{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "zwBCE43Cv3PH" }, "source": [ "##### Copyright 2019 The TensorFlow Authors.\n", "\n", "Licensed under the Apache License, Version 2.0 (the \"License\");" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "cellView": "form", "execution": { "iopub.execute_input": "2022-12-14T20:52:27.200431Z", "iopub.status.busy": "2022-12-14T20:52:27.200189Z", "iopub.status.idle": "2022-12-14T20:52:27.204257Z", "shell.execute_reply": "2022-12-14T20:52:27.203667Z" }, "id": "fOad0I2cv569" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "YQB7yiF6v9GR" }, "source": [ "# 팬더 DataFrame 로드하기" ] }, { "cell_type": "markdown", "metadata": { "id": "Oqa952X4wQKK" }, "source": [ "\n", " \n", " \n", " \n", " \n", "
TensorFlow.org에서 보기Google Colab에서 실행하기GitHub에서소스 보기노트북 다운로드하기
" ] }, { "cell_type": "markdown", "metadata": { "id": "UmyEaf4Awl2v" }, "source": [ "이 튜토리얼에서는 pandas DataFrames를 TensorFlow에 로드하는 방법의 예를 보여줍니다.\n", "\n", "UCI Machine Learning Repository에서 제공하는 작은 심장 질환 데이터세트를 사용합니다. CSV에는 수백 개의 행이 있습니다. 각 행은 환자를 설명하고 각 열은 속성을 설명합니다. 이 정보를 사용하여 환자에게 심장병이 있는지 여부를 예측합니다. 이것은 이진 분류 작업에 해당합니다." ] }, { "cell_type": "markdown", "metadata": { "id": "iiyC7HkqxlUD" }, "source": [ "## pandas를 사용하여 데이터 읽기" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:52:27.208356Z", "iopub.status.busy": "2022-12-14T20:52:27.207724Z", "iopub.status.idle": "2022-12-14T20:52:29.358256Z", "shell.execute_reply": "2022-12-14T20:52:29.357385Z" }, "id": "5IoRbCA2n0_V" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2022-12-14 20:52:28.492546: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory\n", "2022-12-14 20:52:28.492656: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory\n", "2022-12-14 20:52:28.492666: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n" ] } ], "source": [ "import pandas as pd\n", "import tensorflow as tf\n", "\n", "SHUFFLE_BUFFER = 500\n", "BATCH_SIZE = 2" ] }, { "cell_type": "markdown", "metadata": { "id": "-2kBGy_pxn47" }, "source": [ "심장 질환 데이터세트가 포함된 CSV 파일 다운로드:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:52:29.362989Z", "iopub.status.busy": "2022-12-14T20:52:29.362119Z", "iopub.status.idle": "2022-12-14T20:52:29.414258Z", "shell.execute_reply": "2022-12-14T20:52:29.413551Z" }, "id": "VS4w2LePn9g3" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/heart.csv\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 8192/13273 [=================>............] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13273/13273 [==============================] - 0s 0us/step\n" ] } ], "source": [ "csv_file = tf.keras.utils.get_file('heart.csv', 'https://storage.googleapis.com/download.tensorflow.org/data/heart.csv')" ] }, { "cell_type": "markdown", "metadata": { "id": "6BXRPD2-xtQ1" }, "source": [ "팬더를 사용하여 CSV 파일 읽기:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:52:29.418097Z", "iopub.status.busy": "2022-12-14T20:52:29.417573Z", "iopub.status.idle": "2022-12-14T20:52:29.424472Z", "shell.execute_reply": "2022-12-14T20:52:29.423868Z" }, "id": "UEfJ8TcMpe-2" }, "outputs": [], "source": [ "df = pd.read_csv(csv_file)" ] }, { "cell_type": "markdown", "metadata": { "id": "4K873P-Pp8c7" }, "source": [ "데이터는 다음과 같습니다." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:52:29.428097Z", "iopub.status.busy": "2022-12-14T20:52:29.427583Z", "iopub.status.idle": "2022-12-14T20:52:29.441963Z", "shell.execute_reply": "2022-12-14T20:52:29.441286Z" }, "id": "8FkK6QIRpjd4" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
agesexcptrestbpscholfbsrestecgthalachexangoldpeakslopecathaltarget
063111452331215002.330fixed0
167141602860210811.523normal1
267141202290212912.622reversible0
337131302500018703.530normal0
441021302040217201.410normal0
\n", "
" ], "text/plain": [ " age sex cp trestbps chol fbs restecg thalach exang oldpeak slope \\\n", "0 63 1 1 145 233 1 2 150 0 2.3 3 \n", "1 67 1 4 160 286 0 2 108 1 1.5 2 \n", "2 67 1 4 120 229 0 2 129 1 2.6 2 \n", "3 37 1 3 130 250 0 0 187 0 3.5 3 \n", "4 41 0 2 130 204 0 2 172 0 1.4 1 \n", "\n", " ca thal target \n", "0 0 fixed 0 \n", "1 3 normal 1 \n", "2 2 reversible 0 \n", "3 0 normal 0 \n", "4 0 normal 0 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:52:29.445259Z", "iopub.status.busy": "2022-12-14T20:52:29.444969Z", "iopub.status.idle": "2022-12-14T20:52:29.450463Z", "shell.execute_reply": "2022-12-14T20:52:29.449824Z" }, "id": "_MOAKz654CT5" }, "outputs": [ { "data": { "text/plain": [ "age int64\n", "sex int64\n", "cp int64\n", "trestbps int64\n", "chol int64\n", "fbs int64\n", "restecg int64\n", "thalach int64\n", "exang int64\n", "oldpeak float64\n", "slope int64\n", "ca int64\n", "thal object\n", "target int64\n", "dtype: object" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.dtypes" ] }, { "cell_type": "markdown", "metadata": { "id": "jVyGjKvnqGlb" }, "source": [ "`target` 열에 포함된 레이블을 예측하는 모델을 빌드합니다." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:52:29.453695Z", "iopub.status.busy": "2022-12-14T20:52:29.453164Z", "iopub.status.idle": "2022-12-14T20:52:29.456740Z", "shell.execute_reply": "2022-12-14T20:52:29.456122Z" }, "id": "2wwhILm1ycSp" }, "outputs": [], "source": [ "target = df.pop('target')" ] }, { "cell_type": "markdown", "metadata": { "id": "vFGv9fgjDeao" }, "source": [ "## 배열로서의 DataFrame" ] }, { "cell_type": "markdown", "metadata": { "id": "xNxJ41MafiB-" }, "source": [ "데이터에 균일한 데이터 유형 또는 `dtype`이 있는 경우 NumPy 배열을 사용할 수 있는 모든 곳에서 pandas DataFrame을 사용할 수 있습니다. 이렇게 될 수 있는 이유는 `pandas.DataFrame` 클래스가 `__array__` 프로토콜을 지원하고 TensorFlow의 `tf.convert_to_tensor` 함수가 이 프로토콜을 지원하는 객체를 허용하기 때문입니다.\n", "\n", "데이터세트에서 숫자 특성을 가져옵니다(지금은 범주형 특성을 건너뜀)." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:52:29.460094Z", "iopub.status.busy": "2022-12-14T20:52:29.459601Z", "iopub.status.idle": "2022-12-14T20:52:29.468842Z", "shell.execute_reply": "2022-12-14T20:52:29.468263Z" }, "id": "b9VlFGAie3K0" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
agethalachtrestbpschololdpeak
0631501452332.3
1671081602861.5
2671291202292.6
3371871302503.5
4411721302041.4
\n", "
" ], "text/plain": [ " age thalach trestbps chol oldpeak\n", "0 63 150 145 233 2.3\n", "1 67 108 160 286 1.5\n", "2 67 129 120 229 2.6\n", "3 37 187 130 250 3.5\n", "4 41 172 130 204 1.4" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "numeric_feature_names = ['age', 'thalach', 'trestbps', 'chol', 'oldpeak']\n", "numeric_features = df[numeric_feature_names]\n", "numeric_features.head()" ] }, { "cell_type": "markdown", "metadata": { "id": "Xe1CMRvSpR_R" }, "source": [ "DataFrame은 `DataFrame.values` 속성 또는 `numpy.array(df)`를 사용하여 NumPy 배열로 변환할 수 있습니다. 텐서로 변환하려면 `tf.convert_to_tensor`를 사용하세요." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:52:29.472071Z", "iopub.status.busy": "2022-12-14T20:52:29.471580Z", "iopub.status.idle": "2022-12-14T20:52:33.186844Z", "shell.execute_reply": "2022-12-14T20:52:33.186052Z" }, "id": "OVv6Nwc9oDBU" }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tf.convert_to_tensor(numeric_features)" ] }, { "cell_type": "markdown", "metadata": { "id": "7iRYvoTrr1_G" }, "source": [ "일반적으로 `tf.convert_to_tensor`를 사용하여 객체를 텐서로 변환할 수 있는 경우 `tf.Tensor`를 전달할 수 있는 곳이면 어디든지 이를 전달할 수 있습니다." ] }, { "cell_type": "markdown", "metadata": { "id": "RVF7_Z-Mp-qD" }, "source": [ "### Model.fit과 함께 사용하기" ] }, { "cell_type": "markdown", "metadata": { "id": "Vqkc9gIapQNu" }, "source": [ "단일 텐서로 해석되는 DataFrame은 `Model.fit` 메서드에 대한 인수로 직접 사용할 수 있습니다.\n", "\n", "다음은 데이터세트의 수치적 특성에 대한 모델 훈련의 예입니다." ] }, { "cell_type": "markdown", "metadata": { "id": "u8M3oYHZgH_t" }, "source": [ "첫 단계는 입력 범위를 정규화하는 것입니다. 이를 위해 `tf.keras.layers.Normalization` 레이어를 사용합니다.\n", "\n", "레이어를 실행하기 전에 해당 평균과 표준편차를 설정하려면 `Normalization.adapt` 메서드를 호출해야 합니다." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:52:33.190991Z", "iopub.status.busy": "2022-12-14T20:52:33.190391Z", "iopub.status.idle": "2022-12-14T20:52:33.565088Z", "shell.execute_reply": "2022-12-14T20:52:33.564170Z" }, "id": "88XTmyEdgkJn" }, "outputs": [], "source": [ "normalizer = tf.keras.layers.Normalization(axis=-1)\n", "normalizer.adapt(numeric_features)" ] }, { "cell_type": "markdown", "metadata": { "id": "_D7JqUtnYCnb" }, "source": [ "DataFrame의 처음 세 행에서 레이어를 호출하여 이 레이어의 출력 예를 시각화합니다." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:52:33.569771Z", "iopub.status.busy": "2022-12-14T20:52:33.569203Z", "iopub.status.idle": "2022-12-14T20:52:33.583335Z", "shell.execute_reply": "2022-12-14T20:52:33.582568Z" }, "id": "jOwzIG-DhB0y" }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "normalizer(numeric_features.iloc[:3])" ] }, { "cell_type": "markdown", "metadata": { "id": "KWKcuVZJh-HY" }, "source": [ "정규화 레이어를 단순 모델의 첫 번째 레이어로 사용합니다." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:52:33.587187Z", "iopub.status.busy": "2022-12-14T20:52:33.586633Z", "iopub.status.idle": "2022-12-14T20:52:33.591154Z", "shell.execute_reply": "2022-12-14T20:52:33.590425Z" }, "id": "lu-bni-nh6mX" }, "outputs": [], "source": [ "def get_basic_model():\n", " model = tf.keras.Sequential([\n", " normalizer,\n", " tf.keras.layers.Dense(10, activation='relu'),\n", " tf.keras.layers.Dense(10, activation='relu'),\n", " tf.keras.layers.Dense(1)\n", " ])\n", "\n", " model.compile(optimizer='adam',\n", " loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),\n", " metrics=['accuracy'])\n", " return model" ] }, { "cell_type": "markdown", "metadata": { "id": "ntGi6ngYitob" }, "source": [ "DataFrame을 `Model.fit`에 `x` 인수로 전달하면 Keras는 DataFrame을 NumPy 배열인 것처럼 취급합니다." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:52:33.594774Z", "iopub.status.busy": "2022-12-14T20:52:33.594071Z", "iopub.status.idle": "2022-12-14T20:52:41.626853Z", "shell.execute_reply": "2022-12-14T20:52:41.626002Z" }, "id": "XMjM-eddiNNT" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 4:10 - loss: 0.7045 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/152 [==>...........................] - ETA: 0s - loss: 0.6487 - accuracy: 0.6579 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/152 [======>.......................] - ETA: 0s - loss: 0.6372 - accuracy: 0.6757" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 56/152 [==========>...................] - ETA: 0s - loss: 0.6322 - accuracy: 0.6696" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 75/152 [=============>................] - ETA: 0s - loss: 0.6155 - accuracy: 0.6933" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/152 [=================>............] - ETA: 0s - loss: 0.6063 - accuracy: 0.7074" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113/152 [=====================>........] - ETA: 0s - loss: 0.5861 - accuracy: 0.7257" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "132/152 [=========================>....] - ETA: 0s - loss: 0.5763 - accuracy: 0.7273" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/152 [============================>.] - ETA: 0s - loss: 0.5785 - accuracy: 0.7252" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 2s 3ms/step - loss: 0.5785 - accuracy: 0.7261\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 2/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.4086 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 0s - loss: 0.4878 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/152 [======>.......................] - ETA: 0s - loss: 0.5363 - accuracy: 0.7308" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 0s - loss: 0.5355 - accuracy: 0.7241" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/152 [==============>...............] - ETA: 0s - loss: 0.5293 - accuracy: 0.7273" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/152 [=================>............] - ETA: 0s - loss: 0.5373 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "116/152 [=====================>........] - ETA: 0s - loss: 0.5372 - accuracy: 0.7026" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/152 [=========================>....] - ETA: 0s - loss: 0.5262 - accuracy: 0.7148" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.5209 - accuracy: 0.7261\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 3/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.7512 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/152 [==>...........................] - ETA: 0s - loss: 0.4361 - accuracy: 0.7632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/152 [======>.......................] - ETA: 0s - loss: 0.4645 - accuracy: 0.7368" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57/152 [==========>...................] - ETA: 0s - loss: 0.4865 - accuracy: 0.7281" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/152 [==============>...............] - ETA: 0s - loss: 0.4883 - accuracy: 0.7303" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 95/152 [=================>............] - ETA: 0s - loss: 0.4810 - accuracy: 0.7421" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "114/152 [=====================>........] - ETA: 0s - loss: 0.4929 - accuracy: 0.7237" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/152 [=========================>....] - ETA: 0s - loss: 0.4936 - accuracy: 0.7218" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - ETA: 0s - loss: 0.4899 - accuracy: 0.7261" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4899 - accuracy: 0.7261\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.9754 - accuracy: 0.0000e+00" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 0s - loss: 0.5836 - accuracy: 0.6500 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/152 [======>.......................] - ETA: 0s - loss: 0.4850 - accuracy: 0.7179" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 0s - loss: 0.4856 - accuracy: 0.6983" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/152 [==============>...............] - ETA: 0s - loss: 0.4823 - accuracy: 0.7208" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/152 [=================>............] - ETA: 0s - loss: 0.4841 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.4804 - accuracy: 0.7217" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134/152 [=========================>....] - ETA: 0s - loss: 0.4907 - accuracy: 0.7239" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4697 - accuracy: 0.7360\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 5/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 1.0053 - accuracy: 0.0000e+00" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 0s - loss: 0.6706 - accuracy: 0.5250 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/152 [======>.......................] - ETA: 0s - loss: 0.5624 - accuracy: 0.6410" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 0s - loss: 0.5214 - accuracy: 0.6897" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/152 [==============>...............] - ETA: 0s - loss: 0.4927 - accuracy: 0.7143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/152 [=================>............] - ETA: 0s - loss: 0.4733 - accuracy: 0.7396" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.4652 - accuracy: 0.7478" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134/152 [=========================>....] - ETA: 0s - loss: 0.4547 - accuracy: 0.7537" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4576 - accuracy: 0.7558\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 6/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 1.0219 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 0s - loss: 0.5172 - accuracy: 0.6750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/152 [======>.......................] - ETA: 0s - loss: 0.4290 - accuracy: 0.7564" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 0s - loss: 0.4371 - accuracy: 0.7759" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/152 [==============>...............] - ETA: 0s - loss: 0.4561 - accuracy: 0.7662" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/152 [=================>............] - ETA: 0s - loss: 0.4406 - accuracy: 0.7708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "116/152 [=====================>........] - ETA: 0s - loss: 0.4400 - accuracy: 0.7716" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/152 [=========================>....] - ETA: 0s - loss: 0.4528 - accuracy: 0.7630" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4501 - accuracy: 0.7657\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 7/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.3338 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 0s - loss: 0.4647 - accuracy: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/152 [======>.......................] - ETA: 0s - loss: 0.4762 - accuracy: 0.7308" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/152 [==========>...................] - ETA: 0s - loss: 0.4699 - accuracy: 0.7458" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/152 [==============>...............] - ETA: 0s - loss: 0.4546 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 98/152 [==================>...........] - ETA: 0s - loss: 0.4498 - accuracy: 0.7449" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/152 [======================>.......] - ETA: 0s - loss: 0.4500 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/152 [==========================>...] - ETA: 0s - loss: 0.4496 - accuracy: 0.7591" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4455 - accuracy: 0.7624\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 8/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 1.5176 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 0s - loss: 0.3785 - accuracy: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/152 [======>.......................] - ETA: 0s - loss: 0.4265 - accuracy: 0.7821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 0s - loss: 0.4545 - accuracy: 0.7759" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/152 [==============>...............] - ETA: 0s - loss: 0.4552 - accuracy: 0.7727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/152 [=================>............] - ETA: 0s - loss: 0.4334 - accuracy: 0.7865" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.4222 - accuracy: 0.7783" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134/152 [=========================>....] - ETA: 0s - loss: 0.4624 - accuracy: 0.7612" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4413 - accuracy: 0.7789\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 9/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.4290 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 0s - loss: 0.4262 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/152 [======>.......................] - ETA: 0s - loss: 0.4258 - accuracy: 0.7564" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 0s - loss: 0.4370 - accuracy: 0.7845" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/152 [==============>...............] - ETA: 0s - loss: 0.4447 - accuracy: 0.7632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 95/152 [=================>............] - ETA: 0s - loss: 0.4473 - accuracy: 0.7526" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "114/152 [=====================>........] - ETA: 0s - loss: 0.4476 - accuracy: 0.7544" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/152 [=========================>....] - ETA: 0s - loss: 0.4363 - accuracy: 0.7707" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - ETA: 0s - loss: 0.4380 - accuracy: 0.7822" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4380 - accuracy: 0.7822\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 10/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.4376 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 0s - loss: 0.4837 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/152 [======>.......................] - ETA: 0s - loss: 0.4231 - accuracy: 0.7875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/152 [==========>...................] - ETA: 0s - loss: 0.4182 - accuracy: 0.7881" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/152 [==============>...............] - ETA: 0s - loss: 0.4184 - accuracy: 0.7821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/152 [==================>...........] - ETA: 0s - loss: 0.4099 - accuracy: 0.7887" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "116/152 [=====================>........] - ETA: 0s - loss: 0.4160 - accuracy: 0.7931" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/152 [=========================>....] - ETA: 0s - loss: 0.4149 - accuracy: 0.7926" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4347 - accuracy: 0.7822\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 11/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.0088 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 0s - loss: 0.3182 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/152 [======>.......................] - ETA: 0s - loss: 0.3463 - accuracy: 0.8625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/152 [==========>...................] - ETA: 0s - loss: 0.3933 - accuracy: 0.8220" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/152 [==============>...............] - ETA: 0s - loss: 0.4058 - accuracy: 0.8205" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/152 [==================>...........] - ETA: 0s - loss: 0.3946 - accuracy: 0.8247" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "116/152 [=====================>........] - ETA: 0s - loss: 0.3962 - accuracy: 0.7974" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/152 [=========================>....] - ETA: 0s - loss: 0.4194 - accuracy: 0.7889" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4339 - accuracy: 0.7855\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 12/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.2200 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 0s - loss: 0.3124 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/152 [======>.......................] - ETA: 0s - loss: 0.3768 - accuracy: 0.8205" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 0s - loss: 0.4320 - accuracy: 0.7845" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/152 [==============>...............] - ETA: 0s - loss: 0.4238 - accuracy: 0.7727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/152 [=================>............] - ETA: 0s - loss: 0.4308 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.4453 - accuracy: 0.7739" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134/152 [=========================>....] - ETA: 0s - loss: 0.4295 - accuracy: 0.7873" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4300 - accuracy: 0.7822\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 13/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.5697 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/152 [===>..........................] - ETA: 0s - loss: 0.4663 - accuracy: 0.7619" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 41/152 [=======>......................] - ETA: 0s - loss: 0.4777 - accuracy: 0.7805" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/152 [==========>...................] - ETA: 0s - loss: 0.4600 - accuracy: 0.7833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/152 [==============>...............] - ETA: 0s - loss: 0.4447 - accuracy: 0.7911" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 98/152 [==================>...........] - ETA: 0s - loss: 0.4225 - accuracy: 0.8112" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117/152 [======================>.......] - ETA: 0s - loss: 0.4109 - accuracy: 0.8120" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/152 [=========================>....] - ETA: 0s - loss: 0.4275 - accuracy: 0.7978" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4299 - accuracy: 0.7888\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 14/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 1.2066 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 0s - loss: 0.4091 - accuracy: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/152 [======>.......................] - ETA: 0s - loss: 0.4078 - accuracy: 0.7564" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 0s - loss: 0.4006 - accuracy: 0.7759" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/152 [==============>...............] - ETA: 0s - loss: 0.4183 - accuracy: 0.7532" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/152 [=================>............] - ETA: 0s - loss: 0.4660 - accuracy: 0.7552" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.4461 - accuracy: 0.7739" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134/152 [=========================>....] - ETA: 0s - loss: 0.4362 - accuracy: 0.7873" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4276 - accuracy: 0.7822\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 15/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.6814 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/152 [==>...........................] - ETA: 0s - loss: 0.6308 - accuracy: 0.7368" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/152 [======>.......................] - ETA: 0s - loss: 0.5222 - accuracy: 0.8108" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 56/152 [==========>...................] - ETA: 0s - loss: 0.5014 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 75/152 [=============>................] - ETA: 0s - loss: 0.4519 - accuracy: 0.7800" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/152 [=================>............] - ETA: 0s - loss: 0.4332 - accuracy: 0.7872" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113/152 [=====================>........] - ETA: 0s - loss: 0.4281 - accuracy: 0.7920" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "132/152 [=========================>....] - ETA: 0s - loss: 0.4210 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/152 [============================>.] - ETA: 0s - loss: 0.4261 - accuracy: 0.7914" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4249 - accuracy: 0.7921\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model = get_basic_model()\n", "model.fit(numeric_features, target, epochs=15, batch_size=BATCH_SIZE)" ] }, { "cell_type": "markdown", "metadata": { "id": "EjtQbsRPEoJT" }, "source": [ "### tf.data와 함께 사용하기" ] }, { "cell_type": "markdown", "metadata": { "id": "nSjV5gy3EsVv" }, "source": [ "`tf.data` 변환을 균일한 `dtype`의 DataFrame에 적용하려는 경우 `Dataset.from_tensor_slices` 메서드는 DataFrame의 행을 반복하는 데이터세트를 생성합니다. 각 행은 처음에 값으로 구성된 벡터입니다. 모델을 훈련시키려면 `(inputs, labels)` 쌍이 필요하므로 `(features, labels)`을 전달하면 `Dataset.from_tensor_slices`가 필요한 슬라이스 쌍을 반환합니다." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:52:41.630877Z", "iopub.status.busy": "2022-12-14T20:52:41.630237Z", "iopub.status.idle": "2022-12-14T20:52:41.653314Z", "shell.execute_reply": "2022-12-14T20:52:41.652611Z" }, "id": "FCphpgdRGikx" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(, )\n", "(, )\n", "(, )\n" ] } ], "source": [ "numeric_dataset = tf.data.Dataset.from_tensor_slices((numeric_features, target))\n", "\n", "for row in numeric_dataset.take(3):\n", " print(row)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:52:41.657103Z", "iopub.status.busy": "2022-12-14T20:52:41.656470Z", "iopub.status.idle": "2022-12-14T20:52:48.946074Z", "shell.execute_reply": "2022-12-14T20:52:48.945118Z" }, "id": "lStkN86gEkCe" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 2:41 - loss: 0.5778 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/152 [==>...........................] - ETA: 0s - loss: 0.5947 - accuracy: 0.8421 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/152 [======>.......................] - ETA: 0s - loss: 0.6001 - accuracy: 0.7237" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 0s - loss: 0.6158 - accuracy: 0.6897" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/152 [==============>...............] - ETA: 0s - loss: 0.6081 - accuracy: 0.7078" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/152 [=================>............] - ETA: 0s - loss: 0.5895 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "116/152 [=====================>........] - ETA: 0s - loss: 0.5826 - accuracy: 0.7112" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134/152 [=========================>....] - ETA: 0s - loss: 0.5749 - accuracy: 0.7201" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - ETA: 0s - loss: 0.5687 - accuracy: 0.7261" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 1s 3ms/step - loss: 0.5687 - accuracy: 0.7261\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 2/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 1.5996 - accuracy: 0.0000e+00" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/152 [===>..........................] - ETA: 0s - loss: 0.5153 - accuracy: 0.7619 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 41/152 [=======>......................] - ETA: 0s - loss: 0.5127 - accuracy: 0.7439" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/152 [===========>..................] - ETA: 0s - loss: 0.4868 - accuracy: 0.7623" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81/152 [==============>...............] - ETA: 0s - loss: 0.4689 - accuracy: 0.7716" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "101/152 [==================>...........] - ETA: 0s - loss: 0.5003 - accuracy: 0.7525" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/152 [======================>.......] - ETA: 0s - loss: 0.5071 - accuracy: 0.7417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140/152 [==========================>...] - ETA: 0s - loss: 0.5025 - accuracy: 0.7464" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.5081 - accuracy: 0.7261\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 3/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.4834 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/152 [===>..........................] - ETA: 0s - loss: 0.4484 - accuracy: 0.7619" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/152 [======>.......................] - ETA: 0s - loss: 0.4743 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/152 [==========>...................] - ETA: 0s - loss: 0.5072 - accuracy: 0.7034" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/152 [==============>...............] - ETA: 0s - loss: 0.5269 - accuracy: 0.7025" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 98/152 [==================>...........] - ETA: 0s - loss: 0.5096 - accuracy: 0.7041" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/152 [======================>.......] - ETA: 0s - loss: 0.4883 - accuracy: 0.7331" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/152 [==========================>...] - ETA: 0s - loss: 0.4865 - accuracy: 0.7372" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4860 - accuracy: 0.7294\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.3604 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 0s - loss: 0.5601 - accuracy: 0.6750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/152 [======>.......................] - ETA: 0s - loss: 0.5227 - accuracy: 0.6795" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 0s - loss: 0.4958 - accuracy: 0.7069" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/152 [==============>...............] - ETA: 0s - loss: 0.5000 - accuracy: 0.7143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/152 [=================>............] - ETA: 0s - loss: 0.4976 - accuracy: 0.7135" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "116/152 [=====================>........] - ETA: 0s - loss: 0.4772 - accuracy: 0.7284" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/152 [=========================>....] - ETA: 0s - loss: 0.4799 - accuracy: 0.7243" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4721 - accuracy: 0.7360\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 5/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.6085 - accuracy: 0.0000e+00" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 0s - loss: 0.3525 - accuracy: 0.6500 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/152 [======>.......................] - ETA: 0s - loss: 0.4382 - accuracy: 0.6923" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/152 [==========>...................] - ETA: 0s - loss: 0.4232 - accuracy: 0.7458" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/152 [==============>...............] - ETA: 0s - loss: 0.4669 - accuracy: 0.7244" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/152 [==================>...........] - ETA: 0s - loss: 0.4857 - accuracy: 0.7165" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117/152 [======================>.......] - ETA: 0s - loss: 0.4909 - accuracy: 0.7137" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/152 [=========================>....] - ETA: 0s - loss: 0.4699 - accuracy: 0.7279" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4655 - accuracy: 0.7327\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 6/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.4226 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 0s - loss: 0.4444 - accuracy: 0.7250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/152 [======>.......................] - ETA: 0s - loss: 0.4078 - accuracy: 0.7125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/152 [==========>...................] - ETA: 0s - loss: 0.4099 - accuracy: 0.7250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/152 [==============>...............] - ETA: 0s - loss: 0.3919 - accuracy: 0.7468" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 98/152 [==================>...........] - ETA: 0s - loss: 0.4103 - accuracy: 0.7602" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117/152 [======================>.......] - ETA: 0s - loss: 0.4324 - accuracy: 0.7479" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/152 [==========================>...] - ETA: 0s - loss: 0.4408 - accuracy: 0.7482" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4573 - accuracy: 0.7426\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 7/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.2694 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 0s - loss: 0.3536 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/152 [======>.......................] - ETA: 0s - loss: 0.4189 - accuracy: 0.7436" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 0s - loss: 0.4157 - accuracy: 0.7672" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/152 [==============>...............] - ETA: 0s - loss: 0.3986 - accuracy: 0.7922" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/152 [=================>............] - ETA: 0s - loss: 0.4139 - accuracy: 0.7760" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.4429 - accuracy: 0.7522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134/152 [=========================>....] - ETA: 0s - loss: 0.4521 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4513 - accuracy: 0.7459\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 8/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.0791 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 0s - loss: 0.4895 - accuracy: 0.6750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/152 [======>.......................] - ETA: 0s - loss: 0.4762 - accuracy: 0.7564" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 0s - loss: 0.4562 - accuracy: 0.7328" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/152 [==============>...............] - ETA: 0s - loss: 0.4375 - accuracy: 0.7372" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 98/152 [==================>...........] - ETA: 0s - loss: 0.4660 - accuracy: 0.7449" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/152 [======================>.......] - ETA: 0s - loss: 0.4716 - accuracy: 0.7331" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "138/152 [==========================>...] - ETA: 0s - loss: 0.4591 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4464 - accuracy: 0.7591\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 9/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.4891 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/152 [===>..........................] - ETA: 0s - loss: 0.4243 - accuracy: 0.7381" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/152 [======>.......................] - ETA: 0s - loss: 0.4134 - accuracy: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/152 [==========>...................] - ETA: 0s - loss: 0.4106 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 80/152 [==============>...............] - ETA: 0s - loss: 0.4538 - accuracy: 0.7625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 99/152 [==================>...........] - ETA: 0s - loss: 0.4374 - accuracy: 0.7727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/152 [======================>.......] - ETA: 0s - loss: 0.4369 - accuracy: 0.7627" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/152 [==========================>...] - ETA: 0s - loss: 0.4370 - accuracy: 0.7591" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4425 - accuracy: 0.7591\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 10/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.3461 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 0s - loss: 0.5018 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/152 [======>.......................] - ETA: 0s - loss: 0.4653 - accuracy: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/152 [==========>...................] - ETA: 0s - loss: 0.4540 - accuracy: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 80/152 [==============>...............] - ETA: 0s - loss: 0.4230 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/152 [==================>...........] - ETA: 0s - loss: 0.4366 - accuracy: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/152 [======================>.......] - ETA: 0s - loss: 0.4520 - accuracy: 0.7708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140/152 [==========================>...] - ETA: 0s - loss: 0.4402 - accuracy: 0.7821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4385 - accuracy: 0.7756\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 11/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.2994 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 0s - loss: 0.6248 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/152 [======>.......................] - ETA: 0s - loss: 0.5365 - accuracy: 0.7125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/152 [==========>...................] - ETA: 0s - loss: 0.4918 - accuracy: 0.7417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 80/152 [==============>...............] - ETA: 0s - loss: 0.4703 - accuracy: 0.7625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/152 [==================>...........] - ETA: 0s - loss: 0.4573 - accuracy: 0.7650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/152 [======================>.......] - ETA: 0s - loss: 0.4459 - accuracy: 0.7708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140/152 [==========================>...] - ETA: 0s - loss: 0.4468 - accuracy: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4358 - accuracy: 0.7789\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 12/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.5924 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/152 [===>..........................] - ETA: 0s - loss: 0.4312 - accuracy: 0.7619" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 41/152 [=======>......................] - ETA: 0s - loss: 0.4114 - accuracy: 0.8171" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/152 [===========>..................] - ETA: 0s - loss: 0.3902 - accuracy: 0.8115" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81/152 [==============>...............] - ETA: 0s - loss: 0.4407 - accuracy: 0.7840" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/152 [==================>...........] - ETA: 0s - loss: 0.4285 - accuracy: 0.7900" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/152 [======================>.......] - ETA: 0s - loss: 0.4232 - accuracy: 0.7875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140/152 [==========================>...] - ETA: 0s - loss: 0.4189 - accuracy: 0.7929" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4344 - accuracy: 0.7822\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 13/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.0446 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 0s - loss: 0.4426 - accuracy: 0.8250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/152 [======>.......................] - ETA: 0s - loss: 0.4353 - accuracy: 0.8205" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/152 [==========>...................] - ETA: 0s - loss: 0.4244 - accuracy: 0.8136" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/152 [==============>...............] - ETA: 0s - loss: 0.4177 - accuracy: 0.8291" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 98/152 [==================>...........] - ETA: 0s - loss: 0.4122 - accuracy: 0.8163" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/152 [======================>.......] - ETA: 0s - loss: 0.4337 - accuracy: 0.7966" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/152 [==========================>...] - ETA: 0s - loss: 0.4415 - accuracy: 0.7774" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4332 - accuracy: 0.7855\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 14/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 1.4755 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 0s - loss: 0.4890 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/152 [======>.......................] - ETA: 0s - loss: 0.4041 - accuracy: 0.7949" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/152 [==========>...................] - ETA: 0s - loss: 0.3885 - accuracy: 0.8220" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/152 [==============>...............] - ETA: 0s - loss: 0.3707 - accuracy: 0.8269" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/152 [==================>...........] - ETA: 0s - loss: 0.3977 - accuracy: 0.8144" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117/152 [======================>.......] - ETA: 0s - loss: 0.4150 - accuracy: 0.7991" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/152 [=========================>....] - ETA: 0s - loss: 0.4365 - accuracy: 0.7757" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4284 - accuracy: 0.7822\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 15/15\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.8215 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/152 [==>...........................] - ETA: 0s - loss: 0.5017 - accuracy: 0.8158" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/152 [======>.......................] - ETA: 0s - loss: 0.4538 - accuracy: 0.8205" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/152 [==========>...................] - ETA: 0s - loss: 0.4246 - accuracy: 0.7881" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/152 [==============>...............] - ETA: 0s - loss: 0.4117 - accuracy: 0.7975" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 99/152 [==================>...........] - ETA: 0s - loss: 0.4151 - accuracy: 0.7828" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "119/152 [======================>.......] - ETA: 0s - loss: 0.4303 - accuracy: 0.7731" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "138/152 [==========================>...] - ETA: 0s - loss: 0.4239 - accuracy: 0.7862" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 0s 3ms/step - loss: 0.4273 - accuracy: 0.7822\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "numeric_batches = numeric_dataset.shuffle(1000).batch(BATCH_SIZE)\n", "\n", "model = get_basic_model()\n", "model.fit(numeric_batches, epochs=15)" ] }, { "cell_type": "markdown", "metadata": { "id": "NRASs9IIESWQ" }, "source": [ "## DataFrame을 사전으로 사용" ] }, { "cell_type": "markdown", "metadata": { "id": "NQcp7kiPF8TP" }, "source": [ "이기종 데이터를 다루기 시작하면 DataFrame을 더 이상 단일 배열인 것처럼 취급할 수 없습니다. TensorFlow 텐서는 모든 요소의 `dtype`이 같을 것을 요구합니다.\n", "\n", "따라서 이 경우, 이를 각 열에 균일한 `dtype`이 있는 열 사전으로 취급해야 합니다. DataFrame은 배열 사전과 매우 유사하므로 일반적으로 DataFrame을 Python dict로 캐스팅하기만 하면 됩니다. 많은 중요한 TensorFlow API가 배열의 (중첩) 사전을 입력으로 지원합니다." ] }, { "cell_type": "markdown", "metadata": { "id": "9y5UMKL8bury" }, "source": [ "`tf.data` 입력 파이프라인은 이것을 아주 잘 처리합니다. 모든 `tf.data` 연산이 사전과 튜플을 자동으로 처리합니다. 따라서 DataFrame에서 사전-예제의 데이터세트를 만들려면 `Dataset.from_tensor_slices`로 슬라이싱하기 전에 dict로 캐스팅하면 됩니다." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:52:48.950555Z", "iopub.status.busy": "2022-12-14T20:52:48.949787Z", "iopub.status.idle": "2022-12-14T20:52:48.963003Z", "shell.execute_reply": "2022-12-14T20:52:48.962066Z" }, "id": "U3QDo-jwHYXc" }, "outputs": [], "source": [ "numeric_dict_ds = tf.data.Dataset.from_tensor_slices((dict(numeric_features), target))" ] }, { "cell_type": "markdown", "metadata": { "id": "yyEERK9ldIi_" }, "source": [ "다음은 해당 데이터세트의 처음 세 가지 예입니다." ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:52:48.966643Z", "iopub.status.busy": "2022-12-14T20:52:48.966343Z", "iopub.status.idle": "2022-12-14T20:52:48.981028Z", "shell.execute_reply": "2022-12-14T20:52:48.980401Z" }, "id": "q0tDwk0VdH6D" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "({'age': , 'thalach': , 'trestbps': , 'chol': , 'oldpeak': }, )\n", "({'age': , 'thalach': , 'trestbps': , 'chol': , 'oldpeak': }, )\n", "({'age': , 'thalach': , 'trestbps': , 'chol': , 'oldpeak': }, )\n" ] } ], "source": [ "for row in numeric_dict_ds.take(3):\n", " print(row)" ] }, { "cell_type": "markdown", "metadata": { "id": "DEAM6HAFxlMy" }, "source": [ "### Keras를 사용한 사전" ] }, { "cell_type": "markdown", "metadata": { "id": "dnoyoWLWx07i" }, "source": [ "일반적으로 Keras 모델과 레이어는 단일 입력 텐서를 기대하지만 이러한 클래스는 사전, 튜플 및 텐서의 중첩 구조를 허용하고 반환할 수 있습니다. 이러한 구조를 \"중첩\"이라고 합니다(자세한 내용은 `tf.nest` 모듈 참조).\n", "\n", "사전을 입력으로 받아들이는 Keras 모델을 작성할 수 있는 동등한 효과의 두 가지 방법이 있습니다." ] }, { "cell_type": "markdown", "metadata": { "id": "5xUTrm0apDTr" }, "source": [ "#### 1. 모델-서브 클래스 스타일\n", "\n", "`tf.keras.Model`(또는 `tf.keras.Layer`)의 서브 클래스를 작성합니다. 입력을 직접 처리하고 출력을 생성합니다." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:52:48.985072Z", "iopub.status.busy": "2022-12-14T20:52:48.984461Z", "iopub.status.idle": "2022-12-14T20:52:48.988637Z", "shell.execute_reply": "2022-12-14T20:52:48.987960Z" }, "id": "Zc3HV99CFRWL" }, "outputs": [], "source": [ " def stack_dict(inputs, fun=tf.stack):\n", " values = []\n", " for key in sorted(inputs.keys()):\n", " values.append(tf.cast(inputs[key], tf.float32))\n", "\n", " return fun(values, axis=-1)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:52:48.992112Z", "iopub.status.busy": "2022-12-14T20:52:48.991548Z", "iopub.status.idle": "2022-12-14T20:52:49.217869Z", "shell.execute_reply": "2022-12-14T20:52:49.217110Z" }, "id": "Rz4Cg6WpzNzi" }, "outputs": [], "source": [ "#@title\n", "class MyModel(tf.keras.Model):\n", " def __init__(self):\n", " # Create all the internal layers in init.\n", " super().__init__(self)\n", "\n", " self.normalizer = tf.keras.layers.Normalization(axis=-1)\n", "\n", " self.seq = tf.keras.Sequential([\n", " self.normalizer,\n", " tf.keras.layers.Dense(10, activation='relu'),\n", " tf.keras.layers.Dense(10, activation='relu'),\n", " tf.keras.layers.Dense(1)\n", " ])\n", "\n", " def adapt(self, inputs):\n", " # Stack the inputs and `adapt` the normalization layer.\n", " inputs = stack_dict(inputs)\n", " self.normalizer.adapt(inputs)\n", "\n", " def call(self, inputs):\n", " # Stack the inputs\n", " inputs = stack_dict(inputs)\n", " # Run them through all the layers.\n", " result = self.seq(inputs)\n", "\n", " return result\n", "\n", "model = MyModel()\n", "\n", "model.adapt(dict(numeric_features))\n", "\n", "model.compile(optimizer='adam',\n", " loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),\n", " metrics=['accuracy'],\n", " run_eagerly=True)" ] }, { "cell_type": "markdown", "metadata": { "id": "hMLXNEDF_tu2" }, "source": [ "이 모델은 학습을 위해 열 사전 또는 사전-요소의 데이터세트를 허용할 수 있습니다." ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:52:49.222476Z", "iopub.status.busy": "2022-12-14T20:52:49.221966Z", "iopub.status.idle": "2022-12-14T20:53:09.983656Z", "shell.execute_reply": "2022-12-14T20:53:09.982762Z" }, "id": "v3xEjtHY8gZG" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "WARNING:tensorflow:5 out of the last 5 calls to triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "WARNING:tensorflow:6 out of the last 6 calls to triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 1:55 - loss: 0.7522 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/152 [..............................] - ETA: 3s - loss: 0.5488 - accuracy: 0.8333 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/152 [..............................] - ETA: 3s - loss: 0.5972 - accuracy: 0.6000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/152 [>.............................] - ETA: 3s - loss: 0.6729 - accuracy: 0.5714" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/152 [>.............................] - ETA: 3s - loss: 0.6846 - accuracy: 0.5556" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/152 [=>............................] - ETA: 3s - loss: 0.6288 - accuracy: 0.5909" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 3s - loss: 0.6117 - accuracy: 0.6154" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/152 [=>............................] - ETA: 3s - loss: 0.6278 - accuracy: 0.5333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/152 [==>...........................] - ETA: 3s - loss: 0.6257 - accuracy: 0.5833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 3s - loss: 0.6241 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/152 [===>..........................] - ETA: 3s - loss: 0.6281 - accuracy: 0.6591" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/152 [===>..........................] - ETA: 3s - loss: 0.6291 - accuracy: 0.6458" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/152 [====>.........................] - ETA: 3s - loss: 0.6340 - accuracy: 0.6154" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/152 [====>.........................] - ETA: 3s - loss: 0.6134 - accuracy: 0.6429" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/152 [====>.........................] - ETA: 3s - loss: 0.6090 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/152 [=====>........................] - ETA: 3s - loss: 0.6105 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/152 [=====>........................] - ETA: 3s - loss: 0.6154 - accuracy: 0.6912" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/152 [======>.......................] - ETA: 3s - loss: 0.6076 - accuracy: 0.6944" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/152 [======>.......................] - ETA: 2s - loss: 0.6121 - accuracy: 0.6842" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/152 [======>.......................] - ETA: 2s - loss: 0.6056 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 42/152 [=======>......................] - ETA: 2s - loss: 0.5997 - accuracy: 0.6905" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 44/152 [=======>......................] - ETA: 2s - loss: 0.5980 - accuracy: 0.7045" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 47/152 [========>.....................] - ETA: 2s - loss: 0.5927 - accuracy: 0.7021" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/152 [========>.....................] - ETA: 2s - loss: 0.5896 - accuracy: 0.7041" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/152 [=========>....................] - ETA: 2s - loss: 0.6000 - accuracy: 0.6863" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 53/152 [=========>....................] - ETA: 2s - loss: 0.6023 - accuracy: 0.6887" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/152 [=========>....................] - ETA: 2s - loss: 0.6066 - accuracy: 0.6636" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57/152 [==========>...................] - ETA: 2s - loss: 0.6035 - accuracy: 0.6579" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/152 [==========>...................] - ETA: 2s - loss: 0.6031 - accuracy: 0.6610" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/152 [===========>..................] - ETA: 2s - loss: 0.6081 - accuracy: 0.6557" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 63/152 [===========>..................] - ETA: 2s - loss: 0.6097 - accuracy: 0.6508" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 65/152 [===========>..................] - ETA: 2s - loss: 0.6202 - accuracy: 0.6462" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/152 [============>.................] - ETA: 2s - loss: 0.6193 - accuracy: 0.6343" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 69/152 [============>.................] - ETA: 2s - loss: 0.6173 - accuracy: 0.6377" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/152 [=============>................] - ETA: 2s - loss: 0.6156 - accuracy: 0.6479" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/152 [=============>................] - ETA: 2s - loss: 0.6183 - accuracy: 0.6370" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 75/152 [=============>................] - ETA: 2s - loss: 0.6168 - accuracy: 0.6400" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/152 [==============>...............] - ETA: 1s - loss: 0.6144 - accuracy: 0.6364" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/152 [==============>...............] - ETA: 1s - loss: 0.6052 - accuracy: 0.6456" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81/152 [==============>...............] - ETA: 1s - loss: 0.6061 - accuracy: 0.6358" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 83/152 [===============>..............] - ETA: 1s - loss: 0.6052 - accuracy: 0.6446" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 86/152 [===============>..............] - ETA: 1s - loss: 0.6036 - accuracy: 0.6570" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 89/152 [================>.............] - ETA: 1s - loss: 0.6100 - accuracy: 0.6517" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/152 [================>.............] - ETA: 1s - loss: 0.6060 - accuracy: 0.6538" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/152 [=================>............] - ETA: 1s - loss: 0.6053 - accuracy: 0.6543" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/152 [=================>............] - ETA: 1s - loss: 0.6034 - accuracy: 0.6615" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 98/152 [==================>...........] - ETA: 1s - loss: 0.6004 - accuracy: 0.6684" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/152 [==================>...........] - ETA: 1s - loss: 0.6019 - accuracy: 0.6750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "102/152 [===================>..........] - ETA: 1s - loss: 0.6000 - accuracy: 0.6765" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "105/152 [===================>..........] - ETA: 1s - loss: 0.5979 - accuracy: 0.6857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/152 [====================>.........] - ETA: 1s - loss: 0.5929 - accuracy: 0.6869" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/152 [====================>.........] - ETA: 1s - loss: 0.5915 - accuracy: 0.6927" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "111/152 [====================>.........] - ETA: 1s - loss: 0.5906 - accuracy: 0.6937" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113/152 [=====================>........] - ETA: 1s - loss: 0.5906 - accuracy: 0.6903" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.5896 - accuracy: 0.6957" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117/152 [======================>.......] - ETA: 0s - loss: 0.5868 - accuracy: 0.7009" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "119/152 [======================>.......] - ETA: 0s - loss: 0.5816 - accuracy: 0.7059" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/152 [======================>.......] - ETA: 0s - loss: 0.5763 - accuracy: 0.7107" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "123/152 [=======================>......] - ETA: 0s - loss: 0.5759 - accuracy: 0.7073" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "125/152 [=======================>......] - ETA: 0s - loss: 0.5732 - accuracy: 0.7120" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/152 [========================>.....] - ETA: 0s - loss: 0.5793 - accuracy: 0.7126" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "129/152 [========================>.....] - ETA: 0s - loss: 0.5771 - accuracy: 0.7171" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "131/152 [========================>.....] - ETA: 0s - loss: 0.5731 - accuracy: 0.7214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/152 [=========================>....] - ETA: 0s - loss: 0.5743 - accuracy: 0.7218" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/152 [=========================>....] - ETA: 0s - loss: 0.5714 - accuracy: 0.7259" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/152 [==========================>...] - ETA: 0s - loss: 0.5710 - accuracy: 0.7299" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/152 [==========================>...] - ETA: 0s - loss: 0.5701 - accuracy: 0.7302" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "141/152 [==========================>...] - ETA: 0s - loss: 0.5659 - accuracy: 0.7340" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "143/152 [===========================>..] - ETA: 0s - loss: 0.5659 - accuracy: 0.7308" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/152 [===========================>..] - ETA: 0s - loss: 0.5658 - accuracy: 0.7310" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "147/152 [============================>.] - ETA: 0s - loss: 0.5662 - accuracy: 0.7279" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "149/152 [============================>.] - ETA: 0s - loss: 0.5651 - accuracy: 0.7282" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/152 [============================>.] - ETA: 0s - loss: 0.5648 - accuracy: 0.7285" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - ETA: 0s - loss: 0.5658 - accuracy: 0.7294" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 5s 26ms/step - loss: 0.5658 - accuracy: 0.7294\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 2/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 4s - loss: 0.4592 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/152 [..............................] - ETA: 3s - loss: 0.7472 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/152 [..............................] - ETA: 3s - loss: 0.7007 - accuracy: 0.6000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/152 [>.............................] - ETA: 3s - loss: 0.5961 - accuracy: 0.6429" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/152 [>.............................] - ETA: 3s - loss: 0.5468 - accuracy: 0.7222" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/152 [=>............................] - ETA: 3s - loss: 0.5517 - accuracy: 0.6818" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 3s - loss: 0.5604 - accuracy: 0.6923" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/152 [=>............................] - ETA: 3s - loss: 0.5325 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/152 [==>...........................] - ETA: 3s - loss: 0.5467 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 3s - loss: 0.5197 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/152 [===>..........................] - ETA: 3s - loss: 0.5300 - accuracy: 0.7273" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/152 [===>..........................] - ETA: 3s - loss: 0.5263 - accuracy: 0.7292" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/152 [====>.........................] - ETA: 3s - loss: 0.5237 - accuracy: 0.7037" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/152 [====>.........................] - ETA: 3s - loss: 0.5228 - accuracy: 0.7167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/152 [=====>........................] - ETA: 3s - loss: 0.5290 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/152 [=====>........................] - ETA: 2s - loss: 0.5114 - accuracy: 0.7286" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/152 [======>.......................] - ETA: 2s - loss: 0.5183 - accuracy: 0.7297" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/152 [======>.......................] - ETA: 2s - loss: 0.5265 - accuracy: 0.7179" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 41/152 [=======>......................] - ETA: 2s - loss: 0.5307 - accuracy: 0.7195" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/152 [=======>......................] - ETA: 2s - loss: 0.5180 - accuracy: 0.7326" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 45/152 [=======>......................] - ETA: 2s - loss: 0.5142 - accuracy: 0.7333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 47/152 [========>.....................] - ETA: 2s - loss: 0.5185 - accuracy: 0.7340" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/152 [========>.....................] - ETA: 2s - loss: 0.5327 - accuracy: 0.7245" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/152 [=========>....................] - ETA: 2s - loss: 0.5313 - accuracy: 0.7353" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 53/152 [=========>....................] - ETA: 2s - loss: 0.5214 - accuracy: 0.7453" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/152 [=========>....................] - ETA: 2s - loss: 0.5274 - accuracy: 0.7545" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57/152 [==========>...................] - ETA: 2s - loss: 0.5357 - accuracy: 0.7456" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/152 [==========>...................] - ETA: 2s - loss: 0.5277 - accuracy: 0.7542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/152 [===========>..................] - ETA: 2s - loss: 0.5197 - accuracy: 0.7541" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 63/152 [===========>..................] - ETA: 2s - loss: 0.5243 - accuracy: 0.7460" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 65/152 [===========>..................] - ETA: 2s - loss: 0.5241 - accuracy: 0.7462" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/152 [============>.................] - ETA: 2s - loss: 0.5129 - accuracy: 0.7537" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 69/152 [============>.................] - ETA: 2s - loss: 0.5088 - accuracy: 0.7536" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/152 [=============>................] - ETA: 2s - loss: 0.5158 - accuracy: 0.7465" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/152 [=============>................] - ETA: 2s - loss: 0.5120 - accuracy: 0.7466" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 75/152 [=============>................] - ETA: 2s - loss: 0.5052 - accuracy: 0.7467" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/152 [==============>...............] - ETA: 1s - loss: 0.5037 - accuracy: 0.7468" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/152 [==============>...............] - ETA: 1s - loss: 0.4962 - accuracy: 0.7532" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81/152 [==============>...............] - ETA: 1s - loss: 0.4937 - accuracy: 0.7531" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 83/152 [===============>..............] - ETA: 1s - loss: 0.4880 - accuracy: 0.7590" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/152 [===============>..............] - ETA: 1s - loss: 0.4879 - accuracy: 0.7588" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/152 [================>.............] - ETA: 1s - loss: 0.4859 - accuracy: 0.7670" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/152 [================>.............] - ETA: 1s - loss: 0.4877 - accuracy: 0.7637" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 93/152 [=================>............] - ETA: 1s - loss: 0.4939 - accuracy: 0.7634" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 95/152 [=================>............] - ETA: 1s - loss: 0.4929 - accuracy: 0.7632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/152 [==================>...........] - ETA: 1s - loss: 0.4945 - accuracy: 0.7629" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 99/152 [==================>...........] - ETA: 1s - loss: 0.4945 - accuracy: 0.7626" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "101/152 [==================>...........] - ETA: 1s - loss: 0.4965 - accuracy: 0.7624" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/152 [===================>..........] - ETA: 1s - loss: 0.4919 - accuracy: 0.7621" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "105/152 [===================>..........] - ETA: 1s - loss: 0.4853 - accuracy: 0.7667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/152 [====================>.........] - ETA: 1s - loss: 0.4871 - accuracy: 0.7664" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/152 [====================>.........] - ETA: 1s - loss: 0.4840 - accuracy: 0.7706" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "111/152 [====================>.........] - ETA: 1s - loss: 0.4952 - accuracy: 0.7658" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113/152 [=====================>........] - ETA: 1s - loss: 0.4928 - accuracy: 0.7699" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.4947 - accuracy: 0.7696" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117/152 [======================>.......] - ETA: 0s - loss: 0.4992 - accuracy: 0.7650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "119/152 [======================>.......] - ETA: 0s - loss: 0.4927 - accuracy: 0.7689" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/152 [======================>.......] - ETA: 0s - loss: 0.4938 - accuracy: 0.7645" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "123/152 [=======================>......] - ETA: 0s - loss: 0.4937 - accuracy: 0.7602" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "125/152 [=======================>......] - ETA: 0s - loss: 0.4922 - accuracy: 0.7640" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/152 [========================>.....] - ETA: 0s - loss: 0.4970 - accuracy: 0.7598" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "129/152 [========================>.....] - ETA: 0s - loss: 0.5072 - accuracy: 0.7481" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "131/152 [========================>.....] - ETA: 0s - loss: 0.5062 - accuracy: 0.7443" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/152 [=========================>....] - ETA: 0s - loss: 0.5058 - accuracy: 0.7444" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/152 [=========================>....] - ETA: 0s - loss: 0.5045 - accuracy: 0.7407" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/152 [==========================>...] - ETA: 0s - loss: 0.5057 - accuracy: 0.7409" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/152 [==========================>...] - ETA: 0s - loss: 0.5045 - accuracy: 0.7410" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "141/152 [==========================>...] - ETA: 0s - loss: 0.5063 - accuracy: 0.7376" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "143/152 [===========================>..] - ETA: 0s - loss: 0.5045 - accuracy: 0.7378" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/152 [===========================>..] - ETA: 0s - loss: 0.5120 - accuracy: 0.7276" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "147/152 [============================>.] - ETA: 0s - loss: 0.5077 - accuracy: 0.7313" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "149/152 [============================>.] - ETA: 0s - loss: 0.5063 - accuracy: 0.7315" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/152 [============================>.] - ETA: 0s - loss: 0.5061 - accuracy: 0.7285" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 4s 26ms/step - loss: 0.5072 - accuracy: 0.7261\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 3/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 4s - loss: 0.3840 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/152 [..............................] - ETA: 3s - loss: 0.3256 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/152 [..............................] - ETA: 3s - loss: 0.3683 - accuracy: 0.9000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/152 [>.............................] - ETA: 3s - loss: 0.3801 - accuracy: 0.9286" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/152 [>.............................] - ETA: 3s - loss: 0.5215 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/152 [=>............................] - ETA: 3s - loss: 0.5024 - accuracy: 0.8182" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 14/152 [=>............................] - ETA: 3s - loss: 0.5528 - accuracy: 0.7143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/152 [==>...........................] - ETA: 3s - loss: 0.5378 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/152 [==>...........................] - ETA: 3s - loss: 0.5258 - accuracy: 0.7222" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 3s - loss: 0.5523 - accuracy: 0.7250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/152 [===>..........................] - ETA: 3s - loss: 0.5300 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/152 [===>..........................] - ETA: 3s - loss: 0.5310 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/152 [====>.........................] - ETA: 3s - loss: 0.5071 - accuracy: 0.7692" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/152 [====>.........................] - ETA: 3s - loss: 0.5181 - accuracy: 0.7679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/152 [====>.........................] - ETA: 3s - loss: 0.5134 - accuracy: 0.7667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/152 [=====>........................] - ETA: 3s - loss: 0.5264 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/152 [=====>........................] - ETA: 3s - loss: 0.5631 - accuracy: 0.7206" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/152 [======>.......................] - ETA: 2s - loss: 0.5517 - accuracy: 0.7361" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/152 [======>.......................] - ETA: 2s - loss: 0.5420 - accuracy: 0.7368" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/152 [======>.......................] - ETA: 2s - loss: 0.5355 - accuracy: 0.7250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 42/152 [=======>......................] - ETA: 2s - loss: 0.5395 - accuracy: 0.7262" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 44/152 [=======>......................] - ETA: 2s - loss: 0.5313 - accuracy: 0.7273" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/152 [========>.....................] - ETA: 2s - loss: 0.5361 - accuracy: 0.7174" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/152 [========>.....................] - ETA: 2s - loss: 0.5312 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 50/152 [========>.....................] - ETA: 2s - loss: 0.5273 - accuracy: 0.7200" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/152 [=========>....................] - ETA: 2s - loss: 0.5201 - accuracy: 0.7308" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/152 [=========>....................] - ETA: 2s - loss: 0.5219 - accuracy: 0.7364" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 2s - loss: 0.5344 - accuracy: 0.7328" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/152 [===========>..................] - ETA: 2s - loss: 0.5237 - accuracy: 0.7295" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 63/152 [===========>..................] - ETA: 2s - loss: 0.5346 - accuracy: 0.7143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 65/152 [===========>..................] - ETA: 2s - loss: 0.5255 - accuracy: 0.7154" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/152 [============>.................] - ETA: 2s - loss: 0.5222 - accuracy: 0.7164" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 69/152 [============>.................] - ETA: 2s - loss: 0.5268 - accuracy: 0.7029" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/152 [=============>................] - ETA: 2s - loss: 0.5199 - accuracy: 0.7042" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/152 [=============>................] - ETA: 2s - loss: 0.5237 - accuracy: 0.7055" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 75/152 [=============>................] - ETA: 1s - loss: 0.5212 - accuracy: 0.7067" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/152 [==============>...............] - ETA: 1s - loss: 0.5182 - accuracy: 0.7078" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/152 [==============>...............] - ETA: 1s - loss: 0.5268 - accuracy: 0.6962" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81/152 [==============>...............] - ETA: 1s - loss: 0.5260 - accuracy: 0.6914" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84/152 [===============>..............] - ETA: 1s - loss: 0.5196 - accuracy: 0.7024" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87/152 [================>.............] - ETA: 1s - loss: 0.5270 - accuracy: 0.7011" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 89/152 [================>.............] - ETA: 1s - loss: 0.5201 - accuracy: 0.7022" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/152 [================>.............] - ETA: 1s - loss: 0.5260 - accuracy: 0.7033" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 93/152 [=================>............] - ETA: 1s - loss: 0.5452 - accuracy: 0.6989" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 95/152 [=================>............] - ETA: 1s - loss: 0.5463 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/152 [==================>...........] - ETA: 1s - loss: 0.5388 - accuracy: 0.7062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 99/152 [==================>...........] - ETA: 1s - loss: 0.5314 - accuracy: 0.7121" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "101/152 [==================>...........] - ETA: 1s - loss: 0.5246 - accuracy: 0.7178" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/152 [===================>..........] - ETA: 1s - loss: 0.5316 - accuracy: 0.7136" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "105/152 [===================>..........] - ETA: 1s - loss: 0.5277 - accuracy: 0.7143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/152 [====================>.........] - ETA: 1s - loss: 0.5253 - accuracy: 0.7150" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/152 [====================>.........] - ETA: 1s - loss: 0.5250 - accuracy: 0.7110" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "111/152 [====================>.........] - ETA: 1s - loss: 0.5226 - accuracy: 0.7117" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113/152 [=====================>........] - ETA: 1s - loss: 0.5218 - accuracy: 0.7080" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.5179 - accuracy: 0.7087" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117/152 [======================>.......] - ETA: 0s - loss: 0.5183 - accuracy: 0.7051" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "119/152 [======================>.......] - ETA: 0s - loss: 0.5113 - accuracy: 0.7101" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/152 [======================>.......] - ETA: 0s - loss: 0.5110 - accuracy: 0.7025" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "123/152 [=======================>......] - ETA: 0s - loss: 0.5079 - accuracy: 0.7073" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "125/152 [=======================>......] - ETA: 0s - loss: 0.5076 - accuracy: 0.7120" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/152 [========================>.....] - ETA: 0s - loss: 0.5052 - accuracy: 0.7165" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "129/152 [========================>.....] - ETA: 0s - loss: 0.5046 - accuracy: 0.7132" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "131/152 [========================>.....] - ETA: 0s - loss: 0.5091 - accuracy: 0.7137" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/152 [=========================>....] - ETA: 0s - loss: 0.5052 - accuracy: 0.7143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/152 [=========================>....] - ETA: 0s - loss: 0.5003 - accuracy: 0.7185" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/152 [==========================>...] - ETA: 0s - loss: 0.5006 - accuracy: 0.7190" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/152 [==========================>...] - ETA: 0s - loss: 0.4968 - accuracy: 0.7230" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "141/152 [==========================>...] - ETA: 0s - loss: 0.4928 - accuracy: 0.7234" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "143/152 [===========================>..] - ETA: 0s - loss: 0.4916 - accuracy: 0.7238" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/152 [===========================>..] - ETA: 0s - loss: 0.4909 - accuracy: 0.7241" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "147/152 [============================>.] - ETA: 0s - loss: 0.4920 - accuracy: 0.7245" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "149/152 [============================>.] - ETA: 0s - loss: 0.4878 - accuracy: 0.7282" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/152 [============================>.] - ETA: 0s - loss: 0.4842 - accuracy: 0.7285" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 4s 26ms/step - loss: 0.4829 - accuracy: 0.7294\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 4s - loss: 0.5805 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/152 [..............................] - ETA: 3s - loss: 0.3890 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/152 [..............................] - ETA: 3s - loss: 0.3256 - accuracy: 0.9000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/152 [>.............................] - ETA: 3s - loss: 0.3916 - accuracy: 0.8571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/152 [>.............................] - ETA: 3s - loss: 0.3588 - accuracy: 0.8889" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/152 [=>............................] - ETA: 3s - loss: 0.3972 - accuracy: 0.8182" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 3s - loss: 0.4272 - accuracy: 0.8077" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/152 [=>............................] - ETA: 3s - loss: 0.4860 - accuracy: 0.7333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17/152 [==>...........................] - ETA: 3s - loss: 0.4711 - accuracy: 0.7353" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/152 [==>...........................] - ETA: 3s - loss: 0.4508 - accuracy: 0.7632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/152 [===>..........................] - ETA: 3s - loss: 0.4599 - accuracy: 0.7381" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 23/152 [===>..........................] - ETA: 3s - loss: 0.4552 - accuracy: 0.7391" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/152 [===>..........................] - ETA: 3s - loss: 0.4539 - accuracy: 0.7400" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/152 [====>.........................] - ETA: 3s - loss: 0.4927 - accuracy: 0.7222" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 29/152 [====>.........................] - ETA: 3s - loss: 0.4947 - accuracy: 0.7069" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/152 [=====>........................] - ETA: 3s - loss: 0.4879 - accuracy: 0.7258" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/152 [=====>........................] - ETA: 3s - loss: 0.4855 - accuracy: 0.7121" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/152 [======>.......................] - ETA: 3s - loss: 0.4715 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/152 [======>.......................] - ETA: 2s - loss: 0.4653 - accuracy: 0.7105" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/152 [======>.......................] - ETA: 2s - loss: 0.4554 - accuracy: 0.7125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 42/152 [=======>......................] - ETA: 2s - loss: 0.4691 - accuracy: 0.7024" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 44/152 [=======>......................] - ETA: 2s - loss: 0.4835 - accuracy: 0.6932" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/152 [========>.....................] - ETA: 2s - loss: 0.4850 - accuracy: 0.6848" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/152 [========>.....................] - ETA: 2s - loss: 0.4871 - accuracy: 0.6771" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 50/152 [========>.....................] - ETA: 2s - loss: 0.4897 - accuracy: 0.6800" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/152 [=========>....................] - ETA: 2s - loss: 0.4811 - accuracy: 0.6923" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 54/152 [=========>....................] - ETA: 2s - loss: 0.4864 - accuracy: 0.6944" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 56/152 [==========>...................] - ETA: 2s - loss: 0.4813 - accuracy: 0.7054" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 2s - loss: 0.4782 - accuracy: 0.7069" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/152 [==========>...................] - ETA: 2s - loss: 0.4682 - accuracy: 0.7167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 62/152 [===========>..................] - ETA: 2s - loss: 0.4613 - accuracy: 0.7177" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/152 [===========>..................] - ETA: 2s - loss: 0.4529 - accuracy: 0.7266" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/152 [============>.................] - ETA: 2s - loss: 0.4421 - accuracy: 0.7348" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 68/152 [============>.................] - ETA: 2s - loss: 0.4426 - accuracy: 0.7426" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/152 [============>.................] - ETA: 2s - loss: 0.4343 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 72/152 [=============>................] - ETA: 2s - loss: 0.4361 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 75/152 [=============>................] - ETA: 2s - loss: 0.4356 - accuracy: 0.7467" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/152 [==============>...............] - ETA: 1s - loss: 0.4407 - accuracy: 0.7468" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/152 [==============>...............] - ETA: 1s - loss: 0.4401 - accuracy: 0.7468" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81/152 [==============>...............] - ETA: 1s - loss: 0.4397 - accuracy: 0.7469" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 83/152 [===============>..............] - ETA: 1s - loss: 0.4304 - accuracy: 0.7530" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/152 [===============>..............] - ETA: 1s - loss: 0.4245 - accuracy: 0.7588" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87/152 [================>.............] - ETA: 1s - loss: 0.4196 - accuracy: 0.7644" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 89/152 [================>.............] - ETA: 1s - loss: 0.4375 - accuracy: 0.7584" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/152 [================>.............] - ETA: 1s - loss: 0.4400 - accuracy: 0.7582" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 93/152 [=================>............] - ETA: 1s - loss: 0.4395 - accuracy: 0.7634" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 95/152 [=================>............] - ETA: 1s - loss: 0.4491 - accuracy: 0.7632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/152 [==================>...........] - ETA: 1s - loss: 0.4609 - accuracy: 0.7577" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 99/152 [==================>...........] - ETA: 1s - loss: 0.4603 - accuracy: 0.7576" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "101/152 [==================>...........] - ETA: 1s - loss: 0.4665 - accuracy: 0.7475" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/152 [===================>..........] - ETA: 1s - loss: 0.4650 - accuracy: 0.7524" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "105/152 [===================>..........] - ETA: 1s - loss: 0.4624 - accuracy: 0.7524" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/152 [====================>.........] - ETA: 1s - loss: 0.4656 - accuracy: 0.7477" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/152 [====================>.........] - ETA: 1s - loss: 0.4649 - accuracy: 0.7477" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "111/152 [====================>.........] - ETA: 1s - loss: 0.4700 - accuracy: 0.7432" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113/152 [=====================>........] - ETA: 1s - loss: 0.4715 - accuracy: 0.7389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.4811 - accuracy: 0.7348" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117/152 [======================>.......] - ETA: 0s - loss: 0.4810 - accuracy: 0.7308" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "119/152 [======================>.......] - ETA: 0s - loss: 0.4786 - accuracy: 0.7311" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/152 [======================>.......] - ETA: 0s - loss: 0.4791 - accuracy: 0.7273" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "123/152 [=======================>......] - ETA: 0s - loss: 0.4788 - accuracy: 0.7276" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "125/152 [=======================>......] - ETA: 0s - loss: 0.4817 - accuracy: 0.7280" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/152 [========================>.....] - ETA: 0s - loss: 0.4805 - accuracy: 0.7244" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "129/152 [========================>.....] - ETA: 0s - loss: 0.4783 - accuracy: 0.7209" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "131/152 [========================>.....] - ETA: 0s - loss: 0.4819 - accuracy: 0.7214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/152 [=========================>....] - ETA: 0s - loss: 0.4791 - accuracy: 0.7218" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/152 [=========================>....] - ETA: 0s - loss: 0.4814 - accuracy: 0.7259" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/152 [==========================>...] - ETA: 0s - loss: 0.4773 - accuracy: 0.7299" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/152 [==========================>...] - ETA: 0s - loss: 0.4760 - accuracy: 0.7302" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "141/152 [==========================>...] - ETA: 0s - loss: 0.4762 - accuracy: 0.7305" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "143/152 [===========================>..] - ETA: 0s - loss: 0.4757 - accuracy: 0.7308" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/152 [===========================>..] - ETA: 0s - loss: 0.4734 - accuracy: 0.7345" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "147/152 [============================>.] - ETA: 0s - loss: 0.4734 - accuracy: 0.7381" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "149/152 [============================>.] - ETA: 0s - loss: 0.4724 - accuracy: 0.7349" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/152 [============================>.] - ETA: 0s - loss: 0.4704 - accuracy: 0.7351" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 4s 26ms/step - loss: 0.4704 - accuracy: 0.7327\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 5/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 3s - loss: 0.6623 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/152 [..............................] - ETA: 3s - loss: 0.4190 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/152 [..............................] - ETA: 3s - loss: 0.3170 - accuracy: 0.9000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/152 [>.............................] - ETA: 3s - loss: 0.3406 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/152 [>.............................] - ETA: 3s - loss: 0.3169 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/152 [=>............................] - ETA: 3s - loss: 0.3172 - accuracy: 0.8182" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 3s - loss: 0.3260 - accuracy: 0.8462" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/152 [=>............................] - ETA: 3s - loss: 0.3715 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17/152 [==>...........................] - ETA: 3s - loss: 0.3888 - accuracy: 0.7941" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/152 [==>...........................] - ETA: 3s - loss: 0.4133 - accuracy: 0.7632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/152 [===>..........................] - ETA: 3s - loss: 0.3814 - accuracy: 0.7727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/152 [===>..........................] - ETA: 3s - loss: 0.3938 - accuracy: 0.7708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/152 [====>.........................] - ETA: 3s - loss: 0.3919 - accuracy: 0.7885" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/152 [====>.........................] - ETA: 3s - loss: 0.3815 - accuracy: 0.8036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/152 [====>.........................] - ETA: 3s - loss: 0.3738 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/152 [=====>........................] - ETA: 3s - loss: 0.3650 - accuracy: 0.7969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/152 [=====>........................] - ETA: 3s - loss: 0.3662 - accuracy: 0.7941" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/152 [======>.......................] - ETA: 3s - loss: 0.3642 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/152 [======>.......................] - ETA: 2s - loss: 0.3673 - accuracy: 0.8026" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 41/152 [=======>......................] - ETA: 2s - loss: 0.3903 - accuracy: 0.7927" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/152 [=======>......................] - ETA: 2s - loss: 0.3927 - accuracy: 0.7791" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 45/152 [=======>......................] - ETA: 2s - loss: 0.3995 - accuracy: 0.7667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 47/152 [========>.....................] - ETA: 2s - loss: 0.4068 - accuracy: 0.7553" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/152 [========>.....................] - ETA: 2s - loss: 0.4161 - accuracy: 0.7449" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/152 [=========>....................] - ETA: 2s - loss: 0.4186 - accuracy: 0.7451" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 53/152 [=========>....................] - ETA: 2s - loss: 0.4368 - accuracy: 0.7358" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/152 [=========>....................] - ETA: 2s - loss: 0.4368 - accuracy: 0.7364" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57/152 [==========>...................] - ETA: 2s - loss: 0.4380 - accuracy: 0.7368" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/152 [==========>...................] - ETA: 2s - loss: 0.4395 - accuracy: 0.7288" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/152 [===========>..................] - ETA: 2s - loss: 0.4404 - accuracy: 0.7295" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/152 [===========>..................] - ETA: 2s - loss: 0.4281 - accuracy: 0.7422" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/152 [============>.................] - ETA: 2s - loss: 0.4277 - accuracy: 0.7424" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 68/152 [============>.................] - ETA: 2s - loss: 0.4414 - accuracy: 0.7426" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/152 [============>.................] - ETA: 2s - loss: 0.4428 - accuracy: 0.7357" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 72/152 [=============>................] - ETA: 2s - loss: 0.4449 - accuracy: 0.7361" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 74/152 [=============>................] - ETA: 2s - loss: 0.4399 - accuracy: 0.7432" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/152 [==============>...............] - ETA: 1s - loss: 0.4386 - accuracy: 0.7434" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/152 [==============>...............] - ETA: 1s - loss: 0.4530 - accuracy: 0.7342" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81/152 [==============>...............] - ETA: 1s - loss: 0.4581 - accuracy: 0.7346" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 83/152 [===============>..............] - ETA: 1s - loss: 0.4546 - accuracy: 0.7410" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/152 [===============>..............] - ETA: 1s - loss: 0.4488 - accuracy: 0.7412" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87/152 [================>.............] - ETA: 1s - loss: 0.4456 - accuracy: 0.7471" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 89/152 [================>.............] - ETA: 1s - loss: 0.4385 - accuracy: 0.7528" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/152 [================>.............] - ETA: 1s - loss: 0.4363 - accuracy: 0.7527" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 93/152 [=================>............] - ETA: 1s - loss: 0.4342 - accuracy: 0.7527" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/152 [=================>............] - ETA: 1s - loss: 0.4455 - accuracy: 0.7448" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 98/152 [==================>...........] - ETA: 1s - loss: 0.4570 - accuracy: 0.7398" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/152 [==================>...........] - ETA: 1s - loss: 0.4658 - accuracy: 0.7350" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "102/152 [===================>..........] - ETA: 1s - loss: 0.4597 - accuracy: 0.7402" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "104/152 [===================>..........] - ETA: 1s - loss: 0.4572 - accuracy: 0.7452" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106/152 [===================>..........] - ETA: 1s - loss: 0.4574 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "108/152 [====================>.........] - ETA: 1s - loss: 0.4531 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "110/152 [====================>.........] - ETA: 1s - loss: 0.4495 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/152 [=====================>........] - ETA: 1s - loss: 0.4459 - accuracy: 0.7545" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "114/152 [=====================>........] - ETA: 0s - loss: 0.4423 - accuracy: 0.7588" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "116/152 [=====================>........] - ETA: 0s - loss: 0.4525 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/152 [======================>.......] - ETA: 0s - loss: 0.4514 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/152 [======================>.......] - ETA: 0s - loss: 0.4547 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "122/152 [=======================>......] - ETA: 0s - loss: 0.4561 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/152 [=======================>......] - ETA: 0s - loss: 0.4541 - accuracy: 0.7540" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "126/152 [=======================>......] - ETA: 0s - loss: 0.4509 - accuracy: 0.7540" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "128/152 [========================>.....] - ETA: 