKVXZ0wU/ein5PL3T+uQyLTIQ+WobEpLC0mhbzbi+1bmXfyYrUrJkmCFVeojO0zu8caWr0TyWH1txdy5X5z/O2bcgt2EJgmXkxVW51VUIXf0mpW8PTTkR8s4tsRxQXy3iPTSEMTUCqYZ5rpstlmu1thDAwvXyZcYZpiVEW3g57tEslmUiGpS8qL7uSeb6r6VmakO/ExK0I0zSwHAO76o6OCcu3iFtaTetN5QUyxl5FNuT28KHqNNHEtVKKeDuke6GJ7ZpYhsHEh+dx8hxcgKgRYbomMpJYrknvZofCdJE0TElaMWpT8uCJB/E8D8/zmJ6eBiCOY+4s36HT64CAWrnG9NQ0jc0GL375RW4+f52kG2O5FhMPTKA2JbKTUZjw6d7q8Kf/6CkOfnSJpQ8vMXF6nNJskXP/9mWqByqUZ8ogBJP3TdK51WXr1S2mD02TWAnNCy1AZwcnsX5oYJg7t+tZoAubhm3mALefWmbmoWltBTfg2u9fZ7Ay4KPv+yg/8f/61J5rk3p9h7zTxS0v8eq185Tmihx+8iCOp7/vpJKcf/VlummXIB1gF2wsLNJeRiIjzl16iSyRnFw8zvZKE9M2mDgwhjA0Cbl1ZZtgO6A+V2Xq6DhXv3iT+Qdn8Ks+/e0+R99/SFvKXWv0XXP7mWVmjk+zfbvFzWfuUBmvaFVqJnjpD8+ycW2LRx57iAfee4baWJW3gtvLtxlfqu85rqJBxPLlNVaurXLw/kUe/8RDPPNbZ+m1+4xN1e5aRnu9y9ibaMU2DAPHcciybERKDvfBMF5t38X49mFIRu7nRb47sU9GvosghODHf/zHeeKJJ/j0pz/NF77wBX7pl36Jz33uc/ziL/4ijz/++P4TgX3sYx/7+AbjK89+lS/deom5J08wWZ5725arlGKw3WXl8k1a3TbWwQqlDy19TQu26VpMPnKA0nqbjWeXSRfLmAfG3jIh9o2EkoosiiGSFFyPUrWKab4zlyBKKeKtLvL6NqXM4vixA9Qe1XmQGxsbyNbGm1vGIObq7WsExFg1j+Lk3jzIrxfdXpftbhO7YuNXC6O4tixJ2WhvUA7LjNXeWA3i2DZJogmtIQxh3NW+q1VsJoZpIONspzRHslMAJMAUJtKUkCrKE2Vs39ZZbqt9olc2UWkGRRNj3Mcs2URxNHpIqhQMVjtUpM+Z+87wgDBI0oQ/+uIfkxma+FBSES/3Ca53yByBMeYxdmia6ampUYZdGIas31wlDkImZmoUD5dIsoRBGty1/cW5MtFagNpI6K+3NHk3SPEmfMbPTNG73WZwvom7VCJpRhTvq6MyneGpMkk2SCkXSiRJTKHgIxYU0a0BTtnAT2ziJMKxHZ1rqCQKiPsJaTeBTGLVXOxJn3htsKeISIYpKpPYNU2MBs9vYBUsikcquGfGNNmkwDBs+t2BVtLYgnA90M2+g5RkO9QtwnWXLMzIeglm0daEUZ6JidDkTZa3bHteARJJ8/wGyXaAv1Si9ugEg9t9mme3tIr1fTN55qEiS7WNWCCQg0znAualIyqReWO0QAW6cd4q2AhbzyFhGsTbIVbFJmnGGK6JO+5q8ihTpHkjuuGaJJ1YE5novEHDNcG3kGGq7dW+hV1xRgqztJuQdmIM18B0TLJhu7rQ62KVbE1yCd0bncYZ/RtdnQdZd3GmClqoGMucsX/tuVUrZXcUi7sGdRh8mP/8bnWjnuzCHgUq3jUvh1mlu9XJuz+b/JnASC0Luuk7VRjCQEh09IAwyKTUBZa7lVo6CBFhCZLtkPBKGyOR+PNF/FP1PO8xb+ZOJdkgAUNnPhqmMcq/jAeR3keO3qdmwRq1hUOughSgMkZEZtpNMD0TwzMxcpIzaoQkzQin6uAU7NEYpJ2YrJ9glR2ssk20FWJ65mi4RS7v3c2BDofTdE3SMCPaGBDc6pENEqafnEUIQe96R5+b8tZymUr6t7pMHp4k7WVsvbwJUhClIWmaMF6d4MiZw3sFHQquXr/C6vYa/oSHN+OhpOL6jWv8yWc+T+9WF5Upqocq2AWb/uaAtefWMGyTx/6n91AY85FS0r7e5vof3KB9q8t9P3EKr+ax+KEFbn/hDqd/9NRoLCbPTHDtd67z0PsfYvvlxmg1DMPEdV3CKESmcpQdufbiGtWl6qgoaPWZVaLtkPu/6z7aK21u/ekdFmfmefT/8TAv/rdzPPv8szz26GN7Zlq/3+flV1/m6soV6gernPjIMSxLW74zqTM7b92+SV/2CMOA8nSJzmaXymyZiaN1hGEgM0l3vcfVl64BsPTYAoNWQOPKNkmYMHVsgsUH9PVRa7nD0nvmuf3CCuMH6yipmD02g2kaxEGCYQpWzq/Tvtnl0AcPc+t372BmDqJo8MV//TRJGnHo1EE+/OkPMDk1eY9j540hlSKIBswUJgAYdAasXt4g6iQcOLZAbbJMcVzHscwdn2T1+tpdZOT2RouqV6dWq939Aa+DoTV7qJTcXTKbpum+q/FtwjAzcl+Y9e7EPhn5LoNt2xw/fpw/+qM/4p/9s3/G3/t7f4/Lly/zHd/xHfztv/23+Tt/5++8oXVrH/vYxz728WfD448+hmlbPP/CBdSDc/jVP9sFkJSS1p1Nlq/cJLQz3MM1yuNLb/nhkj9dZXG8RPOVFVpfvoVx/wxm+e3Lrfx6ILOMLEwwEkXFL+HX/XfswltlkmilCTdaTFSqLJy5j+LY3ifp4+PjyBsXUQvqnuOvpCJoD2ivtnArLnLSoeQW37Z1DMKQ7V4Tf9zfqwoSYDkW5phFt9nD7luUi6+vAqiWq6y3N/aQkUIILNMk20WgZP2EQkWrMYP2AGNclx5YlnkXsZomGSQSwzAILm8zuLAFrkHl0Unc6SJKKYLmgGgjYHCzgzo0hcgg3Y6ZqU9z/PQxjJz8sS2bb//gx3jx7Ivc/OxVkijBnitiLZbwXYeJ2jiVSlWX8UQJUbOPFQmO1Ra5LVaoTGtVjGEaBGFIlqSY9s4lbdQMKU9VqS+OEW4PMB0LZ7GKP66zzry6x2CzT+dKC2vC1cozJUkHGYZlYwiDbtDLCTgBFYPu9Q4H5hd5+L6H+J3P/a5WBromWT8jboZIIbHGXIyCpUm8KG9/HeZgSkXSjJDtiMGtLk7BorxYAt/Eqjhk/QRp6BIOwzHAUMhMYppaOVQ8XCFc0wRl0oywai7C1C3OWW5RNhxdvqIySbIZIhDEdwYE3RYqSPEOlSgcLDG41iHcCHEWilSP1TRxmejmXqtojZRtMle6CRhZxWWcjRRwVsnGLjs6j2/YpJ5nE8pIN0prS60gC1OSToxVtHHGbbIwJTM0uamkAtPURSSmXgcMQdKKNMFnaMu0U3exijbhSp/My19b0uU3w5zGpBtr0rObICwDZ9LDKtij3Ee9U+593AzJuJFq0RCv/1BHiBE5N3zviJgcCSZ3k5r6b2GS2+t3KSJze7j+bEaqUJQmyG3XHp2PlFKEUag/wsxt3zkxJRNJvNwjvN7Bq7rUj1U1OZtnkZJHB6g4Vy/m+a1ZnCHyIprRfkTva8PKoxwcQ+dhKlBJNsrPNBxDb4+jS2RkmJF2YtJ+ild3cfIHAU7N0WrdfN9kkVbBqvzYGI3jLkZ9t+50mB/au9YhuNWlOFdi6pEp+ne6GIZB68I29VPjIwts3I1oX2rhCY90PaXkl7jvgVOYpsXm5ibLa8usb6yxsbnOWHWMk8dP4ns+L5x9ge1+A6/iEYcxnY0u6y+vEXcjVCZxqg6mozNKvbrH4vvnEWKB7ctNnv3nz3H8+48y89AMtcM17v9/nuHCb1zk2u9e5+jHj1A7XOPOUytacZo/pHDKDkIY2JaN6gi6Kz2dV2oaOI6LUooojDBtk/7mgNtfvMMDf/kBBhsBt5+6zdqz6yw9uMC5f3+egu/z8GMPMHdUZ1o+/IkH+Ny//yMeeuAhbNum1Wpx9pWXWG7eYeLIOKc/egLDMOj3+9y+fpvt5hbCNDSJ2+9j+SbV+Qrt9Q4zp6f2lOkIQ1CZKeEUbW4+c4cLv3cZv+Ixc3qKwpivYyoQox04dWySa0/dpDRR1OpbV2cjR9s9rn75JtsXWzz5+Ps5Nn6Mv/jXfoznX3yOLzzzeSaP1Jg/NYvlmFxfvcrt1VscPniEWrVGJiXb29tEUYRlmdRrdVz37mseHTNi0NnqsnplAxI4eHyJ8dkxhBAEYcDq+jL12RqmbZF00z3vj4KIl/7wFf7id//Ivc8Fb4DdhONrrdu7VZL71u2vH8M27X1l5LsTQu2tY9vHuwhKKc6ePctP/uRP8uKLLwLw0EMP8cu//MucOnVqXyW5j33sYx/fQDQaDX7/K5+nOw7143PaSvoWkEYJm9dXWLlxGyZdvEN1rOLbQx5G2302XrpFMl3EPDr+zVVJKsjSFBkk2JiUCyU81+WdsmJnYUJ8s4G52mNufpbZows4b1AudPXGNVbCdUoHaqM1ztKMQbNP0A0QRQuZKuZn5nHehvbu3VhZX0VUjFGr9b0gpSLeilicW3jdEVXA6sYqmaewd9n2lVKEcQSmQIYphIrihCbTg9aAJE1xSg6u6+0hI2Um6VxrYLUS7IFE+CZqzKJ4tHbXOkgpGaz0sdYlp46eZHpqGvs1rehhd8DKldtsbGxgLZYwpn0wNUlp23neWD8gbQYUhMfc5OzoRuPp576Md6iAkxcLSCnp9Dq6OMLRSpT2q9uUaxVkJ2W6OsWl5ctMPDZz13VRb7lDautiHiUVItakrVmwMF/TYtt9ZZtKqUxN6LKNK2vXsCd9jIKFVXd1/qaUo4zAeCPAKtma/Akzwsststt97KpF/bEp0m5K0ozIkgzvQFlnWOYk3pDkygYp6WaIO+YSbgX4iyXsmkPn/Db2TCEvv9FEoRjajvNMv94LDUwlkEGCNaMbu+O1AcoxcQ6WdZu3Z40yL4UhkFGmW5dz8koMSb5U6XxHqXbUh1Jpm3Q/xa7YGK62hSe9BBlmozxJq2yTdnVjsnDMUWO4VbYxC5bOgUwVSSdGxRlWzcV0Ta0ilIpoK8Sb9DVxlmbE25HOSvdMDFP/LQxNoiWtiKQZYbgm9rin7cZqWOYidmIhhxbw4XGW5zDuycccto6rnPQzBXsOitFy8/boJNtRRe4iI/eo+4aLjjLddrx7gim9Xra9Qzwau4pjlFKkWUqaprntO48IyK3S0XKP+HYfb9yjuFDU5TNCYPrmSF0vI71fENpCrTKp1Y1y2LKtRmMwysvMc1VHNundG5P/1yzoUqWoEUIq8cY9rLzgKukmODVNqmX9FJnoeWHk5ThpPyFuxwgB/lxRf2SiSc4hl5V0E3pX21oVbAiqR6r4M0V6NzokHZ0BKoTAn/QRpiDppTjS5vih40xNTmFZFpZl0e/3+OrzzxBmAYXJAt6YjrwIWyGdO10MKTAKBkookl5C63KLwWofv+pROVhh+3JTb34qScMMt+pw8odPUJ7T56beao8rn7nK7HtmmX54CpUpwlbIS//HWR7/24+R9lMu/MZFTvzAcbyah5Iw2Bxw8zM3+c5Pfydn/9M5RN/gzuA2Sx9aZOrEJMI0GLQG3PjSdW5/eVnHdnk2aZAyd2CGb/vxDyMMge1aI4v1brz6xYsc8U+QENOKm0wdnUDZijurd9jebjDo6/N+ZbzEoQcPYjs2cRyzvbXN9p0mApg+OTXKgRzN4UzSXumwcWGTuJcQNAMe/fEHdWRGzrOrXGncXm5Tna/yzK+8wOH7DvHqH15CWIAQ1Eo1vvPD3817H38vURTx8ivnOH/1HB2jyYknj1Cq7H3YFwURq1fWKftVuv0Ofs3D9ixkJuk1BpT8MsePHB+RkkoptlYb/M5v/i6HTh/k8OkDVMcrd41Tr9dlY2udO5fWmBqf5uSjx0jilFsXbnPjhWU+/tHv5fSp03e9761CSkmSJHuyJ5VS+wW0fwb8k3/yT/gH/+Af8OEPf5jPf/7z7/Tq7OMtYp+M/BZAFEX8/b//9/nH//gfk2UZruvycz/3c/zMz/zM/pOWfexjH/v4BiLLMs6+co6v3DhL4f5ZimN3X+S+FkG7z9rlm2xtNzAXy/iLNYw3UXTyVqEySevSOttr2xhnZjDr/td+05/pAxVplKCiDN9yKPkl7LeZrHsrSDoB6bUGXjdh6fAS4wdmRq3YbwSlFOcvvkIjaeGMe0RBRBwnmFUHbIOslzJVn6Dgv72tjWmasby5jD/5tZcbbodMVSdzkvfekFKytrlGYmgF25DgTOOUsBWQhSle1dcW2AxUkGEKk0xlCN/EsEVuxR6QXungJoLiyQrVwxMsv3qH8n3j97Sly0xCBEZLcaR8gLkZrdJRStHbanP70k06YRfnSI3CdGUPUa6UIugMkK2Iul9lZnJ61Nw6RK/f4/lXXqBwsIRXHv5OkaQp/W6f9rUmRVHg0OJBZmdmCYKAr15+FvdAAcu3dtFD0F/rkRoSe8zDMi2iTohdcLDucTx2Xm4wd3KerYsbFJ0igRkTOjH2mDfKv8uyjCxIyVqxVtUpRXStQ7bWx625lI/USJMUu+aStCLcSR+VScLN3Ho95WN4FjLKCJf7ZFsRxQNlkk5E4UgF0zeJNkOC5T4ylfiHK1h1F7I8t1FCsh7Qe7lBca5I8UiVcD2kd7ONNeVjzxcxS7pwZmSFtbQac5hXOLLbulrFJoMUGUuEyj/DEHjTBU1eJto+Gm0FGK5J2o1BiFyhqUklGWsFqTvpAWKkqku7iVY1OgZpLyEbpFqZKBVm0capa+Vn0ol3IhWFpvfMgomMpbYPZ4q4GeliobKNXXNHNuRhE7ZKpCYe87IVlUrNuzlDIlGTuUrmJKwpclJOjIhKpdhRyuoDTLuih+U8qdRk5Iioe02WJLnqT2lyVx+PSvPOQzJ0F0zTxLGc0XERp4neFpQmI9EPFIJrbZLlPsXFEuUjVQzXRKY6o05G2ej4ksOsSpErLyVgaHXxsLl6qHw1XHM0p0G/PhukGLbOK0UxypmNt0L9HkNgFWycqjMixaPtUCtnHYNoK5/jFWd4yOZkp86mTHsJSincMQ+kzh+NOzG9S23iRkD9ZJ3CZIHO5Q61gzX6qz3owIP3PcjU1BRJktBoNJBSUqlU7lJJRVHEl776JTI3ZeLkxB6VX5akhL2IzVc3NcEcKdySy9ixOk7J4crvXGXz7BaLH1pg+sEp3JqOSFh7fp3lLy8z9945Fj+wgJKK5tUmK19d5egnjuBWXLI44/J/vUL9aI36kToXfuMip370JE5B51o2r7Rov9RhZnaGY6VjfPw7P8G5c+f4r7/3m9zZuKPJR9PmiQee4Hs/8b1Ylo3jOPx//7f/D0/+D4/fdZ4aQilFY3mbC89ewsosnvjYeymPlTn/6ss0ug163R52waI4UdDqwFZIb6vPxNw404en6Id9MBTrFzcZW6pRnCiO5lHzVovt602K4wXqSzXiXsLNr9zmwBOLVKZLI9UnQNSNyGKJW3R47lfPMelP8pd/RLd3D9FsNjl7/kXWO+tMH5ngxto15k9N47j3cvopbl26QxzHHDp18DX3uYpus0fzdocH7nuQ5kab9aubzI7Ns7m2ibGQcODU4uuOWRLH/Nb/9nuMVcc1YW+aPHDyIR595D1UKl/72u6tIMsykiThtTTMvnX7rePnfu7n+Kf/9J/yyU9+kt/+7d9+p1dnH28R+zbtbwG4rss/+kf/iI9//OP81E/9FJcvX+bv/t2/y2c/+1l+8Rd/kaWlt27328c+9rGPfXxtmKbJw/c/xOGlQ/zB059jq9yifmr+LtJLKUV3bZs7l2/QlyHOoRrl+w58QxWLwjSon5qlNFdj46VbhFUH68TkSMnzdkFJSRYmEEtKXoFirYBhvDMPwpRSJBsdsutNqobD0rFDVGbG3vJ34MLsPMHNkO07bWRZ35hnoaQkPKqTk98QkjWT6ZveN8IWZFkKvD4ZaRgGs1NzBOGAVrdNlMagFLZtM1efwXUcgjDQFjbLpFDTFnqpFP1ej+7tbbIbHRbq4xz7tkdQjsGLV1+i3+hhj3v3JCIBslhScosYU4Jb124yMzXN9u1Nbl+5SexLvMM16mNje9+TZoStPvRSpmqTTB16/TEuFUu8575HuXjtItu3N7GqWokj+xlGbPD4ifcwObFzoxsEAYVCAct0CLsRwhGjdlrDMUlWB/iTpVEsoGHdvWFxK0QlksbKNtasR6rg4Mwh+oM+m9tbhI0+SmlVpGEb2J5FerMLvYSJwxW8J2cImyG9Kx2yOCVuRjh1lyzMrdwCVCxJN0Od2RhnpO2Ysleid7uLP1vALtiEjZC4EVK5fwyZSMI7faKVPoZvEa/1SVYDnEmPiffPkG5HNM82MCd9iu+d1ipE29iVaYgmlfLWY9O3yPqpttpG+vORaqS0FEIgTE3YBct9zELeVm0IhGWQduNRBqAQYpdtWxE3QuJGhF11RsSn4ZpEeZMyQudDiryhW8UZwZ0ehqfXGQVOzdFEkdCvwRCEawEySrFqLoUD5V3WaKXXNZOvaYnPyTipN35oix4Siih2jY8YrZuwDa3oHBKOsKOKVLvyJIeN18Og171CSg2px11JhVIStaucRli6eVpJRZpmpGmAmxdhCF2+rpXnvYTwWge5HVE+XKHwsbomHocq19y2PbJgGzrz0/B087ph6/ITFWsrvWGbKBSGLTB8UysYw0y/Hj2nRa5wFYl+T9qOSTpa0WgXbPwpnzTIdm2vHt+hjRuldojIXVBo8teuOIQbA5J+ggozelfayDCjvFBm4lgdwzbpXG1T9IuoZcnxmeMcePTA6NzuOA6zs7P3PGcA3Lx9g1hFTJ+axjAN4l6MzDRB27rdYuvlLXq3e3r+pYriVIHyfImoExO3Yx78K/eDBLeim+wt32L+fXNM3DfOK//+Vfxxj4mTE3h1n7HjY2ye22Lh/fMAFKcL9Nf7uFXdAm67OgoiaIU0LzYxWiYnTpzkuz72XQDcf//93H///a+7LW8EmUk2bm1y58od3JrL3KMzeIlPdbzKhcsXaAVN+oM+8w/N4hSsIcNPbbFKFqWsnFsnvZhSW9Lk28ThMZq327glh+0bLdp3OtQWqhz7wGE9D+KUqBtTmipBpIlrKRVmftwOmgHFsSL9zYCoEfF9P/kDTE5OopRiY2OdF19+gZ7sMnd0moceuY+NzU2Kde91iEhoN7ooIZk+MkGSxJjm7odVgkK5wEa2xX/9N5/huz78cT7xkfdRLBbZ3t7m//y1/53JxQkKpXs/mL34zDU+8NiH+e7v/J6va+zfCoZ5klmWkWXZvnX7z4Ddbdr7ePdhn4z8FoEQgg984AM899xz/OzP/iy/8Au/wBe/+EWeeOIJfv7nf55PfepT+09Z9rGPfezjG4RqtcoPfuf38eqlC/zpF5/DvW+K8lSNLM1o3Fhl+fotsoqJd7JOpTr1TV03u+oz94HjdK9tsvWlm4jTk5iTf/aLNpnqPEgzg2qhhF/ydkpPvsmQaUZ0u4m43WZqbIyFh8+85SzPLMtoNBusNtbJfEHxUJ2qM6VvqpVCCONtKah5PQjEXi/nG0HypghWIaDgF15XxVkq7h2jLEoJbjZRy32Ozs0w912P4hR22rtLZpGNrS3sxXsvL0syjEwX6Mgko3lri2c3noYJh8LDYxReE0OQxAlRc4AVwuLEDPXZOuabILILhQIPn3mYMAzpdDtIKSlMFiiXy3uUjwC+55P2UypejYJXIIoj3fKNoFArkG5GZP0UbE3YDN+vgLQXEzVDkm5M8WAFv65VRIONPlJKioUixUKRVqdFJ+sh+inh1RYyTakcKuM84GsLcapwfA/HCkmA4skqztjOuPoLkPYSuheaOituzKW0VMFMDfyubhHvXmmRtGOsmkP3labOjuzHyE6CSjKKh6qUD1cIbvZovdzEO1yh9uF5kkGCEowKV5TMdizdAgxPqwzTXqKLadROK3YWZWT9BIHAmfByBbfOJkx7CdFmiDftkwW6pdqu5kq+ocgv/1x30ifcCMiCFCPPNZeRJhQxBE7V0QpIS2dAykRixDm5axkYliZCZZKSJRnxVoiwdCmNO+PzmqqT/IPzTMQsb2UeFt1IhW1ZevySRL/VMnbUk6Pl7E4sFIhc9DgkMMkz8YQAmRNqMpGYzrD4SexZo6HlWCmFbVukSZqrL6XO3JRKE4qmJj8FgFRESZxnR5okWyHh1RYiU5QOV/DuHxvFg2h7sy4QygJtWzYcY0QoqkSSdhL9M8fUykBLv1YaO6pJcj4xC7WlWti6WEgYAsM1Cdf6kGdFluaKCNMgaoSjnFGtSNXxAUNbd9pPMEv2aD11IY3K+Voxss7LfsbGU7dxSy5TZyYZX5rAMEx6m116N7scrB1gZmaGeq1+l6J6e3ubre0tMplR9AvMTM+OrLpxHHP95g2ccYfuSpegGWAVdXFW4/wWrUstyrMllp5coHW1BQKSfsLZf/Myhm1w7JNHKM+VCbdDkkGi27rR1nXLszj+F45z6TcvMX5iHMMUVBbL3PjDWyw8OY8QgjTKAMHmuQ2WHl/CwqK/OaBxvoGz5vL//hv/M2OveUDzelBK0e12cS2P9maH6qQmDdM4ZfXqGss3VqjMlznwviUc36ZxZxtLWGw1NtnYXqfdabP0nnlsX2//7tOl6VrMPzjLrWfv4LYdvJpLlki2bzRpXm8ye98Mxz9yZPSwVUqFzB+e6OZ1i1KpTBzHhL2QXqOPZVokrZSVr67zw5/4MY4fO86tWzd58ZUXUW7C/Mk5Do/tqBU3ttZGtvd7obHWYPLQOLZjEfUjvFw5n0QJa9c3ad5pM7c4w3ahy/EjJygWtaJzbGyMv/BdP8Rv/uff4Mh7D7BwdA4zP3Y6210uPXOVsqzzHT/4nW9qP7wdGCogTdMkTVP90CE/bwz/b1nW/v3718B+m/a7G/tk5LcYyuUy/+pf/Su+93u/l09/+tOsrKzwN/7G3+C//bf/xj//5/+c6enpd3oV97GPfezjWxKGYXDfydMcWFjis3/y+7z81MsMnAxzoYT/3hlM952zLAtDUDk6RWG2ysaLtwhWOlinpnWG21uBgizR+W+OsKgXqnlp2juUBzmIiW9sYW8EHFyaY/pDx7HvkZv1RojjmPWtDTa7DYyyjbdY2ZP/KYT4prgLbNseNe2+kWJWKcjCDK/uve5r3iqSXkRwbRuzmbB0aJHJj92/pxBmiPtP3c/nn/o8aZDq3LehBXSowEqhaHg0z63R3+wiKxblx+b3xBDo5umQuBlQEC5HJhaplCtf1xh7nofnvfE4OI5DrVAh6oV4ZR/P3fv6ycNTrF5YxZxxMUt6m6NWRNwKEa4BnkmhXMavFUbrqPP68pKXVLJ5YRk6EaWxIosPLeJUHNI0JUlTQGE6FqZr0rWaVI9OQIG79rNMJKZv4c0WscuObkTvJhTdEnIeupebyFTqVuiay+BqRzclH6loW/dmgNqO8I5WcAo2bslBJnnuoYEmz/LSlGGbtOGZI7tv1k+xChZWydlFrJm6vbifEDdCnHFNSApTl8mklkG4PhgVyYx28B4iT//TqTnEjXBEWCadBERORLZjrIqDyqS2X7smZq6ik7HUxFgnIt4KMRwTZ0pnEn7N847YUTAauVoTCZZtjUiwJElQ2WvyIne3aI8UkvpcIBOJEGDkhIxSOwSlYdzdsL17qTKVCCnI0A3s5Bmjw7zGob0ZcuLUQOePrvaJrnVwCjbVIxWcqqsVaEGGMrRa07AM0jBDRunIZr9nN1gGhqtIewnAyIatG7MlwjNHVmnTNSFXUapUEjcj5CDVnxlmVI5WtZXa0ZZwwzGQUYZhmPrhTar0x+Zcl4wldk7g6e3WI2PmjdeDG13iWwHlsTJHTx/mwIGD3Fm7Q+fVNoYwmJ6Y5qFHH8R1XaIw4vyF86yur5DJTKtAJVTnqtpybAgaQYM7L9+h5JSxbItGu4HyJXEUE7QDTM8i3o4YrA2oL9RYeGyOi//pEkk/4cQPHcfy8vNAJ+LmH91k+ekVaodr2CWboBGOyMjhfipOF7B9m/5aH8M2sVydVSozCQZsnt+iPFdCRgqv5LLx4ibBtZADlQP8xP/8KXz/a0eoJEnC019+mt///O/RizrESczZf/4SE3Pj1KfrNDYbeOMupckCzWaT4NUAx3fobLaZmE3ZuLNGP+xjWIIszrA9656Hj2EZ1JdqNK5uk2WSsB1hmgZTxyeYOjKx57UyzTAyA9dyufXMHcZm63QbPbIowzJsDs4fwnVdrj1znUPlI0xNTfGbn/3POHWLpUfmKJbvfqiVpCnW68SpDFWEjq/PNUopokHE2tUNOht9Fg/Nc/xjx7Ask2gQc/nyZR57bKdJ/MiRI/zkj/40X37maT7/9FPYnkWWZJT9Cu97z4e577773hEnoWEYOLkCelhys5uU3LduvzH227Tf3dgnI78FIYTg4x//OC+99BJ/82/+TX7t136Nz3zmM3zlK1/hX/yLf8EnP/nJfdv2Pvaxj328zVBKsbm5yXOvvkhT9qgcmSSxBphTxXeUiNwNq+gy++RR+re22Xz6Fur4ONbsm8hCkoo0jlGhpOB4lMpVLOudu4SIt/tkN7bxB5ITR5YYf3D6LRUIKaUYDAasbK3RiXtYNY/igfo7+t0ohKBSLNPr93HfoAU9CWKK3p+9lVwpRbTVI7rewk9tjh87SP3RiTckQi3T4r5j9/Fq4zIqkMRSy6gEAisQhLc6bEYN7EMV/KOzGH01IiKVUoTdAWkzou5XODJ3lIJfQCpJGIZIJXFdF8t8++fVkaUjPPfq81gnbCxn7/Jtz2H66DS3n70JrsAo2lhVG7Nqo2KJ4zl4ZW9Pm7HKdLZe7+YWajXECmIWvu2wLkwZjpVlI5RBv9EjTALCTog95mJYAtMyyaTcIcEUBLe6lE/VdZ4gOwpNYQji9QFJJ0YGKdufW8YZ8yifrCPjjMGNLqJk4xyv6fxK2yDtp2QD3dpquFrZtkM8CExLk0xJM0LkxSnumKtzLnNCTEYZ2UCr98z8/UkrAiF0BqlrYpVs0r5urRZaIqgt13kb825oe3auzszzBk3fJOno96s404U6RYNRaYtUJN2EpBVhFiy8+eKojOVu7Ole1n9JlWdjKmSSYRi6tXg4toYwdmzcr5n2Im9zfu3ihdDHgSbBFDK3ow8Lj7JUasIyJ4B3zxkdPGnosRF5MYzIy2Hy9VDoQhqZSqKVPvGtHl7VYezMmC6dyYlLs6Bt7Urq16eDBJXqEqcREfkaCEPvu7SbMHS3CksXLKW9BNMxR0pKABnqxmsZZpApvAmPtJ+OPkfs4mxVpvBzFXUUR/oOU4HKGKlStTJ0GEug6N7sEC738eoeRz94BGEaxNcD5mbnmJudu2v9b926ybmLL+OOuVROVjBdgzhIGGwM2FzZwK0sUJms4Jd9nILDzbO3KE0VmTw5SatrkMYZ/Ts9+tc79Fb6TD8yxfRDU1z49Yuc+MET2L6F3JXd6ZZdDn7sIBsvb3L1s9c4/gPHRnN3NC2UfqhQWijR3xzgVVzcMU+rXTNF4+I2aTthZnwWx3eQzwpOzJ/kfT/4JHNzd2/jvRCGIf/qf///cWvrBouPzLEwPsWFL1ymd7tHY3MLWcgoLhSozFQoTxUxTIOwG9JcaeKXPKaOTNAP+nhTDgjYvt2iMl2iOF54TZSAot8YsHVlm2tfuMHDn3wAY1GweXkLa9eDS6UUWZKhEkXSS/FlkcfPPMH2Cw16lwNmT01j+Tarr6yzfn6DycoUdt3meusSx99/CNd7/e83x3ZI4gTbufuaSWZy9D3fa/W5c3YVW3ocOLbA6QdO7flOtF2LOInvWsb4+Dif+O5P8j3y44RhiG3b72i29W68Geu2EGKflHwN9tu0393YJyO/hTExMcGv/uqv8r3f+738zb/5N9nc3OTHfuzH+NSnPsXP//zPU6vV3ulV3Mc+9rGPdz2yLOPGzZs8c+EFOm5E4dA4U+PHEEKwkCTcWL5Fu9PEm6qM1DTvJIQQlA6M409X2Dp7m95KF/O+aQzv7ksClUmyMEYkirJfpFAvvGMXwkoq4rUW6kaTmltk6dhRSpO1t0QgSilpd9qsbK0RGQlOvUDJH/uG2q/fCqqVKoP1AbERYxec15b36oKgvmRs6s1Z+u4FJSWD5Tbp9Tb1So3j991H6U0ULw0xNTXFpVtXKB8oIwzBYLlD93qD0DVwDlcp1jVxFzVDxirjyEwStPqobsJ0dYLJQ4dxbIc0S7l+8zp3NpYRrmZ5siBlojbOwYWDFAvFr70ybxKlUon7j57h5QvnsScdCpMlTEurujprbXorXSZnpugaA9wp3dxsWAZ2zb6LnA23+qgrfSI2OHRkiclvn+apF57WBFAOmUm2b24RdAOcCVfn8OXW5rSXUFwq41Y8FIosywhbIXbVxXQslKnIokwXi0joXmsx2OyBlHjTBbwHxglXBzSf38SeL1J4bArTt3V2a5AhbBMDA891ibIYbDQJmN/YKpk3Y2cKKy+dsSruKA8SIAtS0n6KM6ZbwvUbGRWjxNshVBwsz8IqakISITBH1mSFUq+1TjNqyJaJgkyiEgNQOBV3T16qSiVxa6eUpnBAZ3oKK88fhNfpqd71oxH3J3RrtCLPaIwxTROpdLadUpoQfu15RN3jX8P/pVmaL9vAMk0yLfXLt3uomB0qK9WeNwuDPYSqyjR5abiagJZRRnC5Tbo+oDBToPzg+IjkFqbOpcyiDJEozKImJIVrIiyDJIkRzq7z8z3OazrjU3/OcM6qvLTH8LSyUQYp8XYEUhfK2LM2KlMMVrQCSSlGuatCaBt2eXpH3ew6LnEaYzomcTtCGFqNZzom2SBlcKNLshVSOVBl7H2zWMLG9h36jR6V0r3PRatrq5y7/DKT90/gVjSZlaSJVtF6Jm7V5db5W4zNjmG7Npu3t/DHPaIo4tIXL9G+3qY0U2LxvXMsvGeOweaAy791Bb/uUZguUFksozJFf72PU9SkHQLsok1pukjYCukud0fff0IInTk5PD8oRTpIMSYKNF5tMH5snO6NLrc/e4d/8LP/CwcPHrzndr0Z/Op//L9Zbt/m/u87zdnfeYXWapPyTJlTHz/B+KEaSkJvq0+/0adQ8yjOFiiM+YwdqNO43uT62RtMHZ1EAW7JYebUFGuvbOAUHOyCjULRXe2ydWUby7WYPjbJrS8v88B7HuDGzRs89+xLlKZKVOOqdvInkizMkKHClwVuP7PGpz/1VymXyywvL3PpyiX6rR6yZ7C44DJ9eJK5QzP3JBhfi9npOW5uXKNQuls1adom3a0+l56+RtiJOHTsAAePHbznNcCgHVKZf/3vNcMwKBTe3hK6twOvtW7vbt1OUx2/sG/d3ot9ZeS7G/tk5Lc4hBD8+I//OB/84Af59Kc/ze/93u/x7/7dv+MLX/gCv/ALv8CHPvShfZXkPvaxj318HQjDkFcvXeDF6+dJJ20qD08xVdxrAbVtm6MHDtNqt7hx5zaMebjlwj1vEr/ZMD2b6ccPU15usvGV26SHapiLNQSCLE2RYYIlDerFMu4uZdg3GzJJiW5tY9zuMD09yfxjD+Hdw971RkjTlK3tBmvNdWTBwJsuUnL+/F24GkIwOzXLVnOLweYA0zfztmuFDDJcy2FmavbrCrbP4pTgRhO50mdmdobZJ4/hFt+61ds0TI7MH+Lsn7yEVBnmlI/70ARmcce6GPcirEQg2xFRGLMwPs3YzNgoDzJOYp4/9zyyLqieGhs12yql6LcGPHf+ee4/doZ6rf6W1+/1MFYf430PP8Hq+irLF5cJo4gkS/DKBeZOLVKoFLHb2wxkgFveOy5KKZKtgPBKi3R9wHufeC9zhxdGx8REbZxuc0BhrIiSivWLqxg1i+qBsZ0MSgv8hRKyl9G52qJ+3wSWY2kl6CDDqbmj/hWpFFEzpPnVdUBRWCrizhUIbvdpnd3GPVCm+h2LkO6yBOdxAkJp5Uyc6FbsVGYY5I3IQYqAUZkNCNJewjDqVWXa1p10Yp0Rab2G2FIgbJ0fGW+FmDkJpjK11+Wc1ySLnNHRhdFSz+MwIwszDMfELlmAGBGRMs6ItkNUlO0tpcmVdyqVI25vrx36Naw9jHhAmUmdOZkXzEglyXJC03JNZJa3YSs11KK+ZuaMUg53lmsKLWiVkjiROq7A0ISzFmKq0YME3ei9Q1jJVCEyvf3D3xtI0lZEdLtHuh5QXChSe3RyRHQppbRqNCeGDaVQkRyRtUIIMNAK1lTt3N29xi0/hGEbOQG6Q0aavkXajYm3I0zbwB/3MF1LW/zRRKjlW8SdGMMQZJHMn5BAwS2StlOkL7ELNsIwMDGxlEXYDzF9i2g1INkOUYOM6pEapTNTyDRDRYpSpQgowvWA+06evnuFFZy/8DKVxTJBK6R1q4WUkiRMMW2DyoEKxZkilbhCb6VHd72LN+4SNAKarzaxbAOv6LD9agMVZxz5nsO4FZf60Tp3/nSZo588osfF1FmqMpU7JLzQ4zVxcpyNs5vMPzGv52OenWrYBskgoXOnx9T9PjKVrD+3jiVsCrLAz/3tv8/8/Pzd2wS0221ePPsC2+1tHNvh1LFTHDp0eM937fb2Ni++8jzSV3zpV75McbLAwfctYhcdnIKNV/G0fX+uTDxIWH5pDQTUF6ogBOMH62xeaRC0QvDyUiHXoDpfob3awTANtq83KdR9Fh+exy04DJoBRq7Ac2OXJx98P5e+eJk7X1ll9r5pitUCjuHRvzUgSFN++i/99KhtulKp4Pkum711Zs5MMLM09Za+r8bqda5ezwj6AX7RH83/1nqb1csbbF3ZZunheWYWpziwdOCe1yVZJtm40uDER0+86c/984ahdbvb7fL8889x8eoFkiSmVCzz0P2PcOzYMWzb3icl2c+MfLdDqNd2yu/jWxZZlvGLv/iL/OzP/iz9fh8hBD/zMz/Dz/3cz72pvJJ97GMf+9iHtoQ8c+55rmzexDpQobo0eVd79r2Qpim3Vu/QiDt405V7ZvK9U5BxytbLd2i1uohjkxTKBcqFUm5femdIyLQfkVxvYDdCFg/MM3V4DutNKCt2I4oi1rbWafSaiIqDXy28JTv3O4ksy+gHA7IswzQMCn7h67LG786DXDy0yOTBWUzbotvrsry2zCAMME2D6bEpJien3rBAJuoHrFy+zfr6BvG4oF/JsCoOpqctuFmckm7HWH3FbGWKham5e+ZBPnfuebIJRaF+b/VjGqd0LjZ54qH34thvLQP0jSCVpNVqsbK1SmJLvDEfZ5dlUCnFxtYGETF22cEQgnClR3K9g2UIHMflzOkzTE9N79mmXr/HcxdeYOzUBJ31NoM4wJv0iduRJnocE2kqrIKFY9sEzYBgrU/91AQCQfdWG7Nq4VRdokZE71KTbDuicKiMO+HRvd4hjSXeoQr2TGFPJmHWT7VlV2i1m1ACz3KJkkiTR0GsVXCWVpAxdEHni0ja2spoennDcqqJOavk8No+KhnrfEDQhTvDdupoK6S0VNmbj6iULs4ht1t3YrJ+ohWgvlbIDZclM0WyHaEAu+5iFa2dFUTnPKpMYRkmlmUhpSSOY4QlwBxujNohKqXKm7fRqlCpiUZhGaPFDu3ipmVq9ZEiVxW+9nyn9hKghrirPEWlkmFDjZLD12smUAj9ucOcUSWVbuZGk1xpM9LN2J2IytEqdtXFsAyEJXbel0ld+JNb5FGauJWJbt42XVOPQ26vt4r2Dod6j9O3jCUy0a+TiSRcG0AmsXxrZDHe3QU0RNpPSbYjaotjgLaZR42Q2ckZLMui1+/TG/RQSmKaFuVimaydsvrSLZqbTeqnatROaoJeJhLbsikVigghaN9pU8nKnD5xNxnZbDb54le+gDvmUpop4tY9koEuXApbIWmQMna8ThZLZCZpX26x/KfLTJwYZ+lDi9ieHo8szlh+epn2zQ5HP3kUJSXn/q/zPPa3Hh0R74OtALfsYLmWVrpKRftmB7/ucfkzVzj9w6fAzFXChsAwDRoXtll9apX5M/PceWqZEwsn+Ph3f4KjR4/ePfjo/Mff/Mx/5ubGDabvm6I0ViSNUzYvbxE3Uv7iJ3+EhYUFOp0O/+jn/xdWmsvUFqosPjLLzJkZbSdPJJ3VLs3bbSaPjVOeKgGKqBezfHaNQ+9d2tmmxoDOnR61pSrK0ITx9rUWF37/Esc+fJjJIxM4Rf3dmoYpV//0Jmbf5vijR7n91Ap/5VN/lVKpxPr6Oi+de5Fe0KPgFXjgvgdHVvNGo8HZV15kq7fJ7LFpJmfHv26ibBAEnH35RSqzRZIgZeNag0q1wtLRBW5dvsMLXzzL93/645Qr936g+PKXLjBtLvCd3/5dX9fn/3nBuXNn+cMv/D6Hzyxw+OQBbMei0+xw8ex1Wis9/uIP/ChjY2P/3edJPvDAA9y4cYNf+ZVf4VOf+tQ7vTr7eIvYJyP/O4NSiosXL/JTP/VTPP300wCcOnWKX/qlX+Lhhx/eV0nuYx/72MfXwO07t/ntp3+f4oOzVGfeul220+lwbfUmsmbjVUvvuEpSppKo3YdOTCm1ad7eJjtQwT04+Yb5gd8IKKVIGj3k9W0KicGBo0vUFibf0oW2Uop+v8/K5irddIBV9/BKhT83VuxvBpRSRI0+0bUWfmqxdOwA9TmdB5kkCWdfPcuAEHfSw/ZtZKaItgPSZsJ9R08zPja+Z1n9Rofbl2/SHnRwDlUpzFYQhoFUil6/xyAYkPQjjJ5k5v/P3puHyZLXZb6fiIzIfc+sfa86dfatu+mNBhq6dQARFcRphXFkUXoGeUAH5+IM6jA4+gwueHnYFMQZwctcR2dQR/AKKDRN0/TC2fdzat8rs3LPjD1+94+oqlN1ljpbna07P3/006cqKzIyMjIy4o33+76JFvo6ey87Aler1zh49hCp7dlL/n6F6nyFDl8r/T39N7w9bMdzxi4UFhARmVAqgnKZmwFCCKqlCgsnpzGnyoTiIfwxP0rQDzIoARVhu2QSafq6+ohFPTfG+NQ4k4Upz6UR8IQnNR1A8nnj50ZeJ5gOEetPAFA8mifcFUWJKuhFHX2hjlu3EJZLdDCJWTYwlwxEUCbQH0fNBi8pMLmGJ4r4VBlbs5FdmWg4QqVUQZYlZMWHULyR7NW/WRZZkDxR0dFs1Lgfn6qgLzVQU956e2LjeaFvrWNMOAKzoHtiXs3Bl1Dxx88LxwKvXd0xHK+pWgIlpHpZekJg1y1szfbyCyOKNxIeuMR7IgSyJOHagoDiX5fdadqW10C70gQtlkeOJc9xuLZoaFWcZFkwXFnOslC5XJCNtOKIQzrvsuRigXN1+yyvi2stC5orfyax5vm8LSItO++EEJhzDYyRMj6fTHx7EiWsrIqdK+Lyhd8Njm57ZTO+5eZ3n+xlGAqWcyq9VyIHvb8XiNWinnXL0Wxc2xM4jUUdSYLE1uQ6kRuXVVfkyhtqazZOxSbeFsdqmDgNl9ZM60WlUMJ1qcyUqY+Wvc/Jtj4CkQA/PPRDNEkn3B4mmooiSTJapYE2r5EKJtm5dedF3zmO7fC973+PslkiEPdiA4LJIEpEwR/19jejpFMcLSE5oOd0yqMldr19J7bmEOuIrr6dkixh1kwKIyUKp5cYfP0Ahz5/mPvef69XWiOgvlAnlAnh83u5m47lUBor4QspzH5/lu1v2QbCa1J3HJvKdIXRvx+jPdHBw/c+zCMPvWrVJXgpHMfhz7/y31D7ZPr3X+zsqxXrHPjqYZyGy/jiOMneGG07W1CDKlpFx7UcWre1EG+PAQJLs5k9Mk/7rlYCUT9CwOLpPOFkkPhyHrRZNymMlmjpyjJ5cgqtrNOyJcP49yd54F/fd97paTvUFus89+cH2TI0RFuinbf95L+8rONMCMH8/DyHjh9Eo07HUAu2ZDMzN41hGQAE1CDdnT20tLQgXx4DSsEAAQAASURBVOWXsG3bTJyd4vD3j1ItVenob8Mf8FNZrDHYM0Q23coLJ55lx6uGaetpWd2GtXKdMy+MEDLiPPG2n72uCYI7hdOnT/Gt7/1/PP7WVxFYKeUTXkYtwML0Ii986yjveOIXiEQi+Hy+u/r13ggDAwMsLS3xN3/zN/zkT/7k7V6dJtdIU4x8mWJZFh//+Mf52Mc+hmVZKIrCr//6r/Nrv/Zrd0yQb5MmTZrcqdRqNb7z3HeZ8ZXJ7O6+Zsee4zhMz8+wqJU8l6T/1rskbcPCLNZRDehMt5FOpfH5fDi2w9TxUabzOdQ9HSjxm++cF66LMVuE8TKZSIzu4V4imWtrWHZdl1K5xMyy682fDOMPbZ6r7m5gNQ9yvEIqGqd7a9+6PEjHcXjxyItIbQrh9MWuRMeyKZ0psGdwN6lEiuJMjslz4xiqQ3AwSSAdWfeeuI6LXq4jKhYt8QytmdbldvXLc3b0LIVAmUhm4zF513aonirzyCteeY1b4TyGYbCwtMhStYAvcXlnrOM42I6NVTexJqv4ija9Az1kelqYnJtitjxPpDtKIOrFFQgh0Csajek6Q50DdHd0e69t5CzHRo4R25VGXRHmlktKZEmmOl5CQiY+mKQxWyesBtGrGpWRAq7kktibxSqZmLMadkgiujONL6p62XQ+eVlcWiN24bkKheUVithVi6gaQnZk6rU6kY6ol/FomzjC9Rx3a163AIyijlUxifbGkCQJLa+hJv3nx3NXGtMtTwQ7n5EH+oIGjqAt1Uq+kEeK+fDH/QhbYOs2whWe+3E5i9IX8OFaLsaSjtuwkSMKairgNTtf8rMuloUfkFzwK+v3Lcd1VksqxHIe44oaKFyQFWk1D1IgcA0XWT1fFuM9g4BloRGk1UKS86LY8mg1nlC58v6vNmgvi6vCWsmN9BqJ17knl5/D0V2sRa+UJpDwEx2Io0ZVT7B1PeFwpZjG2/jrt4ZrOLi217q+OsK97MSUZGlVZFQi6rr1Z40g6ZoOjaka2AJZkTyXYd0i3BlZLS8Sy6U8q+svvHWzKiZu1SEUDhGPxIlGouu2pWM5VCaLNCZqdHa007u1h0B4jVApoFKtMDk7SbXmlU4kYgl6u3qIRi8WvJaWljh57gSGXyfSHUUJ+rANh/p8HbNqkhpOIVxBZaRM/nCOSDZCIBFADSu03dOGUfLyKldEy5XXV5muMP/DBZJDCaaenqbn1d207m7FtV1qC3WiHeePc/WFOnbFYfHEItWJKkOvHyKYCGLVTPLHlxAL8PafeAe7du26KjHo4KGDPD/5fXa9bsdFvzN1i+nT0zz3jy8Qbg0x9Jp+4p1xVjaxALSCxvzJRZLdSdJ93o2NWr5BZa5K5542AKqLdeq5Oh27271/L9QYf2aSWChOa38LVVEhmg1z9O9O8sp33Y/rCizdYuFkjjPfGuFV+1/Dj73xTWQymYvWEbzv2snJSQ6fPIgUFnRt7SAUCXLk2GF8UZlUWwL/soBm6Aal+TJuA/bs3oe6gbvfNExmRuYozVTZPrCDbVu3I0kShUIBIVxSqTTBoLc/zc7O8vSzTzE1P0k4HsIyLFQCPPyKR9i3d99d7RQUQvDZz3+KR9/6AJFLZGeuiJInDpwmqKd41ateDXjRbD6f765+7ddDa2sruq7zrW99i8cff/x2r06Ta6QpRr6MEUJw4MAB3vnOd3Ls2DEA7r//fj7/+c8zPDzcdEk2adKkyQYIIRgZHeE7x55F3Zom0XXpE/eNqNVqjMyOY8d8hFKxm++SFN6orVPSiBCgs6X9kmO0APVChdMHTqK1BAhsad2gxfb6cQ0bY3IJ30yVjo42Orb0XHOOoW3b5JZyzJdyEPERTEbwqS8vh8C6PMj2djq2dF9yO07PTDOpTRPvTl52WWZNZ+nZeZL+GCLjJzyQQo2ubz+1LRu9WMenCTrSbWTSmQ3Hu9dy9NRRzKxDIHrl97lwNMdr7n/1VS13BYGgUW8wl5+jYtZR0wFC0fAl93HTNCmUC9RyZezpGlLdIZwI0zfUz0D/AKVyidNzZ0ltyVzSJey6LsXTS+zp30U6leYHP/wB9YxBMBtabZOWpfPN2K5wKZ0p4I/50afquEsmscEEgfYIxTN5GvkGkaEkof4ElmUvjyuDu+xi9Ja3LEIt/9e1vRxGyRIotkJbpoVgIEi+mMdQLW9EFc8datn2+pZn28VaMvFJPtygIJAKoBd0L4dQWR5vls6PF6/m6OGN+po5jXAiAjp0tnYwOz9Hw6gjB32eYLZsOVRUBcdyMIo6jmajJAOoMRV5uUhGki4xIr2suMoSuJbAr6rIa+bGXeFi2tayeAj4pDWlNmvGp5dHaVfGapFZ/7jVGWxve8iqV2yEe76MBklaFShXG6yXW61X2qFXxsHlZcFy3X5iOugTVcypKsFUgMTO5WZsx/VKeUwXp2Eh+73ttsrazbFcPCSHPAffiotxpXRIWm5ltyrm+UzQNVd4jmZjFQ2ssoHqV4kmYyiyD83QMU0TJe7FBEiSN1ouXLHqFpUlGQE0pmsMdA+gXGBasDSLwrkcxZE8kl8i2h5BlmXi0Th9XX0kE8lr/m4rlUocO3eM+EAMAwMUgbx8XHdtl8Zig+nvTBFrjZLdmcWnyox/awLXcdn+tm0oAQXHdDArJuFsePW9lmSJ6nQV13CZ/t4MgZQfvWyw44ntGGUDNajij/oRQqAVNOySzVD/Fk7+1Sled//r+MGB52joNaKRGK9+8DXs3rX7mkwcn/nTT7PlDf1EEudFJq2mM31mmmK+iByRqdSq9NzbSXC5qOfCQ5el2Uy8ME3fAz2oQS+rdO7YAu07WlCCKvWlOpW5KsnuJLkzS1QXajRmNX7sPW8gEPZ77vjnjnDw746Q6EjgU2T0sslQ5xA/85Yn6O3tveS627bNoSOHePoH30FN+egYaqWzs4t0Ks2ho4eItAaIZy7tCi0vVdByJvv33nPRrqA1dKbPzlDPGezZuoehwS1XvU0Nw6DRaKCq6kumwGR8fJzvvPANHv3xhzZ8nGGYfP3L3+bJd79vnQC5Mrb9chAlbdsmnfYmlJ577jkeeOCB27xGTa6VOyewqsktR5Ik7rvvPp5//nl+8zd/k0984hO88MILPPLII3zsYx/jySeffFkcyJo0adLkepAkiS1DW+js6OTpF77P+OwI6T09qMGrd+N5Lb87mV2YY24yT6A9hhLYfDefcIXnYCsbZMIJ2ju7r5gVHEnH2f/Y/cydnmT8+2PIu9rxX8JNdz3YVQ1rbIlAyWJ4sIfs47uuOUNT1zXm84sU6iXkhJ9Qb9IrkngZsTYPsnegh5bH9lx2OwoEk3NTRLZd+mLRbphURgvUFiq4SRVlR4ZwLLLm78HUDKxCg6BQGcx2k+hOXPONS8WnoNvWFR+34hS7WoQQlCpl5nJzGD6LQCpEPJS67Po1Gg1mTo/j5jUi0RDpe3sIpEMgoFSo8sLhFxGuIL4jedm4AlmWifUlGJ0aJRAIYEgWStArFJG5+PzJrduIikXxeIFIX5TQ1gSNBY3ieInIUIrW3a3YOAgfSLbkjffK5x2Qa12dEuCaArtiIrsSKgrdHV2rj0nGkszkZlH8notO8XllOa5wV0U2SzdpSWfxyT4Wyzn0nIakytg1EzXhCSEruYSST1p1AwpXYJVNAuEgwWiQul5jYWmBYDxALBjFdm3qWmM5207QyNVxTBt/JkioJ8KKMiUcF9ldyTp0vZzE5W3tFc54rdR+VVknRAJYtu09zidd9P54I9XLTkVH4DrO8piu52Jcu1stPxtCEstjz2LVTLhSaOKV8Hh5mq61XIijSEjIqy5JsdysvHZ/c+oW2lgFJ68T64uSfm0XwnQvurEjKZ5zUVIu9K2uEU0tF8nv88Rh1+WS6p7wsj+dugUBBSkg49Q9ERLHE5bj6QSd7R2oa7JYLctkfGocERb4Astt0eucnWAUdEKB8Doh0qjqlEcK6PMNDJ9Bx0NtxFviq3+r13ROTJwgG8kyPDRMpVJhem6KesPLrU8nMrRkW1gqLjG3OIcrvFKcRCxJpVIhvT2F5Zr4FB+OcDwndl6jdKqIElDJDmex6ibxrhiO6WAbDpLEcvTE8vsvxOq1jOu4qyVNalhFy2s88jOP8MN/PsDRLx2j/3V9KAEFraBhlA1Caoi+3n5O/f1p3vjoj7F/734eeujhdZu8XC6zuLgIQFtb24Yj2qZp0rDrq0JkrVhj6vQ0tXqd7JY0w7uHOPHsKWItEUKJAJezC6khhWR3nPy5PB272zz3Z8SPqdnIqo/yTIW5Y4tYVZt4W4xILEzDrxMIe++5LMnYM4Lf+Y3/iizL2LZNS0vLquvwQgzD4PjJ4/zDt7+GPysz+GgvkWQY13GZyo9z8swJfH6ZjkzLZV97IhOntjRHpVImEfccndVyjemzs7hV2LfjHnrv773mUeNAIEAgELjyA+8i5ufnaO2+cgRQIOAnHAthmiahUGj1uO44Dq7rvixGt1fKa6DZpn230hQjmxAKhfj93/993vSmN/Ge97yHsbExfu3Xfo2vf/3rfO5zn6Orq6vpkmzSpEmTyxAOh/kXr3mcickJvv3sMzAYI9nbctXHTVmW6e7oIp1IMTIzTiOsE8rENuW461gORqmGXHfoSLbQMpi9JheHLMt07egn3dnCmQMnqcbLBLa1IV9FYc+FCCEwc1XEaIEYKluH+0m+4tKOs42WUavVmMnN0XB1lFSQSDb9ss6D3DrcT+q+7BW3o+M42JJ9kWvUKGiUR/LodQN1ME50WzeWbmJhrz6fXtOwizqJQJTB9iHC4fA1CYVraW9p5/jMSULJjRvRG8U6renLX9yuvi7XYamwxNzSPJbq4Ev4UfwBFL96yc+QazlUxgvMHDhLaihN5qEB1OiaGwASRLMx6mqN3PEFkurGjmd/2E/BqTC/MI8/40coEq7jrl4ECiGwiga1kSKu4RAaiOELKxizGj7DIjqUpaU9uiq2Oa6DYRo4roOj216LsizjkyUc18V1Ba7pIHQvK1FoDpFojLZs2zqxUlEV2tKtLCwtokQV7ybJssvNsW2sqkVEDZOIJbwL16KMP+bHMR20qoEc8CGrMrLfc/q5trvaZu21u9uYPhfHtlFCCkpAIbBcBmRbDsIR1GdruEKgJPwE42FWRcjVsejlqWoEsiQjCy8b0vuFwCf78Km+89mMCBzXu9B2XRcQFxyLBK7lOSUl1XOkipUCHCFwLWe1uXvdG+79KZIs4ZpeUYys+pYv7lfmm5cFcplVxyjysmjqA0n2IRxP6LXLJvpoGRo2sYE4od3p8+Pu4DlZ1bWhksut26smTbF2zbyf2QI5fMG6i/PrvTJe7fP7wBLYFQs93wAB/rBKKBKmJZ0lHL74hpKq+unp7GFqdho7quCPq8g+zw3p6DZm2URFXW2FbizVqZwrEHD89PZ0MSaN0bmj/aIc1mA0SHBbkNy5HAvPzqPGVMJtYZI9SYQQFPJLnD5wmnA8ROfOztX9t1aqUStWkeclQq0hhCvQ5jQKZ5cIp0K07mwhnA0jhOD4/3MC23SQZW8fVQLKaqSA1bDWRaDIPhmzbiJJUBorEQlFmPneDG1aG93xbk5/9TTRvijp3hSJZBJ9UuPs98/xE4/9JDt3rC/WmZ+f5x//+R/I1XIkOr0R89K3yrQm23nDY2+kra3tou3sOA6yT6a4UGLqzBQ2Ni3DWTqyXiGWaZieMHjRlMVKqunKPyUSnXEmX5jxdoNlF29lrsrEc1MUxkoM3N9Dy3AWvawz/fw8D/zIfd57V2lw/FuneHj3I5dt+V6h0Whw/NQxRqbOsmTl2P4v+mnpXp/1G01EKSWLzI0tUq/UicQvf8My2R5ndm4G1xTMnJnD74S4b9eDdHZ2btp1phCC6elpnj/wHPmlHD5ZZrB/C6+49/4NheI7i2vZFgJVVfH7/di27WXoLm9L27ZXRcmXqrlorRjZbNO+O2mKkU0A72Tqda97HQcPHuRDH/oQX/ziF/nnf/5nHnjgAT7xiU/wxBNPXPaLQtM0lpaW6O7uvsVr3aRJkyZ3BpIk0d/Xz9vbO3jmxWc584MR0vu68YevfuQ4HA6za2g7C7lFZiYXUFujqKHru+NvaQZWsUHAlhnMdpDsTN7QyWgoEWHvo/exMDrD6DPjSDtb8Ldc3Ym9sF2MmSLSRIlsMkn3/t2Ek9d2B9t1XQqlInP5OSy/IJAJEw2mruel3LUI10WbqWCNl0lF42zdtXNdHuSV/359aUdjrkJ5dAlHlfAPxIlmMmu+5yUcx6VeqHp5kLE0bX0DV8yDvBqSySTyiISpmZfN9HRdF31eo3vHxblqK5iWyWJ+kVxlCdPv0PDrCAVkR4cGOEWXsD9IOplGURTshkl9rACLBsFIgM4Hukn0X959ooZUfHEfelUndIXcVF/Qh67ryHEfgVCQcq2CFJbQ5+s0RivIAZlwfwxbs6ieK+P6JFL3tBNrSVy8LNlHOBgmFAxRq9e87MMVR58hEIaDosjIEQWrbNKWbfXGYC9BMBiku7WLSq1CNVdbFbmC/gCtiRZURWWpuERNqyP5ZfSajms7q/mTSlRFWclEdAWyInvjvpXl34UVbwTacFabh/WKTnmhgBxV8beGPMFuWQBcdSyK8w3TsCy1LD+HT5JRlYtvmNiOhe14ItOKCChcT1xeKatxbXGRU1Jadj3KsoyQvdFt6QJBXnDeLSkEyOr5zEbB+TxIWZG9LE0BuJ5LcvW1IbCWdPSzZRS/THI4gT8TvKhAZkU4ZNnc6Dkxz5fsrKzz8kLX/K04L64u/06I807Vle1oFgyMBY14a4z09g5c10XSZFo2cK2ZlonjOLS1tNFo1KnNnd9XFJ9KW6qVaDRKbb5CdaRMIhhl785dxLMJTp89Raw7umEhlG7oyCmZ7MB5Ict1XURI0HFfO+XxMqWFEulO7/OohlUyOzJUJiuUD5Qxyjrp3jSDDw3gyLb3XlsuPr+PYCaIXtBxHRfZJxPrjLB0pkDLjixOwyGcCWLr3t8IvLbsiBpGy+u85bVvZXh4mPb2DiRJwnEczpw5w9ziHJIN3ft6GBoauui7c2xsjL/6h79k++Nb6G/tZvLEFCNHxrAsk/xsnuc/8Rz/4pHX8y9+9PWrEwiu6zI/P8f87DyBUYW2nS2EL7ghs/I+qstFTuslyDX/EgLFr+DFNLgsnskz8tQY7TvbCARVAiGVZFuS3MkC489P0tHdQW50ifEXppA1H69/1Y9dJK6upVwuc+TEYeaWZmgdytK5txV7sYGhG5w+eBYkUFWFdGuKeDaO5JPo2dHB7Jl5hvcNcikxTQiBVtE59tQZXrk/yav2vpaWlivfbLoWdF3n//2rr2ApOlv29zLctg/HdpgemePPvvJ57tv9AK965NV3vMGmo6ODU88dZsf+jR9nGiZG3SIcDiPLMn6/37vpuCxCrkRs2Lb9kh3drtfrq//fdEbenTQzI5tchBCCv/u7v+PJJ59kYWEBgLe+9a380R/9Edns+ROJiYkJvvCFL/Dnf/7n3HffffzN3/zNbVrjJk2aNLmzmJmZ4Vs/fAqnL0yqv+2aT351XWd0epxGwCGUjV+de1CAXm3gljTiaoTObDuRSGTTT7yNus65Aycpqg6Bne3IlynfcXQLczyPb75Bd08H7YNd1yyuWpbF4lKOxXIOooqXB3kdrsy7mfV5kNeXqwmeWPLdZ59GiUhUp0uQDhAYSKBE1wuCruVQn6qQcqMMdPWRTWU3fdSrVqtx4ORBIgOxi7IjHcumPFpkINtPT1fPRX/b0BrM5+YpGVXUZABLsik2ygRTAeQ16ymEwDYsjJkG8bKfkOGjb6iPbG8rzx1+nvBwbMNsUdMyvQy3BrQMXexyWkvpXIGOcBsLIke0NcbSaI7SaJ5AW4hwbxQjp1GfrqG0hfH3xpCERCqRvKK7VAhBtVbD1k0kJPxhP4rfh23YOHWHdDx1bW6QlTN+ycv9nMvN44vKqCH/6vivZui4rotZNleFNy+XUUbYDj6/DzXuR/b7wBXIsoRtOFhLJpIloUQVRERGCfqWG3q93EbhuGucgMsiGiD7pFVXoLQszimysi6D1LItXASybyV7U3hjuCsi3qrOLq3LtVy7HT1N0HPPrW3CXvm9JEnLzsZl0ZHzQqTkk5fbsS8YB8fL6zTnGxjjFYKJAOGuMIHW8Lqin3Xt57aLqzvIQR8Sktd4LsmYNdNrYI+fF2LFmvfL0WzP7bkiZi7nOsrLWZVW0cRp2KghBVVViS0XRNmmjazLZC/hMtZ1jaXSErbrrDpOcQU+SaE120IkEsV1XKrTJepjFVoyWfq29hGOeyJavV7nBy8+S2ooTTAaWC0tWUutUKNcLBNpjxD2h/Evj4fXG3Ucn41PVRBCkDuWo293H7JPpl6ps3huASNvUD5TZssbhkgPplfb0U3TwDANfH4fo/84Rs/93RRPlWjv6KBOjfHnJxj4kT4CwSDRdBQhXGzTpr7UIBlKEiTI7Lfm+OCTv3LN34+mafLJz/8R+966G0VVeOZvvk+4NUj3/i5Cce9YplV1Rp4ZI1AI8/M/8wsUigWOnj2MmlEwVA0nbpFovfhGhGM7HH36GJ17Owgt53e64nyD+9qdQq8aHP/aaaKpMLbp0ChoRNNhZg8t0NbZRtgfZtvAdu7bdz+W5bXOJ5NJ2toufz6Sy+U8EbI4gy8BpqyDBMViEZ8q09qfIdXpHbdM3aK8UEErG6S7EkTSYebP5Whpz65zR7quy9J0gYWRPMFACG3K5Jff+4Fr2uZXg+M4/Pe/+DM6dqYZ2tV3id+7PPO1F9ndv5+HH7r+UrRbgVdg82le81OvILqB0/T4D08Tc1t49DWvXfdz13VxHAfHcVZHt1eOcT6f5zR/qYiSL774Io899hjgfTabJbx3H00xssllWVhY4H3vex//+3//bwDa29v59Kc/TSAQ4E/+5E/4+te/vjwm4416nzp1ap1Y2aRJkyYvZyzL4gcHnuf40gjJfd0EYxuPpV6IEILcUo7JpTmUlgj+ywhQruNilOtQMT0HW6b1pmcoCSFYmljg7OkRxHAaf0dy9QLHKjWwx5YI1hz6hnrJ9F77WHej0WB+aYGiVsGXCBCKh69pnPulwNo8yO7+HloHOq45V3MFs6Eze26KM2fOYHX6iO7IemLSGmzdwi4ayKaAgs2jDz96U/Om6o06p0ZOU7caKAkFZAm37iDpsKVviLaW8wKgEIJKtcJsfg4dE38qRCAcwLIsZpfmCWVDF4lL5mIDc7SMZLnEg1Fe/dpHVx/z9AvfI7Vn4/MVIVxyi3ncok379s7LPs51XMonCtyzbR9PffPbSAGJUE8ENROgMlGikdcI9Ebx98Tw+X1ILiiu537cCNu2cTQLBYWA6kc3dCzLQpIkwqEwsUjsks3gV4WAmfkZfAll2WF1Ht3QkVQvH1LLa0jK8vhrWFl1Qq7gGDZW2cKuWygxP+F0GJ9PwbTN1TZux/YKavBJy8KeBL7zQp2wV1yHvvN6iw2BZdFqpajGtywQuq7wXD8XCorOSralfMGxQqyKemubsL3MR2n1Yt0TKh0kWV520S0/Tj6fNbmuSd5yMCarGJM1gskAseEESlRdfY2r4+BrxUjhjT1LSCjB8zmYruOC5QnEKOALrRHVl//j2i6u6SAHfKsitrBdrKKJMB2CySD+hB+jYBCJh1edinpFJx5IEI2sdw01tDr54hIODpICakT1RrwBW7Np5Bqw6BLVwnR1d9K9pYvA8s2kcrnM2bGzGK6OqZioIRWjYuCTfGR7swTX3GCYPjlDtNdr6vbjJxT0nIKFcoFA7Pz3VG2uiqTLiKqLsWQgJyQ67+lk6pkpkqkUcgtEW2NrRF5BvdHg+P84Ttf+TurjGg++5QEWRhc4+HcHcRSHHT+1nUAiiGt62zeTymCXbKafmubnfuIduK6D47hkMhmSySRXw4s/fJHD+R+y7ZXDfO9/f5/kljidO9svelxprsTSqTLzJxd55EdfSdeWTvxBP4Zh8MMjL9K6LXtJ8fbUc6fxhWXad7ad31/XCJJmwyR/tsD0gVmMqkH/Q72c+eYImVgLr3/d67l3/32oqkogELiq47cQgpmZGQ6fOITp0whl/SxW5kl1JolnYmh6A93UEK5gaaZENBEh031+KqFR0VgYydG5vR2jbiIMaO1uwbEdchNL5MaWyLZl6d3azfSZGVrcbl77mtdd1ba+Fk6cOMEPz36fB350/2Uf49gO//jl7/K+X/zAHZ8zefbsGf7xqa/x+FtfRfASN3HnphY48M8nePe//iXC4Ut/l7iuu+qSvFCUVBTlJSFIPvXUU7z5zW8mEAig6/rtXp0m10FTjGyyIa7r8uUvf5kPfvCDlMvli37f19fHL/3SL/Gv//W/JpO59ibZJk2aNHmpMz8/z7deeAqjUyU91HHNopphGIzNTFDzmYRa4qvlB7ZpYRYbKJrrNRqnvHHUW4mlm4weOkPOqiN1xmCyTFwJ0re1j1jr5ctDLoUQgkqlwkx+Dm1ZcPKHgy/rPMje4T5SnVfOg7wc9UKV6bMTFCsl/ANxAu1RZnPzKCk/iupDCLBrBk7JwK+oRFJh6tNVtrQP0dl2eQFuw9eAoFqtMrswh2EZ+FWVjpYOEonEJZ2AmqZRqZZxXUEoFFr3OMd1KJaKzC3N4wQEwVQENXDe+ZAr5DD91mpplHBcjKkq1kSVcDJEaiiDPxGkeHqJ/UN7iUU9F+H3f/gs0e3xdU7KS1FYLKDN1+nae7FDc/UxZxaRpgV+xYeVcbFCNvqijmlYBAbiBNojq++fQGA3bGLh6CXbxwUC27RxNZuA4icWjl12/PVG0HWdXDVPKHXx+LlpGbgIHMvFrBoABNKBdSKkrduYRQPXdFFTAfwxb/tLLqiKH1e4WI4F0rLAp8rL49HyJfeBFSHRp/pW3Yuq4rVnW7aJWC7adix3XXmLtDwCviLagCfQrfwMlkewl7MVV5q0XctZzYSUkFaPMY7pejmZK5lrlr3a4LxyEe9oNvpYBXtRI9obJdIb9fIcFdlbT3tZ6FwrRq6+ToGj2QSigfPrJwR2wyEaiSBLMpVqBRcHOaCsFtoIx3NouqaLL6iALTALOsJ1CWfDKBEFCQmrbiEMseqKFEJQzzXo6ehZL6S6DtPzM7iSgxJWUMPnP1N2w6Y6VsZa1EDAjm3b2b7tfFzC0tISx88dI94TJxgLUtEqBKKeWGI1LIojJdr6Wwkvl7SMHR6ndU8LtmkTkAIEA0GvbKpawr/sytYKGvmjObRxjft/7BWkOlNMTk/gz/hZOlcgqAfJbsuSL+ZQY378YS8Pdv7YAvNPzxOQgqRTafx+P4O9Q7zy/lcyMzvD1/7p73FCDvGuGKripzpZpSXagmu6nB47hSWZXrakZpOKpHjrm97Gvffee9H+uZY//fLn6X60A9uyOfDUAfa/Zc+63xt1k4Vzi5QWyiQ7EoQjEXozvbS1nhcsK9UKx04dJdIaJt4Sw6d4+2Kj0iA3tkQhX6Dvge7V7SqEQCtp5M8tYVRNYi0RjvztSboGuwiaIX7mzU8wODh4TTePHMdhYmKCI6cOIcege7gTfIJjp4/Ss6MDn6IghEupUkINKfhUGeEK5s4sEsvESLScd2Tnpwo4tkM4HsIoWbg2FKfLdPa00zXUiT+gYtsO3/0fz/Lef/W+m5Lt92df+lN2vW6AZOZix+laDj9zgoHUDu5/xf2bvg6bzfHjx/jmd/4/+nd2M7i9FzWgUi5WOHdknNqSwc++7e1XJaKvHd1ey4pT8m4WJb/2ta/xcz/3c2SzWXK53O1enSbXQTMzssmGnD17lhdeeAHHcdb9PBgM8h/+w3/gV37lV275xW+TJk2a3E20t7fzs2/8aV48coBDz5wisbeLUOLqW6kDgQDbBoZZKhaYmJpGJPxQtwkJhS0tXSR6rr3ReLNQg362PbSb1pk8pVyB9nv3XtNrA+9EuVAsMFtYwAlAoCVMLLA5rd13CxflQe7cSTRzfWH7whUUZ/NMn5tAk00Cg0mS+3pX95H2lnbmFufRTRPZFETiIcLtKcyaQW2sQn97/3ULkbquc/jUEQyfhZoN4vMrNKwGuakTqCMy+7bvvcjFEQqFLmp2tyyLXCHHYimHFFMIdUUvOZ7f0DSCsRCuYaONV3Bn68Q7E7S/sg8leF5g8WcDLOQWVsXIjpZ25vM5Ym0bb2OpBn5LpVGsE06taRYXAm2hRu7ILMISDNy3Bdd1yY0uUs018A/FiLVl1l3kOY6Da7hEguGLhEghBJZhIgyXsD9EJJm8qa7Uar2KEr743M11XRzdxTRMlLBCKBvCrJpeyzQCu25jFnSQJdRUYLlcR1rNMlyxN8iSjCQkXOG5BDcSIgHwSUgChOsJjKwTzrwZbMf0Cntk/5pCG9f1chtlr916JYtyxfnoPWg5g1FezqVcow7K0vl1d22B4vN5z+dbKZE5vx522cQYqyBqFtGBOOEdKc/lKUDgIiEjIbBMG59PWf9Khed+dHUHNXi+WMmxHFxTEAmd3ycS8QSWbaFpGq5uAxKSLBPyB3Ftl+pEGcknEWmLIAUkhOxlV1o1C8mV1gmRjYJGOnHxTaFaveYV6CCtCpF6UaN2toxTs0gNJJCGAmhFjXNT58gVc7SkW1F8CqdHTxNMBSjlS9gznsAR744TSoW8rMdtaRZOLdC3t8/b/5c3t2s6qNHzn0lXuNQX6pTPlfGrKqn2FDEnQrrLy41sbWljZmEax3KQZZlkIkksGqNcKVMr1Kgv1cl9N8/73vF+tm7detEu1dLSwv59+5mfn2dpaQlZlgntDPFn/88X0dQ6w28coG24xRORhWDh7CJf/vp/5+zoWZ542xOX3k/xYiKCkQBHv3eOjt3nBUatrDF/ZhGtppEZSjO8awhbswn7w0yPzawTI+OxOK/Yfz9z83PMnZjFEQ4ISMST7NvurfPpA6do39ECSOTPFRCOIDuQwjJtDv+v4/Rk+nji8SfYunXbNR0rLMtiZHSEY2eOEG4JMvhgL6HlbOtjJ47S0p/Gt3xdZ5jGeef0clFS21AL0yfmibdEVz/PybY4Y4emmDo2i9uAvQ/uZtvjw6vHbNt2eP7vD/DQ/kduWslIuVIkmdl/xce19WaZPTsN3Pli5K5duxka2sLhw4c48K3jmLZFIpbgwX2vuWSW6eVYGc2+cHR7xTF5N+dJrhTYNPMi716aKlKTi3Ach6997Wt8+tOf5pvf/Obqz6PRKPv37+eFF15A13X+83/+z5TLZX7jN37jjre7N2nSpMntRFEUHrr3AYaXhvjGD75NPlskva3zqk/+JEkim86QiMXJLeVIdiQvO5pzO0h1ZUl1XVtMh2maLC4tslheQoqrhLpiq1ltLxcc00abKOLOLOdBPnzfdeVBgjeClhufY3p0EjepENqdIhlbvyzbsjFLDbJmhKCUouJUMHMWjXyNlnQLPbt2XyQMXi2mafLisQOovSHi8bUXnH5CyTBm3eDF4wd4YM99BIOXfg5d15jPL1BolFGTfiJ9Gxcv2XWD+pEaUskk1Z8m+tr2S+5DsurDalir/+5q72Ly0BRO5vIZpKZmIjfglfc/zImzJynM5VCSCnq+QW2yhBxUSG7JEBEh5k7OIKX8hPakicU6MC0T3TCwsWB5FFhVFCLh9UKk67rYugkWREMRwqlbE0fgOM667eTYDqZmei3gIZ83jisvS3FCYJUNzJKBHFTwt4Xx+T2RaWXMeJU1q66qqjfyvZK3uEE+poSE8C2PbF9CqHUtd7XVe93fyTI+vzcyLWxWR7eFOD+WKEmeTLj8DxzHBSGBs2yYFJ7T0r/sxNRN4/wYOQIzp6GPlJGFIL4lQaA1tK5gRpK8xSG8oiFFVnAaDq58fhsLRyAhE1D8OKaLZdpIkoRfVQlEAhe956qiosY84U64gkaxTnWmjE+RiadjBAIBTMvC0iws00QAwViQQNyP67hYmoWteZmi0cjF4k+tXsPBQY0pVGeqlI7mEYZDojtOoD1EZb5GpCVMy54WXMslKAcpFpYoTpeIdIVJ9Z8f0zXqBqWJErZuE+vwogiC6SDVfI1Eaxx/QMWoGl4zuuzDdVwqMxXmj8wRb4/Ru6+bQDzAzPMzJFvPLzcUDNGR7eS7X/suPUO91Et1/CE/iqWgnzYQ8/Dr7/8PVyxBaW9vp729HSEEv/d/fxwzrPHgE/fhD50XRiVJon1rG9n+DD/40nP0P9fHgw8+dMnlRUIRtJpOvVwnsztJNVdj/swCjuuSHU7T2dq+KvzIkuSNZpvGRcvxq376evro67k43zAei2PVbb7/le/TqGhkh1IEIgEOH5zDpyn8wk+9m4cfenjD130hhmFw6vRJTo+fItkdY8ert+APnB8TtyyLaqNKJna+jNRxHGTV+0y5rpfZ6lNl/GEVraITjodoVDTmz+Q4+/1xFFsl25KltFBBWc4CzU8XWDy3xKsffJQH77/0Nm1yeYLBIA8++NBl98erZUVs9Pl8F7kkHcdZbd2+mTfBbgYrYmSzSfvupSlGNlllaWmJP/uzP+Ozn/0s4+Pjqz/fvn0773//+/n5n/95YrEYx48f513vehcvvvgin/jEJ/jGN77BF77wBfbs2XPHN5Q1adKkye0kk8nwL9/wFg4dO8yLTx8juqeDSPrqT6JUVaWz/fpca3cK9XqdufwCZaOKkgwQ6b+2ce6XAlbNQBsrIC9Z9Az00PrYnuvPg9QM5s5NMz8zh9wVJvJQB77A+mWZuolZbOC3ffRnu0h2JS4Wkm6Q0ckx5HaVQPzSYqo/EsDpdjgzfo6928+PNgoEtVqN2dwcDVfDnwoRb7n8PiGEQM/X0EdLWBNLdL6yh8j+jUueHMMmoJ6/aer3+9kxuJ2Tp08RH0yirmn1FkJgVHUaEzXu2bGfgD/A7i27mDo5xtiBUZS2AJ339uEWLUrjZaxOl+hD7eu2uV/141f9q048admBt7o+joOtWfhciUTYG3e9QpfNpiLLMq7jYjsupmYhJFBCPhRFWe3stUwLs2RiFnXUpJ9Qd3Q1IsITIi8oc3FAWSMkeuPP3uOvZVcTCK8YZ0XIEwJZkTY8RsiqjGN4DklWyj4Eq67NC56AgN+/8kzIa9YTQFUUTNPCzmk0zhQJJgNkdqZQE4FlUXF5RHzNYoUjkBVwNJdo1BvBXxmNlCTwBZVrvsh3bRe92KCaq6IGfcS6o6hBFcd2qFfr2IZDJpUhEU9gWxaVetVzsUoQC8QIt0XQtAazC7PYloUkyUTCEZKJJI7jUp+vYszWEY6g6/52Iu0RXNvF1izkgI/6fJ3iSJFEfwLd8PaB1mwrhXMFtKK2OuIfiARID6cpnC2ghFRCySDhbJjaZJVEa5xwMkxpokTXti4K5wrUJqu0dLSw5+HdVKkSiAdwHZfCmQK7f273um3gNBy2ZId5aPAhDn33ELqhE4/G+dF9P8rWn7g2R+DExDj52iK737J9nRC5FsWvsPtN2/k/X/0/PPDAg5fc5+7b8wpeOPYDjLrBuWfHiGRDtOzIEE6tvznomA7BQMjLMb3Kz7bjOCxMLbI0UqCvpZ83fegnqNVqHD16FFmWGHj1IFu2bLnq1wyeWHP85DEm5sfIDqTZ+7odl7wBY5gG/rDKRQciAT5FxrJsxHKLfSDspzRfYfr4HK4l6Nrazil3hDe/4Sd56IGHOXb8GDOT0wDsbr+XPY/vuenFIol4ktJS+Ypj2otTS/S3bbup63Ins9K67boulmWttm7DelHybnFJrrRpN52Rdy9NMbIJR44c4ZOf/CRf+cpXVsNfZVnmzW9+M+9///t5/PHH130h7969m2eeeYbf/d3f5Xd+53c4duwYjz76KL/xG7/BBz/4webYdpMmTZpsgM/n47599zLUN8A3n/0OuUSJzPbOay55uZtwXZdypcJcfg5dtlBTIaKh9Ms3D9LysXW4j9S9LdefB1msMn3Gy4NU++MkXtNzXizCK13V6w3sok5MidDfMuC1q98E1ctxHBYKC8R3b+yODSbDFKZzmJaJoiiUSiVm83NYfpdgJkw8mL7s3wrXpT5TxhqrkIol2LZ7N7PdGYr+yhW3oZk3aN++vmSiNduKqqicnThHTVTwRRUQYFcs4sEY9+26F58jM3LwNPnFRUJ9Mboe6ac4nqdwJk+gP0biVV0bunkvFCFty8LRbFRZJR1Oes3CN+Ez4DgOluU5Qf2qf13eoxAC1adQKJRQoypKRFltqQZPRDGKBpZm4YsqhHtjXhnNcouzdJlWaVxxkcghSxLuhXXSl0GSJIQkEA6rItNqrL3vSn8vnR+ZFgKJSwuRru2iyL7LCvGu5aJPVdHHK6gJley+FpS4is8veyPoy23fq6In3ufMtVwkR17nfL1el5FjOhgFDaG72MIi2RcnEA7gOA6VXBXbtJBVGcknsZCfJ7+Up621jXTy/GfHMA1mF2ZwJXfZ3SYjyYJCdYmpo+MYkw1kv0RiKE7rvtbV99PWbZSwguSTiffGqU5Xqc/WCCZDBOIBbNsiNZikeK60Lm9UVVUSPQlK4yXUUBaBwKgb5M7kcWsuzrTDyOlzDN+7hS2vHUTxKwgEjZkGjUKdmefm6NvVvy4PtlaoMfKPo7zrp99Ne3s797/igWvelmt5/sDzyCGJZOfGYlW8LY4TtpienqanZ31WrOM4BAIBzvxwhNS2OIneKG3bWi9ahuu4uJbAH/ZTXaqSSW18XLQtm7mxeUqTFbb2bOPVj792dfIhHo/T2Xl1NyBt22Z+fh7btnBdwfTcFPOlOdqHW9i3c9eGApMse/EGa1EVFd3SUVQFRVGwLItKrsaZZ0bxB/zsftU2/GGVhdEcqVCGVz/yGiRJ4t577uVeNs7e3GwevO+VHDjw7BULbKZPz/MTv/gvb92K3aHIskwgEFj9rlhbcGPb9l0zul2tVoGmM/JupqkaNeH//J//w5/92Z8BkE6n+cVf/EX+7b/9t/T391/2b/x+P//pP/0n3vjGN/LOd76TU6dO8Vu/9Vv8wz/8A3/yJ3/C4ODgy87p0qRJkybXQjKZ4qdf/5McP3WcZ58+SHhPG9HsxhdKdxu2bbNUXGK+sIgTkgi2RYj6X153sDc1D1IISnNLTJ0dR5NMAgPr8yDBy9jTy3XcskkmmqK9p/+mR6nUG3XkqHpFUVCSQI4pjE+O07B1pKiPUGeY0AauUMe0aUwUsafrdHS00fXK4dVR9p6QwtyxFwgmQ5cdt24U60SVMOHQxbEGqWSKB5L3U2/UaTQaSJJEtCeKWTOYODRCTasSHowTy6TJjyyiz1gEBxMk93Zf9TmOQGAbFq7uEFSDpOKJm3bT1jItiuUCumWstqW7pkPQHyQZT2JaJnW9juyX8Uf8+MK+82Utmo1e0HEdr5Qm3BrAtbzxcttxcC0HZNnLd1zrCkR4wsslnE8+nw/XseEKguRKOYxwBbLM6vYRXuDjVQnokgy4ngDqOK43Oi0vX2C73rizovhQ5Iu3vaPZaONl7AWNZE+SjkcH8aneyLamabiS5I2oLmdBukJ4DdhCYGs2spDxyTKu43hj5tdx/mtpFkZBx+dKpDNJnIRLxSzjD/lpVDTqhRq+gI9QSxgleH5ftzWb+fwcaTNDOpXGsiwW8gsI2QUFwpkwrulSGytjzDWIt0VwtvlplBokB5Nr8jcFCLHuhka0I8Li4Rzh7HJeqiTh8/uQFRmzYS076TyCsSA+2YfiKF7mqKGQcOLEnRi7H9rDsy9+n+KZEmrAT6It7m2/JYmzT40gORJqj0p+Io9t2hTPlpDKEu986ztpb7+4qfp6KJaKRLORK35uZVkmkg1RLBZXxUjTNDl95hTHR48RaQ/zY7/wek6PnaRea+DYzrpjj23Z2JpNLBoHAZX5Gvt3DF/yuQzdYPbcHNq8zq6h3fzIG7bh91/csH0lTNPku997ikPHD6DGVCqVMq7k0DnYzq69u2jJbjzKDhAMhrB1L1NwRUT3+/00tAaO41CcKbMwkiMYCVAvNNjy2ACmZuITCpUJnSfe+rO39bpv+/bt/OCFZxg9McHgzotH3x3H5Zmv/5AH7n24GS22hsvlSd4to9tNZ+TdT1OMbMIv/dIv8fd///e8973v5Wd/9mevOi9KkiQefPBBXnjhBT7ykY/wqU99imeffZZXvvKV/O7v/i7vete77vg7Kk2aNGlyO5FlmT0799DX3cc//eApFmcmyOzsuu6R3TsFwzBYWFokXy0gx1WCPfF17qyXA5udB5mfmGdqZMLLg9yZInnBOLRjO+jFOtQdOtKtZLdkUXy3Zj8SQlzR/GabNo1CnVqlRqktRKorjWEa5Ep5DNMEyRvzTcQShMNhnIZFfXR5lL2/h7bH9pwvU1gmFAqxo38bJ0+fIdoXwx8531Lsui71XA3yDvv33rfhukXCEcLBMIWZHKcOH8EOuET6EwTqERbOzCMiMqFtSVLJq3//hOtiGRbCdIkEwkSSkZv6GfA+cwuoCT/hQJiVN8R1HLSKTmV+ilgyRjDhvQbXcNGqGo7hYtdNJNWHPxXAF1oWMS3votR2HSQf+BSv3MV13OX8OM8tKOFlH17KbeiTfZ6Q6Qqky1zPrhTKCMdFln2eW/S6WBHVPKeeJHkFOt56yJcUq62KgT5aRlQsUoNpojva171HwUAQv+qnVq8hFMDvWUMlPDekazmeayyggBAYtolWMwgHQ1c3lirArBsYBYOAotKWzRIIBwCJmflpXEVQXiyDD4KZkNf83DAxq4JAMohPlVGCPpT2MIX5JcLhMNVaBVQ84VCRKR1dwi4YpPqTdDzqFbY4jsPC0QX0ok4gvtzY7Aq4YP+UZIlgMohVtwjGgt54v+ughFUcw4bw+tfo8/uwSibzL8wxGBriDY++nq4uT7jfsX0HMzMzPPvDZ5n84RQ+2cdw7zA/+4GfA+Dw0UMUpgv4VT+vffgx+vr6NlXcioQjWBX7io/z9nGBoig0Gg2OnzrGuemzJHoTbHt0eLXdPhS5l+MnjzF5YIb2bS34VJ/nvFVU4jGvVG7+3CId2c6LboQ0qg3mzs1hFwX7tu1j8L6h6xZ8DMPgv335i0hph2hPECWssOXR3cTSUUzdZGxsBE3X6O3u3XA5siTR3tZJcaFItjMDgGO7VOZqTJ2aobW/hR0PbaW8UMboddi5cycAp188R0LKMDx8cYnQrcTn8/H2J36ev/zr/8H02ecZ3t9Hpi2F47pMnZtl5NAk9+66n1c+9MhtXc87kQvzJB3HOe+WXs6XvFNHt5uZkXc/klidgWjS5PoRQvCtb32L97znPUxNTQHw+te/ns985jO0t7c3XZJNmjRpcgWEEJw+e5qnT75AYGeGeNvlR1bvRIQQy3mQ81SsOkoqSDAaflmNYsMl8iAHOm4oD3J+ZIa56VnkzjCRviS+4HoBYCUPUrVkurIdJJPJTc+DvBKGafCDo88T35ld75oTYGkm9UIN27ZRUwEcw6Ez3U6xXMQQJmpMXb3Adx2H+nQV60yFzlCWoR1bSHdnr3gRVKlWGJkcoarX8IUUhCtwGw6dLR309fShKpcXhhzLZmF8npnRSXwZlUh3nHquytJUHrk1SLg/iRK++rwz1/XyICUbouEooUDoppfSCFcwNTdNIBtYFjWEV0rT8DLBlJAPSZFxNAe/qmIYJrZuYVVNpKCMmvAjKTKSvFL14pXuyOrFo84rrdnCdr0R8Cvsa0IIDNNESAJZveCxa69AbIFf9V90vqgZ2qrLcyNcy10diw+ol8i+W7M+5pKGPlpBcSA1lCbcHt34PFWAZZvopoFwBY5jI6u+dc3Yax9sNmwiwRDKZfY74QrMqo5ZNImEQiSySVT/+ccKIRgdH0GJq/gjKrbtoATWFB/ZLnpBJ5DyBEkAu2Ej1SRcSdAo1XFKJpLhkh5KEe2IXrAPCmpLdUpjJbK7sqgh1csQ1W3UiLr8vgiEC42FBjiQ6PFc+5ZtUZ2pEkqECS2L80IIGvMNJr41TktrC8qiwoc/+Ot3lKNqdHSE//vPPsFr3/+IJx5fhnq5zqEvn+DxR36UpUaOzFCatp7Wyx6D5hfmOTt6BjWmEEmHkSQZo2aiF3X6uvvo6uxe/QxVChXmzi6gGn7u2XkP3d09NyTwOI7DF//7F1hyFunY2kr7llbCsfWGEiEEUydn2D64k0R848kLx3E4eOQgwZRCo2JQnC7T2dNOoi1GsVqgUdU4/fQoD7/+AUzNZOrYHF2ZXn7yx3/qpmdCXi1CCKampnj+h8+RLyyi+BQG+oa4/74HiMevbyLh5caFo9sr3Imj2+9+97v567/+a375l3+ZT3/607d7dZpcB3e39aLJHYMkSfzoj/4ohw4d4oMf/CB/8Rd/wT/+4z/ywAMP8MlPfpK3vOUtTUGySZMmTTZAkiS2b91Od2c333nuu8zMjJHZ3Y3ivzNO8i+H67qUyiVm8/OYioM/FSIWuruE1BtFCIFRqGOOlgiaN54H2SjVmDkzwVK5iNofI/7qnnXZhAIwahpWUSfqC9HX0k80Gr0peZBXQ8AfIB6MYdYNAtGAtz0qOvViHaHgjf2GQji2i2xAuVrGUmxCyxfOwhWYC3XM0TLBgEp6WxbRkEj3ZK9KWI3H4tyz6x4M08AwDCRJIhKObHjRZDYMZs9NszA7R6A7TGxfmvJUkYkDY6i9UeKPdCKrVy+m2LaNo1kowkcykiDgD9yyUpp6o44c8kaFbcPC1CyQwRfyoa4ZCTdsG72k4ZoOSsxPqDe2mhe5Mm7t8/m8NmrfJcpfWCmmAaHI2I6NX9nYyShJEsGAH9O2cEzHy3Zcm+foAoJLCpEAsuxDOO668eELEUIgXIFPkZeF54uXI1yBPl/DGK0QDAfo2N5KIHWVzfESqKofVfWakU1Xusilu/bBakihoenEo+uP3cJx0Uu6l0saj9Lal8V3iZF9XddAlQjGA1imvS7TE0BWZILpIHpBJ9waAiSUkMLSmRzmjIEkuXQ/1EUoE7rMubeEL+DDHw7gVGxc08UX8Jx93rg2XnGJLCO50jpRQvEp6AWdaGsU13GpTdeojFUIhFRoQKAU4N0//547SogEGBgYJB5IMH5gii0PD1zyMZXFKsf/6TSRVASlT2JX+44rXru0t7XT1tZGsVikXCnhCkFLoo3sUBaf7EMIwdLCEgtncyTUJK/e9RpaW9tu6JrIsizOnDvD4ZMHKco5XvGmvQRClx49liSJTE+KqekpEjs3FiNN3STixjn8taMI4bDtoS0EQgHKCzXmTxaoL+ls7dpJ9axJS7qFf/3TbySVSm24zFuNJEn09vbS27uxE7TJ5bma0W1Jku4IUbLpjLz7aTojm2w6Qgj++q//mve9733k83kAnnjiCf7gD/6AdPrldYHapEmTJteDEIKR0RGeOvYsvq0pkl0bB+DfDmzbJl/IM19cRIR9BFPhu368/FoRros2W8EaK5OKxOne2ndDeZDl+QJTZ8epuwbBwQTB1tjFeZAVLw8yHU7Snm0jGLy+0e/Nplqr8uKJAyjtQYyajhT2xn5XBD3hCowljWw8w1KlQLgljGu5GNMV7MkqsUyE5FAGf8y7qC6NFxlKD9HacnFBxI1QL9WYPjNBqVQkMhjHF1JYGsvTaGgEBuOE2mPXJCJbpoWr2wR8fqKh6DqH261idmEWNyBwLAdJ9YQpec1rcEwHbUnDqpv4M0H8icBlxRDHWh5tvtDFeJnHBi4jIl4KIQSOa+Os5BNKkpdJJl9euBJCoJv6snPz0s/jmg6qol4ylsC1XfSpCuZkjWg2QnIojRq53lFwqNSqqGEfV1KaLd0m7A+hKAqO5WAUNdyGSzIVJ5qMbXghP784hxWw8YcVLMNGUi994a8VdNSggpnXqY9VMZc0Mj1Zgp0B4j0bH4f0mk59rk62I4s/4kfTNAzTQA7IqAEFefk9WTy6SGYgg/ALFL+CVtTRFzSEJSiNFYm3Rkn2JJn6/jR9Sj//6omfJ5G4M7OP5+fn+Z1PfIytbxyib7+XBymEoDxXYfbUHFpDJxqN8dpHX3vDx1XXdcnN5Mmdy9OR7GTfzv03LNxpmsbJ0yc5O3madE8COQxlt7A6Vn15BGOHp3jovocvuR9VyzWmz87iVmHfjnvo7e2lWq1y9PgRqrUKwUCIndt3bVp+Z5O7B9d1V0e115bcSJKEoii3XZB805vexNNPP81/+S//hY985CO3dV2aXB9NMbLJTWN2dpYnn3ySv//7vwegq6uLz33uczz22GNNl2STJk2aXAWapvHd559h3F4gvacHNXj9F9Gbha7rLCwtslQrIif8BOPhZh7klm4Ckat0WV2AazvkJhaYHp3AicuEBlL4E+uX5dgOeqkONYf2VAst6ZabVoJyPZimycLSItOLM5SlGv7WMP6oH0mWEC5Yuolbs8kmMpiWSc2sIRY0nIUGqe4kiYEUvgtGJ03NwpzQuX/f/Te8fkIIygtFps6MowmdaH8Cx3HIjy5iKxAaSuBPX85FdunlWYaFMBxC/hDRUOSyBTo3E9dxaWh1Fgo5/Ek/StB3vpBEeMUsekHDdQW+uIoS88aK5Q1ep+u4CPfqxEjX8Zq5b3YsgBDu8qg3SD7JEyWFQDieI/JSQqSj22jjFez5BomuBImB5EX72HWsCJV6FfUqxvYd20HSgbpAMiGVSRKOX7lABWByZpJgNoAjbBzHy9u88BjrWg7lM0XqI1VahjMkB5LkjuYIKEHklERqcGPhS6/olMbLdA13EoycH7cuV0vIQR8+xUcj18Ctu7QOtFKultHKGgsvLJCMJOje2k1LbxbLthh/boIWs4V/9S9//o4/v5+fn+dzf/ZZSmaBdH8SXTMIxAKEEyGS8ST799xDKHh9x3Lw3vf5iQWK4yUG2gfZvWPPDZdr1Go1jp44wuTCOK2DWTr62vD5fExMTtDwVUm2XFn8nTwxwz277ltXNFXMl5g+M0fQDbFv5z10dnbe8e9fk9uD4zirouRaVm4o3S5R8tFHH+XgwYN88pOf5AMf+MBtWYcmN8adcybb5CVHZ2cnf/u3f8sXv/hFPvShDzEzM8NP/MRP8G/+zb/hP//n/9xsvmrSpEmTKxAKhXj9oz/CxOQE//zs92AwTrI3e8svGIQQ1Go1ZvNz1BwdNRUkkkm/7PMgW153canK1WJqBvOjM8xNzSJ3hAg/0IZyQR6kZZgYxQaqKdObbSfVkbrtToS1NBoNLyPUqKKkArRs7yDtOlRrVar52nI5iUQsHCHeGsepWyz8cBrJsWnZ2kJ0Z8dlhWx/SKVqlm9o/VzHJT+5wNTIBEQlIsMJnBLMnphGSvkJ7UkTjV19s6rruti6BZZLNBghnIrc9DzIS2HbNvVGHd3S8QV9BBMBpKDsNVILsKpeZp2kSqiZAEpQwbacZRHvCguXJcQFF5y3G0mSCQaCOK6DZdsI2/UKWnw+FFVZN05u10y0kTKibJLsTxF7tG1dxMGFuK6LaRo4roskgaKo3uj5Jd7Wq3NvCOy6jZ5roLoqnd0dy2LfVe4ny2VQik/BNmxkWfLiDZa1bluzqY2VMRc0QqkgbXtayAxl0Eoa0WCUTDrL5OIEwhWXd5I6Lj58yLpEbbGOv9eP7PP2n0QsSaVaoZQvoRcM2ofaWJoosHBgnspImXg4TvreNGbFYPz7E9Sn6jy490EeffVr7wohK5PJ8C/f8gTPHXqWilSmZzBGPBGns6OTWPT6Rz1Nw2RudJ7qTJ3t/dt57Y8+fsPuykKhwJETh1msLNAx3Mr+XbvXHf8VRcWxnKtYkuea9iIYBLn5JebOLJAKpXn13tfS0nLltu0mL28uN7q94pi8VXmShmGsa0NfGdNuagp3L01nZJObjhCC0dFR3v3ud/Pd734XgOHhYT7/+c9z//333xUnL02aNGlyuzEMg2defJYztSnS+3rwh2/+eK7ruhRLRWbz81h+l0AqfEe4M28lK3mQxkiJkOWjd7iPVNcN5EGW68ycnWCpsITaHyfcldwgDzJIZ0vHbc2DvBAhBJVqhdncLLpkEUiH8IcuP/YrhEBbrGKMlonKAQzFQN0aIhjbeP8VAgpH87zq/ldd8zpahuUV/0zOoLYHCHfEqMyWKM4VUTrDhPsS1+SScxwHW7eQbYlYxCulueVvh8BzlTZqWK6FGlJXhXDTNNEsHUe3MUoGvrCyPCJ/fr+yLQdZ9QpqNtqXBALHdFGuojTGsV0CytWPad8shBBYBR1ttIzPEqSGMkQ6rlxK09Dr2I6D7JeRZQmBV4QjbEHoMo3YlWoFNaJw0Q4gBFbVwiwaqH4FWZFpTbUQuqBJ+WqYmp0i3OK58wzT8AQAw6YxXsUuW6QG4kS7ozQWNRRZIdIaZvFYjr39+0gmkzz9g6fxt6kk+5IXv2xXYNZNnCWH7rg3qjw1N4kv4lvNjTTLFolIHFcTFM7lCZohHn/4Mfbt24+u64yNjWEYBpFIhMHBwTvKpX05NE3jxOkTnJk8Rbw7Rsdg+6ZEKugNndlzcxg5k93DexkeGr6hMhchBAsLCxw+fpC6W6VzuJ10a+qS+7Jhmhw4+iL9e7rZ6IDUqDWozWi0xtuZH8nRke5i7859d+w4fZM7m41Gt30+303Li52YmODxxx/ngx/8IE8++SR+v59t27YxNzfH//yf/5Of+ZmfuSnP2+Tm0hQjm9wybNvmE5/4BL/1W7+FYRj4fD7+/b//93z4wx/G7395Xdw2adKkyfUyMzPDt374FE5vmNTAjQXhXw7Lssgt5VkoL0JUIZiI4LuGMo+XAmvzIJOROD03mAdZWSgyeWacuqsRGEwRal0vlghXoFUbuCWDVDhBR7aN4A2MC242jutQLBaYXVrADQqC6ciGF/Ou41KfKmFPVMgk0/Rs7SWSjDIzN8NUY4pEd3LD52uUGgSKfnZv333V66hXNWbOTZLP5Qj1RgkkgxTG8lRLNQIDMYKd8Q1dchdiWzaObqGiEIvE8KuXdszdVATohk61UUXIAjWkrhsJd2yXRqFOpVDGnw6iJgMXFZ4AnoPKJ+G7gnPFdb3xZ1mRNjy2CATYXvHM7UK4AmOhjj5aIRBQSQ9nCKav7jNTb9QQssB3SWezwGrYhAIXC5KGoWNhrebjCtfFLJvYZZNAJEA4HUL2yTRyGj0d3VyPfbxULqJJGv6QH31Jo3S6gN0wSG9PEeuOIkkykgS5o3nSW9KUx8qk1Qz37r0XJM8t9L3nvkegxU+iN46seo44x3BwDAe3LIiKKLt37F520wrK5TKmaSJLXut6dbRKR6yDe3fdg9/v58WDL3Lk5GEs2yISCvOKPfezd+++dS6lO5FKpcLRk0eYXJwgPZiirbd1U8SSWrnG3Nl5qMncs+Neent7b2i5rusyPT3FoROHEEGbruEOEukrf98cP3kcXxISl/lusi2bo98+ScRMsG/HPezctotIJHLd69mkyQqu62JZ1i0b3X7/+9/Pl770JcAzNX384x/nne98J5VKha9//eu88Y1v3NTna3JraIqRTW4pQggOHz7MO9/5Tg4fPgzA/v37+cIXvsCOHVdurWvSpEmTJp5Y+NzBFzi2NEJybxfB2LW7by6FpmnM5xcoNsrIyQChePi2jKHeTrw8yBLuTI229jY6bzAPMj+5yNTIBE5MIjS4UR6kTVuylZZ09oacNZuNZVksLuXIlXNIMYVQcuN8RMewqY0VEHMNOrs66Bzqxh8+L1g4jsMzB75PZlfmsiPaQsDS6Tz7BvcSj218QS6EoLpUYfrMBDWtSmQwjuSTyY8uojvWchHQ1WX1gSey2YaFqzsE1QDRUBTlNhQzCVfQ0BvUtbo3bh1U120v27CpF+qYuok/GUCJKZi2fUkRUQiBa7lIPumK+a6O7eJXFEzLRlYv3agtELi2wK+oNz0v8lIIx0WbrmKOV4mkI6S2pFGjVy+K2rZFw/TKXzZ4Fqy6TTwaXydACyGo1mpICjhVC7tmEYqHCKdCq2Pw9UKDVDRFNHJ9o4O2ZTN67Cx2wSASDdGypQV/3E+5WsYRDj6/j9pcDX1Jx+f6GOgeYNvw9nXr6TgOJ06dYHZhBiWq4Av4UISCZMr0dHTT0927bj9xbIf8ZI7qWJXBtiH27thDPB7nyNHD/MNTX6dzXxvdO7pQAypaVWPq+AxLp0v83E+9ne7u7ut6nTeTpaUlDp04SK66SMtwhmxH9obFESEEpXyZhXOLhNww9+y894ZzFh3HYXR0hKOnj+BPq/QMdxCOXv33uWXbHDpykEhLgGRrcnVdLMNi+vQcZ38wytauXTzx00/c8cJxk7sT27axbZsLJaXNHt2uVCr8/u//Pp/97GexLGvd755++mle9aprn6JocvtpipFNbgu6rvOxj32M3/u938NxHILBIB/96Ed53/ved9Ps3U2aNGnyUmNhYYFvPv8djE6V9FDHdQmHQgiq1Qqz+XnqwkBNBglEQi/rPMjugW5a+zuvOw/S0k3mR6aZnZ5FbgsR7k+ihNaLJZZhYRTrKIZEZ7aDdPLOyoPUdI353AJFrYSSDHjlGxvsX2ZVpzFaxFey6R3spbW//bKi5dzCHOfmzpHeerEgKQSUJ4skSbB9647LjhQLV1CYyTF1dhw74BLpT2DWDfJjOUREJjSYxJ+8+igDIQSWbiJMl0ggTCQUuS3FTK7jUtfqNIwGvoAPNaCubnchwGqY1At1HNfBnw6gRNTVbSSEi+XYuMsjcyuvS5YkFJ+CZdtIPi4rnriuQBYSqqLiChfTspYLY7zRboG33YUj8Ku3Xoh0DBttooI90yDeFSc5eHHx0dVQq9eQAxLSFT5vtmETVILrbg44ho221KBeqBJIBIm2RVBUBSEEpmZi1WxS8SSx6LW7qF3bpTJVpDFeJRaNUnZKJAYTRDPR1X1Aq2ksTRaQGhLDg8N0tG983BeuF6tg2xaKohKPxdc93jItcqOLaNMau/p3sWPrDkIh74bJ2bNn+NvvfJV7f2o//uDFN0hqxTpH/s9xfvHn3ks6nb7m17vZCCGYn5/jwPED1EWN9q2tJLPJGzY6CCHIz+VZPJsnE85yz657yWazN7RM0zQ5c/Y0J0aOE++I0L2lk0Dw+sRC27YZnxhjsbCIT5XJTxXIjxcJE+HHXv9m9u/bf0Pr2qTJlXBd96I8yZs1un327Fk+/OEP861vfWv1Z+95z3v45Cc/2XT93oU0xcgmtw0hBM888wzvete7OHfuHACvec1r+OM//mN6e3ubLskmTZo0uQps2+bFIwc4NHuKxL5OQomrc+M4jkOx5I3d2gG8PMjAnePIuxVsdh6kVq4zfXaSpUIepS9OpDuBvEaQE4BR9/IgI1KAzpYOYrHYnZMHyXJRUW6WhqvjT4UIRIIb5kHq+Tr6aImQo9A33Ee6M3tV229uYY6zE+fwp1X8iSCSDGbNxMgZtKfbGR7YcsnndSybhfF5ZkYn8WVUIt1x6vkqS5N55NagJ/xeRdvxCq7rYmsm2BALRQkFQ7enlMayqWk1DMtACSkofnX1hoAQAqOiUy/WQZXwp4MoG4hwQojl8iBPRFwrTJq2BTKrAiN477twBBKSV96yshwEjuvgOO5ysYqEzyfjk323dJ+16xbaaAm3YJLqTxLrTV7TuP2FlKsV/JEr7yOu4yA7MqFAGEszMYoGiiuTzCQJRUNoWoNKrYJt20iSRCQcIRaN4fNdm0BqGzbl8QLmjEZXTyfdW7rxB/0YhsHM7DRzuTmQPWExFAjR29lHNntjRWZ6XSd3bhEn77B/6/6Lsg6FEHzmi59m+A0DRBKXd+rNnpvDPxPmp378Lde9LjeK67pMTExw6ORBRMShY7idaPLGCy0cx2FxKsfSaIGeTC97d+0jHr++qI4VGo0GJ0+fYGTqLOm+JF0DHZvivK6Wa0yemqY0W6G/c4CtW7fR0dHRvJZqcku51Oj2SsHNZo5uCyH4y7/8S9773veu/qyrq4s/+IM/4Iknnmju93cRTTGyyW2nWq3yf/1f/xd//Md/DEA8Huf3fu/3eMc73nFHuUSaNGnS5E5maWmJb/zg29SzkN7Wednjp2ma5JZyLFbyEFUJJsMbjt2+FFnNgxwvkwx7eZCRdOy6TmCFEFQWi0ydGadm6wSGEoRa1y9LCIFWaeCUDNKhBO3ZtlX30Z2AK1aKiuZw/IJAKox/g6Ii4bo0ZsoY4xVSkTh915mn6bgOi7lFCuUCQghi4Rgd7R2XzCE0Gwaz56ZZmJ0j0B0mlI1Qmi5QXiyj9kYJ93jZeFf93LaNrdv4XJlYOEowELxtpTTVehUb2yulWSNMuI5ALzdolBrIEa+U5sY/qwLHdbHXOFhkSUJRlNsycr0RZlFHHykhGYL0YJpIZ2xThOKrFSMd28GpOPgaEFD8JLMpAqHNG3U16wblkSLOkkn/UB8dAx2Xfn+Fd5EvSdINv/5aqUb+bB5/Q+W+HfddNutwdnaWv/7nv+Ten9y34fJc1+UHX36RD/7Sr97yMWDLshgZHeHImcP4syqdW9oJXWekxlpsy2ZubIHyZJnhnq3s3LaLcPjGolAqlQpHTxxhOj9J22CW9t62TXGLFfMlps/MEXRD7Nt5zw2PjTdpshk4joNlWTd1dHt0dJT9+/cDEAqF0DQNgFe/+tV86lOfYt++jY9dTe4MmmJkkzsCIQRf//rXee9738vs7CwAb37zm/nkJz9JW1vbbV67Jk2aNLk7cByHw8eP8PzEUWJ7OoikY6u/azQazOXnKelVlGSAYOzlmQfZWM6DbL/RPEjHZWlygamRCayoRGggSSC5/oLVsR30cgOqFq2JFlozLXdUHqRt2+QKORaKOaSoj1AyvFrMcSkcy6E+XsCZrtPR0Ubnlh6CkZvb6l4v1Zg+M0GpVCQyGMcXUlkay9FoaAQG4oQ6rk2gsiwLV7PxyyqxcMx7P26DCKkZGrVGDeFbLqVZI0w4lkOj2ECv6ahx1SuleZncnBVCYCw20EfK+FWFzHCGQDq0qQJLtVbFF/Jd3vHrCqyqib7YIBqM0t69Oc3LK2jFBpXRIkpDZmBrPy3d1+/GvhqEEJQXSxTOFUjKSe7bdR/t7e0bbtPDhw9zIP88ww8MXXH5h/7+KE/8yNtpaWnZzNW+LIZhcOL0CU6NnyTWFaVjsA1/4MaLlAzdYO7cPPX5BruH9rB1eNsNF2wuLS1x+PhBCvU87cNttHbemKMVvPczN7/E3JkFUqEMe3fuu2XbvkmTq+Vmj24fOXJkNSfyzJkzfPSjH+UrX/kK4ImeTz75JL/9279NJpO5sRdyG3jqqaf4u7/7W0ZHR7Ftm87OTh577HF++qd/GkW59RnWN5OmGNnkjiKfz/P+97+fv/zLvwSgpaWFT33qU/z4j/94805fkyZNmlwlpVKRbz77HYpxE7Urylwhhy6bqMkQ/nDw5ZkHOV5Ezht0D/TccB7kwtgss5PTSG1Bwv2pi/MgTQuj2MCnQ1emjVQqjU++c9ynhmEwn19gqVZASQYIJcIbil1W3aAxVoScQc9AD+0D17/9rgYhBOXl9nFd6ET7EziOQ350EVsRXh5k5uoFKiEEtumV0oT8QaKh6G1xAwtX0NAa1PVLl9JYukWj0MA0TPypAGrM/7I59xGOizZTwxirEEmFSG3J4I/dHKedaRoYrnnRPiwcF7NkYFctQtEgri3o6erZFCFYCEF9sUZ1pEjEF2Jw2wCJ1hvPM9zwOV3B0kye8kiZzngn+3fuv+oL8yNHjvDDxR8w/OCWKz724N8d4Wf/xTtuuiBWq9U4dvIoY/OjpPqTtPe1bcrnuFFtMHtuDqco2LdtH4ODQzcklKxkVx46fhCNBl3D7aRabvy9dl2XhalF5kdydKS72LtzH4lE4oaW2aTJzcZ1XWzbxnXdi0RJRVGu+/j67LPP8vrXvx5ZllejMp5++mk+8IEPcOjQIQBSqRT/5b/8F5588sm7ppPis5/9LF/96v/G5/Oxf/9+QqEQhw4dolarsXv3bv7rf/34S6qMqilGNrnjEELwla98hQ984AMUCgUA/tW/+ld8/OMfJ5lM3t6Va9KkSZO7ANM0OX32NN/4wbeZtvPEH+4h0pG83at1S1nNgxwtETS9PMj0jeRBVhrMnpskl8+h9MaJ9FycB2k2dKyiRhA/XdkOryziDhGTBIJ6vc5sbo663UBNBQlGNxb09EIdbbREQJPoG+4j09NyUx16ruOSX3abEpWI9CXQSw3y4zlI+QkPJFCvQaByXRfbsBCmSzQYIRzaWHS9WTiOQ71RRzM1r5QmqK7JcVwupVmq4eDiT60vpXmp45oO2kQZa7pBvDNOYjCFsmHL9SYgBJV6DV9ARvbJuJaDWTRwGzbhZJhgMohe0Qn7wqSSN1bMIlyXykyZ+miZTCJN37a+Tckz3AjHdsiP56hOVBnu2MKeHXuJRq/tOZeWlvjzv/1vPPAz917xuZ77ix/y7/7tr900x06xWOTwiUPMlWZpHc6S7bzxZmyASqHC3NkFVMPPPTvvobv7xoTnlezKI6cOIYVdurZ2Ek/GrvyHV8C2bWbH5smPFxjs3sLObbuaRR1N7jocx1kVJdey4pS81s/eN77xDd72trcRj8cpl8vrnucLX/gCH/nIR1Z1hL179/IP//APdHZ23vgLuYk888wzfPSj/4lQKMQf/uEnGB4eBqBcLvPv//2vMTY2xtve9jM8+eSTt3lNN4+mGNnkjkQIwfT0NL/4i7/IN77xDQB6e3v5kz/5E1796lffMRd3TZo0aXInUavVOHLqGCdnzuLrCpHsb8U2LM4cOEkj7BLd0XpNuXp3I5udB1nNlZg6M07VbBAYSnp5kPL6PEi92sAuGqRCcdqzbYRDN5Yvtpm4wqVcLjObn8NUHIKpEP4Ncu+EK2jMVzBHy8QDEfq29hFrSdzU713LsJgfmWFucga1PUC4I0Z1tkRhrojSGSbcl7im1mTHcbB1C9mWvDzI4OVLeG4mtmVTa1QxHBMleEEpjSvQqzqNYh1U2WvGvo5m6LsVu26hjZVxl3SSvSnifYlbemxyXZdKsYxZMfAJiUgmQjAWxDItzJpFWA2RSV9/Y7JjOVQmi2iTddrb2+gdvvmRBpZhsTi6iDGjsWtgNzu27iAYvP7n/NMvfZ62V2ZJtSUv+5jxo5O0Njr4Fz/y+ut+nkshhGBxcYEDxw5Qccq0DbeSbk1tyohzYbHIwtlFEkqSe3bdQ2tr2w0t17Ztzo2c4/jZowQzfnqGOzclu9I0TGZG5ijNVNk+sINtW7e/pBxRTV5+bDS6fa15kl/96lf5hV/4BTo7O5mZmbno94VCgd/6rd/ic5/7HPv37+f555+/492R73//L3P69Gne+c538Y53vGPd744dO8qv/uqvoqoqf/VXf0UkcnNvat0qmmJkkzsax3H44z/+Yz784Q9Tr9eRJIlf/uVf5qMf/egdFf7fpEmTJrcLIQS5XI4fnjzEdG2B4ECCRGdm3QmdEILF0VlGz43h35Eh1Hbjbo07DddyqI8XNy0PsjC1yOS5cazIch5kKnzRY7RSHVG1aE1kac20XLJ45XZhOzZLhSXmiwsQlgkmIxuOVru2Q32yhDVZpTWbpWe4l1D85oqqelVj5uwk+XyOUG+UQDJIYTxPtVgjMBAj2Bm/ptZk27ZxNAsFhVg4SsAfuC15kIZpUGvULlNK46KVNLSyV0oTSAXWOWxf6lglHW20jNRwSA2miXbFb212rfCKY8yigSopBMJ+dEfHWXbrBAMBErEEfv/1iT62blEeK2LOa/T29dA51LmpeZOXQq9p5M7lcAuCe7buY8vQ8Ka4FOfm5vjyV/+cvW/eRTR5sRMvN5Vn/DtTvPcX/s2mOfVc12VqaopDJw9gByzah9uIp2+swXplubmZPLlzeTqSnezbuZ9UKnVDyzQMg9NnT3Fq9CSJzihdQ50ENij+ulq0usbU2Vm0vMHurXvZMrTlJZcT1+TlzUaj21ebJ/nlL3+ZX/7lX2bbtm2cOnXqso87cuQIjuNwzz33bNr63wzy+Tw/93M/C8CXvvRlOjo6LnrM29/+c+RyOf7Df/iPPPbYY7d6FW8KzSNbkzsan8/H+973Ph5//HHe/e538+yzz/LpT3+af/qnf+Lzn/8899xzT9Ml2aRJk5cljuMwMTnJi6cOUvHrRAfStGeGLnlMlCSJtqEuUh0Zzv7wJOXZCtFdbfhuYu7frWJtHmTPQA+tr9t93XmGtmGxMDrLzOQUtASJ3NdCJLz+4tI2LfTlPMjuTBvp9jsrD9I0TRbyC+SrBXwJlXBPYl0u4YXYmkV9vIiY1+ju7aTj0R2om3BBfTmEEFSXKkyfmaCmVYkMxom1pMmPLKBPWwSHEiT3dF99HiQC27RxNZuAEiAVzawT/24VQgh0XfdKaRSBGlEJ+c6L4Y7l0Cg00Os6asJPqDf6siqlMRcb6KMVVJ9M65YMwWz41p6/CYFRMTBLBuFAkPaOzSk9WcGo6pRHClBy6R/up31P24afu82gWqyydDZPQA/w4I4H6X24d1P3qY6ODn7uze/gf/7d/0u0J0LH9jb8QT+NSoPZY/NINR/vevt7NkWItG2b0bFRDp8+hJLy0XlvO+Hojd8McWyH+YkFiuMlBtoHeejRR655ZP1C6vU6J04fZ3T6HNn+NHtet31TxMJqqcr02TncGuzbcQ+9D1y66bxJk7sdWZbx+/24ruuVyrnu6veB4zi4rnvF0e1arQZwxc/z3r17N2/FbyLnzp0DIBaLXVKIBNi6dRu5XI6RkXNNMbJJk1uFJEls376dp556io9//ON87GMf4+TJkzz22GP8+q//Oh/60IfuqHbSJk2aNLmZGIbBqbOnOTRyFKdFJbE/S/tVOgD94SA7X7Wf/OQCI98/h7o1Rajz7gvAF0JgFhroo0WCpszwcD+pe64/R0yvNpg5O0Uut4jSGyP2SPe6kdF1eZBCZailm3js5o4uXyv1Rp35/Dxlo4aaChDr33ik0ShraCNFlKrL4JY+srtbb2qpi3AFS9M5ps+NYwdcIv0Jgo0I82fmERGZ0NYkqeTVj5QKIbAME2G4hP0hIsnkbblwF66grtWp63Vkv4wa9yOvcfp5pTR1TNPCnwwQyV5fZMDdiHBctLka5miFcDxE554O/IlbO2YqXIFe0rArFrFohNaezIaN8ddKY6lOZaRIwFbZunWIzAOZm1tKIwSlhSLFc0VSSorHdj1GW9uNjRlvRE9PD7/yb/4dp06d4sjRwxSMMrFonB9/6Cfp6+u74ef1vs9OcXL0OJGOMAOv7CUQvPF9xDItZkfmqM7U2d6/ndf+6OM3NLIOXm7bkROHmSvM0j6UZf/juzdF/C3mS0yfmSPohrhv54N0dna+bI4RTV7eyLJMIBDAtm1s217nkrRte8PR7RUxMhZ7aUz6zM/PAdDa2nrZx6yUhM3Nzd+SdboVNMXIJncNqqrykY98hDe84Q28853v5Pjx4/z2b/82//iP/8if/MmfMDw83PzybtKkyUue6elpvn30GToeHiKSvvaTMEmSaOlrJ9mWZuTgaYoz00T3tOEL3vk3ddbmQSbCMYa37yCSub6SGC8PsszU2XGqRh3/YILkjr5L5EFq2CWdZCBGe/sQkfCdUxwghKBSLTOTm8OQLALpEPHQ5UVIIQTaYg1jtEhECrJz6xYS7Teew7YRjmWzMD7PzOgkvoxKZGeCer7K9OEJ5JYg4ftaUMJXv++5routW2AJoqEI4VT41o75LuPYDjWtjm5q+II+gongulIas25QL9QRkkBN+YmEgy+fUhrLQZuoYE3VibXHaHuoFyV0a48vru2gF3Xcuk0imSDWH9s0p6IQgtp8hepImUQwyt4dO4lnb+5NHdd1WZpeojxaoifZwysfeOUNjxlfLT6fj127drFr165NW2a9Xuf4qeOMzJwl2Rdn26PDm+Jo1hs6s+fmMHImu4f3MvzG4Rs2LORyOQ6fOEhJL9I53Mb+fbs2JbsyN7/E3JkFUqEMr9772pveRt6kyZ3KSqv2hXmSa12SF95srNfrwJWdkXcLjYYGsOFNk5WIukajfkvW6VbQFCOb3FVIksQrXvEKXnjhBX7zN3+TT3ziEzz//PM88sgj/PZv/zbvfe97XzZjT02aNHl5MjQ0xDvib+Obz32bfHuFzJbO6xJj1KCf7Q/voTCd49wPziANxgn3JO/Imzpr8yDb2lrpfPBegtHrzIN0vTzIqXMTmCFBaDBJKp1Z/xjHRS/XcSsWrfEMrX0D+P13Th6k4zoUigXmluZxQxKhtjBx/+VPyF3HpTFdwhyvkE2k2bFvL5HUzT2BNxsGs+emWZidI9AdJr4vQ2m6wMSBMdSeKPFHOq+psMRxHGzNwudKJMIxgrHgbcmDtCyLmlbDdEyUkOJdHKwtpaksl9IEZAKtgZdEFMLV4mgW2lgFJ6eR7EkSe7Qf3y0uzLING6OgIZmQTCeItEU37ZjmOi7V6RL1sQotmSzb7r+H8E3OVXVsh9zYIrWJGlu7tvL4o4/d1RffpVKJoyePMF2YIjuUYedj2zflvL1WrjF3dh5qMvu330Pf/X035JQWQjAzM8PhE4cwfRpdWzvoy954E6/rusxPLbBwLk9HposfffgNJBJ333RCkyabzYoD0ufzXTS6vZIvuXZ0u1qtAi8dZ+TLlZfPGVKTlxShUIjf//3f501vehPvfve7GR8f50Mf+hBf//rX+exnP0tXV9cdeUHdpEmTJptBS0sL//INb+XAkYMc+t4Jkvu6CCeuz7GX7m7h3tYkY4fOkpudIrq3HSV8Zwhvdt2gMbZJeZDmch7kxDS0BIjcmyV8YR6kZaMX6/g0QUe6jeyWzB2V2WVZFotLiyyW88gxhVB3bMPRasewqY8XcGcbdHR20PWqbfjDN3dMtl6qMX1mglK5SGQgTnxPhqWxHIuzOQIDcZLbu69JPLctC0ezUWWVdDjplQTdplKaar2KK7ueCKmcF8Ndx0UrNmhUNJSoSrA7ctPzAu8krLKBNlqGmk16ME10V8ctL6WxNBOjoKMIH9lsmlA0xGbtKI5pUx4vok836OruYPdrthPYoJF+MzB1k8WRRcw5gz1De9j+hru3SXmlZO3Q8YMUjCXahlvYtXfHprgLS/kyC+cWCTlhHtj58A2f/zuOw8TEOEdOHcYXk+ja20EscePir23bzI7Nkx8vMNi9hTe97pWbVvrTpMlLiZXRbcdxsCxrtdjmwtHtl5ozMhz2zil0Xb/sYzRNW37sS+fY0RQjm9y1SJLE6173Og4ePMi/+3f/jv/23/4b//RP/8SDDz7IH/7hH/LEE080BckmTZq8ZFEUhQfuvZ+hvkG++YNvk8sWyWzrvC6XieJXGX5gJy1zS5x54TRSb5TwFTIHbxY3Iw9y9twUi4uLKD0xYo90XZQHaWkGZlEj4CgMtHST7L6z8iA1TWMuP09Jq6Cm/MT6UhuKPVbNoD5SwFey6RvoofVHOm5uHqQQlBeKTJ4ZRxc60f4E4Wyc3FgO2+cSGkySzKSvvpRGCGzTwtUdgmqQVDxxW9pkhSvQDI1aowYK+KP+dSKjYzrUC3WMhoGa9BPpexnlQQqBmdfQR8ooyLRsyRBqvdWlNGDUdMyCQdAfoK21dVNFQqthUh4pYOdN+gZ76fiRjptejqTVNHJnF6EI926/l8F7B+/aJmUhBNPT0xw6eQBD0WkbbmNXZsemLDc/l2fxbJ5MOMtr9z52wyPOlmVxbuQsx84eI9ISZPDBXkLhG8uYBDANk+lzs5Rna2wf3MGrXv+6u1ZUbtLkVuLz+ZAk6bKj2y81Z2RbWzvgxUJcjpXftbe33ZJ1uhXcnd9uTZqsIZlM8sUvfpGf+Imf4Mknn2RxcZH3vOc9fO1rX+OP/uiPyGazt3sVmzRp0uSmkclk+Jk3vIUjx4/wwtNHSOzpuK4sSYBkR4b7sg8wcWyE+WeniOxtQ43emgsn4bpocxWssc3Jg6zly0ydmaCiV/EPJkluvzAPEvRaA7uoE/dHGWgbJBwO3zG5fgJBtVplNjeHJnT86RDx1o3zIPWluifiWgrbtvaTfkX2pjrUXMclP7nA1MgERCUiwwncEsyemIaUn/DuFNHY1e8/wnWxDAthukQCYSLJ2+MwdB2Xht5YLaXxxwPrS2k0i3qhjm1ZqKkgkZaXkQjpCvS5GsZohVA0QMeudgLXUDy0WetgVHSskkk0HKaluwPFv3mZlHpZozJSQK7BwHA/Lfe23vQIoGqhSv5snrAZ5JU7H6b7lT13beyQ4ziMjY9x+NRB5IREx952IvEbd/K4rsvC5CJLowV6Mr382CM/Tjwev6FlGobBydMnODN+mkR3jF2vGUbdhH1Jq2tMnZ1Fyxvs3rqXLT+25a4VlZs0uV2sHd1eGdVeoVgsArxkxP0tW7YAUKlUmJubu2Sj9pkzp5cfO3xL1+1mIokVmblJk5cA8/PzvO997+OrX/0qAO3t7XzmM5/h9a9//cvmQqFJkyYvX0qlIt969jtUkhbZbZ3IN+CGq+bLnD54ArcjRGQoc9NELddyaEwUcaaX8yC39NxQHmRxOsfk2QnMoEtwMEkgtd6ttTYPsiWWpjXbSsB/55zMuq5LoVRkbmkOxy8IpsOogcuPzQvXpTFbxhirkIrE6d3aRyxzYxfoV8IyLOZHZpibnEFtDxDuiFGdK1GYLaJ0hgn3JfAFrv7C23W9PEjJhmg4SigQun2lNI0auqXjC/pQA+q6UhqjptMo1HF9EEgF8IWUO0a8vtm4los+VcGYrBFvjZIYSqNeQ/HQpqyD42IUNZyqTSwRI56Kb5rjVwhBPVejOlIkTJDB7QMk226uO1wIQXHea8bO+tPcu+s+Wltb79rzVdM0OXPuDMfPHSPUFqBzS8emOFVty2ZubIHSZJnh7mF2bd9NOHxjWZ21Wo3jJ48xPj9Gy0Cazr72TdmXqqUq02fncGuwb8c99PX13bWicpMmdxqO4zA9Pc1nPvMZPve5z+G6Lm9961v5X//rf93uVdsU3v/+X+b06dO8853v4h3veMe63x07dpRf/dVfRVVV/uqv/opI5KUxnt4UI5u85HBdly996Uv8yq/8CuVyGYB3v/vd/O7v/u5LxsrdpEmTJpfDdV2OnzrOD84eJLqnldgNtLy6tsPUyXFmFucJ72nFn7g+kfBSrM2D7O7voXWg84byIBfH5pgen0LK+gkNpFAj6y+CV/IgZU3QkW4lk8qg+O4cp4plW+SX8iyUFpFiCqFkZOM8SMuhPlHAmarT3t5K1w2IuFeLXtWYPjvJUj5HqDdKIBmkMJ6nWqzh748R6oojK1d/4W3bNo5moQgfsUjME4VvSymNSbVRw3ItlJCKumY/FK5AK2s0ig3kkIw/9TIrpdFttLEy9oJGojtBYiCFz39rc1Qd08EoagjNJZlOEE1EkTZJ4BGuoDpXpjZSJh1L0retj1jq5p4ruq7L0pTXjN2b7mX/zn0kk7emGftm0Gg0OHnmBKcnT5PsjdPe37Yp7kJDN5g7N099vsGuwd1s27r9hovESqUiR44fYb40R/twC21dLZsiFhbzJWbOzBFwQ+zfdS8dHR13rajcpMmdyMTEBH/0R3/El770JQzDALzItre//e38xV/8xW1eu83hmWee4aMf/U+EQiH+8A8/wfCw54CsVMr82q/9GmNjY7ztbT/Dk08+eZvXdPNoipFNXpIIIRgfH+c973kP3/72twEYGBjg85//PA8//HDzBKFJkyYveSqVCv/0g+9QCDfI7ujCdwNZZ/VCldMHTmC1qES3Zq9bCLgwD7J3uJ9U1w3kQdY05s5NsbCwiNITIdKbuqih2dQNzIKG3/HRle0gkUggS3eOU0XXdRaWFijUS/gSfkKJ8Ibbw2qYNMYKsGjQ099D++DmjqheiBCC6lKF6TMT1LQqkcE4kuIjP7KAblsEhxIEWyPX9L1qmRaubhPw+YmGopsiXFwzAnRDp9aoLZfSqChrxF/XcWkUGmhVDSWm4k8GXl6lNBUDfbSMqFikBtNEu+O3/PVbmoVZ1JFtiVQmSTgWhs1qxrYdypNFtIkabW1t9A3ffDHftmxyYzkaUzW2dm1j9/bdd3WJSaVS4eiJI0zkJsgMpWjrad2Uwq9GrcHs2Xmcosu+bfsYHBy64WbsxcVFDh8/RNUu0zncRqbt6jNsN1pubn6JuTMLpEIZ9u7cd8PZlU2aNFnPqVOn+MM//EP+8i//EsdxAOjs7ORDH/oQ733ve18yBTYrfOYzn+Fv/uarKIrCPffcQzAY5ODBg9RqNXbt2sXHP/57L5nRdGiKkU1e4ti2zac+9Sk+8pGPoGkasizzq7/6q3zkIx95SX2QmzRp0uRSCCE4deYUz5x6gfCuLPHW63ffuK7LzKkJpmdmCO5pJZC6+jE54Qq0ufJqHmTvcN8N5UHWlypMnZ2g3KgSGIgT6oivE0iFAL3ewCnqxJQIHS3tRCKRO2akViCo1+rM5uaoOw3UdJBgJLTh9jCKDRqjRQINib4tfWR6N8fRc9l1dAVL0zmmz41jB1yiAwmshtfw60ZkwoNJ/NeQFSiE8PIgDYewP0QktLHz82YhXIGma9S0GpIqoQbVdSKbbdo0Co3VUhp/IvCyuYEphMBc0tBHKygOpIbShNujt7yUxmwYmAUDv6yQyqYIhANslmXWNmzKYwXMOY2e3i66hrpRAzdXDDc0g9xIDnPeZO/QHrYNb7urz0Hz+TyHTxwiV1+kZThLS0d2U/aRSqHC3NkFVEPlnp330t19Y7mZQgimpqY4cvIQtt+ke2sHifT1Twqs4Lou81MLLJzL05npZs/OvSQSN77cJk2anOfgwYP8wR/8AX/7t3+7Wl4zODjIhz/8YX7hF37hrj6GXomnnvoOf/u3f8fIyDkcx6Gjo4PHH/8RfvqnfxpVvQ03b28iTTGyyUseIQTHjx/nXe96Fy+++CIAu3fv5k//9E/ZvXv3y+Yio0mTJi9farUa3/7Bd1lQymR3d1/3ODSAVq5z+ocn0JMS0W2tG47lbnoe5EyeqbPjGAGX4ECCQHq9I891XfRyA7dsko2lacu03lEnrK5wKZVKzC7NYykOwXQIf/Dy6ydcQWOhgjlaJuYP07e1n3jLzW36diybhfF5ZkYn8WVUIj1x6rkqS5N55JYg4YEkyjVkBbqui61bYLlEgxHCochtyYN0HZe6VqdhNJADPvwBdXU9hABLM2kU6tiOgz8VQImoL5vzA+EK9HmvlCYY8pMezhBI3VyX4KXWwagaWCWDcDBEMpPYMCv1WjFrBqWRAqJo0z/UR3v/5mQEbkSj0iB3Lodclrxm7IHBTXEO3g6EEMzOznLwxAE0uUHbllaS2Rs/FgkhKCwWWTi7SNyX4N7d99La2nZDy3Uch/HxMY6cOoyalOne0rkpBTq2bTM7Nk9+vMBg95ZNya5s0qTJep555hl+//d/n29+85urP9u5cyf/8T/+R5544olmEdRLjKYY2eRlg2ma/M7v/A6/+7u/i23b+P1+fvM3f5MPfOADzQNbkyZNXvIIITg3OsLTx54lsD1FoiNz/ctyBXPnppgYnySwK0swu35MZnPzIG0Wx2eZGZtCZPyEB1IXNXw7lo1eaiDVHdrTbWTTd1YepO3Y5AtLLBQWEBGZUCqCssHYvGs7NKZKmBNVWjMZerb2EYrf3Ites2Ewe26ahdk5gj1hQtkIpakCpcUyak+UcG/8ohH4jXAcr5RGdiRiEa+U5nYYU23LpqbVMCwDX0hB9aurk75CgFHVqRfr4AN/OoASfGm5DjbCtb1SGnOyRjQbITmYRo1ungB4NQhXoJc07LJFLB4lkYrfUKTEhTQKdaojRVTDx8DWAbJdN7dhHqCyVGHpbJ6wFeYVu15Bd3f3XStsO47DxMT/z959B1Zalvn/fyc5vZeUk94zKVMyQ5MmAqKufl392dvuAoLSBEH66KJfdVVmGJp0XFdx17au4Hd1dVWaoiAwk+mT3nOSnN7L035/BEZHhnGGczJJJvfrL3iSeXKfnOTkPNdz3ddnnL4DO8CmUt3mw+YqfFukqqoEZ4LMD4WodlazvmsDHo+noHNKksTA0AD7hvZgr7JQ21aDqQgBOvlcnqmhGWIzSTpbuljT3rmsbnIJwkqnaRq//vWv2bp1K88999zB4yeffDKbN2/m7//+70UQ1AlKFCOFVUXTNF544QUuuugiDhw4AMDpp5/Oww8/THNz84p9sygIgnC00uk0z/zp90ypAcrX1qE3vfHiQzaRZnD7AZIWBXtXJVI8++d5kG2NuOve+FbiXCqzUBzzz1L2yjzIvw4OyWfz5CNpDHIZNeU+XE7XspoHmcvnmAvOE0qEKXPqMTutR5y7J2ckUmNhtNkstfU1VLfWYijg+TkaqUiSqcFxorEI1mYHZWY94dEAqXTmlS3w9mMq3siSjJKV0KPDbrVj0BuWJJQmL+VJppNImoTOdJhQmmiGdDRNqaUUg9tE2TEUWlc6JSuTGY8j+9M4a504m13HlH5eDKqkkI1kUNMqTpcDu8tetJmUmqaRmk+QGIpi01to6WzGUYQuvr/1NSP+CJGhMJXmCjb1nER5eXG2Ly8FSZIYHB5kz+AujBUGatqqMVmOfizD61FkhbmJOUKjUVp8LaztWlfwzLdMJsP+/n0MTgzgaXBS21xdlDm0mVSGycEZsqE8Pe3raGttE80LglBEqqrys5/9jC1bttDX13fw+DnnnMPmzZt561vfumJfQ4WjI4qRwqqUTCa59dZbuffeewGw2Wx87Wtf48ILLxR3XgRBOOFpmsbY+BhP73wOfbsDZ+0bv2jWNI35kRlGDgzj9Liob2/E9gbnQQIkXwlLiaZjGJqcWGpeOw8yl8ogRTLYdRZqKqqX3TzIdDqNPzBLIp9cmAdpO/I8yHwsQ3okjC6u0dDaQEVj1aJuIdU0jdhchIn+MbJksTU5FzqVRuaRylTMLS4M3iOv+ZDzoSHnJNSsgklvxGa2HbHzc9G8EkqTSCfQyjT0Jv0h30dFVslEUmQS2VUZSiMn86SHYxDL42pyY693HlP6eVHWkJPJhTOU5MHlcWF1Hlv40ZFoqkp8KkZqNI7X5aFpTSNW5+IGxKiKSnAySHwkRlN5Exu6N6zo+YHZbJb9/fs4ML4fR52N6pbiFPakvMTMsJ/EdJLOpi66OroxmQorbiYSCfbs281kYJyKFi/VDVVF2QafiCaYGvSjpkrY0NlLY2OjuDYQhCKSJIkf/ehHbNu27WBzEMA73/lObr31Vs4888wlXJ1wPIlipLBqvdoSfskllzA5OQnA29/+du677z6qq6uXeHWCIAiLL5vN8vsX/8BIdpry9fUYCtjSpmnaGy9oqhqR6QATQ+PkdDKmFhdG71/Pg9TIxlOo0Txem5uq8kpMxsI7dYpF0zSi8Rj+oJ98qYTBbcZgfv3wE03TyAaSZEciWDDS2N6Iu9q7qF0AqqISnJhjcngczVaCrclJLpohMBoAlw5Liwu9/eh/BjRNQ8rm0fIqVqMFq/nInZ+LRVM10tk0qUzq8KE0OZl0OEUum0fvMmJwGFZNt4WmaUiRLJnhGGWShrvVg9V3bN2uhS8C8uk8+UgWHWW4vW7MNhPFaplVJIXYeITsZIqa6irq2xteCb1ZPHJeJjA2T3oiRWd9Fz2dPSt6fmAymWT3vl2Mzo3ibXZR1VCcGyLZdJaZIT+5QJ617etpb20vOIAhHA6zc28fgcQ81e2VVNaUF1ws1DSNSDDKzOAsRtVMb88mqqurV83rhCAcD9lslscee4w777yT8fFxAEpKSvjABz7ALbfcwsaNG5d4hcLxJoqRS2hycpKXX36JgYFBBgcHmJiYQFVVLrzwQj7+8U+84fNu3/4y//mfP6G//wDZbJaqqirOOutsPvrRj2I2H9+B5CtBOBzmmmuu4Xvf+x4AHo+He+65h/e+973iTYggCKvCxOQkT21/lpIWG+6GiuP22qdIMvOjfqZGJ9A8eiwtntfOg5QVstEUJBV87koqPOXLaqucoiqEwiFmw3Oo5hLMbgu6I3QSqYpKeipGfiyG1+mioaMRq9u+qGuUchKzw9P4J6bR+4xYqu0k/FHCMxF01RYsjU7KTEf/PVVVFTmTBxnsZhtmk3lJQmkURSGdTpHOZygzlqE/TChNKpRCUZWFeZBW/bLpoF1smqqRm0uRHYljNOrxtHsxeY7ze0ANcsks+XAOs8GIq9x1xMCmYyVl8sRGIkjzWRqbGqhpeeOzaY9WLp0jMDyPNC+xoW09HW1rMBiO75zNYgqHw+zc18ds3E9lWwXlNd6idAEmY0n8g7OQLGVDZy9NjU0FdS1qmsbc3Bx9e7aT1pLUtPvwVLqLEqATmA3hH5jDbfayoaeX8vLygs4pCMKhkskkjz76KPfccw9zc3MA6HQ6PvGJT3DTTTfR2dm5xCsUloooRi6h+++/n5/+9L9ec7yQYuRPfvKfPPjgg5SUlLB27Trcbhd79uwhHA5TX1/PnXfetaK3jywWTdP48Y9/zJVXXkkwGATgwx/+MFu3bi14oLYgCMJKkMvl+OP2FxiIj+NdX4fRunhdh7lUFv/QJHP+WUrrXpkH+Vcz66Rcnlw4jV4qpba8Gpdrec2DzEt55kMBArEgpQ4dFpeV0iNcbCs5mdRYBGUmRU2Nj5q2OoxFmMF2JNlEhqnBCULBAOYGG0aXifBYkEQkiaHJjrnWcUzbdBVZRs7KlKml2C22hc7UpQqlSSfJKTl0Jh26Q0JptIVQmnAa9CwkY6+iUBpNUclMJciPJbB6rLha3RiOodu1KGtQNXKxDFJMwma14vQ60BXYDfeXsvEs8eEwJXGN5vZGKhuqFr0jNx1PExwKUBorZVPXJpqbmld0Mvbs7Cw79m4nqSWoaqvAXYTCHkA0GMU/OIdFsdLbvZHa2tqCzquqKpOTk+zcvwPNrFDXXo3D7Sh4naqqMjs5x9xQkBpvHeu614vrI0EosnA4zIMPPsgDDzxAOBwGwGg0cskll3DDDTfQ2Ni4xCsUlpooRi6hX/ziF0xNTdLW1kZbWzvf//5/8Jvf/OYNFyOHhga54oorKCkp4ctf/gqnnnoqsNAS/c///AV27NjB2WefzT//823FfignjOnpaT796U/z85//HIC6ujruv/9+zjvvPNElKQjCqjAzM8NvX34Gpd6Et7mqqK99yXCc6YFxIskYhmYHlhrnofMggVxyYR6krcxMTUU1NpttWXWzpTNpZoNzxLJxdC4jZofliN8jKZkjNRKmNCzR0NJAVZOvqGnBf03TNBKhOFP9YySzSawtDkp0ZQRH5shJEsZWJ6bKY5vTJ0kSakbGUKrHbrEvbLNcglCaXD5HMp1ERkFv1h0yl1JVNLKx9CuhNDoMbuPqCqXJvRJKM53GUevA2exGdwzdrsWgyirZaAY1KeNw2nG4HUcs0B8LTdNIh1IkhqOYVD3NHc14qj2LHkqTCMUJDYawqTZO6t5Ebe3KTcZWVZWJiQn69u9AMUtUt/uwF6ErW9M0gv4g84NBvJZyers3UlFRUdA5FUVheGSY3f07MXr01LfXYLEVvg1elmVmRmcJjoVpqWujp3Ptit5eLwjL0ezsLPfeey+PPvooyWQSWMhnuOKKK7j22mvx+XxLvEJhuRDFyGXk9ttv59e//t83XIz88pf/L88++yx/93d/x3XXfe6Qj83NzfGP//gPqKrKt771rzQ0NBRr2SccVVV59NFHuf7660kkEgBcfvnlfOlLX8JqXdxB6IIgCMuBJEn8qe9F9gaG8GyoxWR/4xdrmqoRmQkyOTROpkzC1OzCVH5oMUxTNTLxFGosj8fiwldeVXC4QTFpaCQScWYCfjLkMbjNGC1HngeZC6XIjEQx5Utp6mjCU1uxqFuZNVUjNBVgamgM2ahia3YipfMEhudRrKVYmp0Y3Ee/TVfTNOT8QiiN2WDCZrYtaqjO6y8EMtkMyXQSTaehN+sP6UhTZIVMOE0mmUXneCWUZhWFTcgpicxIDDWcw93kwt7gOu6hNEpeIRvOQFbF5XFhc1oPuclQCE3VSM7GSA7HcFocNK1pwuEtvDPuiF9T0wjPhIkMRfBZq9hYhOLaUpJlmeGRYXYN9KH36qhprcZsK3zLvqqqzE3MExoJU+dtYH0Rugvz+Tz9A/3sH9mLo9pKXVsNxiJs7c/n8kwNzRCbSdLZ0sWa9k6MxuPbMSwIJ7qJiQnuvPNOvvOd75DL5YCF8WfXXHMNV111ldhtKLzG8hm6JBREkiT+9Kc/AXDeeee/5uNVVVX09PSwe/dunnvu9zQ0fOx4L3HFKC0t5dJLL+W8887j4osv5ne/+x0PPPAAv/3tb3nooYc45ZRTVuxdcUEQhKOh1+s585QzaJ9v49cvPEWyRoe3tfqYimmKJBMYn2VqZALVrcey1oXbfmiB8S/nQVa5KqhoKUevWz5balVVJRwN4w/Nohg1TBUWHMbXvymlqRrpmRj50RhOi532rq6CksWPhiLJzI36mR6dpMyrx9rjJBVIMtk3TlmFGfNJFegsR/89VVUVOSeh5VVsJisWt2VJinuaqpHOpElmk5QaStE79IesQ87JpEIp8rk8BrcRa6N9Vf1tzkeyZEZilGZVPC0erOtrjvvcTikjkYtkKVNK8HpcWGosUKTnQJVV4pMR0mMJqioq6DxtE+YCbooc1ddUVALjARJjcVoqWzjnrDfjcCxu4XMx5XI5DgwcYP/oXmw1VlrOaMJgKny+pSzJ+EfniE3EaKtr56zzzim4uzCdTrPvwF6GpwbxNrpZ95bOQzqf36hMKsPk4AzZUJ6e9nW0vbNtWc0cFoQTwcDAAHfccQc/+MEPkGUZAJ/Px/XXX8+nP/1pbDbbEq9QWK7Eq/EJYmpqimw2C0BHR8dhP6ejo4Pdu3czNDR0PJe2IpWUlNDW1saTTz7JHXfcwW233cbAwABvfetbufHGG7nxxhtX9MByQRCEo1FZWcmH/+79bN+1g77f78O1oRaL88gd4vl0Fv/wNLPTfspqLVjeVH34eZCRNPp8KQ1eH+5q97LqZpNkiUAoyHx0nhK7DnPtkbsCVUkhNR5BnkxSVVVJ3WmbMNkXNywkl87iH5pibmYWU70F50Yv0Ykw4y+Poq+34jizhtJj2KasKApyVqJULsFhsWGymZakuKfICqlMikw+Q5mpDJPzz+vQNJDSeVLhJIqmLhQhffZltY1/MWmaRm4+TXY4hkGvo6qtHJPXfHyfJw3yqRz5cA6DTk+Vt/yV5OrirEHOycTGwuSnM9TW17D+Ld1FKaAdiZSXCIwGyEym6W7souv87hW9dTeVSrFn/x6GZ4ZwNzlZ85b2ohTgctkc/qFZUrNpelrW8tZ3dBb8Xjgej7N73y6mghNUtVaw4byeosziTEQTTA36UVMlbOjspfG0xmX1N0YQTgR9fX3ccccd/PSnP+XVzbZNTU3cdNNNXHjhhctqh4uwPIli5AlidnYWWJjH8HpvoF7dYvLq5wp/m06n48Ybb+Ttb387F154ITt37uRrX/sav/zlL3nkkUfo7OxcVZ0YgiCsPjqdjlM3nUJrYwu/fv4pAuURvGtqXnNhl4mlmDgwSiQexdDswPnmekrK/moeZCqDHMlgKTXTXtG07OZBZrMZZoPzhNMRdC4j1kbXES9g5XSe1GgY5nPUN9XhO6/niEnaxZCKJJkaHCcai2BtduBc7yU0EmBuOoCx2YGrs+6YOuRkWUbJSOjQ4bY4MRqMSxJKI+UlkpkkeSWPzqzDbDYfXIemaWTjWdKRFOhLMJSbMBlXz1tYTVHJTCfJjyWwuEzU9tYsSShNPpElH8ljNZvx1vrQF/FnPZ/KERuOoITyNLU2Un1B9aKPBcils8wPBVACMhvaN9Dxzo6FeagrVDQaYefencxEp6lo9dJzXmdRCnDpZJqZwVnkiMKGNb20ntRacMEwGAyyc18fkVSQ6o4qNq5fV5Rk7EgwyszgLEbVzMk9b6K6ulq8TxeEIvvjH//Ili1b+NWvfnXwWFdXF7fccgsf+chHVvTrqHB8rZ53cie4TCYNcMQ7EGbzQpdGOp0+Lms6UZSUlNDb28vzzz/Pl770JW6//XZ27NjBWWedxRe/+EWuuOKKFZuoKAiCcLS8Xi8ffMf/x869u3j5d7txrPdh/Yvwg2ggQiAYwHlKLQbnn7sCNVUjk0ijRnO4LU58tfWYTYvbNXgsNDSSySQzAT9pNYvBbcJRceRgjFwkTWYkgj4NbW2NeDdULmqar6ZpxOYiTPSPkSOLtcmJtcJJcGQeqVTF3OrC5T36MA+NV+ZBZhSMOiNum7coWyKP2SuhNIl0AhV1oQip//PPhqpoZKNp0rE0pVYdphoLpUsxt3KJqHmFzHgMaSqNo9pO1ekNxz2URlNUstEsclzC4bBR2VhOWRG3uWYiaeIjEXTpUlrbG6k4qXLRt5unYimCgwH0KR0nd55E06lNK/Z9nKZpzM/P07d3B1EpQmVbBT29XUUpwMXDcWYH5yjL6tnUfTL1p9cXVNzUNA2/30/f3u1kSzLUdvioL+8pShEyMBvCPzCH2+zl7A3nUl5eXtA5BUE4lKZp/Pa3v2Xr1q387ne/O3h806ZNbN68mfe+972i+1g4ZqIYKQhHyWQy8S//8i+8853v5OKLL2ZoaIibb76ZX/ziFzz44IM0NDSIu6+CIJzQysrK2LR+Iy0NTfzmj08z74pSvqaGUl0Z1W11ODxO+rfvI1uVxNLkIhfPQFJemAfZXLGs7parmko0GmUm6Ec2qBi9Fhwm9+t+vqZpZObi5EZi2HVmejo6cFS6FvV1X1VUghNzTA6Po9lKsK1xokVLmNk3DS4dlrVurMfQIadpGlIuj5ZTsRgtWF2WJSnCaJpGJpshlU4thNJYDRj+opirSArpSJrsK6E05gbbqrrIkVMSmdEYaiiLq8GN45zKY9pyXwyKpJCLZFDTKi63A1uLvWjPgaZppOaTJIajWMtM9KxZg3ORf5c0TSMejBEeDGHXHJyz9pwV3TWnqipTU1P07d9BTp+lur2KGm9nwefVNI3wfIS5wXkcZU7OWvtmKiurCvo+qarK+Pg4uw70UWLVqFtbjd1VeIq3qqrMTs4xNxSkxlvHBae/o+AAHUEQDqWqKv/93//Nli1b2L59+8HjZ599Nps3b+Ztb3vbin0dFZaeKEaeIMzmha3Zr86NPJxMJgOwoufgLLWSkhLOPvtsXn75ZW688UYeeughnn32Wd70pjexZcsWPvaxj62qCyZBEFYnl8vN+97+Hvbs38uffr8D29pKbOVOrB47azZ1M/zcXoI7Bmg+u4ua9jrKSpdP15GsyATDQWbD85TYSjHXWDEfoStQlVVSU1Gk8TiVbi91mzb8zbmZhZJyErPD0/gnptH7jNjXuYnPxpjYPoau2oLttCrKjqFDTlVV5KwEkobNvBBKc7zDTmChuJrOpkllU6+E0hgo/Yt1SFmJdDhNPp/H4Fp9oTRSdCGUpiSt4G7xYFt3/ENp5JxMLpyhJA9urwuLz1q050BTVeIzMVLDMbxODxs3rsfmWtxgA03VCM+EiAxFqbZX845Nf4fX613Ur7mYFEVhZGSYnf070blLqO6txlKEYB9VVQnOBJkfCuFz+Ljg5LcXnHwryzJDw0PsHdyNyWug+ZQ6zNbCu+JlWWZmdJbgWISWulb+z3lnimsbQSgyWZb58Y9/zB133MH+/fsPHn/HO97Brbfeytlnn72EqxNOFKIYeYLw+aoASCaTpNPpw/5RDgQCAFRV+Y7r2k5EDoeDBx54gHe/+9186lOfYmZmhk9/+tP893//N3fffTdVVVVLvURBEIRFVVpayvqedTTVN/Lb55/GPzUGGYXyUif/eM4HsFpt/Pb5pwmlZw52Ty6lXC7HXGiOUDJCmcOAtcF5xK3VclYiNRZB82eoraum+s2dix6kkU1kmBqcIBQMYG6w4dzoJTwWIrA9iKHJjvOsWkp1R3/DS1EU5IxEmVqC02LHZDctyTxIRVZIZpJk89nDhtLkUzlS4RRqySuhNJbVFUqTn0+THYmjLyulss2Lqdxy/ENp0nny4Sz6Eh0V5V5MVhPF+mFRJIX4RITMRBKfz0fPmR2vnH/xKLJCcCJAYjRBS1Ur55x9zopOxs7n8wwM9rN3eA9mn4mm0+sxmgufG6rICnMTc4RGozRXNfPuN59ZcPJtLpejf+AAB0b346q103lWKwZj4a+duWye6eEZYjNJOlu6OOvt52I0Ht/ZqYJwosvlcnzve99j27ZtjI2NAQvNOO973/u49dZb2bRp09IuUDihiGLkCaKurh6TyUQ2m2VgYIDe3t7XfM7AwAAA7e1tx3l1J6aSkhLe9a53sXPnTq666ip++MMf8v/+3//jhRde4N577+Vd73rXquroEARhdXI4HLz3gnczOjaG0+E4pOvo1e7J53+3A/u6he7J40lDI51KMxP0k8inMHhM2L3uI7425+NZ0iNhymIKza2NVLy1alGDNDRNIxGKM9U/RjKbxNriwFHhITAyR3ZKwtTiwLW27pj+nsiShJKRMZTq8VhcGPSG41+E1ECSJJLpBHlVem0ojfoXoTTGUowVxtekrp/INFUjM5MgPxLH4jBTs64ag/M4F1Y0jVwiRz6Sw2w04fNVFbXgLmclYqMR8rMZGhrrqDlvbVFDbw5HyksERubJTGXoaeqh64KugzPTV6J0Os2+/n0MTvbjbHDScU5bUea7SnkJ/4if+FSSzsYuzrng/IKTb1OpFHsP7GF0epjyJg/rzu0sSop3JpVhcnCGbChPT/s62t7ZVpTzCoLwZ6lUim9961vcc889+P1+YGE0z8c//nFuvvlmurq6lniFwolIvJKfIPR6PaeeeirPPvssTz7529cUI+fm5ti7dy8AZ5551hKs8MRVXl7O97//fd797ndz9dVXMz8/z4c//GH+4R/+gW984xtifo0gCCe8kpISWpqbX3P8r7sn52bGKe+uW/SUXFVTicVi+IOz5MokjB4LTvPrbznUNI1sMEl2OIpF09PZ3oL7VO/izrBTNUJTAaaGxpCNKrZmJ+a0jbmBWVRLKeY2J2730RdRNO2VUJqsgklvwu1wLs0FuwbZXJZkOolaqqIz6zHr/jKURiUTzZCOpdHZdJhqV1kojaSQmYiTn0jh8NmpOq0BneX4zlLVVI1cLIMUk7BZrVTUFzfAKJfIEhsOQ1Slqb0J37qqRQ14AsimsgSG5lGCCr0dvbS/s31Zzag9VrFYjN37djEZmsDb4qHr3DVFme+aTWeZGZolN59jbcd62v+u8O9TNBpl975d+CPT+For6D1/bVFGFiWiCaYG/aipEjZ09tJ4WqMYhSQIR0FVVYCj+n2JRCI89NBD3H///YRCIQCMRiMXX3wxN954I01NTYu5VGGVE8XIFebxxx/nZz97gjVr1nDTTTcf8rGPfOSj/O53v+NXv/oVZ599NqecciqwMEfyjju2oqoqZ599Ng0NDUux9BNaSUkJH/vYxzj77LO59NJL+d///V8ee+wxnnnmGR566CHOPvts0SUpCMKq9Wr35IGBAzz3uxcx95TjqHz9sJg3SlEUQpEQ/vAcmrkEs8+Kw/D6Ww41VSU1FSM/GsPjcLFm3VpsnsKDFY64RklmbtTP9OgkZV491h4nqUCSyb5xSitMWE6qOKbilKaqSDkJLa9iM1qxuCyLXvg5/DoWQmmSmSQl+hL0Nv0h61AkhXQ4TTaVRe80YG2wUbKKCgtKRiIzGkeez+BucGE/p4my4xxKo8oq2UgGNSXjcDpwNFVSWsQAo3QoRXw4glHW09HegveU8kWfeZmMJgkOBjGk9ZzadSoNpzWs2GRsWBip1LdvB6F0kMqOCnrWFycZOxlLMjs0h5ZYKOw1nVJ4gnggEKBv7w5iuQg17VX09q4tSjJ2JBhlemAWk2bm5J43reigIUFYCo8++ijf//732bZtGxs3bjzs58zNzfHNb36TRx55hEQiAYDVauXyyy/nuuuuo7q6+nguWVilSjRN05Z6EavV4OAg99xz98H/9/v9xGIxKioqDtnm9sUvfung/3/3u9/hscceY/369dxxx7bXnPMnP/lPHnzwQUpKSli/fj0ul4vdu/cQDoeor6/nzjvvEp16i0xRFB544AFuuukm0uk0JSUlXHXVVdx2222H3SqUyWT40Y9+RGtrK2edJbpWBUE4sSWTSZ56/llmdTHK19ahMxR+XzSfzzMfmicQD1Hq0L9SkHv9C20lL5Mai6BMp6iurqK2rR7jIs+wy6Wz+IemmJuZxVRvwVxhJToRJjIfxVBvw9LgPKbEZFVVkDISpTLYLDbMRvOShdKkMinSuTSlxlIMRsMh65AyEqlwCkmSMLhN6G36VVVYkGI5MiMxSMq4m93Y653H/XlS8jLZcAay4PI6sTltxQul0TSSs3ESwzEcRhstnU04Fnkcg6ZpxOajhIfCuEpdnNRzEj6fb8X+XGmaxvT0NH37dpApS+Nrr8RV7irKuaPBKP7BOSyKld7ujdTW1hb0fVpY6xR9+/qQyrLUdVQXZa2aphGYDeEfmMNt9rKhp5fy8vKCzysIq00qlaKzs5NwOExJSQmf/OQnue222w4GUk1OTnLXXXfxb//2bweDb91uN1dffTVXX311wcFVgnAsRDFyCe3c2cf111//Nz/vsce+h8+3EDrzt4qRANu3v8x//ud/cuDAAbLZLJWVlZx99pv56Ec/KtLmjhNN0zhw4AAXX3wxzz//PADd3d08/PDD9Pb2UlJSwvT0NA8//DDf/va3CYVCnHvuufz3f//3Eq9cEARh8WmaxtDIMM/u+SPGTjfO6jeWbpvOpPEHZonlEujdRsz2Iwd/SMkcqdEwpSGJhqZ6Kpuri1IMPZJUJMnU4DjRWARriwOdWU9oNEgqmcbY4sBcbT+m4pQsyygZCR1l2C12jAbjkoTSyLJMKp0iKy2E0uiNBl791msa5JM5UuEkWinoPUZ0Zt3qCqUJZsgOx9BRiqfNi7ny+IfSSFmJXDiLTi3F5XVhsZsp1g+LqqgkpqKkRuNUeMtp7GjE4ljc95iaqhGaDhIbjlHjqKG3u3fFJ2OPjY3Sd6CPUgf42qqwOQtPF9c0jeBsiPmBAF5LOb3dG6moqCjKWncd2InOUUpdRzU2R+FrVVWV2ck55oaC1HjrWNe9XjRNCEKB/vSnP3HttdfS19cHgNfr5YorrmB0dJQf/OAHyLIMQFVVFZ/73Oe47LLLsNsXd1eIIByOKEYKwiKSJImvf/3rfPnLX0aSJHQ6HZ/4xCeIx+M88cQTKIoCgMlk4qMf/Sh33XWXGMotCMKqkU6nefbF3zOpBPCurUN/FOEZmqYRT8SZCfrJksfoNmOwGF+30KNpGrlwmsxIBFOulMb2Jjx15Ys6e0zTNGKzESYGxsiRxdrsRFVUgiPzSKUq5lYXBq/5mIpTUl5CzcoYywzYzLZFDwI5LA3yUp5kOomkSujN+kOKuQuhNBlSkTSlplIMbiNli1zsXU40VSPrT5IbiWO2GXG3eTG6Frfj9rWLWEgnz4WzmHQGXOXuoqQuv0rJy8TGImSnUtTW1VDXVlfU8x/2a8oKwbEAifEE7dVtrOtaX3Di81KSJInBoQF2D+7GXGmkus2HyVL4z4mqqsxNzhMaDlPnbWB9EQp7r65179AerBVm6ttrirJWWZaZGfUTHIvSUtdKT+da0TAhCEWkKArf/va3+fznP39wG/arGhsbuemmm7jooosKDq4ShEKIYqQgLDJN0/jjH//Ihz70Iaanpw/5WG1tLZ/61Ke46KKLVvTdfUEQhDdK0zTGxsd4eudz6NodOGvLD1ukU1SFSCTMTGgO1aRhclvRG1+/IKepGml/jNxoDJfJRsOaJuxex6J2p6mKSnBijsnhcTRbCbYmJ7lYhuBIAM2lw9LiQm8/+sKNpmkL8yBzChaDGavZuujhP4dfyEIoTSKdQCvV0Jv1h6xDVVTSkTSZeAadTY/BbVySuZVLRZVUspNxchNJ7JU2XK0e9EsRShPPIkXzWC0WnF5nUQvWUjpPbCSMHMjT2NJAdXN1UUNvDvs1cxLzI/PkpjP0NK+lq6NrRV84ZzIZ9vfvo3/iAI46O9UtvqI8R7Ik4x+dIzYRo62uvSiFvWw2y/6B/QyO9eOqs1PXWlOUteayeaaHZ4jNJOls6WJNeydG43FOkReEVeCFF17g9ttv55e//OUhx0tKSrjooov4xje+IUYhCEtOFCMFYRHNzc3x4IMP8sADDzA3N3fIxwwGA1/96le57LLLRDqgIAirXjab5bmX/shwZhrv+joMr3RbSZJEIBxgPhqgxK7D7DpyQU6VFFITEaSJJL6qCuraGjDZjz6V+o2QchKzw9P4J6bR+4xYq+3EZ2OEp8PofGYsTS7KTEdfuFFVFTkrgaRiM9mwmC1LMg9SUzXS2TSpTGohlMZ0aCiNnFdIh1Pk0jn0LgMG5+t3qJ6IlKy8EEozl8ZZ58TZ7KbMcJxDaRSVXDSDHJdxOO043I6iFqyzsQzx4TClSWhub6KioXLR37NkkxkCQwHUsMbGjg20tbav6F0jiUSC3ft2MzY/iqfZha+xqighO7lsDv/QLKnZND0ta+loX1NwYS+ZTLJ3/x7GZkepaPZQ0+grys9TJpVhcnCGbCjP2o71tLa0rujnVBCWI03TeOqpp9iyZQvPPvvsweMbN27kwx/+MD/5yU948cUXgYU5kV/96lf51Kc+taJDv4SVTRQjBWERvPzyy9x999388Ic/JJ/PA6DX6/nIRz7CGWecwTe+8Q3GxsYAOP/883nggQeoqalZVRdxgiAIhzM5NclvX36WfI2OjFkhmo2jdxkxOcxHLILImTyp0QjMZalrrMPXUnPEzsliyCTSTA9OEgoGMDfYMLpNhMdCJMIJDI12zHUOSnVHX7hRFAU5I1GmlhwMpVmKMYt/GUpTZixDb9QfLIZqGshZiVQoiawoGNxGdNZVFkoTz5EdiaHFJdzNHmz1juPeCapICrlwBjWj4nI7sLvsRUsn1zSNdDBFfCiCBSMtnc24qtyL/hwnIglCg0GMWSMndZ1EQ0PDir5ZGwqF6NvXRyAxR0W7l/Lq4oyHSCfTzAzOIkcUNqzppbWlteBiQiQSYde+ncxFZ/G1V1BVW1GUtSaiCaYG/aiphRTvxsbGFf2cCsJypKoqv/jFL9iyZQsvvfTSweNnnXUWmzdv5u1vfzslJSWoqsq//uu/cvPNNxMKhYCFQuV9993H6aefvlTLF1YxUYwUhCKRJImf/vSn3H333fzhD384eLyqqorLL7+cT3/60weDiKLRKNdddx3f/va3AXC5XGzbto0PfehDq+qCThAE4S9pmobf7+f5XX9iz8R+0i4Vz6n1GGyvvzUzF02THomgT2o0tTVR3lC5qIUhTdNIhOJM9Y+RzCaxtjgo1ZURGJkjK0mYWhyYKm3HFkojSShZGT067FY7Br1haUJpJJlkJklOyqEz69AZ9IeE0uQSWdKRFFoZC/MgV1soTShLdiSGTgF3qweLr3ip1EdLzkrkIllK8uD2urA6rFCsZGxVI+GPkRyO4bY5aepswu5e3FADTdOIzkWIDEVw69yc1HMSVVVVK/a9kKZpzM762b53OyktSVV7Je4KV1EeTzwcZ3ZwjrKsno3dm6ivry+osKdpGvPz8/Tt3UFSjlPTXoW3ylPwWjVNIxKMMj0wi0kzs3HtJny+6hX7nArCciXLMj/5yU/YunUr+/btO3j87W9/O5s3b+bss88+7L8Lh8N8/vOf58EHH+TVUtCFF17I17/+daqqqo7L2gUBRDFSEIrizjvvZNu2bUxNTR08dvLJJ3PNNdfwwQ9+8LDbZjRN4/HHH+eyyy5jfn4egPe///1s27ZNzPAQBGFVURSFkdERXjqwnZxdwdlSjtVlIzoXoX/nAag3Y2v2HryY1TSNzFyC3EgUm85MY3sTzqriXPC/Hk3VCE0FmBoaQzaq2JqdSOk8gZF5VHMp5hYnBvfRbwfX0JBzEmpWwaQ3YjPbFn0G3+sshLyUJ5FKICMvhNLoDw2lycQypCNpSs2rNJRmdiGUxmQ24G7zYvIs7rb/1y5iIZQmH8mhL9Xh9rowWU0ULRlbVohNRMiMJ6mqqqKxvR6TbXEfo6qqhKZCxEai1Lvq6O3eiNvtXtSvuZhUVWV8fJy+/TtQrQrV7VXYXYUXcjVNIzwfYW5wHkeZk409mwou1mqaxuTkJLv296EY8tR2VOP0FJ5grWkaAX8Q/+A8bouXDd294v2sICyCXC7Hf/zHf7Bt2zZGRkYOHn/f+97HrbfeykknnXRU59m+fTtXXXUVf/zjHwFwOp18/etf57LLLluUdQvCXxPFSEEogosvvphvf/vblJWV8f73v59rrrmG008//ajeLM7OznL55Zfz+OOPA1BdXc19993H2972NnEXWRCEE1o2m+XA4AF2juyBKj3e5koMlkNv3iiywtieYfzhANa1leQjGaTxOBVuD/UdjVic1kVdoyLJzI36mR6dpMyrx1rvIBVIEpoIUFphwtLkRGf92yngr9I0DSmbR8urWI0WrGbr0oS9aJDJZUimk2hlr4TS/MVWT1VWSUdSZBJZdHY9BtcqC6WRF0Jp8hNJrF4r7lYPetvRP89FoWnkEgtFSIvRhLPchcFYvDXIOZnYaJi8P0NdfS11bXWLPtpAkRUCo/Mkx5O017Szrmvdik/GHh4ZZtfATgzlemrafJithRdyVVUlOBNkfiiEz+FjQ3cvHo+noHMqisLo6Ai7DuzE4NZR116D1V54grWqqsxOzjE3FKTGW8f6ng04HI6CzysIwqFSqRTf/va3ufvuu5mZmQGgrKyMj33sY9x88810d3cf8zlVVeW73/0uN954I4FAgC984Qv83//7f4u9dEE4LFGMFIQi2LVrFz/4wQ+44oorqKurO+Z/r6oq3/nOd7j22muJxWIAfPKTn+SrX/0qdvvibpESBEE43uLxOH37dzE0O4KxyYanoeJvhiQkgjEGdw/iqfBQ01p7MOBmseTSWfxDU8zNzGKqt2CusBKdjBCZi2Cot2FpcFKqP/o5baqqImfyIIPdbMNsMi9dKE0mTTKbovRwoTQ5eSGUJptH7zJicBhW1Y0xJSuTGY8j+9M4a504m12UGY9vJ6imamSjGeS4hN1mxelxUlbErtl8Mkd0OIwWkWlqbcTXVJyQkiN+zWye+eF58v4c61rX0bnCU5RzuRz7+/ezf2wf9hor1a2+ohSKFVlhdmKO8GiU5qpm1nWvL7hYK0kS/YP97B/ai91nobatBlMRXj9lWWZm1E9wLEpLXRs9nT0Fp3gLgvBa0WiUhx9+mPvuu49gMAgsBKFefPHF3HjjjTQ3Nxfla9xxxx3ccsst4vdYOG5EMVIQlglN0xgbG+Piiy/m6aefBqClpYWHHnroqLssBUEQlquF+WRzvLyvD39mHmurC7fPuyQFuSNJRZJMDY4RjUWxtjjQmfWERoOkkmmMzXbMNY5jWrMiy8hZmTK1FLvFhsloWpJ5kIqikEqnyOQzC6E0Jv1fbHsHKZMnFU6hvBpKY9OvmnmQAHIyT3okBtE8riY39nrnMYUPFYMqq2QjGdSUjNPlxO6yF7UbNRNJEx8Ko8+V0dzRRHltxaL//mWSGQKD8xCBTZ2baGluWdEpyq+mTQ/7h/A0uahqqirK45HyEv4RP/GpJJ2NXXSt6cZkev1ZuUcjk8mwr38vQxODeBqc1DZXozcU3vmay+aZHp4hNpOks6WLNSu8sCwIy9X8/Dz33XcfDz/8MPF4HACr1cpll13GddddR01NzRKvUBAKI4qRgrDMyLLMPffcw+bNm8lms5SWlnLttdeyefNm8WZPEIQVR1EUxicmeHn/dpKmHM4WDzbv8trCp2kasdkIEwNj5MhibXYubJMcnkcqVTG1ODGWW47pppCUl1CzMoZSPXaLHb1evyRFSEmSSKaT5JU8OtPhQ2lSkRToFkJpdKbF3aa7nGiahhTJkhmOUZbXcLd5sPrsx71ALudkcuEMJXlweZxYncULxtE0jdR8gsRQFJveQktnM45y5+InY4cTBAeDWPImTuo+ibq6wsJWllokEmHnvj780Rkq2sqpqC1OMnY2nWVmyE9uPs/a9nW0t3UsvFYUIJFIsHvfLiYDE1S2eKluqCo4bRsgk8owOThDNpRnbcd6WltaV3RhWRCWq6mpKe666y7+7d/+jUwmAyyEnV599dVcffXVeL3eJV6hIBSHKEYKwjKkaRp79uzhoosu4uWXXwZg3bp1PPLII6xdu1Z0SQqCsOzl83kGhvrZMbQLtVyHp6UCo7WwTp9iUxWVwPgcUyPjYC/B1ugkG8sQHAmguXRYml3oHUd/E0jTNOT8QiiN2WDCZrYt+vbXwy8EcvkcyXQSBWUhGfsvtvmqikY2liEdTVFq0S2E0hzDlvOVTlM1cvMpssNxjEY9njYPJu9x3pb2SjdqLpJDp5bi8rqw2M0Uq2KtqSrxqRip0Thel4emNY1YF3m+qqZpRGYXkrHLDR429ZxEZWXlin3P8mo39469O4hJUaraK/AUIW0aIBVPMTM4CwnY0LmRpsamgguGoVCIXft2EkzO42uvpLK6OAXTRDTB1KAfLVXC+s5eGhsbV3RhWRCWq6GhIbZt28Z//Md/IEkSAFVVVVx33XVcdtllYharcMIRxUhBWMby+Txf+cpX+Jd/+ZeFrXMGA1/4whe4+uqrxd1oQRCWpWQyye4DezgwPYC+3oqnsQLdMktflnISs8PT+CemMVSbsFTbifujhKfD6HxmLE0uykxHv2ZVVZFzEuRVrCYrFrNlSS7WNU0jm80uhNLoNPRmA2V/sc1XkVUy4RSZZBadQ4/BubpCaTRFJTOVID+WwOqx4mp1Y7Af5x0HGuSSWfLhHCaDEZfXhbGI808VSSE2HiE7maKmuor69gaMlsV9jKqqEppcSMZu8DTQ270Bl2tlJ2NPTU2yY98OJGOe6vYqHJ7iFAGiwSizg/OYFQu93Rupra0tOBl7dnaWvr07SGtJajt8eCrcBRdMNU0jEowyPTCLSTOzce0mfL7qFVtYFoTlbPfu3WzdupX/+q//QlVVABoaGrjxxhu5+OKLMZsLD8UShOVIFCMFYZnTNI0XXniBCy+8kP7+fgDOOOMMHnroIZqbm8UbQ0EQloVEIsEfdzzPVMKPudmJu9a77LpnMok004OThIIBzA02TG4zobEg8XAcY6MDc53jmOYEKoqCnJEoVUoW5kGaTEvymqyqKulMmlQ2RamhFL3JQOlfbDWWczKpcIp8No/BZUS/ykJp1LxCeiyGPJ3GUePA2eJGdwzF5mLQVI1cPIsUzWOzWHB6neiKML/vVVImT2wkgjSfpbGpgZqWmkW/CSBLMoHRAOnJJB21a1jbuRardXG7LxeToigMjwyzs78PnbuMmnYfFlvhHbOaphGcDTE/EMBrLqe3ZyMVFRUFnVNVVSYmJth1oA/NrFDXXo3DXXjBVNM0Av4gMwNzeKzlbOjupby8vODzCoLwWn/605/YsmULv/jFLw4e6+jo4JZbbuHjH/94wSMbBGG5E8VIQVghkskkt9xyC9/85jcBsNlsfP3rX+ef/umflt0FvyAIq08kEuG/n/0FpU1mypurlk2xS9M0EqE4U/1jJHNJrM0OSnVlBEbmyUp5TC0OTJW2Y5oTKMsySkZChw67xYbRYFyaUBpZIZlJkc1nKDOVoTf+VShN+pVQGlXB4DGis66yUJqURGYkhhrO4W50YW90Hf9QGkUlF8mgJGTsTjsOt6OoW/ez8SzxoTAlCY3m9kYqG6oWvds1n80TGJ4n58+zvnUda9rXrOiZ1rlcjoHBfvaO7MHqs1Dd5sNoKvzxqKrK3OQ8oeEwdd4G1nevx+l0FnROWZYZGR1hd/9OTF49dW21WGyFd02pqsrs5BxzQ0FqvHWs79kgtoQKwiLQNI2nn36aLVu28Mwzzxw8vmHDBjZv3sz73ve+osx4FYSVQBQjBWEF0TSNX//613zyk59kamoKgHe84x3cd999+Hy+JV6dIAirnSRJvNj3IvuDQ1RsqMVkX7qtRZqqEZoKMDU0hmxUsTU7kTISgeE5VHMp5hYnBvfRr0/jlXmQGQWjzojdYjtkDuNxo70SSpN5JZTGrDskHEfTFjrwUpEU6EsweEzojMtrm/xiy0eyZEZilGZVPC0erDXHP5RGySvkIhm0jIrL48TmtFFSpBuHmqaRDqVIDEcxKnpa1jTjqS7OLMMjScfTBIcDlERL2LRmIy0trSv6ojmdTrP3wB6GpgZxNTrxNVUV5XdalmRmx2aJjsdpq2unp3MtFkthHZb5fJ7+gX72j+zFWWOjtrUGo8lQ+FplmZlRP8GxKC11bfR09hS8VkEQXktVVf7nf/6HLVu28OKLLx48fsYZZ7B582b+7u/+btncxBWE40UUIwVhBQqHw1xzzTV873vfA8Dr9XLPPffwnve8R/whEwRhyc3Pz/ObPz2FWqOjotV3XAtBiiQzN+pnenSSMq8ea72DVDBJaDxAabkJS7MTnfXoL+I1TUPK5dFyKhajBavZsjQFmFdCaRKpBGqpuhBKo/vrUJo06WiaUusroTRLEZ6zRDRNIzefJjscw6DT4Wn3YvKaj/vfRDkrkQtnKZVLcHtdWOwWKFYytqqRnI2RHI7htDhoWtOE4zgk08dDcUKDQSyS5ZVk7LoVvSMjFouxa99OpkKTeFs9VNVXFuXx5LI5/MOzpPxpulvWFqVjdKFgupeRqSHKm9zUNPmKUjDNZfNMD88Qm0nS2dLFmvbOFd3dKgjLlaIo/OQnP2Hr1q3s3bv34PELLriAzZs38+Y3v1lcuwmrlihGCsIKpWkaP/7xj7nyyisJBoMAfOQjH2Hr1q243St3cLwgCCcGWZZ5edd29vj3U95bi9mxuN02uXQW/9AUczOzmOotmCutRCciROei6OusWBqclBqOvjinqipyVgJJw2a2YjFZjnt3HSwUoDK5DMl0EnQlGMz6Q7bhKpJCOpImm8yid+jRu4wrulB0rDRFJTOdJD8Wx+Iy4271YjiGBPTiLALy6Rz5cA5DqQ53ufuV0Jji/Lyoskp8Kkp6NE5lRQWNHQ2Y7Yv7+6RpGhF/hMhQmEpzBZt6TqK8vHxFXzQHAgH69u4glA1S1V6B1+ctyuNJJ9PMDM4iRxQ2rOmlpbml4JDBeDzO7r27mA5NUtVWjq++qii/15lUhsnBGbKhPGs71tPa0ioCEQVhEeTzef7jP/6Dbdu2MTw8fPD4e9/7Xm699VZOOeWUJVydICwPohgpCCvc9PQ0n/rUpw4OP66rq+OBBx7g3HPPXdEXDYIgnBiCwSC/ef5JpKoSKjqqi14oS0WSTA2OEY1FsbY40Fn0hEaCpJJpjM12zDWOYyoivhpKU6aWYLfYMRlNSzIPUlVU0pkUqVz6sKE0UlYiHU6Tz+UxuI3o7asvlCYzEUeaTOGotuNs9SxNKE0ihxTNYTGZcXmd6I2Fb519lZyTiY2FyU9nqK2voa6tDkMRtuYeiaqoBCeDxEdiNJU3saF7Q8FzDpeSpmlMTU3Rt387OV2WqvYqXN7iPJ5EJIF/YJayrJ6N3Zuor68v+PUtGAyyc28fkUyI6vZKKqqLUwBORBNMDfrRUiWs7+ylsbFxVd20EITjJZ1O8+1vf5u7776b6elpAEpLS/noRz/KLbfcQk9PzxKvUBCWD1GMFIQTgKIoPProo1x//fUkk0kALr/8cr70pS+t6GRLQRBODIqisGP3Dvqm9uLdUI3VZSvofJqmEZuNMDEwRo4s1hbnQhFleB6pVMXU4sRYbjmmi3hZklAyMoZSPXaLDb3esHShNOkkWSn7+qE0oSQKKgb3KgylSb8SShPK4mpw42h0Uqo/vtvRNVUjG80gxyTsditOj5OyIs4PzadyxEYiKME8Ta2NVDdXL/qWezkvExibJz2RorO+a8XPDlQUhdGxUXYe6KPEATXtPqyOwt8PaZpGZD7C7OA8jjInG3s2UVVVWGCXpmn4/X769m4nV5qhpt2Hu9xVcBFS0zQiwSjTA7OYsdDbsxGfr3pV3bQQhOMlFovx8MMP881vfvPgjjWDwcCFF17IjTfeSGtr6xKvUBCWH1GMFIQThKZpDA0NcfHFF/P73/8egI6ODh5++GFOPvlk8eZTEIQlFw6H+c3zT5Ir1xa6JI8x9VdVVALjc0yNjIO9BFujk2wsQ3AkAC4d5mYX+mPYoqtpr4TSZBXMehNWi3VptixqIEl5EukkkiqhM+vRG/68Dk3VyCaypCMp0JcuJGOvslAaKZYjMxylJK3gbvFgqz22jtdiUCWFbCSDmlZxuhzYXfaiJldnomniwxHKUiW0dDRRUV+56I8xl84RGJ5HmpfY0LaejrY1GAyL2325mCRJYmBogD2DuzBXmqhu82GymAo+r6qqBGdCzA8F8Tl8bOjuxePxFHzO8fFxdh7oo9SmUddWjd1lL3itmqYR8AeZGZjDYy1nQ3cv5eXlBZ9XEITXCgQC3HfffTz00EPE43EALBYLn/70p/nc5z5HbW3tEq9QEJYvUYwUhBOMLMts3bqV2267jXw+T1lZGTfeeCM33njjir7AEAThxKAoCrv27Wb72E7c633YPH/74lvK5pkdmcE/MY2h2oSl2k7CHyU0HUbnM2NpclF2DFt0NVVFykloeRWb0YrFbClqUenoFwLZXJZkOolaqqI36w/pgFMVlUw0Qya2EEpjdBspXWWhNPn5NNmROPrS0oVQmmPseC0GOSeTC2coyYPL48LqtBZtDZqmkZpPkhiOYi0z0bKmGWdl4V1xf0s6niY4FKA0Vsqmrk00NzWv6GTsTCbDvv69DEz046y342v2oTfoCz6vIivMTswRHo3SXNXM2q512O2FFQxlWWZoeIg9A7swlxupb6/BbDUXvFZVVZmdnGNuKEiNt471PRtwOBY/4EgQVqPp6Wnuuusuvv3tb5PJZABwOp185jOf4ZprrhE3AAThKIhipCCcgDRNo6+vjwsvvJBdu3YBsGnTJh5++GE6OztFl6QgCEsuGo3y2+efIuXKU7Gm5rDbUDOJNNODk4SCAcwNNsxeC8GRAPFwHGOjA3Odg1Ld0RcRVVVBykiUymCz2DAbzUsXSpPNkMwkKdGXoDcdJpQmnCabyqJ3GtA7DatqvpumamRmEuRH4lgcJlxtXozOwrvbjm0RIGXy5MJZdJTh9rox20wUa+++pqrEZ2KkRuJ47C6aOpuwFTi+4G9+TU0jEYoTGgxhU22c1L2J2tq6Ff2eIB6Ps3v/Libmx/G0uKlqqCxKUVXKS/hH/MSnknQ2dtG1phuTqbCfwVwux4H+/fSPHcBVa6e2tRpDEWaMypLMzJif4FiUlrq2Fb/FXhCWs+HhYbZt28a///u/I0kSABUVFVx33XVcccUV4gaAIBwDUYwUhBNYNpvli1/8Ilu2bEFVVUwmE1/60pe4/PLLV3QHhCAIJwZVVdl7YC9/Gt6Ba20F9nLnQsEkGGNqYJxkNomt1YnVt7AlNzIaZHr/NM7TqjEcQ3FKlmWUjISOMuwWO0aDcclCaVKZFOlcmlJjGQaj/pBi6EIoTYp8XsLgWoWhNNJCKE1+IoXDZ8fV4kZnKby77ZhokEtmyYdzmA1GXOUuDKbipXOrskJsPEJmIonP56OhvR6TdXELrZqmEZkJExmOUGWpYmP3RioqKhb1ay62UChE394dzCfnqOyooNznLUrBPpvOMjPkJzefZ237OtrbOtDrC/sZTKVS7D2wh9HpYSqaPVQ3+YoyDiKXzTM9PENsJklnSxdr2jsxGo9zkrwgrBJ79uxh69at/OQnP0FVVQDq6+u54YYb+OQnPyluAAjCGyCKkYJwgtM0jd///vdcdNFFDA8PA3DOOefw4IMPUl9fv6oudAVBWJ7i8Ti//eNTTGZmSGtZVLOGvdWF2fPawIlMJM103wQlVUasbZ7X7WzU0JDzMmpWxlhmwGa2FWXb5hshSzLJTJKclENn1qEz6Hn1pVfTIJ/MkYqk0Eo09G4jOotuVYXSKBmJzGgceT6Du8GFvclF2RKE0uRiGaSYhM1qxel1oCuwCPWX5KxEbDRCfjZDfUMdtW21i/7zqCoqwYkA8dE4zRXNbOhe2dt2Xw162bH3ZdIlKaraK3EVIegFIBVPMTM4ixaH3s5emoqwbT0ajbJ73y78kWmq2irw1VUWpWCaTmaYGpohG8qztmM9rS2tSzPrVhBWgZdeeonbb7+dn//85wePtbe3c/PNN/OJT3xCjMAShAKIYqQgrBLxeJwbbriBhx9+GACHw8GWLVv42Mc+tqq2/wmCsLy8GjixY6CPiC5O2pnH1ujCeITQCVVRCQ7MEZ6NYF1XjsH158/VNG1hHmROwWIwY7VYl6YTXIO8lCeRSiAjozfr0en/KpQmniEVSVNiLMXoMVJmWF0FBSmWIzMSg6SMu9mNvd55/ENpFHUhlCYp43DacbgdlBbx5yWXyBIfjqBFFZram/A1Vi36fFIpLxEYDZCZTNPd2EVXR/eK7tpRFIWJiQl27N8OVpXqdl/RtrRHg1FmB+cxKxZ6u3uLsm09EAjQt3cH8VyE6g4f5VWeohRME9EEkwMzkC5lQ9dGGhoaxPs3QVgEmqbx7LPPcvvtt/P0008fPL5+/XpuvfVWPvCBD4gdZoJQBKIYKQiriKZp/PznP+dTn/oUfr8fgL//+7/n7rvvprKycolXJwjCapJKpdjbv5d9kwcw1lkob65AZ9CTz+cZnRojU5bHWnHktOJsLMPUjnEoN2BpdaFICkgqNpMNi9myJPMgF0JpMiTSSbQyDb3pMKE0kTTpeAadTY/BbVya8Jwlomka+WCG7HAMHaV42jyYK4sXCHO0lLxCNpyBrIrL48TmtFFSxMJOOpQiPhzBKOlo7mjCW1N+HJKxs8wPBVACMhvaN9BRhC3GS0mSJAaHB9kzuAtjhYHqVl9Rgl40TSM4G2J+MIjX5KW3p/Bt65qmMT09Rd++PiRdjrqOalxeZ1HWGglGmR6YxYyF3p6N+HzVYleLICwCTdP45S9/ye23386f/vSng8ff9KY3sXnzZt71rneJ3z1BKCJRjBSEVSgQCHDVVVfxox/9CIDKykruvfde8UdWEIRFFw6H6dvXx0RkCmuzE0+997XFOA1CkRCTgSn0FWZMRyhA5NM5ZndOEQ8kqDy5Hle1d0nmQWqqRjqbJpVJHT6UJq+QCqfIpXPoXQYMTuOqer3VVI2sP0luJI7JZsTT5sXoOs6hNICUkchFspQpJbg9Lix2CxQxGTs5GycxHMNhtNHS2YTd61j05zkVSxEcDKBP6djYuYmmxqYV3bWTzWbZP7CPA2MHsNdaqW7xFSXoRVVV5ibnCQ2HqfPWs757A05nYQVDRVEYGxtl14Gd6Jyl1LVXY3MU3rWpaRoBf5CZgTk81nI2dPeKdF5BWCSKovDTn/6ULVu2sGfPnoPH3/rWt3Lrrbfylre8ZVX9vRaE40UUIwVhldI0jX//93/n6quvJhKJAPCP//iPfP3rXy/4zbkgCMJf0jSNmZkZXt63nYgaw9Hmxln5t2e9SXmJselxUiUZrJWOQ4p72VSGfDiLpdRMbaWPUqWM/S/vI+cEZ2c5pYdJ514MiqKQTqdI5zOUGcvQ/3UoTUYiFU4hSxJ6twm9Tb+qLmpUSSU7GSc3kcReYcPV5kG/BKE0+VSOfDiHQafH7XVhtBgpVtVaVVQSU1FSYwkqPF4aOxqxOBZ3W7SmacSDMcKDIeyag5PXnkx19crumEsmk+zZv5uR2RG8zS6qGqoO6Sp+o2RJZnZsluh4nLa6dno61xa8bV2SJAaHBtg7tAdbpZm6thpMRxgtcbRUVcU/Mcf8cJDa8nrWda9f0XM+BWE5y+fzfP/732fbtm0MDQ0dPP6e97yHW265hdNOO20JVycIJz5RjBSEVUzTNCYnJ7nkkkv49a9/DUBjYyMPPfQQZ5111oq+qBEEYekpisLwyDA7+vvI2xXcbeVYna8NpTkiDcLRMBPzU+i9JlRVRY7mcJud+Mp9mMx/MS9S1ZgemmJ0dBxrTznmimP8WsdAlmSS6SQ5JYfO9NpQmlwySzqcQi0Do9tImXmVhdJk5YVQmrk0zjonzmY3ZYbjH0qTT2TJR/NYTWac5a6ihsYoeZnYWITsVIrauhrq2uowmhc3zVhTNcIzISJDUart1Ww8ATrmwuEwO/f1MRvzU9leTnlNeVFmIeazeWaG/aT8abpb1rKmfU3BadPZbJb9/fsZHD+Au95JbUt1UX6mZElmZsxPcCxKS10bPZ09K3rOpyAsZ+l0mu985zvcddddTE1NAVBaWspHPvIRbr75ZtatW7fEKxSE1UEUIwVBQFEU7r//fm6++WbS6TQlJSV85jOf4bbbbsNkOv7b6ARBWNkWtlnuZ/foXnQ+A96WCgwFFmkkSWJqdhqD3kClt+KIs/CyyQz7X95Pxizj7K6ktFjJzBrk8jmS6eTrhtJkYhnSkTSl5lIM7tUXSiMn8mRGYmixPO5mD7Z6x3GfiakpKtloFjku4XDYcHgclBUxbVhK54mNhJEDeRpbGqhurj7k52AxKLJCcCJAYjRBS1Ur67vWreiOOU3TmJubY8fe7cSVGFXtlXgq3UW5CZpJZpgZ8iOFZTas2UhLc0vBadPJZJI9+3YzPjdKRbOXmkZfUbo2c9k808MzxGaSdLV001GEgqkgrDayLHPzzTdz2WWX0dbW9rqfF4vFeOSRR7j33nsJBoMA6PV6LrzwQm688cYj/ltBEIpPFCMFQQAWLgwOHDjARRddxAsvvABAd3c3Dz/8ML29vaJLUhCEvykej7Nr/y6G5kYwN9rwNlYU5YL9jdA0jdnhGYaGRrF0e7FUFTDHTYNMNkMynUTTaejN+kNm8qmKSjqcJpPIoLPrMbhWYShNKEt2JEaZAp5WDxaf7fiH0kgKuUgGNa3icjuwuexFTRvOxjLEh8OUJqG5vYmKhspFTzOW8hKBkXkyUxl6mnro6ujCbC48xGWpqKrK5OQkO/ZtRzHL+NoqcXiKU1RNRBL4B2cpy+jZ2L2J+vr6gp+fSCTCrr19zMXn8LVVUFVbUZTnPJ3MMDU0QzaUZ23HelpbWgsumArCavXAAw9w/fXXYzAYuO6667j++usPeZ0MBoPcf//9PPjgg8RiMQDMZjOf/vSn+dznPkddXd1SLV0QVjVRjBQE4RD5fJ5vfOMbfPnLX0aSJPR6Pbfccguf+9znxBtlQRBeVyKR4D9+9n1snS6q22uXJsn6MLKpLP3bD5DU53D2VB5Tp6KmaqQyaVLZJKWG0oVQmr8oRMh5mXQ4vbpDaeZS5IZjmMwG3G1eTJ7jXyiTczK5cIaSPLi9LiyO4qVza5pGOpgiPhTBgpGWzmZcVcXp4DuSbCpLcGgeOajQ29FLe2v7ik7GlmWZ4ZFhdg30offoqW6rwmIrfBuypmlE5iPMDQWwlzrY2LOJqqqqgp4fTdOYn5+jb28fSSVOTVsV3ipPUZ7zRDTB5MAMpEvZ0LWRhoaGRS9oC8KJ7sknn+Szn/0sw8PDADQ1NXHHHXewfv167r77bv71X/+VdDoNgMPh4DOf+QzXXHMNFRUVS7lsQVj1RDFSEITX0DSNl156iQsvvJB9+/YBcNppp/HQQw/R1ta2qi62BUE4enNzczz54tOU1OqobPUtm4KkpmnMj88xeGAYU6cLa/WRO7EUWSGVSZHJZygzvRJK88rrnqaBlMmTDqeQFQWD24jOuspCaeSFUJr8RBKr14q71YPeVnja8THRIJ/Okw9n0ZfocJe7MFlNFCuURlM1Ev4YyeEYbpuTps4m7G57Uc59JMloktBQEH1Kz0ldJ9HQ0LCik7FzuRwHBg+wf2Qv1moLNa3VGEzFScYOzoSYHwrgc1SzobsXj8dT8Dmnpibp29eHZpSo7ajBWYSuTU3TiASiTA/OYsZCb89GfL6VHTYkCMtNNpvlrrvuYsuWLWSzWQBKSkp4tdRRUVHBtddeyxVXXCGCOgVhmRDFSEEQXlcqleILX/gCd911F5qmYbFY+MpXvsKll14q7uQLgnBYsizz0s6X2T97gMqNtYueKnws8pkc/dv7iZPGsa4KnfHQLkkpL5HMJMkreXRm3UIn2l+G0iSypCIpKAODx4jOtHI71d4IJSuTGY8j+9M4ax0LoTTG49wxr2nkEjnykRxmowmX11WU4tarVFkhPhklPZagqqqKxvZ6TLbF7fbUNI3YfJTwUBhXqYuTek7C5/Ot6GJVKpViz/49DM8M4W5y4muqKsruCkVWmJ2YIzwapbmqmbVd67DbCysSK4rCyMgwu/t3YXDrqGuvwWovTtdmwB9kZmAOj7Wc3p6NeL3egs8rCMLh7d27ly996Uv8/Oc/P3ispKSEd73rXTz22GO4XK6lW5wgCK8hipGCIByRpmk89dRTfPKTn2RsbAyAt771rdx///3U1NSs6IslQRAWTyAQ4MkXnkKtLqWqvXpZdUkGJwP07xvE2O7EWuMgL+VJpBKoJSo6s+61oTTRDOlomlJLKQa3ibJiBeKsEHIyT3okhhbJ425yY29wUqo7zqE0qkYulkGKSdisVpxeZ1FDY+ScTGw0TH4mQ11DLXVtdeiNi1ts1lSN0HSQ2HCMGkcNvd29K75YFY1G2bVvJ9ORKcpbvVTWFWfGopSX8I/MEp9K0NnYRdea7oID9vL5PAOD/ewb3ovDZ6WuvQajqfDwGFVV8U/MMT8cpLa8nnXd61d02JAgLHcvv/wyW7Zs4f/9v/938JjP5yOfzxMOhwHo7Ozkvvvu47zzzluqZQqC8FdEMVIQhKMSjUa59tpr+bd/+zcAXC4X27Zt40Mf+pAoSAqCcFiyLLNj1w72+PdR0VuD1Wld6iUdlEtn6ftDH3OZMLYNXkxuC2V/ETqjyCqZSIpMIrsqQ2kA8uEM2eEYpXkNd5sHq89+3IvKqqySi2ZQkjIOpwOH205pEbct55M5YsNh1IhMU2sjvqbipCQfiSIrBMcCJMYTtFe3sa5rPTZbAQFLS0zTNAKBAH17dxDJh6lsryjajMVsOsvMkJ/cfJ617etob+soeHZmOp1m/8A+hiYG8Ta4qGn2oTcUXniWJZmZMT/BsSgtdW30dPZgsSyfznBBOJFomsbvf/97br/9dp588smDx9etW8ett97KBz7wAXK5HF/5yle44447kCQJgI9+9KPccccdVFdXL9XSBUF4hShGCoJw1DRN4/HHH+eyyy5jfn4egA984APccccdlJeXL/HqBEFYrkKhEL99/kmUqhIqO3xLOuZBlmSC4QDz0QA6uw45LeMf8KNvcWCpt6PkFdLhFLlsHr3LiMFhWFU3XDRVIzefIjscx2jQ4Wn3YvSYj38ydl4mG85AFlxeJzZncdO5M5E08aEw+lwZzR1NlNdWLHqhVcpJzI/Mk5vO0NO8lq6OroK7+5aSpmlMTk7St38HeX0OX3slTm9xZrGl4ilmBmfR4tDb2UtTU3PBszPj8Th79u9mMjBBVUs5vobKoszjzGXzTA/PEJtJ0tXSTUf7GozGwjssBUF4LU3T+NWvfsWWLVt4/vnnDx4/7bTT2Lx5M+9617te8x7jwIEDXHnllQeLlna7nS9/+ctceeWVIpxTEJaQKEYKgnDM/H4/l19+OU888QQA1dXV3H///VxwwQWr6qJdEISjpygKfbv72Dm1h8oN1Vjdx7cTLJfNMRecI5KKYHAZsTotlLxywSLnJMb+OEIwFMXY6cJcY10IpSlSGMpKoCkqmakE+bEEVo8VV6sbg/04F1Q0kLISuXAGnVqGy+vCYjdTtFAaTSM1nyAxFMWmt9DS2Yyj3Ln4ydjJDIGhAGpIZeOaXlpb2lZ0MraiKIyMjrDzQB9lrhKq23xYHcXpeo6GYswOzGFWLPR291JbW1fw8xMKhdi1r49gMkB1exUV1d6i3BBJJzNMDc2QDeVZ27Ge1pZWUdgQhEWiKApPPPEEW7ZsYdeuXQePn3feeWzevJlzzz33iK8Vmqbxgx/8gOuuu47Z2VkANmzYwAMPPMDpp5++6OsXBOG1RDFSEIQ3RFVVvvOd73DttdcSi8UAuOSSS/jKV75S8DB5QRBOXOFwmCeff4p8uULVmprF3fqsQSqdwh/wk5bTmNwmzDYzvJqMrarEpqMEhufBXEKpU0dsMo6+yYa5wbEqbq6oeYX0WAx5Oo2jxoGzxY3OdLxDaSCfypELZzHpDLjKXRjNxesY1FSV+FSM1Ggcr9NDU2fjcRkZkIgkCA0GMWaNB5OxV3L4Wz6fZ2Con71DezD7zNS0+jCaCy9Ya5pGcDbE/GAQr8lLb89GKioqCj7n7OwsfXt3kCFFTXsVngp3UX6n49EE0wMzaOlSNnRtXPHPqyAsZ5Ik8YMf/IBt27YxMDBw8Pi73/1ubr31Vt70pjcd0/lisRi33XYb9957L6qqotfrGR8fF9u2BWEJiGKkIAhvmKZpjI2NcdFFF/HMM88A0NraykMPPcSb3vSmVXEhLwjCsVMUhV37dtM3tpPyDT5snuLewNA0jVgshj/oRy6TMXsshxRNFEkhMhYiOB5AX27E1uJEb11IZFYlheC+AKlEBtv6CnTWldvBdiRySiIzEkMNZ3E3urE3upYmlCaeRYrmsVosOL3Ooszue5UiKcTGI2QnU9RUV1HfXo/RsrjbojVNIzofJTIYxq1zc1LPSVRVVa3ov4fpdJp9/fsYmOzH1eDA11RVlOdJVVXmJucJDYep89azvnsDTmdh27xVVWViYoKd+3dQYtGo7ajG4Sr89UXTNCKBKNODs5ix0NuzEZ+vekU/r4KwnGUyGb773e9y5513Mjk5CUBpaSkf+tCHuOWWW1i/fn1B5+/r6+OKK67gzDPPZMuWLcVYsiAIx0gUI4UTwjPPPMPPfvYEIyMjyLJMTU0N5513Pu9///uPectMJpPh8cd/yu9+93ump6fI5XI4HA46Ojp45zvfxRlnnLFIj2LlkmWZu+++m89//vNks1lKS0u57rrruPXWW8XcJEEQXlc0GuG3f3yKrFvC11VbcJekqqiEIiHmQrOUWEqxeCzo/mI7rJTJExoOEPFHMNVZsTU5KTMcfmZcJphmfvcsujor5ibnskkDL1Q+kiUzEqM0o+Bu9WCrcRz/UBplIZRGjss4HHYcHkdRQ2OkjERsJIw0n6WhqYHalhp0hsXt9lRVldBUiNhIlHpXHb3dG3G73Yv6NRdbPB5n975djAfG8ba6qaovzoxFWZaZHZ0lOh6ntbadtV1rCw56kWWZ4ZFh9gzswuQ1UNdWg8VmLnitmqYR8AeZGZjDYy2nt2fjik88F4TlLB6P8+ijj3LvvfcenE+v1+v5x3/8R2666Sba29uL9rVUVUWSJHGtIghLRBQjhRXv/vvv56c//S/Kysro7e3FbDbT19dHMplk7dq1fP3r3zjqPzLxeIzrrruO8fFxzGYz3d3d2Gw2ZmZmGBwcBOC97/3/uPLKKxfzIa1ImqaxZ88eLrzwQrZv3w7A+vXreeSRR+jp6RHdA4IgHJaqquzet5vto31411dh9zqO+RySJBEIBQjGgugcOqwu6yGJy9lYhvnBOVLxFNZmB5Za21EVPlVZJbw/QCKSxra+HJ3dcMxrWw40TSM3nyY7HMOgWwilMXmXIJRGUsiFM6gZFZfbgd1lPzi3sxhy8Syx4TAlcY3m9kYqG6oWPQFdkRUCo/Mkx5O017Szrmvdik7GBggGg/Tt3UEwHaCyvZzy6vKi/Kzks3lmhv2k/Gm6WnrobO8suAiQy+XoHzzAgZH9OGts1LbWYDQV/nuqqir+iTnmh4PUltezrns9DsexvzYJgnB0QqEQDzzwAA888ADRaBQAs9nMpZdeyvXXX099ff3SLlAQhKITxUhhRXvuuef44hdvw2w2c8cd2w7eLYvFYtxww/WMjo7ygQ98kE9/+tNHdb777ruPxx//Ke3tHXz9618/5I3nCy+8wG23/TOKonD33ffQ3d29KI9ppcvlcnzlK1/ha1/7GoqiYDQa+cIXvsBnPvMZMdhdEITXFYvFePKPT5Fy5PB11xxVp1w2m2UuOEc0HcXoMmJxWg8WTTRNIxVIMj84S16VsLU6MVda31BRJRvOMLfTT1mNBUuLa8V0SWqKSmY6SX4sjsVpxt3mxeA4/h0gclYiF8lSKoHL41oIOylSIVTTNNKhFInhKEZFT3NHE94a76IXWvPZPPPD8+T9Oda1ritKYW0paZrG9PQ0fft2kClLU9VWiatI4T6ZZIaZIT9SWGZ9R29Rgl7S6TR7D+xhZGqY8iYXNc3VRXmPIUsyM2N+gmNRWura6OnsKbhrUxCE1+f3+7nnnnv41re+RSqVAsDhcHDllVfy2c9+lsrKyiVe4epWrN2H8XiMP/7xeQYHBxgcHGR4eJhcLsfGjRu5/XaxTX61EsVIYUW76qor6e/v58ILL+LjH//4IR/bs2c31157LXq9nh//+MdYrX+7U+HSSy9hbGyMz3/+C5xzzjmv+fhNN93E9u0vc9lll/H+93+gaI/jRKNpGi+88AIXXngh/f39AJxxxhk8/PDDNDU1iS5JQRAOS1VV9vbv46XB7XjWVeCoOMz8OA2SqST+gJ+MmvlzKA1/DqWJTkYJjMxRYi3F1urC6Cp8TqCqqET6Q8QDCazrytE7l2/hSc0rZCbiSJMpHNX2hVAa83GefalBPp0nH86iL9Xh9rowWU0ULRlb1UjOxUkORXFaHDStacLxBrpqj1UmmSEwOA8R2NS5iZbmlhV9o01RFMbGx9h5oA9sKtXtPmzO4nR2JiIJ/IOzlGX0bOzeRH19fcFBL7FYjF37duIPTVPVVo6vvqoo4TG5bJ7p4RliM0m6WrrpaF+zoovLgrDcjY2Nceedd/Ld736XfD4PQHl5OZ/97Ge58sorcblcS7tAoai7D19tIPprohi5uq3cd0/CqhcMBg8Wus4777zXfHzt2nVUVFQQCAR44YU/HfZz/prBcHRbexyOwgasn+hKSkp405vexEsvvcTNN9/Mfffdxx/+8AdOP/10vva1r/FP//RPInlSEITXKC0tZV3XWhprG3jq+aeZnp7At7aWMl0ZmqoRi8eYCcyg6FUsXjNuk+fgv1UkhchokOB4EH2lCdfJFegsxSvAlZaV4u2uwBa1M7fTT67ChLXNRckibwM+FnJaIjMaQw1mcTW4cZxTQam+eLMYj4qmkUvkyEdyWIwmfNVVGIzF296uyirxqSjpsQQV5eV0nrYJs33xO9cS4QTBwSCWvIkzuk+n7ozCC2tLSZIkBocG2DO4G2OlkfpTazAVIdxH0zQi8xHmhgLYSx2c2fPmogT4BAIBdu3bSSQTorqjit4Na4tyYzOdzDA1NE02JLG2Yz2tvYV3bQqC8Pr279/PHXfcwY9+9CMURQGgpqaGG264gUsvvRSr1brEKxRgoXj405/+1+vuPtyzZw//9m//dtS7D91uN+961/+hvb2NtrZ2BgcHufvuuxbxEQgrgfhrK6xYQ0NDANjtdqqrqw/7OR0dawgEAgwPDx1VMfKUU05lYGCAH/7wh2zcuPE127R37uzD4/FwxhmnF+dBnOBsNhv33nsv7373u7nkkkuYmpriqquu4uc//znf/OY38fl8S71EQRCWIYfDwd9f8G72D+znj0+/ALVlpEozlFpLsdRY0en//PYln84TGp4nOhfFXG/De3Y1ZYtYgDO6TNSf3URkIETsuRks68oxuBc3oflvkWI5MsNRStIK7hYPtrU1x30ruaZqZKMZ5LiE3Walst5Lmb54bzPlnExsLExuOkNdfQ3rz+nCUITZgEeiaRqR2QiRoQjlBg9v7TmfysrKFd3dn81m2d+/jwPj+3HU2Wh7c0vRkrGDMyHmhwJU2as5f9MFBQe9vLp1fOe+PvJlGWo7qmko7yl4rQDxaILpgRm0dCkbujbScFrDii4uC8Jyt2PHDrZs2cITTzxx8FhLSws333wz//iP/yg6kZeZ73//PwD48Ic/ckhokNPp5Oqrr+baa6/liSce5xOf+PhR7T7s7u4+ZMTZ2NhY0dcsrDyiGCmsWLOzfoAjzhKpqKgAwO+fPapzfvjDH6a//wAvvfQSn/jEx+np6cFmszE9PcPg4AA9PT187nPXH9WLrrCgpKSEt7/97ezcuZOrr76af//3f+d//ud/OO2007j77rt5z3ves6Iv7ARBWBzpdJpEMgGSytw+P/paE+V1fy40ZiJpAkPzpJIpbM0OKjvrjlsBrqS0BE9nObYaO7N9fvJuA9Y17uPaJalpGvlAhsxIDENJKZVtXkwVluP+eqrKKtlIBjUl43Q5sTfZDgkPKlQ+nSc2HEYJ5mlqbaT6guqiJm8fjqqqhCYXkrEbPA2c9aYzcLlWdjJ2IpFg977djM2P4ml20fWWNUX5PiqKwuz4HOHRKE2Vzfyfs0/HbrcXfM7x8XF2Heij1A5162uwF2HruKZpRAJRpgf8mEusnNJzOj5ftXgPIgiL6Pe//z1btmzhN7/5zcFjPT093HrrrXzoQx8SncjL0GLsPhSEwxG//cKKlU5nADCZXr8jxWw2v/K5qaM6p9ls5stf/gr/+q/f4j//8z956aWXDn7M4XCwadMmysvLC1j16uXxeHjsscd497vfzVVXXUUwGOTjH/84H/3oR9myZQtu98q+0BMEoTjC4TA79/cxGZnC2eJizTs66SzpYmZ4hsHfDWPwmUiEE8glCrZWJ5XlriUrJhgcRurPaiQ6HCby+xmsa70YvOZF/ZqaqpGZSZAfiWNxmKhZ68PoPP6dmXJOJhfOUJIHl8eJtcpW1OchE00TH45SloLWjibKN1UseueaLMkERgOkJ5N01K7hreeev+K3DIZCIXbu28lcwk9lWwU9PZ1F+T5KeQn/yCzxqQRrGrs4563nHXzP9YbPKUkMjwyzZ2AXlgoTLac1YC7S1vH5mSCzg3O4reWcs+n8grs2BUF4fZqm8b//+79s3bqVP/zhDwePn3LKKWzevJl3v/vdohN5GVuM3YeCcDiiGCkIfyEUCnHbbf/MyMgIF154Eeeeey4ul4uJiXG+/e1v89hjj/Hcc3/gzjvvFOmKb0BJSQkf/vCHOfPMM/n0pz/NL37xC77//e/zu9/9jgceeIBzzz1XdCgIwiqkaRp+v5+X975MTIvhbvPQuqHtkNeD2rZaysrKePoXz+A4uZzynuplkWpdUlqCu92LrdrOXJ+fnD2FtdNDqa64F1qqtBBKk59I4aiyUXVaQ1FnYh4VDaRMnlwkh04txev1YLH/OTyo4NO/koCeGIpiLTPRvaYDV+XiF5vz2TyB4Xly/jzrW9ex5u0rO7xE0zRmZ2fZsXc7CS2Or72Knoquonwfs+ks/qFZMvM51rWvo/3vOtDrC/s5zOVyHOjfT//YAVx1drrObivKnFFVVfFPzDE/HKS2vJ63nfnOQ8bvCIJQXIqi8LOf/YwtW7awc+fOg8ff8pa3sHnzZs4//3zxPn8FWIzdh4JwOKIYKaxYFsvCHfhsNvu6n5PJZF753KPrbLj99tvp7+/n0ksv5UMf+vDB42vWdPKVr3yVK664nJGRYX784x/zT//0TwWsfnWrq6vjZz/7GY8++ijXX389U1NTvPvd7+aKK67gi1/84orvRBEE4egoisLo2Cjb929HsSuU91Tgdb5+97mv2cfb3n8BLz3zEnOxKdy9FRhtSzuv8VV6m4HaMxuIj0YIPzeDuduDsaLwm1ZKRiYzGkOez+Cqd1F9TtOizsQ8LA1yySz5cA6TwUhVRQVGc/GKdZqqEp+JkRqJ47G72Ni7Hpt78cehpONpgsMBSqIlbFqzkZaTWikr4hbz401VVcbHx+nbvwPNquDrqqLeXVOUc6fiKWYGZ9Hi0NvZS9MpzQV/r5LJJHv372HMP0JFi5f153YVZeu4LMlMj/oJjUdpqWvj/5x3priBLAiLSJIkfvjDH7Jt27aD23sB3vWud3HrrbdyxhlnLOHqhGO1GLsPBeFwRDFSWLGqqhbCTwKBwOt+zqsf8/mq/ub5gsEg27e/DMC557623Vyn03H22W9mdHSU7du3i2JkgcrKyvjUpz7Feeedx0UXXcRzzz3H/fffz29/+1sefvhhTjrpJHH3VBBOULlcjgOD/ewe3o2hSk/FaZUYLUdX3PL4PJz3vvPof7mfgd8MY1vnwtG0PFKtS0pKcLZ4sFTZmOubJTeTwtbteUOJ1lI8R2YkBnEJd4sH+xJ0gmqqRi6eRYrmsVksVNRVoytC2MmrVFkhNh4hM5HE5/PRc0YHJuviF5fjoTihwSAWycIZ3WdQd0bdit4yKMsyQ8ND7B7cid6ro/bkasy24owLiIZizA7MYVYsnNp9GrW1dQX/bY5GI+zau4vZ6AxVbRX0dq8tyvc/l80zPTxDbCZJV0sPZ7/9vBXd4SoIy10mk+Gxxx7jzjvvZGJiAlj4O/jBD36QW265hd7e3qVdoCAIy5ooRgorVltbGwDxeBy/33/YmRYDA/2vfG77az721+bn5w/+9+vdQX+1Yy+RSBzzeoXXKikpob29naeeeoqtW7fyxS9+kf7+fs4//3xuvPFGbrjhBgyGxU1LFQTh+Ekmk+zev4vBmSFsjTYazmk4JBn7aOn0Onre1ENtSw0vPv0yczPTuDdUYHQsky5Jq4HaM+pJjMcIPufH3OXGVPW3O741TSMfzJAdiaPTSqho82CutB7/UBpFJRfJoCRk7E47VY0VRQ2NkbMSsdEI+dkM9Q111J63tiiJzkeiaRoRf4TIUJhKcwVvW/82ysvLV/RNr1wux4GBA+wb3Yu9xkrLGU1FSRjXNI3QbIi5wQBeUzlvWX/ewS15hZwzEAiwc+8OYvkoNe1V9G5cW5TvfzqZYWpommxIYt2aDbT0tohQDEFYRIlEgkcffZR77rnn4PWTTqfjH/7hH7j55pvp6OhY4hUKhViM3YeCcDjiL7WwYlVUVLBmzRr6+/t58skn+fjHP37Ix/fs2U0gEECv13Paaaf+zfOVl/95mPmBAwc46aSTXvM5+/fvB8Dn8xW4euEv6fV6br75Zt7xjndw4YUXsmvXLv7lX/6FX/7ylzzyyCOsWbNmRV8wCsJqFwwG2bGvj9nEDM5WF63ntRWly89V6ea8951L//Z++n87hHWtE0eLm9Jl0iXpaHJhqbIyv3OW+HQS29pySg2vLeppqkbWnyQ3EsdkM1LdXYXRdfwLq0peIRfJoGVUXB4nthYbJUXsGMwlssSHI2hRhab2Jnzrqhb9uVIVleBkkPhIjKbyJs4+4yycTueifs3F9ur25mH/MJ4mJ51vaS9K8U1VVeanAgSHQ9R56nnHm96Jy+Uq6JyapjE1NcXOfTuQDXlq26tp8tYWvFaAeDTB9MAMWrqUDV0baTitYUV3uArCchcKhXjwwQd54IEHiEQiwMJW3ksuuYQbbriBhoaGJV6hUAzF3n0oCK9HFCOFFe2jH/0YX/zibfzwhz/g1FNPpb19oQMyHo9xzz33APCe97wXq/XPs6d+//vf86//+i283nK2bNly8HhlZdXB4ub999/HV7/6L4cUHX/zm9/wzDNPA4jUsEVQUlLCxo0beeGFF/jiF7/Ili1b2L59O2eddRZf+tKXuOyyy1b0LC9BWG1eLUJs37+dZGkST5uHlvK2ot9YKNOV0X1qN7XNNbz4zMvMzSzMkjQ5zMXKVSmIzqyn+rQ6klNxgn/wY1zjwuRb6HZUJZXsZJzcRBJ7hY2KU+rQW49/N7iclciFs5TKJXi8LizVFiji85QOpYgPRzBIZbR3NOM9pXzRt5zLeZnA2DzpiRSd9V287fwLVvzcwGg0ws69O5mJTlPR6qWnqzjJ2LIsMzs2R3QsRmttO2e85eyCZzcrisLY2Ci7DuxE5yylvrcGq6PwDhpN04gEokwP+DGXWDml5wx8Pp+4YSkIi8jv93Pvvffy6KOPkkotzAi02+1cccUVXHvttVRViYLUiaTYuw8F4fWIYqSwop155pm8973/H48//lOuvvozbNy4EZPJxI4dO0gmk/T09HDhhRce8m9SqRSTk5Pk8/nXnO9zn7ueG264nomJCT75yYvp6urC4XAyOTnB2NgYAOef/1bOP//84/DoVieTycTXvvY13vnOd3LxxRczPDzMjTfeyC9+8QseeOAB6uvrxUWHICxjsiwzMjrCjv4dqE6NinUVVDheP5GxWJwVLs5971sY7BvkwJMDmHucOFvcRU+1fiNKSkqw1zsxV1gJ7FrokiyzGpDn0jjrnPjObqLsMB2Ti0qDfDpHPpzDUKqjorwck8VIUZOx5+IkhmLYjTbWd3Vj9zoW/fU7l8kRGJpHmpfY0Laejr9bs6LHfWiaxvz8PDv2bicmRalqr6CntzjJ2PlsnplhPyl/mq6WHs57+wUFz1iUJImBoQH2De3BVmmm7U2NmCyFd/lqmsb8TJDZwTk81nLO2XQ+Xq/3b/9DQRDesPHxce68806++93vksvlAPB4PHz2s5/lqquuwu12L/EKhcVQ7N2HgvB6RDFSWPGuvPJK1q7t4YknfsbevXtRFIXq6mo+/OGP8P73vx+9/ujnUDU3N/PII4/yk5/8Jy+++CL9/f1IkoTdbufkk0/mHe94B+ec85bFezACsHDh/uY3v5nt27dz/fXX88gjj/D0009z2mmnsXXrVj760Y++bjfIzp07UVWVjRs3HudVC8Lqpmkau/buYvfwLgzVJqpO9xVlft2xKNOV0XlyJzXNNbz09EvMTU/i3liJyblMuiRNOqpPrSM5k0DNK9i6Fn+b8l/TVI1cIocUzWExmqmurkJvLN7zpCoqiakoqbEEFW4vHadsxOJY/I7EdDxNcChAaayUTV2baC5C2vNSUlWVqalJduzbgWTMU91RRa2nOCNiMskMM0N+pLDM+o5eWje2FrzNO5PJsL9/P4MT/XjqnfS8uaMoc0BVVcU/Mcf8cJDa8nreduY7cTgcBZ9XEITXd+DAAe644w5++MMfoigKANXV1Vx//fV86lOfwmaz/Y0zCCtdMXcfCsLrKdE0TVvqRQiCILweTdP4+c9/zqWXXsrs7CwA73nPe7jrrruorFzotlJVlV/+8pfce++9PPvss7z5zW/mf/7nf5Zy2YKw6miaxvMvPc9gcJC6TXWYipTm+0apisrQziH27evH3G3H2eamtIghLCuNpmpkoxnkmITdbsXpcVL2BsKDXo8iKcTGwmQnU9TW1VDXVofRvLhJxpqmkQjFCQ2GsKk2TureVJS056WkKAojI8Ps7N+Jzl1CdVs1FntxirmJSAL/4CxlGT29XRtpaCh8xmIymWT3vl1MzI1R2VJOdUNVUcKOZElmetRPaDxKa3073Wu6V/w2e0FY7nbs2MHWrVt54okneLVE0NzczE033cSFF14o0ulXmfvuu4/HH/8pOp3usLsPv/GN2w/5mfjVr37F1q1bqKqq4nvf+/fXnO8zn7nq4H/HYjH8fj8Wi+WQWaOf+MQnOO20Ny3uAxOWDVGMFARhRQgEAlx55ZX8+Mc/BqCyspKtW7cSCAR44IEHGBoaOvi5GzZs4Fe/+hV2u32plisIq9bs7CxPv/g0xgYjla1VS14YSkaSvPjUi8QN6YUuSdfy6JI8XlRZIRvJoKZUnC4Hdpe9qN2YUjpPbCSMHMjT2FxPdUvNG0pIPxaaphGZCRMZjlBlqWJj98aC056XWj6fp3/gAHtH9mD1Wahu82E0FX7h/+qMxbnBeWwldjb2bCrKjMVwOMyufTuZj89R3V5JZU15UeZX5rJ5podniM0k6WrpYU3Hyt5mLwgrwXPPPceWLVv49a9/ffBYd3c3t9xyCx/5yEdEOv0q9swzT/PEEz9jeHjo4O7D889/62F3H/6tYuQFF7z1b36966+/gbe//e1FW7+wvIlipCAIK4amaXzve9/jM5/5DLFY7JCPlZSU8K53vYurrrqKs846a8kLIIKwmkmSxEt9LzIYGqJ2Yx3mpe6SVFVGdg+zd88BjGtsuNo9lOpP7C5JOSeTC2coyYPL48LqtBb1dTEbyxAfjlCa1Ghub6KioXLRk4xVRSU4ESA+Gqe5opkN3RtW/JbddDrN3gN7GJoaxNngpLq5qijFXFVVCcwECQ6HqLT52NC9oeAZi5qmMTc3x869O0iqCWrbfXgq3UX5uUonM0wNTZMNSaxbs4GW5hZRABGERaRpGr/+9a/ZunUrzz333MHjJ510Eps3b+Y973mPSKcXBGFRiWKkIAgrxosvvsidd97Jj3/8Y2RZPnjcbrdz991386EPfUgUIQVhGflzl6SBytalT7xNxVK8+NRLRMsSuHsrMHusJ1aXpAZSJk8unEVHGW6vG7PNRDFDadLBFPGhCBaMNK9pxu0rTjHqSKS8RGA0QGYyTVdjF90dK3/LbiwWY9e+XUyFJvC2eqiqL04xV1EUZsfniIxGaaxsZl33uoJ3Cbw6v7JvXx+aSaa2vRqnpzhF4Hg0wfTADGTKWN/ZW5St44IgvD5VVfnZz37Gli1b6OvrO3j8nHPO4dZbb+WCCy5Y8r/VgiCsDqIYKQjCsqYoCo8//jh33nnnIXdu6+vr2bRpE//7v/9LJpOhpKSEq6++mn/+53/GZCo8uVMQhOKQJImX+15mIDhA7cZazEWaf/dGqarK2N4x9uzai6HDhrPDQ9lK75LUIJfMkg/nMBuMuMpdGIqwxffg6VWNhD9GcjiG2+akaU0Tds/ij8HIpbPMDwVQAhLr2zewpm3NMYXSLUeBQIC+vTsIZYJUdlRQ7vMW5cJfykv4R2aJTyXoaOike003ZnNhHcmvzq/c3b8Lg0dPfXs1Flvhv7+vbh2fHvBjLrHSW6St44IgvD5JkvjRj37Etm3bOHDgwMHj73znO7n11ls588wzl3B1giCsRqIYKQjCshSPx/nWt77FPffcw9jY2MHjp556Ktdddx3ve9/70Ol07N+/n4suuog//elPwMKMm0ceeYQNGzaICxtBWEbm5+d56k9Poa/TU9Xqo6R06bskX35mO2EthmtTBZYV2CWpqRq5WAYpJmGzWnF6HeiKWKxTZYX4ZJT0WIKqqioa2uuPy5b7VCxFcDCAPqVjY+cmmhqbVnQytqZpTE9P0bevj0xZGl97Ja5yV1HOnU1n8Q/NkpnPsa59He1tHQUXbPP5PAOD/ewb3ouj2kpdW03R5lfOzwSZHZzDa6tgfXdvwVvHBUE4smw2y2OPPcadd97J+Pg4sDDa6AMf+AC33HILGzduXOIVCoKwWolipCAIy8rY2Bj33HMPjz76KIlEAoDS0lLe9773ce2113L66ae/psiYz+f5xje+wZe//GUkSUKv13Prrbdy3XXXiZlTgrCMyLLMy30v0R8YoKa3FotjabskNVVjbP8Yu/v2om+34OrwUmZY/kUvVVEXQmmSMg6HHYfHQWkRi3VyTiY2GiY/k6GuoZa6tjr0xsXtSNQ0jXgwRngwhF1zcPLak6murl7RN5UURWFsbJS+A32UOKCm3YfVYS3KuVPxFDODs2hx6O3spampueCCbTqdZn//PoYmB/A2uKltqS7K/EpFUZidnGduOEBdeQPrutev+FmfgrCUbrrpJux2O9dff/3r7gZKJpM8+uij3HPPPczNzQGg0+n4xCc+wU033URnZ+fxXLIgCMJriGKkIAjLylve8haeeeYZYGEW5KWXXspnPvMZmpqajvjvNE3jpZde4p/+6Z/Yv38/AKeddhoPP/wwra2tK/qCVhBONIFAgKdeeBLdMumSTMfTbH9mO0ElimtjBZby5dklqeQXkrHJqLg8TmxOGyVFnK+XT+aIDYdRIzJNrQ34mqop0y1ucVZTNcIzISJDUart1Wzs7qW8vHxRv+ZikySJgaEB9gzuxlxppLrNh8lSnPEh0VCMucE5jLKZjd0bqa2tK/jvWzweZ/e+XUwFJ6hqKcfXUFWUTlRZkpke9RMaj9BW30HXmpU/61MQltr27dt585vfjKZptLa2cuedd3L++ecf/Hg4HObBBx/kgQceIBwOA2A0Grnkkku44YYbaGxsXKqlC4IgHEIUIwVBWFb+67/+i8997nNcc801XHzxxcfcPZFKpfj85z/P3XffjaZpWK1WvvKVr3DJJZeIofiCsIzIsszLO1+mf66fmo3Lo0tyon+Cndt3o2814+r0UmZYHp3VUkYiF8lSppTg9riw2C1QxBssmUia+FAYfa6M5o4mymsrFr1ArMgKwYkAidEELVWtrO9at+K75TKZDPv69zEwcQBHnZ3qFh96Q+EdpZqmEZoNMTcYwGsqp7dnIxUVFQWfNxQKsXPvDkKpINXtVVTWlBflxl0um2d6eIbYTJKulh7WdKzBYDAUfF5BEBa2Xd95551s2bKFXC4HwAc/+EE+97nP8YMf/IBHH32UZDIJgM1m44orruDaa6/F5/Mt5bIFQRBeQxQjBUFYVhRFASioK0PTNJ588kk++clPHpyPc8EFF3D//fev+G1/gnCiCQQCPPWnpyir0eFrW/ouyUwyw/ZntxPIRXBuLMdaYVuaLkkN8qkcuXAOo06P2+vCaDFSzGTs1HyCxFAUm95CS2czjnLn8UnGHpknM5Whp6mHro6ugoNWllo8Hmf3/l1MzI/jaXFT1VBZlM5CVVWZnwoQHA5R56lnXdd6XC5XQefUNI3ZWT99e3eQ0VLUdlTjrnAV5XlPJzNMDU2TDUmsW7OBluYWMSpFEBbJ0NAQn/3sZ3nqqade8zGPx8M111zDVVddhcfjWYLVCYIg/G2iGCkIwgkrEolw7bXX8p3vfAcAt9vNtm3b+OAHPygKkoKwjMiyzI5dO9g/u395dElqGlMDk/S9tJuyZiOurnJ0xuNTVNFUjVwiixTJYzWbcZa7itJd9+fzq8SnYqRGY3idXpo6G7E6izPH8EiyqSzBoXnkoEJvRy/tre0rPhk7FArRt28HgcQ8Fe1eyqvLi9KBL8sys2NzRMZitNW209PZg9Va2HOkqirj4+PsOtBHiUWltqMGh6s4iejxaIKpgRlKMmWs7+yloaFB7EQQhEXW39/P1q1b+cEPfoCqqgeP19fX8/3vf1+kYwuCsOyJYqQgCCc0TdP46U9/ymWXXUYgEADgAx/4ANu2bRMpnoKwzASDQZ564SlKqkupbq9e8i7JbCrL9me2M5cN4eotx1plK+r26L+kKSrZaBY5LuFw2HB4HJQVsatMkRRi4xGykylqqquob6/HWKQ5hkeSjCYJDQXRp/Sc1HUSDQ0NKz4Ze3bWz/a920lpSXwdC8nYxbjBlc/m8Y/MkpxJ0dXSQ2d7J0ZjYSnWsiwzNDzE3sHdmLwG6tpqsBQhEV3TNCKBKNODs5ix0NuzCZ/PJ270CcIi6+vrY+vWrTz++OO8ehlfX19Pc3Mzv/vd79A0jdLSUq655hq+9KUvYbcX56aDIAhCsYlipCAIq4Lf7+fyyy/niSeeAKCmpob77ruPCy64QFw8CcIyoigKO3btYN/MXqo31h6Xrr0j0TSNmaFpdry4k9IGI66e4nZJKv8/e/cdHkXZNXD4t+m9QDoJLY0USEGpIk1EQQUFFUSlq6h0UAgqqK9Kly7FD0FUVJQiIkV6kQ4BUkghISSk9152d74/8maFF1A0CyFw7uvyUmdmn30mye7OnjnPOVUaKvLK0JZqsbO3wcrOWq9ZZVVlVRQk5FKVWU7jpo1p1NwNoztcC1NRFAoy88mNz8XWwJaHAlrj4lK/S2TUZBaGR59FsdTg6u2ClZ2VXsYuKy4j9VIaVTlqWvkE49ncs9bLmysqKoiJu8jFhGhs3axo5OmGqVnt6zYqikJmajbpcRk0tHKklX+w3NgT4i44evQos2fPZteuXbptfn5+TJ06lQEDBmBsbMzx48d54403CA8PB6BRo0YsWrSIZ599tl6//woh7k8SjBRCPDC0Wi1r1qxh/PjxFBYWAjBy5Eg+/vhjuXMsxD0mJyeHfcf3grMKFx/XOl/2WVFaTvihc6QVZ2Ib3BBLF+taZUmqK9RU5JahqgT7hnZY2Fjq9ctiRWE5BZdyURUqNPNuglNjZwwM7+zPUNEq5FzNpuBSAW42rgT7h9T7QFVVVRWXEi5xPvYcJg7GuHm5YG6pnxqXRflFpMamY1RmTLBfiF6WN5eUlBAVE0lCSjwOTRvg1sxFL3UbNRoN6cmZZFzKwt2hMS39W9X7hkNC3OsURWHPnj3MmTOHw4cP67aHhoYybdo0+vbte8N7hlqtZvHixbz//vuUlJQA8NRTT7F48WKaNm16N6cvhBB/SYKRQogHiqIoJCYmMmzYMA4cOACAp6cnK1asoF27dnLnWIh7iEajIfzCWSKuRuEW4nZPZEmmJaZx9lg4eBhhH+CIkdk/qHuoQGVpJZV55RhjiL2DPWaWZuizKU1pTglFl/Ix1RjTzKcpDd0a3vH3NY1aQ/blLIqSivB29aKlXyusrPSTNVhXKioqiIqJ4uLlaKwbWeHa3BkTU/1kFuZl5ZMel4G1yoYQPS1vLigo4HzUOdJyU3HxdMDZw0k/9Sur1FxNTCMnKR8vD2/8fP2xsKjbmq5C3O+0Wi2//vorc+bM4cyZM7rtnTp1Ytq0aTz++ON/+56RnJzMuHHj2LhxIwDm5uZMnz6dCRMm1Pt6vUKI+4MEI4UQDyS1Ws3ChQt57733KC8vx8DAgIkTJzJ16tRa1+gSQuhXdZbkPnACF997IEuyrIJzR86TmpeGdbADVq7Wf13fUlGoKKqgMq8Cc1Mz7BraYaKHJbO64bUKxRmFFMfnY2thQ1Pfptg0vPNZa1UVVWQmZFJxtYyAZoH4+fhhZnbn61DeScXFxUREXyAxPQH7pna4NHHG0Eg/nbGz07LJis/BycqFIP8gvWSNZmVlcS7qLPnlebh5O+Pgop/gc0V5BSnxqRSmVdev9PXxxcREf3+zQogbqdVqNmzYwLx584iOjtZtf+KJJwgLC6NTp07/eMxff/2Vt99+m6SkJAD+7//+j2HDhultzkII8W9JMFII8cBSFIULFy4wdOhQ3Z3noKAgVq5cSUBAgGRJCnEP0Wg0nIs4x4XkCFxDXPVWr+/fUhSFjKQMzvxxBm0jQ+wDnTA2vz7bRNEqVBSUUVVQhZWlJbYNbTEy1l+9Rq1aS2FKPqWXi3B0cKCpT2PMre981lp5cRlZ8VlocxVCfILwbO5V7zNt8vLyOBcVTlp+Ko5eDjg20k9nbI1GQ3pSBnmJ+TRxakZL/5a1LguiKApXr17lXFQ4lYZlNPJxxd7BrtZzBSgtLiMl/irlOVW09A2iebPmelnmLYS4tfLycr799lvmz5/P5cuXAVCpVDz33HOEhYURGhpaq/FLSkr4+OOP2b9/P4cPH5bXtBDiniDBSCHEA6+iooL//Oc/fPbZZ2g0GkxNTfnggw8YPXp0ve76KsT9KCcnh/3H96N1UnC9B7IkK8srOf/HeVKyU7EOaYiVq011EDK/DE2xGhtbG2zsrTHQ43uJplJNweU8ylNKcfdww93LXa+ZlrdSlFdETlw2puWmus7Ydf3zrw1FUcjMzOBMxBkKNQU4ezvRwMleLzeiqiqrSEtIpzClCJ/GLfD39cfcvHa1JjUaDUlJlzl/8RyG1ioaebtibaufoHxhfhEpsamoygxp1SK43v9uhagPiouLWb16NQsXLiQ9PR0AQ0NDBg0axJQpU/Dz89Pr86nVaglECiHuGRKMFEIIqr+UHjt2jCFDhhAbGwtAx44dWbFiBU2bNpUsSSHuIRqNhvOR5zh/JQLXYFes7Ou+PmFmUgan/jiDxtkAS2dr7B3ssLK10ut7R2VpJQWXctFkV9K0eWNcm7vpZQnxX1EUhfzMfPLicrE3sqd1QGucnZ3r9XuiVqslOTmZs1Fn0JhV4eLtjE0D/SxrLy8tJzU+nfLMCgK9W+Lj5VPrrNGqqiriL8UREReBpaMZ7t5umFvUfjl8Tf3Kq3HpmGNJcECIXupXCiH+Wl5eHitWrGDZsmXk5OQAYGpqyrBhw3jnnXek0YwQ4oEgwUghhLhGcXEx7777LsuWLQPA2tqamTNn8uqrr0qWiBD3mNzcXPYd24fWUYtrC7c6f41WllcSfSqaQm0JDq1cbli2/W+V5ZdSeCkfwxJo7tMUBw/HO36uWq2WnJQcChLy8bBzJ9g/BHt7+zv6nHeaWq0mITGBczHhGNkb4ubtgoWVfpa1lxSWkBqXhlKoIqhFMM2aNqt1Zn1FRQXRMVHEXo7B1t0aD083jE1q/zelKAqZqdmkx2XQ0MqRVv7B9b7ruRD1QUZGBkuWLGHVqlUUFRUBYGlpyahRo5gwYQKurq51PENx4MABfvllCwkJCajVatzc3OjWrTv9+vX7R1ml8fFxnDx5kjNnznL5ciJFRUWYm5vTtGlTunTpSu/evSVLVTzwJBgphBD/Q1EUdu7cyYgRI7h69SoAvXr1YsmSJTg7O9fx7IQQ19JoNFyIusD5K+dxDnLB2r529fj0IftqNhcvxGDhZY21u92/yjRTFIWSrGKK4vOxNDSjmW8z7Jz+3Vj/hEatISsxk+KkYrzdvGnp1/K+6Ix9Me4i0QmRWLpa4OrpgqmZfhqV5ecUkBGXganajBD/UBo1cq/176i4uJjI6Agupyfi2KwBbk1c9JIBq9FoSL+SQUZCNu4OjWnp3wobmzvf6EiIB11ycjILFixgzZo1lJeXA2Bvb8+YMWMYM2YMDRo0qOMZCoBly5axadNGDA0NCQ4OxtzcnPDwcIqLiwkMDGTmzFm31eRSo9HwxBM9geou5r6+vtjZ2ZOdnUVUVBRarZYWLVrw2Wcz6/3nqxC1IcFIIYS4hZycHMaMGcN3330HgIODA4sWLeKZZ56RZWxC3GPy8vLYd2wfmoaa6ixJw7rNkqyqrCIuPI6c8nwcWjljbH57NR0VrZai1AKKEwppYG1HU9+md2UZemV5JZmXMqlMqyCweUv8fFrc1peue1lJSQlRMZHEp8Rh18QGl6YuemkgpCgKOek5ZMRl0cC0ISGBoTg6OtZ63Pz8PM5Hnic9Pw0Xb0ecG+knA1ZdpeZqYho5SXl4efjg5+uPhcWdb3QkxIMuNjaW+fPns379etRqNQDOzs5MnDiRN954o9bNrIT+HDlyhBkzpmNubs68efPx9vYGoKCggMmTJ5GYmEj//s/z+uuv/+1YGo2G0aNH8+KLL9K+fXtMTP78/E9MTGDKlKnk5ubQs2dPJk2afMfOSYh7nQQjhRDiLyiKwg8//MDbb7+tq+szcOBA5syZU++XLApxv9FoNEREXyD88nlcglywblD3X/RyUnOIPn8R8+ZW2DS+dXMUrVpDQVIeZVeKcXF2prFPY8wsa18X8O+UFZeRFZcJeRDiG4Jnc896v3QsPz+fC9HnSclNxsGzIU7u+gnqabVaMlOyyL6UQyN7d1r5B2FnZ1erMaub6GRyLjKcInUBbt7ONHRuoJcbXhXlFaTEp1KYVoJf8wB8fXyv+1IshLgzzp07x7x589i4cSM1X7WbNGnCO++8w9ChQ2vdzEro39tvv0VMTAxDhgxl0KBB1+2LiLjA+PHjMTY2ZsOGDVha1u4G4e7du5k1ayampqZs3ryl3n/mCvFvSTBSCCH+hqIoXL16lddee43t27cD4O7uzvLly+nSpYtkSQpxj8nPz2Pf0X1UNdDg5lf3WZLqSjVx5+PILs6lYZALJhZ/BoTU5VUUJOZRmV6GR2N3Gnk2wthUP7Um/0pRbhHZcdlYVJrR2r817u4edV5zszYURSErK4vwyLPkVuTg7O1IQ5eGenl/VqvVpF/OIO9yAV6NvAloEYClpWWt55ucnMz56HDUJpW4+7hi28C21nMFKC0uIyX+KuU5VbT0DcKzuWet61cKIf7esWPHmDNnDjt27NBt8/X1ZerUqbz00ku1bmYl7ozs7GwGDhwAwNdfr7tp7c6XXhpIVlYWU6eG0a1bt1o93+XLlxk5cgQA33//g9TsFQ8sCcMLIcTfUKlUuLu7s3XrVlatWsXkyZNJSUnhqaee4q233mLGjBmy5E2Ie4idnT3PPN6HiOhIwg+E4xzkjE3DuquNZ2RihN9DfuSm5xJ94iKmTSwwd7Ck8FIeSr6Gpl5NcA50viudsfPS88iLz8PBpAGPBXTHycmpXt9QURSFlJQUwqPPUGFUjrO3MwEN/fQydmV5JWkJ6RSnVmcWduvZo9ZL1zUaDZcvJ3L+4jmM7QxwD3bD0qZ2gc0ahflFpMSmoiozJMgvBI+29TvALER9oCgKe/fuZe7cuRw8eFC3PSQkhLCwMJ599lm5GXCPi4+PB6qbVt6qiZCPjy9ZWVlcuhRf62BkTT16Y2NjWaovHmgSjBRCiNtkaGjI66+/Trdu3Rg2bBhHjhxh6dKl7N69m5UrV9K6det6/aVeiPuJoaEhQYGtaOLemH3H9lFoV4Cbf6M6zZJs4NKAtg3bcOnCJQovFODt3YyGDzugMriz7xtarZac5OrO2I0bNOaRdh2ws6vfZSY0Gg2JlxM5d/EsBrYqXFu56C2oV1ZcRuqlNKpy1LTyCcYzuPZL16uqqoiNjyUqPgJrZwu82jfFzLz2NTkVRSE3K4/UuAzMsaRNQAdcXFzks0iIO0yr1fLbb78xe/ZsTp8+rdvesWNHpk2bxhNPPCGvw3oiPT0NACcnp1seU1MXOC0tvVbPpSgKP/74AwBt27aV0hnigSbBSCGE+AdUKhU+Pj7s27ePuXPnMmPGDGJiYujevTvvvvsukydPlmU4QtxD7Ozs6PPfLMmzB87WfZaksRG+ob535bnUVWqyErMoTS7Gp5Evj3XtXuvlxXWtsrKS2PhYIuMjMHc2pUk7D0z1ENQDKMovIi0uA8NSQ4L9WtO4beNaZxaWlZURHRNF3JVYGjS2JeBRH4xNav8ZoSgKmanZpMdl0NDKkc4h3WSpnxB3gVqt5ueff2bu3LlERUXptvfs2ZOwsDAeffTROpyd+DdKS8sAMDO7dZ3mmjqfpaUltXqudeu+JioqCnNzc4YPH1GrsYSo7yQYKYQQ/4KxsTFTpkyhZ8+eDBkyhAsXLvDJJ5+wY8cOVq5cia+vr9wRF+IeYWBgQKuAltVZkkf3UWBXgJuf2x1fFl1XKssrybqUSUVaJa08W+Lb07fed8YuLS0lOjaK2Csx2HpY4/1oc70F9fKy8smIy8RKZU2HgEf0kllYVFRERNQFkrOScGzekKBu/npZqqnRaEi/kkFGQjYejk14vGMvbGzqLrguxIOioqKC7777jvnz55OQkKDb/txzzzF16lQeeuihOpydqA9+/30X33zzDQYGBkycOAl3d/e6npIQdUqCkUII8S+pVCpCQ0M5ceIEH3zwAfPmzeP06dM88sgjfPTRR7xxAUXbAAC7fklEQVT++utSJ0iIe4itrS3PPP4MURcjOXPwDE6tnLFx0E/TkHtBaWEp2ZeyUOWrCPUNoXnr+t+4pLCwkAtR50nKSqKhpz1+XX31ck5arZbstGyy4nJwsnahe2gPvWQW5ubmci4ynKyiTFy9nQgKDNBL3UZ1lZqriWnkJOXj5eFNm26PSK1iIe6CkpISvvrqKxYuXEhqaipQXQbkpZdeYsqUKfj7+9fxDEVtWVhUZz2Wl5ff8piysrL/HvvvVhccOHCAuXPnAjB+/Hg6d+78r8YR4n4iwUghhKglMzMzZs2aRe/evRk2bBgJCQlMnjyZbdu28cUXX+Dh4SFZkkLcIwwMDAj0b0lj9ybsO7aP5NRk3Pzrd5ZkYU4hOXHZWFRZ0MG/A+4d3Ot945Ls7GzORYWTVZKJo7cDgS399PI+qtFoyLiSSW5CHk2cmtK7U4daNxBQFIWMjAzCI85QqhTj5u1CsFOAXuZbUV5BSnwqhWkl+HsG8OgT3aXGmBB3QX5+PitXrmTp0qVkZ2cDYGJiwrBhw5g8eTLNmzev4xkKfXF2dgEgKyvrlsfU7HNxcf7H4x86dIjPPvsURVEYN24cTzzx5L+bqBD3GZWiKEpdT0IIIe4XBQUFTJ48mVWrVgFgY2PDvHnzGDBgQL0PDghxv9FqtUTHRHM6/jSOLZ2wdaw/WZKKopCXlkdefC6OZo6EBoTi6OhYr298KIpCWloaZyNPU6oqwdnbGTsHW72cU1VlFemJ6RQkF+HTuAX+vv66GmD/llarJTk5mXPRZ1HMNbh7u2Jjr58l06XFZaTEX6U8p4qWvkF4Nq//Wa5C1AeZmZksXbqUlStXUlhYCIClpSVvvPEGEyZMwM3NrY5nKPQtKyuLl14aCMDXX6+7aUftl14aSFZWFlOnhv2jbtpHjhzhP//5GI1Gw5gxY3nqqaf0Nm8h6jsJRgohhJ4pisKvv/7Ka6+9Rnp6dde9Pn36sGDBgr/s1CeEqBuFhYXsP7aPUqtyGgU0uqezJLUaLdnJ2RQmFNDUoSlB/kHY2tafIOrNaDQakpKSCL94FqwUXL2csbKz0svYFWUVpManUZZRQaB3S3y8fGrdZEyj0XAp4RIXYs5h2sAYD283LKz0s2S6ML+IlNhUVGWGBPmF4OHhITeyhLgLUlJSWLBgAWvWrNEtybWzs2PMmDGMGTNGGkTd595++y1iYmIYMmQogwYNum5fRMQFxo8fj7GxMRs2bMDS8vY+n44ePcpHH30ogUghbkGCkUIIcYdkZWXx5ptv8tNPPwHg7OzM4sWL6dWrV73OXhLifqTVarkYG82puNM4tnTE1tGurqd0HXWlmqzLmZReKaGFRwsCWgTW+5qBVVVVxF2KIyLuPKaOJrh5uWJmcetupv9ESWEJqXFpKIUqgloE06xps1pnFlZWVhITG0N0QiQ2rpa4e7lhalb7xkCKopCblcfV2HQsVFYEB4TopYmOEOLvxcfHM3/+fL777juqqqoAcHJyYuLEibzxxhvSIOoBceTIEWbMmI65uTnz5s3H29sbgMLCAiZNmkRiYiL9+z/P66+/rnvM4cOHWb36/2jY0IE5c+ZcN97x48f58MMZqNVqxo4dS+/eEogU4n9JMFIIIe4gRVH45ptvGDNmDPn5+QAMGTKEzz77TC5whbgHVWdJ7qfMshS3QPc6z5KsKKsgKz6Tqswqgrxa4ePlW+9rBpaXlxMdE8XFpGhs3K1wbe6ql87YAAU5BaTHZWCqNiPYLxR3d/daB/VKS0uJuhjJpZQ4Gjaxp1EzV4yMa192XVEUMlOzSYvLwMHKkVb+wZJ9JcRdcuHCBebOncvGjRvRarUANG7cmHfeeYdhw4bVuoyDqH+WLl3K5s2bMDIyIiQkBDMzM86ePUtxcTEBAQHMmjUbU9M/b0Dt3LmTuXPn4OzszDfffKvbnpeXx6BBL1FVVYWjoyPBwSG3fM7XX3+93q9uEOLfkmCkEELcYYqicOXKFUaMGMHu3bsBaNq0KStWrKBjx46S/SLEPUZRFKJjozkVc6q6lqTT3f+iUFpYSnZ8FgYFBoT6heols6+uFRcXcyHqPIkZiTRsZodzY2e9BHsVRSEnI5fMuCzsTRoQElhdP7O2ajp5p2RfwdnTERcPJ738DjQaDelXMshIyMbDsQmBfi3l5pQQd8mJEyeYM2cOv/32m26bj48PU6dO5aWXXqr3N3tE7Rw4sJ8tW37h0qV4NBoNrq6udO/+GP369buhxMetgpHp6em88srLt/V869Z9g4uLi17PQYj6QoKRQghxl2g0GpYuXcrUqVMpLS1FpVIxduxY3n//fczM9LM0UQihP0VFRRw4tp9i8xIatbzzWZKKolCUU0hOXA5WWita+4fSqFHtM/vqWm5uLueiwkkvTMfJywEHt4Z6qYOo1WrJTMki+1IOjezdaeUfhJ2dXa3HrenknVeSjauPM46uDnr5Hair1FxNTCMnKQ8vDx/8fP3r/VJ7IeoDRVHYv38/c+bM4cCBA7rtQUFBTJs2jeeee67e3+wRQoj6RoKRQghxFymKQnR0NEOHDuXEiRMA+Pv7s2rVKoKCgup90EGI+42iKMTEXuREzEkcAx2xdba7I8+Rl5pL3qU8nC2cCfEP0UtmX11SFIX09HTORp6hWCnC2csReyd7/QT11GrSL2eQd7kATzcvAv0CsbS0rPV809LSCI88Q7mqjEY+Ltg72OllvhXlFaTEp1KYVoK/ZwA+3vV/qb0Q9YFWq2X79u3MmTOHkydP6rZ36NCBadOm8eSTT8p1lxBC1BEJRgohRB2orKxk5syZfPzxx6jVaoyNjQkLC2PChAkYGdW+FpkQQr+Ki4vZf2w/xWbFuAU20kvNQK1GS/aVLAoTC2nm2Iwg/6B6v1xXq9Vy5coVwqPPojGvwtXbBWt7a72MXVlRSeqldEpSS/BrHkAL7xbX1e/6t/NNSkri/MVwVJYK7t6uWNvpZ76lxWWkxF+lPKeKlr5BeDb3lOwrIe4CjUbDzz//zNy5c4mMjNRt79GjB9OmTePRRx+VIKQQQtQxCUYKIUQdURSFkydPMmTIEKKjowFo164dK1aswNPTUy6UhbjHKIpCTFwMJy6ewCHQEbt/mSVZVVlFVmIWZcml+DXxw9+n/i/XVavVXEq4xPnYcIwbGuHm6Yq5lX4aQJSVlJEan0ZVjppWPsF4Nves9U0btVpN/KV4IuMuYNbQBA9vN8wt9TPfwrxCUuLSUJUZEuQXgoeHh16WpQsh/lplZSXfffcd8+fP59KlS7rtffv2JSwsjIcffrgOZyeEEOJaEowUQog6VlJSwnvvvcfChQtRFAVLS0s++eQThg8fLl9ghbgHFRcXc/DYAQpMi2gU2Agjk9sLjFWUlpMZn4Umq4pW3kH4evneUBC/vqmoqOBi7EWiEyOxcrPEtbkLJmb6WYJclF9EWlwGhqWGBPuF0rhx41q/J1ZUVBATe5GLidHYNbKmkacrJqa1n6+iKORm5XE1Nh0LlRUhgaE4OzvLTSUhaiE+Pp6IiAj69Onzl6+l0tJSvvrqKxYuXMjVq1cBMDAwYODAgUydOpWAgIC7NWUhhBC3SYKRQghxD1AUhT179jB8+HCuXLkCwOOPP87SpUtxdXWVL7RC3GMURSE2Ppbj0cdxCHDAzsX+lseWFJSQHZeFUYkRoS1Cadqkab1frltSUkJEdASXUuOxb2qLS1NnvZSYUBSFvKx8MuIysVJZExIQiouLS63fA0tKSoi8GEHi1Us4NG2AWzMXvcxXq9WSlZZDWlwGDlaOtPIPpmHDhrUeV4gHnaIo9OrVi4MHD9KrVy/mz5+Ph4fHdccUFBSwcuVKlixZQnZ2NgAmJiYMGTKEd955B09Pz7qYuhBCiNsgwUghhLiH5OXlMX78eNauXQuAvb09n3/+Of3795eApBD3oOLiYg4eP0iBSeF1WZKKolCYXUBuXA7Wig2tA1rj5uZW71/H+fl5nIs8R2r+VRw9G+Lo7qi3ztjZadlkxeXgZO1MkJ6Cevn5+VyIOk9a3lVcPB1x9nDSy3w1Gg3pVzLISMjGw7EJgX4t6329TyHuJSUlJbz22mts3rwZAEtLSz744ANGjRpFbm4uS5cuZcWKFRQWFgJgYWHB66+/zsSJE2nUqFEdzlwIIcTtkGCkEOI6Bw4c4JdftpCQkIBarcbNzY1u3brTr1+/f51F8scfR9i+fQcxMRcpKirCysoKNzc3HnroYV555RU9n0H9pygKGzduZNSoUWRlZQHwwgsvMHfuXMm4EeIepCgKcZfiOB51jAb+DdFqtOTF5+Nq7UqIfzAODg51PcVaURSFzMxMwiPPkl+Vh5OXIw1dGuglsKrRaMi4kkluQh5NnJrS0r8V1ta1byCTlZVFeORZCirycPN2xsGloX46eVepuZqQRs6VPLw8fPDzrf/1PoW4l/3222+MHz+elJQUABwdHSksLKSiogIAW1tbRo8ezdixY+v9e60QQjxIJBgphNBZtmwZmzZtxNDQkODgYMzNzQkPD6e4uJjAwEBmzpz1jzqXVlVVMXPmZxw8eBBTU1P8/Pyxt7cjLy+Py5cvo9Vq+fnnjXfwjOq3tLQ03njjDX755RcA3NzcWLZsGY899li9z64S4n5UUlLCH6f+wNzMnFZ+rep9ppxWqyUlJYXw6LNUGlfg4u2EbUNbvYxdVVlFemI6BclF+DRugb+vP+bmtWsgoygKV6+mEB4VTpVhOe4+rtg52OllvhXlFaTEp1KYVoK/ZwA+3r6YmOinNqYQ4q+dP3+eYcOG6Zr9AZibm/Puu+8yfvz4ev9eK4QQDyIJRgohADhy5AgzZkzH3NycefPm4+3tDVTX45k8eRKJiYn07/88r7/++m2POXv2LH7//Xc6duzI+PETsLX980usVqvl4sWL+Pv76/1c7idarZavvvqKCRMm6JYijRw5kv/85z9YWVnV8eyEEPcjjUZDQsIlzsWcw8hehauXKxbW+sn+qyirIDU+jbKMCgK9W+Lj5VPrJj4ajYbLlxM5f/EcRjYGuPu4YmWjn/fH0uJSkuNSqcitopVvEM2be9b7ep9C1BcRERHMnTuXn3/+Ga1WC4CxsTFVVVUANGnShGXLltGrV6+6nKYQQoh/QYKRQggA3n77LWJiYhgyZCiDBg26bl9ExAXGjx+PsbExGzZswNLy77/knTlzhnfffYemTZvyxRfL9dIo4EGlKAqJiYkMHTqUgwcPAuDl5cWKFSto27atZEkKIfSisrKS2LgYIi9FYO5ijpunC6bmt58N/1dKCktIi09HWwBBLYJp1rRZrYN6VVVVxMXHEhkfgaWjOR7ebphZmOllvoV5haTEpaEqMyTILwQPDw+91JoUQvy9U6dOMXv2bLZt26bb5u3tzZQpUxgwYABffPEFH3zwAaWlpUB1KZuFCxfi4uJSV1MWQgjxD0kwUghBdnY2AwcOAODrr9fh6up6wzEvvTSQrKwspk4No1u3bn875vTpH/DHH38wYcJEnnzySb3P+UGkVqtZsGAB77//PuXl5RgYGDBx4kTCwsJkuaAQ4l8rLS0lKiaKuOQYbBvb4trMGSNj/dxAKsgpID02A1ONGcF+obi7u9f6Bkp5eTnRsdHEXY7Bzt0ad083jE1ql10J1Td+crPyuBqbjoXKipDAUJydneWGjxB3gaIoHDx4kNmzZ7N//37d9latWhEWFkb//v2vu4Fx+fJl3nzzTbZv3w5U146cNWsWI0eOlBsHQghRD0gwUgjBsWPHeP/997C2tmbjxk03PWbGjBkcOXKYF154gZEjX/vL8TQaDc8+25eysjK++moNFhYW7N+/j+TkZIyNTfDy8qJTp061rg/2IFIUhQsXLjBkyBDOnj0LQFBQEKtWrcLf31++NAshbltBQQEXos6TnHOFhs0b4OThqJclyIqikJOeS2Z8FvYmDQgOCMHR0bHW70/FxcVERkdwOT0Rx2YNcGvigqFR7eer1WrJTMsmPS4TBysnWvkHSbMwIe4SRVHYsWMHs2fP5sSJE7rt7dq1Y9q0afTu3fuW7x2KovDjjz8yduxYMjIyAOjYsSMrVqwgICDgrsxfCCHEvyPrJoUQpKenAeDk5HTLYxwdHQFIS0v/2/HS0tIoKysDIDo6msWLF+n+v8aqVSsJC5tGSEjIv532A0mlUtGqVSuOHj3Kxx9/zMyZMzl37hydOnVi+vTpvP3221LPTAjxl7KysgiPOktOaTZO3g4EtPLTy40MrVZLVkoWWZdycLN3p2fbJ7Gzs6v1uHl5eZyPOkdGfjou3o4E+wfoJfNJo9GQfiWTjIRsPBwb07NjL2mEIcRdotFo2LRpE3PmzCEiIkK3/bHHHiMsLIwuXbr87fuSSqXixRdf5PHHH+fdd99l1apVHDlyhJCQEGbNmsX48ePv9GkIIYT4lyQYKYSgtLQ6UGhmdutaWzVZjKWlJX87Xk2jFYD58+fh7+/Pa6+9TuPGjUlNTWX16v/jxIkTTJ/+AcuWfYG7u3stz+DBY2pqyscff0yvXr0YOnQosbGxhIWFsW3bNlauXEmTJk0kS1IIoVPdafoq4VFnKTMsxcXbiQAHP72MrVarybicQV5SAc1dvWjfpROWlpa1nm9mZibhkWcpVhfi5u1McEiAXt7X1FVqriakkXMlD6/GPrTp1hELC/006BFC/LXKykrWr1/P/PnziY+P123v06cPU6dOpW3btv94THt7e1auXMkrr7zC66+/TnR0NB4eHvqcthBCCD2TYKQQ4o5ycHDgs89m6moaenp68tFHH/PGG69z+fJlfvjheyZOnFTHs6yfVCoVHTp04NSpU0yZMoVly5Zx5MgR2rVrx6xZs3jllVekbpIQD7iaTtPhF8MxsAGXls5Y2ernBlBlRSWpl9IpSS3Br1kAXR/vgalp7RreKIpCcnIy56PD0ZhU0sjXleYN9DPfivIKUuJTKUwrwd8zgEef6C71doW4S0pLS1m7di0LFiwgJSUFAAMDAwYMGMCUKVNo2bJlrZ+jU6dOnD17lp9//pl+/frVejwhhBB3jgQjhRBYWFRnPZaXl9/ymJpl1hYWf5/tcm0tyMcff/yGL3uGhob07v0US5cu4cyZM/9myuIa1tbWLFmyhKeeeoqRI0dy9epV3nzzTX799VeWLFmCs7NzXU9RCHGX1XSajoi7gKmTCY3bNtJbp+mykjJS49OoylHT0jsIr15eGBnV7pJSo9GQmJjA+YvnMLE3wj3EDUtr/WQrlhaXkhyXSkVuFa18g2ge6inlLIS4SwoKCli1ahWLFy8mOzsbAGNjYwYPHsy7776Ll5eXXp/P1NSUl156Sa9jCiGE0D8JRgohcHZ2AarriN1KzT4Xl78PbLm4uKBSqVAUBReXGztzA7qO3bm5uf90uuImVCoVTz75JOfOnWP06NGsX7+e3377jTZt2rB48WKefvppWbYtxAOgrKyM6JgoYq5cxMbdGq9Hm+ul0zRAUX4RaXEZGJQYEuLfmsZtG9c6+7qqqoqYuBii4yOxdrHAu0MzzMxrl11ZozCvkJS4NFRlhgT5heDRzkOyxYW4S7Kzs1m2bBnLly+noKAAqL5Z/dprrzFp0iQp0XMPOHDgAL/8soWEhATUajVubm5069adfv36/aMbTJGRkezZs5v4+HgyMzMpLCzE0NAQJycnQkJC6N//eVxcXO7gmQgh6iMJRgohdHelCwsLSUtL0wUKrxUbG/PfY73/djxzc3Pc3T1ITr5CYWHBTY+p2S4dtfWrYcOGfPvttzz99NOMHj2a7OxsBg4cyEsvvcScOXP00kxCCHHvKSoq4kLUBS5nJtKgmR1+XX311hk7LyufjLhMrFTWdAh4RHfDqTbKysqIiokk/kocDRrbEtDZRy9BU0VRyM3K42psOhYqK9oGdsTZ2Vluxghxl6SmprJw4UJWr15NaWkpADY2Nrz99tuMGzdO1xBR1K1ly5axadNGDA0NCQ4OxtzcnPDwcL78chXHjh1l5sxZt11248SJ42zduhUnJyc8PDyws7OnpKSE+Pg4tmzZws6dO/nPf/5DUFDwnT0pIUS9IsFIIQSOjo74+voSExPD3r17GTRo0HX7IyIukJWVhbGxMW3btrmtMR999FG+/fYbzpw5Q79+/W/Yf/p09fJsX1/f2p+AuI5KpWLAgAF06tSJkSNHsmPHDr777jsOHTrE8uXL6dy5s3wxF+I+kZOTQ3hUOFlFGTh6NyQgoIVesv+0Wi3ZadlkxeXgaO1E99AeNGzYsNbjVgdNz5OcdQWn5g0J6uavl6CpVqslMy2b9LhMHKyc6BLaXS/zFULcnoSEBD7//HO++eYbKisrgeq64ePHj+ett97C1ta2jmcoahw5coRNmzZibm7OvHnz8fauTjQoKChg8uRJREREsGbNGl5//fXbGq9bt+48+WSvG7Ifq6qqWLVqFZs2bWTWrFmsW/eNlMgQQujIWhUhBAADB1bX1/nhh++Ji4vTbS8sLGDRokUA9OnTF0tLK92+w4cPM2zYUCZPnnzDeM8++yzW1tacOHGCX3/99bp9+/btY+/ePQD07fus3s9FVAck3d3d+fXXX1m2bBlWVlYkJyfTu3dv3n33XV0NUCFE/aMoCmlpqWzb/St7zvyOkYcK/84tcGrkVOtApEajITUxjah9FzHPtaLXI0/RvdNjtQ7s5eTksO/QXnYc3oamYQXBXQNwb+ZW6y+mGo2Gq4lphO+LxDDHlJ4de9G1UzcJRApxl0RGRjJs2DCCgoJYvXo1lZWVNGrUiAULFpCUlERYWJgEIu8x69d/B8CLLw7QBSIBbG1tGTNmDABbtmympKT4tsZr0qTJTZdhGxsb89prr2FiYkJWVhZXriTpYfZCiPuFZEYKIQDo2LEjffs+y+bNmxgzZjQhISGYmZlx9uxZiouLCQgIYMiQIdc9pqSkhOTkZN0d8GvZ2toybdp7fPDB+yxcuIAtWzbj4dGYtLRU4uPjARg06GXatm17N07vgWVoaMgbb7xBt27dGDZsGH/88QdLly5lz549rFy5ktDQUMmSFKKe0Gq1JCUlER59Fq2lBld/ZxrbNdLL2FWVVaQnplOQXIxPY18efaxrrctoKIpCeno64ZFnKVWKaeTjQpBjgF7ec9RVaq4mpJFzJQ+vxj606dYRCwv9NLwRQvy906dPM2fOHLZu3arb5unpyZQpU3jllVdue4mvuLuys7OJiakuvdStW7cb9gcGtsTR0ZGsrCyOHz9x02P+CZVKpbtJZmxs8jdHCyEeJBKMFELovPXWWwQGBrBlyy9ERkai0WhwdXXlxRcH0K9fP4yN/1k9r9atW7NixUq+++47zp49w9Gjf2BhYUGbNm149tnneOihh+7QmYhrqVQqfH192b9/P3PmzOHDDz/k4sWLdOvWjSlTpjBp0qR//LsVQtw9arWa+EvxnI87h0lDYxo97IK5pX7q7VaUVZAan0ZZRgWB3i3xedKn1u8HWq2WK1eucP5iOIq5Bnd/V2zsG+tnvuUVpMSnUphWgr9nAI8+0R0TE/mCK8TdoCgKhw4dYs6cOezdu1e3PTAwkLCwMJ5//vl/1PhE3H01CQHW1tY3rREP4OPjS1ZWFpcuxdcqGKnRaFi37mvKy8tp0qQJbm5u/3osIcT9R6UoilLXkxBCCHF3KIrC2bNnGTJkCBcuXACqg8YrV67E19f3howlRVH4448/2Lx5M7Nnz5YsSiHuooqKCqJjoom+HIW1myWuni6YmOon8FZSWEJafDraAoWgFiE0a9qs1kum1Wo1CYkJXIg5h1lDY9y93LCw0k+2YmlxKclxqVTmqmnp24rmzT2l9pgQd4miKOzcuZM5c+Zw7Ngx3fY2bdowbdo0nnrqKelUX09s3ryJpUuX4unpyfLlK256zNKlS9m8eROdOj3KBx98cNtjZ2ZmsGbNWqC6PvClS/FkZWXh5taIDz/8kKZNm+rjFIQQ9wm5dSWEEA8QlUpFaGgox48fZ/r06cybN4/Tp0/zyCOP8PHHH/Paa69haGiIWq1my5YtLFq0iFOnTgHQq1cvunbtWsdnIMT9r7i4mMjoCC6lXaJBU1tadPHWW7ZRQU4B6XGZmKpNecivLe7u7rW+yVBZWUlMbAzRCZHYulnh29ETUzP9BE0L8wpJiUtDVWZIkF8IHu08JOghxF2i0WjYvHkzc+bM0d3AhOrlvWFhYXTr1k1uUtYzpaXVNcPNzMxueUxNiY7S0pJ/NHZhYRG//77rum3e3t5MnDhJApFCiBtIMFIIIR5A5ubmzJo1i169ejF8+HASEhKYNGkSW7ZsoVOnTnz77bckJf1ZaLxTp05Sj02IOywvL49zUeGk5afi6OVAgJ9+OmMrikJOei6Z8VnYmzTg0cAuODo61jqIUFpaSuTFSBJS4nBo2oCWXVpgZFz7S0tFUcjNyiM1Nh1zlRVtAzvi7OwsQQ8h7pKqqirWr1/P/Pnzr2tq+PTTTxMWFka7du3qcHbiXuXl5cXvv++u/szJySEyMpK1a9fy5pujeOONUTz7rDStFEL8SYKRQtwDFEWRL1nirlOpVHTp0oUzZ84watQo1q9fz6FDhzh06BAABgYGPPfcc4wZM4bWrVvX8WyFuD8pikJmZgZnI89SUJWPs7cjAcF+evlM0Gq1ZKVkkXUpBzd7d3q2fQI7O/taj1tYWMiFyPNczUnGydOB4O6BegmaarVaMtOySY/LxMHKic6h3aUrthB3UVlZGWvXrmXBggUkJycD1dcCL7zwAlOnTqVVq1Z1PENRWxYW1VmP5eXltzymrKzsv8da/qvnUKlUODg40LlzZ1q3bs2IEcNZvvwLWrVqhaen578aUwhx/5FgpBB3WVpaKnl5+djY2ADolshptVpUKpUEJcVdFRERwfz58/npp59u2Ne9e3fmzp2Lo6NjHcxMiPubVqslJSWZs1FnqTKtxNXHmUYNXPQytlqtJuNyBrmXC/B086R9l05YWv67L5XXys7O5lxkOHllObh6OxEcFKiXzyyNRkP6lUwyErLxcGxMz469dJ+RQog7r7CwkFWrVrF48WKysrIAMDY25tVXX+Xdd9/F29u7jmco9MXZufpzpub3fDM1+1xcnGv9fFZWVnTs+Ai//LKFo0ePSjBSCKEjwUgh7pJz58LZvXsPu3bt1BXd9/T0pFEjd1544QWaN28OVH9BlXpY4k5SFIW9e/cyd+5cduzYodvu6urK8OHDOXfuHFu3buX333+nbdu2LFmyhCeffFIC5ULogUaj4VLCJc7FhGNkb4hbqIvemrxUVlSSdimd4tQS/JoF0LVnD0xNTWs1pqIopKWlER55hnJVGY18XPBw8NfL+4G6Ss3VhDRyruTh1diHNt06SjkIIe6inJwcli1bxvLly8nPzweqy7iMHDmSSZMm4eHhUbcTFHrn5eUFVAeg09LSbtpROzY25r/H6icIXVOfMj8/Ty/jCSHuDxKMFOIuSE5O5sMPP6SkpARFUTAzM6O4uJhLly4RExPD3r17GDZsGAMGDMTAwEACkuKOqKqq4scff2Tu3LmEh4frtrds2ZKJEycycOBATExMUBSFdevWMXbsWDIyMnj++ecZMmQIn332mWQrCfEvVVRUEBsXQ2RCBJYuFjTr0BhTs9oFCmuUlZSRGp9OVU4VLb2D8OrlVeuGN1qtlqSkJM5Fn8XACtwDXbG2s9bLfCvKK0iOS6UovQR/zwAefaI7Jib6aXgjhPh7aWlpLFy4kNWrV1NSUt2kxMbGhrfeeotx48bh5ORUxzMUd4qjoyO+vr7//f6xl0GDBl23PyLiAllZWRgbG9O2bRu9PGd4+FmgejWYEELUUCmKotT1JIS4302ePIlz585hbm6Oj48vL7zwPFqtQkpKMpGRkRw+fBiAhx56mHHjxuLkVPtlEULUKCgo4Msvv2TBggWkpKTotvfo0YNJkybRo0ePG7KcFEXhypUrjBgxgt27dwPQtGlTVq5cSYcOHSRLUojbVN3kJYL4lDjsmtji0tRZL01eAIrzi0mNS8egxJBgvxCaNGlS6xtZarWa+EvxRMSex9zBFA9vN8wtzfUy39LiUpLjUqnMVdPStxXNm3vqVgoIIe68xMREPv/8c9atW0dlZSUADRs2ZPz48bz11lvY2dnV7QTFXXHkyBFmzJiOubk58+bN1y3DLywsYNKkSSQmJtK///O8/vrrusccPnyY1av/j4YNHZgzZ851461f/x1PPtnrhr+foqIi1q5dw5YtW7C0tOSrr9Zgb1/7usVCiPuDBCOFuMN27NjO/PnzMTAw4KGHHmL06DE4O1cHGzUaDSUlxRw+fISvv15Lbm4urVq1YsSIkbRo0aKOZy7uF8uXL2fUqFEAGBkZMXDgQCZOnEhQUNDfPlaj0bBkyRKmTp1KWVkZBgYGjB07lvfee0+37EYIcaOCggLOR50jJSeZhp4NcPZw0ltn7PzsfNJjM7FUWREaEIqLi2utbxBUVFRwMSaamMsXsWtkTSNPV0xM9ZOtWJhXSEpsGqpyQ4L8QvDw8JDsfyHuoujoaObOncuGDRvQaDQAuLm5MXnyZEaOHKmXmrKiflm6dCmbN2/CyMiIkJAQzMzMOHv2LMXFxQQEBDBr1uzrynzs3LmTuXPn4OzszDfffHvdWD16PIaBgQHNmjXDzc0NQ0NDsrOziY+Pp7y8HEtLS95//wNphiiEuI4EI4W4g6qqqliwYAG//74LgHHjxtOrV68bmtVoNBqOHTvGmjVfkZKSQteuXRk58jW5eyj0orS0lFatWtGvXz9Gjx79j5fJKIpCVFQUQ4cO5eTJkwAEBASwatUqWrVqJVmSQlyjqKiIY6ePklOeg5O3Aw4uDfXWGTs7PYfsuGwcrJwI9g/RS6fpkpISIi9GkHj1Eo7NGuDa1KXWS7yh+n0jNzOP1Lh0LA2sCQoIwdnZWd4vhLiLzpw5w5w5c/jll19025o3b86UKVN49dVXa11TVtRvBw7sZ8uWX7h0KR6NRoOrqyvduz9Gv379MDY2vu7YvwpGbtmyhYiIC8THx5Ofn09ZWRkWFha4u7vz0EMP8fTTz8h3GiHEDSQYKcQdtnDhArZt24a5uTlhYWG0bdsOtVp9w5e98vJytm7dyqpVKwEYPHiIro6LRqORpWyiVvTxN1RZWclnn33Gf/7zH9RqNSYmJkybNo1x48bpJXghxP2goKCA3w/twtLdHDcv11pnAGo0GjKSM8m9lEdjpya09Gull9qt+fn5XIg6T1reVZy9HHFx10/mplarJTMtm/S4TBysnGjlH6SXoKkQ4vYoisKRI0eYPXs2e/bs0W0PCAggLCyMF154QT6zhRBC1DkJRgpxh9Q0ofnuu+9Ys+YrALp378677075y8etWrWSDRs28NFHH9OuXbvrgkh79uyhe/fud3zuQtyKoiicPHmSIUOGEB0dDUC7du1YsWIFnp6ekvUkBNV1F8+eP0N8RjzNQhpjafPPl0BWVVaRnphOQXIxPo198PcNwNy89rUbs7KyCI88S0FFHm4+Ljg4N9DL61aj0ZB2JYPMhBw8HBsT6NdSGl4JcRcpisKuXbuYM2cOR48e1W1/+OGHmTZtGk8//bSURxBCCHHPkGCkEHdYbm4uM2ZMJyYmBmNjY15++RWefvrpG+rz1AQvk5KSiI+Pp3v37iiKgqIoGBgYsGHDj6xatQo/P38++OADyTQRdaqkpIRp06axaNEiFEXB0tKSTz75hOHDh8uXHSH+KysriwPH9/+jLMmKsgpS49Moy6ggwCsQX2/fG5bL/VOKonD1agrhUeFUGVXg7u2CnYNdrcasoa5SczUhjZwreXg19sHPxx8LCwu9jC2E+HsajYZffvmFOXPmcO7cOd32Ll26MG3aNLp37y43CoUQQtxzJBgpxB2mKAobNvzIl19+CYC7uwdDhw6lU6dOwJ9ByJupqqrC2NiYuLg4pk6dQmFhIU2bNmXcuPH4+/vftXMQ4mYURWHPnj0MHz6cK1euAPD444+zdOlSXF1r31BDiPvB7WZJlhaVkhqXhrZAIahFCM2aNqt1aQWNRsPly4mcv3gOI1sD3L1dsbKxqtWYNSrKK0iOS6UovQR/zwB8vH0xMdFPwxshxN+rqqrihx9+YN68ecTGxuq29+7dm7CwMDp06FCHsxNCCCH+mgQjhbhLfvzxB9atW0dFRQVmZmZMnvyOLiBZQ1EUXQCnJkipKAqTJ0/i/PnzuLi4MGDAAHr16l0XpyDETeXl5TFu3Di+/vprABo0aMDnn39Ov379JCApxH/VZElauJvT6JosycLcQtJiMzCpMiXEPxR3d/dav26qqqqIi48lMj4CKydz3L3cMLMw08dpUFpcSnJcKpW5alr6tqJ5c0+paSzEXVRWVsa6dev4/PPPdTcCVSoVzz//PFOnTiU4OLhuJyiEEELcBglGCqFn1wYU4c+gYl5eHj///BO7du0iPz8fGxsbRo8eTefOXf4yO3Lduq9Zt24d5ubmdO/+GCNHjsTc3PwvHyPE3aYoCj///DOjRo0iOzsbgBdeeIG5c+dKSQEh/kutVnPm3BkuZcbj0KwBeUl52BrbExIYiqOjY62DkOXl5UTHRBOXdBE7dxvcPd0wNqndEu8ahXmFpMSmoSo3JNg/BHd3D/kMEkIPUlNT+eKLL5gyZcoNJXyuVVRUxJdffsmiRYvIzMwEwMjIiFdeeYUpU6bg4+Nzt6YshBBC1JoEI4XQk9LSUnJzc3F3d7/lMRkZGXz55SoOHDiASqWibdu2TJv2HqamptcdV9O05ty5c7z33jQqKioICQnhtddex9PTUwKR4p6VmprKG2+8wdatWwFwc3Nj2bJlPPbYY5IlKcR/ZWVlkXD5Er7evtjZ2dd6vOLiYiKiLpCUkYhjs4a4NXHB0Kj22YqKopCbmUdqXDoWKiuCA0NxdnaW17IQeqIoCi+++CLbtm2jadOmLFq06IZGhTk5OSxfvpwvvviCvLw8AMzMzBgxYgSTJ0+mcePGdTF1IYQQolYkGCmEnsyc+Rl5efnMnDkTlUp1Q4ZkDbVazYwZ0zlx4gQAgwcPZtCgl3X7awKNFRUVTJw4gdjYWNzc3Bg06GV69OgB3Jh9KcS9RKvVsnr1aiZOnEhhYSEAr732Gh9//DFWVvqpVyeEqC6RcD4ynIzCDFy8HHFu5KiXG1VarZbMtGzS4zJxsHKilX+QZDgLcQdotVoWL17Mxx9/TFlZGQCDBg3is88+o7KyksWLF/Pll19SUlICgLW1NW+++Sbjx4/H2dm5LqcuhBBC1IoEI4XQg+PHj/H+++9jYWFBWNg02rRpc9Pj1Go1RkZG7Ny5k3nz5qJSqXjooYf45JNPbzh2+fIv2LhxIzY2NjzxxBMMG3Z9l+Ka7Ekh7kWKopCQkMCwYcM4ePAgAF5eXqxcuZI2bdpIMF2If0lRFDIzMwiPDKdYU4iblzMNnRvo5TWl0WhIu5JBZkIOjR2bEOjfEmtraz3MWgjxVxITExk9ejT79u0DqjMf1Wo1arUaqK7FPG7cON5++23s7WufTS2EEELUNVnnKYQe+Pj44uPjQ2lpKYsXLyI8PPymxxkZGQHQsmVL7O0boCgKaWnpuv0ajQaAo0ePsnXrVlQqFY0audOgQQP27NnN77/v4o8/jgBgaGiIVqtF7ieIe5FKpcLT05M9e/Ywe/ZsTE1NiY+Pp0ePHnz00UdUVlbW9RSFqFe0Wi1XriSxdecvHIs6TENfG1o94o+DS8NaByLVVWqSYpI5tzcKm8oGPN2tD+3bdpBApBB3SbNmzZgzZw7t2rUDquu/qtVqTE1Nee+990hKSuL999+XQKQQQoj7hmRGClFLNcuqL1y4wKpVK4mJiaFjx0d4+eWXad68ue44RVHQarUYGhryxx9/MGPGdFQqFS1atODjjz/G0tIKQ0NDCgsLGD9+PMnJyQC6L5nXvlQDAgIYM2YszZo1u7snK8S/oCgK58+fZ+jQoZw9exaAoKAgVq1ahb+/v2RJCvEXNBoNCQmXuBBzHhN7I9y93bC0ttDL2BXlFSTHpVKUXoK/VyA+Xj6YmJjoZWwhxO05e/Ysc+fOZcuWLbprPUtLS93SbCsrK2bOnMmoUaOkXrgQQoj7hnyiCVFLNReGAQEB9OrVGxsbGw4fPsTSpUs4f/48FRUVQHVQ0dDQkLKyMjZv3qSrK+nr2wIbG1vdkutVq77UBSIdHBwYOHAg8+bNZ9q0aQwfPgJnZ2ciIyMZN24sBw7sr5NzFuKfUKlUBAUFcfToUcLCwnTNmTp16sSiRYt0GcFCiD9VVlYSERXBz9s2cCkvBp+OzfAN9dJLILK0uJSYs/HEHEnAy96Xfr2fJ9A/UAKRQtxFR44coW/fvjzyyCNs3rwZRVHw9/dn3bp15Ofns2XLFho1akRxcTFvv/02nTp1Iioqqq6nLYQQQuiFZEYKoQfXNpQ5efIE8+bNIzc3F3Nzc3r37k2zZs3x9fUlLS2N337bxrFjx1AUhYYNG7Js2Re6ZTd79+5l5szPMDQ0xNPTk3HjxuPl5aV7Ho1GQ2JiAitWrODcuXOEhobywQfTsbDQT5aMEHeaoij88ccfDB06lLi4OAAeeeQRVqxYQZMmTSRLUjzwSktLiY6NIv5KHA0b2+HWzAVjE2O9jF2YV0hKbBqqckOC/UNwd/eQTCsh7iJFUfj999+ZO3cuR44c0W1v3bo106ZNo0+fPte9JgsLC5k6dSrLli0DwMTEhGnTpjFlyhS5eSCEEKJek2CkEHpSs1wboKCggAULPtddaNbUijQzM6O4uFiXFfnhhx/Rvn17ADIzM5k4cQIZGRl4eXnx6quDadeunW7JzrVBmp9++omVK1cA8NlnM2nduvVdO08h9KGoqIh3332XL774AqjuEDpr1ixeeeUVCY6IB1JhYSER0RdIzrqCc3MHXBo76aVJmaIo5GbmkRqXjqWBNUEBITg7O0vgX4i7SKvV8ssvvzBnzpzr6op37tyZsLAwevTo8ZevycOHDzNy5EguXrwIVK/GWbVqle4aUgghhKhvJBgphJ5d2+V6//59bN26lZycHFJTU3XHBAYG0qVLF555po9u28cff8ShQ4do0KABffv2ZcCAgcD1WZc1/x0fH8f7779PTk4O48aNo1ev3nfxDIXQD0VR2LFjByNHjuTq1asA9O7dm8WLF+Ps7FzHsxPi7sjJyeF8VDjZxVm4ejvj6NpQLwF5rVZLZlo2abGZOFo70co/iIYNG+phxkKI21VVVcWPP/7I/PnzdYFEgF69ehEWFkbHjh1ve6zy8nI+/fRTZs6cSVVVFSqVinfffZfPPvvsTkxdCCGEuKOM6noCQtxvDA0NdQHJLl26EhramitXrpCbm0tBQQEODg6EhoZiamqqe8zWrVs5dOgQxsbGBAcH07PnE8D12ZbwZzAyPT2DnJwcABo1anR3T1AIPVGpVDz55JOcO3eO0aNHs379erZt28aJEydYtGgRTz/9tGRvifuSoiikp6cTHnmWMkpw83YmyDFAL3/vGo2GtCsZZCbk0NixCU926i1dsYW4y8rLy1m3bh2ff/45SUlJQPVnXr9+/QgLCyMkJOQfj2lmZsZHH33ECy+8wIgRIzh+/LjcuBNCCFFvSWakEHfQ/wYTr6VWqzEyMiIpKYnJkyeRn59PixYtGD58BEFBQddlRF47VklJCZ999iknTpz4b13Jcfj6trjlHP53HCHuRYqi8P333zN69GhdoH3QoEHMnj0bOzu7up2cEHqi1Wq5cuUK56LPorJQaOTjio2dfgKFVZVVpCamk3MlH6/G3vj7BmBubq6XsYUQt6e4uJgvv/ySRYsWkZGRAVTfpH755ZeZMmUKLVrc+nrtn9BoNKxfv56BAwfqpZyDEEIIcbdJMFKIOnBtkDIsLIxTp07i6OjI888/T9++z/7lY7du3cr69d+RnZ3NY489xjvvvKvb93eBx2uXkAtxr1EUhZSUFEaOHMnOnTsB8PDwYMWKFTz66KMSVBf1llqt5lLCJSJiz2PW0AR3LzcsrPQTKKworyA5LpWi9BL8vQLx8fKRxhZC3GW5ubksX76cL774gtzcXABMTU0ZPnw4kydPpmnTpnU7QSGEEOIeI8u0hagDNYHIdeu+5tSpk5ibm9O6dWt69OgB3Hp5dlRUFPv27SU7OxtbW1v6938e+DPLsiZYc+nSJTIyMkhPT8fDwx1DQyNCQ0MxNDREq9VeNwch7hUqlQoPDw+2bdvGihUreOedd0hOTqZ379689dZbzJgxQzK9RL1SUVFBTNxFLiZEY+tmhW9HT0zN9BMoLC0uJTn2KpV5Glr6tqJ5a0+52STEXZaens7ixYv58ssvKS4uBsDKyopRo0YxYcIEXFxc6niGosaBAwf45ZctJCQkoFarcXNzo1u37vTr10/XaPLfOn78OO+9Nw2AkJAQZs+eo48pCyHEfU2CkULUAUVRKCsr4+DBgwB4eXnRu3dvLC2tUBTlukBhTWCyqKiI337bRlxcHAADBgygefPmaLVa3RfQ8PBwjhw5zPbt26msrNSNYWNjg6enJ8OHj8DHx+e6cYW41xgaGjJq1Ci6d+/O0KFDOXr0KEuWLGH37t2sXLmS0NBQyZIU97TS0lIiL0aQkHIJh6Z2tOzaotZfdmsU5BZyNS4NVbkRwf6huLf3kPdyIe6yK1eu8Pnnn7N27VoqKioAsLe3Z+zYsYwePZoGDRrU8QzFtZYtW8amTRsxNDQkODgYc3NzwsPD+fLLVRw7dpSZM2ddV8v9nygqKuLzz+ejUqmQBYdCCHH7ZJm2EHVIo9GwZs0aHBwc6NOnz18e+/PPP/Hzzz+TnZ1N27bt+Pjjj4E/g4onTpxgzpzZFBYWoigKrVq1wtzcnPT0dIqKinTLhkaOHMnzz79wx89NCH2oqqpi9uzZfPTRR1RWVmJkZMSUKVOYNGkSxsbGdT09IW6Qk5PD1l1b8Ahwxd2zkV4ChYqikJuZx9W4dKwMrAkKCMHZ2VmC8kLcZTExMcybN48ffvgBtVoNgIuLCxMnTuT111+XZlH3oCNHjjBjxnTMzc2ZN28+3t7eABQUFDB58iQSExPp3/95Xn/99X81/syZn7Fv3z569+7N1q1bJTNSCCFukwQjhagj19ZvrAko3mp59tmzZ1m9+v+IiYmhQYMGzJ07D3d3d93xkZGRvP/+exQXFxMUFMRTTz1Fx46PYGRkRFZWFikpKfz++y52794NwJAhQ3nxxRcxMDD4yy+zp06dIjz8LCNGjLyzPwwh/oKiKJw5c4YhQ4YQEREBwEMPPcSKFSvw9fWVgIy4pyiKQvyleM5EnaJxKzccnBv+67G0Wi2ZadmkxWbiaO1EK/8gGjb89+MJIf6d8PBw5s6dy+bNm3XZb02bNuWdd95h6NChmJmZ1fEMxa28/fZbxMTEMGTIUAYNGnTdvoiIC4wfPx5jY2M2bNiApaXVPxr78OHDfPjhDF544QUaN27C3LlzJBgphBC3Sdb1CFFHbla/8X+XZ6tUKnJzc9m+/TcuXboEwKuvDr4uEJmZmcGaNV/pahUVFxfj5+ePkZERWq0WR0dHQkJCeOutt3jllVcwMjLiwIH95Obm/mUQp6CggFWrVvLjjz8ye/ZsysvL79SPQoi/pFKpaN26NSdOnGDSpEkYGBhw6tQpHnnkEZYvX657HQlxL1CpVHh7efNU92coTCjj4pk4qiqr/tEYGo2GlMRUwvdFYpRjxpOdetO1UzcJRApxlx09epRnn32Wjh07smnTJhRFoUWLFqxdu5bY2FhGjRolgch7WHZ2NjExMQB069bthv2BgS1xdHSkqqqK48dP/KOxCwoKWLhwAR4eHgwePEQf0xVCiAeKBCOFqEO3Wr53bd3InTt3cO7cOdRqNV26dKFXr14AugDMnj17OHfuHAYGBpiamnLp0iWGDRvK7t27dWNoNBosLCzp2rUbjo6OJCYmsnfvXt1z3cz69d+RmJiIvb09vr6+UpNM1Dlzc3Nmz57Nnj17aNasGWVlZUyaNIlnnnmGlJQUqdUk7imWlpY83rUnLZwCuHAgmuyM3L99TFVlFZdjrnBubxQ2lQ14pntf2rftIEs/hbiLFEVh9+7d9OzZk8cee4xdu3YBEBoayk8//URkZCSvvvqqlAqpB+Lj4wGwtrbG1dX1psf4+PgCcOlS/D8ae+HChRQWFjJhwkRMTPTTmEwIIR4kEl0Q4h5Uk7F46NBB9uzZQ15eHq6urrz2WnU9m5ru2fn5+Xz//fcAdOjQgXHjxvPwww9TWVnJ7Nmz+OSTTygtLcXQ0BCVSoW7uzuBgS0ByMjIuO65rvXHH0fYuHEjAF27dqVjx46YmJhIsEfUOZVKRZcuXTh79izDhw8HYN++fbRp04YffvhBsiTFPUWlUuHt7UPvbs9QeKmEmDNxqKvUNxxXUV5B/IVEIg7E4GrSmGef6Efr4Ieke7wQd5FWq+WXX37h0UcfpU+fPhw+fBiATp06sX37dk6dOkW/fv3k5mw9kp6eBoCTk9Mtj3F0dAQgLS39tsfdt28fhw4dpE+fvgQGBtZukkII8YCST1Mh7mHGxiYkJycDMHz4CBwcHNBoNLqurPv376OsrAxra2tatmxF9+7dmTJlKoMHD8HY2JgDB/YzePCrHD9+XDdmTYZNTk62rvj6tTIzM1m5ciUAISGhdOnSFQcHh+uOycvLIybm4h05ZyFuh62tLatWrWLz5s04OztTUFDA8OHDefXVV8nKyqrr6QlxHSsrKx7v9gTejv6cPxBNTmYeAKXFpcSciSP2SCJe9r706/08gf6BkmUjxF2kVqtZv349bdq0YeDAgZw5cwaAJ554goMHD3Lw4EGeeOIJqU9cD5WWlgH85VL6mps+paUltzVmbm4uixcvws3NjWHDhtV+kkII8YCSYKQQ97B27dqxcuUqhg4dyqOPPgpU15qsyVCsyQIrKyujdevWQPWX3oEDB/Lxx//B39+fgoIC3n//PZYuXUpeXh4nT1bXxPHz89PVlayhKArr1q0jNTUVBwcHevZ8HC8vL91zqVQq1Go1p06dYvz48bz99luUlZXdtZ+HENdSqVT06dOH8+fP89xzzwGwadMm2rZty/bt2yWTV9xTVCoVvj6+9O76NHlxRZzdH0HS6TRaeYTSt9dzeHv76JqaCSHuvPLycv7v//6PoKAgRowYQXR0NCqVin79+nHq1Cm2b99Op06d6nqa4h7z+eefU1xczIQJE6ReqBBC1IJRXU9ACHFziqKg1Wpp0qQJTZo0Af7swF1zdz4np7oGWdOmTWnUqNF1+0NDQ2ncuDFbtmzmhx9+YMuWzezbt5eSkhIcHBxo1KgRcH3dyj179rBz5w4AevToQUhIKEZGRtfVsIyPj2ffvn2o1WqSk5MpLi6WpYSiTjk5ObFhwwbWrVvHuHHjyMjIoH///gwdOpRPP/0UGxubup6iEDpWVlY80f1JCgsLsbGxkWwrIe6y4uJiVq9ezcKFC0lPr16aa2hoyKBBg5gyZQp+fn51PEOhLxYW1denf9WEseamuoWF5d+Ot2vXLo4dO8rTTz9NUFCwXuYohBAPKglGCnGPUqlUN2TJ/O//e3h4ANVLq0tKirGxsdV12QZwcHBg8OAh+Pn5s3btGhITEwFo3rw5fn7+QHXQU6VSkZKSwqpVqwBo3749nTo9ir29/XXPl52dzf79+zl16iQA7747RVdrp0bNeELcTQYGBrz66qt07tyZESNGsGfPHr766iv279/PypUrad++vfxdinuGSqXC1ta2rqchxAMlLy+PFStWsGzZMnJycgAwNTVl2LBhTJ48mWbNmtXxDIW+OTu7APxl+ZaafS4uzn873pEj1XVEY2JimDhxwnX78vKqy2/ExcXp9k2b9h4NGjT45xMXQogHgAQjhajHmjVrhqGhIYWFhezcuYv+/fvfUFjdyMiIDh060KxZM77/fj2HDx/W1YGsCRyq1WpWr15NXl4urq5uPPZYD5o3bw6gC25WVlZy6tRJ9uzZDcCzzz5Lhw4ddM9TUlKCpaUlKpXquoCoEHeLSqWiadOm7Ny5k8WLFxMWFkZiYiI9e/Zk7NixvPfee7KkSgghHjAZGRksWbKEVatWUVRUBFR3ux81ahQTJky4ZZdlUf/VlBoqLCwkLS3tpr/r2NiY/x7rfdvjxsbG3nJfcXEx58+fB6CysvKfTFcIIR4oKkWKaglRry1ZspitW7fi4+PDqFFv4u/vr9v3v1mKlZWVJCYm4OvbAvgz0Lh16y8sXrwYlUrF4