{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "TBFXQGKYUc4X" }, "source": [ "##### Copyright 2022 The TensorFlow Authors." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "cellView": "form", "execution": { "iopub.execute_input": "2024-01-11T19:24:19.265427Z", "iopub.status.busy": "2024-01-11T19:24:19.264959Z", "iopub.status.idle": "2024-01-11T19:24:19.268778Z", "shell.execute_reply": "2024-01-11T19:24:19.268168Z" }, "id": "1z4xy2gTUc4a" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "KwQtSOz0VrVX" }, "source": [ "\n", " \n", " \n", " \n", " \n", "
TensorFlow.org で表示Google Colab で実行GitHub でソースを表示ノートブックをダウンロード
" ] }, { "cell_type": "markdown", "metadata": { "id": "L2MHy42s5wl6" }, "source": [ "# 3D 畳み込みニューラルネットワークによる動画分類\n", "\n", "This tutorial demonstrates training a 3D convolutional neural network (CNN) for video classification using the [UCF101](https://www.crcv.ucf.edu/data/UCF101.php) action recognition dataset. A 3D CNN uses a three-dimensional filter to perform convolutions. The kernel is able to slide in three directions, whereas in a 2D CNN it can slide in two dimensions. The model is based on the work published in [A Closer Look at Spatiotemporal Convolutions for Action Recognition](https://arxiv.org/abs/1711.11248v3) by D. Tran et al. (2017). In this tutorial, you will:\n", "\n", "- 入力パイプラインを構築する\n", "- Keras Functional API を使って残差接続を伴う 3D 畳み込みニューラルネットワークモデルを構築する\n", "- モデルをトレーニングする\n", "- モデルを評価してテストする\n", "\n", "This video classification tutorial is the second part in a series of TensorFlow video tutorials. Here are the other three tutorials:\n", "\n", "- [Load video data](https://www.tensorflow.org/tutorials/load_data/video): This tutorial explains much of the code used in this document.\n", "- [MoViNet for streaming action recognition](https://www.tensorflow.org/hub/tutorials/movinet): Get familiar with the MoViNet models that are available on TF Hub.\n", "- [Transfer learning for video classification with MoViNet](https://www.tensorflow.org/tutorials/video/transfer_learning_with_movinet): This tutorial explains how to use a pre-trained video classification model trained on a different dataset with the UCF-101 dataset." ] }, { "cell_type": "markdown", "metadata": { "id": "_Ih_df2q0kw4" }, "source": [ "## セットアップ\n", "\n", "まず、ZIP ファイルの内容を検査するための [remotezip](https://github.com/gtsystem/python-remotezip)、進捗バーを使用するための [tqdm](https://github.com/tqdm/tqdm)、動画ファイルを処理するための [OpenCV](https://opencv.org/)、より複雑なテンソル演算を実行するための [einops](https://github.com/arogozhnikov/einops/tree/master/docs)、Jupyter ノートブックにデータを埋め込むための [`tensorflow_docs`](https://github.com/tensorflow/docs/tree/master/tools/tensorflow_docs) を含む、必要なライブラリのインストールとインポートを行います。\n", "\n", "**注意**: このチュートリアルは、TensorFlow 2.10 を使って実行します。TensorFlow 2.10 より後のバージョンでは、正しく実行しない可能性があります。" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2024-01-11T19:24:19.272643Z", "iopub.status.busy": "2024-01-11T19:24:19.272045Z", "iopub.status.idle": "2024-01-11T19:24:22.925517Z", "shell.execute_reply": "2024-01-11T19:24:22.924670Z" }, "id": "KEbL4Mwi01PV" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Collecting remotezip\r\n", " Using cached remotezip-0.12.2-py3-none-any.whl\r\n", "Requirement already satisfied: tqdm in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (4.66.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting opencv-python\r\n", " Using cached opencv_python-4.9.0.80-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (20 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting einops\r\n", " Using cached einops-0.7.0-py3-none-any.whl.metadata (13 kB)\r\n", "Requirement already satisfied: requests in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from remotezip) (2.31.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tabulate (from remotezip)\r\n", " Using cached tabulate-0.9.0-py3-none-any.whl (35 kB)\r\n", "Requirement already satisfied: numpy>=1.17.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from opencv-python) (1.26.3)\r\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests->remotezip) (3.3.2)\r\n", "Requirement already satisfied: idna<4,>=2.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests->remotezip) (3.6)\r\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests->remotezip) (2.1.0)\r\n", "Requirement already satisfied: certifi>=2017.4.17 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests->remotezip) (2023.11.17)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Using cached opencv_python-4.9.0.80-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (62.2 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Using cached einops-0.7.0-py3-none-any.whl (44 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Installing collected packages: tabulate, opencv-python, einops, remotezip\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Successfully installed einops-0.7.0 opencv-python-4.9.0.80 remotezip-0.12.2 tabulate-0.9.0\r\n" ] } ], "source": [ "!pip install remotezip tqdm opencv-python einops" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2024-01-11T19:24:22.929778Z", "iopub.status.busy": "2024-01-11T19:24:22.929526Z", "iopub.status.idle": "2024-01-11T19:24:25.985618Z", "shell.execute_reply": "2024-01-11T19:24:25.984850Z" }, "id": "gg0otuqb0hIf" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2024-01-11 19:24:24.449591: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", "2024-01-11 19:24:24.449639: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", "2024-01-11 19:24:24.451390: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n" ] } ], "source": [ "import tqdm\n", "import random\n", "import pathlib\n", "import itertools\n", "import collections\n", "\n", "import cv2\n", "import einops\n", "import numpy as np\n", "import remotezip as rz\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "\n", "import tensorflow as tf\n", "import keras\n", "from keras import layers\n" ] }, { "cell_type": "markdown", "metadata": { "id": "Ctk9A57-6ABq" }, "source": [ "## 動画データを読み込んで前処理する\n", "\n", "以下の非表示セルは、UCF-101 データセットからデータスライスをダウンロードして `tf.data.Dataset` に読み込むヘルパー関数を定義します。具体的な前処理手順については、[動画データの読み込みチュートリアル](../load_data/video.ipynb)をご覧ください。このコードを手順を追ってより詳しく説明しています。\n", "\n", "ここでは、非表示ブロックの最後にある `FrameGenerator` クラスが最も重要なユーティリティです。TensorFlow データパイプラインにデータをフィードでキルイテレート可能なオブジェクトを作成します。特に、このクラスには、エンコードされたラベルとともに動画フレームを読み込む Python ジェネレータが含まれます。このジェネレータ(`__call__`)関数は、`frames_from_video_file` とフレームセットに関連するラベルのワンホットエンコードのベクトルを生成します。" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2024-01-11T19:24:25.990219Z", "iopub.status.busy": "2024-01-11T19:24:25.989803Z", "iopub.status.idle": "2024-01-11T19:24:26.007856Z", "shell.execute_reply": "2024-01-11T19:24:26.007287Z" }, "id": "nB2aOTU35r9_" }, "outputs": [], "source": [ "#@title\n", "\n", "def list_files_per_class(zip_url):\n", " \"\"\"\n", " List the files in each class of the dataset given the zip URL.\n", "\n", " Args:\n", " zip_url: URL from which the files can be unzipped. \n", "\n", " Return:\n", " files: List of files in each of the classes.\n", " \"\"\"\n", " files = []\n", " with rz.RemoteZip(URL) as zip:\n", " for zip_info in zip.infolist():\n", " files.append(zip_info.filename)\n", " return files\n", "\n", "def get_class(fname):\n", " \"\"\"\n", " Retrieve the name of the class given a filename.\n", "\n", " Args:\n", " fname: Name of the file in the UCF101 dataset.\n", "\n", " Return:\n", " Class that the file belongs to.\n", " \"\"\"\n", " return fname.split('_')[-3]\n", "\n", "def get_files_per_class(files):\n", " \"\"\"\n", " Retrieve the files that belong to each class. \n", "\n", " Args:\n", " files: List of files in the dataset.\n", "\n", " Return:\n", " Dictionary of class names (key) and files (values).\n", " \"\"\"\n", " files_for_class = collections.defaultdict(list)\n", " for fname in files:\n", " class_name = get_class(fname)\n", " files_for_class[class_name].append(fname)\n", " return files_for_class\n", "\n", "def download_from_zip(zip_url, to_dir, file_names):\n", " \"\"\"\n", " Download the contents of the zip file from the zip URL.\n", "\n", " Args:\n", " zip_url: Zip URL containing data.\n", " to_dir: Directory to download data to.\n", " file_names: Names of files to download.\n", " \"\"\"\n", " with rz.RemoteZip(zip_url) as zip:\n", " for fn in tqdm.tqdm(file_names):\n", " class_name = get_class(fn)\n", " zip.extract(fn, str(to_dir / class_name))\n", " unzipped_file = to_dir / class_name / fn\n", "\n", " fn = pathlib.Path(fn).parts[-1]\n", " output_file = to_dir / class_name / fn\n", " unzipped_file.rename(output_file,)\n", "\n", "def split_class_lists(files_for_class, count):\n", " \"\"\"\n", " Returns the list of files belonging to a subset of data as well as the remainder of\n", " files that need to be downloaded.\n", " \n", " Args:\n", " files_for_class: Files belonging to a particular class of data.\n", " count: Number of files to download.\n", "\n", " Return:\n", " split_files: Files belonging to the subset of data.\n", " remainder: Dictionary of the remainder of files that need to be downloaded.\n", " \"\"\"\n", " split_files = []\n", " remainder = {}\n", " for cls in files_for_class:\n", " split_files.extend(files_for_class[cls][:count])\n", " remainder[cls] = files_for_class[cls][count:]\n", " return split_files, remainder\n", "\n", "def download_ufc_101_subset(zip_url, num_classes, splits, download_dir):\n", " \"\"\"\n", " Download a subset of the UFC101 dataset and split them into various parts, such as\n", " training, validation, and test. \n", "\n", " Args:\n", " zip_url: Zip URL containing data.\n", " num_classes: Number of labels.\n", " splits: Dictionary specifying the training, validation, test, etc. (key) division of data \n", " (value is number of files per split).\n", " download_dir: Directory to download data to.\n", "\n", " Return:\n", " dir: Posix path of the resulting directories containing the splits of data.\n", " \"\"\"\n", " files = list_files_per_class(zip_url)\n", " for f in files:\n", " tokens = f.split('/')\n", " if len(tokens) <= 2:\n", " files.remove(f) # Remove that item from the list if it does not have a filename\n", " \n", " files_for_class = get_files_per_class(files)\n", "\n", " classes = list(files_for_class.keys())[:num_classes]\n", "\n", " for cls in classes:\n", " new_files_for_class = files_for_class[cls]\n", " random.shuffle(new_files_for_class)\n", " files_for_class[cls] = new_files_for_class\n", " \n", " # Only use the number of classes you want in the dictionary\n", " files_for_class = {x: files_for_class[x] for x in list(files_for_class)[:num_classes]}\n", "\n", " dirs = {}\n", " for split_name, split_count in splits.items():\n", " print(split_name, \":\")\n", " split_dir = download_dir / split_name\n", " split_files, files_for_class = split_class_lists(files_for_class, split_count)\n", " download_from_zip(zip_url, split_dir, split_files)\n", " dirs[split_name] = split_dir\n", "\n", " return dirs\n", "\n", "def format_frames(frame, output_size):\n", " \"\"\"\n", " Pad and resize an image from a video.\n", " \n", " Args:\n", " frame: Image that needs to resized and padded. \n", " output_size: Pixel size of the output frame image.\n", "\n", " Return:\n", " Formatted frame with padding of specified output size.\n", " \"\"\"\n", " frame = tf.image.convert_image_dtype(frame, tf.float32)\n", " frame = tf.image.resize_with_pad(frame, *output_size)\n", " return frame\n", "\n", "def frames_from_video_file(video_path, n_frames, output_size = (224,224), frame_step = 15):\n", " \"\"\"\n", " Creates frames from each video file present for each category.\n", "\n", " Args:\n", " video_path: File path to the video.\n", " n_frames: Number of frames to be created per video file.\n", " output_size: Pixel size of the output frame image.\n", "\n", " Return:\n", " An NumPy array of frames in the shape of (n_frames, height, width, channels).\n", " \"\"\"\n", " # Read each video frame by frame\n", " result = []\n", " src = cv2.VideoCapture(str(video_path)) \n", "\n", " video_length = src.get(cv2.CAP_PROP_FRAME_COUNT)\n", "\n", " need_length = 1 + (n_frames - 1) * frame_step\n", "\n", " if need_length > video_length:\n", " start = 0\n", " else:\n", " max_start = video_length - need_length\n", " start = random.randint(0, max_start + 1)\n", "\n", " src.set(cv2.CAP_PROP_POS_FRAMES, start)\n", " # ret is a boolean indicating whether read was successful, frame is the image itself\n", " ret, frame = src.read()\n", " result.append(format_frames(frame, output_size))\n", "\n", " for _ in range(n_frames - 1):\n", " for _ in range(frame_step):\n", " ret, frame = src.read()\n", " if ret:\n", " frame = format_frames(frame, output_size)\n", " result.append(frame)\n", " else:\n", " result.append(np.zeros_like(result[0]))\n", " src.release()\n", " result = np.array(result)[..., [2, 1, 0]]\n", "\n", " return result\n", "\n", "class FrameGenerator:\n", " def __init__(self, path, n_frames, training = False):\n", " \"\"\" Returns a set of frames with their associated label. \n", "\n", " Args:\n", " path: Video file paths.\n", " n_frames: Number of frames. \n", " training: Boolean to determine if training dataset is being created.\n", " \"\"\"\n", " self.path = path\n", " self.n_frames = n_frames\n", " self.training = training\n", " self.class_names = sorted(set(p.name for p in self.path.iterdir() if p.is_dir()))\n", " self.class_ids_for_name = dict((name, idx) for idx, name in enumerate(self.class_names))\n", "\n", " def get_files_and_class_names(self):\n", " video_paths = list(self.path.glob('*/*.avi'))\n", " classes = [p.parent.name for p in video_paths] \n", " return video_paths, classes\n", "\n", " def __call__(self):\n", " video_paths, classes = self.get_files_and_class_names()\n", "\n", " pairs = list(zip(video_paths, classes))\n", "\n", " if self.training:\n", " random.shuffle(pairs)\n", "\n", " for path, name in pairs:\n", " video_frames = frames_from_video_file(path, self.n_frames) \n", " label = self.class_ids_for_name[name] # Encode labels\n", " yield video_frames, label" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2024-01-11T19:24:26.011116Z", "iopub.status.busy": "2024-01-11T19:24:26.010460Z", "iopub.status.idle": "2024-01-11T19:25:02.764690Z", "shell.execute_reply": "2024-01-11T19:25:02.763978Z" }, "id": "OYY7PkdJFM4Z" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "train :\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\r", " 0%| | 0/300 [00:00 (b t) h w c')\n", " images = self.resizing_layer(images)\n", " videos = einops.rearrange(\n", " images, '(b t) h w c -> b t h w c',\n", " t = old_shape['t'])\n", " return videos" ] }, { "cell_type": "markdown", "metadata": { "id": "Z9IqzCq--Uu9" }, "source": [ "[Keras Functional API](https://www.tensorflow.org/guide/keras/functional) を使って、残差ネットワークを構築します。" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2024-01-11T19:25:05.120516Z", "iopub.status.busy": "2024-01-11T19:25:05.120102Z", "iopub.status.idle": "2024-01-11T19:25:07.171826Z", "shell.execute_reply": "2024-01-11T19:25:07.170869Z" }, "id": "_bROfh_K-Wxs" }, "outputs": [], "source": [ "input_shape = (None, 10, HEIGHT, WIDTH, 3)\n", "input = layers.Input(shape=(input_shape[1:]))\n", "x = input\n", "\n", "x = Conv2Plus1D(filters=16, kernel_size=(3, 7, 7), padding='same')(x)\n", "x = layers.BatchNormalization()(x)\n", "x = layers.ReLU()(x)\n", "x = ResizeVideo(HEIGHT // 2, WIDTH // 2)(x)\n", "\n", "# Block 1\n", "x = add_residual_block(x, 16, (3, 3, 3))\n", "x = ResizeVideo(HEIGHT // 4, WIDTH // 4)(x)\n", "\n", "# Block 2\n", "x = add_residual_block(x, 32, (3, 3, 3))\n", "x = ResizeVideo(HEIGHT // 8, WIDTH // 8)(x)\n", "\n", "# Block 3\n", "x = add_residual_block(x, 64, (3, 3, 3))\n", "x = ResizeVideo(HEIGHT // 16, WIDTH // 16)(x)\n", "\n", "# Block 4\n", "x = add_residual_block(x, 128, (3, 3, 3))\n", "\n", "x = layers.GlobalAveragePooling3D()(x)\n", "x = layers.Flatten()(x)\n", "x = layers.Dense(10)(x)\n", "\n", "model = keras.Model(input, x)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { "iopub.execute_input": "2024-01-11T19:25:07.175893Z", "iopub.status.busy": "2024-01-11T19:25:07.175403Z", "iopub.status.idle": "2024-01-11T19:25:08.652023Z", "shell.execute_reply": "2024-01-11T19:25:08.651161Z" }, "id": "TiO0WylG-ZHM" }, "outputs": [], "source": [ "frames, label = next(iter(train_ds))\n", "model.build(frames)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "execution": { "iopub.execute_input": "2024-01-11T19:25:08.656181Z", "iopub.status.busy": "2024-01-11T19:25:08.655696Z", "iopub.status.idle": "2024-01-11T19:25:08.860356Z", "shell.execute_reply": "2024-01-11T19:25:08.859523Z" }, "id": "GAsKrM8r-bKM" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAULCAYAAACd3Y4OAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeVQUV9o/8G8je7WgQtgdlZCICxKNyzsyIOAYEyGiEQR5xai4kDHuDKgBIRGDUcc4TBw1OriQY3AJI6MiSk40ghLjTOIKoqhxRFkEAdkEgef3h7+u1xbobpqlG30+53AOVbfq3uferm4eqqvqSoiIwBhjjDHGtM1DHU1HwBhjjDHGmseJGmOMMcaYltLVdADs5bRz506cOHFC02F0STU1NQAAIyMjDUfSccrKymBiYgIdHf5fkWnGP/7xD5iYmGg6DMaU4kSNdYhffvkFXl5eGDFihKZD6XK+/fZbAMC0adM0HEnHmTlzJlavXo1evXppOhT2Cpo1axaePHnCiRrrEjhRYx2mb9++GDRokKbD6HKsra0B4KUeO0EQ0L9/f1hYWGg6FPYKMjY21nQIjKmMv3dgjGkdQ0NDSCQSuLu7y63Pzc3F6tWrNRMU0yoFBQVYuXIlnjx5AgAoLi6GRCKBRCJBQECAhqNjrP1wosa03syZM5GcnNzh7Xh7e2P37t0qbVtWVoZ169ahX79+2LZtW8cGpkRnjQ/QujFqq+zsbJw+fVpcLi8vR1BQEBYvXoxt27ZBIpFAT08P6enp4jYFBQXiH2tDQ8NOibM5io6PmpoafPjhhxAEAXZ2dti1a5dKdRIREhIS4OjoCCMjI7z11ltISUlRuVzmypUrMDQ0xDfffKPV7QLAxYsXMWHCBBgZGeF3v/sd/vKXv4hlVlZWGDlyJBYtWgQAMDc3BxEhNjZW5foZ6wo4UWNab/fu3fDx8dF0GHLS0tLw3nvvwdbWVtOhaOX4dIS4uDiMGzcOZmZmCAkJQXp6OhoaGhAQEICioiIAz/54ExHGjx8vnmnRBEXHx6effopbt24hNzcXe/fuxcKFC3HlyhWldd69exdxcXE4ceIESkpKEBQUhA8++AB5eXkqlQNAbW0tYmNj0adPH5X7oql2AWDevHmIiIhAeXk59uzZg1WrVuGnn34SyydPnoyMjAxkZWW1ql7GuhJO1JhWW7JkCSQSCUJDQ+WWP/74Y/j4+EAqlcLX11f8gy3b1t3dHVKpFJMnT0ZZWRkAwNfXFxKJRDwj5O7uDolEgu+//x4BAQE4duwYZs2aBYlEovQsmZ+fH5ydnTu076pozfgAUDhGisZHtm9rxqi9fffddxg9erTcuvnz56OhoQGBgYFobGxsdr8bN27A09MTJiYmcHZ2RlpaGgDlY5WTkwN3d3cIggAnJydkZmaqHGtLx0djYyN27tyJyMhIWFtbw9PTEz4+PtixY4fSOvv27YsLFy6gT58+MDY2xvLly6Gnp4erV6+qVA4AMTExiIqKatUdxZpqFwB+/vlnjB49Gvr6+vDw8EC/fv3w3//+V24bFxcXHDx4sFX1MtaV8M0ETKtt3rwZhoaGqK+vl1s+ePAgDh8+jC1btmDEiBFIS0tDYmIipFIpDh8+jMOHD8PCwgJ+fn4ICwvD119/jUOHDsHb21us+/Tp03jrrbcAAImJiaisrISvry9mzpypia6qpTXj8+677yocI0XjA2h+jHJzc2FpaSm3ztbWFgcOHMDYsWMRFRWFNWvWyJXX1dVhwoQJmDZtGg4fPowTJ05g4sSJyM7OVjhWnp6e8PLywocffoijR4/in//8J/z8/HD79m3o6+ur3YfCwkKUlJTAyclJXDdkyBAxeWyNx48fg4gwbNgwlcrT0tLg5OSE/v37qxe8BtutqalBcnIyamtrMW7cOLkyKysr5Obmql03Y9qOz6ixLsnNzQ1OTk6ws7PDyJEjcfv2bbFs0qRJGDx4MCwsLLBs2TIkJiZqMFLNUDQ+QPuOUWhoKObNm9fWkBV6+vQpqqqqmr1bz83NDevXr8fatWuRmpoqV5aeno4HDx4gMjISJiYm8PPzw9ChQ7Fv3z65/V8cq/T0dBQWFmLVqlWQSqUICgqCVCrFyZMn29SP4uJiAJB7LISJiQkePnzY6rq++OILREdHt3jn7PPlJSUluHDhAqZOnape4BpsNzc3F8bGxli0aBH++te/omfPnnLlgiDg0aNHatfPmLbjRI11SWZmZuLvRkZGqKura7bM2toaFRUVqKqq6tT4NE3R+LxY3tYxamxsREdPGaynpwdBEFBdXd1s+dKlS+Hv74/p06fj3r174vq8vDyYm5vLnQWztbWVu36qubHKy8tDZWUldHV1xZsTcnJycOvWrTb1w9zcHMCzs04yjx8/xmuvvdaqeuLj41FaWip+5a2sPCYmBp988onYl0uXLiEoKAgSiaRV1/Jpol0HBwfU1dUhJSUFS5Yswd69e+XKq6qq+Hl87KXGiRp76RQWFoq/5+fno3v37hAEAQCgr68vPvkf+L8zHAAgkUg6L0gNa2mMFI0P0PwYbdq0SaVrrNrKwcFBLu4X7dy5E9bW1pg6dap4nVnv3r1RXFwsl6jev38fdnZ2Ctvq3bs3zMzMQERyP4sXL25THywtLWFmZiZ3/dbly5cxcOBAlevYs2cPzp8/jy1btqhc/uWXX8r1w9nZGQkJCSAile+O1VS7wLNEffjw4fDz88OhQ4fkygoKCuDg4KByXYx1NZyosZdOSkoKLl++jKKiImzatEnumUr29vZITU1FZWUl9u3bh4qKCrGsZ8+euHPnDn744YeXelYAoOUxUjQ+QPNj1BlffQLAlClTcO7cuRbLBUFAUlISsrOzUVpaCgBwdXWFjY0N1q5di4qKCiQlJeHXX39FYGCgwrZcXV3Ro0cPbN68GZWVlcjKysKoUaNw8eLFNvVBR0cHc+bMQUxMDAoKCnDq1CkkJydj7ty5Ku2fkJCAjIwM8fEkGRkZ2Lhxo8rl6tJEu8XFxXBycsKNGzfw9OlTXLt2DcnJyXB0dJTb7uzZs/Dz82tTW4xpNWKsA3z00Ud06tSpNtezePFiAkAAaPHixRQVFSUur1mzhhYsWCAu79ixg4KDg2nFihXk6elJgiCQj48PlZaWivXduXOHhg4dSlKplD7//HNydnYmAHT8+HE6deoUWVhYkJWVFZ05c0ZhXEeOHBHbBUCmpqZt7qvMV199RV999ZVK27Z2fIhI4RgpGh8ianaMli5dSnPmzGlVH8eMGUOFhYUtlhsYGFB2drbcurKyMho1ahQVFxfT1q1bxX75+/vLbZecnEwjRowQl69fv04eHh4klUrJycmJTpw4QUSkdKxycnLIw8ODBEGgvn37Unx8vFjnihUraMGCBS3Gr+j4qK6uphkzZpCxsTHZ2NjI1auo7ps3b5KOjo5cvQBow4YNKpUTEWVmZsqVubi4aG27RET79++n4cOHk5GREdnY2FBISAhVVVWJ5UlJSTR37ly5fWJjY5scEy9SdvwxpkWKOFFjHaK9ErXWCg4OptjY2E5vtz21JlFThzaMkSqJGgAaM2aM3PqbN29SZGRkB0ennIuLi5jwdaW6X6Z28/PzKTw8nGpqaoiI6OHDhy0m7y/iRI11IUX8eA7GmNZp6UJzBwcHfPbZZ50cjbyjR4/Cw8MD77zzTpeq+2Vr18rKCuvWrROXZTMTMPay4USNvTQCAgKwf/9+AEB9fT0iIiLaVF9LNxd05T8G7T1GryJvb2+55811lbq5Xca6Jk7U2EsjMTGxXZ+Z1pUTspa09xgxxhjrWHzXJ2OMMcaYluJEjTHGGGNMS/FXn6xD1NTUYPfu3Th9+rSmQ+lyLly4AABqTSvUVeTl5WHDhg3ig4gZ60wv83uLvXw4UWMdolu3brCzs2vVE9fZM7IpkF7msTMyMsKbb74JU1NTTYfCXkEGBgaaDoExlXGixjqEvr4+3N3d4e7urulQuhzZf/vtMYG2tvr73/8OHx+fFif2Zqwj/f3vf9d0CIypjK9RY4wxxhjTUpyoMca0jqGhISQSSZMzsrm5uVi9erVmgmJapaCgACtXrhQfjlxcXAyJRAKJRCI3vy9jXR0nakwjEhMTxQ9ViUSC4uLiDmvL29sbu3fv1kjb2ubFsdC2+p6XnZ0tdzNKeXk5goKCsHjxYnHybz09PaSnp4vbFBQUiK+roaFhh8SlirKyMqxbtw79+vXDtm3b5Mpqamrw4YcfQhAE2NnZYdeuXSrVSURISEiAo6MjjIyM8NZbbyElJUXlcpkrV67A0NAQ33zzjVa3CwAXL17EhAkTYGRkhN/97nf4y1/+IpZZWVlh5MiRWLRoEYD/m5kgNjZW5foZ6wo4UWMaERAQgMzMTBgYGICIYG5u/kq0zdQXFxeHcePGwczMDCEhIUhPT0dDQwMCAgJQVFQE4NkfbyLC+PHjW5yGqjOkpaXhvffeg62tbZOyTz/9FLdu3UJubi727t2LhQsX4sqVK0rrvHv3LuLi4nDixAmUlJQgKCgIH3zwAfLy8lQqB4Da2lrExsaiT58+KvdFU+0CwLx58xAREYHy8nLs2bMHq1atwk8//SSWT548GRkZGcjKympVvYx1JZyoMa2wZMkSSCQSfPzxx/Dx8YFUKoWvr6/4h1gikSA0NBTu7u6QSqWYPHkyysrKAAC+vr6QSCTimR13d3dIJBJ8//33CAgIwLFjxzBr1ixIJJImZzdakpKSgiFDhqBHjx7w9/dHeXk5njx5Ip6tGTx4MAAgJCRE7iu6nJwcuLu7QxAEODk5ITMzU+zbokWL4O/vDwMDA/zxj39s03jduHEDnp6eMDExgbOzM9LS0tQaC02Mrbq+++47jB49Wm7d/Pnz0dDQgMDAQDQ2Nja7X0tjpeiYA5p/LVXl5+cHZ2fnJusbGxuxc+dOREZGwtraGp6envDx8cGOHTuU1tm3b19cuHABffr0gbGxMZYvXw49PT1cvXpVpXIAiImJQVRUFIyMjFTui6baBYCff/4Zo0ePhr6+Pjw8PNCvXz/897//ldvGxcUFBw8ebFW9jHUlnKgxrbB582aEh4fj+PHjiImJwfXr13H27FmkpaUhMTERwcHBOHz4ML766ivcvn0bjx49QlhYGADg0KFD8PLyEus6ffq0+EcyMTERXl5e2LVrF4gIISEhKsWzZs0a7N+/H3fv3oUgCFizZg0MDQ1x/fp1GBsb49y5cwCAbdu2YcKECTh9+jTq6urg5eWFsWPHorCwEGFhYfDz88P69esRHh6Oo0ePYvny5bh06RL09PTUHqu6ujpMmDABLi4uyMvLQ0REBCZOnIjffvut1WOhibFVV25uLiwtLeXW2dra4sCBA/jxxx8RFRXVZB9FY6XomGvptayrq2tTHwoLC1FSUgInJydx3ZAhQ9Q6I/T48WMQEYYNG6ZSeVpaGpycnNC/f3/1gtdguzU1NUhMTERtbS3GjRsnV2ZlZYXc3Fy162ZM23GixrSKm5sbnJycYGdnh5EjR+L27dti2aRJkzB48GBYWFhg2bJlHTpnZWZmJgYMGABTU1PMnj0bZ86cAQD0798f/fv3x7fffgsAOHv2LN5++20AQHp6OgoLC7Fq1SpIpVIEBQVBKpXi5MmTAIA//OEPGDlyJBwdHXH8+HG1Y0tPT8eDBw8QGRkJExMT+Pn5YejQodi3b5/adbbn2IaGhmLevHlq79+cp0+foqqqCsbGxk3K3NzcsH79eqxduxapqalyZaqMVXPHnLLXUl2y6yFNTEzEdSYmJmo9gPWLL75AdHR0i484eb68pKQEFy5caJdHvnR2u7m5uTA2NsaiRYvw17/+FT179pQrFwQBjx49Urt+xrQdJ2pMq5iZmYm/GxkZyZ3BeL7M2toaFRUVqKqqavcYiAhhYWGwsrKCjo4OXF1dUVpaKpYHBgYiPj4eALBr1y787//+L4BnT9uvrKyErq6u+BVpTk4Obt26BQDt9sywvLw8mJubQ19fX1xna2srd01Qa7Xn2DY2Nrb7hPZ6enoQBAHV1dXNli9duhT+/v6YPn26+MBgQLWxau6YU/Zaqkt2PeTjx4/FdY8fP8Zrr73Wqnri4+NRWlqK0NBQlcpjYmLwySefiH25dOkSgoKCIJFIWnUtnybadXBwQF1dHVJSUrBkyRLs3btXrryqqgq9evVSuQ+MdTWcqLEuo7CwUPw9Pz8f3bt3F6cg0tfXR01NjVj+/J2cEomkVe0cO3YM8fHxOH36NBoaGpCZmSmXeEybNg3//ve/cf78edy5c0f8Sqd3794wMzMDEcn9LF68WK3+tqR3794oLi6WS2Lv378POzs7AOqNRXuO7aZNm1S65qq1HBwc5OJ80c6dO2FtbY2pU6eK15kpG6uWdNRraWlpCTMzM7nrty5fvtyqWSj27NmD8+fPY8uWLSqXf/nll3L9cHZ2RkJCAohI5btjNdUu8CxRHz58OPz8/HDo0CG5soKCAjg4OKhcF2NdDSdqrMtISUnB5cuXUVRUhE2bNsk9K8ne3h6pqamorKzEvn37UFFRIZb17NkTd+7cwQ8//IBp06a1WP+TJ08wadIkNDY2ij9PnjzBsWPH5LaztbWFq6srAgMDMXHiRHG9q6srevTogc2bN6OyshJZWVkYNWoULl682I6j8KwdGxsbrF27FhUVFUhKSsKvv/6KwMBAtceiPce2I776BIApU6aI1wY2RxAEJCUlITs7WzwDqmysWtJRr6WOjg7mzJmDmJgYFBQU4NSpU0hOTsbcuXNV2j8hIQEZGRni40kyMjKwceNGlcvVpYl2i4uL4eTkhBs3buDp06e4du0akpOT4ejoKLfd2bNn4efn16a2GNNqxFgH+Oijj+jUqVMtln/77bcEQPxZsGCB+PuaNWvklnfs2EHBwcG0YsUK8vT0JEEQyMfHh0pLS8X67ty5Q0OHDiWpVEqff/45OTs7EwA6fvw4nTp1iiwsLMjKyorOnDnTpO3nf3x8fKi+vp5mz55N3bt3pzfeeIMiIiIIADk7O4vtbd++nbp160b5+fly/crJySEPDw8SBIH69u1L8fHxFBUVJdb/9ttvKx27r776ir766iuF21y/fp08PDxIKpWSk5MTnThxQq2xIKJ2HVsioqVLl9KcOXMUxj9mzBgqLCxssdzAwICys7Pl1pWVldGoUaOouLiYtm7dKo6pv7+/3HbJyck0YsQIpWP1/OvS3DHX3Gsps2LFClqwYEGL8R85ckTuuDI1NRXLqquracaMGWRsbEw2NjZy9Sqq++bNm6Sjo9PkmN2wYYNK5UREmZmZcmUuLi5a2y4R0f79+2n48OFkZGRENjY2FBISQlVVVWJ5UlISzZ07V26f2NjYJsfEi5Qdf4xpkSJO1FiHUJaotVZwcDDFxsa2W31tlZ+fT+PHj++QulVJ1NqTJsZWlUQNAI0ZM0Zu/c2bNykyMrKDo1POxcVFLjnuKnW/TO3m5+dTeHg41dTUEBHRw4cPW0zeX8SJGutCinhSdsbUcObMGfEmAtb+WrrQ3MHBAZ999lknRyPv6NGj8PDwwDvvvNOl6n7Z2rWyssK6devEZdnMBIy9bDhRY1ovICAA+/fvBwDU19cjIiJCY7HMmTMHu3btwpgxY5o8CqIr0qax7Sq8vb3h7e3d5ermdhnrmjhRY1ovMTGxQ5+Z1ho7d+7Ezp07NR1Gu9GmsWWMMdYU3/XJGGOMMaal+Iwa6zCnT58WJ8tmqvvll18AAAcOHNBwJB3n4cOHSE5OhqmpqaZDYa8gdWaCYExTJMRXX7IOcOzYMVy4cEHTYXRJ9fX1AABd3Zf3/6ja2lro6+ur/DDi77//Hm+//XaT6YMYU9ef//xn8aHOjGmxh5yoMca03tSpUxEVFYVBgwZpOhTGGOtMD/kaNcYYY4wxLcWJGmOMMcaYluJEjTHGGGNMS3GixhhjjDGmpThRY4wxxhjTUpyoMcYYY4xpKU7UGGOMMca0FCdqjDHGGGNaihM1xhhjjDEtxYkaY4wxxpiW4kSNMcYYY0xLcaLGGGOMMaalOFFjjDHGGNNSnKgxxhhjjGkpTtQYY4wxxrQUJ2qMMcYYY1qKEzXGGGOMMS3FiRpjjDHGmJbiRI0xxhhjTEtxosYYY4wxpqUkRESaDoIxxl60cOFC7NmzB926dUN9fT26desGiUSCxsZGXL9+HdbW1poOkTHGOtpDPqPGGNNKkydPhp6eHsrKylBZWYny8nKUlZWhd+/enKQxxl4ZnKgxxrSSu7s7dHV15dYZGhoiJCREQxExxljn40SNMaaVdHR0MHHiREgkEnGdIAgICAjQYFSMMda5OFFjjGmtefPmwczMTFx2cHCAubm5BiNijLHOxYkaY0xrjRgxAvr6+gCenU1bsGCBhiNijLHOxYkaY0yrBQYGolu3bjA0NMTkyZM1HQ5jjHUqTtQYY1otODgYenp6GDZsGKRSqabDYYyxTqWrfBPGmnfw4EFcu3ZN02G8cp4+fQodHR1069ZN06F0mCdPnsDQ0FBcFgQBvXr1QnR0tOaCYq+MBQsW4LXXXtN0GIwB4ESNtcGBAwfw+9//HnZ2dpoO5ZVy8OBB2NnZ4fe//72mQ+kwy5Ytw6ZNm8RlX19fuLq6Qk9PT4NRsVfBl19+CT8/P07UmNbgRI21yfjx4zFo0CBNh/FKycrKwsCBAzF16lRNh9JhoqOj5frn5+cn95gOxjrKwYMHNR0CY3L4GjXGmNbjJI0x9qriRI2xFgQEBEAikWDdunWd1ubw4cMhkUhw9OjRTmvzZZGbm4vVq1drOgymBQoKCrBy5Uo8efJE06Ew1macqLGXAhEhISEBjo6OMDIywltvvYWUlJQ21ZmYmIjg4OA2x1ZWVoZ169ahX79+2LZtm8Jt//3vf2PUqFFtbvN5M2fORHJycrvW2RJvb2/s3r27U9p6Xnl5OYKCgrB48WJs27YNEokEenp6SE9PF7cpKCiARCKBRCKRu1Ghsyk7HmpqavDhhx9CEATY2dlh165dKtWr6D3QmvfHlStXYGhoiG+++Uar2wWAixcvYsKECTAyMsLvfvc7/OUvfwEAWFlZYeTIkVi0aJHKdTGmrThRYy+Fu3fvIi4uDidOnEBJSQmCgoLwwQcfIC8vT9OhIS0tDe+99x5sbW010v7u3bvh4+OjkbY7S1xcHMaNGwczMzOEhIQgPT0dDQ0NCAgIQFFREYBnf7yJCOPHj9fomRZlx8Onn36KW7duITc3F3v37sXChQtx5coVpfUqeg+o+v6ora1FbGws+vTpo3J/NNUu8GzmioiICJSXl2PPnj1YtWoVfvrpJwDA5MmTkZGRgaysrFbVyZi24USNdZgbN27A09MTJiYmGD58OI4dO9ZsmbOzM9LS0gAAS5YsgUQiwccffwwfHx9IpVL4+vqiqqpKPBsyePBgAEBISAgkEgnc3d3Rt29fXLhwAX369IGxsTGWL18OPT09XL16tcX4ZF9thoaGwt3dHVKpFJMnT0ZZWVmTbX19fSGRSMSzRe7u7pBIJPj+++/FbVauXAlzc3NYWFhg48aNaGhoAPDsQnhnZ+cW48jMzMTgwYNhYmLS7o+fkI1naGio3PKL4yuLVdGYKBuDgIAAHDt2DLNmzYJEIlF69rA9fffddxg9erTcuvnz56OhoQGBgYFobGxsdr/WHoeycQKAnJwcuLu7QxAEODk5ITMzU6VYFR0PjY2N2LlzJyIjI2FtbQ1PT0/4+Phgx44dSutV9B5Q9f0RExODqKgoGBkZqdQXTbYLAD///DNGjx4NfX19eHh4oF+/fvjvf/8rlru4uPDNAazL40SNdYi6ujpMmDABrq6uyM/PR0JCApYtWyZX5uLigry8PERERGDixIn47bffsHnzZoSHh+P48eOIiYnB9evXcfbsWaSnp+PmzZsQBAHnzp0DAGzbtg3vv/8+Tp8+3aT9x48fg4gwbNiwFmOUfbV5+PBhfPXVV7h9+zYePXqEsLCwJtseOnQIXl5e4vLp06fl/tj+/PPPOHz4MLKysnDz5k389NNP+PXXX5WOU01NDSZPnoxp06bh/v37sLW1RXZ2ttL9VCUbzxeXXxxfWYKiaEyUjUFiYiK8vLywa9cuEBFCQkLarR/K5ObmwtLSUm6dra0tDhw4gB9//BFRUVFN9lHnOJSNU11dHby8vDB27FgUFhYiLCwMfn5+qKura1M/CgsLUVJSAicnJ3HdkCFD1DorpOg90FxZWloanJyc0L9/f/WC12C7NTU1SExMRG1tLcaNGyeut7KyQm5urtr1MqYNOFFjHSI9PR0PHjxAREQEBEHAgAEDkJOTI1cWGRkJExMT+Pn5YejQodi3b5+4v5ubG5ycnGBnZ4eRI0fi9u3bcHBwwLBhw/Dtt98CAM6ePdvkLIrMF198gejoaFhYWCiNddKkSRg8eDAsLCywbNkyJCYmtrq/urq6KC4uxrlz52BkZIRDhw5h+PDhSvc7c+YMKioqEBYWhu7du2Pu3Lno0aNHq9tvrebG93ntMSYyoaGhmDdvXltDbtHTp09RVVUFY2PjJmVubm5Yv3491q5di9TUVLkydY9D2b6FhYVYtWoVpFIpgoKCIJVKcfLkyTb1pbi4GABgYmIirjMxMcHDhw9bXZei98CLZSUlJbhw4UK7PPKls9vNzc2FsbExFi1ahL/+9a/o2bOnWCYIAh49eqR23YxpA07UWIfIy8uDubl5sw8olZXJJtsGnp39eP66FTMzM/F3IyMj8UzF7NmzER8fDwBISEjAjBkzmtQfHx+P0tJS8es+ZZ5vy9raGhUVFaiqqlJpX5lhw4Zhw4YNCAsLg4WFBUJDQ1FbW6t0v/z8fJiZmcmNk5WVVavaVkdL49tcubpjItPY2AgiUi9QFejp6UEQBFRXVzdbvnTpUvj7+2P69Om4d++euL4tx2FeXh4qKyuhq6srfiWfk5ODW7dutakv5ubmAJ6deZJ5/Phxqx++qug90FxZTEwMPvnkE7Evly5dQlBQECQSSauu59NEuw4ODqirq0NKSgqWLFmCvXv3imVVVVXo1auXyvEzpo04UWMdonfv3iguLsbTp09bLHs+OWhtUTEAACAASURBVLh//75KMxz4+fkhOzsb58+fx+PHj2FjYyNXvmfPHpw/fx5btmxROdbCwkLx9/z8fHTv3h2CIDTZTl9fHzU1NeKy7OyHzMyZM3Hjxg2kpaUhNTVVpWu0rK2tUVJSIjdO6pw9aW8tjYmyMWjueWebNm1S6RqrtnBwcJCL+UU7d+6EtbU1pk6dKl5n1pbjsHfv3jAzMwMRyf0sXry4Tf2wtLSEmZmZ3DVcly9fxsCBA1WuQ9F7oKWyL7/8Uq4fzs7OSEhIABGpfIesptoFniXrw4cPh5+fHw4dOiSuLygogIODg8r1MKaNOFFjHcLV1RU2NjZYu3YtqqqqcPHiRfTv3x81NTVyZRUVFUhKSsKvv/6KwMBApfUKgoCpU6ciMDAQvr6+cmUJCQnIyMgQH8+QkZGBjRs3Kq0zJSUFly9fRlFRETZt2oSAgIBmt7O3t0dqaioqKyuxb98+VFRUiGWHDh3CkiVLUFlZCXt7e7kzMYq4ubmhe/fuWL9+PSorK7F7924UFBSotG9HamlMFI0BAPTs2RN37tzBDz/8gGnTpgHo+K8+AWDKlCnitYvNEQQBSUlJyM7ORmlpKQC06Th0dXVFjx49sHnzZlRWViIrKwujRo3CxYsX29QPHR0dzJkzBzExMSgoKMCpU6eQnJyMuXPnqrS/oveAuu8PbW23uLgYTk5OuHHjBp4+fYpr164hOTkZjo6O4jZnz56Fn59fm9tiTKOIMTX5+vrS1atXWyy/fv06eXh4kCAI5OjoSGlpaU3KpFIpOTk50YkTJ4iIKCoqigAQAFqzZg0tWLBAXN6xYwcREZ07d47Mzc2prq5OrO/mzZuko6Mjbiv72bBhg8I+BAcH04oVK8jT05MEQSAfHx8qLS0lIiJ/f3+5WO7cuUNDhw4lqVRKn3/+OTk7OxMAOn78OFVXV1NYWBjZ2NiQqakpTZ8+naqrq4mI6MiRI3IxmZqaysVw9uxZGjhwIAmCQH/+859p1KhRBIAOHjzYbMxRUVG0f/9+hf2SWbx4sdju4sWLVRpfRWOiaAyIiE6dOkUWFhZkZWVFZ86cISKipUuX0pw5c1SKV2bAgAGt2r6srIxGjRpFxcXFtHXrVrFP/v7+ctslJyfTiBEjxOW2HIc5OTni8d23b1+Kj48X612xYgUtWLCg2ViVHQ/V1dU0Y8YMMjY2JhsbG5XrVfQeUPX9kZmZKVfu4uKite0SEe3fv5+GDx9ORkZGZGNjQyEhIVRVVUVERElJSTR37twW922Jss81xjpZESdqTG0vwwdacHAwxcbGajqMVmlNoqYObRiT1iZqRM8ShsjIyA6IpvVcXFzEpK8r1PuytZufn0/h4eFUU1PT6n1fhs819lIp4knZGWMvBQcHB3z22WeaDgNHjx6Fh4cH3nnnnS5R78vYrpWVVadO/cZYR+JEjb30WprQ29/fH/v37wcA1NfXIyIiojPD0koBAQE8Jm3k7e0Nb2/vLlMvt8uYduNEjb30SMGjIdryfLCXUWJiIo8JY4xpEb7rkzHGGGNMS/EZNaa22tpapKam4tq1a5oO5ZWSnZ2N8vJyTYfRoSoqKnDgwAFNh8FeQdrwHEPGnseJGlNbfX09bt++3eRZWqxjFRcXo7GxUa35H7uKp0+fvtT9Y9pL3Rk4GOsonKgxtQmCgD/96U8YNGiQpkN5pURHR2PgwIHtMi+jtjpw4ACio6M1HQZ7BfE3BEzb8DVqjDHGGGNaihM1xp4TEBAAiUTCz2DqAnJzc7F69WpNh8G6gIKCAqxcubJVE8wzpi04UWMd6uTJk3B1dYWxsTGsrKzg7e2Nf/3rX2hsbOyQ9ogICQkJcHR0hJGREd566y2kpKSI5YmJiZBIJHI/tra2WLlyJRobG5GYmIjg4OB2iaWsrAzr1q1Dv3795CZofzEGAwMDvPnmm/jzn/+MsrKydmlbXd7e3ti9e7fW1idTXl6OoKAgcRJ02TySenp6SE9PF7crKCgQx7k1k3y3p5aOA5mamhp8+OGHEAQBdnZ22LVrl0r1KjrWlb0PnnflyhUYGhrim2++0ep2AeVjGRcXB3t7e5iammLmzJni+8nKygojR47EokWLVG6LMW3BiRrrMImJifD390dISAju37+P27dvIyIiAtHR0fj55587pM27d+8iLi4OJ06cQElJCYKCgvDBBx8gLy8PwLMzZpmZmTAwMAARob6+Hvv378eWLVvwj3/8o11jSUtLw3vvvQdbW1u59S/GUFBQgK1bt+L06dMYNWoUHj161K5xvIzi4uIwbtw4mJmZAQBCQkKQnp6OhoYGBAQEoKioCMCzP9BEhPHjx2vsbEpLx4HMp59+ilu3biE3Nxd79+7FwoULceXKFaX1KjrWlb0PZGpraxEbG4s+ffqo3B9NtQsoHsvt27fj66+/xuHDh5Gfnw8LCwu5JHDy5MnIyMjgm1RY16Ox2atYl6doTrza2lqysLCgzZs3K6xDNrF19+7daciQIXTy5Eki+r/JxBcsWEATJ04kQRBoypQpVF9fTzU1NeLkzYMGDSIiovnz5xMAGjNmTJM2pFKpOGk40bMJoA0MDOS2cXd3p/nz5xOR/FyXU6ZMIQC0a9cuIiIaM2YMARAnmF+xYgWZmZnRa6+9Rhs2bKD6+vom7bu4uNDWrVvl1jUXQ1lZGVlbW1NoaKjCMVNlrs/mxlVZX56fhB4Abd26VVy3fPlyGjNmDAmCQJMmTaLS0lK16lOVsrk+nZ2d5V5TIqL09HQKCQkhS0tLGjt2LDU0NIhl48ePVzg2RIqPOaJnE7iPGTOGjI2NafDgwXTu3DmV+0PU/HHQ0NBAZmZmlJqaKq4LDAykhQsXtqpumRePdWVlERERdP36dXJ2dqaEhAS12tREu82NZd++feno0aMK95szZw5FR0cr3Ibn+mRapojPqLEO8e9//xtFRUV4//33W9ymrq4OEyZMgIuLC/Ly8hAREYGJEyfit99+w+bNmxEeHo7jx48jJiYG169fx9mzZ5GWlgZDQ0PcvHkTgiDg3LlzAJ599fX+++/j9OnTcm08fvwYRIRhw4Y1G0NDQwPOnTuH//znP3j77beblB86dAheXl7i8unTp+Hs7AwA+Pnnn3H48GFkZWXh5s2b+Omnn/Drr7+2dqhEpqam8PX1bfGrIlW1NK4bN25ssS/AszOgXl5e2LVrF4gIISEh4lfBhw8fxldffYXbt2/j0aNHCAsLUzg2LdXXXnJzc2Fpadlkva2tLQ4cOIAff/wRUVFRTcrVPebq6urg5eWFsWPHorCwEGFhYfDz80NdXV2b+lFYWIiSkhI4OTmJ64YMGaLWWR9Fx3pzZWlpaXByckL//v3VC17D7T7vwYMH+O2333Dnzh3Y2tritddew0cffYSamhq57aysrJCbm9tu7TLWGThRYx1C9tDI5v6YyqSnp+PBgweIjIyEiYkJ/Pz8MHToUOzbt0/cxs3NDU5OTrCzs8PIkSNx+/ZtAM8m4B42bBi+/fZbAMDZs2cxevToJm188cUXiI6OhoWFhdz62tpaSCQS6OrqwtfXF3/6059afW2arq4uiouLce7cORgZGeHQoUMYPnx4q+p4Ue/evdv8wE1VxrW1Jk2ahMGDB8PCwgLLli1r0zRToaGhmDdvntr7P336FFVVVTA2Nm623M3NDevXr8fatWuRmpoqV6buMZeeno7CwkKsWrUKUqkUQUFBkEqlOHnypNr9AJ49Ew8ATExMxHUmJiZqHQMtHevNlZWUlODChQvt8ogXTbX7PNl4ff/997h06RLOnz+PM2fO4PPPP5fbThAEvrSAdTmcqLEOIftgLiwsbHGbvLw8mJubQ19fX1xna2srdz2L7BokADAyMpI7gzF79mzEx8cDABISEjBjxgy5+uPj41FaWorQ0NAmbcuuDyMiPHjwAOvWrYOOTuveDsOGDcOGDRsQFhYGCwsLhIaGora2tlV1vOi///1vs3/wWkOVcW2t518Ha2trVFRUqP1g0MbGRoXzryqjp6cHQRBQXV3d4jZLly6Fv78/pk+fjnv37onr1T3m8vLyUFlZCV1dXfHmhJycHNy6dUvtfgCAubk5gGdnnmQeP36M1157rVX1KDrWmyuLiYnBJ598Ivbl0qVLCAoKgkQiadW1fJpq90WmpqYAgIULF8Lc3Bz29vaYP38+jh8/LrddVVUVevXqpXY7jGkCJ2qsQ7z99tuwtLTEkSNHWtymd+/eKC4ulku+7t+/Dzs7O5Xa8PPzQ3Z2Ns6fP4/Hjx/DxsZGLNuzZw/Onz+PLVu2qN+J/09fX1/uKxTZWRAAmDlzJm7cuIG0tDSkpqY2eyeaqsrLy3Ho0CFMmDChTfEqGldFfQEAiUTSbJ3PJ9z5+fno3r07BEFQq75NmzZhx44drevUCxwcHBT+EwAAO3fuhLW1NaZOnYqGhgYA6h9zvXv3hpmZmZjcy35kd52qy9LSEmZmZrh69aq47vLlyxg4cKDKdSg61lsq+/LLL+X64ezsjISEBBCRynfHaqrd5tja2sLIyEh8nWW6desmt1xQUAAHBwe122FMEzhRYx1CX18fW7Zswaeffop9+/ahrKwMlZWVOHr0KHr37o3Lly/D1dUVNjY2WLt2LSoqKpCUlIRff/0VgYGBKrUhCAKmTp2KwMBA+Pr6iusTEhKQkZEhPrIhIyMDGzduVLsv9vb2SE1NRWVlJfbt2ydOmXXo0CEsWbIElZWVsLe3lzsT0xplZWX44Ycf8Mc//hEmJiZYsWKF2rECUDiuLfVFpmfPnrhz5w5++OEHTJs2TVyfkpKCy5cvo6ioCJs2bUJAQACAlsdGUX1t/eoTAKZMmSJen9gSQRCQlJSE7OxslJaWKh0bRVxdXdGjRw9s3rwZlZWVyMrKwqhRo3Dx4sU29UNHRwdz5sxBTEwMCgoKcOrUKSQnJ2Pu3Lkq7a/oWG/v94E2tNsSPT09zJw5Exs3bkRRURFu376N7du3w8fHR267s2fPws/Pr0NjYazddeatC+zlosrdUampqfT73/+eDA0NydTUlMaOHUvp6eli+fXr18nDw4OkUik5OTnRiRMniOjZnY34/3cLrlmzhhYsWCAu79ixQ9z/3LlzZG5uTnV1dUREdPPmTdLR0ZG72xAAbdiwgYiIvv32W7n1//znP+Xiff5OxTVr1hAR0Z07d2jo0KEklUrp888/J2dnZwJASUlJFBYWRjY2NmRqakrTp0+n6upqsa4jR47ItWVqatpsDPr6+vTGG29QaGgolZaWKh13Ve76bGlcW+qL7K68U6dOkYWFBVlZWdGZM2eI6NldsCtWrCBPT08SBIF8fHzEONWpb+nSpTRnzhyF8Su767OsrIxGjRpFxcXFRES0detWcTz9/f3ltk1OTqYRI0YoHRtlx5zsblFBEKhv374UHx8v1rlixQpasGBBs7G2dBzIVFdX04wZM8jY2JhsbGxUrlfRsa7sfSCTmZkpV+7i4qK17Soby/LycvL39ydjY2OytramsLAw8XOBiCgpKYnmzp3bYt0yfNcn0zJFnKgxtfEHmmaokqi1p+cfV9JZlCVqRM8ShsjIyE6IRjkXFxcx4esK9b5q7ebn51N4eDjV1NQo3ZY/15iWKeJJ2RljXZKDgwM+++wzTYeBo0ePwsPDA++8806XqPdVbNfKyoqnhWNdFidqjLEWBQQEYP/+/QCA+vp6REREaDgi7ePt7Q1vb+8uUy+3y1jXwokaY6xFiYmJbXpmGmOMsbbhuz4ZY4wxxrQUn1FjbdLWB36y1nv48CHu3buHa9euaTqUDlNbW/tS949pr+cfPsyYNpAQteER4eyVtmnTJmRmZmo6jFdOVVUVdHV1YWBgoOlQOkxpaSl69uwpLt+4cQN2dnYtThvFWHv68ssvVX7wNmMd7CEnaowxrTd16lRERUVh0KBBmg6FMcY600O+Ro0xxhhjTEtxosYYY4wxpqU4UWOMMcYY01KcqDHGGGOMaSlO1BhjjDHGtBQnaowxxhhjWooTNcYYY4wxLcWJGmOMMcaYluJEjTHGGGNMS3GixhhjjDGmpThRY4wxxhjTUpyoMcYYY4xpKU7UGGOMMca0FCdqjDHGGGNaihM1xhhjjDEtxYkaY4wxxpiW4kSNMcYYY0xLcaLGGGOMMaalOFFjjDHGGNNSnKgxxhhjjGkpCRGRpoNgjLEXxcbG4ttvvwUAlJWVQSqVQldXF0ZGRvjXv/4FS0tLDUfIGGMd7qGupiNgjLHm9O/fH7/99hsqKirk1vfp04eTNMbYK4O/+mSMaSUvLy/o6enJrdPT08Ps2bM1FBFjjHU+TtQYY1rJwMAA7u7ucutMTEwwY8YMzQTEGGMawIkaY0xrffTRR+jZs6e4bGlpib59+2ouIMYY62ScqDHGtJanpyd0dZ9dSmtgYIB58+ZpOCLGGOtcnKgxxrSWjo4O3n//fUgkEkilUkybNk3TITHGWKfiRI0xptXmzZsHY2Nj2Nvbw8LCQtPhMMZYp+LHc7xCMjMzce/ePU2HwVirEBH09PQwfPhwHDhwQNPhMNZq7777LkxMTDQdBuuiOFF7hWzatAkWFhZ47bXXNB0K0yLnzp2DmZkZ+vfvr+lQWjRs2DCYmpoiKytLrf3j4+P5sR5MIw4ePIhBgwZh0KBBmg6FdVGcqL1i/vSnP/EHBpMTHR2NgQMHYurUqZoOpUV1dXXQ19dXe/8DBw4gOjq6/QJiTEXXrl3TdAisi+Nr1BhjWq8tSRpjjHVlnKgxAEBAQAAkEgnWrVvXoe0sWbIEEokEoaGhHdpOZ+isMWOdIzc3F6tXr9Z0GKwLKCgowMqVK/HkyRNNh8JeAZyoMQBAYmIigoOD1d7f29sbu3fvVrrd5s2bER4ernY72qS5MZs5cyaSk5PbVG9zY9ke9baXzoxF1eOqrcrLyxEUFITFixcDALZt2waJRAI9PT2kp6eL2xUUFEAikUAikcDQ0LDD42pOWVkZ1q1bh379+mHbtm1NymtqavDhhx9CEATY2dlh165dKtVLREhISICjoyOMjIzw1ltvISUlRWnZi65cuQJDQ0N88803Wt0uoHws4+LiYG9vD1NTU8ycORNlZWUAACsrK4wcORKLFi1SuS3G1MWJGmPtaPfu3fDx8eky9apDm2JpL3FxcRg3bhzMzMwAACEhIUhPT0dDQwMCAgJQVFQE4NkfaCLC+PHjNXY2JS0tDe+99x5sbW2bLf/0009x69Yt5ObmYu/evVi4cCGuXLmitN67d+8iLi4OJ06cQElJCYKCgvDBBx8gLy9PYdnzamtrERsbiz59+qjcH021Cygey+3bt+Prr7/G4cOHkZ+fDwsLC7kkcPLkycjIyFD7BhfGVMWJGpNTXl6Od955B927d8fkyZPF/yABICUlBUOGDEGPHj3g7++P8vJyAM++Ajx27BhmzZoFiUQi/md648YNeHp6wsTEBMOHD8exY8fEup48eQIfHx9IpVL4+vqioaGhxZhkX5d+/PHHLe7zfFvOzs5IS0uT23fRokXw9/eHgYGBeEZk4cKFmDhxIqRSKZYtW4abN29i8ODBMDMzw549e5T2u6U4ZV/rHjp0SGxL9iNLcFozls19Xaysv4rGqi1ejEVZe7Kvh0NDQ+Hu7g6pVCoeV76+vpBIJOIZM3d3d0gkEnz//fctjkVH+e677zB69Ogm6+fPn4+GhgYEBgaisbGx2X3VfS1ycnLg7u4OQRDg5OSEzMxMlWL18/ODs7Nzs2WNjY3YuXMnIiMjYW1tDU9PT/j4+GDHjh1K6+3bty8uXLiAPn36wNjYGMuXL4eenh6uXr2qsOx5MTExiIqKgpGRkUp90WS7gOKxXLduHb744gsMGTIExsbGWL9+PT7++GO5bVxcXHDw4MFWtclYqxF7Zfj6+tLVq1dbLA8ODqY33niDLl68SIWFheTm5kZz584Vy//nf/6HsrKyqKysjGbNmkXLly8Xy7y8vGjXrl3icm1tLb3++uu0evVqqqyspKysLHrzzTeJiCg8PJzs7e3p8uXLdO/ePbKysqLjx48rjF3RPrK2IiIiqLy8nA4cOECGhoZ0584dcd9+/frR+fPnKTs7m959910KDw8nBwcHysrKohs3bpAgCDRr1iwqLi6mAwcOkLm5uUr9Dg4OptjYWLk4ZeUHDx6kI0eOEBFRcXExOTo6Um5ubqvH8sV6Velva8Y3KiqK9u/fr3D8W4pFlfaCg4Pp9ddfpytXrjQ5rl7sq7OzM6WlpSkcC3UMGDBAYbkgCPTLL7/IrUtPT6c1a9bQjz/+SLq6uhQRESGWjR8/nojUfy1k+3322WdUUVFBe/fuJVtbW6qtrVW5Ty4uLrR161a5dQ8ePCAAdP/+fXHdunXraOzYsSrXK1NeXk6CIFBhYaFKZSdPnhSPI2dnZ0pISGh1m5pq98WxvH//PgGgv/3tb2RjY0Pm5uYUEhJC1dXVcvtFRETQ9OnTFdat7HOXMSWK+IwakzNhwgQ4OzvDwsICy5YtQ2JioliWmZmJAQMGwNTUFLNnz8aZM2darCc9PR0PHjxAREQEBEHAgAEDkJOTI5a7ubnByckJdnZ2GDlyJG7fvq00tpb2kbUVGRkJExMT+Pn5YejQodi3b5+47x/+8AeMHDkSjo6OOH78OADA1dUVAwYMwBtvvIGBAwfiD3/4A8zMzODj44Pi4mI8fvy41f1+nq+vL7y9vQEAc+bMwcqVK/H666+3qU5V+6vO+LaFsvYmTZqEwYMHN3tctVZoaGi7zvn59OlTVFVVwdjYuNlyNzc3rF+/HmvXrkVqaqpcmbqvRXp6OgoLC7Fq1SpIpVIEBQVBKpXi5MmTbepLcXExAMg9XNXExAQPHz5sdV1ffPEFoqOjm50N4sWykpISXLhwoV0e8aKpdp8nG6/vv/8ely5dwvnz53HmzBl8/vnnctsJgoBHjx61a9uMvYgTNSbH0tJS/N3a2hoVFRWoqqoCESEsLAxWVlbQ0dGBq6srSktLW6wnLy8P5ubm0NPTa7Zcdi0QABgZGaGurk5pbC3tI2vr+Uc42Nrayl3H0tyHfq9evcTf9fX1xWVZPXV1da3ud3O2b98OAwMDzJgxAwDaXKcq/VVnfNtCWXvPlz9/XKmjsbERRKReoM3Q09ODIAiorq5ucZulS5fC398f06dPl5vdQ93XIi8vD5WVldDV1RW/Fs/JycGtW7fa1Bdzc3MAEP/JkP3e2odcx8fHo7S0tNm7s5sri4mJwSeffCL25dKlSwgKCoJEImnVtXyaavdFpqamAICFCxfC3Nwc9vb2mD9/vvhPnkxVVZXc5whjHYETNSanpKRE/D0/Px/du3eHIAg4duwY4uPjcfr0aTQ0NCAzM1Puj6VEIpGrp3fv3iguLsbTp087PGZZW88nB/fv34ednV2b61bWb2WuX7+OzZs3y11f1dqxfFFH9rejFBYWir8/f1zp6+ujpqZGLJOdEZJpbiw2bdqk0jVXreHg4CAXY3N27twJa2trTJ06VbzOTN3Xonfv3jAzMwMRyf3I7jpVl6WlJczMzOSu4bp8+TIGDhyoch179uzB+fPnsWXLFpXLvvzyS7l+ODs7IyEhAUSk8t2xmmq3Oba2tjAyMmpybWe3bt3klgsKCuDg4KB2O4ypghM1Jufw4cO4evUqioqKsGnTJgQEBAB4dhZD9vPkyRO5GwMAoGfPnrhz5w5++OEHTJs2Da6urrCxscHatWtRVVWFixcvon///nJ/lNvL821VVFQgKSkJv/76KwIDA9tct7J+K1JXV4fp06dj+/bt6NGjBwBg+vTprR7LF3VkfztKSkoKLl++3OS4sre3R2pqKiorK7Fv3z5UVFTI7dfcWLT3V58AMGXKFJw7d07hNoIgICkpCdnZ2eIZUHVfC1dXV/To0QObN29GZWUlsrKyMGrUKFy8eLFN/dDR0cGcOXMQExODgoICnDp1CsnJyZg7d65K+yckJCAjI0N8PElGRgY2btyotKytNNVuS/T09DBz5kxs3LgRRUVFuH37NrZv397kbuezZ8/Cz8+vQ2NhjG8meIUouqjV39+fANDy5ctpzJgxJAgC+fj4UGlpKRER1dfX0+zZs6l79+70xhtvUEREBAEgZ2dnIiI6deoUWVhYkJWVFZ05c4aIiK5fv04eHh4kCAI5OjpSWloaRUVFEQACQGvWrKEFCxaIyzt27Gg2NlX2kbUllUrJycmJTpw40WTft99+u9n6vLy8xOVTp06RqampuFxWVtZiv2VjJqtn8eLF4vLixYtp06ZN4rLsx9bWttVj+WK9qva3NeOr6s0EL8aiSnvBwcG0YsUK8vT0bHJc3blzh4YOHUpSqZQ+//xzcnZ2JgDizQjNHVdLly6lOXPmqBSvjLKbCcrKymjUqFFUXFxMRERbt24V++Hv7y+3bXJyMo0YMUJcVve1yMnJEd8fffv2pfj4eLHOFStW0IIFC5qN9ciRI3LHlKmpqVx5dXU1zZgxg4yNjcnGxkblem/evEk6OjpNjtkNGzYoLHteZmamXLmLi4vWtqtsLMvLy8nf35+MjY3J2tqawsLCqK6uTixPSkqSu9mqJXwzAWujIk7UXiH8gcGa09q7PlvrxTtjNUFZokb0LGGIjIzshGiUc3FxERO+rlDvq9Zufn4+hYeHU01NjdJt+XOXtVERT8rOGGN4dp3aZ599pukwcPToUXh4eOCdd97pEvW+iu1aWVnx1HGs03CixrRKSxfSUzve5cc6T0BAAPbv3w8AqK+vR0REhIYj0n7e3t7iY126Qr3cLmMdixM1plU4IXu5JCYmtumZaYwx9qrjuz4ZY4wxxrQUn1F7hTQ0NCA3N1fTYTAtU1xcjHv37uHatWuaDqXD1NXVvdT9Y9pL3Qc7MybDidorpKqqCn//+9/lppdh7MaNG/jPf/6Dn376SdOhdJjS0lJEFBrNrwAAIABJREFUR0drOgz2Crp7966mQ2BdHCdqrxATExNER0dj0KBBmg6FaZHo6GgMHDiw3edL1CYDBw7EwYMHNR0GewXxA3FZW/E1aowxxhhjWooTNaYRS5YsgUQiaXby5a4gICAAEomEn6X0EsnNzcXq1as1HQbrAgoKCrBy5co2TfzOmKo4UWOixMRESCQSuZ9evXph+vTpqK6uVqkOb29v7N69W+l2mzdvRnh4eIvlsnn99PT0kJ6eLq4vKCgQY2vLpMttlZiYiODgYLl1M2fORHJycpvqbW782qNeTVH1eNBUfTLl5eUICgoSJ0XX5uOvrKwM69atQ79+/bBt27Ym5TU1Nfjwww8hCALs7Oywa9culeolIiQkJMDR0RFGRkZ46623kJKSorTsRVeuXIGhoSG++eYbrW4XUD6WcXFxsLe3h6mpKWbOnImysjIAzx54O3LkSCxatEjlthhTFydqTBQQEIDMzEwYGBiAiPD06VOkpKTgyJEj2LJlS6fGEhISgvT0dDQ0NCAgIABFRUUAnn1AEhHGjx+vdf/N7t69u8mkzdpcL/s/cXFxGDduHMzMzABo9/GXlpaG9957D7a2ts2Wf/rpp7h16xZyc3Oxd+9eLFy4EFeuXFFa7927dxEXF4cTJ06gpKQEQUFB+OCDD5CXl6ew7Hm1tbWIjY1Fnz59VO6PptoFFI/l9u3b8fXXX+Pw4cPIz8+HhYWFXBI4efJkZGRkICsrq1VtMtZqGpu9inU6Veacy8zMJAMDA7l17u7uNG/ePHH52LFj5OTkRKampjR16lQqKysjIpKbpBwAbd26lYhInHy6e/fu9Pbbb9PRo0eJiCg8PJwWLFhAEydOJEEQaMqUKVRfXy+2k56eTiEhIWRpaUljx46lhoYGsWz8+PHi78/XP2TIEDp58qQ4efjChQtp6tSppK+vT2PHjhXXf/zxx/T++++TIAi0dOlSunHjBg0aNIh69epFu3fvVtpXIvk5LGX1Ll++nIiIDh482GQi6YkTJ7Z6/F6sV1l/FY1nS1SZ67O5NqdMmUIAaNeuXURENGbMGAJAaWlpLfZHtm758uU0ZswYEgSBJk2aRKWlpWrVpyplc306OzuLE8HLtOX4IyKlr8n169dpzJgxZGxsTIMHD6Zz586p3B+iZ/NYvjgGDQ0NZGZmRqmpqeK6wMBAWrhwYavqlpFKpU3GRVFZREQEXb9+nZydnSkhIUGtNjXRbnNj2bdvX/GzqiVz5syh6OhohdvwXJ+sjXhS9ldJaxO1p0+fUmZmJpmamtKhQ4fEbf7nf/6HsrKyqKysjGbNmiWXRHh5eYl/aImIamtr6fXXX6fVq1dTZWUlZWVl0ZtvvklEzxI1e3t7unz5Mt27d4+srKzkPoDT09NpzZo19OOPP5Kuri5FRESIZbI/lLL6IyIiqLy8nA4cOECGhoZ0584dCg8Pp379+tH58+cpOzub3n33XbFdBwcHysrKohs3bpAgCDRr1iwqLi6mAwcOkLm5uUp9fXGy8fDwcLlE7ciRI0REVFxcTI6OjpSbm9vq8XuxXmX9VTSeLVGWqClq88V4nZ2dxcSqpf4EBwfT66+/TleuXKHCwkJyc3OjuXPnNru9KvWpQlmiJggC/fLLL3Lr2nr8EbV8jMv2++yzz6iiooL27t1Ltra2VFtbq3KfmksuHjx4QADo/v374rp169bR2LFjVa5Xpry8nARBoMLCQpXKTp48KR5HbUnUNNHui2N5//59AkB/+9vfyMbGhszNzSkkJISqq6vl9ouIiKDp06crrJsTNdZGRfzVJ2uitrZWvD7HxcUFAQEBcnPmZWZmYsCAATA1NcXs2bNx5syZFutKT0/HgwcPEBERAUEQMGDAAOTk5Ijlbm5ucHJygp2dHUaOHInbt283qcPNzQ3r16/H2rVrkZqa2mz9kZGRMDExgZ+fH4YOHYp9+/YB+H/s3XlUVGe2P/zvQQuFKhksLAsKW0NIh9gC0U6kb1AWYExuAh00YdIWJQEHgooDjZpAMBEVlSYsLklEbSfShjjQ0g5osAMySIzp5XgVFMH8gjIIgoxaCs/7hy/nUgJVxXgK2J+1WIs6z6m993mq1O0ZgWnTpmHq1KmwsbFBWloa/77p06fjlVdewUsvvYSJEydi2rRpkEql8PDwQGVlJWpra7u8rW15enrycxYYGIh169bhxRdf7FFMbbZXm/nsKk05u2PWrFmYNGkSZDIZVq1a1aPHTIWGhmLRokXdfv+TJ0/Q0NAAQ0PDDsd78v1rff/zn0l2djbKy8vxySefQCKRwM/PDxKJBD/88EO3twN4dvNiACr3SjQyMsL9+/e7HGvLli1Yv349ZDKZxrGqqipcuHChV27xIlTetlrn68yZM7h8+TLOnz+PrKwsbNq0SWU9sViMBw8e9GpuQp5HjRppp/UctZaWFpSUlKC6uhpvv/02gGcn94aFhUEul0NPTw/Tp09HdXV1p7FKSkpgZmYGkUjU4XjrOUEAYGBgAKVS2eF6K1euhI+PD+bNm4fffvutXXx9fX1+mUKh4M9h6egvewAYPXo0/7u+vj7/ujWOUqns8rZ2JDExESNGjMD8+fMBdH3+nqdpe7Wdz67QlLM72tZpbm6Ourq6bt/BvaWlpUfPiBWJRBCLxWovmOnu9w/o+DMpKSlBfX09hg8fzl+cUFBQgNu3b3d7OwDAzMwMAPj/aLT+PmbMmC7F2b17N6qrqzu8KrujsaioKHz66af8tly+fBl+fn7gOK5L5/IJlfd5xsbGAIBly5bBzMwMVlZWWLx4scp/9oBnNxFv+3cJIX2BGjXSKY7jYG5ujvnz5+Ps2bOor6/HiRMnsHv3bmRmZqK5uRl5eXkq/0hyHKcSY9y4caisrMSTJ096XM+uXbtgbm4Ob29vNDc3q8Rv25DcvXsXlpaWPc6naVs1yc/PR1xcnMrVZF2dv+f15fZ2J6e+vj6ampr45a17dFp1tj3l5eX876WlpRg1ahTEYnG34sXGxmLnzp1d26jnWFtbq9TUkd78/o0bNw5SqRSMMZWf1qtOu2vs2LGQSqW4du0av+zKlSuYOHGi1jH27duH8+fPd3gBUWdjX375pcp22NvbIykpCYwxra+OFSpvRxQKBQwMDPjPudWwYcNUXpeVlcHa2rrbeQjRBjVqRK2ysjLs378fv/vd7yCRSNDS0sL/PHr0CCdOnFBZ39TUFMXFxfjxxx8xZ84cTJ8+HRYWFti4cSMaGhpw6dIlvPzyyyr/GGtLLBYjJSUFN27c4PdCtY1fV1eHlJQUXLx4EXPnzu3xtmvaVnWUSiXmzZuHxMREmJiYAADmzZvX5fl7Xl9ub2fU5bSyssKpU6dQX1+PAwcOoK6uTqvtOXnyJK5cuYKKigrExsbC19cXALoVr6eHPgHggw8+wLlz59Su05vfv+nTp8PExARxcXGor6/H9evX4eDggEuXLvVoO/T09BAYGIioqCiUlZUhIyMDqampWLhwoVbvT0pKQk5ODn97kpycHMTExGgc6ymh8nZGJBLB398fMTExqKioQFFRERITE9tdfZ2bm0tPHiB9r3/PiSNC0nRS63fffadyVR3HcWz06NHszTffZL/88gtjjLGnT5+yjz76iI0aNYq99NJLLDw8nAFg9vb2jDHGMjIymEwmY3K5nGVlZTHGnl3d5uLiwsRiMbOxsWHp6eksMjKSz7NhwwYWHBzMv965cyf75ptv+Nc+Pj4qdaamprLXX3+df90aXyKRMFtbW3b69GmV+H/84x/5dZ/P6+bmxr/OyMhgxsbG/OuamppOt7XtFYgbNmzgr/ADwEJCQlhsbGy7qz4VCkWX5+/5uNpsb0fzqY42V312lJMxxoqLi9nkyZOZRCJhmzZtYvb29gwAfxFDR9+HgIAAtnbtWubq6srEYjHz8PBg1dXV3Y63cuVKFhgYqLZ+TRcT1NTUMAcHB1ZZWckYYz3+/rXOq7rPpPVqUbFYzCZMmMB2797Nx1y7di0LDg7usNZjx46pfK+MjY1VxhsbG9n8+fOZoaEhs7Cw0DrurVu3mJ6eXrvv7bZt29SOtZWXl6cy7ujoqLN5Nc3lw4cPmY+PDzM0NGTm5uYsLCyMKZVKfjwlJYW/CEYdupiA9BBd9TmU0F8YpCPaNGq96fmrZfuDpkaNsWcNQ0RERD9Uo5mjoyPf8A2EuEMtb2lpKVuzZg1ramrSuC79vUt6qIIeyk4IIXh2ntoXX3whdBk4fvw4XFxc8NZbbw2IuEMxr1wup8fHkX5DjRohpN/4+vri+++/BwA8ffoU4eHhAleke9zd3VVuh6PrcSkvIX2LGjVCSL9JTk7u0T3TCCFkqKGrPgkhhBBCdBQ1aoQQQgghOooOfQ4h48aNo3v+kHaampowbNgwrF+/XuhSOlVXVwdDQ8N2NxzVVm1tbZdu+kpIb+rJzXcJ4RjrwbNXCCGkH3h7eyMyMhJ/+MMfhC6FEEL603069EkIIYQQoqOoUSOEEEII0VHUqBFCCCGE6Chq1AghhBBCdBQ1aoQQQgghOooaNUIIIYQQHUWNGiGEEEKIjqJGjRBCCCFER1GjRgghhBCio6hRI4QQQgjRUdSoEUIIIYToKGrUCCGEEEJ0FDVqhBBCCCE6iho1QgghhBAdRY0aIYQQQoiOokaNEEIIIURHUaNGCCGEEKKjqFEjhBBCCNFR1KgRQgghhOgoatQIIYQQQnQUxxhjQhdBCCHP2759O9LT0wEA+fn5+N3vfgdDQ0OMGDECsbGxkMvlAldICCF97v5woSsghJCO6Ovr48SJE3j8+DEA4Pr16wAAMzMzjB07VsjSCCGk39ChT0KITvL09IRYLFZZpqenh7/85S/gOE6gqgghpH9Ro0YI0UlGRkaws7NTWTZ69GgEBgYKVBEhhPQ/atQIITorODgYRkZG/GuxWIxJkyYJWBEhhPQvatQIITrL3d0dIpEIACASieDv7y9sQYQQ0s+oUSOE6KyRI0di2rRpAABjY2MsWLBA4IoIIaR/UaNGCNFpH3/8MSQSCczMzPDCCy8IXQ4hhPQruj0H0VkFBQV4+vSp0GUQgZmbm4MxBg8PD/zv//6v0OUQHWBhYQFTU1OhyyCkX9ANb4nOsrS0xH/9138JXUaX1dTU4P79+3jppZeELqXP3Lp1C2PGjIGJiUm/5Lt06RJsbGwwcuTIfslHdNft27cREBCA4OBgoUshpD/QDW+J7jIyMsKhQ4eELqPLMjMzcfDgQXz99ddCl9JnPv74Y3h7e8PZ2blf8tXU1PRbU0h021dffSV0CYT0KzpHjRCi86hJI4QMVdSoEQLA19cXHMchOjpa6FIGlcLCQnz22WdCl0F0XFlZGdatW4dHjx4JXQohOocaNUIAJCcnIyAgQLD8/v7+SE1N7fM87u7u2Lt3b5/nAYCHDx/Cz88PISEh2L59OziOg0gkQnZ2Nr9OWVkZOI4Dx3GCnn9WU1OD6OhovPDCC9i+fbvKWFNTExYsWACxWAxLS0vs2bNHq5iMMSQlJcHGxgYGBgZ49dVXcfLkSa3HW129ehUjR47Et99+q9N5AfXz2Co+Ph5WVlYwNjaGv78/ampqIJfLMXXqVCxfvlzrXIQMFdSoEaID9u7dCw8PD6HL6FXx8fGYOXMmpFIplixZguzsbDQ3N8PX1xcVFRUAALlcDsYY3n77bUH3pqSnp+Odd96BQqFoN/b555/j9u3bKCwsxP79+7Fs2TJcvXpVY8xff/0V8fHxOH36NKqqquDn54f3338fJSUlWo0DwOPHj7F582aMHz9e620RKi+gfh4BIDExETt27MDRo0dRWloKmUzGN4KzZ89GTk4Orl+/3qWchAx21KiRAW3FihXgOA7Lly+Hj48PRowYgTfffBMFBQVwdnaGWCyGra0t8vLyuhTX09MTHMfxe5+cnZ3BcRzOnDnTZ9sQGhrK/7506VJ4eHhAIpHA09MTzc3NAP7vEG1oaCicnZ0hkUgwe/Zs1NTUaKzZ19cXJ06cwIcffgiO4zrd49Fbjhw5gjfeeENl2eLFi9Hc3Iy5c+eipaWlw/fdvHkTrq6uMDIygr29PdLT0wFA49z05DP38vKCvb19u+UtLS3YtWsXIiIiYG5uDldXV3h4eGDnzp0aY06YMAEXLlzA+PHjYWhoiNWrV0MkEuHatWtajQNAVFQUIiMjYWBgoPW2CJUX6HweW0VHR2PLli2ws7ODoaEhtm7diqVLl/Ljjo6OA/ICIkL6EjVqZECLi4vDmjVrcPz4caxevRqXL18GYwxubm6YMWMGysvLERYWBi8vLyiVSq3jHj58GG5ubvzrzMxMtf8A9UTrNrT9PS0tDVFRUcjPz0dubi7frLQeoj169CgSEhJQVFSEBw8eICwsTGPNycnJcHNzw549e8AYw5IlS/pke1oVFhZi7NixKssUCgUOHjyIs2fPIjIyst17lEol3n33XTg6OqKkpATh4eF47733cOfOHbVzo1Qqe/yZd6S8vBxVVVWwtbXll9nZ2XVrr09tbS0YY5gyZYpW4+np6bC1tcXLL7/cveIFzvu8e/fu4c6dOyguLoZCocCYMWMQFBSEpqYmfh25XI7CwsJezUvIQEeNGhkUpk2bhqlTp8LGxgaffPIJysvL8cknn0AikcDPzw8SiQQ//PCD0GVqzcnJCba2trC0tMTUqVNRVFSkMj5r1ixMmjQJMpkMq1atQnJycrdzhYaGYtGiRT0tWcWTJ0/Q0NAAQ0PDdmNOTk7YunUrNm7ciFOnTqmMZWdn4969e4iIiICRkRG8vLwwefJkHDhwQOX9z89NdnZ2n3zmlZWVAKDyYHgjIyPcv3+/y7G2bNmC9evXQyaTaRyvqqrChQsX4O3t3b3CdSDv81rn7MyZM7h8+TLOnz+PrKwsbNq0iV9HLBbjwYMHvZ6bkIGMGjUyKLT9R6ikpAT19fUYPnw4f6J6QUEBbt++LWCFXSOVSvnfDQwM2u0Zajtubm6Ouro6NDQ0dCtXS0sLevu+1yKRCGKxGI2NjR2Or1y5Ej4+Ppg3bx5+++03fnlJSQnMzMygr6/PL1MoFCrnT3U0N331mZuZmQF4ttepVW1tLcaMGdOlOLt370Z1dTVCQ0O1Go+KisKnn37Kb8vly5fh5+cHjuO6dC6fUHk7YmxsDABYtmwZzMzMYGVlhcWLFyMtLY1fp6GhAaNHj+5RHkIGG2rUyKAzbtw4SKVSMMZUfkJCQroUR19fX+WwTOveFV1QXl7O/15aWopRo0ZBLBZrrJnjuHaxYmNjtTrnqqusra1V6nzerl27YG5uDm9vb/48s3HjxqGyslKlMb179y4sLS3V5uqtz/x5Y8eOhVQqVTl/68qVK5g4caLWMfbt24fz5893eqPWjsa//PJLle2wt7dHUlISGGNaXx0rVN7OKBQKGBgY8J91q2HDhvG/l5WVwdraukd5CBlsqFEjg8706dNhYmKCuLg41NfX4/r163BwcMClS5e6FMfKygqnTp1CfX09Dhw4gLq6uj6quOtOnjyJK1euoKKiArGxsfD19QWguWZTU1MUFxfjxx9/xJw5cwD0zaFPAPjggw9w7ty5TsfFYjFSUlJw48YNVFdXA3j22VlYWGDjxo2oq6tDSkoKLl68iLlz56rN1Vuf+fP09PQQGBiIqKgolJWVISMjA6mpqVi4cKFW709KSkJOTg5/e5KcnBzExMRoPd5dQuVVRyQSwd/fHzExMaioqEBRURESExNVrnbOzc2Fl5dXn9ZByIDDCNFRr7zyisZ1IiMjGQAGgP3xj3/klxcUFDAXFxcmFovZhAkT2O7du9XG8fHx4eNs2LCBMcZYcXExmzx5MpNIJGzTpk3M3t6eAWBpaWlqY2VkZLCgoCAttvCZkJAQPnfbnw0bNrDg4GD+9c6dOxljjAUEBLC1a9cyV1dXJhaLmYeHB6uurtaq5oyMDCaTyZhcLmdZWVmMMcZWrlzJAgMDta6XMcaCgoJYRkaG2nVqamqYg4MDq6ysZN988w2/HT4+Pirrpaamstdff51/nZ+fz1xcXJhEImG2trbs9OnTjDHVz7qjuVH3ma9du5YFBwd3WuuxY8dU5t7Y2Jgfa2xsZPPnz2eGhobMwsKi3Xeps9i3bt1ienp67T7Xbdu2aTXOGGN5eXkqY46OjjqbV9M8MsbYw4cPmY+PDzM0NGTm5uYsLCyMKZVKxhhjKSkpbOHChR3GbSshIYElJCRoXI+QQaKCGjWis7Rp1HRRVxu1rgoICGCbN2/us/ja0KZRY+xZUxAREdH3BWng6OjIN3wDKfZQyVtaWsrWrFnDmpqaNK5LjRoZYirooeyEkD5jbW2NL774QtAajh8/DhcXF7z11lsDKvZQyiuXy+nxbYR0gho1MqR0dDI9gF6/6rGv+Pr64vvvvwcAPH36FOHh4QJXpPvc3d3h7u4+4GJTXkIIQI0aGWIGSkPWmeTk5B7dM40QQsjAQld9EkIIIYToKGrUCCGEEEJ0FMcG+rEgMmiZm5vD1NRU6DK6rLGxEU+fPlV57NBgU1dXh2HDhnX4iChC+lJ1dTXCw8MRHBwsdCmE9If7dI4a0Vmmpqbdevi10DIzM3Hw4EF8/fXXQpfSZz7++GN4e3vD2dlZ6FLIENPZkxYIGazo0CchhBBCiI6iRo0Q0mcKCwvx2WefCV0G0XFlZWVYt25djx/8TshgRI0aGZCSk5PBcZzKj4mJCby8vPjnRnbl/W0fXh4XF8cvHz78/84O2Lt3L7986dKlfbJdmri7u2Pv3r06G6+thw8fws/PDyEhIfwzJUUiEbKzs/l1ysrK+Dnt6UO/e6KmpgbR0dF44YUXsH37dpWxpqYmLFiwAGKxGJaWltizZ49WMRljSEpKgo2NDQwMDPDqq6/i5MmTWo+3unr1KkaOHIlvv/1Wp/MC6uexVXx8PKysrGBsbAx/f3/U1NRALpdj6tSpWL58uda5CBkqqFEjA5Kvry/y8vIwYsQIMMbQ0tKCn376Cb/88gs+//zzLr/fzMyMH1uxYgX++c9/4sUXX8TTp0/55f7+/khPT8fmzZuRkJDQJ9s1mMTHx2PmzJmQSqVYsmQJsrOz0dzcDF9fX1RUVAB4dkd6xhjefvttQfempKen45133oFCoWg39vnnn+P27dsoLCzE/v37sWzZMly9elVjzF9//RXx8fE4ffo0qqqq4Ofnh/fffx8lJSVajQPA48ePsXnzZowfP17rbREqL6B+HgEgMTERO3bswNGjR1FaWgqZTMY3grNnz0ZOTs6APC+VkL5EjRoZFDiOg42NDVxcXHDjxg1+eUFBAZydnSEWi2Fra4u8vDwBq/w/N2/ehKurK4yMjGBvb4/09HQAgKenJziO4/dyOTs7g+M4nDlzBr6+vjhx4gQ+/PBDcByH7du3w9fXFxzHITQ0FM7OzpBIJJg9ezZqamq6Fa83HTlyBG+88YbKssWLF6O5uRlz585FS0tLl+ZmxYoV/N5MDw8PSCQSeHp6orm5GUDPPmsvLy/Y29u3W97S0oJdu3YhIiIC5ubmcHV1hYeHB3bu3Kkx5oQJE3DhwgWMHz8ehoaGWL16NUQiEa5du6bVOABERUUhMjISBgYGWm+LUHmBzuexVXR0NLZs2QI7OzsYGhpi69atKnunHR0dcejQoS7lJGSwo0aNDAqMMdy8eROZmZlwdXUFACiVSri5uWHGjBkoLy9HWFgYvLy8oFQqBa1VqVTi3XffhaOjI0pKShAeHo733nsPd+7cweHDh+Hm5savm5mZyf/Dl5ycDDc3N+zZsweMMSxZsgTJyckICAjA0aNHkZCQgKKiIjx48ABhYWEA0OV4vamwsBBjx45VWaZQKHDw4EGcPXsWkZGRXZqbuLg4rFmzBmlpaYiKikJ+fj5yc3ORnp7eZ591eXk5qqqqYGtryy+zs7Pr1l6f2tpaMMYwZcoUrcbT09Nha2uLl19+uXvFC5z3effu3cOdO3dQXFwMhUKBMWPGICgoCE1NTfw6crkchYWFvZqXkIGOGjUyoD1+/Bgcx0FPTw+2trYICwvDmjVrAADZ2dkoLy/HJ598AolEAj8/P0gkEvzwww+C1pydnY179+4hIiICRkZG8PLywuTJk3HgwIFux5w1axYmTZoEmUyGVatW9egxU6GhoVi0aFG33w8AT548QUNDQ4f3WXNycsLWrVuxceNGnDp1SmVMm7lxcnKCra0tLC0tMXXqVBQVFfXZZ9167mLbe+IZGRnh/v37XY61ZcsWrF+/HjKZTON4VVUVLly4AG9v7+4VrgN5n9c6Z2fOnMHly5dx/vx5ZGVlYdOmTfw6YrEYDx486PXchAxk1KiRAa31HLPq6moEBgZix44d/KGwkpIS1NfXY/jw4fwJ6wUFBbh9+7bGuMOGDcPjx4/bLX/06JHKBQbdUVJSAjMzM+jr6/PLFAqFyjlCXSWVSvnfzc3NUVdXh4aGhm7Famlp6fEzUUUiEcRiMRobGzscX7lyJXx8fDBv3jz89ttv/HJt5qbtthoYGECpVPbos1an9dzF2tpaflltbS3GjBnTpTi7d+9GdXU1QkNDtRqPiorCp59+ym/L5cuX4efnB47junQun1B5O2JsbAwAWLZsGczMzGBlZYXFixcjLS2NX6ehoQGjR4/uUR5CBhtq1MigYGJigr/97W8oKyvjzx8aN24cpFIpGGMqPyEhIRrjjR07FmVlZaivr1dZfuvWrU73TGhr3LhxqKysVDksd/fuXVhaWgIA9PX1VQ4Htb0ileO4DmOWl5fzv5eWlmLUqFEQi8XdihcbG6vVOViaWFtbq9T1vF27dsHc3Bze3t58c61pbjrTk89anbFjx0Iqlaqcv3XlyhVMnDhR6xj79u3D+fPnO71Ra0fjX375pcp22NvbIykpCYwxra+OFSpvZxQKBQwMDPjPutWwYcP438vKymBEnhovAAAgAElEQVRtbd2jPIQMNtSokUFj5MiRWLVqFSIjI1FbW4vp06fDxMQEcXFxqK+vx/Xr1+Hg4IBLly51GuPRo0eYNWsWJk+eDJlMhmXLlqGkpARNTU3Izc3F119/zZ8D113Tp0+HhYUFNm7ciLq6OqSkpODixYuYO3cuAMDKygqnTp1CfX09Dhw4gLq6Ov69pqamKC4uxo8//og5c+bwy0+ePIkrV66goqICsbGx8PX15ce6Gq83Dn0CwAcffIBz5851Oi4Wi5GSkoIbN27wt1TRNDed6c5nrQ09PT0EBgYiKioKZWVlyMjIQGpqKhYuXKjV+5OSkpCTk8PfniQnJwcxMTFaj3eXUHnVEYlE8Pf3R0xMDCoqKlBUVITExER4eHjw6+Tm5sLLy6tP6yBkwGGE6KhXXnml07HvvvuOAeB/Lly4wBhjrK6ujo0ePZoBYIcOHWIFBQXMxcWFicViNmHCBLZ79+4O39/2x8PDgzHG2IULF5iTkxMzMDBg+vr6zM7OjqWkpGisOyMjgwUFBaldJz8/n7m4uDCJRMJsbW3Z6dOn+bHi4mI2efJkJpFI2KZNm5i9vT0DwNLS0lhGRgaTyWRMLpezrKwsxhhjAQEBbO3atczV1ZWJxWLm4eHBqqurux1v5cqVLDAwUG39QUFBLCMjQ+06NTU1zMHBgVVWVrJvvvmGn18fHx+V9VJTU9nrr7+ucW4iIyP5GBs2bGDBwcH86507d3b6WTPG2Nq1a1lwcHCntR47dkzlO2BsbMyPNTY2svnz5zNDQ0NmYWGhEldd7Fu3bjE9Pb12369t27ZpNc4YY3l5eSpjjo6OOptX0zwyxtjDhw+Zj48PMzQ0ZObm5iwsLIwplUrGGGMpKSls4cKFHcZtKyEhgSUkJGhcj5BBooIaNaKz1DVqukybRq03BQQEsM2bN/dbPsa0a9QYe9YURERE9H1BGjg6Oqo0wwMl9lDJW1paytasWcOampo0rkuNGhliKuih7ISQPmNtbY0vvvhC0BqOHz8OFxcXvPXWWwMq9lDKK5fLER0d3asxCRksqFEjZADz9fXF999/DwB4+vQpwsPDBa5I97i7u8Pd3X3Axaa8hBCAGjVCBrTk5OQe3TONEEKIbqOrPgkhhBBCdBQ1aoQQQgghOopjrIe3ICekj5ibm8PU1FToMrpMqVTi0aNHKo8dGmxqa2sxcuRIlScI9KWmpiaMGDECenr0f8uhrrq6GuHh4QgODha6FEL6w31q1AghOs/b2xuRkZH4wx/+IHQphBDSn+7Tf08JIYQQQnQUNWqEEEIIITqKGjVCCCGEEB1FjRohhBBCiI6iRo0QQgghREdRo0YIIYQQoqOoUSOEEEII0VHUqBFCCCGE6Chq1AghhBBCdBQ1aoQQQgghOooaNUIIIYQQHUWNGiGEEEKIjqJGjRBCCCFER1GjRgghhBCio6hRI4QQQgjRUdSoEUIIIYToKGrUCCGEEEJ0FDVqhBBCCCE6iho1QgghhBAdRY0aIYQQQoiOGi50AYQQ0pH09HQUFxcDAO7fv49//vOfyM3NBQB4enpi9OjRQpZHCCH9gmOMMaGLIISQ523btg3r1q1Dc3OzynKJRILq6moMH07/zySEDHr36dAnIUQn+fn5wcTEpN1yDw8PatIIIUMGNWqEEJ0kl8sxbtw4lWVSqRRBQUECVUQIIf2PGjVCiM4KDg6GWCzmX4tEIrzxxhsCVkQIIf2LGjVCiM7y9vbGiBEjAAAcx+GDDz4Ax3ECV0UIIf2HGjVCiM4yMjLCpEmTADw77Llo0SKBKyKEkP5FjRohRKcFBwdDIpHAwMAAdnZ2QpdDCCH9iho1QohO+/Of/4wnT55g/vz5QpdCCCH9ju6jRnqNubk5TE1NhS5j0FEqlXj06BGMjIyELqXP1NbWYuTIkdDX1+9w/N69ezAzM+t0nJDuqq6uRnh4OIKDg4UuhZCO3KebEZFeY2pqiuvXrwtdxqCTmZmJgwcP4uuvvxa6lD7z8ccfw9vbG87Ozh2O//rrrxg/fnz/FkWGhK+++kroEghRiw59EkJ0HjVphJChiho1QnrBa6+9Bo7jcPz4caFLGdQKCwvx2WefCV0G0XFlZWVYt24dHj16JHQphPQYNWpkQPL390dqaqrO5Pzll1/g4ODQr/Wo01/z4+7ujr179/Z5HgB4+PAh/Pz8EBISgu3bt4PjOIhEImRnZ/PrlJWVgeM4cByHkSNH9ktdHampqUF0dDReeOEFbN++XWWsqakJCxYsgFgshqWlJfbs2aNVTMYYkpKSYGNjAwMDA7z66qs4efKk1uOtrl69ipEjR+Lbb7/V6byA+nlsFR8fDysrKxgbG8Pf3x81NTWQy+WYOnUqli9frnUuQnQVNWpkQNq7dy88PDwGfc7uGki1ais+Ph4zZ86EVCrFkiVLkJ2djebmZvj6+qKiogLAs8dOMcbw9ttvC7o3JT09He+88w4UCkW7sc8//xy3b99GYWEh9u/fj2XLluHq1asaY/7666+Ij4/H6dOnUVVVBT8/P7z//vsoKSnRahwAHj9+jM2bN3fpULJQeQH18wgAiYmJ2LFjB44ePYrS0lLIZDK+EZw9ezZycnLovFky4FGjRvrFihUrwHEcli9fDh8fH4wYMQJvvvkmAKCgoADOzs4Qi8WwtbVFXl4e/75169bBzMwMMpkMMTExaG5u5mOFhoYCAA4fPszvRWn9aW1S1MVu69GjR/x7W2+wumTJEnAcB2dn53Y5ASAvLw+TJk2CkZER1q9f3y5mZ7lv3rwJV1dXGBkZwd7eHunp6T2f4Dba1tr6+9KlS+Hh4QGJRAJPT080NzcDAHx9ffl1nZ2dIZFIMHv2bNTU1MDT0xMcx/F7zJydncFxHM6cOcO/98SJE/jwww/BcVynezx6y5EjR9o9Pmrx4sVobm7G3Llz0dLS0uH7OptvTXOj7XenI15eXrC3t2+3vKWlBbt27UJERATMzc3h6uoKDw8P7Ny5U2PMCRMm4MKFCxg/fjwMDQ2xevVqiEQiXLt2TatxAIiKikJkZCQMDAy03hah8gKdz2Or6OhobNmyBXZ2djA0NMTWrVuxdOlSftzR0RGHDh3qUk5CdA01aqRfxMXFYc2aNTh+/DhWr16Ny5cvQyQSQalUws3NDTNmzEB5eTnCwsLg5eUFpVKJn3/+GUePHsX169dx69Yt/PTTT7h48SIfq61jx46BMYbKykrY2NggNjZWbeznjRw5Erdu3YJYLMa5c+cAANu3b8ef//xnZGZmtsvZ1NSE2bNnY86cObh79y4UCgVu3LjBj3eWu76+Hu+++y4cHR1RUlKC8PBwvPfee7hz506vz3Xb39PS0hAVFYX8/Hzk5ubyzUpycjICAgJw9OhRJCQkoKioCA8ePEBYWBgOHz4MNzc3Pm5mZqbKP5rJyclwc3PDnj17wBjDkiVLem0bOlJYWIixY8eqLFMoFDh48CDOnj2LyMjIdu9RKpWdzre6uenKd6crysvLUVVVBVtbW36ZnZ1dt/b61NbWgjGGKVOmaDWenp4OW1tbvPzyy90rXuC8z7t37x7u3LmD4uJiKBQKjBkzBkFBQWhqauLXkcvlKCws7NW8hPQ3atRIv5o2bRqmTp0KGxsbpKWlITs7G+Xl5fjkk08gkUjg5+cHiUSCH374AcOHD0dlZSXOnTsHAwMDHD58GK+99lq7mJ6ennB3dwcABAYGYt26dXjxxRfVxu6ItbU1pkyZgu+++w4AkJub2+kDwLOyslBXV4ewsDCMGjUKCxcuhImJCT/eWe6IiAjcu3cPERERMDIygpeXFyZPnowDBw70dGrVcnJygq2tLSwtLTF16lQUFRWpjM+aNQuTJk2CTCbDqlWrkJyc3O1coaGhvf6opydPnqChoQGGhobtxpycnLB161Zs3LgRp06dUhnLzs7WON8dzU1XvzvaqqysBACVe+IZGRnh/v37XY61ZcsWrF+/HjKZTON4VVUVLly4AG9v7+4VrgN5n9c6Z2fOnMHly5dx/vx5ZGVlYdOmTfw6YrEYDx486PXchPQnatRIv3r+L/eSkhLU19dj+PDh/KHHgoIC3L59G1OmTMG2bdsQFhYGmUyG0NBQPH78uNPYiYmJGDFiBH8He3WxO/PRRx9h9+7dAICkpKRO74ZfWloKqVQKkUjEL5PL5Rq36+zZs+1u3KpQKFTO5+kLUqmU/93AwKDdnqG24+bm5qirq0NDQ0O3crW0tKC376MtEokgFovR2NjY4fjKlSvh4+ODefPm4bfffuOXl5SUaJzvjuamO98dbZiZmQF4ttepVW1tLcaMGdOlOLt370Z1dbXKoXh141FRUfj000/5bbl8+TL8/PzAcVyXzuUTKm9HjI2NAQDLli2DmZkZrKyssHjxYqSlpfHrNDQ0YPTo0T3KQ4jQqFEjgho3bhykUikYYyo/ISEhAJ5dvXjz5k2kp6fj1KlTnZ4HlZ+fj7i4OJVxTbE74uXlhRs3buD8+fOora2FhYVFh+uZm5ujqqoKT5484Ze13SvSWe6YmBhUVlaqNEp3796FpaWldhPWR8rLy/nfS0tLMWrUKIjFYujr66scSmrdI9SK47h2sWJjY7U656qrrK2tVep83q5du2Bubg5vb2/+PLNx48Z1a767893RxtixYyGVSlXO37py5QomTpyodYx9+/bh/Pnznd6otaPxL7/8UmU77O3tkZSUBMaY1lfHCpW3MwqFAgYGBvxn3WrYsGH872VlZbC2tu5RHkKERo0aEdT06dNhYmKCuLg41NfX4/r163BwcMClS5dw+PBhrFixAvX19bCyslLZ89GWUqnEvHnzkJiYyB9+nDdvntrYnRGLxfD29sbcuXPh6enZ6XpOTk4YNWoUtm7divr6euzduxdlZWUat2vUqFGwsLDAxo0bUVdXh5SUFFy8eBFz587t5gz2jpMnT+LKlSuoqKhAbGwsfH19AQBWVlY4deoU6uvrceDAAdTV1am8z9TUFMXFxfjxxx8xZ84cAH1z6BMAPvjgA/78wY6IxWKkpKTgxo0bqK6uBvDsc+jOfHfnu6MNPT09BAYGIioqCmVlZcjIyEBqaioWLlyo1fuTkpKQk5PD354kJycHMTExWo93l1B51RGJRPD390dMTAwqKipQVFSExMRElaudc3Nz4eXl1ad1ENLnGCG95JVXXul0LDIykgFgANgf//hHlbGCggLm4uLCxGIxmzBhAtu9ezdjjLHGxkYWFhbGLCwsmLGxMZs3bx5rbGxkISEhfKyQkBAWGxvLv279USgUamOrc+7cOWZmZsaUSiW/7PmcjDGWm5vLJk6cyMRiMfvrX//KHBwcGAB26NAhtbnz8/OZi4sLk0gkzNbWlp0+fVptPRkZGSwoKEhj3R3V2vZnw4YNLDg4mH+9c+dOxhhjAQEBbO3atczV1ZWJxWLm4eHBqqurGWOMFRcXs8mTJzOJRMI2bdrE7O3tGQCWlpbG1yaTyZhcLmdZWVmMMcZWrlzJAgMDta6XMcaCgoJYRkaG2nVqamqYg4MDq6ysZN988w2/HT4+Pirrpaamstdff51/3dl8t/1OdjQ36r47a9euZcHBwZ3WeuzYMZW5NzY25scaGxvZ/PnzmaGhIbOwsGj3news9q1bt5ienl67z3Xbtm1ajTPGWF5ensqYo6OjzubVNI+MMfbw4UPm4+PDDA0Nmbm5OQsLC+P/3KakpLCFCxd2GLethIQElpCQoHE9QgRSQY0a6TXqGjXSfV1t1LoqICCAbd68uc/ia0ObRo2xZ01BRERE3xekgaOjo8YGWxdjD5W8paWlbM2aNaypqUnjutSoER1XQQ9lJ4QMGNbW1vjiiy8EreH48eNwcXHBW2+9NaBiD6W8crkc0dHRvRqTEKFQo0aGpI5OggfQ61cr6jpfX198//33AICnT58iPDxc4Ip0n7u7O387mIEUm/ISMjBRo0aGpKHWkHUmOTm5R/dMI4QQ0rfoqk9CCCGEEB1FjRohhBBCiI7iGB0DIr3E3NwcpqamQpcx6DQ2NuLp06cqjx0abOrq6jBs2LAOHxFFSF+qrq5GeHg4goODhS6FkI7cp3PUSK8xNTXt1sOliXqZmZk4ePAgvv76a6FL6TMff/wxvL294ezsLHQpZIjp7EkLhOgKOvRJCCGEEKKjqFEjpIdee+01cByH48ePC13KoFdYWIjPPvtM6DKIjisrK8O6det6/OB3QnQBNWqk3yQnJ4PjOJUfExMTeHl58c9m7A5/f3+kpqZ267137txRqaftQ8f/+7//GxzHwcbGRm2OX375BQ4ODt3KLzR3d3fs3btXZ+O19fDhQ/j5+SEkJIR/pqRIJEJ2dja/TllZGf9Z9vSh3z1RU1OD6OhovPDCC9i+fbvKWFNTExYsWACxWAxLS0vs2bOnV+KqG2eMISkpCTY2NjAwMMCrr76KkydPDvi8ABAfHw8rKysYGxvD398fNTU1kMvlmDp1KpYvX651LkJ0FTVqpN/4+voiLy8PI0aMAGMMLS0t+Omnn/DLL7/g888/73bcvXv3qjyIuSsmTJiA+/fvQ19fHydPnoSZmRk/duzYMbzzzjvIz8/vUQ7SO+Lj4zFz5kxIpVIsWbIE2dnZaG5uhq+vLyoqKgA8uyM9Ywxvv/22oHtT0tPT8c4770ChULQb+/zzz3H79m0UFhZi//79WLZsGa5evdrjuOrGf/31V8THx+P06dOoqqqCn58f3n//fZSUlAzovImJidixYweOHj2K0tJSyGQyfPvttwCA2bNnIycnh86bJQMeNWpEMK17q1xcXHDjxg0AQEFBAZydnSEWi2Fra4u8vDx+/XXr1sHMzAwymQwxMTFobm7GihUrwHEcQkNDAQCHDx9ut9eutcHqLLaZmRnee+897Ny5U6W+Y8eO4c9//nO7HACQl5eHSZMmwcjICOvXr2+3beq24+bNm3B1dYWRkRHs7e2Rnp7e47nsLKanpyc4juP3cjk7O4PjOJw5cwa+vr44ceIEPvzwQ3Ach+3bt8PX15ffVmdnZ0gkEsyePRs1NTXditebjhw5gjfeeENl2eLFi9Hc3Iy5c+eipaWlS3PT+rkuXboUHh4ekEgk8PT0RHNzMwD1n6EmXl5esLe3b7e8paUFu3btQkREBMzNzeHq6goPD492372uxtU0PmHCBFy4cAHjx4+HoaEhVq9eDZFIhGvXrg3ovNHR0diyZQvs7OxgaGiIrVu3YunSpfy4o6MjDh06pFUuQnQVNWpEMIwx3Lx5E5mZmXB1dYVSqYSbmxtmzJiB8vJyhIWFwcvLC0qlEj///DOOHj2K69ev49atW/jpp59w8eJFxMXFYc2aNSpxjx07BsYYKisrYWNjg9jYWLWxASAgIADHjh1DeXk5H+fAgQOYO3duuxxNTU2YPXs25syZg7t370KhUPCNJgC1uZRKJd599104OjqipKQE4eHheO+993Dnzp1uz6O6mIcPH4abmxu/bmZmJv8PX3JyMtzc3LBnzx4wxrBkyRIkJycjICAAR48eRUJCAoqKivDgwQOEhYUBQJfj9abCwkKMHTtWZZlCocDBgwdx9uxZREZGdmluWj/XtLQ0REVFIT8/H7m5uUhPT9f4femu8vJyVFVVwdbWll9mZ2fX73t9amtrwRjDlClTBmzee/fu4c6dOyguLoZCocCYMWMQFBSEpqYmfh25XI7CwsIe5yJESNSokX73+PFjcBwHPT092NraIiwsDGvWrEF2djbKy8vxySefQCKRwM/PDxKJBD/88AOGDx+OyspKnDt3DgYGBjh8+DBee+21drE9PT35ZwcGBgZi3bp1ePHFF9XGBoC33noLFhYW/J6ikpISGBkZwdjYuF2OrKws1NXVISwsDKNGjcLChQthYmLCj6vLlZ2djXv37iEiIgJGRkbw8vLC5MmTceDAgW7PZ1/EnDVrFiZNmgSZTIZVq1b16DFToaGhWLRoUbffDwBPnjxBQ0NDh/dZc3JywtatW7Fx40acOnVKZUybuXFycoKtrS0sLS0xdepUFBUVafy+dFfrOZBt74lnZGSE+/fv9yhuV23ZsgXr16+HTCYbsHlb5+zMmTO4fPkyzp8/j6ysLGzatIlfRywW48GDBz3ORYiQqFEj/a71HLXq6moEBgZix44daG5uRklJCerr6zF8+HD+sGVBQQFu376NKVOmYNu2bQgLC4NMJkNoaCgeP37caY7ExESMGDEC8+fPBwC1sQFAT08P/v7++Pvf/w4A2L17Nz788MMOY5eWlkIqlUIkEvHL5HI5/7u6XCUlJTAzM4O+vj6/vkKh0PqcnY70RUypVMr/bm5ujrq6OjQ0NHQrVktLS4+frSoSiSAWi9HY2Njh+MqVK+Hj44N58+bht99+45drMzdtt9XAwABKpVLj96W7Ws+BrK2t5ZfV1tZizJgxPYrbFbt370Z1dbXKofyBmLf1P1HLli2DmZkZrKyssHjxYqSlpfHrNDQ0YPTo0b2SjxCh0A1viWBMTEzwt7/9DVZWVti5cyd+//vfQyqVqlx52Za/vz/8/f1x4cIFfPjhhxg3bhxCQkLarZefn4+4uDiVc4rGjRunNjYAfPTRR4iKikJGRgbOnTvX6W0gzM3NUVVVhSdPnvDNWts9Iupy/fjjj6isrIRSqeSbh7t372Ly5Mmd1qXJuHHj1MbU19dXORzUti6O4zqM2fYQcGlpKUaNGgWxWNyteLGxsd3ZrHasra1V6nrerl278Kc//Qne3t6QSCQANM9NZ7T5vnTH2LFjIZVKce3aNVhYWAAArly5gokTJ/Zqns7s27cP58+f7/XzB4XIq1AoYGBgwJ9T2GrYsGH872VlZbC2tu61nIQIgfaoEUGNHDkSq1atQmRkJOzt7WFiYoK4uDjU19fj+vXrcHBwwKVLl3D48GGsWLEC9fX1sLKyUtkL0pZSqcS8efOQmJjIH46cN28epk+f3mnsVuPHj8eMGTOwePFizJgxo9OanZycMGrUKGzduhX19fXYu3cvysrK+HF1uaZPnw4LCwts3LgRdXV1SElJwcWLFzF37txuz6GmmFZWVjh16hTq6+tx4MAB1NXV8e81NTVFcXExfvzxR8yZM4dffvLkSVy5cgUVFRWIjY2Fr68vP9bVeL1x6BMAPvjgA5w7d67TcbFYjJSUFNy4cYO/3Ut351ub70t36OnpITAwEFFRUSgrK0NGRgZSU1OxcOHCHsXVRlJSEnJycvhbm+Tk5CAmJmbA5hWJRPD390dMTAwqKipQVFSExMRElauzc3Nz4eXl1eNchAiKEdJLXnnlFbXj3333HQPA/1y4cIExxlhdXR0bPXo0A8A2btzIXFxcmFgsZhMmTGC7d+9mjDHW2NjIwsLCmIWFBTM2Nmbz5s1jjY2NLCQkhI8XEhLCYmNjVXIAYAqFgjHGWEFBQYex2/r++++ZSCRi5eXl/LLnczDGWG5uLps4cSITi8Xsr3/9K3NwcGAA2KFDhzTmys/PZy4uLkwikTBbW1t2+vRptfOWkZHBgoKC1K6jLmZxcTGbPHkyk0gkbNOmTcze3p4BYGlpaSwjI4PJZDIml8tZVlYWY4yxgIAAtnbtWubq6srEYjHz8PBg1dXV3Y63cuVKFhgYqLb+oKAglpGRoXadmpoa5uDgwCorK9k333zDfyY+Pj4q66WmprLXX39d49xERkbyMTZs2MCCg4P51zt37lT7Ga5du5YFBwd3WuuxY8dUvoPGxsb8WGNjI5s/fz4zNDRkFhYW7b6H6mKri6tu/NatW0xPT6/dn41t27YN6LwPHz5kPj4+zNDQkJmbm7OwsDCmVCoZY4ylpKSwhQsXdhi3rYSEBJaQkKBxPUIEUkGNGuk1mho10j3aNGq9KSAggG3evLnf8jGmXaPG2LN/+CMiIvq+IA0cHR01Nti6GHuo5C0tLWVr1qxhTU1NGtelRo3ouAo6R40QMmBYW1vjiy++ELSG48ePw8XFBW+99daAij2U8srlckRHR/dqTEKEQo0aIYTn6+uL77//HgDw9OlThIeHC1yR7nF3d+dvATOQYlNeQgYmatQIIbzk5OQe3TONEEJI76KrPgkhhBBCdBQ1aoQQQgghOopjrIe3DCfk/2dpaYn/+q//ErqMQaempgb379/HSy+9JHQpHXr48CHEYjGGD+/+mRS3bt3CmDFjVB7FNZDV1taqPCaK6K7bt28jICAAwcHBQpdCSEfu0zlqpNf8+9//xtOnT4Uug/Sj5ORkpKSk4Msvv4RCoRC6HJ1QX1+P4OBgjBkzBiEhIR0+n5ToltanRBCii2iPGiGky+rq6rBo0SKIRCJ88803/OOlyDOMMezcuRNffvklNm/ejFmzZgldEiFkYLpPjRohpEsuXryIBQsWYOnSpb3yaKjB7LfffkNQUBBMTU0RHx8PU1NToUsihAws9+liAkKI1vbv34+AgAD84x//oCZNC+PGjcPx48fx9ttvw8nJCZmZmUKXRAgZYGiPGiFEIzrU2XP/7//9PyxYsAB2dnbYtm0b9PX1hS6JEKL7aI8aIUS9ixcvwtHRES4uLti/fz81ad30u9/9DmfOnMGYMWPg5OSEmzdvCl0SIWQAoD1qhJBO7d+/H3Fxcdi3bx9sbW2FLmfQ+PnnnxEQEIANGzbQhQaEEHXoYgJCSHt0qLPvVVVV4S9/+QteffVVbNy4EcOGDRO6JEKI7qFDn4QQVXSos39IpVKcOHECI0eOxMyZM1FRUSF0SYQQHUR71AghPDrUKYwjR47giy++wKFDh/D73/9e6HIIIbqDDn0SQuhQpy64cuUK5s2bh6+++grTp08XuhxCiG6gQ5+EDHV0qFM32NnZ4V//+heWLVuGgwcPCl0OIURH0B41QoYwOtSpe6qqqjB79mx4e3tj6dKlQpdDCBEWPZSdkKGo7aHO7Oxs2oumQ6RSKa3eFgYAACAASURBVE6fPg1vb288fvwYq1evFrokQoiA6NAnIUMMHerUfQYGBjhy5AiysrKwefNmocshhAiIDn0SMoTQoc6BRalUwsvLC3/605+wbt06ocshhPQ/uuqTkKGAruocuB4/fowPPvgAM2fOREhIiNDlEEL6F131SchgR4c6B7YRI0bgyJEj+Ne//oVDhw4JXQ4hpJ/RxQSEDGKthzr/8Y9/0KHOAWzEiBFISUnBm2++CYVCgTfeeEPokggh/YQOfRIyCNGhzsGpuLgY7u7uSE1NhbW1tdDlEEL6Hh36JGSwoUOdg9cLL7yAv//97/D29kZ1dbXQ5RBC+gHtUSNkEKGrOoeG7777DgcPHkRKSgo4jhO6HEJI36E9aoQMNE+ePMF//vMflWV1dXWYM2cOzpw5g+zsbGrSBrk5c+bAzMwMX3/9tdClEEL6GDVqhAwwn376KWbMmIGysjIAdKhzqPqf//kf7Nu3D5cuXRK6FEJIH6JDn4QMIJcvX4arqyuqq6thb2+PkJAQxMfH06HOIeratWv4y1/+gpycHIwaNUrocgghvY9ueEvIQPHkyRNMnDgRhYWFAABDQ0PY2dnh3//+NwwNDQWujgglISEB+fn5SEhIELoUQkjvo3PUCBko1q5di9LSUv51Y2Mj8vPzkZ2dLWBVRGjBwcG4dOkSfv75Z6FLIYT0AdqjRsgA8J///AczZ87s8JYMRkZGKCgogFwuF6AyoguuXr2KRYsWITc3F3p69P9vQgYR2qNGiK57/PgxvLy8VJo0IyMjmJqaYsaMGUhMTIREIhGwQiI0W1tbvPbaa/j73/8udCmEkF5Ge9QI0XErV67EV199BUNDQwwfPhzTp0/HwoULMWPGDIwYMULo8oiOqK2txRtvvIHMzEyYmZkJXQ4hpHcMvosJpk2bhgcPHghdxpD19OlTKJXKQX1ye2NjI/T19TF8eN8/KrepqQl3796FWCyGsbHxoJ5Xop2IiAjMmTOnw7Fdu3YhPz8fMTEx/VwVIaSPDL5GbeLEibh+/brQZQxZmZmZOHjw4KC+EefHH38Mb29vODs793muyspK2jtCeF999RWAZxcQdOTJkyeYMmUK/v3vf0Mmk/VnaYSQvkHnqBGiy6hJI10hEokQEhJCe9QIGUSoUesjr732GjiOw/Hjx3sUx9fXFxzHITo6upcqI/2lsLAQn332mdBlEB1XVlaGdevW4dGjR70Sb8GCBUhLS0NFRUWvxCOECIsatR7w9/dHampqh2O//PILHBwcepwjOTkZAQEBPY6jLXXbNNBzuru7Y+/evX2eBwAePnwIPz8/hISEYPv27eA4DiKRSOWeZ2VlZeA4DhzHYeTIkf1SV0dqamoQHR2NF154Adu3b1cZa2pqwoIFCyAWi2FpaYk9e/b0Slx144wxJCUlwcbGBgYGBnj11Vdx8uTJAZ8XAOLj42FlZQVjY2P4+/ujpqYGcrkcU6dOxfLly7XOpY5IJMLy5csRGxvbK/EIIcKiRq0H9u7dCw8PD6HL6FVCbNNgnMf4+HjMnDkTUqkUS5YsQXZ2Npqbm+Hr68vv6ZDL5WCM4e233+61vSndkZ6ejnfeeQcKhaLd2Oeff47bt2+jsLAQ+/fvx7Jly3D16tUex1U3/uuvvyI+Ph6nT59GVVUV/Pz88P7776OkpGRA501MTMSOHTtw9OhRlJaWQiaT4dtvvwUAzJ49Gzk5Ob12fq2/vz+OHz+OmpqaXolHCBHOkGrUVqxYAY7jsHz5cvj4+GDEiBF48803AQAFBQVwdnaGWCyGra0t8vLy+PetW7cOZmZmkMlkiImJQXNzMx8rNDSUXy8vLw+TJk2CkZER1q9fzy/39PQEx3H83hxnZ2dwHIczZ87w65w8eRJ2dnYwMTGBj48PHj582OXtWrZsGd577z1IJBKsWrUKt27dwqRJkyCVSrFv3z6NuZ7fptbXS5cuhYeHByQSCTw9PdHc3Kz9pGtZe2hoqMZ8rYeBQ0ND4ezsDIlEgtmzZ6OmpkbjHPv6+uLEiRP48MMPwXFcp3s8esuRI0fwxhtvqCxbvHgxmpubMXfuXLS0tHT4vps3b8LV1RVGRkawt7dHeno6AM2fhbrvryZeXl6wt7dvt7ylpQW7du1CREQEzM3N4erqCg8PD+zcubNHcTWNT5gwARcuXMD48eNhaGiI1atXQyQS4dq1awM6b3R0NLZs2QI7OzsYGhpi69atWLp0KT/u6OiIQ4cOaZVLE5FIhDlz5uC7777rlXiEEOEMqUYtLi4Oa9aswfHjx7F69WpcvnwZIpEISqUSbm5umDFjBsrLyxEWFgYvLy8olUr8/PPPOHr0KK5fv45bt27hp59+wsWLF/lYrZqamjB79mzMmTMHd+/ehUKhwI0bNwAAhw8fhpubG79uZmZmu7/QN2zYgO+//x6//vorxGIxNmzY0OXtOnXqFLZs2YKLFy9ix44d2Lx5M86ePYvt27erNJSd5Xp+m1pfp6WlISoqCvn5+cjNzeWbh97QNqemfK2HgY8ePYqEhAQUFRXhwYMHCAsL0zjHycnJcHNzw549e8AYw5IlS3ptGzpSWFiIsWPHqixTKBQ4ePAgzp49i8jIyHbvUSqVePfdd+Ho6IiSkhKEh4fjvffew507d9TOjbrvb0+Ul5ejqqpK5WHvdnZ2/X5VdW1tLRhjmDJlyoDNe+/ePdy5cwfFxcVQKBQYM2YMgoKC0NTUxK8jl8v557j2hoCAAOzfv7/X4hFChDGkGrVW06ZNw9SpU2FjY4O0tDRkZ2ejvLwcn3zyCSQSCfz8/CCRSPDDDz9g+PDhqKysxLlz52BgYIDDhw/jtddeaxczKysLdXV1CAsLw6hRo7Bw4UKYmJhoXVNeXh5eeeUVGBsb46OPPkJWVlaXt2v69Ol45ZVX8NJLL2HixImYNm0apFIpPDw8UFlZidra2m7lcnJygq2tLSwtLTF16lQUFRV1ubau0JRv1qxZmDRpEmQyGVatWoXk5ORu5woNDcWiRYt6WrKKJ0+eoKGhocN7njk5OWHr1q3YuHEjTp06pTKWnZ2Ne/fuISIiAkZGRvDy8sLkyZNx4MABlfc/Pzfqvr89UVlZCeDZUxBaGRkZ4f79+z2K21VbtmzB+vXr+/12E72Zt3XOzpw5g8uXL+P8+fPIysrCpk2b+HXEYnGv3gNSLpfDzMwMFy9e7LWYhJD+NyQbtef/4i0pKUF9fT2GDx/On9xdUFCA27dvY8qUKdi2bRvCwsIgk8kQGhqKx48ft4tZWloKqVQKkUjEL9P22YuMMYSFhUEul0NPTw/Tp0/v8JmOmowePZr/XV9fn3+tr68P4Nkem+7kkkql/O8GBgY93lOjiaZ8bcfNzc1RV1eHhoaGbuVqaWn5/9i796go7mxf4N9GUaGbh/IQaFgxDDmjRiQYIzlyIYCJxuBISEDQgKKAj/GBGmw1I0Ej+ECG4XCcKIpIYsagEiKjPAweITwkjs4yMQZEEcwRpXkJQgPaCL/7h5e6tkDTPJpuYH/WYi2oX/Xeu6t+wraqugoDfStBTU1N8Pl8NDc3dzm+adMmeHl5wcfHB/fv3+eWl5eXw9DQkNtfwPOjcC9eI9XVtpE3f/uj49YgHQ1+x/dGRkb9itsb8fHxqKurkzkiPBTz6unpAQDWr18PQ0NDWFpaYtWqVUhPT+fWaWpqkvk3PBD8/f0RHx8/oDEJIYNrRDZqL7OwsICBgQEYYzJfQUFBAJ5fmHv79m1kZmYiIyOjy+ubTE1NUVtbi9bWVm7Zi0cexowZI3Oao+NoBQCkpqYiPj4e2dnZaGtrQ0FBwYA3D6rIpSyVlZXc9xUVFdDR0QGfz5e7jQGAx+N1ihUVFaXwNVe9YWVlJVPny+Li4mBqaopFixZx15lZWFigpqZGpjF98OABzM3N5ebqaf721cSJE2FgYCBzjdaNGzcwderUfsVV1FdffYUrV65wN3kdLMrIKxQKoaWl1en6zlGjRnHfi8ViWFlZDVhO4PknnS9evCjze4kQMrRQo4bnpwz19fURHR0NiUSCwsJC2NnZ4eeff0ZSUhI2btwIiUQCS0tLmSMaL3J0dISOjg4iIiIgkUiQkJAAsVjMjVtaWiIjIwMSiQQnT55EY2MjN9be3s59PXnyBKmpqUp7r4OZS1nS0tJw48YNVFVVISoqCt7e3gDkb2MAGD9+PMrKynDp0iXuETzKOPUJAB9//DEuX77c7Tifz0dycjKKioq4I5oODg4wMzNDeHg4GhsbkZycjOvXr2PJkiVyc8mbv/2hoaGBgIAAhIWFQSwWIysrCykpKQgMDOxXXEWcOHECeXl53K1N8vLyBuUmrsrKq6mpCT8/P0RGRqKqqgqlpaWIjY2V+bRzfn4+PD09+53rRaNHj8bs2bPlzkVCiJpjw8yUKVO6HQsNDWUAGAD25ptvyowVFxczZ2dnxufz2aRJk1h8fDxjjLHm5mYmEomYmZkZ09PTYz4+Pqy5uZkFBQVxsYKCghhjjOXn57OpU6cyPp/PtmzZwuzs7BgAdubMGVZWVsZsbW2ZQCBge/bsYTY2NgwAS09PZ8+ePWMrVqxgOjo67LXXXmM7duxgAJiNjQ3z8vLi8uzevbvH97V7927m6urK/ZyVlcX09PS4n+vr67vN9fJ7ejnu2rVruZ+PHj3aZS1ZWVlszZo1Cu+vF3O++NVdPn9/f7Zt2zbm4uLC+Hw+c3NzY3V1dYwxJncbd9RmbGzMTExMWE5ODmOMsU2bNrGAgACF62WMsTVr1rCsrCy569TX1zM7OztWU1PDDh06xL0PLy8vmfVSUlLYW2+9xf1869Yt5uzszAQCAbO2tmYXLlxgjHXexy9vm+7mL2OMbdu2ja1du7bbWs+dOyez7fX09Lix5uZmtnTpUqatrc3MzMxk4vYUW15ceeN37txhGhoanebEgQMHhnTex48fMy8vL6atrc1MTU2ZSCRiUqmUMcZYcnIyCwwM7DLuiw4ePMgOHjzY43ovOnPmDNu6dWuvXkMIURtVI6pRI8rX20att/z9/dnevXuVFl8RijRqjD3/wx8SEqL8gnpgb2/PNXxDKfZIyVtRUcG2bt3KWlpaely3L41adXU1s7e372t5hBDVqho9EEflCCGdWVlZ4YsvvlBpDefPn4ezszPmzp07pGKPpLwmJiZKfUScoaEh6uvr0draKvNhJ0LI0ECN2hDS1cXwAIbchwH6ytvbG6dOnQIAPHv2DDt27FBxRepvwYIFWLBgwZCLTXkH1pQpU3D79m28/vrrqi6FENJL9GGCIYS99Km+jq+RIjExkXvP1KQRorhXX30VZWVlqi6DENIH1KgRQsgwN2nSJPzv//6vqssghPQBNWqEEDLM6erq9ur5wYQQ9THsrlFraGgY8HsREcVVV1ejqqpqWO+DwsJCFBYWDuod+gkBgLt378Lf37/Xr+Pz+X1+egchRLWGXaPG5/Oxc+dOVZcxYl29ehUXLlwY1teQhYWFYd68eXjrrbdUXQoZYb799ts+vU4qldInPgkZooZdozZq1Cj6ZJMKVVdXY/z48cN6H4wfPx6TJk0a1u+RqCdTU9M+va6pqQkCgWCAqyGEDAa6Rm2QzJw5EzweD+fPn+9XHG9vb/B4PKXed4kMjJKSEnz++eeqLoOoObFYjO3bt+PJkydKzTFx4kSlxSeEKM+Ia9QSExPB4/FkvvT19eHp6ck9c7Gv/Pz8kJKS0uXYtWvXYGdn16/4wPP6O65R6XgeIY/HQ3x8fKd1m5qaYGRkBB6PBw8Pjx5jy6tfHSxYsAAJCQlqG+9Fjx8/hq+vL4KCgrj9pKmpidzcXG4dsVjM7b9x48YppQ5F1NfXY9++fXj11Vdx+PBhmbGWlhYsW7YMfD4f5ubmOH78+IDElTfOGMOJEycwefJkaGlp4Y033kBaWtqQzwsAMTExsLS0hJ6eHvz8/FBfXw8TExPMmjULGzZsUDhXb5WVleHVV19VWnxCiPKMuEbN29sbBQUFGDt2LBhjaG9vx08//YRr165h165d/YqdkJAg85BlZVu9ejUKCgowZswYhIeH49mzZzLjX375JRoaGvCXv/wFSUlJPcYb7PqHs5iYGLz33nswMDDA6tWrkZubi7a2Nnh7e6OqqgrA8zvSM8Ywb948pR5N6UlmZibmz58PoVDYaWzXrl24e/cuSkpK8PXXX2P9+vX49ddf+x1X3vjvv/+OmJgYXLhwAbW1tfD19cVHH32E8vLyIZ03NjYWR44cwdmzZ1FRUQFjY2N88803AAB3d3fk5eWhsLBQoVy9VVxcjNdee00psQkhyjXiGrWX8Xg8TJ48Gc7OzigqKuKWFxcXw8nJCXw+H9bW1igoKODGtm/fDkNDQxgbGyMyMhJtbW3YuHEjeDwegoODufUKCgowbdo06OrqynzAwcPDAzwejzua4+TkBB6Ph4sXL3LrpKWlYfr06dDX14eXl5fcj9YvXboUDx8+xD/+8Q9uWUtLC7777jvMmzdPZt3u4r5cf8fP69atg5ubGwQCATw8PNDW1taLrdu127dvw8XFBbq6urCxsUFmZmaP28Xb2xupqalYvnw5eDweDh8+zJ0GDg4OhpOTEwQCAdzd3VFfX9+neAPpu+++w+zZs2WWrVq1Cm1tbViyZAna29t7tW162h/y5mtPPD09YWNj02l5e3s74uLiEBISAlNTU7i4uMDNzQ1Hjx7tV9yexidNmoSrV6/ilVdegba2Nj799FNoamri5s2bQzrvvn37sH//fkyfPh3a2tqIiIjAunXruHF7e3ucOXNGoVy98ezZMzx69AjGxsYDHpsQonwjvlFjjOH27dvIzs6Gi4sLgOefkHJ1dcWcOXNQWVkJkUgET09PSKVS/Otf/8LZs2dRWFiIO3fu4KeffsL169cRHR2NrVu3cnFbWlrg7u6OxYsX48GDBxAKhVwjmJSUBFdXV27d7OzsTr/gd+/ejVOnTuH3338Hn8/H7t27u30PQqEQ69atQ3h4OPeH+/Dhw/jzn/+MMWPGKBT35fo7fk5PT0dYWBhu3bqF/Px8rnHoK6lUig8++AD29vYoLy/Hjh07sHDhQty7d0/udklMTISrqyuOHz8OxhhWr17NnQY+e/YsDh48iNLSUjx69AgikQiA/O3cVbyBVFJS0umaIKFQiNOnT+PHH39EaGhor7aNvP0hb772R2VlJWpra2Ftbc0tmz59utKO+nSnoaEBjDHMmDFjyOZ9+PAh7t27h7KyMgiFQhgZGWHNmjVoaWnh1jExMUFJSUm/c73sl19+oQ++EDKEjdhG7enTp+DxeNDQ0IC1tTVEIhHXqOTm5qKyshKfffYZBAIBfH19IRAI8MMPP2D06NGoqanB5cuXoaWlhaSkJMycObNT/JycHDQ2NkIkEkFHRweBgYHQ19dXuL6CggJMmTIFenp6WLFiBXJycuSuv23bNlRWVuLbb7/F06dPkZaWBh8fn37HdXR0hLW1NczNzTFr1iyUlpYq/B66kpubi4cPHyIkJAS6urrw9PSEra0tTp482eeYH374IaZNmwZjY2Ns3rwZiYmJfY4VHByMlStX9vn1ANDa2oqmpiZoa2t3GnN0dERERATCw8ORkZEhM6bItulqf8ibr/1RU1MD4PnNUjvo6uqiurq6X3F7a//+/di5c+egHxEayLwd2+zixYv45ZdfcOXKFeTk5GDPnj3cOnw+H48ePep3rpdduHBh0B9gTwgZOCO2Ueu4Rq2urg4BAQE4cuQIdzSqvLwcEokEo0eP5i72Li4uxt27dzFjxgwcOHAAIpEIxsbGCA4OxtOnTzvFr6iogIGBgcy9i0xMTBSqjTEGkUgEExMTaGhowMHBoccPOhgYGCA4OBjh4eGIjY3F2rVroaEhu3v7GreDlpZWv4/SlJeXw9DQUOZIn1AoVPg6oJ5qNDU1RWNjY59v7tne3t7v56dqamqCz+ejubm5y/FNmzbBy8sLPj4+uH//PrdckW3T1f6QN1/7w9DQEMDzI0sdGhoaBvVGv/Hx8airq5O5pGAo5tXT0wMArF+/HoaGhrC0tMSqVauQnp7OrdPU1IQJEyYMSL4XZWRk4P333x/wuISQwTFiG7UO+vr6+Otf/wqxWMxde2NhYQEDA4NODz8PCgoC8PzTkbdv30ZmZiYyMjK6vL7J1NQUtbW1aG1t5Za9eCRizJgxMqc9Oo5eAEBqairi4+ORnZ2NtrY2FBQUKNQ8bNq0CbW1tUhKSsKHH37YabyvcQeShYUFampqZBq+Bw8ewNzcHID87cLj8bqMWVlZyX1fUVEBHR0d8Pn8PsWLiopS+BoseaysrGTqellcXBxMTU2xaNEi7j8IPW2b7vQ0X/tq4sSJMDAwkLlG68aNG5g6dWq/4irqq6++wpUrV/D3v/99UPIpM69QKISWllanazxHjRrFfS8Wi2FlZTVgOQHg3r17XH5CyNA04hs1ABg3bhw2b96M0NBQNDQ0wMHBAfr6+oiOjoZEIkFhYSHs7Ozw888/IykpCRs3boREIoGlpaXMEY4XOTo6QkdHBxEREZBIJEhISIBYLObGLS0tkZGRAYlEgpMnT6KxsZEba29v576ePHmC1NRUhd6HQCBASkoKjhw50uV4X+MOJAcHB5iZmSE8PByNjY1ITk7G9evXsWTJEgDyt8v48eNRVlaGS5cuYfHixdzytLQ03LhxA1VVVYiKioK3tzc31tt4A3HqEwA+/vhjXL58udtxPp+P5ORkFBUVcUc1e9o23ZE3X/tDQ0MDAQEBCAsLg1gsRlZWFlJSUhAYGNivuIo4ceIE8vLyuFub5OXlITIycsjm1dTUhJ+fHyIjI1FVVYXS0lLExsbKfMo6Pz9/wB+9Fh8fj+XLlw9oTELIIGPDzJQpU+SOf/vttwwA93X16lXGGGONjY1swoQJDAA7c+YMKy4uZs7OzozP57NJkyax+Ph4xhhjzc3NTCQSMTMzM6anp8d8fHxYc3MzCwoK4mIGBQUxxhjLz89nU6dOZXw+n23ZsoXZ2dlx8cvKypitrS0TCARsz549zMbGhgFg6enp7NmzZ2zFihVMR0eHvfbaa2zHjh0MALOxsWFeXl5cntdff5373t/fv9N7ffPNN7nxZcuWyY37cv2hoaHcz7t372Zr167lfj569Gi32zcrK4utWbNG7j64desWc3Z2ZgKBgFlbW7MLFy5wY/K2S1ZWFjM2NmYmJiYsJyeHMcaYv78/27ZtG3NxcWF8Pp+5ubmxurq6PsfbtGkTCwgIkFv/mjVrWFZWltx16uvrmZ2dHaupqWGHDh3itp2Xl5fMeikpKeytt97qcdv0tD+6m6+MMbZt2za2du3abms9d+6czL8JPT09bqy5uZktXbqUaWtrMzMzM5m4PcWWF1fe+J07d5iGhobMGAB24MCBIZ338ePHzMvLi2lrazNTU1MmEomYVCpljDGWnJzMAgMDu4z7ooMHD7KDBw/2uB5jjLW1tbGpU6eyhoYGhdYnhKilqhHXqBHlUqRRG0j+/v5s7969g5aPMcUaNcae/+EPCQlRfkE9sLe3l2mGh0rskZK3oqKCbd26lbW0tPS4bm8atbS0NIWaP0KIWquiU5+EKImVlRW++OILldZw/vx5ODs7K+VTf8qMPZLympiYYN++fQP+dIq4uDjuKSaEkKFr2D2UnYwc3t7eOHXqFIDnN/XcsWOHiitSPwsWLMCCBQuGXGzK2z9FRUWorKwckMfWEUJUixo1MmQlJib2655phAxXYWFh9B8XQoYJOvVJCCHDyJ07d3D37t1Oj48jhAxN1KgRQsgw8sUXX+Dzzz/v9r6DhJChZdid+mxubpZ5ADoZXPfv30dxcfGw3gc3btzA06dPkZ2dPSj5JBIJBALBoOQi6u3q1av44IMPuh0vKSnB7du3MX/+/EGsihCiTDzGBvnW9Er2z3/+E0+ePFF1GYQMmGPHjkEqlWLFihUYO3asqsshKvbmm2/iD3/4Q5djixYtgp+fn9xmjhAypFQPu0aNkOHo66+/RnR0NL766itYW1uruhyihi5duoT9+/fjwoULqi6FEDJwqFEjZKi4fv06li1bhnXr1g3IY67I8PHs2TO8/fbb+Mc//oE//vGPqi6HEDJwqunDBIQMEba2tsjPz0dWVhaWLl2KpqYmVZdE1ERMTAzmzp1LTRohwxA1aoQMITo6Ovj222/x7rvvwsHBAb/++quqSyIqdufOHSQkJOAvf/mLqkshhCgBNWqEDEFLly7FsWPH8Mknn+DIkSOqLoeoyLNnz+Dn54eDBw+Cz+eruhxCiBLQNWqEDGGNjY1YuXIlNDU1cejQIfpjPcJ88cUXkEqlCAsLU3UphBDloGvUCBnK6FToyPXTTz8hNTUVn3/+uapLIYQoER1RI2SYoE+FjhyVlZV499138f3338PKykrV5RBClIduz0HIcEKnQoe/1tZWzJ07F1u2bKEb2xIy/NGpT0KGEzoVOvwFBQVh7ty51KQRMkLQETVChik6FTr8REZG4t///jdOnjxJD10nZGSgU5+EDGd0KnT4OHnyJI4dO4a0tDR65ishIwed+iRkOKNTocPD//zP/+Bvf/sbvvvuO2rSCBlh6IgaISMEnQodmrKzs7Fx40ZkZGTAxMRE1eUQQgYXnfokZCShU6FDS05ODjZu3Ih//vOfMDc3V3U5hJDBR6c+CRlJ6FTo0PHDDz9gw4YNOHfuHDVphIxgdESNkBGKToWqr++//x67d+9GamoqTE1NVV0OIUR16NQnISMZnQpVP8eOHcPx48fx/fffw8jISNXlEEJUi059EjKS0alQ9cEYw86dO3Hu3Dn88MMP1KQRQgDQqU9CyP9Dp0JVp6WlBf7+/tDX18d///d/Y9SoUaouiRCiHuiIGiHkOVtbW+Tn5yMrKwtLly5FU1OTqksaEcrLyzFnzhzY2Njg5cprbgAAIABJREFUyy+/pCaNECKDGjVCCEeRU6Hl5eUqqGzoe/LkSadlubm5eP/997F3715s3bpVBVURQtQdNWqEkE6WLl2KY8eO4ZNPPsGRI0e45UeOHMHbb7+NlpYWFVY39Pz73//GrFmz0NraCuD59WgRERHYsmULzp8/j3feeUfFFRJC1BVdo0YI6daLnwrdsGED5s2bh6amJvj6+uLo0aOqLm9IqKurw7Rp01BbW4sNGzZAJBJh2bJlMDAwQGxsLLS0tFRdIiFEfdHtOQghPYuOjkZYWBhqa2sBAOPHj8f3339PR4J6wBjDu+++i7y8PEilUkyYMAFGRkYIDw/Hxx9/rOryCCHqjz5MQAjpWU5OjsyHC+rq6vDJJ59AIpGosCr1FxYWhmvXrkEqlQIAHj16hNbWVixcuFDFlRFChgpq1Aghch09ehSZmZmdLoavrq7GunXrVFSV+isoKMDf/vY3NDQ0yCwXi8UIDQ1VUVWEkKGGGjVCiFyGhoZ4++23YWhoiPHjx3PLpVIp/vnPfyI7O1t1xamp6upqfPTRR6irq5NZLhAIoKWlhbNnz9LRSEKIQugaNUKIQp48eYKLFy8iPj4eeXl54PF4qK6uhpGREe7evQuBQKDqEtVCe3s7Zs+ejatXr0JLSwtaWloYO3Ys7O3t4enpCScnJxgaGqq6TELI0EAfJhhMBQUFiIqKUnUZMhoaGsDn84f1TTbr6upkjgSR/mOMoaamBr///jsePnwIc3NzzJgxQ9VlqYXCwkKUlZXB0NAQQqEQRkZGGDt2rKrLIiOUhYWF2v3dIb1SPVrVFYwk9+/fh7GxMf785z+ruhTO5s2bsWzZMlhZWam6FKVZuHAh/uu//kvVZQxrRUVFsLKygqampqpLUblHjx5hwoQJqi6DEACAp6cnNWpDHDVqg8zIyAivv/66qsvg6OrqwsrKSq1qGmhjx44d1u9PHdD2JYQQ5aAPEwxRM2fOBI/Hw/nz5/s0Tv6/cePGgcfjwcnJiVtWUlKCzz//XHVFkSFDLBZj+/btXT4iSh6aY0RRL8+xmpoa8Hg88Hg8eHt7q7g6omzUqA1R165dg52dXZ/H+8rPzw8pKSkDHvdlCxYsQEJCgtLzdCgqKuI+vfj48WP4+voiKCgIAHD48GHweDxoamoiNzeXe41YLOZ+WY4bN27Qan1ZfX099u3bh1dffRWHDx+WGWtpacGyZcvA5/Nhbm6O48ePD0hceeOMMZw4cQKTJ0+GlpYW3njjDaSlpQ35vAAQExMDS0tL6Onpwc/PD/X19TAxMcGsWbOwYcMGhXO9OMeG8vwClDfH5I0pc1+rKi/Q9fwC0GmOGRoagjGGvXv3KpybDF3UqJFeSUhIgJubm6rLUKqYmBi89957MDAwAACsXr0aubm5aGtrg7e3N6qqqgA8/+XJGMO8efN6fTRlIGVmZmL+/PkQCoWdxnbt2oW7d++ipKQEX3/9NdavX9/lg9Z7G1fe+O+//46YmBhcuHABtbW18PX1xUcffaTww9zVNW9sbCyOHDmCs2fPoqKiAsbGxvjmm28AAO7u7sjLy0NhYaFCuV6cY0N5fgHKm2PyxpS5r1WVV978Ano/x8jwQY2amklLS8P06dOhr68PLy8vPH78mBsrKCjAtGnToKuri507d3Z6bU/j/bVx40bweDwEBwfL/Lxu3Tq4ublBIBDAw8OD+4PTsa6TkxMEAgHc3d25/yF6eHiAx+NxR82cnJzA4/Fw8eJFeHt7IzU1FcuXLwePx+v26IayfPfdd5g9e3an5atWrUJbWxuWLFmC9vb2Ll97+/ZtuLi4QFdXFzY2NsjMzAQgf1sBQHFxMZycnMDn82FtbY2CggKF6/X09ISNjU2n5e3t7YiLi0NISAhMTU3h4uICNzc3hZ/R2V3cnsYnTZqEq1ev4pVXXoG2tjY+/fRTaGpq4ubNm0M67759+7B//35Mnz4d2traiIiIkLnhr729Pc6cOaNQrq7mmDLnF9D3OSZvuyhzjskbU+a+VlXenuYX0Ls5RoYPatTUzO7du3Hq1Cn8/vvv4PP52L17N4Dnpxfc3d2xePFiPHjwAEKhEEVFRdzrehofCNHR0di6dWunn9PT0xEWFoZbt24hPz8fmZmZSExMhL+/P86ePYuDBw+itLQUjx49gkgkAgAkJSXB1dWVi5Wdnc39AktMTISrqyuOHz8OxhhWr149oO+jJyUlJZg4cWKn5UKhEKdPn8aPP/7Y5Z3lpVIpPvjgA9jb26O8vBw7duzAwoULce/ePbnbSiqVwtXVFXPmzEFlZSVEIhE8PT25xw71VWVlJWpra2Ftbc0tmz59+qD/j7yhoQGMsUG/fcdA5n348CHu3buHsrIy7pYba9asQUtLC7eOiYkJSkpKFIrX1RxT1vzqeC3NMfXNq8j8Ano3x8jwQY2amikoKMCUKVOgp6eHFStWICcnB8DzZy02NjZCJBJBR0cHgYGB0NfX517X07gyOTo6wtraGubm5pg1axZKS0u5sQ8//BDTpk2DsbExNm/ejMTExD7nCQ4OxsqVKwei5G61traiqakJ2traXY47OjoiIiIC4eHhyMjIkBnLzc3Fw4cPERISAl1dXXh6esLW1hYnT56Uef3L2yo3NxeVlZX47LPPIBAI4OvrC4FAgB9++KFf76WmpgbA80/2dtDV1UV1dXW/4vbW/v37sXPnThgbGw/ZvB3b7OLFi/jll19w5coV5OTkYM+ePdw6fD4fjx496jGWvDmmjPnV8VqaY+qbV5H5BSg+x8jwQo2aGmGMQSQSwcTEBBoaGnBwcOAeQVNRUQEDAwOZ+1SZmJhw3/c0rkwd13IBgJaWlsz/0l8cMzU1RWNjo8zDvXujvb0dyr4/s6amJvh8Ppqbm7tdZ9OmTfDy8oKPjw/u37/PLS8vL4ehoSHGjBnDLRMKhTLXr3S1rcrLyyGRSDB69Gju4vHi4mLcvXu3X++l4+73Lz5rsqGhAUZGRv2K2xvx8fGoq6vjTpcP1bx6enoAgPXr18PQ0BCWlpZYtWoV0tPTuXWampoUun9aT3NsoOdXx2tpjqlvXkXmF6D4HCPDCzVqaiQ1NRXx8fHIzs5GW1sbCgoKuMbE1NQUtbW1aG1t5dZ/8X+tPY2rSmVlJfd9RUUFdHR0wOfzAQBjxoyRObTf8b9zAODxeJ1iRUVFKXztS39YWVnJ1N2VuLg4mJqaYtGiRdx1QBYWFqipqZFpVB88eABzc3O5sSwsLGBgYADGmMxXx6dO+2rixIkwMDCQuX7mxo0bmDp1ar/iKuqrr77ClStX8Pe//31Q8ikzr1AohJaWlsw1XwBknughFosVvnF0T3NsIOdXx2tpjqlvXkXmF9C7OUaGD2rU1Eh7ezv39eTJE6SmpnJjjo6O0NHRQUREBCQSCRISEiAWixUeV5W0tDTcuHEDVVVViIqKkrnnj6WlJTIyMiCRSHDy5Ek0NjZyY+PHj0dZWRkuXbqExYsXAxicU58A8PHHH+Py5cty1+Hz+UhOTkZRURF31NPBwQFmZmYIDw9HY2MjkpOTcf36dSxZskRuLAcHB+jr6yM6OhoSiQSFhYWws7PDzz//3K/3oaGhgYCAAISFhUEsFiMrKwspKSkIDAzsV1xFnDhxAnl5edytJ/Ly8hAZGTlk82pqasLPzw+RkZGoqqpCaWkpYmNjZT4BnZ+fD09PT4Xi9TTHBnJ+dbyW5pj65lVkfgG9m2NkGGFk0Jw6dYqFhoZ2O/7s2TO2YsUKpqOjw1577TW2Y8cOBoDZ2NgwxhjLz89nU6dOZXw+n23ZsoXZ2dkxAOzMmTMKjXfFw8OD3bx5U6H6g4KCGAAGgAUFBbHQ0FDu5927d7O1a9dyPx89epT5+/uzbdu2MRcXF8bn85mbmxurq6vj4pWVlTFbW1smEAjYnj17mI2NDQPA0tPTWVZWFjM2NmYmJiYsJyeHMcbYpk2bWEBAgEK1vmjKlClyx8eOHcuKioq4n+vr65mdnR2rqalhjDF26NAh7n15eXnJvDYlJYW99dZb3M+3bt1izs7OTCAQMGtra3bhwgXGGOtxWxUXFzNnZ2fG5/PZpEmTWHx8PBdz27ZtbO3atd3Wf+7cOS4WAKanp8eNNTc3s6VLlzJtbW1mZmYmE7en2PLiyhu/c+cO09DQkBkDwA4cODCk8z5+/Jh5eXkxbW1tZmpqykQiEZNKpYwxxpKTk1lgYKBCeRiTnWODMb8YY32eYz1tF3lzrD9zV95YT/t6KOaVN78Y6zzHGGNs7969nebMy3r6/UfUXhU1aoOop0ZNFXrTqPWWv78/27t3r1Ji94YijRoA9s4773DL7ty5w0JCQpRcmWLs7e25P8hDKfZIyVtRUcG2bt3KWlpaepVnJMyx4bSfVZn35TlWXV3dbXP/MmrUhrwqetYnGfG6upmolZUVvvjiCxVUI+v8+fNwdnbG3Llzh1TskZTXxMQE+/bt63We4T7Hhtt+VmXel+dYx5MJyMjAY7S3B83p06dRWFiolJvR9pWnpyd27tw54A/V9vb2xqlTpwA8vzfcjh07BjR+b0ydOpXu5k0IGZHo99+QV01H1IhSJCYm9uueaYQQQgihT30SQgghhKgtatQIIYQQQtQUnfocZJcvX1ara9SKi4vx5ZdfDuqdxAfbo0eP1GqbE0LIYHn5eaFk6KFGbZAZGBgM2l27FZGZmQlLS0tYWFiouhSl0dTUVKttTgghg+XlpxuQoYcatUH2xz/+EYsWLVJ1GZwzZ87g/fffH/BPfaqTnTt3qtU2J4SQwUJnE4Y+ukaNEEIIIURNUaM2hM2cORM8Hg/nz5/v1RghylBSUoLPP/9c1WUQNScWi7F9+/YubzRNCOmMGjU1FR8fD11dXTQ1NXW7zrVr12BnZ9frscGyYMECJCQkqG08MnAeP34MX19fBAUFcQ+r1tTURG5uLreOWCwGj8cDj8fDuHHjVFZrfX099u3bh1dffRWHDx+WGWtpacGyZcvA5/Nhbm6O48ePD0hceeOMMZw4cQKTJ0+GlpYW3njjDaSlpQ35vAAQExMDS0tL6Onpwc/PD/X19TAxMcGsWbOwYcMGhXMRMpJRo6am/vGPf6C9vR2nT59WdSmE9CgmJgbvvfceDAwMsHr1auTm5qKtrQ3e3t6oqqoC8PwxOIwxzJs3T6VHUzIzMzF//nwIhcJOY7t27cLdu3dRUlKCr7/+GuvXr8evv/7a77jyxn///XfExMTgwoULqK2tha+vLz766COUl5cP6byxsbE4cuQIzp49i4qKChgbG+Obb74BALi7uyMvL4/umE+IAqhRU0NFRUUwNDTEhx9+iLi4OJmxgoICTJs2Dbq6up0uEpU31le3b9+Gi4sLdHV1YWNjg8zMTACAh4cHeDwed4TLyckJPB4PFy9eBPD8EVKpqalYvnw5eDweDh8+DG9vb/B4PAQHB8PJyQkCgQDu7u6or6/vUzyiPr777jvMnj1bZtmqVavQ1taGJUuWoL29vcvXdTe/Nm7cCB6Ph3Xr1sHNzQ0CgQAeHh5oa2sD8Py2Mk5OTuDz+bC2tkZBQYHCtXp6esLGxqbT8vb2dsTFxSEkJASmpqZwcXGBm5sbjh492q+4PY1PmjQJV69exSuvvAJtbW18+umn0NTUxM2bN4d03n379mH//v2YPn06tLW1ERERgXXr1nHj9vb2OHPmjEK5CBnJqFFTQ3Fxcfjkk0/g4+ODy5cvo6ioCMDz0zLu7u5YvHgxHjx4AKFQqNBYX0mlUnzwwQewt7dHeXk5duzYgYULF+LevXtISkqCq6srt252drbML+3ExES4urri+PHjYIxh9erVSExMhL+/P86ePYuDBw+itLQUjx49gkgk6lM8oj5KSkowceJEmWVCoRCnT5/Gjz/+iNDQ0E6vkTe/oqOjsXXrVqSnpyMsLAy3bt1Cfn4+MjMzIZVK4erqijlz5qCyshIikQienp6QSqX9eg+VlZWora2FtbU1t2z69OmDftSnoaEBjDHMmDFjyOZ9+PAh7t27h7KyMgiFQhgZGWHNmjUy9/QyMTFBSUlJv3MRMtxRo6ZmWltbkZ6ejvnz5+O9996DsbExd1QtJycHjY2NEIlE0NHRQWBgIPT19Xsc66vc3Fw8fPgQISEh0NXVhaenJ2xtbXHy5Ml+xf3www8xbdo0GBsbY/Pmzf16JmhwcDBWrlzZr3pI/7S2tqKpqQna2tqdxhwdHREREYHw8HBkZGTIjCkyvxwdHWFtbQ1zc3PMmjULpaWlyM3NRWVlJT777DMIBAL4+vpCIBDghx9+6Nf7qKmpAQDo6upyy3R1dVFdXd2vuL21f/9+7Ny5E8bGxkM2b8c2u3jxIn755RdcuXIFOTk52LNnD7cOn8/Ho0eP+p2LkOGOGjU1k5KSAicnJ2hqamLUqFHw8vLC119/DalUioqKChgYGEBTU5Nb38TEBADkjvVVeXk5DA0NMWbMGG6ZUChU+BqW7hgYGHDfm5qaorGxUe6HJuRpb28HY6xf9ZD+0dTUBJ/PR3Nzc5fjmzZtgpeXF3x8fHD//n1uuSLz68W5oqWlBalUivLyckgkEowePZr7cEJxcTHu3r3br/dhaGgI4PmRpQ4NDQ2D+tSO+Ph41NXVITg4eNByKiOvnp4eAGD9+vUwNDSEpaUlVq1ahfT0dG6dpqYmTJgwYUDyETKc0Q1v1cyxY8eQkZGBQ4cOySxPSUmBqakpamtr0drayjVkHf9zlTfWVxYWFqipqYFUKuX+mD548AC2trYAgDFjxsicyug4ItGBx+N1GbeyspL7vqKiAjo6OuDz+X2KFxUV1ct3RZTByspKZr++LC4uDm+//TYWLVoEgUAAoOf51R0LCwsYGBh0mh/9NXHiRBgYGODmzZswMzMDANy4cWPQnmrx1Vdf4cqVK4N+/aUy8gqFQmhpaXHXFHZ48S75YrEYVlZWA5aTkOGKjqipkfLycjQ0NKC1tRWMMTDG0NraitmzZyMuLg6Ojo7Q0dFBREQEJBIJEhISIBaLAUDuWF85ODjAzMwM4eHhaGxsRHJyMq5fv44lS5YAACwtLZGRkQGJRIKTJ0+isbFR5vXjx49HWVkZLl26hMWLF3PL09LScOPGDVRVVSEqKgre3t59jkenPtXDxx9/jMuXL3c7zufzkZycjKKiItTV1QHoeX51x8HBAfr6+oiOjoZEIkFhYSHs7Ozw888/9+s9aGhoICAgAGFhYRCLxcjKykJKSgoCAwP7FVcRJ06cQF5eHndrk7y8PERGRg7ZvJqamvDz80NkZCSqqqpQWlqK2NhYuLm5cevk5+fD09Oz37kIGfYYGTSnTp1ioaGhXY5VV1czAAwAO3r0KLf86NGj3HI7OzuWn5/Ppk6dyvh8PtuyZQuzs7NjANiZM2fkjnXHw8OD3bx5s9vxW7duMWdnZyYQCJi1tTW7cOECN1ZWVsZsbW2ZQCBge/bsYTY2NgwAS09PZ4wxlpWVxYyNjZmJiQnLyclhjDHm7+/Ptm3bxlxcXBifz2dubm6srq6uz/E2bdrEAgIC5G73KVOmyB0n/VdfX8/s7OxYTU0NO3ToEDdnvby8ZNZLSUlhb731Fvdzd/MrNDSUi7F79262du1amX8fxcXFzNnZmfH5fDZp0iQWHx/Pxdy2bRtbu3Ztt7WeO3eOiwWA6enpcWPNzc1s6dKlTFtbm5mZmcnE7Sm2vLjyxu/cucM0NDRkxgCwAwcODOm8jx8/Zl5eXkxbW5uZmpoykUjEpFIpY4yx5ORkFhgY2GVcMrDo99+QV0WN2iCS16ipSk+N2kDz9/dne/fuHbR8jNEvqsFy584dFhISouoymL29vcx/KIZK7JGSt6Kigm3dupW1tLQMaFzSNfr9N+RV0TVqhJABYWVlhS+++EKlNZw/fx7Ozs6YO3fukIo9kvKamJhg3759AxqTkOGMGjUyaLy9vXHq1CkAwLNnz7Bjxw4VV0SGmwULFmDBggVDLjblJYR0hxo1MmgSExP7dc80QgghZKShT30SQgghhKgpOqI2yH777Te1etB6eXk5MjIy8Ntvv6m6FKVpaGhQq21OCCGEKIrHGN3WfbD89ttvavcQ4qdPn2LMmDHd3px2OHjy5AnGjRun6jJIP1y8eBFvvvkmxo8fr+pSCBlSjIyMsHbtWlWXQfqumho1QojaW7RoEUJDQ/H666+ruhRCCBlM1XSNGiGEEEKImqJGjRBCCCFETVGjRgghhBCipqhRI4QQQghRU9SoEUIIIYSoKWrUCCGEEELUFDVqhBBCCCFqiho1QgghhBA1RY0aIYQQQoiaokaNEEIIIURNUaNGCCGEEKKmqFEjhBBCCFFT1KgRQgghhKgpatQIIYQQQtQUNWqEEEIIIWqKGjVCCCGEEDVFjRohhBBCiJqiRo0QQgghRE1Ro0YIIYQQoqaoUSOEEEIIUVM8xhhTdRGEEPKy9evX46uvvsKoUaPw7NkzjBo1CjweD+3t7bh16xZMTU1VXSIhhChbNR1RI4SoJXd3d2hqaqK+vh4SiQSPHz9GfX09LCwsqEkjhIwY1KgRQtSSk5MTRo8eLbNs3LhxWL16tYoqIoSQwUeNGiFELWloaGDhwoXg8XjcMj6fD29vbxVWRQghg4saNUKI2lq5ciUMDAy4n62srGBoaKjCigghZHBRo0YIUVtvvfUWxowZA+D50bS1a9equCJCCBlc1KgRQtTakiVLMGrUKIwbNw7u7u6qLocQQgYVNWqEELXm7+8PTU1NzJgxAwKBQNXlEELIoBrd8yqE/H+pqam4evWqqssg/49UKsXo0aOhoTF8/8/15MkT8Pl8TJgwATt37lR1OWSE2bJlC/h8vqrLICMYNWqkV1JTU2FsbIypU6equhQC4NixY/jP//zPYb0/Nm/eDA8PDzg4OEBTU1PV5ZARZNeuXfjzn/9MjRpRKWrUSK85OTnByclJ1WUQANnZ2cN+f+zcuROHDh2SuU0HIYPhyy+/VHUJhNA1aoQQ9UdNGiFkpKJGjRAFzZw5EzweD+fPn1d1KeQlJSUl+Pzzz1VdBhkCxGIxtm/fjidPnqi6FEIUQo0aUVt+fn5ISUlRm7zXrl2DnZ2d0vLW19dj3759ePXVV3H48GGl5BjMbbpgwQIkJCQoPc/jx4/h6+uLoKAgAMDhw4fB4/GgqamJ3Nxcbj2xWAwejwcej4dx48Ypva6u9LSPW1pasGzZMvD5fJibm+P48eMDElveGGMMJ06cwOTJk6GlpYU33ngDaWlpQzovAMTExMDS0hJ6enrw8/NDfX09AMDExASzZs3Chg0bFM5FiCpRo0bUVkJCAtzc3EZM3szMTMyfPx9CoVBpOVT13pQpJiYG7733HvcEg9WrVyM3NxdtbW3w9vZGVVUVgOd/oBljmDdvnsqOpvS0j3ft2oW7d++ipKQEX3/9NdavX49ff/2137Hljf3++++IiYnBhQsXUFtbC19fX3z00UcoLy8fsnljY2Nx5MgRnD17FhUVFTA2NsY333zDjbu7uyMvLw+FhYUK5SJElahRIwNq48aN4PF42LBhA7y8vDB27Fi8++67KC4uhpOTE/h8PqytrVFQUMC9Zvv27TA0NISxsTEiIyPR1tbGxQkODgYAJCUlcUdDOr46Gg55sV/25MkT7vXTpk0D8PwPO4/Hg5OTU6e8BQUFmDZtGnR1dbu8NYS83Ldv34aLiwt0dXVhY2ODzMxMudvO09MTNjY2im3oPnj5vXX8vG7dOri5uUEgEMDDwwNtbW0AAG9vb259JycnCAQCuLu7o76+Hh4eHuDxeNwRMycnJ/B4PFy8eJF7bWpqKpYvXw4ej6e0I4QA8N1332H27Nmdlq9atQptbW1YsmQJ2tvbu3xtV/uop+0C9G7OvUjePm5vb0dcXBxCQkJgamoKFxcXuLm54ejRo/2OLW9s0qRJuHr1Kl555RVoa2vj008/haamJm7evDlk8+7btw/79+/H9OnToa2tjYiICKxbt05mHXt7e5w5c0ahXISoEjVqZEBFR0dj69atOH/+PD799FP88ssvYIzB1dUVc+bMQWVlJUQiETw9PSGVSvGvf/0LZ8+eRWFhIe7cuYOffvoJ169f5+K86Ny5c2CMoaamBpMnT0ZUVBSkUmm3sbsybtw43LlzB3w+H5cvXwbw/FTZn/70J2RnZ8vkbWlpgbu7OxYvXowHDx5AKBSiqKiIiyUvt1QqxQcffAB7e3uUl5djx44dWLhwIe7du6ecDa+Al7dpx8/p6ekICwvDrVu3kJ+fzzWUiYmJ8Pf3x9mzZ3Hw4EGUlpbi0aNHEIlESEpKgqurKxcrOztb5o9mYmIiXF1dcfz4cTDGsHr1aqW9r5KSEkycOLHTcqFQiNOnT+PHH39EaGhop/Hu9tHGjRvlbpfezjlFVVZWora2FtbW1tyy6dOnD/pRn4aGBjDGMGPGjCGZ9+HDh7h37x7KysogFAphZGSENWvWoKWlRWY9ExMTlJSU9CsXIYOBGjWiFP/n//wfzJo1C5MnT8Znn32GyspKfPbZZxAIBPD19YVAIMAPP/yA0aNHo6amBpcvX4aWlhaSkpIwc+bMTvE8PDywYMECAEBAQAC2b9+OP/zhD8jNze02dnesrKwwY8YMfPvttwCA/Pz8Lo/I5OTkoLGxESKRCDo6OggMDIS+vj43Li93bm4uHj58iJCQEOjq6sLT0xO2trY4efJkfzftgHN0dIS1tTXMzc0xa9YslJaWyox/+OGHmDZtGoyNjbF582YkJib2OVdwcDBWrlzZ35I5ra2taGpqgra2dpfjjo6OiIiIQHh4ODIyMmTGetpH3W2Xvsw5RdTU1AAAdHV1uWW6urqorq7uV9ze2r9/P3bu3AljY+Mhmbdje128eBG//PILrly5gpycHOzZs0dmPT6fj0ePHvUrFyGDgRo1ohQv/rItLy+rxU/eAAAgAElEQVSHRCLB6NGjudOOxcXFuHv3LmbMmIEDBw5AJBLB2NgYwcHBePr0abdxY2NjMXbsWCxdurTH2PKsWLEC8fHxAIATJ05w8V5UUVEBAwMDmZusmpiYKPS+ysvLYWhoyD1QHHh+hEfR628GU8e1XQCgpaXV6cjQi+OmpqZobGxEU1NTn3K1t7eDMda3QrugqakJPp+P5ubmbtfZtGkTvLy84OPjg/v373PLe9pH3W2Xvs65nhgaGgJ4fmSpQ0NDA4yMjPoVtzfi4+NRV1fHnR4finn19PQAAOvXr4ehoSEsLS2xatUqpKeny6zX1NSECRMm9DsfIcpGN7wlSmdhYQEDAwPuiMHL/Pz84Ofnh6tXr2L58uWwsLDgPsH3olu3biE6OlrmeqCeYnfH09MTGzZswJUrV9DQ0AAzM7NO65iamqK2thatra1cs/bi0Q15uS9duoSamhpIpVKuEXjw4AFsbW17Vac6qKys5L6vqKiAjo4O+Hw+xowZI3M66eXt0NW9z6Kioga8PisrK5kauxIXF4e3334bixYt4p4XamFh0e0+erFZellf51xPJk6cCAMDA9y8eZObjzdu3Bi0p0589dVXuHLlilKvJxyMvEKhEFpaWjLXFALAqFGjZH4Wi8WwsrIakJyEKBMdUSNK5+DgAH19fURHR0MikaCwsBB2dnb4+eefkZSUhI0bN0IikcDS0lLmKMaLpFIpfHx8EBsby51+9PHxkRtbHj6fj0WLFmHJkiXw8PDoch1HR0fo6OggIiICEokECQkJEIvFCr0vBwcHmJmZITw8HI2NjUhOTsb169exZMmSPm5F1UlLS8ONGzdQVVWFqKgoeHt7AwAsLS2RkZEBiUSCkydPorGxUeZ148ePR1lZGS5duoTFixcDGPhTnwDw8ccfc9cbdofP5yM5ORlFRUWoq6sDgD7vo77OuZ5oaGggICAAYWFhEIvFyMrKQkpKCgIDA/sVVxEnTpxAXl4ed2uTvLw8REZGDsm8mpqa8PPzQ2RkJKqqqlBaWorY2NhOn3bOz8+Hp6dnv3IRMigYIb2wZs0alpWV1e14aGgoA8AAsDfffJNbXlxczJydnRmfz2eTJk1i8fHxjDHGmpubmUgkYmZmZkxPT4/5+Piw5uZmFhQUxMUJCgpiUVFR3M8dX0KhUG7snly+fJkZGhoyqVTKLXs5b35+Pps6dSrj8/lsy5YtzM7OjgFgZ86c6TH3rVu3mLOzMxMIBMza2ppduHBBbj3nzp2TeX96eno9voee9seLXn5vL+6r3bt3s7Vr13I/Hz16lDHGmL+/P9u2bRtzcXFhfD6fubm5sbq6OsYYY2VlZczW1pYJBAK2Z88eZmNjwwCw9PR0xhhjWVlZzNjYmJmYmLCcnBzGGGObNm1iAQEBCtXbYcqUKXLH6+vrmZ2dHaupqWGMMXbo0CHufXh5ecmsm5KSwt566y3u5672kSLbRd5+37ZtG1u7dm2Xtfa0j5ubm9nSpUuZtrY2MzMzUzhuT7Hljd25c4dpaGh0+vd14MCBIZv38ePHzMvLi2lrazNTU1MmEolk/p0nJyezwMDAbmN3eOedd1hlZWWP6xGiRFXUqJFe6U1jQJRP2fvD39+f7d27V2nxFdFTo8bY8z/6ISEhg1BNz+zt7XtsytUp7kjLW1FRwbZu3cpaWlp6XJcaNaIGqugaNULIkGdlZYUvvvhC1WXg/PnzcHZ2xty5c4dE3JGY18TEBPv27RvwuIQoCzVqZNjq7kHebAA/ddgX6lrXy7y9vXHq1CkAwLNnz7Bjxw4VV6T+FixYwN1GZijEpbyEqD9q1MiwpW6NTwd1retliYmJ/bpnGiGEkP6jT30SQgghhKgpOqJGekUqlSI7O5t70DVRrbKysmG/PxobG3H69GlVl0FGIHn30yNksFCjRnqlra1Npc+rJLLq6+uH/f5obW0d9OddEgJA7lNSCBks1KiRXtHS0sKiRYvg5OSk6lIIgKqqqmG/P06fPo2dO3equgwyAmVnZ6u6BELoGjVCCCGEEHVFjRoh/TRz5kzweDycP39e1aWQbpSUlODzzz9XdRlkEIjFYmzfvh1PnjxRdSmEDAhq1MigSUxMBI/Hk/nS19eHp6cn9/zFvvDz80NKSkqfXnvv3j2Zel580Pb7778PHo+HyZMny81x7do12NnZ9Sm/OluwYAESEhLUNp6iHj9+DF9fXwQFBXHPlNTU1ERubi63jlgs5ubAuHHjBr3GDvX19di3bx9effXVTg8pb2lpwbJly8Dn82Fubo7jx48rHHf16tWd/u293MjExMTA0tISenp68PPzQ319/YDE7mtcedtCXmwTExPMmjULGzZsUCgPIeqOGjUyaLy9vVFQUICxY8eCMYb29nb89NNPuHbtGnbt2tXnuAkJCZ0euKyoSZMmobq6GmPGjEFaWhoMDQ25sXPnzmH+/Pm4detWv3IQ1YqJicF7770HAwMDrF69Grm5uWhra4O3tzf3aVkTExMwxjBv3jyVHonJzMzE/PnzIRQKO43t2rULd+/eRUlJCb7++musX78ev/76q8KxW1pawBjjvl5sSGNjY3HkyBGcPXsWFRUVMDY2xjfffNPv2P2JK29b9BTb3d0deXl59CEUMixQo0ZUpuNolbOzM4qKigAAxcXFcHJyAp/Ph7W1NQoKCrj1t2/fDkNDQxgbGyMyMhJtbW3YuHEjeDwegoODAQBJSUmd/nff0WB1F9vQ0BALFy7E0aNHZeo7d+4c/vSnP3XKAQAFBQWYNm0adHV1u7zQXd77uH37NlxcXKCrqwsbGxtkZmYOzAbtRlf5PDw8wOPxuCNcTk5O4PF4uHjxIoDnTXVqaiqWL18OHo+Hw4cPw9vbm9sOTk5OEAgEcHd3R319fZ/iDZbvvvsOs2fPllm2atUqtLW1YcmSJWhvb+/ydd3tp475sG7dOri5uUEgEMDDwwNtbW0A5O/7nnh6esLGxqbT8vb2dsTFxSEkJASmpqZwcXGBm5tbpznbV/v27cP+/fsxffp0aGtrIyIiAuvWrVNp3O62haKx7e3tcebMmX6/B0JUjRo1ojKMMdy+fRvZ2dlwcXGBVCqFq6sr5syZg8rKSohEInh6ekIqleJf//oXzp49i8LCQty5cwc//fQTrl+/jujoaGzdulUm7rlz58AYQ01NDSZPnoyoqCi5sQHA398f586dQ2VlJRfn5MmTWLJkSaccLS0tcHd3x+LFi/HgwQMIhUKu0QQgN5dUKsUHH3wAe3t7lJeXY8eOHVi4cKHSbrHRXb7IyEi4urpy62VnZ8v8UUxMTISrqyuOHz8OxhhWr16NxMRE+Pv74+zZszh48CBKS0vx6NEjiEQiJCUl9TreYCkpKcHEiRNllgmFQpw+fRo//vgjQkNDO71G3n7qmA/p6ekICwvDrVu3kJ+fj8zMzB7nWV9VVlaitrYW1tbW3LLp06f36ojRypUroaenBysrK/z973/nlj98+BD37t1DWVkZhEIhjIyMsGbNGrS0tPQr9kDE7Y4isU1MTFBSUtLvXISoGjVqZNA9ffoUPB4PGhoasLa2hkgkwtatW5Gbm4vKykp89tlnEAgE8PX1hUAgwA8//IDRo0ejpqYGly9fhpaWFpKSkjBz5sxOsT08PLhnBAYEBGD79u34wx/+IDc2AMydOxdmZmbcEaHy8nLo6upCT0+vU46cnBw0NjZCJBJBR0cHgYGB0NfX58bl5crNzcXDhw8REhICXV1deHp6wtbWFidPnlTCloZS8n344YeYNm0ajI2NsXnz5n49Zio4OBgrV67s8+t70traiqamJmhra3cac3R0REREBMLDw5GRkSEzpsh2c3R0hLW1NczNzTFr1iyUlpb2OM/6quPaSV1dXW6Zrq4uqqurFXq9hoYGHBwccP/+fRw7dgzbt2/nrrnsiHHx4kX88ssvuHLlCnJycrBnz55+xe5vXHkUic3n8/Ho0aN+5yJE1ahRI4Ou4xq1uro6BAQE4MiRI2hra0N5eTkkEglGjx7NnbYsLi7G3bt3MWPGDBw4cAAikQjGxsYIDg6WezPK2NhYjB07FkuXLgUAubGB539s/Pz8cOzYMQBAfHw8li9f3mXsiooKGBgYQFNTk1tmYmLCfS8vV3l5OQwNDTFmzBhufaFQiPLy8r5vUDmUkc/AwID73tTUFI2NjWhqaupTrPb2dqU++1RTUxN8Ph/Nzc1djm/atAleXl7w8fHB/fv3ueWKbLcXt4OWlhakUmmP86yvOq6dfPFO+Q0NDTAyMlLo9V9++SUCAwOhq6uLd955B15eXlyj1vGfkfXr18PQ0BCWlpZYtWoV0tPT+xW7v3HlUSR2U1MTJkyY0O9chKga3fCWqIy+vj7++te/wtLSEkePHsV//Md/wMDAQOaTly/y8/ODn58frl69iuXLl8PCwgJBQUGd1rt16xaio6Nlrg2ysLCQGxsAVqxYgbCwMGRlZeHy5cvd3s7B1NQUtbW1aG1t5Zq1F49syMt16dIl1NTUQCqVck3AgwcPYGtr221d/WFhYdFtPrFYLHOq6OV6eTxelzFfPD1cUVEBHR0d8Pl8jBkzptfxoqKiev+mesnKykqm5pfFxcXh7bffxqJFiyAQCADI327yKDLP+mLixIkwMDDAzZs3YWZmBgC4ceMGpk6d2qd4LzbHQqEQWlpa3DV2HUaNGtWv2AMd90WKxBaLxbCysup3LkJUjY6oEZUaN24cNm/ejNDQUNjY2EBfXx/R0dGQSCQoLCyEnZ0dfv75ZyQlJWHjxo2QSCSwtLSUOZrxIqlUCh8fH8TGxnKnI318fODg4NBt7A6vvPIK5syZg1WrVmHOnDnd1uzo6AgdHR1ERERAIpEgISEBYrGYG5eXy8HBAWZmZggPD0djYyOSk5Nx/fp1LFmyZIC2qCx5+SwtLZGRkQGJRIKTJ0+isbFR5rXjx49HWVkZLl26hMWLF3PL09LScOPGDVRVVSEqKgre3t4A0Kd4yj71CQAff/wxLl++3O04n89HcnIyioqKuNvE9HU/KTLP+kJDQwMBAQEICwuDWCxGVlYWUlJSEBgYqNDrLS0t8dtvv+Hp06f48ccfcebMGfzpT38C8Pyoo5+fHyIjI1FVVYXS/8venYc1da37A/+GAgphUEFk0B7LxVMckONQqVpFtLbXoQ61DHq05RRQFJE6NKLFaus81DpVxQGp9lpQjz85Iqi0RRmkdtLaqqiIWFEGUUAmGd/fH97sawRCyEASeD/Pw/OQvbLf/e69V1ZWkr3WzsxEeHi4wqOcG4utalx5FImdmpoKT09PlbfFmNYRY80we/ZsSkxMVGrdb7/9lgAIfz///DMREZWUlFCnTp0IAK1evZo8PDxILBZT9+7dKSIigoiIysvLSSKRkL29PVlaWtL06dOpvLycQkJChHghISG0efNmmW0AIAcHByIiunHjRoOxnxcdHU1GRkaUl5cnLHtxG0REqamp1KtXLxKLxfTxxx+Tm5sbAaCjR482ua309HTy8PAgMzMzcnFxoTNnzih1PIkUOx+Nbe/OnTvUr18/MjMzozVr1pCrqysBoPj4eCIiSkxMJBsbG7K1taWkpCQiIvLz86PQ0FAaOXIkicVimjhxIhUWFiodb/78+eTv7y83/549eyp9fIiIioqKyM3NjQoKCmjXrl3CufT29pZ5XkxMDL322mtNHrfly5cLMVauXElBQUHC471798o996GhoRQUFNRoridPnpSpu5aWlkJZeXk5vf/++2Rqakr29vb16q+82HFxcTR48GASi8XUo0cP2r59u0x5cXExeXt7k6mpKdnZ2ZFEIqGqqiqFcpYXW17cpmLLOxZNxT5+/DgFBAQ0mrOi3N3dZdoCxrQgnztqrFlU6agx9Wvp8+Hn50dr165tse0Rqd5RIyK6desWLVu2TA3ZqGbo0KEqdcy1EVvfcs7JyaHFixdTRUWFyrG4o8Z0QD5fo8YYa/WcnJzw+eefazWH2NhYeHh44K233tKb2PqYs62tLdatW6fWmIxpE3fUGGMK8fHxQXR0NACgpqYGYWFhWs5Iv4wfP16YOkZfYutjzoy1NtxRY4wpJCoqSqU50xhjjDUfj/pkjDHGGNNR/I0aa7asrCxcvXpV22kwAI8fP27156OysrJV7x/TXY1NlMxYSxIRaXBacNbq7Nu3D2fOnNF2Gux/lZaWol27djJ3SVBUTU0N7t69i7t378Ld3V0tE5FqQmFhITp27KjtNJpUUFCAq1ev4u9//ztsbW0bnTCY6Zf9+/fL3LqLsRb2kDtqjLUx+fn52LlzJ44cOQIvLy/MnTtXuEURU82tW7ewY8cOJCYmws/PDwEBAQ3eZ5QxxhTEHTXG2oqMjAxs376dOxEt4PnO8IQJEzBv3jzh1k+MMdYM3FFjrLVLSUnBtm3bkJeXh7lz5+Ldd9/V2Z85W5vKykpER0fjyy+/hIuLC0JDQ5W+PydjrE3ijhpjrVFdXR1OnTqFdevWoVOnTli6dCkGDx6s7bTaLOn52L59O4gI8+bNE+61yRhjcnBHjbHWpLS0FPv378fevXsxdOhQLFy4EH//+9+1nRZ7zm+//YYtW7bg+vXrCA4OxtSpU5UaDMIYaxO4o8ZYa5Cbm4vdu3cLAwTmzZuHTp06aTstJkdWVhZ2796N//znP/Dy8kJISIhejG5ljLUo7qgxps+uXLmCr776CmlpafDz88OsWbPQvn17bafFmqGkpAQRERHYs2cP3nzzTSxYsAB/+9vftJ0WY0w3cEeNMX2UkpKC9evXo6ioCBKJBOPHj+d5u/RcdXU1Tpw4gS+//BJWVlb45JNP8Prrr2s7LcaYdnFHjTF9IX0j37JlCxwcHLBo0SIMGjRI22kxDZB2xIuLixEcHMwjdRlru7ijxpiue/LkCQ4cOCD8NLZw4UK8/PLL2k6LtQCeQJexNu8h35SdMR2VlZWF0NBQvP766ygsLERKSgq2bt3KnbQ2pEePHti6dSu+++47FBYWYuDAgQgNDcWDBw+0nRpjrIXwN2qM6ZhLly7hyy+/5OkbWD0vTqC7ePFi9O7dW9tpMcY0h3/6ZEwXEBG+//57bN26lQcIsCbxBLqMtRncUWNMm6qqqhAVFYUtW7agT58+kEgk6NOnj7bTYnqEJ9BlrFXjjhpj2lBcXIzIyEiEh4dj9OjR+Pjjj9G1a1dtp8X0GE+gy1irxIMJGGtJmZmZCAkJwRtvvAEA+Pnnn7F161bupDGVde/eHevWrcPFixfRsWNHvPHGGwgJCcHdu3e1nRpjTAX8jRpjLeDXX3/F1q1bcePGDQQFBWHatGkwNDTUdlqsFeMJdBlrFfinT8Y0RXrB944dO2BsbIyQkBC8+eab2k6LtUE8gS5jeos7aoypm3QKhc2bN6Nv375YsmQJevbsqe20GOMJdBnTP9xRY0xd8vPzsXPnThw5cgQTJkxASEgI7OzstJ0WY/W8WFfnzZsHe3t7bafFGKuPO2qMqSojIwPbt2/HDz/8AH9/f/6WgukNnkCXMZ3HHTXGlJWSkoJt27bh7t27CAoKwj//+U++7ofpJZ5AlzGdxR01xppD+oa2fv16dOzYEUuWLMGQIUO0nRZjasMT6DKmU3geNcae98UXX6C8vLze8tLSUuzZswcDBw5EbGws9u/fj5MnT3InjbU6/fv3x8GDB3H06FFcu3YNrq6uWLFiBQoLC+s9t66uDhs3bgR/3mdMc7ijxhie3Wtzzpw5+OSTT7B3715heV5eHlasWIFBgwbhwYMHSEhIQHh4OF599VUtZsuY5ikyge5//vMffPrpp/D09ERtba0Ws2Ws9eKfPlmbR0Tw8/PDv//9bzx58gR2dnaIj4/Hzp07kZaWBj8/P8ycORMmJibaTpUxrWloAl1/f39cvXoVZmZmGDJkCGJjY/lnUsbUi69RY21bbW0tvLy8cPbsWZSWlgIALC0tMWDAACxatAj//d//DZFIpOUsGdMt33//PT799FNcvXoVxcXFAAATExP0798fCQkJ/KGGMfXha9RY21VVVYWxY8fKdNKAZzdMz83NxZgxY7iTxlgDRo0aBVNTU6GTBgAVFRX45ZdfMGTIEJSUlGgxO8ZaF+6osTapoqICo0aNQmpqqkwnTer+/ftIS0vTQmaM6b6srCz89NNP9ZZXVlbi2rVrGDx4MIqKirSQGWOtj9rvCv3bb78hIyND3WEZU5unT5/is88+w19//QUTExNYWFiAiEBEMDQ0hImJCczNzXH48GHcu3dP2+nqJRsbG4wYMaLZ61VWViImJkb9CTG1+u2332BrawtTU1NUVFSgtrYWIpEIBgYGqKurw40bN+Ds7IxVq1bBwsJC2+kyphOcnJzQv3//Zq+n9mvU5syZg/LycnTv3l2dYXVKREQEPvzwQ22noTH37t3DjRs3Wu0NxDMzM1FUVASxWAyxWAwzMzOIxWK+CFpNysrK8PPPP+PcuXPNXjc/Px+DBg2Cr6+v2vNimlNeXo4TJ05g3LhxKC0tRVlZGcrLy9G+fXs4OztrOz21uHTpEgCgX79+Ws6E6aOsrCyYmppi586dzV31odq/UQMAX19fpT5N64sjR45gxYoV2k5DY86dO9fq95FpTn5+Pry8vJRev3v37lz39Ex+fj5++uknfPnll9pORWO++uorAEBQUJCWM2H6SPq+qgy+Ro0xxhhjTEdxR40pLSMjA59++qm202AtIDc3F0uWLMHTp0+1nUqLGThwIEQiEWJjY5WO4ePjA5FIhHXr1qkxM6bLuF1sO1qqXWwVHbVZs2YhOjpapRjjx49HZGSkehJ6ga+vb4tcIK3JfXhRcXExZsyYgZCQEOzevRsikQhGRkZITk4WnpObmwuRSASRSIT27du3SF4NKSoqwrp16/DKK69g9+7dMmUVFRX44IMPIBaL0bVrVxw4cEDhuIGBgcL+Sf9efMFu27YNjo6OsLS0hK+vr8Ij4ZqKrWxcecdCXmxbW1sMGjQI8+bNU2g7+kLea/OXX36Bm5ubSvGjoqLg5+enUozmUkd7o0g9URW3i9wucruomFbRUQsPD4e3t7e202hUZGQkJk6cqO001Grbtm0YPXo0rKysEBgYiOTkZNTW1sLHxwf5+fkAAFtbWxAR3n77ba1+E5OQkIAxY8bAwcGhXtlnn32G27dvIyMjAwcPHkRwcDD++OMPhWNXVFQII0aJSKbhDQ8Px549e3DixAnk5OTAxsYG33zzjcqxVYkr71g0FXvy5MlISUnBtWvXFN4HXdcaX5vq2Kem6ok6tMZjz+3iM9wuqhmp2ezZsykxMbHRcm9vbwJACxcuJHd3dxKLxTRp0iQqLCykkJAQAkDBwcHk5eVFxsbGNGrUKCIiunHjBnl4eJC5uTn17duXzp49S0RECxcuFOJJpaenk7u7O5mamlKfPn3owoULQtnzcQYMGECxsbFCTtK/Xbt2yd3Hnj17Knw8pPskzU/6OCgoiCZMmEBisZimTJlCNTU1co8NEdGUKVMIAB04cICIiNzd3QkAJSQkNHsf5ElMTKTZs2fLfY6rqyvFx8cLj5OTkykwMJC6dOlCo0aNotraWqHs7bffFv5v7DzKOy5S8s6rIoYOHSpzXGpra8nKyopOnz4tLJs2bRoFBwcrFG/WrFlUUVHRaHn37t0pNja2WTkqEluVuFIvHgtFY/v7+9OKFSvkxs7LyyN3d3el8mpqXXlthLz6ERoaSlZWVtS5c2fauHEj1dTU1HttEhFduHCBevfuTebm5rR8+XJyc3OjkydPyn3tSZ06dYpcXFzI0tKSvLy8qKioiIiI/Pz8aO3atXL3W5rL3Llz6Z133iGxWEzz58+nmzdvUu/evalTp04UGRnZ5Laa094oorF68qLmnvPn82wqR3ntYlPnRZ3t4o4dO2jHjh1yn9PS7aKqbSIRt4vP02S7qMj7aiPyW/wbNelPASdOnMCOHTuQmZmJx48fQyKRYMuWLVi8eDFiY2OxcOFC/P777zAyMhJmkB86dCiys7MRFhaGCRMmICsrC5s2bcLixYuF+FVVVRg3bhxGjRqFvLw8SCQSeHp6oqqqSogzbNgw5OTk4NChQ1iwYAGioqIwbtw4HDhwAESEwMBAte2vdJ9efBwfH49Vq1YhPT0dqampSEhIkHtsAODYsWMYN26cEOvcuXNwdXUVjqum9qEhGRkZ6NKli8wyBwcHHDlyBOfPn8fy5cvrrSPvPMo7LtJ1GzuvysrLy8OjR4/g4uIiLOvbt2+zPhnNnDkTlpaWcHJyEkaFAcCDBw+QlZWFO3fuwMHBAZ07d8bs2bNRUVGhUmx1xG2MIrFtbW21Ok+ivDaisfrx008/4cSJE7h27Rpu3bqFH3/8EZcuXar32qyoqMDkyZMxdepU3L9/Hw4ODrh+/ToA+a89qZUrVyI6Ohp3796FWCzGypUrm71fp0+fxvr163Hp0iXs2bMHa9euxfnz57F7924sWrSoyW01p73RpufzbCpHee1iU+elNbeLmmgTAW4XX6QL7aLWfvqcNGkS+vTpAxsbG6GzJPXGG29g0KBBcHZ2Rnx8PJKTk/HgwQMsW7YMFhYW8PT0RL9+/XD48OF6cZOTk5GXl4elS5fCzMwMM2bMgJmZGc6ePSvECQsLg1gsRs+ePXHjxo2W3G3B8OHD4eLigq5du2LQoEHIzMwUyuQdm+ZatGgRZs6cqY6UBdXV1SgrK4OpqWm9suHDh2PDhg1YvXo1Tp8+LVOmyHls7LjIO6/KKigoAACZCTktLCzw8OFDhdY3MDDAsGHDcO/ePezfvx9LliwRrrmRxvjuu+/w+++/4+LFi0hKSsKaNWtUiq1qXHkUiS0Wi/H48WOVt6WqhtqIxuqHoaEhCgoKcOHCBZiYmODYsWMYOHBgvZhJSUkoKSmBRCKBubk5AgIC0KFDB4VzSktLQzeVkXwAACAASURBVM+ePWFpaYkPP/wQSUlJzd6vYcOGoWfPnujRowd69eqFN954A1ZWVpg4cSIKCgrw5MkTpbYlr73RFU3lyO2i7LHRRJsIcLv4Il1oF7XWUbOyshL+t7OzQ0lJCcrKygA8m9X8ednZ2bC2toaxsbGwzMHBAdnZ2fXiZmdno7S0FIaGhsLFhjdu3MDt27eFOLowsenz+29iYiLzKUjesWmuuro6kHrnNIaRkRHEYjHKy8sbLJ8/fz68vb0xffp0mZn9FTmPjR0XeedVWdbW1gAgvPlJ/+/cubNC6+/cuRMBAQGwsLCAu7s7vL29hQbJ0tISABAcHAxra2s4Ojpi1qxZiI+PVym2qnHlUSR2WVkZOnXqpPK2VNVQG9FY/ejfvz82btwIiUQCGxsbLFq0CJWVlfVi5uTkwMrKSqZ9sLW1VSgfIoJEIoGtra3wZlJYWNjs/Xr+2BobGwuPpa+ZqqoqpbYlr73RFU3lyO3iM9Jjo4k2EeB28UW60C