{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "MhoQ0WE77laV" }, "source": [ "##### Copyright 2018 The TensorFlow Authors." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "cellView": "form", "execution": { "iopub.execute_input": "2022-12-14T20:16:10.071313Z", "iopub.status.busy": "2022-12-14T20:16:10.070674Z", "iopub.status.idle": "2022-12-14T20:16:10.074995Z", "shell.execute_reply": "2022-12-14T20:16:10.074335Z" }, "id": "_ckMIh7O7s6D" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "cellView": "form", "execution": { "iopub.execute_input": "2022-12-14T20:16:10.078278Z", "iopub.status.busy": "2022-12-14T20:16:10.077720Z", "iopub.status.idle": "2022-12-14T20:16:10.081222Z", "shell.execute_reply": "2022-12-14T20:16:10.080633Z" }, "id": "vasWnqRgy1H4" }, "outputs": [], "source": [ "#@title MIT License\n", "#\n", "# Copyright (c) 2017 François Chollet\n", "#\n", "# Permission is hereby granted, free of charge, to any person obtaining a\n", "# copy of this software and associated documentation files (the \"Software\"),\n", "# to deal in the Software without restriction, including without limitation\n", "# the rights to use, copy, modify, merge, publish, distribute, sublicense,\n", "# and/or sell copies of the Software, and to permit persons to whom the\n", "# Software is furnished to do so, subject to the following conditions:\n", "#\n", "# The above copyright notice and this permission notice shall be included in\n", "# all copies or substantial portions of the Software.\n", "#\n", "# THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n", "# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n", "# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL\n", "# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n", "# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING\n", "# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER\n", "# DEALINGS IN THE SOFTWARE." ] }, { "cell_type": "markdown", "metadata": { "id": "jYysdyb-CaWM" }, "source": [ "# 기본 분류: 의류 이미지 분류" ] }, { "cell_type": "markdown", "metadata": { "id": "S5Uhzt6vVIB2" }, "source": [ "\n", " \n", " \n", " \n", " \n", "
TensorFlow.org에서 보기 Google Colab에서 실행GitHub에서 소스 보기노트북 다운로드
" ] }, { "cell_type": "markdown", "metadata": { "id": "FbVhjPpzn6BM" }, "source": [ "이 튜토리얼에서는 운동화나 셔츠 같은 옷 이미지를 분류하는 신경망 모델을 훈련합니다. 상세 내용을 모두 이해하지 못해도 괜찮습니다. 여기서는 완전한 텐서플로(TensorFlow) 프로그램을 빠르게 살펴 보겠습니다. 자세한 내용은 앞으로 배우면서 더 설명합니다.\n", "\n", "여기에서는 텐서플로 모델을 만들고 훈련할 수 있는 고수준 API인 [tf.keras](https://www.tensorflow.org/guide/keras)를 사용합니다." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:16:10.084761Z", "iopub.status.busy": "2022-12-14T20:16:10.084155Z", "iopub.status.idle": "2022-12-14T20:16:12.567847Z", "shell.execute_reply": "2022-12-14T20:16:12.567076Z" }, "id": "dzLKpmZICaWN" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2022-12-14 20:16:11.119378: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory\n", "2022-12-14 20:16:11.119488: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory\n", "2022-12-14 20:16:11.119499: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "2.11.0\n" ] } ], "source": [ "# TensorFlow and tf.keras\n", "import tensorflow as tf\n", "\n", "# Helper libraries\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "print(tf.__version__)" ] }, { "cell_type": "markdown", "metadata": { "id": "yR0EdgrLCaWR" }, "source": [ "## 패션 MNIST 데이터셋 임포트하기" ] }, { "cell_type": "markdown", "metadata": { "id": "DLdCchMdCaWQ" }, "source": [ "10개의 범주(category)와 70,000개의 흑백 이미지로 구성된 [패션 MNIST](https://github.com/zalandoresearch/fashion-mnist) 데이터셋을 사용하겠습니다. 이미지는 해상도(28x28 픽셀)가 낮고 다음처럼 개별 옷 품목을 나타냅니다:\n", "\n", "\n", " \n", " \n", "
\"Fashion
그림 1. 패션-MNIST 샘플 (Zalando, MIT License).
{nbsp}
\n", "\n", "패션 MNIST는 컴퓨터 비전 분야의 \"Hello, World\" 프로그램격인 고전 [MNIST](http://yann.lecun.com/exdb/mnist/) 데이터셋을 대신해서 자주 사용됩니다. MNIST 데이터셋은 손글씨 숫자(0, 1, 2 등)의 이미지로 이루어져 있습니다. 여기서 사용하려는 옷 이미지와 동일한 포맷입니다.\n", "\n", "패션 MNIST는 일반적인 MNIST 보다 조금 더 어려운 문제이고 다양한 예제를 만들기 위해 선택했습니다. 두 데이터셋은 비교적 작기 때문에 알고리즘의 작동 여부를 확인하기 위해 사용되곤 합니다. 코드를 테스트하고 디버깅하는 용도로 좋습니다.\n", "\n", "여기에서 60,000개의 이미지를 사용하여 네트워크를 훈련하고 10,000개의 이미지를 사용하여 네트워크에서 이미지 분류를 학습한 정도를 평가합니다. TensorFlow에서 직접 Fashion MNIST에 액세스할 수 있습니다. TensorFlow에서 직접 [Fashion MNIST 데이터](https://www.tensorflow.org/api_docs/python/tf/keras/datasets/fashion_mnist/load_data)를 가져오고 로드합니다." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:16:12.572063Z", "iopub.status.busy": "2022-12-14T20:16:12.571233Z", "iopub.status.idle": "2022-12-14T20:16:12.988865Z", "shell.execute_reply": "2022-12-14T20:16:12.987995Z" }, "id": "7MqDQO0KCaWS" }, "outputs": [], "source": [ "fashion_mnist = tf.keras.datasets.fashion_mnist\n", "\n", "(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()" ] }, { "cell_type": "markdown", "metadata": { "id": "t9FDsUlxCaWW" }, "source": [ "load_data() 함수를 호출하면 네 개의 넘파이(NumPy) 배열이 반환됩니다:\n", "\n", "- `train_images`와 `train_labels` 배열은 모델 학습에 사용되는 *훈련 세트*입니다.\n", "- `test_images`와 `test_labels` 배열은 모델 테스트에 사용되는 *테스트 세트*입니다.\n", "\n", "이미지는 28x28 크기의 넘파이 배열이고 픽셀 값은 0과 255 사이입니다. *레이블*(label)은 0에서 9까지의 정수 배열입니다. 이 값은 이미지에 있는 옷의 *클래스*(class)를 나타냅니다:\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
레이블클래스
0T-shirt/top
1Trouser
2Pullover
3Dress
4Coat
5Sandal
6Shirt
7Sneaker
8Bag
9Ankle boot
\n", "\n", "각 이미지는 하나의 레이블에 매핑되어 있습니다. 데이터셋에 *클래스 이름*이 들어있지 않기 때문에 나중에 이미지를 출력할 때 사용하기 위해 별도의 변수를 만들어 저장합니다:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:16:12.994018Z", "iopub.status.busy": "2022-12-14T20:16:12.993129Z", "iopub.status.idle": "2022-12-14T20:16:12.997179Z", "shell.execute_reply": "2022-12-14T20:16:12.996479Z" }, "id": "IjnLH5S2CaWx" }, "outputs": [], "source": [ "class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',\n", " 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']" ] }, { "cell_type": "markdown", "metadata": { "id": "Brm0b_KACaWX" }, "source": [ "## 데이터 탐색\n", "\n", "모델을 훈련하기 전에 데이터셋 구조를 살펴보죠. 다음 코드는 훈련 세트에 60,000개의 이미지가 있다는 것을 보여줍니다. 각 이미지는 28x28 픽셀로 표현됩니다:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:16:13.001338Z", "iopub.status.busy": "2022-12-14T20:16:13.000744Z", "iopub.status.idle": "2022-12-14T20:16:13.007332Z", "shell.execute_reply": "2022-12-14T20:16:13.006713Z" }, "id": "zW5k_xz1CaWX" }, "outputs": [ { "data": { "text/plain": [ "(60000, 28, 28)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_images.shape" ] }, { "cell_type": "markdown", "metadata": { "id": "cIAcvQqMCaWf" }, "source": [ "비슷하게 훈련 세트에는 60,000개의 레이블이 있습니다:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:16:13.011394Z", "iopub.status.busy": "2022-12-14T20:16:13.010809Z", "iopub.status.idle": "2022-12-14T20:16:13.014992Z", "shell.execute_reply": "2022-12-14T20:16:13.014409Z" }, "id": "TRFYHB2mCaWb" }, "outputs": [ { "data": { "text/plain": [ "60000" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(train_labels)" ] }, { "cell_type": "markdown", "metadata": { "id": "YSlYxFuRCaWk" }, "source": [ "각 레이블은 0과 9사이의 정수입니다:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:16:13.018527Z", "iopub.status.busy": "2022-12-14T20:16:13.017919Z", "iopub.status.idle": "2022-12-14T20:16:13.022422Z", "shell.execute_reply": "2022-12-14T20:16:13.021687Z" }, "id": "XKnCTHz4CaWg" }, "outputs": [ { "data": { "text/plain": [ "array([9, 0, 0, ..., 3, 0, 5], dtype=uint8)" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_labels" ] }, { "cell_type": "markdown", "metadata": { "id": "TMPI88iZpO2T" }, "source": [ "테스트 세트에는 10,000개의 이미지가 있습니다. 이 이미지도 28x28 픽셀로 표현됩니다:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:16:13.026049Z", "iopub.status.busy": "2022-12-14T20:16:13.025413Z", "iopub.status.idle": "2022-12-14T20:16:13.029739Z", "shell.execute_reply": "2022-12-14T20:16:13.029127Z" }, "id": "2KFnYlcwCaWl" }, "outputs": [ { "data": { "text/plain": [ "(10000, 28, 28)" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "test_images.shape" ] }, { "cell_type": "markdown", "metadata": { "id": "rd0A0Iu0CaWq" }, "source": [ "테스트 세트는 10,000개의 이미지에 대한 레이블을 가지고 있습니다:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:16:13.033232Z", "iopub.status.busy": "2022-12-14T20:16:13.032746Z", "iopub.status.idle": "2022-12-14T20:16:13.036942Z", "shell.execute_reply": "2022-12-14T20:16:13.036259Z" }, "id": "iJmPr5-ACaWn" }, "outputs": [ { "data": { "text/plain": [ "10000" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(test_labels)" ] }, { "cell_type": "markdown", "metadata": { "id": "ES6uQoLKCaWr" }, "source": [ "## 데이터 전처리\n", "\n", "네트워크를 훈련하기 전에 데이터를 전처리해야 합니다. 훈련 세트에 있는 첫 번째 이미지를 보면 픽셀 값의 범위가 0~255 사이라는 것을 알 수 있습니다:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:16:13.040591Z", "iopub.status.busy": "2022-12-14T20:16:13.039971Z", "iopub.status.idle": "2022-12-14T20:16:13.221301Z", "shell.execute_reply": "2022-12-14T20:16:13.220574Z" }, "id": "m4VEw8Ud9Quh" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAAGdCAYAAADtxiFiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA06klEQVR4nO3df3RUZZ7v+0/lVyVAqmKApJI2YMAfgPzyoIa0SqPkEoLHFs3pK0r3AS8LjkzwDnD9sZiLgLbrZJru03p1UO7MsUFnjN3tnQaWHFe6ESQ0xwQ1DgdRJwOZdBMbKih0EgjkZ+37B01pSZA8VZVUHur9WutZi1Ttb+0nO5t88zzP3vvrchzHEQAAsEpCrDsAAADMkcABALAQCRwAAAuRwAEAsBAJHAAAC5HAAQCwEAkcAAALkcABALBQUqw78E2BQEDHjh1Tenq6XC5XrLsDADDkOI5Onz6t3NxcJST03zixvb1dnZ2dEX9OSkqKUlNTo9CjgTXoEvixY8eUl5cX624AACLU2Nioq6++ul8+u729Xfmjh8l/oifiz/L5fGpoaLAuiQ+6BJ6eni5Jul1zlaTkGPcGAGCqW13ap7eDv8/7Q2dnp/wnetRQO1qe9PBH+a2nA8qf9kd1dnaSwC/YuHGjfvrTn8rv92vKlCl68cUXdeutt1427sK0eZKSleQigQOAdf5SYWMglkE96QkRJXCb9ct3/atf/UqrVq3SunXr9NFHH2nKlCkqLi7WiRMn+mN3AIA41eMEIm4mysvLdcsttyg9PV1ZWVmaN2+e6urqQraZOXOmXC5XSHvkkUdCtjl69KjuvvtuDRkyRFlZWXr88cfV3d1t1Jd+SeA///nPtWTJEj388MOaMGGCNm3apCFDhugXv/hFf+wOABCnAnIibiaqqqpUVlammpoa7dy5U11dXZo9e7ba2tpCtluyZImOHz8ebBs2bAi+19PTo7vvvludnZ1677339Oqrr2rLli1au3atUV+iPoXe2dmp2tparV69OvhaQkKCioqKVF1dfdH2HR0d6ujoCH7d2toa7S4BAK5QAQVkNoa+ON5EZWVlyNdbtmxRVlaWamtrNWPGjODrQ4YMkc/n6/Uzfve73+nTTz/VO++8o+zsbE2dOlU//vGP9eSTT2r9+vVKSUnpU1+iPgL/8ssv1dPTo+zs7JDXs7Oz5ff7L9q+vLxcXq832LgCHQAw0FpbW0Pa1weW36alpUWSlJmZGfL666+/rhEjRmjixIlavXq1zp49G3yvurpakyZNCsmTxcXFam1t1SeffNLnPsd85X/16tVqaWkJtsbGxlh3CQBgiR7HibhJUl5eXshgsry8/LL7DgQCWrFihW677TZNnDgx+PpDDz2kf/qnf9K7776r1atX6x//8R/1wx/+MPi+3+/vdZB74b2+ivoU+ogRI5SYmKimpqaQ15uamnqdTnC73XK73dHuBgAgDoSzjv3NeOn8Pesejyf4el/yUllZmQ4dOqR9+/aFvL506dLgvydNmqScnBzNmjVL9fX1Gjt2bNh9/aaoj8BTUlI0bdo07dq1K/haIBDQrl27VFhYGO3dAQAQMY/HE9Iul8CXL1+uHTt26N13373sw2oKCgokSUeOHJF0/sExvQ1yL7zXV/0yhb5q1Sr9wz/8g1599VV99tlnWrZsmdra2vTwww/3x+4AAHEqIEc9ETTT0bvjOFq+fLm2bt2q3bt3Kz8//7IxBw4ckCTl5ORIkgoLC/Xxxx+H3Fq9c+dOeTweTZgwoc996ZcHuTzwwAP64osvtHbtWvn9fk2dOlWVlZUXzfkDABCJaE2h91VZWZkqKiq0fft2paenB9esvV6v0tLSVF9fr4qKCs2dO1fDhw/XwYMHtXLlSs2YMUOTJ0+WJM2ePVsTJkzQj370I23YsEF+v19r1qxRWVmZ0ZKyy3Gc8L/zftDa2iqv16uZupcnsQGAhbqdLu3RdrW0tISsK0fThVxR/68+pUfwJLbTpwMaO87f575e6ulymzdv1qJFi9TY2Kgf/vCHOnTokNra2pSXl6f77rtPa9asCfn8P/7xj1q2bJn27NmjoUOHauHChfrbv/1bJSX1fVw96J6FDgBAX339SvJw401cbsybl5enqqqqy37O6NGj9fbbbxvt+5tI4AAAawX+0iKJt1XM7wMHAADmGIEDAKx14WrySOJtRQIHAFirxznfIom3FQkcAGAt1sABAIBVGIEDAKwVkEs96v3e7L7G24oEDgCwVsA53yKJtxVT6AAAWIgROADAWj0RTqFHEhtrJHAAgLXiOYEzhQ4AgIUYgQMArBVwXAo4EVyFHkFsrJHAAQDWYgodAABYhRE4AMBaPUpQTwRj0Z4o9mWgkcABANZyIlwDd1gDBwBg4LEGDgAArMIIHABgrR4nQT1OBGvgFj8LnQQOALBWQC4FIphMDsjeDM4UOgAAFmIEDgCwVjxfxEYCBwBYK/I1cKbQAQDAAGIEDnydK4zptAH6Cz5xeKZxzJ+Lrw9rX56KmrDijIVxvF1JycYxTlenccygF865Gq5BPEo9fxFbBMVMmEIHAGDgBSJ8lCpXoQMAgAHFCBwAYK14voiNBA4AsFZACXH7IBcSOADAWj2OSz0RVBSLJDbWWAMHAMBCjMABANbqifAq9B6m0AEAGHgBJ0GBCC5iC1h8ERtT6AAAWIgROADAWkyhAwBgoYAiu5I8EL2uDDim0AEAsBAjcOBrXImJxjFOd7dxTMLUCcYxn/2XYeb7OWccIklKbrvVOCbpnPlYJvl3HxrHDGhhknCKrYRxDsllPpYayOPgSjJLFS7Hkcz/W4Ql8ge52DuOJYEDAKwV+aNU7U3g9vYcAIA4xggcAGAt6oEDAGCheJ5CJ4EDAKwV+X3g9iZwe3sOAEAcYwQOALBWwHEpEMmDXCwuJ0oCBwBYKxDhFLrN94Hb23MAAOIYI3AAgLUiLydq7ziWBA4AsFaPXOqJ4F7uSGJjzd4/PQAAiGOMwIGvMS3aIIVXzKSxOMM4ZkHh741j/ucXY4xjJOmPbp9xjJNmvp+kokLjmOtf+pNxTPcfjhrHSJIc81rR4ZwP4Ui86qrwAnt6zENaW422d5wBqmQiptABALBSjyKbBjf/c2bwsPdPDwAA4ljUE/j69evlcrlC2rhx46K9GwAAglPokTRb9csU+o033qh33nnnq52Esa4IAMDlUMwk2h+alCSfz/wiGAAATDgRlhN1uI0s1OHDh5Wbm6sxY8ZowYIFOnr00leAdnR0qLW1NaQBAIBvF/UEXlBQoC1btqiyslIvv/yyGhoadMcdd+j06dO9bl9eXi6v1xtseXl50e4SAOAKdWEKPZJmq6j3vKSkRD/4wQ80efJkFRcX6+2331Zzc7N+/etf97r96tWr1dLSEmyNjY3R7hIA4Ap1oRpZJM1W/X51WUZGhq6//nodOXKk1/fdbrfcbnd/dwMAgCtKv88dnDlzRvX19crJyenvXQEA4kzPX8qJRtJMlJeX65ZbblF6erqysrI0b9481dXVhWzT3t6usrIyDR8+XMOGDVNpaamamppCtjl69KjuvvtuDRkyRFlZWXr88cfVbfgUv6gn8Mcee0xVVVX6wx/+oPfee0/33XefEhMT9eCDD0Z7VwCAODfQU+hVVVUqKytTTU2Ndu7cqa6uLs2ePVttbW3BbVauXKm33npLb775pqqqqnTs2DHdf//9wfd7enp09913q7OzU++9955effVVbdmyRWvXrjXqS9Sn0D///HM9+OCDOnnypEaOHKnbb79dNTU1GjlyZLR3BQDAgKqsrAz5esuWLcrKylJtba1mzJihlpYWvfLKK6qoqNBdd90lSdq8ebPGjx+vmpoaTZ8+Xb/73e/06aef6p133lF2dramTp2qH//4x3ryySe1fv16paSk9KkvUU/gv/zlL6P9kcCACbS3D8h+Om86Yxzzn7wfGsekJnQZx0hSVULAOOZPu83vIOmZbH4c/vjzdOOYwL981zhGkoYfMn9StudfjhvHfDnjO8YxX0wzL7QiSdk15jFXvVNvtL0T6JS+NN9POAJKUCCCyeQLsd+8hbmv12e1tLRIkjIzMyVJtbW16urqUlFRUXCbcePGadSoUaqurtb06dNVXV2tSZMmKTs7O7hNcXGxli1bpk8++UQ33XRTn/pu7/XzAIC41+O4Im6SlJeXF3JLc3l5+WX3HQgEtGLFCt12222aOHGiJMnv9yslJUUZGRkh22ZnZ8vv9we3+XryvvD+hff6imecAgDiXmNjozweT/Drvoy+y8rKdOjQIe3bt68/u3ZJJHAAgLUivZf7QqzH4wlJ4JezfPly7dixQ3v37tXVV18dfN3n86mzs1PNzc0ho/CmpqbgI8Z9Pp/ef//9kM+7cJW6yWPImUIHAFjLibASmWP4JDbHcbR8+XJt3bpVu3fvVn5+fsj706ZNU3Jysnbt2hV8ra6uTkePHlVhYaEkqbCwUB9//LFOnDgR3Gbnzp3yeDyaMGFCn/vCCBwAYK0eudQTQUES09iysjJVVFRo+/btSk9PD65Ze71epaWlyev1avHixVq1apUyMzPl8Xj06KOPqrCwUNOnT5ckzZ49WxMmTNCPfvQjbdiwQX6/X2vWrFFZWZnRg81I4AAA9NHLL78sSZo5c2bI65s3b9aiRYskSc8995wSEhJUWlqqjo4OFRcX66WXXgpum5iYqB07dmjZsmUqLCzU0KFDtXDhQj3zzDNGfSGBAwCsFXAU4Rq42faOc/mA1NRUbdy4URs3brzkNqNHj9bbb79ttvNvIIEDAKx1YS07knhb2dtzAADiGCNwAIC1AnIpEMFFbJHExhoJHABgra8/TS3ceFsxhQ4AgIUYgePK5Arzr+o+XGH6TWf+9+nGMf95wh7jmPou84p+V6ecMo6RpB/k1poH/dA85u/qvmcc0/bvXuOYhKHhFf7wTzcf4/zpXvOfk9NlVgdakq76KLxf3wkLmy6/0Te0do4x2r67q13abrybsMTzRWwkcACAtQKK8FGqFq+B2/unBwAAcYwROADAWk6EV6E7Fo/ASeAAAGtFqxqZjUjgAABrxfNFbPb2HACAOMYIHABgLabQAQCwUDw/SpUpdAAALMQIHABgLabQAQCwUDwncKbQAQCwECNwAIC14nkETgLHwAq3StggNv3J941j7hz2aT/05GLfUXhVuNqcFOOY5p6hxjHrJvwP45gvrk83julywvtV998Pf9c45kwY1dISu83/X0z/P/7FOEaSSjM/MI7Z8M+TjLbvdrqM9xGueE7gTKEDAGAhRuAAAGs5iuxe7vDmqAYHEjgAwFrxPIVOAgcAWCueEzhr4AAAWIgROADAWvE8AieBAwCsFc8JnCl0AAAsxAgcAGAtx3HJiWAUHUlsrJHAAQDWoh44AACwCiNwAIC14vkiNhI4BpZj84MLe3f4TJZxzEnPMOMYf3eGcczwxDPGMZKUnnDOOOaa5C+NY77oMS9MkpgcMI7pdBKNYyTp6RvfMo5pH59sHJPs6jGO+W7qMeMYSfrBp//ZOGao/j2sfQ2EeF4DZwodAAALMQIHAFiLKXQAACwUz1PoJHAAgLWcCEfgNidw1sABALAQI3AAgLUcRXZzi833xZDAAQDWCsglF09iAwAAtmAEDgCwFlehAwBgoYDjkitO7wNnCh0AAAsxAgcAWMtxIrwK3eLL0EngQIRGus0LhqS6uoxjUlzdxjHHuq4yjpGkw+duMI75t1bzoi5zsj8xjukKozBJYpg3C4VTZCQ3+c/GMe2OeQEU8zPovNuyzQuTHAhzXwMhntfAmUIHAMBCjMABANZiBG5g7969uueee5SbmyuXy6Vt27aFvO84jtauXaucnBylpaWpqKhIhw8fjlZ/AQAIulCNLJJmK+ME3tbWpilTpmjjxo29vr9hwwa98MIL2rRpk/bv36+hQ4equLhY7e3tEXcWAICvu3ARWyTNVsZT6CUlJSopKen1Pcdx9Pzzz2vNmjW69957JUmvvfaasrOztW3bNs2fPz+y3gIAAElRvoitoaFBfr9fRUVFwde8Xq8KCgpUXV3da0xHR4daW1tDGgAAfXF+FO2KoMX6OwhfVBO43++XJGVnZ4e8np2dHXzvm8rLy+X1eoMtLy8vml0CAFzBIkvekV0AF2sxv41s9erVamlpCbbGxsZYdwkAgEEvqreR+Xw+SVJTU5NycnKCrzc1NWnq1Km9xrjdbrnd7mh2AwAQJxxFVtPb4hn06I7A8/Pz5fP5tGvXruBrra2t2r9/vwoLC6O5KwAA4noK3XgEfubMGR05ciT4dUNDgw4cOKDMzEyNGjVKK1as0LPPPqvrrrtO+fn5euqpp5Sbm6t58+ZFs98AAMQ14wT+4Ycf6s477wx+vWrVKknSwoULtWXLFj3xxBNqa2vT0qVL1dzcrNtvv12VlZVKTU2NXq8BAJDieg7dOIHPnDlTzrdcd+9yufTMM8/omWeeiahjuEK5zKerXInmxSucbvPCH5KUeJV58Y/vZXxsHPNFj8c4prlniHFMRuJZ4xhJOt1t/gf3qXPm/RvnPm4c89HZa4xjRqaYFxiRwjt+f+gcYRxznbv3u3S+zYamWcYxkpSXeso4pnvWDLPtu9ulPduN9xOWSKfB42kKHQCAwSKey4nG/DYyAABgjhE4AMBaVCMDAMBGjivyZuhyVTkXLVokl8sV0ubMmROyzalTp7RgwQJ5PB5lZGRo8eLFOnPmjFE/SOAAABi4XFVOSZozZ46OHz8ebG+88UbI+wsWLNAnn3yinTt3aseOHdq7d6+WLl1q1A+m0AEA1orFRWzfVpXzArfbHXw66Td99tlnqqys1AcffKCbb75ZkvTiiy9q7ty5+tnPfqbc3Nw+9YMROADAXk4UmnRRVcyOjo6IurVnzx5lZWXphhtu0LJly3Ty5Mnge9XV1crIyAgmb0kqKipSQkKC9u/f3+d9kMABAHEvLy8vpDJmeXl52J81Z84cvfbaa9q1a5d+8pOfqKqqSiUlJerp6ZF0vnJnVlZWSExSUpIyMzMvWbmzN0yhAwCsFa2r0BsbG+XxfPWApUiKbM2fPz/470mTJmny5MkaO3as9uzZo1mzwnsAT28YgQMA7Bbh9LkkeTyekBbNKpljxozRiBEjgnVEfD6fTpw4EbJNd3e3Tp06dcl1896QwAEA6Eeff/65Tp48GSyzXVhYqObmZtXW1ga32b17twKBgAoKCvr8uUyhAwCsFYsHuXxbVc7MzEw9/fTTKi0tlc/nU319vZ544glde+21Ki4uliSNHz9ec+bM0ZIlS7Rp0yZ1dXVp+fLlmj9/fp+vQJcYgQMAbBalq9BNfPjhh7rpppt00003STpflfOmm27S2rVrlZiYqIMHD+r73/++rr/+ei1evFjTpk3T73//+5Bp+ddff13jxo3TrFmzNHfuXN1+++36+7//e6N+MALHwArjpktXkvlpGm41ssbF441j7hrylnHMe+3fMY4ZmXTaOKbLMa/kJkk57hbjmPTsduOYcCqsZSaZPa1Kkk73pBnHSNKQBPNbicL5Of2HlC+NY1a+8x+MYyQpfeLJy2/0DZ5ks7FeYEDHhq6/tEjizVyuKudvf/vby35GZmamKioqjPf9dYzAAQCwECNwAIC9wpwGD4m3FAkcAGCvOE7gTKEDAGAhRuAAAHuFWRI0JN5SJHAAgLViUY1ssGAKHQAACzECBwDYK44vYiOBAwDsFcdr4EyhAwBgIUbgAABruZzzLZJ4W5HAAQD2Yg0cGBiu5BTjmEC7eZGMcI34uNM45sueZOOYjISzxjEprh7jmM4wi5l8N7PBOOaLMAqGfHQu3zgmPfGccczIBPMCI5KUl2xe+OPj9jzjmLfbrjWOWfwf3zGOkaQ3/v5/M45JqXzPaPsEp8t4H2FjDRwAANiEETgAwF5MoQMAYKE4TuBMoQMAYCFG4AAAe8XxCJwEDgCwF1ehAwAAmzACBwBYiyexAQBgozheA2cKHQAAC5HAAQCwEFPoAABruRThGnjUejLw4juBu8L70bmSzItXuBLDmOxIMI8JtHeY7ydgXiQjXE6XebGQgfT//L9/ZxzT2J1hHOPvMo/JSDQvgNIT5q+nmnNe45jUBPMCFiOTWo1jWgPmRVPCdTqQahzTFUYBmXCO3ZPDDxvHSNJvWorCihu0uI0MAADYJL5H4AAAu8XxVegkcACAveI4gTOFDgCAhRiBAwCsxZPYAACwEVPoAADAJozAAQD2iuMROAkcAGCteF4DZwodAAALMQIHANgrjh+lSgIHANiLNXD7uZLMvxWnuzusfYVTkMMxr1VwRTp3763GMY3zzIutLLjpfeMYSfJ3pxvH/MvZa4xjvInnjGOGJpgXqml3zAvvSNKxzquMY8IpyJGZdMY4JiuMAig9TnirhX/qMj8O4QinUM3n3ebHTpJOf/+0cUzGa2HtakCwBg4AAKxyxYzAAQBxKI6n0I1H4Hv37tU999yj3NxcuVwubdu2LeT9RYsWyeVyhbQ5c+ZEq78AAHzF+WoaPZwWVwm8ra1NU6ZM0caNGy+5zZw5c3T8+PFge+ONNyLqJAAACGU8hV5SUqKSkpJv3cbtdsvn84XdKQAA+oQp9Ojas2ePsrKydMMNN2jZsmU6efLkJbft6OhQa2trSAMAoE+cKDRLRT2Bz5kzR6+99pp27dqln/zkJ6qqqlJJSYl6enq/Fai8vFxerzfY8vLyot0lAACuOFG/Cn3+/PnBf0+aNEmTJ0/W2LFjtWfPHs2aNeui7VevXq1Vq1YFv25tbSWJAwD6hPvA+9GYMWM0YsQIHTlypNf33W63PB5PSAMAAN+u3xP4559/rpMnTyonJ6e/dwUAQNwwnkI/c+ZMyGi6oaFBBw4cUGZmpjIzM/X000+rtLRUPp9P9fX1euKJJ3TttdequLg4qh0HACCer0I3TuAffvih7rzzzuDXF9avFy5cqJdfflkHDx7Uq6++qubmZuXm5mr27Nn68Y9/LLfbHb1eAwCg+F4DN07gM2fOlONc+jv+7W9/G1GHwhVuYZKBkpRjfl98V362ccyp8UOMY876wiunN3XuZ8Yxi7I3G8d80WN+XUSyK7zzobFruHHMTUP+YByzu2WCccyXScOMY8IpmiJJ3x162DimOWB+7uUm/dk45skj/8k4JnuIeQEPSfrvo982julyAsYxdV3mA5yWQKJxjCT9nxPeNY7ZqpFh7WvAWJyEI0ExEwAALEQxEwCAvVgDBwDAPvG8Bs4UOgAAFmIEDgCwF1PoAADYhyl0AABgFUbgAAB7MYUOAICF4jiBM4UOAICBvXv36p577lFubq5cLpe2bdsW8r7jOFq7dq1ycnKUlpamoqIiHT4c+nTDU6dOacGCBfJ4PMrIyNDixYt15swZo36QwAEA1rpwEVskzVRbW5umTJmijRs39vr+hg0b9MILL2jTpk3av3+/hg4dquLiYrW3twe3WbBggT755BPt3LlTO3bs0N69e7V06VKjfjCFDgCwVwym0EtKSlRSUtL7xzmOnn/+ea1Zs0b33nuvJOm1115Tdna2tm3bpvnz5+uzzz5TZWWlPvjgA918882SpBdffFFz587Vz372M+Xm5vapH4zAAQD2cqLQJLW2toa0jo6OsLrT0NAgv9+voqKi4Gter1cFBQWqrq6WJFVXVysjIyOYvCWpqKhICQkJ2r9/f5/3dcWMwDtKbjGOyfq//z2sfU31fG4cMyFtn3FMeyDZOCY1ocs45tNz3zGOkaSzgRTjmMOd5lXZWrrNq1wluswrQknSic5045j/1lB0+Y2+Ydetm4xj1hybYxyTkBbe0ORkj3nls9JhrWHsyfwc/y+j9hrHjEk5YRwjSTvacoxjjnVdZRyTndxiHHNN8hfGMZJ0f/q/GccM+mpkUZCXlxfy9bp167R+/Xrjz/H7/ZKk7OzQapLZ2dnB9/x+v7KyskLeT0pKUmZmZnCbvrhiEjgAIP5E60EujY2N8ni+Kl3sdpuXeB1oTKEDAOwVpSl0j8cT0sJN4D7f+VnGpqamkNebmpqC7/l8Pp04ETor1N3drVOnTgW36QsSOAAAUZKfny+fz6ddu3YFX2ttbdX+/ftVWFgoSSosLFRzc7Nqa2uD2+zevVuBQEAFBQV93hdT6AAAa8XiWehnzpzRkSNHgl83NDTowIEDyszM1KhRo7RixQo9++yzuu6665Sfn6+nnnpKubm5mjdvniRp/PjxmjNnjpYsWaJNmzapq6tLy5cv1/z58/t8BbpEAgcA2CwGt5F9+OGHuvPOO4Nfr1q1SpK0cOFCbdmyRU888YTa2tq0dOlSNTc36/bbb1dlZaVSU1ODMa+//rqWL1+uWbNmKSEhQaWlpXrhhReM+kECBwDAwMyZM+U4l878LpdLzzzzjJ555plLbpOZmamKioqI+kECBwDYK46fhU4CBwBYy/WXFkm8rbgKHQAACzECBwDYiyl0AADsE4vbyAYLEjgAwF6MwAcfV1KSXK6+d6/gv35gvI9Z6Z8Yx0jSWcf8EXvhFCYJpyhCOLxJZ8OK6+gyP31OdHkuv1EUXO/ue0GAr7vPc8A4Zu/f9f3JSRfc3v6ocUz9XZuNY3adSzSOkaQvus1/TvMb7jKO+eho3uU3+obp1zQYx0xK/5NxjBReIZ30xPbLb/QNya5u45i2QHiP+qxpNy9Ug8Fp0CZwAAD6xOJRdCRI4AAAa8XzGji3kQEAYCFG4AAAe3ERGwAA9mEKHQAAWIUROADAXkyhAwBgH6bQAQCAVRiBAwDsxRQ6AAAWIoEDAGCfeF4DH7QJ/PiyaUp0p/Z5+/XeF433UXFqunGMJOWlnjKOGZ3ypXHMlLQ/GseEIz3BvPiCJN3gMS/AsKPtauOYPc3jjGNykpuNYyTp92fHGsf8cv1PjWMWrfy/jGMK337EOKb1mvAuc+keav5bzTPlpHHMmpv+h3FMiqvHOKa5x7woiSRlutuMYzISwysOZCqcokqSlJ5wzjgm8YZrjbZ3ejqkw8a7gaFBm8ABALgsptABALCPy3HkcsLPwpHExhq3kQEAYCFG4AAAezGFDgCAfeL5KnSm0AEAsBAjcACAvZhCBwDAPkyhAwAAqzACBwDYiyl0AADsE89T6CRwAIC9GIEPPkNOBJSYEujz9jtapxrvY0zaF8YxkvRlV7pxzG/PTDKOuTrtz8Yx3kTzQgXXuv3GMZJ0oD3DOKbyixuNY3LTWo1jmrq8xjGSdLJrqHHM2YB5UYlXnvu5ccx/ayoyjrkv8yPjGEmakmJemKQ5YH5JzaedPuOY04G+Fzm6oN1JNo6RpJYwiqCkh/F/sMsx/1Wc6PT99+PXZSSYF1tpnTTcaPvurnaKmQyAQZvAAQDoC5unwSNBAgcA2MtxzrdI4i1lNOdVXl6uW265Renp6crKytK8efNUV1cXsk17e7vKyso0fPhwDRs2TKWlpWpqaopqpwEAiHdGCbyqqkplZWWqqanRzp071dXVpdmzZ6ut7aui9ytXrtRbb72lN998U1VVVTp27Jjuv//+qHccAIALV6FH0mxlNIVeWVkZ8vWWLVuUlZWl2tpazZgxQy0tLXrllVdUUVGhu+66S5K0efNmjR8/XjU1NZo+fXr0eg4AQBxfhR7Rk9haWlokSZmZmZKk2tpadXV1qajoq6tlx40bp1GjRqm6urrXz+jo6FBra2tIAwAA3y7sBB4IBLRixQrddtttmjhxoiTJ7/crJSVFGRkZIdtmZ2fL7+/9VqXy8nJ5vd5gy8vLC7dLAIA44wpE3mwVdgIvKyvToUOH9Mtf/jKiDqxevVotLS3B1tjYGNHnAQDiiBOFZqmwbiNbvny5duzYob179+rqq68Ovu7z+dTZ2anm5uaQUXhTU5N8vt4f2OB2u+V2mz8IAwCAeGY0AnccR8uXL9fWrVu1e/du5efnh7w/bdo0JScna9euXcHX6urqdPToURUWFkanxwAA/AVXofdRWVmZKioqtH37dqWnpwfXtb1er9LS0uT1erV48WKtWrVKmZmZ8ng8evTRR1VYWMgV6ACA6IvjB7kYJfCXX35ZkjRz5syQ1zdv3qxFixZJkp577jklJCSotLRUHR0dKi4u1ksvvRSVzgIA8HVUI+sjpw9/qaSmpmrjxo3auHFj2J2SpGF/6lBSkqvP2wecvm97we4vxxnHSFJ26mnjmKnp5hfn1Z01L/Tw8blc45iPkkYZx0hSWmKXcYw3pd04ZmhSh3HMiGTzn5Ek5btPGMekuHqMYz5oNz/my0buMY452n2VcYwkvdV2vXHMp2fNz72rkswLa3zcar6fs90pxjGS1NFjfplQe7d54SKv2/z/xS2ZfzSOkaQ65RjHfDHF7HrnQHuCtM14NzDEs9ABAPaK4we5kMABANaK5yn0iJ7EBgAAYoMROADAXlyFDgCAfZhCBwAAVmEEDgCwF1ehAwBgH6bQAQCAVRiBAwDsFXDOt0jiLUUCBwDYizVwAADs41KEa+BR68nAYw0cAAALDdoReMK+g0pwJfd5+zd/d5vxPp66903jGEmqajavYrbDb16hqLXTbRwzckibcYwnzMpdmcnm+/KGUX0q1dVtHPPn7qHGMZLUkdD3c+6CnjD+hvd3eI1j/mfgOuOYrkCicYwkdYQRF051ulOdI4xjctNajGNOd6cax0jSH05nGsd82TLMOKZ9iPmv4n09Y41jJGmO7xPjmLQTZud4T8cAjmt5EhsAAPbhNjIAAGAVEjgAwF5OFJqB9evXy+VyhbRx475aVm1vb1dZWZmGDx+uYcOGqbS0VE1NTRF+k70jgQMArOVynIibqRtvvFHHjx8Ptn379gXfW7lypd566y29+eabqqqq0rFjx3T//fdH81sOYg0cAAADSUlJ8vl8F73e0tKiV155RRUVFbrrrrskSZs3b9b48eNVU1Oj6dOnR7UfjMABAPYKRKFJam1tDWkdHR2X3OXhw4eVm5urMWPGaMGCBTp69Kgkqba2Vl1dXSoqKgpuO27cOI0aNUrV1dVR/bYlEjgAwGLRmkLPy8uT1+sNtvLy8l73V1BQoC1btqiyslIvv/yyGhoadMcdd+j06dPy+/1KSUlRRkZGSEx2drb8fn/Uv3em0AEAca+xsVEejyf4tdvd+3M4SkpKgv+ePHmyCgoKNHr0aP36179WWlpav/fz6xiBAwDsFaWr0D0eT0i7VAL/poyMDF1//fU6cuSIfD6fOjs71dzcHLJNU1NTr2vmkSKBAwDsdeFJbJG0CJw5c0b19fXKycnRtGnTlJycrF27dgXfr6ur09GjR1VYWBjpd3oRptABANYa6CexPfbYY7rnnns0evRoHTt2TOvWrVNiYqIefPBBeb1eLV68WKtWrVJmZqY8Ho8effRRFRYWRv0KdIkEDgBAn33++ed68MEHdfLkSY0cOVK33367ampqNHLkSEnSc889p4SEBJWWlqqjo0PFxcV66aWX+qUvLscZXE9yb21tldfr1UzdqySDYibhaFkQ3l9EY/6qzjjm1owG45iPWkcZxxwNo/hCVyC8lZTkhIBxzJDkTuOY1DCKZKQk9hjHSFJCGMWBA2EUMxmaaH4chiZd+raWS/EktRvHSFJ6onlcgsv8fAhHYhg/o/dbrol+Ry4hPYyfU7dj/n+w0FtvHCNJv2j4rnGMd+4Ro+27nS7t0Xa1tLSEXBgWTRdyxfcK1ygpKbxiNZLU3d2uqupn+7Wv/YUROADAWq7A+RZJvK24iA0AAAsxAgcA2It64AAAWCiMimIXxVuKKXQAACzECBwAYK1wS4J+Pd5WJHAAgL3ieA2cKXQAACzECBwAYC9HwZreYcdbigQOALAWa+AAANjIUYRr4FHryYBjDRwAAAsN3hF4QqLkSuz79gHz4hXe12uMYyTp5OvmMf9fabFxTMHffGAc8x+v+V/GMeNSmoxjJCk5jIWn1DAePDw0wbxYSHuYf5GH8xftvnN5xjE9Yexp95/HG8c0d6UZx0hS01nzog7JYRaQMRVwzM+Hc93hFUZqOWdeJCMxwfzca98zwjim4dNxxjGS5H3b/PfKoBbHV6EP3gQOAMDlBKQwCgKGxluKKXQAACzECBwAYC2uQgcAwEZxvAbOFDoAABZiBA4AsFccj8BJ4AAAe8VxAmcKHQAACzECBwDYK47vAyeBAwCsxW1kAADYiDVwAABgk8E7Ag/0SK4r5++Lof+83zjm0D+b7+eQ8o1jXLd833xHks75zAtluE92GMecHm2+H099m3GMJCV0dBvHBP7XZ2Hty9yZAdqPJLUaR3T1Qy+iJSXMuJFR7cW3+bcB29MVJ+BIrghG0QF7R+CDN4EDAHA5TKEDAACbGCXw8vJy3XLLLUpPT1dWVpbmzZunurq6kG1mzpwpl8sV0h555JGodhoAgPOcr0bh4TTFyQi8qqpKZWVlqqmp0c6dO9XV1aXZs2errS10vXHJkiU6fvx4sG3YsCGqnQYAQFJkyTvS6fcYM1oDr6ysDPl6y5YtysrKUm1trWbMmBF8fciQIfL5fNHpIQAAuEhEa+AtLS2SpMzMzJDXX3/9dY0YMUITJ07U6tWrdfbs2Ut+RkdHh1pbW0MaAAB9EnAib5YK+yr0QCCgFStW6LbbbtPEiRODrz/00EMaPXq0cnNzdfDgQT355JOqq6vTb37zm14/p7y8XE8//XS43QAAxDMncL5FEm+psBN4WVmZDh06pH379oW8vnTp0uC/J02apJycHM2aNUv19fUaO3bsRZ+zevVqrVq1Kvh1a2ur8vLywu0WAABxIawEvnz5cu3YsUN79+7V1Vdf/a3bFhQUSJKOHDnSawJ3u91yu93hdAMAEO/i+D5wowTuOI4effRRbd26VXv27FF+/uWf+nXgwAFJUk5OTlgdBADgkgIR3goWL2vgZWVlqqio0Pbt25Weni6/3y9J8nq9SktLU319vSoqKjR37lwNHz5cBw8e1MqVKzVjxgxNnjy5X74BAEAcYwTeNy+//LKk8w9r+brNmzdr0aJFSklJ0TvvvKPnn39ebW1tysvLU2lpqdasWRO1DgMAgDCm0L9NXl6eqqqqIuoQAAB95ijCEXjUejLgKGYCOR98HFZcapT7cSme9wZoR5LsvaEEiFNxPIVOMRMAACzECBwAYK9AQBHNnQXsnXcjgQMA7MUUOgAAsAkjcACAveJ4BE4CBwDYK46fxMYUOgAAFmIEDgCwluME5ERQEjSS2FgjgQMA7OU4kU2DswYOAEAMOBGugVucwFkDBwDAQozAAQD2CgQkVwTr2KyBAwAQA0yhAwAAmzACBwBYywkE5EQwhc5tZAAAxAJT6AAAwCaMwAEA9go4kis+R+AkcACAvRxHUiS3kdmbwJlCBwDAQozAAQDWcgKOnAim0B1G4AAAxIATiLyFYePGjbrmmmuUmpqqgoICvf/++1H+xi6PBA4AsJYTcCJupn71q19p1apVWrdunT766CNNmTJFxcXFOnHiRD98h5dGAgcAwMDPf/5zLVmyRA8//LAmTJigTZs2aciQIfrFL34xoP0YdGvgF9YjutUV0b35AIDY6FaXpIFZX+52OiIqSHKhr62trSGvu91uud3ui7bv7OxUbW2tVq9eHXwtISFBRUVFqq6uDrsf4Rh0Cfz06dOSpH16O8Y9AQBE4vTp0/J6vf3y2SkpKfL5fNrnjzxXDBs2THl5eSGvrVu3TuvXr79o2y+//FI9PT3Kzs4OeT07O1v/+q//GnFfTAy6BJ6bm6vGxkalp6fL5XKFvNfa2qq8vDw1NjbK4/HEqIexx3E4j+NwHsfhPI7DeYPhODiOo9OnTys3N7ff9pGamqqGhgZ1dnZG/FmO41yUb3obfQ82gy6BJyQk6Oqrr/7WbTweT1z/B72A43Aex+E8jsN5HIfzYn0c+mvk/XWpqalKTU3t9/183YgRI5SYmKimpqaQ15uamuTz+Qa0L1zEBgBAH6WkpGjatGnatWtX8LVAIKBdu3apsLBwQPsy6EbgAAAMZqtWrdLChQt1880369Zbb9Xzzz+vtrY2PfzwwwPaD6sSuNvt1rp166xYm+hPHIfzOA7ncRzO4zicx3Hofw888IC++OILrV27Vn6/X1OnTlVlZeVFF7b1N5dj83PkAACIU6yBAwBgIRI4AAAWIoEDAGAhEjgAABayJoEPhtJtsbZ+/Xq5XK6QNm7cuFh3q9/t3btX99xzj3Jzc+VyubRt27aQ9x3H0dq1a5WTk6O0tDQVFRXp8OHDselsP7rccVi0aNFF58ecOXNi09l+Ul5erltuuUXp6enKysrSvHnzVFdXF7JNe3u7ysrKNHz4cA0bNkylpaUXPXTDdn05DjNnzrzofHjkkUdi1GP0BysS+GAp3TYY3HjjjTp+/Hiw7du3L9Zd6ndtbW2aMmWKNm7c2Ov7GzZs0AsvvKBNmzZp//79Gjp0qIqLi9Xe3j7APe1flzsOkjRnzpyQ8+ONN94YwB72v6qqKpWVlammpkY7d+5UV1eXZs+erba2tuA2K1eu1FtvvaU333xTVVVVOnbsmO6///4Y9jr6+nIcJGnJkiUh58OGDRti1GP0C8cCt956q1NWVhb8uqenx8nNzXXKy8tj2KuBt27dOmfKlCmx7kZMSXK2bt0a/DoQCDg+n8/56U9/GnytubnZcbvdzhtvvBGDHg6Mbx4Hx3GchQsXOvfee29M+hMrJ06ccCQ5VVVVjuOc/9knJyc7b775ZnCbzz77zJHkVFdXx6qb/e6bx8FxHOd73/ue89d//dex6xT63aAfgV8o3VZUVBR8LVal2waDw4cPKzc3V2PGjNGCBQt09OjRWHcpphoaGuT3+0POD6/Xq4KCgrg8P/bs2aOsrCzdcMMNWrZsmU6ePBnrLvWrlpYWSVJmZqYkqba2Vl1dXSHnw7hx4zRq1Kgr+nz45nG44PXXX9eIESM0ceJErV69WmfPno1F99BPBv2T2AZT6bZYKygo0JYtW3TDDTfo+PHjevrpp3XHHXfo0KFDSk9Pj3X3YsLv90tSr+fHhffixZw5c3T//fcrPz9f9fX1+pu/+RuVlJSourpaiYmJse5e1AUCAa1YsUK33XabJk6cKOn8+ZCSkqKMjIyQba/k86G34yBJDz30kEaPHq3c3FwdPHhQTz75pOrq6vSb3/wmhr1FNA36BI6vlJSUBP89efJkFRQUaPTo0fr1r3+txYsXx7BnGAzmz58f/PekSZM0efJkjR07Vnv27NGsWbNi2LP+UVZWpkOHDsXFdSDf5lLHYenSpcF/T5o0STk5OZo1a5bq6+s1duzYge4m+sGgn0IfTKXbBpuMjAxdf/31OnLkSKy7EjMXzgHOj4uNGTNGI0aMuCLPj+XLl2vHjh169913Q8oP+3w+dXZ2qrm5OWT7K/V8uNRx6E1BQYEkXZHnQ7wa9Al8MJVuG2zOnDmj+vp65eTkxLorMZOfny+fzxdyfrS2tmr//v1xf358/vnnOnny5BV1fjiOo+XLl2vr1q3avXu38vPzQ96fNm2akpOTQ86Huro6HT169Io6Hy53HHpz4MABSbqizod4Z8UU+mAp3RZrjz32mO655x6NHj1ax44d07p165SYmKgHH3ww1l3rV2fOnAkZNTQ0NOjAgQPKzMzUqFGjtGLFCj377LO67rrrlJ+fr6eeekq5ubmaN29e7DrdD77tOGRmZurpp59WaWmpfD6f6uvr9cQTT+jaa69VcXFxDHsdXWVlZaqoqND27duVnp4eXNf2er1KS0uT1+vV4sWLtWrVKmVmZsrj8ejRRx9VYWGhpk+fHuPeR8/ljkN9fb0qKio0d+5cDR8+XAcPHtTKlSs1Y8YMTZ48Oca9R9TE+jL4vnrxxRedUaNGOSkpKc6tt97q1NTUxLpLA+6BBx5wcnJynJSUFOc73/mO88ADDzhHjhyJdbf63bvvvutIuqgtXLjQcZzzt5I99dRTTnZ2tuN2u51Zs2Y5dXV1se10P/i243D27Fln9uzZzsiRI53k5GRn9OjRzpIlSxy/3x/rbkdVb9+/JGfz5s3Bbc6dO+f81V/9lXPVVVc5Q4YMce677z7n+PHjset0P7jccTh69KgzY8YMJzMz03G73c61117rPP74405LS0tsO46oopwoAAAWGvRr4AAA4GIkcAAALEQCBwDAQiRwAAAsRAIHAMBCJHAAACxEAgcAwEIkcAAALEQCBwDAQiRwAAAsRAIHAMBCJHAAACz0/wMJL+QUxyIFxwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure()\n", "plt.imshow(train_images[0])\n", "plt.colorbar()\n", "plt.grid(False)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "Wz7l27Lz9S1P" }, "source": [ "신경망 모델에 주입하기 전에 이 값의 범위를 0~1 사이로 조정하겠습니다. 이렇게 하려면 255로 나누어야 합니다. *훈련 세트*와 *테스트 세트*를 동일한 방식으로 전처리하는 것이 중요합니다:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:16:13.225703Z", "iopub.status.busy": "2022-12-14T20:16:13.224982Z", "iopub.status.idle": "2022-12-14T20:16:13.410048Z", "shell.execute_reply": "2022-12-14T20:16:13.409244Z" }, "id": "bW5WzIPlCaWv" }, "outputs": [], "source": [ "train_images = train_images / 255.0\n", "\n", "test_images = test_images / 255.0" ] }, { "cell_type": "markdown", "metadata": { "id": "Ee638AlnCaWz" }, "source": [ "*훈련 세트*에서 처음 25개 이미지와 그 아래 클래스 이름을 출력해 보죠. 데이터 포맷이 올바른지 확인하고 네트워크 구성과 훈련할 준비를 마칩니다." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:16:13.414986Z", "iopub.status.busy": "2022-12-14T20:16:13.414211Z", "iopub.status.idle": "2022-12-14T20:16:14.139357Z", "shell.execute_reply": "2022-12-14T20:16:14.138631Z" }, "id": "oZTImqg_CaW1" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAx4AAAMuCAYAAACXQNWTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADq5UlEQVR4nOzdd5hV1dn//3uQPsMMvQxVQBAFFESQYhfFgkLUGGIUH300alSMifVR7Ckm1kRNYiMaC1FEERUUBUVAxEJTGIoMRYZeh1727w9/zNe91gdmcZg9jffrunJdWTfr7LPnnHXWPsuz73WnRVEUGQAAAAAkqEJJnwAAAACA8o+FBwAAAIDEsfAAAAAAkDgWHgAAAAASx8IDAAAAQOJYeAAAAABIHAsPAAAAAIlj4QEAAAAgcRVTfeDu3btt6dKlVqNGDUtLSyvKc0IZFUWRbdy40bKzs61ChWTXtIw/uIpz/JkxBhHH+ENJ4xqMkhQ6/lJeeCxdutSaNm2a6sNRji1evNiaNGmS6HMw/rA3xTH+zBiD0Bh/KGlcg1GSCht/KS88atSoUfAEmZmZqR4G5ciGDRusadOmBWMjScUx/qIoirWL8r/q5OTkeLHf//73Xqx///5erGPHjrF25cqVvT4VK/of7VmzZnmxkSNHxtotWrTw+gwaNMiL1axZ04uVtOIcf2Zlbw5cuXJlrP3yyy97fQYMGODFGjRokNg5mZlNnz491p4zZ47X57zzzvNilSpVSuycUsH4+39yc3O92IQJE2Ltd9991+tTq1YtL/aLX/zCix111FGxthozI0aM8GLjxo3zYtWrV4+1L7roIq/P//zP/3ix0qi8XYMPBnl5ebF2o0aNSuhMDlzo+Et54bHnS1hmZiaDDjHF8bNrcYy/JBceGRkZXkwtFqpVq1boY0MXHu4F1sz/8lalShWvj3p9S/Nnvrh+9i9rc+DWrVtj7apVq3p91AUj6b/NHc9qnKpzKG0Ljz0Yf3ocuXOZev/UXJaenu7F3L9XzadqLjvkkEO8mDtXqjm3tL2+hSkv1+CDQX5+fqxdHl7LwsYfyeUAAAAAEpfyLx5AWeX+kmGmV+gh/9Xom2++8WJDhw71YsOGDYu11X95c//Lh5nZHXfc4cXWrFlT6HmFatOmTaw9bdo0r88f//hHL9awYUMvdsYZZ8Tav/vd77w+HTp02N9TRArUWHJvPXnxxRe9Pq+99poXq1evnhdz/8u0+q/X6hy2bdvmxRYvXhxr9+vXz+ujPi8XXnihF0Oy3n//fS/26KOPejH1q8H27dtjbfWLm7pFS91qtXz58lhb3SKqfvVVt7FkZWXF2m+88YbX57HHHvNip512mhd74oknvBiK3ymnnOLF1q5dG2vXrVvX6/PMM894MTW2QixdutSLnXzyyV5sy5YtsXazZs28PqNHj/Zi6pfAsoJfPAAAAAAkjoUHAAAAgMSx8AAAAACQOHI8cNAJ3fFjw4YNsfall17q9VE5ESqHxN11Rd0DrbaSVPe279y5M9Zev36910ftDKSOFfJadO3a1Yu5OySZmU2cODHWVltX9urVy4v95z//KfQcsH/ULj/uvex/+tOfvD4PPvigF5s9e7YXc++xV7kbastltduRe6/8WWed5fVR+SJI3vz582PtV155xeuj8rbc+9bNfiw491OqwJiqCxGyy4+ax9R8F7I7msoN6d69uxdbsmSJF3Pz2h5++GH/ZJE4d6yZma1atSrW/uGHH7w+aiyrufSCCy6ItdU1bNeuXV5M5TW58+TGjRu9PmU5n0PhFw8AAAAAiWPhAQAAACBxLDwAAAAAJI6FBwAAAIDEkVxeiNBicy6VIPTZZ595sTPPPDOlc1CJSyopLlXqOV2hSdplVf/+/WPtRYsWeX0aNGjgxdTr4r5fKvFRUe+z+97UqVMn6HFKyPusqOR4N3FOvQ7jx4/3YrNmzfJi7dq1S+m8sHduArhK/v7Nb37jxf72t795sSpVquzz2Hs7/jHHHOPF/ud//ifWVkXkVBFDJM9Njg59H1Ryr7shhZoD1TXs0EMP9WLuRglqsws1/6hxGnIOO3bs8GKqsNzMmTNj7ZEjR3p9zjnnnELPAQemdu3aXmzBggWxtrpuquK8y5Yt82LunKg2mZk+fboXUxvIuGNLnVd5wy8eAAAAABLHwgMAAABA4lh4AAAAAEgcCw8AAAAAiSO5vBAqSc5Nips3b57X59lnn/ViKiHXrUipKluqytEhieQqcVj9PapfyPHdBObQhObS6KuvvvJibjJ53bp1vT5uFfG9cSv5qqqpIdV+zfz3Rr3uqiqwsn379ljbreJrpqtNN2nSpNDzUtR5qc8KFX+Lnvs+upV8zcyaN2/uxdR74Y7flStXen1U8q36DLnnoT5TqW6CgANz2WWXxdqPPvqo10clnKtNN9wNV9Rco1SuXNmLqfHmUlXKq1evHvScIeewbt06L+bOiySSl4xWrVp5sc8//zzWVpsbuJtmhFJzndpIJTs724u51/3NmzendA5lCb94AAAAAEgcCw8AAAAAiWPhAQAAACBxLDwAAAAAJI7k8kKoxF03Kenjjz/2+nz44YderGnTpl7MraSqEos++OADL3bllVd6MTehT1VuDa2YnZ+fH2urpGA3US/02KXR2LFjvZj73qjquOp1UQnhbtLaQw895PVp1KiRF1NjZunSpYU+Tp2DSuZ0k8vd993M7Ouvv/ZiTzzxhBdzk0xVtV/1eg0bNsyLkVxe9EI+n6tXrw46lpsk3rBhQ6+PmsvUpgrueal5S8WQPHdjk+7du3t93n77bS/WrVs3L+ZuGqDGh6o4rRK73blGbcqijq/mJLcK+ooVK7w+itoM5E9/+lPQY5Gsdu3aeTH3mqjmFHezHzM9/lRVcpcak2qTDHdMqk0Ryht+8QAAAACQOBYeAAAAABLHwgMAAABA4sjxKIS6v881ZcoUL5abm+vF1H33buz000/3+nzzzTde7JZbbvFiXbp0ibU7dOjg9VH3Pn7xxRdezP2bevTo4fVx7/fdsGGD16eseOONN7yYe+95SDE/M31vsXsfscrRUbk8qrDh5ZdfHmv/85//9PoceeSRXkzlqLg5TPXr1/f6/Pa3v/ViTz31lBdz71VVz6fuoZ09e7YXmzNnTqzdpk0brw/2j3t/cWgOmMpzU8XTkjyv0EKdSNYNN9zgxR577DEvpgpRunkZai5QBf5C7nlX40MVNlT9Qu6xX79+vRc788wzvdjBcH9+WRBS4FbNa27Oo5nOoezUqVOsrd53dQ7qO4TL/a5QHvGLBwAAAIDEsfAAAAAAkDgWHgAAAAASx8IDAAAAQOJILv8JVdxFJTq6xQG//PJLr49KNtq0aZMXc5No3baZ2bHHHuvFWrdu7cXc4m8TJ070+rz55pteTCVIu4WjnnnmGa+Pm3iv/r6yYtq0aV7MLd6nktHcIoN7o5ITXWeccYYXy8jI8GKzZs2Ktf/61796ffr37+/F3nnnHS/mJlu6SXNmuoBgSFK9KhaoYqpI4qRJk2JtkssPnDs/qLGril6pce++j6qPmk8VN+FSJWCqjQqQPHd+UJ/7CRMmeLH/+7//K/TYKpFcFTlVhfqqVasWa6vxpx7nFnI1C0v4VX369u1b6ONQMlRCuDu21PykNtdQY9LdvEUVplRjRiWOu/NwyHgs6/jFAwAAAEDiWHgAAAAASBwLDwAAAACJY+EBAAAAIHEHTXJ5aKJjiLvuuivWzsvLC3qcqmjtJjOp5LfPPvvMi6mEdjcRvnPnzl6fww47rNBzMDP7+9//Hmt///33Xp9hw4bF2mWlcvmMGTO8mKpy674uKoExNKmxdu3ahZ7Xt99+68XUeHDHm0rkVONdJcm5/dyk7r1RyXtLly6NtdW4Ups1uImiZmaffvpprD1w4MCg88LeuYnCaoyomEp2dPul+jgzP2FZPU59zpA8lUzuUnNBy5YtvdiCBQtibbWRQY0aNbyY2pDCfawaM2pjjpUrV3qxkPHXrFkzL4bSS13Pc3NzY+3DDz/c66PGpJqzVDK5K+R6a+aPb3fTnvKIXzwAAAAAJI6FBwAAAIDEsfAAAAAAkDgWHgAAAAASd9Akl6uk1lTVqlUr1lbJ5SphVlUKdpOU3OrCZjrhSSUwu3+jSkpX1cxVwtPy5ctj7T59+nh9yqo///nPXky9nunp6bF2SLVuM/1+uYlmanOA1atXe7E1a9Z4MXfMuO+Ver69ndf27dtj7XXr1nl9hg4d6sXWrl3rxdwxr46lPhcqUe+rr77yYjgwbtKsqhytkrhDksTVRgJKyDysNlRA2aKuKe61TSWNq2ukSjh35y01t4Um6YaM3fr16wcdC6VDw4YNC+0TmjQeUklczWvuZh57i7lzrvv9sjziFw8AAAAAiWPhAQAAACBxLDwAAAAAJO6gyfEoSu59/aH3Rav72917EevUqeP1cQvfmOn7Y917FkOL26ljufe9LlmyxOtTVvXo0cOLqTyJefPmxdrr16/3+qgcD1Wk0X2Nu3Xr5vVR9xqr98aNqbGm7lUNKd6mxkxmZqYXa9OmjRfbtGlToeelziE7O9uL9evXz4vhwITcq6zefzUG3X4hx94b975nleOhPp8ofup9VuOjcePGXmz69OmFHku99+r4W7du3e8+Zvoa7OaHrFq1yuvTpEkTL6a4YzmkACOKh8oDSpWb06FyPNT1XI0H95qorrflDb94AAAAAEgcCw8AAAAAiWPhAQAAACBxLDwAAAAAJO6gyXxyE3hUYptKBlIF/ZYuXRprq4Q4VbzILXqkHusWrTPTSc0qCd1NdFbPl5GR4cU2bNjgxTp06BBru4nDZn4RPPValUbXXnttUMwtkjd37lyvz9NPP+3Fxo0b58Vq164da7uvr5lZzZo1vZh6Dw8kkdcV8rlQSXlqTHbs2DHWfuWVVw7w7JAqVeDRTQhXif4qSbIox5tKAnYTctV4U5s4qOThokwgRepatGjhxdzxp+Y2NW6bN2/uxdwkXVV8VRViU8m97rU6ZBMOlD2pFpFWj3PHiOoTOpe6/dR3wPKGXzwAAAAAJI6FBwAAAIDEsfAAAAAAkDgWHgAAAAASd9BkTLkJPKpCr0ouHzp0qBfLy8uLtevVq+f1URXC1fHdpO1FixZ5fSpVquTFtm3b5sXcBDhVvVqdl6rU+pvf/CbWnjp1qtfHTQpVr2lZ5iYndu3a1eujNhb4+OOPvZg7/tT7pxL43dfYTCfoulSCpIq5x1LnpcafSuxVFeFRMtS4dGOpJluGPlaNt1Srp2dlZXkxEslLr+rVq3sxdf1zqblNjZmQyuUquXzlypVeLGRTFJUIj7JFzUepPi6kQr2ax9Q4dWMrVqzY31Msc/jFAwAAAEDiWHgAAAAASBwLDwAAAACJY+EBAAAAIHEHTXK5mwykKosr7du392JukqZK4g5NXncTiVTCpFv12kwnHbvnoZKVVcJd06ZNvZhbdfrmm2/2+hx33HGxtqqAXlaoBDL39VRjRiXZ1qhRw4u540GNhdBk35CqqUUptHK1qrzuCk24S/pvKu/U61daN38I2XgBpUPIxhZmOtnW3YRFzafq+qS4c406ltpIpUGDBl7MTTg/GCpHH4yKMrncvSaGVDc309/b3M1bcnNz9/MMyx5+8QAAAACQOBYeAAAAABLHwgMAAABA4hLP8VD3ual7jdV95O5jVSGzA7nnNMSZZ57pxTIyMmLtatWqeX1CCw65972qewBVsbaQHBX1N6vXS70f06dPj7VVAa/yRN2jqcabq1WrVl4sMzPTi6WaYxRy72hR5kOo8wodyyFjRH3OQwqLYf+E5HOEFmsLUZTHCh0jql/o9QCpCX3NVb7f2rVrY2113Vy9enXQebjXzc2bN3t91q9f78VC5l31N6rCvkqq3zOQvJAcj5DvoaHHDs2zc+c2cjwAAAAAoAiw8AAAAACQOBYeAAAAABLHwgMAAABA4oo8EyqkUFpJJGB9+umnsfawYcO8Pp999pkXq169uherU6dOrK0KXqnEIvV3u8dXyUfq+Crh3H3O0EJIKnnYfeybb77p9enbt2/Q8csqN9FMjWWVIOkWmDTz3y+VuK4KUYYkrak+IUWPFFXAUiVuquOTJF56hMwPoUWvQhK7D6Q4YchmCSqm5i01flF0QpP33eRvM7Mjjzwy1m7WrJnXR8016j1dvnx5rK2Sxps3bx50LDcRvlGjRl6fH374wYuh9JozZ44Xc+cLNaeEbojhzlmhxQlVP/d74apVq4KOVZbxiwcAAACAxLHwAAAAAJA4Fh4AAAAAEsfCAwAAAEDiijzLO9UE0zVr1nixpUuXxtoqYcjtY6YTod3HqgRglVikErTd6qrZ2dleH5XEppKH3SQ5dV4q4a5Hjx5ebOPGjbH2+PHjvT4qOVBVnHaTnz///HOvT3kXUhFcvZ4qlmpib8h5pZoQF/qcodXuQxJPi7LKOvYu5L0OrbYbevyiEnrsVCujI3nq2tOqVatYOzT5u0aNGl7MvdatW7fO66M2hlFJ6Oo7hMu9TpuZrVixwovVr18/1g6t9I6iNWvWLC/WpEmTWFuNBfVdS3Gvf6Fzlrpuut/5li1b5vWZOHGiF1PfAcsKPgEAAAAAEsfCAwAAAEDiWHgAAAAASBwLDwAAAACJK/Lk8kmTJsXagwcP9vqsXLnSi6nkMDcJSyVq1axZ04upBHc3QU0lcasEIVWZ2k3qGTp0qNfn2GOP9WJuhVQzP5kuNzfX66NMnz7di+Xn58fabjKVmU6WVwlVmzZtSum8oJMV3XEaWuk51YTwVKljqyrrqt/OnTsTOSfsvwOpJB7CTUI/kMq97rHUOFJ/D+Mtee41VyVGL1682It99913Xqxly5ax9tq1a70+7sYtZmatW7f2Yu716fvvv/f61KpVy4upa3CIjIwML/bKK694sRtvvDHWJpG8ZHz00UdeLGRTltDNANx5LHRTDnV897FqvD/99NNejORyAAAAANgHFh4AAAAAEsfCAwAAAEDiDjjHY9euXbH7bwcNGhT7d3W/e8WK/tOq++hUPoJr27ZtXkzlZaiYa/369V5s4cKFXuy2224r9NjqnrxGjRp5MTfH45RTTvH6uIWXzMzmzp3rxdz7Y9W9+eq+aHXfofseuYWRDgapFrsLKaK5fft2LxZyL6mKhRaCC+mnzkvlQ6njh9xzTwHB4qHea3dcho6RkEJ9oe+r6hdyfHVear7OzMwMOg+ECclRGD16tBc74ogjvNjWrVtjbfVeqett48aNvdjs2bNjbTXnqhxHlRvZoEGDWFvlmah8kR9++MGLudflww47zOuD5KmCx+53GnW9OpBCgCHUXOd+LtT1VhUQLMv4xQMAAABA4lh4AAAAAEgcCw8AAAAAiWPhAQAAACBxB5xc/sorr8SSq93kMLdokJlf/MfMbOPGjV5MJXm5VIKQSjp0E81UwtqWLVu8mJt4ZmY2cODAWPutt97y+vTt29eLLViwwIu5r8VXX33l9Rk7dqwXU8lNblKSSrxXycOKm4ilHucWjlLv4cFIJYe5SWUqGTK0eFFIwTW1sYBK7HXHkeqjNoNQVBFQlIwdO3Z4MXd8FWXRv6Kkxpt6PjcpEyVDJWx37NjRi7njT11T1DVLCdnIImTuNPM3eFEFEVUifEhyPMnlJUMVPHY3CDiQeS3kuhnK/Vyo76HLli3zYuqzor57lEb84gEAAAAgcSw8AAAAACSOhQcAAACAxLHwAAAAAJC4A04ur1evnlWvXr2g7SZxq4RjlQDTrFkzL+Y+ViVMbtiwwYvVrl3bizVv3rzQ83KTzPYWcxOD+/fv7/Xp0KGDF1MJT24CvXptatas6cVU8rB7XpUrV/b6pFoxWyVizZkzJ9ZWmwYcjEIqlyupJrupjQZCE8Ld44eegxp/Kiku5FgoeiFVedW4KYn3J2SsqvEWmhyPoqM2SGnUqJEXU4n/GRkZsbYao2ruDJlX1BhS17WQ5PWffp/ZQyX3qg1qVq5cWejxUbTWrl3rxdT7UL9+/VhbjQU1ZtSmL+48GfIdam8x9zxOP/10r89///tfL6Y2IurRo4cXK434xQMAAABA4lh4AAAAAEgcCw8AAAAAiWPhAQAAACBxB5xcnp2dHUsac5NsmjZt6j1GJSGrZCA3qbpevXpeHxVTSWtuAo/qoxLi8vPzvZiblFmnTh2vz3fffefF3OQ6Mz+p3q2uubfzUn+3m2CnEjJVEl5IpcysrCyvz9SpUws9z4ORStoNkWpi74Ek2brPGZJIZ6aTQDdv3pzyeaBoqU0kXOp9DU2uTFLoZgZsZlH8VFVvNWbU9dUdk+p6oa5PalMZl0owVsdSc7N7roceeqjXZ+7cuUHHWr9+fay9Zs0ar4/a/Aap++abb4L6ueNBfe8Jnf/csavmW3WNDJnbcnJyvD5qrM2aNcuLkVwOAAAAAP8/Fh4AAAAAEsfCAwAAAEDiDjjHo2PHjpaZmVnQdovpvfDCC95jsrOzvVirVq28mFu8T+VbqHvr1L177n2i6h5UVSxQ9XPv01MFh1RRJXX/oHsfoHo+VUAwpDCjepyKqUKD7n2HqnBUgwYNYu2QQk9lSVEWUyvK++RDcjpC80xCCgiqcw+9fxolQ82L7nut3sOSKMrnji91b7TK8Zg/f74X69SpU9GdGDzq+qTmB3VNdHPAVO6Guhap8eBeS9X1UI1vVaD3hx9+iLW7dOni9fn000+9mLrGu6+Pyj0hx6NojRw50ovVrVvXi7lzSMi4MtPfO915Un0u1ON++l15D3ecqmKV6lxnzJjhxcoKfvEAAAAAkDgWHgAAAAASx8IDAAAAQOJYeAAAAABI3AEnl7vuuOOOWPvoo4/2+vz1r3/1Yip52S2SpxKjVRKbSnZzCwiGFBIy08mWbpJmSLEkM5187T42NLlT9XNfC5VwpwoaqYQqN8GpY8eOXp9f/epXsfaGDRvsqquu0idcBrmvcWiyuUqQTDXxPqSgkUo8U58BdSyX+hvVWFPPGZJcXpQJ+9i7pUuXFtontFikGjfuex36voaMSzXeVKKwSiBFslavXu3F1LVOFbidOXNmrK3mRFWoVh3fHQ+hG8+oDWSmT58ea5999tleH/XdQx3fTSZX3w1QtNQmE+q7j/udRl2vVDFolez9zjvvxNrnnHOO16datWpeTBXZVYWlQx737bffFvq40opfPAAAAAAkjoUHAAAAgMSx8AAAAACQOBYeAAAAABJ3wMnlu3fvjiUMuomCZ511lvcYFfv444+9mJuonpub6/VZv369F1PJiW4ikaqaGlrJt379+rG2Sqxs0qSJF1OJbW5i0YFUf3aTmkMT73v37u3F2rVrF2v36NEj5fNCWEJ4aNVwNxaaSB6ycYEay6FV16lcXnqoucad89R7rd7DkM0FQt97VYHcfWxo9eBmzZoFPSeKzsqVK72Ymh9Uku66detibTVmsrOzvZhK4q5Vq1asnZ6eHnReIVSyr/t8Zvrz455HXl6e16dt27YpnRc0ldg9btw4L+bOY2qeUUncSkhCuPo+qea/kMep+bxDhw6FHqu04hcPAAAAAIlj4QEAAAAgcSw8AAAAACSOhQcAAACAxB1wcnmFChWCKiIX5pRTTvFin3/+eaGPmz17thdTCXBuctiSJUu8Ps2bN/diqgp1q1atCj0vlH2pVtlWCZJz586NtVUCmfocqZibbKn6qHNXMfc81KYLoahcXnp07drVi82ZMyfWdpN9zXQSo+ImaqrxnOp7rRJy1RgnSbf4bdq0yYupTUzcCt7K1q1bvZi63qrq3+41XlVKV+eqvhu4MVUJO3SzDnfMqwraKFpXXnmlF7vqqqu8mPt+qQ0Q1KYvSsh33rp163oxNee6Y37Dhg1eHxUbNGhQoedQWvGLBwAAAIDEsfAAAAAAkDgWHgAAAAASd8A5HiXt8MMPD4q52rdvn8TpAPI+TrcAmsqlWL16tRdTeRNuYawDyctw781Xz6eKYW7ZssWLqXujXaHFDnFg1H33l156aaw9duxYr8+qVau8mLpX3r3vPqQwlpkeX+4YbNGihddH5QCqvxHJcnPVzMwOPfRQL6byN1xqLlAF3FTekVvQ9pVXXvH6qNyQU089tdDzUOel5nQ1/lq2bBlrn3zyyV4fJG/69OlerGPHjoU+rkqVKkHHX7FiRaF9li1b5sXU58KdE1Ve0OjRo72YykkuK7jiAwAAAEgcCw8AAAAAiWPhAQAAACBxLDwAAAAAJK7MJ5cDSXELDoUWROvcubMXO/LII2PtmjVren1Ck8Td5MeMjAyvjzpXVfDKTexVid4qcVglW6qidS4SyYuHeq/dJN0zzzwz6Fhr1qzxYm7i5Pr1670+agw2bNiw0FiqRQz39pwoOk899ZQXU8UjVYL2RRddFGurzShUwuzixYu9mJvQ3qVLF/9kA51//vmF9rnwwgtTPj6KX4cOHbyYO1+MHz/e6zNr1iwv9vHHH3uxnj17FnoO1113nRdTSenu5+Kss84q9NhlHd8CAAAAACSOhQcAAACAxLHwAAAAAJC4lHM89twvt2HDhiI7GZRte8aCuve6qBXH+Es1x2Pbtm1ebPv27YX2STXHQ91jXZQ5Hqromzp/t/hXcc8NxTn+fvo8pXEOLMr8B/X3uQUxVZFB9XyqOJZbiM39rOxNacvxOBjGnyrKF5rj4c4taiyovyW0H8rfNThJas5ShXHVddkdk+np6V6fkO8BZiV/3SxKoeMv5YXHnhe+adOmqR4C5dTGjRstKysr8ecwY/zBVxzjb8/zmDEGEcf4Q0njGpysN998s8iO9dprrxXZsUqLwsZfWpTi0nj37t22dOlSq1GjBjuJwMx+XOVu3LjRsrOzE9+9iPEHV3GOPzPGIOIYfyhpXINRkkLHX8oLDwAAAAAIRXI5AAAAgMSx8AAAAACQOBYeAAAAABLHwgMAAABA4lh4AAAAAEgcCw8AAAAAiWPhAQAAACBxLDwAAAAAJO6gXnjcc889dvTRR+/134cMGWI1a9Y8oOe47LLLrF+/fgd0DJR/hY1FM7OTTjrJbrzxxmI5Hxx8GIMADlbMf8WnTC88Jk2aZIcccoidffbZJX0qJY4PRPFKS0vb5//uueeeIn/ON9980+6///599snNzbW0tDSbOnWq/Pd7773XfvWrX5nZj3/DW2+9VcRnieLCGERZd9lllxWM10qVKlmDBg2sd+/e9vzzz9vu3btL+vRQijH/lV0VS/oEDsRzzz1n119/vT333HO2dOlSy87OLulTwkEiLy+v4P8PHTrUBg8ebDk5OQWxjIyMIn/O2rVr7/Pft2/fXugx3n77bbvtttuK6pRQghiDKA/69OljL7zwgu3atcuWL19uo0aNskGDBtkbb7xhI0aMsIoV/a8pO3bssEqVKpXA2aK0YP4ru8rsLx75+fk2dOhQu+aaa+zss8+2IUOGxP593LhxlpaWZh999JF16dLFqlevbj169IgNTNf8+fOtZcuWdt1111kURbLP22+/bZ07d7aqVatay5Yt7d5777WdO3cWer733nuv1atXzzIzM+3qq6+ODdBt27bZDTfcYPXr17eqVatar169bMqUKbHHf/LJJ9a1a1erUqWKNWrUyG677baC573sssvsk08+sccff7xgtZ+bm1voOSF1DRs2LPhfVlaWpaWlxWJq0hs3bpx17drV0tPTrWbNmtazZ09buHBhrM9LL71kLVq0sKysLPvFL35hGzduLPg391etFi1a2P3332+XXnqpZWZm2lVXXWWHHnqomZl16tTJ0tLS7KSTTirov3jxYvv222+tT58+1qJFCzMz69+/v6WlpRW0zcyefvppa9WqlVWuXNnatm1rL730Uuwc09LS7Omnn7YzzzzTqlWrZi1btrQ33ngjxVcSqWIMMgbLgypVqljDhg2tcePG1rlzZ7vjjjvs7bfftvfff7/gur7n/T733HMtPT3dHnzwQTPb9/U4iiK75557rFmzZlalShXLzs62G264oeB5n3rqKTvssMOsatWq1qBBA7vggguK/W9H6pj/yvD8F5VRzz33XNSlS5coiqLonXfeiVq1ahXt3r274N/Hjh0bmVnUrVu3aNy4cdG3334bHX/88VGPHj0K+tx9993RUUcdFUVRFE2bNi1q2LBh9H//938F//7CCy9EWVlZBe1PP/00yszMjIYMGRLNnz8/+uCDD6IWLVpE99xzz17Pc+DAgVFGRkZ00UUXRTNnzoxGjhwZ1atXL7rjjjsK+txwww1RdnZ29N5770XffvttNHDgwKhWrVrR6tWroyiKoiVLlkTVq1ePrr322mjWrFnR8OHDo7p160Z33313FEVRtG7duqh79+7RlVdeGeXl5UV5eXnRzp07U35tsX/ccaLs2LEjysrKin7/+99H8+bNi7777rtoyJAh0cKFC6Mo+nEsZmRkRD/72c+iGTNmRJ9++mnUsGHD2Dg58cQTo0GDBhW0mzdvHmVmZkZ//etfo3nz5kXz5s2Lvvjii8jMojFjxkR5eXkFYyiKoujvf/97dPrpp0dRFEUrVqyIzCx64YUXory8vGjFihVRFEXRm2++GVWqVCl68skno5ycnOjhhx+ODjnkkOjjjz8uOI6ZRXXq1ImeeeaZKCcnJ7rzzjujQw45JPruu+8O9KVEihiDjMGyaODAgdF5550n/+2oo46KzjzzzCiKfny/69evHz3//PPR/Pnzo4ULFxZ6PX799dejzMzM6L333osWLlwYTZ48OfrXv/4VRVEUTZkyJTrkkEOiV155JcrNzY2+/vrr6PHHHy+WvxlFj/mvbM1/ZXbh0aNHj+ixxx6LoujHAVW3bt1o7NixBf++Z+ExZsyYgti7774bmVm0ZcuWKIr+38JjwoQJUa1ataK//vWvsedwB/Opp54a/eEPf4j1eemll6JGjRrt9TwHDhwY1a5dO9q0aVNB7Omnn44yMjKiXbt2Rfn5+VGlSpWil19+ueDft2/fHmVnZ0cPPfRQFEVRdMcdd0Rt27aNLayefPLJgmNEkf+BQPEJmfRWr14dmVk0btw4+e933313VL169WjDhg0FsZtvvjnq1q1bQVtNev369YsdZ8GCBZGZRd988433HL17947+/ve/F7TNLBo+fHisT48ePaIrr7wyFrvwwgujs846K/a4q6++OtanW7du0TXXXCP/NiSPMcgYLIv2tfC46KKLonbt2kVR9OP7feONN8b+vbDr8cMPPxy1adMm2r59u3fsYcOGRZmZmbGxjrKL+a9szX9l8larnJwc++KLL2zAgAFmZlaxYkW76KKL7LnnnvP6duzYseD/N2rUyMzMVqxYURBbtGiR9e7d2wYPHmy/+93v9vm806ZNs/vuu88yMjIK/nfllVdaXl6ebd68ea+PO+qoo6x69eoF7e7du1t+fr4tXrzY5s+fbzt27LCePXsW/HulSpWsa9euNmvWLDMzmzVrlnXv3t3S0tIK+vTs2dPy8/NtyZIl+zxnFL9FixbFxsgf/vAHq127tl122WV2xhlnWN++fe3xxx+P3aNq9uPPtjVq1ChoN2rUKDZWlS5dugSd04YNG+yTTz6xc889d5/9Zs2aFRuLZj+OtT1jcY/u3bt7bbcPSg5jEGVdFEWxa547zgq7Hl944YW2ZcsWa9mypV155ZU2fPjwgtuwevfubc2bN7eWLVvaJZdcYi+//PI+r+EoW5j/SrcyufB47rnnbOfOnZadnW0VK1a0ihUr2tNPP23Dhg2z9evXx/r+NAFtzyT2090y6tWrZ127drVXX33VNmzYsM/nzc/Pt3vvvdemTp1a8L8ZM2bY3LlzrWrVqkX4F6Isy87Ojo2Rq6++2szMXnjhBZs0aZL16NHDhg4dam3atLHPP/+84HFusmRaWlqhO7ukp6cHndP7779vRxxxhDVt2nQ//xqURYxBlHWzZs0quF/ezB9nhV2PmzZtajk5OfbUU09ZtWrV7Nprr7UTTjjBduzYYTVq1LCvv/7aXn31VWvUqJENHjzYjjrqKFu3bl0x/5VIAvNf6VbmFh47d+60F1980R5++OHYwJo2bZplZ2fbq6++ul/Hq1atmo0cOdKqVq1qZ5xxRiyRyNW5c2fLycmx1q1be/+rUGHvL+W0adNsy5YtBe3PP//cMjIyrGnTpgUJRBMmTCj49x07dtiUKVPsiCOOMDOzdu3a2aRJk2IJ7xMmTLAaNWpYkyZNzMyscuXKtmvXrv3625GMihUrxsbGT3fC6NSpk91+++02ceJEa9++vb3yyitF+tyVK1c2M/PGwttvv23nnXdeLFapUiWvX7t27WJj0ezHsbZnLO7x08l6T7tdu3YHdO4oOoxBlGUff/yxzZgxw84///y99gm5HlerVs369u1rTzzxhI0bN84mTZpkM2bMMLMfPyOnnXaaPfTQQzZ9+nTLzc21jz/+uFj+PiSL+a90K3Pb6Y4cOdLWrl1rV1xxhWVlZcX+7fzzz7fnnnuuYHUbKj093d59910788wz7cwzz7RRo0bJHREGDx5s55xzjjVr1swuuOACq1Chgk2bNs1mzpxpDzzwwF6Pv337drviiivszjvvtNzcXLv77rvtuuuuswoVKlh6erpdc801dvPNN1vt2rWtWbNm9tBDD9nmzZvtiiuuMDOza6+91h577DG7/vrr7brrrrOcnBy7++677aabbiqYYFu0aGGTJ0+23Nxcy8jIsNq1a+9zMYTitWDBAvvXv/5l5557rmVnZ1tOTo7NnTvXLr300iJ9nvr161u1atVs1KhR1qRJE6tataqlp6fb+++/b7///e9jfVu0aGEfffSR9ezZ06pUqWK1atWym2++2X7+859bp06d7LTTTrN33nnH3nzzTRszZkzssa+//rp16dLFevXqZS+//LJ98cUX8lZHlB6MQZRG27Zts2XLlsW20/3jH/9o55xzzj7HZmHX4yFDhtiuXbusW7duVr16dfvPf/5j1apVs+bNm9vIkSPt+++/txNOOMFq1apl7733nu3evdvatm1bjH85ihPzXylS0kkm++ucc86JJdn81OTJkyMzi6ZNm1aQXL527dqCf//mm28iM4sWLFgQRVF8V6soiqKNGzdGPXr0iE444YQoPz9fJiyNGjUq6tGjR1StWrUoMzMz6tq1a8FOGcqe5LnBgwdHderUiTIyMqIrr7wy2rp1a0GfLVu2RNdff31Ut27dqEqVKlHPnj2jL774InaccePGRccee2xUuXLlqGHDhtGtt94a7dixo+Dfc3JyouOOOy6qVq1a7G9E8kIS25YtWxb169cvatSoUVS5cuWoefPm0eDBgws2B3DHYhRF0aOPPho1b968oK0S2x599FHvuZ555pmoadOmUYUKFaITTzwxGjNmTNSkSROv34gRI6LWrVtHFStWjD3PU089FbVs2TKqVKlS1KZNm+jFF1+MPc7MoieffDLq3bt3VKVKlahFixbR0KFD9/n3I1mMQcZgWTRw4MDIzCIziypWrBjVq1cvOu2006Lnn3++YFxGkU7CjaJ9X4+HDx8edevWLcrMzIzS09Oj4447rmCzmfHjx0cnnnhiVKtWrahatWpRx44dGT9lGPNf2Zr/0qJoLwUrAJQLN9xwg+3cudOeeuqpIjleWlqaDR8+3Pr161ckx0P5xxgEcLBi/osrc7daAdg/7du393bAAIoTYxDAwYr5L46FB1DOXXXVVSV9CjjIMQYBHKyY/+K41QoAAABA4lL+xWP37t22dOlSq1GjRqzIDw5eURTZxo0bLTs7O/EdtRh/cBXn+DNjDCKO8YeSxjUYJSl0/KW88Fi6dCmFUCAtXry4oL5IUhh/2JviGH9mjEFojD+UNK7BKEmFjb+UFx57ysovXrzYMjMzUz1MAXXHV1GuoleuXBlrf/LJJ16ff//7317MrRViZt5e33sKxvyUqoD6xRdfeLFjjz021r777ru9PtWqVfNiIZJ+TV0bNmywpk2bFoyNJBX1+EPZV5zjz6x4xmDInbBF+Zn+7LPPvNhPq0fv0bhx45SOn5ub68W++eabWLt///4pHbuklcfxh7KFazBKUuj4S3nhsedil5mZWSYWHlu3bo21q1ev7vWpWNF/OSpVquTFqlSpss/23mLq+G4/9VqWlYVHSTxHUY0/lB/F9bN/cYzB4l54pKenezF1EUn171XHcufisv55Lk/jD2UT12CUpMLGH6WtAQAAACSOhQcAAACAxJVIHY9UbwFatWqVF3v88ce92JgxY7yYe6uVuqVg+/btXmzKlCle7M0339zneZrpW7TUfdGTJ0+OtXv06OH1qV27thc78cQTvdj1118fa9eqVavQ8wRQerlzZehONUuWLPFizz//fKz98MMPe302bNiwH2dXNNy/6ZJLLvH6/PnPf/ZigwYNSun5du/eXeg5AACSwWwLAAAAIHEsPAAAAAAkjoUHAAAAgMSVSI5HqPnz58fa55xzjtenYcOGXqxmzZpezM25OOSQQ7w+agvcLl26eLH8/PyUjqVySNz6Ijt37vT6bNu2zYt9+OGHXmzChAmx9q9//Wuvz89+9jMvBqDkpZp70KlTJy82d+5cL+bOI2pLcTWfuvlxZn7+mJpz8/LyvNiWLVu8mLtduHq+3//+917sD3/4gxc79dRTY+1XXnnF66NeU/I+Si+VE+q+X+q9Ct1Stri3rJ44caIXU7mdOTk5sXabNm0SPS+EK+4xk6pf/epXXuymm27yYp07d/Zi7vVCfadNFTMrAAAAgMSx8AAAAACQOBYeAAAAABLHwgMAAABA4kokuTw06eb222+PtRs1auT1UUXyVIK2+5wVK/p/ukoYchPJzfwkm9BE8k2bNnkxN+ldnVfVqlW9mEqGdJ/zySef9PqcfvrpXiwjI8OLAUiOmmtCkpm7d+/uxWbOnOnFGjRo4MXc+UHNw2reUnPSsmXLYm2VSO4mjZuZVa5c2Yu5yeRqvlMxNc+/+uqrsfbmzZu9Pm+99ZYXU6+9+x6VhmRRaAfy3hTl+zpu3LhYe8aMGV4ftfHDHXfc4cXc8ffBBx94fYoy4bc8SbVIdejj3Jh6XKrnsGPHDi+mClKrsXXBBRfE2nPmzPH6qO+0ak5Mcr7jFw8AAAAAiWPhAQAAACBxLDwAAAAAJI6FBwAAAIDElZrK5So50U1gzMzM9PqoRByVDOkmGapE7127dnkxVZXcjanERFV9VyU6uo9VSUTqHFRCuJuAqf7GESNGeLFf/vKXXgxAckIT94YPHx5rf/75516fpk2bejG1+YQ7V4YkTe4t5s7FIdWl99bPnQPV3KnOQc2VzZo1i7VHjx7t9Xn//fe92Jlnnhn0nEhdqsn6qp+6JoZ48cUXvdhxxx0Xa48fP97r88QTT3ix7OxsLzZt2rRYW1UbV1WiH3vsMS929NFHezGEUWMm1Wrj6nuhS811avMLteGG+1g1r3366aderH///l7M3bzj8MMP9/qoTYcUdR5FhV88AAAAACSOhQcAAACAxLHwAAAAAJA4Fh4AAAAAEldqksvXrl3rxdzkcpVQtm3bNi+mkrjdx6oKvSHVa838ZCCVkKQSi5SQCpgqWX7lypVerG7durG2+hvHjBnjxUguB5ITummF8rOf/SzWdj/jZmYbN270YjVr1vRibrKg2pgjdC5z+4VUXd+bkMeGzs3unKdeh7POOsuLqc1NGjZsGGur10HNzSh+s2bN8mLq/XIri5uZffnll7H2mjVrvD4DBw70YieeeKIXcxPH3WPvLeYmBZuZzZs3L9Zu3bq11wfhUt0sImSuVn1Ck7PduW3x4sVeHzVn1ahRw4u515qHH37Y69O4cWMvlmqV9VTxiwcAAACAxLHwAAAAAJA4Fh4AAAAAEldqblCdPn26F3Pv0XRzPsx04RYVc4vrqeI/rVq18mItWrTwYtWrV4+1VVGY9PR0L6bu+XNzVGbMmOH1eeedd7yYes5169bF2vn5+V4fVVQQQHJC8znOO+88L+bmKKjCobm5uYU+ziysWKkSUkCrKKl8jtAicu7c787VZv61wEzf+/+LX/yi0OdDuFTvGVc5mxMnToy13XwcM7OsrCwvdvnll3uxRx99NNZW98DfdNNNXmzFihVezP0bVQG3r7/+2ot9+OGHXswdp+R4HBh3bjiQvLTly5fH2iovaPXq1V7sq6++KvRYKjepdu3aXkyN+fXr18faXbp08fqUBvziAQAAACBxLDwAAAAAJI6FBwAAAIDEsfAAAAAAkLhSk1zuJvKZmR1//PGx9ssvv+z1mTlzphe74447vJhK8gqhEtu2bNmyz7aZTuLeunWrF3OT0FUxvz/+8Y9e7Nhjj/VibvK9Sqz8/vvvvRiAkjdp0qRC+6iCqUpI4qRK9g1NAFYFp4pK6Hmpc3D/blUkUc3DU6ZM8WLuNSnJgloHA3eTgtBNBNQmKVWqVIm11fcAtWHAP//5Ty82atSoWPuMM87w+ij169cvtI9KQFeJwj/88IMXe/7552Ptnj17en3at29f6DngRyHjb/78+V7sxhtv9GLuRj6qmN+3337rxdSmRt99912sfdJJJ3l91IYH6lrgfi5CC1mnyn1NQzci4RcPAAAAAIlj4QEAAAAgcSw8AAAAACSOhQcAAACAxJWa5PJbbrnFi7nJPyeffLLXp1OnTl5sw4YNXsxNLleJiZmZmV6sTp06XsytCqwqAIcmQ7qVJlWSnKpYqhLt3arG6tzd5CMUj5BkXDVmVLKW+7lQj1NJZRUrpvZxdyu+qnM4ECoB2D3XgyGxt1q1al5s+/btsXboe6jGmztPhbzuZmEJgyFVxPd2XiHHUtQYd6s9qwRMd0MPM7NXXnnFiz388MNB54EwIfOWoj4X7jj6+OOPvT6/+tWvvNg//vGPoOcsKqp6tfp+cswxx3ixypUrx9pqLLvH37hx4/6e4kFDfU9ztWrVyosNGTLEi6nvVkWlXr16XkxtiKE2FrjoootibZXMHvKdQvVTc7d7vQidu/nFAwAAAEDiWHgAAAAASBwLDwAAAACJY+EBAAAAIHGlJrlcVQv96KOPYu1hw4Z5fT744AMvNnDgQC/21FNPxdpuUreZ2bx587yYqprqJsWpJEeVuOkmi5n5ST0qIU5VxfzTn/7kxdzE8Vq1anl93nzzTS82ceJEL6aqqyJ1qSZHq4SukGOlmkjufk7MzB544AEvtnTp0pSOr4Qk/ZU306ZN82IrV670YllZWbG2SjJU84rq5yZeqyTD0CRxt9+BVBt3+6k+6hzUGHcfu3btWq+P2mAj1c8LwqU6B6rr3wknnLDP9t5s2bLFi7mfi9DzDBnLeXl5Xh91XVYb25x55pmFHmvhwoWxtvq+ggOjEsnd+UjNpale19QmSuq7rxpHn3zySax96623en1CE8BD+qW6uQG/eAAAAABIHAsPAAAAAIlj4QEAAAAgcaXmxtbbbrvNi7n33apiKO3atfNiI0aM8GL33Xdfoeeg7slT9wOH3N+s7hkOyQXZtGmT18ctWGhm1q1bNy/WsGHDWFvdK6iKEZLPUfxCczdSvfdcFUSbOnWqF3v99ddjbfd+ZzNd0GjAgAFe7NVXX92PM/x/3CJ5ZmYPPfRQrH3nnXemdOzSSs0FKo/Bpe7hVsWf1PhynzM0l0L1c+9pVucQeqyQe4lDH+eel5rT1bkuWbKk0HNA6ZHq+FPcfqH3wIdQeVtuoV+zsM+i+uy71wc1r+DAhFyrQ/M5Qgr7XnrppV4f9zq9t/Ny85RVTpMqyKl89913sfZvfvMbr0/jxo1jbZXbrPCLBwAAAIDEsfAAAAAAkDgWHgAAAAASx8IDAAAAQOJKTXJ5//79vZhbQPCrr77y+rhFdszMzj33XC+2YsWKWLtZs2ZeH1UERiXLuAk76nGKShSuXr16rK2SlFRRFrdwkJnZo48+WmifcePGebFOnToFxRAmJBkttEjV3LlzvZibaDZp0iSvjyqs2bJlSy/WpEmTWFsV68rNzfVi7733nhdL1WuvvebFJk+eXGTHL42+/vprL6aS7EOK66kCgiqB0N24IjQhUo1VN5k3pI+ZnitDCrKGzrFuP5VcqTZLUAm/7hhUG3qgZIQkgKs+6nMRMrZSLeSqNov597//7cXOOeccL/bLX/4y1lZj1P17Qj8nCJdq4UtFzYkuNRZUscB169Z5MbcQpfsd2sysadOmXkx9/3apYqzuJjYbN260//73v4Uei188AAAAACSOhQcAAACAxLHwAAAAAJA4Fh4AAAAAEldqkstnzZrlxdzEa7cyt5nZcccd58UmTJjgxWbMmBFrq4Sh0EqnIYnCKhlNCanAqv5uN/HMzOzoo4+OtQ899FCvj0osatu2bWGnWa6o91m97m6yr0riVUKS0VRi2B133OHFhg4d6sXS09Nj7UaNGnl9unbt6sXURgmbN2+OtQ8//HCvzw8//ODF7rrrLi/mcjd0MNN/z0033eTFZs+eHWurjSWOOeaYQs+htFLzQ0h17tCE8JDnVMfaunVroedg5s9bBzIHutSxtm3b5sWysrK8mFvdWSWqq79bHf+xxx6LtV999VWvD1JPvC4t3PEdmqAdkuBep04dL6Y2bvnyyy+92K9//etYe/78+V6fHj16xNoklx+YVMdy6Hye6udCfW9Tmw6tWbMm1u7bt2/Q8Rs0aODF3Hny5JNP9vq43z3c7yZ7wy8eAAAAABLHwgMAAABA4lh4AAAAAEgcCw8AAAAAiSs1yeUqccpNlFq8eLHXRyVeu0npZn6ijKoCqpKBVLXxkITw0GRLN7lXJT6qJF31N7qJlSopWCU1L1u2zIupKtdlUWjSlxKaTO5S1UKHDRsWa7sVP83Mateu7cWOPPJIL+aOyfXr13t9NmzY4MVU1V43GUwlOarP2Msvv+zF/vKXvxT6fB06dPBiKrHXTXJWFdXLMjX/KO5co+YHNU7VGE818TR0041Uueeq/h41b6k51t0QombNml4f9feo51SJ9vCVpUTyECFJ43szderUWPuoo47y+gwYMMCLjRw50ouNHj061nbHtpmfdKzmfYQr7irloaZNm+bFOnbs6MXy8vJi7ddee83ro8bI4MGDvZj7fbJ3796FnmcofvEAAAAAkDgWHgAAAAASx8IDAAAAQOJKTY6Huie5atWqsbbKt1D3frt5E2b+/XbqPl91D7Q6L/ex6l4+9TjVzz2Wuo9TnWvdunW9mMstJmOmC2otXbrUi5WXHA91z2aq9/A+8cQTXuzpp5/2YsuXL/di7r247du39/qo8a2O5VJ/Y2iOkTsm69Wr5/UJvW/YLWY1fPjwoMc98MADXuzJJ5+MtZs3b+71+c9//hNrq4JKpdUf/vAHL6byN9yYyodRn3NVuCzVgn5Jc+ddlW+hPrPqtXCLZKpcGnV9UDlzb731Vqxd1gvlQXPHX+j14c9//rMXcz+LV199tdfnpZde8mLq83rWWWfF2rm5uV4f97OSal4i9o87F6h5QH3XUmPLfayaZ6pUqeLF1HffVOf4Bx980Iu53zsvvPDClI6t8IsHAAAAgMSx8AAAAACQOBYeAAAAABLHwgMAAABA4kpNcrlKoHYTZVRydq1atbzYli1bvFhIcnlooqDbLzSRVyWPugmSKiFJnWuDBg28mJuMrxKZ1PHLUlJuYb7++utY+8MPP/T65OTkeDFVLMxNulevkypQ1qRJEy/mFvlTibGqEKDiJsKq9zR0cwM3GVf1UYUA3bFmZjZ58uRYu1GjRl6fTZs2ebHGjRt7sTZt2sTaKiH4mWeeibXVa1paff/9915MJRC6f5PafEIl3qvXq7Qml7tC5071eXTHs5qbQzcWadGiRaHHQtnnXidVEvc999zjxdS8W79+/VjbLRxrZnbYYYd5MXfcmvnXn4MxcdydC0K+J+6Ne20rygJ/Ic9nFjaHdOnSxYudfPLJXswtMBlKXUPU/OdeV0I2NArFLx4AAAAAEsfCAwAAAEDiWHgAAAAASBwLDwAAAACJKzXJ5YqbvKUScxo2bOjFVGJliNCEXPe8VMJTaMxNbFNJPopKRA1JxFLVsUOfszT65z//GUt+fvPNN2P/rjYaUO+zStxzE/7S09ODjpWfn+/F3HGkKiWrRHWVwOh+DlRivDovlXztjhH1eqnjqwS1rKysWFttbqA2g1CJw+55lOUNEH744Qcvpl5nlbznzmXqtVJzlPpMu/1CK3Gr91G9/yHUubrHD63cqzZjcD/HahMENZbUvLho0SIvVp6pMRNaxbu4ueeqxowao2renTVrVqx98803e33czS7MzBYvXuzFHn744Vg7dEOCqVOnejF3A4ru3bsHHaukhVT1Dp173FhpHY9KaPL6z372s1i7Y8eOXp8XXngh6Fju9Tzk+6uZ3vSlU6dOQc+ZCn7xAAAAAJA4Fh4AAAAAEsfCAwAAAEDiWHgAAAAASFypSS5PtSqsSlZVyTMulXSjEp5U0qGbwBOSFLU37vFVgp86L5Wc6iYnh1ZyVsnDZcUvfvELy8zMLGgfe+yxsX+fMGGC95iZM2d6sYULF3oxNwl17dq1Xh9VcTZkzKxYscLrs2rVKi8WkjiskijVeYVUeM3IyPBiKqleJeO7iX/qM6CSfUOSQFVy8dlnnx1rb9q0yR5//HGvX0kbP358UL+QJG6VXK5e0zVr1ngx9z0LTSQPmcuSruqt3n81Lt3Pi9roQV0f1GuoNucoz0ISd0OrRCc9HkI2ZVGJ5Gqjh0ceeSTWPuWUU7w+kydP9mKvv/56oecZSr1e7t+k/p7SyP1bQhPJUzV79mwv9vzzz3sxd9OAevXqBR1fzQPuPKO+Q6k55c477/RiK1eujLXdDXL2R0hCu+qj/sZWrVoVeiz3vQ2uIh/UCwAAAAAOAAsPAAAAAIlj4QEAAAAgcaUmx6MoqfvtQopUhRb9c4Xerxhyb526l3ndunVeTOV4HHbYYbG2Kkqk7s0PvS+vNIqiKHb+7du3j/17t27dgo6j8mEWLFgQa8+bN8/rk5ub68WWLl3qxdwxGTr+1JipU6dOrF2jRo1C+5jpAoVu0T/VR91bHHK/scrdCB1rbjE9dT+/+7nbsGFD0LGLm8rLUNRn3x0T6vVT84O6593NPQodbyHzovobQ99r91zVfBqa2+L2U3lZIa8NtKRzN5SQHIHQwnL33HOPF8vOzo61p0+f7vUZOnRo0PFTpT53bs6funaXBjt27IjlFLrvl/rb1OdN5T88++yzsbYqGK24124zs7fffjvWzsnJCTpWSD6wmotUgUmVF/Tee+8Veg7q+95PCyfvEVJAUM2J6nPdq1evQs+LHA8AAAAApRYLDwAAAACJY+EBAAAAIHEsPAAAAAAkrtRk1KkEWbf4U2hBJ5WI4yYdqmS0kOIrZmEFclQspLBhaPK3ei2aNWsWa3/55ZdeH5XAqpIty4qaNWvGCghu2rQp9u95eXneY0IToGrXrh1rn3TSSV4ftZFBSDKxes1Vgpd6n93nVMcKLSroHksVXHMLHJn5xRXV8dXroD4Dmzdv9mLufKCSEZs3bx5rq3MvDU488cSgfur9d+ekkOKUZvq1dz/76nHqHNR75sZUoqMab2redcevej7196hx775eoeeAsCRutZHB8uXLvZiad9X8GSLVhPa7777bi6nPj5tMPnz48JSezyzsGq/OQY1lVVC2NKpUqVLwBhr78vXXX3sxd2yFXiPr16/vxdyive+8847Xp2/fvoWe597OwzVgwAAv1qdPHy8WUqhPza+pWrZsmRdTm7f06NGjyJ7TxS8eAAAAABLHwgMAAABA4lh4AAAAAEgcCw8AAAAAiSuR5HKV+KqSddxkt58mEe+LSigMqUyrziEkOTHVCr3qWCrBPTThs0WLFrG2Ond1fNWvrHKTpFTSVCh3k4LQRFWV5OxWRg99zdWYcZPpQpNlQxLa1SYPjRs39mIhmyekmlys+qn30a04XForl7/77rtB/dTGEm5MJfo3aNAg6FjuexY6P6j3LNVE9ZDxHDrfqWrB7rFCxtbeYgebkITZ7777zoupCs3qWu1uIlG9evX9OLt9++GHH7zYxIkTvZjaDGT8+PFFdh7ua5jqhjVmZosWLSqSc0rahAkTYvOze94XXHCB9xj12VUbEriysrK8WK1atbyYSsZ2ryGDBg3y+oQml7vOO+88L/btt996Mbd6eklYv369F0v1s0jlcgAAAAClFgsPAAAAAIlj4QEAAAAgcSw8AAAAACSuRJLLVSJVSGK3SnJVQpJoQ5O+QqqSqz7q+CoWklipEuNV5ejDDjss1g5NHg1NCDrYuAlqodVDVbIbDl6jRo0K6qc+524St/rcP/30017s4osv9mLufJCRkeH1UfODSlR3+4XMuXvjHkslAKuYSpJ0q8QvXLjQ61OzZs2g83KpCt0qsb+4RVEUm8NTrfQdUrk8yWrGB+LKK6/0YnPmzPFiI0eOTPQ8Ut14Rn3uZs+eXSTnlLTc3NzYtfHXv/517N/vuusu7zFq7lEbBLj9VIV0tbmBOpb7GqsNMW655RYv9r//+79e7NZbb421x44d6/U57bTTvFidOnW8WHFTSfxqU5kQ7vwQPOen9GwAAAAAsB9YeAAAAABIHAsPAAAAAIkrkRwPRd0b5t6D5xYM2xt1v7F7f5/KfwgpbqWOpYTcL2uW+j2h6v7mI488MtZW565i5HgAyXGLR5rpe2rdAmtmYXNN//79vdgNN9zgxV555ZVYW+WLrFmzxos1atTIi6m/yaWK8qk50L1vWxXgVMfq1q2bF3OLgn3yySdB5xBSQHDEiBFeTOUWFLe0tLSU8zrc4xRGXSvOOussL6busb/tttti7V/+8pf7cXZx9913X6yt8qhuvPFGL9ahQ4eUnzNJ6rvH2rVrS+BM9t/FF18cKxj5r3/9K/bvquik+tvUXNewYcNYW80N69at82J169b1Ym6emBrLf/nLX4Ji9erVi7VV/ue9997rxRT3O1lo/nGq1OuVat6be66h584vHgAAAAASx8IDAAAAQOJYeAAAAABIHAsPAAAAAIkr1cnlbvJP8+bNg47lFt0y85OBVHJnSIKhmV/oKzSJW3H/RpW0qYpnqSSrkAKL6m/cuXNnoY8DkBo1t6nE7lQT/JQ//elPQbEQav5xzz90Mw0VcwsU/jRRNQnqXNVmI1WrVo2133nnHa9PaUguHz9+vKWnpxe03ddTXetq167txX56jD3ca6n7muwtNm/ePC/28MMPx9qqwFr9+vW92AcffODFHn/88Vj7pJNO8vqkOt6LUmjSv/q+oL7HlAUtWrSItT///HOvT7NmzbzY9u3bvZhbtFO9TqoYofoeFfJeqOK/Ie+DmwRvFr6RQVFsDLGH+3erpHe1MVFIIVR1HVCf/RD84gEAAAAgcSw8AAAAACSOhQcAAACAxLHwAAAAAJC4EkkuV8l9IdWzVZKcEpKg7VbLNTNbvXq1F3MTyc1SrzauuMlSKrFy06ZNXiwvL8+LuYk+6nVQieQqqQtA0Xjuuee82JtvvunF1Oe8uKvaKqEJxaWRm+hqZrZy5UovphL73WtGz549i+q0itSiRYtiSaS5ubmxf1+xYoX3GLW5gbomusm2anOSpk2berFf/epXXqxjx46x9pgxY7w+EydO9GIzZszwYr169Yq13cR1Mz/J3kxfE0tDErdKAj7jjDNK4EwO3O233x5rv/rqq16fxYsXezH1Pcr9zqe+H6n3TyVsu9991IYS6hxUQrv7+XnllVe8Poo6VlHO6SHfRVWSeEhyeeiGSSH4xQMAAABA4lh4AAAAAEgcCw8AAAAAiWPhAQAAACBxJZJcvmvXLi+mEsFSTeK+4IILvNiGDRtibbeS+d7OK6SauXpcaAK9m1ikktmzsrK8WJcuXQo9L5UsqP4edf4AioZKXF64cKEX69Gjhxdz561f/vKXRXZeikogDImFVt8N6aeSLVUspFp6nz59vD7PPvusF8vPz/diZ599dqx96623+idbClx88cVFUu1dba6yZMmSWHvNmjWF9jHT74075lUiuTvezczOOussL+Z+DlSCu1IaEskVlVz+yCOPxNp33XVXcZ3OAXErdquxMGrUKC82ePBgLzZlypRYW42PknD88cfH2ieffHIJnUlcSKK6+txlZ2cX+riirLDOLx4AAAAAEsfCAwAAAEDiWHgAAAAASFyJ5Hhs2bLFi4XcR7xu3bqg47sFbA5W6p489TqHvq4AikazZs28mCrk6RaqUvfTK6oYYXp6eqGPC82vKA1UbpqbI3f00UcX2sdM53hcd911qZ9cGVSnTp2gGIqeKnRZnsefyr1SMdecOXO82FdffeXFpk+f7sV++OGHWFvlK6nvTI0bN/Zi//jHP/Z5nmZhOb1FLSSH6ZZbbvFibdu2LfRxKg87VaXzigIAAACgXGHhAQAAACBxLDwAAAAAJI6FBwAAAIDElUhyee3atb1YmzZtvJhbFKhbt25Bxw8pNFiUxVBKK1VsbMGCBV7smGOOKY7TAfD/U3PUX/7yFy/mzpWNGjUKOn5pLZRWlELmcFUoVhVrU69XaU2qx8Hh/vvvL+lTKHXU90QVGzBgQHGczj6VxHfMkOc87bTTUjp2SDHtUMysAAAAABLHwgMAAABA4lh4AAAAAEhcyjkee+5R3rBhQ5GcyLZt27yYW1Br8+bNXh/1/OR4/Ei9pjt27PBioa9rYfY8JuT1P1BFPf5Q9hXn+Pvp86QyBtU5qsKq7mdTFbpTz79z504vpgrnlWWqgKB7H7Ka29RrrwqrukUYC3ufy9L4Q/nENRglKXT8pUUpjtAlS5Z4yd+AmdnixYutSZMmiT4H4w97Uxzjz4wxCI3xh5LGNRglqbDxl/LCY/fu3bZ06VKrUaPGQfHrAQoXRZFt3LjRsrOzE98RhvEHV3GOPzPGIOIYfyhpXINRkkLHX8oLDwAAAAAIRXI5AAAAgMSx8AAAAACQOBYeAAAAABLHwgMAAABA4lh4AAAAAEgcCw8AAAAAiWPhAQAAACBxLDz2oUWLFvbYY48VtNPS0uytt94qsfMB9ldubq6lpaXZ1KlTS/pUUMYw/6G8uOyyy6xfv37B/Zk3UdQYg/9PuV54XHbZZZaWlmZpaWlWuXJla926td133322c+fOkj41HARWrlxp11xzjTVr1syqVKliDRs2tDPOOMMmTJhQ0qeGgwDzH0ob5kSUNMZgyatY0ieQtD59+tgLL7xg27Zts/fee89+85vfWKVKlez2228v6VNLyfbt261y5colfRoIcP7559v27dvt3//+t7Vs2dKWL19uH330ka1evbqkT+2A7NixwypVqlTSp4EAzH8oTcrrnIiygzFY8sr1Lx5mVrCibd68uV1zzTV22mmn2YgRI+ykk06yG2+8Mda3X79+dtlllwUfe8aMGXbKKadYtWrVrE6dOnbVVVdZfn6+mZl98MEHVrVqVVu3bl3sMYMGDbJTTjmloP3ZZ5/Z8ccfb9WqVbOmTZvaDTfcYJs2bSr49xYtWtj9999vl156qWVmZtpVV121368Bit+6dets/Pjx9uc//9lOPvlka968uXXt2tVuv/12O/fcc83sx1tXnn32Wevfv79Vr17dDjvsMBsxYkTsODNnzrQzzzzTMjIyrEGDBnbJJZfYqlWrCv591KhR1qtXL6tZs6bVqVPHzjnnHJs/f/5ez2vXrl12+eWX2+GHH26LFi0yM7O3337bOnfubFWrVrWWLVvavffeG/uv4mlpafb000/bueeea+np6fbggw8W5UuFBDH/obQImRMfeeQR69Chg6Wnp1vTpk3t2muvLRhTZmZDhgyxmjVr2ujRo61du3aWkZFhffr0sby8vII+u3btsptuuqlgTrzlllssiqLYuezvvInygTFYOpT7hYerWrVqtn379gM+zqZNm+yMM86wWrVq2ZQpU+z111+3MWPG2HXXXWdmZqeeeqrVrFnThg0bVvCYXbt22dChQ+3iiy82M7P58+dbnz597Pzzz7fp06fb0KFD7bPPPis4xh5//etf7aijjrJvvvnG7rrrrgM+dyQvIyPDMjIy7K233rJt27bttd+9995rP//5z2369Ol21lln2cUXX2xr1qwxsx8nyVNOOcU6depkX375pY0aNcqWL19uP//5zwsev2nTJrvpppvsyy+/tI8++sgqVKhg/fv3t927d3vPtW3bNrvwwgtt6tSpNn78eGvWrJmNHz/eLr30Uhs0aJB999139s9//tOGDBniLS7uuece69+/v82YMcMuv/zyInqVUNyY/1BSQubEChUq2BNPPGHffvut/fvf/7aPP/7YbrnlllifzZs321//+ld76aWX7NNPP7VFixbZ73//+4J/f/jhh23IkCH2/PPP22effWZr1qyx4cOHx46xP/Mmyg/GYCkRlWMDBw6MzjvvvCiKomj37t3Rhx9+GFWpUiX6/e9/H5144onRoEGDYv3PO++8aODAgQXt5s2bR48++mhB28yi4cOHR1EURf/617+iWrVqRfn5+QX//u6770YVKlSIli1bFkVRFA0aNCg65ZRTCv599OjRUZUqVaK1a9dGURRFV1xxRXTVVVfFzmH8+PFRhQoVoi1bthScQ79+/Q7gVUBJeeONN6JatWpFVatWjXr06BHdfvvt0bRp0wr+3cyiO++8s6Cdn58fmVn0/vvvR1EURffff390+umnx465ePHiyMyinJwc+ZwrV66MzCyaMWNGFEVRtGDBgsjMovHjx0ennnpq1KtXr2jdunUF/U899dToD3/4Q+wYL730UtSoUaPYed54440pvgooKcx/KG0KmxNdr7/+elSnTp2C9gsvvBCZWTRv3ryC2JNPPhk1aNCgoN2oUaPooYceKmjv2LEjatKkScFnQdnbvPnNN9+k8FeiNGMMlrxy/4vHyJEjLSMjw6pWrWpnnnmmXXTRRXbPPfcc8HFnzZplRx11lKWnpxfEevbsabt377acnBwzM7v44ott3LhxtnTpUjMze/nll+3ss8+2mjVrmpnZtGnTbMiQIQWr8IyMDDvjjDNs9+7dtmDBgoLjdunS5YDPF8Xv/PPPt6VLl9qIESOsT58+Nm7cOOvcubMNGTKkoE/Hjh0L/n96erplZmbaihUrzOzH8TF27NjY+Dj88MPNzAp+kp07d64NGDDAWrZsaZmZmdaiRQszs4LbqPYYMGCAbdq0yT744APLysoqiE+bNs3uu+++2HNceeWVlpeXZ5s3by7oxxgsm5j/UJoUNieOGTPGTj31VGvcuLHVqFHDLrnkElu9enVsLqpevbq1atWqoN2oUaOCOXP9+vWWl5dn3bp1K/j3ihUremModN5E+cMYLHnlfuFx8skn29SpU23u3Lm2ZcsW+/e//23p6elWoUIF7567HTt2FOlzH3vssdaqVSt77bXXbMuWLTZ8+PCC2wzMzPLz8+3Xv/61TZ06teB/06ZNs7lz58YG9U8v7ihbqlatar1797a77rrLJk6caJdddpndfffdBf/uJmmnpaUV/NSan59vffv2jY2PPWP5hBNOMDOzvn372po1a+yZZ56xyZMn2+TJk83MvNtpzjrrLJs+fbpNmjQpFs/Pz7d77703dvwZM2bY3LlzrWrVqgX9GINlE/MfSpu9zYm5ubl2zjnnWMeOHW3YsGH21Vdf2ZNPPmlm8flMzZnuWC5M6LyJ8okxWLLK/a5W6enp1rp1ay9er149Lxlo5syZdvLJJwcdt127djZkyBDbtGlTwYVxwoQJVqFCBWvbtm1Bv4svvthefvlla9KkiVWoUMHOPvvsgn/r3Lmzfffdd/L8UD4dccQRwbUQOnfubMOGDbMWLVpYxYr+R3X16tWWk5NjzzzzjB1//PFm9mOyrnLNNddY+/bt7dxzz7V3333XTjzxxILnyMnJYQyWU8x/KO32zIlfffWV7d692x5++GGrUOHH/yb63//+d7+OlZWVZY0aNbLJkycX/MeZnTt32ldffWWdO3c2s/2bN3FwYAwWr3L/i8fenHLKKfbuu+/au+++a7Nnz7ZrrrnG24FlXy6++GKrWrWqDRw40GbOnGljx46166+/3i655BJr0KBBrN/XX39tDz74oF1wwQVWpUqVgn+79dZbbeLEiXbdddcV/FfJt99+20uuRNmzevVqO+WUU+w///mPTZ8+3RYsWGCvv/66PfTQQ3beeecFHeM3v/mNrVmzxgYMGGBTpkyx+fPn2+jRo+1//ud/bNeuXVarVi2rU6eO/etf/7J58+bZxx9/bDfddNNej3f99dfbAw88YOecc07BJDd48GB78cUX7d5777Vvv/3WZs2aZa+99prdeeedRfI6oHRi/kNxK2xObN26te3YscP+9re/2ffff28vvfSS/eMf/9jv5xk0aJD96U9/srfeestmz55t1157bWxs7++8ifKDMVg6lPtfPPbm8ssvt2nTptmll15qFStWtN/+9rfB/7XP7Md7/EaPHm2DBg2yY4891qpXr27nn3++PfLII7F+rVu3tq5du9oXX3wRqwJs9uP9/Z988on93//9nx1//PEWRZG1atXKLrrooqL4E1GCMjIyrFu3bvboo4/a/PnzbceOHda0aVO78sor7Y477gg6RnZ2tk2YMMFuvfVWO/30023btm3WvHlz69Onj1WoUMHS0tLstddesxtuuMHat29vbdu2tSeeeMJOOumkvR7zxhtvtN27d9tZZ51lo0aNsjPOOMNGjhxp9913n/35z3+2SpUq2eGHH27/+7//W0SvBEoj5j8Ut8LmxGrVqtkjjzxif/7zn+3222+3E044wf74xz/apZdeul/P87vf/c7y8vJs4MCBVqFCBbv88sutf//+tn79ejP7cdei/Z03UT4wBkuHtGh/b0wDAAAAgP100N5qBQAAAKD4sPAAAAAAkDgWHgAAAAASl3Jy+e7du23p0qVWo0YNS0tLK8pzQhkVRZFt3LjRsrOzC7aiSwrjD67iHH9mjEHEMf5Q0rgGoySFjr+UFx5Lly61pk2bpvpwlGOLFy+2Jk2aJPocjD/sTXGMPzPGIDTGH0oa12CUpMLGX8oLjxo1ahQ8QWZmZqqHOWCbNm3yYg888IAX21MVco8BAwZ4fa688sqiO7EUDR8+3Iu9+OKLXqx3795e7Nprr03knEJt2LDBmjZtWjA2klRaxl9pMHfuXC82ZswYL1arVi0v9tO6CmZm3bp18/pkZ2cfwNkVTm2sl8p/QSvO8WfGGEQc4w8ljWswSlLo+Et54bHni0FmZmaJDrpDDjnEi7lfpszMq/xcrVo1r09p+PBUr17di6mq1VWrVvVipeH8zVL70pjqc5T0+CsNMjIyvJgaH2rMu/3UhJH061tUC4+ieGwqz8MYxE8x/lDSuAajJBU2/kguBwAAAJA4Fh4AAAAAEpfyrVYl4eqrr/Zin3zyiRfbvXu3F2vQoEGsfdddd3l9nnjiCS+mkqcOO+ywWDsrK8vrs2bNGi82ceJEL7Z9+/ZYe8OGDV6fRo0aebGnn37ai73zzjux9jPPPOP1admypRdD6ZDqLUfXXHONF/viiy+82M6dO73Ytm3bCj3+//7v/3qxadOmebHNmzfH2ieccILX5+GHH/Zi6hawXbt2xdrqlkoAAFC28IsHAAAAgMSx8AAAAACQOBYeAAAAABJXqnM8Pv7441h7wYIFXp9OnTp5MZUn4eZ9HHXUUV6flStXerH58+d7Mbd2SJcuXbw+06dP92JqW9y6devG2urvWbFihRc79NBDvdi6deti7d/97ndeH1UnBKVDqjkey5Yt82KqZoebT2RmVrly5VjbHUNmZv/5z3+82NatW71YpUqVYu1vv/3W66M+Ayq3yj1XlQcCAADKFn7xAAAAAJA4Fh4AAAAAEsfCAwAAAEDiWHgAAAAASFypTi7/8MMPY+0WLVp4fVQBNDfJ1cxsx44dsbab1G2mE19Vwq9b3Ewl0apk2IyMDC9Wo0aNWPuHH37w+lSvXj3ovJo0aRJrqyT7zz77zIv16tXLi6H4qcKXFSr4/23ATbxetGiR1yc9Pd2LqQKC7kYJaoyqRHW10YObqK7G6G9/+1svpqi/GwAAlG1c3QEAAAAkjoUHAAAAgMSx8AAAAACQOBYeAAAAABJXqpPLly5dGmtnZmZ6fUKTy92EcPU4NznWTCfbqgrQrkMOOcSLqWTvzZs3x9oqkVydg0q+df9GVfWa5PLSQSVeq+Ry5eOPP4613QRxM3/TgtDjq7Gtjq8+P+4GDh07dgw6lqq83rBhw1g7NPEeAACUXly5AQAAACSOhQcAAACAxLHwAAAAAJA4Fh4AAAAAEldqkstV8qibjJ2VleX1UbGtW7cW+nxuIqyZn5xtZpafn+/F3ArQKildHV/9je6xVB91rKpVq3oxl0ounzNnTqGPQ/LUe6PGkTJlypRY203ENjOrWbOmF8vJySn0PNTmBitXrgw6L3fzh/POO8/r88EHH3ixY445xou5f5NKxgcAAGULv3gAAAAASBwLDwAAAACJY+EBAAAAIHGlJsdjwYIFXszNd9iyZYvXRxUVrFWrlhdz8yQ2btzo9alY0X85VEE1935zlVOi7klXhQ3dHA/1OJUPoIqnqfvzXT/88EOhfZC80PdZGTt2bKF9VI5H7969vdj3339f6DmoHI+jjz7ai02dOjXWVp+d888/34s1b97ci7lUQU6Ubrm5uV5syZIlXowCpgBw8OAXDwAAAACJY+EBAAAAIHEsPAAAAAAkjoUHAAAAgMSVmuTyvLw8L1alSpVYWyVUqyRdlazqFgesUaNG0LFUAUE3SVydl0okV4UAq1WrFmurJFpVWK5Ro0ZebNOmTbG2Ovc6dep4MZU8XK9ePS+GoqOKVarNDRQ3IXzz5s1en88//9yL1a5d24u5Y14V5DzppJO8mEoSHjBgQKz9hz/8weujHEiiPUqH119/3YvdddddXqxPnz5ezN0IoX379kV2XgfiP//5T6zdpk0br0/Xrl2L63QAoFzgFw8AAAAAiWPhAQAAACBxLDwAAAAAJI6FBwAAAIDElZrk8tWrV3sxN4F6/fr1Xp9PP/3Ui1188cVeLDs7O9ZWyezbtm3zYm7yt5lO9napRGH1OLdyuXpc/fr1vZhKHnaT3Nu1a+f12bBhgxebPXu2FyO5PFmhlbjHjx/vxVasWBFrq2Rc9Xlau3atF6tVq1asrTYaaNiwoRebN2+eF1PjDaXX7t27vZjaKOOHH37wYjfccEOhfVq2bOnFpk+f7sWuuuqqWHvixIn+yQZyN9R4/vnnvT6rVq3yYlu2bPFiGRkZsbZ7DcH+cTeROJANJJ544olYu3Pnzl6f0Oume63r2LGj16dx48b7e4oH7I9//GOsfeSRR3p9zj333OI6HaDI8IsHAAAAgMSx8AAAAACQOBYeAAAAABLHwgMAAABA4kpNcrlKat24cWOsPXbs2KDHffXVV17shBNOiLVVkqNbQddMJ4S7SZmqSvn27du9mJtIbma2devWWNutPm6mK7FXr17di02ePHmfxzYza9KkiRebNm2aFzv++OO9GIpOaGKlWz3ZzE/SVONKVahXGyW4Y1cdSz1OufDCC2Ptm266yevzyCOPeDH1WhRlIio0VTFeWbNmjRfLycmJtVu0aOH1CU3udedwNeZPPvlkLzZy5EgvNnz48FhbJY2ruW3gwIFerLRUUC8vdu3aFWurjVSUMWPGeLFf/OIXsbbaDMUdC2ZmU6dO9WLutfSpp57y+qiNEo499lgvdswxx8TaasON3NxcL/bRRx95sYULF8baaiyTXF56qflVjWV3bLVq1SroWGX5msgvHgAAAAASx8IDAAAAQOJYeAAAAABIXKnJ8fjf//1fL9a7d+9Ye926dV4ft5CQmS4a5RbJq1q1qtdH5XOoXA23yNaOHTu8PuqePHV89/5SN6/FzOyLL77wYq+//roXc++fV0W9/vGPf3ixKlWqeDEULff+5tACgh988IEXc/M31Pu8efNmL6bGaUgxTFWMULnkkktibfU3nnfeeV7s7bff9mJl+f7VJKmif+q1Cnn9Qsdghw4dvFjt2rVj7W+//dbr4xanNPPvgTfzx9f111/v9VG5aUcddZQX+93vfhdrqzwNtzDt3oTkUqn8voNNaCFKN6dj1qxZXh91XVuyZIkXe++992JtNdbUe9OsWbNCzysrK8vro2KLFy/2YlOmTIm1Ve6Jym35+c9/7sXcIsdz5szx+kBLOifi+++/j7Xvu+8+r4/Ke/vkk0+8WN++fWNtlRtZEtfDv//977H20Ucf7fXp1atXSsfmFw8AAAAAiWPhAQAAACBxLDwAAAAAJI6FBwAAAIDElZrkcsUtnPfmm28GPU4lFI4fPz7WVsmKoQW1XCq5TsXcBGMzs8zMzFhbJfKqx7nJnWZmDzzwwD7PEyUnJDlMFbVUxaYOPfTQWHvbtm1eH7V5QtOmTb2YmyTXuHFjr49KFFXcz+uECRO8PhdffHHQsQ5GIUm6oe9F0v7yl7/E2qeeeqrXR20akJGR4cXchN8GDRp4fdxERzOzE088sdDzPBDuZ7a8J5Kr658bU31CNykYNWpUrP3oo496fa677jovpor3hSRaL1++3IupedjdiCM9Pd3roz6bqrCq20+Nd7fQqpn+XLvJ62vXrvX6uIn3anOasizkO1mqm2uozVbUJhkjRozwYm7ivzJjxgwvpgo+uu+r+13VrGgLOqsC29dee60Xc8+/X79+Xh+SywEAAACUWiw8AAAAACSOhQcAAACAxLHwAAAAAJC4UpNcrpKI3EQtleClEv5UpV03yUslH6njq2q1buXR0IRPdSz3PNxK5ma6QmoIlZSuhCYHInUhY0RVKVfj2600r5Lk1FjLz8/3Ym5ienZ2ttdn5cqVQee1aNGiWPuuu+7y+iiXXXaZFxsyZEjQY0uDKIpi81dIYqOa70LGyLJly7zYSy+95MXef/99L/bxxx8XevxQ3bp1i7VV5WV1DqpqszvvqqRdVdE6JLlczYHr16/3YuqzsWXLllh76dKlXp+fVsxWxyhLQsakukbm5OR4sbZt23qxe++9N9Z+/vnnvT6bNm3yYu5mGmZmv/rVr7xYqtatWxdrjx492uszdepUL+ZuzGHmJ6a3atXK66PmU5UI7ya9qznXTS5Xr1/S3PnPHUepJn/vT78Q7vXpjjvu8Pqo8a2q3btVydVmPzVq1PBiKlG9Zs2asfbw4cO9PpMnT/ZiderU8WLuGJk9e7bXx30dzMx69uzpxdyNbWbOnOn1SRW/eAAAAABIHAsPAAAAAIlj4QEAAAAgcSw8AAAAACSu1CSXqyQiN+k5NIlbVQt1Va5c2Ytt3brVi6lkSDdhMTRRXZ2/+5yqaqo61xDq+YoyWQuaSmh1x7KqNv7EE094saOPPtqLucmc27dv9/qoMaOS3Vx169b1YvPnz/di6m/MzMyMtVWCuFvd3Mxs3LhxXmzkyJGx9jnnnOP1Ka3cz/6BfOZuvPHGWPuLL77w+rivu5mucuxWp33qqadSPi/XP//5Ty/26quvejH1XrtJjKr68r///W8vpjbd6N27d6ztJt+amW3YsMGLhWwiopJ7DzvssIL/7yajlxYqaVyNSXW9cMebGleqqvwpp5zixd59991Y233fzXTSuNpYwBXy/u2Nm9x70UUXeX1UTCXbPvnkk7H2hx9+6PVRm4GojQvcef2nGxmUJmlpabHxlOp8p74zuRs2rFq1yuujkqXXrFnjxebOnRtrN23a1Otz1FFHeTG1sYB7/VNzqXq/TjvtNC/mUtduNY+p+c8dM+5GNGZm9erV82LuRgZmZmeddVasrTZAcDczCN3cgF88AAAAACSOhQcAAACAxLHwAAAAAJC4UpPjEULdV67u41T3UIbcr6sKQKliVm5ehjqWul9Rnat7X7C6v69NmzZeLETovb0oWiEFGR944AEvpu7ZdO8/NvPvTVUFvFTeh8ofCqH+npAcJvXZUbktVatW9WLvvfderK3uy//lL3/pn2wJKKp7nJUjjzwy1n755Ze9Pj/NM9ijdevWXswtTHXbbbd5fVSxrBBqDlT3S6t7od0xoYpZderUyYupQrFuYa+uXbsW+nx7487Xq1ev9vrUr1+/4P+XVAHB3bt3xz6P7vgLHY9PP/20F3PzMNzxaGZ20kkneTGV2+D2++yzz7w+7n3lZmHXP/U3hl7/QgreKSonz83VUN9ZVA6Tmt/cuV/lrroFX9Wxi5t7bQgtYqfyMtxinyoXQeUuqpwf930+4ogjvD6ffvqpF1OF+ho0aBBr/3Qe2EO9p02aNPFiLpUnoeZSt/ClmX+NV3OSeg1Vkc6srKxYW+UXujk3oeOPXzwAAAAAJI6FBwAAAIDEsfAAAAAAkDgWHgAAAAASV6aSy0P98MMPXsxNflTFAhWV6KMSKV2qGFNI0nto4UFVUMZNXFLJdShaoe+XSxXXU4nkKuHcLRinkmznzZvnxVTxLzcZVyWjhYx3RRVUU4mAqthYURa3S9r27dtjyfxu8p6bpGcWnsB65ZVXxtqqKJ9K7h08eLAXO+6442Lt0aNHF/p8ZnoMfv7557H2999/7/VRc2zHjh292LHHHhtrq00QVEK4Kkb55Zdfxtrq3FVSpiom5n621Zz702ToVAu9HqgKFSoEF9fdF5X46ib1q6RdtblB+/btvZj7+nXu3LnQPma6CJorZEOPvQn5LKrPyjPPPOPF+vTpE2vPmTPH66OKtFavXt2LufOG+hvd5HKV0Jy0oUOHxjYScTetuPzyy73HqCJ2qhCqm9itXjuVdL9y5cpCn1Mls6uCvWp8u9e26667zuujvn+p66s7t6kNCdS1W1mxYkWsrQouhm6s9PXXX8faquBnqvjFAwAAAEDiWHgAAAAASBwLDwAAAACJY+EBAAAAIHFlKrk8NCFz0qRJXsxNqFGVnVWisEpscxOLVB+VCKaSbd1ESpW8px7nJhGZ+cmB6u85kCS8g01IRdvQpM533nkn1lZJlCq5XL33bgKhqhaqKp2qMb9w4cJYWyW2qfNSf7e7UYLSsmVLL/bcc88V+rjSbMGCBbEERzcRVSUZqs+mqvTuJk6qhG23Irl6nJmf/HzVVVd5fVTCpdoUwz3W4Ycf7vVRCeFu8q2Z2ZQpU2Ltxo0be30Ut6qxmdnxxx8fa0+fPt3rc+qpp3ox9Xl05+K2bdt6fX76OSiKBO+SpCoThyS1Ll++3ItVrVrVi7mbAbhVvs3M5s+fX+jzKeq6mZeX58XUmHE3o1EbyqhzHTZsmBdr1qxZrF2rVi2vj9o8QSX8up8xVXHanXND5uCi1rt379imIe45qHE1c+bMlJ5LbU6irpELFizwYu55qflJHUvF3OukGn9qrKljufOGGgtqDlbJ+O7YUteB0O/R7vda9Tn/6quvYm01RpWyPVMCAAAAKBNYeAAAAABIHAsPAAAAAIlj4QEAAAAgcWUquTw0eU9VbXaTqlWSj0q+VYnjbqKPSugKTeJ2k0VVBVOVWJSTk+PF3EqwoUlE0Iry9XMrSbsVw810hVRVedkdM6qi6GeffebF2rRp48Xcz9TYsWO9Pmp8q0RoNU5dKjk6hErQLi3jOz09PZbE5yZaq9d99uzZXkwlC7oJfaoKsBo3Krly0KBBsXa/fv28PqqadMi8OHfuXK+Pqiw+Y8YML+ZuXqCSPtU5qPHmnofaGGH8+PFeTG3G4G4AoBKM69evX/D/1WeiOEyaNCmWVPrmm2/G/r1Ro0beY9Troq49bqK1+vyqv1tVQp41a1asrT7TqoL8qFGjvJibzKvmKJUkHrIphkr+VpsnqGO58/V3333n9VHjVsXcJGO1ocwVV1wRa6uNRpJWsWLF2Ln+4he/iP272y4O6vV03y81z6jEbjVOQ65j6jugOr4bKy3XtRDueHM3vtkbfvEAAAAAkDgWHgAAAAASx8IDAAAAQOJKdY6He4+tuqdSFW5ZuXKlF3PvSVb30al7+RT3fmOVB6LuOVXHd+8DVIXF1H2BKsfDVdYLWpU26r1Rr7FbEM3MbOrUqbF2vXr1gh6n7sU+9NBDY+3WrVt7fdS9vl9//bUXcwsM9erVy+vz+eefezF1z71b8Ep9xrKysrxYiNJ832u1atVi97m7BclUUT51L2zt2rW9mFvATY0blQd09NFHe7FFixbF2iqfQ+VgqCJobiGv7Oxsr4/KiVD3RrvF5tS91yqmPo/u66MKYqoxuGzZMi/mXlvU/P3TvAh1LSoO7dq1i+UHuePPbZuZrV692os1aNDAi7n5Ier9U2N51apVXsx9D1UeiHqNH3jgAS/m5sipwmWh74f7nOoc1OdCjSM3puatkFw4M7Mjjjgi1lbv46WXXprSsYtSZmZmbPy540GND/W5VDkR7veo0Mcp7nuh5hRV+FIdX809LjWOQr5jhhacVTH3b1KfgdDXyz2+uub/NMfNLDyHk2+mAAAAABLHwgMAAABA4lh4AAAAAEgcCw8AAAAAiSvVyeUhiTgqcalOnTpezC2+o4p1qYRclditEpxcKqlH/T3usVQymjqWKpLoUonPpbkQW3EJTdRyX7/QZP1bb73Vi7lJa+o1V4ltKqHQLRioHte2bVsv5iYrmvkF6hYuXOj1ad++vRdTBfDcpDU32dxMJyqXdTVq1IjNJ+44UXONGm9qkwo3iVvNbSpJVxUuc59TFSRTxQjV/OMmMaq/R22MoAqxucn3quCdGm/q9XLPSyUAqyR+lRTZrFmzQs/hp5szhCScJqFmzZqxMXbRRReldBx1XXNfF1WUT40/9Vq412o1P6jkaDVXrlu3rtDnUxseqLnSHd8qUd19PvU4M//7gnptVHKvmiPcgo5NmjTx+rhjObSAW5Lcv0X9bSif1OdL4RcPAAAAAIlj4QEAAAAgcSw8AAAAACSOhQcAAACAxJX55HJVtVclWIVUrVSVGUMqj4ZU493bsbZs2RJru8mkZroKekhinkqMV0l4oZUsywJ3zKhkRfXapVrl/S9/+YsXU5W+TzzxxFh74sSJXh/1PqjkWDepUf2NeXl5XkwlE7ueffZZL6b+HrcSu5mfRKjOS1XeLusqV64cG1Pue5aTkyMf43KrlJuZrV+/PtZ2K82bhVe6dan3R1VZD6lCrTbmUOegnjOk2rJKUFWfWXfcq+uDm7RrphPV3flaVYP/6TmkOoeUFmr+SU9P32fbzK9eDAD7UrZnSgAAAABlAgsPAAAAAIlj4QEAAAAgcSw8AAAAACSuVCeXh1DVZFVyuVvhUyVyhlZSdZN7Q5PL1fHdiqgqIVwdSz2nm4hat25dr09Iwn5Z5iaEqtdcUVV7Fy1aFGv/7W9/8/o8+uijXqx79+5ebNmyZbF2jx49vD5ff/21F1NJu24irNq0IDTRdcSIEbF23759vT7vvfde0LHc51RjTSXLK+5j1d9YWv3sZz+LtVWS9dy5c72YO0bM/A0Bvv/+e6+PSvhV84O7SUXIxgVmZoceeqgXcyvQq00xVLKyqkruHutAkrTdz7HaUEHNsWqzEff8Q8cuAGDv+MUDAAAAQOJYeAAAAABIHAsPAAAAAIkr8zkequCVul/Xvb/ZzYcwM6tTp44XU/f+u/ebq3u41b3SqviXm+Oh7pVWx1fn5d4jrnI8DjZvvPGGF/uf//kfL6beL3WfvEvd9/3tt996sWOOOSbWnj59utenVatWXmzmzJlezD1Xdc+6yhcYPny4F1M5HS411kKovIzs7Oygx7pjviwXuVQ5C23btg2KYf+440TllAAASg6/eAAAAABIHAsPAAAAAIlj4QEAAAAgcSw8AAAAACSuVCeXhxS7W7BggRdTybau/Px8L9ayZUsvphLVXSpR3S2KZaaL2bnnsWXLFq+PWzDOTCecq2JzrvJeQDAvLy/Wvvnmm70+7kYDZjrxP4RKvFZjZtKkSbH2cccd5/VRxeHUeblF0TZt2uT16d+/vxfr16+fFwsRWoTRTexVSdU1a9YMOlZ5H6cAAByM+MUDAAAAQOJYeAAAAABIHAsPAAAAAIlj4QEAAAAgcaU6uTyEqmhctWpVL+YmbauEbZWUvn37di/mJvOq6umHHnpo0LFcKllZ/Y07duzwYqpStEslpZcnI0aMiLXVe9OwYUMvphK03fdCVTJXr6dKqnaTpadMmeL1adKkiRfr0qWLF/v6669j7dzcXK/Pm2++6cUUNxFefS7S09ODjhUyvhs0aBB0LAAAUP7wiwcAAACAxLHwAAAAAJA4Fh4AAAAAEsfCAwAAAEDiynxyuaqqrJKx3cTX+vXre31UUrBKtnWPpZ6vdu3aXmzz5s1ezE3cVRWbQ5LGzXRSvUv9jeXJpZdeGmv/97//9frMmjXLi6lK9u7rrhLJ1XuvXuNq1aoVeqz58+d7MbdKuZnZunXrYu2xY8d6fUKpKu4utelCyLF27tzp9QmtEO8m9oecJwAAKN3K97dQAAAAAKUCCw8AAAAAiWPhAQAAACBxZf7G6Tlz5ngx9x54M/8+9bVr13p9VEwVRVu9enWsvWHDBq/PvHnzvNjy5cu92NSpU2Pt7t27e31U/oHKBVH5LgcbN5fio48+8vosWbLEiw0ZMsSLvfvuu7G2W7jPLKxo3oFQRQvfe++9WPukk05K9BwOO+ywoH7u565ly5ZenyOPPDLoWCp3BgAAlG384gEAAAAgcSw8AAAAACSOhQcAAACAxLHwAAAAAJC4Up1cHlLsrkuXLl5s1apVXswtGKgKA9arV8+LqSTXpUuX7rNtZnbMMcd4sW3btnmxhQsXxtqqWGD16tW9mJuUbmbWsGFDL+Yq7wUEQzRp0sSL3XnnnUExl9rc4Pvvv/di7sYFqsCkSsYOTexO0s033+zFjj32WC/mfsbU31inTp2g56RgIAAA5Q/fQgEAAAAkjoUHAAAAgMSx8AAAAACQuJRvpN5TwE4Vzysqu3btirVVvoUqsKZyKdx+u3fv9vps3rzZi6nn3LJlS6HPp44Vcl4qx0PlZajCde57oe6Td19Ts6Ir1rbn+VVxw6JWHOMvhCruuGnTJi/mjgeVY6SOlfTfF/IZU9Tf6J6/W7TTTOcrFZXiHH8/fZ6SHoMoHRh/KGkH4zUYpUfo+Et54bFx40YzM2vatGmqh0ARe/nll0v6FMzsx7GRlZWV+HOYMf7gK47xt+d5zBiDiGP8oaRxDUZJKmz8pUUpLo13795tS5cutRo1asj/So+DTxRFtnHjRsvOzk589yzGH1zFOf7MGIOIY/yhpHENRkkKHX8pLzwAAAAAIBTJ5QAAAAASx8IDAAAAQOJYeAAAAABIHAsPAAAAAIlj4QEAAAAgcSw8AAAAACSOhQcAAACAxLHwAAAAAJA4Fh7/v3vuuceOPvroffY56aST7MYbbyyW80H5V9iYGzJkiNWsWfOAnuOyyy6zfv36HdAxgAO1v+MwNzfX0tLSbOrUqYmdEw4ejD+UFMaSr8wuPNLS0vb5v3vuuafIn/PNN9+0+++/f599Chtk9957r/3qV78ysx//hrfeequIzxLFZdKkSXbIIYfY2WefXdKnUuJYlJcNK1eutGuuucaaNWtmVapUsYYNG9oZZ5xhEyZMKOlTw0GA8YfixHgrnSqW9AmkKi8vr+D/Dx061AYPHmw5OTkFsYyMjCJ/ztq1a+/z37dv317oMd5++2277bbbiuqUUIKee+45u/766+25556zpUuXWnZ2dkmfErBP559/vm3fvt3+/e9/W8uWLW358uX20Ucf2erVq0v61HAQYPyhOJXX8bZjxw6rVKlSSZ9GysrsLx4NGzYs+F9WVpalpaXFYmrhMW7cOOvataulp6dbzZo1rWfPnrZw4cJYn5deeslatGhhWVlZ9otf/MI2btxY8G/uf9Vt0aKF3X///XbppZdaZmamXXXVVXbooYeamVmnTp0sLS3NTjrppIL+ixcvtm+//db69OljLVq0MDOz/v37W1paWkHbzOzpp5+2Vq1aWeXKla1t27b20ksvxc4xLS3Nnn76aTvzzDOtWrVq1rJlS3vjjTdSfCWRivz8fBs6dKhdc801dvbZZ9uQIUNi/z5u3DhLS0uzjz76yLp06WLVq1e3Hj16xBbHrvnz51vLli3tuuuusyiKZJ+3337bOnfubFWrVrWWLVvavffeazt37iz0fO+9916rV6+eZWZm2tVXXx1bJG/bts1uuOEGq1+/vlWtWtV69eplU6ZMiT3+k08+sa5du1qVKlWsUaNGdttttxU872WXXWaffPKJPf744wW/OObm5hZ6Tihe69ats/Hjx9uf//xnO/nkk6158+bWtWtXu/322+3cc881M7NHHnnEOnToYOnp6da0aVO79tprLT8/v+AYe27/Gz16tLVr184yMjKsT58+sf8QtGvXLrvpppusZs2aVqdOHbvlllu88Txq1Cjr1atXQZ9zzjnH5s+fXzwvBEoE4w/FKWS8paWl2bPPPmv9+/e36tWr22GHHWYjRoyIHWfmzJl25plnWkZGhjVo0MAuueQSW7VqVcG/7+9Y2rVrl11++eV2+OGH26JFi8ys8Ov6nu985557rqWnp9uDDz5YlC9V8YvKgRdeeCHKysraZ58dO3ZEWVlZ0e9///to3rx50XfffRcNGTIkWrhwYRRFUXT33XdHGRkZ0c9+9rNoxowZ0aeffho1bNgwuuOOOwqOceKJJ0aDBg0qaDdv3jzKzMyM/vrXv0bz5s2L5s2bF33xxReRmUVjxoyJ8vLyotWrVxf0//vf/x6dfvrpURRF0YoVKyIzi1544YUoLy8vWrFiRRRFUfTmm29GlSpVip588skoJycnevjhh6NDDjkk+vjjjwuOY2ZRnTp1omeeeSbKycmJ7rzzzuiQQw6JvvvuuwN9KRHoueeei7p06RJFURS98847UatWraLdu3cX/PvYsWMjM4u6desWjRs3Lvr222+j448/PurRo0dBn7vvvjs66qijoiiKomnTpkUNGzaM/u///q/g391x/emnn0aZmZnRkCFDovnz50cffPBB1KJFi+iee+7Z63kOHDgwysjIiC666KJo5syZ0ciRI6N69erFxvUNN9wQZWdnR++991707bffRgMHDoxq1apVMHaXLFkSVa9ePbr22mujWbNmRcOHD4/q1q0b3X333VEURdG6deui7t27R1deeWWUl5cX5eXlRTt37kz5tUUyduzYEWVkZEQ33nhjtHXrVtnn0UcfjT7++ONowYIF0UcffRS1bds2uuaaawr+/YUXXogqVaoUnXbaadGUKVOir776KmrXrl30y1/+sqDPn//856hWrVrRsGHDou+++y664ooroho1akTnnXdeQZ833ngjGjZsWDR37tzom2++ifr27Rt16NAh2rVrVxRFUbRgwYLIzKJvvvkmkdcCxY/xh+IUMt7MLGrSpEn0yiuvRHPnzo1uuOGGKCMjo+Dat3bt2qhevXrR7bffHs2aNSv6+uuvo969e0cnn3xywTH2Zyxt3bo16t+/f9SpU6eC73wh13Uzi+rXrx89//zz0fz58wu+t5ZVB83CY/Xq1ZGZRePGjZP/fvfdd0fVq1ePNmzYUBC7+eabo27duhW01cKjX79+sePsa8Lq3bt39Pe//72gbWbR8OHDY3169OgRXXnllbHYhRdeGJ111lmxx1199dWxPt26dYtN0EhWjx49osceeyyKoh8nuLp160Zjx44t+Pc9C48xY8YUxN59993IzKItW7ZEUfT/Fh4TJkyIatWqFf31r3+NPYc7rk899dToD3/4Q6zPSy+9FDVq1Giv5zlw4MCodu3a0aZNmwpiTz/9dJSRkRHt2rUrys/PjypVqhS9/PLLBf++ffv2KDs7O3rooYeiKIqiO+64I2rbtm1sYfXkk08WHCOK/M8GSqc33ngjqlWrVlS1atWoR48e0e233x5NmzZtr/1ff/31qE6dOgXtF154ITKzaN68eQWxJ598MmrQoEFBu1GjRgVjJ4p+/Hw0adIk9sXPtXLlysjMohkzZkRRxBe/8orxh+JU2Hgzs+jOO+8saOfn50dmFr3//vtRFEXR/fffX/Afi/dYvHhxZGZRTk6OfM69jaXx48dHp556atSrV69o3bp1Bf1DrutmFt14440pvgqlT5m91WpfFi1aZBkZGQX/+8Mf/mC1a9e2yy67zM444wzr27evPf7447GfZ81+vHWqRo0aBe1GjRrZihUr9vlcXbp0CTqnDRs22CeffFLwE9/ezJo1y3r27BmL9ezZ02bNmhWLde/e3Wu7fZCMnJwc++KLL2zAgAFmZlaxYkW76KKL7LnnnvP6duzYseD/N2rUyMwsNqYWLVpkvXv3tsGDB9vvfve7fT7vtGnT7L777ouN7SuvvNLy8vJs8+bNe33cUUcdZdWrVy9od+/e3fLz823x4sU2f/5827FjR2zMVapUybp27VownmbNmmXdu3e3tLS0gj49e/a0/Px8W7JkyT7PGaXL+eefb0uXLrURI0ZYnz59bNy4cda5c+eCWwXHjBljp556qjVu3Nhq1Khhl1xyia1evTo2vqpXr26tWrUqaP90nly/fr3l5eVZt27dCv69YsWK3jw5d+5cGzBggLVs2dIyMzMLbjXdc+sByifGH4pTYePNLH6NTk9Pt8zMzILxNG3aNBs7dmzsmnv44YebmRXcThU6lgYMGGCbNm2yDz74wLKysgriodf10O+aZUG5XHhkZ2fb1KlTC/539dVXm5nZCy+8YJMmTbIePXrY0KFDrU2bNvb5558XPM5N1klLS7Pdu3fv87nS09ODzun999+3I444wpo2bbqffw1Km+eee8527txp2dnZVrFiRatYsaI9/fTTNmzYMFu/fn2s70/H1J4v7j8dU/Xq1bOuXbvaq6++ahs2bNjn8+bn59u9994bG9szZsywuXPnWtWqVYvwL0R5VrVqVevdu7fdddddNnHiRLvsssvs7rvvttzcXDvnnHOsY8eONmzYMPvqq6/sySefNLP4xhlqnoz2kpO0N3379rU1a9bYM888Y5MnT7bJkyd7z4PyifGH4rS38bbHvr735efnW9++fWPX3KlTp9rcuXPthBNOMLPwsXTWWWfZ9OnTbdKkSbF46HU99LtmWVAuFx4VK1a01q1bF/zvp7tRderUyW6//XabOHGitW/f3l555ZUife7KlSub2Y8JRD/19ttv23nnnReLVapUyevXrl07b6u3CRMm2BFHHBGL/XTBtKfdrl27Azp3FG7nzp324osv2sMPPxybKKZNm2bZ2dn26quv7tfxqlWrZiNHjrSqVavaGWecEdvMwNW5c2fLycmJje09/6tQYe8f5WnTptmWLVsK2p9//rllZGRY06ZNCzYx+OmY27Fjh02ZMqVgzLVr184mTZoUu7hPmDDBatSoYU2aNDGzH8e9O5ZRNhxxxBG2adMm++qrr2z37t328MMP23HHHWdt2rSxpUuX7texsrKyrFGjRgUXX7MfPzNfffVVQXv16tWWk5Njd955p5166qnWrl07W7t2bZH9PShbGH8oTnvGW4jOnTvbt99+ay1atPCuuenp6fs1lq655hr705/+ZOeee6598sknsedI5bpelpXZ7XT314IFC+xf//qXnXvuuZadnW05OTk2d+5cu/TSS4v0eerXr2/VqlWzUaNGWZMmTaxq1aqWnp5u77//vv3+97+P9W3RooV99NFH1rNnT6tSpYrVqlXLbr75Zvv5z39unTp1stNOO83eeecde/PNN23MmDGxx77++uvWpUsX69Wrl7388sv2xRdfyFt9ULRGjhxpa9eutSuuuCL2c6nZjz/rPvfccwW/sIVKT0+3d999184880w788wzbdSoUXJXtsGDB9s555xjzZo1swsuuMAqVKhg06ZNs5kzZ9oDDzyw1+Nv377drrjiCrvzzjstNzfX7r77brvuuuusQoUKlp6ebtdcc43dfPPNVrt2bWvWrJk99NBDtnnzZrviiivMzOzaa6+1xx57zK6//nq77rrrLCcnx+6++2676aabCibGFi1a2OTJky03N9cyMjKsdu3a5XbSLKtWr15tF154oV1++eXWsWNHq1Gjhn355Zf20EMP2XnnnWetW7e2HTt22N/+9jfr27evTZgwwf7xj3/s9/MMGjTI/vSnP9lhhx1mhx9+uD3yyCO2bt26gn+vVauW1alTx/71r39Zo0aNbNGiRWwxfhBg/KE4FTbeQvzmN7+xZ555xgYMGGC33HKL1a5d2+bNm2evvfaaPfvss/s9lq6//nrbtWuXnXPOOfb+++9br169Ur6ul2klnGNSJEKSy5ctWxb169cvatSoUVS5cuWoefPm0eDBgwuSY3+6w9Aejz76aNS8efOCtkouf/TRR73neuaZZ6KmTZtGFSpUiE488cRozJgxUZMmTbx+I0aMiFq3bh1VrFgx9jxPPfVU1LJly6hSpUpRmzZtohdffDH2ODOLnnzyyah3795RlSpVohYtWkRDhw7d59+PonHOOefEEv1/avLkyZGZRdOmTStILl+7dm3Bv3/zzTeRmUULFiyIosgfcxs3box69OgRnXDCCVF+fr4c16NGjYp69OgRVatWLcrMzIy6du0a/etf/9rr+Q4cODA677zzosGDB0d16tSJMjIyoiuvvDK2y8eWLVui66+/Pqpbt25UpUqVqGfPntEXX3wRO864ceOiY489NqpcuXLUsGHD6NZbb4127NhR8O85OTnRcccdF1WrVi32N6L02Lp1a3TbbbdFnTt3jrKysqLq1atHbdu2je68885o8+bNURRF0SOPPBI1atQoqlatWnTGGWdEL774YmwcqzE5fPjw6KeXkh07dkSDBg2KMjMzo5o1a0Y33XRTdOmll8aSez/88MOoXbt2UZUqVaKOHTtG48aNi222QXJv+cP4Q3EKGW8mNvjJysqKXnjhhYL2nDlzov79+0c1a9aMqlWrFh1++OHRjTfeWLDZSipj6eGHH45q1KgRTZgwIYqiwq/r6jzLsrQo2s+bI7HfbrjhBtu5c6c99dRTRXK8tLQ0Gz58uPXr169IjgcAAAAk7aC51aoktW/f3tuFCgAAADiYsPAoBldddVVJnwIAAABQolh4lEHcHQcAAICyJuWFx+7du23p0qVWo0aNWGExHLyiKLKNGzdadnZ24jsaMf7gKs7xZ8YYRBzjDyWNazBKUuj4S3nhsXTpUorhQVq8eHFBfYekMP6wN8Ux/swYg9AYfyhpXINRkgobfykvPGrUqFHwBJmZmakeBuXIhg0brGnTpgVjI0llbfz9tICVmdlrr73m9flpocs9VD2PihXjH9vVq1d7fdR/gVITwYwZM2LtlStXen1WrVrlxd59910vVtKKc/yZlb0xGGLNmjVeTP1t7hgsLdzbUNVtqUn9l+CyNP72VGb+KfW6uP1CXztVAXzx4sWx9uzZs70+Xbp08WINGjQIes5ULVq0KNbOycnx+px22mleLNX/yh/62qfiYLwGp/p65ufnezE1JmfNmuXFjjzyyFi7SpUqXp9ly5Z5sfr163uxDh067PM8zfQ8Vhp/ZQodfylfPfb80ZmZmeXmoouiURwfiLI2/twFxJ4K9z+lJq+qVat6MfdLn3qceg+qVavmxdzzqFSpUqHPZ6a/jJYWxTUhl7UxGGLHjh1ejIXH/ikL468kFh7ul5Hq1asX2scs+bkm5LzUOZTGhcceB9M1ONXXU/VJT0/3Yuq66V7P1TVYHUv9h8SQ166sLDz2KOzcKC0MAAAAIHGl8z9bAeXMuHHjYu2ZM2d6fdR/JViwYIEXc38iVrdC1apVy4tlZWV5sZo1a8badevW9frk5uZ6MZRu6r+QjR49Otb+73//6/UZO3asF1u+fLkX27p1a6x99dVXe32++eYbL6b+66R7K8Phhx/u9Xn22We9WMeOHb2Y+xlSn6my9l8Pk6D+3lT/y/Gvf/1rL7Zt2zYv5v5XYTWuHn/8cS+mztX9Za5Tp05eny1btngx9Uvdd999F2urX11GjRrlxdatW+fFzj333Fj7/PPP9/qE/LK0t37whb5O7i10Gzdu9PrMmTPHi02fPt2LuddSdb1V48OdN838+ejoo4/2+pS3+YmRDQAAACBxLDwAAAAAJI6FBwAAAIDEkeMBFINNmzbF2oceeqjXR21lqvZJd+8Hbtu2rddH3WOt7iN2czzUlr7qWCrvo0WLFl4MRWvhwoVe7Oc//7kXc8ebmdn69etjbXVvtHr/1e4s7nm4OUxmOj9JcbdQVfde/+IXv/Bi6n7pq666Kta+7bbbvD7kfaS+29ftt9/uxdauXevFsrOzvZi705Wa29wxamaWl5fnxdzxcM0113h9unfv7sXU1rzuuao8N7Xbm9r9ys2bcrfqNTP77W9/68XU+4HUzZ8/34stWbIk1m7evLnXR401df1zx5G69h1yyCFerE6dOl7MzQX58ssvvT5qm+myjF88AAAAACSOhQcAAACAxLHwAAAAAJA4Fh4AAAAAEkdyOVAM3MJEK1eu9Pq4hQHNdJKwG6tfv77XZ+fOnV5MJUi6ibwqyVEd69NPP/ViJJcn77LLLvNiKrlXFbRyk8RVMrFKqFbHcjdHUEUsTz31VC+WmZnpxTZs2BBrZ2RkeH1Ck7/fe++9WHvEiBFen4kTJwYdqzwLLVj3/fffx9qq8KlKElcJue5rrJ6vcePGQcdyk7Zff/11r49K/laJ4+6Y3LVrl9dHnauKuYnqM2bM8Pqo46tEZLef6gNNFe9zE8LdgpZmZk2aNPFiL730khcbPnx4rH3WWWd5fU477TQv1q5du0LPS23coophVqtWzYuVFfziAQAAACBxLDwAAAAAJI6FBwAAAIDEsfAAAAAAkDiSy4Fi4CbfqurMIdWmzfzq0ipZUSXjquO7CZ8qkVMll6uEZhS9Z555JtZevny510clzIYmyLrUuFGbEmzevDnWVomOaryp8RWSRKtiVatW9WL16tWLtd3EdTOzYcOGebHzzz/fi5VnFSuGXfo/+uijWFuNIXcsmOn3Rs0jLjUvNmrUyIu5m3O88847Xp+jjz7ai6kNPNzEXfU3VqpUyYupBH3386M+O+PHj/diJ510UqHHgn7N3Q0QzPT7PHXq1FhbbYqgNjeYN2+eF6tcuXKsvX37dq/P0qVLvZja2MLdKEFVXVdJ7wMGDAjqVxrxiwcAAACAxLHwAAAAAJA4Fh4AAAAAEsfCAwAAAEDiSC4vAqpq6j/+8Q8vduSRR3oxt7rveeedV3QnhlLDTRJXCZMqqfG7777zYm5it0rkVEKSFVW1X/U4dV4oek899VSsrd4LlUiuuAmyocmrqqp3yGNVArM6VzdRUz1OVRlWycpu8qlKSleViA+25PJQ7uc8dNMK9z0104nBLvV+qcRddzyoavchjzPzE8DVPKzmWLXxx9atW2Nt9dlR1d9VcnnoBgAHE5VI7iZnm+nrWOvWrWPt6dOne326du3qxRo2bOjF3OriasMAdawvvvjCi7lJ7qeccorXR30uJkyY4MXatGkTa3fq1MnrUxrwiwcAAACAxLHwAAAAAJA4Fh4AAAAAEsdNhEXg888/92KqENKUKVO82N/+9rdYe9CgQV6fxx57LPWTc6j7cR944AEv5hYq++c//+n1UUWVoIukuYXMVL6Pui9a3SO8bt26WPuHH37w+qgCSpmZmV7MvRdWFaNr0KCBF8vLy/NiSJ66T17dy67GoPteq/v1Q4oMmvnjUj1OjV1137rbLyR3w0zfd+8WMlSPc+/PNtPFvrKzs73YwcYtZqbeP1Ukzy3KZ+a/X2q+U+NIjVN3jKjzUo9T98q7j1XHUp8nda7u363OwS1+iHDutc/MrH79+kH93Hnm9NNP9/qoa6QqTuk+VuWuqVwNNbbcsbxmzRqvT3p6uhdTnzv3unzYYYd5fVQ+VHHjFw8AAAAAiWPhAQAAACBxLDwAAAAAJI6FBwAAAIDEkVz+EypBSCWjuVQhl6ysLC+mEs7dwkGPP/641+eSSy7xYsccc0yh56USrFShotWrV3uxzZs3x9oDBw70+px44omFnsPBSCWH1ahRI9auV6+e10clHarEYfe9UUm8KrmzZ8+eXsxNkFTjXSXxhhafQ7jLL7/ci7nvo/vem5ktXrzYi6kkSbcQliqmpsabGl8h4yaU+9jQgogqOXnZsmWx9qpVq7w+7mfRzOyTTz7xYgMGDAg6j/JCJau6iajuJhlm+n1QG164hdLUvKI2A1CbDbjUuFVUkniqY9ctFmjmz/3u32ymi+BBc+c/9T6rhG2VjO0eS11v1XvavHlzL+aOSVUssHHjxl7s22+/9WLuJj3qMxD6uXD7LVmyxOtz+OGHe7Hixi8eAAAAABLHwgMAAABA4lh4AAAAAEgcCw8AAAAAiSO5/CdUEqXiJpAtWLDA66MSeFRim5sE2rp1a69Ply5dvNgFF1zgxZo1axZrP/LII16fQw891Iu5SadmfhJhnTp1vD7Q1q5d68XcBExV9VYld6rETTf59rvvvvP6qKrLixYt8mItWrSItd3Kz2Y6UZmq9UXv+uuv92IffPBBrK3Gg9pIQI2lTZs2xdoqKVMl2obMi6qPiqlNCdyxpBJDVSKyW4ndzGzmzJmxtnpt1Hl9+umnXuxgSy53qx6b+ZsZqHkrPz/fi6kNNtq2bRtrq00E1PhQ/dzzUMm3oePPpeY2NS9+/fXXXswdu+pzqDZ9geZuDqHeZzU3qCTx2rVrx9rq+5iaL9T79eyzz+7z2Gb+Rhd7487pasyouVp9Xt1jLV++3OtDcjkAAACAgwILDwAAAACJY+EBAAAAIHEsPAAAAAAkjuTyn1CJc8orr7wSa9esWdPro5KgVIKQWzVcJUy6SXlmZu+//74Xc5NH27Vr5/VR1YrXr1/vxdykQlUBs3379l4MOrFNJcy6VFKZStysW7durK2SKNWYVEl4ubm5sbbaRECN29BKwQjXqVMnL+Z+7s4//3yvj0rkbdmypRdzNxdQ84qaA9W4CakmrZI31fzmHkt9VlTFbJXQ2aRJk0L7/Pa3v/Vixx57rBc72Khk6ZDPuXutMNPjw51H1Hynxp+KhW4EE/K4kMrlqo+aF91EZLVxi5pj3XnYzN/442DkXkvVtXXjxo1eTF3/QjZKUN+P1Jz19ttvx9onnXSS10e9f+q7lvtZUd8dVdK7Si4/+uijY+3QBPfixi8eAAAAABLHwgMAAABA4lh4AAAAAEgcOR4pePDBB2PtrKwsr4+6J1ndE+oWNFL3MKqiR02bNvVi7v2rNWrU8PqoewXV/avu/beff/6516dPnz5eDPo+YlWAyqXu7VRjSxUMdNWqVcuLZWRkeLHDDjss1lZFBtWYVGMLyRs2bFhQv1/+8pdebOXKlbG2ysFQ+RzqXmi3qJuaQ9Tj1Fzm3uOs5kn1+VF5Z6NGjfJiCKOKjbnUPfBubqGZLjrqXlPU+6zmQDVm3H6p5m6Y+QUD1fOpfBT1Wnz//fextsqjUsefOnWqFyPHw8+JUNcwleOh+rnF9dT8p6jvTKeddlqsrb6PqceFFDtURWJD8+Xcx4Z+n0w1ZypV/OIBAAAAIHEsPAAAAAAkjoUHAAAAgMSx8AAAAACQuIM2uTw0wWbBggVezC3KoooEqaQelUzn9lPnpR7nJnea+cWeVPEsRR3fTQydNGlS0LGg38OQ4pSqj0oqU0UFXa1bt/Zi06ZN82JucrlKWFNFj0ITN1EyQuYMlbAdWvxSjXGXGiMqediNqWOr+S6kiKGizkHN/cWdcFnS5s+f78XcpGqVHKsKWLZp08aLufNb6PsX8n6pY4WMUTP/b1RjTSUrq35uTI0h9ffk5OQUep7lnSpE6W7SoxKv1Xc0NWe5RQVDP/OqiKa7uUrIvGYWNo+p7wEqUX3VqlVezH2s2vjBLVpt5hclThq/eAAAAABIHAsPAAAAAIlj4QEAAAAgcSw8AAAAACTuoEkud5NzVNVRlVh03333ebF69erF2qpKa2iyUUgCnEpIUpVU3YQn1UfFVOKSm0w3bty4wk4T/z81jtxkX5XErZJ93WrTe+vnUsmdEyZM8GJusqjaKCEvL8+LqTGJ0sNNygyl3leVJO7OIyrpU801bpVos9QT1VUCaYiQjR4ORkuXLvVi7mYDboKumU4KVtdXN4k2NHk/1bkm1fdZnbtKMK5Vq5YXc8e8uuarzUHUHHuwCak+r5Kl1Vyn3sMQapOCkGTvkGuymX7v3flPbQwyZ84cL7ZkyRIv5o4/NUe6myOZkVwOAAAAoBxi4QEAAAAgcSw8AAAAACSOhQcAAACAxJXL5HKVrBiS/PPOO+94sSFDhngxtyq0Sm5SCUIh1dJDH6cqyLoJVSrpTyXJKW7i3Lx587w+o0ePjrVV4hd+FFJpV72nqp9K8HQdccQRQeflVjFVY83dTMHs4KvqXNaoatLuHBiaSKkSZEOqTodusOEmkKpkYpWUnmoCKTQ1ZtQGAS51zVKbZ7hCKzuHbD6g+qhrndqkwJ13t23b5vVR813I5gbq9du4caMXU4n9Bxv1WrnjSPVR80CdOnW8mHutU++pmtfUOHXfe/X9Uo0/NY+FzKXqu5W6LmdlZcXa7uYQe4sVN37xAAAAAJA4Fh4AAAAAEsfCAwAAAEDiEs/xUPdehsZc6v5jdZ9eyP3nf/zjH73Y/fff78UOP/xwL+bek6fuSw0tQhTyd6t7ANV9te69iOp+VhULyT1R+QfTpk2LtUvDvYOlQcj9xuq1UkXY1Jh3C0Uqxx57rBcLuVdfjQ91z3PIPdwoOatWrfJibqFTVThU3beu5jd3LIXm/ITkNqncNFWk1S1yigOjxoM7l6k+aqypcRRyL7uixpZ7XmqMqmuW4j5Wzbnq2q3mQHcOV/O8OhYFWfXn3n1d1FhQuUkheTrqOh3yvUrF1Dmoz4D6Xuj+3WosqPNShQCXL18ea6tcl9LwPY1fPAAAAAAkjoUHAAAAgMSx8AAAAACQOBYeAAAAABKXeHJ5qsnfB2LEiBFe7JZbbom1c3JyvD5HHXWUF1OJZm6CnUpyVIl0KjHPTRoKfb1UErCblBSaFKySmdwEOFUgx02oUs93MAopgqUKIa1du7bQx5mFFQcMKTJo5o/v0ARQCggWD/f9D33dVUKkm2y7fv16r48aN+pYIZtihCZJusdSybcqFpI8HLJxxsEodK52E1FVIvnRRx/txdQ4chNfVaKtem9CkntVYbaQ4odmYYU11evVoEEDL+YmFKvXKzSp2T1/9TeWJ+q1cj/3ak4J3ejE/c6kxof6vqc2fXGFzLdmuti0+5xqrlNJ4ur7pHse6hwWL17sxYobv3gAAAAASBwLDwAAAACJY+EBAAAAIHEsPAAAAAAkLvHk8lCrV6/2YmPGjIm1p06d6vUZOXKkF5s5c6YXa9OmTaytKjurZCOVwOMmG4UkWu6Nm8imkswUVRXTTYBTCejq+Cp5yj0v9doU5etQnoSMo7p163p98vLyvJhKamzatGmh56Cqm6vkRPd9VklyahyFJNyh5IRUR1YVbNUYCalorZI+1edAzT/u+FJjUH0OVCIowqiNLBT3fQ1JjjULS+xWjwt9T1O91oRUplafHTXfbdq0yYu5ic5z5szx+qhkfPWcK1asiLUbN27s9SlP1JhxXxf1eqr5omHDhl7M/V6oNgUKreodMk7VmNm4caMXq1WrVqz95Zdfen2ysrK8mNrcwN3AQX1OVBJ/cWPmBgAAAJA4Fh4AAAAAEsfCAwAAAEDiWHgAAAAASFyRJ5ePGzcu1r7vvvu8PqpyoptIZWaWnZ0da+fn53t9VJL18ccf78XciqgqmUtVTQ1JEApNRsvMzPRibkKVSpRSVcNVP/f8VfVYlQSqYm7ylHrtu3fvHmtv3rzZ64MfrVy5MtYO2RzATI+t1q1bp3QOKpnOfU411lTCnToWil6qlcvVe+bG1BylksvVZ989DzWHKKoqtJvwq85dJQWvWbOm0OejSrm2bt06L6Zed/c6o+b45s2bezE1l7nvobqGhSaNu+Mt9H1WG2W41LHUPKwqr7dv3z7WVt911OdOfX5U8np5puYe93UJreqt+rljN/Qapt4H971Xc6TaiEG99+73tAULFnh9jjjiCC/WtWtXLzZq1KhYu0OHDl4f9RmbPXu2Fzv88MO9WFHhFw8AAAAAiWPhAQAAACBxLDwAAAAAJO6AczxWrFgRKzB1zTXXxP5d3dOmiqepmHtPqCqioo6v7v1V99S71D2noQXVQqiiM+55qftL1b2IqtiOW4BOnbu6L1Xdtxty7/8JJ5wQa6t7Gg9Gany4RdiWLFni9VH3v6v32S2GGUrdC+ve660KD6oxyb3zpZu6797NTatatarXR72vagy6/dR9w+q+dZWrofIBXOqzoWIIE5qX6F4b1Ht1xhlneLHp06d7MfcefnV9UtdI9T6756GOpcafOpb7nKGFNdVreNhhh8Xa//3vf70+Kh8gtEBheaYKlbrXUjX+evXq5cVCvmuF5qWpOcud/0LnIvU91L0Gu2Nob9R3Zvcar8aVmuOLu6ggv3gAAAAASBwLDwAAAACJY+EBAAAAIHEsPAAAAAAk7oCTy5999tlYwrKbcKUSwlXyluImCKkCfCoBSyX3uv1Ugo1KIlJJSm6itXq+kGJMZmbVq1ePtVXCmipCtGzZMi/WsGHDWLtRo0ZeH5VgrBKK3b9JFZxKNVkL4YmDKmm3du3aKT1nkyZNvNisWbNibZVwrBLnVLIlip47Z6j5SI0RtWGEO7+FFOzam5BCb2ouU3OlO75Un9Ck4xDq3A+2zRLUtU5xXyv1OLVhidqQwJ23DiS53L32qMeFFmR1qWukOr66LruJzqqIr3pt1AYyB9tmLSoR2n1d1PVJzWNqbIVQ39tCNjVSifHq++oPP/zgxdxzbdmyZdDj6tWr58XcjQvUeG/atKkXC9l8qSjxiwcAAACAxLHwAAAAAJA4Fh4AAAAAEsfCAwAAAEDiDji5/JBDDoklnLlJs27ytJlOBlJJPW5Cl0qoDk0UdJOSVEKcSiALSYALOXcznezmJg2phLKTTjrJi91///1ebPTo0bG2em1CE0rdJKXirmxZ3rjjSCX/qoRz9X7VqlUrpXOoX7++F5s9e3asrTYRULHGjRundA4oeurzqz777px0IAnbbr/QZM6QfiqBWX021KYYCBOy+YCZf91U17DQ5HL3+q3mMZWku2bNGi/mzmWqj0pWVmNm9erVsfaiRYu8PipJXFUgd797qO8sHTp08GIqaVq9FuWZmrPceUYlbKvE/JBNh9RcpK63ak4M2RBDHV8dyx1b6jO2cuVKL6YSx7t27Rprq8+5uzmSWfHPpfziAQAAACBxLDwAAAAAJI6FBwAAAIDEsfAAAAAAkLgDTi6/9dZbYwk/bhLMxx9/7D1GJVyp6pBuco5KIlIJcSrZ2+2nEn9ULKSauXqcm7CmHmdmdtNNN8XaN954o9cn1EsvvRRrq8rl6lxDkgNDKr5i70IS21QimEqmU0mTIVRFXvdYaryr9z608jGSp+a7kM95SBXxvXGPrxLc1SYfIQmXaj5SY14lkIagcrn+TKsE7fXr18fa6hoWkmRt5o/T0I1O1Lm63zPcTTLMzI477jgvpjbYcP9udQ4bN270Yuq1aNiw4T7bZmaHH364F5s7d64XO9iuuWo+ct8LlXhdt25dL/bll1+mdA5q7lHjwZ2P1JyiNgpSmwioz49LffdVmyC0bds21v7000+9PupvVBvIJIlfPAAAAAAkjoUHAAAAgMSx8AAAAACQuCK/UfuJJ56ItVUhoccee8yLvfjii17MLa63du1ar096eroXU8VQ3HvyVBEVda4hRf/Use68804vdscdd3ixojR9+vRYW90DqO6jVLkF9erVi7WXL1/u9XHvQT3Y7kndG3XPvXuPpronVBWMys7OLrLzatGihRdz3zN1D6pCjkfxUOPEVZS5DqG5Gu797So3RB0rZNyE3FNtpucthFH3lYfca67e58mTJ3sxdd/9kiVLYm31nqpzUGPGHSPq+dR98er47rFULtzMmTO9mCqA+OGHH8ba6vuDyqVR992ra+7BTn3XUtR1zB27aiyrsaa+M7kxdSyVw6Su8e48pvKdVa6n+r7qFiNUc6mixl+S+MUDAAAAQOJYeAAAAABIHAsPAAAAAIlj4QEAAAAgcUWeIeoWiFIJNjfffHNQzKWKEX799ddeTCWCLVy4MNZWBVNU4pJKurnuuuti7dtuu83rkypVYEsVKlL+9Kc/xdrVq1f3+qiEPpWE5yYpHXPMMYU+f6qF7coblfTlJqOpRHyViOi+DwdCFc9yE4dVIrE6V5Vwh5LhFnkzC0sSDy2iqpLQ1bzuCk3edM81NCFSfc4QZsWKFV6sdevWXsy9TqpCeqpIntpgw72WqkRbNa7U+HOPr65hao4KmctUIq/awEElMLvHV+eVk5PjxdTn4mAraqm418RmzZp5fVShvu+++86LdejQIdYO3VwjZOMMNW7V+FAbBrifC/V9Tx1ffV8I2bwjtHBnkvjFAwAAAEDiWHgAAAAASBwLDwAAAACJY+EBAAAAIHFFnlwemgidilNOOSUoVpYdyOs3cODAIjwTpEolvYYk46pkN7VBQMjjVGKiSnYLSWxTyZahFc5xYFKtXB4yJkLnGpVw7gpNTlTJve7nRX1WQhPhESZ0cwt3fli1apXXR801aqMWN9FazSEh493MT3o/9NBDgx4XMseqcVWvXj0vpj4/7t8YmvSuNrEJSRQuT9TGBYsXL461jz76aK+Pu3GQmVlubq4XO+qoo2JtNWep11yNB/c9zM7O9vqsXr260MeZ+eNPJcur7wFqgwj3s6j+npUrVwadV5L4xQMAAABA4lh4AAAAAEgcCw8AAAAAiWPhAQAAACBxB1f2ElBCatWqVWgflUCmkjRdIclvZmZ16tTxYm7ymUqYDE1UR8lQyeWpVvWuXLmyFwtJHFfVfdUYUWM1ZCypcakSOt3kYao/a+np6V5MJfe2aNEi1l6/fr3XRyWr5ufnezF3flOPU++zOlc3aVslxqvK6Ir7d6vHhc6LixYtirXVRgkqpq4PoQnz5UX79u29mPsaZGVleX1UEvd5553nxTZv3hxrq40GVDK26uduBqDmTfVZqVGjhhdz52917VbfA9RGD+6mET/72c+8PupzHrL5TVHiFw8AAAAAiWPhAQAAACBxLDwAAAAAJI4cD6CIqXuX3WI/devW9fps3brVi4Xc/x6a46Hu43TvjVb3Lat8AXUPN4peSI6Cei/UfcnuPcFLly71+qh7qNX4co+vcjzUffEqX8T9bKjnU/e7z5w504u5heVCcqsORkceeaQXUzlm06dPj7UffPBBr4+6L17dd+/OeSqXYu7cuV5sxIgRXszNPVFjbc6cOV5MjQd37J5++uleHzUm3bFm5v+N6j7/L7/80ovVrFnTi/Xs2dOLlWeqUK2Kub7++uug46sijS6VL6e4403lTahrsDq+uu671Byv5lI3x6h169ZeH5VnUtz4xQMAAABA4lh4AAAAAEgcCw8AAAAAiWPhAQAAACBxJJcDRaxDhw5erG/fvrG2SsatXbu2Fzv55JMLfT6VWKk0bNjQi7nJZyphsl69el5MJaei6KnEXVefPn282OjRo71Ybm5urK0KUKlER5XY6CZTuoWrzPS4VBsVuAntapy6BePMzFq2bOnFQpLJKSqoi7XdeuutXuyzzz6Ltc8991yvjyqeVpTuuuuuRI+fJJVcPmjQIC/Wq1cvLxby2T/YqOumShpXm7K4c1tIcV4zvSmLO4+p51Pvn9p4xr2+qgR0lWSvzj8kGV9tlBD6HaKo8IsHAAAAgMSx8AAAAACQOBYeAAAAABKX8k2EewpIbdiwochOBmXbnrGgipcVtdI8/tQ98e79pepeVXWfvLrf0/2bVSEhVbxI3b/vPqe6B1+dqyr+VdLvRXGOv58+T5J/t/u3hOYnqDHojqXNmzd7fdyCkmb6vXbHkho36lzVWHKPpZ5P3YOs/saQ90KNj6LI+yjr4y9kPKjnSjrHoyxTr5ea54tqPi3v12A1f6h5IGSeUddNJSTHQ73eKsdDXc/duUd9DkOP5ebeqdyTJHM8QsdfWpTiCF2yZIk1bdo0lYeinFu8eLE1adIk0edg/GFvimP8mTEGoTH+UNK4BqMkFTb+Ul547N6925YuXWo1atRglxCY2Y+r3I0bN1p2dnbiuyQw/uAqzvFnxhhEHOMPJY1rMEpS6PhLeeEBAAAAAKFILgcAAACQOBYeAAAAABLHwgMAAABA4lh4AAAAAEgcCw8AAAAAiWPhAQAAACBxLDwAAAAAJI6FBwAAAIDEHdQLj3vuuceOPvrovf77kCFDrGbNmgf0HJdddpn169fvgI4BAEkrbD40MzvppJPsxhtvLJbzAVxpaWn21ltv7fXfx40bZ2lpabZu3bpiOycA+6dMLzwmTZpkhxxyiJ199tklfSolji8EpVNaWto+/3fPPfeU9CmijCqJsfXmm2/a/fffv88+ubm5lpaWZlOnTpX/fu+999qvfvUrMyv8iyQOLitXrrRrrrnGmjVrZlWqVLGGDRvaGWecYRMmTAh6fI8ePSwvL8+ysrL22Y//IIi9WbZsmV1//fXWsmVLq1KlijVt2tT69u1rH330UZE9R4sWLeyxxx4rsuOVNRVL+gQOxHPPPWfXX3+9Pffcc7Z06VLLzs4u6VMCYvLy8gr+/9ChQ23w4MGWk5NTEMvIyCj4/1EU2a5du6xixdL3sdy+fbtVrly5pE8DP7E/Y6uo1K5de5//vn379kKP8fbbb9ttt91WVKeEcuT888+37du327///W9r2bKlLV++3D766CNbvXp10OMrV65sDRs23Ou/79q1y9LS0orqdFHO5ObmWs+ePa1mzZr2l7/8xTp06GA7duyw0aNH229+8xubPXt2SZ9i+RCVURs3bowyMjKi2bNnRxdddFH04IMPxv597NixkZlFY8aMiY455pioWrVqUffu3aPZs2cX9Ln77rujo446qqA9b9686NBDD41+85vfRLt37/7/2rv3uCirdQ/gD8qdGfCGAoKogAYq5l2xIktSSy1zd6zTSd2ZtSsv1dZdlqm5u1+O1dZs6yk5WpaVYmXKR/OShBhkgiiIaCgYkHkX8QL6nD/8OMd3rYd4I16Ygd/38+nzaT2smXlnZs16Zznvsx5esmQJBwQEGO539erV3KNHD/by8uIOHTrwnDlzuKKiosrjHDduHN955508Z84cbtWqFdvtdn7kkUf4woULjj7nz5/nyZMnc2BgIHt5efHAgQM5PT3dcD9btmzhPn36sKenJwcFBfHTTz/teNxx48YxERn+Kygo+IOvKFhNHU9Xx+jatWu5Z8+e7OHhwZs3b652PEjjMikpia/9OGdmZvLNN9/MNpuN7XY79+zZkzMyMhx/T0lJ4RtuuIG9vb05NDSUJ0+ezGVlZY6/h4eH89y5c/mBBx5gu93O48aNq/XXA2qPNCYkmzdv5j59+rCvry8HBARwXFwcHzx4kJn/fz5cunQph4eHs7+/P48ZM4ZPnz7tuH18fDxPnTrV0ZbGiToXxcfHO/oXFhayp6cnnzp1isPDww39wsPDHf3ee+897tixI3t4eHCnTp146dKlhudBRPzee+/x0KFD2dvbmzt06MCff/55jV47cA4nTpxgIuItW7ZU2YeIePHixXzXXXexj48PR0ZG8pdffun4+9U59cSJE8z8/5+LL7/8kqOjo7lp06biGN28ebPFzw5cwbBhw7ht27aGc+FVV8fUoUOHeOTIkezn58d2u53vueceLi0tdfTbv38/jxw5klu3bs1+fn7cu3dv3rBhg+Pv8fHx2vhrbFz2GX/wwQfcu3dvZmb++uuvOSIigi9fvuz4+9UJqF+/frxlyxbes2cP33jjjRwXF+foc+3CIysri4OCgvi5555z/F09mW/dupX9/f05MTGRDxw4wOvXr+f27dvznDlzqjzOcePGsc1m4zFjxvDu3bt5zZo1HBgYyM8++6yjz5QpUzgkJITXrl3Le/bs4XHjxnHz5s352LFjzMx8+PBh9vX15ccee4xzc3M5KSmJW7VqxbNnz2Zm5pMnT/KAAQN44sSJXFJSwiUlJVxZWVnj1xasUdXCIzY2ltevX8/79+/nY8eOVTsezCw8unTpwv/1X//Fubm5vG/fPv7ss884MzOTma9MjH5+fjxv3jzet28fp6amco8ePXj8+PGO21/94vnmm2/y/v37ef/+/da9MPCnmVl4VFRUcEBAAE+bNo3379/POTk5nJiYyIcOHWLmK/OhzWbju+++m7Ozs3nr1q0cFBRkmKukhYc6TtLT0x3/6FNSUuIYt8zM8+fP59tuu42ZmY8cOcJExEuWLOGSkhI+cuQIMzOvWrWKPTw8eMGCBZyXl8dvvfUWN23alDdt2uS4HyLili1b8uLFizkvL49nzpzJTZs25ZycnD/7UkI9qaioYJvNxk888QSfP39e7ENEHBoaysuXL+f8/HyeMmUK22w2xxiTFh4eHh4cFxfHqampvHfvXj516hT/x3/8Bw8dOtRxvrz2HwKhcTp27Bi7ubnxyy+/XGWfS5cu8fXXX8833HAD//jjj7x9+3bu1auX4R9XMjMz+f333+fs7Gzet28fz5w5k729vR3z7LFjxzg0NJTnzp3rGH+NjcsuPOLi4vjtt99m5isTVqtWrQz/anHtLx5XffPNN0xEfO7cOWb+/4VHamoqN2/enN98803DY6gn81tvvVUblMuWLePg4OAqj3PcuHHcokULPnv2rCO2cOFCttlsfOnSJS4rK2MPDw/++OOPHX+/ePEih4SE8Ouvv87MzM8++yx37tzZsLBasGCB4z6Y9S8E4HyqWnisXr3aETMzHswsPOx2OycmJorHMWHCBH744YcNsZSUFG7SpInjsxEeHs533XVXjZ4n1D0zC49jx4797r8oz549m319fQ2/cEyfPp379evnaEsLD3WcFBQUMBHxzp07tcdISEjg+fPnO9pExElJSYY+cXFxPHHiREPsnnvu4dtvv91wu7/97W+GPv369eNHH31UfG7gGr744gtu3rw5e3t7c1xcHM+YMYOzsrIcfycinjlzpqNdVlbGRMTr1q1jZnnhQUSOf3S56uqVCABX/fDDD0xEvGrVqir7rF+/nps2bcqFhYWO2J49e5iItKtUrtWlSxf+17/+5WiHh4fzvHnzauW4XZFLJpfn5eVReno63XfffURE5O7uTmPGjKEPPvhA6xsbG+v4/+DgYCIiOnLkiCNWWFhICQkJNGvWLPr73//+u4+blZVFc+fOJZvN5vhv4sSJVFJSQuXl5VXernv37uTr6+toDxgwgMrKyqioqIgOHDhAFRUVNHDgQMffPTw8qG/fvpSbm0tERLm5uTRgwADDtakDBw6ksrIyOnz48O8eMzi/3r17O/7fzHgw46mnnqKHHnqIBg8eTK+++iodOHDA8besrCxKTEw0jOMhQ4bQ5cuXqaCgQDwucC2FhYWG9/fll1+mFi1a0Pjx42nIkCE0YsQIeueddwx5IkRXkh7tdrujHRwcbJgvJWbHyenTp+m7776jkSNH/m6/3Nxcw/gnujLfqeN/wIABWvuPfEbA+YwePZqKi4vpq6++oqFDh9KWLVuoZ8+elJiY6Ohz7Tndz8+P/P39f3eMenp6Gm4DIGHmavvk5uZSWFgYhYWFOWIxMTHUrFkzx9xTVlZG06ZNo+joaGrWrBnZbDbKzc2lwsJCy47d1bjkwuODDz6gyspKCgkJIXd3d3J3d6eFCxfSypUr6dSpU4a+Hh4ejv+/+sX98uXLjlhgYCD17duXPvnkEzp9+vTvPm5ZWRm98MILlJmZ6fgvOzub8vPzydvbuxafITQmfn5+f6h/kyZNtEmyoqLC0J4zZw7t2bOH7rjjDtq0aRPFxMRQUlISEV0Zx4888ohhHGdlZVF+fj5FRETU+LjAeYSEhBje37/97W9ERLRkyRJKS0ujuLg4WrFiBXXq1Im2b9/uuN218yXRlTnz2vlSYnacrFu3jmJiYgwnbQCVt7c3JSQk0PPPP0/btm2j8ePH0+zZsx1//6Nj1MfHBwnlUK2oqChyc3P70wnk06ZNo6SkJHr55ZcpJSWFMjMzqVu3bqY23mgsXG7hUVlZSUuXLqW33npL++IUEhJCn3zyyR+6Px8fH1qzZg15e3vTkCFD6MyZM1X27dmzJ+Xl5VFkZKT2X5MmVb+UWVlZdO7cOUd7+/btZLPZKCwsjCIiIsjT09OwXWBFRQVlZGRQTEwMERFFR0dTWlqa4ctmamoq2e12Cg0NJaIr/6pz6dKlP/TcwfmYGQ+BgYF05swZOnv2rKOPtHVpp06d6Mknn6T169fT3XffTUuWLCGiK+M4JydHHMfYuaphcHd3N7yv1+5G1aNHD5oxYwZt27aNunbtSsuXL6/Vx746htT56Msvv6Q777zTEPPw8ND6RUdHa9unpqamOsb/VdcumK62o6Oj/9Sxg/OJiYkxzHW1AedLULVo0YKGDBlCCxYsEMfbyZMnKTo6moqKiqioqMgRz8nJoZMnTzrmp9TUVBo/fjyNGjWKunXrRkFBQXTw4EHDfTX28edyC481a9bQiRMnaMKECdS1a1fDf6NHjxYvt6qOn58fffPNN+Tu7k7Dhg2jsrIysd+sWbNo6dKl9MILL9CePXsoNzeXPv30U5o5c+bv3v/FixdpwoQJlJOTQ2vXrqXZs2fTpEmTqEmTJuTn50ePPvooTZ8+nZKTkyknJ4cmTpxI5eXlNGHCBCIieuyxx6ioqIgmT55Me/fupS+//JJmz55NTz31lGPB0759e/rhhx/o4MGDdPTo0Wr/lRKck5nx0K9fP/L19aVnn32WDhw4QMuXLzdcinDu3DmaNGkSbdmyhQ4dOkSpqamUkZHh+FL29NNP07Zt22jSpEmUmZlJ+fn59OWXX9KkSZPq4ylDHSkoKKAZM2ZQWloaHTp0iNavX0/5+fm1/mW9devW5OPjQ8nJyfTrr7/SqVOnqLKyktatW6ddZtW+fXvauHEjlZaW0okTJ4iIaPr06ZSYmEgLFy6k/Px8+u///m9atWoVTZs2zXDbzz//nD788EPat28fzZ49m9LT0zGGXdixY8folltuoY8++oh27dpFBQUF9Pnnn9Prr7+uLVj/rPbt29OuXbsoLy+Pjh49qv1iDI3TggUL6NKlS9S3b19auXIl5efnU25uLr377rs0YMAAGjx4MHXr1o3uv/9++umnnyg9PZ3Gjh1L8fHxjktOo6KiaNWqVY5/EP/P//xP7ftY+/btaevWrfTLL7/Q0aNH6+Op1q96zjH5w4YPH25IMrzW1eSgrKwsLcmMmXnnzp2GrWbV7XTPnDnDcXFxfNNNN3FZWZmYsJmcnMxxcXHs4+PD/v7+3LdvX160aFGVx3s1iW3WrFncsmVLttlsPHHiRMOuHefOnePJkydzq1atarSdLjNzXl4e9+/fn318fLCdrpOqKrn82jHKbG48JCUlcWRkJPv4+PDw4cN50aJFjuTyCxcu8L333sthYWHs6enJISEhPGnSJEfiODNzeno6JyQksM1mYz8/P46NjTVsSd3Yk99cjZnk8tLSUr7rrrs4ODiYPT09OTw8nGfNmuXYoEKdD5mZ582bZ9jmVkoul8bJ4sWLOSwsjJs0acLx8fH87bffcmhoqNbvq6++4sjISHZ3d//D2+kuWLCAExIS2MvLi9u3b88rVqz43ecPzu38+fP8zDPPcM+ePTkgIIB9fX25c+fOPHPmTC4vL2dmeTOCgIAAXrJkCTNXvZ2u6siRI475j7CdLlyjuLiYH3/8cQ4PD2dPT09u27Ytjxw50jFGqttOt6CggAcNGsQ+Pj4cFhbG8+fP1+bNtLQ0jo2NZS8vr0a5na4bs4mMGgAAgBqaMmUKVVZW0nvvvVcr9+fm5kZJSUmoPg0A4GKcr0QyAAA0KF27dtV2oQIAgMYHCw8AALDUww8/XN+HAAAATgALDwAAcCm4QhgAwDXVeOFx+fJlKi4uJrvdjj2ygYiufBk4c+YMhYSE/O72wrUB4w9UdTn+iDAGwQjjD+obzsFQn8yOvxovPIqLi1EICkRFRUWO+iJWwfiDqtTF+CPCGAQZxh/UN5yDoT5VN/5qvPCw2+2OB/D396/p3fwu9ef0P7Oq3rp1q6GtFnQhIho7dmyN77+2LF68WIt17dpVizljoubp06cpLCzMMTasVBfjr6auLRZ5lY+PTz0cSe2orKzUYu7uzneVZl2OPyLnGYM1vezI7HxaXFysxZKTkw3tkydPan2k2gg33XSTFjMzl0nPUTr+2jxn/FGNdfyB88A52LzPPvtMi3333Xda7NixY1pMndukwtMtW7bUYv3799diU6dO/d3jdCVmx1+Nvz1cndD9/f1dYuHh5+dnaEtfBJ3hwyMdl3rsRM5xrFWpi5N9XYy/mvLw8NBiWHjUnbr6suksY9DqhYd0UlXH8/nz57U+TZs21WI1nctcYeFR14/pLOMPnE9jPweb4evrq8U8PT21mHQ+V0nnQ+l23t7eWswVX7vqVDf+XK5yOQAAAAAAuB4sPAAAAAAAwHLOe72ESSdOnNBio0ePrraf9DPYrl27tNilS5e0mJqtf/nyZa3P8ePH9YMVlJaWGtpHjhyp9vGI5J/s0tPTTT0mWEu6rOrixYuGtvq+ExG1bdtWi5m5jEbKKZEufZH6qdevtmjRQusTHh5e7TGA8zNz+cWaNWu02KJFi7SYOk4CAwO1PtK8KFUu37dvn6H94IMPan1qeumI2Uu0AMD5SXOK2d27mjdvbmifOnVK6xMQEKDFgoKCtNjZs2cNbekS0gMHDmix9evXa7Hnn3/e0JbO3RJXntvwiwcAAAAAAFgOCw8AAAAAALAcFh4AAAAAAGA5p87xMHO92pNPPqnF9u7dq8WioqIMbWmrx4yMDC0mFchRt5ccNmyY1ictLU2LSdf+l5WVGdrS/sfSsebn52uxxMREQ3v8+PFaH6gfjzzyiKGt1kEgImrWrJkWk67j9PLyMrSlegnStbDS50kdy9LtpDoO4Dyk99XM+5+UlKT1Wbp0qRaTxpd6XbV6zTORvI99RESEFtu0aZOh3atXL61P9+7dtdifud4bAFyP2c/3/v37tZg6X0jzjFSPqE2bNtUeh5QLLOXhSvmSak25GTNmaH1eeeUVLWZm3nfW+dA5jwoAAAAAABoULDwAAAAAAMByWHgAAAAAAIDlsPAAAAAAAADLOXVyuUpKJszLy9NiUgLPb7/9ZmhLBa+kBCG1uBWRXixmy5Ytpm7n7l79yy0lA6nF54iIgoODtZiagITkcuexe/duQ1sqSiS5cOGCFispKTG01Q0KiOTPgL+/vxZTE+CkDRDAuUkbEJhJKpSKBaoFJYn08UZE1KFDB0NbKnr13XffaTGpSKa6ecG7776r9Vm4cKEW8/T01GKuklxZm5jZMAactYiYOk6l4zRbFE09V0vvc03v3+wxuHIBN2dU09ezoKBAi6lF+Yj0898vv/yi9amsrNRiUuFd9TtZeXm51kfamEi6f7Ww4bp167Q+UmHDZ555RouZKW7tDHNi/R8BAAAAAAA0eFh4AAAAAACA5bDwAAAAAAAAy2HhAQAAAAAAlnOp5PKnn35ai0nJt1LSoVrtWaoGLiXWSolFp0+fNrSl5F4pUUqK+fr6GtpSgruUuCkdv5r0vnLlSq3P6NGjtRhYr7S01NBu0aKF1kd9/4jkJHQ1Ka5jx45aH2ksS58LNZaamqr1AedW04TW6667Tot5eHhoMWnOUBMUpSq9gwYN0mLSRhknTpwwtNWNGIiITp06pcWkDUIaY3K5m5vb746B7OxsLSa9z9J5rHfv3n/u4K5hZpyaHcvS+a+ujwGJ5LXLzOv54IMParENGzZosVatWlUb+/XXX7U+0gZAUkK4uknGzz//rPWRPk/Sdzn1vG+z2bQ+ixYt0mLbt2/XYqtXrza0pfnPGRLOG/6sDAAAAAAA9Q4LDwAAAAAAsBwWHgAAAAAAYDksPAAAAAAAwHJOnVyuJsGkpaVpfcwmHarJ5RIp+VtK+FUThSVSAk9ISEi1jykls0v3JSUpqbddsGCB1gfJ5fVDTaqVkiPNbpTQpk2bau9LSoiTEsjUpGApwe/QoUNaTKqMDq4lNzdXix0/flyLRUZGarE9e/YY2lKiujSepQq/6lxmt9u1PuqGHkTmkssbQ3Xp8vJyQ1LsZ599Zvj7V199pd0mNjZWi0nzw9atWw3tdu3aaX1OnjypxaT3KyoqytD+7bfftD7SeypRH1M6v0vPR9q8RT2OZs2aaX2kc7CZ7xTSWJM2WJDma/XzI71earL1mTNnqj0mV7J582ZD+/vvv9f6qOOKSH6/1A0VpO920vlWeg/V13ngwIHV9iEiOnz4sBZTE9ql+U895xPJ8/c///lPQ1uq4O4MG27U/xEAAAAAAECDh4UHAAAAAABYDgsPAAAAAACwnFPneKjXoknX940dO1aLZWRkaDH1uk3pGkDp+k+poIxa/E0tgEVEFBwcbOq+zp49a2hL199J+RzSY6oFu9RrfaFuSO/XkSNHDG3pWmkpV6OiokKLqdemSsUCpeuPpYJGqpYtW2qx4uJiLYYcj7qh5ihIOQtmr9n94IMPDO3Q0FCtT5cuXbSYNFeq85t0PbN03bp6zTYRUUxMjKEtPR+1MBYR0d///nctpl6jLR17Q8vxWLdunaEQbWZmpuHvL774onablJQULZacnKzF1Byw66+/XutTUFCgxaQChWqOplTkTSrqdvToUS2mFt6VckP27t2rxaT5Tb2tVHBRmmOlXBB13lVzZIiIjh07psWk11XNm1K/KxAR5efnV9vHlS1btszQlr5DSTkzEvVzL50jpXOw1E/9riiNd+m+/vrXv2qxoqIiQ3vfvn1aHyk3rnnz5lpMyvtwRvjFAwAAAAAALIeFBwAAAAAAWA4LDwAAAAAAsBwWHgAAAAAAYDmnTi43Y+nSpVpMKpK3ceNGQ1tK5pKK90mJjmrCopSwJiUwSsm9aiKylDwlFWOaMWOGFnvqqae0GNQ9qQib+r5KiWFmiz+ZKVylJoUSyeNIPa6goCCtj1SkE+qGOo9IG2BIc9SmTZu02I4dOwxtKWFWmn+k+/f39ze0pTGibsJBRDRixIhq+0lFtqTY1KlTtdg777xjaEvH3tCKCgYHBxs2nFCTWn/88UftNunp6VosICCg2piULB0fH6/FfvnlFy2mnquHDh2q9Tl48KAWk5J0x4wZY2irm3cQyQm50tys9pMSdOPi4rSYdN5XE4OlTWCkz5j6eSLSCwZKGwKoycpmNhBxJermKtL8J809ERERWqymxRWlTTLUmHRc0pwibXig3pe0wYJU7FBKaFcT1Z0VfvEAAAAAAADLYeEBAAAAAACWw8IDAAAAAAAsh4UHAAAAAABYzqWSy6UqtFLy4MqVK7WYmrTWp08frY+UkHThwgUtpiYnSolF0rFKSY2qnJwcLSYlRamVW8F5SAmMaiKvVJFcIo0tldlkWamfelxSEptUORjqh5RoK9m2bZsWUystS5sUSEnBXbt21WJ5eXnV9pESXaWESLWCtVQJW62UTiRvlqB+9qQEd2luNvu6OqP8/HzD51h9D6WEU+n9OnDggBZTz5u7du3S+gwaNEiLlZaWarHIyEhDW6rgbbPZtFi7du20mEqtWE9EFBYWpsWk86v6ekmbzEjatGmjxb7++utq+0iv/f79+7VYRkaGoS19D1CP1eyxuwr13CN935OSsUNCQrSYOt9JSePSPCCdN9XzsjSnSGNS+iyq/ex2u9Znz549Wqxz585aTH3/1cr2RERRUVFarK7hFw8AAAAAALAcFh4AAAAAAGA5LDwAAAAAAMByWHgAAAAAAIDlnDq5XE3qkRKLpORbKUFITWCUEh+lJCIppiYSSYm8UrKRdKzq/Uu3QyJ5w6NWrCeSE28l6oYHUpKcNGaksax+VqT7unjxoqnjgtqnvmdmK2xLiddSTCUl90oJsoWFhYa2VCVaOlZpowK1urM0z0vHLo3LzMxMQ/uWW27R+jS05PLmzZsbPu9qFe+goCDtNlIiufS61PS+Vq9ercV69+5taEuJtt27d9dimzZt0mLqBgTdunXT+qjJ2URyBfItW7YY2uomDEREP/30kxaTxox6jpcqsasVyYnkpHD1OKT5W92kxOymJa7CTLVxaR6QNjdQvwNKyd9mNnMh0jdlkc6b0n1Jj6nGpLEgfV+Q5le1n7RZCJLLAQAAAACgUcDCAwAAAAAALIeFBwAAAAAAWM6pczzMXM9s9ppnqViWSro+Uiog6O3tbWibKTBj9jHd3Wv+ltT0enCoXdI1p+p169L7LF1fL13bqV77KxUSSk9P12L+/v5aTB0j0vX1rnz9u6tTr7uX3gvpmnEp56J9+/aGtnT9b4cOHbSYdK28Om5KSkq0PtJ199J1/S1btjS0peulpQJaUr5Bdna2oS3leDS0ebG8vNww96vv4Y033qjdJjk5WYtJ15ZHR0cb2tIcIhVwe+KJJ7SYmqsh5fts3LhRiw0cOFCLqc9JGsu33367FsvKytJiubm5hvZ9992n9Rk6dKgWk/I31ByV7du3a32kArOSmJgYQ/u6667T+qj5Vw0tH1QtVBoYGKj1kb6jSdTvR9LtpO+A0nyhnifN5kFKc5t6XNIcb7YgsEqdD4mIbr755mpvZzX84gEAAAAAAJbDwgMAAAAAACyHhQcAAAAAAFgOCw8AAAAAALCcUyeXm2E2UVAtziYVcpESf8wUdZMSi6TEHymhWE0ebWjJYY2RVJxSGm8qKalMGpPqRglS4S8puVgqjKWOb7NFOqFumEkg/Oqrr7SYlISpbkIgzUdSwqWa5EqkF5aTxryURCvNb+pmHVLRsLNnz2oxKdFZKhym+jMbeDijI0eOGF5DNVlfLapIJBdklM51p06dMrSl11dK2L711lurvX81cZiI6M0339Ri0phZtmyZoS0ll//1r3/VYlJi7ebNmw1tabMOKfH+iy++0GInT540tCMjI7U+0oYhxcXF1T6m9DlUPyvS59BVSPOF+nxCQkK0PtKcJZ2z1DlEeh+kOUXqp96/dN6Uzt0SNaHdzOY0RPJ3XzW2Y8cOU8dQ1/CLBwAAAAAAWA4LDwAAAAAAsBwWHgAAAAAAYDksPAAAAAAAwHIulWUnJVrWtAqtlECmJtIRyYltatKQlNwrJTdJycNqv4CAAP1gwaVIyWhqQqvZCuFSglqrVq0MbSnhTiJVZVVJibdSojrUDTPzm1S5XJort2zZYmhLYzA8PFyLqQmzRHqSsd1u1/pIVXOlDQ7U5yglmUrzop+fnxZTk1GlxFN1cwZXd/311xtei9WrVxv+LiU4BwcHa7HvvvtOi6mbCEgVyaXK5a+99poWU1/3N954Q+sjVaN/5513tJha9VzavCMtLU2LjRgxQotNmTLF0FY/J0RyUr1apZxI/17x9ddfa32Kioq0WNeuXbWYmmQsJfH379/f0JY2YXAVhYWFWkz9bmX2+550rlM3N5DOt2Y3nlDnTmm+lb4XmrkviXRcZjYekV5TZ4BfPAAAAAAAwHJYeAAAAAAAgOWw8AAAAAAAAMth4QEAAAAAAJZz6uRyNXmmponkEqk6rpRsJCXwqIlsUrVQKdlSShRWk9elRKMTJ05osebNm1d7rLX5eoF5UuVRM6TKwWbGnzQWfHx8anQMkpo+H/jzpDlJtXv3bi3Ws2dPLaYm9+7bt0/rIyXphoaGajF1bpESbW02m36wgrCwMEP78OHDWh9pwwbptVHnz/z8fK2PlMjrynx9fQ3J5evWrTP8vUuXLtpt7rvvPi127NixamPqe0VEtHz5ci0mVUY/dOiQoa0mRhMRRUREaLEHHnhAi61atcrQlhJ5pc9AQUGBFlM3IJDOt9K5VHq9evToUW0f6f6HDRumxZYsWWJoS58B9fxgJuHYWUmbFKjnROl9MLvpkBqTvmtJmwJJMTOvs3QM0nuoPkfpfC5tbqBWtpceU5rPnQF+8QAAAAAAAMth4QEAAAAAAJbDwgMAAAAAACzn1DkeZnIUpGs7pWv3PvjgA0Nbum5PKm4lXUen3r/0eFLBF6mojZrjIV3LN2PGDC32/vvvV3tcUD+ksSUVMlNJ413Kr1CvCZUKokn5RGaKWkpj1MyxQ92Qrg+Xcimk66XVgn5SXoZUwO3nn3/WYuo1zlKRyTZt2mgxqdihet29lDMnjd29e/dqMXUOzMjI0Po0tByP/fv3G3K61NwG6byQk5OjxW688UYtps4HqampWp/Y2Fgt5u/vr8Vyc3MN7Xbt2ml9PvroIy2Wl5enxdRCgNKY+f7777WYlEd3/fXXG9pSflxgYKAWk4oLf/PNN4Z2p06dtD5PPvmkFpPyrdQxL50f1HwoVy72Ks0N0nnMDOl9Vl8/s0Wepc9PTfNnpe+F6nFI48pMfo90XFJRbGeAb6oAAAAAAGA5LDwAAAAAAMByWHgAAAAAAIDlsPAAAAAAAADLOXVyuRlmk3w2btxoaEtJRFKykURN9JGKtEhJulIivBq7thDUVTt27DB1XOAcpHGkvs9SYpiUxCYldqsFhqSEYDNJ6VUdh0oay1A/pPdVKtZ22223abEjR44Y2tLYkooFSptuqMnr+/fv1/pICZFHjx7VYuHh4Ya2mcJYREQxMTFaTC3YJm3W0dBEREQYzhvq6yfND507d9Ziy5Yt02LqaxwdHa31efHFF7XYgAEDtJj6Xqxdu1brIyUYFxUVaTE1mdzb21vr8/HHH2uxO++8s9rjKiws1PpIyfIlJSVabOTIkYa29BlLSkrSYv369dNivXr1MrRXr16t9VGT16Uke1chbZwhjV2VVHBPup06H5kttih9b1O/P5r9Hir1U+9fGjN9+/bVYsePH9di6vnh5MmTpo6rruEXDwAAAAAAsBwWHgAAAAAAYDksPAAAAAAAwHJYeAAAAAAAgOUaTXK5mgwp3U5KCpYqTapJSVLCp1RNWnpMM0lKUlKwGWaruoP11PdQep+l90ZKFmzbtq2hHRkZqfWRxqR0/2fPntUPVlHT6rFQ+1auXKnFpMrl0vuvvtc//PCD1mfdunXV3o5IT/idMWOG1mfFihVaTKoKrW6eIVXbHTx4sBY7c+aMFvvll18MbTVxvSGqqKgwbAChViCXkvw3b96sxX788UctFhISYmhLSdwdO3bUYlK1cZU0B95yyy1aTNo8QU1Cl8633bp102JSkq6ajC8l90qbIkjfF8LCwgzt/Px8rY+UXC4l1Y8aNcrQVhPXpduZmc+dlbSphPpeSGMmICBAi0mV5tUxKVUIl74zSUnoasxsdXOpn/odUHodoqKitJj0uVA/68567sa3UAAAAAAAsBwWHgAAAAAAYDksPAAAAAAAwHJYeAAAAAAAgOVcKrlcSvIxm1yuVhmVksalJDypkriaVGY2iUg6fvW+pIrqUhIREsedl5ScqI4Rafx5enpqMSk5TE34bN26tdZHSjKUNilQx5vUB5XLnUd5ebkWk5LLd+/ercWCg4MN7Z07d2p9pLlMSsJUk4yl6sHSWJISJ9U5UJonpcrobdq00WJqQrGU3NvQlJaWGt4jtcq2dF6QqtFLydjqfS1dulTro27cQkTUokULLaZuLJCamqr1kc5/UlVvtWK3NK4mT56sxdSNDIj0avc9evTQ+kjJ3wcPHtRimzZtMrSHDRum9enZs6cWkypMq+d4NXGdyHz1bVcgbVygzg3S+fC6667TYi1bttRi6kYtUlK6tGGAmWrj0mfMbEy9f+l8q87dREQZGRlazMx3U+n+a7qBUU3hmyoAAAAAAFgOCw8AAAAAALAcFh4AAAAAAGC5RpPjoV7zbvb6PulafDPHJZGO1czxS9d1S0W2pOusoe5JOR7qGDGT70Mkv892u93QlnI8pOs4zXx+pGtopfEH9UN6L6RigVK+2t69ew1t6Xp6s3OZOi9KtzNbjMvMHCgVcJOueVfz4aQCnA2N3W435CIePnzY8PfS0lLtNr1799Ziau4YEdGBAweq7dO+fXstJuU/qEX+Bg0apPWRxrJ0Df/x48cNbSmnRMo9ke5fzQc4dOiQ1ke6fynHSM3VkPJYOnfurMVuv/12LbZv3z5DW/oM3HHHHYa2K493M/kIUh8pX8lMXob03c5s7qx0rjZDui/1OKT8TClnRSqaqRZVlfJmiouLtVhdF1rFLx4AAAAAAGA5LDwAAAAAAMByWHgAAAAAAIDlsPAAAAAAAADLuVRy+Z/Rtm1bQ1tNwiGSk42kJCUzicJSkq6Z+zJb8EVNriNCcrmzkMaD+h5K40MiJQtKyZwqtfAXkZxwrBaHk5LrappIB7VPSgyMi4vTYlJBqOzsbENbmlfMzoEqacybTThXY1LSu3SsauE3Ir1AnJSoKcWkQrGuokmTJoakVXVzi7S0NO02UmFF6b1Rk6VHjRql9ZHmo23btmkxtUChVLBQ2phj8eLFWkwd361atdL6SHPn0KFDtZiaaP/aa69pffbs2aPFJk6cqMW6d+9uaL/yyitaH7WYMZH8fUTdJCAqKkrro26mII1tV2Em2Vs6F0nF9cx8/5IeT5pnpPmouuMkqnlRQakYpvTdLjo6WoutW7fO0FaLdhIRnThxQoshuRwAAAAAABocLDwAAAAAAMByWHgAAAAAAIDlsPAAAAAAAADLuVRyudmqulICkpqwIyVMmk0IN1Pt2Sz1WM1WE5YS1CIiImp8HGAt9X2WxoyUWCklwHXs2LHax5Mq7UrJllLVV3AeauV66T2U5ge14jSRXPm4tphNLpeoiZlSYryaREskJ2EOHjzY0F6/fr3WR3oNXTm5vHXr1mSz2RxtNaFUSkKV5ho1kZxIr6gdHx+v9dm5c6cWGzBggBZT563y8nJTxyUlr6tVyaX3VLqv3377TYvt3r3b0O7SpYvWR6ocLVVGLygoMLSlc7KUiCyNb/V7xrXvcVXHJVWzdhWenp5aTH0NpPdU3TiISN48Qb1/KdFb+r5npp90XNJ9SXObev/S91fpvqTPhZocLx27ek6pD/jFAwAAAAAALIeFBwAAAAAAWA4LDwAAAAAAsBwWHgAAAAAAYDmXSi43U0GXSK7QbKbauJT0ZTZBsqa3U/tJyUDScUmJleAcpAQyNZlcSgKUqtdKyeVmEmGlpHEpAVNNZJMqt0pjEuqGmgwrJVLm5eVpMWnzArXC7969e7U+AQEBpo5LnYvNJmWaiUnVl0tLS7WYdPyBgYGGtpT0mZOTo8XatGmjxVxFfn4++fr6Otqffvqp4e8hISHabex2uxaTqn8vX77c0JY2LZAqkKtJ1kR6Je7bbrtN6yMlqksV6qVEa5VUoXn//v1aTE3QlqqUS3OulHCemZlpaO/atUvr4+/vr8WkMa/O/VLC9Pbt2w1tV/5eIJ3r1Hnl4sWLWp+wsDAtpr4PRPqmC9L3KrPfMVXSsUukxHH1+4JUbVz6biCRnpPKyk1GzMI3CgAAAAAAsBwWHgAAAAAAYDksPAAAAAAAwHIuleNhlplrBaVr7cwW7zOTv2G2GKF6TZ7Za6W9vb2rPQaoH9deb32VOmak4lnSey9diy2NU5V6PT+RfE28em2xNLbNXr8KtU+9vr2oqEjrIxWUjIqK0mJJSUmGtpRnZLZ4lZnbmb2GWi1cJxVdk56P9NlQr4+W8q1qmrfnrOx2u2HOUXMnpJxHtWgekTwe+vXrV20faS6TCuKp78WOHTu0PmZz01TSWJAKAUrnZakYr0oqFnjw4EEtpn4O2rVrp/WRclak4nlqgTipYFznzp0NbSlXxFVI+VgqaZ4xO4+ZOY9J51ZpzKhziHQ7aa4zM/dIOR7S7cwcq/TamPk8WQ2/eAAAAAAAgOWw8AAAAAAAAMth4QEAAAAAAJbDwgMAAAAAACzXILNGpYQaNbFISrirafEYSU3vy2zio1SEqKb3Bdbr0KGDoS0V6pOKP0mJw2ZIheakwljqOJUS8LCRQf1RCwhKybdS4qs0ltSkRSnJ0OycYaZQlURKiFTva/z48Vqf4cOHa7GEhAQtJiXzqqRkUVd2+vRpw3NSiyhKc823336rxXr06KHF+vbta2hLRQZTUlK0mFSIUk1Clwr8jRo1SotJSeiFhYWGtrQBi9nCieqGDdL3B+k1lD6LaqE3NfmbSH5t1q1bp8VuvfVWQ1sqnqcmuLtyAUEpMV7dkMBscVEzRXYlNd1MSPq+Zza5XI1JG2JInxVpLlXHrrRpgfTdt67hFw8AAAAAALAcFh4AAAAAAGA5LDwAAAAAAMByWHgAAAAAAIDlGmRyuURNujl16pTWR0pQqymzlSbVCptSxU3puKQkP1VtJsuDeQUFBVpMrVbbokULrY9awZmIKC4urkbHICXZSmNLTTRTkyOJ5Aq9UDfURFTpfZWSBaWxpL63ZhMipfmndevWhnZxcbHWx2wVanUumzdvntbnueee02Ldu3fXYpGRkYa2lEQtzf2u7LrrriObzeZoqwm40oYR99xzjxaT5oecnBxDOzg4WOsjxaT3Zs2aNYa2mgRPJG+UIG2k0rVrV0O7ZcuWWh8pIVz6rKgbcUjPRzou6Xyujnk1cZ1I/+wQEUVHR2uxw4cPG9rSeWXMmDGGtitXLpe+M6mbAaibChDJ41ZKLr/2M0Ikz2vSeypRN8SQ7svs/KqSxsfp06e1mDRm1GRy6fHMVIi3Gn7xAAAAAAAAy2HhAQAAAAAAlsPCAwAAAAAALIeFBwAAAAAAWK7RJJdLyY8qX19fLVbT6t9mb6cm/0hJSlJyoHSsNT0GqF1StVq1cnlQUJDW5+eff9Zi119/fY2OITY2Vos1b95ci6nJy1Ki3pAhQ2p0DPDnqZWIpSRDqaqtlECtJqZLiZpSUro0JtQqysePH9f6qBsqVHWs6vwmVds1WwE6Ly/P0JYqnte0qrGz6tKliyEBu1u3bvV4NFUbO3ZsfR9CgyfND65MTS5Xk7qJiCIiIrTY+vXrtZg6J0oV6isrK7WYNP+p/sxGPmpCu3QM0neD+Ph4LabOpdJ9qXN3fcAvHgAAAAAAYDksPAAAAAAAwHJYeAAAAAAAgOVcKsfjz1xHpxYYKi0tNXU7qeCVGpMKskgxKVdD5ePjo8XMXGMoQQHB+iFdVy7FrCRd/7llyxYtZrZgEtQP9TrkHTt2aH2kYpShoaFabPny5dU+XlZWlhaT8uPU/I0uXbpofUaMGKHFpLlMvY5bui+1MGBV93X33Xcb2tKx9+rVS4sBQP3y8PDQYocOHTK0pRwPNX+SSM5LTElJMbSl71rS/UsxNX9WOo+aLUit9pPy86RCwlFRUVpMLZAp5d4dPXrU1HFZCb94AAAAAACA5bDwAAAAAAAAy2HhAQAAAAAAlsPCAwAAAAAALNdoksvbtm1raJ85c0brIxXlkxI31QJXZ8+e1fpIiVJSQT81sUgq4KUmDBGRoWAUOBepQI9UFK2m1PEgbVogxcwkkksJu1IRIqn4EtQ+dZOAt99+W+sjzTVvvPFGjR6ve/fupmJm9OjRo0a3M0saz+o8L83fCQkJlh0TANSMtAHLt99+a2hLid6tW7fWYo8++qipWEMzcuRIQ1s6n48ePbquDqdK+MUDAAAAAAAsh4UHAAAAAABYDgsPAAAAAACwXI1zPK7mK5w+fbrWDsZKFRUVhrZ07ZvZ69vVXBMzfYjM5XhI9yUdl/S6q9c8S9dDmi1qUxNXj0l6nrXNmcefs+Z4mOHKOR51Of6ufZy6HIPqPEYkjzdn/FzUBfW1qMvXpjGMP3BurnwOlvJu1flO+k4jPb6V33OcmTrfSa+XVBS7tt5Ds+PPjWs4Qg8fPkxhYWE1uSk0cEVFRWLl5NqE8QdVqYvxR4QxCDKMP6hvOAdDfapu/NV44XH58mUqLi4mu93+p3abgoaDmenMmTMUEhJi+b84YPyBqi7HHxHGIBhh/EF9wzkY6pPZ8VfjhQcAAAAAAIBZjfNCOAAAAAAAqFNYeAAAAAAAgOWw8AAAAAAAAMth4QEAAAAAAJbDwgMAAAAAACyHhQcAAAAAAFgOCw8AAAAAALAcFh4AAAAAAGC5Rr3wGD9+PLm5uZGbmxt5eHhQmzZtKCEhgT788EO6fPlyfR8eNABXx1dV/82ZM6e+DxHAobS0lCZPnkwdO3YkLy8vCgsLoxEjRtDGjRtr7THat29Pb7/9dq3dHzQ8156b3dzcqGXLljR06FDatWtXfR8aNHCYA63XqBceRERDhw6lkpISOnjwIK1bt44GDRpEU6dOpeHDh1NlZaV4m4qKijo+SnBVJSUljv/efvtt8vf3N8SmTZvm6MvMVY65+nbx4sX6PgSw2MGDB6lXr160adMmeuONNyg7O5uSk5Np0KBB9Pjjj9f34UEjc/XcXFJSQhs3biR3d3caPnx4fR8WNGCYA+sIN2Ljxo3jO++8U4tv3LiRiYgXL17MzMxExO+99x6PGDGCfX19efbs2czMvHr1au7Rowd7eXlxhw4deM6cOVxRUcHMzJcvX+bZs2dzWFgYe3p6cnBwME+ePNnxGAsWLODIyEj28vLi1q1b8+jRoy1/vlC/lixZwgEBAY725s2bmYh47dq13LNnT/bw8ODNmzfz+fPnefLkyRwYGMheXl48cOBATk9Pr/J+mJmTkpL42o9zZmYm33zzzWyz2dhut3PPnj05IyPD8feUlBS+4YYb2Nvbm0NDQ3ny5MlcVlbm+Ht4eDjPnTuXH3jgAbbb7Txu3Lhafz3AuQwbNozbtm1rGAdXnThxgpmZDx06xCNHjmQ/Pz+22+18zz33cGlpqaPf/v37eeTIkdy6dWv28/Pj3r1784YNGxx/j4+PZyIy/Aegks7NKSkpTER85MgRZmb+xz/+wVFRUezj48MdOnTgmTNn8sWLFw23+ec//8mBgYFss9l4woQJ/PTTT3P37t3r6FmAq8EcWDca/S8ekltuuYW6d+9Oq1atcsTmzJlDo0aNouzsbHrwwQcpJSWFxo4dS1OnTqWcnBz697//TYmJifTSSy8REdHKlStp3rx59O9//5vy8/Np9erV1K1bNyIi+vHHH2nKlCk0d+5cysvLo+TkZLrpppvq5blC/XvmmWfo1VdfpdzcXIqNjaV//OMftHLlSvrf//1f+umnnygyMpKGDBlCx48fN32f999/P4WGhlJGRgbt2LGDnnnmGfLw8CAiogMHDtDQoUNp9OjRtGvXLlqxYgV9//33NGnSJMN9vPnmm9S9e3fauXMnPf/887X6nMG5HD9+nJKTk+nxxx8nPz8/7e/NmjWjy5cv05133knHjx+n7777jjZs2EA///wzjRkzxtGvrKyMbr/9dtq4cSPt3LmThg4dSiNGjKDCwkIiIlq1ahWFhobS3LlzHf+aDVCdsrIy+uijjygyMpJatmxJRER2u50SExMpJyeH3nnnHVq8eDHNmzfPcZuPP/6YXnrpJXrttddox44d1K5dO1q4cGF9PQVwcpgD61B9r3zqU1W/eDAzjxkzhqOjo5n5yi8eTzzxhOHvt956K7/88suG2LJlyzg4OJiZmd966y3u1KmT9i8wzMwrV65kf39/Pn36dC08C3AVVf3isXr1akesrKyMPTw8+OOPP3bELl68yCEhIfz666+L98Os/+Jht9s5MTFRPI4JEybwww8/bIilpKRwkyZN+Ny5c8x85RePu+66q0bPE1zPDz/8wETEq1atqrLP+vXruWnTplxYWOiI7dmzh4nI8IucqkuXLvyvf/3L0Q4PD+d58+bVynFDwzRu3Dhu2rQp+/n5sZ+fHxMRBwcH844dO6q8zRtvvMG9evVytPv168ePP/64oc/AgQPxiweIMAfWHfziUQVmJjc3N0e7d+/ehr9nZWXR3LlzyWazOf6bOHEilZSUUHl5Od1zzz107tw56tixI02cOJGSkpIc1+8nJCRQeHg4dezYkR544AH6+OOPqby8vE6fHziPa8fWgQMHqKKiggYOHOiIeXh4UN++fSk3N9f0fT711FP00EMP0eDBg+nVV1+lAwcOOP6WlZVFiYmJhrE7ZMgQunz5MhUUFIjHBQ0bM1fbJzc3l8LCwigsLMwRi4mJoWbNmjnGZllZGU2bNo2io6OpWbNmZLPZKDc31/GvfQBmDRo0iDIzMykzM5PS09NpyJAhNGzYMDp06BAREa1YsYIGDhxIQUFBZLPZaObMmYZxlpeXR3379jXcp9oGuApzYN3BwqMKubm51KFDB0db/emtrKyMXnjhBcfEmJmZSdnZ2ZSfn0/e3t4UFhZGeXl59N5775GPjw899thjdNNNN1FFRQXZ7Xb66aef6JNPPqHg4GCaNWsWde/enU6ePFnHzxKcgfSz7u9p0qSJNkmqGx7MmTOH9uzZQ3fccQdt2rSJYmJiKCkpiYiujN1HHnnEMHazsrIoPz+fIiIianxc4LqioqLIzc2N9u7d+6fuZ9q0aZSUlEQvv/wypaSkUGZmJnXr1g2bE8Af5ufnR5GRkRQZGUl9+vSh//mf/6GzZ8/S4sWLKS0tje6//366/fbbac2aNbRz50567rnnMM6gxjAH1h0sPASbNm2i7OxsGj16dJV9evbsSXl5eY6J8dr/mjS58rL6+PjQiBEj6N1336UtW7ZQWloaZWdnExGRu7s7DR48mF5//XXatWsXHTx4kDZt2lQnzw+cV0REBHl6elJqaqojVlFRQRkZGRQTE0NERIGBgXTmzBk6e/aso09mZqZ2X506daInn3yS1q9fT3fffTctWbKEiK6M3ZycHHHsenp6WvsEwSm1aNGChgwZQgsWLDCMq6tOnjxJ0dHRVFRUREVFRY54Tk4OnTx50jE2U1NTafz48TRq1Cjq1q0bBQUF0cGDBw335enpSZcuXbL0+UDD4+bmRk2aNKFz587Rtm3bKDw8nJ577jnq3bs3RUVFOX4Juapz586UkZFhiKltgKswB9Yd9/o+gPp24cIFKi0tpUuXLtGvv/5KycnJ9Morr9Dw4cNp7NixVd5u1qxZNHz4cGrXrh395S9/oSZNmlBWVhbt3r2bXnzxRUpMTKRLly5Rv379yNfXlz766CPy8fGh8PBwWrNmDf3888900003UfPmzWnt2rV0+fJl6ty5cx0+c3BGfn5+9Oijj9L06dOpRYsW1K5dO3r99depvLycJkyYQETkGFPPPvssTZkyhX744QdKTEx03Me5c+do+vTp9Je//IU6dOhAhw8fpoyMDMdC+umnn6b+/fvTpEmT6KGHHiI/Pz/KycmhDRs20Pz58+vjaYMTWLBgAQ0cOJD69u1Lc+fOpdjYWKqsrKQNGzbQwoULKScnh7p160b3338/vf3221RZWUmPPfYYxcfHOy7Li4qKolWrVtGIESPIzc2Nnn/+ea0mUvv27Wnr1q107733kpeXF7Vq1ao+ni44uavnZiKiEydO0Pz586msrIxGjBhBp0+fpsLCQvr000+pT58+9M033zh+0b1q8uTJNHHiROrduzfFxcXRihUraNeuXdSxY8f6eDrgAjAH1pH6TTGpX+PGjXNsZ+bu7s6BgYE8ePBg/vDDD/nSpUuOfkTESUlJ2u2Tk5M5Li6OfXx82N/fn/v27cuLFi1i5ivJvv369WN/f3/28/Pj/v3787fffsvMVxJ54+PjuXnz5uzj48OxsbG8YsWKOnnOUH+qSi6/uk3fVefOnePJkydzq1atxO10ma+Mr8jISPbx8eHhw4fzokWLHMnlFy5c4HvvvdexlXNISAhPmjTJkTjOzJyens4JCQlss9nYz8+PY2Nj+aWXXnL8vbEnvzVWxcXF/Pjjj3N4eDh7enpy27ZteeTIkbx582Zmrn4ryYKCAh40aBD7+PhwWFgYz58/n+Pj43nq1KmOPmlpaRwbG8teXl6NcitJqN6152YiYrvdzn369OEvvvjC0Wf69OncsmVLttlsPGbMGJ43b5626cbcuXO5VatWbLPZ+MEHH+QpU6Zw//796/jZgCvBHGg9N2YTGTUAAAAALiwhIYGCgoJo2bJl9X0oAI1Wo7/UCgAAABqW8vJyev/992nIkCHUtGlT+uSTT+jbb7+lDRs21PehATRq+MUDAAAAGpRz587RiBEjaOfOnXT+/Hnq3LkzzZw5k+6+++76PjSARg0LDwAAAAAAsBy20wUAAAAAAMth4QEAAAAAAJbDwgMAAAAAACyHhQcAAAAAAFgOCw8AAAAAALAcFh4AAAAAAGA5LDwAAAAAAMByWHgAAAAAAIDlsPAAAAAAAADL/R8qgnO1GDUKvgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(10,10))\n", "for i in range(25):\n", " plt.subplot(5,5,i+1)\n", " plt.xticks([])\n", " plt.yticks([])\n", " plt.grid(False)\n", " plt.imshow(train_images[i], cmap=plt.cm.binary)\n", " plt.xlabel(class_names[train_labels[i]])\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "59veuiEZCaW4" }, "source": [ "## 모델 구성\n", "\n", "신경망 모델을 만들려면 모델의 층을 구성한 다음 모델을 컴파일합니다." ] }, { "cell_type": "markdown", "metadata": { "id": "Gxg1XGm0eOBy" }, "source": [ "### 층 설정\n", "\n", "신경망의 기본 빌딩 블록은 [*레이어*](https://www.tensorflow.org/api_docs/python/tf/keras/layers) 입니다. 레이어는 레이어에 공급된 데이터로부터 표현을 추출합니다. 이러한 표현은 당면한 문제에 의미가 있어야 합니다.\n", "\n", "대부분 딥러닝은 간단한 층을 연결하여 구성됩니다. `tf.keras.layers.Dense`와 같은 층들의 가중치(parameter)는 훈련하는 동안 학습됩니다." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:16:14.143966Z", "iopub.status.busy": "2022-12-14T20:16:14.143356Z", "iopub.status.idle": "2022-12-14T20:16:17.789221Z", "shell.execute_reply": "2022-12-14T20:16:17.788454Z" }, "id": "9ODch-OFCaW4" }, "outputs": [], "source": [ "model = tf.keras.Sequential([\n", " tf.keras.layers.Flatten(input_shape=(28, 28)),\n", " tf.keras.layers.Dense(128, activation='relu'),\n", " tf.keras.layers.Dense(10)\n", "])" ] }, { "cell_type": "markdown", "metadata": { "id": "gut8A_7rCaW6" }, "source": [ "이 네트워크의 첫 번째 층인 `tf.keras.layers.Flatten`은 2차원 배열(28 x 28 픽셀)의 이미지 포맷을 28 * 28 = 784 픽셀의 1차원 배열로 변환합니다. 이 층은 이미지에 있는 픽셀의 행을 펼쳐서 일렬로 늘립니다. 이 층에는 학습되는 가중치가 없고 데이터를 변환하기만 합니다.\n", "\n", "픽셀을 펼친 후에는 두 개의 `tf.keras.layers.Dense` 층이 연속되어 연결됩니다. 이 층을 밀집 연결(densely-connected) 또는 완전 연결(fully-connected) 층이라고 부릅니다. 첫 번째 `Dense` 층은 128개의 노드(또는 뉴런)를 가집니다. 두 번째 (마지막) 층은 10개의 노드의 *소프트맥스*(softmax) 층입니다. 이 층은 10개의 확률을 반환하고 반환된 값의 전체 합은 1입니다. 각 노드는 현재 이미지가 10개 클래스 중 하나에 속할 확률을 출력합니다.\n", "\n", "### 모델 컴파일\n", "\n", "모델을 훈련할 준비가 되기 전에 몇 가지 설정이 더 필요합니다. 다음은 모델의 [*컴파일*](https://www.tensorflow.org/api_docs/python/tf/keras/Model#compile) 단계에서 추가됩니다.\n", "\n", "- [*손실 함수*](https://www.tensorflow.org/api_docs/python/tf/keras/losses) - 훈련 중 모델이 얼마나 정확한지 측정합니다. 모델을 올바른 방향으로 \"조정\"하려면 이 함수를 최소화해야 합니다.\n", "- [*옵티마이저*](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers) - 모델이 인식하는 데이터와 해당 손실 함수를 기반으로 모델이 업데이트되는 방식입니다.\n", "- [*메트릭*](https://www.tensorflow.org/api_docs/python/tf/keras/metrics) — 훈련 및 테스트 단계를 모니터링하는 데 사용됩니다. 다음 예에서는 올바르게 분류된 이미지의 비율인 *정확도*를 사용합니다." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:16:17.793849Z", "iopub.status.busy": "2022-12-14T20:16:17.793157Z", "iopub.status.idle": "2022-12-14T20:16:17.807581Z", "shell.execute_reply": "2022-12-14T20:16:17.806877Z" }, "id": "Lhan11blCaW7" }, "outputs": [], "source": [ "model.compile(optimizer='adam',\n", " loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n", " metrics=['accuracy'])" ] }, { "cell_type": "markdown", "metadata": { "id": "qKF6uW-BCaW-" }, "source": [ "## 모델 훈련\n", "\n", "신경망 모델을 훈련하려면 다음 단계가 필요합니다.\n", "\n", "1. 훈련 데이터를 모델에 주입합니다-이 예에서는 `train_images`와 `train_labels` 배열입니다.\n", "2. 모델이 이미지와 레이블을 매핑하는 방법을 배웁니다.\n", "3. 테스트 세트에 대한 모델의 예측을 만듭니다-이 예에서는 `test_images` 배열입니다. 이 예측이 `test_labels` 배열의 레이블과 맞는지 확인합니다.\n", "4. 예측이 `test_labels` 배열의 레이블과 일치하는지 확인합니다.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "Z4P4zIV7E28Z" }, "source": [ "### 모델 피드\n", "\n", "훈련을 시작하려면 [`model.fit`](https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit) 메서드를 호출합니다. 모델을 훈련 데이터에 \"맞추기(fit)\" 때문에 이렇게 불립니다." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:16:17.811465Z", "iopub.status.busy": "2022-12-14T20:16:17.811216Z", "iopub.status.idle": "2022-12-14T20:16:58.342263Z", "shell.execute_reply": "2022-12-14T20:16:58.341179Z" }, "id": "xvwvpA64CaW_" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/1875 [..............................] - ETA: 41:02 - loss: 2.3756 - accuracy: 0.0312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/1875 [..............................] - ETA: 3s - loss: 1.4449 - accuracy: 0.5200 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 50/1875 [..............................] - ETA: 3s - loss: 1.1565 - accuracy: 0.6094" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 75/1875 [>.............................] - ETA: 3s - loss: 1.0394 - accuracy: 0.6442" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 101/1875 [>.............................] - ETA: 3s - loss: 0.9476 - accuracy: 0.6785" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 126/1875 [=>............................] - ETA: 3s - loss: 0.9009 - accuracy: 0.6964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 151/1875 [=>............................] - ETA: 3s - loss: 0.8538 - accuracy: 0.7152" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 177/1875 [=>............................] - ETA: 3s - loss: 0.8189 - accuracy: 0.7256" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 203/1875 [==>...........................] - ETA: 3s - loss: 0.7837 - accuracy: 0.7381" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 229/1875 [==>...........................] - ETA: 3s - loss: 0.7697 - accuracy: 0.7419" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 255/1875 [===>..........................] - ETA: 3s - loss: 0.7498 - accuracy: 0.7482" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 281/1875 [===>..........................] - ETA: 3s - loss: 0.7261 - accuracy: 0.7560" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 307/1875 [===>..........................] - ETA: 3s - loss: 0.7109 - accuracy: 0.7609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 332/1875 [====>.........................] - ETA: 3s - loss: 0.7009 - accuracy: 0.7632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 357/1875 [====>.........................] - ETA: 3s - loss: 0.6891 - accuracy: 0.7674" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 382/1875 [=====>........................] - ETA: 2s - loss: 0.6813 - accuracy: 0.7701" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 407/1875 [=====>........................] - ETA: 2s - loss: 0.6718 - accuracy: 0.7724" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 432/1875 [=====>........................] - ETA: 2s - loss: 0.6641 - accuracy: 0.7746" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 457/1875 [======>.......................] - ETA: 2s - loss: 0.6562 - accuracy: 0.7771" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 483/1875 [======>.......................] - ETA: 2s - loss: 0.6451 - accuracy: 0.7805" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 508/1875 [=======>......................] - ETA: 2s - loss: 0.6399 - accuracy: 0.7827" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 534/1875 [=======>......................] - ETA: 2s - loss: 0.6345 - accuracy: 0.7841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 559/1875 [=======>......................] - ETA: 2s - loss: 0.6291 - accuracy: 0.7858" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 585/1875 [========>.....................] - ETA: 2s - loss: 0.6233 - accuracy: 0.7872" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 611/1875 [========>.....................] - ETA: 2s - loss: 0.6185 - accuracy: 0.7886" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 637/1875 [=========>....................] - ETA: 2s - loss: 0.6150 - accuracy: 0.7893" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 663/1875 [=========>....................] - ETA: 2s - loss: 0.6124 - accuracy: 0.7903" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 689/1875 [==========>...................] - ETA: 2s - loss: 0.6069 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 715/1875 [==========>...................] - ETA: 2s - loss: 0.5994 - accuracy: 0.7937" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 741/1875 [==========>...................] - ETA: 2s - loss: 0.5943 - accuracy: 0.7954" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 767/1875 [===========>..................] - ETA: 2s - loss: 0.5891 - accuracy: 0.7979" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 793/1875 [===========>..................] - ETA: 2s - loss: 0.5845 - accuracy: 0.7992" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 818/1875 [============>.................] - ETA: 2s - loss: 0.5813 - accuracy: 0.8002" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 843/1875 [============>.................] - ETA: 2s - loss: 0.5770 - accuracy: 0.8020" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 869/1875 [============>.................] - ETA: 2s - loss: 0.5723 - accuracy: 0.8032" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 895/1875 [=============>................] - ETA: 1s - loss: 0.5705 - accuracy: 0.8037" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 921/1875 [=============>................] - ETA: 1s - loss: 0.5690 - accuracy: 0.8044" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 947/1875 [==============>...............] - ETA: 1s - loss: 0.5662 - accuracy: 0.8050" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 972/1875 [==============>...............] - ETA: 1s - loss: 0.5625 - accuracy: 0.8060" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 997/1875 [==============>...............] - ETA: 1s - loss: 0.5601 - accuracy: 0.8069" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1022/1875 [===============>..............] - ETA: 1s - loss: 0.5593 - accuracy: 0.8071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1047/1875 [===============>..............] - ETA: 1s - loss: 0.5567 - accuracy: 0.8076" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1073/1875 [================>.............] - ETA: 1s - loss: 0.5558 - accuracy: 0.8076" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1099/1875 [================>.............] - ETA: 1s - loss: 0.5525 - accuracy: 0.8088" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1125/1875 [=================>............] - ETA: 1s - loss: 0.5499 - accuracy: 0.8098" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1151/1875 [=================>............] - ETA: 1s - loss: 0.5467 - accuracy: 0.8107" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1177/1875 [=================>............] - ETA: 1s - loss: 0.5447 - accuracy: 0.8114" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1203/1875 [==================>...........] - ETA: 1s - loss: 0.5422 - accuracy: 0.8124" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1229/1875 [==================>...........] - ETA: 1s - loss: 0.5403 - accuracy: 0.8130" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1256/1875 [===================>..........] - ETA: 1s - loss: 0.5378 - accuracy: 0.8139" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1283/1875 [===================>..........] - ETA: 1s - loss: 0.5354 - accuracy: 0.8148" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1309/1875 [===================>..........] - ETA: 1s - loss: 0.5328 - accuracy: 0.8156" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1335/1875 [====================>.........] - ETA: 1s - loss: 0.5298 - accuracy: 0.8165" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1361/1875 [====================>.........] - ETA: 1s - loss: 0.5278 - accuracy: 0.8175" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1387/1875 [=====================>........] - ETA: 0s - loss: 0.5264 - accuracy: 0.8177" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1413/1875 [=====================>........] - ETA: 0s - loss: 0.5247 - accuracy: 0.8183" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1439/1875 [======================>.......] - ETA: 0s - loss: 0.5226 - accuracy: 0.8188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1466/1875 [======================>.......] - ETA: 0s - loss: 0.5210 - accuracy: 0.8196" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1493/1875 [======================>.......] - ETA: 0s - loss: 0.5207 - accuracy: 0.8199" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1518/1875 [=======================>......] - ETA: 0s - loss: 0.5188 - accuracy: 0.8204" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1544/1875 [=======================>......] - ETA: 0s - loss: 0.5179 - accuracy: 0.8207" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1570/1875 [========================>.....] - ETA: 0s - loss: 0.5167 - accuracy: 0.8210" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1596/1875 [========================>.....] - ETA: 0s - loss: 0.5159 - accuracy: 0.8213" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1622/1875 [========================>.....] - ETA: 0s - loss: 0.5132 - accuracy: 0.8220" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1648/1875 [=========================>....] - ETA: 0s - loss: 0.5117 - accuracy: 0.8224" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1674/1875 [=========================>....] - ETA: 0s - loss: 0.5100 - accuracy: 0.8230" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1700/1875 [==========================>...] - ETA: 0s - loss: 0.5085 - accuracy: 0.8237" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1726/1875 [==========================>...] - ETA: 0s - loss: 0.5072 - accuracy: 0.8239" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1751/1875 [===========================>..] - ETA: 0s - loss: 0.5062 - accuracy: 0.8242" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1776/1875 [===========================>..] - ETA: 0s - loss: 0.5057 - accuracy: 0.8242" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1801/1875 [===========================>..] - ETA: 0s - loss: 0.5046 - accuracy: 0.8244" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1826/1875 [============================>.] - ETA: 0s - loss: 0.5031 - accuracy: 0.8249" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1852/1875 [============================>.] - ETA: 0s - loss: 0.5023 - accuracy: 0.8253" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1875/1875 [==============================] - 5s 2ms/step - loss: 0.5012 - accuracy: 0.8255\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 2/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/1875 [..............................] - ETA: 5s - loss: 0.4188 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/1875 [..............................] - ETA: 3s - loss: 0.3946 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/1875 [..............................] - ETA: 3s - loss: 0.3699 - accuracy: 0.8630" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/1875 [>.............................] - ETA: 3s - loss: 0.3792 - accuracy: 0.8600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 103/1875 [>.............................] - ETA: 3s - loss: 0.3836 - accuracy: 0.8601" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 128/1875 [=>............................] - ETA: 3s - loss: 0.3809 - accuracy: 0.8599" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 153/1875 [=>............................] - ETA: 3s - loss: 0.3735 - accuracy: 0.8638" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 178/1875 [=>............................] - ETA: 3s - loss: 0.3844 - accuracy: 0.8611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 203/1875 [==>...........................] - ETA: 3s - loss: 0.3827 - accuracy: 0.8608" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 229/1875 [==>...........................] - ETA: 3s - loss: 0.3817 - accuracy: 0.8618" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 255/1875 [===>..........................] - ETA: 3s - loss: 0.3809 - accuracy: 0.8609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 280/1875 [===>..........................] - ETA: 3s - loss: 0.3853 - accuracy: 0.8587" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 304/1875 [===>..........................] - ETA: 3s - loss: 0.3887 - accuracy: 0.8579" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 329/1875 [====>.........................] - ETA: 3s - loss: 0.3897 - accuracy: 0.8581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 355/1875 [====>.........................] - ETA: 3s - loss: 0.3882 - accuracy: 0.8588" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 379/1875 [=====>........................] - ETA: 3s - loss: 0.3886 - accuracy: 0.8587" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 403/1875 [=====>........................] - ETA: 2s - loss: 0.3886 - accuracy: 0.8583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 426/1875 [=====>........................] - ETA: 2s - loss: 0.3880 - accuracy: 0.8581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 450/1875 [======>.......................] - ETA: 2s - loss: 0.3863 - accuracy: 0.8586" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 474/1875 [======>.......................] - ETA: 2s - loss: 0.3847 - accuracy: 0.8590" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 498/1875 [======>.......................] - ETA: 2s - loss: 0.3828 - accuracy: 0.8599" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 523/1875 [=======>......................] - ETA: 2s - loss: 0.3843 - accuracy: 0.8597" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 546/1875 [=======>......................] - ETA: 2s - loss: 0.3846 - accuracy: 0.8594" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 569/1875 [========>.....................] - ETA: 2s - loss: 0.3863 - accuracy: 0.8587" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 592/1875 [========>.....................] - ETA: 2s - loss: 0.3847 - accuracy: 0.8596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 616/1875 [========>.....................] - ETA: 2s - loss: 0.3845 - accuracy: 0.8593" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 640/1875 [=========>....................] - ETA: 2s - loss: 0.3828 - accuracy: 0.8597" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 663/1875 [=========>....................] - ETA: 2s - loss: 0.3833 - accuracy: 0.8595" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 686/1875 [=========>....................] - ETA: 2s - loss: 0.3834 - accuracy: 0.8596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 709/1875 [==========>...................] - ETA: 2s - loss: 0.3826 - accuracy: 0.8601" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 732/1875 [==========>...................] - ETA: 2s - loss: 0.3818 - accuracy: 0.8605" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 755/1875 [===========>..................] - ETA: 2s - loss: 0.3815 - accuracy: 0.8603" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 780/1875 [===========>..................] - ETA: 2s - loss: 0.3802 - accuracy: 0.8608" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 806/1875 [===========>..................] - ETA: 2s - loss: 0.3809 - accuracy: 0.8605" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 832/1875 [============>.................] - ETA: 2s - loss: 0.3811 - accuracy: 0.8604" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 858/1875 [============>.................] - ETA: 2s - loss: 0.3829 - accuracy: 0.8602" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 884/1875 [=============>................] - ETA: 2s - loss: 0.3820 - accuracy: 0.8607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 910/1875 [=============>................] - ETA: 2s - loss: 0.3824 - accuracy: 0.8604" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 936/1875 [=============>................] - ETA: 1s - loss: 0.3820 - accuracy: 0.8604" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 961/1875 [==============>...............] - ETA: 1s - loss: 0.3814 - accuracy: 0.8604" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 985/1875 [==============>...............] - ETA: 1s - loss: 0.3811 - accuracy: 0.8607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1010/1875 [===============>..............] - ETA: 1s - loss: 0.3799 - accuracy: 0.8612" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1035/1875 [===============>..............] - ETA: 1s - loss: 0.3797 - accuracy: 0.8613" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1061/1875 [===============>..............] - ETA: 1s - loss: 0.3806 - accuracy: 0.8614" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1087/1875 [================>.............] - ETA: 1s - loss: 0.3804 - accuracy: 0.8613" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1111/1875 [================>.............] - ETA: 1s - loss: 0.3808 - accuracy: 0.8613" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1135/1875 [=================>............] - ETA: 1s - loss: 0.3799 - accuracy: 0.8617" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1159/1875 [=================>............] - ETA: 1s - loss: 0.3800 - accuracy: 0.8617" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1183/1875 [=================>............] - ETA: 1s - loss: 0.3797 - accuracy: 0.8618" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1207/1875 [==================>...........] - ETA: 1s - loss: 0.3778 - accuracy: 0.8625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1230/1875 [==================>...........] - ETA: 1s - loss: 0.3771 - accuracy: 0.8629" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1253/1875 [===================>..........] - ETA: 1s - loss: 0.3768 - accuracy: 0.8630" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1277/1875 [===================>..........] - ETA: 1s - loss: 0.3773 - accuracy: 0.8630" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1301/1875 [===================>..........] - ETA: 1s - loss: 0.3778 - accuracy: 0.8628" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1326/1875 [====================>.........] - ETA: 1s - loss: 0.3776 - accuracy: 0.8630" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1351/1875 [====================>.........] - ETA: 1s - loss: 0.3771 - accuracy: 0.8633" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1375/1875 [=====================>........] - ETA: 1s - loss: 0.3762 - accuracy: 0.8637" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1400/1875 [=====================>........] - ETA: 0s - loss: 0.3760 - accuracy: 0.8638" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1426/1875 [=====================>........] - ETA: 0s - loss: 0.3750 - accuracy: 0.8641" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1452/1875 [======================>.......] - ETA: 0s - loss: 0.3754 - accuracy: 0.8641" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1478/1875 [======================>.......] - ETA: 0s - loss: 0.3747 - accuracy: 0.8643" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1504/1875 [=======================>......] - ETA: 0s - loss: 0.3744 - accuracy: 0.8644" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1530/1875 [=======================>......] - ETA: 0s - loss: 0.3743 - accuracy: 0.8645" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1556/1875 [=======================>......] - ETA: 0s - loss: 0.3755 - accuracy: 0.8641" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1581/1875 [========================>.....] - ETA: 0s - loss: 0.3760 - accuracy: 0.8638" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1607/1875 [========================>.....] - ETA: 0s - loss: 0.3759 - accuracy: 0.8639" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1633/1875 [=========================>....] - ETA: 0s - loss: 0.3759 - accuracy: 0.8639" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1659/1875 [=========================>....] - ETA: 0s - loss: 0.3757 - accuracy: 0.8642" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1685/1875 [=========================>....] - ETA: 0s - loss: 0.3749 - accuracy: 0.8645" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1712/1875 [==========================>...] - ETA: 0s - loss: 0.3743 - accuracy: 0.8646" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1738/1875 [==========================>...] - ETA: 0s - loss: 0.3740 - accuracy: 0.8646" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1763/1875 [===========================>..] - ETA: 0s - loss: 0.3729 - accuracy: 0.8649" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1788/1875 [===========================>..] - ETA: 0s - loss: 0.3728 - accuracy: 0.8649" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1814/1875 [============================>.] - ETA: 0s - loss: 0.3721 - accuracy: 0.8652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1840/1875 [============================>.] - ETA: 0s - loss: 0.3725 - accuracy: 0.8650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1866/1875 [============================>.] - ETA: 0s - loss: 0.3721 - accuracy: 0.8653" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1875/1875 [==============================] - 4s 2ms/step - loss: 0.3724 - accuracy: 0.8652\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 3/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/1875 [..............................] - ETA: 5s - loss: 0.4018 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/1875 [..............................] - ETA: 3s - loss: 0.3469 - accuracy: 0.8773" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 53/1875 [..............................] - ETA: 3s - loss: 0.3543 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/1875 [>.............................] - ETA: 3s - loss: 0.3552 - accuracy: 0.8734" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 105/1875 [>.............................] - ETA: 3s - loss: 0.3482 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 131/1875 [=>............................] - ETA: 3s - loss: 0.3444 - accuracy: 0.8771" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 158/1875 [=>............................] - ETA: 3s - loss: 0.3394 - accuracy: 0.8772" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 185/1875 [=>............................] - ETA: 3s - loss: 0.3454 - accuracy: 0.8748" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 211/1875 [==>...........................] - ETA: 3s - loss: 0.3411 - accuracy: 0.8749" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 237/1875 [==>...........................] - ETA: 3s - loss: 0.3440 - accuracy: 0.8720" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 264/1875 [===>..........................] - ETA: 3s - loss: 0.3457 - accuracy: 0.8717" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 290/1875 [===>..........................] - ETA: 3s - loss: 0.3421 - accuracy: 0.8734" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 316/1875 [====>.........................] - ETA: 3s - loss: 0.3438 - accuracy: 0.8733" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 342/1875 [====>.........................] - ETA: 2s - loss: 0.3376 - accuracy: 0.8757" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 368/1875 [====>.........................] - ETA: 2s - loss: 0.3361 - accuracy: 0.8762" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 394/1875 [=====>........................] - ETA: 2s - loss: 0.3388 - accuracy: 0.8748" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 420/1875 [=====>........................] - ETA: 2s - loss: 0.3387 - accuracy: 0.8749" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 446/1875 [======>.......................] - ETA: 2s - loss: 0.3355 - accuracy: 0.8754" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 472/1875 [======>.......................] - ETA: 2s - loss: 0.3348 - accuracy: 0.8758" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 498/1875 [======>.......................] - ETA: 2s - loss: 0.3360 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 525/1875 [=======>......................] - ETA: 2s - loss: 0.3384 - accuracy: 0.8739" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 551/1875 [=======>......................] - ETA: 2s - loss: 0.3380 - accuracy: 0.8740" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 577/1875 [========>.....................] - ETA: 2s - loss: 0.3358 - accuracy: 0.8749" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 602/1875 [========>.....................] - ETA: 2s - loss: 0.3367 - accuracy: 0.8753" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 628/1875 [=========>....................] - ETA: 2s - loss: 0.3367 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 654/1875 [=========>....................] - ETA: 2s - loss: 0.3361 - accuracy: 0.8753" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 680/1875 [=========>....................] - ETA: 2s - loss: 0.3360 - accuracy: 0.8755" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 706/1875 [==========>...................] - ETA: 2s - loss: 0.3371 - accuracy: 0.8751" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 731/1875 [==========>...................] - ETA: 2s - loss: 0.3375 - accuracy: 0.8753" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 757/1875 [===========>..................] - ETA: 2s - loss: 0.3387 - accuracy: 0.8755" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 783/1875 [===========>..................] - ETA: 2s - loss: 0.3396 - accuracy: 0.8752" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 809/1875 [===========>..................] - ETA: 2s - loss: 0.3391 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 835/1875 [============>.................] - ETA: 2s - loss: 0.3373 - accuracy: 0.8756" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 861/1875 [============>.................] - ETA: 1s - loss: 0.3376 - accuracy: 0.8757" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 887/1875 [=============>................] - ETA: 1s - loss: 0.3373 - accuracy: 0.8759" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 913/1875 [=============>................] - ETA: 1s - loss: 0.3372 - accuracy: 0.8757" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 940/1875 [==============>...............] - ETA: 1s - loss: 0.3363 - accuracy: 0.8759" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 966/1875 [==============>...............] - ETA: 1s - loss: 0.3367 - accuracy: 0.8760" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 992/1875 [==============>...............] - ETA: 1s - loss: 0.3365 - accuracy: 0.8760" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1018/1875 [===============>..............] - ETA: 1s - loss: 0.3359 - accuracy: 0.8759" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1045/1875 [===============>..............] - ETA: 1s - loss: 0.3357 - accuracy: 0.8759" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1071/1875 [================>.............] - ETA: 1s - loss: 0.3357 - accuracy: 0.8761" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1097/1875 [================>.............] - ETA: 1s - loss: 0.3350 - accuracy: 0.8766" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1123/1875 [================>.............] - ETA: 1s - loss: 0.3354 - accuracy: 0.8766" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1149/1875 [=================>............] - ETA: 1s - loss: 0.3353 - accuracy: 0.8767" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1175/1875 [=================>............] - ETA: 1s - loss: 0.3360 - accuracy: 0.8768" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1201/1875 [==================>...........] - ETA: 1s - loss: 0.3359 - accuracy: 0.8771" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1227/1875 [==================>...........] - ETA: 1s - loss: 0.3366 - accuracy: 0.8766" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1253/1875 [===================>..........] - ETA: 1s - loss: 0.3363 - accuracy: 0.8765" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1279/1875 [===================>..........] - ETA: 1s - loss: 0.3355 - accuracy: 0.8766" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1305/1875 [===================>..........] - ETA: 1s - loss: 0.3366 - accuracy: 0.8760" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1330/1875 [====================>.........] - ETA: 1s - loss: 0.3369 - accuracy: 0.8760" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1355/1875 [====================>.........] - ETA: 1s - loss: 0.3368 - accuracy: 0.8760" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1381/1875 [=====================>........] - ETA: 0s - loss: 0.3370 - accuracy: 0.8761" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1407/1875 [=====================>........] - ETA: 0s - loss: 0.3373 - accuracy: 0.8760" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1433/1875 [=====================>........] - ETA: 0s - loss: 0.3367 - accuracy: 0.8760" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1459/1875 [======================>.......] - ETA: 0s - loss: 0.3366 - accuracy: 0.8762" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1485/1875 [======================>.......] - ETA: 0s - loss: 0.3356 - accuracy: 0.8764" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1511/1875 [=======================>......] - ETA: 0s - loss: 0.3358 - accuracy: 0.8764" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1537/1875 [=======================>......] - ETA: 0s - loss: 0.3362 - accuracy: 0.8763" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1563/1875 [========================>.....] - ETA: 0s - loss: 0.3366 - accuracy: 0.8762" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1588/1875 [========================>.....] - ETA: 0s - loss: 0.3368 - accuracy: 0.8760" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1613/1875 [========================>.....] - ETA: 0s - loss: 0.3365 - accuracy: 0.8762" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1638/1875 [=========================>....] - ETA: 0s - loss: 0.3367 - accuracy: 0.8761" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1663/1875 [=========================>....] - ETA: 0s - loss: 0.3368 - accuracy: 0.8762" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1688/1875 [==========================>...] - ETA: 0s - loss: 0.3379 - accuracy: 0.8758" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1713/1875 [==========================>...] - ETA: 0s - loss: 0.3377 - accuracy: 0.8759" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1738/1875 [==========================>...] - ETA: 0s - loss: 0.3371 - accuracy: 0.8764" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1763/1875 [===========================>..] - ETA: 0s - loss: 0.3363 - accuracy: 0.8766" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1789/1875 [===========================>..] - ETA: 0s - loss: 0.3378 - accuracy: 0.8762" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1815/1875 [============================>.] - ETA: 0s - loss: 0.3386 - accuracy: 0.8759" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1841/1875 [============================>.] - ETA: 0s - loss: 0.3381 - accuracy: 0.8762" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1867/1875 [============================>.] - ETA: 0s - loss: 0.3384 - accuracy: 0.8761" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1875/1875 [==============================] - 4s 2ms/step - loss: 0.3385 - accuracy: 0.8760\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/1875 [..............................] - ETA: 5s - loss: 0.4696 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/1875 [..............................] - ETA: 3s - loss: 0.3158 - accuracy: 0.8786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/1875 [..............................] - ETA: 3s - loss: 0.3263 - accuracy: 0.8781" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/1875 [>.............................] - ETA: 3s - loss: 0.3251 - accuracy: 0.8758" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 102/1875 [>.............................] - ETA: 3s - loss: 0.3295 - accuracy: 0.8762" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 127/1875 [=>............................] - ETA: 3s - loss: 0.3262 - accuracy: 0.8772" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 152/1875 [=>............................] - ETA: 3s - loss: 0.3241 - accuracy: 0.8766" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 178/1875 [=>............................] - ETA: 3s - loss: 0.3206 - accuracy: 0.8776" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 202/1875 [==>...........................] - ETA: 3s - loss: 0.3196 - accuracy: 0.8792" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 226/1875 [==>...........................] - ETA: 3s - loss: 0.3224 - accuracy: 0.8793" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 251/1875 [===>..........................] - ETA: 3s - loss: 0.3230 - accuracy: 0.8790" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 276/1875 [===>..........................] - ETA: 3s - loss: 0.3224 - accuracy: 0.8790" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 301/1875 [===>..........................] - ETA: 3s - loss: 0.3218 - accuracy: 0.8790" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 326/1875 [====>.........................] - ETA: 3s - loss: 0.3208 - accuracy: 0.8808" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 351/1875 [====>.........................] - ETA: 3s - loss: 0.3230 - accuracy: 0.8794" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 376/1875 [=====>........................] - ETA: 3s - loss: 0.3202 - accuracy: 0.8806" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 401/1875 [=====>........................] - ETA: 3s - loss: 0.3203 - accuracy: 0.8809" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 427/1875 [=====>........................] - ETA: 2s - loss: 0.3194 - accuracy: 0.8809" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 452/1875 [======>.......................] - ETA: 2s - loss: 0.3191 - accuracy: 0.8810" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 477/1875 [======>.......................] - ETA: 2s - loss: 0.3208 - accuracy: 0.8804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 502/1875 [=======>......................] - ETA: 2s - loss: 0.3219 - accuracy: 0.8801" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 527/1875 [=======>......................] - ETA: 2s - loss: 0.3203 - accuracy: 0.8808" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 551/1875 [=======>......................] - ETA: 2s - loss: 0.3203 - accuracy: 0.8807" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 575/1875 [========>.....................] - ETA: 2s - loss: 0.3202 - accuracy: 0.8809" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 599/1875 [========>.....................] - ETA: 2s - loss: 0.3208 - accuracy: 0.8808" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 624/1875 [========>.....................] - ETA: 2s - loss: 0.3215 - accuracy: 0.8802" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 648/1875 [=========>....................] - ETA: 2s - loss: 0.3214 - accuracy: 0.8804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 672/1875 [=========>....................] - ETA: 2s - loss: 0.3192 - accuracy: 0.8813" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 696/1875 [==========>...................] - ETA: 2s - loss: 0.3189 - accuracy: 0.8815" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 719/1875 [==========>...................] - ETA: 2s - loss: 0.3185 - accuracy: 0.8814" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 744/1875 [==========>...................] - ETA: 2s - loss: 0.3178 - accuracy: 0.8819" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 768/1875 [===========>..................] - ETA: 2s - loss: 0.3187 - accuracy: 0.8821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 792/1875 [===========>..................] - ETA: 2s - loss: 0.3171 - accuracy: 0.8828" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 816/1875 [============>.................] - ETA: 2s - loss: 0.3191 - accuracy: 0.8821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 840/1875 [============>.................] - ETA: 2s - loss: 0.3197 - accuracy: 0.8817" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 864/1875 [============>.................] - ETA: 2s - loss: 0.3196 - accuracy: 0.8818" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 889/1875 [=============>................] - ETA: 2s - loss: 0.3192 - accuracy: 0.8818" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 914/1875 [=============>................] - ETA: 1s - loss: 0.3194 - accuracy: 0.8819" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 939/1875 [==============>...............] - ETA: 1s - loss: 0.3183 - accuracy: 0.8826" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 963/1875 [==============>...............] - ETA: 1s - loss: 0.3183 - accuracy: 0.8828" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 987/1875 [==============>...............] - ETA: 1s - loss: 0.3178 - accuracy: 0.8831" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1012/1875 [===============>..............] - ETA: 1s - loss: 0.3166 - accuracy: 0.8833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1037/1875 [===============>..............] - ETA: 1s - loss: 0.3171 - accuracy: 0.8831" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1061/1875 [===============>..............] - ETA: 1s - loss: 0.3167 - accuracy: 0.8831" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1085/1875 [================>.............] - ETA: 1s - loss: 0.3176 - accuracy: 0.8832" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1109/1875 [================>.............] - ETA: 1s - loss: 0.3175 - accuracy: 0.8833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1133/1875 [=================>............] - ETA: 1s - loss: 0.3172 - accuracy: 0.8832" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1158/1875 [=================>............] - ETA: 1s - loss: 0.3169 - accuracy: 0.8832" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1183/1875 [=================>............] - ETA: 1s - loss: 0.3171 - accuracy: 0.8833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1207/1875 [==================>...........] - ETA: 1s - loss: 0.3171 - accuracy: 0.8832" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1232/1875 [==================>...........] - ETA: 1s - loss: 0.3173 - accuracy: 0.8831" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1256/1875 [===================>..........] - ETA: 1s - loss: 0.3172 - accuracy: 0.8833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1281/1875 [===================>..........] - ETA: 1s - loss: 0.3175 - accuracy: 0.8831" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1307/1875 [===================>..........] - ETA: 1s - loss: 0.3177 - accuracy: 0.8831" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1331/1875 [====================>.........] - ETA: 1s - loss: 0.3177 - accuracy: 0.8829" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1356/1875 [====================>.........] - ETA: 1s - loss: 0.3172 - accuracy: 0.8831" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1380/1875 [=====================>........] - ETA: 1s - loss: 0.3169 - accuracy: 0.8833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1405/1875 [=====================>........] - ETA: 0s - loss: 0.3163 - accuracy: 0.8836" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1431/1875 [=====================>........] - ETA: 0s - loss: 0.3153 - accuracy: 0.8842" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1456/1875 [======================>.......] - ETA: 0s - loss: 0.3148 - accuracy: 0.8844" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1481/1875 [======================>.......] - ETA: 0s - loss: 0.3150 - accuracy: 0.8842" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1506/1875 [=======================>......] - ETA: 0s - loss: 0.3149 - accuracy: 0.8841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1530/1875 [=======================>......] - ETA: 0s - loss: 0.3145 - accuracy: 0.8840" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1555/1875 [=======================>......] - ETA: 0s - loss: 0.3142 - accuracy: 0.8841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1579/1875 [========================>.....] - ETA: 0s - loss: 0.3144 - accuracy: 0.8839" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1603/1875 [========================>.....] - ETA: 0s - loss: 0.3146 - accuracy: 0.8838" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1627/1875 [=========================>....] - ETA: 0s - loss: 0.3143 - accuracy: 0.8838" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1651/1875 [=========================>....] - ETA: 0s - loss: 0.3146 - accuracy: 0.8836" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1675/1875 [=========================>....] - ETA: 0s - loss: 0.3143 - accuracy: 0.8836" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1699/1875 [==========================>...] - ETA: 0s - loss: 0.3139 - accuracy: 0.8838" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1723/1875 [==========================>...] - ETA: 0s - loss: 0.3135 - accuracy: 0.8839" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1747/1875 [==========================>...] - ETA: 0s - loss: 0.3135 - accuracy: 0.8841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1772/1875 [===========================>..] - ETA: 0s - loss: 0.3139 - accuracy: 0.8840" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1797/1875 [===========================>..] - ETA: 0s - loss: 0.3142 - accuracy: 0.8841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1823/1875 [============================>.] - ETA: 0s - loss: 0.3141 - accuracy: 0.8842" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1849/1875 [============================>.] - ETA: 0s - loss: 0.3142 - accuracy: 0.8841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1875/1875 [==============================] - ETA: 0s - loss: 0.3143 - accuracy: 0.8841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1875/1875 [==============================] - 4s 2ms/step - loss: 0.3143 - accuracy: 0.8841\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 5/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/1875 [..............................] - ETA: 5s - loss: 0.2508 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/1875 [..............................] - ETA: 3s - loss: 0.2845 - accuracy: 0.8966" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 50/1875 [..............................] - ETA: 3s - loss: 0.2700 - accuracy: 0.9050" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/1875 [>.............................] - ETA: 3s - loss: 0.2716 - accuracy: 0.9025" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 102/1875 [>.............................] - ETA: 3s - loss: 0.2776 - accuracy: 0.9013" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 127/1875 [=>............................] - ETA: 3s - loss: 0.2743 - accuracy: 0.9001" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 152/1875 [=>............................] - ETA: 3s - loss: 0.2804 - accuracy: 0.8960" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 177/1875 [=>............................] - ETA: 3s - loss: 0.2901 - accuracy: 0.8932" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 201/1875 [==>...........................] - ETA: 3s - loss: 0.2850 - accuracy: 0.8951" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 224/1875 [==>...........................] - ETA: 3s - loss: 0.2846 - accuracy: 0.8958" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 248/1875 [==>...........................] - ETA: 3s - loss: 0.2872 - accuracy: 0.8960" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 272/1875 [===>..........................] - ETA: 3s - loss: 0.2876 - accuracy: 0.8964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 296/1875 [===>..........................] - ETA: 3s - loss: 0.2848 - accuracy: 0.8974" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 320/1875 [====>.........................] - ETA: 3s - loss: 0.2899 - accuracy: 0.8945" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 343/1875 [====>.........................] - ETA: 3s - loss: 0.2922 - accuracy: 0.8941" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 367/1875 [====>.........................] - ETA: 3s - loss: 0.2937 - accuracy: 0.8931" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 390/1875 [=====>........................] - ETA: 3s - loss: 0.2958 - accuracy: 0.8919" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 414/1875 [=====>........................] - ETA: 3s - loss: 0.2972 - accuracy: 0.8908" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 438/1875 [======>.......................] - ETA: 3s - loss: 0.2985 - accuracy: 0.8904" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 462/1875 [======>.......................] - ETA: 2s - loss: 0.2997 - accuracy: 0.8902" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 485/1875 [======>.......................] - ETA: 2s - loss: 0.2999 - accuracy: 0.8901" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 508/1875 [=======>......................] - ETA: 2s - loss: 0.2993 - accuracy: 0.8907" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 532/1875 [=======>......................] - ETA: 2s - loss: 0.2999 - accuracy: 0.8907" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 556/1875 [=======>......................] - ETA: 2s - loss: 0.2966 - accuracy: 0.8915" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 580/1875 [========>.....................] - ETA: 2s - loss: 0.2975 - accuracy: 0.8908" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 604/1875 [========>.....................] - ETA: 2s - loss: 0.2964 - accuracy: 0.8911" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 628/1875 [=========>....................] - ETA: 2s - loss: 0.2954 - accuracy: 0.8915" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 652/1875 [=========>....................] - ETA: 2s - loss: 0.2964 - accuracy: 0.8915" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 676/1875 [=========>....................] - ETA: 2s - loss: 0.2958 - accuracy: 0.8921" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 700/1875 [==========>...................] - ETA: 2s - loss: 0.2960 - accuracy: 0.8916" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 724/1875 [==========>...................] - ETA: 2s - loss: 0.2949 - accuracy: 0.8918" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 749/1875 [==========>...................] - ETA: 2s - loss: 0.2947 - accuracy: 0.8920" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 773/1875 [===========>..................] - ETA: 2s - loss: 0.2955 - accuracy: 0.8914" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 796/1875 [===========>..................] - ETA: 2s - loss: 0.2950 - accuracy: 0.8914" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 820/1875 [============>.................] - ETA: 2s - loss: 0.2948 - accuracy: 0.8916" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 844/1875 [============>.................] - ETA: 2s - loss: 0.2958 - accuracy: 0.8915" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 867/1875 [============>.................] - ETA: 2s - loss: 0.2955 - accuracy: 0.8917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 890/1875 [=============>................] - ETA: 2s - loss: 0.2944 - accuracy: 0.8919" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 913/1875 [=============>................] - ETA: 2s - loss: 0.2945 - accuracy: 0.8921" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 936/1875 [=============>................] - ETA: 1s - loss: 0.2952 - accuracy: 0.8919" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 959/1875 [==============>...............] - ETA: 1s - loss: 0.2952 - accuracy: 0.8918" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 983/1875 [==============>...............] - ETA: 1s - loss: 0.2940 - accuracy: 0.8923" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1006/1875 [===============>..............] - ETA: 1s - loss: 0.2953 - accuracy: 0.8917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1029/1875 [===============>..............] - ETA: 1s - loss: 0.2954 - accuracy: 0.8913" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1053/1875 [===============>..............] - ETA: 1s - loss: 0.2953 - accuracy: 0.8915" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1077/1875 [================>.............] - ETA: 1s - loss: 0.2950 - accuracy: 0.8915" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1101/1875 [================>.............] - ETA: 1s - loss: 0.2942 - accuracy: 0.8918" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1125/1875 [=================>............] - ETA: 1s - loss: 0.2939 - accuracy: 0.8920" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1148/1875 [=================>............] - ETA: 1s - loss: 0.2935 - accuracy: 0.8920" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1171/1875 [=================>............] - ETA: 1s - loss: 0.2935 - accuracy: 0.8919" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1195/1875 [==================>...........] - ETA: 1s - loss: 0.2931 - accuracy: 0.8918" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1219/1875 [==================>...........] - ETA: 1s - loss: 0.2941 - accuracy: 0.8915" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1242/1875 [==================>...........] - ETA: 1s - loss: 0.2945 - accuracy: 0.8912" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1265/1875 [===================>..........] - ETA: 1s - loss: 0.2945 - accuracy: 0.8911" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1288/1875 [===================>..........] - ETA: 1s - loss: 0.2947 - accuracy: 0.8908" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1312/1875 [===================>..........] - ETA: 1s - loss: 0.2956 - accuracy: 0.8908" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1336/1875 [====================>.........] - ETA: 1s - loss: 0.2960 - accuracy: 0.8906" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1359/1875 [====================>.........] - ETA: 1s - loss: 0.2959 - accuracy: 0.8905" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1383/1875 [=====================>........] - ETA: 1s - loss: 0.2962 - accuracy: 0.8906" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1407/1875 [=====================>........] - ETA: 1s - loss: 0.2970 - accuracy: 0.8906" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1430/1875 [=====================>........] - ETA: 0s - loss: 0.2963 - accuracy: 0.8908" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1453/1875 [======================>.......] - ETA: 0s - loss: 0.2952 - accuracy: 0.8912" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1477/1875 [======================>.......] - ETA: 0s - loss: 0.2949 - accuracy: 0.8914" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1500/1875 [=======================>......] - ETA: 0s - loss: 0.2948 - accuracy: 0.8915" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1524/1875 [=======================>......] - ETA: 0s - loss: 0.2951 - accuracy: 0.8912" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1547/1875 [=======================>......] - ETA: 0s - loss: 0.2948 - accuracy: 0.8913" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1571/1875 [========================>.....] - ETA: 0s - loss: 0.2944 - accuracy: 0.8914" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1594/1875 [========================>.....] - ETA: 0s - loss: 0.2946 - accuracy: 0.8913" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1618/1875 [========================>.....] - ETA: 0s - loss: 0.2940 - accuracy: 0.8914" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1642/1875 [=========================>....] - ETA: 0s - loss: 0.2941 - accuracy: 0.8913" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1666/1875 [=========================>....] - ETA: 0s - loss: 0.2940 - accuracy: 0.8914" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1689/1875 [==========================>...] - ETA: 0s - loss: 0.2937 - accuracy: 0.8916" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1712/1875 [==========================>...] - ETA: 0s - loss: 0.2939 - accuracy: 0.8914" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1735/1875 [==========================>...] - ETA: 0s - loss: 0.2942 - accuracy: 0.8913" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1759/1875 [===========================>..] - ETA: 0s - loss: 0.2950 - accuracy: 0.8910" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1782/1875 [===========================>..] - ETA: 0s - loss: 0.2949 - accuracy: 0.8909" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1806/1875 [===========================>..] - ETA: 0s - loss: 0.2952 - accuracy: 0.8910" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1829/1875 [============================>.] - ETA: 0s - loss: 0.2956 - accuracy: 0.8908" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1853/1875 [============================>.] - ETA: 0s - loss: 0.2952 - accuracy: 0.8910" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1875/1875 [==============================] - 4s 2ms/step - loss: 0.2947 - accuracy: 0.8912\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 6/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/1875 [..............................] - ETA: 5s - loss: 0.0796 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/1875 [..............................] - ETA: 3s - loss: 0.2540 - accuracy: 0.9135" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/1875 [..............................] - ETA: 3s - loss: 0.2578 - accuracy: 0.9099" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 75/1875 [>.............................] - ETA: 3s - loss: 0.2693 - accuracy: 0.9025" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 99/1875 [>.............................] - ETA: 3s - loss: 0.2714 - accuracy: 0.9009" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 123/1875 [>.............................] - ETA: 3s - loss: 0.2754 - accuracy: 0.8996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 147/1875 [=>............................] - ETA: 3s - loss: 0.2733 - accuracy: 0.8999" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 172/1875 [=>............................] - ETA: 3s - loss: 0.2756 - accuracy: 0.8972" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 196/1875 [==>...........................] - ETA: 3s - loss: 0.2799 - accuracy: 0.8967" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 220/1875 [==>...........................] - ETA: 3s - loss: 0.2771 - accuracy: 0.8980" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 243/1875 [==>...........................] - ETA: 3s - loss: 0.2768 - accuracy: 0.8979" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 266/1875 [===>..........................] - ETA: 3s - loss: 0.2747 - accuracy: 0.8990" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 290/1875 [===>..........................] - ETA: 3s - loss: 0.2746 - accuracy: 0.8990" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 314/1875 [====>.........................] - ETA: 3s - loss: 0.2776 - accuracy: 0.8975" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 338/1875 [====>.........................] - ETA: 3s - loss: 0.2813 - accuracy: 0.8958" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 362/1875 [====>.........................] - ETA: 3s - loss: 0.2842 - accuracy: 0.8949" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 386/1875 [=====>........................] - ETA: 3s - loss: 0.2856 - accuracy: 0.8945" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 411/1875 [=====>........................] - ETA: 3s - loss: 0.2832 - accuracy: 0.8956" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 435/1875 [=====>........................] - ETA: 3s - loss: 0.2815 - accuracy: 0.8960" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 459/1875 [======>.......................] - ETA: 2s - loss: 0.2804 - accuracy: 0.8960" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 482/1875 [======>.......................] - ETA: 2s - loss: 0.2824 - accuracy: 0.8955" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 507/1875 [=======>......................] - ETA: 2s - loss: 0.2806 - accuracy: 0.8960" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 531/1875 [=======>......................] - ETA: 2s - loss: 0.2803 - accuracy: 0.8955" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 554/1875 [=======>......................] - ETA: 2s - loss: 0.2816 - accuracy: 0.8950" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 578/1875 [========>.....................] - ETA: 2s - loss: 0.2797 - accuracy: 0.8953" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 602/1875 [========>.....................] - ETA: 2s - loss: 0.2800 - accuracy: 0.8957" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 627/1875 [=========>....................] - ETA: 2s - loss: 0.2827 - accuracy: 0.8949" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 651/1875 [=========>....................] - ETA: 2s - loss: 0.2821 - accuracy: 0.8953" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 675/1875 [=========>....................] - ETA: 2s - loss: 0.2820 - accuracy: 0.8953" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 700/1875 [==========>...................] - ETA: 2s - loss: 0.2816 - accuracy: 0.8956" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 725/1875 [==========>...................] - ETA: 2s - loss: 0.2827 - accuracy: 0.8953" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 749/1875 [==========>...................] - ETA: 2s - loss: 0.2833 - accuracy: 0.8954" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 773/1875 [===========>..................] - ETA: 2s - loss: 0.2834 - accuracy: 0.8956" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 797/1875 [===========>..................] - ETA: 2s - loss: 0.2831 - accuracy: 0.8959" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 822/1875 [============>.................] - ETA: 2s - loss: 0.2823 - accuracy: 0.8963" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 847/1875 [============>.................] - ETA: 2s - loss: 0.2826 - accuracy: 0.8964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 871/1875 [============>.................] - ETA: 2s - loss: 0.2824 - accuracy: 0.8965" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 897/1875 [=============>................] - ETA: 2s - loss: 0.2821 - accuracy: 0.8967" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 922/1875 [=============>................] - ETA: 2s - loss: 0.2816 - accuracy: 0.8968" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 946/1875 [==============>...............] - ETA: 1s - loss: 0.2807 - accuracy: 0.8973" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 970/1875 [==============>...............] - ETA: 1s - loss: 0.2819 - accuracy: 0.8970" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 995/1875 [==============>...............] - ETA: 1s - loss: 0.2827 - accuracy: 0.8968" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1019/1875 [===============>..............] - ETA: 1s - loss: 0.2829 - accuracy: 0.8967" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1045/1875 [===============>..............] - ETA: 1s - loss: 0.2823 - accuracy: 0.8970" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1070/1875 [================>.............] - ETA: 1s - loss: 0.2823 - accuracy: 0.8968" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1094/1875 [================>.............] - ETA: 1s - loss: 0.2827 - accuracy: 0.8969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1119/1875 [================>.............] - ETA: 1s - loss: 0.2825 - accuracy: 0.8968" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1144/1875 [=================>............] - ETA: 1s - loss: 0.2825 - accuracy: 0.8969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1168/1875 [=================>............] - ETA: 1s - loss: 0.2836 - accuracy: 0.8964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1192/1875 [==================>...........] - ETA: 1s - loss: 0.2826 - accuracy: 0.8967" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1216/1875 [==================>...........] - ETA: 1s - loss: 0.2827 - accuracy: 0.8967" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1240/1875 [==================>...........] - ETA: 1s - loss: 0.2822 - accuracy: 0.8968" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1264/1875 [===================>..........] - ETA: 1s - loss: 0.2819 - accuracy: 0.8969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1288/1875 [===================>..........] - ETA: 1s - loss: 0.2811 - accuracy: 0.8970" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1312/1875 [===================>..........] - ETA: 1s - loss: 0.2814 - accuracy: 0.8968" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1336/1875 [====================>.........] - ETA: 1s - loss: 0.2811 - accuracy: 0.8969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1360/1875 [====================>.........] - ETA: 1s - loss: 0.2819 - accuracy: 0.8964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1383/1875 [=====================>........] - ETA: 1s - loss: 0.2820 - accuracy: 0.8964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1407/1875 [=====================>........] - ETA: 0s - loss: 0.2819 - accuracy: 0.8963" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1431/1875 [=====================>........] - ETA: 0s - loss: 0.2815 - accuracy: 0.8966" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1455/1875 [======================>.......] - ETA: 0s - loss: 0.2818 - accuracy: 0.8963" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1479/1875 [======================>.......] - ETA: 0s - loss: 0.2825 - accuracy: 0.8961" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1503/1875 [=======================>......] - ETA: 0s - loss: 0.2822 - accuracy: 0.8962" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1527/1875 [=======================>......] - ETA: 0s - loss: 0.2819 - accuracy: 0.8965" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1551/1875 [=======================>......] - ETA: 0s - loss: 0.2819 - accuracy: 0.8963" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1575/1875 [========================>.....] - ETA: 0s - loss: 0.2821 - accuracy: 0.8963" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1599/1875 [========================>.....] - ETA: 0s - loss: 0.2822 - accuracy: 0.8964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1623/1875 [========================>.....] - ETA: 0s - loss: 0.2823 - accuracy: 0.8966" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1647/1875 [=========================>....] - ETA: 0s - loss: 0.2816 - accuracy: 0.8968" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1671/1875 [=========================>....] - ETA: 0s - loss: 0.2818 - accuracy: 0.8967" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1695/1875 [==========================>...] - ETA: 0s - loss: 0.2818 - accuracy: 0.8967" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1719/1875 [==========================>...] - ETA: 0s - loss: 0.2820 - accuracy: 0.8967" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1743/1875 [==========================>...] - ETA: 0s - loss: 0.2818 - accuracy: 0.8968" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1767/1875 [===========================>..] - ETA: 0s - loss: 0.2815 - accuracy: 0.8968" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1791/1875 [===========================>..] - ETA: 0s - loss: 0.2811 - accuracy: 0.8968" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1815/1875 [============================>.] - ETA: 0s - loss: 0.2810 - accuracy: 0.8969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1839/1875 [============================>.] - ETA: 0s - loss: 0.2813 - accuracy: 0.8968" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1863/1875 [============================>.] - ETA: 0s - loss: 0.2807 - accuracy: 0.8970" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1875/1875 [==============================] - 4s 2ms/step - loss: 0.2809 - accuracy: 0.8969\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 7/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/1875 [..............................] - ETA: 6s - loss: 0.4486 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/1875 [..............................] - ETA: 4s - loss: 0.3026 - accuracy: 0.8913" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/1875 [..............................] - ETA: 3s - loss: 0.2895 - accuracy: 0.8948" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/1875 [>.............................] - ETA: 3s - loss: 0.2776 - accuracy: 0.8981" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/1875 [>.............................] - ETA: 3s - loss: 0.2806 - accuracy: 0.8963" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 121/1875 [>.............................] - ETA: 3s - loss: 0.2750 - accuracy: 0.8982" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 145/1875 [=>............................] - ETA: 3s - loss: 0.2705 - accuracy: 0.9017" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 169/1875 [=>............................] - ETA: 3s - loss: 0.2669 - accuracy: 0.9029" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 193/1875 [==>...........................] - ETA: 3s - loss: 0.2640 - accuracy: 0.9043" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 218/1875 [==>...........................] - ETA: 3s - loss: 0.2657 - accuracy: 0.9035" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 243/1875 [==>...........................] - ETA: 3s - loss: 0.2637 - accuracy: 0.9047" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 268/1875 [===>..........................] - ETA: 3s - loss: 0.2657 - accuracy: 0.9033" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 292/1875 [===>..........................] - ETA: 3s - loss: 0.2657 - accuracy: 0.9029" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 316/1875 [====>.........................] - ETA: 3s - loss: 0.2642 - accuracy: 0.9033" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 339/1875 [====>.........................] - ETA: 3s - loss: 0.2647 - accuracy: 0.9034" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 362/1875 [====>.........................] - ETA: 3s - loss: 0.2658 - accuracy: 0.9030" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 386/1875 [=====>........................] - ETA: 3s - loss: 0.2647 - accuracy: 0.9031" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 410/1875 [=====>........................] - ETA: 3s - loss: 0.2660 - accuracy: 0.9028" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 435/1875 [=====>........................] - ETA: 3s - loss: 0.2646 - accuracy: 0.9034" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 460/1875 [======>.......................] - ETA: 3s - loss: 0.2643 - accuracy: 0.9035" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 485/1875 [======>.......................] - ETA: 2s - loss: 0.2631 - accuracy: 0.9037" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 510/1875 [=======>......................] - ETA: 2s - loss: 0.2625 - accuracy: 0.9033" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 534/1875 [=======>......................] - ETA: 2s - loss: 0.2637 - accuracy: 0.9033" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 558/1875 [=======>......................] - ETA: 2s - loss: 0.2648 - accuracy: 0.9033" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 583/1875 [========>.....................] - ETA: 2s - loss: 0.2654 - accuracy: 0.9030" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 609/1875 [========>.....................] - ETA: 2s - loss: 0.2649 - accuracy: 0.9029" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 635/1875 [=========>....................] - ETA: 2s - loss: 0.2642 - accuracy: 0.9031" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 659/1875 [=========>....................] - ETA: 2s - loss: 0.2659 - accuracy: 0.9024" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 685/1875 [=========>....................] - ETA: 2s - loss: 0.2668 - accuracy: 0.9020" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 711/1875 [==========>...................] - ETA: 2s - loss: 0.2663 - accuracy: 0.9022" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 735/1875 [==========>...................] - ETA: 2s - loss: 0.2648 - accuracy: 0.9026" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 759/1875 [===========>..................] - ETA: 2s - loss: 0.2661 - accuracy: 0.9023" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 784/1875 [===========>..................] - ETA: 2s - loss: 0.2656 - accuracy: 0.9026" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 809/1875 [===========>..................] - ETA: 2s - loss: 0.2655 - accuracy: 0.9025" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 834/1875 [============>.................] - ETA: 2s - loss: 0.2663 - accuracy: 0.9022" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 859/1875 [============>.................] - ETA: 2s - loss: 0.2659 - accuracy: 0.9023" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 883/1875 [=============>................] - ETA: 2s - loss: 0.2666 - accuracy: 0.9018" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 907/1875 [=============>................] - ETA: 2s - loss: 0.2674 - accuracy: 0.9016" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 931/1875 [=============>................] - ETA: 1s - loss: 0.2660 - accuracy: 0.9021" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 955/1875 [==============>...............] - ETA: 1s - loss: 0.2660 - accuracy: 0.9021" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 979/1875 [==============>...............] - ETA: 1s - loss: 0.2659 - accuracy: 0.9022" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1003/1875 [===============>..............] - ETA: 1s - loss: 0.2654 - accuracy: 0.9022" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1027/1875 [===============>..............] - ETA: 1s - loss: 0.2643 - accuracy: 0.9026" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1051/1875 [===============>..............] - ETA: 1s - loss: 0.2655 - accuracy: 0.9023" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1077/1875 [================>.............] - ETA: 1s - loss: 0.2664 - accuracy: 0.9018" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1102/1875 [================>.............] - ETA: 1s - loss: 0.2667 - accuracy: 0.9017" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1126/1875 [=================>............] - ETA: 1s - loss: 0.2665 - accuracy: 0.9018" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1150/1875 [=================>............] - ETA: 1s - loss: 0.2658 - accuracy: 0.9021" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1175/1875 [=================>............] - ETA: 1s - loss: 0.2656 - accuracy: 0.9023" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1200/1875 [==================>...........] - ETA: 1s - loss: 0.2654 - accuracy: 0.9024" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1225/1875 [==================>...........] - ETA: 1s - loss: 0.2654 - accuracy: 0.9026" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1250/1875 [===================>..........] - ETA: 1s - loss: 0.2659 - accuracy: 0.9025" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1275/1875 [===================>..........] - ETA: 1s - loss: 0.2659 - accuracy: 0.9025" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1301/1875 [===================>..........] - ETA: 1s - loss: 0.2665 - accuracy: 0.9024" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1327/1875 [====================>.........] - ETA: 1s - loss: 0.2665 - accuracy: 0.9022" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1353/1875 [====================>.........] - ETA: 1s - loss: 0.2669 - accuracy: 0.9019" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1378/1875 [=====================>........] - ETA: 1s - loss: 0.2669 - accuracy: 0.9018" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1403/1875 [=====================>........] - ETA: 0s - loss: 0.2672 - accuracy: 0.9017" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1428/1875 [=====================>........] - ETA: 0s - loss: 0.2670 - accuracy: 0.9017" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1453/1875 [======================>.......] - ETA: 0s - loss: 0.2671 - accuracy: 0.9017" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1478/1875 [======================>.......] - ETA: 0s - loss: 0.2671 - accuracy: 0.9014" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1503/1875 [=======================>......] - ETA: 0s - loss: 0.2670 - accuracy: 0.9013" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1528/1875 [=======================>......] - ETA: 0s - loss: 0.2668 - accuracy: 0.9014" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1553/1875 [=======================>......] - ETA: 0s - loss: 0.2681 - accuracy: 0.9010" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1579/1875 [========================>.....] - ETA: 0s - loss: 0.2681 - accuracy: 0.9010" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1604/1875 [========================>.....] - ETA: 0s - loss: 0.2682 - accuracy: 0.9008" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1629/1875 [=========================>....] - ETA: 0s - loss: 0.2680 - accuracy: 0.9008" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1654/1875 [=========================>....] - ETA: 0s - loss: 0.2685 - accuracy: 0.9006" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1679/1875 [=========================>....] - ETA: 0s - loss: 0.2688 - accuracy: 0.9006" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1705/1875 [==========================>...] - ETA: 0s - loss: 0.2684 - accuracy: 0.9008" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1731/1875 [==========================>...] - ETA: 0s - loss: 0.2689 - accuracy: 0.9006" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1756/1875 [===========================>..] - ETA: 0s - loss: 0.2693 - accuracy: 0.9004" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1781/1875 [===========================>..] - ETA: 0s - loss: 0.2696 - accuracy: 0.9003" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1807/1875 [===========================>..] - ETA: 0s - loss: 0.2698 - accuracy: 0.9002" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1832/1875 [============================>.] - ETA: 0s - loss: 0.2701 - accuracy: 0.9002" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1857/1875 [============================>.] - ETA: 0s - loss: 0.2699 - accuracy: 0.9003" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1875/1875 [==============================] - 4s 2ms/step - loss: 0.2701 - accuracy: 0.9002\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 8/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/1875 [..............................] - ETA: 4s - loss: 0.2858 - accuracy: 0.9375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/1875 [..............................] - ETA: 3s - loss: 0.2357 - accuracy: 0.9213" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/1875 [..............................] - ETA: 3s - loss: 0.2393 - accuracy: 0.9183" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/1875 [>.............................] - ETA: 3s - loss: 0.2429 - accuracy: 0.9164" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 101/1875 [>.............................] - ETA: 3s - loss: 0.2394 - accuracy: 0.9177" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 126/1875 [=>............................] - ETA: 3s - loss: 0.2457 - accuracy: 0.9129" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 151/1875 [=>............................] - ETA: 3s - loss: 0.2480 - accuracy: 0.9127" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 177/1875 [=>............................] - ETA: 3s - loss: 0.2490 - accuracy: 0.9128" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 202/1875 [==>...........................] - ETA: 3s - loss: 0.2508 - accuracy: 0.9103" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 228/1875 [==>...........................] - ETA: 3s - loss: 0.2479 - accuracy: 0.9110" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 253/1875 [===>..........................] - ETA: 3s - loss: 0.2455 - accuracy: 0.9109" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 279/1875 [===>..........................] - ETA: 3s - loss: 0.2488 - accuracy: 0.9091" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 304/1875 [===>..........................] - ETA: 3s - loss: 0.2484 - accuracy: 0.9093" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 329/1875 [====>.........................] - ETA: 3s - loss: 0.2472 - accuracy: 0.9098" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 354/1875 [====>.........................] - ETA: 3s - loss: 0.2471 - accuracy: 0.9100" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 379/1875 [=====>........................] - ETA: 3s - loss: 0.2466 - accuracy: 0.9109" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 405/1875 [=====>........................] - ETA: 2s - loss: 0.2445 - accuracy: 0.9115" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 430/1875 [=====>........................] - ETA: 2s - loss: 0.2454 - accuracy: 0.9111" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 456/1875 [======>.......................] - ETA: 2s - loss: 0.2457 - accuracy: 0.9104" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 481/1875 [======>.......................] - ETA: 2s - loss: 0.2497 - accuracy: 0.9090" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 507/1875 [=======>......................] - ETA: 2s - loss: 0.2505 - accuracy: 0.9090" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 532/1875 [=======>......................] - ETA: 2s - loss: 0.2493 - accuracy: 0.9097" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 557/1875 [=======>......................] - ETA: 2s - loss: 0.2492 - accuracy: 0.9097" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 582/1875 [========>.....................] - ETA: 2s - loss: 0.2495 - accuracy: 0.9095" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 607/1875 [========>.....................] - ETA: 2s - loss: 0.2505 - accuracy: 0.9095" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 632/1875 [=========>....................] - ETA: 2s - loss: 0.2515 - accuracy: 0.9091" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 657/1875 [=========>....................] - ETA: 2s - loss: 0.2519 - accuracy: 0.9088" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 683/1875 [=========>....................] - ETA: 2s - loss: 0.2508 - accuracy: 0.9092" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 708/1875 [==========>...................] - ETA: 2s - loss: 0.2515 - accuracy: 0.9089" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 733/1875 [==========>...................] - ETA: 2s - loss: 0.2515 - accuracy: 0.9090" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 758/1875 [===========>..................] - ETA: 2s - loss: 0.2505 - accuracy: 0.9093" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 783/1875 [===========>..................] - ETA: 2s - loss: 0.2520 - accuracy: 0.9088" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 808/1875 [===========>..................] - ETA: 2s - loss: 0.2521 - accuracy: 0.9087" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 833/1875 [============>.................] - ETA: 2s - loss: 0.2532 - accuracy: 0.9082" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 857/1875 [============>.................] - ETA: 2s - loss: 0.2530 - accuracy: 0.9082" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 882/1875 [=============>................] - ETA: 2s - loss: 0.2541 - accuracy: 0.9078" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 907/1875 [=============>................] - ETA: 1s - loss: 0.2546 - accuracy: 0.9072" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 932/1875 [=============>................] - ETA: 1s - loss: 0.2546 - accuracy: 0.9072" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 958/1875 [==============>...............] - ETA: 1s - loss: 0.2543 - accuracy: 0.9069" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 983/1875 [==============>...............] - ETA: 1s - loss: 0.2534 - accuracy: 0.9070" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1008/1875 [===============>..............] - ETA: 1s - loss: 0.2528 - accuracy: 0.9071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1034/1875 [===============>..............] - ETA: 1s - loss: 0.2542 - accuracy: 0.9066" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1060/1875 [===============>..............] - ETA: 1s - loss: 0.2529 - accuracy: 0.9071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1085/1875 [================>.............] - ETA: 1s - loss: 0.2527 - accuracy: 0.9072" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1110/1875 [================>.............] - ETA: 1s - loss: 0.2527 - accuracy: 0.9071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1136/1875 [=================>............] - ETA: 1s - loss: 0.2522 - accuracy: 0.9073" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1161/1875 [=================>............] - ETA: 1s - loss: 0.2523 - accuracy: 0.9075" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1187/1875 [=================>............] - ETA: 1s - loss: 0.2529 - accuracy: 0.9074" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1213/1875 [==================>...........] - ETA: 1s - loss: 0.2533 - accuracy: 0.9071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1239/1875 [==================>...........] - ETA: 1s - loss: 0.2528 - accuracy: 0.9072" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1265/1875 [===================>..........] - ETA: 1s - loss: 0.2535 - accuracy: 0.9071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1290/1875 [===================>..........] - ETA: 1s - loss: 0.2542 - accuracy: 0.9066" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1316/1875 [====================>.........] - ETA: 1s - loss: 0.2544 - accuracy: 0.9066" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1342/1875 [====================>.........] - ETA: 1s - loss: 0.2549 - accuracy: 0.9061" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1368/1875 [====================>.........] - ETA: 1s - loss: 0.2552 - accuracy: 0.9059" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1394/1875 [=====================>........] - ETA: 0s - loss: 0.2553 - accuracy: 0.9059" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1420/1875 [=====================>........] - ETA: 0s - loss: 0.2549 - accuracy: 0.9059" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1446/1875 [======================>.......] - ETA: 0s - loss: 0.2545 - accuracy: 0.9061" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1472/1875 [======================>.......] - ETA: 0s - loss: 0.2543 - accuracy: 0.9062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1498/1875 [======================>.......] - ETA: 0s - loss: 0.2550 - accuracy: 0.9057" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1525/1875 [=======================>......] - ETA: 0s - loss: 0.2551 - accuracy: 0.9057" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1551/1875 [=======================>......] - ETA: 0s - loss: 0.2553 - accuracy: 0.9056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1577/1875 [========================>.....] - ETA: 0s - loss: 0.2551 - accuracy: 0.9056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1602/1875 [========================>.....] - ETA: 0s - loss: 0.2550 - accuracy: 0.9056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1628/1875 [=========================>....] - ETA: 0s - loss: 0.2553 - accuracy: 0.9054" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1654/1875 [=========================>....] - ETA: 0s - loss: 0.2560 - accuracy: 0.9052" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1679/1875 [=========================>....] - ETA: 0s - loss: 0.2560 - accuracy: 0.9050" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1704/1875 [==========================>...] - ETA: 0s - loss: 0.2563 - accuracy: 0.9051" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1730/1875 [==========================>...] - ETA: 0s - loss: 0.2565 - accuracy: 0.9050" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1756/1875 [===========================>..] - ETA: 0s - loss: 0.2562 - accuracy: 0.9050" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1781/1875 [===========================>..] - ETA: 0s - loss: 0.2559 - accuracy: 0.9049" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1806/1875 [===========================>..] - ETA: 0s - loss: 0.2565 - accuracy: 0.9045" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1831/1875 [============================>.] - ETA: 0s - loss: 0.2567 - accuracy: 0.9044" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1857/1875 [============================>.] - ETA: 0s - loss: 0.2570 - accuracy: 0.9043" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1875/1875 [==============================] - 4s 2ms/step - loss: 0.2576 - accuracy: 0.9042\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 9/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/1875 [..............................] - ETA: 5s - loss: 0.1942 - accuracy: 0.9062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/1875 [..............................] - ETA: 3s - loss: 0.2140 - accuracy: 0.9201" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/1875 [..............................] - ETA: 3s - loss: 0.2301 - accuracy: 0.9099" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/1875 [>.............................] - ETA: 3s - loss: 0.2278 - accuracy: 0.9127" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 103/1875 [>.............................] - ETA: 3s - loss: 0.2303 - accuracy: 0.9123" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 129/1875 [=>............................] - ETA: 3s - loss: 0.2311 - accuracy: 0.9125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 155/1875 [=>............................] - ETA: 3s - loss: 0.2290 - accuracy: 0.9137" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 181/1875 [=>............................] - ETA: 3s - loss: 0.2346 - accuracy: 0.9140" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 207/1875 [==>...........................] - ETA: 3s - loss: 0.2378 - accuracy: 0.9124" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 232/1875 [==>...........................] - ETA: 3s - loss: 0.2409 - accuracy: 0.9106" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 257/1875 [===>..........................] - ETA: 3s - loss: 0.2370 - accuracy: 0.9105" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 283/1875 [===>..........................] - ETA: 3s - loss: 0.2389 - accuracy: 0.9089" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 309/1875 [===>..........................] - ETA: 3s - loss: 0.2410 - accuracy: 0.9081" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 335/1875 [====>.........................] - ETA: 3s - loss: 0.2400 - accuracy: 0.9083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 360/1875 [====>.........................] - ETA: 3s - loss: 0.2380 - accuracy: 0.9090" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 385/1875 [=====>........................] - ETA: 2s - loss: 0.2386 - accuracy: 0.9096" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 411/1875 [=====>........................] - ETA: 2s - loss: 0.2393 - accuracy: 0.9092" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 437/1875 [=====>........................] - ETA: 2s - loss: 0.2378 - accuracy: 0.9103" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 462/1875 [======>.......................] - ETA: 2s - loss: 0.2404 - accuracy: 0.9087" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 487/1875 [======>.......................] - ETA: 2s - loss: 0.2424 - accuracy: 0.9077" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 512/1875 [=======>......................] - ETA: 2s - loss: 0.2433 - accuracy: 0.9072" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 537/1875 [=======>......................] - ETA: 2s - loss: 0.2426 - accuracy: 0.9070" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 562/1875 [=======>......................] - ETA: 2s - loss: 0.2425 - accuracy: 0.9070" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 588/1875 [========>.....................] - ETA: 2s - loss: 0.2441 - accuracy: 0.9068" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 614/1875 [========>.....................] - ETA: 2s - loss: 0.2425 - accuracy: 0.9073" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 640/1875 [=========>....................] - ETA: 2s - loss: 0.2428 - accuracy: 0.9074" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 666/1875 [=========>....................] - ETA: 2s - loss: 0.2438 - accuracy: 0.9073" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 692/1875 [==========>...................] - ETA: 2s - loss: 0.2445 - accuracy: 0.9073" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 718/1875 [==========>...................] - ETA: 2s - loss: 0.2437 - accuracy: 0.9076" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 744/1875 [==========>...................] - ETA: 2s - loss: 0.2428 - accuracy: 0.9076" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 770/1875 [===========>..................] - ETA: 2s - loss: 0.2417 - accuracy: 0.9081" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 795/1875 [===========>..................] - ETA: 2s - loss: 0.2406 - accuracy: 0.9086" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 820/1875 [============>.................] - ETA: 2s - loss: 0.2404 - accuracy: 0.9086" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 845/1875 [============>.................] - ETA: 2s - loss: 0.2414 - accuracy: 0.9082" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 870/1875 [============>.................] - ETA: 2s - loss: 0.2416 - accuracy: 0.9082" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 895/1875 [=============>................] - ETA: 1s - loss: 0.2414 - accuracy: 0.9081" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 920/1875 [=============>................] - ETA: 1s - loss: 0.2422 - accuracy: 0.9081" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 945/1875 [==============>...............] - ETA: 1s - loss: 0.2423 - accuracy: 0.9080" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 970/1875 [==============>...............] - ETA: 1s - loss: 0.2423 - accuracy: 0.9082" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 995/1875 [==============>...............] - ETA: 1s - loss: 0.2431 - accuracy: 0.9082" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1020/1875 [===============>..............] - ETA: 1s - loss: 0.2430 - accuracy: 0.9085" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1044/1875 [===============>..............] - ETA: 1s - loss: 0.2437 - accuracy: 0.9080" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1069/1875 [================>.............] - ETA: 1s - loss: 0.2435 - accuracy: 0.9082" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1094/1875 [================>.............] - ETA: 1s - loss: 0.2436 - accuracy: 0.9083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1119/1875 [================>.............] - ETA: 1s - loss: 0.2436 - accuracy: 0.9084" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1144/1875 [=================>............] - ETA: 1s - loss: 0.2436 - accuracy: 0.9084" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1168/1875 [=================>............] - ETA: 1s - loss: 0.2435 - accuracy: 0.9083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1193/1875 [==================>...........] - ETA: 1s - loss: 0.2437 - accuracy: 0.9084" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1217/1875 [==================>...........] - ETA: 1s - loss: 0.2435 - accuracy: 0.9086" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1242/1875 [==================>...........] - ETA: 1s - loss: 0.2441 - accuracy: 0.9083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1266/1875 [===================>..........] - ETA: 1s - loss: 0.2443 - accuracy: 0.9083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1290/1875 [===================>..........] - ETA: 1s - loss: 0.2455 - accuracy: 0.9079" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1315/1875 [====================>.........] - ETA: 1s - loss: 0.2459 - accuracy: 0.9077" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1340/1875 [====================>.........] - ETA: 1s - loss: 0.2456 - accuracy: 0.9079" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1365/1875 [====================>.........] - ETA: 1s - loss: 0.2450 - accuracy: 0.9080" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1390/1875 [=====================>........] - ETA: 0s - loss: 0.2447 - accuracy: 0.9082" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1416/1875 [=====================>........] - ETA: 0s - loss: 0.2449 - accuracy: 0.9080" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1441/1875 [======================>.......] - ETA: 0s - loss: 0.2447 - accuracy: 0.9080" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1466/1875 [======================>.......] - ETA: 0s - loss: 0.2444 - accuracy: 0.9081" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1491/1875 [======================>.......] - ETA: 0s - loss: 0.2445 - accuracy: 0.9081" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1516/1875 [=======================>......] - ETA: 0s - loss: 0.2449 - accuracy: 0.9078" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1541/1875 [=======================>......] - ETA: 0s - loss: 0.2452 - accuracy: 0.9077" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1566/1875 [========================>.....] - ETA: 0s - loss: 0.2459 - accuracy: 0.9076" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1591/1875 [========================>.....] - ETA: 0s - loss: 0.2464 - accuracy: 0.9074" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1616/1875 [========================>.....] - ETA: 0s - loss: 0.2465 - accuracy: 0.9076" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1641/1875 [=========================>....] - ETA: 0s - loss: 0.2465 - accuracy: 0.9077" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1666/1875 [=========================>....] - ETA: 0s - loss: 0.2471 - accuracy: 0.9074" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1690/1875 [==========================>...] - ETA: 0s - loss: 0.2471 - accuracy: 0.9075" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1714/1875 [==========================>...] - ETA: 0s - loss: 0.2472 - accuracy: 0.9073" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1738/1875 [==========================>...] - ETA: 0s - loss: 0.2469 - accuracy: 0.9074" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1763/1875 [===========================>..] - ETA: 0s - loss: 0.2470 - accuracy: 0.9073" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1788/1875 [===========================>..] - ETA: 0s - loss: 0.2470 - accuracy: 0.9072" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1812/1875 [===========================>..] - ETA: 0s - loss: 0.2474 - accuracy: 0.9071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1837/1875 [============================>.] - ETA: 0s - loss: 0.2473 - accuracy: 0.9073" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1862/1875 [============================>.] - ETA: 0s - loss: 0.2478 - accuracy: 0.9072" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1875/1875 [==============================] - 4s 2ms/step - loss: 0.2478 - accuracy: 0.9071\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 10/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/1875 [..............................] - ETA: 5s - loss: 0.0826 - accuracy: 0.9688" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/1875 [..............................] - ETA: 3s - loss: 0.2372 - accuracy: 0.9159" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/1875 [..............................] - ETA: 3s - loss: 0.2528 - accuracy: 0.9081" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/1875 [>.............................] - ETA: 3s - loss: 0.2595 - accuracy: 0.9058" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 100/1875 [>.............................] - ETA: 3s - loss: 0.2531 - accuracy: 0.9062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 124/1875 [>.............................] - ETA: 3s - loss: 0.2396 - accuracy: 0.9115" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 149/1875 [=>............................] - ETA: 3s - loss: 0.2356 - accuracy: 0.9125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 173/1875 [=>............................] - ETA: 3s - loss: 0.2410 - accuracy: 0.9115" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 198/1875 [==>...........................] - ETA: 3s - loss: 0.2394 - accuracy: 0.9129" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 223/1875 [==>...........................] - ETA: 3s - loss: 0.2405 - accuracy: 0.9120" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 248/1875 [==>...........................] - ETA: 3s - loss: 0.2394 - accuracy: 0.9119" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 273/1875 [===>..........................] - ETA: 3s - loss: 0.2408 - accuracy: 0.9109" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 297/1875 [===>..........................] - ETA: 3s - loss: 0.2415 - accuracy: 0.9105" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 321/1875 [====>.........................] - ETA: 3s - loss: 0.2387 - accuracy: 0.9117" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 346/1875 [====>.........................] - ETA: 3s - loss: 0.2433 - accuracy: 0.9092" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 370/1875 [====>.........................] - ETA: 3s - loss: 0.2426 - accuracy: 0.9095" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 395/1875 [=====>........................] - ETA: 3s - loss: 0.2420 - accuracy: 0.9099" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 420/1875 [=====>........................] - ETA: 3s - loss: 0.2432 - accuracy: 0.9092" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 445/1875 [======>.......................] - ETA: 2s - loss: 0.2439 - accuracy: 0.9091" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 469/1875 [======>.......................] - ETA: 2s - loss: 0.2444 - accuracy: 0.9087" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 494/1875 [======>.......................] - ETA: 2s - loss: 0.2432 - accuracy: 0.9090" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 518/1875 [=======>......................] - ETA: 2s - loss: 0.2419 - accuracy: 0.9096" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 542/1875 [=======>......................] - ETA: 2s - loss: 0.2415 - accuracy: 0.9098" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 567/1875 [========>.....................] - ETA: 2s - loss: 0.2407 - accuracy: 0.9107" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 592/1875 [========>.....................] - ETA: 2s - loss: 0.2404 - accuracy: 0.9110" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 617/1875 [========>.....................] - ETA: 2s - loss: 0.2401 - accuracy: 0.9111" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 643/1875 [=========>....................] - ETA: 2s - loss: 0.2390 - accuracy: 0.9112" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 668/1875 [=========>....................] - ETA: 2s - loss: 0.2373 - accuracy: 0.9115" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 693/1875 [==========>...................] - ETA: 2s - loss: 0.2376 - accuracy: 0.9115" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 718/1875 [==========>...................] - ETA: 2s - loss: 0.2374 - accuracy: 0.9116" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 743/1875 [==========>...................] - ETA: 2s - loss: 0.2367 - accuracy: 0.9118" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 768/1875 [===========>..................] - ETA: 2s - loss: 0.2378 - accuracy: 0.9114" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 794/1875 [===========>..................] - ETA: 2s - loss: 0.2390 - accuracy: 0.9108" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 819/1875 [============>.................] - ETA: 2s - loss: 0.2382 - accuracy: 0.9113" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 843/1875 [============>.................] - ETA: 2s - loss: 0.2393 - accuracy: 0.9108" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 868/1875 [============>.................] - ETA: 2s - loss: 0.2406 - accuracy: 0.9100" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 893/1875 [=============>................] - ETA: 2s - loss: 0.2409 - accuracy: 0.9096" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 918/1875 [=============>................] - ETA: 1s - loss: 0.2399 - accuracy: 0.9100" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 942/1875 [==============>...............] - ETA: 1s - loss: 0.2402 - accuracy: 0.9102" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 966/1875 [==============>...............] - ETA: 1s - loss: 0.2401 - accuracy: 0.9103" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 990/1875 [==============>...............] - ETA: 1s - loss: 0.2397 - accuracy: 0.9103" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1015/1875 [===============>..............] - ETA: 1s - loss: 0.2397 - accuracy: 0.9106" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1039/1875 [===============>..............] - ETA: 1s - loss: 0.2398 - accuracy: 0.9106" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1062/1875 [===============>..............] - ETA: 1s - loss: 0.2392 - accuracy: 0.9108" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1086/1875 [================>.............] - ETA: 1s - loss: 0.2395 - accuracy: 0.9107" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1111/1875 [================>.............] - ETA: 1s - loss: 0.2404 - accuracy: 0.9102" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1136/1875 [=================>............] - ETA: 1s - loss: 0.2410 - accuracy: 0.9097" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1160/1875 [=================>............] - ETA: 1s - loss: 0.2407 - accuracy: 0.9099" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1184/1875 [=================>............] - ETA: 1s - loss: 0.2398 - accuracy: 0.9104" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1209/1875 [==================>...........] - ETA: 1s - loss: 0.2391 - accuracy: 0.9104" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1233/1875 [==================>...........] - ETA: 1s - loss: 0.2390 - accuracy: 0.9102" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1257/1875 [===================>..........] - ETA: 1s - loss: 0.2387 - accuracy: 0.9104" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1280/1875 [===================>..........] - ETA: 1s - loss: 0.2389 - accuracy: 0.9102" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1305/1875 [===================>..........] - ETA: 1s - loss: 0.2389 - accuracy: 0.9102" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1330/1875 [====================>.........] - ETA: 1s - loss: 0.2391 - accuracy: 0.9100" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1355/1875 [====================>.........] - ETA: 1s - loss: 0.2388 - accuracy: 0.9101" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1380/1875 [=====================>........] - ETA: 1s - loss: 0.2392 - accuracy: 0.9100" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1405/1875 [=====================>........] - ETA: 0s - loss: 0.2391 - accuracy: 0.9100" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1429/1875 [=====================>........] - ETA: 0s - loss: 0.2387 - accuracy: 0.9100" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1454/1875 [======================>.......] - ETA: 0s - loss: 0.2384 - accuracy: 0.9101" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1478/1875 [======================>.......] - ETA: 0s - loss: 0.2381 - accuracy: 0.9101" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1503/1875 [=======================>......] - ETA: 0s - loss: 0.2384 - accuracy: 0.9100" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1528/1875 [=======================>......] - ETA: 0s - loss: 0.2384 - accuracy: 0.9099" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1553/1875 [=======================>......] - ETA: 0s - loss: 0.2380 - accuracy: 0.9101" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1577/1875 [========================>.....] - ETA: 0s - loss: 0.2377 - accuracy: 0.9102" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1603/1875 [========================>.....] - ETA: 0s - loss: 0.2378 - accuracy: 0.9100" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1627/1875 [=========================>....] - ETA: 0s - loss: 0.2377 - accuracy: 0.9101" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1651/1875 [=========================>....] - ETA: 0s - loss: 0.2385 - accuracy: 0.9099" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1676/1875 [=========================>....] - ETA: 0s - loss: 0.2386 - accuracy: 0.9098" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1702/1875 [==========================>...] - ETA: 0s - loss: 0.2387 - accuracy: 0.9097" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1727/1875 [==========================>...] - ETA: 0s - loss: 0.2391 - accuracy: 0.9097" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1752/1875 [===========================>..] - ETA: 0s - loss: 0.2393 - accuracy: 0.9096" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1777/1875 [===========================>..] - ETA: 0s - loss: 0.2394 - accuracy: 0.9096" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1801/1875 [===========================>..] - ETA: 0s - loss: 0.2399 - accuracy: 0.9094" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1826/1875 [============================>.] - ETA: 0s - loss: 0.2397 - accuracy: 0.9095" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1850/1875 [============================>.] - ETA: 0s - loss: 0.2401 - accuracy: 0.9095" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1874/1875 [============================>.] - ETA: 0s - loss: 0.2400 - accuracy: 0.9097" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1875/1875 [==============================] - 4s 2ms/step - loss: 0.2400 - accuracy: 0.9097\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.fit(train_images, train_labels, epochs=10)" ] }, { "cell_type": "markdown", "metadata": { "id": "W3ZVOhugCaXA" }, "source": [ "모델이 훈련되면서 손실과 정확도 지표가 출력됩니다. 이 모델은 훈련 세트에서 약 0.88(88%) 정도의 정확도를 달성합니다." ] }, { "cell_type": "markdown", "metadata": { "id": "wCpr6DGyE28h" }, "source": [ "### 정확도 평가\n", "\n", "다음으로, 모델이 테스트 데이터세트에서 작동하는 방식을 비교합니다." ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:16:58.346709Z", "iopub.status.busy": "2022-12-14T20:16:58.345991Z", "iopub.status.idle": "2022-12-14T20:16:59.095491Z", "shell.execute_reply": "2022-12-14T20:16:59.094535Z" }, "id": "VflXLEeECaXC" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "313/313 - 1s - loss: 0.3430 - accuracy: 0.8799 - 616ms/epoch - 2ms/step\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "Test accuracy: 0.8798999786376953\n" ] } ], "source": [ "test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)\n", "\n", "print('\\nTest accuracy:', test_acc)" ] }, { "cell_type": "markdown", "metadata": { "id": "yWfgsmVXCaXG" }, "source": [ "테스트 세트의 정확도가 훈련 세트의 정확도보다 조금 낮습니다. 훈련 세트의 정확도와 테스트 세트의 정확도 사이의 차이는 *과대적합*(overfitting) 때문입니다. 과대적합은 머신러닝 모델이 훈련 데이터보다 새로운 데이터에서 성능이 낮아지는 현상을 말합니다.\n", "\n", "- 과대적합 시연\n", "- 과대적합을 방지하기 위한 전략" ] }, { "cell_type": "markdown", "metadata": { "id": "v-PyD1SYE28q" }, "source": [ "### 예측하기\n", "\n", "훈련된 모델을 사용하여 일부 이미지에 대한 예측을 수행할 수 있습니다. 소프트맥스 레이어를 연결하여 [로짓](https://developers.google.com/machine-learning/glossary#logits)을 해석하기 쉬운 확률로 변환합니다." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:16:59.099494Z", "iopub.status.busy": "2022-12-14T20:16:59.099023Z", "iopub.status.idle": "2022-12-14T20:16:59.120339Z", "shell.execute_reply": "2022-12-14T20:16:59.119654Z" }, "id": "DnfNA0CrQLSD" }, "outputs": [], "source": [ "probability_model = tf.keras.Sequential([model, \n", " tf.keras.layers.Softmax()])" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:16:59.124216Z", "iopub.status.busy": "2022-12-14T20:16:59.123567Z", "iopub.status.idle": "2022-12-14T20:16:59.822111Z", "shell.execute_reply": "2022-12-14T20:16:59.821253Z" }, "id": "Gl91RPhdCaXI" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/313 [..............................] - ETA: 24s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 47/313 [===>..........................] - ETA: 0s " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 93/313 [=======>......................] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140/313 [============>.................] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "186/313 [================>.............] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "233/313 [=====================>........] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "280/313 [=========================>....] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "313/313 [==============================] - 0s 1ms/step\n" ] } ], "source": [ "predictions = probability_model.predict(test_images)" ] }, { "cell_type": "markdown", "metadata": { "id": "x9Kk1voUCaXJ" }, "source": [ "여기서는 테스트 세트에 있는 각 이미지의 레이블을 예측했습니다. 첫 번째 예측을 확인해 보죠:" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:16:59.826575Z", "iopub.status.busy": "2022-12-14T20:16:59.825989Z", "iopub.status.idle": "2022-12-14T20:16:59.831217Z", "shell.execute_reply": "2022-12-14T20:16:59.830492Z" }, "id": "3DmJEUinCaXK" }, "outputs": [ { "data": { "text/plain": [ "array([1.8723815e-05, 7.4191564e-10, 5.0816546e-08, 6.3760202e-09,\n", " 6.8714505e-09, 1.0227029e-03, 1.3316703e-06, 5.1405199e-04,\n", " 1.6616039e-07, 9.9844307e-01], dtype=float32)" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "predictions[0]" ] }, { "cell_type": "markdown", "metadata": { "id": "-hw1hgeSCaXN" }, "source": [ "이 예측은 10개의 숫자 배열로 나타납니다. 이 값은 10개의 옷 품목에 상응하는 모델의 신뢰도(confidence)를 나타냅니다. 가장 높은 신뢰도를 가진 레이블을 찾아보죠:" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:16:59.834515Z", "iopub.status.busy": "2022-12-14T20:16:59.834047Z", "iopub.status.idle": "2022-12-14T20:16:59.838661Z", "shell.execute_reply": "2022-12-14T20:16:59.837992Z" }, "id": "qsqenuPnCaXO" }, "outputs": [ { "data": { "text/plain": [ "9" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.argmax(predictions[0])" ] }, { "cell_type": "markdown", "metadata": { "id": "E51yS7iCCaXO" }, "source": [ "모델은 이 이미지가 앵클 부츠(`class_name[9]`)라고 가장 확신하고 있습니다. 이 값이 맞는지 테스트 레이블을 확인해 보죠:" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:16:59.842030Z", "iopub.status.busy": "2022-12-14T20:16:59.841560Z", "iopub.status.idle": "2022-12-14T20:16:59.845878Z", "shell.execute_reply": "2022-12-14T20:16:59.845267Z" }, "id": "Sd7Pgsu6CaXP" }, "outputs": [ { "data": { "text/plain": [ "9" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "test_labels[0]" ] }, { "cell_type": "markdown", "metadata": { "id": "ygh2yYC972ne" }, "source": [ "10개 클래스에 대한 예측을 모두 그래프로 표현해 보겠습니다:" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:16:59.849280Z", "iopub.status.busy": "2022-12-14T20:16:59.848777Z", "iopub.status.idle": "2022-12-14T20:16:59.855160Z", "shell.execute_reply": "2022-12-14T20:16:59.854489Z" }, "id": "DvYmmrpIy6Y1" }, "outputs": [], "source": [ "def plot_image(i, predictions_array, true_label, img):\n", " true_label, img = true_label[i], img[i]\n", " plt.grid(False)\n", " plt.xticks([])\n", " plt.yticks([])\n", "\n", " plt.imshow(img, cmap=plt.cm.binary)\n", "\n", " predicted_label = np.argmax(predictions_array)\n", " if predicted_label == true_label:\n", " color = 'blue'\n", " else:\n", " color = 'red'\n", "\n", " plt.xlabel(\"{} {:2.0f}% ({})\".format(class_names[predicted_label],\n", " 100*np.max(predictions_array),\n", " class_names[true_label]),\n", " color=color)\n", "\n", "def plot_value_array(i, predictions_array, true_label):\n", " true_label = true_label[i]\n", " plt.grid(False)\n", " plt.xticks(range(10))\n", " plt.yticks([])\n", " thisplot = plt.bar(range(10), predictions_array, color=\"#777777\")\n", " plt.ylim([0, 1])\n", " predicted_label = np.argmax(predictions_array)\n", "\n", " thisplot[predicted_label].set_color('red')\n", " thisplot[true_label].set_color('blue')" ] }, { "cell_type": "markdown", "metadata": { "id": "Zh9yABaME29S" }, "source": [ "### 예측 확인\n", "\n", "훈련된 모델을 사용하여 일부 이미지에 대한 예측을 수행할 수 있습니다." ] }, { "cell_type": "markdown", "metadata": { "id": "d4Ov9OFDMmOD" }, "source": [ "0번째 원소의 이미지, 예측, 신뢰도 점수 배열을 확인해 보겠습니다." ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:16:59.858539Z", "iopub.status.busy": "2022-12-14T20:16:59.858124Z", "iopub.status.idle": "2022-12-14T20:17:00.018581Z", "shell.execute_reply": "2022-12-14T20:17:00.017436Z" }, "id": "HV5jw-5HwSmO" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAAESCAYAAADZmy1NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAfA0lEQVR4nO3deXSUVZrH8ScEkmAWwm4CJAgCQRYFYjSgYzugDiLSaity8JzQ9DCLoQVtFURHXAbsmdPt0W5bbW3EaVvADVCR6YiI0CibaGiCGEBZgmETCFmAQCrP/HGnrMry3kqqormY7+ecHFJ1697ceqvIr96893nfKFVVAQAAzmnV3BMAAAD1I6QBAHAUIQ0AgKMIaQAAHEVIAwDgKEIaAABHEdIAADiqdXNPAMC5obq6WoqLiyUxMVGioqKaezrAOU1VpaysTFJTU6VVK+/9ZUIaQIMUFxdLjx49mnsawI9KUVGRdO/e3bOdkAbQIImJiSJifqkkJSU182yA709RkciwYSKVleH1j40V2bxZxPaZtrS0VHr06PHd/ysvhDSABvH/iTspKYmQxo9aZWX4AR3cvyH/TUIdOmLhGAAAjiKkAQBwFCENAICjCGkAABxFSAMA4ChCGgAAR4VdgsXZh4Cm0dAzDwFoecIOac4+BDStUGceAtDyhB3SnH0IaBoNPfMQgJYn7JDm7ENA0+KwEYDaOAAGAICjCGkAABxFSAMA4ChCGgAARxHSAAA4ipAGAMBRhDQAAI4ipAEAcBQhDQCAowhpAAAcRUgDAOAoQhoAAEcR0gAAOIqQBgDAUYQ0AACOIqQBAHAUIQ0AgKMIaQAAHEVIAwDgKEIaAABHEdIAADiKkAYAwFGENAAAjiKkAQBwFCENAICjCGkAABxFSAMA4ChCGgAARxHSAAA4ipAGAMBRhDQAAI4ipAEAcBQhDQCAowhpAAAcRUgDAOAoQhoAAEcR0gAAOIqQBgDAUYQ0AACOIqQBAHAUIQ0AgKMIaQAAHEVIAwDgKEIaAABHEdIAADiKkAYAwFGENAAAjiKkAQBwFCENAICjWjf3BNBy+Xw+z7ZWreyfH6OiosL+uZWVldb22NhYz7adO3da+/bp0yesOQFAfdiTBgDAUYQ0AACOIqQBAHAUIQ0AgKMIaQAAHEVIAwDgKEIaAABHUSf9I6CqEbXbapK/+eYba99169Z5to0ePdraNz4+3tr+fbHVQYeyePFia/uMGTPCHhsAamNPGgAARxHSAAA4ipAGAMBRhDQAAI4ipAEAcBQhDQCAoyjBagFCXfbR5m9/+5u1fcOGDZ5txcXF1r533XVXWHOK1OHDh63teXl5nm2JiYlNPR0A8MSeNAAAjiKkAQBwFCENAICjCGkAABxFSAMA4ChCGgAARxHSAAA4ijrpHwGfz2dtb93a/jJv2rTJs2379u3Wvl27dvVs27lzp7XvTTfd5NnWvn17a9/Tp09b29PT0z3bjh49au1bWlrq2datWzdrXwBoSuxJAwDgKEIaAABHEdIAADiKkAYAwFGENAAAjiKkAQBwFCVY54jq6mrPtlAlVhUVFdb2N99807MtNjbW2tdWClVWVmbtq6phtTWkfdu2bZ5t3bt3t/a1lX+FKncDgKbEnjQAAI4ipAEAcBQhDQCAowhpAAAcRUgDAOAoQhoAAEcR0gAAOKrF1UmHqq+NioqyttvqlUP1tbWHqr+Njo62tts8//zz1nbb5Sbj4uKsfffu3evZFupykrafW1VVZe0balvHx8d7toWq/T5x4oRnW2VlpbWvrSbdNicAqA970gAAOIqQBgDAUYQ0AACOIqQBAHAUIQ0AgKMIaQAAHHVOlmBFUkYVqnQnlFatwv9cYyuziqTEauHChdb2gwcPWtuHDBni2RaqFKqkpMSzrUOHDta+HTt29Gz79ttvrX3Ly8ut7aHmbWN7f508edLad+fOnZ5tl1xySbhTAtBCsScNAICjCGkAABxFSAMA4ChCGgAARxHSAAA4ipAGAMBRhDQAAI46J+ukI6l1tl1qsiHttnrmUPOKpBb6pZde8mzbsWOHtW+PHj2s7UePHvVsC1WTfurUKc+2bt26WfuWlZV5toXaluedd5613XaZzEgvV2qTl5fn2UadNIDGYk8aAABHEdIAADiKkAYAwFGENAAAjiKkAQBwFCENAICjCGkAABzVbHXSoeqRbULVsdrqYENdDzqS60WHUlxc7Nm2ePFia19bPXKfPn2sfUNde7mystKzzVZDLSLSpk0bz7ZQr1OoazPbhHqdYmNjw+4bHx/v2RbqOX388cfWdgBoDPakAQBwFCENAICjCGkAABxFSAMA4ChCGgAARxHSAAA4KuISLJ/PJz6fr94226UZv89Sp0guNXjkyBFr+549ezzbCgsLrX0PHDjg2RYTE2Ptm5SU5NlWUlJi7VtaWmptP3v2rGebrTxLxP4a27aViEhVVZVnW3JysrVvqO3l9Z4UCX2pyrZt24Y1rohIQkKCZ1tBQUG994cqkQPQcrEnDQCAowhpAAAcRUgDAOAoQhoAAEcR0gAAOIqQBgDAUYQ0AACOirhOOjo62lor6+XQoUPW9r1793q2VVRUWPva2m2XfBQR2b17t7XddnnF1q3tmzMxMdGzLdSlO0+cOOHZFuo5hZqX7TnZaoZF7JeEPHPmjLVvSkqKZ1uo2u5Ql7ls3769Z1uouuRjx455ttnqoEVEDh482OhxQ72fAbRc7EkDAOAoQhoAAEcR0gAAOIqQBgDAUYQ0AACOIqQBAHBUxCVYNh988IFnW3FxsbWvrWwo1OUkbZcTDFUuFkkZVajSHlt5TqjLJ9ouGWkrNxIJXd5lm3eoSzPGx8d7toUqV7JdjjLUaxyJUNvLdhnVUOVutrIzr/dWqPccgJaLPWkAABxFSAMA4ChCGgAARxHSAAA4ipAGAMBRhDQAAI4ipAEAcFTEBZorV670rJWdN2+eZ7+MjAzruLbLGNpqlUXsdcExMTHWvqHqgm31zKHmZauhtdXmioiUlZWFNSeR0LW9UVFRnm2htoet9jvU5Ui/+OILz7ZQl7kMNS+bUPXbtktHxsXFhT12ly5d6r3f9toCaNnYkwYAwFGENAAAjiKkAQBwFCENAICjCGkAABxFSAMA4KiIS7CGDRsmSUlJ9batX7/es9/WrVut465duzbsObVp08azLVSZVIcOHcJub9eunbWvrawoVBnV0aNHPdsKCwutfU+ePGltLy0t9WyzlWeJiGzZssWzbfDgwda+PXv29GxbsWKFta/t0p0ioUvabGyXjkxNTbX29fq/IOJdahXqEqcAWi72pAEAcBQhDQCAowhpAAAcRUgDAOAoQhoAAEcR0gAAOIqQBgDAURHXSScnJ3vWhj788MNhj2urHd2wYYO1r61u+JNPPrH23bNnj7X973//u2eb7RKHIvZa6FD1yLa631C13YMGDbK2jxo1yrPt+uuvt/YNdenGcN14443W9n379lnbO3bs6Nlmq2UWsdfS22qoRURiY2M92/r27Vvv/bY6dQAtG3vSAAA4ipAGAMBRhDQAAI4ipAEAcBQhDQCAowhpAAAcRUgDAOCoiOukvy8JCQmebSNHjrT2tbXfeeedYc8JP5x33nmnuafwg/H5fM09BQCOYk8aAABHEdIAADiKkAYAwFGENAAAjiKkAQBwFCENAICjCGkAABxFSAMA4ChCGgAARxHSAAA4ipAGAMBRhDQAAI4ipAEAcBQhDQCAowhpAAAcRUgDAOAoQhoAAEcR0gAAOIqQBgDAUYQ0AACOIqQBAHAUIQ0AgKMIaQAAHEVIAwDgKEIaAABHEdIAADiKkAYAwFGENAAAjiKkAQBwFCENAICjCGkAABxFSAMA4ChCGgAARxHSAAA4ipAGAMBRhDQAAI4ipAEAcBQhDQCAowhpAAAcRUgDAOAoQhoAAEcR0gAAOIqQBgDAUa3D7aiqIiJSWlraZJMBWiL//yH//ykA8As7pMvKykREpEePHk02GaAlKysrk3bt2jX3NAA4JOyQTk1NlaKiIklMTJSoqKimnBPQoqiqlJWVSWpqanNPBYBjwg7pVq1aSffu3ZtyLkCLxR40gPqwcAwAAEcR0gAAOIqQBgDAUYQ0AACOIqQBAHAUIQ0AgKPCLsEC0LJwlkG0FOXlTTOG7b9KQ880SEgDaBDOMgg03FVXNexxoc40GKWcMBhAA1RXV0txcXHEZxksLS2VHj16SFFRkSQlJUU8r6Ycj7m5MV5LmFvwmQZbtfI+8uzUnvQjj4gsXSqSn19/+8svi0yfLlJSEv7PmDTJ9F+6NPwxWrqVK0WmThUpKBCJjm66cT/6SOTqq0WOHxdJTq7bvmePyAUXiHz+ucgll4T3M5riPRSuM2dE+vYVefNNkczMH/7nR6qpzzKYlJTUJL+Av4/xmJsb4/3Y59aQMw026cKxdevML+0xY5py1HPTT35iwiCUxYtFrr1WpGNHkaio+j+gnD4tkptrHpOQIHLLLSKHDtV8zL59Zrufd55Ily4i990nUlUVaP/8c5EhQ0z/sWNFjh0LtFVViQwbJrJxY8Oe2/33izz0UN2APnVKpEMHkU6dRCorGzbWj9Ujj9T9IBETI3LvvSIzZjTHjACci5o0pOfNE/nlL0XWrBEpLm7KkX+8KipErrhC5L/+y/sxd98t8u67Im+8IbJ6tdm2N98caPf5TECfOSPyySci//M/Zo/x4YcDj/nnfxb5x38U+ewzkRMnRObODbT99rciI0aIZGWFnu/atSJffWU+KNT21lsiAwaIZGTwlwovEyeabbhtW3PPBMA5QZtIWZlqQoLql1+qjh+vOmdOzfZVq1RFVD/4QHXYMNW2bVWzs83j/WbPVr344sDtXbtUL7hANTdXtbpadf581Xbtao67dKnqkCGqsbHmsY88onr2rPc8c3JUx40zj+vUSTUxUfVf/1W1sjLwmNOnVX/5S9XOnc24I0aobtxYc5yPPlK99FLVmBjV889XnTEj8HNzcsxzDf7avdu+/XbvNo/7/POa95eUqLZpo/rGG4H7tm83j123ztxevly1VSvVgwcDj3nuOdWkpMDzatvW9FNVffZZ1euvN99/9ZVqnz6qpaX2+fnl5qr+7Gf1t/3kJ6rPP29+9jXX1G0XUX3xRdWf/tTM58ILVd9+O9Duf48cP25uV1So/tM/qQ4fbu6rbxtt3WoeEx+v2qWL6h13qB454j1//3toyRLz82NjVa+9VnXfvpqPe/ZZ1V69zLbv21f1z3+u2b53r+qNN5qfm5ioeuutge0/f37d13/+/EDfq69Wfegh7zn+2J0+fVpnz56tp0+fdm485ubGeC1pbqE0WUjPm6eamWm+f/dd1d69TbD6+X8BX3aZCbht21SvvNL8AvYLDuktW0z4PfhgoL12SK9ZY4Lo5ZdN2Lz/vmrPniaAveTkmA8T48erFhSoLltmwnjWrMBj7rpLNTXVhN+2baZP+/aqR4+a9v37Vc87T/XOO03wLVliAn/2bNNeUmI+gEyZonrggPmqqrJvP6+QXrmyZnD5paWpPvmk+f4//qPmhxtV1a+/Nv0++8zcvvxy1d/9znyQuOUW1Zkzzf3XXGPm31CDB6v++td179+1ywTesWNmO8XFqe7ZU/MxIqrdu6suWKC6c6fZzgkJge0aHNLHj5v3xrXXmrBWrbuNjh83r90DD5jX4bPPzPO5+mrv+c+fb4I3M1P1k09UP/1UNSur5vtw8WLzmD/8QbWwUPW3v1WNjlb98EPT7vOpXnKJ6hVXmP7r15sPnlddZdpPnlT91a9UBwwIvP4nTwbGnzEj8FgAsGmykB4+XPWpp8z3Z8+a0Fq1KtAevCft99575r5Tp8xtf0h//LEJxd/8pubPqB3SI0eqzp1b8zGvvKKakuI9z5wc1Q4dAr/4Vc2eX0KC+eVbXm5+Qb/6aqD9zBkT2v/93+b2rFmq/frV/BDyhz8ExlA1v4SnTfOeR21eIf3qq2ZvvbZLL1W9/37z/ZQpJsyCVVSY8ZYvN7cLClT/4R9MuE+YoHrihNk7HDfOfOi49lrzwSr4Q1F92rWru1eparbJT38auD1uXOBDi59IzT3I8nJz3//+r7ntf49s324+DNxyS82/cNTeRo8/Xvd5FxWZxxQW1j9//17u+vWB+/x/mdiwwdwePtxs02C33hr468P775vQDt773rbNjOH/i0vtvwoFe/pp82ESAEJpkmPShYVm0dGECeZ269Yi48ebY9S1DR4c+D4lxfx7+HDgvn37RK65xhxP/dWv7D93yxaRxx4zi6H8X1OmiBw4IHLypHe/iy82C6z8srNN4XlRkTneevasOUbr16aNOV67fbu5vX276RNchTJihBlj/377nJvLgAHmePbevSILFpjnOHu2yDPPmHUEw4eb7bl4sTn+7eXUKZG4uJr3+XzmOPgddwTuu+MOc1y8urrmY4Nf//h4kaSkmq+/iHn9L7xQ5LXXzGIrL1u2iKxaVfP1z8gwbV995d2vdWuRSy8N3M7IMKvJg1/f4NdfxNwObu/Rw3z5XXRRzTFs2ra1vz8BwK9JSrDmzTMrhFNTA/episTGmhAIXmXepk3ge3/IBf8i79zZjLNwocjkyeaXuJfycpFHH625iMqvdpCcq84/3ywIKympWZZ06JBp8z+m9sps/+pv/2Nqu+ces/q8e3dT+vSf/2lCc8wYc3vs2Pr7depkSqSC5eWJfPON+WAWzOcz5VrXXBO4L/j1FzHvgdpBPmaMWYT2xRcigwbVPw8R8/qPHVv/ojv/B0AXHTtm3ucAEErEe9JVVSJ//rNZIZyfH/jasiUQto3Rtq3IsmUmZK+7TuT/T3JUr6FDzV78hRfW/bLUhsuWLWaP0G/9erMX1qOHSO/eZu/t448D7WfPimzaZPaWRET69zflZsGngfn4Y5HERBN6ImYMn69xz70+w4aZYFu5MnBfYaH5i0N2trmdnS2ydWvNPdIVK8wHHP+cg61cafb4pk41t30+8xz9z9U27yFDTHgGmzdP5Pbba77++fnmvvr+mhLKr38tkpMjMnJk3Z8VbOhQs0q6Z8+6r398vHe/qiqRTz8N3C4sNB+C+vc3t/v3r/n6i5jbwa9/UZH58vviCzOG/zG217+gwGxHAAgp0r+XL1lijpmWlNRtu//+wGKy2it3Vc2xxeCVz8HH8crKzMKcESPM96p1j0n/9a+qrVubhWIFBapffKG6cKH9uKp/4diECeY44nvvqXbtGlhIpWqOJaemmmOlwQvHjh0z7f6FY7m55njm0qU1F46pmmOal15qntuRI4Fj1bUdPWq2g//4/KJF5vaBA4HH/Nu/mWPJH35oFiplZ5svv6oq1YEDzfHZ/HyzXfwLqmo7dUo1I6Pmse/Ro8188/PNwq7XX/fefr/7nVkk5Xf4sDmG7z+uHGz5crOYzL8wTKTuIrV27QIrn2u/R6ZPN6+Nf1V67WPS33xjnufPfmaOBe/aZZ77pEneC/X8C8eyssxx6U8/NYvqLr888JglS8xjnn1WdceOwMIx/xqL6mqzcOzKK1U3bzbHsoMXjqmatQTx8WauR46YigG/9PT6j+sDQG0Rh/QNNwQW1NS2YYP5pbplS+NDWtWE8/DhZsFTeXn9JVh//at5TNu2ZqV3VpbqCy94z9dfgvXww6odO5rAnjKl5i/RU6dMCVanTuGVYKmahUuXX27mZSvBqq9cR6Rm4J86ZVaSt29vPhzcdFPNEFc1K6lHjzY/r1Mns7q4vlK0mTNNW7CdO81zSUpS/fd/9/5AoRpYue0vnfvNb1STk83iutoqK03b00+b240NaVXzOqSkmO1Z3+K6HTvM9khONs89I8OEe/CivmD+99Bbb5kSq9hY1VGjTElVsEhKsFTN++mWW8y8gkuwPvnE3Be82rsleeaZZzQ9PV1jY2M1KytLN/hX64Vh9erVesMNN2hKSoqKiC5pTJlCLXPnztXMzExNSEjQzp0767hx4/TL4PrQRnj22Wd10KBBmpiYqImJiXr55Zfrcv8KzibwxBNPqIjotMasTA0ye/ZsFZEaX/369Qt7Pvv379eJEydqhw4dNC4uTgcOHKibNm0Ka6z09PQ6cxMRvfPOOxs9VlVVlT700EPas2dPjYuL0169euljjz2m1V6/HBqgtLRUp02bpmlpaRoXF6fZ2dm6sXY4NLEmW92NluPee1X/5V+aexbnpttuq3sOgZZi0aJFGhMToy+99JJu27ZNp0yZosnJyXro0KGwxlu+fLk++OCDunjx4ohD+rrrrtP58+drQUGB5ufn6/XXX69paWlaXl7e6LHeeecdfe+993THjh1aWFios2bN0jZt2mhBQUHY8/PbuHGj9uzZUwcPHhxRSA8YMEAPHDjw3dcR28kFLI4dO6bp6ek6adIk3bBhg3799deal5enu3btCmu8w4cP15jXihUrVER0VXCpUAPNmTNHO3bsqMuWLdPdu3frG2+8oQkJCfq0f68hDLfddptedNFFunr1at25c6fOnj1bk5KSdP/+/WGPGQohjUY7ftwEjW2PG3VVVpqysZa6F52VlaW5ubnf3fb5fJqamqpPPPFExGNHGtK1HT58WEVEV69e3STjtW/fXv/0pz9FNEZZWZn26dNHV6xYoVdddVVEIX2xV31gI82YMUOvuOKKJhmrPtOmTdPevXuHtfc7ZswYnTx5co37br75Zp04cWJYczl58qRGR0frsmXLatw/dOhQfTBU7WoEmvS0oGgZkpNFZs2yL85DXTEx5pznbds290x+eGfOnJHNmzfLqFGjvruvVatWMmrUKFm3bl0zzqx+J06cEBGRDh06RDSOz+eTRYsWSUVFhWT7V3qGKTc3V8aMGVNjG4Zr586dkpqaKr169ZKJEyfKvn37whrnnXfekczMTLn11lulS5cuMmTIEHnxxRcjnp+Iec/85S9/kcmTJ4d11bXhw4fLypUrZceOHSIismXLFlm7dq2MHj06rPlUVVWJz+eTuFqlQ23btpW1a9eGNWZDOHUVLAA/Tt9++634fD7p2rVrjfu7du0qX375ZTPNqn7V1dUyffp0GTFihAwcODCsMbZu3SrZ2dly+vRpSUhIkCVLlshF9ZVaNNCiRYvks88+k02bNoU9ht9ll10mL7/8svTr108OHDggjz76qFx55ZVSUFAgiYmJjRrr66+/lueee07uuecemTVrlmzatEnuuusuiYmJkZycnIjmuXTpUikpKZFJkyaF1X/mzJlSWloqGRkZEh0dLT6fT+bMmSMTJ04Ma7zExETJzs6Wxx9/XPr37y9du3aVhQsXyrp16+TCCy8Ma8yGIKQBIEhubq4UFBREtHfUr18/yc/PlxMnTsibb74pOTk5snr16rCCuqioSKZNmyYrVqyosxcXjuA9ycGDB8tll10m6enp8vrrr8svfvGLRo1VXV0tmZmZMvf/r9gzZMgQKSgokOeffz7ikJ43b56MHj1aUoNPwNEIr7/+urz66quyYMECGTBggOTn58v06dMlNTU17Lm98sorMnnyZOnWrZtER0fL0KFDZcKECbJ58+awxmsIQhrA965Tp04SHR0th2pdY/XQoUNyvtcZd5rB1KlTZdmyZbJmzZqIrp0dExPz3d7VsGHDZNOmTfL000/LH//4x0aPtXnzZjl8+LAMHTr0u/t8Pp+sWbNGnnnmGamsrJToCC7snpycLH379pVdu3Y1um9KSkqdDx79+/eXt956K+z5iIjs3btXPvjgA1m8eHHYY9x3330yc+ZMuf3220VEZNCgQbJ371554oknwg7p3r17y+rVq6WiokJKS0slJSVFxo8fL7169Qp7nqFwVBHA9y4mJkaGDRsmK4POylNdXS0rV66M+FhtU1BVmTp1qixZskQ+/PBDueCCC5p0/OrqaqkM8yLrI0eOlK1bt0p+fv53X5mZmTJx4kTJz8+PKKBFRMrLy+Wrr76SlDBO0zdixAgpLCyscd+OHTskPT09ojnNnz9funTpImPGjAl7jJMnT0qrWgtnoqOjpbr2KQ7DEB8fLykpKXL8+HHJy8uTcePGRTymF/akAfwg7rnnHsnJyZHMzEzJysqSp556SioqKuTnP/95WOOVl5fX2PvbvXu35OfnS4cOHSQtLa1RY+Xm5sqCBQvk7bfflsTERDl48KCIiLRr107aNnKl3wMPPCCjR4+WtLQ0KSsrkwULFshHH30keXl5jRrHLzExsc6x8fj4eOnYsWNYx8zvvfdeGTt2rKSnp0txcbHMnj1boqOjZYL/4guNcPfdd8vw4cNl7ty5ctttt8nGjRvlhRdekBdeeKHRY/lVV1fL/PnzJScnR1q3Dj+ixo4dK3PmzJG0tDQZMGCAfP755/Lkk0/K5MmTwx4zLy9PVFX69esnu3btkvvuu08yMjLCfg83yPe2bhwAavn973+vaWlpGhMTo1lZWbo++HJkjbRq1ap6T3yRk5PT6LHqG0dEdH7whcAbaPLkyZqenq4xMTHauXNnHTlypL7//vuNHscmkhKs8ePHa0pKisbExGi3bt10/PjxYdc1q6q+++67OnDgQI2NjdWMjAx9wXY2qQbIy8tTEdFCr0vZNVDtE4/06tVLH3zwQa0MvrReI7322mvaq1cvjYmJ0fPPP19zc3O1pL7TbTahKNXgM1ADAABXcEwaAABHEdIAADiKkAYAwFGENAAAjiKkAQBwFCENAICjCGkAABxFSAMA4ChCGgAARxHSAAA4ipAGAMBR/wdmnn47XGrTCwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "i = 0\n", "plt.figure(figsize=(6,3))\n", "plt.subplot(1,2,1)\n", "plot_image(i, predictions[i], test_labels, test_images)\n", "plt.subplot(1,2,2)\n", "plot_value_array(i, predictions[i], test_labels)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:17:00.023537Z", "iopub.status.busy": "2022-12-14T20:17:00.022720Z", "iopub.status.idle": "2022-12-14T20:17:00.157710Z", "shell.execute_reply": "2022-12-14T20:17:00.156948Z" }, "id": "Ko-uzOufSCSe" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAAESCAYAAADZmy1NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAdBklEQVR4nO3deXRUVYLH8V8SCASosIUlgSQQlATZBkxDgzr0DNiANI3LUVRsUdQZnTiCoi2KHtpGwKXHpdXWxtY4oyC4oYA6ERFBHVSMRkk3BlBWgyxiSNgCJHf+uKcsAnmvkqrEXOD7OScn5N26t269CvnVfe/dd2OMMUYAAMA5sQ3dAQAAUD1CGgAARxHSAAA4ipAGAMBRhDQAAI4ipAEAcBQhDQCAoxo1dAcAnBgqKytVXFysQCCgmJiYhu4OcEIzxqisrEwpKSmKjfUeLxPSAGqkuLhYqampDd0N4KSyZcsWde7c2bOckAZQI4FAQJL9o5KYmNjAvQFObKWlpUpNTf3p/5UXQhpAjQQPcScmJhLSQB0Jd+qIC8cAAHAUIQ0AgKMIaQAAHEVIAwDgKEIaAABHEdIAADgq4ilY3H0IqBs1vfMQgFNPxCHN3YeAuhXuzkMATj0RhzR3HwLqRk3vPATg1BNxSHP3IaBucdoIwLE4AQYAgKMIaQAAHEVIAwDgKEIaAABHEdIAADiKkAYAwFGENAAAjiKkAQBwFCENAICjCGkAABxFSAMA4ChCGgAARxHSAAA4ipAGAMBRhDQAAI4ipAEAcBQhDQCAowhpAAAcRUgDAOAoQhoAAEcR0gAAOIqQBgDAUYQ0AACOIqQBAHAUIQ0AgKMIaQAAHEVIAwDgKEIaAABHEdIAADiKkAYAwFGENAAAjiKkAQBwFCENAICjCGkAABxFSAMA4ChCGgAARxHSAAA4ipAGAMBRhDQAAI4ipAEAcBQhDQCAowhpAAAcRUgDAOAoQhoAAEcR0gAAOIqQBgDAUY0augMAgHqyebO0a1fk9ZOSpLS0uusPao2QBoCT0ebNUmamdPBg5G00bSoVFRHUDYjD3QBwMtq1K7qAlmz9aEbiiBohDQCAowhpAAAcRUgDAOAoQhoAAEcR0gAAOIqQBgDAUYQ0AACOIqQBAHAUIQ0AgKMIaQAAHEVIAwDgKEIaAABHEdIAADiKkAYAwFGENAAAjmrU0B2A9Ze//MW3vLCwMOK60TDG+JbHxMTU23MDwKmOkTQAAI4ipAEAcBQhDQCAowhpAAAcRUgDAOAoQhoAAEcR0gAAOKpe50kfOHDAsywhIaFe2pWk+Pj4iNsOJy4uLuK6ixcv9iwrLi72rdu+fXvPsiuvvNK37owZM3zLU1NTPcuimQddUVERcd1o9jMAnCwYSQMA4ChCGgAARxHSAAA4ipAGAMBRhDQAAI4ipAEAcFS9TsHymxp04403+tYdMmSIZ1k007cakt+SkgMGDPCt6zetrHPnzr5158+f71vuN73rggsu8K0bCAQ8y8JNo/KbohVuicz6xPKbAFzBSBoAAEcR0gAAOIqQBgDAUYQ0AACOIqQBAHAUIQ0AgKMIaQAAHBX1POl9+/Z5zofdunWrZ72FCxf6trt//37Psl69evnWbdOmjWdZs2bNfOtWVlb6lm/evNmzLDc317dux44dPcuSkpJ86y5atMizbMyYMb51S0pKfMvfeustz7Kvv/7at25GRoZn2bnnnutbNz093be8voRbQtPvdyA21v9zLUtsAqhLjKQBAHAUIQ0AgKMIaQAAHEVIAwDgKEIaAABHEdIAADgq6ilYa9asUfPmzWtdb9++fb7lc+bM8Szr06ePb12/ZR39yiRp/fr1vuWrV6/2LDt06JBv3XPOOcez7PPPP/etO3z4cM+ycNPKwr3mESNGeJbt2LHDt+7atWs9y1auXOlbt0ePHp5lPXv29K2bnZ3tW96uXTvPsnDTpJhGBcAVjKQBAHAUIQ0AgKMIaQAAHEVIAwDgKEIaAABHEdIAADiKkAYAwFFRz5MuKSnR4cOHqy3bvXu39xM38n/qPXv2eJYtWLDAt27r1q09y7z6GhQIBHzLBw0a5FnWvXt337p+yxyGW35z165dnmV+y3pK/kt3Sv7vU7g52GlpaRGVSVJpaaln2QcffOBbd9WqVb7lfv1u1aqVb12/JTTbt2/vWzcrK8uzrEmTJr51AeBYjKQBAHAUIQ0AgKMIaQAAHEVIAwDgKEIaAABHEdIAADiKkAYAwFFRz5Nu3ry553rSfmsNX3311b7tdunSxbPMb16vJB08eNCzLNwc2aZNm0bc9ldffeVb10+LFi18y/3m/YZbx/r777/3LfdbbzoxMdG3rt9z+82DlqSkpCTPsnBzu8Pxe5/CrZFdXFzsWRZu3vi9997rWXbFFVdUuz3cPHcApy5G0gAAOIqQBgDAUYQ0AACOIqQBAHAUIQ0AgKMIaQAAHBX1FKy33nrLcwm+5ORkz3p+01wk/+k7GRkZvnX9lkg8cuSIb91w/SovL/csq6io8K3rp6SkxLfcb+nOxo0b+9YNt7xiNFOw/ISbrtShQwfPsnD7Mty0M7+pdOGm2fn97oX7/YiJifEse+ihh6rdHu53EsCpi5E0AACOIqQBAHAUIQ0AgKMIaQAAHEVIAwDgKEIaAABHEdIAADgq6nnS3377rec83W7dunnW69Wrl2+7hYWFnmVbt271rRvNUoOVlZW+5dHU9ZvbG27er9/8W6956kE7d+70Lfern5CQ4Fs33BxtP7t27fIsC7cvy8rKfMv95p2Hq+u3bKjfEpiStG7dulr3KZrfOQAnN0bSAAA4ipAGAMBRhDQAAI4ipAEAcBQhDQCAowhpAAAcFfUUrGbNmnlOw/n4448960Wz1GC4uvv37/csC7f0YlJSkm/53r17PcuiWaoyLi7Ot7xRI++3yq9MkmJj/T+L+S1VGY7fFCy/qUyStGPHDs8yv/dQ8l9OUvKfKnX48GHfun77M9yykn7Pe88991S7/cCBA7r++ut92wVwamIkDQCAowhpAAAcRUgDAOAoQhoAAEcR0gAAOIqQBgDAUYQ0AACOinqe9AMPPOA59zgtLc2zXps2bXzb9VvGMNw8ab95v+Hm3+7evdu3PBAIeJaFm0PrN1853Fxnv+UMDxw44FvXb5lLyX9/hdvX0bymaOqG+/1p1aqVZ5nfHPxwbWdmZvrWPffcc33Lq1NaWso8aQDVYiQNAICjCGkAABxFSAMA4ChCGgAARxHSAAA4ipAGAMBRUU/Bat26tecUrJkzZ0bbPAAApyxG0gAAOIqQBgDAUYQ0AACOIqQBAHAUIQ0AgKMIaQAAHEVIAwDgKEIaAABHEdIAADiKkAYAwFGENAAAjiKkAQBwFCENAICjCGkAABwV9VKVAAA0tClTpkRV/7777qujntQtRtIAADiKkAYAwFGENAAAjiKkAQBwFCENAICjCGkAABxFSAMA4ChCGgAARxHSAAA4ipAGAMBRhDQAAI4ipAEAcBQhDQCAowhpAAAcRUgDAOAoQhoAAEcR0gAAOIqQBgDAUYQ0AACOIqQBAHAUIQ0AgKMIaQAAHEVIAwDgKEIaAABHEdIAADiKkAYAwFGENAAAjiKkAQBwFCENAICjCGkAABxFSAMA4ChCGgAARxHSAAA4ipAGAMBRhDQAAI4ipAEAcBQhDQCAowhpAAAcRUgDAOAoQhoAAEcR0gAAOIqQBgDAUYQ0AACOIqQBAHBUo0grGmMkSaWlpXXWGeBUFPw/FPw/BQBBEYd0WVmZJCk1NbXOOgOcysrKytSyZcuG7gYAh0Qc0ikpKdqyZYsCgYBiYmLqsk/AKcUYo7KyMqWkpDR0VwA4JuKQjo2NVefOneuyL8ApixE0gOpw4RgAAI4ipAEAcBQhDQCAoyI+Jw0AQKQ2b5Z27Yq8flKSlJZWd/1xFSENAPhZbd4sZWZKBw9G3kbTplJR0ckf1BzuBgD8rHbtii6gJVs/mpH4iYKRNIAa4S6DJ5i9e+uunTp+z+uja+Xl5VG19XP/Xtf0ToMxhnsRAqiBrVu3codBoI5t2bLF954jhDSAGqmsrFRxcXHUdxksLS1VamqqtmzZosTExKj7VZft0Tc32jsV+nb0nQZjY73PPHO4uzauukoqKZFef71mj9+4UeraVfriC+mf/qneulWnioqkIUOkdeukQKChe1PVr35l9+Mjj9Rtu7/8pXTbbdJFF9VtuyeZur7LYGJiYp38Aa6P9uibG+2d7H2ryZ0GT7wLx3bulG64wV7S16SJ1LGjNHy49NFHDd2zyMTEVP/14IPHP7a83IZUTIxUUBDavnGj9M//LDVvbr9v3Fi13m9+I736as36c8cd0n/+Z9WAfvppqW9fqUULqVUrqV8/adasWr1Mp911lzRlilRZ2dA9AYAqTryQvugiOzL97/+W1q6VFi60I6wffmjonkVm27aqX88+a0O4ulHd738vVbcIw+TJUqdONriTk6Vbbw2VzZ8vxcbWbJS4ebO0eLE9YhD07LPSpEnSTTfZ9j/6yPajrq78aEiHDtnvI0dKZWXS2283bH8A4BgnVkiXlEgffCDdf7/0L/8ipadLAwbY0d9vfxt63EMPSb1725Flaqr0H/9RNVSee86OCPPypB497AhxxAgbkkEVFdItt9jHtW1rg+nY0/f/+7/S2WeHHvOb30jffFO719SxY9WvN96wry0jo+rj3n5beucd6U9/Or6NNWuk8eOl00+3AbtmTWh/3XWX9MQTNevLSy/ZEXOnTqFtCxdKl1wiXXONdNppUs+e0mWXSTNmhB5z1VXS+efbviUn232RkyMdPhx6THm5/fDQqZN9XwYOlN5/P1T+ww+23U6dpGbN7Pv34ov+/X3zTallS2nOHPvzli22r61aSW3aSGPGVD2qEOznjBn2w05mpt0eFyedd540b17N9hOi0qRJE02bNk1NmjRxrj365kZ7p1LfwjInksOHjWnRwphJk4w5eND7cQ8/bMx77xmzYYMxS5cak5lpzA03hMpzc41p3NiYYcOMWbXKmPx8Y3r0MObyy0OPuf9+Y1q3NubVV435xz+MueYaYwIBY8aMCT3mlVds+bp1xnzxhTGjRxvTu7cxFRW2fMMGYyRbVhPff29Mo0bGzJlz/PZOnWxfq2vz0kuNmTzZPu+kSfZnY4y59lq7L2rqt7815vrrq2779383JivLmI0bveuNH29MYqKtu2aNMYsWGdOsmTGzZ4cec+21xgwebMyKFcasX2/Mgw8a06SJMWvX2vKtW+22L74w5ptvjPnzn42JizPmk09CbQwZYszEifbfc+bY92PRIvvzoUP2PZwwwZivvrLv2eWX2/e+vDzUzxYtjPnd74wpLLRfQU8+aUx6es33FQD8DE6skDbGBmPr1sY0bWr/6N9xhzFffulf5+WXjWnbNvRzbq4NuvXrQ9ueeMKYDh1CPycnG/PAA6GfDx82pnPnqiF9rJ07bburV9ufaxvSwQ8GBw6EtlVWGjNihDHTp3u3uXWrMaNGGZOaar9v3WrM8uXGZGcb88MPxlx8sTFdu9rADQZWdfr2NeaPf6y6rbjYmF/+0j5n9+426ObPD30QMcZuS0835siR0LaLLzZm7Fj7702bbOB+913VtocOte+fl1Gj7IePoGBIP/64MS1bGvP++6Gy55+3gVxZGdpWXm5MQoIxeXmhfnboUP0+eOMNY2Jjq74uAGhgJ9bhbsmeWy0utodhR4ywh0z797eHsIPefVcaOtQeOg0EpN/9zh5O3b8/9JhmzaRu3UI/JydLO3bYf+/ZYw99DxwYKm/USMrOrtqXdevsIdqMDCkxUerSxW7fvDmy1/bss9K4cfZ+d0GPPWbPl95xh3e9Tp3sueTgOeWkJHuI/6mnpHvvtfugqMj2969/9W7nwIGqzy3Z/bJypbR6tTRxonTkiD20PmJE1Quteva0h42Prhfcn6tX29MH3bvbUwvBr+XLQ6cHKiqk6dPtYe42bWx5Xt7x+/KVV6Sbb5aWLLFXoQd9+aW0fr19rcH227SxtyU6+hRE795SfPzxrz0hwb6eKG+IAAB16cQLackGybnnSnffLf3f/9lzjdOm2bKNG+254T597BXN+fmhc7LBC4UkqXHjqm3GxBx/zjmc0aOl3bvt1c+ffGK/jn2emvrgAxuk115bdft779mQbNLEflA47TS7PTvbhmV1Zs6Ufv1r6cwz7YeYiy6yr/fCC6ueBz5WUpL044/Vl/XqZYP/hRdsQC5ZYkM2qLr9GQzxvXttgOfn24vPgl9r1kiPPmof8+CD9t+33y4tW2bLhw8/fl/26ye1a2c/0Bz9fu3da1/v0e0XFNiLCy+/PPS45s2rf327d9uyhATv/QMAP7OTY570GWeE5i7n59tw+K//slc1S/aCqNpo2dKOBD/5xE5pkuwIMj/fjtolOzIvKrIBfc45dtuHH0b+Gp55xoZM375Vt//5z3Y0HFRcbMNr/vyqI/2gNWukuXNDU7QqKkIXcB0+bH/20q+f9I9/hO/rGWfY7/v2hX9ssN2KCjuyDu6rY330kb3Q64or7M+VlTZgg88V1K2bfW9/9Ssb/I8/brf372/3Sfv29qhGbRUW2n4CgENOrJD+4Qfp4oulCRPsSDkQkD77THrgAfsHXrIjzcOH7WHi0aPtH/+nnqr9c02cKN13n71iOivLXjFeUhIqb93aXsU8e7YN9M2b7VzbSJSWSi+/bMPnWMcu8dKihf3erZt07I0ljJH+7d+khx8OjRjPOst+kOjeXfqf/7GH570MH25H8hUVoUPXN9xgr4T+13+1z7dtm/3Q0K6dNGhQzV5f9+72MP6VV9rX2K+fne++dKl9H0eNsvv5lVfskZHWre3+3r79+JAOtrdsmQ3qRo3szU3GjbOj8TFjpD/+0fZ10ybptdfslfnhbsLxwQf26AMAOOTEOtzdooUdPT78sB3h9uplD3lfd11oRNW3r/0Df//9tnzOnMhuvDF5sj2XPX68DaNAQLrgglB5bKydspOfb5/n5purvwFJTcybZwPWL0BrYvZsqUMHe7g/6A9/sOdlBw60H2BycrzrjxxpQ+/dd0Pbhg2TPv7Yfjjq3t0eOm/a1AZs27Y171turg3pyZPt1Kfzz5dWrQp9CLnrLjsaHj7chm/HjvYxXjIz7amAF1+0bTZrJq1YYdu78EI7te6aa+xrDzey/u47++Hg6qtr/noQkSeeeEJdunRR06ZNNXDgQH366acRt7VixQqNHj1aKSkpiomJ0es1vRNgNWbNmqVf/OIXCgQCat++vc4//3wVFRVF1NaTTz6pPn36/HRHqkGDBuntOpyDf9999ykmJkaTJk2KqP4f/vAHxcTEVPnKysqKuD/fffedrrjiCrVt21YJCQnq3bu3Pvvss4ja6tKly3F9i4mJUY7f3y0PFRUVuvvuu9W1a1clJCSoW7dumj59etgFLfyUlZVp0qRJSk9PV0JCggYPHqxVq1ZF3F6NNPSVa3DM448b8+tfN3Qvfl6//70x113X0L046c2bN8/Ex8ebZ5991vz973831113nWnVqpXZvn17RO299dZbZurUqea1114zksyCBQsi7tvw4cNNbm6uKSwsNAUFBea8884zaWlpZu/evbVua+HChebNN980a9euNUVFRebOO+80jRs3NoVHT/mL0Keffmq6dOli+vTpYyYGpyPW0rRp00zPnj3Ntm3bfvrauXNnRG3t3r3bpKenm6uuusp88skn5ttvvzV5eXlm/dEzZ2phx44dVfq1ZMkSI8ksW7as1m3NmDHDtG3b1ixevNhs2LDBvPzyy6ZFixbm0UcfjahvxhhzySWXmDPOOMMsX77crFu3zkybNs0kJiaarVu3RtxmOIQ0qjp82Jh77zWmtLShe/Lz+dOf7Fx01KsBAwaYnJycn36uqKgwKSkpZtasWVG3HW1IH2vHjh1Gklm+fHmdtNe6dWvzt7/9Lao2ysrKzOmnn26WLFlihgwZElVI9+3bN6q+BN1+++3m7LPPrpO2qjNx4kTTrVs3U3n01MoaGjVqlJkwYUKVbRdeeKEZN25cRH3Zv3+/iYuLM4sXL66yvX///mbq1KkRtVkTJ9bhbtS/Ro2kqVPdW1yjPk2ebE8ToN4cOnRI+fn5GjZs2E/bYmNjNWzYMK1cubIBe1a9PXv2SJLatGkTVTsVFRWaN2+e9u3bp0E1vYbDQ05OjkaNGlVlH0Zq3bp1SklJUUZGhsaNG6fNEU4bXbhwobKzs3XxxRerffv26tevn55++umo+yfZ35kXXnhBEyZMiGjVtcGDB2vp0qVau3atJOnLL7/Uhx9+qJEjR0bUnyNHjqiiokJNj5mmmpCQoA+juWg4jBPrwjEAJ6Rdu3apoqJCHY75MNShQwd9/fXXDdSr6lVWVmrSpEk666yz1KtXr4jaWL16tQYNGqSDBw+qRYsWWrBggc6o7iLIGpo3b54+//zzOjn/OXDgQD333HPKzMzUtm3bdM899+icc85RYWGhArX8cP7tt9/qySef1C233KI777xTq1at0k033aT4+HiN95oiWkOvv/66SkpKdNXRawnUwpQpU1RaWqqsrCzFxcWpoqJCM2bM0Lhx4yJqLxAIaNCgQZo+fbp69OihDh066MUXX9TKlSt1WnBqbD0gpAHgKDk5OSosLIxqdJSZmamCggLt2bNHr7zyisaPH6/ly5dHFNRbtmzRxIkTtWTJkuNGcZE4eiTZp08fDRw4UOnp6XrppZd0zTXX1KqtyspKZWdna+bMmZKkfv36qbCwUE899VTUIf3MM89o5MiRSqluUaEaeOmllzRnzhzNnTtXPXv2VEFBgSZNmqSUlJSI+/b8889rwoQJ6tSpk+Li4tS/f39ddtllys/Pj6i9miCkAdS7pKQkxcXFafv27VW2b9++XR07dmygXh3vxhtv1OLFi7VixYqo1s6Oj4//aXR15plnatWqVXr00Uf1V787/nnIz8/Xjh071D94jwbZw+grVqzQ448/rvLycsUdfbe/WmrVqpW6d++u9evX17pucnLycR88evTooVdrujSuh02bNundd9/Va6+9FnEbt912m6ZMmaJLL71UktS7d29t2rRJs2bNijiku3XrpuXLl2vfvn0qLS1VcnKyxo4dq4xjF0SqQ5yTBlDv4uPjdeaZZ2rp0qU/bausrNTSpUujPldbF4wxuvHGG7VgwQK999576tq1a522X1lZqfIIbzk7dOhQrV69WgUFBT99ZWdna9y4cSooKIgqoCVp7969+uabb5ScnFzrumedddZxU9XWrl2r9PT0qPqUm5ur9u3ba9SoURG3sX//fsXGVo24uLg4VdbBuvHNmzdXcnKyfvzxR+Xl5WlM8D4d9YCRNICfxS233KLx48crOztbAwYM0COPPKJ9+/bp6gjnp+/du7fK6G/Dhg0qKChQmzZtlHbsTYDCyMnJ0dy5c/XGG28oEAjo+++/lyS1bNlSCbW8Vewdd9yhkSNHKi0tTWVlZZo7d67ef/995eXl1aqdoEAgcNy58ebNm6tt27YRnTO/9dZbNXr0aKWnp6u4uFjTpk1TXFycLovgPg0333yzBg8erJkzZ+qSSy7Rp59+qtmzZ2v27Nm1biuosrJSubm5Gj9+vBo1ijyiRo8erRkzZigtLU09e/bUF198oYceekgTJkyIuM28vDwZY5SZman169frtttuU1ZWVsS/wzVSb9eNA8AxHnvsMZOWlmbi4+PNgAEDzMcffxxxW8uWLTOSjvsaP358rduqrh1JJjc3t9ZtTZgwwaSnp5v4+HjTrl07M3ToUPPOO+/Uuh0/0UzBGjt2rElOTjbx8fGmU6dOZuzYsRHPazbGmEWLFplevXqZJk2amKysLDP76CVqI5CXl2ckmaKioqjaKS0tNRMnTjRpaWmmadOmJiMjw0ydOtWU+60EGMb8+fNNRkaGiY+PNx07djQ5OTmmpKQkqn6GE2NMFLdfAQAA9YZz0gAAOIqQBgDAUYQ0AACOIqQBAHAUIQ0AgKMIaQAAHEVIAwDgKEIaAABHEdIAADiKkAYAwFGENAAAjvp/WVzD7ePc1BIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "i = 12\n", "plt.figure(figsize=(6,3))\n", "plt.subplot(1,2,1)\n", "plot_image(i, predictions[i], test_labels, test_images)\n", "plt.subplot(1,2,2)\n", "plot_value_array(i, predictions[i], test_labels)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "kgdvGD52CaXR" }, "source": [ "몇 개의 이미지의 예측을 출력해 보죠. 올바르게 예측된 레이블은 파란색이고 잘못 예측된 레이블은 빨강색입니다. 숫자는 예측 레이블의 신뢰도 퍼센트(100점 만점)입니다. 신뢰도 점수가 높을 때도 잘못 예측할 수 있습니다." ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:17:00.161780Z", "iopub.status.busy": "2022-12-14T20:17:00.161112Z", "iopub.status.idle": "2022-12-14T20:17:02.032676Z", "shell.execute_reply": "2022-12-14T20:17:02.031765Z" }, "id": "hQlnbqaw2Qu_" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABJsAAAPeCAYAAACrxRtMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhV1fXw8RVCJjJAGAIJgTAPIiCDKGLFKuKAOI+lirW2tkUL2vpTqxZtq6CtrVYtarX41la0da4VEVERVGQyiAyReQozhMwhw37/2L3ehLN2ODccIMP38zw8mnXXOWffae979j13ryhjjBEAAAAAAAAgAM2OdwMAAAAAAADQeDDZBAAAAAAAgMAw2QQAAAAAAIDAMNkEAAAAAACAwDDZBAAAAAAAgMAw2QQAAAAAAIDAMNkEAAAAAACAwDDZBAAAAAAAgMA0r+uGVVVVkpubK8nJyRIVFRVkmwCVMUYKCgokIyNDmjU7dvOkvNbRGPD+QVPBax2oO94/aCp4rQN15/f9U+fJptzcXOnUqVNdNwfqbMuWLZKZmXnMjsdrHY0J7x80FbzWgbrj/YOmgtc6UHeHe//UebIpOTn52wOkpKTUdTeAb/n5+dKpU6dvX3vHCq91HGvZ2SIjR9Zt27lzRU46yRvn/XP0FBQUqPElS5ao8TPPPPOotCM7O1uNJyUlqfEePXoclXYcb7zW3Y6kbxFx9y9oPHj/RMYYo8a1K1Y+/vhjNffpp59W4wMGDPDEdu7cqeZ269ZNjRcVFXlieXl5am50dLQa37Rpkyf20ksvqbkNSWN+rR+Nz5FAdX7fP3WebAp1oikpKQ1qUEDDd6wvOeW1jmPNMTfge9vaXqa8f4LnekwTExPV+NF6HFyTSq54Y30+Qnitex1J3xLavp7eNQSM948/kUw2ucaEmJgYNR4XF+eJxcbGqrnx8fFqvKKiwvc+mjfXTwu19jWk5+hwGuNr/Wh+jgSqO9z7hwXCAQAAAAAAEBgmmwAAAAAAABAYJpsAAAAAAAAQmDqv2QQAQENXWlqqxh977DE1PmPGDE9s//79au7u3bvVeEJCgu99RMK1Zocrrq3PccYZZ6i5P/rRjzyx8847L4LWAUDjE8maTZMnT1ZzP/30UzX+9ttv+26Ha+2f4uJiT0xbx0lEH5tEREpKSjyxd955R8298MILXU0E0ARxZRMAAAAAAAACw2QTAAAAAAAAAsNkEwAAAAAAAALDZBMAAAAAAAACwwLhAIAm4c477/TEnn32WTU3Pz9fjbdo0cITcy2qmpqaqsa1xVYTExPV3MrKSjUeFxfnux2uBWzLyso8sf/+979qrrZQ7fDhw9XcTz75RI0DQGPTrJn/7+2XLVumxl1jRbt27TyxoqIiNdc1VrRu3doTi4mJUXNdY8XatWs9sdWrV6u5LBAOoDqubAIAAAAAAEBgmGwCAAAAAABAYJhsAgAAAAAAQGCYbAIAAAAAAEBgmGwCAAAAAABAYKhGBwBoVFwV5h555BFPrEOHDmquqzpcVFSUJ+aq4FNeXq7G4+PjfcVcxxPRKyBVVFSouS7aMZOSktTc6OhoT+zTTz9Vc8eOHavG//Of/0TQOgBoXAoLC9V427Zt1bhWFbWqqkrN1SqUuvJd7XDtQ7NlyxbfuQCaLq5sAgAAAAAAQGCYbAIAAAAAAEBgmGwCAAAAAABAYJhsAgAAAAAAQGCYbAIAAAAAAEBgqEYHAGhU7rvvPjWekpLiibmqvVVWVqrxHTt2+G5Hq1at1LhWBa55c304dlUNKi0t9cTatGmj5rrui3bMsrIyNVeruNe+fXs195NPPlHje/bs8cRcVZgAoCHbuXOn71xX/+8anzSuaqQxMTGemFZdtLbjaWPnrl27fLcNQNPFlU0AAAAAAAAIDJNNAAAAAAAACAyTTQAAAAAAAAgMk00AAAAAAAAIDAuEAwAalQMHDqjxuLg4T0xb+FrEvRD4T3/6U0/s5ptvVnMHDx6sxhMTEz2xrVu3qrnJyclqPCsryxNzLUir3W/XMTt27Oh7HwUFBWpuSUmJGl+/fr0nxgLhABqjr7/+2ndubGysGtf6Utfi3q5Fxquqqjwx17in5Yro/b9W8AEADsWVTQAAAAAAAAgMk00AAAAAAAAIDJNNAAAAAAAACAyTTQAAAAAAAAgMk00AAAAAAAAIDNXoAACNSllZmRqPj4/3xFxVeVymTJniibVs2VLNdVX2KS4u9sTOPPNMNfejjz7y3ba+ffuq8dWrV6vx/Px8T+zxxx9Xc++77z5PrF27dmpuZWWlGp8/f74nNmzYMDUXABqyZcuWeWKuqnPa2CSijxWlpaVqrqsKa5s2bTyxqKgoNdc1HmpjqlZVFQAOxZVNAAAAAAAACAyTTQAAAAAAAAgMk00AAAAAAAAIDJNNAAAAAAAACAwLhDcRrgVbmzXzzje6Fg500RYOjIuLU3PXrFmjxnv27BnRMQFAROTgwYO+c7W+zbWYuMv111/vib311lsR7WP//v2emGsh8F//+tdqPCUlxRN7+eWX1dx9+/ap8U2bNnliV199tZqrLRDuGleaN9c/WmRnZ6txAGhsFi1a5Ilpn7lF9IXARfS+1LUQ+ODBg9W41u+mpqaqua7P7lr7OnXqpOYCQHVc2QQAAAAAAIDAMNkEAAAAAACAwDDZBAAAAAAAgMAw2QQAAAAAAIDAMNkEAAAAAACAwFCN7igzxkQU1ypVbNu2Tc39/PPP1fj555/viSUmJrqaeMRc1Ss0r7/+uhq/8847g2oOgCYkNzfXd67Wv5aUlER0vK1bt0aUr/n3v//tO/e6665T4wkJCZ6YqzrcwIED1fj27ds9saSkJN9ti5SrGikANDarVq3yxGJiYtRcV5W6wsJCTyw9PV3NXbBggRrXqrBWVVWpua54RUWFJ9a6dWs1FwCq48omAAAAAAAABIbJJgAAAAAAAASGySYAAAAAAAAEhskmAAAAAAAABIbJJgAAAAAAAASGanTHiavyhGbevHlq/IsvvlDjWnWmn//8576PF6ldu3Z5YrNmzVJzk5OTj1o7ADQ9u3fvPqLttSo7Iu6qQVr/6qrg4zJy5Ejfueeee64a37Bhgyfmqg40c+ZMNX7mmWd6Yq7KdVqVOtf9jo6OVuM7duxQ4wDQ2Bw4cMATc/WNkVSju+yyy46sYeIe91q0aOF7HwcPHjzidgBo/LiyCQAAAAAAAIFhsgkAAAAAAACBYbIJAAAAAAAAgWGyCQAAAAAAAIFhgfCjrLKyUo03b64/9IsWLfLEVq1apea2b99eja9Zs8YTu/TSS9Xc1NRUT6y0tFTNzcrKUuN79+71xPLz89Xcjh07qnEAqItt27b5zjXG+M51LZSqLXLtWtzVdbycnBxP7M4771Rz169f72qiR9++fdX46tWr1fjmzZs9sb/85S9q7oIFCzwxbfwQEYmLi1PjkTxXANCQ7dy50xNLTEw84v1ee+21EeVr/fG+ffvU3LZt2/reb3FxcUTtANA0cWUTAAAAAAAAAsNkEwAAAAAAAALDZBMAAAAAAAACw2QTAAAAAAAAAsNkEwAAAAAAAAJDNboAVVVVeWKuqnNFRUVq/NVXX/XEXJV9XFXjCgoKPDFXVSQt7spdsWKFGs/MzPTEXFWKXNX5AKAudu/e7Ts3OjraE6uoqFBzXfGkpCRP7Fe/+lVE+3j//fc9sWXLlqm5rn5Xq/jpqjrnqnR39dVXe2LZ2dlqrkYb80REoqKi1Hh5ebnvfQNAQ1ZSUuKJJScnq7mRfDb+7ne/G1E7hg8f7ol9/vnnaq5rzNK0adMmonYAaJq4sgkAAAAAAACBYbIJAAAAAAAAgWGyCQAAAAAAAIFhsgkAAAAAAACBYbIJAAAAAAAAgWkU1ei06mmuajiRVM9x7cNVNUKrdOTy9NNPq/H27dt7YvHx8Wrupk2b1LhWpU7br4heecJ1vxMTE9W4Vi3vwIEDam5ZWZka16rzuY4HACHbt2/3ndusmff7FVf1TVdVnpYtW3piU6ZM8d0G1z5cffTKlSt977dDhw5qfM+ePWrcNbb45RoLXVVYI9lHJOMpADRkrkqdWl/qqlDt0qVLF09s/vz5aq5rPNRo4xgAHIormwAAAAAAABAYJpsAAAAAAAAQGCabAAAAAAAAEBgmmwAAAAAAABCYertAeCSLfrviGm2BWJcgFi6dMWOGGt+xY4caHzRokCfmWqg2Ly9Pjbdu3doTa9OmjZqrLRxbWFio5rraoXEtMlhcXKzG16xZ44mddNJJvo8HoGnavXv3EW0fGxurxs866yw1Pm/ePE8sMzNTzXWNFVqhBNd4k5SUpMY1rj7atfi41g7X8Vq1auWJZWdnq7naGOSyceNGNd69e3ff+wCAhsB1vnLw4EE1HkQ/qI1PrvEmkvMpAPCDK5sAAAAAAAAQGCabAAAAAAAAEBgmmwAAAAAAABAYJpsAAAAAAAAQGCabAAAAAAAAEJh6W40ukooIVVVVvmIi7upA2vEiqTonIvK3v/3NE/vmm2/U3E6dOqnxvXv3emKuym4lJSVqvGPHjp5YQUGBmqvd7xYtWqi5paWlajySyoEus2bN8sSoRgfgcFxVOTVaP6j1lyIiN9xwgxqfOXOmJ+bqM10iGbMi4ep3XVXqtGp0zZvrHwsuu+wyT8xVjS4SWkVUEarRAWh8XP1rUVGRGu/Xr98RH/OCCy7wxB555BE1N4hxCACq48omAAAAAAAABIbJJgAAAAAAAASGySYAAAAAAAAEhskmAAAAAAAABIbJJgAAAAAAAATmmFWji7TCgVZVx1WVrVkz75yZFotUbm6uGn/99dfVuFYdrmfPnmpuYWGhGteqA2kV6kREYmJi1Lj22BUXF6u5GtdjFxcX5zs/MTHRd9tERD799FOfrQOAMFf/qNH66LS0NDU3NTXV935dfbGrCpzWDwYxZrn618rKSt/52hgkInLKKaf4bofrvsTHx3tiVD8C0FS4+mLX+U23bt2O+JgDBw70xA4ePKjmusYsjetzPgBUx5VNAAAAAAAACAyTTQAAAAAAAAgMk00AAAAAAAAIDJNNAAAAAAAACMwRLxBeWVnpWfAuOjrak3c0Fz/V7N69W41v3LhRjefk5Hhi27dvV3NjY2PVeEpKiieWl5en5ubn56vx8vJyT8y1YKv2OIvo99G16F+rVq08Mdf9i2Rhw4SEhIj2kZSU5Il9/fXXNf52LaoOoOnS+lhtIWoRkdLSUk/MtcjpqlWrfLeheXN9KNX6c5dIxjcX1yKzrn1rcdeYFUn7XIt+a+3bs2eP7/0CQEORmZnpiRUVFam5rnOkjIyMI26Ha3zSsEA4gKBxZRMAAAAAAAACw2QTAAAAAAAAAsNkEwAAAAAAAALDZBMAAAAAAAACw2QTAAAAAAAAAnPE1eiio6OdVdGq27lzpxrftGmTGtcqNriqOJSUlHhiGzZsUHOLi4vVuFatITk5Wc11Vdo5cOCAr7a5judqn6uyW1xcnBo/ePCgJ5aenq7malXxXI9RamqqGteqxO3bt0/N1arOiYjs2LHjsPtwPf8Ami5Xf+xX79691fi6det878NVqc3VNi3fVUkuEq52uCoMaWOIqx1paWm+2xFJNTpX5VgAaMi0PnP9+vVqrquP/uabb464Ha4K05pIKte5zhUAoDqubAIAAAAAAEBgmGwCAAAAAABAYJhsAgAAAAAAQGCYbAIAAAAAAEBgmGwCAAAAAABAYI64Gp3mgw8+8MRyc3P1BjgqH2gVaiorK9VcrRqea7+uCnNaRTWtQpqIu1pPWVmZJ+aq4Oaq1qO1w3W/ExMT1bhW8a1Vq1ZqbhCVgLT72KyZPo/pqs6nVdA79DmMpEoGgKahvLzcE4ukr3BVo5s7d67vfbgqCbloY4hrTHD1pX73W1vcTyXZkMzMTF8xEZE9e/b43q825gFAQzds2DBPbNWqVWquq7p0dnZ2kE06LO08xsXVZgCojiubAAAAAAAAEBgmmwAAAAAAABAYJpsAAAAAAAAQGCabAAAAAAAAEJgjXnF5zpw5noWqn3/+eU9enz591O3T09PVuLaQt2sB1djYWE/Mtai2a6FU7XjaotUi7gVbCwoKfB/PtVB2VFSUJ+a6L64FzHfu3OmJrVy5Us3V7qPreC7aguRFRUVqbnx8vO99pKWl1fhbe3wBNG0JCQmeWCQLX7v689WrV6vxmJgYTyzSPjMI2jG18aO2eCQLqa9du9YT69Chg5rrGpu0x664uNh3GwCgoTjjjDM8senTp6u52nmMiMiXX34ZaJtCXONeJMUuIileAaDpoqcAAAAAAABAYJhsAgAAAAAAQGCYbAIAAAAAAEBgmGwCAAAAAABAYJhsAgAAAAAAQGCOuBrdkCFDJCUlpUZswYIFnrzly5er28+fP9/3sbRKNiJ6JbnWrVurua54y5YtPTFXNTpXhbm9e/d6Yjk5OWquqwJPfn6+J+aqJLRs2TI1PmDAAE+sS5cuau7s2bM9sbKyMjU3ksoTripHGRkZavzQ15CIt/pcYWGh7+MDaBq0viaS6nDl5eVqfN++fWq8RYsWnpirUmoQXP1/JFzV+SKpPPTWW295Yq5xZenSpWpcG0P279/vuw0A0FCcdtppnpirIrOrjz60KnNQtM/cIu7zG83RHPcANB5c2QQAAAAAAIDAMNkEAAAAAACAwDDZBAAAAAAAgMAw2QQAAAAAAIDAHPEC4a1atfIsNPfrX//a9/auRZ+/+OILT8y12PZnn33miW3cuFHN/eqrr9R4UVGRJ+ZaKM+1YKu2+KlrQfL+/fur8VGjRnliF1xwgZrrWmgwEhdddJEntnnzZjW3TZs2alxbaFBbtF3EvXB4XFycJ9arV68af2uLpwNo2rR+t7S01Pf2q1evVuOuQglaX+VaZNy16Gski7C6crV4pIuJR7LAqzamasUoREReffVVNa61z/XYAUBDlpWV5Ym5FuZ2jTfaWLZ+/Xo1t1u3br7b5iq4FEl/HEkhDgBNF1c2AQAAAAAAIDBMNgEAAAAAACAwTDYBAAAAAAAgMEw2AQAAAAAAIDBMNgEAAAAAACAwR1yN7kglJSWp8bPPPttXTETkZz/7WaBtakrefvvt490E36h8AeBQWnW4SKqs7d+/X427Ktppx3NVnXPRKuhpMRF3hTkt7sqNpKJdy5Yt1dzPP//cEzu0YujhaO0rKSmJaB8A0FC5qs5VVFSo8YMHD3piQVSjS09PV+OuSt6pqameGJ/JAfjBlU0AAAAAAAAIDJNNAAAAAAAACAyTTQAAAAAAAAgMk00AAAAAAAAIDJNNAAAAAAAACMxxr0YHAEBdxcTEeGItWrRQcwsLCz2x22+/Xc394IMP1LhWPc1VSS4SkVSdE3FXmNO4qvNp7T5w4ICae+aZZ3piF154oZr7wAMPqHGtap+rOhMANASuvljruy+99FI196WXXlLjWt89f/58NXfUqFGuJnq4xkgX7T5qFeoA4FBc2QQAAAAAAIDAMNkEAAAAAACAwDDZBAAAAAAAgMAw2QQAAAAAAIDAsEA4AKDBKioq8sS0hahF9MXEy8vL1dx27dqp8TVr1nhi3bp1U3NdC3MfLZEsVCuiPx779+9Xc9PS0jyxtm3bRtA6fUHyTZs2RbQPAKhPIul3L774YjX3//2//6fGY2NjPbHXXntNzb3//vsdLfSqrKxU45EUqoiLi/N9PABNF1c2AQAAAAAAIDBMNgEAAAAAACAwTDYBAAAAAAAgMEw2AQAAAAAAIDBMNgEAAAAAACAwVKMDADRYI0aM8MQ+//xzNTc+Pt4T69Wrl5r7zTffHFnDmoD169er8eTkZDVeVlbmiQ0bNizQNgHAseSqOqpV3zz//PPV3NTUVDWu9ZnafiN14oknqvHly5ercW3s3L59+xG3A0Djx5VNAAAAAAAACAyTTQAAAAAAAAgMk00AAAAAAAAIDJNNAAAAAAAACAyTTQAAAAAAAAgM1egAAA2WVs2spKREzY2NjfXEgqjs01SVl5erca2CkojIwYMHPbHExMRA2wQAx1J0dPQR7yMrK0uNL1iwwBMrLi5Wcz/77DM1ftppp3lilZWVam5paaka1/ruPXv2qLkAUB2fsgEAAAAAABAYJpsAAAAAAAAQGCabAAAAAAAAEBgmmwAAAAAAABAYFggHADRYHTt29MQGDRqk5sbHx3tikS5QXVFR4Ym5Fog1xkS07/rA1WbtPvbo0UPNHTNmjBrPy8vzxIYPH+6/cQBQz0RFRR3xPn70ox+p8T59+nhi11xzjZqrLQTuct1116nxAwcOqPGkpCRP7Dvf+Y7v4wFouriyCQAAAAAAAIFhsgkAAAAAAACBYbIJAAAAAAAAgWGyCQAAAAAAAIGp8wLhoUVE8/PzA2sMUJvQa+1YL7rLa/3Ymjx5csTbPPDAA0ehJcdPYeGRbau9VBvr+6dQebAqKyvVXG1xb1e7ItlHU10g3PUYlZeXq3HtsSsqKlJzj+T10lhf60E4kr4ltH0Qd68u/bxIsH09Y42O98+xV1JSosYPHjzoiQXRZ7r24eq7tfjR6LuPtcb8Wj8anyOB6vy+f6JMHd9hW7dulU6dOtVlU+CIbNmyRTIzM4/Z8XitozHh/YOmgtc6UHe8f9BU8FoH6u5w7586TzZVVVVJbm6uJCcnB1L2EzgcY4wUFBRIRkaGNGt27H4BeiSv9fz8fOnUqZNs2bJFUlJSIj72kW5PG2hDSEN8/wB10RBf6029f6IN9acNDfH9A9RFQ3ytN/X+iTbUnzb4ff/U+Wd0zZo1O6azwICISMuWLY/5MYN4raekpNS5Iwlie9pAG0Qa7vsHiFRDfa035f6JNtSfNjTU9w8QqYb6Wm/K/RNtqD9t8PP+YYFwAAAAAAAABIbJJgAAAAAAAASGySbgKIqLi5PJkydLXFzccdmeNtAGAPVffegbaANtAFC/1Ye+gTbQhkjUeYFwAAAAAAAA4FBc2QQAAAAAAIDAMNkEAAAAAACAwDDZBAAAAAAAgMD4mmy6/36Rk05y3/7CCyKtWh1ZQ264QeSSS45sH03dnDkiffuKVFYGu9+PPxaJihLJy9Nv37jR3p6dXfdjBPEaqquDB0W6dBFZvDjY/T711FPSpUsXiY+Pl1NOOUUWLlwY0faffPKJjB07VjIyMiQqKkrefPPNiLafMmWKnHzyyZKcnCxpaWlyySWXSE5Oju/tp02bJgMGDJCUlBRJSUmR4cOHy8yZMyNqQ3VTp06VqKgomTRpku9t7r//fomKiqrxr0+fPhEdd9u2bfL9739f2rRpIwkJCdK/f39ZHMGT3aVLF08boqKiZMKECb62r6yslPvuu0+6du0qCQkJ0r17d/ntb38rkS6XV1BQIJMmTZKsrCxJSEiQ0047TRYtWhTRPhqCLl1EHnss/HdUlEiEL33UIidHpEMHkYKC4PZ56GeE+jSeX3ONyKOPHu9W1I6xoibGCsYKHH9HY6yoLxrCuKBhrKiJsaJhjBVN7sqmM88U8fOafP11kdGjRdq0cU+klJaKTJhgc5KSRC6/XGTnzpo5mzeLjBkj0qKFSFqayB13iFRUhG//8kuRQYPs9mPHiuzbF76tokJkyBARv33J//2fyL33ikRH14yXlIi0bi3Stq1IWZm/fTVW2sRpbKzIL38pcuedwR3nlVdekdtvv10mT54sS5culYEDB8q5554ru3bt8r2PoqIiGThwoDz11FN1asPcuXNlwoQJsmDBApk9e7aUl5fL6NGjpaioyNf2mZmZMnXqVFmyZIksXrxYzjrrLLn44otlxYoVEbdl0aJF8swzz8iAAQMi3rZfv36yffv2b//Nnz/f97b79++XESNGSExMjMycOVNWrlwpjz76qKSmpkbU9urHnz17toiIXHnllb62f/jhh2XatGny5JNPyqpVq+Thhx+WRx55RJ544gnfbRARuemmm2T27Nny4osvyvLly2X06NEyatQo2bZtW0T7OZpuuMH2l1FR9n3Vo4fIb35Ts89rTD75xPbbGRnuSTFjRH79a5H0dJGEBJFRo0TWrKmZs2+fyLhxIikpdtL9hz8UKSwM375xo8gZZ4gkJtr/btxYc/sLLxR57TV/bb77bpFbbxVJTrZ/h75MCP1r396OZevX+9tffXfvvSIPPihy4MDxbomOsaImxoqmMVYcqnofpP27//7j3cIj09DHiupju/avSxe/j0T9UN/HBQ1jRU2MFQ1orDA+TJ5szMCB7tunTzemZUs/e3IbP96Yiy8+sn34MXKkMRMnHj7v73835oEHjPnrX40RMebLL705P/mJMZ06GTNnjjGLFxtz6qnGnHZa+PaKCmNOPNGYUaPs9u++a0zbtsbcfXc4Z/BgY26/3ZicHGO+8x1jfvGL8G1Tpxpz663+7te8efY5KCnx3vbii8acfroxI0YY8/LL/vZX3Ucf2cdg/3799g0b3I+RX0G8hvxwvZb37TMmNtaYr78O5jjDhg0zEyZM+PbvyspKk5GRYaZMmVKn/YmIeeONN46oTbt27TIiYubOnVvnfaSmpprnnnsuom0KCgpMz549zezZs83IkSPNRD9vwP+ZPHmyGVhb53MYd955pzn99NPrvL1m4sSJpnv37qaqqspX/pgxY8yNN95YI3bZZZeZcePG+T5mcXGxiY6ONu+8806N+ODBg80999zjez9H2/jxxpx3njHbtxuzcaMxf/mLMVFRxjz0kP99ZGUZ86c/hf8WMeYIX/pHrKxMj7/7rjH33GPM66+72zl1qu3b3nzTmGXLjLnoImO6dq3ZV593nu2XFiywfXmPHsZce2349ssuM+aaa4z55htjrrrKmMsvD9/28svGjB3r735s2mRMTIwxW7eGY6H+PSfHmNxcY+bONaZ3b2NOOMGOYX4c2q8eq/G8NtWfs6FDjXnyyePXltowVoQxVjSdseJQ27eH/z32mDEpKTVjBQXh3KoqY8rLj19ba9NYx4q8vJrPh4j93B76e9cuf4/D8dZQxgUNY0UYY0XDGiuahb7VnDNHZOhQewXOaafZyydd1q0T6dZN5JZb7Ey85q23RAYPFomPt7kPPODv2+0HHhBp187O2v/kJ/YnTiFlZSI//7m9Qig+XuT000UOvdpr7lyRYcNE4uLstwN33RU+7g032Nsffzw8G3/orH/IddfZbxhGjdJvP3BA5PnnRf74R5GzzrJXIE2fLvLZZyILFtic998XWblS5B//sFfTnH++yG9/K/LUU+H7tWqVyI9+JNKrl8i119q/Rey3ys8/b2fe/Xj5ZZFzzrGPy6Gef17k+9+3/55/3nt7VJTIc8+JXHqpff579hR5+233sYqL7X0ZMcL907qvv7Y5SUn2m/LrrhPZs+fw9+PNN+3x4+NFzj1XZMuWmrdPmybSvbu9aqJ3b5EXX6x5++bNIhdfbI+bkiJy1VXhq81eeMG+vpYtCz//L7xgb0tNtffn5ZcP38bDOXjwoCxZskRGVXvxNGvWTEaNGiWff/75kR+gjg787yuc1q1bR7xtZWWlvPzyy1JUVCTDhw+PaNsJEybImDFjajwekVizZo1kZGRIt27dZNy4cbJ582bf27799tsydOhQufLKKyUtLU0GDRokf/3rX+vUDhH73P7jH/+QG2+8UaKionxtc9ppp8mcOXPkm2++ERGRZcuWyfz58+X888/3fdyKigqprKyU+EPe4AkJCRF9I3MsxMXZS++zskR++lPbh4b6E+3K0ksusX2zX8uX2z43IcFeVfrjH4e/2X3/fdt3HNovTZxotwmZP1/kO9+x++jUyY4r1b+Y69LF9tXXX2/7kR//WG/L+eeL/O53tu/UGGN/EnjvvbZfGjBA5O9/F8nNDX+zvWqVyHvv2T74lFPsuPbEE7Yvys0N54wfb/vGG24IjxN5eXbffr+k/Ne/RAYOFOnY0XtbWpodM884w459K1eKrF2r/8T5zTdt/+lXbWN3VZVIZqbt26v78kuRZs1ENm0K39ebbgp/PjjrLNuXh4SuWn3uOZGuXWuOhWPHBtO3B42xoibGiqY1VlTXoUP4X8uWtn8J/b16tb26ZuZM+1k7Ls724Yc7J/DTdy1bJvLd79r9p6TY/Vf/NQxjhf27Zcuaz5GIfWxDf598sv44vPaaSL9+9jnr0sX70zXtKq9WrcKfzQ8etOea6en2Oc7KEpkyJZzbGMcFDWNFTYwVDWus+PZndPfcYzuBxYtFmjcXufFGfYOvvrId3Pe+J/Lkk/oHznnzbIczcaL9wPrMM7bjONzEyZw5tmP8+GORGTPsT9keeCB8+//9n+24/t//E1m61P5E49xzwz8927ZN5IILbKe3bJn98Pr887aDF7GTTMOH28md7dvtv06d/D9Y1S1ZIlJeXnMyqk8fkc6dRULv+88/F+nf3062hJx7rkh+vkjoisGBA0Vmz7YTYnPm2AFGxE60PfJI+KcOhzNvnp0sPNS6dbYdV11l/82bF/7wXt0DD9jbv/rKPobjxtX8SV9IXp6d1Kqqsu3W1lnKy7Md/qBB9vX03nt2wueqq2q/D8XF9jXy97+LfPqp3c8114Rvf+MN+5r6xS/sZNbNN4v84AciH31kb6+qsoP0vn12UnH2bDtpd/XV9varr7bb9usXfv5Dt4nYScp582pvox979uyRyspKaV/9iReR9u3by44dO478AHVQVVUlkyZNkhEjRsiJJ57oe7vly5dLUlKSxMXFyU9+8hN544035IQTTvC9/csvvyxLly6VKdU/HUTglFNOkRdeeEHee+89mTZtmmzYsEG+853vSIHPRQTWr18v06ZNk549e8qsWbPkpz/9qfz85z+X//f//l+d2vPmm29KXl6e3BDB7Mhdd90l11xzjfTp00diYmJk0KBBMmnSJBk3bpzvfSQnJ8vw4cPlt7/9reTm5kplZaX84x//kM8//1y2b99eh3ty7CQk1PzS4EgUFdk+NDXVnlT8+98iH3xgP4yKiJx9tu2Tqv9MoLJS5JVXbJ8mYvvE886zPxX76it72/z54X2E/OEPtn/+8kuR++6rW3s3bBDZsaPmONGypT1RqD5OtGpVs/8eNcpOtHzxhf174EB7P6uq7IRaaJy44w77U26/45hrnDhUQoL9b1DPW21jd7Nm9ouWl16quc0//2m/AMjKsn9feaXIrl32hHPJEvtl1tln1xyn1q61x3n99Zo/fR82zP4cvb79jJyxIoyxgrHicO66S2TqVHueMGDA4c8J/Bg3zk52L1pk+5W77hKJibG3MVZEdh8OfRyWLLGf+6+5xn5JdP/9Nh6aSPLjz3+2X1b961/2Ioh//rPmT/Ya47igYawIY6xogGNF6BL6Dz4IX+703//aWOjSzdAl8p9+akxqqjF/+EPNy6MO/QnU2Wd7fzbx4ovGpKe7L7EaP96Y1q2NKSoKx6ZNMyYpyZjKSmMKC+0lnf/8Z/j2gweNycgw5pFH7N+/+pW9/L/6VWhPPRXehzH+f0YX4vqJ2D//aX92daiTTzbm//7P/v+PfmTM6NE1by8qsvt7913799dfG3PGGcZ07mwvhT1wwP6E7+KL7eWro0cb0727vfy2Ni1b2u0O9atfGXPJJeG/L77YPp/ViRhz773hvwsLbWzmTPt36DWyapUxAwbYy3KrX4p66GP029967/eWLeGfamimT7e3L1gQjq1aZWNffGH/Pu00+5hWd+WVxlxwgf3/9983JjramM2bw7evWGH3sXCh/bu2n4Q+/rgxXbrot0Vi27ZtRkTMZ599ViN+xx13mGHDhtVpn3KEl7v+5Cc/MVlZWWbLli0RbVdWVmbWrFljFi9ebO666y7Ttm1bs2LFCl/bbt682aSlpZlly5Z9G4v0ctdD7d+/36SkpPi+5DYmJsYMHz68RuzWW281p556ap2OP3r0aHPhhRdGtM2MGTNMZmammTFjhvnqq6/M3//+d9O6dWvzwgsvRLSftWvXmjPOOMOIiImOjjYnn3yyGTdunOnTp09E+zmaqv98qqrKmNmzjYmLM+aXv7Qxrf+9+GK7XUhtP6N79lk7BhUWhm//73+NadbMmB077N8TJxpz1lnh22fNsm0I/Qz4hz805sc/rtmGefPsPkJjXlZWzX7TD+2nEZ9+auO5uTXjV15pf+JgjDEPPmhMr17e/bVrZ3+GaIwdC8aMsT/bHjPG/j13rv0ZwN69dn9duxpz8821/3xh4EBjfvObmrFDfyadm2v72o4d7b60nzi/8YbdJqS2n9H5Gbu//NL+3HLTJvt3ZaU9/rRp9u958+zPakpLa7aje3djnnkm3IaYGO/POYyxP0kRsT/trE8YKyzGCqspjRW1ObTPCfVRb74ZjvnpV/z0XcnJxrgeXsYK//dBexy+9z1jzjmnZuyOO+xPtF37McY+Z9On2/+/9VY7nmu/Lmqs44KGscJirLAa2ljx7ZVN1dfXSk+3/62+5tjmzfaKll//2l4dUptly+yisElJ4X+hq4mKi93bDRxof8YVMny4/XnEli32G4bycvtNZ0hMjJ2ZDl0mumqV3ab61VYjRth9bN1ae5uPl3797FU4mzbZb3bLy0UmT7ZXjd16q/1J47Jldkb+P/9x76ekxPsTuspK+43P978fjn3/+/ZbhaqqmrnVn//ERHs56qFrzp1zjv3m6JVX7M/YXJYts1cbVX/+Qwv9r1vn3q55c3tVWkifPvZbnOrPb/XnX8T+Xf32Tp1qfnNzwgk191GbhITaX59+tW3bVqKjo2XnIavF79y5UzqErj8+hm655RZ555135KOPPpLMzMyIto2NjZUePXrIkCFDZMqUKTJw4EB5/PHHfW27ZMkS2bVrlwwePFiaN28uzZs3l7lz58qf//xnad68uVTWoWxiq1atpFevXrJ27Vpf+enp6Z5vTPr27RvRJbMhmzZtkg8++EBuuummiLa74447vv0Won///nLdddfJbbfdFvG3Mt27d5e5c+dKYWGhbNmyRRYuXCjl5eXSrVu3iPZztL3zjn3Px8fbnw5cfXVwi7uuWmXHicTEcGzECNufhX76PW6cvTo29LOCf/7TFmkIXYW5bJntA6v3T+eea/exYUN4v5F+q3s0dexoH9fNm+1/27YV+dnPRJ5+2l65m5xs7/+aNfZKYhdtnAjJzLSPa0aGvYLstddq7+f98jN2n3SSraQaurpp7lw7/oTWyly2zI7joWIcoX8bNtQcU7Ky7M8pDhW6UiuI/j1IjBUWY4XV1MaKSFXvk/30K37cfrv9GdaoUfaqqer9CWNFZMc+9HFwfWZfs8Z/1ewbbrBXI/XubX/C+P774dsa67igYaywGCushjZWfDvZFLpsVCQ8WVN9QqJdO9uJz5hhfwZWm8JC+7Os7Ozwv+XLbQcTaedVX3XoYH9icOjaIDt3hn/P3KGDtzpd6G9X33D77XZNk8xMe8J05ZX2BGDMGPu3S9u2Ivv314zNmmV/Wnj11XYip3lzeznrpk32J3vVVX/+Rexr4NAJqTFjbEWNlSvd7RCxz//YsTWf/+xs+/yfcUbt2x5P+/bpA1KkYmNjZciQITKn2oNcVVUlc+bMifh3yUfCGCO33HKLvPHGG/Lhhx9K165dj3ifVVVVUubzmuOzzz5bli9fLtnZ2d/+Gzp0qIwbN06ys7Ml+tCyiT4UFhbKunXrJD00I34YI0aM8JRl/eabbyQr9NucCEyfPl3S0tJkzJgxEW1XXFwszZrVLPwZHR0tVYe+wXxKTEyU9PR02b9/v8yaNUsuvvjiOu3naPnud8Pv95ISO+Edmhxq1sy7zl95ebDHP/lku67byy/b47/xRvgndCK2f7r55pp907Jltr3du4fzqk9o1VWon9fGgerjxKET+xUVtj9yjRMPPWSrpQ4ZYseFyy+3ffhll0U+ToTMm2d/KpKfbx+TU06x8WPxnInY5yg02fTSS/bnK23a2L8LC+2XYIeOKTk59uchIa7nLPSTiiD69yAxVliMFVZTGysiFWmf7Kfvuv9+u6zFmDEiH35ov6B84w17G2NFZPehLo9DVFTtz9HgwXby6Le/teP5VVeJXHGFva2xjgsaxgqLscJqaGNFc7+JCQl2lvyCC+zM/vvvu9cTGjzYvtl79IisMcuW2c4kNNu8YIGdpe7UyXZ8sbF2LZ/Q81lebn9nHVpwtm9f+22sMeEJs08/te0MTbzGxvqfUa/NkCG2w54zx3beIvY+b95sr64Ssf998EE7OKSl2djs2faqIe3nqaE1q6ZPt39XVoY73cN9uB80yDsJ9PzzdnLpnntqxh980N52zjn+76+I/dYnKcn+Hvrjj/X7IGKf/9des7+rbu77FWYHzcWL7aSmiH088/Ls8ypi//vpp3bxw5BPPw23o29fexXcli3hq5tWrrT7COXU9vx//bV9HINw++23y/jx42Xo0KEybNgweeyxx6SoqEh+8IMf+N5HYWFhjZn2DRs2SHZ2trRu3Vo6d+582O0nTJggL730krz11luSnJz87e+6W7ZsKQmhN1kt7r77bjn//POlc+fOUlBQIC+99JJ8/PHHMmvWLF/tT05O9vyOOzExUdq0aeP7992//OUvZezYsZKVlSW5ubkyefJkiY6OlmuvvdbX9rfddpucdtpp8tBDD8lVV10lCxculGeffVaeffZZX9uHVFVVyfTp02X8+PHSPJIXtYiMHTtWHnzwQencubP069dPvvzyS/njH/8oN7oWxnOYNWuWGGOkd+/esnbtWrnjjjukT58+Eb2mjoXERHff366dvcI1pLLSvu+++11/++7b137TXFQU/gD56af2pKJ373DeuHH2iqbMTHtb9XF88GDbL0Q6PtVF1672JGDOHHv1joidzPniC7t4uogdJ/Ly7HoTQ4bY2Icf2sn+0IRPdatW2cmY0NoTh44TtY1v2jhRva3aGnzt2okUFNR8zKuve3E4oYIOtY3dInYdyHvvtY/Dq6/ab+JDBg+265k0b163Ettff21fC23bRr7t0cZYwVgR0tTGiiPhp1/x23f16mX/3XabXT9u+nS7kDdjxZHdp9Bn9uo+/dQ+1qE5gUM/E6xZ473SKCXFfml+9dV2oum88+xEUWMeFzSMFYwVIQ1urNDK2n/5pY1t2GD/rr4eQ0GBMaefbsyIEeFSpIf+Lvq994xp3tyY+++3axKtXGnMjBm1rzs0frxdW+naa+06O//9rzHt2xtz113hnIkT7e+xZ860OePH2/U79u2zt2/dakyLFsZMmGDX+3nzTWPatq25RtGPfmTXVdqwwZjdu8NrOR1q7177OITWr3r5Zfv39u3hnJ/8xK619OGHxixebMzw4fZfSEWFMSeeaNcvys62j0u7dsbcfbf3eCUlxvTpU3NtqPPPt+3NzjYmM9OYf/3L/fj9+c/GDBkS/nvXLvs75dC6S9W9+65dw2TvXvv34X4zfehrZNIk+9ysWmX/PnTNpm3b7P284gq7VtLatfa+33CDu5T29Om2vcOG2XWbFi825tRT7b+QN96wOX/5iy3r+uijdo2mjz6yt1dVGXPSScZ85zvGLFli13oaMsSuExPyz38ak5ho27p7d83femdl6ete1dUTTzxhOnfubGJjY82wYcPMguoLUvnw0UcfGRHx/BtffYGbWmjbioiZHnpiD+PGG280WVlZJjY21rRr186cffbZ5v3334/oPhwq0t9WX3311SY9Pd3Exsaajh07mquvvtqsXbs2omP+5z//MSeeeKKJi4szffr0Mc8++2yErTZm1qxZRkRMjmvRsVrk5+ebiRMnms6dO5v4+HjTrVs3c88995iyCGsDv/LKK6Zbt24mNjbWdOjQwUyYMMHk5eVF3J6j6XAl759+2vbR77xj+48f/ciuueB3zaaiIrv23+WXG7N8ue17u3Wrub0xxqxZY7cbMMCuu1HdsmXGJCTYceLLL21f8uab9m9XG1wKCuw+QmPmH/9o/z+09pAxtpx1q1bGvPWWMV99ZR8frZz1oEG2z5o/35iePWuWsw6pqrLj73/+E4799Kd2bY6VK+0+QuuVaN5+25i0tJr9sPYZoLq9e22f+fOf2778n/+047DfNZuMOfzYHTJihN1PcrIxxcXe+z1woF2Da8MGu8bJr35lzKJFehuqGz/emEOqBNcrjBVejBWNe6yojWvNpkP7qMP1K4fru4qLbb//0Ud23Z758+16P6F1Vxkr3J/ZtTWbDn0cliyx61v95jd2vdYXXrCPZ/Vu5ZprjOnb15ilS21fftZZ9nN+KOfRR4156SX7eSEnx47nHTrYc7fGPi5oGCu8GCvq/1gR8WSTMbbTPO00u7B1YaG+CN9779mchAR7MjFsmF3c1SX04fTXvzamTRs78fSjH9WcDCgpsYvFtW1rJ0tGjAgv/Bzy8cd2Mik21nZId95pTHl5+PacHDuBkZBQ8z4eKrRg9aH/qk9clZQY87Of2cGtRQtjLr205mSUMXYAO/98e7y2bY35xS9qtifkrrvsbdWtWWPvS0qKHSRcE2PG2EE1Pt6Y1avt33/4gx20Dh705paV2dsef9z+HelkkzH2eUhPt4+ntoj6N9/Yx6NVK3vf+/Sxk1TaIn/GhF9Dr71mTx7j4owZNarmQGyMnWjq1s0ORr16eSeHNm0y5qKL7AeM5GS7GGJo4WBj7Ovp8sttu0TC9/Gzz2ys+gkOgMgcbrLp4EHbl7VubT/ITpkS2QLhxtgP4d/9ru3vWre240Toi4/qhg2z2374ofe2hQvtwqVJSbavGDDALr7qaoNLqG889F/1+1NVZcx999kJ+rg4W0Dj0M8We/faE4akJNvf/+AH+n16+mnbf1W3c6fdZ6i/q15k41Dl5fZk6733vPfBNdlkjH38e/SwffmFF9qxPJLJJj9jtzG2fxcx5vrrvbfl59t9ZGTY/r9TJ2PGjQsXhHCdVJSU2LHl88/d9w9A/eF3sslPv1Jb31VWZic7OnWy5wwZGcbcckvNyR3GCv12P5NNxhjz6qt2QfCYGPvl/O9/X/P2bdvsF/KJiXbi7N13a55/PPus/RI5MdHe37PPthNTIYwLQP0XZcyhv5ZFQ3XHHfay29oW/YPu6qvtwsO/+tXxbgkAHD1PPWVLSfu8ar3BmzbNrsFSfWFZAEDtGvNYwbgAHDvNDp+ChuKee+xv1+u4PliTdfCgSP/+9vf6ANCY3XyzLdRQUHC8W3JsxMSIPPHE8W4FADQsjXmsYFwAjh2ubAIAAAAAAEBguLIJAAAAAAAAgWGyCQAAAAAAAIFhsgkAAAAAAACBYbIJAAAAAAAAgWGyCQAAAAAAAIFhsgkAAAAAAACBYbIJAAAAAAAAgWGyCQAAAAAAAIFhsgkAAAAAAACBYbIJAAAAAAAAgWGyCQAAAAAAAIFhsgkAAAAAAACBYbIJAAAAAAAAgWGyCQAAAAAAAIFpXtcNq6qqJDc3V5KTkyUqKirINgEqY4wUFBRIRkaGNGt27OZJea2jMeD9g6aC1zpQd7x/0FTwWgfqzu/7p86TTbm5udKpU6e6bg7U2ZYtWyQzM/OYHY/XOhoT3j9oKnitA3XH+wdNBa91oO4O9/6p82RTcnLytwdISUmp627qjT179nhif/vb39Tcli1bqvGEhATfx3M9ZtoMd2VlpZpbXl6uxtu2beuJfec731FzY2NjXU2sd/Lz86VTp07fvvaOlWPxWs/OFhk5sm7bzp0rctJJQbYGjVFDf/9UVVWpce3bFGOM7/0ezW8VFy5cqMaLi4s9MVd/7ur/NWVlZWpcGxNEREaMGOF73w1JQ3+tA8cT75+j54ILLlDj0dHRalz7jO7q5zt37qzGtfxdu3apuUlJSWpcG4dcY9Nrr72mxuujxvxa57wCR5vf90+dJ5tCH9BTUlIaxaCgdcbx8fFqrmtSKZLJphYtWqjxSCabDh48qMYTExM9Mddz1JAmm0KO9SWnx+K17hjffW/bCN6COEYa6vunIU42aX2x65iu/jySySbXCYurHY1h7K5NQ32tA/UB75/gNW+un3a5+u6YmBhPzDUmuD7Pa2Onqx3a8UT0cdb1s5mG+Nw1xtc65xU4Vg73/mGBcAAAAAAAAASGySYAAAAAAAAEhskmAAAAAAAABKbOazY1Nv/+9789sd/97ndqbmpqqhpPT0/3xDZs2KDmduzYUY336tXLE1u1apWa61pTatSoUZ7Yzp071dzrrrtOjQNAfeL6TfjRWp+poKBAjX/44Yee2NKlS9XcmTNnqvHevXv7blthYaEa37t3ryfWpk0bNbe0tFSNP/jgg57Y2LFj1dyLLrrIE3MtSAsATV1+fr4ntmLFCjW3Xbt2vvdbUlKixtetW6fGtXMF13pLrvVktTUFI2kzgKaLK5sAAAAAAAAQGCabAAAAAAAAEBgmmwAAAAAAABAYJpsAAAAAAAAQGBYI/5/du3d7Yl26dFFzXQvraTp06KDGKysr1bi26OuBAwfU3JSUFDW+bds2T6xPnz6uJgJAvRfJAuGRLAT+7LPPqvGcnBw1XlVV5Ym5+terr75ajWdnZ3ticXFxam5FRYUa1xYZT05OVnMTExPVuDbubdq0Sc297bbbfO936tSpajwjI0ONA0BjoxVmcI1NrnOC2NhYXzERd/Eibd/a4uUi7vMb7XwoISFBzQWA6riyCQAAAAAAAIFhsgkAAAAAAACBYbIJAAAAAAAAgWGyCQAAAAAAAIFhsgkAAAAAAACBoRrd/2hV4Nq1a6fmrlu3To23bt3aEysoKFBzXVWD8vLyPDGt2pJIZNUk+vfvr+YCQEPg6gcjqTz3l7/8xRPbt2+fmtu1a1c1HhMT44m5KgmlpaWp8ZEjR3pir7/+uprrqmiqVSRyVRJy9f8zZ870xHr27KnmtmzZ0hNzVa6799571fjf/vY3NQ4Ajc1rr73miWnnGiIimZmZalwbW7SKqCLuiqZafklJiZrrqn6qVcXOzc1Vc5csWeKJDRkyRM0F0PhxZRMAAAAAAAACw2QTAAAAAAAAAsNkEwAAAAAAAALDZBMAAAAAAAACw2QTAAAAAAAAAkM1uv/JysryxJYtW6bmRkdH+44nJiaquVolIRG98oSrGtH+/fvVuFZ5ok+fPmouADQEkVSj27Jli5qrxbt166bmFhYW+m6bq5/fuXOnGu/evbuvmIjImjVr1LhW/fSUU05Rcz/55BM1npGR4YmVlpaqucXFxZ5YQkKCmrtjxw41/uKLL3pi1113nZobRPVBADhennvuOU8sPT1dzXVVLtXGkObN9VM317jXokULT8x1HhMfH6/GtWPu2rVLzV24cKEnRjU6oOniyiYAAAAAAAAEhskmAAAAAAAABIbJJgAAAAAAAASGySYAAAAAAAAEhgXC/0dbdLR///5qrmsxWG1B03Xr1qm5kSzu3atXLzXXRVto1rWgIAA0BM2a+f9uZO3atWpcWxS1oqJCzU1KSlLjZWVlnphW2KG2feTl5Xli559/vpo7f/58Na4tzu26L664VnyiqKhIzS0oKPDEDh48qObGxcWp8S+//NITcy0QzkLgABqynJwcT2zo0KFqbklJiRovLy/3xLTzBBH3eKP1064xoWXLlr7jrjE5NzdXjQNomriyCQAAAAAAAIFhsgkAAAAAAACBYbIJAAAAAAAAgWGyCQAAAAAAAIFh1WgAAAA0KZs3i+zZE9k2bduKdO58dNoDAEBjw2TT/2hVFTp16qTmnnDCCWpcq57z73//W83dt2+fGl+xYoUndsYZZ6i5Q4YMUeMdO3b0xFxVg1q0aKHGAaCh0vpREZH4+HhPTKsuJ6JXFxXR+0xXdSCt+p2ISH5+vieWnp6u5o4ePdr3vl3H69GjhxrX7uOOHTvUXK16UWlpqZrrsnDhwojygaNl82aR3r1FInwJS3y8SE4OE04I2759uxrXqpSmpaWpubt27VLj2rlJbGysmrtlyxY1ro17rsp1WvU7Eb3/1/Yr4q5GCqBp4md0AAAAaDL27Il8oknEbhPp1VAAADRVTDYBAAAAAAAgMEw2AQAAAAAAIDBMNgEAAAAAACAwLBD+P3379vXE5syZ4ztXRF8Ur1+/fmrusGHD1PiPf/xjT6yzYyXKzMxMNZ6amuqJJSQkqLkA0Nhs3bpVjaekpHhirgXCXdq3b++JFRcXq7naoqoiIjExMZ6Ya1Hz/v37q/H9+/d7YhkZGWpubm6uGs/Ly/PEdu7cqeZ26NDBE3O1uWvXrmq8TZs2npireIVrEVwAqE9cRRUiKcDjKkihfXbf41g0bOjQoWr866+/9sQKCwvVXNfC4dpi566CFK6FwwE0TVzZBAAAAAAAgMAw2QQAAAAAAIDAMNkEAAAAAACAwDDZBAAAAAAAgMAw2QQAAAAAAIDAUI3uf7RqQomJiWquq/KEVgXOxVWlSKuMVFVVpea6Kj40b+59WktLS9VcrYIeADQUruppGq0Cj1aRTURkwIABalyrJKdV6qmNVsXH1Re72qdVcXNVNCovL1fj27dv990O7XiutrloY9lXX32l5roqKwFAffLNN9+ocW2scJ1XuERFRXliWr8tIrJu3To1PmjQIE8sJydHzc3KylLjWnVQ7VxDhPMKADVxZRMAAAAAAAACw2QTAAAAAAAAAsNkEwAAAAAAAALDZBMAAAAAAAACw2QTAAAAAAAAAkM1uv/RKkRoFepERJo10+focnNzPTFX1bmTTjpJjWuVJ0pKStRcrTqQiF4ZSauKAQAN3fr16z2xpKQkNVeryllUVKTman2xiMi+ffs8MVe1N1cVUI2r6qhWuU5Eb9+uXbt854ro7XPdF208dD3OWlVVEb160YYNG9RcqtEBaAhWr16txlu0aOGJucYbVz+vVfxs166d/8aJyKmnnuqJZWdnq7musULr0125WuU6AE0XVzYBAAAAAAAgMEw2AQAAAAAAIDBMNgEAAAAAACAwTDYBAAAAAAAgMCwQ/j8JCQmemGshcNeiqJHkDho0yPc+XAuVa20WEYmLi/PEWCAcQGO0ZcsWTyw+Pl7NdS3Crdm0aZMa79KliyfmWhBVK9YgoheOSE5OVnNdfbfWPtf90xbmFtEfJ1ebd+zY4YlphTVE3G3W4jk5OWouADQEa9euVeMtW7b0xFyFfVx9plZ46IYbbvDfOBG58cYbPbGnn35azY1kjHQtau6KA2iauLIJAAAAAAAAgWGyCQAAAAAAAIFhsgkAAAAAAACBYbIJAAAAAAAAgWGyCQAAAAAAAIGhGt3/aNUTXNUhoqKifMcjqVwnoleYKy8vV3NdlYC0+0J1CACNkVatx1VJNCUlxRMrKytTcwsKCtS4tm+tupyIu9/V8l1tdrVPqxrkqmi3f/9+Na5VoyspKVFztcdu9+7daq5WhUlEb/OyZcvUXABoCPLz89W49nnedf7g+pyvxSdNmuS/cSJy8skn+26HqxqdNpZpla9duQCaLq5sAgAAAAAAQGCYbAIAAAAAAEBgmGwCAAAAAABAYJhsAgAAAAAAQGCYbAIAAAAAAEBgqEb3P23btvXEIq3WcPDgQU9Mq/ZTG62akDFGzXXtu2PHjp6Yq9IRADRkhYWFnlhsbKyam5qa6olt2rRJzb344ot9H881VrgqmmoV5lxV51xVipo39w7frtzS0lI1rrXbNa706dPHE3vrrbfUXNd4oz0erup3ANAQaH2xiF6N2jVWuPrBDh06eGLdunWLoHU67ZxHxH1+07p1a09s7969ai59OoDqmIEAAAAAAABAYJhsAgAAAAAAQGCYbAIAAAAAAEBgmGwCAAAAAABAYFgg/H/S09M9MW3BbxH3gt3FxcWemGvBVpeKigpPLDExUc1NSUlR464F/gCgsdEWv05ISFBzXQu5ak444QQ1Pm/ePE9MWwi2NtoC2nl5eWqutqi5ax+uBcld99s1lml69erlibkWgnXtNy4uzhM7cOCA7zYAQH3Tpk0bNa59nnfRCk+IiJx33nl1atPhaAuPi4hER0ercW1B8X379qm5nIMAqI4rmwAAAAAAABAYJpsAAAAAAAAQGCabAAAAAAAAEBgmmwAAAAAAABAYJpsAAAAAAAAQGKrR/U+LFi18xUTclYe0Cgyuag0uWuW5srIyNVer7CPirowBAA2Vq7KPVvGzsrJSzdWqpLkquGVkZPjeh4tWoVRErw5XVFSk5rr686ioKF8xEZHY2FhXEz1cj12PHj08Mdf9c+1De65cVZhc8Ugr/wHA0eTqk/bv3++JucaxtWvXqvFHH33UdztcVeC0yqVdu3ZVc7du3arG27Vr54m5+nnXPgA0TVzZBAAAAAAAgMAw2QQAAAAAAIDAMNkEAAAAAACAwDDZBAAAAAAAgMAw2QQAAAAAAIDAUI3uf6Kjoz0xrTKciLvig1ZlQqvgUJuePXt6YiUlJWquVtlHRKS0tDSiYwJAfbdnzx41rlWHc1Vl06rnuKrRuaoGaXGtupyIyMGDB9W4Vr3IVf3U1c9r40JaWpqaq41vIvpj58rVqvNpVY5qk5CQ4Im5nqsdO3aoca0qHgAcL67K0NpncVeVTVeV0xNOOMF3O1zV4bR+ul+/fmruhg0b1HhycrIntnv3bjU3NTXV1UQATRBXNgEAAAAAACAwTDYBAAAAAAAgMEw2AQAAAAAAIDBMNgEAAAAAACAwLBBeC9cCsfv27fOdH+lCedpigFu2bFFz8/Pz1bi2CCsANGR5eXlqXOt34+Pjfe+jc+fOaq62IKqISFFRkSfWvn17320T0YtMuBbmdhV80BYId+3DtYC5tvh4QUGBmqstbOu63652aAvYuhbG3bVrlxpngXAA9Un//v3V+BdffOGJufpzrTiQiEiHDh18tyOSgg0XXHCBGv/zn/+sxouLiz0xVxGH1q1b+24HgMaPK5sAAAAAAAAQGCabAAAAAAAAEBgmmwAAAAAAABAYJpsAAAAAAAAQGCabAAAAAAAAEBiq0dVi7969atxVNWLmzJme2M033xzRMQcPHuyJLVy4UM3t2LGjGtcqHQFAQxYVFaXGk5KSPLG4uDg1NycnxxPr06eP7/2KuCu7abTqayJ6FTjX/XPdF63qqKvSkasd2jFd1VYTExM9MVcVJldFO606q+t+a9XvAKC+ufrqq9X49OnTPTHX+OGqLv3hhx96YqNHj1ZzXZU9Na5xr1OnTmpcq3TnOp6r/wfQNHFlEwAAAAAAAALDZBMAAAAAAAACw2QTAAAAAAAAAsNkEwAAAAAAAALDZBMAAAAAAAACQzW6WsydO1eNr127Vo1r1ehefPHFiI554oknemKu6kBPPvmkGh84cKAnNmTIkIjaAQD1ias6qFbdp6SkRM09cOCAJ6b1lyIiu3fvVuNa1SBXRTWt6pyISFlZmSfWokULNddVvUirDuS6364KpTExMZ5YdHS0mrt582ZPrHv37mruZ599psa19rmqIrmqMwFAfeLqM7X+1VVl07UP7RzCVY0ukkqpbdu2VeM7duxQ45s2bfLEXPclPj7edzsANH5c2QQAAAAAAIDAMNkEAAAAAACAwDDZBAAAAAAAgMAw2QQAAAAAAIDAsED4/xhjPLHKyko117VAeM+ePT2xSBfK0xb40xa1FRFZuHChGq+oqIjomABQ3y1dulSNa4tOuxbK3rlzpyeWmpqq5i5evFiNawt5a4t11xbXxpbY2Fg119Wfa/twjVlxcXG+465FZpctW+aJpaSkqLkJCQlqXHteiouL1VzX43/FFVeocQCoT7QFtF1jk+tcwfU5/2gpLS1V40uWLPHEXAUwXPcRQNPElU0AAAAAAAAIDJNNAAAAAAAACAyTTQAAAAAAAAgMk00AAAAAAAAIDJNNAAAAAAAACAzV6P4nKirKEzt48KCa66q04Kr4EwntmK6KD64qda58AGioEhMT1bhWPWfbtm1qbkFBgSc2cOBANVerviYi0qpVK0/MVVHNRat+WlZWpua6KsxFR0d7YklJSWquq9Kdtg9tLBQR2bhxoyd20UUXqbk//OEP1fhVV13liWnV/URE0tPT1TgANAQjRozwxF566SU1t3Xr1mrc1XcfLV26dFHj+/fv98QiHbMANE1c2QQAAAAAAIDAMNkEAAAAAACAwDDZBAAAAAAAgMAw2QQAAAAAAIDAsEB4LVwL8+Xn56tx1wK2kYiJifHEmjfXnybXQuAdOnQ44nYAQH3ygx/8wHduYWGhGl+/fr0n1r17dzX39ddfV+Opqam+j1dVVaXGtUXG9+zZo+a6ClVoC6NXVFSoua54s2be75vS0tLU3AULFnhiN998s5q7e/duNa4tYB4fH6/mAkBDdsstt3hir776qpqr9cUiInl5eZ6YNo6JiHTr1s1/4xySk5PVuFZcwzW+aWMkgKaLK5sAAAAAAAAQGCabAAAAAAAAEBgmmwAAAAAAABAYJpsAAAAAAAAQGCabAAAAAAAAEBiq0dUiISFBjWtVgESCqaqjVcAzxqi5rkoQrip6ANAUaFXPREQGDBjgiWlVdkRE9u7dq8Zbt27tiUVaGbS4uNj38Vz9v9bPuyoalZWV+d6Hi9bm7OxsNfeCCy7wvV8AaIw6duzoiWmVSEXcFU21aqQLFy5Uc4OoRucaE7SKpq5xxVVBFUDTxJVNAAAAAAAACAyTTQAAAAAAAAgMP6MDAAA4Bu666646bTd16tSAWwIAAHB0cWUTAAAAAAAAAsNkEwAAAAAAAALDz+hqsWPHDjVeWVmpxl3V4SKhVVFyVRhytcNVRQ8AGhutWpurL46OjvbE5s+fr+Y2b+5/eGzRooUad7Vj7dq1nliklYS08cl1PFcF1cTERE/MNX5olZU++eQTNddVjU57rqKiotRcAGgIXBVDtb7tnHPOUXNfe+01Na5Vh3vrrbfU3GuuucbVRN9clVxzc3M9sUgrZQNomriyCQAAAAAAAIFhsgkAAAAAAACBYbIJAAAAAAAAgWGyCQAAAAAAAIFhgfBatG/fXo3v2rVLjWuLz0YqNTXVE3MtEF5WVqbG09LSjrgdANAQaIuwRtIX5+TkqPFWrVqpca3fdS0m7tp3165dPTFtsW4RkW3btvluh2th1pKSEjWuLfCqLUjriruKaLhoz1Uki+sCQH0TSUEKV/GEV199VY1rBRu2bt0aQesi07JlSzV+8OBBT0w7XxER2bdvX6BtAtCwcWUTAAAAAAAAAsNkEwAAAAAAAALDZBMAAAAAAAACw2QTAAAAAAAAAsNkEwAAAAAAAAJDNbpanH/++Wp88eLFajyIanTJycmemKs6RGlpqRrPyso64nYAQENVWVmpxrU+etOmTWquq9pnr169fO1XRKRPnz5qvHXr1p7YypUr1VxXVbby8nJPzFUVTxtXRPSxRas6JKI/HsXFxb5zRUTi4uI8MarRAWjIXBWjNaeffroa79ixoxrPy8vzxFxVQJctW6bGBw4c6K9xIpKSkqLGtb4+JiZGzXVVcgXQNHFlEwAAAAAAAALDZBMAAAAAAAACw2QTAAAAAAAAAsNkEwAAAAAAAALDZBMAAAAAAAACQzW6WsTHx6txVxW4IKrRaUpKStS4qxJQZmbmUWkHADQEkVQye+ihh9T473//ezU+c+ZMT0yrGCQi0rVrVzWuVY1z9fNpaWlqfP/+/Z5Yfn6+71wRvaqRq5JQ27ZtPbFbbrlFzdWqzrlEUskJAOqbICpndu7cWY1nZ2d7Yq4qcLNnz1bjkVSjKygoUOOu8Umzc+dO37kAGj8+5QEAAAAAACAwTDYBAAAAAAAgMEw2AQAAAAAAIDBMNgEAAAAAACAwLBBei+uvv16Nz58/X42ff/75R6UdF110UUT5/fv3PyrtAICGIJJFpxMSEtT4r3/9a9/72Lx5sxpfuXKlGtcWUHUt7l1VVeW7Ha6FY11xbVHaESNGqLlJSUm+2wEA8O+ee+5R4x06dPDEXP35yJEjj7gdV199tRpv3769J+YqJnH22WcfcTsANB5c2QQAAAAAAIDAMNkEAAAAAACAwPAzOgAAgCbirrvuqtN2U6dODbglAACgMePKJgAAAAAAAASmzlc2GWNExL2oaWNQUFCgxsvLy9V4SUmJJxbE43Pw4MGI8rVjRkVFHXE7jrfQ/Qq99o6VY/FaLyw8sm0b8dsQAWnM75/jzTVWFBUVqXFtrNBiIpE9XxUVFRHFtfYFsVD58VafX+tlZWV12neQ758g2jB58uSIt3/ggQfqdNyjgTHXrT6/fxqrQscLUnuvuvpi1z4ieTyLi4t9t8PVj0Qyrhxvjfm1Th+Ho83v+yfK1PEdtnXrVunUqVNdNgWOyJYtWyQzM/OYHY/XOhoT3j9oKnitA3XH+wdNBa91oO4O9/6p82RTVVWV5ObmSnJycqO4agb1nzFGCgoKJCMjI6LS5kfqSF7r+fn50qlTJ9myZYukpKREfOwj3Z420IaQhvj+AeqiIb7Wm3r/RBvqTxsa4vsHqIuG+Fpv6v0Tbag/bfD7/qnzz+iaNWt2TGeBARGRli1bHvNjBvFaT0lJqXNHEsT2tIE2iDTc9w8QqYb6Wm/K/RNtqD9taKjvHyBSDfW13pT7J9pQf9rg5/3DAuEAAAAAAAAIDJNNAAAAAAAACAyTTcBRFBcXJ5MnT5a4uLjjsj1toA0A6r/60DfQBtoAoH6rD30DbaANkajzAuEAAAAAAADAobiyCQAAAAAAAIFhsgkAAAAAAACBYbIJAAAAAAAAgWGyqZHIyRHp0EGkoOB4tyR411wj8uijx7sVkXvqqaekS5cuEh8fL6eccoosXLgwou0/+eQTGTt2rGRkZEhUVJS8+eabEW0/ZcoUOfnkkyU5OVnS0tLkkksukZycHN/bT5s2TQYMGCApKSmSkpIiw4cPl5kzZ0bUhuqmTp0qUVFRMmnSJN/b3H///RIVFVXjX58+fSI67rZt2+T73/++tGnTRhISEqR///6yePFi39t36dLF04aoqCiZMGGCr+0rKyvlvvvuk65du0pCQoJ0795dfvvb30qky+UVFBTIpEmTJCsrSxISEuS0006TRYsWRbSPpigqSqS2t87HH9ucvLxj1KBj7OBBkR49RD77zP82L7wg0qpV7Tk33CByySV1a9PTT4uMHVu3bRsjxoqaGCsYK3D8cV5R/zBW1MRY0TDGijpNNkVF1f7v/vsDbuUx9skn9oNwRob7RMUYkV//WiQ9XSQhQWTUKJE1a2rm7NsnMm6cSEqK/eD+wx+KFBaGb9+4UeSMM0QSE+1/N26suf2FF4q89pq/Nt99t8itt4okJ9uTgNqeny5d/D4S9cO994o8+KDIgQPHuyX+vfLKK3L77bfL5MmTZenSpTJw4EA599xzZdeuXb73UVRUJAMHDpSnnnqqTm2YO3euTJgwQRYsWCCzZ8+W8vJyGT16tBQVFfnaPjMzU6ZOnSpLliyRxYsXy1lnnSUXX3yxrFixIuK2LFq0SJ555hkZMGBAxNv269dPtm/f/u2/+fPn+952//79MmLECImJiZGZM2fKypUr5dFHH5XU1NSI2l79+LNnzxYRkSuvvNLX9g8//LBMmzZNnnzySVm1apU8/PDD8sgjj8gTTzzhuw0iIjfddJPMnj1bXnzxRVm+fLmMHj1aRo0aJdu2bYtoP43J7t0iP/2pSOfOInFx9oPxueeKfPqp/32cdprI9u0iLVvWnud3cqVLF73frf4ZYt06kUsvFWnXzo4PV10lsnNn+PayMpHrrrO39eol8sEHNY/x+9/b/t6Pp58W6drV3s+QuXNFzjpLpHVrkRYtRHr2FBk/3k5M+fX443ZS6nC0MfTGG0WWLhWZN8//8RorxoqaGCua5ljBeQXnFccS5xWMFYwVx3CsMHWwfXv432OPGZOSUjNWUBDOraoypry8Lkc5+srK9Pi77xpzzz3GvP66MSLGvPGGN2fqVGNatjTmzTeNWbbMmIsuMqZrV2NKSsI5551nzMCBxixYYMy8ecb06GHMtdeGb7/sMmOuucaYb74x5qqrjLn88vBtL79szNix/u7Hpk3GxMQYs3Wr/Tsvr+bzIWLM9Onhv3ft8vc4HG/V2zV0qDFPPnn82hKpYcOGmQkTJnz7d2VlpcnIyDBTpkyp0/5ExLyhvRAjsGvXLiMiZu7cuXXeR2pqqnnuueci2qagoMD07NnTzJ4924wcOdJMnDjR97aTJ082AwcOjKyR1dx5553m9NNPr/P2mokTJ5ru3bubqqoqX/ljxowxN954Y43YZZddZsaNG+f7mMXFxSY6Otq88847NeKDBw8299xzj+/9NDbf+Y4xp5xizIcfGrNxozFffGHMQw8Z89Zb4RxXH+5XRYUxlZXGjB9vzMUXHz5/166a/e/s2bYNH31kby8sNKZbN2MuvdSYr76y/y6+2JiTT7bHMcaYP//ZmL59jfn6a2N+/3tj2rWzY6kxxqxfb0zPnsYcOHD4tlRV2dwZM8KxFSuMiY835o47jFm+3Ji1a42ZOdOYm24yprjY5kyfbse3IxHqv12P/y9/acwVVxzZMRoDxoowxoqmO1ZwXsF5xbHAeUUYY0XdMFZErk6TTdUd+qH0o49sJ/Tuu8YMHmw7q48+Mqa01Jhbb7UfmuPijBkxwpiFC937McZ2xtWnw7KzjTnzTGOSkoxJTrb7X7QofPu8ecacfrr9IJ2ZaY9XWBi+PSvLmN/8xpjrrrPbjx9/+PunDQpVVcZ06GBPAkLy8uz9Cn2oX7nSblu9fTNnGhMVZcy2bfbvvn1tzBj7eJ1wgv3//fvtALJ58+HbZ4xtx9Ch/u+D63F49VXbhthYm/OHP9S+H2PsczZ9uv3/sjJjJkywj01cnDGdO9sTv5D9+4354Q+NadvWHve737XPacjkyXYQ/etfjenSxT5WIQ88YJ/bhqCsrMxER0d7OvHrr7/eXHTRRXXaZxCDwpo1a4yImOXLl0e8bUVFhZkxY4aJjY01K1asiGjb66+/3kyaNMkYY+o0KLRo0cKkp6ebrl27mu9973tm06ZNvrfv27evmTRpkrniiitMu3btzEknnWSeffbZiNpfXVlZmWnTpo158MEHfW/z4IMPmqysLJOTk2OMMSY7O9ukpaWZf/zjH773kZ+fb0TEfPDBBzXiI0aMMCNHjvS9n8Zk/37bJ338ce15IrZPueQSYxISbN9afTIqNGbt32//Do1Fb71l++joaNtH2u+dw/9Ck0eHM3GiMd27hyeLZs0yplmzmpNFeXm2v5s92/79058ac+ed9v+Li+3xQh/mzz3XnrD4sWiRPVZ+fjj2pz/Z/rU2ocfgvfeM6dPHmMREe9zc3HDOoZNvI0fa/n/iRGPatLFjdVZWzccsKyucP3euHWtCE1xNEWNFTYwVjBXGcF4RwnkF5xUhjBU1MVY0rLHiqE02DRhgzPvv229N9+415uc/NyYjw3Z+K1bYjig11d6m7ccY76DQr58x3/++MatW2Vn7f/0r3KmsXWs/EP/pT/a2Tz81ZtAgY264Ibx9Vpb9tuQPf7D5a9ce/v5pHeG6dTb+5Zc142ecYe+nMcY8/7wxrVrVvL283J64hE4UrrnGmF/8wn6bPWmS/dsY+w3zn/50+LaFXHSRMT/5if/7oD0Oixfbk5Lf/MaYnBz7fCQkhDt8bT/G1BwUfv97Yzp1MuaTT+xVBvPmGfPSS+HcUaPstyqLFtnn6Be/sCclodfA5Mn2OTzvPGOWLrXf7ITMnGkHq9JS/4/L8bJt2zYjIuazzz6rEb/jjjvMsGHD6rTPIx0UKisrzZgxY8yIESMi2u6rr74yiYmJJjo62rRs2dL897//jWj7GTNmmBNPPNGU/O+ruUgHhXfffdf861//MsuWLTPvvfeeGT58uOncubPJr372XIu4uDgTFxdn7r77brN06VLzzDPPmPj4ePPCCy9EdD9CXnnlFRMdHW22hT7Z+VBZWWnuvPNOExUVZZo3b26ioqLMQ9U/Lfk0fPhwM3LkSLNt2zZTUVFhXnzxRdOsWTPTq1eviPfVGJSX2xOESZNq7xdE7EnCSy8Zs2aN7aOTksL9jjbZFBNjzGmn2XFk9Wo7MXTVVbZvCn2T6+eb27Iy28dV/wzx9tt2HKje5tJSG5s82f799NP2xKm42Pa56en2ZOQf//B3dVXIH/9oJ4uqmzHDfmiv7YvI0GMwapTtr5cssScx3/teOEebbEpKsldMrV5t/+3aVfMb8OrffhcV2THH76RdY8RYEcZYwVgRwnlFGOcVnFcYw1hRHWNFwxsrjtpk05tvhmOFhfaD6z//GY4dPGgHiUce0fdjjHdQSE42xvVc/vCHxvz4xzVj8+bZji50CWpWlv12OxJaR/jppzZe/VteY4y58kp7QmKMPbnQnqt27Yz5y1/s/2/dasyYMbYjHTPG/j13rv02Ye9eu7+uXY25+ebaT2wGDrSdud/7oD0O3/ueMeecUzN2xx3hb0W0/RhTc1C49VZjzjor/A1+dfPm2YHo0E69e3djnnnG/v/kyfZ1cujluMbYAULEDjb1XX0cFH7yk5+YrKwss2XLloi2KysrM2vWrDGLFy82d911l2nbtq3vbyA2b95s0tLSzLJqo3ukg8Kh9u/fb1JSUnxfchsTE2OGDx9eI3brrbeaU089tU7HHz16tLnwwgsj2mbGjBkmMzPTzJgxw3z11Vfm73//u2ndunXEA9PatWvNGWecYUTEREdHm5NPPtmMGzfO9Dl0NqEJefVVe3IRH28nh+6+u+aHSWNsv3HvveG/CwttLPTtrzbZJFLz21Fj/P+MrrpXXrEnAtU/Q+zaZfvCiRPthEthoTG33GKPGRrDDh405mc/s9/EDh1q+8+9e+3P7zZvtj/H6N7dmNGjwz9z0EycaPvk6ioq7MmSiP22+JJLjHniiZpXWoUeg+onTk89ZUz79u7HY+RIeyJ2qNp+xpia6h7TmwLGCouxwmKssDivCOO8gvMKYxgrQhgrrIY2Vhy1anRDh4b/f906kfJykREjwrGYGJFhw0RWrfK/z9tvF7npJrto3tSpdr8hy5bZxUqTksL/zj1XpKpKZMMGvV3HW8eOIu+8I7J5s/1v27YiP/uZXdD1d7+zi/Ll5NgFAp95xr2fkhKR+PjIjn3o47BqVc3nR8T+vWaNSGWlv33ecINIdrZI794iP/+5yPvvh29btswuYtimTc3naMOGms9jVpZdNPdQCQn2v8XF/tpyPLVt21aio6NlZ/UVf0Vk586d0qFDh2PenltuuUXeeecd+eijjyQzMzOibWNjY6VHjx4yZMgQmTJligwcOFAef/xxX9suWbJEdu3aJYMHD5bmzZtL8+bNZe7cufLnP/9ZmjdvLpV+X1jVtGrVSnr16iVr1671lZ+eni4nnHBCjVjfvn1l8+bNER9706ZN8sEHH8hNN90U0XZ33HGH3HXXXXLNNddI//795brrrpPbbrtNpkyZEtF+unfvLnPnzpXCwkLZsmWLLFy4UMrLy6Vbt24R7acxufxykdxckbffFjnvPFtZbvBg78LV1dePTEy0i6vWtqZmbGzNberq+edFzj/fLgob0q6dyL//LfKf/9g+sGVLWwlv8GCRZv8bkWNiRJ56yvaPixaJnH66yC9+YfvVL7+0i8suWyZy6qk25qKNDdHRItOni2zdKvLII3YceughkX797ELpIS1aiHTvHv47Pb32x0xEZMgQP49KWEJCw+jTjxbGCouxwmKsqB3nFYfHeQXnFccCYwVjRSSO2mRTYmJk+c2a2VUdqisvr/n3/feLrFghMmaMyIcfipxwgsgbb9jbCgtFbr7Zdkqhf8uW2U6t+gfmSNulCb2vD3nPy86d4ds6dPB+MK+osJUkXP3CQw+JjB5tP7B//LE9kYqJEbnsMvu3S9u2Ivv3R3Yf6vI4REXV/hwNHmw7+d/+1g5UV10lcsUV9rbCQnuyUv35yc62g94ddxy+Xfv22f9qA0Z9ExsbK0OGDJE5c+Z8G6uqqpI5c+bI8OHDj1k7jDFyyy23yBtvvCEffvihdO3a9Yj3WVVVJWVlZb5yzz77bFm+fLlkZ2d/+2/o0KEybtw4yc7Olujo6IiPX1hYKOvWrZP09HRf+SNGjPCUZf3mm28kKysr4mNPnz5d0tLSZMyYMRFtV1xcLM2a1exqo6OjpaqqKuI2iIgkJiZKenq67N+/X2bNmiUXX3xxnfbTWMTHi5xzjsh994l89pn9cDp5cs2cmJiaf0dF2RMGl4QEm3MkNm2yVeS0zxCjR9sPw7t2iezZI/LiiyLbtom4xvePPrJj3y232LHgggtsX3nVVXUfGzp2tBXvnnzS7ru01J6QhGiP2eGq6kY6ruzb1zD69KOFscJirLAYK2rHeQXnFZxXMFYwVjS8saJ5oHtz6N7dflP86ad2hlnEdiaLFolMmmT/btdOpKBApKgo3DFkZ3v31auX/XfbbSLXXmu/ob30UtshrVwp0qPH0b8/Xbvajn3OHJGTTrKx/HyRL76wZbhFRIYPt99WL1kS/rb3ww/tCc4pp3j3uWqVyEsvhe9zZWW4wy0vr/1bgEGD7H0/En37esuFf/qpfaxD79127Wp+871mjfcbgZQUkauvtv+uuMJebbBvn31+duwQad68biVSv/5aJDPTDoANwe233y7jx4+XoUOHyrBhw+Sxxx6ToqIi+cEPfuB7H4WFhTVm2jds2CDZ2dnSunVr6dy582G3nzBhgrz00kvy1ltvSXJysuzYsUNERFq2bCkJoa90anH33XfL+eefL507d5aCggJ56aWX5OOPP5ZZs2b5an9ycrKceOKJNWKJiYnSpk0bT9zll7/8pYwdO1aysrIkNzdXJk+eLNHR0XLttdf62v62226T0047TR566CG56qqrZOHChfLss8/Ks88+62v7kKqqKpk+fbqMHz9emjePrNscO3asPPjgg9K5c2fp16+ffPnll/LHP/5Rbrzxxoj2M2vWLDHGSO/evWXt2rVyxx13SJ8+fSJ6TTUFJ5ygl5U+UrGx/r+NFbFjU1qaPYlxCfVnH35oTyIuusibU1oqMmGCyD//afviysrwh3M/Y8O0aTa/tsmz1FT7od1n9eKIxMTobVy3zt63QYOCP2ZDwljBWBHCWOEf5xU2xnkF5xWMFYwV9X6sONLf4bl+Wx1a/yJk4kT7W+qZM2su5Ldvn7197167iNvPf27XifjnP21+qIXFxbYiwUcf2d/Xzp9vf5f7f/9nb1+2zC48N2GCXWDvm2/s77urVYk0WVn+FsgrKLD7+PJLe/w//tH+f/XF6qdOtQv1vfVWuHS1VqJ00CBbjnv+fFuCunqJ0pCqKlsR4T//Ccd++lP7e+uVK+0+Qr9B17z9tjFpaXYtDo322+pDH4clS2ou5PfCC96F/K65xi4Su3SpXYzvrLPsb6FDOY8+ahfuW7XK7uOHP7RrglRWhu/jwIG2GtOGDfY36r/6VbiyRqhqhGb8eGMOqfJY7z3xxBOmc+fOJjY21gwbNswsWLAgou0/+ugjIyKef+P9lDsxRt1WRMz06k9qLW688UaTlZVlYmNjTbt27czZZ59t3n///Yjuw6Ei/W311VdfbdLT001sbKzp2LGjufrqq81aPytwVvOf//zHnHjiiSYuLs706dOnTlUjZs2aZUTk28oPkcjPzzcTJ040nTt3NvHx8aZbt27mnnvuMWUR1gZ+5ZVXTLdu3UxsbKzp0KGDmTBhgsnLy4u4PY3Fnj228syLL9r+f/16u7hr+/Y1+4rDrQnhqkZ3qAcftJVwVq82Zvduuz6IS2WlzQ1VlDvU3/5mzOef27HuxReNad3amNtv13N/9Su76GnIK6/YfS9bZvvYCy5wt2PPHttHVy8U8/TTduHXWbPs8b/+2o6jzZqFK/v5WetEW7NJe2v37GnHs+3bw+N96Bjdurnb3pQwVngxVjTdsYLzCs4rOK/QMVZ4MVbU/7HimE02lZTYhd7attVLlBpjO64ePWxndOGFxjz7bHhQKCuznVKnTrZ6QEaGXVS1eie8cKFdjC4pyQ4wAwbUrALkd1AI3YdD/1V/L1ZVGXPfffbEJi7OmLPPth1hdXv32kEgKckuYveDH9gB51BPP23M5ZfXjO3cafeZnGwX9Csqcre3vNw+Hu+9p9/uZ1AwJlyiNCbGnsxUL8FqjF3kdvRo+9j27GkrgFQ/aXv2WWNOOsnenpJi2790aXj7/Hz7GsjIsMfo1MmYcePCpVhdg0JJiT3O55+7HwMATUtpqTF33WVLVbdsaUyLFsb07m0XAy8uDucFNdm0a1d4fBGpvYrarFk2x/UZ4s477dgRE2P70kcf1RdAXb7cjonVS21XVtqThpQUY04+2VbYq81VV9nHKWTpUlt9qWtXO3a1aWMrHr39djgnyMmmt9+296F5czv2hIwebcyUKbW3HUDTw3kF5xWcVwCNR5Qxh1uFAQ3BU0/ZRXJ9XonYoEybZn9DX31hQADA4X31lV3Tat06u3hqfbBihchZZ4l8841dIB0AUL9wXgEgCMdkzSYcfTffbH/LXVBgq000JjExIk88cbxbAQANz4ABIg8/bBdZ7d//eLfG2r5d5O9/Z6IJAOorzisABIErmwAAAAAAABCYZodPAQAAAAAAAPxhsgkAAAAAAACBYbIJAAAAAAAAgWGyCQAAAAAAAIFhsgkAAAAAAACBYbIJAAAAAAAAgWGyCQAAAAAAAIFhsgkAAAAAAACBYbIJAAAAAAAAgWGyCQAAAAAAAIFhsgkAAAAAAACBYbIJAAAAAAAAgWGyCQAAAAAAAIFhsgkAAAAAAACBaV7XDauqqiQ3N1eSk5MlKioqyDYBKmOMFBQUSEZGhjRrduzmSXmtozHg/YOmgtc6UHe8f9BU8FoH6s7v+6fOk025ubnSqVOnum4O1NmWLVskMzPzmB2P1zoaE94/aCp4rQN1x/sHTQWvdaDuDvf+qfNkU3Jy8rcHSElJqetujjljjBqPZGZ5//79ajw1NdUTW79+vZq7b98+Na7NDMbFxam5/fr1czWxUcrPz5dOnTp9+9o7Vhrqa/142LJFZO/eyLdr00aEcffo4v0TmaqqKjWujSHR0dER7XvGjBme2MKFC9XciooKNd6qVStPrFevXmrudddd57ttQYyRkez7aHyry2sdh5OdLTJyZN22nTtX5KSTgmxN/cL7B00Fr/XGj77+6PH7/qnzZFPoA2JKSkqDeqME8UG6srJSjWuPg+sJKCsrU+PaSYtrsqkhPe5BOtaXnDbU1/qxtnmzyNChIqWlkW8bHy+SkyPSuXPw7UJNvH/8OZqTTQkJCZ5YbGysmuu6NFkbF7T9ikQ2VjSGyaZjse/ajtfQXutNUVLSkW3bFJ5e3j9oKnitN1709Uff4d4/LBAOIBB79tRtoknEbrdnT7DtAQAAAAAcH0w2AQAAAAAAIDBMNgEAAAAAACAwdV6zqb5zravkWltDW0vCtVZSeXm5GtfWyygpKVFztcVdXfuOiYlRc3/0ox+p8UceeUSNAwD8CaIM8ldffaXGx48f74kNHz48onZo48Kf/vQn38cT0cdD12/vg1hviRLPAAAATQdXNgEAAAAAACAwTDYBAAAAAAAgMEw2AQAAAAAAIDBMNgEAAAAAACAwjXaBcNdC4C6vvPKKJ/brX/9azXUt+vrvf//bE7vjjjvU3C+//FKNf/DBB57YqFGj1Nyf/exnaryiosITa95cf6qDWPQVAJqK1atXe2I7d+5Uc9PS0tT4F1984YlNnjxZzT1w4IAa1wpSPPfcc2ruJ598osbnz5/vid15551qbmxsrBoHAAAANFzZBAAAAAAAgMAw2QQAAAAAAIDAMNkEAAAAAACAwDDZBAAAAAAAgMAw2QQAAAAAAIDANNpqdJHSqrVlZGSouffee68av+CCCzyx9957T83dsGGD77b95S9/UeNdunTxvQ8XKs8BaMqWLFmixt988001npub64mNGDFCzc3Ly1PjrVu39sR69+6t5u7atUuNa9XoBg4cqOYePHhQjaekpHhijzzyiJo7cuRIT6xv375qbtu2bdU4AAAAmg6ubAIAAAAAAEBgmGwCAAAAAABAYJhsAgAAAAAAQGCYbAIAAAAAAEBgmGwCAAAAAABAYOptNTpjjCfmqpymVdpZunSpmuuqDlRaWuqJrV27Vs39+uuv1fi7777ribVq1UrNTU9PV+PffPONGtfk5OSo8bKyMk/MVVmvvLzcE2vfvr2a26wZc5MAGq4777zTEzv77LPVXFdFNa1q3Iknnqjmbty4UY2/+OKLntiQIUPU3F69eqlxrZ9/++231dxzzz1XjWvV5BYsWKDmfvDBB75zL7nkEjXes2dPNQ4AAIDGh9kDAAAAAAAABIbJJgAAAAAAAASGySYAAAAAAAAEhskmAAAAAAAABKbeLhDuWgxcs3LlSk9s0aJFaq62uKuIvgjrSSedpOZu27ZNjRcWFnpib775ppo7aNAgNb5nzx5PrKSkRM1NTExU43v37vXE1qxZo+bGxsZ6YjExMWqua8FcAKhPli9frsa1BbQffvhhNbdLly5qvHlz77DZrVu3iPaxf/9+T+wHP/iBmrt+/Xo1Xlxc7IllZ2eruaeccorvfbiKSXTs2NH38f74xz+q8WnTpqlxAAAAND5c2QQAAAAAAIDAMNkEAAAAAACAwDDZBAAAAAAAgMAw2QQAAAAAAIDAMNkEAAAAAACAwNTbanSR0Cr79OjRQ83VKsaJiLRr184Ty8/PV3PbtGmjxrVqbYsXL1ZzFy5cqMZPPPFET2z37t1qbkFBgRpPTU31xFxtbtbMO9/oqn4HAA3BkiVL1Ph7773nif3tb39Tc9966y01rvWlffv2VXNXr16txv/zn/94Yq7xZuPGjWp8586dnpir6mj79u3VeE5Ojifmqn7XunVrT+yEE05Qc8eMGaPGAQAA0HRwZRMAAAAAAAACw2QTAAAAAAAAAsNkEwAAAAAAAALDZBMAAAAAAAAC06AWCHct7q0tlJ2enq7mvv3222q8f//+nlhpaWkErRNJSkryxA4ePKjmuhbhjomJ8cQqKyvV3KioKDXeokULXzERkeLiYl8xAGgoPvzwQzXetWtXT+ykk05Sc1u2bKnGtX5eK+wgIrJp0yY1ro1PZ511lpq7bt06NV5eXu6JLV++XM3VileI6IuMuxYT147nsnXrVjW+Z88e320DAABAw8aVTQAAAAAAAAgMk00AAAAAAAAIDJNNAAAAAAAACAyTTQAAAAAAAAgMk00AAAAAAAAITIOqRpeXl6fGy8rKPLEOHTqouVr1HRGR3bt3e2KJiYlqbnR0tBqPj4/3xFJSUtRcreqciIgxxhNr06aNmuuqllRVVeUrJqJXy3NVHdIeZxGRuLg4NQ4Ax0N+fr4a37Jliyc2dOhQNddV0VSrUtqqVSs1d//+/Wpc6/979uyp5h44cECNaxVGc3Jy1FytYquI3m5tHBMRGTlypCf22muvqblr1qxR43v37vXEqEYHAADQOHFlEwAAAAAAAALDZBMAAAAAAAACw2QTAAAAAAAAAsNkEwAAAAAAAALDZBMAAAAAAAAC0yiq0cXGxnpirupAqampalyrtObK1SrGiYg0a+adu9MqF4mIJCQkqHGtEpBrHyUlJWpcq1LkqsJXUVHhibkeO1eFp3bt2qlxADgeIqkO9+6776q5rn5N63dd1U83btzoO+7KXb16tRpv3bq1J7Z+/Xo196abblLjubm5nlh2draaO3fuXE/ss88+U3O1MUjEXdEUAAAAjQ9XNgEAAAAAACAwTDYBAAAAAAAgMEw2AQAAAAAAIDBMNgEAAAAAACAwDWqBcNeC2NoC4dHR0RHtY8+ePZ6Ya4FYbSFwEZGoqCg1rmneXH/oKysrPbGqqio1Ny4uzve+tYXHa2uHxrUPAKhPhgwZosbHjx/vibkWuXYttr1v3z5PbPv27WqutiC5iEhhYaEn5iqAUVBQoMa1sWLv3r1q7tatW9X4mjVrPLHi4mI1Vxsjhw4dqua6FmjXFjUHAABA48SVTQAAAAAAAAgMk00AAAAAAAAIDJNNAAAAAAAACAyTTQAAAAAAAAgMk00AAAAAAAAITIOqRldaWqrGtcpzrsppO3fuVONa1SBXRR1XxZ+DBw96Yq5qb65qeVplPVf1O1eVupSUFE9s7ty5au6gQYM8MVdVPWOMGgeA42X58uWe2IwZM9Tca6+91hNz9aMVFRVqvGXLlp5YUlKS71wRfazQYiIi5eXlalzTpk2biNqhjU+u8UYbm8477zw1d8eOHWr8o48+8sSuu+46NRcA6hPXZ39X5VKtsufmzZvV3BNPPFGNP/vss56Yq8/MyMhQ41r/n5qaqua6aOOka6yIhOu8IpLq3gDqN65sAgAAAAAAQGCYbAIAAAAAAEBgmGwCAAAAAABAYJhsAgAAAAAAQGCYbAIAAAAAAEBgGlQ1Ole1nhYtWnhirgoH+fn5arxDhw6eWF5enprrqpKgVWZwVaNzVUDS9h0TE6PmuqolaV599VU13qtXL0/MVdHCVQ0QAI6XoqIiT8xVDe2FF17wxN599101d/LkyWpc6zPbt2+v5roqyW3bts0TGz58uJrrqviTlpbmibVu3VrN7dmzp+99aJVZRUQuvfRST2zVqlVq7rJly9T44MGDPTGq0QGozhjjq/pxpBXLKisrPTFXZegPP/zQE3viiSfU3HXr1qlxbWzSqnqKiHTv3l2NaxW0R44cqeY++eSTavyDDz7wxN5++20199RTT1XjkVSe087VXPebqnNA48eVTQAAAAAAAAgMk00AAAAAAAAIDJNNAAAAAAAACAyTTQAAAAAAAAhMg1ogvKysTI2npqZ6Yq7FBVevXq3G4+PjPbG4uDg1t6SkRI1riw+6uHK1Rfhci4knJSX5Pt4bb7yhxn/xi194Yq6F/AoLC30fDwCOhRNOOMETmzJlipo7evRoT6xdu3Zq7muvvabGW7Zs6YllZmaqua5FVV966SVPrFu3bmqua/HZ7du3e2Lz5s1Tc7UxUkRky5YtnlhBQYGaq7ngggvU+He/+101rj1XAHA42ufgSBatFtEXA1+6dKma+9hjj3livXv3VnOvvvpqNT5kyBBPrFWrVmquq1DF559/7on99a9/VXOTk5PVuFbAQiv4ICLStWtXNX7XXXd5YhdddJGa6zqHANA0cWUTAAAAAAAAAsNkEwAAAAAAAALDZBMAAAAAAAACw2QTAAAAAAAAAsNkEwAAAAAAAALToKrRRUVFqfGUlBRPzFW5buPGjWpcq+Lg2kdpaakaj4mJ8cRc1TJcca1ahkuLFi3UuFaJr0OHDmrutm3bPLEBAwaoua6qeABwvKxZs8YT++abb9RcrX/dtWuXmltRUaHGtUqirgqlrv5cqwK3YsUKNddVQVUbn1xVWMvLy9X45s2bPbF9+/apuf369fPEtCpHIvpzIiLy1VdfeWKu8QZA0xQVFeX5vB/JZ+NIaBXjRET27t3ribVu3fqotEFEZPz48RHFNRs2bFDjv/vd7zyx7OxsNddVdVqr8Oo6Xnp6uifmGldcY5Y2zrrOQSIZ984666waf1NlGzj6uLIJAAAAAAAAgWGyCQAAAAAAAIFhsgkAAAAAAACBYbIJAAAAAAAAgWGyCQAAAAAAAIGpt9XotIpvWnUCEZG4uDhPLD8/P6LjFRcXe2KJiYlqbvPm+sOmVaNzVQFy0SoguarwxcbGqnGtwlxubq6au3XrVt9toxodgPpGq3wWHx+v5mr98b/+9S81d+rUqWpcq8rWqlUrNdfVZ2qVRL/3ve+puV9++aUa1+6jqzrQ+eefr8aHDx/uibmqBt12222+26aNpyL6GJmXl6fmuh5TAI3btm3bPJ/htQqjrorMCQkJalyrAj1p0iQ1V6v2+dlnn6m5rj5MO49xnRO4zm8WLlzoie3YsUPN1Spzi4j06dPHEzvnnHPU3J49e6rxzMxMT+zNN99Uc+fNm+eJaRW/RfQxQUQfO10VYl3jrPa8nHzyyTX+LioqUrcFEByubAIAAAAAAEBgmGwCAAAAAABAYJhsAgAAAAAAQGCYbAIAAAAAAEBg6u0C4a7F8jTaonjaYoK10RYU1BYeF3G3rbCw0BOLjo5Wc10L2mkLGLpyXYvldezY0RNr3769mqstruviWqhcezxc9xsAgrRkyRJPrHXr1mru3r17PbGcnBw111UI4sMPP/TEevfureZqY4KIyNy5cz2xQYMGqbmusUxb/FS7fyIiZ5xxhhr//PPPPTFX4YnOnTt7Yq4FwrUxSERkz549ntju3bvVXBYIB5qmxMRESUpKqhHTFtvevHmzur2r8I32+bp///5q7vPPP3+4Zn5LW0xcRO9LXYWH0tLS1PhVV13liXXt2lXNTU9PdzXxqLj55pvVuFagyTWeus5jNMaYiOKaQ8eVSItJAYgcVzYBAAAAAAAgMEw2AQAAAAAAIDBMNgEAAAAAACAwTDYBAAAAAAAgMEw2AQAAAAAAIDD1thqdRqskISLSokULT2zp0qUR7VurRldSUqLmuiqtxcTE+M510So2uO53JBUYDq3sEeKqxKSJpCoe1egAHAvDhw/3xE499VQ19+uvv/bETj/9dDU3NTVVjS9fvtwTO3jwoJrr6jO1vttV5VQb30T0Km6ufbgq/pSXl3tirmp02hjiquTjqvBUUFDgibmqMAFomlq1auWpMn3BBRccp9YgUlqFcABNF1c2AQAAAAAAIDBMNgEAAAAAACAwTDYBAAAAAAAgMEw2AQAAAAAAIDBMNgEAAAAAACAw9bYanVYlx1XZJyoqyhPbt29fRMdLTk72xIqKitRcV+UhrRKQq7KPqzqQxlXZzVUtT6uK16ZNGzVXe5xdgqiKBwBBys7O9sR69OjhO7djx45q7vbt29X4tm3bPLH09HQ1V6u+JiKyefNmT2zr1q1q7oYNG9S4ll9cXKzm7ty503c7XGNFr169PDHXWJiZmanGN23a5Int379fzW3ZsqUaBwAAQMPAlU0AAAAAAAAIDJNNAAAAAAAACAyTTQAAAAAAAAgMk00AAAAAAAAITL1dIFxbeNS1QHjz5t674Vo820VbjHTHjh1qrmuh7MLCQk+srKwson1oi527FvF2PR4pKSmemGuxVW2BWBftca6tHQBwtL3zzjuemKtoweOPP+6JnXvuuWrukCFD1LjWdw8ePFjN3bJlixofNmyYJ9avXz8119W/an26q/DEwIED1bhWSCM1NVXN3b17tyd2++23q7k5OTlqXFtc/Ve/+pWa26VLFzUOAACAhoErmwAAAAAAABAYJpsAAAAAAAAQGCabAAAAAAAAEBgmmwAAAAAAABAYJpsAAAAAAAAQmHpbjU6rJqRVanPZvn27Gu/Zs6ca1/YdHR2t5rqqsmlxV25lZaUad1VR0rgq2mn69u2rxlevXu17H1SjA1Df/OEPf/DEhg8fruZqFUO7d++u5ubl5alxrTpofHy8mtuqVSs13qFDB0+sY8eOaq6rf83NzfXE8vPz1VzX2NmpUydPrLS0VM3VKsTedNNNau7pp5+uxrX74soFAABAw8aVTQAAAAAAAAgMk00AAAAAAAAIDJNNAAAAAAAACAyTTQAAAAAAAAhMo10gfPPmzWo8MzPT9/HKysrUXNfi3iUlJZ6Ya3FX133R8l252vFckpKS1Lh2X1z3z7VgekVFhe92AECQ1q9f74m5FuzW+rbevXuruXPmzFHjr7/+uie2dOlSNVdbxFtE5IUXXvDE9u/fr+Zu2bJFja9atcoTcy3u7WpHdna2J7Z37141d/To0Z7Y7t271dydO3eqcW2RcddC7O3atVPjAAAAaBi4sgkAAAAAAACBYbIJAAAAAAAAgWGyCQAAAAAAAIFhsgkAAAAAAACBYbIJAAAAAAAAgam31eg05eXlvnNdldp69OihxrVKa3FxcWquqzqctg9XrlaVx8VVBS4SiYmJalx7nIqLi9Xc5s31l0sk9wUAglRUVOSJuaqkafGhQ4equYMHD1bjPXv29MROP/10NXfZsmVqXKuWd80116i5K1as8N0+VyXR733ve2pcu+/79u1Tc8877zzfbSssLFTj2nMVSVVVAAAANBxc2QQAAAAAAIDAMNkEAAAAAACAwDDZBAAAAAAAgMAw2QQAAAAAAIDAMNkEAAAAAACAwNTbanSlpaWeWCRV2TZu3KjGTzvtNDW+YcMGT2z79u1qbkJCghpPTU31xFwV9FxVgyoqKnzvI5LqfK42HzhwwHfbXNXoAOB4KSgo8MS2bNmi5q5du9YTa9GihZo7a9YsNa71j1q/LSKyY8cONX7CCSeocY2rff379/fE1q9fr+a2atVKjaelpXliO3fuVHO18TApKUnN3bx5sxrXnittrAcAAEDDx5VNAAAAAAAACAyTTQAAAAAAAAgMk00AAAAAAAAIDJNNAAAAAAAACEy9XfFZW3A1Pj5ezdUWbHUtOjp06FA1bozxxGJjY30fT0Rk3759nphrAdWqqio1XlRU5Ilpi6qKiDRrps8Vavd98ODBam6HDh08Mdfiur1791bjkSxUDgBB0hbKPvXUU9Xcb775xhOLiYlRc/Pz89W4Ni5ohRZERD7//HM13rZtW0/sgw8+UHMLCwvVeLdu3TyxL774Qs0955xz1LjW17uKa/Tq1csTGzlypJq7cuVKNZ6SkuKJde/eXc0FAABAw8aVTQAAAAAAAAgMk00AAAAAAAAIDJNNAAAAAAAACAyTTQAAAAAAAAgMk00AAAAAAAAITL2tRhcVFeUrJiKSm5vriR08eFDNveKKK46sYcdBmzZtjngfrip8WqWjDz/8UM3Vqj6J6BX0AOBY6Ny5syc2Z84cNXfz5s2emKuq51dffaXGMzIyPLHi4mI111XZrXXr1mpco1VmFREpKSnxFRNxVzTV2u2qRqpVbI2Li1Nzd+7cqcY7duzoiaWmpqq5AAAAaNi4sgkAAAAAAACBYbIJAAAAAAAAgWGyCQAAAAAAAIFhsgkAAAAAAACBYbIJAAAAAAAAgam31eg2bdrkiR04cEDNzcvL88Tuu+++oJvUKE2cONET69q1q5q7Y8cONV5VVeWJUWEIwLGgVcl84okn1NyFCxf63u/111+vxhcsWOCJRUdHq7latU8RvcLounXr1NyYmBg1rlWSc1XFc1Xc06q2uvruPn36eGKuin2ueJcuXTwxV5VZAAAANGxc2QQAAAAAAIDAMNkEAAAAAACAwDDZBAAAAAAAgMAw2QQAAAAAAIDA1NsFwpOSkjyx8vJyNTclJcUTO/PMM4+4DcYYNd6YFjS9/PLLPbHY2Fg1t7Ky8mg3BwAi0ry5dxi77LLL1NwOHTr43u+JJ54YUVxz4403qvEhQ4Z4Yq7xLSMjQ41ri22np6eruSeccILvfYwdO1bN1Wj3Q8S9IHmnTp08scY0ngIAACCMK5sAAAAAAAAQGCabAAAAAAAAEBgmmwAAAAAAABCYertmE4DI3HXXXXXaburUqQG3BAAAAADQlNV5sim0eHZ+fn5gjamusLDQEysqKlJzCwoKfG0vEll7m8IC4dpj51ogPDo62vd+j8brIrRP1/NytBzt13pQysrK6rRdUPfL8ZaLaPsgmjJ58uSIt3nggQeO/MD1XFN6/xQXF6tx7T1yNNvlaofW75aUlES0D22Mc+W67qOWX1FRoeZqtPtRWzu0MZyxommqSz8tElxffSTjVVBjVX3F+wdNBa/1xo++/ujx+/6JMnV8h23dulWtLAMcbVu2bJHMzMxjdjxe62hMeP+gqeC1DtQd7x80FbzWgbo73PunzpNNVVVVkpubK8nJyY3qSh/UX8YYKSgokIyMDGdp7aPhSF7r+fn50qlTJ9myZYukpKREfOwj3Z420IaQhvj+AeqiIb7Wm3r/RBvqTxsa4vsHqIuG+Fpv6v0Tbag/bfD7/qnzz+iaNWt2TGeBARGRli1bHvNjBvFaT0lJqXNHEsT2tIE2iDTc9w8QqYb6Wm/K/RNtqD9taKjvHyBSDfW13pT7J9pQf9rg5/1DNToAAAAAAAAEhskmAAAAAAAABIbJJuAoiouLk8mTJ0tcXNxx2Z420AYA9V996BtoA20AUL/Vh76BNtCGSNR5gXAAAAAAAADgUFzZBAAAAAAAgMAw2QQAAAAAAIDAMNkEAAAAAACAwDDZ1EDt3SuSliaycePxbknYqaeKvPba8W5F/fHUU09Jly5dJD4+Xk455RRZuHBhRNt/8sknMnbsWMnIyJCoqCh58803I9p+ypQpcvLJJ0tycrKkpaXJJZdcIjk5Ob63nzZtmgwYMEBSUlIkJSVFhg8fLjNnzoyoDdVNnTpVoqKiZNKkSb63uf/++yUqKqrGvz59+kR03G3btsn3v/99adOmjSQkJEj//v1l8eLFvrfv0qWLpw1RUVEyYcIEX9tXVlbKfffdJ127dpWEhATp3r27/Pa3v5VIl8srKCiQSZMmSVZWliQkJMhpp50mixYtimgfjV1UlEhtb5OPP7Y5eXnHqEH1UE6OSIcOIgUF/re54QaRSy6pPadLF5HHHqtbm665RuTRR+u2bWPAWFETYwVjxfHmp8+rbuNGO7ZkZx+d9hwvc+aI9O0rUll5vFsi8sILIq1aRbZN9XHp4EH7dwRv6XqHsaImxoqGMVbU28mmHTtEbr1VpFs3kbg4kU6dRMaOtR1fkPx+QF63TuTSS0XatRNJSRG56iqRnTtr5nzzjcjFF4u0bWtzTj9d5KOPwrfv22fvQ1KSyKBBIl9+WXP7CRP8f+B+8EF7rC5dasZfe03kzDNFWra0xxkwQOQ3v7HHDoqrw7/3XpG77hKpqgruWA3VK6+8IrfffrtMnjxZli5dKgMHDpRzzz1Xdu3a5XsfRUVFMnDgQHnqqafq1Ia5c+fKhAkTZMGCBTJ79mwpLy+X0aNHS1FRka/tMzMzZerUqbJkyRJZvHixnHXWWXLxxRfLihUrIm7LokWL5JlnnpEBAwZEvG2/fv1k+/bt3/6bP3++7233798vI0aMkJiYGJk5c6asXLlSHn30UUlNTY2o7dWPP3v2bBERufLKK31t//DDD8u0adPkySeflFWrVsnDDz8sjzzyiDzxxBO+2yAictNNN8ns2bPlxRdflOXLl8vo0aNl1KhRsm3btoj201Dt3i3y05+KdO5sx4QOHUTOPVfk00/97+O000S2b7f9Y238nmh88ont0zMy3BNdxoj8+tci6ekiCQkio0aJrFlTM2ffPpFx4+y40aqVyA9/KFJYGL5940aRM84QSUy0/z30S4YLL/Q/0X/33XZsTU4Ox/76V5GBA+2Y0aqVHZ+mTPG3v5BFi0R+/OPac1yTfffea8e0AwciO2ZjwFhRE2MFY0VIEH1+ffL66yKjR4u0aeOemCottecCbdrY/vjyy73nGps3i4wZI9Kihf3S+Y47RCoqwrd/+aXtw5OS7PhU/fN/RYXIkCEifuco/u//bP8cHW3/rqwUmTpVpE8fO561bi1yyikizz0X0UNxXMTGivzylyJ33nm8W1I3jBU1MVY0oLHC1EMbNhiTkWHMCScY8+qrxuTkGPP118Y8+qgxvXsHe6ysLGP+9KfacwoLjenWzZhLLzXmq6/sv4svNubkk42prAzn9expzAUXGLNsmTHffGPMz35mTIsWxmzfbm+//XZjRo6092fSJGOGDAlv+/nn9u+KisO3uajImJQUu011v/qVMdHRxvzyl8Z8+ql9HN9/35jLLjPmsccOv1+/pk83pmVLb7yiwpj27Y15553gjtVQDRs2zEyYMOHbvysrK01GRoaZMmVKnfYnIuaNN944ojbt2rXLiIiZO3dunfeRmppqnnvuuYi2KSgoMD179jSzZ882I0eONBMnTvS97eTJk83AgQMja2Q1d955pzn99NPrvL1m4sSJpnv37qaqqspX/pgxY8yNN95YI3bZZZeZcePG+T5mcXGxiY6ONu8c8uYaPHiwueeee3zvpyH7zneMOeUUYz780JiNG4354gtjHnrImLfeCueIGHMkb5OKCtunjx9v+/jDefddY+65x5jXX3cfe+pU21+++aYdGy66yJiuXY0pKQnnnHeeMQMHGrNggTHz5hnTo4cx114bvv2yy4y55ho7rlx1lTGXXx6+7eWXjRk71t/927TJmJgYY7ZuDceef96OU889Z8yaNXasfeklO56E+H08anPwoDEffWQfp/37vbcPHWrMk08e2TEaIsaKMMYKxorq/PT5R0ukfd6GDbZv+/JLd87f/27MAw8Y89e/unN/8hNjOnUyZs4cYxYvNubUU4057bTw7RUVxpx4ojGjRtnt333XmLZtjbn77nDO4MH2fCMnxz6Gv/hF+LapU4259VZ/92nePDt2VR+r7rvPmLQ0Y/71L2PWrzcmO9uOHb//vb99HgnXuUdtDj3H27fPmNhYO841NIwVYYwVDWusqJeTTeefb0zHjnaS51DVP6Ru2mQ/uCcmGpOcbMyVVxqzY0f49rVr7e1paTZn6FBjZs8O3z5ypO3wq//TzJplTLNmxhw4EI7l5RkTFRXe3+7ddvtPPgnn5OfbWCjn/PONmTbN/v/KlfYDvjH2Q/jAgcYsWuTjwTHG/PvfxrRrVzP2xRf2WK5JpeqP21/+YifPYmKM6dXLDoDVPfqoHcxatDAmM9OYn/7UmIICe1voZKH6v8mTw9v+4AfGfP/7/u5HY1VWVmaio6M9nfj1119vLrroojrtM4hBYc2aNUZEzPLlyyPetqKiwsyYMcPExsaaFStWRLTt9ddfbyZNmmSMMXUaFFq0aGHS09NN165dzfe+9z2zadMm39v37dvXTJo0yVxxxRWmXbt25qSTTjLPPvtsRO2vrqyszLRp08Y8+OCDvrd58MEHTVZWlsnJyTHGGJOdnW3S0tLMP/7xD9/7yM/PNyJiPvjggxrxESNGmJEjR/reT0O1f7/taz7+uPY8EftB/pJLjElIsJM21U9MDp3sCH14festY/r2tZP148d7+7iPPjp8G7XJpqoqYzp0qPlBPC/PmLg4Y2bMsH+vXGm3rd7/z5xpx5dt2+zfffvamDH25OKEE8KPS48exmzefPj2GWPbMXRozdjFFxtzww21bxc68fr97+39ad3afply8GA459AP9SJ2rBk71o4l2uM6fnw4/4EHjAn481u9x1hRE2MFY0WI3z6/ts+rxoT7+PfeM6ZPH3sucO65xuTmhnMqKoy57Tab17q1MXfcYcz119ecbJo505gRI8I5Y8bYc4wQP5NNh8vNy7Ofy//973Bs1SqbG/py+d137flI9XOdadPsF9BlZfbvhAS7nTG2D77gAvv/69bZL8Xz8w/fRmOMmTDBmCuuqBkbONCY+++vfTu/j9Vrrxlz5pm2vQMGGPPZZzX3M326nXhLSLBj+h/+UHOy6XDneMboFxR897vG3HvvYe58PcNYURNjRcMaK+rdZNPevfZD9kMP1Z5XWWnMSSfZD6eLF9tvhIcMsRNIIdnZxjz9tDHLl9tvhO+915j4eDtJFTpWZqYxv/mNvfoodAXSod5+256ElJaGY6WlNhaaaKmqsldd3XSTnSQrL7cfzNPS7Ey6McbcdZedECsvt53fqafa+O9+Z0wE7xPz85/bb8IPjSUl1fzwr3n9dTuYPfWU/dbj0Uft/fjww3DOn/5k/96wwX670ru3HcCNsYPZY4/ZgS30mFUf2KdNs517U7Zt2zYjIuazQ0bOO+64wwwbNqxO+zzSQaGystKMGTPGjBgxIqLtvvrqK5OYmGiio6NNy5YtzX//+9+Itp8xY4Y58cQTTcn/vhqLdFB49913zb/+9S+zbNky895775nhw4ebzp07m3yfn5bi4uJMXFycufvuu83SpUvNM888Y+Lj480LL7wQ0f0IeeWVV0x0dLTZFpoF8KGystLceeedJioqyjRv3txERUWZhw7XwSmGDx9uRo4cabZt22YqKirMiy++aJo1a2Z69eoV8b4amvJy279NmlSzHz6UiO3TX3rJXqUT6hf37rW3a5NNMTH2m+NPPzVm9Wr7pcJVV9k+NtTHhT7E10abbFq3Tj+pOOMM2zZj7JVFrVp57290tO2vjbFXNf3iF3bcmzTJ/m2MHW8Od2VudRddZL85r+7mm+1J2MaN7u3Gj7d9/k9+Yk9i/vMfe3JX/fOVNtmUlmbM3/5mH4eNG+3JhYgde7ZvtydXITNn2m+ca3t+GxvGijDGCsaK6vz2+bV9XjUm3MePGmUn9JcssZP33/teOOfhh41JTbX908qVxvzwh/YL7OqTTa++am9fs8b252PHGtO/f/jXDUFMNs2Zo1/52bmzMX/8o/3/++6zEz7VrV9vt1u61P596qnG/PnP9jG8/HJ77mGMMeecE9mVvwMG2Cuhqjv3XDt+7drl3s7vY9Wnj/0lRE6OndTKyrJtNsae0zVrZp+bnBxjHn/cjpPVJ5sOd45njD7ZdOedNc8VGwLGijDGioY3VtS7yabQFTqhD9ku779vP4xX/0Z3xQq77cKF7u369TPmiSfCf/v5Gd2uXfaD9sSJ/7+9Ow+PosoaP35CdkLCFpCwJCzKvm8KqOigqIOIjqOMy4gyOuKAgrwiOOoPHQdBHRz3fcRXHRA33BUREFcWkSD7voPskAUIIbm/P87bdnfqVqhOCsjy/TxPHujTt6qrq7vv7bpVfY7+hC0nx5hhw/Sx/vrXYLstW3TCKypKty0tLdj5G6NfrK+5RgeOc8/V7V29Ws807NmjX/qbNNEJqdAv4UUNGGBMkavnzCWX6MBwPD17GnPLLeGxq64KnvmweecdY2rXDt4u7lLWDz/UASL054WVTVkcFIYMGWIyMjLMli1bIlouLy/PrFmzxvz0009mzJgxJjU11fMZiM2bN5u6deuaxYsX/xaLdFAoav/+/SYlJcXzJbexsbGmR48eYbHbb7/dnBWY6Y1Q3759zaWXXhrRMlOmTDENGzY0U6ZMMb/88ot5/fXXTa1atSIemNauXWvOPfdcIyImOjradOvWzVx33XWmZcuWEa2nvHr3XT0gSEjQfuyee/RnaaFEws9Y5uRoLHBVkG2ySUS/tIYqyc/GbJNN33+v8dCz6MZon3v11fr/ceP0CtOi6tTRs9LG6M/e+vXTs7z9+untOXP0TO7evbq+Jk10DCluYqxDBz25Emr7dj04EdHtGDTImKlTw/vwQYN0rAz9mfdVVxkzcGDwtm2y6f9OPP6muJ/RLV6s9xU36VXRMFYoxgrFWBHOS59flO37qkj4lTXPPqspHwLS0ox59NHg7fx8PWlR3BgQ+DVD4IIOPyab/vtfnXAvqls3Y+6+W/9/yy3G9O0bfn9urq7vs8/09tKleoyRnq7HHAcP6i8YBgzQsaNvX2OaNdOfgBenenXnLx+WLdPJuipVdALp1luDj+vGbV+FfjQDx2+BK7KuucZ5XDJw4PF/RuflGO/JJ41p3Lj49ZQ1jBWKsUKVt7GizCUI95pIfcUKTRreqFEw1rq1JjddsUJv5+RoMrhWrTRerZret3lzZNtUp47IO++IfPyxrqN6dU1w2rmzSJUqwe0eOlST9X37rSbfu/xyTc63Y4e2qV5dZPJkkU2bRObM0e299VaRxx4T+e9/Rdav10pBVatqUm83hw+LJCSExyLZb716hcd69QruMxGRr74S6dNHpEEDTSL75z9r9btDh46//sRETRCel+dteyqi1NRUiY6Olp1Fsjru3LlT6tWrd9K3Z9iwYfLJJ5/I7NmzpWHDhhEtGxcXJ6effrp06dJFxo8fLx06dJAnn3zS07ILFy6UXbt2SefOnSUmJkZiYmJkzpw58tRTT0lMTIwUlKC8SY0aNaR58+aydu1aT+3T0tKkdevWYbFWrVrJ5kg7ARHZtGmTfPXVV3LzzTdHtNyoUaNkzJgx8qc//UnatWsnf/7zn+XOO++U8RFmYG7WrJnMmTNHcnJyZMuWLTJ//nzJz8+Xpk2bRrSe8urKK0W2bxf56CORiy/WZNOdO2vBglChuSKTkjTpdnH5M+Piwpcpixo0EPnkEx27PvlEi1D87W8iL7wg8s9/aj+9apUmHn/xRff12MaOtDSRH38UWbJEZPhwTSA7aJDu49BiD23aBJPEBpY7Xl7Srl29P8fERP3XyzhTUTBWKMYKxVgRzkuf7+X7atWqIs2aBW+H9l0HD+p39DPPDN4fE+Psu9asEbnmGi1alJISLM5TgrfHCdemjR5jbNqkxxz5+SJjx4o884wWh+jZU2TxYk1Y/vHH7uuxjRetW4ssXSoyd67I4MG6H/v3Fwl9q3vdV6Hjblqa/ht4XVasCH9NRER69Ai/XdJjvMTE8jfOMFYoxgpV3saKMjfZdMYZWqVh5crSr+uuu0SmTRN5+GGdAMrMFGnXTstfRqpvX61It2uXyJ49Im+8IbJtm3amIiKzZulBwFtv6eRN584izz2nndr//q99nZMmaQc5YIAOopdfLhIbK3LVVXrbTWqqyP794bHmzXWyKj8/8ucWauNGrWzUvr1WN1q4UCRQtMDLftu3Tw/wAgcOlVFcXJx06dJFZoaUTiwsLJSZM2dKj6Kj5QlkjJFhw4bJtGnTZNasWdKkSZNSr7OwsFDyPM4k9unTR5YsWSKZmZm//XXt2lWuu+46yczMlOjQI1ePcnJyZN26dZIW+GZyHL169XKUZV29erVkZGRE/NiTJk2SunXrSr9+/SJa7tChQ1KlSnhXGx0dLYUlLNuYlJQkaWlpsn//fpk+fboMGDCgROspjxISRC68UOT++0V++EGrxo0dG94mNjb8dlRU8RUyExO1zYkQ+A5YtJrQzp3B++rVc07aHDumfanbd8iHH9YxqUsXHSuuvFKf9x/+EPnYEdC2rU5gvfmmyIwZ+jdnTvD+SPeriI4FXgUqJtWp432Z8o6xQjFWKMYKp+L6fK/fV219V4QVwn+r6vbyyyLz5ulf0ccprXr1dH1Fq3UWHS9s40ngPpuRI0VGjBBp2FDHh6uu0r65X7+SjRdVqoh066brfP99nfz7z39ENmzQ+73uq9DXJTAGR/JWL+kx3r595W+cYaxQjBWqvI0VMb6uzQe1amlp02efFbnjDueX1QMHdIKmVSuRLVv0L3B10/Llen9gwvH773VguuIKvZ2T4ywZHRenpTy9Sk3Vf2fN0gOEyy7T24FZ8iKvvVSpYu88d+/Wq5cC1RYLCoITRfn5xW9Tp056QBDq2mtFnnpKJ7iGD3cuE7rfvv9ez1wHfP99cJ8tXKjbO3Fi8Lm8/Xb4uorbZ0uX6vZVdiNHjpRBgwZJ165dpXv37vLEE09Ibm6u3HTTTZ7XkZOTEzbTvmHDBsnMzJRatWpJenr6cZcfOnSoTJ48WT788ENJTk6WX3/9VUREqlevLokeZgPvueceueSSSyQ9PV2ys7Nl8uTJ8vXXX8v06dM9bX9ycrK0bds2LJaUlCS1a9d2xN3cdddd0r9/f8nIyJDt27fL2LFjJTo6Wq655hpPy995553Ss2dPefjhh+Xqq6+W+fPny0svvSQvvfSSp+UDCgsLZdKkSTJo0CCJiYms2+zfv7+MGzdO0tPTpU2bNrJo0SJ5/PHHZfDgwRGtZ/r06WKMkRYtWsjatWtl1KhR0rJly4jeUxVN69YiH3zg/3ojHRfcNGmiBwAzZ4p07KixrCz98n3bbXq7Rw/tnxcu1MkjER1fCgudZ3ZF9Mzt5MnBstmRjh3Llx9/uwPjgcdqxp7Fxem/tm1culQPhgJjbGXBWMFYEcBYcXyhfb6X76vHU726XlUzb57Iuedq7NgxXXfnznp77169cvTll0XOOUdjEVRK96xLF52AmTlTTyCI6ONu3hy8qqdHD5Fx4/T4o25djc2YoVcQFbnYQkR0XStW6MltEed4UZySjBd+7atWrYKTVAFz54bf9nKMZ1Nej1MYKxgrAsrdWOHrj/J8sm6dVrxp3Vp/s716tSbte/JJTShnjCbk7thRy3ouXKi5noomCL/iCm2zaJHm5OjfX5P+hf6088ILNWnq1q36u2I3r76q1SDWrjXmjTe0wsLIkcH7d+/W34n/4Q/6WKtWGXPXXZqYsGg+EGM0OWHo74ofeUS3f/lyzb/0t7+5b8svvxgTExNMPB5w992aK2rUKK3qsHGjMV99pYn3AlXqpk3TbXruOd2vgQThgWpLmZnBqnbr1unvtRs0CM+zEchD8tVX+rxzc4Pb0Lu3MydIZfX000+b9PR0ExcXZ7p3727mzp0b0fKzZ882IuL4GxRawqkYtmVFxEyaNMnT8oMHDzYZGRkmLi7O1KlTx/Tp08d8+eWXET2HoiL9bfXAgQNNWlqaiYuLMw0aNDADBw40a0OTL3jw8ccfm7Zt25r4+HjTsmXLElWNmD59uhGR3yo/RCIrK8sMHz7cpKenm4SEBNO0aVNz7733mjwvWadDTJ061TRt2tTExcWZevXqmaFDh5oDxSV3q0D27NEKMm+8oTk71q/X0sunnRaev86WN6l6dc3bYYx7Nbqixo3TfBcrV2of51Z4ITtbx5dFi3S9jz+u/w9NUDphgiY2/fBD7bsHDND8SqHlpC++2JhOnXQc++47zeN3zTXOxyss1KIYH38cjN12m+ZxWr5c1xGae6Sojz7SpN2huZeGDNE++7vvdMz48UddX506ut+NseewGj48fLy15Wwq+lps3ao5DV97TXMhhhaXGDTImYuwsmCscGKsqNxjhZc+38v3VVsfP21aePXpCRP0O/20aZoz6JZbwhOEFxTo9/vrr9ek1zNnah6l0D7OS86mvXv1/k8/1bZvvaW3Q4sTDRmiY8+sWVr8qEcP/Qs4dkyr7/Xtq8//iy+0r77nHufjHT6sx0yh23TJJfr8MjM1L9Xbb7tv71NP6XFJqCuv1HFu7lwdL2bP1px/zZtrrquS7qtA9cHAsciPP2peqMce02OVp592Jgj3coxny9mUkeHMRVVeMFY4MVaU/bGiTE42GaNJS4cO1U4hLk4HkMsuCy9BvWmTxpKStIO56qrwcqAbNuhglZioiVWfeUa/HIe+J3/8URNrx8eHDz5FjR6tg1xsrB4ITJyoX/xDLVigA0CtWro9Z51lT5z3xRfGdO8enoA1N1e3PznZmD59jNm5s/j90727VmEoaupUTQyYnKz7pX17PZAITcj63HPGNG2qz6V5c2en+/jjmjAxMVErT7z+ujOp65AhOqCIBCvybd2q64wwVxwAFOvIEa2o07mzftmsWlWrDt13nzGHDgXb+TXZtGuXnoioVi38C3BRgfUV/Qv93lZYqBWETjtNx5k+ffRkRKi9e3VyqVo1LUZx003hEzEBL7ygX/ZD7dyp6wyMgaGT/0Xl5xtTv76OQQHvvquJWNPSdKytX18f45dfgm38mmwyRsejevV00imwnw4f1tchUN4bQOXmtc8/3vdVL5NN+fnan6Wk6ITGyJHG3HBDeJ83Y4Ymxo6P1+/VX38d+WRTIFl50b/Ad2hjtC/82980MXrVqjqhUrRS9saNOmmUmGhMaqpWKg1UcQs1ZozeF2rNGp38SUnRExXFFfPZu1eTs69cGYy99JIeV9Wpo+NFeroxN94YXtihJPuq6GSTMVqptWFDfZ79+xvzr3+Fv5ZejvGKjks//KCvceh7CMCJFWVMpL9cRlnw6acio0bp5aBFf7p3qowerb/vjvBKQgDASfLss5pw1+NV6yfF889r7o0vvzzVWwIACBg1Sn/6XVzhifJk4ECRDh1E/v73U70lQOVR5nI2wZt+/bTiw7Zt4RX5TqW6dTURIQCgbLr1Vs0RlZ2t1ZvKgthYkaefPtVbAQAIde+9mgu2sLDsnNguqaNHNYH4nXee6i0BKheubAIAAAAAAIBvyvk8NQAAAAAAAMoSJpsAAAAAAADgGyabAAAAAAAA4BsmmwAAAAAAAOAbJpsAAAAAAADgGyabAAAAAAAA4BsmmwAAAAAAAOAbJpsAAAAAAADgGyabAAAAAAAA4BsmmwAAAAAAAOAbJpsAAAAAAADgGyabAAAAAAAA4BsmmwAAAAAAAOAbJpsAAAAAAADgm5iSLlhYWCjbt2+X5ORkiYqK8nObACtjjGRnZ0v9+vWlSpWTN0/Kex0VAZ8fVBa814GS4/ODyoL3OlByXj8/JZ5s2r59uzRq1KikiwMltmXLFmnYsOFJezze66hI+PygsuC9DpQcnx9UFrzXgZI73uenxJNNycnJvz1ASkpKSVcDeJaVlSWNGjX67b13svBer1wyM0V69y7ZsnPmiHTs6OfW+IfPz8l39913W+PLly93xP70pz9Z2+bk5FjjMTHO4fvjjz+2tr3tttus8Ysvvtga96qwsNAaP5lniG14rwMlx+cHlQXv9Yqvon6nLwu8fn5KPNkUuOwvJSWFDwpOqpN9ySnv9cqlWrXSLVvW3yJ8fk6e+Ph4a9w2UZSYmGhtW1BQ4HkdtpiISNWqVa3x0r4eZXWyKYD3OlByfH5QWfBer7gq+nf6suB4n5+y8Y0QAAAAAAAAFQKTTQAAAAAAAPANk00AAAAAAADwTYlzNgEAUNl8/fXXjthzzz1nbeuWs2nfvn2O2B133GFtGx0dbY3b8jCdddZZ1rZvv/22Nf7RRx85YhMmTLC2rVWrliNWVnIzAQAAoOzhmyIAAAAAAAB8w2QTAAAAAAAAfMNkEwAAAAAAAHzDZBMAAAAAAAB8Q4JwAECltWrVKmv8kUcescZXr17tiLVv397adsWKFdZ4YmKiI5aammptu2fPHmu8bdu2jtj+/futbWNi7EO9LYH5iBEjrG1PP/10R2zIkCHWtnXr1rXGAQAAUHlwZRMAAAAAAAB8w5VNAAAAOGk2bxZxuWivWKmpIunp/m8PAADwH5NNAAAAOCk2bxZp0ULkyJHIl01IEFm1igknAADKA35GBwAAgJNiz56STTSJ6HIluSIKAACcfEw2AQAAAAAAwDf8jA4AUG4VFBQ4YtHR0da2zz//vCM2d+5ca9ukpCRrvHv37o5YtWrVrG2PuFy+sXLlSkfMVqFOxL2ym+15L1iwwNr2L3/5izVes2ZNRywrK8vadseOHY7Yrbfeam37wgsvWOOnnXaaI1ZYWGhtW6UK58IAAADKM77NAQAAAAAAwDdMNgEAAAAAAMA3TDYBAAAAAADAN0w2AQAAAAAAwDdMNgEAAAAAAMA3VKMDAJRbbpXnbJYsWeKI1atXL6L1xsQ4h839+/db21522WXW+PLlyx0xW7U3EZGJEyda4//4xz8csb59+1rbuj0XW7W8qlWrWtumpKQ4Ym6V5CZPnmyN33nnnY4YVecAAAAqJr7lAQAAAAAAwDdMNgEAAAAAAMA3TDYBAAAAAADAN0w2AQAAAAAAwDckCAcAVChuCbttCbHr1KkT0TqOHTvmiCUnJ1vb7t692xo/77zzHLGdO3da27799tvWeJMmTRyxli1bWtvm5uZa40ePHnXE8vPzrW0TExMdMbfk6lu3brXGCwoKHLFIErwDAACg/ODKJgAAAAAAAPiGySYAAAAAAAD4hskmAAAAAAAA+IbJJgAAAAAAAPiGySYAAAAAAAD4hmp0AIAKZcOGDZ7b2irUiYjk5eVZ47bqadWqVbO23bx5szWelZXliKWlpVnb2qrOiYj8+uuvjtjGjRutbd2q5Z122mmOWFRUlLWtrZJcdna2ta3bPj148KAjVqtWLWtbAAAAlG9c2QQAAAAAAADfMNkEAAAAAAAA3zDZBAAAAAAAAN8w2QQAAAAAAADfkCAcAFChbNu2zRq3Ja62JdoWEalXr541bkvuvWLFCmvbAwcOWOM7duxwxBITEyNax6JFixyx1NRUa9uWLVta41u2bHHEbInARURycnIcMbd95GblypWOWM+ePSNaBwAAAMoHrmwCAAAAAACAb5hsAgAAAAAAgG+YbAIAAAAAAIBvmGwCAAAAAACAb5hsAgAAAAAAgG+oRlcMY0xE8SpVTu7c3TfffGONn3vuuSd1O/yQm5vriCUlJZ2CLQFQ3rlVo4uPj3fEbH2PiMixY8es8dq1aztimzZtsrbdv3+/NZ6QkOBp20RE6tata423atXKEYuNjfX8eCL26nzNmze3tv3qq68csWrVqlnbulXFW7ZsmSNGNToAOHFsxyy2iqgiIvXr17fGbePk448/bm07bNgwR8zt+3xcXJw1buNWKTU6OtrzOgCcfFzZBAAAAAAAAN8w2QQAAAAAAADfMNkEAAAAAAAA3zDZBAAAAAAAAN8w2QQAAAAAAADfUI2uGFFRURHFI3HHHXdY45s3b3bEzjnnHGvbmTNnWuNNmjRxxBo1ahTB1tm5VWeKifH+Nnrssces8XfeeccRmzVrVtjtnJwcz48DoPKyVVkTsfcha9eutbY9fPiwNd64cWNHzFahTsS9OtzevXsdMbfKdYcOHbLGs7OzHbGmTZtGtB22Kj4HDx60tv3xxx8dsbZt21rb9u3b1xp329cAACdbJTm3Y5D169db4yNGjHDEhgwZYm37888/W+PDhw93xKZOnWpt++mnnzpikydPtra99NJLrXFbtbyqVata2/71r3+1xm3jctH96VZdHIB/uLIJAAAAAAAAvmGyCQAAAAAAAL5hsgkAAAAAAAC+YbIJAAAAAAAAvqmwCcILCwut8ROZ9NuWnK9bt27Wttdee6013rlzZ0fMlsRVxD0p7e233+6IffDBB9a2kYgkEfgbb7xhjb/11lvWuC1x78qVK4/bBgCKysrKssZzc3MdMbd+xVZowa19s2bNrG3j4+Ot8fnz5ztiu3fvtrZt3bq15+3Iz8+3tnVLdm5LuOr2vP/zn/84Yvfee6+1rVtSc9v+BwDYRXJs4lYg4qOPPvK8jvfff98av/DCCx2xZcuWWdvm5eU5Ym5FiubMmWONJyQkuG2iQyTHJgBOPq5sAgAAAAAAgG+YbAIAAAAAAIBvmGwCAAAAAACAb5hsAgAAAAAAgG+YbAIAAAAAAIBvTnkKf2OMNW6rwBBJ2ypVIptHO3r0qCP266+/Wtt26tTJGh8xYoQjNnr0aGvb9u3bW+MbN250xNwq+LRq1coa/+qrrxyxmjVrWtv+/e9/d8Quv/xya9vY2Fhr/LvvvnPEnnvuuYjW0aFDB0esQYMGYbezs7OtywJAKFs/KmKvDudW7fO6666zxidMmOCIufVrbuOQrVre3r17rW137dpljS9evNgRcxtX4uLirPFjx445Ym79bOPGjR0xWzU7EfcKf25jOACgdGbNmmWNr1u3zhFLT0+3tn3ttdescdvxhluV66SkJEfMrarejh07rPGzzz7bEbM9DxGRjz/+2Bq//vrrHbGCgoJibwPwH1c2AQAAAAAAwDdMNgEAAAAAAMA3TDYBAAAAAADAN0w2AQAAAAAAwDdMNgEAAAAAAMA3p7wanVuFgtK2/fbbbyPajrFjxzpiRauhBfznP/+xxgsLCx2xrVu3WtvOnz/f87YdPnzYGner7NOvXz9HrHr16ta2zz//vCP26quvWtsmJydb43v27HHE3Cpd9OjRwxqfN2+eI1a0YpNbhSMACOVW4SY1NdURO3DggLWtW797xhlnOGK2qm4iIitXrrTGbdVP3fpot8p627dvd8R69eplbeu27k2bNjlibv38+vXrHTG3ynUJCQnWuK0PP3TokLWtW6U7ABWbMcZT5Uq3YwK3ZW3f0d2qkUbCrf/Pz88v9ePZKomOHz/e2tbWR4vY++N69epZ27744ovWeLdu3Rwxtz76d7/7nSNWq1Yta1tbNWsRkd27dztibhW433vvPWvcVo0uJiam2NsA/MeVTQAAAAAAAPANk00AAAAAAADwDZNNAAAAAAAA8A2TTQAAAAAAAPBNucqMtnbtWmvcluB1ypQp1rZuCVvvv/9+Ryw3N9fa9tdff7XGbe3dEge6JVAtKChwxGxJDUVEjhw5Yo3n5eU5YldddZW17WWXXeaIrVq1ytp23bp11nijRo0csQsuuMDa1i1R7dSpUx2xookRY2NjrcsCqLxsybZtMRGRKlWc51fckpy6xW1Jrt2SjGdkZFjjtva7du3y/HgiIp06dXLE3MYEt3XYtq9oYYaAatWqOWJuSV9tRSNE7Elp3cbTpk2bWuMAKraoqKiICgLZlvfKSyLy463XLcm0H8mnX3vtNUfMrWhEu3btrHHbsUnt2rWtbdPS0qxxW7Gjv/3tb9a2O3fudMRatmxpbet2rJCSkuKIDR482NrWbex88803HTFb0nAAJxZXNgEAAAAAAMA3TDYBAAAAAADAN0w2AQAAAAAAwDdMNgEAAAAAAMA3TDYBAAAAAADAN6UulbBu3TpHlZq33nrL0a5u3brW5d2q52RnZzti+fn51ra2ijjnn3++tW23bt2s8fnz5ztitspFIvYqCSIi0dHRjpitupyIyL59+6xxW2Ue274QETl8+LA1bqtG59bWVmGoRYsW1rZnn322NV6zZk1HzO35ffDBB9a4rTLGsmXLwm4fOnTIuiyAystWpTQ+Pt7a1jaGHDx40NrWrSqPrcKQW9XRxMREa9z2mHv37rW2dRvLVq9e7Yi5VYFzY6u4ZxvHROzPMTk52drWLW57jm7jG4DKyRgTUZU4r9z6ttJy6/9feOEFR2zRokXWtqmpqdb4jTfe6Ij97ne/s7adPHmyNb58+XJHzO14qmfPnta4zbPPPmuN33nnnY6Y2/N2O57q1auXI5aenm5t6xb/6aefrHEAJxdXNgEAAAAAAMA3TDYBAAAAAADAN0w2AQAAAAAAwDdMNgEAAAAAAMA3TDYBAAAAAADAN6WuRvfKK684Kv8sXrzY0c6tOpAbW8Wf6tWrW9vu3r3bEXOrMORWFS8pKckR27Bhg7Xt0qVLrfGtW7c6YgcOHLC2dasOZ6vO51bRzo1tX7tVReratasjtmDBAmvbZ555xhq3Ve1r06aNtW1UVJTndZx++ulht3NycqzLAqi8bH1sJNXo2rdvb21br149a9zWz9uqeoq491m2bXbrG922Y82aNY6YW4Uht8pOWVlZjphbZaU6deo4Ym4VWyOpfuo2VgOonKKiolz7w9KwfZd2q1Bnq5xs6/tF3Cut2fr/QYMGWdvOmTPHGm/VqpUjtn79emtb27GQiP24wu1YKBJur9GuXbscMbfjGLcq06+99poj1rdvX2tbt/HXVqVu8+bNYbephgqceFzZBAAAAAAAAN8w2QQAAAAAAADfMNkEAAAAAAAA3zDZBAAAAAAAAN+UOkH45Zdf7kiuXatWLUe7LVu2WJffv3+/NW5L2rZ9+3ZrW1vi8I0bN3puK2JPBp6bm2tta0teLmJPlur2eFWrVrXG27Vr54idf/751rZ79+61xt9//31H7Msvv7S2jYRbIj23BH82tkTsIiJxcXGOWNHkigkJCZ4fB0DlYEtG6pbk2lYowS0Bt1uybVuy1dNOO83aNi8vzxq3jSFu65g1a5Y1vnz5ckesadOm1rY1a9a0xm3Pxa2YhC2Rrq3fFnFPHGvbp27JxAEgwK3IgU1hYaE17pYM3CYzM9MRs/WXIiKxsbHW+KhRoxyxTp06Wdu6fTdesWKFI2Yr1iDinqjctu/efPNNa9shQ4ZY45Gw9fObNm2ytm3evLk1bivcMW3aNGvbP//5z9Z4x44dHbElS5aE3XY7zgPgH65sAgAAAAAAgG+YbAIAAAAAAIBvmGwCAAAAAACAb5hsAgAAAAAAgG+YbAIAAAAAAIBvSl2NrmXLlpKSkhIWy8jIcLRLS0uLaL0FBQWOmFsliPXr1ztitgpFIiKff/65NX7jjTc6YrZqCCIitWvXtsbdKvOcbP3793fEvvjiC2vbDh06OGK2qnoi7pU8qlWr5oi5VQ5xq/ywY8cOR6xolbui1ekAYM+ePY5YcnKyta2tSk6TJk2sbW1VgETs/ZBb1Tm3Sne26qxuVdls1V1F7FXj3CoauVWYs1Xti4+Pt7a1cavY57YO27jgNq4DqJyMMY6+wnZM4MatYnRWVpYjtm7dOmtbW/U0W7VoEXtlUBGR0aNHO2Jvv/22520TEWnUqJEj5nYMMnv2bGu8W7dujpjbMZJb9dPf/e531riN7bhi586d1rYDBw60xm3HMZdccom17bXXXmuN2ypoFx1v3MZuAP7hyiYAAAAAAAD4hskmAAAAAAAA+IbJJgAAAAAAAPiGySYAAAAAAAD4hskmAAAAAAAA+KbU1eiqV6/uqEZnq6owc+ZM6/K2ajgiIrGxsY5YjRo1rG3btm3riBWtZBYwbNgwa7xp06aO2NGjR61tbdWPROyVD9y4VR6yxd0qu7lV3GjQoIEj5lYd6Ntvv3XEbJUkRNwrD9mq1LlVDnF7XWwVntwqbgBAgK3PTEhI8Nw2NTXV2tatWk/16tUdMVtFThGRAwcOWOO2vtutUqdbRbt9+/Y5Ym6V3X799Vdr3DamRjKOuY3fbnHb83YbZwFUTlFRURIVFRUWc/u+Gwnbd+kPP/zQ2nbVqlWOmFv/mpmZaY0vXbrUEdu7d6+17e7du63xjz76yBEbMWKEte3XX39tjT/44IOOmNuY8NBDD1njtmp0Bw8etLatW7euNW7jth02bs/bzaJFixyxolXGqXINnHhc2QQAAAAAAADfMNkEAAAAAAAA3zDZBAAAAAAAAN8w2QQAAAAAAADflD7jnkWjRo08xYqzdu1aR8wtqfaaNWscMbfErFWq2OfXbMkA8/LyrG2LJkQPsCU1L5rkMMAtoWytWrUcMbfE3G6Jw20J9+rUqWNta9vmwsLCiB5v//791rhNcnKyNW573s2aNQu7bUs8DwBFufWZtsTVbsmsly1bZo3bxhC3ccVtHLKNCzVr1rS2dXsutr47MTHR2tatQIStuINbwm7buGIrrFEcW5Jft6IRACqn+fPnS1JSUljshRdecLRzS+7slkzc1k+7tbV9V3UrGuFWvGjHjh2O2Ny5c61tP//8c2vc7TjExq2YhFsibxu3BOZnnnmmI+Z2THbhhRc6Ym7j21tvvWWNDx8+3BE744wzrG07d+5sjW/atMkRe/LJJ8NuuxUzAuAfrmwCAAAAAACAb5hsAgAAAAAAgG+YbAIAAAAAAIBvmGwCAAAAAACAb5hsAgAAAAAAgG9OSDU6P5x++umlWr5du3Y+bQnKCrfKfgAqL1u/YKvUJmKvArpixQpr2549e1rjLVu2dMRsldpE7NXeRER2797tiLlVRXKrlmOLu1Wuc6tGZKswGhcXZ21rq1Lq9nhuzzshIcERc6sGCKByatOmjaPq88033+xoZ+tHRdwrJNuqp7lVVDty5Ijntm793X333eeIuVV7dqtyXbt2bUds0aJF1rZuVfH+53/+xxFzq1AdSUW7cePGWdtu3brVEUtLS7O2datybWvvVm21aOXCANtYXXS8YfwBTjyubAIAAAAAAIBvmGwCAAAAAACAb5hsAgAAAAAAgG+YbAIAAAAAAIBvymyCcAAAjseWYNQt2bYtmXitWrWsbW+77TZrfP369Y7Yzz//bG3rloR1yZIljtjy5cutbd22z5Yg3C25q1vC9O3btztiN9xwg7XtWWed5Yi5JR63PT83VapwzgtAUFJSkiPp8znnnHOKtgZuPv/881O9CaWWlZV1qjcBqPD4lgcAAAAAAADfMNkEAAAAAAAA3zDZBAAAAAAAAN8w2QQAAAAAAADfMNkEAAAAAAAA31CNDgBQbtkqzLmxVXA7++yzI3q8pk2beooVp3fv3p7bFhYWWuN5eXmOWGJiYkTbUVpu1fYieU3cnh8AAADKN65sAgAAAAAAgG+YbAIAAAAAAIBvmGwCAAAAAACAb5hsAgAAAAAAgG+YbAIAAAAAAIBvqEYHACi34uPjHbFIqqHFxsZG9Hi2inbR0dHWtsYYazyS7atSxX5O6ERVnotkm5OTk61t3faHrfLc0aNHI9g6AAAAlBdc2QQAAAAAAADfMNkEAAAAAAAA3zDZBAAAAAAAAN8w2QQAAAAAAADfkCAcAFBu7dmzxxHLz8+3trUlro6JOXHDoFsicFsS7kiShp9ItiTeIvZ955YgPC8vzxq3tY80QTsAAADKB65sAgAAAAAAgG+YbAIAAAAAAIBvmGwCAAAAAACAb5hsAgAAAAAAgG+YbAIAAAAAAIBvqEYHACi3CgoKHDG3CmfHjh1zxNLS0nzfpuPxo/JcJBXtbG3d2kdSjS4xMdHa1q0aoG3/u1W0AwAAQPnGlU0AAAAAAADwDZNNAAAAAAAA8A2TTQAAAAAAAPANk00AAAAAAADwDZNNAAAAAAAA8A3V6AAA5VaVKs5zJtnZ2da2Bw4ccMRs1eyKY6vWZqvUdqJFUtHOj+p3NjEx9q8QbvvUViUwKSnJ120CAABA2cBkEwAAQCUxZsyYEi03YcIEn7cEAABUZPyMDgAAAAAAAL5hsgkAAAAAAAC+YbIJAAAAAAAAviFnEwCg3LrpppscsYULF1rb2hKEd+nSJaLHc0uKXVHYEq67SUtLiyhu23c1atTw/HgAAAAoP7iyCQAAAAAAAL6p2KdoAQAAgCJKUpWPinwAAHjHlU0AAAAAAADwDZNNAAAAAAAA8E2Jf0ZnjBERkaysLN82BihO4L0WeO+dLLzXK5ecnNItW1bfJhX185Odne2IHTp0yNr28OHDjpjbdkVHR1vjtv0XFRVV3CaWKwUFBda4bX/Y9r2ISF5enjVu20+5ubnWtqV5v1TU97pf3F6f4/HreZWmjw0s78emlGQ/lPXX1g98flBZ8F6v+Crqd/qywOvnJ8qU8BO2detWadSoUUkWBUply5Yt0rBhw5P2eLzXUZHw+UFlwXsdKDk+P6gseK8DJXe8z0+JJ5sKCwtl+/btkpycXKHO6qLsMsZIdna21K9fP6Ly3KVVmvd6VlaWNGrUSLZs2SIpKSkRP3Zpl2cb2IaA8vj5AUqiPL7XK3v/xDaUnW0oj58foCTK43u9svdPbEPZ2Qavn58S/4yuSpUqJ3UWGBARqV69+kl/TD/e6ykpKSXuSPxYnm1gG0TK7+cHiFR5fa9X5v6JbSg721BePz9ApMrre70y909sQ9nZBi+fHxKEAwAAAAAAwDdMNgEAAAAAAMA3TDYBJ1B8fLyMHTtW4uPjT8nybAPbAKDsKwt9A9vANgAo28pC38A2sA2RKHGCcAAAAAAAAKAormwCAAAAAACAb5hsAgAAAAAAgG+YbAIAAAAAAIBvytVk08aNIlFRIpmZp3pLyqaZM0VatRIpKDjVW+LUuLHIE0/4u86jR3W9P/3k73r98uyzz0rjxo0lISFBzjzzTJk/f35Ey3/zzTfSv39/qV+/vkRFRckHH3wQ0fLjx4+Xbt26SXJystStW1cuv/xyWbVqlefln3/+eWnfvr2kpKRISkqK9OjRQz7//POItiHUhAkTJCoqSkaMGOF5mQceeECioqLC/lq2bBnR427btk2uv/56qV27tiQmJkq7du3kpwjeNI0bN3ZsQ1RUlAwdOtTT8gUFBXL//fdLkyZNJDExUZo1ayYPPfSQRJouLzs7W0aMGCEZGRmSmJgoPXv2lAULFkS0DlQ+e/eK1K2r42dZcdZZIu+9d6q3ouxgrAjHWMFYcardeKPI5Zd7b19Rj0/K0nHFa6+J1KgR2TKhxx5l/ZjBC8aKcIwV5WOs8DTZtHu3yG23iaSni8THi9SrJ3LRRSLff+/79pQZ778v0revSO3a7gPIkSMiQ4dqm2rVRK68UmTnzvA2mzeL9OsnUrWqfuEfNUrk2LHg/YsWiXTqpMv37y+yb1/wvmPHRLp0EfHal9x9t8h994lER+vtggKRCRNEWrYUSUwUqVVL5MwzRV55JaJdUWbFxYncdZfI6NGnekucpk6dKiNHjpSxY8fKzz//LB06dJCLLrpIdu3a5Xkdubm50qFDB3n22WdLtA1z5syRoUOHyty5c2XGjBmSn58vffv2ldzcXE/LN2zYUCZMmCALFy6Un376SX73u9/JgAEDZNmyZRFvy4IFC+TFF1+U9u3bR7xsmzZtZMeOHb/9fffdd56X3b9/v/Tq1UtiY2Pl888/l+XLl8vEiROlZs2aEW176OPPmDFDRESuuuoqT8s/8sgj8vzzz8szzzwjK1askEceeUQeffRRefrppz1vg4jIzTffLDNmzJA33nhDlixZIn379pULLrhAtm3bFtF6KppffxW5/XaRpk11fGrUSPvSmTP9fRyvE+br1olccYVInToiKSkiV1/tHBfGjRPp2VPHBduX53379DlUq6bjw6JF4fcPHSoycaK37R43TmTAAN3+UO+9J3LeeSLVq+vjtG8v8o9/hI9BpeV2cHDffSJjxogUFvr3WOUVY0U4xgrGioCKduzBccWpVZaPGbxgrAjHWFGOxgrjwTnnGHPmmcbMmmXMxo3GzJtnzMMPG/Phh16W9s+GDcaIGLNokX/rPHrUHn/9dWMefNCYl192f8whQ4xp1MiYmTON+eknY846y5iePYP3HztmTNu2xlxwgS7/2WfGpKYac889wTadOxszcqQxq1bpfv6f/wneN2GCMbff7u15fPutMdWrG3P4cDB2//3G1K1rzNtvG7N+vTGZmca88ooxjz3mbZ1+ysgw5t//9m99eXn67759xsTFGbN0qX/r9kP37t3N0KFDf7tdUFBg6tevb8aPH1+i9YmImTZtWqm2adeuXUZEzJw5c0q8jpo1a5pXXnklomWys7PNGWecYWbMmGF69+5thg8f7nnZsWPHmg4dOkS2kSFGjx5tzj777BIvbzN8+HDTrFkzU1hY6Kl9v379zODBg8Nif/jDH8x1113n+TEPHTpkoqOjzSeffBIW79y5s7n33ns9r6ei2bDBmPr1jWnd2ph339V+dOlSYyZONKZFC38fy0sflpNjTNOmxlxxhTG//KJ/AwYY062bMQUFwXb/7/8Z8/jj2vdXr+5cz8iRxvTurc9nxAhjunQJ3vfjj3r72LHjb3NurjEpKbpMqL//3ZjoaGPuusuY77/X/fjll8b84Q/GPPHE8dfr1aRJ9ud37Jgxp51mTJG3c6XEWBHEWMFYEepUHnsMGqR9t1dejk84rigdt/GkOEXH7bJ6zOAFY0UQY0X5GiuOO9m0f792il9/fZwViXagl19uTGKiMaef7hwQliwx5uKLjUlK0s7q+uuN2b07eP/nnxvTq5d2JrVqGdOvnzFr1wbvL9qZHztmzE036UHFpk0a++ADYzp1MiY+3pgmTYx54AFj8vPDt/O554zp39+YqlWNGTu2+OflNoAcOGBMbKwx77wTjK1YoW0DX+w/+8yYKlWM+fXXYJvnn9cv/4HJksREXc4Y3a7f/17/v26dMWecYUxWVvHbFzB0qDF//GN4rEMHff7F6d1bB55Ro4ypWVMPAIruk/37jfnLX3RAS0425vzzdYAJWLvWmMsu09c0KcmYrl2NmTEjfB1FO/yXX9bX+auv9Pbx3hu9e+tzHD7cmNq1jTnvvOB9559vzH33Ff88T6a8vDwTHR3t6MRvuOEGc9lll5VonX4MCmvWrDEiYpYsWRLxsseOHTNTpkwxcXFxZtmyZREte8MNN5gRI0YYY0yJBoWqVauatLQ006RJE3PttdeaTYEPuwetWrUyI0aMMH/84x9NnTp1TMeOHc1LL70U0faHysvLM7Vr1zbjxo3zvMy4ceNMRkaGWbVqlTHGmMzMTFO3bl3z5ptvel5HVlaWERHzVeAD83969eplevfu7Xk9Fc0llxjToIFO8hS1f3/w/5s2aR+VlKR92FVXhffLx+vDevfWvj30z2b6dO3zDx4Mxg4cMCYqytknGuP+5fmSS3SsMMaY5ct1rDJGT4506GDMggX2xy/qnXeMqVMnPDZvnm6/26RS6H577jmdPIuNNaZ5cz1YCjVxoh74VK1qTMOGxtx2mzHZ2Xrf7NnOfRY6ttx0k/bzlRljRTjGCsaKAK/HHsX1QcYE+9gvvjCmZUvt3y+6yJjt24Ntjh0z5s47g8ceo0YZc8MN4ZNNkR6fFKeiH1d43Vfvvaff5RMTjWnf3pgffghfz6RJOvGWmKjHlv/6V/h4WZJjD2PK3jGDF4wV4RgrytdYcdzJpvx8Y6pV07OrR44UsyLRjn7yZGPWrDHmjjt0ub179f79+/VL7z33aCf488/GXHihfugD3n1XO581a7QT7t/fmHbtgmeEQzvoI0f07HGnTsbs2qX3f/ONdrivvaad6pdfGtO4cXjHKKId06uvapvjvb/cBoWZMzUe+sXcGGPS0/WMtTF6BqDo5On69brczz/r7bPOMuapp3Q/X3mlMWPGaPzCC42JpA9o317PWIS66CJjzj03uH9sevfWffbAA8asXm3M//6vHhh9+WWwzQUX6GuxYIG2+Z//0QmfwGubmWnMCy/ohNHq1dqJJySE79vQDv+RR3T5efP0tpf3Ru/e+n4aNcqYlSv1L2D0aL2/rNi2bZsREfNDkZFz1KhRpnv37iVaZ2kHhYKCAtOvXz/Tq1eviJb75ZdfTFJSkomOjjbVq1c3n376aUTLT5kyxbRt29Yc/r9TY5EOCp999pl5++23zeLFi80XX3xhevToYdLT002Wx29L8fHxJj4+3txzzz3m559/Ni+++KJJSEgwr732WkTPI2Dq1KkmOjrabNu2zfMyBQUFZvTo0SYqKsrExMSYqKgo8/DDD0f82D169DC9e/c227ZtM8eOHTNvvPGGqVKlimnevHnE66oI9u7Vvup4u7KgwJiOHY05+2w9Uzx3rl4ZFNpnHK8P27tXx7d//MOYHTv0z+ajj/SKodCx8sgRjdlObLhNNo0ZoxNi+fnab551lsb/+U+dcPfqjjt0Er9orFo196t6A95/Xw98nn1Wz5BPnKjPY9asYJt//1tvb9igY2KLFnqwZ4we+DzxhI4vgX0WehD4/PM6LlRmjBVBjBWMFaG8HnsU1wcZo31sbKx+j12wwJiFC41p1cqYa68NtnnkET3Z+t57Orn/l7/oSYnQyaZIjk+Op6IfV3jdVy1b6tWtq1bppFZGRvDigLlzdVLtkUf0/iefNKZGjfDxMtJjj4CydszgBWNFEGNF+RsrPP2M7t13tSNOSNDLOe+5x5jFi4usSMJninNyNPb553r7oYeM6ds3fJktW7TN/03MOezerfcHJkwDHdS33xrTp48ePBw4EGzfp4/zwOONN4xJSwvfzv+bDPXEbVD473/1UsyiunUz5u679f+33OJ8zrm5ur7PPtPbS5dqx52ebsw11+gZ8ddf10Fu61ZdvlkzY453RVv16s6zzsuW6aBapYp29LfeGnzcgN69dT8WfQ6jR+v/v/1WDxaKDvbNmhnz4ovu29OmjTFPPx28Hejw775bX4/QS1i9vDd699aJRZsnn9RJxbKiLA4KQ4YMMRkZGWbLli0RLZeXl2fWrFljfvrpJzNmzBiTmprq+QzE5s2bTd26dc3ikM4i0kGhqP3795uUlBTPl9zGxsaaHj16hMVuv/12c1bg6D1Cffv2NZdeemlEy0yZMsU0bNjQTJkyxfzyyy/m9ddfN7Vq1Yp4YFq7dq0599xzjYiY6Oho061bN3PdddeZli1bRrSeiiJwhc777xff7ssvdZJk8+ZgbNkyXXb+fPfl3Pqw4uzapf3l8OHa1+fkGDNsmD7WX//qbO822XTggI4H6ek6Pixbpl+mzzjDmD17tC9v0kQnpELHwKIGDDCmyJXW5pJL9CDieHr21DEs1FVXBc+S27zzjp5ICCjuZw8ffqhjU+jPCysbxgrFWKEYK8J5OfYoytYHiYRfWfPss3oVf0BamjGPPhq8nZ+vJxeK+xmd2/FJaSabKspxRVFu+yr0oxkYkwNXZF1zjXOsGTjw+D+j8zJul7VjBi8YKxRjhSpvY4WnBOFXXimyfbvIRx+JXHyxyNdfi3TurMk/Q4Xm6EpK0uSogbxlixeLzJ6tCesCf4Hk7+vW6b9r1ohcc40mek1JCSY03bw5/HGuuUYkN1fkyy81uWnA4sWa4DT0MW65RWTHDpFDh4Ltunb18qxPjjZtRObMEdm0SWTyZJH8fJGxY0WeeUaT3vbsqc/r/fdFPv7YfT2HD4skJITHWrcWWbpUZO5ckcGD9bXo31/k5pvD2xXNrZaWFv665eQEkxUG/jZsCL5uOTmadK9VK00GW62ayIoVztdt4kSRl18W+e47fd4BXt4bIprU0CYxMfz1PdVSU1MlOjpadhbJ6rhz506pV6/eSd+eYcOGySeffCKzZ8+Whg0bRrRsXFycnH766dKlSxcZP368dOjQQZ588klPyy5cuFB27dolnTt3lpiYGImJiZE5c+bIU089JTExMVJQgvImNWrUkObNm8vatWs9tU9LS5PWrVuHxVq1aiWbi745Pdi0aZN89dVXcnPRD9BxjBo1SsaMGSN/+tOfpF27dvLnP/9Z7rzzThk/fnxE62nWrJnMmTNHcnJyZMuWLTJ//nzJz8+Xpk2bRrSeisJr0Y0VKzRpeKNGwVjr1tpXrViht732YcdTp47IO+9oX12tmo5PBw7oeFklgtqv1avreLBpk44PrVuL3HqryGOPifz3vyLr14usWqUJYv/xD/f12MaFSPZbr17hsV69gvtMROSrr0T69BFp0EAkOVnkz3/W6nde+uPERE0QnpfnbXsqIsYKxVihGCvCeTn28NIHVa0q0qxZ8Hbod9yDB/UY4cwzg/fHxDiPE7wen5QFp/q4wuu+Cj32SEvTfwOvy4oV4a+JiEiPHuG3Szpul7VjBi8YKxRjhSpvY4Xnr78JCSIXXihy//0iP/ygZUHHjg1vExsbfjsqKlhtJidHO6TMzPC/NWtEzj1X2wSqJrz8ssi8efonouUqQ/3+9yK//CLy44/h8ZwckQcfDF//kiX6GKEdZlKS12ftrl493a4DB8LjO3fqfYE2RatIBG679Q0jR4qMGCHSsKEOrFddpdvbr5/edpOaKrJ/vzNepYpIt266zvff10H6P//RyaKA471uaWnO123VKq