{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "_DDaAex5Q7u-" }, "source": [ "##### Copyright 2019 The TensorFlow Authors." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "cellView": "form", "execution": { "iopub.execute_input": "2022-12-15T01:00:29.512155Z", "iopub.status.busy": "2022-12-15T01:00:29.511654Z", "iopub.status.idle": "2022-12-15T01:00:29.515799Z", "shell.execute_reply": "2022-12-15T01:00:29.515237Z" }, "id": "W1dWWdNHQ9L0" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "6Y8E0lw5eYWm" }, "source": [ "# 훈련 후 정수 양자화" ] }, { "cell_type": "markdown", "metadata": { "id": "CIGrZZPTZVeO" }, "source": [ "\n", " \n", " \n", " \n", " \n", "
TensorFlow.org에서 보기Google Colab에서 실행GitHub에서 소스 보기노트북 다운로드
" ] }, { "cell_type": "markdown", "metadata": { "id": "BTC1rDAuei_1" }, "source": [ "## 개요\n", "\n", "정수 양자화는 32bit 부동 소수점 숫자(예: 가중치 및 활성화 출력)를 가장 가까운 8bit 고정 소수점 숫자로 변환하는 최적화 전략입니다. 그 결과 모델이 작아지고 추론 속도가 증가하여 [마이크로 컨트롤러](https://www.tensorflow.org/lite/microcontrollers)와 같은 저전력 장치에 유용합니다. 이 데이터 형식은 [에지 TPU](https://coral.ai/)와 같은 정수 전용 가속기에도 필요합니다.\n", "\n", "이 가이드에서는 MNIST 모델을 처음부터 훈련하고 Tensorflow Lite 파일로 변환하고 [훈련 후 양자화](https://www.tensorflow.org/lite/performance/post_training_quantization)로 양자화합니다. 마지막으로 변환된 모델의 정확성을 확인하고 원본 부동 모델과 비교합니다.\n", "\n", "실제로 모델을 양자화하려는 정도에 대한 몇 가지 옵션이 있습니다. 이 튜토리얼에서는 모든 가중치와 활성화 출력을 8bit 정수 데이터로 변환하는 '전체 정수 양자화'를 수행합니다. 반면 다른 전략은 일부 양의 데이터를 부동 소수점에 남길 수 있습니다.\n", "\n", "다양한 양자화 전략에 대해 자세히 알아 보려면 [TensorFlow Lite 모델 최적화](https://www.tensorflow.org/lite/performance/model_optimization)에 대해 읽어보세요.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "dDqqUIZjZjac" }, "source": [ "## 설정" ] }, { "cell_type": "markdown", "metadata": { "id": "I0nR5AMEWq0H" }, "source": [ "입력 및 출력 텐서를 양자화하려면 TensorFlow r2.3에 추가된 API를 사용해야 합니다." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2022-12-15T01:00:29.520036Z", "iopub.status.busy": "2022-12-15T01:00:29.519542Z", "iopub.status.idle": "2022-12-15T01:00:31.540119Z", "shell.execute_reply": "2022-12-15T01:00:31.539443Z" }, "id": "WsN6s5L1ieNl" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2022-12-15 01:00:30.496669: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory\n", "2022-12-15 01:00:30.496758: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory\n", "2022-12-15 01:00:30.496767: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "TensorFlow version: 2.11.0\n" ] } ], "source": [ "import logging\n", "logging.getLogger(\"tensorflow\").setLevel(logging.DEBUG)\n", "\n", "import tensorflow as tf\n", "import numpy as np\n", "print(\"TensorFlow version: \", tf.__version__)" ] }, { "cell_type": "markdown", "metadata": { "id": "2XsEP17Zelz9" }, "source": [ "## TensorFlow 모델 생성하기" ] }, { "cell_type": "markdown", "metadata": { "id": "5NMaNZQCkW9X" }, "source": [ "[MNIST 데이터세트](https://www.tensorflow.org/datasets/catalog/mnist)에서 숫자를 분류하는 간단한 모델을 만들어 보겠습니다.\n", "\n", "이 훈련은 약 ~98%의 정확성으로 훈련하는 단 5 epoch 동안 모델을 훈련하기 때문에 오래 걸리지 않을 것입니다." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2022-12-15T01:00:31.544364Z", "iopub.status.busy": "2022-12-15T01:00:31.543600Z", "iopub.status.idle": "2022-12-15T01:01:03.698858Z", "shell.execute_reply": "2022-12-15T01:01:03.698101Z" }, "id": "eMsw_6HujaqM" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/1875 [..............................] - ETA: 1:19:24 - loss: 2.2965 - accuracy: 0.0625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/1875 [..............................] - ETA: 4s - loss: 2.1207 - accuracy: 0.3422 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 41/1875 [..............................] - ETA: 4s - loss: 1.8198 - accuracy: 0.5434" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 63/1875 [>.............................] - ETA: 4s - loss: 1.4974 - accuracy: 0.6384" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/1875 [>.............................] - ETA: 4s - loss: 1.2939 - accuracy: 0.6787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 105/1875 [>.............................] - ETA: 4s - loss: 1.1485 - accuracy: 0.7125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 125/1875 [=>............................] - ETA: 4s - loss: 1.0334 - accuracy: 0.7408" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 146/1875 [=>............................] - ETA: 4s - loss: 0.9485 - accuracy: 0.7594" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 167/1875 [=>............................] - ETA: 4s - loss: 0.8818 - accuracy: 0.7738" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 188/1875 [==>...........................] - ETA: 4s - loss: 0.8302 - accuracy: 0.7856" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 209/1875 [==>...........................] - ETA: 4s - loss: 0.7868 - accuracy: 0.7955" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 230/1875 [==>...........................] - ETA: 4s - loss: 0.7521 - accuracy: 0.8052" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 251/1875 [===>..........................] - ETA: 3s - loss: 0.7214 - accuracy: 0.8124" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 272/1875 [===>..........................] - ETA: 3s - loss: 0.6906 - accuracy: 0.8202" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 293/1875 [===>..........................] - ETA: 3s - loss: 0.6700 - accuracy: 0.8247" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 315/1875 [====>.........................] - ETA: 3s - loss: 0.6452 - accuracy: 0.8300" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 335/1875 [====>.........................] - ETA: 3s - loss: 0.6244 - accuracy: 0.8354" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 356/1875 [====>.........................] - ETA: 3s - loss: 0.6043 - accuracy: 0.8402" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 377/1875 [=====>........................] - ETA: 3s - loss: 0.5861 - accuracy: 0.8452" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 399/1875 [=====>........................] - ETA: 3s - loss: 0.5691 - accuracy: 0.8493" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 420/1875 [=====>........................] - ETA: 3s - loss: 0.5559 - accuracy: 0.8528" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 442/1875 [======>.......................] - ETA: 3s - loss: 0.5450 - accuracy: 0.8549" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 465/1875 [======>.......................] - ETA: 3s - loss: 0.5338 - accuracy: 0.8577" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 487/1875 [======>.......................] - ETA: 3s - loss: 0.5216 - accuracy: 0.8602" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 509/1875 [=======>......................] - ETA: 3s - loss: 0.5094 - accuracy: 0.8632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 530/1875 [=======>......................] - ETA: 3s - loss: 0.5005 - accuracy: 0.8653" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 552/1875 [=======>......................] - ETA: 3s - loss: 0.4915 - accuracy: 0.8671" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 573/1875 [========>.....................] - ETA: 3s - loss: 0.4829 - accuracy: 0.8696" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 594/1875 [========>.....................] - ETA: 3s - loss: 0.4731 - accuracy: 0.8720" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 615/1875 [========>.....................] - ETA: 3s - loss: 0.4639 - accuracy: 0.8746" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 637/1875 [=========>....................] - ETA: 2s - loss: 0.4539 - accuracy: 0.8774" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 658/1875 [=========>....................] - ETA: 2s - loss: 0.4474 - accuracy: 0.8789" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 680/1875 [=========>....................] - ETA: 2s - loss: 0.4409 - accuracy: 0.8807" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 701/1875 [==========>...................] - ETA: 2s - loss: 0.4353 - accuracy: 0.8819" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 723/1875 [==========>...................] - ETA: 2s - loss: 0.4293 - accuracy: 0.8835" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 744/1875 [==========>...................] - ETA: 2s - loss: 0.4246 - accuracy: 0.8847" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 766/1875 [===========>..................] - ETA: 2s - loss: 0.4188 - accuracy: 0.8862" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 787/1875 [===========>..................] - ETA: 2s - loss: 0.4135 - accuracy: 0.8875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 809/1875 [===========>..................] - ETA: 2s - loss: 0.4080 - accuracy: 0.8892" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 831/1875 [============>.................] - ETA: 2s - loss: 0.4044 - accuracy: 0.8903" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 852/1875 [============>.................] - ETA: 2s - loss: 0.4004 - accuracy: 0.8916" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 874/1875 [============>.................] - ETA: 2s - loss: 0.3957 - accuracy: 0.8927" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 896/1875 [=============>................] - ETA: 2s - loss: 0.3919 - accuracy: 0.8936" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 917/1875 [=============>................] - ETA: 2s - loss: 0.3883 - accuracy: 0.8945" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 939/1875 [==============>...............] - ETA: 2s - loss: 0.3844 - accuracy: 0.8955" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 961/1875 [==============>...............] - ETA: 2s - loss: 0.3786 - accuracy: 0.8971" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 982/1875 [==============>...............] - ETA: 2s - loss: 0.3745 - accuracy: 0.8979" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1003/1875 [===============>..............] - ETA: 2s - loss: 0.3704 - accuracy: 0.8991" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1024/1875 [===============>..............] - ETA: 2s - loss: 0.3666 - accuracy: 0.8998" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1046/1875 [===============>..............] - ETA: 1s - loss: 0.3633 - accuracy: 0.9004" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1067/1875 [================>.............] - ETA: 1s - loss: 0.3602 - accuracy: 0.9012" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1088/1875 [================>.............] - ETA: 1s - loss: 0.3561 - accuracy: 0.9023" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1110/1875 [================>.............] - ETA: 1s - loss: 0.3536 - accuracy: 0.9031" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1131/1875 [=================>............] - ETA: 1s - loss: 0.3497 - accuracy: 0.9041" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1153/1875 [=================>............] - ETA: 1s - loss: 0.3472 - accuracy: 0.9048" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1174/1875 [=================>............] - ETA: 1s - loss: 0.3455 - accuracy: 0.9052" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1196/1875 [==================>...........] - ETA: 1s - loss: 0.3422 - accuracy: 0.9061" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1218/1875 [==================>...........] - ETA: 1s - loss: 0.3389 - accuracy: 0.9068" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1240/1875 [==================>...........] - ETA: 1s - loss: 0.3351 - accuracy: 0.9078" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1262/1875 [===================>..........] - ETA: 1s - loss: 0.3330 - accuracy: 0.9084" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1284/1875 [===================>..........] - ETA: 1s - loss: 0.3300 - accuracy: 0.9091" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1306/1875 [===================>..........] - ETA: 1s - loss: 0.3275 - accuracy: 0.9097" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1328/1875 [====================>.........] - ETA: 1s - loss: 0.3251 - accuracy: 0.9104" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1350/1875 [====================>.........] - ETA: 1s - loss: 0.3227 - accuracy: 0.9110" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1372/1875 [====================>.........] - ETA: 1s - loss: 0.3210 - accuracy: 0.9115" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1394/1875 [=====================>........] - ETA: 1s - loss: 0.3178 - accuracy: 0.9125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1415/1875 [=====================>........] - ETA: 1s - loss: 0.3157 - accuracy: 0.9131" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1437/1875 [=====================>........] - ETA: 1s - loss: 0.3136 - accuracy: 0.9137" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1459/1875 [======================>.......] - ETA: 0s - loss: 0.3110 - accuracy: 0.9143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1480/1875 [======================>.......] - ETA: 0s - loss: 0.3091 - accuracy: 0.9147" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1502/1875 [=======================>......] - ETA: 0s - loss: 0.3065 - accuracy: 0.9154" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1524/1875 [=======================>......] - ETA: 0s - loss: 0.3041 - accuracy: 0.9160" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1545/1875 [=======================>......] - ETA: 0s - loss: 0.3015 - accuracy: 0.9168" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1566/1875 [========================>.....] - ETA: 0s - loss: 0.2992 - accuracy: 0.9174" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1587/1875 [========================>.....] - ETA: 0s - loss: 0.2976 - accuracy: 0.9176" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1608/1875 [========================>.....] - ETA: 0s - loss: 0.2962 - accuracy: 0.9180" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1630/1875 [=========================>....] - ETA: 0s - loss: 0.2945 - accuracy: 0.9183" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1652/1875 [=========================>....] - ETA: 0s - loss: 0.2926 - accuracy: 0.9189" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1674/1875 [=========================>....] - ETA: 0s - loss: 0.2908 - accuracy: 0.9194" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1696/1875 [==========================>...] - ETA: 0s - loss: 0.2891 - accuracy: 0.9198" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1717/1875 [==========================>...] - ETA: 0s - loss: 0.2876 - accuracy: 0.9202" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1738/1875 [==========================>...] - ETA: 0s - loss: 0.2854 - accuracy: 0.9208" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1759/1875 [===========================>..] - ETA: 0s - loss: 0.2842 - accuracy: 0.9212" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1780/1875 [===========================>..] - ETA: 0s - loss: 0.2828 - accuracy: 0.9215" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1801/1875 [===========================>..] - ETA: 0s - loss: 0.2810 - accuracy: 0.9220" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1823/1875 [============================>.] - ETA: 0s - loss: 0.2794 - accuracy: 0.9223" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1845/1875 [============================>.] - ETA: 0s - loss: 0.2778 - accuracy: 0.9227" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1866/1875 [============================>.] - ETA: 0s - loss: 0.2765 - accuracy: 0.9231" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1875/1875 [==============================] - 8s 3ms/step - loss: 0.2758 - accuracy: 0.9233 - val_loss: 0.1289 - val_accuracy: 0.9633\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 2/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/1875 [..............................] - ETA: 6s - loss: 0.0593 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/1875 [..............................] - ETA: 4s - loss: 0.1142 - accuracy: 0.9716" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 44/1875 [..............................] - ETA: 4s - loss: 0.1225 - accuracy: 0.9702" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/1875 [>.............................] - ETA: 4s - loss: 0.1220 - accuracy: 0.9683" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/1875 [>.............................] - ETA: 4s - loss: 0.1287 - accuracy: 0.9652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 110/1875 [>.............................] - ETA: 4s - loss: 0.1271 - accuracy: 0.9659" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 132/1875 [=>............................] - ETA: 4s - loss: 0.1255 - accuracy: 0.9647" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 154/1875 [=>............................] - ETA: 4s - loss: 0.1258 - accuracy: 0.9641" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 176/1875 [=>............................] - ETA: 3s - loss: 0.1262 - accuracy: 0.9640" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 198/1875 [==>...........................] - ETA: 3s - loss: 0.1236 - accuracy: 0.9650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 220/1875 [==>...........................] - ETA: 3s - loss: 0.1226 - accuracy: 0.9656" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 242/1875 [==>...........................] - ETA: 3s - loss: 0.1225 - accuracy: 0.9658" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 264/1875 [===>..........................] - ETA: 3s - loss: 0.1221 - accuracy: 0.9657" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 286/1875 [===>..........................] - ETA: 3s - loss: 0.1224 - accuracy: 0.9653" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 308/1875 [===>..........................] - ETA: 3s - loss: 0.1238 - accuracy: 0.9649" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 329/1875 [====>.........................] - ETA: 3s - loss: 0.1258 - accuracy: 0.9644" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 350/1875 [====>.........................] - ETA: 3s - loss: 0.1267 - accuracy: 0.9642" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 372/1875 [====>.........................] - ETA: 3s - loss: 0.1271 - accuracy: 0.9640" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 394/1875 [=====>........................] - ETA: 3s - loss: 0.1272 - accuracy: 0.9638" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 416/1875 [=====>........................] - ETA: 3s - loss: 0.1289 - accuracy: 0.9636" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 438/1875 [======>.......................] - ETA: 3s - loss: 0.1274 - accuracy: 0.9642" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 459/1875 [======>.......................] - ETA: 3s - loss: 0.1260 - accuracy: 0.9643" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 480/1875 [======>.......................] - ETA: 3s - loss: 0.1267 - accuracy: 0.9643" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 501/1875 [=======>......................] - ETA: 3s - loss: 0.1254 - accuracy: 0.9646" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 522/1875 [=======>......................] - ETA: 3s - loss: 0.1260 - accuracy: 0.9643" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 543/1875 [=======>......................] - ETA: 3s - loss: 0.1260 - accuracy: 0.9642" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 564/1875 [========>.....................] - ETA: 3s - loss: 0.1256 - accuracy: 0.9645" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 585/1875 [========>.....................] - ETA: 3s - loss: 0.1245 - accuracy: 0.9647" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 606/1875 [========>.....................] - ETA: 3s - loss: 0.1248 - accuracy: 0.9646" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 627/1875 [=========>....................] - ETA: 2s - loss: 0.1242 - accuracy: 0.9649" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 649/1875 [=========>....................] - ETA: 2s - loss: 0.1237 - accuracy: 0.9649" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 671/1875 [=========>....................] - ETA: 2s - loss: 0.1241 - accuracy: 0.9650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 693/1875 [==========>...................] - ETA: 2s - loss: 0.1229 - accuracy: 0.9652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 715/1875 [==========>...................] - ETA: 2s - loss: 0.1224 - accuracy: 0.9653" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 736/1875 [==========>...................] - ETA: 2s - loss: 0.1225 - accuracy: 0.9651" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 757/1875 [===========>..................] - ETA: 2s - loss: 0.1222 - accuracy: 0.9653" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 778/1875 [===========>..................] - ETA: 2s - loss: 0.1217 - accuracy: 0.9655" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 800/1875 [===========>..................] - ETA: 2s - loss: 0.1213 - accuracy: 0.9658" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 821/1875 [============>.................] - ETA: 2s - loss: 0.1217 - accuracy: 0.9657" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 842/1875 [============>.................] - ETA: 2s - loss: 0.1219 - accuracy: 0.9654" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 863/1875 [============>.................] - ETA: 2s - loss: 0.1226 - accuracy: 0.9652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 884/1875 [=============>................] - ETA: 2s - loss: 0.1222 - accuracy: 0.9654" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 905/1875 [=============>................] - ETA: 2s - loss: 0.1213 - accuracy: 0.9655" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 926/1875 [=============>................] - ETA: 2s - loss: 0.1205 - accuracy: 0.9656" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 947/1875 [==============>...............] - ETA: 2s - loss: 0.1208 - accuracy: 0.9657" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 968/1875 [==============>...............] - ETA: 2s - loss: 0.1207 - accuracy: 0.9658" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 989/1875 [==============>...............] - ETA: 2s - loss: 0.1209 - accuracy: 0.9658" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1011/1875 [===============>..............] - ETA: 2s - loss: 0.1204 - accuracy: 0.9658" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1032/1875 [===============>..............] - ETA: 2s - loss: 0.1202 - accuracy: 0.9658" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1053/1875 [===============>..............] - ETA: 1s - loss: 0.1197 - accuracy: 0.9661" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1075/1875 [================>.............] - ETA: 1s - loss: 0.1190 - accuracy: 0.9664" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1097/1875 [================>.............] - ETA: 1s - loss: 0.1189 - accuracy: 0.9663" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1119/1875 [================>.............] - ETA: 1s - loss: 0.1189 - accuracy: 0.9663" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1140/1875 [=================>............] - ETA: 1s - loss: 0.1190 - accuracy: 0.9663" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1162/1875 [=================>............] - ETA: 1s - loss: 0.1189 - accuracy: 0.9664" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1184/1875 [=================>............] - ETA: 1s - loss: 0.1184 - accuracy: 0.9666" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1206/1875 [==================>...........] - ETA: 1s - loss: 0.1184 - accuracy: 0.9667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1228/1875 [==================>...........] - ETA: 1s - loss: 0.1184 - accuracy: 0.9666" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1250/1875 [===================>..........] - ETA: 1s - loss: 0.1179 - accuracy: 0.9667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1272/1875 [===================>..........] - ETA: 1s - loss: 0.1179 - accuracy: 0.9667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1293/1875 [===================>..........] - ETA: 1s - loss: 0.1176 - accuracy: 0.9668" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1315/1875 [====================>.........] - ETA: 1s - loss: 0.1180 - accuracy: 0.9667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1337/1875 [====================>.........] - ETA: 1s - loss: 0.1178 - accuracy: 0.9668" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1359/1875 [====================>.........] - ETA: 1s - loss: 0.1172 - accuracy: 0.9668" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1381/1875 [=====================>........] - ETA: 1s - loss: 0.1174 - accuracy: 0.9668" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1402/1875 [=====================>........] - ETA: 1s - loss: 0.1175 - accuracy: 0.9668" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1423/1875 [=====================>........] - ETA: 1s - loss: 0.1171 - accuracy: 0.9669" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1444/1875 [======================>.......] - ETA: 1s - loss: 0.1172 - accuracy: 0.9668" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1465/1875 [======================>.......] - ETA: 0s - loss: 0.1170 - accuracy: 0.9668" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1487/1875 [======================>.......] - ETA: 0s - loss: 0.1173 - accuracy: 0.9667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1509/1875 [=======================>......] - ETA: 0s - loss: 0.1167 - accuracy: 0.9668" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1531/1875 [=======================>......] - ETA: 0s - loss: 0.1168 - accuracy: 0.9669" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1553/1875 [=======================>......] - ETA: 0s - loss: 0.1167 - accuracy: 0.9669" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1575/1875 [========================>.....] - ETA: 0s - loss: 0.1165 - accuracy: 0.9670" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1596/1875 [========================>.....] - ETA: 0s - loss: 0.1162 - accuracy: 0.9671" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1617/1875 [========================>.....] - ETA: 0s - loss: 0.1157 - accuracy: 0.9672" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1638/1875 [=========================>....] - ETA: 0s - loss: 0.1156 - accuracy: 0.9672" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1660/1875 [=========================>....] - ETA: 0s - loss: 0.1151 - accuracy: 0.9674" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1680/1875 [=========================>....] - ETA: 0s - loss: 0.1148 - accuracy: 0.9674" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1700/1875 [==========================>...] - ETA: 0s - loss: 0.1148 - accuracy: 0.9674" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1721/1875 [==========================>...] - ETA: 0s - loss: 0.1148 - accuracy: 0.9674" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1743/1875 [==========================>...] - ETA: 0s - loss: 0.1145 - accuracy: 0.9674" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1765/1875 [===========================>..] - ETA: 0s - loss: 0.1139 - accuracy: 0.9676" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1787/1875 [===========================>..] - ETA: 0s - loss: 0.1134 - accuracy: 0.9676" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1808/1875 [===========================>..] - ETA: 0s - loss: 0.1133 - accuracy: 0.9676" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1829/1875 [============================>.] - ETA: 0s - loss: 0.1129 - accuracy: 0.9677" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1850/1875 [============================>.] - ETA: 0s - loss: 0.1129 - accuracy: 0.9677" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1871/1875 [============================>.] - ETA: 0s - loss: 0.1128 - accuracy: 0.9678" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1128 - accuracy: 0.9679 - val_loss: 0.0919 - val_accuracy: 0.9721\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 3/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/1875 [..............................] - ETA: 6s - loss: 0.0611 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/1875 [..............................] - ETA: 4s - loss: 0.0925 - accuracy: 0.9744" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 44/1875 [..............................] - ETA: 4s - loss: 0.0811 - accuracy: 0.9780" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/1875 [>.............................] - ETA: 4s - loss: 0.0746 - accuracy: 0.9792" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87/1875 [>.............................] - ETA: 4s - loss: 0.0800 - accuracy: 