0s - loss: 0.4535 - accuracy: 0.7539" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/152 [========================>.....] - ETA: 0s - loss: 0.4551 - accuracy: 0.7538" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "132/152 [=========================>....] - ETA: 0s - loss: 0.4551 - accuracy: 0.7538" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134/152 [=========================>....] - ETA: 0s - loss: 0.4521 - accuracy: 0.7575" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/152 [=========================>....] - ETA: 0s - loss: 0.4521 - accuracy: 0.7574" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "138/152 [==========================>...] - ETA: 0s - loss: 0.4608 - accuracy: 0.7572" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140/152 [==========================>...] - ETA: 0s - loss: 0.4584 - accuracy: 0.7607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/152 [===========================>..] - ETA: 0s - loss: 0.4580 - accuracy: 0.7606" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "144/152 [===========================>..] - ETA: 0s - loss: 0.4598 - accuracy: 0.7569" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "146/152 [===========================>..] - ETA: 0s - loss: 0.4612 - accuracy: 0.7534" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/152 [============================>.] - ETA: 0s - loss: 0.4564 - accuracy: 0.7568" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "150/152 [============================>.] - ETA: 0s - loss: 0.4595 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - ETA: 0s - loss: 0.4616 - accuracy: 0.7459" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 4s 26ms/step - loss: 0.4616 - accuracy: 0.7459\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.fit(dict(numeric_features), target, epochs=5, batch_size=BATCH_SIZE)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:53:09.987586Z", "iopub.status.busy": "2022-12-14T20:53:09.986993Z", "iopub.status.idle": "2022-12-14T20:53:27.399282Z", "shell.execute_reply": "2022-12-14T20:53:27.398451Z" }, "id": "73wgiTaVAA2F" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 4s - loss: 0.5197 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/152 [..............................] - ETA: 3s - loss: 0.6727 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/152 [>.............................] - ETA: 3s - loss: 0.7118 - accuracy: 0.5714" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/152 [>.............................] - ETA: 3s - loss: 0.5687 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 3s - loss: 0.5581 - accuracy: 0.7692" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/152 [==>...........................] - ETA: 3s - loss: 0.5103 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/152 [==>...........................] - ETA: 3s - loss: 0.4705 - accuracy: 0.7895" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/152 [===>..........................] - ETA: 3s - loss: 0.4676 - accuracy: 0.7727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/152 [===>..........................] - ETA: 2s - loss: 0.4788 - accuracy: 0.7800" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/152 [====>.........................] - ETA: 2s - loss: 0.4994 - accuracy: 0.7679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/152 [=====>........................] - ETA: 2s - loss: 0.5008 - accuracy: 0.7581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/152 [=====>........................] - ETA: 2s - loss: 0.5018 - accuracy: 0.7353" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/152 [======>.......................] - ETA: 2s - loss: 0.5213 - accuracy: 0.7162" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/152 [======>.......................] - ETA: 2s - loss: 0.5150 - accuracy: 0.7375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/152 [=======>......................] - ETA: 2s - loss: 0.4996 - accuracy: 0.7442" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/152 [========>.....................] - ETA: 2s - loss: 0.4841 - accuracy: 0.7609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/152 [========>.....................] - ETA: 2s - loss: 0.4627 - accuracy: 0.7755" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/152 [=========>....................] - ETA: 2s - loss: 0.4698 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/152 [=========>....................] - ETA: 2s - loss: 0.4797 - accuracy: 0.7455" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 2s - loss: 0.4708 - accuracy: 0.7414" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/152 [===========>..................] - ETA: 2s - loss: 0.4578 - accuracy: 0.7541" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/152 [===========>..................] - ETA: 2s - loss: 0.4728 - accuracy: 0.7344" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/152 [============>.................] - ETA: 1s - loss: 0.4701 - accuracy: 0.7388" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/152 [============>.................] - ETA: 1s - loss: 0.4631 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/152 [=============>................] - ETA: 1s - loss: 0.4612 - accuracy: 0.7466" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/152 [==============>...............] - ETA: 1s - loss: 0.4683 - accuracy: 0.7303" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/152 [==============>...............] - ETA: 1s - loss: 0.4837 - accuracy: 0.7278" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 82/152 [===============>..............] - ETA: 1s - loss: 0.4811 - accuracy: 0.7317" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/152 [===============>..............] - ETA: 1s - loss: 0.4859 - accuracy: 0.7294" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/152 [================>.............] - ETA: 1s - loss: 0.4781 - accuracy: 0.7386" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/152 [================>.............] - ETA: 1s - loss: 0.4706 - accuracy: 0.7473" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/152 [=================>............] - ETA: 1s - loss: 0.4737 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/152 [==================>...........] - ETA: 1s - loss: 0.4692 - accuracy: 0.7474" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/152 [==================>...........] - ETA: 1s - loss: 0.4733 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/152 [===================>..........] - ETA: 1s - loss: 0.4685 - accuracy: 0.7524" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106/152 [===================>..........] - ETA: 1s - loss: 0.4671 - accuracy: 0.7547" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/152 [====================>.........] - ETA: 0s - loss: 0.4708 - accuracy: 0.7523" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/152 [=====================>........] - ETA: 0s - loss: 0.4653 - accuracy: 0.7589" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.4642 - accuracy: 0.7609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/152 [======================>.......] - ETA: 0s - loss: 0.4694 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/152 [======================>.......] - ETA: 0s - loss: 0.4658 - accuracy: 0.7521" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/152 [=======================>......] - ETA: 0s - loss: 0.4595 - accuracy: 0.7581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/152 [========================>.....] - ETA: 0s - loss: 0.4541 - accuracy: 0.7638" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/152 [========================>.....] - ETA: 0s - loss: 0.4524 - accuracy: 0.7654" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/152 [=========================>....] - ETA: 0s - loss: 0.4549 - accuracy: 0.7632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/152 [=========================>....] - ETA: 0s - loss: 0.4575 - accuracy: 0.7647" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/152 [==========================>...] - ETA: 0s - loss: 0.4537 - accuracy: 0.7662" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/152 [===========================>..] - ETA: 0s - loss: 0.4574 - accuracy: 0.7570" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/152 [===========================>..] - ETA: 0s - loss: 0.4554 - accuracy: 0.7552" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/152 [============================>.] - ETA: 0s - loss: 0.4502 - accuracy: 0.7568" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/152 [============================>.] - ETA: 0s - loss: 0.4578 - accuracy: 0.7550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 3s 23ms/step - loss: 0.4567 - accuracy: 0.7558\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 2/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 3s - loss: 0.5472 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/152 [..............................] - ETA: 3s - loss: 0.2749 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/152 [>.............................] - ETA: 3s - loss: 0.2812 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/152 [>.............................] - ETA: 3s - loss: 0.3097 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 3s - loss: 0.3195 - accuracy: 0.8077" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/152 [==>...........................] - ETA: 3s - loss: 0.3502 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/152 [==>...........................] - ETA: 3s - loss: 0.3802 - accuracy: 0.8158" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/152 [===>..........................] - ETA: 3s - loss: 0.3991 - accuracy: 0.7955" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/152 [===>..........................] - ETA: 2s - loss: 0.3732 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/152 [====>.........................] - ETA: 2s - loss: 0.4289 - accuracy: 0.7679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/152 [=====>........................] - ETA: 2s - loss: 0.4109 - accuracy: 0.7581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/152 [=====>........................] - ETA: 2s - loss: 0.4141 - accuracy: 0.7647" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/152 [======>.......................] - ETA: 2s - loss: 0.4113 - accuracy: 0.7568" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/152 [======>.......................] - ETA: 2s - loss: 0.4377 - accuracy: 0.7375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/152 [=======>......................] - ETA: 2s - loss: 0.4533 - accuracy: 0.7326" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/152 [========>.....................] - ETA: 2s - loss: 0.4496 - accuracy: 0.7391" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/152 [========>.....................] - ETA: 2s - loss: 0.4326 - accuracy: 0.7449" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/152 [=========>....................] - ETA: 2s - loss: 0.4408 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/152 [=========>....................] - ETA: 2s - loss: 0.4473 - accuracy: 0.7455" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 2s - loss: 0.4340 - accuracy: 0.7586" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/152 [===========>..................] - ETA: 2s - loss: 0.4363 - accuracy: 0.7705" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/152 [===========>..................] - ETA: 2s - loss: 0.4285 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/152 [============>.................] - ETA: 1s - loss: 0.4241 - accuracy: 0.7836" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/152 [============>.................] - ETA: 1s - loss: 0.4196 - accuracy: 0.7929" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/152 [=============>................] - ETA: 1s - loss: 0.4234 - accuracy: 0.7877" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/152 [==============>...............] - ETA: 1s - loss: 0.4139 - accuracy: 0.7829" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/152 [==============>...............] - ETA: 1s - loss: 0.4115 - accuracy: 0.7848" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 82/152 [===============>..............] - ETA: 1s - loss: 0.4339 - accuracy: 0.7744" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/152 [===============>..............] - ETA: 1s - loss: 0.4282 - accuracy: 0.7765" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/152 [================>.............] - ETA: 1s - loss: 0.4316 - accuracy: 0.7727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/152 [================>.............] - ETA: 1s - loss: 0.4359 - accuracy: 0.7637" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/152 [=================>............] - ETA: 1s - loss: 0.4305 - accuracy: 0.7660" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/152 [==================>...........] - ETA: 1s - loss: 0.4348 - accuracy: 0.7526" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/152 [==================>...........] - ETA: 1s - loss: 0.4299 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/152 [===================>..........] - ETA: 1s - loss: 0.4322 - accuracy: 0.7524" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106/152 [===================>..........] - ETA: 1s - loss: 0.4287 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/152 [====================>.........] - ETA: 0s - loss: 0.4323 - accuracy: 0.7431" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/152 [=====================>........] - ETA: 0s - loss: 0.4325 - accuracy: 0.7455" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.4259 - accuracy: 0.7522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/152 [======================>.......] - ETA: 0s - loss: 0.4246 - accuracy: 0.7542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/152 [======================>.......] - ETA: 0s - loss: 0.4341 - accuracy: 0.7521" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/152 [=======================>......] - ETA: 0s - loss: 0.4385 - accuracy: 0.7460" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/152 [========================>.....] - ETA: 0s - loss: 0.4355 - accuracy: 0.7520" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/152 [========================>.....] - ETA: 0s - loss: 0.4441 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/152 [=========================>....] - ETA: 0s - loss: 0.4396 - accuracy: 0.7519" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/152 [=========================>....] - ETA: 0s - loss: 0.4404 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/152 [==========================>...] - ETA: 0s - loss: 0.4388 - accuracy: 0.7518" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/152 [===========================>..] - ETA: 0s - loss: 0.4459 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/152 [===========================>..] - ETA: 0s - loss: 0.4535 - accuracy: 0.7448" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/152 [============================>.] - ETA: 0s - loss: 0.4529 - accuracy: 0.7466" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/152 [============================>.] - ETA: 0s - loss: 0.4536 - accuracy: 0.7483" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 3s 23ms/step - loss: 0.4524 - accuracy: 0.7492\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 3/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 3s - loss: 0.0552 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/152 [..............................] - ETA: 3s - loss: 0.2093 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/152 [>.............................] - ETA: 3s - loss: 0.2074 - accuracy: 0.9286" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/152 [>.............................] - ETA: 3s - loss: 0.4575 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 3s - loss: 0.4741 - accuracy: 0.7308" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/152 [==>...........................] - ETA: 3s - loss: 0.4489 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/152 [==>...........................] - ETA: 3s - loss: 0.4971 - accuracy: 0.7105" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/152 [===>..........................] - ETA: 2s - loss: 0.5271 - accuracy: 0.7045" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/152 [===>..........................] - ETA: 2s - loss: 0.5046 - accuracy: 0.7200" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/152 [====>.........................] - ETA: 2s - loss: 0.4807 - accuracy: 0.7143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/152 [=====>........................] - ETA: 2s - loss: 0.4652 - accuracy: 0.7258" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/152 [=====>........................] - ETA: 2s - loss: 0.4649 - accuracy: 0.7206" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/152 [======>.......................] - ETA: 2s - loss: 0.4605 - accuracy: 0.7162" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/152 [======>.......................] - ETA: 2s - loss: 0.4390 - accuracy: 0.7250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/152 [=======>......................] - ETA: 2s - loss: 0.4353 - accuracy: 0.7209" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/152 [========>.....................] - ETA: 2s - loss: 0.4265 - accuracy: 0.7283" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/152 [========>.....................] - ETA: 2s - loss: 0.4335 - accuracy: 0.7245" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/152 [=========>....................] - ETA: 2s - loss: 0.4106 - accuracy: 0.7404" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/152 [=========>....................] - ETA: 2s - loss: 0.4074 - accuracy: 0.7455" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 2s - loss: 0.3992 - accuracy: 0.7586" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/152 [===========>..................] - ETA: 2s - loss: 0.4158 - accuracy: 0.7541" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/152 [===========>..................] - ETA: 1s - loss: 0.4075 - accuracy: 0.7656" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/152 [============>.................] - ETA: 1s - loss: 0.4124 - accuracy: 0.7612" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/152 [============>.................] - ETA: 1s - loss: 0.4053 - accuracy: 0.7643" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/152 [=============>................] - ETA: 1s - loss: 0.4131 - accuracy: 0.7534" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/152 [==============>...............] - ETA: 1s - loss: 0.4114 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/152 [==============>...............] - ETA: 1s - loss: 0.4072 - accuracy: 0.7532" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 82/152 [===============>..............] - ETA: 1s - loss: 0.4038 - accuracy: 0.7561" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/152 [===============>..............] - ETA: 1s - loss: 0.4045 - accuracy: 0.7588" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/152 [================>.............] - ETA: 1s - loss: 0.4032 - accuracy: 0.7614" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/152 [================>.............] - ETA: 1s - loss: 0.4161 - accuracy: 0.7473" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/152 [=================>............] - ETA: 1s - loss: 0.4135 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/152 [==================>...........] - ETA: 1s - loss: 0.4258 - accuracy: 0.7423" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/152 [==================>...........] - ETA: 1s - loss: 0.4215 - accuracy: 0.7450" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/152 [===================>..........] - ETA: 1s - loss: 0.4255 - accuracy: 0.7476" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106/152 [===================>..........] - ETA: 1s - loss: 0.4347 - accuracy: 0.7406" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/152 [====================>.........] - ETA: 0s - loss: 0.4501 - accuracy: 0.7339" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/152 [=====================>........] - ETA: 0s - loss: 0.4502 - accuracy: 0.7321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.4516 - accuracy: 0.7348" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/152 [======================>.......] - ETA: 0s - loss: 0.4476 - accuracy: 0.7415" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/152 [======================>.......] - ETA: 0s - loss: 0.4492 - accuracy: 0.7397" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/152 [=======================>......] - ETA: 0s - loss: 0.4602 - accuracy: 0.7379" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/152 [========================>.....] - ETA: 0s - loss: 0.4570 - accuracy: 0.7441" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/152 [========================>.....] - ETA: 0s - loss: 0.4520 - accuracy: 0.7462" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/152 [=========================>....] - ETA: 0s - loss: 0.4558 - accuracy: 0.7481" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/152 [=========================>....] - ETA: 0s - loss: 0.4566 - accuracy: 0.7463" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/152 [==========================>...] - ETA: 0s - loss: 0.4522 - accuracy: 0.7518" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/152 [===========================>..] - ETA: 0s - loss: 0.4504 - accuracy: 0.7535" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/152 [===========================>..] - ETA: 0s - loss: 0.4438 - accuracy: 0.7586" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/152 [============================>.] - ETA: 0s - loss: 0.4461 - accuracy: 0.7601" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/152 [============================>.] - ETA: 0s - loss: 0.4471 - accuracy: 0.7583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 3s 23ms/step - loss: 0.4482 - accuracy: 0.7591\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 3s - loss: 0.1579 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/152 [..............................] - ETA: 3s - loss: 0.4306 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/152 [>.............................] - ETA: 3s - loss: 0.4828 - accuracy: 0.8571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/152 [>.............................] - ETA: 3s - loss: 0.4513 - accuracy: 0.8500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 3s - loss: 0.4007 - accuracy: 0.8846" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/152 [==>...........................] - ETA: 3s - loss: 0.3848 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/152 [==>...........................] - ETA: 3s - loss: 0.4551 - accuracy: 0.8158" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/152 [===>..........................] - ETA: 3s - loss: 0.4233 - accuracy: 0.8409" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/152 [===>..........................] - ETA: 2s - loss: 0.4033 - accuracy: 0.8600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/152 [====>.........................] - ETA: 2s - loss: 0.4142 - accuracy: 0.8393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/152 [=====>........................] - ETA: 2s - loss: 0.4193 - accuracy: 0.8065" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/152 [=====>........................] - ETA: 2s - loss: 0.4320 - accuracy: 0.7941" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/152 [======>.......................] - ETA: 2s - loss: 0.4352 - accuracy: 0.7973" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/152 [======>.......................] - ETA: 2s - loss: 0.4193 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/152 [=======>......................] - ETA: 2s - loss: 0.4180 - accuracy: 0.7907" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/152 [========>.....................] - ETA: 2s - loss: 0.4118 - accuracy: 0.7935" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/152 [========>.....................] - ETA: 2s - loss: 0.4537 - accuracy: 0.7755" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/152 [=========>....................] - ETA: 2s - loss: 0.4589 - accuracy: 0.7692" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/152 [=========>....................] - ETA: 2s - loss: 0.4716 - accuracy: 0.7455" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 2s - loss: 0.4791 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/152 [===========>..................] - ETA: 2s - loss: 0.4850 - accuracy: 0.7459" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/152 [===========>..................] - ETA: 2s - loss: 0.4851 - accuracy: 0.7422" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/152 [============>.................] - ETA: 1s - loss: 0.4811 - accuracy: 0.7537" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/152 [============>.................] - ETA: 1s - loss: 0.4712 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/152 [=============>................] - ETA: 1s - loss: 0.4637 - accuracy: 0.7534" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/152 [==============>...............] - ETA: 1s - loss: 0.4535 - accuracy: 0.7632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/152 [==============>...............] - ETA: 1s - loss: 0.4594 - accuracy: 0.7595" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 82/152 [===============>..............] - ETA: 1s - loss: 0.4702 - accuracy: 0.7561" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/152 [===============>..............] - ETA: 1s - loss: 0.4693 - accuracy: 0.7529" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/152 [================>.............] - ETA: 1s - loss: 0.4730 - accuracy: 0.7557" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/152 [================>.............] - ETA: 1s - loss: 0.4735 - accuracy: 0.7527" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/152 [=================>............] - ETA: 1s - loss: 0.4640 - accuracy: 0.7606" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/152 [==================>...........] - ETA: 1s - loss: 0.4642 - accuracy: 0.7629" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/152 [==================>...........] - ETA: 1s - loss: 0.4585 - accuracy: 0.7650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/152 [===================>..........] - ETA: 1s - loss: 0.4632 - accuracy: 0.7573" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106/152 [===================>..........] - ETA: 1s - loss: 0.4628 - accuracy: 0.7547" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/152 [====================>.........] - ETA: 0s - loss: 0.4623 - accuracy: 0.7569" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/152 [=====================>........] - ETA: 0s - loss: 0.4651 - accuracy: 0.7545" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.4616 - accuracy: 0.7522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/152 [======================>.......] - ETA: 0s - loss: 0.4528 - accuracy: 0.7585" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/152 [======================>.......] - ETA: 0s - loss: 0.4561 - accuracy: 0.7562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/152 [=======================>......] - ETA: 0s - loss: 0.4510 - accuracy: 0.7621" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/152 [========================>.....] - ETA: 0s - loss: 0.4468 - accuracy: 0.7677" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/152 [========================>.....] - ETA: 0s - loss: 0.4579 - accuracy: 0.7654" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/152 [=========================>....] - ETA: 0s - loss: 0.4610 - accuracy: 0.7632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/152 [=========================>....] - ETA: 0s - loss: 0.4580 - accuracy: 0.7647" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/152 [==========================>...] - ETA: 0s - loss: 0.4533 - accuracy: 0.7662" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/152 [===========================>..] - ETA: 0s - loss: 0.4497 - accuracy: 0.7676" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/152 [===========================>..] - ETA: 0s - loss: 0.4522 - accuracy: 0.7655" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/152 [============================>.] - ETA: 0s - loss: 0.4469 - accuracy: 0.7703" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/152 [============================>.] - ETA: 0s - loss: 0.4462 - accuracy: 0.7715" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 3s 23ms/step - loss: 0.4450 - accuracy: 0.7723\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 5/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 3s - loss: 1.0701 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/152 [..............................] - ETA: 3s - loss: 0.3951 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/152 [>.............................] - ETA: 3s - loss: 0.3208 - accuracy: 0.9286" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/152 [>.............................] - ETA: 3s - loss: 0.3613 - accuracy: 0.9000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 3s - loss: 0.3227 - accuracy: 0.8846" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/152 [==>...........................] - ETA: 3s - loss: 0.3046 - accuracy: 0.9062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/152 [==>...........................] - ETA: 3s - loss: 0.3497 - accuracy: 0.8421" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/152 [===>..........................] - ETA: 3s - loss: 0.3950 - accuracy: 0.8409" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/152 [===>..........................] - ETA: 2s - loss: 0.3899 - accuracy: 0.8200" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/152 [====>.........................] - ETA: 2s - loss: 0.3995 - accuracy: 0.8036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/152 [=====>........................] - ETA: 2s - loss: 0.3839 - accuracy: 0.8065" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/152 [=====>........................] - ETA: 2s - loss: 0.3784 - accuracy: 0.7941" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/152 [======>.......................] - ETA: 2s - loss: 0.3749 - accuracy: 0.8108" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/152 [======>.......................] - ETA: 2s - loss: 0.4045 - accuracy: 0.7875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/152 [=======>......................] - ETA: 2s - loss: 0.3910 - accuracy: 0.8023" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/152 [========>.....................] - ETA: 2s - loss: 0.3830 - accuracy: 0.8043" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/152 [========>.....................] - ETA: 2s - loss: 0.3950 - accuracy: 0.7959" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/152 [=========>....................] - ETA: 2s - loss: 0.3869 - accuracy: 0.7885" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/152 [=========>....................] - ETA: 2s - loss: 0.3857 - accuracy: 0.7909" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 2s - loss: 0.3820 - accuracy: 0.8017" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/152 [===========>..................] - ETA: 2s - loss: 0.4007 - accuracy: 0.7951" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/152 [===========>..................] - ETA: 2s - loss: 0.3976 - accuracy: 0.8047" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/152 [============>.................] - ETA: 1s - loss: 0.4080 - accuracy: 0.8060" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/152 [============>.................] - ETA: 1s - loss: 0.4042 - accuracy: 0.8071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/152 [=============>................] - ETA: 1s - loss: 0.4085 - accuracy: 0.8082" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/152 [==============>...............] - ETA: 1s - loss: 0.4163 - accuracy: 0.8092" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/152 [==============>...............] - ETA: 1s - loss: 0.4156 - accuracy: 0.7975" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 82/152 [===============>..............] - ETA: 1s - loss: 0.4134 - accuracy: 0.8049" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/152 [===============>..............] - ETA: 1s - loss: 0.4213 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/152 [================>.............] - ETA: 1s - loss: 0.4211 - accuracy: 0.7898" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/152 [================>.............] - ETA: 1s - loss: 0.4160 - accuracy: 0.7912" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/152 [=================>............] - ETA: 1s - loss: 0.4174 - accuracy: 0.7872" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/152 [==================>...........] - ETA: 1s - loss: 0.4206 - accuracy: 0.7887" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/152 [==================>...........] - ETA: 1s - loss: 0.4261 - accuracy: 0.7850" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/152 [===================>..........] - ETA: 1s - loss: 0.4329 - accuracy: 0.7864" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106/152 [===================>..........] - ETA: 1s - loss: 0.4343 - accuracy: 0.7830" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/152 [====================>.........] - ETA: 0s - loss: 0.4323 - accuracy: 0.7890" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/152 [=====================>........] - ETA: 0s - loss: 0.4296 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.4335 - accuracy: 0.7826" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/152 [======================>.......] - ETA: 0s - loss: 0.4301 - accuracy: 0.7839" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/152 [======================>.......] - ETA: 0s - loss: 0.4305 - accuracy: 0.7810" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/152 [=======================>......] - ETA: 0s - loss: 0.4303 - accuracy: 0.7782" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/152 [========================>.....] - ETA: 0s - loss: 0.4240 - accuracy: 0.7835" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/152 [========================>.....] - ETA: 0s - loss: 0.4349 - accuracy: 0.7808" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/152 [=========================>....] - ETA: 0s - loss: 0.4356 - accuracy: 0.7782" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/152 [=========================>....] - ETA: 0s - loss: 0.4360 - accuracy: 0.7794" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/152 [==========================>...] - ETA: 0s - loss: 0.4373 - accuracy: 0.7806" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/152 [===========================>..] - ETA: 0s - loss: 0.4419 - accuracy: 0.7817" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/152 [===========================>..] - ETA: 0s - loss: 0.4444 - accuracy: 0.7793" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/152 [============================>.] - ETA: 0s - loss: 0.4434 - accuracy: 0.7838" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/152 [============================>.] - ETA: 0s - loss: 0.4427 - accuracy: 0.7815" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 3s 23ms/step - loss: 0.4414 - accuracy: 0.7822\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "numeric_dict_batches = numeric_dict_ds.shuffle(SHUFFLE_BUFFER).batch(BATCH_SIZE)\n", "model.fit(numeric_dict_batches, epochs=5)" ] }, { "cell_type": "markdown", "metadata": { "id": "-xDB3HLZGzAb" }, "source": [ "다음은 처음 세 가지 예에 대한 예측입니다." ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:53:27.402766Z", "iopub.status.busy": "2022-12-14T20:53:27.402490Z", "iopub.status.idle": "2022-12-14T20:53:27.498046Z", "shell.execute_reply": "2022-12-14T20:53:27.497327Z" }, "id": "xtolTQA-GpBW" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", "1/1 [==============================] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1/1 [==============================] - 0s 37ms/step\n" ] }, { "data": { "text/plain": [ "array([[[0.09959535]],\n", "\n", " [[0.2687521 ]],\n", "\n", " [[0.68996304]]], dtype=float32)" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.predict(dict(numeric_features.iloc[:3]))" ] }, { "cell_type": "markdown", "metadata": { "id": "QIIdxIYm13Ik" }, "source": [ "#### 2. Keras의 기능적 스타일" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:53:27.502159Z", "iopub.status.busy": "2022-12-14T20:53:27.501478Z", "iopub.status.idle": "2022-12-14T20:53:27.511272Z", "shell.execute_reply": "2022-12-14T20:53:27.510573Z" }, "id": "DG_bmO0sS_G5" }, "outputs": [ { "data": { "text/plain": [ "{'age': ,\n", " 'thalach': ,\n", " 'trestbps': ,\n", " 'chol': ,\n", " 'oldpeak': }" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "inputs = {}\n", "for name, column in numeric_features.items():\n", " inputs[name] = tf.keras.Input(\n", " shape=(1,), name=name, dtype=tf.float32)\n", "\n", "inputs" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:53:27.514960Z", "iopub.status.busy": "2022-12-14T20:53:27.514275Z", "iopub.status.idle": "2022-12-14T20:53:27.768306Z", "shell.execute_reply": "2022-12-14T20:53:27.767450Z" }, "id": "9iXU9oem12dL" }, "outputs": [], "source": [ "x = stack_dict(inputs, fun=tf.concat)\n", "\n", "normalizer = tf.keras.layers.Normalization(axis=-1)\n", "normalizer.adapt(stack_dict(dict(numeric_features)))\n", "\n", "x = normalizer(x)\n", "x = tf.keras.layers.Dense(10, activation='relu')(x)\n", "x = tf.keras.layers.Dense(10, activation='relu')(x)\n", "x = tf.keras.layers.Dense(1)(x)\n", "\n", "model = tf.keras.Model(inputs, x)\n", "\n", "model.compile(optimizer='adam',\n", " loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),\n", " metrics=['accuracy'],\n", " run_eagerly=True)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:53:27.772930Z", "iopub.status.busy": "2022-12-14T20:53:27.772219Z", "iopub.status.idle": "2022-12-14T20:53:28.031139Z", "shell.execute_reply": "2022-12-14T20:53:28.030104Z" }, "id": "xrAxmuJrEwnf" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACa8AAAI9CAYAAAA37haRAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzde1TVVf7/8ddB5I5AaIK3NMuarxpeS1LTwmtCmoPSTavJtKuQX+eXNFZO2sXRVPymaTlTy685As5XGjW7X0YJDDVtuqh5zRsqGggqFLJ/f7Q44/GAAh74HA7Px1pnrdif/dmf9/7s99nHtXqvz8dmjDECAAAAAAAAAAAAAAAAAKDupHtZHQEAAAAAAAAAAAAAAAAAoOGheA0AAAAAAAAAAAAAAAAAUOcoXgMAAAAAAAAAAAAAAAAA1DmK1wAAAAAAAAAAAAAAAAAAdc77woasrCzNmTPHilgA1JH09HSrQ6h1c+bMUVZWltVhAKhEdHS0Jk2aZHUYAAAAAAAAAAAAAAALOT157cCBA1q5cqUVsTQIBw8e5P7CMg0p/7KyspSdnW11GPVaQ8oX1K3s7GyKSwEAAAAAAAAAAAAAzk9eK9cQnsxkhbS0NCUkJHB/YYny/GsoevXqxXftMrBfobaMGjXK6hAAAAAAAAAAAAAAAG7A6clrAAAAAAAAAAAAAAAAAADUNorXAAAAAAAAAAAAAAAAAAB1juI1AAAAAAAAAAAAAAAAAECdo3gNAAAAAAAAAAAAAAAAAFDnKF5rIIKCgmSz2Rw+s2fPtjqsGvGkuaB+Sk1NVZcuXeTv72/PwW+//dbqsCzXpUsXp+/mxT4zZsyo8Ptc2WfJkiVO19y0aZMeeOABtW3bVn5+fgoNDVXPnj31wgsvKD8//7Ln5O77zezZs+1xtWrVqsbjrFixwj6On5+fCyMEAAAAAAAAAAAAAKByFK81EEVFRfr6668lScOHD5cxRpMnT7Y4qprxpLmg/snMzNTdd9+tQYMG6fjx49q1a9dlFQ15mvT0dBlj7J8JEyZIktatW+fQnpCQIKni73NFn379+jldKzk5Wb169VJYWJjWrFmj/Px87d27V88//7xWrVqlDh06KDMz87Lm4+77zeTJk2WMUVRU1GWNc9ddd8kYo5iYGBdFBgAAAAAAAAAAAADApVG8BrcUFBSkPn36WB0GGqBL5V55cVZiYqKCgoLUvn17HThwQJ06darDKKvGk79HM2bM0CuvvKIFCxZo7ty56tSpk/z8/BQWFqbY2FhlZmaqTZs2Gjp0qLZv3251uAAAAAAAAAAAAAAAoALeVgcAAPXJgQMHJEnh4eEWR+J+tm7dWuW+K1asqNbYn3/+uf2/d+3apT//+c/q1q2b/cluFwoICNDcuXN1yy23aOLEifrwww+rdT0AAAAAAAAAAAAAAFD7ePIaAFTDuXPnrA6hQXniiSeUlJTk0LZo0SKVlpZq1KhRFz23b9++atGihT766CPt2bOnNsMEAAAAAAAAAAAAAAA14BbFa6WlpUpNTdXAgQMVEREhf39/de7cWSkpKSorK3Pqv337do0YMUIhISEKCAjQjTfeqDVr1mjAgAGy2Wyy2WwaN26cvf/x48c1ceJEtW3bVj4+PmrWrJlGjhxZracEeaqMjAz7PbPZbNq3b58SEhIUGhqq8PBwxcbGavfu3fb+s2fPtvdt1aqVcnJyFBMTo+DgYAUEBOjWW29VZmamvf+MGTPs/c9/feH7779vb2/atKnT+KdPn1ZmZqa9j7d3zR8SWJX8ys/Pd7gPNptNM2bMsJ9/fnt8fLx97Krk1oX3eMeOHRo9erTCw8PtbXl5eTWeH1zjUrlXvo7vvvuuJMnf3182m029evW66LgnTpzQpEmT1L59e/n6+qpVq1YaMGCA3n77bZ09e1ZS9fbAkpISPffcc7r++usVEBCgK664QnFxcfrnP/9pL6yrje+RO/niiy8kSVFRUZfsW95n/fr11d6/aqKqa3nhvrB//34lJCQoODhY4eHhGjNmjH7++Wft27dPcXFxCg4OVmRkpB5++GEVFhZWev3t27dr2LBh9t/HyuZ0/u9oYGCg+vbtqw0bNlzWnAAAAAAAAAAAAAAAqDZzgdTUVFNBc61avXq1kWReeuklc/LkSXP8+HEzf/584+XlZSZPnuzQ98cffzShoaGmZcuW5sMPPzSFhYXm22+/NQMGDDDNmjUzvr6+Dv0PHz5srrrqKtO8eXOzdu1ae/9+/foZPz8/8+WXX9blVC25v+W+/vprI8kMHz7c6djw4cPtx7788ktTVFRkPvroI+Pv72969uzp1D8qKsoEBgaa6Ohoe/+cnBxzww03GB8fH/P555879A8MDDS9e/d2Gqd79+4mPDzcqb2y/lWZy4Wqk1+DBw82Xl5eZteuXU7jREdHm3feecf+d3Vzq/we9+vXz3z22Wfm9OnTJjs72zRq1MgcP378kvNwBSvzr67Fx8eb+Pj4ap93qdwrX8ezZ89ecqwjR46Ydu3amYiICLN69Wpz6tQpk5uba6ZPn24kmblz5xpjqpej48aNMyEhIebDDz80Z86cMbm5uWby5MlGkvnss8+qNZdLcUW+TJgwwUgy69atq7RP+fe5sk9iYqJD/8jISCPJbNy48ZLXv+++++z3tlx196/a2m+M+U8+jRw50mzatMkUFRWZpUuXGklm6NChZvjw4ebrr782hYWFZtGiRUaSeeqpp5zGiYqKMiEhIebWW281GzZsMIWFhZXOqaLf0W+++cYMGjTItG3b1ul3tLpzqoqafj8BAAAAAAAAAAAAAB4lzS2evCZJ/fv3V3JyssLCwtS0aVM9+eSTuueee5SSkqJTp07Z+z3zzDPKz89XSkqKBg4cqKCgIHXs2FHLly/X6dOnncZNTk7W/v37NWfOHN1+++32/itWrJAxRk8++WRdTtPtjRs3TtHR0QoMDNSAAQM0bNgw5eTkVPhksNOnT2vhwoX2/j169NCyZcv0yy+/KDEx0YLoK1fV/Jo0aZLKyso0Z84ch/MzMzP1008/ObymsKa59fTTT6t///4KCAjQTTfdpNLSUoenz8FzJCcna+/evUpJSVFsbKyCg4PVvHlzTZ06VUOGDHHoW9Uc/eSTT9SxY0cNHDhQ/v7+at68uWbNmqUOHTrU9fRcbvjw4TLGOHwef/zxSvvbbLYqj31h39rcv6q6lud76KGH1L17dwUGBmrMmDHq2LGj1q1bp0mTJqlLly4KCgrShAkT1K5dO7333nsVjlFQUKCXXnpJvXv3VlBQUKVzquh3tHPnznrrrbd05MgRl80JAAAAAAAAAAAAAIBLcYvitdjYWH322WdO7VFRUfr111/13Xff2dvef/99SdLgwYMd+jZr1kzXX3+90xgZGRny8vJSbGysQ3tERIQ6duyozZs36+DBg66Yhkfo2bOnw9+tW7eWJB0+fNipb2BgoLp06eLQ1rlzZ7Vo0ULbtm2rtAiirlUnvwYNGqTOnTvr7bff1okTJ+zts2bN0pNPPqnGjRvb22qaWzfeeKMrpoV6YNWqVZKkoUOHOh1bt26dkpKSJFUvR4cMGaIvv/xS48ePV3Z2tv1VoTt27FD//v1rYRbup0WLFpLk8B2tTHmf8nPK1db+VZ21PF+PHj0c/i6P98L2li1bVrgfS5Kfn59uuukmh7aK5lTZ72iLFi0qLIKs6ZwAAAAAAAAAAAAAALgUtyheKygo0HPPPafOnTsrLCxMNptNNptNf/zjHyVJZ86ckSSVlJSosLBQfn5+CgoKchonLCzM4e+SkhIVFBSorKxMISEh9nHLP1u2bJEk/fjjj7U8w/ojJCTE4W8fHx9JUllZmVPf0NDQCse48sorJUnHjh1zcXQ1U9X8KpeUlKQzZ85o4cKFkqSdO3fq008/1fjx4+19Lie3AgMDa2uqcCPlOeLn56fg4OCL9q1Oji5YsEBLly7Vnj17FBMToyZNmmjIkCH2QjlP89prr2nevHkObf369ZMkbd269ZLnb9u2TZKcCvtqa/+q7n5TrkmTJg5/e3l5qVGjRgoICHBob9SoUYX7sSSFh4dX+DS68+d0qd/R8r6umBMAAAAAAAAAAAAAAJfiFsVrcXFxmj59uh5++GHt3LlTZWVlMsZo7ty5kiRjjCTJ19dXwcHBKi4uVlFRkdM4FxYb+Pr6KjQ0VN7e3vr111+dXkdX/rn11ltrf5Ie6MSJE/a1OV/5OpxfBOHl5aVffvnFqW9+fn6FY1fndYCXUtX8KnfvvfeqefPmeu2111RSUqJXX31V999/v0NxJLnluVyVe76+vgoJCVFxcbEKCwsv2rc6OWqz2TRmzBh9/PHHys/PV0ZGhowxGjlypNPrbl35PXInEyZMkLe3t9LT0y/ab8OGDTp8+LDi4uLUpk0bh2PV2b+qo7r7jSsVFBRU2H7+nC71O3ry5EmnNivnBAAAAAAAAAAAAADwbJYXr507d06ZmZmKiIjQxIkT1axZM3vBxdmzZ536l79+r/y1Z+Vyc3O1c+dOp/4jR45UaWmpMjMznY7NnDlTbdq0UWlpqSum0uAUFxcrJyfHoe3f//63Dh8+rKioKEVGRtrbIyMjdejQIYe+ubm5+umnnyocOyAgwKHY7brrrtMbb7xRrfi8vb313XffVSu/pN+Kjh577DEdO3ZMr776qt555x0lJiY69SO3PJMrcq/cnXfeKUl67733nI517dpVTz31VLX3wNDQUG3fvl2S1LhxYw0cOFAZGRmy2Wxau3Ztrc3FnXTo0EHPP/+8tmzZosWLF1fY58yZM0pKSlJ4eLjTk9uk6u1fVVHT/caVioqK7E+aK1fRnCr7Hc3Ly9OOHTsc2qqbnwAAAAAAAAAAAAAAVIflxWuNGjVS//79lZubq1mzZikvL09nz57VZ599pkWLFjn1f+mll3TFFVcoKSlJH330kYqKivTtt9/qwQcfVEREhFP/l19+We3bt9cf/vAHrVu3TgUFBTp58qQWL16sF154QbNnz5a3t3ddTNXjhISE6JlnnlFWVpZOnz6tTZs26b777pOPj49SUlIc+g4aNEiHDx/Wa6+9pqKiIu3evVuJiYmVPt2oW7du2rlzpw4cOKCsrCzt2bNHffv2rXaM1c2vco899pj8/f01depUDRgwQNdcc41TH3LLM9Uk9/bt26dGjRo5vDJW+i1H2rVrp6eeekpr165VYWGhDh48qMcee0xHjhzRU089VaMcfeSRR/TNN9+opKREx44d01/+8hcZY3Tbbbdd9lzqi6lTpyo5OVmPP/64Jk2apO+++04lJSXKz8/XmjVr1KdPH+Xm5uqDDz7Q1Vdf7XR+dfavqqrpfuMqgYGBeuKJJ7Rx48aLzqmi39Hvv/9e9913n9OrRK2eEwAAAAAAAAAAAADAw5kLpKammgqaa9Xx48fNhAkTTOvWrU3jxo1N8+bNzQMPPGCmTJliJBlJpnv37vb+O3bsMCNGjDBNmjQxAQEB5uabbzZffPGF6d+/vwkICHAa/8SJE2bSpEnm6quvNo0bNzbNmjUzgwYNMh999FFdTtMYY839NcaYwMBA+70s/8yaNctkZWU5tf/pT38yxhin9mHDhtnHi4qKMi1btjTff/+9GTx4sAkODjb+/v6mX79+ZsOGDU7Xz8/PN+PGjTORkZHG39/f9OnTx+Tk5Jju3bvbx3/66aft/bdv32769u1rAgMDTevWrc2CBQsuOpfKPj/88EO186vcww8/bCSZL774otL7WpXcqugeW5EDxliXf1aIj4838fHx1T6vstxbtWpVheuYlZVl9u7da7y8vIzNZjPffPONw3h5eXkmKSnJtGvXzjRu3NhERkaau+66y+zcudPepzo5unXrVjNhwgTzu9/9zgQEBJgrrrjC9OrVy7z55pumrKysSnOpqsvJl7feeqvC+1VYWOjQr6Lvc/Pmzat8nZycHHP//febq666yvj4+Jjg4GDTo0cPM2PGDJOfn1/hOdXZv2prv6ls783JyXFqf/nll8369eud2p9//nkza9Ys+98tW7Y0X331lbn11ltNUFDQRffk839H/f39Tc+ePc2aNWtMTEyMfbyHHnrIGFP93+iqqOn3EwAAAAAAAAAAAADgUdJsxhhzfjFbWlqaEhISdEFzvXD99dfr7Nmz2r9/v9WhVKo+39/zdenSRXl5eTp48KDVodSat956SwsWLNCmTZusDsVlPCX/qmLUqFGSpPT0dIsjqb88NV8awv7l7vh+AgAAAAAAAAAAAAAkpVv+2tDqys3N1RVXXKFff/3VoX3fvn3avXu302vzgJpatGiRJk2aZHUYAAAAAAAAAAAAAAAAgEeqd8VrkvTzzz9rwoQJOnDggM6cOaOvvvpKCQkJatKkiZ599lmrw0M9tWTJEt15550qKirSokWL9PPPP2v06NFWhwUAAAAAAAAAAAAAAAB4pHpXvBYREaGPP/5Y+fn5uuWWWxQWFqY77rhD1157rb766itdffXVVofo0WbPni2bzaZt27bp0KFDstlsmjp1qtVhuUxGRobCwsL0+uuva8WKFfL29rY6JAAu4un7FwAAAAAAAAAAAAAA9U29rMyJiYlRTEyM1WE0SJMnT9bkyZOtDqNWjBs3TuPGjbM6DAC1xJP3LwAAAAAAAAAAAAAA6qN69+Q1AAAAAAAAAAAAAAAAAED9R/EaAAAAAAAAAAAAAAAAAKDOUbwGAAAAAAAAAAAAAAAAAKhzFK8BAAAAAAAAAAAAAAAAAOocxWsAAAAAAAAAAAAAAAAAgDrnXdkBm81Wl3E0ONxfoPatXLmS75oLcA9RG+Lj460OAQAAAAAAAAAAAABgsUqL11JTU+syDtSyhIQEJSUlKTo62upQYKGsrCzNmzfP6jDqTK9evfTUU09ZHQaqqDw/+f3xfHPnzrU6BAAAAAAAAAAAAACAG6i0eG306NF1GQdqWUJCgqKjo1lXNKjitVatWpHz9cy8efNYswYgPT3d6hAAAAAAAAAAAAAAAG7Ay+oAAAAAAAAAAAAAAAAAAAAND8VrAAAAAAAAAAAAAAAAAIA6R/EaAAAAAAAAAAAAAAAAAKDOUbwGAAAAAAAAAAAAAAAAAKhzFK8BAAAAAAAAAAAAAAAAAOqc2xWvFRUV6dprr1VsbKzVoQBAlbF3AQAAAAAAAAAAAAAAVI/bFa8ZY1RWVqaysjKrQ7mkoKAg9enTx+owIOvXwurrw3rsXaiI1ffa6usDAAAAAAAAAAAAAHAx3lYHcKHg4GDt3r3b6jAAuIlvvvlGu3fv1u233y5fX1+rw6kUexcAAAAAAAAAAAAAAED1uN2T1wDgfD/++KNGjhyppk2b6sEHH9THH3+sc+fOWR0WAAAAAAAAAAAAAAAALpNbFa9lZGTIZrPZP8XFxRW279u3TwkJCQoNDVV4eLhiY2Mdnng0e/Zse99WrVopJydHMTExCg4OVkBAgG699VZlZmba+8+YMcPe//zXq73//vv29qZNmzqNf/r0aWVmZtr7eHu73YPs3MqJEyc0adIktW/fXj4+PgoLC9PQoUP12Wef2fu4ei3IBc9RVFSkZcuWaeDAgbryyiuVmJio7Oxsq8OSxN5V37E3AQAAAAAAAAAAAABgDbcqXhsxYoSMMRo+fPhF25OSkpSUlKRDhw4pNTVVn376qe6++257/8mTJ8sYo6ioKOXn5ysxMVEzZsxQbm6u/vWvf+nkyZO67bbb9MUXX0iSpk6dKmOMAgMDHa47ZMgQGWPUvXt3h/by8QMDA9W7d28ZY2SMUWlpqUO/2267TeHh4W5TYGOl3Nxc9ezZU8uXL1dKSory8vK0ceNGBQQEKCYmRkuWLJHk+rUgFzxL+X09efKkXn/9dUVHRysyMlKJiYnasmWLZXGxd9Vf7E0NZ60BAAAAAAAAAAAAAO7HrYrXqmrcuHGKjo5WYGCgBgwYoGHDhiknJ0d5eXlOfU+fPq2FCxfa+/fo0UPLli3TL7/8osTExFqNs6yszF4w0NAlJydr7969mjdvnmJjY9WkSRN16NBBy5cvV2RkpCZOnKijR4/Wagzkgmf59ddfJf1WfLRo0SJ1795d1157raZNm+bwNDN3wt7lftibGs5aAwAAAAAAAAAAAADcT718f1jPnj0d/m7durUk6fDhww6vTZOkwMBAdenSxaGtc+fOatGihbZt26YjR44oMjKyVuL8/PPPa2Xc+mjVqlWSpGHDhjm0+/r6KiYmRv/7v/+rDz74QGPHjq21GMiF/xg9erTVIVTZwYMHL9nnl19+kSTt2rVLL774ol544QWFhYXpqquu0vHjx9WsWbPaDrNK2LvcD3vT57UyLgAAAAAAAAAAAAAAVVEvn7wWEhLi8LePj4+k354gc6HQ0NAKx7jyyislSceOHXNxdLhQSUmJCgoK5Ofnp+DgYKfjzZs3l/TbE7RqE7kAq7F3uRf2JgAAAAAAAAAAAAAArFUvn7xWHSdOnJAxRjabzaG9vBigvDhAkry8vOxPcDpffn5+hWNfOCYq5uvrq5CQEBUUFKiwsNCpSKT8lXwRERH2ttpYC3LhP9LS0qwOocr+8Y9/KD4+/qJ9fHx89Msvv+iaa67RvffeqzFjxmjKlCmS5DZPXasu8rX2sTcBAAAAAAAAAAAAAGCtevnkteooLi5WTk6OQ9u///1vHT58WFFRUQ6vYouMjNShQ4cc+ubm5uqnn36qcOyAgACHIoLrrrtOb7zxhguj9xx33nmnJGnt2rUO7SUlJfrkk0/k7++vwYMH29trYy3IBc/SuHFjSb8VFj3yyCPavHmzfvzxR02bNk3t27e3OLrLR77WDfYmAAAAAAAAAAAAAACs4/HFayEhIXrmmWeUlZWl06dPa9OmTbrvvvvk4+OjlJQUh76DBg3S4cOH9dprr6moqEi7d+9WYmKiw1NvztetWzft3LlTBw4cUFZWlvbs2aO+ffvaj992220KDw9XdnZ2rc6xPnj55ZfVrl07JSUlac2aNSosLNTOnTt1zz336MiRI0pJSbG/ok9y/VpI5IIn8Pb+7WGRV1xxhR599FFlZWXZ86dbt24WR+da5GvdYG9qOGsNAAAAAAAAAAAAAHBD5gKpqammguY6sWrVKiPJ4XPvvfearKwsp/Y//elPxhjj1D5s2DD7eFFRUaZly5bm+++/N4MHDzbBwcHG39/f9OvXz2zYsMHp+vn5+WbcuHEmMjLS+Pv7mz59+picnBzTvXt3+/hPP/20vf/27dtN3759TWBgoGndurVZsGCBw3h9+/Y1YWFh5ssvv6ylO1Z1kkxqaqqlMeTl5ZmkpCTTrl0707hxYxMSEmIGDx5sPvnkE6e+rl4LcuE3Vn6/a2rlypVGkgkKCjIPPPCA+eijj0xpaeklz4uPjzfx8fF1ECF7l6tYlZ/sTXW/1nX5/QQAAAAAAAAAAAAAuK00mzHGnF/MlpaWpoSEBF3QXC916dJFeXl5OnjwoNWhWM5msyk1NVWjR4+2OhRLkAu/qY/f72+++Ua7d+/W7bffLl9f3yqfN2rUKElSenp6bYVWaxpqvtbH/LxcDXWt6/P3EwAAAAAAAAAAAADgMuneVkcAABdzww036IYbbrA6DAAAAAAAAAAAAAAAALiYl9UBAAAAAAAAAAAAAAAAAAAaHo8sXps9e7ZsNpu2bdumQ4cOyWazaerUqVaHBQuQC6hPyNeGg7UGAAAAAAAAAAAAAEDyyNeGTp48WZMnT7Y6DLgBcgH1CfnacLDWAAAAAAAAAAAAAAB46JPXAAAAAAAAAAAAAAAAAADujeI1AAAAAAAAAAAAAAAAAECdo3gNAAAAAAAAAAAAAAAAAFDnKF4DAAAAAAAAAAAAAAAAANQ578oOpKWl1WUcqANZWVlWhwCLNbQcOHjwIHtZPVKen6yZ5zt48KBatWpldRgAAAAAAAAAAAAAAIvZjDHm/Ia0tDQlJCRYFQ+AOnDB194jjRo1SitXrrQ6DACViI+PV3p6utVhAAAAAAAAAAAAAACsk17pk9caQnEL/lOsyHo3DA2tOJXiGM8xatQoSWI9PUT5egIAAAAAAAAAAAAAGjYvqwMAAAAAAAAAAAAAAAAAADQ8FK8BAAAAAAAAAAAAAAAAAOocxWsAAAAAAAAAAAAAAAAAgDpH8RoAAAAAAAAAAAAAAAAAoM5RvAYAAAAAAAAAAAAAAAAAqHMuKV5btmyZbDab/RMUFFRhv/379+uOO+7QqVOnlJeX53BO165dVVxc7HTOhf1sNpt69OjhirDdwnvvvacOHTrI29u70j5TpkxRampqpcfOvze9evWqrVDtWO+aq4/r3dCRx84uN4+txHo6q8/rCQAAAAAAAAAAAACo31z65LXXX39dxhgVFRU5Hdu6dat69OihQYMGqUmTJmratKmMMcrJybEfT0pKcjqvvF9WVpbCw8NljNGmTZtcGbYldu/erTvuuEPJyck6evToRfs+/PDDSk5O1rPPPut07JVXXpExRsYYNWrUqLbCrRDrXXWesN4NEXnsyFV5bBXW01F9X08AAAAAAAAAAAAAQP1XJ68NPXXqlOLi4vT73/9eTzzxhNNxX19fhYeHa/Hixfr73/9eFyFZ7tlnn9XNN9+szZs3Kzg4+KJ927dvr1WrVunFF19UWlpaHUVYc6y3M09eb09FHjurz3nMejqrz+sJAAAAAAAAAAAAAPAMdVK89pe//EW5ubl67rnnKjzu5+end955R15eXpowYYJ27txZF2FZ6q9//aumTJly0de0nS8qKkrx8fH67//+b5WWltZydJeH9XbmyevtqchjZ/U5j1lPZ/V5PQEAAAAAAAAAAAAAnqHWi9eMMVqyZIluuukmtWjRotJ+gwcP1tSpU1VYWKhRo0apuLi4tkOzlL+/f7XPufPOO3Xw4EGtXbu2FiJyDda7Yp663p6KPK5Yfc1j1rNi9XU9AQAAAAAAAAAAAACeo9aL17Zt26ajR48qKirqkn2ff/55DRo0SN98842efPLJKo1/4sQJTZo0Se3bt5ePj4/CwsI0dOhQffbZZ/Y+GRkZstls9s++ffuUkJCg0NBQhYeHKzY2Vrt373Ya+/jx45o4caLatmJKW6AAACAASURBVG0rHx8fNWvWTCNHjtTWrVurfgNcqEuXLpKkDz74wJLrVwXr7Tr1Yb09FXnsOu6Qx6yn67jDegIAAAAAAAAAAAAAPEetF699++23kqRWrVpdOhgvL73zzjtq3bq1lixZonfeeeei/XNzc9WzZ08tX75cKSkpysvL08aNGxUQEKCYmBgtWbJEkjRixAgZYzR8+HBJUlJSkpKSknTo0CGlpqbq008/1d133+0w9pEjR9SzZ0+lpaVp4cKFOnnypD7//HOdPHlS0dHRysrKqsntuCwtW7aU9J976o5Yb9epD+vtqchj13GHPGY9Xccd1hMAAAAAAAAAAAAA4DlqvXjtyJEjkqSQkJAq9W/atKnS0tLUuHFjTZgwQdu3b6+0b3Jysvbu3at58+YpNjZWTZo0UYcOHbR8+XJFRkZq4sSJOnr0qNN548aNU3R0tAIDAzVgwAANGzZMOTk5ysvLcxh7//79mjNnjm6//XYFBQWpY8eOWrFihYwxVX4ijys1adJENpvNfk/dEevtOvVhvT0Veew67pDHrKfruMN6AgAAAAAAAAAAAAA8R60XrxUXF0uSGjduXOVzevXqpdmzZ+v06dMaNWqUzp49W2G/VatWSZKGDRvm0O7r66uYmBidPXu2wleb9ezZ0+Hv1q1bS5IOHz5sb8vIyJCXl5diY2Md+kZERKhjx47avHmzDh48WOU5uYq3t3el98MdsN6u5e7r7anIY9eyOo9ZT9eyej0BAAAAAAAAAAAAAJ6j1ovX/Pz8JEm//vprtc6bOHGiEhIS9O233+qJJ55wOl5SUqKCggL5+fkpODjY6Xjz5s0l/fZKtwtd+PQdHx8fSVJZWZnD2GVlZQoJCZHNZnP4bNmyRZL0448/VmtOrlBaWip/f/86v25Vsd6u5e7r7anIY9eyOo9ZT9eyej0BAAAAAAAAAAAAAJ7Du7YvEBkZKUkqKCio9rlLlizR1q1b9be//c1efFDO19dXISEhKigoUGFhoVPhQPlr2iIiIqp9XV9fX4WGhqqoqEhnz56Vt3et36YqOXXqlIwx9nvqjlhv16kP6+2pyGPXcYc8Zj1dxx3WEwAAAAAAAAAAAADgOWr9yWudOnWSpBq92iwoKEj/+Mc/FBgYqIULFzodv/POOyVJa9eudWgvKSnRJ598In9/fw0ePLgGUUsjR45UaWmpMjMznY7NnDlTbdq0UWlpaY3GrqlDhw5J+s89dUest+vUh/X2VOSx67hDHrOeruMO6wkAAAAAAAAAAAAA8By1XrwWFRWlK6+8Utu2bavR+R07dtTixYsrPPbyyy+rXbt2SkpK0po1a1RYWKidO3fqnnvu0ZEjR5SSkmJ/bVt1vfzyy2rfvr3+8Ic/aN26dSooKNDJkye1ePFivfDCC5o9e7bDk3Duu+8+2Ww27d27t0bXq4qtW7dKkgYNGlRr17hcrLfr1If19lTkseu4Qx6znq7jDusJAAAAAAAAAAAAAPActV68ZrPZNG7cOG3cuFGHDx+2t+fl5clms6lnz54qKCiQzWZTjx49Khzj3nvv1aOPPurUHhERoZycHN19992aOHGiwsPDdeONN+r06dP6+OOP9fDDD0uSsrOzZbPZ9O6770qS/P39NXXqVHt8M2fOlCR17dpVsbGxkqQrr7xSX331lUaMGKEnnnhCzZo10/XXX6//+7//07vvvqvRo0c7xHLkyBEFBQWpTZs2Vbova9askc1mk81m06FDh3Tu3Dn730uWLKnwnFWrVqlly5YaNmxYla5hBda7Yp663p6KPK5Yfc1j1rNi9XU9AQAAAAAAAAAAAACew2aMMec3pKWlKSEhQRc0X9SyZcs0ZswYvf7663rkkUecjhcUFKhjx46KjY3VokWLLj9qN5Ofn68WLVro3nvv1Ztvvlkr19i2bZu6du2q5cuX66677qqwj7e3t3r06KHs7Owqj8t6V19DW+/6atSoUZKk9PT0Gp1PHl++quRxVbGeF9fQ1hMAAAAAAAAAAAAA4BHSa/3Ja5IUEhKi1atXa+XKlVqwYEFdXLLOGGM0ceJENWnSRNOnT6+Va+zZs0cjR45UcnLyZRcM1AXW+/LUt/X2VOTx5XG3PGY9L4+7rScAAAAAAAAAAAAAwDO4tHjt0Ucflc1mU1BQkNOxrl27atOmTVq3bp1OnTrlysta6ujRo9qzZ48++eQTRURE1Mo1Fi9erBdffFEvvvii07EpU6bYX/N27ty5Wrl+ZVjvhrXeDRF5XHMXy2OrsJ41547rCQAAAAAAAAAAAACo/1zy2lDUX6x3w9KQ1pvXEnoW1tOzsJ4AAAAAAAAAAAAAANXVa0MBAAAAAAAAAAAAAAAAADgfxWsAAAAAAAAAAAAAAAAAgDpH8RoAAAAAAAAAAAAAAAAAoM5RvAYAAAAAAAAAAAAAAAAAqHMUrwEAAAAAAAAAAAAAAAAA6px3ZQdGjRpVl3HAIgcPHpTEejcU5evdUGRnZ5PbHiI7O1sSe5U7+fnnnxUcHCxv70r/KVGp7Oxs9erVqxaiAgAAAAAAAAAAAADUJ07/x7l169aKj4+3IhZYoFWrVqx3A9KQ1js6OtrqEOBCFDq5n5ycHBUXF6t9+/a65ppr5OvrW+Vze/XqxXcUAAAAAAAAAAAAACCbMcZYHQQAAKhfTp06pbfeekszZ87UyZMndf/992vq1Klq3bq11aEBAAAAAAAAAAAAAOqHdC+rIwAAAPVPkyZNlJiYqL1792r+/Plat26d2rdvr7Fjx+qHH36wOjwAAAAAAAAAAAAAQD1A8RoAAKgxX19fjR8/Xrt379aSJUu0adMmderUSXFxcfrqq6+sDg8AAAAAAAAAAAAA4MYoXgMAAJetcePGGjt2rL799ltlZGTo2LFjuummm9SnTx+tXr3a6vAAAAAAAAAAAAAAAG6I4jUAAOAyXl5eiouL08aNG7V+/XqFhYXpjjvuUPfu3ZWeni5jjNUhAgAAAAAAAAAAAADcBMVrAACgVpQ/dW3z5s3q2LGj7rrrLt1www1aunSpSktLrQ4PAAAAAAAAAAAAAGAxitcAAECt6tatm5YuXapt27apa9eueuihh3TttdcqJSVFZ8+etTo8AAAAAAAAAAAAAIBFbIb3dwEAgDq0b98+zZ07V2+++aaCg4P16KOPKikpSaGhoVaHBgAAAAAAAAAAAACoO+kUrwEAAEscO3ZMCxcuVEpKis6dO6cHH3xQU6ZMUWRkpNWhAQAAAAAAAAAAAABqH8VrAADAWoWFhfrb3/6mmTNn6uTJk7r//vv1pz/9SW3atLE6NAAAAAAAAAAAAABA7Un3sjoCAADQsAUHBysxMVF79+7V/Pnz9f777+uaa67R2LFj9cMPP1gdHgAAAAAAAAAAAACgllC8BgAA3IKvr6/Gjx+vXbt26Y033lBOTo46deqk+Ph4bdmyxerwAAAAAAAAAAAAAAAuRvEaAABwK40bN9YDDzyg7777Tmlpadq7d6+6d++uoUOHav369VaHBwAAAAAAAAAAAABwEYrXAACAW/Ly8tLvf/97bd68WevXr5e3t7duueUW9enTR6tXr5YxxuoQAQAAAAAAAAAAAACXgeI1AADg9soL1jZs2KCwsDANHz5cXbp00dKlS3Xu3DmrwwMAAAAAAAAAAAAA1ADFawAAoN7o3bu3Vq9era1btyoqKkp/+MMfdN111yklJUUlJSVWhwcAAAAAAAAAAAAAqAab4Z1bAACgntqzZ49SUlK0ePFiRURE6KmnntL48ePl7+9vdWgAAAAAAAAAAAAAgItLp3gNAADUe/v379ecOXO0ZMkSBQYG6rHHHlNSUpJCQ0OtDg0AAAAAAAAAAAAAUDGK1wAAgOc4fvy4FixYoJSUFJWVlemBBx5QcnKyIiIirA4NAAAAAAAAAAAAAOCI4jUAAOB5Tp06pbfeekuvvPKKCgsL9dBDD+mPf/yjWrVqZXVoAAAAAAAAAAAAAIDfULwGAAA81+nTp7VkyRLNnj1bx44dU0JCgqZOnaoOHTpYHRoAAAAAAAAAAAAANHTpXlZHAAAAUFsCAwOVmJio3bt3680339TGjRv1u9/9TnFxcdqyZYvV4QEAAAAAAAAAAABAg0bxGgAA8Hg+Pj4aO3asfvjhB2VkZOjw4cPq0aOH4uLitHHjRqvDAwAAAAAAAAAAAIAGyem1oQcPHtSXX35pVTwA6sDo0aOtDqFG2J+Ahunmm29Wq1atXDqmMUZr1qzRSy+9pOzsbPXu3VtPP/204uLiXHodAAAAAAAAAAAAAECl0p2K19LS0pSQkGBVQADqwAVf+3qD/QlomFJTU2u16HbDhg2aOXOm1qxZo27dumnKlCmKj4+XzWartWsCAAAAAAAAAAAAAJTuXdmR+lrcUp+MGjVKkpSenm5xJGgoPKX4i/3J/bCfobbURQFZnz591KdPH23ZskWvvPKKEhIS1KlTJ02ePFn33HOPvL0r/ecSAAAAAAAAAAAAAOAyeFkdAAAAgDvo1q2b0tLStG3bNnXp0kUPPfSQrrvuOqWkpKi4uNjq8AAAAAAAAAAAAADA41C8BgAAcJ7OnTtr6dKl2rFjh2JjYzVlyhS1a9dOM2fO1JkzZ6wODwAAAAAAAAAAAAA8BsVrAAAAFbj66quVkpKivXv36v7779cLL7ygtm3batq0afr555+tDg8AAAAAAAAAAAAA6j2K1wAAAC4iIiJCr7zyivbv36/HHntM8+fP11VXXaXExEQdOXLE6vAAAAAAAAAAAAAAoN6ieA0AAKAKmjZtqmnTpmn//v2aPn260tPT1a5dO02YMEEHDhywOjwAAAAAAAAAAAAAqHfqRfFaRkaGbDab/VNcXOyysWfPnm0ft1WrVi4b1x0FBQU53EebzabZs2dbHVaNeNJc4B5SU1PVpUsX+fv723Pq22+/tTqsWvXee++pQ4cO8vb2rvNrd+nSxek7fLHPjBkzKvzeV/ZZsmSJ0zU3bdqkBx54QG3btpWfn59CQ0PVs2dPvfDCC8rPz7/sObn7vuSq37sVK1bYx/Hz83NhhPVHcHCwEhMTtXfvXs2fP1/r1q3TNddco7Fjx2rHjh1WhwcAAAAAAAAAAAAA9Ua9KF4bMWKEjDEaPny4y8eePHmyjDGKiopy+djupqioSF9//bUkafjw4TLGaPLkyRZHVTOeNBdYLzMzU3fffbcGDRqk48ePa9euXR5dzLp7927dcccdSk5O1tGjRy2LIz09XcYY+2fChAmSpHXr1jm0JyQkSKr4e1/Rp1+/fk7XSk5OVq9evRQWFqY1a9YoPz9fe/fu1fPPP69Vq1apQ4cOyszMvKz5uPu+5Krfu7vuukvGGMXExLgosvrL19dX48eP165du/Tmm2/qq6++0n/9138pLi5Omzdvtjo8AAAAAAAAAAAAAHB79aJ4DQ1TUFCQ+vTpY3UY8ACXyqXyIqrExEQFBQWpffv2OnDggDp16lSHUVaNK74Xzz77rG6++WZt3rxZwcHBLorMfc2YMUOvvPKKFixYoLlz56pTp07y8/NTWFiYYmNjlZmZqTZt2mjo0KHavn271eGiHvLx8dHYsWP1/fffKyMjQ0eOHFGPHj00cOBAZWVlWR0eAAAAAAAAAAAAALitun9XHAC4mQMHDkiSwsPDLY6kbvz1r3+Vv7+/pTFs3bq1yn1XrFhRrbE///xz+3/v2rVLf/7zn9WtWzf7k90uFBAQoLlz5+qWW27RxIkT9eGHH1brekA5Ly8vxcXFKS4uTh9//LGee+453Xzzzerdu7eefvppxcXFWR0iAAAAAAAAAAAAALgVnrwGoME7d+6c1SHUKasL12rLE088oaSkJIe2RYsWqbS0VKNGjbrouX379lWLFi300Ucfac+ePbUZJhqIAQMG6Msvv9T69esVFhamO+64Q926ddPSpUtVVlZmdXgAAAAAAAAAAAAA4BbconjtxIkTmjRpktq3by9fX1+1atVKAwYM0Ntvv62zZ8869c/NzVVCQoJCQ0MVHh6u2NhY7d69+6Lj+vj4KCwsTEOHDtVnn31WF9OqNzIyMmSz2eyfffv2XfT+zp492963VatWysnJUUxMjIKDgxUQEKBbb71VmZmZ9v4zZsyw9z//dYfvv/++vb1p06ZO458+fVqZmZn2Pt7eNX9QYGlpqVJTUzVw4EBFRETI399fnTt3VkpKir2IID8/3+E+2Gw2zZgxw37++e3x8fH2sY8fP66JEyeqbdu28vHxUbNmzTRy5EiHJ0tdeI937Nih0aNHKzw83N6Wl5dX4/mhYpfKpfJ1effddyX9VtRls9nUq1evi45blT2rKjlXrqSkRM8995yuv/56BQQE6IorrlBcXJz++c9/2gvrauN70RB88cUXkqSoqKhL9i3vs379+mrvczVR1Ry5cP/Yv3+/EhISFBwcrPDwcI0ZM0Y///yz9u3bp7i4OAUHBysyMlIPP/ywCgsLK73+9u3bNWzYMIWEhFx0Ttu3b9eIESMUEhKiwMBA9e3bVxs2bLisOTUkffr00erVq7VlyxZ16tRJDz74oKKiorR06VKVlpZaHR4AAAAAAAAAAAAAWMry4rXc3Fz17NlTf//735WSkqK8vDxt3rxZ/fv314MPPqjFixc7nZOUlKSkpCQdOnRI6enpWr9+ve6+++4Kx12+fLl93I0bNyogIEAxMTFasmRJXU3R7Y0YMULGGA0fPlyS4/1NTU3Vp59+6nB/J0+eLGOMoqKilJ+fr8TERM2YMUO5ubn617/+pZMnT+q2226zF41MnTpVxhgFBgY6XHfIkCEyxqh79+4O7eXjBwYGqnfv3jLGyBhzWf+T//3339ddd92l2267TT/88IMOHDig8ePHa9KkSXr66aclSaGhoTLGaPDgwfLy8tKuXbs0depUSZK3t7eMMYqOjtY777yjlStXSpKOHDminj17Ki0tTQsXLtTJkyf1+eef6+TJk4qOjlZWVlaF93jChAl67LHHdODAAWVnZ6tRo0Y1nhsqd6lcunBdzp49K2OMsrOzKx2zqntWVXKu3BNPPKH58+frf/7nf3TixAn98MMPuv766zV8+HCtX7++SnNpaN59912nYtMFCxY49Tt06JCkqr0StrzP4cOHq73P1URVc+TCPJ00aZL+3//7f8rNzdW8efO0bNky3XvvvUpKStL06dN15MgRTZs2TUuWLNHzzz9f4bWLior02GOP6ZlnntGhQ4cqndOuXbsUHR2tTZs2aeXKlTp69KgWLlyo6dOnV1g0Xp28b2i6du2qpUuXatu2berataseeughdejQQSkpKSouLrY6PAAAAAAAAAAAAACwhOXFa8nJydq7d69SUlIUGxur4OBgNW/eXFOnTtWQIUMqPGfcuHGKjo5WYGCgbrvtNsXGxionJ8fhyVXl486bN0+xsbFq0qSJOnTooOXLlysyMlITJ07U0aNH62qa9cr593fAgAEaNmyY0/0td/r0aS1cuNDev0ePHlq2bJl++eUXJSYmWhB95fr376/k5GSFhYWpadOmevLJJ3XPPfcoJSVFp06dsvebNGmSysrKNGfOHIfzMzMz9dNPPzm8fjA5OVn79+/XnDlzdPvttysoKEgdO3bUihUrZIzRk08+WWEsTz/9tPr376+AgADddNNNKi0tdXj6HNxXdfasqubcJ598oo4dO2rgwIHy9/dX8+bNNWvWLHXo0KGup1dvDB8+3F7AV/55/PHHK+1vs9mqPPaFfWtzn6tqjpzvoYceUvfu3RUYGKgxY8aoY8eOWrdunSZNmqQuXbooKChIEyZMULt27fTee+9VOEZBQYFeeukl9e7dW0FBQZXO6ZlnnlF+fr5SUlI0cOBABQUFqXPnznrrrbd05MgRl82pIenUqZOWLl2qnTt3Ki4uTlOmTFHbtm01bdo07g8AAAAAAAAAAACABsfy4rVVq1ZJkoYOHep0bN26dUpKSnJq79mzp8PfLVu2lPTb03IuHHfYsGEOfX19fRUTE6OzZ8/qgw8+uLzgPdSF97d169aSHO9vucDAQHXp0sWhrXPnzmrRooW2bdtWaXFDXYuNja3wdbFRUVH69ddf9d1339nbBg0apM6dO+vtt9/WiRMn7O2zZs3Sk08+qcaNG9vbMjIy5OXlpdjYWIdxIyIi1LFjR23evFkHDx50uu6NN97oimnBAlXds6qTc0OGDNGXX36p8ePHKzs72/6q0B07dqh///61MIuGo0WLFpLk8F2uTHmf8nPK1dY+V50cOV+PHj0c/i6P98L2li1bVrhvS5Kfn59uuukmh7aK5vT+++9LkgYPHux0zYqKK2s6p4aoXbt2SklJ0b59+/TII49o7ty5at++vaZNm6aff/7Z6vAAAAAAAAAAAAAAoE5YWrxWUlKigoIC+fn5KTg4uMrnhYSEOPzt5fXbNMrKyqo0bvPmzSX99vo/OLvw/vr4+Ej6z/09X2hoaIVjXHnllZKkY8eOuTi6mikoKNBzzz2nzp07KywszP6awT/+8Y+SpDNnzjj0T0pK0pkzZ7Rw4UJJ0s6dO/Xpp59q/Pjx9j7leVZWVqaQkBCnVxhu2bJFkvTjjz86xXPhK1RRP1Rnz6pOzi1YsEBLly7Vnj17FBMToyZNmmjIkCH2QjlUzWuvvaZ58+Y5tPXr10+StHXr1kuev23bNklyKhisrX2uuvtSuSZNmjj87eXlpUaNGikgIMChvVGjRhXu29Jvr0it6Gl058+ppKREhYWF8vPzU1BQUKV9XTGnhqx58+aaNm2adu/erccff1zz589XmzZtlJiYWGnxIQAAAAAAAAAAAAB4CkuL13x9fRUSEqLi4mIVFhbW2bjlrwuNiIhw2TUbqhMnTsgY49ReXsxxfnGDl5eXfvnlF6e++fn5FY5dndf8XUpcXJymT5+uhx9+WDt37lRZWZmMMZo7d64kOc3h3nvvVfPmzfXaa6+ppKREr776qu6//36FhYXZ+/j6+io0NFTe3t769ddfnV5hWP659dZbXTYP1Iyrcqk6e1Z1cs5ms2nMmDH6+OOPlZ+fr4yMDBljNHLkSKfX17rye9EQTJgwQd7e3kpPT79ovw0bNujw4cOKi4tTmzZtHI5VZ5+rjuruS65UUFBQYfv5c/L19VVwcLCKi4tVVFTk1PfkyZNObVbOqb5r2rSppk2bpp9++kkzZszQypUrdfXVV2vs2LHatWuX1eEBAAAAAAAAAAAAQK2w/LWhd955pyTpvffeczrWtWtXPfXUU5c17tq1ax3aS0pK9Mknn8jf39/pNWiovuLiYuXk5Di0/fvf/9bhw4cVFRWlyMhIe3tkZKQOHTrk0Dc3N1c//fRThWMHBAQ4FLtdd911euONN6oVn7e3t7777rv/z96dh0VZ7/8ffw2yiIiouOGSW2mmiQqaBp4WUa9SpEylOuYpM20xUb+VWZqkdtSyo7SbthxPG2CXnoPWOYlZCaLinpkbLid3cQVFE/j8/ujHHBFUwBnuGXg+rmuuK+/7M/f9uufzmc/cM725b6WmpqpBgwYaNWqU6tatay8AysnJKfZ5Pj4+evrpp3X06FG9+eab+vzzzxUTE1OkXf/+/ZWbm6vU1NQi62bMmKEbbrhBubm5pcoMx3PEWCpQkjkrLy+vVGOuZs2a2rZtmyTJy8tLPXv21KJFi2Sz2YrMYY48lsqgVatWmjRpktavX685c+YU2+bcuXMaPXq0AgMDi1y5TSrdPFcSZZ2XHCk7O9t+pbkCxR1Twe1xC24fWiAzM1Pbt28vtKy04x7Fq169umJiYrRz50698cYb+vHHH3XLLbdo6NCh2rFjh9XxAAAAAAAAAAAAAMChLC9emzZtmpo3b64xY8ZoyZIlysrK0v79+/X000/r0KFDZS5eK9ju6NGjtXjxYmVlZWnHjh16+OGHdejQIcXFxdlvH4qyCwgI0EsvvaS0tDSdPXtWa9eu1eDBg+Xt7a24uLhCbXv16qWDBw/qnXfeUXZ2tjIyMhQTE3PFqxZ16tRJO3bs0G+//aa0tDTt3r1b3bt3L3XGKlWq6M4779Thw4f1xhtvKDMzUzk5OVq+fLk++OCDKz7v6aeflq+vryZMmKCIiAjdeOONRdpMmzZNLVu21NChQ/Xtt9/q9OnTOnHihObMmaPJkydr5syZ8vT0LHVmOFZZxtLevXtVpUqVQreAlUo2Z5VlzD355JPavHmzLly4oKNHj+r111+XMUZ33333dR9LZTdhwgSNHz9ezzzzjMaOHatffvlFFy5c0KlTp7R48WKFh4fr8OHD+s9//qMWLVoUeX5p5rmSKuu85Ch+fn4aOXKkVq9efdVj+utf/6ratWtr9OjRWrp0qbKzs7V161YNHjy4yK1ErT6miqZatWp69tlntWvXLs2bN09paWlq06aNIiMjtXbtWqvjAQAAAAAAAAAAAIBjmMvEx8ebYhY7VWZmphk9erRp3ry58fLyMkFBQebBBx80O3bsMMYYk5aWZiQVerz88svG/HH/sUKPPn36XHG7AQEBpnfv3mbZsmX2Nm+88cYVt+1sAwYMMAMGDCiXfRljjJ+fX5FjfeONN8r8+gYHB5tGjRqZrVu3mt69ext/f3/j6+tr7rjjDpOSklJk/6dOnTLDhg0zQUFBxtfX14SHh5v09HQTEhJi3/64cePs7bdt22a6d+9u/Pz8TJMmTcy777571WO50uPXX381x44dMyNGjDBNmjQxXl5epn79+ubRRx81L774or1dSEhIkcxPPPGEkWR+/PHHK76ux48fN2PHjjUtWrQwXl5epm7duqZXr15m6dKl9jbFvcbl/T4zxpr3tyOVNf+VxtLChQuL7Ze0tDSzZ88e4+HhYWw2m9m8eXOh7V1rzjLGlGrMbdy40YwYMcK0adPGVKtWzdSuXdt07drVzJ071+Tn55foWEojKSnpiu+XuXPnlnp7xlzf8DoUhgAAIABJREFUfPbJJ58UmyUrK6tQu+Le9/Xr1y/xftLT081f/vIX07RpU+Pt7W38/f1NaGiomTp1qjl16lSxzynNPOeseelKc3R6enqR5dOmTTMrVqwosnzSpEmFPu8aNWpk1qxZY+666y5TvXr1q87d27dvN/fdd5+pUaOG8fX1NZ07dzaLFy82PXr0sG/v8ccfN8aUbtyXlCQTHx9fqudURHl5eearr74y7du3NzabzURGRppVq1ZZHQsAAAAAAAAAAAAArkeCzRhjLi1mS0hIUHR0tC5bDCcYOHCgJCkxMdHiJGXToUMHZWZmav/+/VZHcZpPPvlE7777boW5yo27v7/dPX9F5u7z2ZVUhnnO1dlsNsXHx2vQoEFWR3EZycnJmjhxolatWqWwsDCNGzdOkZGRVscCAAAAAAAAAAAAgNJKtPy2oYAr++CDDzR27FirYwAAYBcREaG0tDStWLFCtWrVUr9+/RQWFqakpCSKewEAAAAAAAAAAAC4FYrXgEvMmzdP999/v7Kzs/XBBx/o5MmTXO0HAOCSwsPDlZSUpNTUVNWuXVtRUVHq0KGD5s+fr7y8PKvjAQAAAAAAAAAAAMA1UbyGUps5c6ZsNps2bdqkAwcOyGazacKECVbHcphFixapVq1aev/99/XVV1/J09PT6kjANdlstms+YmNjrY7pNir6PIeK5fbbb1dSUpI2btyo4OBgDR06VK1bt9aHH36o3Nxcq+MBAAAAAAAAAAAAwBVRvIZSe+6552SMKfSYOnWq1bEcYtiwYTLG6OLFi9q0aZM6depkdSSgRC5/Txb3oHit5CryPIeKq3379po/f762b9+uHj166JlnntGNN96ouLg45eTkWB0PAAAAAAAAAAAAAIqgeA0AAKACadmypebMmaNdu3YpKipK48ePV7NmzRQbG6szZ85YHQ8AAAAAAAAAAAAA7CheAwAAqICaNm2quLg47d27V0899ZRmzZqlli1bKjY2VidPnrQ6HgAAAAAAAAAAAABQvAYAAFCR1atXT7GxscrIyNAzzzyjt956S02bNlVMTIwOHz5sdTwAAAAAAAAAAAAAlRjFawAAAJVAnTp1FBsbq3379mnKlClKSEjQjTfeqJiYGO3fv9/qeAAAAAAAAAAAAAAqIc8rrRg4cGB55qiUVq1aJYnXGuWnohQn8J5xPcxngPvw9/dXTEyMhg0bpnnz5mnmzJn64IMPFB0drYkTJ+qmm26yOiIAAAAAAAAAAACASoIrr1moa9eu6tq1a7nsa8GCBRWmcAmA63HEfLZ//34tWLDAQYkAXIufn59iYmKUkZGhuXPnatWqVbr55ps1aNAg/frrr1bHAwAAAAAAAAAAAFAJXPHKa4mJieWZA05ms9k0ZswYDRo0yOoosFBCQoKio6OtjnHdmJ8qpoLxSf/iUjabzeoIFZ63t7eGDBmiwYMH6+uvv9akSZPUrl073XvvvXrllVfUuXNnqyMCAAAAAAAAAAAAqKC48hoAAADk4eGhgQMHasuWLVq0aJGOHDmiLl26qGfPnlq5cqXV8QAAAAAAAAAAAABUQBSvAQAAwM7Dw0ORkZFas2aNli5dqnPnziksLEzh4eFKSkqyOh4AAAAAAAAAAACACoTiNQAAABQrIiJCqampWrFihWrVqqV+/fqpU6dOSkxMlDHG6ngAAAAAAAAAAAAA3BzFawAAALiqgquurV+/XjfeeKOio6MVHBys+fPnKy8vz+p4AAAAAAAAAAAAANwUxWsAAAAokY4dOyohIUGbNm1Shw4dNHToULVq1UpxcXG6cOGC1fEAAAAAAAAAAAAAuBmXK17Lzs7WTTfdpL59+1odBQCKxTwFoLK79dZbNX/+fO3YsUN9+/bVuHHj1Lp1a8XFxSknJ8fqeAAAAAAAAAAAAADchMsVrxljlJ+fr/z8fKujXFP16tUVHh5udQzI+r6wev8oX8xTuB5W94nV+0fF0qJFC8XFxWn79u2KiorS+PHj1axZM8XGxur06dNWxwMAAAAAAAAAAADg4lyueM3f318ZGRn65ptvrI4CwIkOHjxodYQyY54CgMKaNm2quLg47d27V0899ZRmz56tli1bKjY2VidOnLA6HgAAAAAAAAAAAAAX5XLFawAqhwceeEBt2rTRtGnTtHfvXqvjAAAcoF69eoqNjVVGRoZGjhypt99+W02bNlVMTIwOHTpkdTwAAAAAAAAAAAAALsalitcWLVokm81mf5w/f77Y5Xv37lV0dLRq1qypwMBA9e3bVxkZGfbtzJw50962cePGSk9PV48ePeTv769q1arprrvuUmpqqr391KlT7e0vvZXav//9b/vyOnXqFNn+2bNnlZqaam/j6elZDq+S+zp+/LjGjh2rli1bytvbW7Vq1dI999yj5cuX29s4ui8YC64rNzdX27Zt0yuvvKIWLVqoS5cuevvtt3XkyBGro10V81TlwHwFXJ/AwEDFxsZq3759mjp1qhITE9W8eXONGDFCv/32m9XxAAAAAAAAAAAAALgKc5n4+HhTzOJyFRUVZSSZnJycYpdHRUWZlStXmuzsbLN06VLj6+trOnfuXGQ7wcHBxs/Pz3Tr1s3ePj093bRv3954e3ubH374oVB7Pz8/ExYWVmQ7ISEhJjAwsMjyK7UvcNddd5natWubtLS0kh6600gy8fHxlu3/0KFDpnnz5qZ+/fomKSnJnD592mzfvt3079/f2Gw2M3fu3ELtHd0XjIU/uML7u0BoaKiRZH/YbDZTpUoVY7PZTNeuXc3s2bPNsWPHCj3HlfIzTzmeq/Qv85XrjAljrP/8gmOcP3/ezJkzxzRp0sR4e3ubRx55xGzfvt3qWAAAAAAAAAAAAACsleBSV14rqWHDhqlbt27y8/NTRESE+vTpo/T0dGVmZhZpe/bsWb333nv29qGhofrss8/0+++/KyYmxqk58/PzZYyRMcap+3EH48eP1549ezR79mz17dtXNWrUUKtWrfTFF18oKChIo0aNcvoVtxgLrs0Yo7y8PBljlJ6erv/7v/9TUFCQ7r33Xs2fP19nz561OmKpME+5L+YrxgQcz8fHR8OHD9euXbs0d+5crV69Wm3atFFkZKTWr19vdTwAAAAAAAAAAAAAFnHLe4V17ty50L+bNGkiSTp48GChW6RJkp+fnzp06FBo2a233qqGDRtq06ZNOnTokIKCgpyS84cffnDKdt3RwoULJUl9+vQptNzHx0c9evTQP/7xD/3nP//RkCFDnJaBsfA/iYmJVkfQ6dOnr7guLy/P/t9Lly7Vv//9bz311FMKDQ2V9MctR139VofMU+6L+eoHp2wXkCRvb28NGTJEgwcP1pIlSxQbG6vQ0FD16dNHEydOVJcuXayOCAAAAAAAAAAAAKAcuXb1xxUEBAQU+re3t7ekP64Wc7maNWsWu4169erp4MGDOnr0qNMKAPCHCxcu6PTp06patar8/f2LrK9fv74k6fDhw07NwVj4n0GDBlkdQT4+PiVql5ubK0k6d+6cfvrpJ0nS1KlT9fLLL8vLy8tp+a4X85R7Yr4CyoeHh4ciIyPVt29fLV68WFOnTtVtt92msLAwvfrqq+rRo4fVEQEAAAAAAAAAAACUA7e8bWhpHD9+vNhbnx09elTSH4UABTw8PPT7778XaXvq1Klit22z2RyUsmLz8fFRQECAzp8/r6ysrCLrC26/16BBA/syZ/QFY+F/Cm4JaOXj1ltvvWbOKlWqyMPDQ97e3urTp4/GjBkjSYqNjXXpwrXSYmy6DuYroHzZbDZFRkZq9erVWrFihapWraqIiAiFh4crKSmJ29cCAAAAAAAAAAAAFVyFL147f/680tPTCy37+eefdfDgQQUHBxe6ck1QUJAOHDhQqO3hw4f13//+t9htV6tWrVDBQOvWrfXhhx86MH3Fcf/990uSlixZUmj5hQsXtGzZMvn6+qp379725c7oC8aCe6hSpYq9aO1Pf/qTPvnkEx0/flyLFy9W165drY7nFIxN18J8BVgjPDxcycnJWrFihWrVqqWoqCh16tRJ8+fPL/aqlQAAAAAAAAAAAADcX4UvXgsICNBLL72ktLQ0nT17VmvXrtXgwYPl7e2tuLi4Qm179eqlgwcP6p133lF2drYyMjIUExNT6Ao3l+rUqZN27Nih3377TWlpadq9e7e6d+9uX3/33XcrMDBQq1atcuoxuoNp06apefPmGj16tBYvXqysrCzt2LFDDz/8sA4dOqS4uDj77fgkx/eFxFhwZTabTV5eXrLZbAoJCdGbb76pw4cP6/vvv9eQIUNUvXp1qyM6FWPTtTBfMSZgrYKrrq1fv1633nqrHnvsMQUHB2v+/Pn2W0kDAAAAAAAAAAAAqCDMZeLj400xi8vFwoULjaRCjz//+c8mLS2tyPKXX37ZGGOKLO/Tp499e8HBwaZRo0Zm69atpnfv3sbf39/4+vqaO+64w6SkpBTZ/6lTp8ywYcNMUFCQ8fX1NeHh4SY9Pd2EhITYtz9u3Dh7+23btpnu3bsbPz8/06RJE/Puu+8W2l737t1NrVq1zMqVK530ipWcJBMfH29phszMTDN69GjTvHlz4+XlZQICAkzv3r3NsmXLirR1dF8wFv5g5fv7cqGhofbXskOHDuZvf/ubOXDgwFWf4wr5maecxxX6twDzlWuMCWNc4/ML1vr555/NI488Yjw9PU3z5s3N7NmzTU5OjtWxAAAAAAAAAAAAAFy/BJsxxlxazJaQkKDo6GhdttgtdejQQZmZmdq/f7/VUSxns9kUHx+vQYMGWR3FEoyFP7jS+3vo0KFq1qyZHn74Yd14440leo4r5XcUxub/VMT+LQvGRGGV/fML/7Nz505Nnz5dn332mRo0aKDnn39ew4YNU9WqVa2OBgAAAAAAAAAAAKBsEiv8bUMBuKaPP/5Yr7zySokL1wAAldtNN92kjz76SDt37lS/fv30/PPPq3nz5nrzzTeVnZ1tdTwAAAAAAAAAAAAAZUDxGgAAANzGDTfcoLffflv//e9/NWLECE2ZMkXNmjVTbGysTp48aXU8AAAAAAAAAAAAAKVQIYvXZs6cKZvNpk2bNunAgQOy2WyaMGGC1bFgAcYCXBVjE5djTAClU7duXcXGxiojI0MjR47UW2+9paZNmyomJkaHDx+2Oh4AAAAAAAAAAACAEqiQxWvPPfecjDGFHlOnTrU6FizAWICrYmzicowJoGwCAwMVGxurffv2acqUKUpISNCNN96omJgYHThwwOp4AAAAAAAAAAAAAK6iQhavAQAAoHLx9/dXTEyMdu3apddee01ff/21WrRooSFDhigjI8PqeAAAAAAAAAAAAACKQfEaAAAAKgw/Pz/FxMRo9+7dmjt3rlauXKk2bdpoyJAh2r59u9XxAAAAAAAAAAAAAFyC4jUAAABUON7e3hoyZIh+/fVXzZs3T2vWrNEtt9yiQYMGaevWrVbHAwAAAAAAAAAAACCK1wAAAFCBeXl5aciQIdq6dasWLVqkXbt26dZbb1VkZKTS09OtjgcAAAAAAAAAAABUahSvAQAAoMLz8PBQZGSk1q1bp0WLFunIkSPq0qWLevbsqVWrVlkdDwAAAAAAAAAAAKiUPK+0wmazlWcOlIPo6GhFR0dbHQO4bsxPFRv9C8CZbDabIiMjFRkZqeTkZL3yyivq1q2bwsLCNG7cOEVGRlodEQAAAAAAAAAAAKg0rli8Fh8fX545YJG0tDTNnj2b/q4kCvrb3TFeK59Zs2ZJksaMGWNxEpQ3iq7hTBEREYqIiFBKSopmzJihfv362YvY+vbtSzEtAAAAAAAAAAAA4GRXLF4bNGhQeeaAhWbPnk1/VyIVoXiN8Vr5JCYmSqLvKyOK11AewsPDFR4erpUrV2ratGmKiopS+/btNXbsWA0ePFgeHh5WRwQAAAAAAAAAAAAqJP5PHAAAACDp9ttvV1JSkjZs2KD27dtr6NChCg4O1vz585Wbm2t1PAAAAAAAAAAAAKDCoXgNAAAAuERBwdqmTZvUsWNHPf7442rdurU+/PBDXbx40ep4AAAAAAAAAAAAQIVB8RoAAABQjLZt22r+/PnasWOH+vbtq1GjRummm25SXFyccnJyrI4HAAAAAAAAAAAAuD2K1wAAAICraN68ueLi4rR9+3ZFRUVp/Pjxat68uWbMmKFz585ZHQ8AAAAAAAAAAABwWw4pXvvss89ks9nsj+rVqxfbbt++ferXr5/OnDmjzMzMQs/p2LGjzp8/X+Q5l7ez2WwKDQ11RGyX8M0336hVq1by9PS8YpsXX3xR8fHxV1x36WvTtWtXZ0W1o7/Lzh37uzJhzBZ1vWPWXdD3RVWWvgdKo2nTpoqLi9PevXv16KOPavLkyWratKliY2N16tQpq+MBAAAAAAAAAAAAbsehV157//33ZYxRdnZ2kXUbN25UaGioevXqpRo1aqhOnToyxig9Pd2+fvTo0UWeV9AuLS1NgYGBMsZo7dq1joxtiYyMDPXr10/jx4/XkSNHrtr2iSee0Pjx4zVx4sQi66ZPny5jjIwxqlKlirPiFov+LrmK0N8VHWO2MEeNWXdA3xdWmfoeKKt69epp+vTp2rdvn5555hnFxcWpadOmevHFF3XixAmr4wEAAAAAAAAAAABuo1xuG3rmzBlFRkbqgQce0MiRI4us9/HxUWBgoObMmaMvv/yyPCJZbuLEibr99tu1bt06+fv7X7Vty5YttXDhQr322mtKSEgop4RlR38XVZH7uyJgzBZVWcYsfV9UZel7wBHq1Kmj2NhY/fe//9VLL72kuXPnqmnTpoqJidGhQ4esjgcAAAAAAAAAAAC4vHIpXnv99dd1+PBhvfLKK8Wur1q1qj7//HN5eHhoxIgR2rFjR3nEstRHH32kF1988aq3Y7tUcHCwBgwYoP/7v/9Tbm6uk9NdH/q7qIrc3xUBY7aoyjJm6fuiKkvfA47k7++vcePGad++fZo6daoWLFig5s2ba8SIEdq/f7/V8QAAAAAAAAAAAACX5fTiNWOM5s2bp9tuu00NGza8YrvevXtrwoQJysrK0sCBA3X+/HlnR7OUr69vqZ9z//33a//+/VqyZIkTEjkG/V28itrfFQFjtniVYczS98WrDH0POEv16tUVExOj3bt366233tI333yjli1basiQIdq5c6fV8QAAAAAAAAAAAACX4/TitU2bNunIkSMKDg6+ZttJkyapV69e2rx5s5599tkSbf/48eMaO3asWrZsKW9vb9WqVUv33HOPli9fbm+zaNEi2Ww2+2Pv3r2Kjo5WzZo1FRgYqL59+yojI6PIto8dO6ZRo0apWbNm8vb2Vt26ddW/f39t3Lix5C+AA3Xo0EGS9J///MeS/ZcE/e047tDfFQFj1nHcbczS947jbn0POJuPj4+GDx+ujIwMzZ07V6tWrdLNN9+sQYMGadu2bVbHAwAAAAAAAAAAAFyG04vXtmzZIklq3LjxtcN4eOjzzz9XkyZNNG/ePH3++edXbX/48GF17txZX3zxheLi4pSZmanVq1erWrVq6tGjh+bNmydJuu+++2SMUVRUlCRp9OjRGj16tA4cOKD4+Hh9//33euihhwpt+9ChQ+rcubMSEhL03nvv6cSJE/rhhx904sQJdevWTWlpaWV5Oa5Lo0aNJP3vNXVF9LfjuEN/VwSMWcdxtzFL3zuOu/U9UF68vb01ZMgQbdu2TV999ZW2bNmitm3bKjIyUuvWrbM6HgAAAAAAAAAAAGA5pxevHTp0SJIUEBBQovZ16tRRQkKCvLy8NGLEiKtenWL8+PHas2ePZs+erb59+6pGjRpq1aqVvvjiCwUFBWnUqFE6cuRIkecNGzZM3bp1k5+fnyIiItSnTx+lp6crMzOz0Lb37dunv/3tb7r33ntVvXp1tW3bVl999ZWMMSW+8o4j1ahRQzabzf6auiL623Hcob8rAsas47jbmKXvHcfZfX/y5EmnbBcoLx4eHho4cKC2bNmiRYsW2YtQIyMjtXr1aqvjAQAAAAAAAAAAAJZxevHa+fPnJUleXl4lfk7Xrl01c+ZMnT17VgMHDlROTk6x7RYuXChJ6tOnT6HlPj4+6tGjh3Jycoq9hVnnzp0L/btJkyaSpIMHD9qXLVq0SB4eHurbt2+htg0aNFDbtm21bt067d+/v8TH5Cienp5XfD1cAf3tWK7e3xUBY9ax3GnM0veO5cy+f/LJJ9WwYUMNGjRIH374oX755RcZY5yyL8CZPDw8FBkZqfT0dP3zn//UsWPH1LVrV4WHh2vZsmVWxwMAAAAAAAAAAADKndOL16pWrSpJunjxYqmeN2rUKEVHR2vLli0aOXJkkfUXLlzQ6dOnVbVqVfn7+xdZX79+fUl/3LrtcpdfZcfb21uSlJ+fX2jb+fn5CggIkM1mK/RYv369JGnnzp2lOiZHyM3Nla+vb7nvt6Tob8dy9f6uCBizjuVOY5a+dyxn9v3LL7+sYcOG6ejRoxo9erTatWunRo0a6cEHH9Q777yjzZs3218jwB3YbDZFRkZq1apVWrFihapWraqIiAiFh4crKSnJ6ngAAAAAAAAAAABAufF09g6CgoIkSadPny71c+fNm6eNGzfq448/thcZFPDx8VFAQIBOnz6trKysIgUCBbdja9CgQan36+Pjo5o1ayo7O1s5OTny9HT6y1QiZ86ckTHG/pq6IvrbcdyhvysCxqzjuNuYpe8dx9l93759ew0aNEjSH0VymzZtUkpKilJTUzVp0iSdOHFC/v7+uu222xQWFqbw8HB1795dPj4+TskDOFJ4eLiSk5OVkpKiGTNmqF+/furYsaPGjx+vAQMGyGazWR0RAAAAAAAAAAAAcBqnX3mtXbt2klSmW5hVr15dX3/9tfz8/PTee+8VWX///fdLkpYsWVJo+YULF7Rs2TL5+vqqd+/eZUgt9e/fX7m5uUpNTS2ybsaMGbrhhhuUm5tbpm2X1YEDByT97zV1RfS347hDf1cEjFnHcbcxS987Tnn2vaenp0JCQhQTE6OEhAQdPXpUW7Zs0cyZMxUUFKRPPvlEPXv2VO3atRUeHq4XX3xRSUlJZSpSBMpTwVXXNmzYoBtvvFHR0dEKDg7W/PnzlZeXZ3U8AAAAAAAAAAAAwCmcXrwWHBysevXqadOmTWV6ftu2bTVnzpxi102bNk3NmzfX6NGjtXjxYmVlZWnHjh16+OGHdejQIcXFxdlvz1Za06ZNU8uWLTV06FB9++23On36tE6cOKE5c+Zo8uTJmjlzZqEr3gwePFg2m0179uwp0/5KYuPGjZKkXr16OW0f14v+dhx36O+KgDHrOO42Zul7x7Gy76tUqaK2bdtq+PDhmj9/vvbt26eMjAy9//77atu2rZKSktSvXz8FBgYqNDRUMTExSkxMVGZmZrlnBUqiQ4cOSkhI0KZNm9ShQwcNHTpUrVu31ocffljuhakAAAAAAAAAAACA05nLxMfHm2IWX9U//vEPI8m8//77xa5/6aWXjKenpzlw4IB92bFjx4ykQo+QkJAr7uOpp54ygYGBRZZnZmaa0aNHm+bNmxsvLy8TEBBgevfubZYtW2Zvk5aWVmRfL7/8sjHGFFnep08f+/OOHz9uxo4da1q0aGG8vLxM3bp1Ta9evczSpUuL5Lj77rtN9erVTW5u7rVfMGNMUlJSkX0XPObOnVvscwYOHGgaNWpkfv/992LXV6lSxdx2220l2n8B+pv+difOys+YLcoZY/Z6DBgwwAwYMMDh26Xvi3K1vpdk4uPjr2sbhw4dMgkJCWbUqFEmJCTEeHh4GEmmRYsWZvjw4ebvf/+72bNnj2MCAw62a9cuM3z4cOPp6WmaNWtmZs+ebXJycqyOBQAAAAAAAAAAADhCgs0YYy4tZktISFB0dLQuW3xVn332mR555BG9//77evLJJ4usP336tNq2bau+ffvqgw8+KPF23cWpU6fUsGFD/fnPf9bcuXOdso9NmzapY8eO+uKLL/Tggw8W28bT01OhoaFatWpVibdLf5deZetvV+Ks/IzZ61eSMXs9Bg4cKElKTEx06Hbp++vn7L632WyKj4/XoEGDHLbNrKwsrV69WsnJyUpJSdHatWt14cIFBQUFKTw8XBEREQoLC9Mtt9wim83msP0C12Pv3r2aNWuWPvzwQ9WrV09jx47V8OHD5evra3U0AAAAAAAAAAAAoKwSnX7bUEkKCAhQUlKSFixYoHfffbc8dllujDEaNWqUatSooSlTpjhlH7t371b//v01fvx4pxQGOBr9fX3crb8rAsbs9XHnMUvfXx937Xt/f39FRERo+vTpSklJ0YkTJ7RixQrFxMQoJydHzz//vNq1a6egoCBFRkZqxowZSklJ0cWLF62OjkqsWbNmiouL0969e/XQQw/ppZdeUtOmTRUbG6vTp09bHQ8AAAAAAAAAAAAoE4cWrz311FOy2WyqXr16kXUdO3bU2rVr9e233+rMmTOO3K2ljhw5ot27d2vZsmVq0KCBU/YxZ84cvfbaa3rttdeKrHvxxRdls9lks9mUl5fnlP1fCf1dufq7omPMlt3Vxqw7oO/Lzt37vkC1atUUHh6ucePGKSkpScePH9fatWs1fvx4+fr66o033lD37t1Vu3Zt9ezZU7GxsUpOTtb58+etjo5KqH79+po+fbr27t2rp59+WrNnz1bLli0VGxurkydPWh0PAAAAAAAAAAAAKBWH3DYU7ov+rlzcvb/dPT/Kzlm3DYXrc8ZtQ8ti9+7d9tuM/vTTT9q3b5+8vLzUvn17+21Gu3fvrpo1a1qaE5XP8ePH9fbbb+utt95Sbm6uHnvsMY0fP95pRasAAAAAAAAAAACAA5XPbUMBAADcWYsWLTR8+HDNnz9fe/fu1YEDB/T5558rJCRESUlJioqKUp06ddS2bVuNGDFCiYmJyszMtDo2KoHvoVhSAAAgAElEQVTAwEDFxsZq3759mjJlihISEnTjjTcqJiZGBw4csDoeAAAAAAAAAAAAcFUUrwEAAJRSw4YNNXDgQM2ZM0e//PKLDh48qIULFyoyMlLr1q3Tgw8+qLp166ply5YaMmSIPvzwQ+3Zs8fq2KjA/P39FRMTo127dum1117T119/rRYtWmjIkCHKyMiwOh4AAAAAAAAAAABQLIrXAAAArlODBg0UGRmp6dOna+3atTp16pSWLl2qRx55RIcOHdKoUaPUokULNWzYUIMGDVJcXJzWrVvHbZDhcH5+foqJidHu3bs1d+5cpaWlqU2bNhoyZIi2b99udTwAAAAAAAAAAACgEIrXAAAAHMzf318RERGKjY3V0qVLdeLECa1YsUIxMTHKycnRpEmTFBoaai96mzFjhlJSUnTx4kWro6OC8Pb21pAhQ7R161bNmzdPa9as0S233KJBgwZp69atVscDAAAAAAAAAAAAJFG8BgAA4HTVqlVTeHi4xo0bp6SkJGVmZmrt2rV66aWX5OvrqzfeeEPdu3dX7dq11bNnT8XGxio5OVnnz5+3OjrcnJeXl72IbdGiRdq1a5duvfVWRUZGKj093ep4AAAAAAAAAAAAqOQ8r7QiISGhPHPAImlpaZLo78qioL/dHeO18tm/f78k+h4Vh6enp0JCQhQSEqKYmBhJ0u7du5WcnKyUlBR9+umnevXVV+Xp6ang4GBFREQoLCxM3bt3V82aNS1OD3fk4eGhyMhI9e3bV4sXL9aUKVPUpUsXRUREaMqUKeratavVEQEAAAAAAAAAAFAJ2Ywx5tIFCQkJio6OtioPgHJw2dvebTA/AZVTfHy8Bg0aZHWMcnfw4EGlpqbaC9p+/fVXeXh4qHXr1goPD1dERITuvPNO1a1b1+qocFPJycl65ZVXlJaWprCwMI0bN06RkZFWxwIAAAAAAAAAAEDlkVikeA0AAACu58iRI1qzZo29oG3Dhg3Kz89XixYtFBYWZi9oa9GihdVR4WZSUlI0Y8YMLV682F7E1rdvX9lsNqujAQAAAAAAAAAAoGKjeA0AAMAdZWdna9WqVUpJSVFqaqpWrFihCxcuKCgoSOHh4faCtk6dOlGEhBJZuXKlpk2bpiVLlqh9+/YaO3asBg8eLA8PD6ujAQAAAAAAAAAAoGKieA0AAKAiOHfunNavX6/U1FSlpKRoxYoVOn36tOrVq6cuXbrYC9q6dOkib29vq+PChW3evFkzZ87UF198oTZt2uj555/Xww8/LE9PT6ujAQAAAAAAAAAAoGKheA0AAKAiysvL08aNG+1XZlu+fLkyMzPl5+enbt262a/MFhYWJl9fX6vjwgX98ssvmjFjhr788kvdcMMNGjdunB577DF5eXlZHQ0AAAAAAAAAAAAVA8VrAAAAlcXu3bvtxWzfffed9u7dK09PTwUHB9uL2SIiIlSrVi2ro8KF7NmzR7Nnz9acOXPUoEEDjRkzRsOHD6foEQAAAAAAAAAAANeL4jUAAIDK6uDBg/bbjKampmr9+vXy8PBQ69at7Vdlu+uuu9SkSROro8IF7Nu3T3/72980d+5c1ahRQ2PGjNGzzz6ratWqWR0NAAAAAAAAAAAA7oniNQAAAPzh6NGjWr16tb2gbc2aNbp48aJatGhR6Dajbdu2tToqLHT06FG99957mjVrlry9vfXMM89o9OjRqlmzptXRAAAAAAAAAAAA4F4oXgMAAEDxsrOztWrVKvuV2VJSUnT+/HkFBQXZC9nCw8PVsWNHeXh4WB0X5SwzM1PvvPOO4uLilJ+fr6eeekovvPCCateubXU0AAAAAAAAAAAAuAeK1wAAAFAyFy9e1ObNm5WcnKyUlBSlpKTo1KlTqlGjhrp06aKIiAiFhYWpS5cu8vb2tjouyklWVpbee+89vf766/r99981dOhQvfjiiwoKCrI6GgAAAAAAAAAAAFwbxWsAAAAom7y8PG3btk2pqalKTk7W8uXLlZmZKT8/P3Xo0EHh4eH2gjZfX1+r48LJsrOz9dFHH+n111/X8ePH9Ze//EUTJ05U48aNrY4GAAAAAAAAAAAA10TxGgAAABxn9+7d9tuMLl26VHv27JGnp6eCg4Pttxnt0aMHt5aswC5cuKC///3vmjp1qo4cOaLo6GhNnDhRN910k9XRAAAAAAAAAAAA4FooXgMAAIDzHDx4UKmpqfaCtvXr18vDw0OtW7dWeHi4wsLCdNddd6lJkyZWR4WD/f777/rqq680depUZWRk6IEHHtDkyZN18803Wx0NAAAAAAAAAAAAroHiNQAAAJSfo0ePavXq1faCtjVr1ujixYtq0aKF/cpsYWFhatu2rdVR4SD5+fn6+uuvNWnSJG3fvl333nuvYmNjFRISYnU0AAAAAAAAAAAAWIviNQAAAFgnOztbq1atsl+ZLSUlRefPn1dQUJC9kC08PFwdO3aUh4eH1XFxHfLz87VkyRK9+uqrWr9+vfr06aMJEybotttuu+ZzT548qX379qlDhw7lkBQAAAAAAAAAAADlhOI1AAAAuI7c3Fxt2rRJycnJ9oK2kydPyt/fX7fddpsiIiIUFhamLl26yNvb2+q4KKPk5GRNmDBBq1evVlhYmF599VX16NHjiu1fffVVzZ49Wz/88IOCg4PLMSkAAAAAAAAAAACciOI1AAAAuK68vDxt27ZNqampSk5O1g8//KBjx47Jz89PHTp0UHh4uL2gzdfX1+H7rlKlikO3icJSUlIUGxurZcuWKSwsTOPGjVNkZGShNmfOnFGTJk2UlZWlgIAA/fjjj2rfvr1FiQEAAAAAAAAAAOBAidx7CQAAAC6rSpUqatu2rYYPH66EhAQdPXpUGRkZeu+999S2bVslJiaqZ8+eqlGjhkJDQxUTE6PExESdOHHiuvd9++2365///KcDjgJXEh4eruTkZK1YsUK1atVSv3791KlTJyUmJqrgb2zeffddnTt3TsYYZWdn64477tDPP/9scXIAAAAAAAAAAAA4AldeAwAAgFs7ePCgUlNT7bcZXb9+vWw2m26++WaFh4crLCxMd955p2644YYSb3P37t1q2bKlJKl///5699131aBBA2cdAv6/jRs36q9//asWLFigdu3aadSoUXrhhRd08uRJextPT09Vr15dK1asULt27SxMCwAAAAAAAAAAgOvEbUMBAABQsZw5c0Zr1qxRcnKyUlJSlJ6ert9//11BQUGFbjPatm3bK27j008/1eOPP678/Hx5eXnJx8dHb775pp544gnZbLZyPJrK6eeff9Ybb7yhJUuW6PTp08rLyyu03tPTU/7+/vrpp58oYAMAAAAAAAAAAHBfFK8BAACgYjt79qw2bNig1NRUJScnKzU1VTk5OWrQoIFCQ0PtBW0dO3aUh4eHJOnxxx/XP/7xD128eNG+HZvNpttvv10ff/yxWrVqZdXhVBoXLlxQ48aNlZmZWez6ggK2FStWXLUQEQAAAAAAAAAAAC6L4jUAAABULhcuXFB6erp++ukn+61Gz5w5o9q1ayssLEx/+tOfNHv2bB04cKDIc728vGSz2TR58mQ999xzqlKligVHUDm8++67iomJKXLVtUsVFLClpKTolltuKcd0AAAAAAAAAAAAcACK1wAAAFC55eXladu2bUpNTVVKSoqWLVumgwcPXvU5Hh4eatOmjf7+978rJCSknJJWHhcvXlSzZs106NAhXevriqenp2rUqKEVK1ZQwAYAAAAAAAAAAOBeKF4DAAAALpWYmKjo6OgSFU3l5+fr+eefV2xsrKpWrVpOCSu+efPm6Yknnihxe09PT9WqVUspKSnc0hUAAAAAAAAAAMB9JHpYnQAAAABwJStWrJCXl9c12+Xm5io/P18zZ85U27ZtlZKSUg7pKocLFy7ooYce0m233aZ69erJw+N/X1s8PDzk4+OjqlWrymazSfqjLzIzM9W9e3ft3LnTqtgAAAAAAAAAAAAopSJXXktISFB0dLRVeQCUA3e94CLzE1A5xcfHa9CgQVbHKJOCwhoAAABUTHy/BoDKgfkegDPx+ycAVzJgwAAlJiZaHaNMBg4cqAULFlgdA8A1FPP9KtHzSo3j4+OdmwYOkZaWptmzZ9NfKJGC8eLuGO+uZ9asWZKkMWPGWJwEFU1F+IF19OjR6tatm9UxUELnzp3T0KFDZbPZ5OHhofz8fOXn59vXe3h4qHr16qpdu7YCAwNVp04dBQQEKDAwUDVr1rQv8/X1tfAoKqecnBxlZmYqMzNTxhh16tTJ6kguh89rAHAcvl8D1uB8BuWN+R7uKDo6mt+j3Ai/f6Ki4/zNvRT0lzvr2rUr4w2cD7moq32/umLxmrtW+FdGs2fPpr9QYhXhxxbGu+sp+AsM+gaOVhF+vOnWrRvvDTeydu1a9enTRw0bNrQ/goKC1KhRIwUFBal+/fr8RSncFp/XAOBYfL8Gyh/nM7AC8z3cTXR0NL9HuRF+/0RFx/mbe3HXK65dqnHjxow3cD7kwkpdvAYAAABUNqGhoUpKSrI6BgAAAAAAAAAAAFApeFgdAAAAAAAAAAAAAAAAAABQ+VC8BgAAAAAAAAAAAAAAAAAodxSvAQAAAAAAAAAAAAAAAADKnUsUr82cOVM2m002m02NGze+ZvuvvvrK3r5q1arlkLB0Sns8rqR69er27AWPmTNnWh2rTCrSscD54uPj1aFDB/n6+trHy5YtW6yO5XAnT57UBx98oLvvvlu1a9eWr6+vbrrpJv35z3/Wpk2byi1Hhw4dirw/r/aYOnVqse/pKz3mzZtXZJ9r167Vo48+qmbNmqlq1aqqWbOmOnfurMmTJ+vUqVPXfUyuPuc46rPJ1T+DAWerLJ8XAKzFuVL541wJwOXc+fc9V+Aqvz9kZmYW+uzp2LGjzp8/f812NptNoaGh5ZbTmRjLsEplPC/Ky8vT7Nmz1aFDB1WrVk0BAQG6++67lZycbHU0pyjuHN/Dw0O1atVScHCwnn76aa1bt87qmKjAKuM8U+Cbb75Rq1at5Onpec22GzduVJ8+fVSzZk35+/srIiJCqamp5ZCyfDEnwQrMQyWbh8rS3pUx3ziHSxSvPffcczLGKDg4uETtH3zwQRlj1KNHDycnK5vSHo8ryc7O1oYNGyRJUVFRMsboueeeszhV2VSkY4Fzpaam6qGHHlKvXr107Ngx7dq1q8L+mPf888/r2WefVVRUlLZu3arjx4/r448/1saNGxUSEqJFixaVW5bExEQZY+yPESNGSJK+/fbbQsujo6MlFf+eLu5xxx13FNnX+PHj1bVrV9WqVUuLFy/WqVOntGfPHk2aNEkLFy5Uq1atrvvLmqvPOY76bHL1z2DAmSrT5wUA63GuVL44VwJwuavNC9nZ2brpppvUt29fC5K5bpZLucrvD3Xq1JExRunp6ZL++J+3o0ePvmK7tLQ0BQYGyhijtWvXlktGZ2MswyqV7bwoLy9P9913n1544QUNGzZMv/32mzZu3KhmzZqpV69e+uqrr6yO6HDFneNfvHhR27Zt0+TJk7Vt2zaFhobqscce07lz5yxOi4qoss0zkpSRkaF+/fpp/PjxOnLkyDXbr169Wrfffrv8/f3166+/as+ePWrRooXuvPNOfffdd+WQuPwwJ8EKzEPXnodK294dMN84h0sUrwFlVb16dYWHh1sdAy7uWuOk4H8MxsTEqHr16mrZsqV+++03tWvXrhxTlowjxvzQoUMVExOjBg0aqFq1aurevbu++OIL5eXl6YUXXnBQUtcxdepUTZ8+Xe+++65mzZqldu3aqWrVqqpVq5b69u2r1NRU3XDDDbrnnnu0bds2q+MCsFBF+rxwJs6/gIqFcyUAKD1jjPLz85Wfn18u+7va+Vd5ZykNV/v9wcfHR4GBgZozZ46+/PLLct+/K2IsA47z2WefafHixXryySc1cuRIBQYGqnnz5vroo4/UunVrPf300w65orGrq1KliurXr6+oqCh9//33euGFF/Tpp5/qoYcekjHG6niA25s4caJuv/12rVu3Tv7+/ldtm5+fr8cff1w1a9bUJ598oqCgINWpU0fvv/++WrZsqWHDhunChQvllNwazEmA45VmHipLe3fFfHP93P+afABwnX777TdJUmBgoMVJnK+4W0RJUnBwsHx9fZWRkSFjjGw2m1NzbNy4scRtS/tXiT/88IP9v3ft2qVXX31VnTp1sl+t5HLVqlXTrFmz9Kc//UmjRo2qcH9tBMBxKtPnBQBrca4EAK7N399fGRkZVseQ5FpZLuUqvz9cqmrVqvr888917733asSIEQoJCVGrVq3Kbf+uyJXGjytlAcpi4cKFkqTIyMhCy202m6KiojRjxgwtWLBAw4YNsyKeZaZPn64ff/xR//rXv/TVV1/poYcesjoS4NY++ugj+fr6lqjtTz/9pF9++UXPPvtsoedUqVJFDz30kGJjY7V48WI98MADzorrcpiTgOtXmnmoLO0rCuab0uPKawAqvby8PKsjWO7s2bPKyclRu3btyvWHY0caOXJkkVt/fPDBB8rNzdXAgQOv+tzu3burYcOGWrp0qXbv3u3MmADcGJ8XANwZ50oAAFdg9e8PvXv31oQJE5SVlaWBAwfq/Pnz5Z4BQMVUcBusevXqFVkXFBQkSUpJSSnXTK7AZrNp5MiRkqT33nvP4jSA+ytNAcj3338vSQoNDS2yrmDZsmXLHBPMTTAnAdevtIVolbFwTWK+KQunF68dP35cY8eOVcuWLeXt7a1atWrpnnvu0fLly0u8jW3btum+++5TQECA/Pz81L1792JP8mfOnCmbzSabzabGjRsrPT1dPXr0kL+/v6pVq6a77rpLqampRZ537NgxjRo1Ss2aNZO3t7fq1q2r/v37F/lr99zcXMXHx6tnz55q0KCBfH19deuttyouLq5ElzP/7LPP7PkKHocPHy7x62ClRYsWFcq9d+9eRUdHq2bNmgoMDFTfvn0L/WVcafti6tSp9vaXXjr+3//+t315nTp1imz/7NmzSk1Ntbfx9Cz7xQRL0r+nTp0q0odTp061P//S5QMGDLBvuyRj7PLXePv27Ro0aJACAwPtyzIzM8t8fJXRtcZJwWv+z3/+U9IfH542m01du3a96nYvndd8fHzUuHFjRURE6NNPP1VOTo6k0s0XFy5c0CuvvKKbb75Z1apVU+3atRUZGal//etf9kIJZ4z5SyUmJkqSXn75ZYdsz1X8+OOPkv74y+5rKWizYsWKMn+elEZJx8jlc8O+ffsUHR0tf39/BQYG6pFHHtHJkye1d+9eRUZGyt/fX0FBQXriiSeUlZV1xf1v27ZNffr0UUBAwFWPqaSfwaU5JsDVWPl5cXm7K50vl/ZcrDQZSvredfZnEYDyx7kS50pASTniXKSk5znF/R4yb948h73Xr/e9eHneS4ufatasWeR3o4KHh4eH9u/fX6oMJT1PLS5LWV//kvZtWbnC7w+TJk1Sr169tHnzZj377LMleg5jmbGMayvNeZFUtt/MS9KvJfmttTQZSqrg/18UFLFdvh9J2rt3b6m3WxEU/D+fVatW6eLFi/blFW0MwPkq+zxTWtu2bZMkNW7cuMi6Ro0aSZJ27Njh9ByuhjkJ14N5CKXBfFNK5jLx8fGmmMVlcujQIdO8eXNTv359k5SUZE6fPm22b99u+vfvb2w2m5k7d26h9sHBwaZRo0aFlu3cudPUrFnTNGrUyHz33XcmKyvLbN682fTq1cs0a9bM+Pj4FNlvcHCw8fPzM926dTMrV6402dnZJj093bRv3954e3ubH374wd724MGDpmnTpqZ+/fpmyZIlJisry2zZssXccccdpmrVqmblypX2tklJSUaS+etf/2pOnDhhjh07Zt566y3j4eFhnnvuuWJzXHo8ubm5ZuzYsaZnz57mxIkTZX5dL+XI/iqwYcMGI8lERUUVWRcVFWVfV/DaLl261Pj6+prOnTsXaV+avjDGGD8/PxMWFlZkOyEhISYwMLDI8iu1L8mxXK40/du7d2/j4eFhdu3aVWQ73bp1M59//rn936UZY8b87zW+4447zPLly83Zs2fNqlWrTJUqVcyxY8eueRxX44zxUp7Kmv9a46TgNc/JybnmtgrmtQYNGpikpCRz5swZc/jwYTNlyhQjycyaNcsYU7rxNGzYMBMQEGC+++47c+7cOXP48GHz3HPPGUlm+fLlpTqWsjh8+LCpX7++GTZsWJm3MWDAADNgwIDryjFixAgjyXz77bdXbFPwnr7SIyYmplD7oKAgI8msXr36mvsfPHiwvc8KlHYOc9acY8z/xmn//v3N2rVrTXZ2tpk/f76RZO655x4TFRVlNmzYYLKysswHH3xgJJkxY8YU2U5wcLAJCAgwd911l0lJSTFZWVlXPKbSfgaX9phKQpKJj48v03Ndgbvnr2ys+Lwo7flyac7FnPGZVZLXCa7LEZ/XsA7nSpwrwbVU1u/XZTkXKe15ztV+D3HEe/16f9+7PO+l54YBAQEmKyurULvJkycXmT8dff5VXBZnnmeWlZW/P6Snp5uAgAD7v48dO2aaNGliJJnPPvvMvjwtLa3Ib5CM5T9U1rFcWef70irteVFZfzMvSb+W9LfW0ma4lrfffttIMs8++2yRdSEhIUaSCQ0NLdU2y6o8f48qyTl+Tk6O/TvJwYMHjTEVcwyUlbv/flhe+ZlnimrUqJGpUqXKFdf37NnTSDKrVq0qsm7nzp1GkunUqdN1ZSiJ8vw9ijnp+rn774fOzM88VNS15qHrbX89nP35xHxTNlf5fpLg1OK1Rx991EgyX375ZaHl58+fNw0bNjS+vr7m8OHD9uXFfYEeOHCgkWQWLFhQaPmBAweMj4/PFYvXJJkNGzYUWr5582YjyQQHB9uX/eUvfzGSChUbGfPHl2IfHx8TEhJiX5aUlGTuvPPOIvsbPHiw8fLyMqdPny6So+B4Tp48aXr37m1iYmJMbm7u/2PvzuOjKs/+j38nKyEJYVEgQFRAwUqVXbAJooKiD1gLTQy41KUKVWSVp64ttC64YJEKblDrrgn0UQtILVCtJgaIsriVRcAiBGSTGJAly/37w19GwkyS2c85M5/365VX65kzM9fMdc113+fMzRmPxwiUVYvXFi5cWGd7bm6ukeSxuMqfXBhj/eI1X/P7zjvvGEnm1ltvrbNvUVGRad++vTl27Jh7mz81ZsyP7/Hbb7/daMz+itWTLaFcjFDb17wNdpdeemmdhQC+1lPHjh3Nz372M499u3TpEvbFa3v37jU9evQw+fn5QfWmSC9e8/aZHjt2bL1fyK5atarR56/9Qnb69Onubf72sHD1HGN+rNPFixfX2d6tWzcjyfz73/+us71jx46ma9euHo9f+5pKSkoafU3+jsH+viZfcPIGkWTFeOHvfNmfuVg4xixjWLzmZE4/+RTrmCv9GAdzJdhBrB5fBzIX8Xee09D5kFB81oM5v+ctloYW/BQUFBiXy2Wuv/76oGIIZJ4aznlmIKw+/3Di4jVjfliolpiYaFJTU81//vMf97YTz0FSy7Fdy7Ha7/3l77wo0HPmvuTV13Ot/sbQmMOHD5vevXubxMREM3v2bLN3717z3//+14wdO9a0bdvWSDIDBgzw6zEDZbfFa99//73HF7fRWAOBcvr5w0jFT5/xFMzitY0bNxpJEalzuy1eoyc1zOnnD8MZP33IE4vX6Df+amjxWlh/NvSNN96QJA0dOrTO9uTkZA0aNEiHDx/WO++80+Bj/OMf/5AkDRkypM72du3aqUuXLvXeLzU1VT169Kiz7eyzz1a7du20bt067dy5U9IPl9uLi4vTsGHD6uzbtm1bdevWTR9//LH7MujDhg3z+nOn3bt3V2VlpT7//HOvsWzYsEH9+vVTXFycHn/8ccXHxzf4mp2gb9++df47KytLklRWVuaxr6+5sJo/+b3kkkt09tln6/nnn9e+ffvc2x999FGNGzdOiYmJ7m3+1Njxzj333FC8LIRYbV+77LLLPG5bsmSJJk6cKMm/err00kv14YcfavTo0VqxYoX7sp0bNmzQBRdcEIZX8YNDhw5pyJAhOuuss/TKK69ERW86Ubt27SSpzue0PrX71N6nVrh6WKBjSp8+fer8d228J25v3769154sSU2aNFG/fv3qbPP2mvwdgwN9TUA08nW8CHS+7MtcLBxjFoDowlyJuRIQKH/mIv7Oc3w5HxLMZz2cn8UDBw4oLS1NkrRy5Updd911Ov/88/XMM89ELIZa4Zxn+suu5x/69++vGTNm6NChQ8rLy9Phw4e97kctU8tonL/zokDPmfuSV1/PtQYaQ32aNGmid999VxMmTNCMGTOUmZmpfv36yRjj/snktm3b+vx40aR2/pyYmOj+edVorAGEF33Gf82bN5f0w1zsRLXbaveJJfQkBIo+BH/Rb/wTtsVrR48eVXl5uZo0aaL09HSP29u0aSNJ2rVrV4OPUVFRoSZNmrgPlo/XunXreu9b32Bbe5/du3e7Y6ypqVFGRkad34x1uVxavXq1JGnTpk2SpPLycv3+97/X2WefrRYtWrj3+9///V9J0vfff+/xfN9++61+8YtfqEOHDlqyZIlefvnlemN2koyMjDr/nZSUJEmqqanx2NeXXNiBv/mdOHGivv/+ez355JOSfvhd+H/9618aPXq0ex9/a+x4qamp4XqpCFBjfe14/tTTnDlz9OKLL2rLli0aNGiQmjVrpksvvdR9ci4cqqqqlJeXp/bt2+uFF16wzYnjYMyePVuPP/54nW0DBw6UJJ9+n3vdunWS5LFgMFw9LJAxRZKaNWtW57/j4uIUHx+vpk2b1tkeHx/vtSdLUqtWreRyuTy2nzhG+jsGB/qagGjj63gRzHy5sblYuMYsAM7FXIm5EhBKwc5FGprn+HI+JJjPeiQ+i9u2bdMVV1yhrKws/ZCeT+0AACAASURBVN///Z/7/YlUDOGcZ/rL7ucfxo8fr/z8fH322We67bbbPG6nlqllNM7feVEw58x9yasv51qDiaEh6enpevTRR7V161YdO3ZMO3fu1Jw5c9yLRHr16uXX40WLoqIiSdJ5552nxMTEqK4BhAd9JjBnnnmmJHldgLBjxw5JavBCMdGKnoRA0IcQCPqNf8K2eC05OVkZGRk6cuSIKioqPG7/5ptvJDX8L02Sk5OVnp6uI0eO6ODBgx6379+/v9777tu3T8YYj+21J85bt26t5ORkNW/eXAkJCaqsrJQxxuvfhRdeKEm6/PLLdd999+nmm2/Wxo0bVVNTI2OMZs6cKUleny8hIUHLli3TW2+9pbPPPls333yzSktL6407GvmSi1pxcXE6duyYx74HDhzw+tjevlAIlL/5vfrqq9WmTRvNnj1bR48e1WOPPabrrrtOLVq0cO/jb40hPEJVJ431teP5U08ul0vXXnutli1bpgMHDujNN9+UMUYjRozQn/70p7C8ljFjxujo0aMqLCxUQkKCe/vpp5+uFStWhOQ57GDMmDFKSEhw/+vG+hQVFamsrEyXX365TjnllDq3+dPD/BHImBIq5eXlXrefOEb6OwZb+ZqAUIj0eBGK+XKwMUj+f3ZDOf8CYC3mSt4xVwKCF855TrDC/VmsqKjQsGHDVFlZqUWLFqlly5ZBx+Dv/MtO778Tzj/MmzdPXbt21XPPPaeXXnqpzm12ei9PRC1b+/7jR/7Oi8J9ztyXc62RPm9f+8XliBEjQvJ4TlJTU6M5c+ZIksaOHSspNmsAwaHPBKb2sT/++GOP22q3DRo0KGzPb0f0JASKPgR/0W/8F9afDR0+fLgkafHixXW2Hz16VMuXL1dKSorHZRVPVPszR7WXYay1d+9ebdiwod77HTlyxGOR2KeffqqysjJ1795dmZmZkn44WKiqqlJxcbHHYzz88MM65ZRTVFVVperqahUXF6tt27YaP368Tj75ZPfBdn2XlJd++Jc27du3V1pamv7+978rLS1Nv/jFL2zzU5mR4GsuJCkzM9O92r/Wrl27tG3bNq+P3bRp0zqL3bp27apnn33Wr/gSEhL0+eef+53f5ORk3Xrrrdq9e7cee+wxvfLKK5owYYLHfr7WGMInFHVSq7avvf322x639ezZU5MmTfK7XzRv3lzr16+X9MNlQy+++GK9+eabcrlcHv0zFK9l2rRp+vzzz/XWW28pOTnZr/s6TZcuXTR16lStXr3a46ctan3//feaOHGiWrVq5XE1Esm/HuaLQHtOKB08eNB99ZRa3l6TP2NwoOMkYCeRHi+O3y+Y+XIwMQTy2Q3l+wTAWsyVvGOuBIRGOOc5gQr3Z7G6ulojR47U+vXr9be//a3OlSxyc3P15ptvRmz+ZYf33ynnH9LS0vS3v/1Nqamp7l9YOJ4d3ssTUcvWvv/w5O/3OOE8Z+7rudZQx7B3717FxcV5/DTtd999p3nz5mnkyJExeYWju+66S6tWrdLw4cOVl5fn3h6NNYDwos/4b+DAgTrrrLO0YMECHTlyxL29urpar7/+urKysjx+ljva0ZMQDPoQ/EG/8V9YF69Nnz5dHTt21MSJE7Vo0SJVVFRo48aNuuqqq7Rz507NmjXLfWnv+jz44INq2bKlJk6cqKVLl+rgwYP64osvdM0113i9JGOtjIwM3X333SopKdGhQ4f00Ucf6ZprrlFSUpJmzZpVJ8bOnTvrxhtv1JIlS1ReXq79+/frmWee0R//+EfNmDFDCQkJio+P1wUXXKBdu3bp0Ucf1d69e3X48GG9++67evrpp316P0477TQtWLBAe/bs0YgRI3T06FHf3kiH8zUXknTJJZeorKxMs2fP1sGDB7V582ZNmDCh3n+t36tXL23cuFFff/21SkpKtGXLFg0YMMDvGAPN76233qqUlBTde++9Gjx4sE4//XSPfXytMYRPIHXy1VdfKT4+vs7lMaUf+9qkSZO0ePFiVVRUaPv27br11lu1c+dOTZo0KaB6+s1vfqNPPvlER48e1e7du/XII4/IGKOLLroo6NdyvOeff15/+MMftHLlSqWnp3tcCnTz5s0+P5ZT3Hvvvbrrrrs0duxYTZ48WZ9//rmOHj2qAwcOaNGiRcrJydGuXbv0zjvvqFOnTh7396eH+SoUY0owUlNTddttt2nlypUNviZ/xmCrXxMQCpEeL47fL5j5cn3CNWaFav4FwB6YK3lirgSERjjnOYEK92dx0qRJevvtt/Xss896/MxyMDEEMv+y+v132vmHbt261buQ2+r30htq2dr3H578/R4n3OfMfTnXGo4YjDG64YYb9OWXX+ro0aNatWqVLr30UrVp08Z95Y1oV1NTo927d+utt97SoEGD9Mgjj+jGG2/UK6+8Uufqi9FaAwgf+oz/4uLi9Je//EX79+/XDTfcoF27dmnfvn0aO3asNm3apLlz56pJkyZhe347oCchlOhDaAj9JgTMCQoKCoyXzQHbu3evmThxounYsaNJTEw0GRkZZsiQIWb58uXufR599FEjqc7fPffc4759w4YN5he/+IVp1qyZSUlJMX379jWLFi0ygwYNcu//61//2r1/9+7dTfv27c0XX3xhhgwZYtLT001KSooZOHCgKSoq8ohx3759ZvLkyaZTp04mMTHRnHzyyeaSSy4xS5curbPfnj17zJgxY0xWVpZJTEw0bdq0Mddff72588473XH07t3bvPbaax6vZ+bMmaakpMRj+9VXXx3U+xvqfKWmpnrE+Oijj3qNvTZHJ24fOnSo+/H8zcWBAwfMTTfdZDIzM01KSorJyckxpaWlpnfv3u7Hv+OOO9z7r1+/3gwYMMCkpqaarKwsM2fOnAZfS31///nPf3zO74luvvlmI8n8+9//rvd99aXGvL3HocytMaGvl0gLNP766uSNN97w+p6XlJSYrVu3mri4OONyucwnn3xS5/FO7GuZmZlm5MiRZuPGje59/KmntWvXmjFjxpif/OQnpmnTpqZly5amf//+Zu7cuaampsan1+KroUOHNvp5KCkp8fs9zs3NNbm5uX7fzxhj/vrXv3qNo6Kios5+3j7Tbdq08fl5SktLzXXXXWdOPfVUk5SUZNLT002fPn3M/fffbw4cOOD1Pv70sHD1nPr6b2lpqcf26dOnmw8++MBj+9SpU+uMte3btzerVq0yF154oUlLS2uwL/szBgfaRxsiyRQUFPh1Hztxevyxxorxwtt+3ubLgc7FQj1mNfQ+wf6CGa9hHeZKzJVgT7F2fB2quYiv85wTYwvVZ90Y3z+L9Z2v9DY3vPrqq81HH33UaH974403/Iqhlj/z1OPPNYZzntkYu5x/2LNnj8fzNtRrb7nlFtOqVSuP7dRy7NZyrPX7YPj7PU6g58wby6s/51p9/W7IV0uXLjU///nPTdu2bU1KSor56U9/au677z7z/fffB/R4gZIicz7K2xzf5XKZjIwMc/bZZ5tbbrnFfPzxx/XePxprIBCRyle4RDJ++owxCxcurHd8njt3rtf7rF692lx22WWmWbNmJi0tzVx00UVej2/DJVLno+hJoeH084fhjp8+5H8fCqRvhUI4xyf6TeAaOD4pdP3/F+dWWFio/Px8nbDZUXr06KG9e/dq+/btVocSdnbPVyzk4q9//avmzJmjjz76yOpQGmX3emmM0+OPZrWXO50/f77FkYRWLPQwu3O5XCooKNCVV15pdSgBcXr8AKJLtI7XsA5zJcQypx+fOj1+xC7mM4g0p/dLp8ePwHA+ylmcni+nx4/wY/7mLE7Pl9PjR+gwPtlTA8cn88P6s6FALHj66ac1efJkq8MAAAAAAAAAAAAAAAAAHIXFa4Cf5s2bp+HDh+vgwYN6+umn9e2337JiFwAAAAAAAAAAAAAAAPBTVC1emzFjhlwul9atW6cdO3bI5XLp3nvvtTqsmBTtuXjzzTfVokULPfXUU3r99deVkJBgdUiIcS6Xq9G/adOmWR2mY0R7DwMAAAgGcyUAiF2cfwAQa+h7AMKNPgPAavQh2EFUrbiZMmWKpkyZYnUYUHTn4qabbtJNN91kdRhAHV5+FxpBiOYeBgAAECzmSgAQuzj/ACDW0PcAhBt9BoDV6EOwg6i68hoAAAAAAAAAAAAAAAAAwBlYvAYAAAAAAAAAAAAAAAAAiDgWrwEAAAAAAAAAAAAAAAAAIo7FawAAAAAAAAAAAAAAAACAiEuo74bCwsJIxoEAlZSUSCJf8E1tvTgd9W4/27dvl0RuAG+ipfcCcD7GawAInWiZ4zEmwGmYzyDS6PdwqmipXTgD9YaGMH9zlu3bt6tDhw5WhxGU7du3U2+QxPhkRw3lxGWMMcdvKCwsVH5+ftiDAmCdEz72jkF/AmJTQUGBrrzySqvDCIjL5bI6BAAAAIQRx9cAEBvo9wDCifOfAOwkNzdX8+fPtzqMgOTl5WnBggVWhwGgEV6Or+bXe+U1px6MwTuXy+XoyS9CI1pOVtCfolNtfZJfHC8aTn4w/gKIJozXAPADjq+BwDGfgJPQ72GVvLw8SXLs4gH4jvOfsBO+T0bt+ONkTl58F8voP7GhoeOruAjHAgAAAAAAAAAAAAAAAAAAi9cAAAAAAAAAAAAAAAAAAJHH4jUAAAAAAAAAAAAAAAAAQMSxeA0AAAAAAAAAAAAAAAAAEHEsXgMAAAAAAAAAAAAAAAAARByL1wAAAAAAAAAAAAAAAAAAEWe7xWsHDx7UGWecoWHDhlkdCgB4RZ8CAPiC8QIAACCymH8BgPXoxQAihX4DwA7oRUBo2G7xmjFGNTU1qqmpsTqURqWlpSknJ8fqMCDrc2H18yOy6FMIhtU5sfr5gVjCeAEAgbG6J1n9/AACx/wL0czqmrH6+eEc9GLUx+r32+rnR+jRb+Avq/Ng9fMjPOhF8Mbq99rq5w9EgtUBnCg9PV2bN2+2OgwAYXbjjTfqtNNO01VXXaXTTz/d6nD8Qp8CYs/o0aPVrl07XXXVVerSpYvV4cAhGC8AAEC4ffbZZ7rnnns0atQo/fznP1fTpk2tDslSzL8ARLMJEyYoPT1do0aNUrdu3awOp170YsCZHnzwQe3evVujRo1Sv379rA7HJ/QbIHoVFhbq7bff1qhRozR48GDFx8dbHVK96EVAaNjuymsAYsOnn36qqVOn6owzzlDPnj01c+ZMlZWVWR0WAHj1xRdf6A9/+IO6du2qs88+W4899ph27NhhdVgAAACIcZWVlfr73/+uUaNGqVWrVho1apQWLVqkyspKq0MDAITYli1b9MADD+inP/2pfvKTn+ihhx7Sf//7X6vDAhAlvvnmG82aNUv9+/dXVlaWfve73+mLL76wOiwAMaqiokIvvPCCLr30Up188skaN26cPvzwQxljrA4NQJjYavHam2++KZfL5f47cuSI1+1fffWV8vPz1bx5c7Vq1UrDhg2rs5p1xowZ7n07dOig0tJSDRo0SOnp6WratKkuvPBCFRcXu/e///773fsff+m8f/zjH+7tJ510ksfjHzp0SMXFxe59EhJsdyE7W9m3b58mT56szp07KykpSS1atNBll12md999171PqHNBLTjDunXrdMcdd6hDhw7q16+fZs2apT179lgdllf0qdhAv0JDPv/8c911113Kyspy96zdu3dbHRZshvECQLRjvgTYz5EjR/S3v/1Nl19+uVq2bKlrr71WCxcuVHV1tdWhRQTzL9gB4yMiZf369fr973+v0047Td27d9esWbO0a9cuq8OiF0cB+ljsMsYoKSlJkrR9+3Y98sgj6tatm8444wxNmzbNdlcVot9EL/oQpB96Uu378+233+rZZ59Vdna2MjMzNWHCBBUVFVkc4Q/oRc5Gv7EZc4KCggLjZXNEXXHFFUaSOXz4sNftV1xxhfnwww/NwYMHzdKlS01KSorp27evx+N0797dpKammvPOO8+9f2lpqTnnnHNMUlKSee+99+rsn5qaarKzsz0ep3fv3qZVq1Ye2+vbv9aFF15oWrZsaUpKSnx96WEjyRQUFFj2/Dt37jQdO3Y0bdq0MQsXLjTl5eVmw4YNZsSIEcblcpm5c+fW2T/UuaAWfmCHz3etPn36GEkef/Hx8SY+Pt7ExcWZCy+80LzwwgumoqLCGGOv+OlToWeX/NKv7FMTxlg/ftXKzs722rNcLpdHz/ruu+/c97NL/LAO4wWijV3Ga1iL+RI9Efbph6tXr/Y6T5VkkpKSjCRz8sknm/Hjx5sPPvjAfT+7xB8OzL/sL1rrj/ExOmvWTvU6bNiwRs9N9O/f3zzzzDOmvLzcGGNd/PTi4OXm5prc3NyIPid9zJp82+X84bhx49zzxxP/EhISjCRzzjnnmMcff9zs2rXLfT+r46ffhJbV+aQPWV8HVow/3sydO9fde+o71j399NPN1KlTzcaNG933syp+elHwIt1/6DfW5LqB45NCW115zVc33XSTzjvvPKWmpmrw4MEaOnSoSktLtXfvXo99Dx06pCeffNK9f58+ffTyyy/r2LFjmjBhQljjrKmpkTGGy1dKuuuuu7R161Y9/vjjGjZsmJo1a6YuXbro1VdfVWZmpsaPH69vvvkmrDFQC85QXV2t6upq1dTU6P3339cNN9zgXoG+YsUKq8PzGX3KuehX1IQ/jDFee9bQoUM1f/58q8ODAzBeAHAi5kv0RDjDsWPHJEl79uzR008/rQEDBqhDhw668847VVZWZnF01mH+hXBhfKRmrXL8uYnS0lLdeuutOumkk/Q///M/ev/9960Ozyt6sT3Rx2Ir3/6oqqqSJH366ae6/fbb1a5dO5133nl69tlnLY6scfQbZ6EPUQe+qD3W/fLLL/Xggw+qS5cu6tq1qx5++GH3lc/shl5kP/Qb++XakYvX+vbtW+e/s7KyJMnribfU1FT16NGjzrazzz5b7dq107p167Rz586wxfnee+9p//79Ou+888L2HE7xxhtvSJKGDh1aZ3tycrIGDRqkw4cP65133glrDNTCj46/TKlVf59++mmjcdaedDl27JgWL16smTNnSpKmTZumysrKcL9NQaFPORf9yn41kZ+fb3nP+uijjxqNs7ZnVVZW6u2339aVV14pSSooKHAfTAEnYrwA4ETMl+iJ+JHV89RevXr5FGftfHTHjh16+OGHNWnSJEnSBx98ELb3xq6YfyFcGB+ju2at7vcul0slJSWNxln7D4MrKyu1ZMkSzZkzR5J0++236/Dhw+F+m3xGL7Yn+ph1+bbD+c8nnnii0TiPXyy7cuVKjRkzRpL01FNP6dtvvw332xQQ+o2z0IfsUQf/+te/LO9Jt9xyi0+x1n5fvHHjRt15551avHixioqKbPdTx/Qi+6Hf2C/XDvhhU08ZGRl1/rv2N9hramo89m3evLnXx2jdurXKysq0e/duZWZmhj5IuB09elTl5eVq0qSJ0tPTPW5v06aNJGnXrl1hjYNa+FFhYaHVIeiee+7Rpk2bGt0vISFB1dXVSklJUZ8+ffT+++/r3nvvtf3vMtOnnIl+ZU+TJk2yfPI0depU/ec//2l0v7i4OBlj1KRJE40YMUKvvPKKcnNz3T0AOBHjBQCnYb4E1GX18fXWrVt1xx13+LRvYmKiKisrdcYZZ6hXr14qKCjQgAEDwhyh/TD/QjgwPkY/q/u9JM2cOdOnBWzx8fGqqalRUlKSevXqpZKSEk2fPt1W5yboxfZDH7OWHc5//vWvf9Xy5csb3a92YUlcXJwuvvhiLVmyRDfeeKNatGgRgSj9R79xDvqQffz0pz/VbbfdZmkM7777rubOndvofi6XS/Hx8aqurla/fv109OhRdejQQZ07d45AlL6jF9kL/cae7L36IwT27dsnY4xcLled7bt375b0Q+JrxcXFeb0yyoEDB7w+9omPCe+Sk5OVkZGh8vJyVVRUeDSA2ssttm3b1r0tHLmgFn6Ul5dndQh65JFH6r0tPj5e0g/v68UXX6yRI0fql7/8pRYvXqz333/f9gvX/EVt2gf9yp769+9ved+aNWtWvbd561kjRoxQWlqaXnnlFfftQLDoDQDsgPkSUJfV89Q1a9Y0uHgtKSlJx44dU+vWrTVy5Ejl5eUpJydHhYWFKigoiGCkzkSvga8YH6Of1f1ekl588cV6b6tdSGKM0fnnn6/rr79ew4cP15IlS1RSUmKrhWv+oq4jgz5mLTuc//zggw/qXbzmcrmUkJCgqqoq9e3bV1dddZVGjRql1q1by+VyKTk5OcLRhkes1p9d0Ifso3Xr1pb3pPLy8gZvr/3HWZ07d9bVV1+ta6+9Vp07d7Y87lCgBsOPfmNPjvzZUH8cOXJEpaWldbZ9+umnKisrU/fu3eusVMzMzNSOHTvq7Ltr1y5t27bN62M3bdq0ToF07drVEb/vboXhw4dLkhYvXlxn+9GjR7V8+XKlpKRoyJAh7u3hyAW1YG+1K+NdLpf69u2rxx57TDt37tTbb7+tX/3qV0pNTbU6xLChNu2FfgVfHN+zevfu7dGz0tLSrA4RUYjeAMAumC8B9lb7D77S09OVn5+vpUuXateuXZo1a5ZycnIsjs5Z6DXwB+MjIs3lcikxMdHjfOq//vUv/epXv/J6FQknoq4jhz6GE9XOK8844wzdfffd2rx5s1auXKkJEybU+UI9WlB/1qMPoSGJiYmSpHbt2umWW27R6tWrtWnTJk2bNs12V1oLBjUYGfQb+4n6xWsZGRm6++67VVJSokOHDumjjz7SNddco6SkJI+rqFxyySUqKyvT7NmzdfDgQW3evLnBCVivXr20ceNGff311yopKdGWLVvq/NzCRRddpFatWmnFihVhfY1OMH36dHXs2FETJ07UokWLVFFRoY0bN+qqq67Szp07NWvWLPflF6XQ50KiFuwqISFBLpdLffr00cyZM7Vz506VlJRowoQJOumkk6wOLyKoTXuhX1ETDak9YdOrVy899thjKisrc5+wiZWeBevQGwDYBfMleiLsp/YfVjRt2lQjR47UkiVLtH//fr344osaPHiwI//FrR3Qa+APxkdqNlJqz01069ZN06dP17Zt26J6MQl1HTn0sdjKtzdVVVXuKzV26tRJv/vd77Rx40Zt2LBB06ZNU8eOHS2OMLyoP+vRh6iD49XU1LgXrJ100kkaO3asVq5cqR07dmjWrFnq2bOnxRGGBzUYGfQbG+banKCgoMB42RwRb7zxhpFU5+/qq682JSUlHtvvueceY4zx2D506FD343Xv3t20b9/efPHFF2bIkCEmPT3dpKSkmIEDB5qioiKP5z9w4IC56aabTGZmpklJSTE5OTmmtLTU9O7d2/34d9xxh3v/9evXmwEDBpjU1FSTlZVl5syZU+fxBgwYYFq0aGE+/PDDML1jvpNkCgoKLI1h7969ZuLEiaZjx44mMTHRZGRkmCFDhpjly5d77BvqXFALP7Dy832i/v37mzPPPNM8+OCDZuvWrT7dxw7x06fCxw75rUW/skdNGGOP8csYY84//3xzxhlnmPvvv99s3rzZ5/vZJX5EHuMFopWdxmtYi/kSPTHW2aUfrl692iQnJ5srrrjCzJ8/3xw+fNin+9kl/lBi/uUc0Vh/tRgfo69m7VSvl19+uTnttNPM1KlTzfr16326T6TjpxeHTm5ursnNzY3489LHIp9vu5w/HDdunGnbtq2ZMmWKWb16tc/3syp++k142KEe6UPW1oFV48+J5s6da5o1a2Z+/etfm+XLl5vq6mqf7hfp+OlFoWNF/6HfRD7XDRyfFLqMMUbHKSwsVH5+vk7Y7Eg9evTQ3r17tX37dqtDsZzL5VJBQYGuvPJKq0OxBLXwAzt9vsvKytSuXTu/7mOn+EOF2vxRNOY3ENREXXYZvwLpWZJ94ofz0RtgF4zXsAN6IuzALv3w4MGDqq6uVkZGhl/3s0v8dkavCR/qLzyo2fCwU73G4vnUWK7rvLw8SdL8+fMtjiRyYjXfdjl/uHPnTrVp00Zxcf79aJdd4g9WrNbfiaIln4GiDuwz/uzdu1fNmjVzXw3SV3aJP1CxXIOx1n9iNdcNHJ/MT7AiIAAIZBEIAFiFngUAAAA7SktLszoEAECEcG4CQDhlZmZaHQIAuJ100klWhwAgwvxbPg8AAAAAAAAAAAAAAAAAQAhE5eK1GTNmyOVyad26ddqxY4dcLpfuvfdeq8OCBagF2BW1iRNREwC8oTcAwI/oiQAigV4Dp6FmEY2o69hCvmEl6g8SdQDrUYOxg1zXLyp/NnTKlCmaMmWK1WHABqgF2BW1iRNREwC8oTcAwI/oiQAigV4Dp6FmEY2o69hCvmEl6g8SdQDrUYOxg1zXLyqvvAYAAAAAAAAAAAAAAAAAsDcWrwEAAAAAAAAAAAAAAAAAIo7FawAAAAAAAAAAAAAAAACAiGPxGgAAAAAAAAAAAAAAAAAg4hLquyEvLy+ScSACZs6cqfnz51sdBiy0fft2q0MICfpTdKqtT/KLaMP4CyCaMF4DwA84vgYCx3wCTkK/h1VWrFghidzBGTj/GV3IZ2xbsWKF+vfvb3UYQVmxYgXjp0PRf6JfQ8dXXHktRuTm5qpDhw4e27dv364FCxZYEBEA1NWhQwfl5uZ6vW3FihXuEzYAAMA6DY3XAAKzYMGCqPliHAB8Ud98gn4IAABgLb5PBmCV+vpPfTh+jD71XnmNFY2xobCwUPn5+eQ7RtTm2+mo19hT+y8kyH3scblcVocQtEmTJunKK6+0OgwAAGBTLpeL+YIDcXwNhB79EHZEv4dVOB8aOzj/CSfg++TYEQ1XLOvfvz+1GgM4fnSmho6vuPIaAAAAAAAAAAAAAAAAACDiWLwGAAAAAAAAAAAAAAAAAIg4Fq8BAAAAAAAAAAAAAAAAACKOxWsAAAAAAAAAAAAAAAAAgIgLyeK1l19+WS6Xy/2XRS6J+AAAIABJREFUlpbmdb///ve/+vnPf67vvvtOe/furXOfnj176siRIx73OXE/l8ulPn36hCJsW3j77bfVpUsXJSQk1LvPnXfeqYKCgnpvO/696d+/f7hCdSPfgXNivmMJNesp2Jp1CnLvKVZybzeMsYGzsmbJhyfyYS/kw17Ih704/RiNnP4oJyfH43XV/k2cOLHOvsxjnYU6/xF1bh/U5Y+oy+hGrf/IabVO7jz5MvevtXbtWg0dOlTNmzdXenq6Bg8erOLiYo/97JBrJ6NOPUVrnZJrT9Gaa6ejVj1FY62SZ0+2+F7YnKCgoMB42dygl156yUgyTz31VL37rFmzxpx00knmiSeeqLO9tLTUSDKSzJgxY+q9f0lJiWnVqpVfcdnZl19+aS6//HJzzjnnmGbNmpn4+PgG9+3YsaO59957G3zM+Ph4069fP7/iIN+R4eR820k446dm6wpHzQYjNzfX5ObmhuWxyX1ddsu9JFNQUBC2xw83f+NnjPWf1TVLPuoiH/ZCPuyFfNiLXY7RjAl8vkNO68rOzna/7hP/JkyYUGffUHzGOL6ODOq8rkjXeaQ55fiPuqwr2uvSKf2yPsHET63XFelaD+Z8KLmry5+5vzHGrFixwqSkpJj8/HxTVlZm9uzZY26++WaTkJBg3nnnHY/HDjbXThn/6sPxTGjYvU4ZT0LH7rkO5/dxkcD4GTp2r1XGn9CI9DnrBsaTwogsXisvLzcdOnTwmuTS0lKTnJxsWrVqZSSZV1991etjRFsRjBo1ykyfPt1UVlaa9u3bN/phX7t2rXG5XA1+AO2yeI18e3Jyvu0kXPFTs57CUbPBCNdkmdx7slvuY+3kDWOs/6ysWfLhiXzYC/mwF/JhL3Y5RjMmsPkOOfWUnZ1tSktLfd4/2M8Yx9fhR517inSdR5oTjv+oS0/RXpdO6JcNCTR+at1TpGs90POh5M6TP3P/6upq061bN5OZmWm+//579/aqqirTtWtXk5WVZY4cOVLnPsHm2gnjX0M4ngkNu9cp40no2D3Xsbp4jVr1ZPdaZfwJjUifs7Z88do999xjEhISzI4dOzxuKy0tNRkZGeYf//iHiYuLM+np6WbDhg0e+0VbERz/ofWlCIwxJi8vz3To0MFUVlZ6vd0ui9fItycn59tOwhU/NespHDUbjHBNlsm9J7vlPtZO3jDG+s/KmiUfnsiHvZAPeyEf9mKXYzRjApvvkFNP/n6hbExwnzGOr8OPOvcU6TqPNCcc/1GXnqK9Lp3QLxsSaPzUuqdI13qg50PJnSd/5v7vvvuukWTGjRvncdu0adOMJLNgwQKP24LJtRPGv4ZwPBMadq9TxpPQsXuuY3XxGrXqye61yvgTGpE+Z93Q4rU4hZkxRvPmzVO/fv3Url27evcbMmSI7r33XlVUVCgvL8/r78hGk5SUFL/vM3z4cG3fvl2LFy8OQ0ShQb69i9Z8RwNq1rtYqFly710s5N6pqFnvrKpZ8uEd+bAX8mEv5MNenDznIaehY5ecwhN1HjrUeehQl6FDXdobtR46ka51cuedP3P/f/3rX5KkPn36eNxWu2358uUet9HXfEedeheNdUquvYvGXDsdtepdtNUqefbOTudIw754bd26dfrmm2/UvXv3RvedOnWqLrnkEn3yyScaN26cT4+/b98+TZ48WZ07d1ZSUpJatGihyy67TO+++657nzfffFMul8v999VXXyk/P1/NmzdXq1atNGzYMG3evNnjsffs2aPx48frtNNOU1JSkk4++WSNGDFCa9eu9f0NCKEePXpIkt555x1Lnt8X5Dt0nJDvaEDNho7Tapbch47Tcu9U1GzohKJmyUfokA/yQT7qRz6iLx+hQE7r99JLL6lHjx5KTU1VRkaGBgwYoFdffbXe/e2SU3iizutHnVuHuqwfdRldqPX62b3WyV3w1q9fL0nq0KGDx23t27eXJG3cuNHjNvqa76jT4DmlTsl18JySa6ejVoPnhFolz6ETtrz5cZm2ejX0E1e1tz344INe71t7+b1ae/bsMVlZWUaSefnll93bvV1+b+fOnaZjx46mTZs2ZuHChaa8vNxs2LDBjBgxwrhcLjN37tw6+19xxRVGkrniiivMhx9+aA4ePGiWLl1qUlJSTN++fevsW1ZWZk499VTTpk0bs3jxYlNRUWE+++wzM3DgQNOkSRPz4Ycf+vUeNcTXy++Vl5cbSWbAgAFeb7fDz4aS78Y5Ld92Eo74qdnGhapmgxGOyxST+8bZIfeKscvmM8YGJ5I1Sz4aRz7IB/moH/mIznxE6mdDyal32dnZ5tprrzUff/yxOXjwoFm/fr259tpr6/3ZCmOC+4xxfB1e1Ll3ka7zSLP78R916V2016Xd+2Vjgjn/T63XFelaD+R8KLlrXGNz/4svvthIMitWrPC4bdOmTUaS6dWrl8dtweTa7uNfYzieiY06ZTyJnVzH4s+GUquNs2OtMv7Y9xxpQxr62dCwL1575JFHjCQzZ84cr/c9sQiM+SHhiYmJJjU11fznP/9xbzuxCK6//nojybz22mt1th85csS0a9fOpKSkmF27drm31xbBwoUL6+yfm5trJJk9e/a4t1133XVGknnllVfq7Ltz506TnJxsevfuXd/b4Tdfi8AYY1wulzn99NO93maHxWvku3FOy7edhCN+arZxoarZYIRjskzuG2eH3MfqyRvG2MBEsmbJR+PIB/kgH/UjH9GZj0gtXiOn/jn33HPrPYFqTOCfMY6vw4s690+46jzS7H78R136J1rq0u79sjGBxE+t+ydctR7I+VBy17hgvnzfuHGjkVRvPIHm2u7jX2M4nomNOmU8iZ1cx+LiNWq1cXasVcYf+54jbUhDi9fC/rOhtb8Bm5iY6PN9+vfvrxkzZujQoUPKy8vT4cOHve73xhtvSJKGDh1aZ3tycrIGDRqkw4cPe71UXd++fev8d1ZWliSprKzMve3NN99UXFychg0bVmfftm3bqlu3bvr444+1fft2n19TqCQkJNT7ftgB+Q4tu+c7GlCzoeWkmiX3oeWk3DsVNRtawdYs+Qgt8kE+yEf9yEd05SMUyKl/cnNzJUkLFy70