2AIaKd/bRpIg8/LPLtt3p/u3bO1+2cc7SSxdtvh8e9vDdE3F+3ffv0IK+siIuLky5dusjMkHJYhYWFMnPmTOlRdLQ8gYwxMmzYMJk2bZrMmjVLmjRpUup1FhYWSp7Ho8M+ffrIkiVLJDMz87e/rl27ynXXXSeZmZkSHShvEoGcnBxZt26dpAW+mRxHr169HGVZV69eLRkZGRE/9qRJk6Ru3brSr1+/iJY7dOiQVCky0xAdHS2FJSzFlZSUJGlpabJ//36ZPn26DBgwoETrKe/OOEP7qpUrS78ur32YF3376iT5rl0ie/aIvPGGyLZt+sW7pCZN0i/TAwboOHD55dpvX3VV5ONC8+Y6WZWfX/LtEdFS35deqgcM770nsnChSKDAjZf9tm+f9umJiaXbjvKMsUIxVijGCqfijj289kG277gRVgj3fHxSGhXluMLrvgp9XaKi9N9I3uolHbfL2jGDF4wVirFClbexIqakC7ZuLfLBB97bd+6sg0HjxnrWoKi9e3UC4+WXdVJCRK+AsbntNpG2bUUuu0zk009FevcOPsaqVSKnnx7JMymZLl20o5w5U8++iOhjb94cnH3v0UPLTu/apeVJRURmzNCZ/iKToiKi61qxQg8sRHRiJnBAcLwDg06dRJYvP/52Bx7XY5VK6dxZS4vHxDhLZwd8/71+AbjiCr2dk6NfAorq3l1k2DA9QxUTowNF4DGKe28cz9Kl+vzLkpEjR8qgQYOka9eu0r17d3niiSckNzdXbrrpJs/ryMnJCZtp37Bhg2RmZkqtWrUkPT39uMsPHTpUJk+eLB9++KEkJyfLr7/+KiIi1atXl0QPR3j33HOPXHLJJZKeni7Z2dkyefJk+frrr2X69Ometj85OVnatm0bFktKSpLatWs74m7uuusu6d+/v2RkZMj27dtl7NixEh0dLddcc42n5e+8807p2bOnPPzww3L11VfL/Pnz5aWXXpKXXnrJ0/IBhYWFMmnSJBk0aJDERPgm7d+/v4wbN07S09OlTZs2smjRInn88cdl8ODBEa1n+vTpYoyRFi1ayNq1a2XUqFHSsmXLiN5TFUmtWloG+9lnRe64wzkZfeCATtC0aiWyZYv+Ba5uWr5c7w/0h176sLg47ZO9Sk3Vf2fN0jHgsssienq/2b1br14KjIdFx4XitqlTJ5E33wyPXXutyFNPiTz3nMjw4c5lQvfb99+LDBoUvO/774P7bOFCPTCYODF41VbREwnF7bOy2G+fCowVjBUBjBXHF3rs4aUPOp7q1fWE6rx5wZObx47pujt31tuRHJ+URkU4rvBrX7VqFZykCpg7N/y212OPosrr2MNYwVgRUO7GiuP9zm7PHk3U/MYb+lvp9eu15OVpp4XnghBxJp6rXl1/L22MMdu2aRLoP/5R82SsXavVIW68UStBFBTo76yvv16Tys2cqb9TDl1v0d85//vfmkDw22/19hdfGBMTo8muly7VRH9TpoT/Ltm2nTZ79+rjfPqpLvPWW3o7NDHskCH6m+hZszTxbI8e+hcQKFHat68msvvii2Ai7KIOH9ZkeaG/4b7kEv19dmam/n787bfdt/epp8LLYxujiQEff1wT7W3cqNWBzjpLqwoFkvD17u1MODtggJZ9NcaYwkLN6dShg1Za2rBBS2X//e/BikhXXKEJeBct0m3t31+TK4auN/R3099+q69b4Pbx3htu2xm67qK/Ky8Lnn76aZOenm7i4uJM9+7dzdy5cyNafvbs2UZEHH+DAi/OcdiWFREzKfChPI7BgwebjIwMExcXZ+rUqWP69OljvgzNHF8Ckf62euDAgSYtLc3ExcWZBg0amIEDB5q1ockXPPj4449N27ZtTXx8vGnZsmWJqkZMnz7diMhvlR8ikZWVZYYPH27S09NNQkKCadq0qbn33ntNXqB0jEdTp041TZs2NXFxcaZevXpm6NCh5kBxCXsqgXXrjKlXz5jWrTW/x+rV2u8/+aT2p8ZoH9axo5aAXrhQcz0VTRDupQ+78EKtfLN1a3ilzKJefVUrB61dq+NmrVpahjrUpk36WA8+qH3hokX6F5pAO+Daa8NzUDzyiG7/8uU6Rvztb+7b8ssvOibu2xcev/tuzWM1apRWANq4USuD/vGPwSp106ZpYt3nntP9GkgQPnu23p+ZGaxqt26d9sENGoQnuP3+e7391Ve6z3Jzg9vQu7cmXAdjhQ1jReUeK7wce3jpg2x546ZNC68oOmGC9tPTpmnOoFtuCU8QXpLjE5vKcFxR0n0VqD4YGF9+/FHzQj32mI4/Tz/tTBAe6bFHaKwsHjN4wVjhxFhR9seK4042HTmilQw6d9YPedWqWu3hvvuMOXQoZEXHmWwyRjuMK67QDiMxUTvBESP0YMAYLVnZqpUx8fGawPTrr4/fQU2cqJ3L99/r7S++0ESCiYmaqLV7d2NC3wNeJ5sCSQWLK918+LB+0a9ZU/fLFVc4qxRt3Kide2KiMampWsktMNETaswYvS/UmjXaSaekaHWN4hKp7t2rSRRDq7S99JIO1nXqaNLB9HSdwNm4MdjmeJNNxmiZ1NtvN6Z+fT34aNTImOuuCybc3bBBHycxUe975hnneot2+HPmaKnSp57S28d7b7hNNv3wgy4T+l4EUHls364lmjMytJ9r0EAnhQJfWo3RyZ3LLtM+JzlZE12Hlo720of9+KOOS/Hx4QcqRY0erQdEsbGa0HvixGA/FjBokH18Cd1mY3Q86949vO/PzdXtT07Wohg7dxa/f7p314o9RU2dqklkk5N1v7Rvr5M/oZWQnnvOmKZN9bk0b+78gv7445pcNzFRqxS9/rqzmtKQIXrwETp+bt2q64wwryiASsLrscfx+iAvk035+drXp6To98mRI4254YbwBOElOT4pqrIcV5RkXxWdbDLGmP/8RyfEEhN1Iulf/wp/LUty7MExA3DyRRkT6S+XUVaNGiWSlSXy4ounektOnoEDRTp0EPn730/1lgBA2fPppzo2LF0aWZLyE2n0aM0FEuFV5wCAk6iiHVdwzACcfGXkqyf8cO+9IhkZkSXYK8+OHtVkgHfeeaq3BADKpn79RP76V01SXlbUrSvy0EOneisAAMWpSMcVHDMApwZXNgEAAAAAAMA3XNkEAAAAAAAA3zDZBAAAAAAAAN8w2QQAAAAAAADfMNkEAAAAAAAA3zDZBAAAAAAAAN8w2QQAAAAAAADfMNkEAAAAAAAA3zDZBAAAAAAAAN8w2QQAAAAAAADfMNkEAAAAAAAA3zDZBAAAAAAAAN8w2QQAAAAAAADfMNkEAAAAAAAA3zDZBAAAAAAAAN/ElHTBwsJC2b59uyQnJ0tUVJSf2wRYGWMkOztb6tevL1WqnLx5Ut7rqAj4/KCy4L0OlByfH1QWvNeBkvP6+SnxZNP27dulUaNGJV0cKLEtW7ZIw4YNT9rj8V5HRcLnB5UF73Wg5Pj8oLLgvQ6U3PE+PyWebEpOTv7tAVJSUkq6GsCzrKwsadSo0W/vvZOF9zoqAj4/J05BQYE1vmnTJmu8adOmJ+Qxo6OjrW2XLVtmjbdu3doRqwhnWXmvn1iZmSK9e5ds2TlzRDp29HNr4Dc+P2XHa6+95ogdPHjQ2vbYsWPWeFJSkiPWoEEDa9v+/ft737gKgPc6UHJePz8lnmwKfCFNSUnhg4KT6mQfDPFeR0XC58d/bpNNbgOwH/shksmmatWqed6OijDZFMB7/cRweTt5XrYC75oKhc/PqZeYmOiI5eXlWdu6TTbZ1lG1alVr28q633mvAyV3vM8PCcIBAAAAAADgGyabAAAAAAAA4BsmmwAAAAAAAOCbEudsAgAAIvn5+db4li1brPFmzZp5Xrcxxhp3y89ks337dmu8Xbt2ntcBAOWZrS+NJFePW1/slispNjbWEXPL7xcTYz8ci4+Pd8QizS9ka3/48GFr24svvtga//zzzz0/nm1/uD0/ABUfVzYBAAAAAADAN0w2AQAAAAAAwDdMNgEAAAAAAMA3TDYBAAAAAADAN2RsAwCgFBISEqzxV155xRqvUaOGI9axY0dr20iSwX744YfW+JNPPmmNX3TRRZ7XDQDlWSQJwgsLCx2xKlXs5+dticDdDBs2zBq3JQIXEUlLS3PE4uLirG2PHDlijR89etQRS05OtrbNzMy0xiNhSwbulhg9kkIXAMonrmwCAAAAAACAb5hsAgAAAAAAgG+YbAIAAAAAAIBvmGwCAAAAAACAb5hsAgAAAAAAgG+oRgcAQCnk5+db499++601vmDBAkesffv21rY33XSTNf6Pf/zDEXOrRtS2bVtrHAAqC1s1Obe+O5IKc5999pk1/q9//csRW7dunbVtrVq1rHFbtbwGDRpY227fvt0at1WCc6vCZ6vYJ2Kvijdq1Chr2xEjRjhiVJ0DKi+ubAIAAAAAAIBvmGwCAAAAAACAb5hsAgAAAAAAgG+YbAIAAAAAAIBvmGwCAAAAAACAb6hGBwBAKbhVLqpXr541fuzYMUds5cqV1rZDhw61xhMSEhyxmjVrWtvWqVPHGgeAyqKwsNARi6Tq3DXXXGONv/3229Z4tWrVHLGqVata27pVh8vJyXHEduzY4baJVocPH3bEEhMTrW1tletERPLy8hyxe++919r2sccec8Sefvppa9s//vGP1rhtjIyJ4ZAVKI+4sgkAAAAAAAC+YbIJAAAAAAAAvmGyCQAAAAAAAL5hsgkAAAAAAAC+IdsaAAAngFsS1m3btjliycnJ1rY1atSwxuPj4x2xI0eOWNsmJSW5bCEAoKjZs2c7Yh988IG1bUZGhjWen5/viNkSXxfn6NGjjtjGjRutbVu3bm2N25J7HzhwwNrWVnjCLe42rtie9+DBg61tO3bsaI2ffvrpjpgxxtrWLbk6gLKBK5sAAAAAAADgGyabAAAAAAAA4BsmmwAAAAAAAOAbJpsAAAAAAADgGyabAAAAAAAA4Buq0QEAcAK4VQdat26dIxYbGxvRum3t3arRNWjQwPN6qfgDoCKqUsX7+fUXX3zREYuOjra2daswV1BQ4Ii59a+FhYXWuK2fdxsrtm/fbo3bKpdG2s/b2rs9b9v2ue37O++80xr/+OOPPW8bgLKNK5sAAAAAAADgGyabAAAAAAAA4BsmmwAAAAAAAOAbJpsAAAAAAADgGxKEAwDgkS1Rqlvi0qSkJGs8JsY59EaasPW0005zxPbu3Wtt67ZuAKjM3PrG7777zhGrWrWqtW1+fr41buu73R7PbR225N5uicrdkozn5uY6YomJida2btsXyRhiSxyekpJibfvNN99Y40uWLHHE2rVr53kbAJQdTDYBKFs2bxbZsyeyZVJTRdLTT8z2AAAAAAAiwmQTgLJj82aRFi1EXEq4u0pIEFm1igknAAAAACgDyNkEoOzYsyfyiSYRXSbSq6EAAAAAACcEk00AAAAAAADwDZNNAAAAAAAA8A05mwAA8MitOpzN2rVrrfEqVbyf58nLy7PGs7OzHbHatWtb227atMnz40Xy/ACgPJs6dao1vm/fPkfMraKaWxU4W19avXp1a9tDhw5Z47YqdQUFBda2btVPbdvnNq4kJCRY45FU1rOJtMrdxIkTHbHXXnvN8+MBKDu4sgkAAAAAAAC+YbIJAAAAAAAAvmGyCQAAAAAAAL5hsgkAAAAAAAC+YbIJAAAAAAAAvqEaXQk899xz1vjSpUs9t42EW7UGqgYBQNk1e/Zsazw9Pd0Ri42NtbZ1q3Rk4zYmrFy50vM6AKCy+OGHH6zx6OhoR8xWGa44cXFxjtjhw4etbd3WbRsXjh07Zm1bo0YNz9vmdlzhVunOVkE1kmMTt2227WcRkW+//dYaB1D+cGUTAAAAAAAAfMNkEwAAAAAAAHzDZBMAAAAAAAB8w2QTAAAAAAAAfHNCEoTbEuAlJiaWeh22ZHuRcktGZ/PJJ59Y49u3b7fG69at64jdcMMN1rbjxo2zxhs1auSIRZoI3C3Bn00k+wMA4LRmzRprvE6dOtZ4fHy853VXr17dGreNC25jxY4dOzw/HgBUFj///LM1HklCbLdjE1t/fOTIEWvbhIQEa9yWWDvSft7WPtLjqaNHj3peh22b3fad21hYtWrVCLYOQFnGlU0AAAAAAADwDZNNAAAAAAAA8A2TTQAAAAAAAPANk00AAAAAAADwDZNNAAAAAAAA8M0JqUZnq8A2bNgwa9vevXtb45FWrzsRnnvuOWu8e/fu1ritMkPDhg2tbadOnWqN2yraXXHFFda2ycnJ1ritwpxbhTq3ChGlFWkFPQAor9wqGtkq+IjY+8f8/Hxr29jYWGvcVtXIVkFJRGTr1q3WOABUZuvWrbPGbd+j3b4vFxYWWuO2/jgmxn7YZavg5vaYbutw6/9tY4vb47mxrTuSdbgdg7g9l5ycHM/rBlC2cWUTAAAAAAAAfMNkEwAAAAAAAHzDZBMAAAAAAAB8w2QTAAAAAAAAfMNkEwAAAAAAAHxT6mp0ubm5jqoNtso3H330kXX5Q4cOWeNt27Z1xGrVqmVtW7VqVUfMrTrE5s2brfFJkyY5YvXq1bO2TU1NtcY//vhjR2zAgAHWtgcOHLDGP/vsM0ds5cqV1rZNmza1xi+88EJHLCMjw9rWD7YqE5FU5xCxV/4AgPJg3rx51rhbf2frM90qHbmtw9berQpoWlqaNb527VpH7PTTT7e2BYCKZufOnda47Xu+W8XQSKqyufXnbn23Le72eG7fu23rcNsOt3XYqqK67Q8/qlFv3LjREcvKyrK2TUlJKfXjAThxuLIJAAAAAAAAvmGyCQAAAAAAAL4p9c/oAAAAAAAA/LJ5s8iePZEvl5oqkp7u//Ygckw2AQAAAACAMmHzZpEWLUSOHIl82YQEkVWrmHAqC0o92bRixQpJSko6brvc3Fxr/L///a813r59e0csLi7O2tYWtyU+FRFZsmSJNX706FFH7JxzzrG2/fnnn63xiy66yBGzJS8XcX8uF198sSO2a9cua9vVq1db4z/++KMj1qpVK2vbNm3aOGJdu3a1tq1Tp441bkvuTcJvAJXFsmXLrHG3JKy2/j8nJ8fa1i3Zqi1JrFtbt0Sue/fudcRIEA6gsnArzGD7Dms7ThBx73dthSAiSQTuxi2Jt1vxIlshJrfiTG7f3d0e0yaSokGRWLVqlTXerVu3Uq8bZdOePSWbaBLR5fbsYbKpLCBnEwAAAAAAAHzDZBMAAAAAAAB8w2QTAAAAAAAAfMNkEwAAAAAAAHzDZBMAAAAAAAB8U+pqdAcOHHBUutm3b5/zgWLsD3Xw4EFrfNq0aY5YzZo1rW1tlXaSk5OtbXv06GGNN2/e3BFzqyTUtm1ba3zPnj2OmFvFh1q1alnjtn3nVtEu3SXFvi2elZVlbfvtt986YgsWLLC2dduOGjVqOGIZGRnWtnXr1rXGW7Zs6YjFx8db2wJAWbJx40Zr3K3qqK2SnC0m4j52ulVG8vp4IiJr1qxxxM4880zP6wWA8mLbtm2e29qqw7lVrjvZ3LbDreKbrf93q1DqdtwTCdu63cbCSPbphg0brHGq0QFlG1c2AQAAAAAAwDdMNgEAAAAAAMA3TDYBAAAAAADAN0w2AQAAAAAAwDdMNgEAAAAAAMA3pa5Gl5SUJElJSWGx1atXO9rddNNN1uUbN25sjduqsh05csTa1lYNLSEhwdrWbR2//PKLNW5TrVo1a9xWrc2tYtCvv/5qjdsqNqSkpFjbuq3bVnkuNTXV2tatKp6N277btWuXI7Z9+3ZrW7eKdv/85z8dseuvvz7stltlPwA4lTZv3myNt2jRwhp3qwRkY6uKJGKvUudWjcitwtCSJUs8bwcAlGerVq0q1fKR9q8nSnR0tDW+d+9ez+3djpHcnqMt7va8bdXv3KrRuT2ezY4dOzy3BVB2cGUTAAAAAAAAfMNkEwAAAAAAAHzDZBMAAAAAAAB8w2QTAAAAAAAAfFPqBOGfffaZxMfHh8XS0tIc7dwSRtuSWYuING3a1BFLT0+3trUlo3N7vLy8PGu8oKDAGrc5cOCANX7w4EFHLDY21tq2bt261ngkCcLd2JJwn3baada2tuftlnjcLaGgLe72urq9LrYkuI8//njYbdvrDAAnk63PdCue4JZA1a2PtXFLoGrrM93GN7eEsm6FKgCgolm/fn2plrcVZRARMcZY47Y+2m1MiGQdbooeiwXYxiy3ccWP52KLuz2PSBKE796923NbAGUHVzYBAAAAAADAN6W+sgkAAAAAAFQMY8aMKdFyEyZM8HlLUJ5xZRMAAAAAAAB8w2QTAAAAAAAAfMNkEwAAAAAAAHxT6pxN69evd1Rca9asmaNd27ZtrcsvXbrUGt+6dasj5lbJzFZ9LZIKB27t3SoGucVt1RbcqkO4VVWwtU9MTLS2dat0Z7Nnzx5r3Pa8s7OzrW3dqvDZ2lerVs3a1q1q05o1a477eJG+pgDgt02bNnluaxubRERyc3MdMbf+PJKqQW6VhNwqiW7evNkaB4CKZteuXaVa3q2imls1a7cqoKXl1s9HMla4PZdInqPb8Y2tGl1+fr61bSTHMfv27fPcFkDZwZVNAAAAAAAA8A2TTQAAAAAAAPANk00AAAAAAADwDZNNAAAAAAAA8A2TTQAAAAAAAPBNqavRVa1a1VFNYO7cuY52bhXc3Krk2NofOnTI2jYlJcURS01NtbbNycmxxt2qSdi4VZiIiXHuTltMxF6tQUQkLi7O83a4VXGwVYJzq8Jh26dZWVnWtm6V5GxVJtye97Fjxzyv+8EHHwy7ffjwYRkyZIh1eQA4GVauXOm5rVs/b+sz3fp+t3XYxiy3KkVu/fG2bduscQCoaNatW+e5ra3fdfvuf/jwYWs8kkprkXCrOle/fn1rfO/evY6Y2/d5t2p0tjHE7biuZs2anrZBxH0f2R7PrYo3gLKNK5sAAAAAAADgGyabAAAAAAAA4BsmmwAAAAAAAOAbJpsAAAAAAADgm1InCH/00UcdCbrT09Md7WrVqmVdfs+ePda4LfGcWwJVW5Lrffv2WdsmJydb47bE1W6JWd2SrdqS9rklDnRLwmd7jm5J+CLZvkjaur1WNWrUsMZtSd7d1tGiRQtr/MILL7TGQ2VlZZEgHMAp5UdSbbdCCTZuyWBtycBticdF3Meb7Oxsz9sBAOWZ7XjD7fu8rS9164vd1uFWsCGStra42/f5HTt2WONu220TybHCwYMHrW3PP/98R+zTTz+1tnUbC22Jw92SjAMo27iyCQAAAAAAAL5hsgkAAAAAAAC+YbIJAAAAAAAAvmGyCQAAAAAAAL5hsgkAAAAAAAC+KXU1upo1azqq0T388MOlXS0AAGWOrYJbJBWNROzVgdyq8rhVEnKrMGfjVmEokqp4AFCe2fpuW9UzEXuV64yMDGtbtyrX8+bNc8QaNGhgbZuXl2eNR9LPR9LWjdt4YxtDcnJyPK+3Zs2a1rhbhTnbmFpQUOD58QCUHVzZBAAAAAAAAN8w2QQAAAAAAADfMNkEAAAAAAAA3zDZBAAAAAAAAN+UOkE4AACVxbZt2xwxtySzbslWbYlOI03uakvY6pYI3G07bElp3ZKauz1HACgPbAnCExMTrW337dvniHXs2NHa1q1AxNy5cx0xY4y1bST9v9s6Iin44PZ4kcTdtsOWDLx58+bWtl999ZU1npqa6oi5jWMAyjYmmwDAZ2PGjIl4mQkTJpyALQEAAACAk4+f0QEAAAAAAMA3TDYBAAAAAADAN0w2AQAAAAAAwDdMNgEAAAAAAMA3JAgHAMCjrKwsRyw+Pt7a1q1aj010dHRE67BVB3KrRucWt7FVYRIROe200zyvAwDKGlsV0EiqbJ5//vnW+LJlyzyvI5K+2I1bxbjk5GRr/NChQ45YJJXrIlW7dm1HzFZdTsS9Gp1tP0UyngIoO7iyCQAAAAAAAL5hsgkAAAAAAAC+YbIJAAAAAAAAvmGyCQAAAAAAAL5hsgkAAAAAAAC+oRodAAAe5eTkOGKRVDRy41Zpxy1uq14X6Xbk5+c7YgcOHLC2pRodgPLMVjXUVqHOzYABA6zxzMxMz+uw9bkiIoWFhda4rSqbW1u3seLo0aOe1lvcOvLy8qxxm7i4OEfs3HPPtbYdP368NW6ruJeSkuJ5GwCUHVzZBAAAAAAAAN8w2QQAAAAAAADfMNkEAAAAAAAA3zDZBAAAAAAAAN+QIBwAAI+OHDniiCUlJVnbuiWftcXdkr4eO3bMGrclu7UlDRexJ4gVEWnSpIkjZnt+AFDe2RJXu6lWrZojlpqaam2bm5trjduSXLv1827xSGRnZ1vjtmTgbmOTbZuLi9vYEnnbxisR9/HNtj8iSeYOoOzgyiYAAAAAAAD4hskmAAAAAAAA+IbJJgAAAAAAAPiGySYAAAAAAAD4hskmAAAAAAAA+IZqdAAAePT99987YsnJyRGtIzEx0VNMxL2CUmxsrCPmVjHIGGON2yrPrVq1ytq2Q4cO1jgAlAe2qqE5OTnWtpFU5bT1xSL2Cmy2ynDFxW0VRt36ebeKdrb2butw246YGOfhYkJCgrVtVlaWp1hxbPuudu3aEa0DQNnAlU0AAAAAAADwDZNNAAAAAAAA8A2TTQAAAAAAAPANk00AAAAAAADwDZNNAAAAAAAA8A3V6AAA8GjIkCGO2Pjx461tjx49ao1nZ2c7Yjt27LC2rVWrljWen5/viLlVrnOrlnfo0CFHrGbNmta2AFCeffbZZ47Ynj17rG0PHz7seb1r164t8TYFFBQUeI67VRe1VYwTsVees1W5ExE5duyYNe72mDa//PKLI3b//feXer0AyieubAIAAAAAAIBvmGwCAAAAAACAb5hsAgAAAAAAgG+YbAIAAAAAAIBvSBAOAIBH//jHPxyxdu3aWdsuX77cGrcln23evLm1bceOHa1xW3LvqlWrWtuuWrXKGr/mmmuscQCoDFJTU0u9DrfCDAkJCY5YbGysta1b3FYIwi2ptu3xRCJLMu7Gtg63whMtW7aMaN1AWTdmzJiIl5kwYcIJ2JLyiSubAAAAAAAA4BuubAKAIjZvFnGpiOwqNVUkPf3EbA8AAAAAlCdMNgFAiM2bRVq0EDlyJLLlEhJEVq1iwgkAAAAA+BkdAITYsyfyiSYRXSbSq6EAAAAAoCIq8ZVNgeRyWVlZvm0MUJzAey3SxIalxXv9JMrJKd2yPrxGfmxCXl5exMue6PcXn58Tx5asW0TkiMuspe39YUsaLiKS4/KGtLUvLCyMaPsq6mvCe/3EKgPdNE4gPj+ROXbsmDVu239ufbQbW3u318Vt3X6sIyoqynNb2/hWVl9T3uvFK8l3WZHw5zV27NiIl3/wwQdFpHRjTWB5P3ZxWfhOX5r9eKJ4/fxEmRJ+wrZu3SqNGjUqyaJAqWzZskUaNmx40h6P9zoqEj4/qCx4rwMlx+cHlQXvdaDkjvf5KfFkU2FhoWzfvl2Sk5OtM96A34wxkp2dLfXr15cqVU7eL0BL817PysqSRo0ayZYtWyQlJSXixy7t8mwD2xBQHj8/QEmUx/d6Ze+f2Iaysw3l8fMDlER5fK9X9v6JbSg72+D181Pin9FVqVLlpM4CAyIi1atXP+mP6cd7PSUlpcQdiR/Lsw1sg0j5/fwAkSqv7/XK3D+xDWVnG8rr5weIVHl9r1fm/oltKDvb4OXzQ4JwAAAAAAAA+IbJJgAAAAAAAPiGySbgBIqPj5exY8dKfHz8KVmebWAbAJR9ZaFvYBvYBgBlW1noG9gGtiESJU4QDgAAAAAAABTFlU0AAAAAAADwDZNNAAAAAAAA8A2TTQAAAAAAAPBNxZhsuvFGkcsv995+40aRqCiRzMwTsz0nwqpVIvXqiWRnn+otcTrvPJERI/xf71lnibz3nv/rPUmeffZZady4sSQkJMiZZ54p8+fPj2j5b775Rvr37y/169eXqKgo+eCDDyJafvz48dKtWzdJTk6WunXryuWXXy6rVq3yvPzzzz8v7du3l5SUFElJSZEePXrI559/HtE2hJowYYJERUXJiAjeKw888IBERUWF/bVs2TKix922bZtcf/31Urt2bUlMTJR27drJTz/95Hn5xo0bO7YhKipKhg4d6mn5goICuf/++6VJkyaSmJgozZo1k4ceekgiTZeXnZ0tI0aMkIyMDElMTJSePXvKggULIloHICJy7rkikyef6q04vqNHRRo3Fong41ouMVaEY6xgrMDJN3OmSKtWIgUFp3pL1J49InXrimzdeqq3pOxgrAjHWFE+xgr/Jpt27xa57TaR9HSR+HidGLnoIpHvv/ftIU6qqCj732OPOdvm5Yl07OicwNq4Ub/VJyXpvxs3hi936aXeJ1PuuUfk9ttFkpODsZdfFunQQaRaNZEaNUQ6dRIZPz6ip1mm3XefyJgxIoWFp3pLIjZ16lQZOXKkjB07Vn7++Wfp0KGDXHTRRbJr1y7P68jNzZUOHTrIs88+W6JtmDNnjgwdOlTmzp0rM2bMkPz8fOnbt6/k5uZ6Wr5hw4YyYcIEWbhwofz000/yu9/9TgYMGCDLli2LeFsWLFggL774orRv3z7iZdu0aSM7duz47e+7777zvOz+/fulV69eEhsbK59//rksX75cJk6cKDVr1oxo20Mff8aMGSIictVVV3la/pFHHpHnn39ennnmGVmxYoU88sgj8uijj8rTTz/teRtERG6++WaZMWOGvPHGG7JkyRLp27evXHDBBbJt27aI1lPW3XhjsLuNjRU57TSRCy8UefXVstcVHDmi29uunUhMjPs5j6+/FuncWYfG008Xee01Z5tnn9WJlYQEkTPPFCn6HXLkSJFatUQaNRL573/D73vnHZH+/b1t80cfiezcKfKnPwVjjRsH93liot6++mqRWbO8rfNEiYsTuesukdGjT+12nEiMFeEYKxgrTpRff9Wv0U2bal/cqJH2mzNn+vs4jRuLPPHE8dudd57zEGPIEHvbvXtFGjbUNgcOBOOLFulX/2rV9Lns2xe879gxkS5dnGOJm7vv1q/d0dHB2NGjIo8+qocaVauKpKaK9OolMmmSSH6+t/V6YbtmIDVV5IYbRMaO9e9xyjPGinCMFeVorDB+OeccY84805hZs4zZuNGYefOMefhhYz780LeHcDVokDEDBnhvv2GDMSLGLFrk3mbHjvC/V181JirKmHXrnG3vuMOYSy5xrvMPfzDmT38yZvVqY66+2pgrrwze99ZbxvTv7217N20yJjbWmK1bg7H//MeYqlWNeeUVY9asMWbpUmMmTzbm73/3tk4/9e5tzPDh/q0vL0//PXbMmNNOM+aTT/xb90nSvXt3M3To0N9uFxQUmPr165vx48eXaH0iYqZNm1aqbdq1a5cRETNnzpwSr6NmzZrmlVdeiWiZ7Oxsc8YZZ5gZM2aY3r17m+ERvFfGjh1rOnToENlGhhg9erQ5++yzS7y8zfDhw02zZs1MYWGhp/b9+vUzgwcPDov94Q9/MNddd53nxzx06JCJjo42nxT5LHTu3Nnce++9ntdTHgwaZMzFF2u3u3WrMQsXGjNunDHVqmk3m5/vvuzRoydtM40xxuTkGDNkiDEvvWTMRRfZh6H167WrHjnSmOXLjXn6aWOio4354otgm7feMiYuToeZZcuMueUWY2rUMGbnTr3/o4+0K1ywQLv5hARjdu/W+w4cMOaMM3SY8KJPH2OKdkMZGcb84x+6zzdtMmbOHN2GqChj/vlP93UVFhb/evhh3z7dN0uXntjHOVUYK4IYKxgrTpQNG4ypX9+Y1q2NefddY1at0j5l4kRjWrTw97EyMoz597+P3653b+1nQw81Dh60tx0wIHiYsX9/MN65s44tq1bpYdj//E/wvgkTjLn9dm/b/O23xlSvbszhw8FYXp4x551nTM2axjzzjB7erFtnzH//a0ynTsUfQkXK7TBu6VJj4uON2bvXv8cqrxgrghgrytdY4c+VTQcOiHz7rcgjj4icf75IRoZI9+56Nc5llwXbPf64ngJOStJTCn/7m0hOTvD+117TK3SmT9drOatVE7n4YpEdO4JtCgr0FG+NGiK1a+tUfNHLxr74QuTss4NtLr1UZN26yJ5TvXrhfx9+qM+tadPwdp9/LvLllyL/+pdzHStWiAwaJHLGGTptv2JFcH/dd5+eyvbi7bf1tEKDBsHYRx/pqee//EVPlbdpI3LNNSLjxgXbBE4V/OtfImlpui+GDg0/HZGXp6eOGzTQ1+XMM/U0fMDevbreBg30tEa7diJTphS/vZ9+KlK9evD0+5Ytuq01auip+QEDwq/yCmznuHEi9euLtGih8ehokd//XuStt7ztpzLi6NGjsnDhQrngggt+i1WpUkUuuOAC+fHHH0/Zdh08eFBERGrVqhXxsgUFBfLWW29Jbm6u9OjRI6Jlhw4dKv369QvbH5FYs2aN1K9fX5o2bSrXXXedbN682fOyH330kXTt2lWuuuoqqVu3rnTq1ElefvnlEm2HiL62b775pgwePFiioqI8LdOzZ0+ZOXOmrF69WkREFi9eLN99951ccsklnh/32LFjUlBQIAkJCWHxxMTEiM7IlBeBi2MbNNArgv7+d+2CP/88/KqgqCiR55/XYSYpKdj9ffihLpeQoF32gw/qWV4RHS4eeCB4EW79+iJ33BFc53PPaZedkKBXVf3xj+7bmZSkj3/LLbq9Ni+8INKkicjEiTqsDRum6/z3v4NtHn9c13HTTSKtW+syVavq1VwiOnScd55I167aHaekiGzYoPfdfXfwouLj2b1br1ayXQWVnKzPIT1dL8R96SWR++8X+X//T3/FLaJDQ1SUvg5duuj+++47veJs/Hh9nomJOly9+25w3fv3i1x3nUidOnr/GWfomXERPXM+bJgOUQkJ+vUh9ALdmjX1THo5GwY8YawIx1jBWHGi/O1v2nfNny9y5ZUizZvr1+aRI0Xmzg2227xZv6JWq6b97NVX65WgAevW6f2nnaZtunUT+eqr4P3nnSeyaZPInXcGr1YqTtWq4YcaKSnONs8/r4cNd93lvG/FCh07mjfXsSFwmLF+vch//hN+SFCct97SK4hD3zZPPCHyzTd65dfQofoDjqZNRa69VmTePO3HRfQw4o479CdvCQl6+BX6S5yCAj1UCYwPLVqIPPlk8P4HHhD53//VcTuwzwKHIW3a6Bg9bZq351FRMVaEY6woZ2OFL1NW+fl62nnECGOOHHFv9+9/65VPGzYYM3Omnk647bbg/ZMm6RU8F1ygp3AXLjSmVStjrr022OaRR3Sa/b339DTxX/5iTHJy+JT4u+/q/WvW6NR7//7GtGtnTEGB3u/lyqZQv/5qTEyMTucXjTdooNtqW+ef/qSnGQoKdN/86U8av/lmb6c9Ai67TE+fh7r1VmNattSryNwMGmRMSoouu2KFMR9/rKfYX3op2Obmm43p2dOYb74xZu1aYx57TE8jrF6t92/dqrHAKY2nntLT8vPmBdcRemXTf/+rr8fHH+vto0f1NRw82JhfftHX7Npr9bUPXME0aJC+f/78Zz2NEXoK+/nn9TRRObJt2zYjIuaHH34Ii48aNcp07969ROuUUp6BKCgoMP369TO9evWKaLlffvnFJCUlmejoaFO9enXz6aefRrT8lClTTNu2bc3h/ztdFukZiM8++8y8/fbbZvHixeaLL74wPXr0MOnp6SYrK8vT8vHx8SY+Pt7cc8895ueffzYvvviiSUhIMK+99lpEzyNg6tSpJjo62mzbts3zMgUFBWb06NEmKirKxMTEmKioKPPwww9H/Ng9evQwvXv3Ntu2bTPHjh0zb7zxhqlSpYpp3rx5xOsqy4q7ULVDBz27GyBiTN26ekXQunV6Vc4332i399prGvvyS2MaNzbmgQd0mXfe0fs/+0zbz5sX7BIXLNDubfJk7Vp//tmYJ58s3Xafc47zws9XX9VtMEa7wehoY4p+vG+4Qbt+Y/QqqGbN9Cqfn37SLnbfPj0b3bWrXgTqxfvvG5OUFBwKA9zOxO/dq1c3PfKI3p49W/d5+/a6X9eu1Tb//KcOR198oft80iQdRr7+WpcbOtSYjh2DQ+WMGXq1ljE6vDRqpK/bxo36nCZPDt+O0aN1mKloGCuCGCsYK06UQD92vF1ZUKD91Nlnaz87d64xXbqE9z2Zmca88IIxS5bo1+T77tMrTQNXlu7da0zDhsErRXfscH+83r2NSU01pnZtY9q0MWbMGGNyc8PbLFtmTL16uv5A/xt6ZdNZZ+nX8vx8/fHEmDEav/BC55hSnPbt9UqoorG+fY+/7B136FVjn32m2ztokB6mBa5GOnrUmP/3/7T/X7/emDff1EORqVP1/uxs/fFH4IrmHTuChwfGGDNwoK6zMmOsCGKsKH9jhX8/o3v3Xe1dEhJ08uKee4xZvLj4Zd55R3vZgEmTtCdduzYYe/ZZ/f1AQFqaMY8+Grydn689e3E/o9u9W9e7ZInejnSyKTDBFXp9aWGh9owPPeS+zq1bjenXT79J9+unt+fM0aODvXuNueoqY5o00Ymj0J61qA4ddOQKtX27jjIixjRvrj3x1KnhRxGDBulRROiRyFVXac9tjI5e0dHGFH2D9+mjr5+bfv3Cr9UNTDY9lIyeoQAAEW5JREFU84xehxs4wjDGmDfe0Iml0EsD8/KMSUw0Zvr04Haedpp9H3z4oTFVqjiPjsqwsjgoDBkyxGRkZJgtW7ZEtFxeXp5Zs2aN+emnn8yYMWNMamqqWbZsmadlN2/ebOrWrWsWh/QDkQ4KRe3fv9+kpKR4vuQ2NjbW9OjRIyx2++23m7POOqtEj9+3b19z6aWXRrTMlClTTMOGDc2UKVPML7/8Yl5//XVTq1atiAemtWvXmnPPPdeIiImOjjbdunUz1113nWnZsmVE6ynriptsGjhQ564DRHQeP1SfPs6Dijfe0KHDGP3ZRPPm9p/cvfeeTgJ5/M7habvPOMO5PZ9+qtt+6JB2vyLGFOkuzKhRxoR2F2PH6oRT27Y6aZSXp///6Sf9aV7z5jr0Fvdzs3//25imTZ3x4n72cdppwXNCgYOdDz4I3n/kiB44FN3+v/zFmGuu0f/372/MTTfZ13/77cb87nfhQ0RRTz6pE4YVDWOFYqxQjBUnxrx52m+9/37x7b78Ur8Sb94cjC1bpsvOn+++XJs22gcHeP0Z3Ysv6gT9L7/oBEyDBsZccUXw/iNHdMLnjTf0tm2yaelSY84915j0dO1vDx405vXXdSzaulUni5o1M+Z4v4qpXl2XC5WYqBNJxcnJ0WsEQs/FHz2qk0+hh2pFDR0anlmkuHH/zjv153yVGWOFYqxQ5W2siPHtEqkrrxTp109/Tjd3rl5n/+ijIq+8oj+TEtFrTcePF1m5UiQrS3/XcOSIyKFDei2piP7brFlwvWlpIoHkZwcP6k/qzjwzeH9MjP62IPSndGvW6LX/8+ZpOYNAVtnNm0Xato38ub36qv4GIPRSs6ef1spw99zjvlyDBiKffBK8nZenSdP/939F/vlP/d3CqlX6U8EXX9TMhTaHD4c/tojulx9/FFm6VK9z/eEH/cneK6/ozwir/N8vJNu0Cc/2l5YmsmSJ/n/JEr2+tXnz8HXn5elP7kT0/ocf1p/ybdumv3nIywu+XgHvvquv0/ff63XFAYsXi6xdG57YXERf99CfNrZrp9lgi0pM1NcvL0//Xw6kpqZKdHS07Ay99lpEdu7cKfXcfmtzAg0bNkw++eQT+eabb6Rhw4YRLRsXFyenn366iIh06dJFFixYIE8++aS8+OKLx1124cKFsmvXLuncufNvsYKCAvnmm2/kmWeekby8PIkOfW96UKNGDWnevLmsXbvWU/u0tDRp3bp1WKxVq1byXgmqHG7atEm++uoref/99yNabtSoUTJmzBj50/9lZG7Xrp1s2rRJxo8fL4MGDfK8nmbNmsmcOXMkNzdXsrKyJC0tTQYOHChNi/60twIzxvmzhK5dw28vXqzdUOjPBwoKgkPNVVfpzwOaNtWu9/e/15+VxcTozwgyMoL3XXyxyBVXOLu7U+GBB/Qv4MEHRS64QJOo//Of2p1/8okmVF240L4O21ByPMfb52vX6n698MLwNkePauJaEf2Z35VXivz8s0jfvvqr6Z499b4bb9RlW7TQ/X3ppdomVGKiPkZFw1ihGCsUY8WJ4bVA04oVmuGjUaNgrHVrzQCxYoV+tc3J0X7400/1cOTYMe1XI/gVzm/++tfg/9u106/nffroV+NmzfTwolUrkeuvd19HmzYic+YEb+/dqwm1v/lGDyl69hR5/33d9jPPdC8kYRsbvOy3des0M0evXsFYbKxmUgn8pE9Es4a8+qrup8OHdXzo2PH46xepuP1/JBgrFGOFKm9jhX/V6ES0p7rwQk308MMP+i0yUEZg40b9Ftm+vVZgW7gwmLPo6NHgOmJjw9cZFeV9pAgIlGR4+WWdcJo3z/k4Xn37rU4I3XxzeHzWLJ3siY/Xo5T/++BI16466WPz8MP6LbpLF/1B8pVX6vP9wx/C8yQVlZqqSS9s2rbVH6O/+abIjBn6Fzry2PZnYPItJ0cnohYu1Cp6gb8VK4I/qH7sMf3/6NEis2fr/Rdd5NyXnTppQo5XXw1/vXJy9PmGrj8zU2T1av3hd0BSkv357dun95WTiSYR7Ui7dOkiM0NKnBQWFsrMmTMj/l1yaRhjZNiwYTJt2jSZNWuWNGnSpNTrLCwslLy8PE9t+/TpI0uWLJHMzMzf/rp27SrXXXedZGZmRjwgiIjk5OTIunXrJC0tzVP7Xr16Ocqyrl69WjIyMiJ+7EmTJkndunWlX79+ES136NAhqVIlvKuNjo6WwhKWVktKSpK0tDTZv3+/TJ8+XQYMGFCi9ZRHK1Zo3odQRbuOnBydiAntbpYs0XMQCQl6ILFqleZmSkzU7vPcc/ULc3KyTohMmaJf/P/f/9P8Q6HVfyJVr154zg8RvZ2Soo+fmqrdsK2N23fIlSu1y3/oIR06zj1Xu9+rr9btz862L1fcUGKzd6/meSpunwfSLn76afg+X748mLfpkkuCeUy2b9cDqkD+kc6dNf/UQw/pQcjVVzvzZO3bp8+vomGsUIwVirHixDjjDP3qu3Jl6dd1112aP+jhh/XwIDNTJ4pKcnhRVOA8euCYd9YsrTQaE6N/ffpoPDXVvULbyJEiI0Zo5bqvv9aTK0lJei1ApIcZzZv7s8/eekv321/+oiluMzM1P6HXfVZR+/9IMFYoxgpV3sYK/65ssmndWuSDD/T/CxfqJMfEicGrbt5+O7L1Va+uRwDz5um3axE9rbBwoX5jFdFvx6tW6UTTOedorDSJrv7zH50s6dAhPP7UU3o6OWD7dp2EmTo1/MqrgBUrRCZP1l5WRE+1BxJ15+frbTedOuk39+MJzLR6LEEpnTrp4+7aFdxXRX3/vWZDDJxaKSzUiaIis7rSrJm+tuedp0dOzzyj8c6ddZ/UrWvPfHg8S5cGT4+XIyNHjpRBgwZJ165dpXv37vLEE09Ibm6u3HTTTZ7XkZOTEzbTvmHDBsnMzJRatWpJuodswEOHDpXJkyfLhx9+KMnJyfLrr7+KiEj16tUl0cPk3T333COXXHKJpKenS3Z2tkyePFm+/vprmT59uqftT05OlrZFriRMSkqS2rVrO+Ju7rrrLunfv79kZGTI9u3bZezYsRIdHS3XXHONp+XvvPNO6dmzpzz88MNy9dVXy/z58+Wll16Sl156ydPyAYWFhTJp0iQZNGiQxMRE1m32799fxo0bJ+np6dKmTRtZtGiRPP744zJ48OCI1jN9+nQxxkiLFi1k7dq1MmrUKGnZsmVE76nybNYsnTS6887i23XurENAYP7fJjFRz0n076+JT1u21HV37qxf6i+4QP/GjtWz2rNm6TmBkujRQ+Szz8JjM2ZoXEQv6OzSRZOwBko/Fxbq7WHDnOszRuTWWzWpeLVqzqFExH046dRJy3/v36+Jt4/nySd1uC5akjpU69Z6zmXzZpHevd3b1amj52EGDdLhZtSoYF2NlBSRgQP1749/1Cuc9u3TehIi5XYY8ISxgrEigLHixKhVS7+eP/usJrIueoLiwAHt51u10no2W7YEr25avlzvD3zl/f57PY9+xRV6OycnvN6NiPbpxX2ldxM4PAgc8773nk7AByxYIDJ4sE5yhf4AJGDmTD3UCBRfsI0NbmyHGddeq8U5Fi1y9r/5+TpZ1KyZPt/vv9erggP3LVigk14iel/PnnpiJ6Bozabi9tnSpXpoUdkxVjBWBJS7scKXH+Pt2WPM+efrD4sXL9YMcG+/rckeAqX5MjP1x8ZPPKEZRF9/XX+gHPoD5EmT9IfDoaZN0zYBEyYYU6uWxles0LqhoQnCCwo0D9T112uC8JkzjenWTdcR+G2q15xNBw9qMornnz/+PihunYWFmnEwkDTbGE2C0a+fJszu1Kn4Hzd/9JFmwQ3NvTRkiOZx+u47zar644+6vjp19PUwxv4j6OHDw7MdXnedJsN47z193ebN0wQjgVKId96pOae+/1639eabNalJ6HpDE4SvXKnZDAO3c3M1acl552kG2PXr9Yfnt99uTOB3vsX9WLt3b2e+qnLi6aefNunp6SYuLs50797dzJ07N6LlZ8+ebUTE8TfIY6ZE27IiYiZNmuRp+cGDB5uMjAwTFxdn6tSpY/r06WO+/PLLiJ5DUZH+tnrgwIEmLS3NxMXFmQYNGpiBAweataE53Tz4+OOPTdu2bU18fLxp2bKleSk0Qb5H06dPNyJiVq1aFfGyWVlZZvjw4SY9Pd0kJCSYpk2bmnvvvdfkFZenzWLq1KmmadOmJi4uztSrV88MHTrUHDhwIOLtKesGDQomCt26VetEjBunNQQuvTS8Gwzt1gO++ELrOTzwgOazWL7cmClTgjkrJk0y5pVXNIXfunWa4DUxUbvNjz/W/ECLFmm3+txzmjKuuDxIy5YF61Ccd57+P3QYWL9eh5FRo3TIevZZzQvyxRfBNm+9pQm1X3tNt/evfzWmRg2tQVHUSy+F57qYN0+75B9/1CSsrVu7b+uxYzpEhA5FxmiOkUBC282bNbXgLbdoUt3QpLG2nCHG6L6tXVu3f+1afc2eekpvG2PM/fdrnqc1a3RfXnppMB/VxImaEHzFCi3f/Ze/6BASmqYvI8OZT6QiYaxwYqxgrPDTunXar7RurSlmV6/WvvbJJ7W4gTH6Vb1jRy3qsHCh9q1FE4RfcYW2WbRID2v699dDkNC36oUXanGHrVs1ZazN2rXa5/70kx4+fPih5tM791z35+DW/xqjKWVbtgwfey65RPvxzExNbfv22+7rfuopfa6hjhzRfVGzpqZkzczU/Th1qjGdOwcfa/hwzdH0+efhCcL37dP7n3xSx6gvvtA+/r779HZo9flx4zTv1MqVus8CORVzc3V8/uYb922vTBgrnBgryv5Y4c9k05EjWgKhc2edLKpaVZNC33efZkANePxxzdKamGjMRRfpt8dIJ5vy87VnS0nRb+MjR2rZntDJihkzNItsfLxm1/v665JNNr34om6rlx1f3DpfeCH86MAYY3bu1Ey2ycmatLtoCYpQ+fnak4cenbz7rjG//73uz7g4vf/KKzXTYICXyaZAmYjGjTXLX1qajqaB9ezdq+uoVk0nvO67z7m/QyebjNERvG5dfW2M0SOYG27Qshvx8Tqi3nKLTua5bacxOlLHxgYnpQBUeIMGaVcqopNGdepogdJXX3XWCbBNNhmjXWXPntp9p6ToxEbgu8C0acaceabGk5K0zsJXX+l9336r3VnNmrps+/bBijluMjKC2xv6F2r2bD1AiYvT7s/2vezpp/XLdlycbq/tO+Svv+rjFa3p8OCDeg6mZcvwQqE2d98dLIxqew5xcbodV1+txWOLPg/bwU5hoZ5HatFCu+w6dXSInzNH73/oIR2SExN1OwcM0Ek4Y/R16dhRX4uUFB0Wf/45uO4fftChPvSrBABEavt2TUydkaH9XIMGOik0e3awzaZNGktKCn49D53037BBz60nJup52GeecX4F/vFHHTvi451jQcDmzTqxVKuWtjv9dD0hEfhabFPcZNOYMeF1e4zRyf1u3bRfve224uvs7N2r9Z1WrgyPHzlizPjxWtA7IUG3t1cvPZGQn69tDh/W88eBr/i9eoUnVD9yxJgbb9TDuxo1dFvGjAmfbNq1SyfpqlXT5xh4TSZP1nEFQPkVZUykCZFwSjz7rMhHH4l4vNSwQhg9Wn/vEeGliQAAu19/1aSyP/8c/NlDWTZwoP6K/e9/P9VbAgAV16hRWrvJQ57mk+ass/Snj6EpXgGUL/4mCMeJc+utmqfKLfNrRVS3rmaNBQD4ol49TUVYkupJJ9vRo5p893h5ugAApXPvvXoCooQ5hn23Z4/mSvSYSgdAGcWVTQAAAAAAAPANVzYBAAAAAADAN0w2AQAAAAAAwDdMNgEAAAAAAMA3TDYBAAAAAADAN0w2AQAAAAAAwDdMNgEAAAAAAMA3TDYBAAAAAADAN0w2AQAAAAAAwDdMNgEAAAAAAMA3TDYBAAAAAADAN/8fc/vFLX32TUAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot the first X test images, their predicted labels, and the true labels.\n", "# Color correct predictions in blue and incorrect predictions in red.\n", "num_rows = 5\n", "num_cols = 3\n", "num_images = num_rows*num_cols\n", "plt.figure(figsize=(2*2*num_cols, 2*num_rows))\n", "for i in range(num_images):\n", " plt.subplot(num_rows, 2*num_cols, 2*i+1)\n", " plot_image(i, predictions[i], test_labels, test_images)\n", " plt.subplot(num_rows, 2*num_cols, 2*i+2)\n", " plot_value_array(i, predictions[i], test_labels)\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "R32zteKHCaXT" }, "source": [ "## 훈련된 모델 사용하기\n", "\n", "마지막으로 훈련된 모델을 사용하여 한 이미지에 대한 예측을 만듭니다." ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:17:02.037816Z", "iopub.status.busy": "2022-12-14T20:17:02.037239Z", "iopub.status.idle": "2022-12-14T20:17:02.041582Z", "shell.execute_reply": "2022-12-14T20:17:02.040821Z" }, "id": "yRJ7JU7JCaXT" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(28, 28)\n" ] } ], "source": [ "# Grab an image from the test dataset.\n", "img = test_images[1]\n", "\n", "print(img.shape)" ] }, { "cell_type": "markdown", "metadata": { "id": "vz3bVp21CaXV" }, "source": [ "`tf.keras` 모델은 한 번에 샘플의 묶음 또는 *배치*(batch)로 예측을 만드는데 최적화되어 있습니다. 하나의 이미지를 사용할 때에도 2차원 배열로 만들어야 합니다:" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:17:02.045130Z", "iopub.status.busy": "2022-12-14T20:17:02.044610Z", "iopub.status.idle": "2022-12-14T20:17:02.048636Z", "shell.execute_reply": "2022-12-14T20:17:02.047960Z" }, "id": "lDFh5yF_CaXW" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(1, 28, 28)\n" ] } ], "source": [ "# Add the image to a batch where it's the only member.\n", "img = (np.expand_dims(img,0))\n", "\n", "print(img.shape)" ] }, { "cell_type": "markdown", "metadata": { "id": "EQ5wLTkcCaXY" }, "source": [ "이제 이 이미지의 예측을 만듭니다:" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:17:02.051917Z", "iopub.status.busy": "2022-12-14T20:17:02.051453Z", "iopub.status.idle": "2022-12-14T20:17:02.119185Z", "shell.execute_reply": "2022-12-14T20:17:02.118411Z" }, "id": "o_rzNSdrCaXY" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", "1/1 [==============================] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1/1 [==============================] - 0s 24ms/step\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[[6.3088351e-05 3.1958980e-14 9.9812347e-01 5.5860600e-08 6.3619681e-04\n", " 1.3225877e-13 1.1772612e-03 5.1641409e-20 1.3054725e-09 1.4102463e-14]]\n" ] } ], "source": [ "predictions_single = probability_model.predict(img)\n", "\n", "print(predictions_single)" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:17:02.122771Z", "iopub.status.busy": "2022-12-14T20:17:02.122074Z", "iopub.status.idle": "2022-12-14T20:17:02.220614Z", "shell.execute_reply": "2022-12-14T20:17:02.219891Z" }, "id": "6Ai-cpLjO-3A" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAHNCAYAAAB7MYP5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/BUlEQVR4nO3dd5hN597/8XtrgzPKiBDMYJQYLaOLXqNzMIgSCdEjGEQLCRJJlCNKooUkJGp0KR4EQyIiSnQJ0WtEZ/SZz++P+e11ZrtJO2bvPfJ+XddzPcfee/hmzdprfda97vu7XJJkAAAA4kni6wIAAID/ISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAIAl2d/9wdjYWHPq1CmTJk0a43K5HmZNAAAggUgyV69eNVmzZjVJkjx4nOBvB4RTp06ZkJCQv/vjAADAh44fP26Cg4Mf+P7fDghp0qRx/oG0adP+3b8GPnb8uDHFixtz65avK/EUEGDM1q3GkEEB4OG6cuWKCQkJcc7jD/K3A4L7tkLatGkJCInYrVv+Fw6M+W9d7FoAkDD+aHoAkxQBAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMCS7O/+oCRjjDFXrlx5aMXA+65d83UFD3btmjGP4u41ePBgX5dgGTp0qK9LSDBsb8CT+7ztPo8/iEt/9IkHOHHihAkJCfk7PwoAAHzs+PHjJjg4+IHv/+2AEBsba06dOmXSpEljXC7X3y4wIV25csWEhISY48ePm7Rp0/q6nD+Nur2Lur2Lur2Lur0rMdQtyVy9etVkzZrVJEny4JkGf/sWQ5IkSX43efiTtGnT+u0v6vdQt3dRt3dRt3dRt3f5e93p0qX7w88wSREAAFgICAAAwPJIB4SAgAAzePBgExAQ4OtS/hLq9i7q9i7q9i7q9q7EWvf9/O1JigAA4NH1SI8gAACAv4eAAAAALAQEAABgISAAAAALAQEAAFgICI8I92KUY8eO+biS/x0La/53kkxsbKyvy/ifbdu2zdcl/CkxMTG+LgGPmPjHQV99lwkIf0JiONC6XC6zZMkS07RpU7Nnzx5fl/OXuL8Ie/fuNTExMX77bI/E4NatW8aYuP3h+PHjPq7mf7Nx40ZTokQJM2HCBF+XYnEfE65evWqMMSZp0qRm+/bt5syZM74s66FzfzfXrVtnVq1a5dNa7j0OP+oXEi6Xy5w5c8bs27fPJEmSxCxYsMAsWrTIqzUQEP5AbGys8zCLzz//3EyePNn83//9nzl48KCPK4vj/pIcP37cjBs3zrRv394ULFjQx1X9NS6Xyyxbtsw0aNDAbNq0ydflJFoHDx40AwcONBcvXjTz5883oaGhfrOf/h1lypQxw4YNM7169TKTJk3ydTkekiRJYk6dOmVatGhhli9fbpYuXWqKFSuW6EOZm/u44nK5zNq1a02dOnVMdHS0uXv3rs9qch+Ht2/f7tT2KLt8+bJp2bKlGTNmjBk3bpxp1qyZiY6O9m4Rwp/St29fBQYG6qmnnlL69OlVsWJFzZgxw9dlSZLWr1+v3r1769///rd+/fVXX5fzp8XGxkqSTp06pUaNGmnixIk+rsjmrnHjxo36+uuvfVzN71u8eLECAwNVq1YtpUyZUtOnT5f03/+GxGr48OFKkiSJ3+0fP/74oyIiIlSwYEEFBARo9uzZkqSYmBgfV/bwnDx5UiNHjtSwYcMk+WZfir89v/nmG2XKlMnZ1o+6mTNnKk+ePHK5XHrnnXckefd3wAjCn7B582bz9ddfmxUrVpgdO3aYVatWmSeffNKMGzfOzJs3z9flmS1btph3333XREVFmRMnTvi6nD/N5XKZ9evXm1deecVcunTJVKlSxRjjP0OHkozL5TKLFi0yERERZsGCBebkyZO+LuuBGjZsaLp162ZWrFhhypYta6pXr26MidvO/rJN/45+/fqZt99+27z88st+MZKg/z+/o0iRIqZevXpm7969Jnv27CZNmjTGmLgr3cRwW/L3SDJHjhwxwcHBZvjw4U7bYG9ftccfwZ05c6aZPXu2iY6ONv369TOzZs3yai3e5P6+li9f3ty9e9cEBwebEydOmD179ji/A698p70WRRKp4cOH68UXX1SrVq08kuzu3bsVERGh5s2b686dOz6/Sps2bZqCgoLUtWtXHT582Ke1/BVr1qxRxowZlSRJEi1cuNB53dfb023lypVKlSqVPvzwQ924ccPX5TzQ3bt3JUlDhw5Vr169FBISoi5dumjfvn3OZ/xlm/5d77zzjl+NJMydO1f169fXtGnT1KpVK5UvX17z5s1z3k+sIwnx95OxY8fK5XKpZcuW+u2333xWU79+/fTEE09o0qRJGj58uCpUqKC8efPq448/9llN3nD9+nUdOnRI06dPV9GiRdWhQwft3r3ba/8+AeEPvPbaa3K5XAoNDdWxY8c83ps9e7aSJUumQ4cOea0e95d3//79+uGHHzyGvcePH6+sWbPq1Vdf1dGjR71W0/9qw4YNypkzp+rVq6ctW7Y4r/v6hHbr1i116dJFvXv3liRdunRJmzdvVmRkpF5//XX99NNPPq3v98yZM0fBwcHq3LmzR507duzwYVV/zP0737Nnj7755hstX77c4/23337bpyHBXd8vv/yiwMBAvffee5KkzZs3q1mzZipfvrzmz5/vfH7FihU6c+aMT2r9q9z/bfcGm9GjR8vlcmn48OG6fPmy1+v65ZdfFBYWpsWLFzuvbd++XR06dFCuXLk0Z84cr9eUUNy/g6NHj2rv3r06ePCg897UqVNVtGhRderUyQkJb775psd2edgICPE8KPGPGzdOLpdLb7zxhs6dO+e8vmnTJoWFhennn3/2Sn3unWfhwoUKCwtTWFiYChQooGLFiun48eNOrdmyZdNrr73mdyMJ7vp37typJUuWaNasWTp79qwkad26dQoNDVXLli21bds2X5bpoUWLFipatKgOHz6s1q1bq2rVqipbtqwef/xxNW7c2Ke1ubfn5s2bNXPmTL3//vs6evSosx/PmTPHGUlYv3693njjDblcLl24cMHn4et+3DUtWrRIISEhKliwoNKkSaNGjRp5jIS8/fbbCggI0OjRo31S5/r16zV9+nQNGDDA4/UtW7bo2WefVfny5TVmzBgNGTJELpdLJ06c8Emdf4V7269Zs0Y9evTQiy++qEGDBjnvjxo1Si6XSyNGjPB6SDh+/LiCgoL0ySefeLz+448/KmfOnMqSJYs+/fRTr9aUEOIf3/Pnz68sWbIoT548atCggW7duiUpLiSUKlVKlStX1rPPPiuXy6WtW7cmWE0EhP8vfjg4dOiQdu/e7REG3AfX3r17KyoqSrt371atWrVUsmRJrw4lrlu3ToGBgZo6dapu3rypdevWyeVyafLkyc5nxo8fr5QpU+rNN9/UnTt3vFbbn7FgwQLlyJFDxYoVU5kyZRQYGKjVq1dLkqKiohQaGqrWrVvrhx9+8Hpt7i/oli1bnJGZ7777TkWLFlVAQICaNm2qRYsWSYo7iRUpUkQXLlzwep3xa124cKEyZMigqlWrKnPmzKpevbo+/vhj55bDZ599pvz586tQoUIKCQnxyXb9I/HDysqVK5U+fXpNnTpVUtzoksvlUt26dbVr1y7nc4MGDdJjjz2mixcvJmhtkZGRGjlypPPny5cvq1atWnK5XGrUqJEkeXzHfvzxR3Xs2FFhYWEqWLCgx4iYv1u0aJECAwPVtWtX9enTR3ny5FGRIkV0+/ZtSXEjCSlSpNCQIUN05cqVBKnBvS/E///nzp3TM888o969e3sckyWpadOmqlixokqWLKlVq1YlSE3etHbtWqVKlUqTJk3S6tWrtWDBAuXKlUtPP/20852eN2+eevToocaNG3t8JxICAUGeB6gBAwaocOHCSpkypcqVK6eXXnrJeW/YsGFyuVxyuVx64YUX1LhxY+fL462QMHr0aKemQ4cOKUeOHOrSpYv1uYkTJ2r//v1eqenP2rRpk4KCgpyD/549e+RyufT222872y8qKkpp06ZVhw4ddPPmTa/VFv+EGxISoldeeUUnT57UnTt3FB0dbZ1Yu3fvrtq1ays6OtprNd4rKipKmTNn1rRp0yRJu3btUrJkyVSqVClNnjzZ2aa7du3S999/74wy+YtFixZp7969kuK2/5UrV9S9e3cNGTJEUtz+nStXLrVq1UpZs2ZVlSpVtGPHDud3de/J4mG7e/eupk2bZo1offvtt4qIiFDatGmd75j7OCDF3Yr69ddfndGxxODkyZMqVKiQxo8fL0k6fPiwnnjiCbVv397jc0OHDlVQUFCCbPv4x9D421OS3n33XaVPn17jxo1ztuuVK1fUpEkTTZw4UeXKldOrr7760GvytqFDh1ojkwcPHlTOnDnVtGlTj9fv3UYJgYAQz4gRI5QhQwZ98cUXWrt2rd58800VKlTI4xf2/vvvy+Vyafz48bp06ZKk/04Q84bnnntObdu21fnz5xUSEqKOHTs6B8zp06dr1KhRXqvlr5o1a5ZatmwpKe7g7x7+drt69aqkuCHcAwcOeL2+//u//1OqVKk0ZcqUB05I3LJli3r37q306dP79H7+nTt3NHz4cEVGRkqKO4i4T6a1atVSrly5NG3aNK/um3/Fzp07FR4erkaNGjkn2Vu3bmnx4sXav3+/Lly4oOLFi6tdu3aSpC+++EIul0vly5fXnj17vF7vV199pcGDBzt/3rx5s6pUqaKQkBD98ssvkuR3o3V/xd69e5U3b17dvn1bJ06cUHBwsDp16uS8/8UXXzj/+/z58w/9348fDiZOnKhmzZqpefPmztI+SXr99deVKVMm1a9fXx07dlSZMmVUrFgxSXHHxWrVqvnlrbO/4oUXXlCJEiWcP7v3qY8//lgFCxb0esj/RweE+DvT5cuXVbduXb377rvOa9HR0Zo7d64KFCig//znP87rb731llwul8aOHZugQ5zxr5SuX78uKe6qq2bNmnr88cfVoUMHSXFfrpiYGHXt2lUvvfSS81lfu/fLOnToUFWtWlVHjx5V9uzZ1bFjR+fAsGjRIkVGRvqs9ps3b6p169bq27evpLj9Ydu2bRowYICGDh2q8+fPa+fOnerWrZuKFi3qF5P99u3bp7179+ratWsqV66cXnzxRUnSkSNHlD59ehUsWNAZXfBHH330kSpXrqwmTZo4IwnuUaP58+erVKlSzgTgJUuWqHbt2sqfP7/X59bExsZq4sSJcrlcevPNN53XN2/erJo1aypnzpxOnf4ayB5k9+7diomJ0enTp1WpUiUtXLhQ2bNnV6dOnZyT0/79+/Xcc8/pm2++kZSwk4fdqxVeffVVvfLKKwoNDVXbtm2d92fOnKmePXuqRo0a6tKli7O/NG7cWJGRkYl25Yjbl19+qdy5c2vu3Lkery9ZskShoaE6efKkV+v5xwaEe3ek2NhYFStWzOOWghQ3jBMREaEWLVp4vD5ixAi5XC5NnDgxQb4w7r9z2bJlqlGjhlatWqWYmBj9/PPPKl++vHLnzq0VK1ZIihvSHDhwoJ544gmPyVz+4Ntvv3WuAr777jtVrlxZGTJkcL707t9DZGSkWrZsmWD3Nv+Mli1bqkKFCvrll1/Utm1bVa1aVSVKlNDjjz/ujHzs3r3bJ7PS77ePuQ/g69evV6FChZwr682bN6tatWpq3bq1X65miX+l/cEHH6hOnTpq2rSpx4ztkSNHKnfu3M62HjBggN555x2fXaVfv35dU6ZMUZIkSZxbIJL0ww8/qE6dOkqbNq3fTQq+173bbteuXQoODtaxY8d08eJFVa5cWUmSJFGrVq08PvfKK6/o6aefTvD9fvbs2XryySf1/fffS4oLialTp3YmqrrFP3afPXtWAwcOVIYMGZyQmRi4v88nT57UwYMHnblMv/76qxo1aqS6des6qzNu376t/v37q1SpUl6f8/SPDAibN2921vT27dvX6TjXrVs31axZ09rRBg8erOrVq+vmzZseO+eYMWMSdKd0Txp64403nGFMSdq6dauKFi2qQoUKKSwsTNWrV1fWrFn9ava/FDdkHBkZqapVq0qKu2fovp88bdo03blzR6dPn9aAAQOUMWNGrw4d3++Eu3TpUpUsWVJJkyZV06ZNtWDBAklxt25Klizps/kG7lq//fZbjRgxQv3799fXX3/tXD2tWrVKoaGhWrp0qWJiYjR48GC1a9fOuWXjb+6dMV+oUCElTZpUzZo1c2437N+/X2nTptVTTz2lihUrKl26dNq+fbtX6nOPApw4ccLqIzFhwgQrJHz33XeKiIjwyW2xP2vUqFFq0qSJxz68ceNGhYWFOfey9+zZo4wZM6pu3br65JNPtHLlSr388stKly5dgoyY3bp1y6OeSZMm6fXXX5cUd2EUFBSksWPHaurUqUqaNKlzu8nt/Pnzatu2rXLlyqUff/zxodeXUOKv1smbN69CQ0OVLl06devWTYcOHdLhw4fVpEkT5ciRQ/ny5VOVKlUUFBTkk+P7Py4gnD17Vi6XS926dVOnTp2UJk0aZybo9u3blTlzZrVu3dpZOnL16lVVrlzZGc6XvDMh8fDhw8qdO7fef/9959+8ffu2Nm3apBs3buj8+fNatmyZ+vbtqzlz5ni1F8NfsWXLFgUEBDhp+OLFi6pbt64KFy6s9OnTq3z58goNDfXqzh//hDtkyBD179/fWUJ19epVfffddx6f79Kli+rXr+/TRkkLFixQYGCgKlWqpNKlS8vlcumVV17R8ePHdf78eadxTIECBXx2MPkrVq5cKZfLpTFjxujzzz9Xv379VLhwYTVp0sQ5Ke/atUsdOnRQnz59Ejw8Tpw4UWvWrHGusufPn6+QkBBnueWaNWucE6k7JMS/3eDPTbSkuPk1AQEBHsFx+fLlCg8Pl/TfY9rWrVtVtWpV5ciRQ/nz53cmhj5sCxYsUOPGjVW0aFG98cYbzuuHDh3SuXPnVKxYMQ0fPlySdODAAWXLlk0ul0v9+vXz+HuOHj1q9adJDKKiopQqVSqNGTNGW7du1XvvvacyZcqoUaNGOnz4sM6dO6f169frlVde0XvvveezCef/qICwbt06HT58WFu3blVAQIBSpUqlNWvWSPrvVcP333+v0NBQFStWTIUKFVLp0qVVqFAh5+CQ0JNg3H//Tz/9pOLFi2vr1q06d+6cRo0apUqVKildunSqWLGiNmzYkKB1/B3xt01MTIzz5169eqlatWrOFzk6OlpbtmzR5MmTtXbtWp/Mrl+4cKHSpUunli1b6sUXX1RQUJB1G2n37t3q1auX0qdPr507d3q9RrcDBw4oe/bsmjp1qrNN58yZo4wZMzpNnI4ePaopU6Zo3Lhxfrd6Jb7Y2FjFxMSoffv2at68ucd7H3zwgfLnz69mzZo5V+N3795N0O+c++/Oly+fsmfPru+++047d+5UaGioRo0apbVr16pmzZrKnj275s+f76xHnzx5stMXILFYu3atAgMD1bZtW8XExGjJkiUqUqSIJM/v7s2bN3XmzBmdPXs2QUahJk+erLRp06pnz56KjIxU0qRJNWHCBOf9TZs2KXv27M5+fODAAbVs2VKrVq3ymOORGCckumvu3bu3x20T6b8jmO55UP7gHxMQrly5onbt2qlv377auHGjUqZMqSRJkqhnz546deqUpP/+8g4cOKA5c+aoX79+ev/9952rCm/c/3Tfgz969KgyZMigmjVrKnPmzGrYsKHeeecdrVixQvnz5/ebdrP3WrVqlRYvXuwxeXPp0qXKkyePM8nJ19wz/t2jMwcOHFCGDBnUsWNH5zObNm1S586dFR4e7rWhbbezZ89q8+bNzijWrl27lCtXLm3fvt3joDhr1iwlSZJE69ev92p9D0PXrl1VvXp1a6lWZGSkUqZMqZo1ayZ4A7J7RwIrVaqksLAwzZgxQ3369PF4LyIiwgoJ06ZNS1T3vSVp9erVCgwMVPfu3fXZZ5+pTJkyWrlypaKiorRnzx5t3bpVy5Yt0+nTpxPk3586daqSJ0/u0f2vRYsWGj9+vDPH4eDBg8qdO7e6deumvXv3qmbNmmrUqJGz7ye2iaD306tXL1WvXl1379712A9HjhypjBkz+s3twX9MQJDiDqg5cuRw5h+sWrVKSZIkUdeuXf/wC+GNnXL79u0KCAjQxo0bJcW1xe3fv79Gjx7tMUGoevXqGjduXILX81ddv35d3bp1k8vlUsOGDZ0hQklq3bq1x/IdX9q2bZueeuopSXFBzN2S2G3z5s2S4m6PuMOjt+zZs0flypVTrVq11LhxY929e1ebN29W8uTJnclb8ftDFCpUyGOFTWIxatSo+95a+uSTT1S4cGG1aNEiQUeW3Aflw4cP67333nPm+JQqVUoul0s1a9a0wktERIRy586tmTNnemUN+sNy75X2119/rX/9619KnTq1cufOrdDQUGXJkkX58uVTcHCwsmbNmiC3LNeuXSuXy6WhQ4d6vB4eHq6nnnpKadKkUbly5TR+/HiNHj1awcHBypEjh0qXLu21EVxvGTNmjAIDA52Wye7/rpUrV6pAgQJ+81Tef0RAiL9TPffcc2rSpInTLvTzzz9XkiRJ1L17d6clapMmTTweuuItR44cUb169ZQ2bVpt2rRJkufJ4O7duxowYIAyZ87sMWnR33z33Xd69dVXlTlzZpUqVUrjx4/XokWLVL16dX3++eder8f9+1+7dq2+/vpr7d27V2XLltWqVausJV07duzQc88955PnLOzevVvp06d3nqUR/8qiadOmKlCggMdM/1u3bql48eL64IMPvF7rn+Xe9vv27dOOHTs8btWULFlSBQsW1ObNm53Jan379tWAAQMSZK29m3u77ty5U08++aQaNWrkcUX7zDPPKCgoSKtXr7YuDJ555hkVLlzYp6tt/iz3tr9y5YquXbvm8d66dev0+OOPq06dOjp27JjOnz+vy5cv69y5c05/l4dt//79qlChgho0aOCE8MaNGytPnjyaN2+eli9froIFC6pEiRLasWOHTp48qY0bNzq/r8TYZ8Jd88GDB7Vv3z6P44p7ieyOHTuc/T8yMlLFihVLsN/BX/VIB4T7TSZcu3atGjVq5FylS3FNQAICAlSjRg0VK1ZMTz75pFeuEOIHl/gP6WjWrJlSpUrltGmNiYnRRx99pIYNGypbtmx+MwHNXfOOHTu0ePFizZ8/36N73NmzZ9WhQwdVq1ZNqVKlclpVe+sqIP6/s3btWqVOnVqLFi3SwYMHVaJECaVMmVIvvPCCx8/06tVLVapU8fqT686fP6/y5cure/fuHq+79+Fvv/1WtWrVUr58+bR69WqtW7dOAwcOVMaMGT1Cgz+aP3++MmXKpJCQEOXOndtZ9nrjxg2VKlVKoaGhKlmypGrUqKEUKVJ4ZTXLvn37FBQUpP79+993bXm5cuWUM2dOffPNN9ZxxN86Ut6Pe9//8ssvVblyZRUrVkwVK1bU7t27nVska9asUerUqdW5c2ev9R/Zv3+/atWqpbp166pcuXIqVqyYx/LQrVu3yuVyaenSpR4/l5j6G8yYMcPpFivFPfUzJCREmTJlUp48edSsWTPdvn1bZ8+eVa1atZQmTRqVLFlSVatWVbp06fxqRcYjGxDiD5G9++67zsz0O3fuqH79+oqIiPD4fFRUlHr27Kk+ffp4dc7BunXrnFrdX+ojR46oWbNmSp06tbOz7Nq1Sz179vTag6H+LPfBP2/evMqePbsee+wxff75586s7tjYWJ08eVIjR45UeHh4gvcOv58TJ05o1KhRGjZsmPPaV199pWTJkqljx45asWKFtmzZosjISJ9NSNyzZ49y586tdevWPfBg+MMPP6hVq1YKCAhQnjx5VLBgQb8Ji/dy78vnz59XWFiYPv74Y61Zs0bvvPOOkidP7vEgoIkTJ2rgwIHq06ePV+7p37hxQ02bNlXXrl09Xr99+7YOHTrkhNxatWope/bs2rBhQ6I6QbktXbpUadKk0cCBA7V69WqVLVtW4eHh+uqrr5yQsHr1arlcLnXt2tVrwX3//v2qXr260qVLp88++0zSfyc1b926VQUKFNC3337rlVoetrNnz6pevXoqXbq05s6dq1OnTik0NFSTJk3SmjVrNHfuXAUHB6tq1arO9p46daqGDRumYcOG+d0E40cyIGzfvl0ul0tLlixRjx49lCFDBo81yqdPn1ZYWJjT/+B+k1+8EQ4uX76s6tWrK2PGjE6Kjv845yJFiujxxx93huP8bYht27ZtCgoK0scff6wzZ87ozJkzat++vQIDA53H9MY/6Piij8ChQ4fkcrmULl06a8b5vHnzVKxYMT322GMqVKiQSpYs6fUJiW6zZs1SsmTJ7vvIXfd+GR0drX379um3337T0aNHvT7K8Vd9/fXX6t+/v15++WXnhHT16lW9//77Spo0qdU731snqDt37qhChQrOo5qluGWAkZGRSps2rYKDg9WkSRNJcSEhXbp0zvyPxOLQoUMqUaKExowZI0n67bffFBoaqkyZMilTpkz66quvnNuX69at83qDtV9++UU1a9ZU7dq1PSbZ1qtXT5UrV06Ugcxt+/bteu6551SlShX17NlTrVq18hiR3rdvn7JmzarnnnvOh1X+OY9kQJDi2vqmSpVKgYGBHleEd+/e1Z07dzR06FC9/PLLun79uk93xo0bN6p27doKDQ21Jga98MILSpIkibJkyaIbN274tM6VK1daEzkXL16sYsWK6eLFix4H97Zt2ypLlizOSoZ7n9CWkKKjo/Xbb79p7dq1zpyS2bNny+VyqVmzZtYDdM6cOaN9+/bp0KFDCf5kwN+zYcMGpUyZ0mnOdD/jx4/XM88849WHWP1dt27d0sCBA5U0aVIVL17c4z13SEiZMqWzTFPyXkC4fPmywsLC1KFDB/300096++23lS9fPkVERGjcuHH68MMPlSNHDqfPQbVq1fy6CdL9/PzzzxoxYoSuXbumU6dOKU+ePM5zT0qWLKnw8HAtWbLECW6+4L7dUKdOHX3zzTdq3Lixx+3dxB4SWrVqpdDQUD399NPO6+6LvA8//FAFChTQ0aNHvXp8/KseqYAQf4dyP3kxWbJkWrhwofXZDRs2KHPmzM5DSLzxy3H/G7dv3/aYNLRr1y5Vq1ZNoaGhOnLkiPN6ZGSkPvvsM5/OaHW3d3YPQ8Y/wU6dOlWpU6d2dnr3ievAgQMKDg52HpnsLT///LOef/55hYWFKWXKlEqTJo1atGihkydPatGiRU4vfX+ZABTfiRMnlClTJjVo0MBjH4i/X/bu3Vv9+/f3ywOJW/zajhw5oqFDhzotyeO7du2aRo0apccee0y//fab1/+bVq9erWTJkilHjhxKkyaNJk+e7ISA27dvq0aNGlZfjMTG/d/z0ksvKSIiwlk617p1a7lcLj355JPW5EVv279/v+rWravkyZMrX758Tjjwt9HSv2PXrl1q3ry5UqdOrcmTJ3u8t2zZMgUHB/tlK/T4HqmA4DZ06FB17NhRu3fv1tChQ5U8eXLNnDlTkmeImDx5sooUKeKVTlzxJw01atRI4eHhat++vb766itJcU9Tq169uoKCgvTaa6+pdevWypIli887JLqHtxcsWKDkyZOre/fuzpLL3377TQULFrQezezuAhkVFeW1Onfs2KEsWbKoc+fOmj59uvbt26d+/fopNDRU+fLl07Fjx5yRhLfffttZxeJPFi5cqICAALVu3dpjol50dLQGDBigHDly+N0cFDf3/n3vgf3YsWN69dVXFRgYaB0ko6Ojvd5bPr5jx45py5Yt1q2amJgYNW3aVIMGDXIehObP3Nv+4MGD+vnnn63bIXXq1PHoQNizZ0/9+OOPzgibr+3bt0/dunXz6twvb9m7d69atGih0qVLa9KkSZLiwnGfPn0UFhbm97cJH4mAEH/uwMqVK5U3b16nyYwU96CX5MmTO+1+pbgvyYwZMxQREaGVK1d6pc7PP/9cKVKkUI8ePfTGG2+oRIkSKlOmjPMM9lOnTqlHjx4qUaKEnnnmGZ/PZv3oo480c+ZMZ8Lh4sWLnTbVv/76q2JiYjR27FiVKVNGbdu21eXLl3XixAm9/vrrypkzp9cOQDt27FDq1Kk1YMAA6+Ayb948PfXUUypVqpRu3rypyZMnK3ny5Hrttdf8LiTExMRo8uTJSpYsmcLCwtS2bVt16dJFDRo0UKZMmfx+QuLq1avVpk0btWzZ0uOEdPz4cQ0cOFBp0qTxmN3tj27duqVBgwYpa9asfjdh7H7i9/XPnz+/ChUqpMyZM6tly5ZO/Q0bNlT+/Pn10UcfqUuXLkqXLp3fXrk+SuHAbefOnWrRooUCAgJUtGhRtWjRQmFhYc4qNX+WqAPCvcu7Zs+erR49eqhnz56SPHe2V199VS6XS927d1fZsmVVqFAhSXGz8N2TABNKbGysLl++rCpVqnj0HT979qy6du2qp59+2mM4/vLlyz7v7X737l2VLFlSRYoU0cKFC50RAndIeOmll3Tt2jXduHFD7733ngoXLqzkyZOrUKFCypYtm0dAS0jHjh1TxowZ1bRpU+e12NhY64mB//rXv5x+AW+99ZaCgoJ07tw5r9T4V23atElNmjRRkSJFVKFCBfXr189vT1bxT1Bp06ZVhw4d1K9fP+XMmVMNGjRwwvvx48f1+uuvy+Vy6eOPP/ZhxQ/26aefqnv37sqcObPfhrH7WbNmjQIDAzV16lRdu3ZNy5cvl8vl0uzZsyXFjdRUqFBBBQoUUHh4uM8vPB41f2YOwd69e9WqVStlzpxZQ4YM8fuRA7dEGxDatGnjPFHNvUSmXLlycrlcqlat2n1ng48dO1Y1a9ZU69atE/wE7O45L8V1GHSfcN0Tn9zvnTt3ToULF1ZkZGSC1vNXuLfd9evXVatWLRUvXlzz589/YEiIjY3V9evXtWDBAkVFRXl1nfjhw4dVsmRJNWjQwGrlHP8LW7FiRTVs2ND5sy+Htv8Mf20n695v43+vtm/frieffNKZZ3D48GFlyZJFLpdL5cuXd8LakSNHNGzYMJ80ofojP/30kypXrqxGjRoluvbJQ4YMcTqB/vLLL8qTJ49H23C306dP+92oWWLmPr5cvnxZt2/fdppnPSgo/Pjjj+rYsWOi6KPhlmgDwtKlS50JLe574nfu3FHz5s2VNWtWffzxx04IiH8wi98BLaGaIcX/e+fMmaPnn39ehw8fVsWKFdW2bVunJnddkZGRqlatml+dFNwH9evXr6tatWoqUaKE5s+fb91u6Nq1q8/bgrpnQ9esWdMjJMT/olauXFktW7a873v+6H5NtHwtfnviKVOm6IcffpAU11PCPWp37Ngx5cqVSx06dHD6/jds2DBRTD779ddf/XIC6++JjY1V3bp19eqrr+rmzZvKli2bOnbs6Owz48ePd0YS8PC4t+8XX3yh+vXrq0SJEqpfv76WLVv2uz+XGFYgxZfoAsK9B8upU6eqWbNmzpDgnTt3VLduXRUpUkTz5s1zlvHce/JNqIPurl27NGTIEMXExOi3335Trly5nOcmrFixQi6Xy+qd36xZM+cJa/7AvW3cV9nR0dGqVq3afUcSUqRIobZt21rLB70tfkiI32QlJiZGx48fV+3ata2+F/jz7tee2L0CSJLzIKmGDRuqVatWio2N1bVr11SiRAm5XC7VqFHDV6U/8j755BOVL19eGTNmVJcuXTxGT9u1a6euXbsmuhNTYrBs2TKlTJlSI0aM0Pz589W2bVu5XC6vdAL1lkQXEO41adIkPfXUU+rYsaNHSKhdu7aKFi2qzz77zGtfDneDpgkTJmjNmjV688031blzZ4+lRBMmTJDL5VKLFi3Uq1cvderUSYGBgT7pMPh7Nm3apGbNmjkzot0h4d6RhHnz5ilDhgweD5PylQeNJPTr10/h4eGJamjPH/1Re+JLly4pPDzcea7BzZs31b59e3355Zc+X43zKHCf+E+cOKGffvrJ+fO2bdtUsWJFFShQwOkYe+3aNQ0cOFBZs2b125UviZE7KEdHR6t+/foaOXKkJOnkyZPKkSPHfW/tJGaJJiDEv6d/rw8//FDFihVTu3btPEJCvXr1lDVrVq1evTrB69uzZ49SpUqlwYMHS5Jee+01Z63xvY/uXLNmjRo0aKCqVauqcePGPmnt+0dmzpypIkWK6LnnnnMmccYfSVi4cKETEvzl0aSSZ0jYtm2bRowYocDAQJ91SHxU/F574hMnTmj//v2Kjo5W8eLF1bBhQx0+fFivvPKKnnzyyQR7dPA/0YIFCxQSEqKQkBAVLFhQa9eulRS3fLps2bLKlSuXypcvr6pVqypLliyJarKlvxo9erTHHLHY2FhdunRJuXLl0vr163X27Fnn1o7bjBkzHolglmgCQnxffPGFlixZojVr1jivTZ061QkJ7lm6t2/fVu/evRP83v6uXbuUMWNG5c+f33nt7NmzGjlypJIkSeKsf5X+e6vDParh69UK0oOH3OfMmaPy5curefPmzv3m6Oho1axZU7lz53YeqOJvQ/b79+9XvXr1lClTJiVPnjxRLCfyd3/UnjhHjhyqUaOGFi1apNy5cytbtmwKCQnhBPUQuC+M9uzZo1y5cmnUqFFau3atatasqeDgYKf75q5duzRjxgy99NJLmjJlil8/8TWxuHHjht555x0FBgbqtddec16/e/euWrdurWHDhjlPhHUf28+ePavnn39en376qd8dG/8qvw8I3bp182jHGhkZqUyZMumJJ55QoUKFPJ5+N3XqVBUvXlwdO3Z0HpfsllAhYfv27UqdOrUqV66srFmzqlu3bs57Fy9edEYSPvnkE0lxJ1P3/7n/7Av3G43Zt2+fdVCZNWuWKlSooGeffdYJXteuXVPDhg39etj4p59+UoMGDZznreN/82faE+fPn1+RkZH69ddf9e233zJy8Dfdb6XIxo0bNWPGDPXp08fjsxEREU5I8GXb5EfZhQsXNH78eKVPn14DBw50Xu/fv79cLpdq167t8TTM/v37K1++fB4dURMrvw4IFy5cUM+ePVWgQAG9+eabOnbsmMqWLasdO3Zo7969GjNmjPLmzat27do5P/Phhx8qJCTEeaRsQp6AN2/erOTJk2vIkCG6e/eupkyZoowZM3qEhEuXLmnQoEFyuVxON0dfcx94Tpw4oblz52rWrFlasGCBqlWrpk6dOln9JWbMmKGgoCC1aNEiUT20xhuP7P4n+b32xLdu3dIzzzyj559/3sdVJm73rhRxX+i4J3vWqlXL2q8jIiKUO3duj6Zm+N/Fv5C7evWqxowZo/Tp02vAgAHOZ1q2bKlMmTLp5Zdf1uDBg9WmTRu/e2Tz/8KvA4IUN/ljyJAhKlSokJo0aaI2bdo4owGXLl3SpEmTlDt3brVv3975mWXLlnllyeC6des8RjAuXbr0wJAwePBguVwuzZ07N8Hr+j3uA9COHTuUK1cuFShQQMmTJ1epUqUUHh6umjVrqkePHtboQPny5ZUpUya1b99eN27cSPRDZ/h7fq89cZMmTTRo0CCPAyv+vPutFPn888+d92vXrq2goCCtXr3aOr4988wzeuqppzyWceOvu99++8MPP+jYsWO6ePGixo4dq6CgII9OoQMHDlRERIRKlizptPh/VPhtQIg/vHby5EkNHjxYoaGhKlu2rMfnLl26pMmTJytfvnxq3Lixx3ve7CsQv2nG/ULChQsX9NZbb/m0CUv8cJA6dWr17dtXJ0+e1NKlS1W7dm1VrFhRL730kooUKaIePXo4Q2Q3btxQhw4d9NZbb7ESAJbE1p7Yn/3RSpFy5copZ86c+uabb6zbhHw3/3enTp2S9N9J8QcPHlTmzJmdSc4XLlxwQkLfvn2dn7t165Zu377tV71sHga/DAjxd3x3E54zZ85o8ODBSp8+vQYNGuTx+cuXL2v06NFq1qyZX/QSiB8S7p396mv3a00sxS0XDQoK0okTJzRhwgSVKFFCzz77rGbMmKF+/fqpQIECftuaGL6TWNsT+6PfWyly6NAhp9dIrVq1lD17dm3YsMEvjnePivnz5ys0NNTjNur58+cVFhbm8VyZ+CHh3nPRo8bvAkL8Hf6NN95Qw4YNncYT7pAQFhbmLCd0c7f8vffv8JXLly9r6tSpcrlcHsNRvvag1sQrV65UUFCQ9u3bJ0maPn266tWrp2zZsik8PNxrz1ZA4pGY2xP7oz9aKRIcHKwmTZpIigsJ6dKlS1RzgvzdihUrVL9+fZUsWdKZ+3Hw4EHlzZvXujhyT1x0uVwaNmyYL8r1Cr8LCG59+/ZVlixZNGPGDI/0durUKQ0ePFj58uXT0KFDrZ/zh6t0t0uXLmn69Ol+tx7W3SugRo0a2rt3r65evarHH3/cY8hMiqv/xIkTjBzggRJje2J/9WdWiuTIkcN5nku1atWcSaJ4OKKiotSoUSMVLVpU33//vY4cOaLMmTPft528ew6cPz5b5GFxSZLxM6tWrTJt2rQxixYtMqVLlzaSzMWLF83Ro0dN3rx5jcvlMqNHjzZjx441//nPf8yLL77o65IfSJJxuVy+LsNy4MAB06NHD3P9+nWzc+dO88ILL5gxY8YYY4y5e/euSZYsmY8rBP551qxZY2rWrGmyZctmLly4YEaNGmWqVatm8uTJY+7cuWPq1atnHnvsMTN79mxfl/pIiX+cjoqKMuPGjTMnTpwwnTt3NrNmzTI1a9Y0oaGhJjY21ty5c8fcunXLFCxY0JQpU8bHlScsvzwLXLx40WTNmtWUKlXKbNu2zSxdutTMnj3bXLlyxVStWtW89957pl27diY4ONi88MILvi73d/ljODDGmLx585px48aZzp07m7Rp05pGjRo57yVNmtSHlQH/XFWrVjWHDh0yZ8+eNTly5DAZM2Z03kuaNKlJly6dyZ07t4mNjTXGGJMkSRJflfpIiX+crly5srl7966ZNGmS6d+/vzl//rxJmzatmTFjhnG5XCZFihQmJibGfPbZZz6s2Dt8PoJw48YNkypVKo/Xtm/fbooVK2Zq1aplNm/ebOrVq2eqVKliAgICzEsvvWS++OILj+QWExPDSe1v+uWXX0y3bt2MJPPaa6+ZcuXK+bokAPe4ffu2efPNN81HH31koqKiTN68eX1d0iPBPXKwbds28+uvv5rY2FhTt25dY4wxq1evNh999JHZuXOnmTlzpgkPD3d+Ljo62vzrX//yVdle49OA8Omnn5qDBw+aAQMGmICAACPJxMbGmqRJk5oNGzaYBQsWmKefftpUrVrVPP744yY6OtpUqlTJjBw50lStWtVXZT9yDhw4YHr16mXOnTtnxowZY55++mlflwTg/5s5c6bZvHmzmTdvnlm+fLkpWrSor0t6pCxcuNC0adPGPPHEE+bUqVMmIiLCfPLJJ8aYuJAwfvx4c+bMGTN8+HBTpUoVY4z/3jp+6Hwy80HSlClT5HK5tHz5ckmeXas2b96so0ePOp+9ffu2rly5olq1aqlMmTKP3FpTf7Bv3z41adLEY7sD8C1WiiQM97kmOjpaFStW1CeffKJDhw7pyy+/1GOPPaaGDRs6n42KilLVqlVVqVKlf1ynSp+MIHz66aemXbt2ZsmSJaZOnTrGXYLL5TKLFi0yHTt2NAsXLjSVKlUyd+7cMRMmTDALFiwwt2/fNhs2bDDJkyc3sbGx3H97yG7fvm1SpEjh6zIAxHP27FkTEBBg0qVL5+tSHimrVq0yn376qUmaNKkZMWKEyZQpkzHGmA0bNpiGDRua8uXLm0WLFhmXy2W++eYbExoaaoKDg31ctXd5/Qw7ffp088ILL5jKlSubOnXqGGOMiY2NNS6XyyxZssQ0adLEDBs2zFSqVMkYExcawsPDTfXq1c13331nkidPbu7evUs4SACEA8D/ZMqUiXCQAC5cuGAWLFhgli9f7qzakmTKlStnlixZYjZt2mSqV69uJJkKFSr848KBMV4OCFOnTjXt2rUz7dq1M3v27DE9evQwxsTNzpVk7ty5YyZPnmw6d+7s/EyyZMlMlSpVzJAhQ0yyZMlMTEwMS/AAAH/Ivdrjfn9u1KiRmTVrlomOjjaDBg0yxvx3NUO5cuXM7NmzzbFjx8zJkye9V7Cf8dothrFjx5pevXqZL7/80tSuXdtMmTLFDBo0yLRs2dKMGzfOGyUAAP5hfvrpJ/Ppp5+ajh07muzZs3tMLrxz545ZvHixadOmjWnfvr0ZP368x8/eb5XdP4nXAsK6devM6dOnTfPmzY0xxly+fNnMmzfPDBw40CMksGQRAPAw3Llzx5QrV85s2bLF5MmTx/z73/82pUqVMk2bNnU+c/PmTbN06VLTpk0b07lzZ6dhHLzYKMk9p0D/f3lIunTpnLAwcOBAY4wx48aNM0mTJiUkAAD+Z8mTJzdNmzY1LVq0MIUKFTIbNmwwnTp1MsuWLTNlypQxnTt3NilTpjTPPvusMcaYFi1amBQpUpgRI0b4uHL/4PNGSVeuXDFz5841gwYNMq1atSK9AQAemqioKPPvf//brF692pQoUcKcPn3afPDBB2bkyJGmcOHCpl27dqZKlSomT548ZvHixSZ//vwmLCzM12X7BZ8HBGPiQsK8efNMp06dzJgxY5zJiwAA/K/69OljTp8+baZNm2ZSpkxpmjdvbnbs2GFKly5tDh8+bDZu3GhGjRplunfv/s9ogPQn+cVygLRp05qmTZuaTJkymXr16vm6HADAI6R06dLm3XffNSlSpDDt27c3UVFRZvXq1aZgwYLm559/NitWrDDVqlUjHNzDL0YQ7sXTBAEAD1OlSpXMt99+a5544gnz1VdfeTxbAffnl92GCAcAgIfBfQ3cr18/kydPHjNhwgQTHh5u/PDa2O/4ZUAAAOBhcN82KF68uImNjTVbt271eB0PRkAAADzyMmfObAYPHmzGjBljfvjhB1+XkygQEAAA/whVqlQxJUuWNFmzZvV1KYmCX05SBAAgIdy8edOkTJnS12UkCgQEAABg4RYDAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsPw/z+vVOmqSRZQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_value_array(1, predictions_single[0], test_labels)\n", "_ = plt.xticks(range(10), class_names, rotation=45)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "cU1Y2OAMCaXb" }, "source": [ "`tf.keras.Model.predict`는 데이터 배치의 각 이미지에 대해 하나의 목록씩 목록의 목록을 반환합니다. 배치에서 (유일한) 이미지에 대한 예측을 가져옵니다." ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:17:02.224547Z", "iopub.status.busy": "2022-12-14T20:17:02.223856Z", "iopub.status.idle": "2022-12-14T20:17:02.228672Z", "shell.execute_reply": "2022-12-14T20:17:02.228053Z" }, "id": "2tRmdq_8CaXb" }, "outputs": [ { "data": { "text/plain": [ "2" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.argmax(predictions_single[0])" ] }, { "cell_type": "markdown", "metadata": { "id": "YFc2HbEVCaXd" }, "source": [ "예상과 같이 모델이 레이블을 예측합니다." ] } ], "metadata": { "colab": { "collapsed_sections": [], "name": "classification.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" } }, "nbformat": 4, "nbformat_minor": 0 }