{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "Ic4_occAAiAT" }, "source": [ "##### Copyright 2019 The TensorFlow Authors." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "cellView": "form", "execution": { "iopub.execute_input": "2022-12-14T20:19:13.201210Z", "iopub.status.busy": "2022-12-14T20:19:13.200698Z", "iopub.status.idle": "2022-12-14T20:19:13.204982Z", "shell.execute_reply": "2022-12-14T20:19:13.204338Z" }, "id": "ioaprt5q5US7" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "cellView": "form", "execution": { "iopub.execute_input": "2022-12-14T20:19:13.208434Z", "iopub.status.busy": "2022-12-14T20:19:13.207840Z", "iopub.status.idle": "2022-12-14T20:19:13.211584Z", "shell.execute_reply": "2022-12-14T20:19:13.210890Z" }, "id": "yCl0eTNH5RS3" }, "outputs": [], "source": [ "#@title MIT License\n", "#\n", "# Copyright (c) 2017 François Chollet\n", "#\n", "# Permission is hereby granted, free of charge, to any person obtaining a\n", "# copy of this software and associated documentation files (the \"Software\"),\n", "# to deal in the Software without restriction, including without limitation\n", "# the rights to use, copy, modify, merge, publish, distribute, sublicense,\n", "# and/or sell copies of the Software, and to permit persons to whom the\n", "# Software is furnished to do so, subject to the following conditions:\n", "#\n", "# The above copyright notice and this permission notice shall be included in\n", "# all copies or substantial portions of the Software.\n", "#\n", "# THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n", "# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n", "# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL\n", "# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n", "# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING\n", "# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER\n", "# DEALINGS IN THE SOFTWARE." ] }, { "cell_type": "markdown", "metadata": { "id": "ItXfxkxvosLH" }, "source": [ "# 영화 리뷰를 사용한 텍스트 분류" ] }, { "cell_type": "markdown", "metadata": { "id": "hKY4XMc9o8iB" }, "source": [ "\n", " \n", " \n", " \n", " \n", "
TensorFlow.org에서 보기 Google Colab에서 실행GitHub에서 소스 보기노트북 다운로드
" ] }, { "cell_type": "markdown", "metadata": { "id": "Eg62Pmz3o83v" }, "source": [ "이 튜토리얼은 디스크에 저장된 일반 텍스트 파일에서 시작하는 텍스트 분류를 보여줍니다. IMDB 데이터세트에 대한 감정 분석을 수행하도록 이진 분류기를 훈련합니다. 노트북의 마지막에는 스택 오버플로에서 프로그래밍 질문에 대한 태그를 예측하도록 다중 클래스 분류기를 훈련하는 연습을 시도해볼 수 있습니다.\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:13.215259Z", "iopub.status.busy": "2022-12-14T20:19:13.214737Z", "iopub.status.idle": "2022-12-14T20:19:15.717042Z", "shell.execute_reply": "2022-12-14T20:19:15.716324Z" }, "id": "8RZOuS9LWQvv" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2022-12-14 20:19:14.627348: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory\n", "2022-12-14 20:19:14.627450: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory\n", "2022-12-14 20:19:14.627459: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n" ] } ], "source": [ "import matplotlib.pyplot as plt\n", "import os\n", "import re\n", "import shutil\n", "import string\n", "import tensorflow as tf\n", "\n", "from tensorflow.keras import layers\n", "from tensorflow.keras import losses\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:15.721483Z", "iopub.status.busy": "2022-12-14T20:19:15.720787Z", "iopub.status.idle": "2022-12-14T20:19:15.724858Z", "shell.execute_reply": "2022-12-14T20:19:15.724266Z" }, "id": "6-tTFS04dChr" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2.11.0\n" ] } ], "source": [ "print(tf.__version__)" ] }, { "cell_type": "markdown", "metadata": { "id": "NBTI1bi8qdFV" }, "source": [ "## 감정 분석\n", "\n", "이 노트북은 리뷰 텍스트를 사용하여 영화 리뷰를 *긍정적* 또는 *부정적*으로 분류합니다. 중요하고 널리 적용 가능한 머신러닝 문제인 *이진* 분류의 예입니다.\n", "\n", "[IMDB 데이터세트](https://ai.stanford.edu/~amaas/data/sentiment/)에는 [인터넷 영화 데이터베이스](https://www.imdb.com/)에서 가져온 50,000개의 영화 리뷰 텍스트가 포함되어 있습니다. 훈련용 리뷰 25,000개와 테스트용 리뷰 25,000개로 나뉩니다. 훈련 및 테스트 세트는 *균형을 이룹니다*. 즉, 동일한 수의 긍정적인 리뷰와 부정적인 리뷰가 포함되어 있습니다.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "iAsKG535pHep" }, "source": [ "### 데이터세트 다운로드 및 탐색하기\n", "\n", "데이터 세트를 다운로드하여 추출한 다음 디렉터리 구조를 살펴보겠습니다." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:15.728406Z", "iopub.status.busy": "2022-12-14T20:19:15.727925Z", "iopub.status.idle": "2022-12-14T20:19:31.440444Z", "shell.execute_reply": "2022-12-14T20:19:31.439568Z" }, "id": "k7ZYnuajVlFN" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloading data from https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 8192/84125825 [..............................] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57344/84125825 [..............................] - ETA: 2:19" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 106496/84125825 [..............................] - ETA: 2:29" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 204800/84125825 [..............................] - ETA: 1:56" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 352256/84125825 [..............................] - ETA: 1:30" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 516096/84125825 [..............................] - ETA: 1:16" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 663552/84125825 [..............................] - ETA: 1:05" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 860160/84125825 [..............................] - ETA: 59s " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 1073152/84125825 [..............................] - ETA: 51s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 1351680/84125825 [..............................] - ETA: 46s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 1695744/84125825 [..............................] - ETA: 39s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2088960/84125825 [..............................] - ETA: 35s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2547712/84125825 [..............................] - ETA: 30s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3039232/84125825 [>.............................] - ETA: 26s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3514368/84125825 [>.............................] - ETA: 25s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4177920/84125825 [>.............................] - ETA: 21s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4939776/84125825 [>.............................] - ETA: 19s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5890048/84125825 [=>............................] - ETA: 16s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6823936/84125825 [=>............................] - ETA: 15s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7856128/84125825 [=>............................] - ETA: 13s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9068544/84125825 [==>...........................] - ETA: 11s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10493952/84125825 [==>...........................] - ETA: 10s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12148736/84125825 [===>..........................] - ETA: 9s " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13885440/84125825 [===>..........................] - ETA: 7s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15843328/84125825 [====>.........................] - ETA: 7s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18046976/84125825 [=====>........................] - ETA: 6s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20529152/84125825 [======>.......................] - ETA: 5s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23142400/84125825 [=======>......................] - ETA: 4s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25772032/84125825 [========>.....................] - ETA: 4s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28762112/84125825 [=========>....................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31744000/84125825 [==========>...................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34709504/84125825 [===========>..................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37855232/84125825 [============>.................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "41033728/84125825 [=============>................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "44310528/84125825 [==============>...............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "47554560/84125825 [===============>..............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "50700288/84125825 [=================>............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "53993472/84125825 [==================>...........] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "57171968/84125825 [===================>..........] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "60334080/84125825 [====================>.........] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "63610880/84125825 [=====================>........] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "66789376/84125825 [======================>.......] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "69935104/84125825 [=======================>......] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "73080832/84125825 [=========================>....] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "76357632/84125825 [==========================>...] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "79552512/84125825 [===========================>..] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "82731008/84125825 [============================>.] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "84125825/84125825 [==============================] - 3s 0us/step\n" ] } ], "source": [ "url = \"https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz\"\n", "\n", "dataset = tf.keras.utils.get_file(\"aclImdb_v1\", url,\n", " untar=True, cache_dir='.',\n", " cache_subdir='')\n", "\n", "dataset_dir = os.path.join(os.path.dirname(dataset), 'aclImdb')" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:31.445175Z", "iopub.status.busy": "2022-12-14T20:19:31.444568Z", "iopub.status.idle": "2022-12-14T20:19:31.452104Z", "shell.execute_reply": "2022-12-14T20:19:31.451457Z" }, "id": "355CfOvsV1pl" }, "outputs": [ { "data": { "text/plain": [ "['imdbEr.txt', 'imdb.vocab', 'train', 'test', 'README']" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "os.listdir(dataset_dir)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:31.455859Z", "iopub.status.busy": "2022-12-14T20:19:31.455285Z", "iopub.status.idle": "2022-12-14T20:19:31.460295Z", "shell.execute_reply": "2022-12-14T20:19:31.459670Z" }, "id": "7ASND15oXpF1" }, "outputs": [ { "data": { "text/plain": [ "['urls_unsup.txt',\n", " 'urls_neg.txt',\n", " 'labeledBow.feat',\n", " 'urls_pos.txt',\n", " 'unsup',\n", " 'unsupBow.feat',\n", " 'pos',\n", " 'neg']" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_dir = os.path.join(dataset_dir, 'train')\n", "os.listdir(train_dir)" ] }, { "cell_type": "markdown", "metadata": { "id": "ysMNMI1CWDFD" }, "source": [ "`aclImdb/train/pos` 및 `aclImdb/train/neg` 디렉토리에는 각각 단일 영화를 리뷰한 많은 텍스트 파일이 포함되어 있습니다. 그 중 하나를 살펴보겠습니다." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:31.464517Z", "iopub.status.busy": "2022-12-14T20:19:31.463860Z", "iopub.status.idle": "2022-12-14T20:19:31.468680Z", "shell.execute_reply": "2022-12-14T20:19:31.467922Z" }, "id": "R7g8hFvzWLIZ" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Rachel Griffiths writes and directs this award winning short film. A heartwarming story about coping with grief and cherishing the memory of those we've loved and lost. Although, only 15 minutes long, Griffiths manages to capture so much emotion and truth onto film in the short space of time. Bud Tingwell gives a touching performance as Will, a widower struggling to cope with his wife's death. Will is confronted by the harsh reality of loneliness and helplessness as he proceeds to take care of Ruth's pet cow, Tulip. The film displays the grief and responsibility one feels for those they have loved and lost. Good cinematography, great direction, and superbly acted. It will bring tears to all those who have lost a loved one, and survived.\n" ] } ], "source": [ "sample_file = os.path.join(train_dir, 'pos/1181_9.txt')\n", "with open(sample_file) as f:\n", " print(f.read())" ] }, { "cell_type": "markdown", "metadata": { "id": "Mk20TEm6ZRFP" }, "source": [ "### 데이터세트 로드하기\n", "\n", "다음으로, 디스크에서 데이터를 로드하고 훈련에 적합한 형식으로 준비합니다. 이를 위해 다음과 같은 디렉토리 구조를 예상하는 유용한 [text_dataset_from_directory](https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text_dataset_from_directory) 유틸리티를 사용합니다.\n", "\n", "```\n", "main_directory/\n", "...class_a/\n", "......a_text_1.txt\n", "......a_text_2.txt\n", "...class_b/\n", "......b_text_1.txt\n", "......b_text_2.txt\n", "```" ] }, { "cell_type": "markdown", "metadata": { "id": "nQauv38Lnok3" }, "source": [ "이진 분류를 위한 데이터세트를 준비하려면 디스크에 `class_a` 및 `class_b`에 해당하는 두 개의 폴더가 필요합니다. 이것들은 `aclImdb/train/pos` 및 `aclImdb/train/neg`에서 찾을 수 있는 긍정적 영화 리뷰와 부정적 영화 리뷰입니다. IMDB 데이터세트에는 추가 폴더가 포함되어 있으므로 이 유틸리티를 사용하기 전에 제거합니다." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:31.472540Z", "iopub.status.busy": "2022-12-14T20:19:31.472049Z", "iopub.status.idle": "2022-12-14T20:19:32.452195Z", "shell.execute_reply": "2022-12-14T20:19:32.451427Z" }, "id": "VhejsClzaWfl" }, "outputs": [], "source": [ "remove_dir = os.path.join(train_dir, 'unsup')\n", "shutil.rmtree(remove_dir)" ] }, { "cell_type": "markdown", "metadata": { "id": "95kkUdRoaeMw" }, "source": [ "다음으로 `text_dataset_from_directory` 유틸리티를 사용하여 레이블이 지정된 `tf.data.Dataset`를 만듭니다. [tf.data](https://www.tensorflow.org/guide/data)는 데이터 작업을 위한 강력한 도구 모음입니다.\n", "\n", "머신러닝 실험을 실행할 때 데이터세트를 [train](https://developers.google.com/machine-learning/glossary#training_set), [validation](https://developers.google.com/machine-learning/glossary#validation_set) 및 [test](https://developers.google.com/machine-learning/glossary#test-set)의 세 부분으로 나누는 것이 가장 좋습니다.\n", "\n", "IMDB 데이터세트는 이미 훈련과 테스트로 나누어져 있지만 검증 세트가 부족합니다. 아래 `validation_split` 인수를 사용하여 훈련 데이터를 80:20으로 분할하여 검증 세트를 생성해 보겠습니다." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:32.456545Z", "iopub.status.busy": "2022-12-14T20:19:32.456262Z", "iopub.status.idle": "2022-12-14T20:19:37.425329Z", "shell.execute_reply": "2022-12-14T20:19:37.424557Z" }, "id": "nOrK-MTYaw3C" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Found 25000 files belonging to 2 classes.\n", "Using 20000 files for training.\n" ] } ], "source": [ "batch_size = 32\n", "seed = 42\n", "\n", "raw_train_ds = tf.keras.utils.text_dataset_from_directory(\n", " 'aclImdb/train', \n", " batch_size=batch_size, \n", " validation_split=0.2, \n", " subset='training', \n", " seed=seed)" ] }, { "cell_type": "markdown", "metadata": { "id": "5Y33oxOUpYkh" }, "source": [ "위에서 볼 수 있듯이 training 폴더에는 25,000개의 예제가 있으며 그 중 80%(또는 20,000개)를 훈련에 사용할 것입니다. 잠시 후에 알 수 있겠지만 데이터세트를 `model.fit`에 직접 전달하여 모델을 훈련할 수 있습니다. `tf.data`를 처음 사용하는 경우 데이터세트를 반복하고 다음과 같이 몇 가지 예를 출력할 수도 있습니다." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:37.429536Z", "iopub.status.busy": "2022-12-14T20:19:37.428997Z", "iopub.status.idle": "2022-12-14T20:19:37.458934Z", "shell.execute_reply": "2022-12-14T20:19:37.458081Z" }, "id": "51wNaPPApk1K" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Review b'\"Pandemonium\" is a horror movie spoof that comes off more stupid than funny. Believe me when I tell you, I love comedies. Especially comedy spoofs. \"Airplane\", \"The Naked Gun\" trilogy, \"Blazing Saddles\", \"High Anxiety\", and \"Spaceballs\" are some of my favorite comedies that spoof a particular genre. \"Pandemonium\" is not up there with those films. Most of the scenes in this movie had me sitting there in stunned silence because the movie wasn\\'t all that funny. There are a few laughs in the film, but when you watch a comedy, you expect to laugh a lot more than a few times and that\\'s all this film has going for it. Geez, \"Scream\" had more laughs than this film and that was more of a horror film. How bizarre is that?

*1/2 (out of four)'\n", "Label 0\n", "Review b\"David Mamet is a very interesting and a very un-equal director. His first movie 'House of Games' was the one I liked best, and it set a series of films with characters whose perspective of life changes as they get into complicated situations, and so does the perspective of the viewer.

So is 'Homicide' which from the title tries to set the mind of the viewer to the usual crime drama. The principal characters are two cops, one Jewish and one Irish who deal with a racially charged area. The murder of an old Jewish shop owner who proves to be an ancient veteran of the Israeli Independence war triggers the Jewish identity in the mind and heart of the Jewish detective.

This is were the flaws of the film are the more obvious. The process of awakening is theatrical and hard to believe, the group of Jewish militants is operatic, and the way the detective eventually walks to the final violent confrontation is pathetic. The end of the film itself is Mamet-like smart, but disappoints from a human emotional perspective.

Joe Mantegna and William Macy give strong performances, but the flaws of the story are too evident to be easily compensated.\"\n", "Label 0\n", "Review b'Great documentary about the lives of NY firefighters during the worst terrorist attack of all time.. That reason alone is why this should be a must see collectors item.. What shocked me was not only the attacks, but the\"High Fat Diet\" and physical appearance of some of these firefighters. I think a lot of Doctors would agree with me that,in the physical shape they were in, some of these firefighters would NOT of made it to the 79th floor carrying over 60 lbs of gear. Having said that i now have a greater respect for firefighters and i realize becoming a firefighter is a life altering job. The French have a history of making great documentary\\'s and that is what this is, a Great Documentary.....'\n", "Label 1\n" ] } ], "source": [ "for text_batch, label_batch in raw_train_ds.take(1):\n", " for i in range(3):\n", " print(\"Review\", text_batch.numpy()[i])\n", " print(\"Label\", label_batch.numpy()[i])" ] }, { "cell_type": "markdown", "metadata": { "id": "JWq1SUIrp1a-" }, "source": [ "리뷰에는 `
`와 같은 간헐적 HTML 태그와 구두점을 포함한 원시 텍스트가 포함되어 있다는 점에 주목하세요. 다음 섹션에서 이를 처리하는 방법을 보여줍니다.\n", "\n", "레이블은 0 또는 1입니다. 이들 중 어느 것이 긍정적이고 부정적인 영화 리뷰에 해당하는지 확인하려면 데이터세트에서 `class_names` 속성을 확인할 수 있습니다.\n" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:37.462876Z", "iopub.status.busy": "2022-12-14T20:19:37.462169Z", "iopub.status.idle": "2022-12-14T20:19:37.466281Z", "shell.execute_reply": "2022-12-14T20:19:37.465646Z" }, "id": "MlICTG8spyO2" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Label 0 corresponds to neg\n", "Label 1 corresponds to pos\n" ] } ], "source": [ "print(\"Label 0 corresponds to\", raw_train_ds.class_names[0])\n", "print(\"Label 1 corresponds to\", raw_train_ds.class_names[1])" ] }, { "cell_type": "markdown", "metadata": { "id": "pbdO39vYqdJr" }, "source": [ "다음으로, 검증 및 테스트 데이터세트를 만듭니다. 검증을 위해 훈련 세트의 나머지 5,000개 리뷰를 사용합니다." ] }, { "cell_type": "markdown", "metadata": { "id": "SzxazN8Hq1pF" }, "source": [ "참고: `validation_split` 및 `subset` 인수를 사용할 때 검증 및 훈련 분할이 겹치지 않도록 임의 시드를 지정하거나 `shuffle=False`를 전달하는 것을 잊지 마세요." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:37.469768Z", "iopub.status.busy": "2022-12-14T20:19:37.469490Z", "iopub.status.idle": "2022-12-14T20:19:38.781205Z", "shell.execute_reply": "2022-12-14T20:19:38.780484Z" }, "id": "JsMwwhOoqjKF" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Found 25000 files belonging to 2 classes.\n", "Using 5000 files for validation.\n" ] } ], "source": [ "raw_val_ds = tf.keras.utils.text_dataset_from_directory(\n", " 'aclImdb/train', \n", " batch_size=batch_size, \n", " validation_split=0.2, \n", " subset='validation', \n", " seed=seed)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:38.784689Z", "iopub.status.busy": "2022-12-14T20:19:38.784102Z", "iopub.status.idle": "2022-12-14T20:19:40.088837Z", "shell.execute_reply": "2022-12-14T20:19:40.088068Z" }, "id": "rdSr0Nt3q_ns" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Found 25000 files belonging to 2 classes.\n" ] } ], "source": [ "raw_test_ds = tf.keras.utils.text_dataset_from_directory(\n", " 'aclImdb/test', \n", " batch_size=batch_size)" ] }, { "cell_type": "markdown", "metadata": { "id": "qJmTiO0IYAjm" }, "source": [ "### 훈련을 위한 데이터세트 준비하기\n", "\n", "다음으로, 유용한 `tf.keras.layers.TextVectorization` 레이어를 사용하여 데이터를 표준화, 토큰화 및 벡터화합니다.\n", "\n", "표준화는 일반적으로 구두점이나 HTML 요소를 제거하여 데이터세트를 단순화하기 위해 텍스트를 전처리하는 것을 말합니다. 토큰화는 문자열을 여러 토큰으로 분할하는 것을 말합니다(예: 화이트스페이스에서 분할하여 문장을 개별 단어로 분할). 벡터화는 토큰을 숫자로 변환하여 신경망에 공급될 수 있도록 하는 것을 말합니다. 이러한 모든 작업을 이 레이어에서 수행할 수 있습니다.\n", "\n", "위에서 볼 수 있듯이 리뷰에는 `
`와 같은 다양한 HTML 태그가 포함되어 있습니다. 이러한 태그는 `TextVectorization` 레이어의 기본 표준화 도구로 제거되지 않습니다(텍스트를 소문자로 변환하고 기본적으로 구두점을 제거하지만 HTML은 제거하지 않음). HTML을 제거하기 위해 사용자 정의 표준화 함수를 작성합니다." ] }, { "cell_type": "markdown", "metadata": { "id": "ZVcHl-SLrH-u" }, "source": [ "참고: [훈련-테스트 왜곡](https://developers.google.com/machine-learning/guides/rules-of-ml#training-serving_skew)(훈련-제공 왜곡이라고도 함)를 방지하려면 훈련 및 테스트 시간에 데이터를 동일하게 전처리하는 것이 중요합니다. 이를 용이하게 하기 위해 `TextVectorization` 레이어를 모델 내에 직접 포함할 수 있습니다. 본 튜토리얼에서 나중에 이 내용을 알아봅니다." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:40.093078Z", "iopub.status.busy": "2022-12-14T20:19:40.092490Z", "iopub.status.idle": "2022-12-14T20:19:40.096731Z", "shell.execute_reply": "2022-12-14T20:19:40.096090Z" }, "id": "SDRI_s_tX1Hk" }, "outputs": [], "source": [ "def custom_standardization(input_data):\n", " lowercase = tf.strings.lower(input_data)\n", " stripped_html = tf.strings.regex_replace(lowercase, '