5qraOWl5cn/J+TkwNzc3OIxeIGn9utWzcUFBTIvHDv37+Prl27NvhcKysrmYsNiQghISFCnOrq6nrr6dLNt+UdG2NjY5mvXKWffoCG92Hz5s3Yu3ev2nN0cnKSyfNF+/btg52dHby8vFBbWwugeefxRfLOq7K6dOkCKysr/Pnnn8KyK1euoFevXkrFe77hd3BwgImJibDvUi+99JJKsdUd93mKxM7NzYWTk5PK21K3puqHr68vbt68iYSEBJw+fbrBkV12dnZ49OiRTPvw/LcI8l57p06dQkREBM6dO4fa2lqkpaWpvSOgjW3pksbaRXnnBWi97aIm2kSA28UX6UK7qLWOWlxcHK5cuYL8/Hxs3rwZPj4+jT532LBhsLe3x+rVq1FSUoLjx4/j0qVLmDZtWoPP7dChA7Zs2YLS0lJcu3YNbm5uuHz5skycsrIyXL58Ga+++ioqKirQsWNH3LlzBz/88AOmTp2qyV1vkrxj4+joiNOnT6O0tBSHDx9GSUmJUNbQPmjiK34AmDJlCi5cuNBouVgsxvHjx3H9+nXh035zzuOL5J1XZRkYGMDf3x+rVq1Cbm4uEhMTERMTg4CAAIXWd3R0xNWrV1FZWYnz58/j6NGjeOeddwA8+3Tt6+uLTZs2IT8/H5mZmQgPD1d4lFtjsVWNK48isVNTU+Hp6anyttRNXv04duwYPvroI5SWlsLR0VHm24nnDR8+HObm5tiwYQNKS0sRGRmJ3NxcoVzea6+urk74e/r0KU6dOqWxfW3JbemSxtpFeecFaL3toibaRIDbxRfpRLuozBAEeZoa9Un0bBRUaGgojRw5ksRiMU2cOJEKCwtp+fLlwuicAQMGyKyTnp5OHh4eZGZmRi4uLnTmzBmhbPHixTIjt6QjaMRiMXXv3p0iIiLqxRGLxeTs7CyMDkpMTCQbGxuytbWlpKQkufkrM+oTAIWEhMjs48qVKykoKEh4vHfv3kaPjdSdO3eoX79+ZGZmRmvWrCFXV1cCQPHx8Q3uw/z588nf31/hfKXHoqnRKUVFReTm5kYFBQW0a9cuYR+8vb1lnhcTE0Ovvfaa8Lix89jUcSFq/LyGhoZSUFBQo7mePHlSZuSXpaWlUFZeXk7vv/8+mZqakr29vUxdaSp2XFwcDR48mMRiMfXo0YO2b98uU15cXEze3t5kampKdnZ2JJFIqKqqSqGc5cWWF7ep2PKORVOxjx8/TgEBAY3mLKXJUZ/y2ojG6kd5eTlJJBKyt7cnS0tLmj59OpWXl9d7bRIRpaamUq9evUgsFtPHH39Mbm5uBICOHj0q97VXU1NDH374IZmbm1OPHj0oLCxM5jhL67Ui+7Vy5UoaN26c8DgxMZEsLS2Fx0VFRQ1uy9XVtdntTWOaqifNPW8vej7PF49RQznKaxflnReihtt2ZdpFRUZ9tnS7KO+9jttF3WoXVRn1qbWOWlPD1ZvjxY6apjWno9Zc6j42ylC0Qt26dYuWLVvWAhnJN3ToUJmOuz7E1recc3JyaPHixXKH3UtpsqPGdJOmz5sutIuKdNSIuF3Uxbiait2cdlGVjppGbsrekurq6vDo0aN6FxczzXNycsLnn3+u1RxiY2Ph4eGBt956S29i62POtra2fBskxhTA7aJuxdVk7JZqF1u8o+bj4yPc7qmmpgZhYWFKxUlPT0fPnj1haGgIV1dXfPvtt+pMUyvUdWzakvHjx2P8+PF6FVsfc2bq0digJdLCYABdykUebhebTx/bGH3MuaW0eEctKipKpflvpJydnXWuQVGVuo4NY0w36VKbpUu5yMPtImvrWsW9PhljjDHGWiO1f6NWW1uLrKwsXL16Vd2hdUZVVVWr3r+srCwUFha26n1kmvP48eN6cw41R2VlJdc9PfP48WOUl5e36vOWk5MDAK16H5nmZGVlKd0uikjN33+///77+OuvvxSexVgf/fDDDxg5cqS209CYhw8fIj8/H71799Z2KkwPVVZWIjs7G7/99luz183Pz8eQIUPQr18/DWTGNKWyshK//fYbBg8erO1UNEY64/9//dd/aTkTpo8ePnyIl19+GQcPHmz2qmr/Rs3MzAwrVqzAiBEj1B1aZ/Tq1QtHjx7Vdhoac+7cORw5cgQ7d+7UdipMD+Xn58PLy0vp9bt27dqqX1+tkfSct+bzJr0BeFBQkJYzYfpI+r6qDL5GjTHGGGNMR3FHjSktIyMDn376qbbTYC0gNzcXS5YswdOnT7Wdis4ZOHAgRCIRYmNjVYrj4+MDkUjE89XpOW4X246WahdbtKMWFRUFkUgk8+fg4IAlS5agrq5O6bizZs0S5tlR1vjx4xEZGalSDHVQdx6a2q/i4mLMmDEDISEh2L17N0QiEYyMjJCcnCw8Jzc3VzjP7du3V3sOiioqKsK6devwyiuv1LsZd0VFBT744AOIxWJ07doVBw4cUDhuYGBgvfr84gt227ZtcHR0hKWlJXx9fVFUVKSW2MrGvXz5MsaOHQsTExO8/PLL+OKLL4QyIsKhQ4fg7OwMExMT/OMf/0BcXByAZxM7Dho0CPPmzVNoO9rSUBvToUMHeHp6CvdWVIavry9iYmIaLPvll1/g5uamdGypqKgo+Pn5CY+lryuRSISIiIh6zy8rK0Pnzp0hEonw3nvvNRlf3j7oMn1pEwFuFwFuFzWhRTtqPj4+SEtLQ7t27UBEqKmpQXR0NL766ivs379f6bjh4eHw9vZWY6asKdu2bcPo0aNhZWWFwMBAJCcno7a2Fj4+PsjPzwfwrBITEd5++22tfhOTkJCAMWPGwMHBoV7ZZ599htu3byMjIwMHDx5EcHAw/vjjD4VjV1RUgIiEv+cb3vDwcOzZswcnTpxATk4ObGxs8M0336gcW5W4M2fORFhYGIqLi/H1119j6dKl+PHHHwEAd+/exbZt23DmzBk8evQIM2bMwLvvvovs7GwAwOTJk5GSkoJr164pvA8t7cU2pq6uDj/++CN++eUXfPbZZ0rHjYyMVMsNnpsjMDAQaWlpMDY2xurVq1FTUyNTvnPnTjx58gSffPIJjh071mQ8bexDW8Pt4jPcLqqZMjeekqepe32mpaVRu3btZJaNGDGCZs2aRUT/d7Pe4OBg8vLyImNjYxo1apRw81lzc3Pq27cvnT17loiIFi5cSABk7vWZnp5O7u7uZGpqSn369KELFy4IZc/HGTBgAMXGxpK3t7fMDVl37doldx+butdnY7lOmTKFANCBAweIiMjd3Z0ACDeGbygP6bKFCxeSu7s7icVimjRpEhUWFioVTxGK3JPM1dVVuOkxEVFycjIFBgZSly5daNSoUVRbWyuUvf32200eG+l5DwoKogkTJpBYLKYpU6ZQTU2NsK6886qIoUOHyhyD2tpasrKyotOnTwvLpk2bRsHBwQrFmzVrltx7vHXv3p1iY2OblaMisVWJ+6JXX32VoqOjGy03MzOTOc/+/v60YsUKuTG1fa/PhtqYf/3rX/TWW28Rkfx6FBoaSlZWVtS5c2fauHEj1dTUCHXz+TbmwoUL1Lt3bzI3N6fly5eTm5sbnTx5koiafp2fOnWKXFxcyNLSkry8vKioqEiI++I9LdPS0sjf35/at29PkZGRwvLy8nJyc3Ojd955hz755BNheWOxn98HRV5rzaXIeVOmXWxum6hMPEUpcq/Plm4XVW0TibhdbIgm2kVV7vWp1WvUamtrceHCBfz6668YMGAAAGDLli1YvHgxYmNjsXDhQvz+++8gIowdOxZDhw5FdnY2wsLCMGHCBGRlZWHTpk1YvHixELOqqgrjxo3DqFGjkJeXB4lEAk9PT1RVVaGqqgpjx47FsGHDkJOTg0OHDmHBggWIiorCuHHjcODAARARAgMDld4n6TYayvXYsWMYN26c8Nxz587B1dVVeNxQHtKfQ06cOIEdO3YgMzMTjx8/hkQiUSqeumRkZKBLly4yyxwcHHDkyBGcP38ey5cvb9axkZ73+Ph4rFq1Cunp6UhNTUVCQoKwbmPnVVl5eXl49OgRXFxchGV9+/Zt1iejmTNnwtLSEk5OTsKoMAB48OABsrKycOfOHTg4OKBz586YPXs2KioqVIqtjrjAs0+lUVFRqKysxOjRoxt8zpMnT0BE6N+/v7DM1tYWGRkZzdqWNhERbt68iXPnzmHkyJFy69FPP/2EEydO4Nq1a7h16xZ+/PFHXLp0SaibUhUVFZg8eTKmTp2K+/fvw8HBAdevXxfKm3pdrly5EtHR0bh79y7EYjFWrlwpdx8cHBwwd+5crF69WpiHaffu3ZgzZw6MjY1lnttY7Of3oanXmiYo2y42t00E5B9/TbaJQMu2i5poEwFuF3WxXdRKR62yshIikQiGhoZ47733MGfOHJlrMwDgjTfewKBBg+Ds7IylS5fiwYMHWLZsGSwsLODp6Yl+/frh8OHD9WInJycjLy8PS5cuhZmZGWbMmAEzMzOcPXsWycnJePDgAcLCwiAWi9GzZ0/cuHFDrfsm3YYiuTbHpEmT0KdPH9jY2AidS2UtWrQIM2fOVHr96upqlJWVwdTUtF7Z8OHDsWHDBqxevRqnT5+WKVPk2AwfPhwuLi7o2rUrBg0ahMzMTGHdxs6rsgoKCgAAFhYWwjILCws8fPhQofUNDAwwbNgw3Lt3D/v378eSJUuEa4CkMb777jv8/vvvuHjxIpKSkrBmzRqVYqsaF3j2ZmJqaop58+Zh69at6NixY4PPW79+PVasWAEbGxthmVgsxuPHjxXelrZI2xgDAwO4uLhAIpFg8eLFcuuRoaEhCgoKcOHCBZiYmODYsWMYOHBgvdhJSUkoKSmBRCKBubk5AgIC0KFDB4VzS0tLQ8+ePWFpaYkPP/wQSUlJTa4TGhqKvLw8fPvtt6isrERcXBymT5+uUuzGXmuaoIl2UZfaRKDl20VNtIkAt4u62C5qpaMmvX6EiPDgwQOsW7cOBgayqTx/ELKzs2FtbS3z6dHBwUH4jfh52dnZKC0thaGhoXCx4Y0bN3D79m0hjpGRkcb2rTm5NoeVlZXwv52dHUpKSlBWVqZUrLq6OpXu82dkZASxWIzy8vIGy+fPnw9vb29Mnz4d9+7dE5Yrcmye308TExPh06G886osa2trAM8+IUk9efJE4cmad+7ciYCAAFhYWMDd3R3e3t5Cg2RpaQkACA4OhrW1NRwdHTFr1izEx8erFFvVuADg5OSEqqoqxMXF4aOPPmpwAsaIiAgUFhZi0aJFMsvLysrQqVMnhbelLdI2prCwEP7+/tizZw9qa2vl1qP+/ftj48aNkEgksLGxwaJFi1BZWVkvdk5ODqysrGTaEVtbW4XyIiJIJBLY2toKbzqKDHKwsrLCokWLsHr1aoSHhyMoKKhem9nc2I291jRBE+2iLrWJQMu3i5poEwFuF3WxXdSL6Tm6deuGgoICmYbk/v376Nq1a4PPtbKykrnYkIgQEhIixKmurq63nkgkapFcjY2NZb6OlX56aSqPvLw84f+cnByYm5tDLBYrFW/z5s3Yu3dvM/aqPicnJ5mcXrRv3z7Y2dnBy8tL+LmmOefxRfLOq7K6dOkCKysr/Pnnn8KyK1euoFevXkrFe76hd3BwgImJSb1bhrz00ksqxVZXXCMjIwwcOBCenp71LkT/+uuvcfHiRZmfLKRyc3Ph5OTUzOy1p0OHDvjiiy+Qm5uLvXv3NlmPfH19cfPmTSQkJOD06dP1RsMBzzoFjx49kmlHXvy2obHX5alTpxAREYFz586htrYWaWlpCncQ5s+fj0ePHuHYsWOYNGlSvXJVYmuaKu1ic9tEZeKpo00EWrZd1ESbCHC7qIvtol501IYNGwZ7e3usXr0aJSUlOH78OC5duoRp06Y1+NwOHTpgy5YtKC0txbVr1+Dm5obLly/LxCkrK8Ply5fx6quvoqKiAh07dsSdO3fwww8/YOrUqRrL1dHREadPn0ZpaSkOHz6MkpISmfUbyyMuLg5XrlxBfn4+Nm/eDB8fH6XjqeNr/ilTpuDChQuNlovFYhw/fhzXr18XPtU35zy+SN55VZaBgQH8/f2xatUq5ObmIjExETExMQgICFBofUdHR1y9ehWVlZU4f/48jh49infeeQfAsxe8r68vNm3ahPz8fGRmZiI8PFzhUXeNxVYlbkFBAVxcXHDz5k1UV1fj6tWriImJgbOzs/CcQ4cOISUlRZhaICUlBZs2bRLKU1NT4enpqdA+6Ir27dtjwYIFWL58OVxdXRutR8eOHcNHH32E0tJSODo6ynyL8bzhw4fD3NwcGzZsQGlpKSIjI5GbmyvznMZel3V1dcLf06dPcerUKYX3w8zMDDExMdizZ0+D5arE1jRV2sXmtonKxFNHmwi0bLuoiTYR4HZRJ9tFZYYgyCNv1Oe3334rM+Lm//2//1fvOcuXLxfKBwwYICxPT08nDw8PMjMzIxcXFzpz5oxQtnjxYpkRWdIRNGKxmLp3704RERH14ojFYnJ2dhZGYiUmJpKNjQ3Z2tpSUlKS3H1satSnvFzv3LlD/fr1IzMzM1qzZg25uroSAGEESUN5+Pn5UWhoKI0cOZLEYjFNnDhRGOGkTLz58+eTv79/o/krMjqlqKiI3NzcqKCggHbt2iWcM29vb5nnxcTE0GuvvdbksXn+vK9cuZKCgoKEx3v37iWixs9raGgoBQUFNZrryZMnZeqdpaWlUFZeXk7vv/8+mZqakr29vUxdaSp2XFwcDR48mMRiMfXo0YO2b98uU15cXEze3t5kampKdnZ2JJFIqKqqSqGc5cWWF7ep2NHR0TRw4EAyMTEhe3t7CgwMpLKyMiIiunXrFhkYGMgcKwC0ceNGIiI6fvw4BQQENJqzlDZHfb7Yxvz8889ERFRSUkKdOnUiALR69eoG61F5eTlJJBKyt7cnS0tLmj59OpWXlwsj7wBQSEgIERGlpqZSr169SCwW08cff0xubm4EgI4ePUpEjb8uY2Nj6cMPPyRzc3Pq0aMHhYWFEQBydXWVGZG4cuVKmX3x8/Ort68DBgwQyj/44AOqqalpNPbz+/D8X2OvteZS5Lwp2y42t01UJl5TbSKRYqM+W7pdlPdex+2ibrWLqoz6bPHpOTThxY6apjXVUVO3F4fsa5qiFerWrVu0bNmyFshIvqFDh8o0+voQW99yzsnJocWLF8sddi+l7ek5WMtr6fPW0m0ikWIdNSJuF3UxrqZiN6ddVKWjpvabsre0uro6PHr0SGbwAWsZTk5O+Pzzz7WaQ2xsLDw8PPDWW2/pTWx9zNnW1pZvbcSYArhd1K24mozdUu2i3nbU0tPT0bNnTxgaGsLV1RXffvuttlPSCB8fH+H2WDU1NQgLC9NyRrpl/PjxGD9+vF7F1secGdMV3CY2TR/bGH3MuaXobUfN2dlZZ0Y0aVJUVJRK8wMxxlhrwm0ia2v0YtQnY4wxxlhbxB01xhhjjDEdpfafPu3s7DBnzhx1h9UpT548UXryP31QU1ODqqqqVr2PDx8+hKGhITp06KC2yY7Z/xk0aJBS6xkaGiI/P79V173WiIhQWlqKXr16gYjw5MkTVFRUKHzHBn0gvUtFQxOeMqYIZedoFVFbuNCLsRc8fPgQEREROHz4MMaMGYN58+bB3t5e22kxprdKSkoQERGBPXv24M0338SCBQvwt7/9TdtpMabvHnJHjbVplZWViI6OxubNm9G3b1+EhobytzmMNUNWVhZ2796N//znP/Dy8kJISEijN7RmjDUbd9QYA57Nx3fq1Cns2LED7dq1w7x58/Dmm29qOy3GdNZvv/2GLVu24Pr16wgODsbUqVNlblTPGFML7qgx9qJff/0VW7duRXp6OubOnYtp06bB0FBvZ7JhTG2kH2i2b98OIsK8efOE+zgyxjSCO2qMNebOnTvYsmULvv/+e8yYMQOBgYGwtLTUdlqMtTjpJQJffvklXFxc+BIBxlrOQ56eg7FGvPLKK9i6dStSU1PRvn17DB48GCEhIcjOztZ2aoy1iPz8fKxYsQL9+vXDtWvXcOrUKRw8eJA7aYy1IP5GjTEFVVVVISoqClu2bEGfPn0gkUjQp08fbafFmNrdunULO3bsQGJiIvz8/BAQEABTU1Ntp8VYW8Q/fTLWXESE77//Hlu3bkVRUREkEgnGjx/P87ExvZeSkoL169ejuLgYwcHBePfdd/HSSy9pOy3G2jLuqDGmisuXL2Pz5s088o3prerqapw4cQJffvklrKys8Mknn+D111/XdlqMsWe4o8aYOuTk5CA8PBxHjhzhuaSYXuAJahnTCzyYgDF1sLOzw4oVK3Dx4kV07NgRb7zxBkJCQvDXX39pOzXGZGRlZSE0NBRubm4oLCxESkoKtm7dyp00xnQUf6PGmAZIf07avHkzrK2tERYWBjc3N22nxdownqCWMb3EP30ypmnSC7R54AFraTxBLWN6jztqjLWUP/74Azt27EBaWhr8/Pwwc+ZMmJiYaDst1grxBLWMtRrcUWOspeXl5WHXrl3CwIPg4GBYWVlpOy3WCuTn52Pnzp04cuQIJkyYgHnz5sHe3l7baTHGlMcdNca0pbS0FIcPH8bu3bvx2muvYcGCBXj11Ve1nRbTQzxBLWOtFnfUGNM26XVE69evR8eOHbF06VIMHjxY22kxPcAT1DLW6nFHjTFdkpKSgm3btiEvLw9z587lN15WD09Qy1ibwh01xnRRRkYGtm/fjh9++AH+/v78UxbjCWoZa5t4wlvGdJGTkxO2bt2K77//HoWFhRg4cCBCQ0ORk5Oj7dRYC+MJahlr2/gbNcb0gHS6hc2bN6Nv375YsmQJevbsqe20mAbxBLWMMfBPn4zpF+nAg40bN8LS0hIhISF48803tZ0WUxOeoJYx9gLuqDGmr3799Vds3boVN27cQFBQEKZNmwZDQ0Ntp8WUwBPUMsYawdeoMaavBgwYgIMHD+Lbb7/Fr7/+in79+mHr1q0oKytr8PlxcXGoqalp4SxZfn4+fvnll0bLVqxYgX79+uHatWs4deoUDh48yJ00xpiAv1FjrJUoLi5GZGQkwsPDMXr0aEgkEjg4OAhl3bp1w2uvvYa4uDi0a9dOy9m2Dffv38eQIUNgbW2NX3/9VVjOE9QyxhTEP30y1tpUVVUhKioKW7ZsQZ8+fSCRSHD8+HGsXbsWIpEIvXv3RmJiIszMzLSdaquWlZWFYcOG4f79++jUqRMSEhJQVlbGE9QyxpqDO2qMtVZ1dXWIi4vDpk2b8Mcff+Dx48cAgHbt2uHVV19FcnIyLCwstJxl65Seng4PDw/k5eVB2sR269YNb7zxBhYuXIgBAwZoOUPGmJ7gjhpjrV1kZCRCQkLw5MkTYZmRkREcHR2RmprKN4RXs0uXLmHMmDHIy8uTWW5lZYVLly6hW7duWsqMMaaHeDABY63dypUrZTppwLPbEN2+fRuDBg3iSXTV6KeffsLo0aPrddIAoKioCGvXrtVCVowxfcZj+XVMTk6O8BMVY6rKzMzE06dP0alTJ9TV1UEkEkEkEqGmpgaVlZW4c+cOXF1dER0dDRsbG22nq9fS0tIwZ84cVFdXw8TEBMbGxjAwePZZmIhgYGCApKQkXLlyha9LY2rj7OzM9amV458+dcycOXNw7do1dO7cWdupKO3BgwcAAHt7ey1nojm///47evXqpVczxRMRKisrUVVVhadPnwp/ZWVlaN++PZydnSESibSdpl56+vQp0tPTYWBgAFNTU7Rv3x7t27eHsbEx2rVrx6NsmUacP38ef/75J3/Iat0e8jdqOmjFihUYMWKEttNQ2ldffQUACAoK0nImmjNixAjs2bOHG0jGmNbo8/sEUxxfo8YYY4wxpqO4o9ZKDRw4ECKRCLGxsUqVM9W0b98eIpGo3ifejIwMfPrpp9pJirWo3NxcLFmyBE+fPm3WelxH2pYX60lBQYFwLamPj4+Ws2O6gDtqrdQvv/wCNzc3pculioqKsG7dOrzyyivYvXu3OlMU+Pr6IiYmRiOxXzR+/HhERka2yLauX7+Oc+fOCY+Li4sxY8YMhISEYPfu3RCJRDAyMkJycrLwnNzcXKGRbt++fYvk2RB5572iogIffPABxGIxunbtigMHDigcNzAwUNg/6d+LHZlt27bB0dERlpaW8PX1RVFRkVpiKxv38uXLGDt2LExMTPDyyy/jiy++EMqICIcOHYKzszNMTEzwj3/8A3FxcQAAW1tbDBo0CPPmzVNoO4BsHQGg0/WkqbZBk/VEU3VEldiN1RN5dQSoX0+sra1BRDxCmAm4o8bkSkhIwJgxY4RbEWlCZGQkJk6cqLH4umLbtm0YPXo0rKysEBgYiOTkZNTW1sLHxwf5+fkAnjXaRIS333672d/EqJO88/7ZZ5/h9u3byMjIwMGDBxEcHIw//vhD4dgVFRUgIuHv+Y5GeHg49uzZgxMnNBlrxQAAIABJREFUTiAnJwc2Njb45ptvVI6tStyZM2ciLCwMxcXF+Prrr7F06VL8+OOPAIC7d+9i27ZtOHPmDB49eoQZM2bg3XffRXZ2NgBg8uTJSElJwbVr1xTa1vN1BIBO15Om2gZN1RNN1RFVYzdWT5qqI0Dz6wlrY4jplNmzZ1NiYmKj5adOnSIXFxeytLQkLy8vKioqEsouXLhAvXv3JnNzc1q+fDm5ubnRyZMnFS6XZ+jQobRr1y6Fnrtjxw7asWOHQs8NCQkhALRw4UKZx0FBQTRhwgQSi8U0ZcoUqqmpISIib29v4fnu7u4kFotp0qRJVFhYSFOmTCEAdODAASIicnd3JwCUkJAgs670T9H9aYi7uzvl5eU1Wt6uXTu6fv26zDJXV1eKj48XHicnJ1NgYCB16dKFRo0aRbW1tULZ22+/Lfx/48YN8vDwIHNzc+rbty+dPXtWoWOVnp5O7u7uZGpqSn369KELFy40ez9fPO+1tbVkZWVFp0+fFpZNmzaNgoODFYo3a9YsqqioaLS8e/fuFBsb2+w8m4qtStwXvfrqqxQdHd1ouZmZmcx59vf3pxUrVigU+8U6QqRaPWmqjhCpXk8aahs0WU80VUdUjf0iefXkxTpCVL+erF27lry9veVuo6l2iLUK+fyNmp5ZuXIloqOjcffuXYjFYqxcuRLAs0+JkydPxtSpU3H//n04ODjg+vXrwnpNlWvLli1bsHjx4nqP4+PjsWrVKqSnpyM1NRUJCQkAgKioKPj5+eHEiRPYsWMHMjMz8fjxY0gkEhw7dgzjxo0TYp07dw6urq7C46ioKIwbNw4HDhwAESEwMLDldhTPrj3q0qWLzDIHBwccOXIE58+fx/Lly+utU1VVhbFjx2Lo0KHIzs5GWFgYJkyYgKysLLnHqqqqCuPGjcOoUaOQl5cHiUQCT09PVFVVqbQPeXl5ePToEVxcXIRlffv2bdY3ATNnzoSlpSWcnJyEEcLAs2ldsrKycOfOHTg4OKBz586YPXs2KioqVIqtjrjAs9dQVFQUKisrMXr06Aaf8+TJExAR+vfvLyyztbVFRkaGQttoqI4AyteTjz76SO7rSd/qiabqiLpiA03Xk4bqCNC8esLaFu6o6Zm0tDT07NkTlpaW+PDDD5GUlAQASEpKQklJCSQSCczNzREQEIAOHToI6zVVrmuGDx8OFxcXdO3aFYMGDUJmZqZM+aRJk9CnTx/Y2NhgwYIFiIqKUnpbixYtwsyZM1VNWa7q6mqUlZXB1NS0Xtnw4cOxYcMGrF69GqdPn5YpS05OxoMHD7Bs2TJYWFjA09MT/fr1w+HDh2XWf/FYJScnIy8vD0uXLoWZmRlmzJgBMzMznD17VqX9KCgoAACZe4RaWFjg4cOHCq1vYGCAYcOG4d69e9i/fz+WLFkiXJ8ojfHdd9/h999/x8WLF5GUlIQ1a9aoFFvVuMCzDpSpqSnmzZuHrVu3omPHjg0+b/369VixYoXMtC1isVihSazl1RFAtXrS2OtJ3+qJpuoIoHr9AxSrJw3VEUDxesLaHu6o6REigkQiga2trdDgFBYWAnh2RwMrKyuZCVhtbW2F/5sq1zXP33/SxMSk3if858vt7OxQUlKCsrIypbZVV1cn3DhbU4yMjCAWi1FeXt5g+fz58+Ht7Y3p06fj3r17wvLs7GxYW1vD2NhYWObg4CBzfUtDxyo7OxulpaUwNDQULpq+ceMGbt++rdJ+WFtbA4DMLamePHmi8ATNO3fuREBAACwsLODu7g5vb2/hjdLS0hIAEBwcDGtrazg6OmLWrFmIj49XKbaqcQHAyckJVVVViIuLw0cffYSDBw/We05ERAQKCwuxaNEimeVlZWXo1KlTk9toqo4AyteTxl5P+lZPNFVHANXrH9B0PWmsjgCK1xPW9nBHTY+cOnUKEREROHfuHGpra5GWliZ0MOzs7PDo0SNUV1cLz3/+02tT5frm+Xsp5uTkwNzcHGKxGMbGxjI/VUg/2Us1NPP+5s2bsXfvXs0l+7+cnJwavAek1L59+2BnZwcvLy/U1tYCALp164aCggKZjur9+/fRtWtXudvq1q0brKysZC6aJiJhNKGyunTpAisrK/z555/CsitXrqBXr15KxXu+g+zg4AATExNh36WUvT2ONLa64hoZGWHgwIHw9PTEsWPHZMq+/vprXLx4UeanNKnc3Fw4OTkptI2m6gjQtuuJpuqIOmM3Vk/k1RGgefWEtS3cUdMjdXV1wt/Tp09x6tQpoWz48OEwNzfHhg0bUFpaisjISOTm5ipcrm/i4uJw5coV5OfnY/PmzcJ8Q46Ojjh9+jRKS0tx+PBhlJSUyKzXsWNH3LlzBz/88AOmTp0KoGV++gSAKVOm4MKFC42Wi8ViHD9+HNevXxe+KR02bBjs7e2xevVqlJSU4Pjx47h06RKmTZsmd1vDhg1Dhw4dsGXLFpSWluLatWtwc3PD5cuXVdoHAwMD+Pv7Y9WqVcjNzUViYiJiYmIQEBCg0PqOjo64evUqKisrcf78eRw9ehTvvPMOgGdvcL6+vti0aRPy8/ORmZmJ8PBwhUcENxZblbgFBQVwcXHBzZs3UV1djatXryImJgbOzs7Ccw4dOoSUlBRhKo2UlBRs2rRJKE9NTYWnp6dC+9BUHQHadj3RVB0BVKt/TdWTpuoI0Lx6wtqYlh6+wOSTN+qzpqaGPvzwQzI3N6cePXpQWFgYASBXV1ciIkpNTaVevXqRWCymjz/+mNzc3AgAHT16VKHyhpw8eVJmpKSlpWWT+6DMqE8AFBISQsuXLxcer1y5koKCgoTHe/fuJSIiPz8/Cg0NpZEjR5JYLKaJEydSYWEhERHduXOH+vXrR2ZmZrRmzRpydXUlAMIIq8TERLKxsSFbW1tKSkoiIqL58+eTv7+/QvlKKTPqs6ioiNzc3KigoIB27dol7NeLI7tiYmLotddeEx6np6eTh4cHmZmZkYuLC505c4aIqMljJR0FKBaLqXv37hQRESHEDA0NpaCgoEbzl3fey8vL6f333ydTU1Oyt7eXidtU7Li4OBo8eDCJxWLq0aMHbd++Xaa8uLiYvL29ydTUlOzs7EgikVBVVZVCOcuLLS9uU7Gjo6Np4MCBZGJiQvb29hQYGEhlZWVERHTr1i0yMDCQOVYAaOPGjUREdPz4cQoICFD4+DxfR4hI5XqiyOtJ2XrSVNsgr55o61xqsv41Vk+aqiNEDdcTHvXJ/lc+d9R0TFPTc+iD5nTUlOHn50dr167VWHxFKNJRA0Du7u4yy2/dukXLli3TcHZNGzp0qNDh05fY+pZzTk4OLV68uN50EE1tS1fqCBGfy5aI+2I9efjwYaOd8xdxR61NyOebsjOmAY1NQurk5ITPP/+8hbORFRsbCw8PD7z11lt6E1sfc7a1tcW6deuavS1dqCMAn8uWiAvUryfSOxMwJiUirhE6Zc6cOfDy8qp3j0hNaugCewBKNxbSi2WDgoKUzqkxPj4+iI6OBvBsTrmwsDC1b0MRI0aMwJEjR+oNsWeMsZbC7VCb8JC/UWN69ektKipKpTnTGGOMMX3Coz4ZY4wxxnQUd9QYY4wxxnQUX6OmY6ZPn46UlJRGbyOjD6RzOzV2m53W4OHDh+jYsSMMDfnqAcaYdpSUlODXX3/la9RaN75GTddYWFggMjKyRQcTqJsmBxPoCr6IlzGmbfr8PsEUxz99MsYYY4zpKO6otVEDBw6ESCRCbGxss8oYU6eMjAx8+umn2k6DtZDc3FwsWbKk0XkGGWP1cUetFYqIiICFhQXKysoafc4vv/wCNze3Zpdp2/jx4xEZGamz8ZjiiouLMWPGDOEG4NL7IBoZGSE5OVl4Xm5uLkQiEUQiEdq3b6+VXIuKirBu3Tq88sor2L17d73yiooKfPDBBxCLxejatSsOHDigcOzAwEBh/6R/z3dktm3bBkdHR1haWsLX1xdFRUVqiatK7MuXL2Ps2LEwMTHByy+/jC+++ALAs6l+Dh06BGdnZ5iYmOAf//gH4uLihPVsbW0xaNAgzJs3T6HtMMa4o9Yq/c///A/q6upw5MgRbafCWKO2bduG0aNHw8rKCsCzjkVycjJqa2vh4+OD/Px8AM/e3IkIb7/9tta+iUlISMCYMWPg4ODQYPlnn32G27dvIyMjAwcPHkRwcDD++OMPheNXVFSAiIQ/aYc0PDwce/bswYkTJ5CTkwMbGxt88803KsdVNfbMmTMRFhaG4uJifP3111i6dCl+/PFH3L17F9u2bcOZM2fw6NEjzJgxA++++y6ys7OFdSdPnoyUlBRcu3ZN4f1grC3jjlorc/36dVhbW2PSpEnYt2+fTFlaWhr69OkDCwsLrFixQuEyTbh58yZGjhwJCwsLuLq6IiEhAQDw3nvvQSQSCd9yjRgxAiKRCN999x18fHxw6tQp/Otf/4JIJMLu3bvh4+MDkUiERYsWYcSIETAzM8PkyZOFbwaaG4+1nH//+98YMmRIveWzZs1CbW0tpk2bhrq6ugbXbaz+fPTRRxCJRJg7dy4mTpwIMzMzvPfee6itrQUA3LhxAyNGjIBYLIaLiwvS0tIUytXT0xOurq4NltXV1WHfvn1YtmwZ7OzsMHLkSEycOBF79+5VKLY869atw/r169G3b1+Ymppiw4YNmDt3rspxVY39008/YciQITA2NoaHhwdeeeUV/PXXX+jevTt+/vln/O1vf4OpqSkWLlwIIyMj/PnnnzLrDx06FEePHlXLfjDW2nFHrZXZt28f/vnPf2L69Om4cOECrl+/DuDZJ+vJkydj6tSpuH//PhwcHBQq04SqqiqMHTsWQ4cORXZ2NsLCwjBhwgRkZWXh2LFjGDdunPDcc+fOCW+QUVFRGDduHA4cOAAiQmBgIKKiouDn54cTJ05gx44dyMzMxOPHjyGRSACg2fFYy8nIyECXLl3qLXdwcMCRI0dw/vx5LF++vF65vPqzZcsWLF68GPHx8Vi1ahXS09ORmpqKhIQEVFVVYdy4cRg1ahTy8vIgkUjg6emJqqoqlfYjLy8Pjx49gouLi7Csb9++zfrGaObMmbC0tISTk5MwavrBgwfIysrCnTt34ODggM6dO2P27NmoqKhQKa66YgPP2o6oqChUVlZi9OjR9cqfPHkCIkL//v1lltva2iIjI6NZ22KsreKOWitSXV2N+Ph4jBkzBqNHj4aNjY3wrVpSUhJKSkogkUhgbm6OgIAAdOjQockyTUhOTsaDBw+wbNkyWFhYwNPTE/369cPhw4eVjjlp0iT06dMHNjY2WLBggUq3mVq0aBFmzpyp9PqsadXV1SgrK2t0vsDhw4djw4YNWL16NU6fPi1Tpkj9GT58OFxcXNC1a1cMGjQImZmZSE5ORl5eHpYuXQozMzPMmDEDZmZmOHv2rEr7UlBQAODZ1DpSFhYWePjwoULrGxgYYNiwYbh37x7279+PJUuWICYmRlj/u+++w++//46LFy8iKSkJa9asUSkuAJVjA8862qamppg3bx62bt3a4LyJ69evx4oVK+pNYyMWi/H48WOFt8VYW8YdtVYkJiYGI0aMgJGREV566SV4e3vj4MGDqKqqQk5ODqysrGBkZCQ839bWFgDklmlCdnY2rK2tYWxsLCxzcHCQuY6luaTXOQGAnZ0dSkpK5A6mkKeurk6v7n+qj4yMjCAWi1FeXt7oc+bPnw9vb29Mnz4d9+7dE5YrUn+erw8mJiaoqqpCdnY2SktLYWhoKFxcf+PGDdy+fVulfbG2tgbw7NsjqSdPnqBz584Krb9z504EBATAwsIC7u7u8Pb2RkxMDCwtLQEAwcHBsLa2hqOjI2bNmoX4+HiV4gJQOTYAODk5oaqqCnFxcfjoo49w8OBBmfKIiAgUFhZi0aJF9dYtKytDp06dFN4WY20ZT3jbiuzfvx+nT5/Grl27ZJbHxMTAzs4Ojx49QnV1tdAhk36qllemCd26dUNBQQGqqqqEN9v79++jX79+AABjY2OZn2Ck31gAgEgkajBmXl6e8H9OTg7Mzc0hFouVird582Zldos1k5OTk8x5a8i+ffvw+uuvw8vLC2ZmZgCarj+N6datG6ysrGTOvzp06dIFVlZW+PPPP2Fvbw8AuHLlCnr16qVUPOmHBAcHB5iYmAjX10m99NJLKsVVZ2wjIyMMHDgQnp6eOHbsGN5//30AwNdff42LFy82et1nbm4unJycmrkHjLVN/I1aK5GdnY0nT56gurpaGOFVXV2NIUOGYN++fRg+fDjMzc2xYcMGlJaWIjIyErm5uQAgt0wThg0bBnt7e6xevRolJSU4fvw4Ll26hGnTpgEAHB0dcfr0aZSWluLw4cMoKSkR1u3YsSPu3LmDH374AVOnThWWx8XF4cqVK8jPz8fmzZvh4+MjlDU3Hv/02TKmTJmCCxcuyH2OWCzG8ePHcf36deHWZE3Vn8YMGzYMHTp0wJYtW1BaWopr167Bzc0Nly9fVmk/DAwM4O/vj1WrViE3NxeJiYmIiYlBQECAQus7Ojri6tWrqKysxPnz53H06FG88847MDIygq+vLzZt2oT8/HxkZmYiPDwcEydOVCkuAJViFxQUwMXFBTdv3kR1dTWuXr2KmJgYODs7AwAOHTqElJQUYbqVlJQUbNq0SSZGamoqPD09FdoPxto8Yjpl9uzZlJiY2Kx1Hj58SAAIAO3du1dYvnfvXmG5m5sbpaamUq9evUgsFtPHH39Mbm5uBICOHj0qt6y5duzYQTt27JD7nPT0dPLw8CAzMzNycXGhM2fOCGV37tyhfv36kZmZGa1Zs4ZcXV0JAMXHx1NiYiLZ2NiQra0tJSUlERGRn58fhYaG0siRI0ksFtPEiROpsLBQ6Xjz588nf39/ufm7u7tTXl5es48N+z9FRUXk5uZGBQUFRES0a9cuob56e3vLPDcmJoZee+014XFj9Wf58uVCjJUrV1JQUJDMa+PGjRvk4eFBYrGYunfvThEREULM0NBQCgoKajDXkydPCnEAkKWlpUx5eXk5vf/++2Rqakr29vYKxyUiiouLo8GDB5NYLKYePXrQ9u3bhbLi4mLy9vYmU1NTsrOzI4lEQlVVVQrFlhe3qdhN5RwdHU0DBw4kExMTsre3p8DAQCorK6Nbt26RgYGBzLECQBs3bhTWPX78OAUEBDQamymO26E2IZ87ajpGmY6arlGko6ZOfn5+tHbt2hbbHhE3kOpy69YtWrZsmbbTICKioUOHynxg0PW4moytqbg5OTm0ePFiqqioUHvstojboTYhn69RY4xpjZOTEz7//HNtp4HY2Fh4eHjgrbfe0ou4moytyZxtbW2xbt06tcdlrDXjjhrTaz4+PoiOjgYA1NTUICwsTMsZMX00fvx4jB8/Xm/iajK2JnNmjDUfd9SYXouKilJpzjTGGGNMl/GoT8YYY4wxHcUdNcYYY4wxHcU/feogX1/fRm+tow+ks80/f2/B1ubx48cYPnw4DAz4s05LqKioQLt27fh4M/acu3fvajsF1gJERHyvHMaYbvPy8sLy5cvRu3dvbafCGGMt6SF/PGWMMcYY01HcUWOMMcYY01HcUWOMMcYY01HcUWOMMcYY01HcUWOMMcYY01HcUWOMMcYY01HcUWOMMcYY01HcUWOMMcYY01HcUWOMMcYY+//s3XdUVOfWP/DvEEFghqIgUjQqklc0IjESyQ32kmI3CiILjAqouahYCJaL0URNbDFiNLbEmldRiZGrgoZEjTSNubFEERRFb5AmSu9l//7gN+d1hBkGZoYZcH/WYi3mlH32aZuHM+ecR0dxQ40xxhhjTEdxQ40xxhhjTEdxQ40xxhhjTEdxQ40xxhhjTEdxQ40xxhhjTEdxQ40xxhhjTEdxQ40xxhhjTEdxQ40xxhhjTEdxQ40xxhhjTEdxQ40xxhhjTEdxQ40xxhhjTEe10XYCjDFWn+joaKSmpgIAnjx5gp9++glxcXEAgMmTJ6N9+/baTI8xxpqFiIhI20kwxtiLNm7ciGXLlqG6ulpmuEQiQW5uLtq04f8zGWOt3hP+6pMxppN8fHxgbm5eZ/j48eO5kcYYe2lwQ40xppOsra3RuXNnmWEWFhb4+OOPtZQRY4w1P26oMcZ0VkBAAMRisfBZX18f77zzjhYzYoyx5sUNNcaYzvLw8EDbtm0BACKRCJMmTYJIJNJyVowx1ny4ocYY01mmpqbo3bs3gNqvPWfNmqXljBhjrHlxQ40xptMCAgIgkUhgZGSEPn36aDsdxhhrVtxQY4zptLFjx6KyshLTpk3TdiqMMdbs+D1qTG2ys7PRrVs3dOnSRdupMAA1NTXIy8trFS+GTU9Ph6WlJQwMDGSGl5SUAACMjY21kRZr4UpKSjBq1Ch8++232k6FMXme8MuImFq99dZbuHjxorbTYKhtOHt4eLSK/fHo0aN6/wHYvn07gNqvRxlrrIsXL+LYsWPaToMxhfirT8aYzuOrtIyxlxU31BhTExcXF4hEIpw+fVrbqbAXpKSk4NNPP9V2GqwZZGZmYtmyZSgrK9N2KoypBTfUWIs1ffp0RERE6Mwy//jjD7i6umpkuUSEQ4cOwdHREUZGRnjjjTcQGRmp9uU01zYdM2YM9u/fr/HlAEB+fj58fHwQGBiInTt3QiQSQV9fHzExMcI0mZmZEIlEEIlEMDQ0bJa86pOXl4d169ahW7du2Llzp8y40tJSfPTRRxCLxejUqRP27dundNw5c+YI6yf9ebEhs3XrVtjb28PMzAzTp09HXl6eWmI3Ne7169cxatQoGBkZ4dVXX8VXX30ljFN0PlhbW6N///6YP3++UsthTNdxQ421WPv378f48eNb/TKB2nu0tm7dinPnzuHp06fw8fHBhx9+iLS0NLUuR1vrp0lbt27FyJEjYWFhgTlz5iAmJgbV1dXw9PREdnY2gNo/7kSE9957T6tXYqKjo/HBBx/Azs6uzrjPPvsM9+/fR0pKCg4ePIh58+bhr7/+Ujp2aWkpiEj4eb5BumvXLuzevRsnT55ERkYGrKys8MMPP6gcW5W4s2bNQkhICPLz83HgwAEsX74cly9fBtDw+TBx4kTExsYiMTFR6XVgTFdxQ401mwULFkAkEmH+/PmYMmUK2rZtixEjRgAAkpOTMWTIEIjFYjg5OSEhIQEAsGzZMlhaWsLKygqbNm1CdXW1TKygoCCEh4fX+Y/++caGvNgvKisrE+aXvmRVerVgyJAhMsuUSkhIQO/evWFqaopVq1bJxFO03Lt372LYsGEwNTWFs7MzoqOjFW67rl274urVq+jSpQuMjY2xePFi6Ovr49atW0pu/Ya9uH7Sz3PnzsX48eMhkUgwefJkoZEjnXbIkCGQSCSYOHGicLVk8uTJEIlEwlWzIUOGQCQS4ZdffoGnpyfOnDmDGTNmQCQS1blypG4//vhjnW6nZs+ejerqanh5eaGmpqbe+eTtI0XbBVD+eKuPu7s7nJ2d6wyvqanBd999hxUrVsDGxgbDhg3D+PHjsWfPHqVjK7Ju3TqsX78effr0gbGxMTZs2IC5c+dqNe7vv/+Od955BwYGBhg6dCi6deuG//73vwCUOx/c3Nxw/PhxldeBMW3jhhprNlu2bMGSJUtw+vRpLF68GDdu3IC+vj4qKiowevRoDB8+HFlZWQgODoa7uztiY2Nx8uRJJCYm4t69e7h8+TKuXbsmE0vq1KlTICLk5OTA0dERmzdvBgC5sSsqKurkZ2hoiHv37kEsFiM+Ph4AsHPnTowdOxYXL16ss8zS0lJMnDgRU6dOxePHj2FnZ4c7d+40uNyKigqMGjUKbm5uSEtLQ0hICMaNG4eHDx8qvS0LCgpARHjzzTcbvR/keXH9pJ+joqKwZs0aJCUlIS4uDtHR0QgLC4Ovry9OnjyJbdu24cGDB3j27BmCg4MBAOHh4Rg9erQQ6+LFi0IDJCwsDKNHj8a+fftARJgzZ47a1qE+KSkp6Nixo8wwOzs7HDt2DL/99htWrlxZZx5F+0jRdmnM8dYYWVlZePr0KZycnIRhffr0adQVo1mzZsHMzAwODg7C07JA7atPHj58iNTUVNjZ2aFDhw74+OOPUVpaqlJsdcQFas+zsLAwlJeXY+TIkfVOU9/5YG1tjZSUlEYtizFdxA011uwGDBiA/v37w9HREVFRUYiJiUFWVhaWL18OiUQCHx8fSCQSnD9/Hjk5OYiPj4eRkRHCw8Ph4uJSJ97kyZMxZswYAICfnx+WLVuG7t27A4Dc2D///HO9uTk4OODNN9/EkSNHAABxcXFyOwG/dOkSCgsLERwcDBMTE/j7+8Pc3LzB5cbExCA9PR0rVqyAqakp3N3d0bdvXxw+fFjpbbh+/XqsWrUKVlZWSs/TVIMGDYKTkxM6deqE/v3748GDB8K4CRMmoHfv3rCyssKiRYsQFhbW5OUEBQWpvYuoyspKFBcX1/uetUGDBmHDhg1Yu3Ytzp49KzNOmX1U33Zp7PGmrJycHAC1XWpJmZqa4smTJ0rNr6enh4EDB+Lvv//G999/j2XLlgn3Ikpj/PLLL7hx4wauXLmCS5cu4YsvvlAptqpxgdpGtrGxMebPn4/Q0FC0a9eu3unqOx/EYjGePXum9LIY01XcUGPN7sXGRVpaGoqKitCmTRvhq8fk5GSYmZlh48aNCA4OhpWVFYKCglBeXi437q5du9C2bVuZN9jLi33//n25cWbOnIm9e/cCAA4dOiT3jfgZGRmwsLCAvr6+MMza2rrB5aalpdV5eaudnZ3S95vt3bsXubm5Ml/BapKFhYXwu5GRkczVoefH2djYoLCwEMXFxU1aTk1NDdT9/m19fX2IxWLhxbgvWrhwIaZMmQJvb2/8/fffwnBl9lF926Upx5syLC0tAdReOZIqKChAhw4dlJr/22+/hb+/P0xNTTF48GBMmTJFaKiZmZkBAObNmwdLS0uUTbZYAAAgAElEQVTY29tj9uzZiIqKUim2qnGB2n+cKioqEBkZiQULFuDgwYN1ppF3PhQXF7eKlz0zxi+8ZVrXuXNnWFhYCFcNXjR9+nRcvXoVM2bMQOfOnREYGFhnmqSkJGzZsqXO/UANxa6Pu7s75s+fjytXrqCgoAC2trb1TmdjY4OnT5+isrJSaKxJryIoWq70SmFFRYXQEHj8+DH69u3bYG4HDhzAlStXNH5fl7KysrKE3zMyMmBiYgKxWAwAMDAwkPma6/ltIRKJ6sSSfl2tbg4ODjJ5vui7777D22+/DQ8PD0gkEgC1+68p+6gpx5syOnbsCAsLC9y6dUs4Hm/evIlevXo1Kd7zDWI7OzsYGRkJ99hJvfLKKyrFVldcfX19uLi4wN3dHeHh4TL/OCk6HzIzM+Hg4NCENWBMt/AVNaZ1AwcOhLm5ObZs2YKioiIkJibC1dUVISEhWLBgAYqKimBvby9zBeN5FRUV8Pb2xq5du4SvHr29vRXGvn79utx8xGIxPDw84OXlhcmTJ8udbtCgQTAxMcGGDRtQVFSE/fv3IzMzs8HlDhw4ELa2tli7di0KCwtx4sQJXLt2DV5eXgq306FDhxAbGyu8YiI2NhabNm1SOI+mRUZG4ubNm8jOzsbmzZvh6ekpjLO3t8fZs2dRVFSEw4cPo7CwUBjXrl07pKam4vz585g6dSoAzXz1CQCTJk0S7jmsj1gsxokTJ3Dnzh3k5uYCQJP3UVOON2Xo6enBz88Pa9asQWZmJi5cuICIiAj4+/srNb+9vT1u376N8vJy/Pbbbzh+/DjGjh0LoLYhNH36dGzatAnZ2dl48OABdu3apfTTv/JiqxI3JycHTk5OuHv3LiorK3H79m1ERETA0dFRmKah8yEuLg7u7u5KrQNjOo0YU5OsrCwaPHiw3PErV64kAASA+vXrJzMuOTmZhg4dSmKxmLp27Up79+6lkpISCg4OJltbWzIzMyNvb28qKSkhIqLAwEAhVn0/dnZ2CmM3JD4+niwtLamiokIY9vwyAwMDiYgoLi6OevXqRWKxmD755BNydXUlAHT8+HGFy01KSqKhQ4eSRCIhJycnOnfunMJ87t27R3p6enXWc+PGjXLnaWh/vOjF9Xt+f61evZoCAgKEz3v27CFfX19aunQpDRs2jMRiMY0fP55yc3OFeKmpqdS3b1+SSCT0xRdfkLOzMwGgqKgounDhAllZWZG1tTVdunSJiIgWLlxIfn5+SudLRLRt2zbatm2bwmny8vLI1dWVcnJyaMeOHcI6TJkyRWa6iIgIeuutt4TP8vZRQ9tF0X5funQpBQQEyM311KlTMvvXzMxMGFdSUkLTpk0jY2NjsrW1rXMcK4odGRlJ//jHP0gsFtNrr71G33zzjcz4/Px8mjJlChkbG5ONjQ0FBwcLx35DOSuKrShuQ7GPHj1KLi4uZGRkRLa2tjRnzhwqLi4moobPhxMnTpC/v7/cnKUuXLhAH3/8cYPTMaZF2dxQY2rT2IYB0yxN7w9fX1/68ssvNRZfGco01Ihq/7CvWLGiGTJSzM3NrcFGua7Fbmk5Z2Rk0JIlS6i0tLTBabmhxlqAbL5HjTHW6jk4OODzzz/Xag6nT5/G0KFD8e6777aY2C0xZ2tra6xbt06tMRnTJm6osZdWfTe0A1D7k4eNoYs51cfT0xNHjx4FAFRVVSEkJETLGem+MWPGCK+RaSmxW2LOjLU23FBjLy1da/wAuplTfcLCwlR6ZxpjjDHl8FOfjDHGGGM6ihtqjDHGGGM6SkQt5bsWpvOys7PRr18/mJiYaDsVhtp7x3Jzc5V+e31LJH3vmbyuhRhTpKSkBAMGDMAPP/yg7VQYk+cJ36PG1Kp79+64ePGittNgqG04e3h4tOr9Ie0APCAgQMuZsJbo4sWLOHbsmLbTYEwh/uqTMcYYY0xHcUONMQ1zcXGBSCTC6dOntZ3KSyslJQWffvqpttNgzSAzMxPLli1DWVmZtlNhTC24ocZ0QlhYGEQikcyPubk53N3dhfuQmmr69OmIiIho0rwPHz6Uyen5zrbff/99iEQiODo6KlzGH3/8AVdX1yYtX1eNGTMG+/fv19l4z8vPz4ePjw8CAwOFfiH19fURExMjTJOZmSnsY0NDQ43koYy8vDysW7cO3bp1q9PReGlpKT766COIxWJ06tQJ+/btUyomEeHQoUNwdHSEkZER3njjDURGRspM8+jRI3zwwQcwMTGBjY2N0u/Fayh2U+MCwPXr1zFq1CgYGRnh1VdfxVdffaXUcq2trdG/f3/Mnz9f6WUxpsu4ocZ0gqenJxISEtC2bVsQEWpqanD58mX88ccf+Oyzz1SKvX//fqU7mH5R165d8eTJExgYGCAyMhKWlpbCuFOnTuGDDz5AUlKSSstgmrV161aMHDkSFhYWmDNnDmJiYlBdXQ1PT09kZ2cDqP3jTkR47733tHolJjo6Gh988AHs7OzqjPvss89w//59pKSk4ODBg5g3bx7++uuvBmM+evQIW7duxblz5/D06VP4+Pjgww8/RFpamjDN3LlzIRaLkZaWhnPnzmHnzp04fvy4yrGbGhcAZs2ahZCQEOTn5+PAgQNYvnw5Ll++rNRyJ06ciNjYWCQmJiq1LMZ0GTfUmE6SXqkaOnQo7ty5IwxPTk7GkCFDIBaL4eTkhISEBGHcsmXLYGlpCSsrK2zatAnV1dVYsGABRCIRgoKCAADh4eF1rtxJG1jyYltaWmLcuHHYs2ePTI6nTp3C2LFj6ywDABISEtC7d2+Ymppi1apVMvMpWoe7d+9i2LBhMDU1hbOzM6Kjo9WzQeWQt7zJkydDJBIJV7mGDBkCkUiEX375BZ6enjhz5gxmzJgBkUiEnTt3wtPTU9gGQ4YMgUQiwcSJE5GXl9ekeOr0448/4p133pEZNnv2bFRXV8PLyws1NTWN2jbS/T137lyMHz8eEokEkydPRnV1NQDF+7ch7u7ucHZ2rjO8pqYG3333HVasWAEbGxsMGzYM48ePr3NM1qdr1664evUqunTpAmNjYyxevBj6+vq4deuWME1iYiK8vLxgZmaGPn364J133sHt27dVjt3UuADw+++/45133oGBgQGGDh2Kbt264b///a/S6+Tm5qZ0o5AxXcYNNaaTiAh3797FxYsXMWzYMABARUUFRo8ejeHDhyMrKwvBwcFwd3dHRUUFfv/9d5w8eRKJiYm4d+8eLl++jGvXrmHLli1YsmSJTOxTp06BiJCTkwNHR0ds3rxZYWwA8PX1xalTp5CVlSXEOXz4MLy8vOoso7S0FBMnTsTUqVPx+PFj2NnZCY1NRcupqKjAqFGj4ObmhrS0NISEhGDcuHF4+PChRraxouWFh4dj9OjRwrQXL14UGhBhYWEYPXo09u3bByLCnDlzEBYWBl9fX5w8eRLbtm3DgwcP8OzZMwQHBwNAo+OpU0pKCjp27CgzzM7ODseOHcNvv/2GlStXNmrbSPd3VFQU1qxZg6SkJMTFxSE6OrrB46ipsrKy8PTpUzg5OQnD+vTp06QrRgUFBSAivPnmm8Kw999/H2FhYcjPz8etW7dw9epVjBw5UuXY6ohbWlqKsLAwlJeXy523vnWytrZGSkpKo9eBMV3DDTWmU8rLyyESiaCnpwcnJycEBwcLjaCYmBhkZWVh+fLlkEgk8PHxgUQiwc8//4w2bdogJycH8fHxMDIyQnh4OFxcXOrEnzx5stC/oJ+fH5YtW4bu3bsrjA0A7777LmxtbYUrQmlpaTA1NYWZmVmdZVy6dAmFhYUIDg6GiYkJ/P39YW5u3uA6xMTEID09HStWrICpqSnc3d3Rt29fHD58WBObWiPLmzBhAnr37g0rKyssWrRIpW6mgoKCMGvWrCbPDwCVlZUoLi6GsbFxnXGDBg3Chg0bsHbtWpw9e1ZmnDLbZtCgQXByckKnTp3Qv39/PHjwoMHjqKmk90aampoKw0xNTfHkyZNGx1q/fj1WrVoFKysrYdiXX36JnJwcmJubo1+/fli8eDHc3NxUjq1q3JSUFBgbG2P+/PkIDQ2V+768+tZJLBbj2bNnjV4HxnQNN9SYTpHeo5abmws/Pz/s3r1b+EopLS0NRUVFaNOmjfC1ZXJyMu7fv48333wTGzduRHBwMKysrBAUFITy8nK5y9m1axfatm2LadOmNRgbAPT09DB9+nR8//33AIC9e/dixowZ9cbOyMiAhYUF9PX1hWHW1tYNLictLQ2WlpYwMDAQ5rOzs5O5l0idNLE8CwsL4XcbGxsUFhaiuLi4SbFqampU7vtUX18fYrEYJSUl9Y5fuHAhpkyZAm9vb/z999/CcGW2zfPramRkhIqKigaPo6aS3htZUFAgDCsoKGj0y4z37t2L3Nxcma/pq6qqMHjwYAwYMACFhYVITk7G8ePHZW7eb0psdcR1cHBARUUFIiMjsWDBAhw8eFCpdQKA4uJitG/fvlHrwJgu4oYa00nm5ub46quvkJmZKdyH07lzZ1hYWICIZH4CAwMB1D7deffuXURHR+Ps2bNy73VKSkrCli1bZMY3FBsAZs6cifv37+PChQuIj4/HwIED641vY2ODp0+forKyUhgmvfKhaDmdO3dGTk6OzNdkjx8/RqdOnZq4FRVraHkGBgYoLS0Vxj3/xKtIJKo35vNfDWdkZMDExARisbhJ8TZv3qzUPVgNcXBwkMnrRd999x1sbGzg4eEh/FPQ1H2hzHHUFB07doSFhYXMPVg3b95Er169lI5x4MABXLlyRXhJsFRKSgquX7+OgIAASCQSdO3aFe7u7ggPD1cptjriArWNbRcXl3rnlbdOQO2TvA4ODo1aFmO6iBtqTGcZGhpi0aJFWLlyJQoKCjBw4ECYm5tjy5YtKCoqQmJiIlxdXXH9+nWEh4djwYIFKCoqgr29vczVjudVVFTA29sbu3btEr6O9Pb2VhhbqkuXLhg+fDhmz56N4cOHy8170KBBMDExwYYNG1BUVIT9+/cjMzMTABQuZ+DAgbC1tcXatWtRWFiIEydO4Nq1a/Dy8lLjVv0/DS3P3t4eZ8+eRVFREQ4fPozCwkJh3nbt2iE1NRXnz5/H1KlTheGRkZG4efMmsrOzsXnzZnh6egrjGhtPHV99AsCkSZMQHx8vd7xYLMaJEydw584d4VUwTd0XyhxHTaGnpwc/Pz+sWbMGmZmZuHDhAiIiIuDv76/U/IcOHUJsbKzwepLY2Fhs2rQJQG3jUiKRYPv27SgqKsKjR49w/Phx9OzZU6XYqsTNycmBk5MT7t69i8rKSty+fRsRERFwdHRUap0AIC4uDu7u7kqtA2M6jRhTk6ysLBo8eHCT5j1y5AgBEH6uXr1KRESFhYXUvn17AkDHjx+n5ORkGjp0KInFYuratSvt3buXiIhKSkooODiYbG1tyczMjLy9vamkpIQCAwOFmIGBgbR582aZ5QAgOzs7IiK5sZ939OhR0tfXp6ysLGHYi8sgIoqLi6NevXqRWCymTz75hFxdXRtcByKipKQkGjp0KEkkEnJycqJz5841aXsSKbc/FC0vNTWV+vbtSxKJhL744gtydnYmABQVFUUXLlwgKysrsra2pkuXLhERka+vLy1dupSGDRtGYrGYxo8fT7m5uU2Ot3DhQvLz81OY/7Zt22jbtm0Kp8nLyyNXV1fKycmhHTt2CPtqypQpMtNFRETQW2+91eC2WblypRBj9erVFBAQIHzes2ePwv27dOlSCggIkJvrqVOnZI5NMzMzYVxJSQlNmzaNjI2NydbWts7xKS/2vXv3SE9Pr85xv3HjRmGa6OhocnFxIWNjY7K0tCRPT0/KyclpMOeGYiuK21Dso0ePkouLCxkZGZGtrS3NmTOHiouLlVruiRMnyN/fX+52lrpw4QJ9/PHHDU7HmBZlc0ONqY0qDTWmfs29P3x9fenLL79stuURKddQI6r9w75ixYpmyEgxNzc3lRrf2ojd0nLOyMigJUuWUGlpaYPTckONtQDZ3Ck7Y6zVc3BwwOeff67VHE6fPo2hQ4fi3XffbTGxW2LO1tbWWLdunVpjMqZN3FBjjKnM09MTR48eBVD7tF9jugp6WYwZM0Z4NUxLid0Sc2asteGGGmNMZWFhYSq9M40xxlj9+KlPxhhjjDEdxQ01xhhjjDEdxV99MrVKTEzkdxfpiMrKSqSnp8vdH0SE9PR02NjYQE+vZf7Plp6eDqC271BdUFhYiMrKSn4jfgvx5MmTRr00mDFtEBGp2EcLY/9fdXU1kpKStJ0Ga0BRURHCw8Px008/wdXVFfPmzYOJiYm202oV7t27h61btyI3Nxfe3t4YOXIkXnnlFW2nxRRo3749bGxstJ0GY/I84YYaYy+J1NRU7Nq1C//+97/h4eGB+fPn85UfDXnw4AF2797N25oxpipuqDHW2v3nP/9BaGgokpKSMHfuXEydOlWmw3imOQUFBdi3bx/27NkDNzc3LFiwQOmumRhjDNxQY6x1qq6uRmRkJNavX4927dohMDAQI0aM0HZaL62amhqcOXMG27ZtQ01NDebPn48xY8bI7dyeMcb+P26oMdaaSK/g7N69GwMGDMCiRYvQo0cPbafFniO9wnnnzh34+/vDx8cHRkZG2k6LMaabuKHGWGtw//59bN26Fb/++it8fHwwa9YstGvXTttpMQUyMjKwa9cuHDt2DOPGjcO8efNgZ2en7bQYY7qFG2qMtWSxsbHYunUrHj16hICAAHh5eaFNG37rTktSVlaGY8eO4euvv4aTkxOCgoLQp08fbafFGNMN3FBjrKWpqKhAREQEvv76a1hYWGDp0qVwc3PTdlpMRTU1NTh//jxCQ0ORl5eH+fPn48MPP+TXezD2cuOGGmMtRX5+Pvbv34/du3djxIgRWLRoEbp06aLttJgGJCcn49tvv8WFCxfg6+sLPz8/iMVibafFGGt+T1rm68gZe4ncu3cPgYGBGDBgAMrKyhAXF4fQ0FBupLViPXr0QGhoKH755ReUlZXhrbfeQmBgIP773/9qOzXGWDPjK2qM6ajY2FisX78emZmZmDdvHt9/9hKTft29efNmWFpa8tfdjL08+KtPxnRJRUUFwsLCEBoaiu7du2PRokV4++23tZ0W0yH8AAljLxVuqDGmC7Kzs7Fv3z4cOHAAI0eORFBQEDp37qzttJgOk76SJSoqCl5eXtxNFWOtE9+jxpg23b17F4GBgRg+fDgMDQ1x9epVhIaGciONNah79+4IDQ3FH3/8gXbt2mHQoEGYPXs27ty5o+3UGGNqxFfUGGtmRIRff/2VX8PA1EraTdXGjRvRtm1b7qaKsdaBv/pkrLmUl5fj6NGj2LJlCxwcHBAUFIT+/ftrOy3WCnE3VYy1GtxQY0zTsrKysGPHDqGroLlz56JTp07aTou9BF7spmr+/PmwtbXVdlqMMeVxQ40xTbl+/Tp27NiBhIQE+Pr6wt/fH8bGxtpOi72EioqKcPjwYezYsQNOTk745JNP4OTkpO20GGMN44YaY+r0YjdAwcHBfJ8Q0xncTRVjLQ431BhThxc71uYrFkzX3bhxA99++61wxZe7qWJMJ3FDjTFVZGZmYufOnXwPEGuxXnyH3+LFi/Hqq69qOy3GWC1uqDHWFNeuXcPXX3+NP//8E/7+/pg1axY/VcdaNGmvGF9//TU6deqEZcuW4Z133tF2Woy97LihxpiypO+p+uabb0BE/J4q1mpxN1WM6QxuqDEG1D4VJ5FI5I47fPgwtm/fDmdnZyxZsgSvv/56M2fIWPNrTDdVxcXFfI8bY+rHXUgx9v3338PNza3O8IyMDKxatQr9+/dHeno6fv31Vxw8eJAbaeylIa+bqqSkpDrTTpgwAevXr9dCloy1bnxFjb3UNm/ejDVr1oCIcPr0abi5udV5q/u0adNgaGio7VQZ0zrp1/8bNmyAubk5AgMDMWLECNy/fx/9+/dHdXU1Zs2ahQ0bNmg7VcZaC/7qk728Vq1aJbxPCgDefPNNGBoaokOHDli4cCEGDx6s5QwZ013x8fHYsmULHj58iPbt2+OXX35BdXU1zMzMMGHCBOzduxd6evylDWMq4oYae/kQEebOnYvDhw8LjTQAMDc3x48//ohhw4ZpMTvGWpbbt2/Dzc0N+fn5wjATExMMHToUP/74Iz+EwJhq+B419nKprq6Gl5cXfvjhB5lGGgAUFBTgf//3f7WUGWMtU0REBMrLy2WGFRYW4vz58xgxYgTKysq0lBljrQNfUWMvjcrKSowbNw4xMTEoLi6WGaevrw9DQ0NUVlYiKysLpqamWsqSsZajuroatra2KCkpQVlZGaqqqmTGGxoawsnJCefPn5f7VDVjTCHlv/q8f/8+xo4dq+mEWpyCgoJW/Ue9oqIC1dXVLf5lrkSE9PR0lJSUQE9PD6+88gpeeeUVtGnTBvr6+tDX1xeGtW3blu+tUaP3338fmzdvbtK806dPx++//67mjJi6EBHKyspQXV2NqqoqVFVVobKyEmVlZRCJRKiurkZNTQ3atm0LOzu7VtOnKBGhqKgIJiYm2k6FtVDt27dHbGysMpM+UfrmgbKyMrz++us4fvx40zNrhXr16oXExERtp6Exx44dQ2JiIlatWqXtVFgLdPv2bZWOnYcPH+LixYuwsrJSX1JM44YMGYJjx4612v2WnZ0NDw8PXLx4UdupsBaqV69eSk/Llw0YY4wxxnQUN9SYWqSkpODTTz/VdhqsGWRmZmLZsmUv1U3iLi4uEIlEOH36tEpxPD09IRKJsG7dOjVlxnQZ18WXi6Zqo0431GbPno2jR4+qFGPMmDHYv39/g9Pl5eVh3bp16NatG3bu3KnSMhWZPn06IiIiNBZfStn1Vof8/Hz4+PggMDAQO3fuhEgkgr6+PmJiYoRpMjMzIRKJIBKJtPryWEX7ubS0FB999BHEYjE6deqEffv2KRWTiHDo0CE4OjrCyMgIb7zxBiIjI2WmefToET744AOYmJjAxsYGISEhaond1LgAcP36dYwaNQpGRkZ49dVX8dVXXym1XGtra/Tv3x/z589XelktgaJz848//oCrq6vKywgLC4Ovr6/KcZSlar1R5thWB66LulsXAc3VRk3VRVViA/JrY0PL1VhtJCXdunWLJk+erOzkOmP06NG0b9++Bqc7duwYXb9+ndzc3GjHjh1Kx+/Zs6cK2WmOsuvdkKNHj9LKlSsVTvP555/TihUrhM8xMTEkEonI1taWsrKyZKZ97733VM5JFYr285IlS8jNzY3S09Pp119/JbFYTDdv3mwwZmpqKrm4uNDDhw+puLiYNm3aRG3btqW///5bmGbMmDE0adIkysvLoxs3bpCFhQUdO3ZM5dhNjUtE9NZbb1FcXByVl5fT+fPnycDAgBISEpRep549e9Lt27cVLkPVujF48OA6x5C2uLq60qlTp1SO4+vrS19++aUaMtI8ZY6D+ujSfnueuupiVlYWDR48WOE0raUuEmmuNmqqLqoSm0h+bVT2fFCmNjai7ZCttobalClTCAAtXryYBg8eTGKxmCZMmEC5ubkUGBhIAGjevHnk4eFBBgYGNHz4cCIiSk5OpqFDh5KJiQn16dOHfv75ZyIiWrx4sRBPKikpiQYPHkzGxsbUu3dvio+PF8Y9H6dfv350+vRpISfpjzINME021KTbQbpO0s8BAQE0btw4EovFNGnSJKqqqlK4PYmIJk2aRACEojN48GACQNHR0U1ab3mUaag5OztTVFSU8DkmJobmzJlDHTt2pOHDh1N1dbUw7vmCJG/fK9ouRIqPA2W9uJ+rq6vJwsKCzp49Kwzz8vKiefPmNTo2EZFEIpHZJvb29vTjjz8Kn8eOHdvgdlUmtjrj9ujRg44eParUcomI/Pz8aNWqVQpjarKhpqiuKDpGli5dShYWFtShQwfauHEjVVVV1Tk3iYji4+Pp9ddfJxMTE1q5cqXQUFN07kmdOXOGnJycyMzMjDw8PCgvL08Y11BDTZrL3LlzaezYsSQWi2nhwoV09+5dev3116l9+/a0f//+BpfVmHrTGC8eB/VpTEOtJdZFZRpqzV0XiVSvjfX9/dNkbdRUXVR3bEW1sb7zQZnaqJWGGlFtAerevTv99ddflJWVRYMGDSJ/f38iqm2Rd+vWja5cuUJ37tyh999/n8rLy6l79+4UEhJC+fn5dOzYMTI0NKTU1FRhHunJK532888/p8LCQjp48CDZ2dlReXm5MO7TTz+loqIiSkxMpP/5n/8hosb/B6XpK2rPr5P0s729Pd28eZP+/vtvsra2Fna6ou1JVHfdnJ2dhT8WzXlFTSwW059//il8jomJodWrV9Nvv/1Gbdq0oZCQEGGctCAps+/r2y6KjoPGeHE/p6enEwB6/PixMGzdunXCH/7GyM/PJ7FYLPOH6p///Ce5u7tTXl4e/fXXX2RtbU2xsbEqx1ZH3JKSEjpy5Ah17dqVnj17pvQ6hYSEkLe3t8LYmr6ipqiu1HeMXLlyhRwdHSkrK4vy8vJo0qRJdPXqVSGW9NwsKSmhjh070po1a6igoIB2795NpqamwhU1ReceEdHbb79NiYmJlJeXRzNmzJA555W5orZkyRJycHCgxMREunv3LonFYpoxYwbl5OTQsWPHyNLSUqllNabeKKO+46A+jb2i1tLqojINteasi8/Pq0ptrO/vnyZro6bqorpiN1Qb5Z0PytTGxjTU1H6P2oQJE9C7d29YWVlh0aJFCAsLE8YNGDAA/fv3h6OjI6KiohATE4P09HSsWLECpqamcHd3R9++fXH48OE6cWNiYpCVlYXly5dDIpHAx8cHEokEP//8sxAnJCQEYrEYPXv2RHJysrpXTWMGDRoEJycndOrUCf3798eDBw+EcYq2Z2MFBQVh1qxZ6khZUFlZieLiYhgbG9cZN2jQIGzYsAFr167F2bNnZcYps+/r2y6KjrDcIuQAACAASURBVANV5OTkAIDMO/FMTU3x5MmTRsdav349Vq1aJfNqgi+//BI5OTkwNzdHv379sHjxYri5uakcW9W4KSkpMDY2xvz58xEaGop27dopvU5isRjPnj1r9DqoW311Rd4x0qZNG+Tk5CA+Ph5GRkYIDw+Hi4tLnZiXLl1CYWEhgoODYWJiAn9/f5ibmyudU0JCAnr27AkzMzPMnDkTly5davR6DRw4ED179sRrr72GXr16YcCAAbCwsMD48eORk5ODgoKCJi1LUb1pSH3HgaZwXVS+LkrnbWm1UVN1UR2xlamN8s4HdddGtTfULCwshN9tbGxQWFgovAX+xZVJS0uDpaUlDAwMhGF2dnZIS0urEzctLQ1FRUVo06aNcPNlcnIy7t+/L8TR19dX9+o0i+e3mZGRESoqKuod9+L2bKyamhqQmjui0NfXh1gsRklJSb3jFy5ciClTpsDb2xt///23MFyZfV/fdlF0HKjC0tISAIQ/ftLfO3To0Kg4e/fuRW5uLoKCgoRhVVVVGDx4MAYMGIDCwkIkJyfj+PHjMjfvNyW2OuI6ODigoqICkZGRWLBgAQ4ePKjUOgFAcXEx2rdv36h10IT66oq8Y+TNN9/Exo0bERwcDCsrKwQFBdXp/ggAMjIyYGFhIVNTrK2tlcqHiBAcHAxra2vo6elh4MCByM3NbfR6Pb9tDQwMhM/Sc6aioqJJy1JUbxSRdxxoCtfFWsrURem8Lak2aqouqit2Q7VR0fmg7tqo9oZaVlaW8HtGRgZMTEwgFovrnbZz587IycmROQEfP36MTp061TuthYUFiEjmJzAwUIhTWVlZZz6RSKSGtdIeRdvTwMAApaWlwnjpfz5A/eu9efNm7NmzR+05Ojg4yOT5ou+++w42Njbw8PBAdXU1gMbt++cpOg5U0bFjR1hYWODWrVvCsJs3bzbqpYQHDhzAlStXsH37dpnhKSkpuH79OgICAiCRSNC1a1e4u7sjPDxcpdjqiAvU/lFxcXGpd1556wTUPrHm4ODQqGU1h4aOkenTp+Pu3buIjo7G2bNn633KzcbGBk+fPpWpKc9fQVB07p05cwZ79+7FxYsXUV1djYSEBLU3BJp7WYqOA23gulhXS6uNmqqL6ooNyK+NDZ0P6q6Nam+oRUZG4ubNm8jOzsbmzZvh6ekpd9qBAwfC1tYWa9euRWFhIU6cOIFr167By8ur3mnNzc2xZcsWFBUVITExEa6urrh+/bpMnOLiYly/fh09evRAaWkp2rVrh9TUVJw/fx5Tp05V9+pqnKLtaW9vj7Nnz6KoqAiHDx9GYWGhMK6+9dbEJX4AmDRpEuLj4+WOF4vFOHHiBO7cuSP8t9+Yff88RceBKvT09ODn54c1a9YgMzMTFy5cQEREBPz9/ZWa/9ChQ4iNjRUew4+NjcWmTZsA1BZQiUSC7du3o6ioCI8ePcLx48fRs2dPlWKrEjcnJwdOTk64e/cuKisrcfv2bURERMDR0VGpdQKAuLg4uLu7K7UOzUnRMRIeHo4FCxagqKgI9vb2Mlcnnjdo0CCYmJhgw4YNKCoqwv79+5GZmSmMV3Tu1dTUCD9lZWU4c+aMxta1OZbV0HGgDVwX62pptVFTdRFQreY2VBuVOR/UXhuVvZtN2YcJli5dSsOGDSOxWEzjx4+n3NxcWrlypfCkTb9+/WTmSUpKoqFDh5JEIiEnJyc6d+6cMO7FG0ylT8OIxWLq2rUr7d27t04csVhMjo6Ows2jFy5cICsrK7K2tqZLly7Jzf3UqVMyTwSZmZkptV2a8tQnAAoMDJTZLqtXr6aAgADh8549e+RuT6nU1FTq27cvSSQS+uKLL8jZ2ZkAUFRUVL3rvXDhQvLz81M6XyLlHibIy8sjV1dXysnJoR07dgjrMGXKFJnpIiIi6K233hI+y9v3DW0XRcfB0qVLKSAgQG6uivZzSUkJTZs2jYyNjcnW1lYmrqLY9+7dIz09PZm4AGjjxo3CNNHR0eTi4kLGxsZkaWlJnp6elJOT02DODcVWFLeh2EePHiUXFxcyMjIiW1tbmjNnDhUXFyu13BMnTsjcwC2PJh8mUFRX5B0jJSUlFBwcTLa2tmRmZkbe3t5UUlJS59wkIoqLi6NevXqRWCymTz75hFxdXQkAHT9+XOG5V1VVRTNnziQTExN67bXXKCQkhACQs7OzzJOHq1evbnC9Vq9eTaNHjxY+X7hwgczMzITPeXl5cpfV2HpTH2WO7cbutxe1xLqozMMEzV0XiRT/jVRUCxr6+6eoNmqjfmmy5hLJr43KLFfZ2qjVpz7V+X6gFxtqukiT71HThfctKdNQI6o9cZ5/Z5C2uLm5yTT2W0LslpZzRkYGLVmyhEpLSxuctjW9R40pT5P7TRfqojINNSLdqYtEXL+aI25jamNjGmpKd8re3GpqavD06dNW26lva+Pg4IDPP/9cqzmcPn0aQ4cOxbvvvttiYrfEnK2trbkLJMaUoAt1EeD61RxxAc3VRrU11Dw9PYXunqqqqhrVXcPzkpKS0LNnT7Rp0wbOzs44cuSIulIEIP/hAtLQzb5Npa7t+TIZM2YMxowZ06Jit8ScmXroUi3SpVwU4brYNFy/NB9Xk9TWUAsLC1PpXTZSjo6OGi0OulZ45FHX9mSM6SZdqkW6lIsiXBfZy0inO2VnjDHGGHuZcUONMcYYY0xHNeqrz8TERJ18b5I2ZWVlteptkpaWhtLSUty+fVvbqbAW6Pm3mTd1fj8/P7Rt21ZNGbHmkJKS0qr3W3l5OVJSUlp17Wea1Zja2KiGWpcuXbBq1arG5tOq/fnnn616m5w9exapqan4+OOPtZ0Ka4FSUlJw4MCBJs8vFovxySef6ERXVUx5M2bMaNX77dmzZ1i8eHGrrv1Msz788EOlp21UQ00sFuP1119vdEKtWdu2bVv1Nrl9+zYKCwtb9ToyzXrllVdUmrdHjx78mp4WxtjYuFXvt+zsbBgbG3NdZE3WmLrI96gxtUhJScGnn36q7TRYM8jMzMSyZctQVlam7VR0jouLC0QiEU6fPq1SHE9PT4hEIn5fXQvHdfHloqnaqPGGWlhYGEQikcyPnZ0dli1bhpqamibHnT17tvA+naYaM2YM9u/fr1IMTVF3bppc1/z8fPj4+CAwMFDo/0xfXx8xMTHCNJmZmcL+NzQ01EgeysjLy8O6devQrVu3Op1xl5aW4qOPPoJYLEanTp2wb98+pWISEQ4dOgRHR0cYGRnhjTfeQGRkpMw0jx49wgcffAATExPY2Ngo/f6nhmI3Na7U1q1bYW9vDzMzM0yfPh15eXl1pvnrr79gaGiIH374AUDtSx379++P+fPnN2pZza2+2mNubg53d3ehb8Wmmj59OiIiIuoM/+OPP+Dq6qpSbKA2d19fX+Gz9LwSiUTYu3dvnemLi4vRoUMHiEQiTJ48ucH48vJvCVpKbWwtdRHQXG3UVF1UJbZUQ7XxxboIaK42aryh5unpiYSEBLRt2xZEhKqqKhw9ehTbt2/H999/3+S4u3btwpQpU9SYKWuqrVu3YuTIkbCwsMCcOXMQExOD6upqeHp6Ijs7G0DtAUxEeO+997R6JSY6OhoffPAB7Ozs6oz77LPPcP/+faSkpODgwYOYN28e/vrrrwZjPnr0CFu3bsW5c+fw9OlT+Pj44MMPP0RaWpowzdy5cyEWi5GWloZz585h586dOH78uMqxmxoXqD2Hdu/ejZMnTyIjIwNWVlYyRQeovWn6yy+/RJcuXWSGT5w4EbGxsUhMTFRqWdrwYu2pqanB5cuX8ccff+Czzz5TKfb+/fsxfvx4NWXasDlz5iAhIQEGBgZYu3YtqqqqZMZ/++23KCgowL/+9S+Eh4c3GK+5838ZtZa6CGiuNmqqLqoSG2i4Nsqri4CGaqOynU2p0mdfQkICtW3bVmbYkCFDaPbs2UKHvPPmzSMPDw8yMDCg4cOHE9H/dTBrYmJCffr0oZ9//pmIiBYvXkwAZPoBTUpKosGDB5OxsTH17t2b4uPj68To168fnT59mohIpnNkALRjx44mrVtD/XXJW4dJkyYRANq3bx8R1faNB4Cio6PrzU06bPHixTR48GASi8U0YcIEoTPixsZTljJ9fTo7O1NUVJTwOSYmhubMmUMdO3ak4cOHU3V1tTDuvffea3DbSI+JgIAAGjduHInFYpo0aRJVVVURkfx93Rhubm4y26G6uposLCzo7NmzwjAvLy+aN29eo2MTEUkkEpltYm9vTz/++KPweezYsUr1odpQbFXidu3aVTgf5AkJCaGkpCRydnamQ4cOyYzz8/OjVatWKZxf23191ld7ZsyYQe+++67wWd7xtHTpUrKwsKAOHTrQxo0bheNPenxK6098fDy9/vrrZGJiQitXriRXV1c6deoUESk+L4mIzpw5Q05OTmRmZkYeHh6Ul5cn5PVin5YJCQnk5+dHhoaGtH//fmF4SUkJubq60tixY+lf//qXMFxe7Bfzb+h8a4qG9ltT6iJR/XVbUW1sSjxlKNPXZ3PXRSLVa+OLdZFIs7VRU3VR1dgN1UZFdZFIudrYmL4+m/0eterqasTHx+M///kP+vXrhy1btmDJkiU4ffo0Fi9ejBs3bkBfXx8VFRUYNWoU3NzckJaWhpCQEIwbNw4PHz7Epk2bsGTJEiFmRUUFRo8ejeHDhyMrKwvBwcFwd3dHUVERRo0ahYEDByIjIwOHDh3CokWLANR+tTB69Gjs27cPRIQ5c+aofV0VrUN4eDhGjx4tTHvx4kU4OzvLzU36VcjJkyexbds2PHjwAM+ePUNwcDAANDqeOqWkpKBjx44yw+zs7HDs2DH89ttvWLlyZaO2jfSYiIqKwpo1a5CUlIS4uDhER0fL3dcVFRUqrUNWVhaePn0KJycnYVifPn2a9F9RQUEBiAhvvvmmMOz9999HWFgY8vPzcevWLVy9ehUjR45UOXZT46anp+Phw4dITU2FnZ0dOnTogI8//hilpaXCNNHR0XByckKPHj3qjWFtbY2UlJRGr4O2EBHu3r2LixcvYtiwYQDk147Y2FicPHkSiYmJuHfvHi5fvoxr164BgHB8ArVfCU2cOBFTp07F48ePYWdnhzt37gjLVHReAsDq1atx9OhRPHr0CGKxGKtXr1a4DnZ2dpg7dy7Wrl2L6upqALVfi/7zn/+EgYGBzLTyYj+f//Of6zvfNKGpdRFofG1sSjx1ac66KJ23pdVGTdVFVWI3VBsbqouA+mtjszXUysvLIRKJ0KZNG0yePBn//Oc/Ze7BGDBgAPr37w9HR0dERUUhJiYG6enpWLFiBUxNTeHu7o6+ffvi8OHDdWLHxMQgKysLy5cvh0QigY+PDyQSCVasWIH09HSEhIRALBajZ8+eSE5Obq5VbtQ6KGvChAno3bs3rKyssGjRIpW6UwkKCsKsWbOaPD8AVFZWori4GMbGxnXGDRo0CBs2bMDatWtx9uxZmXHKbJtBgwbByckJnTp1Qv/+/fHgwQO5+/rnn39WaT1ycnIAAKampsIwU1NTPHnypNGx1q9fj1WrVsk88fbll18iJycH5ubm6NevHxYvXgw3NzeVYzc1rnS9fvnlF9y4cQNXrlzBpUuX8MUXXwAAnj59iqtXr8LDw0NuDLFYjGfPnjV6HZqbtPbo6enByckJwcHBQkNF3vF0/vx55OTkID4+HkZGRggPD4eLi0ud2JcuXUJhYSGCg4NhYmICf39/mJubK51bQkICevbsCTMzM8ycOROXLl1qcJ6lS5ciKysLR44cQXl5OSIjI+Ht7a1y7PrON03QRF0EdKs2NnddlM7b0mqjpuqiKrEV1UZl6iKg/trYbA016X0iRIT09HSsW7cOenr/t/gXH+NOS0uDpaWlzH+JdnZ2Mt9BPz9tUVER2rRpI9yYmZycjN9++w2WlpbQ19fX3Iop0Jh1UJaFhYXwu42NDQoLC1FcXNykWDU1NSr38aevrw+xWIySkpJ6xy9cuBBTpkyBt7c3/v77b2G4Mtvm+XU1MjJCRUWF3H19//59ldbD0tISgOxLCAsKCtChQ4dGxdm7dy9yc3MRFBQkDKuqqsLgwYMxYMAAFBYWIjk5GcePH8dXX32lUmxV4pqZmQEA5s2bB0tLS9jb22P27NmIiooCAKxZswb/+te/hG1848YN+Pj4QCQSCffSFBcXt4j3ZElrT25uLvz8/LB7927hapS848nMzAwbN25EcHAwrKysEBQUhPLy8jqxMzIyYGFhIVNjrK2tlcqLiBAcHAxra2vo6elh4MCBSj3kYGFhgaCgIKxduxa7du1CQECATC1tauz6zjdN0ERdBHSrNjZ3XZTO25Jqo6bqoqqxFdVGZeoioP7aqLOv5+jcuTNycnJkisXjx4/RqVOneqe1sLAQGoLSn02bNiEnJweVlZX1LkMkEmksf2leitbBwMBA5qsm6X8uinLLysoSfs/IyICJiQnEYnGT4m3evBl79uxp7GrV4eDgIJPXi7777jvY2NjAw8ND+APZmP37PHn7OjAwUKV16NixIywsLHDr1i1h2M2bN9GrVy+lYxw4cABXrlzB9u3bZYanpKTg+vXrCAgIgEQiQdeuXeHu7q7UTd+KYqsS187ODkZGRsL+kJK+2+frr7+W2b7Ozs44dOgQiEh4Oi0zMxMODg5Kr4O2mZub46uvvkJmZqZw3Cs6nqZPn467d+8iOjoaZ8+erfdpOBsbGzx9+lSmxrx4pUHeeXnmzBns3bsXFy9eRHV1NRISEpRuHCxcuBBPnz5FeHg4JkyYUGe8KrE1TZW6CDS+NjYlnjpqY3PWRem8Lak2aqouqhpbUW1Upi4C6q+NOttQGzhwIGxtbbF27VoUFhbixIkTuHbtGry8vOqd1tzcHFu2bEFRURESExPh6uoKExMTIUZxcTGuX7+OHj16CCdtu3btkJqaivPnz2Pq1KnNvg729vY4e/YsioqKcPjwYRQWFgrzysstMjISN2/eRHZ2NjZv3gxPT09hXGPjqeOrTwCYNGkS4uPj5Y4Xi8U4ceIE7ty5I/xX35j9+zx5+/r69esqrYOenh78/PywZs0aZGZm4sKFC4iIiIC/v79S8x86dAixsbHCY/ixsbHYtGkTgNoCKpFIsH37dhQVFeHRo0c4fvw4evbsqVJsVeLq6+tj+vTp2LRpE7Kzs/HgwQPs2rWrUU8CxsXFtbgudAwNDbFo0SKsXLkSBQUFco+nkJAQLFiwAEVFRbC3t5e5ivG8QYMGwcTEBBs2bEBRURH279+PzMxMmWnknZc1NTXCT1lZGc6cOaP0ekgkEkRERGD37t31jlcltqapUheBxtfGpsRTR21szroonbcl1UZN1UVAtZqrk7VR2ccOmvr01pEjR2Seqvnpp59kxq9cuVIY169fP5lxSUlJNHToUJJIJOTk5ETnzp0Txi1ZskTmqU/pkzJisZi6du1Ke/fulYkhFovJ0dFReNqHiOjChQtkZWVF1tbWdOnSpUavG1HDT24oWofU1FTq27cvSSQS+uKLL8jZ2ZkAUFRUVL25+fr60tKlS2nYsGEkFotp/PjxwlOfTYm3cOFC8vPzU5i/Mk995uXlkaurK+Xk5NCOHTuE/TllyhSZ6SIiIuitt95qcNs8f0ysXr2aAgIChM979uyRu6+Jap/UCwgIkJvrqVOnZI5HMzMzYVxJSQlNmzaNjI2NydbWViauotj37t0jPT09mbgAaOPGjcI00dHR5OLiQsbGxmRpaUmenp6Uk5PTYM4NxVYUt6HY+fn5NGXKFDI2NiYbGxsKDg6miooKmWkSEhJkluvm5kZERCdOnCB/f3+521lKm099vlh7rl69SkREhYWF1L59ewJAx48fr/d4KikpoeDgYLK1tSUzMzPy9vamkpISIvq/p+8AUGBgIMXFxVGvXr1ILBbTJ598Qq6urkJsIvnn5enTp2nmzJlkYmJCr732GoWEhBAAcnZ2lnkacfXq1TLr4uvrW2dd+/XrJ4z/6KOPqKqqSm7sF/Nv6HzTxH5ral0kqr9uK6qNTYnXUG1U5qnP5q6LRPL/DhIprgWK6iKR4tqojfqlyZpL1HBtlFcXiZSvjY156rNZXs+hCS821LSlERtbZS8+rt8clGmoEdWeOCtWrNB8Qg1wc3OTKfotIXZLyzkjI4OWLFlCpaWlDU6r7ddzMO1o7v3W3LVRmYYake7URSKuX80RtzG1sTENtUb19akrampq8PTp01bbj1xL5ODggM8//1yrOZw+fRpDhw7Fu+++22Jit8Scra2tuWsjxpSgC3UR4PrVHHEBzdXGFtVQS0pKQs+ePdGmTRs4OzvjyJEj2k6p2Xh6egpdZlVVVTW6O4yXwZgxYzBmzJgWFbsl5syYLuHa2DCuX5qPq0ktqqHm6OioM08uNbewsDCV3gvEGGOtEddG1trp7FOfjDHGGGMvO26oMcYYY4zpqEZ99ZmYmIhVq1ZpKJWWqaioqFVvk+TkZDx9+rRVrCMRIScnp9Fv1GZN15RuZl60ceNG4aXOrGXIzMzEpk2bYGxsjNzcXJiYmKBNmxZ1p41CJSUlyMzMbBV1kWmHvF4r6iMiJW/6KigoqNMvGWMtSWFhIbZs2QI9PT2MHj0azs7OGu+dgtW+fPIf//hHk+a9ePEisrOz1ZwRaw6JiYmIjIxEfn4+5s6dW6eDcsZeZoaGhhg3bpwykz5RuqHGWGtx48YNfPvtt0hISICvry/8/f3r7TyZMdY4FRUViIiIwJYtW9C+fXsEBgZixIgR2k6LsZaMG2rs5ZWdnY19+/bhwIEDGDlyJD755BOl+tRjjMl68uQJ9u7di4MHD2LEiBFYtGgRunTpou20GGsNuKHGWHl5OY4ePYrQ0FB0794dixcvhqurq7bTYkzn3bt3D9u2bcP58+fh7e2N2bNnw9zcXNtpMdaacEONsefFxsZi/fr1yM/Px7x58/Dhhx/ilVde0XZajOkUPk8YazbcUGOsPs9fKfDz84Ofnx8/echeatIrz1u2bIGDgwNfeWaseXBDjTFFpPfeSO9jW7x4MV599VVtp8VYs8nMzMTOnTtx7NgxjBs3DnPnzuV7ORlrPtxQY0wZFRUVCAsLw9dff41OnTph+fLlTX7lBGMtwbVr17Bz505cvnwZM2fO5KejGdMObqgx1lixsbHYunUrHj16hICAAHh5ebWql3myl1dNTQ3OnDmDb775BkSE+fPnY8yYMfy+Qca0hxtqjDVVSkoKvvnmG37ijbV4hYWFOHLkCLZv3w5nZ2csWbIEr7/+urbTYowBT7ivT8aayMHBAaGhoYiNjYWhoSHc3NwQGBiIhw8fajs1xpSSmpqKpUuXwtXVFenp6Th//jwOHjzIjTTGdAhfUWNMTfit7Kyl+M9//oPQ0FAkJycjICAAU6dOhb6+vrbTYozVxV99MqYJfB8b0zX8jwRjLRI31BjTpAcPHmD37t3497//DQ8PD8yfPx/t27fXdlrsJZKfn4/9+/dj9+7dGDFiBBYuXIiuXbtqOy3GmHL4HjXGNMne3h7r1q3D5cuX0a5dOwwaNAizZ89GUlKStlNjrdy9e/cQGBiIAQMGoKysDHFxcQgNDeVGGmMtDF9RY6wZSV9/sGHDBpibm/PXT0ztXuzeaeLEify1O2MtF3/1yZi2SG/oTkpKwty5c/mGbtZk0u6dQkND0b17dyxatAhvv/22ttNijKmOG2qMaVtqaip27dol3Mc2b948WFhYaDst1gJkZWVhx44d3L0TY60XN9QY0xUvvnR06dKl6NWrl7bTYjpI2r1TQkICfH19uXsnxlovbqgxpmuk97Ft27YNNTU13I0PA/B/x8XWrVtRVlaG4OBgPi4Ya/24ocaYLvvzzz+xZcsW3LlzB/7+/vDx8YGRkZG202LNSHql9dtvv0WfPn24eyfGXi7cUGOsJcjIyMCuXbtw7NgxeHh4YO7cubC0tNR2WkyDXrx3kfc5Yy8lbqgx1pIUFRXh8OHDwtWV4OBg9O7dW9tpMTV6/mlgPz8/TJs2DYaGhtpOizGmHdxQY6wlauz9SkTE9zJpmaJ9UFlZiZMnTyI0NBTt2rXj9+sxxqS4ocZYSyd9AvDy5cuYOXNmvU8ATpgwAUFBQRgwYICWsny5bdq0CVVVVVi6dKnM8Oe7dxowYAAWLVqEHj16aClLxpgO4oYaY61FZmYmdu7cKbxTa968ebCzs0NiYiLeeecd6Onp4YcffsCoUaO0nepLZfny5dixYwcMDQ2RlpaGV155BSkpKfjmm29w/vx5eHt7Y9asWWjXrp22U2WM6R5uqDHW2pSUlODAgQPYuXMnXFxckJmZiaioKBARzM3NsX37dnh5eWk7zVaP6P+xd+9hNeX7H8DfO0q1dxdKqp2RTucMjjQM+j0aFGMMORJSGplG5TJJLk0uw8SI3MbQySiMojkmMh4dlyI/mS7iNL9xT5HoTLopuqdNfX9/OHsdW7X3rl3tXX1ez9Pz2Ou79uf7WWt9Wz6tK4OPjw9+/vlnlJWVQVdXFytWrMD169dRW1sLPz8/ODo6Qk2NXrlMCGkWFWqEdFUNDQ34+eef8eWXX6KiooKbrq+vjy1btuDLL79UYnZdW319PT777DPExcVJrHszMzPExsZixIgRSsyOENKJPKM/5QjpotTU1HDv3j28fPlSYnpZWRnWrVuHzZs3Kymzrk0kEsHBwQHnzp2TKNIAoLa2Fq9evVJSZoSQzoiOqBHSRYlEIvTt27dRsSCmp6cHb29v7Ny5s4Mz67qqq6vx8ccf4/bt26ipqWlynk8++QQXLlzo4MwIIZ0UnfpUNYcOHer0O/Ha2loA6NJP0Bdfc6TK1xeJRCLk5+ejtrYWNTU1ePnyJerq6lBXV4f6+no0NDRAJBLB0tISH3zwgbLT7fREIhFSUlLw4sULaGhogMfjoWfPntDQ0ECvXr2ga30lwQAAIABJREFUpaUFbW1taGtr47333lN2uqSL+PHHH6Grq6vsNEj7edZT2RkQSb///jscHBwwatQoZafSaj///DMAYO7cuUrOpP14eHjgm2++QZ8+fZSdikJEIhHKysrQu3dvqKurKzudTq2qqgoikQj6+voqXcCTruOLL77Ay5cvqVDr4qhQU0Hm5uad+l1+JiYmANCpl0EWPp+P999/H0ZGRspOhRDSTb37vETSNdGffV3UyJEjwePxcPbs2Va1E8VoamqCx+PBzs5OYnp2dja++eYb5SRFOlRhYSHWrl3b6GYOWWiMdC/vjpOSkhLweDzweDy4uroqOTuiCqhQ66J+++032NjYtLodePMcqKioKAwaNAhaWlr44IMPcP78+bZOFR4eHoiNjW3zuE2ZNm0aIiMjO6Sv+/fv48qVK9zn8vJyuLu7w8/PD2FhYeDxeFBXV0dycjI3T2FhIbeTVub7HcvKyrBt2zYMHDgQYWFhEm21tbX4/PPPwefzYWZmhoiICLliyjOecnNzMWXKFOjo6MDExATr169vk9itjSsWEhICCwsL6OnpwcPDA2VlZY3muXPnDjQ1NfHTTz8BAIyNjTF69GgsW7ZM7n7eHiMAVHqcSBsjQPuNk/YaI4rEFpM1Tt4dI0DjcWJoaAjGGIKDg1vUN+m6qFAjzcrNzUVISAguXLiA0tJSuLu7Y+bMmcjLy2vTfiIjI+Ho6NimMVVRSEgIJk2aBAMDAyxevBjJycmor6+Hq6sriouLAbzZaTPGMHny5BYfiWlLCQkJmDJlCoRCYaO2TZs24dGjR8jOzsbRo0fh6+uLO3fuyIwpz3haunQp+Hw+8vLycOHCBYSFhSEmJkbh2K2NCwDh4eE4cOAATp8+jYKCAhgZGUn8RwsAdXV1CA4OxoABAySmOzk5ISUlBRkZGXL19fYYAaDS40TaGAHab5y01xhRJDYge5w0N0aAlo8T0s0wolKWLFnCEhMTm20/d+4cs7KyYnp6emzOnDmsrKyMa7t69Sr761//ynR0dFhgYCCzsbFhZ86ckbtdHgKBgMXFxUmdJzQ0lIWGhsoVz8/PjwFgq1atkvjs4+PDpk+fzvh8Pps1axZ7/fo1Y4wxFxcXbv7x48czPp/PZsyYwV68eMFmzZrFALCIiAjGGGPjx49nAFhCQoLEd8U/+/fvb9Gyv238+PGsqKio2fZevXqx+/fvS0yztraWWHfJycls8eLFrF+/fmzixImsvr6ea5s8eTL376ysLGZvb890dHTYsGHD2MWLF+VaV5mZmWz8+PFMW1ubDR06lF29erXFy2lrayuxnurr65mBgQGLj4/nprm5uTFfX98Wx2as8XiysLBgv/zyC/f5b3/7GwsMDFQ4tiJxzc3N2dmzZ6XOs379epaZmcmsra1ZVFSURJuXlxfbuHGjXH29O0YYU2ycyBojjCk+Tt4dI4y17zhprzGiaGxZ40TaGGGs8TgJDg5mLi4uUvuUtR8iXUIxHVHrZDZv3ozjx48jNzcXfD6fe2hpbW0tnJycMHfuXDx9+hRCoRD379/nvierXR4VFRVgjLXpU9X37NmD1atXN/ocFxeHoKAgZGZmIjU1FQkJCQCA6OhoeHp64vTp0wgNDUVOTg6eP3+OgIAAnDx5Eg4ODlysK1euwNramvscHR0NBwcHREREgDGGxYsXt9lyyCM7Oxv9+vWTmCYUCnHixAn8+uuvCAwMbPQdkUiEqVOnwtbWFnl5eVi/fj2mT5+OJ0+eSF1X4oeuTpw4EUVFRQgICICzszNEIpFCy1BUVITS0lJYWVlx04YNG9aqIwFNjadPP/0U0dHRKC8vx927d5Geno5JkyYpHLu1cfPz8/HkyRM8fvwYQqEQffv2xZIlS7hH0ABvjixZWVk1+zJ1Y2NjZGdny5V3U2MEaP04Wb58udTfp844TtprjCgSW9Y4kTVGgJaNE9K9UKHWyaSlpWHw4MHQ09PDggULkJSUBABISkpCZWUlAgICoKOjA29vb+jr63Pfk9Uuj+3bt2Pjxo0dcqfjuHHjYGVlBTMzM4wePRo5OTkS7TNmzMDQoUNhZGSElStXIjo6utV9+fv7Y+HChYqmLNWrV69QXV3d5F1a48aNw44dO7BlyxbEx8dLtCUnJyM/Px8bNmyArq4unJ2dMXz4cBw7dkzi+++uq+TkZBQVFWHdunUQCARwd3eHQCDAxYsXFVqOkpISAJB4HICuri6ePXvW4lhNjafg4GCUlJRAX18fH374IVatWgVbW1uFY7c2rni5Ll26hFu3buH69etISkrC1q1bAQClpaVIT0/HnDlzmo3B5/Px/PlzmX1JGyOAYuOkud+nzjhO2muMKBJb2jiRZ4wA8o8T0v1QodaJMMYQEBAAY2NjqKmpYezYsXjx4gUAoKCgAAYGBhLPwjI2Nub+LatdlsOHD+PFixfw9/dvgyWRTXyNDvDmwbnv/oX/druJiQkqKytRXV3dqr4aGhrA2vm5z+rq6uDz+c0+rX7FihVwcXHBvHnz8Mcff3DT8/LyYGhoCA0NDW6aUCiUuK6mqXWVl5eHqqoq9OzZk7voPCsrC48ePVJoOQwNDQFA4m0HFRUV6Nu3b4viNDWeXr9+jfHjx+Ojjz5CZWUlsrKyEBMTg++++06h2IrE1dPTAwD4+vrC0NAQFhYWWLRoEeLi4gAAQUFB+Prrr7l1fOvWLbi7u4PH43HXjlVXV8v1vD1ZYwRo/Thp7veps42T9hojisaWNk7kGSOA/OOEdD9UqHUi586dw+HDh3HlyhXU19cjLS2NKzBMTExQWloq8R7Bt/96ldUuzZEjR3D9+nXs27evjZZEcUVFRdy/CwoKoKOjAz6fDw0NDYnTUuK/7MV4PF6jWLt378bBgwfbL9n/sLS0lMj7XYcOHYKJiQnmzJmD+vp6AED//v1RUlIiUag+ffoUZmZmUvvq378/DAwMwBiT+BHfTdha/fr1g4GBAe7evctNu337NoYMGSJ3jObGU3Z2Nm7evAkfHx8IBAKYm5vD2dkZJ0+eVCi2InGFQiG0tLS47SHWo0cPAMD3338vsX6tra0RFRUFxhh3N2ZhYSEsLS3lyl/WGAG69zhprzGiaGxp40SeMQK0bJyQ7oUKtU6koaGB+3n58iXOnTvHtY0bNw46OjrYsWMHqqqqEBkZicLCQrnbmxMVFYWUlBTuMQEpKSnYtWtXuyxfS5w/fx63b99GcXExdu/ezT1vyMLCAvHx8aiqqsKxY8dQWVkp8b3evXvj8ePHuHz5MvfmhI449QkAs2bNwtWrV5tt5/P5OHXqFO7fv88dKR07dixMTU2xZcsWVFZW4tSpU7hx4wbc3Nyk9jV27Fjo6+tjz549qKqqQkZGBmxsbHDz5k2FlkFNTQ1eXl4ICgpCYWEhEhMTERsbC29vb7m+L2089e/fHwKBAPv27UNVVRVyc3MRExODwYMHKxRbkbjq6urw8PDArl27UFxcjJycHISHh7foLuXU1FQ4OzvLNa+sMQJ073HSXmMEUGz8dfQ4Id1Mh923QOQi7a7P169fswULFjAdHR325z//ma1fv54BYNbW1owxxlJTU9mQIUMYn89nX331FbOxsWEAWExMjFzt73r48CFTU1OTuFMSANu5c6fUZWjNXZ8AmJ+fHwsMDOQ+b968mfn4+HCfDx48yBhjzNPTk61Zs4ZNmDCB8fl85ujoyF68eMEYY+zx48ds+PDhTCAQsK1btzJra2sGgLuzKzExkRkZGTFjY2OWlJTEGGNsxYoVzMvLS658xVpz12dZWRmzsbFhJSUlbP/+/dxyvXtnV2xsLBs1ahT3OTMzk9nb2zOBQMCsrKzYhQsXGGNM5roS3wXI5/OZubk5O3z4MBdzzZo1zMfHp9n8z5w5I7HN9fT0uLaamho2f/58pq2tzUxNTSXiSostz3hKSEhgI0eOZNra2szQ0JC5urqykpISmTnLii0trqzY5eXlzMXFhWlrazMTExMWEBDARCKRxDxpaWkS/dra2jLGGDt16hTz9vaWa/0wJjlGGGMKjxN5fp9aO06kjRHGpI8TZWzL9hx/jMkeJ82NEcaaHid01yf5j2Iq1FSMrMdzdAYtKdRaw9PTkwUHB7dbfHnIU6gBYOPHj5eY/vDhQ7Zhw4Z2zk42W1tbruDrLLE7W84FBQVs9erVrLa2tkV9qcoYYYy2ZUfEfXecPHv2rNni/F1UqHULxfSuT0LaQXMPIbW0tMS3337bwdlIOnv2LOzt7fHJJ590mtidMWdjY2Ns27atxX2pwhgBaFt2RFyg8TgRv5mAEDEeoxGhUr788kvMmTOn0Tsi21NTF9gDaPXOQnyRro+PT6tzao6rqyuOHz8O4M0z5Vr6ipe2YmdnhxMnTtBL2QkhSkP7oW7hGR1RI53qr7fo6GiFnplGCCGEdCZ01ychhBBCiIqiQo0QQgghREXRqU8VU1tbi8jISFy5ckXZqbRaeno6APkfqNsZ5eXlYefOneDz+cpOhRDSTXXlfSz5LyrUVEyPHj1gZmbWoid4qxrxq2068zLIoqWlhb/85S/cq2MIIaSj9erVS9kpkA5AhZqK0dDQgJ2dXYfe9dnWxH/lyXoJcWf2ww8/wNHRke62IoQozQ8//KDsFEgHoGvUCCGEEEJUFBVq3dTIkSPB4/Fw9uzZFrUR0pays7PxzTffKDsN0kEKCwuxdu3aZh8ITQhpjAq1Lujw4cPQ1dVFdXV1s/P89ttvsLGxaXGbsk2bNg2RkZEqG4/Ir7y8HO7u7vDz8wMA7kXZ6urqSE5O5uYrLCwEj8cDj8eDpqamUnItKyvDtm3bMHDgQISFhTVqr62txeeffw4+nw8zMzNERETIFZcxhqioKAwaNAhaWlr44IMPcP78ea49NzcXU6ZMgY6ODkxMTOR+wLOsuIrEFgsJCYGFhQX09PTg4eGBsrIyifY7d+5AU1MTP/30EzfN2NgYo0ePxrJly1rUFyHdGRVqXdA//vEPNDQ04MSJE8pOhZBmhYSEYNKkSTAwMAAALF68GMnJyaivr4erqyuKi4sBvPnPnTGGyZMnK+1ITEJCAqZMmQKhUNhk+6ZNm/Do0SNkZ2fj6NGj8PX1xZ07d2TGzc3NRUhICC5cuIDS0lK4u7tj5syZyMvLAwAsXboUfD4feXl5uHDhAsLCwhATE6NwXEViA0B4eDgOHDiA06dPo6CgAEZGRhIFWV1dHYKDgzFgwIBG33VyckJKSgoyMjLk6ouQ7o4KtS7m/v37MDQ0xIwZM3Do0CGJtrS0NAwdOhS6urrYuHGj3G3t4cGDB5gwYQJ0dXVhbW2NhIQEAMDs2bPB4/G4o1x2dnbg8Xi4dOkSXF1dce7cOXzxxRfg8XgICwuDq6sreDwe/P39YWdnB4FAACcnJ+6v+5bGIx3nl19+wZgxYxpNX7RoEerr6+Hm5oaGhoYmv9vc+Fm+fDl4PB6WLl0KR0dHCAQCzJ49G/X19QCArKws2NnZgc/nw8rKCmlpaXLl6uzsDGtr6ybbGhoacOjQIWzYsAEmJiaYMGECHB0dcfDgQZlxzc3NkZ6ejgEDBkBbWxurVq2Curo67t69CwDIyMiAm5sb9PT0MGzYMIwZMwb37t1TOK4isQFg27Zt2L59O4YNGwZtbW3s2LEDS5cu5dqDgoIQGBgILS2tJr9va2srd1FISHdHhVoXc+jQIXz22WeYN28erl69ivv37wN4c2rGyckJc+fOxdOnTyEUCuVqaw8ikQhTp06Fra0t8vLysH79ekyfPh1PnjzByZMn4eDgwM175coV7j/I6OhoODg4ICIiAowxLF68GNHR0fD09MTp06cRGhqKnJwcPH/+HAEBAQDQ4nik42RnZ6Nfv36NpguFQpw4cQK//vorAgMDG7VLGz979uzB6tWrERcXh6CgIGRmZiI1NRUJCQkQiURwcHDAxIkTUVRUhICAADg7O0MkEim0HEVFRSgtLYWVlRU3bdiwYa06YlRRUQHGGEaMGAEA+PTTTxEdHY3y8nLcvXsX6enpmDRpksJxFYmdn5+PJ0+e4PHjxxAKhejbty+WLFmC2tpaAG+OPlpZWeH9999vNoaxsTGys7NbvByEdEdUqHUhr169QlxcHKZMmYJJkybByMiIO6qWlJSEyspKBAQEQEdHB97e3tDX15fZ1h6Sk5ORn5+PDRs2QFdXF87Ozhg+fDiOHTvW6pgzZszA0KFDYWRkhJUrVyr0PlB/f38sXLiw1d8nsr169QrV1dXQ1tZusn3cuHHYsWMHtmzZgvj4eIk2ecbPuHHjYGVlBTMzM4wePRo5OTlITk5GUVER1q1bB4FAAHd3dwgEAly8eFGhZSkpKQEA6OrqctN0dXVb9TDS7du3Y+PGjdxjX4KDg1FSUgJ9fX18+OGHWLVqFWxtbRWOq0hs8XJdunQJt27dwvXr15GUlIStW7eitLQU6enpMh/Nw+fz8fz58xYvByHdERVqXUhsbCzs7Oygrq6OHj16wMXFBUePHoVIJEJBQQEMDAygrq7OzW9sbAwAUtvaQ15eHgwNDaGhocFNEwqFEtfPtJT4OicAMDExQWVlpdSbKaRpaGjoVC+q74zU1dXB5/NRU1PT7DwrVqyAi4sL5s2bxz1EGZBv/Lw9HrS0tCASiZCXl4eqqir07NmTuzkhKysLjx49UmhZDA0NAbw5aiVWUVGBvn37tijO4cOH8eLFC/j7+wMAXr9+jfHjx+Ojjz5CZWUlsrKyEBMTg++++06huIrGFj/k2dfXF4aGhrCwsMCiRYu4o5hff/01t35v3boFd3d38Hg8iesLq6ur0adPnxYtByHdFRVqXciPP/6I/fv3czvJv//97ygpKUFsbCxMTExQWlqKV69ecfOL/zKW1tYe+vfvj5KSEolTTk+fPoWZmRmANw/9FZ9GAf57xAIAeDxekzGLioq4fxcUFEBHR4d7vVNL4+3evVuu64uIYiwtLSW2W1MOHToEExMTzJkzh7vOTNb4aU7//v1hYGAAxpjEj/iu09bq168fDAwMJK7/un37dovezHHkyBFcv34d+/bt46ZlZ2fj5s2b8PHxgUAggLm5OZydnXHy5EmF4ioaWygUQktLi9seYj169MD3338vsW6tra0RFRUFxpjEHbuFhYWwtLSUezkI6c6oUOsi8vLyUFFRgVevXnE7yVevXmHMmDE4dOgQxo0bBx0dHezYsQNVVVWIjIxEYWEhAEhtaw9jx46FqakptmzZgsrKSpw6dQo3btyAm5sbAMDCwgLx8fGoqqrCsWPHUFlZyX23d+/eePz4MS5fvoy5c+dy08+fP4/bt2+juLgYu3fvhqurK9fW0nh06rNjzJo1C1evXpU6D5/Px6lTp3D//n28ePECgOzx05yxY8dCX18fe/bsQVVVFTIyMmBjY4ObN28qtBxqamrw8vJCUFAQCgsLkZiYiNjYWHh7e8v1/aioKKSkpHCPJ0lJScGuXbvQv39/CAQC7Nu3D1VVVcjNzUVMTAwGDx6sUFwACsVWV1eHh4cHdu3aheLiYuTk5CA8PByOjo5y5QUAqampcHZ2lnt+Qro1RlTKkiVLWGJiYou+8+zZMwaAAWAHDx7kph88eJCbbmNjw1JTU9mQIUMYn89nX331FbOxsWEAWExMjNS2lgoNDWWhoaFS58nMzGT29vZMIBAwKysrduHCBa7t8ePHbPjw4UwgELCtW7cya2trBoDFxcWxxMREZmRkxIyNjVlSUhJjjDFPT0+2Zs0aNmHCBMbn85mjoyN78eJFq+OtWLGCeXl5Sc1//PjxrKioqMXrhvxXWVkZs7GxYSUlJYwxxvbv38+NVxcXF4l5Y2Nj2ahRo7jPzY2fwMBALsbmzZuZj4+PxO9GVlYWs7e3Z3w+n5mbm7PDhw9zMdesWcN8fHyazPXMmTNcHABMT09Por2mpobNnz+faWtrM1NTU7njPnz4kKmpqUnEBsB27tzJGGMsISGBjRw5kmlrazNDQ0Pm6urKrS9psWXFlRVbWs6MMVZeXs5cXFyYtrY2MzExYQEBAUwkEnHtaWlpEv3a2tpybadOnWLe3t7Nxibyo/1Qt1BMhZqKaU2hpmrkKdTakqenJwsODu6w/hijHWRbefjwIduwYYOy02CMMWZrayvxB4Oqx23P2O0Vt6CggK1evZrV1ta2eezuiPZD3UIxvZSdEKI0lpaW+Pbbb5WdBs6ePQt7e3t88sknnSJue8Zuz5yNjY2xbdu2No9LSFdGhRrp1FxdXXH8+HEAb+5ka+lrcAgB3rxKbNq0aZ0mbnvGbs+cCSEtR4Ua6dSio6MVemYaIYQQosrork9CCCGEEBVFR9RU0JUrV7gXUndGv//+OwB06ZfCP3v2DLGxsdzDPwkhpKO15/MuiergMUaPYFcl586dQ3p6urLTUMjr168BAD17dt2/A+rq6qChodHsA3hJ27p06RI+/PBD9O7dW9mpEKJSvvrqK+7h3qRLekaFGiFE5c2ZMweBgYH461//quxUCCGkIz2ja9QIIYQQQlQUFWqEEEIIISqKCjVCCCGEEBVFhRohhBBCiIqiQo0QQgghREVRoUYIIYQQoqKoUCOEEEIIUVFUqBFCCCGEqCgq1AghhBBCVBQVaoQQQgghKooKNUIIIYQQFUWFGiGEEEKIiqJCjRBCCCFERVGhRgghhBCioqhQI4QQQghRUVSoEUIIIYSoKCrUCCGEEEJUFBVqhBBCCCEqigo1QgghhBAVRYUaIYQQQoiK4jHGmLKTIISQd/n6+uLIkSPo0aMHXr9+jR49eoDH46GhoQGZmZkwMTFRdoqEENLentERNUKISnJycoK6ujrKyspQVVWF8vJylJWVoX///lSkEUK6DSrUCCEqyc7ODj179pSYpqmpicWLFyspI0II6XhUqBFCVJKamhqmT58OHo/HTePz+XB1dVViVoQQ0rGoUCOEqKyFCxfCwMCA+2xpaQlDQ0MlZkQIIR2LCjVCiMoaNWoUNDQ0ALw5mubj46PkjAghpGNRoUYIUWlubm7o0aMHNDU14eTkpOx0CCGkQ1GhRghRaZ6enlBXV8eIESMgEAiUnQ4hhHSonrJnIUQ+1dXV2Llzp7LTIP/BGINIJEKvXr2UnYrC+Hw++vTpg40bN0pMf/36NQA0ujuUEHmNGjUKDg4Oyk6DkGbRA29JmykuLoa9vT0CAwOVnQoBUF5ejj179nSJ7XH58mWMHTsW6urqEtMvXLgAAJg8ebIy0iKdXEZGBoqLi/HDDz8oOxVCmvOM/gwlbapv376YM2eOstMgeFM4/+Mf/+gS28PZ2VniMR1iz549A4AusYyk4125cgUnTpxQdhqESEXXqBFCVF5TRRohhHQHVKgR0kZGjhwJHo+Hs2fPKjsV8o7s7Gx88803yk6DdIDCwkKsXbsWL1++VHYqhLQJKtRIp+Xh4YHY2FiV6fO3336DjY1Nu/V98+ZNTJ06FVpaWnjvvffw3XfftXkfHbVOp02bhsjIyHbvB3hzrZ67uzv8/PwQFhYGHo8HdXV1JCcnc/MUFhaCx+OBx+NBU1OzQ/JqSllZGbZt24aBAwciLCxMoq22thaff/45+Hw+zMzMEBERIVdMxhiioqIwaNAgaGlp4YMPPsD58+cl5snNzcWUKVOgo6MDExMTrF+/vk1itzauWEhICCwsLKCnpwcPDw+UlZU1mufOnTvQ1NTETz/9BAAwNjbG6NGjsWzZshb1RYiqokKNdFqRkZFwdHTs8n2KLVy4EOvXr0d5eTmOHDmCdevW4dq1a23ahzKXr72EhIRg0qRJMDAwwOLFi5GcnIz6+nq4urqiuLgYwJv/3BljmDx5slKPxCQkJGDKlCkQCoWN2jZt2oRHjx4hOzsbR48eha+vL+7cuSMzZm5uLkJCQnDhwgWUlpbC3d0dM2fORF5eHjfP0qVLwefzkZeXhwsXLiAsLAwxMTEKx25tXAAIDw/HgQMHcPr0aRQUFMDIyIgrxsTq6uoQHByMAQMGSEx3cnJCSkoKMjIy5OqLEFVGhRrpMMuXLwePx8OyZcvg4uKCXr164eOPPwYAZGVlwc7ODnw+H1ZWVkhLSwMArF27FoaGhjAyMsKuXbtQX18vEcvf3x8nT57kjoaIf94uNpqL/a6XL19y3x86dCgAYPHixeDxeLCzs5PoUywtLQ1Dhw6Frq5uo0dHSOv3wYMHmDBhAnR1dWFtbY2EhASZ6+9f//oXxowZAw0NDdjb22PgwIH497//Lceal8+7yyf+vHTpUjg6OkIgEGD27NlckSOe187ODgKBAE5OTtwRj9mzZ4PH43FHzezs7MDj8XDp0iW4urri3Llz+OKLL8Dj8RodOWprv/zyC8aMGSMxbdGiRaivr4ebmxsaGhqa/F5z20jaegHkH29NcXZ2hrW1daPpDQ0NOHToEDZs2AATExNMmDABjo6OOHjwoMyY5ubmSE9Px4ABA6CtrY1Vq1ZBXV0dd+/e5ebJyMiAm5sb9PT0MGzYMIwZMwb37t1TOHZr4wLAtm3bsH37dgwbNgza2trYsWMHli5dKjFPUFAQAgMDoaWl1ej7tra2cheFhKgyKtRIh9mzZw9Wr16Ns2fPYtWqVbh16xbU1dUhEong4OCAiRMnoqioCAEBAXB2dkZKSgpOnz6NjIwMPHz4ENeuXcONGzckYomdOXMGjDGUlJRg0KBB2L17NwA0G1skEjXKT1NTEw8fPgSfz8fVq1cBAGFhYfjb3/6GK1euNOqztrYWTk5OmDt3Lp4+fQqhUIj79+/L7FckEmHq1KmwtbVFXl4e1q9fj+nTp+PJkydyrcfa2lpER0ejrq4OkyZNatW2aMq7yyf+HBcXh6CgIGRmZiI1NRUJCQmIjo6Gp6cnTp8+jdDQUOTk5OD58+cICAgAAJw8eVLi2VRXrlzhCpDo6Gg4ODggIiICjDEsXry4zZaMbeLdAAAgAElEQVShKdnZ2ejXr5/ENKFQiBMnTuDXX39t8vEl0raRtPXSkvHWEkVFRSgtLYWVlRU3bdiwYa06YlRRUQHGGEaMGMFN+/TTTxEdHY3y8nLcvXsX6enprRpb78Zubdz8/Hw8efIEjx8/hlAoRN++fbFkyRLU1tZy8yQkJMDKygrvv/9+kzGMjY2RnZ3d4mUgRNVQoUY63EcffYTRo0dj0KBBiIuLQ3JyMoqKirBu3ToIBAK4u7tDIBDg8uXLKCkpwdWrV6GlpYWTJ09i5MiRjeLNnj0b06ZNAwB4eXlh7dq1+NOf/gQAzca+ePFik7lZWlpixIgR+PnnnwEAqampjY7GiCUlJaGyshIBAQHQ0dGBt7c39PX1ZfabnJyM/Px8bNiwAbq6unB2dsbw4cNx7NgxmesuOzsb2traWLZsGfbu3YvevXvLXuEKGjduHKysrGBmZobRo0cjJyeHa5sxYwaGDh0KIyMjrFy5EtHR0a3ux9/fHwsXLmyLlDmvXr1CdXU1tLW1G7WNGzcOO3bswJYtWxAfHy/RJs82amq9tHS8yaukpAQAoKury03T1dXlHk/SEtu3b8fGjRthZGTETQsODkZJSQn09fXx4YcfYtWqVbC1tVU4dmvjipfr0qVLuHXrFq5fv46kpCRs3boVAFBaWor09HSpj2Xh8/l4/vx5i5eBEFVDhRrpcG//BwEAeXl5qKqqQs+ePblTj1lZWdDT08POnTsREBAAIyMj+Pv7o66urtm44eHh6NWrF+bPny8z9qNHj5qNs2DBAhw+fBgAEBUVJRHvbQUFBTAwMJB4CKuxsbHMfvPy8mBoaMi9bBx4c4Tn7WuGmmNpaQmRSITz589j+fLlOHr0qMzvKMrAwID7t5aWlsTRobfbTExMUFlZierq6lb109DQgLZ+/ra6ujr4fD5qamqabF+xYgVcXFwwb948/PHHH9x0ebZRU+ulNeNNHoaGhgDeHLESq6ioQN++fVsU5/Dhw3jx4oXE6fvXr19j/Pjx+Oijj1BZWYmsrCzExMS0+GaVd2MrEldPTw8A4OvrC0NDQ1hYWGDRokWIi4sD8OaU59dff82t41u3bsHd3R08Ho+7xrC6uhp9+vRp0TIQooqoUCNK179/fxgYGIAxJvHj5+cHDw8PPHjwAAkJCYiPj2/2eqbMzEzs2bOnUbu02M1xdnbG/fv3cf36dVRUVMDU1LTJ+UxMTFBaWopXr15x08RHAqT1279/f5SUlEgUPE+fPoWZmZlc60tdXR0jR46Es7MzTp48Kdd32ktRURH374KCAujo6IDP5wMANDQ0JE5ViY8KAU0/F2337t1yXXPVUpaWlhJ5vuvQoUMwMTHBnDlzuOvMWruNWjPe5NGvXz8YGBhIXFd2+/ZtDBkyRO4YR44cwfXr17Fv3z6J6dnZ2bh58yZ8fHwgEAhgbm7e4rHVVGxF4gqFQmhpaXHbQ6xHjx4AgO+//15i/VpbWyMqKgqMMe6u3cLCQlhaWsq9DISoKirUiNKNHTsW+vr62LNnD6qqqpCRkQEbGxusX78ey5cvR1VVFSwsLCSOYLxNJBJh3rx5CA8P5049zps3T2rsmzdvNpsPn8/HnDlz4ObmhtmzZzc737hx46Cjo4MdO3agqqoKkZGRKCwslNnv2LFjYWpqii1btqCyshKnTp3CjRs34Obm1mxfJSUlsLKywoMHD/Dq1Svcu3cPsbGxGDRokMz1257Onz+P27dvo7i4GLt374arqyvXZmFhgfj4eFRVVeHYsWOorKzk2nr37o3Hjx/j8uXLmDt3LoD2OfUJALNmzeKuOWwKn8/HqVOncP/+fbx48QIAWrWNxN9r6XiTh5qaGry8vBAUFITCwkIkJiYiNjYW3t7ecn0/KioKKSkp3ONJUlJSsGvXLgBvikuBQIB9+/ahqqoKubm5iImJweDBgxWKrUhcdXV1eHh4YNeuXSguLkZOTg7Cw8NbdEdyamoqnJ2d5Z6fEJXFCGkjRUVFbPz48c22BwYGMgAMAPvwww8l2rKyspi9vT3j8/nM3NycHT58mNXU1LCAgABmamrK9PT02Lx581hNTQ1jjDE/Pz8uVlM/QqFQamxZrl69ygwNDZlIJOKmvd2nn58fY4yx1NRUNmTIEMbn89lXX33FbGxsGAAWExMjtd/MzExmb2/PBAIBs7KyYhcuXJCZ0/Hjx9nIkSOZlpYWMzU1ZYsXL2bV1dXNzi9re7zr3eV7e3tt3ryZ+fj4cJ8PHjzIPD092Zo1a9iECRMYn89njo6O7MWLF1y8x48fs+HDhzOBQMC2bt3KrK2tGQAWFxfHEhMTmZGRETM2NmZJSUmMMcZWrFjBvLy85M6XMcZCQ0NZaGio1HnKysqYjY0NKykpYfv37+eWwcXFRWK+2NhYNmrUKO5zc9tI1nqRtt3XrFnDfHx8ms31zJkzEuNYT0+Pa6upqWHz589n2trazNTUtNE4bi72w4cPmZqaWqPfkZ07d3LzJCQksJEjRzJtbW1maGjIXF1dWUlJicycZcWWFldW7PLycubi4sK0tbWZiYkJCwgIkPh9ZIyxtLQ0iX5tbW0ZY4ydOnWKeXt7N7uexRITE9mSJUtkzkeIEhVToUbaTEsLA9K+2nt7eHp6suDg4HaLLw95CjXG3hQUGzZs6ICMpLO1tZWrKFel2J0t54KCArZ69WpWW1src14q1EgnUEwvZSeEdHmWlpb49ttvlZrD2bNnYW9vj08++aTTxO6MORsbG2Pbtm1tGpMQZaJCjXRbzb3om7XxnYctoYo5NcXV1RXHjx8H8Obuvpa+Gqg7mjZtGvcYmc4SuzPmTEhXQ4Ua6bZUrfgBVDOnpkRHRyv0zDRCCCHyobs+CSGEEEJUFB1RI22qoqICJ06cUHYaBEB5eTlKSkq69Pb4/fffAaBLLyNpPxkZGQq/3ouQ9kaFGmlTdXV1rXr/IGl71dXVePnyZZfeHuLn1nXlZSTt58mTJ81eF0qIqqBCjbSpvn37YuPGjcpOgwAoLi5Genp6l94e4ifh+/j4KDkT0hlduXKFjsYSlUfXqBFCCCGEqCgq1AhpZyNHjgSPx8PZs2eVnUq3lZ2djW+++UbZaZAOUFhYiLVr13IvZyeks6NCjaiE6Oho8Hg8iR99fX04Oztz719sLQ8PD8TGxrbqu+JrWMQ/b79Y/NNPPwWPx8OgQYOk9vHbb7/BxsamVf2rqmnTpiEyMlJl472tvLwc7u7u8PPz495Hqa6ujuTkZG6ewsJCbhuLX+qtDGVlZdi2bRsGDhyIsLAwibba2lp8/vnn4PP5MDMzQ0RERJvEfdudO3egqamJn376qU1jtyYuAISEhMDCwgJ6enrw8PBAWVmZzNjGxsYYPXo0li1b1qK+CFFVVKgRleDq6oq0tDT06tULjDE0NDTg2rVr+O2337Bp0yaFYkdGRrboZc5vMzc3x7Nnz6ChoYHz58/D0NCQaztz5gymTJmCzMxMhfog7SskJASTJk2CgYEBFi9ejOTkZNTX18PV1RXFxcUA3vznzhjD5MmTlXokJiEhAVOmTIFQKGzUtmnTJjx69AjZ2dk4evQofH19cefOHYXjitXV1SE4OBgDBgxos5wViRseHo4DBw7g9OnTKCgogJGRUaNCr7nYTk5OSElJoZtMSJdAhRpRSeIjVfb29rh//z43PSsrC3Z2duDz+bCyskJaWhrXtnbtWhgaGsLIyAi7du1CfX09li9fDh6PB39/fwDAyZMnGx25ExdYzcU2NDTE9OnTcfDgQYkcz5w5g7/97W+N+gCAtLQ0DB06FLq6uo0u5pe2DA8ePMCECROgq6sLa2trJCQktM0KbUZz/c2ePRs8Ho87ymVnZwcej4dLly7B1dUV586dwxdffAEej4ewsDC4urpy68DOzg4CgQBOTk7cEZCWxmtLv/zyC8aMGSMxbdGiRaivr4ebmxsaGhpatG7E23vp0qVwdHSEQCDA7NmzUV9fD0D69pXF2dkZ1tbWjaY3NDTg0KFD2LBhA0xMTDBhwgQ4Ojo2GpMtjfu2oKAgBAYGQktLS+585Ynd2rjbtm3D9u3bMWzYMGhra2PHjh1YunSp3LFtbW0RExPToj4JUUVUqBGVxBjDgwcPcOXKFUyYMAEAIBKJ4ODggIkTJ6KoqAgBAQFwdnaGSCTCv/71L5w+fRoZGRl4+PAhrl27hhs3bmDPnj1YvXq1ROwzZ86AMYaSkhIMGjQIu3fvlhobADw9PXHmzBkUFRVxcY4dOwY3N7dGfdTW1sLJyQlz587F06dPIRQKuWJTWj8ikQhTp06Fra0t8vLysH79ekyfPh1Pnjxpl3Usrb+TJ0/CwcGBm/fKlSvcf8bR0dFwcHBAREQEGGNYvHgxoqOj4enpidOnTyM0NBQ5OTl4/vw5AgICAKDF8dpSdnY2+vXrJzFNKBTixIkT+PXXXxEYGNiidSPe3nFxcQgKCkJmZiZSU1ORkJAgcxy1VlFREUpLS2FlZcVNGzZsWJsdMUpISICVlRXef//9NomnaNz8/Hw8efIEjx8/hlAoRN++fbFkyRLU1tbKHdvY2BjZ2dkK5U+IKqBCjaiUuro68Hg8qKmpwcrKCgEBAVwRlJycjKKiIqxbtw4CgQDu7u4QCAS4ePEievbsiZKSEly9ehVaWlo4efIkRo4c2Sj+7NmzufcLenl5Ye3atfjTn/4kNTYAfPLJJzA1NeWOCOXl5UFXVxd6enqN+khKSkJlZSUCAgKgo6MDb29v6Ovry1yG5ORk5OfnY8OGDdDV1YWzszOGDx+OY8eOtceqbpf+ZsyYgaFDh8LIyAgrV65U6DVT/v7+WLhwYau/DwCvXr1CdXU1tLW1G7WNGzcOO3bswJYtWxAfHy/RJs+6GTduHKysrGBmZobRo0cjJydH5jhqLfG1kbq6utw0XV1dPHv2TKG4AFBaWor09HTMmTNH4VhtFVe8XJcuXcKtW7dw/fp1JCUlYevWrXLH5vP5eP78eeuSJ0SFUKFGVIr4GrUXL17Ay8sLBw4c4E4p5eXloaqqCj179uROW2ZlZeHRo0cYMWIEdu7ciYCAABgZGcHf3x91dXXN9hMeHo5evXph/vz5MmMDgJqaGjw8PPDjjz8CAA4fPowvvviiydgFBQUwMDCAuro6N83Y2FhmP3l5eTA0NISGhgb3PaFQiLy8PAXWaPPaoz8DAwPu3yYmJqisrER1dXWrYjU0NCj87lN1dXXw+XzU1NQ02b5ixQq4uLhg3rx5+OOPP7jp8qybt5dVS0sLIpFI5jhqLfG1kRUVFdy0iooK9O3bV6G4wJvTh19//TWX761bt+Du7g4ej6fQ9XqKxBX/AeTr6wtDQ0NYWFhg0aJFiIuLkzt2dXU1+vTp0+r8CVEVVKgRlaSvr4/vvvsOhYWF3HU4/fv3h4GBARhjEj9+fn4A3tzd+eDBAyQkJCA+Pr7Za50yMzOxZ88eiXZZsQFgwYIFePToERITE3H16lWMHTu2yfgmJiYoLS3Fq1evuGniIwTS+unfvz9KSkokTpM9ffoUZmZmrVyL0snqT0NDQ+JU09t3vDb3NPe3Tw0XFBRAR0cHfD6/VfF2794t9zVY0lhaWkrk9a5Dhw7BxMQEc+bM4f4oaO22kGcctUa/fv1gYGCAu3fvctNu376NIUOGKBQXAL7//nuJXK2trREVFQXGmEJ3wCoSVygUQktLi9seYj169JA7dmFhISwtLVudPyGqggo1orI0NTWxcuVKBAYGoqKiAmPHjoW+vj727NmDqqoqZGRkwMbGBjdv3sTJkyexfPlyVFVVwcLCQuJox9tEIhHmzZuH8PBw7nTkvHnzpMYWGzBgACZOnIhFixZh4sSJzeY9btw46OjoYMeOHaiqqkJkZCT3qiNp/YwdOxampqbYsmULKisrcerUKdy4cQNubm5tuFb/S1Z/FhYWiI+PR1VVFY4dO4bKykruu71798bjx49x+fJlzJ07l5t+/vx53L59G8XFxdi9ezdcXV25tpbGa4tTnwAwa9YsXL16tdl2Pp+PU6dO4f79+9yjYFq7LeQZR62hpqYGLy8vBAUFobCwEImJiYiNjYW3t7dCcVWVuro6PDw8sGvXLhQXFyMnJwfh4eEturM6NTUVzs7O7ZglIR2EEdJGioqK2Pjx41v13Z9//pkB4H7S09MZY4xVVlayPn36MAAsJiaGZWVlMXt7e8bn85m5uTk7fPgwY4yxmpoaFhAQwExNTZmenh6bN28eq6mpYX5+flxMPz8/tnv3bol+ADChUMgYY83Gftvx48eZuro6Kyoq4qa92wdjjKWmprIhQ4YwPp/PvvrqK2ZjYyNzGRhjLDMzk9nb2zOBQMCsrKzYhQsXWrU+GZNve0jr7/Hjx2z48OFMIBCwrVu3MmtrawaAxcXFscTERGZkZMSMjY1ZUlISY4wxT09PtmbNGjZhwgTG5/OZo6Mje/HiRavjrVixgnl5eUnNPzQ0lIWGhkqdp6ysjNnY2LCSkhK2f/9+blu5uLhIzBcbG8tGjRolc90EBgZyMTZv3sx8fHy4zwcPHpS6fdesWcN8fHyazfXMmTMSY1NPT49rq6mpYfPnz2fa2trM1NS00fiUFltaXLG0tDSJeWxtbRXOWVpcWbHLy8uZi4sL09bWZiYmJiwgIICJRCK5Yp86dYp5e3s3m7NYYmIiW7Jkicz5CFGiYirUSJtRpFAjba+jt4enpycLDg7usP4Yk69QY4yxhw8fsg0bNnRARtLZ2toqVHwrI3Zny7mgoICtXr2a1dbWypyXCjXSCRTTS9kJIV2epaUlvv32W6XmcPbsWdjb2+OTTz7pNLE7Y87GxsbYtm1bm8YkRJmoUCOEKMzV1RXHjx8HALx+/Rrr169XckaqZ9q0adyjYTpL7M6YMyFdDRVqhBCFRUdHK/TMNEIIIU2juz4JIYQQQlQUHVEjbaqmpgb37t1TdhoEwPPnz1FdXd2lt0dBQQEAdOllJO2nvV7PRkhb4jGm4KO/CfmPiooKeHp6KjsN8h8NDQ2oqKjgnhcnJhKJkJOTg/z8fNjb2zf78NrOQPwA3Za+8Ls95eTkoKioCJaWlm3y5gDSviZPngwvLy9lp0FIc55RoUZIN5GVlYUffvgBiYmJ+Oyzz7Bw4UL07t1b2Wl1Sf/3f/+HvXv34saNG/Dy8oK3t3eT7xslhBAZqFAjpCtraGjA5cuXsXfvXpSVlWHZsmWYOXMm9yoe0r4KCwtx5MgRHD16FB9//DFWrlyJAQMGKDstQkjnQYUaIV1RRUUFIiIiEBYWhlGjRiEgIABDhw5VdlrdlkgkQmxsLPbu3YvevXvDz88PH3/8sbLTIoSoPirUCOlKHj58iNDQUMTHx2Pu3Lnw9fVt9r2nRDnEp0UzMzPh5eWFefPm0WlRQkhzqFAjpLN7+/RmeXk5fH194eTkhJ496aZuVVZQUIDw8HCcOHEC06dPx5dffon33ntP2WkRQlQLFWqEdFaVlZX4+eefsX//flhZWcHf3x/Dhg1Tdlqkherq6nD8+HHs2bMHQqGQTosSQt5GhRohnU12djYOHTqEf/7zn5gzZw6WLl0KQ0NDZadF2kBKSgpCQkKQm5sLT09PuLu7q9SjRwghHY4KNUI6A8YY/vd//xcHDhxAbm4ufHx84ObmRqc3u6j8/HwcOHCAOy26dOlSmJmZKTstQkjHo0KNEFVWVVWFY8eOISwsDJaWlli5ciX+53/+R9lpkQ7y8uVLnDhxAnv37sWf/vQnLF++HGPGjFF2WoSQjkOFGiGqKCcnBwcOHMA///lPTJ8+HcuWLYOpqamy0yJK9PZpUR8fH8ydOxfq6urKTosQ0r6oUCNEldB/xkSWd4t4X19fCIVCZadFCGkfVKgRomx0eou0Bp0WJ6RboEKNEGWhC8ZJW2jqRhM6EktIl0GFGiEdjR7BQNoLPbqFkC6HCjVCOgI91JR0JHoYMiFdBhVqhLSnd18T5OPjg/79+ys7LdJN0OvFCOn0qFAjpD28++JtOr1JlO3hw4cIDQ1FfHw85s6dC19fXxgYGCg7LUKIdFSoEdJWRCIRYmNjsXfvXvTu3ZtObxKVVFFRgYiICISFhWHUqFEICAjA0KFDlZ0WIaRpVKgRoqjCwkIcOXIER48exccff4yVK1diwIAByk6LEKnePi1aVlaGZcuWYebMmejRo4eyUyOE/BcVaoS0lvj05o0bN+Dl5QVvb29oa2srOy1CWiwrKws//PADEhMT8dlnn8Hb2xt9+vRRdlqEECrUCGkZ8enNkJAQaGpqYtmyZZg2bRp4PJ6yUyNEYeXl5YiMjMTBgwdha2uLZcuW4a9//auy0yKkO6NCjRB5FBcXIyIigju9uXz5cgwcOFDZaRHSLhoaGnDu3Dn8/e9/B2MMCxcupNOihCgHFWqESPP7778jPDwc165dw4IFC+Dl5QU+n6/stAjpMDdv3sT+/fuRlpaGzz77DIsWLYK+vr6y0yKku6BCjXRPL1++xLlz5zBr1qxGbfX19Th//jxCQ0PR0NBApzcJAfDs2TMcPnwYUVFRsLW1xfLlyzF48OBG8xUWFuLevXuYOHGiErIkpMuhQo10PxUVFbC3t0d2djb++OMP6OrqApD/PyJCujNZf8isXr0aISEhiIiIgKurq5KzJaTTo0KNdC/Pnz/HRx99hEePHkFNTQ3ffvstJk2aRKd2CGmFdy8NmD9/Pt5//308e/YM+vr62LhxI/z8/JSdJiGdGRVqpPvIzc3F2LFjkZ+fj/r6egCAvr4+bGxs4Ofnh08//ZRObxLSCoWFhQgLC0NERASeP3+OqqoqAICenh4+//xz7N27V8kZEtJpUaFGuof79+9j4sSJKCoqQkNDAzddT08PP/30E6ZNm6bE7AjpGv785z8jOztbYpqenh6cnJzw448/Qk1NTUmZEdJpPaPfGtLlXb16FePHj0dBQYFEkQa8eW7Upk2blJQZIV1HWloanj9/3mh6eXk5fvnlF8ycOROvX79WQmaEdG7cEbW6ujrExsYqOx9C2tSNGzewc+dO9OzZExoaGtypzYaGBvB4PPTo0QN8Ph+bNm2Cjo6OkrPtmuzt7dG3b98Wf6+iogLx8fHtkBFpD6dOncLFixfR0NDA/UH09u9bbW0t/vKXv2DdunXQ0NBQZqqEqLw5c+aI//nfU5/FxcUYPXo0PDw8lJaYKjp8+DAWLFig7DTazR9//IGsrKwu+fLwV69e4datW9DQ0ICWllajH7oerf2dO3cOO3fuhJ2dXYu/e+/ePcyZMwfOzs5tnxhpN6WlpUhNTcWnn36K2tpa1NbW4uXLl6itrUVNTQ0MDAxgbm6u7DQVcvXqVRgYGOD9999XdiqkC9q3bx+ePXsm/vis59uN5ubm2LhxY4cnpcpOnDjRpdfJlStXuvwyEuUpLi5W6PtDhgyhsdnJ3Lt3D4WFhdi6dauyU2k3GzduxJAhQ94+6kFImzlx4oTEZ7pGjRBCCCFERVGhRlolOzsb33zzjbLTIB2gsLAQa9euxcuXL5WdilKMHDkSPB4PZ8+eVSiOq6sreDwetm3b1kaZkc6E9pndS1vuN5VaqC1atAjHjx9XKMa0adMQGRkpcz7GGKKiojBo0CBoaWnhgw8+wPnz5xXquykeHh4dclOGvMvdHsrLy+Hu7g4/Pz+EhYWBx+NBXV0dycnJ3DyFhYXg8Xjg8XjQ1NRUSp4AUFZWhm3btmHgwIEICwuTaKutrcXnn38OPp8PMzMzREREtEnct925cweampr46aef2jR2a+ICQEhICCwsLKCnpwcPDw+UlZXJjG1sbIzRo0dj2bJlLeqrs2nud/e3336DjY2NwvGjo6Ph6empcJyWaIv90c2bNzF16lRoaWnhvffew3fffddG2f1XV99vvr3PBKDS+01Z+5/23m+21z6ztbEB2fvNpuK25X5TqYVaeHg4XFxcOqSv3NxchISE4MKFCygtLYW7uztmzpyJvLy8Nu0nMjISjo6ObRpT1YSEhGDSpEkwMDDA4sWLkZycjPr6eri6unLXJBkbG4MxhsmTJyv1SExCQgKmTJkCoVDYqG3Tpk149OgRsrOzcfToUfj6+uLOnTsKxxWrq6tDcHAwBgwY0GY5KxI3PDwcBw4cwOnTp1FQUAAjI6NGO6zmYjs5OSElJQUZGRkt6rMz6Yq/u22xTAsXLsT69etRXl6OI0eOYN26dbh27VobZfhGV1z3b3t7nwlApfebsvY/7bnfbK99piKxZe03pcVtq/2m3IWa+LC9v78/7OzsIBAI4OTkxFWWy5cvB4/Hw7Jly+Di4oJevXrh448/xoMHDzBhwgTo6urC2toaCQkJAAB/f38unlhWVhbs7OzA5/NhZWWFtLQ0ru3tOCNHjsS5c+fg6uqKc+fO4YsvvgCPx5NaSZubmyM9PR0DBgyAtrY2Vq1aBXV1ddy9e7fFK6054nUgXibx56VLl8LR0RECgQCzZ8/mfjmlrc/Zs2eDx+Nxf/3Z2dmBx+Ph0qVLLVru9vDLL79gzJgxEtMWLVqE+vp6uLm5NXpWmVhzY0HaegKkjwtZnJ2dYW1t3Wh6Q0MDDh06hA0bNsDExAQTJkyAo6MjDh48qFDctwUFBSEwMBBaWlpy5ytP7NbG3bZtG7Zv345hw4ZBW1sbO3bswNKlS+WObWtri5iYmBb12Z6a2+cAzY+ZtWvXwtDQEEZGRti1axc3xt793U1LS8PQoUOhq6vb6GYGab+bAHD+/HkMGzYM+vr6cHFxQXl5eauWy9fXF9OnT4dAIMDKlSvx8OFDDB06FAYGBjhy5Ag3f3P9tWR/JM2//vUvjBkzBhoaGrC3t8fAgQPx73//u0XLJM/y+vv7y8xR2n5T1nZR5n6zqX0moJr7TWn7n/beb7bXPlOR2LL2m7LitsV+U+5CTXzY/vTp0wgNDUVOTg6eP3+OgM9w6sgAACAASURBVIAAAMCePXuwevVqnD17FqtWrcKtW7fAGMPUqVNha2uLvLw8rF+/HtOnT8eTJ0+wa9curF69mosvEong4ODAPT0+ICAAzs7OEIlEEIlEmDp1KsaOHYuCggJERUVh5cqViI6OhoODAyIiIsAYw+LFi+Ve8IqKCjDGMGLEiBasLunE6+Ddz3FxcQgKCkJmZiZSU1ORkJAgc32ePHkSDg4OXKwrV65wA1GR5W4L2dnZ6Nevn8Q0oVCIEydO4Ndff0VgYGCj74i3YVNjQdp6kjYuFFFUVITS0lJYWVlx04YNG9ZmR4wSEhJgZWXV5rfvtzZufn4+njx5gsePH0MoFKJv375YsmQJamtr5Y5tbGzc6KnzytTUPkddXb3ZMZOSkoLTp08jIyMDDx8+xLVr13Djxg2JWMCbUztOTk6YO3cunj59CqFQiPv373P9SvvdBIDNmzfj+PHjyM3NBZ/Px+bNm1u1XPHx8di+fTtu3LiBAwcOIDg4GL/++ivCwsIk/sBtrr+W7I/kUVtbi+joaNTV1WHSpEktWiZ5lleeHKXtN2VtF2XuN5vaZwK033xbe+0zFYkta78pT9y22G+2+NTnjBkzMHToUBgZGXHF0ts++ugjjB49GoMGDcK6deuQn5+PDRs2QFdXF87Ozhg+fDiOHTvWKG5ycjKKioqwbt06CAQCuLu7QyAQ4OLFi0hOTkZ+fj7Wr18PPp+PwYMHIysrq/VLDWD79u3YuHEjjIyMFIojj3HjxsHKygpmZmYYPXo0cnJyuDZZ67Ml/P39sXDhwrZIuVmvXr1CdXU1tLW1G7WNGzcOO3bswJYtWxo9qFS8DaWNhabWk7RxoYiSkhIAgK6uLjdNV1f37WfXtFppaSnS09Pb/NZ9ReKKl+vSpUu4desWrl+/jqSkJO4RCvLE5vP5TT55Xtne3ufExcU1O2YuX76MkpISXL16FVpaWjh58iRGjhzZKF5SUhIqKysREBAAHR0deHt7Q19fX+580tLSMHjwYOjp6WHBggVISkpq1XKNHTsWgwcPxp///GcMGTIEH330EQwMDODo6IiSkhJUVFS0qj9p+6PmZGdnQ1tbG8uWLcPevXvRu3fvVi2TvGTl2Jn2m9L2mQDtN4H222cqGlvaflPeuG2x32xxoSY+xw4AJiYmqKys/H/27j0sqnLtH/h3SFSY4aAQDge3h0075BXJRNkveADKykORxUm2mImYhooGoRaEJYapmbk1KdmIUgZi7NgpaLSFBMQ2deVZUNDYogw4yGkAOT6/P3xZPwaYYWBmmBm8P9fFdTHrWeuee6155pl71lqzFhoaGrhpXQufsrIymJubS12F2trautfzwsrKyiCRSDBs2DDuZMqioiKUlJRwcfT19fubbq/i4+NRXV0t9a1UnbpuMwMDA6lvNX1tz/7o6OiAum/dqq+vDz6fj8bGxl7bN2zYAF9fXyxZsgR37tzhpivSF3rbTvL6hTLMzc0BgPuw6/x/IFfQ7y46Ohrvv/8+l+/FixcREBAAHo+n1HknysQ1MTEBAKxduxbm5uaYOHEi3nrrLWRkZCgcu6GhAaNHjx5w/urS/cuWrD5jYmKCnTt3Ijw8HBYWFggLC0Nzc3OPeOXl5TAzM5Mab4RCoUK5MMYQHh4OoVAIPT09zJo1C9XV1QNar67bevjw4dzjzvdQS0vLgJ5P3ngki62tLVpaWpCeno7169fjyJEjA1klhfWVoy6Nm32NmQCNm+oaM5WNLW/cVDSuKsbNfhdqFRUV3P/l5eUwMjICn8/vdd6xY8dCLBZLvcnu3r0LGxubXuc1MzMDY0zqLyQkhIvT2traY7n+Xl3+8OHD+OWXX7B///5+Lacu8rbn8OHDpQ5NdX6bAXpf7927dyt8roAybG1tpfLuLi4uDpaWlvDx8eHOl+hPX+hKXr9QxpgxY2BmZiZ1juKlS5dgb2+vVFwA+Oyzz6RydXR0RGJiIhhjSv2SS5m41tbWMDAw6HE+0hNPPKFwbJFIBFtb2wHnP1jk9Zlly5bhxo0byMzMxKlTp3o9T8nS0hJVVVVS4033PQay3psnT55EfHw8srOz0d7ejvz8fLUWAYP5fPr6+nBycoK3tzeOHz+uludQlKxxU96YCWhu3OxrzAQe73FTXWOmsrHljZuKxlXFuNnvQi09PR2XLl1CZWUldu/eDT8/P5nzzpo1C1ZWVti2bRvq6+uRmpqK33//Hf7+/r3Oa2pqij179kAikeDatWtwdnbGhQsXpOI0NDTgwoULePrpp9HU1IRRo0bh9u3bOHPmDBYvXiw398TEROTm5nI/jc7NzcWuXbv6uwlUSt72nDhxIk6dOgWJRIKjR4+ivr6ea+ttvQfj0CcAvP766zh37pzMdj6fj9TUVFy/fp37dt+fvtCVvH6hDD09PaxYsQLR0dEQiUTIyspCWloagoKClIqrrfT19bFs2TLs2rULlZWVuHXrFr788st+/dIuLy9PJ27nJKvPREREYP369ZBIJJg4caLUnoiuZs+eDSMjI+zYsQMSiQQJCQkQiURS88h6b3be57KjowMPHz7EyZMn1bqu6n4+sVgMBwcH3LhxA62trbh69SrS0tJgZ2en0ufpL1njprwxE9DcuNnXmAnQuKmNtGbcZP+noqKCzZkzh8kTGBjINm3axDw8PBifz2eenp6surqaMcZYVFQUA8AAsGnTpnHLFBYWMnd3dyYQCJiDgwM7ffo017Zx40YWGhrKPS4qKmLu7u6Mz+ez8ePHs/j4+B5x+Hw+s7OzY5mZmYwxxrKyspiFhQUTCoXs7NmzMnO/efMm09PT43Ls/Nu5c6fcdZ40aZLc9q5CQkK4uCEhIVLbZOvWrSw4OJh7fPDgQbnbkzHGbt++zaZOncoEAgH7+OOPmaOjIwPAMjIyel3vDRs2sBUrViicL2OPtt/q1av7tUxNTQ1zdnZmYrGYHThwgFsnX19fqfnS0tLY9OnTucey+kJf20lev9i0aRMLDg6WmesPP/wg9XqbmJhwbY2NjWzp0qXM0NCQWVlZScXtK7a8uJ3y8/Ol5nF1dVU6Z3lx+4pdW1vLfH19maGhIbO0tGTh4eGspaVFodipqaksKChIZs6yrF69mmVlZfV7OcYYu3LlCvPy8pLZLmvMYaz3saSxsZGFh4czKysrZmJiwpYsWcIaGxsZYz3fu3l5ecze3p7x+Xz27rvvMmdnZwaApaSkMMZkvzdPnDjBli9fzoyMjNhTTz3FIiIiGADm6OjIfH19pfq5Iuu1detWtmDBAu5xVlYWMzEx4R7X1NTIfL7+jkeyJCcnMycnJ2ZgYMCsrKzYqlWrWENDw4Bft+665tn1T1aO8sZNeWMmY71/Xgxk3IyKimLJyckKz991zGSMafW42df4I2/c1NTYps7xuK9xU17OAx03u9Udlf0u1GJiYvr9pLJ0L9S0UX8Ktf5S9fYciIEUaow9KnwjIyPVkFH/uLq6ShX/uhBb13IuLy9nGzduZE1NTf1eVp2FGtFO6n7dtGHc7G+hxpj2jJmM0dg2GHGVGTe7F2pSN2UfTB0dHaiqqhqUX10S1bO1tcVHH32k0RxOnDgBd3d3vPDCCzoTWxdzFgqFdNsjQpSkDWMmQGPbYMQFVDtuKlyo+fn5cbd7amtrQ0RExICesLCwEJMmTcKwYcPg6OiIb7/9dkBxZJH14wKm5l9D9peqtufjbOHChVi4cKFOxdbFnIl6aNNYpU25yEPjpvJobFN/XFVTuFBLSkpS6lo1nezs7NT65te2gUUWVW1PQohu0qaxSptykYfGTfI40ui9PgkhhBBCiGxSe9Sam5tx9epVTeWilVpaWob0Nvnjjz9QXV09pNeRaE7XC2MORENDA/VNHVNcXIz6+voh/bqJxWLcuXNnSK8j0Zy2tjapx1KF2v3793vcgPhxV11dPaS3yf3791FZWTmk15Fozs2bN5VavrS0lPqmjqmrq0NJScmQft1u3LiB3377DefPn9d0KmQIkkgkUo+lCjUbGxul7/I+1Njb2w/pbZKdnY1jx47hiy++0HQqZAh6++23lVp+qL//hqKrV69iy5YtQ/p127JlC+zt7dVyb0pCut/pgc5RI4QQQgjRUlSoEYUUFxfjgw8+0HQaRAuIRCJs3rxZ6ZslD0VOTk7g8Xg4ceKEUnH8/PzA4/Ho+nU6jsZN0kmZcVPpQi0pKYm7e3znn7W1NTZv3oyOjo4Bx33rrbe46+UM1MKFC5GQkKBUDHVSdX7qWt/a2loEBAQgJCSEu0+qvr4+cnJyuHlEIhH3+it7E11l1NTUYPv27ZgwYUKPG243NTXhjTfeAJ/Ph42NDQ4dOqSSuF1dvnwZI0eOxNdff63S2KqOyxhDYmIi7OzsYGBggGeeeQbp6elce2lpKebNmwcjIyNYWlpKXa9KKBRixowZWLduncK5DLbexiVTU1N4e3tz91EcqGXLliEtLa3Xtl9//RXOzs5KxQce5R8YGMg97nzf8Xg8xMfH95i/oaEBTz75JHg8Hry8vOTGlpe/ttOVMROgcbOvuF3RuCmf0oWan58f8vPzMWLECDDG0NbWhuTkZOzfvx//+Mc/Bhz3yy+/hK+vr7LpERXYu3cv5s6dCzMzM6xatQo5OTlob2+Hn58fKisrATzqhIwxvPjiixrd05KZmYl58+bB2tq6R9uHH36IkpISFBcX48iRI1i7di0uX76sdNxOzc3NiImJwbhx41SWs7rilpaWYu/evTh9+jSqqqoQEBCA1157DWVlZQCANWvWgM/no6ysDKdPn0ZsbKzUOUeLFi1Cbm4url271q+cBkv3camjowPnz5/Hr7/+ig8//FCp2AkJCf26KbMqrFq1Cvn5+Rg+fDi2bdvW41dhX3zxBerq6vD+++/j+PHjcmNpIv/HEY2bNG6qatxU+aHPJ554AjNnzsS0adPw22+/Yf369eDxeFi3bh18fX0xYsQIPP/88wAe/XLGw8MDxsbGcHR0RGZmJgAgLCwMPB4PYWFhXNyioiK4ubmBz+fDwcEB+fn5XFvXOE5OTjh58iT8/Pxw8uRJvPnmm+DxeHKreWXIWgcvLy/weDzu25qbmxt4PB5++uknAOg1v87DHWFhYXBzc4NAIMCiRYtQU1MzoHiq8t1338HFxUVq2ltvvYX29nb4+/vL3HMqa9t09ok1a9bA09MTAoEAXl5eaG9v55aV93rL4+3tDUdHxx7TOzo6EBcXh8jISFhaWsLDwwOenp44ePCgUnG7io6ORlRUFAwMDBSKqWhsdcQdP348CgoKMG7cOBgaGiI0NBT6+vq4cuUKAODatWvw9/eHiYkJpkyZAhcXlx6XInB1ddWZE8Z5PB7s7Ozg7u6O69evc9Pl9bPNmzfD3NwcFhYW2LVrF9rb27m+23Vsys/Px+TJk2FsbNzjl459vW/T09MxZcoUmJqawtfXF7W1tXLXY+nSpbh37x6++eYbblpTUxO+++47vPjii1Lz9ha7e/6KvBfVYSDjZn/HzIHEU6XBHjcHOmYCNG4qGldT46bKC7X29nacO3cOv/32G6ZNm4Y9e/Zg48aNOHHiBEJDQ3Hx4kXo6+ujpaUF8+fPh6urK8rKyhAREYFXXnkFf/zxB3bt2oWNGzdyMVtaWrBgwQI899xzqKioQHh4OLy9vdHS0sLFmTVrFsrLy5GYmIh33nkHSUlJWLBgAQ4dOgTGGFatWqXqVZW7DsePH8eCBQu4ebOzs6Ve/N7y6zzc8f3332Pfvn24desWHjx4gPDw8AHFU5Xi4mKMGTNGapq1tTWOHTuGn3/+GVFRUf3aNp19IiMjA9HR0SgsLEReXh43IMl7vQeqoqICVVVVcHBw4KZNmTJFZXuEMjMz4eDggKefflol8dQdt7u6ujowxvDss88CAF566SUkJSWhtrYWV65cQUFBAebOnSu1jFAoRHFxsVrzUhXGGG7cuIHs7Gx4eHgAkN/P/vOf/+D777/HtWvXcPPmTZw/fx6///4713c7NTU1YdGiRVi8eDHu3r0La2trqUKwr/ft1q1bkZycjNLSUvD5fGzdulXuelhbW2PNmjXYtm0b9wEdGxuLt99+G8OHD5eat7fY3fPv672oDgMdN/s7ZgLyt7+6PyMGc9xUx5gJ0LjZl8EaN1VWqDU3N4PH42HYsGHw8vLC22+/LXWOxcyZMzFjxgzY2dkhIyMDOTk5uHfvHiIjI2FsbAxvb29MnToVR48e7RE7JycHFRUVeO+99yAQCBAQEACBQIAff/yRixMREQE+n49JkyahqKhIVaslV3/WoT9effVVTJ48GRYWFlzROVBhYWFYuXLlgJdvbW1FQ0MDDA0Ne7TNnj0bO3bswLZt23Dq1CmpNkW2zezZs+Hg4AAbGxvMmDEDt27d4paV9XoPlFgsBgAYGxtz04yNjXH//v0Bx+xUVVWFgoIClf9UX11xe/PJJ59gy5YtsLCwAADExMRALBbD1NQU06ZNQ2hoKFxdXaWW4fP5ePDggdpzU0bnuKSnpwcHBweEh4dzhYq8fjZs2DCIxWKcO3cOBgYGOH78OJycnHrEP3v2LOrr6xEeHg4jIyMEBQXB1NRU4fzy8/MxadIkmJiYYPny5Th79myfy2zatAkVFRX49ttv0dzcjPT0dCxZskSp2LLei+qgjnFTm8ZMYPDHTXWMmQCNm30ZrHFTZYVa57kgjDHcu3cP27dvh57e/w/fuSKdysrKYG5uLvUt0NramjvW231eiUSCYcOGcSdeFhUVoaSkhIujr6+vqlVRWH/WoT/MzMy4/y0tLVFfX4+GhoYBxero6FDqPn76+vrg8/lobGzstX3Dhg3w9fXFkiVLcOfOHW66Itum63oaGBhw3/7kvd4DZW5uDkD6Svl1dXV48sknBxyzU3R0NN5//30u14sXLyIgIAA8Hk+p807UFbe7+Ph4VFdXc4fD2traMGfOHMycORP19fUoKipCSkoKPv30U6nlGhoaMHr0aJXloQ6d41J1dTVWrFiBr776itsTJa+fPfvss9i5cyfCw8NhYWGBsLAwNDc394hfXl4OMzMzqfFHKBQqlBtjDOHh4RAKhdDT08OsWbMU+qGDmZkZwsLCsG3bNnz55ZcIDg6WGmsHElvWe1Ed1DFuatOYCQz+uKmOMROgcVOewRw3NXZ5jrFjx0IsFksNCHfv3oWNjU2v85qZmXGFYOdfSEgIF6e1tbXHcjweT6PrMHz4cDQ1NXFtnd9O+sqvoqKC+7+8vBxGRkbg8/kDird7926FzyeQxdbWViqn7uLi4mBpaQkfHx/uQ7A/r2938l7vgRozZgzMzMy4cwkA4NKlSz0uLDgQn332mVSejo6OSExMBGNMqV9yqStuV4cPH8Yvv/yC/fv3c9OKi4tx4cIFBAcHQyAQYPz48fD29u5xkrpIJIKtra1K8lA3U1NTfPrppxCJRNz7oa9+tmzZMty4cQOZmZk4depUr+cwWVpaoqqqSmr86b63Qdb79uTJk4iPj0d2djba29uRn5+vcIGwYcMGVFVV4fjx43j11Vd7tCsTW92UGTf7O2YOJJ4qxkxgcMdNdYyZAI2bsgz2uKmxQm3WrFmwsrLCtm3bUF9fj9TUVPz+++/w9/fvdV5TU1Ps2bMHEokE165dg7OzMy5cuCAVp6GhARcuXMDTTz+NpqYmjBo1Crdv38aZM2ewePHiQV+HiRMn4tSpU5BIJDh69Cjq6+ullpeVX3p6Oi5duoTKykrs3r0bfn5+A46nit34r7/+Os6dOyeznc/nIzU1FdevX+e+tffn9e1O3us9UHp6elixYgWio6MhEomQlZWFtLQ0BAUFDTimrktMTERubi536YDc3Fzs2rULY8eOhUAgwP79+yGRSFBaWoqUlBRMmjRJavm8vDx4e3trKPv+GzlyJN555x1ERUWhrq5Obj87fvw41q9fD4lEgokTJ0rtxehq9uzZMDIywo4dOyCRSJCQkACRSCQ1j6z3bUdHB/f38OFDnDx5UuF1EQgESEtLw1dffdVruzKx1U2ZcbO/Y+ZA4qlizAQGd9xUx5gJ0LjZG42Mm+z/VFRUsDlz5rD++vbbbxkA7u+f//ynVHtUVBTXNm3aNKm2wsJC5u7uzgQCAXNwcGCnT5/m2jZu3MhCQ0O5x0VFRczd3Z3x+Xw2fvx4Fh8f3yMOn89ndnZ2LDMzkzHGWFZWFrOwsGBCoZCdPXu23+vGGGOTJk2S2y5vHW7fvs2mTp3KBAIB+/jjj5mjoyMDwDIyMmTmFxgYyDZt2sQ8PDwYn89nnp6erLq6esDxNmzYwFasWCEz/6ysLLZ69Wq561hTU8OcnZ2ZWCxmBw4c4F5PX19fqfnS0tLY9OnT+9w2XfvE1q1bWXBwMPf44MGDjDHZr/emTZtYcHCwzFx/+OEHqf5oYmLCtTU2NrKlS5cyQ0NDZmVlJdWH+ootL26n/Px8qXlcXV2VzlleXGVyvnnzJtPT05NqB8B27tzJGGMsMzOTOTk5MUNDQ2Zubs78/PyYWCzmlk9NTWVBQUEy16nT6tWrWVZWVp/z9ebKlSvMy8trQMt2H5cKCgoYY4zV19ez0aNHMwAsJSVFZj9rbGxk4eHhzMrKipmYmLAlS5awxsZGFhISwsUMCQlhjDGWl5fH7O3tGZ/PZ++++y5zdnbm4jMm+3174sQJtnz5cmZkZMSeeuopFhERwQAwR0dH5uvrK/Ue6bo+gYGBPdZ32rRpXPsbb7zB2traeo3d9S8kJESh92J/KfK6DXTc7O+YOZB4fY2ZjD0aw5KTk+XOM9jjprzPSBo3dWvc7FZ3VCpdqKlL90JNU/oq1FQtMDCQxcTEDNrzKVKoMfaog0ZGRg5CRvK5urpKDeq6EFsXc5anvLycbdy4kTU1NfU5r6YKNaI5g/26DfaYyZhihRpjNG5qY1x1x5alP+Nm90JN6qbs2qKjowNVVVU9foBANMfW1hYfffSRRnM4ceIE3N3d8cILL+hMbF3MuS9CoZBubUSIAmjc1K646o4tjzLjplYVaoWFhZg0aRKGDRsGR0dHfPvtt5pOaVD5+flxt81qa2uTuv0EeXS7l4ULF+pUbF3MmRBdQWNm33RxDNLFnNVJqwo1Ozs7rfllkiYkJSUpdf0fQgh5nNCYSR4HGvvVJyGEEEIIkY8KNUIIIYQQLcVj/3es8cGDB5g5c6am89E6dXV1UrfPGGra2trQ0tLS661OhoK2tjZUVFRg1KhRQ3Ydtd3hw4cxffr0fi9XUlKCl19+WQ0ZEXVqb2/Hw4cPuQvOdk6rra1FR0cHd7V7XdbU1IQnnniix/1VCVGVLvdTvc8VaoQMVb/99hs+//xzFBYWYsWKFQgICICBgYGm0yJkyLt58yb27duHU6dOYfHixVi7dq3MiwcTQnpFhRp5fJSXl+PLL7/EsWPH8MorryA4OBhjx47VdFqEDCkdHR04c+YMPv/8c4hEIqxduxb+/v4YNkyrfrtGiK6gQo08fpqbm5GcnIy9e/di4sSJWLlyJZ5//nlNp0WITquvr8e3336LAwcOwMHBAaGhoXB0dNR0WoToOirUyOMtNzcXe/fuRWlpKQIDA7F06VKV3biXkMdBSUkJDh48iH/961/w8fHBmjVrhsR5aIRoCSrUCAGA27dv48svv8S//vUvvPLKK1izZg1sbGw0nRYhWqvrl5zg4GAsXrwY+vr6mk6LkKGGCjVCunr48CGOHTuGzz//HH/+85+xfv16uLi4aDotQrSCRCLB0aNHERsbC1tbW2zYsAH/+7//q+m0CBnKqFAjRBbaY0DII7du3cJXX33F7XFeu3YtrK2tNZ0WIY8DKtQI6Uv3c3CCg4Px5JNPajotQtSu88vKf//7XyxfvpzO4SRk8FGhRoiiOn/V1nnY55133sFf//pXTadFiEp1/1V0SEgIXF1dNZ0WIY8rKtQI6S/GGP7973/TdaLIkHLv3j189dVX3HUG6Qc1hGgFKtQIUUZxcTHi4uLo0gREZ3XeuaOoqAiBgYF05w5CtAsVaoSoQl1dHZKSkvDFF19gypQpCAsLw5QpUzSdFiG96jy8+fnnn8PKygohISF00WdCtBMVaoSoUtfb59TU1GDdunVYtGgRHRYlWkEkEiE2NhbffPMN5s+fj9DQUPzpT3/SdFqEENmoUCNEXW7cuIH9+/fjzJkzWLJkCYKCgjB69GhNp0UeQ52HNwsLC7FixQosWbIEhoaGmk6LENI3KtQIUbe6ujocOnQIsbGxmD59OsLDwzF58mRNp0WGuJaWFqSlpeHzzz/HqFGjEBISgueeew48Hk/TqRFCFEeFGiGDpaOjAydPnsTevXvx8OFDrFu3Dq+99hqeeOIJTadGhpCKigokJCTgyJEjeP7557FhwwaMHz9e02kRQgaGCjVCNKGoqAhffPEFsrKy8Le//Q0rV67EqFGjNJ0W0WG//fYbvvrqK5w/fx7Lly/HihUrwOfzNZ0WIUQ5VKgRokm1tbVISEjAwYMH4erqipCQENjb22s6LaIjOg9v/v3vf8eIESOwbt06LFy4kA5vEjJ0UKFGiDboPCy6b98+dHR00AcukauyshKHDh3CkSNHMHPmTGzYsAF2dnaaTosQonpUqBGibX7//XfExsbi/Pnz8Pf3x1tvvQVTU1NNp0W0QNe+sXz5cgQGBkIgEGg6LUKI+lChRoi26txrkpiYCFdXV9pr8piiva2EPNaoUCNE27W2tuL7779HXFwcfVA/RmpqanD48GE6f5GQxxsVaoToEvpl39BXWFiIAwcO0C+CCSEAFWqE6Kb+XCvr119/hZOT0+AmSHoQi8Wor6/HhAkTerTRNfYIITJQoUaILuvr6vN37tzBxIkT8cEHHyAyMlLD2T6+7ty5AxcXF8ycORPffvstN73z8ixxcXFwcXHB2rVr6a4VhJCuqFAjZKjovJ/j9evXERQU2HBikQAAIABJREFUhCVLlmDjxo2IjY2FoaEhvLy8EBcXR+e2DbLCwkK4u7ujoqICo0ePRlFREaqqqug+sIQQRVChRshQU1ZWhi+++AL//Oc/UV5ejtraWgCAkZERnnvuOaSkpGDYsGEazvLx8Ntvv2HBggWoqKgAAIwYMQJPPfUUxowZg7Vr1+Lll1+Gnp6ehrMkhGgxKtQIGar+/ve/Y/PmzWhoaOCmCQQCTJs2DRkZGTAwMNBgdkPfmTNn4OvrC7FYLDXdwsICd+/epWKZEKKI+/RVjpAhavfu3VJFGgBIJBKcP38eLi4u3J42onrfffcdvLy8ehRpANDc3Iy0tDQNZEUI0UX0lW6Qtbe3o7CwUNNpkCHu4sWLKC8vx6hRo8Dj8cAYQ3t7O1pbW9Hc3IxLly7BwcEB33zzDZ0bpWLffPMNdu7ciba2Nujr62PEiBEYNmwYd4izubkZn376KV28mKjd6NGjYWlpqek0iJLo0Ocgq6ysxOTJkzFnzhxNp6KUgoICTJ8+XdNpqE1NTQ3u37+Pp556StOpKKWtrQ0tLS09/h4+fIiHDx+Cz+fjL3/5C/3AQEVqa2tRUlKCYcOGYeTIkRgxYgSGDx/e44+2N1G3+/fvw97eHl988YWmUyHKuU971DTA3t4eKSkpmk5DKUNhHeTJzs7GsWPHaJAjhOikzjGM6D46R40QQgghREtRoabDnJycwOPxcOLEiX61EdUYOXIkeDwe3NzcuGnFxcX44IMPNJcU0RoikQibN2/Gw4cP+7Uc9SHSqbc+JBaLwePxwOPx4Ofnp8HsyGChQk2H/frrr3B2du53W1cXLlzA/PnzYWBggD/96U/49NNPVZ0mAGDZsmWD8ku3hQsXIiEhQe3P0+n69evIzs4G8Oj8pICAAISEhAAAYmNjwePxoK+vj5ycHG4ZkUjEDbQjR44ctFy7qqmpwfbt2zFhwgTExsb2aG9qasIbb7wBPp8PGxsbHDp0SGWxAeDy5csYOXIkvv76a5XGVXVsxhgSExNhZ2cHAwMDPPPMM0hPT5datrS0FPPmzYORkREsLS0REREBABAKhZgxYwbWrVuncB7UhxSLDTy+fcjc3ByMMcTExCicG9FtVKg95lauXImIiAjU1tbi8OHDeO+993D+/HmVP09CQgI8PT1VHleb7N27F3PnzoWZmRkAYNWqVcjJyUF7ezv8/PxQWVkJ4NHgyxjDiy++2O+9LaqSmZmJefPmwdrautf2Dz/8ECUlJSguLsaRI0ewdu1aXL58WSWxm5ubERMTg3Hjxqk0Z3XELi0txd69e3H69GlUVVUhICAAr732GsrKyrh51qxZAz6fj7KyMpw+fRqxsbHc+ZuLFi1Cbm4url27plAe1IcUi019iDxOqFDTQunp6ZgyZQpMTU3h6+srdb2r/Px8TJ48GcbGxtiyZYvUcvLaZPnPf/4DFxcXDB8+HO7u7pgwYQL++9//qnBtgPXr14PH4yEsLEzq8Zo1a+Dp6QmBQAAvLy/uw6hzXjc3NwgEAixatAg1NTUAAC8vL/B4PG6vmZubG3g8Hn766Sf4+fnh5MmTePPNN8Hj8eR+Y1aH7777Di4uLj2mv/XWW2hvb4e/vz86Ojp6XfbGjRvw8PCAsbExHB0dkZmZKXc7dSoqKoKbmxv4fD4cHByQn5+vUK7e3t5wdHTsta2jowNxcXGIjIyEpaUlPDw84OnpiYMHDyodGwCio6MRFRXV7wvu9hVXHbHHjx+PgoICjBs3DoaGhggNDYW+vj6uXLnCzXPt2jX4+/vDxMQEU6ZMgYuLC65evcq1u7q6KvzDG+pDfccGqA+RxwsValpo69atSE5ORmlpKfh8PrZu3Qrg0aGERYsWYfHixbh79y6sra1x/fr1PtsU0dTUhKSkJDQ3N2Pu3LkqXZ89e/Zg48aNPR5nZGQgOjoahYWFyMvLQ2ZmJpKSkhAYGIjvv/8e+/btw61bt/DgwQOEh4cDAI4fP44FCxZwsbKzs7nBMSkpCQsWLMChQ4fAGMOqVatUuh59KS4uxpgxY3pMt7a2xrFjx/Dzzz8jKiqqR3tLSwvmz58PV1dXlJWVISIiAq+88grWr18vczt1LrdgwQI899xzqKioQHh4OLy9vdHS0qLUelRUVKCqqgoODg7ctClTpqjkG31mZiYcHBzw9NNPKx1rMGN3qqurA2MMzz77LDftpZdeQlJSEmpra3HlyhUUFBRIvYeEQiGKi4sVik99qG/Uh8jjhgo1LZSfn49JkybBxMQEy5cvx9mzZwEAZ8+eRX19PcLDw2FkZISgoCCYmpr22daX4uJiGBoaYt26dfj8888xatQota1bV7Nnz4aDgwNsbGwwY8YM3Lp1i2t79dVXMXnyZFhYWOCdd95BUlLSgJ8nLCwMK1euVEXKMrW2tqKhoQGGhoa9ts+ePRs7duzAtm3bcOrUKam2nJwc3Lt3D5GRkTA2Noa3tzemTp2Ko0ePcsv2tp1ycnJQUVGB9957DwKBAAEBARAIBPjxxx+VWpfOq+kbGxtz04yNjXH//n2l4lZVVaGgoAA+Pj5KxRns2F198skn2LJlCywsLLhpMTExEIvFMDU1xbRp0xAaGgpXV1eunc/n48GDB33Gpj7UN+pD5HFEhZqWYYwhPDwcQqEQenp6mDVrFqqrqwEA5eXlMDMzg76+Pje/UCjss60vtra2aGlpQXp6OtavX48jR46ocI1k6zwPBwAMDAykvsV3bbO0tER9fX2P2yEpqqOjA+q+rrO+vj74fD4aGxtlzrNhwwb4+vpiyZIluHPnDje9rKwM5ubmGD58ODfN2tqaO4dF1nYqKyuDRCLBsGHDuBPLi4qKUFJSotS6mJubA3j0zb9TXV0dnnzySaXiRkdH4/333+dyvXjxIgICAsDj8ZQ+z0qdsTvFx8ejurqaO4QPPLqg8Jw5czBz5kzU19ejqKgIKSkpUj/KaWhoUOjuD9SH+kZ9iDyOqFDTMidPnkR8fDyys7PR3t6O/Px8rsiwtLREVVUVWltbufk7v6HKa1OEvr4+nJyc4O3tjePHj6tobQauoqKC+7+8vBxGRkbg8/kAgOHDh6OpqYlr73o/xd6u+L57926Fz41Rhq2trVTevYmLi4OlpSV8fHy484TGjh0LsVgsVajevXsXNjY2cmONHTsWZmZmYIxJ/XX+YnCgxowZAzMzM6lzaC5dugR7e3ul4n722WdSeTo6OiIxMRGMMaV/uajO2ABw+PBh/PLLL9i/f7/U9OLiYly4cAHBwcEQCAQYP358j/eQSCSCra2tQs9DfUg+6kPkcUSFmpbp6Ojg/h4+fIiTJ09ybbNnz4aRkRF27NgBiUSChIQEiESiPttkEYvFcHBwwI0bN9Da2oqrV68iLS1NK+5BmJ6ejkuXLqGyshK7d++Wul7QxIkTcerUKUgkEhw9ehT19fVc26hRo3D79m2cOXMGixcvBjA4hz4B4PXXX8e5c+fkzsPn85Gamorr169ze0pnzZoFKysrbNu2DfX19UhNTcXvv/8Of39/ubFmzZoFU1NT7NmzBxKJBNeuXYOzszMuXLig1Hro6elhxYoViI6OhkgkQlZWFtLS0hAUFKRUXF2VmJiI3Nxc7lIZubm52LVrF4BHhY5AIMD+/fshkUhQWlqKlJQUTJo0iVs+Ly8P3t7eCj0X9aGhaTD7EBmCGBlUFRUVbM6cOTLb29ra2PLly5mRkRF76qmnWEREBAPAHB0dGWOM5eXlMXt7e8bn89m7777LnJ2dGQCWkpIit02W5ORk5uTkxAwMDJiVlRVbtWoVa2ho6HM9Jk2apPA6h4SEMAAMAAsJCWFRUVHc461bt7Lg4GDu8cGDB1lgYCDbtGkT8/DwYHw+n3l6erLq6mou3u3bt9nUqVOZQCBgH3/8MXN0dGQAWEZGBsvKymIWFhZMKBSys2fPMsYY27BhA1uxYoXC+TLGWFZWFlu9erXceUaMGMGuX7/OPa6pqWHOzs5MLBYzxhg7cOAAt16+vr5Sy6alpbHp06dzjwsLC5m7uzsTCATMwcGBnT59us/txBhjRUVFzN3dnfH5fDZ+/HgWHx/Pxdy0aRMLDg7uNfcffviBiwWAmZiYSLU3NjaypUuXMkNDQ2ZlZaVwXEVi5+fnS7W7urqqJGd5sQea882bN5menp5UGwC2c+dObtnMzEzm5OTEDA0Nmbm5OfPz8+P6QGpqKgsKCpJ6Lnm5UB9SLPbj3ocYYywmJqZHn+hKkTGM6IRKKtQGWV+Fmq7oT6HWX4GBgSwmJkZt8RWhaKEGQOr1vHnzJouMjFRzdopxdXVlp0+f1pm46oytzpxlKS8vZxs3bmRNTU39yoX6kHbG1pY+dP/+fZnFe1dUqA0ZlXRTdkIGqLcTjG1tbfHRRx9pIBtpJ06cgLu7O1544QWdiKvO2OrMWR6hUIjt27f3OxfqQ9oXW5v6UOedCcjjg8foFR9UlZWV8PHx4W47NFh6O8kewIDf8Pb29mq5Urafnx+Sk5MBPLqeXOetVAZbdnY2jh07hi+++EIjz08IIcqgMWzIuE971B4TulKPJyUlKXXNNEIIIWQooV99EkIIIYRoKSrUCCGEEEK0FB361ICSkhKlL/yoaXfv3tX5dZCnsbERbW1tg34uISGEqEJjYyNmzpyp6TSIClChpgF//vOfdb4AUNePCbQFnYhLCNFlnWMY0X106JMQQgghREtRoTZEOTk5gcfj4cSJEwNqJ0RdiouL8cEHH2g6DaIFRCIRNm/erLKbnhMyFFGhpoPi4+NhbGyMhoYGmfP8+uuvcHZ2HnC7Ji1cuBAJCQlaG48MXG1tLQICAhASEsLd91BfXx85OTncPCKRCDweDzweTyU3wx6ompoabN++HRMmTEBsbKxUW1NTE9544w3w+XzY2Njg0KFDKonb1eXLlzFy5Eh8/fXXKo2t6riMMSQmJsLOzg4GBgZ45plnkJ6ezrWXlpZi3rx5MDIygqWlpdS1EYVCIWbMmIF169YpnAshjxsq1HTQN998g46ODjr/gOicvXv3Yu7cuTAzM8OqVauQk5OD9vZ2+Pn5obKyEsCjD2/GGF588UWN7mnJzMzEvHnzYG1t3aPtww8/RElJCYqLi3HkyBGsXbsWly9fVjpup+bmZsTExGDcuHEqy1ldcUtLS7F3716cPn0aVVVVCAgIwGuvvYaysjIAwJo1a8Dn81FWVobTp08jNjYWKSkp3PKLFi1Cbm7ukD7nlRBlUKGmY65fvw5zc3O8+uqriIuLk2rLz8/H5MmTYWxsjC1btvRYtq92Vbpx4wY8PDxgbGwMR0dHZGZmAgC8vLzA4/G4PVxubm7g8Xj46aefADy6M8HJkyfx5ptvgsfjITY2Fn5+fuDxeAgLC4ObmxsEAgEWLVqEmpqaAcUjmvPdd9/BxcVFatpbb72F9vZ2+Pv7o6Ojo9flZPWn9evXg8fjYc2aNfD09IRAIICXlxfa29sBAEVFRXBzcwOfz4eDgwPy8/MVztXb2xuOjo49pnd0dCAuLg6RkZGwtLSEh4cHPD09cfDgQaXidhUdHY2oqCgYGBgonK8isdURd/z48SgoKMC4ceNgaGiI0NBQ6Ovr48qVKwCAa9euwd/fHyYmJpgyZQpcXFxw9epVqRiurq5SxRsh5P+jQk3HxMXF4W9/+xuWLFmCc+fO4fr16wAeHYpZtGgRFi9ejLt378La2pprU6RdlVpaWjB//ny4urqirKwMEREReOWVV/DHH3/g+PHjWLBgATdvdna21AdAUlISFixYgEOHDoExhlWrViEpKQmBgYH4/vvvsW/fPty6dQsPHjxAeHj4gOIRzSkuLsaYMWOkpllbW+PYsWP4+eefERUV1WMZef1pz5492LhxIzIyMhAdHY3CwkLk5eUhMzMTLS0tWLBgAZ577jlUVFQgPDwc3t7eaGlpUWodKioqUFVVBQcHB27alClTVLZHKDMzEw4ODnj66adVEk/dcburq6sDYwzPPvssAOCll15CUlISamtrceXKFRQUFGDu3LlSywiFQhQXF6s1L0J0FRVqOqS1tRUZGRmYN28e5s6dCwsLC26v2tmzZ1FfX4/w8HAYGRkhKCgIpqam3LJ9tatSTk4O7t27h8jISBgbG8Pb2xtTp07F0aNHlYr76quvYvLkybCwsMA777yj1K2mwsLCsHLlSqXyIf3T2tqKhoYGGBoa9mibPXs2duzYgW3btuHUqVNSbYr0p9mzZ8PBwQE2NjaYMWMGbt26hZycHFRUVOC9996DQCBAQEAABAIBfvzxR6XWQywWAwCMjY25acbGxrh//75ScQGgqqoKBQUF8PHxUTrWYMTtzSeffIItW7bAwsICABATEwOxWAxTU1NMmzYNoaGhcHV1lVqGz+fjwYMHas+NEF1EhZoOSUtLg5ubG/T19fHEE0/A19cXR44cQUtLC8rLy2FmZgZ9fX1ufqFQyP3fV7sqlZWVwdzcHMOHD+emWVtbc+esDJSZmRn3v6WlJerr6+X+oEKejo4Onbn/6VChr68PPp+PxsbGXts3bNgAX19fLFmyBHfu3OGmK9KfuvYNAwMDtLS0oKysDBKJBMOGDeN+nFBUVISSkhKl1sPc3BzAoz1Hnerq6vDkk08qFRd4dGjy/fff5/K9ePEiAgICwOPxlDpfT11xu4uPj0d1dTXCwsIAAG1tbZgzZw5mzpyJ+vp6FBUVISUlBZ9++qnUcg0NDRg9erTK8iBkKKFCTYf84x//wIEDB7jB9u9//zvEYjHS0tJgaWmJqqoqtLa2cvN3/YbfV7sqjR07FmKxWOoQ0927d2FjYwMAGD58OJqamri2zj0UnXg8Xq9xKyoquP/Ly8thZGQEPp8/oHi7d+9W+Jwiojq2trZSr2N3cXFxsLS0hI+PD3eeWV/9SZaxY8fCzMwMjDGpv5CQEKXWYcyYMTAzM+POwQKAS5cuqeROHZ999plUro6OjkhMTARjTKlfwKorbleHDx/GL7/8gv3793PTiouLceHCBQQHB0MgEGD8+PHw9vbG8ePHpZYViUSwtbVVSR6EDDVUqOmIsrIy1NXVobW1lRtsW1tb4eLigri4OMyePRtGRkbYsWMHJBIJEhISIBKJuOX7alelWbNmwcrKCtu2bUN9fT1SU1Px+++/w9/fHwAwceJEnDp1ChKJBEePHkV9fb3U8qNGjcLt27dx5swZLF68mJuenp6OS5cuobKyErt374afn9+A49GhT814/fXXce7cOZntfD4fqampuH79OqqrqwH03Z9kmTVrFkxNTbFnzx5IJBJcu3YNzs7OuHDhglLroKenhxUrViA6OhoikQhZWVlIS0tDUFCQUnF1WWJiInJzc7lLruTm5mLXrl0YO3YsBAIB9u/fD4lEgtLSUqSkpGDSpElSy+fl5cHb21tD2ROi5RgZVBUVFWzOnDn9Wub+/fsMAAPADh48yE0/ePAgN93Z2Znl5eUxe3t7xufz2bvvvsucnZ0ZAJaSksIYY32298ekSZPkthcWFjJ3d3cmEAiYg4MDO336NNd2+/ZtNnXqVCYQCNjHH3/MHB0dGQCWkZHBGGMsKyuLWVhYMKFQyM6ePcsYYywwMJBt2rSJeXh4MD6fzzw9PVl1dfWA423YsIGtWLFCZv5ZWVls9erV/d4uRL6amhrm7OzMxGIxO3DgANd/fX19peZLS0tj06dP5x7L6k9RUVFcjK1bt7Lg4GCp90pRURFzd3dnfD6fjR8/nsXHx3MxN23axIKDg2Xm+sMPP3CxADATExOurbGxkS1dupQZGhoyKysrqbh9xZYXt1N+fr7UPK6urkrnLC+uMjnfvHmT6enpSbUDYDt37mSMMZaZmcmcnJyYoaEhMzc3Z35+fkwsFnPLp6amsqCgIJnrRAaGxrAho5IKtUE2kEJNG/VVqKlaYGAgi4mJGbTno0FOfW7evMkiIyM1nQZzdXWV+gKhC7F1MWd5ysvL2caNG1lTU9OgPu/jgMawIaOSbspOCBlUtra2+OijjzSaw4kTJ+Du7o4XXnhBZ2LrYs59EQqF2L59+6A+JyG6hgo1ovX8/PyQnJwM4NGvyLregoaQgVi4cCEWLlyoU7F1MWdCiPKoUCNaLykpSalrphFCCCG6in71SQghhBCipahQI4QQQgjRUnToUwMKCgpUcnFMTRKLxTq/DvK0tLTg4cOHyM7O1nQqBI/uVTtixAjo6dF3S0IU0djYiPnz52s6DaICPMboPjqEEO3m4+ODqKgo/M///I+mUyGEkMF0n76eEkIIIYRoKSrUCCGEEEK0FBVqhBBCCCFaigo1QgghhBAtRYUaIYQQQoiWokKNEEIIIURLUaFGCCGEEKKlqFAjhBBCCNFSVKgRQgghhGgpKtQIIYQQQrQUFWqEEEIIIVqKCjVCCCGEEC1FhRohhBBCiJaiQo0QQgghREtRoUYIIYQQoqWoUCOEEEII0VJUqBFCCCGEaCkq1AghhBBCtBQVaoQQQgghWooKNUIIIYQQLTVM0wkQQkhvMjMzcfv2bQDA/fv38c9//hN5eXkAAC8vL4wePVqT6RFCyKDgMcaYppMghJDudu7cic2bN6O9vV1qukAgQHV1NYYNo++ZhJAh7z4d+iSEaKWAgACYmpr2mO7p6UlFGiHksUGFGiFEKwmFQowdO1ZqmpmZGVavXq2hjAghZPBRoUYI0VrBwcHg8/ncY319fbi4uGgwI0IIGVxUqBFCtJaPjw9GjBgBAODxeHj99dfB4/E0nBUhhAweKtQIIVrL2NgYkydPBvDosOfKlSs1nBEhhAwuKtQIIVotODgYAoEABgYGmDJliqbTIYSQQUWFGiFEq7388stobW3F0qVLNZ0KIYQMOrqOmo56++23kZ6eDkNDQ02nQoiUjo4O1NTUqPSCtPfu3YO5uTmGDx+uspjKaGxsBAB6/xG1KC0txe3bt2FhYaHpVIjm3aeLEemwhIQEuLm5aToNQqRUVlbCx8cH2dnZKotZWlqKcePGqSyesvbv3w/g0WFZQlSNxnXSFR36JIRoPW0q0gghZDBRofYY8vPzA4/Hw/bt21U6ryqWI73Tlu3p5OQEHo+HEydOaDQPXVFcXIwPPvhA02kQLSASibB582Y8fPhQ06kQHUOF2mMoKSkJgYGBKp9XFcuR3nXfnsuWLUNaWppKYl+4cAHz58+HgYEB/vSnP+HTTz+VOe+vv/4KZ2dnlTxvV6pcH3kWLlyIhIQEtT8PANTW1iIgIAAhISGIjY0Fj8eDvr4+cnJyuHlEIhF4PB54PB5Gjhw5KHn1pqamBtu3b8eECRMQGxsr1dbU1IQ33ngDfD4fNjY2OHTokEridnX58mWMHDkSX3/9tUpjqzouYwyJiYmws7ODgYEBnnnmGaSnp3PtpaWlmDdvHoyMjGBpaYmIiAiuTSgUYsaMGVi3bp3CuRACUKFGiE5KSEiAp6enSmKtXLkSERERqK2txeHDh/Hee+/h/PnzKomtKFWuj7bYu3cv5s6dCzMzM6xatQo5OTlob2+Hn58fKisrATz68GaM4cUXX9TonpbMzEzMmzcP1tbWPdo+/PBDlJSUoLi4GEeOHMHatWtx+fJlpeN2am5uRkxMTL8Pb/cVWx1xS0tLsXfvXpw+fRpVVVUICAjAa6+9hrKyMgDAmjVrwOfzUVZWhtOnTyM2NhYpKSnc8osWLUJubi6uXbvWr5zI440KtSEqPz8fkydPhpGREcLDw/HXv/4VPB4Px48f73X+GzduwMPDA8bGxnB0dERmZqZUe21tLV544QUYGRlh0aJFqKmpAQCkp6djypQpMDU1ha+vL2pra/uVZ2/LP3z4kNvL0Hmx01WrVoHH43En2RYVFcHNzQ18Ph8ODg7Iz88HAKxfvx48Hg/r1q2Dr68vRowYgeeff15urn1tK1nP1ZvOQ5RhYWFwc3ODQCCQ2l59beu+Xoeu6xgWFib1eM2aNfD09IRAIICXlxfa29u5ZeSt43/+8x+4uLhg+PDhcHd3x4QJE/Df//63x7LGxsbYsmWLwq+tovqzPn1tXy8vL/B4PG6vmZubG3g8Hn766Sf4+fnh5MmTePPNN8Hj8eTu4VGF7777rsftrt566y20t7fD398fHR0dvS4nqw/09Tr3p5925+3tDUdHxx7TOzo6EBcXh8jISFhaWsLDwwOenp44ePCgUnG7io6ORlRUFAwMDBTOV5HY6og7fvx4FBQUYNy4cTA0NERoaCj09fVx5coVAMC1a9fg7+8PExMTTJkyBS4uLrh69apUDFdXV6nijZC+UKE2BDU1NWHRokVYvHgx7t27B3t7e1y6dAk//PADvLy8eszf0tKC+fPnw9XVFWVlZYiIiMArr7yCP/74g5vnu+++w86dO1FSUoIHDx4gPDwcALB161YkJyejtLQUfD4fW7du7VeuvS0/cuRI3Lx5E3w+H+fOnQMAxMbG4uWXX0Z2djZaWlqwYMECPPfcc6ioqEB4eDi8vb3R0tKCPXv2YOPGjThx4gRCQ0Nx8eJF6Ovry3yuvraVvOfqTechyu+//x779u3DrVu3pLaXvG2tyOsAgFvH7o8zMjIQHR2NwsJC5OXlcR/wivaHpqYmJCUlobm5GXPnzu2x7N27d2FtbY3r16/36zXuS3/Wp6/te/z4cSxYsICLlZ2dzX3oJiUlYcGCBTh06BAYY1i1apVK16O74uJijBkzRmqatbU1jh07hp9//hlRUVE9lpHXB+Rtl/72U0VVVFSgqqoKDg4O3LQpU6aobI9QZmYmHBwc8PTTT6sknrrjdldXVwfGGJ599lkAwEsvvYSkpCTU1tbiypUrKCgo4N5LnYRCIYqLi9WaFxlaqFAbgs6ePYv6+nqEh4fDyMgIy5Ytg1AolDl/Tk4O7t27h8jISBgbG8Pb2xtTp07F0aNHuXnmz58PR0dHWFhY4J133kFSUhKAR3uDepJUAAAgAElEQVRbJk2aBBMTEyxfvhxnz57tV66ylre1tcWzzz6Lb7/9FgCQl5fH7Z3IyclBRUUF3nvvPQgEAgQEBEAgEODHH3/k4s6cORMzZsyAnZ0dMjIyZD5XX9tKkefqzauvvorJkyf32F7ytrUir4M8s2fPhoODA2xsbDBjxgzcunULgGL9obi4GIaGhli3bh0+//xzjBo1qtdlg4KCYGpqqlA+ypK1PoDs7TsQYWFhKr81VWtrKxoaGnq9ztrs2bOxY8cObNu2DadOnZJqU6QP9LZdBtpP+yIWiwE8upVXJ2NjY9y/f1+puABQVVWFgoIC+Pj4KB1rMOL25pNPPsGWLVu4653FxMRALBbD1NQU06ZNQ2hoKFxdXaWW4fP5ePDggdpzI0MHFWpDUHl5OczMzLg9SQDw5JNPypy/rKysx8VEra2tufMuAEjtGbC0tER9fT0kEgnCw8MhFAqhp6eHWbNmobq6WuE8GWNyl1++fDni4+MBAImJidyV6cvKyiCRSDBs2DDuEGlRURFKSkq4ZbtfKFLWc/W1rRR5rt6YmZn12F4NDQ1yt7Uir4Oiz2lgYMDtTVGkP9ja2qKlpQXp6elYv349jhw5InNZeUW/Kslan+5tXbfvQHR0dEDV1/3W19cHn8/nLozb3YYNG+Dr64slS5bgzp073HRF+kBv22Wg/bQv5ubmAB7tOepUV1cndzxRVHR0NN5//30u34sXLyIgIAA8Hk+p8/XUFbe7+Ph4VFdXc4fs29raMGfOHMycORP19fUoKipCSkpKjx/nNDQ0qPRi0GToo0JtCLK0tERVVRVaW1u5aSKRSOb8Y8eOhVgslvogvHv3LmxsbLjHVVVV3P/l5eUwMjJCdnY24uPjkZ2djfb2duTn5/frA+/kyZNyl/f29sb169fxyy+/oK6uDlZWVly+ZmZmYIxJ/YWEhPT7ufraVgN5LuDRIaPu24vP58vd1oq8DgOhaH/Q19eHk5MTvL29ufPzeltWFXtTlCVr+wLA8OHD0dTUxLV37hUCAB6P1yPW7t27FT7nqj9sbW2l8uwuLi4OlpaW8PHx4c4zG2gfGGg/7cuYMWNgZmbGnYMFAJcuXYK9vb1ScQHgs88+k8rV0dERiYmJYIwp9QtYdcXt6vDhw/jll1+4Cx8Dj/ZKX7hwgbs37fjx46XeS51EIhFsbW1Vkgd5PFChNgTNnj0bRkZG2LFjB+rr63Hw4EGpk9m7mzVrFqysrLBt2zbU19cjNTUVv//+O/z9/bl5vv/+e1y5cgWVlZXYvXs3/Pz80NHRwf09fPgQJ0+e7FeefS3P5/Ph4+MDf39/qXOpZs2aBVNTU+zZswcSiQTXrl2Ds7MzLly40O/n6mtbDeS5gEc/XLh06ZLU9uqMJ2tbK/I6DIS8dRSLxXBwcMCNGzfQ2tqKq1evIi0tDXZ2dj2WlUgkSEhIkFv0DxZZ2xcAJk6ciFOnTkEikeDo0aOor6/n2kaNGoXbt2/jzJkzWLx4MQD1HPoEgNdff507x7I3fD4fqampuH79OrcneaB9YKD9tC96enpYsWIFoqOjIRKJkJWVhbS0NAQFBSkVV5clJiYiNzeXu+RKbm4udu3ahbFjx0IgEGD//v2QSCQoLS1FSkoKJk2aJLV8Xl4evL29NZQ90UmM6KTVq1ezrKwsme15eXnM3t6eCQQCFhkZyaZPn84yMjIYY4z5+voyAAwA27p1K2OMscLCQubu7s4EAgFzcHBgp0+flpo3NDSUzZkzh/H5fObp6cmqq6tZW1sbW758OTMyMmJPPfUUi4iIYACYo6Njr8/RnbzlO507d46Zm5uzlpYWqWWLioqYu7s74/P5bPz48Sw+Pp4xxlhUVBT3vNOmTVPoueRtK3nPJUtgYCDbtGkT8/DwkNpenWRta0Veh+5/ISEhUuu8detWFhwczD0+ePBgn/0hOTmZOTk5MQMDA2ZlZcVWrVrFGhoaevQlPp/P3n33Xebs7MwAsJSUlF7Xv6Kigs2ZM0fuNuoqJCSkX+vT1/a9ffs2mzp1KhMIBOzjjz9mjo6ODADLyMhgWVlZzMLCggmFQnb27FnGGGMbNmxgK1asUDhfxhjbt28f27dvn9x5ampqmLOzMxOLxezAgQPcOvj6+krNl5aWxqZPn849ltUH+tou8vrppk2bWHBwsMxcf/jhB6l+ZWJiwrU1NjaypUuXMkNDQ2ZlZdWj/8uLLS9up/z8fKl5XF1dlc5ZXlxlcr558ybT09Pr8T7cuXMnY4yxzMxM5uTkxAwNDZm5uTnz8/NjYrGYWz41NZUFBQXJXKdOc+bMYRUVFX3ORx4LlVSo6ai+CrXurKys2KVLl9SX0BCi7LYKDAxkMTExKsxI9dTZH/pbqPWXNmxfRQo1xh59sEdGRg5CRvK5urpKfSHQhdi6mLM85eXlbOPGjaypqanPealQI11U0qHPIeqFF17A5cuX0djYiL1794LP56vkvJKh6HHYVo/DOmojW1tbfPTRRxrN4cSJE3B3d8cLL7ygM7F1Mee+CIVCbN++XaN3oCC6aZimEyDq8dFHH2HlypW4cuUKJk+ejOPHj+OJJ57QWD69ncQNQOW/thuIgW4rWevUqa2tTeoWMpqkbf1hoPz8/JCcnAxAu7avNlu4cCEWLlyoU7F1MWdC1IUKtSHqr3/9a7+uTK5u2lCQyTLQbaXN69SdtvWHgUpKSlLqmmmEEKJr6NAnIYQQQoiWokKNEEIIIURL0aFPHVVXV4dly5b1eosaQjSpra0N1dXVQ/rHCp3XPet6wVNCVKXrtf8IoUJNRxkbGyMhIQFubm6aToUQKZWVlfDx8UF2dramU1GbzgItODhYw5mQoYjGddIVHfokhBBCCNFSVKgRAI8ue8Dj8bB9+3aVzKfqZR8ntJ2IKhUXF+ODDz7QdBoaIxKJsHnzZpXekJ2QwUSF2mPi3//+Nzw8PGBkZITRo0fDzc0NR44c4W7+nJSUhMDAwD7jKDpff5eNj4+HsbExGhoaBhRbE5KSksDj8aT+rK2tsXnzZnR0dCgVt+t2WrZsGdLS0lSRMi5cuID58+fDwMAAf/rTn/Dpp59KPW/XdRkxYgT+8pe/4N1335V7r9jBtHDhQiQkJGhtPG1TW1uLgIAA7ubsnfen1NfXR05ODjefSCTiXndNXpC1pqYG27dvx4QJExAbG8tNZ4whMTERdnZ2MDAwwDPPPIP09HSpZUtLSzFv3jwYGRnB0tKSu8aeUCjEjBkzsG7dukFdF0JUhQq1x0BycjK8vLywdOlSlJSUoLy8HPv27cM333yD1NRUTacHAPjmm2/Q0dGBY8eOaToVhfn5+SE/Px8jRowAYwxtbW1ITk7G/v378Y9//ENlz5OQkABPT0+VxFq5ciUiIiJQW1uLw4cP47333sP58+cB9FwfkUiEAwcOIDs7G87Oznjw4IFKciCDZ+/evZg7dy7MzMwAAKtWrUJOTg7a29vh5+eHyspK4P+1d+9BUZxr/sC/QwCFbi4KIVxkg2ayUSMSFMUSRSBRo7JBDZcJKzle0Kh4vMFBtFA5otGocYmrR2r1oNEqRUFWK8olWEoEJMZNZL2gGNQYUQFHAWdABeH5/eHPXkfuMDAjPp8q6jD9vv32875v43nS090vniczRITx48fr9MpTZmYmJkyYAAcHB43tt27dwtatW5GRkYEHDx4gJCQEU6dORXFxsVRnwYIFEAQBxcXFyMjIQHx8PJKSkgAAU6ZMQU5ODgoKCrq0P4xpAydq3VxNTQ0WLlyIv//975g+fTpsbGzQo0cPDBo0CBkZGVAoFE3ue+3aNfj4+MDc3BwuLi7IzMyUyiorKzFu3DiYmZlhypQpGldcUlNTMXjwYFhaWiIoKAiVlZXNxnjlyhVYW1tj8uTJ2LVrFwDgyZMn0n/hDxo0CMDz/5ORyWTSjbaFhYXw8vKCIAhwdnZGXl4eFi9eDJlMhoULFyIoKAg9evTAJ5980mJceXl5GDRoEMzMzBAZGYkRI0ZAJpMhOTm50eM05q233sKoUaMwdOhQ/Prrry2OYXNlL7zoT0REhMbnBQsWwM/PD6Iowt/fH3V1da3qyy+//IKRI0fC2NgY3t7e6Nu3L/78889G+9OrVy98/PHHOHHiBFQqFdavX9/sPLZFU3339/eHTCaTrnJ5eXlBJpPhxIkTUCgUOH78OGbMmAGZTIb4+Hjpa+KIiAh4eXlBFEWN87Gt7XU3hw8fxsiRIxts/+qrr1BXV4fg4OAmr/42NUctnYOt/XtpTEBAAFxcXBpsd3Jywrlz5/Duu+/C1NQU4eHhMDIywqVLl6Q6BQUFCA4OhoWFBQYPHoyRI0fi8uXLUrmHh4eUuDH2WtHhQqOsA1q7KHtubi4BoOvXr7dY9+XFrp8+fUrvvfceRUdHU2VlJR06dIh69uxJN2/epFmzZtH7779P+fn5VFpaSp6enjR79mypnREjRlBBQQFVVFTQjBkzKDw8vNFjvLB06VI6evQopaWlEQAqKCggoucLWguCQJWVlVLdf/u3f9OIb82aNaRSqWjv3r3k4OBAT58+pWXLllHfvn3p7NmzdOXKFfr000+bjau6upreeecdWrt2LT169Ih2795NJiYm9MMPPzR7HCKivLw86tGjBxERPXv2jHJzc8nMzIz+67/+q9kxbK7s1XFatmyZxhguW7aM+vXrRxcuXKDbt2+Tra0tpaWltdiXl1VXV9OBAwfIycmJHj58KG1/uT8v++tf/0oDBw5s5uz5Py0tyt5S3ydNmkS7d++W6ru4uFBmZmajZUTPx+q9996jixcvNno+trW91mjtouy6JggC/fbbbxrbsrOzKTY2ln766ScyNDSk6OhoqWz8+PFE1PIcNXUOtvT30loeHh60Y8eOJssrKytJEASNhcvnz59PAQEBVFFRQRcvXiRbW1vKycmRyqOjo2natGltikNXeFF29hJelL27u3//PgDgnXfeadN+2dnZuHv3LlauXAlzc3MEBATA1dUV+/fvBwBMnDgRLi4usLGxwdKlSzWW9cnLy8OAAQNgYWGBmTNn4vTp000ep7a2FmlpaZgwYQLGjh0LGxsb6aqaXC7HkCFDcODAAQBAbm6udHUgOzsbpaWlWLFiBURRREhICERRxI8//ggAGDVqFIYPH47+/fsjLS2t2bhOnz4NlUqFyMhImJmZYfr06bC1tW3VcQDg6dOnkMlkMDQ0hL+/P+bPn49Zs2Y1O4YtjW9LPD094ezsjD59+mD48OG4ceNGi315oaioCKampli4cCG+++479OrVq8XjOTo6SudSR3W0742ZPHkyBg0a1Oj52FYRERGYM2dOu/fXF7W1taiqqmryXYuenp7YuHEj1q1bh/T0dI2y1sxRY+dga/5etOGbb75BTEwMbGxspG3r16+HUqmEpaUlhg4divDwcHh4eEjlgiDw1/fstcSJWjf39ttvAwDu3bsnbcvPz5e+Vpw2bVqj+xUXF8Pa2hrGxsbSNgcHB+mekJcTPzs7O6hUKlRVVYGIEBkZCVtbWxgYGGD06NHSy0Ebc/ToUXh5ecHIyAhvvfUWgoKCNB5ymDlzJhISEgAA+/btw5dffinFp1arYWhoKPWlsLAQ169fBwCNf8ABNBvXvXv3YGVlBSMjowbj1tJxAEj3dBER7t69iw0bNsDAwKDZMWxpfFvy4p4jADAxMZHGq7m+vCCXy1FTU4PU1FQsXrwYe/fubfF4f/75Z4Mxba+O9r0xL4/Hy+dje9TX179W67g2xcjICIIgoLq6usk6S5YsQVBQEKZNm4bbt29L21szR42dg635e+mohIQElJeXS7cDAM9fsjxmzBiMGjUKKpUKhYWFSEpK0nhYpqqqCr1799ZaHIx1FU7Uujk3Nze8/fbbOHLkiLTto48+AhEhPDy8yf0cHR2hVCqlBAAA7ty5gz59+gAAHjx4IG2/d+8ezMzMIAgCjh8/joSEBGRlZaGurg55eXnN/p/eP//5T+zYsUP6R/0///M/oVQqpaccAwICcOXKFZw9exaPHj2Cvb29FJ+VlZWUIL34efF026uai8vOzg4PHjxAbW2tVL+kpKRdx2ntGLY0vu3VXF9eZmRkBDc3NwQEBCA5ObnZNisrK5GcnIyJEyd2KLYXWuq7sbExHj9+LJUplUrpd5lM1mibpaWl0u8vn4/taW/Lli3YuXNnW7ull+RyucbYNGbXrl2ws7NDYGCgdJ9Ze8/Pjvy9tMb333+Ps2fPNlgRoqioCPn5+QgLC4MoinBycmpwbpeUlEAul2slDsa6Eidq3ZyxsTHi4uKwZs0a7Ny5E2VlZaiursbFixdx6dKlJh/FHz16NOzt7bFu3TqoVCqkpKTg/PnzCA4OBgAcOXIEly5dQllZGbZs2SI9lFBfXy/9PHnyBMePH28ytuLiYjx69Ai1tbXSP+i1tbUYOXKk9PWnIAgIDAxEcHAw/P39NeKztLREXFwc1Go1CgoK4O7ujvz8/EaP1Vxcnp6eMDMzw8aNG6FSqbBz507pZvS2Hqe1Y9jS+LZXc31RKpVwdnbGtWvXUFtbi8uXL+Po0aPo379/o21VVFTg5MmT+OSTT2Bubo6oqKgOxfZCS33v168f0tPToVarsX//fo3ldHr16oWbN2/i5MmT+OKLL6TtqampuHDhQoPzsT3tdZevPgHg888/x5kzZ5qtIwgCUlJScOXKFekqc3vPz478vbRk3759yMnJkV4xkpOTg82bNwN4niCKoojt27dDrVbj1q1bSEpKwoABA6T9c3NzERAQ0OE4GOtyXXlHHNOe1j5M8EJ6ejp5enqSqakp9ezZkz766CPasGEDVVdXExFRUFAQASAAFBsbS0REV69eJW9vbxJFkZydnSkjI0OqFx4eTmPGjCFBEMjPz4/Ky8uJ6PkN9TNnziQzMzN6//33KTo6mgCQi4uLxjEWLVok/b5z504pzp07d0rb3d3diYjozJkzZG1tTTU1NRp9KiwsJG9vbxIEgZycnCghIYFWr14t7T906FCpbnNxET1/6GLgwIEkiiKtXLmShg0bJt2g39hxiIgOHDggHQsA/fd//3eDcW9sDFsqe3mcXv5ZtGiRRv9iY2MpLCyswTg215eDBw+Sm5sbmZiYkL29Pc2dO5eqqqoa7Y+xsTG9//77FBERIc1va7T0MEFL43Lz5k1ydXUlURTp66+/JhcXFwJAaWlpdOrUKbKxsSFbW1s6ffo0ET1/mCAqKop8fHwanI/taW/JkiUUGhrabPyvy8MEFRUV5O7uTkqlkoiIduzYIc1vUFCQRt2jR4/SsGHDpM9NzVFL52BTfy9ERFFRURQWFtZkvD/88IPGOWhhYUFEzx8sMjAwaPA3sWnTJmnfzMxMcnNzI1NTU7K2tiaFQiH1OyUlReMBE33HDxOwl5TJiLrBzRhvoPnz5yMwMJDXhOskDg4OSE9Ph7Ozs65D6bCu7ktXr/UZGhoKuVyutSt+rfE6rfVZVFSEvXv3Ys2aNboOBaNGjcKqVaswbty4LjtmSUkJ4uLiEBMTo9OX+baFl5cXDh06pLX7Qtlr7T5/9ckYgHHjxuHixYuorq7G1q1bIQgCBg4cqOuw2qU79YV1nFwu14sk7dixY/D29u7SJA14/jLfDRs2vDZJGmOvMtR1AIzpgzVr1mDOnDm4dOkSBg0ahOTkZLz11lu6DqtdulNfWqJQKHDw4EEAz5/8e7FsENM/vr6+8PX11XUYjL12OFFjDMCIESPa9AZ1fdad+tKSxMTEDr0zjTHG9B1/9ckYY4wxpqc4UWOMMcYY01P81edrLCYmpsFb5xnTtdraWty9e1er76x68uQJjI2NYWCgH/9teffuXQDosidb2ZuloKBA1yEwPcKv53hN3bt3j9etY2+M8PBwzJs3j98sz94Y/fv377YPAbE2uc9X1F5TdnZ2sLOz03UYjHUJc3NzyOVyfPjhh7oOhTHGupR+fI/AGGOMMcYa4ESNMcYYY0xPcaLGGGOMMaanOFFjjDHGGNNTnKgxxhhjjOkpTtQYY4wxxvQUJ2qMMcYYY3qKEzXGGGOMMT3FiRpjjDHGmJ7iRI0xxhhjTE9xosYYY4wxpqc4UWOMMcYY01OcqDHGGGOM6SlO1BhjjDHG9BQnaowxxhhjeooTNcYYY4wxPcWJGmOMMcaYnuJEjTHGGGNMT3GixhhjjDGmpwx1HQBjjDXm/PnzePDgAQCgtLQUeXl5uHfvHgBg2LBhsLCw0GV4jDHWJThRY4zppcOHD+Pbb7+FsbExiAj5+fkgItTW1koJHGOMdXf81SdjTC/NmDEDoiji0aNHUKlU0v/6+PjA1NRU1+ExxliX4ESNMaaX3nvvPVhaWmpss7S0RFhYmI4iYoyxrseJGmNMb4WGhqJHjx7SZ0NDQ4wdO1aHETHGWNfiRI0xpre+/PJLmJmZSZ/Hjh0LIyMjHUbEGGNdixM1xpjesrOzg729PQCgd+/emDdvno4jYoyxrsWJGmNMr82fPx8mJiYwMjKCh4eHrsNhjLEuxYkaY0yvBQYG4tmzZ5g6dSoMDPifLMbYm0VGRKTrIBjTRwcOHEBsbKyuw+hUKpUKoihCJpPpOpRm/fnnn7CxsUHPnj3btB8RQa1Wa9znxjqmd+/eyMnJ0XUYjL0p7vMLbxlrwsOHDxEWFtatXwfh5eWFQ4cOwcbGRtehNOvXX3/F0KFD27xfWVkZAgMDkZWVpf2g3lADBw7UdQiMvVH4ewTGmN5rT5LGGGPdASdqjGkBESEqKgoODg4wMDCATCbD9OnTdR0Wa6WioiKsWrVK12HoTElJCZYvX44nT57oOhTG2Cs4UWNMCw4fPoxjx44hNzcXdXV12LRpU6v28/X1xZ49e1rcpi+mT5+Oo0ePdvpxunIMKisrERISgkWLFiE+Ph4ymQxGRkbIzs6W6pSUlEAmk0Emk7X5PjltqqiowIYNG9C3b1/Ex8drlBER9u3bh/79+8PExAQfffQRUlNTpfJbt25hwoQJMDMzg52dHaKjo6UyW1tbDB8+HAsXLuyyvjDGWocTNca04H//93/xySefwMnJSe9vzO+IPXv2wM/PT9dhaNXWrVsxduxYWFlZYe7cucjOzkZdXR0UCgXKysoAPE9kiAjjx4/X6VWnzMxMTJgwAQ4ODg3Kbt26ha1btyIjIwMPHjxASEgIpk6diuLiYgDAggULIAgCiouLkZGRgfj4eCQlJUn7T5kyBTk5OSgoKOiy/jDGWsaJGmMdtHjxYqxduxbfffcdZDIZTpw4oVGempqKwYMHw9LSEkFBQaisrAQAKBQKHD9+HDNmzIBMJkN8fHyj2wCgsLAQXl5eEAQBzs7OyMvLk44tk8mwYMEC+Pn5QRRF+Pv7o66urlP6KZPJEBER0eKxFQqFVNfLywuiKGLKlCmoqKgAAPj7+0Mmk0lXzby8vKSxa2oMOsvhw4cxcuRIjW1fffUV6urqEBwcjPr6+kb3u3btGnx8fGBubg4XFxdkZmYCaN2cNDWfLQkICICLi0ujZU5OTjh37hzeffddmJqaIjw8HEZGRrh06RIAoKCgAMHBwbCwsMDgwYMxcuRIXL58WaMNDw8PjeSNMaYHiDHWqG3bttG2bdtaVXfZsmUUHh4ufd60aRP95S9/ISKiESNGUEFBAVVUVNCMGTM06k2aNIl2796t0dar254+fUrvvfcerVmzhlQqFe3du5ccHBzo6dOn0rH79etHFy5coNu3b5OtrS2lpaW1Ku4xY8ZQaWlpq+o21s/mjj1r1ix677336OLFi1RaWkqenp40e/bsJvvp4uJCmZmZTY5Le5SWltKYMWOarSMIAv3222/S5+zsbIqNjaWffvqJDA0NKTo6WiobP348Ef3fnERHR1NlZSUdOnSIevbsSTdv3iSi5selpflsDQ8PD9qxY0ezdSorK0kQBGl+58+fTwEBAVRRUUEXL14kW1tbysnJ0dgnOjqapk2b1my7AwYMaHWcjLEOK+Mraox1sry8PAwYMAAWFhaYOXMmTp8+3ab9s7OzUVpaihUrVkAURYSEhEAURfz4449SHU9PTzg7O6NPnz4YPnw4bty4oe1uNKm5Y0+ePBmDBg2CjY0Nli5disTExHYfJyIiAnPmzNFGyJLa2lpUVVXB1NS0QZmnpyc2btyIdevWIT09XaMsOzsbd+/excqVK2Fubo6AgAC4urpi//79Gvs3Ni6tmU9t+OabbxATEyO9emX9+vVQKpWwtLTE0KFDER4e3mClB0EQ8PDhQ63GwRjrGE7UGOtERITIyEjY2trCwMAAo0ePRnl5eZvaKC4uhlqthqGhoXRDe2FhIa5fvy7VsbKykn43MTFBTU2N1vrQkuaO/XKZnZ0dVCoVqqqq2nWc+vp6kJbfz21kZARBEFBdXd1o+ZIlSxAUFIRp06bh9u3b0vbi4mJYW1vD2NhY2ubg4CDdDwY0PS6tmc+OSkhIQHl5ufQ19bNnzzBmzBiMGjUKKpUKhYWFSEpKwrfffquxX1VVFXr37q21OBhjHccvvGWsEx0/fhwJCQnIycnBBx98gLNnz2LatGlSeWMPHry6zdHREVZWVlAqlZ0er7aVlpZKv9+7dw9mZmYQBAEAYGxsjMePH0vlL/evsXHZsmVLp8Qol8s14nzVrl27MGLECAQGBkIURQDP50SpVKKmpkZK1u7cuQNXV9cWj9fZ8/n999/j7NmzGvf2FRUVIT8/H+np6RBFEaIoIiAgAMnJyQgPD5fqlZSUQC6Xd0pcjLH24StqjHWi+vp66efJkyc4fvy4RnmvXr1w8+ZNnDx5El988UWj20aPHg1LS0vExcVBrVajoKAA7u7uyM/P10WX2iQ1NRUXLlxAWVkZtmzZAoVCIZX169cP6enpUKvV2L9/P1QqlVTW2Lh0xlefAPD555/jzJkzTZYLgoCUlBRcuXJFuho6evRo2N3I5pkAACAASURBVNvbY926dVCpVEhJScH58+cRHBzc4vE6cz737duHnJwc6TUjOTk52Lx5MxwdHSGKIrZv3w61Wo1bt24hKSkJAwYM0Ng/NzcXAQEBHY6DMaZFur5LjjF91dqHCRYtWkQACAAtWrSIYmNjpc8KhYJmzpxJZmZm9P7771N0dDQBIBcXFyIiOnXqFNnY2JCtrS2dPn26yW2FhYXk7e1NgiCQk5MTJSQkEBHR6tWrpWPFxsZSWFiY9Hnnzp0txt6Whwle7WdLx541axZFRUWRj48PCYJAfn5+VF5eLrV38+ZNcnV1JVEU6euvvyYXFxcCQGlpaY2OwZIlSyg0NLRVsb7QmocJKioqyN3dnZRKJe3YsUPqQ1BQkEa9o0eP0rBhw6TPV69eJW9vbxJFkZydnSkjI4OIWjcnTc0nEVFUVBSFhYU1GusPP/wgtQWALCwspLLff/+dDAwMNMoB0KZNm4iIKDMzk9zc3MjU1JSsra1JoVCQUqmU9k9JSdF42KMp/DABY12qjBdlZ6wJ27dvBwBe67OdQkNDIZfLERUVpfW2W6u1a30WFRVh7969WLNmTdcE1oxRo0Zh1apVGDduXJcds6SkBHFxcYiJiWnxhb4DBw7kd60x1nV4UXbGGJPL5XqRpB07dgze3t5dmqQBz1/ou2HDhi49JmOsdThRY4xpnUKhwMGDBwE8f+Lw5eWKWNN8fX3h6+ur6zAYY3qEEzXGmNYlJiZ26J1pjDHGnuOnPhljjDHG9BQnaowxxhhjeoq/+mSsGf/85z9bfGLwdVZUVITQ0FD06NFD16F0iqdPn6KoqIjfDaZFjx490nUIjL1ROFFjrBkTJ06UXrjaHc2YMQN/+9vfuu2yQQ8fPkR4eDhiYmJ0HUq3MXXqVF2HwNgbhRM1xpphZ2eHDz/8UNdhdBpTU1N88MEHnfIeNX1QVlYGU1PTbj2HXe2tt97SdQiMvVH4HjXGOolCoYBMJuP3U70GioqKsGrVKl2HoTMlJSVYvnw5njx5outQGGOv4ESNsXZKTEyETCZr9GfQoEFITEzErFmzWtWWr68v9uzZ0+K214m24++s8aisrERISAgWLVokrZFpZGSE7OxsqU5JSYk0ty29ub8zVVRUYMOGDejbt6/GousAQETYt28f+vfvDxMTE3z00UdITU2Vym/duoUJEybAzMwMdnZ2Gu+2s7W1xfDhw7Fw4cIu6wtjrHU4UWOsnRQKBfLy8tCjRw8QkcZPnz59dB0ea6WtW7di7NixsLKywty5c5GdnY26ujooFAqUlZUBeJ7IEBHGjx+v06tOmZmZmDBhAhwcHBqU3bp1C1u3bkVGRgYePHiAkJAQTJ06FcXFxQCABQsWQBAEFBcXIyMjA/Hx8UhKSpL2nzJlCnJycnh5KMb0DCdqjHWC9PT0RrenpqZi8ODBsLS0RFBQECorK6FQKHD8+HHMmDEDMpkM8fHxjW4DgMLCQnh5eUEQBDg7OyMvLw8AsHjxYshkMixYsAB+fn4QRRH+/v6oq6vrUD+uXbsGHx8fmJubw8XFBZmZmQAAf39/yGQy6QqXl5cXZDIZTpw4AQBN9kkmkyEiIgJeXl4QRRFTpkxBRUVFu9rTlsOHD2PkyJEa27766ivU1dUhODgY9fX1bRqb1sxFU/PYkoCAALi4uDRa5uTkhHPnzuHdd9+FqakpwsPDYWRkhEuXLgEACgoKEBwcDAsLCwwePBgjR47E5cuXNdrw8PDQSN4YY7rHiRpjWqRWq+Hv799keWxsLA4ePIhbt25BEATExsYiMTERkyZNwu7du0FEmDt3bqPbampqMGnSJHz88ccoLS1FZGQkAgICUFNTg7i4OCxbtgxpaWlYu3Ytrl69itzcXCl5aI+amhpMnDgRHh4eKC4uRnR0ND777DP88ccfSE5OxqRJk6S6WVlZGglEU32aNWsWjhw5gm3btuHGjRt4+PAhIiMj29WethQVFeGdd97R2Obg4IBDhw7hp59+wurVq9s0Ni3NRXPzqE2PHj0CEWHIkCEAgE8//RSJiYmorKzEpUuXcO7cOYwdO1ZjH1tbWxQVFWk1DsZYx3CixlgHPX36VLp/yczMrNm6eXl5GDBgACwsLDBz5kycPn261cfJzs5GaWkpVqxYAVEUERISAlEU8eOPP0p1PD094ezsjD59+mD48OG4ceNGu/uVnZ2Nu3fvYuXKlTA3N0dAQABcXV2xf//+drcJAJMnT8agQYNgY2ODpUuXdmipqYiICMyZM6fd+9fW1qKqqgqmpqYNyjw9PbFx40asW7euwRXS1oxNU3PRmnnUhm+++QYxMTHSE73r16+HUqmEpaUlhg4divDwcHh4eGjsIwgCHj58qNU4GGMdw4kaYx308j1qKpWqyXpEhMjISNja2sLAwACjR49GeXl5q49TXFwMtVoNQ0NDKTEsLCzE9evXpTpWVlbS7yYmJh26SlNcXAxra2sYGxtL2xwcHKR7ntrr5Rjt7OygUqlQVVXVrrbq6+tBRO2OxcjICIIgoLq6utHyJUuWICgoCNOmTcPt27el7a0Zm6bmojXz2FEJCQkoLy9HREQEAODZs2cYM2YMRo0aBZVKhcLCQiQlJeHbb7/V2K+qqqrbvlOPsdcVv0eNMS0SRRHJycmNlh0/fhwJCQnIycnBBx98gLNnz2LatGkAAJlM1qD+q9scHR1hZWUFpVKp/cAb4ejoCKVSiZqaGikhuXPnDlxdXQEAxsbGePz4sVT/1bga6xMAlJaWSr/fu3cPZmZmEAShXe1t2bKljb1qSC6Xa8T0ql27dmHEiBEIDAyEKIoAWh6b5nT2PH7//fc4e/asxn18RUVFyM/PR3p6OkRRhCiKCAgIQHJyMsLDw6V6JSUlkMvlnRIXY6x9+IoaY12kvr5e+nny5AmOHz8ulfXq1Qs3b97EyZMnpZUQXt02evRoWFpaIi4uDmq1GgUFBXB3d0d+fn6nxDt69GjY29tj3bp1UKlUSElJwfnz5xEcHAwA6NevH9LT06FWq7F///4GVxMb6xPw/IGKCxcuoKysDFu2bIFCoWh3ex396hMAPv/8c5w5c6bJckEQkJKSgitXrkhXQFsam+Z05jzu27cPOTk50mtGcnJysHnzZjg6OkIURWzfvh1qtRq3bt1CUlISBgwYoLF/bm4uL7fFmL4hxlijtm3bRtu2bWuy/MCBAwRA+tm3b59GeVBQkFQWGxtLz549o5kzZ5KZmRm9//77FB0dTQDIxcWFTp06RTY2NmRra0unT58mImp0W2FhIXl7e5MgCOTk5EQJCQlERLR69WqNY4WFhUmfd+7c2WQfxowZQ6WlpU2WX716lby9vUkURXJ2dqaMjAyp7ObNm+Tq6kqiKNLXX39NLi4uBIDS0tKajH/WrFkUFRVFPj4+JAgC+fn5UXl5ebvbW7JkCYWGhjYZf2lpKY0ZM6bJciKiiooKcnd3J6VSSTt27JDGLSgoSKPe0aNHadiwYS2OTWvmoql5JCKKioqisLCwRmP94YcfNM45CwsLqez3338nAwMDjXIAtGnTJiIiyszMJDc3NzI1NSVra2tSKBSkVCql/VNSUmj27NnNjhUR0YABA1qswxjTmjIZUQdu8GCsG9u+fTsAICwsTMeRdB4vLy8cOnSoy5aQCg0NhVwuR1RUVJccr6ysDIGBgcjKymq2XlFREfbu3Ys1a9Z0SVzNGTVqFFatWoVx48Z12TFLSkoQFxeHmJiYFl/oO3DgQH7XGmNd5z7fo8YYe+PJ5XK9SNKOHTsGb2/vLk3SgOev5eClzhjTT5yoMca6hEKhwMGDBwE8fwrx5SWM2HO+vr7w9fXVdRiMMT3CiRpjrEskJiZ26J1pjDH2JuKnPhljjDHG9BQnaowxxhhjeoq/+mSsGampqbh//76uw+g0JSUl2Lx5c6NLKHUH1dXVKCkpQUxMjK5D6TaaWsWBMdY5+PUcjDXh+vXr+PXXX3UdBgPwH//xH/D394ejo6OuQ3nj9ezZE5999pmuw2DsTXGfEzXGmN4LDAzE6tWr8eGHH+o6FMYY60r3+R41xhhjjDE9xYkaY4wxxpie4kSNMcYYY0xPcaLGGGOMMaanOFFjjDHGGNNTnKgxxhhjjOkpTtQYY4wxxvQUJ2qMMcYYY3qKEzXGGGOMMT3FiRpjjDHGmJ7iRI0xxhhjTE9xosYYY4wxpqc4UWOMMcYY01OcqDHGGGOM6SlO1BhjjDHG9BQnaowxxhhjeooTNcYYY4wxPcWJGmOMMcaYnuJEjTHGGGNMTxnqOgDGGGuMSqXCs2fPAAA1NTV49OgRysvLAQBmZmYwNOR/vhhj3Z+MiEjXQTDG2KsWLVqEhIQECIKAuro6GBgYQCaT4eHDh7h37x6srKx0HSJjjHW2+/zVJ2NML3355Zfo2bMnSktLoVQqUVZWhtLSUri5uXGSxhh7Y3CixhjTS0OHDkWPHj00tomiiLCwMB1FxBhjXY8TNcaY3vr3f/93jXvRevToAT8/Px1GxBhjXYsTNcaY3po9ezYsLS2lz8OGDYMoijqMiDHGuhYnaowxvSWXy2FhYQEAsLCwwIIFC3QcEWOMdS1O1Bhjem3WrFkwNjaGkZERxo4dq+twGGOsS3GixhjTa19++SUAwMfHB8bGxjqOhjHGuha/MZKxV4SGhqKyslLXYXSp2tpaPH36VG/v/xJFEaWlpQgICGh3G2q1Gj169ICRkZEWI3uzhYaGYvz48boOg7FujRM1xl6RnZ2NlJQUXYfRpc6dO4f09HSsXLlS16E0ysfHB6NGjYKBQfu/BIiNjcWnn36KYcOGaTGyN9eBAwdQVFTEiRpjnYwTNcZe8dZbb+HDDz/UdRhd6v79++jdu7fe9lsbcfXu3RtOTk5628fXjZ2dna5DYOyNwPeoMdYBbm5ukMlkOHbsmK5DYVpSVFSEVatW6ToMnSgpKcHy5cvx5MkTXYfCGPv/OFFjrAP+53/+B+7u7roOo4H8/HxMnDgRJiYm+Jd/+Rd8++23Wj/G9OnTcfToUa23+ypfX1/s2bOn048DAJWVlQgJCcGiRYsQHx8PmUwGIyMjZGdnS3VKSkogk8kgk8nQs2fPLomrMRUVFdiwYQP69u2L+Ph4aTsRYd++fejfvz9MTEzw0UcfITU1VWPfW7duYcKECTAzM4OdnR2io6MBALa2thg+fDgWLlzYpX1hjDWNEzXGuqE5c+YgOjoalZWV+P7777FixQr8/PPPWj3Gnj17ut0qAVu3bsXYsWNhZWWFuXPnIjs7G3V1dVAoFCgrKwPwPJkhIowfP16nV54yMzMxYcIEODg4aGy/desWtm7dioyMDDx48AAhISGYOnUqiouLpToLFiyAIAgoLi5GRkYG4uPjkZSUBACYMmUKcnJyUFBQ0KX9YYw1jhM1xtooLy8PgwYNgrm5OWJiYhqUFxYWwsvLC4IgwNnZGXl5eQCAxYsXQyaTYcGCBfDz84MoivD390ddXR0AYPny5bC2toaNjQ02b94sbW+qveb88ssvGDlyJIyNjeHt7Y2+ffvizz//1NoYvOhLREREi/1SKBRSXS8vL4iiiClTpqCiogL+/v6QyWTSFTMvLy/IZDKcOHFC2vf48eOYMWMGZDKZxpWjznD48GGMHDlSY9tXX32Furo6BAcHo76+vtH9rl27Bh8fH5ibm8PFxQWZmZkAWp7z9sztCwEBAXBxcWmw3cnJCefOncO7774LU1NThIeHw8jICJcuXZLqFBQUIDg4GBYWFhg8eDBGjhyJy5cvS+UeHh5S4sYY0y1O1Bhrg8ePH2PKlCn44osvcOfOHTg4OODKlStSeU1NDSZNmoSPP/4YpaWliIyMREBAAGpqahAXF4dly5YhLS0Na9euxdWrV5Gbm4vMzEz88ssvOHLkCAoKCvD777/j559/xvnz55ttr7XxJiYm4unTp1p9WeyLvrz8e2P9AoDExETMmjULR44cwbZt23Djxg08fPgQkZGRSE5OxqRJk6R2s7KyNJKPxMRETJo0Cbt37wYRYe7cuVrrQ2OKiorwzjvvaGxzcHDAoUOH8NNPP2H16tUN9qmpqcHEiRPh4eGB4uJiREdH47PPPsMff/zR7Nh0dG5b69GjRyAiDBkyRNr26aefIjExEZWVlbh06RLOnTuncX7Y2tqiqKhIq3EwxtqHEzXG2uD06dNQqVSIjIyEmZlZg7Uos7OzUVpaihUrVkAURYSEhEAURfz4449SHU9PTzg7O6NPnz4YPnw4bty4AUNDQyiVSpw5cwYmJiZITk6Gm5tbq9prSlFREUxNTbFw4UJ899136NWrV6eMSXP9etnkyZMxaNAg2NjYYOnSpUhMTGz3sSIiIjBnzpyOhqyhtrYWVVVVMDU1bVDm6emJjRs3Yt26dUhPT9coy87Oxt27d7Fy5UqYm5sjICAArq6u2L9/v8b+r45NR+a2Lb755hvExMTAxsZG2rZ+/XoolUpYWlpi6NChCA8Ph4eHh1QuCAIePnyo1TgYY+3DiRpjbXDv3j1YWVlpvDTV1tZW+r24uBhqtRqGhobSDeeFhYW4fv26VMfKykr63cTEBDU1NRgyZAg2bdqEyMhI2NjYICIiAk+fPm1Ve02Ry+WoqalBamoqFi9ejL1792ppFBrXWL+aKrezs4NKpUJVVVW7jlVfXw8ial+gTTAyMoIgCKiurm60fMmSJQgKCsK0adNw+/ZtaXtxcTGsra01Vk1wcHDQuCessbHpyNy2VkJCAsrLyxERESFte/bsGcaMGYNRo0ZBpVKhsLAQSUlJGg+cVFVVoXfv3lqLgzHWfvweNcbawM7ODg8ePEBtba2UrN2/f18qd3R0hJWVFZRKZZvbnj59OqZPn45z585hxowZcHR0hLOzc7vbA54nH25ubggICEBycrK0HJMulJaWSr/fu3cPZmZmEAQBxsbGePz4sVT2al9lMlmDtrZs2dIpMcrlco04X7Vr1y6MGDECgYGB0ioOjo6OUCqVqKmpkZK1O3fuwNXVtdljdeRcaY3vv/8eZ8+ebXBfX1FREfLz85Geng5RFCGKonR+hIeHA3j+ZKtcLu+UuBhjbcNX1BhrA09PT5iZmWHjxo1Qq9XYs2cPSkpKpPLRo0fD0tIScXFxUKvVKCgogLu7O/Lz85ttNzk5GYsXL4ZarUa/fv2kKzDtaU+pVMLZ2RnXrl1DbW0tLl++jKNHj6J///7aGYR2Sk1NxYULF1BWVoYtW7ZAoVAAAPr164f09HSo1Wrs378fKpVKY79evXrh5s2bOHnyJL744gsAnfPVJwB8/vnnOHPmTJPlgiAgJSUFV65cQXl5OYDnc2Rvb49169ZBpVIhJSUF58+fR3BwcLPHau+50hr79u1DTk6O9IqRnJwcbN68GcDzBFEURWzfvh1qtRq3bt1CUlISBgwYIO2fm5vboeW6GGNaRIwxDQMGDGi2PDc3lwYOHEiCINDf/vY3cnd3JwCUlJRERESFhYXk7e1NgiCQk5MTJSQkEBHR6tWrCQABoNjYWAoLC5M+b926lSIjI8ne3p4sLCxo2rRpVF1d3Wx7zTl48CC5ubmRiYkJ2dvb09y5c6mqqqrJ+qdOnaJ58+a1doho0aJFUuwv/7zar507dxIR0axZsygqKop8fHxIEATy8/Oj8vJyIiK6efMmubq6kiiK9PXXX5OLiwsBoLS0NCk2GxsbsrW1pdOnTxMR0ZIlSyg0NLTV8RIRzZs3j06dOtVsnYqKCnJ3dyelUkk7duyQ+hEUFKRR7+jRozRs2DDp89WrV8nb25tEUSRnZ2fKyMggoubnfOfOnc3ObVRUFIWFhTUZ6w8//KAx9hYWFkRE9Pvvv5OBgUGDudm0aZO0b2ZmJrm5uZGpqSlZW1uTQqEgpVJJREQpKSk0e/bsFsdz27ZttG3bthbrMcY6pExGpOUbPRh7zQ0cOPCNe4dUVlYWDh06hH/84x+d0n5oaCjkcjmioqI6pf3WmD9/PgIDA+Hl5dVsvaKiIuzduxdr1qzpmsCaMGrUKKxatQrjxo3rsmOWlJQgLi4OMTExLb7Md/v27QCAsLCwrgiNsTfVfb5HjTHGXiKXy3WepB07dgze3t5dmqQBzx+M2bBhQ5cekzHWPE7UGHtNNXaTPQCtPw3ZUQqFAgcPHgTw/InDF8sVsab5+vrC19dX12EwxvQAJ2qMvab0LSFrSmJiYofemcYYY28yfuqTMcYYY0xPcaLGGGOMMaan+KtPxl5RXV3d6GLr3dkff/yBwsLCbt3v8+fPo7q6GllZWboOpVs4d+4cJk6cqOswGOv2OFFj7BVvvfUWBg4cqOswulxJSUm37vfZs2fh5OTUrfvYlV5eRosx1nk4UWPsFT169EBgYKCuw+hSWVlZKCsr69b9zsrKgpeXV4vvUWOt8/LSaYyxzsP3qDHGGGOM6SlO1BhjrAlFRUVYtWqVrsPoNCUlJVi+fDmePHmi61AYY03gRI0xLUhMTIRMJpN+evTogX/913/F3/72N1RUVOg6PJ3y9fXFnj179La9plRWViIkJASLFi0CAGmBcyMjI2RnZ0v1SkpKpHlvadmlzlJRUYENGzagb9++iI+Pb1D++PFj/OUvf4EgCOjTpw92794N4PlKBMOHD8fChQu7OmTGWCtxosaYFigUCuTl5aFHjx4gIpSUlGDHjh3IysqCu7s7Hj58qOsQWRtt3boVY8eOhZWVFQBg7ty5yM7ORl1dHRQKBcrKygA8T3aICOPHj9fZlanMzExMmDABDg4OjZb//e9/x/Xr16V1TP/617/i4sWLAIApU6YgJyfnjVvflrHXBSdqjHWCXr164eOPP8aJEyegUqmwfv16AEBhYSG8vLwgCAKcnZ2Rl5cHAFi8eDFkMhkWLFgAPz8/iKIIf39/1NXVAQCWL18Oa2tr2NjYYPPmzdL25trUtmvXrsHHxwfm5uZwcXFBZmYmAMDf3x8ymUy6yuXl5QWZTIYTJ05AoVDg+PHjmDFjBmQyGeLj46FQKCCTyRAREQEvLy+IoogpU6ZIVx7b2l5nOXz4MEaOHNlg+1dffYW6ujoEBwejvr6+0X0bG6uW5hho/1wGBATAxcWl0bL6+nrs2rULK1euhJ2dHXx8fODn54edO3dKdTw8PJCUlNSqYzHGuhYnaox1IgsLC/j7+yM1NRU1NTWYNGkSPv74Y5SWliIyMhIBAQGoqalBXFwcli1bhrS0NKxduxZXr15Fbm4uMjMz8csvv+DIkSMoKCjA77//jp9//hnnz58HgGbb1KaamhpMnDgRHh4eKC4uRnR0ND777DP88ccfSE5OxqRJk6S6WVlZUtKQmJiISZMmYffu3SAizJ07F4mJiZg1axaOHDmCbdu24caNG3j48CEiIyMBoM3tdZaioiK88847DbY7ODjg0KFD+Omnn7B69eoG5U2N1eLFi5uc4xf7dcZclpaW4sGDB3B2dpa2DR48WOMKmq2tLYqKijp0HMZY5+BEjbFO5ujoiPv37yM7OxulpaVYsWIFRFFESEgIRFHEjz/+KNX19PSEs7Mz+vTpg+HDh+PGjRswNDSEUqnEmTNnYGJiguTkZLi5uQFAq9rUhuzsbNy9excrV66Eubk5AgIC4Orqiv3797e7zcmTJ2PQoEGwsbHB0qVLO7QeaEREBObMmdPu/V9VW1uLqqoqmJqaNlru6emJjRs3Yt26dUhPT9coa2msGpvjF/t1xlwqlUoAgLm5ubTN3Nxc4/UagiDw1/OM6SlO1BjrZH/++SdsbGxQXFwMtVoNQ0ND6ebzwsJCXL9+Xar74n4oADAxMUFNTQ2GDBmCTZs2ITIyEjY2NoiIiMDTp08BoFVtakNxcTGsra1hbGwsbXNwcEBxcXG723y5r3Z2dlCpVKiqqmpXW/X19VpdpN7IyAiCIKC6urrJOkuWLEFQUBCmTZum8fLXlsaqsTl+sV9nzKW1tTUA4NGjR9K2R48e4e2335Y+V1VVoXfv3h06DmOsc/ALbxnrRJWVlUhOTkZISAgcHR1hZWUlXeFoi+nTp2P69Ok4d+4cZsyYAUdHRyxatKhDbbaFo6MjlEolampqpATkzp07cHV1BQAYGxvj8ePHUv2X45HJZI22WVpaKv1+7949mJmZQRCEdrW3ZcuW9nSrWXK5XCPGxuzatQsjRoxAYGAgRFEE0PxYvZwsvaqz5vKdd96BlZUVLl26BHt7ewDAhQsXNFZoKCkpgVwu1+pxGWPawVfUGOsEFRUVOHnyJD755BOYm5sjKioKo0ePhqWlJeLi4qBWq1FQUAB3d3fk5+c321ZycjIWL14MtVqNfv36aVyRaW+bbTV69GjY29tj3bp1UKlUSElJwfnz5xEcHAwA6NevH9LT06FWq7F//36oVCpp3169euHmzZs4efIkvvjiC2l7amoqLly4gLKyMmzZsgUKhUIqa2t72v7qEwA+//xznDlzptk6giAgJSUFV65cQXl5OYCWx6opnTWXBgYGCA0Nxdq1a1FSUoJTp07h6NGjmD17tlQnNzcXAQEBHToOY6yTEGNMw4ABA9q8z4EDBwiA9GNsbEzvv/8+RUREUHl5uVSvsLCQvL29SRAEcnJyooSEBCIiWr16tbRvbGwshYWFSZ+3bt1KkZGRZG9vTxYWFjRt2jSqrq5usc22OHXqFM2bN6/ZOlevXiVvb28SRZGcnZ0pIyNDKrt58ya5urqSKIr09ddfk4uLCwGgtLQ0OnXqFNnY2JCtrS2dPn2aiIhmzZpFUVFR5OPjQ4IgkJ+fn8Y4tbW9JUuWUGhoaLPxz5s3j06dOtXqMamoqCB3d3dSKpVERLRjxw5pToKCgjTqHj16lIYNG9bsWDU3xzt37iSi5ucyKiqKwsLCGo31hx9+0Dj/LCwsNMqrq6vpyy+/JFNTU7K3t9doNyUlhWbPnt3qcXlh27ZttG3btjbvxxhrPkv0hAAAAWFJREFUkzIZkRZv7GCsGxg4cOAb906prKwsHDp0CP/4xz+65HihoaGQy+WIiorqkuMBwPz58xEYGNimtT5fvHdszZo1nRdYK40aNQqrVq3CuHHjtNZmSUkJ4uLiEBMT0+aX9W7fvh0AEBYWprV4GGMN3Od71BhjrAlyuVwvkrRjx47B29tbq0ka8Py1HBs2bNBqm4wx7eJEjTHWpRQKBQ4ePAgAePbsGaKjo3Uckf7z9fWFr6+vrsNgjOkAJ2qMsS6VmJjYoXemMcbYm4Sf+mSMMcYY01N8RY2xVzx9+hSHDh3SdRhdqqCgANevX+/W/b5+/TqysrKkxdRZx/z2228YMmSIrsNgrNvjpz4Ze8WmTZva/Yb811V9fT2ePXum8Tb97qampgaGhoYwMOAvErRl0qRJGDZsmK7DYKw7u8+JGmOMMcaYfrrP/2nJGGOMMaanDAH8qusgGGOMMcZYA+X/D0WlKLGh9JNLAAAAAElFTkSuQmCC", "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Visualize the model\n", "keras.utils.plot_model(model, expand_nested=True, dpi=60, show_shapes=True)" ] }, { "cell_type": "markdown", "metadata": { "id": "1yvJJPnY-dMP" }, "source": [ "## モデルのトレーニング\n", "\n", "このチュートリアルでは、`tf.keras.optimizers.Adam` オプティマイザと `tf.keras.losses.SparseCategoricalCrossentropy` 損失関数を選択します。`metrics` 引数を使用して、各ステップでのモデルパフォーマンスの精度を確認します。" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "execution": { "iopub.execute_input": "2024-01-11T19:25:08.866314Z", "iopub.status.busy": "2024-01-11T19:25:08.865754Z", "iopub.status.idle": "2024-01-11T19:25:08.889497Z", "shell.execute_reply": "2024-01-11T19:25:08.888822Z" }, "id": "ejrbyebDp2tA" }, "outputs": [], "source": [ "model.compile(loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True), \n", " optimizer = keras.optimizers.Adam(learning_rate = 0.0001), \n", " metrics = ['accuracy'])" ] }, { "cell_type": "markdown", "metadata": { "id": "nZT1Xlx9stP2" }, "source": [ "Keras `Model.fit` メソッドを使って、モデルを 50 エポック、トレーニングします。\n", "\n", "注意: このサンプルモデルは、このチュートリアルに合理的な時間でトレーニングできるように、より少ないデータポイント(300 個のトレーニングサンプルと 100 個の検証サンプル)でトレーニングされています。また、このサンプルモデルのトレーニングには 1 時間以上かかる可能性があります。" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "execution": { "iopub.execute_input": "2024-01-11T19:25:08.892658Z", "iopub.status.busy": "2024-01-11T19:25:08.892404Z", "iopub.status.idle": "2024-01-11T20:14:51.890382Z", "shell.execute_reply": "2024-01-11T20:14:51.889541Z" }, "id": "VMrMUl2hOqMs" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/50\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", "I0000 00:00:1705001118.350866 129571 device_compiler.h:186] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/Unknown - 19s 19s/step - loss: 3.7456 - accuracy: 0.1250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/Unknown - 19s 510ms/step - loss: 3.5514 - accuracy: 0.0625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/Unknown - 20s 787ms/step - loss: 3.4892 - accuracy: 0.0417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/Unknown - 22s 962ms/step - loss: 3.3879 - accuracy: 0.0312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/Unknown - 23s 1s/step - loss: 3.2871 - accuracy: 0.0250 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/Unknown - 24s 1s/step - loss: 3.1641 - accuracy: 0.0208" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/Unknown - 26s 1s/step - loss: 3.0875 - accuracy: 0.0179" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/Unknown - 27s 1s/step - loss: 2.9699 - accuracy: 0.0312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/Unknown - 28s 1s/step - loss: 2.9269 - accuracy: 0.0417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/Unknown - 29s 1s/step - loss: 2.9605 - accuracy: 0.0375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/Unknown - 31s 1s/step - loss: 2.9218 - accuracy: 0.0341" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/Unknown - 32s 1s/step - loss: 2.9366 - accuracy: 0.0312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/Unknown - 33s 1s/step - loss: 2.9005 - accuracy: 0.0288" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 14/Unknown - 35s 1s/step - loss: 2.8859 - accuracy: 0.0268" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/Unknown - 36s 1s/step - loss: 2.8616 - accuracy: 0.0333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/Unknown - 37s 1s/step - loss: 2.8398 - accuracy: 0.0391" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17/Unknown - 38s 1s/step - loss: 2.8150 - accuracy: 0.0515" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/Unknown - 39s 1s/step - loss: 2.7946 - accuracy: 0.0556" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/Unknown - 41s 1s/step - loss: 2.7876 - accuracy: 0.0592" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/Unknown - 42s 1s/step - loss: 2.7438 - accuracy: 0.0812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/Unknown - 43s 1s/step - loss: 2.7416 - accuracy: 0.0833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/Unknown - 45s 1s/step - loss: 2.7449 - accuracy: 0.0852" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 23/Unknown - 46s 1s/step - loss: 2.7403 - accuracy: 0.0870" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/Unknown - 47s 1s/step - loss: 2.7300 - accuracy: 0.0833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/Unknown - 48s 1s/step - loss: 2.7144 - accuracy: 0.0900" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/Unknown - 49s 1s/step - loss: 2.7136 - accuracy: 0.0865" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/Unknown - 51s 1s/step - loss: 2.7152 - accuracy: 0.0880" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/Unknown - 52s 1s/step - loss: 2.7088 - accuracy: 0.0893" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 29/Unknown - 54s 1s/step - loss: 2.6947 - accuracy: 0.0905" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/Unknown - 55s 1s/step - loss: 2.6857 - accuracy: 0.0917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/Unknown - 56s 1s/step - loss: 2.6643 - accuracy: 0.0887" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/Unknown - 57s 1s/step - loss: 2.6648 - accuracy: 0.0938" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/Unknown - 58s 1s/step - loss: 2.6541 - accuracy: 0.0947" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/Unknown - 60s 1s/step - loss: 2.6465 - accuracy: 0.0919" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/Unknown - 61s 1s/step - loss: 2.6451 - accuracy: 0.0929" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/Unknown - 62s 1s/step - loss: 2.6312 - accuracy: 0.0972" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/Unknown - 63s 1s/step - loss: 2.6190 - accuracy: 0.1014" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/Unknown - 68s 1s/step - loss: 2.6245 - accuracy: 0.1000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 81s 2s/step - loss: 2.6245 - accuracy: 0.1000 - val_loss: 2.5623 - val_accuracy: 0.1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 2/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 42s - loss: 2.8259 - accuracy: 0.0000e+00" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 48s - loss: 2.4272 - accuracy: 0.1250 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 46s - loss: 2.3648 - accuracy: 0.2083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 43s - loss: 2.3105 - accuracy: 0.1875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 43s - loss: 2.3200 - accuracy: 0.1750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 41s - loss: 2.3676 - accuracy: 0.1667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 40s - loss: 2.3492 - accuracy: 0.1607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 38s - loss: 2.4249 - accuracy: 0.1562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 2.4341 - accuracy: 0.1667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 2.4480 - accuracy: 0.1500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 34s - loss: 2.4179 - accuracy: 0.1477" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 2.3872 - accuracy: 0.1667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 2.3806 - accuracy: 0.1538" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 2.3682 - accuracy: 0.1696" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 29s - loss: 2.3583 - accuracy: 0.1667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 2.3422 - accuracy: 0.1719" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 2.3515 - accuracy: 0.1765" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 2.3547 - accuracy: 0.1806" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 2.3467 - accuracy: 0.1908" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 2.3557 - accuracy: 0.1813" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 2.3333 - accuracy: 0.1905" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 2.3333 - accuracy: 0.1875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 2.3318 - accuracy: 0.1793" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 2.3220 - accuracy: 0.1875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 2.3333 - accuracy: 0.1850" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 2.3268 - accuracy: 0.1827" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 2.3230 - accuracy: 0.1806" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 2.3201 - accuracy: 0.1830" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 2.3331 - accuracy: 0.1853" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 10s - loss: 2.3346 - accuracy: 0.1792" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 2.3321 - accuracy: 0.1734 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 2.3338 - accuracy: 0.1758" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 2.3335 - accuracy: 0.1705" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 2.3358 - accuracy: 0.1654" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 2.3355 - accuracy: 0.1607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 2.3232 - accuracy: 0.1632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 2.3270 - accuracy: 0.1588" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 2.3280 - accuracy: 0.1567" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 2.3280 - accuracy: 0.1567 - val_loss: 2.4639 - val_accuracy: 0.1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 3/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 49s - loss: 2.4616 - accuracy: 0.0000e+00" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 46s - loss: 2.3212 - accuracy: 0.1250 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 46s - loss: 2.2157 - accuracy: 0.1667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 43s - loss: 2.1876 - accuracy: 0.1562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 42s - loss: 2.1729 - accuracy: 0.2000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 2.2061 - accuracy: 0.1875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 39s - loss: 2.2566 - accuracy: 0.1786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 38s - loss: 2.2382 - accuracy: 0.1875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 2.3046 - accuracy: 0.1667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 2.3435 - accuracy: 0.1500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 2.3233 - accuracy: 0.1477" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 2.2958 - accuracy: 0.1562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 2.2624 - accuracy: 0.1827" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 2.2406 - accuracy: 0.1964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 29s - loss: 2.2419 - accuracy: 0.2083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 2.2424 - accuracy: 0.2188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 2.2620 - accuracy: 0.2132" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 2.2790 - accuracy: 0.2014" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 2.2775 - accuracy: 0.1974" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 2.2659 - accuracy: 0.2000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 2.2482 - accuracy: 0.2083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 2.2643 - accuracy: 0.2045" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 2.2934 - accuracy: 0.2011" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 2.2856 - accuracy: 0.2031" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 2.2734 - accuracy: 0.2000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 2.2644 - accuracy: 0.2019" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 2.2557 - accuracy: 0.2037" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 2.2608 - accuracy: 0.1964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 2.2528 - accuracy: 0.2026" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 10s - loss: 2.2510 - accuracy: 0.1958" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 2.2460 - accuracy: 0.1935 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 2.2518 - accuracy: 0.1914" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 2.2485 - accuracy: 0.1932" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 2.2478 - accuracy: 0.1912" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 2.2325 - accuracy: 0.2000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 2.2303 - accuracy: 0.1979" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 2.2236 - accuracy: 0.1959" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 2.2286 - accuracy: 0.1933" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 2.2286 - accuracy: 0.1933 - val_loss: 2.1820 - val_accuracy: 0.2000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 48s - loss: 1.5644 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 42s - loss: 2.1674 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 43s - loss: 2.1767 - accuracy: 0.3333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 2.1546 - accuracy: 0.3438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 2.1878 - accuracy: 0.3250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 2.1827 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 2.1301 - accuracy: 0.3214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 2.1356 - accuracy: 0.3281" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 2.1260 - accuracy: 0.3472" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 2.1046 - accuracy: 0.3375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 2.1191 - accuracy: 0.3182" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 2.1013 - accuracy: 0.3229" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 2.1257 - accuracy: 0.2981" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 2.1284 - accuracy: 0.2857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 2.1194 - accuracy: 0.3000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 2.1286 - accuracy: 0.3047" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 2.1683 - accuracy: 0.2941" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 2.1795 - accuracy: 0.2847" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 24s - loss: 2.1813 - accuracy: 0.2829" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 2.1724 - accuracy: 0.2812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 2.1735 - accuracy: 0.2798" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 2.1753 - accuracy: 0.2727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 19s - loss: 2.1559 - accuracy: 0.2772" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 2.1408 - accuracy: 0.2708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 2.1407 - accuracy: 0.2650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 15s - loss: 2.1200 - accuracy: 0.2788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 2.1238 - accuracy: 0.2824" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 2.1456 - accuracy: 0.2768" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 2.1465 - accuracy: 0.2759" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 10s - loss: 2.1403 - accuracy: 0.2750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 2.1418 - accuracy: 0.2702 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 2.1370 - accuracy: 0.2734" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 2.1362 - accuracy: 0.2727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 2.1440 - accuracy: 0.2684" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 2.1366 - accuracy: 0.2714" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 2.1378 - accuracy: 0.2708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 2.1397 - accuracy: 0.2635" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 2.1448 - accuracy: 0.2600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 2.1448 - accuracy: 0.2600 - val_loss: 2.4221 - val_accuracy: 0.1600\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 5/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 52s - loss: 2.2395 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 43s - loss: 2.2027 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 43s - loss: 2.1582 - accuracy: 0.2917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 42s - loss: 2.0756 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 2.0585 - accuracy: 0.2750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 2.0373 - accuracy: 0.2917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 2.0567 - accuracy: 0.3036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 2.0806 - accuracy: 0.2812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 2.0636 - accuracy: 0.2917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 2.0328 - accuracy: 0.3000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 2.0217 - accuracy: 0.2841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 2.0470 - accuracy: 0.2604" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 2.0540 - accuracy: 0.2404" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 2.0388 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 2.0450 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 2.0241 - accuracy: 0.2578" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 2.0151 - accuracy: 0.2647" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.9874 - accuracy: 0.2847" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.9982 - accuracy: 0.2895" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.9906 - accuracy: 0.3000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 1.9637 - accuracy: 0.3095" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.9627 - accuracy: 0.3068" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.9495 - accuracy: 0.3152" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.9725 - accuracy: 0.3073" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.9679 - accuracy: 0.3150" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.9836 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 2.0176 - accuracy: 0.3009" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 2.0251 - accuracy: 0.2946" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 2.0174 - accuracy: 0.3060" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 2.0326 - accuracy: 0.2958 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 2.0290 - accuracy: 0.2984" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 2.0285 - accuracy: 0.2969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 2.0164 - accuracy: 0.2992" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 2.0294 - accuracy: 0.2941" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 2.0392 - accuracy: 0.2893" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 2.0224 - accuracy: 0.2917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 2.0254 - accuracy: 0.2939" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 2.0234 - accuracy: 0.2967" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 2.0234 - accuracy: 0.2967 - val_loss: 2.4969 - val_accuracy: 0.2400\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 6/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 47s - loss: 2.2714 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 49s - loss: 2.1695 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 46s - loss: 2.0480 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 44s - loss: 1.9622 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 41s - loss: 1.9128 - accuracy: 0.3500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 1.8312 - accuracy: 0.3958" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 1.8454 - accuracy: 0.4107" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 1.8533 - accuracy: 0.3906" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 1.8406 - accuracy: 0.3889" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 1.8848 - accuracy: 0.3500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.8600 - accuracy: 0.3523" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 1.8844 - accuracy: 0.3333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 1.8701 - accuracy: 0.3558" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 1.8847 - accuracy: 0.3482" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.8604 - accuracy: 0.3583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 1.8819 - accuracy: 0.3594" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 1.8999 - accuracy: 0.3529" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 1.8825 - accuracy: 0.3611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.8542 - accuracy: 0.3684" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.8673 - accuracy: 0.3625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 1.8466 - accuracy: 0.3690" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 1.8602 - accuracy: 0.3580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.8388 - accuracy: 0.3696" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.8629 - accuracy: 0.3646" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.8527 - accuracy: 0.3700" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 15s - loss: 1.8447 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.8510 - accuracy: 0.3657" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.8608 - accuracy: 0.3571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.8685 - accuracy: 0.3578" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.8618 - accuracy: 0.3542 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.8572 - accuracy: 0.3548" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.8710 - accuracy: 0.3516" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.8782 - accuracy: 0.3485" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.9054 - accuracy: 0.3419" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.9045 - accuracy: 0.3393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.9165 - accuracy: 0.3333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.9099 - accuracy: 0.3345" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.9068 - accuracy: 0.3333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 1.9068 - accuracy: 0.3333 - val_loss: 2.6993 - val_accuracy: 0.1500\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 7/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 49s - loss: 1.9459 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 47s - loss: 2.0087 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 46s - loss: 2.0918 - accuracy: 0.1667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 45s - loss: 2.0717 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 43s - loss: 1.9883 - accuracy: 0.2750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 1.9778 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 40s - loss: 1.9327 - accuracy: 0.3393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 38s - loss: 1.9562 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 1.9689 - accuracy: 0.3056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 1.9552 - accuracy: 0.3000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 34s - loss: 1.9553 - accuracy: 0.2841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 1.9558 - accuracy: 0.2708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 1.9514 - accuracy: 0.2692" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 1.9341 - accuracy: 0.2857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.9545 - accuracy: 0.2750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 1.9769 - accuracy: 0.2578" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 1.9662 - accuracy: 0.2574" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 1.9661 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.9256 - accuracy: 0.2829" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.9324 - accuracy: 0.2812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 1.9202 - accuracy: 0.2857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.9164 - accuracy: 0.2898" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.9221 - accuracy: 0.2880" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.9253 - accuracy: 0.2865" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.9205 - accuracy: 0.2800" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.9291 - accuracy: 0.2740" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.9424 - accuracy: 0.2778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.9334 - accuracy: 0.2857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.9381 - accuracy: 0.2802" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.9551 - accuracy: 0.2792 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.9732 - accuracy: 0.2702" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.9756 - accuracy: 0.2695" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.9728 - accuracy: 0.2652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.9661 - accuracy: 0.2721" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.9501 - accuracy: 0.2821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.9530 - accuracy: 0.2812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.9454 - accuracy: 0.2838" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.9412 - accuracy: 0.2867" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 1.9412 - accuracy: 0.2867 - val_loss: 2.3172 - val_accuracy: 0.2800\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 8/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 45s - loss: 1.3210 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 43s - loss: 1.3642 - accuracy: 0.4375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 44s - loss: 1.4910 - accuracy: 0.4167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 42s - loss: 1.6229 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 1.7571 - accuracy: 0.3250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 1.7641 - accuracy: 0.2917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 1.8726 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 1.8486 - accuracy: 0.2969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 1.8568 - accuracy: 0.2639" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 1.8457 - accuracy: 0.2750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.8440 - accuracy: 0.2841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 1.8074 - accuracy: 0.3021" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 1.8142 - accuracy: 0.2981" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 1.8069 - accuracy: 0.2946" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.7797 - accuracy: 0.3167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 1.7742 - accuracy: 0.3281" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 1.7629 - accuracy: 0.3235" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 1.7684 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 24s - loss: 1.7507 - accuracy: 0.3289" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.7578 - accuracy: 0.3250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 1.7728 - accuracy: 0.3214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 1.7555 - accuracy: 0.3352" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.7393 - accuracy: 0.3424" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.7390 - accuracy: 0.3490" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.7387 - accuracy: 0.3550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 15s - loss: 1.7643 - accuracy: 0.3413" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.7877 - accuracy: 0.3380" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.7886 - accuracy: 0.3393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.7953 - accuracy: 0.3405" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 10s - loss: 1.7724 - accuracy: 0.3542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.7855 - accuracy: 0.3508 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.7808 - accuracy: 0.3555" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.7887 - accuracy: 0.3523" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 1.7898 - accuracy: 0.3529" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.7834 - accuracy: 0.3464" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.7818 - accuracy: 0.3438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.7892 - accuracy: 0.3412" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.7902 - accuracy: 0.3400" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 1.7902 - accuracy: 0.3400 - val_loss: 1.9949 - val_accuracy: 0.4000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 9/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 49s - loss: 2.2594 - accuracy: 0.1250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 45s - loss: 1.9763 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 46s - loss: 1.7602 - accuracy: 0.4167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 43s - loss: 1.7683 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 42s - loss: 1.6701 - accuracy: 0.4500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 41s - loss: 1.7134 - accuracy: 0.4167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 39s - loss: 1.7600 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 1.7672 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 1.7989 - accuracy: 0.3611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 1.7819 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.7768 - accuracy: 0.3636" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 1.8255 - accuracy: 0.3333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 1.8200 - accuracy: 0.3269" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 1.8096 - accuracy: 0.3393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.8153 - accuracy: 0.3417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 1.7924 - accuracy: 0.3516" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.7722 - accuracy: 0.3529" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.7463 - accuracy: 0.3681" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.7503 - accuracy: 0.3553" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.7533 - accuracy: 0.3500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 1.7618 - accuracy: 0.3512" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.7968 - accuracy: 0.3409" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.7990 - accuracy: 0.3370" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.7962 - accuracy: 0.3333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.7898 - accuracy: 0.3350" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 15s - loss: 1.7893 - accuracy: 0.3317" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.8137 - accuracy: 0.3287" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.8132 - accuracy: 0.3348" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.8136 - accuracy: 0.3276" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 10s - loss: 1.8154 - accuracy: 0.3250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.8204 - accuracy: 0.3226 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.8245 - accuracy: 0.3203" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.8187 - accuracy: 0.3220" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 1.8016 - accuracy: 0.3309" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.8051 - accuracy: 0.3321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.7957 - accuracy: 0.3333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.7898 - accuracy: 0.3311" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.7993 - accuracy: 0.3267" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 1.7993 - accuracy: 0.3267 - val_loss: 2.6475 - val_accuracy: 0.2200\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 10/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 52s - loss: 1.4597 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 46s - loss: 1.6399 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 44s - loss: 1.5901 - accuracy: 0.4167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 42s - loss: 1.5248 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 42s - loss: 1.5688 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 1.6261 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 39s - loss: 1.7215 - accuracy: 0.3571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 38s - loss: 1.7241 - accuracy: 0.3438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 37s - loss: 1.7572 - accuracy: 0.3194" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 1.7459 - accuracy: 0.3250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.7670 - accuracy: 0.2955" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 1.7763 - accuracy: 0.2917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 1.7574 - accuracy: 0.2981" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 1.7730 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.7590 - accuracy: 0.3167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 1.7415 - accuracy: 0.3203" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.7443 - accuracy: 0.3162" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.7805 - accuracy: 0.3056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.7959 - accuracy: 0.3092" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.7921 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 1.7842 - accuracy: 0.3155" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.7892 - accuracy: 0.3182" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.7777 - accuracy: 0.3207" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.7674 - accuracy: 0.3333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.7594 - accuracy: 0.3350" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.7614 - accuracy: 0.3317" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.7516 - accuracy: 0.3333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.7504 - accuracy: 0.3259" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.7266 - accuracy: 0.3405" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.7382 - accuracy: 0.3333 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.7316 - accuracy: 0.3387" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.7373 - accuracy: 0.3398" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.7447 - accuracy: 0.3409" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.7566 - accuracy: 0.3456" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.7439 - accuracy: 0.3536" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.7383 - accuracy: 0.3542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.7413 - accuracy: 0.3514" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.7501 - accuracy: 0.3500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 1.7501 - accuracy: 0.3500 - val_loss: 1.7358 - val_accuracy: 0.4700\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 11/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 45s - loss: 1.2930 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 41s - loss: 1.5330 - accuracy: 0.4375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 43s - loss: 1.6229 - accuracy: 0.3333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 42s - loss: 1.6538 - accuracy: 0.3438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 1.6709 - accuracy: 0.3500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 1.6582 - accuracy: 0.3542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 1.6573 - accuracy: 0.3393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 1.6514 - accuracy: 0.3438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 1.6576 - accuracy: 0.3611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 1.6719 - accuracy: 0.3500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.7282 - accuracy: 0.3182" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 1.7448 - accuracy: 0.3021" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 1.7927 - accuracy: 0.2981" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 1.7937 - accuracy: 0.3036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.7676 - accuracy: 0.3250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 1.8047 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 1.7959 - accuracy: 0.3088" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 1.7998 - accuracy: 0.3056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.7951 - accuracy: 0.3092" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.7850 - accuracy: 0.3000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 1.7536 - accuracy: 0.3095" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 1.7537 - accuracy: 0.3068" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 19s - loss: 1.7426 - accuracy: 0.2989" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.7570 - accuracy: 0.2865" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.7360 - accuracy: 0.2950" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 15s - loss: 1.7191 - accuracy: 0.3029" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.7267 - accuracy: 0.2963" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.7137 - accuracy: 0.3036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.7061 - accuracy: 0.3060" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 10s - loss: 1.6959 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.6969 - accuracy: 0.3145 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.6875 - accuracy: 0.3203" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.6788 - accuracy: 0.3295" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 1.6857 - accuracy: 0.3309" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.6868 - accuracy: 0.3357" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.6862 - accuracy: 0.3368" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.6773 - accuracy: 0.3345" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.6817 - accuracy: 0.3300" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 1.6817 - accuracy: 0.3300 - val_loss: 2.1962 - val_accuracy: 0.2600\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 12/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 46s - loss: 0.9740 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 43s - loss: 1.4155 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 44s - loss: 1.5998 - accuracy: 0.3333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 44s - loss: 1.6781 - accuracy: 0.3438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 43s - loss: 1.6746 - accuracy: 0.3250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 41s - loss: 1.6614 - accuracy: 0.3333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 40s - loss: 1.6836 - accuracy: 0.3393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 38s - loss: 1.6389 - accuracy: 0.3594" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 37s - loss: 1.6454 - accuracy: 0.3611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 36s - loss: 1.6001 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 34s - loss: 1.5714 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 1.6265 - accuracy: 0.3646" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 1.6556 - accuracy: 0.3462" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 1.6614 - accuracy: 0.3393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.6734 - accuracy: 0.3250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 1.6609 - accuracy: 0.3281" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 1.6454 - accuracy: 0.3309" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 1.6058 - accuracy: 0.3542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.6191 - accuracy: 0.3553" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.6148 - accuracy: 0.3625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 1.6276 - accuracy: 0.3631" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 1.6188 - accuracy: 0.3693" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.6129 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.6350 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.6224 - accuracy: 0.3700" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 15s - loss: 1.6262 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.6367 - accuracy: 0.3657" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.6351 - accuracy: 0.3661" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.6471 - accuracy: 0.3621" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.6418 - accuracy: 0.3625 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.6557 - accuracy: 0.3589" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.6748 - accuracy: 0.3516" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.6697 - accuracy: 0.3598" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 1.6692 - accuracy: 0.3566" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.6746 - accuracy: 0.3500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.6897 - accuracy: 0.3438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.6915 - accuracy: 0.3378" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.6873 - accuracy: 0.3400" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 1.6873 - accuracy: 0.3400 - val_loss: 2.1749 - val_accuracy: 0.3100\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 13/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 45s - loss: 1.2406 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 43s - loss: 1.4151 - accuracy: 0.5625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 41s - loss: 1.3907 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 40s - loss: 1.3788 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 39s - loss: 1.4899 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 37s - loss: 1.4634 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 1.4630 - accuracy: 0.4821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 1.4619 - accuracy: 0.4688" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 1.5101 - accuracy: 0.4444" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 1.4581 - accuracy: 0.4625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.5140 - accuracy: 0.4432" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 1.5521 - accuracy: 0.4167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 1.5602 - accuracy: 0.4038" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 1.5619 - accuracy: 0.4018" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.5561 - accuracy: 0.4083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 1.5712 - accuracy: 0.4141" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.5723 - accuracy: 0.4191" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.5826 - accuracy: 0.4028" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.5848 - accuracy: 0.4013" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.5840 - accuracy: 0.4000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 1.5917 - accuracy: 0.3988" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.5747 - accuracy: 0.3920" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.5515 - accuracy: 0.4022" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.5535 - accuracy: 0.4010" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.5579 - accuracy: 0.4050" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.5533 - accuracy: 0.4087" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.5539 - accuracy: 0.4074" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.5455 - accuracy: 0.4196" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.5553 - accuracy: 0.4138" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.5428 - accuracy: 0.4208 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.5491 - accuracy: 0.4234" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.5672 - accuracy: 0.4180" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.5743 - accuracy: 0.4242" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.5699 - accuracy: 0.4228" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.5601 - accuracy: 0.4214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.5624 - accuracy: 0.4167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.5558 - accuracy: 0.4189" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.5595 - accuracy: 0.4200" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 1.5595 - accuracy: 0.4200 - val_loss: 1.9248 - val_accuracy: 0.3500\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 14/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 50s - loss: 1.6611 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 47s - loss: 1.4677 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 43s - loss: 1.6556 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 1.5557 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 39s - loss: 1.4136 - accuracy: 0.4250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 38s - loss: 1.4307 - accuracy: 0.4167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 1.4163 - accuracy: 0.4464" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 1.4355 - accuracy: 0.4375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 1.3731 - accuracy: 0.4583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 1.3484 - accuracy: 0.4750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.3361 - accuracy: 0.4773" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 1.3657 - accuracy: 0.4792" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 1.3904 - accuracy: 0.4712" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 1.4006 - accuracy: 0.4732" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.3764 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 1.3754 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.3924 - accuracy: 0.4706" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.4200 - accuracy: 0.4722" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.4146 - accuracy: 0.4868" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.4401 - accuracy: 0.4812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 1.4424 - accuracy: 0.4762" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.4736 - accuracy: 0.4659" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.4794 - accuracy: 0.4674" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.4782 - accuracy: 0.4583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.4787 - accuracy: 0.4500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.4851 - accuracy: 0.4423" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.4853 - accuracy: 0.4398" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.4869 - accuracy: 0.4375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.4867 - accuracy: 0.4353" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.4824 - accuracy: 0.4333 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.4949 - accuracy: 0.4274" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.4989 - accuracy: 0.4180" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.5027 - accuracy: 0.4167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.5199 - accuracy: 0.4118" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.5090 - accuracy: 0.4143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.5070 - accuracy: 0.4201" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.5079 - accuracy: 0.4223" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.5023 - accuracy: 0.4233" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 1.5023 - accuracy: 0.4233 - val_loss: 2.2648 - val_accuracy: 0.2300\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 15/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 54s - loss: 1.5608 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 41s - loss: 1.5627 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 43s - loss: 1.5795 - accuracy: 0.4167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 1.4756 - accuracy: 0.4375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 1.5513 - accuracy: 0.4000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 1.5613 - accuracy: 0.3958" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 1.5781 - accuracy: 0.3929" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 1.5587 - accuracy: 0.3906" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 1.5171 - accuracy: 0.4028" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 1.5382 - accuracy: 0.4000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.5333 - accuracy: 0.4205" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 1.5484 - accuracy: 0.4167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 1.5620 - accuracy: 0.4135" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 1.5517 - accuracy: 0.4196" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.5791 - accuracy: 0.4167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 1.5883 - accuracy: 0.4062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.5592 - accuracy: 0.4265" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.5345 - accuracy: 0.4444" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.5249 - accuracy: 0.4408" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.5531 - accuracy: 0.4313" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 1.5579 - accuracy: 0.4226" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.5584 - accuracy: 0.4148" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.5525 - accuracy: 0.4239" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.5535 - accuracy: 0.4219" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.5357 - accuracy: 0.4250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.5485 - accuracy: 0.4183" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.5409 - accuracy: 0.4167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.5442 - accuracy: 0.4107" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.5486 - accuracy: 0.4095" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.5341 - accuracy: 0.4167 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.5291 - accuracy: 0.4113" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.5224 - accuracy: 0.4180" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.5178 - accuracy: 0.4205" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.5091 - accuracy: 0.4191" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.4993 - accuracy: 0.4250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.4879 - accuracy: 0.4340" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.4788 - accuracy: 0.4324" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.4752 - accuracy: 0.4333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 1.4752 - accuracy: 0.4333 - val_loss: 1.6515 - val_accuracy: 0.4400\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 16/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 44s - loss: 1.4417 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 44s - loss: 1.6779 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 43s - loss: 1.4826 - accuracy: 0.5417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 1.3586 - accuracy: 0.5312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 1.4715 - accuracy: 0.5250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 1.4782 - accuracy: 0.4792" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 1.4291 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 1.4401 - accuracy: 0.4844" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 1.3928 - accuracy: 0.5278" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 1.3868 - accuracy: 0.5500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.4312 - accuracy: 0.5227" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 1.4085 - accuracy: 0.5208" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 1.4211 - accuracy: 0.5096" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 1.4114 - accuracy: 0.5089" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.4280 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 1.4402 - accuracy: 0.4766" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 1.4028 - accuracy: 0.5074" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.3944 - accuracy: 0.5139" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.3721 - accuracy: 0.5066" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.3663 - accuracy: 0.5125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 1.3757 - accuracy: 0.5119" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 1.3722 - accuracy: 0.5114" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.3741 - accuracy: 0.5109" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.3754 - accuracy: 0.5104" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.3978 - accuracy: 0.5050" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 15s - loss: 1.3998 - accuracy: 0.5048" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.4167 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.4086 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.3950 - accuracy: 0.5043" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 10s - loss: 1.4126 - accuracy: 0.4958" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.4199 - accuracy: 0.4879 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.4189 - accuracy: 0.4883" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.4224 - accuracy: 0.4848" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 1.4213 - accuracy: 0.4853" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.4117 - accuracy: 0.4893" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.4271 - accuracy: 0.4826" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.4216 - accuracy: 0.4865" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.4280 - accuracy: 0.4833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 1.4280 - accuracy: 0.4833 - val_loss: 1.6030 - val_accuracy: 0.4200\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 17/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 49s - loss: 1.2699 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 45s - loss: 1.2963 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 43s - loss: 1.3623 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 1.2682 - accuracy: 0.4688" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 39s - loss: 1.2064 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 1.2412 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 1.1827 - accuracy: 0.5357" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 1.2328 - accuracy: 0.5312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 1.2046 - accuracy: 0.5278" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 1.1868 - accuracy: 0.5500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.2460 - accuracy: 0.5114" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 1.2631 - accuracy: 0.5104" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 1.2576 - accuracy: 0.5096" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 1.2679 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.2922 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 1.2926 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 1.3103 - accuracy: 0.4853" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 1.3120 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.3249 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.3296 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 1.3656 - accuracy: 0.4821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.3829 - accuracy: 0.4773" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.3640 - accuracy: 0.4891" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.3552 - accuracy: 0.4948" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.3571 - accuracy: 0.4950" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.3506 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.3441 - accuracy: 0.5046" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.3207 - accuracy: 0.5179" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.3238 - accuracy: 0.5216" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.3332 - accuracy: 0.5208 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.3266 - accuracy: 0.5161" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.3331 - accuracy: 0.5195" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.3545 - accuracy: 0.5114" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.3559 - accuracy: 0.5074" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.3665 - accuracy: 0.5036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.3564 - accuracy: 0.5104" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.3443 - accuracy: 0.5135" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.3430 - accuracy: 0.5133" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 1.3430 - accuracy: 0.5133 - val_loss: 1.6696 - val_accuracy: 0.3600\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 18/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 50s - loss: 1.1038 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 43s - loss: 1.2346 - accuracy: 0.5625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 40s - loss: 1.1624 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 39s - loss: 1.1414 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 39s - loss: 1.1198 - accuracy: 0.6500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 38s - loss: 1.1257 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 1.1875 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 35s - loss: 1.2102 - accuracy: 0.6094" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 34s - loss: 1.2080 - accuracy: 0.5833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 33s - loss: 1.1788 - accuracy: 0.6000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 1.1895 - accuracy: 0.5909" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 1.2029 - accuracy: 0.5833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 1.2158 - accuracy: 0.5673" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 1.2039 - accuracy: 0.5714" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.2030 - accuracy: 0.5750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 1.2082 - accuracy: 0.5781" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.1934 - accuracy: 0.5735" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.2115 - accuracy: 0.5486" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.2105 - accuracy: 0.5592" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.2231 - accuracy: 0.5562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 1.2127 - accuracy: 0.5655" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.2184 - accuracy: 0.5739" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.2205 - accuracy: 0.5652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.2501 - accuracy: 0.5417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.2366 - accuracy: 0.5450" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.2408 - accuracy: 0.5433" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.2337 - accuracy: 0.5509" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.2434 - accuracy: 0.5491" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.2296 - accuracy: 0.5560" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.2167 - accuracy: 0.5625 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.2213 - accuracy: 0.5565" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.2200 - accuracy: 0.5625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.2274 - accuracy: 0.5606" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.2261 - accuracy: 0.5551" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.2215 - accuracy: 0.5571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.2365 - accuracy: 0.5521" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.2509 - accuracy: 0.5473" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.2448 - accuracy: 0.5467" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 1.2448 - accuracy: 0.5467 - val_loss: 1.4545 - val_accuracy: 0.4800\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 19/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 48s - loss: 1.5829 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 51s - loss: 1.5328 - accuracy: 0.4375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 46s - loss: 1.3059 - accuracy: 0.5833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 43s - loss: 1.2999 - accuracy: 0.5625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 42s - loss: 1.5006 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 1.4073 - accuracy: 0.5417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 39s - loss: 1.3876 - accuracy: 0.5179" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 1.3246 - accuracy: 0.5469" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 1.3206 - accuracy: 0.5556" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 1.3169 - accuracy: 0.5500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.3814 - accuracy: 0.5341" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 1.3499 - accuracy: 0.5312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 1.3525 - accuracy: 0.5288" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 1.3465 - accuracy: 0.5268" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.3621 - accuracy: 0.5250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 1.3769 - accuracy: 0.5078" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 1.4143 - accuracy: 0.5074" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 1.3820 - accuracy: 0.5139" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.4107 - accuracy: 0.4934" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.3916 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 1.3734 - accuracy: 0.5119" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 1.3627 - accuracy: 0.5114" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.3675 - accuracy: 0.5054" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.3747 - accuracy: 0.5052" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.3729 - accuracy: 0.5100" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 15s - loss: 1.3452 - accuracy: 0.5240" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.3571 - accuracy: 0.5185" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.3447 - accuracy: 0.5223" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.3304 - accuracy: 0.5259" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 10s - loss: 1.3360 - accuracy: 0.5208" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.3420 - accuracy: 0.5202 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.3289 - accuracy: 0.5234" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.3153 - accuracy: 0.5303" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 1.3168 - accuracy: 0.5294" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.3245 - accuracy: 0.5321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.3281 - accuracy: 0.5278" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.3229 - accuracy: 0.5304" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.3266 - accuracy: 0.5300" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 1.3266 - accuracy: 0.5300 - val_loss: 1.3705 - val_accuracy: 0.4900\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 20/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 51s - loss: 1.2819 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 45s - loss: 1.0849 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 44s - loss: 1.1868 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 43s - loss: 1.1983 - accuracy: 0.6562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 41s - loss: 1.2619 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 1.2371 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 1.2408 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 1.2705 - accuracy: 0.5938" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 1.2867 - accuracy: 0.5972" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 1.4819 - accuracy: 0.5375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 34s - loss: 1.4405 - accuracy: 0.5568" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 33s - loss: 1.4238 - accuracy: 0.5312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 32s - loss: 1.4390 - accuracy: 0.5096" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 1.4065 - accuracy: 0.5268" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 29s - loss: 1.3962 - accuracy: 0.5333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 28s - loss: 1.3907 - accuracy: 0.5312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 1.3752 - accuracy: 0.5441" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 1.3693 - accuracy: 0.5417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 24s - loss: 1.3581 - accuracy: 0.5592" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.3335 - accuracy: 0.5688" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 1.3273 - accuracy: 0.5774" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 1.3260 - accuracy: 0.5739" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 19s - loss: 1.3256 - accuracy: 0.5652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.3058 - accuracy: 0.5677" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.2907 - accuracy: 0.5700" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 15s - loss: 1.3015 - accuracy: 0.5577" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.3019 - accuracy: 0.5509" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.3067 - accuracy: 0.5491" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.2994 - accuracy: 0.5517" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 10s - loss: 1.2922 - accuracy: 0.5542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.3086 - accuracy: 0.5524 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.2965 - accuracy: 0.5586" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.2900 - accuracy: 0.5644" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 1.2787 - accuracy: 0.5735" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.2852 - accuracy: 0.5643" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.2974 - accuracy: 0.5556" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.2915 - accuracy: 0.5541" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.2845 - accuracy: 0.5600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 60s 2s/step - loss: 1.2845 - accuracy: 0.5600 - val_loss: 1.2928 - val_accuracy: 0.4700\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 21/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 48s - loss: 1.0972 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 43s - loss: 1.0451 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 40s - loss: 1.1196 - accuracy: 0.5833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 1.2142 - accuracy: 0.5625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 1.2041 - accuracy: 0.5500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 38s - loss: 1.1975 - accuracy: 0.5417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 1.1923 - accuracy: 0.5179" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 1.1838 - accuracy: 0.5469" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 1.1607 - accuracy: 0.5694" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 1.1780 - accuracy: 0.5500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.2104 - accuracy: 0.5568" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 1.2075 - accuracy: 0.5625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 1.1944 - accuracy: 0.5673" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 1.2034 - accuracy: 0.5714" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.2186 - accuracy: 0.5417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 1.2093 - accuracy: 0.5391" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 1.1890 - accuracy: 0.5441" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.1696 - accuracy: 0.5556" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.1551 - accuracy: 0.5658" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.1740 - accuracy: 0.5437" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 1.1797 - accuracy: 0.5357" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.1989 - accuracy: 0.5284" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.1804 - accuracy: 0.5435" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.1810 - accuracy: 0.5469" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.1805 - accuracy: 0.5450" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 15s - loss: 1.1804 - accuracy: 0.5481" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.1729 - accuracy: 0.5556" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.1593 - accuracy: 0.5670" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.1440 - accuracy: 0.5776" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.1662 - accuracy: 0.5667 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.1884 - accuracy: 0.5605" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.1903 - accuracy: 0.5547" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.1988 - accuracy: 0.5492" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.2049 - accuracy: 0.5441" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.1915 - accuracy: 0.5500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.1948 - accuracy: 0.5521" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.1913 - accuracy: 0.5574" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.1950 - accuracy: 0.5533" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 1.1950 - accuracy: 0.5533 - val_loss: 1.4048 - val_accuracy: 0.4500\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 22/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 53s - loss: 0.9228 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 41s - loss: 0.8561 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 41s - loss: 1.0500 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 40s - loss: 1.0867 - accuracy: 0.5625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 39s - loss: 1.1225 - accuracy: 0.5500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 1.0742 - accuracy: 0.5417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 1.0857 - accuracy: 0.5536" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 1.0914 - accuracy: 0.5469" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 1.1029 - accuracy: 0.5417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 1.1073 - accuracy: 0.5375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.0946 - accuracy: 0.5455" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 1.1047 - accuracy: 0.5625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 1.1104 - accuracy: 0.5577" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 1.1026 - accuracy: 0.5536" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.0950 - accuracy: 0.5417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 1.0958 - accuracy: 0.5547" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.1377 - accuracy: 0.5515" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.1390 - accuracy: 0.5417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.1663 - accuracy: 0.5395" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.1356 - accuracy: 0.5562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 1.1418 - accuracy: 0.5595" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.1678 - accuracy: 0.5511" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.1651 - accuracy: 0.5489" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.1519 - accuracy: 0.5521" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.1292 - accuracy: 0.5650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 15s - loss: 1.1330 - accuracy: 0.5673" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.1284 - accuracy: 0.5694" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.1209 - accuracy: 0.5714" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.1193 - accuracy: 0.5733" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.1234 - accuracy: 0.5708 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.1286 - accuracy: 0.5605" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.1509 - accuracy: 0.5469" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.1560 - accuracy: 0.5455" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.1502 - accuracy: 0.5478" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.1417 - accuracy: 0.5571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.1359 - accuracy: 0.5625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.1383 - accuracy: 0.5608" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.1403 - accuracy: 0.5600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 1.1403 - accuracy: 0.5600 - val_loss: 1.3348 - val_accuracy: 0.5100\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 23/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 50s - loss: 0.6561 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 46s - loss: 0.9271 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 45s - loss: 1.1782 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 42s - loss: 1.1759 - accuracy: 0.5625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 41s - loss: 1.1756 - accuracy: 0.5750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 1.1572 - accuracy: 0.6042" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 39s - loss: 1.1167 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 1.0747 - accuracy: 0.6406" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 37s - loss: 1.0693 - accuracy: 0.6528" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 1.0815 - accuracy: 0.6375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 34s - loss: 1.0954 - accuracy: 0.6136" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 1.0807 - accuracy: 0.6146" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 1.0386 - accuracy: 0.6442" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 1.0028 - accuracy: 0.6607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 29s - loss: 1.0007 - accuracy: 0.6583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 1.0072 - accuracy: 0.6484" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 0.9988 - accuracy: 0.6544" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 1.0155 - accuracy: 0.6389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 24s - loss: 1.0103 - accuracy: 0.6316" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.0063 - accuracy: 0.6375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 1.0105 - accuracy: 0.6310" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 1.0027 - accuracy: 0.6307" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 19s - loss: 1.0021 - accuracy: 0.6304" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.0066 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.0228 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 15s - loss: 1.0501 - accuracy: 0.6058" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.0689 - accuracy: 0.5972" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.0637 - accuracy: 0.6027" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.0801 - accuracy: 0.5991" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 10s - loss: 1.0732 - accuracy: 0.6000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.0806 - accuracy: 0.5968 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.0710 - accuracy: 0.6055" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.0756 - accuracy: 0.6061" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 1.0827 - accuracy: 0.6029" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.1016 - accuracy: 0.5964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.0881 - accuracy: 0.6042" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.0845 - accuracy: 0.6047" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.0866 - accuracy: 0.6033" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 1.0866 - accuracy: 0.6033 - val_loss: 1.2005 - val_accuracy: 0.5800\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 24/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 47s - loss: 1.4890 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 43s - loss: 1.3711 - accuracy: 0.5625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 43s - loss: 1.3003 - accuracy: 0.5833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 1.1897 - accuracy: 0.5625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 39s - loss: 1.2311 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 38s - loss: 1.2492 - accuracy: 0.4792" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 1.2611 - accuracy: 0.4821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 1.2184 - accuracy: 0.5156" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 1.1524 - accuracy: 0.5556" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 1.1504 - accuracy: 0.5625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.1110 - accuracy: 0.5909" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 1.1151 - accuracy: 0.5938" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 1.1045 - accuracy: 0.6058" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 1.1042 - accuracy: 0.5982" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.1053 - accuracy: 0.6000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 1.0954 - accuracy: 0.6016" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 1.0886 - accuracy: 0.5956" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 1.0724 - accuracy: 0.5972" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.0519 - accuracy: 0.5987" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.0878 - accuracy: 0.5813" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 1.0807 - accuracy: 0.5774" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 1.0959 - accuracy: 0.5795" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.1193 - accuracy: 0.5761" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.1176 - accuracy: 0.5729" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.1096 - accuracy: 0.5800" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 15s - loss: 1.1068 - accuracy: 0.5817" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.1486 - accuracy: 0.5648" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.1565 - accuracy: 0.5580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.1675 - accuracy: 0.5474" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 10s - loss: 1.1596 - accuracy: 