ersdcgpP1Ll/qPPIoC79Q106F7XuHzvVOrkLXvPmzSVJhw4d8ritdlvtPieir/mGOg2eU+qUXAfPKbl2Omo1eE6oVfIcWuHIW9gXrzVp0kSSVFlZ6df9xo8fr/z8fH322We67bbbPG4/evSoysvL1aRJE6Wnp3vc3qZNG0nSrl27PG7LyMio899JSUmSpJqamjqPXVNTo4yMjDq/O+tyubR69WpJ0qZNm/x6TaFQVVWllJSUiD+vr8h3aNk939GAmg0tJ9UsuQ8tJ+XeqajZ0Aq2ZslHaJEP8iGRj/qQj+jKRyiQU/9kZmZKknbv3u31djvkFJ6oc/9Q55FBXfqHunQuat0/dqp1che8M888U5K8fgm8Y8cOSVKXLl283pe+5hvqNHhOqVNyHTyn5NrpqNXgOaFWyXNohSNvCSF9NC9qJ+7l5eV+33fevHlau3atnnvuOXcx1UpOTlZGRobKy8tVUVHhUQjffPONpB9WHPorOTlZzZs318GDB3X48GElJIT9bfLJd999J2OM+z21I/IdOk7IdzSgZkPHaTVL7kPHabl3Kmo2dEJRs+QjdMgH+Tge+aiLfERfPkKBnPqn9l+rtm7d2uM2u+QUnqhz/1DnkUFd+oe6dC5q3T92qnVyF7wLL7xQ9913nz7++GP96le/qnPbxx9/LEkaNGiQx/3oa76jToPnlDol18FzSq6djloNnhNqlTyHTrjyFvYrr/30pz+V5H2VZWPS0tL0t7/9TampqXryySc9bh8+fLgkafHixXW2Hz16VMuXL1dKSoqGDBkSQNTSiBEjVFVVpeLiYo/bHn74YZ1yyimqqqoK6LEDVbsqtfY9tSPyHTpOyHc0oGZDx2k1S+5Dx2m5dypqNnRCUbPkI3TIB/k4Hvmoi3xEXz5CgZx6mjdvnnr37u2x3RijwsJCSdLll1/ucbtdcgpP1Lkn6tx61KUn6jI6UeuenFLr5C54AwcO1FlnnaUFCxa4f15Mkqqrq/X6668rKyvL4yfBJPqaP6jT4DmlTsl18JySa6ejVoPnhFolz6ETrryFffFa9+7d1bp1a61bty6g+3fr1k3PPPOM19umT5+ujh07auLEiVq0aJEqKiq0ceNGXXXVVdq5c6dmzZrlvgyfv6ZPn67OnTvrxhtv1JIlS1ReXq79+/frmWee0R//+EfNmDGjzsrGa665Ri6XS1u3bg3o+Xyxdu1aSdIll1wStucIFvkOHSfkOxpQs6HjtJol96HjtNw7FTUbOvXVrD/PTT5Ch3yQjxORjx+RD2fkI9LIqXerV6/W2LFj9eWXX+rIkSPasGGDrr32Wn388ccaN26c+vXr53Efu+QUnqhz76hza1GX3lGX0Yda984JtU7ughcXF6e//OUv2r9/v2644Qbt2rVL+/bt09ixY7Vp0ybNnTvX44orEn3NH9Rp8JxSp+Q6eE7JtdNRq8FzQq2S59AJW97MCQoKCoyXzQ166aWXjCTz1FNPeb397rvvNgkJCWbHjh3ubXv27DGS6vz17t273ue45ZZbTKtWrTy2792710ycONF07NjRJCYmmoyMDDNkyBCzfPly9z4lJSUez3XPPfcYY4zH9qFDh7rvt2/fPjN58mTTqVMnk5iYaE4++WRzySWXmKVLl3rEcdFFF5m0tDRTVVXV+BtmjFm4cKHHc9f+zZ071+t98vLyTPv27c2xY8e83h4fH2/69evn0/PXIt/k20nCFT816ykcNRuM3Nxck5ubG/LHJfee7JZ7SaagoCDkjxsp/sbPGGttzfr73OTDE/kgH7XIhyfyEb35qBXIMZoxgc13yGldR44cMfPnzzfDhw83nTt3NsnJySYjI8NccMEF5tVXX633fsHMYzm+Dj/qvC4r6jzSnHD8R13WFQt16YR+2ZBA46fW67Ki1gM9H0ruPAUy91+9erW57LLLTLNmzUxaWpq56KKLTFFRUb3PEUyunTD+NYTjmdioU8aT2Ml1uL6PixTGz9ipVcYf+54jbUgD40lhRBavHThwwLRv396MGTPGr8d1im+//dakpKSYm266KWzPsXbtWuNyucxrr71W7z52WbxGvoNnp3zbSbjip2aD50vNBiNck2VyH7xw5z7WTt4wxlpXs4E8N/kIHvnwHfmwF/JhL3aZ80Ry8Ro5DV6w81iOr8OPOg9euI/XQs0Jx3/UZfCcVpdO6JcNCTR+aj14wdZ6oOdDyV3kBZtrJ4x/DeF4xlM01injiXfRmOtYXbxGrUaeFeMneQ5eGMeTyCxeM+aHVZatWrUys2fP9uux7a6mpsZce+21pk2bNmbnzp1heY7NmzebTp06mbvvvrvB/eyyeM0Y8h0Mu+XbTsIZPzUbOF9rNhjhnCyT+8BFIvexdvKGMdaamg3muclH4MiH78iHvZAPe7HTnCeSi9eMIafBCMU8luPryKDOAxeJ47VQc8rxH3UZOCfWpVP6ZX2CiZ9aD1woaj2Y86HkLnJCkWunjH/14XimrmitU8YTT9Ga61hdvGYMtRpJVo6f5DlwYR5PCuMUQrfccotcLpfS0tI8buvZs6c++ugjLVmyRN99910on9ZS33zzjbZs2aLly5erbdu2YXmOZ555Rg888IAeeOABj9vuvPNOuVwuuVwuVVdXh+X560O+Yyvf0Y6aDVxDNesE5D5wTs+9nTHGRrZmg3lu8hE48uE78mEv5MNerJ7zWHmMRk4DxzzWOajzwFHn4UNdBo66dBZqPXBW1zq5ixyrc+1k1GnkWF2n5DpyrM6101GrkWNlrZLnwIU7by5jjDl+Q2FhofLz83XCZkQp8h1bnJ5vp8ePwOXl5UmS5s+fb3EkiDSXy6WCggJdeeWVVocSEKfHDwAAwo/5gjM5/fjU6fEjOtEPYUdO75dOjz+WcT40djh9/HN6/PAN40nscPr44/T44TvGH2dqYDyZH9IrrwEAAAAAAAAAAAAAAAAA4AsWrwEAAAAAAAAAAAAAAAAAIo7FawAAAAAAAAAAAAAAAACAiGPxGgAAAAAAAAAAAAAAAAAg4hKsDgAAAACwiy1btqioqEiZmZlq166d2rdvr+bNm1sdFgAAAAAAAAAAABCVWLwGAAAA/H8ul0vXXXddnW1JSUlq06aN2rVrp44dO6pt27bq0KGD+3/btGmjrKwspaamWhQ1TvTdd9+pWbNmVocBAAAAAAAAAACARtS7eM3lckUyDliMfMNJqNfYRe7hRPn5+crPz7c6DATh2LFj+vrrr/X1119r5cqVVocDAIhCzBdgFY6xYDf0QyA86PfORe7gBIzfsYOeFBtyc3OtDiEoCxYsoFZjBONPdPFYvPazn/1MBQUFVsQCAA2iPwGx6Wc/+5nVIQSMnuVMs2bN0sqVK1VdXe3T/rUHwpdddplGjhyp5OTkcIYXE7Zt26Zdu3Zp79692rt3r/bt26fdu3drz549qqiocO8XFxen+Ph4GWNUVVUll8ulMWPG6MILL7QwegAA7I/jawCIDfR7wBk4/wnATrKysqwOIWCTJ09WXl6e1WEACIDLGGOsDgIAAACwi6eeekrjxo3zafFafHy8Tj/9dD3//PPq379/BKKLDbfffrv+9Kc/KTExUS6XS5WVlWrssMXlcmnu3Ln69a9/HaEoAQAAAAAAAAAAEKT5cVZHAAAAANhBWVmZXn/9dX3wwQeNLlxLSEhQfHy8pkyZonXr1rFwLcSmTJmixMREVVZW6tixYz4tXHvmmWdYuAYAAAAAAAAAAOAwHj8bCgAAAMSCTZs26YMPPtD777+voqIibd68WQkJCerVq5dSU1N16NAhr/eLi4tTjx499MILL+iss86KcNSxITMzU6NHj9azzz6rysrKBvd1uVyaPXu2br755ghFBwAAAAAAAAAAgFDhZ0MBAAAQE7Zs2aJly5apqKhI//73v7Vt2zYlJibqnHPO0eDBg5Wdna0BAwaoefPmuvzyy7VkyZI6V2BLTExUXFyc/vCHP2jKlCmKj4+38NVEv6+//lqdOnVSVVVVvfu4XC498cQTGjt2bAQjAwAAAAAAAAAAQIjM58prAAAAiDpVVVVat26dioqKVFxcrOXLl2v//v1KS0tT//79dcMNNygnJ0c5OTlq0qSJx/0HDhyod955x714zeVy6YILLtDcuXN16qmnRvrlxJyamhqVlJTojDPO0Jdffun16msul0t//vOfWbgGAAAAAAAAAADgYCxeAwAAgOMdOnRIa9asUXFxsZYtW6bi4mIdPnxYbdq0Ud++ffXb3/5WgwcPVs+ePRUXF9fo451//vmqrKxUQkKC0tLSNHv2bF199dUReCWxraqqSq+99poefPBBbdy4UZdddpk2bNjgsZ/L5dKsWbN02223WRAlAAAAAAAAAAAAQoXFawAAAHCciooKrVy50v0zoKWlpTp27JgyMzOVk5Ojxx9/XNnZ2TrrrLPkcrn8fvyePXsqNTVVP//5z/XnP/9ZJ510UhheBWodO3ZMr7/+uh544AF9+eWX+uUvf6k33nhDZ555pq655hoVFhbWufraQw89pHHjxlkYMQAAAAAAAAAAAELBZYwxVgcBAAAANGTnzp0qKipy/wzomjVrVFNTo06dOmnw4MHKzs7W+eefr9NOOy1kz/npp5/q7LPPDtnjwdPRo0f1wgsv6P7779c333yj/Px8/e53v9MZZ5zh3mf9+vU666yzVHvYMnPmTE2cONGqkAEAAAAAAAAAABA681m8BgAAANvZsmWLe6FaUVGRvvjiC8XHx6tHjx7Kzs5WTk6OLrroIrVq1crqUBGAgwcP6i9/+YseeeQR7du3T9ddd51+97vfqUOHDl73z8vL04IFC/TYY49p8uTJEY4WAAAAAAAAAAAAYcLiNQAAAFirurpa69evdy9U+/e//61t27apadOm6tmzp3JyctxXVsvIyLA6XAShoqJCTz75pB599FEdPXpUN954o+68805lZmY2eL9PPvlES5cu1e233x6hSAEAAAAAAAAAABABLF4DAABAZFVVVWndunXuK6stX75c+/fvV3p6uvr16+e+stqAAQOUnJxsdbgIgb1792r27NmaNWuWampqdMstt+i3v/2tWrZsaXVoAAAAAAAAAAAAsA6L1wAAABBehw4d0po1a1RcXKxly5apuLhYhw8fVtu2bdWnTx/l5ORo8ODB6tmzp+Li4qwOFyG0e/duPfnkk5o5c6aSkpI0duxYTZw4Uc2bN7c6NAAAAAAAAAAAAFiPxWsAAAAIre+++06rVq3SsmXLVFRUpNLSUh07dkyZmZnuhWrZ2dk666yz5HK5rA4XYbBt2zY99thjmjt3rtLT0zV58mSNGzdOTZs2tTo0AAAAAAAAAAAA2AeL1wAAABCcnTt3qqioyP0zoGvWrFFNTY06derkXqg2cOBAnXrqqVaHijDbunWrHn/8cT3zzDNq27atJk2apNGjRyslJcXq0AAAAAAAAAAAAGA/LF4DAACAf7Zs2eJeqFZUVKQvvvhCCQkJ6t69u7Kzs5WTk6OLLrpIrVq1sjpURMjnn3+uhx9+WK+99ppOOeUUjR8/Xr/5zW+UnJxsdWgAAAAAAAAAAACwLxavAQAAoH7V1dVav369e6Hae++9p6+//lpNmzZVz549lZOTo+zsbJ1//vnKyMiwOlxE2CeffKIZM2bo1Vdf1Zlnnqnf/va3uuqqq5SQkGB1aAAAAAAAAAAAALC/+XyrBAAAALeqqiqtW7fOfWW1ZcuW6dtvv1V6err69eunG2+8UTk5ORowYABX1YphH374oaZPn67FixfrnHPO0XPPPaerr75a8fHxVocGAAAAAAAAAAAAB2HxGgAAQAw7dOiQ1qxZ416oVlxcrMOHD6tt27bq06eP7rjjDg0ePFg9e/ZUXFyc1eHCYkVFRXr44Ye1aNEi/exnP9Nbb72lYcOGyeVyWR0aAAAAAAAAAAAAHIjFawAAADHku+++06pVq7Rs2TIVFRWptLRUx44dU2ZmpnJycvT4448rOztb3bp1szpU2EhRUZF+//vf691331V2drb+/ve/6/LLL7c6LAAAAAAAAAAAADgci9cAAACiWFlZmYqLi90/A7p69Wq5XC6deeaZysnJ0ejRo3XBBRfolFNOsTpU2IwxRosWLdJ9992n0tJSDR48WB9++KHOO+88q0MDAAAAAAAAAABAlGDxGgAAQBTZsmWLe6HasmXLtGXLFiUkJKh79+7Kzs7WHXfcoUGDBqlly5ZWhwqbqqmp0eLFizVt2jStWbNGQ4cO1apVq9S3b1+rQwMAAAAAAAAAAECUYfEaAACAQ1VXV2v9+vXuhWrvvfee9uzZo9TUVPXo0UN5eXkaPHiwsrOzlZKSYnW4sLnKykq99tprevDBB7Vp0yb98pe/1EsvvaSzzjrL6tAAAAAAAAAAAAAQpVi8BgAA4BBVVVVat26dli1b5r662rfffqv09HT169dPt99+u7Kzs3XuuecqKSnJ6nDhEMeOHdPrr7+u++67T//97381cuRIvfXWW+ratavVoQEAAAAAAAAAACDKeSxeKykp0Z/+9CcrYgEQIfPnz7c6hIDQn4DYNHnyZJ133nlWh2GJgwcPasWKFe6FakVFRTpy5IgyMzOVk5OjqVOnKicnRz179lRcXJzV4cJhDh06pHnz5unRRx/Vnj17lJ+fr3/84x/q3Lmz1aEBAAAAAAAAAAAgRngsXvv666+1YMEC5ebmWhEP/LBixQpJUv/+/S2OBE6xfft2d904Ef3JvuhHCJcFCxYoLy8vZhav7d69WytXrnQvVFu1apUqKyvVqVMnZWdna9asWcrOzla3bt2sDhUOVlFRoeeee04PPfSQKioq9Otf/1q//e1v1b59e6tDAwAAAAAAAAAAQIyp92dDnXplpliSl5cniVzBd4WFhcrPz7c6jKBR8/ZDP0K4uFwuq0MIq7KyMvdCteLiYq1evVpxcXHq2rWrcnJyNHr0aF144YXKysqyOlREgX379umJJ57Qn//8Z1VVVemGG27QXXfdpbZt21odGgAAAAAAAAAAAGJUvYvXAAAAEFpbtmxxL1RbunSptm7dqoSEBHXv3l3Z2dm64447NGjQILVs2dLqUBFF9uzZozlz5ujxxx9XQkKCxo8frwkTJqhFixZWhwYAAAAAAAAAAIAYx+I1AACAMKiurtb69etVXFysZcuW6b333tOePXuUmpqqHj166Morr9TgwYOVnZ2tlJQUq8NFFPrmm280c+ZMPfHEE0pNTdXEiRM1adIkZWRkWB0aAAAAAAAAAAAAIInFawAAACFRWVmpTz75RMuWLVNRUZGKiop04MABNWvWTOeee65uv/12ZWdn69xzz1VSUpLV4SKKffXVV5o5c6aeffZZtW7dWg8++KBGjx7NIkkAAAAAAAAAAADYDovXAAAAAnDw4EGtWLHC/TOgRUVFOnLkiDIzM5WTk6Np06YpJydHPXv2VFxcnNXhIgZs3rxZjzzyiJ577jl16NBBDz30kMaMGaMmTZpYHRoAAAAAAAAAAADglaXfpL755ptyuVzuvyNHjoTssWfMmOF+3A4dOoTscb0J5+uIpLS0tDqvw+VyacaMGVaHFZBoei2IjIKCAvXo0UMpKSnumvnss8+sDivkjDEqLi7W2LFj1aVLFyUnJ6t169bKycnRyy+/LGNMROLo0aOHx2e0ob/777/f6+e6vr958+Z5POdHH32k66+/XqeddpqaNGmi5s2bq2/fvvrjH/+oAwcOBP2a7N53QjUuvv766+7HibUFMbt379bChQt15513KicnRy1bttTFF1+sl156SZmZmZo1a5Y+++wzlZWVqbCwUBMmTFDv3r1ZuIaw+/RnSRlxAAAgAElEQVTTT/WrX/1KXbt21fLlyzVnzhxt2rRJEyZMiLnPKQAAAAAAAAAAAJzF0m9Tf/GLX8gYoyuuuCLkjz1lyhQZY9S9e/eQP/aJwvk6IungwYNas2aNJOmKK66QMUZTpkyxOKrARNNrQfgVFxdr1KhRuuSSS7Rnzx59+eWXYV/0apUNGzYoJydHGzdu1IIFC1ReXq4VK1bolFNO0bXXXqv//d//jVgs8+fPlzHG/TdmzBhJ0pIlS+psz8/Pl+T9c+3tb+DAgR7Pddddd6l///5q0aKFFi1apAMHDmjr1q2aOnWq3njjDXXp0kXFxcVBvR67951QjYsjR46UMUaDBg0KUWT2VVZWpvnz52vChAnq06eP2rZtq+HDh2vhwoXq1q2b5s2bp23btmnz5s168cUXNXr0aHXr1s3qsBFD1q5dqyuvvFLdu3fX2rVr9dxzz2nDhg0aPXq0EhK4wDIAAAAAAAAAAADsLyLfaqWlpalHjx4qKiqKxNMhRlBX8FVjtVK7iGrChAlKS0tTWlqavv766whH6ZtQ1H1CQoIKCwvVokULSVKnTp30/PPP65///Kdmz56tBx54QMnJyaEK2XL333+/HnroIT399NPuBXKS1KRJEw0bNkwXXXSRzj//fF122WVatWqVzjzzTAujhZW2bNni/gnQf/7zn/rqq6+UkJCg7t27Kzs7W3fccYcGDx7s/uwAVikqKtLDDz+sRYsWqWfPniooKFBubq5cLpfVoQEAAAAAAAAAAAB+4ZIMAGJe7UK1Vq1aWRxJ+J155pmqrKz02J6UlKSsrCytXbtWR44cCfvitbVr1/q87+uvv+7XY7/33nvu///ll1/qD3/4g3r16lVn4drxmjZtqpkzZ+r888/X+PHj9c9//tOv54MzVVdXa/36/8fevUdVVef/H39tQJCbqGiIaGqWY2GDpqSkfM28TQlpjopTaVN5makEdFyZjZVT5t0Ux3tGDZUjODNe0KzUsdaAl7C8lI1aKpp5A69gihc+vz/6wYSAAp7D5vJ8rHXWin0++7Pfn/N+n89xrd5r7z1KTU3V+vXrtXHjRmVmZsrb21utW7dWVFSUunXrpo4dO8rT09PucAFJPzetjR8/Xhs2bFDHjh21atUqRUZG2h0WAAAAAAAAAAAAUGY0rwGo9q5du2Z3CLY7e/asvvvuO7Vp00Z+fn52h1MmL7zwgtzc3DRr1qz8YwsWLNDVq1fVv3//G54bHh6uhg0bat26dTpw4IDuuOMOZ4eLcnbx4kV9+eWXSk1NVUpKilJSUnT27FnVr19f7du31+jRo9WxY0fdf//9cnd3tztcoID169dr3Lhx2rp1qzp27Kj169dXi0f3AgAAAAAAAAAAoOpzcebk06dPl2VZunDhglJTU2VZlizLkptb0T1zx48fV1RUlGrXri1/f39FRERo//79BcZcvXpViYmJ6t69uxo0aCBPT0/de++9iouLU25uboniKu0cp06d0qhRo9S8eXN5eHioUaNG6tatm9577z1dvHixTOuoTFasWJGfO8uylJ6efsP15eXdsiw1atRIaWlp6tq1q3x9feXl5aUuXbooNTU1f/yECRPyx3fq1Cn/+Mcff5x/vF69eoXmL2ldlURJauLs2bMFPgfLsjRhwoT88395vF+/fvlzZ2RkKDo6Wk2bNpW7u7vq16+vvn37Frjz1PWf8d69ezVgwAD5+/vnH8vMzCzz+qqrm9VK3ue+cuVKSZKnp6csy1KHDh1uOG9J9oTS7DM5OTl69dVX1bJlS3l5ealu3bqKjIzUqlWr8hvrnFH3knT+/Hmlpqbq0UcfVYMGDZSQkHBL81U0n3/+uSQpJCTkpmPzxvznP/8p9T5WFiWtkev3h0OHDikqKkq+vr7y9/fXoEGDdObMGaWnpysyMlK+vr4KDAzU0KFDlZWVVez19+zZo169esnPz++Ga9qzZ4/69OkjPz8/eXt7Kzw8vNjH1jriN9pRsrOztX79eo0fP17du3dX3bp1FR4erri4OHl6emr8+PHatm2bTpw4oeTkZI0ZM0adOnWicQ0VRm5urpKTk9WuXTv16NFD9evX15YtW5SSkkLjGgAAAAAAAAAAAKoOc53ExERTxOFb4u3tbTp27Fjs+7179zaSTO/evc2mTZtMdna22bBhg6lVq5YJDQ0tMDY5OdlIMhMnTjSnT582GRkZZvbs2cbFxcWMHj260NwhISEmKCiozHMcO3bMNGvWzDRo0MAkJyeb8+fPm+PHj5s33njDSDIzZ84s0zocoV+/fqZfv34OnXP79u35a7heUetbt26d8fT0LHJ9ISEhxtvb24SFheWPT0tLM7/+9a+Nu7u7+eyzzwqML65O2rZta/z9/Qsdv1ld3Wgt1ytNTfTs2dO4uLiY77//vtA8YWFh5sMPP8z/++jRo6ZJkyYmICDArFmzxmRlZZlvvvnGdO7c2dSsWdNs2rSpwPl5n3Hnzp3Nxo0bzYULF8yWLVuMq6urycjIuOk6bsYZ3+/yVNb4S7oHXbx48aZzlXRPKE1NDRkyxPj5+ZlPP/3U/PTTT+b48eNm9OjRRpLZuHFjqdZSGnkxSzIPPvig2bVrV5nncsR+NHz4cCPJrF27ttgxed/r4l4xMTEFxgcGBhpJZuvWrTe9/pNPPpmfszyl3cecte8Y87867du3r9m2bZvJzs42CQkJRpJ5+OGHTe/evc327dtNVlaWWbBggZFkRo4cWWiekJAQ4+fnZ7p06WJSUlJMVlZWsWv67rvvTO3atU1QUJD59NNPTVZWltm1a5fp0aOHadq0qfHw8LilNZWEJJOYmHjTccePHzerVq0yY8aMMW3btjUuLi5GkrnjjjvMoEGDzMKFC83+/fvLFANQnq5du2aSkpLM3XffbVxcXExERITZtm2b3WEBAAAAAAAAAAAAzpDk1DuvldaQIUMUFhYmb29vPfTQQ4qIiFBaWlqhO049+OCDGjt2rOrUqaN69eppxIgRevzxxxUXF6fz58+X6FolnWPs2LE6ePCg4uLiFBERIV9fXwUEBGjcuHH6zW9+c0vrqKx+ub5u3bqpV69exa7vwoULmjdvXv74du3a6YMPPtDly5cVExNjQ/TFK2lNjBo1Srm5uXrrrbcKnJ+amqrDhw8XeDzh2LFjdejQIb311lt65JFH5OPjo+DgYC1dulTGGI0YMaLIWMaMGaMHH3xQXl5eat++va5evVrg7nOwT2n2hJLW1IYNGxQcHKzu3bvL09NTAQEBmjZtmlq0aOHUtYwbN045OTn673//q5YtW6pNmzZ64403nHpNR+ndu7eMMQVezz//fLHjLcsq8dzXj3XmPlaW37Nnn31Wbdu2lbe3twYNGqTg4GCtXbtWo0aNUuvWreXj46Phw4erWbNm+uijj4qc49y5c5o4caI6duwoHx+fYtf08ssv6+zZs4qLi1P37t3l4+Oje++9V++++66OHTvmsDWVxdGjR7Vs2TINHz5cwcHBCgwM1GOPPabk5GS1bdtWS5cu1cmTJ7V//34lJCRo2LBhPA4WFdrly5eVkJCgli1bauDAgWrVqpV2796dX9MAAAAAAAAAAABAVVShmtdCQ0ML/B0UFCTp5/9BnSciIkIbN24sdG5ISIiuXLmi3bt33/Q6pZlj+fLlkqSHH3640Pi1a9cqNja2TOuozK5fX+PGjSUVvT5vb2+1bt26wLF7771XDRs21M6dO4ttfihvpamJHj166N5779V7772nU6dO5R+fNm2aRowYoRo1auQfW7FihVxcXBQREVFg3gYNGig4OFhffvmljhw5Uui6999/vyOWBSco6Z5Qmpr6zW9+o02bNmnYsGHasmVL/qNC9+7dqwcffNAJq/gfd3d3tWzZUvPnz9ejjz6qV199VevXr3fqNctTw4YNJanAd7U4eWPyzsnjrH2srL9n7dq1K/B3XrzXHw8KCir2d6dmzZpq3759gWNFrenjjz+WJPXs2bPQNYtqrnTEb3RxDhw4oEWLFmnw4MFq1qyZgoKC9Pjjj+vLL79UZGSkVq5cqYyMDO3evVsLFy5U//79Vb9+/TJfDygvOTk5WrRokZo3b66hQ4eqQ4cO2rNnj5KSktSyZUu7wwMAAAAAAAAAAACcys3uAH7Jz8+vwN8uLj/31uXm5uYfO3funGbMmKHly5fryJEjOnv2bIFzfvrpp5tep6Rz5OTk6Ny5c6pZs6Z8fX0duo7K7Pr1ubu7Syp6fbVr1y5yjttuu01Hjx7VyZMnFRgY6PggS6m0dRUbG6tnn31W8+bN0yuvvKJ9+/bp3//+t9599938MXn1IxX+zH7pu+++U6NGjQoc8/b2vtUlwQlKsyeUpqbmzp2rsLAw/e1vf1PXrl0lSeHh4Ro+fLgee+wxxy+kGJGRkVq+fLlWr16tbt26ldt1HWXOnDmFjnXu3FlffvmlduzYUezdMvPs3LlTkgo1DDprHyvr71mtWrUK/O3i4iJXV1d5eXkVOO7q6lrs746/v3+Rd6P75Zrq1q2rrKws1axZUz4+PkWO3bdvn0PWdDPPPvussrOzVatWLXXs2FFDhw7V//3f/yk0NFQeHh5lmhOwW3Z2tt555x1NnTpVp06d0lNPPaVXXnml0L8JAAAAAAAAAAAAgKqsXO68VprHtd1MZGSk3njjDQ0dOlT79u1Tbm6ujDGaOXOmJMkY47A5PDw85Ofnp0uXLikrK8tha6hOTp06VWROTp48Kenn5oc8Li4uunz5cqGx1zc/5LGzrp544gkFBARozpw5ysnJ0YwZM/TUU0+pTp06+WM8PDxUu3Ztubm56cqVK4UecZj36tKli8PWgaI5qlZKsyeUpqYsy9KgQYO0fv16nT17VitWrJAxRn379i30eFpH1v318pqATp8+7bRrlLfhw4fLzc1Ny5Ytu+G4lJQUHT16VJGRkbr99tsLvFeafaw0HPF7VlZ5jbXX++WaPDw85Ovrq0uXLik7O7vQ2KLqxFlr+u1vf6svv/xSp0+f1kcffaSXX35ZnTp1onENlVJWVpamTJmiJk2aaNy4cerXr58OHjyohQsX0rgGAAAAAAAAAACAaqdcmte8vLwKNCX96le/0qJFi0o9z7Vr15SamqoGDRooOjpa9evXz2/kuHjxolPmyLvr0UcffVTovTZt2mjkyJGlXkd1cunSJaWlpRU49vXXX+vo0aMKCQkpcLeiwMBA/fjjjwXGHj9+XIcPHy5ybkfUlZubm3bv3l3quvLw8NBzzz2nkydPasaMGfrwww8VExNTaFzfvn119epVpaamFnpvypQpuv3223X16tVSxYzSc9QeJJVsTyjtPlO7dm3t2bNHklSjRg11795dK1askGVZWrNmjUPXMnr0aD355JNFvrd27VpJhR8NXJm1aNFCr732mr766istXLiwyDE//fSTYmNj5e/vr1mzZhV6vzT7WEmUdd9xpOzs7Pw7zeUpak15j8fNe3xonszMTO3du7fAMUf8RhfnkUce0X333SdXV9dbmgewU2ZmpsaPH6/bb79dEydO1NChQ3Xo0CHFxcVViLvQAgAAAAAAAAAAAHYol+a1++67T/v27dMPP/ygzZs368CBAwoPDy/1PK6urnrwwQd1/PhxTZs2TZmZmbp48aI2btyoBQsWOGWOSZMmqVmzZho5cqTWrFmjrKwsHTlyRM8995yOHTtG89pN+Pn56eWXX9bmzZt14cIFbdu2TU8++aTc3d0VFxdXYGyPHj109OhRzZkzR9nZ2dq/f79iYmKKvauR3XX13HPPydPTU+PGjVO3bt105513FhozadIkNW/eXM8884zWrl2rc+fO6fTp01q4cKFef/11TZ8+XW5uFerpvVVSWWolPT1drq6usixLX331Vf7xkuwJZampP/zhD9q1a5dycnJ08uRJTZ06VcYYPfTQQ7e8lustWbJEr7/+utLT05WTk6P09HSNGTNGH3zwgdq2bashQ4aUar6Kbty4cRo7dqyef/55jRo1Srt371ZOTo7Onj2r1atXq1OnTjp+/Lg++eQT3XHHHYXOL80+VlKO+D27Fd7e3nrhhRe0devWG65p4sSJqlu3rmJjY7Vu3TplZ2fr22+/1ZNPPlnoUaJ2rwmoqE6ePKmXXnpJTZo00dy5cxUTE6NDhw5p8uTJqlu3rt3hAQAAAAAAAAAAAPYy10lMTDRFHL4le/bsMeHh4cbb29s0btzYzJ071xhjzObNm42kAq8///nPxvz8XLECr169ehljjMnIyDDDhw83jRs3NjVq1DABAQHm97//vXnppZfyx7Zt29ZMmzat2LlLOkeezMxMExsba5o1a2Zq1KhhAgMDzcCBA82+ffvKvA5H6Nevn+nXr5/D5vP29i4U77Rp08q8vpCQEBMUFGS+/fZb07NnT+Pr62s8PT1N586dTUpKSqHrnz171gwZMsQEBgYaT09P06lTJ5OWlmbatm2bP/+YMWPyxxdXV8WtpbjXf//731LXRJ6hQ4caSebzzz8v9nM9deqUGTVqlLnjjjtMjRo1TP369U2PHj3MunXr8scU9Rk7+ntojHO+3+WprPEXVyvLly8v8nPfvHmzOXjwoHFxcTGWZZldu3YVmO9me4IxpdtnduzYYYYPH27uvvtu4+XlZerWrWs6dOhg3n77bZObm1uitZTUuXPnzOLFi03Pnj1N06ZNjbu7u/Hx8TFt27Y1kyZNMj/99FOpP19jbm0/evfdd4vMQ1ZWVoFxRX2vAwICSnydtLQ089RTT5kmTZoYd3d34+vra9q1a2cmTJhgzp49W+Q5pdnHnLXvFLcHp6WlFTo+adIk85///KfQ8ddee63A72JQUJD54osvTJcuXYyPj88N9+a9e/eaPn36mFq1ahlPT08TGhpqVq9ebbp27Zo/37PPPmuMKf3va0lIMomJiaU6B6gI0tPTTXR0tPH09DQBAQFm8uTJ5sKFC3aHBQAAAAAAAAAAAFQkSZYxxvyymS0pKUlRUVG67jAqoP79+0uSli1bZnMkRWvdurUyMzN15MgRu0NxmnfffVdz587Vtm3b7A6lRCr797uyx1+VVfT9qKyqwz5W0VmWpcTERA0YMMDuUIASOXDggOLi4rRw4UI1aNBAI0eO1LBhw+Tp6Wl3aAAAAAAAAAAAAEBFs4znFQK3YMGCBRo1apTdYQAAAJvt3r1bU6ZM0d///nfdfvvtmj17tp5++mnVqFHD7tAAAAAAAAAAAACACsvF7gCAymTx4sV67LHHlJ2drQULFujMmTPcDQgAgGps586dGjx4sEJCQrR9+3a988472rt3r4YNG0bjGgAAAAAAAAAAAHATNK/B4aZPny7LsrRz5079+OOPsixL48aNszssh1mxYoXq1Kmj+fPna+nSpXJz4waGsJ9lWTd9jR8/3u4wK42qvo8BuHWbNm1SZGSk2rRpo127dik+Pj6/kY1/GwAAAAAAAAAAAAAlw/9Zg8ONHj1ao0ePtjsMpxgyZIiGDBlidxhAIcYYu0OoUqryPgbg1qSkpGjKlClavXq1OnbsqJUrVyoiIkKWZdkdGgAAAAAAAAAAAFDpcOc1AAAA4CbWr1+vBx54QOHh4Tpz5oxWrVqllJQURUZG0rgGAAAAAAAAAAAAlBHNawAAAEARjDFKTk7W/fffr+7du8vb21ubN2/Ob1oDAAAAAAAAAAAAcGtoXgMAAAB+ITc3V8uWLVOrVq3Up08fBQQE6IsvvtC6devUoUMHu8MDAAAAAAAAAAAAqgya1wAAAABJV65cUUJCgu655x4NHDhQwcHB+vrrr5WcnKzQ0FC7wwMAAAAAAAAAAACqHDe7AwAAAADsdPnyZS1dulSvv/66Dh8+rIEDB2rVqlVq0aKF3aEBAAAAAAAAAAAAVVqxzWuWZZVnHLgF5ArVDTVfcZEbAJXJhQsXtHjxYk2bNk0ZGRmKiorSJ598oubNm9sdGgAAAAAAAAAAAFAtFNu8lpiYWJ5xwMmioqIUGxursLAwu0OBjTZv3qxZs2bZHcYtY3+qmvLqk/zil6KiouwOAVVQVlaW4uPjNXnyZGVlZenZZ5/Viy++qKCgILtDAwAAAAAAAAAAAKqVYpvXBgwYUJ5xwMmioqIUFhZGXlElmteo46pr1qxZ5BcF0LwGRzp16pT++te/avbs2bp69aqefvppjR07Vg0aNLA7NAAAAAAAAAAAAKBaKrZ5DQAAAKgKMjIyNHfuXM2aNUtubm6Kjo5WTEyM6tSpY3doAAAAAAAAAAAAQLVG8xoAAACqpMOHD2vGjBl6++235evrq9jYWI0cOVJ+fn52hwYAAAAAAAAAAABANK8BAACgiklPT9fMmTO1aNEi3XbbbZo0aZKGDRsmT09Pu0MDAAAAAAAAAAAA8As0rwEAAKBK2L9/v6ZOnar4+Hg1atRIkydP1vDhw1WzZk27QwMAAAAAAAAAAABQBJrXAAAAUKl9/fXXmjZtmpYsWaKmTZtq7ty5euaZZ+Tmxj91AQAAAAAAAAAAgIrMxe4Arpedna277rpLERERdocCAEVinwKAimH79u0aMGCAQkJCtGPHDsXHx2vv3r0aNmwYjWsAAAAAAAAAAABAJVDhmteMMcrNzVVubq7dodyUj4+POnXqZHcYkP25sPv6KF/sU7gVdufE7usDjvD555+re/fuuu+++/TDDz9o1apV2rlzpwYPHixXV1e7wwMAAAAAAAAAAABQQhXulhS+vr7av3+/3WEAcLL3339f7dq109133213KKXGPgUA9khJSdH48eO1YcMGdezYUatWrVJkZKTdYQEAAAAAAAAAAAAoowp35zUA1cOcOXN0zz33qFWrVpo2bZp++OEHu0MCAFRAubm5+te//qW2bdsqPDxc7u7uSklJUUpKCo1rAAAAAAAAAAAAQCVXoZrXVqxYIcuy8l+XLl0q8nh6erqioqJUu3Zt+fv7KyIiosBdkKZPn54/tlGjRkpLS1PXrl3l6+srLy8vdenSRampqfnjJ0yYkD/+l49S+/jjj/OP16tXr9D8Fy5cUGpqav4YN7cKdyO7CuXUqVMaNWqUmjdvLnd3d9WpU0cPP/ywNm7cmD/G0bmgFiquvEdufvvtt3r55ZfVpEkThYWFaf78+crMzLQ5uuKxT1UP7FeA/XJzc7Vs2TLde++96tevnxo2bKitW7fqo48+UseOHe0ODwAAAAAAAAAAAIAjmOskJiaaIg6Xq969extJ5uLFi0Ue7927t9m0aZPJzs4269atM56eniY0NLTQPCEhIcbb29uEhYXlj09LSzO//vWvjbu7u/nss88KjPf29jYdO3YsNE/btm2Nv79/oePFjc/TpUsXU7duXbN58+aSLt1pJJnExETbrn/s2DHTrFkzExAQYJKTk825c+fM3r17Td++fY1lWebtt98uMN7RuaAWflYRvt952rVrZyQVeFmWZVxdXY2Li4vp0KGDWbhwoTl//nz+ORUpfvYpx6so+WW/qjg1YYz9v18ofzk5OeZvf/ubadGihXFxcTH9+/c3u3fvtjssAAAAAAAAAAAAAI6XVKHuvFZSQ4YMUVhYmLy9vdWtWzf16tVLaWlpRd6t6cKFC5o3b17++Hbt2umDDz7Q5cuXFRMT49Q4c3NzZYyRMcap16kMxo4dq4MHD2rWrFmKiIhQrVq11KJFCy1ZskSBgYGKjo7WiRMnnBoDtVDxGWN07do15ebmKi0tTX/84x/l7++vXr16KSEhQTk5OXaHWGLsU5UX+xU1AXvk5ORo0aJFat68uYYOHar27dvrv//9r5KSknTPPffYHR4AAAAAAAAAAAAAJ6iUzwoLDQ0t8Hfjxo0lSUePHi3wiDRJ8vb2VuvWrQscu/fee9WwYUPt3LlTx44dU2BgoFPi/Oyzz5wyb2W0fPlySVKvXr0KHPfw8FDXrl31/vvv65NPPtHgwYOdFgO18D8DBgywOwQdPnz4hu9fu3ZN0s+NNJ9++qnWrl0rDw8PSdK///1vde7cWa6urk6Ps6zYpyov9qvPnDIvUJysrCzFx8drypQpOn36tJ566im98soratSokd2hAQAAAAAAAAAAAHCySnnnNT8/vwJ/u7u7S/q5yeV6tWvXLnKO2267TZJ08uRJB0eH6+Xk5OjcuXOqWbOmfH19C70fEBAgSTp+/LhT46AWUJ7Ypyon9iug/Jw6dUrjx49XkyZN9Morr6h///46ePCgFi5cSOMaAAAAAAAAAAAAUE1UyjuvlcapU6dkjJFlWQWO5/2P/7xGAElycXHR5cuXC81x9uzZIue+fk4UzcPDQ35+fjp37pyysrIKNYTkPX6vQYMG+ceckQtq4X+SkpLsDkGhoaE3bMBxdXWVMUaurq7q3r27oqKiZFmWBg8erIceeqgcI3U+arPiYL8CnO/kyZOaN2+eZs2aJTc3N0VHRysmJkZ16tSxOzQAAAAAAAAAAAAA5axS3nmtNC5duqS0tLQCx77++msdPXpUISEhBR67FhgYqB9//LHA2OPHjxf7eEMvL68CDQO/+tWvtGjRIgdGX3U89thjkqQ1a9YUOJ6Tk6MNGzbI09NTPXv2zD/ujFxQCxWfZVlydXWVi4uLQkNDNX/+fJ06dUpr1qzR4MGD8x8bWtVQmxUL+xXgHIcOHVJMTIyaNm2q+fPnKzY2Vvv379f48eNpXAMAAAAAAAAAAACqqSrfvObn56eXX35Zmzdv1oULF7Rt2zY9+eSTcnd3V1xcXIGxPXr00NGjRzVnzhxlZ2dr//79iomJKXCHm1+67777tG/fPv3www/avHmzDhw4oPDw8Pz3H3roIfn7+2vLli1OXWNlMGnSJDVr1kyxsbFavXq1srKytG/fPj3++OM6duyY4uLi8h/HJzk+FxK1UFFZliU3NzdZlqX27dvrr3/9q06cOKHNmzdr2LBhRT66saqhNisW9itqAo514M2Qc28AACAASURBVMABDR8+XHfddZdWrlypSZMmKT09XePHjy/0iGUAAAAAAAAAAAAA1Yy5TmJioinicLlYvny5kVTg9cQTT5jNmzcXOv7nP//ZGGMKHe/Vq1f+fCEhISYoKMh8++23pmfPnsbX19d4enqazp07m5SUlELXP3v2rBkyZIgJDAw0np6eplOnTiYtLc20bds2f/4xY8bkj9+zZ48JDw833t7epnHjxmbu3LkF5gsPDzd16tQxmzZtctInVnKSTGJioq0xZGZmmtjYWNOsWTNTo0YN4+fnZ3r27Gk2bNhQaKyjc0Et/MzO7/f17r//fiPJBAcHm6lTp5rDhw/f9JyKED/7lPNUhPzmYb+qGDVhTMX4/ULZ7Nq1ywwaNMi4urqaO+64wyxcuNBcvnzZ7rAAAAAAAAAAAAAAVBxJljHG/LKZLSkpSVFRUbrucKXUunVrZWZm6siRI3aHYjvLspSYmKgBAwbYHYotqIWfVaTv9/vvv6927drp7rvvLvE5FSl+R6E2/6cq5rcsqImCqvvvV2W0fft2TZo0Sf/4xz/UqlUrjR49Wk888YRcXV3tDg0AAAAAAAAAAABAxbLMze4IAFRPgwYNsjsEAIADpaSkaMqUKVq9erXatGmjxMRE9evXT5Zl2R0aAAAAAAAAAAAAgArKxe4AAAAAUHmtX79eDzzwgMLDw3XmzBmtWrVKX331lfr370/jGgAAAAAAAAAAAIAbqpLNa9OnT5dlWdq5c6d+/PFHWZalcePG2R0WbEAtoKKiNnE9agKVSW5urpKTkxUaGqru3bvL29tbmzZtUkpKiiIjI+0ODwAAAAAAAAAAAEAlUSUfGzp69GiNHj3a7jBQAVALqKioTVyPmkBlkJubq3/+85967bXXtHfvXj3yyCP64osvFBoaandoAAAAAAAAAAAAACqhKnnnNQAAADjO5cuXlZCQoJYtW2rgwIFq1aqVvvnmm/y7rwEAAAAAAAAAAABAWVTJO68BAADg1l24cEGLFy/WtGnTlJGRoaioKK1Zs0Z33XWX3aEBAAAAAAAAAAAAqAJoXgMAAEABWVlZio+P1+TJk5WVlaVnn31WL774ooKCguwODQAAAAAAAAAAAEAVQvMaAAAAJEmZmZmaM2eOZs+eratXr+rpp5/W2LFj1aBBA7tDAwAAAAAAAAAAAFAFFdu8lpSUVJ5xoBxs3rzZ7hBgs6pSA+xPVVNefZJfoPydOHFCM2fO1F//+ld5eXkpOjpaMTExqlOnjt2hAQAAAAAAAAAAAKjCim1ei4qKKs84UA5mzZqlWbNm2R0GcMvYn6o28guUn/T0dM2cOVOLFi2Sn5+fXn31VY0YMUJeXl52hwYAAAAAAAAAAACgGii2ec0YU55xwCZJSUmKiooi39VEXr4rO+q1+unfv78kadmyZTZHgvJmWZbdIVRJ+/fv19SpUxUfH69GjRpp8uTJGj58uGrWrGl3aAAAAAAAAAAAAACqkWKb1wAAAFC17Nq1S9OnT9eSJUvUtGlTzZ07V88884zc3PgnIQAAAAAAAAAAAIDy52J3AAAAAHCuTZs2KTIyUq1bt9bOnTsVHx+vvXv3atiwYTSuAQAAAAAAAAAAALANzWsAAABVVEpKiiIjI9WxY0edPn1aK1eu1I4dOzR48GC5urraHR4AAAAAAAAAAACAao7mNQAAgCpm/fr1CgsLU3h4uM6cOaNVq1YpNTVVkZGRsizL7vAAAAAAAAAAAAAAQBLNawAAAFVCbm6ukpOT1a5dO3Xv3l0+Pj7avHlz/t3XAAAAAAAAAAAAAKCicUjz2gcffCDLsvJfPj4+RY47dOiQHn30UZ0/f16ZmZkFzmnTpo0uXbpU6Jzrx1mWpXbt2jki7Arho48+UosWLeTm5lbsmJdeekmJiYnFvvfLz6ZDhw7OCjUf+S67ypjv6oSaLexWa7ayIPeFVZfcVwVXrlxRQkKCgoOD1adPHwUGBmrbtm1at24dvxMAAAAAAAAAAAAAKjSH3nlt/vz5MsYoOzu70Hs7duxQu3bt1KNHD9WqVUv16tWTMUZpaWn578fGxhY6L2/c5s2b5e/vL2OMtm3b5siwbbF//349+uijGjt2rE6cOHHDsUOHDtXYsWP1yiuvFHpv8uTJMsbIGCNXV1dnhVsk8l1yVSHfVR01W5CjarYyIPcFVafcV3aXL19WQkKC7rnnHg0ZMkShoaHavXu3kpOT1bZtW7vDAwAAAAAAAAAAAICbKpfHhp4/f16RkZH67W9/qxdeeKHQ+x4eHvL399fChQv197//vTxCst0rr7yiBx54QF9++aV8fX1vOLZ58+Zavny53nzzTSUlJZVThGVHvguryvmuCqjZwqpLzZL7wqpL7iuz7OxsxcXF6Y477tDQoUMVFhamb7/9VgkJCWrZsqXd4QEAAAAAAAAAAABAiZVL89rUqVN1/Phxvfrqq0W+X7NmTX344YdycXHR8OHDtW/fvvIIy1bvvPOOXnrppRs+ju2XQkJC1K9fP/3pT3/S1atXnRzdrSHfhVXlfFcF1Gxh1aVmyX1h1SX3ldH58+c1ZcoUNW3aVOPGjdNvf/tbHThwQAkJCbrzzjvtDg8AAAAAAAAAAAAASs3pzWvGGC1evFjt27dXw4YNix3Xs2dPjRs3TllZWerfv78uXbrk7NBs5enpWepzHnvsMR05ckRr1qxxQkSOQb6LVlXzXRVQs0WrDjVL7otWHXJf2Zw4cUIvvfSSGjVqpClTpuj5559Xenq64uLiFBQUZHd4AAAAAAAAAAAAAFBmTm9e27lzp06cOKGQkJCbjn3ttdfUo0cP7dq1SyNGjCjR/KdOndKoUaPUvHlzubu7q06dOnr44Ye1cePG/DErVqyQZVn5r/T0dEVFRal27dry9/dXRESE9u/fX2jujIwMRUdHq2nTpnJ3d1f9+vXVt29f7dixo+QfgAO1bt1akvTJJ5/Ycv2SIN+OUxnyXRVQs45T2WqW3DtOZct9ZXHo0CGNGDFCzZo103vvvac///nPOnTokP7yl7/I39/f7vAAAAAAAAAAAAAA4JY5vXntm2++kSQ1atTo5sG4uOjDDz9U48aNtXjxYn344Yc3HH/8+HGFhoZqyZIliouLU2ZmprZu3SovLy917dpVixcvliT16dNHxhj17t1bkhQbG6vY2Fj9+OOPSkxM1L///W/97ne/KzD3sWPHFBoaqqSkJM2bN0+nT5/WZ599ptOnTyssLEybN28uy8dxS/LurpL3mVZE5NtxKkO+qwJq1nEqW82Se8epbLmv6A4cOKCYmBj96le/0qpVqzRp0iQdOHBAY8aMka+vr93hAQAAAAAAAAAAAIDDOL157dixY5IkPz+/Eo2vV6+ekpKSVKNGDQ0fPlx79uwpduzYsWN18OBBzZo1SxEREapVq5ZatGihJUuWKDAwUNHR0Tpx4kSh84YMGaKwsDB5e3urW7du6tWrl9LS0pSZmVlg7kOHDumtt97SI488Ih8fHwUHB2vp0qUyxpT4zjuOVKtWLVmWlf+ZVkTk23EqQ76rAmrWcSpbzZJ7x6lsua+odu3apcGDB6tFixZavXq1pkyZon379ikmJkZeXl52hwcAAAAAAAAAAAAADuf05rVLly5JkmrUqFHiczp06KDp06frwoUL6t+/vy5evFjkuOXLl0uSevXqVeC4h4eHunbtqosXLxb5CLPQ0NACfzdu3FiSdPTo0fxjK1askIuLiyIiIgqMbdCggYKDg/Xll1/qyJEjJV6To7i5uRX7eVQE5NuxKnq+qwJq1rEqU82Se8eqTLmvaFJTUxUZGanWrVtr586dio+Pz29a8/DwsDs8AAAAAAAAAAAAAHAapzev1axZU5J05cqVUp0XHR2tqKgoffPNN3rhhRcKvZ+Tk6Nz586pZs2aRT5CKyAgQNLPj2673vV32XF3d5ck5ebmFpg7NzdXfn5+siyrwOurr76SJH333XelWpMjXL16VZ6enuV+3ZIi345V0fNdFVCzjlWZapbcO1Zlyn1FkZKSosjISHXq1ElnzpzRypUrtWPHDg0ePFiurq52hwcAAAAAAAAAAAAATufm7AsEBgZKks6dO1fqcxcvXqwdO3YoPj4+v8kgj4eHh/z8/HTu3DllZWUVahDIexxbgwYNSn1dDw8P1a5dW9nZ2bp48aLc3Jz+MZXI+fPnZYzJ/0wrIvLtOJUh31UBNes4la1myb3jVLbc28kYo9WrV+vNN9/U1q1b1bFjR61atUqRkZF2hwYAAAAAAAAAAAAA5c7pd15r1aqVJJXpEWY+Pj765z//KW9vb82bN6/Q+4899pgkac2aNQWO5+TkaMOGDfL09FTPnj3LELXUt29fXb16VampqYXemzJlim6//XZdvXq1THOX1Y8//ijpf59pRUS+Hacy5LsqoGYdp7LVLLl3nMqWezvk5uZq2bJlatWqlXr37q369etry5Yt+XdfAwAAAAAAAAAAAIDqyOnNayEhIbrtttu0c+fOMp0fHByshQsXFvnepEmT1KxZM8XGxmr16tXKysrSvn379Pjjj+vYsWOKi4vLfzxbaU2aNEnNmzfXM888o7Vr1+rcuXM6ffq0Fi5cqNdff13Tp08vcMebJ598UpZl6eDBg2W6Xkns2LFDktSjRw+nXeNWkW/HqQz5rgqoWcepbDVL7h2nsuW+PF2+fFkJCQlq2bKlBg4cqODgYH3zzTdKTk5W+/bt7Q4PAAAAAAAAAAAAAGzl9OY1y7I0ZMgQbd26VUePHs0/npmZKcuyFBoaqnPnzsmyLLVr167IOZ544gn98Y9/LHS8QYMGSktL0+9+9ztFR0fL399f999/vy5cuKD169dr6NChkqQtW7bIsiytXLlSkuTp6alx48blxzdlyhRJUps2bRQRESFJuu222/TFF1+oT58+euGFF1S/fn21bNlS//rXv7Ry5UoNGDCgQCzHjh2Tj4+Pbr/99hJ9LqtXr5ZlWbIsSz/++KOuXbuW//fixYuLPGf58uUKCgpSr169SnQNO5DvolXVfFcF1GzRqkPNkvuiVYfcl4fs7GzFxcXpjjvu0NChQ9WhQwft2bNHSUlJuueee+wODwAAAAAAAAAAAAAqBMsYY355ICkpSVFRUbru8A198MEHGjRokObPn68//OEPhd4/d+6cgoODFRERoQULFtx61BXM2bNn1bBhQz3xxBN6++23nXKNnTt3qk2bNlqyZIkGDhxY5Bg3Nze1a9dOW7ZsKfG85Lv0qlu+KxJnxU/N3rqS1Oyt6N+/vyRp2bJlDp2X3N86Z+fesiwlJiYWasqrqM6fP6/58+dr2rRpunTpkp599lm9+OKLCgoKsjs0AAAAAAAAAAAAAKholjn9zmuS5Ofnp+TkZP3jH//Q3Llzy+OS5cYYo+joaNWqVUtvvPGGU65x4MAB9e3bV2PHjnVKY4Cjke9bU9nyXRVQs7emMtcsub81lTn3jnby5EmNHz9eTZo00cSJEzVkyBAdOnRIcXFxNK4BAAAAAAAAAAAAQDEc2rz2xz/+UZZlycfHp9B7bdq00bZt27R27VqdP3/ekZe11YkTJ3TgwAFt2LBBDRo0cMo1Fi5cqDfffFNvvvlmofdeeuml/Me5Xbt2zSnXLw75rl75ruqo2bK7Uc1WBuS+7Cp77h3h0KFDiomJUdOmTTV//nzFxMTo0KFDmjx5svz9/e0ODwAAAAAAAAAAAAAqNIc8NhSVF/muXip7vit7/Cg7Zz02FBVfRX1s6P79+zV16lS9++67atiwoUaOHKlhw4bJ09PT7tAAAAAAAAAAAAAAoLJY5mZ3BAAAAJXFzp07NWPGDC1ZskRNmzbVnDlz9PTTT6tGjRp2hwYAAAAAAAAAAAAAlY5DHxsKAABQFaWkpCgyMlJt2rTRrl27FB8fr71792rYsGE0rgEAAAAAAAAAAABAGdG8BgAAUIyUlBR1795d4eHhOnPmjFauXKnt27dr8ODBcnV1tTs8AAAAAAAAAAAAAKjUaF4DAAD4hdzcXCUnJ6t9+/YKDw/XxYsXtW7duvy7r1mWZXeIAAAAAAAAAAAAAFAl0LwGAAAg6cqVK0pISFCrVq3Up08f3Xbbbdq6datSUlLUrVs3u8MDAAAAAAAAAAAAgCrHrbg3+vfvX55xwCZHjhyRRL6ri7x8V3bUa/WzZcsWSeQeznH58mUtXbpUEyZMUHp6ugYOHKh//vOfuvvuu+0ODQAAAAAAAAAAAACqtELNa40bN1a/fv3siAU2aNSoEfmuRip7vtmfqq8OHTrYHQJs0q9fPzVu3Ngpc2dnZ+udd97RtGnTlJGRoaioKH300Ue68847nXI9AAAAAAAAAAAAAEBBljHG2B0EAABAeTl//rzmz5+vqVOn6vLly3rmmWf04osvKigoyO7QAAAAAAAAAAAAAKA6WVbsY0MBAACqkpMnT2revHmaNWuW3NzcNGLECEVHR6tu3bp2hwYAAAAAAAAAAAAA1RLNawAAoEpLT0/XzJkz9fbbb8vX11exsbEaOXKk/Pz87A4NAAAAAAAAAAAAAKo1mtcAAECV9P3332vatGmKj49Xo0aNNGnSJA0bNkyenp52hwYAAAAAAAAAAAAAEM1rAACgitm5c6dmzJihJUuWqFmzZpo7d66eeeYZubnxzx4AAAAAAAAAAAAAqEhc7A4AAADAEVJSUhQZGak2bdpo165dio+P1549ezRs2DAa1wAAAAAAAAAAAACgAqJ5DQAAVGopKSnq1q2bwsPDdebMGa1cuVLbt2/X4MGD5erqand4AAAAAAAAAAAAAIBi0LwGAAAqndzcXCUnJ+v+++9XeHi4Ll26pA0bNuTffc2yLLtDBAAAAAAAAAAAAADcBM1rAACg0rhy5YoSEhIUHBysPn36KCAgQF988YVSUlL00EMP2R0eAAAAAAAAAAAAAKAU3OwOAAAA4GZycnKUmJioN954Q4cOHdLAgQO1fPlytWzZ0u7QAAAAAAAAAAAAAABlRPMaAACosLKzs/XOO+9o6tSpOnXqlAYMGKC1a9fqzjvvtDs0AAAAAAAAAAAAAMAtonkNAABUOBkZGZo9e7bmzJmj3NxcPffcc4qNjVVAQIDdoQEAAAAAAAAAAAAAHITmNQAAUGEcPnxYM2bM0OLFi+Xt7a3Ro0fr+eefV+3ate0ODQAAAAAAAAAAAADgYDSvAQAA2+3fv1+zZ8/WokWLVLt2bb366qsaMWKEvLy87A4NAAAAAAAAAAAAAOAkNK8BAADb7Ny5UzNmzNCSJUvUtGlTTZ48WcOHD1fNmjXtDg0AAAAAAAAAAAAA4GQudgcAAACqn5SUFEVGRqpNmzbatWuX4uPjtXfvXsXExNC4BgAAAAAAAAAAAADVBM1rAACgXBhjlJycrAceeEDh4eE6c+aMVq5cqe3bt2vw4MFydXW1O0QAAAAAAAAAAAAAQDmieQ0AADhVbm6ukpOT1a5dO/Xu3Vv+/v7atGlT/t3XLMuyO0QAAAAAAAAAAAAAgA1oXgMAAE5x+fJlJSQkqGXLlurTp48aNmyobdu2KTk5WWFhYXaHBwAAAAAAAAAAAACwmZvdAQAAgKolOztb77zzjqZNm6aMjAxFRUVpzZo1uuuuu+wODQAAAAAAAAAAAABQgdC8BgAAHCIzM1Nz5szR7NmzdeXKFT3zzDN68cUXFRQUZHdoAAAAAAAAAAAAAIAKiOY1AABwSw4fPqwZM2Zo8eLF8vLyUnR0tGJiYlSnTh27QwMAAAAAAAAAAAAAVGA0rwEAgDLZv3+/Zs+erYULFyogIEATJ07U0KFD5eXlZXdoAAAAAAAAAAAAAIBKwDLGmF8eOHLkiDZt2mRXPADKwYABA+wOoUzYn4CKY/bs2dq0aZMaNmyo3r17q1OnTnJ1dXXKtR544AE1atTIKXMDAAAAAAAAAAAAAGyzrFDzWlJSkqKiouwKCEA5uO5rX2mwPwHVU2JiYqVtugUAAAAAAAAAAAAAFGtZsY8NrazNLdVdXnMP+UNRqkrzF/Vd8fTv31+StGzZMpsjQVVjWZbdIQAAAAAAAAAAAAAAnMTF7gAAAAAAAAAAAAAAAAAAANUPzWsAAAAAAAAAAAAAAAAAgHJH8xoAAAAAAAAAAAAAAAAAoNzRvAYAAAAAAAAAAAAAAAAAKHc0rwEAAAAAAAAAAAAAAAAAyh3Na78wffp0WZYly7LUqFEju8OxlY+PT/5nkfeaPn263WGVSVVaC5wnMTFRrVu3lqenZ36dfPPNN3aHVS4effRRWZalCRMmlNs1W7duXeh7eaPXhAkTivwuF/davHhxoWtu27ZNv//979W0aVPVrFlTtWvXVmhoqF5//XWdPXv2ltdU0fcaR/3GLV26NH+emjVrOjBCAAAAAAAAAAAAAEB1Q/PaL4wePVrGGIWEhNgdiu2ys7O1fft2SVLv3r1ljNHo0aNtjqpsqtJa4Bypqan63e9+px49eigjI0Pff/99tWlgTUhIUHJysi3XXrZsmYwx+a/hw4dLktauXVvgeFRUlKSiv8tFvTp37lzoWmPHjlWHDh1Up04drV69WmfPntXBgwf12muvafny5WrRooVSU1NvaT0Vfa9x1G/cwIEDZYxR165dHRQZAAAAAAAAAAAAAKC6cmrzmo+Pjzp16uTMS5RJRY0LZUdOcSM3q4+8JqqYmBj5+PioefPm+uGHH9SqVatyjLJkHFnrR48eVWxsrAYNGuSQ+SqqCRMmaPLkyZo7d65mzpypVq1aqWbNmqpTp44iIiKUmpqq22+/XQ8//LD27Nljd7gAAAAAAAAAAAAAAFQbbnYHAAB2++GHHyRJ/v7+NkdSvoYOHar+/fsrPDxc77//frlee8eOHSUeu3Tp0lLN/dlnn+X/9/fff6+//OUvuu+++/Lv7HY9Ly8vzZw5U//3f/+n6Ohoffrpp6W6HgAAAAAAAAAAAAAAKBseGwqg2rt27ZrdIZS7+Ph47d69W9OnT7c7FId54YUXFBsbW+DYggULdPXqVfXv3/+G54aHh6thw4Zat26dDhw44MwwAQAAAAAAAAAAAADA/+eU5rXp06fLsixduHBBqampsixLlmXJze3nG72tWLEi/5hlWdq7d68GDBggf3///GOZmZmSpIyMDEVHR6tp06Zyd3dX/fr11bdv30J37cnJydGrr76qli1bysvLS3Xr1lVkZKRWrVqV35hys7iut2fPHvXq1Ut+fn7y8vJSly5dlJqaWmidlmWpUaNGSktLU9euXeXr61vk+JLGWZFdn7v09HRFRUWpdu3a8vf3V0REhPbv358/vrSf0YQJE/LH//LRiB9//HH+8Xr16hWav6Q5LYmrV68qMTFR3bt3V4MGDeTp6al7771XcXFxys3NlSSdPXu2wOdgWZYmTJiQf/4vj/fr1y9/7pLUc2m+H7ixku5FK1eulCR5enrKsix16NDhhvOeOnVKo0aNUvPmzeXh4aFGjRqpW7dueu+993Tx4kVJJaujPM7Yv27kyJEj+tOf/qT4+Hj5+vqW+vzK5PPPP5ckhYSE3HRs3pj//Oc/ZdrfS6ukNXL9nnDo0CFFRUXJ19dX/v7+GjRokM6cOaP09HRFRkbK19dXgYGBGjp0qLKysoq9/s1+4345rk+fPvLz85O3t7fCw8OVkpJyS2sCAAAAAAAAAAAAAECSZK6TmJhoijhcJt7e3qZjx47Fvt+7d28jyXTu3Nls3LjRXLhwwWzZssW4urqajIwMc/ToUdOkSRMTEBBg1qxZY7Kyssw333xjOnfubGrWrGk2bdqUP9eQIUOMn5+f+fTTT81PP/1kjh8/bkaPHm0kmY0bN5YqrpCQEOPn52e6dOliUlJSTFZWlklLSzO//vWvjbu7u/nss88Kjff29jZhYWFm06ZNJjs7u9jxpYmzLByZv+3btxtJpnfv3oXey8td796989e8bt064+npaUJDQwuNL81nZEzxOWrbtq3x9/cvdPxmOb3RWq6XnJxsJJmJEyea06dPm4yMDDN79mzj4uJiRo8eXWBsz549jYuLi/n+++8LzRMWFmY+/PDD/L9LU8/G3Pz7URaOrA87lDX+ku5FFy9evOlcx44dM82aNTMNGjQwycnJ5vz58+b48ePmjTfeMJLMzJkzjTGlqyNH7l8l0bNnT/Pcc8/l//3+++8bSeaNN94o85z9+vUz/fr1u6W4hg8fbiSZtWvXFjsm77tc3CsmJqbA+MDAQCPJbN269abXf/LJJ/Nzlqe0e5ez9hpj/lenffv2Ndu2bTPZ2dkmISHBSDIPP/yw6d27t9m+fbvJysoyCxYsMJLMyJEjC81Tmt+47777ztSuXdsEBQWZTz/91GRlZZldu3aZHj16mKZNmxoPD49bWlNJSDKJiYllOhcAAAAAAAAAAAAAUKElVYjHho4ZM0YPPvigvLy81L59e129elX16tXT2LFjdejQIb311lt65JFH5OPjo+DgYC1dulTGGI0YMSJ/jg0bNig4OFjdu3eXp6enAgICNG3aNLVo0aJMMZ07d04TJ05Ux44d5ePjo3bt2umDDz7Q5cuXFRMTU2j8hQsXNG/ePIWFhcnb27vY8Y6O025DhgzJX3O3bt3Uq1cvpaWlFXlnsJJ+RhXBgw8+qLFjx6pOnTqqV6+eRowYoccff1xxcXE6f/58/rhRo0YpNzdXb731VoHzU1NTdfjw4QKPKvx/7d15cFXlGcfx38lKyAZGloBQEYt1KA1IotBCFdFETRRBICqgHQVxQQiII2hcxqVUQSVTQBAqHRVqEltwBNFBxLZi0KBD3AqxLGo2MNCEBEg05O0fTK5c7g3em9w938/MnSHvec97nnueJ2/+4Jlz3KnnU7X2+wH/mD9/vvbt26e8vDxlZWUpPj5ePXr0UG5urq666iq7ua7WkS/3hZUrV+rrr7/WM8884/G1fWnMmDEyxth9+h/MuQAAHrZJREFU7rnnnlbnW5bl8tqnz/Xm3uVqjZzq9ttv19ChQxUbG6spU6Zo4MCB2rRpk+bMmaPBgwcrLi5O06dPV79+/fTWW285XcPVv3EPPvigampqlJeXpyuvvFJxcXEaNGiQVq9ercrKSo99JwAAAAAAAAAAAABAxxQQzWsXX3yx0/H169crLCxMWVlZduM9e/bUwIED9cknn6isrEySdNVVV+nDDz/UHXfcoe3bt9tetbd7925ddtllbsfUqVMnXXLJJXZjgwYNUq9evVRSUuLwn/axsbEaPHjwz873dJz+lpaWZvdznz59JEkVFRUOc129R/6WlZWlrVu3OoynpKToxx9/1JdffmkbS09P16BBg/TXv/5Vhw4dso0vXLhQ9957ryIjI21j7tTzqVr7/YB/rFu3TpJ09dVXOxzbtGmTcnJyJLlXR77aF7799lvdf//9eumllxQbG+uxdQNZr169JMnu97M1LXNazmnhrb3LnRo5VWpqqt3PLfGePt67d2+ne7Hk+t+4t99+W5KUkZHhcE1nzZVt/U4AAAAAAAAAAAAAgI4pIJrXnDVRNDY2qra2Vs3NzUpMTJRlWXafTz/9VJL09ddfS5KWLl2ql19+WXv37tXo0aOVkJCgq666ytZo4q6kpCSnT+rp3r27JOngwYN24126dHG6zunzPR2nvyUmJtr9HBUVJUlqbm52mOvqPfK32tpaPfLIIxo0aJC6du1qq7n7779fknTs2DG7+Tk5OTp27JiWLVsmSSotLdV7772nO+64wzbH3Xo+VUdpMgoGLXns1KmT4uPjzzjXnTry1b7w5ptvqra2Vpdddpld/U2ZMkWS9PDDD9vG/vvf/3r02r6wZMkSLV682G7s0ksvlSTt3LnzZ88vKSmRJIeGQW/tXe7uNS0SEhLsfg4LC1N4eLg6d+5sNx4eHu50L5Zc+xvX2Niouro6derUSXFxca3O9cR3AgAAAAAAAAAAAAB0TF5tXnPnNW2ni46OVpcuXRQREaEff/zR4fVwLZ9Ro0bZrjVlyhS9++67qqmp0fr162WM0bhx4xxe6ehKXLW1tU7HW5oUTv9P+0OHDskY87Pz3Ykz1Lh6j6STzRg//PCDw9yamhqna7en1k537bXX6oknntC0adNUWlqq5uZmGWP0/PPPS5LDd5g0aZJ69OihJUuWqLGxUc8++6xuvfVWde3a1TbH3XqGZ3mqPqKjo5WYmKiGhgbV1dWdca47deTp/as199xzj9O6e+WVVyRJTzzxhG3s/PPPb/N1Asn06dMVERGhwsLCM8774IMPVFFRoWuvvVZ9+/a1O+bO3uUOd/caT3Llb1x0dLTi4+PV0NCg+vp6h7mHDx92GPPndwIAAAAAAAAAAAAABB+vNq917tzZrgHpggsu0Isvvujy+ePGjVNTU5O2bdvmcOzpp59W37591dTUJOnkk3F27dolSYqMjNSVV16p9evXy7Isbdy40e246uvrbU/hafH555+roqJCKSkpSk5OtjvW0NCg4uLin53vTpyhxtV7JEnJyckqLy+3m1tVVaVvv/3W6drtrTVJioiI0Jdffqlt27apZ8+emjlzprp162ZrFjp+/LjT86Kjo3X33Xfr4MGDevbZZ7VmzRrNmjXLYZ479QzP8kR9tBg7dqwk6a233nI4NmTIEM2ePVsnTpxwq448vX/hJwMGDNCjjz6qTz/9VCtWrHA659ixY8rJyVFSUpLDk9sk9/YuV7R1r/EkV//Gtbwet+X1oS2qq6u1e/duuzF36x4AAAAAAAAAAAAAAK82r1100UUqLS3Vd999p6KiIu3du1cjR450+fwFCxaof//+uu2227Rp0ybV1tbq8OHDWrFihR5//HEtWrRIERERtvl33nmnPvvsMzU2NurgwYN65plnZIzR5Zdf7nZcsbGxmjFjhj766CMdPXpUO3bs0OTJkxUVFaW8vDyHWBMTE/Xggw+qqKjoZ+e7Gmeocecepaenq6KiQkuWLFF9fb327NmjWbNmtfqEo/bWWovw8HBddtllqqqq0sKFC1VdXa3jx49r69atWr58eavn3X333YqJiVFubq6uuOIKp0+tcree4TltqY/9+/crPDzc7rWu0sk89uvXT7Nnz9bGjRtVV1ensrIy3X333aqsrNTs2bPbVEee3L9gLzc3V/Pnz9c999yjOXPm6Msvv1RjY6Nqamq0YcMGjRgxQlVVVXrnnXd03nnnOZzvzt7lqrbuNZ7i6t+4P/7xjzrrrLOUk5OjzZs3q76+Xl999ZUmT57s8CpRf38nAAAAAAAAAAAAAEAQMqfJz883TobbZNeuXWbkyJEmNjbW9OnTxyxdutQYY0xRUZGR5PBx5tChQ2bOnDnmvPPOM5GRkaZbt24mPT3dbN682W7ezp07zfTp082FF15oOnfubM466ywzbNgws3LlStPc3OxSXAsXLrTF0rt3b/Pxxx+bUaNGmbi4OBMTE2MuvfRS88EHHzjEmJKSYnr37m2++uork5GRYeLj41ud706cbeGp/MXGxjrkZ+HChU5z99BDDxljjMN4ZmambT137pExxtTU1JipU6ea5ORkExMTY0aMGGGKi4vN0KFDbes/8MADtvmt5bS179La5z//+Y/5/vvvzfTp002fPn1MZGSk6dGjh/nDH/5g5s2bZ5s3dOhQh5inTZtmJJl//vOfrd5XV+rZnd8Pd3ny99sf2hp/a/Wxbt06p/e6qKjI7Nu3z4SFhRnLssxnn31mt151dbXJyckx/fr1M5GRkSY5OdnceOONprS01DbHnTryxP7VFtOnT3f6/TMyMtxea/z48Wb8+PFtimP16tVO46irq7Ob5+x3uUePHi5fp7i42Nx6663mF7/4hYmKijLx8fEmNTXVPPnkk6ampsbpOe7sXd7aa1rbd4uLix3GFyxYYP797387jD/66KNt/hu3e/duc/3115uEhAQTExNj0tLSzIYNG8zo0aNt691+++3GGPfq3lWSTH5+vlvnAAAAAAAAAAAAAACCQoFljDGnNrMVFBQoOztbpw3jDAYPHqzq6mqVlZX5O5SAzV8g3SNvWb16tZYuXaodO3b4O5RWBWp9uCrY4w9lEyZMkCQVFhb6ORLP6gh7V6CzLEv5+fmaOHGiv0MBAAAAAAAAAAAAAHhWoVdfGwp0JMuXL9ecOXP8HQYAAAAAAAAAAAAAAAAQFGheA9po1apVGjt2rOrr67V8+XL973//48lAAAAAAAAAAAAAAAAAgItoXmuHRYsWybIslZSUqLy8XJZlKTc3199hBZRQv0fr169X165d9cILL+i1115TRESEv0NCB2VZ1s9+HnvsMX+HGTRCfe8CAAAAAAAAAAAAACAQ0GnTDnPnztXcuXP9HUZAC+V7NHXqVE2dOtXfYQCSJGOMv0MIKaG8dwEAAAAAAAAAAAAAECh48hoAAAAAAAAAAAAAAAAAwOdoXgMAAAAAAAAAAAAAAAAA+BzNawAAAAAAAAAAAAAAAAAAn6N5DQAAAAAAAAAAAAAAAADgcxGtHZgwYYIv44CHlJWVSSJ/cK6lPoId9R14tm/fLoncAAAAAAAAAAAAAAAA1/HktRBzzjnnaPz48Q7jr7/+esg0LgEIPMOGDdOwYcPatUZZWZlef/11D0UEAAAAAAAAAAAAAAACXatPXissLPRlHPAyy7I0e/ZsTZw40d+hwI8KCgqUnZ3t7zDajf0pNLXUJ/nFqSzL8ncIAAAAAAAAAAAAAAAv4clrAAAAAAAAAAAAAAAAAACfo3kNAAAAAAAAAAAAAAAAAOBzNK8BAAAAAAAAAAAAAAAAAHyO5jUAAAAAAAAAAAAAAAAAgM/RvAYAAAAAAAAAAAAAAAAA8LmAa16rr6/XL3/5S2VlZfk7FABwin0KAAAAAAAAAAAAAACg/QKuec0Yo+bmZjU3N/s7lJ8VFxenESNG+DsMyP+58Pf14VvsU2gPf+fE39cHAAAAAAAAAAAAAKBFhL8DOF18fLz27Nnj7zAAeFlFRYV69erl7zDahH0KAAAAAAAAAAAAAACg/QLuyWsAOoYbbrhBF154oRYsWKD9+/f7OxwAAAAAAAAAAAAAAAD4WEA1r61fv16WZdk+DQ0NTsf379+v7OxsdenSRUlJScrKyrJ7CtKiRYtsc8855xwVFxdr9OjRio+PV+fOnTVq1Cht27bNNv/JJ5+0zT/1VWpvv/22bfzss892WP/o0aPatm2bbU5ERMA9yC6gHDp0SHPmzFH//v0VFRWlrl276uqrr9bWrVttczydC2ohcDU1NWnXrl165JFHdN555+niiy/Wn//8Zx04cMDfoZ0R+1THwH4FAAAAAAAAAAAAAIAPmNPk5+cbJ8M+NWbMGCPJHD9+3On4mDFjzIcffmjq6+vN5s2bTUxMjElLS3NYJyUlxcTGxprhw4fb5hcXF5vf/OY3Jioqyrz//vt282NjY83vfvc7h3WGDh1qkpKSHMZbm99i1KhR5qyzzjJFRUWufnWvkWTy8/P9dv3KykrTr18/06NHD/Pmm2+a2tpas3v3bjNu3DhjWZZZuXKl3XxP54JaOCkQfr9bpKamGkm2j2VZJjw83FiWZYYNG2YWL15svv/+e7tzAil+9inPC5T8sl8FTk0Y4/+/XwAAAAAAAAAAAAAArykIqCevuWrq1KkaPny4YmNjdcUVVygzM1PFxcWqrq52mHv06FEtW7bMNj81NVWvvvqqfvjhB82aNcurcTY3N8sYI2OMV68TDObPn699+/Zp8eLFysrKUkJCggYMGKC1a9cqOTlZM2fO9PoTt6iFwGaM0YkTJ2SMUXFxse677z4lJyfrmmuu0csvv6yjR4/6O0S3sE8FL/YragIAAAAAAAAAAAAA4BtB+a6wtLQ0u5/79OkjSaqoqLB7RZokxcbGavDgwXZjgwYNUq9evVRSUqLKykolJyd7Jc7333/fK+sGo3Xr1kmSMjMz7cajo6M1evRovfLKK3rnnXd0yy23eC0GauEnhYWF/g5BtbW1rR47ceKE7d+bN2/W22+/rbvuukupqamSTr5yNNBfdcg+FbzYr973yroAAAAAAAAAAAAAAJwusLs/WpGYmGj3c1RUlKSTT4s5XZcuXZyu0b17d1VUVOjgwYNeawDASY2NjaqtrVWnTp0UHx/vcLxHjx6SpKqqKq/GQS38ZOLEif4OQdHR0S7Na2pqkiQdO3ZM//rXvyRJTz75pB566CFFRkZ6Lb72Yp8KTuxXAAAAAAAAAAAAAAD4TlC+NtQdhw4dcvrqs4MHD0o62QjQIiwsTD/88IPD3JqaGqdrW5bloShDW3R0tBITE9XQ0KC6ujqH4y2v3+vZs6dtzBu5oBZ+0vJKQH9+Bg0a9LNxhoeHKywsTFFRUcrMzNTs2bMlSY899lhAN665i9oMHOxXAAAAAAAAAAAAAAD4Tsg3rzU0NKi4uNhu7PPPP1dFRYVSUlLsnlyTnJys8vJyu7lVVVX69ttvna7duXNnu4aBCy64QC+++KIHow8dY8eOlSRt3LjRbryxsVFbtmxRTEyMMjIybOPeyAW1EBzCw8NtTWu///3vtXr1ah06dEgbNmzQsGHD/B2eV1CbgYX9CgAAAAAAAAAAAAAA3wj55rXExEQ9+OCDKioq0tGjR7Vjxw5NnjxZUVFRysvLs5ubnp6uiooKLVmyRPX19dqzZ49mzZpl94SbU1100UUqLS3Vd999p6KiIu3du1cjR460Hb/88suVlJSk7du3e/U7BoMFCxaoX79+ysnJ0YYNG1RXV6fS0lLdfPPNqqysVF5enu11fJLncyFRC4HMsixFRkbKsiwNHTpUzz77rKqqqvTee+/plltuUVxcnL9D9CpqM7CwX1ETAAAAAAAAAAAAAAAfMafJz883ToZ9Yt26dUaS3WfSpEmmqKjIYfyhhx4yxhiH8czMTNt6KSkppnfv3uarr74yGRkZJj4+3sTExJhLL73UfPDBBw7Xr6mpMVOnTjXJyckmJibGjBgxwhQXF5uhQ4fa1n/ggQds83ft2mVGjhxpYmNjTZ8+fczSpUvt1hs5cqTp2rWr+fDDD710x1wnyeTn5/s1hurqapOTk2P69etnIiMjTWJiosnIyDBbtmxxmOvpXFALJ/nz9/t0qamptns5ePBg89xzz5ny8vIznhMI8bNPeU8g5LcF+1Vg1IQxgfH3CwAAAAAAAAAAAADgFQWWMcac2sxWUFCg7OxsnTYclAYPHqzq6mqVlZX5OxS/syxL+fn5mjhxor9D8Qtq4aRA+v2+7bbbdO655+rmm2/W+eef79I5gRS/p1CbPwnF/LYFNWGvo//9AgAAAAAAAAAAAIAQVhjh7wgAdEwvvfSSv0MAAAAAAAAAAAAAAACAH4X5OwAAAAAAAAAAAAAAAAAAQMcTks1rixYtkmVZKikpUXl5uSzLUm5urr/Dgh9QCwhU1CZOR00AAAAAAAAAAAAAADqakHxt6Ny5czV37lx/h4EAQC0gUFGbOB01AQAAAAAAAAAAAADoaELyyWsAAAAAAAAAAAAAAAAAgMBG8xoAAAAAAAAAAAAAAAAAwOdoXgMAAAAAAAAAAAAAAAAA+BzNawAAAAAAAAAAAAAAAAAAn6N5DQAAAAAAAAAAAAAAAADgcxGtHbAsy5dxwAeys7OVnZ3t7zCAdmN/Cm3kFwAAAAAAAAAAAACAjqHV5rX8/HxfxgE/KSoq0uLFi8l3B9GS72BHvXY8zz//vCRp9uzZfo4EvkbTNQAAAAAAAAAAAACErlab1yZOnOjLOOBHixcvJt8dSCg0r1GvHU9hYaEkct8R0bwGAAAAAAAAAAAAAKErzN8BAAAAAAAAAAAAAAAAAAA6HprXAAAAAAAAAAAAAAAAAAA+R/MaAAAAAAAAAAAAAAAAAMDnaF4DAAAAAAAAAAAAAAAAAPicR5rXXn31VVmWZfvExcU5nffNN9/ouuuu05EjR1RdXW13zpAhQ9TQ0OBwzunzLMtSamqqJ8IOCG+99ZYGDBigiIiIVufMmzdP+fn5rR479d4MGzbMW6HakO+2C8Z8dyTUrKP21mywIPeOOkruAQAAAAAAAAAAAAD+49Enr73wwgsyxqi+vt7h2M6dO5Wamqr09HQlJCTo7LPPljFGxcXFtuM5OTkO57XMKyoqUlJSkowx2rFjhyfD9os9e/bouuuu0/z583XgwIEzzp02bZrmz5+vhx9+2OHYn/70JxljZIxReHi4t8J1iny7LhTyHeqoWXueqtlgQO7tdaTcAwAAAAAAAAAAAAD8yyevDT1y5IiuvfZa3XDDDZoxY4bD8ejoaCUlJWnFihX629/+5ouQ/O7hhx/Wb3/7W33yySeKj48/49z+/ftr3bp1euqpp1RQUOCjCNuOfDsK5XyHAmrWUUepWXLvqKPkHgAAAAAAAAAAAADgfz5pXnvmmWdUVVWlRx55xOnxTp06ac2aNQoLC9P06dNVWlrqi7D86i9/+YvmzZt3xtexnSolJUXjx4/Xfffdp6amJi9H1z7k21Eo5zsUULOOOkrNkntHHSX3AAAAAAAAAAAAAAD/83rzmjFGq1at0iWXXKJevXq1Oi8jI0O5ubmqq6vThAkT1NDQ4O3Q/ComJsbtc8aOHauysjJt3LjRCxF5Bvl2LlTzHQqoWec6Qs2Se+c6Qu4BAAAAAAAAAAAAAIHB681rJSUlOnDggFJSUn527qOPPqr09HR99tlnuvfee11a/9ChQ5ozZ4769++vqKgode3aVVdffbW2bt1qm7N+/XpZlmX77N+/X9nZ2erSpYuSkpKUlZWlPXv2OKz9/fffa+bMmTr33HMVFRWlbt26ady4cdq5c6frN8CDBg8eLEl65513/HJ9V5BvzwmGfIcCatZzgq1myb3nBFvuAQAAAAAAAAAAAACBwevNa1988YUk6Zxzzvn5YMLCtGbNGvXp00erVq3SmjVrzji/qqpKaWlpWrt2rfLy8lRdXa2PPvpInTt31ujRo7Vq1SpJ0vXXXy9jjMaMGSNJysnJUU5OjsrLy5Wfn6/33ntPN910k93alZWVSktLU0FBgZYtW6bDhw/r/fff1+HDhzV8+HAVFRW15Xa0S+/evSX9dE8DEfn2nGDIdyigZj0n2GqW3HtOsOUeAAAAAAAAAAAAABAYvN68VllZKUlKTEx0af7ZZ5+tgoICRUZGavr06dq1a1erc+fPn699+/Zp8eLFysrKUkJCggYMGKC1a9cqOTlZM2fO1IEDBxzOmzp1qoYPH67Y2FhdccUVyszMVHFxsaqrq+3W/uabb/Tcc8/pmmuuUVxcnAYOHKjXXntNxhiXn7zjSQkJCbIsy3ZPAxH59pxgyHcooGY9J9hqltx7TrDlHgAAAAAAAAAAAAAQGLzevNbQ0CBJioyMdPmcYcOGadGiRTp69KgmTJig48ePO523bt06SVJmZqbdeHR0tEaPHq3jx487fYVZWlqa3c99+vSRJFVUVNjG1q9fr7CwMGVlZdnN7dmzpwYOHKhPPvlEZWVlLn8nT4mIiGj1fgQC8u1ZgZ7vUEDNelYw1Sy596xgyj0AAAAAAAAAAAAAIDB4vXmtU6dOkqQff/zRrfNmzpyp7OxsffHFF5oxY4bD8cbGRtXW1qpTp06Kj493ON6jRw9JJ1/ddrrTn7ITFRUlSWpubrZbu7m5WYmJibIsy+7z6aefSpK+/vprt76TJzQ1NSkmJsbn13UV+fasQM93KKBmPSuYapbce1Yw5R4AAAAAAAAAAAAAEBgivH2B5ORkSVJtba3b565atUo7d+7USy+9ZGsyaBEdHa3ExETV1taqrq7OoUGg5XVsPXv2dPu60dHR6tKli+rr63X8+HFFRHj9NrnkyJEjMsbY7mkgIt+eEwz5DgXUrOcEW82Se88JttwDAAAAAAAAAAAAAAKD15+89utf/1qS2vQKs7i4OP39739XbGysli1b5nB87NixkqSNGzfajTc2NmrLli2KiYlRRkZGG6KWxo0bp6amJm3bts3h2NNPP62+ffuqqampTWu3VXl5uaSf7mkgIt+eEwz5DgXUrOcEW82Se88JttwDAAAAAAAAAAAAAAKD15vXUlJS1L17d5WUlLTp/IEDB2rFihVOjy1YsED9+vVTTk6ONmzYoLq6OpWWlurmm29WZWWl8vLybK9nc9eCBQvUv39/3Xbbbdq0aZNqa2t1+PBhrVixQo8//rgWLVpk98SbyZMny7Is7du3r03Xc8XOnTslSenp6V67RnuRb88JhnyHAmrWc4KtZsm95wRb7gEAAAAAAAAAAAAAgcHrzWuWZWnq1Kn66KOPVFFRYRuvrq6WZVlKS0tTbW2tLMtSamqq0zUmTZqku+66y2G8Z8+eKi4u1k033aSZM2cqKSlJF198sY4ePap3331X06ZNkyRt375dlmXpjTfekCTFxMQoNzfXFt/TTz8tSRoyZIiysrIkSd27d9fHH3+s66+/XjNmzFC3bt30q1/9Sv/4xz/0xhtvaOLEiXaxVFZWKi4uTn379nXpvmzYsEGWZcmyLJWXl+vEiRO2n1etWuX0nHXr1ql3797KzMx06Rr+QL6dC9V8hwJq1rmOULPk3rmOkHsAAAAAAAAAAAAAQGCwjDHm1IGCggJlZ2frtOEzevXVVzVlyhS98MILuvPOOx2O19bWauDAgcrKytLy5cvbH3WAqampUa9evTRp0iStXLnSK9coKSnRkCFDtHbtWt14441O50RERCg1NVXbt293eV3y7b6Olu9A4q34qdn2c6Vm22PChAmSpMLCQo+uS+7bz9u5tyxL+fn5Dk15AAAAAAAAAAAAAICgV+j1J69JUmJiot588029/vrrWrp0qS8u6TPGGM2cOVMJCQl64oknvHKNvXv3aty4cZo/f75XGgM8jXy3T7DlOxRQs+0TzDVL7tsnmHMPAAAAAAAAAAAAAPA/jzav3XXXXbIsS3FxcQ7HhgwZoh07dmjTpk06cuSIJy/rVwcOHNDevXu1ZcsW9ezZ0yvXWLFihZ566ik99dRTDsfmzZtne53biRMnvHL91pDvjpXvUEfNtt2ZajYYkPu2C/bcAwAAAAAAAAAAAAD8yyOvDUXwIt8dS7DnO9jjR9t567WhCHy8NhQAAAAAAAAAAAAAQpZvXhsKAAAAAAAAAAAAAAAAAMCpaF4DAAAAAAAAAAAAAAAAAPgczWsAAAAAAAAAAAAAAAAAAJ+jeQ0AAAAAAAAAAAAAAAAA4HM0rwEAAAAAAAAAAAAAAAAAfC6itQMFBQW+jAN+UlRUJIl8dxQt+Q521GvHU1ZWJoncAwAAAAAAAAAAAAAQSlptXsvOzvZlHPAz8o1gQr12XOQeAAAAAAAAAAAAAIDQYRljjL+DAAAAAAAAAAAAAAAAAAB0KIVh/o4AAAAAAAAAAAAAAAAAANDx0LwGAAAAAAAAAAAAAAAAAPA5mtcAAAAAAAAAAAAAAAAAAD5H8xoAAAAAAAAAAAAAAAAAwOf+D44ncQFzmE4YAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tf.keras.utils.plot_model(model, rankdir=\"LR\", show_shapes=True)" ] }, { "cell_type": "markdown", "metadata": { "id": "UYtoAOIzCFY1" }, "source": [ "모델 서브 클래스와 동일한 방식으로 기능적 모델을 훈련할 수 있습니다." ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:53:28.035488Z", "iopub.status.busy": "2022-12-14T20:53:28.034845Z", "iopub.status.idle": "2022-12-14T20:53:46.668492Z", "shell.execute_reply": "2022-12-14T20:53:46.667769Z" }, "id": "yAwjPq7I_ehX" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 1:46 - loss: 0.8923 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/152 [..............................] - ETA: 3s - loss: 0.7587 - accuracy: 0.7500 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/152 [>.............................] - ETA: 3s - loss: 0.7375 - accuracy: 0.6429" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/152 [>.............................] - ETA: 3s - loss: 0.7076 - accuracy: 0.6500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 3s - loss: 0.7249 - accuracy: 0.6923" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/152 [=>............................] - ETA: 3s - loss: 0.7448 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/152 [==>...........................] - ETA: 3s - loss: 0.7272 - accuracy: 0.7222" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 3s - loss: 0.7232 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/152 [===>..........................] - ETA: 3s - loss: 0.7195 - accuracy: 0.6818" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/152 [===>..........................] - ETA: 3s - loss: 0.7166 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/152 [====>.........................] - ETA: 2s - loss: 0.7197 - accuracy: 0.6964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/152 [=====>........................] - ETA: 2s - loss: 0.7237 - accuracy: 0.7097" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/152 [=====>........................] - ETA: 2s - loss: 0.7254 - accuracy: 0.7353" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/152 [======>.......................] - ETA: 2s - loss: 0.7209 - accuracy: 0.7432" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/152 [======>.......................] - ETA: 2s - loss: 0.7206 - accuracy: 0.7250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/152 [=======>......................] - ETA: 2s - loss: 0.7159 - accuracy: 0.7209" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/152 [========>.....................] - ETA: 2s - loss: 0.7194 - accuracy: 0.7065" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/152 [========>.....................] - ETA: 2s - loss: 0.7178 - accuracy: 0.7041" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/152 [=========>....................] - ETA: 2s - loss: 0.7146 - accuracy: 0.7115" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/152 [=========>....................] - ETA: 2s - loss: 0.7105 - accuracy: 0.7091" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 2s - loss: 0.7073 - accuracy: 0.7155" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/152 [===========>..................] - ETA: 2s - loss: 0.7062 - accuracy: 0.7131" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/152 [===========>..................] - ETA: 2s - loss: 0.7042 - accuracy: 0.7031" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/152 [============>.................] - ETA: 2s - loss: 0.7014 - accuracy: 0.7164" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/152 [============>.................] - ETA: 1s - loss: 0.7001 - accuracy: 0.7214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/152 [=============>................] - ETA: 1s - loss: 0.7001 - accuracy: 0.7192" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/152 [==============>...............] - ETA: 1s - loss: 0.6955 - accuracy: 0.7105" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/152 [==============>...............] - ETA: 1s - loss: 0.6952 - accuracy: 0.7089" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 82/152 [===============>..............] - ETA: 1s - loss: 0.6927 - accuracy: 0.7195" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/152 [===============>..............] - ETA: 1s - loss: 0.6920 - accuracy: 0.7235" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/152 [================>.............] - ETA: 1s - loss: 0.6898 - accuracy: 0.7273" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/152 [================>.............] - ETA: 1s - loss: 0.6876 - accuracy: 0.7363" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/152 [=================>............] - ETA: 1s - loss: 0.6850 - accuracy: 0.7447" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/152 [==================>...........] - ETA: 1s - loss: 0.6848 - accuracy: 0.7423" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/152 [==================>...........] - ETA: 1s - loss: 0.6843 - accuracy: 0.7350" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/152 [===================>..........] - ETA: 1s - loss: 0.6822 - accuracy: 0.7427" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106/152 [===================>..........] - ETA: 1s - loss: 0.6844 - accuracy: 0.7358" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/152 [====================>.........] - ETA: 1s - loss: 0.6808 - accuracy: 0.7385" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/152 [=====================>........] - ETA: 0s - loss: 0.6791 - accuracy: 0.7321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.6778 - accuracy: 0.7304" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/152 [======================>.......] - ETA: 0s - loss: 0.6756 - accuracy: 0.7331" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/152 [======================>.......] - ETA: 0s - loss: 0.6751 - accuracy: 0.7314" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/152 [=======================>......] - ETA: 0s - loss: 0.6742 - accuracy: 0.7258" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/152 [========================>.....] - ETA: 0s - loss: 0.6731 - accuracy: 0.7244" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/152 [========================>.....] - ETA: 0s - loss: 0.6695 - accuracy: 0.7308" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/152 [=========================>....] - ETA: 0s - loss: 0.6682 - accuracy: 0.7331" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/152 [=========================>....] - ETA: 0s - loss: 0.6678 - accuracy: 0.7279" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/152 [==========================>...] - ETA: 0s - loss: 0.6685 - accuracy: 0.7230" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/152 [===========================>..] - ETA: 0s - loss: 0.6665 - accuracy: 0.7183" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/152 [===========================>..] - ETA: 0s - loss: 0.6649 - accuracy: 0.7207" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/152 [============================>.] - ETA: 0s - loss: 0.6629 - accuracy: 0.7230" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/152 [============================>.] - ETA: 0s - loss: 0.6602 - accuracy: 0.7285" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 4s 24ms/step - loss: 0.6597 - accuracy: 0.7261\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 2/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 3s - loss: 0.5899 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/152 [..............................] - ETA: 3s - loss: 0.5424 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/152 [>.............................] - ETA: 3s - loss: 0.5722 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/152 [>.............................] - ETA: 3s - loss: 0.5932 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 3s - loss: 0.5906 - accuracy: 