0.9763" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 108/1875 [>.............................] - ETA: 4s - loss: 0.0802 - accuracy: 0.9771" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 129/1875 [=>............................] - ETA: 4s - loss: 0.0854 - accuracy: 0.9760" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 150/1875 [=>............................] - ETA: 4s - loss: 0.0827 - accuracy: 0.9765" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 171/1875 [=>............................] - ETA: 4s - loss: 0.0863 - accuracy: 0.9740" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 192/1875 [==>...........................] - ETA: 4s - loss: 0.0851 - accuracy: 0.9740" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 215/1875 [==>...........................] - ETA: 3s - loss: 0.0864 - accuracy: 0.9741" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 238/1875 [==>...........................] - ETA: 3s - loss: 0.0905 - accuracy: 0.9733" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 260/1875 [===>..........................] - ETA: 3s - loss: 0.0921 - accuracy: 0.9733" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 281/1875 [===>..........................] - ETA: 3s - loss: 0.0909 - accuracy: 0.9734" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 302/1875 [===>..........................] - ETA: 3s - loss: 0.0923 - accuracy: 0.9731" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 322/1875 [====>.........................] - ETA: 3s - loss: 0.0914 - accuracy: 0.9733" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 343/1875 [====>.........................] - ETA: 3s - loss: 0.0933 - accuracy: 0.9727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 363/1875 [====>.........................] - ETA: 3s - loss: 0.0934 - accuracy: 0.9726" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 382/1875 [=====>........................] - ETA: 3s - loss: 0.0923 - accuracy: 0.9729" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 403/1875 [=====>........................] - ETA: 3s - loss: 0.0925 - accuracy: 0.9730" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 425/1875 [=====>........................] - ETA: 3s - loss: 0.0922 - accuracy: 0.9732" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 447/1875 [======>.......................] - ETA: 3s - loss: 0.0924 - accuracy: 0.9731" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 468/1875 [======>.......................] - ETA: 3s - loss: 0.0927 - accuracy: 0.9731" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 490/1875 [======>.......................] - ETA: 3s - loss: 0.0923 - accuracy: 0.9729" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 511/1875 [=======>......................] - ETA: 3s - loss: 0.0923 - accuracy: 0.9731" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 532/1875 [=======>......................] - ETA: 3s - loss: 0.0929 - accuracy: 0.9729" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 553/1875 [=======>......................] - ETA: 3s - loss: 0.0926 - accuracy: 0.9730" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 575/1875 [========>.....................] - ETA: 3s - loss: 0.0930 - accuracy: 0.9726" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 596/1875 [========>.....................] - ETA: 3s - loss: 0.0935 - accuracy: 0.9722" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 617/1875 [========>.....................] - ETA: 3s - loss: 0.0931 - accuracy: 0.9723" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 638/1875 [=========>....................] - ETA: 2s - loss: 0.0936 - accuracy: 0.9722" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 660/1875 [=========>....................] - ETA: 2s - loss: 0.0927 - accuracy: 0.9726" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 682/1875 [=========>....................] - ETA: 2s - loss: 0.0929 - accuracy: 0.9724" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 704/1875 [==========>...................] - ETA: 2s - loss: 0.0923 - accuracy: 0.9726" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 726/1875 [==========>...................] - ETA: 2s - loss: 0.0925 - accuracy: 0.9726" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 747/1875 [==========>...................] - ETA: 2s - loss: 0.0924 - accuracy: 0.9727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 769/1875 [===========>..................] - ETA: 2s - loss: 0.0918 - accuracy: 0.9728" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 792/1875 [===========>..................] - ETA: 2s - loss: 0.0909 - accuracy: 0.9731" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 814/1875 [============>.................] - ETA: 2s - loss: 0.0908 - accuracy: 0.9728" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 836/1875 [============>.................] - ETA: 2s - loss: 0.0911 - accuracy: 0.9727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 858/1875 [============>.................] - ETA: 2s - loss: 0.0910 - accuracy: 0.9728" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 880/1875 [=============>................] - ETA: 2s - loss: 0.0910 - accuracy: 0.9728" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 902/1875 [=============>................] - ETA: 2s - loss: 0.0915 - accuracy: 0.9727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 924/1875 [=============>................] - ETA: 2s - loss: 0.0915 - accuracy: 0.9727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 946/1875 [==============>...............] - ETA: 2s - loss: 0.0913 - accuracy: 0.9728" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 968/1875 [==============>...............] - ETA: 2s - loss: 0.0910 - accuracy: 0.9731" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 990/1875 [==============>...............] - ETA: 2s - loss: 0.0910 - accuracy: 0.9731" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1012/1875 [===============>..............] - ETA: 2s - loss: 0.0911 - accuracy: 0.9733" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1033/1875 [===============>..............] - ETA: 2s - loss: 0.0906 - accuracy: 0.9733" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1055/1875 [===============>..............] - ETA: 1s - loss: 0.0902 - accuracy: 0.9735" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1077/1875 [================>.............] - ETA: 1s - loss: 0.0903 - accuracy: 0.9735" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1099/1875 [================>.............] - ETA: 1s - loss: 0.0899 - accuracy: 0.9737" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1121/1875 [================>.............] - ETA: 1s - loss: 0.0895 - accuracy: 0.9738" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1142/1875 [=================>............] - ETA: 1s - loss: 0.0893 - accuracy: 0.9738" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1163/1875 [=================>............] - ETA: 1s - loss: 0.0896 - accuracy: 0.9738" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1185/1875 [=================>............] - ETA: 1s - loss: 0.0894 - accuracy: 0.9738" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1207/1875 [==================>...........] - ETA: 1s - loss: 0.0895 - accuracy: 0.9736" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1229/1875 [==================>...........] - ETA: 1s - loss: 0.0900 - accuracy: 0.9736" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1251/1875 [===================>..........] - ETA: 1s - loss: 0.0897 - accuracy: 0.9738" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1273/1875 [===================>..........] - ETA: 1s - loss: 0.0893 - accuracy: 0.9740" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1294/1875 [===================>..........] - ETA: 1s - loss: 0.0890 - accuracy: 0.9740" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1315/1875 [====================>.........] - ETA: 1s - loss: 0.0890 - accuracy: 0.9742" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1336/1875 [====================>.........] - ETA: 1s - loss: 0.0889 - accuracy: 0.9742" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1358/1875 [====================>.........] - ETA: 1s - loss: 0.0886 - accuracy: 0.9743" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1379/1875 [=====================>........] - ETA: 1s - loss: 0.0884 - accuracy: 0.9744" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1401/1875 [=====================>........] - ETA: 1s - loss: 0.0880 - accuracy: 0.9746" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1423/1875 [=====================>........] - ETA: 1s - loss: 0.0877 - accuracy: 0.9746" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1445/1875 [======================>.......] - ETA: 1s - loss: 0.0878 - accuracy: 0.9745" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1466/1875 [======================>.......] - ETA: 0s - loss: 0.0875 - accuracy: 0.9746" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1488/1875 [======================>.......] - ETA: 0s - loss: 0.0871 - accuracy: 0.9747" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1509/1875 [=======================>......] - ETA: 0s - loss: 0.0871 - accuracy: 0.9748" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1530/1875 [=======================>......] - ETA: 0s - loss: 0.0872 - accuracy: 0.9748" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1551/1875 [=======================>......] - ETA: 0s - loss: 0.0872 - accuracy: 0.9748" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1573/1875 [========================>.....] - ETA: 0s - loss: 0.0871 - accuracy: 0.9747" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1595/1875 [========================>.....] - ETA: 0s - loss: 0.0867 - accuracy: 0.9748" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1616/1875 [========================>.....] - ETA: 0s - loss: 0.0866 - accuracy: 0.9748" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1637/1875 [=========================>....] - ETA: 0s - loss: 0.0865 - accuracy: 0.9749" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1658/1875 [=========================>....] - ETA: 0s - loss: 0.0861 - accuracy: 0.9750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1679/1875 [=========================>....] - ETA: 0s - loss: 0.0864 - accuracy: 0.9749" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1700/1875 [==========================>...] - ETA: 0s - loss: 0.0861 - accuracy: 0.9749" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1720/1875 [==========================>...] - ETA: 0s - loss: 0.0860 - accuracy: 0.9750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1741/1875 [==========================>...] - ETA: 0s - loss: 0.0859 - accuracy: 0.9751" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1762/1875 [===========================>..] - ETA: 0s - loss: 0.0858 - accuracy: 0.9750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1784/1875 [===========================>..] - ETA: 0s - loss: 0.0857 - accuracy: 0.9751" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1806/1875 [===========================>..] - ETA: 0s - loss: 0.0855 - accuracy: 0.9752" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1828/1875 [============================>.] - ETA: 0s - loss: 0.0853 - accuracy: 0.9752" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1851/1875 [============================>.] - ETA: 0s - loss: 0.0849 - accuracy: 0.9753" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1873/1875 [============================>.] - ETA: 0s - loss: 0.0851 - accuracy: 0.9753" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1875/1875 [==============================] - 5s 3ms/step - loss: 0.0850 - accuracy: 0.9753 - val_loss: 0.0745 - val_accuracy: 0.9779\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/1875 [..............................] - ETA: 7s - loss: 0.0068 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/1875 [..............................] - ETA: 4s - loss: 0.0600 - accuracy: 0.9759" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/1875 [..............................] - ETA: 4s - loss: 0.0672 - accuracy: 0.9782" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/1875 [>.............................] - ETA: 4s - loss: 0.0729 - accuracy: 0.9761" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/1875 [>.............................] - ETA: 4s - loss: 0.0701 - accuracy: 0.9765" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 107/1875 [>.............................] - ETA: 4s - loss: 0.0740 - accuracy: 0.9766" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 129/1875 [=>............................] - ETA: 4s - loss: 0.0701 - accuracy: 0.9784" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 150/1875 [=>............................] - ETA: 4s - loss: 0.0715 - accuracy: 0.9792" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 171/1875 [=>............................] - ETA: 4s - loss: 0.0699 - accuracy: 0.9799" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 193/1875 [==>...........................] - ETA: 4s - loss: 0.0717 - accuracy: 0.9794" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 215/1875 [==>...........................] - ETA: 3s - loss: 0.0701 - accuracy: 0.9797" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 236/1875 [==>...........................] - ETA: 3s - loss: 0.0718 - accuracy: 0.9792" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 257/1875 [===>..........................] - ETA: 3s - loss: 0.0715 - accuracy: 0.9787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 279/1875 [===>..........................] - ETA: 3s - loss: 0.0724 - accuracy: 0.9786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 301/1875 [===>..........................] - ETA: 3s - loss: 0.0734 - accuracy: 0.9782" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 323/1875 [====>.........................] - ETA: 3s - loss: 0.0738 - accuracy: 0.9783" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 345/1875 [====>.........................] - ETA: 3s - loss: 0.0752 - accuracy: 0.9784" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 367/1875 [====>.........................] - ETA: 3s - loss: 0.0748 - accuracy: 0.9784" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 389/1875 [=====>........................] - ETA: 3s - loss: 0.0753 - accuracy: 0.9784" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 