', ' ')\n", " return tf.strings.regex_replace(stripped_html,\n", " '[%s]' % re.escape(string.punctuation),\n", " '')" ] }, { "cell_type": "markdown", "metadata": { "id": "d2d3Aw8dsUux" }, "source": [ "다음으로 `TextVectorization` 레이어를 만듭니다. 이 레이어를 사용하여 데이터를 표준화, 토큰화 및 벡터화합니다. 각 토큰에 대해 고유한 정수 인덱스를 생성하도록 `output_mode`를 `int`로 설정합니다.\n", "\n", "기본 분할 함수와 위에서 정의한 사용자 지정 표준화 함수를 사용하고 있습니다. 명시적 최대값인 `sequence_length`와 같이 모델에 대한 몇 가지 상수를 정의하여 레이어가 시퀀스를 정확히 `sequence_length` 값으로 채우거나 자르도록 합니다." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:40.100300Z", "iopub.status.busy": "2022-12-14T20:19:40.099683Z", "iopub.status.idle": "2022-12-14T20:19:40.114008Z", "shell.execute_reply": "2022-12-14T20:19:40.113318Z" }, "id": "-c76RvSzsMnX" }, "outputs": [], "source": [ "max_features = 10000\n", "sequence_length = 250\n", "\n", "vectorize_layer = layers.TextVectorization(\n", " standardize=custom_standardization,\n", " max_tokens=max_features,\n", " output_mode='int',\n", " output_sequence_length=sequence_length)" ] }, { "cell_type": "markdown", "metadata": { "id": "vlFOpfF6scT6" }, "source": [ "다음으로, 전처리 레이어의 상태를 데이터세트에 맞추기 위해 `adapt`를 호출합니다. 그러면 모델이 문자열 인덱스를 정수로 빌드합니다." ] }, { "cell_type": "markdown", "metadata": { "id": "lAhdjK7AtroA" }, "source": [ "참고: adapt를 호출할 때 훈련 데이터만 사용하는 것이 중요합니다(테스트세트를 사용하면 정보가 누출됨)." ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:40.118021Z", "iopub.status.busy": "2022-12-14T20:19:40.117340Z", "iopub.status.idle": "2022-12-14T20:19:42.494818Z", "shell.execute_reply": "2022-12-14T20:19:42.493788Z" }, "id": "GH4_2ZGJsa_X" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/autograph/pyct/static_analysis/liveness.py:83: Analyzer.lamba_check (from tensorflow.python.autograph.pyct.static_analysis.liveness) is deprecated and will be removed after 2023-09-23.\n", "Instructions for updating:\n", "Lambda fuctions will be no more assumed to be used in the statement where they are used, or at least in the same block. https://github.com/tensorflow/tensorflow/issues/56089\n" ] } ], "source": [ "# Make a text-only dataset (without labels), then call adapt\n", "train_text = raw_train_ds.map(lambda x, y: x)\n", "vectorize_layer.adapt(train_text)" ] }, { "cell_type": "markdown", "metadata": { "id": "SHQVEFzNt-K_" }, "source": [ "이 레이어를 사용하여 일부 데이터를 전처리한 결과를 확인하는 함수를 만들어 보겠습니다." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:42.499800Z", "iopub.status.busy": "2022-12-14T20:19:42.499037Z", "iopub.status.idle": "2022-12-14T20:19:42.503069Z", "shell.execute_reply": "2022-12-14T20:19:42.502255Z" }, "id": "SCIg_T50wOCU" }, "outputs": [], "source": [ "def vectorize_text(text, label):\n", " text = tf.expand_dims(text, -1)\n", " return vectorize_layer(text), label" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:42.506809Z", "iopub.status.busy": "2022-12-14T20:19:42.506059Z", "iopub.status.idle": "2022-12-14T20:19:42.570333Z", "shell.execute_reply": "2022-12-14T20:19:42.569615Z" }, "id": "XULcm6B3xQIO" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Review tf.Tensor(b'Great movie - especially the music - Etta James - \"At Last\". This speaks volumes when you have finally found that special someone.', shape=(), dtype=string)\n", "Label neg\n", "Vectorized review (, )\n" ] } ], "source": [ "# retrieve a batch (of 32 reviews and labels) from the dataset\n", "text_batch, label_batch = next(iter(raw_train_ds))\n", "first_review, first_label = text_batch[0], label_batch[0]\n", "print(\"Review\", first_review)\n", "print(\"Label\", raw_train_ds.class_names[first_label])\n", "print(\"Vectorized review\", vectorize_text(first_review, first_label))" ] }, { "cell_type": "markdown", "metadata": { "id": "6u5EX0hxyNZT" }, "source": [ "위에서 볼 수 있듯이 각 토큰은 정수로 대체되었습니다. 레이어에서 `.get_vocabulary()`를 호출하여 각 정수에 해당하는 토큰(문자열)을 조회할 수 있습니다." ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:42.574388Z", "iopub.status.busy": "2022-12-14T20:19:42.573766Z", "iopub.status.idle": "2022-12-14T20:19:42.621457Z", "shell.execute_reply": "2022-12-14T20:19:42.620773Z" }, "id": "kRq9hTQzhVhW" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1287 ---> silent\n", " 313 ---> night\n", "Vocabulary size: 10000\n" ] } ], "source": [ "print(\"1287 ---> \",vectorize_layer.get_vocabulary()[1287])\n", "print(\" 313 ---> \",vectorize_layer.get_vocabulary()[313])\n", "print('Vocabulary size: {}'.format(len(vectorize_layer.get_vocabulary())))" ] }, { "cell_type": "markdown", "metadata": { "id": "XD2H6utRydGv" }, "source": [ "모델을 훈련할 준비가 거의 되었습니다. 최종 전처리 단계로 이전에 생성한 TextVectorization 레이어를 훈련, 검증 및 테스트 데이터세트에 적용합니다." ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:42.625295Z", "iopub.status.busy": "2022-12-14T20:19:42.624581Z", "iopub.status.idle": "2022-12-14T20:19:42.764864Z", "shell.execute_reply": "2022-12-14T20:19:42.764065Z" }, "id": "2zhmpeViI1iG" }, "outputs": [], "source": [ "train_ds = raw_train_ds.map(vectorize_text)\n", "val_ds = raw_val_ds.map(vectorize_text)\n", "test_ds = raw_test_ds.map(vectorize_text)" ] }, { "cell_type": "markdown", "metadata": { "id": "YsVQyPMizjuO" }, "source": [ "### 성능을 높이도록 데이터세트 구성하기\n", "\n", "다음은 I/O가 차단되지 않도록 데이터를 로드할 때 사용해야 하는 두 가지 중요한 메서드입니다.\n", "\n", "`.cache()`는 데이터가 디스크에서 로드된 후 메모리에 데이터를 보관합니다. 이렇게 하면 모델을 훈련하는 동안 데이터세트로 인해 병목 현상이 발생하지 않습니다. 데이터세트가 너무 커서 메모리에 맞지 않는 경우, 이 메서드를 사용하여 성능이 뛰어난 온 디스크 캐시를 생성할 수도 있습니다. 많은 작은 파일보다 읽기가 더 효율적입니다.\n", "\n", "`.prefetch()`는 훈련 중에 데이터 전처리 및 모델 실행과 겹칩니다.\n", "\n", "[데이터 성능 가이드](https://www.tensorflow.org/guide/data_performance)에서 두 가지 메서드와 데이터를 디스크에 캐싱하는 방법에 관해 자세히 알아볼 수 있습니다." ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:42.769459Z", "iopub.status.busy": "2022-12-14T20:19:42.768773Z", "iopub.status.idle": "2022-12-14T20:19:42.777705Z", "shell.execute_reply": "2022-12-14T20:19:42.777073Z" }, "id": "wMcs_H7izm5m" }, "outputs": [], "source": [ "AUTOTUNE = tf.data.AUTOTUNE\n", "\n", "train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)\n", "val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)\n", "test_ds = test_ds.cache().prefetch(buffer_size=AUTOTUNE)" ] }, { "cell_type": "markdown", "metadata": { "id": "LLC02j2g-llC" }, "source": [ "### 모델 생성\n", "\n", "이제 신경망을 만들 차례입니다." ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:42.781503Z", "iopub.status.busy": "2022-12-14T20:19:42.780980Z", "iopub.status.idle": "2022-12-14T20:19:42.784337Z", "shell.execute_reply": "2022-12-14T20:19:42.783705Z" }, "id": "dkQP6in8yUBR" }, "outputs": [], "source": [ "embedding_dim = 16" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:42.787859Z", "iopub.status.busy": "2022-12-14T20:19:42.787346Z", "iopub.status.idle": "2022-12-14T20:19:42.850162Z", "shell.execute_reply": "2022-12-14T20:19:42.849457Z" }, "id": "xpKOoWgu-llD" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Model: \"sequential\"\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "_________________________________________________________________\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Layer (type) Output Shape Param # \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "=================================================================\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " embedding (Embedding) (None, None, 16) 160016 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " dropout (Dropout) (None, None, 16) 0 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " global_average_pooling1d (G (None, 16) 0 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " lobalAveragePooling1D) \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " dropout_1 (Dropout) (None, 16) 0 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " dense (Dense) (None, 1) 17 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "=================================================================\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Total params: 160,033\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Trainable params: 160,033\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Non-trainable params: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "_________________________________________________________________\n" ] } ], "source": [ "model = tf.keras.Sequential([\n", " layers.Embedding(max_features + 1, embedding_dim),\n", " layers.Dropout(0.2),\n", " layers.GlobalAveragePooling1D(),\n", " layers.Dropout(0.2),\n", " layers.Dense(1)])\n", "\n", "model.summary()" ] }, { "cell_type": "markdown", "metadata": { "id": "6PbKQ6mucuKL" }, "source": [ "층을 순서대로 쌓아 분류기(classifier)를 만듭니다:\n", "\n", "1. 첫 번째 레이어는 `Embedding` 레이어입니다. 이 레이어는 정수로 인코딩된 리뷰를 입력 받고 각 단어 인덱스에 해당하는 임베딩 벡터를 찾습니다. 이러한 벡터는 모델이 훈련되면서 학습됩니다. 이들 벡터는 출력 배열에 차원을 추가합니다. 최종 차원은 `(batch, sequence, embedding)`이 됩니다. 임베딩에 대해 보다 자세히 알아보려면 [단어 임베딩](https://www.tensorflow.org/text/guide/word_embeddings) 튜토리얼을 확인하세요.\n", "2. 그다음 `GlobalAveragePooling1D` 층은 `sequence` 차원에 대해 평균을 계산하여 각 샘플에 대해 고정된 길이의 출력 벡터를 반환합니다. 이는 길이가 다른 입력을 다루는 가장 간단한 방법입니다.\n", "3. 이 고정 길이의 출력 벡터는 16개의 은닉 유닛을 가진 완전 연결(fully-connected) 층(`Dense`)을 거칩니다.\n", "4. 마지막 층은 하나의 출력 노드(node)를 가진 완전 연결 층입니다. `sigmoid` 활성화 함수를 사용하여 0과 1 사이의 실수를 출력합니다. 이 값은 확률 또는 신뢰도를 나타냅니다." ] }, { "cell_type": "markdown", "metadata": { "id": "L4EqVWg4-llM" }, "source": [ "### 손실 함수와 옵티마이저\n", "\n", "모델이 훈련하려면 손실 함수(loss function)과 옵티마이저(optimizer)가 필요합니다. 이 예제는 이진 분류 문제이고 모델이 확률을 출력하므로(출력층의 유닛이 하나이고 `sigmoid` 활성화 함수를 사용합니다), `binary_crossentropy` 손실 함수를 사용하겠습니다.\n", "\n", "이제 최적화 기와 손실 함수를 사용하도록 모델을 구성합니다." ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:42.859610Z", "iopub.status.busy": "2022-12-14T20:19:42.858866Z", "iopub.status.idle": "2022-12-14T20:19:42.875293Z", "shell.execute_reply": "2022-12-14T20:19:42.874587Z" }, "id": "Mr0GP-cQ-llN" }, "outputs": [], "source": [ "model.compile(loss=losses.BinaryCrossentropy(from_logits=True),\n", " optimizer='adam',\n", " metrics=tf.metrics.BinaryAccuracy(threshold=0.0))" ] }, { "cell_type": "markdown", "metadata": { "id": "35jv_fzP-llU" }, "source": [ "### 모델 훈련하기\n", "\n", "`dataset` 개체를 fit 메서드에 전달하여 모델을 훈련합니다." ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:19:42.879122Z", "iopub.status.busy": "2022-12-14T20:19:42.878584Z", "iopub.status.idle": "2022-12-14T20:20:49.144887Z", "shell.execute_reply": "2022-12-14T20:20:49.144132Z" }, "id": "tXSGrjWZ-llW" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/625 [..............................] - ETA: 14:52 - loss: 0.6952 - binary_accuracy: 0.1875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/625 [..............................] - ETA: 1:47 - loss: 0.6942 - binary_accuracy: 0.3438 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/625 [..............................] - ETA: 1:44 - loss: 0.6937 - binary_accuracy: 0.4271" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/625 [..............................] - ETA: 1:45 - loss: 0.6933 - binary_accuracy: 0.4688" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/625 [..............................] - ETA: 1:44 - loss: 0.6931 - binary_accuracy: 0.4938" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/625 [..............................] - ETA: 1:44 - loss: 0.6930 - binary_accuracy: 0.5052" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/625 [..............................] - ETA: 1:44 - loss: 0.6930 - binary_accuracy: 0.5089" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/625 [..............................] - ETA: 1:43 - loss: 0.6930 - binary_accuracy: 0.5234" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/625 [..............................] - ETA: 1:43 - loss: 0.6930 - binary_accuracy: 0.5174" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/625 [..............................] - ETA: 1:43 - loss: 0.6932 - binary_accuracy: 0.5125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/625 [..............................] - ETA: 1:42 - loss: 0.6929 - binary_accuracy: 0.5284" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/625 [..............................] - ETA: 1:42 - loss: 0.6929 - binary_accuracy: 0.5339" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/625 [..............................] - ETA: 1:41 - loss: 0.6928 - binary_accuracy: 0.5409" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 14/625 [..............................] - ETA: 1:41 - loss: 0.6928 - binary_accuracy: 0.5335" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/625 [..............................] - ETA: 1:41 - loss: 0.6929 - binary_accuracy: 0.5292" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/625 [..............................] - ETA: 1:40 - loss: 0.6928 - binary_accuracy: 0.5273" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17/625 [..............................] - ETA: 1:40 - loss: 0.6929 - binary_accuracy: 0.5276" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/625 [..............................] - ETA: 1:40 - loss: 0.6929 - binary_accuracy: 0.5278" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/625 [..............................] - ETA: 1:39 - loss: 0.6929 - binary_accuracy: 0.5230" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/625 [>.............................] - ETA: 1:34 - loss: 0.6929 - binary_accuracy: 0.5193" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/625 [>.............................] - ETA: 1:34 - loss: 0.6928 - binary_accuracy: 0.5199" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 23/625 [>.............................] - ETA: 1:34 - loss: 0.6928 - binary_accuracy: 0.5231" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/625 [>.............................] - ETA: 1:34 - loss: 0.6928 - binary_accuracy: 0.5208" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/625 [>.............................] - ETA: 1:34 - loss: 0.6928 - binary_accuracy: 0.5200" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/625 [>.............................] - ETA: 1:34 - loss: 0.6928 - binary_accuracy: 0.5204" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/625 [>.............................] - ETA: 1:34 - loss: 0.6929 - binary_accuracy: 0.5116" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/625 [>.............................] - ETA: 1:34 - loss: 0.6928 - binary_accuracy: 0.5112" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 29/625 [>.............................] - ETA: 1:34 - loss: 0.6928 - binary_accuracy: 0.5129" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/625 [>.............................] - ETA: 1:34 - loss: 0.6927 - binary_accuracy: 0.5146" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/625 [>.............................] - ETA: 1:34 - loss: 0.6928 - binary_accuracy: 0.5121" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/625 [>.............................] - ETA: 1:34 - loss: 0.6927 - binary_accuracy: 0.5117" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/625 [>.............................] - ETA: 1:34 - loss: 0.6927 - binary_accuracy: 0.5133" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/625 [>.............................] - ETA: 1:31 - loss: 0.6927 - binary_accuracy: 0.5107" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/625 [>.............................] - ETA: 1:31 - loss: 0.6927 - binary_accuracy: 0.5113" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/625 [>.............................] - ETA: 1:31 - loss: 0.6927 - binary_accuracy: 0.5101" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/625 [>.............................] - ETA: 1:31 - loss: 0.6927 - binary_accuracy: 0.5115" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/625 [>.............................] - ETA: 1:31 - loss: 0.6927 - binary_accuracy: 0.5120" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/625 [>.............................] - ETA: 1:31 - loss: 0.6927 - binary_accuracy: 0.5141" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 41/625 [>.............................] - ETA: 1:31 - loss: 0.6926 - binary_accuracy: 0.5183" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 42/625 [=>............................] - ETA: 1:31 - loss: 0.6926 - binary_accuracy: 0.5186" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/625 [=>............................] - ETA: 1:31 - loss: 0.6926 - binary_accuracy: 0.5182" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 44/625 [=>............................] - ETA: 1:31 - loss: 0.6925 - binary_accuracy: 0.5206" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/625 [=>............................] - ETA: 1:29 - loss: 0.6925 - binary_accuracy: 0.5224" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 47/625 [=>............................] - ETA: 1:29 - loss: 0.6924 - binary_accuracy: 0.5246" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/625 [=>............................] - ETA: 1:28 - loss: 0.6924 - binary_accuracy: 0.5260" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/625 [=>............................] - ETA: 1:28 - loss: 0.6923 - binary_accuracy: 0.5287" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 50/625 [=>............................] - ETA: 1:28 - loss: 0.6923 - binary_accuracy: 0.5275" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/625 [=>............................] - ETA: 1:28 - loss: 0.6923 - binary_accuracy: 0.5276" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/625 [=>............................] - ETA: 1:28 - loss: 0.6923 - binary_accuracy: 0.5282" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 54/625 [=>............................] - ETA: 1:26 - loss: 0.6922 - binary_accuracy: 0.5324" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/625 [=>............................] - ETA: 1:26 - loss: 0.6922 - binary_accuracy: 0.5318" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 56/625 [=>............................] - ETA: 1:26 - loss: 0.6922 - binary_accuracy: 0.5307" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57/625 [=>............................] - ETA: 1:26 - loss: 0.6922 - binary_accuracy: 0.5291" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/625 [=>............................] - ETA: 1:26 - loss: 0.6921 - binary_accuracy: 0.5296" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/625 [=>............................] - ETA: 1:26 - loss: 0.6922 - binary_accuracy: 0.5291" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/625 [=>............................] - ETA: 1:26 - loss: 0.6921 - binary_accuracy: 0.5307" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/625 [=>............................] - ETA: 1:26 - loss: 0.6921 - binary_accuracy: 0.5302" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 62/625 [=>............................] - ETA: 1:26 - loss: 0.6920 - binary_accuracy: 0.5328" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 63/625 [==>...........................] - ETA: 1:26 - loss: 0.6920 - binary_accuracy: 0.5327" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/625 [==>...........................] - ETA: 1:26 - loss: 0.6920 - binary_accuracy: 0.5317" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 65/625 [==>...........................] - ETA: 1:26 - loss: 0.6920 - binary_accuracy: 0.5322" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 68/625 [==>...........................] - ETA: 1:23 - loss: 0.6920 - binary_accuracy: 0.5294" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/625 [==>...........................] - ETA: 1:22 - loss: 0.6920 - binary_accuracy: 0.5286" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/625 [==>...........................] - ETA: 1:22 - loss: 0.6920 - binary_accuracy: 0.5286" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/625 [==>...........................] - ETA: 1:20 - loss: 0.6920 - binary_accuracy: 0.5274" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 74/625 [==>...........................] - ETA: 1:20 - loss: 0.6919 - binary_accuracy: 0.5283" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/625 [==>...........................] - ETA: 1:19 - loss: 0.6918 - binary_accuracy: 0.5304" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/625 [==>...........................] - ETA: 1:19 - loss: 0.6917 - binary_accuracy: 0.5296" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/625 [==>...........................] - ETA: 1:19 - loss: 0.6918 - binary_accuracy: 0.5272" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/625 [==>...........................] - ETA: 1:19 - loss: 0.6917 - binary_accuracy: 0.5285" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 80/625 [==>...........................] - ETA: 1:19 - loss: 0.6916 - binary_accuracy: 0.5289" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 83/625 [==>...........................] - ETA: 1:17 - loss: 0.6917 - binary_accuracy: 0.5267" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84/625 [===>..........................] - ETA: 1:17 - loss: 0.6916 - binary_accuracy: 0.5272" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/625 [===>..........................] - ETA: 1:17 - loss: 0.6917 - binary_accuracy: 0.5265" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 86/625 [===>..........................] - ETA: 1:17 - loss: 0.6916 - binary_accuracy: 0.5273" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/625 [===>..........................] - ETA: 1:16 - loss: 0.6916 - binary_accuracy: 0.5266" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 89/625 [===>..........................] - ETA: 1:16 - loss: 0.6917 - binary_accuracy: 0.5242" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 90/625 [===>..........................] - ETA: 1:16 - loss: 0.6917 - binary_accuracy: 0.5236" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/625 [===>..........................] - ETA: 1:15 - loss: 0.6916 - binary_accuracy: 0.5234" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 93/625 [===>..........................] - ETA: 1:15 - loss: 0.6917 - binary_accuracy: 0.5215" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/625 [===>..........................] - ETA: 1:13 - loss: 0.6917 - binary_accuracy: 0.5202" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 98/625 [===>..........................] - ETA: 1:12 - loss: 0.6916 - binary_accuracy: 0.5204" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "101/625 [===>..........................] - ETA: 1:10 - loss: 0.6917 - binary_accuracy: 0.5170" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "102/625 [===>..........................] - ETA: 1:10 - loss: 0.6917 - binary_accuracy: 0.5162" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "104/625 [===>..........................] - ETA: 1:09 - loss: 0.6916 - binary_accuracy: 0.5168" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "105/625 [====>.........................] - ETA: 1:09 - loss: 0.6916 - binary_accuracy: 0.5167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/625 [====>.........................] - ETA: 1:09 - loss: 0.6916 - binary_accuracy: 0.5158" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "108/625 [====>.........................] - ETA: 1:09 - loss: 0.6915 - binary_accuracy: 0.5174" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/625 [====>.........................] - ETA: 1:09 - loss: 0.6915 - binary_accuracy: 0.5181" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "110/625 [====>.........................] - ETA: 1:09 - loss: 0.6915 - binary_accuracy: 0.5188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "111/625 [====>.........................] - ETA: 1:09 - loss: 0.6915 - binary_accuracy: 0.5191" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/625 [====>.........................] - ETA: 1:09 - loss: 0.6915 - binary_accuracy: 0.5195" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113/625 [====>.........................] - ETA: 1:09 - loss: 0.6915 - binary_accuracy: 0.5191" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/625 [====>.........................] - ETA: 1:08 - loss: 0.6914 - binary_accuracy: 0.5207" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117/625 [====>.........................] - ETA: 1:07 - loss: 0.6914 - binary_accuracy: 0.5214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "119/625 [====>.........................] - ETA: 1:07 - loss: 0.6914 - binary_accuracy: 0.5239" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/625 [====>.........................] - ETA: 1:07 - loss: 0.6914 - binary_accuracy: 0.5247" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/625 [====>.........................] - ETA: 1:07 - loss: 0.6914 - binary_accuracy: 0.5261" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "122/625 [====>.........................] - ETA: 1:07 - loss: 0.6913 - binary_accuracy: 0.5282" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/625 [====>.........................] - ETA: 1:06 - loss: 0.6913 - binary_accuracy: 0.5315" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "125/625 [=====>........................] - ETA: 1:06 - loss: 0.6912 - binary_accuracy: 0.5328" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/625 [=====>........................] - ETA: 1:05 - loss: 0.6912 - binary_accuracy: 0.5349" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/625 [=====>........................] - ETA: 1:04 - loss: 0.6911 - binary_accuracy: 0.5380" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "131/625 [=====>........................] - ETA: 1:04 - loss: 0.6911 - binary_accuracy: 0.5401" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134/625 [=====>........................] - ETA: 1:03 - loss: 0.6910 - binary_accuracy: 0.5445" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/625 [=====>........................] - ETA: 1:02 - loss: 0.6910 - binary_accuracy: 0.5464" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/625 [=====>........................] - ETA: 1:02 - loss: 0.6910 - binary_accuracy: 0.5484" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/625 [=====>........................] - ETA: 1:02 - loss: 0.6909 - binary_accuracy: 0.5501" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/625 [=====>........................] - ETA: 1:01 - loss: 0.6908 - binary_accuracy: 0.5546" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "144/625 [=====>........................] - ETA: 1:00 - loss: 0.6908 - binary_accuracy: 0.5573" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/625 [=====>........................] - ETA: 1:00 - loss: 0.6908 - binary_accuracy: 0.5582" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "146/625 [======>.......................] - ETA: 1:00 - loss: 0.6908 - binary_accuracy: 0.5591" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "147/625 [======>.......................] - ETA: 1:00 - loss: 0.6908 - binary_accuracy: 0.5593" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/625 [======>.......................] - ETA: 1:00 - loss: 0.6907 - binary_accuracy: 0.5604" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "149/625 [======>.......................] - ETA: 1:00 - loss: 0.6907 - binary_accuracy: 0.5606" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/625 [======>.......................] - ETA: 59s - loss: 0.6907 - binary_accuracy: 0.5621 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/625 [======>.......................] - ETA: 59s - loss: 0.6907 - binary_accuracy: 0.5635" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "160/625 [======>.......................] - ETA: 56s - loss: 0.6905 - binary_accuracy: 0.5699" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "162/625 [======>.......................] - ETA: 56s - loss: 0.6904 - binary_accuracy: 0.5718" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "164/625 [======>.......................] - ETA: 55s - loss: 0.6904 - binary_accuracy: 0.5726" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "165/625 [======>.......................] - ETA: 55s - loss: 0.6903 - binary_accuracy: 0.5729" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "166/625 [======>.......................] - ETA: 55s - loss: 0.6903 - binary_accuracy: 0.5745" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "167/625 [=======>......................] - ETA: 55s - loss: 0.6903 - binary_accuracy: 0.5758" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "169/625 [=======>......................] - ETA: 55s - loss: 0.6902 - binary_accuracy: 0.5775" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "170/625 [=======>......................] - ETA: 55s - loss: 0.6902 - binary_accuracy: 0.5783" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "171/625 [=======>......................] - ETA: 55s - loss: 0.6901 - binary_accuracy: 0.5784" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "172/625 [=======>......................] - ETA: 55s - loss: 0.6901 - binary_accuracy: 0.5796" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "174/625 [=======>......................] - ETA: 54s - loss: 0.6900 - binary_accuracy: 0.5801" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "175/625 [=======>......................] - ETA: 54s - loss: 0.6900 - binary_accuracy: 0.5805" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "179/625 [=======>......................] - ETA: 53s - loss: 0.6899 - binary_accuracy: 0.5817" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "180/625 [=======>......................] - ETA: 53s - loss: 0.6899 - binary_accuracy: 0.5813" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "181/625 [=======>......................] - ETA: 53s - loss: 0.6899 - binary_accuracy: 0.5813" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "183/625 [=======>......................] - ETA: 52s - loss: 0.6898 - binary_accuracy: 0.5816" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "185/625 [=======>......................] - ETA: 52s - loss: 0.6898 - binary_accuracy: 0.5813" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "188/625 [========>.....................] - ETA: 51s - loss: 0.6897 - binary_accuracy: 0.5808" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "189/625 [========>.....................] - ETA: 51s - loss: 0.6897 - binary_accuracy: 0.5813" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "190/625 [========>.....................] - ETA: 51s - loss: 0.6896 - binary_accuracy: 0.5814" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "191/625 [========>.....................] - ETA: 51s - loss: 0.6896 - binary_accuracy: 0.5816" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "192/625 [========>.....................] - ETA: 51s - loss: 0.6896 - binary_accuracy: 0.5812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "194/625 [========>.....................] - ETA: 51s - loss: 0.6895 - binary_accuracy: 0.5805" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "195/625 [========>.....................] - ETA: 51s - loss: 0.6895 - binary_accuracy: 0.5804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "196/625 [========>.....................] - ETA: 51s - loss: 0.6895 - binary_accuracy: 0.5805" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "197/625 [========>.....................] - ETA: 51s - loss: 0.6896 - binary_accuracy: 0.5795" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "201/625 [========>.....................] - ETA: 50s - loss: 0.6894 - binary_accuracy: 0.5794" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "202/625 [========>.....................] - ETA: 50s - loss: 0.6894 - binary_accuracy: 0.5792" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "204/625 [========>.....................] - ETA: 49s - loss: 0.6894 - binary_accuracy: 0.5783" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "206/625 [========>.....................] - ETA: 49s - loss: 0.6894 - binary_accuracy: 0.5784" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "207/625 [========>.....................] - ETA: 49s - loss: 0.6893 - binary_accuracy: 0.5785" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "211/625 [=========>....................] - ETA: 48s - loss: 0.6892 - binary_accuracy: 0.5803" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "213/625 [=========>....................] - ETA: 48s - loss: 0.6892 - binary_accuracy: 0.5810" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "214/625 [=========>....................] - ETA: 48s - loss: 0.6891 - binary_accuracy: 0.5822" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "215/625 [=========>....................] - ETA: 48s - loss: 0.6890 - binary_accuracy: 0.5834" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "217/625 [=========>....................] - ETA: 47s - loss: 0.6890 - binary_accuracy: 0.5853" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "218/625 [=========>....................] - ETA: 47s - loss: 0.6889 - binary_accuracy: 0.5857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "219/625 [=========>....................] - ETA: 47s - loss: 0.6889 - binary_accuracy: 0.5863" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "220/625 [=========>....................] - ETA: 47s - loss: 0.6889 - binary_accuracy: 0.5868" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "221/625 [=========>....................] - ETA: 47s - loss: 0.6888 - binary_accuracy: 0.5874" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "224/625 [=========>....................] - ETA: 46s - loss: 0.6887 - binary_accuracy: 0.5890" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "225/625 [=========>....................] - ETA: 46s - loss: 0.6887 - binary_accuracy: 0.5903" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "226/625 [=========>....................] - ETA: 46s - loss: 0.6886 - binary_accuracy: 0.5907" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "228/625 [=========>....................] - ETA: 46s - loss: 0.6886 - binary_accuracy: 0.5917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "233/625 [==========>...................] - ETA: 45s - loss: 0.6884 - binary_accuracy: 0.5955" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "235/625 [==========>...................] - ETA: 44s - loss: 0.6883 - binary_accuracy: 0.5965" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "237/625 [==========>...................] - ETA: 44s - loss: 0.6883 - binary_accuracy: 0.5980" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "238/625 [==========>...................] - ETA: 44s - loss: 0.6882 - binary_accuracy: 0.5989" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "240/625 [==========>...................] - ETA: 44s - loss: 0.6881 - binary_accuracy: 0.5999" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "241/625 [==========>...................] - ETA: 44s - loss: 0.6881 - binary_accuracy: 0.6004" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "244/625 [==========>...................] - ETA: 43s - loss: 0.6879 - binary_accuracy: 0.6022" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "245/625 [==========>...................] - ETA: 43s - loss: 0.6879 - binary_accuracy: 0.6028" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "247/625 [==========>...................] - ETA: 43s - loss: 0.6878 - binary_accuracy: 0.6034" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "249/625 [==========>...................] - ETA: 42s - loss: 0.6878 - binary_accuracy: 0.6048" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "251/625 [===========>..................] - ETA: 42s - loss: 0.6877 - binary_accuracy: 0.6060" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "253/625 [===========>..................] - ETA: 42s - loss: 0.6876 - binary_accuracy: 0.6066" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "254/625 [===========>..................] - ETA: 42s - loss: 0.6876 - binary_accuracy: 0.6070" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "256/625 [===========>..................] - ETA: 41s - loss: 0.6875 - binary_accuracy: 0.6078" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "258/625 [===========>..................] - ETA: 41s - loss: 0.6874 - binary_accuracy: 0.6091" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "259/625 [===========>..................] - ETA: 41s - loss: 0.6874 - binary_accuracy: 0.6094" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "261/625 [===========>..................] - ETA: 41s - loss: 0.6873 - binary_accuracy: 0.6103" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "262/625 [===========>..................] - ETA: 41s - loss: 0.6872 - binary_accuracy: 0.6110" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "264/625 [===========>..................] - ETA: 41s - loss: 0.6871 - binary_accuracy: 0.6114" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "266/625 [===========>..................] - ETA: 40s - loss: 0.6870 - binary_accuracy: 0.6118" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "267/625 [===========>..................] - ETA: 40s - loss: 0.6870 - binary_accuracy: 0.6120" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "268/625 [===========>..................] - ETA: 40s - loss: 0.6870 - binary_accuracy: 0.6122" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "269/625 [===========>..................] - ETA: 40s - loss: 0.6869 - binary_accuracy: 0.6127" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "270/625 [===========>..................] - ETA: 40s - loss: 0.6869 - binary_accuracy: 0.6125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "271/625 [============>.................] - ETA: 40s - loss: 0.6868 - binary_accuracy: 0.6132" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "275/625 [============>.................] - ETA: 39s - loss: 0.6866 - binary_accuracy: 0.6148" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "277/625 [============>.................] - ETA: 39s - loss: 0.6866 - binary_accuracy: 0.6148" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "280/625 [============>.................] - ETA: 38s - loss: 0.6864 - binary_accuracy: 0.6163" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "281/625 [============>.................] - ETA: 38s - loss: 0.6864 - binary_accuracy: 0.6165" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "284/625 [============>.................] - ETA: 38s - loss: 0.6863 - binary_accuracy: 0.6178" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "288/625 [============>.................] - ETA: 37s - loss: 0.6861 - binary_accuracy: 0.6192" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "291/625 [============>.................] - ETA: 36s - loss: 0.6861 - binary_accuracy: 0.6200" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "293/625 [=============>................] - ETA: 36s - loss: 0.6860 - binary_accuracy: 0.6206" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "301/625 [=============>................] - ETA: 35s - loss: 0.6857 - binary_accuracy: 0.6231" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "302/625 [=============>................] - ETA: 34s - loss: 0.6856 - binary_accuracy: 0.6238" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "306/625 [=============>................] - ETA: 34s - loss: 0.6854 - binary_accuracy: 0.6246" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "307/625 [=============>................] - ETA: 34s - loss: 0.6854 - binary_accuracy: 0.6252" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "308/625 [=============>................] - ETA: 34s - loss: 0.6853 - binary_accuracy: 0.6257" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "311/625 [=============>................] - ETA: 33s - loss: 0.6851 - binary_accuracy: 0.6264" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "315/625 [==============>...............] - ETA: 33s - loss: 0.6850 - binary_accuracy: 0.6267" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "321/625 [==============>...............] - ETA: 31s - loss: 0.6848 - binary_accuracy: 0.6280" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "327/625 [==============>...............] - ETA: 30s - loss: 0.6846 - binary_accuracy: 0.6298" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "329/625 [==============>...............] - ETA: 30s - loss: 0.6845 - binary_accuracy: 0.6306" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "330/625 [==============>...............] - ETA: 30s - loss: 0.6844 - binary_accuracy: 0.6310" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "333/625 [==============>...............] - ETA: 30s - loss: 0.6842 - binary_accuracy: 0.6325" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "338/625 [===============>..............] - ETA: 29s - loss: 0.6840 - binary_accuracy: 0.6337" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "339/625 [===============>..............] - ETA: 29s - loss: 0.6840 - binary_accuracy: 0.6342" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "343/625 [===============>..............] - ETA: 28s - loss: 0.6838 - binary_accuracy: 0.6355" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "348/625 [===============>..............] - ETA: 27s - loss: 0.6836 - binary_accuracy: 0.6357" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "349/625 [===============>..............] - ETA: 27s - loss: 0.6836 - binary_accuracy: 0.6357" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "354/625 [===============>..............] - ETA: 27s - loss: 0.6834 - binary_accuracy: 0.6364" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "360/625 [================>.............] - ETA: 26s - loss: 0.6830 - binary_accuracy: 0.6391" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "369/625 [================>.............] - ETA: 24s - loss: 0.6825 - binary_accuracy: 0.6419" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "370/625 [================>.............] - ETA: 24s - loss: 0.6825 - binary_accuracy: 0.6420" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "374/625 [================>.............] - ETA: 24s - loss: 0.6823 - binary_accuracy: 0.6432" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "378/625 [=================>............] - ETA: 23s - loss: 0.6820 - binary_accuracy: 0.6448" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "380/625 [=================>............] - ETA: 23s - loss: 0.6819 - binary_accuracy: 0.6457" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "390/625 [=================>............] - ETA: 22s - loss: 0.6812 - binary_accuracy: 0.6493" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "391/625 [=================>............] - ETA: 22s - loss: 0.6812 - binary_accuracy: 0.6499" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "392/625 [=================>............] - ETA: 21s - loss: 0.6811 - binary_accuracy: 0.6502" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "394/625 [=================>............] - ETA: 21s - loss: 0.6809 - binary_accuracy: 0.6509" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "401/625 [==================>...........] - ETA: 20s - loss: 0.6805 - binary_accuracy: 0.6519" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "403/625 [==================>...........] - ETA: 20s - loss: 0.6804 - binary_accuracy: 0.6522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "407/625 [==================>...........] - ETA: 20s - loss: 0.6801 - binary_accuracy: 0.6537" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "409/625 [==================>...........] - ETA: 19s - loss: 0.6799 - binary_accuracy: 0.6543" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "410/625 [==================>...........] - ETA: 19s - loss: 0.6799 - binary_accuracy: 0.6548" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "418/625 [===================>..........] - ETA: 18s - loss: 0.6794 - binary_accuracy: 0.6562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "421/625 [===================>..........] - ETA: 18s - loss: 0.6792 - binary_accuracy: 0.6571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "427/625 [===================>..........] - ETA: 17s - loss: 0.6788 - binary_accuracy: 0.6588" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "437/625 [===================>..........] - ETA: 16s - loss: 0.6782 - binary_accuracy: 0.6607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "445/625 [====================>.........] - ETA: 15s - loss: 0.6776 - binary_accuracy: 0.6623" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "446/625 [====================>.........] - ETA: 15s - loss: 0.6776 - binary_accuracy: 0.6626" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "447/625 [====================>.........] - ETA: 15s - loss: 0.6776 - binary_accuracy: 0.6626" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "451/625 [====================>.........] - ETA: 15s - loss: 0.6773 - binary_accuracy: 0.6635" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "454/625 [====================>.........] - ETA: 14s - loss: 0.6770 - binary_accuracy: 0.6643" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "456/625 [====================>.........] - ETA: 14s - loss: 0.6769 - binary_accuracy: 0.6650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "464/625 [=====================>........] - ETA: 13s - loss: 0.6764 - binary_accuracy: 0.6659" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "465/625 [=====================>........] - ETA: 13s - loss: 0.6763 - binary_accuracy: 0.6664" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "470/625 [=====================>........] - ETA: 13s - loss: 0.6761 - binary_accuracy: 0.6669" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "474/625 [=====================>........] - ETA: 12s - loss: 0.6759 - binary_accuracy: 0.6671" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "488/625 [======================>.......] - ETA: 11s - loss: 0.6748 - binary_accuracy: 0.6698" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "490/625 [======================>.......] - ETA: 11s - loss: 0.6746 - binary_accuracy: 0.6703" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "497/625 [======================>.......] - ETA: 10s - loss: 0.6741 - binary_accuracy: 0.6716" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "499/625 [======================>.......] - ETA: 10s - loss: 0.6740 - binary_accuracy: 0.6720" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "509/625 [=======================>......] - ETA: 9s - loss: 0.6732 - binary_accuracy: 0.6741 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "513/625 [=======================>......] - ETA: 9s - loss: 0.6730 - binary_accuracy: 0.6744" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "521/625 [========================>.....] - ETA: 8s - loss: 0.6723 - binary_accuracy: 0.6763" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "524/625 [========================>.....] - ETA: 8s - loss: 0.6722 - binary_accuracy: 0.6762" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "526/625 [========================>.....] - ETA: 7s - loss: 0.6720 - binary_accuracy: 0.6768" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "530/625 [========================>.....] - ETA: 7s - loss: 0.6717 - binary_accuracy: 0.6774" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "533/625 [========================>.....] - ETA: 7s - loss: 0.6715 - binary_accuracy: 0.6778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "535/625 [========================>.....] - ETA: 7s - loss: 0.6714 - binary_accuracy: 0.6778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "538/625 [========================>.....] - ETA: 6s - loss: 0.6713 - binary_accuracy: 0.6782" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "541/625 [========================>.....] - ETA: 6s - loss: 0.6710 - binary_accuracy: 0.6789" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "544/625 [=========================>....] - ETA: 6s - loss: 0.6708 - binary_accuracy: 0.6794" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "546/625 [=========================>....] - ETA: 6s - loss: 0.6707 - binary_accuracy: 0.6795" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "547/625 [=========================>....] - ETA: 6s - loss: 0.6705 - binary_accuracy: 0.6800" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "560/625 [=========================>....] - ETA: 5s - loss: 0.6696 - binary_accuracy: 0.6814" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "564/625 [==========================>...] - ETA: 4s - loss: 0.6694 - binary_accuracy: 0.6815" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "572/625 [==========================>...] - ETA: 4s - loss: 0.6687 - binary_accuracy: 0.6833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "577/625 [==========================>...] - ETA: 3s - loss: 0.6684 - binary_accuracy: 0.6837" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "582/625 [==========================>...] - ETA: 3s - loss: 0.6680 - binary_accuracy: 0.6843" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "591/625 [===========================>..] - ETA: 2s - loss: 0.6673 - binary_accuracy: 0.6855" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "600/625 [===========================>..] - ETA: 1s - loss: 0.6665 - binary_accuracy: 0.6872" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "602/625 [===========================>..] - ETA: 1s - loss: 0.6662 - binary_accuracy: 0.6877" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "608/625 [============================>.] - ETA: 1s - loss: 0.6658 - binary_accuracy: 0.6886" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "609/625 [============================>.] - ETA: 1s - loss: 0.6657 - binary_accuracy: 0.6887" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "615/625 [============================>.] - ETA: 0s - loss: 0.6652 - binary_accuracy: 0.6895" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "619/625 [============================>.] - ETA: 0s - loss: 0.6649 - binary_accuracy: 0.6899" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "625/625 [==============================] - 47s 74ms/step - loss: 0.6645 - binary_accuracy: 0.6906 - val_loss: 0.6151 - val_binary_accuracy: 0.7676\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 2/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/625 [..............................] - ETA: 2s - loss: 0.5807 - binary_accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/625 [..............................] - ETA: 1s - loss: 0.6109 - binary_accuracy: 0.7656" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/625 [>.............................] - ETA: 1s - loss: 0.6090 - binary_accuracy: 0.7634" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 53/625 [=>............................] - ETA: 1s - loss: 0.6047 - binary_accuracy: 0.7665" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/625 [==>...........................] - ETA: 1s - loss: 0.6053 - binary_accuracy: 0.7676" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 89/625 [===>..........................] - ETA: 1s - loss: 0.6017 - binary_accuracy: 0.7700" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/625 [====>.........................] - ETA: 1s - loss: 0.5994 - binary_accuracy: 0.7728" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "125/625 [=====>........................] - ETA: 1s - loss: 0.5981 - binary_accuracy: 0.7722" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/625 [=====>........................] - ETA: 1s - loss: 0.5968 - binary_accuracy: 0.7733" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "160/625 [======>.......................] - ETA: 1s - loss: 0.5960 - binary_accuracy: 0.7719" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "178/625 [=======>......................] - ETA: 1s - loss: 0.5937 - binary_accuracy: 0.7742" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "196/625 [========>.....................] - ETA: 1s - loss: 0.5928 - binary_accuracy: 0.7738" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "214/625 [=========>....................] - ETA: 1s - loss: 0.5908 - binary_accuracy: 0.7761" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "232/625 [==========>...................] - ETA: 1s - loss: 0.5881 - binary_accuracy: 0.7786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "250/625 [===========>..................] - ETA: 1s - loss: 0.5856 - binary_accuracy: 0.7796" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "268/625 [===========>..................] - ETA: 1s - loss: 0.5832 - binary_accuracy: 0.7816" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "285/625 [============>.................] - ETA: 0s - loss: 0.5816 - binary_accuracy: 0.7829" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "302/625 [=============>................] - ETA: 0s - loss: 0.5806 - binary_accuracy: 0.7824" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "319/625 [==============>...............] - ETA: 0s - loss: 0.5794 - binary_accuracy: 0.7815" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "336/625 [===============>..............] - ETA: 0s - loss: 0.5777 - binary_accuracy: 0.7832" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "353/625 [===============>..............] - ETA: 0s - loss: 0.5764 - binary_accuracy: 0.7840" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "370/625 [================>.............] - ETA: 0s - loss: 0.5744 - binary_accuracy: 0.7854" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "386/625 [=================>............] - ETA: 0s - loss: 0.5724 - binary_accuracy: 0.7868" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "402/625 [==================>...........] - ETA: 0s - loss: 0.5703 - binary_accuracy: 0.7886" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "419/625 [===================>..........] - ETA: 0s - loss: 0.5682 - binary_accuracy: 0.7899" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "436/625 [===================>..........] - ETA: 0s - loss: 0.5665 - binary_accuracy: 0.7906" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "453/625 [====================>.........] - ETA: 0s - loss: 0.5646 - binary_accuracy: 0.7919" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "470/625 [=====================>........] - ETA: 0s - loss: 0.5632 - binary_accuracy: 0.7933" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "487/625 [======================>.......] - ETA: 0s - loss: 0.5616 - binary_accuracy: 0.7943" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "504/625 [=======================>......] - ETA: 0s - loss: 0.5597 - binary_accuracy: 0.7959" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "521/625 [========================>.....] - ETA: 0s - loss: 0.5578 - binary_accuracy: 0.7970" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "538/625 [========================>.....] - ETA: 0s - loss: 0.5566 - binary_accuracy: 0.7968" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "555/625 [=========================>....] - ETA: 0s - loss: 0.5550 - binary_accuracy: 0.7979" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "572/625 [==========================>...] - ETA: 0s - loss: 0.5533 - binary_accuracy: 0.7986" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "589/625 [===========================>..] - ETA: 0s - loss: 0.5522 - binary_accuracy: 0.7988" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "606/625 [============================>.] - ETA: 0s - loss: 0.5505 - binary_accuracy: 0.7996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "623/625 [============================>.] - ETA: 0s - loss: 0.5492 - binary_accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "625/625 [==============================] - 2s 3ms/step - loss: 0.5489 - binary_accuracy: 0.8001 - val_loss: 0.4983 - val_binary_accuracy: 0.8222\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 3/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/625 [..............................] - ETA: 2s - loss: 0.4445 - binary_accuracy: 0.9062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/625 [..............................] - ETA: 1s - loss: 0.4852 - binary_accuracy: 0.8316" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/625 [>.............................] - ETA: 1s - loss: 0.4868 - binary_accuracy: 0.8255" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 53/625 [=>............................] - ETA: 1s - loss: 0.4831 - binary_accuracy: 0.8284" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 69/625 [==>...........................] - ETA: 1s - loss: 0.4844 - binary_accuracy: 0.8293" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/625 [===>..........................] - ETA: 1s - loss: 0.4812 - binary_accuracy: 0.8309" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "101/625 [===>..........................] - ETA: 1s - loss: 0.4811 - binary_accuracy: 0.8308" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/625 [====>.........................] - ETA: 1s - loss: 0.4801 - binary_accuracy: 0.8316" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/625 [=====>........................] - ETA: 1s - loss: 0.4782 - binary_accuracy: 0.8308" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "153/625 [======>.......................] - ETA: 1s - loss: 0.4788 - binary_accuracy: 0.8297" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "171/625 [=======>......................] - ETA: 1s - loss: 0.4772 - binary_accuracy: 0.8308" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "189/625 [========>.....................] - ETA: 1s - loss: 0.4757 - binary_accuracy: 0.8312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "207/625 [========>.....................] - ETA: 1s - loss: 0.4754 - binary_accuracy: 0.8312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "225/625 [=========>....................] - ETA: 1s - loss: 0.4732 - binary_accuracy: 0.8319" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "242/625 [==========>...................] - ETA: 1s - loss: 0.4715 - binary_accuracy: 0.8325" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "259/625 [===========>..................] - ETA: 1s - loss: 0.4693 - binary_accuracy: 0.8339" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "276/625 [============>.................] - ETA: 1s - loss: 0.4670 - binary_accuracy: 0.8361" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "293/625 [=============>................] - ETA: 1s - loss: 0.4680 - binary_accuracy: 0.8340" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "310/625 [=============>................] - ETA: 0s - loss: 0.4668 - binary_accuracy: 0.8345" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "327/625 [==============>...............] - ETA: 0s - loss: 0.4662 - binary_accuracy: 0.8347" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "344/625 [===============>..............] - ETA: 0s - loss: 0.4649 - binary_accuracy: 0.8349" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "360/625 [================>.............] - ETA: 0s - loss: 0.4638 - binary_accuracy: 0.8359" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "377/625 [=================>............] - ETA: 0s - loss: 0.4625 - binary_accuracy: 0.8370" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "395/625 [=================>............] - ETA: 0s - loss: 0.4601 - binary_accuracy: 0.8389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "412/625 [==================>...........] - ETA: 0s - loss: 0.4585 - binary_accuracy: 0.8397" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "429/625 [===================>..........] - ETA: 0s - loss: 0.4567 - binary_accuracy: 0.8408" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "446/625 [====================>.........] - ETA: 0s - loss: 0.4554 - binary_accuracy: 0.8411" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "463/625 [=====================>........] - ETA: 0s - loss: 0.4543 - binary_accuracy: 0.8413" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "480/625 [======================>.......] - ETA: 0s - loss: 0.4540 - binary_accuracy: 0.8417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "497/625 [======================>.......] - ETA: 0s - loss: 0.4521 - binary_accuracy: 0.8431" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "514/625 [=======================>......] - ETA: 0s - loss: 0.4506 - binary_accuracy: 0.8441" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "531/625 [========================>.....] - ETA: 0s - loss: 0.4497 - binary_accuracy: 0.8443" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "549/625 [=========================>....] - ETA: 0s - loss: 0.4486 - binary_accuracy: 0.8450" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "566/625 [==========================>...] - ETA: 0s - loss: 0.4478 - binary_accuracy: 0.8454" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "583/625 [==========================>...] - ETA: 0s - loss: 0.4472 - binary_accuracy: 0.8453" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "601/625 [===========================>..] - ETA: 0s - loss: 0.4461 - binary_accuracy: 0.8458" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "619/625 [============================>.] - ETA: 0s - loss: 0.4457 - binary_accuracy: 0.8455" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "625/625 [==============================] - 2s 3ms/step - loss: 0.4452 - binary_accuracy: 0.8454 - val_loss: 0.4201 - val_binary_accuracy: 0.8474\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/625 [..............................] - ETA: 2s - loss: 0.3707 - binary_accuracy: 0.9062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/625 [..............................] - ETA: 1s - loss: 0.4023 - binary_accuracy: 0.8651" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/625 [>.............................] - ETA: 1s - loss: 0.4012 - binary_accuracy: 0.8628" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 53/625 [=>............................] - ETA: 1s - loss: 0.4001 - binary_accuracy: 0.8620" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/625 [==>...........................] - ETA: 1s - loss: 0.4027 - binary_accuracy: 0.8634" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/625 [===>..........................] - ETA: 1s - loss: 0.3991 - binary_accuracy: 0.8640" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "105/625 [====>.........................] - ETA: 1s - loss: 0.3995 - binary_accuracy: 0.8625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "122/625 [====>.........................] - ETA: 1s - loss: 0.3990 - binary_accuracy: 0.8619" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/625 [=====>........................] - ETA: 1s - loss: 0.3969 - binary_accuracy: 0.8620" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "157/625 [======>.......................] - ETA: 1s - loss: 0.3997 - binary_accuracy: 0.8597" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "175/625 [=======>......................] - ETA: 1s - loss: 0.3973 - binary_accuracy: 0.8612" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "192/625 [========>.....................] - ETA: 1s - loss: 0.3968 - binary_accuracy: 0.8607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "209/625 [=========>....................] - ETA: 1s - loss: 0.3974 - binary_accuracy: 0.8612" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "226/625 [=========>....................] - ETA: 1s - loss: 0.3963 - binary_accuracy: 0.8608" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "243/625 [==========>...................] - ETA: 1s - loss: 0.3953 - binary_accuracy: 0.8600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "260/625 [===========>..................] - ETA: 1s - loss: 0.3938 - binary_accuracy: 0.8613" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "277/625 [============>.................] - ETA: 1s - loss: 0.3913 - binary_accuracy: 0.8633" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "294/625 [=============>................] - ETA: 0s - loss: 0.3930 - binary_accuracy: 0.8613" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "311/625 [=============>................] - ETA: 0s - loss: 0.3924 - binary_accuracy: 0.8609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "329/625 [==============>...............] - ETA: 0s - loss: 0.3922 - binary_accuracy: 0.8606" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "347/625 [===============>..............] - ETA: 0s - loss: 0.3912 - binary_accuracy: 0.8601" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "364/625 [================>.............] - ETA: 0s - loss: 0.3900 - binary_accuracy: 0.8609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "381/625 [=================>............] - ETA: 0s - loss: 0.3884 - binary_accuracy: 0.8617" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "399/625 [==================>...........] - ETA: 0s - loss: 0.3870 - binary_accuracy: 0.8625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "416/625 [==================>...........] - ETA: 0s - loss: 0.3857 - binary_accuracy: 0.8634" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "433/625 [===================>..........] - ETA: 0s - loss: 0.3845 - binary_accuracy: 0.8639" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "450/625 [====================>.........] - ETA: 0s - loss: 0.3841 - binary_accuracy: 0.8639" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "468/625 [=====================>........] - ETA: 0s - loss: 0.3828 - binary_accuracy: 0.8650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "486/625 [======================>.......] - ETA: 0s - loss: 0.3827 - binary_accuracy: 0.8654" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "503/625 [=======================>......] - ETA: 0s - loss: 0.3812 - binary_accuracy: 0.8663" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "521/625 [========================>.....] - ETA: 0s - loss: 0.3800 - binary_accuracy: 0.8663" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "538/625 [========================>.....] - ETA: 0s - loss: 0.3799 - binary_accuracy: 0.8663" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "556/625 [=========================>....] - ETA: 0s - loss: 0.3794 - binary_accuracy: 0.8668" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "573/625 [==========================>...] - ETA: 0s - loss: 0.3787 - binary_accuracy: 0.8670" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "590/625 [===========================>..] - ETA: 0s - loss: 0.3792 - binary_accuracy: 0.8663" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "608/625 [============================>.] - ETA: 0s - loss: 0.3790 - binary_accuracy: 0.8663" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "625/625 [==============================] - ETA: 0s - loss: 0.3784 - binary_accuracy: 0.8662" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "625/625 [==============================] - 2s 3ms/step - loss: 0.3784 - binary_accuracy: 0.8662 - val_loss: 0.3737 - val_binary_accuracy: 0.8602\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 5/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/625 [..............................] - ETA: 2s - loss: 0.3303 - binary_accuracy: 0.9062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17/625 [..............................] - ETA: 1s - loss: 0.3472 - binary_accuracy: 0.8934" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/625 [>.............................] - ETA: 1s - loss: 0.3469 - binary_accuracy: 0.8787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/625 [=>............................] - ETA: 1s - loss: 0.3483 - binary_accuracy: 0.8738" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 68/625 [==>...........................] - ETA: 1s - loss: 0.3477 - binary_accuracy: 0.8759" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/625 [===>..........................] - ETA: 1s - loss: 0.3467 - binary_accuracy: 0.8735" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "102/625 [===>..........................] - ETA: 1s - loss: 0.3503 - binary_accuracy: 0.8719" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "119/625 [====>.........................] - ETA: 1s - loss: 0.3484 - binary_accuracy: 0.8726" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/625 [=====>........................] - ETA: 1s - loss: 0.3468 - binary_accuracy: 0.8739" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "154/625 [======>.......................] - ETA: 1s - loss: 0.3497 - binary_accuracy: 0.8736" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "171/625 [=======>......................] - ETA: 1s - loss: 0.3485 - binary_accuracy: 0.8746" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "188/625 [========>.....................] - ETA: 1s - loss: 0.3471 - binary_accuracy: 0.8748" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "205/625 [========>.....................] - ETA: 1s - loss: 0.3488 - binary_accuracy: 0.8744" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "223/625 [=========>....................] - ETA: 1s - loss: 0.3471 - binary_accuracy: 0.8756" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "240/625 [==========>...................] - ETA: 1s - loss: 0.3472 - binary_accuracy: 0.8746" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "257/625 [===========>..................] - ETA: 1s - loss: 0.3459 - binary_accuracy: 0.8756" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "275/625 [============>.................] - ETA: 1s - loss: 0.3435 - binary_accuracy: 0.8777" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "292/625 [=============>................] - ETA: 0s - loss: 0.3463 - binary_accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "309/625 [=============>................] - ETA: 0s - loss: 0.3462 - binary_accuracy: 0.8740" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "327/625 [==============>...............] - ETA: 0s - loss: 0.3457 - binary_accuracy: 0.8744" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "344/625 [===============>..............] - ETA: 0s - loss: 0.3447 - binary_accuracy: 0.8746" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "361/625 [================>.............] - ETA: 0s - loss: 0.3440 - binary_accuracy: 0.8744" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "378/625 [=================>............] - ETA: 0s - loss: 0.3431 - binary_accuracy: 0.8746" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "395/625 [=================>............] - ETA: 0s - loss: 0.3415 - binary_accuracy: 0.8759" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "412/625 [==================>...........] - ETA: 0s - loss: 0.3407 - binary_accuracy: 0.8764" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "429/625 [===================>..........] - ETA: 0s - loss: 0.3393 - binary_accuracy: 0.8772" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "446/625 [====================>.........] - ETA: 0s - loss: 0.3382 - binary_accuracy: 0.8777" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "464/625 [=====================>........] - ETA: 0s - loss: 0.3380 - binary_accuracy: 0.8776" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "482/625 [======================>.......] - ETA: 0s - loss: 0.3381 - binary_accuracy: 0.8782" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "499/625 [======================>.......] - ETA: 0s - loss: 0.3368 - binary_accuracy: 0.8790" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "516/625 [=======================>......] - ETA: 0s - loss: 0.3359 - binary_accuracy: 0.8795" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "534/625 [========================>.....] - ETA: 0s - loss: 0.3359 - binary_accuracy: 0.8789" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "552/625 [=========================>....] - ETA: 0s - loss: 0.3358 - binary_accuracy: 0.8787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "570/625 [==========================>...] - ETA: 0s - loss: 0.3353 - binary_accuracy: 0.8791" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "589/625 [===========================>..] - ETA: 0s - loss: 0.3359 - binary_accuracy: 0.8786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "607/625 [============================>.] - ETA: 0s - loss: 0.3361 - binary_accuracy: 0.8788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "625/625 [==============================] - ETA: 0s - loss: 0.3355 - binary_accuracy: 0.8788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "625/625 [==============================] - 2s 3ms/step - loss: 0.3355 - binary_accuracy: 0.8788 - val_loss: 0.3450 - val_binary_accuracy: 0.8670\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 6/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/625 [..............................] - ETA: 2s - loss: 0.2845 - binary_accuracy: 0.9062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/625 [..............................] - ETA: 1s - loss: 0.3080 - binary_accuracy: 0.9062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/625 [>.............................] - ETA: 1s - loss: 0.3110 - binary_accuracy: 0.8946" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/625 [=>............................] - ETA: 1s - loss: 0.3131 - binary_accuracy: 0.8906" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 69/625 [==>...........................] - ETA: 1s - loss: 0.3152 - binary_accuracy: 0.8881" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87/625 [===>..........................] - ETA: 1s - loss: 0.3131 - binary_accuracy: 0.8876" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "105/625 [====>.........................] - ETA: 1s - loss: 0.3173 - binary_accuracy: 0.8848" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "122/625 [====>.........................] - ETA: 1s - loss: 0.3163 - binary_accuracy: 0.8868" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/625 [=====>........................] - ETA: 1s - loss: 0.3135 - binary_accuracy: 0.8860" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "156/625 [======>.......................] - ETA: 1s - loss: 0.3171 - binary_accuracy: 0.8836" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "174/625 [=======>......................] - ETA: 1s - loss: 0.3149 - binary_accuracy: 0.8847" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "192/625 [========>.....................] - ETA: 1s - loss: 0.3137 - binary_accuracy: 0.8846" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "210/625 [=========>....................] - ETA: 1s - loss: 0.3153 - binary_accuracy: 0.8839" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "228/625 [=========>....................] - ETA: 1s - loss: 0.3149 - binary_accuracy: 0.8834" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "245/625 [==========>...................] - ETA: 1s - loss: 0.3143 - binary_accuracy: 0.8837" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "262/625 [===========>..................] - ETA: 1s - loss: 0.3133 - binary_accuracy: 0.8850" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "279/625 [============>.................] - ETA: 1s - loss: 0.3112 - binary_accuracy: 0.8865" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "297/625 [=============>................] - ETA: 0s - loss: 0.3139 - binary_accuracy: 0.8840" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "314/625 [==============>...............] - ETA: 0s - loss: 0.3140 - binary_accuracy: 0.8837" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "332/625 [==============>...............] - ETA: 0s - loss: 0.3137 - binary_accuracy: 0.8838" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "349/625 [===============>..............] - ETA: 0s - loss: 0.3129 - binary_accuracy: 0.8840" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "366/625 [================>.............] - ETA: 0s - loss: 0.3114 - binary_accuracy: 0.8845" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "384/625 [=================>............] - ETA: 0s - loss: 0.3111 - binary_accuracy: 0.8844" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "402/625 [==================>...........] - ETA: 0s - loss: 0.3096 - binary_accuracy: 0.8851" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "419/625 [===================>..........] - ETA: 0s - loss: 0.3085 - binary_accuracy: 0.8857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "436/625 [===================>..........] - ETA: 0s - loss: 0.3076 - binary_accuracy: 0.8862" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "453/625 [====================>.........] - ETA: 0s - loss: 0.3071 - binary_accuracy: 0.8865" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "471/625 [=====================>........] - ETA: 0s - loss: 0.3070 - binary_accuracy: 0.8869" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "489/625 [======================>.......] - ETA: 0s - loss: 0.3065 - binary_accuracy: 0.8874" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "506/625 [=======================>......] - ETA: 0s - loss: 0.3054 - binary_accuracy: 0.8877" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "523/625 [========================>.....] - ETA: 0s - loss: 0.3050 - binary_accuracy: 0.8879" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "540/625 [========================>.....] - ETA: 0s - loss: 0.3054 - binary_accuracy: 0.8873" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "558/625 [=========================>....] - ETA: 0s - loss: 0.3049 - binary_accuracy: 0.8880" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "575/625 [==========================>...] - ETA: 0s - loss: 0.3050 - binary_accuracy: 0.8879" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "592/625 [===========================>..] - ETA: 0s - loss: 0.3055 - binary_accuracy: 0.8880" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "609/625 [============================>.] - ETA: 0s - loss: 0.3061 - binary_accuracy: 0.8877" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "625/625 [==============================] - 2s 3ms/step - loss: 0.3057 - binary_accuracy: 0.8880 - val_loss: 0.3263 - val_binary_accuracy: 0.8720\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 7/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/625 [..............................] - ETA: 2s - loss: 0.2590 - binary_accuracy: 0.9062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/625 [..............................] - ETA: 1s - loss: 0.2842 - binary_accuracy: 0.9112" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/625 [>.............................] - ETA: 1s - loss: 0.2857 - binary_accuracy: 0.9062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/625 [=>............................] - ETA: 1s - loss: 0.2852 - binary_accuracy: 0.9023" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/625 [==>...........................] - ETA: 1s - loss: 0.2915 - binary_accuracy: 0.8964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 