0.6923" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/152 [==>...........................] - ETA: 3s - loss: 0.5882 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/152 [==>...........................] - ETA: 3s - loss: 0.5887 - accuracy: 0.7105" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/152 [===>..........................] - ETA: 2s - loss: 0.5922 - accuracy: 0.7045" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/152 [===>..........................] - ETA: 2s - loss: 0.5892 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/152 [====>.........................] - ETA: 2s - loss: 0.5978 - accuracy: 0.7037" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/152 [====>.........................] - ETA: 2s - loss: 0.5975 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/152 [=====>........................] - ETA: 2s - loss: 0.5990 - accuracy: 0.7273" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/152 [======>.......................] - ETA: 2s - loss: 0.5905 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/152 [======>.......................] - ETA: 2s - loss: 0.5808 - accuracy: 0.7564" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 42/152 [=======>......................] - ETA: 2s - loss: 0.5817 - accuracy: 0.7619" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 44/152 [=======>......................] - ETA: 2s - loss: 0.5919 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/152 [========>.....................] - ETA: 2s - loss: 0.5919 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/152 [========>.....................] - ETA: 2s - loss: 0.5835 - accuracy: 0.7551" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/152 [=========>....................] - ETA: 2s - loss: 0.5811 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/152 [=========>....................] - ETA: 2s - loss: 0.5862 - accuracy: 0.7455" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 2s - loss: 0.5804 - accuracy: 0.7414" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/152 [===========>..................] - ETA: 2s - loss: 0.5752 - accuracy: 0.7459" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/152 [===========>..................] - ETA: 2s - loss: 0.5712 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/152 [============>.................] - ETA: 1s - loss: 0.5676 - accuracy: 0.7537" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/152 [============>.................] - ETA: 1s - loss: 0.5685 - accuracy: 0.7571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/152 [=============>................] - ETA: 1s - loss: 0.5791 - accuracy: 0.7397" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/152 [==============>...............] - ETA: 1s - loss: 0.5765 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/152 [==============>...............] - ETA: 1s - loss: 0.5761 - accuracy: 0.7468" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 82/152 [===============>..............] - ETA: 1s - loss: 0.5700 - accuracy: 0.7561" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/152 [===============>..............] - ETA: 1s - loss: 0.5753 - accuracy: 0.7412" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/152 [================>.............] - ETA: 1s - loss: 0.5722 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/152 [================>.............] - ETA: 1s - loss: 0.5691 - accuracy: 0.7473" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/152 [=================>............] - ETA: 1s - loss: 0.5695 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/152 [==================>...........] - ETA: 1s - loss: 0.5662 - accuracy: 0.7526" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/152 [==================>...........] - ETA: 1s - loss: 0.5603 - accuracy: 0.7600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/152 [===================>..........] - ETA: 1s - loss: 0.5573 - accuracy: 0.7670" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106/152 [===================>..........] - ETA: 1s - loss: 0.5535 - accuracy: 0.7689" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/152 [====================>.........] - ETA: 0s - loss: 0.5562 - accuracy: 0.7615" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/152 [=====================>........] - ETA: 0s - loss: 0.5560 - accuracy: 0.7634" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.5527 - accuracy: 0.7652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/152 [======================>.......] - ETA: 0s - loss: 0.5562 - accuracy: 0.7627" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/152 [======================>.......] - ETA: 0s - loss: 0.5508 - accuracy: 0.7686" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/152 [=======================>......] - ETA: 0s - loss: 0.5500 - accuracy: 0.7661" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/152 [========================>.....] - ETA: 0s - loss: 0.5507 - accuracy: 0.7598" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/152 [========================>.....] - ETA: 0s - loss: 0.5591 - accuracy: 0.7462" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/152 [=========================>....] - ETA: 0s - loss: 0.5563 - accuracy: 0.7519" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/152 [=========================>....] - ETA: 0s - loss: 0.5547 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/152 [==========================>...] - ETA: 0s - loss: 0.5524 - accuracy: 0.7518" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/152 [===========================>..] - ETA: 0s - loss: 0.5533 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/152 [===========================>..] - ETA: 0s - loss: 0.5507 - accuracy: 0.7517" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/152 [============================>.] - ETA: 0s - loss: 0.5566 - accuracy: 0.7466" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/152 [============================>.] - ETA: 0s - loss: 0.5550 - accuracy: 0.7483" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 4s 23ms/step - loss: 0.5541 - accuracy: 0.7492\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 3/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 3s - loss: 0.3662 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/152 [..............................] - ETA: 3s - loss: 0.5704 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/152 [>.............................] - ETA: 3s - loss: 0.5928 - accuracy: 0.6429" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/152 [>.............................] - ETA: 3s - loss: 0.5667 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 3s - loss: 0.5431 - accuracy: 0.6923" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/152 [==>...........................] - ETA: 3s - loss: 0.5361 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/152 [==>...........................] - ETA: 2s - loss: 0.5224 - accuracy: 0.7105" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/152 [===>..........................] - ETA: 2s - loss: 0.4983 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/152 [===>..........................] - ETA: 2s - loss: 0.4829 - accuracy: 0.7600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/152 [====>.........................] - ETA: 2s - loss: 0.4895 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/152 [=====>........................] - ETA: 2s - loss: 0.5026 - accuracy: 0.7419" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/152 [=====>........................] - ETA: 2s - loss: 0.5123 - accuracy: 0.7353" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/152 [======>.......................] - ETA: 2s - loss: 0.5484 - accuracy: 0.7027" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/152 [======>.......................] - ETA: 2s - loss: 0.5424 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/152 [=======>......................] - ETA: 2s - loss: 0.5501 - accuracy: 0.6977" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/152 [========>.....................] - ETA: 2s - loss: 0.5365 - accuracy: 0.7174" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/152 [========>.....................] - ETA: 2s - loss: 0.5266 - accuracy: 0.7347" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/152 [=========>....................] - ETA: 2s - loss: 0.5426 - accuracy: 0.7308" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/152 [=========>....................] - ETA: 2s - loss: 0.5430 - accuracy: 0.7182" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 2s - loss: 0.5365 - accuracy: 0.7241" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/152 [===========>..................] - ETA: 2s - loss: 0.5257 - accuracy: 0.7377" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/152 [===========>..................] - ETA: 2s - loss: 0.5249 - accuracy: 0.7344" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/152 [============>.................] - ETA: 1s - loss: 0.5291 - accuracy: 0.7239" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/152 [============>.................] - ETA: 1s - loss: 0.5296 - accuracy: 0.7214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/152 [=============>................] - ETA: 1s - loss: 0.5238 - accuracy: 0.7329" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/152 [==============>...............] - ETA: 1s - loss: 0.5179 - accuracy: 0.7368" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/152 [==============>...............] - ETA: 1s - loss: 0.5092 - accuracy: 0.7468" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 82/152 [===============>..............] - ETA: 1s - loss: 0.5031 - accuracy: 0.7561" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/152 [===============>..............] - ETA: 1s - loss: 0.4974 - accuracy: 0.7529" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/152 [================>.............] - ETA: 1s - loss: 0.4987 - accuracy: 0.7557" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/152 [================>.............] - ETA: 1s - loss: 0.4956 - accuracy: 0.7582" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/152 [=================>............] - ETA: 1s - loss: 0.5019 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/152 [==================>...........] - ETA: 1s - loss: 0.4985 - accuracy: 0.7526" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/152 [==================>...........] - ETA: 1s - loss: 0.4946 - accuracy: 0.7550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/152 [===================>..........] - ETA: 1s - loss: 0.4956 - accuracy: 0.7524" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106/152 [===================>..........] - ETA: 1s - loss: 0.4951 - accuracy: 0.7547" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/152 [====================>.........] - ETA: 0s - loss: 0.4910 - accuracy: 0.7615" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/152 [=====================>........] - ETA: 0s - loss: 0.4938 - accuracy: 0.7589" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.5014 - accuracy: 0.7478" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/152 [======================>.......] - ETA: 0s - loss: 0.4951 - accuracy: 0.7542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/152 [======================>.......] - ETA: 0s - loss: 0.4967 - accuracy: 0.7479" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/152 [=======================>......] - ETA: 0s - loss: 0.4943 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/152 [========================>.....] - ETA: 0s - loss: 0.4904 - accuracy: 0.7559" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/152 [========================>.....] - ETA: 0s - loss: 0.4907 - accuracy: 0.7538" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/152 [=========================>....] - ETA: 0s - loss: 0.4881 - accuracy: 0.7556" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/152 [=========================>....] - ETA: 0s - loss: 0.4955 - accuracy: 0.7426" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/152 [==========================>...] - ETA: 0s - loss: 0.4916 - accuracy: 0.7446" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/152 [===========================>..] - ETA: 0s - loss: 0.4891 - accuracy: 0.7465" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/152 [===========================>..] - ETA: 0s - loss: 0.4885 - accuracy: 0.7517" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/152 [============================>.] - ETA: 0s - loss: 0.4885 - accuracy: 0.7534" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/152 [============================>.] - ETA: 0s - loss: 0.4867 - accuracy: 0.7550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 4s 23ms/step - loss: 0.4860 - accuracy: 0.7558\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 3s - loss: 0.2242 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/152 [..............................] - ETA: 3s - loss: 0.4194 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/152 [>.............................] - ETA: 3s - loss: 0.4611 - accuracy: 0.7143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/152 [>.............................] - ETA: 3s - loss: 0.4430 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 3s - loss: 0.4087 - accuracy: 0.7692" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/152 [==>...........................] - ETA: 3s - loss: 0.4306 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/152 [==>...........................] - ETA: 3s - loss: 0.4888 - accuracy: 0.7368" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/152 [===>..........................] - ETA: 3s - loss: 0.4736 - accuracy: 0.7273" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/152 [===>..........................] - ETA: 3s - loss: 0.4525 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/152 [====>.........................] - ETA: 3s - loss: 0.4394 - accuracy: 0.7692" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 29/152 [====>.........................] - ETA: 2s - loss: 0.4281 - accuracy: 0.7759" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/152 [=====>........................] - ETA: 2s - loss: 0.4289 - accuracy: 0.7742" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/152 [=====>........................] - ETA: 2s - loss: 0.4108 - accuracy: 0.7879" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/152 [======>.......................] - ETA: 2s - loss: 0.3994 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/152 [======>.......................] - ETA: 2s - loss: 0.3930 - accuracy: 0.7821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 42/152 [=======>......................] - ETA: 2s - loss: 0.3908 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 45/152 [=======>......................] - ETA: 2s - loss: 0.4037 - accuracy: 0.7778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/152 [========>.....................] - ETA: 2s - loss: 0.4042 - accuracy: 0.7708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/152 [=========>....................] - ETA: 2s - loss: 0.4236 - accuracy: 0.7549" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 54/152 [=========>....................] - ETA: 2s - loss: 0.4379 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57/152 [==========>...................] - ETA: 2s - loss: 0.4202 - accuracy: 0.7632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/152 [==========>...................] - ETA: 2s - loss: 0.4176 - accuracy: 0.7667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 63/152 [===========>..................] - ETA: 2s - loss: 0.4236 - accuracy: 0.7698" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/152 [============>.................] - ETA: 2s - loss: 0.4220 - accuracy: 0.7727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 69/152 [============>.................] - ETA: 1s - loss: 0.4258 - accuracy: 0.7681" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 72/152 [=============>................] - ETA: 1s - loss: 0.4184 - accuracy: 0.7708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 75/152 [=============>................] - ETA: 1s - loss: 0.4289 - accuracy: 0.7600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/152 [==============>...............] - ETA: 1s - loss: 0.4206 - accuracy: 0.7692" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81/152 [==============>...............] - ETA: 1s - loss: 0.4391 - accuracy: 0.7593" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84/152 [===============>..............] - ETA: 1s - loss: 0.4438 - accuracy: 0.7560" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87/152 [================>.............] - ETA: 1s - loss: 0.4515 - accuracy: 0.7529" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 90/152 [================>.............] - ETA: 1s - loss: 0.4515 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 93/152 [=================>............] - ETA: 1s - loss: 0.4503 - accuracy: 0.7527" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/152 [=================>............] - ETA: 1s - loss: 0.4479 - accuracy: 0.7552" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 99/152 [==================>...........] - ETA: 1s - loss: 0.4448 - accuracy: 0.7576" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "102/152 [===================>..........] - ETA: 1s - loss: 0.4422 - accuracy: 0.7598" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "105/152 [===================>..........] - ETA: 1s - loss: 0.4595 - accuracy: 0.7476" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "108/152 [====================>.........] - ETA: 1s - loss: 0.4680 - accuracy: 0.7407" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "111/152 [====================>.........] - ETA: 0s - loss: 0.4606 - accuracy: 0.7477" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "114/152 [=====================>........] - ETA: 0s - loss: 0.4557 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117/152 [======================>.......] - ETA: 0s - loss: 0.4598 - accuracy: 0.7521" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/152 [======================>.......] - ETA: 0s - loss: 0.4661 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "123/152 [=======================>......] - ETA: 0s - loss: 0.4637 - accuracy: 0.7480" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "126/152 [=======================>......] - ETA: 0s - loss: 0.4584 - accuracy: 0.7540" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "129/152 [========================>.....] - ETA: 0s - loss: 0.4603 - accuracy: 0.7481" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "132/152 [=========================>....] - ETA: 0s - loss: 0.4594 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/152 [=========================>....] - ETA: 0s - loss: 0.4596 - accuracy: 0.7519" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "138/152 [==========================>...] - ETA: 0s - loss: 0.4573 - accuracy: 0.7536" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "141/152 [==========================>...] - ETA: 0s - loss: 0.4559 - accuracy: 0.7553" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "143/152 [===========================>..] - ETA: 0s - loss: 0.4551 - accuracy: 0.7587" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "146/152 [===========================>..] - ETA: 0s - loss: 0.4530 - accuracy: 0.7568" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "149/152 [============================>.] - ETA: 0s - loss: 0.4603 - accuracy: 0.7550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - ETA: 0s - loss: 0.4570 - accuracy: 0.7591" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 4s 24ms/step - loss: 0.4570 - accuracy: 0.7591\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 5/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 3s - loss: 0.5901 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/152 [..............................] - ETA: 3s - loss: 0.6529 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/152 [>.............................] - ETA: 3s - loss: 0.6100 - accuracy: 0.7143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/152 [>.............................] - ETA: 3s - loss: 0.4664 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 3s - loss: 0.4110 - accuracy: 0.8462" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/152 [==>...........................] - ETA: 3s - loss: 0.3717 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/152 [==>...........................] - ETA: 3s - loss: 0.3731 - accuracy: 0.7895" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/152 [===>..........................] - ETA: 3s - loss: 0.3791 - accuracy: 0.7727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/152 [===>..........................] - ETA: 2s - loss: 0.3662 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/152 [====>.........................] - ETA: 2s - loss: 0.3623 - accuracy: 0.8214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/152 [=====>........................] - ETA: 2s - loss: 0.3754 - accuracy: 0.7903" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/152 [=====>........................] - ETA: 2s - loss: 0.4289 - accuracy: 0.7647" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/152 [======>.......................] - ETA: 2s - loss: 0.4586 - accuracy: 0.7432" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/152 [======>.......................] - ETA: 2s - loss: 0.4544 - accuracy: 0.7625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/152 [=======>......................] - ETA: 2s - loss: 0.4622 - accuracy: 0.7674" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/152 [========>.....................] - ETA: 2s - loss: 0.4482 - accuracy: 0.7717" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/152 [========>.....................] - ETA: 2s - loss: 0.4466 - accuracy: 0.7755" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/152 [=========>....................] - ETA: 2s - loss: 0.4531 - accuracy: 0.7692" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/152 [=========>....................] - ETA: 2s - loss: 0.4607 - accuracy: 0.7636" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 2s - loss: 0.4547 - accuracy: 0.7672" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/152 [===========>..................] - ETA: 2s - loss: 0.4395 - accuracy: 0.7787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/152 [===========>..................] - ETA: 2s - loss: 0.4381 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/152 [============>.................] - ETA: 2s - loss: 0.4413 - accuracy: 0.7836" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/152 [============>.................] - ETA: 1s - loss: 0.4381 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/152 [=============>................] - ETA: 1s - loss: 0.4385 - accuracy: 0.7877" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/152 [==============>...............] - ETA: 1s - loss: 0.4401 - accuracy: 0.7829" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/152 [==============>...............] - ETA: 1s - loss: 0.4470 - accuracy: 0.7785" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 82/152 [===============>..............] - ETA: 1s - loss: 0.4531 - accuracy: 0.7805" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84/152 [===============>..............] - ETA: 1s - loss: 0.4635 - accuracy: 0.7798" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 86/152 [===============>..............] - ETA: 1s - loss: 0.4620 - accuracy: 0.7849" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 89/152 [================>.............] - ETA: 1s - loss: 0.4543 - accuracy: 0.7865" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 92/152 [=================>............] - ETA: 1s - loss: 0.4477 - accuracy: 0.7935" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 95/152 [=================>............] - ETA: 1s - loss: 0.4501 - accuracy: 0.7895" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 98/152 [==================>...........] - ETA: 1s - loss: 0.4464 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "101/152 [==================>...........] - ETA: 1s - loss: 0.4501 - accuracy: 0.7871" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "104/152 [===================>..........] - ETA: 1s - loss: 0.4513 - accuracy: 0.7837" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/152 [====================>.........] - ETA: 1s - loss: 0.4477 - accuracy: 0.7850" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "110/152 [====================>.........] - ETA: 0s - loss: 0.4407 - accuracy: 0.7909" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113/152 [=====================>........] - ETA: 0s - loss: 0.4381 - accuracy: 0.7920" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "116/152 [=====================>........] - ETA: 0s - loss: 0.4342 - accuracy: 0.7931" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "119/152 [======================>.......] - ETA: 0s - loss: 0.4328 - accuracy: 0.7899" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "122/152 [=======================>......] - ETA: 0s - loss: 0.4476 - accuracy: 0.7787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "125/152 [=======================>......] - ETA: 0s - loss: 0.4597 - accuracy: 0.7680" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "128/152 [========================>.....] - ETA: 0s - loss: 0.4540 - accuracy: 0.7734" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "131/152 [========================>.....] - ETA: 0s - loss: 0.4527 - accuracy: 0.7748" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134/152 [=========================>....] - ETA: 0s - loss: 0.4485 - accuracy: 0.7761" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/152 [==========================>...] - ETA: 0s - loss: 0.4554 - accuracy: 0.7701" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/152 [==========================>...] - ETA: 0s - loss: 0.4530 - accuracy: 0.7698" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/152 [===========================>..] - ETA: 0s - loss: 0.4516 - accuracy: 0.7711" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/152 [===========================>..] - ETA: 0s - loss: 0.4501 - accuracy: 0.7690" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/152 [============================>.] - ETA: 0s - loss: 0.4450 - accuracy: 0.7736" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/152 [============================>.] - ETA: 0s - loss: 0.4438 - accuracy: 0.7715" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 4s 24ms/step - loss: 0.4431 - accuracy: 0.7723\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.fit(dict(numeric_features), target, epochs=5, batch_size=BATCH_SIZE)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:53:46.672176Z", "iopub.status.busy": "2022-12-14T20:53:46.671617Z", "iopub.status.idle": "2022-12-14T20:54:05.252396Z", "shell.execute_reply": "2022-12-14T20:54:05.251678Z" }, "id": "brwodxxVApO_" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 4s - loss: 0.0798 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/152 [..............................] - ETA: 3s - loss: 0.1801 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/152 [>.............................] - ETA: 3s - loss: 0.3198 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/152 [>.............................] - ETA: 3s - loss: 0.3114 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 3s - loss: 0.4364 - accuracy: 0.7308" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/152 [==>...........................] - ETA: 3s - loss: 0.4904 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/152 [==>...........................] - ETA: 3s - loss: 0.4533 - accuracy: 0.7105" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/152 [===>..........................] - ETA: 3s - loss: 0.4342 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/152 [===>..........................] - ETA: 3s - loss: 0.4594 - accuracy: 0.7400" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/152 [====>.........................] - ETA: 3s - loss: 0.4460 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/152 [=====>........................] - ETA: 2s - loss: 0.4337 - accuracy: 0.7581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/152 [=====>........................] - ETA: 2s - loss: 0.4184 - accuracy: 0.7794" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/152 [======>.......................] - ETA: 2s - loss: 0.4101 - accuracy: 0.7838" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/152 [======>.......................] - ETA: 2s - loss: 0.4321 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/152 [=======>......................] - ETA: 2s - loss: 0.4280 - accuracy: 0.7558" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/152 [========>.....................] - ETA: 2s - loss: 0.4189 - accuracy: 0.7609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/152 [========>.....................] - ETA: 2s - loss: 0.4131 - accuracy: 0.7653" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/152 [=========>....................] - ETA: 2s - loss: 0.4064 - accuracy: 0.7692" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/152 [=========>....................] - ETA: 2s - loss: 0.4298 - accuracy: 0.7545" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 2s - loss: 0.4314 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/152 [==========>...................] - ETA: 2s - loss: 0.4290 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 62/152 [===========>..................] - ETA: 2s - loss: 0.4299 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/152 [===========>..................] - ETA: 2s - loss: 0.4433 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/152 [============>.................] - ETA: 2s - loss: 0.4399 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 68/152 [============>.................] - ETA: 2s - loss: 0.4310 - accuracy: 0.7574" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/152 [=============>................] - ETA: 1s - loss: 0.4408 - accuracy: 0.7465" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/152 [=============>................] - ETA: 1s - loss: 0.4469 - accuracy: 0.7397" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/152 [==============>...............] - ETA: 1s - loss: 0.4411 - accuracy: 0.7434" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/152 [==============>...............] - ETA: 1s - loss: 0.4435 - accuracy: 0.7405" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 82/152 [===============>..............] - ETA: 1s - loss: 0.4490 - accuracy: 0.7439" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/152 [===============>..............] - ETA: 1s - loss: 0.4431 - accuracy: 0.7529" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/152 [================>.............] - ETA: 1s - loss: 0.4334 - accuracy: 0.7614" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/152 [================>.............] - ETA: 1s - loss: 0.4251 - accuracy: 0.7692" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 93/152 [=================>............] - ETA: 1s - loss: 0.4197 - accuracy: 0.7742" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 95/152 [=================>............] - ETA: 1s - loss: 0.4200 - accuracy: 0.7737" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/152 [==================>...........] - ETA: 1s - loss: 0.4222 - accuracy: 0.7680" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 99/152 [==================>...........] - ETA: 1s - loss: 0.4188 - accuracy: 0.7727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "101/152 [==================>...........] - ETA: 1s - loss: 0.4165 - accuracy: 0.7723" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "104/152 [===================>..........] - ETA: 1s - loss: 0.4128 - accuracy: 0.7788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/152 [====================>.........] - ETA: 1s - loss: 0.4118 - accuracy: 0.7757" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/152 [====================>.........] - ETA: 1s - loss: 0.4094 - accuracy: 0.7752" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "111/152 [====================>.........] - ETA: 1s - loss: 0.4166 - accuracy: 0.7703" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113/152 [=====================>........] - ETA: 0s - loss: 0.4207 - accuracy: 0.7611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.4170 - accuracy: 0.7652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/152 [======================>.......] - ETA: 0s - loss: 0.4237 - accuracy: 0.7669" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/152 [======================>.......] - ETA: 0s - loss: 0.4298 - accuracy: 0.7645" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "123/152 [=======================>......] - ETA: 0s - loss: 0.4278 - accuracy: 0.7683" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "126/152 [=======================>......] - ETA: 0s - loss: 0.4242 - accuracy: 0.7698" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "129/152 [========================>.....] - ETA: 0s - loss: 0.4252 - accuracy: 0.7713" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "132/152 [=========================>....] - ETA: 0s - loss: 0.4199 - accuracy: 0.7727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/152 [=========================>....] - ETA: 0s - loss: 0.4202 - accuracy: 0.7704" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "138/152 [==========================>...] - ETA: 0s - loss: 0.4203 - accuracy: 0.7717" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "141/152 [==========================>...] - ETA: 0s - loss: 0.4248 - accuracy: 0.7730" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "144/152 [===========================>..] - ETA: 0s - loss: 0.4265 - accuracy: 0.7743" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "147/152 [============================>.] - ETA: 0s - loss: 0.4253 - accuracy: 0.7755" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "150/152 [============================>.] - ETA: 0s - loss: 0.4305 - accuracy: 0.7733" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 4s 24ms/step - loss: 0.4361 - accuracy: 0.7723\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 2/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 4s - loss: 0.5966 - accuracy: 0.0000e+00" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/152 [..............................] - ETA: 3s - loss: 0.3378 - accuracy: 0.6250 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/152 [>.............................] - ETA: 3s - loss: 0.2997 - accuracy: 0.7143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/152 [>.............................] - ETA: 3s - loss: 0.3018 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 3s - loss: 0.3303 - accuracy: 0.7692" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/152 [==>...........................] - ETA: 3s - loss: 0.3553 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/152 [==>...........................] - ETA: 3s - loss: 0.3600 - accuracy: 0.7778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/152 [===>..........................] - ETA: 3s - loss: 0.3715 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/152 [===>..........................] - ETA: 3s - loss: 0.4431 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/152 [====>.........................] - ETA: 3s - loss: 0.4423 - accuracy: 0.7407" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/152 [====>.........................] - ETA: 2s - loss: 0.4359 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/152 [=====>........................] - ETA: 2s - loss: 0.4332 - accuracy: 0.7727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/152 [======>.......................] - ETA: 2s - loss: 0.4270 - accuracy: 0.7778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/152 [======>.......................] - ETA: 2s - loss: 0.4193 - accuracy: 0.7895" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 41/152 [=======>......................] - ETA: 2s - loss: 0.3959 - accuracy: 0.8049" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/152 [=======>......................] - ETA: 2s - loss: 0.3812 - accuracy: 0.8140" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 45/152 [=======>......................] - ETA: 2s - loss: 0.4009 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/152 [========>.....................] - ETA: 2s - loss: 0.4115 - accuracy: 0.8021" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/152 [=========>....................] - ETA: 2s - loss: 0.4020 - accuracy: 0.8039" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 54/152 [=========>....................] - ETA: 2s - loss: 0.4084 - accuracy: 0.7963" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57/152 [==========>...................] - ETA: 2s - loss: 0.3961 - accuracy: 0.7982" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/152 [==========>...................] - ETA: 2s - loss: 0.3904 - accuracy: 0.8083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 63/152 [===========>..................] - ETA: 2s - loss: 0.3932 - accuracy: 0.7937" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/152 [============>.................] - ETA: 2s - loss: 0.4024 - accuracy: 0.7879" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 69/152 [============>.................] - ETA: 2s - loss: 0.4039 - accuracy: 0.7899" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/152 [=============>................] - ETA: 1s - loss: 0.4100 - accuracy: 0.7817" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 74/152 [=============>................] - ETA: 1s - loss: 0.4035 - accuracy: 0.7838" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/152 [==============>...............] - ETA: 1s - loss: 0.4123 - accuracy: 0.7829" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/152 [==============>...............] - ETA: 1s - loss: 0.4209 - accuracy: 0.7821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81/152 [==============>...............] - ETA: 1s - loss: 0.4104 - accuracy: 0.7840" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 83/152 [===============>..............] - ETA: 1s - loss: 0.4047 - accuracy: 0.7892" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/152 [===============>..............] - ETA: 1s - loss: 0.3971 - accuracy: 0.7941" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87/152 [================>.............] - ETA: 1s - loss: 0.3990 - accuracy: 0.7931" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 89/152 [================>.............] - ETA: 1s - loss: 0.4038 - accuracy: 0.7865" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/152 [================>.............] - ETA: 1s - loss: 0.3985 - accuracy: 0.7912" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 93/152 [=================>............] - ETA: 1s - loss: 0.4137 - accuracy: 0.7796" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 95/152 [=================>............] - ETA: 1s - loss: 0.4095 - accuracy: 0.7842" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/152 [==================>...........] - ETA: 1s - loss: 0.4031 - accuracy: 0.7887" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 99/152 [==================>...........] - ETA: 1s - loss: 0.4108 - accuracy: 0.7879" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "101/152 [==================>...........] - ETA: 1s - loss: 0.4095 - accuracy: 0.7871" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/152 [===================>..........] - ETA: 1s - loss: 0.4060 - accuracy: 0.7913" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "105/152 [===================>..........] - ETA: 1s - loss: 0.4111 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/152 [====================>.........] - ETA: 1s - loss: 0.4063 - accuracy: 0.7897" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/152 [====================>.........] - ETA: 1s - loss: 0.4060 - accuracy: 0.7890" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "111/152 [====================>.........] - ETA: 1s - loss: 0.4204 - accuracy: 0.7838" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "114/152 [=====================>........] - ETA: 0s - loss: 0.4239 - accuracy: 0.7851" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "116/152 [=====================>........] - ETA: 0s - loss: 0.4257 - accuracy: 0.7845" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/152 [======================>.......] - ETA: 0s - loss: 0.4257 - accuracy: 0.7839" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/152 [======================>.......] - ETA: 0s - loss: 0.4383 - accuracy: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "123/152 [=======================>......] - ETA: 0s - loss: 0.4315 - accuracy: 0.7805" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "125/152 [=======================>......] - ETA: 0s - loss: 0.4308 - accuracy: 0.7800" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "128/152 [========================>.....] - ETA: 0s - loss: 0.4336 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "131/152 [========================>.....] - ETA: 0s - loss: 0.4406 - accuracy: 0.7748" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/152 [=========================>....] - ETA: 0s - loss: 0.4379 - accuracy: 0.7782" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/152 [=========================>....] - ETA: 0s - loss: 0.4415 - accuracy: 0.7741" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/152 [==========================>...] - ETA: 0s - loss: 0.4357 - accuracy: 0.7774" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140/152 [==========================>...] - ETA: 0s - loss: 0.4357 - accuracy: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "143/152 [===========================>..] - ETA: 0s - loss: 0.4371 - accuracy: 0.7762" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "146/152 [===========================>..] - ETA: 0s - loss: 0.4362 - accuracy: 0.7740" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "149/152 [============================>.] - ETA: 0s - loss: 0.4351 - accuracy: 0.7752" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - ETA: 0s - loss: 0.4314 - accuracy: 0.7756" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 4s 25ms/step - loss: 0.4314 - accuracy: 0.7756\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 3/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 3s - loss: 0.0543 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/152 [..............................] - ETA: 3s - loss: 0.5172 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/152 [>.............................] - ETA: 3s - loss: 0.4220 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/152 [>.............................] - ETA: 3s - loss: 0.4153 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 3s - loss: 0.4160 - accuracy: 0.8077" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/152 [=>............................] - ETA: 3s - loss: 0.4188 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17/152 [==>...........................] - ETA: 3s - loss: 0.4177 - accuracy: 0.7941" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/152 [==>...........................] - ETA: 3s - loss: 0.3950 - accuracy: 0.8158" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/152 [===>..........................] - ETA: 3s - loss: 0.3707 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/152 [===>..........................] - ETA: 3s - loss: 0.3746 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/152 [====>.........................] - ETA: 3s - loss: 0.4158 - accuracy: 0.7963" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/152 [====>.........................] - ETA: 3s - loss: 0.3938 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/152 [=====>........................] - ETA: 2s - loss: 0.3840 - accuracy: 0.7969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/152 [=====>........................] - ETA: 2s - loss: 0.3684 - accuracy: 0.8088" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/152 [======>.......................] - ETA: 2s - loss: 0.3638 - accuracy: 0.8194" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/152 [======>.......................] - ETA: 2s - loss: 0.3520 - accuracy: 0.8205" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 42/152 [=======>......................] - ETA: 2s - loss: 0.3462 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 45/152 [=======>......................] - ETA: 2s - loss: 0.3672 - accuracy: 0.8222" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/152 [========>.....................] - ETA: 2s - loss: 0.3584 - accuracy: 0.8229" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/152 [=========>....................] - ETA: 2s - loss: 0.3684 - accuracy: 0.8235" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 54/152 [=========>....................] - ETA: 2s - loss: 0.3905 - accuracy: 0.8056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57/152 [==========>...................] - ETA: 2s - loss: 0.3980 - accuracy: 0.7982" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/152 [==========>...................] - ETA: 2s - loss: 0.3987 - accuracy: 0.8051" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/152 [===========>..................] - ETA: 2s - loss: 0.4013 - accuracy: 0.8033" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/152 [===========>..................] - ETA: 2s - loss: 0.3994 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/152 [============>.................] - ETA: 2s - loss: 0.3939 - accuracy: 0.8182" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 68/152 [============>.................] - ETA: 2s - loss: 0.3887 - accuracy: 0.8235" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/152 [============>.................] - ETA: 2s - loss: 0.3889 - accuracy: 0.8214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 72/152 [=============>................] - ETA: 1s - loss: 0.3814 - accuracy: 0.8264" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 74/152 [=============>................] - ETA: 1s - loss: 0.3736 - accuracy: 0.8311" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/152 [==============>...............] - ETA: 1s - loss: 0.3743 - accuracy: 0.8355" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/152 [==============>...............] - ETA: 1s - loss: 0.3720 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 80/152 [==============>...............] - ETA: 1s - loss: 0.3649 - accuracy: 0.8375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 82/152 [===============>..............] - ETA: 1s - loss: 0.3630 - accuracy: 0.8354" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84/152 [===============>..............] - ETA: 1s - loss: 0.3632 - accuracy: 0.8393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87/152 [================>.............] - ETA: 1s - loss: 0.3776 - accuracy: 0.8276" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 90/152 [================>.............] - ETA: 1s - loss: 0.3819 - accuracy: 0.8222" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 92/152 [=================>............] - ETA: 1s - loss: 0.3834 - accuracy: 0.8207" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/152 [=================>............] - ETA: 1s - loss: 0.3801 - accuracy: 0.8245" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/152 [=================>............] - ETA: 1s - loss: 0.3814 - accuracy: 0.8229" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 99/152 [==================>...........] - ETA: 1s - loss: 0.3990 - accuracy: 0.8131" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "102/152 [===================>..........] - ETA: 1s - loss: 0.4094 - accuracy: 0.8088" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "105/152 [===================>..........] - ETA: 1s - loss: 0.4108 - accuracy: 0.8048" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/152 [====================>.........] - ETA: 1s - loss: 0.4213 - accuracy: 0.7991" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/152 [====================>.........] - ETA: 1s - loss: 0.4179 - accuracy: 0.7982" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "111/152 [====================>.........] - ETA: 1s - loss: 0.4147 - accuracy: 0.7973" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113/152 [=====================>........] - ETA: 0s - loss: 0.4100 - accuracy: 0.8009" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.4118 - accuracy: 0.7957" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117/152 [======================>.......] - ETA: 0s - loss: 0.4144 - accuracy: 0.7906" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "119/152 [======================>.......] - ETA: 0s - loss: 0.4253 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "122/152 [=======================>......] - ETA: 0s - loss: 0.4300 - accuracy: 0.7828" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "125/152 [=======================>......] - ETA: 0s - loss: 0.4428 - accuracy: 0.7720" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "128/152 [========================>.....] - ETA: 0s - loss: 0.4408 - accuracy: 0.7734" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "131/152 [========================>.....] - ETA: 0s - loss: 0.4428 - accuracy: 0.7710" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134/152 [=========================>....] - ETA: 0s - loss: 0.4431 - accuracy: 0.7724" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/152 [==========================>...] - ETA: 0s - loss: 0.4369 - accuracy: 0.7774" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140/152 [==========================>...] - ETA: 0s - loss: 0.4298 - accuracy: 0.7821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "143/152 [===========================>..] - ETA: 0s - loss: 0.4290 - accuracy: 0.7832" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/152 [===========================>..] - ETA: 0s - loss: 0.4258 - accuracy: 0.7862" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "147/152 [============================>.] - ETA: 0s - loss: 0.4292 - accuracy: 0.7823" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "150/152 [============================>.] - ETA: 0s - loss: 0.4255 - accuracy: 0.7833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 4s 25ms/step - loss: 0.4298 - accuracy: 0.7822\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 4s - loss: 0.1276 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/152 [..............................] - ETA: 3s - loss: 0.4202 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/152 [>.............................] - ETA: 3s - loss: 0.3407 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/152 [>.............................] - ETA: 3s - loss: 0.3301 - accuracy: 0.8889" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/152 [=>............................] - ETA: 3s - loss: 0.3259 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 14/152 [=>............................] - ETA: 3s - loss: 0.4021 - accuracy: 0.8571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17/152 [==>...........................] - ETA: 3s - loss: 0.3908 - accuracy: 0.8529" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/152 [==>...........................] - ETA: 3s - loss: 0.3890 - accuracy: 0.8500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/152 [===>..........................] - ETA: 3s - loss: 0.4083 - accuracy: 0.8182" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/152 [===>..........................] - ETA: 3s - loss: 0.4091 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/152 [====>.........................] - ETA: 3s - loss: 0.3930 - accuracy: 0.8077" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/152 [====>.........................] - ETA: 3s - loss: 0.3832 - accuracy: 0.8036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/152 [====>.........................] - ETA: 3s - loss: 0.4001 - accuracy: 0.7833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/152 [=====>........................] - ETA: 2s - loss: 0.3833 - accuracy: 0.7969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/152 [=====>........................] - ETA: 2s - loss: 0.3714 - accuracy: 0.8143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/152 [======>.......................] - ETA: 2s - loss: 0.3586 - accuracy: 0.8289" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 41/152 [=======>......................] - ETA: 2s - loss: 0.3472 - accuracy: 0.8415" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 44/152 [=======>......................] - ETA: 2s - loss: 0.3318 - accuracy: 0.8523" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 47/152 [========>.....................] - ETA: 2s - loss: 0.3429 - accuracy: 0.8511" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 50/152 [========>.....................] - ETA: 2s - loss: 0.4055 - accuracy: 0.8200" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 53/152 [=========>....................] - ETA: 2s - loss: 0.4186 - accuracy: 0.8113" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 56/152 [==========>...................] - ETA: 2s - loss: 0.4094 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/152 [==========>...................] - ETA: 2s - loss: 0.3995 - accuracy: 0.8220" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 62/152 [===========>..................] - ETA: 2s - loss: 0.3911 - accuracy: 0.8226" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 65/152 [===========>..................] - ETA: 2s - loss: 0.3848 - accuracy: 0.8231" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 68/152 [============>.................] - ETA: 2s - loss: 0.3817 - accuracy: 0.8235" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/152 [=============>................] - ETA: 1s - loss: 0.3810 - accuracy: 0.8310" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 74/152 [=============>................] - ETA: 1s - loss: 0.3969 - accuracy: 0.8243" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/152 [==============>...............] - ETA: 1s - loss: 0.3928 - accuracy: 0.8247" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 80/152 [==============>...............] - ETA: 1s - loss: 0.3975 - accuracy: 0.8188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 83/152 [===============>..............] - ETA: 1s - loss: 0.3941 - accuracy: 0.8193" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 86/152 [===============>..............] - ETA: 1s - loss: 0.4006 - accuracy: 0.8081" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 89/152 [================>.............] - ETA: 1s - loss: 0.4000 - accuracy: 0.8090" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 92/152 [=================>............] - ETA: 1s - loss: 0.4048 - accuracy: 0.8043" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 95/152 [=================>............] - ETA: 1s - loss: 0.4114 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 98/152 [==================>...........] - ETA: 1s - loss: 0.4155 - accuracy: 0.7959" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "101/152 [==================>...........] - ETA: 1s - loss: 0.4117 - accuracy: 0.7970" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "104/152 [===================>..........] - ETA: 1s - loss: 0.4165 - accuracy: 0.7933" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/152 [====================>.........] - ETA: 1s - loss: 0.4299 - accuracy: 0.7897" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "110/152 [====================>.........] - ETA: 1s - loss: 0.4225 - accuracy: 0.7955" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113/152 [=====================>........] - ETA: 0s - loss: 0.4157 - accuracy: 0.7965" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "116/152 [=====================>........] - ETA: 0s - loss: 0.4260 - accuracy: 0.7888" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "119/152 [======================>.......] - ETA: 0s - loss: 0.4208 - accuracy: 0.7941" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "122/152 [=======================>......] - ETA: 0s - loss: 0.4283 - accuracy: 0.7828" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "125/152 [=======================>......] - ETA: 0s - loss: 0.4316 - accuracy: 0.7800" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "128/152 [========================>.....] - ETA: 0s - loss: 0.4270 - accuracy: 0.7852" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "131/152 [========================>.....] - ETA: 0s - loss: 0.4263 - accuracy: 0.7863" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134/152 [=========================>....] - ETA: 0s - loss: 0.4274 - accuracy: 0.7836" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/152 [==========================>...] - ETA: 0s - loss: 0.4266 - accuracy: 0.7810" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140/152 [==========================>...] - ETA: 0s - loss: 0.4274 - accuracy: 0.7786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "143/152 [===========================>..] - ETA: 0s - loss: 0.4217 - accuracy: 0.7832" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "146/152 [===========================>..] - ETA: 0s - loss: 0.4224 - accuracy: 0.7842" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "149/152 [============================>.] - ETA: 0s - loss: 0.4325 - accuracy: 0.7819" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - ETA: 0s - loss: 0.4268 - accuracy: 0.7855" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 4s 24ms/step - loss: 0.4268 - accuracy: 0.7855\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 5/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 4s - loss: 0.5103 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/152 [..............................] - ETA: 3s - loss: 0.4581 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/152 [>.............................] - ETA: 3s - loss: 0.5238 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/152 [>.............................] - ETA: 3s - loss: 0.4560 - accuracy: 0.7222" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/152 [=>............................] - ETA: 3s - loss: 0.4115 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/152 [=>............................] - ETA: 3s - loss: 0.3853 - accuracy: 0.7667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/152 [==>...........................] - ETA: 3s - loss: 0.3377 - accuracy: 0.8056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/152 [===>..........................] - ETA: 3s - loss: 0.3592 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/152 [===>..........................] - ETA: 3s - loss: 0.3779 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/152 [====>.........................] - ETA: 3s - loss: 0.3594 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/152 [====>.........................] - ETA: 2s - loss: 0.3728 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/152 [=====>........................] - ETA: 2s - loss: 0.4006 - accuracy: 0.8182" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/152 [======>.......................] - ETA: 2s - loss: 0.3944 - accuracy: 0.8194" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/152 [======>.......................] - ETA: 2s - loss: 0.3973 - accuracy: 0.8205" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 42/152 [=======>......................] - ETA: 2s - loss: 0.4082 - accuracy: 0.8214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 45/152 [=======>......................] - ETA: 2s - loss: 0.3903 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/152 [========>.....................] - ETA: 2s - loss: 0.3841 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/152 [=========>....................] - ETA: 2s - loss: 0.3688 - accuracy: 0.8431" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 54/152 [=========>....................] - ETA: 2s - loss: 0.3891 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57/152 [==========>...................] - ETA: 2s - loss: 0.3793 - accuracy: 0.8421" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/152 [==========>...................] - ETA: 2s - loss: 0.3764 - accuracy: 0.8417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 63/152 [===========>..................] - ETA: 2s - loss: 0.3972 - accuracy: 0.8175" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/152 [============>.................] - ETA: 2s - loss: 0.4011 - accuracy: 0.8182" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 69/152 [============>.................] - ETA: 2s - loss: 0.4016 - accuracy: 0.8188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/152 [=============>................] - ETA: 1s - loss: 0.4129 - accuracy: 0.8099" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 74/152 [=============>................] - ETA: 1s - loss: 0.4117 - accuracy: 0.8108" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/152 [==============>...............] - ETA: 1s - loss: 0.4195 - accuracy: 0.8026" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/152 [==============>...............] - ETA: 1s - loss: 0.4069 - accuracy: 0.8101" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 82/152 [===============>..............] - ETA: 1s - loss: 0.4052 - accuracy: 0.8049" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/152 [===============>..............] - ETA: 1s - loss: 0.4013 - accuracy: 0.8059" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/152 [================>.............] - ETA: 1s - loss: 0.4124 - accuracy: 0.8068" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/152 [================>.............] - ETA: 1s - loss: 0.4289 - accuracy: 0.7967" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/152 [=================>............] - ETA: 1s - loss: 0.4317 - accuracy: 0.7872" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/152 [==================>...........] - ETA: 1s - loss: 0.4271 - accuracy: 0.7835" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/152 [==================>...........] - ETA: 1s - loss: 0.4202 - accuracy: 0.7900" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/152 [===================>..........] - ETA: 1s - loss: 0.4099 - accuracy: 0.7961" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106/152 [===================>..........] - ETA: 1s - loss: 0.4100 - accuracy: 0.7925" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/152 [====================>.........] - ETA: 1s - loss: 0.4065 - accuracy: 0.7936" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/152 [=====================>........] - ETA: 0s - loss: 0.4051 - accuracy: 0.7946" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.4075 - accuracy: 0.7957" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/152 [======================>.......] - ETA: 0s - loss: 0.4113 - accuracy: 0.7924" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/152 [======================>.......] - ETA: 0s - loss: 0.4103 - accuracy: 0.7934" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/152 [=======================>......] - ETA: 0s - loss: 0.4158 - accuracy: 0.7903" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/152 [========================>.....] - ETA: 0s - loss: 0.4209 - accuracy: 0.7913" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/152 [========================>.....] - ETA: 0s - loss: 0.4179 - accuracy: 0.7885" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/152 [=========================>....] - ETA: 0s - loss: 0.4177 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/152 [=========================>....] - ETA: 0s - loss: 0.4141 - accuracy: 0.7904" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/152 [==========================>...] - ETA: 0s - loss: 0.4101 - accuracy: 0.7950" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/152 [===========================>..] - ETA: 0s - loss: 0.4086 - accuracy: 0.7923" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/152 [===========================>..] - ETA: 0s - loss: 0.4052 - accuracy: 0.7966" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/152 [============================>.] - ETA: 0s - loss: 0.4190 - accuracy: 0.7905" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/152 [============================>.] - ETA: 0s - loss: 0.4259 - accuracy: 0.7815" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 4s 24ms/step - loss: 0.4252 - accuracy: 0.7822\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "numeric_dict_batches = numeric_dict_ds.shuffle(SHUFFLE_BUFFER).batch(BATCH_SIZE)\n", "model.fit(numeric_dict_batches, epochs=5)" ] }, { "cell_type": "markdown", "metadata": { "id": "xhn0Bt_Xw4nO" }, "source": [ "## 전체 예제" ] }, { "cell_type": "markdown", "metadata": { "id": "zYQ5fDaRxRWQ" }, "source": [ "Keras에 이기종 DataFrame을 전달하는 경우 각 열에 고유한 사전 처리가 필요할 수 있습니다. DataFrame에서 직접 이 전처리를 수행할 수 있지만 모델이 올바르게 작동하려면 입력이 항상 동일한 방식으로 전처리되어야 합니다. 따라서 가장 좋은 방법은 전처리를 모델에 구축하는 것입니다. [Keras 전처리 레이어](https://www.tensorflow.org/guide/keras/preprocessing_layers)로 많은 일반적인 작업이 처리됩니다." ] }, { "cell_type": "markdown", "metadata": { "id": "BFsDZeu-BQ-h" }, "source": [ "### 전처리 헤드 빌드하기" ] }, { "cell_type": "markdown", "metadata": { "id": "C6aVQN4Gw-Va" }, "source": [ "이 데이터세트에서 원시 데이터의 일부 \"정수\" 특성은 실제로 범주형 인덱스입니다. 이러한 인덱스는 실제로 순서가 지정된 숫자 값이 아닙니다(자세한 내용은 데이터세트 설명 참조). 이것들은 순서가 없기 때문에 모델에 직접 입력하는 것은 부적절합니다. 모델은 이를 순서가 지정된 것으로 해석하기 때문입니다. 이러한 입력을 사용하려면 원-핫 벡터 또는 임베딩 벡터로 인코딩이 필요합니다. 문자열 범주형 특성의 경우도 마찬가지입니다.\n", "\n", "참고: 동일한 전처리가 필요한 특성이 많은 경우 전처리를 적용하기 전에 이들을 함께 연결하는 것이 더 효율적입니다.\n", "\n", "반면에 이진 특성은 일반적으로 인코딩하거나 정규화할 필요가 없습니다.\n", "\n", "먼저 각 그룹에 속하는 특성 목록을 작성합니다." ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:05.256500Z", "iopub.status.busy": "2022-12-14T20:54:05.255859Z", "iopub.status.idle": "2022-12-14T20:54:05.259388Z", "shell.execute_reply": "2022-12-14T20:54:05.258727Z" }, "id": "IH2VCyLBPYX8" }, "outputs": [], "source": [ "binary_feature_names = ['sex', 'fbs', 'exang']" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:05.262586Z", "iopub.status.busy": "2022-12-14T20:54:05.261993Z", "iopub.status.idle": "2022-12-14T20:54:05.265308Z", "shell.execute_reply": "2022-12-14T20:54:05.264682Z" }, "id": "Pxh4FPucOpDz" }, "outputs": [], "source": [ "categorical_feature_names = ['cp', 'restecg', 'slope', 'thal', 'ca']" ] }, { "cell_type": "markdown", "metadata": { "id": "HRcC8WkyamJb" }, "source": [ "다음으로, 각 입력에 적절한 전처리를 적용하고 결과를 연결하는 전처리 모델을 구축합니다.\n", "\n", "이 섹션에서는 [Keras Functional API](https://www.tensorflow.org/guide/keras/functional)를 사용하여 전처리를 구현합니다. 데이터 프레임의 각 열에 대해 하나의 `tf.keras.Input`을 생성하는 것으로 시작합니다." ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:05.268750Z", "iopub.status.busy": "2022-12-14T20:54:05.268230Z", "iopub.status.idle": "2022-12-14T20:54:05.285135Z", "shell.execute_reply": "2022-12-14T20:54:05.284422Z" }, "id": "D3OeiteJbWvI" }, "outputs": [], "source": [ "inputs = {}\n", "for name, column in df.items():\n", " if type(column[0]) == str:\n", " dtype = tf.string\n", " elif (name in categorical_feature_names or\n", " name in binary_feature_names):\n", " dtype = tf.int64\n", " else:\n", " dtype = tf.float32\n", "\n", " inputs[name] = tf.keras.Input(shape=(), name=name, dtype=dtype)" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:05.288363Z", "iopub.status.busy": "2022-12-14T20:54:05.287791Z", "iopub.status.idle": "2022-12-14T20:54:05.292593Z", "shell.execute_reply": "2022-12-14T20:54:05.291985Z" }, "id": "5N3vBMjidpx6" }, "outputs": [ { "data": { "text/plain": [ "{'age': ,\n", " 'sex': ,\n", " 'cp': ,\n", " 'trestbps': ,\n", " 'chol': ,\n", " 'fbs': ,\n", " 'restecg': ,\n", " 'thalach': ,\n", " 'exang': ,\n", " 'oldpeak': ,\n", " 'slope': ,\n", " 'ca': ,\n", " 'thal': }" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "inputs" ] }, { "cell_type": "markdown", "metadata": { "id": "_EEmzxinyhI4" }, "source": [ "각 입력에 대해 Keras 레이어와 TensorFlow ops를 사용하여 일부 변환을 적용합니다. 각 특성은 스칼라 배치로 시작합니다(`shape=(batch,)`). 각각의 출력은 `tf.float32` 벡터의 배치여야 합니다(`shape=(batch, n)`). 마지막 단계로 모든 벡터를 함께 연결합니다.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "ubBDazjNFWiF" }, "source": [ "#### 이진 입력\n", "\n", "이진 입력은 전처리가 필요하지 않으므로 벡터 축을 추가하고 이를 `float32`로 캐스팅한 다음 전처리된 입력 목록에 추가하기만 하면 됩니다." ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:05.296695Z", "iopub.status.busy": "2022-12-14T20:54:05.296439Z", "iopub.status.idle": "2022-12-14T20:54:05.321844Z", "shell.execute_reply": "2022-12-14T20:54:05.321131Z" }, "id": "tmAIkOIid-Mp" }, "outputs": [ { "data": { "text/plain": [ "[,\n", " ,\n", " ]" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "preprocessed = []\n", "\n", "for name in binary_feature_names:\n", " inp = inputs[name]\n", " inp = inp[:, tf.newaxis]\n", " float_value = tf.cast(inp, tf.float32)\n", " preprocessed.append(float_value)\n", "\n", "preprocessed" ] }, { "cell_type": "markdown", "metadata": { "id": "ZHQcdtG1GN7E" }, "source": [ "#### 숫자 입력\n", "\n", "이전 섹션에서와 같이 이러한 숫자 입력도 사용 전에 `tf.keras.layers.Normalization` 레이어를 통해 실행해야 할 것입니다. 다만 이번에는 dict로 입력된다는 차이가 있습니다. 아래 코드는 DataFrame에서 숫자 특성을 수집하고 적층한 다음 `Normalization.adapt` 메서드에 전달합니다." ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:05.325201Z", "iopub.status.busy": "2022-12-14T20:54:05.324712Z", "iopub.status.idle": "2022-12-14T20:54:05.521588Z", "shell.execute_reply": "2022-12-14T20:54:05.520797Z" }, "id": "UC9LaIBNIK5V" }, "outputs": [], "source": [ "normalizer = tf.keras.layers.Normalization(axis=-1)\n", "normalizer.adapt(stack_dict(dict(numeric_features)))" ] }, { "cell_type": "markdown", "metadata": { "id": "S537tideIpeh" }, "source": [ "아래 코드는 숫자 특성을 적층하고 정규화 계층을 통해 실행합니다." ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:05.525762Z", "iopub.status.busy": "2022-12-14T20:54:05.525392Z", "iopub.status.idle": "2022-12-14T20:54:05.550959Z", "shell.execute_reply": "2022-12-14T20:54:05.550199Z" }, "id": "U8MJiFpPK5uD" }, "outputs": [ { "data": { "text/plain": [ "[,\n", " ,\n", " ,\n", " ]" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "numeric_inputs = {}\n", "for name in numeric_feature_names:\n", " numeric_inputs[name]=inputs[name]\n", "\n", "numeric_inputs = stack_dict(numeric_inputs)\n", "numeric_normalized = normalizer(numeric_inputs)\n", "\n", "preprocessed.append(numeric_normalized)\n", "\n", "preprocessed" ] }, { "cell_type": "markdown", "metadata": { "id": "G5f-VzASKPF7" }, "source": [ "#### 범주형 특성" ] }, { "cell_type": "markdown", "metadata": { "id": "Z3wcFs1oKVao" }, "source": [ "범주형 특성을 사용하려면 먼저 이를 이진 벡터 또는 임베딩으로 인코딩해야 합니다. 이러한 특성에는 소수의 범주만 포함되어 있으므로 `tf.keras.layers.StringLookup` 및 `tf.keras.layers.IntegerLookup` 레이어 모두에서 지원하는 `output_mode='one_hot'` 옵션을 사용하여 입력을 원-핫 벡터로 직접 변환합니다.\n", "\n", "다음은 이러한 레이어가 작동하는 방식의 예입니다." ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:05.554732Z", "iopub.status.busy": "2022-12-14T20:54:05.554117Z", "iopub.status.idle": "2022-12-14T20:54:05.588010Z", "shell.execute_reply": "2022-12-14T20:54:05.587401Z" }, "id": "vXleJfBRS9xr" }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vocab = ['a','b','c']\n", "lookup = tf.keras.layers.StringLookup(vocabulary=vocab, output_mode='one_hot')\n", "lookup(['c','a','a','b','zzz'])" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:05.591362Z", "iopub.status.busy": "2022-12-14T20:54:05.590858Z", "iopub.status.idle": "2022-12-14T20:54:05.610501Z", "shell.execute_reply": "2022-12-14T20:54:05.609881Z" }, "id": "kRnsFYJiSVmH" }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vocab = [1,4,7,99]\n", "lookup = tf.keras.layers.IntegerLookup(vocabulary=vocab, output_mode='one_hot')\n", "\n", "lookup([-1,4,1])" ] }, { "cell_type": "markdown", "metadata": { "id": "est6aCFBZDVs" }, "source": [ "각 입력에 대한 어휘를 결정하려면 해당 어휘를 원-핫 벡터로 변환하는 레이어를 만듭니다." ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:05.613743Z", "iopub.status.busy": "2022-12-14T20:54:05.613262Z", "iopub.status.idle": "2022-12-14T20:54:05.719015Z", "shell.execute_reply": "2022-12-14T20:54:05.718268Z" }, "id": "HELhoFlo0H9Q" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "name: cp\n", "vocab: [0, 1, 2, 3, 4]\n", "\n", "name: restecg\n", "vocab: [0, 1, 2]\n", "\n", "name: slope\n", "vocab: [1, 2, 3]\n", "\n", "name: thal\n", "vocab: ['1', '2', 'fixed', 'normal', 'reversible']\n", "\n", "name: ca\n", "vocab: [0, 1, 2, 3]\n", "\n" ] } ], "source": [ "for name in categorical_feature_names:\n", " vocab = sorted(set(df[name]))\n", " print(f'name: {name}')\n", " print(f'vocab: {vocab}\\n')\n", "\n", " if type(vocab[0]) is str:\n", " lookup = tf.keras.layers.StringLookup(vocabulary=vocab, output_mode='one_hot')\n", " else:\n", " lookup = tf.keras.layers.IntegerLookup(vocabulary=vocab, output_mode='one_hot')\n", "\n", " x = inputs[name][:, tf.newaxis]\n", " x = lookup(x)\n", " preprocessed.append(x)" ] }, { "cell_type": "markdown", "metadata": { "id": "PzMMkwNBa2pK" }, "source": [ "#### 전처리 헤드 조립하기" ] }, { "cell_type": "markdown", "metadata": { "id": "GaQ-_pEQbCE8" }, "source": [ "이 시점에서 `preprocessed`는 모든 전처리 결과의 Python 목록일 뿐이며 각 결과의 형상은 `(batch_size, depth)`입니다." ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:05.723179Z", "iopub.status.busy": "2022-12-14T20:54:05.722594Z", "iopub.status.idle": "2022-12-14T20:54:05.727294Z", "shell.execute_reply": "2022-12-14T20:54:05.726643Z" }, "id": "LlLaq_BVRlnO" }, "outputs": [ { "data": { "text/plain": [ "[,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ]" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "preprocessed" ] }, { "cell_type": "markdown", "metadata": { "id": "U9lYYHIXbYv-" }, "source": [ "`depth` 축을 따라 전처리된 모든 특성을 연결하여 각 사전-예제가 단일 벡터로 변환되도록 합니다. 벡터에는 범주형 특성, 숫자 특성 및 범주형 원-핫 특성이 포함됩니다." ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:05.730863Z", "iopub.status.busy": "2022-12-14T20:54:05.730304Z", "iopub.status.idle": "2022-12-14T20:54:05.742683Z", "shell.execute_reply": "2022-12-14T20:54:05.742004Z" }, "id": "j2I8vpQh313w" }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "preprocesssed_result = tf.concat(preprocessed, axis=-1)\n", "preprocesssed_result" ] }, { "cell_type": "markdown", "metadata": { "id": "OBFowyJtb0WB" }, "source": [ "이제 해당 계산에서 모델을 생성하여 재사용할 수 있도록 합니다." ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:05.746248Z", "iopub.status.busy": "2022-12-14T20:54:05.745725Z", "iopub.status.idle": "2022-12-14T20:54:05.753935Z", "shell.execute_reply": "2022-12-14T20:54:05.753275Z" }, "id": "rHQBFHwE37TO" }, "outputs": [], "source": [ "preprocessor = tf.keras.Model(inputs, preprocesssed_result)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:05.757383Z", "iopub.status.busy": "2022-12-14T20:54:05.756875Z", "iopub.status.idle": "2022-12-14T20:54:06.174802Z", "shell.execute_reply": "2022-12-14T20:54:06.173596Z" }, "id": "ViMARQ-f6zfx" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACksAAAXoCAYAAAAXUW6JAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzde1xVVf7/8fdB7heR8IaXJsdyLGTQlJLUryZeRxzNQek6UxNlUyrIMJWOk06Z1UQq802zGfvWw9QR8PtTJ8vKTJ1ENKy0rNS85g0TDQRUFFm/P3pwvh4PKgcPbDi8no/Hfjxy7bXX/qy9Fp/zz6e9bcYYIwAAAAAAAAAAAAAAAAAAAM+U7WV1BAAAAAAAAAAAAAAAAAAAALWJYkkAAAAAAAAAAAAAAAAAAODRKJYEAAAAAAAAAAAAAAAAAAAejWJJAAAAAAAAAAAAAAAAAADg0bxdvSA3N1czZ86sjViARi01NVWxsbFWh1GnRo8ebXUIAOpYbGysUlNTrQ4DAAAAAAAAAAAAAAA0Mi6/WfLgwYNaunRpbcTS4G3atEmbNm2yOgw0QEuXLtXBgwetDqPOLV26VIcOHbI6DFzi0KFD5HnUik2bNik3N9fqMAAAAAAAAAAAAAAAQCPk8pslK2VnZ7szDo9Q+ZY8ng1cZbPZrA7BMhMnTtSYMWOsDgMXycrKUmJiIrkMbsfbZAEAAAAAAAAAAAAAgFVcfrMkAAAAAAAAAAAAAAAAAABAQ0KxJAAAAAAAAAAAAAAAAAAA8GgUSwIAAAAAAAAAAAAAAAAAAI9GsSQAAAAAAAAAAAAAAAAAAPBoFEvWc8HBwbLZbA5Henq61WHViCfNBfVbZmamunbtqoCAAPte2759u9Vh1Yry8nK98cYbuu222xQeHq6wsDB1795dr776qs6dO1cnMXTt2tXpb/tKx/Tp06vMB5c75s+f73TPLVu26MEHH9QNN9wgf39/NWvWTDExMXr22WdVWFh4zXOq7/kqPT3dHle7du1qPM6SJUvs4/j7+7sxQgAAAAAAAAAAAAAAgPqFYsl6rqSkRF988YUkacSIETLGKC0tzeKoasaT5oL6KycnR/fcc48GDRqk48ePa/fu3ddUTFbfPfTQQ0pKStKAAQP07bffavfu3UpMTNT48eP1m9/8ps7iyM7OljHGfowdO1aStGrVKof2xMRESVXng6qOvn37Ot1r0qRJ6tmzp8LCwrRy5UoVFhZq3759mjp1qpYtW6ZOnTopJyfnmuZT3/NVWlqajDGKjo6+pnHuvvtuGWMUFxfnpsgAAAAAAAAAAAAAAADqJ4ol4VbBwcHq3bu31WHAg11tj1UW7SUnJys4OFgdO3bUwYMH1aVLlzqMsnqu9e9l7969Wrhwobp166YZM2aoZcuWCg8P15NPPqmBAwdq5cqVysvLc2PE1ps+fbpefPFFzZkzR7NmzVKXLl3k7++vsLAwxcfHKycnR9dff72GDh2qHTt2WB0uAAAAAAAAAAAAAAAA6glvqwMAAHc6ePCgJCk8PNziSGpf5Vxvvvlmp3OdO3fW6tWr9f333ysmJqZW49i6dWu1+y5ZssSlsdetW2f/7927d+uvf/2rbr31VvubKy8VGBioWbNm6b/+6780YcIEffjhhy7dDwAAAAAAAAAAAAAAAJ6JN0sC8CgXLlywOoQ607lzZ/n4+FT5BsUdO3bIZrMpKirKgsiu3bhx45SSkuLQNm/ePJWXl2v06NFXvLZPnz5q06aNVq9erb1799ZmmAAAAAAAAAAAAAAAAGggLC+WLC8vV2ZmpgYOHKjWrVsrICBAUVFRysjIUEVFhVP/HTt2aOTIkQoNDVVgYKBuu+02rVy5UgMGDJDNZpPNZlNSUpK9//HjxzVhwgTdcMMN8vX1VYsWLTRq1CiX3oRWHy1fvtw+X5vNpv379ysxMVHNmjVTeHi44uPjtWfPHnv/9PR0e9927dopLy9PcXFxCgkJUWBgoO68807l5OTY+0+fPt3e/+LPBL///vv29ubNmzuNX1paqpycHHsfb++av7y0OnujsLDQ4TnYbDZNnz7dfv3F7QkJCfaxq7MvLn3GO3fu1JgxYxQeHm5vKygoqPH84Jqr7bHK9VqxYoUkKSAgQDabTT179rziuCdOnFBqaqo6duwoPz8/tWvXTgMGDNBbb72lM2fOSHItT5WVlemZZ55R586dFRgYqOuuu07Dhw/Xv//9b3shp7v+Xlq1aqX09HRt27ZNkydP1vHjx3Xy5En97W9/00cffaRnnnlGnTp1cmnM+mz9+vWSpOjo6Kv2rezzySefuJz/aqK6e+TSvHLgwAElJiYqJCRE4eHheuCBB/Tjjz9q//79Gj58uEJCQhQREaFHHnlExcXFl73/jh07NGzYMPtv4+XmdPFvaFBQkPr06aMNGzZc05wAAAAAAAAAAAAAAAAaBOOizMxMU4PLLuudd94xksyMGTPMyZMnzfHjx83f//534+XlZdLS0hz6fvfdd6ZZs2ambdu25sMPPzTFxcVm+/btZsCAAaZFixbGz8/Pof+RI0fMz372M9OqVSvz7rvv2vv37dvX+Pv7m40bN7ptHsYYk5CQYBISEtw6pjHGfPHFF0aSGTFihNO5ESNG2M9t3LjRlJSUmNWrV5uAgAATExPj1D86OtoEBQWZ2NhYe/+8vDzzy1/+0vj6+pp169Y59A8KCjK9evVyGqd79+4mPDzcqf1y/aszl0u5sjcGDx5svLy8zO7du53GiY2NNYsWLbL/29V9UfmM+/bta9auXWtKS0vNpk2bTJMmTczx48evOo/qkGQyMzPdMlZDUpN5X22PVa7XmTNnrjrW0aNHTYcOHUzr1q3NO++8Y06dOmXy8/PNc889ZySZWbNmGWNc24tJSUkmNDTUfPjhh+b06dMmPz/fpKWlGUlm7dq1Ls2lurKysky7du2MJCPJNG/e3Lzxxhs1Hs8deX7s2LFGklm1atVl+1Tmg8sdycnJDv0jIiKMJLN58+ar3v/++++3r1klV/NfbeUrY/5vn44aNcps2bLFlJSUmAULFhhJZujQoWbEiBHmiy++MMXFxWbevHlGkpk4caLTONHR0SY0NNTceeedZsOGDaa4uPiyc6rqN/TLL780gwYNMjfccIPTb6irc6qO2vqdBAAAAAAAAAAAAAAAuIosy98sKUn9+vXTpEmTFBYWpubNm2v8+PG69957lZGRoVOnTtn7TZ48WYWFhcrIyNDAgQMVHBysyMhILV68WKWlpU7jTpo0SQcOHNDMmTP1q1/9yt5/yZIlMsZo/PjxdTnNWpWUlKTY2FgFBQVpwIABGjZsmPLy8qp882Fpaanmzp1r79+jRw8tXLhQ586dU3JysgXRX15190ZqaqoqKio0c+ZMh+tzcnL0/fffO3y2t6b74qmnnlK/fv0UGBio22+/XeXl5Q5v10TDM2nSJO3bt08ZGRmKj49XSEiIWrVqpSlTpmjIkCEOfau7F9esWaPIyEgNHDhQAQEBatWqlV5++eVaecOjMUaPPvqo7rvvPqWmpio/P1/Hjx/X888/r3Hjxunuu+9WeXm52+/rbiNGjJAxxuF44oknLtvfZrNVe+xL+9Zm/qvuHrnYww8/rO7duysoKEgPPPCAIiMjtWrVKqWmpqpr164KDg7W2LFj1aFDB7333ntVjlFUVKQZM2aoV69eCg4OvuycqvoNjYqK0ptvvqmjR4+6bU4AAAAAAAAAAAAAAAD1keXFkvHx8Vq7dq1Te3R0tM6fP6+vv/7a3vb+++9LkgYPHuzQt0WLFurcubPTGMuXL5eXl5fi4+Md2lu3bq3IyEh99tlnOnTokDumYbmYmBiHf7dv316SdOTIEae+QUFB6tq1q0NbVFSU2rRpo23btl22aKauubI3Bg0apKioKL311ls6ceKEvf3ll1/W+PHj5ePjY2+r6b647bbb3DEt1CPLli2TJA0dOtTp3KpVq5SSkiLJtb04ZMgQbdy4UY8++qg2bdpk//T2zp071a9fP7fG//bbb+uf//ynHnvsMU2cOFGtWrVS8+bN9eijj+rpp59WZmamXn31Vbfe00pt2rSRJIe/8cup7FN5TaXayn+u7JGL9ejRw+HflfFe2t62bdsq87kk+fv76/bbb3doq2pOl/sNbdOmTZXFvDWdEwAAAAAAAAAAAAAAQH1kebFkUVGRnnnmGUVFRSksLEw2m002m01/+tOfJEmnT5+WJJWVlam4uFj+/v4KDg52GicsLMzh32VlZSoqKlJFRYVCQ0Pt41Yen3/+uSTpu+++q+UZ1o3Q0FCHf/v6+kqSKioqnPo2a9asyjFatmwpSfrhhx/cHF3NVHdvVEpJSdHp06c1d+5cSdKuXbv08ccf69FHH7X3uZZ9ERQUVFtThQUq94K/v79CQkKu2NeVvThnzhwtWLBAe/fuVVxcnJo2baohQ4bYCzPdqbL4bcCAAU7n4uLiJP1U9NkQvfrqq5o9e7ZDW9++fSVJW7duver127ZtkySnAtXayn+u5qtKTZs2dfi3l5eXmjRposDAQIf2Jk2aVJnPJSk8PLzKt21ePKer/YZW9nXHnAAAAAAAAAAAAAAAAOojy4slhw8frueee06PPPKIdu3apYqKChljNGvWLEk/fWZWkvz8/BQSEqKzZ8+qpKTEaZxLC1z8/PzUrFkzeXt76/z5806feK087rzzztqfZD1z4sQJ+3O9WOUzvLhoxsvLS+fOnXPqW1hYWOXYrnwe92qquzcq3XfffWrVqpVeffVVlZWV6ZVXXtHvfvc7h0Ja9kXD56495ufnp9DQUJ09e1bFxcVX7OvKXrTZbHrggQf00UcfqbCwUMuXL5cxRqNGjXL6TPy1zqW0tPSqfarKlw3V2LFj5e3trezs7Cv227Bhg44cOaLhw4fr+uuvdzjnSv5zhav5yp2KioqqbL94Tlf7DT158qRTm5VzAgAAAAAAAAAAAAAAcDdLiyUvXLignJwctW7dWhMmTFCLFi3sxUNnzpxx6l/5qdzKt6lVys/P165du5z6jxo1SuXl5crJyXE699JLL+n6669XeXm5O6bSoJw9e1Z5eXkObV999ZWOHDmi6OhoRURE2NsjIiJ0+PBhh775+fn6/vvvqxw7MDDQobjyF7/4hf7xj3+4FJ+3t7e+/vprl/aG9FPx2+OPP64ffvhBr7zyihYtWqTk5GSnfuyLhs0de6zSXXfdJUl67733nM5169ZNEydOdDlPNWvWTDt27JAk+fj4aODAgVq+fLlsNpveffddt86l8tPLa9ascTr38ccfS5J69uxZ7fHqu06dOmnq1Kn6/PPP9frrr1fZ5/Tp00pJSVF4eLjTmykl1/JfddQ0X7lTSUmJ/U2alaqa0+V+QwsKCrRz506HNlf3PQAAAAAAAAAAAAAAQH1nabFkkyZN1K9fP+Xn5+vll19WQUGBzpw5o7Vr12revHlO/WfMmKHrrrtOKSkpWr16tUpKSrR9+3Y99NBDat26tVP/F154QR07dtTvf/97rVq1SkVFRTp58qRef/11Pfvss0pPT5e3t3ddTLVeCQ0N1eTJk5Wbm6vS0lJt2bJF999/v3x9fZWRkeHQd9CgQTpy5IheffVVlZSUaM+ePUpOTr7s29duvfVW7dq1SwcPHlRubq727t2rPn36uByjq3uj0uOPP66AgABNmTJFAwYM0I033ujUh33RsNVkj+3fv19NmjRx+NS69NNe6NChgyZOnKh3331XxcXFOnTokB5//HEdPXpUEydOrNFefOyxx/Tll1+qrKxMP/zwg/72t7/JGKP+/ftf81wu9vjjj+umm27Sa6+9pr///e/64YcfdOLECb3xxht68cUX1bZtW6WlpVV7vIZgypQpmjRpkp544gmlpqbq66+/VllZmQoLC7Vy5Ur17t1b+fn5+uCDD/Tzn//c6XpX8l911TRfuUtQUJDGjRunzZs3X3FOVf2GfvPNN7r//vudPs1t9ZwAAAAAAAAAAAAAAADczrgoMzPT1OCyyzp+/LgZO3asad++vfHx8TGtWrUyDz74oHn66aeNJCPJdO/e3d5/586dZuTIkaZp06YmMDDQ3HHHHWb9+vWmX79+JjAw0Gn8EydOmNTUVPPzn//c+Pj4mBYtWphBgwaZ1atXu20OlRISEkxCQoJbxwwKCrI/h8rj5ZdfNrm5uU7tf/7zn40xxql92LBh9vGio6NN27ZtzTfffGMGDx5sQkJCTEBAgOnbt6/ZsGGD0/0LCwtNUlKSiYiIMAEBAaZ3794mLy/PdO/e3T7+U089Ze+/Y8cO06dPHxMUFGTat29v5syZc8W5XO749ttvXd4blR555BEjyaxfv/6yz7U6+6KqZ+zOvX8xSSYzM7NWxq7PajLvy+2xZcuWVbleubm5Zt++fcbLy8vYbDbz5ZdfOoxXUFBgUlJSTIcOHYyPj4+JiIgwd999t9m1a5e9jyt7cevWrWbs2LHm5ptvNoGBgea6664zPXv2NP/85z9NRUVFtebiipMnT5o//elPpnPnzsbPz8/4+vqajh07mnHjxpn8/HyXxzPm2vL8m2++WeU6FBcXO/SrKh+0atWq2vfJy8szv/vd78zPfvYz4+vra0JCQkyPHj3M9OnTTWFhYZXXuJL/aitfXS535+XlObW/8MIL5pNPPnFqnzp1qnn55Zft/27btq359NNPzZ133mmCg4OvmNMv/g0NCAgwMTExZuXKlSYuLs4+3sMPP2yMcf33uTpq43cSAAAAAAAAAAAAAACgGrJsxhjjSnFlVlaWEhMT5eJlta5z5846c+aMDhw4YFkMo0ePliRlZ2dbFsPVdO3aVQUFBTp06JDVodSaN998U3PmzNGWLVusDqXabDabMjMzNWbMGKtDqVONdd71XX3N89eqMeS/+q4h/E4CAAAAAAAAAAAAAACPlG3pZ7hdlZ+fr+uuu07nz593aN+/f7/27Nnj9IlbNE7z5s1Tamqq1WEAAAAAAAAAAAAAAAAAAOqJBlUsKUk//vijxo4dq4MHD+r06dP69NNPlZiYqKZNm+ovf/mL1eHBAvPnz9ddd92lkpISzZs3Tz/++CNvKgQAAAAAAAAAAAAAAAAA2DWoYsnWrVvro48+UmFhof7rv/5LYWFh+vWvf62bbrpJn376qX7+859bHWK9lZ6eLpvNpm3btunw4cOy2WyaMmWK1WG5zfLlyxUWFqbXXntNS5Yskbe3t9UhATVms9muekybNs3qMBsMT89/AAAAAAAAAAAAAAAAuLoGV1EWFxenuLg4q8NocNLS0pSWlmZ1GLUiKSlJSUlJVocBuI0xxuoQPIon5z8AAAAAAAAAAAAAAABUT4N6syQAAAAAAAAAAAAAAAAAAICrKJYEAAAAAAAAAAAAAAAAAAAejWJJAAAAAAAAAAAAAAAAAADg0SiWBAAAAAAAAAAAAAAAAAAAHo1iSQAAAAAAAAAAAAAAAAAA4NG8a3qhzWZzZxwehWcDVF9iYqISExOtDgNVIJehNiQkJFgdAgAAAAAAAAAAAAAAaIRqXCyZmZnpzjhQQ7m5uZo9ezbr0cA15mLBlJQUxcbGWh0GakFiYiLrCwezZs2yOgQAAAAAAAAAAAAAANBI1bhYcsyYMe6MA9dg9uzZrEcD15iLJWNjY9m/HioxMZH1hYPs7GyrQwAAAAAAAAAAAAAAAI2Ul9UBAAAAAAAAAAAAAAAAAAAA1CaKJQEAAAAAAAAAAAAAAAAAgEejWBIAAAAAAAAAAAAAAAAAAHg0iiUBAAAAAAAAAAAAAAAAAIBHo1gSAAAAAAAAAAAAAAAAAAB4tHpXLFlSUqKbbrpJ8fHxVocCoBEg5wAAAAAAAAAAAAAAAACer94VSxpjVFFRoYqKCqtDuarg4GD17t3b6jAaNKufodX3h/XIObhWVq+L1fcHAAAAAAAAAAAAAABoCLytDuBSISEh2rNnj9VhAHDBhg0bdPr0acXFxalJkyZWh+MScg4AAAAAAAAAAAAAAADg+erdmyUBNDyffvqpBg8erJYtW2rChAnKzc2VMcbqsAAAAAAAAAAAAAAAAABAUj0rlly+fLlsNpv9OHv2bJXt+/fvV2Jiopo1a6bw8HDFx8c7vBkuPT3d3rddu3bKy8tTXFycQkJCFBgYqDvvvFM5OTn2/tOnT7f3v/hTpu+//769vXnz5k7jl5aWKicnx97H27vevajTLU6cOKHU1FR17NhRvr6+CgsL09ChQ7V27Vp7H3c/Q9aw4fH29tbJkyc1b9483XHHHWrXrp3+/Oc/a/v27VaHdlnknMaDPAYAAAAAAAAAAAAAANC41atiyZEjR8oYoxEjRlyxPSUlRSkpKTp8+LAyMzP18ccf65577rH3T0tLkzFG0dHRKiwsVHJysqZPn678/Hz95z//0cmTJ9W/f3+tX79ekjRlyhQZYxQUFORw3yFDhsgYo+7duzu0V44fFBSkXr16yRgjY4zKy8sd+vXv31/h4eHatGmT255RXcvPz1dMTIwWL16sjIwMFRQUaPPmzQoMDFRcXJzmz58vyf3PkDVseLy8fkon58+flyQdOXJE6enpioqK0k033aRp06Zp9+7dVobohJzTOJDH2BcAAAAAAAAAAAAAAAD1qliyupKSkhQbG6ugoCANGDBAw4YNU15engoKCpz6lpaWau7cufb+PXr00MKFC3Xu3DklJyfXapwVFRX24pWGatKkSdq3b59mz56t+Ph4NW3aVJ06ddLixYsVERGhCRMm6NixY7UaA2vYcJ07d06StHv3bs2YMUM33XSToqOjlZGRofz8fIujqz5yTsNGHmNfAAAAAAAAAAAAAAAANMhvdcbExDj8u3379pJ+epPdxZ8olaSgoCB17drVoS0qKkpt2rTRtm3bdPToUUVERNRKnOvWrauVcevSsmXLJEnDhg1zaPfz81NcXJzefvttffDBB/rtb39bazE0ljWcNWuWli5dWmf3c6ddu3ZdtU/lGye/+uor/fGPf1Rqaqokaf369Ro8eLBCQ0NrNcZrQc5p2Mhj62plXAAAAAAAAAAAAAAAgIakQb5Z8tKiKl9fX0k/vT3rUs2aNatyjJYtW0qSfvjhBzdH5znKyspUVFQkf39/hYSEOJ1v1aqVJNX6GwJZQ1iNnNNwkccAAAAAAAAAAAAAAAAgNdA3S7rixIkTMsbIZrM5tFcWplQWqkiSl5eX/bPBFyssLKxy7EvH9DR+fn4KDQ1VUVGRiouLnQqNKj9b27p1a3tbbTzDxrKGEydO1JgxY6wOo0ZmzpypSZMmXbGPj4+Pzp8/r6ioKP3+979XYmKiIiIi1Ldv33r9VklXNZb92lCQxwAAAAAAAAAAAAAAACA10DdLuuLs2bPKy8tzaPvqq6905MgRRUdHO3z2NCIiQocPH3bom5+fr++//77KsQMDAx0KWn7xi1/oH//4hxujt95dd90lSXr33Xcd2svKyrRmzRoFBARo8ODB9vbaeIasYcNV+QbGG2+8UZMnT9Z3332nbdu2KTk52aE4zZOwX+sf8hgAAAAAAAAAAAAAAAA8vlgyNDRUkydPVm5urkpLS7Vlyxbdf//98vX1VUZGhkPfQYMG6ciRI3r11VdVUlKiPXv2KDk52eGNXxe79dZbtWvXLh08eFC5ubnau3ev+vTpYz/fv39/hYeHa9OmTbU6x9r0wgsvqEOHDkpJSdHKlStVXFysXbt26d5779XRo0eVkZFh/4yt5P5nKLGGDUXlJ6l9fHwkSW3atFFaWpq++uorfffdd5o2bZpuvPFGK0OsE+zX+oc8xr4AAAAAAAAAAAAAAACQcVFmZqapwWXVsmzZMiPJ4bjvvvtMbm6uU/uf//xnY4xxah82bJh9vOjoaNO2bVvzzTffmMGDB5uQkBATEBBg+vbtazZs2OB0/8LCQpOUlGQiIiJMQECA6d27t8nLyzPdu3e3j//UU0/Z++/YscP06dPHBAUFmfbt25s5c+Y4jNenTx8TFhZmNm7cWCvPy5jaXY9KBQUFJiUlxXTo0MH4+PiY0NBQM3jwYLNmzRqnvu5+ho1hDY35aR9nZmbW6j1q0yuvvGIkmeuuu86MHz/ebNy40VRUVFz1OqvnTc6pXVav78XIY/VjXyQkJJiEhASrwwAAAAAAAAAAAAAAAI1Pls0YY1wprszKylJiYqJcvMwSXbt2VUFBgQ4dOmR1KLWmIa1HTTSGNZQkm82mzMxMjRkzxupQamTDhg06ffq04uLi1KRJk2pf19DnfanGsl+ry9PWt6bYF/9n9OjRkqTs7GyLIwEAAAAAAAAAAAAAAI1MtrfVEQBo+Hr37m11CAAAAAAAAAAAAAAAAABwWV5WBwAAAAAAAAAAAAAAAAAAAFCbPLJYMj09XTabTdu2bdPhw4dls9k0ZcoUq8OCC1hDNCTsV1SFfQEAAAAAAAAAAAAAAFB/eORnuNPS0pSWlmZ1GLgGrCEaEvYrqsK+AAAAAAAAAAAAAAAAqD888s2SAAAAAAAAAAAAAAAAAAAAlSiWBAAAAAAAAAAAAAAAAAAAHo1iSQAAAAAAAAAAAAAAAAAA4NEolgQAAAAAAAAAAAAAAAAAAB7Nu6YXZmVluTMO1FBubq4k1gMNV+UehmdifXGxQ4cOqV27dlaHAQAAAAAAAAAAAAAAGiGbMca4ckFWVpYSExNrKx6g0crMzNSYMWOsDqNO2Ww2q0MAUMcSEhKUnZ1tdRgAAAAAAAAAAAAAAKBxya7xmyVdrLGEBUaPHi1JFKU0AI25aLAxFol6KpvNxnriiip/lwAAAAAAAAAAAAAAAOqal9UBAAAAAAAAAAAAAAAAAAAA1CaKJQEAAAAAAAAAAAAAAAAAgEejWBIAAAAAAAAAAAAAAAAAAHg0iiUBAAAAAAAAAAAAAAAAAIBHo1gSAAAAAAAAAAAAAAAAAAB4tDoplly4cKFsNpv9CA4OrrLfgQMH9Otf/1qnTp1SQUGBwzXdunXT2bNnna65tJ/NZlOPHj1qe0pu8fTTTyszM/Oy5y6eU8+ePeskJtaqavVxreAejWH/NnbkKwAAAAAAAAAAAAAAANTpmyVfe+01GWNUUlLidG7r1q3q0aOHBlqjahEAACAASURBVA0apKZNm6p58+YyxigvL89+PiUlxem6yn65ubkKDw+XMUZbtmyp9bm4wyOPPKJJkybpL3/5i9O5F198UcYYGWPUpEmTOo+NtXJUn9cK16Yx7N/GjHwFAAAAAAAAAAAAAAAAqZ58hvvUqVMaPny4fvOb32jcuHFO5/38/BQeHq7XX39d//rXvyyIsHZ07NhRy5Yt0/PPP6+srCyrw6kW1qrhrBVc56n7t7EiX5GvAAAAAAAAAAAAAAAAKtWLYsm//e1vys/P1zPPPFPleX9/fy1atEheXl4aO3asdu3aVccR1p7o6GglJCToj3/8o8rLy60O56pYq4azVnCdJ+/fxoh8Rb4CAAAAAAAAAAAAAACoZHmxpDFG8+fP1+233642bdpctt/gwYM1ZcoUFRcXa/To0Tp79mwdRlm77rrrLh06dEjvvvuu1aFcEWvVcNYKNefJ+7cxIV+RrwAAAAAAAAAAAAAAAC5mebHktm3bdOzYMUVHR1+179SpUzVo0CB9+eWXGj9+fLXGP3HihFJTU9WxY0f5+voqLCxMQ4cO1dq1a+19li9fLpvNZj/279+vxMRENWvWTOHh4YqPj9eePXucxj5+/LgmTJigG264Qb6+vmrRooVGjRqlrVu3Vv8BSOratask6YMPPnDpurrGWjWctcK18dT925iQr8hXAAAAAAAAAAAAAAAAF7O8WHL79u2SpHbt2l21r5eXlxYtWqT27dtr/vz5WrRo0RX75+fnKyYmRosXL1ZGRoYKCgq0efNmBQYGKi4uTvPnz5ckjRw5UsYYjRgxQpKUkpKilJQUHT58WJmZmfr44491zz33OIx99OhRxcTEKCsrS3PnztXJkye1bt06nTx5UrGxscrNza32M2jbtq3Ds6ivWKuGs1a4Np66fxsT8hX5CgAAAAAAAAAAAAAA4GKWF0sePXpUkhQaGlqt/s2bN1dWVpZ8fHw0duxY7dix47J9J02apH379mn27NmKj49X06ZN1alTJy1evFgRERGaMGGCjh075nRdUlKSYmNjFRQUpAEDBmjYsGHKy8tTQUGBw9gHDhzQzJkz9atf/UrBwcGKjIzUkiVLZIyp9tvJJKlp06ay2Wz2Z1FfsVYNZ61w7Txx/zYm5CvyFQAAAAAAAAAAAAAAwMUsL5Y8e/asJMnHx6fa1/Ts2VPp6ekqLS3V6NGjdebMmSr7LVu2TJI0bNgwh3Y/Pz/FxcXpzJkzVX6eNCYmxuHf7du3lyQdOXLE3rZ8+XJ5eXkpPj7eoW/r1q0VGRmpzz77TIcOHar2nLy9vS87j/qCtfpJQ1gruIcn7t/Ggnz1E/IVAAAAAAAAAAAAAADATywvlvT395cknT9/3qXrJkyYoMTERG3fvl3jxo1zOl9WVqaioiL5+/srJCTE6XyrVq0k/fQ51Utd+iYyX19fSVJFRYXD2BUVFQoNDZXNZnM4Pv/8c0nSd999V+35lJeXKyAgoNr9rcBa/aQhrBXcx9P2b2NBvvoJ+QoAAAAAAAAAAAAAAOAn3lYHEBERIUkqKipy+dr58+dr69at+p//+R97YUwlPz8/hYaGqqioSMXFxU5FLZWfSG3durXL9/Xz81OzZs1UUlKiM2fOyNv72h7jqVOnZIyxP4v6irVqOGsF9/KU/duYkK/IVwAAAAAAAAAAAAAAABez/M2SXbp0kaQafUY2ODhY//u//6ugoCDNnTvX6fxdd90lSXr33Xcd2svKyrRmzRoFBARo8ODBNYhaGjVqlMrLy5WTk+N07qWXXtL111+v8vLyao11+PBhSf/3LOor1qrhrBXcy1P2b2NCviJfAQAAAAAAAAAAAAAAXMzyYsno6Gi1bNlS27Ztq9H1kZGRev3116s898ILL6hDhw5KSUnRypUrVVxcrF27dunee+/V0aNHlZGRYf9kqqteeOEFdezYUb///e+1atUqFRUV6eTJk3r99df17LPPKj093eGtYPfff79sNpv27dvnNNbWrVslSYMGDapRLHWFtWo4awX3ayj7Fz8hX5GvAAAAAAAAAAAAAAAALmZ5saTNZlNSUpI2b96sI0eO2NsLCgpks9kUExOjoqIi2Ww29ejRo8ox7rvvPv3hD39wam/durXy8vJ0zz33aMKECQoPD9dtt92m0tJSffTRR3rkkUckSZs2bZLNZtOKFSskSQEBAZoyZYo9vpdeekmS1K1bN8XHx0uSWrZsqU8//VQjR47UuHHj1KJFC3Xu3Fn/7//9P61YsUJjxoxxiOXo0aMKDg7W9ddf7xTnsmXL1LZtWw0bNszVx1enWKuGs1aoPk/bv/gJ+Yp8BQAAAAAAAAAAAAAAcDGbMca4ckFWVpYSExPlymULFy7UAw88oNdee02PPfaY0/mioiJFRkYqPj5e8+bNcyWcBqGwsFBt2rTRfffdp3/+858O57Zt26Zu3bpp8eLFuvvuu6u83tvbWz169NCmTZtcuu/o0aMlSdnZ2dW+hrWyZq1sNpsyMzMbXeFbY523p6pv60m+unK+skJNfpcAAAAAAAAAAAAAAADcINvyN0tKUmhoqN555x0tXbpUc+bMsToctzLGaMKECWratKmee+45h3N79+7VqFGjNGnSpHpVzHIlrFXDWSugsSNfka8AAAAAAAAAAAAAAAAq1Wmx5B/+8AfZbDYFBwc7nevWrZu2bNmiVatW6dSpU3UZVq06duyY9u7dqzVr1qh169YO515//XU9//zzev75552ue/rpp2Wz2WSz2XThwoW6CteOtWo4awXg8shXAAAAAAAAAAAAAAAAkOroM9ywBp87bTjq2+eL60pjnbenYj1xNfwuAQAAAAAAAAAAAAAAi9SPz3ADAAAAAAAAAAAAAAAAAADUFoolAQAAAAAAAAAAAAAAAACAR6NYEgAAAAAAAAAAAAAAAAAAeDSKJQEAAAAAAAAAAAAAAAAAgEejWBIAAAAAAAAAAAAAAAAAAHg075peOHr0aHfGgVqwadMmSawV6rdZs2YpOzvb6jDgJqyn5yovL1d+fr7atWtX4zE2bdqknj17ujEqAAAAAAAAAAAAAACA6nG5WLJ9+/ZKSEiojVjgZhSkNBwJCQlq37691WHUOXKJZ2E9PduxY8e0efNm7dixQ126dFHr1q1dHqNnz56KjY2thegAAAAAAAAAAAAAAACuzGaMMVYHAQAA6r9vvvlG06ZN09KlS9WzZ0+98MIL6tu3r9VhAQAAAAAAAAAAAAAAXE22l9URAACAhuGWW25RVlaWcnNzFRAQoH79+mngwIH6/PPPrQ4NAAAAAAAAAAAAAADgiiiWBAAALrn99tu1Zs0arV69WoWFherRo4fGjBmj7777zurQAAAAAAAAAAAAAAAAqkSxJAAAqJEBAwbo008/1YoVK7Rz505FRkZq7NixOnz4sNWhAQAAAAAAAAAAAAAAOKBYEgAA1JjNZtPw4cP1+eefa968eXr//fd100036cknn9SPP/5odXgAAAAAAAAAAAAAAACSJJsxxlgdBAAA8AxlZWWaN2+enn/+eVVUVOiZZ57RH/7wB/n4+FgdGgAAAAAAAAAAAAAAaLyyebMkAABwGz8/PyUnJ2vv3r0aN26cnnrqKUVGRio7O9vq0AAAAAAAAAAAAAAAQCNGsSQAAHC74OBgTZs2Tbt27VLPnj2VmJio2NhY5ebmWh0aAAAAAAAAAAAAAABohCiWBAAAtaZ9+/ZasGCBNm/eLG9vb/Xq1UtjxozRgQMHrA4NAAAAAAAAAAAAAAA0IhRLAgCAWhcTE6NPPvlEK1as0GeffaZbbrlFTz/9tIqLi60ODQAAAAAAAAAAAAAANAIUSwIAgDozfPhwffvtt5oxY4bmzZunzp076x//+IcuXLhgdWgAAAAAAAAAAAAAAMCDUSwJAADqlK+vr5KTk7Vr1y79+te/1hNPPKHbbrtNubm5VocGAAAAAAAAAAAAAAA8FMWSAADAEi1bttRrr72mrVu3qlmzZurVq5cefPBBHTt2zOrQAAAAAAAAAAAAAACAh6FYEgAAWCoyMlJr1qzRihUrtG7dOnXs2FHTpk3TuXPnrA4NAAAAAAAAAAAAAAB4CIolAQBAvTB8+HB98803SktL00svvaRf/vKX+uCDD6wOCwAAAAAAAAAAAAAAeACKJQEAQL0RGBioadOmafv27brppps0ZMgQDR8+XAcOHLA6NAAAAAAAAAAAAAAA0IBRLAkAAOqdjh076p133tHq1au1e/du3XLLLZo2bZrKysqsDg0AAAAAAAAAAAAAADRAFEsCAIB6a8CAAdq2bZtmzJihV155RV26dNF7771ndVgAAAAAAAAAAAAAAKCBoVgSAADUa76+vkpOTtaOHTsUGxurYcOGafjw4dq3b5/VoQEAAAAAAAAAAAAAgAaCYkkAANAgtG3bVgsWLNDHH3+sffv2KTIyUk8//bRKSkqsDg0AAAAAAAAAAAAAANRzFEsCAIAG5c4779QXX3yhF154Qa+99ppuvvlmLViwwOqwAAAAAAAAAAAAAABAPUaxJAAAaHB8fHyUnJysb7/9Vn379tWDDz6ooUOHavfu3VaHBgAAAAAAAAAAAAAA6iGKJQEAQIPVpk0bLVy4UOvXr9eRI0cUFRWlZ599VmVlZVaHBgAAAAAAAAAAAAAA6hGbMca4csGhQ4e0cePG2ooHaLTuuOMOtWvXzuow6lRWVpbVIQCoY+3bt1dsbGytjF1eXq45c+boL3/5i1q2bKk5c+Zo8ODBtXIvAAAAAAAAAAAAAADQoGS7XCyZlZWlxMTE2goIaLQyMzM1ZswYq8OoUzabzeoQANSxhIQEZWdn1+o9jhw5oqefflpvv/224uPj9dprrzW6YnQAAAAAAAAAAAAAAOAgu8af4TbGcFzhkH4qfrM6Do6GcTRm/J3UvyMzM1MSeZ7D/UdCQkKd5JU2bdpowYIFeuedd7R9+3Z16dJFGRkZunDhQp3cHwAAAAAAAAAAAAAA1D81LpYEAACoz+Lj4/XNN98oJSVFTz75pGJiYvTpp59aHRYAAAAAAAAAAAAAALAAxZIAAMBjBQQEaNq0afrqq6903XXXKTY2VmPHjtWpU6esDg0AAAAAAAAAAAAAANQhiiUBAIDH69Spk1avXq0333xTy5YtU+fOnbVgwQKrwwIAAAAAAAAAAAAAAHWEYkkAANAo2Gw2/fa3v9XOnTs1evRoPfTQQ+rfv7927NhhdWgAAAAAAAAAAAAAAKCWUSwJAAAalbCwMGVkZGj9+vU6fvy4unXrpmnTpuns2bNWhwYAAAAAAAAAAAAAAGpJvS+WXL58uWw2m/1wZyFDenq6fdx27dq5bVx3Cw4OdngGNptN6enpVodVI540F9RfmZmZ6tq1qwICAuz7bPv27VaHVSsuXLig2bNnq2vXrgoMDFRoaKj69++vjz76qM5i6Nq1q9Pf9ZWO6dOnV5kLLnfMnz/f6Z5btmzRgw8+qBtuuEH+/v5q1qyZYmJi9Oyzz6qwsPCa51Tfc5W7fr+WLFliH8ff39+NETYMvXv31hdffKEXX3xRM2fOVFRUlD788EOrwwIAAAAAAAAAAAAAALWg3hdLjhw5UsYYjRgxwu1jp6WlyRij6Ohot4/tTiUlJfriiy8kSSNGjJAxRmlpaRZHVTOeNBfUTzk5Obrnnns0aNAgHT9+XLt3767XxdDX4sKFCxo5cqSefPJJJSUl6eDBg9q6datuuOEGDRo0SEuWLKmzWLKzs2WMsR9jx46VJK1atcqhPTExUVLVuaCqo2/fvk73mjRpknr27KmwsDCtXLlShYWF2rdvn6ZOnaply5apU6dOysnJuab51Pdc5a7fr7vvvlvGGMXFxbkpsobH29tbycnJ+uqrr3TzzTdr8ODB+u1vf6vjx49bHRoAAAAAAAAAAAAAAHCjel8siYYnODhYvXv3tjoMeKir7a/Kor3k5GQFBwerY8eOOnjwoLp06VKHUVbPtf6tLFy4UCtXrtRjjz2mcePGKTw8XB06dNAbb7yhX/ziF3r88cfd8pbF+mT69Ol68cUXNWfOHM2aNUtdunSRv7+/wsLCFB8fr5ycHF1//fUaOnSoduzYYXW4aEB+9rOf6d///reWLVumjz/+WLfccovefvttq8MCAAAAAAAAAAAAAABuQrEkAI9y8OBBSVJ4eLjFkdS+ZcuWSZKGDx/u0G6z2TRixAj9+OOPWrp0aa3HsXXrViUkJFSr75IlSzRlypRqj71u3TolJSVJknbv3q2//vWvuvXWW+1vrrxUYGCgZs2apeLiYk2YMKHa9wEqjRw5Ujt37tTDDz+shx56SP369dOuXbusDgsAAAAAAAAAAAAAAFwjiiUBeJQLFy5YHUKdOXbsmCSpZcuWTuciIiIkSRs2bKjTmNxl3LhxSklJcWibN2+eysvLNXr06Cte26dPH7Vp00arV6/W3r17azNMeKigoCC9+OKL+s9//qOCggJ17dpV06ZN0/nz560ODQAAAAAAAAAAAAAA1JDlxZInTpxQamqqOnbsKD8/P7Vr104DBgzQW2+9pTNnzjj1z8/PV2Jiopo1a6bw8HDFx8drz549VxzX19dXYWFhGjp0qNauXVsX06oTy5cvl81msx/79++/4rNJT0+3923Xrp3y8vIUFxenkJAQBQYG6s4771ROTo69//Tp0+39L/5U8Pvvv29vb968udP4paWlysnJsffx9vau8RzLy8uVmZmpgQMHqnXr1goICFBUVJQyMjJUUVEhSSosLHR4DjabTdOnT7dff3H7xW+/O378uCZMmKAbbrhBvr6+atGihUaNGqWtW7de9hnv3LlTY8aMUXh4uL2toKCgxvND9V1tf1Wu1YoVKyRJAQEBstls6tmz5xXHrU4Oqs4+rFRWVqZnnnlGnTt3VmBgoK677joNHz5c//73v+2FnO76W6n8+6ssmrzY8ePHJUn79+93acz6bP369ZKk6Ojoq/at7PPJJ5+4nPtqorp75NKccuDAASUmJiokJETh4eF64IEH9OOPP2r//v0aPny4QkJCFBERoUceeUTFxcWXvf+OHTs0bNgwhYaGXnFOO3bs0MiRIxUaGqqgoCD16dPnsgW1rux7T3XHHXfoiy++0NSpU/XSSy8pJiZGeXl5VocFAAAAAAAAAAAAAABqwNJiyfz8fMXExOhf//qXMjIyVFBQoM8++0z9+vXTQw89pNdff93pmpSUFKWkpOjw4cPKzs7WJ598onvuuafKcRcvXmwfd/PmzQoMDFRcXJzmz59fV1OsVSNHjpQxRiNGjJDk+GwyMzP18ccfOzybtLQ0GWMUHR2twsJCJScna/r06crPz9d//vMfnTx5Uv3797cXJE2ZMkXGGAUFBTncd8iQITLGqHv37g7tleMHBQWpV69eMsbIGKPy8vIaz/H999/X3Xffrf79++vbb7/VwYMH9eijjyo1NVVPPfWUJKlZs2Yyxmjw4MHy8vLS7t277Z/59fb2ljFGsbGxWrRokf2TxEePHlVMTIyysrI0d+5cnTx5UuvWrdPJkycVGxur3NzcKp/x2LFj9fjjj+vgwYPatGmTmjRpUuO5wTVX21+XrtWZM2dkjNGmTZsuO2Z1c1B19mGlcePG6e9//7v++7//WydOnNC3336rzp07a8SIEfrkk0+qNZfqGjx4sCRp5cqVTufef/99SVJpaalLY1phxYoVTgXPc+bMcep3+PBhSdX7xHplnyNHjric+2qiunvk0n2ampqqJ598Uvn5+Zo9e7YWLlyo++67TykpKXruued09OhRTZs2TfPnz9fUqVOrvHdJSYkef/xxTZ48WYcPH77snHbv3q3Y2Fht2bJFS5cu1bFjxzR37lw999xzVf5PB67se0/m4+Ojp556Sl999ZXCw8N1xx13KDk5WSUlJVaHBgAAAAAAAAAAAAAAXGBpseSkSZO0b98+ZWRkKD4+XiEhIWrVqpWmTJmiIUOGVHlNUlKSYmNjFRQUpP79+ys+Pl55eXkOb/erHHf27NmKj49X06ZN1alTJy1evFgRERGaMGFClW9ia+gufjYDBgzQsGHDnJ5NpdLSUs2dO9fev0ePHlq4cKHOnTun5ORkC6K/vH79+mnSpEkKCwtT8+bNNX78eN17773KyMjQqVOn7P1SU1NVUVGhmTNnOlyfk5Oj77//3uHTvZMmTdKBAwc0c+ZM/epXv1JwcLAiIyO1ZMkSGWM0fvz4KmN56qmn1K9fPwUGBur2229XeXm5w9s10bC4koOquw/XrFmjyMhIDRw4UAEBAWrVqpVefvllderUye3xJyUlqXv37po3b57mzJmjEydO6Pvvv9e4cePshYUBAQFuv6+7jRgxwl4wWnk88cQTl+1vs9mqPfalfWsz91V3j1zs4YcfVvfu3RUUFKQHHnhAkZGRWrVqlVJTU9W1a1cFBwdr7Nix6tChg957770qxygqKtKMGTPUq1cvBQcHX3ZOkydPVmFhoTIyMjRw4EAFBwcrKipKb775po4ePeq2OXmqG2+8UR999JHeeOMNLVq0SL/85S/1wQcfWB0WAAAAAAAAAAAAAACoJkuLJZctWyZJGjp0qNO5VatWKSUlxak9JibG4d9t27aV9NPbwy4dd9iwYQ59/fz8FBcXpzNnznhkgcOlz6Z9+/aSHJ9NpaCgIHXt2tWhLSoqSm3atNG2bdsuWzhT1+Lj46v8dHp0dLTOnz+vr7/+2t42aNAgRUVF6a233tKJEyfs7S+//LLGjx8vHx8fe9vy5cvl5eWl+Ph4h3Fbt26tyMhIffbZZzp06JDTfW+77TZ3TAv1RHVzkCv7cMiQIdq4caMeffRRbdq0yf7p7Z07d6pfv35ujd/f319r165VcnKy0tPTFRERodtvv13GGGVnZ0v6aU97ijZt2kiSw9/35VT2+f/s3XtcVVX+//H3QVQQEMgr3tJszFIDFFNLMxW8BOZluKSpNUWQTQma81PLJqesNG2UeWQFOdkXtQQqLW+Z10q8gYWXyjQ1U9ESFURTFFm/P3rASKCCAZsDr+fjcf5w77X3ee+9Fuv80ae18q/JV15zX2nGyJX8/PwK/Ts/7x+PN23atNi5XPp9HHTp0qXQseKeKX+10fwVSa/8zuKKeW/0maoym82mUaNGaffu3erevbv69++v0NDQgm3vAQAAAAAAAAAAAABA5WVZsWROTo6ysrLk5OQkNze3El/n7u5e6N8ODr8/Ql5eXonu26hRI0m/b79b1fzx3dSqVUvS/97NlTw8PIq9R8OGDSVJv/76axmnuzFZWVn65z//qQ4dOsjT07Ngi95//OMfkqTffvutUPvo6Gj99ttvevPNNyVJe/fu1bp16xQREVHQJn+M5OXlyd3dvcj2v19//bUkad++fUXy/HFLctiv0sxBpRmHc+bMUXx8vA4cOKA+ffqobt266t+/f0FhZllzc3PTjBkzdPDgQV28eFHHjh3TnDlzCrbf7tixY7l8b3l74403NHv27ELHevbsKUlKS0u77vU7duyQpCIFquU195V2rspXt27dQv92cHBQjRo1VKdOnULHa9SoUexcLv2+5Xhxq21e+Uw5OTnKzs6Wk5OTXF1dr9q2LJ6pOmjcuLHi4+O1dOlSbd26Vbfddpvi4uJkjLE6GgAAAAAAAAAAAAAAuArLiiVr164td3d3XbhwQdnZ2RV23/ztt6vSams34uTJk8UWdeQXCl1ZOOPg4KCLFy8WaZuZmVnsvUuzRe71DBw4UC+99JIef/xx7d27V3l5eTLGaNasWZJU5BkeeughNWrUSG+88YZycnL0+uuv6+GHH5anp2dBm9q1a8vDw0OOjo66dOlSke1/8z+9evUqs+dA2Smr8VWaOag049Bms2nkyJFas2aNMjMztWTJEhljNHTo0CJbxJfl38ofbdy4UZI0dOjQcvuOihYZGSlHR8eCVTOvZuPGjUpPT9fAgQPVokWLQudKM/eVRmnnqrKUlZVV7PErn6l