411/1875 [=====>........................] - ETA: 3s - loss: 0.0755 - accuracy: 0.9783" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 434/1875 [=====>........................] - ETA: 3s - loss: 0.0760 - accuracy: 0.9780" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 456/1875 [======>.......................] - ETA: 3s - loss: 0.0752 - accuracy: 0.9783" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 478/1875 [======>.......................] - ETA: 3s - loss: 0.0742 - accuracy: 0.9787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 500/1875 [=======>......................] - ETA: 3s - loss: 0.0742 - accuracy: 0.9787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 523/1875 [=======>......................] - ETA: 3s - loss: 0.0732 - accuracy: 0.9790" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 546/1875 [=======>......................] - ETA: 3s - loss: 0.0724 - accuracy: 0.9792" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 569/1875 [========>.....................] - ETA: 3s - loss: 0.0724 - accuracy: 0.9792" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 591/1875 [========>.....................] - ETA: 3s - loss: 0.0717 - accuracy: 0.9794" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 613/1875 [========>.....................] - ETA: 2s - loss: 0.0717 - accuracy: 0.9793" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 635/1875 [=========>....................] - ETA: 2s - loss: 0.0719 - accuracy: 0.9792" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 657/1875 [=========>....................] - ETA: 2s - loss: 0.0713 - accuracy: 0.9794" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 679/1875 [=========>....................] - ETA: 2s - loss: 0.0718 - accuracy: 0.9792" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 701/1875 [==========>...................] - ETA: 2s - loss: 0.0720 - accuracy: 0.9791" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 723/1875 [==========>...................] - ETA: 2s - loss: 0.0725 - accuracy: 0.9789" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 745/1875 [==========>...................] - ETA: 2s - loss: 0.0735 - accuracy: 0.9786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 767/1875 [===========>..................] - ETA: 2s - loss: 0.0734 - accuracy: 0.9787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 789/1875 [===========>..................] - ETA: 2s - loss: 0.0727 - accuracy: 0.9789" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 812/1875 [===========>..................] - ETA: 2s - loss: 0.0729 - accuracy: 0.9787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 834/1875 [============>.................] - ETA: 2s - loss: 0.0734 - accuracy: 0.9784" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 856/1875 [============>.................] - ETA: 2s - loss: 0.0733 - accuracy: 0.9782" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 878/1875 [=============>................] - ETA: 2s - loss: 0.0736 - accuracy: 0.9783" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 900/1875 [=============>................] - ETA: 2s - loss: 0.0739 - accuracy: 0.9781" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 921/1875 [=============>................] - ETA: 2s - loss: 0.0735 - accuracy: 0.9783" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 943/1875 [==============>...............] - ETA: 2s - loss: 0.0733 - accuracy: 0.9783" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 964/1875 [==============>...............] - ETA: 2s - loss: 0.0733 - accuracy: 0.9783" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 986/1875 [==============>...............] - ETA: 2s - loss: 0.0731 - accuracy: 0.9783" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1009/1875 [===============>..............] - ETA: 2s - loss: 0.0734 - accuracy: 0.9783" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1030/1875 [===============>..............] - ETA: 1s - loss: 0.0732 - accuracy: 0.9782" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1051/1875 [===============>..............] - ETA: 1s - loss: 0.0731 - accuracy: 0.9783" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1072/1875 [================>.............] - ETA: 1s - loss: 0.0732 - accuracy: 0.9782" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1093/1875 [================>.............] - ETA: 1s - loss: 0.0732 - accuracy: 0.9782" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1115/1875 [================>.............] - ETA: 1s - loss: 0.0728 - accuracy: 0.9783" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1136/1875 [=================>............] - ETA: 1s - loss: 0.0727 - accuracy: 0.9784" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1157/1875 [=================>............] - ETA: 1s - loss: 0.0727 - accuracy: 0.9783" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1179/1875 [=================>............] - ETA: 1s - loss: 0.0720 - accuracy: 0.9785" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1200/1875 [==================>...........] - ETA: 1s - loss: 0.0717 - accuracy: 0.9786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1221/1875 [==================>...........] - ETA: 1s - loss: 0.0717 - accuracy: 0.9787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1243/1875 [==================>...........] - ETA: 1s - loss: 0.0714 - accuracy: 0.9788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1265/1875 [===================>..........] - ETA: 1s - loss: 0.0713 - accuracy: 0.9788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1287/1875 [===================>..........] - ETA: 1s - loss: 0.0713 - accuracy: 0.9789" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1309/1875 [===================>..........] - ETA: 1s - loss: 0.0715 - accuracy: 0.9787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1331/1875 [====================>.........] - ETA: 1s - loss: 0.0713 - accuracy: 0.9788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1353/1875 [====================>.........] - ETA: 1s - loss: 0.0710 - accuracy: 0.9789" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1376/1875 [=====================>........] - ETA: 1s - loss: 0.0709 - accuracy: 0.9789" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1398/1875 [=====================>........] - ETA: 1s - loss: 0.0711 - accuracy: 0.9788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1420/1875 [=====================>........] - ETA: 1s - loss: 0.0713 - accuracy: 0.9787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1441/1875 [======================>.......] - ETA: 1s - loss: 0.0710 - accuracy: 0.9788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1464/1875 [======================>.......] - ETA: 0s - loss: 0.0707 - accuracy: 0.9788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1485/1875 [======================>.......] - ETA: 0s - loss: 0.0705 - accuracy: 0.9789" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1506/1875 [=======================>......] - ETA: 0s - loss: 0.0707 - accuracy: 0.9788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1527/1875 [=======================>......] - ETA: 0s - loss: 0.0709 - accuracy: 0.9789" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1549/1875 [=======================>......] - ETA: 0s - loss: 0.0712 - accuracy: 0.9788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1571/1875 [========================>.....] - ETA: 0s - loss: 0.0713 - accuracy: 0.9787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1593/1875 [========================>.....] - ETA: 0s - loss: 0.0715 - accuracy: 0.9788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1614/1875 [========================>.....] - ETA: 0s - loss: 0.0713 - accuracy: 0.9789" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1636/1875 [=========================>....] - ETA: 0s - loss: 0.0714 - accuracy: 0.9788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1658/1875 [=========================>....] - ETA: 0s - loss: 0.0716 - accuracy: 0.9786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1680/1875 [=========================>....] - ETA: 0s - loss: 0.0715 - accuracy: 0.9786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1701/1875 [==========================>...] - ETA: 0s - loss: 0.0715 - accuracy: 0.9786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1722/1875 [==========================>...] - ETA: 0s - loss: 0.0715 - accuracy: 0.9787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1744/1875 [==========================>...] - ETA: 0s - loss: 0.0717 - accuracy: 0.9787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1765/1875 [===========================>..] - ETA: 0s - loss: 0.0715 - accuracy: 0.9788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1786/1875 [===========================>..] - ETA: 0s - loss: 0.0714 - accuracy: 0.9787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1808/1875 [===========================>..] - ETA: 0s - loss: 0.0715 - accuracy: 0.9788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1830/1875 [============================>.] - ETA: 0s - loss: 0.0713 - accuracy: 0.9789" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1852/1875 [============================>.] - ETA: 0s - loss: 0.0712 - accuracy: 0.9789" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1873/1875 [============================>.] - ETA: 0s - loss: 0.0713 - accuracy: 0.9789" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1875/1875 [==============================] - 5s 3ms/step - loss: 0.0714 - accuracy: 0.9789 - val_loss: 0.0704 - val_accuracy: 0.9765\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 5/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/1875 [..............................] - ETA: 6s - loss: 0.0315 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/1875 [..............................] - ETA: 4s - loss: 0.0612 - accuracy: 0.9830" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 44/1875 [..............................] - ETA: 4s - loss: 0.0612 - accuracy: 0.9780" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/1875 [>.............................] - ETA: 4s - loss: 0.0582 - accuracy: 0.9811" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/1875 [>.............................] - ETA: 4s - loss: 0.0613 - accuracy: 0.9808" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 110/1875 [>.............................] - ETA: 4s - loss: 0.0635 - accuracy: 0.9807" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 131/1875 [=>............................] - ETA: 4s - loss: 0.0602 - accuracy: 0.9812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 153/1875 [=>............................] - ETA: 4s - loss: 0.0592 - accuracy: 0.9820" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 175/1875 [=>............................] - ETA: 4s - loss: 0.0596 - accuracy: 0.9814" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 197/1875 [==>...........................] - ETA: 3s - loss: 0.0571 - accuracy: 0.9822" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 218/1875 [==>...........................] - ETA: 3s - loss: 0.0558 - accuracy: 0.9829" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 240/1875 [==>...........................] - ETA: 3s - loss: 0.0578 - accuracy: 0.9820" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 262/1875 [===>..........................] - ETA: 3s - loss: 0.0564 - accuracy: 0.9827" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 284/1875 [===>..........................] - ETA: 3s - loss: 0.0565 - accuracy: 0.9831" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 306/1875 [===>..........................] - ETA: 3s - loss: 0.0574 - accuracy: 0.9829" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 327/1875 [====>.........................] - ETA: 3s - loss: 0.0566 - accuracy: 0.9831" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 348/1875 [====>.........................] - ETA: 3s - loss: 0.0578 - accuracy: 0.9827" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 370/1875 [====>.........................] - ETA: 3s - loss: 0.0569 - accuracy: 0.9826" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 392/1875 [=====>........................] - ETA: 3s - loss: 0.0572 - accuracy: 0.9825" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 414/1875 [=====>........................] - ETA: 3s - loss: 0.0577 - accuracy: 0.9825" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 436/1875 [=====>........................] - ETA: 3s - loss: 0.0584 - accuracy: 0.9822" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 458/1875 [======>.......................] - ETA: 3s - loss: 0.0586 - accuracy: 0.9822" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 480/1875 [======>.......................] - ETA: 3s - loss: 0.0598 - accuracy: 0.9819" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 502/1875 [=======>......................] - ETA: 3s - loss: 0.0595 - accuracy: 0.9821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 524/1875 [=======>......................] - ETA: 3s - loss: 0.0593 - accuracy: 0.9822" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 546/1875 [=======>......................] - ETA: 3s - loss: 0.0593 - accuracy: 0.9823" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 568/1875 [========>.....................] - ETA: 3s - loss: 0.0587 - accuracy: 0.9826" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 590/1875 [========>.....................] - ETA: 3s - loss: 0.0585 - accuracy: 0.9827" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 612/1875 [========>.....................] - ETA: 2s - loss: 0.0593 - accuracy: 0.9825" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 633/1875 [=========>....................] - ETA: 2s - loss: 0.0589 - accuracy: 0.9828" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 655/1875 [=========>....................] - ETA: 2s - loss: 0.0595 - accuracy: 0.9826" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 677/1875 [=========>....................] - ETA: 2s - loss: 0.0598 - accuracy: 0.9825" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 699/1875 [==========>...................] - ETA: 2s - loss: 0.0599 - accuracy: 0.9825" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 721/1875 [==========>...................] - ETA: 2s - loss: 0.0601 - accuracy: 0.9824" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 