0.5500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.1548 - accuracy: 0.5484 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.1599 - accuracy: 0.5469" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.1670 - accuracy: 0.5455" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.1622 - accuracy: 0.5515" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.1572 - accuracy: 0.5536" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.1691 - accuracy: 0.5451" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.1738 - accuracy: 0.5439" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.1717 - accuracy: 0.5433" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 1.1717 - accuracy: 0.5433 - val_loss: 1.1050 - val_accuracy: 0.6100\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 25/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 55s - loss: 0.9498 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 43s - loss: 1.0462 - accuracy: 0.5625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 42s - loss: 1.0644 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 0.9559 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 41s - loss: 0.9526 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 38s - loss: 0.9671 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.9976 - accuracy: 0.6071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 1.0068 - accuracy: 0.5938" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 0.9993 - accuracy: 0.6111" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 1.0010 - accuracy: 0.6000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.9990 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.9710 - accuracy: 0.6458" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.9701 - accuracy: 0.6346" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.9848 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.9749 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.9686 - accuracy: 0.6328" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 1.0020 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.9775 - accuracy: 0.6389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.9965 - accuracy: 0.6447" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.0055 - accuracy: 0.6375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.9952 - accuracy: 0.6369" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.9979 - accuracy: 0.6364" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.9932 - accuracy: 0.6413" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.9885 - accuracy: 0.6406" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.9896 - accuracy: 0.6400" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.9969 - accuracy: 0.6394" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.9921 - accuracy: 0.6435" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.9981 - accuracy: 0.6384" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.0029 - accuracy: 0.6379" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.0163 - accuracy: 0.6333 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.0180 - accuracy: 0.6331" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.0106 - accuracy: 0.6406" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.0238 - accuracy: 0.6364" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.0189 - accuracy: 0.6397" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.0189 - accuracy: 0.6393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.0363 - accuracy: 0.6285" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.0409 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.0358 - accuracy: 0.6267" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 1.0358 - accuracy: 0.6267 - val_loss: 1.3834 - val_accuracy: 0.5700\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 26/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 50s - loss: 0.8008 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 50s - loss: 0.9152 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 46s - loss: 1.0520 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 43s - loss: 1.0479 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 42s - loss: 0.9957 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 1.0086 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 39s - loss: 0.9594 - accuracy: 0.6786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 38s - loss: 0.9543 - accuracy: 0.6719" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 37s - loss: 0.9437 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 36s - loss: 0.9679 - accuracy: 0.6500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 34s - loss: 0.9566 - accuracy: 0.6477" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 33s - loss: 0.9568 - accuracy: 0.6458" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 32s - loss: 0.9566 - accuracy: 0.6442" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 0.9410 - accuracy: 0.6429" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 29s - loss: 0.9582 - accuracy: 0.6333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.9448 - accuracy: 0.6406" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 0.9590 - accuracy: 0.6471" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 0.9685 - accuracy: 0.6389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.9592 - accuracy: 0.6513" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.9780 - accuracy: 0.6375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 1.0315 - accuracy: 0.6190" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 1.0358 - accuracy: 0.6136" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.0412 - accuracy: 0.6196" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.0157 - accuracy: 0.6354" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.0147 - accuracy: 0.6300" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 15s - loss: 1.0371 - accuracy: 0.6154" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.0391 - accuracy: 0.6111" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.0500 - accuracy: 0.6116" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.0709 - accuracy: 0.6034" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 10s - loss: 1.0864 - accuracy: 0.5958" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.0932 - accuracy: 0.5968 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.0844 - accuracy: 0.5938" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.0868 - accuracy: 0.5947" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 1.0783 - accuracy: 0.5993" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.0746 - accuracy: 0.5964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.0657 - accuracy: 0.6042" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.0545 - accuracy: 0.6115" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.0719 - accuracy: 0.6033" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 1.0719 - accuracy: 0.6033 - val_loss: 1.1959 - val_accuracy: 0.5600\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 27/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 46s - loss: 0.7783 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 47s - loss: 0.6852 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 46s - loss: 0.8231 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 43s - loss: 0.8807 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 41s - loss: 0.8838 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 0.8298 - accuracy: 0.7292" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.9123 - accuracy: 0.6786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 0.8826 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 0.9038 - accuracy: 0.6944" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 0.8721 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.8774 - accuracy: 0.6932" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.8998 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 0.9113 - accuracy: 0.6923" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.9069 - accuracy: 0.6964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.9605 - accuracy: 0.6583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.9812 - accuracy: 0.6562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.9650 - accuracy: 0.6691" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.9641 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.9822 - accuracy: 0.6579" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.9822 - accuracy: 0.6562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.9774 - accuracy: 0.6548" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.9803 - accuracy: 0.6477" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.9746 - accuracy: 0.6576" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.9715 - accuracy: 0.6615" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.9798 - accuracy: 0.6600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.9657 - accuracy: 0.6683" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.9657 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.9545 - accuracy: 0.6786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.9543 - accuracy: 0.6767" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.9587 - accuracy: 0.6792 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.9547 - accuracy: 0.6774" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.9567 - accuracy: 0.6758" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.9508 - accuracy: 0.6818" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 0.9480 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.9403 - accuracy: 0.6929" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.9406 - accuracy: 0.6910" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.9469 - accuracy: 0.6858" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.9432 - accuracy: 0.6900" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 0.9432 - accuracy: 0.6900 - val_loss: 1.0664 - val_accuracy: 0.6200\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 28/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 46s - loss: 1.2275 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 45s - loss: 1.1202 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 42s - loss: 0.9510 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 42s - loss: 0.8101 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 41s - loss: 0.9613 - accuracy: 0.6500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 0.9824 - accuracy: 0.6042" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.9064 - accuracy: 0.6607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 0.8848 - accuracy: 0.6719" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 0.8966 - accuracy: 0.6528" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 0.9049 - accuracy: 0.6500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.8903 - accuracy: 0.6591" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.9055 - accuracy: 0.6771" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.8986 - accuracy: 0.6731" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.8668 - accuracy: 0.6964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.8647 - accuracy: 0.6917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 0.8355 - accuracy: 0.7109" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.8534 - accuracy: 0.7059" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.8611 - accuracy: 0.7014" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.8685 - accuracy: 0.7039" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.8903 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.8898 - accuracy: 0.6964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.9060 - accuracy: 0.6818" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.9111 - accuracy: 0.6685" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.9224 - accuracy: 0.6562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.9311 - accuracy: 0.6550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.9256 - accuracy: 0.6587" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.9105 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.9080 - accuracy: 0.6741" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.9140 - accuracy: 0.6681" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.9103 - accuracy: 0.6708 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.9338 - accuracy: 0.6613" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.9191 - accuracy: 0.6680" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.9158 - accuracy: 0.6705" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.9115 - accuracy: 0.6691" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.9027 - accuracy: 0.6750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.9056 - accuracy: 0.6771" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.9091 - accuracy: 0.6723" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.9006 - accuracy: 0.6767" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 0.9006 - accuracy: 0.6767 - val_loss: 1.0215 - val_accuracy: 0.6300\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 29/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 50s - loss: 0.7354 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 43s - loss: 0.9938 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 41s - loss: 0.9950 - accuracy: 0.5417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 1.0363 - accuracy: 0.5312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 39s - loss: 0.9358 - accuracy: 0.6000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 38s - loss: 0.9100 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 0.8846 - accuracy: 0.6429" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 35s - loss: 0.9002 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 0.8816 - accuracy: 0.6389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.8449 - accuracy: 0.6625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.8539 - accuracy: 0.6477" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.8837 - accuracy: 0.6354" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.8706 - accuracy: 0.6538" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.8768 - accuracy: 0.6518" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.8573 - accuracy: 0.6583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.8561 - accuracy: 0.6719" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.8446 - accuracy: 0.6838" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.8426 - accuracy: 0.6736" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.8457 - accuracy: 0.6711" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.8516 - accuracy: 0.6812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.8378 - accuracy: 0.6964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.8460 - accuracy: 0.6932" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.8474 - accuracy: 0.7011" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.8419 - accuracy: 0.7135" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.8540 - accuracy: 0.7100" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.8463 - accuracy: 0.7115" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.8367 - accuracy: 0.7130" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.8391 - accuracy: 0.7143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.8484 - accuracy: 0.7069" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.8469 - accuracy: 0.7083 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.8412 - accuracy: 0.7097" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.8372 - accuracy: 0.7109" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.8389 - accuracy: 0.7045" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.8388 - accuracy: 0.7022" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.8356 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.8332 - accuracy: 0.7014" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.8303 - accuracy: 0.7027" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.8258 - accuracy: 0.7067" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 0.8258 - accuracy: 0.7067 - val_loss: 1.0910 - val_accuracy: 0.6400\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 30/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 46s - loss: 1.5985 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 44s - loss: 1.4652 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 43s - loss: 1.2114 - accuracy: 0.4583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 40s - loss: 1.0987 - accuracy: 0.5312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 1.0355 - accuracy: 0.5500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 1.0316 - accuracy: 0.5833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 1.0026 - accuracy: 0.6071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 1.0088 - accuracy: 0.6094" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 1.0338 - accuracy: 0.5972" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 1.0208 - accuracy: 0.6125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.9901 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 0.9763 - accuracy: 0.6458" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.9433 - accuracy: 0.6635" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.9466 - accuracy: 0.6518" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.9300 - accuracy: 0.6500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.9262 - accuracy: 0.6562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.9035 - accuracy: 0.6765" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.8864 - accuracy: 0.6806" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.9119 - accuracy: 0.6579" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.9414 - accuracy: 0.6375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.9169 - accuracy: 0.6548" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.9408 - accuracy: 0.6477" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.9330 - accuracy: 0.6522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.9241 - accuracy: 0.6562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.9126 - accuracy: 0.6600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.9025 - accuracy: 0.6683" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.9132 - accuracy: 0.6713" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.9140 - accuracy: 0.6741" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.9139 - accuracy: 0.6767" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.9112 - accuracy: 0.6750 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.8975 - accuracy: 0.6774" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.8985 - accuracy: 0.6719" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.8999 - accuracy: 0.6705" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.9027 - accuracy: 0.6691" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.9184 - accuracy: 0.6643" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.9146 - accuracy: 0.6632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.9080 - accuracy: 0.6655" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.9075 - accuracy: 0.6633" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 0.9075 - accuracy: 0.6633 - val_loss: 1.1556 - val_accuracy: 0.6100\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 31/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 49s - loss: 0.3296 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 48s - loss: 0.6252 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 45s - loss: 0.6869 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 42s - loss: 0.6360 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 41s - loss: 0.6701 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 0.6253 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.7147 - accuracy: 0.7321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 0.7302 - accuracy: 0.7344" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 0.7411 - accuracy: 0.7361" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.7873 - accuracy: 0.7250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 0.7714 - accuracy: 0.7273" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 0.8025 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.7770 - accuracy: 0.7308" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.7787 - accuracy: 0.7232" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.7720 - accuracy: 0.7333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.7901 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.7883 - accuracy: 0.7206" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.7858 - accuracy: 0.7222" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.7884 - accuracy: 0.7303" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.8286 - accuracy: 0.7125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.8258 - accuracy: 0.7143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 0.8255 - accuracy: 0.7102" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.8197 - accuracy: 0.7174" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.8155 - accuracy: 0.7240" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.8145 - accuracy: 0.7300" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 15s - loss: 0.8090 - accuracy: 0.7308" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.7965 - accuracy: 0.7407" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.7971 - accuracy: 0.7411" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.8190 - accuracy: 0.7371" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 10s - loss: 0.8006 - accuracy: 0.7458" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.8033 - accuracy: 0.7419 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.8136 - accuracy: 0.7383" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.8146 - accuracy: 0.7348" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 0.8163 - accuracy: 0.7353" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.8083 - accuracy: 0.7357" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.7999 - accuracy: 0.7396" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.8096 - accuracy: 0.7365" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.8113 - accuracy: 0.7367" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 60s 2s/step - loss: 0.8113 - accuracy: 0.7367 - val_loss: 1.0003 - val_accuracy: 0.6500\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 32/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 46s - loss: 0.5697 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 44s - loss: 0.6308 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 44s - loss: 0.7088 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 43s - loss: 0.7304 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 43s - loss: 0.6964 - accuracy: 0.7250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 41s - loss: 0.7103 - accuracy: 0.7292" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 39s - loss: 0.7176 - accuracy: 0.7143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 38s - loss: 0.7334 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 0.7615 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 0.7201 - accuracy: 0.7375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.7084 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.7086 - accuracy: 0.7604" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 0.6985 - accuracy: 0.7692" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 0.6903 - accuracy: 0.7768" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.6943 - accuracy: 0.7833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.6967 - accuracy: 0.7891" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 0.6801 - accuracy: 0.8015" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 0.6963 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.6914 - accuracy: 0.8026" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.7070 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.7201 - accuracy: 0.7976" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.7100 - accuracy: 0.8068" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.7061 - accuracy: 0.8043" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.7059 - accuracy: 0.8021" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.6943 - accuracy: 0.8050" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.6960 - accuracy: 0.8077" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.7177 - accuracy: 0.7963" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.7197 - accuracy: 0.7946" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.7145 - accuracy: 0.7888" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.7243 - accuracy: 0.7833 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.7266 - accuracy: 0.7823" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.7220 - accuracy: 0.7852" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.7382 - accuracy: 0.7803" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.7453 - accuracy: 0.7721" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.7461 - accuracy: 0.7679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.7423 - accuracy: 0.7708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.7446 - accuracy: 0.7669" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.7484 - accuracy: 0.7667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 0.7484 - accuracy: 0.7667 - val_loss: 0.9289 - val_accuracy: 0.6800\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 33/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 46s - loss: 0.5722 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 44s - loss: 0.7648 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 42s - loss: 0.8130 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 42s - loss: 0.9040 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 1.0000 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 0.9474 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.9484 - accuracy: 0.7143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 0.9593 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 0.9586 - accuracy: 0.7361" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.9720 - accuracy: 0.7125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.9443 - accuracy: 0.7159" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.9267 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 0.9027 - accuracy: 0.7212" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 0.9090 - accuracy: 0.7054" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.8881 - accuracy: 0.7167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.8770 - accuracy: 0.7109" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 0.9031 - accuracy: 0.6912" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.9037 - accuracy: 0.6944" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.8949 - accuracy: 0.6974" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.8973 - accuracy: 0.6938" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.8812 - accuracy: 0.6964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.8808 - accuracy: 0.6989" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.9013 - accuracy: 0.6902" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.9054 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.8960 - accuracy: 0.6850" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.8824 - accuracy: 0.6923" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.8897 - accuracy: 0.6944" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.8745 - accuracy: 0.7054" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.8794 - accuracy: 0.7026" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.8842 - accuracy: 0.7000 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.8788 - accuracy: 0.7016" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.8734 - accuracy: 0.7031" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.8666 - accuracy: 0.7008" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 0.8690 - accuracy: 0.7022" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.8600 - accuracy: 0.7071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.8503 - accuracy: 0.7118" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.8464 - accuracy: 0.7128" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.8410 - accuracy: 0.7167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 0.8410 - accuracy: 0.7167 - val_loss: 0.9175 - val_accuracy: 0.6700\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 34/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 53s - loss: 0.8450 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 41s - loss: 0.8365 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 40s - loss: 0.6619 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 39s - loss: 0.7694 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 39s - loss: 0.6911 - accuracy: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 38s - loss: 0.7383 - accuracy: 0.7292" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.7401 - accuracy: 0.7321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 0.7334 - accuracy: 0.7344" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 0.7674 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.7617 - accuracy: 0.7625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.7771 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.7609 - accuracy: 0.7604" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 0.7440 - accuracy: 0.7692" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.7407 - accuracy: 0.7679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.7243 - accuracy: 0.7833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.7435 - accuracy: 0.7656" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.7283 - accuracy: 0.7721" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.7252 - accuracy: 0.7778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.7177 - accuracy: 0.7829" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.7069 - accuracy: 0.7875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.6947 - accuracy: 0.7976" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.6875 - accuracy: 0.8011" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.6855 - accuracy: 0.7989" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.6790 - accuracy: 0.7969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.6795 - accuracy: 0.7950" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.6881 - accuracy: 0.7933" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.6896 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.7066 - accuracy: 0.7768" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.6927 - accuracy: 0.7845" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 10s - loss: 0.6913 - accuracy: 0.7875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.6862 - accuracy: 0.7903 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.6861 - accuracy: 0.7930" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.6954 - accuracy: 0.7879" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.6946 - accuracy: 0.7868" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.6992 - accuracy: 0.7821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.6958 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.7014 - accuracy: 0.7770" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.7001 - accuracy: 0.7800" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 0.7001 - accuracy: 0.7800 - val_loss: 1.1768 - val_accuracy: 0.6000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 35/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 47s - loss: 0.6017 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 42s - loss: 0.6439 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 42s - loss: 0.6187 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 0.6482 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 41s - loss: 0.6483 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 0.6725 - accuracy: 0.7292" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 40s - loss: 0.6971 - accuracy: 0.7143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 38s - loss: 0.6725 - accuracy: 0.7344" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 0.7172 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 0.8175 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 34s - loss: 0.7911 - accuracy: 0.7273" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.7613 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 0.7410 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.7615 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.7417 - accuracy: 0.7667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.7515 - accuracy: 0.7578" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 0.7602 - accuracy: 0.7574" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 0.7592 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.7666 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.7563 - accuracy: 0.7563" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.7494 - accuracy: 0.7679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 0.7460 - accuracy: 0.7614" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.7525 - accuracy: 0.7554" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.7541 - accuracy: 0.7604" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.7447 - accuracy: 0.7650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 15s - loss: 0.7341 - accuracy: 0.7692" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.7322 - accuracy: 0.7685" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.7384 - accuracy: 0.7634" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.7614 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 10s - loss: 0.7640 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.7479 - accuracy: 0.7581 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.7492 - accuracy: 0.7578" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.7408 - accuracy: 0.7614" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 0.7393 - accuracy: 0.7610" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.7660 - accuracy: 0.7464" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.7682 - accuracy: 0.7465" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.7665 - accuracy: 0.7432" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.7628 - accuracy: 0.7433" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 0.7628 - accuracy: 0.7433 - val_loss: 1.0342 - val_accuracy: 0.5800\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 36/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 52s - loss: 0.9786 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 45s - loss: 0.7124 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 45s - loss: 0.5834 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 44s - loss: 0.7550 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 43s - loss: 0.8043 - accuracy: 0.6750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 41s - loss: 0.8662 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 40s - loss: 0.9383 - accuracy: 0.6607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 38s - loss: 0.8757 - accuracy: 0.6719" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 37s - loss: 0.8825 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 0.9307 - accuracy: 0.6500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.9454 - accuracy: 0.6364" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 33s - loss: 0.9595 - accuracy: 0.6146" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 0.9370 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 0.9114 - accuracy: 0.6339" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.9097 - accuracy: 0.6333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.9202 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 0.9535 - accuracy: 0.6103" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 1.0095 - accuracy: 0.5972" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.0034 - accuracy: 0.6118" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.0225 - accuracy: 0.6062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 1.0198 - accuracy: 0.6131" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.0068 - accuracy: 0.6136" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.0039 - accuracy: 0.6141" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.9908 - accuracy: 0.6146" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.9828 - accuracy: 0.6200" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 15s - loss: 1.0183 - accuracy: 0.6106" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.0099 - accuracy: 0.6157" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.9849 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.9797 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.9830 - accuracy: 0.6250 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.9928 - accuracy: 0.6210" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.9776 - accuracy: 0.6328" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.9687 - accuracy: 0.6402" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.9588 - accuracy: 0.6471" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.9474 - accuracy: 0.6536" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.9514 - accuracy: 0.6458" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.9579 - accuracy: 0.6419" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.9521 - accuracy: 0.6467" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 0.9521 - accuracy: 0.6467 - val_loss: 1.0204 - val_accuracy: 0.5900\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 37/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 50s - loss: 0.8239 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 43s - loss: 0.6667 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 43s - loss: 0.6266 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 44s - loss: 0.5857 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 42s - loss: 0.6409 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 41s - loss: 0.6161 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 39s - loss: 0.6805 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 38s - loss: 0.7473 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 0.7447 - accuracy: 0.7639" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 0.7260 - accuracy: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 34s - loss: 0.7063 - accuracy: 0.7841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.7015 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 0.6669 - accuracy: 0.8077" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 0.6562 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 29s - loss: 0.6843 - accuracy: 0.7833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.7079 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 0.7122 - accuracy: 0.7721" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 0.7143 - accuracy: 0.7708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 24s - loss: 0.7120 - accuracy: 0.7697" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.7386 - accuracy: 0.7563" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.7160 - accuracy: 0.7679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 0.7100 - accuracy: 0.7727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 19s - loss: 0.6986 - accuracy: 0.7772" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.6957 - accuracy: 0.7760" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.7015 - accuracy: 0.7700" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 15s - loss: 0.7101 - accuracy: 0.7644" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.7191 - accuracy: 0.7593" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.7173 - accuracy: 0.7545" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.7337 - accuracy: 0.7457" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 10s - loss: 0.7347 - accuracy: 0.7417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.7274 - accuracy: 0.7460 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.7280 - accuracy: 0.7461" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.7319 - accuracy: 0.7386" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 0.7453 - accuracy: 0.7353" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.7440 - accuracy: 0.7321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.7371 - accuracy: 0.7361" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.7412 - accuracy: 0.7399" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.7355 - accuracy: 0.7433" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 0.7355 - accuracy: 0.7433 - val_loss: 1.0955 - val_accuracy: 0.6700\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 38/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 49s - loss: 0.9987 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 48s - loss: 0.9338 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 45s - loss: 0.9071 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 43s - loss: 0.8824 - accuracy: 0.6562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 41s - loss: 0.8247 - accuracy: 0.6500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 0.8773 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.8243 - accuracy: 0.6429" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 0.8600 - accuracy: 0.6562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 0.8393 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.7985 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.7928 - accuracy: 0.6932" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.7954 - accuracy: 0.6979" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 0.8013 - accuracy: 0.6923" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.7816 - accuracy: 0.7054" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.7880 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.7638 - accuracy: 0.7109" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 0.7569 - accuracy: 0.7132" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 0.7898 - accuracy: 0.7014" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.7740 - accuracy: 0.7171" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.7647 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.7609 - accuracy: 0.7143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 0.7645 - accuracy: 0.7102" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.7636 - accuracy: 0.7120" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.7528 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.7582 - accuracy: 0.7100" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.7467 - accuracy: 0.7212" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.7381 - accuracy: 0.7222" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.7405 - accuracy: 0.7143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.7343 - accuracy: 0.7155" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 10s - loss: 0.7280 - accuracy: 0.7167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.7266 - accuracy: 0.7177 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.7146 - accuracy: 0.7266" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.7123 - accuracy: 0.7235" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 0.7034 - accuracy: 0.7279" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.7069 - accuracy: 0.7286" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.6972 - accuracy: 0.7326" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.6952 - accuracy: 0.7331" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.6927 - accuracy: 0.7333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 0.6927 - accuracy: 0.7333 - val_loss: 1.1643 - val_accuracy: 0.5600\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 39/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 50s - loss: 0.8847 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 45s - loss: 0.8117 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 45s - loss: 0.7617 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 42s - loss: 0.8016 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 41s - loss: 0.7480 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 0.7665 - accuracy: 0.7292" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 39s - loss: 0.8702 - accuracy: 0.6607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 38s - loss: 0.9495 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 37s - loss: 0.9299 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 36s - loss: 0.9219 - accuracy: 0.6125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 34s - loss: 0.9260 - accuracy: 0.6136" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 33s - loss: 0.9534 - accuracy: 0.6042" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 0.9372 - accuracy: 0.6154" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 0.9707 - accuracy: 0.6071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.9624 - accuracy: 0.6167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.9359 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 0.9138 - accuracy: 0.6324" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 0.8935 - accuracy: 0.6458" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.9124 - accuracy: 0.6382" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.9271 - accuracy: 0.6375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.9314 - accuracy: 0.6310" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 0.9575 - accuracy: 0.6136" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.9622 - accuracy: 0.6087" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.9435 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.9346 - accuracy: 0.6300" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.9343 - accuracy: 0.6298" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.9114 - accuracy: 0.6435" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.8953 - accuracy: 0.6518" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.9209 - accuracy: 0.6466" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.9184 - accuracy: 0.6458 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.9164 - accuracy: 0.6371" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.9086 - accuracy: 0.6445" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.8961 - accuracy: 0.6515" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.8833 - accuracy: 0.6581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.8914 - accuracy: 0.6536" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.8832 - accuracy: 0.6562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.8817 - accuracy: 0.6520" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.8830 - accuracy: 0.6500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 0.8830 - accuracy: 0.6500 - val_loss: 1.0390 - val_accuracy: 0.5600\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 40/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 47s - loss: 0.6917 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 44s - loss: 0.6586 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 42s - loss: 0.7771 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 42s - loss: 0.6949 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 41s - loss: 0.6595 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 0.6610 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.6474 - accuracy: 0.7679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 0.6549 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 0.7117 - accuracy: 0.7361" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.6788 - accuracy: 0.7625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.6536 - accuracy: 0.7727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.6640 - accuracy: 0.7708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 0.6597 - accuracy: 0.7692" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.6574 - accuracy: 0.7589" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.6806 - accuracy: 0.7417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 0.6870 - accuracy: 0.7344" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.6779 - accuracy: 0.7353" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.6731 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.6815 - accuracy: 0.7434" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.6661 - accuracy: 0.7563" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.6853 - accuracy: 0.7440" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 0.6774 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.6723 - accuracy: 0.7554" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.6824 - accuracy: 0.7552" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.6734 - accuracy: 0.7600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 15s - loss: 0.6596 - accuracy: 0.7692" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.6647 - accuracy: 0.7731" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.6593 - accuracy: 0.7723" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.6531 - accuracy: 0.7716" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 10s - loss: 0.6485 - accuracy: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.6351 - accuracy: 0.7823 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.6340 - accuracy: 0.7852" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.6442 - accuracy: 0.7803" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 0.6409 - accuracy: 0.7794" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.6506 - accuracy: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.6538 - accuracy: 0.7708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.6483 - accuracy: 0.7736" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.6603 - accuracy: 0.7700" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 0.6603 - accuracy: 0.7700 - val_loss: 1.0357 - val_accuracy: 0.7000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 41/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 49s - loss: 0.5039 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 49s - loss: 0.6245 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 46s - loss: 0.5617 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 44s - loss: 0.7267 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 43s - loss: 0.7008 - accuracy: 0.7250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 41s - loss: 0.6739 - accuracy: 0.7292" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 40s - loss: 0.6590 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 38s - loss: 0.6272 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 0.6378 - accuracy: 0.7778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 36s - loss: 0.6358 - accuracy: 0.7875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 34s - loss: 0.6465 - accuracy: 0.7727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 33s - loss: 0.6312 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 0.6109 - accuracy: 0.7981" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 0.5928 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 29s - loss: 0.5946 - accuracy: 0.8167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.5994 - accuracy: 0.8203" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 0.6047 - accuracy: 0.8162" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 0.6091 - accuracy: 0.8056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.6229 - accuracy: 0.7961" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.6099 - accuracy: 0.7937" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.6047 - accuracy: 0.7976" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 0.6149 - accuracy: 0.7955" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.6134 - accuracy: 0.7935" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.6086 - accuracy: 0.8021" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.6074 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.5964 - accuracy: 0.8029" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.6095 - accuracy: 0.7963" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.6066 - accuracy: 0.7991" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.6032 - accuracy: 0.8017" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.6106 - accuracy: 0.7958 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.6020 - accuracy: 0.7984" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.6169 - accuracy: 0.8008" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.6153 - accuracy: 0.8030" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 0.6128 - accuracy: 0.8015" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.6122 - accuracy: 0.8036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.6279 - accuracy: 0.7986" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.6342 - accuracy: 0.7939" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.6442 - accuracy: 0.7867" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 0.6442 - accuracy: 0.7867 - val_loss: 1.0123 - val_accuracy: 0.6800\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 42/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 47s - loss: 0.7742 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 43s - loss: 0.7656 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 42s - loss: 0.6450 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 43s - loss: 0.6021 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 42s - loss: 0.6983 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 0.6930 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.6486 - accuracy: 0.7321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 0.6638 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 0.6780 - accuracy: 0.7361" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 0.6536 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.6666 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.6405 - accuracy: 0.7708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 0.6134 - accuracy: 0.7885" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 0.6275 - accuracy: 0.7768" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.6373 - accuracy: 0.7667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.6526 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 0.7161 - accuracy: 0.7353" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.7346 - accuracy: 0.7222" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.7165 - accuracy: 0.7303" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.7236 - accuracy: 0.7250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.7121 - accuracy: 0.7321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.7082 - accuracy: 0.7330" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.7030 - accuracy: 0.7337" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.7217 - accuracy: 0.7240" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.7137 - accuracy: 0.7250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.7124 - accuracy: 0.7308" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.6944 - accuracy: 0.7407" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.7206 - accuracy: 0.7232" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.7101 - accuracy: 0.7328" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.7117 - accuracy: 0.7333 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.7131 - accuracy: 0.7339" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.7221 - accuracy: 0.7305" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.7148 - accuracy: 0.7348" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.7185 - accuracy: 0.7279" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.7219 - accuracy: 0.7286" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.7205 - accuracy: 0.7257" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.7183 - accuracy: 0.7230" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.7143 - accuracy: 0.7233" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 0.7143 - accuracy: 0.7233 - val_loss: 0.9508 - val_accuracy: 0.6800\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 43/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 49s - loss: 0.2371 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 47s - loss: 0.6484 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 44s - loss: 0.6240 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 0.5723 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 0.5332 - accuracy: 0.9000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 38s - loss: 0.5433 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 0.5464 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 0.5338 - accuracy: 0.8906" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 0.5208 - accuracy: 0.8889" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.5730 - accuracy: 0.8500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 0.5439 - accuracy: 0.8636" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 0.5574 - accuracy: 0.8542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.5887 - accuracy: 0.8365" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.5864 - accuracy: 0.8393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.5685 - accuracy: 0.8500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.5608 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.5542 - accuracy: 0.8382" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.5888 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.5849 - accuracy: 0.8158" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.5745 - accuracy: 0.8250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.5633 - accuracy: 0.8274" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 0.5698 - accuracy: 0.8295" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.5650 - accuracy: 0.8261" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.5702 - accuracy: 0.8229" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.5597 - accuracy: 0.8300" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 15s - loss: 0.5686 - accuracy: 0.8221" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.5593 - accuracy: 0.8241" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.5688 - accuracy: 0.8214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.5789 - accuracy: 0.8233" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 10s - loss: 0.5680 - accuracy: 0.8292" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.5833 - accuracy: 0.8226 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.6074 - accuracy: 0.8164" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.6087 - accuracy: 0.8106" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.6187 - accuracy: 0.8051" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.6160 - accuracy: 0.8071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.6122 - accuracy: 0.8056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.6057 - accuracy: 0.8108" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.6025 - accuracy: 0.8133" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 0.6025 - accuracy: 0.8133 - val_loss: 1.2498 - val_accuracy: 0.5700\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 44/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 45s - loss: 0.3147 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 43s - loss: 0.3973 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 43s - loss: 0.5162 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 0.5434 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 41s - loss: 0.5781 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 0.7153 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.7454 - accuracy: 0.6964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 0.7038 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 0.7247 - accuracy: 0.6944" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 0.6931 - accuracy: 0.7125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.6758 - accuracy: 0.7159" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.6408 - accuracy: 0.7396" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.6407 - accuracy: 0.7404" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.6343 - accuracy: 0.7321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.6147 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.6046 - accuracy: 0.7656" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.6160 - accuracy: 0.7574" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.6245 - accuracy: 0.7569" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.6138 - accuracy: 0.7632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.6069 - accuracy: 0.7625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.6133 - accuracy: 0.7619" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.5986 - accuracy: 0.7670" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.5878 - accuracy: 0.7772" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.5724 - accuracy: 0.7865" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.5737 - accuracy: 0.7900" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.5823 - accuracy: 0.7837" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.5750 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.6063 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.6126 - accuracy: 0.7802" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.6152 - accuracy: 0.7792 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.6237 - accuracy: 0.7661" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.6182 - accuracy: 0.7695" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.6106 - accuracy: 0.7727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.6047 - accuracy: 0.7757" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.6164 - accuracy: 0.7714" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.6090 - accuracy: 0.7778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.6112 - accuracy: 0.7736" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.6129 - accuracy: 0.7767" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 0.6129 - accuracy: 0.7767 - val_loss: 0.9852 - val_accuracy: 0.6000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 45/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 49s - loss: 1.2480 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 48s - loss: 0.7321 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 46s - loss: 0.7388 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 43s - loss: 0.6167 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 41s - loss: 0.5864 - accuracy: 0.8500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 41s - loss: 0.5671 - accuracy: 0.8542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 40s - loss: 0.5347 - accuracy: 0.8571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 38s - loss: 0.5337 - accuracy: 0.8594" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 37s - loss: 0.5176 - accuracy: 0.8611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 36s - loss: 0.5495 - accuracy: 0.8375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 35s - loss: 0.5916 - accuracy: 0.8068" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 33s - loss: 0.5943 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 32s - loss: 0.6082 - accuracy: 0.7981" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 0.5972 - accuracy: 0.8036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 29s - loss: 0.6131 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.6217 - accuracy: 0.7891" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 0.6341 - accuracy: 0.7721" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 0.6153 - accuracy: 0.7847" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 24s - loss: 0.5965 - accuracy: 0.7895" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.6206 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.6290 - accuracy: 0.7738" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 0.6225 - accuracy: 0.7841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.6159 - accuracy: 0.7880" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.6185 - accuracy: 0.7865" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.6185 - accuracy: 0.7850" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 15s - loss: 0.6209 - accuracy: 0.7837" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.6260 - accuracy: 0.7824" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.6118 - accuracy: 0.7902" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.6079 - accuracy: 0.7931" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 10s - loss: 0.6164 - accuracy: 0.7875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.6228 - accuracy: 0.7782 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.6274 - accuracy: 0.7773" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.6189 - accuracy: 0.7841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 0.6146 - accuracy: 0.7868" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.6074 - accuracy: 0.7929" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.6058 - accuracy: 0.7951" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.6116 - accuracy: 0.7905" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.6118 - accuracy: 0.7900" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 0.6118 - accuracy: 0.7900 - val_loss: 0.9424 - val_accuracy: 0.6400\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 46/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 47s - loss: 0.4795 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 42s - loss: 0.4608 - accuracy: 0.9375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 41s - loss: 0.4180 - accuracy: 0.9167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 0.4398 - accuracy: 0.9062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 41s - loss: 0.4381 - accuracy: 0.9000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 0.4433 - accuracy: 0.9167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.4384 - accuracy: 0.9286" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 0.4350 - accuracy: 0.9219" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 0.4496 - accuracy: 0.9028" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 0.4798 - accuracy: 0.9000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.4679 - accuracy: 0.8977" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.4850 - accuracy: 0.8854" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 0.4706 - accuracy: 0.8942" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 0.4632 - accuracy: 0.9018" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.4789 - accuracy: 0.8833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.4730 - accuracy: 0.8828" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 0.4715 - accuracy: 0.8824" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 0.4854 - accuracy: 0.8681" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 24s - loss: 0.4757 - accuracy: 0.8684" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.4922 - accuracy: 0.8562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.4852 - accuracy: 0.8571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 0.4869 - accuracy: 0.8580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 19s - loss: 0.4858 - accuracy: 0.8587" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.4827 - accuracy: 0.8594" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.4798 - accuracy: 0.8600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 15s - loss: 0.4815 - accuracy: 0.8558" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.5067 - accuracy: 0.8426" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.5119 - accuracy: 0.8393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.5341 - accuracy: 0.8276" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 10s - loss: 0.5330 - accuracy: 0.8292" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.5290 - accuracy: 0.8306 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.5331 - accuracy: 0.8281" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.5469 - accuracy: 0.8182" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 0.5537 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.5646 - accuracy: 0.8036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.5753 - accuracy: 0.7986" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.5732 - accuracy: 0.8007" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.5690 - accuracy: 0.8033" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 60s 2s/step - loss: 0.5690 - accuracy: 0.8033 - val_loss: 0.9257 - val_accuracy: 0.6800\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 47/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 50s - loss: 0.7484 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 42s - loss: 0.5931 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 43s - loss: 0.5485 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 0.5506 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 41s - loss: 0.4913 - accuracy: 0.8250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 0.5682 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.6136 - accuracy: 0.7679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 0.6837 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 0.7584 - accuracy: 0.7361" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.7021 - accuracy: 0.7625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.7007 - accuracy: 0.7614" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.6731 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 0.6530 - accuracy: 0.7981" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.6354 - accuracy: 0.8036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.6383 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.6722 - accuracy: 0.7656" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.6640 - accuracy: 0.7574" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.6604 - accuracy: 0.7639" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.6341 - accuracy: 0.7763" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.6227 - accuracy: 0.7875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.6255 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.6248 - accuracy: 0.7898" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.6139 - accuracy: 0.7880" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.5998 - accuracy: 0.7969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.5912 - accuracy: 0.8050" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.6021 - accuracy: 0.8029" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.6041 - accuracy: 0.8009" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.6125 - accuracy: 0.7991" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.6023 - accuracy: 0.8017" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.6032 - accuracy: 0.8042 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.6134 - accuracy: 0.7944" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.6122 - accuracy: 0.7930" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.6064 - accuracy: 0.7955" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.6022 - accuracy: 0.8015" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.5949 - accuracy: 0.8071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.5937 - accuracy: 0.8090" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.5993 - accuracy: 0.8007" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.5964 - accuracy: 0.8033" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 0.5964 - accuracy: 0.8033 - val_loss: 1.1536 - val_accuracy: 0.6200\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 48/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 54s - loss: 0.7347 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 44s - loss: 0.7443 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 45s - loss: 0.7284 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 43s - loss: 0.6445 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 41s - loss: 0.6055 - accuracy: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 0.6816 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 39s - loss: 0.6714 - accuracy: 0.7321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 38s - loss: 0.6303 - accuracy: 0.7656" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 0.6177 - accuracy: 0.7778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 0.5955 - accuracy: 0.7875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 34s - loss: 0.6025 - accuracy: 0.7841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.6048 - accuracy: 0.7708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 0.6066 - accuracy: 0.7692" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 0.6105 - accuracy: 0.7679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.6119 - accuracy: 0.7667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.5900 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 0.5815 - accuracy: 0.7794" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.5661 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.5484 - accuracy: 0.8026" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.5393 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.5232 - accuracy: 0.8214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.5356 - accuracy: 0.8068" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.5337 - accuracy: 0.8098" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.5324 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.5380 - accuracy: 0.8050" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.5322 - accuracy: 0.8077" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.5360 - accuracy: 0.8056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.5309 - accuracy: 0.8080" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.5265 - accuracy: 0.8103" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.5248 - accuracy: 0.8083 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.5387 - accuracy: 0.8024" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.5460 - accuracy: 0.8008" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.5557 - accuracy: 0.7955" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.5692 - accuracy: 0.7904" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.5641 - accuracy: 0.7929" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.5617 - accuracy: 0.7951" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.5560 - accuracy: 0.7973" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.5571 - accuracy: 0.7967" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 0.5571 - accuracy: 0.7967 - val_loss: 0.7774 - val_accuracy: 0.7100\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 49/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 48s - loss: 0.5514 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 45s - loss: 0.4499 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 41s - loss: 0.3843 - accuracy: 0.9167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 40s - loss: 0.5173 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 39s - loss: 0.5790 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 38s - loss: 0.5689 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 36s - loss: 0.5238 - accuracy: 0.8214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 35s - loss: 0.4858 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 34s - loss: 0.4911 - accuracy: 0.8472" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 33s - loss: 0.5096 - accuracy: 0.8375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 0.4901 - accuracy: 0.8523" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 0.5286 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.5301 - accuracy: 0.8462" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.5219 - accuracy: 0.8571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.5271 - accuracy: 0.8583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.5415 - accuracy: 0.8516" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.5388 - accuracy: 0.8529" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.5420 - accuracy: 0.8472" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.5347 - accuracy: 0.8421" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.5265 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.5244 - accuracy: 0.8452" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.5286 - accuracy: 0.8466" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.5246 - accuracy: 0.8533" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.5185 - accuracy: 0.8542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.5129 - accuracy: 0.8600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.5074 - accuracy: 0.8654" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.5244 - accuracy: 0.8519" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.5201 - accuracy: 0.8527" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.5389 - accuracy: 0.8405" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.5357 - accuracy: 0.8375 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.5341 - accuracy: 0.8427" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.5289 - accuracy: 0.8477" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.5292 - accuracy: 0.8485" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.5297 - accuracy: 0.8493" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.5271 - accuracy: 0.8500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.5324 - accuracy: 0.8472" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.5272 - accuracy: 0.8446" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.5236 - accuracy: 0.8467" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 0.5236 - accuracy: 0.8467 - val_loss: 0.9425 - val_accuracy: 0.6900\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 50/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 49s - loss: 0.5542 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 40s - loss: 0.5226 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 40s - loss: 0.4961 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 40s - loss: 0.5295 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 39s - loss: 0.4603 - accuracy: 0.8500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 38s - loss: 0.4194 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 0.3872 - accuracy: 0.8929" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 0.3797 - accuracy: 0.8906" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 0.3967 - accuracy: 0.8889" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.4304 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.4741 - accuracy: 0.8409" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.4749 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 0.4766 - accuracy: 0.8269" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.4793 - accuracy: 0.8304" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.4773 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.4917 - accuracy: 0.8203" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.4972 - accuracy: 0.8088" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.4865 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.4981 - accuracy: 0.8092" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.5020 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.5000 - accuracy: 0.7976" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.4980 - accuracy: 0.8068" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.4965 - accuracy: 0.8043" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.4864 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.4933 - accuracy: 0.8100" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.5051 - accuracy: 0.8077" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.5052 - accuracy: 0.8056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.5163 - accuracy: 0.8080" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.5081 - accuracy: 0.8147" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 10s - loss: 0.4986 - accuracy: 0.8208" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.4912 - accuracy: 0.8226 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.4962 - accuracy: 0.8203" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.4901 - accuracy: 0.8258" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 5s - loss: 0.4910 - accuracy: 0.8309" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.4957 - accuracy: 0.8286" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.4948 - accuracy: 0.8264" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.4916 - accuracy: 0.8277" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.4978 - accuracy: 0.8267" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 59s 2s/step - loss: 0.4978 - accuracy: 0.8267 - val_loss: 0.7630 - val_accuracy: 0.7300\n" ] } ], "source": [ "history = model.fit(x = train_ds,\n", " epochs = 50, \n", " validation_data = val_ds)" ] }, { "cell_type": "markdown", "metadata": { "id": "KKUfMNVns2hu" }, "source": [ "### 結果を可視化する\n", "\n", "トレーニングセットと検証セットで損失と精度のプロットを作成します。" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "execution": { "iopub.execute_input": "2024-01-11T20:14:51.894511Z", "iopub.status.busy": "2024-01-11T20:14:51.894213Z", "iopub.status.idle": "2024-01-11T20:14:52.337260Z", "shell.execute_reply": "2024-01-11T20:14:52.336474Z" }, "id": "Cd5tpNrtOrs7" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABeEAAAN+CAYAAACSPMAzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZfrG8e9MekinBUhC771XKSoCIggoICo2rCuuXdey/lDXrmtZXbuiKKKgIIJ0AUV6770kQAoQkpBeZn5/vCSRBUKbmZNyf64r15w59ZkEJN7nPc9rczqdTkRERERERERERERExOXsVhcgIiIiIiIiIiIiIlJeKYQXEREREREREREREXEThfAiIiIiIiIiIiIiIm6iEF5ERERERERERERExE0UwouIiIiIiIiIiIiIuIlCeBERERERERERERERN1EILyIiIiIiIiIiIiLiJgrhRURERERERERERETcRCG8iIiIiIiIiIiIiIibKIQXEREREREREREREXEThfAiIiIiIuXM+PHjsdlsrF692upSREREREQqPIXwIiIiIiIiIiIiIiJuohBeRERERERERERERMRNFMKLiIiIiFRA69atY8CAAYSEhBAUFMQVV1zB8uXLT9knLy+P559/noYNG+Lv70/lypXp0aMH8+bNK9onISGB22+/naioKPz8/KhRowbXXnst+/fv9/AnEhEREREpnbytLkBERERERDxry5YtXHbZZYSEhPDEE0/g4+PDxx9/TO/evVm8eDGdO3cGYNy4cbzyyivceeeddOrUibS0NFavXs3atWvp27cvANdddx1btmzhgQceoE6dOiQlJTFv3jxiY2OpU6eOhZ9SRERERKR0sDmdTqfVRYiIiIiIiOuMHz+e22+/nVWrVtGhQ4fTtg8dOpRff/2Vbdu2Ua9ePQDi4+Np3Lgxbdu2ZfHixQC0adOGqKgoZsyYccbrpKSkEB4ezhtvvMFjjz3mvg8kIiIiIlKGqR2NiIiIiEgFUlBQwNy5cxkyZEhRAA9Qo0YNbrzxRpYsWUJaWhoAYWFhbNmyhV27dp3xXAEBAfj6+rJo0SKOHz/ukfpFRERERMoahfAiIiIiIhXIkSNHyMzMpHHjxqdta9q0KQ6Hg7i4OABeeOEFUlJSaNSoES1btuTxxx9n48aNRfv7+fnx2muvMWvWLKpXr07Pnj15/fXXSUhI8NjnEREREREp7RTCi4iIiIjIGfXs2ZM9e/bwxRdf0KJFCz777DPatWvHZ599VrTPQw89xM6dO3nllVfw9/fnn//8J02bNmXdunUWVi4iIiIiUnoohBcRERERqUCqVq1KYGAgO3bsOG3b9u3bsdvtREdHF62LiIjg9ttv57vvviMuLo5WrVoxbty4U46rX78+jz76KHPnzmXz5s3k5uby1ltvufujiIiIiIiUCQrhRUREREQqEC8vL6666ip+/vln9u/fX7Q+MTGRiRMn0qNHD0JCQgA4duzYKccGBQXRoEEDcnJyAMjMzCQ7O/uUferXr09wcHDRPiIiIiIiFZ231QWIiIiIiIh7fPHFF8yePfu09ePGjWPevHn06NGDv/3tb3h7e/Pxxx+Tk5PD66+/XrRfs2bN6N27N+3btyciIoLVq1czZcoUxo4dC8DOnTu54oorGDFiBM2aNcPb25upU6eSmJjIDTfc4LHPKSIiIiJSmtmcTqfT6iJERERERMR1xo8fz+23337W7XFxcRw5coSnnnqKP//8E4fDQefOnXnppZfo2rVr0X4vvfQS06dPZ+fOneTk5FC7dm1Gjx7N448/jo+PD8eOHeP//u//WLBgAXFxcXh7e9OkSRMeffRRhg8f7omPKiIiIiJS6imEFxERERERERERERFxE/WEFxERERERERERERFxE4XwIiIiIiIiIiIiIiJuohBeRERERERERERERMRNLA3hP/zwQ1q1akVISAghISF07dqVWbNmlXjM5MmTadKkCf7+/rRs2ZJff/3VQ9WKiIiIiIiIiIiIiFwYS0P4qKgoXn31VdasWcPq1au5/PLLufbaa9myZcsZ91+6dCmjRo1izJgxrFu3jiFDhjBkyBA2b97s4cpFRERERERERERERM7N5nQ6nVYX8VcRERG88cYbjBkz5rRtI0eOJCMjgxkzZhSt69KlC23atOGjjz7yZJkiIiIiIiIiIiIiIufkbXUBhQoKCpg8eTIZGRl07dr1jPssW7aMRx555JR1/fr1Y9q0aWc9b05ODjk5OUXvHQ4HycnJVK5cGZvN5pLaRURERERERERERKTicDqdnDhxgpo1a2K3l9xwxvIQftOmTXTt2pXs7GyCgoKYOnUqzZo1O+O+CQkJVK9e/ZR11atXJyEh4aznf+WVV3j++eddWrOIiIiIiIiIiIiISFxcHFFRUSXuY3kI37hxY9avX09qaipTpkzh1ltvZfHixWcN4i/UU089dcro+dTUVGJiYoiLiyMkJMQl1xARERERERERERGRiiMtLY3o6GiCg4PPua/lIbyvry8NGjQAoH379qxatYp3332Xjz/++LR9IyMjSUxMPGVdYmIikZGRZz2/n58ffn5+p60PCQlRCC8iIiIiIiIiIiIiF+18Wp6X3KzGAg6H45Qe7n/VtWtXFixYcMq6efPmnbWHvIiIiIiIiIiIiIiIlSwdCf/UU08xYMAAYmJiOHHiBBMnTmTRokXMmTMHgFtuuYVatWrxyiuvAPDggw/Sq1cv3nrrLQYOHMikSZNYvXo1n3zyiZUfQ0RERERERERERETkjCwN4ZOSkrjllluIj48nNDSUVq1aMWfOHPr27QtAbGzsKTPLduvWjYkTJ/Lss8/y9NNP07BhQ6ZNm0aLFi2s+ggiIiIiIiIiIiIiImdlczqdTquL8KS0tDRCQ0NJTU1VT3gRERERERERERFxmYKCAvLy8qwuQ1zAx8cHLy+vs26/kJzZ8olZRURERERERERERMoyp9NJQkICKSkpVpciLhQWFkZkZOR5Tb5aEoXwIiIiIiIiIiIiIpegMICvVq0agYGBlxzairWcTieZmZkkJSUBUKNGjUs6n0J4ERERERERERERkYtUUFBQFMBXrlzZ6nLERQICAgAzr2m1atVKbE1zLvZz7yIiIiIiIiIiIiIiZ1LYAz4wMNDiSsTVCn+ml9rnXyG8iIiIiIiIiIiIyCVSC5ryx1U/U4XwIiIiIiIiIiIiIiJuohBeRERERERERERERFyiTp06vPPOO1aXUaoohBcRERERERERERGpYGw2W4lf48aNu6jzrlq1irvvvtu1xZZx3lYXICIiIiIiIiIiIiKeFR8fX7T8/fff89xzz7Fjx46idUFBQUXLTqeTgoICvL3PHSdXrVrVtYWWAxoJLyIiIiIiIiIiIlLBREZGFn2FhoZis9mK3m/fvp3g4GBmzZpF+/bt8fPzY8mSJezZs4drr72W6tWrExQURMeOHZk/f/4p5/3fdjQ2m43PPvuMoUOHEhgYSMOGDZk+fbqHP621FMKLiIiIiIiIiIiIuJDT6SQzN9+SL6fT6bLP8Y9//INXX32Vbdu20apVK9LT07n66qtZsGAB69ato3///gwaNIjY2NgSz/P8888zYsQINm7cyNVXX81NN91EcnKyy+os7dSORkRERERERERERMSFsvIKaPbcHEuuvfWFfgT6uib2feGFF+jbt2/R+4iICFq3bl30/sUXX2Tq1KlMnz6dsWPHnvU8t912G6NGjQLg5Zdf5r333mPlypX079/fJXWWdhoJLyIiIiIiIiIiIiKn6dChwynv09PTeeyxx2jatClhYWEEBQWxbdu2c46Eb9WqVdFypUqVCAkJISkpyS01l0YaCS8iIiIiIiIiIiLiQgE+Xmx9oZ9l13aVSpUqnfL+scceY968ebz55ps0aNCAgIAArr/+enJzc0s8j4+PzynvbTYbDofDZXWWdgrhRURERERERERERFzIZrO5rCVMafLnn39y2223MXToUMCMjN+/f7+1RZUBakcjIiIiIiIiIiIiIufUsGFDfvrpJ9avX8+GDRu48cYbK9SI9oulEF5EREREREREREREzunf//434eHhdOvWjUGDBtGvXz/atWtndVmlns3pdDqtLsKT0tLSCA0NJTU1lZCQEKvLERERERERERERkTIsOzubffv2UbduXfz9/a0uR1yopJ/theTMGgkvIiIiIiIiIiIiIuImCuFFRERERERERERERNxEIbyIiIiIiIiIiIiIiJsohBcRERERERERERERcROF8CIiIiIiIiIiIiIibqIQXkRERERERERERETETRTCi4iIiIiIiIiIiIi4iUJ4ERERERERERERERE3UQgvIiIiIiIiIiIiIuImCuFFRERERERERERE5IL17t2bhx56qOh9nTp1eOedd0o8xmazMW3atEu+tqvO4wkK4UVEREREREREREQqmEGDBtG/f/8zbvvjjz+w2Wxs3Ljxgs65atUq7r77bleUV2TcuHG0adPmtPXx8fEMGDDApddyF4XwIhWd0wlL3oZ3W8OehVZXIyIiIiIiIiIiHjBmzBjmzZvHwYMHT9v25Zdf0qFDB1q1anVB56xatSqBgYGuKrFEkZGR+Pn5eeRal0ohvEhF5nTCnGdg/jg4vh9++TvkZVtdlYiIiIiIiIiIuNk111xD1apVGT9+/Cnr09PTmTx5MkOGDGHUqFHUqlWLwMBAWrZsyXfffVfiOf+3Hc2uXbvo2bMn/v7+NGvWjHnz5p12zJNPPkmjRo0IDAykXr16/POf/yQvLw+A8ePH8/zzz7NhwwZsNhs2m62o3v9tR7Np0yYuv/xyAgICqFy5MnfffTfp6elF22+77TaGDBnCm2++SY0aNahcuTL3339/0bXcydvtVxCR0qkgH355ENZ/Y977hUBKLKz4EHo8bG1tIiIiIiIiIiJlmdMJeZnWXNsnEGy2c+7m7e3NLbfcwvjx43nmmWewnTxm8uTJFBQUcPPNNzN58mSefPJJQkJCmDlzJqNHj6Z+/fp06tTpnOd3OBwMGzaM6tWrs2LFClJTU0/pH18oODiY8ePHU7NmTTZt2sRdd91FcHAwTzzxBCNHjmTz5s3Mnj2b+fPnAxAaGnraOTIyMujXrx9du3Zl1apVJCUlceeddzJ27NhTbjIsXLiQGjVqsHDhQnbv3s3IkSNp06YNd9111zk/z6VQCC9SEeXnwI9jYNsvYLPDtR+Y16n3wO9vQZubIKia1VWKiIiIiIiIiJRNeZnwck1rrv30YfCtdF673nHHHbzxxhssXryY3r17A6YVzXXXXUft2rV57LHHivZ94IEHmDNnDj/88MN5hfDz589n+/btzJkzh5o1zffi5ZdfPq2P+7PPPlu0XKdOHR577DEmTZrEE088QUBAAEFBQXh7exMZGXnWa02cOJHs7Gy+/vprKlUyn/39999n0KBBvPbaa1SvXh2A8PBw3n//fby8vGjSpAkDBw5kwYIFbg/h1Y5GpKLJSYeJI0wA7+ULIyZAmxuh5Qio2RZyT8Bv/7K6ShERERERERERcbMmTZrQrVs3vvjiCwB2797NH3/8wZgxYygoKODFF1+kZcuWREREEBQUxJw5c4iNjT2vc2/bto3o6OiiAB6ga9eup+33/fff0717dyIjIwkKCuLZZ58972v89VqtW7cuCuABunfvjsPhYMeOHUXrmjdvjpeXV9H7GjVqkJSUdEHXuhgaCS9SkWQmw7fD4dBq8KkEoyZCvd5mm90O/V+FL/rB2q+h010Q2dLSckVEREREREREyiSfQDMi3aprX4AxY8bwwAMP8MEHH/Dll19Sv359evXqxWuvvca7777LO++8Q8uWLalUqRIPPfQQubm5Lit12bJl3HTTTTz//PP069eP0NBQJk2axFtvveWya/yVj4/PKe9tNhsOh8Mt1/orjYQXqShOJMD4gSaADwiHW38pDuALxXSB5kMBJ8x+yvQvk3OLXQ6LXwdHgdWViIiIiIiIiEhpYLOZljBWfJ1HP/i/GjFiBHa7nYkTJ/L1119zxx13YLPZ+PPPP7n22mu5+eabad26NfXq1WPnzp3nfd6mTZsSFxdHfHx80brly5efss/SpUupXbs2zzzzDB06dKBhw4YcOHDglH18fX0pKCg5c2natCkbNmwgIyOjaN2ff/6J3W6ncePG512zuyiEF6kIkveZEe5JWyEoEm77FaLan3nfK58HLz/Y/wfs+NWzdZZFTif8eCcsfAm2/mx1NSIiIiIiIiIiFyQoKIiRI0fy1FNPER8fz2233QZAw4YNmTdvHkuXLmXbtm3cc889JCYmnvd5r7zySho1asStt97Khg0b+OOPP3jmmWdO2adhw4bExsYyadIk9uzZw3vvvcfUqVNP2adOnTrs27eP9evXc/ToUXJyck671k033YS/vz+33normzdvZuHChTzwwAOMHj26qB+8lRTCV1CpWXlWlyCekrgVvugPx/dDeB24YzZUb3b2/cNrQ9f7zfLcZyHfdY8YlUuH1kBqnFk+sNTaWkRERERERERELsKYMWM4fvw4/fr1K+rh/uyzz9KuXTv69etH7969iYyMZMiQIed9TrvdztSpU8nKyqJTp07ceeedvPTSS6fsM3jwYB5++GHGjh1LmzZtWLp0Kf/85z9P2ee6666jf//+9OnTh6pVq/Ldd9+ddq3AwEDmzJlDcnIyHTt25Prrr+eKK67g/fffv/BvhhvYnM6K1W8iLS2N0NBQUlNTCQkJsbocj3M6nUxefZAXZ2zly9s70qFOhNUliTsdXA3fXAfZKVCtGYyeCsFnn0m6SM4JeK8dZCTBVS9Bt7FuL7XMmvMMLDv5H/TqLeC+P62tR0REREREREQ8Kjs7m3379lG3bl38/f2tLkdcqKSf7YXkzBoJXwEt3XOUEzn5PDhpPamZGhFfbu1dBF8NNgF8VEe4beb5BfAAfsFwxcm7jotfh4xj7qqybHM6T21Bk7gFslIsK0dEREREREREREofhfAVjM1m419DW1KnciCHUrJ48seNVLCHISqGbb/At8MhL8NMvjp6GgRe4FMPbW6CyJaQkwqLXnZHlWVfYSsan0oQFgM4IW6F1VWJiIiIiIiIiEgpohC+Agry8+Y/o9rh42Vj9pYEvlkRa3VJ4krrJ8IPt0BBLjQdBDf+AH5BF34euxf0e8Usr/4Skra5ts7yYMvJiUIaD4C6Pc2y+sKLiIiIiIiIiMhfKISvoFpGhfJk/yYAvDhjK9vi0yyuSFxi+Ycw7T5wOqDNzXD9ePD2u/jz1b0MmlwDzgLT+1yK/bUVTfMhENPNLMcus6wkEREREREREREpfRTCV2BjetSlT+Oq5OY7eOC7dWTm5ltdklwspxMWvgyz/2Hedx0L174PXt6Xfu6+L4DdB/YsgF3zLv185UVhKxrfIGhwJdTuenL9WsjLsrY2EREREREREfE4tXwuf1z1M1UIX4HZbDbeHN6aasF+7E5K54VftlpdklwMhwNmPQmLXzPvL38WrvoX2GyuOX/l+tDlXrM852ko0GS+QHErmkb9wCcAwutCUCQ48kxALyIiIiIiIiIVgo+PDwCZmZkWVyKuVvgzLfwZXywXDJOVMiftMCRthfpXUDnIj3duaMNNn61g0qo4ujeowqDWNa2uUM5XQR78PBY2TjLvr34TOt3l+uv0fNz0mj+60/SH73y3669RljidsHW6WW42xLzabGY0/JapcGAZ1OlhWXkiIiIiIiIi4jleXl6EhYWRlJQEQGBgIDZXDY4USzidTjIzM0lKSiIsLAwvL69LOp9C+Ipo+X9h6X+gWjPo9gDdWlzP2D4N+M9vu3n6p020jgojpnKg1VXKueRlw5TbYcevYPOCoR9BqxHuuZZ/KPR5BmY+AotehlbDISDcPdcqCw6thdRY8KkEDfsWr4/pZkL4WE3OKiIiIiIiIlKRREZGAhQF8VI+hIWFFf1sL4VC+IrIO8CEh0lbzSSeC17goY53syG6Bb/H5fHApHVMubcrPl7qVlRq5ZyA70bB/j/A2x+Gj4fGA9x7zXa3wspP4cg2WPw69H/FvdcrzbaebEXTuL9pRVOosC983EooyHdNT34RERERERERKfVsNhs1atSgWrVq5OWplW954OPjc8kj4AvZnBVsxoC0tDRCQ0NJTU0lJCTE6nKsk3Uc1oyH5R9BegIADp9KfJvXi49z+jGwZ2eeGtDU2hrlzDKOwbfXweF14BsMN07yXOuTPb/BhKFg94a/rYAqDTxz3dLE6YR3WpmR8CMmQLPBxdscBfBaXchJhbsXQc22lpUpIiIiIiIiIiLucyE5s4Y6V1QB4dDjYXhoEwz5EKo1w56XwWh+ZZHvwzRf+jBrlv1mdZXyv9IOw/irTQAfEAG3Tvds7/H6l0PDfuDIh7nPeu66pcnZWtEA2L0gprNZPrDM87WJiIiIiIiIiEipY2kI/8orr9CxY0eCg4OpVq0aQ4YMYceOHSUeM378eGw22ylf/v7+Hqq4HPL2hTY3wn1L4eYfoV5vvG0OBnsto/2coeR+PgB2zgGHw+pK5dge+LwfHNkOIbXgjtlQq53n67jqX2Yk/M5ZsGeh569vtcJWNI36ndqKplDMyZY06gsvIiIiIiIiIiJYHMIvXryY+++/n+XLlzNv3jzy8vK46qqryMjIKPG4kJAQ4uPji74OHDjgoYrLMZsNGlwJt/xMzpjFLPDpTZ7TC9+4pTBxBPy3C6z92kwGKp6XsBm+6G9GYEfUMwF81cbW1FK1EXS80yzPeca0YKkonE7Y8rNZbj7kzPvU7mZeDywz+4uIiIiIiIiISIVmaQg/e/ZsbrvtNpo3b07r1q0ZP348sbGxrFmzpsTjbDYbkZGRRV/Vq1f3UMUVg190G2rf9Q1XOd7j4/yB5HpVgqM7YPoD8E5L+P0NyEy2usyKI3aFaUGTkQTVW8IdcyAsxtqaej0J/mGQtMXcnKkoDv+lFU2Dvmfep2Zb8PKDzKNwbLdn6xMRERERERERkVKnVPWET01NBSAiIqLE/dLT06lduzbR0dFce+21bNmy5az75uTkkJaWdsqXnFuDasHcO7gnr+TfRMes9zjY8RnTAiUjCX77F7zdHH59HJL3Wl1q+bZ7PkwYAtmpEN0FbpsBQdWsrgoCI6D3U2b5t3+Z+iqCLdPMa6N+4Bt45n28/SCqg1k+oJY0IiIiIiIiIiIVXakJ4R0OBw899BDdu3enRYsWZ92vcePGfPHFF/z888988803OBwOunXrxsGDB8+4/yuvvEJoaGjRV3R0tLs+QrkzokM0g1rXJNURwA2bO5B692oY9ilEtoS8TFj5CfynPfxwCxxcbXW55UfaYVj2AXx6OXxznfleN7gSRv8EAWFWV1es4xio3NCM+P7jLaurcT+nsziEP1srmkJFfeE1OauIiIiIiIiISEVnczpLR9Pi++67j1mzZrFkyRKioqLO+7i8vDyaNm3KqFGjePHFF0/bnpOTQ05OTtH7tLQ0oqOjSU1NJSQkxCW1l2dp2XkMfO8P4pKzGNiyBu/f2BYbwL7FsPQ/ZqR2oZiu0O0BaDQA7KXm/k7ZkHEUtk6DzT+dHD198q+lzQ6tb4Rr3jaT6JY2O+eYOQO8fOH+lRBR1+qK3OfQGnNjxCcQHt9z9pHwYP5efHMdhNWGhzZ6rkYREREREREREfGItLQ0QkNDzytn9vZQTSUaO3YsM2bM4Pfff7+gAB7Ax8eHtm3bsnv3mXsv+/n54efn54oyK6QQfx/+M6od13+4lJmb4umxqgqjOsVAvd7mK3ErLHsfNv5gRv3GLoOI+tBtLLQeBT4BVn+E0isrBbbPhM0/wt5F4PzLBKcxXaHFddDs2tLRfuZsGl4F9S+HPb/BvOdg5ASrK3Kf82lFUyiqk7mBknLAPNkQUtPt5YmIiIiIiIiISOlk6XBlp9PJ2LFjmTp1Kr/99ht16174KNqCggI2bdpEjRo13FChALSJDuPxfo0BGDd9CzsTTxRvrN4MhvwXHtoEPR4G/1BI3gMzHjZ94xe+YkZ5i5GbAZumwHc3wpsN4ee/wZ4FJoCv0Qb6vggPb4E7ZkOnu0p3AA9gs8FVL5nAedt02L/E6orcw+k0TyoANB967v39Q0zbJlBfeBERERERERGRCs7SEP7+++/nm2++YeLEiQQHB5OQkEBCQgJZWVlF+9xyyy089dRTRe9feOEF5s6dy969e1m7di0333wzBw4c4M4777TiI1QYd11Wj56NqpKT72DsxLVk5xWcukNIDbhynAmQ+78KoTGQeQwWvwofdILkfZbUXSrk55gR71PugDcawI9jYMdMKMiFqk2gz7PwwFq4ZzF0/zuEXtjTIJar3gza326WZz8FjoKS9y+LDq+DlFjTiqZB3/M7JqabeVVfeBERERERERGRCs3SEP7DDz8kNTWV3r17U6NGjaKv77//vmif2NhY4uPji94fP36cu+66i6ZNm3L11VeTlpbG0qVLadasmRUfocKw2228Nbw1VYL82JmYzgsztp55R79g6HIf/H0dXP/lyYk7j8HkWyEv27NFW6kgz/QFn/Y3eKMhTLrRtJ3Jy4TwOnDZY3DfMrh/BfR6HCrXt7riS9PnafALhYSNsOE7q6txvS1Tzev5tKIpVPvk5KwHFMKLiIiIiIiIiFRkpWZiVk+5kIb5crolu44y+osVOJ3w35vacXXLc7QBSomDj3tCVjK0uxUGv+eZQq3gcJhRz5unwNafzc2HQsE1ocUw81WznWnjUt78+R7M+ycEVTcj+/2CrK7INZxOeLeVGQk//CtoPuT8jktPMi2HsMGT+yAg3J1VioiIiIiIiIiIB11IzmzpSHgpe3o0rMK9vcyo7Sd/3EhccmbJB4RFw3WfATZY+xWsn+j+Ij3J6YSDa2D20/B2Mxh/Naz+wgTwgVWg451w+yzTpqffS1CrffkM4AE63wPhdSE9Ef58x+pqXOevrWgaXnX+xwVVg8oNACfErnBbeSIiIiIiIiIiUrophJcL9kjfRrSNCeNEdj4PTlpHXoGj5AMaXAG9T/b1n/EwJGxyf5Hu5HRCwmaY/zy82xo+uxyWfwAn4k1LlrY3w+ip8OgOGPgW1O4G9grwV83bD6560Swv/Y95CqI8KJyQteFV59+KplDMyZY0sZqcVURERERERESkoqoAyaC4mo+XnfduaEuwvzdrY1N4e97Ocx/U83FocCXkZ8MPt0B2qvsLdQdHgZlY9aPusOTfkHLAjJBucT3c8B08vguu/QDqXw5e3lZX63lNroE6l5mf8/xxVldz6ZxO2DLNLDcfeuHH1z45Oav6wouIiIiIiIiIVFgK4eWiREcE8uqwVgB8uHgPS3YdLfkAux2GfQqh0ZC810xYWtamI3A6YeYjZoJVu7cJnK//Eh7fDdd/Dk2uNqPBKzKbDfq9DNhMb/y4lVZXdGkOryu+0XIhrWgKxXQpPk9elmtrExERERERERGRMkEhvFy0ga1qMKpTDE4nPPzDeo6cyCn5gMAIM7Gl3Qe2zzAtS8qSRa/CmvFgs5vw/YZvzUSrvpWsrqx0qdHKtOQBmP2UmbC2rLqUVjRgeuQHRYIjDw6udmlpIiIiIiIiIiJSNiiEl0vy3DXNaFQ9iCMncnh08gYcjnOMbo9qDwNeNcvzx8H+P91eo0us+hwWn6x74FvQbLC19ZR2l/8TfIPg0GozIr4sOqUVzZCLO4fNBrUL+8KrJY2IiIiIiIiISEWkEF4uSYCvF+/f2A4/bzu/7zzCZ0v2nvugDmOg5QhwFsCU2+FEovsLvRRbf4aZj5rl3k9BhzusracsCK4Olz1iluePg9xMS8u5KPHrTSsa74CLa0VTKKawL7wmZxURERERERERqYgUwssla1Q9mP8b1ByA12fvYH1cSskH2Gww6B2o2hTSE2HKHVCQ7/Y6L8q+P+DHOwEntL8dej1pdUVlR5f7ITQG0g6VvdZDUDwKvlG/S2s5VDgS/uCq0vvnXERERERERERE3EYhvLjEqE7RDGxZg3yHk79/t4607LySD/CtBCMnmJYlB5bAby94ptALkbAJJt0IBbnQdJBpQ2OzWV1V2eHjD32fN8t/vgNphy0t54I4nbBlqlm+2FY0hao1A79QyE2HhI2XXJqIiIiIiIiIiJQtCuHFJWw2Gy8Pa0mtsABikzN5ZupmnM5z9Iev0hCufd8s//kubJ/p/kLP1/H98M11kJMGtbvDsM/A7mV1VWVP86EQ3QXyMmFBKbzRcjauakUD5s9NTGezrL7wIiIiIiIiIiIVjkJ4cZnQAB/eG9UWL7uNXzYcZvLqg+c+qPlQ6PI3szz1Pkg+j57y7pZxFCYMM61yqjWHGyaaUd1y4Ww26P+yWd7wHRxaa20956uoFc1Vl9aKplDMyZY06gsvIiIiIiIiIlLhKIQXl2pfO5xH+jYC4Lnpm9mddOLcB/V9AaI7Q04qfH8L5GW5ucoS5KTDt8MheY/pZ37zjxAQZl095UGt9tDqBrM8+ynT6qU0czph6zSz3GyIa85Z++TkrLHLS//nFxERERERERERl1IILy53X6/69GhQhew8B2MnriM7r6DkA7x8YPh4CKwCiZvg18c8Uudp8nPhh1vg8FoIiIDRP0FIDWtqKW+ueA58AiFueXHAXVrFbzDtiLwDzKSsrlCzLXj5QeZROLrLNecUEREREREREZEyQSG8uJzdbuPfI1pTuZIv2xNO8NzPm88dxIfUhOs/B5sd1n0Da7/2TLGFHA6YPhb2LDBh8U2TTc96cY3QWtD9QbM87znIy7a2npIU3iRwVSsaAG8/iOpglmPVkkZEREREREREpCJRCC9uUS3En7dGtAbgh9UH6f7qb7y3YBfHM3LPflC93tDnabM88zEzItlT5v0TNn4Pdm8YMaE4MBXX6fZ3CKkFKbGw/L9WV3NmTidsmWqWXdWKplBRX3hNzioiIiIiIiIiUpEohBe36d24Gm+PbE2tsACOZeTy73k76fbqb/zfz5uJS84880E9HoWG/aAgx7SGyUpxf6F/vgfL3jfL134ADa90/zUrIt9AuOL/zPIfb0FKnLX1nIk7WtEUqn0yhNdIeBERERERERGRCkUhvLjV0LZRLH68N+/e0IZmNULIyivgq2UH6PXGQsZOXMumg6mnHmC3w7CPISzGhKHT7jOtYtxlwyQzCh6g74vQ+gb3XUug5XCI7gK56TD9gdI3SWlhK5qGfV3XiqZQVCfTbiklFlIPufbcIiIiIiIiIiJSaimEF7fz9rJzbZtazPx7D74Z05nLGlbB4YQZG+MZ9P4Sbvx0OYt2JOEsDGQDwmHE1+DlCzt+haXvuqewXfPh5/vNctex0P3v7rmOFLPbzdMG3gGwdyGs+dLqioo5nbBlmlluPsT15/cPgciWZjlWLWlERERERERERCoKhfDiMTabjR4NqzBhTGdm/r0HQ9rUxMtuY+meY9z25SoGvPsHP609SF6BA2q2hQGvmwMXvAD7/nBtMQdXww+jwZEPLUeYUfDiGVUawJUn29LMedY88VAaJGyE4/vMDYKGLm5FUyimm3lVCC8iIiIiIiIiUmEohBdLNK8Zyjs3tOX3J/owpkddAn292J5wgkd+2EDP1xfy6e97OdH8Jmg9CpwOmHI7pMW75uJHd8G3wyEvE+pfbkZm2/VXwaM63QO1u0NeBvw81r0th85X4YSsDfuCX5B7rlFbk7OKiIiIiIiIiFQ0Sh7FUrXCAvjnNc1Y9o8reLxfY6oG+xGfms1Lv26j22sLedPnXvKqNIWMIyaIL8i7tAumxcOEYZCVDDXbwYgJ4O3rmg8j56+wLY1PJdj/B6z61Np63N2KplDMyRA+aStkHXffdUREREREREREpNRQCC+lQmigD/f3acCSJ/vw2nUtqVe1Eiey83l/ySEGxN9Flr2SaeExf9zFXyQrBb65DlJjIaI+3DTZfSOe5dwi6kLf583yvP+DY3usq6WoFY2/+1rRAARVg8oNACfErnDfdcR6m6bAT3dDzgmrKxERERERERERiymEl1LFz9uLkR1jmP9wLz69pQMd64SzuyCSh7LvMjsse59diyYWT+J6vvKyYdKNkLQFgqrD6J+gUhXXfwC5MB3GQN1ekJ8F0/4GjgJr6igcBe/OVjSFCkfDxy5173XEOkd2wLT7YOP3sHaC1dWIiIiIiIiIiMUUwkupZLfb6NusOpPv7caP93WDpoP4NH8gAJELH+H+935g1qZ4ChznEcY7CuDHMXDgT/ALgZt/hPA67v0Acn7sdrj2ffANhrjlsPxDz9fgdMLWaWa5+VD3X6/2yclZ1Re+fHI4YPrfoSDXvN802dp6RERERERERMRyCuGl1GtfO5yPR3fgirEfsK9Sa4JtWTxw7EUe/nYZV7y1iG+WHyA77ywjqJ1OmPkobJ8BXr5ww0SIbOnZDyAlC4uBfi+Z5QUvwJGdnr1+wkZI3uv+VjSFCkfCH14HeVnuv5541povzQ0ln0pg84LDa61ttSQiIiIiIiIillMIL2VGvchw6t77A47AqjS1x/G6/3j2H8vg2Wmb6f7qb7w7fxdH03NOPWjxayYUwwbDPoW6l1lSu5xDu1ugwZVQkAPT7oWCfM9d25OtaMA8hRFcAxx5cHC1+68nnpN22MxvAHDFc1Cvt1nWaHgRERERERGRCk0hvJQtwZHYh38JNjuDWczEttuICg/gWEYub8/fSZeXF3DPhNX8tj2RgpWfwaJXzHED34TmQywtXUpgs8Gg98AvFA6tgaXveea6f21F02yIZ65ps/2lL7xa0pQbTifMfAxyT0CtDtDpLmg1wmzb+IPZLiIiIiIiIiIVkkJ4KXvqXmZGmQLddr7OopvCeG9UW9pEh5HvcDJnSyLff/1f+PVxAFI6PgQd77SwYDkvobVgwKtmedErkLjV/ddM2FTciqZRf/dfr1BRX3hNzlpubJsOO2aC3RsGvwd2L2gyELwDIHmPaUsjIiIiIiIiIhWSQngpm7o/BI2vhoJcvKfcyuCG/ky7vztzHurJ862P857vB3jhYGJ+H9r80ZGRHy/jp7UHyco9S+94KR1aj4JGA8ykltPuhYI8916vcBR8gys904qmUOFI+IOrPNt6R9wjK6Xoph89Hobqzc2yXzA0HmCWN02xpDQRERERERERsZ5CeCmbbDYY8qHpr50SC1PvBYeDxhzg1v1P4UceCTWuYF7dJ7HZbKzYl8wjP2yg00vzeXrqJjbEpeBUe4jSx2aDQe+AfxjEb4Alb7vvWk4nbJlqlpsPdd91zqRaM/APhdx0MzFsaZSbCdt+gT0LIWkbZCarpcrZzHsO0hOhckO47LFTtxW2pNn8Izh0E1BERERERESkIvK2ugCRixYQBiMmwOd9YdccmP0P2Poz5KRBTFciR3/Llz4BHE7J4sc1B/lhTRxxyVlMXBHLxBWxNIkMZkSHaIa2rUV4JV+rP40UCo6EgW/Bj2PMxLqN+kONVq6/jlWtaADsdojuYv7cxi6DWu08e/3zMftJWPv1qeu8/CC4OgRFnuH15FdQJARWNp+xIti/BNZ+ZZYHvQs+/qdur38FBISbkH7fYqh/uedrFBERERERERFL2ZwVbDhwWloaoaGhpKamEhISYnU54gprJ8D0scXvqzWD2381wddfOBxOlu89xg+r45i1OYGcfAcAvl52+jarzoiO0fRoUAUvu82T1cuZOJ3ww2gzErt6C7hrIXi7+EbJghfgj7egyTVww7euPff5WPI2zB9n3fVLknoQ3m0NjnwzujsjCbJTz/94uzdUqnZqUB9cA4KqnwzqT75WqgZeZfhecF42fNQdju2G9reZEP5MfnkI1nwJbW6CIf/1ZIUiIiIiIiIi4iYXkjOX4fRD5KR2oyFuOaz7BkKj4eYfTwvgAex2G90aVKFbgyo8n5nH9A2H+H51HJsPpTFzUzwzN8VTM9Sf6ztEM7x9FNERgRZ8GAFMW5qBb5uJSxM3w++vw+XPuu78TidsmWaWPd2KplDMyclZY5ebemyl6ObP0vdNAF/nMrhthlmXl2VGc59IhPQE83oi/uS6hOLXzKPm2BOHzVeJbFCpqgnp6/aCK8eBl4+7P53r/P6GCeCDIuHK58++X6sRJoTfOt085eET4LkaRURERERERMRyGgkv5UN+Lmz/BWp3NyNsL8CWw6lMXn2QqesOkZplJgK12aB7/SoM7xBFv+aR+Pt4uaNqOZct02DyrWDzgjvnu65tS8Im+KiHaa/yxB4zgaan5efCq9GQnw33r4KqjTxfw5lkHIN3WkBeJtz8EzS44sKOL8iD9KSTwXzCqQF94euJBDO63uk49dh2t8Cg90rXDYmzSdgMn/QyNxxGTIBmg8++r8MB77SEtIMw/CtoPsRjZYqIiIiIiIiIe2gkvFQ83r7Q4rqLOrR5zVCaDw7lHwOaMHdrIj+simPJ7qNFX6EBPgxpU5MRHaNpXjPUxYVLiZoPgW3XmUktp90Hdy8+vef2xSickLVhX2sCeDB/Zmt1gANLIHZp6QnhV35sAvgarS+uf7mXD4TWMl8lcRRAxlET1B9cDb8+ZnrQh9eByx69qNI9xlEAv/zdBPBNrik5gAfTH7/l9fDnO7BpskJ4ERERERERkQqmgsycJ3Ju/j5eDG5dk2/u7MwfT/ThwSsaUissgNSsPL5adoCB7y1h4Ht/8PWy/aRm5lldbsVx9Zumd/iR7bDolUs/X2loRVOodlfzemCZtXUUyjkBKz42yz0ece+IdLuXaUNTozV0HAMDXjfrF7wAm6a477qusPITOLQG/ELMn8/z0WqEed01F7KOu682ERERERERESl1FMKLnEF0RCAP923E70/04es7OjGwVQ18vexsOZzGcz9vocsrC/j33B1k5ORbXWr5FxgBg94xy0vfg7hVl3a+xM2QvMe0omnU75LLuyQxJ0P42KXW1lFozXjIToHKDaDpIM9eu9Nd0PXkBMvT7oP9f3r2+ucrJRYWvGiW+z4PITXO77jqzc2k0QW5pje8iIiIiIiIiFQYCuFFSuBlt9GzUVU+uLEdK56+gv8b1IwmkcFk5RXw3m+76f3mIr5fFUuBo0JNreB5TQZCqxtMD/Fp95pJQi9W4Sh4K1vRFIruBDa7CXZTD1lbS34OLPvALHd/0IxU97S+L5rwvyAXJt0IR3d5voaSOJ0w4xHIyzAT67a77cKObzncvG6a7PLSRERERERERKT0Uggvcp7CK/lye/e6zHrwMj68qR21Kwdy5EQOT/64iYHv/cEfu45YXWL5NuBVCK4Bx3YXj0S+UE4nbJ1mlpsNcVVlF88vGCJbmeVYi1vSbJgEJ+IhuKa54WEFux2GfmJ65WenwLfXQ3op+nu1+UfYPQ+8fGHQu6beC9HyevO6f4n1N11ERERERERExGMUwotcIJvNxoCWNZj3cC+eHdiU0AAftiecYPTnK7nty5XsTDxhdYnlU0A4DP6PWV7+XzhwES1cEreYEN/LDxr3d219F6t2N/N6MZ/HVRwF8Oe7ZrnbWDNprFV8A2HUJDNB6/H98N0NkJtpXT2FMpNh1pNmuefjFzeRbljMyRZEThPoi4iIiIiIiEiFoBBe5CL5etu587J6LH68N3d0r4uPl41FO47Q/53feXrqJo6cyLG6xPKnYV9oOxpwwrS/QW7GhR2/ZWrxeaxuRVMopot5tXIk/NafTZ/8gHBod6t1dRQKqgo3TQH/MDi0Gn66y9wosNKcZyDzKFRtCt0fuvjzFLWk+cElZYmIiIiIiIhI6acQXuQShQX68tygZsx7uBf9m0ficMLEFbH0eXMRHyzcTXaexeFhedPvJQiJguP7YP648z+utLWiKVQ4OWvSVjPa2tOcTljytlnudA/4BXm+hjOp0hBGfWdav2yfAfOes66WPb/BhomAzTyNcSlPCjQfCnZvSNgESdtdVqKIiIiIiIiIlF4K4UVcpE6VSnw0uj0/3NOV1lGhpOfk88acHVz+5iKmrjuIQ5O3uoZ/KFz7vlle+QnsXXx+x5XGVjQAQdWgcgOzHLfC89ffswASNoJPIHS+x/PXL0ntbjDkQ7O87H1Y8Ynna8jNhF8eMsud7obojpd2vsAIaHClWdYErSIiIiIiIiIVgkJ4ERfrVDeCqX/rzrs3tKFWWACHU7N5+PsNDPnvn6zYe8zq8sqH+n2gwx1m+eexkHMeffgLR8E3uLL0tKIpVDga3oq+8H+cHAXf/jYTEJc2La+HK06Ogp/9JOyY5dnrL3oZUg6Ypy+u+KdrzlnUkmayeRJBRERERERERMo1hfAibmC327i2TS0WPNqLJ/o3JsjPm40HUxn5yXLu/no1+45eYC9zOV3fF81El6mxMPfZkvd1OmHLNLPcfIi7K7twhZOzerovfNxKOLAE7D7Qdaxnr30hejwC7W4BpwOm3AGH1nrmuofXw7IPzPLAt1x386bxAPCpZML9g6tcc04RERERERERKbUUwou4kb+PF3/r3YBFj/fm5i4xeNltzN2aSN9/L2bc9C0cz8i1usSyyy8Irv2vWV4zHnYvOPu+iVvg2C7TiqZRKWpFU6hwJPzhdab9iacU9oJvPRJCa3nuuhfKZoOB/4b6V0BeJkwcCSmx7r1mQT5Mf8AE/82HubaFkW8laHqNWd6oCVpFREREREREyjuF8CIeUCXIj38NacnsBy/j8ibVyHc4Gb90P73eWMhnf+wlJ1+Tt16UupeZyUTBBKZZKWfe76+taPxDPFHZhQmvA8E1wJEPh1Z75pqJW2HHr4ANuj/kmWteCi8fGD4eqreAjCT4dvjZf96usPwD0yvfPwwGvOb687ccYV63/AQFea4/v4iIiIiIiIiUGgrhRTyoYfVgvritI9+M6UyTyGDSsvP518xt9P337/y6KR6n+kNfuCv/DyLqQdohmPPM6dtLeysaMCO9i/rCe6glzZ/vmNemg6BKQ89c81L5h8CNP5gbFke2w/c3Q74bniZJ3gsLXzHL/V4yk+e6Wr3eEFgFMo/B3kWuP7+IiIiIiIiIlBoK4UUs0KNhFWb+/TJev64V1YL9iE3O5G/frmX4R8tYF3vc6vLKFt9KMORDwAbrv4Eds0/dnrS1dLeiKVTUF94Dk7MePwCbppjlyx5x//VcKbSWCeJ9g2D/H/DL3107uanTCb88BPlZULcntLnJdef+Ky9vaDHMLKsljYiIiIiIiEi5phBexCJedhsjOkaz8LHePHhFQwJ8vFh94DhD/7uUB75bR1yyB3uDl3UxXaDr/Wb5lwchM7l4W+Eo+AZXlM5WNIUKR8LHrTL9yN1p6X/AWQD1+kDNtu69ljvUaAXDvwKbF2z4Dha96rpzb/gO9i0Gb3+45h3zlIK7FLak2T4TcjVZs4iIiIiIiEh5ZWkI/8orr9CxY0eCg4OpVq0aQ4YMYceOHec8bvLkyTRp0gR/f39atmzJr7/+6oFqRdyjkp83D/dtxMLHejO8fRQ2G/yy4TBX/Hsxr8zaRlq2+kWfl8ufhSqNID0BZj1p1jmdsGWqWW4+1Lrazke1ZuAfCnkZkLDBfddJT4J1E8xyj4fddx13a3glDHzLLC9+FdZPvPRzph+BOU+b5d5PQeX6l37OkkR1MPMB5GXAjlnuvZaIiIiIiIiIWMbSEH7x4sXcf//9LF++nHnz5pGXl8dVV11FRsbZRwQuXbqUUaNGMWbMGNatW8eQIUMYMmQImzdv9mDlIq4XGerPG8NbM+OBHnRvUJncfAcfL95Lr9c1eet58QkwbWlsdtj0A2z7pey0ogGw2yG6i1l2Z1/4FR9BfjbUam/arZRlHW4vvpEw/YFL760++x+QdRwiW0LXsZdc3jnZbNByuFlWSxoRERERERGRcsvmLEUzQR45coRq1aqxePFievY8czg0cuRIMjIymDFjRtG6Ll260KZNGz766KNzXiMtLY3Q0FBSU1MJCSnFrSmkQnM6nSzckcTLv25nd1I6ALXCAnikbyOGtK2Fl92NLTLKuvnjYMnbUKkqNB0Mqz+HxlfDqO+sruzclrxt6m9yDdzwrevPn50Gb7eAnFQY+S00vcb11/A0hwN+HANbfgK/UBgzB6o1vfDz7JwLE4ebmzh3/ea5Nj1HdsAHncDuDY/uhEqVPXNdEREREREREbkkF5Izl6qe8KmpqQBEREScdZ9ly5Zx5ZVXnrKuX79+LFvmxpGjIh5ms9m4vEl1Zj94Ga9d15LIEH8OpWTx6OQNXP3uH/y2PZFSdP+sdOn9FFRtChlHTAAP0GyIpSWdt5jCyVmXuXay0UKrPzcBfJXG5sZEeWC3mycgYrqaz/btcDiRcGHnyDkBM06OqO/yN8/2ya/aGCJbgSMftk713HVFRERERERExGNKTQjvcDh46KGH6N69Oy1atDjrfgkJCVSvXv2UddWrVych4cyhS05ODmlpaad8iZQV3l52RnaMYdHjvXlqQBNC/L3ZkXiCO8avZuQny1kbe9zqEksfbz8Y+qGZtBPAyxcal/JWNIVqtjUTgmYeg6M7XXvuvCxY9l+z3OMhE16XFz7+cMNEiKgPqXEwcQTkpJ//8b/9C9IOQlht6PO0++o8m1YnJ2jdONnz1xYRERERERERtys1Kcz999/P5s2bmTRpkkvP+8orrxAaGlr0FR0d7dLzi3iCv48X9/Sqzx9PXM49verh521n5b5khv13KXd/vZrdSSesLrF0qdkWej5mlhsPMBOelgXevlCrg1k+sNS1514/ETKSIDS6uA95eRIYATdNhsDKEL/BtKhxnMc8CgdXw4qPzfKgd8C3klvLPKMW1wE2iFsOxw94/voiIiIiIiIi4lalIoQfO3YsM2bMYOHChURFRZW4b2RkJImJiaesS0xMJDIy8oz7P/XUU6SmphZ9xcXFuaxuEU8LDfThqQFNWfR4b0Z2iMZug7lbE7nq7d95cspG4lOzrC6x9Oj1D7j5R7jmHasruTC1u5rXWBe22CrIhz/fNcvdHgAvH9eduzSpXB9GTTIT8e6cDbOeLLmtT36umdAVJ7QeBfUv91ippwipCXV6mOXNU6ypQURERERERETcxtIQ3ul0MnbsWKZOncpvv/1G3bp1z3lM165dWbBgwSnr5s2bR9euXc+4v5+fHyEhIad8iZR1NUIDeO36Vsx9uCdXNauOwwnfr46j9xuLeGXWNlIz86wu0Xp2OzS40oyQLktiTv637IALQ/gtUyHlgBkl3na0685bGkV3gmGfADZY9Sks++Ds+y59F5K2mu/LVS95rMQz+mtLGs33ICIiIiIiIlKuWBrC33///XzzzTdMnDiR4OBgEhISSEhIICureDTvLbfcwlNPPVX0/sEHH2T27Nm89dZbbN++nXHjxrF69WrGjh1rxUcQsVSDasF8cksHfryvG53qRJCT7+DjxXu57PXf+GjxHrLzzqMdh5Qu0Z3AZofUWEg9eOnnczphydtmufN94Bt46ecs7ZoPgateNMtzn4WtP5++z9FdsPh1s9z/NahU2WPlnVHTwWb+giPbIHGLtbWIiIiIiIiIiEtZGsJ/+OGHpKam0rt3b2rUqFH09f333xftExsbS3x8fNH7bt26MXHiRD755BNat27NlClTmDZtWomTuYqUd+1rh/P9PV344rYONK4eTFp2Pq/O2k7vNxbx/apY8gscVpco58svGCJbmeXY5Zd+vl1zIWkL+AZBpzsv/XxlRdex0PFOwAk/3Q1xq4q3ORzwy4NQkGuelmh5vWVlFgkIg4ZXmeVNP1haioiIiIiIiIi4ls3prFjPvaelpREaGkpqaqpa00i5VOBwMnXdId6et5NDKeapkgbVgni8X2OualYdm81maX3pOfn4e9vx9ioVU1KUTrOfguX/hQ5j4Jp/X9q5Pu9nJvzs9vfi0eEVRUE+TLoRds0xLWfunA8R9WD1lzDjIfCpBPcvh7AYqys1tkyDybdCSBQ8tMm0VBIRERERERGRUulCcmaF8CLlVHZeAd8sP8D7C3eTcrJHfLuYMP4xoCmd6rq3T7rT6eTIiRx2J6Wz+0g6e06+7k5KJzEth7BAH168tgWDWtd0ax1l1tbp8MNoqNYM/nYJveEPLIUvB5g2Jw9uhJAarquxrMhJh/FXQ/wGqNwARkyAL/pDTir0ewW6/s3qCovlZcObDSEnDW77Fep0t7oiERERERERETkLhfAlUAgvFU1adh4fL97D50v2kZ1n2tJc0aQaT/RvQuPI4Es6d36Bg7jjWSZsT0pnz5Hi1xPZ+ec8/to2NXlhcAtCA30uqY5yJ/0IvNnALD+x7+Inl/12uGlH0/42GPSuy8orc04kwKdXQNpBc0OiIBdqtjMj4+1eVld3qmn3w/pv9DMTERERERERKeUUwpdAIbxUVIlp2by7YBffr4qjwOHEZoNhbaN4uG9DosJLnqwzMzefvUcyikL2wqB9/9FMcs/Sb95ug5iIQBpUC6J+1SDqVwuiQbUgakcE8tWyA3ywcDcFDic1Qv15c3hrujeo4o6PXXb9pwMc2wWjJkHjARd+fMIm+KiHmeR17GqoXN/1NZYliVvhi35mlLndG+5eDJGlcC6RPQthwhDwD4PHdoG3r9UViYiIiIiIiMgZKIQvgUJ4qej2HEnnrbk7+HVTAgC+XnZu6Vqb+/s0wOF0ngzYM05pJVPYW/5M/H3s1KsSVBS2NygM2ysH4u9z9lHGa2OP88j369l/LBOAMT3q8ni/xiUeU6FMfwDWfn3xvdyn3AGbf4Tmw2D4l66vryzauxhmPgqd7obOd1tdzZk5CuDfzSA9AW74DppcbXVFIiIiIiIiInIGCuFLoBBexFgfl8Krs7axfG8yYEauO0r4r0FEJV/qV6106sj2qkHUCgvAbr+4yV4zc/N5aeY2vl0RC0DDakG8PbINLWqFXtT5ypX138G0eyGqo2mbciGS98J/2oPTAff8ATVauadGcY/ZT8PyD6D5UBg+3upqREREREREROQMFMKXQCG8SDGn08ninUd4bfYOtsWnARAVHnDaqPb6VYOIqOS+thi/bU/kiSmbOJqeg4+XjYf7NuKenvXxushwv1w4vh/ebW1ap/wjDnxLbhl0il8egjVfQoO+cPMUd1Uo7nJoLXzaB7z94fHd4HdpczeIiIiIiIiIiOsphC+BQniR0zkcTg6lZFElyI8AX2vawRxLz+HpqZuYsyURgA61w/n3iDbEVL6A8Lk8cTpNW5ITh+HWX6Buz/M77kQCvNPSTD56+yyo3c29dYrrOZ3wfgc4thuGfARtRlldkYiIiIiIiIj8jwvJme0eqklESjG73UZ0RKBlATxA5SA/Prq5PW9c34ogP29WHzjOgHd/5/tVsVSwe4WGzQa1u5rlA8vO/7hlH5gAProzxHR1T23iXjYbtBxhljdNtrYWEREREREREblkCuFFpNSw2WwM7xDNrAcvo1OdCDJyC3jyx03cPWENR9NzrC7P8wpD9Nil57d/1nFY/YVZ7vGICXOlbGp5vXnduxDSk6ytRUREREREREQuiUJ4ESl1oiMC+e7uLvxjQBN8vGzM25pI/3d+Z/7WRKtL86zCVjJxq6Ag/9z7r/oMctOhWjNo1M+9tYl7Va4PtU5Orrv5J6urEREREREREZFLoBBeREolL7uNe3vV5+f7e9C4ejBH03O58+vVPPXTRjJyziOQLg+qNgX/MMjLgIQNJe+bmwnLPzTLPR7WKPjyoOVw86qWNCIiIiIiIiJlmkJ4ESnVmtUM4eex3bm7Zz1sNvhuZRwD3v2DNQeSrS7N/ex2iOlils/VF37dN5B5DMJqQ/Nh7q9N3K/5MLDZ4dBqOLbH6mpERERERERE5CIphBeRUs/fx4unr27KxDu7UCssgNjkTIZ/tIw35+wgN99hdXnuVdQXvoQQviAPlr5nlrv/Hby83V+XuF9wdajX2yxvmmJpKSIiIiIiIiJy8RTCi0iZ0bV+ZWY9dBnD2tbC4YT3F+5m2Id/sjvphNWluU9hX/jYZeB0nnmfTVMgNQ4qVYM2N3uuNnG/v7akOdvPX0RERERERERKNYXwIlKmhPj78O+RbfjgxnaEBfqw+VAaA99bwpd/7sPhKIchZY024B1gWs0c3Xn6docDlrxtlrvcBz7+Hi1P3KzJNeDtD8d2Qfx6q6sRERERERERkYugEF5EyqSBrWow56Ge9GxUlZx8B8//spVbvlhJfGqW1aW5lrcvRHUwyweWnr595yw4ugP8QqDjGM/WJu7nHwKNB5hltaQRERERERERKZMUwotImVU9xJ+vbu/Ii9c2x9/HzpLdR+n39u/8suGw1aW51tn6wjud8Me/zXLHO8E/1LN1iWcUtaSZAo4Ca2sRERERERERkQum2ftEpEyz2WyM7lqHbg2q8Mj369lwMJUHvlvH/G2JvDC4BaGBPiUe73Q6ycl3kJlbQFZeAVm5+WTmFvzlfcFp205Zf/K9t91G6+gw2tcOp3VUGAG+Xq77kDFdzOuB/wnh9/8Bh1abdiVd7nPd9aR0adAX/MMgPcH8zAsnaxURERERERGRMkEhvIiUC/WrBjHlvm68/9tu3l+4m5/XH2bF3mTa1wkn+2RgnnkySP/fcN1V813O3ZoIgLfdRrOaIbSLCad9bfNVMyzg4k8c3QlsdkiNhdSDEBpl1hf2gm97MwRVu8TqpdTy9oVm18Lar8wErQrhRURERERERMoUm9PpqvipbEhLSyM0NJTU1FRCQkKsLkdE3GBd7HEe+WED+45mXNBxvl52Any9CPT1IsDXiwCfwmVvAnzsBPp6/8/64uUT2fmsi01h9YFkEtNyTjt3jVB/2tUOp/3JYL5ZzRB8vC6gI9jHvczEnMM+g1bD4fA6+KQ32Lzg7+sgvPYFfVYpY/YvgfEDTe//x3ZpAl4RERERERERi11IzqyR8CJS7rSNCWfm33vw8/rDZOcVEODjdTJc9ybQ1wv/k8F54MkQvTBM976QUPwsnE4nh1OzWXPgOGsPHGfNgeNsjU8jPjWbmRvjmbkxHgB/Hzutokz7mvYx4bSrHU5EJd+zn7h2NxPCxy41IXzhKPiW1yuArwhiukFILUg7BLvmmJHxIiIiIiIiIlImKIQXkXIp0NebUZ1iPH5dm81GrbAAaoUFMLh1TQAyc/PZEJfK2lgTyq85cJzUrDxW7ktm5b7komPrValkRsuf/GpQNQi73WY2xnSF5f81feGP7oKt08367g95+BOKJex2aHEdLH3PtKRRCC8iIiIiIiJSZqgdjYiIhzkcTvYezSgaKb8m9ji7k9JP2y/E35u2J9vXdKleQKcpnc2GJtfA9hnQaADcOMnD1YtlEjbBRz3Ay9e0pAkIs7oiERERERERkQrrQnJmhfAiIqVASmYu62JTikbKr49LISuv4JR9Fvg+Sn17fNH7gtvn4lW7s6dLFas4nfDfrnBkGwx+H9qNtroiERERERERkQpLPeFFRMqYsEBf+jSpRp8m1QDIL3CwPeFEUSi/5sBxVqY3KQrhVziacP+ENPo228hVzSLp1qAyft5eVn4EcTebzcwB8NuLsOkHhfAiIiIiIiIiZYRGwouIlBEpy74mbM4DANzH08zKblG0rZKvF72bVKNf80j6NK5KsL+PVWWKOx0/AO+2AmzwyFYIqWl1RSIiIiIiIiIVkkbCi4iUQ2EtB8Dv4RDZivdueowV+44zZ0sCc7cmkJiWw8yN8czcGI+Pl41u9avQr3kkVzarRrVgf6tLF1cJrw3RXSBuOWz+CbqNtboiERERERERETkHjYQXESlL8nNNWxKv4pHuDoeTjYdSmbMlgTlbEth7JKNom80G7WLC6de8Olc1i6ROlUpWVC2utPJT+PUxqNEa7vnd6mpEREREREREKiRNzFoChfAiUt7tTko/OUI+kQ1xKadsa1w9mKuaV6df80ia1wzBZrNZU6RcvIxj8FYjcOTD/augaiOrKxIRERERERGpcBTCl0AhvIhUJPGpWczbmsjcLYks33uMfEfxf/JrhQXQt5kJ5DvWCcfby25hpXJBvh0Ou+ZCzyfg8mesrkZERERERESkwlEIXwKF8CJSUaVm5vHbjkTmbE5k8c4jZOUVFG0LD/ThiqYmkL+sYRX8fbw8VlfhP0MalX8BNk6Gn+6E8Drw9/Wm75CIiIiIiIiIeIxC+BIohBcRgey8Av7YdZQ5WxJYsC2R45l5RdsCfLzo1agqvRtXxd/Hi9wCB7n55iuvcLnAUbQ+75TtTnL+Z7+/bj/tmAJzTO3KgTzZvwkDWkQqjD8fuRnwRgPIy4Qx8yG6o9UViYiIiIiIiFQoCuFLoBBeRORU+QUOVu0/zpwtCczbmsihlCzLaulWvzLjBjenUfVgy2ooM368EzZNhk73wNWvW12NiIiIiIiISIWiEL4ECuFFRM7O6XSy5XAac7cksPrAcew2G77edny8bPh6e+HjZcPP246vlx0fLzu+3vaT2+34ef9lnZcdn5Ovvt42fL28/nKeU/e122x8uyKWjxbvITffgZfdxi1da/PQlY0IDfCx+ltSeu2cCxOHQ6Wq8Mh28PK2uqJLlxILO2bBztngGwTXvg/+oVZXJSIiIiIiInIahfAlUAgvIlI6xSVn8uKMrczdmghA5Uq+PNG/McPbR2O3q0XNaQry4K3GkHkMbv4RGlxpdUUXzumE+PUmeN/+KyRuOnV7rfZw808QEGZFdSIiIiIiIiJnpRC+BArhRURKt993HuH5X7aw50gGAK2jQhk3uDltY8ItrqwUmvkorPoManeH7g9CVEcIjLC6qpLl58D+P0zwvmMWpB0q3mazQ3QXqN8Hlv8Xso5DzXYweqqCeBERERERESlVFMKXQCG8iEjpl5vv4Kul+3l3wS7Sc/IBuL59FE/2b0LVYD+LqytF4lbB5/8zAr5yQ4juZAL56M5QtQnY7dbUVyjrOOyaB9tnwu4FkHuieJtPINS/HJoMhIb9oFJlsz5hE3w1GLKSoUYbuGUaBOhGjIiIiIiIiJQOCuFLoBBeRKTsSDqRzWuzdvDj2oMABPt58+CVDbm1Wx18vCwOlkuLLVNNwB23Eo7tOn27X4hp6xLdCaI6QVQHz4wqP77/ZJuZmXBgKTgLircFVYfGA6Dx1VC3F/j4n/kcCZvh68Gm5U6N1jB6Wukf6S8iIiIiIiIVgkL4EiiEFxEpe9YcOM646VvYdCgVgAbVghg3qDk9GlaxuLJSJjMZDq4ygfzBlXBwDeRlnL5f1SYnR8p3MqPlKze89NHyDgfEryvu75605dTt1ZqdDN4HQs2253+9xK3w1SDIPAqRLeGW6QriRURERERExHIK4UugEF5EpGxyOJz8sDqO1+fsIDkjF4D+zSN5ZmBToiMCLa6ulCrIh6StJpCPWwVxK+D4vtP38w81oXxUJxPM12oP/ufxb2R+Duz73Yx23zkbTsQXb7N5Qe1uZrR74/4QUe/iP0fSNhPEZxyB6i3hlp+L29aIiIiIiIiIWEAhfAkUwouIlG2pmXm8PX8nE5YfoMDhxM/bzr296nNf7/r4+3hZXV7pl37EjJY/uNKMmD+0FvKz/mcnmxm5Hn2yr3xUJ6hcH2w2M9p+11wTvO/5DXLTiw/zDYIGV5jR7g37unbE+pEdMP4ayEiCas3h1ulQSU9CiIiIiIiIiDUUwpdAIbyISPmwPSGNcdO3sHxvMgC1wgJ4dmBT+reIxGazWVxdGVKQB4mbTSBf2MYmJfb0/QIiILw2xG88tb97cI3iNjN1LwNvN06ce2QnfHUNpCeamwS3TIegqu67noiIiIiIiMhZKIQvgUJ4EZHyw+l08uumBF6auZXDqdkAdG9QmXGDmtOwerDF1ZVhJxKKA/m4VXB4HRTkFG+v3uJkm5kBpr+7J296HN1lRsSnJ5je9rf+AkHVPHd9ERERERERETwQwsfFxWGz2YiKigJg5cqVTJw4kWbNmnH33XdfXNUeohBeRKT8yczN56NFe/jo973k5jvwstu4tWsdHurbkBB/H6vLK/vycyFhIyTvMz3jw2tbW8+xPSaIP3EYqjQ2QXxwdWtrEhERERERkQrF7SH8ZZddxt13383o0aNJSEigcePGNG/enF27dvHAAw/w3HPPXXTx7qYQXkSk/Io9lsmLM7cyb2siAFWCfHmifxOubxeF3a4WNeXKsT1msta0Q1Cl0ckgPtLqqkRERERERKSCuJCc2X4xF9i8eTOdOnUC4IcffqBFixYsXbqUb7/9lvHjx1/MKUVERC5ZTOVAPr2lA1/d0Yl6VStxND2XJ6ZsZOiHS1kfl2J1eeJKlevDbTMgJAqO7oTxAyEt3uqqRERERERERE5zUSF8Xl4efn5m4rX58+czePBgAJo0aUJ8vP4HWERErNWrUVVmP9iTp69uQiVfLzbEpTDkgz95YsoGdiScoIJNh1J+RdQzQXxoNBzbfTKIP2x1VSIiIiIiIiKnuKh2NJ07d6ZPnz4MHDiQq666iuXLl9O6dWuWL1/O9ddfz8GDB91Rq0uoHY2ISMWSlJbNq7O389PaQ0Xrqgb70a1+Zbo3qEL3BlWoFRZgYYVyyY4fMD3iU2NNMH/rDAitZXVVIiIiIiIiUo65vSf8okWLGDp0KGlpadx666188cUXADz99NNs376dn3766eIq9wCF8CIiFdOaA8f5z2+7WL73GNl5jlO21a1SiW71K9OjQRW61q9MWKCvRVXKRUuJNSPhU2IhvO7JEfJRVlclIiIiIiIi5ZTbQ3iAgoIC0tLSCA8PL1q3f/9+AgMDqVat2sWc0iMUwouIVGw5+QWsPZDC0j1H+XP3UTYcTKXAUfxPoc0GzWuGmFHy9avQsU4EAb5eFlYs5y0lDr66Bo7vh7DaJogPi7G6KhERERERESmH3B7CZ2Vl4XQ6CQwMBODAgQNMnTqVpk2b0q9fv4ur2kMUwouIyF+dyM5jxd5kluw+ytI9R9mZmH7Kdl8vO+1qh9G9fhW6N6xCq1qheHtd1JQq4gmpB01rmuP7TAB/6wwIr211VSIiIiIiIlLOuD2Ev+qqqxg2bBj33nsvKSkpNGnSBB8fH44ePcq///1v7rvvvvM6z++//84bb7zBmjVriI+PZ+rUqQwZMuSs+y9atIg+ffqctj4+Pp7IyMjzuqZCeBERKUlSWjZL9xzjz91mpPzh1OxTtgf7edO5XmW6NzDtaxpUC8Jms1lUrZxR6iEzIj55L4TGwG2/QHgdq6sSERERERGRcuRCcmbvi7nA2rVrefvttwGYMmUK1atXZ926dfz4448899xz5x3CZ2Rk0Lp1a+644w6GDRt23tffsWPHKR+sNLe/ERGRsqVaiD9D2tZiSNtaOJ1O9h/LNKPkdx9l6Z5jpGblMX9bIvO3JZr9g/3o3qBK0USvNTXJq/VCa8FtM+GrQXBstxkZf+svEFHX6spERERERESkArqoED4zM5Pg4GAA5s6dy7Bhw7Db7XTp0oUDBw6c93kGDBjAgAEDLvj61apVIyws7IKPExERuRA2m426VSpRt0olRnepTYHDydbDaUWta1buSybpRA5T1x1i6rpDANSrUoluDSrTqW5l6lQOJCo8kPBAH42W97SQmqYVzVeD4NguM2nrbTMgop7VlYmIiIiIiEgFc1EhfIMGDZg2bRpDhw5lzpw5PPzwwwAkJSV5pMVLmzZtyMnJoUWLFowbN47u3bufdd+cnBxycnKK3qelpbm9PhERKZ+87DZaRoXSMiqU+3rXJzuvgLWxx0+2rjnGxoMp7D2awd6jGXyzPLbouEBfL6LCA4gKDzz5apZrhZnliEq+CundIaSGCd6/GgRHd8KXJ4P4yvWtrkxEREREREQqkIvqCT9lyhRuvPFGCgoKuPzyy5k3bx4Ar7zyCr///juzZs268EJstnP2hN+xYweLFi2iQ4cO5OTk8NlnnzFhwgRWrFhBu3btznjMuHHjeP75509br57wIiLiaqlZeazYa/rJbzqUysHjWSSdyDnncQE+XqeE8/8b2Cukv0QnEuHrwXBkOwTXMCPkqzSwuioREREREREpw9w+MStAQkIC8fHxtG7dGrvdDsDKlSsJCQmhSZMmF3y+8wnhz6RXr17ExMQwYcKEM24/00j46OhohfAiIuIR2XkFxKdmc/B4JgePZ/3l1Swnpl1YSF/rDEF9ZYX055aeBF8NhiPbICjSjIiv0tDqqkRERERERKSMcvvErACRkZFERkZy8OBBAKKioujUqdPFnu6iderUiSVLlpx1u5+fH35+fh6sSEREpJi/j1dRX/kzOZ+QPiuvgF1J6exKSj/jOSIq+dI2Ooy2MWG0iQ6nVXQoIf4+7vxYZU9QNTM569fXQtIW0yP+1l+gamOrKxMREREREZFy7qJCeIfDwb/+9S/eeust0tNNIBAcHMyjjz7KM888UzQy3hPWr19PjRo1PHY9ERERVzpXSJ+TX0B8Svb/BPTFQX3iiWySM3JZsD2JBduTALDZoEHVINrGhNE2Jpw20WE0qh6Ml72Cj5YPqgq3TjdBfOJmGH+NCeKrXfgTfCIiIiIiIiLn66JC+GeeeYbPP/+cV199tWhS1CVLljBu3Diys7N56aWXzus86enp7N69u+j9vn37WL9+PREREcTExPDUU09x6NAhvv76awDeeecd6tatS/PmzcnOzuazzz7jt99+Y+7cuRfzMUREREo9P28v6lSpRJ0SRtJvjU9jfWwK6+JSWB93nLjkrKKR8z+sNk+sVfL1omVUaFEo3zYmjGrB/p78KKVDpSpwS2EQvwm+ugau+wzq9jJ3L0RERERERERc7KJ6wtesWZOPPvqIwYMHn7L+559/5m9/+xuHDh06r/MsWrSIPn36nLb+1ltvZfz48dx2223s37+fRYsWAfD666/zySefcOjQIQIDA2nVqhXPPffcGc9xNhfSq0dERKQsOnIih/UnA/l1sSlsPJhKek7+afvVCgugTUxYUSub5jVD8ffxsqBiC2QmmyA+YaN5H1EP2t4MrW+EED1hJyIiIiIiIiVz+8Ss/v7+bNy4kUaNGp2yfseOHbRp04asrKwLPaXHKIQXEZGKpsDhZHdSOutij7M+LoV1sSnsTDrB//4G4ONlo1mNkJMj5cNpGxNGTERg+Z30NTMZFjwPm6ZA7sl++zY7NLwK2o6GRv3AS731RURERERE5HRuD+E7d+5M586dee+9905Z/8ADD7By5UpWrFhxoaf0GIXwIiIicCI7j00HU1l3MpRfH3eco+m5p+0XUcmXNtFhtIkOo11MOJ3rReDj5bm5XzwiJx22ToO1EyBuefH6StWg9Q3Q7hao0tCy8kRERERERKT0cXsIv3jxYgYOHEhMTAxdu3YFYNmyZcTFxfHrr79y2WWXXVzlHqAQXkRE5HROp5ODx7NOhvJmxPyWQ2nkFjhO2a9KkB/Xt49iZMfos04mW6Yd2QnrJsCG7yDjSPH66C7QbjQ0GwJ+QZaVJyIiIiIiIqWD20N4gMOHD/PBBx+wfft2AJo2bcrdd9/Nv/71Lz755JOLOaVHKIQXERE5Pzn5BWyLP8G6WNNbfumeo6eMlu9cN4JRnWLo3yKy/PWSL8iDnXNMIL9rLjhP3ozwDYIWw6DtLRDVQZO5ioiIiIiIVFAeCeHPZMOGDbRr146CggJXndLlFMKLiIhcnLwCBwu2JTFpVSyLdx4p6ikf4u/N0La1uKFTDE1rlMN/W9PiYcNEWPcNJO8tXl+1iekd3/oGqFTFuvqsciIBYpdBjTYQUdfqakRERERERDxKIXwJFMKLiIhcusMpWUxefZAfVsdxKKV4QvbWUaGM7BjD4DY1CfLztrBCN3A64cCfpnf81p8h/+TntvtA4wGmd3z9y8Fezp4K+F8Zx+DPd2Dlp8Xfg8iW0PRaaDoIqjWxtDwRERERERFPUAhfAoXwIiIirlPgcLJk91G+XxXLvK2J5BWYXysCfb24plUNRnaMoV1MGLby1rYlOxU2TTHtag6vK14fUgva3Ahtb4bwOpaV5xZZKbDsA1j+X8hNN+vC60BKbHG7HoAqjUwY33Qw1Gitlj0iIiIiIlIuKYQvgUJ4ERER9ziansPUtYf4blUse49kFK1vVD2IkR1jGNa2FuGVfC2s0E0SNpswfuP3kHW8eH3dnqZ3fNNB4ONvXX2XKicdVnwES98zNx8AIlvB5f+Ehn0hMxl2zIRtv8CeheDIKz42LMaE8U0HQ1RHsNut+QwVWU46zH4SwurAZY+U/yc1REREREQ8xG0h/LBhw0rcnpKSwuLFixXCi4iIVGBOp5PVB44zaWUcMzcdJjvPjJL29bLTr0UkN3SMpmu9ytjt5WyEdF62CaPXToC9i4CTv2L5h0LLEdButAmvy8rI8LwsWPU5LHkbMo+adVWbQJ9nzI2FM32O7FTYORe2/Qy75he3qwEIioSm15hAvnZ38Cpn7YpKI6cTptwOW6aa940HwnWfgm8la+sSERERESkH3BbC33777ee135dffnm+p/Q4hfAiIiKek5qVx/QNh/l+VSybD6UVrY+JCGRkx2iubx9F9ZAyPEr8bFJiYd23sP5bSI0rXl+1KbQaDi2Hm1HipVF+Lqz9Cv54C07Em3UR9aD309Bi2PmPpM7NhN3zYdt02DkHcop//gREQJOrTSBfrzd4+7n8YwimfdCcp8HuDTYvKMiBmm1h1PcQXN3q6kREREREyjTL2tGUBQrhRURErLH5UCqTVsXy87rDnMjJB8Bug8ubVGNkxxj6NK6Kt1c5a1fiKDCj4tdNgO2/mhC0UO3uJoxvPgQCwq2qsFhBPmz4Dha/DqmxZl1oNPR6ElqPurSR6/k5sHexCeS3z4Ss5OJtfiHQqJ8ZXd/gSo3SdpUDS2H8NeAsgAFvQI1W8N0o870PjYabJkO1plZXKSIiIiJSZimEL4FCeBEREWtl5Rbw66Z4Jq2KZdX+4h7q1YL9GN4hipEdYoipHGhhhW6SlWJC6I0/wP4lFLWr8fKFhldBqxHQsJ/n+8c7HLDlJ1j4MiTvMeuCIqHnY9DuFtePUi/IhwN/mh7y236B9ITibd4B0OAKaHatCeb9Q1177YriRAJ83BPSE82NnmGfmvZBx/bAt8PNz9kvBEZ8DfX7WF2tiIiIiEiZpBC+BArhRURESo/dSen8sDqOH9cc5FhGbtH6yxpWYUyPuvRqVBVbWemhfiFSD8HmKSaQT9xcvN4vFJoNhlYjzUh5d05k6nTC9hkmfE/aatYFVoYeD0OHMeDrgRshDgccWg1bfzY3KFJii7fZfUyrmmaDofHVUKmK++spDwryzAj4uOVQrRncOf/Upwsyk2HSTRC71LSpueYdM1+BiIiIiIhcEIXwJVAILyIiUvrk5juYvy2RSavi+GPXEQp/O2lcPZg7L6vL4DY18fM+z17kZU3iFhPGb5oMaYeK14fUgpbXm0C+enPXXc/pNL3af/sXxK836/xCofsD0Ple8At23bUutK6EjbB1uhkhf3RH8TabHRr0hX4vQZWG1tRXVsx+Cpb/14x0v3sRVK5/+j75OfDz/ebPHMBlj0KfZ91700dEREREpJxRCF8ChfAiIiKlW1xyJuOX7mfSylgycgsAqBrsx23d6nBz59qEBvpYXOH5czqdrNyXzJQ1B9lzJJ1G1YNpXjOE5rVCaRoZQoDvX24sOBxmdPLG72HLz5CTWrytWnPTrqbl9RAadfEF7fvdhO9xK8x73yDoch90vb909KX/qyM7zOj4rdNNOA+mdU+Ph6HHI55v21MWbJoCP44xyzdMhCYDz76v0wkLX4Lf3zDvW1wH1/5X31cRERERkfOkEL4ECuFFRETKhtSsPCatjOXLP/eTkJYNQKCvFyM6RHNH97qlum/8weOZ/LjmED+uPUhscuYZ97HboH7VIFrUCjXBfM1QmtcKIcTfB/KyYddcE8jvmgsFha16bFCnhwnkmw6GgLDzKyhuJfz2ognhAbz9odNd0P2hstHm5egumP0PM4IfIKIeDHwL6l9ubV2lSdI2+PRyyMs0Nymu/L/zO27dN/DLg+DIh5iuMPJbqFTZvbWKiIiIiJQDCuFLoBBeRESkbMnNdzBj42E++X0v2xNOACbAHtCiBndeVpe2MaVjBHdWbgGzt8QzefVBlu45VrS+kq8X17SqSZf6EexJymDz4VQ2H0rjaHrOGc9Tu3IgLWqG0qxmCC1qhdIiwkHlA7NMy5oDfxbv6OVnJi9tNRIa9j3zBKqH15vRzrvmmvd2H+hwu2k/Ehzpwk/vAU6n6R0/+x9wIt6sa3E99HsZgqtbW5vVstPg0z5wbLfpo3/zT2C/gPZNexfB97eYpy8i6sFNU87cxkZERERERIoohC+BQngREZGyyel08ufuY3zyx15+33mkaH3HOuHcdVk9rmxaHbvds5O4Op1O1hw4zpQ1B5mxMZ70nPyibd3qV+b69lH0bxFJoK/3accmpWUXBfJbTr4eSsk643UiQ/xpUSuELhGZ9MpdTJ3DM/A59pee6f6h0HwotBxhRjMf3WEmXN023Wy3eUHbm6Dn4xAW49Lvgcdlp5kbCys/AafD9LO/8jlof/uFBc/lhdMJ399sJtkNiYJ7Fl/c0w1J2+Hb4ZAaCwERpp1N7a6ur1dEREREpJxQCF8ChfAiIiJl37b4ND77Yx/TNxwir8D8KlOvSiXu6FGX69tH4e/j3jD2cEoWU9cdYsqag+w7mlG0PjoigOvbRTOsXS2iIy68Xc7xjFy2xqex+VAqmw+bcH7f0QxO/23NSefAeG6ptJye2YsJziu+KUFQJKQnAk7AZlrX9Hqy/I1sPrwOZjxsXgFqtYdr3oYara2ty9OWvAPz/8/0y799NkS1v/hznUiE726Aw2vN+YZ8aOYhEBERERGR0yiEL4FCeBERkfIjMS2b8Uv38+3yA6Rlm1HoEZV8Gd2lNqO71qZK0BlatFyk7LwC5mxJYMqagyzZfbQoGA/09eLqljW4vn0UnepEuHw0fnpOPtvi09hyMpjffCiV3Unp5DtMAXYcdLZvY6h9CQO8VhJsM6PpsxsNwv/KZ6BaU5fWU6o4CmDV57DgBcg9ATY7dL4P+jwFfsFWV+d+exfDhCHmiYBr3oYOd1z6OXMz4ae7zMh6gMv/adoX2Tz7lImIiIiISGmnEL4ECuFFRETKn4ycfH5YHcfnS/Zx8LgJof287QxrF8Wdl9WlftWgizqv0+lkXVwKU9Yc5JcNhzmRXdxupnPdCK5vH8XVLWtQye/0djPulJ1XwM7EE8WtbA6nsS0+DVt+Nl3s24h3RrDXFkO/FpHc3Lk2XepFYCvPIWpaPMx5Grb8ZN4H14QBr0HTQeU3PE49BB/3hMyj0OYmuPYD131WRwHM/Scs/8C8bzvahPxePq45v4iIiIhIOaAQvgQK4UVERMqv/AIHs7ck8Onve9lwMLVo/ZVNq3PXZXXpVPf8wujEtGx+WnuIKWvi2HOkuN1MrbAArmsfxXXtalG7ciW3fIaLlV/gYM+RDNbFHmfymoOsOXC8aFuDakHc3DmGYe2jCPEvx0Hqrvnw66NwfL9536g/DHgdwmtbWpbL5efAl1fDodUQ2RLGzAOfANdfZ+WnMOsJM9K+Xh8Y8ZWZf0BERERERBTCl0QhvIiISPnndDpZuS+ZT//Yx/xtiUXrW0eFclfPevRvHom3l/2UY7LzCpi/LZEpaw7y+84jnOz2gr+PnatbmHYzXepV9vjkrxdr6+E0vllxgGnrDpGZWwBAgI8XQ9rW5KbOtWlRq5yGqXlZ8Mdbple6Iw+8A6D3k9B1bPkZyT3zUVj1mQnE714MEXXdd60ds2HK7ZCXCdWawY0/QFi0+64nIiIiIlJGKIQvgUJ4ERGRimXPkXQ+X7KPKWsOkpvvACAqPIA7utdlRMdo9h5JZ/Lqg0zfcJjUrLyi4zrUDmd4B9NuJrgMjx4/kZ3H1HWH+Gb5AXYmphetbxsTxugutbm6ZQ23T2RriSM7YMYjcGCJeV+1qWmpUrurtXVdqg2TYOo9ZvnGydDoKvdf8/B6mDgS0hMgqDrc+D3UbOv+64qIiJRFDgfsWWAmjQ+MsLoaEXEjhfAlUAgvIiJSMR1Nz2HCsgNMWH6A5IxcAHy8bOQVFP8qVCPUn2HtanF9+2jqVild7WYuVeHTAd+siGX25viizx0e6MOIDtHc2Dmm1LXYuWROpwmt5z4DmcfMurajoe8LZfN/ihM2wWd9IT8Lej0JfZ723LVTD8K3IyBpC/gEwnWfQ5OrPXd9ERGRsmLus7D0P1C5Idw5HwLCrK5IRNxEIXwJFMKLiIhUbFm5Bfy49iCfL9nHvqMZ+Hnb6dc8kuEdouhWvwpeZaTdzKU4ciKHH1bHMXFFLIdSsorW92xUldFdanN5k2rl6/uQmQzz/w/Wfm3eB1aGq/4FrUeVnYlbs1Lgk95wfB80uNK0hbF7+AmG7DSYfCvs+Q2wQf9Xocu9nq1BRESkNNs9H765rvi9Vf9mi4hHKIQvgUJ4ERERAXA4nGxPOEGt8ABCA8puu5lLUeBwsnB7EhOWH+D3XUco/K2wZqg/N3aOYUTHaKoF+1tbpCvFLocZD0PSVvO+dg+45t9QtbG1dZ2LwwGTboSdsyAsxvSBt2okf0Ge6Um/9ivzvvO90O9lhQsiIiLpSfBhN8g4Ao2vhj0LzdNr3R4wN/9FpNxRCF8ChfAiIiIip4s9lsm3Kw/ww6o4jmea3vjedhv9W0Ryc5fadK4bga2sjBovSUEeLPsAFr1q/sfY7gPdH4Sej4FPgNXVndnvb8Bv/wIvPxgzF2q2sbYepxP+fAfmjzPvG18N130GvuWsnZGIiMj5cjjg2+tNL/hqzeCu32DHLDO5OcCQj6DNKGtrFBGXUwhfAoXwIiIiImeXnVfArM3xTFh2gLWxKUXrG1YL4uYutRnarhYhZXii2iLHD8CsJ2DnbPM+vA5c/RY0vNLSsk6ze8HJx9qdMPh9aDfa6oqKbf4Jpt4LBTlQo42ZsDU40uqqREREPG/pf0wveG9/uHsRVGtq1v/2L3Mz3csXbvsVojtaWqaIuJZC+BIohBcRERE5P1sOp/LN8lh+Xn+IzNwCAAJ9vbi2TS1u7hJD85qhFld4iZxO2D7ThPFph8y65kPhyuchvLa1tQGkxMLHPSHrOLS7FQa/Z3VFp4tdAZNGmYlvQ6NN39vqzayuSkRExHMOrYXPrwJHHlzzNnS4o3ibwwHf3ww7ZkJQdRPQh9S0rFQRcS2F8CVQCC8iIiJyYdKy85i69hDfLD/ArqT0ovVtY8K4sml1utSLoFVUGD5edgurvAQ56bDoFVj+ITgLwGaHpoOgy/0Q3cmayVvzsuHL/nB4nRllfscc8Cml/fmT98K3w+HYbvALgQGvQ+sbys6ktyIiIhcr54S5YZ681/zuMGLC6f/+5ZwwIX3SVqjZFm6fVXpb4InIBVEIXwKF8CIiIiIXx+l0snJfMhOWH2D25gTyHcW/Rgb6etG+djhd61emS73KtKwVWvZC+fiNMO852LuweF3NdtD1fmh2LXh5sA3P9L+byU8DwuGe382ErKVZZjJMuglil5r30V1g4JsQ2dLaukRERNxp6r2w4TsIiYJ7/zj7xOnH98MnfSArGVoOh2Gf6ma1SDmgEL4ECuFFRERELl3SiWxmb05g2Z5jLN97rGgy10KVfL3oUCeiKJRvUTME77ISyiduhRUfwobvTb9zgOCa0OkuaH/b2f8H21XWToDpYwEb3PwjNLjCvddzlfxcWPYf+P1NyMs0TxR0vBP6PG1uJojIhTm6Gw6uhObDSu+TMCIV2YbvYerd5t+722ZC7W4l77/vD5gwBBz5cOU46PGwJ6oUETdSCF8ChfAiIiIiruVwONmZdILle46xbO8xVuxLJuV/QvkgP2861gmnS73KdK1fmeY1Q/Gyl/IRYBlHYfUXsPJTyEgy67wDoM0o6HwfVG10wad0Op2s2JfMD6viOJaRy90969G9QZXiHQ6vN4+sF+RAn2eh1+Ou+SyelBJnJqfbOs28D6xiwoY2N4G9jNyIEbFa8l749AozarZKI7j2A9MeS0RKh+S98NFlkJsOvZ+C3v84v+NWfQYzHwVsMOo7aDzArWWKiHsphC+BQngRERER93I4nGxPOMHyvSdD+b3HSMvOP2WfYD9vOtWNKArlm9YIKb2hfH4ObP4Jln8ACZuK1zfoC13/BvX6nPOR8iMncpiy5iA/rI5j39GMU7YNa1uLZwY2pbI9Az7pZSZkbdQfbviubIfWexaaSW+P7jTva3UwLWpqtrW2LpHSLjsVPusLR3f8ZaUNuvwNLn8WfAMtK03+IjcT9iyAbTPMEwu1u8Hl/4TgSKsrE3fLz4Uv+sHhtRDTDW79Bby8z//4GQ+bm/y+QXDnfKjW1H21iohbKYQvgUJ4EREREc8qcDjZFp/G8r2mdc2Kfcmc+J9QPsTfm051K9Olnmlh0zQyBHtpC+WdTjjwJyz7L+z4FTj5a3TVptDlPmg14pSJ1gocTn7fdYRJK2NZsC2pqId+JV8vBrepiZfdxrcrYnE6ISLAzswq71PjyBIIrwt3L4KAMI9/RJfLz4UVH8Hi18xoQWympc8Vz7m/rY+cylEAB1fBztmmJUL1ZtD3BbUKKm0K8mHiCBPuBteE0T/Bn+/Bholme3hdGPwfqHuZtXVWVFnHYecc2PYL7F4A+VmnbvcNgp6PmRsm3n7W1CjuN+85+PNd8A+De5dAWPSFHZ+fCxOGwoElEF4H7lqofxOtsnGy+f2k/W3q0S8XRSF8CRTCi4iIiFirwOFk6+G0opHyK/clk55zaigfGuBD55Mj5bvUq0yTyODSFcon74UVH8O6b06Gy0BgZehwB4cb3cT32/KYvDqOw6nZRYe0jQnjho7RXNOqJpX8zIi59XEpPPXTJvod+YKHvH8iBz8SR/xCTLPOVnwq90k7bEKLTZPN+4BwE8S3uxXsXtbWVp5lpcCe30zwvmueaW3yVyFRMOwTqNPdkvLkDGY9aW5c+QTC7bOgZhuzftc8+OVBSDtk3ne807R58gu2qtKKIy0ets8wX/uXmH7ehcJioMkgiOoAyz6AQ6vN+vA6cNVL0GSggr3yZvcC+GaYWR4xAZoNvrjzZByDT3ubp9/q9oSbf/LsBPBi5rD57UWzfMNE8/dV5AIphC+BQngRERGR0iW/wMGWv4Tyq/Ylk5FbcMo+YYE+dKoTQed6ZrR8qRkpn50KayfgXPERttQ4AHKdXvzi6MoX+VdzKKAhQ9vWYmTHaJpEnvl3z4Lts/CadAMAj+Teyy+2XtzXuwF/610ff59yFlDvXwK/Pg5JW837Gm1g4FsmwBLXOLrbhO47Z0PsslMDQ/8waNgXYrqYwDB5r5lQsMcjpp+xAiBrrfocZj5ils8U7mWnmptZa8ab96HRMOjdsjN5c1lydDds/8W0mikM1gtVaw5Nr4Em10Bky+KQ3eGATT/A/HFwIt6sq9sL+r9qnjyRsi/9CHzYzcwT0+EOuObtSztf4hbTeiovAzrdA1e/7po65dyWfwSznyx+H14X7l+hJ1jkgimEL4FCeBEREZHSLb/AwaZDqSzfm8yyvcdYvT+ZzP8J5U37GjNSvnPdyjSraU1P+T1H0vl+VRzTVh+gffZS7vCeRUf7zqLtjphu2LvebyZeO9OI7+R9pg98dionWt7G39NuYuGOIwDUq1KJfw1tQbf6VU4/riwryDMT0y18GXLSzLq2N8OVz0OlcvZZPaEgDw4sNS0yds6G5D2nbq/SGBr3N/MMRHUq7luck25GXa//xryv1QGu+xQi6nm2fjH2LoIJw8BZYPqK93ys5H2nP2BG0IL5+3PVS+WjhZVVnE6I32BGu2/7BY5sP3V7VCdoOsiMlK1cv+Rz5aTDkrdh6X/MJNs2uwls+zyjliNlmcMBE4fD7vmmDd3dC09pQXfRts2A728yy4PeNW1RxL3Wfm3+GwrQ7e+w8QdITzC/h/R4yNLSpOxRCF8ChfAiIiIiZUveyVB+xd5klp8M5f93pHywnzcd60YUtbBpXjMEby/3TGqalVvAr5vi+X5VHCv3F7f3qBrsx/D2UYyOPkqNbV/C1mnFo5DD60Dne01YVtg+Ii8LPu9rJnut1QFu/xWnly+zNicwbvoWkk7kAHBduyieGdiUiEq+bvk8ljmRaEaMFva69g814WP72y9sgruKKOMY7J5nQvfdC4pvZgDYfaBODxO6N7rq3KH6lqmmzUl2qulnffUb0HqUWmh40tHd8Nnl5mfQaiQM/fjc3/+cdNNGYcXHgBOCa8A175gbLnJ+HAXmaZFtM2D7TEiNLd5m9zYtQppcY4L3i5ls9fh+mPtP2DbdvPcPg95PQccxeuqkLFr2Acx5Grz9TQ93Vz7dsPgNWPgv89/vW6ebSX7FPTZNgR/vBJzQdSxc9S/Y+D1Mvcf8G/jAWgiubnWVUoYohC+BQngRERGRsi2/wMHmw2msODnJ66p9yZz4n57yQX7etK8dbkbK14ugZa1QfC4xlN98KNWMel9/qGhiWbsN+jSuxg2dYujTuOqpwX/qIVj1Kaz+ErJTzDq/EGg7GjrfA4teNQF0YBW453cIrVV0aFp2Hm/M3sE3Kw7gdEJ4oA9PX92U69tHYStv4Wjscvj1MXMzAqB6Sxj4pmmZIobTaVr47JxtRrzHraRoYmAwf4Ya9TPBe/0+F94nPCXOBBAH/jTvmw8zbRY0str9so7Dp1eYJxiiOsGtv4CP//kff2AZ/Hx/8RMQLUfAgNc04vps8rJh32ITjO+YBZnHirf5BEKDK82I94ZXue7P/74/YPY/IHGzeV+lMfR/2VxLyobD6+GzK8GRZ1qodbzTted3OmHybebmfWAVM8o+LMa11xBzs+370eaJo/a3m3/nbDbzlMPnfU3rqTY3w5APrK5UyhCF8CVQCC8iIiJSvhRO9Lpi3zGWn5zoNS371FA+0NerKJTvUi+ClrXC8PU+dyh/IjuPn9cf5vtVcWw6lFq0Pio8gJEdohneIZrI0HMEZrkZsGESLP8Qju06udIGOE2bgtHToF6vMx66NvY4T/+0ie0JJwDoXDeCl4e1pH7VoHPWXqY4CmD1F2Zkb/bJ73PrUebR8Io6Ii0vG/b/URy8n5xzoEhky5Oj3ftDzXZgv8QnPxwFpoXGwpdNQBEabSZt1YhM9ynIMxM87vvdfL/v+g2Cql34efKyzM9t2fvgdEClqnD1m9B8iMtLLpOy02DXXNNqZte84sm0wUwS3WiA6fFe/3LXtBc5E0eBaYHx24vFwX+j/qaNUJUG7rmmuEZOumkbd2y3eTJi5DfueVIoNwO+6A8JG83N6DFzwLeS669TUe35DSaOhIJc88TRkI9O/Xfz4Gr47OT8GncthFrtrKlTyhyF8CVQCC8iIiJSvhU4nGxPSGP53mRW7D3Gyv3JpGTmnbKPv4/dhPJ1K9O5XmVaR4fi5216tjudTtbGHue7lXHM3BhPVp5pfePjZeOq5pGM6hhDt/qVL3xiWIcD9iwwj7TvXWjWXTkOejxc4mF5BQ6+WLKPt+fvJDvPga+Xnft61+dvfeoX1VxuZBw1LWrWTTDv/UJM+4ZOd1eMFjVp8SYs3DnH/BnJyyze5u1vJnls1M98hUa5p4aDq+HHMaaVhs0Olz0GvZ6sGN9/T3I6YcbDsOZL0wLhjjkQ2eLSznlwjRkVf2Sbed/sWhPGX0ywX9ZlHTdtZrb+bEa+F+QWbwuuWTyxau3unv2znZUCi1+HlR+bdmV2H/NkVK8nTEsuKX2m3W/mzgipBfcuce9TJilx8GkfyDgCTQfD8K8u/QarmCeGvhlm/k1tco35vp7p7/1P98DGSRDd2fw3ubw9eShuoRC+BArhRURERCoWh8PJjsQTRe1rVuxLJjkj95R9/LzttIsJp3nNEBbvPMKupOKRkg2qBXFDx2iGtq1F5SA/1xSVtM20q2lwxXn/T15ccib//Hkzi/4ycetLQ1vStX5l19RUmhxcA78+CofXmffVmple5XV6WFuXOxzbY1pjbPsFDq05dVtwzeI2M3V7gm+gZ2rKOQG/PlHcrz+qIwz7FCLqeub6FcGKj2HWE4ANRn1nJm92hfwc+P1NWPJvE/IGhMOA16Hl8PIfKOWkmxYzm380k2c6/nLztXLDk8H7IKjZ1vpg8+gu019811zzPrAKXPGcmTfkTJN4izU2TTE3JW120yrKE/8GxS6H8deYP7+9n4beT7r/muXZobXw9bVm7pQGV8INE8H7LL/LpR2G/3SAvAy47nNoeb1na5UySSF8CRTCi4iIiFRsDoeT3UfSWbH3mBktv+8YR9NPDeX9fexc06omozpF0y4mvNT0YXc6nfy6KYFxv2zhyMmJW69vH8XTV5fDiVsdBWZE/PznIevkBLgtrjeTqIXUsLa2S+F0mt7Q234xX0lbT91eq/3JNjP9ILKVtcHp5h/hl4chJxV8g00v5NYjraunvNg1HyYON61j+r4I3f/u+mvEb4Sf/1Y810Kj/qb/cUhN11/LSvk5psXM5imwYzbkZxVvq9YcWgw1I4qrNrauxpLsmgeznypuVRbZEvq/BnW6W1uXQPI++LinCW97PQl9nvbctddOgOljzfKIr81TLXLhErfC+KvNkzG1e8BNk899M/v3N03bqJBaMHaVWgLJOSmEL4FCeBERERH5K6fTyZ4jGSzfe4wth9NoXjOEwW1qEuLvY3VpZ5Walccbc7bz7YrYoolbnxnYjOva1fLoDYP8AgcHkjPZlZjOrsQTpGTlMaxdLZrXdGFbhcxk8z/Eq78EnKZ1R68noPN94F1Gbjw4HGbCt8IR78f3F2+ze5tR7k2ugSYDITjSsjLPKCUWfrobYpeZ9y2HmzBerTMuTtJ2MwFgTpqZAPDa9913o6UgD/6fvfuOj6LO/zj+3vSeQHqjh9CD9GZBQWwoUq0UC+edcArn2c56nuKdynEqiv4sWEAUFQULCCggvUkJvYSWHkJ6skl25/fHQCAGQ8tmE3g9H499ZHdmduazkAzkPd/5fFdMMduf2Eolz0BpwIvmaOs6cmHxvNjKpaQlUuLXZssZ68n5OtSwmdRuiPkIa+20Es+JrUxa+3/mZN0nPkvbW6X+/2RyTmexlZn92ZPXS7E9pNHf135Lrh8fl9a8bU4YfO9P5gUanL2j+8y/w8IMKbqLNPKbs5u0vKxEmtrV/Levti++oF4ihK8GITwAAAAuFhsOHtM/5pycuLVns2C9eGs7NavhiVvLbXYdOFqkvRn52p1eoD0ZZui+P7NQpTZ7pW1dLNKd3Rvrb9e2VJBPDYbkKZukHx6RjqwzX/uFm21SojuZE5NGXSZ5B9Xc8S6UrUw6uOL4iPfvpIK0k+vcvMzb4lsPNEe8ezdwXp1nw26Tfp0sLZlkTtoa1MhsT9Ooh7Mrq18Kj0rvXW1ehGnUSxr5be1cSMrYYfaKP9HuqFlf6ebX61fAa7dLh1eb7UG2fysVZZ1cFxBthtbthpjngfp6gaEwS/rlRWnDdPMuCTcvqddfpT4PMxq3ti163mzp5BVo9oF3xs+KrVyaMUTav+T4xM2/SH6htV9HfZRzSPrgeinviDnJ7eh55/bv7PZvpS9Gmj+D49bVr3Mlah0hfDUI4QEAAHAxKbPZ9d6vSfrf4pMTtz7Yt4UeuKrZOU/cWmaz6+DRQu1JLzgetudrT3qBkrKqhu0neLu7qkWYn+LC/FRYWq4F29IlmaPzH72ulYZ3iZXruU5i+0fsdmnzZ9LCZyqHcCc0bH4ylI/uZLZzqa0+6pI5gm7/L2bwvusH8xb4Ezz8pfjrzOC9Rb/6GaodXmf2R845aPZIvuJR6Yq/M2nr2SgvlT4ZZF6YCWpsBmq+tTifg91mTgr9y4tSeYl5R0m/56Qu9zq/P/ofMQxzXojEr6Rtc6S85JPrfEKktoPM4D22R939DOcjbavZoubAr+Zr/yip//OXRl//umD/EunjQZIMcwLPtoOcV0tRtvTeNVL2/tq9cFef5aeZI+CPJZlzQYz58dwvXhiG9NFA82ew7WBp2IeOqRUXBUL4ahDCAwAA4GJ06GiRnvo2Uct2H5+4NdRXL93aXj2aVQ36ymx2Hcgq1J6MAu1Oz68Y2Z6UVagy2+l/PfB2d1VcuJ9ahPmpZbi/4o5/jQ7ylsspIfvKfVl6bu427U43J7dtHx2o529pq06NanC0d1mxOao3eaOUstH8mnOw6nYWV7MlRdRlJ8P58LaSaw22GrLmm5Mr7phn9ncuPTmpr3yCzRYzrW82W8780WRw9UlJnvTD36Uts8zXsd2lwe9KDZo4taw6zTCkb8dJmz6VPAOkexdKYa2cU0vWXrPX9In2Qo37mKPig5s7p57Tydhp9nhP/MoMH0/wDDAvYrUbIjW98uK++GMY5jnlp3+Yo3olKaabdP3L5rwRcIzCLOnt3uadS51HSwP/5+yKpMxd0nv9zBZWnUaZNXEx5vQKj5o94DN3mhc775l//vNgpG015wQw7GaQ37hXzdaKiwYhfDUI4QEAAHCxMgxD321J1fPztiurwJy4dVjnGF0ZH6o96QXaezx0T8oqVLn99L8G+Hi4Ki7MTy3C/NUy3E9x4X6KC6satlenzGbXJ6sO6r8LdyvfWl5Rx6PXtVKov4OC6MKj5qjZlN9OBvOntoA5wdXT7K17ajAf0vLcRtIWZZsj3XfMk/b9ItmsJ9cFRJtBYeuB5gjdizUo3Pql9N0EMxjyDDD7xHcY7uyq6qaVb0g/PWXePXDHbCmun3Prsdulde9Ji56TygolN2/pmqel7g9ILud290yNyU6Stn0tbf1Kyth2crmbtxR/vRm8t+gnuXs5pz5nKSuRVk+Vlr1m/l1J5vwRfuHmfBIububfWcXzs3l9Dtt4B0n+kRfHBcQzMQxp5ghpzwIpJF4au6R276Sqzu6fpJnDJRnSDa9K3e53dkV1T3GOOXo9bYt598g9P174xeF5D0sbPjTvqhu7xHnnR9RphPDVIIQHAADAxS63uEz/nr9TM9cc+sNtfD1c1aJiRLsZtMeF+ykq8OzD9jPJzLfqP/N3avaGI5Ikf083TejfUiN7Npabay20j8hLqTxaPuU3qSSn6nYeflJkRyn6spOtbIIaVx5tmJci7fzenFz1wAqzN/oJDZtLbW42g/eoTpfOKMVjB81JWw+vNl+3Hy7d+CqTtp5q14/SZ7dLMqTr/i31eMDZFZ107IA0969S0lLztaunGbp6Bf7ucZplFdudsu5c7zDJSzXbzCR+ZU6AeYKLuxm4tx8qtbxO8qzZOS7qpbxUafHzZjsuZ/AJkQIizYuMAVFmyBkQdXKZf6TkVc/zldXTpPmPmT8H9/8sRbRzdkWVrfif2YrN4irdPUdqdqWzK6o7rAXSp4Olw2vM79UxP0qhLS98v4VZ0uudzAmTB74udR514fvERafehPDLli3TK6+8og0bNig1NVVz5szRoEGDqn3PkiVLNHHiRG3btk2xsbF66qmnNHr06LM+JiE8AAAALhUbDmbrtZ92q7DUppbH28e0CDe/RgV6yVJLYfHGQ8f07LfbtDU5V5IUH+6v525uq57Na7EntmSOdMzeb4bxJ8L51M1SWVHVbX2CzdHyoa3MX+xPTAh7QkR7s81M64HmNpdK8P57tnLp19ekpf8+ZdLW96RG3Z1dmfOlJUofDDBbFHUeI93037r3fWIY0saPpJ+eMYOmC+Huc4bA/vij3GpOfHhguaTjcYTFxWzZ1G6I+TNV1ycrdpbkjdK+n82Jn+3lpzxs5s/fqa9/v77a16dZZiuXio5WvtOnOh7+x0P5PwjpA6LN82pd7N+fusXsvW4rrbsjzQ1DmvMnacvn5s/H/T9LDZs5uyrnKyuRZg6TkpaZ55fR35v/PteUVW9JC54ww/2/buQiM6qoNyH8jz/+qBUrVqhz584aPHjwGUP4pKQktWvXTg888IDuu+8+LV68WA8//LC+//57DRgw4KyOSQgPAAAA1D6b3dAX6w/rP/N36lhRmSTppg6R+seNrRUZ6O3EwsqlrF0nQ/mU38zw1F5WddvY7mZA2OomqWHT2q+1Lju8VvrqvuOTtrpKVz4qXf7IxduO50wKMqT/u1rKPWyGy3d9XbNzEdS0cqtUkC6V5JptHUpyf/c4zbIT25Xmn/9xY3uYwXvbQZJfWM18FtQcwzDbb+WnmHcDnXhUvE41v57tBRwXdzOYrwjpjz8CY8yJR891As2aUFoovXOldHSPFH+DdNvMunex7ISyErPnefIG8+LvvQvr/x0IF6K8VPr8LrOFkIefOXFtTJeaPYatTHq7l5S1W+o1Xrr2XzW7f9R79SaEP5XFYjljCP/YY4/p+++/V2JiYsWy2267TTk5OZo/f/5ZHYcQHgAAAHCenKJSTV64W5+uPii7YU74Ov6aFrq3T1N5utWRfqvlVik90QzmM3eak7vG32iGR/hjJXnSD4+YIzUlM2Ad/K7UoLFz66ptZSXSxzebd1A0bC7dt0jyaejsqhzHVm7ODXCmsP7Ew1YqNbtKajfYvHMC9Z+1QMpP/YOQPtlcV5ChijsfTssiRXWUWvQ32xFFd66di3jfjpN++8S8MPDnFXX/ZzUvVXr3KnPOk5bXmxcN6uLdBY5mt0lf3iNt/0Zy85Lu+kpq0scxx9qzSJoxxLyI9JfVUkgLxxwH9dJFG8JfccUV6tSpk6ZMmVKx7MMPP9TDDz+s3NzTX3m1Wq2yWk/ePpWXl6fY2FhCeAAAAMCJtqXk6tlvt2n9wWOSpKYhvnpmYBv1jWc0bL235Qvpu4nmCGnPACnhdnOkc2z3i39iu1NbRngFSvctlkLinF0V4Hy2Mik/7Xch/fFH1h4pfWvl7b2CpOZ9zUC+RT/JP6Lma0r8ygxyZZFGzZOaXl7zx3CEIxukD683WwVd/jfpmmecXVHtstulueOkTTPMYPz2z6S4/o495oxh0p6fzHkq7vjcscdCvXIuIXy9ujcwLS1N4eHhlZaFh4crLy9PxcXF8vauehvrpEmT9Pzzz9dWiQAAAADOQtuoQM1+oKe+2ZSsl37YqaSsQo35cJ36tQ7XMze1UaNgH2eXiPPVYbgU20366n7pyFpp7Tvmwy/cbOfT5haz9cTF2Kpm+WQzgLe4SsM+IoAHTnB1l4Jizcfp5KeZ/e73LDS/luSYE/dum2OuD28vxR0P5GO7X3h7p2MHpHkPm8+veKT+BPCSFNNZuvkNac5Yc06OsDbmRMaXAsOQfnzUDOAtrtLQDxwfwEvSgJfM78vd882R8XH9HH9MXHTq1Uj4li1basyYMXriiScqlv3www+68cYbVVRUdNoQnpHwAAAAQN2WX1KmN37eqw+WJ6ncbsjDzUUPXNFMf76qhbw9LvKR0xczu80M1LZ/K+363mxFcoJPiNT6JjOQb3J53e6Xfra2z5W+uNt8fuNkqeu9zq0HqK/sNrPv+d5F5jkk5TdVamXj4S81u9IMX1v0M3vKnwtbmTmS/Mg6KaabNObH+nlRcOEz0or/SS5uUmSCFNnR/BrVUQptLbl5OLvCmmUY0qJnzc8si3TrO1LCiNo7/oJ/SKvelEJaSn9eeXH8u4ULRjuaatATHgAAAKib9mbk67m527V8b5YkKTrIW0/d2FrXtYuQpa5OlIezU14qJS0z+/fu/E4qPnZynXdDqdWNUptB5iSm9TE4St0sfXCdVFYkdfuTdMN/nF0RcPEozDJHIe9dJO1dLBVlVV4f2lpqcY0ZyjfqKbl5Vr+/xS9Iv74qeQZKD/xaf+etOLUv+u+5epgj5KM6ngzow9pI7l61XGQNWvqK9MvxiVFv+q/U5Z7aPX5xjvRGZ/P777p/Sz0eqN3jo066aEP4xx57TD/88IO2bj3ZK+yOO+5QdnY2E7MCAAAAFwHDMLRgW5pe+G6HknOKJUl9WoTouZvbqEWYv5OrQ42wlUkHfjVHyO/4rnKg5hVoToLb5hazH/SZwrS6ID9Nerev2ee6+dXSHbPr56haoD6w26XUTccD+UXmaHbDfnK9u495Me9EL/mGTSu/P2mZ9NHNkgxp6IfmBMH1mWFI2fvNuwVSN5t/NqmbK995dIKLmznReMWo+Y5SRDvJvWpXiTpn1VRpwZPm82tflHqNc04d6z+UvnvY/Ldq/G+Sb7Bz6kCdUW9C+IKCAu3du1eSdNlll2ny5Mnq27evGjZsqEaNGumJJ55QcnKyPv74Y0lSUlKS2rVrpwcffFD33HOPfv75Z/31r3/V999/rwEDBpzVMQnhAQAAgLqvuNSmt5fu07Sl+1Rabpebi0VjejfRX6+Jk78Xt4BfNGzl0qGVZiC/fa5UmHFynWeAOQle20FmuF0Xg6KyYunDG6SUjWaLgnsXSt5Bzq4KuHQUZUv7l5wM5QvSK68PbnE8kO8vhbWS3usn5adKl90t3fKmU0p2OMMwe96fGsqnbJKKs6tua3GVQuMrt7IJbyd5+tVqydU6EXxL0lVPSlc95rxa7DbpnSvNiYS73CvdNNl5taBOqDch/JIlS9S3b98qy0eNGqXp06dr9OjROnDggJYsWVLpPRMmTND27dsVExOjp59+WqNHjz7rYxLCAwAAAPXHoaNF+ud327VohxmshPp76skbWmlQx2ha1Fxs7Dbp0OrjI+TnmkHZCR5+UssB5gj5Fv0ljzowca9hmK0gtn0teTeQ7v9ZatjM2VXVWYZh6L1fkzRjzUFNvDZeNydEObskXGwMQ0rbejKQP7xGspdX3S44TvrTUsnDt/ZrdBbDkHKPVA7lUzdJhZmn2dhiXlQ8EcpHJkgRHSQvJ2RoW76Qvh4ryZB6/VXq/0/J2f/2H1guTb9RsrhIf/rVvJsAl6x6E8I7AyE8AAAAUP/8sitD/5y3XUlZhZKkuDA/dWnSQG2jAtU+OlDxEf7ycmcS14uG3W62mdj+rfnIO3JynbuP2fu5zS1S3ADnjdhc8rK0ZJLZ4mHkt1KTPs6pox4ot9n1zNxtmrnmkCTJxSJNHt5Rgy6LdnJluKiV5Er7l54M5fOSJTcv846VyA7Ors75DMO82FkRyh8fOX/qBdBTNWxutvfxCTbn8vAJlnwaHn8En7K8Yc20EtsxT/pilGTYzFHnN77m/AD+hC9Gmb34m1wujZpXd+qy26U1b0uH10r9nuXCcC0ghK8GITwAAABQP1nLbXp/eZLeWLxXxWW2SutcXSyKC/NT++hAtYsOVLvoALWODJCPB7256z3DkJI3StvnmIF8zqGT69y8zFYTbQaZIbhXgBnSOzoQSfzKHAUvSTe/IXUa6djj1WOF1nKNm7lRv+zKlMUidW3SUGuTsuVikV4bnqBbL4txdom4FBiGlLnLnJi0QRNnV1O35acfD+RPaWeTe/jc9uHhdzKc9z4lpD8R2v9+mXfDypPG7l0kzbxNspdJCbdLt7wlubjU6Me8IMcOSm92lWxWacSnUuuBzq7IbM0050/Snp/M194NpOEfm3MkwGEI4atBCA8AAADUb1kFVq1NylZicq62JucqMTlXx4rKqmznYpGah/qpXXSg2kYFVHylp3w9ZhhmKLT9W2nbN9KxpKrbWFwkD3/J098cJe/pbwZCnv6VH79fdrrX7t5VA/0jG6TpN0jlJVLPcdKAF2vjk9dL6Xklumf6Om1LyZOXu4v+d9tl6t86XP/4Zqs+W3uYIB6oLwqPSmmbpbxUqeio2V++6KgZ/BadeH5UKj5mjlw/H+6+J0P5zF1SebF5x9OQD+rmZNc//0ta9ooU1Fh6cG3liwi17ch6afZo82KJq6d5x0LmTvNOrev/I3W913m1XeQI4atBCA8AAABcXAzDUGpuibYm52pbcq4SU/KUmJyrjHzrabdvGuJbEcq3Px7MB/l41HLVuGCGIaUnnmxZk7VHUg3/emtxPR7kB5wM6Y/uNQOouAHS7Z9JLrRBOp3d6fka/cFapeSWKNjXQ++P7qqOsUGSJLvd0D++SdRnaw/JYpEmE8QDFwe7XbLmniacP+X5qeuKjz8/XXAfd600YobkVkf/fS4tlN7oIuWnSNc8I13+t9qvwTCkNe9IPz1l3jXQsJk07CMpJE76dpyU+KW5Xdf7pesmSa4MQqhphPDVIIQHAAAALg0ZeSVKTMlVYrIZym9LyVNyTvFpt41p4K12UYFqH3Ny1HyIXw30tK1jsgtLtXhHukL9PXVFXKhcXOpIH9uaYLdLZUWSNV8qLZCseZK14JTX+Scfv39daVmBVJpf/bHC2kj3LHDORIX1wMq9WfrTpxuUX1KuZqG+mj66mxoFV55M12439NS3iZq5xgziXxuWoMGdCOKBS47dbp6vTwT0xdnmHU3Nrqr7ofGWL6Sv7zdH8Y/fIAVE1t6xS3KluePNi9CS1Ppm6ZY3Ja9A87VhSMsnS4v/ab5ueqU0bLp5pwFqDCF8NQjhAQAAgEvX0QKrtqXkKTElV9uS87Q1OVeHsotOu21EgJfaRQfqyvhQ3dAuQsH1NJQvt9m1dHemvtxwRIt2pKvMZv4K2CzEV2P6NNWQTtH0zv89u10qKzwZylvzzWDemi/Zy6UW/Z03IWwd99WGI3r86y0qsxnq2qSB/m9klz+804QgHkC9ZhjS+9dKR9aavetvnVY7x03bKn0xUsreb7acufZfUvcHTj8fyo7vpK/Hmv+mNWwm3T5LCo2vnTovAYTw1SCEBwAAAHCq3KIybUs9GconpuQqKatQp/6m5OpiUe8WIRrYIVLXto1QoHcdH50nsx3IlxuO6OuNycoqONmap1WEv5JzipVfUi5JCvR21x3dG2lUzyaKCHRiT1vUa4Zh6PXFe/XfRbslSTd1iNSrwxLk5V59ux673dDT3yZqxvEg/tWhCRrSmSAeQD2RvEH6v6vN5/f9LMV0dtyxDEP67RPph7+b85IExJij22O7Vv++tETps9ul3ENme7WhH0hx/R1X5yWEEL4ahPAAAAAAzqTAWq4dqXnacPCYftiaqi1HcivWebi66Mr4UN2cEKVrWofVqVHkOUWlmrc5RV9uOKLNp9Qc7OuhQZdFa2jnGLWODFCBtVyz1x/WhysOVNwJ4OZi0U0dInVvn2ZqHxPorI+AeqjMZteTX2/V7A1HJEkPXNlcjw6IP+t2RwTxZ2dvRr62JudqYIcoubm6OLscACfM+bO0eaYU3UW6d6Hk4oCfz9JC6fu/SZs/M1/HXSvd+s7Zt5cpzJI+v1s6tNJs99P/Banng6cfPY+zRghfDUJ4AAAAAOfqQFah5m1O0dzNKdqTUVCx3NvdVf3ahGtgh0hdGR8qT7fan6Sz3GbXr3uz9OX6I1q4PV2lNrskM1S/ulWYhnaOUd9WYXI/TWhnsxtatCNd7/+apLUHsiuWd2vaUPf1aaprWofL9WLqG48al1dSpr98ulHL92bJxSK9MKid7uze+Jz3Y7cbemZuoj5dbQbxrwxN0FCC+AoLt6dr/GcbVVJm16COUXpteEd+NoG6Ij9NeqOzObfIre9KCSNqdv+Zu832M5k7zAD96qek3hPOPewvL5W+n2iOppekjndKN/1Xcquf7fbqAkL4ahDCAwAAALgQu9LyKwL5U/vJ+3u56bq2ERqYEKVezYMdPlJ1b0a+Zm84ojkbk5WRX7ndzLAusRrUMeqc+thvOZKj95cn6fstqSq3m78mNg720T29m2po5xj5etadEf+oG1JyinXP9HXamZYvHw9XTb2jk/q2Cjvv/f0+iP/PkA4a1iW2Biuunz5ZdUDPzt0m+ynpzdDOMfrPkA4X1+TKQH3262Rp8fOSf6Q0bn3NzRuy9Utp7l/Nnu5+4dKQ96Wml5///gxDWjNNWvCkZNil2O7SiBmSX2jN1HuJIYSvBiE8AAAAgJpgGIa2HMnVvM0p+m5LqtLySirWBft66Pr2ERrYIUpdmzSssaAst7hM321J0ez1R7TpcE7F8gY+7rqlY7SGdYlR26gLayWTmlusj1cd1IzVB5V3vG98gJebbu/WSKN6NVFUkPcF7R8Xh20pubpn+jql51kV6u+pD0d3VbvoC29jZBhmaxqCePOixL8X7NQ7S/dLkm7rGqteLUI04fNNstkN3d6tkV66tZ0stJMAnK+sRJraTco5KF3+iHTN0xe+vwVPSuvfN183udwM4P3DL7xWSdq7SJp9j2TNlQJjpds/kyLa18y+LyGE8NUghAcAAABQ0+x2Q+sPHtO8zSn6YWuqjhaWVqyLCPDSTR0iNTAhSh1iAs85MLPZDa3Ym6XZG45owbY0lZab7WZcXSzqGx+qoZ1jdXWrMHm41ezI+0Jrub7aeEQfLE/SgaNFFce8oX2k7u3TVB1jg2r0eKg/lu7O1F8+3aDCUpviwvz04ZiuimngU2P7NwxDz3y7TZ+sPiiLRfr3kA4afokF8SVlNj0ye7O+25IqSXrk2pZ6sG8LWSwWfbspWRM+3yS7IY3q2VjP3dyWIB6oC3bMkz6/S3L1lMatkxqce2suSVJ2kjR7lJS62Xx9+SNS3ycllxpueZe1R5o5QsreJ7n7SIPflVoPrNljXOQI4atBCA8AAADAkcptdq3cd1TzNqdo/rY05R8fTS5JjRr6aGBCpG5OiFZ8hH+1+9mfWaAvNxzR1xuTK42ybxnup2GdYzXosmiF+ju+j6vdbujnnRl6b/l+rd5/sm98l8YNdN/lTdW/TcQl05vaWm7Tmv3Z6hATqCAfD2eX4xSz1h7SP75JlM1uqGezYE27u7MCvd1r/DiXchCfU1SqsR9v0NoD2XJzseg/QztocKfK/fG/3HBEf/9yswxDurdPUz11Y2uCeMDZDEP6+GYpaZnU5hZp+Mfnvo+d35sTvVpzJe+GZjAe17/maz2h+Jg0e7S0f4n5uu9T0hWPMGHrWSKErwYhPAAAAIDaYi23aemuTM3bkqpF29NVXGarWNcy3E8DO0RpYEKUmoT4SjInufx+S6q+3HBEGw4eq9g2yMddtyREaWjnWLWLDnBa2JaYnKsPViRp3uYUldnMXyVjG3prdK+mGt4lRv5eNR/G1gVpuSX6dPVBfbb2kI4Wlqqhr4eeu7mtBnaIvGSCT8Mw9OpPuzT1l32SpMGXRevlIR1q/A6M3x/z2bnb9PGq40H84A4a3vXiDuIPZxdp1IdrtT+zUP6ebpp2d2f1bhFy2m1nrT2kx7/eKkn681XN9eiA+Evm+xGos9K3SdP6mP3WR3139v3bbWXSouekVW+ar2O6SsOmS4G1MEG1rVz66R9mr3hJajdEuvlNyaPm7nC6WBHCV4MQHgAAAIAzFJWWa/GODM3bnKIluzJVarNXrGsfHahGwT5avCNdJWXmcheLdFV8mIZ2jtE1rcPk6VbDt6FfgPS8En2y6qA+XXNQOUVlkiR/TzeN6Bqr0b2b1GhrEmcxDEPrDhzTRysPaP62NNmOz4rp4epS8XfXr3WYXhjUTpGBF3effGu5TY9+uUXfbkqRJP31mjhN6BdXK4HvpRTEbzmSo3umr1dWgVWRgV6aPqbbGe+Y+WTVAT397TZJ0kPXxGlC/5a1USqA6nw30ezlHt5O+tOyM7eRyU2WvrxHOrzafN3jQanfc5JbLd9xtf5D6YdHJHu5FNnR7BMfEFW7NdQzhPDVIIQHAAAA4Gy5xWX6aVua5m1J1Yq9WRUBryS1CPPTsM4xuvWyaIUFeDmxyjMrLrXp69+O6P3lSdqfWSjJvHhwfbtI3dOnqTo3buDkCs9dSZlN325K1kcrD2p7al7F8m5NG2pMrya6Kj5M7yzbp6m/7FWZzZC/p5ueuKG1busaW2MT8NYluUVlGvvJeq1JMlujvHRr+1oPwQ3D0HNzt+mjiziIX7wjXeNm/qbiMptaRwbow9FdFRF4dj//7y9P0gvfbZdk9o4fd3WcI0sFcCaFR6U3LpNKcqWb/it1ueePt927WPr6fqnoqOQZIN0yVWpzc+3V+nsHlkuf3y0VZ0t+EdJtM6WYzs6rp44jhK8GITwAAACAuuRogVU/JqYpNbdY/dtEKOE8Jm91Nrvd0NLdmXpv+X6t2Hu0YnnH2CDd1CFSV7cKU9MQ3zr9uZJzivXJqoOate5Qxeh+L3cXDeoYrVG9mqh1ZOXfH3en5+vRL7do0+EcSVKPZg318uAOFa2FLgaHs4s0Zvo67c0okJ+nm96+q5Mujwt1Si2nBvGS9O8h7TWiayOn1FLTPl19UM98myi7IV0eF6K37ux0zq2dpi3dp5d/3ClJevKGVhp7RXNHlArgbK2eJs1/TPIJlsZvlLyDKq+326Sl/5aW/keSIUV0kIZ/JDVs5oxqKzt2QPrsdiljuznJ7C1TpQ7DnF1VnUQIXw1CeAAAAABwnB2pefpgeZK+3ZRSqeVO42Af9Y0P01XxoerRLFhe7s5vr2MYhlbtP6qPVh7Qwu3pOnFDQkwDb93do7FGdI2tdgJWm93QhyuS9OpPu1RSZpenm4v+dm1L3dO7qdxcHdcrvTac2holIsBLH47pWuVCRG0zDEPPz9uu6SsPSKr/Qbzdbug/C3Zp2lKzz/7wLjF68db2cj/P7503Fu/Rawt3S5KeHdhGY3o3rbFaAZwjW5n0dm8pa5fZXua6l06uK8iQvrpPSlpqvu48RrruZcm9Dt39Zs2Xvrpf2v2j+brPBOnqZySX+v1vW00jhK8GITwAAAAAOF5GfonmbjL7369JOloxkatkjjDv1TxEfeNDdVV8mGIb1m4P+aLScs35LVkfrzyoXen5Fct7twjWqJ5NdE3rcLmeQ2uZQ0eL9PjXW7Ryn3kXQEJMoP49tINaRdTP3zkXbU/X+M/OrzWKo/0+iH95cHvd1q3+BfHWcpv+PnuL5m42++xP7N9S469uccF3i0z+aZde/3mvJOmFQe10d4/GF1wrgPO0d5H06RDJxU368yoptKV0cKU0e4xUkCa5+0g3TZESRji70tOz26Wf/ykt/6/5Ov4GafC7kmf1c1VcSgjhq0EIDwAAAAC1q9BarhV7s/TLrkwt2ZWh1NySSutbhPmpb3yo+saHqUuThvJwc8xIu0NHi/TxqgP6Yv1h5ZWUS5J8PFw1uFO0RvVsorjw8w8WDMPQF+sP61/f71B+SbncXCz6y1XN9eDVLerUpLpn8vGqA3pu7jbZDemKlqGaesdl59waxdHqexD/+z77Lw/poKGdY2pk34Zh6OX5O/XO0v2S6v/dAkC9N3OEtHu+1KKf1ORyafE/JcMmhcRLwz+Wwlo5u8Iz2/y5NHe8ZLNKYW3MCVsbNHF2VXUCIXw1COEBAAAAwHkMw9Cu9Hz9sjNTv+zK0IaDxypNTOvr4ao+cSHHW9eEXfAIbMMw9OueLH208oB+3pWhE78BNw720cieTTS0c4wCvWsuZE7PK9FT3yRq4fZ0SVJcmJ/+PbSDOjWq25PU2u1mePvuMjO8va1rrF4Y1O68W6M4mmEY+ud32/XhigOSpEmD2+v2ehDE/77P/rS7OqtPXEiNHsMwDL3w3Q59sCJJFov02rAEDe5UMyE/gHOUtVd6q4dkLzu5rP1wc8JWTz/n1XWujqyXZt0hFaSbfe6HfyI16e3sqpyOEL4ahPAAAAAAUHfkFpdp+Z4s/bIrQ0t2ZSqrwFppfevIAHOUfKswXRYbdNa91gus5fp64xFNX3lA+zMLK5Zf0TJUo3s11lUtw+RyDi1nzoVhGPpha5qenZuorIJSWSzSmF5N9ciAlvLxcHPIMS9ESZlNE7/YpB+2pkmSHrm2pR7se+GtURytvgXxW4/k6p6P1ikz3/F99g3D0DPfbtMnqw/KxSJNue0y3ZwQ5ZBjATiDn56SVr5hTnJ6/b+lzqOlOn5+Pa3cZDOIT91ktti58TXzs1zCCOGrQQgPAAAAAHWT3W5oW0qeftmVoV92ZWjT4Ryd+htrgJebrmhptq25Mj5UIX6eVfaxP7NAH686qC83HFGB1Ww54+fppqGdY3R3z8ZqHlp7Iw+PFZbqhe+36+uNyZLMCV9fHtyhxkc+n69DR4u0ZHeGvlh/WInJeXJ3teiVoQkadFm0s0s7a6eO+pakl25trzu6170g/pedGXpw5kYVldrUKsJfH47pqshAb4ce02439OScrZq17rBcXSx68/bLdH37SIceE8BplFul3z6VGvWUwts4u5oLU1okffsXadsc83X3B6RrX5Rc694F5tpACF8NQngAAAAAqB+OFli1bE+mftmZqaW7M5VbfPJ2fotF6hAdqKviw9S3VZiOFZZq+soDWro7s2KbZqG+GtWziYZ0jpGfp/MCgiW7MvSPOYlKzimWJA3vEqN/3NBGgT6122vdWm7TuqRjx+86yNC+U+4QCPBy0zt3d1HP5sG1WlNNMAxD//p+h95fbgbxL97aTnd2rzsTks5cc0hPf5som93Q5XEheuvOTrXWZ99uN/T3L7foq41H5OZi0bS7Oqtfm/BaOTaAi5RhSMtelX75l+QXLv3pV8n/0jyvEMJXgxAeAAAAAOofm93QpsPHKnrJb0vJO+12Fot0dXyYRvVqoj4tQhzWcuZcFVjL9cr8nfpo1UFJUqi/p164pZ2uaxfh0OOm5BRryS7zz2zF3iwVldoq1rm6WNSlcQP1bRWmmxOiFBXk2JHZjlQXg3jDMPTqT7s09Zd9kqShnWM0aXD7Wu+zb7MbmvjFJn27KUUeri56Z2Rn9Y0Pq9UaAFyEts+VAqKkmC7OrsRpCOGrQQgPAAAAAPVfel6Jlh4Pl3/dkyWLRRrRJVZ392ysxsG+zi7vD607kK3HvtpS0af+hvYReu7mtgrzv7AJaE8os9m18eAx/bIrU0t2ZWhnWn6l9aH+nrqqpdljv3eLkBqdlNbZDMPQi9/v0HvHg/i/D4jXde0i1DTYt9YvxljLbXrsyy36ZlOKJOnhfnF66Jo4p/XZL7fZ9ddZv+mHrWnycHPRB6O61pm2SABQXxHCV4MQHgAAAAAuLja7IYtUZ0a9n0lJmU2vL96jd5btl81uKNDbXU/f1EZDOkWfV0ibkW9ekFiyK1PL9mQqv6S8Yp2LRbqsUQP1jQ/VVfFhahMZUG/+nM7H74N4SfL1cFXbqEC1jQ5Q++hAtYsOVPNQP7k66M8ht7hMf/pkvVbvz5abi0WTBrfXsC6xDjnWuSiz2fWXGRu1cHu6vNxdNH1MN/VoVv/aDwFAXUEIXw1CeAAAAABAXZCYnKvHvtpS0Vrn8rgQvXRre8U29Kn2fWZrnhwtOT6BbWJy5dY8DX09dGXLUF0VH6or4kLVwNfDYZ+hLjIMQx+sOKDvtqRoe0qerOX2Ktt4ubuoTWSA2h0P5dtFBSou3O+CW8Uk5xRr9AdrtSejQH6ebnrrzk66omXoBe2zJlnLbXrgkw36ZVemfDxc9fE93dSlSUNnlwUA9RIhfDUI4QEAAAAAdUWZza73fk3SfxftVmm5XT4ernp0QLxG9mxSacR6dmGplu022+8s3Z2pnKKySvvpEHN8ktr4UHWICXLYKO/6ptxm177MQiUm52prcq62peRqW0pepd74J3i4uah1hL/aRgeaI+ajAtUywk+ebq5ndazE5FzdM32dMvKtCg/w1Ieju6lNVN3LHUrKbLr/4/X6dU+W/Dzd9Mm93XRZowbOLsthjhWWauGOdC3cni4PVxfdd3nTi/rzAqg9hPDVIIQHAAAAANQ1+zIL9PhXW7TuwDFJUpfGDfTg1S209UiuftmVoU2Hc3Tqb+8BXm66oqXZYubKlqEK9fd0UuX1j81uKCmrUNtScrX1SK4SU3K1LTlP+dbyKtu6u1rUMtxf7aIC1S7aHDnfOjJAXu6Vg/lfdmVo3IyNKiy1qVWEvz4Y3bVOT3RbXGrTmOlrtXp/tvy93PTZ/T3ULjrQ2WXVmIz8Ei3Ylq4FiWlatf+obPbK0Ve/1mGa0L+l2kZdPJ8ZQO0jhK8GITwAAAAAoC6y2w3NWHNQL/+4U4WnGandOjJAfePNSVUviw2S2wW2TsFJdruhQ9lFSkw5PmI+OU9bk3OVW1xWZVtXF4viwvzU9ngwX1pu138W7JLNbqh3i2C9fVdnBXjV/QlvC63lGv3hWq07cExBPu6aeV+POjly/2wdOVak+YlpWrAtTesPHqt00apVhL+uaxeh5GPF+mrjEZ3I5G9sH6kJ/ePUIszfOUUDqNcI4atBCA8AAAAAqMuSc4r13Nxt+u1Qjjo3DlLf+DBdFR+miEAvZ5d2STEMQ0eOFZsj5pNzlZicp8TkXB0tLD3t9oM7RevlwR3k4VZ/Lo7kl5Tp7vfXatPhHDX09dCssT3UMrz+BNL7Mws0f1ua5iemacuR3ErrEmKDdH27CF3XNkJNQnwrlu/LLND/Fu3RvC0pMgxz8uJbOkbroWviKm0HAGdCCF8NQngAAAAAAHA+DMNQWl5JRSCfmJyrw8eKdEvHaP3lquayWOpfL/7c4jLd9d4abU3OVYifpz7/Uw81D/VzdlmnZRiGdqbla36iGbzvSs+vWGexSF2bNNT17SI0oG3EGdsB7UzL038X7taCbemSzDschnWO0fhr4hRdh1sJAag7COGrQQgPAAAAAABwUk5RqW7/vzXakZqn8ABPfT62Z50ZFW4YhjYfyT0evKfqwNGiinVuLhb1bB6s69tFqn+b8POaG2HrkVxNXrhLv+zKlCR5uLro9m6xerBvC4UFcPcJgD9GCF8NQngAAAAAAIDKsgtLddu7q7Q7vUBRgV6aemcnRTfwVgMfD7nX8vwDNruh9QeyNX9bmhYkpiklt6RinYebi66IC9X17SLUr3W4An1qpv/+hoPZeu2n3Vq576gkydPNRSN7NtYDVzZXsB8THwOoihC+GoTwAAAAAAAAVWXmW3Xbu6u0L7Ow0nI/Tzc18HVXAx8PBfl4qIHPieeVv1Y89/WQr4frObXnKbPZtXr/Uf2YmKaftqUrq8Basc7Hw1V9W4Xp+nYR6hsfJl9Ptxr7zL+3cm+WXlu4WxsOHqs49j29m+r+y5vVWOAP4OJACF8NQngAAAAAAIDTS88r0d++2KzElFzlFpfpfFMjd1dLRWBfObivHOLbDUMLt2do0Y505RaXVbw/wMtN/dqE6/p2kbo8LkRe7q419AnPzDAMLdmdqdd+2qXE5DxJkr+Xm+6/vJnG9G4ify/CeACE8NUihAcAAAAAADgzm91QXnGZjhWV6lhRmXIqfT3leaG5TU6R+dVabj+v44X4eah/mwhd3y5CPZoFy8Otdtvg/J5hGPppe7om/7S7YhLYBj7ueuDK5hrZs4m8PWrvwgCAuocQvhqE8AAAAAAAAI5TXGo7HtKfDOaPFZUpp7BqiF9SZlOPZsG6vl2EujRpKFeXs29hU1vsdkPfbU3VlIW7tT/LbNUT4uepcX2b6/bujeTpRhgPXIoI4atBCA8AAAAAAIBzVW6z65tNKZqyaLeOHCuWJEUFemnc1XEa1iWm1iewBeBchPDVIIQHAAAAAADA+Sott2v2hsN6Y/FepeWVSJIaNfTRQ9fEadBl0TU2mt8wDFnL7SqwlqvIalNhabkKreUqLLWpyFquAmu5rOV2WSySRRa5WGQ+t1hkkeRisRx/bT7XKctcjm9zuu1dzB1WWRYR6KWmwb5yqYN3KwDOQAhfDUJ4AAAAAAAAXKiSMptmrjmkt5bsVVZBqSSpeaivHu7XUvER/n8Ynlc8Ly1XgfX4stJyFR7ftshqO75Nuex1LLXz9XBVm6gAtYsOVLuoQLWPCVSzEF+5cRcALkGE8NUghAcAAAAAAEBNKSot10crD+qdZfuUU1TmkGN4u7vK19NNvp6u8vFwk6+H+drTzUWGJDPdM2Q3zBH0hnTyuSEZMr/aT7z+/bLj26vi+Yl15j7shqFD2UUqKas66a6Xu4taRwao/fFgvm10gFqG+9fJ9jyGYSivuFyHjxXpyLEiWSwWtYrwV2wDH0b445wRwleDEB4AAAAAAAA1Lb+kTB8sP6AZaw6q3G7Ix8NVfp5u8jkemPt6uMnH01W+Hm7HX7vKx/NkoH4iYK/0Hk83ebu71okJa8ttdu3PKlRicq62JudqW3KetqXkqrDUVmVbD1cXtYr0rxgx3y46QPER/rUyiW1eSZmOZBcfD9qLdeT418PZRUo+Vqx8a3mV9/h4uCo+wl+tIwPUOsJfrSID1CrCX/5e7g6vF/UXIXw1COEBAAAAAACAC2e3G0o6agbz5iNPiSm5yi+pGnS7uVjUMtzfHDEfHaC20YFqExkgL/dzC+YLrOVmsJ5tBuyHfxe0553m2L8X4uepmAbeKrfbtTu9QKXlVUf4S1JMA2+1ighQm8iTwXzjYN86cVEEzkcIXw1CeAAAAAAAAMAxjOOtaxKT88wR8ynmyPnTtepxdbGoRaifOWI+2uw13zzUT0cLrKeMZD8eth8P3Y+dRcufhr4eim3grZgGPopp4K2YhubX2Abeig7ykbfHyeC/3GbXgaOF2p6ar52pedqZlq8dqXlKzS057b693V3VMsJfrY+PnG91fOR8oDej5i81hPDVIIQHAAAAAAAAao9hGErOKTZHyifnKjHFHDl/YkLbcxXk426G60E+im14MmyPbeij6CBv+Xq6XXDNOUWlFYH8ztR87UzL0670/NP2xZek6CBvtToRzEf6q1VEgJqGMGr+YkYIXw1CeAAAAAAAAMC5DMNQep71ZI/54yPm0/Os8vd0U0xDn0qj2WOPj2aPbuCtACf1arfZDR04WqidqcfD+bQ87UjNV3JO8Wm393RzUXyEv1pF+CsuzF/NQn3VPNRPMQ285VYHJ67FuSGErwYhPAAAAAAAAFA3lZTZzrlPvLPlFpdpV1r+8VDeDOZ3peWruKzqpLWS5O5qUZNgXzUL9VWzUD81D/UzA/oQPwX60NamviCErwYhPAAAAAAAAABHstsNHcwu0s7UPO1Iy9e+zALtzyzU/swCWf9gIlhJCvHzOB7M+1aE881CGD1fFxHCV4MQHgAAAAAAAIAz2O2GUnKLte94IH8inN+XWaD0POsfvs/D1UWNg31Ojpo/EdCH+jEprJPUuxB+6tSpeuWVV5SWlqaEhAS98cYb6tat22m3nT59usaMGVNpmaenp0pKTj9j8e8RwgMAAAAAAACoawqs5dp/yoj5fcfD+aSswjOMnvc8GcyH+Cq6gbeigrwVHeStED8PWSxMDusI55IzX/hUwRfo888/18SJEzVt2jR1795dU6ZM0YABA7Rr1y6FhYWd9j0BAQHatWtXxWu+kQAAAAAAAADUZ36ebuoQE6QOMUGVltvthpJziiuNmj/xNSPfqqwC87E2KbvKPj3cXBQd5K2oIK/jX81wPjrInOQ2ItBLnm71qwd/feT0kfDdu3dX165d9eabb0qS7Ha7YmNjNX78eD3++ONVtp8+fboefvhh5eTknNfxGAkPAAAAAAAA4GKQX1KmpKyTwXxSVqFScoqVklOi9PwSnSn5tVikUD9PM5xvcDKgPzWsD/B2YxD0adSbkfClpaXasGGDnnjiiYplLi4u6tevn1atWvWH7ysoKFDjxo1lt9vVqVMnvfTSS2rbtu1pt7VarbJaT/ZTysvLq7kPAAAAAAAAAABO4u/lftrR85JUWm5Xel6JjhwrVkpOsZJzTn5NzilW8rFiWcvtysi3KiPfqk2Hc057DD9Pt8oj6U8J6zs3bkBAfxacGsJnZWXJZrMpPDy80vLw8HDt3LnztO+Jj4/XBx98oA4dOig3N1evvvqqevXqpW3btikmJqbK9pMmTdLzzz/vkPoBAAAAAAAAoC7ycHNRbEMfxTb0Oe16wzCUXVhaEc6bYX2JknOKjn8tVnZhqQqs5dqdXqDd6QWV3h/g5aYtzw2ojY9S7zm9J/y56tmzp3r27FnxulevXmrdurXeeecdvfDCC1W2f+KJJzRx4sSK13l5eYqNja2VWgEAAAAAAACgLrJYLAr281Swn+dpR9JLUnGprdII+pTjI+iTc4rl40Ev+bPl1BA+JCRErq6uSk9Pr7Q8PT1dERERZ7UPd3d3XXbZZdq7d+9p13t6esrT0/OCawUAAAAAAACAS4m3h6tahPmpRZifs0up11yceXAPDw917txZixcvrlhmt9u1ePHiSqPdq2Oz2bR161ZFRkY6qkwAAAAAAAAAAM6L09vRTJw4UaNGjVKXLl3UrVs3TZkyRYWFhRozZowkaeTIkYqOjtakSZMkSf/85z/Vo0cPtWjRQjk5OXrllVd08OBB3Xfffc78GAAAAAAAAAAAVOH0EH7EiBHKzMzUM888o7S0NHXs2FHz58+vmKz10KFDcnE5OWD/2LFjuv/++5WWlqYGDRqoc+fOWrlypdq0aeOsjwAAAAAAAAAAwGlZDMMwnF1EbcrLy1NgYKByc3MVEBDg7HIAAAAAAAAAAPXMueTMTu0JDwAAAAAAAADAxYwQHgAAAAAAAAAAByGEBwAAAAAAAADAQQjhAQAAAAAAAABwEEJ4AAAAAAAAAAAchBAeAAAAAAAAAAAHIYQHAAAAAAAAAMBBCOEBAAAAAAAAAHAQQngAAAAAAAAAAByEEB4AAAAAAAAAAAchhAcAAAAAAAAAwEEI4QEAAAAAAAAAcBBCeAAAAAAAAAAAHIQQHgAAAAAAAAAAByGEBwAAAAAAAADAQQjhAQAAAAAAAABwEEJ4AAAAAAAAAAAchBAeAAAAAAAAAAAHIYQHAAAAAAAAAMBBCOEBAAAAAAAAAHAQQngAAAAAAAAAAByEEB4AAAAAAAAAAAchhAcAAAAAAAAAwEEI4QEAAAAAAAAAcBBCeAAAAAAAAAAAHIQQHgAAAAAAAAAAByGEBwAAAAAAAADAQQjhAQAAAAAAAABwEEJ4AAAAAAAAAAAchBAeAAAAAAAAAAAHIYQHAAAAAAAAAMBBCOEBAAAAAAAAAHAQQngAAAAAAAAAAByEEB4AAAAAAAAAAAchhAcAAAAAAAAAwEEI4QEAAAAAAAAAcBBCeAAAAAAAAAAAHIQQHgAAAAAAAAAAByGEBwAAAAAAAADAQQjhAQAAAAAAAABwEEJ4AAAAAAAAAAAchBAeAAAAAAAAAAAHIYQHAAAAAAAAAMBBCOEBAAAAAAAAAHAQQngAAAAAAAAAAByEEB4AAAAAAAAAAAchhAcAAAAAAAAAwEEI4QEAAAAAAAAAcBBCeAAAAAAAAAAAHIQQHgAAAAAAAAAAB6kTIfzUqVPVpEkTeXl5qXv37lq7dm2128+ePVutWrWSl5eX2rdvrx9++KGWKgUAAAAAAAAA4Ow5PYT//PPPNXHiRD377LPauHGjEhISNGDAAGVkZJx2+5UrV+r222/Xvffeq99++02DBg3SoEGDlJiYWMuVAwAAAAAAAABQPYthGIYzC+jevbu6du2qN998U5Jkt9sVGxur8ePH6/HHH6+y/YgRI1RYWKjvvvuuYlmPHj3UsWNHTZs27YzHy8vLU2BgoHJzcxUQEFBzHwQAAAAAAAAAcEk4l5zZqSPhS0tLtWHDBvXr169imYuLi/r166dVq1ad9j2rVq2qtL0kDRgw4A+3BwAAAAAAAADAWdycefCsrCzZbDaFh4dXWh4eHq6dO3ee9j1paWmn3T4tLe2021utVlmt1orXubm5kswrFQAAAAAAAAAAnKsT+fLZNJpxaghfGyZNmqTnn3++yvLY2FgnVAMAAAAAAAAAuFjk5+crMDCw2m2cGsKHhITI1dVV6enplZanp6crIiLitO+JiIg4p+2feOIJTZw4seK13W5Xdna2goODZbFYLvAT1E95eXmKjY3V4cOH6YsP4LQ4TwA4E84TAM6E8wSAM+E8AeBM6vJ5wjAM5efnKyoq6ozbOjWE9/DwUOfOnbV48WINGjRIkhmSL168WOPGjTvte3r27KnFixfr4Ycfrli2cOFC9ezZ87Tbe3p6ytPTs9KyoKCgmii/3gsICKhz37wA6hbOEwDOhPMEgDPhPAHgTDhPADiTunqeONMI+BOc3o5m4sSJGjVqlLp06aJu3bppypQpKiws1JgxYyRJI0eOVHR0tCZNmiRJeuihh3TllVfqtdde04033qhZs2Zp/fr1evfdd535MQAAAAAAAAAAqMLpIfyIESOUmZmpZ555RmlpaerYsaPmz59fMfnqoUOH5OLiUrF9r169NHPmTD311FN68sknFRcXp2+++Ubt2rVz1kcAAAAAAAAAAOC0nB7CS9K4ceP+sP3MkiVLqiwbNmyYhg0b5uCqLl6enp569tlnq7TpAYATOE8AOBPOEwDOhPMEgDPhPAHgTC6W84TFMAzD2UUAAAAAAAAAAHAxcjnzJgAAAAAAAAAA4HwQwgMAAAAAAAAA4CCE8AAAAAAAAAAAOAghPAAAAAAAAAAADkIIfwmaOnWqmjRpIi8vL3Xv3l1r1651dkkAnGTZsmUaOHCgoqKiZLFY9M0331RabxiGnnnmGUVGRsrb21v9+vXTnj17nFMsAKeYNGmSunbtKn9/f4WFhWnQoEHatWtXpW1KSkr04IMPKjg4WH5+fhoyZIjS09OdVDGA2vb222+rQ4cOCggIUEBAgHr27Kkff/yxYj3nCACnevnll2WxWPTwww9XLOM8AeC5556TxWKp9GjVqlXF+vp+niCEv8R8/vnnmjhxop599llt3LhRCQkJGjBggDIyMpxdGgAnKCwsVEJCgqZOnXra9f/5z3/0+uuva9q0aVqzZo18fX01YMAAlZSU1HKlAJxl6dKlevDBB7V69WotXLhQZWVluvbaa1VYWFixzYQJEzRv3jzNnj1bS5cuVUpKigYPHuzEqgHUppiYGL388svasGGD1q9fr6uvvlq33HKLtm3bJolzBICT1q1bp3feeUcdOnSotJzzBABJatu2rVJTUysey5cvr1hX388TFsMwDGcXgdrTvXt3de3aVW+++aYkyW63KzY2VuPHj9fjjz/u5OoAOJPFYtGcOXM0aNAgSeYo+KioKP3tb3/TI488IknKzc1VeHi4pk+frttuu82J1QJwlszMTIWFhWnp0qW64oorlJubq9DQUM2cOVNDhw6VJO3cuVOtW7fWqlWr1KNHDydXDMAZGjZsqFdeeUVDhw7lHAFAklRQUKBOnTrprbfe0r/+9S917NhRU6ZM4f8SACSZI+G/+eYbbdq0qcq6i+E8wUj4S0hpaak2bNigfv36VSxzcXFRv379tGrVKidWBqAuSkpKUlpaWqVzRmBgoLp37845A7iE5ebmSjIDNknasGGDysrKKp0rWrVqpUaNGnGuAC5BNptNs2bNUmFhoXr27Mk5AkCFBx98UDfeeGOl84HE/yUAnLRnzx5FRUWpWbNmuvPOO3Xo0CFJF8d5ws3ZBaD2ZGVlyWazKTw8vNLy8PBw7dy500lVAair0tLSJOm054wT6wBcWux2ux5++GH17t1b7dq1k2SeKzw8PBQUFFRpW84VwKVl69at6tmzp0pKSuTn56c5c+aoTZs22rRpE+cIAJo1a5Y2btyodevWVVnH/yUASGb3junTpys+Pl6pqal6/vnndfnllysxMfGiOE8QwgMAAOCsPPjgg0pMTKzUmxEAJCk+Pl6bNm1Sbm6uvvzyS40aNUpLly51dlkA6oDDhw/roYce0sKFC+Xl5eXscgDUUddff33F8w4dOqh79+5q3LixvvjiC3l7ezuxsppBO5pLSEhIiFxdXavMHJyenq6IiAgnVQWgrjpxXuCcAUCSxo0bp++++06//PKLYmJiKpZHRESotLRUOTk5lbbnXAFcWjw8PNSiRQt17txZkyZNUkJCgv73v/9xjgCgDRs2KCMjQ506dZKbm5vc3Ny0dOlSvf7663Jzc1N4eDjnCQBVBAUFqWXLltq7d+9F8f8JQvhLiIeHhzp37qzFixdXLLPb7Vq8eLF69uzpxMoA1EVNmzZVREREpXNGXl6e1qxZwzkDuIQYhqFx48Zpzpw5+vnnn9W0adNK6zt37ix3d/dK54pdu3bp0KFDnCuAS5jdbpfVauUcAUDXXHONtm7dqk2bNlU8unTpojvvvLPiOecJAL9XUFCgffv2KTIy8qL4/wTtaC4xEydO1KhRo9SlSxd169ZNU6ZMUWFhocaMGePs0gA4QUFBgfbu3VvxOikpSZs2bVLDhg3VqFEjPfzww/rXv/6luLg4NW3aVE8//bSioqI0aNAg5xUNoFY9+OCDmjlzpr799lv5+/tX9FwMDAyUt7e3AgMDde+992rixIlq2LChAgICNH78ePXs2VM9evRwcvUAasMTTzyh66+/Xo0aNVJ+fr5mzpypJUuWaMGCBZwjAMjf379iLpkTfH19FRwcXLGc8wSARx55RAMHDlTjxo2VkpKiZ599Vq6urrr99tsviv9PEMJfYkaMGKHMzEw988wzSktLU8eOHTV//vwqEy8CuDSsX79effv2rXg9ceJESdKoUaM0ffp0PfrooyosLNTYsWOVk5OjPn36aP78+fRyBC4hb7/9tiTpqquuqrT8ww8/1OjRoyVJ//3vf+Xi4qIhQ4bIarVqwIABeuutt2q5UgDOkpGRoZEjRyo1NVWBgYHq0KGDFixYoP79+0viHAHgzDhPADhy5Ihuv/12HT16VKGhoerTp49Wr16t0NBQSfX/PGExDMNwdhEAAAAAAAAAAFyM6AkPAAAAAAAAAICDEMIDAAAAAAAAAOAghPAAAAAAAAAAADgIITwAAAAAAAAAAA5CCA8AAAAAAAAAgIMQwgMAAAAAAAAA4CCE8AAAAAAAAAAAOAghPAAAAIAaYbFY9M033zi7DAAAAKBOIYQHAAAALgKjR4+WxWKp8rjuuuucXRoAAABwSXNzdgEAAAAAasZ1112nDz/8sNIyT09PJ1UDAAAAQGIkPAAAAHDR8PT0VERERKVHgwYNJJmtYt5++21df/318vb2VrNmzfTll19Wev/WrVt19dVXy9vbW8HBwRo7dqwKCgoqbfPBBx+obdu28vT0VGRkpMaNG1dpfVZWlm699Vb5+PgoLi5Oc+fOdeyHBgAAAOo4QngAAADgEvH0009ryJAh2rx5s+68807ddttt2rFjhySpsLBQAwYMUIMGDbRu3TrNnj1bixYtqhSyv/3223rwwQc1duxYbd26VXPnzlWLFi0qHeP555/X8OHDtWXLFt1www268847lZ2dXaufEwAAAKhLLIZhGM4uAgAAAMCFGT16tD799FN5eXlVWv7kk0/qySeflMVi0QMPPKC33367Yl2PHj3UqVMnvfXWW/q///s/PfbYYzp8+LB8fX0lST/88IMGDhyolJQUhYeHKzo6WmPGjNG//vWv09ZgsVj01FNP6YUXXpBkBvt+fn768ccf6U0PAACASxY94QEAAICLRN++fSuF7JLUsGHDiuc9e/astK5nz57atGmTJGnHjh1KSEioCOAlqXfv3rLb7dq1a5csFotSUlJ0zTXXVFtDhw4dKp77+voqICBAGRkZ5/uRAAAAgHqPEB4AAAC4SPj6+lZpD1NTvL29z2o7d3f3Sq8tFovsdrsjSgIAAADqBXrCAwAAAJeI1atXV3ndunVrSVLr1q21efNmFRYWVqxfsWKFXFxcFB8fL39/fzVp0kSLFy+u1ZoBAACA+o6R8AAAAMBFwmq1Ki0trdIyNzc3hYSESJJmz56tLl26qE+fPpoxY4bWrl2r999/X5J055136tlnn9WoUaP03HPPKTMzU+PHj9fdd9+t8PBwSdJzzz2nBx54QGFhYbr++uuVn5+vFStWaPz48bX7QQEAAIB6hBAeAAAAuEjMnz9fkZGRlZbFx8dr586dkqTnn39es2bN0l/+8hdFRkbqs88+U5s2bSRJPj4+WrBggR566CF17dpVPj4+GjJkiCZPnlyxr1GjRqmkpET//e9/9cgjjygkJERDhw6tvQ8IAAAA1EMWwzAMZxcBAAAAwLEsFovmzJmjQYMGObsUAAAA4JJCT3gAAAAAAAAAAByEEB4AAAAAAAAAAAehJzwAAABwCaALJQAAAOAcjIQHAAAAAAAAAMBBCOEBAAAAAAAAAHAQQngAAAAAAAAAAByEEB4AAAAAAAAAAAchhAcAAAAAAAAAwEEI4QEAAAAAAAAAcBBCeAAAAAAAAAAAHIQQHgAAAAAAAAAAByGEBwAAAOqQt956SxaLRd27d3d2KQAAAABqgMUwDMPZRQAAAAAw9e7dWykpKTpw4ID27NmjFi1aOLskAAAAABeAkfAAAABAHZGUlKSVK1dq8uTJCg0N1YwZM5xd0mkVFhY6uwQAAACg3iCEBwAAAOqIGTNmqEGDBrrxxhs1dOjQ04bwOTk5mjBhgpo0aSJPT0/FxMRo5MiRysrKqtimpKREzz33nFq2bCkvLy9FRkZq8ODB2rdvnyRpyZIlslgsWrJkSaV9HzhwQBaLRdOnT69YNnr0aPn5+Wnfvn264YYb5O/vrzvvvFOS9Ouvv2rYsGFq1KiRPD09FRsbqwkTJqi4uLhK3Tt37tTw4cMVGhoqb29vxcfH6x//+Ick6ZdffpHFYtGcOXOqvG/mzJmyWCxatWrVOf95AgAAAHWBm7MLAAAAAGCaMWOGBg8eLA8PD91+++16++23tW7dOnXt2lWSVFBQoMsvv1w7duzQPffco06dOikrK0tz587VkSNHFBISIpvNpptuukmLFy/Wbbfdpoceekj5+flauHChEhMT1bx583Ouq7y8XAMGDFCfPn306quvysfHR5I0e/ZsFRUV6c9//rOCg4O1du1avfHGGzpy5Ihmz55d8f4tW7bo8ssvl7u7u8aOHasmTZpo3759mjdvnl588UVdddVVio2N1YwZM3TrrbdW+TNp3ry5evbseQF/sgAAAIDzEMIDAAAAdcCGDRu0c+dOvfHGG5KkPn36KCYmRjNmzKgI4V955RUlJibq66+/rhRWP/XUUzox1dPHH3+sxYsXa/LkyZowYULFNo8//rjOdzooq9WqYcOGadKkSZWW//vf/5a3t3fF67Fjx6pFixZ68skndejQITVq1EiSNH78eBmGoY0bN1Ysk6SXX35ZkmSxWHTXXXdp8uTJys3NVWBgoCQpMzNTP/30U8WIeQAAAKA+oh0NAAAAUAfMmDFD4eHh6tu3ryQzmB4xYoRmzZolm80mSfrqq6+UkJBQZbT4ie1PbBMSEqLx48f/4Tbn489//nOVZacG8IWFhcrKylKvXr1kGIZ+++03SWaQvmzZMt1zzz2VAvjf1zNy5EhZrVZ9+eWXFcs+//xzlZeX66677jrvugEAAABnI4QHAAAAnMxms2nWrFnq27evkpKStHfvXu3du1fdu3dXenq6Fi9eLEnat2+f2rVrV+2+9u3bp/j4eLm51dxNr25uboqJiamy/NChQxo9erQaNmwoPz8/hYaG6sorr5Qk5ebmSpL2798vSWesu1WrVuratWulPvgzZsxQjx491KJFi5r6KAAAAECtox0NAAAA4GQ///yzUlNTNWvWLM2aNavK+hkzZujaa6+tseP90Yj4EyPuf8/T01MuLi5Vtu3fv7+ys7P12GOPqVWrVvL19VVycrJGjx4tu91+znWNHDlSDz30kI4cOSKr1arVq1frzTffPOf9AAAAAHUJITwAAADgZDNmzFBYWJimTp1aZd3XX3+tOXPmaNq0aWrevLkSExOr3Vfz5s21Zs0alZWVyd3d/bTbNGjQQJKUk5NTafnBgwfPuuatW7dq9+7d+uijjzRy5MiK5QsXLqy0XbNmzSTpjHVL0m233aaJEyfqs88+U3Fxsdzd3TVixIizrgkAAACoi2hHAwAAADhRcXGxvv76a910000aOnRolce4ceOUn5+vuXPnasiQIdq8ebPmzJlTZT8nJl0dMmSIsrKyTjuC/MQ2jRs3lqurq5YtW1Zp/VtvvXXWdbu6ulba54nn//vf/yptFxoaqiuuuEIffPCBDh06dNp6TggJCdH111+vTz/9VDNmzNB1112nkJCQs64JAAAAqIsYCQ8AAAA40dy5c5Wfn6+bb775tOt79Oih0NBQzZgxQzNnztSXX36pYcOG6Z577lHnzp2VnZ2tuXPnatq0aUpISNDIkSP18ccfa+LEiVq7dq0uv/xyFRYWatGiRfrLX/6iW265RYGBgRo2bJjeeOMNWSwWNW/eXN99950yMjLOuu5WrVqpefPmeuSRR5ScnKyAgAB99dVXOnbsWJVtX3/9dfXp00edOnXS2LFj1bRpUx04cEDff/+9Nm3aVGnbkSNHaujQoZKkF1544ez/IAEAAIA6ihAeAAAAcKIZM2bIy8tL/fv3P+16FxcX3XjjjZoxY4asVqt+/fVXPfvss5ozZ44++ugjhYWF6ZprrqmYONXV1VU//PCDXnzxRc2cOVNfffWVgoOD1adPH7Vv375iv2+88YbKyso0bdo0eXp6avjw4XrllVfOOIHqCe7u7po3b57++te/atKkSfLy8tKtt96qcePGKSEhodK2CQkJWr16tZ5++mm9/fbbKikpUePGjTV8+PAq+x04cKAaNGggu93+hxcmAAAAgPrEYvz+HlAAAAAAcJLy8nJFRUVp4MCBev/9951dDgAAAHDB6AkPAAAAoM745ptvlJmZWWmyVwAAAKA+YyQ8AAAAAKdbs2aNtmzZohdeeEEhISHauHGjs0sCAAAAagQj4QEAAAA43dtvv60///nPCgsL08cff+zscgAAAIAa49QQftmyZRo4cKCioqJksVj0zTffnPE9S5YsUadOneTp6akWLVpo+vTpDq8TAAAAgGNNnz5d5eXlWr9+/VlPDgsAAADUB04N4QsLC5WQkKCpU6ee1fZJSUm68cYb1bdvX23atEkPP/yw7rvvPi1YsMDBlQIAAAAAAAAAcO7qTE94i8WiOXPmaNCgQX+4zWOPPabvv/9eiYmJFctuu+025eTkaP78+bVQJQAAAAAAAAAAZ8/N2QWci1WrVqlfv36Vlg0YMEAPP/zwH77HarXKarVWvLbb7crOzlZwcLAsFoujSgUAAAAAAAAAXKQMw1B+fr6ioqLk4lJ9w5l6FcKnpaUpPDy80rLw8HDl5eWpuLhY3t7eVd4zadIkPf/887VVIgAAAAAAAADgEnH48GHFxMRUu029CuHPxxNPPKGJEydWvM7NzVWjRo10+PBhBQQEOLEyAAAAAAAAAEB9lJeXp9jYWPn7+59x23oVwkdERCg9Pb3SsvT0dAUEBJx2FLwkeXp6ytPTs8rygIAAQngAAAAAAAAAwHk7m5bn1TerqWN69uypxYsXV1q2cOFC9ezZ00kVAQAAAAAAAADwx5wawhcUFGjTpk3atGmTJCkpKUmbNm3SoUOHJJmtZEaOHFmx/QMPPKD9+/fr0Ucf1c6dO/XWW2/piy++0IQJE5xRPgAAAAAAAAAA1XJqCL9+/XpddtlluuyyyyRJEydO1GWXXaZnnnlGkpSamloRyEtS06ZN9f3332vhwoVKSEjQa6+9pvfee08DBgxwSv0AAAAAAAAAAFTHYhiG4ewialNeXp4CAwOVm5tLT3gAAAAAAAAANcZms6msrMzZZaAGuLu7y9XV9Q/Xn0vOXK8mZgUAAAAAAACAusYwDKWlpSknJ8fZpaAGBQUFKSIi4qwmX60OITwAAAAAAAAAXIATAXxYWJh8fHwuOLSFcxmGoaKiImVkZEiSIiMjL2h/hPAAAAAAAAAAcJ5sNltFAB8cHOzsclBDvL29JUkZGRkKCwurtjXNmTh1YlYAAAAAAAAAqM9O9ID38fFxciWoaSf+Ti+0zz8hPAAAAAAAAABcIFrQXHxq6u+UEB4AAAAAAAAAAAchhAcAAAAAAAAA1IgmTZpoypQpzi6jTiGEBwAAAAAAAIBLjMViqfbx3HPPndd+161bp7Fjx9ZssfWcm7MLAAAAAAAAAADUrtTU1Irnn3/+uZ555hnt2rWrYpmfn1/Fc8MwZLPZ5OZ25jg5NDS0Zgu9CDASHgAAAAAAAAAuMRERERWPwMBAWSyWitc7d+6Uv7+/fvzxR3Xu3Fmenp5avny59u3bp1tuuUXh4eHy8/NT165dtWjRokr7/X07GovFovfee0+33nqrfHx8FBcXp7lz59byp3UuQngAAAAAAAAAqEGGYaiotNwpD8MwauxzPP7443r55Ze1Y8cOdejQQQUFBbrhhhu0ePFi/fbbb7ruuus0cOBAHTp0qNr9PP/88xo+fLi2bNmiG264QXfeeaeys7NrrM66jnY0AAAAAAAAAFCDistsavPMAqcce/s/B8jHo2Zi33/+85/q379/xeuGDRsqISGh4vULL7ygOXPmaO7cuRo3btwf7mf06NG6/fbbJUkvvfSSXn/9da1du1bXXXddjdRZ1zESHgAAAAAAAABQRZcuXSq9Ligo0COPPKLWrVsrKChIfn5+2rFjxxlHwnfo0KHiua+vrwICApSRkeGQmusiRsIDAAAAAAAAQA3ydnfV9n8OcNqxa4qvr2+l14888ogWLlyoV199VS1atJC3t7eGDh2q0tLSavfj7u5e6bXFYpHdbq+xOus6QngAAAAAAAAAqEEWi6XGWsLUJStWrNDo0aN16623SjJHxh84cMC5RdUDtKMBAAAAAAAAAJxRXFycvv76a23atEmbN2/WHXfccUmNaD9fhPAAAAAAAAAAgDOaPHmyGjRooF69emngwIEaMGCAOnXq5Oyy6jyLYRiGs4uoTXl5eQoMDFRubq4CAgKcXQ4AAAAAAACAeqykpERJSUlq2rSpvLy8nF0OalB1f7fnkjMzEh4AAAAAAAAAAAchhAcAAAAAAAAAwEEI4QEAAAAAAAAAcBBCeAAAAAAAAAAAHIQQHgAAAAAAAAAAByGEBwAAAAAAAADAQQjhAQAAAAAAAABwEEJ4AAAAAAAAAAAchBAeAAAAAAAAAAAHIYQHAAAAAAAAAJyzq666Sg8//HDF6yZNmmjKlCnVvsdiseibb7654GPX1H5qAyE8AAAAAAAAAFxiBg4cqOuuu+6063799VdZLBZt2bLlnPa5bt06jR07tibKq/Dcc8+pY8eOVZanpqbq+uuvr9FjOQohPAAAAAAAAABcYu69914tXLhQR44cqbLuww8/VJcuXdShQ4dz2mdoaKh8fHxqqsRqRUREyNPTs1aOdaEI4QEAAAAAAADgEnPTTTcpNDRU06dPr7S8oKBAs2fP1qBBg3T77bcrOjpaPj4+at++vT777LNq9/n7djR79uzRFVdcIS8vL7Vp00YLFy6s8p7HHntMLVu2lI+Pj5o1a6ann35aZWVlkqTp06fr+eef1+bNm2WxWGSxWCrq/X07mq1bt+rqq6+Wt7e3goODNXbsWBUUFFSsHz16tAYNGqRXX31VkZGRCg4O1oMPPlhxLEdyc/gRAAAAAAAAAOBSYhhSWZFzju3uI1ksZ9zMzc1NI0eO1PTp0/WPf/xDluPvmT17tmw2m+666y7Nnj1bjz32mAICAvT999/r7rvvVvPmzdWtW7cz7t9ut2vw4MEKDw/XmjVrlJubW6l//An+/v6aPn26oqKitHXrVt1///3y9/fXo48+qhEjRigxMVHz58/XokWLJEmBgYFV9lFYWKgBAwaoZ8+eWrdunTIyMnTfffdp3LhxlS4y/PLLL4qMjNQvv/yivXv3asSIEerYsaPuv//+M36eC0EIDwAAAAAAAAA1qaxIeinKOcd+MkXy8D2rTe+55x698sorWrp0qa666ipJZiuaIUOGqHHjxnrkkUcqth0/frwWLFigL7744qxC+EWLFmnnzp1asGCBoqLMP4uXXnqpSh/3p556quJ5kyZN9Mgjj2jWrFl69NFH5e3tLT8/P7m5uSkiIuIPjzVz5kyVlJTo448/lq+v+dnffPNNDRw4UP/+978VHh4uSWrQoIHefPNNubq6qlWrVrrxxhu1ePFih4fwtKMBAAAAAAAAgEtQq1at1KtXL33wwQeSpL179+rXX3/VvffeK5vNphdeeEHt27dXw4YN5efnpwULFujQoUNnte8dO3YoNja2IoCXpJ49e1bZ7vPPP1fv3r0VEREhPz8/PfXUU2d9jFOPlZCQUBHAS1Lv3r1lt9u1a9euimVt27aVq6trxevIyEhlZGSc07HOByPhAQAAAAAAAKAmufuYI9KddexzcO+992r8+PGaOnWqPvzwQzVv3lxXXnml/v3vf+t///ufpkyZovbt28vX11cPP/ywSktLa6zUVatW6c4779Tzzz+vAQMGKDAwULNmzdJrr71WY8c4lbu7e6XXFotFdrvdIcc6FSE8AAAAAAAAANQki+WsW8I42/Dhw/XQQw9p5syZ+vjjj/XnP/9ZFotFK1as0C233KK77rpLktnjfffu3WrTps1Z7bd169Y6fPiwUlNTFRkZKUlavXp1pW1Wrlypxo0b6x//+EfFsoMHD1baxsPDQzab7YzHmj59ugoLCytGw69YsUIuLi6Kj48/q3odiXY0AAAAAAAAAHCJ8vPz04gRI/TEE08oNTVVo0ePliTFxcVp4cKFWrlypXbs2KE//elPSk9PP+v99uvXTy1bttSoUaO0efNm/frrr5XC9hPHOHTokGbNmqV9+/bp9ddf15w5cypt06RJEyUlJWnTpk3KysqS1Wqtcqw777xTXl5eGjVqlBITE/XLL79o/Pjxuvvuuyv6wTsTITwAAAAAAAAAXMLuvfdeHTt2TAMGDKjo4f7UU0+pU6dOGjBggK666ipFRERo0KBBZ71PFxcXzZkzR8XFxerWrZvuu+8+vfjii5W2ufnmmzVhwgSNGzdOHTt21MqVK/X0009X2mbIkCG67rrr1LdvX4WGhuqzzz6rciwfHx8tWLBA2dnZ6tq1q4YOHaprrrlGb7755rn/YTiAxTAMw9lF1Ka8vDwFBgYqNzdXAQEBzi4HAAAAAAAAQD1WUlKipKQkNW3aVF5eXs4uBzWour/bc8mZGQkPAAAAAAAAAICDEMIDAAAAAAAAAOAghPAAAAAAAAAAADgIITwAAAAAAAAAAA5CCA8AAAAAAAAAF8gwDGeXgBpWU3+nhPAAAAAAAAAAcJ7c3d0lSUVFRU6uBDXtxN/pib/j8+VWE8UAAAAAAAAAwKXI1dVVQUFBysjIkCT5+PjIYrE4uSpcCMMwVFRUpIyMDAUFBcnV1fWC9kcIDwAAAAAAAAAXICIiQpIqgnhcHIKCgir+bi8EITwAAAAAAAAAXACLxaLIyEiFhYWprKzM2eWgBri7u1/wCPgTCOEBAAAAAAAAoAa4urrWWHB7rnan52vToRwlxAapZbgfLXHqEEJ4AAAAAAAAAKinym12vb1kn/63eI/K7YYkKSLAS5fHheiKlqHq0yJEDXw9nFzlpc1iGIbh7CJqU15engIDA5Wbm6uAgABnlwMAAAAAAAAA52V/ZoEmfrFZmw7nSJJaRfgrKatQ1nJ7xTYWi9QhOlBXtAzVFS1D1TE2SO6uLk6q+OJxLjkzITwAAAAAAAAA1COGYejT1Qf10g87VVxmk7+Xm/55S1sN6hgta7lda5OytWx3pn7dk6Vd6fmV3uvv6aaezYN1RctQXdkyVLENfZz0Keo3QvhqEMIDAAAAAAAAqK/Sckv06FdbtGx3piSpV/NgvTosQVFB3n+4/bI9mVq2O1PL92Ypp6jyxLFNQ3zN1jVxoerZPFi+nnQwPxuE8NUghAcAAAAAAABQH83bnKKnvklUbnGZPN1c9Nh1rTS6VxO5uJzdJKw2u6HE5Fwt252pZXsytfFQjmz2k/Gwu6tFnRo1qBgl3yYy4Kz3fakhhK8GITwAAAAAAACA+iSnqFTPfLtNczenSJLaRwfqvyMS1CLM/4L2m19SppX7jlaE8oeziyutD/b1UJ/jo+QvbxmiMH+vCzrexYQQvhqE8AAAAAAAAADqi2W7M/X3LzcrPc8qVxeLHryqucZfE1fjk6sahqGDR4sqWtes2ndUhaW2Stu0jgzQFXEhuqJlqLo0aSBPN9caraE+IYSvBiE8AAAAAAAAgLquuNSmST/u0MerDkqSmoX46rXhCbqsUYNaOX5puV0bDx2rmOB1a3JupfV+nm5a949+8va4NIP4c8mZ6bIPAAAAAAAAAHXIb4eO6W9fbNb+rEJJ0siejfXE9a1rNfD2cHNRj2bB6tEsWI9eJx0tsGr53iwtPR7KxzTwvmQD+HNFCA8AAAAAAAAAdUCZza43Fu/R1CX7ZLMbCg/w1CtDE3RFy1Bnl6ZgP0/d0jFat3SMlmEYOlZU5uyS6g1CeAAAAAAAAABwsr0Z+Zrw+eaKti8DE6L0wi1tFeTj4eTKqrJYLGroW/fqqqsI4QEAAAAAAIAacji7SGEBnpf0hJU4N3a7oekrD+jf83fKWm5XoLe7XhjUTjcnRDm7NNQQQngAAAAAAACgBny86oCe+XabIgK89ODVLTS8SwxhPKqVklOsv3+5WSv2HpUkXdEyVP8Z0kERgV5Orgw1ycXZBUydOlVNmjSRl5eXunfvrrVr11a7/ZQpUxQfHy9vb2/FxsZqwoQJKikpqaVqAQAAAAAAgKpW7Tuq5+dtlySl5ZXo6W8SdfWrSzVzzSGVltudXB3qGsMwNOe3IxowZZlW7D0qL3cXvXBLW300pisB/EXIqSPhP//8c02cOFHTpk1T9+7dNWXKFA0YMEC7du1SWFhYle1nzpypxx9/XB988IF69eql3bt3a/To0bJYLJo8ebITPgEAAAAAAAAudUeOFenBmRtlsxu6pWOUOjduoKm/7FVyTrGenLNVby3Zq79eHadbO0XL3dXpY2LhZNmFpXrqm636YWuaJKljbJAmD09Qs1A/J1cGR7EYhmE46+Ddu3dX165d9eabb0qS7Ha7YmNjNX78eD3++ONVth83bpx27NihxYsXVyz729/+pjVr1mj58uVndcy8vDwFBgYqNzdXAQEBNfNBAAAAAAAAcEkqLrVp6LSV2paSp3bRAfrygV7ycndVSZlNn609pLeW7FNmvlWS1Kihj/56TZwGdYySG2F8hZIym3al5WtHap4OHC2SvZbiSk83F4X6eyrUz1Mhp3z19XCVxWJxyDF/3pmux77aqsx8q9xcLHromjj9+armfD/UQ+eSMzttJHxpaak2bNigJ554omKZi4uL+vXrp1WrVp32Pb169dKnn36qtWvXqlu3btq/f79++OEH3X333bVVNgAAAAAAACDJbCnyxNdbtC0lT8G+Hnrn7i7ycjd7wHu5u2pM76a6rWsjzVhzUNOW7tOh7CI9Mnuzpv6yV3+9poVuToiWq4tjwt66yDAMZeRbtT01TztS87Qj1Qze92cWyO60YcJVebu7KsTfQ6F+ngr191TIab6GHf/q7XF2Pf8LreX61/c79NnaQ5KkFmF++u/wjmofE+jIj4I6wmkhfFZWlmw2m8LDwystDw8P186dO0/7njvuuENZWVnq06ePDMNQeXm5HnjgAT355JN/eByr1Sqr1VrxOi8vr2Y+AAAAAAAAAC5p7y9P0jebUuTqYtHUOzspOsi7yjbeHq667/JmuqN7I32y6qDeWbZfSVmFmvD5Zr3581491K+lbmwfedGF8aXldu3LLDgetpuB+/bUPGUXlp52+4a+HmoTGaAWYX7ydKudUeGFpeXKyi9VVoFVmQVWZeZbVVRqU3GZTYezi3U4u/iM+/DzdDsezHucDOp/F9rnlZTpqW8SdfBokSTpnt5N9eh18RUXbHDxc2pP+HO1ZMkSvfTSS3rrrbfUvXt37d27Vw899JBeeOEFPf3006d9z6RJk/T888/XcqUAAAAAAAC4mC3fk6WXftghSXrmpjbq0Sy42u19PNz0pyub664ejfXRqgN6d9l+7css1F8/+01vLN6jh/u11PXtIuRSD8P4Y4Wl2pGap+3HHztS87U3I19ltqrD210sUrNQP7WODFDrSH+1jgxQm8gAhfl7OqwFzLkotJYrq8BqBvP5xx8FpcrMP7nsxFdruV0F1nIVWMuVlFV4xn1HBXrp1WEJ6tUipBY+CeoSp/WELy0tlY+Pj7788ksNGjSoYvmoUaOUk5Ojb7/9tsp7Lr/8cvXo0UOvvPJKxbJPP/1UY8eOVUFBgVxcql4lO91I+NjYWHrCAwAAAAAA4LwcOlqkm6cuV05RmYZ2jtErQzucc4CcX1Km6SsO6P9+3a+8knJJUqsIfz3cL07XtqmbYbzNbigpq/CU0e1m4J6WV3La7f093SqF7a0jAxQf4X9RjAA3DEP51nJl5Z8I5kuVmV9y/Ks5sv5EWJ9fUq7r2kXo6ZvaKNDb3dmlo4bUi57wHh4e6ty5sxYvXlwRwtvtdi1evFjjxo077XuKioqqBO2uruYP7R9dS/D09JSnp2fNFQ4AAAAAAIBLVlFpucZ+sl45RWVKiAnUvwa1O68R3P5e7hp/TZxG9W6iD5Yn6f1fk7QzLV8PfLpRbSIDNKF/S/VrHea00eH5JWXaeXyyVHOUe752peWppMx+2u0bNfSpFLa3iQxQTAPvOjG63REsFosCvNwV4OWuZqF+zi4HdZxT29FMnDhRo0aNUpcuXdStWzdNmTJFhYWFGjNmjCRp5MiRio6O1qRJkyRJAwcO1OTJk3XZZZdVtKN5+umnNXDgwIowHgAAAAAAAHVbSZlNicm5OpRdpOvaRcjHo350TDYMQ3+fvUU70/IV4uepaXd3vuBR3QFe7nq4X0uN6dVU7y/frw9WHND21Dzd//F6tY8O1IT+ceob77gw3jAMHTlWfMpkqebo9kPZRafd3svdRfERAWpzSiuZ+Ah/+Xsxwhv4I049w40YMUKZmZl65plnlJaWpo4dO2r+/PkVk7UeOnSo0sj3p556ShaLRU899ZSSk5MVGhqqgQMH6sUXX3TWRwAAAAAAAMAZHC2wav3BY9pw8JjWH8hWYnKeSm3miOoPViTpg1FdFRbg5eQqz+ztpfv0/dZUubtaNO2uTooMrDoR6/kK9HHXxGvjNaZ3U/3fr/s1feUBbU3O1T3T1yshNkgT+sXpypahFxTGl5TZtOuU0e07UvO1Iy1P+cfb4fxeRIBX5dHtUQFqEux70U0iCzia03rCO8u59OoBAAAAAADAuTEMQ/syC7T+wLGK4P10k1YG+3qo3G4ot7hM0UHemj6mq+LC/Z1Q8dlZsitDY6avk2FIL97aTnd2b+zQ4x0tsOrdX/fr45UHVVxmkyR1ahSkCf1bqk+LkGrDeMMwlJlv1bZTw/bUPO3PLJD9NEmgu6tFLcL81TrSX22Oj25vFRmghr4ejvp4QL13LjkzITwAAAAAAHWItdymp79J1Iq9R3VXj8Ya2bOxfD3rR6sOXJpKymzaciRX6w9ma8OBY9pw6JhyisqqbBcX5qcuTRqoc+OG6tK4gRoH++hQdpFGf7hOSVmF8vdy07t3d1HP5sFO+BTVS8oq1C1vLldeSblu79ZIkwa3r7VjZ+Zb9c7Sffpk9UFZy827B7o2aaAJ/VuqV/MQldns2ptRUHl0e2qejhaWnnZ/wb4eVSZLbR7qJw83l9NuD+D0COGrQQgPAAAAAKircovKdP8n67U2KbtiWbCvh/50ZTPd3aOJvD2YDw3Ol5lv1YaD2WZrmYPHlJicqzJb5XjJ081FCbFB6tK4gbo0aaBOjRooyOf0o6qPFZbq/o/Xa/3BY3J3tejVYQm6pWN0bXyUs1JgLdetU1doT0aBOjduoJn3d5enW+3/LGbklejtpfs0Y80hlR4P42Mbeis911rR2udULhapWahfpcC9TWSAwvw9L9rJUoHaRAhfDUJ4AAAAAEBddDi7SGOmr9PejAL5e7pp7BXN9OXGIzp41JwcMcTPUw9c2Ux39Wh8wRNBAmfLbje0t6K1jBm8n/iePFWIn2dF4N65cQO1jQo8p5HVJWU2/e2Lzfp+a6ok6e8D4vWXq5o7PSy22w098OkG/bQ9XeEBnpo3ro/Te9en5Zbo7SV79dnawxXhu7+nW+WwPSpALcP9OVcADkQIXw1CeAAAAABAXbP1SK7GTF+nrAKrIgO99OGYrmoVEaBym11f/5as1xfv0ZFjxZKkMH9P/eWq5rqtWyMCNjjErrR8LdqRrvUHsrXxUI5yi6u2lmkZ7lfRVqZLkwZq1NDnggNzu93Qy/N36t1l+yVJt3drpBduaSs3V+e1SXl98R5NXrhbHq4u+vxPPXRZowZOq+X30nJLtCs9X81CfBXTwNvpFyyASw0hfDUI4QEAAADg4mK3G7IbhlODugvx8850PTjjNxWX2dQqwl/Tx3RTRGDlkbZlNru+2nBEb/y8V8k5ZhgfEeClB/s21/CusU5pjYGL08ZDxzR82iqVnzJ7p5e7izrGBqlL44bq3KSBOsU2UKCPu8Nq+GjlAT03b5sMQ+obH6o37+jklHkRFm5P1/0fr5ck/WdIBw3vGlvrNQCouwjhq0EIDwAAAAAXh5ScYn229pA+W3tYFos06db26tcm3NllnZNPVx/UM98mym5Il8eF6K07O8nf64/DzdJyu75Yf1hTf9mr1NwSSVJUoJfGXR2noZ1jmFgRF8RmN3Tzm8u1LSVPlzUK0k0dotSlcQO1iQqQey1f5PppW5r+Ous3lZTZ1S46QB+M6lqrbWD2ZhRo0NQVKrCWa2TPxvrnLe1q7dgA6gdC+GoQwgMAAABA/WW3G1qxL0ufrDqoRTvSZf/db7S3dY3VUze1kZ8TRs2eC7vd0H8W7NK0pfskScO7xOjFW9ufddBpLbfp83VmGJ+eZ5UkRQd566/XtNDgTjG1Hpji4vDxqgN65tttCvBy08+PXKUQP0+n1rPpcI7unb5ORwtLFR3kreljuiou3N/hx80rKdOgqSu0P7NQ3Zo21Iz7uvMzBaAKQvhqEMIDAAAAQP2TW1Sm2RsOa8aaQ0rKKqxY3rNZsO7q0VibDh/Te8uTZBhSbENvTR7eUV2bNHRixX/MWm7TI7O3aN7mFEnSxP4tNf7qFufVz7mkzKbP1h7SW0v2KTPfDOMbNfTR+Ktb6NbLouttix7Uvsx8q65+bYnyS8r1wqB2urtHY2eXJEk6dLRIoz9cq/1ZhfL3ctO7d3dRz+bBDjue3W7o/o/Xa/HODEUGemne+D5OvxgBoG4ihK8GITwAAAAA1B+Jybn6eNUBzd2copIyuyTJ39NNQzrH6M7ujSqNil29/6j+9sVmJecUy2KRxl7RTBP7t6xT/dJziko19pMNWpuULTcXi14e0kFDO8dc8H6LS22aseagpi3dp6yCUklSk2AfPdQvTjcnRMvVhQkbUb2/fbFZX208ovbRgfrmwd516nvmWGGp7v94vdYfPCZ3V4teHZagWzpGO+RYk3/apdd/3itPNxd9+UAvtY8JdMhxANR/hPDVIIQHAAAAgLqtpMym77ek6pPVB7XpcE7F8lYR/hrZs4lu6Rj1h5M05peU6fl52/XlhiMV7/nviI5qHen83/8OZ5sjevdlFsrf003T7u6s3i1CavQYRaXl+mTVQb2zbL+yC80wvlmorx66Jk43dYiqU8Eq6o51B7I1bNoqWSzSnL/0VsfYIGeXVEVJmU1/+2Kzvt+aKkn6+4B4/eWq5ud1B8kfmZ+Yqgc+3ShJmjw8QYM7XfgFMgAXL0L4ahDCAwAAAEDddOhokWasOagv1h/WsaIySZK7q0U3tI/U3T0aq3PjBmcduC3YlqYnv96qo4Wlcne1aGL/eI29opnTQugtR3J0z/T1yiqwKjLQSx+O6apWEY77nbTQWq6PVh3Qu8v2K+f4n2VcmJ8e6henG9pFyoUwHseV2+y66Y3l2pmWr9u7xWrS4A7OLukP2e2GXp6/U+8u2y9Jur1bI71wS9saabu0Ky1ft761QkWlNt3bp6mevqnNBe8TwMWNEL4ahPAAAAAAUHfY7IaW7MrQJ6sPaunuTJ34DTU6yFt3dG+kEV1jz7sfc1aBVY9/tVWLdqRLkro2aaDXhnVUo2Cfmir/rCzeka5xM39TcZlNrSL8NX1MN0UEetXKsfNLyjR9xQH936/7lVdSLkmKD/fXhP5xurZNBGE89MHyJP3zu+0K8nHXz3+7Sg19PZxd0hl9tPKAnp+3TXZD6hsfqjfv6PSHd8ecjdyiMt08dbkOHi1Sr+bB+viebsynAOCMCOGrQQgPAAAAAM53tMCqz9cf1ozVh5ScU1yx/MqWobq7R2P1bRVWI6PWDcPQ7PVH9Py8bSostcnXw1VP39RGI7rG1mgbiz/y6eqDeubbRNkN6fK4EL11Zyf5e7k7/Li/l1dSpg+WJ+n9X5OUbzXD+NaRAZrQL07924TXyp8F6p6MvBJd/dpSFVjLNWlwe93erZGzSzprP21L019n/aaSMrvaRQfog1FdFRZw7he3bHZDY6av07LdmYoO8ta88X3qxYUIAM5HCF8NQngAAAAAcA7DMLTxUI4+XX1Q329JVanNnGg1yMddw7vE6o5ujdQkxNchxz6cXaS/fbFZaw9kS5L6tQ7TpMEdFOp/fqPsz8RuN/SfBbs0bek+SdKwzjF6aXB7uTt5dG1uUZneX75fH6w4oILjYXy76AA9c1NbdWva0Km11aQVe7O0IzVPjRr6qEmIrxo19JGXe92ZoLeueHjWb/pmU4oSYoM058+96t2dEZsO5+je6et0tLBU0UHemj6ma6XJms/Gv+fv1NtL9snL3UVf/bmX2kYxESuAs0MIXw1CeAAAAACoXUWl5fp2U4o+WXVQ21PzKpYnxATqrh6NNTAhqlYCUpvd0PvL9+vVBbtVarOroa+HXrq1na5rF1mjx7GW2/TI7C2atzlFkjSxf0uNv7pFnRptfqywVO8t368PVxxQUalN3u6umjuu9zkHmHXR+gPZGvHuatnsleOO8ABPNQ72VeNTgvnGwT5qHOyrQO/avzvB2VbtO6rb/2+1LBZp7oN91D6mfobPh46aEx7vzyqUv5eb3r27i3o2Dz6r9363JUXjZv4mSXr99st0c0KUI0sFcJEhhK8GITwAAAAA1I69GQX6dPVBfbXhSEULFE83F92cEKW7ejRWQmyQU+ramZanCZ9v1o7jFwQGd4rWcze3VUANtInJKSrV2E82aG1SttxcLHp5SAcN7Rxzwft1lKMFVo3/7Det3HdUcWF++nZcb/l4nH9vbWfLLizVja//qtTcErWODJCri3TwaJHyj/fD/yNBPu5q3NAM5E8E842DfdS4oY9C/T3r1AWUmlBms+uG//2qPRkFuqtHI/1rUHtnl3RBjhWW6v6P12v9wWNyd7Xo1WEJuqVjdLXv2Z6SpyFvr1RxmU1/urKZnri+dS1VC+BiQQhfDUJ4AAAAAHAswzA0eeFuvfHz3oplTYJ9dFePxhraOUZBPs7vt2wtt2nKoj16Z+k+2Q1zIthXhnVQr+Yh573Pw9nmiNx9mYXy93TTtLs7q3eL899fbcnMt+qG139VZr5VwzrH6JVhCc4u6bzY7Ybu/WidftmVqWahvpo3ro98Pd1kGIZyisp04GihDmUX6eDRIvP50SIdzC5SZr612v16u7uqcbBPpdY2TY6H9JGBXvVyAs93l+3TSz/sVENfD/38tyvrxM/khSops+lvX2zW91tTJUl/HxCvv1zV/LQXUI4Vlmrgm8t15FixLo8L0fQx3WpkDgoAlxZC+GoQwgMAAACA4/w+gO/XOlwjezZWnxYhdbLf9PoD2Zr4xWYdyi6SJN3bp6n+PiD+nNvjbDmSo3umr1dWgVWRgV76cExXtYqoP79zrtyXpbveWyO7Ib02LEFD6vDo/T8ybek+vfzjTnm6ueibB3urdeTZ/fkXWssrwvmDRwt1MLtIh44H9Sk5xbJXk5q4uVjUKNhHD10Td8aR13VFam6xrnltqYpKbfrP0A4a3iXW2SXVGLvd0Mvzd+rdZfslSbd3i9ULt7SrdKGk3GbXqA/XasXeo2oc7KNvH+x9UVyEAFD7COGrQQgPAAAAAI4zZdFuTVm0R5L0zE1tdE+fpk6u6MwKreX61/fb9dnaw5KkuDA//XdER7WLPrse2Yt3pGvczN9UXGZTqwh/TR/TTRGBXo4s2SFeX7xHkxfulre7q+aN760WYfWnP/yGg9ka/o7ZB37S4Pa6vVujGtlvabldyTnFJ0fOnxrUZxeptNycXNjFIr0/qqv6tgqrkeM60oMzN+r7Lanq1ChIXz5Q/yZjPRsfrTyg5+dtk92QrooP1dQ7OsnX02yz9K/vtuu95Uny8XDVnL/0VnxE/fk+B+qMomzp19ckDz+p7xPOrsZpCOGrQQgPAAAAAI7xxuI9em3hbknSUze21n2XN3NyRefm553pevTLrcoqsMrNxaKHronTn69qXm27kU9WH9Sz3ybKbkiXx4XorTs7yb8Gess7g81uaNQHa7V8b5Zahvvp2wf7yNvD8RPmXqhjhaW64Xgf+Fs6RmnKiI610sPdbjeUlleiyQt368sNR+Tj4aov/tTzrC/eOMPyPVm66/01crFI88b3UduoulvrhfppW5r+Ous3lZTZ1S46QB+M6qoV+7I04fPNkqS37+yk69vX7KTMwEWv3Cqt/T9p2StSSY7k5iU9vFXyq/sXIB3hXHLm+te4DAAAAABQ50z9ZW9FAP/49a3qXQAvSVe3CtdPE67Q9e0iVG439NrC3Rr2ziolZRVW2dZuNzTpxx16+hszgB/WOUYfjO5abwN4SXJ1sei/Izoq1N9Tu9ML9Nzcbc4u6YzsdkN/m71ZqbklahbiqxdvbV9rk6i6uFgUFeStSYPbq0+LEBWV2nTP9HVKzimuleOfq9Jyu56ZmyhJGtmzyUUdwEvStW0jNGtsTwX7eigxOU+3TF2hx7/aKkka17cFATxwLgxDSvxKerOr9NM/zAA+rI00YobkG+rs6uoFQngAAAAAwAWZtnSfXlmwS5I5GeIDVzZ3ckXnr6Gvh966s5MmD0+Qv6ebfjuUoxv+96s+WX1QJ24kt5bb9NDnm/TOUrPv9MT+LfWfoR3kXg8n6Py9UH9P/e+2jnKxSJ+vP6yvNx5xdknVem/5fv28M0Mebi56845O8jvecqQ2ubu66K27Oik+3F8Z+Vbd8+E65ZWU1XodZ/Le8v3an1moED9PTejf0tnl1IqOsUGa85feahbiq9TcElnL7bq6Vdgl8/mBGnFwlfReP+nLe6Scg5JfhHTzG9IDy6W4flItXfis72hHAwAAAAA4b+/9ul//+n6HJOlv/Vtq/DVxTq6o5iTnFOvvszdr5b6jkqQrW4bqHze21lPfJGptUrbcXCx6eUgHDa2Hk5ieyf8W7dF/F+2Wj4er5o7roxZhfs4uqYpT+8C/dGt73dG9ZvrAn6+UnGINmrpCGflW9WkRog/HdK0zF2aSc4rV77WlKi6zafLwBA3udPF9z1bnWGGpHvtqi4pKbZp6ZycFetffO1aAWpO1V1r0rLTzO/O1u6/U+yGp1zjJw9e5tdUR9ISvBiE8AAAAANSM9/+fvfsOi+L82jj+ZZdeFRCw0eyKvfceE1usid0YY3rML6a96b03Y2JiYoxGjS3RaJq9996wKwoWEOm97c77xwOiUZGysLtwPtfFxWybOauAcs8z52w7z3t/Hwfg2Z51yuXqUqNRY86OC3yy6iSZuUM4AdwcbJkxtiUda3ubsbrSYzBqjJ21mx3nYqnn68bypzpaVH/4+NQs+k3bypXEDAY0rca0EWXTB/5uQi8n8sAPO0nLMjC8ZQ0+HdbEIup6fN5+Vh2Lok2gJ4sfa2cRNQkhLFRqDGz+BPb9DMYcsNFBi3HQ7VVw8zV3dRZFesILIYQQQgghhChVv+y4cD2Af6ZHbf7Xq/ysgL+RTmfDw52C+GdyJxrnDtys6uHIb0+0L7cBPKj+8FNHNMPb1YFTV5N55y/L6Q+vaRov/HaYK4kZBHm78OHgEIsJlUOqezB9VAt0NvDb/kt8u+GsuUti06loVh2LQq+z4d1BjSzmz0oIYWGy02HrlzCtOez5UQXwdfrAEztgwNcSwJeQhPBCCCGEEEIIIYpk3q5w3sod2vlkt1pM6V233Ad7tX3cWPZkB34a14q/n+lEfb/yf2W1j5tj7gpzWLT3IssPXjZ3SQD8tPU866/3gW9uccNwu9f34d37QwD4Yu1p/jhovr76GdmG6wN2H+oQWCG+boWwSNEnIT3e3FXcntEIhxbCN61g/TuQmQR+TWDcnzB6Cfg0MHeF5ULZTywRQgghhBBCCGG1FuyO4I3loQA81jWYF/vUK/cBfB47vY5eDSvWSsAOtb2Z3KMOX68/w6t/HKVxDQ9qVTFff/j94fF8suokAG/2b0ijah5mq6UgY9oFcDE+jR82h/HS70fwc3eifS2vMq9j5pYwLsSm4ePmUG6vVhHC4u2cDqtfVW1dqreEWj2hdk+o1gL0Zo5mwzbBmjcg6oi67V4Der4JjYeDTtZum5L0hBdCCCGEEEIIM0nPMvDX4SvM3x1OTHImEzoG8VDHQIsZ5vhfi/dG8PLSowA80imI1/o1qDABfEVmMGqM+Wk3O8Niqe+n+sM72pV9f/iEtCz6TdvG5YR0+jepyjcjm1v015/RqPHMwoP8czQSd0dblj3Zgdo+bmV2/ItxafT6cjOZOUa+HtGM+5tVL7NjCyFyndsI84eAZrz1MUcPCOqqAvlaPaFSzbKrK/oErH0TzqxRtx3cofMUaPs42DmVXR1WTgazFkBCeCGEEEIIIYS5nY9JZf6ucH7bd5GkjJybHqvj48q794eYZdVsQX7bd5GXlh5B02BCx0De7N/QogNQYVrRyRn0/XobMSmZjGxTk4+GNCnT42uaxqS5+1h3IppAL2f+eqaTxbWhuZ2MbAOjf9rN/vB4qldy4o+nOuDj5lgmx37kl32sO3GV9sFeLJjUVr5fhShr8Rfgx26qDU2z0dDtFQjbCGfXqxXoGQk3P9+rTn4gH9gR7F1MX1NyFGz8EA7OUycGdLbQaiJ0fRlcLOv/HdZAQvgCSAgvhBBCCCGEMIccg5ENJ6OZtyucrWdirt9f09OJMW0DcHO04/M1p4hLzQJgQNNqvNa3AX4eZRPYFWTp/ku88PthNA3Gtw/g7YEy3LEi2n42hjGzdqNplPnK6p+2hvH+Pyew1+tY9mQHQqpbZhua24lLzWLId9u5EJtGkxoeLHq0Hc72pduCYv2Jq0z8ZR+2OhtWPtuZOr5FWIGvabDvZzBkQ60e4F0H5PtdiKLJSoVZ98DVUNV2ZsJKsLvh33OjAS4fgHMb4Nx6uLT35tXyenvwb5ffusY3pGTfh1mpsOMb2D4NslPVfQ0GQK93wKtW8fdbwUkIXwAJ4YUQQgghhBBl6VpyJov3RrBgdwRXEjMA9Xt093o+jG0fQNc6VdDp1C/WiWnZfLH2FPN3hWPUwMVez7O96jChY5DZWtQsP3iZ55YcQtNgTDt/3rs/RAL4CuzLtaeZtv4MLvZ6/nymU5n0hz8QEc8DM3aSY9R4b1AIY9sFlPoxTe18TCpDvttOfFo2vRr48sPYluh1pfN9lJFtoPdXm7kYl85jXYJ5pW8RhyqGLoPfJ+Tf9qgJtbqrMDC4KzhVNm3BQpQ3mqa+h479AS5V4NHN4HGXk5bpCXB+swrlz26AxIibH3fxUSfFaveE4O7gWqVwtRgNcHC+Wv2eEqXuq94K+nygQn5RIhLCF0BCeCGEEEIIIURp0zSNvRfimbcrnFWhkWQb1K9dni72PNCqJqPb+lPT0/mOrw+9nMibK0I5EJEAQG0fV94d2IgOtb3Lovzr/jx8hf8tueINCwAAoW9JREFUOohRg5Ft/PlgUMj1EwaiYjIYNUb/tItdYXFl0h/+xj7w/ZpU5VsL7wNfkP3hcYycuZusHCMPdQjk7YGNSuU4X609zdfrz+Dn7sj657vi4lCEVfeGHPiuHcSeAa/akBABhqz8x210KsDLCwMtYbCkEJZm21ew7m3V6mX83xDQvmiv1zSIPZsbyK+HC1shO+3m51Rtqr4Pa/WEmm3B1v7WfZxdp4auXjuh7qscCL3ehoaD5OoWE5EQvgASwgshhBBCCCFKS0pmDssPXmb+rnBORiVfv7+FfyXGtg/gvpCqhQ4sjUaNpQcu8fHKk8Tmtqjp16Qqr/drQFWP0h+a9s+RSCYvOojBqPFgq5p8NKSxBPACgOikDPpO20pMShaj2vrz4eDGpXIc1Qd+P+tOXCXAy5m/raQPfEH+ORLJUwsOAPBm/4Y83CnIpPsPj02l91dbyMoxMn1UC/o1qVq0HRxaAMufUKvdnz0MOjsI366CwHMbIObUzc939IDgbvlhYFkOlhTCEp1ZB78OAzTo9yW0nljyfeZkQsSu/NY1UUdvftzeFQI7558cy0qFNa+rlfUAjpVUz/fWE8HWoeT1iOskhC+AhPBCCCGEEEJYr6wcI8//dphTUUnU83OnYVV3GlR1o2FVd6q4OZhthezpq8nM3xXOsgOXSclUg1ad7PQMal6N0W0DStS/OjEtmy/XnmJebosaZ3s9k3vW4eGOQdjblk6LmpVHI3l6oQrgh7WswadDm0gAL26y7UwMY38u3f7w1twHviA/bD7HRytPYmMD349uyb0hfibZr6ZpTJizl02nrtGptjfzJrYp2s/EnCz4thUkhKvVsp2eu/U5CRfzg8CwTZCRePPj3nVVGF+rR+kNlhTCUsWeg5nd1fdFi/Ew4OvSWXGefFUNeD23QX2kXrv98/T20PYx6Py8tJEqJRLCF0BCeCGEEEIIIayTpmm8+sdRFu65eNvHvVzsaVDVnYbVVDDfoKo7taq4llov9WyDkdXHopi3M5zd5+Ou3x9cxYWx7QIY0qIGHk6mW7V77Eoib604xr7weABqVXHhnYEhdKpj2hY1q49F8dSvB8gxagxpXp3Phjcttd7Vwrp9ueYU0zacxcVez1/PdCLYhP3hD11MYPiMHWQbNN67vxFj2weabN/mpmkary8P5dfdETja6Vg4qR3N/UsekK0+FsVj8/Zjp7dh1f+6FL1f/76f4e/nVO/pZw/dPUC/PlhyvVopf3nfbQZLts9fnVvSwZJCWLLMZPipF1w7CTXawEN/l82qc6MRrh7Nv1olYhcYsyFkGPR8Q7WgEaVGQvgCSAgvhBBCCCGEdfp523ne/fs4Oht4rV9DMrINnIhM4kRkEudjUjHe5jcbe72O2j6uucF8/qr5Ss72tz65kCIT01m45yIL90RwLTkTAL3Oht4NfBnbPoAOtbxKbUW+pmksO3CZj1aeICYlt0VN46q81q8B1SqVvEXNuuNXeeLX/WQbNO5vVo0vH2gmAby4oxv7wzeo6s4fT3YwSX/4xLRs+k7bqvrAN67Kt6Ostw/8neQYjEyau4+Np67h5WLPH092xN/rznMi7iY9y0CvLzdzOSGdJ7vV4qV76xdtB9kZMK05JF+Bez+Bdo8Xo4gE1f4iLwxM/M8JU1ff3LY1PYo2WFIIS2c0wpKxcPJvcPWDxzaDm2mucCmyzBTIyQCXsp0hU1FJCF8ACeGFEEIIIYSwPhtPRTNxzl6MGrzerwGPdA6+6fH0LAOnriZfD+VPRCZxMjKZ5NzWMP9VzcMxN5TPD+cDvVzu2HJF0zR2nItl3s5w1p64iiE38a/i5sDINv6MbFOzTPq050lMz+artaeZu/MCRk21vnmmZ20e6RRc7BY1G05e5bF5KoAf0LQaXz3QFNtSuorA5FJj1OX4lQLAvvhBpii6q0kZ9P16K7GpWYxu688HJewPr2kaj87bz9rjV/H3dObvyZ1wt/I+8HeSmpnDAz/s5NiVJIKruLDsiQ7FPkH4+epTfLvxLNUrObF2Shec7Ys4LHXnd7D6FXCvDs8cADvHYtVxXd5gybPr1Ur5C9vuMFiyJwR1Bnu3kh2vsCrVNF84KgrHkKNaInkGW8+VE5s/hY0fqKs/HvoXarY2d0WijEgIXwAJ4YUQQgghhLAup68mM+S7HaRk5jCitRoQWphVsZqmcSk+neORSRy/khvORyVxMS79ts93stNTP7eNTYOq7jSs6kb1Ss78ezSS+bvDCbuWev257YI9GdsukHsa+ZZau5vCOH4libf+DGXvBdWiJtjbhbcHNqJL3aKtMN10KppH5+4ny2CkX+OqfD2imeUH8Jqmgr29P6nVh8bcEy5uVaFykApwPANv2A6SnrilZMvpa4yfvQdNg29GNmdA02rF3lfeFS/2eh1Ln+hA4xrlow/8nVxNymDw9O1cScygTZAn8ya2wcG2aFcThF1L4d6pW8kyGJkxphg95jNTYFozdSJrwNfQ8qGivb4wrg+WXA9nN6j2GeZg7waPb1E/E4Rl0TQ4sxbWvqFaujQcBIO+t/wTq6dWwsIRanvgt9BirHnrEWVKQvgCSAgvhBBCCCGE9YhLzeL+6du4GJdO2yBP5k1sW+JhpMkZ2ZyMyl81f/xKEqeuJpORbSzwda4OtgxtUZ3R7QKo61tGqzYLQdM0/jh4mQ//PUlMimqPc1+IH6/3b0j1QrSo2XL6Go/M3UdWjpF7G/nxzajmZj2xcFcZSXB4kQrfY07l32/vClkpBb/WsVJ+IH9jOO8ZrFplWMuqSwv0xZpTfLPhLK4Otvz1TCeCvIs+kPPGPvDv3t+IceWoD3xBTkYlMfz7nSRn5nB/s2pMfbBZodvvaJrGuJ/3sPVMDF3rVmHOhNZFb92z9QtY/67qHf30PtCXwZUHeYMlz66HKwfyT6KVpvQEyEiAwM4w7k/QWfDPuYrmyiEVvp/fcvP9VZvCiIXgYfrBzyZx7TT81BMyk6D1JOj3ubkrEmVMQvgCSAgvhBBCCCGEdcjKMTJm1m72nI/D39OZ5U91xNOl+L3cC2IwapyPSb2pnc2JyGSikjKo7+fG2PYB3N+sOq4ORWzxUIaSMrKZuvYMv+y8gMGo4WSn5+ketXmkc9AdV9ZuPxvDw3P2kpljpHdDX6aPalHikxylJioU9s2Cw4shO/eqBDsXaPIAtJ6ohj6mx0NcGMSdh/jzN2+nXC14/3bOKoT0DM7/nBfWe9QEveX+3VuCHIORUT+p79eGVd1ZVsT+8Ilp2fT7ZiuX4tPp29iP6aNalLs+8AXZdiaGh2bvIceo8XT32rzQp16hXvfv0Uie/PUA9noda57rQmBRT36kJ8DXTSAjEQb/AE1HFL14axF3Hr7voNri9PtS/dwQ5pVwETa8D0cWqdt6e2j7OAR2guVPQFqsOkE6YgHUaGXeWv8rIxFm9oTYMxDQEcatKJsTWMKiSAhfAAnhhRBCCCGEsHyapvHy0iMs2XcJNwdblj3ZgTpmWH2enmXA0U5nVWHgyagk3lx+jD0X4gAIym1R0/U/LWp2nFMBfEa2kV4NfPhudEvLC+BzMuHEX2rVe8TO/Pu960HrR6Dpg+BYyHYlmSkQf+HmcD4uTN1OvARaAVdC6Gyhkr8K5L1qQauJ4FPEwZcVwI394ce08+f9QYXrD69pGo/N288aU/aBP7cBslKhwYCS7acMLdl3kZd+PwLAJ0Mb82Br/wKfn5qZQ68vNxOZmMHkHrWZck/hgvubbPwQNn+ivqee3Am6kg/WtWi7ZsCql9WVM0/uUj3iRdnLSIRtX6lZBAZ1BReNh0OPN6BygLodH67avEQfB70D3P+tOulqCYxGWDQSTq9ScxQe3SyDhisoCeELICG8EEIIIYQQlu+nrWG8/88JdDbw80Ot6VbPx9wlWRVN01hx6Aof/HuCa8kq4OjTyJc3+jekRmVndoXFMmH2XtKzDXSvV4UZY1sWuQ91qUq4CPtnw4G5qk81qCC8fn8Vvgd2Mm3rmJwsSIjIDehvCOfjwlQQlBcS5XHwgDFLZfjebdzYH/7bUc3p3+Tu/eFnbz/PO3+ZsA/84UXwx2Nqe8RCqN+3ZPsrQ1+uOcW0DWfR62yY/VDrAuc7fLTyBD9sDqNGZSfWTelapCsPAEiNVavgs1Jg+C/QaFDJircGRiPMvg8u7oJaPWDMMmlDVZYM2bBvNmz+WK1yBwjoBPe8B9Vb3Pr8zGRY9iic+lfd7jRFBfXmbiW04QPY8qk6OfDwqtvXLioECeELICG8EEIIIYQQlm39ias8MncfmgZvDWjIhI5B5i7JaiVnZDN13Rnm7FAtahztdIxs48/ivRdJyzLQtW4VfhjbsujhXWkwGiFsA+ydpVYX5q1Md6uqBkW2GA/uVc1TV/KV/NXzB+fDpT1qJe2oJRDYsexrsnCfrT7J9I3ncHWw5e9nOhXYIuXwxQSG5faBf3tAQx4q6ff7mbVq9Wxej3FXP3hql9UM5dU0jSlLDvPHwcu4Otjy2+PtaVD11uzibHQy907dSo5R46dxrejV0LfoB1vzBuyYBn6N4dEt5g82y0rMWZjREXIy4P7p0HyMuSsq/zRNDdBe+xbEnVP3edeFXu9AvfsKPhFiNMKGd9XKeYB6/WDIj+DgWvp1387xP2FJ7vDVQTOg2Ujz1CEsgoTwBZAQXgghhBBCCMt1KiqZId9tJzXLwMg2/nw4OMSqWsFYqlNRyby5IpTd5+Ou39e5jjczx7UyfwCfFgeHFqh+73Fh+fcHdVGr3uv1taw+u1mpsHAknN8Mtk4wciHU6m7uqixKjsHIqJm72XMhjkbV3Fn6xO37wyemZ9NvmuoDf28jP74fU8I+8Jf2wS8DVM/vkKEQeUT1a242BgZNL8E7KluZOQbG/7yHXWFxVPVw5I8nO+Ln4Xj9cU3TGDVzNzvDYulZ34dZDxXjiozkKPi6GeSkq5NJdfuY7g1Yg+1fw9o31VUtT+0C97tfsSGK6dI+WP2auvoAwKUKdHtFnVgtyqyNw4vhz2fUlUm+Iepnb6WCWzaZ3NXj8FMvNZek3ZNw70dle3xhcYqSM1eQ05xCCCGEEEIISxebksnEX/aSmmWgXbAn797fSAJ4E6nn58aiR9vx9YhmBHg5c09DX/MH8JcPwPKn4MsGsOY1FcA7uKuhfE/tgfF/QcP7LSuAB7B3gVGLoXZvFWAueBBOrzZ3VRbFVq9j2sjmeLrYc+xKEh/+e+KW52iaxsu/H+FSfDo1PZ34ZFiTkn2/x5yBX4erAL5WD7VC9f5vARs4NB/OrCv+vsuYg62eH8a0olYVFyITM5gwZy8pmTnXH//rSCQ7w2JxsNXx9sBGxTvI1i/U12+N1lDnHhNVbkXaPw3VW0JmIvz9nFqpLUwr7jz89hD81FMF8LZO0OVFmHxQDcUt6rDrpg/CQ/+Aiw9cDYUfu0P4zru/zlTS42HRKBXAB3WB3u+V3bFFuSAr4YUQQgghhBBml5ljYMxPu9l7IZ5AL2f+eLIjlV3szV2WMLXsdAhdpgatXjmQf79vY2jziBrMZ3/n1iUWJScTfpsAp/4BnR0Mn21VQ0DLwqZT0Tw0ey8A00e1oF+T/HZCc7af5+2/jmOnt2HpEx1oUqNS8Q+UFAmz7oHECKjWHMb/nd+qYuX/we7vwb2GGjzqaD05wMW4NAZ/t52YlCy61q3CrPGtyMgx0uPzTUQnZ/Jcr7o826tO0XecEAHTWoAxG8b9CcFdTV+8NYg+AT90AUMWDJlpOUM/rV1aHGz5HPb8qL7GsIFmo6H7q+BRveT7T7ykrkaKOqJ+9g6YWvothYwGdZLv3Hrw8IdHN4GLV+keU1gFWQkvhBBCCCGEsBqapvHaH6HsvRCPm6MtP41vLQF8eRMXBmteV6veVzypAni9PTR+AB5eA49vVX3frSWAB7B1gAd+gUZDVNC0ZDwc/d3cVVmUbvV8eLJbLQBeXnqE8NhUAI5cSuCD3NXxr/ZtULIAPj0B5g9VAbxnLRj12829onu+AZUDIemSaj9iRWp6OjNrfGsc7XRsPn2NN1YcY+ra00QnZxLg5cxjXYOLt+PNn6qv2cDOFTeAB/BpAF1fUtsrX4KUaPPWY+1yMmHHNzCtGeyarr7GavVQP98HTTdNAA/gUUMNQ20wUB1jxVOq3Y3RYJr93876d1UAb+sEI36VAF4Ui6yEF0IIIYQQQpjVD5vP8dHKk+h1NsyZ0JrOdaqYuyRhCkYDnFmjVr2fvaEViIc/tJoAzceCazn4uzYaVAh0eCHY6NSgx2ajzF2VxcgxGBk5cxd7L8QTUt2dORPaMPi77VyMS6dPI19mjGlZ/DY02ekwbwhE7ABXX5i4RgXu/3V+K/zSX21b4crvNceieGz+/ps6psye0Jru9XyKvrPYc/Bta9AM6gSYf1vTFWqNDNkwsztEHVXtrx6Ya+6KrI+mQehSWP+OusoCwKcR3PMu1O5Vesc1GmHzx7D5E3W7dm8YNgscPUx7nNBl8PsEtT10FjQeZtr9C6smK+GFEEIIIYQQVmHt8at8vOokAG/2bygBfHlxbgP80BUWjsgN4G1UQDJyMTx7CDpPKR8BPIBOD/d/p4YMakZY/gTs+9ncVVmMG/vDh15O4p6vtnAxLp0alZ34dFjT4gfwRgMsfUQF8A7uMPr32wfwAEGdodVEtf3nM5CZUrxjmsk9jfx4s3/D/NsNfYsXwANs+lgF8HXukQAe1MyJ+78DnS0cXwHHlpu7IutyYTvM7AFLJ6oA3q0qDPxWrX4vzQAeQKdTLW6G/Qy2jnB2LfzU++YB3yUVdVSdZAXo+KwE8KJEJIQXQgghhBBCmMWJyCSeXXQQTYMx7fwZ1z7A3CWJkrp6TLUGmTcYrh5V4WiHZ2DyARjzO9S7V4XW5Y1OBwO+hjaPqdt/Pwe7vjdvTRakqocTXz7QFIC41Czs9DZMH9UCD6diDt3VNPhnCpz8W7U1GrEAqjYp+DW93wGPmpAQDhusb6DihI5BPNerLs39KxV/GOvV43D0N7Xd/VXTFWftqjaBTlPU9r8vQGqseeuxBjFnYOEomNNXtRezd4Xur8Ez+6HF2LL9OR8yFCasVCcAYk6pkwLnt5R8v2lxuYNYc4c993yr5PsUFZq0oxFCCCGEEEKUuWvJmQyavp3LCel0rO3FnAltsNPLGiGrlRQJGz+AQ7+q1eA6W2g9Cbq8WLF652oarHsLtn+tbvd6Gzo9Z9aSLMk368/w7cazvNG/IWPaleCk28aPVBsKbGD4HGg0qHCvO7se5g9Rr5uwEgLaF78Ga7R4DJz4Sw0QfnC+uauxLDmZ6uqdayfUgOihP5m7IsuUck197+2bra6osNFDy/HQ7RVwLebVGaaSFKlC8ysH1L9BfT+DVg8Xb1+GHPWz4vxmqBwEkzaAs6dp6xXlQlFyZgnhhRBCCCGEEGUqI9vA6J92sz88nmBvF/54siMezsVcEWvNcrLUqty48xB/XvUmbjTYdMPrykJmMmyfBju/VasFQfVV7vkWeNUyb23mommw6aP8PsXdXoGuL0Nx266UM5k5BhxsS7BKdu8stQoeoN8X0PqRor1+xVNwcD541YbHt4GdU/FrsSZXDsKP3QAbeHKnGkoqbnZ5P/zUS51IHLEQ6vc1d0WWIysNdn0H26ZCVrK6r+596gqTKvXMWtpNstNVy6m8Kz7aPAp9PgK9bdH2s/o19e+anQs8sg58G979NaJCKkrOXMSvQiGEEEIIIYQoPk3TeHXZUfaHx+PuaMtP41uV7wA+M0UF7HFh+WF7XBjEXYCkSyrsudHaN1Xw0/oRCOpqucGtIQcOzoONH0JqtLqvRhu4533pM21jo1p92DrA+ndVIJ+ToU5MWOrfZxkqUQB/fAX887za7vpy0QN4gHs+UCviY8+qr997rK81TbFs+EB9bjxcAvg7qd5Stc/a/rVqKRXQHpwqm7sq8zIa4Mhi2PA+JF1W91Vtpn7WB3U2a2m3ZecEQ2ZClfqq7dSeHyHmtLpiprB/l4cXqwAeYPD3EsALk5GV8EIIIYQQQogy892ms3y66hR6nQ2/TGhDpzre5i6pZDQN0mL/E7DfsJ16reDX27mAZ5AaKJkWp4ZM5vGqA60nQtOR4FSpNN9F4WkanFkDa95QvXdBXarf6221Al5C5pvt/A5Wv6K22z4B934kf0bFdWGbmjVgyIKWD0H/qcX/szy1ChY+CDY6mLgWarQyZaWWJ2IX/NxHtQ55em/FvUqlMLLTYUZniD0DzcbAoOnmrsh8zm1UP+uvHlW3PWpCzzchZJiag2HpTvwFyx6D7FTwrAWjFoN3nYJfc+Ug/HyvOnHa+QXo+UbZ1CqslrSjKYCE8EIIIYQQQpjHqtAoHp+/H4D3BoUwtiQ9ocuS0QjJV1S4Hhf2n7D9AmQmFfx6J08VtHsGq8DaMzg3eA9SPXRvDBKvHod9s+DwIshKUffZOUPjYWrVb9WmpfY27+rKIVjzOlzYqm47VYau/6d67tram68uS7f3p/zV2y0nQL8vrSPAsiRRR2F2X/W9Vr8/DP+l6O0l/mvpJDi6RK2YfWyLunKhvJrTX33fthgHA78xdzWWL2KXCmLRYPRSqNPL3BWVravHYe0bcHaduu3gAV2eV4On7RzNW1tRRR2FhSMh8aJ6H8NnQ+2et39uyjXVsinpEtTpAyMXls9B4sKkJIQvgITwQgghhBBClL1jVxIZ9v1O0rMNjG8fwDv3h5i7pJvlZEFCRG7AfmPYnhu0GzILfr179dyAPfCGsD03aC/OKvbMZNUCYO8siD6ef3+N1mrgacP7yy4MSbioLus/sljd1jtAu8eh0xTLWaFv6Q7OhxVPAxo0G62CUAl3Cic+HGb1hpSr4N8Bxi4zTR/3tDiY3kZdrVKeV7yGbYK594PeHp45AJVqmrsi67Dy/2D39+BeQ/XQd6wA+dFtB2w/Al1esu4B2ynX1FDii7vU1S99PoK2j918AtyQrb5PwrereRGPrJd/30ShSAhfAAnhhRBCCCFERZFjMPLDljD0Ohv6NPIjyNvFLHVEJ2cw6NvtXEnMoHMdb2Y/1BpbvRlWAmel3rltTOJt+rPfSGcLlfxvXcnuGQyVA0pvuKOmQcROtZr6+J9gzFb3O3tB87HQaoJqZVMaMhJh65ew6/v8kxCNH1BhZSX/0jlmeXbkN/jjMdAMEDIUBv8A+nI8D8EUUmNUG5XYs+DTECasNG0wdnwFLBmn2rQ8utG8V5qUBk1TJzAu7VWrmPt+au6KrEdWKnzfQZ2EbTkBBkw1d0WlJzMFdnwDO6aV3wHbOZnw1//g8AJ1u8V46Pt5/lVc/74Ee34AezeYtN6yhs0KiyYhfAEkhBdCCCGEEBWBpmm8+sdRFu65eP2++n5u9Gnkx32N/ajn64ZNGfSmzsg2MOLHXRy6mEBwFRf+eLIjHk6lFDxqGqTH36FtzHm1krYgtk43tI0JvDlo96hZ8vYXJZV8FQ7OhX2z8wfkYQN1+6jVirV6mqbNiSEb9v0Mmz9R/e4BAjtD73eheouS778iO74Cfp+oTqbU7w/DZksrnzvJTIFfBsCVA+r7b+IacK9m+uMsGQ/Hl4NvY5i0oXz9fZxeDQseUD/bnj0Ebn7mrsi6nN8Kv/RX2+P+hOCu5q3H1PIGbG/6KP/fx/I8YFvT1MmGtW8CGgR0hAfmwemVsOIp9ZwRC9VwdCEKSUL4AkgIL4QQQgghKoLvN53jk1UnsbGB1oGeHAiPJ8eY/1//QC9n+oT4cV9IVZrW8CiVQF7TNP63+BArDl3Bw8mO5U91NM1q/MwUiDx066r2uPOQmVjwa50q57eKubFtjGcwuPpax9BMQw6cWQ17ZkLYxvz7KwWoQa7NxhSvdYCmwcm/Ye1bEHdO3eddV4Xvde+1jj8ba3BqFSwZqwaM1ukDD8y1vj7Lpc2QDQsehHPr1UyFh1dDlbqlc6yUa6otTXocdH8Nur5UOscpa0Yj/NhF9cTuMBnuec/cFVmnv6eoOR2VAlRbGnvzXFFmUnkDtte+CddOqvsq0oDt06vVydCsZPDwh5Qo9fO426vQ7WVzVyesjITwBZAQXgghhBBClHd/Hr7C5IUHAXh7QEMe6hhEQloW605Esyo0ii1nrpGVk996paqHo1ohH+JHq0BP9DrT/AL+7YYzfL7mNLY6G+ZObEOHWt4l32nEbtXbNTX6zs9xq3pD25jAm1vIOFUueQ2WJOasWrV+aL5qHwOqZ3vIELU6vnrLwgUqF/eqoasXd6nbLlWg2yvqkn1zXwFQHp1dD4tGQ046BHeDEQvKR7hnCkYjLH9czSCwc4bxf0GNVqV7zKO/w9KJoLODxzaDb6PSPV5ZOLYcfhuv2mv87wg4e5q7IuuUmQzftVeDPds+Dvd9Yu6KSubKITV09fwWddupMnR9GVpNLF9XgdxN9AlYOEK1GwJ1ZdID82RotigyCeELICG8EEIIIYQoz/ZeiGP0zN1kGYw83DGINwc0vOU5KZk5bDoVzcrQKDaejCYty3D9MW9Xe3o39OPeED/aB3thb1u8X0hXHo3kiV8PAPDB4BBGtw0o3hu60aEF8NezasWaq68Kyv7bo71yINg7l/xY1iYrDUKXwt6ZEHk4//6qTVUYHzLs9n8ucedh/Ttw7A9129YJOjwNHZ8FB7eyqb2iurANfn0AslNVW4RRi+XPHGD1a7DzW9WnfdRiqNO79I+pabBoFJz6F6o1h4nrrPvkk9GgguOYUypg7f6quSuybmfXw/whgI2aSxDQ3twVFV3CRdjwPhxZpG7r7dVJhc7PV9wBpKmx8Pf/ICcDhv0sP39FsUgIXwAJ4YUQQgghRHl17loKQ7/fQUJaNn0a+fLd6JZ3XdWekW1g65kYVoVGse7EVRLTs68/5u5oS68Gvtwb4keXulVwtNMXqo7Qy4kMn7GT9GwDD3UI5O2BJVxVajTAurfV0DiABgPUUEtZOXwrTYPLB9Qg19Cl+QNVHT1Um5pWD4N3bUiLgy2fw54fc4e92kDz0aodR2n03Ra3F7Ebfh0GmUlQozWM/r3iBmIA26epVboAg2ZAs5Fld+ykSPiurbqipNc70Ol/ZXdsUzu8SA0BdqykVsE7epi7Iuu34ik4OB+8asPj20pvGLepZSTCtq9g53c3DNgeDj3eUEPFhRAlIiF8ASSEF0IIIYQQZmU0wvnNkBwFDfqbbOVVbEomg7/bQURcGk1rVmLRpHY42RcuNM+TbTCyKyyWlaFRrDkWRUxK1vXHnO31dK/nQ58QP3rU98HV4farRKOTMhj47XaikjLoUrcKP49vha2+BJd3ZyTB0kdUD3SALi+pNilyyfjdpcWp0GjfrPxL7gECOsHVo/nta2r1VH3f/ULMUmaFd/kAzBsMGQnqyoWxyytm65C84BjU12PHZ8u+hoO/woonVUunx7eVXh/60mTIhm9bqe/5nm9B5ynmrqh8SE+A79pBcqR19Ng3ZKsh3ps/zh+wHdBJ1S0DtoUwGasK4adPn85nn31GVFQUTZs25ZtvvqFNmzZ3fH5CQgKvvfYay5YtIy4ujoCAAKZOnUrfvoWbXiwhvBBCCCGEMIv0eNVOZe+s/KGXLj7Q/RVoPq5ErQ8ysg2MnLmLgxEJ1PR04o8nO+Lt6lCicg1Gjf3h8awMjWR1aBRXEjOuP2Zvq6NzbW/uDfGjVwNfKrvYX6/jwR92cvhSIrV9XFn2ZAfcHe2KX0TcedWz9dpJsHWE+6dD42Elel8VktEI5zao1fGnVwG5vwL6hqiws3ZPs5YnUMMz5w6CtBjwaQTjloOrj7mrKjtn1sHCB8GYA+2fhnveN89wSE2D+UPVQNgabeDhVaAr2slMs9s3W7XYcKkCzx6WK4ZM6dQq9XVqo4OJa0t/VkFxyIBtIcqU1YTwixcvZty4ccyYMYO2bdsydepUfvvtN06dOoWPz63/4cjKyqJjx474+Pjw6quvUr16dcLDw6lUqRJNmzYt1DElhBdCCCGEEHdiNGroTDSU9LorB1X4eXSpGsII4OCu2gQkRqjb3vVyf0HuU+RfkI1GjacWHGBlaBQeTnYsfaIDtX1cTfoWNE3jyKVEVh2LYlVoFOdjUq8/ptfZ0D7Yiz4hfuwKi+WfI5FUcrZjxVMdCfAqQfhzfissGQfpceDqByMXqCGjomTiw+H4cnCvDo0GW1/AWJ5Fn4S590NKlArNxv0J7lXNXVXpu7QPfhkA2WnQ+AHVasqcV7okXFT91LOSoc9H0P5J89VSVNkZ8E0LSLoM934M7Z4wd0Xlz9JJcHQJVKkPj20B25Kd8DapS/vUTAUZsC1EmbGaEL5t27a0bt2ab7/9FgCj0UjNmjV55pln+L//+79bnj9jxgw+++wzTp48iZ1d8VbUSAgvhBBCCCH+KzUzh2kbzjB3Rzj3hfjx4ZDGhe5/flvZ6WrQ5d6f4PL+/Pt9Q9SQzMbD1VC0fT/D5k9U0AwQ2FldKl6teaEP9cE/x5m59Tz2eh3zJrahbbBX8esuBE3TOH01hZWhkawKjeJkVPJNj9vqbJj/SFvalaSO/XPgn+fVqthqzWHEAulTLiqG2HMqkE66rAYNj/8LKtU0d1WlJ+YMzLpH/Qys1QNGLgZbe3NXpX42//2cGlT85A41/Nka7JoBq14Gt2ow+SDYOZq7ovInLQ6mt4HUa9D5Bej5hrkrkgHbQpiRVYTwWVlZODs78/vvvzNo0KDr948fP56EhARWrFhxy2v69u2Lp6cnzs7OrFixgipVqjBq1Chefvll9Prb/5KUmZlJZmbm9dtJSUnUrFlTQnghhBBCCIGmafxzNJL3/z5BVFJ+u5UmNTyYOa4Vvu5FDDDizqvw5uA81X4GVNjecJAK32u2uXWle3oCbPtShSfXh6Y9oH6xr+Rf4OHm7rzAmyuOAfD1iGbc36x60eo1gQsxqaw6FsXK0ChORCbxwaAQhrcqZmhoyIE1r8HuGep2yFDVgsZaBuAJYQrxF+CXgZAQrsLUZiNV3/6abUBfgvZOliYpUgXwiRFQrYU64eBg2qt4ik3TYO5AOL9F9dEe/5flz6HISoWvm6pwuP9XagizKB3HV6grtWz08OhGNcvBHKKOqpP9B3/NH7DdbDT0kAHbQpQVqwjhr1y5QvXq1dmxYwft27e/fv9LL73E5s2b2b179y2vqV+/PhcuXGD06NE8+eSTnD17lieffJLJkyfz1ltv3fY4b7/9Nu+8884t90sIL4QQQghRsZ2NTuatP4+x/awaWFbT04nx7QOZvvEs8WnZ+Lo78OPYVjStWangHRkNcGat+kX47Dqu99v2qAmtJqh+765V7l5QQgSsf09d5g5qMGC7x6HTFHC6tYZ1x6/y6Lx9GDV4sU89nupeu9Dv3SKlx8NvEyBso7rd43W1ylD614qKKPGyWhGf19MZwN4NgrpA7R5q1bi1rM6+nfQEmN0Xoo+BZy2YuAZcvM1d1c3izsP3HVSbnH5fqBOplmzbV7DubagcCE/vK18nbCzRkvGqtZdvY5i0oeyu4MjJhON/qv9z5LWdAfUzofe74Ne4bOoQQgDlOISvW7cuGRkZnD9//vrK9y+//JLPPvuMyMjI2x5HVsILIYQQQogbpWTm8M36M8zadp4co4a9rY4nu9Xi8a61cLTTExGbxsRf9nImOgUHWx2fDW/KwKa3WVGWGgMH5qoheHm93QFq91JhTZ17itdv+8pBWPMGXNiqbjt5QteX1arG3F/yj15K5IEfdpKebeDBVjX5eGhjbKw5rI45q4bdxZ4FO2fVE7rhQHNXJYR5ZSbDib/g7Hp1ciot9ubHKwepobq1ekJQZ+tpO5GdAfOHQPh2cPVVAXzlQHNXdXu7f4CVL4G9Kzy5865XJ5lNRiJMbQIZCTBohrp6QpSulGiY3la1Uur+GnR9qXSPlxCh/r9xYK4a4Aygs4UGA6D1JAjsWLrHF0LcllWE8MVpR9O1a1fs7OxYt27d9ftWrlxJ3759yczMxN7+7mcepSe8EEIIIUTFpGkafx2J5IN/jnM1SS3S6NXAhzf7N8Lfy/mm5yZnZPPsokNsOBkNwDM9avNcr7robICLe9QKtOPLwZClXuBUGZqPgZYTwKuWKYqF06th7RsQc1rd5xkMvd7mkl8vBn+/k2vJmXSu483PD7XGTm/hbRIKcm4D/PaQCpHca8DIhVC1ibmrEsKyGI0QdVgF8uc2wMXdamZCHp0t1GyrVsPW7gl+TS2zfUp2OiybpE4uOLjDhH8te+Wu0Qhz+kLETgjuDmP/sMyrczZ+BJs/VgN9n9wlA5fLypHfYNkjoLODxzaDbyPT7t9ohLANsHcWnF4FmlHd71ZNXWnXYhy4+Zn2mEKIIrGKEB7UYNY2bdrwzTffAGowq7+/P08//fRtB7O++uqrLFiwgLCwMHS5/6H4+uuv+eSTT7hy5UqhjikhvBBCCCFExXP6ajJvrTjGzjC1ktTf05m3BzakR33fO77GYNT4dNVJftgShhMZvFYzlFG6teiuHs1/UvWWatV7o8Gl07fckAMH58LGD1WfX+CYvj5vpI0gzbclvz3eHjdHK205oGmwZyas+j/QDFCjDYz4FVx9zF2ZEJYvIwkubINz61UwH3/+5sedvVRoXLun+uxetQxrS1StXOLCVF1xuR/x5yHpCqCpWRljlqkV/JYu5izM6Ag5GTDwW2gx1twV3SwtTq2Cz0qG4XPUv0eibGgaLBoFp/5VQ8QnrgO9bcn3mxYHh35V4fuN39tBXdX/Oer1Nc1xhBAlZjUh/OLFixk/fjw//PADbdq0YerUqSxZsoSTJ0/i6+vLuHHjqF69Oh999BEAFy9epFGjRowfP55nnnmGM2fO8PDDDzN58mRee+21Qh1TQnghhBBCiIojJTOHr9edZvb2C+QYNRxsdTzZrTaPdQ3G0a4QKwWvnebMP1PxO78MN5t0ADS9IzZNhkGriVC9RSm/g1yZyRi2fk3O9mk4aGoVf3qdATjd96519oU2ZKsWD/t+VrebjoQBX4Otg3nrEsJaxYWpFfJnN6hholnJNz/u0yi3l3xP8G8PdkUcOn0jTVMnBePC8sP1G7f/2zbnv5y91fd7g/7Fr6GsbZ+mrkxy8ICndlnW0Mu1b8H2qao3+WNbLPMKiPIsKRK+a6tOPvV6Bzr9r/j7urxfBe+hS9VJH1Bfc81GqZZ0VeqapGQhhOlYTQgP8O233/LZZ58RFRVFs2bNmDZtGm3btgWgW7duBAYGMmfOnOvP37lzJ8899xyHDh2ievXqTJw4kZdffvl6j/i7kRBeCCGEEKL80zSNPw9f4YN/ThCdrELr3g19ebN/Q2p6Ohf8YkO2WtW29ycVZuWKwI9fsnuy0bE3n43rRsuAyqX5Fm6iaRrP/3aY7QeO8pLDUobYbMIGTV0C32YSdHkRnD3LrJ4SSYuDJeNye97bqEFyHZ6xzBYPQlgjQ7Zqm3Vug1opf+UQ1wdGA9g6qf7RtXqqlfLedW/9/jMaIPHSDSvZ81a1X1Cfs1IKrsGlijpBWDkIPINu3nb2sr7vd6MBZvVWIWnde2HkIst4D8lX4eumkJMOIxdDvXvNXVHFdPBXWPGkGqj++LaiheXZ6RC6DPbOVDNh8vg1Vr3eGw8DexfT1yyEMAmrCuHLmoTwQgghhBDl2+mrybyxPJTd5+MACPBy5u0Bjehe/y5tTrIzYMc0tTo7OVLdZ6ODuvdB64lc8mzLpHkHORGZhL1ex0dDGjO0ZY1SfjfK1HWnmbruDHqdDT+Nb0V3j2hY+6YK2ECtlOvyPLR5rGQrXEtb9Ek1gDX+Ati7wdCfJDQSorSlxqrBruc2qNY1KVE3P+5eA2p1V0OR88L2+HAwZhewUxvwqAmegbnherAK2POCdmsZElsU0Sfghy5qFsjgH6Hpg+auCFa+DLtnQPVW8Mg6yzgxUBFpGswfqv5NrtEGHl519778sefU/zcOzlcDdUG1aWo0WIXvNVrJ36cQVkBC+AJICC+EEEIIUT4lZ2Tz9bozzN5xAYNRw9FOx1PdajOpSyFaz2SlwsKRcH6zuu1SBVqMh5YPQaWa15+WmpnDlCWHWH3sKgCPdQ3mpT710etK7xfl3/df4oXfDgPw4eDGjGrrn//g2fUqjL8aqm57+EPPNyFkqOW1JDi9Bn5/WLXJqBQAoxaDTwNzVyVExaJpEH08P5AP3wGGzNs/V2+vvlf/u5LdMxgq+VfM9lFbPoMN74NjJXhqD7jdea5IqUu8BNOaq5MCY5erEynCfBIuwnft1b9xfT6C9k/e+hyjQQ1d3/tT/kl0UN9PrR6G5mPBxbvsahZClFiphvCBgYE8/PDDPPTQQ/j7+9/9BRZGQnghhBBCiPJF0zRWHLrCB/+e4Fpu65l7GvryRmFaz4AacLjgQYjYAfau0O8LaDQEbO1v+3SjUeOrdaf5ZsNZAHrW92HqiGalMiB1x9kYxv28hxyjxhPdavHyvfVvU5ABDi+CDe/lr+Cv1hzueR8CO5m8piLTNNj5Lax5A9AgoCM8MA9cvMxdmRAiK00F8ec3q1W3N65qd69+99W8FY0hG2b2gKgj0GCA+llmrtXKf06GA79AYGcY/5esmrYE+36Gv59TLZ+e3JE/syXlmhqyvm82JF7MfbIN1OmtBq3W7iXfa0JYqVIN4adOncqcOXMIDQ2le/fuTJw4kcGDB+PgYB1nwSWEF0IIIYQoP05GJfHmimPsyW09E+jlzNsDG9Gt3l1az+RJT1CXkF/ep1q6jFkKNVsX6qUrDl3mpd+PkJljpK6vKz+Na42/VyFC/0I6fTWZod/vIDkjh/5NqjJtRHN0Ba24z0qDXdNh29T8fs31+qpBceYa5paTCX9PgUPz1e0W46DvF3c8wSGEEBYv6ij82A2MOTB8jmofUtZiz8G3rUEzwIRVENC+7GsQtzIaYe5ANfMkoBP0eB32zYJjy/PbOzl5Qoux0HKCOtklhLBqZdKO5sCBA8yZM4eFCxdiMBgYNWoUDz/8MC1atChW0WVFQnghhBBCCOuXlJHN1LVn+GVnfuuZp7ur1jMOtoVcTZYWB/MGQeRhcKqsLuev1qxIdRy6mMCjc/cRnZxJZWc7ZoxpSdvgkq/wjk7OYPD0HVxOSKd1YGXmTWx795Y6eVKiYdPHsH+OCmhs9BDUBbxq39CzORgqB4CdU4lrvXMd12DxGLi4S/XW7/MRtH1MVmsKIazfxg9h8yfg7A1P7S77FiLLHoMji9QK6jFLy/bYomBx5+H7DpCddvP91VupVe+NBlv27BYhRJGUaU/47OxsvvvuO15++WWys7Np3LgxkydPZsKECdhY4H+wJYQXQgghhLBemqax/NBlPvjnJDEpqvXMvY38eL1/A2pULsIq9JRomHu/6o3s7A3j/wTfRsWqKSoxg0lz93H0ciK2OhveHxTCiDbFb9uYmpnDiB93cfRyIkHeLix7ogOVXYqxcvzaaVj3Fpz6987PcauW23oi8Naez44exX4PRIXCwhHqsnsHDxg+G2r3LP7+hBDCkuRkwY9d1b8hIcNg2KyyO3b0SfiuHaDBo5tU+zFhWfbMhH9fUG1pGg+D1hPl70mIcqpMQvjs7Gz++OMPZs+ezdq1a2nXrh0TJ07k0qVLTJ8+nR49erBgwYJivYHSJCG8EEIIIYR1OhGZxFsrjrHngmo9E+ztwtsDG9GlbpWi7SjpCvwyEGLPgKufCuCr1CtRbelZBl78/TB/H1E92Sd0DOS1vg2w1RdtOKrBqPHo3H2sPxmNp4s9y57oQKC3S4lqI/Kw+og7D3FhEH9ebWcmFfw6J8/83tA39omuHASuPnde0X7ib1j2KGSngmctNYDVu07J3oMQQliaywfgp56gGWHEAqjfr2yOu2QcHF8B9fvDiF/L5pii6CKPqMHuTpXNXYkQohSVagh/4MABZs+ezcKFC9HpdIwbN45HHnmE+vXzh0SFhobSunVr0tPTi/cOSpGE8EIIIYQoz1Izc8gxaLg72VrkVYlFZTRqxKRk8t2mc8zbFY7BqOFkp+fpHrV5pHNQ4VvP5EmIgF8GQPwF8KgJ41aAVy2T1KppGt9sOMuXa08D0LmON9+OaoGHU+EGtmqaxlt/HmPuznAcbHUsmNSOlgGl9Mu7pql2PHmB/PVwPkzdTo0u+PV2LrmBfGB+OO8ZDJf2wob31XOCu6l+yRJACCHKq7Vvwfap4OqrhqOWZosvUD+j594P2MATO8C3YekeTwghRIFKNYTX6/X07t2biRMnMmjQIOzsbv2lIjU1laeffprZs2cXrfIyICG8EEIIIcobTdPYFx7PvJ3hrAyNJNugYa/X4e1qTxU3B7xdHaji5nDTdv5ne1wdyjaw1zSNpIwcriVnEpOSybXkzJu2Y1IyuZaSSUxyFjEpmeQY8/+72rexH6/1a0j1SsUIOuLC1Ar4xIsqPB7/F1QqftuYO1l5NJIpSw6Tnm0guIoLP41rRXAV17u+7qetYbz/zwlsbOC7US24r3FVk9dWaJkp+QH9jeF83HlIuqRWfhakzaPQ50PQF+4EhBBCWKXsDJjRSV1ZVZYaD4ehP5XtMYUQQtyiVEP48PBwAgICSlSgOUkIL4QQQojyIjUzh+WHLjNvZzgno5KLvR9HO90t4XwVVwe8cz9XcbOniqsj3m72ONvb3nYfmqaRmmW4NUy/JWDP4lpyJlmGu4S4/1Hfz43X+jWgc50itp7Jc+00zB0IyZFqQOn4v8C9WvH2VQihlxN5dO4+riRm4O5oy3ejW9Kpzp0H9608GsmTCw6gafBa3wZM6hJcarWVWE6WuqLgxtY2edvZ6dB5CrR62NxVCiFE2bi0HxaNhIzEsjmeqw+M+1NdgSSEEMKsSjWE37t3L0ajkbZt2950/+7du9Hr9bRq1aroFZchCeGFEEIIYe3OXE1m/q5wlh64TEpmDqCC9PubVmdMuwDq+LoSk5IfeN8uGM/7nJplKNKxXez118N5dyc7EtKyuJa7r4zsogXrbg62Kvi/HvY73LJ639vVAS9X+6K3nbnR1WPq8v3Ua1ClgWpB4+Zb/P0VUnRyBo/N28/BiAT0OhveGtCQce0Db3ne/vB4Rs3cRWaOkbHtAnj3/kblopWQEEIIIYQQ5VmphvBt2rThpZdeYtiwYTfdv2zZMj755BN2795d9IrLkITwQgghhLBG2QYja45dZd6uC+wKi7t+f5C3C2PaBTCsRQ08nIve+iMtK4eY5CyupWRwLTkrtw1M5vVg/cbV7Jk5dw/Zne31+SG6qwPeuavobxewO9qVIFgvrCuHYN4gSI8HvyYwdjm4eJX+cXNlZBt4ddlRlh28DMCYdv68NaARdrkDW8NjUxn83Q7iUrPoWd+HH8a2LPIwVyGEEEIIIUTZK9UQ3tXVlSNHjhAcfPMlsufPn6dJkyYkJxf/UuiyICG8EEIIIUC1T7kQm4ani32hB2eaQ2RiOgv3XGTRngiikzMB0NlA74a+jG0XSIdaXuh0pb9qWtM0UjJzblpdn5SRTWVnu5tWrbs43L5djVlc2gfzhkBmIlRvCWOWmmVIqKZp/LAljE9WnUTToH2wF9+NbgHA0O93EBaTSkh1dxY/2t6y/vyEEEIIIYQQd1SUnLnI/8t3cHDg6tWrt4TwkZGR2NrKLw1CCCGEsGw5BiMrQ6P4Ycs5Qi8nYWMDdX3caBlYmVYBlWkV4ElNTyeztgPRNI0d52KZtzOctSeuYsgdTOrt6sCoNjUZ0cafasUZTFoCNjY2uDna4eZoR5C3S5keu1jCd8CvwyErBfzbw6gl4GieBRg2NjY83rUWtau48uyig+wMi2XQd9vxdLEnLCaV6pWc+Hl8awnghRBCCCGEKKeKvBJ+5MiRREZGsmLFCjw8PABISEhg0KBB+Pj4sGTJklIp1FRkJbwQQghRMaVnGfht/0Vmbg3jYlw6ALY6G3KMt/5XqIqbA60CKtMyoDKtAj1pVM39evuQ0pSYns3S/ZeYvzucsGup1+9vE+TJ2HYB9Gnkh72ttCq5q7BNsHAkZKdBUBcYuQjsLePEwamoZCb+spdL8epr0M3BlqVPdqCur5uZKxNCCCGEEEIURam2o7l8+TJdunQhNjaW5s2bA3Do0CF8fX1Zu3YtNWvWLH7lZUBCeCGEEKJiiUvNYu7OC/yy4wLxadkAVHa2Y1z7QMa1D8CoqcGY+8Pj2BceT+jlRLINN//3yNFOR5MaldRK+cDKtPT3LFb/9Ts5diWR+bvCWX7wCunZalCqi72eIS1qMKZdAPX8JKAttNNrYPEYMGRC7V7w4HywK9urBu4mNiWTyYsOcuRSIjPGtKRjbW9zlySEEEIIIYQoolIN4QFSU1P59ddfOXz4ME5OTjRp0oSRI0diZ2e5/VTzSAgvhBBCVAwX49L4aWsYi/ddJCNbDRSt6enEpM7BDG9ZEyf72w8Fzcg2cORSIvvC49h/IZ79EfEk5Ib3N6rj46oC+QBPWgVUJsDLuUgtbDKyDawMjWTeznAORCRcv7+urytj2wcyuHl1XKU9SdGc+Bt+ewiM2VCvHwyfDbYO5q7qjrINxjK5wkIIIYQQQghheqUewlszCeGFEEKI8i30ciI/bAnjnyNXyOs0E1Ldnce61OK+ED9sixh6Go0aYTEp7LsQz77wePaHx3M+JvWW53m72qv2NQGetAysTEg1j9u2jrkYl8avuyNYsu8icalZgGqLc2+IH+PaB9I6sLJZ+9FbrdClsHQSaAZoNBiGzAS95S8QEUIIIYQQQlinMgnhjx8/TkREBFlZWTfdP3DgwOLsrsxICC+EEEKUP5qmsfVMDD9uCWPb2Zjr93eu483jXWvRoZaXSYPt2JTM3BY2Kpg/eimRLIPxpufY2+poWsPj+kp5Gxv4dXcEG09Fk/e/r6oejoxq48+DbWri4+ZosvoqnEMLYMVToBmhyQi4fzro5SoCIYQQQgghROkp1RA+LCyMwYMHc/ToUWxsbMh7ed4vtgaDoZhllw0J4YUQQojyI8dg5J+jkczYHMaJyCQA9DobBjSpyqQuwTSq5lEmdWRkGwi9nMi+8Hj2XYjnQET89VXut9O5jjdj2gXQs75PkVfmi//YNxv+fg7QoMU46P816OTPVAghhBBCCFG6ipIzF3mJ0LPPPktQUBDr168nKCiIPXv2EBsby/PPP8/nn39e7KKFEEIIIQorLSuHxXsv8tPW81xOSAfAyU7PiDY1mdgpiBqVncu0Hkc7Pa0CPWkV6Ald1cr8sJhU1VM+PJ594XEkZeQwoEk1xrTzJ7iKa5nWV27t/gFWvqS22zwK934iAbwQQgghhBDC4hR5Jby3tzcbNmygSZMmeHh4sGfPHurVq8eGDRt4/vnnOXjwYGnVahKyEl4IIYSwXjEpmczdcYG5u8KvD0v1crHnoQ6BjGkXQGUXezNXKMrMtqmw7i213WEy9H4XpJe+EEIIIYQQooyU6kp4g8GAm5sboAL5K1euUK9ePQICAjh16lTxKhZCCCGEKMCFmFRmbg3j9/2XyMxRvdcDvZx5pHMww1rWwNFOb+YKRZnRNNj8KWz6UN3u8hJ0f1UCeCGEEEIIIYTFKnIIHxISwuHDhwkKCqJt27Z8+umn2Nvb8+OPPxIcHFwaNQohhBCigjp8MYEftpxjZWjU9WGmTWt48HjXWtzTyA+9ToLXCkXTYP27sO1LdbvHG9DlBfPWJIQQQgghhBB3UeQQ/vXXXyc1NRWAd999l/79+9O5c2e8vLxYvHixyQsUQgghRMWiaRqbTl/jh83n2BUWd/3+7vWq8GiXWrQL9rw+EF5UIJoGq1+FXd+p230+hPZPmbcmIYQQQgghhCiEIveEv524uDgqV65sFb8QS094IYQQwjIlZ2Sz/OBl5u4M50x0CgC2OhsGNqvGo12Cqe8n/25XWEYj/Ps87PtZ3e77ObSZZN6ahBBCCCGEEBVaqfWEz87OxsnJiUOHDhESEnL9fk9Pz+JVKoQQQogK72RUEvN3hfPHgcukZhkAcLHXM7KNPw93CqJaJSczVyjMKicL/noWDi8AbGDgN9BirLmrEkIIIYQQQohCK1IIb2dnh7+/PwaDobTqEUIIIUQFkJVjZNWxKObvDGfPhfyWM7WquDC2XQBDWtbA3dHOjBUKi5AaC0vGQvh2sNHD4BnQ5AFzVyWEEEIIIYQQRVLknvCvvfYar776KvPmzZMV8EIIIYQokssJ6SzcHcGivRHEpGQBoNfZ0KeRL2PaBdA+2Msq2tuJMnD1OCx8EBIiwN4Nhv0Mde8xd1VCCCGEEEIIUWRFDuG//fZbzp49S7Vq1QgICMDFxeWmxw8cOGCy4oQQQghh/YxGje3nYpi3M5x1J65izJ1G4+PmwMg2/oxs44+fh6N5ixSW5dQqWDoRslKgciCMXAw+9c1dlRBCCCGEEEIUS5FD+EGDBpVCGUIIIYQobxLTsvlt/0V+3R3B+ZjU6/e3D/ZibPsAejf0xU6vM2OFwuJoGuyYBmvfAjQI7AwPzAVnufpSCCGEEEIIYb1sNE3TzF1EWSrK1FohhBBCFN3RS4nM23WBPw9fISPbCICbgy1DW9ZgTDt/avu4mblCYZGyM+Dv/8Hhhep2ywnQ9zPQy2wAIYQQQgghhOUpSs5c5JXwQgghhBD/lZFt4J8jkczdFc7hiwnX76/v58a49oHc36waLg7y3w5xBynRsGg0XNqjBrDe9wm0fgRkPoAQQgghhBCiHCjyb8M6na7AgWkGg6FEBQkhhBDCekTEpvHr7nCW7LtIfFo2APZ6HX0b+zG2fQAt/CtX7EGr2RkQfwHiz0N2OgR0BDdfc1dlWSKPwMKRkHQJHD1g+C9Qq7u5qxJCCCGEEEIIkylyCP/HH3/cdDs7O5uDBw/yyy+/8M4775isMCGEEEJYJoNRY9OpaObtCmfz6WvkNbarXsmJ0e38eaBVTbxdHcxbZFlKT1Ahe9z53M9hEHdBbSddvvX5vo1VyFy7J/i3B9sK9Gf1X8f/hD8eg+w08KqtBrB61zZ3VUIIIYQQQghhUibrCb9gwQIWL17MihUrTLG7UiM94YUQQojiiU3JZPG+i/y6K4LLCenX7+9atwpj2wXQvb4Pel05XPWuaapdyvWA/fzN2+lxBb/ewQM8A9V+oo4CN/zXy84ZAjtBrR5Qqyd416kYLVg0DbZ8DhvfV7dr9YBhP4NTZfPWJYQQQgghhBCFVJSc2WQhfFhYGE2aNCElJcUUuys1EsILIYQQRZOVY2Ta+jP8uCWMLIMatFrJ2Y4HWtVkVBt/Ar1dzFyhCRgNkHjx1oA9/oL6nJ1a8OtdfMAzGDyDoHLQzdvOnvnBemoMhG2Cs+vh3AZIibp5Px411Sr5Wj0huGv5DKWz02HFUxC6VN1u+zjc8wHoZWaAEEIIIYQQwnqU+WDW9PR0pk2bRvXq1U2xOyGEEEJYiNNXk3lu8SGOXUkCoGnNSoxtF0D/JlVxtNObuboSSomG1a/C5QOQEAHG7Ds/10YHHjVyA/bckD1vu3IQOLgW7pgu3tB4mPrQNIg+nhvIr4fwnepEwIG56sNGB9VbqVXitXtCtRbWH1QnRcKikXDlIOhsoe/n0GqCuasSQgghhBBCiFJV5JXwlSvfPGBN0zSSk5NxdnZm/vz5DBw40ORFmpKshBdCCCHuzmjU+Hn7eT5dfYqsHCOVnO34cHBj+jauau7STGfxGDjxV/5tvT1UDrx5JXte2F7JH2ztS7eerDQI36EC+bPrIebUzY87ekBQVxXI1+oJlWqWbj2mdnk/LBoNyZHg5AkPzlOteIQQQgghhBDCCpVqO5o5c+bcFMLrdDqqVKlC27ZtqVzZ8i+ZlhBeCCGEKNil+DSeX3KY3edVr/Pu9arwydAm+Lg7mrkyEzqzDn4dCjZ6eOAXqNoM3KuBzoJW9ydeUi1rzq5XLWwyEm5+3Ltufi/5wI5gb8FtgY7+rlrQ5GRAlfowcpE6ySGEEEIIIYQQVsosPeGthYTwQgghxO1pmsbv+y/xzl/HScnMwdlez+v9GjKyTc2bTsBbvewM+L696vve/mno84G5K7o7o0G1cMlrXXNpL2jG/Mf19uDfTgXytXuCb4hlDHg1GmHTh7DlM3W7Th8Y+hM4yv/BhBBCCCGEENatVEP42bNn4+rqyvDhw2+6/7fffiMtLY3x48cXveIyJCG8EMJqpcXBTz2heksVYglhQrEpmbz6x1FWH7sKQMuAynz5QFMCvCx4dXVxbf4MNr4Prn7w9F7rDITTE+D8ltzWNRsgMeLmx1188nvJB3cH1yplX2NWKvzxWH7Lnw6TodfblnW1gRBCCCGEEEIUU6mG8HXr1uWHH36ge/fuN92/efNmHn30UU6dOnWHV1oGCeGFEFbrwDz482m1/exh1btaCBNYe/wqryw7QkxKFnZ6G/7Xqy6Pd62FXmcBK6lNLf4CTG+r2qIMnaUGpFo7TYPYs/mtay5shey0m59TtWl+65qabUu/v33CRTWANeqoWqU/4GtoNqp0jymEEEIIIYQQZagoObNtUXceERFBUNCtPTwDAgKIiIi4zSuEEEKYxJk1+duhy6DzFPPVIsqFlMwc3v3rGEv2XQKgrq8rXz3YjEbVPMxcWSla9YoK4AM7Q8hQc1djGjY24F1HfbR9DHIy4eLu/NY1UUch8rD62PYV2Luq95+3Ut4z2LStay7uUQNYU6PBpQo8+Cv4tzXd/oUQQgghhBDCyhQ5hPfx8eHIkSMEBgbedP/hw4fx8vIyVV1CCCFulJMF5zbm3w5dKiG8KJE95+OYsuQQl+LTsbGBSZ2DmdK7Lo525bhVyKlVcOpf0NlCvy8so2d6abB1gKAu6qP3O5B8FcI2qpXy5zZA6jU4vVJ9AFQKyA/kg7qAYwlOwhxaCH9NBkMW+DaGkQuhUk3TvC8hhBBCCCGEsFJFDuFHjhzJ5MmTcXNzo0uXLoBqRfPss88yYsQIkxcohBACuLgLspLBqTJkJsPVUIg+CT71zV2ZsDKZOQa+XHOaH7eGoWlQvZITXzzQlHbB5fxEenY6rHxJbbd/CqrUM289ZcnNF5qOUB9GI1w9mt+6JmIXJITD/tnqw0YPNduotjW1ekC1ZoXr4W40wPp3YPvX6nb9/jD4B3BwLdW3JoQQQgghhBDWoMgh/HvvvceFCxfo2bMntrbq5UajkXHjxvHhhx+avEAhhBDkt6Kpe68a0HpmNRxbBj6vmrcuYVWOX0liypJDnIxKBmB4yxq8OaAhbo52Zq6sDGybqsJm9+rQ5SVzV2M+Op3qD1+1KXR6DjJT4MK23FXy61Vv+Yid6mPj++rEX3D3/JXy7tVu3WdmMiydlL+yvsuL0O1VdSwhhBBCCCGEEEUfzJrnzJkzHDp0CCcnJxo3bkxAQICpaysVMphVCGGVpreFaydh2M9qxemySeBVG57eV35bagiTMRg1fthyjq/WnibboOHlYs9HQxpzTyM/c5dWNuLCYHo7MGTC8F+g0SBzV2S54sNVGH92PZzfAplJNz9epYEK42t1h4COkHIVFo6E6ONg6wj3Ty8fw26FEEIIIYQQ4i6KkjMXO4S3VhLCCyGsTnw4fN0EbHTwUpjqZ/1ZbTVc8rEtakWrEHcQEZvGlCWH2BceD0Dvhr58NKQx3q4OZq6sjGga/Doczq5VK7rH/iEnrgrLkAOX9+UOeN0Al/cDN/y30dYR9PYqqHf1g5ELoHpLs5UrhBBCCCGEEGWpKDlzka8THjp0KJ988skt93/66acMHz68qLsTQghxN2fXqs8126rWEA5uULePuu/o7+arS1g0TdNYuCeCe7/ewr7weFwdbPl0WBN+HNuy4gTwACf/Ud9DOjvo+7kE8EWhtwX/dtDjNZi0Xp0EHDYbmo8Bt2rqRGBmElRrDo9ulABeCCGEEEIIIe6gyD3ht2zZwttvv33L/ffddx9ffPGFKWoSQghxozO5IXyd3vn3hQyF4yvg2B/Q6x3pvSxuEp2cwStLj7L+ZDQAbYI8+WJ4U2p6Opu5sjKWlQar/k9td5wM3rXNW4+1c/aEkCHqQ9Pg2im4dkLNqrBzMnd1QgghhBBCCGGxihzCp6SkYG9vf8v9dnZ2JCUl3eYVQgghii07A8I2q+069+TfX+cesHeDxItwaS/4tzVPfcLirAqN5JVlR4lPy8Zer+PFPvWY2CkIna4CrgDf+oX6HvGoCZ2fN3c15YuNDfjUVx9CCCGEEEIIIQpU5BC+cePGLF68mDfffPOm+xctWkTDhg1NVpgQQgggfBvkpINbVfANyb/fzgnq94MjiyB0qYTwFVVaHMy6B3IyyArsyoKYOnx5ripJuNKgqjtTH2xGPT83c1dpHjFnYcc0tX3vx2DvYt56hBBCCCGEEEJUWEUO4d944w2GDBnCuXPn6NGjBwDr169nwYIF/P679CYWQgiTOr1Gfa7T+9Ze1iFDVQh/7A/o86Hq3ywqltClEHsGAPvD83kIGOtgQ5RbI/xC+qHPdgBDi4r3taFpsPJFMGRB7d7qhJUQQgghhBBCCGEmRf6tfMCAASxfvpwPP/yQ33//HScnJ5o2bcqGDRvw9PQsjRqFEKJi0jQ4s1pt1+lz6+PB3dSg1tRotWI+uFtZVifMxGDUiExMJyI2jdo7F+ADLMjpQToO9LALJYiLVE8Jha2hsPUTcPSAoK5QuyfU6gmVapr7LZS+4yvg3AbQO0DfT2UYqxBCCCGEEEIIsyrW0rh+/frRr59aVZaUlMTChQt54YUX2L9/PwaDwaQFCiFEhRV7DuIvgM4Ogrve+ritPTS8H/bPUSuiJYQvNzJzDFyKTyc8NpXw2LTcj1TC49K4FJdOlsFIVWLZ6XgAo2bD1zlD6Nm2GSP6NoCMKBVAn10PYZsgIwFO/Kk+ALzrQq0eKpAP7Fj+2rRkpsDqV9V2p/+BZ7BZyxFCCCGEEEIIIYp9ffqWLVuYNWsWS5cupVq1agwZMoTp06ebsjYhhKjYzuS2ognoAA536OsdMlSF8Mf/hL5fqGBeWIWUzBzCY1OJiE0jPC7tpsD9SmI6mnbn19rpbRjncgCyINytGV+OvY+Otb3Vgw41oMU49WE0wJWDKpA/tx4u7YOY0+pj9wzQ24N/OxXI1+6p5g5Y+6rxLZ9B0mWoFACdnjN3NUIIIYQQQgghRNFC+KioKObMmcOsWbNISkrigQceIDMzk+XLl8tQViGEMLW8EL7OPXd+TkBHcPWFlKtq9XO9e8umNnFXmqYRn5bNhdyg/cJ/AveYlKwCX+9sr8ff05lALxcCvJwJyP3s7+lMtUpO6Gd+ApEQ1HUsQXkB/H/p9FCjlfro9jKkJ8D5LSqQP7sBEiPU7fNbYN1b4OKjVsnX7gnB3cG1iun/YErTtVOw81u1fd+naoCxEEIIIYQQQghhZoUO4QcMGMCWLVvo168fU6dO5d5770Wv1zNjxozSrE8IISqmzBQI3662CwrhdXpoNFitag5dKiF8CWiaRmaOkbQsA6mZOepzVg5pmQbSsm6+nZqVQ/p/bqdlGW56bXxqFsmZOQUes7Kz3fVwPcDLhQBP5+vb3q722NxpVXrsOYg8BDZ61ZKosJwqQcOB6kPT1H7OrVcr5S9sVfMFjixSHwB+TfJ7yddsa9lXWmga/PsCGHOg7n3yvSCEEEIIIYQQwmIUOoRfuXIlkydP5oknnqBOnTqlWZMQQojzW8CQpVpqeN/lZ27IUBXCn/oXstLA3rlsarQy0ckZfL3uDJcT0v8TnOcH6cYCWsAUV1UPx+sr2v29VMiet+3uaFe8nYYuU59rdQeXO6yCvxsbG/CurT7aPgY5mXBxd37rmqijEHVEfWz7Cuxc1NyBnm+AT4PiHbM0hS5V3ze2jnDfx+auRgghhBBCCCGEuK7QIfy2bduYNWsWLVu2pEGDBowdO5YRI0aUZm1CCFFx3diK5m49umu0Bg9/1VrkzBpoNKjUy7M2SRnZjJu1h5NRyYV6vqOdDhd7W5wd9Djbqc8u9rY42+txcVCf1YctLg75n53s8m97ONlSo7IzjnZ607+h0KXqc8hQ0+3T1gGCuqiP3u9A8lUI26jaHJ3bAKnX4NQ/Kuge+pNlrTTPTIbVr6ntzs9D5UCzliOEEEIIIYQQQtyo0CF8u3btaNeuHVOnTmXx4sX8/PPPTJkyBaPRyNq1a6lZsyZubncYHCiEEKLwNA3OrFXbBbWiyWNjAyFDYPtUFc5KCH+TjGwDk37Zx8moZLxdHXixT13cHO1wsr85WHex1+OUG6zrdRY8nPTqMbh2Qg1Vrd+v9I7j5gtNR6gPoxGuHoVVr0L4Nlg4QgX1HSZbxiDXTR9DShR4BquahBBCCCGEEEIIC2KjaVqxL74/deoUs2bNYt68eSQkJNC7d2/+/PNPU9ZncklJSXh4eJCYmIi7u7u5yxFCiFtdPQbfd1BtNV6+ULjhkpFH4IfOoHeAF8+Co/x8AzAYNZ769QCrjkXh6mDLokfbEVLdw9xllcz6d2HrF1C/P4z4tWyPnZMFK1+E/XPU7aajYMBUtYreXK4ehxmdQDPA6KVQp5f5ahFCCCGEEEIIUWEUJWfWleRA9erV49NPP+XSpUssXLiw2PuZPn06gYGBODo60rZtW/bs2VOo1y1atAgbGxsGDRpU7GMLIYTFyWtFE9SlcAE8gF9j8KoDhkzVG16gaRpvrghl1bEo7PU6fhzb0voDeE27oRXNkLI/vq099J8K930KNjo4vADm9IeU6LKvBfKHsWoGdVJCAnghhBBCCCGEEBaoRCF8Hr1ez6BBg4q1Cn7x4sVMmTKFt956iwMHDtC0aVP69OlDdHTBv9BfuHCBF154gc6dOxe3bCGEsExFaUWTx8YGGg9T23khbQU3bf1Zft0dgY0NfPVgMzrULuYAU0ty5QDEX1BDUuuaqSe7jY0a5Dr6d3DwgEt74Mfu6mqMsnZkCYRvB1snuFeGsQohhBBCCCGEsEwmCeFL4ssvv2TSpElMmDCBhg0bMmPGDJydnfn555/v+BqDwcDo0aN55513CA4OLsNqhRCilKUnQMQutV27iKt6G+WujD63AdLiTFqWtfl1dzhfrTsNwDsDG9GvSVUzV2QiR3NPsNS7D+xdzFtL7Z4waT141YakS/BzHzjxV9kdPyMR1ryutru+CJVqlt2xhRBCCCGEEEKIIjBrCJ+VlcX+/fvp1Ss/aNLpdPTq1YudO3fe8XXvvvsuPj4+TJw4sSzKFEJYI02DS/sgM8XclRRN2EbVWsO7LngGFe21VeqqtjTGHDi+onTqswKrQqN4Y3koAM/0qM249oHmLchUjEY4tkxthww1by15vOvAI+sguDtkp8HiMbDlM/X9V9o2fgSp0aoNU/tnSv94QgghhBBCCCFEMZk1hI+JicFgMODr63vT/b6+vkRFRd32Ndu2bWPWrFnMnDmzUMfIzMwkKSnppg8hRAWw50f4qSf8aWXhXHFa0dwoL5ytoC1pdofFMnnRQYwajGhdkym965q7JNOJ2AnJkeDooVahWwqnyqo1TdvH1e0N78PSiZCdXnrHjDoKe35Q230/Vb3qhRBCCCGEEEIIC2X2djRFkZyczNixY5k5cybe3oXr7fvRRx/h4eFx/aNmTblcXYhyLzkK1r+nto+vgKRI89ZTWEbjDSF87+LtI68lzYVt6s+hAjkZlcQjc/eRlWOkVwNf3h8Ugo2NjbnLMp28EysNBoCtg3lr+S+9Ldz3iRraqrNVtc6+r3S+94xG+OcF0IzQcBDU6mH6YwghhBBCCCGEECZk1hDe29sbvV7P1atXb7r/6tWr+Pn53fL8c+fOceHCBQYMGICtrS22trbMnTuXP//8E1tbW86dO3fLa1555RUSExOvf1y8eLHU3o8QwkKseQOyktW2ZoCD88xbT2FFHVbtNexdwb9D8fZROQBqtAE0OLbclNVZtItxaYybtYfkjBxaB1bm21HNsdVb1Xnmghmy4fhytW0prWhup9UEGLtcrY6/chBmdofLB0x7jMML4eIuNZy2z4em3bcQQgghhBBCCFEKzJpQ2Nvb07JlS9avX3/9PqPRyPr162nfvv0tz69fvz5Hjx7l0KFD1z8GDhxI9+7dOXTo0G1XuTs4OODu7n7ThxCiHDu/FY4uAWyg3ZPqvv2/gNFg1rIKJW8VfHC3krXXuN6S5vcSl2QN4lKzGP/zHqKTM6nr68pP41rjaKc3d1mmdX4zpMWCszcEdjF3NQUL6gyTNkKV+qp9zuz7TNceKT0e1r6ptru9DB7VTbNfIYQQQgghhBCiFJl9meCUKVOYOXMmv/zyCydOnOCJJ54gNTWVCRMmADBu3DheeeUVABwdHQkJCbnpo1KlSri5uRESEoK9vfSEFaJCM2TDvy+o7VYPQ883wbESJF2Cs+vMWlqhnF6tPhe3H3yeRoMAG7i0F+IvlLAoy5aWlcOEOXsJi0mlmocjvzzcBg9nO3OXZXqhuQNZGw1SrV8snWcQTFyrvpZzMuD3h2HDB6qVTEls+ADSYlTAn3eSTQghhBBCCCGEsHBmD+EffPBBPv/8c958802aNWvGoUOHWLVq1fVhrREREURGWkk/ZyGEee36Hq6dBGcv6PkG2DlBs1HqsX2zzVvb3aTGwOX9aru4/eDzuPlBYCe1feyPku3LgmUbjDwx/wCHLyZQydmOuRPbUNXDydxlmV5OJpz4S22HDDNvLUXh6A4jF0GH3OHIWz6F38ZBVmrx9nflEOybpbb7fgb6cniyRQghhBBCCCFEuWSjaZpm7iLKUlJSEh4eHiQmJkprGiHKk8TL8G1ryE6F+6dD8zHq/munYHobsNHB/46CRw3z1nknhxfDH4+Cb2N4YlvJ97d/Dvz1LPg1hsdNsD8LYzRqvPDbYZYdvIyjnY4Fk9rRwr+yucsqHSf/gUWjwL06/C8UdGY/f150B3+Fv/8Hhiz1NTliIVQqwqB0oxFm9YbL+9SJiGGzSq1UIYQQQgghhBCiMIqSM1vhb/JCCHEba15XAXyNNtB0VP79VepBQEfQjHDAgge0nlmjPpd0FXyeBgNBZwtRR+HaadPs04J8suokyw5eRq+z4bvRLcpvAA9wNLe3f6PB1hnAAzQfDeP/Apcq6mtyZg+4uKfwrz84TwXw9m5wz/ulV6cQQgghhBBCCFEKrPS3eSGEuEHYJji2TK127/fFrUFlSzVjggNzwZBT5uXdldGQ37O+pP3g8zh7Qq0eattUQzEtxE9bw/hhSxgAHw9pTI/6vmauqBRlpcLpVWo7b+CutfJvB5M2qKs9UqNhTj84vOjur0uLg3Vvq+3ur4B71VItUwghhBBCCCGEMDUJ4YUQ1i0nC/7JHcbaehJUbXLrcxoOBCdPSL6Sv+LcklzaBxkJ4OgBNVqbbr95oW3oUignnceWH7zM+/+cAODle+szvFURWppYo1MrITsNPIOhWnNzV1Nylfzh4VVQv79qTfPHY7D2LXUi6k7WvwvpceDTCNo8Vna1CiGEEEIIIYQQJiIhvBDCuu38FmLPgIsPdH/19s+xdcgf0LrfAge05p0YqNUT9Lam22+9vmDrqP58oo6abr9msvn0NV747TAAD3cM4vGuwWauqAyELlOfQ4aCjY15azEVB1d4YB50zj15tn0qLBoNmcm3PvfyfjXfAKDf56b9/hBCCCGEEEIIIcqIhPBCCOuVcBG2fKa273kPnCrd+bl5LWnOrIWEiFIvrUjyQvi6fUy7X0f3/PY2Vt6S5vDFBJ6Yv58co8bAptV4vV8DbMpLKH0n6Qlwdq3atvZWNP+l00HPN2DIT6B3gNMrYdY9EH8h/zlGA/zzPKBBkxEQ0MFc1QohhBBCCCGEECUiIbwQwnqtflW16vDvAE0eLPi53rUhsDOgqd7wliIpEqKOADZqJbypXW9Js8xqW9KEXUthwpy9pGUZ6FTbm8+HN0WnK+cBPMDJv1XLFp+G4NPA3NWUjibDYcJKcPWD6OPwY3e4sF09tn8OXDkIDu7qJJsQQgghhBBCCGGlJIQXQlins+vgxJ9go1dtKgqzKrpV3oDWeZYzoDVvpXP1FuBaxfT7r9sH7F0hMQIu7TX9/ktZdFIG437eQ1xqFo2rezBjbEvsbSvIP115Vy+EDDFvHaWtRkt4dCNUbaZ6v88dCDu+Ub3gAXq8Dq4+Zi1RCCGEEEIIIYQoiQqSZAghypWcTPj3RbXd9nHwbVS419UfAM7ekBIFp1eVXn1FkdeKJq9tjKnZOUH9fmrbylrSJGVkM+7nPVyKTyfQy5nZE1rj6lBBeoKnXIOwzWq7vLWiuR33ampFfKMhYMyBNa+rYcV+jaHVRHNXJ4QQQgghhBBClIiE8EII67N9GsSFqRYW3f6v8K+ztYfmo9W2JQxozcmCc5vUdp3epXecvBD32B+qz7YVyMg2MOmXfZyMSsbb1YG5D7fF29XB3GWVnePLQTNAtRbgWQEG0ALYO8Own6H7a/n39f1ChrEKIYQQQgghhLB6EsILIaxLfDhs/Vxt9/lADR8tihbj1eez69W+zOniLshKVqvzqzYvveMEdwfHSpByFS5sK73jmIjBqPG/RYfYfT4OVwdb5kxojb+Xs7nLKluhy9TnirAK/kY2NtD1JZi4Dh76F/zbmrsiIYQQQgghhBCixCSEF0JYl1WvQE6GGrJanIDSqxYEd0MNaP3F1NUVzfVWNL1BV4o/jm3toeFAtW3hLWk0TePNFaGsOhaFvV7Hj2NbElLdw9xlla3EyxCxA7CBRoPNXY151GwNgR3NXYUQQgghhBBCCGESEsILIazH6dVw6h/Q2ULfQg5jvZ2WuQNaD84HQ7bp6iuqM7lDWe/SisZg1NgdFsvbfx6j22cb6TdtKx+vPMmOczFk5RgLd6y8ExYn/lRtcCzUtPVn+XV3BDY28NWDzehQ29s0O87OgG1TYVpz2PuTafZZWo79oT4HdACP6uatRQghhBBCCCGEECUmjVaFENYhOz1/GGu7J8GnfvH3Vb8fuPio9iyn/oWG95umxqKID4drJ8FGD7V63PJwVo6RnWGxrAqNYu3xKGJSbg7Oj11JYsbmczjb62kf7EXnOt50qVuFIG8XbG53ciKws3rPqdEQtgnqltIg2BL4dXc4X607DcA7AxvRr0nVku/UaITQ32H9u5B4Ud236hXVoserVsn3XxpCf1efQ4aYtw4hhBBCCCGEEEKYhITwQgjrsG0qJISDWzXo+nLJ9qW3g+ZjYNuXsG+2eUL4s7mr4Gu2BafKgBpGuuX0NVaFRrHuxFWSMnKuP93DyY5eDXzp08iXtCz1vC1nYohJyWT9yWjWn4wGoEZlJ7rUrUKXOt50qO2Nu6Od2oFOr1qb7PlBhbwWFsKvCo3ijeWhADzTozbj2geWfKfnt8Ca1yHysLrtXh2cvSDqCKx8GUb/VvyrKUpL7Dm4clCdnGlghq9LIYQQQgghhBBCmJyE8EIIyxcXBtu+Utv3fggOrnd9iaZpnL6agqOdjpqVndHp/hO2thyvQviwjWr/nsGlUHgBTqt+8JnBPVlz+AqrQqPYeCqatCzD9ad4uzrQp5Ev94b40S7YCzt9fgexQc2rYzRqnIhKYuuZGLacvsa+C/Fcik9nwe4IFuyOQK+zoXnNSnSuU4Uudb1p0mgI+j0/wMl/1JUFdk5l+55vIzEtm13nY5m86CBGDUa0rsmU3nVLttNrp2Dtm3B6lbpt7wadn1NXUCRdge/aqZMgJ/+GBgNK/iZM6VjuQNbgruBaxby1CCGEEEIIIYQQwiQkhBdCWDZNU6uWDZmqhUjDQXd9SWJaNi8tPczqY1cBcHWwpb6fGw2quud+uFHfryZOtXrAuQ2w/xfo/U4pv5F8CYmJuJ7bjC0wbJ0rR3MOXn+seiUn+jTy477GfrTwr4z+vycPbqDT2dComgeNqnnweNdapGXlsCssli2nY9hy5hph11LZFx7PvvB4vlp3mspOetbb+uKZdZX4w39TudXwUn+vmqYRnZxJeGwaF2JTiYhNIzwujfDYVMJj00hMz+/J36uBL+8PCrl9O53CSImGjR/CgbmgGdRq8lYPqysn8gJtr1rQYTJs/Vy1panVA+xdTPBOTSQ0N4QPGWbeOoQQQgghhBBCCGEyEsILISzbqX/hzBrQ2UHfz+7aPmR/eDyTFx7kckI6tjobdDY2pGTmXA+j89jYwDiPNrzDBtL2zGV3tUeoX8MbP3fH4ofABYhOzmDNsausCo3C7vx6ZttlEKl5cjSnBkHeLtwb4sd9IX40ru5R7OM729vSo74vPer7AnAxLu36Kvnt52KIT89hiW0bHrf9ix0rfmTqFh+61K1C5zretAv2wtFOX6zj5hiMXEnI4EJsKuFxaUTEpnIhNo2I2DQi4tJIzzYU+HofNwc61fHmw8GNsdUXY154VirsnA7bv4asFHVf/f7Q623wrnPr8zs/D0eWQGIEbPkcer1V9GOWhqvHIfo46O3V3AIhhBBCCCGEEEKUCxLCC1HBpWbm8MvOC2w6dY2x7QLo36RqqYTQxZKVBiv/T213nHz7QDWX0agxY8s5vlhzGoNRI8DLmW9GNqdBVXfCrqVyIjKJE5FJHM/9HJOSxa8JDXnKoRI+2XH8/uuP/GNsR2VnuxtWzKtV83V83LC3LXo4fCk+jVWhUaw+FsW+8Hg0Td3/lu0hAGL8urJ6cFfq+rqWyp95TU9nRrX1Z1Rbf3IMRg5fSuD4ASMc/oueuoO8FH2NWdEpzNp2HntbHW2DPOlSpwqd63pTz9ftppoysg1ExKURHpu/ij1vRfvl+HRyjNod69DZQPXKTgR6ueDv6UyAlzMBXi4EeDnj7+mMs30x/ykyGuDQAtj4ASRHqvuqt4R73oeADnd+nb0z3PcxLBoFO76BZqMK/NoqM6FL1efavcGpkllLEUIIIYQQQgghhOnYaJp25+SkHEpKSsLDw4PExETc3d3NXY4QZpOWlcO8neH8sCWMuNSs6/f3auDDe4NCqOph/n7hrH9PtQ3xqAlP7b5j25BryZlMWXKIrWdiABjQtBofDg7BLW8o6W1EJ2dwIjIZ1+0f0TJ8Fgf1TRiW/gqG24TJdnobalVxpeF/wnkvV4dbnht2LYWVoVGsCo3i6OXEmx5rWrMS9zXyZeKBIdglhcODv0KD/kX5Eyk5TYNvW0HsWQ61+pSFGe3ZcuYakYkZNz3N192BlgGViUnJIiI2jaikjDvsULG31eHv6UyglzP+ni4EejvnBu4uVK/kVKyTGAU6uw7WvAnRx9TtSv5q5XujIYUbtqppsOBBOLMagrvB2OXmHdKqaTCtOcSfh6GzoLG0oxFCCCGEEEIIISxZUXJmCeGFqGAysg3M3xXOjM3niElR4XuglzOd61Rh0d4Isg0arg62/N999RnVxv/WgaZlJeYsfN8eDFnw4Pw7DtDcdiaG/y0+RExKJo52Ot4Z2IgHWtUs/MryhAiY2gTQyHxiL6ezfW9aMX8iMomkjJzbvtTX3eF6KG+rs2H1sShOX025/rjOBloHenJviB99GvlRrZKTel/ftlTtdV4+Dw5uRf2TKbmNH8LmT6BOHxi9BE3TOHcthc2nVeua3edjycg23vIyNwdbArydCfB0yV3Nnh+4+7o5ls3XSlQorH1D9fIHcPSALi9Bm0lge+tJkQLFhcH0dmrewPA50GiwycsttMsHYGZ3sHOGF89aVp96IYQQQgghhBBC3KIoObO0oxGigsjINrBwTwTfbTrHteRMAGp6OjG5Rx0GN6+OrV7H2PYBvLz0CAcjEnh9eSh/Hr7Cx0MaE1zFtWyL1TRY+aIK4Gv3Vv29/yPHYOTLtaf5fvM5NA3q+rry7agW1PUtYqhdyR9q94Kza3E4PJfG97xP4xoeN5SicSUxgxNXbg7mL8SmcTUpk6tJ19h06tr159vqbOhQ25v7Qvzo3dAX7/+ulj+zRn0O7GieAB4gZKgK4c+th7Q4bJw9qe3jRm0fNyZ2CiIj28C+C/Ecu5KIr7vj9fYxlZ3tzNeqKOkKbPgADv0KaOokRtvHVH93Z8/i7dMzGDo9B5s/hlWvqq81hzL+Ws+T14qm3n0SwAshhBBCCCGEEOWMrIQXopzLzDGwZO9Fpm88d72lSPVKTkzuWZshLWpg959BmAajxtydF/hs9SnSsgzY2+p4tmcdHu0SfMtzS83xFbBkHOgd4Mmd4FXrpocvJ6QzeeFB9ucOWh3Zxp83+zfEyb54g0U5+Y/qD+7sBVNOFGpFdWpmDiejkq+H8imZOXStW4We9X3xcL5zGxzmDoKwjdDnQ2j/VPHqNYXvO8HVozBgGrQcb7467iYzWQ1c3fEt5KSr+xoNgZ5vgmdQyfefnQ7ftYP4C9BhMtzzXsn3WVRGI3zVCJKvwIgFMpRVCCGEEEIIIYSwArISXghBVo6R3/ZfZPqGs1zJ7fddzcORp3rUZnjLmnfs0a3X2TChYxC9Gvjy2vJQtpy+xmerT/HPkUg+GdrkplXipVN4Kqx6RW13+t8tAfzqY1G8+NthkjJycHOw5aOhjenfpFrJjlmnD7hVUyHoib8K1Y/bxcGWlgGVaRlQufDHyUyB8O25x7ynmMWaSMgQFcKH/m6ZIbwhBw78Aps+gtTcKw3826uhqzVame44dk5w36ew4AHY9R00Gw0+9U23/8K4uEt97Tl4qKsyhBBCCCGEEEIIUa6U0bJWIURZyTYYWbw3gu6fb+K1P0K5kpiBr7sD793fiI0vdmN024BCDcms6enMLxNa8+UDTankbMfxyCTun76Nj/49QXqWofTewOZPIemyahPT6bnrd2dkG3hrRSiPzdtPUkYOTWt48M/kziUP4AH0ttBirNreP6fk+7uT85tVi53KgeBVu/SOUxghQ9Tn81shOcq8tdxI0+Dkv2oewD9TVADvWUsNsZ2w0rQBfJ66faBePzDmwL8vqBrKUl4rmgb9i97XXgghhBBCCCGEEBZPVsILUU7kGIz8cfAy32w4S0RcGgBV3Bx4slstRrbxx9Gu6K1abGxsGNKiBl3qVuGdv47z1+Er/LAljFXHovhoSGM61PI27Zu4dgp2fqu27/tUrVIGwq6l8PSCgxyPTALg0S7BvHBPvUKdTCi0FuNgy2dwYSvEnAHvOqbbd568fvB17gFz9VbPUzkQqreCy/tU+5+2j5m3HlDDSde8AeHb1G1nL+j6f9BqAugLaPFjCvd+pHrkX9iqQvFCXA1hEoYcOLZcbYcMLZtjCiGEEEIIIYQQokzJSnghrJzBqLHswCV6fbmZF38/QkRcGt6u9rzerwFbX+rOhI5BxQrgb+Tt6sA3I5sza3wr/NwdCY9NY9TM3fzf0iMkpmeb5o1omlqFbMyBuvepAZXAsgOX6P/NNo5HJuHpYs/sh1rzat8Gpg3gATxq5LeIKY3V8JoGZ9aqbXO3osmTFzTnrcQ2l4QIWPoIzOyuAnhbR3UVxOSD0PbR0g/gASoHQOcX1Pbq1yAjqfSPCerqiLQYdcIhqGvZHFMIIYQQQgghhBBlSkJ4IayUwaix4tBlen+1mSlLDnMhNg1PF3te7VufLS9155HOwSUO3/+rZwNf1k7pwph2/gAs2nuR3l9uZlWoCdqZHFsG57eoAPa+j0nNzOH5JYeZsuQwaVkG2gV7svLZznSv71PyY91Jywnq86FfITvDtPuOPq7a7Ng6QmAn0+67uBoOAmzg4m4VhJc1TYN9P8P0dnD0N1VL05HwzH7o9TY4lvL8gf/qOBk8gyElCjZ9XDbHDF2mPjccpNoiCSGEEEIIIYQQotyREF4IK2M0avx95Ap9pm7h2UWHCLuWSiVnO16+tz5bX+rOo11q4WxfemGem6Md7w9qzJLH2hPs7UJ0ciaPz9/PE/P3E51czOA6M1mtPgbo/DzH0z0Z8O02lh64hM4GpvSuy6+PtMPX3dF0b+R26vQG9xqQHg8n/jTtvvNa0QR1ud5mx+zcq+afEMgLg8tKcpQahvr3c5CdCv4d4LHNMHiGuirBHGwdoO9nanv3DLh6rHSPl5OpBgGDtKIRQgghhBBCCCHKMQnhhbASRqPGqtBI7vt6K08vOMjZ6BTcHW154Z66bH2pO090q4WLQ9mtpG0T5Mm/z3bmqe610OtsWBkaRa8vNrNk70W0og623PQxJEeiVQ5ivv5+Bn23nbBrqfi5O7JwUjsm96yDXlcGPdR1etUbHmDfbNPu29Ja0eTJG9Bali1pji2H79qrExN6B+jzITz0D1RtWnY13EntXtBgIGgG+KeUh7SeXQeZieBWDfzbl95xhBBCCCGEEEIIYVYSwgth4TRNY82xKPp9s43H5x/g1NVk3Bxtea5XXbb9Xw+e7lEHN8cy6Jl9G452el7sU58/n+5ISHV3kjJyeGnpEcbM2k1EbFrhdnL1OOz6HoBvHB/l9b/PkpVjpGd9H/59tjNtg71K8R3cRouxYKOHiB0QfdI0+0xPgIhdartOb9Ps01Qa3A86W4g6ogbSlqb0BFg6CX4bD+lx4NdErX5v/xToLOifoz4fgp2z+ho4srj0jpN34iNkiGW9fyGEEEIIIYQQQpiU/NYvhIXSNI31J64y4NttPDpvPycik3B1sGVyzzpse7kHz/aqg7uZwvf/alTNg+VPduSV++rjYKtj+9lY7pm6mZlbwsgxGO/8wrxhrJqBzbq2fHk+ADu9DW/0b8hP41vh6WJfdm8ij3s1qHuv2jbVgNawjWpltXc9qBxomn2aiosXBHdX26XZkiZsE3zfAY4uARsddHkRHlkPPg1K75jFVammqg9gzevq5IGpZaXCqZVqO+9qBCGEEEIIIYQQQpRLEsILYWE0TWPTqWgGTd/OxF/2EXo5CRd7PU91r8W2l7szpXddPJwsI3y/ka1ex2Nda7H6f11oH+xFRraRD/49wZDvd3AiMum2rzEeWQLh20nX7Hk1bRQBXs4sfaIDEzsFYWNTBu1n7qRV7oDWwwsgO73k+7veisbCVsHnyetHHvq76duvZKfDypdh7v1qMK1nMDy8Bnq8DrZmOMlSWO2fBq86kHoNNn5o+v2fXgXZaVA5CKq1MP3+hRBCCCGEEEIIYTEkhBfCQmiaxtYz1xjy/Q4emr2Xw5cScbLT81jXYLa+3IMX+9SnkrMFh5a5Ar1dWDCpLR8PaYyboy1HLiUy4JttfL76FBnZhuvPi4m5RtKK/wPgm5zBtGjalL+f6USTGpXMVPkNavUAD3/ISFT9y0vCaMwfympp/eDz1O+nerPHnIaroabb7+UD8EMXNeQUoNVEeHwb1GxtumOUFlt76Pe52t47EyKPmHb/eVcdhAwFc55wEkIIIYQQQgghRKmTEF4IC7DjXAwP/LCTsbP2cDAiAUc7HZM6B7H15e68cl8D87RlKQEbGxtGtPFn3ZSu9GnkS45R49uNZ+k3bSt7L8Sx7UwMa6Y/SyVjHOe1qgQNeIlpI5qZrbf9LXR6aJk7oHV/CQe0Rh5Sq6ntXS13+KajO9TNPUFgigGthmzY9AnM6q2CfVc/GL0U+n8J9i4l339ZCe4GjYaAZoR/nlcnVEwhPSH/xEzeVQhCCCGEEEIIIYQot2zNXYAQFdmusFi+Wnua3efjAHCw1TG6bQCPdwvGx83RzNWVnK+7Iz+MbcXKo5G8+ecxzl1LZfiMnTTUhfOX3b9gA/YDvmB4q9rmLvVWzcfCpo/h4m41PNa3YfH2k9eKJribZbdfCRkKJ/5SIXzPt4q/OjvmDCx7FK4cULcbDYZ+X4Kzp+lqLUt9PlCB+aU9qj1R8zEl3+fJf8CQBVUaFP/rSgghhBBCCCGEEFZDVsILYQb7LsQxauYuRvy4i93n47DX63ioQyBbXurOmwMalosA/kb3Na7Kuue68kCrGthg5B3b2ehtNAwN7qd6q37mLu/23Pyg3n1quySr4S29FU2eOn3AzgUSIuDSvqK/3miE3T/CjM4qgHf0gKGzYPgc6w3gQQ3q7abaJrH2TUiLK/k+8642kFXwQgghhBBCCCFEhSAhvBBl6EBEPGNn7WbYjJ3sOBeLnd6GMe382fxSN94e2Ahf9/IVvt/Iw9mOT4c1ZVPvKFrrToOdC/p7PzJ3WQVrmTegdTFkpRX99akxcHm/2rb0EN7eGer3VdtFbUmTeBnmD4GVL0JOOgR3hyd2QuNhpq/THNo+DlXqQ1osbHi/ZPtKjYGwTWo7ZEiJSxNCCCGEEEIIIYTlkxBeiDJw+GICD83ew5DvdrD1TAy2OhtGtvFn4wvdeH9QY6p6OJm7xLKRkUTAgU/UdreXwaO6eeu5m+DuUCkAMhPh2LKiv/7sekADv8bgXtXk5Zlc3srsY3+A0VDwc/Mc/R2+bw9hG8HWCfp+DmOWWf7fbVHo7dT7Atj3M1w5WPx9HV8OmgGqNQevWiYpTwghhBBCCCGEEJZNQnghSlHo5UQmztnL/dO3s+nUNfQ6Gx5sVZONL3TjoyGNqVHZ2dwllq1tX6khpV61oe0T5q7m7nQ6aDlebe8rRksaa2lFk6dWT9VGJiUKwncU/Ny0OPhtAiydCBmJUK0FPL4V2kxSf27lTVBnaPwAoJVsSGto7skcaUUjhBBCCCGEEEJUGOUwKRHC/I5dSWTS3H30/2Yb609Go7OBoS1qsOH5rnwyrAk1PStY+A6QcBF2fae2e79n2UNKb9RsDOhs4fI+iDpa+NcZDXB2ndq2lhDe1h4aDFTbob/f+Xln1sF37dXVATZ66PYqTFwL3nXKpk5zuec9cHBXLYYOzi366xMv55/caDTYtLUJIYQQQgghhBDCYkkIL4QJnYxK4on5++k3bRtrj19FZwODm1dn3ZSufPFAUwK8XMxdovlseA9yMiCwc/7AU2vg5gv1c4fH7p9T+Ndd2gcZCeBYCaq3KoXCSkneCu3jK8CQffNjWanw9xT4dahaLe9dFx5Zp1oL6W3Lvtay5uYH3V9V2+vehtTYor3++HJAA/8O4FHDxMUJIYQQQgghhBDCUkkIL4QJnLmazFMLDnDv1K2sDI3CxgYGNq3Gmue68tWDzQiu4mruEs3rykE4slht3/Me2NiYt56iyhvQemSJCqIL48xq9bl2T+sKqAM7g0sVSI/PHyAKcHEvzOgE+2ap220fh8e2QPUWZinTbFpPAp9G6s9n/TtFe+3R3KsLZCCrEEIIIYQQQghRoUgIL0QJnI1OYfLCg9wzdQv/HIkEoF/jqqz+XxemjWxObZ8KHr4DaBqsfl1tNxmhBlJam6CuUDkIMpMgdGnhXmNt/eDz6G3zW6WELoWcLFj/Hvx8D8SFgXt1GLcC7vsE7CrIQOEb6W2h3xdq+8BcdcVDYcSFwZUDYKODhoNKrTwhhBBCCCGEEEJYHitanimE5Tgfk8o368+w/NBljJq6795Gfjzbqw4NqrqbtzhLc2olhG8DW0fo+Ya5qykenQ5aPgTr3lIDWluMK/j5SVdy+8fbQO1eZVGhaYUMhT0/wom/Ifo4RB5W9zd5EO77FJwqmbU8swtoD01HweEF8M8UmLQRdPqCX5M3kDWoK7hWKf0ahRBCCCGEEEIIYTEkhBeiCIxGjU9Xn2Lm1jAMuel7rwa+/K9XHUKqe5i5OgtkyIa1ucF7+6esuw92s9Gw4X21mjnyMFRteufn5g1krd4SXLzLpj5TqtEG3GtA0iX1Xp0qQ/+p0GiQuSuzHL3fgZP/qD+f/bOh9SMFPz8vhM/ruS+EEEIIIYQQQogKQ9rRCFFI2QYjL/x2mBmbz2EwavSo78OfT3fkp/GtJIC/k/1zIPas6jHe8X/mrqZkXKtAgwFqe9/sgp9rra1o8uh00GaS2q7dG57cJQH8f7n65F/Zsf5dSLl25+dGn4DoY6Czy/8aEkIIIYQQQgghRIUhIbwQhZCRbeDxeftZdvAyep0NXz7QlJ8fak2TGpXMXZrlykiETR+p7W6vgGM5aNPTKndA69HfIDP59s/JyYJzm9R2nd5lUlap6PgsPH8KRv8Gbn7mrsYytXoY/Jqor/V1b9/5eXlzBOr0llY+QgghhBBCCCFEBSQhvBB3kZiezbhZe1h/MhoHWx0zx7VkSAsrbqtSVrZ+AWmx4F0PWow3dzWmEdgZvGpDVgoc/f32z7m4C7KS1er/qs3KtDyTsrFR4buNjbkrsVw6ff6Q1kPzIWLXrc/RtPwQXlrRCCGEEEIIIYQQFZKE8EIUIDo5gxE/7mLPhTjcHG2Z/0hbetT3NXdZli8+HHbNUNv3vAf6cjJ+wsZGDWgF1Qf8dvJa0dTurdq6iPKtZhtoPlZt//MCGHJufjzyEMSFga0T1L23zMsTQgghhBBCCCGE+UlCJMQdRMSmMXzGTk5EJuHt6sCSx9rTOtDT3GVZh/XvgiETgrpYb1/0O2k6CvT2aiDn5QO3Pn5mrfpsza1oRNH0ehscK8HVo7Bv1s2P5V0xUe8+cHAt68qEEEIIIYQQQghhASSEF+I2TkQmMXTGDsJj06jp6cTSJ9rToGo56GleFi79f3t3H2dznf9//HHmelzMuB6Uy02kQigmuqCJbNkUJSvUtlmF9LV9K75FvrU/tuv6ii421W6JVLraUghtIoyEitJWFONyDUYGc87vj1PTzpKLzJnPMI/77XZut895n895f17Hzbxvc3ue97w+2bD8RSAEnf507LUzKV8Vml4cPf7P3fD/+gY2roBQPPyqY8nXpmCUrwZZI6PH794F29dHj8Nh+GRq9NhWNJIkSZIklVmG8NJ/WPT1Fno+No+N2/NpUrMiLw04k3pVy5d8IZEILJ2y/93WpVUkAu/8T/S4eS+o1SzYemKl1Y83aH0Jdm37afzHVjR123oDzrKmZT+ofRrkb4PpI6Jjaz6Ebd9BchqckBVsfZIkSZIkKTCG8NK/mbViA1c++SHbdu2ldb3KTO6fSY20lGCKmTESXv49TLjg6AniV7wBq+dF+193vC3oamKn3pnRG87uyYNlL/w0biuasqvwJq0hWDoJvp770w1Zm1wEiQGtI5IkSZIkKXCG8NIPXvnoO6796yJ27QnToXF1/nZNG9LLJQZTzAdjYe5D0eOCfJh8JezYEEwth2rv7p92AJ85CNKPC7aeWPr3G7Quejr6FwB7voev3ouOHWt98HVojmv10/+Lv/8RPn0lenyqrWgkSZIkSSrLDOEl4Km5X3Hj5CXsDUe45LTjeLxva1KT4oMpZukLP7V0OecWqNoo2tLihX5QsCeYmg7Fogmw5Z9Qvga0GxJ0NbHX/AqIT47ejPO77OjO573fQ9pxUKNp0NUpKOeNgNQqsPEzyNsI5apCg3OCrkqSJEmSJAXIEF5lWiQS4f53VjLq9U8BuOrM+tx3WXMS4wP60Vg1E165LnrcdiCcOwx6PR/tKb36A5g2LJi6Dub7f8GcMdHjDsMhuWKw9ZSEclXg5Euix4ue+qkffKPzj72b0erQlasC54/66XnTiyE+oL+okSRJkiRJpYIhvMqsgnCE219dzsPvrgLgj+efyMiuTYmLCyhA/S4bJveB8F449TLodFc0zK3WCC59PHrOwidg8V+Dqe9A/nFfNIivfhKc1ifoakpO6x9u0Lr8JVjx9+ixrWjU4kqo1w5C8XDalUFXI0mSJEmSAmYIrzJp994wQyZ9xLPzVxMKwZ3dTmHweY0IBbWDedMqeO6y6I0+G3aAi8dB3L/9eDbuAh1+aFHz9z/CmoXB1Lk///oaPnwsetzpTohPCLScElWnTfSLh73fw7ZvIS7R1iOK/uxe+RLc8FG0T7wkSZIkSSrTDOFV5uzcvZdrnlnIG0vXkRgf4v96nUaftvWCK2h7Djx7CezcDLVPg55/g4Skfc876yZochEU7I7eqHV7TsnXuj8zRkVratgBTsgKupqSFQr9tBseoH47SK4QXD0qPRJToXKA64okSZIkSSo1DOFVpmzduZvef/mQf3yxidTEeJ7sdzoXNasdXEG7cuHZHrB1NVRpCL+d8vP91OPi4JJHoXoT2JETbV2zN79k6/1PaxbCJy8Doegu+LLYC71ZT0hIjR436hxsLZIkSZIkSSp1DOFVZuTk7uLyx+bx0eqtVCqXyHPXtuHsE6sHV9CeXTCpN6xfBhUyoM9UqHCQepIrwhUTISUdvl0Ab91cMrXuTyQC7/zQIue03lDz1OBqCVJqJej4P9HWNM0uD7oaSZIkSZIklTKG8CoTvtqUR/fxH/D5+h3UTEthyh8yaVm3cnAFhQvg5Wvh639AUkXo/SJUrn9o7636K+g+AQhB9tOwaEIMCz2AT1+FNR9CYjnocFswNZQWZw6Ga96B8tWCrkSSJEmSJEmljCG8jnnLv8ulx/gP+G7r9zSoVp4Xr8ukUcbPtHwpCZEIvPnf8NlrEJ8EvSZCrWaHN0ejLMgaGT1+82b4Zl7x13kge/Nhxg/XP/MGSKtVsteXJEmSJEmSjhKlIoR/5JFHqF+/PikpKbRp04YFCxb87LlPPPEEZ511FpUrV6Zy5cpkZWUd8HyVbfO+3MwVj89nc95uTq6dxpQBmRxfuVywRb13Dyx6EgjBpU9Ag7N/2TztboSTL4HwHnihL+R+V5xVHtjCv8C/voYKNaHdDSV3XUmSJEmSJOkoE3gIP3nyZIYOHcrIkSNZvHgxzZs3p3PnzmzYsGG/58+ePZtevXoxa9Ys5s2bR506dejUqRPffVeCAaSOCu98kkO/pxawI38vbRpUYVL/tlSrkBxsUYuegll/ih7/+h44udsvnysUgosfgYxTIG8DTL4y2mc+1nZugTl3R487/g8klY/9NSVJkiRJkqSjVCgSiUSCLKBNmzacfvrpjB07FoBwOEydOnUYPHgwt95660HfX1BQQOXKlRk7dix9+/Y96Pnbtm0jPT2d3Nxc0tLSjrh+lU4vLFrDrS8tJRyBTk0zeLjXaaQkxgdb1GdvwAt9IBKGs2+OBtjFYctX8EQH+P5f0Py30G1cNKCPlWnDYf4jUONkGPAPiAv431WSJEmSJEkqYYeTMwe6E3737t1kZ2eTlZVVOBYXF0dWVhbz5h1aj+udO3eyZ88eqlSpst/X8/Pz2bZtW5GHjkGbv4Rnu8PsMUx4dxk3vxgN4C9rdTzjercMPoD/ei68+LtoAN+yH3QYXnxzV2kAPZ6CUBx8PBEWPF58c/+nzV/+NH+nOw3gJUmSJEmSpIMINITftGkTBQUFZGRkFBnPyMggJyfnkOa45ZZbqF27dpEg/9+NHj2a9PT0wkedOnWOuG6VMnt2wQv9YNUMmD2ai+ZcxBXx7zLgrLrc3aMZCfEBd11a/wk83wsK8qHxhXDh/cW/U/1XHeD8O6PH04bBV/8o3vl/NHNUtAf9CVlwwnmxuYYkSZIkSZJ0DAm8J/yRGDNmDJMmTWLq1KmkpKTs95xhw4aRm5tb+FizZk0JV6mYm3EHrF/Gjvh0vg5nUCO0lTGJf+HWr39P6IvpEGTHpa2rozv083Ohbib0eBLiE2JzrcyBcOrlECmAKf2i1y5Oq+fDp69Gd9z/GPhLkiRJkiRJOqBAQ/hq1aoRHx/P+vXri4yvX7+emjVrHvC99957L2PGjOGdd96hWbNmP3tecnIyaWlpRR46duz57C34cDwAg77vT+c997C46S2QWhk2roCJl8FffwNrl5R8cXmb4W+XwvZ1UKMp9HoeElNjd71QCH7zMNRqDjs3w6TesHtn8cwdicDbP/SwP60PZDQtnnklSZIkSZKkY1ygIXxSUhKtWrVi5syZhWPhcJiZM2eSmZn5s++7++67ufPOO5k2bRqtW7cuiVJVyuwpCDP1vWx2TO4PwIS9F7CyYiZj+7Sl5eXD4YYlcOYNEJ8EX70Hj58DL/8BtpbQX0Lszot+AbD5C0ivA1e+FP1iINYSU6Hnc1CuGuQshddvKJ6/BPjkZfhuESSWhw7FdENZSZIkSZIkqQwIvB3N0KFDeeKJJ3jmmWf47LPPuO6668jLy+Pqq68GoG/fvgwbNqzw/D//+c/cfvvtTJgwgfr165OTk0NOTg47duwI6iOoBO0pCPPCwjV0vOddqk2/gcpsYyUNSLzgTmbddC7nN/3h/gKplaI3Dh20CE69LDq2dBL8X6to+5pdubErsmBPtEf9d9nR4P3KlyGtduyu958q1YHLn4FQPCybAvMeObL59uZH/80A2t8IFTMOdLYkSZIkSZKkfxN4CN+zZ0/uvfdeRowYQYsWLViyZAnTpk0rvFnr6tWrWbduXeH548ePZ/fu3fTo0YNatWoVPu69996gPoJKwN6CMC9mf0vW/XO4+aWl/Hr7i5wVv5w9cSnU/8Pz9Gl/IimJ8fu+sXI96P4XuHYW1GsfvTnq+w/Aw6fBh49HA/PiFA7Dq4Ng1XRISIXfToHqJxbvNQ5F/fZwwZjo8fTb4ctZv3yuDx+L9pevWCvad16SJEmSJEnSIQtFIkHetbLkbdu2jfT0dHJzc+0PfxQoCEd4/eO1PDTzC77alAfAWeVW80zkNuIie6Hrw9Cq36FNFonA59Ng+gjY9Hl0rMqv4PxR0OSiaE/1I/XO7fDBw9Fd6L0mwYmdjnzOXyoSgVcHwpLnojvyr50FVRoc3hw7t8BDLaI3lr14HJzWOyalSpIkSZIkSUeTw8mZA98JL+1POBzhtY/X0umBOdw4eQlfbcqjcrlEbj+/Ds+kPxYN4Jt2g5Z9D33SUAgad4Hr5sGF90P56rDlS5h8JUy4AL5ddGRFfzA2GsADXDw22AAeop/3wvuhdkv4/l8/3Kg17/DmmPPnaACfcSo0vyI2dUqSJEmSJEnHMHfCq1QJhyO8tTyHh2Z+zufro33+01MT6X92Q/qdWZ8Kfx8Y7e2eXgcGvB/t/f5L5W+HuQ9Fw/O930fHTr4Ezht5+DvGl74AL18bPc4aFe2dXlrkfgePnwt5G6JfXFz29KHt+t+0Csa1gfBe6PsqNDw3tnVKkiRJkiRJR4nDyZkN4VUqRCIR3v5kPQ/O+JwVOdsBSEtJ4NqzGnJVu/pUTEn8KegOxcHVb0HdtsVz8W1r4d0/Rdu2EIG4RDijP5x9E5SrcvD3r5oBE3tGw+q2A6Hzn4qntU1xWj0fnr4IwnuiXzKcNfTg75nUG1a8AY06Qe8psa9RkiRJkiRJOkoYwh+AIXzpEolEmPHZBh6c8TmfrN0GQMXkBH7XvgG/a9+A9NTE6Ilb/gmPng27t8O5w+DcW4u/mJxl0X7xX74bfZ6SDmf/dzSQT0je/3u+y4anu8KePDj1MrjkcYgrpV2eFk2AN/4LCEVD9Ubn//y5X8+Fp38d/cLjunlQo0mJlSlJkiRJkiSVdobwB2AIXzpEIhFmrdzAgzO+YOm3uQCUT4rnd+0bcE37BlQql/TTyQV7YELnaOBd90zo9zrEJ8SuuFUz4J0RsOGT6PNKdaO7x0/pXnSH+6ZVMKET7NwMDTvAb1+AhKT9z1lavD4Esp+G5HToPwuq/mrfc8Jh+Mt5sHYxtLoauj5Y0lVKkiRJkiRJpZoh/AEYwgcrEonw3hebuH/653y8ZisA5ZLiuerM+lx7VkMql99PiD3jDnj/gejO9AFzoVKd2BcaLoAlE2HWn2D7uuhY7ZbQ6S6o3w6258CT58PW1VCrBVz1BiRXjH1dR2pvPjzTFdZ8CNUaw7Uz96176RR4+feQVAFu+Agq1AimVkmSJEmSJKmUMoQ/AEP4YEQiEeau2sz901eyePVWAFIT4+mbWY/+ZzekaoWfaffyz9nw125ABC7/KzS9uIQq/sHuPJg3DuY+CLujN4ql8YWw9RtYvxyqNITfvQMVqpdsXUdie070Rq3b10GTi+Dyv/3UQmfPLhjbGnLXQMfbou14JEmSJEmSJBVhCH8AhvAlb96Xm3lg+ucs+HoLAMkJcfRpW48/nPMrqlf8mfAdIG8TjG8HO3Kg1VXQ9aGSKXh/dmyA2aMh+xmIFETHKmTANe9A5frB1fVLfbsInuoCBbvh3OFw7i3R8fcfiP7lQdpxMGgRJJULtExJkiRJkiSpNDqcnDmGjbVV1m3ekc8fp3zM7JUbAUhKiOO3Z9Tl+nN/RY20lAO/ORKBVwdFA/hqjaHz6BKo+AAq1ICLHoA2A2Dm/8LGldBjwtEZwAMc3xouvB9eGwSz/x/UPBXqnAH/uD/6esfbDeAlSZIkSZKkYmAIr5hYsmYr1z2bzbrcXSTFx3HFGXW4/twTqJl+kPD9RwuegM/fgvgk6PFk6QmEqzeGK54Luori0bIPrPsYFj4BL/eHBmdD/jao2Qya9Qy6OkmSJEmSJOmYYAivYhWJRHh+wRrueO0TdheEaVitPI/2acWJGYdx09Kc5fDObdHjTndFd2krNi4YDRs+hW/mwsq/R8c6/+mnHvGSJEmSJEmSjohJm4rNrj0F3PziUoZPXcbugjCdT87g1UHtDi+A370TXvwdFOTDiRfAGf1jV7AgPhEueybaAx7gxC7RHfGSJEmSJEmSioU74VUs1mzZyXXPZbP8u23EheC/OzdhwDkNCYVChzfR28Nh00qoUBMufgQO9/06fBWqQ5+psOgpaDck6GokSZIkSZKkY4ohvI7YnM83MmTSR2zduYcq5ZP4v16n0e6Eaoc/0aevQfZTQAgufQzK/4I59MtUbwxdxgRdhSRJkiRJknTMMYTXLxYORxg7axUPzPicSASaH5/OuCtbcVyl1MOfLPdbeG1w9LjdEGh4brHWKkmSJEmSJElBMITXL5L7/R6GTl7CzBUbAPhtm7qM7NqU5IT4w58sXAAv94ddW6F2S+h4W/EWK0mSJEmSJEkBMYTXYfts3TYGPJvNN5t3kpQQx13dTuHy1nV++YT/uA++mQtJFaHHk9GbhUqSJEmSJEnSMcAQXodl6kffMuzlZezaE+a4Sqk81qcVpxyX/ssnXD0fZo+OHl94H1RpWDyFSpIkSZIkSVIpYAivQ7J7b5g//f1Tnpn3DQBnn1idh3q2oHL5pF8+6fdb4aXfQyQMzXpC857FU6wkSZIkSZIklRKG8Dqo9dt2cf1zi8n+5l8A3NDxBIZknUh8XOiXTxqJwOtDIHcNVG4Av763mKqVJEmSJEmSpNLDEF4HNP+fmxk08SM27cinYkoCD1zegqymGUc+8Ud/g09fgbiEaB/4lLQjn1OSJEmSJEmSShlDeO1XJBLhyfe/YvRbKygIR2hSsyKPXtmK+tXKH/nkGz+Ht26JHne8DY5rdeRzSpIkSZIkSVIpZAivfeTl7+Xml5by96XrAOjWojajL21GalL8kU++Nx9e+h3s2QkNzoEzhxz5nJIkSZIkSZJUShnCq4gvN+5gwN+y+WLDDhLiQtx+UVP6ZtYjFDqC/u//bsYdkLMMylWFSx6DuLjimVeSJEmSJEmSSiFDeBWatjyHm6Z8zI78vdSomMz4K1vSql6V4rvAF9Nh/rjo8cXjIK1W8c0tSZIkSZIkSaWQIbzYWxDmvumfM372lwCc0aAKY397GjUqphTfRbavh6kDosdn/AEaX1B8c0uSJEmSJElSKWUIX8Zt3pHPDZM+Yu6qzQD8vn0DbunShMT4YmwTEw7D1D/Azk2QcQqc/7/FN7ckSZIkSZIklWKG8GXYkjVbuf7ZbNbm7qJcUjx/7t6Mrs1rF/+F5o2Ff86ChFToMQESi3GHvSRJkiRJkiSVYobwZVAkfwcvLfiKP09bwe6CMM2rluO+y0/lhOopsHNL8V5s40qY+cPO9wtGQ/XGxTu/JEmSJEmSJJVihvBlTCQSYcFj19Njy6v0SAQSgTzgqRhf+KTfQKurYnwRSZIkSZIkSSpdirHxt44GoVCICskl/N1L9Sbwm4chFCrZ60qSJEmSJElSwNwJXwY1/f3jLF97D6fUTi+ZC8bFG8BLkiRJkiRJKpMM4cugUHwCp9SpGnQZkiRJkiRJknTMsx2NJEmSJEmSJEkxYggvSZIkSZIkSVKMGMJLkiRJkiRJkhQjhvCSJEmSJEmSJMWIIbwkSZIkSZIkSTFiCC9JkiRJkiRJUowYwkuSJEmSJEmSFCOG8JIkSZIkSZIkxYghvCRJkiRJkiRJMWIIL0mSJEmSJElSjBjCS5IkSZIkSZIUI4bwkiRJkiRJkiTFiCG8JEmSJEmSJEkxYggvSZIkSZIkSVKMGMJLkiRJkiRJkhQjhvCSJEmSJEmSJMWIIbwkSZIkSZIkSTFiCC9JkiRJkiRJUowYwkuSJEmSJEmSFCOG8JIkSZIkSZIkxYghvCRJkiRJkiRJMWIIL0mSJEmSJElSjBjCS5IkSZIkSZIUI4bwkiRJkiRJkiTFiCG8JEmSJEmSJEkxYggvSZIkSZIkSVKMGMJLkiRJkiRJkhQjhvCSJEmSJEmSJMWIIbwkSZIkSZIkSTFSKkL4Rx55hPr165OSkkKbNm1YsGDBAc+fMmUKTZo0ISUlhVNPPZU333yzhCqVJEmSJEmSJOnQBR7CT548maFDhzJy5EgWL15M8+bN6dy5Mxs2bNjv+R988AG9evXimmuu4aOPPqJbt25069aN5cuXl3DlkiRJkiRJkiQdWCgSiUSCLKBNmzacfvrpjB07FoBwOEydOnUYPHgwt9566z7n9+zZk7y8PN54443CsbZt29KiRQseffTRg15v27ZtpKenk5ubS1paWvF9EEmSJEmSJElSmXA4OXOgO+F3795NdnY2WVlZhWNxcXFkZWUxb968/b5n3rx5Rc4H6Ny588+eL0mSJEmSJElSUBKCvPimTZsoKCggIyOjyHhGRgYrVqzY73tycnL2e35OTs5+z8/Pzyc/P7/weW5uLhD9pkKSJEmSJEmSpMP1Y758KI1mAg3hS8Lo0aMZNWrUPuN16tQJoBpJkiRJkiRJ0rFi+/btpKenH/CcQEP4atWqER8fz/r164uMr1+/npo1a+73PTVr1jys84cNG8bQoUMLn4fDYbZs2ULVqlUJhUJH+AmOTtu2baNOnTqsWbPGvviS9st1QtLBuE5IOhjXCUkH4zoh6WBK8zoRiUTYvn07tWvXPui5gYbwSUlJtGrVipkzZ9KtWzcgGpLPnDmTQYMG7fc9mZmZzJw5kxtvvLFwbPr06WRmZu73/OTkZJKTk4uMVapUqTjKP+qlpaWVuv+8kkoX1wlJB+M6IelgXCckHYzrhKSDKa3rxMF2wP8o8HY0Q4cOpV+/frRu3ZozzjiDBx98kLy8PK6++moA+vbty3HHHcfo0aMBGDJkCOeccw733XcfF154IZMmTWLRokU8/vjjQX4MSZIkSZIkSZL2EXgI37NnTzZu3MiIESPIycmhRYsWTJs2rfDmq6tXryYuLq7w/DPPPJOJEydy2223MXz4cBo1asQrr7zCKaecEtRHkCRJkiRJkiRpvwIP4QEGDRr0s+1nZs+evc/YZZddxmWXXRbjqo5dycnJjBw5cp82PZL0I9cJSQfjOiHpYFwnJB2M64SkgzlW1olQJBKJBF2EJEmSJEmSJEnHoriDnyJJkiRJkiRJkn4JQ3hJkiRJkiRJkmLEEF6SJEmSJEmSpBgxhJckSZIkSZIkKUYM4cugRx55hPr165OSkkKbNm1YsGBB0CVJCsh7771H165dqV27NqFQiFdeeaXI65FIhBEjRlCrVi1SU1PJysriiy++CKZYSYEYPXo0p59+OhUrVqRGjRp069aNlStXFjln165dDBw4kKpVq1KhQgW6d+/O+vXrA6pYUkkbP348zZo1Iy0tjbS0NDIzM3nrrbcKX3eNkPTvxowZQygU4sYbbywcc52QdMcddxAKhYo8mjRpUvj60b5OGMKXMZMnT2bo0KGMHDmSxYsX07x5czp37syGDRuCLk1SAPLy8mjevDmPPPLIfl+/++67efjhh3n00Uf58MMPKV++PJ07d2bXrl0lXKmkoMyZM4eBAwcyf/58pk+fzp49e+jUqRN5eXmF5/zXf/0Xr7/+OlOmTGHOnDmsXbuWSy+9NMCqJZWk448/njFjxpCdnc2iRYvo2LEjF198MZ988gngGiHpJwsXLuSxxx6jWbNmRcZdJyQBnHzyyaxbt67w8f777xe+drSvE6FIJBIJugiVnDZt2nD66aczduxYAMLhMHXq1GHw4MHceuutAVcnKUihUIipU6fSrVs3ILoLvnbt2vzxj3/kpptuAiA3N5eMjAyefvpprrjiigCrlRSUjRs3UqNGDebMmcPZZ59Nbm4u1atXZ+LEifTo0QOAFStWcNJJJzFv3jzatm0bcMWSglClShXuueceevTo4RohCYAdO3bQsmVLxo0bx1133UWLFi148MEH/V1CEhDdCf/KK6+wZMmSfV47FtYJd8KXIbt37yY7O5usrKzCsbi4OLKyspg3b16AlUkqjb766itycnKKrBnp6em0adPGNUMqw3Jzc4FowAaQnZ3Nnj17iqwVTZo0oW7duq4VUhlUUFDApEmTyMvLIzMz0zVCUqGBAwdy4YUXFlkPwN8lJP3kiy++oHbt2jRs2JDevXuzevVq4NhYJxKCLkAlZ9OmTRQUFJCRkVFkPCMjgxUrVgRUlaTSKicnB2C/a8aPr0kqW8LhMDfeeCPt2rXjlFNOAaJrRVJSEpUqVSpyrmuFVLYsW7aMzMxMdu3aRYUKFZg6dSpNmzZlyZIlrhGSmDRpEosXL2bhwoX7vObvEpIg2r3j6aefpnHjxqxbt45Ro0Zx1llnsXz58mNinTCElyRJ0iEZOHAgy5cvL9KbUZIAGjduzJIlS8jNzeXFF1+kX79+zJkzJ+iyJJUCa9asYciQIUyfPp2UlJSgy5FUSnXp0qXwuFmzZrRp04Z69erxwgsvkJqaGmBlxcN2NGVItWrViI+P3+fOwevXr6dmzZoBVSWptPpxXXDNkAQwaNAg3njjDWbNmsXxxx9fOF6zZk12797N1q1bi5zvWiGVLUlJSZxwwgm0atWK0aNH07x5cx566CHXCElkZ2ezYcMGWrZsSUJCAgkJCcyZM4eHH36YhIQEMjIyXCck7aNSpUqceOKJrFq16pj4fcIQvgxJSkqiVatWzJw5s3AsHA4zc+ZMMjMzA6xMUmnUoEEDatasWWTN2LZtGx9++KFrhlSGRCIRBg0axNSpU3n33Xdp0KBBkddbtWpFYmJikbVi5cqVrF692rVCKsPC4TD5+fmuEZI477zzWLZsGUuWLCl8tG7dmt69exceu05I+k87duzgyy+/pFatWsfE7xO2oyljhg4dSr9+/WjdujVnnHEGDz74IHl5eVx99dVBlyYpADt27GDVqlWFz7/66iuWLFlClSpVqFu3LjfeeCN33XUXjRo1okGDBtx+++3Url2bbt26BVe0pBI1cOBAJk6cyKuvvkrFihULey6mp6eTmppKeno611xzDUOHDqVKlSqkpaUxePBgMjMzadu2bcDVSyoJw4YNo0uXLtStW5ft27czceJEZs+ezdtvv+0aIYmKFSsW3kvmR+XLl6dq1aqF464Tkm666Sa6du1KvXr1WLt2LSNHjiQ+Pp5evXodE79PGMKXMT179mTjxo2MGDGCnJwcWrRowbRp0/a58aKksmHRokV06NCh8PnQoUMB6NevH08//TQ333wzeXl59O/fn61bt9K+fXumTZtmL0epDBk/fjwA5557bpHxp556iquuugqABx54gLi4OLp3705+fj6dO3dm3LhxJVyppKBs2LCBvn37sm7dOtLT02nWrBlvv/02559/PuAaIengXCckffvtt/Tq1YvNmzdTvXp12rdvz/z586levTpw9K8ToUgkEgm6CEmSJEmSJEmSjkX2hJckSZIkSZIkKUYM4SVJkiRJkiRJihFDeEmSJEmSJEmSYsQQXpIkSZIkSZKkGDGElyRJkiRJkiQpRgzhJUmSJEmSJEmKEUN4SZIkSZIkSZJixBBekiRJUrEIhUK88sorQZchSZIklSqG8JIkSdIx4KqrriIUCu3zuOCCC4IuTZIkSSrTEoIuQJIkSVLxuOCCC3jqqaeKjCUnJwdUjSRJkiRwJ7wkSZJ0zEhOTqZmzZpFHpUrVwairWLGjx9Ply5dSE1NpWHDhrz44otF3r9s2TI6duxIamoqVatWpX///uzYsaPIORMmTODkk08mOTmZWrVqMWjQoCKvb9q0iUsuuYRy5crRqFEjXnvttdh+aEmSJKmUM4SXJEmSyojbb7+d7t278/HHH9O7d2+uuOIKPvvsMwDy8vLo3LkzlStXZuHChUyZMoUZM2YUCdnHjx/PwIED6d+/P8uWLeO1117jhBNOKHKNUaNGcfnll7N06VJ+/etf07t3b7Zs2VKin1OSJEkqTUKRSCQSdBGSJEmSjsxVV13Fs88+S0pKSpHx4cOHM3z4cEKhEAMGDGD8+PGFr7Vt25aWLVsybtw4nnjiCW655RbWrFlD+fLlAXjzzTfp2rUra9euJSMjg+OOO46rr76au+66a781hEIhbrvtNu68804gGuxXqFCBt956y970kiRJKrPsCS9JkiQdIzp06FAkZAeoUqVK4XFmZmaR1zIzM1myZAkAn332Gc2bNy8M4AHatWtHOBxm5cqVhEIh1q5dy3nnnXfAGpo1a1Z4XL58edLS0tiwYcMv/UiSJEnSUc8QXpIkSTpGlC9ffp/2MMUlNTX1kM5LTEws8jwUChEOh2NRkiRJknRUsCe8JEmSVEbMnz9/n+cnnXQSACeddBIff/wxeXl5ha/PnTuXuLg4GjduTMWKFalfvz4zZ84s0ZolSZKko5074SVJkqRjRH5+Pjk5OUXGEhISqFatGgBTpkyhdevWtG/fnueee44FCxbw5JNPAtC7d29GjhxJv379uOOOO9i4cSODBw+mT58+ZGRkAHDHHXcwYMAAatSoQZcuXdi+fTtz585l8ODBJftBJUmSpKOIIbwkSZJ0jJg2bRq1atUqMta4cWNWrFgBwKhRo5g0aRLXX389tWrV4vnnn6dp06YAlCtXjrfffpshQ4Zw+umnU65cObp37879999fOFe/fv3YtWsXDzzwADfddBPVqlWjR48eJfcBJUmSpKNQKBKJRIIuQpIkSVJshUIhpk6dSrdu3YIuRZIkSSpT7AkvSZIkSZIkSVKMGMJLkiRJkiRJkhQj9oSXJEmSygC7UEqSJEnBcCe8JEmSJEmSJEkxYggvSZIkSZIkSVKMGMJLkiRJkiRJkhQjhvCSJEmSJEmSJMWIIbwkSZIkSZIkSTFiCC9JkiRJkiRJUowYwkuSJEmSJEmSFCOG8JIkSZIkSZIkxYghvCRJkiRJkiRJMfL/AWyglouuw1kmAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def plot_history(history):\n", " \"\"\"\n", " Plotting training and validation learning curves.\n", "\n", " Args:\n", " history: model history with all the metric measures\n", " \"\"\"\n", " fig, (ax1, ax2) = plt.subplots(2)\n", "\n", " fig.set_size_inches(18.5, 10.5)\n", "\n", " # Plot loss\n", " ax1.set_title('Loss')\n", " ax1.plot(history.history['loss'], label = 'train')\n", " ax1.plot(history.history['val_loss'], label = 'test')\n", " ax1.set_ylabel('Loss')\n", " \n", " # Determine upper bound of y-axis\n", " max_loss = max(history.history['loss'] + history.history['val_loss'])\n", "\n", " ax1.set_ylim([0, np.ceil(max_loss)])\n", " ax1.set_xlabel('Epoch')\n", " ax1.legend(['Train', 'Validation']) \n", "\n", " # Plot accuracy\n", " ax2.set_title('Accuracy')\n", " ax2.plot(history.history['accuracy'], label = 'train')\n", " ax2.plot(history.history['val_accuracy'], label = 'test')\n", " ax2.set_ylabel('Accuracy')\n", " ax2.set_ylim([0, 1])\n", " ax2.set_xlabel('Epoch')\n", " ax2.legend(['Train', 'Validation'])\n", "\n", " plt.show()\n", "\n", "plot_history(history)" ] }, { "cell_type": "markdown", "metadata": { "id": "EJrGF0Sss8E0" }, "source": [ "## モデルを評価する\n", "\n", "Keras `Model.evaluate` を使用して、テストデータセットで損失と精度を取得します。\n", "\n", "注意: このチュートリアルのサンプルモデルは、合理的な時間でトレーニングできるように、UCF101 データセットのサブセットを使用しています。ハイパーパラメータのチューニングをさらに行ったり、トレーニングデータを増やすことで、精度と損失を改善できる可能性があります。 " ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "execution": { "iopub.execute_input": "2024-01-11T20:14:52.341837Z", "iopub.status.busy": "2024-01-11T20:14:52.341579Z", "iopub.status.idle": "2024-01-11T20:15:04.403627Z", "shell.execute_reply": "2024-01-11T20:15:04.402947Z" }, "id": "Hev0hMCxOtfy" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/Unknown - 1s 1s/step - loss: 0.6765 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/Unknown - 2s 778ms/step - loss: 0.5328 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/Unknown - 3s 798ms/step - loss: 0.5907 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/Unknown - 4s 800ms/step - loss: 0.4661 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/Unknown - 5s 854ms/step - loss: 0.4147 - accuracy: 0.9000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/Unknown - 6s 893ms/step - loss: 0.4544 - accuracy: 0.8958" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/Unknown - 7s 913ms/step - loss: 0.5637 - accuracy: 0.8393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/Unknown - 8s 908ms/step - loss: 0.5582 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/Unknown - 9s 910ms/step - loss: 0.5607 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/Unknown - 10s 931ms/step - loss: 0.6155 - accuracy: 0.7875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/Unknown - 11s 939ms/step - loss: 0.6489 - accuracy: 0.7841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/Unknown - 12s 937ms/step - loss: 0.6659 - accuracy: 0.7708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/Unknown - 12s 892ms/step - loss: 0.6833 - accuracy: 0.7700" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/13 [==============================] - 12s 893ms/step - loss: 0.6833 - accuracy: 0.7700\n" ] }, { "data": { "text/plain": [ "{'loss': 0.6833138465881348, 'accuracy': 0.7699999809265137}" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.evaluate(test_ds, return_dict=True)" ] }, { "cell_type": "markdown", "metadata": { "id": "-F73GxD1-yc8" }, "source": [ "モデルパフォーマンスをさらに可視化するには、[混同行列](https://www.tensorflow.org/api_docs/python/tf/math/confusion_matrix)を使用します。混同行列では、精度を超えて分類モデルのパフォーマンスを評価することができます。このマルチクラス分類問題の混同行列を作成するために、テストセットの実際の値と予測される値を取得します。 " ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "execution": { "iopub.execute_input": "2024-01-11T20:15:04.407473Z", "iopub.status.busy": "2024-01-11T20:15:04.406810Z", "iopub.status.idle": "2024-01-11T20:15:04.411565Z", "shell.execute_reply": "2024-01-11T20:15:04.410906Z" }, "id": "Yw-6rG5V-0L-" }, "outputs": [], "source": [ "def get_actual_predicted_labels(dataset): \n", " \"\"\"\n", " Create a list of actual ground truth values and the predictions from the model.\n", "\n", " Args:\n", " dataset: An iterable data structure, such as a TensorFlow Dataset, with features and labels.\n", "\n", " Return:\n", " Ground truth and predicted values for a particular dataset.\n", " \"\"\"\n", " actual = [labels for _, labels in dataset.unbatch()]\n", " predicted = model.predict(dataset)\n", "\n", " actual = tf.stack(actual, axis=0)\n", " predicted = tf.concat(predicted, axis=0)\n", " predicted = tf.argmax(predicted, axis=1)\n", "\n", " return actual, predicted" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "execution": { "iopub.execute_input": "2024-01-11T20:15:04.414712Z", "iopub.status.busy": "2024-01-11T20:15:04.414199Z", "iopub.status.idle": "2024-01-11T20:15:04.418986Z", "shell.execute_reply": "2024-01-11T20:15:04.418359Z" }, "id": "aln6qWW_-2dk" }, "outputs": [], "source": [ "def plot_confusion_matrix(actual, predicted, labels, ds_type):\n", " cm = tf.math.confusion_matrix(actual, predicted)\n", " ax = sns.heatmap(cm, annot=True, fmt='g')\n", " sns.set(rc={'figure.figsize':(12, 12)})\n", " sns.set(font_scale=1.4)\n", " ax.set_title('Confusion matrix of action recognition for ' + ds_type)\n", " ax.set_xlabel('Predicted Action')\n", " ax.set_ylabel('Actual Action')\n", " plt.xticks(rotation=90)\n", " plt.yticks(rotation=0)\n", " ax.xaxis.set_ticklabels(labels)\n", " ax.yaxis.set_ticklabels(labels)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "execution": { "iopub.execute_input": "2024-01-11T20:15:04.421806Z", "iopub.status.busy": "2024-01-11T20:15:04.421308Z", "iopub.status.idle": "2024-01-11T20:15:04.424752Z", "shell.execute_reply": "2024-01-11T20:15:04.424187Z" }, "id": "tfQ3VAGd-4Az" }, "outputs": [], "source": [ "fg = FrameGenerator(subset_paths['train'], n_frames, training=True)\n", "labels = list(fg.class_ids_for_name.keys())" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "execution": { "iopub.execute_input": "2024-01-11T20:15:04.427769Z", "iopub.status.busy": "2024-01-11T20:15:04.427229Z", "iopub.status.idle": "2024-01-11T20:16:11.132851Z", "shell.execute_reply": "2024-01-11T20:16:11.132094Z" }, "id": "1ucGpbiA-5qi" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/Unknown - 2s 2s/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/Unknown - 3s 1s/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/Unknown - 4s 979ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/Unknown - 5s 1s/step " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/Unknown - 6s 990ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/Unknown - 7s 974ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/Unknown - 8s 959ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/Unknown - 9s 954ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/Unknown - 10s 965ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/Unknown - 11s 960ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/Unknown - 11s 956ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/Unknown - 12s 946ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/Unknown - 13s 956ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 14/Unknown - 14s 952ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/Unknown - 15s 953ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/Unknown - 16s 954ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17/Unknown - 17s 959ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/Unknown - 18s 956ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/Unknown - 19s 962ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/Unknown - 20s 962ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/Unknown - 21s 960ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/Unknown - 22s 965ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 23/Unknown - 23s 960ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/Unknown - 24s 959ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/Unknown - 25s 955ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/Unknown - 26s 954ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/Unknown - 27s 954ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/Unknown - 28s 949ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 29/Unknown - 29s 952ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/Unknown - 29s 950ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/Unknown - 30s 949ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/Unknown - 31s 945ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/Unknown - 32s 944ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/Unknown - 33s 944ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/Unknown - 34s 944ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/Unknown - 35s 946ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/Unknown - 36s 945ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/Unknown - 37s 934ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 37s 936ms/step\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAI0CAYAAACj07nSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD7NklEQVR4nOzdd1iV9f/H8edhbxAFceNgqAnukbk1NHeWpTjIUVZqapiaE82RubWpJGqalpWVo74uNC3DvXAr7j1AUJBx//7gx8kjm3PgvpH3w+tcl9znvu/zOvc4530+n3voFEVREEIIIYQQIo/M1A4ghBBCCCEKNykohRBCCCGEUaSgFEIIIYQQRpGCUgghhBBCGEUKSiGEEEIIYRQpKIUQQgghhFGkoBRCCCGEEEaRglIIIYQQQhhFCkohhBBCCGEUKSgLuZSUFObOnUuNGjWwtbVFp9Oh0+lUyZL22lFRUaq8vvhPYVoXJ06c4LXXXsPd3R1zc3N0Oh2TJk1SO1aeFKblLowzadIkdDodQUFBeZq+efPm6HQ6wsLCTJorvzx48IAhQ4bg6emJpaUlOp2O5s2bqx1LMzw9PdHpdISHh5tsnmFhYYVqOVuoHUCLzp07x5IlS9i2bRsXLlzg/v372NnZ4enpyYsvvkiPHj1o2rSp2jEBmDx5MiEhIeh0OqpXr46zs7PakUQepRVRw4YNw8XFRdUsBeXOnTs0adKEu3fvUrx4cerVq4eFhQXly5dXO5qBqKgowsLCcHFxYdiwYWrHERr3PO7LXbp0YceOHdja2uLn54etrS01atRQOxYPHjxg3rx5AIX2h+jzQgrKpyQnJzN69GjmzZtHUlISABUrVsTT05OHDx9y+vRpjhw5wldffUXTpk3ZsWOHqnkVReHzzz8HYPXq1XTv3l3VPD4+PgBYWlqqmqOwCgkJASAoKMjoL6HCsi5Wr17N3bt3qV27Nrt378bGxkbtSBmKiooiJCSEChUqZFlQFpblLoxXokQJfHx8KFWqVLrncrIvly9fHh8fn0LRCHDs2DF9MRkZGYmnp6fakfQePHigX95qFpSVK1fGxsYGOzs7k83T2dkZHx8fzf3AzowUlP9PURRef/11fvnlF6ysrBg/fjzvvfceHh4e+nEePXrEpk2bmD59Ojt37lQxbarbt29z584dADp06KByGjh58qTaEcT/KyzrIjIyEoBWrVpptpjMjcKy3IXxBg8ezODBg/M8/fLly02YJn+l7acvvPCCpopJLdm6davJ59m1a1e6du1q8vnmFyko/9/s2bP55ZdfsLS0ZNOmTbRs2TLdOHZ2dnTr1o1XX32VqVOnqpDS0OPHj/X/N+WvIiEKSto2LNuvENol+6nIEUUosbGxiqurqwIoY8eOzfN8UlJSlFWrVimtW7dWXF1dFUtLS6VMmTJKjx49lP3792c4zdKlSxVAadasmf7v+vXrK/b29oqjo6PSvHlz5X//+5/BNBcuXFCATB8TJ07McN4ZadasmQIoS5cuTffc1q1blS5duiilSpVSLCwsFCcnJ6VSpUpKly5dlNDQ0HTjp73+hQsXMnytTZs2KR07dlTc3d0VS0tLpWTJkkrnzp2VrVu3Zjj+9u3bFUCpUKGCoiiK8uuvvyrNmjVTnJ2dFTs7O6V+/frK999/n+l7y8rTWf/991+lY8eOSvHixRV7e3ulYcOGyvr16/XjXrt2TXn//feV8uXLK1ZWVkrlypWVTz75RElKSko335SUFGXjxo3K+++/r9SsWVMpUaKEYmVlpZQuXVrp1q2bsnPnznTTTJw4MUfrU1EUpUKFCgqgbN++XTl58qTSp08fpUyZMoqFhYXSt2/fDN9fmgMHDihWVlYKoPz8888ZLpfevXsrgFKrVi0lPj4+V8s0MjJSeeutt5QKFSooVlZWiouLi9K0aVNl8eLF6ZZV3759s3zPOZGQkKD89NNPyltvvaW88MILSrFixRRra2ulQoUKSu/evZXDhw9nOf2jR4+U+fPnK02bNlVcXV0VKysrpVy5ckqbNm2UL7/8Uv/+0/aRzB7bt2/Xz7Mw7wPdunVTSpYsqZiZmRlsc4qiKNu2bVNee+01pXTp0oqlpaXi6uqqvPzyy8q6deuyfI1r164po0aNUvz9/RVHR0fF1tZWqVKlivLGG28ov/32W4bT5HYZpdm8ebPSunVrxcnJSXFwcFDq16+vhIWFKYpiuN88LW3f69u3r5KUlKTMmTNHqVGjhmJra6u4uLgo7du3V/bt25fh6z097bPDcrIvZ/XZqyi525/SPL1Ojxw5onTv3l1xd3dXrKysFG9vbyUkJERJSEjIcjk+Le07JCfbvqIYv32vWrVKadq0qVKsWLEM5/+s7D5Hnl62Odne8/L5nSazbSwv3/GZTZvZ6128eFHp16+fUrp0acXKykqpUKGCMmLECCU6OjrTvGfOnFF69uypuLu7K9bW1oq3t7cyYcIE5fHjx/rl+uznQHakoFQU5YcfflAAxczMTLl582ae5pGYmKi89tpr+o22bNmySt26dRVnZ2cFUMzNzZWvv/463XRPbzD9+vVTAKVcuXJK7dq1FXt7e32upz+4r1+/rjRu3FipW7eu/vUaN26sf6QVe8YUlIsXL9bP28XFRfH391f8/Pz0O3qZMmXSzSurL9MPPvhA/7y7u7tSr149pUSJEvph48aNSzfN0x82ISEhCqCULFlSqVOnjuLi4qKfduHChZm+v8w8Pa2lpaVSrFgxpU6dOvr3Z2Zmpvzwww/KmTNnlDJlyijW1tZK7dq1lbJly+qnfe+999LN9+HDhwqg6HQ6xc3NTfHz81P8/f3189XpdMqXX35pME1oaKjSuHFj/Xzr1q2b4fpUlP8+RKZNm6bY2dkp1tbWSq1atZQXXnhBeeutt7JdF/PmzVMApVixYsrFixcNnlu2bJkCKPb29sqpU6dytTzXrFmjL1bt7e2VOnXqKBUrVtTnaNOmjfLo0SP9+FOnTlUaN26suLu767f5p99zThw9elS/rjw8PJRatWop1atXVxwcHBRAsbKyyrRoOXfunOLr66vPV758eaVevXpK6dKlFZ1OZ7DsBg8erLzwwgsKoFhbWxvkbNy4sXLgwAH9fAvjPjBr1izFwsJCcXBwUOrUqaN4e3srkyZNUhQl9Qt2yJAh+nGLFSum1KpVSylZsqR+2ODBgzOc/6ZNmxQnJyf9OqpatapSu3Zt/Y/3tCLC2GWkKIry+eefG3xepa1LQPnwww+zLSgDAwOVl19+WQGUKlWqKP7+/oq1tbUCKLa2tkpERES618yooMzNvpxVQZnb/SlN2vNff/21YmNjo1+nacsCULp165bhMszIxo0blcaNGyteXl4KoDg5OWW67Ru7fQ8bNky/faetv+wKyqlTp2b6Pdi4cWNl48aN6ZZNVtt7Xj6/0+SkoMzpd3xG02b2evPnz1dcXFz031Genp76z7CGDRsqiYmJ6abds2eP4ujoqP+crF27tuLj46MASqNGjZQePXpIQZlXQ4cOVQClRo0aeZ7HpEmTFECxs7MzaP2Jj49XRowYoS8q9+zZYzBd2gZjaWmpFC9e3OCXSmxsrNK1a1cFUDw9PZWUlBSDaZ9uqcxIXgvKpKQkpXjx4gqgLFiwIN0GeeLECWX+/Pnp5pXZl2lYWJj+/X/55ZdKcnKy/nVmz56t3/h//PFHg+nSPmwsLS0VW1tbZeXKlfrnEhMTlffee08BFAcHByUmJibT95iRtKyWlpbKlClT9O8xMTFReeutt/Q7ff369ZUuXbood+/e1U+bVmzrdDrl9OnTBvNNSEhQvv76a+Xq1asGw5OSkpQ1a9YodnZ2iqWlpXLp0qUcL7+npX2ImJubKz179lTu37+vf+7pL5is5tWxY0f9h2/a+z516pS+EEtr1cmpEydOKDY2NgqgDBgwQImNjdU/t3nzZv2Pqvfffz/dtHn9JawoinLjxg1lxYoVButGUVL3uUWLFinm5uaKq6urEhcXZ/D8o0ePlKpVq+r3+WdboG7evKl8+umnyq1bt/TDnm1JyUxh3AfMzc2VDz/8UHn8+LH+ubRt6dNPP1Ug9Qfy77//bjD9H3/8of9BsHz5coPnjh8/rtjZ2SmA8tprr6XbH44fP67MmDHDJMvo8OHDioWFhQIoI0eONGiBCwsLUywsLBRLS8ssC0pLS0vF09PTYFu4ffu28uKLLyqA0rRp03TLL6OC8tllm9W+nFlBacz+9PTn2kcffWSwTleuXKlfhtu2bcs0V0ay+y4xdvs2NzdXrK2tle+++07/PZeSkpKjXpLsvgfT5GR7N+bzO7uCMi/f8TkpKC0tLZXevXsrDx480D+3ZcsW/f737bffGkz36NEj/bStW7c2+JyLiIhQPDw89PuLFJR58OqrryqA0rlz5zxNHxsbq/8lPnPmzAzHadKkiQIoHTp0MBj+dJfCihUr0k13/fp1/cp9tgsvvwrK69ev63/p50ZmH6KVK1dWIOMWPUVRlF69eimA8sILLxgMT/uwAZQpU6akm+7x48eKm5ubAii//vprnrK+8sor6Z67e/eu/gO9ZMmSysOHD9ONk/areN68ebl63bFjxypAui/TpzPlpKCsVq1ahr88czKvO3fuKGXKlFEg9RCPhIQEpVatWgqkttTkVtqv7hdeeCHdB6KiKMqSJUv0H3zXrl0zeM6YgjI7gYGBCqCsXr3aYPiCBQsUQClRokSOeySMLSi1vA+8/PLLGT5/7949xcHBQTE3N1f27t2b4Tg//fSTAihVq1Y1GJ72mdqsWTN9cZGdvC6jPn36KIDSqlWrDKcbNWqU/r1mVlACGXZn7t+/X//j8ekv7KenNXVBacz+lPa6mS2LtB+Tw4cPzzRXRrL7LjHF9j116tRcZUqT24Iys+09J7L6/M6uoMzLd3xOCkpfX1/lyZMn6Z5P61no2rWrwfBvv/1WAZTixYsbNEik2bRpkz5vbj+X5cLmQExMDAAODg55mv6vv/4iJiYGGxsb3n333QzHCQ4OBmDLli08efIk3fPOzs4EBgamG+7h4UHFihUBOHv2bJ7y5Za7uzu2trZER0ezceNGo+Z18uRJzp07B8CIESMyHGfkyJFA6qUpLl26lOE47733XrphNjY21KpVC8j7snn77bfTDXN1ddWfydijR48Mt4u6detm+boRERGMGTOGLl260Lx5c1566SVeeuklfvjhBwAOHjyYp7xp+vbti4VF3s6pK168OCtXrsTc3Jzp06fTqVMnDh48SOXKlfnyyy9zPb+0bWTYsGEZXlS/T58+uLu7k5iYyObNm/OUOStbt27lww8/pGPHjjRr1ky/rNOuxPDssv7pp58AGDhwIO7u7ibP8yyt7wP9+/fPcPjGjRuJjY2lbt26+u39WR07dsTS0pITJ05w/fp1AOLj49mwYQMAH3/8MWZm2X/NGLOM/vjjDwAGDBiQ4XQZ7ePP8vPzo0mTJumG16pVC2traxRF0efLb6bYn95///0Mhzdq1Agw7XeJqbbvzNafqWW2vT8tPz6/8+s7/u23387wMmWZreu0/eW1117L8JJWbdu2zfNliuQsb8DJyQmA2NjYPE1/6tQpIPVK+ZkVpWkXgI2PjycqKgpvb2+D5728vDK9w03JkiU5ffo0Dx8+zFO+3DIzMyM4OJgpU6bQvn17atSoQatWrWjUqBFNmzY1uJRSdtKWja2tLZUrV85wnGrVqmFubk5ycjInT55MtzGXKFECV1fXDKctWbIkQJ6XTZUqVTIc7u7uzsmTJ7N8HtJvM0lJSfTr148VK1Zk+bp3797NQ9r/VK9e3ajpmzVrxrhx4wgJCeHPP//E0tKS1atX4+jomKv5REdHc+PGDSD1kiIZsbS0xNfXl1u3bpn0sjqxsbG8+uqr2Rapzy7ro0ePAvDiiy+aLEtWtL4PZLYtHT58GIALFy7w0ksvZTp92ufW5cuXKVWqFGfOnCEhIQHI+TLO6zJ68OABt27dAqBmzZoZTlepUiWcnJz0DQcZefbz+On35u7uzuXLlwvk89dU+1Nm78fYbSUjptq+C+LHHWT92Zmfn9/59R2f23Wdtr4y21/Snsus8M+KtFACZcuWBeD8+fN5mj5thWVVaD198duMNhp7e/tMp037ha8oSp7y5UVISAhLlizB39+fo0ePMm/ePN544w1Kly5NmzZt9F822Ul7r2kbd0YsLCwoUaKEwfhPy89lk9m803b87J5/9nVnzZrFihUrsLGxYe7cuURGRhIbG0tKSgqKohAaGgpAYmJinvJmlzs32rRpo/9/nTp1Mm2FysrT6ysn278pv8iCg4PZvHkzJUqUYMmSJZw9e5ZHjx6hpB7Kw/jx44H0yzqtsCioO5gU1n3g/v37ANy6dYvdu3dn+kjrcXn06BHw3/I1NzfPca9PXpfR0z/osvoxlN0PJa18/ppqf8rs/eTHe8nv7dvUsnqt/Pz8zq9tLLfrOm2fMWZ/yYwUlKD/9X38+HH9r93cSFv4ab8sM5LWHfT0+Pkts6LnaXFxcZlO279/fw4dOsStW7f45ZdfGDZsGB4eHmzZsoWWLVty9erVbDOkvdebN29mOk5SUpL+Au0FtWzyS9p9eWfNmsWwYcOoWrUq9vb2+nVhbMukqURHR9OrVy8g9YNnz549LFiwINfzeXp95WT7N9X6TUpKYuXKlUDqMu/fvz+VK1fG1tZWP05myzqtR+LBgwcmyZKdwroPpBWDffr00RfpWT3S7jectnyTk5Nz3OuT12X0dMGa1Y+VgurdMZZa+5MxCuv2nZHC8vltjLR9Jj/2FykogXbt2uHq6kpKSkqevlR9fX2B1NuzZfYBmtbNZmNjU2B3Gkj75ZLVjn7mzJls5+Pm5kaXLl2YO3cup06domLFity7d4/Vq1dnO23asnn8+HGmxyBFRkaSnJwMQNWqVbOdp5ZduHABINN7ve/Zs6cg42Tq7bffJioqivr167NmzRoAPvrooxy3PKdxdnbWt6QcO3Ysw3GSkpL0XXOmWr+3b9/W72u5XdZ+fn4A/P333zl+vcy6qnKisO4DaYfpHDlyJFfTeXt76+96lNNlnNdl5OLiou8qzWzbvXDhQpbd3Vqi1v5kDLW3b2P2zWcVls9vY6TdHjarz/rcfg+kkYKS1Ip91KhRAMycOZNt27ZlOb6iKAZ3ynnppZdwcnIiPj4+05MaZs+eDaR2M1pZWZkoeda8vLyA1J0ko6Jy5cqVREdH52qejo6O+i/knLRQ+vj46I9DnDNnTobjpC2bGjVqUK5cuVzl0Zq0O0k83SKd5uTJk/z+++/ZTpvWdZhfFi9ezA8//ICTkxPff/89r732Gu+//z4JCQm8+eabmbZaZ6Z9+/YAzJs3L8PW8BUrVnDr1i0sLS0NutmN8fQdOzJa1tu2bePAgQMZTvvaa68BsGTJEn2rSU5fLy/rprDuAx06dMDW1pZDhw7l6mQqa2tr/a1gZ8yYkaNuPGOWUdu2bQH03ZHPWrx4cY6zm4ox24sa+5Mx1N6+n/4sMPaz05jP78IibX9Zu3Ztht////vf/7h48WKe5i0F5f8bOXIknTp1IjExkXbt2jFx4sR0XQ7x8fH8+uuvNGjQgHHjxumH29vb689umzRpEuvWrdM/9+TJEz766CN27tyJubk5Y8eOLZD3A6k7r6enJ0+ePOH999832Nm2bt3KsGHDMjw7LDIykv79+7Nr1y5SUlIMntu8ebP+nqX16tXLUY60ZfX111/z9ddf6z8kU1JSmD9/vv4A6AkTJuT+TWpMs2bNgNSzW5/+UDp8+DAdO3bE3Nw802nTPpS3bNmSb/kiIyMZNmwYAF999RWVKlUCUrt4/Pz8OHnyJEOHDs3VPIODg7GxseHYsWO88847BgXptm3b+PDDDwF45513cnVCV1acnZ3x9/cHUs+Gfbr7Ojw8nDfffDPTe4P379+fatWqcfv2bVq3bp3ujM1bt27x2Wefcfv2bf2wypUro9PpuH37dq5b7KBw7gPu7u763K+//jrLly8nKSnJYJx79+6xfPly/Vm8aSZPnoydnR3bt2+nR48e6b6gIyMj+fTTTw2G5XUZffjhh1hYWLB582bGjBljcHzbihUrmDVrVoafc/nJmH1Zjf3JWGpu3yVKlMDZ2Rkw/rPTmM/vwuLNN9+kQoUK3Llzh+7duxv8qN6/fz9vvfVW3veXXF1k6DmXmJioDBs2TDE3N9dfe6xSpUpK/fr1lapVq+qvTQgoLVu2TDdtt27d9M+XK1dOqVevnv4itGZmZtneKSczmV2vLCfX3/rll18UMzMzBVIvfly7dm2lfPnyCqD069cvw3kfPHhQP187OzvFz8/P4M4T/P81O5+9vlzac9ndJSTtTghp18+DjG95mZNr/+X5FlHZXCcuu9uiZXYNuiNHjujvfmBtba34+fnp70BQrlw5Zdq0aZmu71mzZulz+fr6Kk2bNlWaNWtmkCGza53l5P09fvxYqVGjhgIoQUFB6aY5fvy4YmtrqwC5vp3f03f2cHBwUOrWratUqlRJnyOzO3sYcx3KP//8U7+v2tvbK7Vq1dLfTaRmzZpKcHBwptcJPHfunH69pG1j9erVU8qUKZPuTjlpOnTooEDqnSVq1aqlNGvWTGnWrJly8OBB/TjP0z6gKKkXlx45cqR+3LTPkPr16ysVKlTQL6uMtudNmzbp78ZhZmamVKtWTaldu7b+pgnZ3Sknp8tIURRl0aJF+nGKFSumX5eAMmLECP1+8+y1JrO6lmSanNy28Vk52Zdzeqec3OxP2a3TnHzf5HW6/Nq+c2Lw4MH67axGjRr6fXPTpk36cXKyvRvz+Z3TWy9mJLNtIae3XsxIVsv2n3/+0e+baXfYSbtzWMOGDfV3ypk8eXKmmTMiLZRPsbCwYO7cuZw8eZJRo0ZRt25dYmJiOHDgAFevXsXHx4d3332XXbt26Vvpnp72xx9/ZOXKlbRs2ZLY2FgOHTqEvb09PXr0ICIiIkfXQzO1Ll268Oeff+oPmD958iRubm4sWbIk0y4ib29vQkND6dmzJ+XLl+fy5cscPHiQJ0+e0Lp1a5YvX87PP/+co+vLpZk3bx4bN26kQ4cOpKSkcPDgQXQ6HZ07d2bLli188sknpni7qqtRowb//PMPnTt3xtbWllOnTpGYmMjQoUM5ePCgwdn+zxo+fDizZs3C39+fS5cusXPnTnbs2EFUVJRJso0YMYKjR4/i7e3NokWL0j1frVo15s+fD8CgQYP0xxPlRPfu3Tl48CBBQUG4urpy5MgR7t69S5MmTVi8eDGbNm0yOGHGFF5++WW2b99O69at0el0nDx5Emtra8aNG8fu3buzPKuyUqVKHDhwgFmzZtGoUSMePHjAkSNHMDc35+WXX+abb76hdOnSBtMsX76cwYMHU7ZsWY4fP86OHTvYsWNHjk/uKYz7gE6nY+bMmURERPDWW29RsmRJIiMjOXjwIImJiQQEBLBw4UK+++67dNO2bduWEydOMGLECHx9fYmKiuLUqVMUK1aMnj178sUXX6SbJq/L6P333+d///sfrVq1IikpicjISEqVKkVoaCizZ8/WH2+bdsJQfjN2X1ZjfzKWmtv3Z599xtixY/H29ubMmTP6fTOrE5syYsznd2HSsGFD9u/fT8+ePXFycuL48eMkJSXx8ccfs23bNv2VG3K7v+gUpQCvRSOEEEIUoNu3b+Pu7o5Op+P+/fv67lEhRMaqV69OZGQkv/76K506dcrxdNJCKYQQ4rm1ZMkSIPXsfikmhcjaP//8Q2RkJBYWFvq77eSUFJRCCCEKtVWrVrFp0yb9pWkg9TqY33zzDSEhIQAMGTJErXhCaMrevXtZvHhxuutN7tixg+7duwOpJ++4ubnlar7S5S2EEKJQCw4OZvbs2Tg4OODl5YW5uTmnT5/WX3+yZ8+efPfddya9ZqEQhdX69evp2LEjFhYW+Pj44ODgwOXLl7l27RqQeizp9u3bKV68eK7mKy2UQgghCrXu3bvTv39/ypQpw4ULFzh06BBWVla8/PLLfP/991JMCs1KTk5m/PjxVKxYUX8/9ClTpuTrrT5r1arFyJEjqVGjBrdu3WL//v3ExsZSv359Pv30U/75559cF5MgLZRCCCGEEKqYNm0ac+bMYdmyZVSvXp19+/bx1ltvMXXq1FxfE1htUlAKIYQQQqigQ4cOlCxZ0uAyft26dcPW1jbDy3FpmXR5CyGEEEKYUEJCAjExMQaPhISEdOO9+OKLbN26ldOnTwOpd+XZtWsX7dq1K+jIRrNQO4Aouvp5vqZ2hEKrfnLGtxUUoijrG9ZU7QhZWha0U+0IWfo6Mec3MyhoB2/szvfXSLxz3mTzmr5ouf4KA2kmTpzIpEmTDIaNHj2amJgYfH19MTc3Jzk5malTpxIYGGiyLAVFCkohhBBCiJTk7MfJoTFjxjBixAiDYdbW1unG++GHH1i5ciWrVq2ievXqHDp0iGHDhlG6dGn69u1rsjwFQQpKIYQQQggTsra2zrCAfNbIkSMZPXo0b775JpB6yZ6LFy8yffp0KSiFEEIIIQodJaXAX/LRo0eYmRmezmJubk5KSsFnMZYUlEIIIYQQKhRxHTt2ZOrUqZQvX57q1atz8OBB5syZQ79+/Qo8i7GkoBRCCCGEUMHChQsZP3487733Hrdu3aJ06dK88847TJgwQe1ouSYFpRBCCCGKPEWFLm9HR0fmzZvHvHnzCvy1TU0KSiGEEEKIQnjcopbIhc2FEEIIIYRRpIVSCCGEEEKFLu/niRSUQgghhBAmvLB5USQFpRBCCCGEtFAapUgcQzlp0iRq1qypdox8Fx4ejk6n48GDB2pHEUIIIUQRookWyn/++YeXXnqJtm3bsmHDBrXjEB4eTosWLTJ87vr163h4eJjkdZo3b86OHTuYPn06o0ePNniuffv2bNy4McObyYtUr7zXlToBDShVuQxP4p9w9sAp1s74jhvnr6kdDdB2vmq9W1G9dyscy7oBcO/0FfbP+4XL4UdUTpZK8uWdlrOB9vO1G7eY6/di0g3v3tSfj99srUKi/2h92QHUbuhPn/d6Us3PFzePEgwPGk34H3+pHStn5Cxvo2iioAwNDWXIkCGEhoZy7do1SpcurXYkAE6dOoWTk5PBMHd3d5O+Rrly5QgLCzMoKK9evcrWrVspVaqUSV/reePToBrbVvzBhcNnMbcw59WRPRmxfDzj2gzjyeMEteNpOl/c9Xv8O30N0RdugE6Hz+tNaBs6grXtxnL/9FVVs0m+5zdbYci3clQgKSmK/u+z1+8waMFa2tT2UTFVKq0vOwBbO1tOHz/Lr99vYM7S6WrHyRU1rkP5PFG9yzs2NpY1a9bw7rvv0r59e8LCwvTPpXXhbtiwAT8/P2xsbGjYsCHHjh3TjxMWFoaLiwvr1q3Dy8sLGxsbAgICuHz5coavt3PnTiwtLblx44bB8GHDhtGkSRODYe7u7nh4eBg8zMzMcjyPXbt20aRJE2xtbSlXrhxDhw4lLi7OYJoOHTpw584ddu/erR+2bNkyXn755XTF64oVK6hbty6Ojo54eHjQs2dPbt26lemyffToEe3ataNx48b6bvAlS5ZQtWpVbGxs8PX15YsvvtCPn1GX+aFDh9DpdERFRQG5X975aW7fqexeG861M1e4fOIi3wZ/TomybnjWqFTgWTKi5XwXtxzk0vbDREfdJPrCDSJm/kjio3hK1qqidjRA8j2v2UD7+Vwd7SjhbK9/7Dx6nnJuLtT1Kqt2NM0vO4Dd2/bwxaeL2b5pp9pRRAFTvaD84Ycf8PX1xcfHh169evHtt9+iKIrBOCNHjmT27Nns3bsXNzc3OnbsSGJiov75R48eMXXqVJYvX87u3bt58OABb775Zoav17RpUypVqsSKFSv0wxITE1m5cmWO752Zk3mcO3eOtm3b0q1bN44cOcKaNWvYtWsXgwcPNpiXlZUVgYGBLF26VD8sLCwswyyJiYlMmTKFw4cPs27dOqKioggKCsow44MHD2jTpg0pKSls3rwZFxcXVq5cyYQJE5g6dSonTpxg2rRpjB8/nmXLluXofafJzfIuSLaOdgDEPYhVOUnGtJpPZ6ajcqeGWNpac/PAGbXjpCP58k7L2UD7+RKTktkYEUnnRi+g0+nUjmNA68uuUEpJMd2jCFK9yzs0NJRevXoB0LZtW6Kjo9mxYwfNmzfXjzNx4kTatGkDpLbelS1bll9++YXu3bsDqYXWokWLaNCggX6cqlWrEhERQf369dO9Zv/+/Vm6dCkjR44E4Pfffyc+Pl4/vzRlyxr+Iq1QoQLHjx/P0TymT59OYGAgw4YNA8DLy4sFCxbQrFkzvvzyS2xsbPTz7devH02aNGH+/Pns37+f6OhoOnTokO7YyaeLzEqVKrFgwQLq1atHbGwsDg4O+udu3LjBG2+8gZeXF6tWrcLKykq/HGfPns2rr74KQMWKFYmMjOTrr7+mb9++6VdOJnK7vAESEhJISDDs5k1WkjHXmef4dbOi0+noMeEtzuw9wdXTBd9amh0t5nP1LUvXdZMwt7YkMS6ePwfO4/4Z9Y/vTCP58k7L2UD7+dJsO3yWh48T6NSwutpR9ArLsiuUpMvbKKq2UJ46dYqIiAh69OgBgIWFBW+88QahoaEG4zVq1Ej/f1dXV3x8fDhx4oR+mIWFBfXq1dP/7evri4uLi8E4TwsKCuLs2bPs2bMHSG0R7N69O/b29gbj/fXXXxw6dEj/2LhxY47ncfjwYcLCwnBwcNA/AgICSElJ4cKFCwav4+/vj5eXF2vXruXbb7+ld+/eWFikr/X3799Px44dKV++PI6OjjRr1gyAS5cuGYzXpk0bqlSpwpo1a/TFZFxcHOfOnaN///4GmT755BPOnTuX4XLKTG6XN6QW2M7OzgaPI9GncvW6Wek1ZQBlfMrx1ZC5JpunKWkx34Nz1/mx7Vh+7jSR4yu20mLuOxTz0sbxyyD5jKHlbKD9fGnW/X2UxtUq4u7ikP3IBaSwLDtR9KjaQhkaGkpSUpLBSTiKomBtbc2iRYvy7XXd3d3p2LEjS5cupWLFimzatInw8PB041WsWBEXF5c8zSM2NpZ33nmHoUOHppu2fPny6Yb169ePzz//nMjISCIiItI9HxcXR0BAAAEBAaxcuRI3NzcuXbpEQEAAT548MRi3ffv2/PTTT0RGRlKjRg19HoDFixfrWxbTmJunthKamaX+vnj6kIOnDy0wxpgxYxgxYoTBsCE1ct4qmpXAkP74t6zDjO4TuH/jnknmaUpazZeSmExM1E0A7hyNwt2/EjX6tWXnmG9VTpZK8uWdlrOB9vMBXLsbw78nLzH77U5qRzFQGJZdoSUXNjeKagVlUlISy5cvZ/bs2bz88ssGz3Xp0oXvv/8eX19fAPbs2aMvwu7fv8/p06epWrWqwbz27dun7249deoUDx48MBjnWQMGDKBHjx6ULVuWypUr07hx41y/h6zmUbt2bSIjI6lSJWcHS/fs2ZPg4GD8/f2pVq1auudPnjzJ3bt3mTFjBuXKlQNg3759Gc5rxowZODg40KpVK8LDw6lWrRolS5akdOnSnD9/nsDAwAync3NLvRTF9evXKVasGJB6Us6z8rK8ra2tsba2Nhhmiu7uwJD+1A6oz6dvTuTOlcxPUFKL1vM9TWemw9xa9aNgMiX58k7L2UCb+X795xiujnY0eUH9k+iyosVlV2hJl7dRVNsK169fz/379+nfvz/Ozs4Gz3Xr1o3Q0FA+++wzACZPnkzx4sUpWbIkY8eOpUSJEnTp0kU/vqWlJUOGDGHBggVYWFgwePBgGjZsmOnxfAABAQE4OTnxySefMHny5AzHuXXrFvHx8QbDihcvjqWlZbbzGDVqFA0bNmTw4MEMGDAAe3t7IiMj2bx5c4atr8WKFeP69ev6eT+rfPnyWFlZsXDhQgYNGsSxY8eYMmVKpu9v1qxZJCcn07JlS8LDw/H19SUkJIShQ4fi7OxM27ZtSUhIYN++fdy/f58RI0ZQpUoVypUrx6RJk5g6dSqnT59m9uzZ6eadl+WdH3pNGUDDzk1YMPBT4uPicXJzAeBxzCMSE55kPXEB0HK++qO6czn8MLFX72LpYEOVzi9SulFVNvSaqWquNJLv+cwG2s8HkJKi8NueY3RsWA0Lc9XPXdUrDMvO1s6WchX/O/+gTPnSeFf3IuZBDDeu3lQxmchvqhWUoaGhtG7dOl0xCakF5cyZMzlyJPVirTNmzOCDDz7gzJkz1KxZk99//11/bCCAnZ0do0aNomfPnly9epUmTZqkOw7zWWZmZgQFBTFt2jT69OmT4Tg+PumvO/bPP//QsGHDbOfh5+fHjh07GDt2LE2aNEFRFCpXrswbb7yRaabMutchtfUwLCyMjz/+mAULFlC7dm1mzZpFp06Zd8fMnTvXoKgcMGAAdnZ2fPbZZ4wcORJ7e3tq1KihP3HI0tKS77//nnfffRc/Pz/q1avHJ598wuuvv24w37ws7/zQsndbAEavMSzmQ4MXsXtteIHneZaW89mWcKLl3EHYubvw5OEj7p64zIZeM7ny17HsJy4Aku/5zAbazwew5+RFrt97SJdGL6gdxUBhWHbVavqy5Of/Gk2CJ6ce9vXbmo1M/GCqWrFypoienW0qOuXZa/RoSNoda+7fv59psRUWFsawYcPydLvB/v37c/v2bX777bc8ZzTFPAoTY5b3s/p5vmZ8oCKqfrJN9iMJUcT0DWuqdoQsLQvS9rUZv068kP1IKjl4Y3f2Ixkp4dhmk83L+oU2JptXYVEkD7yIjo7m6NGjrFq1Ks+FoCnmIYQQQgiNkBZKoxTJgrJz585EREQwaNAg/fUt1ZiHEEIIIcTzQNNd3uL5Jl3eeSdd3kKkJ13exinqXd7xhzdmP1IO2fi/YrJ5FRZFsoVSCCGEEMKAXDbIKNq5HoIQQgghhCiUpIVSCCGEEEJOyjGKFJRCCCGEENLlbRTp8hZCCCGEEEaRFkohhBBCiJRktRMUalJQCiGEEEJIl7dRpMtbCCGEEEIYRVoohRBCCCHkLG+jSEEphBBCCCFd3kaRglKIQqjPYEu1I2Rp+aJEtSNkKsI8Xu0IWVr0rqPaEbKk5XX7YuAytSNk6R3LimpHyFItm1JqR1CXtFAaRY6hFEIIIYQQRpEWSiGEEEIIaaE0ihSUQgghhCjyFEWuQ2kM6fIWQgghhBBGkYJSCCGEECIlxXSPHPL09ESn06V7vP/++/n4RvOHdHkLIYQQQqhw2aC9e/eSnPxfV/uxY8do06YNr7/+eoFnMZYUlEIIIYQQKnBzczP4e8aMGVSuXJlmzZqplCjvpKAUQgghhDDhWd4JCQkkJCQYDLO2tsba2jrTaZ48ecJ3333HiBEj0Ol0JstSUOQYSiGEEEIIJcVkj+nTp+Ps7GzwmD59epYvv27dOh48eEBQUFDBvF8TkxZKIYQQQggTGjNmDCNGjDAYllXrJEBoaCjt2rWjdOnS+Rkt30hBKYQQQghhwi7v7Lq3n3Xx4kW2bNnCzz//bLIMBU26vE1s0qRJ1KxZ02TzCwoKokuXLiabX0bCw8PR6XQ8ePAgR+M3b96cYcOG5WsmIYQQokCZsMs7t5YuXYq7uzvt27fPhzdWMIpcC+U///zDSy+9RNu2bdmwYYPacQgPD6dFixbcv38fFxeXdM/Pnz8fRVFM9nrNmzenZs2azJs3Tz/sxRdf5Pr16zg7O5vsdQrCK+91pU5AA0pVLsOT+CecPXCKtTO+48b5a2pHA7SfT+fggmXz7phXqgEWVigPbvFkYygpN6LUjka13q2o3rsVjmVTz4C8d/oK++f9wuXwIyonSyXrNu+0vm5rN/Snz3s9qebni5tHCYYHjSb8j7/UjgVof9lpfb/Ilkq3XkxJSWHp0qX07dsXC4vCW5YV3uR5FBoaypAhQwgNDeXatWuaP1ahIIo8KysrPDw88v11TM2nQTW2rfiDC4fPYm5hzqsjezJi+XjGtRnGk8cJ2c+gKOeztsO611hSLp0g4cc5KI8eoitWEiU+Tt1c/y/u+j3+nb6G6As3QKfD5/UmtA0dwdp2Y7l/+qra8WTdGkHr69bWzpbTx8/y6/cbmLM065MoCprWl52m9wsN27JlC5cuXaJfv35qRzFKkeryjo2NZc2aNbz77ru0b9+esLAw/XNp3b4bNmzAz88PGxsbGjZsyLFjx/TjhIWF4eLiwrp16/Dy8sLGxoaAgAAuX76c4evt3LkTS0tLbty4YTB82LBhNGnSJEeZn+3ybt68OYMHD2bw4ME4OztTokQJxo8fb9CK+cUXX+jzlSxZktdee00/rx07djB//nz91fijoqIy7PLevXs3zZs3x87OjmLFihEQEMD9+/czzLhhwwacnZ1ZuXJljt6TqcztO5Xda8O5duYKl09c5NvgzylR1g3PGpUKNEdmtJzPsuErKDH3eLLxW1KuX0CJvkNK1HGUB7fVjgbAxS0HubT9MNFRN4m+cIOImT+S+CiekrWqqB0NkHVrDK2v293b9vDFp4vZvmmn2lHS0fqy0/J+kSMq3CkH4OWXX0ZRFLy9vfPpjRWMIlVQ/vDDD/j6+uLj40OvXr349ttv03Unjxw5ktmzZ7N3717c3Nzo2LEjiYmJ+ucfPXrE1KlTWb58Obt37+bBgwe8+eabGb5e06ZNqVSpEitWrNAPS0xMZOXKlUb9Elm2bBkWFhZEREQwf/585syZw5IlSwDYt28fQ4cOZfLkyZw6dYo//viDpk2bAqnd540aNWLgwIFcv36d69evU65cuXTzP3ToEK1ataJatWr8888/7Nq1i44dOxpczT/NqlWr6NGjBytXriQwMDDP78kUbB3tAIh7EKtqjsxoKZ95lZqk3LiAVef3sB08H5ugSZj7N1U7VoZ0Zjoqd2qIpa01Nw+cUTtOhmTd5k1hWLdaVRiWnZb2ixxR8RjK50GR6vIODQ2lV69eALRt25bo6Gh27NhB8+bN9eNMnDiRNm3aAKmFW9myZfnll1/o3r07kFoQLlq0iAYNGujHqVq1KhEREdSvXz/da/bv35+lS5cycuRIAH7//Xfi4+P188uLcuXKMXfuXHQ6HT4+Phw9epS5c+cycOBALl26hL29PR06dMDR0ZEKFSpQq1YtILX73MrKCjs7uyy7uGfOnEndunX54osv9MOqV6+ebrzPP/+csWPH8vvvv2d7Vf+MLvKarCRjrjPPzVvPlE6no8eEtziz9wRXT2fcYqwmreXTubhjUaslSXv/JP6f9ZiVqohVq0CeJCeTfGy32vEAcPUtS9d1kzC3tiQxLp4/B87j/hntHYsl6zb3Csu61aLCsuy0tl+I/FdkWihPnTpFREQEPXr0AMDCwoI33niD0NBQg/EaNWqk/7+rqys+Pj6cOHFCP8zCwoJ69erp//b19cXFxcVgnKcFBQVx9uxZ9uzZA6R2m3fv3h17e/s8v5eGDRsaXEW/UaNGnDlzhuTkZNq0aUOFChWoVKkSvXv3ZuXKlTx69ChX809roczK2rVrGT58OJs3b87RLaIyusjrkehTucqVlV5TBlDGpxxfDZlrsnmakuby6XSk3LxI4s6fUG5dIvnwDpIO78CiZnO1k+k9OHedH9uO5edOEzm+Yist5r5DMS/tHfMs6zb3Csu61aLCsuw0t1/khEpd3s+LIlNQhoaGkpSUROnSpbGwsMDCwoIvv/ySn376iejo6Hx7XXd3dzp27MjSpUu5efMmmzZtytcDbx0dHTlw4ADff/89pUqVYsKECfj7++f4kkAAtra22Y5Tq1Yt3NzcMjxsICNjxowhOjra4OHn7JPjTFkJDOmPf8s6zHxzEvdv3DPJPE1Ji/mU2AcodwxbNZS719E5FVcpUXopicnERN3kztEoIj79gbuRl6jRr63asQzIus2bwrButaowLDst7hc5Il3eRikSBWVSUhLLly9n9uzZHDp0SP84fPgwpUuX5vvvv9ePm9aSCHD//n1Onz5N1apVDea1b98+/d+nTp3iwYMHBuM8a8CAAaxZs4ZvvvmGypUr07hxY6Pez7///mvw9549e/Dy8sLcPLX72MLCgtatWzNz5kyOHDlCVFQU27ZtA1LP6M7oWMin+fn5sXXr1izHqVy5Mtu3b+fXX39lyJAh2Wa2trbGycnJ4GGK7u7AkP7UDqjPzJ6TuHPlltHzMzWt5ku5ehadq+FhDzrXkigxd1VKlD2dmQ5za+0cpSPr1nS0tm4LE60tO63uFyL/aWcrzEfr16/n/v379O/fP91leLp160ZoaCifffYZAJMnT6Z48eKULFmSsWPHUqJECYOzrC0tLRkyZAgLFizAwsKCwYMH07BhwwyPn0wTEBCAk5MTn3zyCZMnT85wnKNHj+Lo6Kj/W6fT4e/vn+G4ly5dYsSIEbzzzjscOHCAhQsXMnv2bP17PX/+PE2bNqVYsWJs3LiRlJQUfHxSWwM9PT35999/iYqKwsHBAVdX13TzHzNmDDVq1OC9995j0KBBWFlZsX37dl5//XVKlCihH8/b25vt27fTvHlzLCwsDK5tWRB6TRlAw85NWDDwU+Lj4nFycwHgccwjEhOeFGiWjGg5X9Le/2Hd62MsGrYn+eRezEpVwsK/OU/+DFM1V5r6o7pzOfwwsVfvYulgQ5XOL1K6UVU29JqpdjRA1q0xtL5ube1sKVexrP7vMuVL413di5gHMdy4elPFZNpfdlreL3KkiHZVm0qRKChDQ0Np3bp1htd07Natm74lD2DGjBl88MEHnDlzhpo1a/L7779jZWWlH9/Ozo5Ro0bRs2dPrl69SpMmTdIdh/ksMzMzgoKCmDZtGn369MlwnLQzsdOYm5uTlJSU4bh9+vTh8ePH1K9fH3Nzcz744APefvttAFxcXPj555+ZNGkS8fHxeHl58f333+tPqgkODqZv375Uq1aNx48fc+HChXTz9/b25n//+x8ff/wx9evXx9bWlgYNGuiPP32aj48P27Zto3nz5pibm+sL24LQsndqN8/oNYZFemjwInavDS+wHJnRcr6UGxdI+GURVs1ew7JxZ5To2zzZtorkyD3ZT1wAbEs40XLuIOzcXXjy8BF3T1xmQ6+ZXPnrWPYTFwBZt3mn9XVbraYvS35epP87ePJQAH5bs5GJH0xVKxag/WWn5f0iR4poV7Wp6BRT3oalEMvujjWQekLNsGHDcnU8Ypr+/ftz+/ZtfvvtN6NyZnSnm8Kqn+drakcotBa965j9SCpavigx+5FUEmEer3aELMm6zbuvE9P/QNaSdywrqh0hS1reN76NWpvvr/H452kmm5ftqx+bbF6FRZFooVRTdHQ0R48eZdWqVUYXk0IIIYTIJ9LlbRQpKPNZ586diYiIYNCgQfrrWwohhBBCY6SgNIoUlP+vefPm2V7+JigoiKCgoFzNNzw8PO+hCmB+QgghhADkCECjFInLBgkhhBBCiPwjLZRCCCGEENLlbRQpKIUQQgghpKA0inR5CyGEEEIIo0gLpRBCCCGEXNjcKFJQCiGEEEJIl7dRpMtbCCGEEEIYRVoohRBCCCHkOpRGkYJSCCGEEEK6vI0iXd5CCCGEEMIo0kIpRAY+D31Z7QhZOt53o9oRshRhod2PFq2v2xcDl6kdIUuLLdzUjpCpCJtSakfI0tfxF9SOkKWjN6PUjpCpbwviRaSF0ija/dQXQgghhCgoctkgo0hBKYQQQogiT0mRk3KMIcdQCiGEEEIIo0gLpRBCCCGEHENpFCkohRBCCCHkGEqjSJe3EEIIIYQwirRQCiGEEELISTlGkYJSCCGEEEKOoTSKdHkLIYQQQgijSAulEEIIIYS0UBpFCkohhBBCCEWOoTSGdHk/h6KiotDpdBw6dEjtKEIIIUThkJJiukcRJC2UGvHPP//w0ksv0bZtWzZs2KB2nELhlfe6UiegAaUql+FJ/BPOHjjF2hnfceP8NbWjAdBu3GKu34tJN7x7U38+frO1Coky5/H+q5Qd04ebS37n8qRQtePIujVS7Yb+9HmvJ9X8fHHzKMHwoNGE//GX2rEyJNte7hSGdfvuoL58OOJdPDzcOHIkkg+GjWfvvkNqxxL5TApKjQgNDWXIkCGEhoZy7do1SpcuneF4iqKQnJyMhUXBr7onT55gZWVV4K+bGZ8G1di24g8uHD6LuYU5r47syYjl4xnXZhhPHieoHY+VowJJeeoyFGev32HQgrW0qe2jYqr07Pyr4BYYwKPIC2pH0ZN1axxbO1tOHz/Lr99vYM7S6WrHyZRse7mn9XX7+uudmPXZRN57fzQRew8ydMgANm5YSbUXmnL79l2142VNpcsGXb16lVGjRrFp0yYePXpElSpVWLp0KXXr1lUlT15Jl7cGxMbGsmbNGt59913at29PWFiY/rnw8HB0Oh2bNm2iTp06WFtbs2vXLlJSUpg5cyZVqlTB2tqa8uXLM3XqVIP5nj9/nhYtWmBnZ4e/vz///POPwfO7du2iSZMm2NraUq5cOYYOHUpcXJz+eU9PT6ZMmUKfPn1wcnLi7bffpmXLlgwePNhgPrdv38bKyoqtW7eafuFkYW7fqexeG861M1e4fOIi3wZ/TomybnjWqFSgOTLj6mhHCWd7/WPn0fOUc3OhrldZtaPpmdnZUGnhcKI++pzk6LjsJyggsm6Ns3vbHr74dDHbN+1UO0qmZNvLG62v2+EfDGRJ6CqWLf+BEyfO8N77o3n06DFvBb2pdrTsKSmme+TQ/fv3ady4MZaWlmzatInIyEhmz55NsWLF8vGN5g8pKDXghx9+wNfXFx8fH3r16sW3336L8szBwaNHj2bGjBmcOHECPz8/xowZw4wZMxg/fjyRkZGsWrWKkiVLGkwzduxYgoODOXToEN7e3vTo0YOkpCQAzp07R9u2benWrRtHjhxhzZo17Nq1K12xOGvWLPz9/Tl48CDjx49nwIABrFq1ioSE/36pf/fdd5QpU4aWLVvm0xLKGVtHOwDiHsSqmiMjiUnJbIyIpHOjF9DpdGrH0Ss/9W2it+7n4a4jakfJkqzb549se88fS0tLatf2Y+u2/7rgFUVh67ZdNGxYR8Vk2vXpp59Srlw5li5dSv369alYsSIvv/wylStXVjtarklBqQGhoaH06tULgLZt2xIdHc2OHTsMxpk8eTJt2rShcuXKWFpaMn/+fGbOnEnfvn2pXLkyL730EgMGDDCYJjg4mPbt2+Pt7U1ISAgXL17k7NmzAEyfPp3AwECGDRuGl5cXL774IgsWLGD58uXEx8fr59GyZUs+/PBDKleuTOXKlXn11VcB+PXXX/XjhIWFERQUlOWXaUJCAjExMQaPZCXZuAX3FJ1OR48Jb3Fm7wmunr5ssvmayrbDZ3n4OIFODaurHUWvWKeXsKtRmSszVqgdJUuybp8/su09n0qUcMXCwoJbN+8YDL916zYeJd1USpULKYrJHhl95z3dEJPmt99+o27durz++uu4u7tTq1YtFi9erMKbN54UlCo7deoUERER9OjRAwALCwveeOMNQkMND05/+liKEydOkJCQQKtWrbKct5+fn/7/pUqVAuDWrVsAHD58mLCwMBwcHPSPgIAAUlJSuHDhv+OZnj2Gw8bGht69e/Ptt98CcODAAY4dO0ZQUFCWWaZPn46zs7PB40j0qSynyY1eUwZQxqccXw2Za7J5mtK6v4/SuFpF3F0c1I4CgGWpEpQPGcCFIXNQEhLVjpMlWbfPF9n2hFYpKSkme2T0nTd9evpjXs+fP8+XX36Jl5cXf/75J++++y5Dhw5l2bJlKiwB48hJOSoLDQ0lKSnJ4CQcRVGwtrZm0aJF+mH29vb6/9va2uZo3paWlvr/p7Uepvz/5QxiY2N55513GDp0aLrpypcvn+HrphkwYAA1a9bkypUrLF26lJYtW1KhQoUss4wZM4YRI0YYDBtSo2+O3kd2AkP649+yDjO6T+D+jXsmmacpXbsbw78nLzH77U5qR9Gz96uMpZsL1TbN0Q/TWZjj0KAa7kGvsL/S65q49IWs2+ePbHvPrzt37pGUlIR7yRIGw93d3bhx87ZKqdSR0XeetbV1uvFSUlKoW7cu06ZNA6BWrVocO3aMr776ir59TfMdWVCkoFRRUlISy5cvZ/bs2bz88ssGz3Xp0oXvv/8eX1/fdNN5eXlha2vL1q1b03Vz51Tt2rWJjIykSpUquZ62Ro0a1K1bl8WLF7Nq1SqDwjcz1tbW6XYmc515rl/7WYEh/akdUJ9P35zInSu3jJ5ffvj1n2O4OtrR5AVtHNQPELPrMMdaGf6YqDh7CPHnrnL9i58184Uu6/b5I9ve8ysxMZEDB47QssVL/Pbbn0BqY0bLFi/xxZdLVU6XAyY8yzuj77yMlCpVimrVqhkMq1q1Kj/99JPJshQUKShVtH79eu7fv0///v1xdnY2eK5bt26Ehoby2WefpZvOxsaGUaNG8dFHH2FlZUXjxo25ffs2x48fp3///jl67VGjRtGwYUMGDx7MgAEDsLe3JzIyks2bN+eoQBwwYACDBw/G3t6erl275uwNm1ivKQNo2LkJCwZ+SnxcPE5uLgA8jnlEYsITVTI9KyVF4bc9x+jYsBoW5to5wiQlLp74U5cMhz1OIOn+w3TD1SDr1ji2draUq/jfGedlypfGu7oXMQ9iuHH1porJZNszlpbXLcDc+YtZGjqX/QeOsHfvQYYOGYi9vS1hy9aoHS17uTg721QaN27MqVOGh3+dPn06214/LZKCUkWhoaG0bt06XTEJqQXlzJkzOXIk4zMgx48fj4WFBRMmTODatWuUKlWKQYMG5fi1/fz82LFjB2PHjqVJkyYoikLlypV54403cjR9jx49GDZsGD169MDGxibHr2tKLXu3BWD0mskGw0ODF7F7bbgKidLbc/Ii1+89pEujF9SOUqjIujVOtZq+LPn5vx+GwZNTWwR/W7ORiR9MzWwygfa3Pa2v2x9//A23Eq5MmhCMh4cbhw8fp32HXty6dSf7iYug4cOH8+KLLzJt2jS6d+9OREQE33zzDd98843a0XJNpzx7fRohciAqKorKlSuzd+9eateunad59PN8zcSpTOfz0JezH0lFx/tuVDtClr5Q4cL7OaX1dftioLYPxl9sod2zdbW83QEcjL+udoQsHb0XpXaETCU9uZrvrxE3OdBk87KfsDLH465fv54xY8Zw5swZKlasyIgRIxg4cKDJshQUbe99QnMSExO5e/cu48aNo2HDhnkuJoUQQghNUen43Q4dOtChQwdVXtuUpKAUubJ7925atGiBt7c3a9euVTuOEEIIYRoq3XrxeSEFpciV5s2bp7uLjxBCCCGKNikohRBCCCFUOMv7eSIFpRBCCCGEdHkbRVsXTxNCCCGEEIWOtFAKIYQQoshTNHCXpsJMCkohhBBCCOnyNop0eQshhBBCCKNIC6UQQgghhLRQGkUKSiGEEEIIuWyQUaTLWwghhBBCGEVaKIUQQgghpMvbKFJQCtUcjL+udoRMHe+7Ue0IWdqnc1A7QpbeS4pVO0KmlgXtVDtClmrZlFI7Qpb2JduoHSFTn9W4rHaELP14qKLaEbIUUVrb215+U6SgNIoUlEIIIYQQUlAaRY6hFEIIIYQQRpEWSiGEEEIIuVOOUaSgFEIIIYSQLm+jSJe3EEIIIYQwirRQCiGEEEJIC6VRpKAUQgghRJGnKFJQGkO6vIUQQgghhFGkhVIIIYQQQrq8jSIFpRBCCCGEFJRGkS5vIYQQQghhFCkoszBp0iRq1qypdgyT8vT0ZN68efq/dTod69atUy2PEEIIoQVKimKyR1H03HZ5BwUFsWzZMv3frq6u1KtXj5kzZ+Ln51egWRRFYfHixYSGhnL8+HEsLCyoUqUKvXr14u2338bOzq5A8zzt+vXrFCtWTLXXN0bthv70ea8n1fx8cfMowfCg0YT/8ZfasTLk8f6rlB3Th5tLfufypFC141Ctdyuq926FY1k3AO6dvsL+eb9wOfyIyskyJssv5155ryt1AhpQqnIZnsQ/4eyBU6yd8R03zl9TOxqg7WUHYNsjCLuebxkMS75ykQfv9lEp0X+0vuy0vu1lq4gWgqby3BaUAG3btmXp0qUA3Lhxg3HjxtGhQwcuXbpUoDl69+7Nzz//zLhx41i0aBFubm4cPnyYefPm4enpSZcuXdJN8+TJE6ysrPI9m4eHR76/Rn6xtbPl9PGz/Pr9BuYsna52nEzZ+VfBLTCAR5EX1I6iF3f9Hv9OX0P0hRug0+HzehPaho5gbbux3D99Ve14BmT55Y5Pg2psW/EHFw6fxdzCnFdH9mTE8vGMazOMJ48TVM0G2l52aZIunidm3If/DUhJVi/MU7S+7LS+7WVL7rxolOe6y9va2hoPDw88PDyoWbMmo0eP5vLly9y+fRuAUaNG4e3tjZ2dHZUqVWL8+PEkJiamm8/XX39NuXLlsLOzo3v37kRHRwOwc+dOLC0tuXHjhsH4w4YNo0mTJgD88MMPrFy5ku+//56PP/6YevXq4enpSefOndm2bRstWrQAUltUu3TpwtSpUyldujQ+Pj4ArFixgrp16+Lo6IiHhwc9e/bk1q1b+teqW7cus2bN0v/dpUsXLC0tiY2NBeDKlSvodDrOnj2b4TJ6uss7KioKnU7Hzz//TIsWLbCzs8Pf359//vnHYJrFixfrl0fXrl2ZM2cOLi4uOVonprR72x6++HQx2zftLPDXzikzOxsqLRxO1Eefkxwdp3YcvYtbDnJp+2Gio24SfeEGETN/JPFRPCVrVVE7mgFZfrk3t+9Udq8N59qZK1w+cZFvgz+nRFk3PGtUUjsaoO1lp5ecjPLg3n+PmGi1EwHaX3Za3/ZE/nquC8qnxcbG8t1331GlShWKFy8OgKOjI2FhYURGRjJ//nwWL17M3LlzDaY7e/YsP/zwA7///jt//PEHBw8e5L333gOgadOmVKpUiRUrVujHT0xMZOXKlfTr1w+AlStX4uPjQ+fOndNl0ul0ODs76//eunUrp06dYvPmzaxfv14/vylTpnD48GHWrVtHVFQUQUFB+mmaNWtGeHg4kNq1/tdff+Hi4sKuXbsA2LFjB2XKlKFKlZx/4IwdO5bg4GAOHTqEt7c3PXr0ICkpCYDdu3czaNAgPvjgAw4dOkSbNm2YOnVqjudd1JSf+jbRW/fzcJc2uqQyojPTUblTQyxtrbl54IzacQzI8jOerWPqITVxD2JVTpKeVpedeemyFAv7CZfF3+Pw4TjM3NzVjpSOVpfd07S87WVEjqE0znPd5b1+/XocHBwAiIuLo1SpUqxfvx4zs9Q6ety4cfpxPT09CQ4OZvXq1Xz00Uf64fHx8SxfvpwyZcoAsHDhQtq3b8/s2bPx8PCgf//+LF26lJEjRwLw+++/Ex8fT/fu3QE4c+aMvrUxO/b29ixZssSgqzutMAWoVKkSCxYsoF69esTGxuLg4EDz5s0JDQ0lOTmZY8eOYWVlxRtvvEF4eDht27YlPDycZs2a5Wq5BQcH0759ewBCQkKoXr06Z8+exdfXl4ULF9KuXTuCg4MB8Pb25u+//9YXwJlJSEggIcGwyyNFScFM9/z+pinW6SXsalTmRPtgtaNkyNW3LF3XTcLc2pLEuHj+HDiP+2e0c6yTLD/j6XQ6ekx4izN7T3D19GW14+hpedklnT5B7LwZJF+9hFmx4tj2CMJpxkIeDA6Cx4/VjqfpZfc0rW57WSqihaCpPL/f5kCLFi04dOgQhw4dIiIigoCAANq1a8fFixcBWLNmDY0bN8bDwwMHBwfGjRuX7vjK8uXL64tJgEaNGpGSksKpU6eA1K7qs2fPsmfPHgDCwsLo3r079vb2QO5u5VSjRo10x03u37+fjh07Ur58eRwdHfXFYVrOJk2a8PDhQw4ePMiOHTto1qwZzZs317da7tixg+bNm+c4A2Bw0lKpUqUA9N3sp06don79+gbjP/t3RqZPn46zs7PB42bclVzlKkwsS5WgfMgALgyZg5KQ/jAKLXhw7jo/th3Lz50mcnzFVlrMfYdiXqXVjgXI8jOVXlMGUManHF8NmZv9yAVIy8sucf+/PNkdTnLUeRIP7uVhyCh09g5Yv9RC7WiAtpfd07S67Yn881y3UNrb2xt09S5ZsgRnZ2cWL15M+/btCQwMJCQkhICAAJydnVm9ejWzZ8/O1Wu4u7vTsWNHli5dSsWKFdm0aZO+mIPUFryTJ0/mOO/T4uLiCAgIICAggJUrV+Lm5salS5cICAjgyZMnALi4uODv7094eDj//PMPbdq0oWnTprzxxhucPn2aM2fO5LqF0tLSUv9/nU4HQEqKcUcrjxkzhhEjRhgMa+IVYNQ8tczerzKWbi5U2zRHP0xnYY5Dg2q4B73C/kqvg5HL1FgpicnERN0E4M7RKNz9K1GjX1t2jvlW1Vwgy88UAkP649+yDjO6T+D+jXtqxzGg9WX3NCUulpRrVzAvVSb7kQtAYVh2Wt72siQn5RjluS4on6XT6TAzM+Px48f8/fffVKhQgbFjx+qfT2u5fNqlS5e4du0apUun/gLcs2cPZmZmBt3YAwYMoEePHpQtW5bKlSvTuHFj/XM9e/bkzTff5Ndff013HKWiKMTExBgcR/m0kydPcvfuXWbMmEG5cuUA2LdvX7rxmjVrxvbt24mIiGDq1Km4urpStWpVpk6dSqlSpfD29s7FUsqaj48Pe/fuNRj27N8Zsba2xtra2mDY89zdHbPrMMdaDTUYVnH2EOLPXeX6Fz+rXgxlRGemw9xaGx8JsvyMExjSn9oB9fn0zYncuXIr+wlUpqVll46NLWYepUm5r83CSGvLrrBte08rqsc+mop2tsJ8kJCQoD8D+/79+yxatIjY2Fg6duxITEwMly5dYvXq1dSrV48NGzbwyy+/pJuHjY0Nffv2ZdasWcTExDB06FC6d+9ucLmdgIAAnJyc+OSTT5g8ebLB9N27d+eXX36hR48ejBs3jpdffhk3NzeOHj3K3LlzGTJkSIaXDYLU7nYrKysWLlzIoEGDOHbsGFOmTEk3XvPmzVm4cCFubm74+vrqhy1atIjXX389r4svQ0OGDKFp06bMmTOHjh07sm3bNjZt2qRvySxItna2lKtYVv93mfKl8a7uRcyDGG5cvVngeZ6WEhdP/CnDwydSHieQdP9huuFqqD+qO5fDDxN79S6WDjZU6fwipRtVZUOvmWpHA2T5GaPXlAE07NyEBQM/JT4uHic3FwAexzwiMeGJuuHQ9rIDsOv3Lk8i/ibl1k3MXItj27MfpKSQsGOL2tE0v+y0vu2J/PVcF5R//PGH/hhAR0dHfH19+fHHH/XHFA4fPpzBgweTkJBA+/btGT9+PJMmTTKYR5UqVXj11Vd55ZVXuHfvHh06dOCLL74wGMfMzIygoCCmTZtGnz6GF7/V6XSsWrWKb775hm+//ZapU6diYWGBl5cXffr0ISAg825fNzc3wsLC+Pjjj1mwYAG1a9dm1qxZdOrUyWC8Jk2akJKSYtC13bx5c+bPn5/r4yez07hxY7766itCQkIYN24cAQEBDB8+nEWLFpn0dXKiWk1flvz83+sGT05t0fptzUYmfiBnnmfFtoQTLecOws7dhScPH3H3xGU29JrJlb+OqR2tUNDy8mvZuy0Ao9cY/rgNDV7E7rXhKiQypOVlB2BW3A3H4AnonJxIiX5AUuRRooPf1cSlg7S+7LS+7WVLex0fhYpOyc1ZIyJT/fv35/bt2/z2229qRylwAwcO5OTJk/z1V+7uUlPLo3H2I6lksYWb2hGytE/noHaELNVVtHuZEK0vuwjzeLUjZKl+so3aETL1ek1tn03846FyakfIkpa3vW+j1ub7a9zrmrvzDbLi+suOHI03adIkQkJCDIb5+Pjk+NwLLXmuWygLQnR0NEePHmXVqlVFppicNWsWbdq0wd7enk2bNrFs2bJ0rbZCCCGEyF716tXZsuW/QyosLApnaVY4U2tI586diYiIYNCgQbRp00btOAUiIiKCmTNn8vDhQ/21MQcMGKB2LCGEECLvVOrytrCwKNS3QU4jBaWRnr5EUFHxww8/qB1BCCGEMCnFhAVlRjfzyOhqJ5B6A5TSpUtjY2NDo0aNmD59OuXLlzddmALy/F63RQghhBAip1JM98joZh7Tp09P95INGjQgLCyMP/74gy+//JILFy7ob1hS2EgLpRBCCCGECWV0M4+MWifbtWun/7+fnx8NGjSgQoUK/PDDD/Tv3z/fc5qSFJRCCCGEKPJM2eWdWfd2dlxcXPD29ubs2bOmC1NA8lRQPnjwgIiICG7dupXulnzPXodRCCGEEELzNHAdytjYWM6dO0fv3r3VjpJruS4of//9dwIDA4mNjcXJycngDik6nU4KSiGEEEKIHAgODqZjx45UqFCBa9euMXHiRMzNzenRo4fa0XIt1wXlhx9+SL9+/Zg2bRp2dnb5kUkIIYQQokCZsss7p65cuUKPHj24e/cubm5uvPTSS+zZswc3N23fXCMjuS4or169ytChQ6WYFEIIIcRzQ42CcvXq1QX/ovkk15cNCggIYN++ffmRRQghhBBCFEK5bqFs3749I0eOJDIykho1amBpaWnwfKdOnUwWTgghhBCiIKjRQvk8yXVBOXDgQAAmT56c7jmdTkdycrLxqYQQQgghCpKiy34ckalcF5TPXiZIiLyqZVNK7QiZ2pdso3aELNVVYtWOUGhFmMerHaFQ0/K2d+FgMbUjZCnCQtvbXn2Nf+4JbZMLmwshhBCiyJMub+Pk6V7eO3bsoGPHjlSpUoUqVarQqVMn/vrrL1NnE0IIIYQoEEqKzmSPoijXBeV3331H69atsbOzY+jQoQwdOhRbW1tatWrFqlWr8iOjEEIIIUS+UlJM9yiKct3lPXXqVGbOnMnw4cP1w4YOHcqcOXOYMmUKPXv2NGlAIYQQQgihbbluoTx//jwdO3ZMN7xTp05cuHDBJKGEEEIIIQqSouhM9iiKcl1QlitXjq1bt6YbvmXLFsqVK2eSUEIIIYQQBUm6vI2Tp3t5Dx06lEOHDvHiiy8CsHv3bsLCwpg/f77JAwohhBBCCG3LdUH57rvv4uHhwezZs/nhhx8AqFq1KmvWrKFz584mDyiEEEIIkd+K6tnZppKn61B27dqVrl27mjqLEEIIIYQqFEXtBIVbnq5DKYQQQgghRJoctVC6urpy+vRpSpQoQbFixdDpMm8WvnfvnsnCCSGEEEIUBOnyNk6OCsq5c+fi6Oio/39WBeXzZNKkSaxbt45Dhw6pHUUIIYQQ+UgKSuPkqKDs27ev/v9BQUH5lcWkgoKCWLZsmf5vV1dX6tWrx8yZM/Hz81MxmfGeLujNzc0pXbo0r732GtOnT8fa2lrFZAXrlfe6UiegAaUql+FJ/BPOHjjF2hnfceP8NbWjAVCtdyuq926FY1k3AO6dvsL+eb9wOfyIysnS83j/VcqO6cPNJb9zeVKo2nHS0Vo+LW97Ws6WEa2t26dpLZvW121h+swTppfrYyjNzc25detWuuF3797F3NzcJKFMpW3btly/fp3r16+zdetWLCws6NChg9qxTGLp0qVcv36dCxcu8MUXX7BixQo++eQTtWMVKJ8G1di24g8+6TqG2b0nY25hzojl47Gy1UZRHXf9Hv9OX8NPr4zjp/bjufZ3JG1DR1DMu4za0QzY+VfBLTCAR5HavDGBFvNpedvTcrZnaXHdptFiNq2v28LymZcZRTHdoyjKdUGpZLKkEhISsLKyMjqQKVlbW+Ph4YGHhwc1a9Zk9OjRXL58mdu3bwMwatQovL29sbOzo1KlSowfP57ExMRM57d3717atGlDiRIlcHZ2plmzZhw4cMBgHJ1Ox5IlS+jatSt2dnZ4eXnx22+/GYxz/PhxOnTogJOTE46OjjRp0oRz587pn1+yZAlVq1bFxsYGX19fvvjii3RZXFxc8PDwoFy5cnTo0IHOnTuny/Lrr79Su3ZtbGxsqFSpEiEhISQlJemfnzNnDjVq1MDe3p5y5crx3nvvERsbq38+LCwMFxcX1q9fj4+PD3Z2drz22ms8evSIZcuW4enpSbFixRg6dCjJyck5WCOmNbfvVHavDefamStcPnGRb4M/p0RZNzxrVCrwLBm5uOUgl7YfJjrqJtEXbhAx80cSH8VTslYVtaPpmdnZUGnhcKI++pzk6Di146Sj1Xxa3va0nO1pWl23oN1sWl+3heEzLytKis5kj6Iox5cNWrBgAfBfweTg4KB/Ljk5mZ07d+Lr62v6hCYSGxvLd999R5UqVShevDgAjo6OhIWFUbp0aY4ePcrAgQNxdHTko48+ynAeDx8+pG/fvixcuBBFUZg9ezavvPIKZ86c0R9jChASEsLMmTP57LPPWLhwIYGBgVy8eBFXV1euXr1K06ZNad68Odu2bcPJyYndu3frC72VK1cyYcIEFi1aRK1atTh48CADBw7E3t7e4NCDp50+fZpt27YZHI7w119/0adPHxYsWKAvWN9++20AJk6cCICZmRkLFiygYsWKnD9/nvfee4+PPvrIoIB99OgRCxYsYPXq1Tx8+JBXX32Vrl274uLiwsaNGzl//jzdunWjcePGvPHGG3lfQSZg62gHQNyD2GzGLHg6Mx2VOjTA0taamwfOqB1Hr/zUt4neup+Hu47AB93VjpOO1vOl0fK2p9VsWl63Ws72NK2uW9DuZ15WiuotE00lxwXl3LlzgdQWyq+++sqge9vKygpPT0+++uor0yc0wvr16/WFb1xcHKVKlWL9+vWYmaU2zI4bN04/rqenJ8HBwaxevTrTgrJly5YGf3/zzTe4uLiwY8cOg670oKAgevToAcC0adNYsGABERERtG3bls8//xxnZ2dWr16NpaUlAN7e3vppJ06cyOzZs3n11VcBqFixIpGRkXz99dcGBWWPHj0wNzcnKSmJhIQEOnTowJgxY/TPh4SEMHr0aP00lSpVYsqUKXz00Uf6gnLYsGEG7/+TTz5h0KBBBgVlYmIiX375JZUrVwbgtddeY8WKFdy8eRMHBweqVatGixYt2L59e5YFZUJCAgkJCQbDkpVkzHWmOUxCp9PRY8JbnNl7gqunL5tknqbg6luWrusmYW5tSWJcPH8OnMf9M9o43qlYp5ewq1GZE+2D1Y6SIa3nS6PVbQ+0m03L61bL2Z6m1XWr5c88kb9yXFBeuJB6HEmLFi34+eefKVasWL6FMpUWLVrw5ZdfAnD//n2++OIL2rVrR0REBBUqVGDNmjUsWLCAc+fOERsbS1JSEk5OTpnO7+bNm4wbN47w8HBu3bpFcnIyjx494tKlSwbjPX3Sj729PU5OTvrjTg8dOkSTJk30xeTT4uLiOHfuHP3792fgwIH64UlJSTg7OxuMO3fuXFq3bk1ycjJnz55lxIgR9O7dm9WrVwNw+PBhdu/ezdSpU/XTJCcnEx8fz6NHj7Czs2PLli1Mnz6dkydPEhMTQ1JSksHzAHZ2dvpiEqBkyZJ4enoatFCXLFkyw+NqnzZ9+nRCQkIMhtV0rkotl2pZTpdTvaYMoIxPOaa/Ni77kQvQg3PX+bHtWKwcban0Sn1azH2H317/RPUPWMtSJSgfMoDTPSeiJGR+mIdatJ7vaVrd9kCb2bS8brWc7VlaXLeg3c+8nCiq9+A2lVzfKWf79u35kSNf2NvbU6XKf8duLFmyBGdnZxYvXkz79u0JDAwkJCSEgIAAfavh7NmzM51f3759uXv3LvPnz6dChQpYW1vTqFEjnjx5YjDes8WiTqcjJSV1S7W1tc10/mnHLy5evJgGDRoYPPfsCU8eHh769+bj48PDhw/p0aMHn3zyCVWqVCE2NpaQkBB9S+fTbGxsiIqKokOHDrz77rtMnToVV1dXdu3aRf/+/Xny5Im+oMzovWT1/jIzZswYRowYYTBsSI2Mu/BzKzCkP/4t6zCj+wTu39DWdVBTEpOJiboJwJ2jUbj7V6JGv7bsHPOtqrns/Spj6eZCtU1z9MN0FuY4NKiGe9Ar7K/0OmSzTotyvjRa3va0mk3L61bL2Z6m1XUL2v3My4kU6fI2Sq4Lym7dulG/fn1GjRplMHzmzJns3buXH3/80WThTE2n02FmZsbjx4/5+++/qVChAmPHjtU/f/HixSyn3717N1988QWvvPIKAJcvX+bOnTu5yuDn58eyZctITExMV5iVLFmS0qVLc/78eQIDA3M137SC8/HjxwDUrl2bU6dOGRTUT9u/fz8pKSnMnj1bfwhA2r3Z84O1tXW6SxqZors7MKQ/tQPq8+mbE7lzJetWUi3Qmekwt87THU9NKmbXYY61GmowrOLsIcSfu8r1L35W/UtT6/lA29uelrNped1qOVsaLa/bjGjlM0/kv1yv5Z07dzJp0qR0w9u1a5dl654aEhISuHHjBpDa5b1o0SJiY2Pp2LEjMTExXLp0idWrV1OvXj02bNjAL7/8kuX8vLy8WLFiBXXr1iUmJoaRI0dm2eKYkcGDB7Nw4ULefPNNxowZg7OzM3v27KF+/fr4+PgQEhLC0KFDcXZ2pm3btiQkJLBv3z7u379v0ML34MEDbty4QUpKCmfOnGHy5Ml4e3tTtWpVACZMmECHDh0oX748r732GmZmZhw+fJhjx47pWzETExNZuHAhHTt2ZPfu3Zo7BjY7vaYMoGHnJiwY+CnxcfE4ubkA8DjmEYkJT7KeuADUH9Wdy+GHib16F0sHG6p0fpHSjaqyoddMtaOREhdP/CnDQzVSHieQdP9huuFq0Ho+LW97Ws4G2l63Ws4G2l+3Wv7Mywk5Kcc4uS4oY2NjM7w8kKWlJTExMSYJZSp//PEHpUqVAlLP6Pb19eXHH3+kefPmAAwfPpzBgweTkJBA+/btGT9+fIbFcprQ0FDefvttateuTbly5Zg2bRrBwbk7cLt48eJs27aNkSNH0qxZM8zNzalZsyaNGzcGYMCAAdjZ2fHZZ58xcuRI7O3tqVGjhsEJNABvvfUWkNrq6uHhQdOmTZk2bRoWFqmrNCAggPXr1zN58mQ+/fRTLC0t8fX1ZcCAAQD4+/szZ84cPv30U8aMGUPTpk2ZPn06ffr0ydX7UVPL3m0BGL1mssHw0OBF7F4brkIiQ7YlnGg5dxB27i48efiIuycus6HXTK78dUztaMJIWt72tJxNGEfr67awf+YV1cv9mIpOyezCkpmoX78+HTp0YMKECQbDJ02axO+//87+/ftNGlA8v/p5vqZ2hEzVT7ZRO0KW6irau0xIYfGFhXS/GeO9p65lK3JH69uelj/3Bl3+Lt9f46T3Kyabl+/pjSabV2GR6617/PjxvPrqq5w7d05/GZ2tW7fy/fffa/r4SSGEEEKIzBTVO9yYSq4Lyo4dO7Ju3TqmTZvG2rVrsbW1xc/Pjy1bttCsWbP8yCiEEEIIka+ky9s4eWp/b9++Pe3bt083/NixY7zwwgtGhxJCCCGEEIVHru/l/ayHDx/yzTffUL9+ffz9/U2RSQghhBCiQKUoOpM9iqI8F5Q7d+6kT58+lCpVilmzZtGyZUv27NljymxCCCGEEAVCUXQmexRFueryvnHjBmFhYYSGhhITE0P37t1JSEhg3bp1VKtmmlvoCSGEEEIUNDkpxzg5bqHs2LEjPj4+HDlyhHnz5nHt2jUWLlyYn9mEEEIIIUQhkOMWyk2bNjF06FDeffddvLy88jOTEEIIIUSBKqrHPppKjlsod+3axcOHD6lTpw4NGjRg0aJFub6PtRBCCCGEFskxlMbJcUHZsGFDFi9ezPXr13nnnXdYvXo1pUuXJiUlhc2bN/Pw4cP8zCmEEEII8VybMWMGOp0u3e2WC4Ncn+Vtb29Pv3792LVrF0ePHuXDDz9kxowZuLu706lTp/zIKIQQQgiRrxTFdI+82Lt3L19//TV+fn6mfWMFxKjrUPr4+DBz5kyuXLnC999/b6pMQgghhBAFSs3rUMbGxhIYGMjixYspVqxYPry7/Gf0hc0BzM3N6dKlC7/99pspZieEEEIIUWglJCQQExNj8EhISMh0/Pfff5/27dvTunXrAkxpWnm69aIQz7vXa15WO0KWSv55Vu0IWepTupHaEUQ+qVjrvtoRMvXjoXJqR8jSZzW0/bly4WDhbBkzFVOeTDN9+nRCQkIMhk2cOJFJkyalG3f16tUcOHCAvXv3muz11SAFpRBCCCGKPFNeNmjMmDGMGDHCYJi1tXW68S5fvswHH3zA5s2bsbGxMdnrq0EKSiGEEEIIE7K2ts6wgHzW/v37uXXrFrVr19YPS05OZufOnSxatIiEhATMzc3zM6rJSEEphBBCiCJPjTsvtmrViqNHjxoMe+utt/D19WXUqFGFppiEHBaUuTnZRi4dJIQQQojCRo075Tg6OvLCCy8YDLO3t6d48eLphmtdjgrKLl265GhmOp2O5ORkY/IIIYQQQhS4onqHG1PJUUGZkpKS3zmEEEIIIYq88PBwtSPkiRxDKYQQQogiT5rOjJOngjIuLo4dO3Zw6dIlnjx5YvDc0KFDTRJMCCGEEKKgKEiXtzFyXVAePHiQV155hUePHhEXF4erqyt37tzBzs4Od3d3KSiFEEIIIYqYXN96cfjw4XTs2JH79+9ja2vLnj17uHjxInXq1GHWrFn5kVEIIYQQIl+lKKZ7FEW5LigPHTrEhx9+iJmZGebm5iQkJFCuXDlmzpzJxx9/nB8ZhRBCCCHyVQo6kz2KolwXlJaWlpiZpU7m7u7OpUuXAHB2dubyZW3fpzS/NG/enGHDhqkdw0BUVBQ6nY5Dhw5lOk5YWBguLi4FlkkIIYQQz6dcH0NZq1Yt9u7di5eXF82aNWPChAncuXOHFStWqHoRzqCgIJYtW6b/29XVlXr16jFz5kz8/PwKNEvz5s3ZsWMH06dPZ/To0QbPtW/fno0bN2Z6k/iC9MYbb/DKK6+omsEYr7zXlToBDShVuQxP4p9w9sAp1s74jhvnr6kdDQDbHkHY9XzLYFjylYs8eLePSonSe3dQXz4c8S4eHm4cORLJB8PGs3ffIbVjaX7dajmflrOB9veLar1bUb13KxzLugFw7/QV9s/7hcvhR1ROpv1l9yyP91+l7Jg+3FzyO5cnhaodJ1tyUo5xcl1QTps2jYcPHwIwdepU+vTpw7vvvouXlxfffvutyQPmRtu2bVm6dCkAN27cYNy4cXTo0EHfilqQypUrR1hYmEFBefXqVbZu3UqpUqWMmreiKCQnJ2NhYdxVn2xtbbG1tTVqHmryaVCNbSv+4MLhs5hbmPPqyJ6MWD6ecW2G8eRxgtrxAEi6eJ6YcR/+NyBFOxf+f/31Tsz6bCLvvT+aiL0HGTpkABs3rKTaC025ffuuqtm0vm61nE/L2dJoeb+Iu36Pf6evIfrCDdDp8Hm9CW1DR7C23Vjun76qdjxNL7un2flXwS0wgEeRF9SOkmNy2SDj5LrLu27durRo0QJI7fL+448/iImJYf/+/fj7+5s8YG5YW1vj4eGBh4cHNWvWZPTo0Vy+fJnbt28DMGrUKLy9vbGzs6NSpUqMHz+exMRE/fSTJk2iZs2arFixAk9PT5ydnXnzzTf1BTSkXjKpT58+ODg4UKpUKWbPnp1hlg4dOnDnzh12796tH7Zs2TJefvll3N3dDcZdsWIFdevWxdHREQ8PD3r27MmtW7f0z4eHh6PT6di0aRN16tTB2tqaXbt2kZKSwsyZM6lSpQrW1taUL1+eqVOnGsz7/PnztGjRAjs7O/z9/fnnn3/0zz3b5Z2T9//w4UMCAwOxt7enVKlSzJ07V7Uu/7l9p7J7bTjXzlzh8omLfBv8OSXKuuFZo1KBZ8lUcjLKg3v/PWKi1U6kN/yDgSwJXcWy5T9w4sQZ3nt/NI8ePeatoDfVjqb5davlfFrOpqfh/eLiloNc2n6Y6KibRF+4QcTMH0l8FE/JWlXUjpZKw8sujZmdDZUWDifqo89Jjo5TO44oILkuKAuL2NhYvvvuO6pUqULx4sWB1HtmhoWFERkZyfz581m8eDFz5841mO7cuXOsW7eO9evXs379enbs2MGMGTP0z48cOZIdO3bw66+/8r///Y/w8HAOHDiQ7vWtrKwIDAzUt5hCagHXr1+/dOMmJiYyZcoUDh8+zLp164iKiiIoKCjdeKNHj2bGjBmcOHECPz8/xowZw4wZMxg/fjyRkZGsWrWKkiVLGkwzduxYgoODOXToEN7e3vTo0YOkpKRMl1t273/EiBHs3r2b3377jc2bN/PXX39l+P7VYOtoB0Dcg1iVk/zHvHRZioX9hMvi73H4cBxmbu7ZT1QALC0tqV3bj63b/tIPUxSFrdt20bBhHRWTZUyL6/ZpWs6nxWxa3S+epTPTUblTQyxtrbl54IzacYDCsezKT32b6K37ebhL/cMEckNBZ7JHUZTrPtOKFSui02W+sM6fP29UIGOsX78eBwcHILUlsVSpUqxfv15/EtG4ceP043p6ehIcHMzq1av56KOP9MNTUlIICwvD0dERgN69e7N161amTp1KbGwsoaGhfPfdd7Rq1QpIbXUsW7Zshnn69etHkyZNmD9/Pvv37yc6OpoOHTqkO3by6SKzUqVKLFiwgHr16hEbG6t/PwCTJ0+mTZs2QGpL4fz581m0aBF9+/YFoHLlyrz00ksG8w4ODqZ9+/YAhISEUL16dc6ePYuvr2+GmbN6/w8fPmTZsmWsWrVK//6XLl1K6dKlM5zX0xISEkhIMOxuS1aSMdeZZzttTuh0OnpMeIsze09w9bQ2Tg5LOn2C2HkzSL56CbNixbHtEYTTjIU8GBwEjx+rmq1ECVcsLCy4dfOOwfBbt27j61NZpVQZ0+K6fZqW82kxm5b3izSuvmXpum4S5taWJMbF8+fAedw/o/4xqIVh2RXr9BJ2NSpzon2w2lFyTbq8jZPrgvLZrs3ExEQOHjzIH3/8wciRI02VK09atGjBl19+CcD9+/f54osvaNeuHREREVSoUIE1a9awYMECzp07R2xsLElJSTg5ORnMw9PTU19MAZQqVUrf/Xzu3DmePHlCgwYN9M+7urri4+OTYR5/f3+8vLxYu3Yt27dvp3fv3hke97h//34mTZrE4cOHuX//vv7e6ZcuXaJatWr68erWrav//4kTJ0hISNAXdpl5+oSktGM3b926lWlBmdX7P3/+PImJidSvX1//vLOzc6bv/2nTp08nJCTEYFhN56rUcqmWyRS502vKAMr4lGP6a+OyH7mAJO7/V///5KjzJJ0+gUvoGqxfakHC5o0qJitctLhun6blfFrMVhj2iwfnrvNj27FYOdpS6ZX6tJj7Dr+9/onqRaXWl51lqRKUDxnA6Z4TURISs59AY6SgNE6uC8oPPvggw+Gff/45+/btMzqQMezt7alS5b/jXJYsWYKzszOLFy+mffv2BAYGEhISQkBAAM7OzqxevTrdMZCWlpYGf+t0On2Blxf9+vXj888/JzIykoiIiHTPx8XFERAQQEBAACtXrsTNzY1Lly4REBCQ7raW9vb2+v/n9GSap99PWstyVu/H1O8/zZgxYxgxYoTBsCE1+ho9X4DAkP74t6zDjO4TuH/jnknmmR+UuFhSrl3BvFQZtaNw5849kpKScC9ZwmC4u7sbN27eVilVelpft1rOp+VsT9PSfpEmJTGZmKibANw5GoW7fyVq9GvLzjHqnnj6LK0tO3u/yli6uVBt0xz9MJ2FOQ4NquEe9Ar7K70OJvg+EdpksmMo27Vrx08//WSq2ZmETqfDzMyMx48f8/fff1OhQgXGjh1L3bp18fLy4uLFi7maX+XKlbG0tOTff//7lXj//n1Onz6d6TQ9e/bk6NGjvPDCCwatjWlOnjzJ3bt3mTFjBk2aNMHX19fghJzMeHl5YWtry9atW3P1HoxRqVIlLC0t2bt3r35YdHR0lu8/jbW1NU5OTgYPU3R3B4b0p3ZAfWb2nMSdK9kvN1XZ2GLmUZqU++p/uScmJnLgwBFatvjvEAmdTkfLFi+xZ89+FZP9R+vrVsv5tJwtHQ3tF5nRmekwtzbuqhr5QmPLLmbXYY61GsrxgOH6R9yhM9z7ZSfHA4ZrvpiUYyiNY7I9ZO3atbi6uppqdnmSkJDAjRs3gNRCb9GiRcTGxtKxY0diYmK4dOkSq1evpl69emzYsIFffvklV/N3cHCgf//+jBw5kuLFi+Pu7s7YsWP1x2hmpFixYly/fj1dy1+a8uXLY2VlxcKFCxk0aBDHjh1jypQp2WaxsbFh1KhRfPTRR1hZWdG4cWNu377N8ePH6d+/f67eV045OjrSt29fRo4ciaurK+7u7kycOBEzM7Msj6vNL72mDKBh5yYsGPgp8XHxOLm5APA45hGJCU+ynrgA2PV7lycRf5Ny6yZmrsWx7dkPUlJI2LFF7WgAzJ2/mKWhc9l/4Ah79x5k6JCB2NvbErZsjdrRNL9utZxPy9lA+/tF/VHduRx+mNird7F0sKFK5xcp3agqG3rNVDua5pddSlw88acML9OX8jiBpPsP0w3XopSiWQeaTJ4ubP508aAoCjdu3OD27dt88cUXJg2XW3/88Yf+OEFHR0d8fX358ccfad68OZB6H/LBgweTkJBA+/btGT9+fK4vLv7ZZ5/pi1RHR0c+/PBDoqOzvmxDVnejcXNzIywsjI8//pgFCxZQu3ZtZs2aRadOnbLNMn78eCwsLJgwYQLXrl2jVKlSDBo0KFfvJ7fmzJnDoEGD6NChA05OTnz00UdcvnwZGxubfH3djLTs3RaA0WsmGwwPDV7E7rXhBZ7nWWbF3XAMnoDOyYmU6AckRR4lOvhdzVzm48cff8OthCuTJgTj4eHG4cPHad+hF7du3cl+4nym9XWr5Xxazgba3y9sSzjRcu4g7NxdePLwEXdPXGZDr5lc+euY2tE0v+xE0aZTFCVXtzGfNGmSQUFpZmaGm5sbzZs3z/RED/H8iouLo0yZMsyePTvXLaP9PF/Lp1TG+6yGdo4jzEjJP8+qHSFLfUo3UjuCyCda3jd+PFRO7QhZer2mNs60z8yFg8XUjpCpulfW5ftr/OrR02Tz6nxjlcnmVVjkuoVS7dsFCnUdPHiQkydPUr9+faKjo5k8ObUVpHPnzionE0IIIfIuV61rIp1cn5Rjbm6e4Ukjd+/exdzcNNcUFNo2a9Ys/P39ad26NXFxcfz111+UKFEi+wmFEEII8VzKdQtlZj3kCQkJWFlZGR1IaFutWrXYv18bZwELIYQQpqLtc9C1L8cF5YIFC4DUS4ssWbLE4A4uycnJ7Ny5U46hFEIIIUShlKLC1UqeJzkuKNPuea0oCl999ZVB97aVlRWenp589dVXpk8ohBBCCCE0LccF5YULF4DU2xv+/PPPFCum3bPBhBBCCCFyQ07KMU6uj6Hcvn17fuQQQgghhFCNHENpnFyf5d2tWzc+/fTTdMNnzpzJ66+/bpJQQgghhBAFKUVnukdRlOuCcufOnbzyyivphrdr146dO3eaJJQQQgghhCg8ct3lHRsbm+HlgSwtLYmJiTFJKCGEEEKIgpRCEW1aNJFct1DWqFGDNWvWpBu+evVqqlWrZpJQQgghhBAFSTHhoyjKdQvl+PHjefXVVzl37hwtW7YEYOvWrXz//ff8+OOPJg8ohBBCCCG0LdcFZceOHVm3bh3Tpk1j7dq12Nra4ufnx5YtW2jWrFl+ZBRCCCGEyFdF9WQaU9Epmd1LMQ+OHTvGCy+8YKrZiefcvrJd1I6QqX06h+xHEoVShHm82hFEPqmfbKN2hCx9nXhB7QhZ+ntlX7UjZMq21dv5/hphZXqZbF5BV78z2bwKi1wfQ/mshw8f8s0331C/fn38/f1NkUkIIYQQQhQieS4od+7cSZ8+fShVqhSzZs2iZcuW7Nmzx5TZhBBCCCEKhJyUY5xcHUN548YNwsLCCA0NJSYmhu7du5OQkMC6devkDG8hhBBCFFpyDKVxctxC2bFjR3x8fDhy5Ajz5s3j2rVrLFy4MD+zCSGEEEKIQiDHBeWmTZvo378/ISEhtG/fHnNz8/zMJYQQQghRYFJM+MipL7/8Ej8/P5ycnHBycqJRo0Zs2rTJRO+oYOW4oNy1axcPHz6kTp06NGjQgEWLFnHnzp38zCaEEEIIUSDUKCjLli3LjBkz2L9/P/v27aNly5Z07tyZ48ePm+hdFZwcF5QNGzZk8eLFXL9+nXfeeYfVq1dTunRpUlJS2Lx5Mw8fPszPnEIIIYQQ+UbRme6RUx07duSVV17By8sLb29vpk6dioODQ6E8yTnXZ3nb29vTr18/du3axdGjR/nwww+ZMWMG7u7udOrUKT8yCiGEEEIUGgkJCcTExBg8EhISspwmOTmZ1atXExcXR6NGjQooqekYdR1KHx8fZs6cyZUrV/j+++9NlUkIIYQQokCZsst7+vTpODs7GzymT5+e4esePXoUBwcHrK2tGTRoEL/88kuhvHJOrm+9mBFzc3O6dOlCly5dTDE7IYQQQogClZtjH7MzZswYRowYYTDM2to6w3F9fHw4dOgQ0dHRrF27lr59+7Jjx45CV1SapKAUQgghhBCprK2tMy0gn2VlZUWVKlUAqFOnDnv37mX+/Pl8/fXX+RnR5Iy+9aLIGU9PT+bNm2fUPMLCwnBxcdH/PWnSJGrWrJnj6XM7fn7NQwghhNAardwpJyUlJdvjLbWoSLRQBgUFsWzZMv3frq6u1KtXj5kzZ+Ln56diMtOaNGkSISEhQOphCGXLlqVr165MmTIFBwcHgoODGTJkiH78oKAgHjx4wLp161RKbFoe779K2TF9uLnkdy5PClU7DtV6t6J671Y4lnUD4N7pK+yf9wuXw4+onEzb2UD7+V55ryt1AhpQqnIZnsQ/4eyBU6yd8R03zl9TO5qms4H282l926vd0J8+7/Wkmp8vbh4lGB40mvA//lI7FgDtxi3m+r2YdMO7N/Xn4zdbq5Aod9S4U86YMWNo164d5cuX5+HDh6xatYrw8HD+/PPPgg9jpCJRUAK0bduWpUuXAqm3kBw3bhwdOnTg0qVLKiczrerVq7NlyxaSkpLYvXs3/fr149GjR3z99dc4ODjg4OCgdsR8YedfBbfAAB5FXlA7il7c9Xv8O30N0RdugE6Hz+tNaBs6grXtxnL/9FXJVojz+TSoxrYVf3Dh8FnMLcx5dWRPRiwfz7g2w3jyWN2WBS1nKwz5tL7t2drZcvr4WX79fgNzlmZ8kodaVo4KJCXlv/a5s9fvMGjBWtrU9lExlbbdunWLPn36cP36dZydnfHz8+PPP/+kTZs2akfLtSLT5W1tbY2HhwceHh7UrFmT0aNHc/nyZW7fvg3AqFGj8Pb2xs7OjkqVKjF+/HgSExP10x8+fJgWLVrg6OiIk5MTderUYd++ffrnd+3aRZMmTbC1taVcuXIMHTqUuLg4gwwPHz6kR48e2NvbU6ZMGT7//HOD5+fMmUONGjWwt7enXLlyvPfee8TGxubqfVpYWODh4UHZsmV54403CAwM5LfffgMMu6snTZrEsmXL+PXXX9HpdOh0OsLDwwG4cuUKPXr0wNXVFXt7e+rWrcu///5r8DorVqzA09MTZ2dn3nzzTVWvQ2pmZ0OlhcOJ+uhzkqPjsp+ggFzccpBL2w8THXWT6As3iJj5I4mP4ilZq4ra0TSdDbSfb27fqexeG861M1e4fOIi3wZ/TomybnjWqKR2NE1nA+3n0/q2t3vbHr74dDHbN+1UO0o6ro52lHC21z92Hj1POTcX6nqVVTtajqhxYfPQ0FCioqJISEjg1q1bbNmypVAWk1CECsqnxcbG8t1331GlShWKFy8OgKOjI2FhYURGRjJ//nwWL17M3Llz9dMEBgZStmxZ9u7dy/79+xk9ejSWlpYAnDt3jrZt29KtWzeOHDnCmjVr2LVrF4MHDzZ43c8++wx/f38OHjzI6NGj+eCDD9i8ebP+eTMzMxYsWMDx48dZtmwZ27Zt46OPPjLqvdra2vLkyZN0w4ODg+nevTtt27bl+vXrXL9+nRdffJHY2FiaNWvG1atX+e233zh8+DAfffQRKSn/7SLnzp1j3bp1rF+/nvXr17Njxw5mzJhhVE5jlJ/6NtFb9/Nwlza6pDKiM9NRuVNDLG2tuXngjNpxDGg5G2g/H4Ctox0AcQ9y9wOwIGg5G2g7X2HY9rQqMSmZjRGRdG70AjqdCn3JeaBGQfk8KTJd3uvXr9d398bFxVGqVCnWr1+PmVlqTT1u3Dj9uJ6engQHB7N69Wp9QXfp0iVGjhyJr68vAF5eXvrxp0+fTmBgIMOGDdM/t2DBApo1a8aXX36JjY0NAI0bN2b06NEAeHt7s3v3bubOnav/NZI2fVqGTz75hEGDBvHFF1/k6T3v37+fVatW0bJly3TPOTg4YGtrS0JCAh4eHvrhYWFh3L59m7179+Lq6gqgP/ssTUpKCmFhYTg6OgLQu3dvtm7dytSpUzPNkpCQkO4g4ydKMlY64+4JX6zTS9jVqMyJ9sFGzSe/uPqWpeu6SZhbW5IYF8+fA+dx/4w2jhXTcjbQfr40Op2OHhPe4szeE1w9fVntOAa0nA20m6+wbHtatu3wWR4+TqBTw+pqRxEFpMi0ULZo0YJDhw5x6NAhIiIiCAgIoF27dly8eBGANWvW0LhxYzw8PHBwcGDcuHEGx1eOGDGCAQMG0Lp1a2bMmMG5c+f0zx0+fJiwsDD9MYoODg4EBASQkpLChQv/HdP37JXvGzVqxIkTJ/R/b9myhVatWlGmTBkcHR3p3bs3d+/e5dGjRzl+n2kXSLW1taV+/fo0atSIRYsW5Xj6Q4cOUatWLX0xmRFPT099MQlQqlQpbt26leV8M7rIa9hD437xW5YqQfmQAVwYMgclITH7CVTw4Nx1fmw7lp87TeT4iq20mPsOxbxKqx0L0HY20H6+NL2mDKCMTzm+GjI3+5ELmJazgXbzFZZtT8vW/X2UxtUq4u5SeI7b18pZ3oVVkSko7e3tqVKlClWqVKFevXosWbKEuLg4Fi9ezD///ENgYCCvvPIK69ev5+DBg4wdO9agq3jSpEkcP36c9u3bs23bNqpVq8Yvv/wCpHahv/POO/qC9dChQxw+fJgzZ85QuXLlHOWLioqiQ4cO+Pn58dNPP7F//379MZYZdVlnJu0CqSdOnODx48f89ttvlCxZMsfT29raZjtOWld/Gp1OZ9AlnpExY8YQHR1t8Ahy9MpymuzY+1XG0s2FapvmUCfqJ+pE/YRjoxdw79eeOlE/gZn6m3dKYjIxUTe5czSKiE9/4G7kJWr0a6t2LEDb2UD7+QACQ/rj37IOM9+cxP0b99SOY0DL2UDb+QrDtqdl1+7G8O/JS3RtXEPtKLmSojPdoygqMl3ez9LpdJiZmfH48WP+/vtvKlSowNixY/XPp7VcPs3b2xtvb2+GDx9Ojx49WLp0KV27dqV27dpERkam6xp+1rM3e9+zZw9Vq1YFUrunU1JSmD17tr4b/ocffsj1+3r6Aqk5GTc5OdlgmJ+fH0uWLOHevXtZtlLmVkYXeTW2uztm12GOtRpqMKzi7CHEn7vK9S9+hmyKXDXozHSYW2tzt9NyNtBevsCQ/tQOqM+nb07kzpWsW+gLmpazgfbzPUtr257W/frPMVwd7WjygjZOtMop7X1jFC7qN+EUkISEBG7cuMGNGzc4ceIEQ4YMITY2lo4dO+Ll5cWlS5dYvXo1586dY8GCBfrWR4DHjx8zePBgwsPDuXjxIrt372bv3r36YnDUqFH8/fffDB48mEOHDnHmzBl+/fXXdCfl7N69m5kzZ3L69Gk+//xzfvzxRz744AMg9TjFxMREFi5cyPnz51mxYgVfffVVvi4TT09Pjhw5wqlTp7hz5w6JiYn06NEDDw8PunTpwu7duzl//jw//fQT//zzT75myYuUuHjiT10yeKQ8TiDp/kPiT6l/Oaj6o7pTqoEPjmVL4OpblvqjulO6UVXO/PK32tE0nQ20n6/XlAE06tqUrz+YT3xcPE5uLji5uWBpbaV2NE1nA+3n0/q2Z2tni3d1L7yrp/bwlClfGu/qXniUyXlPVH5KSVH4bc8xOjashoV5kSkxBEWohfKPP/6gVKlSQOoZ3b6+vvz44480b94cgOHDhzN48GASEhJo374948ePZ9KkSUDqRcLv3r1Lnz59uHnzJiVKlODVV1/VX0Tcz8+PHTt2MHbsWJo0aYKiKFSuXJk33njDIMOHH37Ivn37CAkJwcnJiTlz5hAQEACAv78/c+bM4dNPP2XMmDE0bdqU6dOn06dPn3xbJgMHDiQ8PJy6desSGxvL9u3bad68Of/73//48MMPeeWVV0hKSqJatWrpLnEksmdbwomWcwdh5+7Ck4ePuHviMht6zeTKX8fUjqbpbKD9fC17p3Z/jl4z2WB4aPAidq8NVyHRf7ScDbSfT+vbXrWaviz5+b/j4oMnp/bS/LZmIxM/yPzEyIKy5+RFrt97SJdGL6gdJdeK6rGPpqJTFEWWoVDFvrJd1I6QqX26wnMgucidCPN4tSOIfFI/2UbtCFn6OlE7N17IyN8r+6odIVO2rd7O99eYWiHQZPMae3GlyeZVWEh7tBBCCCGEMEqR6fIWQgghhMiMnJRjHCkohRBCCFHkyfF/xpEubyGEEEIIYRRpoRRCCCFEkSdd3saRglIIIYQQRV5RvcONqUiXtxBCCCGEMIq0UAohhBCiyEuR03KMIgWlEEIIIYo8KSeNIwWlEEIIIYo8OSnHOHIMpRBCCCGEMIq0UAohhBCiyJNjKI0jBaUQQgghijwpJ40jBaVQTcVa99WOkLmDagfI2j6dg9oRsvR14gW1I2RqseKmdoQsaX3dRpjHqx0hU1rOBtrf9t7v/z+1I2Tq26i31Y4gsiEFpRBCCCGKPDkpxzhSUAohhBCiyJNjKI0jZ3kLIYQQQgijSAulEEIIIYo8aZ80jhSUQgghhCjy5BhK40iXtxBCCCGEMIq0UAohhBCiyFOk09soUlAKIYQQosiTLm/jSEEphBBCiCJPLhtkHDmGUgghhBBCGEVaKIUQQghR5En7pHGkhVKjwsLCcHFxMfl8mzdvzrBhw4yaR3h4ODqdjgcPHgD5l1UIIYQoKCkoJnsURdJCmUdBQUEsW7ZM/7erqyv16tVj5syZ+Pn5qZgsVXh4OC1atOD+/fvPbbFn2yMIu55vGQxLvnKRB+/2USlR5jzef5WyY/pwc8nvXJ4UqnYcqvVuRfXerXAs6wbAvdNX2D/vFy6HH1E52X9qN/Snz3s9qebni5tHCYYHjSb8j7/UjpWOrNvceeW9rtQJaECpymV4Ev+EswdOsXbGd9w4f03taID28z1Na9teYVp2wvSkhdIIbdu25fr161y/fp2tW7diYWFBhw4d1I5VpCRdPM+93l31j+hRQ9SOlI6dfxXcAgN4FHlB7Sh6cdfv8e/0Nfz0yjh+aj+ea39H0jZ0BMW8y6gdTc/WzpbTx88yfcxstaNkStZt7vk0qMa2FX/wSdcxzO49GXMLc0YsH4+VrbXa0QDt50ujxW2vsCy7zKSY8JFT06dPp169ejg6OuLu7k6XLl04deqUid5RwZKC0gjW1tZ4eHjg4eFBzZo1GT16NJcvX+b27dsAjBo1Cm9vb+zs7KhUqRLjx48nMTFRP/3hw4dp0aIFjo6OODk5UadOHfbt25fha92+fZu6devStWtXEhISSElJYfr06VSsWBFbW1v8/f1Zu3YtAFFRUbRo0QKAYsWKodPpCAoK0s8rKSmJwYMH4+zsTIkSJRg/fjyK8l8T/YoVK6hbty6Ojo54eHjQs2dPbt26ZerFZxrJySgP7v33iIlWO5EBMzsbKi0cTtRHn5McHad2HL2LWw5yafthoqNuEn3hBhEzfyTxUTwla1VRO5re7m17+OLTxWzftFPtKBmSdZs3c/tOZffacK6ducLlExf5NvhzSpR1w7NGJbWjAdrPB9rd9grDssuKYsJ/ObVjxw7ef/999uzZw+bNm0lMTOTll18mLk476zWnpMvbRGJjY/nuu++oUqUKxYsXB8DR0ZGwsDBKly7N0aNHGThwII6Ojnz00UcABAYGUqtWLb788kvMzc05dOgQlpaW6eZ9+fJl2rRpQ8OGDQkNDcXc3JypU6fy3Xff8dVXX+Hl5cXOnTvp1asXbm5uvPTSS/z0009069aNU6dO4eTkhK2trX5+y5Yto3///kRERLBv3z7efvttypcvz8CBAwFITExkypQp+Pj4cOvWLUaMGEFQUBAbN24sgCWZO+aly1Is7CeUxCcknTzOo+XfkHJbO8Vv+alvE711Pw93HYEPuqsdJ0M6Mx2VOjTA0taamwfOqB2n0JB1axq2jnYAxD2IVTlJxrSYrzBse6DNZac1f/zxh8HfYWFhuLu7s3//fpo2bapSqryRgtII69evx8HBAYC4uDhKlSrF+vXrMTNLbfgdN26cflxPT0+Cg4NZvXq1vqC8dOkSI0eOxNfXFwAvL690r3Hq1CnatGlD165dmTdvHjqdjoSEBKZNm8aWLVto1KgRAJUqVWLXrl18/fXXNGvWDFdXVwDc3d3THUNZrlw55s6di06nw8fHh6NHjzJ37lx9QdmvXz/9uJUqVWLBggXUq1eP2NhY/fvNrYSEBBISEgyHJadgbZ73RvKk0yeInTeD5KuXMCtWHNseQTjNWMiDwUHw+HGe52sqxTq9hF2NypxoH6x2lAy5+pal67pJmFtbkhgXz58D53H/jBzrlBOybk1Dp9PRY8JbnNl7gqunL6sdJx0t5tP6tpdGi8suO6a8sHlG33nW1tZYW2fd/R8dndrLlvYdXphIl7cRWrRowaFDhzh06BAREREEBATQrl07Ll68CMCaNWto3LgxHh4eODg4MG7cOC5duqSffsSIEQwYMIDWrVszY8YMzp07ZzD/x48f06RJE1599VXmz5+PTqcD4OzZszx69Ig2bdrg4OCgfyxfvjzdPDLSsGFD/bwAGjVqxJkzZ0hOTgZg//79dOzYkfLly+Po6EizZs0ADLLn1vTp03F2djZ4zDub9/kBJO7/lye7w0mOOk/iwb08DBmFzt4B65daGDVfU7AsVYLyIQO4MGQOSkJi9hOo4MG56/zYdiw/d5rI8RVbaTH3HYp5lVY7lubJujWdXlMGUManHF8Nmat2lAxpLV9h2PbSaG3Z5YQpu7wz+s6bPn16lq+fkpLCsGHDaNy4MS+88EIBvWvTkRZKI9jb21Olyn/HJS1ZsgRnZ2cWL15M+/btCQwMJCQkhICAAJydnVm9ejWzZ/93gsGkSZPo2bMnGzZsYNOmTUycOJHVq1fTtWtXIPXXTOvWrVm/fj0jR46kTJnUg+pjY1O7DzZs2KAflia7Xz/ZiYuLIyAggICAAFauXImbmxuXLl0iICCAJ0+e5Hm+Y8aMYcSIEQbDYt9sb1TWZylxsaRcu4J5KfVPPrD3q4ylmwvVNs3RD9NZmOPQoBruQa+wv9LrkKLujb5SEpOJiboJwJ2jUbj7V6JGv7bsHPOtqrm0TtataQSG9Me/ZR1mdJ/A/Rv31I6TjhbzFYZtD7S57ApaRt952X0/v//++xw7doxdu3blZ7R8IwWlCel0OszMzHj8+DF///03FSpUYOzYsfrn01oun+bt7Y23tzfDhw+nR48eLF26VF9QmpmZsWLFCnr27EmLFi0IDw+ndOnSVKtWDWtray5duqRvPXyWlZUVgL7V8Wn//vuvwd979uzBy8sLc3NzTp48yd27d5kxYwblypUDyPREodzIqKk/0Yju7gzZ2GLmUZqU++p/gMXsOsyxVkMNhlWcPYT4c1e5/sXPmvjQf5bOTIe5tXwkZEfWrfECQ/pTO6A+n745kTtXtHPMcxqt5isM255Wl11OmHLp5aR7+2mDBw9m/fr17Ny5k7Jly5owScHRzidMIZSQkMCNGzcAuH//PosWLSI2NpaOHTsSExPDpUuXWL16NfXq1eP/2rvzuJqz/w/gr3vbtN2KSoUKlUQo+16WkTXDDEMoYQwzSWQd+9rYsg6GKFnHTuHLRJZsJZUl2aLQYqu0ajm/P/p1p+tmGanzubyf8+gx3c+93fvqftx73501ODgYBw8elP5sTk4OJk2ahB9++AG1a9fGkydPEB4ejv79+8s8hpKSEnbs2IFBgwahU6dOCA0NhZGREby9veHl5YWioiK0a9cO6enpCAsLg0QigaurK8zMzCASiRAUFIQePXpAXV1dOv4xISEBEyZMwOjRoxEZGYk1a9ZIW05NTU2hqqqKNWvW4JdffsHNmzcxf/78SnpG/xsN9zF4e/UiilJTIK5aDeqD3YGiIuSd/Yd3NBRl5SI3TrZLvygnDwWv38gd56HFlAFIDI1G5tOXUNGqAgvnNjBpXR/BQ5bwjialrqGOWrX/fWOtYWoCqwaWyEjLQPLTFG656NyWz5D5I9HKuT1Wj/oDuVm5kBjoAgByMrKRn/f5vSBfipDzCf3fnpCfu09RxCp/QXLGGDw8PHDw4EGEhoaidu3alZ7hS6GCshxOnDgBY2NjAMUzuq2trbF37144ODgAALy8vPDbb78hLy8PPXv2xMyZMzFnzhwAxYXiy5cvMWzYMKSkpEBfXx/9+vXD3Llz5R5HWVkZu3btwsCBA6VF5fz582FgYIDFixfj4cOH0NXVhb29PaZPnw4AqFGjBubOnYupU6di+PDhGDZsGPz9/QEAw4YNQ05ODlq0aAElJSV4enri559/BgAYGBjA398f06dPx+rVq2Fvb49ly5ahT58+FftkfgZxNQNoe8+CSCJBUXoaCm7fQLr3GMEtHSRE6voSdPL9BRqGunj7JhsvYxMRPGQJnpy/yTualE0Ta2w+sFZ62XteccvMkT3HMNtzIa9Ygif0c9tpqBMAYOqeeTLH/bzXImxfKIdEsoSeT8gU/bnjsb/Nr7/+ip07d+Lw4cPQ1taWNlLp6OjIrM6iCESMcSjJCQHwsnfZ3fVCEH9dj3eED4oQfd5s+8qyMV84iy2/a5OyAe8IHyT0c3tVKZd3BIU1tqCAd4QP+lNZuG1MWx7tq/DHGGLW74vd1/bHBz7pdqUnyJa2detWmfWjFYFw//UQQgghhFQSHntwf01telRQEkIIIeSb9192uCHyaB1KQgghhBBSLtRCSQghhJBvHv9FlxQbFZSEEEII+ebxGEP5NaEub0IIIYQQUi7UQkkIIYSQbx5NyikfKigJIYQQ8s2jMZTlQ13ehBBCCCGkXKiFkhBCCCHfvK9pkXEeqKAkhBBCyDePZnmXDxWUhBBCCPnm0RjK8qExlIQQQgghpFyohZJw0yW8gHeE97rxKpx3hA9aW92Rd4QP2qRswDvCe9l46PGO8EF/rn/DO8IHLbV9zjvCewn5PQUAIlRq847wQUttE3lH4IqWDSofKigJIYQQ8s2jMZTlQ13ehBBCCCGkXKiFkhBCCCHfPFo2qHyooCSEEELIN49meZcPdXkTQgghhJByoRZKQgghhHzzaJZ3+VBBSQghhJBvHs3yLh/q8iaEEEIIIeVCLZSEEEII+ebRLO/yoYKSEEIIId886vIuH+ry/n/+/v7Q1dX94vfr4OCA8ePHl+s+QkNDIRKJkJaWBqDisn5uHkIIIUTRsS/437dIYVoo3dzcEBAQIL1ctWpVNG/eHEuWLEGjRo04JisWGhoKR0dHvH79utKLPX9/fwwfPhwAIBaLIZFIYGVlhZ49e8LT0xM6OjqVmqey2LdqjGFjB8OmkTUMjPTh5TYVoSfO844lZ8wvrpg4YQyMjAwQE3MbnuNnIjwiimsmm6Gd0WBoZ2jXLN5z+9XdJ7i28iASQ2O45nofo1/7oea0YUjZfBSJc/x4xwEAiLR0oeIwAEp1bAFlVbC0VLw95oei5Edcc/UY+z2admsJ47o18Db3Le5HxmGfz3YkP3zGNVcJ9UFu0Bg8XOZY4ZPHSBszjFMiWUJ+XxH661bo55ZULIUpKAHAyckJW7duBQAkJydjxowZ6NWrFxISEjgn408ikSAuLg6MMaSlpeHixYtYvHgxtm7dirCwMJiYmPCO+MWpa6jj7q37OLwrGCu2LuYdp0w//tgHy5bOxthfp+Jq+HWM8xiJY8E7YNOwA54/f8ktV1bSK1xZvAfp8cmASIR6P7aHk98E7Ov+O17ffcotV1k0GlvAwKUbsm/H847yLzUNqA35HUUJscjbuwIs+w1EetXBcrN4J0O9ljY4HXgC8dH3oaSshH6TBmPCtpmY0XU83ubk8Y4HACh4/BAZMyb+e6CokF+Ydwj5fUURXrdCPrcfU0RjKMtFobq81dTUYGRkBCMjIzRp0gRTp05FYmIinj9/DgCYMmUKrKysoKGhgTp16mDmzJnIz8+X/nx0dDQcHR2hra0NiUSCpk2bIiIioszHev78OZo1a4bvv/8eeXl5KCoqwuLFi1G7dm2oq6ujcePG2LdvHwDg0aNHcHR0BADo6elBJBLBzc1Nel8FBQX47bffoKOjA319fcycOVNm8G9gYCCaNWsGbW1tGBkZYfDgwUhNTf1Pz41IJIKRkRGMjY1Rv359jBgxAhcvXkRmZiYmT54svZ25uTlWrlwp87NNmjTBnDlzZO5r8+bN+P7776GhoQFLS0scOXLkvY+dnZ2N7t27o23btpXaDR52+jL+/GMTzhw/V2mP+V95eY7CZr+dCNj2N2Jj72Hsr1ORnZ2D4W4/cc31+J/rSDgTjfRHKUiPT8bVJXuRn52L6nYWXHO9S6xRBXXWeOHR5HUoTOdfrJVQadUDLOMV3h7bgqKkeLD0Fyh6dAss7TnvaPB1XYiwfaF4du8JEmMfY4v3OujXNIC5bR3e0f5VWAiW9urfr4x03omkhPy+ohCvWwGf249hX/DrW6RQBWVpmZmZ2L59OywsLFCtWjUAgLa2Nvz9/XH79m2sWrUKmzZtgq+vr/RnXFxcULNmTYSHh+PatWuYOnUqVFRU5O47MTER7du3R8OGDbFv3z6oqalh8eLF2LZtGzZs2IBbt27By8sLQ4YMwdmzZ1GrVi3s378fABAXF4ekpCSsWrVKen8BAQFQVlbG1atXsWrVKqxYsQKbN2+WXp+fn4/58+cjOjoahw4dwqNHj2QK0s9laGgIFxcXHDlyBIWF/+2vxLlz52LAgAGIiYlBjx494OLiglevXsndLi0tDV27dkVRURFOnTrFdWyn0KioqMDevhFCTv/bXcYYQ8jpC2jVqinHZLJEYhHq9mkFFXU1pETe4x1HhunCn5Eecg1vLgijS6+EkkUTFCXHQ9V5LNR/W4UqbnOg1LgD71hlUtfWAABkpWVyTvIvJZOa0PPfD91Nu6A1cQbEBoa8Iykcob5u6dx+uxSqyzsoKAhaWloAgKysLBgbGyMoKAhicXFdPGPGDOltzc3N4e3tjd27d0tb6BISEjBp0iRYW1sDACwtLeUeIy4uDl27dsX333+PlStXQiQSIS8vD4sWLcI///yD1q1bAwDq1KmDCxcuYOPGjejYsSOqVq0KoLiIe7eoqlWrFnx9fSESiVCvXj3cuHEDvr6+GDVqFADA3d1dets6depg9erVaN68OTIzM6W/7+eytrbGmzdv8PLlSxgafvoL283NDYMGDQIALFq0CKtXr8bVq1fh5OQkvU1ycjIGDhwIS0tL7Ny5E6qqquXK+rXR168KZWVlpKa8kDmemvoc1vXqckr1r6rWNfH9oTlQUlNBflYu/jdqJV7fE8Y4OwDQ69MOGrZ1EdvTm3cUOSJdQyjbdUJB+P+QeykIYuPaUO3sgreFhSi8GcY7npRIJMKgWcNxLzwWT+8m8o4DACi4G4vMlT4ofJoAsV41qA9yg8RnDdJ+cwNycnjHEzwhv24V/dzSLO/yUaiC0tHREevXrwcAvH79Gn/++Se6d++Oq1evwszMDHv27MHq1avx4MEDZGZmoqCgABKJRPrzEyZMwMiRIxEYGIguXbrgxx9/RN26/36w5+TkoH379hg8eLBMt/D9+/eRnZ2Nrl27yuR5+/Yt7OzsPpq7VatWEIlE0sutW7fG8uXLUVhYCCUlJVy7dg1z5sxBdHQ0Xr9+jaKi4i3qExISYGNj81nPVYmSrvXSj/8pSk900tTUhEQikeuG79q1K1q0aIE9e/ZASUnpg/eXl5eHvDzZ8VtFrAhikcI2kiu8tAdJ2Ov0O1S11VGnRws4+o7GkR8XCOLDScVYH6ZzR+Lu4Nlgefkf/4HKJhKhKPkR8s8V90wUpiagQL8GlJs4CKqgHDJ/JGrUq4XFP8z4+I0rSf61K9LvCx89RMHdWOj67YFaO0fknTrGMZliEPLrVtHPLRWU5aNQn+aampqwsLCAhYUFmjdvjs2bNyMrKwubNm3CpUuX4OLigh49eiAoKAjXr1/H77//jrdv30p/fs6cObh16xZ69uyJ06dPw8bGBgcPHpRer6amhi5duiAoKAhPn/47wDkzs7irKDg4GFFRUdKv27dvS8dRfq6srCx069YNEokEO3bsQHh4uDRT6eyfKzY2FhKJRDosQCwWyy3eWnqcaYl3hwKIRCJpoVuiZ8+eOHfuHG7fvv3RHIsXL4aOjo7MV0rWk//66yiUFy9eoaCgAIbV9WWOGxoaIDmF/1i7ovxCZDxKwYsbj3D1j7/x8nYCbN2dPv6DlUCzUV2oGOjC5vgKNH20H00f7Yd264YwdO+Jpo/2A2K+b10sMw3shewHOHuZBJGkGqdE8lzmjkDjTk2x5Kc5eJ0sP1xFKFhWJoqePYGScQ3eURSCkF+376Jz+21RqBbKd4lEIojFYuTk5ODixYswMzPD77//Lr3+8ePHcj9jZWUFKysreHl5YdCgQdi6dSu+//57AMXFVmBgIAYPHgxHR0eEhobCxMQENjY2UFNTQ0JCAjp27FhmlpLu3rLGKl65ckXm8uXLl2FpaQklJSXcuXMHL1++hI+PD2rVqgUA750o9F+lpqZi586d6Nu3r3RYgIGBAZKSkqS3ycjIQHz8582e9fHxgZaWFjp37ozQ0NAPtqZOmzYNEyZMkDnW3rLbZz2uosjPz0dkZAw6ObbDkSP/A1D8b7aTYzv8uX4r53TyRGIRlNSE8ZaQcSEaNzuPkzlWe7kHch88RdKfB4B3/ripbEVP70NU1UjmmKhqdbAMfjP3S3OZOwL23Vrgj59m48WT/zbBr9JVUYfYyARFr4Vb9AqZkF63chTs3NJOOeUj0H+FZcvLy0NycjKA4i7vtWvXIjMzE71790ZGRgYSEhKwe/duNG/eHMHBwTKtjzk5OZg0aRJ++OEH1K5dG0+ePEF4eDj69+8v8xhKSkrYsWMHBg0ahE6dOiE0NBRGRkbw9vaGl5cXioqK0K5dO6SnpyMsLAwSiQSurq4wMzODSCRCUFAQevToAXV1den4x4SEBEyYMAGjR49GZGQk1qxZg+XLlwMATE1NoaqqijVr1uCXX37BzZs3MX/+/P/83DDGkJycLF026NKlS1i0aBF0dHTg4+MjvV2nTp3g7++P3r17Q1dXF7Nmzfpod/WHLFu2DIWFhdLnqmR86rvU1NSgpqYmc6y83d3qGuqoVbum9HINUxNYNbBERloGkp+mlOu+vxTfVZuw1c8X1yJjEB5+HeM8RkFTUx3+AXu45moxZQASQ6OR+fQlVLSqwMK5DUxa10fwkCVcc5UoyspFbpzscmBFOXkoeP1G7jgPBeEnoTZkOpRb9UThnXCIjetAubED3v7Pn3c0DJk/Eq2c22P1qD+Qm5ULiYEuACAnIxv5eeXv9SgvDfcxeHv1IopSUyCuWg3qg92BoiLknf2HdzQAwn5fEfrrVujn9mOoy7t8FKqgPHHiBIyNjQEUz+i2trbG3r174eDgAADw8vLCb7/9hry8PPTs2RMzZ86ULoejpKSEly9fYtiwYUhJSYG+vj769euHuXPnyj2OsrIydu3ahYEDB0oLpfnz58PAwACLFy/Gw4cPoaurC3t7e0yfPh0AUKNGDcydOxdTp07F8OHDMWzYMPj7+wMAhg0bhpycHLRo0QJKSkrw9PTEzz//DKC4xdDf3x/Tp0/H6tWrYW9vj2XLlqFPnz7/6bnJyMiAsbExRCIRJBIJ6tWrB1dXV3h6esqMI502bRri4+PRq1cv6OjoYP78+Z/dQlnC19dXpqi0srIq1/19Kpsm1th8YK30sve84hatI3uOYbbnwkrJ8DF79x6BgX5VzJnlDSMjA0RH30LPXkOQmvri4z9cgdT1Jejk+ws0DHXx9k02XsYmInjIEjw5f5NrLkVRlByPvINrodrxB6i0dQZLf463p3ei8PZl3tHQaWhx9+fUPfNkjvt5r0XYvlAOiWSJqxlA23sWRBIJitLTUHD7BtK9xwhmeRkhv68I/XUr9HP7Md/qDjdfiohRGy/hxM6oLe8I73Xj1SPeET5obXVH3hE+qBkTzhI177Lx0OMd4YN+W/+Gd4QPWmrLf/zv+3QJL+Ad4YNGq9TmHeGDfmwijJUAylLt6NkKf4zmJl9u6a/wZ8Jbx7SiKdSkHEIIIYSQisAY+2Jf/8W5c+fQu3dvmJiYQCQS4dChQxXzC1YwKigJIYQQ8s0rAvtiX/9FVlYWGjdujHXr1lXQb1Y5FGoMJSGEEELI16R79+7o3r077xjlRgUlIYQQQr55X3JKSVmbeZS12snXhLq8CSGEEPLN+5Jd3mVt5rF48WLev2KFohZKQgghhJAvqKzNPL7m1kmACkpCCCGEkC+6DuXX3r1dFiooCSGEEPLNK6JlucuFCkpCCCGEEE4yMzNx//596eX4+HhERUWhatWqMDU15Zjsv6GCkhBCCCHfPF5bL0ZERMDR8d/dz0rGXrq6ukq3cFYEVFASQggh5JvHq8vbwcHhiy5ZxAsVlIQQQgj55vFqofxa0DqUhBBCCCGkXKiFkhBCCCHfPJrlXT5UUBJu7KoY847wXpsMDXhH+KA/lXJ5R/iwQi3eCd6r1cyTvCN8UM6z87wjfJCf3SzeET4gnncAhRZ/XY93hPeqVgmPQV3e5UNd3oQQQgghpFyohZIQQggh3zzq8i4fKigJIYQQ8s2jLu/yoS5vQgghhBBSLtRCSQghhJBvHmNFvCMoNCooCSGEEPLNK6Iu73KhLm9CCCGEEFIu1EJJCCGEkG/e17CfNk9UUBJCCCHkm0dd3uVDBSUhhBBCvnnUQlk+NIZS4EJDQyESiZCWlsY7CiGEEEJImaiF8gPc3NwQEBAgvVy1alU0b94cS5YsQaNGjTgmk+Xv74/hw4cDAEQiEUxMTNC1a1f88ccfMDQ05Jyu4vQY+z2admsJ47o18Db3Le5HxmGfz3YkP3zGO5oco1/7oea0YUjZfBSJc/x4xxH8c2cztDMaDO0M7ZrFe6q/uvsE11YeRGJoDOdkssb84oqJE8bAyMgAMTG34Tl+JsIjorhmKiwsxJ9+OxB08jRevHwNA/2q6NujK0a7DYJIJOKaDRD+ubVv1RjDxg6GTSNrGBjpw8ttKkJPCGN/daE/d+8S2vvex9BOOeVDLZQf4eTkhKSkJCQlJSEkJATKysro1asX71hyJBIJkpKS8OTJE2zatAnHjx/H0KFDy7xtYWEhiooUf72tei1tcDrwBBZ8Pw3Lh86DkrISJmybCVV1Nd7RZGg0toCBSzdk347nHUVK6M9dVtIrXFm8B/t7zMD+njPx7OJtOPlNgJ5VDd7RpH78sQ+WLZ2N+QtWoHlLJ0TH3Max4B0wMKjGNZff9r3YcygY0yeMxZGdf2HCWHds2bEPO/Yd4ZqrhNDPrbqGOu7euo/F05bzjiJH6M9daUJ83/sY9gX/+xZRQfkRampqMDIygpGREZo0aYKpU6ciMTERz58/BwAkJiZiwIAB0NXVRdWqVeHs7IxHjx5Jf97NzQ19+/bFsmXLYGxsjGrVquHXX39Ffn6+9DZ5eXmYMmUKatWqBTU1NVhYWMDPT/avuWvXrqFZs2bQ0NBAmzZtEBcXJ3O9SCSCkZERTExM0L17d4wbNw7//PMPcnJy4O/vD11dXRw5cgQ2NjZQU1NDQkIC8vLy4O3tjRo1akBTUxMtW7ZEaGio9D4fP36M3r17Q09PD5qammjQoAGOHTsGAHj9+jVcXFxgYGAAdXV1WFpaYuvWrV/42f8wX9eFCNsXimf3niAx9jG2eK+Dfk0DmNvWqdQcHyLWqII6a7zwaPI6FKZn8Y4jJfTn7vE/15FwJhrpj1KQHp+Mq0v2Ij87F9XtLHhHk/LyHIXNfjsRsO1vxMbew9hfpyI7OwfD3X7imivqZiwc27dCxzYtUMO4Or5zbI82Lexx43bcx3+4Egj93Iadvow//9iEM8fP8Y4iR+jPXQmhvu+RikUF5X+QmZmJ7du3w8LCAtWqVUN+fj66desGbW1tnD9/HmFhYdDS0oKTkxPevn0r/bkzZ87gwYMHOHPmDAICAuDv7w9/f3/p9cOGDcOuXbuwevVqxMbGYuPGjdDS0pJ57N9//x3Lly9HREQElJWV4e7u/sGs6urqKCoqQkFBAQAgOzsbf/zxBzZv3oxbt27B0NAQv/32Gy5duoTdu3cjJiYGP/74I5ycnHDv3j0AwK+//oq8vDycO3cON27cwB9//CHNNXPmTNy+fRvHjx9HbGws1q9fD319/S/xNH82dW0NAEBWWibXHKWZLvwZ6SHX8OaCMLukSgjxuSshEotQt08rqKirISXyHu84AAAVFRXY2zdCyOl/u0IZYwg5fQGtWjXlmAxo0rA+rkRE4VHCEwDAnXsPERlzC+1bNeOaqyxCPLeKQsjPnaK8772LMfbFvr5FNIbyI4KCgqRFVFZWFoyNjREUFASxWIydO3eiqKgImzdvlo5N2rp1K3R1dREaGorvvvsOAKCnp4e1a9dCSUkJ1tbW6NmzJ0JCQjBq1CjcvXsXf//9N06dOoUuXboAAOrUkW8lWrhwITp27AgAmDp1Knr27Inc3FxUqVJF7rb37t3Dhg0b0KxZM2hrawMA8vPz8eeff6Jx48YAgISEBGzduhUJCQkwMTEBAHh7e+PEiRPYunUrFi1ahISEBPTv3x+2trZyuRISEmBnZ4dmzYo/pMzNzcv3RJeTSCTCoFnDcS88Fk/vJnLNUkKvTzto2NZFbE9v3lE+SIjPHQBUta6J7w/NgZKaCvKzcvG/USvx+p4wxnjq61eFsrIyUlNeyBxPTX0O63p1OaUqNnLoAGRlZ6P34J+hJBajsKgI4352Ra9unbjmKk3I51bohP7cKcr7Xllo2aDyoYLyIxwdHbF+/XoAxd28f/75J7p3746rV68iOjoa9+/flxZtJXJzc/HgwQPp5QYNGkBJSUl62djYGDdu3AAAREVFQUlJSVosvk/pSUDGxsYAgNTUVJiamgIA0tPToaWlhaKiIuTm5qJdu3bYvHmz9GdUVVVl7uPGjRsoLCyElZWVzOPk5eWhWrXiMWDjxo3DmDFjcPLkSXTp0gX9+/eX3seYMWPQv39/REZG4rvvvkPfvn3Rpk2b9+bPy8tDXl6ezLFCVgglkdJ7fuK/GTJ/JGrUq4XFP8z4IvdXXirG+jCdOxJ3B88Gy8v/+A9wJLTnrkTagyTsdfodqtrqqNOjBRx9R+PIjwsE9eEpRCdOn0PQyTP4Y85kWNQ2w517D/HHqo0w1K8K5x5deccDQOe2PIT83CnS+x758qig/AhNTU1YWPw7PmXz5s3Q0dHBpk2bkJmZiaZNm2LHjh1yP2dgYCD9XkVFReY6kUgknRSjrq7+STlK30dJa2jpiTXa2tqIjIyEWCyGsbGx3P2qq6vLzPDMzMyEkpISrl27JlPsApC2yI4cORLdunVDcHAwTp48icWLF2P58uXw8PBA9+7d8fjxYxw7dgynTp1C586d8euvv2LZsmVl5l+8eDHmzp0rc6yJTn3Y6dp80u//IS5zR6Bxp6bwGTALr5Nflfv+vgTNRnWhYqALm+MrpMdEykrQamkDQ7ceuFbnR0AAE6OE+NyVKMovRMajFADAixuPYNi4DmzdnXBu2hbOyYAXL16hoKAAhtVlh3kYGhogOeU5p1TFlq/zw8ghA9CjiwMAwKpubSQlp2Jz4N+CKSiFfG6FTsjPnaK8773Pt9pV/aVQQfkfiUQiiMVi5OTkwN7eHnv27IGhoSEkEsln3Z+trS2Kiopw9uxZaZf35xCLxTKF78fY2dmhsLAQqampaN++/XtvV6tWLfzyyy/45ZdfMG3aNGzatAkeHh4AiotmV1dXuLq6on379pg0adJ7C8pp06ZhwoQJMsc8bF0/Oe/7uMwdAftuLfDHT7Px4klque/vS8m4EI2bncfJHKu93AO5D54i6c8DgnhTFepz9z4isQhKasJ4y8rPz0dkZAw6ObbDkSP/A1D83tDJsR3+XF+5k9PelZubB5FYdnkgsVgs6CVRhHRuFY2QnjtFeN/7ECG/RhSBMP4VClheXh6Sk5MBFHd5r127FpmZmejduzdatGiBpUuXwtnZGfPmzUPNmjXx+PFjHDhwAJMnT0bNmjU/ev/m5uZwdXWFu7s7Vq9ejcaNG+Px48dITU3FgAEDKuz3srKygouLC4YNG4bly5fDzs4Oz58/R0hICBo1aoSePXti/Pjx6N69O6ysrPD69WucOXMG9evXBwDMmjULTZs2RYMGDZCXl4egoCDpdWVRU1ODmprskjTl7e4eMn8kWjm3x+pRfyA3KxcSA10AQE5GNvLz3n74hytYUVYucuMSZI/l5KHg9Ru54zwI+bkDgBZTBiAxNBqZT19CRasKLJzbwKR1fQQPWcI7mpTvqk3Y6ueLa5ExCA+/jnEeo6CpqQ7/gD1cczm0bYlNAbthXN0QFrXNEHv3PrbtOYDve37HNVcJoZ9bdQ111Kr973t3DVMTWDWwREZaBpKfpnBMJvznTujve6RiUUH5ESdOnJCOWdTW1oa1tTX27t0LBwcHAMC5c+cwZcoU9OvXD2/evEGNGjXQuXPn/9RiuX79ekyfPh1jx47Fy5cvYWpqiunTp1fEryNj69atWLBgASZOnIinT59CX18frVq1kq6zWVhYiF9//RVPnjyBRCKBk5MTfH19ARSPyZw2bRoePXoEdXV1tG/fHrt3767wzKV1GuoEAJi6Z57McT/vtQjbF1qpWRSN0J87dX0JOvn+Ag1DXbx9k42XsYkIHrIET87f5B1Nau/eIzDQr4o5s7xhZGSA6Ohb6NlrCFJTX3z8hyvQdK8xWLNpGxYsW4dXr9NgoF8VPzr3wJjhg7nmKiH0c2vTxBqbD6yVXvaeV9zidmTPMcz2XMgrFgDhP3eKjrq8y0fE6BkknLib/8A7wnuN/f/lloTqT2Vh/y3YolB+9QGh+C3lDO8IH5TzTBi7sryPn90s3hHea2O+sBfRHq1Sm3eED2rGhLdsWIlmTw5V+GPoaH25FRrSMx98/EZfGWF/KhFCCCGEVAJqXysfWticEEIIIYSUC7VQEkIIIeSbR7O8y4cKSkIIIYR88xjtlFMu1OVNCCGEEELKhVooCSGEEPLNoy7v8qGCkhBCCCHfPJrlXT7U5U0IIYQQQsqFWigJIYQQ8s2jSTnlQy2UhBBCCPnmMca+2Nd/tW7dOpibm6NKlSpo2bIlrl69WgG/YcWigpIQQgghhJM9e/ZgwoQJmD17NiIjI9G4cWN069YNqampvKP9J1RQEkIIIeSbx6uFcsWKFRg1ahSGDx8OGxsbbNiwARoaGtiyZUsF/aYVgwpKQgghhHzz2Bf8ysvLQ0ZGhsxXXl6e3GO+ffsW165dQ5cuXaTHxGIxunTpgkuXLlXY71ohGCEKLjc3l82ePZvl5ubyjlImyvf5hJyNMcpXHkLOxhjlKw8hZ6sss2fPlqszZ8+eLXe7p0+fMgDs4sWLMscnTZrEWrRoUUlpvwwRY7TwElFsGRkZ0NHRQXp6OiQSCe84cijf5xNyNoDylYeQswGUrzyEnK2y5OXlybVIqqmpQU1NTebYs2fPUKNGDVy8eBGtW7eWHp88eTLOnj2LK1euVEreL4GWDSKEEEII+YLKKh7Loq+vDyUlJaSkpMgcT0lJgZGRUUXFqxA0hpIQQgghhANVVVU0bdoUISEh0mNFRUUICQmRabFUBNRCSQghhBDCyYQJE+Dq6opmzZqhRYsWWLlyJbKysjB8+HDe0f4TKiiJwlNTU8Ps2bM/qXuBB8r3+YScDaB85SHkbADlKw8hZxOigQMH4vnz55g1axaSk5PRpEkTnDhxAtWrV+cd7T+hSTmEEEIIIaRcaAwlIYQQQggpFyooCSGEEEJIuVBBSQghhBBCyoUKSkIIIYQQUi5UUBJCCCGEkHKhgpIQQgghhJQLFZREYUVERCAwMBCBgYGIiIjgHUdq165d771u0qRJlZikbGfOnOEdgRDyGTIyMt573f379ysxCSHyqKAkCufJkydo3749WrRoAU9PT3h6eqJFixZo164dnjx5wjsexowZg+PHj8sd9/Lywvbt2zkkkuXk5IS6detiwYIFSExM5B2HEPKJevbsiby8PLnjcXFxcHBwqPxA7wgICEBwcLD08uTJk6Grq4s2bdrg8ePHHJORykALmxOF4+TkhLS0NAQEBKBevXoAit9Qhw8fDolEghMnTnDNFxwcDBcXFwQFBaFdu3YAAA8PDxw4cAAhISGwtrbmmu/FixcIDAxEQEAAbt26hU6dOmHEiBHo27cvVFVVuWYroaenB5FIJHdcJBKhSpUqsLCwgJubG5etyRhj2LdvH86cOYPU1FQUFRXJXH/gwIFKz1TahAkTyjxe+rlzdnZG1apVKzlZsaysLPj4+CAkJKTM5+/hw4eVnul9/97K8urVqwpO837du3eHSCTCkSNHoKxcvNFdbGwsOnXqhAEDBmDVqlXcsgFAvXr1sH79enTq1AmXLl1Cly5d4Ovri6CgICgrK3N/bZCKRQUlUTjq6uq4ePEi7OzsZI5fu3YN7du3R3Z2Nqdk/9q5cyd+++03nDp1Cn5+fjh8+DDOnDkDKysr3tFkREZGYuvWrdJu+sGDB2PEiBFo3Lgx11y+vr5YuHAhunfvjhYtWgAArl69ihMnTsDLywvx8fEIDAzEmjVrMGrUqErN5unpiY0bN8LR0RHVq1eXK0S2bt1aqXne5ejoiMjISBQWFkr/4Lp79y6UlJRgbW2NuLg4iEQiXLhwATY2NpWeb9CgQTh79iyGDh0KY2NjuefP09Oz0jMFBAR88m1dXV0rMMmH5eTkoEuXLqhZsyZ2796NW7duoXPnznBxccGKFSu45SqhoaGBO3fuwNTUFFOmTEFSUhK2bduGW7duwcHBAc+fP+cdkVQkRoiCsbS0ZFeuXJE7fuXKFVa3bl0Oicq2bt06pqamxmrWrMnu3bvHO857PX36lM2ePZupqakxTU1NpqSkxNq1a8du3rzJLVO/fv3Y+vXr5Y5v2LCB9evXjzHG2OrVq1nDhg0rOxrT09NjwcHBlf64n8rX15f169ePpaenS4+lpaWxH374ga1cuZJlZWUxZ2dn9t1333HJp6Ojwy5cuMDlsb8Gr1+/Zo0bN2Y//PADMzQ0ZN7e3rwjSRkYGLDIyEjGGGNNmjRh27ZtY4wxdv/+faapqckzGqkE1EJJFM7hw4exaNEirFu3Ds2aNQNQPEHHw8MDU6ZMQd++fSs90/u6Gffu3Qt7e3vUrVtXekwILQn5+fk4fPgwtmzZglOnTqFZs2YYMWIEBg0ahOfPn2PGjBmIjIzE7du3ueTT0tJCVFQULCwsZI7fv38fTZo0QWZmJh48eIBGjRohKyurUrPVrl0bx48f5z504X1q1KiBU6dOybU+3rp1C9999x2ePn2KyMhIfPfdd3jx4kWl56tduzaOHTuG+vXrV/pjv8+HJru8SyKRVGASeWVlS0pKQteuXdGrVy/4+PhIj1d2tne5uLjgzp07sLOzw65du5CQkIBq1arhyJEjmD59Om7evMk1H6lYVFAShaOnp4fs7GwUFBRIxxGVfK+pqSlz28oa7+To6PhJtxOJRDh9+nQFp/kwDw8P7Nq1C4wxDB06FCNHjkTDhg1lbpOcnAwTExO58W2VxdTUFF5eXvDy8pI57uvrC19fXyQkJCAmJgbfffcdkpOTKzVbQEAATpw4gS1btkBdXb1SH/tTaGlpISgoSG6SRmhoKHr37o03b97g4cOHaNKkyX8qpL6U7du34/DhwwgICICGhkalP35ZxGLxR8dQMsYgEolQWFhYSamKvS9byUe3SCTilu1daWlpmDFjBhITEzFmzBg4OTkBAGbPng1VVVX8/vvvXPORiqXMOwAh/9XKlSt5R5CjSEvx3L59G2vWrEG/fv2gpqZW5m309fW5/k4zZ87EmDFjcObMGekYyvDwcBw7dgwbNmwAAJw6dQodO3as9GwDBgzArl27YGhoCHNzc6ioqMhcHxkZWemZSnN2doa7uzuWL1+O5s2bAyh+7ry9vaWt91evXq3U8bx2dnYyRdH9+/dRvXp1wTx/Qn79Cjnbu3R1dbF27Vq543PnzuWQhlQ2aqEk5AtLT09HYWGh3CzaV69eQVlZmWu3VH5+PkaPHo2ZM2eidu3a3HJ8irCwMKxduxZxcXEAimeQenh4oE2bNlxzDRgwAGfOnMEPP/xQ5qSc2bNnc0pWLDMzE15eXti2bRsKCgoAAMrKynB1dYWvry80NTURFRUFAGjSpEmlZPovBQXv5498vhMnTkBLS0u6usW6deuwadMm2NjYYN26ddDT0+OckFQkKiiJwklISPjg9aamppWUpGzdu3dH7969MXbsWJnjGzZswJEjR3Ds2DFOyYrp6OggKipK8AWlUGlqauJ///uf9ENTqDIzM6VL8NSpUwdaWlqcEymW7OxsJCQk4O3btzLHGzVqxClRsbS0NFy9erXMJZeGDRvGKVUxW1tb/PHHH+jRowdu3LiB5s2bY8KECThz5gysra25r4BAKhYVlEThfGy8E+9xRFWrVkVYWJjcpIM7d+6gbdu2ePnyJadkxVxdXdGkSRO58YlCU1RUhPv375f5wdmhQwdOqQBra2v8/fff3AsLRRUeHo6ioiK0bNlS5viVK1egpKQknWjHy/PnzzF8+PAyNycA+L6/HD16FC4uLsjMzIREIpF5HxSJRFzXyASKx+/evHkT5ubmmDNnDm7evIl9+/YhMjISPXr0qPTxzqRy0RhKonCuX78uczk/Px/Xr1/HihUrsHDhQk6p/pWXlyftaiwtPz8fOTk5HBLJsrS0xLx58xAWFoamTZvKTWQaN24cp2T/unz5MgYPHozHjx/j3b95eU8+WL58OSZPnowNGzbA3NycW473EeLC4aX9+uuvmDx5slxB+fTpU/zxxx+4cuUKp2TFxo8fj7S0NFy5cgUODg44ePAgUlJSsGDBAixfvpxrtokTJ8Ld3R2LFi0SzISm0lRVVaXrAP/zzz/SFtOqVatymQBGKhe1UJKvRnBwMJYuXYrQ0FCuORwdHdGwYUOsWbNG5vivv/6KmJgYnD9/nlOyYh/q6haJRNwLDqB4bJ+VlRXmzp1b5uLXOjo6nJLJrjKgoaEhN6mEdyuREBcOL01LSwsxMTGoU6eOzPH4+Hg0atQIb9684ZSsmLGxMQ4fPowWLVpAIpEgIiICVlZWOHLkCJYsWYILFy5wy6apqYkbN27IPXdC0adPH7x9+xZt27bF/PnzER8fjxo1auDkyZP47bffcPfuXd4RSQWiFkry1ahXrx7Cw8N5x8CCBQvQpUsXREdHo3PnzgCAkJAQhIeH4+TJk5zTFX9wC929e/ewb98+uXUohUCIqwyUdvz4cQQHB6Nt27a8o5RJTU0NKSkpckVRUlKSdBkwnrKysmBoaAig+I+H58+fw8rKCra2ttxn8Hfr1g0RERGCLSjXrl2LsWPHYt++fVi/fj1q1KgBoPjfZMkSQuTrxf/VS8h/9G7XCWMMSUlJmDNnDiwtLTml+lfbtm1x6dIlLF26FH///TfU1dXRqFEj+Pn5CSJfibdv3yI+Ph5169YVxAd5aS1btsT9+/cFWVDy3HrvU+jp6XHbp/tTfPfdd5g2bRoOHz4sbWlOS0vD9OnT0bVrV87piv8wjYuLg7m5ORo3boyNGzfC3NwcGzZsgLGxMddsPXv2xKRJk3D79m3Y2trKtY736dOHU7JipqamCAoKkjvu6+vLIQ2pbNTlTRROWZNyGGOoVasWdu/ejdatW3NKphiys7Ph4eEh3b/47t27qFOnDjw8PFCjRg1MnTqVc0Lg4MGDmDFjBiZNmlTmB6dQJsTk5ubKzQLmvVuJEBcOL+3p06fo0KEDXr58CTs7OwBAVFQUqlevjlOnTqFWrVpc823fvh0FBQVwc3PDtWvX4OTkhFevXkFVVRX+/v4YOHAgt2xisfi91/EeW1ziwYMH2Lp1Kx48eIBVq1bB0NAQx48fh6mpKRo0aMA7HqlAVFAShXP27FmZy2KxGAYGBrCwsODW0paRkSEtJD42+Jx3weHp6YmwsDCsXLkSTk5O0vFshw8fxpw5c+QmPfFQ1genUHYEycrKwpQpU/D333+XOWOf94e6nZ0dHjx4AMaYYBYOf1dWVhZ27NiB6OhoaQv+oEGD5LIKQXZ2Nu7cuQNTU1Po6+vzjiNoZ8+eRffu3dG2bVucO3cOsbGxqFOnDnx8fBAREYF9+/bxjkgqkLD6uQj5BDx2R/kYPT09JCUlwdDQELq6uu/dKo13MQQAhw4dwp49e9CqVSuZnA0aNMCDBw84JvuXkMd5Tp48GWfOnMH69esxdOhQrFu3Dk+fPsXGjRtl9lXmhcde9v/FuXPn0KZNG/z8888yxwsKCnDu3DmuS0K9izEGdXV12Nvb846iEKZOnYoFCxZgwoQJ0NbWlh7v1KlTmTvokK8LFZREIQUGBmLDhg2Ij4/HpUuXYGZmBl9fX9SpUwfOzs6Vnuf06dPScWtC3yrt+fPn0kkHpWVlZX10P+PKYmZmxjvCex09ehTbtm2Dg4MDhg8fjvbt28PCwgJmZmbYsWMHXFxcuOYT+k4zjo6O0j++SktPT4ejoyP3P7gAwM/PD76+vrh37x6A4qW2xo8fj5EjR3LNNW/evA9eP2vWrEpKUrYbN25g586dcscNDQ3x4sULDolIZaKCkiic9evXY9asWRg/fjwWLlwo/QDS09PDypUruRSUpVtNa9eujVq1apU5zjMxMbGyo8lp1qwZgoOD4eHhAQDSnJs3b+Y6/vTIkSPo3r07VFRUcOTIkQ/elufkg1evXkln2UokEukyQe3atcOYMWO45VIUJS3173r58qXcmqg8zJo1CytWrICHh4f09XDp0iV4eXkhISHho0VdRTp48KDM5fz8fMTHx0NZWRl169blXlDq6uoiKSlJbmmy69evS2d8k68XFZRE4axZswabNm1C3759ZboYmzVrBm9vb47JitWuXbvMFphXr16hdu3a3FtgFi1ahO7du+P27dsoKCjAqlWrcPv2bVy8eFFufGpl6tu3L5KTk2FoaPjBblvewwbq1KmD+Ph4mJqaSnfNadGiBY4ePQpdXV0umapWrYq7d+9CX18fenp6H2xp5rVOZr9+/QAUnz83NzeoqalJryssLERMTAz3fdqB4j9YN23ahEGDBkmP9enTB40aNYKHhwfXgrKs8c0ZGRlwc3PD999/zyGRrJ9++glTpkzB3r17IRKJUFRUhLCwMHh7e3PfFpJUPCooicKJj4+Xzg4tTU1NDVlZWRwSyXpfC0xmZiaqVKnCIZGsdu3aISoqCj4+PrC1tcXJkydhb2+PS5cuwdbWlluu0ju6vLu7i5AMHz4c0dHR6NixI6ZOnYrevXtj7dq1yM/Px4oVK7hk8vX1lY5ZE+o6mSVLBDHGoK2tDXV1del1qqqqaNWqFUaNGsUrnlR+fn6Z2z82bdq0zB2weJNIJJg7dy569+6NoUOHcs2yaNEi/Prrr6hVqxYKCwthY2ODwsJCDB48GDNmzOCajVQ8muVNFI6NjQ0WL14MZ2dnaGtrIzo6GnXq1MGaNWuwdetWbrNYJ0yYAABYtWoVRo0aJbNkS2FhoXSv4rCwMC75SMV4/Pgxrl27BgsLC8EsZyRkc+fOhbe3tyC6t8vi4eEBFRUVuT8OvL29kZOTg3Xr1nFK9n4XLlxA79698fr1a24ZSob0GBgY4MWLF7hx4wYyMzNhZ2cnqPV3ScWhFkqicCZMmIBff/0Vubm5YIzh6tWr2LVrFxYvXozNmzdzy1XSHcUYw40bN6Cqqiq9TlVVFY0bNxZElzxQ3AJ4//79Mvd65jXLdvXq1Z98WyHsNw4Ur0NpZmYmuElEQjy/JYQ4aajkj0GguEt+8+bNOHnyJFq1agUAuHLlChISErh32777GinZ1CEwMBDdu3fnlOrfLBYWFrh16xYsLS25rydKKh+1UBKFtGPHDsyZM0e6zI2JiQnmzp2LESNGcE5W3CW6atUq7utNvs/ly5cxePBgPH78GO++/HmOT/zQHuOl8d5vvLCwEIsWLcKGDRuQkpIiXRh+5syZMDc35/5vUIjn197eHiEhIdDT04Odnd0Hx3jy6GFwdHT8pNuJRCKcPn26gtO837uvkZI1eDt16oRp06bJLNXDQ4MGDeDn5yctxMm3hQpKonBKLyKenZ2NzMxM6QQYIW7Xl5GRgdOnT8Pa2hrW1ta846BJkyawsrLC3LlzYWxsLPfhXjLWjZRt3rx5CAgIwLx58zBq1CjcvHkTderUwZ49e7By5UpcunSJaz4hnt+5c+di0qRJ0NDQwJw5cz5YUAqxBZN8mqNHj2LJkiVYv349GjZsyDsOqWRUUBKF0759e/zzzz8ys0QBIC4uDp07d8aTJ084JSs2YMAAdOjQAb/99htycnLQuHFjPHr0CIwx7N69G/379+eaT1NTE9HR0YIrvEt7+PChdGkeobGwsMDGjRvRuXNnmTG8d+7cQevWrbmOYwMU4/wKmbu7O1atWiXX2peVlQUPDw9s2bKFU7JijDG8fPkSIpEI1apV45rlXXp6esjOzkZBQQFUVVVlJl4B/FYYIJXj/RuDEiJQWlpa+P7772VmXMbGxsLBwYF7sQYU7wTSvn17AMXrxjHGkJaWhtWrV2PBggWc0wEtW7bE/fv3ecf4IAsLC5iammLo0KHw8/MTVN6nT5+WWawVFRUhPz+fQyJZQj2/WVlZGDNmDGrUqAEDAwP89NNPeP78Oe9YcgICApCTkyN3PCcnB9u2beOQqFhycjKGDRsGPT09VK9eHYaGhtDT04O7uztSUlK45SrN19cXf/31F7Zs2YINGzbA19dX5ot83WhSDlE4Bw4cQJcuXeDi4oLdu3fj1q1b6Ny5M1xcXLgt21Jaenq6dNecEydOoH///tDQ0EDPnj0xadIkLpliYmKk33t4eGDixIlITk6Gra2t3P7JQpipnJiYiNDQUJw9exZLlizBqFGjYGJigo4dO8LR0ZHrjiU2NjY4f/683EScffv2lbmcVWVQhPM7c+ZMBAYGwsXFBVWqVMGuXbvw888/yy3WzUtGRgYYY2CM4c2bNzJLfBUWFuLYsWNl7jBVWdnatGmDzMxMDB8+HNbW1mCM4fbt29i1axcuXLiAyMhIaGlpcclXYtCgQSgoKBDsDH5SwRghCuj169escePG7IcffmCGhobM29ubdyQpS0tLtmfPHpaZmckMDAxYSEgIY4yxqKgoVq1aNS6ZRCIRE4vFTCQSlflVcp1YLOaS72Pu3r3LXF1dmbKyMveMhw4dYjo6OszHx4dpaGiwpUuXspEjRzJVVVV28uRJLpkU4fyam5uzv//+W3o5IiKCKSsrs/z8fG6ZSit5ft73paSkxBYsWMAl27x585iFhQVLTU2Vuy4lJYVZWFiwhQsXckhWLDU1lTk5OUlfny1btmT37t3jlofwQWMoiULIyMiQO5aUlISuXbuiV69eMjvm8J5d/eeff8LT0xNaWlowMzNDZGQkxGIx1qxZgwMHDnDZ6/vx48effFshLIGTnZ2NCxcuIDQ0FKGhobh+/Tqsra3h4OAABwcHLttrlnb+/HnMmzcP0dHRyMzMhL29PWbNmoXvvvuOSx5FOL8qKip4/PgxTExMpMc0NDRw584dmJqacslU2tmzZ8EYQ6dOnbB//35pLwNQvOyXmZmZTPbK1KpVK4wePRrDhw8v8/otW7Zg06ZN3CaEubu74/jx4xg3bhyqVKmCjRs3wtjYmMt7HeGHCkqiEMRicZkzQ0v++YpEIukONby3NgSAiIgIJCYmomvXrtJuqODgYOjq6qJt27ac0wmfqqoq9PT04OLiAgcHB7Rv3x56enq8Y5FyUFJSQnJyMgwMDKTHJBIJoqOjP3nJqMrw+PFjmJqafnAmemWrWrUqLl26hHr16pV5/Z07d9CmTRtuk15q1aqFzZs3o1u3bgCAe/fuoX79+sjKypKbPEm+XlRQEoXwX/aY7tixYwUm+W9KF7xCsXjxYlSvXh3u7u4yx7ds2YLnz59jypQpnJL9q2/fvrhw4QJUVVWlrZIODg6wsrLiHU3Ow4cPkZOTg/r160Ms5j/PUajnVywWo2HDhlBW/nfofkxMDKytrWU2AeC101Vp58+fx8aNG/Hw4UPs3bsXNWrUQGBgIGrXro127dpVeh5lZWU8ffoU1atXL/P65ORk1KxZk9vWkEpKSnj69CmMjIykxzQ1NXHr1i2Ym5tzyUQqH03KIQpBSEXip/Dz84Ovry/u3bsHALC0tMT48eO5TiYpsXHjRuzcuVPueIMGDfDTTz8JoqA8dOgQgOKC4+zZszh58iRmzpwJZWVlODg4YMeOHZWeKT8/HwsWLEBkZCRatWqFqVOnYsiQIfj7778BAPXq1cOxY8e4f4AK9fyWtb4k76ELZdm/fz+GDh0KFxcXREZGIi8vD0DxZLtFixbh2LFjlZ6JMfbBP1ZKemh4UlJSkrvMOxOpXNRCSRRWdnY2EhIS8PbtW5njvGcpz5o1CytWrICHhwdat24NALh06RLWrl0LLy8vzJs3j2u+KlWqIDY2Vq6b8eHDh7CxsUFubi6nZPIYY7h+/TrOnDmDM2fO4H//+x8YY1xaYiZOnIjAwEA4Ozvj9OnTaNiwIeLi4jB37lyIxWLMnz8ftra2XIrd0hTp/AqRnZ0dvLy8MGzYMJl1Rq9fv47u3bsjOTm50jOJxWLo6Oi8t6eDMYaMjAxuw33KypeWlgaJRCJTCNM6lF83aqEkCuf58+cYPnw4jh8/Xub1vMdQrl+/Hps2bcKgQYOkx/r06YNGjRrBw8ODe0FZq1YthIWFyRUcYWFh3CYdvGvFihUIDQ3FhQsX8ObNGzRu3BgdOnTAzz//LF3js7Lt27cP/v7+6NGjB+7evQtra2sEBwdL91A2NDSEi4sLl2ylKcL5FbK4uLgy9zvX0dFBWlpa5QcCsHXrVi6P+6mEno9UDiooicIZP3480tLScOXKFTg4OODgwYNISUnBggULsHz5ct7xkJ+fj2bNmskdb9q0KbcxTqWNGjUK48ePR35+Pjp16gQACAkJweTJkzFx4kTO6Yrt2rULHTt2lBaQQtgO8tmzZ2jcuDEAwMrKCmpqajILnFtZWXFpvXqXEM/vx/bvLo33GEojIyPcv39fbujChQsXuO3e5OrqyuVxP5XQ85HKQQUlUTinT5/G4cOH0axZM4jFYpiZmaFr166QSCRYvHgxevbsyTXf0KFDsX79erlF1v/66y9BtGBNmjQJL1++xNixY6XDBapUqYIpU6Zg2rRpnNMVCw8P5x1BTmFhocwi4crKyjLjxsRisSDGjAnx/Pbt25fL436OUaNGwdPTE1u2bIFIJMKzZ89w6dIleHt7Y+bMmbzjKYS3b98iNTUVRUVFMseFsDwUqTg0hpIoHIlEgpiYGJibm8PMzAw7d+5E27ZtER8fjwYNGiA7O5trPg8PD2zbtg21atVCq1atAABXrlxBQkIChg0bJlOUVPbOPoWFhQgLC5PuoBIbGwt1dXVYWloKcnkPIY2TFYvFCAgIkLaWDho0CCtXrpTOvE1LS8Pw4cO5DrlQtPMrRIwxLFq0CIsXL5a+l6ipqcHb2xvz58+v9Dx6enqf3LrLe4zi3bt3MWLECFy8eFHmuJCWdCMVhwpKonCaN2+OBQsWoFu3bujTpw90dXWxePFirF69Gvv27cODBw+45nN0dPyk24lEIpw+fbqC08h736QNIXn+/Dnc3Nxw4sSJMq/n8cH0KUsCCeFDUxHOr5Dl5+dDRUUFb9++xf3795GZmQkbGxtoaWnhxYsX0NfXr9Q8AQEBn3xb3l3Pbdu2hbKyMqZOnQpjY2O5QrhkyAj5OlGXN1E4np6eSEpKAlC8FImTkxN27NgBVVVV+Pv78w0HCH53iIYNG+Lhw4eCLjjGjx+P9PR0QY2Tfbf7TqiEeH4VqZXtp59+wr59+6CqqgobGxvp8ZSUFHTu3Bk3b96s1Dy8i8T/IioqCteuXYO1tTXvKIQDKiiJwhkyZIj0+6ZNm+Lx48fS7dsqu/VAES1YsEDafde0aVNoamrKXM9760pA+ONkhUyI53flypWV/pifKyEhASNHjoSfn5/0WFJSEjp16oQGDRpUep6ytp19H96vXRsbG7x48YJrBsIPdXkT8gX069cP/v7+kEgk6Nev3wdve+DAgUpKVbbSXbelW42ENM5J6ONkAwMDsWHDBsTHx+PSpUswMzODr68v6tSpw32xbkU4v0L2/PlzdOjQAd27d8eKFSvw7NkzODo6onHjxti9e3el74b0vm1nS+N5bksXvBEREZgxYwYWLVokHcdbGu+Cl1QsaqEkCuNT12+cNWtWBSeRV3pRXyEscfMhH+qSv3HjRiUmeb969eohLi4O5ubmaNy4MTZu3Ahzc3Ns2LABxsbGXLOtX78es2bNwvjx47Fw4ULph7ienh5WrlzJvaAU+pCL0nJzc+UmXPEuOgwMDHDy5EnpFotBQUGwt7fHjh07uGytKfTzqaurK/eHS+fOnWVuQ3/MfBuohZIoDLFYDBMTExgaGr53eRaRSMR9HTtF8+bNG+zatQubN2/GtWvXBPGmv337dhQUFMDNzQ3Xrl2Dk5MTXr16JR0nO3DgQG7ZbGxssGjRIvTt21dmJ5WbN2/CwcGBuvw+IisrC1OmTMHff/+Nly9fyl0vhH9/QPGM5fbt26Nr164IDAz85DGg35qzZ89+8m0VbQtd8t9QCyVRGN27d8fp06fRrFkzuLu7o1evXlxaDD5XTEwMmjVrJtciw8u5c+fg5+eH/fv3w8TEBP369cO6det4xwIg7HGy8fHxsLOzkzuupqaGrKwsDonKJqQll0qbPHkyzpw5g/Xr12Po0KFYt24dnj59io0bN8LHx4dLpvdNGsrOzsbRo0dRrVo16THek4YAYZ1bKhJJCSooicIIDg7Gs2fPEBAQgEmTJmH06NEYNmwY3N3dUa9ePd7xPorXHtSlJScnw9/fH35+fsjIyMCAAQOQl5eHQ4cOycxo5Sk/Px/W1tYICgpC/fr1AQAaGhqwt7fnnKxY7dq1ERUVBTMzM5njJ06ckOblSehbkx49ehTbtm2Dg4MDhg8fjvbt28PCwgJmZmbYsWMHl8X/FWXSkNDP7datW6GlpYUff/xR5vjevXuRnZ2tUDPWyWdghCios2fPMjc3N6atrc3atGnDsrOzeUf6oKioKCYWi7k9fq9evZhEImGDBg1iQUFBrKCggDHGmLKyMrt16xa3XGUxMTFht2/f5h2jTJs2bWI1atRgu3fvZpqammzXrl1swYIF0u95Gzx4MGvbti0LDw9nmpqa7OTJkywwMJDVq1ePBQUF8Y7HNDU12ePHjxljjNWoUYNduXKFMcbYw4cPmaamJs9ogif0c2tpaclOnz4tdzw0NJRZWVlxSEQqExWURGFlZ2ezgIAA1qJFC6aurs7S09N5R/og3gWlkpIS8/LyYnfv3pU5LsSCcuHChczV1ZXl5+fzjlKm7du3MwsLCyYSiZhIJGI1atRgmzdv5h2LMcaYkZGRtEjT1tZmcXFxjDHGDh8+zNq2bcszGmOMMVtbWxYaGsoYY6xz585s4sSJjDHGVq1axWrUqMEzGmOMsWvXrrGYmBjp5UOHDjFnZ2c2bdo0lpeXxzGZ8M+tmpoai4+PlzseHx/PqlSpUvmBSKVSnAFohPy/S5cuYdSoUTAyMsKaNWvg6uqKZ8+ecZ8dmpGR8cGvN2/ecM134cIFvHnzBk2bNkXLli2xdu1awU4gCQ8Px4EDB2Bqaopu3bqhX79+Ml+8ubi44N69e8jMzERycjKePHmCESNG8I4FoHjSi6GhIYDisYHPnz8HANja2gpiwtrw4cMRHR0NAJg6dSrWrVuHKlWqwMvLC5MmTeKcDhg9ejTu3r0LAHj48CEGDhwIDQ0N7N27F5MnT+aaTejn1tDQEDExMXLHo6OjZcahkq8TjaEkCmPJkiXw9/fHixcv4OLigvPnz3OfYFDau8tnvIv9/9IZvLRq1QqtWrXCypUrsWfPHmzZsgUTJkxAUVERTp06hVq1akFbW5tbvtJ0dXXRv39/3jHKFB8fj4KCAlhaWkJDQwMaGhoAgHv37kFFRQXm5uZc8wl5ySUA8PLykn7fpUsXxMbGIjIyEhYWFoJ4Pd+9exdNmjQBUDz2r2PHjti5cyfCwsLw008/cR1vKfRzO2jQIIwbNw7a2tro0KEDgOJZ4J6envjpp584pyMVjZYNIgpDLBbD1NQUvXr1gqqq6ntvt2LFikpM9a9PXT5DSLMi4+Li4Ofnh8DAQKSlpaFr1644cuQI71iC1rFjR7i7u8tNMNi+fTs2b96M0NBQPsFK5RDqkkuKQCKR4Nq1a7C0tETXrl3Rq1cveHp6IiEhAfXq1UNOTg63bEI/t2/fvsXQoUOxd+9eKCsXt1cVFRVh2LBh2LBhwwfft4nio4KSKAwHB4ePtvCJRCKcPn26khJ9PQoLC3H06FFs2bKFa0GZk5ODU6dOwdHRUa61NCMjA6GhoejWrRvU1NQ4JSwuOEpa1Eq7f/8+mjVrhrS0ND7B3iM7O1swSy6VCAkJga+vL2JjYwEA9evXx/jx49GlSxfOyYBOnTqhVq1a6NKlC0aMGIHbt2/DwsICZ8+ehaurKx49esQ7opQQzy1Q3MobHR0NdXV12Nrayq2IQL5OVFAS8oV17NgRI0aMwI8//gh1dXXecRTKqlWrcOTIEYSEhJR5fZcuXdC3b1/89ttvlZzsXzo6OggNDZVbi/LatWtwcHDgPlZW6P788094enrihx9+QOvWrQEAly9fxr59++Dr64tff/2Va76YmBi4uLggISEBEyZMwOzZswEAHh4eePnyJXbu3Mk1X4mSj25acJ0IBRWURGG9ffsW8fHxqFu3rrR7RQjGjx+PnTt3Ii8vDwMGDMCIESPQqlUr3rEUQosWLTBz5kz07t27zOuDgoIwb948XL16tZKT/at3795QV1fHrl27oKSkBKC4hXfgwIHIysp67xqBFU3IW5OWVrNmTUydOlXuj4J169Zh0aJFePr0KadkH5abmwslJSW5/akrm5+fH3x9fXHv3j0AgKWlJcaPH4+RI0dyzQUUvw78/f0REhKC1NRUFBUVyVxPvUdfNyooicLJzs6Gh4cHAgICABR3r9SpUwceHh6oUaMGpk6dyjkhUFBQgCNHjiAgIADHjx+HhYUF3N3dMXToUFSvXp13PMHS09NDdHQ0TE1Ny7w+ISEBjRs3xuvXrys52b9u376NDh06QFdXF+3btwcAnD9/HhkZGTh9+jQaNmzIJZeibE2qpaWFqKgouSED9+7dg52dHTIzMzklE75Zs2ZhxYoV8PDwkLbuXrp0CWvXroWXl9cn/1FRUX777Tf4+/ujZ8+eMDY2lms99fX15ZSMVAouixURUg7jxo1jTZs2ZefPn2eamprswYMHjLHi9eKaNGnCOZ28lJQUNn/+fFalShWmoqLCnJ2dWUhICO9YgqSlpcUiIiLee31ERATT0tKqxERle/r0KZs2bRrr0aMH69+/P5s7dy57+fIl10w9evRgVapUYc7Ozuzw4cOssLCQa573GTRoEFuyZInc8aVLl7KBAwdySCSroKCALV26lDVv3pxVr16d6enpyXzxpK+vz3bu3Cl3fOfOnaxatWocEsmqVq0aCw4O5h2DcCKcfkJCPtGhQ4ewZ88etGrVSuYv4AYNGuDBgwcck8m7evUqtm7dit27d8PQ0BBubm54+vQpevXqhbFjx2LZsmW8IwpKgwYN8M8//6Bp06ZlXn/y5Ek0aNCgklPJMzExwaJFi3jHkCHkrUlXr14t/d7GxgYLFy5EaGiozBjKsLAwTJw4kVdEqblz52Lz5s2YOHEiZsyYgd9//x2PHj3CoUOHuA8XyM/PR7NmzeSON23alPu2rgCgqqoq1/JMvh3U5U0UjoaGBm7evIk6depAW1sb0dHRqFOnDqKjo9GhQwekp6dzzZeamorAwEBs3boV9+7dQ+/evTFy5Eh069ZNWgBfuHABTk5O1L33jr/++gsTJkzA7t270atXL5nrjh49ikGDBmHFihX4+eefOSUslpaWhqtXr5Y5TmzYsGGcUsk6d+4ctm7div3798PW1hb//PMPt0litWvX/qTbiUQiPHz4sILTfFjdunWxevVq9OzZE9ra2oiKipIeu3z5MtdJOR4eHlBRUZFbGs3b2xs5OTlYt24dp2TFli9fjocPH2Lt2rU0WegbRC2UROE0a9YMwcHB8PDwAPDvLMfNmzdLWzx4qlmzJurWrQt3d3e4ubnBwMBA7jaNGjVC8+bNOaQTtp9//hnnzp1Dnz59YG1tLW1Zu3PnDu7evYsBAwZwLyaPHj0KFxcXZGZmQiKRyHxwikQiwRSUzZs3x6NHj3D79m1cv34d+fn53ArK+Ph4Lo/7OZKTk2FrawugeLxnyR+ovXr1wsyZMys9z4QJE6Tfi0QibN68GSdPnpRO9Lty5QoSEhIE8e/uwoULOHPmDI4fP44GDRrITWA6cOAAp2SkMlBBSRTOokWL0L17d9y+fRsFBQVYtWoVbt++jYsXL37y4uIVKSQkRDpZ430kEgnOnDlTSYkUy/bt29GnTx/s3LkTd+/eBWMM9erVw9y5czFgwADe8TBx4kS4u7tj0aJF0l1yhOTSpUvYsmUL/v77b1hZWWH48OEYPHgw961J3yXUVRpq1qyJpKQkmJqaom7dujh58iTs7e0RHh7OZf3T69evy1wuGQ5SMrxHX18f+vr6uHXrVqVne5euri6+//573jEIJ9TlTRTSgwcP4OPjg+joaGRmZsLe3h5TpkyRtiwQUlE0NTVx48YN1KlTh3cUGe9uTTp8+HBBbGX4LqGv0jB16lRIJBJMnz4de/bswZAhQ2Bubo6EhAR4eXnBx8eHaz5ChIoKSkK+ADs7u08eM8R72RZFIOTF4fv164effvpJEK2lpQl9a9ISnp6eCAsLw8qVK+Hk5ISYmBjUqVMHhw8fxpw5c+Ra5Hi7fPkyLl68CEtLy/euj1pZ3N3dsWrVKrldpLKysuDh4YEtW7ZwSvavgoIChIaG4sGDBxg8eDC0tbXx7NkzSCQSaGlp8Y5HKpBw+hkI+URCLDb69u3LO8JXxc7ODt7e3vDw8BDc4vA9e/bEpEmTcPv2bdja2sqNE+vTpw+XXB06dIBIJPpg16cQJkoIfZWGly9folq1agCAxMREHDt2DDk5OWXOrq5sAQEB8PHxkSsoc3JysG3bNu4F5ePHj+Hk5ISEhATk5eWha9eu0NbWxh9//IG8vDxs2LCBaz5SwTguWUTIZ/H09GQGBgZMIpGwkSNHskuXLvGORCpAfn4+279/P+vTpw9TUVFh9evXZ0uXLmXJyclcc4lEovd+icVirtkUgbq6unTtWC0tLen3UVFRTCKRcMsVExPDzMzMmFgsZvXq1WPXr19n1atXZ1paWkwikTAlJSV28OBBLtnS09NZWloaE4lE7P79+yw9PV369erVKxYQEMCMjY25ZCvN2dmZDRkyhOXl5cmc2zNnzjALCwvO6UhFE/MuaAn5r1auXIlnz55h69atSE1NRYcOHWBjY4Nly5YhJSWFdzypiIgIBAYGIjAwENeuXeMdR+EoKyujX79+OHz4MJ48eYLBgwdj5syZqFWrFvr27cttG7eioqL3fhUWFnLJpEhKVmkoIZRVGiZPngxbW1ucO3cODg4O6NWrF3r27In09HS8fv0ao0eP5jZ+UldXF1WrVoVIJIKVlRX09PSkX/r6+nB3d+e+BzpQvGPUjBkz5IZcmJubC3ZLTfLl0BhKovBSU1Px119/YeHChSgsLESPHj0wbtw4dOrUiUueJ0+eYNCgQQgLC4Ouri6A4nUL27Rpg927d6NmzZpccimq0ovDSyQS6eLwO3fupMXh/1/ppWU+hvcYygsXLqB79+4YMmQI/P39MXr0aJlVGt63qH1F09fXx+nTp9GoUSPpklDh4eHSPHfu3EGrVq2QlpZW6dnOnj0Lxhg6deqE/fv3o2rVqtLrVFVVYWZmBhMTk0rP9S49PT2EhYXBxsZGZo3gCxcuoH///oL6g598eVRQEoUmxGLDyckJaWlpCAgIkK6jGBcXh+HDh0MikeDEiROVnknRCH1x+KysLJw9exYJCQl4+/atzHXjxo2r9DyOjo4ylyMjI1FQUCD993f37l0oKSmhadOm3Fp2SxPiKg1isRjJyckwNDQEAJmCCABSUlJgYmLCtRX68ePHMDU1FcRY2LIMHDgQOjo6+Ouvv6CtrY2YmBgYGBjA2dkZpqam2Lp1K++IpCJx7XAn5DOkpKSwZcuWsQYNGjBVVVXWv39/dvz4cVZUVCS9Tck+3zxUqVKFRUZGyh2PiIhg6urqHBIpHhUVFWZtbc2WLFnCUlNTy7xNeno6c3BwqORkjEVGRjIjIyPpuDoDAwMmEomYpqYmq127dqXnedfy5ctZ79692atXr6THXr16xZydndmyZcs4JhM2kUgk829NS0uLPXz4UHo5OTlZEGNkz507x1xcXFjr1q3ZkydPGGOMbdu2jZ0/f55zMsYSExOZjY0Nq1+/PlNWVmatWrVi1apVY1ZWViwlJYV3PFLBaJY3UThC34mmVq1ayM/PlzteWFgoiG4pRSDkxeG9vLzQu3dvbNiwATo6Orh8+TJUVFQwZMgQeHp6Vnqedy1fvhwnT56Enp6e9Jienh4WLFiA7777jvt+2ZGRkVBRUZG2Rh4+fBhbt26FjY0N5syZ88Eljyqam5ubdPHy3Nxc/PLLL9DU1AQA5OXlcctVYv/+/Rg6dChcXFwQGRkpzZSeno5Fixbh2LFjXPPVrFkT0dHR2L17N2JiYpCZmYkRI0bAxcVFMCtykIpDk3KIwgkJCUFsbCwmTZpUZjEJ8N2JZunSpfDw8EBERIT0WEREBDw9PWm83ycqKSZTU1Nx/vx5nD9/HqmpqZxTFYuKisLEiRMhFouhpKSEvLw81KpVC0uWLMH06dN5x0NGRgaeP38ud/z58+d48+YNh0SyRo8ejbt37wIAHj58iIEDB0JDQwN79+7F5MmTueVydXWFoaEhdHR0oKOjgyFDhsDExER62dDQkPv2hgsWLMCGDRuwadMmmeWq2rZtK4j1bV++fAllZWUMGTIEHh4e0NfXR1xcnMx7IfmK8W4iJeRTfazLJD8/n125cqWS0ryfrq4uU1VVZWKxmKmqqsp8r6enJ/NFypaRkcGGDBnClJWVpUvyKCsrMxcXF5aWlsY1m76+Prt79y5jjDFLS0t24sQJxhhjsbGxTENDg2c0xhhjQ4cOZebm5mz//v0sMTGRJSYmsn379rHatWuzYcOG8Y7HJBIJu3//PmOMMR8fH/bdd98xxhi7cOECq1mzJs9ogqeurs7i4+MZY7JLLj148ICpqalxyyXkJZdI5aEub6IwjI2NkZSUJB00b2tri2PHjqFWrVoAiv86bt26NfelW1auXMn18b8GI0eOxPXr1xEUFCRdSubSpUvw9PTE6NGjsXv3bm7Z7OzsEB4eDktLS3Ts2BGzZs3CixcvEBgYiIYNG3LLVWLDhg3w9vbG4MGDpUMvlJWVMWLECCxdupRzOoAxhqKiIgDAP//8g169egEoHiry4sULntEEz8jICPfv34e5ubnM8QsXLnDdCrRkyaUdO3YgMDBQuuTSpk2bAAAeHh7w8fGhDSC+drwrWkI+lUgkkmmlLP0XOmPFg+ZFIhGPaOQL09DQKHOSwblz57i3AoaHh7PTp08zxopbzbt168a0tbWZvb09i4qK4pqttMzMTBYdHc2io6NZZmYm7zhSjo6ObNiwYWzbtm1MRUWF3bt3jzHGWGhoKDMzM+MbTuAWLVrEbGxs2OXLl5m2tjY7f/482759OzMwMGCrV6/mlqtatWosOjqaMcbYmzdvmEgkYhEREdLrY2NjmY6ODqd0pLJQCyX5qghlOY3CwkIcPHgQsbGxAAAbGxs4OztDWZlecp+iWrVq0NHRkTuuo6MjM9mEh9Jb8BkaGgp2GShNTU00atSIdww5K1euhIuLCw4dOoTff/8dFhYWAIB9+/ahTZs2nNMJ29SpU1FUVITOnTsjOzsbHTp0gJqamnSbUl5evXoFIyMjAICWlhY0NTXlJoUJYfwuqVi0DiVRGIqwThwA3Lp1C3369EFycrLMOoAGBgY4evSoILpFhe6vv/7C3r17ERgYKP2gSk5OhqurK/r164fRo0dzTihcWVlZ8PHxQUhICFJTU6XdyyUePnzIKdmH5ebmQklJSW5vdPKv/Px8qKio4O3bt7h//z4yMzNhY2MDLS0tvHjxAvr6+lxyicVipKSkSCdJlqxBWbt2bQDCeW8mFYuaS4jCEIlEePPmDapUqQLGGEQiETIzM5GRkQEA0v/zNnLkSDRo0AARERHSv9Jfv34NNzc3/Pzzz7h48SLnhMJkZ2cn08J87949mJqawtTUFACQkJAANTU1PH/+vNILynezfQjv2bYjR47E2bNnMXToUBgbGwum1f5jqlSpwjuC4P3000/Yt28fVFVVYWNjIz2ekpKCzp074+bNm9yyCX3JJVLxqKAkCoMxBisrK5nLdnZ2MpeF8OEZFRUlU0wCxV0+Cxcu5LY2piIQ8oB9IWd71/HjxxEcHIy2bdvyjlKmwsJC+Pr64u+//y5zp6FXr15xSiZ8CQkJGDlyJPz8/KTHkpKS0KlTJzRo0IBbLldXV5nLQ4YMkbsN7yWXSMWjgpIoDF7rSv5XVlZWSElJkXuDT01NlY4XI/Jmz57NO8J7CTnbu/T09GT2ehaauXPnYvPmzZg4cSJmzJiB33//HY8ePcKhQ4cwa9Ys3vEE7dixY+jQoQMmTJiAFStW4NmzZ3B0dETjxo25rnxAWyoSgMZQEvLFHTt2DJMnT8acOXPQqlUrAMDly5cxb948+Pj4oF27dtLbSiQSXjHJV2r79u04fPgwAgICoKGhwTuOnLp162L16tXo2bMntLW1ERUVJT12+fJl7Ny5k3dEQUtMTES7du3Qv39/BAUFwd7eHjt27ICSkhLvaOQbRwUlUTgdO3bEiBEj8OOPPwpyOy+x+N8NqEq64EteZqUvi0QiGqT+HkLuFhVyNqB4vOeDBw/AGIO5ubncJBfeYzw1NTURGxsLU1NTGBsbIzg4GPb29nj48CHs7OyQnp7ONZ8iuHv3Ltq3b4+uXbsiMDBQEEN9CKEub6Jw7OzspMtkDBgwACNGjJC2BArBh7rmY2JiBLmUi9AIuVtUyNkA4Y/3rFmzJpKSkmBqaoq6devi5MmTsLe3R3h4uHRSB/mXnp5emQVjdnY2jh49imrVqkmP8f5jhnzbqIWSKKSCggIcOXIEAQEBOH78OCwsLODu7o6hQ4eievXqvOPJePPmDXbt2oXNmzfj2rVr1Cr5CYTcLSrkbIpg6tSpkEgkmD59Ovbs2YMhQ4bA3NwcCQkJ8PLygo+PD++IghIQEPDJt313cgwhlYkKSqLwUlNT8ddff2HhwoUoLCxEjx49MG7cOHTq1IlrrnPnzsHPzw/79++HiYkJ+vXrh/79+9NM708g5G5RIWdTRJcvX8bFixdhaWmJ3r17845DCPlM4o/fhBDhunr1KmbPno3ly5fD0NAQ06ZNg76+Pnr16gVvb+9Kz5OcnAwfHx9YWlrixx9/hEQiQV5eHg4dOgQfHx8qJj9RSbcoAGm3KABBdIsKORtQPMZz2bJlaNGiBYyMjFC1alWZL95evnwp/T4xMRHHjh1DUlJSmTsjEVmRkZG4ceOG9PLhw4fRt29fTJ8+XW4sLyGVrtI3eySknFJSUtiyZctYgwYNmKqqKuvfvz87fvw4Kyoqkt7m/PnzTFNTs1Jz9erVi0kkEjZo0CAWFBTECgoKGGOMKSsrs1u3blVqFkU3ZcoUtnDhQsYYY7t372bKysrMwsKCqaqqsilTplC2D5g5cyYzNjZmy5YtY1WqVGHz589nI0aMYNWqVWOrVq3ilismJoaZmZkxsVjM6tWrx65fv86qV6/OtLS0mEQiYUpKSuzgwYPc8imCZs2asX379jHGGHvw4AFTU1NjgwYNYhYWFszT05NvOPLNoy5vonBUVVVRt25duLu7w83NTbrdV2kZGRlwdnau1LUrlZWVMW7cOIwZMwaWlpbS4yoqKoiOjpbZ2YL8N0LuFhVaNqGO8ezevTuUlZUxdepUBAYGIigoCN26dcOmTZsAAB4eHrh27RouX77MJZ8i0NHRQWRkJOrWrYs//vgDp0+fxv/+9z+EhYXhp59+QmJiIu+I5BtGXd5E4YSEhCA2NhaTJk0qs5gEitd3rOyF0C9cuIA3b96gadOmaNmyJdauXYsXL15UaoavhZC7RYWcDSgedmFrawsA0NLSko7p7NWrF4KDg7nlCg8Px8KFC9G2bVssW7YMz549w9ixYyEWiyEWi+Hh4YE7d+5wy6cIGGPSvdn/+ecf9OjRAwBQq1Yteq8h3FFBSRRO+/bteUcoU6tWrbBp0yYkJSVh9OjR2L17N0xMTFBUVIRTp07hzZs3vCMK3o0bN2Bubg5DQ0NYW1sjKioKzZs3h6+vL/766y906tQJhw4domwfINQxnq9evYKRkRGA4kJXU1NTbntSeo18WLNmzbBgwQIEBgbi7Nmz6NmzJwAgPj5ecKtbkG8PdXkThWBnZ/fJi/fyXri5tLi4OPj5+SEwMBBpaWno2rUrjhw5wjuWYAm5W1TI2UoT6rI8YrEYKSkp0l4FbW1txMTEoHbt2gCAlJQUmJiY0LJaHxATEwMXFxckJCRgwoQJ0i1BPTw88PLlS1qyinBFBSVRCHPnzv3k2wpx3+XCwkIcPXoUW7ZsoYLyA/T19XH69Gk0atQImZmZkEgkCA8PR9OmTQEAd+7cQatWrZCWlkbZPpFQxniKxWJ0795d2kp69OhRdOrUCZqamgCAvLw8nDhxggrKz5CbmwslJSW5XZEIqUxUUBJCBEMsFiM5ORmGhoYAiluxoqOjUadOHQB8W7GEnK20ly9fSndPSUxMxKZNm5CTk4PevXujQ4cO3HINHz78k263devWCk5CCKkItPUiUVgRERGIjY0FANjY2Ehbiohie3dog5D2KRZyths3bqB3795ITEyEpaUldu/eDScnJ2RlZUEsFsPX1xf79u3jtjUjFYrlJ/R95Mm3jQpKonCePHmCQYMGISwsDLq6ugCAtLQ0tGnTBrt370bNmjX5BiTl4ubmJu0Wzc3NxS+//CLTLcqTkLNNnjwZtra22LFjBwIDA9GrVy/07NlTZoynj4+P4Pf6Ju8n9H3kybeNuryJwnFyckJaWhoCAgJQr149AMWTX4YPHw6JRIITJ05wTkg+l5C7RYWcDVDcMZ7k0wl1jVFCACooiQJSV1fHxYsXYWdnJ3P82rVraN++PbKzszklI4QfRRnjST4f7SNPhIzWoSQKp1atWsjPz5c7XlhYCBMTEw6JCBEGIY/xJOUn1DVGCQFoDCVRQEuXLoWHhwfWrVuHZs2aASieoOPp6Ylly5ZxTkcIP0Ie40nK7/vvv0dISAhatmwJDw8PDBkyBH5+ftI1Rgnhibq8icLR09NDdnY2CgoKoKxc/DdRyfclH54laNYj+VYIfYwn+fKEssYoIQC1UBIFtHLlSt4RCBEcKhS/fu+uMXrs2DHk5ORIe2oI4YlaKAkhhBAB+9gao1lZWVzXGCUEoIKSKKjCwkIcPHhQZmFzZ2dnaRc4IYR8LRRlH3nybaOCkiicW7duoU+fPkhOTpauQ3n37l0YGBjg6NGjaNiwIeeEhBDy5dAao0QR0LJBROGMHDkSDRo0wJMnTxAZGYnIyEgkJiaiUaNG+Pnnn3nHI4SQL+rVq1cwMjICAGhpaUFTUxN6enrS6/X09PDmzRte8QgBQJNyiAKKiopCRESE3BvqwoUL0bx5c47JCCGkYtAao0ToqKAkCsfKygopKSlo0KCBzPHU1FRYWFhwSkUIIRWH1hglQkdjKInCOXbsGCZPnow5c+agVatWAIrXY5s3bx58fHzQrl076W0lEgmvmIQQ8kXQGqNEEVBBSRSOWPzv0N+Sbp+Sf8alL4tEItq3mBBCCKkE1OVNFM6ZM2fee11MTAwaNWpUiWkIIYQQQi2UROG9efMGu3btwubNm3Ht2jVqlSSEEEIqGS0bRBTWuXPn4OrqCmNjYyxbtgydOnWihX0JIYQQDqjLmyiU5ORk+Pv7w8/PDxkZGRgwYADy8vJw6NAh2NjY8I5HCCGEfJOohZIojN69e6NevXqIiYnBypUr8ezZM6xZs4Z3LEIIIeSbRy2URGEcP34c48aNw5gxY2Bpack7DiGEEEL+H7VQEoVx4cIFvHnzBk2bNkXLli2xdu1avHjxgncsQggh5JtHs7yJwsnKysKePXuwZcsWXL16FYWFhVixYgXc3d2hra3NOx4hhBDyzaGCkii0uLg4+Pn5ITAwEGlpaejatSuOHDnCOxYhhBDyTaGCknwVCgsLcfToUWzZsoUKSkIIIaSSUUFJCCGEEELKhSblEEIIIYSQcqGCkhBCCCGElAsVlIQQQgghpFyooCSEkPdwc3ND3759pZcdHBwwfvz4Ss8RGhoKkUiEtLS0Sn/sd58DQggpCxWUhBCF4ubmBpFIBJFIBFVVVVhYWGDevHkoKCio8Mc+cOAA5s+f/0m35VUELl68GEpKSli6dOl/+rlHjx5BJBIhKipK5viqVavg7+//5QISQr5KVFASQhSOk5MTkpKScO/ePUycOBFz5sx5bwH19u3bL/a4VatWFfzi+Vu2bMHkyZOxZcuWL3J/Ojo60NXV/SL3RQj5elFBSQhROGpqajAyMoKZmRnGjBmDLl26SNcfLemiXbhwIUxMTFCvXj0AQGJiIgYMGABdXV1UrVoVzs7OePTokfQ+CwsLMWHCBOjq6qJatWqYPHky3l1V7d0u77y8PEyZMgW1atWCmpoaLCws4Ofnh0ePHsHR0REAoKenB5FIBDc3NwBAUVERFi9ejNq1a0NdXR2NGzfGvn37ZB7n2LFjsLKygrq6OhwdHWVyfsjZs2eRk5ODefPmISMjAxcvXpS5vqioCEuWLIGFhQXU1NRgamqKhQsXAgBq164NALCzs4NIJIKDg4PM81n6dx43bhwMDQ1RpUoVtGvXDuHh4dLrS1pmQ0JC0KxZM2hoaKBNmzaIi4v7pN+BEKKYqKAkhCg8dXV1mZbIkJAQxMXF4dSpUwgKCkJ+fj66desGbW1tnD9/HmFhYdDS0oKTk5P055YvXw5/f39s2bIFFy5cwKtXr3Dw4MEPPu6wYcOwa9curF69GrGxsdi4cSO0tLRQq1Yt7N+/H0Dxbk5JSUlYtWoVgOIu6W3btmHDhg24desWvLy8MGTIEJw9exZAceHbr18/9O7dG1FRURg5ciSmTp36Sc+Dn58fBg0aBBUVFQwaNAh+fn4y10+bNg0+Pj6YOXMmbt++jZ07d6J69eoAgKtXrwIA/vnnHyQlJeHAgQNlPsbkyZOxf/9+BAQEIDIyEhYWFujWrRtevXolc7vff/8dy5cvR0REBJSVleHu7v5JvwMhREExQghRIK6urszZ2ZkxxlhRURE7deoUU1NTY97e3tLrq1evzvLy8qQ/ExgYyOrVq8eKioqkx/Ly8pi6ujr73//+xxhjzNjYmC1ZskR6fX5+PqtZs6b0sRhjrGPHjszT05MxxlhcXBwDwE6dOlVmzjNnzjAA7PXr19Jjubm5TENDg128eFHmtiNGjGCDBg1ijDE2bdo0ZmNjI3P9lClT5O7rXenp6UxdXZ1FRUUxxhi7fv0609LSYm/evGGMMZaRkcHU1NTYpk2byvz5+Ph4BoBdv35d5njp5zszM5OpqKiwHTt2SK9/+/YtMzExkT53Jb/3P//8I71NcHAwA8BycnLem58QotiUeRazhBDyOYKCgqClpYX8/HwUFRVh8ODBmDNnjvR6W1tbqKqqSi9HR0fj/v37cuMfc3Nz8eDBA6SnpyMpKQktW7aUXqesrIxmzZrJdXuXiIqKgpKSEjp27PjJue/fv4/s7Gx07dpV5vjbt29hZ2cHAIiNjZXJAQCtW7f+6H3v2rULdevWRePGjQEATZo0gZmZGfbs2YMRI0YgNjYWeXl56Ny58yfnfdeDBw+Qn5+Ptm3bSo+pqKigRYsWiI2Nlblto0aNpN8bGxsDAFJTU2FqavrZj08IES4qKAkhCsfR0RHr16+HqqoqTExMoKws+1amqakpczkzMxNNmzbFjh075O7LwMDgszKoq6v/55/JzMwEAAQHB6NGjRoy16mpqX1WjhJ+fn64deuWzHNRVFSELVu2YMSIEZ+VtzxUVFSk34tEImkeQsjXiQpKQojC0dTUhIWFxSff3t7eHnv27IGhoSEkEkmZtzE2NsaVK1fQoUMHAEBBQQGuXbsGe3v7Mm9va2uLoqIinD17Fl26dJG7vqSFtLCwUHrMxsYGampqSEhIeG/LZv369aUTjEpcvnz5g7/fjRs3EBERgdDQUFStWlV6/NWrV3BwcMCdO3dgaWkJdXV1hISEYOTIkZ+U911169aFqqoqwsLCYGZmBgDIz89HeHg4l/U5CSHCQZNyCCFfPRcXF+jr68PZ2Rnnz59HfHw8QkNDMW7cODx58gQA4OnpCR8fHxw6dAh37tzB2LFjP7iGpLm5OVxdXeHu7o5Dhw5J7/Pvv/8GAJiZmUEkEiEoKAjPnz9HZmYmtLW14e3tDS8vLwQEBODBgweIjIzEmjVrEBAQAAD45ZdfcO/ePUyaNAlxcXHYuXPnR9eB9PPzQ4sWLdChQwc0bNhQ+tWhQwc0b94cfn5+qFKlCqZMmYLJkydj27ZtePDgAS5fviyduGNoaAh1dXWcOHECKSkpSE9Pl3scTU1NjBkzBpMmTcKJEydw+/ZtjBo1CtnZ2RgxYsRnnBlCyNeCCkpCyFdPQ0MD586dg6mpKfr164f69etjxIgRyM3NlbZYTpw4EUOHDoWrqytat24NbW1tfP/99x+83/Xr1+OHH37A2LFjYW1tjVGjRiErKwsAUKNGDcydOxdTp05F9erV8dtvvwEA5s+fj5kzZ2Lx4sWoX78+nJycEBwcLF22x9TUFPv378ehQ4fQuHFjbNiwAYsWLXpvhrdv32L79u3o379/mdf3798f27ZtQ35+PmbOnImJEydi1qxZqF+/PgYOHIjU1FQAxWNGV69ejY0bN8LExATOzs5l3p+Pjw/69++PoUOHwt7eHvfv38f//vc/6OnpffC5IoR83UTsfSPOCSGEEEII+QTUQkkIIYQQQsqFCkpCCCGEEFIuVFASQgghhJByoYKSEEIIIYSUCxWUhBBCCCGkXKigJIQQQggh5UIFJSGEEEIIKRcqKAkhhBBCSLlQQUkIIYQQQsqFCkpCCCGEEFIuVFASQgghhJByoYKSEEIIIYSUy/8BQNPyGjrKLqwAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "actual, predicted = get_actual_predicted_labels(train_ds)\n", "plot_confusion_matrix(actual, predicted, labels, 'training')" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "execution": { "iopub.execute_input": "2024-01-11T20:16:11.136793Z", "iopub.status.busy": "2024-01-11T20:16:11.136536Z", "iopub.status.idle": "2024-01-11T20:16:33.782340Z", "shell.execute_reply": "2024-01-11T20:16:33.781681Z" }, "id": "Mfr7AT5T-7ZD" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/Unknown - 1s 1s/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/Unknown - 2s 768ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/Unknown - 3s 773ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/Unknown - 4s 790ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/Unknown - 5s 847ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/Unknown - 6s 897ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/Unknown - 7s 911ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/Unknown - 8s 906ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/Unknown - 9s 908ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/Unknown - 10s 927ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/Unknown - 11s 938ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/Unknown - 12s 934ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/Unknown - 12s 890ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/13 [==============================] - 12s 891ms/step\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGEAAASrCAYAAAAy46XgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1jV9fvH8deRIeAE3LhABRX3npmaWpqWeyRmlpaZlbasTPtWroaVmpmalltzzzQn7m3mSFQcgFtAnMzz+4MfJ5HhB8VzGM/HdXFd+hnn3OfmfdBz837fb5PZbDYLAAAAAAAAT1QOWwcAAAAAAACQHVCEAQAAAAAAsAKKMAAAAAAAAFZAEQYAAAAAAMAKKMIAAAAAAABYAUUYAAAAAAAAK6AIAwAAAAAAYAUUYQAAAAAAAKyAIgwAAAAAAIAVUIQBgGwqLi5Ov/32m9q2basqVarIx8dHPj4+Nokl4bmDg4Nt8vz4T2b6Xpw+fVpvv/226tevrwoVKsjHx0fjx4+3dViPJDPlHY9n/Pjx8vHx0ZAhQx7pfj8/P/n4+Gjx4sXpHNmTERERoS+//FLNmjWTr6+vfHx85OfnZ+uwAMBm7G0dAABkJefPn9cff/yhXbt2KTg4WBEREXJycpKHh4eqV6+u559/XrVr17Z1mJKkn376SRMmTJDJZFK5cuWUO3duW4eER5RQeHj55ZeVN29eG0djHaGhoerRo4fCw8OVP39+Va5cWXZ2dipatKitQ0skODhYS5YsUZ48edS7d29bh4MMLiu+lwcMGKA9e/bIyclJPj4+ypkzp7y9vW0dliIiIvT7779LkgYOHGjjaKTjx49r/fr18vDwUIcOHWwdDoAniCIMAKSD2NhYffvtt5oxY4ZiYmIkScWLF5eHh4du376ts2fP6sSJE5o3b55q166tWbNm2TRes9ms2bNnS5LGjh2r1q1b2zQeT09PSZKDg4NN48isJkyYIElq3779Y39wyyzfi9WrVys8PFy+vr6aO3eucubMaeuQkhUSEqIJEybIw8Mj1SJMZsk7Hp+rq6s8PT1VsGDBJOeMvJeLFi0qT09P5cmT54nGmR4CAgIsBZhVq1apePHitg7JIiIiwpLvjFKEmTBhgurUqUMRBsjiKMIAwGMym81655139Ndff8nBwUFvvvmmevTokeg/2Hfv3pW/v79++eUX7d2714bRxgsNDVVYWJgkqWnTpjaORvrzzz9tHQL+X2b5Xpw6dUqSVK9evQxbgEmLzJJ3PL6ePXuqZ8+ej3z/119/nY7RPFkJ79Ny5cplqAIMANgSRRgAeEzTpk2zFGCmTJmi+vXrJ7nG2dlZrVq1UsuWLfXzzz/bIMrE7t27Z/mzs7OzDSMBHk1kZKQkxi+QkfE+BYCkTGaz2WzrIAAgs7pz546aNm2q8PBwvfHGGxo0aNAjPY7ZbNaqVau0aNEiHTt2TLdv35abm5tq166tPn36yNfXN8k9ixcv1scff6w6depo5syZWrx4sebOnatTp07JZDLJ19dXb7zxhho2bGi5Jzg4WM2bN08xjrfeeksDBw5M8tjJ8fPz0549ezRq1KgkU6d37typWbNm6e+//1ZYWJicnJzk6uoqHx8fNW3aVJ06dUp0fUJD4A0bNiT721J/f3/NmTNHhw8fVkREhPLly6eqVavKz88v2aLX7t271atXL3l4eGjjxo3asGGDfvvtNx0/flwxMTEqV66cevfurTZt2qSYi5TcH2toaKgmTpyogwcPKioqSt7e3urfv7+efvppSdKVK1c0adIkbdq0SVevXlXRokXVoUMH9evXT3Z2doke12w2y9/fX1u2bNGBAwd06dIl3bp1S66urqpevbp69eqlWrVqJbpn/Pjxlun0yUn4fkpSs2bNFBISohkzZqhgwYL65ZdftHPnTl2/fl1t27bV6NGjk7y+hO/FsWPH1KVLF0VHR2vChAlq0aJFkuf68MMPtWzZMlWsWFHz58+Xo6Oj4ZyePn1aU6dO1e7du3XlyhU5OzvLx8dHL7zwgjp06JAoV0OGDNGSJUtSfKwTJ0489PmioqK0efNmbdq0SUeOHNHly5d19+5dFSxYULVq1VKfPn1Uvnz5FO+/d++eFixYoHXr1unkyZO6ffu2ChQoIC8vL7Vo0UIdO3aUo6Oj5T2SkhkzZqhu3bqSMvd7YOrUqdq/f79CQ0P15ptvJlrasWvXLs2ZM0cHDx5UWFiYcuXKpUqVKql79+565plnUnyOK1euaMaMGdq6dauCgoIUGxurwoULy9fXV23btlWzZs0eO0cJduzYoSlTpujw4cOKi4tT2bJl1aNHD7Vv3z7R+ybheyX9995r3769RowYoZkzZ2rRokU6f/68HB0dVaNGDQ0cOFCVKlVK8nz335vwvkvLezm1n71S2t5PCe7/nt6+fVs///yz9uzZo4iICHl4eKht27bq16+f4fd1wr8hKXkwn487vleuXKl58+YpICBAN27cSPL4D3rYz5EHcxsbG6ulS5dq+fLl+vfff3X79m25urqqTp066tu3b7I/L+Li4rRo0SItW7ZMAQEBun37tnLnzi13d3dVrVpVL7zwgurVqyfpv5/PKUnp5wKAzImZMADwGLZs2aLw8HDlyJFDvXr1eqTHiImJ0eDBg7V27VpJUpEiRVS8eHGdO3dOK1eu1Jo1azR8+HB17do1xcf45JNPtGjRIkuvgDNnzmjPnj3at2+fxo8fb/mwkzNnTtWoUUNRUVE6cuSIJKlGjRqWx0mPpqZ//PGHhg4dKknKmzevypYtK7PZrEuXLmn9+vX6559/khRhUjNixAjNmDFDkuTu7q7y5csrODhYGzZs0IYNG9S/f3+9++67Kd4/YcIEjR8/XgUKFFDJkiUVFBSkw4cPa/DgwQoLC3vkZQGbN2/W6NGj5eLiouLFiys4OFiHDh1S//79NXbsWFWsWFF+fn4KCwtTuXLlFBcXp/Pnz+uHH37QlStXNHz48ESPd+fOHfXr108mk0murq4qVKiQChcurIsXL2rt2rVat26dhg8fru7du1vuKVq0qGrUqKEDBw5IkipVqpToQ1Jy389Dhw7p559/VmxsrMqWLat8+fLJZDKl+lorVqyoDz74QCNHjtSnn34qX19fFStWzHJ+6dKlWrZsmVxcXDR27Ng0FWBWr16tDz/8UNHR0XJxcZG3t7du3LihvXv3au/evVqzZo0mTpwoJycnSVLp0qVVo0YNnTt3TtevX1fRokXTPG7Pnj2rgQMHKkeOHHJ3d5eHh4eio6MVEhKiZcuWafXq1Ro3blyyH/SDgoLUr18/BQYGSpKKFSumEiVK6PLly9qxY4e2b9+uxo0bq3jx4vL29lZ4eLgCAgLk6OiY5AO50Z4eGfU9sG7dOn333XdydHSUp6encufObRlLZrPZUpyQpHz58qlcuXK6cuWKtm3bpm3btqlnz5767LPPkjyuv7+/Bg0apFu3bilHjhzy9PSUk5OTQkJCtHr1av39999JvjePmqPZs2friy++kBT/88rT01OXLl3SkCFDFBAQ8NAcxMTEqF+/ftq2bZtKlSql0qVLKzAwUJs3b9auXbs0c+ZMValS5aGP8yjv5eSk9f30oO3bt2vEiBGys7OTp6en7OzsdPbsWY0fP14BAQEaN26coTjc3d1Vo0YNhYaG6uzZs8qdO3eiZrz3j/3HHd8jR47U77//bhnfly9ffmh8pUuXVqVKlZL9dzAhjgQ3btzQm2++qX379kmSChUqpGLFiln+jV67dq3GjBmTpKD50Ucfafny5ZZ7SpQooVu3bunixYs6ffq0oqOjLUWYSpUqycHBIdlcScoSSy4B3McMAHhkX375pdnb29v8/PPPP/JjjB8/3uzt7W2uWrWqed26dZbjkZGR5lGjRpm9vb3NFSpUMB86dCjRfYsWLTJ7e3ubfX19zXXq1DFv27bNcu727dvmAQMGmL29vc1NmzY1x8XFJbo3KCjI7O3tbfb29k42poTH7tmzZ4px9+zZ0+zt7W1etGiR5VhMTIy5Tp06Zm9vb/OMGTPM0dHRie45deqU+ffff0/yWAmxBAUFJTq+ePFiy+ufM2eOOTY21vI806ZNM/v4+Ji9vb3Na9asSXTfrl27LLmpUqWKefny5ZZz0dHR5s8//9zs7e1trlatmvnmzZspvsbkJMTq6+tr/umnnyyvMTo62jxkyBCzt7e3uUmTJuZOnTqZ33zzTXNYWJjl3gULFpi9vb3NPj4+5jNnziR63MjISPO8efPMly5dSnQ8JibGvGrVKnPVqlXNvr6+5gsXLhjO3/2aNm1qyeXgwYPNN27csJy7e/euocd6/fXXzd7e3uZu3bpZXndgYKC5WrVqZm9vb/PixYtTTlwyTp06Za5cubLZ29vb/Omnn5pv375tObd9+3ZzzZo1zd7e3ub//e9/Se796KOPzN7e3uZx48al6TnNZrP56tWr5qVLlyb63pjN8d+DWbNmmStUqGCuU6eO+c6dO4nO37171/zcc89Z3vP//PNPovPXrl0zT5482Xz9+nXLsYSx2LRp01RjyozvgQoVKphHjx5tvnfvXqIcmc1m8+TJk83e3t7mp556yrxx48ZE9/v7+5vr169v9vb2Ni9ZsiTRuZMnT5qrVq1q9vb2Ng8cODDJ++HkyZPmX375JV1ydPz4cXPFihXN3t7e5jFjxpgjIyMTPWbFihXNvr6+Zm9vb/OuXbsS3Ttu3DhLfps2bZpoLFy/ft3ctWtXs7e3t/mll15Kkr+Eez/66KMUc5vaezm5n71m8+O9n+7/ufb1118n+p4uX77cksOdO3emGFdyHvZvyeOO7woVKpgrVapkXrZsmeXfubi4uETfy5Q87N/BBK+99prZ29vb3L17d/OJEycsx2NjY83Tp083ly9f3ly5cmVzYGCg5dyxY8fM3t7e5ho1aiQZO3FxceY9e/aYV61alei4kX93AWQNOWxdBAKAzCzhN24lSpR4pPvv3Lmj6dOnS4qfbn7/Mg9HR0cNGTJEtWrVUmxsbIq9ZKKjo/XJJ58kWnbk4uKi4cOHy8HBQSEhIYaWaKSH0NBQhYeHK2/evPLz85O9feIJl2XKlEnTjKGJEydKkrp27aru3bsrR474f7bs7Oz0yiuvqG3btpLit9tOTnR0tF5//XXLdZJkb2+vIUOGyM3NTXfu3NHu3bvT9BoTNGjQQG+++ablNdrb2+ujjz5Szpw5dfHiRV24cEFff/218ufPb7mnc+fOqlSpksxms7Zs2ZLo8RwdHdW1a1cVLlw40XE7Ozu1bt1aL7/8sqKjo7VixYpHijeBp6enxowZk2jnlZR+K/6gUaNGqXDhwjpw4IDGjx+vqKgoDR48WHfu3FHbtm3Vvn37NMXy66+/KjIyUt7e3vryyy/l4uJiOdegQQN99NFHkqQFCxboypUraXrs1BQoUEAvvPBCou+NFP89eOmll9S6dWuFh4dr06ZNic7/8ccfOn36tFxdXfXbb78lmdni7u6uvn37ys3NLd1izcjvgfr161vGfAInJyfduHFDEydOlJ2dnSZMmJCk+Xfjxo31+eefS5ImT56c6NyPP/6ou3fvqk6dOvrhhx+SvB/Kli2rfv36JTr2qDmaPn26YmJiVL9+fX344YeJZp60b99er7zyiqKjo1PNQXR0tL7++utEY8HNzc0yw2ffvn26efNmqo+RXtLj/VSrVi198MEHib6nbdu2tSyxfPA98bged3zHxsZqwIABateunWUWlslkStNsvNTs2LFD/v7+KlasmCZNmpRohkqOHDnUu3dvvfTSS4qMjLRsdy3JMlOuXr16SZZFmUwm1a5d2+a7EgKwHYowAPAYbt26JUmJ/rObFvv27dOtW7eUM2fORMtM7tenTx9J8f8ZjIqKSnI+T548ateuXZLjBQsWlIeHhyTp/PnzjxRfWrm7u8vJyUk3b95MUmRIq9OnT1vifuWVV5K95tVXX5UUvw3qhQsXkr2mR48eSY7lzJlTFStWlPTouenSpUuSY/nz57fkvE2bNsqVK1eSaxI+rKX0vIcPH9Z3332nN998U35+furevbu6d+9u2T3n+PHjjxRvghdffDFJccwoV1dXffvtt7Kzs9PkyZPVv39/HTt2TCVLlrR8qE4Lf39/SVKvXr2SXRL14osvyt3dXdHR0dqxY8cjxZyanTt3avTo0XrjjTfUs2dPS64Tlh0cO3Ys0fXr1q2TFP+9v3+5wpOS0d8DHTt2TPb4li1bdOfOHVWqVEmVK1dO9pqmTZvKwcFBp0+fthQEIiMjtXnzZknS66+/bvlAnprHydHWrVslxRdHk5PaEtAEPj4+SXo1SfFL+BwdHWU2m6328zc93k8vvfRSsserV68uSTp37lw6RZt+4zul7196WL16taT4n+cpbRnesmVLSfE/TxIkLNf8+++/FRQU9MTiA5A50RMGAB5D7ty5JcXPaHkUZ86ckSR5eHgk+4FdkuU3b5GRkQoJCZGnp2ei86VKlUqxp0eBAgV09uxZ3b59+5HiS6scOXKoT58+mjhxovr16ydvb2/Vr19f1apVU+3atRNt2/0wCblxcnJSyZIlk72mbNmysrOzU2xsrAIDAxP1KZHiiwYPznZIkPAh+lFzU6pUqRQfNzAwMNXzUtIxExMTo08++UTLli1L9XnDw8PTHux9ypUr91j316lTR/3799eECRO0bds2OTg4aOzYsZb3glE3b97U1atXJSlJ/4MEDg4O8vLy0vXr1y2/WU4Pt2/f1sCBA7V9+/ZUr3sw1wk9QhI+kD5pGf09kNJY+vfffyXFNwJPqbh8v0uXLqlQoUI6e/aspdBsNMePmqOIiAhdv35dklJswlyiRAnlzp3bUmxPTunSpZM9bjKZ5O7urosXL1rl5296vZ9Sej2PO1aSk17j+0kWRBPG8l9//aX9+/cne03CDlCXLl2yHKtWrZrq1KmjPXv2qFWrVqpZs6Zq166tatWqqWbNmin+ew8ge6AIAwCPIWGq/KP+pivhP7QFChRI8ZpChQoluf5+qc3CSfhNstmKG+G9/fbbKlasmGbNmqV///1XAQEB+v3332UymSzLF1LbeSZBwmtN7T/Y9vb2cnV11bVr16yem5S2XE0oiD3s/IPPO23aNC1btkw5c+bU4MGD1bhxYxUtWlTOzs4ymUxauHChPv30U8XExDxSvA+LOy0aNGhg2cnF19c3xdkOqbn/+5Xa+E8o3KXnh78xY8Zo+/btcnV11Xvvvae6deuqUKFClmVZP/74oyZOnJgk1wkfxo021H1cmfU9EBERIUm6fv26pdCRmrt370r6L792dnaGP6Q+ao7uL4KmVkDMlStXqkWYjPLzN73eTyl9T43MSkqrJz2+00PCWD579qzOnj2b6rX37t2z/NlkMmnSpEmaPHmyli5dqj179lh2SnNyclKbNm30/vvvp+vSRQCZB0UYAHgMNWvW1MyZM3Xq1Cldv349zb+RS/igce3atRSvuX/tvrV+e5ZSoeB+Kc3+MZlM6ty5szp37qzQ0FAdOHBAe/bs0erVq7Vjxw69/PLLWr58eZJeDw9KeK2pfYiLiYlRWFhYouszq8WLF0uK31EjuSUBjzsDJr3cvHlTH3zwgaT4D2aHDh3SjBkz0rw72P3fr2vXrlmWcT0o4bf76fX9jYmJsfTVGT16tKXXxf1SynXu3LkVHh5utR4fmfU9kPDB+MUXX9SYMWMM35dQDImNjdXt27cNvZ5HzdH9H95v3bqV4s8ja80ifFy2ej89jswwvhPGyciRI1NcfpeSXLlyadCgQRo0aJDOnTunAwcOaMeOHfrrr7+0aNEiBQYGavbs2cluGQ4ga6MnDAA8hqeeekr58+dXXFycZYvNtPDy8pIkhYSEpPif/YQlEDlz5kzxP9bpLeG3oakVh4z0BnBzc9MzzzyjTz75RH/++aeKFy+u8PBwrVq16qH3JuTm3r17KfZUOHXqlGJjYyXFN/3NzIKDgyUp2f4SUnxvgYzgs88+U0hIiKpUqaLvv/9ekvTNN99Ypu0blSdPHstv5VPaCjgmJsaybCJhPDyu0NBQSwExrblOWOZx8OBBw8/3sO2/U5NZ3wMJeUprQ3BPT09LQ1ijOX7UHOXNm9dSNE8pzqCgoFRnwWQktno/PQ5bj28j781HHcsPKlWqlNq3b69vvvlG8+fPl8lk0sGDBxP1+HqcnxUAMheKMADwGHLlyqXXXntNUvzOFPc35kuO2WxOtMtRzZo1lTt3bkVGRmru3LnJ3pOwe1KDBg3SbceHh0noCxAcHJxsIWb58uVpng2QO3du+fj4SPpvV6nUeHl5WfqqJOTgQQnHvb29VbRo0TTFk9EkFL4SflN9v9OnT6e6K0nCvfdPh38SFixYoDVr1ih37twaO3asnn32Wb300kuKiorSoEGD0twbqUmTJpKkGTNmJDvratmyZbp+/bocHBwS7f71OO5fbpFcrnfu3KmjR48me++zzz4rKX6XpNDQUEPPl7DEKWHJTVpk1vdA06ZN5eTkpOPHjz+07879HB0dLTOTJk+ebGgZz+PkqHHjxpKkhQsXJnvfH3/8YTj29PI472VbvJ8eh63H9/0/C1J6fz733HOS4nOX2i8l0sLHx8eypPH+fwsf52cFgMyFIgwAPKbXXntNzZo1U3R0tPr27atx48Yl+XAXGRmp9evXq3Pnzvrhhx8sx11cXCy7QkyYMEHr16+3nIuKitLXX3+tvXv3ys7OTv3797fK65Hi/8Pr4eGh6OhoffHFF4n+U7hz506NHDlSDg4OSe47deqUPvnkE+3bt09xcXGJzm3fvt1SpDLaQyThNc+fP1/z5s2zfLCIi4vT77//bmliO2DAgLS/yAymdu3akqSxY8cmWoL277//qn///qn2ZEhoavkkdhBKcOrUKY0cOVKS9L///c+yLftHH30kHx8fBQYG6quvvkrTY/bp00c5c+ZUQECAhg0blqiIs3PnTstSlq5du6apqXNq8uTJY+lJNHLkSEvPB0navXu3Bg8enGh73vt16tRJZcuWVWhoqF555ZUkuyddv35dU6dOTVSgKVmypEwmk0JDQ9M8W0jKnO8Bd3d3S9zvvPOOli5dmqS/Tnh4uJYuXZpkudI777wjZ2dny/fiwa2UT506lWRb60fN0SuvvCJ7e3tt375d3333XaLtqJcuXapp06Yl+3PuSXqc97It3k+Py5bj29XV1VIMSSnfTZs2VaNGjRQeHq5evXpZdk67X1BQkKZMmZKoaLds2TL9+OOPOn36dKJro6OjNXXqVEVERMjOzs6yQ5n0X7P3U6dOJVsgBpB10BMGAB6TyWTS+PHj9fXXX2vWrFn66aefNHHiRBUvXlyurq66ffu2goODLTso1KtXL9H9b7zxhgICArR27VoNGDBARYsWtexqdPPmTeXIkUPDhw9X1apVrfaacuTIoU8++UQDBw7U2rVrtXXrVnl6eiosLEwXLlxQx44dFRQUZGk0mCA6OlqLFi3SokWL5OzsrJIlS8rR0VGXL1+2fJhq3ry5WrdubSiO9u3b69ixY5oxY4aGDx+u8ePHq2jRogoJCbF80H3jjTcsMxQys3feeccyC6N58+by9PRUVFSUzpw5o6JFi2rAgAEaO3Zssvcm9N4YMWKE5s6dK3d3d5lMJrVv314dOnR47NgiIyM1aNAg3b17Vx06dNDzzz9vOZczZ06NHTtWHTt21KJFi9SwYUO1adPG0OOWKVNGo0eP1ocffqgFCxZo5cqV8vLy0o0bNyzNrhs2bGjpQZNePvjgA/Xr10/+/v5q0qSJSpcurYiICAUHB6tChQqqX7++pk2bluS+nDlzatKkSerbt6/+/fdftW/fXh4eHnJzc9OVK1d05coVmc1mPfvss5aGm/nz59fTTz+tTZs2qVOnTipXrpyl98knn3yiChUqpBprZn0PvP7664qIiNCvv/6qjz76SP/73//k6ekpOzs7Xb9+XRcuXJDZbFadOnUS3VemTBmNGzdO7777rlavXq0///xTXl5eypkzp0JCQhQeHi4PDw/169fPcs+j5qh8+fL65JNP9MUXX2jy5MmaP3++SpYsqStXrujy5ct65ZVXtG7dOoWEhFitb8fjvJdt9X56HLYc3yaTSS+88IJmzZqlt956S2XLlrXsJNa3b1899dRTkqTvv/9e77zzjnbs2KGXXnpJ7u7uKlasmOLi4nTx4kVLnG+99ZblscPCwjRx4kRNnDhR+fPnl4eHh8xms4KDgy2F3/fffz/R7J4KFSrI29tbAQEBatGihcqUKWPpSTN27NgMUzgD8PgowgBAOrC3t9cnn3yil156SX/88Yd27dql4OBgXbx4UU5OTvL09FT16tXVtm1b1axZM8m9P/74o1auXKmFCxfq+PHj+vfff+Xq6qomTZrolVdeUaVKlaz+mp555hn9+uuv+vnnn3XkyBEFBgbKy8tLb775pjp37iw/P78k95QuXVojRozQzp07dezYMV26dEm3b99Wnjx51KBBA73wwgtq165dmnba+PTTT9WoUSPNnTtXf//9t44fP658+fKpefPm8vPzU/369dPzZduMj4+P5s2bpx9//FF79+7VmTNnVLhwYfn5+WnAgAGpLkfq3bu3pPjfvp47d87S9+HBD7iPatSoUQoICFDp0qX12WefJTlftmxZffrpp/rss880fPhwValSxTJT5mFat24tb29v/frrr9q1a5dOnDghJycn1apVSy+++KI6dOiQ7h+AGzVqpBkzZuinn37SoUOHLFvf9u/fX6+//rqmTp2a4r0lSpTQkiVLNHfuXK1bt87yW+sCBQqoYcOGatWqVaIdzaT43ZjGjRunLVu26OTJk5YZF/fPwklNZnwPmEwmffjhh3r22Wc1d+5c7du3T6dOnVJcXJxcXV3VqFEjPf3003rmmWeS3PvUU09pzZo1mj59urZu3aqQkBCZTCYVLFhQjRo1Urt27ZLc86g5eumll1S6dGlNmTJFhw8f1unTp+Xl5aW3335bnTp10pIlSySlvoNSenrc97It3k+Py5bj+8MPP1Tu3Lm1bt06nTt3ztJPp3379pZr8ubNq19//VXr1q3T8uXLdfjwYf3777+ys7NToUKF1KBBAzVr1syyHEySWrVqpbi4OO3evVunTp3SmTNnFB0drQIFCqhRo0Z66aWXkvSkMplMmjJlin744QfL9y7hZ0XCL3EAZA0mszX3LQUAAAAygdDQUNWvX18mk0l79+612tbkAIAn4+jRo9qxY4f++ecfHTlyRCEhIZKkDRs2qHjx4ined/78eY0fP147d+7UjRs3VKRIEbVq1Ur9+/d/pJ3bmAkDAAAAPCChx8f9jVQBAJnXTz/9pA0bNqTpnqNHj8rPz0+3b9+Wr6+vatWqpcOHD2vKlCnasmWL5syZk+Z/IyjCAAAAIFtasWKF8ubNq0aNGlmW6cTGxmrhwoWaMGGCJKlnz562DBEAkE6qVasmb29vVapUSZUrV1aHDh1S3fksNjZWgwcP1u3bt/Xee+9Z+pFFRUXp7bff1qZNm/TNN9/oiy++SFMcLEcCAABAtjRmzBhNmzZNLi4uKl26tHLkyKGzZ8/q1q1bkqTnn39e3377rUwmk40jBQCkt4YNG+ratWspLkdat26dBg4cKG9vby1fvjzRvwVXrlxR06ZNJUnbtm2Tq6ur4edlJgwAAACypeeee04RERHav3+/goODdefOHeXJk0eNGjVShw4d1Lp1awowAJBNJWyK0KpVqyT/FhQqVEg1a9bU7t27tWXLFr344ouGH5ciDAAAALKlKlWqqEqVKrYOAwCQAR0/flySUtyl1NfXV7t379a///6bpsc1vkcoAAAAAABANnDhwgVJUpEiRZI9X7hw4UTXGcVMGAAAAAAAkKE1b9481fNp3fnoYe7cuSNJcnZ2TvZ8wvbUt2/fTtPjUoQBMokZHuzOYERF0y1bh5Bp1Luy19YhZApe+YraOoRMIfDGRVuHAACAVcVEhdg6hEcSfS3Q1iFkaxRhAAAAAABAhpbeM10exsXFRTdu3NDdu3eTPZ8wAyZhRoxR9IQBAAAAAAC4T7FixSRJly5dSvb85cuXE11nFEUYAAAAAACA+1SoUEGSdOTIkWTPHz16VJJUvnz5ND0uRRgAAAAAALKLuNjM+WVlTZs2lSStXbtWZrM50bkrV65o//79sre311NPPZWmx6UIAwAAAAAAcJ9mzZqpdOnSCggI0JQpUyzHo6KiNGzYMMXExKhjx45yc3NL0+OazA+WdABkSOyOZAy7IxnH7kjGsDuSMeyOBADIbjLt7khXTto6hEfiUKjcY92/efNmTZw40fL3Y8eOKTo6WhUqVJCjo6MkqUmTJhowYIDlmiNHjsjPz0937tyRr6+vSpUqpb///lshISHy9vbWnDlzlCdPnjTFwe5IAAAAAABkF+Y4W0dgE6Ghofr777+THD9+/Ljlz15eXonOVapUSUuXLtX48eO1c+dOBQQEqEiRInrttdf05ptvpnlnJImZMECmwUwYY5gJYxwzYYxhJowxzIQBAGQ3mXYmzOUTtg7hkTgU9rF1COmCnjAAAAAAAABWQBEGAAAAAADACugJAwAAAABAdhGXPXvCZBTMhAEAAAAAALACijAAAAAAAABWQBEGAAAAAADACugJAwAAAABANmE20xPGlpgJAwAAAAAAYAUUYQAAAAAAAKyA5UgAAAAAAGQXbFFtU8yEAQAAAAAAsAKKMAAAAAAAAFZAEQYAAAAAAMAK6AkDAAAAAEB2wRbVNsVMGAAAAAAAACugCAMAAAAAAGAFFGEAAAAAAACsgJ4wAAAAAABkF3Gxto4gW2MmDAAAAAAAgBVQhAEAAAAAALACliMBAAAAAJBdsEW1TTETBgAAAAAAwAoowgAAAAAAAFgBRRgAAAAAAAAroCcMAAAAAADZRRw9YWyJmTAAAAAAAABWQBEGAAAAAADACijCAHhkLsXc1O3fKeoVMku9QmYpV/ECtg4pQyg2uJtqBS9N9cvjYz9bh5lh1KtbUwvmT1ZI0CHdijitkyd2avy4kSpWrIitQ8sQChRyV7tOz+mTrwZr7sqpOnR2qwKu7tPG/cttHVqGxZgyhjwZQ56MI1fGkCfjyNWTYTbHZcqvrCLTFWGuXbsmX19f+fj4aMCAAbYOR5IUHBwsHx8f+fk9/oeq8ePHy8fH56FfixcvTofI02bx4sWW569fv75iYmJSvHb27NmWa5s1a5Yuz9+sWTP5+Piky2MhfdT/+jU55nG2dRgZVvTVcN3ccyzZr6igK7YOL0Po80p3bdm8RB3at1GOHDl05OgJubnlV/83XtahA+tVpUpFW4doc23at9S3P3+p3q/3UM261eSSi/dcahhTxpAnY8iTceTKGPJkHLlCVpXpijArVqywfPjfsmWLQkNDbRzRk1GyZEm1b98+xa+SJUvaNL7Q0FD5+/uneH7JkiVWjAa2UKbLU/JoWkXnVu+1dSgZ1o1NB3SiwyfJfl2dtdbW4dlcpUrlNfGn0bKzs9PX30xQiVI1VK9+axUvWV2z5yySm5urFi6YKkdHR1uHalO3bt7Wji27NXncbxrY5yON+ux7W4eUYTGmjCFPxpAn48iVMeTJOHKFrCzTFWESPtwXKlRI0dHRWrVqlY0jejJq1qyp0aNHp/hVq1Ytm8Xm6+srSVq6dGmy50+fPq1//vnHch2yHudC+VVr+Eu6ef6KDn2z0NbhIJP6bOhg2dvba/v2Pfrk01GWAvvdu/fUt9/7Cgw8Jy+vUur9clcbR2pbi+YsV+9OA/TtlxO0dsUGXbl01dYhZViMKWPIkzHkyThyZQx5Mo5cISvLVEWY48eP68SJE3J3d9fQoUMlMePCFkqVKqVq1app06ZNioiISHI+oTjz4osvWjcwWE3dUb2VM38u7fpommLuRNo6HGRCLi7Oav1c/FLFX6bMTHI+KipKM2YukCR17dLOqrEhc2JMGUOejCFPxpErY8iTceTKCuLiMudXFpGpijAJBZc2bdqoWbNmcnV11dGjRxUQEJDk2oT+JePHj1dQUJAGDx6s+vXrq3LlymrXrp3mzp0rs9mc5D4/Pz/5+PgoODhYq1evVpcuXVS9enXVqlVLb7zxho4dO2Yo1tWrVz+0b01C35QhQ4YYzEBSf//9t3x8fFIteGzevDnFnjVr1qzRK6+8ojp16qhSpUpq0aKFxowZoxs3bqT6vC+88IKioqK0evXqRMfj4uK0YsUKFSpUSA0aNEjx/k2bNunTTz9VmzZtVKtWLVWpUkWtWrXS6NGj07zELCIiQj179pSPj48+/vjjRL1q/vnnHw0aNEiNGzdWpUqV1KhRI7333ns6ffp0kse5f8wkJ6Ffz4P9eIYMGSIfHx/t3r1bO3fuVK9evVSzZk1Vr15dfn5+2rlzZ5peT0ZX+oX6KvlsLZ1etE0X/Y/YOpwMzaViaXmOHyTv+V+o7LRP5DGkp1wqedk6rAyherVKcnaO722ydeuuZK/x948/XqdOdZlMJqvFhsyJMWUMeTKGPBlHrowhT8aRK2R1maYIExMTo5UrV0qKn2Hh4OCgNm3aSEp9NkxQUJA6duyoffv2qW7duqpTp44CAwP1+eefa9iwYSne9/vvv2vQoEEymUxq2rSpihYtqk2bNqlr166GPlS3aNFCBQsW1ObNm3X58uVkr5k3b54kqVu3bg99vJRUrVpVvr6+On78uA4fPmz4ecxmsz766CO9++67OnDggLy9vS0NdKdNm6YuXbro+vXrKT5vmzZt5ODgkGRJ0u7du3Xx4kW1bds21R+IQ4YM0erVq5UrVy41aNBADRo0UGRkpKZPn65OnToZLsRcvnxZL730kvbu3avXX39do0aNkr29vSRp/vz56tq1q1avXq2CBQuqefPmKlKkiFauXKlOnTpp3759hp7DqL/++kt9+vTRjRs39PTTT6tcuXLas2ePXnnlFS1btixdn8tWcrrlUZ0v/XTveoT2DZ9l63AyPJdKXnJv30R5G1ZR/pZ1VPStTqr451iV/m6gTDkdbB2eTZUrF1+MioyMVFDQhWSvOR14TpLk7OysUqWKWy02ZE6MKWPIkzHkyThyZQx5Mo5cIavLNEUYf39/Xb9+Xd7e3pZeIwmzP1asWKHY2Nhk71u2bJkaNGig9evX64cfftCvv/6qxYsXy9XVVQsWLNCGDRuSvW/WrFkaN26c5s+fr7Fjx2rFihV67733FBUVpQ8//FD37t1LNV4HBwd16tRJMTExWrgwac+MgwcPKiAgQBUqVFC1atWMJyIZ3bt3l/RfseV+ly5dkr+/v9zd3dWiRQvL8d9++01Lly5VlSpVtGbNGsvrXbt2rd544w2dPXtWI0aMSPE58+XLp6ZNm+rgwYM6f/685XhCQexhS5G+/PJLbd++XQsWLNC4ceM0adIkrV+/Xv3791dISIh++OGHh77u06dPq1u3bjp58qSGDh2qwYMHW84dPnxY//vf/5QnTx7NmTNHixcv1o8//qiFCxdq0qRJioqK0gcffKDo6OiHPo9RM2fO1EcffaRly5bpu+++04IFC/Tdd99Jkj7//PMUi3GZSd0RL8vJPa/2Dp+lyLBbtg4nw4q6HKqQ7+bqeLsPdajqy9rv2UlHmgzQxZ8WyRwTqwJdm6v0NxljdzdbcXPLL0kKC0t51l1oaJjlz6758z3pkJDJMaaMIU/GkCfjyJUx5Mk4coWsLtMUYRJmXLzwwguWY5UrV1bZsmV19epVbdu2Ldn7nJ2dNWzYsESds729vdWvXz9J0owZM5K9r2XLlmrVqlWiY3379pW3t7euXLmiP//886Exd+vWTXZ2dlq4cKHiHljDNn/+fElS167JN5NasmRJqltU3+/5559X3rx5tXr1at28eTPRuT/++EOxsbHq0KGDJQcxMTGaPHmyHBwc9OOPP6pYsWKW63PkyKF33nlH5cuX159//qmwsDClJOF7kfC9uX37tv766y9VrFhR3t7eqeamZcuWcnFxSXTM3t5e7777rgoVKqR169alev+hQ4fUo0cPXb16VWPHjk2y1Gry5MmKjY3VZ599ppo1ayY617RpU3Xv3l0XLlzQli1bUn2etKhSpYp69+6d6Njzzz+vp59+Wnfu3Em2GJeZlGhVU6Xb1VPIxr91ZskOW4eToV2bvU4Xv5+v2wcCFHP9hszRMbp3OkQho2Yq8O34nW3cOzytXDWy75brCdOMo6JSLoTeu/dfvyEXF7ZlRuoYU8aQJ2PIk3HkyhjyZBy5sgJzXOb8yiIyRREmPDxcGzdulJ2dndq2bZvoXEIhIKUlSQ0bNpSbm1uS4+3axTdxOnjwYKIeIgkefB5JMplMluNGlrIUKVJETZs2TfJhPyIiQmvWrJGLi0uyzyM9fIvq+zk7O6t9+/a6e/duomUvsbGxWrhwoUwmU6Jiz7FjxxQaGipfX99EBZgEOXLkUM2aNRUbG6sjR1Lu+dGkSRO5urpq+fLlMpvNWrdune7cuWO4IW9ISIhmz56tESNG6JNPPtGQIUM0ZMgQxcbGKiwsLMW+NJs3b1bv3r0VHR2tKVOmqHXr1onOx8XFafv27bK3t7cssXpQwu5Sf//9t6FYjXj++eeTPZ4w1tJ7+ZM1OeZzUd1Rryj69j3tGjLN1uFkamHLt+nWwfg+Vq5tUu6blNXdvXtXkuTomPKyLCennJY/37lz94nHhMyNMWUMeTKGPBlHrowhT8aRK2R19rYOwIhVq1YpOjpajRo1UuHChROda9eunb7//ntt3LhRERERyps3b6LzHh4eyT5mgQIF5OTkpHv37ik8PFwFChRIdL548eTXFiYcv3TpkqHYe/ToofXr12v+/Plq2rSppPiZI/fu3VPXrl2VO3fuZO9L2KLaqO7du2vGjBmaP3++evbsKSm+WHHp0iU1atRIJUqUsFwbHBwsKX42yYOzah6U2kwYBwcHPf/885o5c6b279+vpUuXyt7ePsXC0v2+//57TZkyJcVlZJJ069Yt5cuXdHrhgAEDFBMTo+nTp6t+/frJxnznzh1JUvXq1VONI7XXl1YpjbWE40bHTEZUc2gPuRTOr73DZ+p2SMq9gmDMrb3Hlbu6t5w8i9o6FJtJmGLs6pryFGI3N9f/rg9PvVk4wJgyhjwZQ56MI1fGkCfjyBWyukxRhElY7hIYGGjpf3I/e3t7RUZGavXq1Y/V5PZJaNCggUqXLi1/f39dvHhRRYsW1YIF8VuqJfdaHpWnp6fq16+vHTt26MCBA6pRo4ZlydODz5OwK5SHh4fq1KmT6uMmN1Pmfi+88IJmzpypSZMmac+ePWrSpEmyM4/u9+eff2rSpEkqVKiQPv74Y1WvXl3u7u6W5VLdunXTwYMHk929SoqfpbRkyRJ98803mj59uvLnz5/ofMLSL0dHR0vz5pRUrVo11fPJPW525F7VU5JUaWA7VRqQuMhmsvtvQl2b1V/IHBuns8t3a+/wpFsKIp45On72ncnBzsaR2E5AQPwOZTlz5lTJkh46fz4kyTVlvEpJiv+N2LlzwVaND5kPY8oY8mQMeTKOXBlDnowjV1YQl/IvwvHkZfgizOnTpy27/ly4cEEXLiTfIVuKX5L0YBEmpeuvXbume/fuydHRMcmHeCl+qUz58uWTHE+YRfLgjJyUmEwmde/eXaNGjdKCBQvUqFEjnTx5UlWqVFGFChUMPYZRPXr00I4dOzRv3jwVKVJEW7duVaFChfT0008nuq5IkSKS4oswaZltk5yEvjxbt26VlLhnT0rWrl0rSfriiy8ss4Pud+7cuVTvHzlypEwmkxYvXqyXX35Zv/32m1xd/6uGu7q6KmfOnIqLi9OXX34pBwdju9AkXHf79u1kz1+8eDHV+1MaayEh8f9wGB0zGZlzgdQbnzm5x89Ec8jL2tzUOJeP/49D1IXsO6vo4KEjunv3rpydndW4cT3Nnr0oyTVPPVVPkrR376EUi7JAAsaUMeTJGPJkHLkyhjwZR66Q1WX4njD3N+Q9ceJEsl+HDh2Si4uLDh06pDNnziS6f/v27ckuOUnY7rp69eqWLY2TO/+gVatWSZJq165t+DV06NBBTk5OWrhwoebMmSPp8balTkmzZs1UpEgR/fnnn5o6dari4uLUuXPnJK+vcuXKypcvn/7++29dvXr1sZ+3c+fOyp8/vzw8PNS8efOHXp/Q66Vo0aRLMbZv3/7Q7alz5MihkSNHqkuXLvr333/18ssvJ7rH3t5e9erVU3R0dJoa7xYqVEiSkowhSYqKitKePXtSvT9hbDxoxYoVkv7rQ5MZrWz5qWZ49Ez2a1Hddy3XLar7rmZ49NSOQZNtF2wG51zRU/maxC+Tu7HloI2jsZ07d+5qzZ8bJUn9XuuZ5Lyjo6N6+XWRJC34Y4VVY0PmxJgyhjwZQ56MI1fGkCfjyBWyugxdhImLi9Py5cslJd8oN4Gzs7OeeeYZSf8VbRLcuXNHX331laKioizHTp06pV9++UWSkuyqk2Dt2rVav359omO//vqr/v33XxUsWDDJzkmpyZs3r9q0aaMrV65o5cqVlr+nNzs7O3Xp0kWRkZGaPXu25e8PcnR0VL9+/RQZGakBAwbo9OnTSa4JDQ21LGd6mN69e2v37t3auHFjol2oUuLl5SVJmj17dqIlPufPn9fw4cMNPafJZNIXX3yhbt266cSJE0kKMW+++abs7Ow0fPhw+fv7J7k/MjJSa9asSdSnpXLlynJxcdHWrVu1f/9+y/GoqCh9+eWXlhktKTl06JBmzky8BGf16tXatGmTnJ2d1alTJ0OvDZmbk3cJlRrzppx9PZOcy9espsrN/EwmezvdPnxa4Wt22SDCjOOrET8oJiZGDRvW0cgRH1sKxs7OTpr8y7fy8iqls2eDNG36XBtHisyCMWUMeTKGPBlHrowhT8aRK2RlGXo50s6dO3Xp0iUVKFBADRqkvotI27ZttXz5ci1btkzvvPOO5fgLL7ygzZs3q0WLFqpRo4YiIiK0e/duRUdHq2PHjmrRokWyj9ejRw8NGDBA1atXl4eHh06ePKkTJ07I0dFRY8aMsWydZlSPHj20aNEiS0xOTk6pXr9//34NGTIkxfMNGzZMtjDVpUsX/fzzz4qOjlaTJk0sS48e9Oqrr+rs2bP6448/1K5dO5UvX14lSpRQXFyczp8/r4CAALm4uKS4hfbj8PPz05IlS7RgwQLt2bNHFStW1I0bN7Rnzx5Vq1ZNBQoU0MGDD58hYDKZ9Pnnn8vOzk6zZ89Wr1699Pvvv8vd3V3VqlXTF198oc8//1x9+/aVl5eXPD095eTkpIsXL+r48eO6e/euli5dasmRi4uL+vXrpx9++EEvv/yyatWqJWdnZx05ckRxcXHq0KGDFi9enGI8PXv21IgRI7Ro0SKVKVNGwcHBOnTokEwmk4YPH57i9wJZi8neXgVfaqmCL7VUTPgtRQZdljkmVjlLFJJDgfySpDvHzujUqyOlbD599vDhYxr49qeaMH6kPvzgLb3Su7vOnQ9WubKeypcvr8LCwtWpy6uJiujZUZFihbVs42zL3x0c4//pLupRWLv//e+XBfv3/K03e71n9fgyEsaUMeTJGPJkHLkyhjwZR66esCy03XNmlKFnwiRsO/3cc8/Jzi71BpYNGjSQu7u7Ll68qF27/vvtcokSJfTHH3+oWrVq2rlzp/bs2SNPT08NGzZMX331VYqP17t3b3333XeKiYnRhg0bFBISoiZNmmju3Llq2LBhml+Lr6+vpfeMkYa858+f15IlS1L8SuiT86CCBQuqbNmyklJf8mQymfTVV19p8uTJatKkiS5fvqz169dbltz06NFDP//8cxpfpTGlSpXS4sWL1apVK925c0cbNmzQhQsX9Prrr2vatGmGe7gkvI5hw4bJz89PJ0+elJ+fn2WJVadOnbRkyRJ17txZ0dHR2rp1q7Zs2aLw8HA1b95cP/74o8qUKZPo8fr3769hw4apZMmS2rdvnw4dOqR69epp0aJFD21S3LJlS02dOlV58uTRpk2bFBAQoDp16ujXX39Nsq04sq6o4CsKGTNL4X/tVUz4TeUsVUQu/z8rJsL/kM5+NFHHn/9A0Rezbz+Y+02ZOktPN+2gpcvWyGw2q3Kl8goPj9CkX2aoWo1ndOjQUVuHaHN2djnk6p7f8pU7T+7/P26X6HievMnvtpfdMKaMIU/GkCfjyJUx5Mk4coWsymTOop2MFi9erI8//lhvvfWWBg4caPg+Pz8/7dmzRxs2bEhxm+pHsW3bNr366quqXbu2Zs2alW6P+6DAwEA999xz8vDw0Pr165UjR4aus2UJQ4YM0ZIlSzRjxgzVrVv3iT3PDI+ka2KRVEXTLVuHkGnUu7LX1iFkCl75su9W4mkReCP15uUAAGQ1MVGptyvIqCKPb7J1CI8kZ4Wkm7pkRhl6OVJWERcXZ5lV0qtXryf6XBMnTpQUX0yiAAMAAAAASCSO5Ui2RBHmCdqwYYPWr1+v48eP6/jx46patWqKPWgex4EDB7Rw4UKdOXNGBw4ckIeHxxPZfQkAAAAAADw6ijBP0LFjx7R48WLlyZNHLVu21NChQ2UymdL9ec6ePatFixbJxcVFDRo00NChQ9PcOBgAAAAAADxZWbYnDJDV0BPGGHrCGEdPGGPoCWMMPWEAANlNpu0Jc3SDrUN4JDl9m9s6hHTBTBgAAAAAALILtqi2KTq3AgAAAAAAWAFFGAAAAAAAACugCAMAAAAAAGAF9IQBAAAAACC7iKMnjC0xEwYAAAAAAMAKKMIAAAAAAABYAcuRAAAAAADIJszmWFuHkK0xEwYAAAAAAMAKKMIAAAAAAABYAUUYAAAAAAAAK6AnDAAAAAAA2YWZLaptiZkwAAAAAAAAVkARBgAAAAAAwApYjgQAAAAAQHYRx3IkW2ImDAAAAAAAgBVQhAEAAAAAALACijAAAAAAAABWQE8YAAAAAACyC7aotilmwgAAAAAAAFgBRRgAAAAAAAAroAgDAAAAAABgBfSEAQAAAAAgu4iLtXUE2RozYQAAAAAAAKyAIgwAAAAAAIAVsBwJAAAAAIDsgi2qbYqZMAAAAAAAAFZAEQYAAAAAAMAKKMIAAAAAAABYAT1hAAAAAADILuLoCWNLzIQBAAAAAACwAoowAAAAAAAAVsByJAAAAAAAsgu2qLYpZsIAAAAAAABYAUUYAAAAAAAAK2A5EpBJ9Lm6ydYhZAo3f+5u6xAyDa8hwbYOIVMIvHHR1iEAQKq88hW1dQiZAj/PAWQEFGEAAAAAAMgu2KLapliOBAAAAAAAYAUUYQAAAAAAAKyAIgwAAAAAAIAV0BMGAAAAAIDsgp4wNsVMGAAAAAAAACugCAMAAAAAAGAFLEcCAAAAACCbMJtjbR1CtsZMGAAAAAAAACugCAMAAAAAAGAFFGEAAAAAAACsgJ4wAAAAAABkF2xRbVPMhAEAAAAAALACijAAAAAAAABWQBEGAAAAAADACugJAwAAAABAdmGmJ4wtMRMGAAAAAADACijCAAAAAAAAWAHLkQAAAAAAyC7YotqmmAkDAAAAAABgBRRhAAAAAAAArIAiDAAAAAAAgBXQEwYAAAAAgOyCLaptipkwAAAAAAAAVkARBgAAAAAAwApYjgQAAAAAQHbBFtU2xUwYAAAAAAAAK6AIAwAAAAAAYAUUYQAAAAAAAKyAnjAAAAAAAGQXbFFtU8yEAQAAAAAAsAKKMAAAAAAAAFZAEQYAAAAAAMAK6AkDAAAAAEB2EUdPGFtiJgyANKlXt6YWzJ+skKBDuhVxWidP7NT4cSNVrFgRW4eWoUTGxGrm3tPqNWubGv24RrW+Xakm4/7Uq3N3aOGhc4qNM9s6RJsrUMhd7To9p0++Gqy5K6fq0NmtCri6Txv3L7d1aBkS7z3jyJUx5MkY8vRw/DxPG8aUceQKWRFFmCfg2rVr8vX1lY+PjwYMGGDrcCRJwcHB8vHxkZ+f32M/1vjx4+Xj46MhQ4YYut7Pz08+Pj4KDg5+7OdOb+kRW3rmNqPr80p3bdm8RB3at1GOHDl05OgJubnlV/83XtahA+tVpUpFW4eYIYTfjZLfzG36btMxHb4QplyO9vIumFf2djm0P+i6vlp3WP3m79S96Fhbh2pTbdq31Lc/f6ner/dQzbrV5JLL2dYhZVi894wjV8aQJ2PIkzH8PDeOMWUcuUJWRRHmCVixYoViYmIkSVu2bFFoaKiNI8qeslNxxBoqVSqviT+Nlp2dnb7+ZoJKlKqhevVbq3jJ6po9Z5Hc3Fy1cMFUOTo62jpUm/txy3EFXI1QXicHTe1WX2v7t9Ccl5/ShgEtNfbFWnL8/2LMb3tO2TpUm7p187Z2bNmtyeN+08A+H2nUZ9/bOqQMifeeceTKGPJkDHkyjp/nxjCmjCNXT1hcXOb8yiIowjwBS5YskSQVKlRI0dHRWrVqlY0jsq0xY8Zo9erVKly4sK1DSSIjx5bRfDZ0sOzt7bV9+x598ukoS6Hx7t176tvvfQUGnpOXVyn1frmrjSO1vc2nLkmS+tYvp1olCyQ618y7qLrX9JQk+Z+6bPXYMpJFc5ard6cB+vbLCVq7YoOuXLpq65AyJN57xpErY8iTMeTJOH6eG8OYMo5cISujCJPOjh8/rhMnTsjd3V1Dhw6V9F9RJrsqVqyYypQpIwcHB1uHkkRGji0jcXFxVuvnmkmSfpkyM8n5qKgozZi5QJLUtUs7q8aWESUsMyrlmjvZ8yVdc0mSYugLg4fgvWccuTKGPBlDnpDeGFPGkStkdRRh0llCwaVNmzZq1qyZXF1ddfToUQUEBCS5dvHixfLx8dH48eMVFBSkwYMHq379+qpcubLatWunuXPnymxO+iHt/j4mq1evVpcuXVS9enXVqlVLb7zxho4dO2Yo1tWrVz+0b83s2bPT1P8lOSn1XWnWrJl8fHxkNps1Z84ctWvXTlWrVlW9evU0ePBgnT9/PtnH2759u/r166enn35alSpVUv369dW+fXuNGjVK165dkxTft6Z58+aSpD179sjHx8fydf/ypNR6wkRERGjChAl68cUXVb16dVWvXl2tWrXSsGHDkv1+JufEiRN66qmnVLFiRS1YsMDQPRlR9WqV5Owcv75769ZdyV7j7x9/vE6d6jKZTFaLLSOqUDifJOlA8PVkzx8Iij9euVh+a4WETIr3nnHkyhjyZAx5QnpjTBlHrpDVUYRJRzExMVq5cqUk6cUXX5SDg4PatGkjKfXZMEFBQerYsaP27dununXrqk6dOgoMDNTnn3+uYcOGpXjf77//rkGDBslkMqlp06YqWrSoNm3apK5du2rnzp0PjbdFixYqWLCgNm/erMuXk18WMW/ePElSt27dHvp4j2rkyJH66quvlD9/fjVv3lx58uTRqlWr1KlTpyTFjnnz5qlPnz7aunWrihUrppYtW6pSpUq6c+eOfvvtN509e1aSVKFCBbVq1UqSVKBAAbVv397y1bhx44fGdPbsWb344osaP368Ll68qLp166px48bKlSuXFi5cqLVr1z70Mfbu3auePXsqPDxc48aNU5cuXdKenAyiXDkvSVJkZKSCgi4ke83pwHOSJGdnZ5UqVdxqsWVEbzUuL0e7HJq5N1BTdgbowo07ioyJ1fmw2xq76ahWHQtRkTxO6tfA29ahIoPjvWccuTKGPBlDnpDeGFPGkSsrMMdlzq8swt7WAWQl/v7+un79ury9veXr6yspvhgza9YsrVixQu+//77s7OyS3Lds2TI999xz+vrrry3NpQICAtSrVy8tWLBATz/9tGVWx/1mzZqlcePGWYoNkjR58mR99913+vDDD/XXX3/JyckpxXgdHBzUqVMn/fzzz1q4cGGSGTEHDx5UQECAKlSooGrVqj1KSgxZuHChZs6cqZo1a0qSYmNjNWLECM2ePVsfffRRogLW5MmTZTKZNH/+fFWpUiXR4wQEBMjNzU2S9Mwzz6h8+fJau3atvLy8NHr0aMPxxMbG6q233lJISIg6dOigYcOGWarxknTp0iXLjJuU/PXXX3rvvfeUM2dOTZs2TbVq1TL8/BmRm1t+SVJY2I0UrwkNDbP82TV/Pp1V0JMOK8OqUcJdv/ZooEnbAzRx6wn9tPWE5Zx9DpNequmpPvXKyT1XThtGicyA955x5MoY8mQMeUJ6Y0wZR66Q1TETJh0tXbpUkvTCCy9YjlWuXFlly5bV1atXtW3btmTvc3Z21rBhwxJ19/b29la/fv0kSTNmzEj2vpYtWyYqwEhS37595e3trStXrujPP/98aMzdunWTnZ2dFi5cqLgHOk7Pnz9fktS165NteNW9e3dLAUaS7Ozs9OGHH8rd3V3Hjh3Tvn37LOdCQ0OVJ0+eJAUYKT5nBQoUSHI8rf766y+dPHlS5cqV05dffpmoACNJRYoUUaVKlVK8f+7cuXr77beVP39+zZ49O9MXYCRZchAVFZ3iNffuRVr+7OLC1pQXbtzV9Vv3ZJbk5uKoCoXzyc3FUTFxZq07cdHSvBdIDe8948iVMeTJGPKE9MaYMo5cIaujCJNOwsPDtXHjRtnZ2alt27aJziUUZVJaktSwYUPLDI77tWsX32jq4MGDlo7g93vweSTJZDJZjt9fvEhJkSJF1LRpU124cEFbtmyxHI+IiNCaNWvk4uKS7POkp4TXeT8nJye1aNFCUvyyngS+vr6KiIjQxx9/rBMnTiS5Lz3s2LFDUvz3zd4+bZPFxo0bp88//1ylS5fWvHnz5O2dNZab3L17V5Lk6JhyA2Mnp/9mddy5c/eJx5SRzdx7Wh8t36/LN+9pfMc62vhWK819+SltfKuVxnWoo6iYWH259rDm7j9j61CRwfHeM45cGUOejCFPSG+MKePIlRXYeqtptqhGeli1apWio6NVv379JNsdt2vXTjly5NDGjRsVERGR5F4PD49kH7NAgQJycnJSZGSkwsPDk5wvXjz59Y8Jxy9dMvab9h49ekj6b+aLFD+r5969e2rbtq1y505+h5f0ktLrTzh+/+sYPny4SpUqpcWLF6tdu3aqW7eu3njjDc2dO1d37txJl3guXIhfe+rp6Zmm+w4cOKCffvpJ+fLl0+zZs1WsWLF0iScjSJgO6uqaL8Vr3Nxc/7s+POXpo1ld6J1I/bQtvkD4fjNfNS6T+OfBU2UL6/1m8csVJ247oaiYWKvHiMyD955x5MoY8mQMeUJ6Y0wZR66Q1VGESScJS5ECAwPVvXv3RF+DBg2Svb29IiMjtXr1atsGmowGDRqodOnS8vf318WLFyXJspNP9+7dbRlaEt7e3lq5cqV++eUX9ezZU0WKFNHmzZv1+eef69lnn1VQkO3Wg5YpU0YVKlTQjRs39M033yRZ3pWZBQScliTlzJlTJUsmXzQr41VKUvxvL86dS7rbVHZx7FK4ZYvq+p4Fk72moWchSdLNyGidD7tttdiQ+fDeM45cGUOejCFPSG+MKePIFbI6ijDp4PTp0zp8+LCk+FkUBw4cSPIVFRUlKfklSQkzLx507do13bt3T46OjsqfP3+S8yEhIcnel7Dd8oMzclJiMpnUvXt3xcbGasGCBdq/f79OnjypKlWqqEKFCoYe43Gk9DoSjj/4OhwdHfX000/rs88+07Jly7R582Y9/fTTunz5ssaOHfvY8STMYDlzJm1LRfLly6fffvtNvr6+Wrx4sT7++OMsU4g5eOiIZWpo48b1kr3mqafij+/deyjZrdWzi9uRSZcOpiYyJmuMETwZvPeMI1fGkCdjyBPSG2PKOHKFrI4iTDq4vyHviRMnkv06dOiQXFxcdOjQoSQf7rdv366wsLAkj5uw3XX16tWT7U2ScP5Bq1atkiTVrl3b8Gvo0KGDnJyctHDhQs2ZM0fSk92W+n7JvY7IyEitX79e0sNfR5EiRSw7O92/pbWDQ/w60uT66aSmQYMGkqTly5crNjZtS0Xy58+v6dOnq1KlSlq6dKk++uijND9GRnTnzl2t+XOjJKnfaz2TnHd0dFQvv/gtuBf8scKqsWU0pdz+W76388zVZK/ZduaKJMnOZFIJ11xWiQuZE+8948iVMeTJGPKE9MaYMo5cWYGtt5rO5ltUU4R5THFxcVq+fLmk5BvlJnB2dtYzzzwj6b+iTYI7d+7oq6++ssyWkaRTp07pl19+kST5+fkl+5hr1661FCoS/Prrr/r3339VsGDBJDsnpSZv3rxq06aNrly5opUrV1r+bg2zZ8/WwYMHLX+Pi4vTN998o2vXrql8+fKW3YXu3r2r33//Pdn+OAlNhYsWLWo55ubmJgcHB50/fz5NhZhnnnlGZcuWVUBAgIYNG6Z79+4lOn/p0iUdOXIkxfsTZsRUqVJFy5cv14cffpglCjFfjfhBMTExatiwjkaO+NhSGHR2dtLkX76Vl1cpnT0bpGnT59o4UtvyKZRX3oXySpK+3XhUW09fTnTe/9RlfbfxqCSpabkiyuuUctM5QOK9lxbkyhjyZAx5QnpjTBlHrpCVmczM33os27dvV58+fVSgQAH5+/vLzs4uxWv9/f3Vt29fFS1aVBs3btTSpUv18ccf64UXXtDmzZvl7OysGjVqKCIiQrt371Z0dLQ6duyokSNHJnocPz8/7dmzR35+fpo5c6aqV68uDw8PnTx5UidOnJCjo6MmTZqkhg0bWu4JDg5W8+bNVadOHc2cOTPZ+I4cOaKOHTtanmPo0KHJXjd+/HhNmDBBrq6uKlmyZIqv9+uvv1bp0qUt8W7YsCFRM+FmzZopJCREfn5+mjNnjmrXri13d3cdOXJE586dU968eTVz5kyVL19eUvyOTbVr15a9vb3Kly+vkiVLKi4uTidPntTp06fl4uKi3377TVWrVrU8x5tvvqkNGzaoTJky8vX1laOjozw9PfXaa68lyuWDsQUGBqpPnz66ePGi8ufPrxo1asjR0VFBQUH6999/1b9/fw0cODDV3N66dUuvvfaaDh48qDZt2uibb75JdXw8jL1j8mtiranvaz01YfxI2dnZ6erV6zp3PljlynoqX768CgsLV4tWXXTo0FGbxnjzZ9v3MTp97aZen79T127Hb5/o5uKownmcdfnmXYXeiS+2ernn1pRuDeSeK2dqD/VEVR2y2WbPLUlFihXWso2zLX93cLRX7jy5FRsbq4jwm5bj+/f8rTd7vWeLECVJgTcu2uy5E2SG915GQa6MIU/GZJY8eeUr+vCLniB+nhuXWcZURpAZchUTlXxbhYzu7rKvbR3CI3F+4UNbh5AumAnzmBJ6vDz33HMP/YDdoEEDubu76+LFi9q1a5fleIkSJfTHH3+oWrVq2rlzp/bs2SNPT08NGzZMX331VYqP17t3b3333XeKiYnRhg0bFBISoiZNmmju3LmJCjBG+fr6WnrPGGnIGxYWpr///jvFr4S1nA/z6aef6pNPPlFoaKjWr1+vGzduqHXr1lq4cKGlACNJLi4uGj58uJ555hndunVLmzdvlr+/vySpZ8+eWr58eaICjCR99dVX6tChg27evKlVq1Zp4cKFibbiTomXl5eWLl2qN954QwULFtSOHTvk7++vu3fvqnPnznr22Wcf+hi5c+fW1KlTVaNGDa1atUrvvfdempdGZTRTps7S0007aOmyNTKbzapcqbzCwyM06ZcZqlbjGZv/Q5hRlCmQRwv7PK3XG3irYuF8ioqJU8CVCEXHmlXNw1XvNa2oOb2esmkBJiOws8shV/f8lq/ceXL//3G7RMfz5H2yO7RlBrz3jCNXxpAnY8iTMfw8N44xZRy5QlbFTBgbSmje+tZbb1lmVRiR0uyNx7Vt2za9+uqrql27tmbNmpVuj5uShJkwJ06ceOLPlRVkhJkwmUFGmAmTWdh6JkxmkRF+cwoAqbH1TJjMgp/nSG+ZdibMktG2DuGROLcfYusQ0gUzYSApvg/Lzz//LEnq1auXjaMBAAAAACDrSbrlDrKVDRs2aP369Tp+/LiOHz+uqlWrqkWLFrYOCwAAAACALIciTDZ37NgxLV68WHny5FHLli01dOhQmUwmW4cFAAAAAHgSstB2z5kRPWGATIKeMMbQE8Y4esIYQw8BABkdPWGM4ec50lum7QmzeOTDL8qAnDt8YusQ0gU9YQAAAAAAAKyAIgwAAAAAAIAV0BMGAAAAAIDsIo6eMLbETBgAAAAAAAAroAgDAAAAAABgBSxHAgAAAAAgu2A5kk0xEwYAAAAAAMAKKMIAAAAAAABYAUUYAAAAAAAAK6AnDAAAAAAA2YXZbOsIsjVmwgAAAAAAAFgBRRgAAAAAAAAroAgDAAAAAABgBfSEAQAAAAAgu4iLs3UE2RozYQAAAAAAAKyAIgwAAAAAAIAVsBwJAAAAAIDsguVINsVMGAAAAAAAACugCAMAAAAAAGAFFGEAAAAAAACsgJ4wAAAAAABkF2Z6wtgSM2EAAAAAAACsgCIMAAAAAACAFVCEAQAAAAAAsAJ6wgAAAAAAkF3E0RPGlpgJAwAAAAAAYAUUYQAAAAAAAKyA5UgAAAAAAGQXZrOtI7CZwMBATZkyRbt379aVK1dkb2+vkiVLqmXLlnrllVeUK1euJx4DM2EAAAAAAECWtm/fPrVv316LFy+Wg4ODmjVrptq1ayskJETjx49X586ddePGjSceBzNhAAAAAABAlvb555/r3r17evPNN/X222/LZDJJksLDw9WnTx8dPXpUU6dO1XvvvfdE42AmDAAAAAAAyLLCwsJ08uRJOTg4qH///pYCjCTlz59fffr0kST9/fffTzwWZsIAAAAAAJBdZMMtqh0cHAxd5+rq+oQjYSYMAAAAAADIwnLnzq3q1asrOjpaP//8s8z3NScODw/XtGnTJEmdO3d+4rEwEwYAAAAAAGRpI0aM0GuvvaaJEydq9erV8vHx0b1797R//345Ozvr66+/VqNGjZ54HBRhAAAAAADILjLpcqTmzZunen7Dhg2pni9Tpozmzp2rd955R4cOHdLZs2ct5xo0aKCyZcumR5gPRREGQJaSp/9cW4eQadz8ubutQ8gUGFPGeOUrausQMo3AGxdtHQIAANnOrl279Pbbb6tAgQKaOnWqqlatqrt372rz5s365ptvtGXLFk2cOPGJz4ahCAMAAAAAADK0h810SU14eLjeeecdRUVFacqUKfLw8JAk5c2bV127dlWePHk0aNAgDR8+XOvWrZOdnV16hZ0EjXkBAAAAAECWtXnzZoWHh6tatWqWAsz9WrZsKQcHBwUHBysoKOiJxsJMGAAAAAAAsgtz5uwJ8zguX74sScqTJ0+y5+3t7eXi4qIbN27oxo0bTzQWZsIAAAAAAIAsq2DBgpKko0ePKiYmJsn5s2fPWoovyc2USU8UYQAAAAAAQJb11FNPycnJSSEhIfr2228TFWJCQ0M1dOhQSVKdOnVUoECBJxoLy5EAAAAAAECWVaBAAQ0dOlTDhg3T9OnTtXbtWlWsWFH37t3T33//rZs3b6pAgQL64osvnngsFGEAAAAAAMgmzHFmW4dgE507d5a3t7d+//13HThwQFu2bJGdnZ2KFy+uzp0767XXXpO7u/sTj4MiDAAAAAAAyPKqVq2qsWPH2jQGesIAAAAAAABYATNhAAAAAADILuKy3xbVGQkzYQAAAAAAAKyAIgwAAAAAAIAVUIQBAAAAAACwAnrCAAAAAACQXZjpCWNLzIQBAAAAAACwAoowAAAAAAAAVsByJAAAAAAAsos4s60jyNaYCQMAAAAAAGAFFGEAAAAAAACsgCIMAAAAAACAFdATBgAAAACA7CKOLaptiZkwAAAAAAAAVkARBgAAAAAAwAoowgAAAAAAAFgBPWEAAAAAAMgu6AljU8yEAQAAAAAAsAKKMAAAAAAAAFbAciQAAAAAALILs9nWEWRrzIQBAAAAAACwAoowAAAAAAAAVkARBgAAAAAAwAroCQMAAAAAQHbBFtU2xUwYAAAAAAAAK6AIAwAAAAAAYAUsRwIAAAAAILuIY4tqW2ImDB7LtWvX5OvrKx8fHw0YMMBqz7t79275+PhoyJAhVntOxKtXt6YWzJ+skKBDuhVxWidP7NT4cSNVrFgRW4eWoZAnYyJjYjVz72n1mrVNjX5co1rfrlSTcX/q1bk7tPDQOcXynwQLxtTDFSjkrnadntMnXw3W3JVTdejsVgVc3aeN+5fbOrQMiTFlDHl6ON57acOYMo5cISuiCIPHsmLFCsXExEiStmzZotDQUBtHhCepzyvdtWXzEnVo30Y5cuTQkaMn5OaWX/3feFmHDqxXlSoVbR1ihkCejAm/GyW/mdv03aZjOnwhTLkc7eVdMK/s7XJof9B1fbXusPrN36l70bG2DtXmGFPGtGnfUt/+/KV6v95DNetWk0suZ1uHlGExpowhT8bw3jOOMWUcuUJWRREGj2XJkiWSpEKFCik6OlqrVq2ycUR4UipVKq+JP42WnZ2dvv5mgkqUqqF69VureMnqmj1nkdzcXLVwwVQ5OjraOlSbIk/G/bjluAKuRiivk4Omdquvtf1baM7LT2nDgJYa+2ItOf5/Mea3PadsHapNMaaMu3XztnZs2a3J437TwD4fadRn39s6pAyJMWUMeTKO954xjCnjyBWyMooweGTHjx/XiRMn5O7urqFDh0r6ryiDrOezoYNlb2+v7dv36JNPR1lmQN29e099+72vwMBz8vIqpd4vd7VxpLZFnozbfOqSJKlv/XKqVbJAonPNvIuqe01PSZL/qctWjy0jYUwZt2jOcvXuNEDffjlBa1ds0JVLV20dUobEmDKGPBnHe88YxpRx5OoJM8dlzq8sgiIMHllCwaVNmzZq1qyZXF1ddfToUQUEBCS5dvHixfLx8dH48eN1/vx5vf/++2rUqJEqVKig3377zXLdlStXNGbMGLVp00bVqlVTjRo19Pzzz2vUqFEKCQlJNo6bN2/qq6++UpMmTVSpUiU1b95c48aNs/ywflBsbKwWLFig7t27q1atWqpSpYratGmjiRMn6t69e0muHzJkiHx8fLR7927t2LFDffr0UZ06deTj46Pjx4+rdevW8vHx0b///pvs88XExKhRo0YqX768goKCHpbWDMnFxVmtn2smSfplyswk56OiojRj5gJJUtcu7awaW0ZCntImYZlRKdfcyZ4v6ZpLkhSTjfvCMKaQ3hhTxpAnpDfGlHHkClkdRRg8kpiYGK1cuVKS9OKLL8rBwUFt2rSRlPpsmLNnz6pjx47at2+fatWqpaeeekrOzvHrhg8dOqS2bdtq2rRpunHjhho1aqQGDRrIZDLpt99+0+7du5M8XkREhLp27apVq1apSpUqql+/vkJDQ/XTTz9p2LBhSa6PjIxU37599dlnn+nkyZOqVKmSGjdurFu3bunHH39U7969ky3ESNKqVavUp08fhYaGqnHjxqpZs6ZMJpO6d+8uSZo3b16y923cuFFXr15Vw4YNVaJEiVSymnFVr1bJ8n3aunVXstf4+8cfr1Onukwmk9Viy0jIU9pUKJxPknQg+Hqy5w8ExR+vXCy/tULKcBhTSG+MKWPIE9IbY8o4coWsji2q8Uj8/f11/fp1eXt7y9fXV1J8MWbWrFlasWKF3n//fdnZ2SW5b+XKlercubOGDx8uBwcHy/GbN29qwIABCg8P1xtvvKG33nor0fnAwECZzUl/G75hwwY1bdpUixYtsvywPnPmjDp27KjFixfrzTffVPHixS3Xf/PNN9q+fbuaNm2qUaNGydXVVVJ8RX348OFavHixfvrpJ7333ntJnmv+/PkaNWqUOnTokOh48eLFNXbsWK1YsUIffvihXFxcktwnyVKsyYzKlfOSFF/ECgq6kOw1pwPPSZKcnZ1VqlRxnT2bOWf9PA7ylDZvNS6vNxbs0sy9gcqV015tKhaXe66cunzznhYeOqtVx0JUJI+T+jXwtnWoNsOYQnpjTBlDnpDeGFPGkStkdcyEwSNZunSpJOmFF16wHKtcubLKli2rq1evatu2bcnelz9/fn388ceJCiyStGDBAl27dk2NGjXSoEGDkpz38vJSmTJlkjyei4uLRowYYSnASJKnp6deeOEFmc1m7d2713I8NDRU8+bNk5ubm7755htLAUaSHB0dNWzYMBUoUEALFixQXFzSNYeNGjVKUoCRpNy5c6tt27a6deuWZXZQgqCgIG3fvl2FCxdW06ZNk81JZuDmll+SFBZ2I8VrQkPDLH92zZ/vSYeUIZGntKlRwl2/9migep4FNXHrCbX+ZYPqjl2tdlM2as7+M3qppqdm93pKhfNk3102GFNIb4wpY8gT0htjyjhyZQVx5sz5lUVQhEGahYeHa+PGjbKzs1Pbtm0TnUsoyqS0JKlBgwbKlStXkuM7duyQJHXs2DFNsVSqVEnu7u5Jjnt5xVfQr1y5Yjm2e/duRUdHq379+sqTJ0+Se5ydnVWpUiWFh4fr7NmzSc4/88wzKcbRo0cPSUmXJC1YsEBms1mdO3dOdmZQZpFQ5IqKik7xmnv3Ii1/dnHJnh+ayVPaXbhxV9dv3ZNZkpuLoyoUzic3F0fFxJm17sRFS/Pe7IoxhfTGmDKGPCG9MaaMI1fI6liOhDRbtWqVoqOj1ahRIxUuXDjRuXbt2un777/Xxo0bFRERobx58yY6X6xYsWQf88KF+KmGnp6eaYqlaNGiyR5PKPRERUVZjgUHB1vif9hW2mFhYUmOpRS7JJUvX17Vq1fXwYMHdeTIEVWqVEnR0dFavHix7Ozs1KVLl4e+lozs7t27kiRHR4cUr3Fyymn58507d594TBkReUqbmXtP67tNx+Tq7KjxHeuocZn/fp74n7qsz1Yf1JdrDysqJs6yU1J2w5hCemNMGUOekN4YU8aRK2R1FGGQZglLkQIDA5Ptc2Jvb6/IyEitXr1a3bp1S3TOyckpXWPJkcP4ZK6EnjLlypVTpUqVUr02f/78SY49LPYePXro4MGDmj9/vipVqqT169fr2rVrat68eZJiVWaTMB3U1TXl6Z5ubv8t7woLT3n6aFZGnowLvROpn7adkCS938w3UQFGkp4qW1jvN/PVZ6sPaeK2E+pYtaQc7TPvbLJHxZhCemNMGUOekN4YU8aRqyfPnEzrBVgPRRikyenTp3X48GFJ8bNXEmawJGfJkiVJijApKVasmAIDA3XmzBlVqFAhXWJ9UJEiRSTF964ZNWpUuj/+s88+q1GjRmnlypX66KOPtGDB/2+d17Vruj+XtQUEnJYk5cyZUyVLeuj8+aTbhZfxKiUp/rcX584FWzW+jII8GXfsUrhli+r6ngWTvaahZyFJ0s3IaJ0Pu62yBfMme11WxphCemNMGUOekN4YU8aRK2R19IRBmtzfkPfEiRPJfh06dEguLi46dOiQzpw5Y+hxGzRoICn17a0fV7169WRvb6+tW7emuA3143B0dFSnTp10584dTZgwQTt37lTx4sXVuHHjdH8uazt46IhlamjjxvWSveapp+KP7917KNmdrLID8mTc7ciYNF0fGZM9f2PDmEJ6Y0wZQ56Q3hhTxpErZHUUYWBYXFycli9fLklJGvLez9nZ2dLENqFo8zCdO3eWu7u7/P399eOPPyomJvEHtDNnzuj06dOPFvj/K1SokLp06aKrV6/qnXfe0aVLSRt+Xrp0yXDMyenWrZty5Mih6dOny2w2q0uXLmlaMpVR3blzV2v+3ChJ6vdazyTnHR0d1csvvu/Ngj9WWDW2jIQ8GVfKLbflzzvPXE32mm1n4htr25lMKuGatKF3dsCYQnpjTBlDnpDeGFPGkStkdZn/0yGsZufOnbp06ZIKFChgmbmSkoQizbJly5Ld7vlBefPm1fjx45UvXz5NnDhRTZs21dtvv62BAweqbdu2evbZZ/X3338/9mv4+OOP9fTTT2vz5s1q2bKlunXrpsGDB+utt95S69at1aRJE02fPv2RH9/Dw0NNmjSRJDk4OKhTp06PHXNG8dWIHxQTE6OGDeto5IiPZW8fv5rR2dlJk3/5Vl5epXT2bJCmTZ9r40htizwZ41Mor7wLxS8v+nbjUW09fTnRef9Tl/XdxqOSpKbliiivU8rN+bI6xhTSG2PKGPKE9MaYMo5cPWG23mo6m29RTU8YGJawVOi555576HbLDRo0kLu7uy5evKhdu3YZevyaNWtq+fLlmjp1qvz9/bVp0yblzJlTRYsWVZ8+fVSvXvLTEdPC0dFRkyZN0qpVq7RkyRIdPXpUR44cUf78+VW4cGH169dPzz333GM9R/369bVp0yY988wzyW6fnVkdPnxMA9/+VBPGj9SHH7ylV3p317nzwSpX1lP58uVVWFi4OnV5NdGOVNkReTLGZDJp1PM19Pr8nbp2O1IDF+2Rm4ujCudx1uWbdxV6Jz4/Xu659XGLyjaO1rYYU8YVKVZYyzbOtvzdwTH+vzlFPQpr97/rLcf37/lbb/Z6z+rxZRSMKWPIk3G894xhTBlHrpCVmcwsogPSVbdu3XTw4EH9/vvv6VI4SmDv6JFuj/U46terpffee0MN6tdWvnx5dOnSVa35c6NGjR6nkJCLtg4vw8gMebr5c9Ldzawt/G6U5u4/o62nL+t82G3djY6Vi6O9yhTIrebeRdW5Wmk5Odh2V6Q8/TPGb9ky+pjyylfU1iHIo0RRbTrw8Knpu7fvl9+Lr1shouQF3rD990vK+GMqo8gMebL1+4/3XtpkhjGVUWT0XMVEJW0anBncHtHL1iE8klyfzrB1COmCIgyQjnbs2KFXXnlF3t7eWrEifdeoZpQiDLKOjFCEyQwyShEmo7P1h8DMJKN8EETWwfvPGN57SG+ZtgjzVdJeO5lBrqGzbB1CumA5EpAOPv30U926dUtbtmyRJL3//vs2jggAAAAAkNFQhAHSwcKFC2VnZ6cSJUqob9++lua8AAAAAAAkoAgDpIMTJ07YOgQAAAAAQAZHEQYAAAAAgOwiC233nBnlsHUAAAAAAAAA2QFFGAAAAAAAACugCAMAAAAAAGAF9IQBAAAAACC7iIuzdQTZGjNhAAAAAAAArIAiDAAAAAAAgBWwHAkAAAAAgOyCLaptipkwAAAAAAAAVkARBgAAAAAAwAoowgAAAAAAAFgBPWEAAAAAAMguzGxRbUvMhAEAAAAAALACijAAAAAAAABWQBEGAAAAAADACugJAwAAAABAdhFntnUE2RozYQAAAAAAAKyAIgwAAAAAAIAVsBwJAAAAAIBswhzHFtW2xEwYAAAAAAAAK6AIAwAAAAAAYAUUYQAAAAAAAKyAnjAAAAAAAGQXbFFtU8yEAQAAAAAAsAKKMAAAAAAAAFbAciQAAAAAALILliPZFDNhAAAAAAAArIAiDAAAAAAAgBVQhAEAAAAAALACesIAAAAAAJBdmONsHUG2xkwYAAAAAAAAK6AIAwAAAAAAYAUUYQAAAAAAAKyAnjAAAAAAAGQXcWZbR5CtMRMGAAAAAADACpgJAwDZVJ7+c20dQqZw8+futg4hU2A8Abbj41zE1iFkCoE3Lto6BACgCAMAAAAAQHZhZjmSTbEcCQAAAAAAwAoowgAAAAAAAFgBRRgAAAAAAAAroCcMAAAAAADZBT1hbIqZMAAAAAAAAFZAEQYAAAAAAMAKWI4EAAAAAEB2ERdn6wiyNWbCAAAAAAAAWAFFGAAAAAAAACugCAMAAAAAAGAF9IQBAAAAACC7YItqm2ImDAAAAAAAgBVQhAEAAAAAALACijAAAAAAAABWQE8YAAAAAACyC3rC2BQzYQAAAAAAAKyAIgwAAAAAAIAVsBwJAAAAAIBswmxmOZItMRMGAAAAAADACijCAAAAAAAAWAFFGAAAAAAAACugJwwAAAAAANkFW1TbFDNhAAAAAAAArIAiDAAAAAAAgBWwHAkAAAAAgOyC5Ug2xUwYAAAAAAAAK6AIAwAAAAAAYAUUYQAAAAAAAKyAnjAAAAAAAGQTZnrC2BQzYQAAAAAAAKyAIgwAAAAAAIAVUIQBAAAAAACwAnrCAAAAAACQXdATxqaYCQMAAAAAAGAFFGEApEm9ujW1YP5khQQd0q2I0zp5YqfGjxupYsWK2Dq0DIU8GUeuHi4yJlYz955Wr1nb1OjHNar17Uo1GfenXp27QwsPnVMsv9FKhDFlDHkyhjw9XCmfUuoysKu+mPWFft83Q4tPLdG8I/M1dsVYdXunm3Lly2XrEDMUxpRx5ApZkclsNvM/tzRo1qyZQkJCEh0zmUzKly+ffHx81KVLFz3//POP/TzBwcFq3ry56tSpo5kzZz724xm1efNmrVixQocOHdL169cVFxenAgUKqHLlynr22WfVsmVL2dnZWS2ex7F48WJ9/PHHeuuttzRw4EDL8fHjx2vChAkaNWqUOnToYMMI08be0cPWIajPK93188QxsrOz09Wr13XufLDKlfVUvnx5FRoapmdadtHhw8dsHabNkSfjMkOubv7c3abPH343Sv3m7VTA1QhJUuE8TnJ3yanLt+7p+u1ISVLNEu76qVNdOTnY7udznv5zbfbc98sMYyojIE/GZJY8PVekus2eu0ipIpqydarl79cvXVfo5etyLeSmAkULxB+7fF3Dew7TuRPnbBWmJGnNpYM2fX4p84ypjCAz5ComKuThF2VAN/ya2zqER5Jv5gZbh5AumAnziBo1aqT27durffv2at26tUqUKKHdu3frvffe0//+9z9bh5dmYWFh6t27t15//XWtXLlSTk5OatSokZo1ayY3NzetW7dO7777rjp37mzrUGEjlSqV18SfRsvOzk5ffzNBJUrVUL36rVW8ZHXNnrNIbm6uWrhgqhwdHW0dqk2RJ+PIlTE/bjmugKsRyuvkoKnd6mtt/xaa8/JT2jCgpca+WEuOdjm0P+i6fttzytah2hxjyhjyZAx5MsYkk8KvhWv22Nl6rdGr6l3nZQ1uO1iv1O2tDzt8oMtBl+Ve2F2fTh0qe8fs3Y6SMWUcuUJWRhHmEfXr10+jR4/W6NGjNXbsWC1cuFCTJk2SyWTSnDlzdOxY5qlg3717V7169dLOnTvl6+urpUuXatWqVZowYYJ++OEHLVy4UP7+/vLz80syCygzeumll7R69Wq1aNHC1qFkKp8NHSx7e3tt375Hn3w6SjExMZKku3fvqW+/9xUYeE5eXqXU++WuNo7UtsiTceTKmM2nLkmS+tYvp1olCyQ618y7qLrX9JQk+Z+6bPXYMhrGlDHkyRjyZMy1S9f0WsNXNe+Hubp8PvHPoeP7juu7d76VJBUtVVQ1mtSwRYgZBmPKOHKFrIwiTDpq2rSpatasKUnas2ePjaMx7ocfflBAQIC8vLw0c+ZMVahQIck1BQsW1NChQ/XTTz/ZIML05ebmpjJlyihPnjy2DiXTcHFxVuvnmkmSfpmSdHlcVFSUZsxcIEnq2qWdVWPLSMiTceTKuHvRsZKkUq65kz1f0jW+10JMNu8Lw5gyhjwZQ56Mi46MVuTdyBTPH993XLdu3JIklShbwlphZTiMKePIFbI6ijDpzN3dXZIUGxtrOXbv3j398ccfeuutt9SiRQtVrVpV1atXV8eOHfXbb79ZKrspuXPnjsaMGaNmzZqpcuXKatasmb7++mvdunUr0XXDhw+Xj4+Pfv/99xQf6+2335aPj48WL14sSYqIiND8+fMlSUOGDFGuXKk3TqtVq1aivzdr1kw+Pj4ym82aM2eOOnTooOrVqye6btOmTfr000/Vpk0b1apVS1WqVFGrVq00evRohYaGJnmO5557TuXLl1d4eHii4wsWLJCPj498fHwUHByc6NyaNWvk4+OjL7/8MtX4pfieMPfnIMGQIUPk4+Oj3bt36+DBg3r11VdVq1YtVa1aVd26ddP27dtTfMxNmzape/fuqlatmurUqaPXX39dR48e1eLFi+Xj46Px48c/NK6MrHq1SnJ2dpYkbd26K9lr/P3jj9epU10mk8lqsWUk5Mk4cmVchcL5JEkHgq8ne/5AUPzxysXyWyukDIkxZQx5MoY8pZ8cdjlk7xC/DOnenZSLNVkdY8o4cvXkmePMmfIrq6AIk45iYmJ0/PhxSVKZMmUsx8+fP6+hQ4fq4MGDKly4sJo1a6bq1avr7NmzGjVqlN566y2l1B85OjpaL7/8subNmycfHx89/fTTunXrln799Vf5+fnp9u3blmt79OghKb5YkZxr165p48aNypcvn1q3bi1J2rVrl+7evav8+fOrcePGj/za//e//2nEiBHKnTu3mjZtqrJly1rODRkyRKtXr1auXLnUoEEDNWjQQJGRkZo+fbo6deqUpBBTt25dmc3mJLOJdu/ebfnzrl27kj1Xt27dR34NCTZv3qyePXvq+vXreuqpp1S2bFkdPHhQffv2TfK8kjRv3jy98cYbOnDggCpUqKBGjRopKChI3bp10+HDhx87noygXDkvSVJkZKSCgi4ke83pwPhme87OzipVqrjVYstIyJNx5Mq4txqXl6NdDs3cG6gpOwN04cYdRcbE6nzYbY3ddFSrjoWoSB4n9WvgbetQbYoxZQx5MoY8pZ96rerLycVJknRk1z82jsZ2GFPGkStkddm7O1Y6iYqKUlBQkH7++WedP39eFStWTFTQKFCggKZNm6b69esrR47/6l4REREaPHiwNm3apNWrV6tNmzZJHvvgwYPy8vLS2rVrVahQIct9ffv21aFDhzRu3Dh9/PHHkiQfHx/VrFlT+/fv1759+5LMWlm0aJGio6P1wgsvyMkp/h/DhN41FSpUSBRbWq1evVp//PGHKlasmOTcl19+qUaNGsnFxcVyLCYmRhMmTNDPP/+sH374QV988YXlXN26dTV37lzt2rVLLVu2tBzfvXu3ypQpo7Nnz2rXrl3q1KmT5dyuXbtkMplUu3btR34NCaZPn67Ro0frxRdftBybPHmyvvvuO/3000+qV6+e5XhISIhGjhypHDlyaMKECWrePL7TuNls1g8//KBJkyY9djwZgZtbfklSWNiNFK8JDQ2z/Nk1fz6dVdCTDivDIU/GkSvjapRw1689GmjS9gBN3HpCP209YTlnn8Okl2p6qk+9cnLPldOGUdoeY8oY8mQMeUofufLm0qtDX5Uk7f5rt813R7IlxpRx5ApZHTNhHlGvXr0sS2MqV66s1q1ba+XKlXrppZc0Y8aMRNs4u7m5qWHDhkmKHHnz5tXQoUMlSWvXrk3xuYYMGWIpwCTc99lnn0mKn/Vy7949y7mE2TBz5ybeKtRsNltmyHTr1s1yPCwszBLj43jttdeSLcBIUsuWLRMVYCTJ3t5e7777rgoVKqR169YlOle3bl2ZTKZEs05Onz6tq1evqlmzZvL19U00K+bKlSs6c+aMfHx85Orq+livQ5JatWqVqAAjSb1791bevHl18OBBRUdHW44vXLhQkZGRatGihaUAI8VvWz5w4EAVK1bssePJCBKmhEZFRad4zb17/00xdnFxfuIxZUTkyThylTYXbtzV9Vv3ZJbk5uKoCoXzyc3FUTFxZq07cdHSvDc7Y0wZQ56MIU+PL4ddDn0w4UMVKl5I4dfCNfGTzN9X8HEwpowjV1YQZ86cX1kEM2EeUaNGjVSwYEFJ8QWOq1ev6p9//rEUOoYMGZJky7TDhw9r9+7dunDhgu7duyez2WxZhnT27Nlknydfvnxq0qRJkuOVKlWSl5eXAgMDdfToUUtD4JYtW6pAgQJat26dwsLCLEWJbdu2KTg4WHXq1Em0VCq93F+ASE5ISIg2b96ss2fP6vbt24qLi5MU3zsnLCxMN27cUL588X0P3NzcVK5cOQUEBOjq1asqWLCgpSCTMAtlypQpOn36tMqUKZOuS5EkJZtvR0dHlShRQkePHlVYWJilKLZ//35Jsizvup+9vb1atWql6dOnp0tctnT37l1JkqOjQ4rXODn991v4O3fuPvGYMiLyZBy5Mm7m3tP6btMxuTo7anzHOmpcprDlnP+py/ps9UF9ufawomLiLDslZUeMKWPIkzHk6fGYTCYNGjtYNZ+uqTs37+jLPl8o9HLSPoDZCWPKOHKFrI4izCPq169fkg/9t27d0rvvvqvZs2crLi5On3/+uSTp9u3bGjx4sDZv3pzi4z3YZDdBajMpPDw8FBgYqMuX/9sO0NHRUZ06ddKkSZO0ZMkS9enTR5IszXfvnwUjyVKkSa5Bblp4eHikeO7777/XlClTEjUrftCtW7csRRgpvqASEBCg3bt36/nnn9fu3bvl4OBgKTZNmTLFsjwpoUCTXkWYokWLJns8oWlxVFSU5diVK1ckpfx9SumxMpuE6aCurvlSvMbN7b9ZSGHhKU8fzcrIk3HkypjQO5H6aVv88qP3m/kmKsBI0lNlC+v9Zr76bPUhTdx2Qh2rlpSjvV1yD5XlMaaMIU/GkKfH8/Y3b+vp9k/r7u27+t8r/1PAoQBbh2RzjCnjyBWyOpYjpaPcuXPrww8/lBS/TCgiIkKS9N1332nz5s2qUaOGpk+frp07d+rIkSM6ceKE/vkn/RuUde3aVXZ2dpbCy5UrV7Rp0ya5ubmpRYsWia5NWEJ0/Phxy+yUR5HQY+ZBf/75pyZNmiR3d3d9//332rx5s/755x+dOHFCJ06cUPXq1SUpSWPihILKrl27LE16q1atKmdnZ9WsWVMODg6W4svu3buVI0eOdOkHI+mxeuNkVQEBpyVJOXPmVMmSyRfcyniVkhT/24tz54KTvSarI0/GkStjjl0Kt2xRXd+zYLLXNPSMn5l3MzJa58NuJ3tNdsCYMoY8GUOeHt1bYwbqmS4tdO/OPX3xyhc6tueorUPKEBhTxpErZHV82kxnJUqUkBS/zObcufjmY2vXrpWdnZ1++eUXNWjQQG5ubnJwiJ9ed/78+VQf78KF5DuCS/FLfCQl6hcjxc/KaNKkic6ePaudO3dq0aJFiomJUYcOHZIskapXr56cnZ0VHh6urVu3pu3FGpDQ6+aLL75Q69atVbRo0UQxJOToQbVr17b0hTlx4oTCwsIsS5GcnZ1VpUoV7dmzR8HBwQoKClKFChWUN2/edI//YRJyn9L36eLFi9YM54k5eOiIZWpo48b1kr3mqafij+/deyjF3b6yOvJkHLky5nZkTJquj4x59GJ6ZseYMoY8GUOeHk3/r/qrVfdWirx7T1+++mW23g3pQYwp48iVFcRl0q8sgiJMOru/qJLQjPbGjRvKlStXskWCFStWpPp4N27ckL+/f5Ljx44dU2BgoFxcXOTr65vk/P0Nev/44w+ZTKYkS5Gk+Ca/Xbp0kSSNGTMm0ZbXyUnogWLUjRvx0wOTW5azffv2FJdB5c+fX+XLl1dQUJAWL14sSYl2Japbt67CwsI0Y8YMy99tIWF51J9//pnkXExMTJKmw5nVnTt3tebPjZKkfq/1THLe0dFRvfzix9GCP1If01kZeTKOXBlTyi235c87z1xN9pptZ+KXRdqZTCrhmssqcWVEjCljyJMx5Cnt+v2vn1r3aqPIe5H66rWvdHj737YOKUNhTBlHrpDVUYRJR7du3dLXX38tSSpVqpS8vOL3uPf09FRERISWLVuW6Hp/f39DTVvHjBmjq1f/+8/3zZs3LVs6d+zY0dJB/H6NGjVSqVKltHbtWoWEhKhhw4aWWToPGjRokLy9vXX69Gn16tVLx48fT3JNaGioRo8erTfffPOh8d4vIQcJfXISnD9/XsOHD0/13oTCyrx58+Ts7KyqVataziUUZObNm5fo79bWqVMn5cyZU+vWrUvU88dsNmvChAmW2UpZwVcjflBMTIwaNqyjkSM+lr19fEspZ2cnTf7lW3l5ldLZs0GaNn3uQx4payNPxpGrh/MplFfeheIL+N9uPKqtpy8nOu9/6rK+2xg/1b9puSLK65RyE8PsgDFlDHkyhjwZ1/uTV9T2lXaKvBepEa9+pUNbD9k6pAyJMWUcuUJWZjIzfytNmjVrppCQkCS7I127dk3//POPZdbL1KlTVaNGDUnS6tWrNWjQIElStWrVVLx4cZ0/f16HDx9Wv379NHnyZHl4eGjjxo2W5wkODlbz5s1VrVo1xcbGKjAwUPXq1ZO9vb12796t8PBwlS9fXrNnz1bu3LmTBipp2rRpGjNmjCRpwoQJSfrB3C8sLEzvvvuupc9KuXLl5OXlJTs7O4WEhOjIkSOKjY1V1apVLTtA3Z+PEydOJPu4586dU4cOHXTr1i2VLl1aFStW1I0bN7Rnzx5Vq1ZNMTExOnjwoDZs2KDixYsnunfjxo3q37+/JKlhw4aaNm2a5VxUVJRq1aqlyMhIS04ezMPixYv18ccf66233tLAgQMtx8ePH68JEyZo1KhR6tChg+X4kCFDtGTJEs2YMSPZmTV+fn7as2dPkljnzZun4cOHy2QyqUaNGipatKj+/fdfnT9/Xu3bt9f8+fM1aNAgvfHGGynm3wh7x5SbH1tL39d6asL4kbKzs9PVq9d17nywypX1VL58eRUWFq4Wrbro0CHWfpMn4zJDrm7+3N2mz3/62k29Pn+nrt2O347TzcVRhfM46/LNuwq9E98o3Ms9t6Z0ayD3XDlTe6gnKk//jPEf4cwwpjIC8mRMZsnTc0Wq2+y5fWqU17dLv5UkhV0N08WzKS+l37dxn/746Q9rhZbEmksHbfbcCTLLmMoIMkOuYqIy5y9cw7s2tXUIjyT//E22DiFdMBPmEW3btk1LlizRkiVLtHTpUu3fv18FCxZUr169tGrVKksBRorfvvi3335TrVq1FBgYqI0bN8pkMmnMmDF67733Un0eR0dH/f777+rcubOOHz+ujRs3ytnZWX369Em1ACNJDRo0kBTft6Rp09TfaK6urvr99981adIkPf/887pz5462bNmi9evX69q1a2rZsqUmTJhgmXliVKlSpbR48WK1atVKd+7c0YYNG3ThwgW9/vrrmjZtmqU3TnJq164tO7v4XT4enOni6Ohoaerr6+ubah6etG7dumnSpEmqVq2ajh49Kn9/fxUtWlRz5sxRkSJFJMUvr8oKpkydpaebdtDSZWtkNptVuVJ5hYdHaNIvM1StxjM2/4cwoyBPxpGrhytTII8W9nlarzfwVsXC+RQVE6eAKxGKjjWrmoer3mtaUXN6PWXTAkxGwpgyhjwZQ54ezuG+bYRdC7qqYm3fFL88vGz/CyVbY0wZR66eHHOcOVN+ZRXMhMnCxo4dq19++UUDBgzQ22+/betwsqU+ffpo+/bt+uOPP1SlSpXHeqyMMBMGyI5sPRMms8goM2GA7MiWM2Eyk4wwEwZZS2adCRPW+Wlbh/BIXP/YbOsQ0gUzYbKo69eva968eXJ0dEy2IS/ST1BQkMLDwxMdi42N1dSpU7V9+3Z5enqqcuXKtgkOAAAAAJBh2Ns6AKSvqVOnKiAgQLt27dKNGzf06quvJtnCGulrw4YN+vbbb1WxYkUVKVJEkZGRCggI0IULF+Ti4qKRI0fKZDLZOkwAAAAAyFLbPWdGFGGymC1btmjPnj0qWLCg+vTpY2kIjCenTp06evbZZ3Xw4EGdPHlS0dHRKlSokDp06KC+fftadogCAAAAAGRvFGGymJkzZ9o6hGynYsWK+vbbb20dBgAAAAAgg6MnDAAAAAAAgBUwEwYAAAAAgGwiK233nBkxEwYAAAAAAMAKKMIAAAAAAABYAUUYAAAAAAAAK6AnDAAAAAAA2UWcrQPI3pgJAwAAAAAAYAUUYQAAAAAAAKyA5UgAAAAAAGQTZpYj2RQzYQAAAAAAAKyAIgwAAAAAAIAVUIQBAAAAAACwAnrCAAAAAACQXdATxqaYCQMAAAAAAGAFFGEAAAAAAACsgOVIAAAAAABkE2xRbVvMhAEAAAAAALACijAAAAAAAABWQBEGAAAAAADACugJAwAAAABAdkFPGJtiJgwAAAAAAIAVUIQBAAAAAACwAoowAAAAAAAAVkBPGAAAAAAAsgkzPWFsipkwAAAAAAAAVkARBgAAAAAAwApYjgQAAAAAQDbBciTboggDAAAAAACyhZs3b2ratGlav369goODJUmFCxdWzZo19fbbb6tw4cJP9PlZjgQAAAAAALK8U6dOqXXr1po4caIiIyPVuHFj1atXT3Z2dlq4cKGCgoKeeAzMhAEAAAAAAFlaRESE+vTpo/DwcH377bdq27ZtovPnz59X7ty5n3gcFGEAAAAAAMgmsmtPmAkTJujy5cv6+OOPkxRgJKlkyZJWiYPlSAAAAAAAIMuKjIzU4sWL5ezsrK5du9o0FmbCAAAAAACALOvIkSO6efOmatasKWdnZ+3cuVNbt27VrVu3VLx4cT3zzDPy8vKySiwUYQAAAAAAyC7MJltHYHWnTp2SJLm7u+vtt9/W2rVrE53//vvv9cYbb+idd9554rFQhAEAAAAAABla8+bNUz2/YcOGFM/duHFDkrRp0yZJ0gcffKC2bdvKzs5Oa9as0ddff62JEyeqWLFi6ty5c/oFnQyKMACQTXnlK2rrEDKFPP3n2jqETCGkQTlbh5BpvBb45HdeyArWXDpo6xAyjRN3L9k6BADI0OLi4rsRR0dHa+DAgXrttdcs5/z8/BQTE6PRo0dr4sSJFGEAAAAAAED2ltpMl4dxcXGx/Dm5IkuXLl00evRoXbhwQUFBQSpRosQjP9fDsDsSAAAAAADZhDkuc349Dg8PD0mSo6OjChcunOR8rly55ObmJkm6evXq4z3ZQ1CEAQAAAAAAWVbFihUlSVFRUbp9+3aS87Gxsbp586akxLNmngSKMAAAAAAAIMsqWrSofH19JUm7d+9Ocn7fvn2Kjo6Ws7PzE9+qmiIMAAAAAADI0vr16ydJ+vrrrxUcHGw5fvnyZY0YMUKS1KlTJzk6Oj7ROGjMCwAAAABANmGOM9k6BJt49tln1b17d82dO1dt27ZVjRo1lCNHDh08eFA3b95UtWrV9N577z3xOCjCAAAAAACALO/zzz9XzZo1NXv2bB08eFAxMTEqXbq0nn/+eb388svKmTPnE4+BIgwAAAAAAMgW2rZtq7Zt29rs+SnCAAAAAACQTTzuds94PDTmBQAAAAAAsAKKMAAAAAAAAFZAEQYAAAAAAMAK6AkDAAAAAEA2YTZnzy2qMwpmwgAAAAAAAFgBRRgAAAAAAAArYDkSAAAAAADZBFtU21a6FWEiIiJ0+/Ztmc3mFK8pVqxYej0dAAAAAABApvJYRZiLFy9q3Lhx2rhxoyIiIlK91mQy6dixY4/zdAAAAAAAAJnWIxdhzp07p27duik8PDzV2S8JjFwDAAAAAACQVT1yEeaHH35QWFiYPD09NXjwYFWrVk0FChSQycR2VwAAAAAAZETmOD6z29IjF2F27dole3t7TZ06VR4eHukZEwAAAAAAQJbzyFtU3759W56env/H3n3HVVm/fxx/H5YCAoriQsWR4QBz5URzZmmaWKkNzW2WlmH51X6mlZaUVpamZWamablXy3LPcK8sSVFQceACUYbA+f1BnCRAbxHOYbyePXg84L4/5/5c5/I+dLjOZ1CAAQAAAAAAMCDbRZjy5cuzzgsAAAAAAIBB2S7CdOzYUWFhYTp16lROxgMAAAAAAHKJ2Zw/vwqKbBdhBg8erPvvv1+vvvqqTp8+nZMxAQAAAAAAFDjZXpj3yy+/VJMmTfTtt9+qU6dOCggIUOXKleXs7JzlY4YOHZrd7gAAAAAAAPK1bBdhpk2bJpPJJLPZrKSkJK1bty7L7anNZrNMJhNFGAAAAAAAbIgtqm0r20WYrl27Zll0AQAAAAAAQHrZLsIEBwfnZBwAAAAAAAAFWrYX5gUAAAAAAIBx2R4JAwAAAAAA8hfWhLGtey7CxMbGasmSJdq4caPCwsJ0/fp1ubq6qlq1amrVqpWeeOIJFStWLCdiBQAAAAAAyLfuqQhz8OBBvfzyyzp//rzMZrPl+PXr13XhwgX9/vvvmjNnjj799FP5+/vfc7AAAAAAAAD5VbaLMFFRURo0aJCuXr2qYsWK6cknn9T9998vLy8vRUVFKTQ0VEuXLtXZs2c1aNAgrVq1Sl5eXjkZOwAAAAAAQL6R7SLMV199patXr6pp06b65JNP5O7unqHNSy+9pFdeeUU7duzQ7Nmz9b///e+eggUAAAAAANl3yyQW2EC2izCbNm2So6OjPvzww0wLMJLk5uamSZMm6aGHHtLGjRsLTBGmTZs2OnPmTLpjJpNJHh4e8vX1Vffu3fXYY4/dcz+nT59W27Zt1ahRI82bN++er5dXjRo1SsuXL89w3MXFRVWqVFGHDh30/PPPq2jRojaIDv/VpHEDBQUNVvNmjeTh4aazZy/olzUbNDH4U0VGnrN1eHkGebqzUqVLqlnLRvKrW1P+dWuppp+vXFyddToiUm0adLF1eHkO99TdcaxbVy6dO8vR3192xYvLHBen5PPnlXjwoG4sWKCUy5dtHaLN+Pj6qPHDTeTXuLZ8alSWW3E3JcYnKvLEGe1cu1Or56zW9ejrtg4zz+C1d2f8Pr873FPGkSsURNkuwpw9e1bVq1eXp6fnbduVLFlS999/v8LCwrLbVZ4VEBBgmWKVmJioiIgIhYSEKCQkRHv27NG4ceNsHGH+UqNGDdWsWVOSlJKSovPnz2vPnj36448/9Ouvv2r+/PkUYmysX9+nNWP6+7K3t1dU1CUd/uOoqt9XRUNeeF49undRu4e76+DBI7YO0+bIkzGdAh/W/00YYesw8gXuqbtgMsnt1Vfl0iX1D7/kixeVdPy4TK6ucqhUSY7336+ETZsKbRGmrE9ZTfvtM8vPl85d0sk/T6hEaU9Vf+B+VX/gfj3y3KMa99xYhR8Nt2GkeQOvPWP4fW4c95Rx5AoFVbaLMPb29kpMTDTUNjExUfb29tntKs8aNGiQGjdunO7Yhg0bNGTIEC1YsEBPPfWUatWqZaPo8p927dpp2LBh6Y6dOnVKPXr00OHDh/X999+rT58+tgkO8vOroemfBcve3l4fTJqmseMmKSkpSc7ORfX5jA/07DNPaMmiWfKr08rw74aCiDwZF3vturZvCtHhA3/q0P4/Vd67rEaPf9XWYeU53FN3x23YMLl06aKbx44p5sMPlfTnn/+etLeXo7+/kiMjbRegjZlk0tWLV/Xj3B+1Ydl6nY84bzlXs2FNjfjkNZWpWEb/N2uMXmw7REmJSTaM1rZ47RnH73NjuKeMI1e5iy2qbcsuuw+sXLmywsLCdPz48du2O3bsmI4fP67KlStnt6t8pXXr1mrQoIEkaefOnTaOJv+rWLGievToIYl82tqbY4Lk4OCgbdt26o3/m6ikpNQ35nFx8Ro46DWFhYWralUf9Xm+h40jtS3yZNzSBavU58mXNHn8NK1ZvU4XzkXZOqQ8iXvKOMc6deTSrZuSL1zQleHD0xdgJCk5WTf371fKpUu2CTAPuHjuogY076/vp3yXrgAjSX/u/lMfvjJZklTOp5zqP1TfFiHmGbz2jOP3uTHcU8aRKxRk2S7CdOjQQSkpKRo6dKj++OOPTNscPnxYL730kqV9YVGyZElJUnJysuVYfHy8Fi9erKFDh6p9+/Z64IEHVK9ePT3xxBOaM2eO5ReLEdm51unTp+Xr66tevXopMTFRn376qdq3by8/Pz+1bNlSEyZMUGxsbJZ9/vbbbxo4cKCaNm1qecyAAQO0atWqTOObNWuWunXrpnr16qlu3brq1q2bvv3223Q5MSqzfN7q/Pnzevfdd9WhQwf5+/vrwQcfVN++fbV58+ZM22/YsEH/93//p06dOqlhw4aqU6eOOnTooODgYF3OYnh6mzZt5OvrK0lavHixunbtqgceeEABAQGaMGGCrl9PnTt/9epVTZgwQa1atZK/v786duyoZcuW3fVzzmtcXJzV8dE2kqQvvsy4PlFiYqLmzlskSerRvfDO/SZPyGncU3fHpXt3SdL1hQtlvs3/0wqzmwk3lRCXkOX5P3f/qdjo1NxVvK+itcLKc3jtIadxTxlHrlDQZXs6Uq9evbRy5UodP35cTz75pBo0aKDq1aurVKlSunjxov7++2/t2bNHZrNZ1atXV+/evXMy7jwrKSlJf/7zyVu1atUsxyMiIjRmzBiVKlVKVapUkZ+fn6Kjo3XgwAFNnDhRv//+u2bMmCGT6c5Dw+7lWjdv3lT//v115MgRPfjgg7rvvvu0d+9ezZs3T8eOHdPXX3+d7nEpKSn63//+p1WrVsne3l4PPPCAypcvrwsXLujQoUMKCwtTly7//vK7fPmy5fqenp6qX7++HB0dtX//fo0fP14hISH69NNPDT3PNIcPH5YkVa1aNcO5gwcPauDAgbp69aoqVaqkhx56SNHR0dqzZ4+2b9+u0aNHZ5jCNGrUKCUmJqp69epq1qyZEhMT9ddff+nrr7/Wr7/+qiVLlmS51tH777+vefPmqVGjRqpYsaL27dunefPm6fjx4/roo4/Us2dPXb9+XfXr11dMTIx27dql0aNHy87OTl27djX8nPOaenX95OzsLEnasuX3TNts3px6vFGjejKZTDIXwmXXyRNyGvfUXXB0VJFGjSRJibt3y97bW86PPSaHatWklBQlhYcr/rfflHTsmI0Dzdvs7O3k4Jj69jD+RtbFmoKO1x5yGveUceQKBV22izDOzs76+uuvNWLECO3atUu7d+/Wnj17LOfTXgiNGjXS5MmTC/yCqomJiTp16pRmzJihiIgI1apVSy1atLCcL1WqlGbPnq2mTZvKzu7fAUgxMTEKCgrShg0b9NNPP6lTp0537OterrVv3z7VqVNHa9euVYkSJSRJUVFR6tGjh3bs2KFdu3ap0T9vYiVp1qxZWrVqlSpUqKDPP/9c1atXT/ecd+zYke76b7zxho4cOaInn3xS//d//ycXFxdJ0rVr1zR8+HD9+uuvWrhwoXr27Hnb55iSkqILFy5o1apVWrlypdzd3fXMM8+kaxMbG6uXXnpJ0dHRevvtt9WjRw9LcScsLEwDBgzQBx98oObNm6eLe/z48QoICLDEJqUWz6ZNm6YZM2ZoypQpeueddzKNKy2etAJbdHS0evTooe3bt6tXr17y9fXVpEmTVKRIEUnSxo0bNXjwYE2dOjVfF2GqV08tgCUkJOjUqczXUjgelrqAo7Ozs3x8KujkyVNWiy+vIE/IadxTxjncd59MTk6SJMdateQ+fLhM//wulqQiTZrI5amndH3+fF3/6itbhZnnNenQVEVdUt+zHf79kI2jsR1ee8hp3FPGkavcZzazJowtZXs6kiSVLl1a8+bN07fffquBAweqbdu2atKkidq2batBgwZp/vz5mjt3rkqXLp1T8eYpvXv3lq+vr3x9fS1TT3744Qc9++yzmjt3brrFiD09PdW8efN0RRNJcnd315gxYyRJa9asMdTvvVzLZDLp3XfftRRgJMnLy8tS4Lh13ZXExETNmjVLkvThhx+mK2RIkpOTkx566CHLz3/99Zc2bNig6tWr6+23305X5HBzc9PEiRPl6Oio7777LtPYpk2bZslnzZo19dBDD+nDDz9UkyZNtHDhQlWsmH5Y9LJly3ThwgV1795dPXv2TDe6pmrVqho1apSSk5O1aNGidI97+OGH08UmSQ4ODho+fLhKly6tX3/9NdP4JOnll19ON8LJw8PDUlCKjIzUW2+9ZSnASFKrVq3k6+ur06dPZ9jWPD/x9CwuSbpyJTrLNpcvX7F8X6K4R26HlCeRJ+Q07inj7P+ZuipJ7kFBSjp5UpdffFHn27dXVI8eurFihUx2dirWq5ecDXzgURi5uruq/5j+kqSQ30IK9e5IvPaQ07injCNXKOiyPRLmVg0bNlTDhg1z4lL5yq1bVJvNZkVFRenQoUOWP/pHjRolp38+lUtz8OBBhYSEKDIyUvHx8TKbzZZRQydPnryr/rNzrfLly+v+++/PcDxtqs+FCxcsx/744w9FR0erWrVqqlu37h3j2bp1q6TUxYkdHDLeWqVLl1blypUVGhqq+Pj4DKOjbt2iWkpdXyU0NFTbt2/X+PHj9cEHH1jyfWt/7du3zzSetHvy4MGDGc6dOXNGGzdu1MmTJ3X9+nWlpKRISl135sqVK4qOjpaHR8Zf6LeObkrj4+MjSfLz88t0GlPlypV19OhRXbhwQd7e3pnGmtelDQlNTLyZZZv4+H+Hrbu4OOd6THkReUJO454yzuT873M337ypKyNHyhyd+gY+5fx5XZsyRfZlyqhI06Zy7dNHcT//LP3zux+p05BenzZSpSuU1tWLVzX9jc/u/KACjNcechr3lHHkCgVdjhRhCqvMtqiOjY3V8OHDNX/+fKWkpOitt96SJF2/fl1BQUHauHFjlte73cK4t7qXa5UrVy7T466urpKUbou3s2fPSpLhna1Onz4tSZo5c6Zmzpx527bR0dEZijCZbVGdnJysqVOnasaMGerXr59WrFhhGWGU1t+AAQNu29eVK1fS/fzxxx/ryy+/vO0iwbGxsZkWYcqWLZvhWNqomszO3Xo+P2+fFxcXJ0lycnLMsk3Rov+OALpxIy7XY8qLyBNyGveUceaEf9+Qx69ZYynA3Or699+rSNOmsvfyksN99ykpNNSaIeZZJpNJr34UpAatGujGtRsa3+8dXT6f+UL1hQWvPeQ07injyFXuM/MZhE1RhMlhxYoV08iRI7VlyxYtWrRIQUFBcnd314cffqiNGzeqfv36GjZsmGrUqCE3Nzc5OjoqMTFR/v7+hvu4l2v9dwpTTkobTfLAAw9kuojurRwds/6leit7e3u9/PLLWrhwoUJDQ7V582a1bt06XX9t27aVu7t7lte4derVL7/8os8//1ylS5fW6NGjVa9ePZUsWdIyYqlnz57at29flot73S5/uZlbW0sbDlqiRNbDPT09/83zlatZDx8tyMgTchr3lHEpMTGW75MiIjJtk3TLKFH7cuUowvzj5Ukvq1VgK8Vdj9Pbfd9W6H7ywmsPOY17yjhyhYLOUBEmbWcjb29vTZw4Md0xo0wmk7755pu7DC9/Slu7JDk5WeHh4fL399eaNWtkb2+vL774IkPBICKLN4tZyclr3U7aqBmj06TS2rds2VJDhw7NsTjs7Ozk7e2ty5cvKywszFKEKVeunE6cOKE+ffqkW0z4dtLWynnnnXcs17lVeHjhnf9+O6GhxyVJRYoUUaVK3oqIyLi+TbWqqdOy4uLiFB5+2qrx5RXkCTmNe8q45Fv//5fVyMObtwxtL8CF87sx9P1hate9veJvxOudvu/oyM4/bB1SnsBrDzmNe8o4coWCztA7kJ07d2rnzp06cOBAhmN381VY3FoISZuKEh0dLVdX10xHbKxevfqurp+T17qd2rVry8PDQ8ePH890XZX/at68uSRp3bp1ObpNXEpKimXqkfMtc/7T+vvtt98MXyv6n+HpmU3L2rZtmy5fLtzDr7Oyb/9hy9DQFi2aZNqmZcvU47t27S+02wSSJ+Q07injUi5fVtI/C6Dbly+faZtbj6dERVklrrxsyIQh6vB0ByXExWt8//GFejek/+K1h5zGPWUcuUJBZ6gIM3HiRE2cOFFBQUEZjhn9eu+993LtSeQlsbGx+uCDDySlLtiaNi2nSpUqiomJ0cqVK9O137x5s77++uu76iMnr3U7Tk5O6t8/dZeEoKAgHT9+PN35xMREbd682fJznTp19NBDD+nIkSN64403dPXq1QzXPHHihH755RfDMSQnJ+uTTz7RlStX5ODgkG5h3J49e8rLy0vz58/XN998o6SkpHSPNZvNGbZOT/v3SFuzJ01ERITGjRtnOK7C5saNOP38y3pJ0qABz2U47+TkpN69ukuSFi3OuUJgfkOekNO4p+5O/PrUXBVt107KZNpr2q5IKdeu6ebRo1aNLa8Z9PYgdezdSQnxCZowYIIObjtw5wcVIrz2kNO4p4wjV7kvxWzKl18FhaHpSIGBgYaOFTYzZ87U8uXLJaX+wX/x4kUdOnTIMlIlODjYsm3ykCFD9Oqrr2rkyJFasGCBKlSooIiICB08eFCDBg2640K2t8rJa93JwIEDdfToUf3444/q3Lmz6tWrp7JlyyoqKkpHjx6Vq6ur1v/zpleSPvjgAw0cOFDLli3TmjVrVLNmTZUtW1Y3btzQ33//rVOnTqlt27Z65JFHMvS1du3adNs4p+2OdObMGZlMJv3vf/9Lt011sWLFNGPGDL3wwgt67733NGvWLN1///0qXry4rl69qiNHjujy5csaPXq0GjRoIEnq1auXli9frkWLFmnnzp2qVauWoqOjtXPnTtWtW1elSpXSvn37cix/BcmEd6eoS+cOat68kd57d7TGjpukpKQkOTsX1YzpH6hqVR+dPHlKs7/OfAvywoI8IadxTxl3Y9EiuXTpIvsyZeQeFKSYKVOkfxbsLdq2rZwfe0xS6gK96aYmFTJ93uirzn27KCE+Qe/2n6D9W/bbOqQ8idcechr3lHHkCgWZycz4rbvWpk2bdMWCNM7OzvL29lazZs3Ur1+/DFNeduzYoWnTpik0NFRJSUmqXr26nnnmGXXt2lW+vr7y9vZOV9A4ffq02rZtq0aNGmnevHm5di1JCgkJUe/evRUYGKjg4OB058xms37++WctXrxYf/zxh27cuKGSJUvK19dXXbp00WP/vKlNk5iYqKVLl+rHH3/U0aNHFRcXJ09PT5UvX14tWrRQx44dVaVKFUv7UaNGWYpZt3J0dFTp0qVVr1499erVK8ttsi9fvqy5c+dqw4YNioiIUEpKikqVKqUqVaqoTZs2euSRR9JtHR0eHq4PP/xQ+/btU3R0tMqXL69OnTpp8ODB6t+/v3bu3Kl169apQoUKlsek/ZsfzeST09vl7tbnN3fu3Ay7ad0NByfbb289cMBzmjb1Pdnb2ysq6pLCI06r+n1V5OHhritXrqp9h+7av5/1BPJLnqp6ZL5bmrWULV9GK9fPt/zs6OSgYm7FlJycrJir1yzH9+w8oBd7j7BFiJKksOizNus7TX64p840q27T/tM4+vur+Pvvy87FRSnXrys5IkJ2JUrI/p8d7OLXrVP0hAmSDd/+DAgrZrO+fevX0OQVkyVJV6Ku6OzJyCzb7l6/W4s/W2yt0DL4+ZztPxTJD689id/nRvH7PH/JD7lKSsz4N2F+EFoz4wfi+cH9fxqfUZGXZbsI07ZtW9WpU0cff/zxHdsGBQXp4MGDWrt2bXa6AqC8UYSRpKZNGmrEiBfUrOmD8vBw07lzUfr5l/WaGPypzpyx/ZubvCI/5MnWb9q9K5bThr13HkYcsm2PenUdbIWIMpcX3rRLef+eyitFGEmyK11ars8+qyKNGsmuZEmZExKU9PffivvhB8uUJVuyZRHGr4m/Ji6aaKjtusVrNWXElNwN6DbyQhFGyvuvPYnf50bx+zz/yeu5oghjXYW+CFOjRg01aNBA8+fPv2PbXr16affu3frzzz+z0xUA5Z0iDAoOW79pzy/yypv2vC4vFWHyOlsWYfKTvFKEyQ/4fW4Mv8+R0/JrEeZojUdtHUK2+P71s61DyBFW2Z8xKSlJdmwFCQAAAAAACrFcr4zcvHlT4eHh8vDwyO2uAAAAAAAA8ixDuyNJ0q5duxQSEpLu2NmzZzVt2rQsHxMfH6/du3frypUratmyZfajBAAAAAAA98ycUnC2e86PDBdhQkJCNG3aNMuWy1JqEeazzz677ePMZrOcnZ31wgsvZD9KAAAAAACAfM5wEaZGjRoKDAy0/Lx8+XKVLFlSLVq0yPIxzs7OqlSpkh555BGV/WdrSAAAAAAAgMLIcBGmXbt2ateuneXn5cuXy8fHRxMnGtvmEAAAAAAAoDAzXIT5r3Xr1qlIkSI5GQsAAAAAAMhFZrOtIyjcsl2E8fb2zsk4AAAAAAAACrRsb1G9e/du9e7dW999991t2y1YsEC9e/fW3r17s9sVAAAAAABAvpftIszy5cu1a9cu1a5d+7bt/Pz8tHPnTq1YsSK7XQEAAAAAgBxgTjHly6+CIttFmL1796pYsWKqU6fObdvVqVNHbm5ujIQBAAAAAACFWraLMOfPn1eFChUMtfX29tb58+ez2xUAAAAAAEC+l+0ijNlsVkpKiuG2N2/ezG5XAAAAAAAA+V62d0cqV66cjh8/rmvXrsnNzS3LdteuXdPx48fZTQkAAAAAABtLMRec9VXyo2yPhGnatKmSk5P1ySef3Lbdp59+quTkZDVt2jS7XQEAAAAAAOR72S7CPP/883JwcND8+fM1evRohYeHpzsfHh6uN954Q/PmzZODg4P69Olzr7ECAAAAAADkW9mejlSpUiW9/fbbGjNmjFasWKEVK1aoePHicnd3V0xMjK5evSpJsrOz0zvvvKPKlSvnUMgAAAAAAAD5T7aLMJLUrVs3lStXTpMmTdKRI0d05coVXblyxXLez89Pr7/+uho3bnzPgQIAAAAAgHtjZk0Ym7qnIoyUujbMsmXLdObMGYWGhio2NlbFihWTr6+vypcvnxMxAgAAAAAA5Hv3XIRJ4+3tneUOSImJifr111/12GOP5VR3AAAAAAAA+UqOFWEyc/jwYS1dulQ//fSTrl27RhEGAAAAAAAbMpttHUHhluNFmKtXr2rlypVatmyZQkNDJUlms1lFihTJ6a4AAAAAAADyjRwpwpjNZm3evFlLly7Vhg0blJSUJPM/5bVatWrpiSeeUOfOnXOiKwAAAAAAgHzpnoow4eHhWrp0qVasWKGoqChL4UWS3Nzc9O2338rX1/eegwQAAAAAAMjv7roIExcXp59//llLly7V3r17JaWOhHFwcFCrVq3UtWtXDR06VEWKFKEAAwAAAABAHpLCFtU2ZbgIs3fvXi1dulS//PKLbty4kW66UWBgoB577DGVKFEi1wIFAAAAAADIzwwXYZ555hmZTCaZzWaVKlVKnTt3VmBgoO6///7cjA8AAAAAAKBAuOvpSB4eHnr55ZfVqVMnubq65kZMAAAAAAAgF5iZjmRTdkYbNmzYUJIUHR2tcePGKSAgQCNHjtT27dtzLTgAAAAAAICCwvBImG+//VanTp3SkiVLtHLlSp07d06rVq3S6tWrVaZMGT3++OPq2rWrqlSpkpvxAgAAAAAA5EuGR8JIUsWKFfXqq69qw4YNmjlzph5++GE5ODjo3Llzmjlzpjp27Kinnnoqt2IFAAAAAADIt+56TRhJMplMatmypVq2bKmrV69q5cqVWr58uf766y8dOnRIJpNJV65c0dChQxUYGKjWrVvLzu6u6j0AAAAAACCH/bPRMWzknisjxYsX1/PPP68VK1Zo2bJleuaZZ+Tu7q7k5GStW7dOQ4cOVcuWLTVp0qSciBcAAAAAACBfytHhKbVq1dLYsWO1ZcsWffjhh2ratKlMJpMuXryo2bNn52RXAAAAAAAA+Uq2piPdiZOTkzp16qROnTrp7NmzWrp0qVasWJEbXQEAAAAAAOQLuVKEuVW5cuU0dOhQDR06NLe7AgAAAAAAt5FiNtk6hEKN1XIBAAAAAACsgCIMAAAAAACAFeT6dCQAQN4UFn3W1iGgAPHe/retQ8g34iK32DqEfMG5fAtbh5Bv8PscwN0wMx3JphgJAwAAAAAAYAUUYQAAAAAAAKyAIgwAAAAAAIAVsCYMAAAAAACFBFtU2xYjYQAAAAAAAKzA0EiYyMjIHOmsfPnyOXIdAAAAAACA/MZQEaZt27b33JHJZNKRI0fu+ToAAAAAACB7zLYOoJAzVIQxm+/9nyknrgEAAAAAAJBfGSrC/PXXX7kdBwAAAAAAQIHGwrwAAAAAAABWwBbVAAAAAAAUEmxRbVuMhAEAAAAAALCCex4Jk5CQoPXr1+vPP//U1atXdfPmzUzbmUwmvffee/faHQAAAAAAQL50T0WYjRs3atSoUYqOjrYcS9sFyWQypTtGEQYAAAAAABRm2S7CHD16VMOGDVNKSooee+wx7d69W+fOndOLL76oq1evav/+/Tpy5IiKFi2qZ555Ri4uLjkZNwAAAAAAuEtm1oSxqWwXYWbPnq2kpCS9+eabeuaZZ/TMM8/o3Llzevnlly1tduzYoREjRuj333/Xd999lyMBAwAAAAAA5EfZXph3165dcnFx0VNPPZVlm6ZNm+rjjz/WkSNHNHPmzOx2BQAAAAAAkO9luwhz8eJFlS9fXo6OjpIke3t7SVJiYmK6do0bN1aFChX0yy+/3EOYAAAAAADgXqXk06+CIttFGGdnZ0sBRpJcXV0lSefPn8/Q1t3dXZGRkdntCgAAAAAAIN/LdhGmdOnSioqKsvxcpUoVSanTlG517do1nThxQnZ22e4KAAAAAAAg38t2ZcTPz0+XL19WTEyMJKlly5Yym82aPHmyNm/erBs3big8PFyvvfaa4uPjVbdu3ZyKGQAAAAAAIN/J9u5IrVu31vLly7Vp0yZ17txZTZs2VbNmzbR9+3YNHjzY0s5sNsvBwUEvvvhijgQMAAAAAACyxyy2qLalbI+Ead26tVavXq1mzZpZjk2bNk3du3eXs7OzzGazzGazatSooS+++EINGjTIkYABAAAAAADyI5PZbDbn9EWTk5N1+fJlOTs7q1ixYjl9eaBQcnDytnUIAIAcEBe5xdYh5AvO5VvYOgQAuK2kxDO2DiFbNpd9ytYhZEvLc4ttHUKOyPZ0pNuxt7eXl5dXblwaAAAAAAAgX8qVIgwAAAAAAMh7UnJ8LgzuRraLMCtWrLjrx3Tt2jW73QEAAAAAAORr2S7CjBo1SibT3a2qTBEGAAAAAAAUVtkuwjz44INZnouLi1N4eLiuXbsmR0dH1a1bN7vdAAAAAACAHJLCFtU2le0izLx58+7YZtWqVZo4caJ8fHw0YcKE7HYFAAAAAACQ7+XqwrxdunSRl5eX+vXrp/r166tbt2652R0AAAAAAECeZZfbHTRt2lTlypXTggULcrsrAAAAAACAPMsqW1QXL15cx48ft0ZXAAAAAAAgC2bWhLGpXB8JEx8fr5MnT8rOLte7AgAAAAAAyLNytTJy+fJl/e9//9ONGzfk5+eXm10BAAAAAADkadmejtS7d+8sz5nNZl26dEmnT5/WzZs3ZW9vrxdeeCG7XQHIQ5o0bqCgoMFq3qyRPDzcdPbsBf2yZoMmBn+qyMhztg4vzyBPxpErY8iTceRKunjpsnbs3q8//gzVH0f/1l+hxxUXn6DyZUvr16Xf3PHxW3bs0reLV+qPv/5WXFy8ypXxUpuWTTWgVw+5uxWzwjPIO7ifjCNXxpAn48hV7kixdQCFnMlsNpuz88AaNWoYauft7a3Ro0erXbt22enGZtq0aaMzZ86kO2YymeTh4SFfX191795djz32mI2iu7O0+I8ePZrpcUl644039Pzzz2f6+OTkZD300EOKioqSJE2cODHP7W4VEhKi3r17KzAwUMHBwYYfN2rUKC1fvlxz585V48aNczHCnOXg5G3rENSv79OaMf192dvbKyrqksIjTqv6fVXk4eGuy5evqN3D3XXw4BFbh2lz5Mk4cmUMeTIuP+QqLnJLrvcxb+Fyvf/pzAzHjRRhps2ap8+/Tt1QoXSpkipVsoTCTp5SfEKCypUprXmfT1bZ0l65EvetnMu3yPU+7iQ/3E95BbkyhjwZlx9ylZR45s6N8qDfyvSwdQjZ0v78QluHkCOyPR1p4sSJWX4FBwfrk08+0YoVK7R27dp8V4C5VUBAgAIDAxUYGKiOHTuqYsWKCgkJ0YgRI/T222/bOrx7snLlyizPbd261VKAASTJz6+Gpn8WLHt7e30waZoq+tRXk6YdVaFSPc1fsFSeniW0ZNEsOTk52TpUmyJPxpErY8iTceTqX66uLmrSsK76P/eUPprwhl4fNtDQ4zZv32kpwLzx6hCtWzFPi2ZP1boV89SkYV2dPX9Br401/sFHfsb9ZBy5MoY8GUeuUJBluwiTVpjI7Ktr167q0KGDatSoIZMpf6+8PGjQIAUHBys4OFgfffSRlixZos8//1wmk0kLFizQkSP5s1Jdu3Zt/fHHH/r7778zPb9ixQpLu4ImKChIP/30k+rUqWPrUPKVN8cEycHBQdu27dQb/zdRSUlJkqS4uHgNHPSawsLCVbWqj/o8nz8r6zmFPBlHrowhT8aRq391e6yDZn0yUa8O6aeHW7eQVylPQ4+bNutbSVKn9q30zJNdLO/jPNzdNOntUXJ1cdb+Q0e09ffduRZ7XsH9ZBy5MoY8GUeuUJBluwgTGRmpS5cuGWp76dIlRUZGZrerPKd169Zq0KCBJGnnzp02jiZ7Hn/8cUn/Fltude3aNa1bt0716tWTj4+PlSPLfaVLl1a1atXk7Oxs61DyDRcXZ3V8tI0k6Ysv52U4n5iYqLnzFkmSenTvYtXY8hLyZBy5MoY8GUeu7t2pM2d15GjqhzM9AjtlOF+iuIfatw6QJP28dpNVY7M27ifjyJUx5Mk4cpX7zDLly6+CIttFmDZt2uiVV14x1Hb48OH5ekpSZkqWLCkpde2UNPHx8Vq8eLGGDh2q9u3b64EHHlC9evX0xBNPaM6cOZYK7q1Onz4tX19f9erVS4mJifr000/Vvn17+fn5qWXLlpowYYJiY2MzjeHatWuaOHGiHnroIfn7++vhhx/WZ599pps3b94x/mbNmsnLy0urV69WSkr6pZl+/vlnJSQkWAo1mTl//ry+/PJL9e7dW61atZKfn58aN26svn37av369Zk+ZtmyZfL19dXUqVMVERGh1157TQEBAapZs6bmzJljaXfhwgW9//776tSpk+rWrav69evrscce08SJEzOs03NrLiZMmKCHHnpIfn5+atu2rT799NNMcz5q1Cj5+voqJCQk3fFevXrJ19dXp0+f1qZNm/TMM8+oXr16ql+/vvr3769Dhw5lmY/ly5erW7duqlOnjpo0aaJXX31Vp06d0tSpU+Xr66tly5Zl+dj8oF5dP0vRasuW3zNts3lz6vFGjerl+xFw2UWejCNXxpAn48jVvdt/+E9JkqOjg/xrZ77234N1/dO1Lai4n4wjV8aQJ+PIFQq6e9qi+m7W9M3m+r95UlJSkv78M/XNR7Vq1SzHIyIiNGbMGO3bt09lypRRmzZtVK9ePZ08eVITJ07U0KFDs8zDzZs31b9/f33zzTeqVq2aWrRooYSEBM2bNy/Tx8XGxurZZ5/VnDlzlJCQoNatW6ty5cr64osvDBXH7Ozs1LlzZ50/f147duxId27FihVycnJSx44ds3z8b7/9psmTJ+vcuXOqWrWq2rdvr2rVqikkJERDhgzRrFmzsnzsyZMn9cQTT2j37t1q2LChWrZsaflFu3//fnXu3FmzZ89WdHS0AgIC1KxZM5lMJs2ZMydD4USSYmJi1KNHD/3444+qU6eOmjZtqsuXL+uzzz7T2LFj75iL/1q4cKEGDx6slJQUtWrVSuXKldPWrVvVq1cvHT9+PEP7jz76SKNGjdJff/2l+vXrq2nTpjpw4ICefPJJnT59+q77z4uqV68qSUpISNCpU5mPajseFi5JcnZ2lo9PBavFlpeQJ+PIlTHkyThyde/CI1L/n1W+bBk5OmS+gWZF73KSpNORZ5WUlJxpm4KA+8k4cmUMeTKOXKGgy/YW1XcjLi5ODln8zzw/SUxM1KlTpzRjxgxFRESoVq1aatHi35X7S5UqpdmzZ6tp06ays/u3vhUTE6OgoCBt2LBBP/30kzp1yjjEd9++fapTp47Wrl2rEiVKSJKioqLUo0cP7dixQ7t27VKjRo0s7adMmaKjR4+qQYMGmjlzpooVS90u8sSJE+rVq5ehRXW7du2q2bNna8WKFWrevLkk6dSpU9qzZ486dOggDw+PLB/bsGFDrVy5MsMuWSdPnlSfPn308ccfq1OnTipXrlyGx/7www966qmnNG7cODk6OlqOX7t2TS+99JKuXr2qF154QUOHDk13PiwsLNMi1rp169S6dWstXbrUUsw5ceKEnnjiCS1btkwvvviiKlQw/st5zpw5+vrrr9W0aVNJqQXEt956S99//71mzZqliRMnWtru379fM2fOlIuLi+bMmaMHHnhAUmpR7f/+7/8yne6VH3l6FpckXbkSnWWby5evWL4vUdxDJ3Uqt8PKc8iTceTKGPJkHLm6d9ExqSNvPW6zBbWHu5skKTk5Rddv3LD8XNBwPxlHrowhT8aRKxR09zQSxoiLFy/q+PHj8vLK/a0Mc0Pv3r3l6+srX19f+fv7q2PHjvrhhx/07LPPau7cubK3t7e09fT0VPPmzdMVYCTJ3d1dY8aMkSStWbMm035MJpPeffddSwFGkry8vPTMM89ISr/2TFxcnJYuXSpJevPNNy0FGEmqUqWKhgwZYui5+fr6qmbNmlq7dq2uX78u6d81Ym43FUlK3aI8s23KK1eurBdffFFJSUlZTksqXry4Ro8ena7AIkmLFi3SxYsXFRAQoFdffTXD+apVq6YbeZTGxcVF7777bro1XqpUqaLHH39cZrNZu3btuu1z+a9evXpZCjBS6r9N2uii/47EWbBggcxms3r27GkpwEiSo6Oj3njjDbm4uNxV33lVWm4TE7Oe6hYfn2D53sWlcK63Q56MI1fGkCfjyNW9i09Mzc9///97q1t3IomLj8/1mGyF+8k4cmUMeTKOXOW+lHz6VVAYHp6yfPlyLV++PN2x0NBQ9e7dO8vHxMfH6++//1Z8fLwaN26c/ShtKCAgwFJAMpvNioqK0qFDh7RoUepiUKNGjcqwNdrBgwcVEhKiyMhIxcfHy2w2W0ZwnDx5MtN+ypcvr/vvvz/D8apVU4fjXbhwwXLsjz/+0I0bN1StWjXVrFkzw2O6dOmid955x9Dz69q1qyZOnKhff/1VXbt21cqVK+Xp6amWLVve8bE3b97U9u3bdeDAAV28eFE3b9605EhKHY2SmWbNmsnV1TXD8e3bt0uSnnjiCUOxp/Hz87Os0XOrzHJnxEMPPZThmKenp4oXL57hWnv27JGkTKduFS9eXAEBAfr111/vqv+8KC4uTpLk5JT1G/OiRYtYvr9xIy7XY8qLyJNx5MoY8mQcubp3RZ1S83O7teUSExMt3zsXLZrrMdkK95Nx5MoY8mQcuUJBZ7gIc+bMmXSjMUwmk65du2Zod6D7779fw4cPz1aAtjZo0KAMBaTY2FgNHz5c8+fPV0pKit566y1J0vXr1xUUFKSNGzdmeb2sFtnNbNqOJEux4tY3PefPn5eUWrjJjJubm9zd3RUTE5NlHGk6d+6sSZMmacWKFapYsaJOnTqlXr163fZTMEk6fvy4XnzxxSyLSpIso2v+K6u403bQqlKlyh3jvtXd5M6IrOJzdXXV1atX0x1LK8pk9ZisYstv0oaDliiR9RQ1T89/R3FduZr18NGCjDwZR66MIU/Gkat75/7PNKSrMdeybBP9zzl7ezu5FpDRnpnhfjKOXBlDnowjVyjoDBdh2rVrJ29vb0mpI0LeeOMNVa5cWYMHD860vclkUtGiReXj45PpaI38rFixYho5cqS2bNmiRYsWKSgoSO7u7vrwww+1ceNG1a9fX8OGDVONGjXk5uYmR0dHJSYmyt/fP8tr/ncKkxE5sRJ4yZIlFRAQoM2bN+vzzz+XlDo65k5eeeUVnTx5Uk8++aSefvpp+fj4yNXVVXZ2dtq6dav69++f5SLERXP4k7Ps5O52WGE9o9DQ1AWJixQpokqVvBURkXGXqmpVU7czj4uLU3h4wViQ+G6RJ+PIlTHkyThyde8q/7O45dnzF3QzKSnTxXlPnTkrSapQvpwcHOwznC8ouJ+MI1fGkCfjyFXuK0hTe/Ijw3+91qhRQ4GBgQoMDFS3bt1Uvnz5dMf++9W1a1c98sgjBa4Ak6ZixYqSUreoDg9PXZ17zZo1sre31xdffKFmzZrJ09PTMqIkIiIix/ouU6aMpH9HjvzXtWvXDI2CSfP4448rJSVFW7ZsUfXq1eXn53fb9sePH9fff/+t2rVr691335Wfn5/c3NwsxZC0fNyttNEkWU1jyotKly4tKet/i7Nnz1oznFyzb/9hy9DQFi2aZNqmZcvU47t27S9Qu6HdDfJkHLkyhjwZR67u3QP/bEt982aSDh7+K9M2u/YfSte2oOJ+Mo5cGUOejCNXKOiyPYRg/fr1mjJlSg6Gkr/cWlRJW3w1Ojparq6ucnd3z9B+9erVOdZ37dq15ezsrGPHjumvvzK+Sbrbvtq2bStvb28VL15cTz755B3bR0enDvnLaqrNDz/8cFf9p2nWrJkkZVh7KC9r0KCBJOmXX37JcC46Olpbt261dki54saNOP38S+pCy4MGPJfhvJOTk3r36i5JWrQ45+71/IY8GUeujCFPxpGre1epQnnV8r1PkrRoxY8Zzl+5Gq3fNqT+f+2RtndeOy4/434yjlwZQ56MI1co6HJ9d6SCKDY2Vh988IEkycfHx7IAbJUqVRQTE6OVK1ema79582Z9/fXXOda/s7OzAgMDJUkTJkxIt87MyZMnNX369Lu6XpEiRbR+/XqFhISoT58+d2xfuXJl2dnZaceOHTp27JjleEpKiqZNm6a9e/feVf9pnnrqKZUsWVKbN2/WJ598oqSkpHTnT5w4oePHj2fr2rnlmWeekclk0oIFC3Tw4EHL8aSkJAUHB+vGjRs2jC5nTXh3ipKSktS8eSO99+5oy7bzzs5FNfOLyapa1UcnT57S7K+/s3GktkWejCNXxpAn48jVvXuxf+ofPD/+tlELlqyyfMIcHXNNr48L1vUbcXqgdg21bNbIlmFaBfeTceTKGPJkHLlCQWZ4TZj/WrFihUaPHq0XX3xRw4YNy7Ld1KlTNX36dE2ePFmdOnXKbnc2M3PmTMvIDLPZrIsXL+rQoUOWUS/BwcGWNUSGDBmiV199VSNHjtSCBQtUoUIFRURE6ODBgxo0aJBmzpyZY3EFBQVp9+7d2rVrl9q3b69GjRopPj5eO3bsUEBAgP766y+dOZNx/mRO8PT0VM+ePbVgwQJ17dpVjRs3lru7uw4dOqTIyEj169dPs2fPvuvruru7a+rUqRoyZIimT5+uJUuWqF69ejKbzTp58qRCQ0M1ceLETLeptpW6detq4MCBmjlzpp5++mk1atRIJUqU0P79+xUbG6vHH39cK1euvONCx/nBwYNHNOzl/9O0qe9p5OtD1bfP0wqPOK3q91WRh4e7rly5qie797/rhZALGvJkHLkyhjwZR67+dfZ8lJ7qO9Tyc9qOR+cuXFRAxx6W4/X8a2nq++MsP7dq3lgDe/fQl3MX6r2PZ2jWvEUqVbKEwk6eUnxCgsqW8dLkd0Zb74nYEPeTceTKGPJkHLnKXWaxBqYtZXskTNq2u3eavtKtWzeZzeZMp2vkB1u3brVsz71ixQrt2bNHXl5e6t27t3788UfVr1/f0rZjx46aM2eOGjZsqLCwMK1fv14mk0nvv/++RowYkaNxubm5af78+erdu7ccHR21bt06hYWFaeDAgfrkk09ytK/MvPnmmxo7dqyqVq2qPXv2aPv27apWrZrmz5+vVq1aZfu6DRo00KpVq9SrVy85Oztrw4YN2rFjhySpX79+atIk83mhtjRixAhNnDhR1atX1+7du7Vt2zb5+flp8eLFluJL8eLFbRtkDvly1rdq1bqbVqz8WWazWf5+NXT1aow+/2Ku6tZvp/37/7B1iHkCeTKOXBlDnowjV6lSUlJ0NTrG8nX9ny1c/3v8WiY7Gb4yuI8+m/S2mj5YTwmJiTp2IlylvUqqz9NPaOmcz1SubGlrPx2b4X4yjlwZQ56MI1coqEzmbK5k1LZtWyUkJBha8yIgIEDOzs767bffstMVkC8lJyerc+fOCgsL09atW1WqVKl7up6Dk3cORQYAsKW4yC22DiFfcC7fwtYhAMBtJSXmzsyD3PZjmadtHUK2dDpfMKafZXskTFRUVJYLs/5X2bJlFRUVld2ugDwtLCxM1//zSWJCQoKCg4N1/PhxNW/e/J4LMAAAAACQE1JM+fOroMj2mjBFixY1vA3ytWvXZG9vn92ugDztu+++06JFi1SrVi2VLVtWMTEx+uuvv3Tx4kWVLFlSb775pq1DBAAAAADkAdkuwlSuXFmHDh3SqVOnVLFixSzbRUREKDw8XLVq1cpuV0Ce1rZtW507d06HDh3SkSNHZDabVbZsWT366KMaOHCgypQpY+sQAQAAAAB5QLaLMK1atdLBgwf15ptvaubMmXJycsrQJjExUWPHjpXJZFKbNm3uKVAgr2rSpEmeXDAYAAAAAJC3ZLsI06tXLy1YsEAhISEKDAxUnz59VK9ePbm5uenatWvat2+f5syZo+PHj1t2EwIAAAAAALaTwhbVNpXtIoybm5s+//xzDR48WMePH9fYsWMztDGbzSpVqpRmzJghd3f3ewoUAAAAAAAgP8v27kiS5Ofnp1WrVqlPnz4qV66czGaz5at8+fLq16+fVq1aJT8/v5yKFwAAAAAAIF8ymc1mc05d7Pr164qNjVWxYsXk6uqaU5cFIMnBydvWIQAAckBc5BZbh5AvOJdvYesQAOC2khLP2DqEbFlZ9hlbh5Atj59bYOsQcsQ9jYT5L1dXV5UpUyZDAebAgQOZTlcCAAAAAADWY86nXwVFtteEuZPLly9rxYoVWrZsmY4fPy5Jeuedd3KrOwAAAAAAgDwtR4swKSkp2rhxo5YuXapNmzYpOTlZabOd6tSpk5NdAQAAAAAA5Cs5UoQ5fvy4li1bppUrV+rSpUuSUndGKlmypLp06aInnnhC9913X050BQAAAAAAsinF1gEUctkuwly/fl0//fSTli5dqgMHDkhKLbw4ODgoKSlJnp6e2rx5s+zt7XMsWAAAAAAAgPzqroswu3bt0tKlS7VmzRrFx8dbphvVrFlTgYGBeuyxx9SsWTPZ2dlRgAEAAAAAAPiH4SLM559/ruXLlysiIsJSeClZsqQ6d+6swMBA+fr65lqQAAAAAAAA+Z3hIsyUKVNkMpnk6Oio1q1bq2vXrmrZsiWjXQAAAAAAyCdSTCZbh1Co2d3tA+zt7VW0aFEVLVqUAgwAAAAAAIBBhoswL774osqVK6e4uDitWrVK/fr1U+vWrTVlyhSdPHkyF0MEAAAAAADI/wwXYV5++WWtW7dOs2fP1qOPPionJyedPXtWX3zxhR599FH17NlTCxcu1LVr13IzXgAAAAAAkE3mfPpVUJjMaavs3qWYmBitXr1aS5cu1ZEjR1Iv9s+aMYmJifL09NTWrVtlZ3fXM54AZMLBydvWIQAAckBc5BZbh5AvOJdvYesQAOC2khLP2DqEbFlc7llbh5AtT52db+sQckS2KyTu7u569tlntWzZMq1cuVK9evVS8eLFlZiYKEm6cuWKAgICFBwcrNDQ0BwLGAAAAAAAID/K9kiYzNy8eVPr16/X0qVLtW3bNiUnJ8v0z8rLfn5+Wrx4cU51BRQ6jIQBgIKBkTDGMBIGQF7HSBjrKigjYQxvUW2Eo6OjOnTooA4dOuj8+fNavny5li9frvDwcB0+fDgnuwIAAAAAAHcpxdYBFHI5WoS5VZkyZfTCCy/ohRde0K5du7Rs2bLc6goAAAAAACDPy7UizK0efPBBPfjgg9boCgAAAAAAIE9i6yIAAAAAAAArsMpIGAAAAAAAYHspJltHULgxEgYAAAAAAMAKKMIAAAAAAABYAdORAAAAAAAoJFLEfCRbYiQMAAAAAACAFVCEAQAAAAAAhYrZbFbv3r3l6+srX19fHT9+3Cr9UoQBAAAAAACFysKFCxUSEiKTybrTsyjCAAAAAABQSJjz6VdOOnfunCZNmqQWLVqofPnyOXz126MIAwAAAAAACo2xY8cqJSVFb7/9ttX7pggDAAAAAAAKhRUrVmjTpk165ZVX5O3tbfX+2aIaAAAAAIBCIqUQ71B98eJFTZw4Uf7+/urdu7dNYmAkDAAAAAAAKPDeeecdxcbGasKECbKzs005hJEwAAAAAAAgT2vbtu1tz69bt+6259esWaM1a9Zo0KBBqlGjRk6GdlcowgAAAFiRc/kWtg4hX4iL3GLrEPIN7ikAuL2rV6/qnXfekY+Pj4YOHWrTWCjCAAAAAABQSKTYOoBsutNIl9uZOHGiLl68qMmTJ6tIkSI5GNXdowgDAAAAAAAKrHXr1qlIkSKaPn26pk+fnu5cVFSUJOl///ufnJ2d9eyzz+qRRx7JtVgowgAAAAAAgAItISFBO3fuzPL8oUOHJN157Zl7RREGAAAAAAAUWLt3787yXJs2bXTmzBn99NNPqlatWq7HQhEGAAAAAIBCwmzrAAo522yMDQAAAAAAUMhQhAEAAAAAALACpiMBAAAAAFBIpJhsHUHesn79eqv2x0gYAAAAAAAAK6AIAwAAAAAAYAUUYQAAAAAAAKyANWEAAAAAACgkUmwdQCHHSBgAAAAAAAAroAgDAAAAAABgBRRhAAAAAAAArIA1YQAAAAAAKCRYE8a2GAkDAAAAAABgBRRhAAAAAAAArIDpSAAAAAAAFBJmk60jKNwYCQMAAAAAAGAFFGEAAAAAAACsgCIMAAAAAACAFbAmDAAAAAAAhQRbVNsWI2EAAAAAAACsgCIMAAAAAACAFTAdCQAAAACAQoLpSLbFSBgAAAAAAAAroAgDAAAAAABgBRRhAAAAAAAArIA1YQAAAAAAKCTMtg6gkGMkDAAAAAAAgBVQhAEAAAAAALACijAAAAAAAABWwJowAAAAAAAUEikmW0dQuDESBsBdadK4gRYtnKkzp/YrNua4/j66Q1M/fU/ly5e1dWh5CnkyjlwZQ56MI1fGkCfp4qXLWr1mvYKnfK5eQ0bowbZd5df8UT38xPOGHr9lxy4NDhqjgI491KD143qs5wB9NP0rxVyLzeXI8ybuKWPIk3HkCgWRyWw2szjyPWrTpo3OnDmT7pjJZJKHh4d8fX3VvXt3PfbYYzaK7u74+vrK29tb69evz9V+QkJC1Lt3bwUGBio4ONhyfNmyZRo9erSGDh2qYcOGZTh+Kzs7O3l4eKhmzZp66qmn1LFjR5s8F2v14+DknavXN6Jf36c1Y/r7sre3V1TUJYVHnFb1+6rIw8Ndly9fUbuHu+vgwSO2DtPmyJNx5MoY8mQcuTImP+QpLnJLrvcxb+Fyvf/pzAzHy5ctrV+XfnPbx06bNU+ff71AklS6VEmVKllCYSdPKT4hQeXKlNa8zyerbGmvXIn7v5zLt7BKP7eTH+6pvIA8GZcfcpWUeObOjfKgTyo9Z+sQsuWViG9tHUKOYCRMDgoICFBgYKACAwPVsWNHVaxYUSEhIRoxYoTefvttW4dXIJQqVcqS40cffVReXl7avn27Xn31VY0ZM+aOjz99+rR8fX3Vq1cvK0RbsPj51dD0z4Jlb2+vDyZNU0Wf+mrStKMqVKqn+QuWytOzhJYsmiUnJydbh2pT5Mk4cmUMeTKOXBlDnv7l6uqiJg3rqv9zT+mjCW/o9WEDDT1u8/adlgLMG68O0boV87Ro9lStWzFPTRrW1dnzF/Ta2OA7XKXg4J4yhjwZR65yV0o+/SooKMLkoEGDBik4OFjBwcH66KOPtGTJEn3++ecymUxasGCBjhyhqn2vqlatmi7Hq1ev1vjx4yVJixcv1pYt/35q9tNPP2nOnDk2irTgeXNMkBwcHLRt20698X8TlZSUJEmKi4vXwEGvKSwsXFWr+qjP8z1sHKltkSfjyJUx5Mk4cmUMefpXt8c6aNYnE/XqkH56uHULeZXyNPS4abNSP43t1L6Vnnmyi0ym1AUWPNzdNOntUXJ1cdb+Q0e09ffduRZ7XsI9ZQx5Mo5coSCjCJPLWrdurQYNGkiSdu7caeNoCqbu3burUaNGkqRff/3VcrxatWqqVKmSrcIqUFxcnNXx0TaSpC++nJfhfGJioubOWyRJ6tG9i1Vjy0vIk3HkyhjyZBy5MoY83btTZ87qyNG/JUk9AjtlOF+iuIfatw6QJP28dpNVY7MF7iljyJNx5AoFHbsjWUHJkiUlScnJyZZj8fHxWr16tTZt2qSjR4/qwoULsrOzU9WqVdW5c2c999xzcnDI+M9z8OBBffXVVzp8+LAuXLggFxcXlS5dWvXr11ffvn1VuXLldO3Pnz+vWbNmafPmzYqMjFTRokXl5+envn37qmXLllnGnJSUpFmzZmn58uWKjIyUh4eH2rRpo1deecXyfNJER0dr9erV2rhxo8LCwhQVFaUiRYqoevXqeuqpp9StW7d7yJ4xtWvX1s6dOxUZGWk59t+1WqZOnapp06ZJSi2I+fr6Wto2atRI8+b9+0s+ISFB3333nX7++WcdP35ciYmJKl26tOrVq6eePXtaCmu3SklJ0dy5c7V48WJFRETIzc1NLVu21GuvvaZSpUrl1lO3inp1/eTs7CxJ2rLl90zbbN6cerxRo3oymUwqjMtNkSfjyJUx5Mk4cmUMebp3+w//KUlydHSQf+0ambZ5sK6/Vvz4m6VtQcY9ZQx5Mo5coaCjCJPLkpKS9Oefqf8DrlatmuV4RESExowZo1KlSqlKlSry8/NTdHS0Dhw4oIkTJ+r333/XjBkzLMNbJWnTpk0aMmSIkpOT5efnpzp16iguLk5nzpzR999/r/r166crwhw8eFADBw7U1atXValSJT300EOKjo7Wnj17tH37do0ePVp9+vTJELPZbNYrr7yizZs3q3HjxqpZs6Z2796thQsXauvWrfruu+9UpkwZS/u9e/dq/PjxKleunHx8fFS3bl1dvHhR+/bt0969e3Xo0CGNGzcu55N7i9jY1F0IHB0ds2xTs2ZNdejQQWvWrFGpUqXUosW/i9hVrVrV8v2lS5fUv39//fnnn3JxcVGDBg3k5uamyMhI/fLLL7K3t8+0CPP666/rt99+04MPPqiqVatq3759Wr58uQ4dOqTly5fn6zmr1aun5ichIUGnTkVm2uZ4WLgkydnZWT4+FXTy5CmrxZdXkCfjyJUx5Mk4cmUMebp34RGnJUnly5aRYyYfmElSRe9ykqTTkWeVlJQsBwd7q8VnbdxTxpAn48hV7itI66vkRxRhckliYqJOnTqlGTNmKCIiQrVq1Ur3R3+pUqU0e/ZsNW3aVHZ2/84Ki4mJUVBQkDZs2KCffvpJnTr9O8x11qxZSk5O1pQpU/Too4+m6+/UqfS/eGJjY/XSSy8pOjpab7/9tnr06GEp6ISFhWnAgAH64IMP1Lx5c1WvXj3dYyMjI5WYmKgVK1ZYCkcJCQkKCgrS2rVrNX78eMuIEim1uPTdd9+pfv366a4TFRWlgQMHasGCBXr88cdVt27dbGTyzuLj47V9+3ZJqYWWrLRr1041atTQmjVrLGvLZGbkyJH6888/FRAQoA8//FDFixe3nLt8+bLCwsIyPObMmTOyt7fXzz//LG/v1F2MYmNj1adPHx06dEg//vijAgMD7+FZ2panZ3FJ0pUr0Vm2uXz5iuX7EsU9dFKF73+G5Mk4cmUMeTKOXBlDnu5ddEzqBz8ebsWybOPh7iZJSk5O0fUbNyw/F0TcU8aQJ+PIFQo61oTJQb1795avr698fX3l7++vjh076ocfftCzzz6ruXPnyt7+309BPD091bx583QFGElyd3e37PKzZs2adOcuX74sSWrevHmGvitWrKiKFStafl62bJkuXLig7t27q2fPnulG1FStWlWjRo1ScnKyFi1alOlzefHFF9ON3ClSpIjGjh0rJycnrV27Nt2W3JUqVcpQgJEkLy8vvf7665k+l5yQmJioP//8Uy+99JLOnDmjokWL6sknn7ynax46dEhbt26Vp6enPvnkk3QFGCn1361hw4aZPnbMmDGWAowkFStWTP3795eU/9cDShsSmph4M8s28fEJlu9dXJxzPaa8iDwZR66MIU/GkStjyNO9i09Mzc/tRt/eOvo1Lj4+12OyJe4pY8iTceQKBR0jYXJQQECAvLy8JKVO6YmKitKhQ4cshY5Ro0ZlmJJy8OBBhYSEKDIyUvHx8TKbzZY5jSdPnkzXtnbt2jp27JhGjhypIUOGyN/fP0MRJ83WrVslSe3bt8/0fFoh4eDBg5me79Il4yJXZcqUUePGjbVlyxbt2bMnXcHBbDZr165d2r17ty5cuKCEhASZzWZdv3490+eSXf9dyyVN8eLFNWnSpHQxZUfaiJoOHTqoWLGsP+H6LwcHh0yLY2nTnC5cuHBPcdlaXFycJMnJKes3nEWLFrF8f+NGXK7HlBeRJ+PIlTHkyThyZQx5undFnVLzc/Nm1n8gJiYmWr53Llo012OyJe4pY8iTceQq97GCjm1RhMlBgwYNUuPGjdMdi42N1fDhwzV//nylpKTorbfekiRdv35dQUFB2rhxY5bXS1vnJM2IESN07NgxbdiwQRs2bJCrq6vq1q2rgIAABQYGqkSJEpa2p0+nzlceMGDAbWO+cuVKhmPu7u5yc8t82GxakePcuXOWY1FRUXrppZd04MABw88lu25dy8XOzk7u7u6qWbOm2rZte1dFk6ykLez73wWO78TLyyvThZRdXV0lpX8zlh+lDQctUcIjyzaenv/ef1euZj18tCAjT8aRK2PIk3HkyhjydO/c/5mGdDXmWpZtov85Z29vJ1cXF6vEZSvcU8aQJ+PIFQo6ijC5rFixYho5cqS2bNmiRYsWKSgoSO7u7vrwww+1ceNG1a9fX8OGDVONGjXk5uYmR0dHJSYmyt/fP8O1ypQpoyVLlmjnzp3atGmT9uzZo99//13btm3TjBkz9NVXX6lOnTqSUnfqkaS2bdvK3d09y/huLdxk15gxY3TgwAG1adNGAwYMULVq1eTm5iZ7e3udOHFCjzzyyD33keZ2a7nYUlYjkgqK0NDjklKnpVWq5K2IiDMZ2lSr6iMp9dOL8PDTVo0vryBPxpErY8iTceTKGPJ07yr7VJAknT1/QTeTkjJdnPfUmbOSpArlyxXoRXkl7imjyJNx5AoFHUUYK0hbqyU5OVnh4eHy9/fXmjVrZG9vry+++CJDkSQiIiLLa9nZ2alJkyZq0qSJpNSRLJMnT9aSJUs0YcIEy9SncuXK6cSJE+rTp48aNWp0V/HGxMQoNjY205ElaWvBpO2OdOPGDW3evFklS5bUtGnT0q17c6fnkheVL19eUs5Nnyoo9u0/rLi4ODk7O6tFiyaaP39phjYtW6bek7t27S+02wSSJ+PIlTHkyThyZQx5uncP/LMt9c2bSTp4+C81qOuXoc2u/YfStS3IuKeMIU/GkSsUdAX74/s84tZChMs/Q1Kjo6Pl6uqa6SiV1atXG752iRIlFBQUJEkKDQ21HE9bn+S3337LVsyZxRAVFaWQkBCZTCbLFs3Xrl1TSkqKSpcunaEAI0mrVq3KVv+5JW0RvaSkpEzPN2vWTJL066+/WtazQepc259/WS9JGjTguQznnZyc1LtXd0nSosXG79+ChjwZR66MIU/GkStjyNO9q1ShvGr53idJWrTixwznr1yN1m8bUtfme6RtS6vGZgvcU8aQJ+PIVe5LMeXPr4KCIkwui42N1QcffCBJ8vHxsSzUWqVKFcXExGjlypXp2m/evFlff/11ptf6+uuvdf78+QzH09aVKVeunOVYz5495eXlpfnz5+ubb77JUHQwm83avXu39uzZk2lfn332mU6cOGH5OSEhQePHj1diYqJat26tChVSh+KWKlVK7u7uCg0NVUhISLprLF26VD/+mPHNiS15enrK0dFRERERmRZi/P39FRAQoEuXLunVV19VdHT6OaaXL1/W7t27rRVunjLh3SlKSkpS8+aN9N67oy1r4Dg7F9XMLyaralUfnTx5SrO//s7GkdoWeTKOXBlDnowjV8aQp3v3Yv/UPwx//G2jFixZZfkkPjrmml4fF6zrN+L0QO0aatns7kYj51fcU8aQJ+PIFQoyk5nxW/esTZs2OnPmTIbdkS5evKhDhw5ZRr3MmjXLspXzTz/9pFdffVWSVLduXVWoUEERERE6ePCgBg0apJkzZ8rb21vr16+39NOwYUPFxsaqevXqqlKliuzt7RUeHq4//vhDDg4O+uSTT9SuXTtL+0OHDumFF17QxYsXVbp0ad1///0qXry4rl69qiNHjujy5csaPXq0+vTpY3mMr6+vypcvr5o1a2rLli1q0qSJXF1dtWfPHl24cEHly5fXd999p7Jly1oeM2vWLE2aNEl2dnZ68MEH5eXlpdDQUIWGhlqeS6NGjTRv3jzLY0JCQtS7d28FBgamW+Nl2bJlGj16tIYOHaphw4ZlOP7f69yOr69vhhxKqdtvr1u3TtWqVVPt2rXl5OSkKlWqWBYxvnjxovr27avQ0FC5urqqQYMGKlasmCIjI3XkyBF16tQpXcxZ9SOlLpDctm3bu4o7Kw5O97bzU04YOOA5TZv6nuzt7RUVdUnhEadV/b4q8vBw15UrV9W+Q3ft3/+HrcO0OfJkHLkyhjwZR66MyQ95iovckut9nD0fpaf6DrX8fPPmTV2/EZe6+L/bv9Oy6/nX0tT3x6V77CdfzNGXcxdKkkqXKqlSJUso7OQpxSckqGwZL82bPlnlypbO9ecgSc7lW1iln9vJD/dUXkCejMsPuUpKzLheTX7wgU/GEUb5wcjwb20dQo5gJEwO2rp1q5YvX67ly5drxYoV2rNnj7y8vNS7d2/9+OOPlgKMJHXs2FFz5sxRw4YNFRYWpvXr18tkMun999/XiBEjMr3+m2++qS5duig5OVnbt2/X+vXrdf36dQUGBmrp0qXpCjBS6qiO1atXa8iQIfL09NTevXu1du1anTx5UrVr19a4ceMy3YraZDLpk08+0eDBgxUREaG1a9fKbDare/fuWrRoUboCjJS6A9PHH3+s2rVr6/Dhw9q0aZOKFy+umTNnqkePHjmQ2Zw1YcIEdevWTdeuXdOPP/6oJUuWaNOmTZbzpUqV0qJFi/Taa6+pcuXK2r17t9avX6/Lly+rY8eO6tmzpw2jt60vZ32rVq27acXKn2U2m+XvV0NXr8bo8y/mqm79djb/H2FeQZ6MI1fGkCfjyJUx5ClVSkqKrkbHWL6u/7PV7X+PX8tkivIrg/vos0lvq+mD9ZSQmKhjJ8JV2quk+jz9hJbO+cxqBZi8gnvKGPJkHLlCQcVIGCCfyAsjYQAAsBZrjIQpKPLCSBigMMqvI2GC8+lImFGMhAEAAAAAAIBRFGEAAAAAAACswMHWAQAAAAAAAOtgPRLbYiQMAAAAAACAFVCEAQAAAAAAsAKKMAAAAAAAAFbAmjAAAAAAABQSKawKY1OMhAEAAAAAALACijAAAAAAAABWwHQkAAAAAAAKiRRbB1DIMRIGAAAAAADACijCAAAAAAAAWAFFGAAAAAAAACtgTRgAAAAAAAoJNqi2LUbCAAAAAAAAWAFFGAAAAAAAACugCAMAAAAAAGAFrAkDAAAAAEAhkWLrAAo5RsIAAAAAAABYAUUYAAAAAAAAK2A6EgAAAAAAhUSKydYRFG6MhAEAAAAAALACijAAAAAAAABWQBEGAAAAAADAClgTBgAAAACAQiJFZluHUKgxEgYAAAAAAMAKKMIAAAAAAABYAUUYAAAAAAAAK2BNGAAAAAAACglWhLEtRsIAAAAAAABYAUUYAAAAAAAAK2A6EgAAAAAAhUSKrQMo5BgJAwAAAAAAYAUUYQAAAAAAAKyAIgwAAAAAAIAVsCYMAAAAAACFRAqbVNsUI2EAAAAAAACsgCIMAAAAAACAFTAdCQAAAACAQoLJSLZFEQYACqmqHuVsHQIKkLDos7YOAQVMt/ov2zqEfONMs+q2DiFf8N7+t61DAACmIwEAAAAAAFgDRRgAAAAAAAArYDoSAAAAAACFRIqtAyjkGAkDAAAAAABgBRRhAAAAAAAArIAiDAAAAAAAgBWwJgwAAAAAAIVEisy2DqFQYyQMAAAAAACAFVCEAQAAAAAAsAKmIwEAAAAAUEgwGcm2GAkDAAAAAABgBRRhAAAAAAAArIAiDAAAAAAAgBWwJgwAAAAAAIVEiq0DKOQYCQMAAAAAAGAFFGEAAAAAAACsgOlIAAAAAAAUEmY2qbYpRsIAAAAAAABYAUUYAAAAAAAAK6AIAwAAAAAAYAWsCQMAAAAAQCHBFtW2xUgYAAAAAAAAK6AIAwAAAAAAYAUUYQAAAAAAAKyANWEAAAAAACgkUmS2dQiFGiNhAAAAAAAArIAiDAAAAAAAgBUwHQkAAAAAgEKCyUi2xUgYAAAAAAAAK6AIAwAAAAAAYAUUYQAAAAAAAKyANWEAAAAAACgk2KLathgJAwAAAAAAYAUUYQAAAAAAAKyA6UgAAAAAABQSKbYOoJCjCFMAtGnTRmfOnEl3zGQyycPDQ76+vurevbsee+wxq8fl6+srb29vrV+/3up9WzuGkJAQ9e7dW4GBgQoODrYcX7ZsmUaPHq2hQ4dq2LBhuRqDtTRp3EBBQYPVvFkjeXi46ezZC/plzQZNDP5UkZHnbB1enkGe7qxU6ZJq1rKR/OrWlH/dWqrp5ysXV2edjohUmwZdbB1enkGe7h6vP2PI0535+Pqo8cNN5Ne4tnxqVJZbcTclxicq8sQZ7Vy7U6vnrNb16Ou2DjNPcaxbVy6dO8vR3192xYvLHBen5PPnlXjwoG4sWKCUy5dtHaLN8dozjlyhIGI6UgESEBCgwMBABQYGqmPHjqpYsaJCQkI0YsQIvf3227YOL8ctW7ZMvr6+mjp1qq1DKTT69X1amzYuV7fATrKzs9PhP47K07O4hrzwvPbvXas6dWrZOsQ8gTwZ0ynwYU2eMV59Bj+jBo3rysXV2dYh5Unk6e7w+jOGPN1ZWZ+ymvbbZ+r1ei/Va1lf5hSzTv55QnHX41T9gfv17Ijn9Nna6fLx9bF1qHmDySS3oCB5Tpmiom3bSnZ2Sjp+XCnR0XKoVEmuTz4pe29vW0dpc7z2jCNXKKgowhQggwYNUnBwsIKDg/XRRx9pyZIl+vzzz2UymbRgwQIdOXLE1iEiH/Pzq6HpnwXL3t5eH0yapoo+9dWkaUdVqFRP8xcsladnCS1ZNEtOTk62DtWmyJNxsdeua/umEM38dI6G9fufJr75sa1DypPIk3G8/owhT8aYZNLVi1c1/6P5GhDQX30aPa+gzkHq27iPRnZ7XedPnVfJMiX1f7PGyMGJweVuw4bJpUsX3Tx2TJeGDNHFJ5/U5SFDdKl3b13o1EmXhw9XcmSkrcO0KV57xpErFGQUYQq41q1bq0GDBpKknTt32jga5GdvjgmSg4ODtm3bqTf+b6KSkpIkSXFx8Ro46DWFhYWralUf9Xm+h40jtS3yZNzSBavU58mXNHn8NK1ZvU4XzkXZOqQ8iTwZx+vPGPJkzMVzFzWgeX99P+U7nY84n+7cn7v/1IevTJYklfMpp/oP1bdFiHmGY506cunWTckXLujK8OFK+vPP9A2Sk3Vz/36lXLpkmwDzCF57xpGr3GXOp/8VFBRhCoGSJUtKkpKTky3H4uPjtXjxYg0dOlTt27fXAw88oHr16umJJ57QnDlzLL/o/uvgwYN65ZVX1LZtW/n7+6tx48bq3Lmzxo0bp5MnTxqK59y5c+rUqZN8fX31ySefpDu3fft2vfDCC2ratKn8/PzUqlUrjR07VufPp3/z06tXL40ePVqSNG3aNPn6+lq+MpuelJSUpM8//1wdOnSQv7+/AgICNHbsWF3K5M1AdHS0vv32Ww0YMEBt2rSRv7+/GjZsqKefflrLli0z9BwLGhcXZ3V8tI0k6Ysv52U4n5iYqLnzFkmSenQvvGtUkCfAdnj9GUOejLuZcFMJcQlZnv9z95+KjY6VJFW8r6K1wsqTXLp3lyRdX7hQ5thYG0eTN/HaM45coaBj7GQBl5SUpD//+TSiWrVqluMREREaM2aMSpUqpSpVqsjPz0/R0dE6cOCAJk6cqN9//10zZsyQyWSyPGbTpk0aMmSIkpOT5efnpzp16iguLk5nzpzR999/r/r166ty5cq3jefYsWPq37+/Lly4oHHjxumZZ56xnJsyZYpmzJghBwcH+fv7q3Tp0jpx4oQWLlyodevWad68eapataokqUWLFkpKStLevXtVo0YN1axZ03KdW7+XJLPZrFdeeUWbN29W48aNVbNmTe3evVsLFy7U1q1b9d1336lMmTKW9nv37tX48eNVrlw5+fj4qG7durp48aL27dunvXv36tChQxo3btzd/2PkY/Xq+snZOXUdii1bfs+0zebNqccbNaonk8kks7ngVKuNIk+A7fD6M4Y85Rw7ezs5OKa+lY6/kXWxpsBzdFSRRo0kSYm7d8ve21vOjz0mh2rVpJQUJYWHK/6335R07JiNA7UtXnvGkSsUdBRhCqjExESdOnVKM2bMUEREhGrVqqUWLVpYzpcqVUqzZ89W06ZNZWf374ComJgYBQUFacOGDfrpp5/UqVMny7lZs2YpOTlZU6ZM0aOPPpquv1OnTt0xpj179mjIkCGKi4vTlClT1KFDB8u5X3/9VTNmzJCPj4+mTZum+++/33Lu+++/17hx4zR69GgtXLhQUur6N6VKldLevXvVrl272+48FBkZqcTERK1YscJSiEpISFBQUJDWrl2r8ePHa9q0aZb21apV03fffaf69dMPLY6KitLAgQO1YMECPf7446pbt+4dn3NBUb16avErISFBp05lPp/7eFi4JMnZ2Vk+PhV08uSd74mChjwBtsPrzxjylHOadGiqoi5FJUmHfz9k42hsx+G++2T6Z10Ox1q15D58uExFiljOF2nSRC5PPaXr8+fr+ldf2SpMm+O1Zxy5QkHHdKQCpHfv3pYpOf7+/urYsaN++OEHPfvss5o7d67s7e0tbT09PdW8efN0BRhJcnd315gxYyRJa9asSXfu8j9bCjZv3jxD3xUrVlTFilkPxV27dq369eunlJQUffXVV+kKMJI0Y8YMSdL777+frgAjST179lTr1q21f/9+y6ieu/Xiiy+mGwlUpEgRjR07Vk5OTlq7dm26Lb4rVaqUoQAjSV5eXnr99dclZcxNQefpWVySdOVKdJZtLl++Yvm+RHGP3A4pTyJPgO3w+jOGPOUMV3dX9R/TX5IU8luIwo+G2zgi27H/Z9q7JLkHBSnp5EldfvFFnW/fXlE9eujGihUy2dmpWK9ecr7lw73ChteeceQq96Xk06+CgpEwBUhAQIC8vLwkpU7BiYqK0qFDh7RoUeqcyVGjRmVYQfzgwYMKCQlRZGSk4uPjZTabLcP5/rvGS+3atXXs2DGNHDlSQ4YMkb+/f4YiTmYWLVqkt956S56enpo1a5Zq1KiR7vylS5d05MgReXl5qV69eple48EHH9SGDRt04MCBDNONjOjSJeN80TJlyqhx48basmWL9uzZI+9btk00m83atWuXdu/erQsXLighIUFms1nXr1+XlDE3BV3akNDExJtZtomP/3cototL4dxClzwBtsPrzxjydO/s7O30+rSRKl2htK5evKrpb3xm65BsyuT87z1ivnlTV0aOlDk69Y/nlPPndW3KFNmXKaMiTZvKtU8fxf38s5RSkP6cMobXnnHkCgUdRZgCZNCgQWrcuHG6Y7GxsRo+fLjmz5+vlJQUvfXWW5Kk69evKygoSBs3bszyerH/WVhtxIgROnbsmDZs2KANGzbI1dVVdevWVUBAgAIDA1WiRIkM1zh37pzefPNNOTg46Jtvvkk3GiVN2iiUqKgo+fr63vY5Xrly5bbnM+Pu7i43N7dMz6UVXs6dO2c5FhUVpZdeekkHDhzI8pr/zU1BFxcXJ0lycnLMsk3Rov8OPb5xIy7XY8qLyBNgO7z+jCFP98ZkMunVj4LUoFUD3bh2Q+P7vaPL5y/bOiybMif8+8dw/Jo1lgLMra5//72KNG0qey8vOdx3n5JCQ60ZYp7Aa884coWCjiJMAVesWDGNHDlSW7Zs0aJFixQUFCR3d3d9+OGH2rhxo+rXr69hw4apRo0acnNzk6OjoxITE+Xv75/hWmXKlNGSJUu0c+dObdq0SXv27NHvv/+ubdu2acaMGfrqq69Up06ddI/x9PTU/fffr23btum9997T9OnTVeSWecKSlPLPpyHFixdX69atb/t8qlevfo8ZubMxY8bowIEDatOmjQYMGKBq1arJzc1N9vb2OnHihB555JFcjyGvSRsOWqJE1sM9PT3/LcJduZr18NGCjDwBtsPrzxjydG9envSyWgW2Utz1OL3d922F7i98xYT/SomJsXyfFBGRaZukW0YQ25crVyiLMLz2jCNXua8gbfecH1GEKQTS1mpJTk5WeHi4/P39tWbNGtnb2+uLL76Qu7t7uvYRWfwPVJLs7OzUpEkTNWnSRFLqyJTJkydryZIlmjBhgmXqUxonJyfNmDFDL730krZs2aIhQ4Zo+vTpKlq0qKVNuXLlJEmurq4KDg7Oked8q5iYGMXGxqpYsWIZzqWNwknbHenGjRvavHmzSpYsqWnTpqVbR0e6fW4KstDQ45JS19KpVMlbERFnMrSpVtVHUuqnF+Hhp60aX15BngDb4fVnDHnKvqHvD1O77u0VfyNe7/R9R0d2/mHrkPKE5FvfGyUmZt7o5i3TSgxMZS+IeO0ZR65Q0BXO34KFzK2FAxcXF0lSdHS0XF1dMxRgJGn16tWGr12iRAkFBQVJkkKz+FSjSJEimj59uh566CFt27ZNL7zwguLj4y3ny5Qpo/vuu09nzpy5q4V3HR1ThygmJSXdsW1mzykqKkohISEymUxq0KCBJOnatWtKSUlR6dKlMxRgJGnVqlWG4ytI9u0/bBka2qJFk0zbtGyZenzXrv2FdptA8gTYDq8/Y8hT9gyZMEQdnu6ghLh4je8/vlDvhvRfKZcvK+mfD7Xsy5fPtM2tx1OioqwSV17Da884coWCjiJMARcbG6sPPvhAkuTj46OqVVO3fKtSpYpiYmK0cuXKdO03b96sr7/+OtNrff311zp//nyG42nryqSNaMmMk5OTpk2bptatW2vHjh0aNGiQ5ZerJA0dOlSSNHz48EzXYomNjdXixYvTFW9Kly4tSQoLC8uy3zSfffaZTpw4Yfk5ISFB48ePV2Jiolq3bq0KFSpISt26293dXaGhoQoJCUl3jaVLl+rHH3+8Y18F0Y0bcfr5l/WSpEEDnstw3snJSb17dZckLVpsvIhX0JAnwHZ4/RlDnu7eoLcHqWPvTkqIT9CEARN0cFvWa8YVVvHrU++pou3aSY4Z1/FI2xUp5do13Tx61Kqx5RW89owjVyjomI5UgMycOVPLly+XlLq7z8WLF3Xo0CHLqJfg4GCZTCZJ0pAhQ/Tqq69q5MiRWrBggSpUqKCIiAgdPHhQgwYN0syZMzNc/7PPPtP777+v6tWrq0qVKrK3t1d4eLj++OMPOTg4aMSIEbeNz8nJSVOnTtXw4cO1du1aDRo0SF988YVcXFz06KOPKiwsTFOnTlX37t1Vo0YN+fj4yM7OzjJC5ubNm+rQoYNlKlO9evVUqlQp/frrr3r22WdVqVIl2dnZqU2bNmrbtq2l3/Lly6tmzZrq0qWLmjRpIldXV+3Zs0cXLlxQ+fLlNW7cOEtbe3t7DR48WJMmTVKfPn304IMPysvLS6GhoQoNDc0yN4XBhHenqEvnDmrevJHee3e0xo6bpKSkJDk7F9WM6R+oalUfnTx5SrO//s7WodoUeQJsh9efMeTJuD5v9FXnvl2UEJ+gd/tP0P4t+20dUp50Y9EiuXTpIvsyZeQeFKSYKVOkfxbsLdq2rZwfe0xS6gK96aYmFTK89owjV7mr8O1PlreYzIzfyvfatGljWdvkVs7OzvL29lazZs3Ur1+/DCNVduzYoWnTpik0NFRJSUmqXr26nnnmGXXt2lW+vr7y9vbW+n8+2ZCklStXatu2bTp8+LAuXLigmzdvqmzZsqpXr5769OmTYevpzK4hSTdv3lRQUJB+/fVXNWzYUDNnzpSrq6skad++ffr222+1e/duXbp0SS4uLipTpozq1Kmjhx9+WC1btrQUkiTpyJEj+uijj3Tw4EHFxMTIbDZr6NChGjZsWLoY1qxZoy+++EKrV6/WmTNnLIsAv/zyy5ZtvW/1008/afbs2QoLC5OdnZ1q1qxpWaS3bdu2atSokebNm2dpHxISot69eyswMDDdujbLli3T6NGj08WUXQ5O3ndulMsGDnhO06a+J3t7e0VFXVJ4xGlVv6+KPDzcdeXKVbXv0F379zNHPr/kqapH1qPXrKFs+TJauX6+5WdHJwcVcyum5ORkxVy9Zjm+Z+cBvdj79kXegiy/5Cks+qzN+r5Vfnn92Vp+yNOjZevZtH/f+jU0ecVkSdKVqCs6ezIyy7a71+/W4s8WWyu0DGZVtf2ujY7+/ir+/vuyc3FRyvXrSo6IkF2JErIvW1aSFL9unaInTJBs+KeH9/a/bdZ3mvzw2ssr8kOukhIz/g2WHzxf+Qlbh5At35xcausQcgRFGCCfyAtFGElq2qShRox4Qc2aPigPDzedOxeln39Zr4nBn+rMmbzxR1hekB/yZOsijHfFctqw987DiEO27VGvroOtEFHelF/ylFeKMFL+eP3lBXk9T7Yuwvg18dfERRMNtV23eK2mjJiSuwHdRl4owkiSXenScn32WRVp1Eh2JUvKnJCgpL//VtwPP1imLNlSXijCSHn/tZeX5PVcUYSxLoowAKwqrxRhUHDYugiDgiUvFWFQMNi6CJOf5JUiTF6XV4owKDjyaxGml083W4eQLfPCl9k6hBzBwrwAAAAAAABWQBEGAAAAAADACijCAAAAAAAAWAFbVAMAAAAAUEiwKKxtMRIGAAAAAADACijCAAAAAAAAWAFFGAAAAAAAACtgTRgAAAAAAAqJFFaFsSlGwgAAAAAAAFgBRRgAAAAAAAArYDoSAAAAAACFhJnpSDbFSBgAAAAAAAAroAgDAAAAAABgBRRhAAAAAAAArIA1YQAAAAAAKCRSbB1AIcdIGAAAAAAAACugCAMAAAAAAGAFFGEAAAAAAACsgDVhAAAAAAAoJFJktnUIhRojYQAAAAAAAKyAIgwAAAAAAIAVMB0JAAAAAIBCwsx0JJtiJAwAAAAAAIAVUIQBAAAAAACwAoowAAAAAAAAVsCaMAAAAAAAFBIptg6gkGMkDAAAAAAAgBVQhAEAAAAAALACpiMBAAAAAFBImM1sUW1LjIQBAAAAAACwAoowAAAAAAAAVsB0JAAAAAAAUGDdvHlTISEh2rhxo0JCQnTq1CklJyerbNmyCggI0IABA+Tt7W2VWCjCAAAAAABQSKSo8K0Js2vXLvXv31+SVK5cOTVv3lySdPDgQS1YsECrVq3SrFmzVK9evVyPhSIMAAAAAAAosEwmkzp06KC+ffumK7QkJCTorbfe0rJlyzRixAitWbNGjo6OuRoLa8IAAAAAAIACq2nTpvr0008zjHQpUqSIxo0bJzc3N505c0b79u3L9VgowgAAAAAAgEKpaNGiqly5siTpwoULud4f05EAAAAAACgkUmwdQB6TnJysM2fOSJJKlSqV6/1RhAEAAAAAAHla27Ztb3t+3bp12bruypUrdfnyZXl6eqp+/frZusbdoAgDAIVUWPRZW4cAAFk6GnfO1iHkG97b+X1uROymybYOIV8o9tBrtg4BsJrTp0/r/ffflyS9+uqrcnJyyvU+KcIAAAAAAFBImPPpFtXZHemSldjYWL344ou6evWqHnnkEXXv3j1Hr58VFuYFAAAAAACFRkJCgoYMGaKjR4+qadOmmjRpktX6pggDAAAAAAAKhZs3b2rYsGHauXOn6tatq+nTp1tlGlIaijAAAAAAAKDAS0lJ0euvv65NmzapRo0amjlzplxcXKwaA2vCAAAAAABQSKTk0zVh7pXZbNaYMWP0888/q0qVKpo9e7Y8PDysHgcjYQAAAAAAQIEWHByspUuXqkKFCvrmm29UsmRJm8TBSBgAAAAAAFBgrV27VnPmzJEkeXt76+OPP860Xbt27dSuXbtcjYUiDAAAAAAAhYTZXPimI8XExFi+DwkJybKdt7c3RRgAAAAAAIDs6tatm7p162brMCSxJgwAAAAAAIBVUIQBAAAAAACwAqYjAQAAAABQSKTYOoBCjpEwAAAAAAAAVkARBgAAAAAAwAoowgAAAAAAAFgBa8IAAAAAAFBImGW2dQiFGiNhAAAAAAAArIAiDAAAAAAAgBUwHQkAAAAAgEIihelINsVIGAAAAAAAACugCAMAAAAAAGAFFGEAAAAAAACsgDVhAAAAAAAoJMxm1oSxJUbCAAAAAAAAWAFFGAAAAAAAACtgOhIAAAAAAIUEW1TbFiNhAAAAAAAArIAiDAAAAAAAgBVQhAEAAAAAALAC1oQBAAAAAKCQMLMmjE0xEgYAAAAAAMAKKMIAAAAAAABYAUUYAAAAAAAAK2BNGAAAAAAACokUM2vC2BIjYQAAAAAAAKyAIgyAu9KkcQMtWjhTZ07tV2zMcf19dIemfvqeypcva+vQ8hTyZBy5MoY8GUeujCFPt1eqdEl1efJRvTEhSN/9MEv7T25RaNRurd+zytah5VncU3eWkHhT367Zoefe+VLNh0xUo4ET1GXUVH30/a+Kjr1h6/DyHO4pFEQms7ngj0Vq06aNzpw5k+6YyWSSh4eHfH191b17dz322GNWj8vX11fe3t5av3691fu2dgwhISHq3bu3AgMDFRwcbDm+bNkyjR49WkOHDtWwYcMyHL9VkSJFVKxYMZUrV061a9dWhw4d1KxZM5lMplyN3YhevXpp586dWrdunSpUqJArfTg4eefKde9Gv75Pa8b092Vvb6+oqEsKjzit6vdVkYeHuy5fvqJ2D3fXwYNHbB2mzZEn48iVMeTJOHJlTH7IU1WPcjbt//nBT+v/JozIcPx0RKTaNOhig4iyFhZ91tYh5It7KnbTZJv2fzX2hgZPmqu/ws9JkiqV8ZSbS1EdP3NB8YlJ8ipeTF+N6iufsiVtGmexh16zaf9p8sM9lZR45s6N8qAW3m1tHUK2bDmzztYh5IhCNRImICBAgYGBCgwMVMeOHVWxYkWFhIRoxIgRevvtt20dXo5btmyZfH19NXXqVFuHkm2lSpWy/Js9/PDD8vPz0+XLl7Vw4UL169dPXbt21dGjR20dZqHg51dD0z8Llr29vT6YNE0VfeqrSdOOqlCpnuYvWCpPzxJasmiWnJycbB2qTZEn48iVMeTJOHJlDHkyJvbadW3fFKKZn87RsH7/08Q3P7Z1SHkW95QxY75crr/Cz8nT3VXzxvTX6vdf1oJxg7Tuk9f0SGM/RV2N1fBPv1NScrKtQ7U57ikUZIWqCDNo0CAFBwcrODhYH330kZYsWaLPP/9cJpNJCxYs0JEjfDKW11StWtXybzZ58mTNnDlTGzZs0LJly9SoUSP99ddfevbZZ3X8+HFbh1rgvTkmSA4ODtq2bafe+L+JSkpKkiTFxcVr4KDXFBYWrqpVfdTn+R42jtS2yJNx5MoY8mQcuTKGPBmzdMEq9XnyJU0eP01rVq/ThXNRtg4pz+KeurNjZy5oy4G/JUmv9eygOvdVtJwr5lxUb/XrojKe7gqLvKjV2w7YKsw8g3sKBVmhKsJkpnXr1mrQoIEkaefOnTaOBkbVrl1bc+bMUbNmzXTt2jW98cYbtg6pQHNxcVbHR9tIkr74cl6G84mJiZo7b5EkqUf3vDVE25rIk3HkyhjyZBy5MoY8IadxTxmz92i4JMnOZFL7B2tlOO9cxEkP1b1fkvTz74esGltewz2Fgq7QF2EkqWTJ1HmXybcM/YuPj9fixYs1dOhQtW/fXg888IDq1aunJ554QnPmzLFUY//r4MGDeuWVV9S2bVv5+/urcePG6ty5s8aNG6eTJ08aiufcuXPq1KmTfH199cknn6Q7t337dr3wwgtq2rSp/Pz81KpVK40dO1bnz59P165Xr16WNVWmTZsmX19fy1dm05OSkpL0+eefq0OHDvL391dAQIDGjh2rS5cuZWgbHR2tb7/9VgMGDFCbNm3k7++vhg0b6umnn9ayZcsMPcecYG9vr7Fjx8pkMmn//v3av3+/5dzp06fl6+urXr16ZfrYkJAQ+fr6atSoUemO3zqF6/z58xo9erSaN28uf39/Pfroo5o7d+5dxZiYmKhXXnlFvr6+GjBggG7cyJ8LrtWr6ydnZ2dJ0pYtv2faZvPm1OONGtXLE+v02AJ5Mo5cGUOejCNXxpAn5DTuKWOiY+MkScXdXOTk6JBpm7KeHpKkA8dOKyUlxWqx5TXcU7kvReZ8+VVQFPoiTFJSkv78809JUrVq1SzHIyIiNGbMGO3bt09lypRRmzZtVK9ePZ08eVITJ07U0KFD9d81jTdt2qSePXvql19+UfHixdWuXTvVq1dPkvT999/rwIE7Dy08duyYevToobCwMI0bN06vvPKK5dyUKVPUt29fbdmyRT4+PmrTpo3c3Ny0cOFCdevWTWFhYZa2LVq0UP369SVJNWrUsKyrEhgYqJo1a6br02w265VXXtFnn32mihUrqm3b1IWaFi5cqKeeeipDgWfv3r0aP368jh07pooVK6p9+/aqVauWDh8+rNGjR1t1fZ0qVaqodu3akqQdO3bk2HUjIyP1xBNPaMeOHXrwwQdVv359nTp1Su+++64+++wzQ9eIjY3VgAED9Msvv+jxxx/X559/LhcXlxyL0ZqqV68qSUpISNCpU5GZtjkelvoJj7Ozs3x8cmdx4ryOPBlHrowhT8aRK2PIE3Ia95Qxbi5FJUlXr91Q4s3MP8w9dzlakhSfeFORl6KtFltewz2Fgi7zMmwhkJiYqFOnTmnGjBmKiIhQrVq11KJFC8v5UqVKafbs2WratKns7P6tVcXExCgoKEgbNmzQTz/9pE6dOlnOzZo1S8nJyZoyZYoeffTRdP2dOnXqjjHt2bNHQ4YMUVxcnKZMmaIOHTpYzv3666+aMWOGfHx8NG3aNN1///2Wc99//73GjRun0aNHa+HChZJS178pVaqU9u7dq3bt2qXbeei/IiMjlZiYqBUrVlgKUQkJCQoKCtLatWs1fvx4TZs2zdK+WrVq+u677yxFnjRRUVEaOHCgFixYoMcff1x169a943POCTVr1tThw4d17NixHLvmsmXL1LNnT7355ptycEh9mezZs0fPPfecZs2apb59+962oHLhwgUNHDhQf/31l/r166eRI0fm6yq9p2dxSdKVK1m/Ibh8+Yrl+xLFPXRSd77nCxryZBy5MoY8GUeujCFPyGncU8b4V0vd5TLFbNa6PX/q0Sb+6c7HJ97U5v2hlp+vXY+TvEpYNca8gnsKBV2hGgnTu3dvy5Qcf39/dezYUT/88IOeffZZzZ07V/b29pa2np6eat68eboCjCS5u7trzJgxkqQ1a9akO3f58mVJUvPmzTP0XbFiRVWsWDHD8TRr165Vv379lJKSoq+++ipdAUaSZsyYIUl6//330xVgJKlnz55q3bq19u/fbxnVc7defPHFdCOBihQporFjx8rJyUlr165Nt8V3pUqVMhRgJMnLy0uvv/66pIy5yU0lSqT+Dyo6Ouc+MShfvrzeeOMNSwFGkho0aKAWLVroxo0bOnz4cJaPPXHihHr27KmjR49q1KhR+t///pevCzCSLENCExNvZtkmPj7B8r2Li3Oux5QXkSfjyJUx5Mk4cmUMeUJO454ypnYVbz1wX+qIjUkLftHOP09YzsVcj9MbXyzTucsxlmNxt8lnQcc9lftsPa2osE9HKlQjYQICAuTl5SUpdQpOVFSUDh06pEWLUhd2GjVqVIZtzg4ePKiQkBBFRkYqPj5eZrPZMg3pv2u81K5dW8eOHdPIkSM1ZMgQ+fv7ZyjiZGbRokV666235OnpqVmzZqlGjRrpzl+6dElHjhyRl5eXZXrTfz344IPasGGDDhw4kGG6kRFdumRc1KpMmTJq3LixtmzZoj179sjb29tyzmw2a9euXdq9e7cuXLighIQEmc1mXb9+XVLG3OSmtH+PnCx0NG7cWEWKFMlwvGrVqtq0aZMuXLiQ6eMOHjyod955R7Gxsfrggw8yzWt+FBeXOo/ZyckxyzZFi/6brxs34nI9pryIPBlHrowhT8aRK2PIE3Ia95Rx7w1+QgOD5yjyUrQGvv+NvIq7yaOYs8LPXdLNpGQ92aqBlmzcI0kq5pzxfWhhwT2Fgq5QFWEGDRqkxo0bpzsWGxur4cOHa/78+UpJSdFbb70lSbp+/bqCgoK0cePGLK8XGxub7ucRI0bo2LFj2rBhgzZs2CBXV1fVrVtXAQEBCgwMtIzYuNW5c+csU16++eabdKNR0qSNQomKipKvr+9tn+OVK1duez4z7u7ucnNzy/RcWuHl3LlzlmNRUVF66aWXbrvGzX9zk5vSnrOHh0eOXbNcuXKZHnd1dZWUOp0tM6+//rqSkpI0YcKEAlOAkf4dDlqiRNY59vT89/6+crVwzmMmT8aRK2PIk3HkyhjyhJzGPWVcBa8S+v7twZr7yw6t3/uXzkRd0Y34BNWrXkl9OjaXm3MRSxGmlEfm780LA+4pFHSFqgiTmWLFimnkyJHasmWLFi1apKCgILm7u+vDDz/Uxo0bVb9+fQ0bNkw1atSQm5ubHB0dlZiYKH9//wzXKlOmjJYsWaKdO3dq06ZN2rNnj37//Xdt27ZNM2bM0FdffaU6deqke4ynp6fuv/9+bdu2Te+9956mT5+eYQRG2uroxYsXV+vWrW/7fKpXr36PGbmzMWPG6MCBA2rTpo0GDBigatWqyc3NTfb29jpx4oQeeeSRXI/hVmlTsP47Tet27rTivJERTJnp3Lmzli9frhkzZqhJkya3nYKWn4SGHpeUOk2tUiVvRUScydCmWlUfSamfXoSHn7ZqfHkFeTKOXBlDnowjV8aQJ+Q07qm741HMRcOebKthT7bNcG7ZptQCTPmSHvJ0d7V2aHkG9xQKukJfhJFk+UM5OTlZ4eHh8vf315o1a2Rvb68vvvhC7u7u6dpHRERkeS07Ozs1adJETZo0kZQ6SmPy5MlasmSJJkyYYJn6lMbJyUkzZszQSy+9pC1btmjIkCGaPn26ihYtammTNirD1dVVwcHBOfKcbxUTE6PY2FgVK1Ysw7m0UThlypSRJN24cUObN29WyZIlNW3atHTr6Ei3z01uCAsL05EjRyTJknNJcnRMHb6YNj3qv86ePZsr8QwdOlTe3t6aNm2aevfurblz5xaIQsy+/YcVFxcnZ2dntWjRRPPnL83QpmXL1Pzv2rU/w85hhQV5Mo5cGUOejCNXxpAn5DTuqZyzfu9fkqTW9WvcoWXBxj2V+8iZbRWqhXmzcmvhIG3Hm+joaLm6umYowEjS6tWrDV+7RIkSCgoKkiSFhoZm2qZIkSKaPn26HnroIW3btk0vvPCC4uPjLefLlCmj++67T2fOnLmrhXfTChFJSZlvg3erzJ5TVFSUQkJCZDKZ1KBBA0nStWvXlJKSotKlS2cowEjSqlWrDMd3r5KTk/XOO+/IbDarQYMG6UYZlShRQo6Ojjp16pRu3sy4qNfWrVtzLa5hw4bp5ZdfVmRkpHr16mX1wlRuuHEjTj//sl6SNGjAcxnOOzk5qXev7pKkRYuNvz4KGvJk7ChqsgAAptNJREFUHLkyhjwZR66MIU/IadxTOWPXnye09eDfcnSwV892jWwdjk1xT6GgK/RFmLQFVCXJx8dHVaum7ktfpUoVxcTEaOXKlenab968WV9//XWm1/r66691/vz5DMfT1pXJap0RKfWXybRp09S6dWvt2LFDgwYNsixKJaWOsJCk4cOHZ7oWS2xsrBYvXpyueFO6dGlJqaNF7uSzzz7TiRP/rtKekJCg8ePHKzExUa1bt1aFCqmruZcqVUru7u4KDQ1VSEhIumssXbpUP/744x37ygl//PGH+vTpox07dsjDw0PvvvtuuvNOTk6qV6+eYmJiMvx7LVmyRD/99FOuxvfSSy8pKChIZ8+eVa9evRQeHp6r/VnDhHenKCkpSc2bN9J774627Bzl7FxUM7+YrKpVfXTy5CnN/vo7G0dqW+TJOHJlDHkyjlwZQ56Q07injDkcdkYb9/2lm0nJlmPJKSn6+fdDevXT72U2Sy91a61KZUraMMq8gXsKBVmhmo40c+ZMLV++XFLqEKyLFy/q0KFDllEvwcHBlh12hgwZoldffVUjR47UggULVKFCBUVEROjgwYMaNGiQZs6cmeH6n332md5//31Vr15dVapUkb29vcLDw/XHH3/IwcFBI0aMuG18Tk5Omjp1qoYPH661a9dq0KBB+uKLL+Ti4qJHH31UYWFhmjp1qrp3764aNWrIx8dHdnZ2lhEyN2/eVIcOHSxTmerVq6dSpUrp119/1bPPPqtKlSrJzs5Obdq0Udu2/85DLV++vGrWrKkuXbqoSZMmcnV11Z49e3ThwgWVL19e48aNs7S1t7fX4MGDNWnSJPXp00cPPvigvLy8FBoaqtDQ0Cxzk11hYWEaNWqUpNSRL9euXVNoaKhlmlStWrX0wQcfqEqVKhkeO2zYMPXt21cffvih1qxZI29vbx07dkzh4eHq27evZs+enWNxZmbw4MGys7PT5MmT9dxzz2nu3LmZxplfHDx4RMNe/j9Nm/qeRr4+VH37PK3wiNOqfl8VeXi468qVq3qye/8sFy0uLMiTceTKGPJkHLkyhjwZU7Z8Ga1cP9/ys6NT6tvmct5lFPLXWsvxPTsP6MXet3+PV9BxTxlz/MwFjf1qpYo4OqhcSQ+5OhfRqQuXFXM9XnYmkwY//pD6dgywdZh5AvcUCrJCNRJm69atWr58uZYvX64VK1Zoz5498vLyUu/evfXjjz+qfv36lrYdO3bUnDlz1LBhQ4WFhWn9+vUymUx6//33syymvPnmm+rSpYuSk5O1fft2rV+/XtevX1dgYKCWLl2qdu3a3TFGR0dHTZkyRQ8//LB27typgQMHWtY1eemll/Tdd9/pscce09WrV7V+/Xpt375d8fHxevzxxzVz5sx0uxw5OTnpyy+/VIsWLfT3339r+fLlWrJkiWUNlTQmk0mffPKJBg8erIiICK1du1Zms1ndu3fXokWLVLZs2XTtBwwYoI8//li1a9fW4cOHtWnTJhUvXlwzZ85Ujx49DP97GHHx4kXLv9kvv/yiAwcOqESJEurZs6dmz56tZcuWZbkYcaNGjTRr1iw1aNBAx48f19atW1W6dGnNnTtXrVq1ytE4szJw4ECNGjVKFy5cUK9evQyNSsrLvpz1rVq17qYVK3+W2WyWv18NXb0ao8+/mKu69dtp//4/bB1inkCejCNXxpAn48iVMeTpzuzt7VSiZHHLVzG3Yv8ct0933M0945p6hRH31J3VqVZBT7RqoAqlS+hSdKz+PnVexYoWUZeAupo/bqBeDLz9BhyFDfdU7kmROV9+FRQmM6vyAPmCg5O3rUMAAMBqqnpkPY0b6YVF586GAwVN7KbJtg4hXyj20Gu2DiHfSErMuHNTftCo/EO2DiFbdkZusnUIOaJQjYQBAAAAAACwlUK1JgwAAAAAAIWZuQBN7cmPGAkDAAAAAABgBRRhAAAAAAAArIAiDAAAAAAAgBWwJgwAAAAAAIUEGyTbFiNhAAAAAAAArIAiDAAAAAAAgBVQhAEAAAAAALAC1oQBAAAAAKCQSBFrwtgSI2EAAAAAAACsgCIMAAAAAACAFTAdCQAAAACAQoItqm2LkTAAAAAAAABWQBEGAAAAAADACijCAAAAAAAAWAFrwgAAAAAAUEiwRbVtMRIGAAAAAADACijCAAAAAAAAWAHTkQAAAAAAKCTMTEeyKUbCAAAAAAAAWAFFGAAAAAAAACugCAMAAAAAAGAFrAkDAAAAAEAhkWJmTRhbYiQMAAAAAACAFVCEAQAAAAAAsAKKMAAAAAAAAFbAmjAAAAAAABQSZrEmjC0xEgYAAAAAAMAKKMIAAAAAAABYAdORAAAAAAAoJNii2rYYCQMAAAAAAGAFFGEAAAAAAACsgCIMAAAAAACAFbAmDAAAAAAAhQRbVNsWI2EAAAAAAACsgCIMAAAAAADA/7N352E1p/0fwN+nVYkoQvYklWwTSqlIzNgLiYyYyTK2sY0ZjbEPhjH2fWwxmYRKZMkSkqVI9uyJokRKpOV0fn/06zyathM535Pzfl3Xcz3O93uf8XZfR875nPv+3HLA7UhERERERERESoJHVAuLK2GIiIiIiIiIiOSAK2GIiJSUkW4doSNUCA9TnwkdgUgp8e8elTcdh5+EjlAhpJ9eKnQEoi8aV8IQEREREREREckBV8IQERERERERKQkeUS0sroQhIiIiIiIiIpIDFmGIiIiIiIiIiOSARRgiIiIiIiIiIjlgTxgiIiIiIiIiJZErYU8YIXElDBERERERERGRHLAIQ0REREREREQkB9yORERERERERKQkeES1sLgShoiIiIiIiIhIDliEISIiIiIiIiKSAxZhiIiIiIiIiIjkgD1hiIiIiIiIiJSERJIrdASlxpUwRERERERERERywCIMEREREREREZEccDsSERERERERkZLI5RHVguJKGCIiIiIiIiIiOWARhoiIiIiIiIhIDliEISIiIiIiIiKSA/aEISIiIiIiIlISEgl7wgiJK2GIiIiIiIiIiOSARRgiIiIiIiIiIjlgEYaIiIiIiIiISA7YE4aIiIiIiIhISeSCPWGExJUwRERERERERERywCIMEREREREREZEccDsSERERERERkZLgEdXC4koYIiIiIiIiIiI5YBGGiIiIiIiIiEgOWIQhIiIiIiIiIpID9oQhIiIiIiIiUhK57AkjKK6EISIiIiIiIiKSAxZhiIiIiIiIiIjkgEUYIiIiIiIiIiI5YE8YIiIiIiIiIiUhAXvCCIlFGAXk6OiI+Pj4AtdEIhF0dXXRrFkzDBw4EL169RIoXdnl/3nu3Lkj83OePn2KLl26FLpeuXJlGBkZoVu3bhg2bBg0NTXLMyrJwNrKElOmjIatTXvo6lbBs2dJOHI0FIv+WIWEhOdCx1MYnKfS1TDQh419e1i0NkOL1uYws2gG7cpaeBqXAEfLPkLHUzh8TcmOcyUbzpNsOE+y41zJhvMkm8ysbOwJvYQjF2/g0bNkZOeIUVtfF51aN4Nnr47Q1dEWOiLRRxFJJGyNrGjyixYdO3ZEzZo1AQBZWVmIi4vD9evXAQDu7u6YPXu2kDFl9qlFGBcXFwBAbm4unj59iujoaIjFYjRv3hw7duyAjo7OZ8mtaNQ06godAd9/Nxjr1y2GqqoqXrx4icdxT9HUuDF0davi1asUOHUbiGvXbgkdU3AVZZ6MdOsI+vsPGz0YM36fWui6ohVhHqY+EzpChXlNKQLOlWw4T7LhPMmOcyWbijBP6aeXCvr7A8Dr9HcY/ecOxDzOK0o1qKWHKtqV8CA+Ce+zclCzmg62TP8ODWvrC5qzUofBgv7+H6t2NTOhI3yU569vCx2hXLAnjAIbNWoU/vjjD/zxxx9YtmwZ9u7diw0bNkAkEmHXrl24dUs5/iHLn4MlS5Zg165d8PPzg46ODm7evImNGzcKHU9pWFiYYt3aP6Cqqoolf65B/YZfwbpDD9Rr0AY+u/ZBT6869vpthoaGhtBRBcV5kl36m7c4d/oiNq3ajgnf/4JFM5cLHUkh8TUlO86VbDhPsuE8yY5zJRvOk+x++zsAMY+fQ69qZez8zRMHFv+IXbNH4cTKn/CNlQVevE7HpFX/IkcsFjpqhSSRSCrk/74ULMJUMJ07d4alpSUAICIiQuA0wrCwsMB3330HAAgJCRE4jfKY+dsUqKmpITw8Ar/OWIScnBwAQEbGe4wc9RMePnwMI6OGGD7MTeCkwuI8yW7friAMHzAOS+evwdEDJ5D0/IXQkRQSX1Oy41zJhvMkG86T7DhXsuE8yeZ+fBLCrt4DAPw06Gu0NK4vvaejVQlzvu+DWnpV8TAhGQfCrwoVk+ijsQhTAenr5y27ExdR+b1+/TomT54MOzs7WFhYoGPHjpg6dSoePHhQaOzFixfRrFkzTJ8+HW/evMHvv/8OBwcHWFhYoEuXLli1apX0H4f/EovF2LdvHzw8PNC+fXu0aNECjo6OGD9+PE6dOlVs9sDAQPTr1w+tWrVC+/btMWHCBDx+/LjMc2Bubg4ABXrnTJ8+Hc2aNcPFixdx7tw5fP/992jfvj2aNWuG27f/t3StLHMEAOHh4Rg1ahQ6deoECwsLdOjQAS4uLli0aBGSk5MLjL127RomTpyILl26oEWLFrCyskLv3r0xe/ZsxMbGlvnPqSi0tbXQo7sjAGDj3zsL3c/KysKOnX4AALeBirONRN44T1Te+JqSHedKNpwn2XCeZMe5kg3nSXZRd/I+G6iIROjazrzQfS1NDTi0NgEAHL5wXa7ZiMoDG/NWMDk5OdKCQpMmTQrc2717N+bOnSvtl/LVV18hPj4eBw8exMmTJ/H333+jbdu2hf6baWlpcHNzQ0pKCtq2bYv379/j0qVLWLt2LZ4/f46FCxcWGP/+/XuMGTMG586dg4aGBr766ivo6+vj2bNnCA8PR2pqKjp16lTo91m2bBm2bNkCS0tLdOrUCTdu3EBISAiioqJw4MAB6OnpyTwP6enpAFDkcs3g4GD4+fnB1NQUdnZ2ePbsGUQi0UfNka+vL2bPng0VFRW0adMGX331Fd68eYO4uDhs374dXbt2RY0aNQAAp0+fxpgxYyAWi2FhYYGWLVsiIyMD8fHx8PX1xVdffYVGjRrJ/GdUJG1aW0BLSwsAEBZ2ocgxZ87kXW/fvg1EItEXtWRQVpwnKm98TcmOcyUbzpNsOE+y41zJhvMku9T0DABAtSra0FAv+uNqbT1dAMDV+0+Rm5sLFRWuLaCKg0WYCiIrKwtPnjzB+vXrERcXB3Nzc9jZ2UnvX7t2DXPnzkWVKlWwbt066ZYlAAgNDcX48eMxbdo0hISEQF1dvcB/+8SJE+jcuTP27dsn/cfh0aNH6N+/P/z9/TF27FjUq1dPOn7hwoU4d+4cmjdvjrVr16JOnf8190xPT5c2D/6v3bt3Y9++fTA1NZX+mX788UeEhoZi165dGD9+vMzzcfLkSQCAmVnhplK7d+/GokWL0K9fvwLXP2aONm3aBJFIhN27d6Nly5YF/nt3794tUDjavHkzxGIxVqxYge7duxcY++TJE5n/bIqoaVMjAEBmZiaePEkocsyDh3nfWmhpaaFhw3qIja3Yf+aPwXmi8sbXlOw4V7LhPMmG8yQ7zpVsOE+yq6JdCQDw+s07ZGXnFFmIef4qFQDwPisbCS9TUa9mdblmrOhyeUS1oFgyVGAeHh5o1qwZmjVrhhYtWqBHjx44ePAghgwZgh07dkBVVVU6dtOmTRCLxZg5c2aB4gKQ10dm8ODBSEhIwOnTpwv9Ptra2liwYIG0AAMAjRs3Rt++fSGRSBAZGSm9npSUhH379kFdXR1r1qwpUIABAB0dHXTo0KHIP8+PP/4oLcAAeatYxo4dCyBva1RpcnNz8eTJEyxevBiHDx8GAAwZMqTQuI4dOxYqwAAfN0evXr1ClSpVChVgAMDExES6CiZ/LADY2toWGlu/fn3Ur1+/0PWKQk+vGgAgJSW12DGvXqVIf129mu7njqSQOE9U3viakh3nSjacJ9lwnmTHuZIN50l2LZrknQiaK5HgxOXCp+G8z8rGmei70sdv3mbILRtReWARRoF17NgRLi4ucHFxgbOzM2xtbVGlShX4+flh+fLlyMrKApBXnAgPD4eamhocHR2L/G/lb7G5erVw8yoLCwtpn5kPGRnlVeyTkpKk1yIiIpCTk4MOHTrA0NCwTH8eBwcHmX6P/8ovRJmZmcHJyQlbt26FqqoqJk+ejB49ehQa7+TkVOjax85R8+bNkZaWBi8vr1KP2G7evDkA4Oeff8bVq1eRm5tb4viKJL9Al5WVXeyY9+8zpb/W1tYqdtyXjPNE5Y2vKdlxrmTDeZIN50l2nCvZcJ5k17xxXbQyzluF/+euI4i4/Uh6L+1tBn7d6I/nr9Kk1zJKmFMiRcTtSAps1KhRsLKyKnAtPT0dkyZNgo+PD3JzczFnzhykpKTg3bt3AIA2bdqU+N9MSUkpdO2/q1nyVa5cGQCkxR4ASEjIWz75Mb1Niira6OjoAACys4v/4eni4gIAEIlE0NbWRuPGjdGlS5dicxf1+3zsHM2ePRvjx4+Hv78//P39Ua1aNbRp0wYODg7o27cvtLW1pWOnTp2K+/fvIzQ0FKGhoahcuTJat24tLaZVr15xl0lmZOR9w6ChoV7smEqVNKW/fvdOOb+R4DxReeNrSnacK9lwnmTDeZId50o2nKeyWTi6P0b+sR0JL1MxcrE3alarAl0dLTx+/hLZOWIM6GSJvacuAwB0tDRL+a/RfylrvyFFwSJMBaOjo4Off/4ZYWFh8PPzw5QpU6QrLjQ0NNCzZ88Sn9+qVatC1+TVyOpjf58//vijTOMrVapU6NrHzpGJiQkOHjyIc+fOISwsDJcuXcKpU6cQGhqK9evXw8fHR7rNqFatWti7dy8iIiJw+vRpXL58GRcuXEB4eDjWr1+PLVu2FLmtqSLIXzpbvXrxS2P19P5XZEp5XfxS2y8Z54nKG19TsuNcyYbzJBvOk+w4V7LhPJVNvZrV4Tt3NHYcOY+TUTGIf5GCd+8z0aZpAwzvYYsqWprSIkwN3SoCpyUqGxZhKqD8D/1isRiPHz+GmZkZNDU1kZubi/nz5xdqvFue8leZVLTjlqtXr/7Rc6ShoYFOnTpJT3x6/vw5Zs+ejVOnTmHZsmVYvny5dKyKigqsra1hbW0NIG9VzdKlS7F37178/vvv8PPzK9c/l7zcvZt3fLempiYaNKiLuLj4QmOaGDUEkPdNz+PHT+WaT1Fwnqi88TUlO86VbDhPsuE8yY5zJRvOU9np6mhjwoAumDCgS6F7/qfzCjCG+rrQq1pZ3tGIPgl7wlRAcXFx0l9ra2tDTU0N1tbWyM7OLrLxbnmysrKCmpoazp8/j2fPnn3W36s8lecc1a5dG+PGjQOQd0JSSapXr44pU6bINFaRXYm+IV1Ga2dnXeQYe/u865GR0Uq7xJHzROWNrynZca5kw3mSDedJdpwr2XCeytfJqBgAQOevTEsZSaR4WISpYNLT07FkyRIAQMOGDaWNbceOHQtVVVXMnj0bZ86cKfS8zMxMHD58GM+fP/+k379mzZro378/srOzMX78eCQmJha4//btW5w/f/6Tfo/PpaxzlJGRAW9vb7x+/brQ2PxCzod9abZt21ZoPgDg1KlThcZWNO/eZeDwkbxjwUeN+LbQfQ0NDXgMHQgA8NtzQK7ZFAnnicobX1Oy41zJhvMkG86T7DhXsuE8lZ/I249w9to9qKupYpBTe6HjVEi5EkmF/N+XgtuRFNimTZsQEBAAIK95UnJyMq5fv47U1FRUrlwZf/zxB0QiEQCgdevWmDdvHubMmYORI0fCyMgIjRs3RqVKlfDs2TPcvn0bGRkZCAwMRO3atT8pl5eXFx49eoSIiAg4OTnB0tIS+vr60t/HwsKi2GOqhVTWOcrOzsbChQuxZMkSmJqaokGDBsjNzcW9e/fw4MEDaGtrY8KECdL//tq1a7F48WI0bdoUjRs3hqqqKh4/foybN29CTU0NU6dOFfBP/+l+X7ACfXp/DVvb9li4wAuzZv+JnJwcaGlVwvp1S2Bk1BCxsU+wddu/QkcVFOeJyhtfU7LjXMmG8yQbzpPsOFey4TzJ7sbDeCSnvoFti6ZQV1MFAIhzcxEScRMLvA9CIgHG9euMBrUKn/BKpOhEEq51UziOjo6Ijy+8T1RLSwt169aFjY0Nvv/++yJXVty7dw/e3t64cOECEhMToaGhAQMDA5ibm6Nr165wdHSEhoYGAODixYvw8PCAi4tLkc1v/f394eXlhfHjxxcoNgBATk4O9u7di/379+POnTvIzs5GzZo1YWFhgQEDBsDe3r7Qn6e4I56bNWuGunXr4uTJk9JrT58+RZcuefs/SzsaOt/06dMREBCAHTt2FDpV6mPmKCcnB35+frh48SJiYmKkx2jXqVMHHTp0wPDhw6X9eQBg//79CA8Px40bN5CUlITs7GzUrl0bbdq0wfDhw2Fq+mnLJdU06n7S88vDyBHfYs3qhVBVVcWLFy/xOO4pmho3hq5uVaSkvEbXrwciOvqm0DEFV1HmyUhX2NVZtQ1rYf9JH+ljdQ016FTRgVgsRtrrN9LrlyOuYqyHcEXMh6nCb72sKK8pRcC5kg3nSTacJ9lxrmRTEeYp/fRSQX9/ANgfdgWztuyHproa6ujrorKWJp4kvULa2/dQEYkwso89xrp0FjomKnUYLHSEj6JXpanQET7Kqzf3hI5QLliEIaogFKEIAwAdrNti6tQfYNOhHXR1q+D58xc4fOQkFv2xCvHxwn9YVRQVYZ6ELsLUrV8HoVGlL7m+GH4ZQ51HyyFR0RShCANUjNeUouBcyYbzJBvOk+w4V7JR9HlShCLMo4QX2BlyAdH34pD0Kg2Z2TmooauDtmaNMdipPcwbGQodEQCLMPLGIgwRyZWiFGHoyyF0EaaiUJQiDBERkTwoQhGmoqioRZjqOsZCR/goKen3hY5QLtiYl4iIiIiIiIhIDliEISIiIiIiIiKSA56ORERERERERKQkcsGOJELiShgiIiIiIiIiIjlgEYaIiIiIiIiISA5YhCEiIiIiIiIikgP2hCEiIiIiIiJSEhIJe8IIiSthiIiIiIiIiIjkgEUYIiIiIiIiIiI54HYkIiIiIiIiIiWRy+1IguJKGCIiIiIiIiIiOWARhoiIiIiIiIhIDliEISIiIiIiIiKSA/aEISIiIiIiIlISErAnjJC4EoaIiIiIiIiISA5YhCEiIiIiIiIikgMWYYiIiIiIiIiI5IA9YYiIiIiIiIiURK6EPWGExJUwRERERERERERywCIMEREREREREZEccDsSERERERERkZKQcDuSoLgShoiIiIiIiIhIDliEISIiIiIiIiKSAxZhiIiIiIiIiIjkgD1hiIiIiIiIiJSEBOwJIySuhCEiIiIiIiIikgMWYYiIiIiIiIiI5IDbkYiIiIiIiIiUBI+oFhZXwhARERERERERyQGLMEREREREREREcsDtSERERERERET0xcvKysK2bdsQFBSEJ0+eQFtbG23btsWYMWPQvHlzuWRgEYaIiIiIiIhISShrT5isrCx4enoiIiIC+vr66Ny5M168eIFjx47h1KlTWL9+Pezs7D57DhZhiIiIiIiIiOiL9vfffyMiIgItWrTA9u3boaOjAwA4ePAgpk6dimnTpuH48ePS658Le8IQERERERER0RcrJycHO3bsAADMnj27QKGlV69ecHBwQEpKCvbt2/fZs7AIQ0RERERERERfrKioKLx+/Rr16tVDixYtCt3v0aMHAODEiROfPQu3IxEREREREREpCWXsCHP79m0AKLb5rrm5OQDgzp07nz0LV8IQERERERER0RcrISEBAFC7du0i7+dff/36Nd6+fftZs3AlDBEREREREREptC5dupR4v6StRO/evQMAaGlpFXlfW1tb+uu3b9+icuXKH5FQNizCEFUQOVnxQkcgIiIiIqIKrqJ+riitCFNRsAhDRERERERERArtU5rm5q90ycjIKPJ+/koZAJ91FQzAnjBERERERERE9AUzNDQEADx//rzI+/nXq1WrxiIMEREREREREdHHMjMzAwDcvHmzyPu3bt0CADRr1uyzZ2ERhoiIiIiIiIi+WF999RWqVauGp0+f4vr164XuHzp0CIB8+s6wCENEREREREREXyw1NTV4eHgAAObOnYv09HTpvYMHD+L06dOoXr06+vfv/9mziCQSieSz/y5ERERERERERALJysqCp6cnIiIioK+vj3bt2iE5ORmXLl2Curo61q1bB3t7+8+eg0UYIiIiIiIiIvriZWVlYevWrQgKCsKTJ0+gra0NS0tLjBs3Ds2bN5dLBhZhiIiIiIiIiIjkgD1hiIiIiIiIiIjkgEUYIiIiIiIiIiI5YBGGiIiIiIiIiEgOWIQhIiIiIiIiIpIDFmGIiIiIiIiIiOSARRgiIiIiIiIiIjlgEYaISAC5ublCRxBMfHy80BGIiIiIiATBIgwRUTnZs2ePTONyc3Px008/feY0iqtr164YNWoUTp48CYlEInQcIiIiIiK5EUn4DpiIZPDixQvs3bsXly5dwvPnzwEAtWrVQrt27dCvXz/UqlVL4ITCs7CwwOrVq9G5c+dix0gkEvz00084dOgQbt++Lcd0iqNjx45ITk6GSCRCrVq14OrqCldXVxgYGAgdjYiI6LN5//49KlWqJNPY2NhYNGrU6PMGIiJBsAhDRKU6cOAAZs+ejYyMjEIrF0QiESpVqoQ5c+agb9++AiVUDPb29khLS8O2bdvQpk2bQvdzc3Pxyy+/4MCBA7C0tISPj48AKYUnFotx4sQJ7N69G+fOnQMAqKqqonPnznBzc0PHjh0FTkhERFT+Ro0ahQ0bNkBFpeTNCLGxsfDw8MCZM2fklIyI5IlFGCIq0YULF/Ddd98BABwcHNCnTx/Uq1cPAPD06VMcOHAAp06dgkgkwpYtW9ChQwch4wrqzp07+Pbbb6GiooJdu3ahSZMm0nsSiQTTp0/H/v370aZNG2zZsgXa2toCplUMT548gZ+fHwICAqSrY+rVq4eBAweif//+0NPTEzqi4NasWSPTOA0NDVSrVg1mZmZo0aLFZ06l+J49e4akpCRkZWUVO6Zdu3ZyTKQ4AgMDZRqnrq4ufU0p69/F7OxsBAcHIyIiosTXk0gkgre3t5zTCUfWn0tFEYlEGDduXDmmqThMTU3h4uKCRYsWFTvmyZMnGDJkCF68eKG0K2YBIC4uDlevXkWbNm2k7zsB4Pr161iwYAHu3LmDunXrYsqUKXB0dBQwKVHZsQhDRCXy8PBAZGQk/vrrL/To0aPIMYcOHcKUKVNgZWWlVG9CixIZGYkRI0ZAT08Pvr6+qFWrFiQSCX799VcEBASgVatW2Lp1KypXrix0VIWSk5ODY8eOwc/PDxcuXAAAqKmpoVu3bhg0aJDSflgG8t60i0SiAtfy/+n+8LpEIpE+NjIywsKFC9GqVSv5BVUQ+/fvx5o1a/D06dNSxyrrB5yiXlMlEYlEsLW1xcyZM9GgQYPPmEyxvHz5EsOHD8f9+/dL7V8lEomU6vWU/xr6mI8RyjZXH5o4cSJCQkLg6elZZG+4J0+eYOjQoXj+/DmmT5+O4cOHyz+kgpgzZw52796N48ePo27dugCA169fo1u3bkhLS5OOU1NTg7+/P0xMTISKSlRmLMIQUYm++uormJiYwNfXt8RxgwYNwt27dxEVFSWnZIrr2LFjmDhxIoyMjLBz5078+eef8Pf3R4sWLbBt2zbo6OgIHVFhvX37FmvWrMG2bduk10QiEZo1a4apU6fCzs5OwHTCCAgIwLVr1/Dvv//C0NAQX3/9NerUqQMgb7XH0aNHkZCQgEGDBqFWrVqIjIzEuXPnULlyZezbt0+pegoEBATg119/hUQiQbNmzdCwYcMSC54lfRv9JVu9ejXi4+MRGBgIbW1tdOzYscBr6uzZs3j37h2cnZ2hpqaGK1eu4MGDB6hRowb8/f2Vpn+Tl5cXAgIC0KJFC3h6esLIyKjE11P+B0VlEBAQ8EnPd3FxKackFUtWVhZGjBiByMhITJ8+HcOGDZPee/LkCTw8PPDs2TNMmzYNnp6eAiYVXu/evaGiooL9+/dLr23btg2LFy+Gq6srJk+ejNDQUMyYMQP9+vXDwoULBUxLVDYswhBRidq2bYtOnTph6dKlJY6bOnUqTp8+jUuXLskpmWL7999/MXfuXOjq6iI1NRXm5ubYvn07qlatKnQ0hXTr1i34+voiODgY7969g0gkgr29PWxsbHDo0CFER0dDJBJh4cKFSvfm/datWxg8eDC+++47TJgwAaqqqgXui8VirF69Gtu2bcOuXbvQvHlzbN68GUuXLkX//v2xYMECgZLLX8+ePfH48WOsXbsWDg4OQsdRWE+ePMGAAQPQuXNneHl5QVdXt8D9tLQ0LFq0CCdPnsTevXtRt25dLFq0CDt37oSHhwd+/fVXgZLLl62tLVRVVXH48GGuXqRyk56ejiFDhuDevXv4888/0bNnTzx9+hQeHh5ISEjAlClTMGrUKKFjCs7a2hpt2rTB+vXrpdc8PT1x8eJFhIeHS39u9evXD+/evcORI0eEikpUZjyimohKZG5ujgcPHpQ67uHDhzA3N5dDooph8ODBGDduHAswJXj//j327NmDAQMGoH///vDz84OmpiZGjhyJ48ePY8OGDfDw8ICvry+2bt2KSpUqYdOmTULHlrtVq1ahfv36mDRpUqECDJDX1HjSpEmoX78+Vq1aBQD4/vvvYWhoKN3apSyePHmC9u3bswBTiuXLl0NHRwcLFiwoVIABgKpVq+L333+Hjo4Oli1bBhUVFUybNg01atTA6dOnBUgsjDdv3qB169YswFC50tHRwd9//43atWtj+vTp2LdvH4YNG4aEhARMnDiRBZj/9+7duwK98yQSCaKjo2FhYVHg51ajRo2QmJgoRESij6YmdAAiUmxjxoyBp6cndu7ciaFDhxY55p9//kFMTAy2bNki53TC8vDwKHWMmpoacnNzMX78+ALXla2J44fu3LmD3bt348CBA0hPT4dEIkGbNm3g7u6Ob775Burq6oWeY2NjAwcHBxw/flyAxMK6cuWKTCdGNWvWDGfPngUAqKiowMTERHr6lLLQ19dnsVMG58+fh42NTZFFvXyqqqpo3bq19DWkoaGBZs2a4fLly/KKKbgGDRogIyND6Bj0BTIwMMCWLVswePBg/Pbbb5BIJBg/fjzGjBkjdDSFYWBggLi4OOnj69ev4+3bt7C0tCwwTiwWF/m+gUiRsQhDRCVSU1ODu7s7Fi5ciODgYPTs2VO67z0hIQEHDx7E1atXMWTIEKirqyMyMrLA87/khqoREREyjYuJiSl0rSxNMb80+UeZa2lpwdXVFe7u7jA1NS31eZUrV0ZOTs7njqdwsrKy8Pz581LHPX/+vMDJLZqamkr3xrRLly44evQosrKyoKGhIXQchfXu3TukpKSUOi4lJQXv3r2TPtbV1VWqn10DBgzAihUr8Pz5c9SuXVvoOArFy8vro5+bv7VUGSQkJBR7T1NTE7Nnz8a0adPQu3dv9OvXr9B4Q0PDzx1RYTVv3hwhISEICQmBjY0N1q1bB5FIVGil46NHj5SmTxV9OdgThohK9N8TEGQ5peVDX/IJCPHx8Z/0fGVq4vihHj16wN3dHc7OzmxSLIPBgwcjOjoa69evR6dOnYocc/r0afzwww9o06YNdu3aBQBwc3PDq1evcOzYMTmmFVZqaioGDhwIc3NzzJ49G9WqVRM6kkLq168f7t69i3///bfY48yvX7+OwYMHw8TEBP7+/gAAd3d3PH/+HCdPnpRnXMFIJBJMmzYN169fx2+//QZbW1uoqHAnPwCZCufFUabTkWQ5iezDk+0+JBKJcOvWrc8VTeFdu3YNgwcPRm5uLoC8ebKwsMDevXulY5KSkuDg4IC+ffvijz/+ECoqUZlxJQwRlcjZ2VmpvvksC2Utonyq/B4TLMDIZtSoURgzZgzGjRuHbt26oXv37gVOsjly5AhCQkIAAKNHjwaQV4y4efNmscfKf6l0dXWxe/duDB06FE5OTrCwsEDt2rWL/YCjLN/G/9fQoUPh5eWFYcOGwd3dvcjX1K5duyAWi6XbLt+9e4dbt27B3t5eyOifVZcuXYq8npCQgFGjRkFVVRUGBgbFvp6Uabvkjh07hI5QIXzJq4E/t5YtW2LdunXYvHkzUlJS0Lx5c0yZMqXAmEOHDkFHRwe2trYCpST6OFwJQ0REcmVmZoa2bdti586dQkepMHx9fbFo0SJkZmYWuRpNU1MTv/76K9zc3AAAT58+xYkTJ9C+fXuYmZkJEVkQ7969w4QJE3Du3DmU9vZGmb6NL8qyZcvw999/lzhm5MiR0g89jx49wr///gsnJye0b99eHhHl7lNWdwBFbz0lIiL6LxZhiIjKyb1793D06FE4OjoWe1LUzZs3ERoaiu7du6NJkyZyTqgYrKysYGdnV+qx51RQQkIC9uzZg6ioKCQlJQHIa1xoaWmJAQMGKHXvgHy///47/vnnHzRu3BiDBg1Cw4YNC5yu8V9fajFBVlevXoWPj0+Rryl3d3e0atVK4IRERERfHhZhiIjKyaxZs+Dv748TJ06gVq1aRY5JTEyEo6Mj3NzcMGvWLDknVAzff/89Xr9+Le0zQVRe7OzsAOQtUa9SpYrAaYiI6GO9evUKsbGxaNSoEfT09KTX4+PjsWzZMty9exeGhoYYN24cWrZsKWBSorJjTxgiKlFgYGCZxjs7O3+WHBVBREQETE1Niy3AAECtWrVgamqKixcvyjGZYhkxYgQ8PT0RGBio1K8XKn9v3ryBvb09CzBEArl27RqOHj2K2NhYpKenF7ktUCQSwdvbW4B0iuP9+/e4ceMGkpKSCpxq91/K/G/kpk2b4O3tjQMHDkiLMBkZGXB3d0dSUhIkEgnu3buHS5cuYf/+/ahXr57AiYlkxyIMEZVo+vTpMjXmze/ur8xvGBITE2XqKVC/fn2EhYXJIZFiUldXx8CBA+Hl5YVDhw6hS5cuMDQ0RKVKlYocz8aG/yMWi5GSklLim3Zl3pbUuHFjvH37VugY9IWIiorCnj174Orqiq+++qrIMZcvX8bevXsxePBgpf82fv78+di1a1eBUxM/LMLkP1b2Zv/r16/H5s2bCxz//l98T5X3xVajRo1gbGwsvbZ//34kJiaiU6dOGDt2LE6fPo21a9fC29sbM2bMEDAtUdmwCENEJRo3blyRb5hyc3Px7NkzXLx4EQkJCejfv7/0dA1lJRKJSvxwnC8rK0t65KIyGjp0qPTN+JkzZ0otSClz89R8ERERWLt2La5cuYLs7Oxixyn7kabu7u6YP38+Hj16hMaNGwsdR6E9evQIf//9NyIiIpCUlFTs60qZX1O+vr44evQofvnll2LHGBkZITg4GACUuggTEBAAHx8fmJmZYdq0afD19cWxY8dw5MgRPH78GEFBQTh06BBGjx6NgQMHCh1XMDt37sTKlSuhoqICe3t7GBkZoXLlykLHUkjPnz9HixYtClw7ffo0VFRUMHfuXNSqVQstW7bEkSNHcP78eYFSEn0cFmGIqEQTJkwo8X5WVhbmz5+P0NBQ7Nu3T06pFFPDhg0RFRWFzMxMaGpqFjkmMzMTUVFRSr1slseel825c+cwatQo5OTkoGrVqjA2Nuab9mK4urri4cOHGDp0KCZOnAg7OzvUrl1b6FgK58aNGxg6dCjev38PiUQCXV1d1KhRQ+hYCufKlSswMzNDtWrVih1TvXp1mJubIyoqSn7BFNCePXugqamJzZs3Q19fHwcOHAAANGrUCI0aNYKDgwNsbGzw22+/oW3btqhbt67AiYXx77//Ql1dHTt27ECbNm2EjqPQ3rx5Ax0dnQLXrly5gmbNmhXY9t20aVOlXl1MFROLMET0STQ0NDBz5kycPn0ay5cvxx9//CF0JMF06dIFa9aswbx58zB//nyoqKgUuC+RSDB//nykpqZi8ODBAqUUnjK/Rj7G6tWrIRaLMWXKFHz33XdQV1cXOpLCyj+OWyKRlNr4WplXeCxfvhwZGRkYNGgQfvzxxwJNL+l/kpKSZFrdYmhoiDt37sghkeK6d+8e2rRpA319/QLXP9x+1L9/f2zfvh2bN2+WNtFWNk+fPkXbtm1ZgJFBjRo1kJiYKH189+5dvH79Gr169Sow7r/vtYgqAhZhiOiTaWhowMLCQum/iRg2bBj8/f3h7++P69evo2/fvmjUqBEAIDY2FkFBQbh79y7q1KmD7777TtiwVGHcvn0bFhYWGDVqlNBRFJ6yb4mUVXR0NJo2bYo5c+YIHUWhaWho4M2bN6WOS09PV/rVfZmZmQUKMPk9vt68eYOqVatKr5uYmCj1e4WqVauievXqQseoEJo2bYrw8HDcuHEDFhYW2LZtG0QiUaECXlxcHGrWrClQSqKPwyIMEZWLjIwMmd6sfsmqVKmCrVu3Yvz48bh79y6WLl1a4L5EIoGxsTFWr15d4E2psouNjUVKSgqqVavGPh5FUFdXR4MGDYSOUSGcPHlS6AgVgkQigYmJidAxFF6TJk1w+fJlvHnzptgTt9LS0nD58mWl/9lVs2ZNvHr1SvrYwMAAAPDw4UO0bt1aej05OVmpe6LZ2dnh4sWLyM3N5QqOUgwbNgxnzpzBwIEDUaVKFaSlpaFBgwawtbWVjklNTUVMTAy6du0qYFKisuPffiL6ZFFRUYiMjOQHReTtfw8KCsLKlSvh6uqKjh07omPHjnB1dcXKlSuxf/9+pX+zDuT1Elq+fDmsra3RvXt3uLu7Y9OmTdL7gYGBcHFxQUxMjIApFUPLli3x6NEjoWPQF8TMzAwJCQlCx1B433zzDd6+fYupU6cWeZJNRkYGpk2bhnfv3qFHjx4CJFQcRkZGePz4sfRx27ZtIZFIsHnzZukJSREREYiMjISRkZFQMQU3efJkZGVl4ffff5epkb8ys7W1xZw5c1C7dm1kZWXB0tISa9asgZra/9YQ7N+/Hzk5ObCyshIwKVHZiSQfnh1HRPQfa9asKfbe27dv8ejRI5w9exZisRgzZ86Eu7u7HNNRRZSZmYnhw4cjOjoa+vr6sLCwwKlTp+Di4oJFixYByDvu28HBAaNHj8bkyZMFTiysK1euYOjQoVi0aBF69+4tdBz6Apw+fRo//PADtm/fzg8vJcjKysLAgQMRExMDfX19fP311wW2mIaEhCA5ORnNmjWDn59fsQ3ZlcE///yD33//Hb6+vtKVLwMHDsT169ehr68PAwMD3L17F2KxGMuWLUP37t2FDSyQNWvWICEhAQEBAahTpw6srKxgaGhY5HY2kUiEcePGCZCy4nj//j2ys7Ohra0NVVVVoeMQyYxFGCIqkampqfQ44eJoaWlh9OjR+OGHH+SYjCqq9evXY+XKlXBxccHs2bNRqVIlmJqaFijCAEDPnj2hra2NPXv2CJhWeJGRkQgNDcX27dvxzTffwN7eHnXq1Cl2KXu7du3knFBxvXnzBunp6cX+/DI0NJRzIsWQkJAAX19feHt7w8PDo9TXlLLOEwC8evUK06ZNQ3h4OABIPyznv6ZsbW2xZMmSQg1plU1aWhqioqLQpEkT1K9fH0De1qMZM2YgLCwMubm5qFq1KkaPHg1PT0+B0wpHlvdU+UQiEW7fvi2HVEQkbyzCEFGJAgICir2nrq4OAwMDtGjRAlpaWnJMpRjyl/PXqlULqqqqZV7er6wfbHr16oW3b98iJCREetJPUUWYCRMmIDo6WqmbOAKF37SX1gBU2d+0p6SkYOXKlQgJCUFKSkqx45T5dKQPX1OlvZ6UeZ4+dOPGDZw7d076c97Q0BA2NjawsLAQOJniy+8ZV6NGDaXvg1LSe6qiuLi4fKYkFYdYLMapU6dw7do1pKSkoGXLlhgwYACAvFWzKSkpMDY2LrBNiUjR8dVKRCXiG4DiOTo6QkVFBcHBwWjcuDEcHR1lPiFDmT/YPHnyBPb29qUetayhoYHXr1/LJ5QCc3Z2VvqTV2SVkpICV1dXxMfHo2bNmtDT08PLly/RunVrxMXF4dWrVxCJRGjdurVSv2Hnaqmys7CwYMHlI2lpaSnlFzVF4XuqsomKisJPP/2EZ8+eSYvG2dnZ0iLMlStXMHnyZKxatYrNealCUd53IEREnyj/g0z+m0t+sJGNhoYG3r59W+q4+Pj4Yk8kUSZ//PGH0BEqjE2bNuHp06cYO3YsfvzxR3h5eSEwMBC+vr4AgPDwcMyZMwdqamrYunWrwGmFs3PnTqEjVAgeHh6ws7PDyJEjSxy3ZcsWnD59Gjt27JBTMsX27NkzXL58Gc+fPweQt1rU0tJSaVd/0sd5+PAhRowYgaysLAwZMgRt27bFpEmTCoxxdHREpUqVEBISwiIMVSgswhCRTLgctLD/fpDhBxvZGBsb48aNG0hNTYWurm6RYxITE3H79m0WtqhMQkNDYWhoiPHjxxd539bWFlu2bEHPnj2xadMmNr2kEkVERKBu3bqljnv06BEiIyPlkEixvXjxAvPnz8fx48cL9TwRiURwdHTEzJkzUatWLYESUkWybt06ZGRkYMOGDXBwcChyjIaGBszMzJR2ZTFVXMrzaYmIPhqXg1J5cnFxwaxZs+Dl5YU///wTlStXLnA/KysLs2fPRlZWFvr16ydQSqqInj17BltbW2nfifz/z87Olm5/a9CgAdq3b4/g4GAWYahcZGVlKf3JLK9evcKgQYMQHx8PDQ0NWFlZSQtY8fHxuHjxIo4fP47bt2/Dz89PaRsZe3l5yTxWJBJh4cKFnzGNYrtw4QJatGhRbAEmX506dXDv3j05pSIqHyzCEFGJuBxUdly6LpsBAwbgyJEjOHnyJL7++mvpEbk3btzAr7/+irCwMLx48QKdOnVCjx49BE4rf4GBgQAAJycn6OjoSB/LytnZudwzVRQaGhrQ0NCQPs4v8L169arAt++6urq4fPmy3PMJJX+VRsuWLaGpqVnmVRtckVa83Nxc3Lx5U2mLCvlWrFiB+Ph4ODk5YdasWTAwMChwPzk5GfPmzUNISAhWrVqFuXPnCpRUWKU15v3w9C1lL8K8fv1app8979+/R1ZWlhwSEZUfFmGIqERcDio7Ll2XjYqKCjZs2IAlS5Zg9+7dCA4OBgDcu3cP9+7dg5qaGtzd3TF9+nSBkwpj+vTpEIlEaNWqFXR0dKSPS5P/pl2ZizC1atWS9qEAgEaNGgHIW633zTffAMibp5s3bxa7Fe5LNHToUIhEIhw6dAiNGzeWPpaVMp245eHhUeBxWFhYoWv5xGIxHj9+jJcvXyp9w9XQ0FAYGBhg2bJlBQqh+WrUqIGlS5fCyckJJ0+eVNoiTHFfvuTm5uLZs2cICwvD4cOH4enpWeoKkC+dnp4enjx5Uuq4R48ecYsbVTgswhBRibgctPxx6Xpe4e63337D2LFjERERgadPnyI3Nxd16tSBtbU1atasKXREwYwbNw4ikQjVq1cv8JhK16pVKxw+fBjv379HpUqV0KlTJyxYsACLFi2ClpYWateuDR8fH8TFxeHrr78WOq7c5J+wld/omiduFS8iIkL6a5FIhOTkZCQnJxc7Xk1NDY6Ojpg2bZo84ims1NRUODk5FVmAyaehoQFLS0ucOHFCjskUS/v27Uu87+LiAhsbG8yZM0epVxYDgKWlJY4cOYLo6Gi0bt26yDFhYWF4+PAhBg4cKN9wRJ+IRRgiKhGXg5YvLl0vSE9PT7pCgfJMmDChxMdUPCcnJ5w4cQJnz56Fk5MTDA0NMWLECGzcuBE//PADgLyVMDo6Opg6darAaeXnvyds8cSt4uUXCCQSCZycnPD111/j559/LnKsuro69PT0lKohfXEMDQ2Rnp5e6ri3b9/ylKRSDBgwANu2bcPq1auxZcsWoeMIxtPTEyEhIRgzZgxmzpwJR0dH6b38wyJmz54NdXV1DBs2TMCkRGXHfzWIqERcDloyLl0nUhydO3fGhQsXClybPHkyzMzMEBISgtTUVDRu3BgeHh6oX7++QClJkX24pXT8+PEwMzOTaZupsnN2dsb69esRGxsr3Qb4X7Gxsbhw4YK0IErFMzY2Rnh4uNAxBGVhYYFZs2Zh3rx5mDp1KlRVVaXbKoODg5GdnQ0VFRXMnz8fTZo0ETouUZmwCENEJeJy0JJx6frHS0hIQEREBJKSkopdRSUSiXiCDX2yb775hiuuqMyKO+qcChs5ciRu3LiBb7/9FuPHj0evXr2go6MDIG/1y8GDB7F27VrY29tj9OjRAqdVfPHx8RCLxULHEJybmxvMzMywadMmnDt3Du/evUNmZiY0NTVhb2+PsWPHolWrVkLHJCozkUQikQgdgogU140bN+Dm5oaqVatKl4O2bt0aLi4u+P3336XLQVNTUxEYGKh030bEx8cD4NL1shCLxZg9ezb8/f0hkUhQ0j9DIpFIqZqCAsCaNWs++rksWlFZsBBKH6tLly6FrkkkEiQkJEj7DVWtWhUAkJaWJh1Tp04dqKio4Pjx4/IJWsGIxWJs3boVf/31F9q2bYt//vlH6EiCiYmJgYqKCkxMTADkvb5SUlKQm5uL6tWrK31vParYWIQholLt3r0b8+bNQ25uLlRVVSEWi6GhoQGJRFJgOWi/fv2EjiqoNWvWwNTUFE5OTkJHUWirV6/G2rVrUblyZfTt2xdGRkbSo4SLomxbt0xNTSESiUosThVHGYtWRXnw4AH8/Pxw9epVpKSkoEuXLtLiaFRUFG7cuIE+ffqgWrVqwgYVCAuhRevSpQtEIhG2bduG+vXrF1loKI5IJFKqwoKpqeknPT8mJqacklQsxW1XBvJWDD19+hRpaWlQVVXF5s2bYW1tLcd0isXU1FTpC1H05VLur2OJSCZcDiobLl2Xzf79+6GtrQ1/f380bNhQ6DgKZ9GiRUJHqNB27NiBJUuWICcnB0Deh+OUlBTpfYlEgkWLFkFTUxNubm5CxRTUunXrsHfvXpkLocoif2Vj/msn/zEVpqxFlE/14RbmoqipqaFdu3aYMGGCTIcifMl0dXVRu3ZtoWMQfRYswhBRiXJzc6GiooKWLVtizZo1JS4HffnypVKf+vPq1StpU0I9PT3p9fj4eCxbtgx3796FoaEhxo8fjxYtWgiYVFiJiYmwsbFhAaYYyrbypzyFhYVh4cKFMDQ0hJeXFywtLWFjY1NgjKWlJapXr44TJ04obRGGhdCi/bewwEIDlbeSjudWV1dH9erVoa6uLsdEiqt58+Z4+PCh0DGIPgsVoQMQkWKbOXNmgccikQh6enqoUaNGgQLMq1evlP6IwE2bNmHIkCF49eqV9FpGRgbc3d1x6NAh3Lt3D6dPn8bw4cPx9OlTAZMKS19fH5qamkLHoC/Qtm3bUKlSJWzduhVdu3YtUAz9kJmZGR49eiTndIojMTER7dq1YwGGys2aNWtKLDDkO3ny5Cf1varo6tatW+z/DAwMWID5wIgRI3D79m0EBgYKHYWo3HElDBGVaN++fahZsyYmTZpU7JiUlBQMGzYMDx48kF8wBRQREYFGjRrB2NhYem3//v1ITExEp06dMHbsWJw+fRpr166Ft7c3ZsyYIWBa4Tg5OeHw4cPSLW1Ust9//x3W1tZo164ddHV1hY6j0G7cuIFWrVoVe0RuvurVqyMqKko+oRQQC6ElCw8Px9GjR5GQkAANDQ2YmZlhwIABqFOnjtDRFNaaNWvg4uJSah+dkydPYt++fdy+S6VSV1fHwIED4eXlhUOHDqFLly4wNDREpUqVihyv7Nu3qGJhEYaIStS2bVts3LgRNWvWxJAhQwrdzy/A3Lt3r8SGc8rg+fPnhbYZnT59GioqKpg7dy5q1aqFli1b4siRIzh//rxAKYU3adIknD9/HlOmTMH8+fOLXa1Aef755x/4+PhAJBKhWbNmsLKygpWVFdq1ayc9ApbyvH//XqZCVUpKivQEF2XEQmjxZs2ahT179gCAtGFxaGgotm7dijVr1sDW1lbIeBWeWCxW6r97165dw/nz53H//n2kpqZCJBJBV1cXTZs2RYcOHWBhYSF0RIUxdOhQaZP6M2fOICwsrMTxytJAnL4MLMIQUYnWr18Pd3d3LFiwAPr6+vjmm2+k916/fo3vvvsOd+/exbfffotff/1VwKTCe/PmTaEPxVeuXEGzZs1Qq1Yt6bWmTZuW+mbiS+Ll5VXoWqNGjXDixAlcuHABzZs3h6GhYZFvzEUiERYuXCiPmApr+fLliIiIwIULF3D79m3cvn0b3t7eUFFRgZmZmbQo07ZtW2hrawsdV1B16tTBnTt3ShwjFotx7949pd6Kw0Jo0Q4dOgQ/Pz8AQPv27dG8eXOkp6cjPDwcCQkJ+Omnn3DixAml/3v2KZ48eYIqVaoIHUPuHj58iF9//RVXr14FgEInkuX/+9e2bVssWLAADRo0kHtGRePs7KzUBTv6srEIQ0QlqlKlCrZs2QI3Nzf8/PPPqF69OqysrJCamorvvvsOMTExGDx4MH777TehowquRo0aSExMlD6+e/cuXr9+jV69ehUYp6KiXO24AgICir339u3bEk+LYBEG6N69O7p37w4AePHiBS5evIjz58/j4sWLuHHjBm7cuIGtW7dCVVUVFhYW8PX1FTixcOzt7fHPP/9gz549cHV1LXKMj48PXrx4gQEDBsg5nXBYCJXN3r17IRKJMG/evAKvn8zMTIwdOxbnzp3DiRMn0Lt3bwFTKo7/9naJiYkptt+LWCzGgwcPcPnyZdjZ2ckjnsLI/6IqLS0NIpEIzZs3h5mZGapXry497ODWrVu4ffs2IiMjMXDgQPj4+KBJkyZCRxfUH3/8IXQEos9GJPlvKZaIqAgPHjyAu7s7cnNzsWrVKvz555+4desWBg4ciHnz5gkdTyGMGjUK4eHh2L17NywsLODl5YXAwEBs2LABDg4O0nEDBgxAeno6jhw5ImBa+SntSM7StG/fvpySfHni4+OxY8cO+Pr6IjMzEyKRSKmXZCclJaF379548+YNBg4ciK5du8LT0xNOTk4YPnw4jh07Bh8fH1SrVg0HDhxA9erVhY4sF6amph/9XGV6TXXo0AEGBgbYv39/oXu3b9+Gi4sLvvvuO/zyyy8CpFM8pqam0u0i+f9fmho1amDz5s2f9JqsaJydnRETEwMbGxvMmjWr2J5VDx8+xLx586SF0X379sk3KBHJDYswRCSz6OhoDB8+HJmZmZBIJOjXr5/SfEMqi/DwcHh6ekJFRQVVqlRBWloaGjRogODgYKip5S08TE1Nha2tLbp27Yrly5cLnJgqokePHuHixYu4cOECIiIikJKSAolEAk1NTbRp0wbbt28XOqKgrl27hnHjxuHFixeFVnZIJBLUrFkT69evV6reCyyEysbc3Bzdu3fHX3/9VehednY2WrRogQEDBuD3338XIJ3iyV/lKJFI8Ouvv8LS0rLYFWbq6uowMDBA69atoaGhIc+Ygjp37hy+//57tG/fHt7e3qVur8nNzcWwYcNw6dIlbN26FR06dJBTUsXw7t07bNy4sVBj7G+//RZff/210PGIyg23IxGRzFq3bo2VK1di3Lhx6N27Nwsw/2Fra4s5c+Zg06ZNSElJgaWlJWbPni0twAB5pyXl5OTAyspKwKRUkSQkJODChQu4cOECLl68iKSkJEgkEqipqaFVq1YYNGgQrK2tle7DTXHym1/v27cP4eHhePr0KXJzc1GnTh3Y2trCzc1N6RoaK0sR5VPl5uYW+3co/+hgsVgsz0gKzcXFRfrrgIAA2NvbF7hGwNGjRyESieDl5SVTfxMVFRVMnz4d/fv3R0hIiFIVYbKysjB06FDcunVLuqoqKysLkZGRuHTpEiZPnoxRo0YJnJKofHAlDBEVYGZm9tHPFYlEuHXrVjmm+fK8f/8e2dnZ0NbWhqqqqtBxBPHs2TNcvHgRrVq1QuPGjYsc8/DhQ1y7dg3W1taoXbu2nBMqlvy/k6qqqjA3N4eVlRWsra1haWlZ7FGdRFR2pqamcHFxwaJFiz7qPtF/DRgwAK9evcLJkyfL9DxHR0fo6+tLT+pSBn///Tf++usv6OjoYPjw4dLG2CdOnMCRI0egpqaGEydOFDjogKii4koYIiqgTp06Qkf4olWqVEnpPzh7e3vD29sbhw8fLnZM/reBnp6emDZtmhzTKZ7870oaNWoEa2traQGGRwvTx2IhtHhhYWHw8PAo832RSARvb+/PGa3CiImJwbVr15CSkgJjY2N06dIFQN6qhqysLKVaifbs2TO0aNGizM8zMTHB9evXP0MixRUSEgI1NTXs2LED5ubm0uu9e/fG4sWLsX37dhw/fhxDhgwRMCVR+WARhogKKOu3NVS0y5cv49KlS3j+/DkAoFatWmjbti3atm0rcDLhhYeHw8TEpNjmhEBewcHExARnz55V+iLM/PnzpVuRNm3ahL///hvq6upo1aqVdFVM69atC2x7o/+RSCQ4c+YMHj58CC0tLdjZ2aFu3bpCxxIUC6HFS05ORnJycpnv8yhdIDY2FtOnT5cewwzkNaXNL8IEBQVh5syZ2LRpk9KckJSeno6qVauW+XlVq1ZFenr6Z0ikuB4+fIjWrVsXKMDkGzJkCLZt24ZHjx4JkIyo/PEdGxFRObp//z5+/vln6Wki+asY8t+gm5mZYfHixWjatKlgGYWWkJAAW1vbUsc1atQIFy5ckEMixebq6io9LvfBgwfSgkxkZCQiIyOxdu1aVKpUCV999RU6dOiAESNGCJxYvrKysvDvv/8iMjISOTk5MDY2xuDBg1G3bl0kJyfD09MTd+/elY5XVVWFl5eXUn+bykJo0bjN6OMlJibi22+/RXJyMjp37ox27dphyZIlBcZ0794dc+fOxbFjx5SmCJOZmflRW49VVVWRlZX1GRIprrdv36JevXpF3ssvnL97906ekYg+GxZhiIjKyZMnTzBkyBCkpqZCX18fXbt2lb5xiI+Px/Hjx3Hr1i18++232Lt3L+rXry9wYmHk5ubKPDYzM/MzJql4mjRpgiZNmkgLCDExMQgICICvry/Cw8Nx/vx5pSrCZGZm4ttvv8WNGzekBc9Tp05hz5492L17N+bNm4c7d+5AT08PdevWxdOnT5GSkoIFCxagRYsWaNmypcB/AmGwEFo0NpX9eOvWrUNycjLmzp0LNzc3AChUhKlcuTLMzMwQHR0tQEKqCIpbUZZ/na1M6UvBIgwRlcmbN2+Qnp5e7D+EhoaGck6kOFasWIHU1FR8++23mDZtWqGeHb/++iuWLFmCf/75BytWrCjyGFRlULduXURHR0MsFhf7DaFYLEZ0dLRS9aKQ1cuXL6VHVF+4cAFPnjwptOJKWXh7e+P69evQ19eHm5sb9PX1cf36dQQFBWH+/Pk4f/48xo4diwkTJkAkEkEikWDFihXYuHEj/vnnn0IfEpUFC6FU3s6cOQMTExNpAaY4devWxblz5+SUSjGU1meoKA8fPvxMaYhIEbAIQ0SlSklJwcqVKxESEoKUlJRixyn76Ujnzp1Dw4YNMWPGjCI/DGtoaGDGjBkICwtTujehH7Kzs8P27duxZs0aTJw4scgxa9euxYsXLzB06FA5p1M8aWlpiIiIkBZdHjx4ACDvG0GRSARTU1NYWVnBysoK7dq1EzitfB05cgQaGhrw8/Mr0OfFyMgIy5YtQ926daUFGCDvZ9TEiRNx4MABXL58WajYgmMhlMrbixcv0KpVq1LHicViZGRkyCGR4iitz1BxlK2oDgCBgYEIDAws8p5IJCr2vrK//6SKh0UYIipRSkoKXF1dER8fj5o1a0JPTw8vX75E69atERcXh1evXkEkErExKICMjAzY2NiU+MZJJBLBwsICJ06ckGMyxfL999/D398fGzZswM2bN9GvXz9pb4rY2FgEBATgzJkzqFq1Kjw9PYUNqwCsrKwA/K/oYmxsLG3I265dO+jq6gqcUDixsbGwtLQs1Gi3b9++WLZsGUxMTAr9fVRRUUGzZs0QHh4uz6gKhYXQoq1Zs+ajnysSiTBu3LhyTFOxVK1aFYmJiaWOi4uLg76+vhwSKQb2GSqbj91uxG1KVNEo9ycmIirVpk2b8PTpU4wdOxY//vgjvLy8EBgYCF9fXwB5DR7nzJkDNTU1bN26VeC0wmrYsCFevnxZ6riXL1+iQYMGckikmGrWrImNGzdi3LhxOHPmDMLCwgrcl0gk0NfXx+rVq1GrVi2BUiqO/KOprays0L59e+jp6QkdSWG8e/euyNeIgYEBAKBatWpFPq9atWrIzs7+nNEUGguhRVuzZo1021pZKXsRpmXLljh79iwePHiAJk2aFDnm2rVriImJQa9eveScTjjsMyQ7Zf5yipQPizBEVKLQ0FAYGhpi/PjxRd63tbXFli1b0LNnT2zatEmp34S6ublhwYIFiI6ORuvWrYscEx0djcjISPz666/yDadgWrdujaNHj2L37t04d+4cnj17BgCoU6cObG1t4erqiipVqgicUjGUdIwwFb1kXxmX8ZcFC6FF46qFj+fh4YFTp05h3LhxWLJkSaGm1zExMfj555+hoqKiVKurSHb/XdFI9CVjEYaISvTs2TPY2tpCRUUFAKT/n52dDXV1dQBAgwYN0L59ewQHByt1Ecbd3R2xsbH4/vvvMWTIEPTq1Uv6piIhIQEHDx6Ej48PhgwZotTH4+7YsQNaWlpwdXWFp6enUn3TTqQoWAgtjKsWPp6NjQ1++OEHbNiwAW5ubqhZsyZEIhFOnToFJycnxMfHQyKRYOLEiTL1jiEi+pKxCENEJdLQ0ICGhob0ceXKlQEAr169KvANqa6urlI3ugQAMzMzAHnfIm/evBmbN28uNEYikWDnzp3YuXNngevK1FTujz/+gL29PVxdXYWOUiHxhLKCYmJiiu3lUdy927dvf+5YCo2FUPocJk2aBHNzc6xfv176dywlJQUpKSkwNjbG+PHj8c033wicUr7YZ4iIisIiDBGVqFatWnj+/Ln0cX7fgCtXrkjfTEkkEty8eVOpG4QCed8gU+n09PSgra0tdIwKhSeUFS8mJgYxMTFF3rt9+3aR9/KbHCsrFkLpc+nWrRu6deuGV69e4enTp5BIJKhdu3aBL20yMjKgpaUlYEr5YZ+hT/P69Wv4+PggIiICSUlJyMrKKnKcSCTC8ePH5ZyO6OOxCENEJWrVqhUOHz6M9+/fo1KlSujUqRMWLFiARYsWQUtLC7Vr14aPjw/i4uLw9ddfCx1XUCdPnhQ6QoVgbW2NqKioEo/Hpf/hCWXF4/aRj8NCaNG8vLw++rkikQgLFy4sxzQVy+rVqzFhwgTpYz09vSKbiGdkZGDUqFGFVoN+qdhn6OPFxcXB3d0dL1++5OlH9MURSfiqJqIShIaGwsvLC7///jucnJwAAMuXL8fGjRul3yRLJBLo6OggICAA9evXFzIuVQBPnjxB//798c0338DLy0tpvhH9WIsXL8a2bdsKnVCWv9w//4Sy2rVrY+vWrdJeTUTF+emnnxAVFYVjx46xEPoBU1PTj36uSCRS6m1upqammDt3Ltzc3Iodk5mZiREjRuDSpUtKPVckmx9//BEhISHo3Lkzxo4dCyMjI+mWeKKKjkUYIvooR44cQUhICFJTU9G4cWN4eHgo9bHLJLs1a9bg0aNHOHToEKpVqwYbGxsYGhpCU1Oz0Fguxwa++eYbZGVl4fjx41BRUSlUhAHyvjHs2bMnfvjhB6WfLyodC6FFi4iI+KTnt2/fvpySVDw9e/ZEbGwsVq5cKf3C5kOZmZkYPXo0Lly4gG7dumHVqlUCpKSKxMrKClWrVsXhw4eVbpUnfflYhCEi+kgJCQkA8vrmqKqqSh/LStkaqOYzNTWVeY+8sn+7DORtCbS1tcW6desAADNmzIC/vz+uXbtWYNWLp6cnnj17hkOHDgkVVeFkZWXh9evX0NDQQLVq1YSOozBYCKXy9vz5c7i5ueH169fYsmUL2rZtK72XmZmJMWPG4Ny5c+jatStWrFjBFVhUqtatW6Nz585Yvny50FGIyh3LikREH8nR0REqKioIDg5G48aN4ejoKHOzT2VsoJqPe+TLhieUlZ2fnx/+/fdf3L17F7m5uXB2dpa+7o4ePYoDBw5g2rRpaNiwocBJhfFhs9CUlBQEBwcXO5ZFGJJF7dq1sWXLFri7u2PcuHHYuXMnTExMkJWVhbFjx+LcuXNwdHRUugIM+wx9vCZNmpTYiJ6oImMRhojoI7Vr1w4ApEv58x9TycrSTPX8+fOfMUnFwBPKZJebm4tJkybh2LFjUFNTg5GREe7du1dgTLNmzTBx4kRYWFjghx9+ECipsFgIpc/B2NgY69evh6enJ0aOHInt27djwYIFCA8PR6dOnbBq1SqlKsAAQEBAwEc/V9mLMEOHDsVvv/2Gu3fvwsTEROg4ROWK25GIqIAuXbp89HN5RCCVh8ePHyMgIABBQUF4/vy50q4YyjdjxgwcPnwY586dQ6VKlZCQkICuXbuiRo0amDdvnvSEsj179uDrr7/GihUrhI4sGB8fH8yfPx8dO3bEokWLULNmTZiamsLFxaVA4aFr166oWbMmdu3aJWBaqiiuXbuGo0ePIjY2Funp6UVupRSJRPD29hYgneI5fvw4Jk6cCJFIhJycHNjZ2WHt2rUFVvQpC/YZ+jTLly+Hn58fJk6cCHt7e6Xdxk1fHq6EIaIC4uPjZe7X8V+ybsVRdnFxcXj37t0nncTxpUlPT8ehQ4fg7++Pq1evAshb3aGvry9wMuE5OTnhxIkTOHv2LJycnGBoaIgRI0Zg48aN0pUc+SeUTZ06VeC0wtq3bx/09PSwYsUK6OjoFDuuadOmSl/cI9nMnz8fu3btkv6b+N9/H/Mf89+//3FycsKcOXMwc+ZM2NraKm0BBmARpSzMzMyKvC6RSDB37twSn6vMW7ypYmIRhoiKZGFhAWdnZ3To0IFvLsvZtGnTcP36daV/wyCRSBAWFobAwECcPHkSmZmZkEgk0NbWhpOTE3r37g0bGxuhYwquc+fOuHDhQoFrkydPhpmZWaETypT9iPhHjx7B2tq6xAIMAGhra+Ply5dySkUVVUBAAHx8fGBmZoZp06bB19cXx44dw5EjR/D48WMEBQXh0KFDGD16NAYOHCh0XLmSZdWsmpoa7t27h+7duxe4zlWzVJQ6deoIHYFIbliEIaICZs6cicDAQFy/fh03b96EgYEB+vTpg759+8LY2FjoeF8MZd4Jev/+fQQEBODAgQN48eIFJBIJVFRUoK6ujuzsbJw/f77IU1qooG+++UbaE4by5G9/KM3z58+hra0th0SKLTExESdOnCh1m42y9qXYs2cPNDU1sXnzZujr6+PAgQMA8voyNWrUCA4ODrCxscFvv/2Gtm3bom7dugInlp/4+HiZxiUlJX3mJPSlOHnypNARiOSGRRgiKmDIkCEYMmQIHj58iICAABw8eBB///03Nm/eDHNzc7i4uKBnz56oXr260FGpAnn9+jWCg4Ph7+8vXQEkkUhgbGwsLfJNnjwZV65cYQHmP9q3b4+mTZvCx8dH6CgKr3Hjxrh16xbev3+PSpUqFTkmNTUVt2/fhrm5uZzTKZatW7di2bJlEIvF0msfbrnJf6zMRZh79+6hTZs2hbZFfrj9qH///ti+fTs2b94MOzs7IWIKIiYmRugIFRr7DBEpNxZhiKhIRkZGmDp1KqZMmYILFy4gICAAx44dw++//44//vgD9vb26Nu3LxwdHaGuri50XFJgEyZMwKlTp5CTkwOJRILq1aujZ8+ecHZ2hoWFhdDxFF52djZq164tdIwKoXv37li6dCkWLlyIOXPmQEVFpdCYxYsX4927d+jVq5cACRVDaGgolixZgjp16mDs2LE4cuQIzp07hy1btiA2NhYHDx7ElStX4OnpCQcHB6HjCiYzM7NAASa/sPfmzRtUrVpVet3ExARhYWFyz0cVE/sMEVHhdydERB8QiUTo0KEDlixZgvDwcCxatAiWlpY4deoUJk2ahB49eggdkRTcsWPHkJOTAwMDA6xevRphYWH47bffWICRUePGjdm/REZDhw6FmZkZ9uzZA2dnZyxfvhxAXq+YtWvXol+/fvD390fLli3Rv39/gdMKZ+fOnVBTU4O3tzdcXV1hYGAAALC1tcWQIUPw77//Yvz48fD29i52RZEyqFmzJl69eiV9nD9PDx8+LDAuOTkZubm5cs1GFVN+nyFTU1Ns3boV3bp1AwAcOXIEGzduRM+ePQEAo0ePVvq+OadPn4aHh0ehnmgfOn/+PDw8PHD27Fk5JiP6dCzCEJHMtLW14eLiggkTJsDW1hYSiQTp6elCxyIFp6qqColEgqSkJMydOxdLly7lUvYyGDBgAC5dusQ5k4Gmpia2bt0KBwcH3L17Fxs3bgQAREdHY/Xq1bh16xYcHBywadMmqKkp72LgmzdvonXr1mjQoEGxY8aNG4c6depg/fr1ckymWIyMjPD48WPp47Zt20IikWDz5s3SlQsRERGIjIyEkZGRUDEVQlxcHA4cOICnT58WuH79+nUMGjQIbdq0Qa9evZS+78eHfYZsbGxQuXJlAJD2GPrrr7/w+++/Y9OmTYWKfcpm7969uHnzJlq2bFnsmFatWuHGjRvYt2+fHJMRfTrlfQdCRGXy5MkT7N+/H0FBQXjy5Im0n8eAAQOEjkYK7syZMwgKCkJgYCDu3LmD7du3w9vbG02bNoWLiwt69eqFmjVrCh1TYbm7u+PevXsYNmwYRo4ciS5duqBu3bpKe+RraapXr44NGzYgJiYG4eHhePr0KXJzc1GnTh3Y2tqiRYsWQkcU3Lt371CrVi3p4/zXUnp6uvRkKZFIhBYtWuD8+fOCZFQEDg4OCAsLQ3R0NFq3bo127dqhZcuWOHHiBOzs7GBgYIC7d+9CIpHgu+++EzquoLZu3Yrdu3cXWL3x+vVreHp6Ii0tDUBeU/Yff/wR/v7+MDExESqqoNhnSHY3b96EqalpiU3UtbW1YWZmhmvXrskxGdGnYxGGiIqVnp6OQ4cOITAwEFeuXJH28xgyZAj7eQDw8vL6qOfFxcWVcxLFpq+vj++++w7fffcdYmJi4O/vj+DgYNy9exdLlizBX3/9BWtrazx//lzoqArJzMwMQN6b9L/++gt//fVXsWNFIpHSH32ez9TUFKampkLHUEg1atTA69evCzwG8n42fdiwOC0tDe/fv5d3PIXRp08f1KtXr8AH5nXr1mHGjBkICwtDcnIyqlatitGjRxc6hlnZXL58GSYmJgVOiAoICEBaWhpcXV0xefJkhIaGYsaMGdi+fbvSNntmnyHZJScno02bNqWOq127Nm7cuCGHRETlh0UYIiogNzcXZ86cQWBgIEJDQ5GZmQl1dXV07doVffv2hYODg1Iv4/9QQEBAoYZ6slLWhnumpqb49ddf8csvv+DMmTMICAhAaGiodD+3SCSCl5cXevXqBRsbG6Wdpw/VqVNH6Aj0hWnQoEGBbSOtWrWCRCKBr68v5s2bBwB48OABLl68iCZNmggVU3BVq1ZFp06dClyrUaMGNm7ciIyMDLx58wY1atQosgG0snnx4kWhD8xnz56FmpoafvrpJ+jq6qJ///7w8fFBVFSUQCmFV1KfodatW0uvs88QoKWlVWCuivPq1SseEEEVDj9JEVEBdnZ20n/0WrVqBWdnZ/To0aPANzSUZ/z48UJHqLBUVVXRuXNndO7cGampqTh48CD279+Pa9euISAgAIGBgdDX10fPnj0/esXRl0LZeyiUxYEDB7BixQrMmTOn2GX8YWFhmDNnDqZOnaq0jcU7duyIv/76C3fv3oWJiQlsbGzQsGFD7NmzB7du3UKdOnVw/vx55OTkwM3NTei4CklLSwtaWlpCx1AY7969K7BtRCKRIDo6GhYWFtDV1ZVeb9SoEUJDQ4WIqBCMjIzw4MED6eMP+wytXr0aIpFI2mdI2VcbN2vWDFFRUUhMTCywffJDiYmJuHz5MreZUoXDIgwRFfDy5UuIRCKYm5ujbt26iIyMRGRkpMzPL2mrxJeGRZjyoauriyFDhmDIkCF4+PAhAgICcODAATx//hw7duxQ+iIMyS4oKAhv376FtbV1sWOsrKyQnp6OoKAgpS3C9OnTB9ra2tJVfGpqali3bh0mTpyIGzdu4MaNG1BRUcHgwYMxePBggdMqhmfPnuHy5cvSbZO1atWCpaUlDA0NBU6mGAwMDApstb1+/Trevn0LS0vLAuPEYrFSr1pgnyHZ9e3bFxERERg3bhzWrl1bqBCTmJiIcePGITs7G3379hUoJdHHEUk+Zh09EX2xPqWHgkgkwu3bt8sxDSkriUSCc+fOITAwEH/++afQcaiCcHBwQKNGjeDt7V3iuGHDhiEuLk6pv5EvzsOHD5GamoqGDRtCT09P6DiCe/HiBebPn4/jx48X2noqEong6OiImTNnFvtNvbKYOHEiQkJCsHLlStjY2OCnn37C6dOn4e3tjfbt20vH9enTB7m5uTh48KCAaYWTlpaGqKgoNGnSBPXr1weQt/Uov89Qbm6utM+Qp6enwGmFlZubC09PT5w/fx4aGhro0KEDGjVqBACIjY3F+fPnkZWVBSsrK2zbto3bAqlCYRGGiAoICAj4pOe7uLiUU5KKx8vLC4MHDy7xOEWi0uTm5sLV1RXx8fFYt24dvvrqqxLHR0VFYezYsWjUqBF8fX3llFIxtWjRAl9//TWWLl1a4ripU6fi2LFjPFGDSvTq1Svp30UNDQ1YWVlJG8/Gx8fj4sWLyMrKQt26deHn51foxBtlcu3aNQwePFjax0QikcDCwgJ79+6VjklKSoKDgwP69u2LP/74Q6ioCot9hgrLzMzEggUL4O/vj5ycnAL31NTU0K9fP/z666/SBsdEFQW3IxFRAcpcRPlU+b1MzMzMMGjQIPTq1avEoxWJihISEoKbN2/Cw8Oj1AIMAHz11VdwdnaGt7c3Tpw4gS5dusghpWKqUqUKnj17Vuq4xMRE9vOgUq1YsQLx8fFwcnLCrFmzpE1U8yUnJ2PevHkICQnBqlWrMHfuXIGSCq9ly5ZYt24dNm/ejJSUFDRv3hxTpkwpMObQoUPQ0dGBra2tQCkVG/sMFaapqYl58+ZhwoQJiIiIQEJCAgDA0NAQVlZW0pPdiCoaroQhIionPj4+8PX1xb179yASiaCtrY0+ffrAzc2NR+WSzCZNmoRjx47hzJkzMn+z/urVK9jZ2eGbb75Rqr5M/zVy5EicP38e+/fvL/ZUnwcPHqBPnz6wtrbGli1b5JxQGIGBgZ/0fGdn53LJUdHY2dlBJBLh+PHj0NDQKHJMVlYWnJycIJFIlP5IYSob9hkiUl4swhCRzFJTU3Hjxg2kpKTA0NBQpm/plVF0dDR8fX1x5MgRvH//HiKRCK1atcKgQYPQo0ePYt/MEwFAly5doK+vDz8/vzI9z83NDS9fvsTx48c/UzLFd+zYMUyYMAENGjTA0qVLC20NvH79OqZOnYonT55g2bJl6N69u0BJ5cvU1PSTjntX1l5fLVu2hJOTE5YtW1biuMmTJ+PEiRPc3kYyYZ8hIuJ2JCIq1atXr7BgwQIcPXoUYrEYQN43o/lFGD8/PyxduhTr1q1D27ZthYyqEFq3bo3WrVtjxowZCAgIgJ+fH6Kjo3H16lUsWrQIzs7OcHNzg5GRkdBRSQElJyejVatWZX5e3bp1ERMT8xkSVRxdu3ZF7969ceDAAbi5uaFJkyYFGjk+ePAAEokEPXv2VJoCzIeaN2+OBg0aCB2jwjA0NER6enqp496+fcvVCySTV69eYdCgQSX2GTp+/Dhu376t9H2G8iUkJCAiIgJJSUnIysoqcoxIJMK4cePknIzo47EIQ0QlSktLg7u7O2JjY2FqagpLS0v4+PgUGOPk5IS5c+fi2LFjLMJ8oEqVKvDw8ICHhweioqLg4+OD4OBg7NixAzt27EC7du3g4eEBJycnoaOSAlFRUSnUgFAWOTk5bOYIYMmSJWjatCm2bNmC+/fv4/79+9J7urq68PT0xMiRIwVMKH81atRAcnIybt68CXV1dTg7O6NHjx6oUqWK0NEUmrOzM9avX4/Y2FhpMe+/YmNjceHCBfzwww/yDaegDh06hJCQEMTGxiI9Pb3QSg8A0i1eyoh9hmQnFosxe/Zs+Pv7QyKRFPlaysciDFU03I5ERCVasmQJtm7ditGjR2PSpEkQiUQwNTWFi4sLFi1aJB3n4uICkUgEf39/AdMqpsTERPj5+WHv3r1ITEwEkPdhMDU1VbpVafXq1ahZs6bASUkRODk5QUtLCwcOHCjT83r37o2MjAyl/XDzX9nZ2bh582aBRo7NmzeHurq6wMnkLzc3F2FhYQgMDMTJkyeRlZUFDQ0NdO7cGc7OzrCzs4OqqqrQMRWOWCzGxIkTER0djfHjx6NXr17Q0dEBkLf65eDBg1i7di1atmyJlStXKvUcisVijB8/HqdOnSr2w7JIJJLeU9ZVe+wzJLvVq1dj7dq1qFy5Mvr27QsjIyNUrly52PE8WIIqEq6EIaISHT9+HA0bNsTkyZNLHNegQQNERkbKKVXFcPr0afj6+iIsLAw5OTmoVKkS+vfvD3d3dzRv3hxnz57F+vXrcfnyZfz+++9YuXKl0JFJAbRq1QqHDh3CnTt30KxZM5meExMTg3v37qFXr16fOV3Foa6uLt0aqOxUVFTg4OAABwcHpKen49ChQwgMDMSRI0dw9OhR6OnpoVevXujbty/Mzc2FjiuYok4Wk0gkSE5Oxty5czF37lxUrVoVQN4q0Xy3bt3C119/rdQF0J07dyI0NBT29vaYMWMG1q1bh6CgIFy7dg1xcXEICgrC9u3bMXz48FLfT3zJUlNT4eTkVGJvOA0NDVhaWuLEiRNyTKZ49u/fD21tbfj7+6Nhw4ZCxyEqVyzCEFGJnj17BkdHx1LHqaio4M2bN3JIpNhevHiBvXv3Ys+ePXj27BkkEgkaNWqEQYMGoX///gWW/3fs2BG2trbo168fzp8/L2BqUiS9e/dGcHAwfvvtN+zYsaPUI0szMjLw22+/QSQSoXfv3nJKSRWVjo4OBg4ciIEDB+LJkycIDAzE/v374e3tjR07dsDY2Biurq7w8PAQOqrcxcfHF3svfwVHampqoXv5q62U2cGDB1GlShUsW7YMOjo60q2R6urqaNKkCSZPngxLS0uMHj0axsbGSvuzin2GZJeYmAgbGxsWYOiLxCIMEZVIW1sbr169KnXckydPUK1atc8fSIFNmDABoaGhEIvFUFFRQZcuXeDu7g4bG5tin5O/vUtZl2ZTYZ06dYK1tTUuXLgAV1dXTJ8+HR07dixybFhYGBYvXowHDx7A2toaDg4Ock6rmC5duoSLFy+W2shx4cKFck6mWOrXr48JEyZgwoQJuHTpEjZu3IiwsDCsX79eKYsw/Dn88R4+fIg2bdpIt2vlE4vF0m1a9vb2aNGiBXx8fJS2CMM+Q7LT19eHpqam0DGIPgsWYYioRObm5oiOjkZiYmKxxyU+fPgQMTEx6NSpk3zDKZhjx46hRo0acHV1xaBBg2Q+XrJr167S0xGIgLzmjUOHDsW9e/cwcuRI6OrqwtzcHNWrVwcApKSk4Pbt23j9+jUkEglMTEywYsUKYUMrgLdv32LChAk4f/58iU0cARZh8mVkZODo0aPYv38/IiIiAKDEvgtERcnNzS3wRUz+Cr60tDTpzy0gr/B36tQpOadTHCNHjsSNGzfw7bfflthnyN7eHqNHjxY4rbCcnJxw+PBhZGZmshhDXxwWYYioRAMHDsT58+cxceJErFy5slBh4eXLl/Dy8oJYLIabm5tAKRXDsmXL0K1bN6iple1Hq6Ojo0xbvkh5VKtWDXv27MHy5cvh5+eH169f49y5c4XGaWlpYeDAgZg8eTIqVaokQFLFsmLFCpw7dw5169aFu7t7qY0cldn58+cRGBiIY8eOISMjA6qqqrCzs0Pfvn2L7I1CVBIDAwMkJSVJH+dvpblz5w6sra2l1+Pj48v8b2RFxj5DH2/SpEk4f/48pkyZgvnz50NPT0/oSETlhqcjEVGpfvnlF+zfvx/q6upo3rw5oqOjUbduXdSrVw9Xr17F+/fvMXDgQMybN0/oqERfnDdv3uDChQu4desWUlJSAADVq1eHubk5rK2teczwBxwcHJCZmYng4GDo6+sLHUfhPHjwAIGBgThw4AASExMhkUhgZmYGZ2dn9O7dmx9yivHgwQP4+fnh6tWrSElJQZcuXfDzzz8DAKKionDjxg306dNHqbfkTpgwAVeuXMHZs2cBANevX4erqyvatm2LDRs2QEdHB0FBQfj555/Rrl077Ny5U+DE8mFqavpJz1fmLXJeXl548+YNjh8/jsqVK6N58+YwNDSESCQqNJYrG6miYRGGiGSybds2bNq0SfohMJ+uri5GjRoFT09PgZIREeVp0aIF7O3tsXbtWqGjKJSdO3ciMDAQt27dgkQiQc2aNdG7d284OzvDxMRE6HgKbceOHViyZAlycnIA5H3Yc3Z2xqJFiwAAly9fxrfffos5c+Yo9WrQPXv2YObMmdi2bRs6dOgAABg9ejROnz4NNTU1VK5cWbrSY9u2bQVWxxAVpSwFLJFIhNu3b3/GNETli0UYIpKZWCzGrVu38PTpU0gkEtSuXRstWrSAurq60NEE8SmNK0UiEby9vcsxDX2pAgMD0aNHjxKPNKU83bp1g7GxMdatWyd0FIViamoKkUgEc3NzODs7w8bGRnp6jSwaN278GdMprrCwMIwcORKGhobw8vKCpaUlbGxs4OLiIi3CAICNjQ0sLCywadMmAdMKKzMzE3FxcdDX15euqHr37h2WLl2KkJAQvH79GkZGRhgzZgy6d+8ucFqqCPJ7VMmqffv2nykJUfljEYaI6CN9yjJjfmtDsjI1NUW1atXg7OwMNzc3pf1ALItVq1Zh586dOHHihLTPAv2vCPMxRCIRbt26Vc6JKobvv/8eUVFRCAwMlJ5kY2pqWqgI4+npibi4OBw7dkygpFRRrFmzBmZmZqX2XTp58iRu3bqF8ePHyykZEcmT8nTGIqKP4uHhgcGDB6Nr165K1UxPFidOnBA6AimBbt264eTJk9i+fTu8vb3Rvn17DBo0iH8ni/DDDz8gMjISo0aNwoIFC9CkSROhIymE/CapVDY3btxAq1atij1KOF/16tURFRUln1AVTHp6Oh4/fgwtLS0YGRkJHUdwa9asgYuLi0xFmH379rEIQ/SF4rs3IipRREQEIiMjoa+vj/79+2PgwIE8Tvn/cR5IHlatWoWXL19i79698PPzw8WLFxEREQE9PT3p38l69eoJHVMhjBgxAjk5OYiOjkbv3r1Rp06dEhs5KsuWwJMnTwodoUJ6//49dHV1Sx2XkpLy0SuNKrqYmBhERERALBbDyMgI9vb2EIlEyM7OxqJFi+Dn5wexWAwAaNiwIRYvXoxWrVoJnFrxicVipX1N/ZdYLMapU6dw7do1pKSkoGXLlhgwYAAAIDExESkpKTA2NuaXElSh8NVKRCXasGEDfH19ERYWho0bN+Lvv/9Gx44dMWjQIHTq1KlMfQWI6OPo6+tj9OjRGD16NMLCwrB7926cOnUKmzZtwubNm2Fra4tBgwahc+fOSv138sMeArm5uYiPj0d8fHyRY/kBh0pTp04d3Llzp8QxYrEY9+7dQ8OGDeWUSnHMnz8fu3btKnDN3Nwc3t7eWL58eaF7sbGxGDFiBA4ePIhatWrJM2qF8+TJE558h7zTx3766Sc8e/YMEolEWuDLL8JcuXIFkydPxqpVq9C1a1eB0xLJjkUYIipRp06d0KlTJyQmJsLPzw/79u3DmTNnEBYWBgMDA7i6usLV1ZVvqD6QlZWFI0eO4NKlS3j+/DkAoFatWmjbti2++eYbaGpqCpyQKjI7OzvY2dnhxYsX2Lt3L/bs2YOzZ8/i7Nmz0r+TgwYNQo0aNYSOKnfcIkjlyd7eHv/88w/27NkDV1fXIsf4+PjgxYsX0g+FyiI4OBg+Pj4QiUSwtLSEnp4ebt++jVu3bmHFihXYvXs37Ozs8PPPP6N+/fqIi4vD4sWLER4ejm3btmH69OlC/xHkZs2aNQUex8TEFLqWTywW48GDB7h8+TLs7OzkEU9hPXz4ECNGjEBWVhaGDBmCtm3bYtKkSQXGODo6olKlSggJCWERhioUNuYlojLJzc1FaGgodu/ejbNnzyI3Nxdqamro1KkTBg0ahI4dOwodUVAXL17Ezz//jKSkJPz3x6tIJELNmjWxePFi6RGeRJ/i4sWL2LVrF44ePVrguqamJjw8PDBp0iSoqqoKlI6oYktKSkLv3r3x5s0bDBw4EF27doWnpyecnJwwfPhwHDt2DD4+PqhWrRoOHDiA6tWrCx1ZboYNG4aIiAhs2LABDg4OAPIKCL/88guCg4NRtWpVnDx5EpUrV5Y+Jz09HV26dIGBgQEOHDggVHS5y2+Mnb+SQ5aPXjVq1MDmzZs/6QCAiu6nn35CcHBwgddYUY2x3d3dkZqaiuDgYKGiEpUZizBE9NGePXuGzZs3S78NA4B69erh22+/xaBBg5Ruxcft27fh5uaGrKwsmJiYoHfv3tK+MfHx8Th48CDu3LkDTU1N+Pr6wszMTODEVBGlpqYiICAAu3fvRmxsLCQSCRo2bIhBgwahQ4cOOHToEHbv3o20tDR8//33mDZtmtCRSWCf8rNGmU9HAoBr165h3LhxePHiRaEtbBKJBDVr1sT69ethYWEhUEJhWFlZoWHDhvDz8ytw/cGDB+jZsydsbW2xZcuWQs/z9PREVFQUrly5Iq+oggsICACQ93r59ddfYWlpWezKKXV1dRgYGKB169bQ0NCQZ0yF07FjRxgaGhZ4jRVVhJk6dSrOnDmDyMhIIWISfRRuRyKijxIdHQ1fX18cOXIEAKCqqoqmTZvi9u3b+OOPP/DPP/9g48aNSnUawsqVK5GVlYWffvoJI0aMKHR/5MiR2LJlC/7880+sXLkSGzZsECAlVVSXL1+Gr68vQkJCkJWVBRUVFXTu3Bnu7u4FVqCZmppi2LBh6NevH4KCgliEIdSpU6fI6wkJCdJf5x/pnZaWJr3GU5WAli1b4siRI9i3bx/Cw8Px9OlT5Obmok6dOrC1tYWbmxt0dHSEjil3aWlpqF+/fqHrDRo0AAAYGBgU+byaNWvi/fv3nzWbonFxcZH+OiAgAPb29gWuUdFev36Ndu3alTru/fv3yMrKkkMiovLDIgwRySw9PR379+/H7t27ce/ePUgkEtSuXRsDBw7EwIEDUaNGDTx69Ahr167FwYMHsWDBgiK/CftSXb58Gc2aNSuyAJPP09MTQUFBuHz5shyTUUW2c+dO+Pn54f79+5BIJKhRowb69++PQYMGFfvhWl9fH9bW1ggKCpJzWsVw6NAhhISEIDY2Funp6UUu/xeJRDh+/LgA6eTvv6cj5eTkYOLEicjKysKYMWPQt29faSEhPT0dQUFBWL9+PczNzbFy5UohIiuUypUrw8PDAx4eHkJHURgSiaTIlRrq6uolPk/ZG2Lv3LlT6AgVhp6eHp48eVLquEePHrEvIVU4LMIQUamuX7+O3bt3Izg4WPoNVocOHeDu7g5HR8cCp7E0btwYS5cuRUJCglItNwbyPtgYGxuXOs7Y2BhxcXFySERfggULFgAALC0t4e7ujm7dupX6QQcATExM0LZt288dT6GIxWKMHz8ep06dKrbvgqw9Gb5kmzZtQnh4OPbv31/oVB8dHR24u7vDxsYGffv2xYYNGzBu3DiBkhJ9uWJiYqTHLhsbG6NLly4A8pr7Z2VlKeUKqw9ZWlriyJEjiI6ORuvWrYscExYWhocPH2LgwIHyDUf0iViEIaIS9evXD7dv34ZEIkHVqlUxcOBADB48GI0aNSrxeY0aNVK6IoyJiUmxx+F+KCEhAU2bNpVDIvoSDBo0CO7u7jAxMSnT8zw9PeHp6fmZUimmnTt3IjQ0FPb29pgxYwbWrVuHoKAgXLt2DXFxcQgKCsL27dsxfPhwTJ48Wei4gtm/fz+sra1LPFa5UaNG6NChA4KCgpS2CBMXF4erV6+iTZs2qFevnvT69evXsWDBAty5cwd169bFlClT4OjoKGBSYSQnJxfbh6O4ey9evPjcsRRebGwspk+fjqtXr0qvOTs7S4swQUFBmDlzJjZt2qTUJyR5enoiJCQEY8aMwcyZMwv8HROLxTh16hRmz54NdXV1DBs2TMCkRGXHIgwRlejWrVswNzeHu7s7evXqhUqVKsn0PFdXV5n28n5Jhg0bhilTpuD48eNwcnIqcszx48dx5coVLFu2TM7pqKKaM2eO0BEqjIMHD6JKlSpYtmwZdHR0pKv01NXV0aRJE0yePBmWlpYYPXo0jI2N0bt3b4ETC+PZs2cyNeutVKkSnj17JodEimnr1q3YvXt3gW1rr1+/hqenp7R3zv379/Hjjz/C39+/zIXSiu7s2bM4e/ZsoesikajYe8ouMTER3377LZKTk9G5c2e0a9cOS5YsKTCme/fumDt3Lo4dO6bURRgLCwvMmjUL8+bNw9SpU6GqqgqRSIRDhw4hODgY2dnZUFFRwfz589GkSROh4xKVCYswRFQiPz8/tGzZsszPa9OmDdq0afMZEimu1q1bw8PDAxMnTsTXX3+NXr16SU9HSkhIwMGDB3H06FF4eHigdevWBZpiAmyCSaXLysrCzZs38fz5cwBArVq10Lx5c6U7iaw4Dx8+RJs2bQot4xeLxdKjuu3t7dGiRQv4+PgobRFGT08PERERePv2bYEjhD/09u1bREREQE9PT87pFMfly5dhYmIi/TkO5DVWTUtLg6urKyZPnozQ0FDMmDED27dvx8KFCwVMK1/89+rjrFu3DsnJyZg7dy7c3NwAoFARpnLlyjAzM0N0dLQACRWLm5sbzMzMsGnTJpw7dw7v3r1DZmYmNDU1YW9vj7Fjx6JVq1ZCxyQqMxZhiKhEH1OAUVaOjo7SfhOHDx/G4cOHC42RSCTYuXNnoeZ8yn4MLJUsIyMDq1atgp+fH969e1fgnpaWFlxdXTFx4kRoa2sLlFAx5Obmolq1atLHWlpaAPJOcqlevbr0ev369XHq1Ck5p1McX3/9Nby9vfHDDz/gt99+Q7NmzQrcv3v3LubPn4+UlBSlbkb74sWLQl8mnD17Fmpqavjpp5+gq6uL/v37w8fHB1FRUQKlFMZ/mz2TbM6cOQMTExNpAaY4devWxblz5+SUSrG1bNkSa9asgUQiQUpKCnJzc1G9enVpYZ2oImIRhogKCAwMRIMGDfDVV1+V6XkHDx7E9evX4eXl9ZmSKT5l235F8vH27VsMHTpU2pvJyMhI+s18fHw8Hj58iB07diAyMhI7d+4sdmWDMjAwMEBSUpL0cf639Xfu3IG1tbX0enx8PNTUlPct0IQJE3D+/HlERkbC2dkZTZo0gaGhIUQiERISEqQncZmYmGDChAlCxxXMu3fvChQ2JRIJoqOjYWFhAV1dXen1Ro0aITQ0VIiIVMG8ePFCppUbYrEYGRkZckhUcYhEIujp6SE9PR0xMTHQ0tKCkZGR0LGIPoryvgMhoiJNnz4dLi4uRRZhzMzM4OLiUuSS6/DwcAQGBip1EYZHT9LnsG7dOty6dQutW7fGzJkz0bx58wL3b926hXnz5uHq1atYt24dpk2bJlBS4TVr1qxAQ3ArKytIJBKsWbMGFhYW0NHRQVBQEKKjo5W6aKqjo4Ndu3ZhxYoV2LdvH+7fv4/79+9L72tpacHFxQVTpkxR6hNaDAwMCpxkd/36dbx9+xaWlpYFxonFYplOLCOqWrUqEhMTSx0XFxcHfX19OSRSPDExMYiIiIBYLIaRkRHs7e0hEomQnZ2NRYsWwc/PD2KxGADQsGFDLF68mFuSqMJhEYaIZCaRSJT+aFcieTt8+DB0dXWxefPmIj8Qm5ub4++//4aTkxMOHz6s1EUYe3t7HDt2DOfPn0eHDh3QokULODg44PTp07C2tkblypWRlpYGkUiktCf+5NPR0cFvv/2Gn376CTdu3JCuIDIwMICFhYXMTdi/ZM2bN0dISAhCQkJgY2ODdevWQSQSwcHBocC4R48ewcDAQKCUVJG0bNkSZ8+exYMHD4ptJnvt2jXExMSgV69eck4nvPnz52PXrl0Frpmbm8Pb2xvLly8vdC82NhYjRozAwYMHUatWLXlGJfokKkIHICL6UuXm5uLVq1d49eoVcnNzhY5DFVRycjKsrKxKXJFQpUoVWFlZITk5WY7JFE+fPn1w4MCBAj1Oli9fDnd3d1SrVg1v375F06ZNsWzZsgLbk5RZpUqV0LZtW/To0QM9evRA27ZtWYD5f56enlBRUcHEiRPRrl07nDp1Cs2bN0f79u2lY5KSknDv3j1YWFgImJQqCg8PD+Tk5GDcuHG4du1aofsxMTH4+eefoaKigqFDhwqQUDjBwcHw8fEBAFhaWqJr166oV68ebt26hRUrVmD37t2ws7PDgQMHEB0djaCgINja2uLNmzfYtm2bwOmJyoYrYYiIylloaCh27NiBK1euIDMzEwCgoaGBr776Ct9++y26dOkicEKqSGrWrCldel0SsViMGjVqyCGR4tLU1ETTpk0LXNPW1sasWbMwa9YsgVJRRdWyZUusW7cOmzdvRkpKCpo3b44pU6YUGHPo0CHo6OjA1tZWoJRUkdjY2OCHH37Ahg0b4Obmhpo1a0IkEuHUqVNwcnJCfHw8JBIJJk6cqHRbbPz8/CASibBhwwbpajOxWIxffvkFPj4+qFq1KlasWCHte2ZiYoKVK1eiS5cuCA8PFzI6UZmxCENEVI5mzZqFPXv2SLdt5X+j/P79e5w/fx4XLlzAgAEDMH/+fCFjUgXSrVs3+Pn54eXLl8X2CEhOTsaFCxcwcOBAOaejiuzSpUu4ePEikpKSkJWVVeQYkUikVEcv/5eDg0Oh7UcfGj58OIYPHy6/QFThTZo0Cebm5li/fj1u374NAEhJSUFKSgqMjY0xfvx4fPPNNwKnlL+YmBjpFtJ8qqqqGDNmDA4ePAgLC4tCjed1dHRgYWGhdKeTUcXHIgwRUTnx9fWFn58fqlevjlGjRqFPnz7SD80vX77EgQMHsGnTJuzduxfm5uYYPHiwwImpIvjxxx9x+fJleHh4YPr06bCzsytw/+zZs1i8eDGaNGmCH3/8UaCUVJG8fftWekJSaX2+lL0IQ/Q5dOvWDd26dcOrV6/w9OlTSCQS1K5du0Bfk4yMDGhpaQmYUr7S0tJQv379QtcbNGgAAMX2XapZsybev3//WbMRlTcWYYiIysm///4LDQ0N7Ny5E8bGxgXu6evrY/jw4ejYsSNcXFywe/duFmGoSB4eHoWuqaqq4sGDBxg1ahSqVq1a4IjqtLQ0AECrVq3www8/wNvbW655hVTUXMlKJBIp1Vx9aMWKFTh37hzq1q0Ld3d3GBkZKfXR5kTysnr16gLHvuvp6UFPT6/QuIyMDIwaNUqpTl2USCTQ0NAodL20k8dEItHnikT02bAIQ0SFREVFFXvUdHH3Ll++/LljKbxHjx6hffv2hQowHzI2NoaVlRUiIyPlmIwqkoiIiGLvSSQSpKamIjU1tdC96OhopXszWtJclUbZ5upDISEhqFatGvz8/JT2GNyyOHToEEJCQhAbG4v09PQiVw+JRCIcP35cgHRUkaxduxYGBgZwc3MrdkxmZiZGjRqFS5cuyTEZEckTizBEVMjjx4/x+PHjMt9T5g81QN7e5KpVq5Y6rmrVqvzWmYp14sQJoSNUGJyrj/Pq1SvY29uzAFMKsViM8ePH49SpU8Vu2xKJRKVu6SLK16RJE8ybNw/6+vpwcnIqdD8zMxOjR49GZGQkunXrJkBCYSUnJxf7JVVx9168ePG5YxGVOxZhiKiA8ePHCx2hwrK2tkZUVBSys7OLXT6bnZ2NqKgoWFlZyTkdVRT5W42odJyrj1OnTh0WDmSwc+dOhIaGwt7eHjNmzMC6desQFBSEa9euIS4uDkFBQdi+fTuGDx+OyZMnCx2XKoAtW7bAzc0NU6dOxZYtW9C2bVvpvczMTIwZMwYXLlxA165dsXz5cgGTCuPs2bM4e/ZsoesikajYe0QVkUjCf4WJiMrFkydPMGDAAHTs2BEzZ85EtWrVCtxPTU3FvHnzcPbsWezdu7fIBnRERJ/bqlWrsHPnTpw4cUKm1XvKasCAAXj8+DFCQ0Oho6MDLy8vBAYGSk+0AYAzZ85g9OjRWLJkCXr37i1gWqoo7t+/D3d3d4hEIuzcuRMmJibIysrCmDFjEB4eDkdHR6xevRqqqqpCR5UrR0fHT3r+yZMnyykJ0efHIgwRUTlZs2YNnjx5gv3790NLSwsdO3aUflOfkJCAs2fPIiMjA3379kW9evUKPFckEmHcuHFCxCYiJZOVlQVPT09kZ2djwYIFaNKkidCRFNJXX32FNm3aYMuWLQAgLcLcuHGjwAfkgQMHQkVFBb6+vkJFpQrm8uXL8PT0hK6uLrZv344FCxbg7Nmz6NSpE9asWQM1NW5WIPqS8W84EZXIy8sLgwcPRsuWLYWOovDWrFkj7YuTkZGBY8eOFTkuMDCw0DUWYag0bA4qO85VyUaMGIGcnBxER0ejd+/eqFOnDgwNDYvs66XMp0jl5uYWWNGYf1xwWloaqlevLr1ev359nDp1Ss7pqCKztLTE0qVLMXHiRPTu3Rs5OTmws7PDqlWrWIAhUgL8W05EJQoICEBgYCDMzMwwaNAg9OrVC9ra2kLHUkiLFi0SOgJ9gdgcVHacK9l8eKpUbm4u4uPjER8fX+RYZW64bmBggKSkJOljQ0NDAMCdO3dgbW0tvR4fH88PzlRmTk5OmDNnDmbOnAlbW1usXbu2yCOaiejLw38xiKhEM2fOhK+vL27duoXZs2dj8eLF6NOnD9zc3GBqaip0PIXi4uIi89jz58+jQ4cOnzENfSnYHFR2nCvZ8FQp2TRr1gxXrlyRPraysoJEIsGaNWtgYWEBHR0dBAUFITo6Gu3atRMwKSmqLl26lDpGTU0N9+7dQ/fu3QtcV+bVekRfOhZhiKhEQ4YMwZAhQxAdHQ1fX18cOXIE//77L3x9fdGqVSsMGjQIPXr04Lc3Mnj8+DECAgIQFBSE58+f49atW0JHogrg4MGDqFKlCpYtWwYdHR2oqKgAANTV1dGkSRNMnjwZlpaWGD16NIyNjZW6OSjnSjY8VUo29vb2OHbsmLRo3qJFCzg4OOD06dOwtrZG5cqVkZaWxu2kVKziVpj914crrojoy8fGvERUJm/evEFAQAD8/Pxw//59iEQiVK1aFc7OznBzc4ORkZHQERVKeno6Dh06BH9/f1y9ehUAIJFIoK+vj/DwcIHTUUXA5qCy41xRecrMzERcXBz09fWhp6cHAHj37h2WLl2KkJAQvH79GkZGRhgzZkyhVQxERETF4UoYIiqTKlWqwMPDAx4eHoiKioKPjw+Cg4OxY8cO7NixA+3atYOHhwecnJyEjioYiUSCsLAwBAYG4uTJk8jMzIREIoG2tjacnJzQu3dv2NjYCB2TKgg2B5Ud54rKk6amJpo2bVrgmra2NmbNmoVZs2YJlIqIiCo6FmGI6KMkJiYiPDwcly5dApBXeNDV1UVERAQiIyPRqlUrrF69GjVr1hQ4qfzcv38fAQEBOHDgAF68eAGJRAIVFRWoq6sjOzsb58+fh6amptAxqYJhc1DZca7KhqdIfZz09HQ8fvwYWlpaXP1JRERlxncgRFQmp0+fhq+vL8LCwpCTk4NKlSqhf//+cHd3R/PmzXH27FmsX78ely9fxu+//46VK1cKHfmzev36NYKDg+Hv7y/t8SKRSGBsbIw+ffqgb9++mDx5Mq5cucICDH0UNgeVHedKNjxFqmQxMTGIiIiAWCyGkZER7O3tIRKJkJ2djUWLFsHPzw9isRgA0LBhQyxevBitWrUSODVVBHFxcbh69SratGmDevXqSa9fv34dCxYswJ07d1C3bl1MmTIFjo6OAiYlos+JRRgiKtWLFy+wd+9e7NmzB8+ePYNEIkGjRo0waNAg9O/fH1WqVJGO7dixI2xtbdGvXz+cP39ewNSf34QJE3Dq1Cnk5ORAIpGgevXq6NmzJ5ydnWFhYSF0PPpCsDmo7DhXsuEpUsWbP38+du3aVeCaubk5vL29sXz58kL3YmNjMWLECBw8eBC1atWSZ1SqgLZu3Yrdu3cXWF32+vVreHp6Ii0tDUDeqtoff/wR/v7+MDExESoqEX1GKkIHICLFNmHCBHTu3BmrVq1CYmIiunTpgq1bt+LIkSMYPnx4gQJMPpFIBFNTU7x580aAxPJz7Ngx5OTkwMDAAKtXr0ZYWBh+++03FmCoXPXp0wcHDhxAs2bNpNeWL18Od3d3VKtWDW/fvkXTpk2xbNmyAltulBHnSjYfniLVsGHDIk+RWr16NTZt2oQDBw4InFZ+goOD4ePjAwCwtLRE165dUa9ePdy6dQsrVqzA7t27YWdnhwMHDiA6OhpBQUGwtbXFmzdvsG3bNoHTU0Vw+fJlmJiYFDihLCAgAGlpaXB1dcW5c+ewYMEC5OTkYPv27cIFJaLPiqcjEVGJTE1NUaNGDbi6umLQoEEyf9N38uRJ3Lp1C+PHj//MCYXTvHlziMViiEQi6Ovro1evXnB2doapqWmBce7u7rhy5Qpu374tUFIiov/hKVJFGzZsGCIiIrBhwwY4ODgAyNu69csvvyA4OBhVq1bFyZMnUblyZelz0tPT0aVLFxgYGChVwYo+jrW1Ndq0aYP169dLr3l6euLixYsIDw+Hrq4uAKBfv3549+4djhw5IlRUIvqMuBKGiEq0bNkynDp1ChMnTizTUmtHR8cvugADAGfOnMEvv/wCExMTJCcnY/v27XBxcUGfPn2wbds2vHjxQuiI9AVLT0/HzZs38fDhQ6GjKDzOVUElnSL1ofr16+PevXvyjCaomJgY6Ra2fKqqqhgzZgwkEgksLCwKFGAAQEdHBxYWFnj69Km841IF9O7dO2hra0sfSyQSREdHw8LCQlqAAYBGjRohMTFRiIhEJAfsCUNEJerRo4fQERSWvr4+vvvuO3z33XeIiYmBv78/goODcffuXSxZsgR//fUXrK2t8fz5c6GjUgXE5qCy41yVDU+RKlpaWhrq169f6HqDBg0A5M1bUWrWrIn3799/1mz0ZTAwMEBcXJz08fXr1/H27VtYWloWGCcWi6Guri7veEQkJ8rzLysR0WdkamqKX3/9Fb/88gvOnDmDgIAAhIaG4uzZswDy+uR4eXmhV69esLGxgUgkEjgxKTI2B5Ud56rseIpU0SQSCTQ0NApdL+3DMH+ek6yaN2+OkJAQhISEwMbGBuvWrYNIJCqw+goAHj16VGzRj4gqPhZhiKgADw+Pj36uSCSCt7d3OaapeFRVVdG5c2d07twZqampOHjwIPbv349r164hICAAgYGB0NfXR8+ePeHl5SV0XFJA+c1BRSIRLC0toaenh9u3bxdqDvrzzz+jfv36iIuLw+LFixEeHo5t27Zh+vTpQv8R5IZz9XF4ihSRMDw9PXH8+HFMnDgRAKTb3Nq3by8dk5SUhHv37qFv375CxSSiz4yNeYmogP82lS0LkUjE5rPFePjwIQICAnDgwAE8f/6cc0XFYnNQ2XGuPk5mZibi4uKgr68PPT09AHm9KpYuXYqQkBC8fv0aRkZGGDNmDLp37y5wWvkxNTWFnZ0dRo0aVeje0KFDi723ceNGhIeH82c6yeT06dPYvHkzUlJS0Lx5c0yZMqXAqrzt27dj7dq1mDVrFnr37i1gUiL6XFiEIaIC4uPjP+n5Hx67SIVJJBKcO3cOgYGB+PPPP4WOQwrIysoKDRs2hJ+fX4HrDx48QM+ePWFrays91eZDnp6eiIqKKrDN5EvHuaLyZGpq+klbi1iEISIiWXA7EhEVwCLK5yUSiWBrawtbW1uho5CCYnNQ2XGuyld6ejoeP34MLS0tGBkZCR1H7vIbFBMREX1OLMIQEREpEDYHlR3nqmx4ilTJTp48KXQEIiJSAizCEJFMsrKycOTIEVy6dEl65HKtWrXQtm1bfPPNN9DU1BQ4IRERFYenSBEpjkOHDiEkJASxsbFIT09HUd0hRCIRjh8/LkA6IvrcWIQholJdvHgRP//8M5KSkgq9Udi7dy/++usvLF68GB06dBAoIdGXJTk5GZGRkWW69+LFi88dSyFxrkrHU6SIFINYLMb48eNx6tSpIgsvQF7xhS07ib5sbMxLRCW6ffs23NzckJWVBRMTE/Tu3VvaNyY+Ph4HDx7EnTt3oKmpCV9fX5iZmQmcmKhiY3NQ2XGuZMNTpIgUw/bt2/HHH3/A3t4eM2bMwLp16xAUFIRr164hLi4OQUFB2L59O4YPH47JkycLHZeIPhOuhCGiEq1cuRJZWVn46aefMGLEiEL3R44ciS1btuDPP//EypUrsWHDBgFSEn052BxUdpwr2cTExKBFixbSAgwAqKqqYsyYMTh48CAsLCwKFGAAQEdHBxYWFoiKipJ3XKIv1sGDB1GlShUsW7YMOjo6UFFRAZDXx6pJkyaYPHkyLC0tMXr0aBgbG/OIaqIvFIswRFSiy5cvo1mzZkUWYPJ5enoiKCgIly9flmMyoi8Tm4PKjnMlG54iRaQYHj58iDZt2kBHR6fAdbFYDFVVVQCAvb09WrRoAR8fHxZhiL5QKkIHICLFlpOTA2Nj41LHGRsbIycnRw6JiIioLHiKFJFiyM3NRbVq1aSPtbS0AOQVSj9Uv3593Lt3T57RiEiOWIQhohKZmJggPj6+1HEJCQlo2rSpHBIRERERVTwGBgZISkqSPs7fUnnnzp0C4+Lj46Gmxg0LRF8q/u0mohINGzYMU6ZMwfHjx+Hk5FTkmOPHj+PKlStYtmyZnNMREZEseIoUkfCaNWuGK1euSB9bWVlBIpFgzZo1sLCwgI6ODoKCghAdHY127doJmJSIPieejkREJUpISMD27dvh83/t3XlUlnX+//HnDagkoLLOCOJCLOZgHaXccwGXPC5J0mJGyZmUcJ0602jNOOOMox5Tp0atPEdHECdxBUXMRMElJTVLoxJCRRAQF0RERQzx/v3hjzvvWARFbpzv63GO5+D1uT6f+31d3IfD/eZ9vT+ffcaQIUMYPny4aXeks2fPkpCQwI4dO3j11VcZN25cpflqnCkiYlnaRUqkcdiwYQMzZ84kMjKSnj17AhAeHs7evXuxsbHBzs7O9GhSZGQkPXr0sGS4IvKQKAkjIjWq+OXdaDRW+0t8dWMGg4Hjx48/7BBFRKQGgYGBDzRfDZBF6sfNmzc5c+YMzs7OODk5AVBSUsLChQtJTEykqKgILy8vIiIiGDp0qIWjFZGHRUkYEalRaGjoA81fvXp1PUUiIiIiIiLyaFMSRkRERERExEKuXbtGdnY2jz32GF5eXpYOR0QeMjXmFREREREReUjS09M5fPgw5eXleHl50bdvXwwGA2VlZcybN4/169dTXl4OQLt27Zg/fz5PPfWUhaMWkYdFlTAiUie3b9+mqKgIgFatWmFlpZ3uRURERKoye/Zs1qxZY3asU6dOrFq1ig8//JDPPvus0hwHBwcSEhL4zW9+01BhikgD0qcnEamV3bt3ExYWRteuXenduze9e/emS5cuhIWFkZSUZOnwRERERBqVbdu2mZIsAQEBDBo0iDZt2nD8+HE++ugj1q1bx7PPPsvWrVs5duwY8fHx9O7dm6tXrxIZGWnh6EXkYVEljIjc01//+lc2bNhAxY8LW1tbAEpLS4E7uyCFhIQwe/Zsi8UoIiIi0pi88cYbHD58mGXLltGvXz8AysvLmT59Otu2baNFixYkJydjZ2dnmnPt2jWCgoJwc3Nj69atlgpdRB4iVcKISI3Wrl3L+vXradWqFdOnT+fAgQMcO3aMY8eOceDAAWbMmIGjoyMbN24kJibG0uGKiIiINArp6el07tzZlIABsLa2JiIiAqPRiL+/v1kCBsDe3h5/f39yc3MbOlwRaSBKwohIjWJiYmjatCmrV68mLCwMZ2dn05izszPjxo0jOjoaGxsb1q1bZ8FIRURERBqP4uJiPD09Kx1v27YtAG5ublXOc3V1NVUbi8j/HiVhRKRGp0+fplu3bnh7e1d7jre3N927d+f06dMNGJmIiIhI42U0GmnatGml402aNKlxnsFgeFghiUgjoCSMiNTI3t6eFi1a3PO8Fi1aVCqpFRERERERkV/YWDoAEWncevTowbfffktZWVm1f7kpKyvj22+/pXv37g0cnYiIiEjjVVBQwNdff12nsYsXLz7ssETEgrQ7kojUKCcnh5CQEPr06cPMmTNp1aqV2fiVK1f4xz/+wf79+9m4cWOVzz6LiIiI/F/TsWPHB3q0KC0trR6jEZHGQkkYEanR0qVLycnJYcuWLTz22GP06dMHDw8PAM6ePcv+/fu5ceMGzz//PG3atDGbazAYmDRpkiXCFhEREbGowMDAB5qfnJxcT5GISGOiJIyI1Kjirzj386PCYDDorzgiIiIiIiL/n3rCiEiN5s2bZ+kQRERERERE/ieoEkZE6s1XX31Fz549LR2GiIiIiIhIo6RKGBF5INnZ2cTFxREfH8+5c+c4fvy4pUMSERERERFplJSEEZE6u3btGp9//jmxsbF89913ABiNRpydnS0cmYiIiIiISOOlJIyI1IrRaOTLL79k8+bNJCcnc/PmTYxGI82bN2fgwIGMGDGCXr16WTpMERERERGRRks9YUSkRidPniQuLo6tW7dy8eJFjEYjVlZW2NjYUFZWxrFjx2jWrJmlwxQREREREWn0VAkjIpUUFRWxbds2YmNjTT1ejEYj3t7ejBw5kueff563336bo0ePKgEjIiIiIiJSS0rCiIiZKVOmsGfPHm7duoXRaMTR0ZFhw4YxatQo/P39LR2eiIiIiIjII0tJGBExs3PnTgwGA25ubvzlL39hwIAB2NjoR4WIiIiIiMiDsrJ0ACLSuFhbW2M0Grlw4QJ///vfWbhwIenp6ZYOS0RERERE5JGnJIyImNm3bx/Tp0/H19eXgoICoqKiCA4OZuTIkURGRnLx4kVLhygiIiIiIvJI0u5IIlKt9PR0YmNj2bZtG5cuXcJgMGBtbU2PHj3IzMwkPz+ftLQ0S4cpIiIiIiLySFASRkTuqby8nH379hEXF8fu3bspKysDwGAwMGrUKIYPH06vXr0wGAwWjlRERERERKTxUhJGROrkypUrJCQksGXLFlJTU4E7yRhnZ2eGDRvGe++9Z+EIRUREREREGiclYUTkvmVmZhIXF8fWrVs5d+4cBoNBjyeJiIiIiIhUQ0kYEXlgRqORlJQUNm/ezIIFCywdjoiIiIiISKOkJIyIiIiIiIiISAPQFtUiIiIiIiIiIg1ASRgRERERERERkQagJIyIiIiIiIiISANQEkZEREQeKYcOHcLPz4/AwMBKY6Ghofj5+REbG2uByOrXkiVL8PPzY8aMGZYOpV74+fnh5+dHbm6upUMRERGxGBtLByAiIiKWExoayuHDh82OWVlZ4eDggJeXF0FBQYwdO5bmzZtbKELLSUtLY9euXXh4ePDCCy9YOpz7tmnTJt5//30AQkJCmDNnTr2un5ubS1xcHA4ODowbN65e1xYREflfo0oYERERoXXr1nTt2pWuXbvi7++PlZUVR48eZeHChQQHB3P+/HlLh1grrVu3pkOHDjg4ODzwWmlpaSxdupS4uLh6iMxyNm3aZPp6+/btlJSU1Ov6eXl5LF26lOjo6BrP69ChAx06dKBJkyb1+voiIiKPElXCiIiICKNHj2bKlClmx3bs2MGMGTPIyspi1qxZfPrppxaKrvY++OADS4fQqGRlZfHNN98A0KJFC4qLi/niiy8sUtnzxRdfNPhrioiINDaqhBEREZEqDRkyhIiICAD27NnDlStXLByR1FVFFUxAQAAhISFmx0RERKThqRJGREREqtWzZ08Abt++TXZ2Nk8++SSHDh3i9ddfx8PDg+TkZBISEli7di0ZGRlcuXKF6OhounfvDkB5eTmbN28mPj6e9PR0rl+/jqOjI926dWP8+PF07NixytctKysjKiqKzZs3c+bMGRwcHHj66aeZNGlSjfFW9LiZN29eldUexcXF/Pe//2X37t1kZWVRWlqKq6srfn5+DBkyhFGjRgEQGBhIXl4eAIcPH8bPz89snaSkJNq0aWO2bnR0NMnJyWRnZ/Pzzz/j7u5OYGAgb775Js7OzlXGW1hYyJIlS0hOTqawsBBXV1cGDBhQqSrpflTce4Dg4GCefPJJVq5cyZEjR8jOzqZdu3bVzi0tLWX9+vUkJiZy4sQJrl+/jouLC15eXgwaNIjRo0fTtGlTs55CeXl5le7T3e+FirFf37sK+/btY82aNaSmplJcXEzLli156qmnCA0NNb0P7/br92FSUhJRUVGkpaVx69YtfHx8GDduHMOGDbuv+yciIvIwKAkjIiIi1TIajTWOz507l1WrVuHi4kLbtm3NesdcuXKFiRMncuTIEQDc3Nxwd3cnOzubhIQEduzYwfz58yt9SP75558JDw8nJSUFgDZt2tCyZUv27NnD3r1775mIqc4PP/zAW2+9xcWLFwFo164dDg4O5Ofnk5ycTHJysikJ4+/vT5MmTcjKysLe3h5fX1+ztZo1a2b6Oj09nQkTJnD+/HlsbGxwd3fH1taW06dPs3LlSrZu3crKlSsrrZGbm8trr71Gfn4+VlZWeHt7YzQa+eyzz9i7dy/9+/e/r+us8OWXX3LhwgVsbW0ZOnQo9vb2/O53v+PHH39k06ZNvPPOO1XOy8nJYcKECWRmZgLg7u6Op6cn58+fJyUlhQMHDvDss8/Spk0bfH19KSoqIiMjg6ZNm+Lv72+2Vm1788yZM8fUU8bZ2ZmOHTuSm5tLUlISSUlJRERE8Ic//KHa+UuXLmXJkiWm92FOTg6pqam88847XL58mddee61WcYiIiDxsSsKIiIhItQ4ePAjc2THp15UT586dIyYmhgULFjBixAgMBgNGo5GysjIA/vjHP3LkyBECAgKYNWuWKQlx+/ZtoqOjmT9/Pu+99x6dOnWiQ4cOpnU/+eQTUlJSsLOzY/HixfTp0we4k9SZPn06ixcvrvN1FBQUEB4eTkFBAd26dWP27Nm0b9/eNJ6Xl8fGjRtN/1+8eDGxsbGm+FavXl3lukVFRYSHh3P+/Hleeukl3n77bZycnAC4evUq//znP9m8eTNTp04lISEBG5tffvX605/+RH5+Pj4+Pnz88cem+3vq1CkiIiJYu3Ztna/zbhWPHQ0cOBB7e3sARo0axY8//sjmzZuZNm0a1tbWZnNKS0sJDw8nMzMTX19f5s2bZ5ZYuXTpErGxsabdsmbOnGmqSHF1dSUmJqbOccbFxREdHY21tTUzZ87k5ZdfxsrKivLyctP75NNPP6Vjx44899xzleZfuHCB5cuXs3DhQkaMGAHArVu3mDNnDmvWrGHRokWMGjXKdA9EREQsST1hREREpEo7duwwNePt378/LVu2NBsvLy9n0qRJjBw5EoPBAIDBYKBp06akpKSwb98+3N3dWbZsmVkViJWVFePGjWPs2LHcvHmTVatWmcZKSkpMCY9p06aZEjAALVu2ZNGiRfe1XfaKFSsoKCigQ4cOLF++3CwBA+Dh4cG0adPqvG5kZCTnzp0jKCiI2bNnmxIwcKcKZO7cuXTq1InTp0+TmJhoGjty5IipYe6CBQvMElyPP/448+bNMyWz7kdhYSG7d+8GMFX3AAwfPpwmTZpw/vx59u/fX2nehg0bOHXqFI6OjkRFRVWqbHF2dmb8+PFm1/mgPvnkEwBefvllxowZg5XVnV9Pra2tCQsLMyVWPv744yrnl5WVER4ebjoPwMbGhhkzZuDk5ERJSQmHDh2qt3hFREQehJIwIiIiwqZNmxgzZgxjxozhxRdfpEePHkydOpWSkhLat2/PrFmzqpz34osvVnn8888/B2DYsGG0aNGiynMGDx4MwFdffWU69s0333Dt2jVsbW2rXNvOzs7UYLYuKhIgYWFh2Nra1nl+dbZv3w7AK6+8UuW4tbU1QUFBwC9VRQB79+4F4JlnnuGJJ56oNC8gIIDOnTvfd1zx8fGUlZXh5uZGr169TMednJzo168fUHWD3or79NJLL1Xbx6Y+nTp1ijNnzgB3vjdV+f3vfw9ARkYGZ8+erfKcV199tdKxZs2a0alTJwDTa4iIiFiaHkcSERER8vPzyc/PB+5Uqtjb29OlSxeCgoIYO3ZsldUnjo6O1X5QT09PB2Dnzp2mio9fu3nzJnDnsaYKFX1IPDw8qq148fHxqeVV3XHt2jVTk90uXbrUaW5NSkpKyM7OBuDf//53tVt4X7p0CcB0f+GX6/T29q52fR8fH77//vv7ii02NhaAkSNHVnrkKDg4mF27dpGcnMzly5dxdHQ0jWVkZAD1e59qcvr0aQBsbW1p27Ztled4e3tjbW1NeXk5mZmZuLu7m407OjrSqlWrKudWvD+vX79ef0GLiIg8ACVhREREhMmTJ9d5R56aHgsqLi4GICsri6ysrBrXKS0tNX1d8WG5piqMulZo3P0BvLqqnPtx9epV09c//PDDPc+v6jpdXFyqPf9+K1G+//57fvrpJ8D8UaQK/fr1w8nJicLCQuLj43njjTdMY9euXQNq31D3QdXm+21jY4OjoyMFBQVVJlNqeh9WPNp0rwbTIiIiDUVJGBEREal3FR+M586dy+jRo2s9z87ODvileqQqNY3VtCbcSQ799re/rdP86tz94X/Xrl14enrWOaaCgoJqz6nrdVa4+zGj4cOH13hubGysWRLG3t6eoqIiswTTw1Sb7/etW7e4fPmy2fkiIiKPKvWEERERkXpX0Yi3oiKjtry8vIA7uxXduHGjynNOnDhRpzXt7e3x8PAA4OjRo7WeV9FsuDoODg60bt0auP/rPHXqVLXn1PU64c4jXtu2bQPuNDJ2cXGp9h/ceWzs7iqeiu9bfd6nmlTch9LS0mr7tpw8eZLy8nLgTtNiERGRR5mSMCIiIlLvhg4dCsCWLVtqrPb4tYCAAOzs7CgtLTXbMrrC9evXq2woey9DhgwBICoqytSL5l4qGvhWlwyCX64zKirKlCiojb59+wJw+PBhU/+cux09evS++sEkJiZSXFyMjY0N27dv58CBA9X+q2hae/f9rNgCesOGDRQWFtbqNWtzn6rj5eVl2hkqMjKyynMqjvv6+pqSXiIiIo8qJWFERESk3g0YMIA+ffpQVFTE66+/zpEjRyqdk5OTw/Lly9mwYYPpWPPmzQkNDQXuNLtNSUkxjRUXF/Puu+/eV5PVN998ExcXFzIzM5kwYYKpoW6FvLw8Fi9ebHasIjlw8uRJLl68WOW648ePx83Nja+//popU6aQk5NjNm40GklNTWXOnDmkpqaajj/zzDOm5rfvvvuu2bzMzExmzJhBkyZN6nydFQmVfv363bOnzAsvvADAtm3bTImpkJAQvL29KSwsJCwsjOPHj5vNuXTpEitWrDBL0LRt2xaDwUBhYWGVCaV7iYiIAGDdunWsXbvW1L/l9u3brFq1ii1btgAwadKkOq8tIiLS2KgnjIiIiDwUH374IdOmTSMlJYWxY8fi7OyMu7s7t2/fJj8/3/RBfvLkyWbzJk6cyNGjRzl06BBhYWF4enrSsmVLTp48CcDUqVNZtGhRnWJxdnZm2bJlREREcPDgQQYPHkz79u2xt7fn3LlzpmqdqVOnmuY88cQT+Pr6kpGRwaBBg3j88cdNfWD+9a9/4erqipOTEytWrGDixIkkJSWRlJSEp6cnTk5O3Lhxg9zcXEpKSgAYOHCgWUwLFixg7NixZGRkMHjwYHx8fDAajZw4cYI2bdrwyiuvsHr16lpfY15enmkb7Nr04RkxYgQffPABV65cYefOnQwfPpxmzZqxbNkyxo8fT3p6OsHBwXh4eODk5MSFCxe4cOECRqOR5557DicnJwBatWpF//792b17NyEhIfj4+GBvbw/A+++/X+UW3HcLDg7m+PHjREdH87e//Y0lS5bQunVr8vLyTO+Rt956y1SlIyIi8ihTEkZEREQeihYtWvCf//yHxMRE4uPjSU1NJT09HWtra9zc3OjVqxeBgYH069fPbF6zZs1YsWIFUVFRxMXFkZuby/Xr1+nbty+TJ0+mqKjovuLp3LkzCQkJrF69muTkZLKyssjPz8fV1ZWBAweaHlmqYDAYWL58OR999BEHDx7kp59+oqysDMDskSY/Pz+2bt3K+vXr2bVrFydOnODs2bPY2tri6enJ008/zcCBAwkICDBb39PTk9jYWJYuXUpycjKZmZm4uroyduxYpkyZUqcEDEBcXBxGoxEXF5dK97QqrVq1IigoiO3bt7Np0yZTE19PT0/i4uKIiYkhMTHRVAnk4uJC7969GTJkCG5ubmZrzZ8/n8WLF7N3715OnDhhuk8Vu2Tdy5///Gf69OlDTEwM3333HWlpabRs2ZKgoCBCQ0Pp2bNnne6FiIhIY2Uwas8+EREREREREZGHTj1hREREREREREQagJIwIiIiIiIiIiINQEkYEREREREREZEGoCSMiIiIiIiIiEgDUBJGRERERERERKQBKAkjIiIiIiIiItIAlIQREREREREREWkASsKIiIiIiIiIiDQAJWFERERERERERBqAkjAiIiIiIiIiIg1ASRgRERERERERkQagJIyIiIiIiIiISANQEkZEREREREREpAEoCSMiIiIiIiIi0gD+HxyhtEwAz8sNAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "actual, predicted = get_actual_predicted_labels(test_ds)\n", "plot_confusion_matrix(actual, predicted, labels, 'test')" ] }, { "cell_type": "markdown", "metadata": { "id": "FefzeIZz-9aI" }, "source": [ "各クラスの適合率と再現率の値は、混同行列を使用して計算することもできます。" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "execution": { "iopub.execute_input": "2024-01-11T20:16:33.787006Z", "iopub.status.busy": "2024-01-11T20:16:33.786762Z", "iopub.status.idle": "2024-01-11T20:16:33.792081Z", "shell.execute_reply": "2024-01-11T20:16:33.791503Z" }, "id": "dq95-56Z-_E2" }, "outputs": [], "source": [ "def calculate_classification_metrics(y_actual, y_pred, labels):\n", " \"\"\"\n", " Calculate the precision and recall of a classification model using the ground truth and\n", " predicted values. \n", "\n", " Args:\n", " y_actual: Ground truth labels.\n", " y_pred: Predicted labels.\n", " labels: List of classification labels.\n", "\n", " Return:\n", " Precision and recall measures.\n", " \"\"\"\n", " cm = tf.math.confusion_matrix(y_actual, y_pred)\n", " tp = np.diag(cm) # Diagonal represents true positives\n", " precision = dict()\n", " recall = dict()\n", " for i in range(len(labels)):\n", " col = cm[:, i]\n", " fp = np.sum(col) - tp[i] # Sum of column minus true positive is false negative\n", " \n", " row = cm[i, :]\n", " fn = np.sum(row) - tp[i] # Sum of row minus true positive, is false negative\n", " \n", " precision[labels[i]] = tp[i] / (tp[i] + fp) # Precision \n", " \n", " recall[labels[i]] = tp[i] / (tp[i] + fn) # Recall\n", " \n", " return precision, recall" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "execution": { "iopub.execute_input": "2024-01-11T20:16:33.794986Z", "iopub.status.busy": "2024-01-11T20:16:33.794765Z", "iopub.status.idle": "2024-01-11T20:16:33.811101Z", "shell.execute_reply": "2024-01-11T20:16:33.810530Z" }, "id": "4jSEonYQ_BZt" }, "outputs": [], "source": [ "precision, recall = calculate_classification_metrics(actual, predicted, labels) # Test dataset" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "execution": { "iopub.execute_input": "2024-01-11T20:16:33.814075Z", "iopub.status.busy": "2024-01-11T20:16:33.813857Z", "iopub.status.idle": "2024-01-11T20:16:33.818295Z", "shell.execute_reply": "2024-01-11T20:16:33.817738Z" }, "id": "hXvTW1Df_DV8" }, "outputs": [ { "data": { "text/plain": [ "{'ApplyEyeMakeup': 1.0,\n", " 'ApplyLipstick': 0.6153846153846154,\n", " 'Archery': 0.6666666666666666,\n", " 'BabyCrawling': 0.8,\n", " 'BalanceBeam': 0.8571428571428571,\n", " 'BandMarching': 0.8333333333333334,\n", " 'BaseballPitch': 0.7692307692307693,\n", " 'Basketball': 0.5454545454545454,\n", " 'BasketballDunk': 1.0,\n", " 'BenchPress': 1.0}" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "precision" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "execution": { "iopub.execute_input": "2024-01-11T20:16:33.821168Z", "iopub.status.busy": "2024-01-11T20:16:33.820937Z", "iopub.status.idle": "2024-01-11T20:16:33.825120Z", "shell.execute_reply": "2024-01-11T20:16:33.824554Z" }, "id": "be1yrQl5_EYF" }, "outputs": [ { "data": { "text/plain": [ "{'ApplyEyeMakeup': 0.4,\n", " 'ApplyLipstick': 0.8,\n", " 'Archery': 0.8,\n", " 'BabyCrawling': 0.8,\n", " 'BalanceBeam': 0.6,\n", " 'BandMarching': 1.0,\n", " 'BaseballPitch': 1.0,\n", " 'Basketball': 0.6,\n", " 'BasketballDunk': 0.9,\n", " 'BenchPress': 0.9}" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "recall" ] }, { "cell_type": "markdown", "metadata": { "id": "d4WsP4Z2HZ6L" }, "source": [ "## 次のステップ\n", "\n", "TensorFlow での動画の操作についての詳細は、以下のチュートリアルをご覧ください。\n", "\n", "- 動画データを読み込む\n", "- [MoviNet でストリーミングの行動認識を実行する](https://www.tensorflow.org/hub/tutorials/movinet)\n", "- MoviNet を使った動画分類の転移学習" ] } ], "metadata": { "accelerator": "GPU", "colab": { "name": "video_classification.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.18" } }, "nbformat": 4, "nbformat_minor": 0 }