MFDeOqpp7CxsbkuqHjhwgW++mo1ERERNG/enJkzZ2FnZ6dbGr5u3TpOnjzB9OkzaNiw4d39IQjxPxRFISoqiqFDh3LyZHUmb0BAAF9++SUtW7aULEkhhLjPJScns2DBAtasWaNbpmtvb8+YMWMYPXq0XKs8IN5++y1iYmIYMmQogwYNum5fRMQFxo8fj7GxMRs2bMDS0upfP8/OnTuZO3cOISEhzJ49p7bTFkKI+56kLglRT9XcR+jatRtNmzYjJiaGFStWcObMGd1Fd02WYg0TE5MbApHx8fH83//9HwCPPtqZjh076mrs1QQi09PT2bt3DxEREQC89tpr2NnZodVqMTQ0pLy8nN9/38XFixf55JNPyM3NvTs/BCFuQaVSERAQwOHDh5k+fTpGRkZERkbSuXNn5s2bd9NO8kIIIeq/2NhY3njjDQIDA1m+fDnl5eU4Ozsze/ZskpKSmDFDbpo+SAYOfAmAH374nri4ON32wsICFi1aBECfPn2vC0QePnyYYcOGMnny5Ls7WSGEeIBIMFKIeqomsysgIIA33xyFs7Mz0dFRTJ/+AWvWfMXRo0fJy8vDwMDguoBkDQMDg/92kvyS0tJSmjZtymOPPaZrlnNtp+7jx4+zd+9eAAYNepnQ0Na6MQAOHDhAaWkpKpWKhg0bYmdnd6dPX4jbYmJiwvTp0zly5Ah+fn5UVlYyffp0nnjiCS5duiQdt4UQ4j5x7tw5Xn31VUJDQ1m3bh1qtZomTZqwdOlSEhMTmTx5MtbW1nU9TXGXdezYkb59n6WsrIwxY0YTFjaVjz76kMGDB5OYmEhAQABDhgy57jElJSUkJyeTlpZaN5MWQogHgNSMFKIeq1mGHRQUzBdfLGfhwgUcOHCAjRs3snfvXkxNTfHx8eGZZ54hMLDlDQ1wNm/ezOnTpzE2Nubxx3sSGBgIcN3y7OjoKHbt2klZWRkBAQH079/vujHKy8tJTEyksLAQgKeffloXAJW6keJeoFKpaNOmDSdPniQsLIzFixdz9OhR2rdvz6effsqwYcPkb1UIIeqpY8eOMWfOHHbs2KHb5uvry9SpU3nppZcwNjauw9mJe8Fbb71FYGAAW7b8QmRkJBqNBldXV158cQD9+vWTvxEhhKgDUjNSiPtATd1GgCNHjvDbb9tIT08nOTkZc3NzvvhiOW5ubtc9JiIigsmTJ6HRaOjZsycDBgykUaNG1x2TkpLCd999x+7dv2NsbMycOXN1NSlrgo0lJcWMGjWK9PR02rdvz4wZHwJITb5rHDhwgF9+2UJCQgJqtRo3Nze6detOv379MDKq3T2h48eP89570wCkTtFtUBSF3bt3M2LECK5cuQJAz549Wbp0KS4uLvJ3K4QQ9YCiKOzdu5e5c+dy8OBB3faQkBDCwsJ49tlnb7gBK4TQj+zsbBwcHOp6GkKIek4yI4W4DxgaGuoCkh07diQ4OJjU1FQyMjKwsLC4IRBZXFzMqlUr0Wg0+Pr60q1bd10g8tog49Gjf7B//z4AhgwZel1znJpMsq1bfyU9PR0LCwsCAwN1dST/zoOSObls2TI2bdqIoaEhwcHBmJubEx4ezpdfruLYsaPMnDkLU1PTfzV2UVERn38+H5VKJcuNb5NKpaJHjx6Eh4czduxY1q1bx86dO2nTpg0LFizgueeek4CkEELco7RaLdu2bWPOnDmcPn1at71jx45MmzaNJ554Qt7DhbhDfv99F+vXf0/jxh5MmTIVMzOzup6SEKIeu/8jAUI8IGoCgFqtFktLS7y9vXnkkUcIDQ294dgff/yR6OhoLCwsePzxx/Hz89M99s/u2RHs2rULtVrNww8/zDPPPHPDONnZ2Zw9ewaVSoWJiQl+fn43BCJrak+WlpZy4MABVq1aBVQHM+/3ANqRI0fYtGkj5ubmLF68hJkzZzF9+gzWrFlLs2bNiIiIYM2aNf96/KVLl5CXl8dTTz2lv0k/IOzt7Vm7di0bNmzAwcGB3NxcXn31VYYNGyYNmIQQ4h6jVqv5/vvvadOmDQMGDNAFInv27MmBAwc4fPgwTz75pAQihbiDdu36nZSUZK5evcq5c+fqejpCiHpOgpFC3Gf+Ltvw9OnTfP/9egC6d3+Mtm3b6u5s1jz28uXL7N79O0lJSVhZWTFixIibZu8lJyeTnp6Boij4+wcQGNjyuv01wc3Kyko2b97MihXL2bDhR1555WWSkpLu+y8N69d/B8CLLw7A29tbt93W1pYxY8YAsGXLZkpKiv/x2IcPH2bPnj30799f1yFd/DMqlYr+/ftz7tw5XUD3xx9/pF27duzevfu+D5YLIcS9rqKigtWrVxMcHMzw4cOJjo4G4LnnnuPkyZPs2LGDRx99tI5nKcT9S6vVotFoAHj11VcxMjIiNTWVo0f/QK1W1/HshBD1mQQjhXiA5OTkMG/eXABatWpF165dcXJyBv7MYCwsLODw4cO6GkzDhw+nWbPm141Tc2xERARpaamYmpryzDNPA+guWODP4OaqVSv54Yfvyc7ORqVSkZGRoavXd7/Kzs4mJiYGgG7dut2wPzCwJY6OjlRVVXH8+Il/NHZBQQELFy7Aw8ODwYOH6GO6DzQ3Nze2bNnCypUrsba25urVq/Tp04eJEydSXPzPA8VCCCFqp6SkhMWLFxMQEMDo0aNJTEzE0NCQV155hcjISH7++Wceeuihup6mEPedsrIyVq1add3KnZpVTy1btiQkJISqqiqioqI4f16yI4UQ/54EI4V4gFRWVpCfnw9Ajx6P4+PjA/yZwajRaAgPP8euXTsB6Ny5C0888eR1YyiKgoGBAbm5uWzZshmAgIAAXVDz2mXa6enprFmzhi1btlBVVUXjxo1RFIXAwECaNGlyh8+2bsXHxwNgbW2Nq6vrTY/x8fEF4NKl+H809sKFCyksLGTChImYmJjUbqICqA6cjxgxgrNnz+qybFasWMEjjzzC8ePHJUtSCCH+Ja1Wq/tM/Dv5+fnMmjULPz8/pkyZQlpaGiYmJrzxxhvExsby9ddfX1e/WgihPyUlxXz66Sds2PAjv/yyhby8PAwMDK7Ljuzbty8AaWlp/PHHH3J9JIT41yQYKcQDxNXVjW3bfuODD6bTunVrTExMdMFFgISEBH7/fRfp6ek4ODgwZMiQG2pA1iytPnjwgO7CxN3dHXd3d+DPzMikpCS+/nqtbkn46NFjdLUpGzVqdMsA3f0iPT0NACcnp1se4+joCEBaWvptj7tv3z4OHTpInz59CQwMrN0kxXVUKhWenp7s2bOH2bNnY2pqSlxcHD169ODjjz+msrKyrqcohBD1zqpVq3jooYeYOXMmVVVVNz0mMzOTDz74gBYtWvDRRx+Rk5ODpaUlEydOJDExkS+++ILmzZvf9LFCCP2wtLQiJCQUBwcHiouL2bZtG1CdiFDzfeDhh9sQFBRERUUFkZGRRERE1OWUhRD1mAQjhXiAqNVqVCoVjzzyCA4ODtfty8vL4+DBgxw/fhyAkSNf03XY/l8lJSUkJiZSUlICwFNPPa3bZ2hoSEFBAfPmzWX37t00aNCAsWPH8sgjj/D7778D0LVrN4yNjXXLvWv8793V+ny3tbS0DOAvOw2am5v/99iS2xozNzeXxYsX4ebmxrBhw2o/SXFTRkZGTJo0iePHjxMcHIxGo2HWrFl07dqVqKioev13KYQQd5NWq+Xbb7+lqqqKjz/+mEceeYSzZ8/q9qekpDBp0iT8/PyYN28eRUVF2NnZ8cEHH5CUlMTcuXNxc3OrwzMQ4sFQc03evn17PDwaA7Bjx3ZKSooxNDREURRdwsEzz/QB4OrVq/zxxx91M2EhRL0nwUghHiBGRkY3bFOpVP+tW3icffv2AtCrVy+6du16w7E1FyplZWUcOXIEqF7u3bRpU90xkZGRzJz5GRcvXqRJkyaMGDGC3r2fYtOmjWi1Wtq1a6fr8H1tsx2tVqvLukxOTtbN7X8Dlg+yzz//nOLiYiZMmPCXQU5ReyqViqCgII4dO8bUqVMxNDQkPDycRx55hMWLF19XG1UIIcTNGRgYsGvXLt555x0MDQ2JiIigc+fOjB49mtdee43AwEC++OILysvLcXJyYtasWSQlJfHhhx/SsGHDup6+EA+MmmtyV1dXHnqoNba2tmRmZvLbb9uB6uv0muzITp060aJFC8rLy4mIuMDFixfrbN5CiPpLgpFCCMrKSjl06CCZmZk0btyYl19+5abH1VyobN68icLCQmxtbfH399MFZg4c2M+qVSs5ffo0tra2TJo0iW7dupOVlcWFCxcwMjKideuHbhpgrBl748aNTJ48iRkzZlBeXv633cHvVRYW1VmP5eXltzymrKzsv8da/u14u3bt4tixozz11FMEBQXrZY7i75mamvLJJ5+wf/9+vL29qaioYOrUqfTu3ZukpCTJkhRCiL9hZmbG9OnTOXjwID4+Pmg0GlavXq3LmGzcuDFLlizh8uXLvPPOO9jY2NT1lIV4INVcn7dr115X2/2337ZRWVl5y+zI5ORkyY4UQvwr9fNbvhBCr2xsbJk0aTIhISEMHjz4hiXc17p69SoXLlTXhzE2NiYgIBBDQ0NOnjzJ559/TlRUFH5+fkydOhVf3xYApKamEhsbi7W1DV5eXtcFGGuCOWVlZfz+++8sX/4FeXl5/PHHEbZs2VJvgz3Ozi4AZGVl3fKYmn0uLs5/O96RI4cBiImJYeLECdf988MP3wMQFxen25abm1vbUxD/VVPa4PTp07zxxhsAHDp0iHbt2rFu3TrJ3hVCiL9x4sQJ/vOf/xAbG3vddpVKxdNPP83gwYN1pUuEEHWj5vrcw8ODkJBQrKysuHr1Kjt23Jgd+dhjj+Hp6UlpaSnnzp277SZVQghRQ4KRQgg0Gg329vbMmjWbTp0e/ctjU1KSycrKBKq7bTdt2pRdu3Yxe/YsSktL6dy5MyNGjCQ0tLXuMTt37qSsrIyAAH8CAgKue16VSkVeXh4bN/7M8uVfAGBvb89zzz3Hiy++qFu6Xd94eXkBUFhYSFpa2k2PiY2N+e+x3rc9bmxsLOfPn7/un5pl7cXFxbpt0mxF/6ytrVm2bBnbtm3Dzc2NwsJCRo0axcCBA8nIyKjr6QkhxD1FURT27dvHk08+SdeuXdm+vTqgERQUxPz582nbti2KorB06VJatmzJ7t2763jGQoiaG6wdOvyZHblt2zZdIPLa7MinnnoKgOTkKxw9erRuJiyEqLckGCmEwNDQ8G+zu2r2nzp1muzsbOztG/D44z349ttvWb36/ygoKCAkJJTRo8fQsmVL3eNiYi5y5MhhDAwMeO65fkB1I52a5wVYtWolv/zyC0VFRbi4uPDcc88xdGh1g5b6WpvP0dERX19fAPbu3XvD/oiIC2RlZWFsbEzbtm3+drwPP/yI33/ffdN/Jk2aDEBISIhum4uLi35PSADVWTy9evXi3LlzDBgwAIBff/2Vtm3bsnXr1nqbySuEEPqi1WrZtm0bXbp04amnnuLgwYNAdWOMX3/9lbNnzzJ+/HiOHDnC559/jrm5OZcvX6ZHjx6MHDmSgoKCOj4DIe5viqLorlf+9/q/JjuyWbPmBAUFY2lpSWJiou5mgVar1R3z+OM98fDwoLi4mLNnz5KUlHQXz0IIUd9JMFIIAfCXtRkVRcHAwICUlBTdUg0vL09+/PFH1q5dQ0lJCV27dmXKlCnY2NjoLmw0Gg3nz5+nqqqK4OBgHB0dgT8b6WRmZrJw4QJ2795NXl4eRkZGjBr1Jk8//QympqYoiqILWNZHAwe+BMAPP3xPXFycbnthYQGLFi0CoE+fvlhaWun2HT58mGHDhjJ58uS7O1nxjzg4OPDdd9/x7bff0qBBA7KyshgwYABvvPEG+fn5dT09IYS469RqNT/++CNt27blhRde4NSpUwD06NGDffv2ceTIEXr37q1b8WBoaMi4ceO4cOGCrmnel19+ib+/P1u3bq2z8xDifqXVanWrkmpehze7/r+2s7a7uzsAW7f+AlS/blUqFRqNBmNjY3r37g3AlStJkh0phPhHJBgphPhbNRcsNdkNBgYGREREsGfPHgCef/55Bg8egr29ve6Oac0yjujoi6jVapo3b46z85+1EaOioli7di3btm0DoGnTprz77hTat2+vqxtVX5do1+jYsSN9+z5LWVkZY8aMJixsKh999CGDBw8mMTGRgIAAhgwZct1jSkpKSE5OJi0ttW4mLW6bSqVi4MCBhIeH07NnTwC++eYb2rdvz4EDByRLUgjxQKioqGDNmjWEhIQwdOhQoqKiAOjbty/Hjx9n165ddOnS5Zaf6Z6enuzZs4cVK1ZgbW1NamoqzzzzDIMGDSI7O/tunooQ962a63NDQ0PKysrYuXMna9eu5eeff+LAgQPk5eXpjq15rfr6+hIUFIS5uTkxMTEcOLAfqE42qAliPvlkL1xcXCgsLOTMmdNcvXr1rp+bEKJ+MqrrCQgh6oeioiJiY2OoqKjAyMhI1wn65Zdf5tVXB+uOMzAw0F3wJCQkcPjwIQC6du2mO+bq1assWbKE5OQrADz88MP07t2bDh06AtWZmPU9EFnjrbfeIjAwgC1bfiEyMhKNRoOrqysvvjiAfv36YWxsXNdTFLWgUqnw8PBg27ZtrFixgnfeeYcrV67Qu3dv3nrrLWbMmCFNGYQQ96WSkhLWrFnDggULSE2tvoFmYGDAwIEDmTJlCoGBgbc9lkql4rXXXuPJJ5/kjTfe4LfffuO7776jrKyMjRs33qlTEOKBYWBgQFFRET///BObNm2irKwMlUqlW4VkY2PLm2+Ook2btpibm6NWqzEyMqJ9+w6cOXOG+Ph4tmz5hc6du+hWLWk0GszNzXniiSdZs+YrLl++zPHjx3nuuefq+GyFEPWBSpHUDSHEbbpw4QKfffYp2dnZuLq60q1bdwYPHnzL42fOnMnevXvo3r077747haqqKuLj41mwYAGJiQlA9V3XsLBpODs7Y2BgoLv4uRmNRlOvl22L+5uiKMTExDBs2DDdUiU/Pz9WrlxJSEjILQPsarWaxMREvL1vv5GREELUlfz8fFatWsWSJUt0mYsmJiYMGTKEd955B09Pz1qNrygK3377LVOnTmXv3r3y3ihELdQkCJw7F86XX35JTEx180RfX18aNXInMzOT7Ows0tPTsbCwoG/fZxkyZMh1tSG/+GIZv/32GxUVFXz00ce0a9dOt9zbwMCAwsICXn/9dXJycnjooYcZN24sTk7OfzUtIYSQYKQQ4vbUZCtqNBpWrlyBl5cXHTs+goWFxXUXLDViY2OZN28uaWlpjBkzlscee4ydO3eyc+dOIiIuYG5uTsuWLRk9egzOzs7XjVFVVUVS0mWuXr2Ki4srgK4ZTM3SkPslc1Lcf6qqqpg1axYfffQRVVVVGBkZMWXKFCZNmnRdJmxpaSlff/01ixYtQqPREBERIZmyQoh7VlZWFkuXLmXFihUUFhYCYGFhweuvv87EiRNp1KiRXp+vsrISExMTvY4pxIOorKyMWbNm8ccfR/D09KRv32dp06YNpqamWFhYEBcXx48//sCBAwcAWLBgIf7+/rpr//DwcL74YhmJiYm0bt2azz6bqRu75vr9q69Ws379eho0aMCgQS/z9NNP19XpCiHqCQlGCiFu27WZiTcLQF67fd++fcyZMxsXFxc+/fQz4uJiWbJkia4mTf/+/enR43GaNWume2xhYSHr1q3j/PnzusxJU1NT7O3t8fX1ZfDgIbpC2rd6fiHuBYqicObMGQYPHkxkZCRQXY5gxYoVNGzYkJUrV7J8+XJycnKA6oLw27dvp2PHjnU5bSGEuMHVq1dZsGABX331la5Ei62tLaNHj2bMmDG65nSi7h04cIBfftlCQkICarUaNzc3unXrTr9+/W656uRmdu7cydy5c/7ymE8//ZSHH25T2ymLu2D16tV8//16bGxsmDBhIg899BAmJibXlUXKzs5m+vQPiIuLo127dowfPwF7e3ug+vp/6dIl7Nq1i8rKSmbNmk1ISMh12ZHZ2dmMGvUGBQUFtGvXjnHjxtOgQYO6PG0hxD1OakYKIW6boaGh7sLlVoHAmu2//fYbarWaJk2akJCQwCeffKLrzte/f3+GDh12XRbY8ePH2bFjO0eOHEGlUmFjY4OzszN5eXkUFxdz4MABDhw4wNixY+nd+ykJRIp7mkqlonXr1pw8eZL333+f+fPnc/LkSdq0aYNKpaKqqgqozioaPHgwY8aMoXHjxnU8ayGE+NOlS5eYP38+3377re49y9HRkQkTJjBq1ChsbW3reIbiWsuWLWPTpo0YGhoSHByMubk54eHhfPnlKo4dO8rMmbMwNTX9R2O6ubkREHDz2p8ODg76mLa4iZiYGDZs+JFXXnmVJk2a3PK426mxXlxczJ49uzE0NGT06DF06NBBt6/msadPn2bduq+Ji4sD4MyZM+Tk5OgaUxoaGtK+fXvOnz/PlStX2LJlMyEhIdclKDg4ONC9+2Ns3PgzCQkJHDlymKeffqa2PwohxH1MgpFCiH/kry56ai6Kjh8/xvnz5zA0NKS8vJyvvlqNVqvF1dWNRx55hJEjRwLo6kNGRUWxevVqkpIuY2RkxKRJk2nRogVubm4kJSWRlJTEvn17OXLkCAsXLqS4uIR+/fphYGDwl9mZx44dIysrS5aKiDpjbm7Oyy+/THh4OHv27EGtVgNgbGzMG2+8waRJk+QLnRDinhIREcHcuXP5+eefdTcR3d3deeeddxg+fDgWFhZ1PEPxv44cOcKmTRsxNzdn3rz5ujqbBQUFTJ48iYiICNasWcPrr7/+j8YNCAjknXfeuRNTFrcQHx/PjBnTycnJwdnZmZEjX7vhmJqVStdek99qxVB+fj4VFRWYm5vrVhfVOHLkCN9++w3x8fFA9Q3SHj0ep2vXrjRv3hz4M8kgKCgYPz8/UlNTOX78OFFRUfj7++uyIwGeeeYZNm78mczMTPLy8qTWuxDiL0kwUgihNyqVioqKCs6ePYuJiQmVlZVERERQUVGBtbU1L730km4ZalVVFcbGxlRWVvLll6t0y7KbNGlCt25/dt5u0qQJjRs3Jjg4CHd3D37++ScOHDhA165dcXJyuuk8apaL/PjjD0RERHDy5AmmTg2TrsbirlEUhf379zN79mx27Nih225lZUVxcTFVVVV8/fXXBAcH8+KLL0oNVCFEnTt16hSzZ89m27Ztum3e3t5MmTKFl19+Weo33sPWr/8OgBdfHHBdwx9bW1vGjBnD+PHj2bJlMy+/PAhLS6u6mqa4DQ0bNqRLl678/PNPbN++naeffgYXFxfgzyBkTYAvOjqaiooKXFxcdMf8r6tXr1JYWIiHh4euudSePXv49ttvSUlJBsDOzo6ePZ+gW7euNG7c5IYAoqIomJiY0L59eyIiIrh69SqbN2/C39//uuxINzc33nrrbXx8fPDz87sjPx8hxP1D1jkKIfSqoqKcixcvUlFRAVRnP1paWvLOO+/Qs2dPrKysUBRFt0T7hx+qA4Y1WY6JiYm88MLzHDt2TDemVqvFxsaWxx57DBcXF+Lj49iyZfNfzuPQoUO6cW1sbCQQKe4KjUbDTz/9RNu2benWrZsuEBkcHMz69evJzc1l8+bNODs7U1BQwPDhw3n11Vd1HWmFEOJuUhSFAwcO0Lt3bzp37qwLRLZq1Yrvv/+e6Ohohg0bJoHIe1h2drauQ/K1N3NrBAa2xNHRkaqqKo4fP3G3pyf+IXt7e0JDQ3F1daW4uJhdu3bq9tUE/g4dOsioUW8wadJEPvnkPwwbNpTFixcTFRUFVF+L1GjUqBHm5uYkJyezatVKXnnlZWbNmklKSjJOTk68+upg5s2bz7Bhw2jWrPlfZjKGhITi69sCIyMjjh8/rsuovDY7sk+fPvj5+aEoii6zWgghbkaCkUIIvbKxsWX8+An4+PigKAq+vr6MHj2Gtm3b6Y6puWBJTk7m5MnqC2MHBwdGjXqTli1bkp+fzwcfvM+iRQt1tWq0Wu1/sya7A5Ceng5wywudZ599lqFDh+Ll5cUrr7wKXH9xJoQ+lZeXs3LlSvz8/Hj++ec5efIkAN27d2fXrl2cOXOGAQMGYGxsTJ8+fQgPD+fZZ58FYOPGjbRt25YdO3YgPeWEEHeDoihs376dbt260atXL/bv3w9Au3bt2Lp1K+Hh4bz44ouyxLIeqAkIWVtb4+rqetNjfHx8Abh0Kf4fjZ2aepWvvlrN55/PZ/nyL9ixYzsFBQW1m/AD7H+vWW/1/15eXjz00MMA/Prrr7oblkVFRSxatIiPP/6YS5cuYWxsTEFBAWq1ml9/3cqsWbPIy8u77nVbVVWpqzu5YcMGMjIyaNSoESNGjGDOnLm8/PLLeHh46K7NFUXRXS9fvXoVqL5u12g0mJub06FDB+zt7SkrK2Pjxo0ANywZ/7v68kIIAbJMWwihZxqNhiZNmrBkyVJ+++03Gjf2IDCwJfDnxUnNv3Nzc8jIyACqgzZ9+vShY8eObNq0iQ0bfuTXX3/l9OnTTJ78DoGB1QXUi4oKASgpKQH+rGVzs7o0Awe+xDPP9MHS0lIX1BRC37744gs+/PBD3d+ygYEB/fv3Z/LkyTz00EM3fYyLiws//fQT69atY9y4caSnp9OvXz+GDRvGJ598go2Nzd08BSHEA0Kj0bBp0ybmzJlDRESEbnv37t2ZNm0aXbp0kbIR9Ux6ehrALUvXALqO52lp6f9o7MjISCIjI6/bZmKymFdeeZUBAwb8w5k+uGrqOdZcs16+fJmoqCgKCwupqqqkXbv2eHt761579vb2tG7dmqNH/yA7O5tdu3bx0ksvcezYUXbs2I6TkxNPPtkLX19fiouL2LXrd6KiIklLS2Xt2rUMGTIEOzs7AFxcXGnYsKHu+vv551/QlV242XJslUqFoaEhJSXF/PLLFjp2fIRWrVrpbpYGBwfj7++PvX0DBg4ceNPzlfcQIcTtkGCkEEKvDA0NdYHBXr166bZf2/Gv5t8xMTHk5eVhY2NDr169AWjQoAFDhw4lICCAtWvXkpiYwIQJ43nppZfo06cvxcXVQUg3t0ao1WrdhVTNv1etWsXDDz9McHAwAJaWlgByd1bcMTk51UF1MzMzhg4dyoQJE/Dy8vrbxxkYGPDqq6/SuXNnhg8fzt69e1m9ejX79u1j5cqVtG/fXi7ohRB6UVlZyfr165k/f74ukw6qG06EhYXRtm3bOpydqI3S0jIAzMzMbnlMTama0tKS2xqzQQN7XnrpJdq374CrqyvGxsYkJyezZctmdu/ezf/935dotVpeeuml2p/Afex/MwRPnTrF5s2biIqKQq1WU15eDoCZmTlNmzbF2NhY9xgfHx8efvhhtm/fzo4d23nyySf59ttvsbOzY+zYcYSGhurGDgxsybZt2/j222/Yu3cPrVq1pHPnLhgaGmJubk7r1g9x4cIFCgsLSU9Pw9zcXJeFebPr8/j4OJYt+4KIiAuUl5fTqlUrjIyMUBQFGxsb3n13CkZGRjc8Xggh/gn5di6E0LubZSD+7/INAGNjE1QqFWZmZlRVVQHVARojIyM6dOjAjBkzeOqp6k7Y3333HWPHjuH06VMANG7sgZGR0XXj7ty5k59//ol33pnM1q1b79j5CXGtN998k/fff5+kpCSWLVt2W4HIGiqViqZNm7Jz504+//xzzM3NSUxMpGfPnnzwwQe62qtCCPFvlJaW8sUXX9CyZUvefPNN4uPjMTAwYODAgZw/f54tW7ZIIFLc4OGH2zB06DBatGiBra0tFhYW+Pr68s477/Laa9Udub/5Zh15eXl1PNN7W8016unTpxk7dixhYVM5ceIEarUad3cPmjdvTps2bbCxsaG4uPi6xzg4OPDQQw9hb29Peno6y5YtpaSkhL59+/Lwww9jaGioC3I6ODjQu3dvPD09KS8v548//tCt1gDo1KmTLvPy0KFD7Nu3T3fdfe11tEajITIykm+//ZaIiAs4ODjQqdOjN5yPkZERWq0WrVYrgUghxL8mmZFCiLuu5sLFwsICRVGoqqrCxKS6oc21y61dXV154403CAwMYM2aNbo6ke7uHjzzTB+gukGOkZERiYmJbNy4EQMDAxwcHHBycqyDMxMPogYNGvDRRx/VagwjIyPGjh3LY489xtChQzl16hTz589n165drFq1ipYtW8oFvxDithUUFLBq1SoWL16sqzdnbGzM4MGDeffdd//RTRNxb7OwqM56rMmyu5mysrL/HmtZ6+d79tln+f779RQUFHDq1Cl69OhR6zHvVxqNhp9//onvv/+e4uJi7O3teeyxHoSGhtKggT2urm66G/I1jR2v5evrS0hIKHv37uHgwYOYmZnRpUtX4M+l3zUcHBzo06cv8+fP48yZM3ToUJ3VqlKpsLW1pVevXpSUlHDx4kW+/HIV58+fo2/fZ3FxcSErK4uSkhJOnDjO9u3byc7Oxs3NjVdeefWW5WZkxZEQorYkGCmEqDOBgYGYmJiQl5fHwYOH6N+//w1ZlSYmJnTr1h1PTy++/nothw4dYujQIRgYGOgu3jQaDT/88D1JSZcxMTHhySefvK5hjhD1gUqlIjAwkCNHjvDJJ5/w6aefEhERQefOnXnvvfcYO3asblmUEELcTHZ2NsuWLWP58uW6RiPm5ua89tprTJo0CXd39zqeodA3Z2cXALKysm55TM0+FxfnWj+foaEhjRo1oqCggOzsWz/ng6wmUHjs2DE2bdpESUkJnTt3oV+/fnh7e193ravRaG4aiARwdHSiTZs2HDt2lNLSUho0aEBlZSVw82Bgp06P8NNPG7hy5QonTpwkICAQZ+fq33n79h2wsrJmxozpZGdns23bNk6ePIlKpcLKyoqsrCwKC6vrsgcGBvLyy68QGhqq7x+NEELoyC0NIUSdadSoEY8//jgAe/bsJioq6rr913YWbtKkCRMnTmLevPl06vQoiqLoLt5++eUXjh8/jqIoBAcH89xz/YCbd9q+tkaOEPciExMTZsyYweHDh2nRogWVlZV88MEHPPHEEyQkJMjfrhDiBqmpqbz77rv4+fkxa9YsCgoKsLGxISwsjKSkJBYsWCCByPtUTZZrYWEhaWlpNz0mNjbmv8d66+U5a4JW5uYWehnvfmNgYEBJSTFff72WnJwcGjVyp3///vj6+t5w0/2vmiuqVCr8/FoQGtoaqF4NVLO8+mYsLa145plnADh9+hQxMTHXzSkkJITp06fTvftjGBsbk5mZSUZGBqmpqRQVFeHn588HH0xn/vzPdYFIueYQQtwpkmIhhKgTNXeNH3usB9HR0Vy6dIm1a9fy6quv4uPjg7GxMSqV6rplKBYWFrRs2VL3eENDQ6Kjo9m6dSslJSW4u7szYMBAzM3Nb9pdG/68k6xSqW55jBB1TaVS0bZtW06ePElYWBiLFy/m6NGjtG/fnk8//ZShQ4fKEikhBAkJCXz++ed88803uowpBwcHxo8fz1tvvYWtrW0dz1DcaY6Ojvj6+hITE8PevXsZNGjQdfsjIi6QlZWFsbExbdu2qfXzxcXFkZKSAkCLFi1qPd796ty58yQnJwMwcOAAfH19/9U4Tk7OtGvXjtOnT5GRkUFcXBzNmjW75fGdO3dhw4YNZGRkcPLkSfz8/HB0dNQFFUNDWxMa2prhw4dz8uRJzM3NqayswMOj8XW/z5prZCkRI4S4U+SbjBCiTtQEUvz9/RkyZAh2dnacPXuGGTOm88MPP3Du3DlKS0tvGnCpCUSWl5fzww/fc/VqChYWFjz11FP4+/tfNz5AWloaJ06cYPny5WzY8CNbt26lsLBAF4i8WQalEPcCKysrFi5cyM6dO/Hw8KC4uJgxY8bQv39/0tLSJGNBiAdUZGQkw4YNIygoiNWrV1NZWUmjRo1YsGABSUlJhIWFSSDyATJwYHVX6x9++J64uDjd9sLCAhYtWgRAnz59sbS00u07fPgww4YNZfLkydeNVV5ezpYtWygtLb3hec6fP89HH30IVC/lfRCDkYqi/OVnb82+3Nxc1Go1tra2ODg43vQxGo3mhsf97zWpoaEh/v7+hIRUZypu2/ar7sbDzdja2urqqp86dZK4uFjdODW0Wi0NGzbkiSeeoHPnzvTo8bjud1kzJ7lZL4S40yQzUghRZxRF+W8GWDuWLl3G/PnzOH36NF9/vRYXFxesrKxo27YdwcHB+Pn5YWJiAvwZaNy4cSNnz55FpVLx8MNt6NOnL4CulmReXh6nTp1k7dq1uotCqM46+/bbbxg16k06d+4sGWbinqZSqXj88ccJDw9n7NixfPPNN+zcuZM2bdqwcOFCnn32WclcEOIBcfr0aebMmcPWrVt12zw9PZkyZQqvvPIKpqamdTg7UVc6duxI377PsnnzJsaMGU1ISAhmZmacPXuW4uJiAgICGDJkyHWPKSkpITk5+YbAllqtZsmSxaxYsRwvLy+cnJzQaDSkpKRw+fJlAJo1a8Z7771/l87u3vG/TWNutq3m89jW1hZTU1MKCgrIzMy86ed0TcCvsLAAS0srqqqqrnsN14zt4uJCmzYPc/LkCaKjozl58iQdO3a85Ty7devGTz/9RE5ODqdPn6FFCz8aNGigu+6+dr41z1GzT4KQQoi7RYKRQog6U3NhptFocHR05LPPZrJjxw62b99OVlYm8fHxpKWl0bRpU10gsuai6ezZs+zYsZ2ysjKaNWvGwIEDMTQ0RK1W62pJLlu2lPPnz5OXl4epqSl2dnZotVrMzMxITU3lk0/+Q1paGs8//7zu4qvmYux/3Wq7EHdLgwYN+Prrr3nmmWd48803yc7O5pVXXuHFF19k7ty5NGjQoK6nKIS4AxRF4dChQ8yZM4e9e/fqtgcGBhIWFsbzzz8vza0Eb731FoGBAWzZ8guRkZFoNBpcXV158cUB9OvX75ZNUv6Xqakpgwa9TGxsLMnJV0hKSqKiogJra2tCQ0N59NFHefzxnrc93v3EwMCAsrIyNm3ahKmpCf369f//9u4zMKpi7+P4d9OXFAwthS4gJaGXJPQuzUIRkG5AUCkWOujVRy5FqtJRsKEi4A1FRClBeodQQgs1giTUkJCQurvPi7irMTQpKfj7vPLuOZkzh7vZzP7OzH8wGAxYLBbbqh0ro9GIr29hzp49w4oVy/Hy8qJKlSpAeo3XW7duceXKFTZv3kRMTAypqalcv34df39/qlatSsOGjWyhoYODA35+/lSuXIW9e/ewcuUKAgMD7xgc5s+fn+eee46vv/6KXbt2Uq1aNerUqXPbcexfyxeJiGQlg0VrvEQkB/hr/caYmBgiIyO5ePF3kpKSadmyZYY6kHFxsYwbN46wsDDc3Nzo3bsPrVq1yhAYzpgxgx9/XInBYCBv3rz07z8APz8/nJ2duXz5Mlu3bmXx4u8pUKAAY8eOo2jRorfty99FRERQtGhRjEbj4/9HEbmDixcv0q9fP1atWgWkbwY1Z84cGjdurC8UIk8Ii8XCmjVrmDRpEjt37rS9XqtWLUaPHk2bNm00s18kC8XHxzNs2DBOnUqv2zhu3Hjy58+f4ZzDhw9TsWJFEhLimTt3HqGh60lLSyNPnjxUq1adGzduYG9vz+XLl+644RBAhw4d6NDhJduDxpSUFH7++Wdmz56FxWJh7Nix1Kx55xqg0dHR9OjRHYCRI0dpJZCI5Dj6RBKRHMHe3t5Wh8fT05MqVarQqlVr2rVrl2lDmqVLf+DIkSPY29tTu3YdWrVqBfxZ5+bXX3/lxx9XAlCxYkVGjRpNgwYNyJcvH+7u7pQqVYqOHTvSpUtXoqOj2bJlCwBffvlFpifb8Gcdn/Pnz7Nw4dd07PgSmzZtypJ/F5Hb8fX1ZcWKFXz66ae4u7vz+++/8/zzzzNkyBDi4+Ozu3si8hBMJhP/+9//CAoKon379rYgsnHjxqxfv56dO3fy/PPPK1gQyUIWiwU3Nzdq1qyBi4sL0dHRbN++DUgPCkNCQujUqSODB7/Db7/9hqurG02bNrXNhkxJSWHr1i2Ehx/m4MEDREVF4eDggJubG/b29hQrVgx3d3fbA8XVq1ezcuVK29jWycmJihUrUrlyZQBWrlx515rn3t7efPDB//Htt9/RqFEjfV6ISI6jNR0ikmPcbUaX9djOnTsJDV1PcnIyZcuW5eWXXwb+rBMZHx/P3LlzgPRdHl98sa1tIPjXgZjRaKR+/fqsWLGcuLg45s6dQ0hICHv37uX99z+gYMGCwJ/LsxMTE9m8eTMRESdJTk7m8OFDNGjQ4HH8M4jcFzs7O/r06UOjRo0IDg5my5YtzJ07l9DQUD799FNq1qypWZIiuUhqaiqLFi1i6tSpGTYhee655xg1ahSBgYHZ2DuRfzfreLBx4yZs376dyMhI1q1bx7Vr11i+fLltw58iRYpw48YNihUrRuXKlSlcuDDz53/G7t27cXJyIjU1FScnJ6pXr46vb2G8vLyoXLkyRqORK1eu8P33i9i1axcJCQns3buH6tWrU7FiRSB9FUStWgEcOHCAXbt2cfjwYVs4eTu1a9cG0h9w2NnZaUwgIjmKwkgRyRXs7Oy4fPkSX375BTdu3MDTMx/t2rXH19cXs9lsq130zTcLiYmJwdPTk9q169i+vP295qPZbKZYsWKUKfMMP/20iuTkZAwGA97e3iQnJ9vOs/7Mnj172LZtKzEx1ylVqhQDBgy0taOnzZJdDAYDpUuXZsOGDUyZMoX333+fkydP0rRpU4YOHcrw4cNt9VZFJGdKTEzkq6++4uOPP+b8+fNA+t+8jh07MnLkSCpVqpTNPRQR61ivePHiVKlSlfPnz3PixAmOHz8OwDPPPEOrVq0ICAi0Ld02m80UKFCAESNGcv36dUwmE9euXaNcuXKYzWYsFottNU5aWholSpSgd+8+5M2bl2XLlnHx4kUiIk7YwkhnZ2cqVaqEv78/4eHh/PTTqruGkUCGa4iI5CT6Bi0iuUZiYhKxsbGkpaXRsGEDGjVqBPwZGF64cMG2u7aPjw+1a9fGwcHhtpvP2NnZER8fz/Xr12zhY7ly5WnZshVFihQB/lyefebMGTZt2sipU6cAGDx4CPDnk2aR7Obg4MCwYcPYuXMnlStXxmQyMWHCBBo1asTRo0dReWiRnCcuLo4pU6ZQvnx5Bg8ezPnz53F0dKR3794cP36cRYsWKYgUyUZ//9uZnJzMDz/8wIoVy21LpF1dXXnrrbf56KOJtGrVOkMNyb+OEfPly0fBggUpV64cgG3namuJIusmVAULFqRmzVq4ubkRHx9PXFwc8GcpoqJFixIQkP6gfePGjZw69ecs6tvRbEgRyan0LVpEco3ixYvz+edf0L17dzp0eAlIf+r81125b9yIxWKxUKlSZYoVKwbceSB27do12+AuX758NGzY0Lak22QyYTAYiI+PZ+PGjezbtw+A4OBgSpcufdvakiLZyWAwUKVKFXbu3MnIkSOxt7fnwIED1KtXj5kzZ9re6yKSva5du8aYMWMoX748//nPf7hy5QpGo5FBgwZx+vRp5s+fT5kyZbK7myL/WiaT6bYPsh0cHDh48AAABQoUsO2k7eTkhKur611rOP6dtW2DwZBhHPvXPgBcvnwZwDbmNBqNlC9fnqCgIPr27Ufp0vqsEJHcScu0RSTXMJlMGI1GunfvAWReIn3u3DliYq7j7OxMQEDAbc+xtmNvb09YWBiRkZEYDAaCgoKoU6cO9vb2GTbL2blzJzt2bOfWrVtUqFCBzp3Ta1RqppnkVC4uLowdO5ZWrVrxyiuvcOrUKUaMGMHq1auZO3cuxYoV00wJkUckLi7OVh/uXqKiovjkk0/4/PPPSUhIAMDDw4P+/fvz1ltvUahQocfdXRG5C+v4zzoGvHr1KpcuXcLNzY1ChQphNBrp2rUb3bp1JykpkcmTJ3Pp0iVCQ9fToEEDHB0dbxti3i/rdW/evGlbtVOlSlUg43jWz89Ps6ZFJNfTzEgRyTWsy1ms/h4y5suXDycnJ1JSUmzLWv5+jnVG47Vr1/j88wVA+kCvYcNGti+C1p85fvw4Gzf+agsshw0bDvw5WNVMM8mpDAYDdevWZd++ffTr1w+AzZs3ExgYyDfffPOPZm+IyJ2NGjWKWrVq8fnnn9/xIdXZs2cZNGgQFSpUYMaMGSQkJJA/f37++9//EhkZybhx4xREimQj6++uNQyMiIjg448/ZvjwYXz44YeMHz+OQ4cOAumbI5YtW5bKlatQvXp17OzsOHHiBNu3b8/Q1j+5rpXJZGLPnj3MnTsHs9mMl5cXfn5+QMbxrLWf1hmcIiK5kcJIEclV7va02Wg02pbM7N+/j7S0NNsxa3BoZ2eH2WxmypQpJCUl4ePjS4MG9W0FwK3Ls2NiYti48Vf2798PQKdOnTEYYM+e3Rw8eIBbt25lGAyK5EQeHh7MmTOHVatW4evrS1xcHK+99hpdunTh0qVL2d09kVztxo0brFu3jps3bzJw4ECee+45fvvtN9vxY8eO0bt3bypXrsyCBQtISUnB19eXadOmERkZyejRo3nqqaey7wZEBPhzbHns2DFGjhzBgAH9Wb36Jy5evIiTkyNXrlwhLu6mbVxpfaDXtGlT8uXLR0JCAqGh67FYLHetJf734PCvY9rExER2797N998v4saNG5QsWZJ33hlsq2N+O/b29lrpICK5lsGixyki8gT55JOPWb16NcWLF2fQoDfx8/PLMFC7cOECP/+8mqVLl+Lk5ESbNm3o1Kkznp6eGZZnr179E99//z3R0dEAeHl52cIbR0dHfHx8CA4OpnbtOkDm3bpFcpqrV68yYMAAFi9eDKQXyZ8xYwZt2rTRe1fkAcXGxjJy5Ei++uorANzd3Xnttdc4fvw4P/74o+28p59+mhEjRtCjRw+cnZ2zq7sicgc//vgjX3/9FbGxsbi4uNCoUSNq1KhJwYIFKVCgAAUKFLjtz02c+BGhoaF4eHjwzjuDCQoKyjCevJ3ExESMRiPR0dFcuXKFK1cus3XrNrZu3QKAt7c3nTu/TPPmzRU4isgTS2GkiORqf10yba0DOXHiR1y7dg0fHx9eeqkjJUoUx93dg4iIE/z8888cOXIEi8VCQEAAXbt2o1y5chnCxEOHDvHtt98SFrYfBwcHihYtRrNmzf7Ygfsme/fu5fjx4wB07NiRV14Jvq/NbBRYSnazWCx89913DBo0iOvXrwPQrVs3PvroI83QEnkIa9eu5dVXX+Xq1asZXvfz82PkyJF06tTJtluuiOQsp06dYvz4cVy4cIFatQLo0KED5cuXx8nJyXbO38dw1nHn/v37+Oijidy4EUO9evV499337nid+Ph4lixZwm+/RXLt2jXi4+MxmUy2B98Azz77LJ07v0zhwoUfz82KiOQQCiNFJFeLiorCxcUFT09P22tnz55l6tQpnDhxAkhfxuLg4IDJZLItsSlSpCgvv/wyzZo1A/4cVF65coVFixaxevVPmM1munfvQdOmTfDx8QUgLS2NmJgYQkJCWLYsBHd3dwYOHET9+vVv27+/b6Bzr6flIo+bxWLh/PnzvPrqq6xduxaAYsWKMW/ePOrVq6fAXOQfsFgsrF27lkmTJrFjx44Mx4xGI1OnTqVfv376vRLJwWbNmsWKFcvJnz8/7777HuXLl7eN3SwWi63e+O02RQT473/HsGXLFp56ypPhw4dRrVr1O473QkJC+OKLz0lOTsbZ2RlHR0fc3NwICAikXbt2+Pj42K4Ldy9PJCKSm6lmpIjkWnFxccyf/xnDhg3l8uXLQPrgrWTJksyYMZNBg96kTZs21KhRgz59XuWZZ54BwNnZmTp16hAYGAhknF25detWdu/ehdlsplGjRnTv3t0WRJrNZhwcHChYsCDNmzfnqaeeIjY2lo0bf7W181cmkwk7OzuuXr3K4sWLFURKjmAwGChWrBirV69m5syZuLq68ttvv9GqVStGjBhBYmJidndRJMczmUwsW7aMOnXq0K5dO1sQ2bBhQ8aNG0eRIkVITEzk9ddfp3nz5kRGRmZzj0X+Xcxm833V9E5LS+PAgTAA6tati5+fX4bA0WAw2MZufw8ire03bdoMDw8PbtyIYd26dUDmTRdTUlIAqFWrFm3aPEe3bt14443+DBkylJkzZ9G/f398fHxs/TYYDAoiReSJpjBSRHKtW7ducerUKSIjI1m3bh3x8fEYDAbb4LBNmzYMGDCQMWP+S8WKFTl69CgANWrUoGHDhri7u2OxWGyDzLCwMLZu3cLly5fx9PTk7bffAf4sVP7XQWjJkiWpWLESABcvXgQyDzyt7S5ZsoQFC+YTHBzM77///jj/SUTum729PW+88QZ79+4lMDAQi8XCzJkzqVevHvv379cOnSK3kZqayjfffEONGjXo1q0bBw+m77DbunVrtm3bxq+//srIkSMJDw+nT58+AKxfv56KFSvy6aef6vdK5DGzhnl2dnbY29uTmprKhQsXSE5OzvSwzWQy4eDgQKlSpQD+2KgmDkgPDxMS4klJSWHXrl38+ONKNmzYwPbt27l161aGdgICAvDz8wdg165dHDp0CEgPMuPi4vjll5+ZMWMGAEWKFKFfv3706NGTli1bUrt2bTw8PDCbzbaZl3pwLSL/BipeIyK5Vt68eWnWrDmLFn3HokXfARZatWqNh4eH7Ryz2czJkyeZOPEjAMqVK0ezZs1sA09rDaCLFy+yadNGDh8+DMCQIUNwcXG542zGmJgYLl1Kr/GTL18+4uPjMRqNtkAyLCyMatWqsXv3bjZv3oSDgwMuLi44OupjV3IOg8FAuXLl2Lx5Mx999BEffvghx44do3HjxowYMYLBgwfj6OiY3d0UyXaJiYksXLiQadOm2XbMNhgMvPTSS4wcOZIqVapkOD9v3rx89tlndOjQgVdffZXz58/Tr18/li5dyvz58ylevHg23IXIk8/64Dg+Pp7ly5ezdesWzGazbYfqhg0bUatWLfLnz2/7mTp16tqCRpPJTNGiRYiLiyM5OYVDhw4SExODs7MzycnJGAwGihYtypgxY/Dx8bUFiOkzoM/x+++/M336Jzz7bAvMZjMbNoRy9uxZAOrWrUNAQPqqnL8u+b7XLtwiIk8i1YwUkVwtKSmJr7/+ih9++AGAatWqUadOHby9vSlYsBBr167h0KFDREREUKBAAbp370Hjxo1xdna2BY0pKSksW7aMkJD/ERMTw/PPP8+AAQPvet1Dhw4xY8Z0IiMjefbZFgwePNh2bP369UyePImiRYtiZ2fH2bNnKVCgAP37D6BOnTp3rDkkkp0sFgv79u2jV69eHDlyBEhfTjZv3jzKlCmj5WLyr3Tz5k0+++wzZsyYYSsH4uDgQPfu3Rk+fDhly5a9ZxuxsbEMGTKE+fPnA+Dm5sbkyZPp27evfq9EHrHExERWrfqRb7/91jaD0dXVlYSEBNs5pUuXYcyYMbZAMikpicmTJ7F58+bbtunl5fXHJobxJCUlkZqaSoMGDRk0aBDu7u5A+izLRYsWERLyP+Lj43FwcLDVKc+XLx8dO3aibdu2+p0XEfmDwkgReSKEhoYybdpUUlJScHR0JDU1FQ8PD+Li4jAYDFgsFkaOHEVgYCBGozFDILh9+3YWLfqOEydO4Ovry5dffgVk3nzG6ubNm3z77TeEhITg4ODAp59+RpEiRTCbzVgsFsLDDzNp0iQuX75sqzXUqVNnevbsicVi0RNwydESExN59913mTZtGhaLhTx58jBmzBj69u2r9638a1y7do05c+Ywd+5cYmJiAHBxcaFPnz4MGTLkgWY2rl27lj59+nD+/HkAJkyYwPDhwx9pv0X+7UJC/scXX3xBcnIylSpVolmz9Brf9vb2bNz4K3v27CUm5jqNGzehY8eOPP3000D6ipf169fx668byZvXA09PT1xd3ahZsyYlShQnNTWNpKQkFi36js2bN2MwGJg5cxZlypSxPdxOSkri559/JjR0PWazGTc3N5o1a27bLFFERP6kMFJEnhhXrlzhiy++4Nixo1y/ft1WG6hhw4bUrl2bhg0bZfqZM2fOsGTJEjZsCAXg448/oUKFCndcnm0ymdiyZTMTJ04kLS2NLl260rNnTyDjjodff/0VS5YssRUsr1y5Mu+//wFubm62dlQTSHIqi8XCxo0bCQ4O5ty5cwA0adKE2bNnU7hwYc3skCdWVFQU06dPZ8GCBbaZVO7u7rzxxhu8/fbbeHl5PVT71lmSP/30E+Hh4eTLl+9RdFvkX81acmfz5s2MHz8Os9lMp06dadmyJT4+PrbjAPv27WPkyBG4urry/PPP07NnL+zs7GznWMdnCQkJuLq6ZrrWli1bmDVrJtevX6dfv360b98hQ/tWly9folChPz8vrHUs9fdTRCSdipeJyBOjYMGCDBs2jJMnT2Jvb8+VK1fw9vbOMIPl7wPG06dP2YLIbt26UaFCBcxm8x2DwsjISJYsWUpaWhqVK1emWbNmtvasA9izZ8+wbdt2UlJS8PDwIC0tjYMHD9Kx40u8/fY7NGvWzFZbUoNSyYkMBgONGjUiLCyMd955hy+++ILQ0FACAgKYMmUKnTp10ntXnijnzp1j2rRpLFy4kOTkZCB9aeVbb73FgAED8PT0fCTXsdaSvH79uoJIkX/gbg9xrX+PNm/ehMlkon79+rRr146nnnoq0yoXo9FI3rx5iY2NZf369VSrVo3KlavY2rC3t8dsNtuCyL9f197ejoSEBJycnPDy8s5w/b+yBpHWn9cDaBGRjBRGisgTp0yZMgC2pTd/9fcBY7NmzYmOvsS2bVvp0aPnXduNjY1l1aofOXXqJG5ubnTo0AEfHx/gz8GmtWZQZOQ5XFxcaNu2LbVr1+Hzzxewa9cuJk2ayLZt2xg5ciTOzs6P6I5FHo+nnnqKBQsW8Pzzz9OvXz8uX75M7969+emnn5g2bRoFChTI7i6KPJTjx48zefJklixZgslkAsDHx4chQ4bQt29f22z2R01B5IPZtGkTK1eu4MyZM6SlpeHr60vjxk1o3749Dg4P9rVm+/Zt/PzzL5w4cZybN2/i5uaGr68vNWrUpHv37o/4DuRBWcO88+fPU7hw4UxlQ86cOcOePXtwdXXl5Ze78NRTTwF/bmiza9dOFi5cSEREBJBe+zUoKMg2jvsrOzu7TCGixWLh3Llz/PDD/0hOTsbT09M23ryffouISEZapi0i/1p/fVqempqKo6PjHZ+8p6amEhq6nqlTpwLQo0dP2rdvj9FozHBeSEgICxd+za1btwgMDGTkyFG4uLgQExPDmjVr+Prrr0hLS2Px4iWPbKaNSFaIjo7mjTfeYNmyZQB4e3sza9Ysnn32Wc2SlFwnLCyMSZMmsXLlSqxD4ZIlSzJ8+HB69uyJi4tLNvdQ/m727NksWxaCvb09VapUwWg0cuDAAeLj4/H392fChI/+0UO+1NRUJkwYz+bNm3F2dqZ8+Qp4ej5FTEwM586dw2w287//hTzGO5K7+ft47OjRo0ydOoVbt24xePAQqlevnmEcFxERwcCBA3jqqaeYO3eebYy1adNGvvnmGyIjIwHw8PDg2WefpXHjJpQoUeKeYWFKSgpJSYkcOXKUn35axZ49eyhUqBCvvfY6derUeUx3LyLy5NPMSBH51/prjSDrjIo7DUpPnz7NkiVLAQgICKBp06a2INI6YD569CirVq3i1q1bFC5chE6dOuPi4oLZbMbT05OOHTtSoUIFLJb0/61dtSU38fb25ocffuDrr7/mrbfeIjo6mvbt2xMcHMy4ceNsO4qK5GTbtm1j4sSJrF+/3vZahQoVGDlyJJ07d37g2XXyeG3bto1ly0IwGo1MmTLVNiMtNjaWoUOHEB4ezpdffkm/fv3uu81p06ayefNm6tSpw9tvv0PevHltx8xmM8ePH3/k9yH39vcZiSkpKTg5OXHjRgy//fYbRqORPXv2UL169QzjOOtu94UKFeLGjRvs2rWL7777lujoaADy589PixYtadiwIUWLFr3j+CshIYFr167x+++/ExUVxc2bNzlyJJwDBw4A4ObmRtu27ahWrZrK7YiIPATNjBQRuYfr16/z2WefEhoaSr58+Rg+fARVqlTJUOg8MTGRCRPGs3PnTvLkyUP37j1o164dkLlOpUhuZl2qFhwczMaNG4H0GWWffvopQUFBeq9LjmOxWFi3bh2TJk1i+/bttterV6/O6NGjeeGFF/RgKIcbMKA/J06coFevV+jatWuGY+Hhh3n77bdxdHRk6dKluLree2n9/v37GT58GCVKlGDOnLkKoXOgDRtC2bp1GwDOzk40adKUBQvmc/r0aUqVKsWAAQPx8/OzjcOio6Pp0SN9Wb2bmxvx8fFAetmFli1bUr9+A3x9fTNc43bjs9jYWH74YSmLFy/O8LqDgwPNmzenc+eX8fb2fly3LSLyr6G/vCIid5GcnExo6HpCQ9M3uXnppZeoUKECBoMBi8Vie3IfEhJCWFgYBoOBWrVq8cILLwBo9qM8cQwGAyVLlmTdunXMmDGD0aNHc/bsWZ599lnefvttRo8erXqokiOYzWZWrlzJpEmTbLOaAOrXr8/o0aMzbEAmOdfVq1c5ceIEAI0bN8503N+/IgULFuTKlSvs2rX7tuf83YoVywFo1+7Ba03Ko2UNBrdv386XX37BuXPnAHB1dSUhIYHt27eTmJiIwWDg4sWLbN++HT8/P9uGM/nz58ffvyLh4YeJj4+nSJEiPPfc89SuXRsvL69M17OOz0wmE5s2bbK9b/LmzUvp0mUoUaIEbm7uuLu74e9fkaZNm9qWfpvNZgCN70REHoL++oqI3EVqaiq//roRgAYNGtKgQUNb0GIdOIeFhbFmzS8kJSVRsmRJOnfubNvMRoXL5Unl4ODAW2+9RbNmzXjllVfYu3cvU6ZMYc2aNcyfPx9/f38FPZItUlNTWbJkCVOmTLGFWAAtW7Zk1KhR1K1bNxt7J//UqVOnAHB3d7/tZiMAzzxTlitXrnD69Kl7hpEmk4mwsDAAKlasyPXr19m48VfOnz+Po6MTpUuXpl69eplqQsvjZTAYiIyM5LvvvuXcuXP4+PjSqlUr2+zH+Ph4FixYQHR0FImJiRw+fIgTJ05QtmxZ7OzsSEtLIyAggPDwwxgMBtq3b0+LFi3vOA6zBonr169nypTJuLu7UbNmLQCCgoKoUqUKyclJPPWUJ05OTkB6CPnXB9EiIvLgFEaKiNyFm5sb06ZN46uvviQwMMi2e7D1iXpCQgKrVv3I5cuX8fDwoG3btpQsmb6Ltwar8qQzGAz4+/uzbds2xo4dy7hx4wgPD6d+/fq89957DBo0SLOOJMskJSWxcOFCpk2bZtuswhpKjBo1iqpVq2ZzD+VBREdHAem1AO+kYMGCAERFRd+zvaio9DAL4NixY8yYMd32v60+++xTRo0arfdMFrFYLKSlpfHtt98QERGBs7Mzr776KkFBQRnGUj4+PoSE/I+1a9fy+++/s2PHDsqWLQuAk5MTFStW5Omnn+bMmTNs376dp58uRfny5UlLS8Pe3j7DA7LY2FhCQ0P56qsvAdizZ68tjHRycvojgEyvI6qZkCIij54+UUVE7sJkMuHs7Ezfvv2oWLGi7XXrgPTo0SOcOXMGs9lMzZo1adGiJQAqxyv/Jk5OTnzwwQds2bKFcuXKkZKSwnvvvUeLFi04c+aMfh/ksbp58yYff/wxFSpU4K233iIyMhJ7e3t69uzJ0aNHWbp0qUKlXOzWrfSg8G47nFtnMd66lXDP9uLi4mz/PXXqFMqUKcPMmbNYufJH5s6dR61atbhx4wbvv/8fLly48JC9l/thMBiIj48nPDwcgDZtnqNu3bq2INIaBj799NP07duPvHnzcvPmTQ4dOsjZs2ds7ZQsWZIWLVoA6XVB58//jKtXr+Lg4GCr852SksJvv/3GkiWL+e67b0lLS6NNmzZ33fzIzs5OQaSIyCOm6QoiIndhb29vW459uyWn16/H8Pvvv2NnZ8fLL3cB0PLsLLRp0yZWrlzBmTNnSEtLw9fXl8aNm9C+/T+rA3bq1En27NnD/v1hnDt3lps3b2I0GilRogQNGzaidevWmuF3DwaDgcDAQPbs2cPIkSOZOXMmO3bsICgoiPHjx9OrVy99mZNH6vr168ydO5fZs2cTExMDgLOzM71792bo0KGUKFEiezsoOV6BAgUYP36CbRluqVKl+PDDMbz2Wj/OnTvH4sXfM3jwkGzuZe5lMpmws7PLMH66Uy3tiIgIrl27hoODA8WKFQP+LIdjPd9kMuHh4UGXLl2ZM2c2kZGR7Nix07YixWg08uKLbdm3bx+7d+/m8OHDDBs2jEqVKv3RpoWoqCi2bt3KtWvXAGjRogUvvtjWVntSf6dERLKGvlmJiNzD3ereJSSkz8Lw9PQkLi4W0PLsrDJ79myWLQvB3t6eKlWqYDQaOXDgAPPnf8bOnTuYMOGj+9pIxWQy8frrrwPpX2TKli3LU095cvXqFY4ePUp4eDjr169j/PgJuLnde5fWfzs3NzemT5/Oc889R58+fTh//jwDBw5k1apVzJo1644130TuV3R0NDNmzGD+/Pm2HXPd3Nx4/fXXeeedd7TT7RMmT570WY9JSUl3PMe6zDpPHtd7tvfXWpDNmze3BZFW9vb2tG7dhlmzZrJ///4H6fK/ntlsxmAw2MZDly9fIi7uJt7e3plqcVoDR3d3d9ty7aJFi2Y4ZmUNClu2bMnixd9z/fp1wsLCqFevHkWLFiU1NRVHR0feeKM/xYoV44cffuDChfNcuHAewFbPG6Bkyafp2bMHtWvXydS+iIg8fgojRUQeQlBQEGvXruHMmTOEhISQP39+fHx8s7tbT7xt27axbFkIRqORKVOmUqZMGSC9BtTQoUMIDw/nyy+/vOuyq78qU+YZOnXqRFBQUIYvpmfPnmHEiJEcP36cuXPnMGTI0MdyP08ag8FA8+bNOXDgAG+++SbffPMNa9asoVatWkyfPp0XX3xRm9vIPxYZGcnHH3/MV199RXJyMpD+IOjNN99k4MCB5MuXL5t7KI+Dl1d6uHzlypU7nmM95u2dedfkv/P29sZgMGCxWPD2vv3DEetDk+vXr//T7gp/hnqnTp1k8eLFhIWF2ULIWrUC6Ny5s63Op/Vvwc2bNylUqBCXL1/m4MGD+Pv7Z2rXutTaxcWFJk2asnTpEn77LZKdO3dQtGhRHB0dgfT//159tS/+/hU5fPgQBw4cxMHBHmdnF/Lnz0/Tpk2pUaOGrV3NiBQRyXr61BUReQg+Pj507NgJFxcXtm7dyogRI9m8ebNq5D1mixZ9B0CnTp1tQSRA3rx5GTRoEAArViwnISH+nm3Z29sze/ZsGjRokGmGTMmST/Pqq68CsHHjRtLS0h7VLfwr5MuXj6+//prFixdToEABrl+/Trdu3ejdu7e+5Mt9O3HiBH379qVSpUp8+umnJCcn4+3tzaRJk4iMjOT9999XEPkEK126NJBe6zEqKuq250REnPjj3DK3Pf5XRqORIkWK/tFm7G3Psb6uHbXvj3W2IaQHeykpKXz//SLeeOMNNm3aRHx8PJcuXeLSpUv8+ONKpk6dQkREBACpqakA+Pr62mZUHjt2lMTEROzs7DKNp6yhYZUqVQCIiYlh3759tveGdcdrSH9g3LdvP6ZMmcL06TMYNWoUI0aMsAWR1n4riBQRyXr65BUReUDWwW7jxo2ZMWMmpUuXJirqIv/97xhbEXZ59K5evcqJE+lfPBs3bpzpuL9/RQoWLEhqaiq7du1+6OtZvwgnJycTG3v7L65yZwaDgY4dO3LgwAFat24NwOLFiwkKCiI0NFTBvdzRgQMH6NatG9WrV+fbb9M3mihRogSzZ8/m7NmzDBkyBHd39+zupjxmBQsWtO2YvGHDhkzHw8MPc+XKFRwdHQkIqHVfbdavXx/gjsuw9+1Lf916Xbk763LsM2fOYGdnx/HjxwkJCcHR0ZGWLVsyfPgI+vTpQ926dQHYt28fX3zxOYBtNmPRokUpUaIkFouFixcvEhaW/v/B3/9GWGdS3rp1y1aK5fTp0+zatQvgtjUqjUYjFosFT09P4M8QUmV1RESyj8JIEZEHZF3mZTabKV68OLNnz6Fz55epXr16hp235dE6deoUAO7u7nesP/jMM+lfIE+fPvXQ1/v999+B9C9MCj4eXOHChVm5ciXz5s3D3d2dCxcu8PzzzzN06FBb7VURgB07dtC2bVvq1KnDsmXLsFgslCtXjq+++oqIiAhef/31u+6sLE8e6wZxixd/z8mTJ22vx8XFMn36dABeeOFFXF3/rOu7detWgoNfYejQzOU12rZti7u7O7t372bVqlUZjv36669s2BAKwIsvtn3k9/IkOnLkCK++2ofXXutHVFQUy5aFEBsby1tvvcXrr79Bo0aN6NixE0OHDrPV6dy3bx9bt24FsK06aNs2/d/78uXLbNq0iZSUlEyzI//8bwvJycm4uroSGxtLWNh+26Y0fz3fOuvxrwGlQkgRkeynmpEiIg/Busu2dQft4OBg25Ij1SB6PKKj05diFSpU6I7nWGtRRUVFP9S1LBYLS5YsBiAgICDTMm75Z+zs7Hj11Vdp3LgxwcHBbNmyhTlz5hAaGsq8efOoWbOmakn+S1ksFkJDQ5k0aZItoACoVq0ao0aNom3btvo8/RerU6cOL77YluXLlzFo0ECqVq2Ki4sLYWFhxMfH4+fnR69evTL8TEJCAufPnyclJSVTe3nz5mX06Hf5z3/e45NPPmbFiuUULVqMqKiLtgdeXbt2IyAgICtuL9c7ffqUrW7n7NmzOH36NO3atadBg4a2v5smkwmj0chzzz3PjRs32L17Nz/8sJRatWrZzqlZsybly1fg2LGj7Ny5kzVrfuG5557PsJGNwWDg6tWrrFixkhIlSvD006XYsCGUc+ciOXr0KPXq1dPfERGRXECjOhGRR8De3h6z2QyAg0P6cx59cX48bt1K3zX1bjOjrHW+bt16uBl3Cxd+zdGjRzEajfTu3eeh2pJ0BoOB0qVLs2HDBiZMmICzszMRERE0bdqUsWPH3jY4kCeX2Wxm5cqV1K9fnxdeeMEWRNarV4+ff/6ZvXv30r59e32eCv379+fdd9+lfPkKHDlyhN27d1OgQAF69+7DpEmTbUt271f16tWZN+9TmjVrTnx8PDt2bOfy5cvUqlWL8eMnZAo3/63uVkrDOu6pV6++rYbjwYMHuXr1Kg0bpgeR1nOssxFLlSpFUFAQDg4OHD16lL179wB/zo7s0aMH+fPnJzExkQULFrB+/XpbH1JTU7l27RqrVq0iPPwwFSpUIDj4FQwGA9HRUZw/f972QFhERHI2zYwUEXlEbrcUSHKvdevW8s0332BnZ8fgwUMoUqRIdnfpieLg4MCwYelL9l555RUOHjzI+PHj+eWXX/jss88oV66cfpeeYGlpaSxdupQpU6Zw7Ngx2+stWrRg1KhR1KtXLxt7JzlVgwYNadCg4X2d++yzz/Lss8/e9ZwiRYowbNiwR9CzJ491I5i/L2m2bjJjMBhs4x5PT0+qV6/BsWPHiYm5jo+PL3ny5AEyP5h1cHDAz8+fKlWqsnfvHlasWEFAQKDtQW716tVp1649K1eu4NKlS0yZMpl169aSP39+8ucvwP79+zh58iRFihSlXbv2FCrkRWBgIDt27ODs2TM4OjpqZYqISC6gT2kREclV8uRJn/WYlJR0x3MSExP/ONf1ga6xadMmJk+eDMDbb79NgwYNHqgduTuDwUDVqlXZuXMnw4cPx87OjrCwMOrWrcvMmTMz7NAqT4akpCQWLFhA5cqV6dOnD8eOHcNgMNC+fXv27t3Lzz//rCBSJBtZa2Hb2dlhb29PYmIi27ZtY/v2bezZs5uEhATbgyLruQABAbUoVaoUAFFRF21hoPX4X/n6+lKrVi0MBgNhYWGEhYUBf24s065dO/r27UuhQoUwmUyEhYWxfv16W81Qb29vevbsSeHChbFYLLbrhoeHk5qaqiBSRCQX0MxIERHJVby8vAFs9alux3rM29vrH7e/ZcsWxo8fh8Vi4a233qJFi5YP1lG5by4uLowfP57WrVsTHBzMqVOnGDFiBKtXr2bu3LkUK1ZMsyRzufj4eD7//HM++eQToqPTa7na29vTtWtXRowYQfny5bO5hyICf9bCjo2NZcmSJaxZ8wuJiYnY2dmRnJyMj48vVatWpXv37uTPn9/22VyokBc1atTg7NkzXLt2jdDQ9fTo0fO2y7ydnJyoWLEilSpV5uDBA6xYsYJq1arZZmHa29tTr159SpZ8ms2bN3P48CEMBgPJycnUr9+ANm3aZJixefbsWQB8fHxJS0uz7dAtIiI5l8JIERHJVUqXLg1AXFwcUVFRt91ROyLixB/nlvlHbW/bto1x48ZiNpsZNOhNWrVq/fAdlvtiMBioV68e+/btY9iwYcybN4/NmzcTGBjIpEmT6NKli2a75EIxMTHMmzeP2bNn23a6dXZ2Jjg4mKFDh1KyZMls7qGIWFmXZv/66698+eUXXL58GYDChQsTGxuLxWIhKuoiUVEXuXDhPK++2peyZcuSlpaGg4MDgYGB7Nq1k2vXrrFu3To6dHiJPHnyZNiAxqpIkSIEBARw8OABdu3ayeHDh6lcuXKmc7p06QJ0IS4uDg8Pjwx9tbOz4+rVq7YHkF5ehWw1o0VEJGfTqF5ERHKVggULUrZsWQA2bNiQ6Xh4+GGuXLmCo6MjAQG17rvdHTt28N//jsFkMjFo0Ju0adPmkfVZ7p+Hhwdz5sxh1apV+Pj4EBcXR79+/ejSpQuXLl3K7u7Jfbp06RLvvfce5cuXZ8yYMVy7dg1XV1eGDBnC2bNnmT17toJIkUfsdqUt7rYBzd/Z2dlx4cIFli0L4fLly/j7+zN69Gg++OD/mD17DkOHDqVmzZoAHDp0iNmzZ5OQkGCr9+jr60u1atXx8PDg0qVL/PLLz8Dtl2o7OztTqVIl/Pz8AFi16sfb9sn6s+7u7pn6GhUVxZdffkFERAQA9eurpIqISG6hMFJERHKdl1/uAmCrH2UVFxfL9OnTAXjhhRdxdXWzHdu6dSvBwa8wdOjQTO3t2rWLMWM+xGQy8eabCiKzm8FgoHXr1hw6dIhOnToB8OOPPxIYGMiqVav+0ZdryVrnz59n8ODBVKhQgalTp3Lz5k08PT15//33iYyMZNKkSbedzSwiD89a43HFihVs374d+Oeb6n388TROnjxJoUKF6NGjJ/Xq1ad48eJ4e3vToEFD3n33PRo3boyjoyPHjh3lxx9XkpCQYPv5wMBAihUrDsBPP/1Eamoq9vb2t/3cLlq0KLVqpT803LRpE0eOHMl0zt83B0xKSiIuLpaDBw/w+eefExoaSp48eejZsxdBQUH/6F5FRCT7aJm2iIjkOnXq1OHFF9uyfPkyBg0aSNWqVXFxcSEsLIz4+Hj8/Pzo1atXhp9JSEjg/PnzpKSkZHg9JiaG//u/D0hNTaVgwYIcOXKUI0eO3va6/fr1I2/evI/rtuRvChQowKJFi3juuecYOHAgly9fplOnTvTo0YMJEybo/4scJCIigqlTp7Jo0SLS0tIA8PLyYvDgwbz22muZZjWJyKN35swZXn/9NSwWCy1atMDf3w8Pj7y3XSZ9O6dOneT06dM4ODjQvHlzqlSpkuG42WzGaDTSsWMnkpKS2b59G6Ghofj7V8Tf3x+A4sWLU61aNc6dO8v58+dZu3YNrVu3wWw2Z9qZ22g0UrlyFXx9fbl48SIHDx60zZT8q9TUVA4dOsSWLZtxcTESGXmOffv22Y63aNHynjuni4hIzqIwUkREcqX+/fvj7+/HihUrOXLkCCaTCR8fHzp16kz79u3vu4B9cnIyqampQPrGN+vWrb3juT169FAAlsUMBgNdunShXr16vPrqq6xdu5avv/6ajRs3Mm/ePOrVq6fNbR6DDz/8kMDAQJo3b37X8w4ePMiUKVMICQmxzXwqVqwYw4cP55VXXlH9NpEslC9fPipVqsTBgwc5cSKCI0eOEhQUdM/PSGtYGRNzg6SkJACqVKkKpC/9toaI1lmKxYsXp3nzZuzevYvIyEgOHz7EM888g5OTE5A+O3LPnj1/zJz8kVatWmcKIq2KFy9G167dKFSoUKaakVaOjo789ttvrF69Gjs7O8xmM05OTtStW5dOnTqr5IOISC5ksGitk4iIiOQCJpOJOXPmMHz4cG7duoXBYGDAgAG8//77Cr0eobVr19K2bVsAevfuzdixYzPNbNy5cyeTJk3il19+sb1WtmxZRo4cSZcuXbSbrUg2sFgsrF+/nkmTJgLw4ott6dGjB25ubvc1O3Lp0iV89tlnuLi4MGzYcOrWrXvHc69evcqMGdPZsWMH/v7+TJjwEY6OjrZrfPHF56xYsYJbt24xbNhwmjZtmiHYvFP/4fZLyxMSEli4cCEmUxpeXt7Uq1cPLy+ve/6biIhIzqSakSIiIpIr2Nvb079/f/bu3UtgYCAWi4UZM2ZQv359wsLC7llLMj4+Pot6mruVL1+eRo0aAbBgwQICAwPZsmULFouF0NBQWrZsSZMmTWxBZJUqVVi6dClHjhyhZ8+eCiJFsonBYKBGjRr4+1cE0jd0O3bsmO3YnVg3iSlVqhSQHgqaTGl3vZaHhwdly5b74zrhREdHYzAYbGUagoJqU7RoUQB++mkVwD2DSIPBcMd+urq6EhwcTN++/ejQoYOCSBGRXE5hpIiIiOQaBoOB8uXLs3nzZj788EMcHR05evQojRo14qOPPrItuf+rqKgoRo0aRalSpTh06FA29Dp3KVq0KCtXrmTatGnkyZOHc+fO0bJlS55++mmef/55Nm/eDKTXbl29ejX79++nQ4cOdw0aRCRrPPXUUzRt2gSA06dPc+BAGImJicCdd9a2Lr8uVMiLIkWKkJycbAsx78TJyQk3N1fs7e1xdHS07Wht/RwoV64clStXxsHBgSNHjrBly+a7tnc/5TacnJz0sENE5AmhMFJERERyHUdHR9599122bdtGhQoVSE1NZcyYMTRv3pyTJ09isVg4c+YMAwcOpEKFCnzyySfEx8cze/bs7O56rmBnZ0dwcDDvvvsuRqMRi8XC5cuXAahVqxabNm1iy5YttGzZUjU7RXIQg8FAzZq1KFu2LBaLhUOHDnHixIn7+lmj0Ui5cuUBCA0NJTo6+rbnmUwmAHx8fDGZTJjNZry9vWzXt860rFatOiVLluS5556nWrVqD3trIiLyBFEYKSIiIrlS+pfumuzdu5d33nkHg8HA7t27CQwMpF69elSuXJnPP/+clJQUfHx8GD9+PJMnT87ubud4ycnJfP7551SpUoVRo0bZZlVZZ0/t3buXNWvW3HYWqohkv/z589OkyZ+zI8PC9pOcnHzPBwf58+fH398PT09PYmNj+eWXn22//39lnf145Eg49vb22NnZ4eTkbDtu/ayoVq0a06Z9zMCBA3F1dXtUtyciIk8AhZEiIiKSqxmNRiZPnswnn3yC0WgkKSmJsLAwzGYzxYsXZ+bMmRw5coRBgwbh5qYvxHeSkJDAjBkz8PPzY+DAgZw9exZ7e3u6detGeHg4hw8fpnr16pjNZsaNG0fNmjU5ePBgdndbRP7Gzs6OwMAgSpZ8mrS0NA4dOsTJk+nLqO+0VNv6eqVKlW27Wq9evZqNGzdmOtdsNnP27Fm2bt2KyWSibNlyPPPMM7dt18nJyTZ7UkRExEphpIiIiORaFouFNWvW0KhRIwYNGpRpFs+NGzfIkycPTk5O2dTDnO/GjRt89NFHlC9fnhEjRhAVFYWTkxP9+vUjIiKChQsX4ufnR4UKFdixYwcffvghDg4OHDp0iJo1azJ27FjbphUikjMULFiQJk0aA3Dq1CnCwg6QlpZ2x9mR1teLFCnCs8+2oECBAty4cYPPP1/A0qVLiIuLA9IfWkRGnuOHH37g/PnzFCpUiJdffhngjoGjdfakiIiIlcFyr60nRURERHIYk8nEsmXLGD9+PPv377e9XqdOHUaOHElycjKvv/66rc5h+/btmTp1KgUKFMiuLuc4ly9fZubMmXz66afcvHkTgDx58vDaa68xePBgfH197/izYWFh9OjRg/DwcABq1qzJ119/Tbly5bKk7yJybxcuXOA///kPFy6cp3LlyvTu3Ydy5crZdq6+m19++YXp0z8hLS0NBwcHihQpQoECBciTJw8HDx4kNjYWZ2dnunXrTvv27XFwcMiiuxIRkSeBwkgRERHJNVJSUvj222/56KOPMmzK0LJlS0aOHEm9evVsr0VHR/P666+zfPlyAHx8fJg1axbNmzf/V2+6cuHCBT7++GO++OILkpKSgPQdeAcOHMigQYPuO7BNTk7mgw8+YOLEiZjNZlxcXBg3bhxvvvmmZkGJ5AAmk4nvvvuOhQu/xmg08vLLL9OxY6c7/n5avxZaPx83bNjAokXfERkZmenc8uXL0717D2rUqPH4bkBERJ5YCiNFREQkx7t16xbz589n8uTJnD9/Hkj/wvzSSy8xYsQIqlatetufM5vNfPXVV7z99tvExsYC0Lt3b8aOHYu7u3uW9T8nOHXqFFOmTGHRokW2zWcKFSrEO++8w+uvv46Hh8cDtbtjxw569uzJyZMn8fT05NixY3h5eT3KrovIAzp79iz/+c97XLp0iWrVqtGnTx9Kly5z19mRt27d4ubNm3h5eREbG8vRo0fZu3cvzs5OGAwGAgODqFixou18s9msBxAiIvKPKIwUERGRHO/rr7+mZ8+eADg6OtKjRw+GDRt2x00T/spisXDu3DmCg4NtmzE8/fTTzJs3j6CgoCd+luThw4eZPHkyISEhtppuRYsWZdiwYfTu3Ruj0fjQ17h16xYjR44kMDDQVj9ORLJfWloaX331FYsXf4+bmxtdunSlQ4cOQOYQMTExkd9++42wsDAOHz5E69ZtCAgIsO2e/ffzTSaT7ZiIiMg/oTBSREREcrzU1FQqV67Ms88+y+DBgylSpMg/biMtLY3p06czevRokpKSsLOz4+2332b06NE4Ozs/hl5nr927dzNx4kR+/vln22vPPPMMI0aMoGvXrtrUJ4fZtGkTK1eu4MyZM6SlpeHr60vjxk3+cT2+bt26cunSpXue16NHT7p37/4wXZZc4uTJk7z33rtcv36dgIAAgoODKVnyadvxhIR4IiN/4+DBA+zatYujR48CUK9ePd555x1cXd0AbLMpNRNSREQelsJIERERyRUexSwci8VCeHg4r7zyCvv27QOgYsWKfPbZZ/j7++f6WZIWi4WNGzcyceJENm/ebHu9cuXKjBo1ivbt22smUw40e/Zsli0Lwd7enipVqmA0Gjlw4ADx8fH4+/szYcJH9x2Yz5s3z1aS4O9u3rzJzp07AJg6dVqGpbby5EpNTWXBgvmEhISQN29eevToyXPPPUd8fDynT5/mwIED7Nmzm4iICNvPNGjQkJ49ez7Qgx8REZF7URgpIiIi/zrJycmMHTuWcePGYTKZcHJy4r333mPQoEG5cldYs9nMzz//zMSJE9m7d6/t9aCgIEaPHk2rVq1yfdD6pNq2bRsffPA+RqORKVOmUqZMGQBiY2MZOnQIZ8+epUOHl+jXr99DX2vx4sXMn/8ZRYoU4Ysvvnzo9iT3OHr0KO+99y43b96kZs2a1KtXn+joKHbs2MHZs2dt57Vu3ZqXX36ZQoXS677ez87bIiIi/5TCSBEREflXslgs7Nq1i169etl25q5duzbz5s2jZMmSueILeFpaGiEhIUyaNMm2tBKgWbNmjBo1igYNGuSK+/g3GzCgPydOnKBXr1fo2rVrhmPh4Yd5++23cXR0ZOnSpbblsg8qOPgVzp8/T+/efejcufNDtSW5S0pKCnPmzOann37Czc0NZ2dnrl27BoCdnR3t2rXjpZc64unpCaQ/4LBYLJpJLSIij4WKfYiIiMi/UvqusIHs3buXAQMGALB9+3aCgoL48ssvbZu95ETJycl8+eWXVK1alVdeecUWRL744ovs2rWLtWvX0rBhQwWROdzVq1dtQXjjxo0zHff3r0jBggVJTU1l167dD3Wt8PBwzp8/j729Pc2bN3+otiT3cXJyolGjxri5uREfH8+1a9dwdname/fu/O9/IfTt2w9PT09MJpOtJqSCSBEReVwURoqIiMi/mpubG9OnT+eXX36hSJEixMfHM2DAAF566SWio6Ozu3sZJCQkMGvWLPz9/enfvz9nzpzBzs6Orl27cvjwYZYtW0atWrWyu5tyn06dOgWAu7s7Pj4+tz3nmWfKAnD69KmHutaaNb8AUKtWLfLly/dQbUnuVKZMGfz8/AHo06cP//tfCN2798DV1dUWQtrb22tzGhEReez0l0ZERET+9QwGA88++ywHDx60LZX95ZdfqFWrFsuXLye7q9rcuHGDSZMmUaFCBYYNG8bFixdxcnKib9++RERE8M033+Dv75+tfZR/Ljo6CoBChQrd8ZyCBQsCEBX14MF4YmIimzZtAqBFi5YP3I7kbkajkYEDB7B27To6duyEk5OTQkgREckW+osjIiIi8od8+fKxcOFCvv/+ewoUKMC1a9fo2rUrffr0ISYmJsv7c+XKFT744APKly/PBx98wNWrV8mTJw9vv/02Z86cYd68eZQqVSrL+yWPxq1biQC4uLjc8Ryj0fjHuQkPfJ1NmzaRmJhIvnz5CAgIeOB2JPezbkxjMplsNSEVQoqISFbTXx4RERGRvzAYDHTq1IkDBw7QqlUrAL7//nsCAwPZsGFDlsyS/P333xk6dCjly5dn0qRJxMXFkTdvXt59913OnTvH1KlTKVy48GPvhzwZfvnlZwCaNm2mOoACgL29vWrKiohItlEYKSIiInIbhQsXZuXKlcydOxc3NzcuXLjAc889x9ChQ0lIePBZandz+vRp+vfvj5+fH7NnzyYxMZGCBQsyfvx4IiMjGTNmjG3ZruR+efKkz3pMSkq64zmJiYl/nOv6QNe4cOECR44cAaBFixYP1IaIiIjIo6QwUkREROQO7O3t6du3L/v376du3boAzJkzh7p167Jnz55HNksyPDycXr16UaVKFb788ktSU1MpUqQI06dP59y5c4wYMYK8efM+kmtJzuHl5Q2kL8e/E+sxb2+vB7qGdVakv78/RYsWfaA2RERERB4lhZEiIiIid2EwGChTpgy//vor48ePx8nJiYiICJo0acLYsWNJSUl54Lb37NlDx44dCQgIYOnSpZjNZsqUKcOCBQs4ffo0AwcOJE+ePI/wbiQnKV26NABxcXFERUXd9pyIiBN/nFvmH7dvMplYt249oI1rREREJOdQGCkiIiJyHxwcHBg+fDg7d+6kUqVKmEwmxo8fT5MmTTh27Nh9z5K0WCxs3LiR1q1b07BhQ3766ScAKlWqxPfff8+xY8cIDg7Gycnpcd6O5AAFCxakbNmyAGzYsCHT8fDww1y5cgVHR0cCAmr94/Z3797N9evXyJMnD/Xr13/o/oqIiIg8CgojRURERO6TwWCgatWq7Nq1i+HDh2NnZ2dbwj1r1ixMJtMdf9ZisbB69WoaN25M69at2bhxIwCBgYH8+OOPHDhwgE6dOmmDkX+Zl1/uAsDixd9z8uRJ2+txcbFMnz4dgBdeeBFXVzfbsa1btxIc/ApDhw69a9tr1vwCQMOGDW27couIiIhkN4MlK7aEFBEREXnCWCwWtmzZQnBwMKdPnwagQYMGzJ07l6JFi9p2qjWZTISEhDB58mTCw8NtP9+kSRNGjx5Nw4YNtavtv9ysWbNYvnwZDg4OVK1aFRcXF8LCwoiPj8fPz4+PPpqIs7Oz7fw1a9YwefIkvLy8+Oabb2/bZkxMDF26vExaWhrTp8+gfPnyWXU7IiIiInelmZEiIiIiD8BgMFC/fn32799P3759Adi0aRMBAQF8++23JCUl8dVXX1G1alV69eplCyKff/55du7cyfr162nUqJGCSKF///68++67lC9fgSNHjrB7924KFChA7959mDRpcoYg8n6tX7+etLQ0SpQooSBSREREchTNjBQRERF5SBaLhZ9++om+ffvaNiJxcXEhKSkJADs7Ozp16sTIkSOpWLFidnZVRERERCRbKYwUEREReUSuXLnCq6++yooVK4D0EDI4OJjhw4fbdk4WEREREfk3UxgpIiIi8ghZLBbat2/P7t272bRpE6VKlcruLomIiIiI5BgKI0VEREQeA4vFonqQIiIiIiJ/ow1sRERERB4DBZEiIiIiIpkpjBQREREREREREZEsoTBSREREREREREREsoTCSBEREREREREREckSCiNFREREREREREQkSyiMFBERERERERERkSyhMFJERERERERERESyhMJIERERERERERERyRIKI0VERERERERERCRLKIwUERERERERERGRLKEwUkRERERERERERLKEwkgRERERERERERHJEgojRUREREREREREJEsojBQREREREREREZEsoTBSREREREREREREsoTCSBEREREREREREckSDtndAREREcnZNm3axMqVKzhz5gxpaWn4+vrSuHET2rdvj4PDPx9KRERE8P3333P48CESEhLInz8/AQEBdO3aDU9Pz8dwB5KdHuX7JzExkeXLl7Fly1Z+//0CycnJeHh48Mwzz9CqVWtq1679mO5CRERERB4Vg8VisWR3J0RERCRnmj17NsuWhWBvb0+VKlUwGo0cOHCA+Ph4/P39mTDhI5ydne+7vc2bNzNu3FhMJhNly5bF29ubiIgIoqKi8PT0ZNq0jylcuPBjvCPJSo/y/RMXF8s777xDZGQkRqORChUq4ObmxsWLFzl58iQAL77Ylv79+z/OWxIRERGRh6QwUkRERG5r27ZtfPDB+xiNRqZMmUqZMmUAiI2NZejQIZw9e5YOHV6iX79+99Xe1atXeeWVXiQlJfHWW2/RunUbAEwmE5MmTSI0dD1ly5ZlxoyZGAyGx3ZfkjUe9ftn1qxZLF++jDJlnmHChAl4eHjYju3atYv33/8PJpOJTz6ZToUKFR7LPYmIiIjIw1PNSBEREbmtRYu+A6BTp862IAkgb968DBo0CIAVK5aTkBB/X+0tWxZCUlIS1apVswWRAPb29rz55pu4urpy4sQJ9u7d+wjvQrLLo37/HDgQ9kd7nTIEkQABAQFUrlwFgGPHjj5s10VERETkMVIYKSIiIplcvXqVEydOANC4ceNMx/39K1KwYEFSU1PZtWv3fbW5des2ABo1ytye0WgkKCgIgG3btj5otyWHeBzvHycnp/s6z8Mj7/13VERERESynMJIERERyeTUqVMAuLu74+Pjc9tznnmmLACnT5+6Z3u3bt3i4sXfAShb9pm7tme9tuRej/r9A1CzZi0AFi9eTFxcXIZju3bt4uDBA+TLl4/atYMetNsiIiIikgW0m7aIiIhkEh0dBUChQoXueE7BggUBiIqKvmd7ly79ec6d2rS2Fx197/YkZ3vU7x9IX5594sRx9u7dS7duXfHz88PNzY3ff7/IyZMR+Pn5MXjwEFxd3R7+BkRERETksVEYKSIiIpncupUIgIuLyx3PMRqNf5ybcN/tpbdpvEd7t+67n5IzPer3j/X8MWP+y+efL+CHH37IUFvUw8ODatWqUaBAgYfotYiIiIhkBYWRIiIiIpLjXbt2jfff/w9nzpyhV69XaNSoEU899RS//RbJF198wcKFC9m2bTvTpk0jT5482d1dEREREbkD1YwUERGRTPLkSZ+1lpSUdMdzEhMT/zjX9b7bS28z8bbn/NmegqTc7lG/fwAmTpzIiRMn6NWrF126dMHHxwej0UjZsuX473/HUrJkSc6cOc3SpUsf/gZERERE5LFRGCkiIiKZeHl5A3DlypU7nmM95u3tdc/2ChX685zLly/ftT0vr3u3Jznbo37/XL16lf379wG3343dwcGBevXqA7B///5/3F8RERERyToKI0VERCST0qVLAxAXF0dUVNRtz4mIOPHHuWXu2Z6rqyu+voUBOHEi4q7tlSlz7/YkZ3vU75+/Bth3mjnr6po+w/LmzZv/qK8iIiIikrUURoqIiEgmBQsWpGzZsgBs2LAh0/Hw8MNcuXIFR0dHAgJq3VebdevWAeDXXzO3l5iYyM6dOwGoU6fug3ZbcohH/f4pUCC/7b+PHz9+23OOHTsGgLe394N0WURERESyiMJIERERua2XX+4CwOLF33Py5Enb63FxsUyfPh2AF154EVdXN9uxrVu3Ehz8CkOHDs3UXtu27XBxcWH//v2sXv2T7XWTycT06Z8QHx9P2bJlqVGjxuO6JclCj/L9U6iQly3cnD17FtHR0RmOr1+/nk2bNgLQuHHmZdwiIiIiknMYLBaLJbs7ISIiIjnTrFmzWL58GQ4ODlStWhUXFxfCwsKIj4/Hz8+Pjz6aiLOzs+38NWvWMHnyJLy8vPjmm28ztbdp0ybGjRuL2WymXLlyeHt7c+LECaKiovD09GTatI8pXLhwVt6iPEaP8v1z9uxZhg4dQmxsLE5OTpQvXx4Pj7ycP/8b586dA6BJk6YMHz4cg8GQlbcpIiIiIv+AQ3Z3QERERHKu/v374+/vx4oVKzly5AgmkwkfHx86depM+/btcXR0/EftNWjQAB8fHxYt+o7w8HBOnz5Nvnz5eP75F+jWrRuenp6P6U4kOzzK90/JkiX57LP5/O9/P7Bnzx5OnDhBamoq7u7u1KhRgxYtWtCgQcPHdzMiIiIi8khoZqSIiIiIiIiIiIhkCdWMFBERERERERERkSyhMFJERERERERERESyhMJIERERERERERERyRIKI0VERERERERERCRLKIwUERERERERERGRLKEwUkRERERERERERLKEwkgRERERERERERHJEgojRUREREREREREJEsojBQREREREREREZEsoTBSREREREREREREsoTCSBEREREREREREckSCiNFREREREREREQkSyiMFBERERERERERkSyhMFJERERERERERESyhMJIERERERERERERyRIKI0VERERERERERCRLKIwUERERERERERGRLKEwUkRERERERERERLKEwkgRERERERERERHJEgojRUREREREREREJEsojBQREREREREREZEsoTBSREREREREREREsoTCSBEREREREREREckSCiNFREREREREREQkSyiMFBERERERERERkSyhMFJERERERERERESyhMJIERERERERERERyRIKI0VERERERERERCRLKIwUERERERERERGRLKEwUkRERERERERERLKEwkgRERERERERERHJEgojRUREREREREREJEsojBQREREREREREZEsoTBSREREREREREREsoTCSBEREREREREREckSCiNFREREREREREQkSyiMFBERERERERERkSyhMFJERERERERERESyhMJIERERERERERERyRIKI0VERERERERERCRLKIwUERERERERERGRLKEwUkRERERERERERLKEwkgRERERERERERHJEgojRUREREREREREJEsojBQREREREREREZEsoTBSREREREREREREsoTCSBEREREREREREckSCiNFREREREREREQkSyiMFBERERERERERkSyhMFJERERERERERESyhMJIERERERERERERyRIKI0VERERERERERCRL/D/ABV9/eITybwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 636, "width": 657 } }, "output_type": "display_data" } ], "source": [ "viz_rmodel.rtree_feature_space3D(features=['ShellWeight','LongestShell'],\n", " show={'splits'}, elev=30, azim=140, dist=11, figsize=(9,8))" ] }, { "cell_type": "markdown", "metadata": { "id": "3sUMxuFOnmui" }, "source": [ "If `ShellWeight` and `LongestShell` were the only features tested by the model, there would be no overlapping vertical \"plates\". Each 2D region of feature space would make a unique prediction. In this tree, there are other features that differentiate between ambiguous vertical prediction regions." ] }, { "cell_type": "markdown", "metadata": { "id": "deDL-aQtv8sQ" }, "source": [ "At this point, you've learned how to use [dtreeviz](https://github.com/parrt/dtreeviz) to display the structure of decision trees, plot leaf information, trace how a model interprets a specific instance, and how a model partitions future space. You're ready to visualize and interpret trees using your own data sets!\n", "\n", "From here, you might also consider checking out these colabs: [Intermediate colab](https://www.tensorflow.org/decision_forests/tutorials/intermediate_colab) or [Making predictions](https://www.tensorflow.org/decision_forests/tutorials/predict_colab)." ] } ], "metadata": { "colab": { "provenance": [], "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.19" } }, "nbformat": 4, "nbformat_minor": 0 }