743/1875 [==========>...................] - ETA: 2s - loss: 0.0600 - accuracy: 0.9824" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 765/1875 [===========>..................] - ETA: 2s - loss: 0.0602 - accuracy: 0.9822" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 787/1875 [===========>..................] - ETA: 2s - loss: 0.0596 - accuracy: 0.9824" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 809/1875 [===========>..................] - ETA: 2s - loss: 0.0596 - accuracy: 0.9825" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 831/1875 [============>.................] - ETA: 2s - loss: 0.0597 - accuracy: 0.9824" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 853/1875 [============>.................] - ETA: 2s - loss: 0.0593 - accuracy: 0.9825" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 874/1875 [============>.................] - ETA: 2s - loss: 0.0591 - accuracy: 0.9825" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 896/1875 [=============>................] - ETA: 2s - loss: 0.0585 - accuracy: 0.9826" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 918/1875 [=============>................] - ETA: 2s - loss: 0.0589 - accuracy: 0.9824" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 939/1875 [==============>...............] - ETA: 2s - loss: 0.0586 - accuracy: 0.9825" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 961/1875 [==============>...............] - ETA: 2s - loss: 0.0586 - accuracy: 0.9825" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 983/1875 [==============>...............] - ETA: 2s - loss: 0.0588 - accuracy: 0.9825" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1005/1875 [===============>..............] - ETA: 2s - loss: 0.0588 - accuracy: 0.9825" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1027/1875 [===============>..............] - ETA: 1s - loss: 0.0590 - accuracy: 0.9825" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1049/1875 [===============>..............] - ETA: 1s - loss: 0.0592 - accuracy: 0.9825" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1071/1875 [================>.............] - ETA: 1s - loss: 0.0594 - accuracy: 0.9824" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1092/1875 [================>.............] - ETA: 1s - loss: 0.0591 - accuracy: 0.9825" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1114/1875 [================>.............] - ETA: 1s - loss: 0.0592 - accuracy: 0.9825" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1136/1875 [=================>............] - ETA: 1s - loss: 0.0590 - accuracy: 0.9825" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1158/1875 [=================>............] - ETA: 1s - loss: 0.0588 - accuracy: 0.9826" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1180/1875 [=================>............] - ETA: 1s - loss: 0.0592 - accuracy: 0.9825" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1201/1875 [==================>...........] - ETA: 1s - loss: 0.0590 - accuracy: 0.9825" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1223/1875 [==================>...........] - ETA: 1s - loss: 0.0594 - accuracy: 0.9824" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1244/1875 [==================>...........] - ETA: 1s - loss: 0.0598 - accuracy: 0.9824" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1265/1875 [===================>..........] - ETA: 1s - loss: 0.0601 - accuracy: 0.9823" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1286/1875 [===================>..........] - ETA: 1s - loss: 0.0603 - accuracy: 0.9822" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1307/1875 [===================>..........] - ETA: 1s - loss: 0.0609 - accuracy: 0.9821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1328/1875 [====================>.........] - ETA: 1s - loss: 0.0609 - accuracy: 0.9821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1350/1875 [====================>.........] - ETA: 1s - loss: 0.0612 - accuracy: 0.9820" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1372/1875 [====================>.........] - ETA: 1s - loss: 0.0612 - accuracy: 0.9820" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1394/1875 [=====================>........] - ETA: 1s - loss: 0.0612 - accuracy: 0.9820" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1416/1875 [=====================>........] - ETA: 1s - loss: 0.0615 - accuracy: 0.9818" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1438/1875 [======================>.......] - ETA: 1s - loss: 0.0614 - accuracy: 0.9818" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1459/1875 [======================>.......] - ETA: 0s - loss: 0.0618 - accuracy: 0.9818" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1481/1875 [======================>.......] - ETA: 0s - loss: 0.0617 - accuracy: 0.9818" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1503/1875 [=======================>......] - ETA: 0s - loss: 0.0617 - accuracy: 0.9818" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1525/1875 [=======================>......] - ETA: 0s - loss: 0.0615 - accuracy: 0.9818" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1547/1875 [=======================>......] - ETA: 0s - loss: 0.0615 - accuracy: 0.9819" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1567/1875 [========================>.....] - ETA: 0s - loss: 0.0616 - accuracy: 0.9818" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1588/1875 [========================>.....] - ETA: 0s - loss: 0.0618 - accuracy: 0.9817" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1609/1875 [========================>.....] - ETA: 0s - loss: 0.0618 - accuracy: 0.9817" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1631/1875 [=========================>....] - ETA: 0s - loss: 0.0617 - accuracy: 0.9817" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1653/1875 [=========================>....] - ETA: 0s - loss: 0.0617 - accuracy: 0.9817" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1675/1875 [=========================>....] - ETA: 0s - loss: 0.0616 - accuracy: 0.9817" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1697/1875 [==========================>...] - ETA: 0s - loss: 0.0614 - accuracy: 0.9817" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1719/1875 [==========================>...] - ETA: 0s - loss: 0.0616 - accuracy: 0.9817" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1741/1875 [==========================>...] - ETA: 0s - loss: 0.0622 - accuracy: 0.9816" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1763/1875 [===========================>..] - ETA: 0s - loss: 0.0620 - accuracy: 0.9817" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1785/1875 [===========================>..] - ETA: 0s - loss: 0.0619 - accuracy: 0.9817" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1807/1875 [===========================>..] - ETA: 0s - loss: 0.0621 - accuracy: 0.9816" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1829/1875 [============================>.] - ETA: 0s - loss: 0.0624 - accuracy: 0.9816" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1851/1875 [============================>.] - ETA: 0s - loss: 0.0622 - accuracy: 0.9816" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1873/1875 [============================>.] - ETA: 0s - loss: 0.0621 - accuracy: 0.9816" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1875/1875 [==============================] - 5s 3ms/step - loss: 0.0621 - accuracy: 0.9816 - val_loss: 0.0672 - val_accuracy: 0.9780\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Load MNIST dataset\n", "mnist = tf.keras.datasets.mnist\n", "(train_images, train_labels), (test_images, test_labels) = mnist.load_data()\n", "\n", "# Normalize the input image so that each pixel value is between 0 to 1.\n", "train_images = train_images.astype(np.float32) / 255.0\n", "test_images = test_images.astype(np.float32) / 255.0\n", "\n", "# Define the model architecture\n", "model = tf.keras.Sequential([\n", " tf.keras.layers.InputLayer(input_shape=(28, 28)),\n", " tf.keras.layers.Reshape(target_shape=(28, 28, 1)),\n", " tf.keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation='relu'),\n", " tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),\n", " tf.keras.layers.Flatten(),\n", " tf.keras.layers.Dense(10)\n", "])\n", "\n", "# Train the digit classification model\n", "model.compile(optimizer='adam',\n", " loss=tf.keras.losses.SparseCategoricalCrossentropy(\n", " from_logits=True),\n", " metrics=['accuracy'])\n", "model.fit(\n", " train_images,\n", " train_labels,\n", " epochs=5,\n", " validation_data=(test_images, test_labels)\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "KuTEoGFYd8aM" }, "source": [ "## TensorFlow Lite 모델로 변환하기" ] }, { "cell_type": "markdown", "metadata": { "id": "xl8_fzVAZwOh" }, "source": [ "이제 TensorFlow Lite [Converter](https://www.tensorflow.org/lite/models/convert)를 사용하여 훈련된 모델을 TensorFlow Lite 형식으로 변환하고 다양한 정도의 양자화를 적용할 수 있습니다.\n", "\n", "일부 양자화 버전은 일부 데이터를 부동 형식으로 남겨 둡니다. 따라서 다음 섹션에서는 완전히 int8 또는 uint8 데이터인 모델을 얻을 때까지 양자화 양이 증가하는 각 옵션을 보여줍니다(각 옵션에 대한 모든 양자화 단계를 볼 수 있도록 각 섹션에서 일부 코드를 복제합니다).\n", "\n", "먼저, 양자화없이 변환된 모델이 있습니다." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2022-12-15T01:01:03.702890Z", "iopub.status.busy": "2022-12-15T01:01:03.702253Z", "iopub.status.idle": "2022-12-15T01:01:04.771021Z", "shell.execute_reply": "2022-12-15T01:01:04.770224Z" }, "id": "_i8B2nDZmAgQ" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING:absl:Found untraced functions such as _jit_compiled_convolution_op while saving (showing 1 of 1). These functions will not be directly callable after loading.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:Assets written to: /tmpfs/tmp/tmpj938oa27/assets\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:tensorflow:Assets written to: /tmpfs/tmp/tmpj938oa27/assets\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2022-12-15 01:01:04.647928: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:362] Ignored output_format.\n", "2022-12-15 01:01:04.647975: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:365] Ignored drop_control_dependency.\n" ] } ], "source": [ "converter = tf.lite.TFLiteConverter.from_keras_model(model)\n", "\n", "tflite_model = converter.convert()" ] }, { "cell_type": "markdown", "metadata": { "id": "7BONhYtYocQY" }, "source": [ "이제 TensorFlow Lite 모델이지만 모든 매개변수 데이터에 대해 여전히 32bit 부동 소수점 값을 사용하고 있습니다." ] }, { "cell_type": "markdown", "metadata": { "id": "jPYZwgZTwJMT" }, "source": [ "### 동적 범위 양자화를 사용하여 변환하기\n" ] }, { "cell_type": "markdown", "metadata": { "id": "Hjvq1vpJd4U_" }, "source": [ "이제 기본 `optimizations` 플래그를 활성화하여 모든 고정 매개변수(예: 가중치)를 양자화합니다." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2022-12-15T01:01:04.774997Z", "iopub.status.busy": "2022-12-15T01:01:04.774369Z", "iopub.status.idle": "2022-12-15T01:01:05.746960Z", "shell.execute_reply": "2022-12-15T01:01:05.746154Z" }, "id": "HEZ6ET1AHAS3" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING:absl:Found untraced functions such as _jit_compiled_convolution_op while saving (showing 1 of 1). These functions will not be directly callable after loading.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:Assets written to: /tmpfs/tmp/tmp5utg8m4n/assets\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:tensorflow:Assets written to: /tmpfs/tmp/tmp5utg8m4n/assets\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2022-12-15 01:01:05.614210: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:362] Ignored output_format.\n", "2022-12-15 01:01:05.614260: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:365] Ignored drop_control_dependency.\n" ] } ], "source": [ "converter = tf.lite.TFLiteConverter.from_keras_model(model)\n", "converter.optimizations = [tf.lite.Optimize.DEFAULT]\n", "\n", "tflite_model_quant = converter.convert()" ] }, { "cell_type": "markdown", "metadata": { "id": "o5wuE-RcdX_3" }, "source": [ "모델은 이제 양자화된 가중치로 약간 더 작아지지만 다른 변수 데이터는 여전히 부동 형식입니다." ] }, { "cell_type": "markdown", "metadata": { "id": "UgKDdnHQEhpb" }, "source": [ "### 부동 폴백 양자화를 사용하여 변환하기" ] }, { "cell_type": "markdown", "metadata": { "id": "rTe8avZJHMDO" }, "source": [ "변수 데이터(예: 모델 입력/출력 및 레이어 간 중간)를 양자화하려면 [`RepresentativeDataset`](https://www.tensorflow.org/api_docs/python/tf/lite/RepresentativeDataset)을 제공해야 합니다. 이것은 일반적인 값을 나타낼 만큼 충분히 큰 입력 데이터세트를 제공하는 생성기 함수입니다. 해당 함수는 변환기로 모든 가변 데이터에 대한 동적 범위를 추정할 수 있습니다(데이터세트는 훈련 또는 평가 데이터세트와 비교할 때 고유할 필요가 없습니다). 여러 입력을 지원하기 위해 각 대표 데이터 포인트는 목록으로 이루어졌고 목록의 요소는 인덱스에 따라 모델에 제공됩니다.\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2022-12-15T01:01:05.751158Z", "iopub.status.busy": "2022-12-15T01:01:05.750547Z", "iopub.status.idle": "2022-12-15T01:01:07.637603Z", "shell.execute_reply": "2022-12-15T01:01:07.636856Z" }, "id": "FiwiWU3gHdkW" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING:absl:Found untraced functions such as _jit_compiled_convolution_op while saving (showing 1 of 1). These functions will not be directly callable after loading.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:Assets written to: /tmpfs/tmp/tmpzfpa3rfg/assets\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:tensorflow:Assets written to: /tmpfs/tmp/tmpzfpa3rfg/assets\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/lite/python/convert.py:765: UserWarning: Statistics for quantized inputs were expected, but not specified; continuing anyway.\n", " warnings.warn(\"Statistics for quantized inputs were expected, but not \"\n", "2022-12-15 01:01:06.830617: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:362] Ignored output_format.\n", "2022-12-15 01:01:06.830680: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:365] Ignored drop_control_dependency.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "fully_quantize: 0, inference_type: 6, input_inference_type: FLOAT32, output_inference_type: FLOAT32\n" ] } ], "source": [ "def representative_data_gen():\n", " for input_value in tf.data.Dataset.from_tensor_slices(train_images).batch(1).take(100):\n", " # Model has only one input so each data point has one element.\n", " yield [input_value]\n", "\n", "converter = tf.lite.TFLiteConverter.from_keras_model(model)\n", "converter.optimizations = [tf.lite.Optimize.DEFAULT]\n", "converter.representative_dataset = representative_data_gen\n", "\n", "tflite_model_quant = converter.convert()" ] }, { "cell_type": "markdown", "metadata": { "id": "_GC3HFlptf7x" }, "source": [ "이제 모든 가중치와 변수 데이터가 양자화되고 모델은 원본 TensorFlow Lite 모델에 비해 훨씬 작습니다.