90/625 [===>..........................] - ETA: 1s - loss: 0.2890 - binary_accuracy: 0.8990" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/625 [====>.........................] - ETA: 1s - loss: 0.2925 - binary_accuracy: 0.8957" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/625 [====>.........................] - ETA: 1s - loss: 0.2914 - binary_accuracy: 0.8969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "141/625 [=====>........................] - ETA: 1s - loss: 0.2892 - binary_accuracy: 0.8956" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "158/625 [======>.......................] - ETA: 1s - loss: 0.2927 - binary_accuracy: 0.8936" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "175/625 [=======>......................] - ETA: 1s - loss: 0.2891 - binary_accuracy: 0.8952" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "192/625 [========>.....................] - ETA: 1s - loss: 0.2885 - binary_accuracy: 0.8944" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "209/625 [=========>....................] - ETA: 1s - loss: 0.2892 - binary_accuracy: 0.8949" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "227/625 [=========>....................] - ETA: 1s - loss: 0.2899 - binary_accuracy: 0.8943" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "245/625 [==========>...................] - ETA: 1s - loss: 0.2892 - binary_accuracy: 0.8941" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "262/625 [===========>..................] - ETA: 1s - loss: 0.2884 - binary_accuracy: 0.8952" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "279/625 [============>.................] - ETA: 1s - loss: 0.2863 - binary_accuracy: 0.8971" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "297/625 [=============>................] - ETA: 0s - loss: 0.2892 - binary_accuracy: 0.8947" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "314/625 [==============>...............] - ETA: 0s - loss: 0.2891 - binary_accuracy: 0.8947" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "332/625 [==============>...............] - ETA: 0s - loss: 0.2890 - binary_accuracy: 0.8944" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "349/625 [===============>..............] - ETA: 0s - loss: 0.2879 - binary_accuracy: 0.8940" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "366/625 [================>.............] - ETA: 0s - loss: 0.2865 - binary_accuracy: 0.8945" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "383/625 [=================>............] - ETA: 0s - loss: 0.2859 - binary_accuracy: 0.8946" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "400/625 [==================>...........] - ETA: 0s - loss: 0.2852 - binary_accuracy: 0.8950" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "417/625 [===================>..........] - ETA: 0s - loss: 0.2842 - binary_accuracy: 0.8957" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "434/625 [===================>..........] - ETA: 0s - loss: 0.2832 - binary_accuracy: 0.8964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "452/625 [====================>.........] - ETA: 0s - loss: 0.2829 - binary_accuracy: 0.8962" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "470/625 [=====================>........] - ETA: 0s - loss: 0.2825 - binary_accuracy: 0.8968" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "488/625 [======================>.......] - ETA: 0s - loss: 0.2824 - binary_accuracy: 0.8968" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "506/625 [=======================>......] - ETA: 0s - loss: 0.2811 - binary_accuracy: 0.8972" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "524/625 [========================>.....] - ETA: 0s - loss: 0.2808 - binary_accuracy: 0.8972" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "542/625 [=========================>....] - ETA: 0s - loss: 0.2810 - binary_accuracy: 0.8967" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "559/625 [=========================>....] - ETA: 0s - loss: 0.2807 - binary_accuracy: 0.8973" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "576/625 [==========================>...] - ETA: 0s - loss: 0.2806 - binary_accuracy: 0.8974" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "594/625 [===========================>..] - ETA: 0s - loss: 0.2811 - binary_accuracy: 0.8975" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "612/625 [============================>.] - ETA: 0s - loss: 0.2817 - binary_accuracy: 0.8970" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "625/625 [==============================] - 2s 3ms/step - loss: 0.2815 - binary_accuracy: 0.8972 - val_loss: 0.3131 - val_binary_accuracy: 0.8716\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 8/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/625 [..............................] - ETA: 2s - loss: 0.2767 - binary_accuracy: 0.9375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/625 [..............................] - ETA: 1s - loss: 0.2635 - binary_accuracy: 0.9145" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/625 [>.............................] - ETA: 1s - loss: 0.2633 - binary_accuracy: 0.9106" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 53/625 [=>............................] - ETA: 1s - loss: 0.2603 - binary_accuracy: 0.9080" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/625 [==>...........................] - ETA: 1s - loss: 0.2633 - binary_accuracy: 0.9062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87/625 [===>..........................] - ETA: 1s - loss: 0.2620 - binary_accuracy: 0.9059" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "104/625 [===>..........................] - ETA: 1s - loss: 0.2686 - binary_accuracy: 0.9020" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/625 [====>.........................] - ETA: 1s - loss: 0.2673 - binary_accuracy: 0.9037" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/625 [=====>........................] - ETA: 1s - loss: 0.2656 - binary_accuracy: 0.9015" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "156/625 [======>.......................] - ETA: 1s - loss: 0.2684 - binary_accuracy: 0.8998" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "173/625 [=======>......................] - ETA: 1s - loss: 0.2668 - binary_accuracy: 0.8997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "191/625 [========>.....................] - ETA: 1s - loss: 0.2658 - binary_accuracy: 0.9012" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "209/625 [=========>....................] - ETA: 1s - loss: 0.2669 - binary_accuracy: 0.9016" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "226/625 [=========>....................] - ETA: 1s - loss: 0.2670 - binary_accuracy: 0.9013" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "244/625 [==========>...................] - ETA: 1s - loss: 0.2673 - binary_accuracy: 0.9002" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "261/625 [===========>..................] - ETA: 1s - loss: 0.2665 - binary_accuracy: 0.9015" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "279/625 [============>.................] - ETA: 1s - loss: 0.2648 - binary_accuracy: 0.9033" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "296/625 [=============>................] - ETA: 0s - loss: 0.2676 - binary_accuracy: 0.9019" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "313/625 [==============>...............] - ETA: 0s - loss: 0.2678 - binary_accuracy: 0.9016" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "330/625 [==============>...............] - ETA: 0s - loss: 0.2673 - binary_accuracy: 0.9019" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "347/625 [===============>..............] - ETA: 0s - loss: 0.2666 - binary_accuracy: 0.9018" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "365/625 [================>.............] - ETA: 0s - loss: 0.2652 - binary_accuracy: 0.9025" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "383/625 [=================>............] - ETA: 0s - loss: 0.2651 - binary_accuracy: 0.9023" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "402/625 [==================>...........] - ETA: 0s - loss: 0.2643 - binary_accuracy: 0.9027" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "420/625 [===================>..........] - ETA: 0s - loss: 0.2636 - binary_accuracy: 0.9035" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "438/625 [====================>.........] - ETA: 0s - loss: 0.2626 - binary_accuracy: 0.9034" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "456/625 [====================>.........] - ETA: 0s - loss: 0.2619 - binary_accuracy: 0.9036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "474/625 [=====================>........] - ETA: 0s - loss: 0.2624 - binary_accuracy: 0.9035" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "492/625 [======================>.......] - ETA: 0s - loss: 0.2615 - binary_accuracy: 0.9041" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "510/625 [=======================>......] - ETA: 0s - loss: 0.2601 - binary_accuracy: 0.9047" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "528/625 [========================>.....] - ETA: 0s - loss: 0.2603 - binary_accuracy: 0.9045" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "545/625 [=========================>....] - ETA: 0s - loss: 0.2610 - binary_accuracy: 0.9042" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "562/625 [=========================>....] - ETA: 0s - loss: 0.2602 - binary_accuracy: 0.9051" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "579/625 [==========================>...] - ETA: 0s - loss: 0.2611 - binary_accuracy: 0.9046" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "596/625 [===========================>..] - ETA: 0s - loss: 0.2616 - binary_accuracy: 0.9046" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "613/625 [============================>.] - ETA: 0s - loss: 0.2622 - binary_accuracy: 0.9041" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "625/625 [==============================] - 2s 3ms/step - loss: 0.2618 - binary_accuracy: 0.9043 - val_loss: 0.3036 - val_binary_accuracy: 0.8754\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 9/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/625 [..............................] - ETA: 2s - loss: 0.2473 - binary_accuracy: 0.9375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/625 [..............................] - ETA: 1s - loss: 0.2433 - binary_accuracy: 0.9167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/625 [>.............................] - ETA: 1s - loss: 0.2474 - binary_accuracy: 0.9141" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 54/625 [=>............................] - ETA: 1s - loss: 0.2477 - binary_accuracy: 0.9161" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 72/625 [==>...........................] - ETA: 1s - loss: 0.2505 - binary_accuracy: 0.9123" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 90/625 [===>..........................] - ETA: 1s - loss: 0.2495 - binary_accuracy: 0.9139" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "108/625 [====>.........................] - ETA: 1s - loss: 0.2542 - binary_accuracy: 0.9123" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "126/625 [=====>........................] - ETA: 1s - loss: 0.2522 - binary_accuracy: 0.9129" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "144/625 [=====>........................] - ETA: 1s - loss: 0.2513 - binary_accuracy: 0.9104" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "161/625 [======>.......................] - ETA: 1s - loss: 0.2536 - binary_accuracy: 0.9082" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "178/625 [=======>......................] - ETA: 1s - loss: 0.2517 - binary_accuracy: 0.9089" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "196/625 [========>.....................] - ETA: 1s - loss: 0.2519 - binary_accuracy: 0.9088" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "215/625 [=========>....................] - ETA: 1s - loss: 0.2514 - binary_accuracy: 0.9099" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "233/625 [==========>...................] - ETA: 1s - loss: 0.2527 - binary_accuracy: 0.9092" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "251/625 [===========>..................] - ETA: 1s - loss: 0.2507 - binary_accuracy: 0.9097" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "269/625 [===========>..................] - ETA: 1s - loss: 0.2505 - binary_accuracy: 0.9103" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "287/625 [============>.................] - ETA: 0s - loss: 0.2513 - binary_accuracy: 0.9101" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "305/625 [=============>................] - ETA: 0s - loss: 0.2522 - binary_accuracy: 0.9096" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "323/625 [==============>...............] - ETA: 0s - loss: 0.2525 - binary_accuracy: 0.9091" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "341/625 [===============>..............] - ETA: 0s - loss: 0.2513 - binary_accuracy: 0.9094" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "359/625 [================>.............] - ETA: 0s - loss: 0.2501 - binary_accuracy: 0.9097" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "377/625 [=================>............] - ETA: 0s - loss: 0.2499 - binary_accuracy: 0.9100" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "395/625 [=================>............] - ETA: 0s - loss: 0.2487 - binary_accuracy: 0.9104" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "413/625 [==================>...........] - ETA: 0s - loss: 0.2479 - binary_accuracy: 0.9107" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "432/625 [===================>..........] - ETA: 0s - loss: 0.2466 - binary_accuracy: 0.9112" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "450/625 [====================>.........] - ETA: 0s - loss: 0.2464 - binary_accuracy: 0.9108" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "468/625 [=====================>........] - ETA: 0s - loss: 0.2457 - binary_accuracy: 0.9114" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "486/625 [======================>.......] - ETA: 0s - loss: 0.2464 - binary_accuracy: 0.9108" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "504/625 [=======================>......] - ETA: 0s - loss: 0.2451 - binary_accuracy: 0.9113" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "522/625 [========================>.....] - ETA: 0s - loss: 0.2444 - binary_accuracy: 0.9116" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "540/625 [========================>.....] - ETA: 0s - loss: 0.2450 - binary_accuracy: 0.9111" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "558/625 [=========================>....] - ETA: 0s - loss: 0.2448 - binary_accuracy: 0.9116" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "576/625 [==========================>...] - ETA: 0s - loss: 0.2451 - binary_accuracy: 0.9115" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "594/625 [===========================>..] - ETA: 0s - loss: 0.2457 - binary_accuracy: 0.9112" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "612/625 [============================>.] - ETA: 0s - loss: 0.2465 - binary_accuracy: 0.9107" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "625/625 [==============================] - 2s 3ms/step - loss: 0.2462 - binary_accuracy: 0.9106 - val_loss: 0.2971 - val_binary_accuracy: 0.8776\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 10/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/625 [..............................] - ETA: 2s - loss: 0.2502 - binary_accuracy: 0.9375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/625 [..............................] - ETA: 1s - loss: 0.2283 - binary_accuracy: 0.9306" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/625 [>.............................] - ETA: 1s - loss: 0.2322 - binary_accuracy: 0.9268" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/625 [=>............................] - ETA: 1s - loss: 0.2317 - binary_accuracy: 0.9261" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 69/625 [==>...........................] - ETA: 1s - loss: 0.2334 - binary_accuracy: 0.9244" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87/625 [===>..........................] - ETA: 1s - loss: 0.2325 - binary_accuracy: 0.9224" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "105/625 [====>.........................] - ETA: 1s - loss: 0.2385 - binary_accuracy: 0.9193" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "123/625 [====>.........................] - ETA: 1s - loss: 0.2373 - binary_accuracy: 0.9192" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140/625 [=====>........................] - ETA: 1s - loss: 0.2352 - binary_accuracy: 0.9176" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "158/625 [======>.......................] - ETA: 1s - loss: 0.2387 - binary_accuracy: 0.9146" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "175/625 [=======>......................] - ETA: 1s - loss: 0.2359 - binary_accuracy: 0.9155" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "193/625 [========>.....................] - ETA: 1s - loss: 0.2354 - binary_accuracy: 0.9161" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "210/625 [=========>....................] - ETA: 1s - loss: 0.2370 - binary_accuracy: 0.9159" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "228/625 [=========>....................] - ETA: 1s - loss: 0.2373 - binary_accuracy: 0.9145" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "245/625 [==========>...................] - ETA: 1s - loss: 0.2370 - binary_accuracy: 0.9134" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "262/625 [===========>..................] - ETA: 1s - loss: 0.2367 - binary_accuracy: 0.9145" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "280/625 [============>.................] - ETA: 1s - loss: 0.2349 - binary_accuracy: 0.9157" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "298/625 [=============>................] - ETA: 0s - loss: 0.2372 - binary_accuracy: 0.9151" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "315/625 [==============>...............] - ETA: 0s - loss: 0.2377 - binary_accuracy: 0.9151" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "333/625 [==============>...............] - ETA: 0s - loss: 0.2364 - binary_accuracy: 0.9155" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "351/625 [===============>..............] - ETA: 0s - loss: 0.2354 - binary_accuracy: 0.9152" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "369/625 [================>.............] - ETA: 0s - loss: 0.2345 - binary_accuracy: 0.9156" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "386/625 [=================>............] - ETA: 0s - loss: 0.2342 - binary_accuracy: 0.9159" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "403/625 [==================>...........] - ETA: 0s - loss: 0.2330 - binary_accuracy: 0.9162" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "421/625 [===================>..........] - ETA: 0s - loss: 0.2321 - binary_accuracy: 0.9167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "439/625 [====================>.........] - ETA: 0s - loss: 0.2313 - binary_accuracy: 0.9165" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "457/625 [====================>.........] - ETA: 0s - loss: 0.2312 - binary_accuracy: 0.9165" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "474/625 [=====================>........] - ETA: 0s - loss: 0.2318 - binary_accuracy: 0.9163" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "492/625 [======================>.......] - ETA: 0s - loss: 0.2312 - binary_accuracy: 0.9164" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "509/625 [=======================>......] - ETA: 0s - loss: 0.2298 - binary_accuracy: 0.9171" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "527/625 [========================>.....] - ETA: 0s - loss: 0.2301 - binary_accuracy: 0.9169" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "544/625 [=========================>....] - ETA: 0s - loss: 0.2304 - binary_accuracy: 0.9165" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "562/625 [=========================>....] - ETA: 0s - loss: 0.2301 - binary_accuracy: 0.9170" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "580/625 [==========================>...] - ETA: 0s - loss: 0.2314 - binary_accuracy: 0.9167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "597/625 [===========================>..] - ETA: 0s - loss: 0.2317 - binary_accuracy: 0.9164" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "614/625 [============================>.] - ETA: 0s - loss: 0.2324 - binary_accuracy: 0.9159" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "625/625 [==============================] - 2s 3ms/step - loss: 0.2322 - binary_accuracy: 0.9158 - val_loss: 0.2925 - val_binary_accuracy: 0.8790\n" ] } ], "source": [ "epochs = 10\n", "history = model.fit(\n", " train_ds,\n", " validation_data=val_ds,\n", " epochs=epochs)" ] }, { "cell_type": "markdown", "metadata": { "id": "9EEGuDVuzb5r" }, "source": [ "### 모델 평가하기\n", "\n", "모델의 성능을 확인해 보죠. 두 개의 값이 반환됩니다. 손실(오차를 나타내는 숫자이므로 낮을수록 좋습니다)과 정확도입니다." ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:20:49.149216Z", "iopub.status.busy": "2022-12-14T20:20:49.148750Z", "iopub.status.idle": "2022-12-14T20:20:50.802300Z", "shell.execute_reply": "2022-12-14T20:20:50.801378Z" }, "id": "zOMKywn4zReN" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/782 [..............................] - ETA: 54s - loss: 0.3112 - binary_accuracy: 0.9375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/782 [>.............................] - ETA: 1s - loss: 0.2977 - binary_accuracy: 0.8854 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 53/782 [=>............................] - ETA: 1s - loss: 0.3014 - binary_accuracy: 0.8833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/782 [=>............................] - ETA: 1s - loss: 0.3030 - binary_accuracy: 0.8774" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/782 [==>...........................] - ETA: 1s - loss: 0.2994 - binary_accuracy: 0.8792" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "129/782 [===>..........................] - ETA: 1s - loss: 0.3013 - binary_accuracy: 0.8748" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "155/782 [====>.........................] - ETA: 1s - loss: 0.3048 - binary_accuracy: 0.8744" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "181/782 [=====>........................] - ETA: 1s - loss: 0.3074 - binary_accuracy: 0.8724" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "206/782 [======>.......................] - ETA: 1s - loss: 0.3087 - binary_accuracy: 0.8724" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "231/782 [=======>......................] - ETA: 1s - loss: 0.3132 - binary_accuracy: 0.8712" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "256/782 [========>.....................] - ETA: 1s - loss: 0.3113 - binary_accuracy: 0.8735" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "281/782 [=========>....................] - ETA: 1s - loss: 0.3088 - binary_accuracy: 0.8737" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "306/782 [==========>...................] - ETA: 0s - loss: 0.3062 - binary_accuracy: 0.8743" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "332/782 [===========>..................] - ETA: 0s - loss: 0.3076 - binary_accuracy: 0.8734" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "357/782 [============>.................] - ETA: 0s - loss: 0.3080 - binary_accuracy: 0.8724" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "382/782 [=============>................] - ETA: 0s - loss: 0.3089 - binary_accuracy: 0.8724" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "403/782 [==============>...............] - ETA: 0s - loss: 0.3082 - binary_accuracy: 0.8728" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "429/782 [===============>..............] - ETA: 0s - loss: 0.3077 - binary_accuracy: 0.8735" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "455/782 [================>.............] - ETA: 0s - loss: 0.3072 - binary_accuracy: 0.8742" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "481/782 [=================>............] - ETA: 0s - loss: 0.3064 - binary_accuracy: 0.8744" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "507/782 [==================>...........] - ETA: 0s - loss: 0.3080 - binary_accuracy: 0.8736" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "533/782 [===================>..........] - ETA: 0s - loss: 0.3082 - binary_accuracy: 0.8737" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "559/782 [====================>.........] - ETA: 0s - loss: 0.3081 - binary_accuracy: 0.8734" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "584/782 [=====================>........] - ETA: 0s - loss: 0.3106 - binary_accuracy: 0.8719" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "610/782 [======================>.......] - ETA: 0s - loss: 0.3104 - binary_accuracy: 0.8722" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "635/782 [=======================>......] - ETA: 0s - loss: 0.3103 - binary_accuracy: 0.8719" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "660/782 [========================>.....] - ETA: 0s - loss: 0.3105 - binary_accuracy: 0.8715" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "685/782 [=========================>....] - ETA: 0s - loss: 0.3098 - binary_accuracy: 0.8721" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "711/782 [==========================>...] - ETA: 0s - loss: 0.3099 - binary_accuracy: 0.8720" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "736/782 [===========================>..] - ETA: 0s - loss: 0.3096 - binary_accuracy: 0.8723" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "761/782 [============================>.] - ETA: 0s - loss: 0.3106 - binary_accuracy: 0.8723" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "782/782 [==============================] - 2s 2ms/step - loss: 0.3107 - binary_accuracy: 0.8730\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loss: 0.31068193912506104\n", "Accuracy: 0.8730400204658508\n" ] } ], "source": [ "loss, accuracy = model.evaluate(test_ds)\n", "\n", "print(\"Loss: \", loss)\n", "print(\"Accuracy: \", accuracy)" ] }, { "cell_type": "markdown", "metadata": { "id": "z1iEXVTR0Z2t" }, "source": [ "이 상당히 단순한 접근 방식은 약 86%의 정확도를 달성합니다." ] }, { "cell_type": "markdown", "metadata": { "id": "ldbQqCw2Xc1W" }, "source": [ "### 정확도와 손실 그래프 그리기\n", "\n", "`model.fit()`은 훈련 중에 발생한 모든 것을 가진 사전을 포함하는 `History` 객체를 반환합니다." ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:20:50.806531Z", "iopub.status.busy": "2022-12-14T20:20:50.805841Z", "iopub.status.idle": "2022-12-14T20:20:50.810915Z", "shell.execute_reply": "2022-12-14T20:20:50.810147Z" }, "id": "-YcvZsdvWfDf" }, "outputs": [ { "data": { "text/plain": [ "dict_keys(['loss', 'binary_accuracy', 'val_loss', 'val_binary_accuracy'])" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "history_dict = history.history\n", "history_dict.keys()" ] }, { "cell_type": "markdown", "metadata": { "id": "1_CH32qJXruI" }, "source": [ "네 개의 항목이 있습니다. 훈련과 검증 단계에서 모니터링하는 지표들입니다. 훈련 손실과 검증 손실을 그래프로 그려 보고, 훈련 정확도와 검증 정확도도 그래프로 그려서 비교해 보겠습니다:" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:20:50.814544Z", "iopub.status.busy": "2022-12-14T20:20:50.813963Z", "iopub.status.idle": "2022-12-14T20:20:50.964782Z", "shell.execute_reply": "2022-12-14T20:20:50.964092Z" }, "id": "2SEMeQ5YXs8z" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWlUlEQVR4nO3deZyNdf/H8deZYTZjBoNZGGPJvmeLuS1FDZUl0bhT4S7d2SX9kF2hSNmJO1Qk0ZA9S5RQlEgSua1hLMmMdXDm+v1x3XMYM8bs18w57+fjcR5znetc57o+Z2Zq3r7Xd7EZhmEgIiIi4iTcrC5AREREJDMp3IiIiIhTUbgRERERp6JwIyIiIk5F4UZEREScisKNiIiIOBWFGxEREXEqCjciIiLiVBRuRERExKko3IhYoHPnzpQsWTJd7x0xYgQ2my1zC8phjh49is1mY968edl63c2bN2Oz2di8ebNjX2p/VllVc8mSJencuXOmnjM15s2bh81m4+jRo9l+bZGMUrgRuYPNZkvV484/fiIZtW3bNkaMGMHFixetLkXEKeSxugCRnOSTTz5J9Pzjjz9m/fr1SfZXrFgxQ9eZPXs28fHx6XrvkCFDGDhwYIauL6mXkZ9Vam3bto2RI0fSuXNnChQokOi1AwcO4Oamf4eKpIXCjcgdnnvuuUTPv//+e9avX59k/92uXr2Kj49Pqq+TN2/edNUHkCdPHvLk0X+62SUjP6vM4Onpaen1RXIj/XNAJI2aNGlClSpV+Omnn2jUqBE+Pj688cYbAHz55Zc88cQThISE4OnpSZkyZXjzzTex2+2JznF3P46E/hrvvvsus2bNokyZMnh6elKnTh127tyZ6L3J9bmx2Wz07NmTZcuWUaVKFTw9PalcuTJr165NUv/mzZupXbs2Xl5elClThg8++CDV/Xi2bNlC+/btKVGiBJ6enoSGhvLqq69y7dq1JJ/P19eXkydP0qZNG3x9fSlSpAj9+/dP8r24ePEinTt3xt/fnwIFCtCpU6dU3Z758ccfsdlsfPTRR0le++qrr7DZbKxcuRKAY8eO0b17d8qXL4+3tzcBAQG0b98+Vf1Jkutzk9qaf/nlFzp37kzp0qXx8vIiKCiIf/3rX/z111+OY0aMGMHrr78OQKlSpRy3PhNqS67PzeHDh2nfvj2FChXCx8eHhx56iFWrViU6JqH/0Oeff87o0aMpXrw4Xl5eNG3alEOHDt33c9/L9OnTqVy5Mp6enoSEhNCjR48kn/2PP/7g6aefJigoCC8vL4oXL06HDh2IiYlxHLN+/Xr+8Y9/UKBAAXx9fSlfvrzjvyORjNI//0TS4a+//qJFixZ06NCB5557jsDAQMDshOnr60u/fv3w9fXl66+/ZtiwYcTGxjJ+/Pj7nvfTTz/l0qVL/Pvf/8ZmszFu3Djatm3L4cOH79uC8N133xEVFUX37t3Jnz8/kydP5umnn+b48eMEBAQA8PPPP9O8eXOCg4MZOXIkdrudUaNGUaRIkVR97sWLF3P16lW6detGQEAAO3bsYMqUKfz5558sXrw40bF2u52IiAjq1avHu+++y4YNG5gwYQJlypShW7duABiGQevWrfnuu+945ZVXqFixIkuXLqVTp073raV27dqULl2azz//PMnxixYtomDBgkRERACwc+dOtm3bRocOHShevDhHjx5lxowZNGnShN9++y1NrW5pqXn9+vUcPnyYLl26EBQUxL59+5g1axb79u3j+++/x2az0bZtWw4ePMjChQt5//33KVy4MMA9fyZnzpyhQYMGXL16ld69exMQEMBHH31Eq1atWLJkCU899VSi499++23c3Nzo378/MTExjBs3jo4dO/LDDz+k+jMnGDFiBCNHjqRZs2Z069aNAwcOMGPGDHbu3MnWrVvJmzcvN27cICIigri4OHr16kVQUBAnT55k5cqVXLx4EX9/f/bt28eTTz5JtWrVGDVqFJ6enhw6dIitW7emuSaRZBkick89evQw7v7PpHHjxgZgzJw5M8nxV69eTbLv3//+t+Hj42Ncv37dsa9Tp05GWFiY4/mRI0cMwAgICDAuXLjg2P/ll18agLFixQrHvuHDhyepCTA8PDyMQ4cOOfbt2bPHAIwpU6Y49rVs2dLw8fExTp486dj3xx9/GHny5ElyzuQk9/nGjh1r2Gw249ixY4k+H2CMGjUq0bE1a9Y0atWq5Xi+bNkyAzDGjRvn2Hfr1i2jYcOGBmDMnTs3xXoGDRpk5M2bN9H3LC4uzihQoIDxr3/9K8W6t2/fbgDGxx9/7Ni3adMmAzA2bdqU6LPc+bNKS83JXXfhwoUGYHz77beOfePHjzcA48iRI0mODwsLMzp16uR43rdvXwMwtmzZ4th36dIlo1SpUkbJkiUNu92e6LNUrFjRiIuLcxw7adIkAzD27t2b5Fp3mjt3bqKazp49a3h4eBiPPfaY4xqGYRhTp041AGPOnDmGYRjGzz//bADG4sWL73nu999/3wCMc+fOpViDSHrptpRIOnh6etKlS5ck+729vR3bly5d4vz58zRs2JCrV6/y+++/3/e8kZGRFCxY0PG8YcOGgHkb4n6aNWtGmTJlHM+rVauGn5+f4712u50NGzbQpk0bQkJCHMc98MADtGjR4r7nh8Sf78qVK5w/f54GDRpgGAY///xzkuNfeeWVRM8bNmyY6LOsXr2aPHnyOFpyANzd3enVq1eq6omMjOTmzZtERUU59q1bt46LFy8SGRmZbN03b97kr7/+4oEHHqBAgQLs2rUrVddKT813Xvf69eucP3+ehx56CCDN173z+nXr1uUf//iHY5+vry8vv/wyR48e5bfffkt0fJcuXfDw8HA8T8vv1J02bNjAjRs36Nu3b6IOzl27dsXPz89xW8zf3x8wbw1evXo12XMldJr+8ssvs7yztrgmhRuRdChWrFiiPxgJ9u3bx1NPPYW/vz9+fn4UKVLE0Rn5zv4G91KiRIlEzxOCzt9//53m9ya8P+G9Z8+e5dq1azzwwANJjktuX3KOHz9O586dKVSokKMfTePGjYGkn8/LyyvJrZU76wGzL0xwcDC+vr6Jjitfvnyq6qlevToVKlRg0aJFjn2LFi2icOHCPPLII459165dY9iwYYSGhuLp6UnhwoUpUqQIFy9eTNXP5U5pqfnChQv06dOHwMBAvL29KVKkCKVKlQJS9/twr+snd62EEXzHjh1LtD8jv1N3XxeSfk4PDw9Kly7teL1UqVL069eP//znPxQuXJiIiAimTZuW6PNGRkYSHh7OSy+9RGBgIB06dODzzz9X0JFMoz43Iulw57/IE1y8eJHGjRvj5+fHqFGjKFOmDF5eXuzatYsBAwak6n/c7u7uye43DCNL35sadrudRx99lAsXLjBgwAAqVKhAvnz5OHnyJJ07d07y+e5VT2aLjIxk9OjRnD9/nvz587N8+XL++c9/JhpR1qtXL+bOnUvfvn2pX78+/v7+2Gw2OnTokKV/UJ955hm2bdvG66+/To0aNfD19SU+Pp7mzZtn2x/yrP69SM6ECRPo3LkzX375JevWraN3796MHTuW77//nuLFi+Pt7c23337Lpk2bWLVqFWvXrmXRokU88sgjrFu3Ltt+d8R5KdyIZJLNmzfz119/ERUVRaNGjRz7jxw5YmFVtxUtWhQvL69kR8qkZvTM3r17OXjwIB999BEvvPCCY//69evTXVNYWBgbN27k8uXLiVpCDhw4kOpzREZGMnLkSL744gsCAwOJjY2lQ4cOiY5ZsmQJnTp1YsKECY59169fT9ekeamt+e+//2bjxo2MHDmSYcOGOfb/8ccfSc6Zlhmnw8LCkv3+JNz2DAsLS/W50iLhvAcOHKB06dKO/Tdu3ODIkSM0a9Ys0fFVq1alatWqDBkyhG3bthEeHs7MmTN56623AHBzc6Np06Y0bdqU9957jzFjxjB48GA2bdqU5FwiaaXbUiKZJOFfm3f+i/jGjRtMnz7dqpIScXd3p1mzZixbtoxTp0459h86dIg1a9ak6v2Q+PMZhsGkSZPSXdPjjz/OrVu3mDFjhmOf3W5nypQpqT5HxYoVqVq1KosWLWLRokUEBwcnCpcJtd/dUjFlypQkw9Izs+bkvl8AEydOTHLOfPnyAaQqbD3++OPs2LGD7du3O/ZduXKFWbNmUbJkSSpVqpTaj5ImzZo1w8PDg8mTJyf6TB9++CExMTE88cQTAMTGxnLr1q1E761atSpubm7ExcUB5u26u9WoUQPAcYxIRqjlRiSTNGjQgIIFC9KpUyd69+6NzWbjk08+ydLm/7QaMWIE69atIzw8nG7dumG325k6dSpVqlRh9+7dKb63QoUKlClThv79+3Py5En8/Pz44osv0tx3404tW7YkPDycgQMHcvToUSpVqkRUVFSa+6NERkYybNgwvLy8ePHFF5PM6Pvkk0/yySef4O/vT6VKldi+fTsbNmxwDJHPipr9/Pxo1KgR48aN4+bNmxQrVox169Yl25JXq1YtAAYPHkyHDh3ImzcvLVu2dISeOw0cOJCFCxfSokULevfuTaFChfjoo484cuQIX3zxRZbNZlykSBEGDRrEyJEjad68Oa1ateLAgQNMnz6dOnXqOPqWff311/Ts2ZP27dtTrlw5bt26xSeffIK7uztPP/00AKNGjeLbb7/liSeeICwsjLNnzzJ9+nSKFy+eqKO0SHop3IhkkoCAAFauXMlrr73GkCFDKFiwIM899xxNmzZ1zLditVq1arFmzRr69+/P0KFDCQ0NZdSoUezfv/++o7ny5s3LihUrHP0nvLy8eOqpp+jZsyfVq1dPVz1ubm4sX76cvn37Mn/+fGw2G61atWLChAnUrFkz1eeJjIxkyJAhXL16NdEoqQSTJk3C3d2dBQsWcP36dcLDw9mwYUO6fi5pqfnTTz+lV69eTJs2DcMweOyxx1izZk2i0WoAderU4c0332TmzJmsXbuW+Ph4jhw5kmy4CQwMZNu2bQwYMIApU6Zw/fp1qlWrxooVKxytJ1llxIgRFClShKlTp/Lqq69SqFAhXn75ZcaMGeOYh6l69epERESwYsUKTp48iY+PD9WrV2fNmjWOkWKtWrXi6NGjzJkzh/Pnz1O4cGEaN27MyJEjHaOtRDLCZuSkf1aKiCXatGnDvn37ku0PIiKS26jPjYiLuXuphD/++IPVq1fTpEkTawoSEclkarkRcTHBwcGO9Y6OHTvGjBkziIuL4+eff6Zs2bJWlycikmHqcyPiYpo3b87ChQuJjo7G09OT+vXrM2bMGAUbEXEaarkRERERp6I+NyIiIuJUFG5ERETEqbhcn5v4+HhOnTpF/vz50zTluYiIiFjHMAwuXbpESEjIfSerdLlwc+rUKUJDQ60uQ0RERNLhxIkTFC9ePMVjXC7c5M+fHzC/OX5+fhZXIyIiIqkRGxtLaGio4+94Slwu3CTcivLz81O4ERERyWVS06VEHYpFRETEqSjciIiIiFNRuBERERGn4nJ9bkREJHPZ7XZu3rxpdRniBDw8PO47zDs1FG5ERCRdDMMgOjqaixcvWl2KOAk3NzdKlSqFh4dHhs6jcCMiIumSEGyKFi2Kj4+PJkaVDEmYZPf06dOUKFEiQ79PCjciIpJmdrvdEWwCAgKsLkecRJEiRTh16hS3bt0ib9686T6POhSLiEiaJfSx8fHxsbgScSYJt6PsdnuGzqNwIyIi6aZbUZKZMuv3SbelMondDlu2wOnTEBwMDRuCu7vVVYmIiLgetdxkgqgoKFkSHn4Ynn3W/FqypLlfREScX8mSJZk4cWKqj9+8eTM2my3LR5rNmzePAgUKZOk1ciKFmwyKioJ27eDPPxPvP3nS3K+AIyKSMrsdNm+GhQvNrxnsbpEim82W4mPEiBHpOu/OnTt5+eWXU318gwYNOH36NP7+/um6nqRMt6UywG6HPn3AMJK+Zhhgs0HfvtC6tW5RiYgkJyrK/P/onf9ALF4cJk2Ctm0z/3qnT592bC9atIhhw4Zx4MABxz5fX1/HtmEY2O128uS5/5/KIkWKpKkODw8PgoKC0vQeST213GTAli1JW2zuZBhw4oR5nIiIJGZFy3dQUJDj4e/vj81mczz//fffyZ8/P2vWrKFWrVp4enry3Xff8d///pfWrVsTGBiIr68vderUYcOGDYnOe/dtKZvNxn/+8x+eeuopfHx8KFu2LMuXL3e8fvdtqYTbR1999RUVK1bE19eX5s2bJwpjt27donfv3hQoUICAgAAGDBhAp06daNOmTZq+BzNmzKBMmTJ4eHhQvnx5PvnkE8drhmEwYsQISpQogaenJyEhIfTu3dvx+vTp0ylbtixeXl4EBgbSrl27NF07uyjcZMAdv3OZcpyIiKu4X8s3mC3fWXmL6l4GDhzI22+/zf79+6lWrRqXL1/m8ccfZ+PGjfz88880b96cli1bcvz48RTPM3LkSJ555hl++eUXHn/8cTp27MiFCxfuefzVq1d59913+eSTT/j22285fvw4/fv3d7z+zjvvsGDBAubOncvWrVuJjY1l2bJlafpsS5cupU+fPrz22mv8+uuv/Pvf/6ZLly5s2rQJgC+++IL333+fDz74gD/++INly5ZRtWpVAH788Ud69+7NqFGjOHDgAGvXrqVRo0Zpun62MVxMTEyMARgxMTEZPtemTYZh/meY8mPTpgxfSkQkR7l27Zrx22+/GdeuXUvX+3PC/z/nzp1r+Pv731HTJgMwli1bdt/3Vq5c2ZgyZYrjeVhYmPH+++87ngPGkCFDHM8vX75sAMaaNWsSXevvv/921AIYhw4dcrxn2rRpRmBgoON5YGCgMX78eMfzW7duGSVKlDBat26d6s/YoEEDo2vXromOad++vfH4448bhmEYEyZMMMqVK2fcuHEjybm++OILw8/Pz4iNjb3n9TIqpd+rtPz9VstNBjRsaN4bvtewfJsNQkPN40RE5Lac3PJdu3btRM8vX75M//79qVixIgUKFMDX15f9+/fft+WmWrVqju18+fLh5+fH2bNn73m8j48PZcqUcTwPDg52HB8TE8OZM2eoW7eu43V3d3dq1aqVps+2f/9+wsPDE+0LDw9n//79ALRv355r165RunRpunbtytKlS7l16xYAjz76KGFhYZQuXZrnn3+eBQsWcPXq1TRdP7so3GSAu7vZ6Q2SBpyE5xMnqjOxiMjdgoMz97jMlC9fvkTP+/fvz9KlSxkzZgxbtmxh9+7dVK1alRs3bqR4nruXD7DZbMTHx6fpeCO5+3ZZKDQ0lAMHDjB9+nS8vb3p3r07jRo14ubNm+TPn59du3axcOFCgoODGTZsGNWrV8+RC6cq3GRQ27awZAkUK5Z4f/Hi5v6s6O0vIpLb5aaW761bt9K5c2eeeuopqlatSlBQEEePHs3WGvz9/QkMDGTnzp2OfXa7nV27dqXpPBUrVmTr1q2J9m3dupVKlSo5nnt7e9OyZUsmT57M5s2b2b59O3v37gUgT548NGvWjHHjxvHLL79w9OhRvv766wx8sqyhoeCZoG1bc7i3ZigWEUmdhJbvdu3MIHNnA0VOa/kuW7YsUVFRtGzZEpvNxtChQ1NsgckqvXr1YuzYsTzwwANUqFCBKVOm8Pfff6dpyYLXX3+dZ555hpo1a9KsWTNWrFhBVFSUY/TXvHnzsNvt1KtXDx8fH+bPn4+3tzdhYWGsXLmSw4cP06hRIwoWLMjq1auJj4+nfPnyWfWR003hJpO4u0OTJlZXISKSeyS0fCc3z83EiTmn5fu9997jX//6Fw0aNKBw4cIMGDCA2NjYbK9jwIABREdH88ILL+Du7s7LL79MREQE7mlIgG3atGHSpEm8++679OnTh1KlSjF37lya/O8PWIECBXj77bfp168fdrudqlWrsmLFCgICAihQoABRUVGMGDGC69evU7ZsWRYuXEjlypWz6BOnn83I7ht6FouNjcXf35+YmBj8/PysLkdEJFe6fv06R44coVSpUnh5eWXoXFqbL33i4+OpWLEizzzzDG+++abV5WSKlH6v0vL3Wy03IiJiKbV8p86xY8dYt24djRs3Ji4ujqlTp3LkyBGeffZZq0vLcdShWEREJBdwc3Nj3rx51KlTh/DwcPbu3cuGDRuoWLGi1aXlOGq5ERERyQVCQ0OTjHSS5KnlRkRERJyKwo2IiIg4FYUbERERcSoKNyIiIuJUFG5ERETEqSjciIiIiFNRuBEREUmjJk2a0LdvX8fzkiVLMnHixBTfY7PZWLZsWYavnVnnScmIESOoUaNGll4jKynciIiIy2jZsiXNmzdP9rUtW7Zgs9n45Zdf0nzenTt38vLLL2e0vETuFTBOnz5NixYtMvVazkbhRkREXMaLL77I+vXr+fPOlTr/Z+7cudSuXZtq1aql+bxFihTBx8cnM0q8r6CgIDw9PbPlWrmVwo2IiLiMJ598kiJFijBv3rxE+y9fvszixYt58cUX+euvv/jnP/9JsWLF8PHxoWrVqixcuDDF8959W+qPP/6gUaNGeHl5UalSJdavX5/kPQMGDKBcuXL4+PhQunRphg4dys2bNwGYN28eI0eOZM+ePdhsNmw2m6Pmu29L7d27l0ceeQRvb28CAgJ4+eWXuXz5suP1zp0706ZNG959912Cg4MJCAigR48ejmulRnx8PKNGjaJ48eJ4enpSo0YN1q5d63j9xo0b9OzZk+DgYLy8vAgLC2Ps2LEAGIbBiBEjKFGiBJ6enoSEhNC7d+9UXzs9tPyCiIhkCsOAq1etubaPD9hs9z8uT548vPDCC8ybN4/Bgwdj+9+bFi9ejN1u55///CeXL1+mVq1aDBgwAD8/P1atWsXzzz9PmTJlqFu37n2vER8fT9u2bQkMDOSHH34gJiYmUf+cBPnz52fevHmEhISwd+9eunbtSv78+fm///s/IiMj+fXXX1m7di0bNmwAwN/fP8k5rly5QkREBPXr12fnzp2cPXuWl156iZ49eyYKcJs2bSI4OJhNmzZx6NAhIiMjqVGjBl27dr3/Nw2YNGkSEyZM4IMPPqBmzZrMmTOHVq1asW/fPsqWLcvkyZNZvnw5n3/+OSVKlODEiROcOHECgC+++IL333+fzz77jMqVKxMdHc2ePXtSdd10M1xMTEyMARgxMTFWlyIikmtdu3bN+O2334xr16459l2+bBhmxMn+x+XLqa99//79BmBs2rTJsa9hw4bGc889d8/3PPHEE8Zrr73meN64cWOjT58+judhYWHG+++/bxiGYXz11VdGnjx5jJMnTzpeX7NmjQEYS5cuvec1xo8fb9SqVcvxfPjw4Ub16tWTHHfneWbNmmUULFjQuHzHN2DVqlWGm5ubER0dbRiGYXTq1MkICwszbt265Timffv2RmRk5D1rufvaISEhxujRoxMdU6dOHaN79+6GYRhGr169jEceecSIj49Pcq4JEyYY5cqVM27cuHHP6yVI7vcqQVr+fuu2lIiIuJQKFSrQoEED5syZA8ChQ4fYsmULL774IgB2u50333yTqlWrUqhQIXx9ffnqq684fvx4qs6/f/9+QkNDCQkJceyrX79+kuMWLVpEeHg4QUFB+Pr6MmTIkFRf485rVa9enXz58jn2hYeHEx8fz4EDBxz7KleujLu7u+N5cHAwZ8+eTdU1YmNjOXXqFOHh4Yn2h4eHs3//fsC89bV7927Kly9P7969WbduneO49u3bc+3aNUqXLk3Xrl1ZunQpt27dStPnTCuFGxERyRQ+PnD5sjWPtPblffHFF/niiy+4dOkSc+fOpUyZMjRu3BiA8ePHM2nSJAYMGMCmTZvYvXs3ERER3LhxI9O+V9u3b6djx448/vjjrFy5kp9//pnBgwdn6jXulDdv3kTPbTYb8fHxmXb+Bx98kCNHjvDmm29y7do1nnnmGdq1aweYq5kfOHCA6dOn4+3tTffu3WnUqFGa+vyklfrciIhIprDZ4I4GhBztmWeeoU+fPnz66ad8/PHHdOvWzdH/ZuvWrbRu3ZrnnnsOMPvQHDx4kEqVKqXq3BUrVuTEiROcPn2a4OBgAL7//vtEx2zbto2wsDAGDx7s2Hfs2LFEx3h4eGC32+97rXnz5nHlyhVH683WrVtxc3OjfPnyqar3fvz8/AgJCWHr1q2OAJhwnTv7IPn5+REZGUlkZCTt2rWjefPmXLhwgUKFCuHt7U3Lli1p2bIlPXr0oEKFCuzdu5cHH3wwU2q8m8KNiIi4HF9fXyIjIxk0aBCxsbF07tzZ8VrZsmVZsmQJ27Zto2DBgrz33nucOXMm1eGmWbNmlCtXjk6dOjF+/HhiY2MThZiEaxw/fpzPPvuMOnXqsGrVKpYuXZromJIlS3LkyBF2795N8eLFyZ8/f5Ih4B07dmT48OF06tSJESNGcO7cOXr16sXzzz9PYGBg+r45yXj99dcZPnw4ZcqUoUaNGsydO5fdu3ezYMECAN577z2Cg4OpWbMmbm5uLF68mKCgIAoUKMC8efOw2+3Uq1cPHx8f5s+fj7e3N2FhYZlW3910W0pERFzSiy++yN9//01ERESi/jFDhgzhwQcfJCIigiZNmhAUFESbNm1SfV43NzeWLl3KtWvXqFu3Li+99BKjR49OdEyrVq149dVX6dmzJzVq1GDbtm0MHTo00TFPP/00zZs35+GHH6ZIkSLJDkf38fHhq6++4sKFC9SpU4d27drRtGlTpk6dmrZvxn307t2bfv368dprr1G1alXWrl3L8uXLKVu2LGCO/Bo3bhy1a9emTp06HD16lNWrV+Pm5kaBAgWYPXs24eHhVKtWjQ0bNrBixQoCAgIytcY72QzDMLLs7DlQbGws/v7+xMTE4OfnZ3U5IiK50vXr1zly5AilSpXCy8vL6nLESaT0e5WWv99quRERERGnonAjIiIiTkXhRkRERJyKwo2IiIg4FYUbERFJNxcbkyJZLLN+nxRuREQkzRJmvL1q1UqZ4pQSZmi+c6mI9NAkfiIikmbu7u4UKFDAsT6Rj4+PY4ZfkfSIj4/n3Llz+Pj4kCdPxuKJwk0mu3kT7lrCQ0TEKQUFBQGkegFGkftxc3OjRIkSGQ7KCjeZ5LffoF8/KFcOJk+2uhoRkaxns9kIDg6maNGiWboIorgODw8P3Nwy3mNG4SaTREfDV1/Bxo3Qqxf8b0ZqERGn5+7unuE+EiKZSR2KM8kjj8Djj8OtWzBwoNXViIiIuC6Fm0w0bhy4uUFUFGzdanU1IiIirknhJhNVrgwvvmhu9+8Pmv5BREQk+yncZLKRIyFfPvj+e1iyxOpqREREXI/CTSYLDjZbbQAGDYL/zUckIiIi2UThJgv07w9BQfDf/8KMGVZXIyIi4loUbrKAry+MGmVujxoFFy9aWo6IiIhLsTzcTJs2jZIlS+Ll5UW9evXYsWNHisdfvHiRHj16EBwcjKenJ+XKlWP16tXZVG3qdekClSrBhQswZozV1YiIiLgOS8PNokWL6NevH8OHD2fXrl1Ur16diIiIe07lfePGDR599FGOHj3KkiVLOHDgALNnz6ZYsWLZXPn95ckD48eb25Mnw9GjlpYjIiLiMmyGhevV16tXjzp16jB16lTAXDQrNDSUXr16MTCZmfBmzpzJ+PHj+f333x0r0qZVbGws/v7+xMTE4Ofnl6H678cwoFkz+PprePZZWLAgSy8nIiLitNLy99uylpsbN27w008/0axZs9vFuLnRrFkztm/fnux7li9fTv369enRoweBgYFUqVKFMWPGYLfb73mduLg4YmNjEz2yi812u/Xm00/hxx+z7dIiIiIuy7Jwc/78eex2O4GBgYn2BwYGEh0dnex7Dh8+zJIlS7Db7axevZqhQ4cyYcIE3nrrrXteZ+zYsfj7+zseoaGhmfo57ufBB+H5583t11/XxH4iIiJZzfIOxWkRHx9P0aJFmTVrFrVq1SIyMpLBgwczc+bMe75n0KBBxMTEOB4nTpzIxopNb70Fnp6weTOsXJntlxcREXEploWbwoUL4+7uzpkzZxLtP3PmDEFBQcm+Jzg4mHLlyiVafbZixYpER0dz4x6z5Xl6euLn55fokd1KlIC+fc3t//s/c3FNERERyRqWhRsPDw9q1arFxo0bHfvi4+PZuHEj9evXT/Y94eHhHDp0iPj4eMe+gwcPEhwcjIeHR5bXnBGDBkFAAPz+O3z4odXViIiIOC9Lb0v169eP2bNn89FHH7F//366devGlStX6NKlCwAvvPACgwYNchzfrVs3Lly4QJ8+fTh48CCrVq1izJgx9OjRw6qPkGr+/jB8uLk9bBhcumRtPSIiIs4qj5UXj4yM5Ny5cwwbNozo6Ghq1KjB2rVrHZ2Mjx8/jpvb7fwVGhrKV199xauvvkq1atUoVqwYffr0YcCAAVZ9hDT597/NOW8OHTJHUSXMYiwiIiKZx9J5bqyQnfPcJCcqCp5+Gry94Y8/IAfOPygiIpLj5Ip5blzVU09BeDhcu2benhIREZHMpXCTze6c2G/uXNi719p6REREnI3CjQXq14f27c0J/f7v/6yuRkRExLko3Fhk7FjImxfWroX1662uRkRExHko3FikTBno3t3cfv11SGF5LBEREUkDhRsLDR1qzn+zZw/Mn291NSIiIs5B4cZCAQEweLC5PXgwXL1qbT0iIiLOQOHGYr16QVgYnDwJEydaXY2IiEjup3BjMS8vGDPG3H77bTh71tp6REREcjuFmxygQweoVctcb2rkSKurERERyd0UbnIANzd4911z+4MP4MABa+sRERHJzRRucogmTaBlS3NI+MCBVlcjIiKSeync5CDvvAPu7rBsGWzZYnU1IiIiuZPCTQ5SsSK89JK53b+/uTyDiIiIpI3CTQ4zYgT4+sKOHfD551ZXIyIikvso3OQwQUG3F9McOBDi4qytR0REJLdRuMmB+vWD4GA4ehSmTbO6GhERkdxF4SYHypcP3nrL3H7rLbhwwdp6REREchOFmxyqUyeoWhX+/htGj7a6GhERkdxD4SaHcneHcePM7alT4cgRa+sRERHJLRRucrCICHj0UbhxA954w+pqREREcgeFmxzMZoPx482vn31mDg8XERGRlCnc5HDVq8MLL5jbmthPRETk/hRucoG33gIvL3NJhuXLra5GREQkZ1O4yQWKFzfnvgFzgr+bN62tR0REJCdTuMklBgyAIkXg4EGYPdvqakRERHIuhZtcws/PXHcKzK+xsVZWIyIiknMp3OQiXbtCuXJw7hy8847V1YiIiORMCje5SN68t0PNe+/Bn39m/jXsdti8GRYuNL/a7Zl/DRERkaykcJPLtG4NDRvC9eswdGjmnjsqCkqWhIcfhmefNb+WLGnuFxERyS0UbnIZmw3efdfc/ugj2LMnc84bFQXt2iVtDTp50tyvgCMiIrmFwk0uVLcuREaaE/q9/nrGz2e3Q58+yU8QmLCvb1/dohIRkdxB4SaXGjsWPDxg/Xr46quMnWvLlpT77xgGnDhhHiciIpLTKdzkUqVKQc+e5nb//hlrVTl9OnOPExERsZLCTS42eDAUKAC//mr2v0mv4ODMPU5ERMRKCje5WKFCt0dMDR0KV66k7zwNG5pLPNhsyb9us0FoqHmciIhITqdwk8v16GHeojp1ypz7Jj3c3WHSJHP77oCT8HziRPM4ERGRnE7hJpfz9IQxY8ztcePgzJn0nadtW1iyBIoVS7y/eHFzf9u2GatTREQku9gMI7kBwM4rNjYWf39/YmJi8PPzs7qcTGEY8NBDsGMHvPIKzJiR/nPZ7eaoqNOnzT42DRuqxUZERKyXlr/fCjdOYssWaNTIDCJ790LFilZXJCIiknnS8vdbt6WcRMOG5tIMdjsMGGB1NSIiItZRuHEi77xjttysWGEueikiIuKKFG6cSPny8O9/m9v9+0N8vLX1iIiIWEHhxskMHw7588NPP8Fnn1ldjYiISPZTuHEyRYvCwIHm9htvwPXr1tYjIiKS3RRunFDfvuZ8NceOwZQpVlcjIiKSvRRunJCPD7z1lrk9ejT89Ze19YiIiGQnhRsn9fzzUL06xMTcDjoiIiKuQOHGSbm7w/jx5va0afDf/1pbj4iISHZRuHFijz4KERFw8yYMGmR1NSIiItlD4cbJjR8Pbm6weDFs3251NSIiIllP4cbJVa0KnTub2/37m4tsioiIODOFGxcwahR4e8O2bbB0qdXViIiIZC2FGxdQrJjZagPmopo3blhbj4iISFZSuHERr79uzl586BB88IHV1YiIiGQdhRsXkT8/jBxpbo8cac5/IyIi4owUblzISy9BhQrmjMVvv211NSIiIllD4caF5MkD48aZ2++/D8ePW1uPiIhIVlC4cTFPPgmNG0NcHAwZYnU1IiIimU/hxsXYbPDuu+b2/Pmwa5e19YiIiGQ2hRsXVLs2PPusOaHf669rYj8REXEuCjcuavRo8PCAr7+GNWusrkZERCTzKNy4qJIloU8fc/v11+HWLUvLERERyTQKNy7sjTegUCH47TeYO9fqakRERDKHwo0LK1AAhg41t4cNg8uXLS1HREQkUyjcuLju3aFMGYiOhgkTrK5GREQk43JEuJk2bRolS5bEy8uLevXqsWPHjnseO2/ePGw2W6KHl5dXNlbrXDw8YOxYc3vcODh92tp6REREMsrycLNo0SL69evH8OHD2bVrF9WrVyciIoKzZ8/e8z1+fn6cPn3a8Th27Fg2Vux82rWDhx6Cq1dh+HCrqxEREckYy8PNe++9R9euXenSpQuVKlVi5syZ+Pj4MGfOnHu+x2azERQU5HgEBgZmY8XO586J/T78EPbts7YeERGRjLA03Ny4cYOffvqJZs2aOfa5ubnRrFkztm/ffs/3Xb58mbCwMEJDQ2ndujX79Nc4w8LDoW1biI+H//s/q6sRERFJP0vDzfnz57Hb7UlaXgIDA4mOjk72PeXLl2fOnDl8+eWXzJ8/n/j4eBo0aMCff/6Z7PFxcXHExsYmekjy3n7bXFxz9Wpzcj8REZHcyPLbUmlVv359XnjhBWrUqEHjxo2JioqiSJEifPDBB8keP3bsWPz9/R2P0NDQbK449yhbFrp1M7f79oVr1ywtR0REJF0sDTeFCxfG3d2dM2fOJNp/5swZgoKCUnWOvHnzUrNmTQ4dOpTs64MGDSImJsbxOHHiRIbrdmbDhkFAAOzdCy+9pHWnREQk97E03Hh4eFCrVi02btzo2BcfH8/GjRupX79+qs5ht9vZu3cvwcHByb7u6emJn59foofcW+HCsHixeXvq00/hnXesrkhERCRtLL8t1a9fP2bPns1HH33E/v376datG1euXKFLly4AvPDCCwwaNMhx/KhRo1i3bh2HDx9m165dPPfccxw7doyXXnrJqo/gdB5+GCZPNrffeANWrLC2HhERkbTIY3UBkZGRnDt3jmHDhhEdHU2NGjVYu3ato5Px8ePHcXO7ncH+/vtvunbtSnR0NAULFqRWrVps27aNSpUqWfURnFK3buatqRkz4Nln4fvvoXJlq6sSERG5P5thuFavitjYWPz9/YmJidEtqvu4eRMiImDTJihdGnbsMPvjiIiIZLe0/P22/LaU5Fx585r9b0qVgsOHzZmMb960uioREZGUKdxIigICzD43vr6weTP06WN1RSIiIilTuJH7qlzZHDlls5l9cGbMsLoiERGRe1O4kVRp2RLGjDG3e/c2++GIiIjkRAo3kmoDBkDHjnDrltn/5vBhqysSERFJSuFGUs1mg9mzoU4duHABWrUCLdUlIiI5jcKNpIm3NyxdCsHBsG8fPPcc2O1WVyUiInKbwo2kWbFisGwZeHqaI6mGDLG6IhERkdsUbiRd6taFOXPM7bffNkdTiYiI5AQKN5Juzz4LAwea2y++CDt3WluPiIgIKNxIBo0ebQ4Tv34dWreGU6esrkhERFydwo1kiJsbzJ9vTvR3+jS0aQPXrlldlYiIuDKFG8kwPz9YvhwKFTJvTb30ErjWcqwiIpKTKNxIpihdGpYsgTx5zM7F48ZZXZGIiLgqhRvJNA8/DJMnm9uDBpnDxEVERLKbwo1kqm7dzIdhmKOp9u2zuiIREXE1CjeS6SZNgiZN4PJlc4mGv/6yuiIREXElCjeS6fLmhcWLoVQpc3HNdu3g5k2rqxIREVehcCNZonBhs8+Nry9s3gx9+1pdkYiIuAqFG8kylSubI6dsNpg+HWbOtLoiERFxBQo3kqVatoQxY8ztXr3MVhwREZGspHAjWW7AAHPk1K1b8PTTZj8cERGRrJKucHPixAn+/PNPx/MdO3bQt29fZs2alWmFifOw2eA//4E6deDCBXMEVWys1VWJiIizSle4efbZZ9m0aRMA0dHRPProo+zYsYPBgwczatSoTC1QnIO3NyxdCsHB5tw3zz0H8fFWVyUiIs4oXeHm119/pW7dugB8/vnnVKlShW3btrFgwQLmzZuXmfWJEylWDJYtA09PcyTVkCFWVyQiIs4oXeHm5s2beHp6ArBhwwZatWoFQIUKFTh9+nTmVSdOp25dmDPH3B471hxNJSIikpnSFW4qV67MzJkz2bJlC+vXr6d58+YAnDp1ioCAgEwtUJzPs8/CwIHm9osvmiuJi4iIZJZ0hZt33nmHDz74gCZNmvDPf/6T6tWrA7B8+XLH7SqRlLz1Fjz5JFy/Dq1bw6lTVlckIiLOwmYYhpGeN9rtdmJjYylYsKBj39GjR/Hx8aFo0aKZVmBmi42Nxd/fn5iYGPz8/Kwux6XFxkKDBmYH4zp14JtvzI7HIiIid0vL3+90tdxcu3aNuLg4R7A5duwYEydO5MCBAzk62EjO4ucHy5dDoULmramuXc3VxEVERDIiXeGmdevWfPzxxwBcvHiRevXqMWHCBNq0acOMGTMytUBxbqVLw5IlkCcPLFgA48ZZXZGIiOR26Qo3u3btomHDhgAsWbKEwMBAjh07xscff8zkyZMztUBxfg8/DAm/NoMGmcPEM8puN5d6WLjQ/Gq3Z/ycIiKSO6Qr3Fy9epX8+fMDsG7dOtq2bYubmxsPPfQQx44dy9QCxTV06wavvGLelnr2WbMfTnpFRUHJkmZoevZZ82vJkuZ+ERFxfukKNw888ADLli3jxIkTfPXVVzz22GMAnD17Vp10Jd0mT4YmTeDyZXOJhr/+Svs5oqKgXTu4Y3UQAE6eNPcr4IiIOL90hZthw4bRv39/SpYsSd26dalfvz5gtuLUrFkzUwsU15E3LyxeDKVKmYtrtm8PN2+m/v12O/Tpk3yn5IR9ffvqFpWIiLNL91Dw6OhoTp8+TfXq1XFzMzPSjh078PPzo0KFCplaZGbSUPCcb98+eOghswWne3eYNi1179u82bwFdT+bNpktRCIikntk+VBwgKCgIGrWrMmpU6ccK4TXrVs3RwcbyR0qVzaXZbDZYPp0mDkzde9L7cofWiFERMS5pSvcxMfHM2rUKPz9/QkLCyMsLIwCBQrw5ptvEq+lniUTtGwJo0eb2716ma0y9xMcnLpzp/Y4ERHJnfKk502DBw/mww8/5O233yY8PByA7777jhEjRnD9+nVGJ/xVEsmAgQPh11/NVpx27WDHDnNenHtp2BCKFzc7Dyd3s9VmM1//3ywGIiLipNLV5yYkJISZM2c6VgNP8OWXX9K9e3dOnjyZaQVmNvW5yV2uXYPGjc0ZjKtUgW3b4H+zECQrYbQUJA44Npv5dckSaNs26+oVEZGskeV9bi5cuJBs35oKFSpw4cKF9JxSJFne3rB0qXkr6ddf4bnnIKU7n23bmgGmWLHE+4sXV7AREXEV6Qo31atXZ+rUqUn2T506lWrVqmW4KJE7FSsGy5aBp6e5FtWQISkf37YtHD1qjor69FPz65EjCjYiIq4iXbelvvnmG5544glKlCjhmONm+/btnDhxgtWrVzuWZsiJdFsq91qwwGy5Sdh+9llr6xERkeyT5belGjduzMGDB3nqqae4ePEiFy9epG3btuzbt49PPvkkXUWL3E/HjjBggLn94otmPxwREZG7pXsSv+Ts2bOHBx98EHsOngJWLTe5m90ObdrAypUQEmIGnJAQq6sSEZGsli2T+IlYwd3dvCVVuTKcOgVPPWWOqBIREUmgcCO5jp8ffPklFCpkzn3TtWvy89qIiIhrUriRXKlMGXORzYSWnHHjrK5IRERyijTNUNz2PmNpL168mJFaRNLkkUdg8mTo0QMGDTJvVT35pNVViYiI1dIUbvz9/e/7+gsvvJChgkTSont32LvXXFzz2Wdh+3Yz5IiIiOvK1NFSuYFGSzmfmzfhscfMxTVLlzb74QQEWF2ViIhkJo2WEpeSN6/Z/6ZUKTh8GNq3NwOPiIi4JoUbcQqFC5tLM/j6msst9O1rdUUiImIVhRtxGlWqmCOnbDaYPt3shyMiIq5H4UacSqtWMHq0ud2rl9kPR0REXIvCjTidgQPNkVO3bkHr1mZ/HBERcR0KN+J0bDb4z3+gUSOIjYVnnjEX2rx82erKREQkOyjciFPy9oYNG2DwYDPszJkDtWrBTz9ZXZmIiGQ1hRtxWnnzwltvmaOniheHgwehfn14912Ij7e6OhERySoKN+L0GjeGPXugbVtz/pvXX4eICDh92urKREQkKyjciEsoVAiWLIHZs8HHx7xlVa0arFhhdWUiIpLZFG7EZdhs8NJLZr+bGjXg/Hlz6HiPHnDtmtXViYhIZlG4EZdToQJ8/z289pr5fPp0qFPHXIBTRERyP4UbcUmenmbH4rVrITAQ9u0zA87UqeBaS8mKiDgfhRtxaRER8Msv8PjjEBdnzmrcsiWcO2d1ZSIikl4KN+LyihaFlSth8mSzRWfVKrOz8bp1VlcmIiLpoXAjgtnZuFcv2LEDKlWC6GizVad/f7NFR0REco8cEW6mTZtGyZIl8fLyol69euzYsSNV7/vss8+w2Wy0adMmawsUl1GtGvz4ozmCCmDCBHPivwMHrK1LRERSz/Jws2jRIvr168fw4cPZtWsX1atXJyIigrNnz6b4vqNHj9K/f38aNmyYTZWKq/D2NjsWf/klBATAzz/Dgw+a61Wps7GISM5nebh577336Nq1K126dKFSpUrMnDkTHx8f5syZc8/32O12OnbsyMiRIyldunQ2ViuupFUrs7Nx06Zw9Sp07Qrt28OFC1ZXJiIiKbE03Ny4cYOffvqJZs2aOfa5ubnRrFkztm/ffs/3jRo1iqJFi/Liiy/e9xpxcXHExsYmeoikVkiI2bF43DjIkwe++AKqV4dvvrG6MhERuRdLw8358+ex2+0EBgYm2h8YGEh0dHSy7/nuu+/48MMPmT17dqquMXbsWPz9/R2P0NDQDNctrsXNzVyPavt2KFsW/vwTHn4Yhg4116oSEZGcxfLbUmlx6dIlnn/+eWbPnk3hwoVT9Z5BgwYRExPjeJw4cSKLqxRnVbs27NoF//qX2ffmrbegYUM4fNjqykRE5E55rLx44cKFcXd358yZM4n2nzlzhqCgoCTH//e//+Xo0aO0bNnSsS8+Ph6APHnycODAAcqUKZPoPZ6ennh6emZB9eKKfH3hww/NYeIvvww//GCuUzV9Ojz3nNXViYgIWNxy4+HhQa1atdi4caNjX3x8PBs3bqR+/fpJjq9QoQJ79+5l9+7djkerVq14+OGH2b17t245SbZ55hnYswf+8Q+4dAmef94MN+rSJSJiPUtbbgD69etHp06dqF27NnXr1mXixIlcuXKFLl26APDCCy9QrFgxxo4di5eXF1WqVEn0/gIFCgAk2S+S1cLCYNMmGDsWRo6EBQtg2zb49FN46CGrqxMRcV2Wh5vIyEjOnTvHsGHDiI6OpkaNGqxdu9bRyfj48eO4ueWqrkHiQvLkMTsWN20KHTvCkSNma86IETBoELi7W12hiIjrsRmGa01LFhsbi7+/PzExMfj5+VldjjiRmBh45RX47DPzeaNGMH8+6G6piEjGpeXvt5pERDKJv795S+qjj8yOx99+ay7nsGSJ1ZWJiLgWhRuRTGSzwQsvwO7dULcuXLxozmrctStcuWJ1dSIirkHhRiQLlCkD330Hb7xhBp7//Mdcn2rXLqsrExFxfgo3Ilkkb14YPRq+/hqKFYODB81RVBMmwP+mZxIRkSygcCOSxZo0MefEeeopc7mG/v2heXM4fdrqykREnJPCjUg2CAgwF9384APw9ob1683OxitXpvw+ux02b4aFC82vdnt2VCsikrsp3IhkE5vNXLLhp5/MlcXPn4eWLaFXL7h2LenxUVFQsqS5SOezz5pfS5Y094uIyL0p3Ihks4oVzTWpXn3VfD51qjmy6tdfbx8TFQXt2pkrkN/p5ElzvwKOiMi9KdyIWMDTE957D9asgaJFzWBTuzZMmwa3bkGfPubK43dL2Ne3r25RiYjci8KNiIWaN4dffoEWLSAuDnr2NGc2vrvF5k6GASdOwJYt2VeniEhuonAjYrHAQFi1CiZNAg8P2L49de/TaCsRkeQp3IjkADYb9O4NO3aYq42nRnBw1tYkIpJbKdyI5CDVq8PevZAv372PsdnMxTgbNsy+ukREchOFG5EcJn9++PjjlI+ZOBHc3bOlHBGRXEfhRiQHatvWnPQvuVtP1aqBj0/yo6lEREThRiTHatvWHBW1aROMGAGNG4Obm7mUQ4sWUKWKuSBnchMAioi4MpthuNa//2JjY/H39ycmJgY/Pz+ryxFJk6NHYfJkM9RcumTuK1IEuneHbt3MkVciIs4oLX+/1XIjkouULGlO/vfnn+bXsDA4dw5GjjS3X3oJ9u2zukoREWsp3IjkQn5+5vINhw7B559DvXrmJIAffmjermreHNatU78cEXFNCjciuViePNC+PXz/PWzbZq475eYGX30FERFQtSrMmQPXr1tdqYhI9lG4EXES9evD4sVma07fvuDra96ievFF85bVqFHmLSwREWencCPiZEqVgvffN/vlvPuuOeHf2bMwfLi5/fLL8NtvVlcpIpJ1FG5EnJS/P7z2Gvz3v/DZZ1CnjtkvZ/ZsqFwZHn8cNmxQvxwRcT4KNyJOLm9eiIyEH36A774z58+x2WDNGnj0UXPJh3nzzOAjIuIMFG5EXITNBuHh5szHf/xhLtSZL5+5llWXLma/nLfegvPnra5URCRjFG5EXFCZMjBpkjkD8rhxULw4nDkDQ4ea/XJeeQV+/93qKkVE0kfhRsSFFSwIr78Ohw/Dp59CrVrmsPEPPoCKFeHJJ+Hrr9UvR0RyF4UbESFvXvjnP2HnTvj2W2jTxryNtWoVNG0KNWuaK5XfuGF1pSIi96dwIyIONhs0bAhLl8LBg9Czp7kC+Z490KmTufzDmDHw119WVyoicm8KNyKSrAcegClTzH45b78NISFw+jQMHmz2y+ne3QxAIiI5jcKNiKSoUCEYMACOHIH5881bVNeuwYwZUL48tGoFmzerX46I5BwKNyKSKh4e0LEj/PSTGWZatTJvY61YAQ8/bHZGnj9f/XJExHoKNyKSJjYbNG4MX35pDhfv3h28veHnn+H5583lH95+Gy5csLpSEXFVCjcikm7lysG0aWa/nDFjIDgYTp2CQYPMfjk9e5oTBoqIZCeFGxHJsIAAM9AcPWoOGa9RA65eNYNP+fLm0PJvv1W/HBHJHgo3IpJpPDzMW1O7dpmT/z35pBlovvzSvJVVsyaMHAk//gjx8VZXKyLOymYYrvVvqdjYWPz9/YmJicHPz8/qckSc3oEDMHEifPSROcoqQWAgtGhhrk7+2GPmKuYiIveSlr/fCjciki3++guWLYPVq2H9erh06fZrefKYi3o+8YQZdipVMjsui4gkULhJgcKNiPVu3IDvvjOXd1i9OukinWFhZsh54glzmLmPjzV1ikjOoXCTAoUbkexnt8OWLeYMx8HB5hIP7u63Xz982Aw5q1ebfXXi4m6/5ulpBpyEVp3SpbO/fhGxnsJNChRuRLJXVBT06QN//nl7X/HiMGkStG2b9PirV2HTJrNVZ9UqOH488esVKtxu1fnHP8xOzCLi/BRuUqBwI5J9oqKgXbukQ8AT+tMsWZJ8wElgGPDbb7dbdb77Dm7duv26ry88+qgZdFq0MNe/EhHnpHCTAoUbkexht5uriN/ZYnMnm81swTlyJPEtqpTExJidkVetgjVr4MyZxK/XrHm7Vadu3dSfV0RyPoWbFCjciGSPzZvNvjL3s2kTNGmS9vPHx5vz6axebYadnTsTtxAFBEDz5mbYiYgwn4tI7pWWv9+axE9EssTp05l73N3c3KB2bRg2DH74AaKjzbl0IiOhQAFz6PmCBeZin0WLmkPNR4+G3bs1U7KIs1PLjYhkiaxuuUnJrVuwffvtVp29exO/HhJitug8/jg0awb582fu9UUk8+m2VAoUbkSyR0Kfm5Mnk28pSU+fm/Q6ceJ2p+QNG8wRWQny5oVGjW4PNS9XThMIiuRECjcpULgRyT4Jo6UgccBJ7WiprHD9urmIZ8JQ8//+N/HrZcrcbtVp0gS8vLK3PhFJnsJNChRuRLJXcvPchIaa601ld7BJzh9/3J4p+ZtvzNmTE3h7Q9Omt1t1SpSwrk4RV6dwkwKFG5Hsd78ZinOKy5dh48bbYefkycSvV6lihpzmzc2h5vnyWVOniCtSuEmBwo2IpIZhwC+/3O6UvH27Ofw8gZsbVKwIdeqYo7bq1IFq1XQbSySrKNykQOFGRNLjwgVYt84MOps2JW3VAXN186pVEweeypXNTssikjEKNylQuBGRzHD6NPz4o/nYudN8nD+f9DgvL6hRwww7CYGnfPmceVtOJCdTuEmBwo2IZAXDMBf5vDPw/PijuWTE3Xx94cEHb4ed2rXNUVoagi5ybwo3KVC4EZHsEh9vDjW/M+zs2gVXriQ9tkCBxGGndm1zVJkCj4hJ4SYFCjciYiW7HX7/PXHg2b0b4uKSHlu0aOLAU6cOBAZme8kiOYLCTQoUbkQkp7lxA/btux12du6EX381l5G4W/HiiVt3ateGQoWyv2aR7KZwkwKFGxHJDa5dM4ei3xl49u9PfimL0qUTt+48+KDWyxLno3CTAoUbEcmtLl82++zc2Wn50KGkx9lsUKFC4ltaNWqYMy6L5FYKNylQuBERZ/L33/DTT4n78Bw/nvQ4d3dzhuU7A0/VquDhkf01i6SHwk0KFG5ExNmdPZt0Dp4zZ5IelzevOQS9XDkoWzbx15AQjdSSnEXhJgUKNyLiagzDnFH5ztadH380Z12+l3z54IEHzKBzZ+gpVw4CArKvdpEECjcpULgRkfTKLQuApoZhwIkTcPCguTL6wYO3tw8fNj/rvRQsmHzoKVvWnKBQJCso3KRA4UZE0iMqCvr0gT//vL2veHGYNAnatrWurqxw8yYcOZI09Bw8aAailAQHJw085cqZt788PbOnfnFOCjcpULgRkbSKioJ27ZIOw07ok7JkifMFnHu5etWcdfnu0HPwIJw7d+/3ublBiRLJt/iEheXeFjDJPgo3KVC4EZG0sNuhZMnELTZ3stnMFpwjR/QH+uLF22HnztBz8CBcunTv9yV0bE6uxUcdmyWBwk0KFG5EJC02b4aHH77/cZs2QZMmWV1N7mQY5giu5Pr3/PFH8ktPJFDHZkmQlr/febKpphRNmzaN8ePHEx0dTfXq1ZkyZQp169ZN9tioqCjGjBnDoUOHuHnzJmXLluW1117j+eefz+aqRcQVnD6duce5IpvNXBMrMNDshH2n+HizH09y/XuOHDEXGd2zx3zcLaFjc9myZutZSIjZ5yfha3AweHllz2eUnMXycLNo0SL69evHzJkzqVevHhMnTiQiIoIDBw5QtGjRJMcXKlSIwYMHU6FCBTw8PFi5ciVdunShaNGiREREWPAJRMSZBQdn7nGSmJub2ecmLAyaNUv82o0bcPRo8v17/vzTnMDwhx/Mx70UKpQ48ISEKAS5AstvS9WrV486deowdepUAOLj4wkNDaVXr14MHDgwVed48MEHeeKJJ3jzzTfve6xuS4lIWiT0uTl5Mvl1ndTnxhpXr5pLTxw8aH49dcpsPTt16vZ2Sre77nZnCLo7/CTsCwpSCLJSrrktdePGDX766ScGDRrk2Ofm5kazZs3Yvn37fd9vGAZff/01Bw4c4J133kn2mLi4OOLu+A2PjY3NeOEi4jLc3c3h3u3amUHmzoCT0NF14kQFm+zm4wPVqpmP5BiG2bJzd+C5Vwi6cMF87NuX8nUVgnIHS8PN+fPnsdvtBAYGJtofGBjI77//fs/3xcTEUKxYMeLi4nB3d2f69Ok8+uijyR47duxYRo4cmal1i4hradvWHO6d3Dw3Eye6zjDw3MRmM4NIoUJQufK9j7s7BKUUhjI7BAUHa+6frGJ5n5v0yJ8/P7t37+by5cts3LiRfv36Ubp0aZokM1Rh0KBB9OvXz/E8NjaW0NDQbKxWRJxB27bQurXzzFAsprSEoIsX798KlJ4QdGffnyJFzH0BAYm/Jmz7+GhofGpYGm4KFy6Mu7s7Z+5a0e3MmTMEBQXd831ubm488MADANSoUYP9+/czduzYZMONp6cnnorGIpIJ3N013NtV2Wzm6KyCBbMmBP36a+rq8PRMHHZS87VQIfD2zpRvQ65habjx8PCgVq1abNy4kTZt2gBmh+KNGzfSs2fPVJ8nPj4+Ub8aERERK6QnBN0ZfC5cgL/+Svr1r7/MZTHi4szj0zr1gLd32gNRQAB4eGTo22EZy29L9evXj06dOlG7dm3q1q3LxIkTuXLlCl26dAHghRdeoFixYowdOxYw+9DUrl2bMmXKEBcXx+rVq/nkk0+YMWOGlR9DREQk1VIbghIYhjnnz73Cz51f795nt8O1a+aIv5Mn01ZnvnypD0QJXwsWNGedtpLl4SYyMpJz584xbNgwoqOjqVGjBmvXrnV0Mj5+/Dhubm6O469cuUL37t35888/8fb2pkKFCsyfP5/IyEirPoKIiEiWstnMFdd9fc01ulLLMMylL+4XiO7++vff5gSLV66Yj+PH01ZvgwawdWva3pOZLJ/nJrtpnhsREZGUxcdDTMy9W4Pu9fXiRfP9Dz8MX3+duTXlmnluREREJOdxc7t92ywt7Haz1efmzaypK7UUbkRERCRTuLtD4cJWVwFu9z9EREREJPdQy42IiIux2zUZoTg3hRsRERcSFZX8MhKTJmkZCXEeui0lIuIioqLMBUDvDDZgzn3Srp35uogzULgREXEBdrvZYpPc5B8J+/r2NY8Tye0UbkREXMCWLUlbbO5kGHDihHmcSG6ncCMi4gJSuxZRWtcsEsmJFG5ERFxAcHDmHieSkynciIi4gIYNzVFRNlvyr9tsEBpqHieS2ynciIi4AHd3c7g3JA04Cc8nTtR8N+IcFG5ERFxE27awZAkUK5Z4f/Hi5n7NcyPOQpP4iYi4kLZtoXVrzVAszk3hRkTExbi7Q5MmVlchknV0W0pEREScisKNiIiIOBWFGxEREXEq6nMjIiK5lt2uztGSlMKNiIjkSlFR5mKgd66ZVby4OZ+PhrW7Nt2WEhGRXCcqCtq1S7oY6MmT5v6oKGvqkpxB4UZERHIVu91ssTGMpK8l7Ovb1zxOXJPCjYiI5CpbtiRtsbmTYcCJE+Zx4poUbkREJFc5fTpzjxPno3AjIiK5SnBw5h4nzkfhRkREcpWGDc1RUXevbp7AZoPQUPM4cU0KNyIikqu4u5vDvSFpwEl4PnGi5rtxZQo3IiKS67RtC0uWQLFiifcXL27u1zw3rk2T+ImISK7Uti20bq0ZiiUphRsREcm13N2hSROrq5CcRuFGRETEYlojK3Mp3IiIiFhIa2RlPnUoFhERsYjWyMoaCjciIiIW0BpZWUfhRkRExAJaIyvrKNyIiIhYQGtkZR2FGxEREQtojayso3AjIiJiAa2RlXUUbkRERCygNbKyjsKNiIiIRbRGVtbQJH4iIiIW0hpZmU/hRkRExGLOskZWTllGQuFGREREMiwnLSOhPjciIiKSITltGQmFGxEREUm3nLiMhMKNiIiIpFtOXEZC4UZERETSLScuI6FwIyIiIumWE5eRULgRERGRdMuJy0go3IiIiEi65cRlJBRuREREJENy2jISmsRPREREMiwnLSOhcCMiIiKZIqcsI6HbUiIiIuJUFG5ERETEqSjciIiIiFNRuBERERGnonAjIiIiTkXhRkRERJyKwo2IiIg4FYUbERERcSoKNyIiIuJUXG6GYsMwAIiNjbW4EhEREUmthL/bCX/HU+Jy4ebSpUsAhIaGWlyJiIiIpNWlS5fw9/dP8RibkZoI5ETi4+M5deoU+fPnx3b32uwCmOk4NDSUEydO4OfnZ3U5Lk8/j5xFP4+cRz+TnCWrfh6GYXDp0iVCQkJwc0u5V43Ltdy4ublRvHhxq8vIFfz8/PQ/ihxEP4+cRT+PnEc/k5wlK34e92uxSaAOxSIiIuJUFG5ERETEqSjcSBKenp4MHz4cT09Pq0sR9PPIafTzyHn0M8lZcsLPw+U6FIuIiIhzU8uNiIiIOBWFGxEREXEqCjciIiLiVBRuRERExKko3IjD2LFjqVOnDvnz56do0aK0adOGAwcOWF2WAG+//TY2m42+fftaXYpLO3nyJM899xwBAQF4e3tTtWpVfvzxR6vLckl2u52hQ4dSqlQpvL29KVOmDG+++Waq1h2SjPv2229p2bIlISEh2Gw2li1bluh1wzAYNmwYwcHBeHt706xZM/74449sq0/hRhy++eYbevTowffff8/69eu5efMmjz32GFeuXLG6NJe2c+dOPvjgA6pVq2Z1KS7t77//Jjw8nLx587JmzRp+++03JkyYQMGCBa0uzSW98847zJgxg6lTp7J//37eeecdxo0bx5QpU6wuzSVcuXKF6tWrM23atGRfHzduHJMnT2bmzJn88MMP5MuXj4iICK5fv54t9WkouNzTuXPnKFq0KN988w2NGjWyuhyXdPnyZR588EGmT5/OW2+9RY0aNZg4caLVZbmkgQMHsnXrVrZs2WJ1KQI8+eSTBAYG8uGHHzr2Pf3003h7ezN//nwLK3M9NpuNpUuX0qZNG8BstQkJCeG1116jf//+AMTExBAYGMi8efPo0KFDlteklhu5p5iYGAAKFSpkcSWuq0ePHjzxxBM0a9bM6lJc3vLly6lduzbt27enaNGi1KxZk9mzZ1tdlstq0KABGzdu5ODBgwDs2bOH7777jhYtWlhcmRw5coTo6OhE/9/y9/enXr16bN++PVtqcLmFMyV14uPj6du3L+Hh4VSpUsXqclzSZ599xq5du9i5c6fVpQhw+PBhZsyYQb9+/XjjjTfYuXMnvXv3xsPDg06dOlldnssZOHAgsbGxVKhQAXd3d+x2O6NHj6Zjx45Wl+byoqOjAQgMDEy0PzAw0PFaVlO4kWT16NGDX3/9le+++87qUlzSiRMn6NOnD+vXr8fLy8vqcgQz8NeuXZsxY8YAULNmTX799VdmzpypcGOBzz//nAULFvDpp59SuXJldu/eTd++fQkJCdHPQ3RbSpLq2bMnK1euZNOmTRQvXtzqclzSTz/9xNmzZ3nwwQfJkycPefLk4ZtvvmHy5MnkyZMHu91udYkuJzg4mEqVKiXaV7FiRY4fP25RRa7t9ddfZ+DAgXTo0IGqVavy/PPP8+qrrzJ27FirS3N5QUFBAJw5cybR/jNnzjhey2oKN+JgGAY9e/Zk6dKlfP3115QqVcrqklxW06ZN2bt3L7t373Y8ateuTceOHdm9ezfu7u5Wl+hywsPDk0yNcPDgQcLCwiyqyLVdvXoVN7fEf8Lc3d2Jj4+3qCJJUKpUKYKCgti4caNjX2xsLD/88AP169fPlhp0W0ocevTowaeffsqXX35J/vz5HfdG/f398fb2trg615I/f/4kfZ3y5ctHQECA+kBZ5NVXX6VBgwaMGTOGZ555hh07djBr1ixmzZpldWkuqWXLlowePZoSJUpQuXJlfv75Z9577z3+9a9/WV2aS7h8+TKHDh1yPD9y5Ai7d++mUKFClChRgr59+/LWW29RtmxZSpUqxdChQwkJCXGMqMpyhsj/AMk+5s6da3VpYhhG48aNjT59+lhdhktbsWKFUaVKFcPT09OoUKGCMWvWLKtLclmxsbFGnz59jBIlShheXl5G6dKljcGDBxtxcXFWl+YSNm3alOzfi06dOhmGYRjx8fHG0KFDjcDAQMPT09No2rSpceDAgWyrT/PciIiIiFNRnxsRERFxKgo3IiIi4lQUbkRERMSpKNyIiIiIU1G4EREREaeicCMiIiJOReFGREREnIrCjYi4JJvNxrJly6wuQ0SygMKNiGS7zp07Y7PZkjyaN29udWki4gS0tpSIWKJ58+bMnTs30T5PT0+LqhERZ6KWGxGxhKenJ0FBQYkeBQsWBMxbRjNmzKBFixZ4e3tTunRplixZkuj9e/fu5ZFHHsHb25uAgABefvllLl++nOiYOXPmULlyZTw9PQkODqZnz56JXj9//jxPPfUUPj4+lC1bluXLlzte+/vvv+nYsSNFihTB29ubsmXLJgljIpIzKdyISI40dOhQnn76afbs2UPHjh3p0KED+/fvB+DKlStERERQsGBBdu7cyeLFi9mwYUOi8DJjxgx69OjByy+/zN69e1m+fDkPPPBAomuMHDmSZ555hl9++YXHH3+cjh07cuHCBcf1f/vtN9asWcP+/fuZMWMGhQsXzr5vgIikX7Yt0Ski8j+dOnUy3N3djXz58iV6jB492jAMc4X6V155JdF76tWrZ3Tr1s0wDMOYNWuWUbBgQePy5cuO11etWmW4ubkZ0dHRhmEYRkhIiDF48OB71gAYQ4YMcTy/fPmyARhr1qwxDMMwWrZsaXTp0iVzPrCIZCv1uRERSzz88MPMmDEj0b5ChQo5tuvXr5/otfr167N7924A9u/fT/Xq1cmXL5/j9fDwcOLj4zlw4AA2m41Tp07RtGnTFGuoVq2aYztfvnz4+flx9uxZALp168bTTz/Nrl27eOyxx2jTpg0NGjRI12cVkeylcCMilsiXL1+S20SZxdvbO1XH5c2bN9Fzm81GfHw8AC1atODYsWOsXr2a9evX07RpU3r06MG7776b6fWKSOZSnxsRyZG+//77JM8rVqwIQMWKFdmzZw9XrlxxvL5161bc3NwoX748+fPnp2TJkmzcuDFDNRQpUoROnToxf/58Jk6cyKxZszJ0PhHJHmq5ERFLxMXFER0dnWhfnjx5HJ12Fy9eTO3atfnHP/7BggUL2LFjBx9++CEAHTt2ZPjw4XTq1IkRI0Zw7tw5evXqxfPPP09gYCAAI0aM4JVXXqFo0aK0aNGCS5cusXXrVnr16pWq+oYNG0atWrWoXLkycXFxrFy50hGuRCRnU7gREUusXbuW4ODgRPvKly/P77//DpgjmT777DO6d+9OcHAwCxcupFKlSgD4+Pjw1Vdf0adPH+rUqYOPjw9PP/007733nuNcnTp14vr167z//vv079+fwoUL065du1TX5+HhwaBBgzh69Cje3t40bNiQzz77LBM+uYhkNZthGIbVRYiI3Mlms7F06VLatGljdSkikgupz42IiIg4FYUbERERcSrqcyMiOY7ulotIRqjlRkRERJyKwo2IiIg4FYUbERERcSoKNyIiIuJUFG5ERETEqSjciIiIiFNRuBERERGnonAjIiIiTkXhRkRERJzK/wMdcK4cKv5M3gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "acc = history_dict['binary_accuracy']\n", "val_acc = history_dict['val_binary_accuracy']\n", "loss = history_dict['loss']\n", "val_loss = history_dict['val_loss']\n", "\n", "epochs = range(1, len(acc) + 1)\n", "\n", "# \"bo\" is for \"blue dot\"\n", "plt.plot(epochs, loss, 'bo', label='Training loss')\n", "# b is for \"solid blue line\"\n", "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", "plt.title('Training and validation loss')\n", "plt.xlabel('Epochs')\n", "plt.ylabel('Loss')\n", "plt.legend()\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:20:50.968546Z", "iopub.status.busy": "2022-12-14T20:20:50.967932Z", "iopub.status.idle": "2022-12-14T20:20:51.106303Z", "shell.execute_reply": "2022-12-14T20:20:51.105355Z" }, "id": "Z3PJemLPXwz_" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU90lEQVR4nO3deVhUZf8G8HsAGXZEQBZBQDRXREUlF9TSQi1eFTfUFM0yzTWy1Nz1NUvNMDXNfq7lQhr6+mZaSJr7kopLIu6hCCouIKAIw/n9cV5GxxlwBgbOwLk/1zWXzDPnnPnOMDq353nO8ygEQRBAREREJCNmUhdAREREVN4YgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIxg8ODB8PX1LdG+M2bMgEKhMG5BJub69etQKBRYs2ZNuT7v3r17oVAosHfvXnWbvr+rsqrZ19cXgwcPNuoxichwDEBUqSkUCr1uz39BEpXWoUOHMGPGDDx8+FDqUoioCBZSF0BUln744QeN++vWrUNcXJxWe/369Uv1PN9//z0KCgpKtO+UKVMwceLEUj0/6a80vyt9HTp0CDNnzsTgwYNRtWpVjceSkpJgZsb/exJJjQGIKrV33nlH4/6RI0cQFxen1f6inJwc2NjY6P08VapUKVF9AGBhYQELC/5VLC+l+V0Zg1KplPT5K4rs7GzY2tpKXQZVYvxvCMlehw4d0KhRI5w4cQLt2rWDjY0NPvvsMwDAf/7zH7z11lvw9PSEUqmEv78/Zs+eDZVKpXGMF8eVFI4fWbBgAVasWAF/f38olUq0aNECx48f19hX1xgghUKBUaNGYdu2bWjUqBGUSiUaNmyIXbt2adW/d+9eNG/eHFZWVvD398d3332n97ii/fv3o3fv3qhZsyaUSiW8vb3x0Ucf4fHjx1qvz87ODikpKejevTvs7Ozg6uqK8ePHa70XDx8+xODBg+Ho6IiqVasiMjJSr66gv/76CwqFAmvXrtV67LfffoNCocAvv/wCAPjnn3/w4Ycfom7durC2toazszN69+6N69evv/R5dI0B0rfmM2fOYPDgwahVqxasrKzg7u6Od999F/fu3VNvM2PGDHzyyScAAD8/P3U3a2FtusYAXb16Fb1790a1atVgY2ODV199FTt27NDYpnA8008//YQ5c+bAy8sLVlZW6NixIy5fvvzS123Ie/bw4UN89NFH8PX1hVKphJeXFwYNGoT09HT1Nk+ePMGMGTPwyiuvwMrKCh4eHggPD8eVK1c06n2xe1nX2KrCz9eVK1fQtWtX2NvbY8CAAQD0/4wCwIULF9CnTx+4urrC2toadevWxeTJkwEAe/bsgUKhwNatW7X227BhAxQKBQ4fPvzS95EqD/63kwjAvXv30KVLF0REROCdd96Bm5sbAGDNmjWws7NDVFQU7Ozs8Mcff2DatGnIzMzE/PnzX3rcDRs24NGjR/jggw+gUCgwb948hIeH4+rVqy89E3HgwAHExsbiww8/hL29Pb755hv07NkTycnJcHZ2BgCcOnUKnTt3hoeHB2bOnAmVSoVZs2bB1dVVr9e9efNm5OTkYMSIEXB2dsaxY8ewePFi3Lx5E5s3b9bYVqVSITQ0FMHBwViwYAF2796Nr776Cv7+/hgxYgQAQBAEdOvWDQcOHMDw4cNRv359bN26FZGRkS+tpXnz5qhVqxZ++uknre1jYmLg5OSE0NBQAMDx48dx6NAhREREwMvLC9evX8eyZcvQoUMHnD9/3qCzd4bUHBcXh6tXr2LIkCFwd3fH33//jRUrVuDvv//GkSNHoFAoEB4ejosXL2Ljxo34+uuv4eLiAgBF/k5u376N1q1bIycnB2PGjIGzszPWrl2Lf/3rX9iyZQt69Oihsf0XX3wBMzMzjB8/HhkZGZg3bx4GDBiAo0ePFvs69X3PsrKyEBISgsTERLz77rto1qwZ0tPTsX37dty8eRMuLi5QqVR4++23ER8fj4iICIwdOxaPHj1CXFwczp07B39/f73f/0L5+fkIDQ1F27ZtsWDBAnU9+n5Gz5w5g5CQEFSpUgXDhg2Dr68vrly5gv/+97+YM2cOOnToAG9vb6xfv17rPV2/fj38/f3RqlUrg+umCkwgkpGRI0cKL37s27dvLwAQli9frrV9Tk6OVtsHH3wg2NjYCE+ePFG3RUZGCj4+Pur7165dEwAIzs7Owv3799Xt//nPfwQAwn//+1912/Tp07VqAiBYWloKly9fVredPn1aACAsXrxY3RYWFibY2NgIKSkp6rZLly4JFhYWWsfURdfrmzt3rqBQKIR//vlH4/UBEGbNmqWxbdOmTYWgoCD1/W3btgkAhHnz5qnb8vPzhZCQEAGAsHr16mLrmTRpklClShWN9yw3N1eoWrWq8O677xZb9+HDhwUAwrp169Rte/bsEQAIe/bs0Xgtz/+uDKlZ1/Nu3LhRACDs27dP3TZ//nwBgHDt2jWt7X18fITIyEj1/XHjxgkAhP3796vbHj16JPj5+Qm+vr6CSqXSeC3169cXcnNz1dsuWrRIACCcPXtW67mep+97Nm3aNAGAEBsbq7V9QUGBIAiCsGrVKgGAsHDhwiK30fXeC8KzvxvPv6+Fn6+JEyfqVbeuz2i7du0Ee3t7jbbn6xEE8fOlVCqFhw8fqtvu3LkjWFhYCNOnT9d6Hqrc2AVGBHFcxpAhQ7Tara2t1T8/evQI6enpCAkJQU5ODi5cuPDS4/bt2xdOTk7q+yEhIQDELo+X6dSpk8b/pBs3bgwHBwf1viqVCrt370b37t3h6emp3q527dro0qXLS48PaL6+7OxspKeno3Xr1hAEAadOndLafvjw4Rr3Q0JCNF7Lr7/+CgsLC/UZIQAwNzfH6NGj9aqnb9++yMvLQ2xsrLrt999/x8OHD9G3b1+ddefl5eHevXuoXbs2qlatipMnT+r1XCWp+fnnffLkCdLT0/Hqq68CgMHP+/zzt2zZEm3btlW32dnZYdiwYbh+/TrOnz+vsf2QIUNgaWmpvq/vZ0rf9+znn39GYGCg1lkSAOpu1Z9//hkuLi4636PSTOnw/O9AV91FfUbv3r2Lffv24d1330XNmjWLrGfQoEHIzc3Fli1b1G0xMTHIz89/6bhAqnwYgIgA1KhRQ+NLpdDff/+NHj16wNHREQ4ODnB1dVX/Q5mRkfHS4774j3FhGHrw4IHB+xbuX7jvnTt38PjxY9SuXVtrO11tuiQnJ2Pw4MGoVq2aelxP+/btAWi/PisrK61unOfrAcRxJh4eHrCzs9PYrm7dunrVExgYiHr16iEmJkbdFhMTAxcXF7z++uvqtsePH2PatGnw9vaGUqmEi4sLXF1d8fDhQ71+L88zpOb79+9j7NixcHNzg7W1NVxdXeHn5wdAv89DUc+v67kKr0z8559/NNpL+pnS9z27cuUKGjVqVOyxrly5grp16xp18L6FhQW8vLy02vX5jBaGv5fVXa9ePbRo0QLr169Xt61fvx6vvvqq3n9nqPLgGCAiaP4vs9DDhw/Rvn17ODg4YNasWfD394eVlRVOnjyJCRMm6HUptbm5uc52QRDKdF99qFQqvPHGG7h//z4mTJiAevXqwdbWFikpKRg8eLDW6yuqHmPr27cv5syZg/T0dNjb22P79u3o16+fxpft6NGjsXr1aowbNw6tWrWCo6MjFAoFIiIiyvQS9z59+uDQoUP45JNP0KRJE9jZ2aGgoACdO3cu80vrC5X0c1He71lRZ4JeHDRfSKlUak0PYOhnVB+DBg3C2LFjcfPmTeTm5uLIkSNYsmSJwcehio8BiKgIe/fuxb179xAbG4t27dqp269duyZhVc9Ur14dVlZWOq8A0ueqoLNnz+LixYtYu3YtBg0apG6Pi4srcU0+Pj6Ij49HVlaWxhmVpKQkvY/Rt29fzJw5Ez///DPc3NyQmZmJiIgIjW22bNmCyMhIfPXVV+q2J0+elGjiQX1rfvDgAeLj4zFz5kxMmzZN3X7p0iWtYxrSDeTj46Pz/SnsYvXx8dH7WMXR9z3z9/fHuXPnij2Wv78/jh49iry8vCIH8xeemXrx+C+e0SqOvp/RWrVqAcBL6waAiIgIREVFYePGjXj8+DGqVKmi0b1K8sEuMKIiFP5P+/n/WT99+hTffvutVCVpMDc3R6dOnbBt2zbcunVL3X758mXs3LlTr/0BzdcnCAIWLVpU4pq6du2K/Px8LFu2TN2mUqmwePFivY9Rv359BAQEICYmBjExMfDw8NAIoIW1v3jGY/HixUWeXTBGzbreLwCIjo7WOmbh/DX6BLKuXbvi2LFjGpdgZ2dnY8WKFfD19UWDBg30fSnF0vc969mzJ06fPq3zcvHC/Xv27In09HSdZ04Kt/Hx8YG5uTn27dun8bghf3/0/Yy6urqiXbt2WLVqFZKTk3XWU8jFxQVdunTBjz/+iPXr16Nz587qK/VIXngGiKgIrVu3hpOTEyIjIzFmzBgoFAr88MMPRuuCMoYZM2bg999/R5s2bTBixAioVCosWbIEjRo1QkJCQrH71qtXD/7+/hg/fjxSUlLg4OCAn3/+Wa/xSUUJCwtDmzZtMHHiRFy/fh0NGjRAbGysweNj+vbti2nTpsHKygpDhw7V6hp5++238cMPP8DR0RENGjTA4cOHsXv3bvX0AGVRs4ODA9q1a4d58+YhLy8PNWrUwO+//67zjGBQUBAAYPLkyYiIiECVKlUQFhamc2K/iRMnYuPGjejSpQvGjBmDatWqYe3atbh27Rp+/vlno80are979sknn2DLli3o3bs33n33XQQFBeH+/fvYvn07li9fjsDAQAwaNAjr1q1DVFQUjh07hpCQEGRnZ2P37t348MMP0a1bNzg6OqJ3795YvHgxFAoF/P398csvv+DOnTt612zIZ/Sbb75B27Zt0axZMwwbNgx+fn64fv06duzYofV3YdCgQejVqxcAYPbs2Ya/mVQ5lPt1Z0QSKuoy+IYNG+rc/uDBg8Krr74qWFtbC56ensKnn34q/Pbbby+9tLrwUt/58+drHROAxiW3RV0GP3LkSK19X7yEWhAEIT4+XmjatKlgaWkp+Pv7C//3f/8nfPzxx4KVlVUR78Iz58+fFzp16iTY2dkJLi4uwvvvv6++3P7Fy5RtbW219tdV+71794SBAwcKDg4OgqOjozBw4EDh1KlTel0GX+jSpUsCAAGAcODAAa3HHzx4IAwZMkRwcXER7OzshNDQUOHChQta748+l8EbUvPNmzeFHj16CFWrVhUcHR2F3r17C7du3dL6nQqCIMyePVuoUaOGYGZmpnFJvK7f4ZUrV4RevXoJVatWFaysrISWLVsKv/zyi8Y2ha9l8+bNGu26LivXRd/3rPD9GDVqlFCjRg3B0tJS8PLyEiIjI4X09HT1Njk5OcLkyZMFPz8/oUqVKoK7u7vQq1cv4cqVK+pt7t69K/Ts2VOwsbERnJychA8++EA4d+6c3p8vQdD/MyoIgnDu3Dn178fKykqoW7euMHXqVK1j5ubmCk5OToKjo6Pw+PHjYt83qrwUgmBC/50lIqPo3r07/v77b53jU4jkLj8/H56enggLC8PKlSulLockwjFARBXci0sCXLp0Cb/++is6dOggTUFEJm7btm24e/euxsBqkh+eASKq4Dw8PNTrU/3zzz9YtmwZcnNzcerUKdSpU0fq8ohMxtGjR3HmzBnMnj0bLi4uJZ68kioHDoImquA6d+6MjRs3Ii0tDUqlEq1atcLnn3/O8EP0gmXLluHHH39EkyZNNBZjJXniGSAiIiKSHY4BIiIiItlhACIiIiLZ4RggHQoKCnDr1i3Y29uXamVjIiIiKj+CIODRo0fw9PR86SSiDEA63Lp1C97e3lKXQURERCVw48YNeHl5FbsNA5AO9vb2AMQ30MHBQeJqiIiISB+ZmZnw9vZWf48XhwFIh8JuLwcHBwYgIiKiCkaf4SscBE1ERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDmaCJiIioXKhUwP79QGoq4OEBhIQA5ubS1MIARERERGUuNhYYOxa4efNZm5cXsGgREB5e/vWwC4yIiIjKVGws0KuXZvgBgJQUsT02tvxrYgAiIiKiMqNSiWd+BEH7scK2cePE7coTAxARERGVmf37tc/8PE8QgBs3xO3KEwMQERERlZnUVONuZywMQERERFRmPDyMu52xMAARERFRmQkJEa/2Uih0P65QAN7e4nbliQGIiIjIxKlUwN69wMaN4p/lPWC4NMzNxUvdAe0QVHg/Orr85wNiACIiIjJhsbGAry/w2mtA//7in76+0lw6XlLh4cCWLUCNGprtXl5iuxTzACkEQdeFafKWmZkJR0dHZGRkwMHBQepyiIhIpgrnz3nxm7rwzIlU4aGkynomaEO+vxmAdGAAIiIiqalU4pmeoi4hVyjEMyjXrkm3nISpMeT7m11gREREJshU58+pLBiAiIiITJCpzp9TWTAAERERmSBTnT+nsmAAIiIiMkGmOn9OZcEAREREZIJMdf6cyoIBiIiIKq2KPIEgYJrz51QWFlIXQEREVBZiY4GxYzWvpPLyEs+qVKTgEB4OdOtWtvPnyBHnAdKB8wAREVVslW0CQdIP5wEiIiLZUqnEMz+6/ntf2DZuXMXrDiPjYgAiIqJKhRMIkj4YgIiIqFLhBIKkDwYgIiKqVDiBIOlD8gC0dOlS+Pr6wsrKCsHBwTh27FiR2+bl5WHWrFnw9/eHlZUVAgMDsWvXrlIdk4iIKhdOIEj6kDQAxcTEICoqCtOnT8fJkycRGBiI0NBQ3LlzR+f2U6ZMwXfffYfFixfj/PnzGD58OHr06IFTp06V+JhERFS5cAJB0oekl8EHBwejRYsWWLJkCQCgoKAA3t7eGD16NCZOnKi1vaenJyZPnoyRI0eq23r27Alra2v8+OOPJTqmLrwMnoio4tM1D5C3txh+eAl85VQhLoN/+vQpTpw4gU6dOj0rxswMnTp1wuHDh3Xuk5ubCysrK402a2trHDhwoMTHJCKiyik8HLh+HdizB9iwQfzz2jWGHxJJNhN0eno6VCoV3NzcNNrd3Nxw4cIFnfuEhoZi4cKFaNeuHfz9/REfH4/Y2Fio/jeZQ0mOCYjBKjc3V30/MzOzpC+LiKhSUKkqx8zD5uZAhw5SV0GmSPJB0IZYtGgR6tSpg3r16sHS0hKjRo3CkCFDYGZWupcxd+5cODo6qm/e3t5GqpiIqOKJjQV8fYHXXgP69xf/9PUV24kqC8kCkIuLC8zNzXH79m2N9tu3b8Pd3V3nPq6urti2bRuys7Pxzz//4MKFC7Czs0OtWrVKfEwAmDRpEjIyMtS3GzdulPLVERFVTIVLSLw4kWBKitjOEESVhWQByNLSEkFBQYiPj1e3FRQUID4+Hq1atSp2XysrK9SoUQP5+fn4+eef0a1bt1IdU6lUwsHBQeNGRCQ3XEKC5ETS1eCjoqIQGRmJ5s2bo2XLloiOjkZ2djaGDBkCABg0aBBq1KiBuXPnAgCOHj2KlJQUNGnSBCkpKZgxYwYKCgrw6aef6n1MIiLSzZAlJDiuhio6SQNQ3759cffuXUybNg1paWlo0qQJdu3apR7EnJycrDG+58mTJ5gyZQquXr0KOzs7dO3aFT/88AOqVq2q9zGJiEg3LiFBciLpPECmivMAEZEc7d0rDnh+mT17eAaITFOFmAeIiIhMC5eQIDlhACIiIgBcQoLkhQGIiIjUwsOBLVuAGjU02728xHbOokyVhaSDoImIyPSEhwPdulWOmaCJisIAREREWriEBFV27AIjIiIi2WEAIiIiItlhFxgRkRFVllXUiSo7BiAiIiOJjRXX0np+OQkvL/HScl49RWRa2AVGRGQEXEWdqGJhACIiKiWuok5U8TAAERGVkiGrqBORaWAAIiIqJa6iTlTxMAAREZWSh4dxtyOisscARERUSlxFnajiYQAiIiolrqJOVPEwABERGQFXUSeqWDgRIhGRkXAVdaKKgwGIiMiIuIo6UcXALjAiIiKSHZ4BIiKTwEVEiag8MQARkeS4iCgRlTd2gRGRpLiIKBFJgQGIiCTDRUSJ5KGgAMjOBu7cAa5dA/7+W/qlYdgFRkSSMWQRUV5ZRVR2CgqAx4/FkJKdDeTkGPfnx4+1n3PqVGDWrPJ/rYUYgIhIMlxElEh/T58CGRnPwkVJAokhAaWsWFsDtrZAlSrl95y6MAARkWS4iCjJiSCIQePBA83bw4fF3y9sy8kpnzoLA4qNjfinMX+2tgbMTGTwDQMQEUmmcBHRlBTd44AUCvFxLiJKpkIQgMxMw4LL8/fz8kpfg7V12YQTGxvxZioBpawxABGRZAoXEe3VSww7z4cgLiJKZUWlenl4KSrMPHwojpcpDXNzwMkJqFpV/LPwps99R0f+fTAWBiAiklThIqK65gGKjuY8QKS/nBzxM3TjhvYtNfVZkHn0qPTPpVRqhhNDAo2d3bOAT9JhACIiyXERUXqZ3Fyxq1RXuCm83b9v2DHt7AwPL4U3K6syeJFUrhiAiMgkcBFR+crPF4NvceHm9m39jmVnB3h7a988PYFq1Z4FGEdH6a9CImkxABERUZkpKBDDS3HhJjVVv3E1VlZi16iugFN4c3Rk9xLphwGIiIhKRBCAe/eKDzcpKfpd+VSlClCjRvHhxtmZ4YaMhwGIiKiUMjKAS5eAixef3e7dE7v1dN0sLIp+zJg3YzzP48dFh5ubN4EnT17+/piZieO6igs3bm7yufyaTAMDEBGRHnJzgatXxXCTlKQZdvQdn1JZubmJIaao7ilPTzGMEZkSfiSJiP6noEA8s/F8uCm8Xb9e/DgVd3egbl3glVfEW/Xq4vYqle5bfn7Rj+l7K49jKJXFj7upUUPchqiiYQAiIlkpHLeiK+RculR8l469vWbIKbzVqQM4OJTfayCi0mMAIqJKKTsbuHz5Wbh5vtvqwYOi96tSBahdWzPgFIae6tU5CJeosmAAIqrgVCr5TiCYnw9cu6b7bM7zs0rrUrOm7rM5NWtyvAqRHPCvOVEFFhurewmJRYsqzxISgiCGO10h58oVMQQVxcVFO+C88op4hsfauvxeAxGZHgYgogoqNlZcRPTFVdRTUsT2LVsqVgh6+hT4+2/g/HntLqvs7KL3s7bWHXJeeUWc+ZeISBeFILz4zydlZmbC0dERGRkZcODIRjJBKhXg61t0N49CIZ4JunbNNLvD8vPFoPPXX89up0+LIUgXc3PAz097TM4rr4iXWHP+GCICDPv+5hkgogpo//7ix7gIgng59/790q+vpVIBFy5ohp2EBN1XW1WtCgQGao/N8fMDLC3Lu3IiqswYgIgqoNRU425nLAUFYpfV82Hn1CkgJ0d7WwcHICgIaN782c3Pj1dZEVH5YAAiqoA8PIy7XUkUFIiDkJ8POydPAllZ2tva2QHNmmmGHX9/dl0RkXQYgIgqoJAQcYxPSor2IGjg2RigkBDjPJ8giOOJXgw7GRna29rYAE2baoadOnVMcywSEckXAxBRBWRuLl7q3quXGHaeD0GFXUjR0SULHYIAJCdrhp0TJ3RPHmhlBTRp8izoBAUB9epxHh0iMn38Z4qoggoPFy911zUPUHS0fpfAC4J4FunFsJOerr2tpaU4QPn5sNOggThzMhFRRcMARFSBhYcD3brpPxN0aqp22NG1krmFBdC4sWbYadSIV2IRUeXBAERUwZmb677U/c4dzaDz11/ArVu692/USDPsBASI3VtERJUVAxBRJfDgAXDsmGbYuXFDezszM7Hb6vmwExjIZSGISH4YgIgqqPx8YOdOYPVq4L//1V4TS6EQByQXBp3mzcUBy7a2kpRLRGRSGICIKpgLF8TQs24dkJb2rL12baBFi2dnd5o2BeztpauTiMiUMQARVQCZmUBMjBh8Dh9+1u7qCgwcCAwZIo7jISIi/TAAEZmoggJg3z4x9GzeDDx+LLabmwNdu4qh5623eGUWEVFJMAARmZjkZGDtWmDNGuDq1Wft9eoB774rnvFxd5esPCKiSoEBiMgEPHkCbNsGrFoF7N79bGZne3sgIkIMPsHBXCiUiMhYGICIJCII4iXrq1cDGzYADx8+e+y118Qurp49xbW1iIjIuBiAiMrZ3bvA+vXi2Z6zZ5+116wJDB4MREYCtWpJVh4RkSwwABGVg/x8YNeuZ3P25OWJ7UqluJzFu+8Cr78uTlRIRERljwGIqAwVNWdPixZiF1dEBODkJF19RERyxQBEZGSZmcBPP4ldXJyzh4jINDEAERnB83P2bNkC5OSI7Zyzh4jINEk+4mDp0qXw9fWFlZUVgoODcezYsWK3j46ORt26dWFtbQ1vb2989NFHePLkifrxGTNmQKFQaNzq1atX1i+DZCo5GZg9G6hTR7xya906MfzUqwfMmycuSLp9O9CjB8MPEZEpkfQMUExMDKKiorB8+XIEBwcjOjoaoaGhSEpKQvXq1bW237BhAyZOnIhVq1ahdevWuHjxIgYPHgyFQoGFCxeqt2vYsCF2796tvm9hwRNdZDyFc/asXg3ExWnP2TNkCPDqq5yzh4jIlEmaDBYuXIj3338fQ4YMAQAsX74cO3bswKpVqzBx4kSt7Q8dOoQ2bdqgf//+AABfX1/069cPR48e1djOwsIC7pwql4xIEICTJ8VxPS/O2dOhg3gVV3g4V1onIqooJOsCe/r0KU6cOIFOnTo9K8bMDJ06dcLh50eOPqd169Y4ceKEupvs6tWr+PXXX9G1a1eN7S5dugRPT0/UqlULAwYMQHJycrG15ObmIjMzU+NGBIhz9kRHA02aiCusf/utGH68vYGpU4ErV4A9e8TBzQw/REQVh2RngNLT06FSqeDm5qbR7ubmhgsXLujcp3///khPT0fbtm0hCALy8/MxfPhwfPbZZ+ptgoODsWbNGtStWxepqamYOXMmQkJCcO7cOdjb2+s87ty5czFz5kzjvTiq0PLzgd9+E8/26JqzZ8gQcc4ec3Np6yQiopKTfBC0Ifbu3YvPP/8c3377LU6ePInY2Fjs2LEDs2fPVm/TpUsX9O7dG40bN0ZoaCh+/fVXPHz4ED/99FORx500aRIyMjLUtxs3bpTHyyETk5QETJwozsj89ttAbKwYfgrP/KSmit1fb7zB8ENEVNFJdgbIxcUF5ubmuH37tkb77du3ixy/M3XqVAwcOBDvvfceACAgIADZ2dkYNmwYJk+eDDMd0+hWrVoVr7zyCi5fvlxkLUqlEkqlshSvhioilUqcnfk//wEOHQL+/vvZY66uwDvviGd7AgKkq5GIiMqGZGeALC0tERQUhPj4eHVbQUEB4uPj0apVK5375OTkaIUc8//9V1wovBTnBVlZWbhy5Qo8PDyMVDlVBrGxQPXq4pme779/Fn6CgsTHbt4EFi5k+CEiqqwkvQosKioKkZGRaN68OVq2bIno6GhkZ2errwobNGgQatSogblz5wIAwsLCsHDhQjRt2hTBwcG4fPkypk6dirCwMHUQGj9+PMLCwuDj44Nbt25h+vTpMDc3R79+/SR7nWRaNm4E/nchoZaTJ8UrvjhnDxFR5SZpAOrbty/u3r2LadOmIS0tDU2aNMGuXbvUA6OTk5M1zvhMmTIFCoUCU6ZMQUpKClxdXREWFoY5c+aot7l58yb69euHe/fuwdXVFW3btsWRI0fg6upa7q+PTE9iorjaenHGjQO6deM4HyKiykwhFNV3JGOZmZlwdHRERkYGHBwcpC6HjGTjRmDoUODx45dvu2ePOL8PERFVHIZ8f1eoq8CISuLxY2D4cLHbS5/wA4hXfBERUeXFAESV2sWLQKtWwHffiUtTDByo334cM09EVLkxAFGltXGjeFXX6dPiZe2//Sau3+XlVfQ6XQqFOMtzSEj51kpEROWLAYgqnee7vLKygPbtgYSEZxMYLlokbvdiCCq8Hx3NAdBERJUdAxBVKi92eU2ZAuzeDXh6PtsmPBzYsgWoUUNzXy8vsT08vHxrJiKi8ifpZfBExrRpE/D+++JZH1dXYP168ayPLuHh4qXu+/eLA549PMRuL575ISKSBwYgqvAePwY++kg86wOIXV4bNmie9dHF3JyXuhMRyRW7wKhC06fLi4iI6EU8A0QVliFdXkRERM/jGSCqcJ48AUaMAPr1077Ki4iISB8MQFShXLwIvPoqsHw5u7yIiKjk2AVGFcaLXV4//gi8+abUVRERUUXEM0Bk8orq8mL4ISKikmIAIpN26RK7vIiIyPjYBUYmi11eRERUVngGiEwOu7yIiKisMQCRSWGXFxERlQd2gZHJiIkB3nuPXV5ERFT2eAaIJFfY5RURwS4vIiIqHwxAJCl2eRERkRTYBUaSYZcXERFJhWeAqNy92OXVrh27vIiIqHwxAFG5unQJaNVKs8srPp5dXkREVL7YBUblhl1eRERkKngGiMocu7yIiMjUMABRmXqxy2vyZHZ5ERGR9NgFRmUmJkZcy+vRI3Z5ERGRaeEZIDK657u8Hj1ilxcREZkeBiAyKnZ5ERFRRcAuMDKa57u8XFzELq/QUKmrIiIi0sYzQFRqT54AH36o3eXF8ENERKaKAYhKpbDLa9kyzS6vGjWkroyIiKho7AKjEmOXFxERVVQ8A0QGy8tjlxcREVVsBgcgX19fzJo1C8nJyWVRD1UAc+awy4uIiCo2gwPQuHHjEBsbi1q1auGNN97Apk2bkJubWxa1kQm6eBGYO1f8ec0a4N//BizYkUpERBVMiQJQQkICjh07hvr162P06NHw8PDAqFGjcPLkybKokUyEIAAjRwJPn4rdXQMHSl0RERFRySgEQRBKc4C8vDx8++23mDBhAvLy8hAQEIAxY8ZgyJAhUCgUxqqzXGVmZsLR0REZGRlwcHCQuhyTsXEj0L8/oFQCf/8N+PtLXREREdEzhnx/l7jzIi8vD1u3bsXq1asRFxeHV199FUOHDsXNmzfx2WefYffu3diwYUNJD08m5uFDICpK/HnyZIYfIiKq2AwOQCdPnsTq1auxceNGmJmZYdCgQfj6669Rr1499TY9evRAixYtjFooSWvKFCAtDXjlFeDTT6WuhoiIqHQMDkAtWrTAG2+8gWXLlqF79+6oUqWK1jZ+fn6IiIgwSoEkvb/+Ar79Vvx52TKxC4yIiKgiMzgAXb16FT4+PsVuY2tri9WrV5e4KDIdKhUwfLg4AHrAAOD116WuiIiIqPQMvgrszp07OHr0qFb70aNH8ddffxmlKDIdy5YBJ04Ajo7AV19JXQ0REZFxGByARo4ciRs3bmi1p6SkYOTIkUYpikxDaqo44BkQ5/5xc5O2HiIiImMxOACdP38ezZo102pv2rQpzp8/b5SiyDRERQGZmUCLFsCwYVJXQ0REZDwGByClUonbt29rtaempsKCUwJXGnFxwKZNgJkZsHw5YG4udUVERETGY3AAevPNNzFp0iRkZGSo2x4+fIjPPvsMb7zxhlGLI2k8eSIudgoAo0YBOk74ERERVWgGn7JZsGAB2rVrBx8fHzRt2hQAkJCQADc3N/zwww9GL5DK3xdfAJcvAx4ewOzZUldDRERkfCVaCiM7Oxvr16/H6dOnYW1tjcaNG6Nfv3465wSqiOS8FMalS0CjRuJ6XzExQJ8+UldERESknzJfCsPW1hbDOCq20hEEseurcLHT3r2lroiIiKhslHjU8vnz55GcnIynT59qtP/rX/8qdVEkjZgYYPducabnJUuACrqWLRER0UuVaCboHj164OzZs1AoFCjsQStc+V2lUhm3QioXGRnARx+JP0+eDNSuLW09REREZcngq8DGjh0LPz8/3LlzBzY2Nvj777+xb98+NG/eHHv37i2DEqk8cLFTIiKSE4PPAB0+fBh//PEHXFxcYGZmBjMzM7Rt2xZz587FmDFjcOrUqbKok8rQX38BS5eKP3/7LRc7JSKiys/gM0AqlQr29vYAABcXF9y6dQsA4OPjg6SkJONWR2Xu+cVO+/cHOnaUuiIiIqKyZ/AZoEaNGuH06dPw8/NDcHAw5s2bB0tLS6xYsQK1atUqixqpDHGxUyIikiODA9CUKVOQnZ0NAJg1axbefvtthISEwNnZGTExMUYvkMrO84udfv454O4ubT1ERETlpUQTIb7o/v37cHJyUl8JVtHJZSLEfv3E9b5atAAOH+Z6X0REVLEZ8v1t0BigvLw8WFhY4Ny5cxrt1apVqzThRy642CkREcmZQQGoSpUqqFmzJuf6qeC42CkREcmdwVeBTZ48GZ999hnu379fFvVQOfjySy52SkRE8mbwIOglS5bg8uXL8PT0hI+PD2xtbTUeP3nypNGKI+O7dEkc8AwA0dFAJR7iREREVCSDA1D37t3LoAwqD4IAjBzJxU6JiIiMchVYaSxduhTz589HWloaAgMDsXjxYrRs2bLI7aOjo7Fs2TIkJyfDxcUFvXr1wty5c2FlZVXiY76osl4FtmmTeOWXUgmcO1fy9b5UKmD/fvEyeg8PICSEg6iJiEh6ZXYVmLHFxMQgKioK06dPx8mTJxEYGIjQ0FDcuXNH5/YbNmzAxIkTMX36dCQmJmLlypWIiYnBZ599VuJjyoWxFjuNjQV8fYHXXhNnjn7tNfF+bKyxKiUiIip7Bp8BMjMzK/aSd0OuEAsODkaLFi2wZMkSAEBBQQG8vb0xevRoTJw4UWv7UaNGITExEfHx8eq2jz/+GEePHsWBAwdKdExdKuMZoNGjgSVLxMVOz5wp2XpfsbFAr15iV9rzCj8OW7YA4eGlr5WIiKgkDPn+NngM0NatWzXu5+Xl4dSpU1i7di1mzpyp93GePn2KEydOYNKkSeo2MzMzdOrUCYcPH9a5T+vWrfHjjz/i2LFjaNmyJa5evYpff/0VAwcOLPEx5eCvv8RFToGSL3aqUgFjx2qHH0BsUyiAceOAbt3YHUZERKbP4ADUrVs3rbZevXqhYcOGiImJwdChQ/U6Tnp6OlQqFdzc3DTa3dzccOHCBZ379O/fH+np6Wjbti0EQUB+fj6GDx+u7gIryTEBIDc3F7m5uer7mZmZer2GiqBwsdOCgtItdrp/P3DzZtGPCwJw44a4XYcOJXsOIiKi8mK0MUCvvvqqRtdUWdi7dy8+//xzfPvttzh58iRiY2OxY8cOzC7lZDZz586Fo6Oj+ubt7W2kiqW3fLlxFjtNTTXudkRERFIy+AyQLo8fP8Y333yDGjVq6L2Pi4sLzM3Ncfv2bY3227dvw72IVTmnTp2KgQMH4r333gMABAQEIDs7G8OGDcPkyZNLdEwAmDRpEqKiotT3MzMzK0UISk0FCseHl3axUw8P425HREQkJYPPADk5OaFatWrqm5OTE+zt7bFq1SrMnz9f7+NYWloiKChI46xRQUEB4uPj0apVK5375OTkwMxMs2Tz/w04EQShRMcEAKVSCQcHB41bZfDxx0BmprjY6QcflO5YISGAl9ezAc8vUigAb29xOyIiIlNn8Bmgr7/+WuMqMDMzM7i6uiI4OBhOTk4GHSsqKgqRkZFo3rw5WrZsiejoaGRnZ2PIkCEAgEGDBqFGjRqYO3cuACAsLAwLFy5E06ZNERwcjMuXL2Pq1KkICwtTB6GXHVMu4uKAjRuNt9ipuTmwaJF4FZhCoTkYuvDjEB3NAdBERFQxGByABg8ebLQn79u3L+7evYtp06YhLS0NTZo0wa5du9SDmJOTkzXO+EyZMgUKhQJTpkxBSkoKXF1dERYWhjlz5uh9TDl48kSc8Rkw7mKn4eHipe5jx2oOiPbyEsMPL4EnIqKKwuB5gFavXg07Ozv0fmEdhc2bNyMnJweRkZFGLVAKFX0eoJkzgRkzxPE4Fy4Yf70vzgRNRESmqExngp47dy5cXFy02qtXr47PC1fZJMlcugT8r8ewzBY7NTcXL3Xv10/8k+GHiIgqGoMDUHJyMvz8/LTafXx8kJycbJSiqGQKFzvNzQXefJOLnRIRERXF4ABUvXp1nDlzRqv99OnTcHZ2NkpRVDI//SQOflYqgaVLi75ii4iISO4MDkD9+vXDmDFjsGfPHqhUKqhUKvzxxx8YO3YsIiIiyqJG0kNGhrgUBSDO/VPSxU6JiIjkwOCrwGbPno3r16+jY8eOsLAQdy8oKMCgQYM4BkhCU6cCaWniYqcTJkhdDRERkWkz+CqwQpcuXUJCQgKsra0REBAAHx8fY9cmmYp2FdiJE0DLluJ6X7t3l3y9LyIiooqsTFeDL1SnTh3UqVOnpLuTkRhrsVMiIiI5MXgMUM+ePfHll19qtc+bN09rbiAqe8uXA3/9VfrFTomIiOTE4AC0b98+dO3aVau9S5cu2Ldvn1GKIv2kpRlvsVMiIiI5MTgAZWVlwdLSUqu9SpUqyMzMNEpRpJ+oKHGx0+bNS7/YKRERkZwYHIACAgIQExOj1b5p0yY0aNDAKEXRy+3ebdzFTomIiOTE4EHQU6dORXh4OK5cuYLXX38dABAfH48NGzZgy5YtRi+QtD15Anz4ofjzyJFAUJC09RAREVU0BgegsLAwbNu2DZ9//jm2bNkCa2trBAYG4o8//kC1atXKokZ6wbx54ppfHh7A7NlSV0NERFTxlHgeoEKZmZnYuHEjVq5ciRMnTkClUhmrNsmY8jxAly8DjRqJ631t2gT07St1RURERKahTFeDL7Rv3z5ERkbC09MTX331FV5//XUcOXKkpIcjPby42GmfPlJXREREVDEZ1AWWlpaGNWvWYOXKlcjMzESfPn2Qm5uLbdu2cQB0OfjpJ+D337nYKRERUWnpfQYoLCwMdevWxZkzZxAdHY1bt25h8eLFZVkbPScjA/joI/FnLnZKRERUOnqfAdq5cyfGjBmDESNGcAkMCUydCqSmAnXqcLFTIiKi0tL7DNCBAwfw6NEjBAUFITg4GEuWLEF6enpZ1kb/c+KE2OUFAN9+K3aBERERUcnpHYBeffVVfP/990hNTcUHH3yATZs2wdPTEwUFBYiLi8OjR4/Ksk7ZenGx006dpK6IiIio4ivVZfBJSUlYuXIlfvjhBzx8+BBvvPEGtm/fbsz6JGFKl8F/+6145ZejI3DhAtf7IiIiKkq5XAYPAHXr1sW8efNw8+ZNbNy4sTSHIh3S0oBJk8SfudgpERGR8ZR6IsTKyFTOAA0YAGzYIC52euQI1/siIiIqTrmdAaKys3u3GH642CkREZHxMQCZIC52SkREVLYYgEwQFzslIiIqWwxAJubyZXHAMwB8/bV49RcREREZFwOQCeFip0REROWDAciEbN7MxU6JiIjKAwOQicjMBMaNE3/mYqdERERliwHIRHCxUyIiovLDAGQCTp4EliwRf+Zip0RERGWPAUhizy922q8fFzslIiIqDwxAEvvuO+D4cfFy94ULpa6GiIhIHhiAJJSWJg54BoA5c7jYKRERUXlhAJLQxx8DGRniYqfDh0tdDRERkXwwAEmEi50SERFJhwFIAlzslIiISFoMQBIoXOzU3Z2LnRIREUmBAaicPb/YaXQ0FzslIiKSAgNQOXp+sdM33uBip0RERFJhACpHXOyUiIjINDAAlaPERDH0TJokrvlFRERE0rCQugA5mT4dCAsDGjSQuhIiIiJ5YwAqZ82aSV0BERERsQuMiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZMckAtDSpUvh6+sLKysrBAcH49ixY0Vu26FDBygUCq3bW2+9pd5m8ODBWo937ty5PF4KERERVQAWUhcQExODqKgoLF++HMHBwYiOjkZoaCiSkpJQvXp1re1jY2Px9OlT9f179+4hMDAQvXv31tiuc+fOWL16tfq+UqksuxdBREREFYrkZ4AWLlyI999/H0OGDEGDBg2wfPly2NjYYNWqVTq3r1atGtzd3dW3uLg42NjYaAUgpVKpsZ2Tk1N5vBwiIiKqACQNQE+fPsWJEyfQqVMndZuZmRk6deqEw4cP63WMlStXIiIiAra2thrte/fuRfXq1VG3bl2MGDEC9+7dK/IYubm5yMzM1LgRERFR5SVpAEpPT4dKpYKbm5tGu5ubG9LS0l66/7Fjx3Du3Dm89957Gu2dO3fGunXrEB8fjy+//BJ//vknunTpApVKpfM4c+fOhaOjo/rm7e1d8hdFREREJk/yMUClsXLlSgQEBKBly5Ya7REREeqfAwIC0LhxY/j7+2Pv3r3o2LGj1nEmTZqEqKgo9f3MzEyGICIiokpM0jNALi4uMDc3x+3btzXab9++DXd392L3zc7OxqZNmzB06NCXPk+tWrXg4uKCy5cv63xcqVTCwcFB40ZERESVl6QByNLSEkFBQYiPj1e3FRQUID4+Hq1atSp2382bNyM3NxfvvPPOS5/n5s2buHfvHjw8PEpdMxEREVV8kl8FFhUVhe+//x5r165FYmIiRowYgezsbAwZMgQAMGjQIEyaNElrv5UrV6J79+5wdnbWaM/KysInn3yCI0eO4Pr164iPj0e3bt1Qu3ZthIaGlstrIiIiItMm+Rigvn374u7du5g2bRrS0tLQpEkT7Nq1Sz0wOjk5GWZmmjktKSkJBw4cwO+//651PHNzc5w5cwZr167Fw4cP4enpiTfffBOzZ8/mXEBEREQEAFAIgiBIXYSpyczMhKOjIzIyMjgeiIiIqIIw5Ptb8i4wIiIiovLGAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREsmMhdQFERCQvKpUKeXl5UpdBFVCVKlVgbm5ulGMxABERUbkQBAFpaWl4+PCh1KVQBVa1alW4u7tDoVCU6jgMQEREVC4Kw0/16tVhY2NT6i8wkhdBEJCTk4M7d+4AADw8PEp1PAYgIiIqcyqVSh1+nJ2dpS6HKihra2sAwJ07d1C9evVSdYdxEDQREZW5wjE/NjY2EldCFV3hZ6i048gYgIiIqNyw24tKy1ifIQYgIiKicuTr64vo6Gi9t9+7dy8UCgUHjxsZxwAREVGFoVIB+/cDqamAhwcQEgIY6apoLS870zB9+nTMmDHD4OMeP34ctra2em/funVrpKamwtHR0eDnoqIxABERUYUQGwuMHQvcvPmszcsLWLQICA83/vOlpqaqf46JicG0adOQlJSkbrOzs1P/LAgCVCoVLCxe/rXq6upqUB2WlpZwd3c3aB96OXaBERGRyYuNBXr10gw/AJCSIrbHxhr/Od3d3dU3R0dHKBQK9f0LFy7A3t4eO3fuRFBQEJRKJQ4cOIArV66gW7ducHNzg52dHVq0aIHdu3drHPfFLjCFQoH/+7//Q48ePWBjY4M6depg+/bt6sdf7AJbs2YNqlatit9++w3169eHnZ0dOnfurBHY8vPzMWbMGFStWhXOzs6YMGECIiMj0b179yJf771799CvXz/UqFEDNjY2CAgIwMaNGzW2KSgowLx581C7dm0olUrUrFkTc+bMUT9+8+ZN9OvXD9WqVYOtrS2aN2+Oo0ePluDdL3sMQEREZNJUKvHMjyBoP1bYNm6cuF15mzhxIr744gskJiaicePGyMrKQteuXREfH49Tp06hc+fOCAsLQ3JycrHHmTlzJvr06YMzZ86ga9euGDBgAO7fv1/k9jk5OViwYAF++OEH7Nu3D8nJyRg/frz68S+//BLr16/H6tWrcfDgQWRmZmLbtm3F1vDkyRMEBQVhx44dOHfuHIYNG4aBAwfi2LFj6m0mTZqEL774AlOnTsX58+exYcMGuLm5AQCysrLQvn17pKSkYPv27Th9+jQ+/fRTFBQU6PFOSkAgLRkZGQIAISMjQ+pSiIgqhcePHwvnz58XHj9+bPC+e/YIghh1ir/t2WP0stVWr14tODo6PlfTHgGAsG3btpfu27BhQ2Hx4sXq+z4+PsLXX3+tvg9AmDJlivp+VlaWAEDYuXOnxnM9ePBAXQsA4fLly+p9li5dKri5uanvu7m5CfPnz1ffz8/PF2rWrCl069ZN35csCIIgvPXWW8LHH38sCIIgZGZmCkqlUvj+++91bvvdd98J9vb2wr179wx6DkMV91ky5PubY4CIiMikPdezY5TtjKl58+Ya97OysjBjxgzs2LEDqampyM/Px+PHj196Bqhx48bqn21tbeHg4KCe8VgXGxsb+Pv7q+97eHiot8/IyMDt27fRsmVL9ePm5uYICgoq9myMSqXC559/jp9++gkpKSl4+vQpcnNz1fPuJCYmIjc3Fx07dtS5f0JCApo2bYpq1aoV+1pNBQMQERGZNH1XPCjlyggl8uLVXOPHj0dcXBwWLFiA2rVrw9raGr169cLTp0+LPU6VKlU07isUimLDiq7tBV19hAaYP38+Fi1ahOjoaAQEBMDW1hbjxo1T1144C3NRXva4qeEYICIiMmkhIeLVXkVdla5QAN7e4nZSO3jwIAYPHowePXogICAA7u7uuH79ernW4OjoCDc3Nxw/flzdplKpcPLkyWL3O3jwILp164Z33nkHgYGBqFWrFi5evKh+vE6dOrC2tkZ8fLzO/Rs3boyEhIRixy6ZEgYgIiIyaebm4qXugHYIKrwfHV128wEZok6dOoiNjUVCQgJOnz6N/v37SzIIePTo0Zg7dy7+85//ICkpCWPHjsWDBw+KnduoTp06iIuLw6FDh5CYmIgPPvgAt2/fVj9uZWWFCRMm4NNPP8W6detw5coVHDlyBCtXrgQA9OvXD+7u7ujevTsOHjyIq1ev4ueff8bhw4fL/PWWBAMQERGZvPBwYMsWoEYNzXYvL7G9LOYBKomFCxfCyckJrVu3RlhYGEJDQ9GsWbNyr2PChAno168fBg0ahFatWsHOzg6hoaGwsrIqcp8pU6agWbNmCA0NRYcOHdRh5nlTp07Fxx9/jGnTpqF+/fro27eveuyRpaUlfv/9d1SvXh1du3ZFQEAAvvjii1ItWFqWFEJpOw0roczMTDg6OiIjIwMODg5Sl0NEVOE9efIE165dg5+fX7Ffwi9TnjNBVyYFBQWoX78++vTpg9mzZ0tdTqkU91ky5Pubg6CJiKjCMDcHOnSQugrT988//+D3339H+/btkZubiyVLluDatWvo37+/1KWZDJPoAlu6dCl8fX1hZWWF4OBgjUmXXtShQwcoFAqt21tvvaXeRhAETJs2DR4eHrC2tkanTp1w6dKl8ngpREREkjMzM8OaNWvQokULtGnTBmfPnsXu3btRv359qUszGZIHoJiYGERFRWH69Ok4efIkAgMDERoaWuT8B7GxsUhNTVXfzp07B3Nzc/Tu3Vu9zbx58/DNN99g+fLlOHr0KGxtbREaGoonT56U18siIiKSjLe3Nw4ePIiMjAxkZmbi0KFDaNeundRlmRTJA9DChQvx/vvvY8iQIWjQoAGWL18OGxsbrFq1Suf21apV01ifJS4uDjY2NuoAJAgCoqOjMWXKFHTr1g2NGzfGunXrcOvWrZdOA05ERETyIGkAevr0KU6cOIFOnTqp28zMzNCpUye9L5tbuXIlIiIi1JNRXbt2DWlpaRrHdHR0RHBwcJHHzM3NRWZmpsaNiIiIKi9JA1B6ejpUKpV6IbVCbm5uSEtLe+n+x44dw7lz5/Dee++p2wr3M+SYc+fOhaOjo/rm7e1t6EshIiKiCkTyLrDSWLlyJQICAjTWOymJSZMmISMjQ327ceOGkSokIiIiUyRpAHJxcYG5ubnGTJMAcPv2bbi7uxe7b3Z2NjZt2oShQ4dqtBfuZ8gxlUolHBwcNG5ERERUeUkagCwtLREUFKSxrkhBQQHi4+PRqlWrYvfdvHkzcnNz8c4772i0+/n5wd3dXeOYmZmZOHr06EuPSURERPIgeRdYVFQUvv/+e6xduxaJiYkYMWIEsrOzMWTIEADAoEGDMGnSJK39Vq5cie7du8PZ2VmjXaFQYNy4cfj3v/+N7du34+zZsxg0aBA8PT21pvQmIiIqax06dMC4cePU9319fREdHV3sPgqFwihXLhvrOJWR5DNB9+3bF3fv3sW0adOQlpaGJk2aYNeuXepBzMnJyTAz08xpSUlJOHDgAH7//Xedx/z000+RnZ2NYcOG4eHDh2jbti127dpVqunXiYhIXsLCwpCXl4ddu3ZpPbZ//360a9cOp0+fRuPGjQ067vHjx9VXLhvLjBkzsG3bNiQkJGi0p6amwsnJyajPVVlIHoAAYNSoURg1apTOx/bu3avVVrduXRS3hJlCocCsWbMwa9YsY5VIREQyM3ToUPTs2RM3b96El5eXxmOrV69G8+bNDQ4/AODq6mqsEl/qZeNp5UzyLjAiIiJT9Pbbb8PV1RVr1qzRaM/KysLmzZsxdOhQ3Lt3D/369UONGjVgY2ODgIAAbNy4sdjjvtgFdunSJbRr1w5WVlZo0KAB4uLitPaZMGECXnnlFdjY2KBWrVqYOnUq8vLyAABr1qzBzJkzcfr0afXyUIU1v9gFdvbsWbz++uuwtraGs7Mzhg0bhqysLPXjgwcPRvfu3bFgwQJ4eHjA2dkZI0eOVD+XLleuXEG3bt3g5uYGOzs7tGjRArt379bYJjc3FxMmTIC3tzeUSiVq166NlStXqh//+++/8fbbb8PBwQH29vYICQnBlStXin0fS8skzgAREZH8CAKQk1P+z2tjAygUL9/OwsICgwYNwpo1azB58mQo/rfT5s2boVKp0K9fP2RlZSEoKAgTJkyAg4MDduzYgYEDB8Lf31+vKVoKCgoQHh4ONzc3HD16FBkZGRrjhQrZ29tjzZo18PT0xNmzZ/H+++/D3t4en376Kfr27Ytz585h165d6uDh6OiodYzs7GyEhoaiVatWOH78OO7cuYP33nsPo0aN0gh5e/bsgYeHB/bs2YPLly+jb9++aNKkCd5//32dryErKwtdu3bFnDlzoFQqsW7dOoSFhSEpKQk1a9YEII7nPXz4ML755hsEBgbi2rVrSE9PBwCkpKSgXbt26NChA/744w84ODjg4MGDyM/Pf+n7VyoCacnIyBAACBkZGUY9bn6+IOzZIwgbNoh/5ucb9fBERCbr8ePHwvnz54XHjx+r27KyBEGMQeV7y8rSv+7ExEQBgLBnzx51W0hIiPDOO+8Uuc9bb70lfPzxx+r77du3F8aOHau+7+PjI3z99deCIAjCb7/9JlhYWAgpKSnqx3fu3CkAELZu3Vrkc8yfP18ICgpS358+fboQGBiotd3zx1mxYoXg5OQkZD33BuzYsUMwMzMT0tLSBEEQhMjISMHHx0fIf+4Lqnfv3kLfvn2LrEWXhg0bCosXLxYEQRCSkpIEAEJcXJzObSdNmiT4+fkJT58+1evYuj5LhQz5/mYXWDmJjQV8fYHXXgP69xf/9PUV24mIyDTVq1cPrVu3Vq9PefnyZezfv189B51KpcLs2bMREBCAatWqwc7ODr/99huSk5P1On5iYiK8vb3h6empbtM1ZUtMTAzatGkDd3d32NnZYcqUKXo/x/PPFRgYqDEAu02bNigoKEBSUpK6rWHDhjA3N1ff9/DwKHKBckA8AzR+/HjUr18fVatWhZ2dHRITE9X1JSQkwNzcHO3bt9e5f0JCAkJCQlClShWDXk9psQusHMTGAr16if/3eF5Kiti+ZQsQHi5NbUREUrGxAZ4bflKuz2uIoUOHYvTo0Vi6dClWr14Nf39/9Zf5/PnzsWjRIkRHRyMgIAC2trYYN24cnj59arR6Dx8+jAEDBmDmzJkIDQ2Fo6MjNm3ahK+++spoz/G8F4OIQqFAQUFBkduPHz8ecXFxWLBgAWrXrg1ra2v06tVL/R5YW1sX+3wve7ysMACVMZUKGDtWO/wAYptCAYwbB3TrBjwXuImIKj2FAjDy1eBlok+fPhg7diw2bNiAdevWYcSIEerxQAcPHkS3bt3Uk/IWFBTg4sWLaNCggV7Hrl+/Pm7cuIHU1FR4eHgAAI4cOaKxzaFDh+Dj44PJkyer2/755x+NbSwtLaFSqV76XGvWrEF2drb6LNDBgwdhZmaGunXr6lWvLgcPHsTgwYPRo0cPAOIZoevXr6sfDwgIQEFBAf7880+NhcoLNW7cGGvXrkVeXl65ngViF1gZ278fuHmz6McFAbhxQ9yOiIhMj52dHfr27YtJkyYhNTUVgwcPVj9Wp04dxMXF4dChQ0hMTMQHH3ygtRRTcTp16oRXXnkFkZGROH36NPbv368RdAqfIzk5GZs2bcKVK1fwzTffYOvWrRrb+Pr64tq1a0hISEB6ejpyc3O1nmvAgAGwsrJCZGQkzp07hz179mD06NEYOHCg1gLihqhTpw5iY2ORkJCA06dPo3///hpnjHx9fREZGYl3330X27Ztw7Vr17B371789NNPAMSpcDIzMxEREYG//voLly5dwg8//KDRLVcWGIDKWGqqcbcjIqLyN3ToUDx48AChoaEa43WmTJmCZs2aITQ0FB06dIC7u7tBqw6YmZlh69atePz4MVq2bIn33nsPc+bM0djmX//6Fz766COMGjUKTZo0waFDhzB16lSNbXr27InOnTvjtddeg6urq85L8W1sbPDbb7/h/v37aNGiBXr16oWOHTtiyZIlhr0ZL1i4cCGcnJzQunVrhIWFITQ0FM2aNdPYZtmyZejVqxc+/PBD1KtXD++//z6ys7MBAM7Ozvjjjz+QlZWF9u3bIygoCN9//32Znw1SCEIxMwrKVGZmJhwdHZGRkVHqhVH37hUHPL/Mnj1Ahw6leioiIpP15MkTXLt2DX5+fpyVn0qluM+SId/fPANUxkJCAC+vouecUCgAb29xOyIiIiofDEBlzNwcWLRI/PnFEFR4PzqaA6CJiIjKEwNQOQgPFy91r1FDs93Li5fAExERSYGXwZeT8HDxUvf9+8UBzx4eYrcXz/wQERGVPwagcmRuzoHOREREpoBdYEREVG544TGVlrE+QwxARERU5grndMmRYvl3qlQKP0OlnSeIXWBERFTmzM3NUbVqVfWimjY2NurlJIj0IQgCcnJycOfOHVStWlVjwdaSYAAiIqJy4e7uDgDFrixO9DJVq1ZVf5ZKgwGIiIjKhUKhgIeHB6pXr468vDypy6EKqEqVKqU+81OIAYiIiMqVubm50b7EiEqKg6CJiIhIdhiAiIiISHYYgIiIiEh2OAZIh8JJljIzMyWuhIiIiPRV+L2tz2SJDEA6PHr0CADg7e0tcSVERERkqEePHsHR0bHYbRQC5yXXUlBQgFu3bsHe3p4TdRUhMzMT3t7euHHjBhwcHKQuR/b4+zAt/H2YFv4+TEtZ/j4EQcCjR4/g6ekJM7PiR/nwDJAOZmZm8PLykrqMCsHBwYH/oJgQ/j5MC38fpoW/D9NSVr+Pl535KcRB0ERERCQ7DEBEREQkOwxAVCJKpRLTp0+HUqmUuhQCfx+mhr8P08Lfh2kxld8HB0ETERGR7PAMEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxDpbe7cuWjRogXs7e1RvXp1dO/eHUlJSVKXRf/zxRdfQKFQYNy4cVKXImspKSl455134OzsDGtrawQEBOCvv/6SuixZUqlUmDp1Kvz8/GBtbQ1/f3/Mnj1br3WiqPT27duHsLAweHp6QqFQYNu2bRqPC4KAadOmwcPDA9bW1ujUqRMuXbpUbvUxAJHe/vzzT4wcORJHjhxBXFwc8vLy8OabbyI7O1vq0mTv+PHj+O6779C4cWOpS5G1Bw8eoE2bNqhSpQp27tyJ8+fP46uvvoKTk5PUpcnSl19+iWXLlmHJkiVITEzEl19+iXnz5mHx4sVSlyYL2dnZCAwMxNKlS3U+Pm/ePHzzzTdYvnw5jh49CltbW4SGhuLJkyflUh8vg6cSu3v3LqpXr44///wT7dq1k7oc2crKykKzZs3w7bff4t///jeaNGmC6OhoqcuSpYkTJ+LgwYPYv3+/1KUQgLfffhtubm5YuXKluq1nz56wtrbGjz/+KGFl8qNQKLB161Z0794dgHj2x9PTEx9//DHGjx8PAMjIyICbmxvWrFmDiIiIMq+JZ4CoxDIyMgAA1apVk7gSeRs5ciTeeustdOrUSepSZG/79u1o3rw5evfujerVq6Np06b4/vvvpS5Ltlq3bo34+HhcvHgRAHD69GkcOHAAXbp0kbgyunbtGtLS0jT+3XJ0dERwcDAOHz5cLjVwMVQqkYKCAowbNw5t2rRBo0aNpC5HtjZt2oSTJ0/i+PHjUpdCAK5evYply5YhKioKn332GY4fP44xY8bA0tISkZGRUpcnOxMnTkRmZibq1asHc3NzqFQqzJkzBwMGDJC6NNlLS0sDALi5uWm0u7m5qR8rawxAVCIjR47EuXPncODAAalLka0bN25g7NixiIuLg5WVldTlEMT/GDRv3hyff/45AKBp06Y4d+4cli9fzgAkgZ9++gnr16/Hhg0b0LBhQyQkJGDcuHHw9PTk74PYBUaGGzVqFH755Rfs2bMHXl5eUpcjWydOnMCdO3fQrFkzWFhYwMLCAn/++Se++eYbWFhYQKVSSV2i7Hh4eKBBgwYabfXr10dycrJEFcnbJ598gokTJyIiIgIBAQEYOHAgPvroI8ydO1fq0mTP3d0dAHD79m2N9tu3b6sfK2sMQKQ3QRAwatQobN26FX/88Qf8/PykLknWOnbsiLNnzyIhIUF9a968OQYMGICEhASYm5tLXaLstGnTRmtqiIsXL8LHx0eiiuQtJycHZmaaX3Pm5uYoKCiQqCIq5OfnB3d3d8THx6vbMjMzcfToUbRq1apcamAXGOlt5MiR2LBhA/7zn//A3t5e3U/r6OgIa2triauTH3t7e63xV7a2tnB2dua4LIl89NFHaN26NT7//HP06dMHx44dw4oVK7BixQqpS5OlsLAwzJkzBzVr1kTDhg1x6tQpLFy4EO+++67UpclCVlYWLl++rL5/7do1JCQkoFq1aqhZsybGjRuHf//736hTpw78/PwwdepUeHp6qq8UK3MCkZ4A6LytXr1a6tLof9q3by+MHTtW6jJk7b///a/QqFEjQalUCvXq1RNWrFghdUmylZmZKYwdO1aoWbOmYGVlJdSqVUuYPHmykJubK3VpsrBnzx6d3xmRkZGCIAhCQUGBMHXqVMHNzU1QKpVCx44dhaSkpHKrj/MAERERkexwDBARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQEVERFAoFtm3bJnUZRFQGGICIyCQNHjwYCoVC69a5c2epSyOiSoBrgRGRyercuTNWr16t0aZUKiWqhogqE54BIiKTpVQq4e7urnFzcnICIHZPLVu2DF26dIG1tTVq1aqFLVu2aOx/9uxZvP7667C2toazszOGDRuGrKwsjW1WrVqFhg0bQqlUwsPDA6NGjdJ4PD09HT169ICNjQ3q1KmD7du3qx978OABBgwYAFdXV1hbW6NOnTpagY2ITBMDEBFVWFOnTkXPnj1x+vRpDBgwABEREUhMTAQAZGdnIzQ0FE5OTjh+/Dg2b96M3bt3awScZcuWYeTIkRg2bBjOnj2L7du3o3bt2hrPMXPmTPTp0wdnzpxB165dMWDAANy/f1/9/OfPn8fOnTuRmJiIZcuWwcXFpfzeACIquXJbdpWIyACRkZGCubm5YGtrq3GbM2eOIAiCAEAYPny4xj7BwcHCiBEjBEEQhBUrVghOTk5CVlaW+vEdO3YIZmZmQlpamiAIguDp6SlMnjy5yBoACFOmTFHfz8rKEgAIO3fuFARBEMLCwoQhQ4YY5wUTUbniGCAiMlmvvfYali1bptFWrVo19c+tWrXSeKxVq1ZISEgAACQmJiIwMBC2trbqx9u0aYOCggIkJSVBoVDg1q1b6NixY7E1NG7cWP2zra0tHBwccOfOHQDAiBEj0LNnT5w8eRJvvvkmunfvjtatW5fotRJR+WIAIiKTZWtrq9UlZSzW1tZ6bVelShWN+wqFAgUFBQCALl264J9//sGvv/6KuLg4dOzYESNHjsSCBQuMXi8RGRfHABFRhXXkyBGt+/Xr1wcA1K9fH6dPn0Z2drb68YMHD8LMzAx169aFvb09fH19ER8fX6oaXF1dERkZiR9//BHR0dFYsWJFqY5HROWDZ4CIyGTl5uYiLS1No83CwkI90Hjz5s1o3rw52rZti/Xr1+PYsWNYuXIlAGDAgAGYPn06IiMjMWPGDNy9exejR4/GwIED4ebmBgCYMWMGhg8fjurVq6NLly549OgRDh48iNGjR+tV37Rp0xAUFISGDRsiNzcXv/zyizqAEZFpYwAiIpO1a9cueHh4aLTVrVsXFy5cACBeobVp0yZ8+OGH8PDwwMaNG9GgQQMAgI2NDX777TeMHTsWLVq0gI2NDXr27ImFCxeqjxUZGYknT57g66+/xvjx4+Hi4oJevXrpXZ+lpSUmTZqE69evw9raGiEhIdi0aZMRXjkRlTWFIAiC1EUQERlKoVBg69at6N69u9SlEFEFxDFAREREJDsMQERERCQ7HANERBUSe++JqDR4BoiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGTn/wHSXV4rFDbHHQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(epochs, acc, 'bo', label='Training acc')\n", "plt.plot(epochs, val_acc, 'b', label='Validation acc')\n", "plt.title('Training and validation accuracy')\n", "plt.xlabel('Epochs')\n", "plt.ylabel('Accuracy')\n", "plt.legend(loc='lower right')\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "hFFyCuJoXy7r" }, "source": [ "이 그래프에서 점선은 훈련 손실과 훈련 정확도를 나타냅니다. 실선은 검증 손실과 검증 정확도입니다.\n", "\n", "훈련 손실은 각 epoch마다 *감소*하고 훈련 정확성은 각 epoch마다 *증가*합니다. 경사 하강 최적화를 사용할 때 이와 같이 예상됩니다. 모든 반복에서 원하는 수량을 최소화해야 합니다.\n", "\n", "하지만 검증 손실과 검증 정확도에서는 그렇지 못합니다. 훈련 정확도 이전이 피크인 것 같습니다. 이는 과대적합 때문입니다. 이전에 본 적 없는 데이터보다 훈련 데이터에서 모델이 더 잘 동작합니다. 이 지점부터는 모델이 과도하게 최적화되어 테스트 데이터에서 *일반화*되지 않는 훈련 데이터의 *특정* 표현을 학습합니다.\n", "\n", "여기에서는 과대적합을 막기 위해 단순히 검증 정확도가 더 이상 증가하지 않는 경우에 훈련을 중단할 수 있습니다. 이를 수행하는 한 가지 방법은 `tf.keras.callbacks.EarlyStopping` 콜백을 사용하는 것입니다." ] }, { "cell_type": "markdown", "metadata": { "id": "-to23J3Vy5d3" }, "source": [ "## 모델 내보내기\n", "\n", "위의 코드에서는 모델에 텍스트를 제공하기 전에 `TextVectorization` 레이어를 데이터세트에 적용했습니다. 모델이 원시 문자열을 처리할 수 있도록 하려면(예: 배포를 단순화하기 위해) 모델 내부에 `TextVectorization` 레이어를 포함할 수 있습니다. 이를 위해 방금 훈련한 가중치를 사용하여 새 모델을 만들 수 있습니다." ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:20:51.110444Z", "iopub.status.busy": "2022-12-14T20:20:51.109782Z", "iopub.status.idle": "2022-12-14T20:20:54.259636Z", "shell.execute_reply": "2022-12-14T20:20:54.258851Z" }, "id": "FWXsMvryuZuq" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/782 [..............................] - ETA: 3:12 - loss: 0.1965 - accuracy: 0.9375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/782 [..............................] - ETA: 2s - loss: 0.2950 - accuracy: 0.8917 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 29/782 [>.............................] - ETA: 2s - loss: 0.3025 - accuracy: 0.8836" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/782 [>.............................] - ETA: 2s - loss: 0.3005 - accuracy: 0.8830" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57/782 [=>............................] - ETA: 2s - loss: 0.2990 - accuracy: 0.8843" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/782 [=>............................] - ETA: 2s - loss: 0.3033 - accuracy: 0.8781" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/782 [==>...........................] - ETA: 2s - loss: 0.2985 - accuracy: 0.8798" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 99/782 [==>...........................] - ETA: 2s - loss: 0.3003 - accuracy: 0.8788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113/782 [===>..........................] - ETA: 2s - loss: 0.3000 - accuracy: 0.8775" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/782 [===>..........................] - ETA: 2s - loss: 0.3014 - accuracy: 0.8757" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/782 [====>.........................] - ETA: 2s - loss: 0.3027 - accuracy: 0.8757" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "156/782 [====>.........................] - ETA: 2s - loss: 0.3059 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "170/782 [=====>........................] - ETA: 2s - loss: 0.3084 - accuracy: 0.8735" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "184/782 [======>.......................] - ETA: 2s - loss: 0.3096 - accuracy: 0.8725" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "198/782 [======>.......................] - ETA: 2s - loss: 0.3109 - accuracy: 0.8725" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "212/782 [=======>......................] - ETA: 2s - loss: 0.3096 - accuracy: 0.8723" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "226/782 [=======>......................] - ETA: 2s - loss: 0.3116 - accuracy: 0.8721" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "240/782 [========>.....................] - ETA: 1s - loss: 0.3118 - accuracy: 0.8727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "254/782 [========>.....................] - ETA: 1s - loss: 0.3109 - accuracy: 0.8738" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "268/782 [=========>....................] - ETA: 1s - loss: 0.3102 - accuracy: 0.8735" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "282/782 [=========>....................] - ETA: 1s - loss: 0.3085 - accuracy: 0.8738" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "296/782 [==========>...................] - ETA: 1s - loss: 0.3074 - accuracy: 0.8738" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "310/782 [==========>...................] - ETA: 1s - loss: 0.3069 - accuracy: 0.8738" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "324/782 [===========>..................] - ETA: 1s - loss: 0.3070 - accuracy: 0.8738" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "338/782 [===========>..................] - ETA: 1s - loss: 0.3077 - accuracy: 0.8732" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "352/782 [============>.................] - ETA: 1s - loss: 0.3072 - accuracy: 0.8732" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "366/782 [=============>................] - ETA: 1s - loss: 0.3077 - accuracy: 0.8728" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "380/782 [=============>................] - ETA: 1s - loss: 0.3093 - accuracy: 0.8723" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "395/782 [==============>...............] - ETA: 1s - loss: 0.3088 - accuracy: 0.8727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "409/782 [==============>...............] - ETA: 1s - loss: 0.3081 - accuracy: 0.8730" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "423/782 [===============>..............] - ETA: 1s - loss: 0.3075 - accuracy: 0.8737" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "437/782 [===============>..............] - ETA: 1s - loss: 0.3080 - accuracy: 0.8734" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "451/782 [================>.............] - ETA: 1s - loss: 0.3070 - accuracy: 0.8744" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "466/782 [================>.............] - ETA: 1s - loss: 0.3071 - accuracy: 0.8739" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "480/782 [=================>............] - ETA: 1s - loss: 0.3067 - accuracy: 0.8741" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "495/782 [=================>............] - ETA: 1s - loss: 0.3077 - accuracy: 0.8734" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "509/782 [==================>...........] - ETA: 0s - loss: 0.3084 - accuracy: 0.8732" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "523/782 [===================>..........] - ETA: 0s - loss: 0.3082 - accuracy: 0.8734" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "537/782 [===================>..........] - ETA: 0s - loss: 0.3083 - accuracy: 0.8735" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "551/782 [====================>.........] - ETA: 0s - loss: 0.3078 - accuracy: 0.8738" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "565/782 [====================>.........] - ETA: 0s - loss: 0.3081 - accuracy: 0.8736" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "579/782 [=====================>........] - ETA: 0s - loss: 0.3090 - accuracy: 0.8726" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "593/782 [=====================>........] - ETA: 0s - loss: 0.3100 - accuracy: 0.8718" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "607/782 [======================>.......] - ETA: 0s - loss: 0.3106 - accuracy: 0.8720" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "621/782 [======================>.......] - ETA: 0s - loss: 0.3102 - accuracy: 0.8720" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "636/782 [=======================>......] - ETA: 0s - loss: 0.3104 - accuracy: 0.8719" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "650/782 [=======================>......] - ETA: 0s - loss: 0.3105 - accuracy: 0.8715" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "665/782 [========================>.....] - ETA: 0s - loss: 0.3099 - accuracy: 0.8719" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "679/782 [=========================>....] - ETA: 0s - loss: 0.3100 - accuracy: 0.8719" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "693/782 [=========================>....] - ETA: 0s - loss: 0.3099 - accuracy: 0.8723" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "708/782 [==========================>...] - ETA: 0s - loss: 0.3097 - accuracy: 0.8722" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "722/782 [==========================>...] - ETA: 0s - loss: 0.3093 - accuracy: 0.8723" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "737/782 [===========================>..] - ETA: 0s - loss: 0.3099 - accuracy: 0.8723" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "751/782 [===========================>..] - ETA: 0s - loss: 0.3103 - accuracy: 0.8722" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "766/782 [============================>.] - ETA: 0s - loss: 0.3104 - accuracy: 0.8727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "781/782 [============================>.] - ETA: 0s - loss: 0.3107 - accuracy: 0.8730" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "782/782 [==============================] - 3s 4ms/step - loss: 0.3107 - accuracy: 0.8730\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "0.8730400204658508\n" ] } ], "source": [ "export_model = tf.keras.Sequential([\n", " vectorize_layer,\n", " model,\n", " layers.Activation('sigmoid')\n", "])\n", "\n", "export_model.compile(\n", " loss=losses.BinaryCrossentropy(from_logits=False), optimizer=\"adam\", metrics=['accuracy']\n", ")\n", "\n", "# Test it with `raw_test_ds`, which yields raw strings\n", "loss, accuracy = export_model.evaluate(raw_test_ds)\n", "print(accuracy)" ] }, { "cell_type": "markdown", "metadata": { "id": "TwQgoN88LoEF" }, "source": [ "### 새로운 데이터로 추론하기\n", "\n", "새로운 예에 대한 예측을 얻으려면 간단히 `model.predict()`를 호출하면 됩니다." ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:20:54.263501Z", "iopub.status.busy": "2022-12-14T20:20:54.262920Z", "iopub.status.idle": "2022-12-14T20:20:54.450233Z", "shell.execute_reply": "2022-12-14T20:20:54.449500Z" }, "id": "QW355HH5L49K" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", "1/1 [==============================] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1/1 [==============================] - 0s 137ms/step\n" ] }, { "data": { "text/plain": [ "array([[0.6096767],\n", " [0.4326959],\n", " [0.3506354]], dtype=float32)" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "examples = [\n", " \"The movie was great!\",\n", " \"The movie was okay.\",\n", " \"The movie was terrible...\"\n", "]\n", "\n", "export_model.predict(examples)" ] }, { "cell_type": "markdown", "metadata": { "id": "MaxlpFWpzR6c" }, "source": [ "모델 내부에 텍스트 전처리 논리를 포함하면 배포를 단순화하고 [훈련/테스트 왜곡](https://developers.google.com/machine-learning/guides/rules-of-ml#training-serving_skew) 가능성을 줄이는 프로덕션용 모델을 내보낼 수 있습니다.\n", "\n", "TextVectorization 레이어를 적용할 위치를 선택할 때 염두에 두어야 할 성능 차이가 있습니다. 레이어를 모델 외부에서 사용하면 GPU에서 훈련할 때 비동기 CPU 처리 및 데이터 버퍼링을 수행할 수 있습니다. 따라서 GPU에서 모델을 훈련하는 경우 모델을 개발하는 동안 최상의 성능을 얻기 위해 이 옵션을 사용하고 배포 준비가 완료되면 모델 내부에 TextVectorization 레이어를 포함하도록 전환할 수 있습니다.\n", "\n", "모델 저장에 대해 자세히 알아보려면 이 [튜토리얼](https://www.tensorflow.org/tutorials/keras/save_and_load)을 방문하세요." ] }, { "cell_type": "markdown", "metadata": { "id": "eSSuci_6nCEG" }, "source": [ "## 연습: 스택 오버플로 질문에 대한 다중 클래스 분류\n", "\n", "이 튜토리얼은 IMDB 데이터세트에서 이진 분류자를 처음부터 훈련하는 방법을 보여주었습니다. 연습으로, 이 노트북을 수정하여 [스택 오버플로](http://stackoverflow.com/)에서 프로그래밍 질문의 태그를 예측하도록 다중 클래스 분류자를 훈련할 수 있습니다.\n", "\n", "스택 오버플로에 게시된 수천 개의 프로그래밍 질문(예: \"Python에서 값을 기준으로 사전을 정렬할 수 있는 방법은?\")의 본문이 포함된 [데이터세트](https://storage.googleapis.com/download.tensorflow.org/data/stack_overflow_16k.tar.gz)가 준비되어 있습니다. 이들 각각은 정확히 하나의 태그(Python, CSharp, JavaScript 또는 Java)로 레이블이 지정됩니다. 여러분이 할 작업은 질문을 입력으로 받아 적절한 태그(이 경우 Python)를 예측하는 것입니다.\n", "\n", "작업할 데이터세트에는 1,700만 개 이상의 게시물이 포함된 [BigQuery](https://console.cloud.google.com/marketplace/details/stack-exchange/stack-overflow)의 훨씬 더 큰 공개 스택 오버플로 데이터세트에서 추출한 수천 개의 질문이 포함되어 있습니다.\n", "\n", "데이터세트를 다운로드해 보면 이전에 작업한 IMDB 데이터세트와 유사한 디렉터리 구조를 가지고 있음을 알 수 있습니다.\n", "\n", "```\n", "train/\n", "...python/\n", "......0.txt\n", "......1.txt\n", "...javascript/\n", "......0.txt\n", "......1.txt\n", "...csharp/\n", "......0.txt\n", "......1.txt\n", "...java/\n", "......0.txt\n", "......1.txt\n", "```\n", "\n", "참고: 분류 문제의 난이도를 높이기 위해 프로그래밍 질문에서 Python, CSharp, JavaScript 또는 Java라는 단어의 출현은 *blank*라는 단어로 대체되었습니다(많은 질문에 해당 언어가 포함됨).\n", "\n", "이 연습을 완료하려면 다음과 같이 수정하여 스택 오버플로 데이터세트와 함께 작동하도록 이 노트북을 수정해야 합니다.\n", "\n", "1. 노트북 상단에서, 미리 준비된 [스택 오버플로 데이터세트](https://storage.googleapis.com/download.tensorflow.org/data/stack_overflow_16k.tar.gz)를 다운로드하는 코드로 IMDB 데이터세트를 다운로드하는 코드를 업데이트합니다. 스택 오버플로 데이터세트는 유사한 디렉터리 구조를 가지므로 많이 수정할 필요가 없습니다.\n", "\n", "2. 이제 4개의 출력 클래스가 있으므로 `Dense(4)`를 읽도록 모델의 마지막 레이어를 수정합니다.\n", "\n", "3. 모델을 컴파일할 때 손실을 `tf.keras.losses.SparseCategoricalCrossentropy`로 변경합니다. 이것은 각 클래스의 레이블이 정수일 때(이 경우 0, *1*, *2* 또는 *3*일 수 있음) 다중 클래스 분류 문제에 사용할 올바른 손실 함수입니다. 또한 이것은 다중 클래스 분류 문제이기 때문에 메트릭을 `metrics=['accuracy']`로 변경합니다(`tf.metrics.BinaryAccuracy`는 이진 분류자에만 사용됨).\n", "\n", "4. 시간 경과에 따른 정확도를 표시할 때 `binary_accuracy` 및 `val_binary_accuracy`를 각각 `accuracy` 및 `val_accuracy`로 변경합니다.\n", "\n", "5. 이러한 변경이 완료되면 다중 클래스 분류자를 훈련할 수 있습니다. " ] }, { "cell_type": "markdown", "metadata": { "id": "F0T5SIwSm7uc" }, "source": [ "## 더 알아보기\n", "\n", "이 튜토리얼은 텍스트 분류를 처음부터 알아보았습니다. 일반적인 텍스트 분류 워크플로에 대해 자세히 알아보려면 Google Developers의 [텍스트 분류 가이드](https://developers.google.com/machine-learning/guides/text-classification/)를 확인하세요.\n" ] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [], "name": "text_classification.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" } }, "nbformat": 4, "nbformat_minor": 0 }