\n", "\n", "그러나 전통적으로 부동 모델 입력 및 출력 텐서를 사용하는 애플리케이션과의 호환성을 유지하기 위해 TensorFlow Lite 변환기는 모델 입력 및 출력 텐서를 부동 상태로 둡니다." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2022-12-15T01:01:07.641516Z", "iopub.status.busy": "2022-12-15T01:01:07.640788Z", "iopub.status.idle": "2022-12-15T01:01:07.646005Z", "shell.execute_reply": "2022-12-15T01:01:07.645349Z" }, "id": "id1OEKFELQwp" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "input: \n", "output: \n" ] } ], "source": [ "interpreter = tf.lite.Interpreter(model_content=tflite_model_quant)\n", "input_type = interpreter.get_input_details()[0]['dtype']\n", "print('input: ', input_type)\n", "output_type = interpreter.get_output_details()[0]['dtype']\n", "print('output: ', output_type)" ] }, { "cell_type": "markdown", "metadata": { "id": "RACBJuj2XO8x" }, "source": [ "일반적으로 호환성에는 좋지만 에지 TPU와 같이 정수 기반 작업만 수행하는 기기와는 호환되지 않습니다.\n", "\n", "또한 TensorFlow Lite에 해당 연산에 대한 양자화된 구현이 포함되어 있지 않은 경우 위의 프로세스는 부동 형식으로 연산을 남길 수 있습니다. 이 전략을 사용하면 변환을 완료할 수 있으므로 더 작고 효율적인 모델을 사용할 수 있지만, 정수 전용 하드웨어와는 호환되지 않습니다(이 MNIST 모델의 모든 연산에는 양자화된 구현이 있습니다).\n", "\n", "따라서 엔드 투 엔드 정수 전용 모델을 보장하려면 몇 가지 매개변수가 더 필요합니다." ] }, { "cell_type": "markdown", "metadata": { "id": "FQgTqbvPvxGJ" }, "source": [ "### 정수 전용 양자화를 사용하여 변환하기" ] }, { "cell_type": "markdown", "metadata": { "id": "mwR9keYAwArA" }, "source": [ "입력 및 출력 텐서를 양자화하고, 양자화할 수 없는 연산이 발생하는 경우 변환기에서 오류를 발생시키려면 몇 가지 추가 매개변수를 사용하여 모델을 다시 변환합니다." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2022-12-15T01:01:07.649481Z", "iopub.status.busy": "2022-12-15T01:01:07.649006Z", "iopub.status.idle": "2022-12-15T01:01:09.234805Z", "shell.execute_reply": "2022-12-15T01:01:09.234033Z" }, "id": "kzjEjcDs3BHa" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING:absl:Found untraced functions such as _jit_compiled_convolution_op while saving (showing 1 of 1). These functions will not be directly callable after loading.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:Assets written to: /tmpfs/tmp/tmp2ng1grf3/assets\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:tensorflow:Assets written to: /tmpfs/tmp/tmp2ng1grf3/assets\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/lite/python/convert.py:765: UserWarning: Statistics for quantized inputs were expected, but not specified; continuing anyway.\n", " warnings.warn(\"Statistics for quantized inputs were expected, but not \"\n", "2022-12-15 01:01:08.474066: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:362] Ignored output_format.\n", "2022-12-15 01:01:08.474114: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:365] Ignored drop_control_dependency.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "fully_quantize: 0, inference_type: 6, input_inference_type: UINT8, output_inference_type: UINT8\n" ] } ], "source": [ "def representative_data_gen():\n", " for input_value in tf.data.Dataset.from_tensor_slices(train_images).batch(1).take(100):\n", " yield [input_value]\n", "\n", "converter = tf.lite.TFLiteConverter.from_keras_model(model)\n", "converter.optimizations = [tf.lite.Optimize.DEFAULT]\n", "converter.representative_dataset = representative_data_gen\n", "# Ensure that if any ops can't be quantized, the converter throws an error\n", "converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]\n", "# Set the input and output tensors to uint8 (APIs added in r2.3)\n", "converter.inference_input_type = tf.uint8\n", "converter.inference_output_type = tf.uint8\n", "\n", "tflite_model_quant = converter.convert()" ] }, { "cell_type": "markdown", "metadata": { "id": "wYd6NxD03yjB" }, "source": [ "내부 양자화는 위와 동일하게 유지되지만 입력 및 출력 텐서는 이제 정수 형식임을 알 수 있습니다.\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2022-12-15T01:01:09.238495Z", "iopub.status.busy": "2022-12-15T01:01:09.238233Z", "iopub.status.idle": "2022-12-15T01:01:09.243190Z", "shell.execute_reply": "2022-12-15T01:01:09.242553Z" }, "id": "PaNkOS-twz4k" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "input: \n", "output: \n" ] } ], "source": [ "interpreter = tf.lite.Interpreter(model_content=tflite_model_quant)\n", "input_type = interpreter.get_input_details()[0]['dtype']\n", "print('input: ', input_type)\n", "output_type = interpreter.get_output_details()[0]['dtype']\n", "print('output: ', output_type)" ] }, { "cell_type": "markdown", "metadata": { "id": "TO17AP84wzBb" }, "source": [ "이제 모델의 입력 및 출력 텐서에 정수 데이터를 사용하는 정수 양자화 모델이 있으므로 [에지 TPU](https://coral.ai)와 같은 정수 전용 하드웨어와 호환됩니다." ] }, { "cell_type": "markdown", "metadata": { "id": "sse224YJ4KMm" }, "source": [ "### 모델을 파일로 저장하기" ] }, { "cell_type": "markdown", "metadata": { "id": "4_9nZ4nv4b9P" }, "source": [ "다른 기기에 모델을 배포하려면 `.tflite` 파일이 필요합니다. 따라서 변환된 모델을 파일로 저장한 다음 아래에서 추론을 실행할 때 로드해보겠습니다." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2022-12-15T01:01:09.246557Z", "iopub.status.busy": "2022-12-15T01:01:09.246062Z", "iopub.status.idle": "2022-12-15T01:01:09.252086Z", "shell.execute_reply": "2022-12-15T01:01:09.251457Z" }, "id": "BEY59dC14uRv" }, "outputs": [ { "data": { "text/plain": [ "24608" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pathlib\n", "\n", "tflite_models_dir = pathlib.Path(\"/tmp/mnist_tflite_models/\")\n", "tflite_models_dir.mkdir(exist_ok=True, parents=True)\n", "\n", "# Save the unquantized/float model:\n", "tflite_model_file = tflite_models_dir/\"mnist_model.tflite\"\n", "tflite_model_file.write_bytes(tflite_model)\n", "# Save the quantized model:\n", "tflite_model_quant_file = tflite_models_dir/\"mnist_model_quant.tflite\"\n", "tflite_model_quant_file.write_bytes(tflite_model_quant)" ] }, { "cell_type": "markdown", "metadata": { "id": "9t9yaTeF9fyM" }, "source": [ "## TensorFlow Lite 모델 실행하기" ] }, { "cell_type": "markdown", "metadata": { "id": "L8lQHMp_asCq" }, "source": [ "이제 TensorFlow Lite [`Interpreter`](https://www.tensorflow.org/api_docs/python/tf/lite/Interpreter)로 추론을 실행하여 모델 정확성을 비교합니다.\n", "\n", "먼저 주어진 모델과 이미지로 추론을 실행한 다음 예측을 반환하는 함수가 필요합니다.\n" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { "iopub.execute_input": "2022-12-15T01:01:09.255210Z", "iopub.status.busy": "2022-12-15T01:01:09.254994Z", "iopub.status.idle": "2022-12-15T01:01:09.260571Z", "shell.execute_reply": "2022-12-15T01:01:09.259991Z" }, "id": "X092SbeWfd1A" }, "outputs": [], "source": [ "# Helper function to run inference on a TFLite model\n", "def run_tflite_model(tflite_file, test_image_indices):\n", " global test_images\n", "\n", " # Initialize the interpreter\n", " interpreter = tf.lite.Interpreter(model_path=str(tflite_file))\n", " interpreter.allocate_tensors()\n", "\n", " input_details = interpreter.get_input_details()[0]\n", " output_details = interpreter.get_output_details()[0]\n", "\n", " predictions = np.zeros((len(test_image_indices),), dtype=int)\n", " for i, test_image_index in enumerate(test_image_indices):\n", " test_image = test_images[test_image_index]\n", " test_label = test_labels[test_image_index]\n", "\n", " # Check if the input type is quantized, then rescale input data to uint8\n", " if input_details['dtype'] == np.uint8:\n", " input_scale, input_zero_point = input_details[\"quantization\"]\n", " test_image = test_image / input_scale + input_zero_point\n", "\n", " test_image = np.expand_dims(test_image, axis=0).astype(input_details[\"dtype\"])\n", " interpreter.set_tensor(input_details[\"index\"], test_image)\n", " interpreter.invoke()\n", " output = interpreter.get_tensor(output_details[\"index\"])[0]\n", "\n", " predictions[i] = output.argmax()\n", "\n", " return predictions\n" ] }, { "cell_type": "markdown", "metadata": { "id": "2opUt_JTdyEu" }, "source": [ "### 하나의 이미지에서 모델 테스트하기\n" ] }, { "cell_type": "markdown", "metadata": { "id": "QpPpFPaz7eEM" }, "source": [ "이제 부동 모델과 양자화된 모델의 성능을 비교해 보겠습니다.\n", "\n", "- `tflite_model_file`은 부동 소수점 데이터가 있는 원본 TensorFlow Lite 모델입니다.\n", "- `tflite_model_quant_file`은 정수 전용 양자화를 사용하여 변환된 마지막 모델입니다(입력 및 출력에 uint8 데이터 사용).\n", "\n", "예측값을 출력하는 다른 함수를 만들어 보겠습니다." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "execution": { "iopub.execute_input": "2022-12-15T01:01:09.264307Z", "iopub.status.busy": "2022-12-15T01:01:09.263731Z", "iopub.status.idle": "2022-12-15T01:01:09.516528Z", "shell.execute_reply": "2022-12-15T01:01:09.515788Z" }, "id": "zR2cHRUcUZ6e" }, "outputs": [], "source": [ "import matplotlib.pylab as plt\n", "\n", "# Change this to test a different image\n", "test_image_index = 1\n", "\n", "## Helper function to test the models on one image\n", "def test_model(tflite_file, test_image_index, model_type):\n", " global test_labels\n", "\n", " predictions = run_tflite_model(tflite_file, [test_image_index])\n", "\n", " plt.imshow(test_images[test_image_index])\n", " template = model_type + \" Model \\n True:{true}, Predicted:{predict}\"\n", " _ = plt.title(template.format(true= str(test_labels[test_image_index]), predict=str(predictions[0])))\n", " plt.grid(False)" ] }, { "cell_type": "markdown", "metadata": { "id": "A5OTJ_6Vcslt" }, "source": [ "이제 부동 모델을 테스트합니다." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2022-12-15T01:01:09.521061Z", "iopub.status.busy": "2022-12-15T01:01:09.520505Z", "iopub.status.idle": "2022-12-15T01:01:09.742866Z", "shell.execute_reply": "2022-12-15T01:01:09.742224Z" }, "id": "iTK0x980coto" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "INFO: Created TensorFlow Lite XNNPACK delegate for CPU.\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAHICAYAAAAIkT5uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAs4ElEQVR4nO3deXxU1f3/8fcQkmExJMTsJUDCIrJFGyUgQkJJgeACiAsuFRBwaZAirlhlKdaotGhRKg/st4AKLqhISxV+sgRcAgiKFBEaMCwWEgKSBBIJWc7vD77M1yEhMMOEk4TX8/G4D5l7z5n7met98ObOPXOuwxhjBADABdbAdgEAgIsTAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAYR6q3Xr1hoxYoTtMmqF8zkWDodDU6ZM8Wk9gEQAoQ6aN2+eHA5HlcsTTzxxweooLi7WlClTlJGRcU7tMzIyXHW++eabVbbp2bOnHA6HOnfu7MNKgdqpoe0CAG/94Q9/UGxsrNu6C/kXd3FxsaZOnSpJSk5OPud+jRo10sKFC3XXXXe5rd+9e7e++OILNWrUyJdlArUWAYQ6KzU1VVdddZXtMjw2cOBA/eMf/9ChQ4cUGhrqWr9w4UJFRESoXbt2OnLkiMUKgQuDr+BwUfn+++91yy23KCQkRE2aNFH37t31r3/9y63NiRMnNGnSJCUkJCgoKEhNmzZVr169tHr1aleb3bt3KywsTJI0depU11dr53KvZNCgQXI6nVq0aJHb+oULF+rWW2+Vn59fpT5lZWWaNm2a2rRpI6fTqdatW+vJJ59USUmJWztjjJ555hm1aNFCTZo0UZ8+ffTtt99WWUd+fr7Gjx+vmJgYOZ1OtW3bVs8//7wqKirO+hkAXyCAUGcVFBTo0KFDbkt1cnNzdc0112j58uX67W9/qz/+8Y86fvy4brzxRi1evNjVrrCwUH/729+UnJys559/XlOmTFFeXp769++vzZs3S5LCwsL06quvSpKGDBmiN954Q2+88YZuuumms9bdpEkTDRo0SG+99ZZr3TfffKNvv/1Wd9xxR5V9Ro8erUmTJumXv/ylXnzxRSUlJSk9PV3Dhg1zazdp0iQ9/fTTio+P1/Tp0xUXF6d+/fqpqKjIrV1xcbGSkpL05ptv6u6779bMmTPVs2dPTZw4URMmTDjrZwB8wgB1zNy5c42kKpefa9WqlRk+fLjr9fjx440k8+mnn7rWHT161MTGxprWrVub8vJyY4wxZWVlpqSkxO29jhw5YiIiIsw999zjWpeXl2ckmcmTJ59T3atXrzaSzKJFi8zSpUuNw+Ewe/fuNcYY8+ijj5q4uDhjjDFJSUmmU6dOrn6bN282kszo0aPd3u+RRx4xksyqVauMMcYcPHjQBAQEmOuuu85UVFS42j355JNGktuxmDZtmmnatKn5z3/+4/aeTzzxhPHz83PVZYzx6DMCnuAKCHXWrFmz9Mknn7gt1fnoo4/UrVs3XXvtta51l1xyie69917t3r1b27ZtkyT5+fkpICBAklRRUaEff/xRZWVluuqqq/TVV1/5pPZ+/fopJCREb7/9towxevvtt3X77befsW5Jla5MHn74YUlyfYW4YsUKnThxQg8++KAcDoer3fjx4yu956JFi9SrVy81b97c7QoyJSVF5eXlWrt2rS8+JlAtBiGgzurWrZtHgxD27NmjxMTESusvv/xy1/ZTo+jmz5+vP//5z9q+fbtKS0tdbU8fdectf39/3XLLLVq4cKG6deumffv2nfHrtz179qhBgwZq27at2/rIyEgFBwdrz549rnaS1K5dO7d2YWFhat68udu6rKwsbdmyxXUf63QHDx706nMBniCAgNO8+eabGjFihAYPHqxHH31U4eHh8vPzU3p6unbt2uWz/dxxxx2aPXu2pkyZovj4eHXs2LHa9j+/qjlfFRUV+vWvf63HHnusyu3t27f32b6AMyGAcNFo1aqVduzYUWn99u3bXdsl6b333lNcXJw++OADt7/0J0+e7NbvfAPh2muvVcuWLZWRkaHnn3++2rorKiqUlZXlulqTTg6qyM/Pd9V96r9ZWVmKi4tztcvLy6s0rLtNmzY6duyYUlJSzuszAOeDe0C4aAwcOFAbNmxQZmama11RUZHmzJmj1q1bu65ATg2DNsa42q1fv96tn3RyNJt0cjizNxwOh2bOnKnJkyfrN7/5TbV1S9JLL73ktn7GjBmSpOuuu06SlJKSIn9/f7388stutZ/eT5JuvfVWZWZmavny5ZW25efnq6yszNOPA3iMKyBcNJ544gm99dZbSk1N1bhx4xQSEqL58+crOztb77//vho0OPnvseuvv14ffPCBhgwZouuuu07Z2dmaPXu2OnbsqGPHjrner3HjxurYsaPeeecdtW/fXiEhIercubNHszEMGjRIgwYNqrZNfHy8hg8frjlz5ig/P19JSUnasGGD5s+fr8GDB6tPnz6STt7reeSRR5Senq7rr79eAwcO1Ndff62PP/7Y7QevkvToo4/qH//4h66//nqNGDFCCQkJKioq0r///W+999572r17d6U+gM9ZHoUHeOzUMOwvv/yy2nanD8M2xphdu3aZm2++2QQHB5tGjRqZbt26maVLl7q1qaioMM8++6xp1aqVcTqd5sorrzRLly41w4cPN61atXJr+8UXX5iEhAQTEBBw1uHKPx+GXZ3Th2EbY0xpaamZOnWqiY2NNf7+/iYmJsZMnDjRHD9+3K1deXm5mTp1qomKijKNGzc2ycnJZuvWrVUei6NHj5qJEyeatm3bmoCAABMaGmquueYa86c//cmcOHHC1e5snwvwlsOYn12rAwBwgXAPCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggoB7IyMiQw+FQRkaGa92IESPUunVrazWdrqoacXEjgOATycnJrqeCVrecyxNDa9Lhw4c1ffp09e7dW2FhYQoODlb37t31zjvvnNf7nv75Q0JCdPXVV+vvf/97nXvC6LPPPqsPP/zQ2v6Li4s1a9Ys9evXT1FRUQoMDNSVV16pV199VeXl5dbqgu8xFQ984ve//71Gjx7tev3ll19q5syZevLJJ90m0OzatauN8lwyMzP1+9//XgMHDtRTTz2lhg0b6v3339ewYcO0bds2TZ061ev3btGihdLT0yWdnAD09ddf16hRo/Sf//xHzz33nK8+wjl77bXXvAq/Z599VjfffLMGDx7s+6LOwffff68HH3xQffv21YQJE9SsWTPXU2zXrVun+fPnW6kLNcD2VAyonxYtWmQkmdWrV1fb7tixYxemoP/1/fffm927d7utq6ioML/61a+M0+n0up6qps8pKioyLVq0ME2bNnWb2ubnysvLzU8//eTVPn/u1DQ/Zzve56Jp06aVpu3xhXOtMS8vz2zdurXS+pEjRxpJJisry+e1wQ6+gsMFM2XKFDkcDm3btk133HGHmjdv7no6aXJyspKTkyv1qeo+RkVFhV566SV16tRJjRo1UkREhO67775KjxwoKCjQ9u3bVVBQ4FoXGxvremzBKQ6HQ4MHD1ZJSYm+//5733xYnZwtu3v37ioqKlJeXp5rX2PHjtWCBQvUqVMnOZ1OLVu2TJL03//+V/fcc48iIiLkdDrVqVMn/f3vf6/0vj/88IMGDx6spk2bKjw8XA899JBKSkoqtTvTsfvLX/6iLl26qFGjRgoLC9OAAQO0ceNGV31FRUWaP3++6+vEESNGuPr7usbi4mJt375dhw4dcq0LDQ1Vp06dKrUdMmSIJOm7776rtA11E1/B4YK75ZZb1K5dOz377LNujw04V/fdd5/mzZunkSNHaty4ccrOztYrr7yir7/+Wp9//rn8/f0lSYsXL9bIkSM1d+5ct79Eq5KTkyNJPp8B+vvvv5efn5+Cg4Nd61atWqV3331XY8eOVWhoqFq3bq3c3Fx1797dFVBhYWH6+OOPNWrUKBUWFroeq/3TTz+pb9++2rt3r8aNG6fo6Gi98cYbWrVq1TnVM2rUKM2bN0+pqakaPXq0ysrK9Omnn2rdunW66qqr9MYbb2j06NHq1q2b7r33Xkknnx0kqUZq3LBhg/r06aPJkyef9f5gTf0/gkW2L8FQP1X1FdzkyZONJHP77bdXap+UlGSSkpIqrT99BupPP/3USDILFixwa7ds2bJK60/Nmj137txqaz18+LAJDw83vXr1OqfPVpWkpCTToUMHk5eXZ/Ly8sx3331nxo0bZySZG264wdVOkmnQoIH59ttv3fqPGjXKREVFmUOHDrmtHzZsmAkKCjLFxcXGGGNeeuklI8m8++67rjZFRUWmbdu2lY736cdu1apVRpIZN25cpforKipcfz7TV3A1UeOpr+XONtt2SUmJ6dixo4mNjTWlpaXVtkXdwVdwuODuv/9+r/suWrRIQUFB+vWvf61Dhw65loSEBF1yySVavXq1q+2IESNkjKn26qeiokJ33nmn8vPz9fLLL3tdl3TyyaphYWEKCwvT5ZdfrpdfflnXXXddpa+okpKS3B6/bYzR+++/rxtuuEHGGLfP1b9/fxUUFOirr76SJH300UeKiorSzTff7OrfpEkT19VKdd5//305HI5KT3aVzv5015qqMTk5WcaYs179jB07Vtu2bdMrr7yihg354qa+4P8kLrjY2Fiv+2ZlZamgoEDh4eFVbj948KBH7/fggw9q2bJlev311xUfH+91XZLUunVrvfbaa3I4HGrUqJHatWtXZZ2nf/68vDzl5+drzpw5mjNnTpXvfepz7dmzR23btq0UGJdddtlZ69u1a5eio6MVEhJyrh/pgtdYlenTp+u1117TtGnTXE+HRf1AAOGCa9y4caV1DoejyvtBp//uo6KiQuHh4VqwYEGV7x0WFnbOdUydOlV//etf9dxzz1X7SOxz1bRpU6WkpJy13emf/9RQ6bvuukvDhw+vso/t4eu2apw3b54ef/xx3X///Xrqqad8/v6wiwBCrdC8efMqR6Dt2bPH7XWbNm20YsUK9ezZs8ogO1ezZs3SlClTNH78eD3++ONev48vhIWFKTAwUOXl5WcNsFatWmnr1q0yxrhdYezYseOs+2nTpo2WL1+uH3/8sdqroKq+jrtQNf7ckiVLNHr0aN10002aNWuWR31RN3APCLVCmzZttH37dtdwZUn65ptv9Pnnn7u1u/XWW1VeXq5p06ZVeo+ysjLl5+e7Xlc1DFuS3nnnHY0bN0533nmnZsyY4dsP4gU/Pz8NHTpU77//vrZu3Vpp+8+PycCBA7V//3699957rnXFxcVn/Frs54YOHSpjTJU/tv351WfTpk3djmNN1ljVMGxJWrt2rYYNG6bevXtrwYIFatCAv6rqI66AUCvcc889mjFjhvr3769Ro0bp4MGDmj17tjp16qTCwkJXu6SkJN13331KT0/X5s2b1a9fP/n7+ysrK0uLFi3SX/7yF9fN76qGYW/YsEF33323Lr30UvXt27fSV3nXXHON4uLiXK8dDoeSkpJqfP6y5557TqtXr1ZiYqLGjBmjjh076scff9RXX32lFStW6Mcff5QkjRkzRq+88oruvvtubdq0SVFRUXrjjTfUpEmTs+6jT58++s1vfqOZM2cqKytLAwYMUEVFhT799FP16dNHY8eOlSQlJCRoxYoVmjFjhqKjoxUbG6vExMQaqbGqYdh79uzRjTfeKIfDoZtvvlmLFi1y69O1a1frX0nCRyyNvkM9V90w7Ly8vCr7vPnmmyYuLs4EBASYK664wixfvrzSUOJT5syZYxISEkzjxo1NYGCg6dKli3nsscfM/v37XW2qGoZ9at2Zlp+3PXr0qJFkhg0bdtbPW9VMCFWRZNLS0qrclpuba9LS0kxMTIzx9/c3kZGRpm/fvmbOnDlu7fbs2WNuvPFG06RJExMaGmp+97vfuYahVzcM2xhjysrKzPTp002HDh1MQECACQsLM6mpqWbTpk2uNtu3bze9e/c2jRs3NpLchmT7usaqhmGfWnem5WxDtlF3OIzx4peAwEXgo48+0vXXX69vvvlGXbp0sV0OUO/wxSpwBqtXr9awYcMIH6CGcAUEALCCKyAAgBUEEADACgIIAGAFAQQAsKLW/RC1oqJC+/fvV2Bg4Fln6AUA1D7GGB09elTR0dHVzmJR6wJo//79iomJsV0GAOA87du3Ty1atDjj9loXQIGBgZKkazVQDeVvuRoAgKfKVKrP9JHr7/MzqbEAmjVrlqZPn66cnBzFx8fr5ZdfVrdu3c7a79TXbg3lr4YOAggA6pz//XXp2W6j1MgghHfeeUcTJkzQ5MmT9dVXXyk+Pl79+/f3+GFhAID6q0YCaMaMGRozZoxGjhypjh07avbs2WrSpEmlRxMDAC5ePg+gEydOaNOmTW4PrWrQoIFSUlKUmZlZqX1JSYkKCwvdFgBA/efzADp06JDKy8sVERHhtj4iIkI5OTmV2qenpysoKMi1MAIOAC4O1n+IOnHiRBUUFLiWffv22S4JAHAB+HwUXGhoqPz8/JSbm+u2Pjc3V5GRkZXaO51OOZ1OX5cBAKjlfH4FFBAQoISEBK1cudK1rqKiQitXrlSPHj18vTsAQB1VI78DmjBhgoYPH66rrrpK3bp100svvaSioiKNHDmyJnYHAKiDaiSAbrvtNuXl5WnSpEnKycnRFVdcoWXLllUamAAAuHjVuieiFhYWKigoSMkaxEwIAFAHlZlSZWiJCgoK1KxZszO2sz4KDgBwcSKAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWNLRdAHA2u5/p4XGf8kbGq32FdcrzuE9m/Pte7ctTbVaN9LhP4IbGXu0rYuYXXvUDPMEVEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYwWSkuKCO/Kudx322XvFKDVTiO6XezXvqse19/uZxnwVXRXm1r3c/SfK4T/l3WV7tCxcvroAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAomI4XXvJlY9PMr3q6BSnxndn6cx31mZP7a4z6tW+V53Of/dfzA4z53Bh7wuI8k/XFEqMd94h5nMlJ4hisgAIAVBBAAwAqfB9CUKVPkcDjclg4dOvh6NwCAOq5G7gF16tRJK1as+L+dNORWEwDAXY0kQ8OGDRUZGVkTbw0AqCdq5B5QVlaWoqOjFRcXpzvvvFN79+49Y9uSkhIVFha6LQCA+s/nAZSYmKh58+Zp2bJlevXVV5Wdna1evXrp6NGjVbZPT09XUFCQa4mJifF1SQCAWsjnAZSamqpbbrlFXbt2Vf/+/fXRRx8pPz9f7777bpXtJ06cqIKCAteyb98+X5cEAKiFanx0QHBwsNq3b6+dO3dWud3pdMrpdNZ0GQCAWqbGfwd07Ngx7dq1S1FRUTW9KwBAHeLzAHrkkUe0Zs0a7d69W1988YWGDBkiPz8/3X777b7eFQCgDvP5V3A//PCDbr/9dh0+fFhhYWG69tprtW7dOoWFhfl6VwCAOsznAfT227V7sklUVtY3wat+q+JnedHL3+MeLx1p73Gf1bdd5XEfSdL+gx53aX9ko8d9GjRq5HGfZ9d38bjPk6H/9riPJJU1L/OqH+AJ5oIDAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACtq/IF0qP2O/SLAq34NvPj3izcTi2bc6PkknOXf7/C4z4W0c+qVHvdZGPJnL/bk3cMeWyzj36aoeZxlAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsILZsKHg1zO96nfzxrs87uM4Uuhxn7IDuz3uU9uNHrjC4z6XNPBuZmugtuIKCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsYDJSeK18239sl1Ar7P5jD4/7jAr+kxd7auRxj4cPdPdiP1Lgiu887lPu1Z5wMeMKCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsYDJS4Gfyf+P5xKKf3+35xKJBDTyfWDSzxM/jPpufudLjPpLUuHCDV/0AT3AFBACwggACAFjhcQCtXbtWN9xwg6Kjo+VwOPThhx+6bTfGaNKkSYqKilLjxo2VkpKirKwsX9ULAKgnPA6goqIixcfHa9asWVVuf+GFFzRz5kzNnj1b69evV9OmTdW/f38dP378vIsFANQfHg9CSE1NVWpqapXbjDF66aWX9NRTT2nQoEGSpNdff10RERH68MMPNWzYsPOrFgBQb/j0HlB2drZycnKUkpLiWhcUFKTExERlZmZW2aekpESFhYVuCwCg/vNpAOXk5EiSIiIi3NZHRES4tp0uPT1dQUFBriUmJsaXJQEAainro+AmTpyogoIC17Jv3z7bJQEALgCfBlBkZKQkKTc31219bm6ua9vpnE6nmjVr5rYAAOo/nwZQbGysIiMjtXLlSte6wsJCrV+/Xj16eP4LcwBA/eXxKLhjx45p586drtfZ2dnavHmzQkJC1LJlS40fP17PPPOM2rVrp9jYWD399NOKjo7W4MGDfVk3AKCO8ziANm7cqD59+rheT5gwQZI0fPhwzZs3T4899piKiop07733Kj8/X9dee62WLVumRo08n/sKAFB/OYwxxnYRP1dYWKigoCAla5AaOvxtl4OLzM4Xu3vcZ/utVf8o29faL7/P8z73bKyBSoDqlZlSZWiJCgoKqr2vb30UHADg4kQAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVHj+OAagLTnzSyqt+mR3+7EUvzx81Ep853OM+lz+8y+M+5R73AC4croAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAomI0Wt1zCutcd9prVd5NW+mjfwfGLRTSWe76fVNM+nCS0/csTzHQG1GFdAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFk5Gi1mvz7n897nNlwIX7t9XtK+/3uE/7b76sgUqAuoUrIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwgslIcUEdGd7D4z5TI/7sxZ6cXvSRhu9O8bjP5Y/t9LhPucc9gPqHKyAAgBUEEADACo8DaO3atbrhhhsUHR0th8OhDz/80G37iBEj5HA43JYBAwb4ql4AQD3hcQAVFRUpPj5es2bNOmObAQMG6MCBA67lrbfeOq8iAQD1j8eDEFJTU5WamlptG6fTqcjISK+LAgDUfzVyDygjI0Ph4eG67LLL9MADD+jw4cNnbFtSUqLCwkK3BQBQ//k8gAYMGKDXX39dK1eu1PPPP681a9YoNTVV5eVVDzxNT09XUFCQa4mJifF1SQCAWsjnvwMaNmyY689dunRR165d1aZNG2VkZKhv376V2k+cOFETJkxwvS4sLCSEAOAiUOPDsOPi4hQaGqqdO6v+sZ7T6VSzZs3cFgBA/VfjAfTDDz/o8OHDioqKquldAQDqEI+/gjt27Jjb1Ux2drY2b96skJAQhYSEaOrUqRo6dKgiIyO1a9cuPfbYY2rbtq369+/v08IBAHWbxwG0ceNG9enTx/X61P2b4cOH69VXX9WWLVs0f/585efnKzo6Wv369dO0adPkdHo3NxcAoH7yOICSk5NljDnj9uXLl59XQag7Gv4i2uM+vcat97jPJQ0u3D9eMre19bhP+yNf1kAlQP3HXHAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwwueP5MbF47snPX90+oeR/6yBSirr8+9bvOp3+WNVP7m3OuVe7QkAV0AAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAWTkcJrm2580YteTp/XUZWg31Z41a/syBEfVwLgTLgCAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArmIwU9VJpRJBX/fxP/MLHldhVnnfIq36mpMTjPg6n5xPN+oWFetzHG+VhwV71y3o4wLeF+JApd3jVr8ODOz3uU15Y6NW+zoYrIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwgslIUS/9672/2y6hVrjm69u96ncot5nHfZqHHfW4z/qEhR73wfnp+NRYj/vEPZZZA5VwBQQAsIQAAgBY4VEApaen6+qrr1ZgYKDCw8M1ePBg7dixw63N8ePHlZaWpksvvVSXXHKJhg4dqtzcXJ8WDQCo+zwKoDVr1igtLU3r1q3TJ598otLSUvXr109FRUWuNg899JD++c9/atGiRVqzZo3279+vm266yeeFAwDqNo8GISxbtszt9bx58xQeHq5Nmzapd+/eKigo0P/8z/9o4cKF+tWvfiVJmjt3ri6//HKtW7dO3bt3913lAIA67bzuARUUFEiSQkJCJEmbNm1SaWmpUlJSXG06dOigli1bKjOz6lEUJSUlKiwsdFsAAPWf1wFUUVGh8ePHq2fPnurcubMkKScnRwEBAQoODnZrGxERoZycnCrfJz09XUFBQa4lJibG25IAAHWI1wGUlpamrVu36u233z6vAiZOnKiCggLXsm/fvvN6PwBA3eDVD1HHjh2rpUuXau3atWrRooVrfWRkpE6cOKH8/Hy3q6Dc3FxFRkZW+V5Op1NOp9ObMgAAdZhHV0DGGI0dO1aLFy/WqlWrFBsb67Y9ISFB/v7+WrlypWvdjh07tHfvXvXo0cM3FQMA6gWProDS0tK0cOFCLVmyRIGBga77OkFBQWrcuLGCgoI0atQoTZgwQSEhIWrWrJkefPBB9ejRgxFwAAA3HgXQq6++KklKTk52Wz937lyNGDFCkvTiiy+qQYMGGjp0qEpKStS/f3/99a9/9UmxAID6w2GMMbaL+LnCwkIFBQUpWYPU0OFvuxxU46flsWdvdJqVnd+rgUpwMSk2JzzuU2oqaqCSqg3cMsLjPgWbQ31fyBlEfVbmcR/nx1961L7MlCpDS1RQUKBmzc48sS1zwQEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKr56ICkhS4/7ZHvfp9OxYj/uYWn6WBnb40eM+6xMW1kAlvtPp05Ee9zF7m9ZAJZXFvXfM804b/u37Qs6gubIuSJ/6gCsgAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCilk/ziPom9slM2yXUCtcrwXYJ1YrVFtsl4CLAFRAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWOFRAKWnp+vqq69WYGCgwsPDNXjwYO3YscOtTXJyshwOh9ty//33+7RoAEDd51EArVmzRmlpaVq3bp0++eQTlZaWql+/fioqKnJrN2bMGB04cMC1vPDCCz4tGgBQ9zX0pPGyZcvcXs+bN0/h4eHatGmTevfu7VrfpEkTRUZG+qZCAEC9dF73gAoKCiRJISEhbusXLFig0NBQde7cWRMnTlRxcfEZ36OkpESFhYVuCwCg/vPoCujnKioqNH78ePXs2VOdO3d2rb/jjjvUqlUrRUdHa8uWLXr88ce1Y8cOffDBB1W+T3p6uqZOneptGQCAOsphjDHedHzggQf08ccf67PPPlOLFi3O2G7VqlXq27evdu7cqTZt2lTaXlJSopKSEtfrwsJCxcTEKFmD1NDh701pAACLykypMrREBQUFatas2RnbeXUFNHbsWC1dulRr166tNnwkKTExUZLOGEBOp1NOp9ObMgAAdZhHAWSM0YMPPqjFixcrIyNDsbGxZ+2zefNmSVJUVJRXBQIA6iePAigtLU0LFy7UkiVLFBgYqJycHElSUFCQGjdurF27dmnhwoUaOHCgLr30Um3ZskUPPfSQevfura5du9bIBwAA1E0e3QNyOBxVrp87d65GjBihffv26a677tLWrVtVVFSkmJgYDRkyRE899VS13wP+XGFhoYKCgrgHBAB1VI3cAzpbVsXExGjNmjWevCUA4CLFXHAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsa2i7gdMYYSVKZSiVjuRgAgMfKVCrp//4+P5NaF0BHjx6VJH2mjyxXAgA4H0ePHlVQUNAZtzvM2SLqAquoqND+/fsVGBgoh8Phtq2wsFAxMTHat2+fmjVrZqlC+zgOJ3EcTuI4nMRxOKk2HAdjjI4eParo6Gg1aHDmOz217gqoQYMGatGiRbVtmjVrdlGfYKdwHE7iOJzEcTiJ43CS7eNQ3ZXPKQxCAABYQQABAKyoUwHkdDo1efJkOZ1O26VYxXE4ieNwEsfhJI7DSXXpONS6QQgAgItDnboCAgDUHwQQAMAKAggAYAUBBACwos4E0KxZs9S6dWs1atRIiYmJ2rBhg+2SLrgpU6bI4XC4LR06dLBdVo1bu3atbrjhBkVHR8vhcOjDDz90226M0aRJkxQVFaXGjRsrJSVFWVlZdoqtQWc7DiNGjKh0fgwYMMBOsTUkPT1dV199tQIDAxUeHq7Bgwdrx44dbm2OHz+utLQ0XXrppbrkkks0dOhQ5ebmWqq4ZpzLcUhOTq50Ptx///2WKq5anQigd955RxMmTNDkyZP11VdfKT4+Xv3799fBgwdtl3bBderUSQcOHHAtn332me2SalxRUZHi4+M1a9asKre/8MILmjlzpmbPnq3169eradOm6t+/v44fP36BK61ZZzsOkjRgwAC38+Ott966gBXWvDVr1igtLU3r1q3TJ598otLSUvXr109FRUWuNg899JD++c9/atGiRVqzZo3279+vm266yWLVvncux0GSxowZ43Y+vPDCC5YqPgNTB3Tr1s2kpaW5XpeXl5vo6GiTnp5usaoLb/LkySY+Pt52GVZJMosXL3a9rqioMJGRkWb69Omudfn5+cbpdJq33nrLQoUXxunHwRhjhg8fbgYNGmSlHlsOHjxoJJk1a9YYY07+v/f39zeLFi1ytfnuu++MJJOZmWmrzBp3+nEwxpikpCTzu9/9zl5R56DWXwGdOHFCmzZtUkpKimtdgwYNlJKSoszMTIuV2ZGVlaXo6GjFxcXpzjvv1N69e22XZFV2drZycnLczo+goCAlJiZelOdHRkaGwsPDddlll+mBBx7Q4cOHbZdUowoKCiRJISEhkqRNmzaptLTU7Xzo0KGDWrZsWa/Ph9OPwykLFixQaGioOnfurIkTJ6q4uNhGeWdU6yYjPd2hQ4dUXl6uiIgIt/URERHavn27parsSExM1Lx583TZZZfpwIEDmjp1qnr16qWtW7cqMDDQdnlW5OTkSFKV58epbReLAQMG6KabblJsbKx27dqlJ598UqmpqcrMzJSfn5/t8nyuoqJC48ePV8+ePdW5c2dJJ8+HgIAABQcHu7Wtz+dDVcdBku644w61atVK0dHR2rJlix5//HHt2LFDH3zwgcVq3dX6AML/SU1Ndf25a9euSkxMVKtWrfTuu+9q1KhRFitDbTBs2DDXn7t06aKuXbuqTZs2ysjIUN++fS1WVjPS0tK0devWi+I+aHXOdBzuvfde15+7dOmiqKgo9e3bV7t27VKbNm0udJlVqvVfwYWGhsrPz6/SKJbc3FxFRkZaqqp2CA4OVvv27bVz507bpVhz6hzg/KgsLi5OoaGh9fL8GDt2rJYuXarVq1e7Pb4lMjJSJ06cUH5+vlv7+no+nOk4VCUxMVGSatX5UOsDKCAgQAkJCVq5cqVrXUVFhVauXKkePXpYrMy+Y8eOadeuXYqKirJdijWxsbGKjIx0Oz8KCwu1fv36i/78+OGHH3T48OF6dX4YYzR27FgtXrxYq1atUmxsrNv2hIQE+fv7u50PO3bs0N69e+vV+XC241CVzZs3S1LtOh9sj4I4F2+//bZxOp1m3rx5Ztu2bebee+81wcHBJicnx3ZpF9TDDz9sMjIyTHZ2tvn8889NSkqKCQ0NNQcPHrRdWo06evSo+frrr83XX39tJJkZM2aYr7/+2uzZs8cYY8xzzz1ngoODzZIlS8yWLVvMoEGDTGxsrPnpp58sV+5b1R2Ho0ePmkceecRkZmaa7Oxss2LFCvPLX/7StGvXzhw/ftx26T7zwAMPmKCgIJORkWEOHDjgWoqLi11t7r//ftOyZUuzatUqs3HjRtOjRw/To0cPi1X73tmOw86dO80f/vAHs3HjRpOdnW2WLFli4uLiTO/evS1X7q5OBJAxxrz88sumZcuWJiAgwHTr1s2sW7fOdkkX3G233WaioqJMQECA+cUvfmFuu+02s3PnTttl1bjVq1cbSZWW4cOHG2NODsV++umnTUREhHE6naZv375mx44ddouuAdUdh+LiYtOvXz8TFhZm/P39TatWrcyYMWPq3T/Sqvr8kszcuXNdbX766Sfz29/+1jRv3tw0adLEDBkyxBw4cMBe0TXgbMdh7969pnfv3iYkJMQ4nU7Ttm1b8+ijj5qCggK7hZ+GxzEAAKyo9feAAAD1EwEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCs+P9+df1YP2FQMwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "test_model(tflite_model_file, test_image_index, model_type=\"Float\")" ] }, { "cell_type": "markdown", "metadata": { "id": "o3N6-UGl1dfE" }, "source": [ "그리고 양자화된 모델을 테스트합니다." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { "iopub.execute_input": "2022-12-15T01:01:09.746618Z", "iopub.status.busy": "2022-12-15T01:01:09.746079Z", "iopub.status.idle": "2022-12-15T01:01:09.896402Z", "shell.execute_reply": "2022-12-15T01:01:09.895719Z" }, "id": "rc1i9umMcp0t" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAHICAYAAAAIkT5uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvpUlEQVR4nO3deXhUVZ7/8U8RSLEYwpJdAiSAIGGxpQVxYTE0EJRNsAVEASOCJiKgrYPSAm2PQZkBGkFs/LVEFFQQgcZBVJaAOEEFpWkaYQBZhYTNVEKCAZLz+4OhhiIJUGWKk4T363nuQ+rec+p+61rmk1v31LkOY4wRAADXWCXbBQAArk8EEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEHAVOnXqpE6dOl3TfaalpcnhcCgtLe2a7tcbDodDEydO9Lrfvn375HA4lJqaWuo1ofwggOB3//rXvzR48GDdeOONcjqdioqK0uDBg7V9+3bbpXnYvn27Jk6cqH379tkuxSupqalyOBxyOBzasGFDke3GGEVHR8vhcOi+++6zUCFQPAIIfvXxxx/r1ltv1erVqzVs2DC98cYbSkxM1Jo1a3Trrbdq2bJltkt02759uyZNmlRsAH3++ef6/PPPr31RXqhataoWLFhQZP26det06NAhOZ1OC1UBJatsuwBUXHv27NHDDz+s2NhYrV+/XqGhoe5tTz/9tO6++24NHjxYW7duVUxMjMVKrywwMNB2CVfUo0cPLVq0SDNmzFDlyv/3v/aCBQvUpk0bHT9+3GJ1QFGcAcFvpkyZory8PM2ZM8cjfCQpJCREf/3rX3Xq1ClNmTLFvX7o0KFq2LBhkeeaOHGiHA6Hx7q5c+fqnnvuUVhYmJxOp5o3b67Zs2cX6duwYUPdd9992rBhg9q2bauqVasqNjZW8+bNc7dJTU3VAw88IEnq3Lmz+yOtC9dfLr0G1LBhQ3ebS5eLr9n89NNPevTRRxUeHi6n06m4uDi9/fbbRWo8dOiQ+vTpoxo1aigsLExjxoxRfn5+ice2OAMHDtSJEyf0xRdfuNedOXNGH330kQYNGlRsn9zcXD3zzDOKjo6W0+lU06ZN9R//8R+6dJL8/Px8jRkzRqGhoQoKClKvXr106NChYp/zal8zwBkQ/Gb58uVq2LCh7r777mK3d+jQQQ0bNtTy5cv1xhtveP38s2fPVlxcnHr16qXKlStr+fLlevLJJ1VYWKikpCSPtrt371b//v2VmJioIUOG6O2339bQoUPVpk0bxcXFqUOHDho1apRmzJihF154QTfffLMkuf+91PTp03Xq1CmPddOmTdOWLVtUt25dSVJmZqZuv/12ORwOJScnKzQ0VJ9++qkSExOVnZ2t0aNHS5JOnz6t+Ph4HThwQKNGjVJUVJTeffddrVmzxqvj0bBhQ7Vv317vv/++EhISJEmffvqpXC6XBgwYoBkzZni0N8aoV69eWrt2rRITE3XLLbfos88+0x/+8Af99NNPmjZtmrvtY489pvfee0+DBg3SHXfcoTVr1ujee+8tUsPVvmZAkmQAP8jKyjKSTO/evS/brlevXkaSyc7ONsYYM2TIENOgQYMi7SZMmGAufbvm5eUVadetWzcTGxvrsa5BgwZGklm/fr173dGjR43T6TTPPPOMe92iRYuMJLN27doiz9uxY0fTsWPHEl/HwoULjSTzpz/9yb0uMTHRREZGmuPHj3u0HTBggAkODnbXP336dCPJLFy40N0mNzfXNG7cuMR6LjZ37lwjyXz77bdm5syZJigoyP3cDzzwgOncubP7ONx7773ufkuXLjWSzJ///GeP5+vfv79xOBxm9+7dxhhjtmzZYiSZJ5980qPdoEGDjCQzYcIEr1/z3r17jSQzd+7cy742VGx8BAe/yMnJkSQFBQVdtt2F7Rfae6NatWrun10ul44fP66OHTvqxx9/lMvl8mjbvHlzjzOx0NBQNW3aVD/++KPX+73U9u3b9eijj6p3794aP368pPNnF4sXL1bPnj1ljNHx48fdS7du3eRyufTdd99JklasWKHIyEj179/f/ZzVq1fX448/7nUtv//973X69Gl98sknysnJ0SeffFLix28rVqxQQECARo0a5bH+mWeekTFGn376qbudpCLtLj2b8eY1AxIfwcFPrjZYcnJy5HA4FBIS4vU+vvrqK02YMEHp6enKy8vz2OZyuRQcHOx+XL9+/SL9a9eurZ9//tnr/V4sOztb999/v2688UbNmzfPfZ3q2LFjysrK0pw5czRnzpxi+x49elSStH//fjVu3LjINa6mTZt6XU9oaKi6dOmiBQsWKC8vTwUFBR7BdrH9+/crKiqqyB8JFz523L9/v/vfSpUqqVGjRpetz5vXDEgEEPwkODhYUVFR2rp162Xbbd26VfXq1XOPMrv0l/AFBQUFHo/37Nmj+Ph4NWvWTFOnTlV0dLQCAwO1YsUKTZs2TYWFhR7tAwICin1e8yvvSD906FAdPnxY33zzjWrWrOlef2H/gwcP1pAhQ4rt26pVq1+175IMGjRIw4cPV0ZGhhISElSrVi2/7OdSNl8zyicCCH7Ts2dP/fWvf9WGDRt01113Fdn+5Zdfat++fRo7dqx7Xe3atZWVlVWk7YW/xi9Yvny58vPz9fe//93j7Gbt2rU+11tS+JVk8uTJWrp0qT7++GM1a9bMY9uF0WIFBQXq0qXLZZ+nQYMG2rZtm4wxHjXs3LnTq3ou6Nu3r0aMGKGNGzfqww8/vOx+V61apZycHI+zoB07dri3X/i3sLBQe/bs8TjrubQ+b14zIDEMG3707LPPqnr16hoxYoROnDjhse3kyZMaOXKkatasqeTkZPf6Ro0ayeVyeZw5HTlyREuWLPHof+GM5uIzGJfLpblz5/pcb40aNSSp2AC81KpVqzR+/Hi9+OKL6tOnT5HtAQEB6tevnxYvXqxt27YV2X7s2DH3zz169NDhw4f10UcfudddGL7uixtuuEGzZ8/WxIkT1bNnzxLb9ejRQwUFBZo5c6bH+mnTpsnhcLhH0l3499JRdNOnT/d47M1rBiTOgOBHjRs31rx58zRw4EC1bNlSiYmJiomJ0b59+/S3v/1NP//8sz744AOPL6EOGDBAzz//vPr27atRo0YpLy9Ps2fP1k033eRxAbtr164KDAxUz549NWLECJ06dUpvvfWWwsLCdOTIEZ/qveWWWxQQEKBXX31VLpdLTqfT/T2jSw0cOFChoaFq0qSJ3nvvPY9tv/vd7xQeHq7Jkydr7dq1ateunYYPH67mzZvr5MmT+u6777Rq1SqdPHlSkjR8+HDNnDlTjzzyiDZv3qzIyEi9++67ql69uk+vQ1KJH4FdrGfPnurcubNefPFF7du3T61bt9bnn3+uZcuWafTo0e5rPrfccosGDhyoN954Qy6XS3fccYdWr16t3bt3F3nOq33NgCSGYcP//vnPf5pBgwaZiIgIU6lSJSPJVK1a1fzrX/8qtv3nn39uWrRoYQIDA03Tpk3Ne++9V+ww7L///e+mVatWpmrVqqZhw4bm1VdfNW+//baRZPbu3etud+nw4wuKG1r91ltvmdjYWBMQEOAxBPrStpJKXC4eNp2ZmWmSkpJMdHS0qVKliomIiDDx8fFmzpw5Hvvdv3+/6dWrl6levboJCQkxTz/9tFm5cqXXw7Avp7jjkJOTY8aMGWOioqJMlSpVTJMmTcyUKVNMYWGhR7vTp0+bUaNGmbp165oaNWqYnj17moMHDxYZhn21r5lh2DDGGIcxv/IqLOClefPmaejQoRo8eLDHbAQAri98BIdr7pFHHtGRI0f0b//2b6pXr55eeeUV2yUBsIAzIACAFYyCAwBYQQABAKwggAAAVhBAAAArCCCgAkhLSytyM7ySbu5nS3E14vpGAKFUdOrUqcQ7hF68TJw40WqdJ06c0JQpU9ShQweFhoaqVq1auv322y87Z9rVuPT116lTR7fddpvefvvtIhOjlnWvvPKKli5dam3/eXl5mjVrlrp27arIyEgFBQXpN7/5jWbPnl1kUlqUb3wPCKXixRdf1GOPPeZ+/O233xa5u6hkfzbk9PR0vfjii+rRo4fGjx+vypUra/HixRowYIC2b9+uSZMm+fzc9erVU0pKiqTz857NmzdPiYmJ+p//+R9Nnjy5tF7CVXvrrbd8Cr9XXnlF/fv3L3aOu2vhxx9/1FNPPaX4+HiNHTtWNWvW1GeffaYnn3xSGzdu1DvvvGOlLviB3YkYUFFd7u6iFzt16tS1Keh//fjjj2bfvn0e6woLC80999xjnE6nz/V07NjRxMXFeazLzc019erVMzVq1DBnzpwptl9BQYE5ffq0T/u82Nq1a6/qeF+NGjVqmCFDhvzq57nU1dZ47Ngxs23btiLrhw0bZiSZXbt2lXptsIOP4HDNTJw4UQ6HQ9u3b9egQYNUu3Zt920aOnXqpE6dOhXpU9x1jMLCQk2fPl1xcXGqWrWqwsPDNWLEiCI3l3O5XNqxY4fH3VFjYmLctxm4wOFwqE+fPsrPzy+VO6ReUL16dd1+++3Kzc11zwTtcDiUnJys+fPnKy4uTk6nUytXrpQk/fTTT3r00UcVHh4up9OpuLg4vf3220We99ChQ+rTp49q1KihsLAwjRkzRvn5+UXalXTs/vKXv6hly5aqWrWqQkND1b17d23atMldX25urt555x33x4lDhw519y/tGvPy8rRjxw4dP37cvS4kJERxcXFF2vbt21eS9MMPPxTZhvKJj+BwzT3wwANq0qSJXnnlFZ9uCDdixAilpqZq2LBhGjVqlPbu3auZM2fq+++/11dffaUqVapIkpYsWaJhw4Zp7ty5Hr9Ei5ORkSFJPt2Z9XJ+/PFHBQQEeNwUbs2aNVq4cKGSk5MVEhKihg0bKjMzU7fffrs7oEJDQ/Xpp58qMTFR2dnZ7ttfnz59WvHx8Tpw4IBGjRqlqKgovfvuu1qzZs1V1ZOYmKjU1FQlJCToscce07lz5/Tll19q48aN+u1vf6t3331Xjz32mNq2beu+JfiFWbH9UeM333yjzp07a8KECVe8Puiv/0awyPYpGCqm4j6CuzCj9cCBA4u0L25mamOMGTJkiGnQoIH78Zdffmkkmfnz53u0uzBz9MXrL8wSfaUZl0+cOGHCwsLM3XfffVWvrTgdO3Y0zZo1M8eOHTPHjh0zP/zwgxk1apSRZHr27OluJ8lUqlSpyEzgiYmJJjIy0hw/ftxj/YABA0xwcLDJy8szxhgzffp0I8ksXLjQ3SY3N9c0bty4yPG+9NitWbPGSDKjRo0qUv/Fs1+X9BGcP2q88LHcpTNqXyo/P980b97cxMTEmLNnz162LcoPPoLDNTdy5Eif+y5atEjBwcH63e9+p+PHj7uXNm3a6IYbbvC4I+rQoUNljLns2U9hYaEeeughZWVl6fXXX/e5Lun8nURDQ0MVGhqqm2++Wa+//rruvffeIh9RdezYUc2bN3c/NsZo8eLF6tmzp4wxHq+rW7ducrlc7nshrVixQpGRkerfv7+7f/Xq1d1nK5ezePFiORwOTZgwoci2K90N1l81durUScaYK579JCcna/v27Zo5c6YqV+aDm4qC/5K45i6+AZ23du3aJZfLVexN4iTp6NGjXj3fU089pZUrV2revHlq3bq1z3VJUsOGDfXWW2/J4XCoatWqatKkSbF1Xvr6jx07pqysLM2ZM6fEu6BeeF379+9X48aNiwTGxbfKLsmePXsUFRWlOnXqXO1LuuY1FmfKlCl666239PLLL6tHjx4+PQfKJgII11y1atWKrHM4HMVeD7r0ex+FhYUKCwvT/Pnzi33u0NDQq65j0qRJeuONNzR58mQ9/PDDV92vJDVq1FCXLl2u2O7S139hqPTgwYNLvJOp7eHrtmpMTU3V888/r5EjR2r8+PGl/vywiwBCmVC7du1iR6Dt37/f43GjRo20atUq3XnnncUG2dWaNWuWJk6cqNGjR+v555/3+XlKQ2hoqIKCglRQUHDFAGvQoIG2bdsmY4zHGcbOnTuvuJ9GjRrps88+08mTJy97FlTcx3HXqsaLLVu2TI899pjuv/9+zZo1y6u+KB+4BoQyoVGjRtqxY4d7uLIk/eMf/9BXX33l0e73v/+9CgoK9PLLLxd5jnPnzikrK8v9uLhh2JL04YcfatSoUXrooYc0derU0n0hPggICFC/fv20ePFibdu2rcj2i49Jjx49dPjwYX300UfudXl5eSV+LHaxfv36yRhT7JdtLz77rFGjhsdx9GeNxQ3DlqT169drwIAB6tChg+bPn69KlfhVVRFxBoQy4dFHH9XUqVPVrVs3JSYm6ujRo3rzzTcVFxen7Oxsd7uOHTtqxIgRSklJ0ZYtW9S1a1dVqVJFu3bt0qJFi/SXv/zFffG7uGHY33zzjR555BHVrVtX8fHxRT7Ku+OOOxQbG+t+7HA41LFjR7/PXzZ58mStXbtW7dq10/Dhw9W8eXOdPHlS3333nVatWqWTJ09KkoYPH66ZM2fqkUce0ebNmxUZGal3331X1atXv+I+OnfurIcfflgzZszQrl271L17dxUWFurLL79U586dlZycLElq06aNVq1apalTpyoqKkoxMTFq166dX2osbhj2/v371atXLzkcDvXv31+LFi3y6NOqVSvrH0milFgafYcK7nLDsI8dO1Zsn/fee8/ExsaawMBAc8stt5jPPvusyFDiC+bMmWPatGljqlWrZoKCgkzLli3Nc889Zw4fPuxuU9ww7AvrSloubpuTk2MkmQEDBlzx9RY3E0JxJJmkpKRit2VmZpqkpCQTHR1tqlSpYiIiIkx8fLyZM2eOR7v9+/ebXr16merVq5uQkBDz9NNPu4ehX24YtjHGnDt3zkyZMsU0a9bMBAYGmtDQUJOQkGA2b97sbrNjxw7ToUMHU61aNSPJY0h2addY3DDsC+tKWq40ZBvlB7fkBkqwYsUK3XffffrHP/6hli1b2i4HqHD4YBUowdq1azVgwADCB/ATzoAAAFZwBgQAsIIAAgBYQQABAKwggAAAVpS5L6IWFhbq8OHDCgoKuuIMvQCAsscYo5ycHEVFRV12FosyF0CHDx9WdHS07TIAAL/SwYMHVa9evRK3l7kACgoKkiTdpR6qrCqWqwEAeOuczmqDVrh/n5fEbwE0a9YsTZkyRRkZGWrdurVef/11tW3b9or9LnzsVllVVNlBAAFAufO/3y690mUUvwxC+PDDDzV27FhNmDBB3333nVq3bq1u3bp5fbMwAEDF5ZcAmjp1qoYPH65hw4apefPmevPNN1W9evUityYGAFy/Sj2Azpw5o82bN3vctKpSpUrq0qWL0tPTi7TPz89Xdna2xwIAqPhKPYCOHz+ugoIChYeHe6wPDw9XRkZGkfYpKSkKDg52L4yAA4Drg/Uvoo4bN04ul8u9HDx40HZJAIBroNRHwYWEhCggIECZmZke6zMzMxUREVGkvdPplNPpLO0yAABlXKmfAQUGBqpNmzZavXq1e11hYaFWr16t9u3bl/buAADllF++BzR27FgNGTJEv/3tb9W2bVtNnz5dubm5GjZsmD92BwAoh/wSQA8++KCOHTuml156SRkZGbrlllu0cuXKIgMTAADXrzJ3R9Ts7GwFBwerk3ozEwIAlEPnzFmlaZlcLpdq1qxZYjvro+AAANcnAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYEVl2wUAV7Lvz+297lNQ1fi0r9C4Y173SW+92Kd9eavRmmFe9wn6pppP+wqf8d8+9QO8wRkQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFjBZKS4pn7+ryZe99l2y0w/VFJ6zvo276nXdnT+f173mf/bSJ/2tfCLjl73Kfhhl0/7wvWLMyAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsILJSOEzXyYW/eqWD/xQSel5MyvW6z5T03/ndZ+GDY553efz5h973eehoCNe95Gkfx8a4nWf2OeZjBTe4QwIAGAFAQQAsKLUA2jixIlyOBweS7NmzUp7NwCAcs4v14Di4uK0atWq/9tJZS41AQA8+SUZKleurIiICH88NQCggvDLNaBdu3YpKipKsbGxeuihh3TgwIES2+bn5ys7O9tjAQBUfKUeQO3atVNqaqpWrlyp2bNna+/evbr77ruVk5NTbPuUlBQFBwe7l+jo6NIuCQBQBpV6ACUkJOiBBx5Qq1at1K1bN61YsUJZWVlauHBhse3HjRsnl8vlXg4ePFjaJQEAyiC/jw6oVauWbrrpJu3evbvY7U6nU06n099lAADKGL9/D+jUqVPas2ePIiMj/b0rAEA5UuoB9Oyzz2rdunXat2+f/vu//1t9+/ZVQECABg4cWNq7AgCUY6X+EdyhQ4c0cOBAnThxQqGhobrrrru0ceNGhYaGlvauAADlWKkH0AcflO3JJlHUufg2PvVb03qWD72qeN1j+s83ed1n7YO/9bqPJOnwUa+73PTzJq/7VKpa1es+r3zd0us+L4T80+s+knSu9jmf+gHeYC44AIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALDC7zekQ9l36sZAn/pV8uHvF18mFk3r5f0knAU/7vS6z7W0e9JvvO6zoM5/+rAn3272WG8lf5vC/3iXAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwApmw4ZqzUv3qV//TYO97uP4OdvrPueO7PO6T1n3WI9VXve5oZJvM1sDZRVnQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBZORwmcF2//Hdgllwr5/b+91n8Ra/+HDnqp63eOZI7f7sB8paNUPXvcp8GlPuJ5xBgQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVjAZKXCRrIe9n1j0q0e8n1g0uJL3E4um5wd43WfLn3/jdR9Jqpb9jU/9AG9wBgQAsIIAAgBY4XUArV+/Xj179lRUVJQcDoeWLl3qsd0Yo5deekmRkZGqVq2aunTpol27dpVWvQCACsLrAMrNzVXr1q01a9asYre/9tprmjFjht588019/fXXqlGjhrp166ZffvnlVxcLAKg4vB6EkJCQoISEhGK3GWM0ffp0jR8/Xr1795YkzZs3T+Hh4Vq6dKkGDBjw66oFAFQYpXoNaO/evcrIyFCXLl3c64KDg9WuXTulp6cX2yc/P1/Z2dkeCwCg4ivVAMrIyJAkhYeHe6wPDw93b7tUSkqKgoOD3Ut0dHRplgQAKKOsj4IbN26cXC6Xezl48KDtkgAA10CpBlBERIQkKTMz02N9Zmame9ulnE6natas6bEAACq+Ug2gmJgYRUREaPXq1e512dnZ+vrrr9W+vfffMAcAVFxej4I7deqUdu/e7X68d+9ebdmyRXXq1FH9+vU1evRo/fnPf1aTJk0UExOjP/7xj4qKilKfPn1Ks24AQDnndQBt2rRJnTt3dj8eO3asJGnIkCFKTU3Vc889p9zcXD3++OPKysrSXXfdpZUrV6pqVe/nvgIAVFwOY4yxXcTFsrOzFRwcrE7qrcqOKrbLwXVm97Tbve6z4/fFfym7tN302Qjv+zy6yQ+VAJd3zpxVmpbJ5XJd9rq+9VFwAIDrEwEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFZ4fTsGoDw480UDn/qlN/tPH3p5f6uR1ulDvO5z8zN7vO5T4HUP4NrhDAgAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArGAyUpR5lWMbet3n5caLfNpX7UreTyy6Od/7/TR42ftpQgt+/tn7HQFlGGdAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFk5GizGu08Cev+/wm8Nr9bTVw9Uiv+9z0j2/9UAlQvnAGBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWMBkprqmfh7T3us+k8P/0YU9OH/pIQ/Z18brPzc/t9rpPgdc9gIqHMyAAgBUEEADACq8DaP369erZs6eioqLkcDi0dOlSj+1Dhw6Vw+HwWLp3715a9QIAKgivAyg3N1etW7fWrFmzSmzTvXt3HTlyxL28//77v6pIAEDF4/UghISEBCUkJFy2jdPpVEREhM9FAQAqPr9cA0pLS1NYWJiaNm2qJ554QidOnCixbX5+vrKzsz0WAEDFV+oB1L17d82bN0+rV6/Wq6++qnXr1ikhIUEFBcUPPE1JSVFwcLB7iY6OLu2SAABlUKl/D2jAgAHun1u2bKlWrVqpUaNGSktLU3x8fJH248aN09ixY92Ps7OzCSEAuA74fRh2bGysQkJCtHt38V/WczqdqlmzpscCAKj4/B5Ahw4d0okTJxQZGenvXQEAyhGvP4I7deqUx9nM3r17tWXLFtWpU0d16tTRpEmT1K9fP0VERGjPnj167rnn1LhxY3Xr1q1UCwcAlG9eB9CmTZvUuXNn9+ML12+GDBmi2bNna+vWrXrnnXeUlZWlqKgode3aVS+//LKcTt/m5gIAVExeB1CnTp1kjClx+2efffarCkL5UfnGKK/73D3qa6/73FDp2v3xkr69sdd9bvr5Wz9UAlR8zAUHALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAK0r9lty4fvzwgve3Tl8asdwPlRTV+Z8P+NTv5ueKv3Pv5RT4tCcAnAEBAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBVMRgqfbe41zYdezlKvozjBTxb61O/czz+XciUASsIZEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYwWSkqJDOhgf71K/KmRtLuRK7Co4d96mfyc/3uo/D6f1EswGhIV738UVBaC2f+u16JrB0CylFpsDhU79mT+32uk9BdrZP+7oSzoAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAomI0WF9F8fvW27hDLhju8H+tTveGZNr/vUDs3xus/XbRZ43Qe/TvPxyV73iX0u3Q+VcAYEALCEAAIAWOFVAKWkpOi2225TUFCQwsLC1KdPH+3cudOjzS+//KKkpCTVrVtXN9xwg/r166fMzMxSLRoAUP55FUDr1q1TUlKSNm7cqC+++EJnz55V165dlZub624zZswYLV++XIsWLdK6det0+PBh3X///aVeOACgfPNqEMLKlSs9HqempiosLEybN29Whw4d5HK59Le//U0LFizQPffcI0maO3eubr75Zm3cuFG333576VUOACjXftU1IJfLJUmqU6eOJGnz5s06e/asunTp4m7TrFkz1a9fX+npxY+iyM/PV3Z2tscCAKj4fA6gwsJCjR49WnfeeadatGghScrIyFBgYKBq1arl0TY8PFwZGRnFPk9KSoqCg4PdS3R0tK8lAQDKEZ8DKCkpSdu2bdMHH3zwqwoYN26cXC6Xezl48OCvej4AQPng0xdRk5OT9cknn2j9+vWqV6+ee31ERITOnDmjrKwsj7OgzMxMRUREFPtcTqdTTqfTlzIAAOWYV2dAxhglJydryZIlWrNmjWJiYjy2t2nTRlWqVNHq1avd63bu3KkDBw6offv2pVMxAKBC8OoMKCkpSQsWLNCyZcsUFBTkvq4THBysatWqKTg4WImJiRo7dqzq1KmjmjVr6qmnnlL79u0ZAQcA8OBVAM2ePVuS1KlTJ4/1c+fO1dChQyVJ06ZNU6VKldSvXz/l5+erW7dueuONN0qlWABAxeEwxhjbRVwsOztbwcHB6qTequyoYrscXMbpz2Ku3OgSq1t85IdKcD3JM2e87nPWFPqhkuL12DrU6z6uLSGlX0gJIjec87qP89NvvWp/zpxVmpbJ5XKpZs2SJ7ZlLjgAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBY4dMdUQFJqtZtr9d94l5J9rqPKePv0qBmJ73u83WbBX6opPTEfTnM6z7mQA0/VFJU7EenvO/0zT9Lv5AS1Naua9KnIuAMCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsKOPTPKKiiXkh3XYJZcJ9amO7hMuK0VbbJeA6wBkQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFjhVQClpKTotttuU1BQkMLCwtSnTx/t3LnTo02nTp3kcDg8lpEjR5Zq0QCA8s+rAFq3bp2SkpK0ceNGffHFFzp79qy6du2q3Nxcj3bDhw/XkSNH3Mtrr71WqkUDAMq/yt40Xrlypcfj1NRUhYWFafPmzerQoYN7ffXq1RUREVE6FQIAKqRfdQ3I5XJJkurUqeOxfv78+QoJCVGLFi00btw45eXllfgc+fn5ys7O9lgAABWfV2dAFyssLNTo0aN15513qkWLFu71gwYNUoMGDRQVFaWtW7fq+eef186dO/Xxxx8X+zwpKSmaNGmSr2UAAMophzHG+NLxiSee0KeffqoNGzaoXr16JbZbs2aN4uPjtXv3bjVq1KjI9vz8fOXn57sfZ2dnKzo6Wp3UW5UdVXwpDQBg0TlzVmlaJpfLpZo1a5bYzqczoOTkZH3yySdav379ZcNHktq1aydJJQaQ0+mU0+n0pQwAQDnmVQAZY/TUU09pyZIlSktLU0xMzBX7bNmyRZIUGRnpU4EAgIrJqwBKSkrSggULtGzZMgUFBSkjI0OSFBwcrGrVqmnPnj1asGCBevToobp162rr1q0aM2aMOnTooFatWvnlBQAAyievrgE5HI5i18+dO1dDhw7VwYMHNXjwYG3btk25ubmKjo5W3759NX78+Mt+Dnix7OxsBQcHcw0IAMopv1wDulJWRUdHa926dd48JQDgOsVccAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKyrbLuBSxhhJ0jmdlYzlYgAAXjuns5L+7/d5ScpcAOXk5EiSNmiF5UoAAL9GTk6OgoODS9zuMFeKqGussLBQhw8fVlBQkBwOh8e27OxsRUdH6+DBg6pZs6alCu3jOJzHcTiP43Aex+G8snAcjDHKyclRVFSUKlUq+UpPmTsDqlSpkurVq3fZNjVr1ryu32AXcBzO4zicx3E4j+Nwnu3jcLkznwsYhAAAsIIAAgBYUa4CyOl0asKECXI6nbZLsYrjcB7H4TyOw3kch/PK03Eoc4MQAADXh3J1BgQAqDgIIACAFQQQAMAKAggAYEW5CaBZs2apYcOGqlq1qtq1a6dvvvnGdknX3MSJE+VwODyWZs2a2S7L79avX6+ePXsqKipKDodDS5cu9dhujNFLL72kyMhIVatWTV26dNGuXbvsFOtHVzoOQ4cOLfL+6N69u51i/SQlJUW33XabgoKCFBYWpj59+mjnzp0ebX755RclJSWpbt26uuGGG9SvXz9lZmZaqtg/ruY4dOrUqcj7YeTIkZYqLl65CKAPP/xQY8eO1YQJE/Tdd9+pdevW6tatm44ePWq7tGsuLi5OR44ccS8bNmywXZLf5ebmqnXr1po1a1ax21977TXNmDFDb775pr7++mvVqFFD3bp10y+//HKNK/WvKx0HSerevbvH++P999+/hhX637p165SUlKSNGzfqiy++0NmzZ9W1a1fl5ua624wZM0bLly/XokWLtG7dOh0+fFj333+/xapL39UcB0kaPny4x/vhtddes1RxCUw50LZtW5OUlOR+XFBQYKKiokxKSorFqq69CRMmmNatW9suwypJZsmSJe7HhYWFJiIiwkyZMsW9LisryzidTvP+++9bqPDauPQ4GGPMkCFDTO/eva3UY8vRo0eNJLNu3TpjzPn/9lWqVDGLFi1yt/nhhx+MJJOenm6rTL+79DgYY0zHjh3N008/ba+oq1Dmz4DOnDmjzZs3q0uXLu51lSpVUpcuXZSenm6xMjt27dqlqKgoxcbG6qGHHtKBAwdsl2TV3r17lZGR4fH+CA4OVrt27a7L90daWprCwsLUtGlTPfHEEzpx4oTtkvzK5XJJkurUqSNJ2rx5s86ePevxfmjWrJnq169fod8Plx6HC+bPn6+QkBC1aNFC48aNU15eno3ySlTmJiO91PHjx1VQUKDw8HCP9eHh4dqxY4elquxo166dUlNT1bRpUx05ckSTJk3S3XffrW3btikoKMh2eVZkZGRIUrHvjwvbrhfdu3fX/fffr5iYGO3Zs0cvvPCCEhISlJ6eroCAANvllbrCwkKNHj1ad955p1q0aCHp/PshMDBQtWrV8mhbkd8PxR0HSRo0aJAaNGigqKgobd26Vc8//7x27typjz/+2GK1nsp8AOH/JCQkuH9u1aqV2rVrpwYNGmjhwoVKTEy0WBnKggEDBrh/btmypVq1aqVGjRopLS1N8fHxFivzj6SkJG3btu26uA56OSUdh8cff9z9c8uWLRUZGan4+Hjt2bNHjRo1utZlFqvMfwQXEhKigICAIqNYMjMzFRERYamqsqFWrVq66aabtHv3btulWHPhPcD7o6jY2FiFhIRUyPdHcnKyPvnkE61du9bj9i0RERE6c+aMsrKyPNpX1PdDScehOO3atZOkMvV+KPMBFBgYqDZt2mj16tXudYWFhVq9erXat29vsTL7Tp06pT179igyMtJ2KdbExMQoIiLC4/2RnZ2tr7/++rp/fxw6dEgnTpyoUO8PY4ySk5O1ZMkSrVmzRjExMR7b27RpoypVqni8H3bu3KkDBw5UqPfDlY5DcbZs2SJJZev9YHsUxNX44IMPjNPpNKmpqWb79u3m8ccfN7Vq1TIZGRm2S7umnnnmGZOWlmb27t1rvvrqK9OlSxcTEhJijh49ars0v8rJyTHff/+9+f77740kM3XqVPP999+b/fv3G2OMmTx5sqlVq5ZZtmyZ2bp1q+ndu7eJiYkxp0+ftlx56brcccjJyTHPPvusSU9PN3v37jWrVq0yt956q2nSpIn55ZdfbJdeap544gkTHBxs0tLSzJEjR9xLXl6eu83IkSNN/fr1zZo1a8ymTZtM+/btTfv27S1WXfqudBx2795t/vSnP5lNmzaZvXv3mmXLlpnY2FjToUMHy5V7KhcBZIwxr7/+uqlfv74JDAw0bdu2NRs3brRd0jX34IMPmsjISBMYGGhuvPFG8+CDD5rdu3fbLsvv1q5dayQVWYYMGWKMOT8U+49//KMJDw83TqfTxMfHm507d9ot2g8udxzy8vJM165dTWhoqKlSpYpp0KCBGT58eIX7I6241y/JzJ07193m9OnT5sknnzS1a9c21atXN3379jVHjhyxV7QfXOk4HDhwwHTo0MHUqVPHOJ1O07hxY/OHP/zBuFwuu4VfgtsxAACsKPPXgAAAFRMBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArPj/LGHcB4b2F0YAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "test_model(tflite_model_quant_file, test_image_index, model_type=\"Quantized\")" ] }, { "cell_type": "markdown", "metadata": { "id": "LwN7uIdCd8Gw" }, "source": [ "### 모든 이미지에서 모델 평가하기" ] }, { "cell_type": "markdown", "metadata": { "id": "RFKOD4DG8XmU" }, "source": [ "이제 이 튜토리얼의 시작 부분에서 로드한 모든 테스트 이미지를 사용하여 두 모델을 모두 실행해보겠습니다." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "execution": { "iopub.execute_input": "2022-12-15T01:01:09.900477Z", "iopub.status.busy": "2022-12-15T01:01:09.899913Z", "iopub.status.idle": "2022-12-15T01:01:09.904820Z", "shell.execute_reply": "2022-12-15T01:01:09.904149Z" }, "id": "05aeAuWjvjPx" }, "outputs": [], "source": [ "# Helper function to evaluate a TFLite model on all images\n", "def evaluate_model(tflite_file, model_type):\n", " global test_images\n", " global test_labels\n", "\n", " test_image_indices = range(test_images.shape[0])\n", " predictions = run_tflite_model(tflite_file, test_image_indices)\n", "\n", " accuracy = (np.sum(test_labels== predictions) * 100) / len(test_images)\n", "\n", " print('%s model accuracy is %.4f%% (Number of test samples=%d)' % (\n", " model_type, accuracy, len(test_images)))" ] }, { "cell_type": "markdown", "metadata": { "id": "xnFilQpBuMh5" }, "source": [ "부동 모델을 평가합니다." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "execution": { "iopub.execute_input": "2022-12-15T01:01:09.908123Z", "iopub.status.busy": "2022-12-15T01:01:09.907654Z", "iopub.status.idle": "2022-12-15T01:01:11.162078Z", "shell.execute_reply": "2022-12-15T01:01:11.161267Z" }, "id": "T5mWkSbMcU5z" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Float model accuracy is 97.8000% (Number of test samples=10000)\n" ] } ], "source": [ "evaluate_model(tflite_model_file, model_type=\"Float\")" ] }, { "cell_type": "markdown", "metadata": { "id": "Km3cY9ry8ZlG" }, "source": [ "양자화된 모델을 평가합니다." ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "execution": { "iopub.execute_input": "2022-12-15T01:01:11.166107Z", "iopub.status.busy": "2022-12-15T01:01:11.165506Z", "iopub.status.idle": "2022-12-15T01:01:12.011506Z", "shell.execute_reply": "2022-12-15T01:01:12.010729Z" }, "id": "-9cnwiPp6EGm" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Quantized model accuracy is 97.7700% (Number of test samples=10000)\n" ] } ], "source": [ "evaluate_model(tflite_model_quant_file, model_type=\"Quantized\")" ] }, { "cell_type": "markdown", "metadata": { "id": "L7lfxkor8pgv" }, "source": [ "이제 부동 모델과 비교하여 정확성에 거의 차이가 없는 정수로 모델을 양자화했습니다.\n", "\n", "다른 양자화 전략에 대해 자세히 알아 보려면 [TensorFlow Lite 모델 최적화](https://www.tensorflow.org/lite/performance/model_optimization)에 대해 읽어보세요." ] } ], "metadata": { "colab": { "collapsed_sections": [], "name": "post_training_integer_quant.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" } }, "nbformat": 4, "nbformat_minor": 0 }