27dpyc3PThQsXdPbs2SJtT506VeSYlc9kL4KCgvTdd98pIiJCTz75pHr16qW9e/daHQsAAAAAAAAAAAAAABTD0m24hwwZIklasWJFkXO+vr4aO3bsn7rv8uXLCx3PycnR2rVr5ezsXGQb0urmwoULSklJKXRs165dSk9Pl7e3t7y8vAqOe3l56ejRo4XaHj9+XD///HOx965Tp06h4sr8FbdKw9HRUd9++62Sk5PVuHFjjRkzRg0aNCgoLjt//nyx19WuXVtPPvmkfv31V73++utauHChoqKiirQbOnSocnNzlZycXOTc9OnT1aJFC+Xm5pYqMypGWYyvfCWZgy5fvlyqcejh4aE9e/ZIkmrWrKmAgAAtWbJENputyJz0Z58lIyNDDg4ORbZnPnPmjObOnasHH3yw2O2V7VWbNm30wgsv6Ouvv1ZsbGyxbX777TdFR0erXr16RVamlEo395XEjc5VZens2bMFK2nmK+6Z8rebz9+OO19GRoZ++OGHQsdKO+6rMxcXF02bNk1fffWVMjIy5OPjoylTpujSpUtWRwMAAAAAAAAAAAAAAFewtFjy1VdfVatWrTR27FgtX75c2dnZOnLkiJ588kkdO3bshosl8+8bHR2tZcuWKTs7W3v37tXw4cN17NgxxcTEFGzHXV25u7vr2Wef1ebNm3Xu3DmlpqZqxIgRqlWrlmJiYgq17du3r9LT0/XGG2/o7Nmz2r9/v6Kioq66AlvHjh21d+9eHT58WJs3b9aBAwfUo0ePUmesUaOG7rvvPh0/flwzZsxQRkaGzp8/r/Xr1+vtt9++6nVPPvmknJ2dNXnyZPn7++vWW28t0ubVV19V69at9eijj2rlypXKysrSqVOnFBsbqxdffFEzZ86Uo6NjqTOj/N3I+Prpp59Uo0aNQtusSyWbg25kHD7xxBPauXOncnJy9OuvJ4+VxAAAIABJREFUv+q1116TMUa9e/f+08/yR8YY/e1vf9OPP/6onJwcbdu2Tf3791ejRo00Z86cUt3LHkyePFmTJk3S3//+d40bN07ffvutcnJylJmZqWXLlql79+46fvy4Vq1apVtuuaXI9aWZ+0rqRueqsuLi4qKnnnpKW7duveYzvfLKK7rpppsUHR2t1atX6+zZs/ruu+80YsSIIltzW/1M9qhbt276+uuvNWnSJE2bNk1du3YtUsQKAAAAAAAAAAAAAAAsZEopISHB3MBlV5WRkWGio6NNq1atTM2aNY2Xl5d58MEHzd69e40xxmzevNlIKvR57rnnjPl9/89Cn8DAwKve193d3fTr18+sXbu2oM2MGTOueu8/S5JJSEgok3u5uLgUyTljxowbfjfe3t6madOm5rvvvjP9+vUzbm5uxtnZ2fTs2dNs3LixyPdnZmaa8PBw4+XlZZydnU337t1NSkqK6dSpU8H9J0yYUNB+z549pkePHsbFxcU0b97czJkz55rPcrXP999/b06cOGEiIyNN8+bNTc2aNU2jRo3MI488YiZOnFjQrlOnTkUyP/7440aS+eKLL676Xk+ePGnGjRtnbrnlFlOzZk3ToEED07dvX7N69eqCNsW947Ic//nKcrzYkxt57quNr8WLFxfbV5s3bzYHDx40Dg4OxmazmZ07dxa63/XmIGNMqcZhWlqaiYyMNLfffrupU6eOuemmm0zXrl3NO++8Y/Ly8kr0LKWxevVq88ADD5jGjRsbZ2dn0759e/PSSy+Z3377rdT3yvdn5vl58+YV2w/Z2dmF2hU3FzRq1KjE35OSkmIefvhhc/PNN5tatWoZNzc34+fnZ6ZOnWoyMzOLvaY0c195zVVXm7dTUlKKHH/11VfNV199VeT4Cy+8UOj3q2nTpmbbtm2mV69extXV9Zrz+Q8//GAGDx5s6tata5ydnU3nzp3NsmXLTJ8+fQru99hjjxljSjfuSyo4ONgEBweX6hp79P3335vu3bubmjVrmueff97k5ORYHQkAAAAAAAAAAAAAgOou0WaMMSWoqSyQmJiosLAwlfKyasdmsykhIUGhoaFWRynCx8dHGRkZOnLkiNVRys28efM0Z84cpaamWh2lRCrzeClP1fW5K7uqOs9Xh7mvsgsJCZEkJSUlWZyk/Blj9M4772j8+PFq0aKF3n33Xd11111WxwIAAAAAAAAAAAAAoLpKsnQbbqC8vP322xo3bpzVMQAA1ZTNZlNERIR27typJk2aqFu3boqMjNS5c+esjgYAAAAAAAAAAAAAQLVEsSSqhLlz52rIkCE6e/as3n77bZ0+fZrVCgEAlmvZsqU+//xzLVq0SB9++KHuvPNOrV+/3upYAAAAAAAAAAAAAABUOxRLViMzZ86UzWbTjh07dPToUdlsNk2ePNnqWGVmyZIl8vT01FtvvaVFixbJ0dHR6kjADbHZbNf9TJkyxeqYdqOqz32wDyEhIdq9e7fuvPNO9enTR5GRkcrOzrY6FgAAAAAAAAAAAAAA1QbVZNXI+PHjNX78eKtjlIvw8HCFh4dbHQMoE8YYqyNUKVV57oN98fLy0uLFi5WUlKQnn3xSn3/+ueLi4hQQEGB1NAAAAAAAAAAAAAAAqjxWlgQAAKhAISEh+vbbb9W5c2f17dtXoaGhOnXqlNWxAAAAAAAAAAAAAACo0iiWBAAAqGANGzZUYmKiPv30UyUnJ6t9+/ZavHix1bEAAAAAAAAAAAAAAKiyKJYEAACwyMCBA/Xtt99q4MCBGjp0qEJDQ5WRkWF1LAAAAAAAAAAAAAAAqhyKJQEAACzk4eGh2NhYrVixQlu2bFG7du2UlJRkdSwAAAAAAAAAAAAAAKoUxxu9MCQkpCxzVEmzZs2i2AG4Dv5OKp8jR45IYp5H2duyZYu6du1qdYxKa8CAAdq1a5fGjx+vsLAwJSYm6o033lCjRo2sjgYAAAAAAAAAAAAAgN1jZclyEhwcrGbNmpX79xw5ckQffvhhuX8PgOqjWbNmCg4O/tP3+fDDDwsKLwGUjLu7u9555x1t2LBBO3bsUNu2bRUXF2d1LAAAAAAAAAAAAAAA7N4NryzJSnCVQ2JiosLCwugPO2ez2ayOYJmxY8cqNDTU6hgoBzabjf5FIaxWWnL33nuv0tLS9OKLL2r06NFas2aN5syZowYNGlgdDQAAAAAAAAAAAAAAu8TKkgAAAJVQnTp1NG3aNK1atUpbt25V+/bt9dFHH1kdCwAAAAAAAAAAAAAAu0SxJAAAQCXm7++vXbt2afDgwQoJCVFoaKgyMjKsjgUAAAAAAAAAAAAAgF2hWBIAAKCSq1u3rmJjY7Vy5Upt2bJF7du315IlS6yOBQAAAAAAAAAAAACA3aBYEgAAwE7069dPu3bt0qBBgzRkyBCFhobq1KlTVscCAAAAAAAAAAAAAKDSo1gSAADAjri7uys2NlYrVqzQpk2b1K5dO3366adWxwIAAAAAAAAAAAAAoFKrdMWSZ8+e1V/+8hcFBQVZHQVANcCcA8BeDRgwQLt379YDDzygQYMGKTQ0VKdPn7Y6FgAAAAAAAAAAAAAAlVKlK5Y0xigvL095eXlWR7kuV1dXde/e3eoYds3qd2j198N6zDn4s6zuF6u/H9by8PBQbGysli1bpuTkZPn4+GjNmjVWxwIAAAAAAAAAAAAAoNKpdMWSbm5u2r9/v1asWGF1FAAl9Ouvv+rSpUtWx7ghzDkAqoLAwEDt3r1b9957r/r27avIyEhlZ2dbHQsAAAAAAAAAAAAAgEqj0hVLArA/CxYsUKNGjfTkk0/qq6++sotVGgGgqvH09NT8+fOVkJCgjz/+WHfeeafWrVtndSwAAAAAAAAAAAAAACqFSlUsuWTJEtlstoLPhQsXij3+008/KSwsTB4eHqpXr56CgoK0f//+gvvMnDmzoG2zZs2UkpKiPn36yM3NTXXq1FGvXr2UnJxc0H7q1KkF7a/cyvSzzz4rOF6/fv0i9z937pySk5ML2jg6OlbAW6p4J0+e1Lhx49S6dWvVqlVLnp6eGjBggNavX1/QpqzfIX1of7KysjR37lzde++9atKkif7f//t/SktLszrWNTHnVB/MY6hOQkJCtGvXLnl7eysgIEBRUVE6f/681bEAAAAAAAAAAAAAALBUpSqWHDx4sIwxGjRo0DWPR0dHKzo6WkePHlVCQoLWrVunYcOGFbQfP368jDHy9vZWZmamoqKiNHXqVB0/flxffvmlTp06pd69e+uLL76QJE2ePFnGGLm4uBT63v79+8sYo06dOhU6nn9/FxcX3XPPPTLGyBij3NzcQu169+6tevXqacuWLWX2jira8ePH1blzZ73//vuKiYlRRkaGtm7dqjp16qhPnz6aO3eupLJ/h/Sh/XF0dCzYivuXX35RTEyMfH19deutt2rKlCnau3evxQmLYs6pHpjHGBfVUePGjbVkyRK99957io+Pl6+vr7Zt22Z1LAAAAAAAAAAAAAAALFOpiiVLKjw8XN26dZOLi4v8/f0VGBiolJQUZWRkFGl77tw5vfnmmwXt/fz8tGDBAl28eFFRUVHlmjMvL6+geMVeTZo0SQcPHtTs2bMVFBSkunXrqk2bNnr//ffl5eWlMWPG6JdffinXDPShfbp48aIkaf/+/Xr55Zd122236bbbbtP06dOVnp5ucbrSYc6xb8xjjIvqbOTIkfr+++9166236p577tHEiRML5mcAAAAAAAAAAAAAAKoTu9yrs3PnzoX+3bx5c0lSenp6oS1KJcnFxUU+Pj6FjnXo0EFNmjTRjh07dOzYMXl5eZVLzg0bNpTLfSvS4sWLJUmBgYGFjteuXVt9+vTR/PnztWrVKo0aNarcMlSXPtyyZYtsNluFfV9Z2rFjxzXP5690t2/fPj333HOaNGlSwTbD586dK/d8fxZzjn1jHttQLveF/WjcuLGWLl2qd955R+PGjdPKlSs1f/583XnnnVZHAwAAAAAAAAAAAACgwthlsaS7u3uhf9eqVUvS76tn/ZGHh0ex92jYsKHS09P166+/lluBir3LyclRVlaWnJyc5ObmVuR8o0aNJP2+xW15qi59OGvWLM2aNcvqGDcs/+/wWowxunz5smw2m7766itJ0ttvvy1/f/+CAsTKiDnHfjGPAb+z2WyKiIiQv7+/Hn74YXXp0kVTpkzRP/7xDzk42OVC4wAAAAAAAAAAAAAAlEqV/6/jJ0+eLHbr0V9//VXS74Uq+RwcHIrdmjIzM7PYe9vrKoAlVbt2bbm7u+vChQvKzs4ucj5/29rGjRsXHCuPd1hd+jAhIaFgq1x7+7z++uvXfT6bzaaaNWvKZrOpc+fOmj17tiTpmWeeqdSFkqVVXcarvWAeAwq75ZZbtH79ek2ZMkX//Oc/de+992r//v1WxwIAAAAAAAAAAAAAoNxV+WLJCxcuKCUlpdCxXbt2KT09Xd7e3oVW8vLy8tLRo0cLtT1+/Lh+/vnnYu9dp06dQgUtt912m+Li4sowvfWGDBkiSVq+fHmh4zk5OVq7dq2cnZ3Vr1+/guPl8Q7pQ/tWs2ZNSVLr1q317LPP6scff9TWrVsVFRVlcbLywXitfJjHgMIcHR01YcIEpaSkKDs7Wx07dmTMAAAAAAAAAAAAAACqvCpfLOnu7q5nn31Wmzdv1rlz55SamqoRI0aoVq1aiomJKdS2b9++Sk9P1xtvvKGzZ89q//79ioqKKrTi15U6duyovXv36vDhw9q8ebMOHDigHj16FJzv3bu36tWrpy1btpTrM5anV199Va1atVJ0dLSWLVum7Oxs7d27V8OHD9exY8cUExNTsI2tVPbvUKIP7VF+gWSTJk00btw4ff/999q3b5+mTJmiW265xeJ05YvxWvkwjzEuULw777xTW7du1ejRozV69GgFBgbq2LFjVscCAAAAAAAAAAAAAKB8mFJKSEgwN3BZiSxevNhIKvR56KGHzObNm4scf+6554wxpsjxwMDAgvt5e3ubpk2bmu+++87069fPuLm5GWdnZ9OzZ0+zcePGIt+fmZlpwsPDjZeXl3F2djbdu3c3KSkpplOnTgX3nzBhQkH7PXv2mB49ehgXFxfTvHlzM2fOnEL369Gjh/H09DSbNm0ql/dlTPn2R76MjAwTHR1tWrVqZWrWrGnc3d1Nv379zNq1a4u0Let3WB360Jjfx3FCQkK5fkd5ev311wveb4MGDczYsWPNtm3brnud1c/NnFO+rO7fKzGPVY5xERwcbIKDg62OgWJs3LjRtG7d2jRs2NAsXrzY6jgAAAAAAAAAAAAAAJS1RJsxxpSmuDIxMVFhYWEq5WWW8PHxUUZGho4cOWJ1lHJjT/1xI6pDH0qSzWZTQkKCQkNDrY5yQ959911t3rxZw4cPV8+ePeXgULJFa+39uf+ouozXkqpq/XujGBf/ExISIklKSkqyOAmKc+bMGf3jH/9QXFycQkJCFBsbK09PT6tjAQAAAAAAAAAAAABQFpKq/DbcAMrfo48+qnfeeUe9evUqcaEkAKByqVu3rmJjY7V8+XJt3LhRvr6+2rBhg9WxAAAAAAAAAAAAAAAoE1Q1AQAAoMD999+vtLQ0+fr6qnfv3oqMjNRvv/1mdSwAAAAAAAAAAAAAAP6UKlksOXPmTNlsNu3YsUNHjx6VzWbT5MmTrY6FUqAPYU8YrygO4wL2rGHDhlq8eLHmzp2rDz74QF26dNGOHTusjgUAAAAAAAAAAAAAwA2rksWS48ePlzGm0Gfq1KlWx0Ip0IewJ4xXFIdxgarg0Ucf1c6dO+Xp6akuXbpo5syZysvLszoWAAAAAAAAAAAAAAClViWLJQEAAFA2WrZsqS+++ELTp0/Xc889J39/fx0+fNjqWAAAAAAAAAAAAAAAlArFkgAAALgmm82mqKgopaamKiMjQx06dNCCBQusjgUAAAAAAAAAAAAAQIlRLAkAAIAS6dChg7Zu3aqHH35Yo0aNUmhoqE6fPm11LAAAAAAAAAAAAAAArotiSQAAAJSYs7OzYmJi9Nlnnyk5OVk+Pj764osvrI4FAAAAAAAAAAAAAMA1USwJAACAUuvbt6/S0tLk6+urXr16KSoqShcvXrQ6FgAAAAAAAAAAAAAAxbIZY0xpLkhMTFRYWFh55QGqrYSEBIWGhlodo0LZbDarIwCoYMHBwUpKSrI6BspYfHy8/v73v6tVq1ZauHChOnToYHUkAAAAAAAAAAAAAACulOR4o1cmJCSUZRCUg1mzZkmSxo4da3ESXE91LkCOjo5Wt27drI6BMhAWFkZ/4pryf5dQ9YwaNUo9evTQyJEj1aVLF7366qsaM2YMRfEAAAAAAAAAAAAAgErjhoslq9sKePYof+Uu+qryq87Fkt26dWOMVhFhYWH0J66JFSWrtlatWmnDhg2aOnWqnnnmGa1YsULz5s1TkyZNrI4GAAAAAAAAAAAAAIAcrA4AAACAqsHR0VFTpkxRcnKyDhw4IB8fH3366adWxwIAAAAAAAAAAAAAgGJJAAAAlK0uXbro66+/1pAhQzRo0CCNGjVKZ8+etToWAAAAAAAAAAAAAKAao1gSAAAAZc7NzU2xsbFKTEzU8uXL5efnp+3bt1sdCwAAAAAAAAAAAABQTVEsCQAAgHITEhKinTt3qlmzZrr77rs1Y8YM5eXlWR0LAAAAAAAAAAAAAFDNVEix5IIFC2Sz2Qo+rq6uxbY7dOiQHnjgAZ05c0YZGRmFrvH19dWFCxeKXPPHdjabTX5+fuX9SGVi4sSJSkhIuOq5K5+pa9euFZKJvipeZewrlI3qMH6rO+YrwHpNmzbV6tWr9dprr2ny5MkKCAjQ0aNHrY4FAAAAAAAAAAAAAKhGKnRlybfeekvGGJ09e7bIubS0NPn5+alv376qW7eu6tevL2OMUlJSCs5HR0cXuS6/3ebNm1WvXj0ZY5Samlruz1IWHn/8cU2aNEnPP/98kXPTpk2TMUbGGNWoUaPCs9FXhVXmvsKfUx3Gb3XGfAVUHjabTVFRUdq0aZOOHDkiHx8fffrpp1bHAgAAAAAAAAAAAABUE5ViG+4zZ85o4MCB+utf/6qnnnqqyPnatWurXr16io2N1QcffGBBwvLRunVrLV68WC+//LISExOtjlMi9JX99BVKr6qO3+qK+Yr5CpVTp06dlJaWpuHDh2vQoEEaNWqUzp07Z3UsAAAAAAAAAAAAAEAVVymKJV977TUdP35c//znP4s97+TkpIULF8rBwUGRkZHau3dvBScsP97e3goODtYzzzyj3Nxcq+NcF31lP32F0qvK47c6Yr5ivkLl5ezsrJiYGH344Ydavny5OnfurLS0NKtjAQAAAAAAAAAAAACqMMuLJY0xmjt3rrp06aImTZpctV2/fv00efJkZWdnKyQkRBcuXKjAlOVryJAhOnLkiJYvX251lGuir+ynr3DjqvL4rU6Yr5ivYB/++te/Ki0tTQ0aNFC3bt00ffp05eXlWR0LAAAAAAAAAAAAAFAFWV4suWPHDv3yyy/y9va+btsXXnhBffv21c6dO/X000+X6P4nT57UuHHj1Lp1a9WqVUuenp4aMGCA1q9fX9BmyZIlstlsBZ+ffvpJYWFh8vDwUL169RQUFKT9+/cXufeJEyc0ZswYtWzZUrVq1VKDBg00dOjQUq+M5OPjI0latWpVqa6raPSV/fQV/pyqOn6rE+Yr5ivYj+bNm2vdunWaMmWKnn/+efXv31/Hjh2zOhYAAAAAAAAAAAAAoIqxvFhy9+7dkqRmzZpdt62Dg4MWLlyo5s2ba+7cuVq4cOE12x8/flydO3fW+++/r5iYGGVkZGjr1q2qU6eO+vTpo7lz50qSBg8eLGOMBg0aJEmKjo5WdHS0jh49qoSEBK1bt07Dhg0rdO9jx46pc+fOSkxM1JtvvqlTp05pw4YNOnXqlLp166bNmzeX+B00bdq00LuorOgr++kr/DlVdfxWJ8xXzFewLzVq1NCECRO0ceNGHTx4UD4+PqyKCgAAAAAAAAAAAAAoU5YXS+avHOTu7l6i9vXr11diYqJq1qypyMhI7dmz56ptJ02apIMHD2r27NkKCgpS3bp11aZNG73//vvy8vLSmDFj9MsvvxS5Ljw8XN26dZOLi4v8/f0VGBiolJQUZWRkFLr3oUOH9O9//1v333+/XF1d1a5dOy1atEjGmBKvTiZJdevWlc1mq/SrKNFX9tNX+POq4vitTpivmK9gn+666y5t375dffv21cCBAxUVFaWcnByrYwEAAAAAAAAAAAAAqgDLiyUvXLggSapZs2aJr+natatmzpypc+fOKSQkROfPny+23eLFiyVJgYGBhY7Xrl1bffr00fnz54vdnrRz586F/t28eXNJUnp6esGxJUuWyMHBQUFBQYXaNm7cWO3atdP27dt15MiREj+To6PjVZ+jsqCvfmcPfYWyURXHb3XBfPU75ivYo7p162r+/PlKSEhQfHy8OnXqpF27dlkdCwAAAAAAAAAAAABg5ywvlnRycpIkXbp0qVTXjRkzRmFhYdq9e7eeeuqpIudzcnKUlZUlJycnubm5FTnfqFEjSb9vp/pHf1yJrFatWpKkvLy8QvfOy8uTu7u7bDZboc/XX38tSdq3b1+Jnyc3N1fOzs4lbm8F+up39tBXKDtVbfxWF8xXv2O+gj0LCQnRN998Iw8PD3Xp0kUxMTFWRwIAAAAAAAAAAAAA2DFHqwN4eXlJkrKyskp97dy5c5WWlqZ33323oDAmX+3ateXu7q6srCxlZ2cXKWrJ3yK1cePGpf7e2rVry8PDQ2fPntX58+fl6PjnXuOZM2dkjCl4F5UVfWU/fYWyVVXGb3XCfMV8haqhZcuWWr9+vV544QWNGzdOX375pebOnStPT0+rowEAAAAAAAAAAAAA7IzlK0u2b99ekm5oG1lXV1d99NFHcnFx0Ztvvlnk/JAhQyRJy5cvL3Q8JydHa9eulbOzs/r163cDqaWhQ4cqNzdXycnJRc5Nnz5dLVq0UG5ubonudfToUUn/exeVFX1lP32FslVVxm91wnzFfIWqo2bNmnrllVe0du1abd26VT4+PsX+jQAAAAAAAAAAAAAAcC2WF0t6e3urYcOG2rFjxw1d365dO8XGxhZ77tVXX1WrVq0UHR2tZcuWKTs7W3v37tXw4cN17NgxxcTEFGyZWlqvvvqqWrdurUcffVQrV65UVlaWTp06pdjYWL344ouaOXNmoVXBRowYIZvNpoMHDxa5V1pamiSpb9++N5SlotBX9tNXKHv2Mn7xO+Yr5itUPffdd5/S0tLk7e2tnj17asqUKbp8+bLVsQAAAAAAAAAAAAAAdsLyYkmbzabw8HBt3bpV6enpBcczMjJks9nUuXNnZWVlyWazyc/Pr9h7PPTQQxo9enSR440bN1ZKSoqGDRumMWPGqF69errrrrt07tw5rVmzRo8//rgkacuWLbLZbPrkk08kSc7Ozpo8eXJBvunTp0uSfH19FRQUJElq2LChtm3bpsGDB+upp55SgwYN1LZtW3388cf65JNPFBoaWijLsWPH5OrqqhYtWhTJuXjxYjVt2lSBgYGlfX0Vir6yn75CyVW18YvfMV8xX6Fqql+/vj799FO9++67eu211+Tv71+wiioAAAAAAAAAAAAAANdiM8aY0lyQmJiosLAwleayBQsWaOTIkXrrrbf0xBNPFDmflZWldu3aKSgoSG+//XZp4tiFzMxMNWnSRA899JDeeeedQud27NghX19fvf/++3rwwQeLvd7R0VF+fn7asmVLqb43JCREkpSUlFTia+gra/rKZrMpISGh2hW+VdfnrqoqW38yX117vrLCjfwuAVfz7bff6sEHH9Tx48c1b968gqJjAAAAAAAAAAAAAACKkWT5ypKS5O7urqVLl+rDDz/UnDlzrI5TpowxGjNmjOrWrauXXnqp0LkDBw5o6NChmjRpUqUqZrkW+sp++gqo7pivmK9QtbVr107btm3T8OHD9cADDygqKko5OTlWxwIAAAAAAAAAAAAAVFIVWiw5evRo2Ww2ubq6Fjnn6+ur1NRUrVy5UmfOnKnIWOXql19+0YEDB7R27Vo1bty40LnY2Fi9/PLLevnll4tcN3HiRNlsNtlsNl2+fLmi4hagr+ynrwBcHfMVULU5OzsrJiZGiYmJio+P19133629e/daHQsAAAAAAAAAAAAAUAlVyDbcsAbbndqPyrZ9cUWprs9dVdGfuB5+l1CefvrpJw0fPly7du3S66+/roiICKsjAQAAAAAAAAAAAAAqj8qxDTcAAADwZ7Rs2VJffvmlnnnmGY0ePVqhoaHKzMy0OhYAAAAAAAAAAAAAoJKgWBIAAABVgqOjo6ZMmaJVq1Zp48aN8vX11ZYtW6yOBQAAAAAAAAAAAACoBCiWBAAAQJXi7++vtLQ0tW3bVvfee6+mTJmivLw8q2MBAAAAAAAAAAAAACxEsSQAAACqnIYNG2rFihWaMWOGXnnlFfXv31/Hjx+3OhYAAAAAAAAAAAAAwCIUSwIAAKBKstlsioqK0oYNG7R37175+fnpiy++sDoWAAAAAAAAAAAAAMACjjd6YWJiYlnmQDk4cuSIJPoKldvmzZutjoAyRH8iOztbtWvXVq1atYqcO3LkiJo1a2ZBKlR3d999t9LS0vTYY4+pT58+euGFF/Tcc8/JwYH/bwgAAAAAAAAAAAAAqgubMcaU5oLExESFhYWVVx6g2kpISFBoaKjVMSqUzWazOgKAChYcHKykpCSrY6Aai4+P1xNPPKEuXbpo4cKFatKkidWRAAAAAAAAAAAAAADlL6nUxZIAAABXc/r0aSUlJWnOnDnauXOn7rjjDo0aNUrh4eGqV6+e1fEASdI333yjsLAwZWZmKj4+Xv3797c6EgAAAAAAAAAAAACgfCWx9yAAACgznp7VRkmkAAAgAElEQVSeioiI0I4dO5Samqru3btr6tSpatasmUJDQ7VmzRrx/2nAar6+vtq+fbsCAgJ0//33KyoqSpcuXbI6FgAAAAAAAAAAAACgHLGyJAAAKFdnzpzRokWLFB8fr+TkZLVp00aPPvqoHnnkETVq1MjqeKjm4uPjNXr0aHXo0EGLFi1Sy5YtrY4EAAAAAAAAAAAAACh7bMMNAAAqznfffaf4+Hj997//1enTp9WrVy9FRERoyJAhcnR0tDoeqqnvv/9eoaGhOn78uN577z0FBgZaHQkAAAAAAAAAAAAAULbYhhsAAFScO+64Q9OmTdORI0f0wQcfSJLCwsJ08803a+LEiTpw4IDFCVEd3X777dq2bZuGDBmigQMHKioqShcvXrQ6FgAAAAAAAAAAAACgDLGyJAAAsNS+ffu0cOFCzZs3T0eOHFHv3r01cuRIhYSEyNnZ2ep4qGbi4+P15JNP6o477tCiRYt0yy23WB0JAAAAAAAAAAAAAPDnsbIkAACw1l/+8hdNmTJFBw4c0KpVq+Tp6anHHntMTZo0UWRkpHbs2GF1RFQjo0aNUmpqqnJyctSxY0clJSVZHQkAAAAAAAAAAAAAUAYolgQAAJVCjRo15O/vr8TERP3888+aOHGi1q5dKx8fH/n5+SkuLk5nz561OiaqgbZt22rr1q16+OGHFRoaqsjISOXk5FgdCwAAAAAAAAAAAADwJ7ANNwAAqLTy8vK0adMmzZ8/XwsWLFCNGjU0ePBgjRo1Sv7+/lbHQzXw0UcfKTw8XLfccosSEhJ06623Wh0JAAAAAAAAAAAAAFB6bMMNAAAqLwcHB3Xv3l2xsbE6evSoZs6cqV27dikgIEB33HGHpk+froyMDKtjogr761//qq1bt8oYIz8/P3388cdWRwIAAAAAAAAAAAAA3ACKJQEAgF3w8PBQRESEvvnmG6WmpqpHjx56+eWX1axZM4WGhmrNmjViwWyUhzZt2mjTpk0aNmyYgoODNXbsWF26dMnqWAAAAAAAAAAAAACAUmAbbgAAYLfOnz+vZcuWKS4uTmvWrFGzZs300EMPafTo0br55putjocqaOHChXriiSfUtm1bJSYmqlWrVlZHAgAAAAAAAAAAAABcXxLFkgAAoErYs2eP3nvvPb377rs6efKkevfurYiICA0ePFg1a9a0Oh6qkB9++EEhISFKT0/X/PnzNWDAAKsjAQAAAAAAAAAAAACuLYltuAEAQJXQtm1bTZs2TYcPH9aiRYvk5OSkYcOGqUWLFpo4caJ+/PFHqyOiirjtttu0detWDRkyRIGBgYqKilJubq7VsQAAAAAAAAAAAAAA18DKkgAAoMo6cuSIFi5cqLfeekuHDh1Sp06dFBERoREjRqhOnTpWx0MVEB8fr9GjR6tz58764IMP5OXlZXUkAAAAAAAAAAAAAEBRbMMNAACqvry8PK1bt05xcXFasmSJ6tSpo7CwMD3xxBPy9fW1Oh7sXFpamkJCQnTmzBktXLhQ/v7+VkcCAAAAAAAAAAAAABTGNtwAAKDqc3BwkL+/vxITE/Xzzz/rX//6lzZt2qSOHTvKz89PMTExOnXqlNUxYad8fHz09ddf67777lP//v01ZcoU5eXlWR0LAAAAAAAAAAAAAHAFVpYEAADV1vbt2xUXF6eFCxfq8uXLGjhwoCIiItSnTx/ZbDar48EOxcXF6emnn1ZAQIDi4+N10003WR0JAAAAAAAAAAAAAMA23AAAAFJWVpYSEhIUGxurr7/+Wrfddpv+9re/6W9/+5saNmxodTzYmdTUVIWGhio3N1cJCQnq1q2b1ZEAAAAAAAAAAAAAoLpjG24AAAB3d3dFRERo+/bt2r17twYPHqzXXntNzZs318CBA5WUlKTc3FyrY8JO+Pn5KSUlRe3bt9e9996r6dOni/8/CQAAAAAAAAAAAACsxcqSAAAAxbhw4YKWLl2quLg4rV27Vk2aNNGIESMUGRmpVq1aWR0PdsAYo//85z8aP368goKCNG/ePHl4eFgdCwAAAAAAAAAAAACqI7bhBgAAuJ69e/fq3Xff1XvvvacTJ06od+/eioiI0KBBg1SrVi2r46GS++KLLzRs2DC5uroqKSlJ3t7eVkcCAAAAAAAAAAAAgOqGbbgBAACup02bNpo2bZqOHj2qVatWydPTU8OHD1fjxo0VGRmpXbt2WR0RlVjPnj2Vlpamm2++WV27dlVMTIzVkQAAAAAAAAAAAACg2mFlSQAAgBuQnp6u+fPnKzY2VgcPHlSnTp0UERGhhx56SC4uLlbHQyV0+fJlvfTSS3rppZf00EMP6a233mKsAAAAAAAAAAAAAEDFuP423DabraLCAPiDqlLLzDwC4HqCg4OVlJRkdYwbkpeXp3Xr1ik+Pl4ffvihatasqQcffFAjR45U9+7drY6HSmj58uUaNWqUGjZsqA8//FDt2rWzOhIAAAAAAAAAAAAAVHUlK5aMjo5Wt27dKioUrhAWFsb7r4Y2b96s2bNnV6liScax/csflwkJCVZHQRUza9YsNWvWzG6LJa90+vRpJSUlac6cOdq5c6fuuOMOjRo1SuHh4apXr57V8VCJHD58WGFhYdq1a5fi4uI0bNgwqyMBAAAAAAAAAAAAQFVWsmLJhIQEhYaGVlQoXIH3Xz0lJiYqLCysShVLMo7tX1Ubl6g8QkJCJKlKFEteafv27YqLi9P777+vS5cu6YEHHlBERIT69OnDiruQJOXm5mry5Ml67bXXNGLECMXGxsrZ2dnqWAAAAAAAAAAAAABQFSU5WJ0AAACgKurUqZNiY2N19OhRxcXF6fTp0woICNBtt92mKVOm6PDhw1ZHhMUcHR01bdo0ffzxx1q6dKm6d++uAwcOWB0LAAAAAAAAAAAAAKokiiUBAADKUd26dTVq1CitXr1a3333nYYOHao5c+aoVatWCggIUFJSknJzc62OCQsNHjxY27Zt0+XLl+Xr66uPPvrI6kgAAAAAAAAAAAAAUOVQLAkAAFBBbr/9dk2bNk1HjhzRBx98IEkKCwtTixYtNHHiRO3fv9/ihLDKX/7yF23ZskWPPPKIQkJCFBUVpUuXLlkdCwAAAAAAAAAAAACqDIolAQAAKljt2rUVEhKi1atX69ChQ4qKitIHH3ygNm3aqHv37oqLi9Nvv/1mdUxUMCcnJ8XExOj//u//9N///ld9+vRRenq61bEAAAAAAAAAAAAAoEqwrFhy5syZstlsstlsatas2XXbL1q0qKC9k5NTBSQsndI+T3lxdXUtyJH/mTlzpmV5/oyq9CwoHwkJCfLx8ZGzs3PBGNm9e7fVscrVihUr1KZNGzk6Ol63bVpamgIDA+Xh4SE3Nzf5+/srOTm5AlL+zsfHp8jf8LU+U6dOLfbv/mqfuXPnFvnO1NRUPfLII2rZsqWcnJzk4eGhzp0768UXX1RmZuaffqbKPi+V1W9RZf/NrWqaN2+uCRMm6ODBg1q1apWaNGmip556Sk2bNlVkZKTS0tKsjogKNnLkSKWmpurUqVPy9vbWqlWrrI4EAAAAAAAAAAAAAHbPsmLJ8ePHyxgjb2/vErV/8MEHZYxRnz59yjnZjSnt85SXs2fP6ptvvpEkDRo0SMYYjR8/3tJMN6oqPQvKXnJysoYNG6a+ffvqxIkT+vHHHy0tVC5v+/fv1wMPPKBJkybpl19+uW77rVu36u6775abm5u+//57HTx4ULfccovuu+8+ff755xWQ+HdJSUkyxhR8IiMjJUkrV64sdDwsLExS8X/3xX169uxZ5LsmTZqkrl27ytPTU8uWLVNmZqYOHjyoF154QYsXL1abNm3+dLFoZZ+Xyuq3qLL/5lZVDg4O8vf3V2Jiog4dOqSJEydq7dq18vX1lZ+fn+Li4pSdnW11TFSQtm3bavPmzfL391dgYKCmTp0qY4zVsQAAAAAAAAAAAADAbrENNyzl6uqq7t27Wx0DldD1xkZ+EV5UVJRcXV3VunVrHT58WO3bt6/AlCVTFuP8+eef1913363t27fLzc3tmm3z8vL02GOPycPDQ/PmzZOXl5fq16+vt956S61bt1Z4eLhycnL+VJ7KZurUqZo2bZrmzJmjWbNmqX379nJycpKnp6eCgoKUnJysFi1aaMCAAdqzZ4/VcYHr8vLy0oQJE/Tjjz8qNTVVnTp10tixY9WoUSOFhoZqzZo1VkdEBXBzc9MHH3yg2bNn66WXXtKgQYPKZJVcAAAAAAAAAAAAAKiOKJYEYJcOHz4sSapXr57FSSrGf//7X02cOLFE229/+eWX+vbbbxUcHCxnZ+eC4zVq1NCwYcN0+PBhLVu2rDzjSvp9G/Dg4OAStV20aJEmT55c4ntv2LBB4eHhkqQff/xR//rXv9SxY8eClSv/qE6dOpo1a5ays7M1ZsyYEn8PUBl06tRJsbGxOnr0qGbPnq19+/YpICBAt99+u6ZPn64TJ05YHRHl7KmnnlJycrJ27twpb29vpaamWh0JAAAAAAAAAAAAAOwOxZIA7NLly5etjlChrix6vJ5169ZJkvz8/Iqcyz+2du3asglWwZ566ilFR0cXOvb2228rNzdXISEh17y2R48eatKkiVavXq0DBw6UZ0ygXHh4eCgiIkLffPONUlNT1bdvX02fPl3NmzdXaGioli5dWu3mxurEz89PqampatOmjXr06KF3333X6kgAAAAAAAAAAAAAYFfKpVjy5MmTGjdunFq3bq1atWrJ09NTAwYM0Pr160t8jz179mjw4MFyd3eXi4uLevTooY0bNxZpN3PmTNlsNtlsNjVr1kwpKSnq06eP3NzcVKdOHfXq1UvJyclFrjtx4oTGjBmjli1bqlatWmrQoIGGDh2qtLS0Qu1yc3OVkJCggIAANW7cWM7OzurQoYNiYmKUl5d33edYsGBBQb78z/Hjx0v8HsrKkiVLCmX46aefFBYWJg8PD9WrV09BQUHav39/QfvSvtepU6cWtL9yu+HPPvus4Hj9+vWL3P/cuXNKTk4uaFOSVfOupiR9lZmZWaQ/pk6dWnD9lcevXBGvJOPlj+/4hx9+UGhoqOrVq1dwLCMj44afr7q43tjIf8+ffPKJpN+LCG02m7p27XrN+145L9WuXVvNmjWTv7+/3nvvPZ0/f15S6f7ec3Jy9M9//lNt27ZVnTp1dNNNN2ngwIH69NNPC4qVymOcl0T+NtPNmjUrcq5p06aSpL1795Zrhor0xRdfSJK8vb2v2za/zVdffXXDvx+lUdIx9cf549ChQwoLC5Obm5vq1aunkSNH6vTp0/rpp580cOBAubm5ycvLS48//riys7Ov+v179uxRYGCg3N3dr/lMJf3NLc0zoXx16tRJMTExSk9P1/z583X69GkNGjRILVu21MSJE3Xo0CGrI6Ic1K9fX5999pmioqIUHh6uyMhIXbx40epYAAAAAAAAAAAAAGAfzHVIMgkJCddrVuDYsWOmVatWplGjRmbp0qUmKyvL/PDDD2bo0KHGZrOZd955p1B7b29v07Rp00LH9u3bZzw8PEzTpk3N559/brKzs83OnTtN3759TcuWLU3t2rWLfK+3t7dxcXEx3bp1M5s2bTJnz541KSkp5s477zS1atUyGzZsKGibnp5ubr75ZtOoUSOzfPlyk52dbXbv3m169uxpnJyczKZNmwraLl261Egyr7zyijl16pQ5ceKE+c9//mMcHBzM+PHji81x5fPk5uaacePGmYCAAHPq1KkSv8d8pX3/xhjzzTffGElm0KBBRc4NGjSo4Fz+e1q9erVxdnY2nTt3LvZ5SvpejTHGxcXF3HPPPUXu06lTJ1OvXr0ix6/WviTP8kel6at+/foZBwcH8+OPPxa5T7du3czChQsL/l2a8WLM/95xz549zfr16825c+fMli1bTI0aNcyJEyeu+xzGGJOQkGBK8OdpN25kHF9vbOS/5/Pnz1/3XvnzUuPGjc3SpUvNmTNnzPHjx81LL71kJJlZs2YZY0o3hsLDw427u7v5/PPPzW+//WaOHz9uxo8fbySZ9evXl+pZSqtp06amRo0aVz0fEBBgJJktW7YUObdv3z4jyXTs2LHU31sW4zIyMtJIMitXrrxqm/y/+6t9oqKiCrX38vIykszWrVuv+/0jRowo6ON8pZ3nymteMuZ/43ro0KEmNTXVnD171sTHxxtJZsCAAWbQoEHmm2++MdnZ2ebtt982kszYsWOL3Mfb29u4u7ubXr16mY0bN5rs7OyrPlNpf3NL+0wlERwcbIKDg2/oWvzP999/byZMmGAaNmxoHBwcjL+/v0lMTDQXL160OhrKwSeffGLc3d2Nn5+f+emnn6yOAwAAAAAAAAAAAACVXWKZryw5adIkHTx4ULNnz1ZQUJDq1q2rNm3a6P3335eXl5fGjBmjX3755Zr3ePbZZ5WZmamYmBgFBATI1dVVHTp00Lx583Ts2LGrXnfu3Dm9+eab6tatm1xcXOTn56cFCxbo4sWLioqKKpTx0KFD+ve//637779frq6uateunRYtWiRjjJ5++ulC973vvvs0adIkeXp6qn79+nr66ac1fPhwxcTE6MyZM1fNk5mZqcDAQF2+fFkrV66Up6dnCd9i+QsPDy94T/7+/goMDFRKSkqxKx+W9L1WBiXtq3HjxikvL0///ve/C12fnJysn3/+udB2vqUdL/kmTJig++67T3Xq1FGXLl2Um5tbaHVNVJz8eSkmJkZBQUFyc3NTo0aNNHnyZPXv379Q25KOobVr16pdu3YKCAiQs7OzGjVqpBkzZqhNmzYV/XilYoyRJNlsNouTXN+gQYNkjCn0+fvf/37V9qV5pj+2Lc957kZ+Qx577DF16tRJLi4uGjlypNq1a6eVK1dq3Lhx8vHxkaurqyIjI9WqVSutWLGi2HtkZWXplVde0T333CNXV9erPtON/Obe6O8iylfbtm01bdo0HT58WIsWLZKTk5OGDRumFi1aKCoqSrt377Y6IsrQAw88oG3btun8+fPy8/PTmjVrrI4EAAAAAAAAAAAAAJVamRdLLl68WJIUGBhY6Hjt2rXVp08fnT9/XqtWrbrmPT777DNJUr9+/Qodb9KkyTULkVxcXOTj41PoWIcOHdSkSRPt2LGjoOhjyZIlcnBwUFBQUKG2jRs3Vrt27bR9+3YdOXJEkhQUFFTs9uHe3t66dOmSvv3222Kz/PDDD+rSpYscHBw0e/Zs1ahR45rPXNE6d+5c6N/NmzeXJKWnpxdpW9L3arXS9FXfvn3VoUMHvffeezp58mTB8RkzZujpp59WzZo1C46VZrxc6a677iqLx0IZyJ+XBgwYUOTcypUrFR0dLal0Y6h///7atGmTIiIitGXLloKtt3/44Qfdd9995fAUJefh4SHp9wLAP8o/lt+mKmjSpIkkFfpbvpr8NvnX5Cuvee5Gf0P8/PwK/Ts/7x+PN23atNh5W5KcnJzUpUuXQseKe6bS/ube6DOh4tSqVUshISFaunSpDh06pOjoaH366afq0KGD/Pz8FBcXV+z8APvTpk0bbdmyRb1791b//v01ffr0gqJ4AAAAAAAAAAAAAEBhZVosmZOTo6ysLDk5OcnNza3I+f/P3r3HZVHm/x9/DyBnRKJURC1zs8xcNLHVDddU0Fw1D4mYqbWbSmumaLao2cENS9JSSi3N3drWDoCtmpX585CuGhToqmWl5SEVREUFgQAF5vdHX+4VAb0hYDi8no/H/HHPXDPzmbmu+3P3iI/X1axZM0lSWlraVa+RlZUlV1dXeXp6ljretGnTcs8tr/in+JzTp0/bYiwqKpK3t7cMwyix7d69W5L0ww8/SPplZq5nnnlGHTt2lI+Pj63dk08+KUn6+eefS93v/PnzGjJkiFq2bKn169dr5cqV5cZsFW9v7xKfnZ2dJUlFRUWl2trzXmuDivZVRESEfv75Zy1dulSSdPDgQW3ZskUTJkywtanoeLmch4dHdT0qKuBaeelyFRlDS5Ys0TvvvKPDhw+rT58+aty4se69915bYaaVbrvtNkkqs4g3JSVFkmr9DJjlWbx4sRYtWlRiX8+ePSVJe/bsueb5e/fulaRSBa3Vlecq8xsiSY0bNy7x2cHBQY6OjnJ3dy+x39HRscy8LUm+vr5lzrZ55W9iRX9zK/tMsIa/v78iIyN16NAhbdy4UTfffLMmTZokf39/hYeH237HUHd5enoqNjZWS5cu1dNPP60hQ4YoMzPT6rAAAAAAAAAAAAAAoNap0mJJFxcXeXt7Ky8vT1lZWaWOFy+/3bx586tew8vLS3l5ecrOzi51/Ny5c+Wee/bs2TJn0ykucmnatKlcXFzUpEkTOTk56dKlS6WWeC3eevXqJUkaNGiQnn/+eY0fP14HDx5UUVGRTNPUwoULJanM+zk5OWnTpk1au3atOnbsqPHjxyspKancuGs7e95rMQcHB128eLFU24yMjDKvXZVLAVe0rx588EE1a9ZMixcvVn5+vl5++WU99NBDJZZLr+h4QdWpqrFxrbx0uYqMIcMwNGbMGG3atEkZGRlas2aNTNPUsGHDSi3vXtNLXhePx127dpU6VryvT58+NRpTdQoPD5eTk5Pi4+Ov2m7Hjh1KTU3VoEGD1Lp16xLHKpLnKqIyvyFVpbxiqSt/Eyv6m2vlM6HyHBwcFBwcrLi4OB0/flxz5sxRQkKCunTpog4dOig6Ovqq/42F2m/ChAnatGmTvvrqK911110suw4AAAAAAAAAAAAAV6jyZbiHDh0qSfrkk09K7M/Pz9fmzZvl5uZWaqnPKxUvlVu8NGix9PR0HThwoNzz8vLyShUlfv3110pNTVVAQID8/PwkScOGDVNBQYF27txZ6hrR0dFq3bq1CgoKVFhYqJ07d6p58+aaPHmybrjhBlvRU25ubrlxeHl5yd/fX56envroo4/k6empIUOG1JrlqivK3vcqSX5+fraZ64qlpaXp2LFjZV7b3d29RHHlrbfequXLl1coPicnJ+3fv7/CfeXi4qKJEyfq9OnTevnll/Xuu+9qypQppdrZO15QtapibBQrzkuffvppqWOdO3fW1KlTK/x9b9Kkib7//ntJUqNGjRQSEqI1a9bIMIxS+a8qn8UePXv21O23365Vq1YpLy/Ptr+wsFAffPCBWrVqpQEDBlTb/Wtau3bt9Oyzz2r37t1atmxZmW1+/vlnRUREyNfXt9TMlFLF8pw9KpuXqlJ2drZtJs1iZT1TRX5zK/u7iNqlWbNmmjJlivbt26fk5GQFBQXp+eefl7+/v0aMGKFNmzZR9FpH/eEPf1BycrKuv/56de/eXXFxcVaHBAAAAAAAAAAAAAC1RpUXS7744otq06aNIiIi9PHHHysrK0sHDx7UqFGjdPLkScXExNiW4y7PCy+8oOuuu04RERHauHGjsrOz9e2332r06NFlLhNazNvbW7NmzVJCQoJycnKUnJys0aNHy9nZWTExMSVibNu2rf785z9r/fr1yszM1Llz57Rs2TL97W9/04IFC+Tk5CRHR0fdc889SktL0/z585Wenq7c3Fx9/vnneuONN+x6HzfddJNWrVqlM2fOaNiwYcrPz7fvRdYi9r5XSerbt69SU1O1ePFiZWdn69ChQ5oyZUq5s7LdeeedOnjwoI4fP66EhAQdPnxYPXr0qHCMle2riRMnys3NTbNnz1ZwcLB+85vflGpj73hB1arM2Dh69KgcHR1LLJEu/S8vTZ06VZ988omysrJ04sQJTZw4USdPntTUqVMrNYYeffRR7du3T/n5+Tp9+rReeuklmaap3r17/+pn+TUcHBz097//XefOndOf/vQnpaWl6ezZs3rsscf0ww8/6M0335Srq2u13d8Ks2fP1syZM/XYY49p2rRp2r9/v/Lz85WRkaGPP/5YQUFBSktL04YNG3TzzTeXOr8iec5eVfEb8mt4eHho0qRJ+vLLL6/6TBX5zbX6mVD1unTpomXLlik1NVUxMTE6fPiwQkJCdNtttyk6OrrSS9DDOv7+/tq2bZsee+wxhYWFKTw8XJcuXbI6LAAAAAAAAAAAAACwnnkNkszY2NhrNSshPT3djIiIMNu0aWM2atTI9Pb2Nvv162du3rzZ1mb+/PmmpBLbU089ZTt+4MABc8iQIWbjxo1NNzc3s2vXrubHH39s9unTx9b+kUcesbUPCAgw/f39zW+//dbs16+f6eXlZbq5uZk9e/Y0d+zYUSrGs2fPmtOmTTNvvvlms1GjRuYNN9xg9u3b19y4cWOJdmfOnDHDw8PNVq1amY0aNTKbNWtmPvzww+aMGTNscXTp0sV8//33Sz3PwoULzYSEhFL7H3zwQbvfZUXfv4eHR6n7zZ8/v8w4it/3lfsHDBhQ6feakZFhjhs3zvTz8zPd3NzMoKAgMykpyezSpYvt+pGRkbb233//vdmjRw/Tw8PDbNWqlblkyZKrPkt523fffWd3X11p/PjxpiRz27Zt5b5Xe8ZLWe/Yjq9YmWJjYyt9bm1UmTxS3thYvXp1me85ISHBPHLkiOng4GAahmHu27evxPWuzEt+fn7myJEjzYMHD9raVGQM7dmzxwwPDzfbt29vuru7m9ddd53ZrVs388033zSLiorsepaKWLduXbnj/8033yzznN27d5v9+/c3GzdubHp6epq9e/cu83trr18zLt96660yY8/KyirRrqzvfbNmzey+T1JSkvnQQw+ZN954o+ns7Gx6eXmZgYGBZlRUlJmRkVHmORXJc9WVl8rL0UlJSaX2v/jii+b27dtL7X/22WdL/Lb6+/ubX331ldmrVy/T09Pzqrm7Ir+5lc21VzN8+HBz+PDhFToH1eebb74xIyMjTV9fX9PR0dEMDg424+LizEuXLlkdGiro3XffNT08PMwePXqYqampVocDAAAAAAAAAAAAAFaKM0zz6ussGoah2NhYjRgx4mrNLFn5z2sAACAASURBVNepUyelp6frxIkTVodSpax+//X1vV7urbfe0pIlS5ScnGx1KDZxcXEKCwurN8ugWj2OUTXq27gs1hDyXG0XGhoqSYqPj7c4ElwuLy9P69at0/Lly7V582b5+flpzJgxCg8PV5s2bawOD3b67rvvdP/99yszM1Px8fH6/e9/b3VIAAAAAAAAAAAAAGCF+Cpfhhuoa9544w1NmzbN6jAAAKhVXF1dFRoaqo0bN+r777/XmDFj9Pbbb+s3v/mNQkJC9M477yg3N9fqMHEN7du3V2Jiorp166aePXsqOjra6pAAAAAAAAAAAAAAwBIUS6LBWbFihYYOHars7Gy98cYbOn/+PDMeAgBwFe3atdO8efOUkpKiDRs2yMfHR4888oj8/f0VHh6uffv2WR0irqJx48ZatWqVoqKi9NRTT2nUqFHKycmxOiwAAAAAAAAAAAAAqFF1vlhywYIFMgxDe/fuVUpKigzD0OzZs60Oq86r7+91zZo18vHx0euvv64PPvhATk5OVoeEBsgwjGtuzz33nNVh1lv1Pc8B1cHR0VHBwcGKi4vTTz/9pMjISG3atEkBAQEKDAzU8uXLlZ2dbXWYKINhGIqMjNTGjRu1efNmBQYG6rvvvrM6LAAAAAAAAAAAAACoMYZpmuZVGxiGYmNjmXnPIrz/hikuLk5hYWG6xtezzmAc1w/1bVyi9ggNDZUkxcfHWxwJKqOoqEhbtmzRO++8o1WrVqlRo0YaPHiwxo4dq+DgYKvDQxmOHz+u0NBQfffdd/rHP/6h+++/3+qQAAAAAAAAAAAAAKC6xdf5mSUBAABgHQcHBwUHB+udd95Ramqq5s+fr3379ikkJEQdOnRQdHS00tPTrQ4Tl2nVqpW2bdumkSNHKjQ0VDNmzFBhYaHVYQEAAAAAAAAAAABAtaJYEgAAAFWiSZMmmjBhgvbs2aPk5GQFBQUpKipKLVu21IgRI7Rp0yZmp60lXFxctGzZMr399tt69dVXFRwcrFOnTlkdFgAAAAAAAAAAAABUG4olAQAAUOW6dOmiZcuWKTU1VcuXL9f58+cVEhKiG2+8UTNmzNCxY8esDhGSxo4dq507d+qnn35SYGCgvvzyS6tDAgAAAAAAAAAAAIBqQbEkAAAAqo2Xl5fGjh2rjRs36ttvv9WoUaP097//XW3atFFISIji4+N16dIlq8Ns0Dp37qykpCR16NBBPXv2VExMjNUhAQAAAAAAAAAAAECVc7KnUUJCQnXHgavg/Tc89bHP6+MzNTTFfRgXF2dxJKhvTpw4oZYtW1odBmpA+/btNW/ePM2ZM0cfffSRli9frrCwMDVv3lxjx47V+PHj1bZtW6vDbJB8fX21fv16vfTSS5o2bZp27dqlZcuWyc3NzerQAAAAAAAAAAAAAKBKGKZpmldtYBg1FQuAK1zj61lnkEcAXMvw4cMVHx9vdRiwwPHjx/Xee+/p9ddf17Fjx/T73/9eY8eO1ejRo+Xu7m51eA3SmjVr9NBDD6lDhw5atWqVWrRoYXVIAAAAAAAAAAAAAPBrxdtVLBkbG6sRI0bUVFCooNDQUEmiyKQeiYuLU1hYWL0qliSPNDz1bRyj+vA7BkkqKirSli1btHz5cq1Zs0YeHh4aMWKE/vKXv6hTp05Wh9fgHDx4UEOHDtWZM2cUFxene+65x+qQAAAAAAAAAAAAAODXiHewOgIAAADAwcFBwcHBiouL07FjxzRjxgxt2bJFnTt3VmBgoJYvX66srCyrw2ww2rVrp8TERAUFBSkkJETR0dFWhwQAAAAAAAAAAAAAvwrFkgAAAKhVmjdvrsjISP3www9KTk5Wly5dNHXqVDVt2lQjRozQpk2bmLW2Bnh5eenDDz9UVFSUZs2apbFjxyo3N9fqsAAAAAAAAAAAAACgUiiWBAAAQK3VpUsXLVu2TKmpqYqJidGPP/6okJAQ3X777YqOjtaZM2esDrFeMwxDkZGR+uijj7Ru3Tr16NFDx44dszosAAAAAAAAAAAAAKgwiiUBAABQ63l7e2vChAnavXu3kpOT1bdvX7300ktq2bKlRowYoXXr1qmwsNDqMOutAQMG6Msvv1Rubq4CAwO1detWq0MCAAAAAAAAAAAAgAqhWBIAAAB1SpcuXRQTE6OUlBStXLlS58+f1+DBg3XjjTdqxowZOnr0qNUh1kvt2rVTYmKigoKCFBISoujoaKtDAgAAAAAAAAAAAAC7USwJAACAOsnV1VWhoaHauHGjvvvuO40ePVpvvfWW2rZtq5CQEMXHx+vSpUtWh1mveHl56cMPP1RUVJRmzZqlsWPHKjc31+qwAAAAAAAAAAAAAOCaak2xZHZ2tm655RYNHDjQ6lAA1HPkGwCof2699VbNmzdPx48f15o1a+Tj46NRo0apVatWmjJlir755hurQ6w3DMNQZGSkPvroI61bt05BQUE6duyY1WEBAAAAAAAAAAAAwFXVmmJJ0zRVVFSkoqIiq0O5Jk9PTwUFBVkdRr1j9Xu1+v6oOeQbVBer+8vq+wO1gbOzswYNGqS4uDgdPXpUU6dO1bp169SxY0cFBgZq+fLlysnJsTrMemHAgAH66quvlJeXp8DAQG3dutXqkAAAAAAAAAAAAACgXLWmWNLLy0uHDh3Sp59+anUoAMoxevRozZ07V0eOHLE6lF+FfAMADYO/v78iIyP1448/auPGjbr55pv1+OOPq0WLFgoPD9euXbusDrHOu+WWW5SYmKgePXooJCRE0dHRVocEAAAAAAAAAAAAAGWqNcWSAGq///73v5o9e7batm2rwMBAvfrqq0pLS7M6LAAArsrBwUHBwcGKi4tTWlqa5s+fr4SEBAUGBqpDhw6Kjo7W2bNnrQ6zzvLy8tKqVasUFRWlWbNmaezYscrNzbU6LAAAAAAAAAAAAAAooVYUS65Zs0aGYdi2vLy8MvcfPXpUYWFhatKkiXx9fTVw4EAdOnTIdp0FCxbY2rZs2VJJSUnq06ePvLy85O7url69emnnzp229lFRUbb2ly9b+tlnn9n2X3/99aWun5OTo507d9raODk51cBbqh3Onj2radOmqW3btnJ2dpaPj4/69++vzz//3Namqt8r/Vr7mKap3bt3a9q0aWrRooW6deummJgYpaenWx3aNZFvQB4DGjYfHx9NmDBB+/btU3JysoKCgvT888+rZcuWGjFihDZt2iTTNK0Os84xDEORkZFat26d1q1bp6CgIB07dszqsAAAAAAAAAAAAADgf8xrkGTGxsZeq1mVGDx4sCnJzM3NLXP/4MGDzS+++MLMzs42N27caLq5uZldu3YtdZ2AgADTw8PD7N69u619UlKS+dvf/tZ0dnY2t27dWqK9h4eHeffdd5e6TpcuXUxfX99S+8trX6xXr17mddddZyYkJNj76L/K8OHDzeHDh1f7fU6ePGm2adPGbNasmblu3TozMzPTPHDggDls2DDTMAzzzTffLNG+qt9rQ+rX2NhY046vZ427/fbbTUmlNkdHR9PR0dF0cnIy+/fvb/7zn/80s7OzbefVZB6xF/mm+tXGcUweq53jpaZ+x4DyZGZmmsuWLTPvvvtuU5LZrl07c968eWZaWprVodVJBw8eNG+//XbzhhtuMLds2WJ1OAAAAAAAAAAAAABgmqYZVytmlrTXuHHj1L17d3l4eCg4OFgDBgxQUlJSmbPZ5eTkaOnSpbb2gYGBWrlypS5evKgpU6ZUa5xFRUUyTbPezUo0c+ZMHTlyRIsWLdLAgQPVuHFjtWvXTu+99578/Pw0efJknTp1qlpjoF9rp8LCQhUWFqqgoEAbN27Un/70J1133XUaPny41q1bZ3V4lUK+qZ/IY4wXoCyNGzfWhAkTtGPHDu3fv19Dhw7V/Pnz5e/vr5CQEMXHx6ugoMDqMOuMW265RYmJierRo4f69u2r6Ojoq7YnJwEAAAAAAAAAAACoCXWqWLJr164lPrdq1UqSlJqaWqqth4eHOnXqVGJfx44d1aJFC+3du1cnT56stji3bt2qc+fOqXv37tV2DyusXr1akjRgwIAS+11cXNSnTx/l5uZqw4YN1RpDQ+vXy5eFrg3biRMnrhlzQUGBioqKdPHiRX344Ye67777JEn//ve/61ShCfmmfiKPMV6Aa7n99ts1b948paSk6P3335ckhYWF6cYbb9SMGTN0+PBhiyOsG7y8vLRq1SpFRUVp1qxZGjNmjHJzc8tsO2HCBO3evbuGIwQAAAAAAAAAAADQ0DhZHUBFeHt7l/js7Ows6ZeZsq7UpEmTMq/RtGlTpaam6vTp0/Lz86v6IOup/Px8ZWZmytXVVV5eXqWON2vWTJKUlpZWrXE0tH6Ni4uzOoQSIiMjdeHChWu2c3JyUmFhodzd3RUaGqq3335bQ4YMkZNT3Uk55Jv6hzwGoCJcXFwUGhqq0NBQ/fDDD3r33Xf1j3/8Q/Pnz1fv3r01ZswYhYaGys3NzepQay3DMBQZGamOHTvqwQcfVFBQkFavXq3WrVvb2rz88stasWKFkpOTtWvXLjk41Kl/ywUAAAAAAAAAAACgDqk7lUsVdPbsWZmmKcMwSuw/ffq0pF+KUoo5ODjo4sWLpa6RkZFR5rWvvGZD4OLiIm9vb2VmZiorK6tUoVHxsrXNmze37auO99rQ+jU0NNTqEEp47rnnyj3m6Ogo0zTl6Oio4OBgjRw5UsOHD5e7u7vefvvtel380NDGZV1FHgNQWbfccouee+45Pf300/r888+1fPlyPfLII5oyZYpGjBihiRMnKiAgwOowa60//vGP+uqrrzR06FAFBgYqNjZWvXr10v/7f/9Pf/3rXyVJ+/bt0xtvvKGJEydaHC0AAAAAAAAAAACA+qreVi/l5eUpKSmpxL6vv/5aqampCggIKDFrl5+fn1JSUkq0TUtL07Fjx8q8tru7e4nilVtvvVXLly+vwuhrp6FDh0qSPvnkkxL78/PztXnzZrm5ualfv362/dXxXunX2sUwDDk6OsrBwUFdu3bV66+/rvT0dH366acaO3as3N3drQ6xRjAu6w7yGIBfo/gfBMTFxemnn37SjBkztHnzZnXq1EmBgYFavny5srOz7b7esGHDtGfPnmqMuPa45ZZblJCQoB49eqhv376KjIzUiBEjbMeLior05JNPKjU11cIoAQAAAAAAAAAAANRn9bZY0tvbW7NmzVJCQoJycnKUnJys0aNHy9nZWTExMSXa9u3bV6mpqVq8eLGys7N16NAhTZkypcTsXpe78847dfDgQR0/flwJCQk6fPiwevToYTveu3dv+fr6KjExsVqfsaa9+OKLatOmjSIiIvTxxx8rKytLBw8e1KhRo3Ty5EnFxMTYlrGVqv69SvRrbeHk5CTDMHTXXXfp1Vdf1alTp5SQkKAJEyaocePGVodX4xiXdQd5jPECVJUWLVooMjJSBw8e1Pbt29WlSxdFRESoRYsWGjt2rDZt2nTV87/++mutXr1aQUFB12xbX3h5eWnVqlV68skntXTpUuXk5KioqMh2/NKlS3riiScsjBAAAAAAAAAAAABAvWZegyQzNjb2Ws1+ldWrV5uSSmwPPvigmZCQUGr/U089ZYvr8m3AgAG26wUEBJj+/v7mt99+a/br18/08vIy3dzczJ49e5o7duwodf+MjAxz3Lhxpp+fn+nm5mYGBQWZSUlJZpcuXWzXj4yMtLX//vvvzR49epgeHh5mq1atzCVLlpS4Xo8ePUwfHx/ziy++qKY3VtLw4cPN4cOH18i90tPTzYiICLNNmzZmo0aNTG9vb7Nfv37m5s2bS7Wt6vfakPo1NjbWtOPrWeMCAgLMDh06mNHR0eZPP/1k93k1kUfsRb6pObV1HJPHat94qcnfMaA6nT9/3ly2bJnZqVMnU5LZvn17c968eeaZM2dKtZ08ebLp7OxsOjg4mI6Ojuabb75pQcQ1r6ioyBw6dKjZqFGjUr+vxdvGjRutDhMAAAAAAAAAAABA/RNnmKZpXq2Y0jAMxcbGllgmr7br1KmT0tPTdeLECatDqRGhoaGSpPj4eIsjqV4NqV/j4uIUFhama3w9a1xqaqpatGhR4fPqYh6xV0MalxVVW8exlRgvZWsov2NoWHbt2qXly5fr/fff18WLF3XfffdpwoQJ6tOnjy5evKhmzZopMzOzxDmPP/64Fi1aJAeHejv5u55++mm98MILJWaUvJyjo6NatWql7777Tq6urjUcHQAAAAAAAAAAAIB6LL7+/iUWQJWrTKEkAAANUZcuXbRs2TKlpKRo8eLFOnbsmEJCQnTLLbfooYce0oULF0qds3TpUg0bNkw///yzBRFXvw8//FBz584tt1BSkgoLC3X8+HFFR0fXYGQAAAAAAAAAAAAAGgKKJQEAAIBq4uXlpXHjxikxMVFff/21Bg4cqE2bNpU5e2RhYaE+/fRTBQUF6dSpUxZEW32ys7M1e/ZsmaapRo0aXbVtYWGh5s6dqx9++KGGogMAAAAAAAAAAADQENSrYskFCxbIMAzt3btXKSkpMgxDs2fPtjos/Er0K2ojxiUqgvECQJLuuOMOTZkyRefOnVNhYWGZbS5duqRvvvlGgYGB+vbbb2s4wurj6emp/fv3a/v27Xr00Ufl7e0twzDk6OhY7jnh4eE1GCEAAAAAAAAAAACA+q5eFUtOnz5dpmmW2KKioqwOC78S/YraiHGJimC8ACi2YsUKOTk5XbXNpUuXlJaWpq5du2r9+vU1FFn1c3BwUFBQkF599VWdOnVKa9eu1eDBg+Xk5CRHR8cSs21eunRJW7du1QcffGBhxAAAAAAAAAAAAADqk3pVLAkAAADUVgUFBXrzzTd16dIlu9rm5eVp0KBBev3112sguprl4uKiQYMG6cMPP1RaWppee+01BQYGyjAMOTs729o9/vjjyszMtDBSAAAAAAAAAAAAAPXF1ae1AQAAwFUlJCTo+PHjVoeBOmDXrl06c+aMbRbF4plmi4qKZJpmqfZFRUWSpIkTJ2rDhg164IEHZBhGTYddI3x9ffXEE0/o1KlT2rFjh7Zt26ZTp04pPT1dYWFh+vOf/2x1iABQa40YMcLqEAAAAAAAAAAAqBMolgQAAPgVXnnlFa1atcrqMFCHFBYWqrCwsELnrF27VmvXrq2miGq3DRs2aMOGDVaHAQC1FsWSAAAAAAAAAADYh2JJAACAX2n48OGKj4+3OgygXiooKNCxY8d08803V+t9DMNQbGwsRUcA6oy4uDiFhYVZHQYAAAAAAAAAAHWGXcWSCxcupACgFktMTJQkhYaGWhwJqsqJEyesDqHKkUcanuJxTG7CtSQmJqpbt25WhwGglnJycqr2QkkAAAAAAAAAAAAA9Z+D1QHg1+vWrVupIpMTJ06wJCiAGnVl3mnZsqWGDx9uYURAxZ0/f17nz5+3OgwAAAAAAAAAAAAAAFDF7JpZcurUqSxHV8cUL8fFTH51U31cTo08Uv+Rd1BZoaGh2rVrl/74xz+qTZs2uvnmm9WmTRvb1qRJkxqLZfv27Ro9erSmTp2qqVOn1ui9AQAAAAAAAAAAAABA9bGrWBIAAKA6NWnSRDfccIO+/vprffTRR0pNTVVRUZEkycfHp1QBZfF20003ycXFpcriOHLkiH7++We98MILevnllzV9+nRNnTpV3t7eVXYPAAAAAAAAAAAAAABQ8yiWBAAAlmvbtq3++c9/2j5fvHhRJ06c0OHDh0tsX3zxhT788EMdPnzY1ra4mLKs7cYbb5Sjo6PdcRw+fFiOjo66ePGiCgoKNHfuXL300kuaPHmyZsyYwUyTAAAAAAAAAAAAAADUUQ5WBwAAAHAlZ2dn3XzzzQoODtaECRM0b948xcXFaceOHTp06JByc3N16NAhbdy4UfPmzVNwcLAkadOmTXriiScUEhKitm3byt3dXW3btlVISIjCw8MVHR2t+Ph47dq1S6mpqaXue+jQIV26dMn2uaCgQLm5uXr55Zfl7++vGTNmKCMjo8beA+wXGxurTp06yc3NTYZhyDAMffPNN1aHZbcFCxbY4m7ZsqXV4QBVqlOnTrbxbc8WFRUlT09Pu9uvWLGi1D2Tk5P18MMP66abbpKrq6uaNGmirl276m9/+1uV5PGy4luwYMGvvm5Vqaqc8sEHH9iu4+rqWoURAgAAAAAAAAAA1DyKJQEAQJ3j6upaZjFlcnKyLly4oJSUFG3fvl0rVqzQQw89pJYtW+rAgQNasmSJRo4cqcDAQPn7+8vHx0d33nmn7r//fk2fPl27d++WaZql7ldQUKCff/5ZL7/8slq3bq3nnntOmZmZFjw5yrJz50498MAD6tu3r86cOaMff/yxzhUcTp8+XaZpKiAgwOpQgGoRHx8v0zRtW3h4uCRp/fr1JfaHhYVJkrKzs/Xf//5XkjR48OASbS7fevbsWepeM2fOVLdu3eTj46OPP/5YGRkZOnLkiJ599lmtXr1a7dq1086dO3/V85QV3/Tp03/VNatSVeWUkSNHyjRN9enTp4oiAwAAAAAAAAAAsE61FUuuXLmyxCwbnp6eZbb76aefdN999+nChQtKT08vcU7nzp2Vl5dX6pwr2xmGocDAwOp6lCo1Y8YMxcbGlnvs8mfq1q1bDUf3P/Rf2epK/+HaGsJ4RWnkrIbBMAy1aNFCQUFBGjNmjJ555hm99dZb2rp1q44dO6bc3FwdPHhQGzZs0Lx589S3b185Ojpq27ZtOnPmzFWvXVBQoKysLM2dO9dWNHn5TJSoHp6engoKCir3eHER1pQpU+Tp6am2bdvq+PHjuuOOO6r1vgBqn6ioKM2bN09LlizRwoULdccdd8jV1VU+Pj4aOHCgdu7cqdatW6t///76/vvvrQ4XAAAAAAAAAAAANajaZ5Z8/fXXZZqmsrOzSx3bs2ePAgMD1bdvXzVu3FjXX3+9TNNUUlKS7XhERESp84rbJSQkyNfXV6ZpKjk5ubofpUqMHz9eM2fO1NNPP13q2Lx582wzpDg6OloQXWn0X0l1rf9QvoYwXlESOQvFnJ2ddcstt6hv374KDw+3zUr5ySefqKCgwK5rFBQU6MKFC5ozZ44+/fRTHThwoMzfStSM48ePS5J8fX0tjgRAWfbs2aPhw4fb1faDDz7Q7Nmz7b721q1bNW7cOEnSjz/+qDlz5ujOO++0zVx5JXd3dy1cuFBZWVmaPHmy3fcBAAAAAAAAAABA3WfZMtwXLlzQoEGDdP/992vSpEmljru4uMjX11fLli3T+++/b0GE1aNt27ZavXq15s6dq7i4OKvDqTT6r273H0qqr+MV/0POImfZ48iRI3a1c3R0tBXFOzk5yd3dXbm5udq+fXt1hoerKCwstDoEADVs0qRJpf6RwxtvvKGCggKFhoZe9dwePXqoRYsW2rhxow4fPlydYQIAAAAAAAAAAKAWsaxY8qWXXlJaWpqeeeaZMo+7urrq3XfflYODg8LDw3Xw4MEajrD6BAQEaPjw4XriiSfsnsGqtqH/6nb/oaT6PF7xC3IWOcsehw8flmEYJfYZhiEXFxfb55YtW+qBBx7Qyy+/rO3btysrK0shISHq1KmT+vfvX9Mh13sLFiyQYRjKycnRzp07ZRiGDMOQk5OTJGnNmjUyDENr166VJLm5uckwDHXr1q3ca+bn5+uZZ57RbbfdJnd3d1133XUaNGiQPvroI1vR5bXuK/0yu2hsbKxCQkLUvHlzubm5qWPHjoqJiVFRUVGp+549e1bTpk1T27Zt5eLiopYtWyo4OFhvv/22cnNzy4135cqVtvsXb2lpaZV6n0B9t23bNkm//PZdS3Gb7du3277zhmGoZcuWSkpKUp8+feTl5SV3d3f16tVLO3fu/FWx2ZszivNa8fbTTz8pLCxMXl5e8vX11ZgxY3T+/HkdPXpUgwYNkpeXl/z8/DR+/HhlZWWVe//vv/9eAwYMkLe391Wf6fvvv9eQIUPk7e0tDw8P9ejRQzt27PhVzwQAAAAAAAAAAFBbWFIsaZqmVqxYod/97ndq0aJFue369eun2bNnKysrS6GhocrLy6vBKKvX0KFDdeLECX3yySdWh1Jh9F/d7j+UrT6P14aOnEXOsteRI0dkmqatYLJp06YaPHiw5syZoy1btigzM1PHjx/Xv/71L02ZMkVBQUFydXW1OOr6bfr06TJNUx4eHrr77rtlmqZM07QV/g4ZMkSmaWrw4MGSpNzcXJmmqcTExHKvOWnSJL366qt67bXXdPbsWX333Xe67bbbNHjwYNvsoNe6ryR99tlnGjlypHr37q3vvvtOx48f14QJEzRt2jRFRkaWuGdaWpq6du2q999/XzExMUpPT9euXbt0zz336E9/+pOWLVtWbrwPPPCApk2bppCQEJ07d06maap58+aVfqdAXbR27dpSRcNLliwp1S4lJUWS5Ovre81rFrdJTU21fecDAgKUkZGhKVOmKCoqSmlpafrPf/6jc+fOqXfv3rZizMqwN2dcmdemTZumv/71r0pLS9OiRYu0cuVKPfjgg4qIiNDzzz+vkydP6rnnntOKFSv07LPPlnnv7OxsTZw4UbNmzVJKSkq5z/Tjjz+qe/fuSk5O1qpVq3Tq1CktXbpUzz//vA4dOlTpZwIAAAAAAAAAAKgtLCmW3Lt3r06dOmXXjB/PPvus+vbtq3379unxxx+36/qXz9zj7OwsHx8f9e/fX59//rmtzZUzdhw9elRhYWFq0qSJfH19NXDgwDL/IHTmzBlNnjxZN910k5ydnXXDDTdo2LBh2rNnj/0vQFKnTp0kSRs2bKjQebUB/Ve3+w/lq6/jtaEjZ5Gz7OXr66unnnpKa9asUWpqqk6dOqXVq1crMjJSvXr1UuPGja0OEVVg8+bN6tChg0JCQuTm5qZmzZpp/vz5ateuXYWvdc8992jmzJny8fHR9ddfr8cff1yjRo1STEyMLly4uqIKbwAAIABJREFUYGs3c+ZMHTlyRDExMRo4cKC8vLzUrFkzzZ49W/fee2+518/IyNCAAQNUWFio9evXy8fHp1LPDNR1gwcPthUtF2+PPfZYue2vnCX4aq5sm5OTo6VLl6p79+7y8PBQYGCgVq5cqYsXL2rKlCmVfgbJ/pxxuUceeURdunSRh4eHxowZow4dOmj9+vWaNm2aOnXqJE9PT4WHh6tNmzb69NNPy7xGZmamXnjhBd19993y9PQs95lmzZqljIwMxcTEKCQkRJ6enurYsaPeeustnTx5ssqeCQAAAAAAAAAAwCqWFEt+8803kn5ZyvJaHBwc9O6776pVq1ZasWKF3n333au2L56557333rPN3PPll1/K3d1dffr00YoVKySVnrEjIiJCERERSklJUWxsrLZs2aIHHnigxLVPnjyprl27Ki4uTkuXLtW5c+e0detWnTt3Tt27d1dCQoLd78Df37/Eu6hL6L+63X8oX30drw0dOYucZa/w8HBFRUXpvvvuk5+fn9XhoJrce++9+uKLLzRhwgQlJibalt4+cOCA7rnnHruvM3DgwBJF0cUCAgJ06dIl7d+/37Zv9erVklTmUu3r169XREREqf0HDhzQ7373Ozk4OGjRokVydHS0OzagoSqeQfrs2bPXbFvc5spZpz08PGz/yKBYx44d1aJFC+3du7fcosFrqUjOuFxgYGCJz8XxXrnf399fqampZV7D1dVVv/vd70rsK+uZPvvsM0m/zLZ95T3LKiiv7DMBAAAAAAAAAABYxZJiyeI/xnh7e9vV/vrrr1dcXJwaNWqk8PBwff/99+W2LZ65Z9GiRRo4cKAaN26sdu3a6b333pOfn58mT56sU6dOlTpv3LhxttlDgoODNWDAACUlJSk9Pb3EtX/66Se98sor+uMf/yhPT0916NBBH3zwgUzTtHsWMklq3LixDMOo9B/brET/1e3+w9XVx/Ha0JGzyFnA5ZYsWaJ33nlHhw8fVp8+fdS4cWPde++9toJGe2VmZuqZZ55Rx44d5ePjY5s59sknn5Qk/fzzz5Kk/Px8ZWZmytXVVV5eXnZd+/z58xoyZIhatmyp9evXa+XKlRV7SKABWLx4sRYtWlRiX8+ePSXJrhmY9+7dK0mliqSbNGlSZvumTZtKkk6fPl3RUCXZnzOudOWsxg4ODnJ0dJS7u3uJ/Y6OjioqKirzGr6+vmXOtnn5M+Xn5ysrK0uurq7y9PQst21VPBMAAAAAAAAAAIBVLCmWzMvLkyQ1atTI7nO6deumBQsWKCcnR6GhocrNzS2zXfEfugcMGFBiv4uLi/r06aPc3NwylyHt2rVric+tWrWSpBKzc6xZs0YODg4aOHBgibbNmzdXhw4dtGvXLp04ccLuZ3Jycir3OWoz+u8XdbX/cG31cbw2ZOSsX5CzUJdVZElde641ZswYbdq0SRkZGVqzZo1M09SwYcP0yiuv2H3fQYMG6fnnn9f48eN18OBBFRUVyTRNLVy4UJJkmqakX/KBt7e38vLylJWVZVeMTk5O2rRpk9auXauOHTtq/PjxSkpKquQTAw1HeHi4nJycFB8ff9V2O3bsUGpqqgYNGqTWrVuXOHb27Fnb9/dyxUWSZRUN2sPenFEdMjMzy9x/+TO5uLjIy8tLeXl5ys7OLtX23LlzpfZZ+UwAAAAAAAAAAACVYUmxpKurqyTp0qVLFTpv8uTJCgsL0zfffKNJkyaVOn6tmXuaNWsm6ZdlU6905Yxjzs7OkmSbnaP42kVFRfL29rbNmlG87d69W5L0ww8/2P08BQUFcnNzs7t9bUH//aKu9h/sU9/Ga0NGzvoFOQt1mbu7uy5evGj7fOutt2r58uWVulaTJk1sM8Y2atRIISEhWrNmjQzD0CeffGLXfQsLC7Vz5041b95ckydP1g033GArrCyrKHno0KGSpE8//bTUsc6dO2vq1Kkl9nl5ecnf31+enp766KOP5OnpqSFDhjA7LHAN7dq107PPPqvdu3dr2bJlZbb5+eefFRERIV9f31IzU0q//COLK4uTv/76a6WmpiogIEB+fn4VisnJyUn79++vUM6oatnZ2baZNIuV9Uz9+/eX9L/luIulp6frwIEDJfZVNA8CAAAAAAAAAADUBpYUSxb/Maa8GS6uZsWKFbr11lv1j3/8Q//6179KHLvWzD3FS6E2b968wvd1cXFRkyZN5OTkpEuXLsk0zTK3Xr162XW9CxcuyDTNCv+xrTag/+p2/8F+9WW8NnTkLHIW6r4777xTBw8e1PHjx5WQkKDDhw+rR48eVz3n6NGjcnR0LFFgXOzRRx/Vvn37lJ+fr9OnT+ull16SaZrq3bu3Xfd1dHTUPffco7S0NM2fP1/p6enKzc3V559/rjfeeKNULC+++KLatGmjqVOn6pNPPlFWVpZOnDihiRMn6uTJk6WKJS930003adWqVTpz5oyGDRum/Pz8Crw5oOGZPXu2Zs6cqccee0zTpk3T/v37lZ+fr4yMDH388ccKCgpSWlqaNmzYoJtvvrnU+d7e3po1a5YSEhKUk5Oj5ORkjR49Ws7OzoqJialUTBXNGVXNw8NDkyZN0pdffnnVZ3rhhRd03XXXKSIiQhs3blR2dra+/fZbjR49utTS3FY/EwAAAAAAAAAAQGVYUix5xx13SFKllpD19PTUhx9+KA8PDy1durTU8eKZe66cGSg/P1+bN2+Wm5ub+vXrV4mopWHDhqmgoEA7d+4sdSw6OlqtW7dWQUGBXddKSUmR9L93UZfQf3W7/2C/+jJeGzpyFjkLdd+iRYv029/+Vu3bt1dYWJhiYmLUvn1724yQa9eulSS5ubnJMAwlJibazjUMQ40aNbJ93rZtm2677TaNHDlS1113ndq3b6/PPvtMb775pmbNmmXXfSUpNjZW4eHheu2119SiRQu1adNG77zzjkaNGiVJCgkJUWBgoKRfiqaTkpIUFhamxx9/XL6+vrrrrrt0/vx5bd++Xa1bt9YHH3wgwzC0d+9epaSkyDAMLVq0SImJibrnnnt06dIlJSYmytXVVaNHj67W9w1Up7fffluGYdhmfuzfv78Mwyi19LOnp6c6d+4sSVq7dq0Mw7D7HyC88MILSkxM1Llz5zRgwAA1btxYrVu31pw5c3T//fdr//796tKlS5nnenp66rXXXtOcOXPk5+enP/zhD/Lx8dGWLVvUs2fPq8ZX1lZYWCjJ/pyRmJhYKq/Nnj1bycnJMgxDGzZsUGFhoQzD0Lx587Rjxw4ZhqFt27YpJydHhmHoueee04IFC2w5pUmTJnrllVc0c+ZMNW/evNxnatu2rRISEtS1a1cNHz5cTZs21cMPP6zHH39cHTt2VH5+vgzD0Lhx4yr0TAAAAAAAAAAAALWFkxU3DQgIUNOmTUstBWavDh06aNmyZWX+ofjFF1/Utm3bFBERIU9PT/Xs2VMnT57UzJkzdfLkSS1btsy2NGpFFV/7z3/+sxYvXqzf//73KiwsVHx8vP72t7/prbfekpPT/17p6NGj9e677+rw4cNq06ZNiWvt2bNHktS3b99KxWIl+q9u9x8qpq6MV5SPnEXOQt1366236j//+U+p/UOGDJFpmuWeV1ykdLmAgAC7Zz0r776SdP3115d7nRdffLHUPl9fXy1cuFALFy4s85yRI0dq5MiRZR672jMCdc3DDz+shx9++JrtriyerKjAwEC9/fbblTq3uIj6aioTn705o7zvfEX3T58+vcTnLVu2XCtEtWvXTqtXry61f8CAAaX2VTQPAgAAAAAAAAAAWM2SmSWLZ6P48ssvlZqaatufnp4uwzDUtWtXZWZmyjCMcmeiePDBB/WXv/yl1P7imXseeOABTZ482TZzT05OjjZt2qTx48dLUrkzdhTHFx0dLUnq3LmzBg4cKElq2rSpvvrqKw0ZMkSTJk3SDTfcoNtuu03//ve/tXbtWo0YMaJELCdPnpSnp6dat25dKs7Vq1fL39+/zD861Xb0X93uP/yivo1XlI+cRc4CAAAAAAAAAAAAAAAwzGtMVWMYhmJjYytcmLNy5UqNGTNGr7/+uh599NFSxzMzM9WhQwcNHDjQ7tl96pKMjAy1aNFCDz74oN58880Sx/bu3avOnTvrvffeK3cGIScnJ9sybJURFxensLCwSs9ERP/V7f6rbSqbR1C31OZxS866es6yWmhoqCQpPj7e4kgqp67HD+AX/PcKOnXqpPT0dJ04ccLqUAC71Ob//gYAAAAAAAAAoBaKt2RmSUny9vbWunXrtGrVKi1ZssSqMKqFaZqaPHmyGjdurOeff77EscOHD2vYsGGaOXNmrS1asQf9V7f7D2hoyFnkLAAAyrNgwQIZhqG9e/cqJSVFhmHYZoAGAAAAAAAAAABA/VHtxZJ/+ctfZBiGPD09Sx3r3LmzkpOTtX79el24cKG6Q6kxp06d0uHDh7V582Y1b968xLFly5Zp7ty5mjt3bqnzZsyYIcMwZBiGCgsLayrcq6L/6nb/AfgfchYAACjL9OnTZZpmiS0qKsrqsAAAAAAAAAAAAFDFqm0ZbliL5bjqtvrWf+SRhqG+jVvUnLq+jHVdjx/AL/jvFQB1Df/9DQAAAAAAAABAhVi3DDcAAAAAAAAAAAAAAAAAAEBNoFgSAAAAAAAAAAAAAAAAAADUaxRLAgAAAAAAAAAAAAAAAACAes3J6gAAAADqusTERIWGhlodBoBfaeHChYqPj7c6DACwy4kTJ6wOAQAAAAAAAACAOoWZJQEAAAA0eMOHD1fLli2r7fqrVq2isAkAAAAAAAAAAACwEDNLAgAA/ErdunVjNjoAV2UYhqZOnaoRI0ZYHQqAeiIuLk5hYWFWhwEAAAAAAAAAQJ1hV7FkWFgY/wO+jjIMw+oQAEnkkYaEvIPKGD58uNUhAAAAAAAAAAAAAACAeuyaxZKxsbE1EQeAeow8AuBaWrVqZXUIAAAAAAAAAAAAAACgHrtmsSTLxAH4tcgjAAAAAAAAAAAAAAAAAKzkYHUAAAAAAAAAAAAAAAAAAAAA1YliSQAAAAAAAAAAAAAAAAAAUK9RLAkAAIAGITs7W7fccosGDhxodSgAAAAAAAAAAAAAgBpGsSQAAAAaBNM0VVRUpKKiIqtDuSZPT08FBQVZHQaAKmb1d9vq+wMAAAAAAAAAAFjJyeoAAAAAgJrg5eWlQ4cOWR0GAAAAAAAAAAAAAMACzCwJAAAAAAAAAAAAAAAAAADqNYolAQAAUO+tWbNGhmHYtry8vDL3Hz16VGFhYWrSpIl8fX01cODAErNRLliwwNa2ZcuWSkpKUp8+feTl5SV3d3f16tVLO3futLWPioqytb986dvPPvvMtv/6668vdf2cnBzt3LnT1sbJiQnhgZpy9uxZTZs2TW3btpWzs7N8fHzUv39/ff7557Y2Vf3dJrcAAAAAAAAAAABUP4olAQAAUO8NGTJEpmlq8ODBV90fERGhiIgIpaSkKDY2Vlu2bNEDDzxgaz99+nSZpqmAgABlZGRoypQpioqKUlpamv7zn//o3Llz6t27t7Zt2yZJmj17tkzTlIeHR4n73nvvvTJNU126dCmxv/j6Hh4euvvuu2WapkzTVEFBQYl2vXv3lq+vrxITE6vsHQGQ0tLS1LVrV7333nuKiYlRenq6vvzyS7m7u6tPnz5asWKFpKr/bpNbAAAAAAAAAAAAqh/FkgAAAMD/GTdunLp37y4PDw8FBwdrwIABSkpKUnp6eqm2OTk5Wrp0qa19YGCgVq5cqYsXL2rKlCnVGmdRUZGt2AlA1Zk5c6aOHDmiRYsWaeDAgWrcuLHatWun9957T35+fpo8ebJOnTpVrTGQWwAAAAAAAAAAAKoHxZIAAADA/+natWuJz61atZIkpaamlmrr4eGhTp06ldjXsWNHtWjRQnv37tXJkyerLc6tW7fq3Llz6t69e7XdA2iIVq9eLUkaMGBAif0uLi7q06ePcnNztWHDhmqNgdwCAAAAAAAAAABQPSiWBAAAAP6Pt7d3ic/Ozs6Sfplt7UpNmjQp8xpNmzaVJJ0+fbqKowNQnfLz85WZmSlXV1d5eXmVOt6sWTNJvyzVXZ3ILQAAAAAAAAAAANWDYkkAAACgEs6ePVvmUrXFhUzFhU2S5ODgoIsXL5Zqm5GRUea1DcOooigB2MvFxUXe3t7Ky8tTVlZWqePFy283b97ctq86vtvkFgAAAAAAAAAAgOpBsSQAAABQCXl5eUpKSiqx7+uvv1ZqaqoCAgLk5+dn2+/n56eUlJQSbdPS0nTs2LEyr+3u7l6iAOrWW2/V8uXLqzB6AGUZOnSoJOmTTz4psT8/P1+bN2+Wm5ub+vXrZ9tfHd9tcgsAAAAAAAAAAED1oFgSAAAAqARvb2/NmjVLCQkJysnJUXJyskaPHi1nZ2fFxMSUaNu3b1+lpqZq8eLFys7O1qFDhzRlypQSM8Rd7s4779TBgwd1/PhxJSQk6PDhw+rRo4fteO/eveXr66vExMRqfUagoXnxxRfVpk0bRURE6OOPP1ZWVpYOHjyoUaNG6eTJk4qJibEtxy1V/XdbIrcAAAAAAAAAAABUF4olAQAAUO+tWbNGhmFo7dq1kiQ3NzeNHj1aiYmJpfbPnj1b0i/L1UZHR0uSOnfurIEDB5a4pqenp1577TXNmTNHfn5++sMf/iAfHx9t2bJFPXv2LNE2KipK48aN0wsvvKCmTZvq4Ycf1pNPPqnmzZvr7NmzMgxDM2bMsLVftGiRfvvb36p9+/YKCwtTTEyM2rdvbzteUFAg0zTLXKoXQOU1b95cSUlJeuCBBzR58mT5+vrqrrvuUk5OjjZt2qTx48eXaF/V322J3AIAAAAAAAAAAFBdDJO/ggAAAFRaaGioJCk+Pt7iSFCTOnXqpPT0dJ04ccLqUFBHGIah2NhYjRgxwupQUIuRW1ARcXFxCgsLo7gVAAAAAAAAAAD7xDOzJAAAAAAAAAAAAAAAAAAAqNcolgQAAAAAAAAAAAAAAAAAAPUaxZIAAACAnRYsWCDDMLR3716lpPx/9u48Pqrq/v/4e7KHJAQMewAJKNgiBggUqODGVr+EtQkBgWr9IrhCpPQLKIrFBVRaoAUxgVJls0mwoEHRImorGDSJAkUEZFPZZE0ISwIh5/cHv0wZJoGZZCYzmbyej8c8HnDvued+7jnnnrnnzsm9B2WxWDR16lRPhwWgmqNvAQAAAAAAAAAAcL8ATwcAAAAAVBcTJ07UxIkTPR0GAB9D3wIAAAAAAAAAAOB+PFkSAAAAAAAAAAAAAAAAAAD4NCZLAgAAAAAAAAAAAAAAAAAAn+bwa7gTExPdGQeAK2RkZHg6BJei/wBwPd26ddOECRM8HQYAAAC8wJ/+9CdlZWV5OgwAqBYYTwMAAAAAADjO4SdLrly5UgcOHHBnLLgC5V0zHThwQCtXrvR0GC5He/YNvto+4XmbNm3ix3AAAABYZWVladOmTZ4OA3Aa9z9Q1RhPAwAAAAAAOMfhJ0tK0pNPPqmhQ4e6KxZcwWKxUN41UHp6upKSkjwdhlvQnqu/0vbpa08+hefx9FkAAABcrWvXrow9UO1wPw9VjfE0AAAAAACAc5yaLAkAAAB7K1eulMVi8XQYALxcUlKSz/5hDAAAAAAAAAAAAODtmCwJAABQSV27dtWTTz7p6TAAAKiQpKQkJScnq1u3bp4OBU7IysrSnDlzPB0GAAAAAAAAAADVBpMlAQAAKqlp06a8ag8AUG0lJSWpW7dufJdVQ0yWBAAAAAAAAADAcX6eDgAAAAAAAAAAAAAAAAAAAMCdPDJZcvXq1bJYLNZPYWGhy/KeNWuWNd+mTZu6LN+yuPM4nBUeHm4Ti8Vi0axZszwWT2X40rHAvdLS0tS+fXuFhoZa28q2bds8HZZbvf/++2rdurUCAhx7MLCz6V2pffv2dufytT4vvPBCmed/eZ9FixbZ7TMnJ0cPPPCAWrRooZCQENWpU0edO3fW9OnTlZeXV+lj8vb+yVXfgX//+9+t+YSEhLgwQgAAAACuUJX3v3yRMUYbN27UY489ptatWys4OFgNGjRQ9+7dtWzZMhlj3B7D8ePHbcaWHTp0KPPe4tXpLBaLOnXq5Pb4qgLtGAAAAAAAAFXNI5MlBw0aJGOMBg4c6PK8J06cKGOMYmNjXZ731dx5HM46c+aMvv76a0nSwIEDZYzRxIkTPRxVxfjSscB9Nm7cqOHDh6tPnz46duyYdu/e7dM31vfs2aMBAwZoypQp+umnn1ye3l0yMjJkjLF+xo4dK0lau3atzfKkpCRJZZ//ZX3uvPNOu31NmTJFXbt2Vd26dbVmzRrl5eVp3759mjZtmlatWqXWrVtr48aNlToeb++fXPUdOGzYMBlj1LNnTxdFBgAAAMCVrnXtf+bMGd18882Kj4/3QGTeG8uVdu7cqe7du2vXrl1auXKl8vPztWnTJjVv3lyjRo3S73//e7fHUK9ePRljlJ2dLUnavHmzkpOTy02XlZWlqKgoGWOUk5Pj9viqAu0YAAAAAAAAVc2tkyXDw8PVvXt3d+4C1RRtA9dzvTZSOglv/PjxCg8PV6tWrfTjjz/q1ltvrcIoHeOK9v7MM8/ol7/8pXJzcxUREeHy9NXdCy+8oJkzZ2r+/PmaPXu2br31VoWEhKhu3bqKj4/Xxo0b1bx5c917773asWOHp8MFAAAAALcxxqikpEQlJSVVsr9rjXmrOhZnBAQEKD09XbfddptCQkLUsmVLvfHGG4qKitK8efNUVFRUZbEEBwcrKipKKSkpeuutt6psv96MdgwAAAAAAAB38MiTJQGgsn788UdJUlRUlIcjqRp//etfNXnyZIdfp+1senfYvHmzEhISHEr797//XVOnTnU4708//VSjR4+WJO3evVt/+MMf1LFjR+uTK69Wq1YtzZ49WwUFBRo3bpzD+wHcZdmyZTav0QsPDy8z3ffff68BAwbo9OnTNeI1fZMnT1ZaWprL86UcXYNydA3K0TUoR9t1Vx5T165dqzS2mlYX19K9e3e74yr9XP20OHedG4AkRUREaM+ePXr//fc9HYpXxXKlW265RRcvXlTdunVtlgcFBalZs2YqKioqs/9yl5CQEC1fvlx+fn4aO3asdu3aVWX79lbe1Ha8KRYAAAAAAABUDpMlAVRLly5d8nQIVSo0NNSt6auLxx9/3O6H5tdff13FxcVKTEy85rY9evRQkyZNtG7dOu3du9edYQIOW7BggYwxOnPmjN26zZs3q1OnTurTp49q165dI17T99BDD2nKlCl65plnXJYn5egalKNrUI6uQTnamjlzpowxMsbI39+/SuOqiXXhKu44NwBUXl5enr777jt16NBBkZGRVbrvvn37aurUqSooKFBiYmKVTtYEAAAAAAAAagq3TJacNWuWLBaLzp49q40bN1qfpFDeE86OHDmipKQk1alTR1FRUYqPj9eePXts0hQXFystLU29e/dWo0aNFBoaqnbt2mnu3LkOvwLF2TxOnDihCRMmqFWrVgoODlbTpk3Vq1cvvfHGGzp//nyFjqOqrV692uZpFvv3779mjKV1Z7FY1LRpU2VnZ6tnz56KiIhQrVq1dPfdd2vjxo3W9C+88II1/ZWvqvnggw+sy+vVq2eXv6NtwxGO1GteXp7dkz1eeOEF6/ZXLr/ySXjHjh3TuHHj1KJFCwUFBal+/foaMmSINm/eXG4Z79y5U0OHDlVUVJR12fHjxyt8fDXN9dpIaXm/8847ki5PCnTkCTqOnM/O9BFFRUV69tlndcstt6hWrVq64YYb1L9/f7377rvWiZzuaO+w969//UuSFBsbe920pWk+++wzp/u7inC0TV3dj3z//fdKSkpSRESEoqKiNGrUKJ06dUr79+9X//79FRERocaNG+uhhx5SQUFBufvfsWOH+vXrp8jIyGse044dOzRo0CBFRkYqLCxMPXr00IYNGyp1TKic06dPq3///vr1r3+txx9/3G69r76mr1WrVlq1apVefPFFpaenVzo/ypFyrAzK0TUoR9dwdTm6Qk2ti+vJzs62Tl698jNnzhybdN5Yp9WZs/c+Sl05TgwKClLdunV177336pNPPik377LG/IsWLXLZ9Xxlr7evjvfKCXd16tQp9+mnfn5+OnDggFMxODp+LyuWipa/o3XrrNOnT2vjxo0aMGCAGjVqpCVLllQ6z4qYNm2a+vTpo61bt+qJJ55waBvaMe0YAAAAAAAATjAOkmTS0tIcTW6MMSYsLMzcfvvt5a4fOHCgkWQGDhxoPv/8c3PmzBmzfv16U7t2bdO5c2ebtJmZmUaSeemll8zJkyfNsWPHzJ///Gfj5+dnJk6caJd3bGysiY6OrnAehw8fNjExMaZRo0YmMzPTnD592hw5csQ8//zzRpKZPXt2hY7DURUp76+//toax9XKinHdunUmNDS0zBhjY2NNWFiY6datmzV9dna2ue2220xQUJD59NNPbdKXV9dxcXEmKirKbvn12sa1juVqztRr3759jZ+fn9m9e7ddPt26dTPLly+3/v/QoUPmxhtvNA0bNjTvvfeeKSgoMNu2bTN33nmnCQkJMZ9//rnN9qVlfOedd5pPPvnEnD171mzatMn4+/ubY8eOXfc4jDEmLS3NOHFaVhvu7D/Onz9/3bwcPZ+daUujR482kZGR5p///Kc5d+6cOXLkiJk4caKRZD755BOnjsVZ0dHRxt/f323py+OK9jl27Fgjyaxdu7bcNKXnf3mf8ePH26Rv3LixkWS++OKL6+5/5MiR1jou5Wx/567+yZj/tushQ4aYnJwcc+bMGbNkyRIjydx7771m4MCB5uuvvzYFBQXm9ddfN5LMk08+aZdPbGysiYyMNHfffbfZsGGDKSgoKPeYvvvuO1OnTh0THR1t/vnPf5qCggKzdetW06dPH9OiRQsTHBxcqWNyREJCgknhxXSeAAAgAElEQVRISKjQtt6gIvEvXbrUSDILFiwoc/3TTz9tAgICzMGDB+3WZWdnm8jISPPBBx8YPz8/ExERYXbu3GmXLisrq8zv4OogMTHRNG3a1Fy8eLFS+VCOlKMrUI6uQTm6xvXK0d/f33Tp0sXpfCtyvV7T66Ist99+u8nOznZqm8qcG746fjSm4teHztz7KB0nNmzY0GRmZpr8/Hyzc+dOM2TIEGOxWMzChQvLzPtaY35XXM+74v7XlbFcOWaOjIw0BQUFNummT59uN0ZyNoaKjN8rWv6O3tdyRum9AUnmrrvuMlu3bq1wXhXpT0v7zFLHjh0zzZo1M5LMsmXLrMvL6jNpx5fV5HZc3cfTAAAAAAAAVSzdKyZLZmZm2iy/7777jCSbCWaZmZnmrrvusstj5MiRJjAw0OTn59ssL2+ypKN5PPDAA+Ue869+9asyJ0s6chyOctdkyatjTEhIKDPG2NhYI8l8/fXXNsu3bt1qJJnY2Fib5Z6eLOlovX744YdGknn00Udt0m7YsMFER0ebCxcuWJfdf//9RpLNBEpjLt8IDQ4ONnFxcTbLS8v4/fffv27M5fHVH7s8PVnS0fPZmbYUExNjfvnLX9qlbd26NZMlr8GZyZJlnf+PPfZYuZMlv/zyy+vuv3Sy5IwZM6zLnO3v3NU/GfPfdv3ee+/ZLG/btq2RZP71r3/ZLI+JiTFt2rSxy7/0mLKysq57TImJiUaSWblypU3agwcPmuDg4DInSzpzTI6o7j/uuHqyZElJiWnYsGG5/caVP6Y+++yzRpK57bbb7PrD6jwBZcWKFUaSWb16dYXzoBwpR1ehHF2DcnSN65VjVU2WpC7KVpHJkpU5N3x1/GhM5SdLOnLvo3Sc+NZbb9mkLSwsNE2aNDGhoaHmyJEjdnlfa8zviut5V9z/ujKWa00yS0tLMxaLxTzwwAOViqEi4/eKlr+j97WcVVRUZL799lvz8MMPG39/fzN9+vQK5eOKyZLGXO4fAwMDTVhYmPn222+ty67uM2nHtOPqPp4GAAAAAACoYulueQ23szp37mzz/+joaEnSoUOHrMvi4+NtXl9SKjY2VhcvXtQ333xz3f04k8eqVaskSffee69d+rVr1yo5OblCx+FpV8fYrFkzSWXHGBYWpvbt29ssa9eunZo0aaItW7bo8OHD7gvUCc7Ua58+fdSuXTu98cYbOnHihHX5q6++qieeeEKBgYHWZatXr5afn5/i4+Nt8m3UqJHatm2r3Nxc66t9rvSLX/zCFYcFF3L0fHamLf3qV7/S559/rjFjxmjTpk3WV2/v3LlTd911lxuOAuVp0qSJJNmc0+UpTVO6TSl39XcV/e7q1KmTzf9L4716eXR0dLnfMSEhIerSpYvNsrKO6YMPPpAk9e3b126frVu3dtkxwXFbtmzRTz/95NCr5avqNX2Ovibu2LFjGjdunFq0aKGgoCDVr19fQ4YM0ebNmx0vAMl6Pn744YdObXclypFypBwpR8rRfaiL8i1dulTt27dXWFiYIiMj1aNHD61YsaLc9N5Sp77GkXsfpePEfv362aQNDg5Wz549df78+TLrxZExf2Wu5915vZ2Xl6fw8HBJ0hdffKH7779fd9xxh1JSUqoshlIVLX9n7ms5IygoSLfccosWLFigAQMG6Nlnn9VHH31UqTwro2vXrpo1a5bOnj2rxMREnT9/vsx0tGPaMQAAAAAAAJzjFZMlIyMjbf7v53c5rJKSEuuy/Px8Pfvss2rXrp3q1q1r/UHk97//vSTp3Llz192Po3kUFRUpPz9fISEhioiIcOlxeNrVMQYFBUkqO8Y6deqUmUeDBg0kSUePHnVxdBXjbNtITk7WuXPn9Nprr0mSdu3apY8//lhjxoyxpiltAyUlJYqMjLT5Ec5iseirr76SJH333Xd28YSFhbnrUFEBzpzPzrSl+fPna8mSJdq7d6969uyp2rVr61e/+pX1RjncY968eZozZ47NsjvvvFOSHPqBe8uWLZJkN6HVXf1dRb+7ateubfN/Pz8/+fv7q1atWjbL/f39y/2OiYqKksVisVt+5TEVFRWpoKBAISEh1h+bykrrimOC47Zt2yZJatq06XXT+vn5afny5WrWrJkWLVqk5cuXXzP9kSNH1LlzZ61YsUJz587V8ePH9cUXX6hWrVrq2bOnFi1aJEkaNGiQjDEaOHCgpMvfncnJyTp48KDS0tL08ccfa/jw4TZ5Hz58WJ07d1Z6erpee+01nTx5Up9++qlOnjypbt26KSsry+EyKP2Dk9KyqAjKkXKkHClHytF9qIvynTp1SosXL9bRo0f15ZdfKiYmRiNGjNC4cePKTO8tdeprrnfv43rjxIYNG0q63B6v5siYvzLX81Vxvf3DDz9o4MCBatasmf7xj39Yy6eqYqhM+TtzX6ui+vfvL0las2aNy/KsiHHjxikpKUnbtm3T448/breedkw7BgAAAAAAgPPcOlmyrEkaFdW/f389//zzeuihh7Rr1y6VlJTIGKPZs2dLkowxLssjODhYkZGRKiwsVEFBgcuOobo5ceJEmeVaOmnoykk0fn5+unDhgl3avLy8MvP2ZNsYMWKEGjZsqHnz5qmoqEh//OMfdf/996tu3brWNMHBwapTp44CAgJ08eJFGWPK/Nx9990uOw7YclUbceZ8dqYtWSwWjRo1Sh999JHy8vK0evVqGWM0ZMgQ/elPf3LLsaBsY8eOVUBAgDIyMq6ZbsOGDTp06JD69++v5s2b26xzpr9zhiu+uyoqPz+/zOVXHlNwcLAiIiJUWFioM2fO2KU9efKk3TJPHlNNUfrUz6t/QCtPvXr1lJ6ersDAQI0dO1Y7duwoN+2UKVO0b98+zZkzR/Hx8apdu7Zat26tFStWqHHjxho3bpx++uknu+1Gjx6tbt26KSwsTL169VK/fv2UnZ2t48eP2+T9/fff609/+pP+53/+R+Hh4Wrbtq3+/ve/yxjj8NPEpMs/zFoslko9xZpypBwpR8qRcnQf6qJsGzZs0JIlS9SxY0eFhYWpTZs2WrJkiX7xi1/oL3/5i7744gu7bbylTmua640TS9tYo0aNqjo0t19vFxQUKD4+XhcvXtSaNWt0ww03VDoGZ8e83lz+0uX4pLLHQ1Vt0aJFatOmjRYvXqylS5farPPmcqQde74dAwAAAAAAoGxunSxZq1Ytmwl0bdq0UWpqqtP5XLp0SRs3blSjRo00btw41a9f33oDq7zX0FQ2j8GDB0uS3n//fbt1HTp00JNPPun0cVQ3hYWFys7Otln2n//8R4cOHVJsbKwaN25sXd64cWMdPHjQJu2RI0f0ww8/lJm3K9pGQECAvvnmG6fbRnBwsB599FEdPXpUf/zjH7V8+XKNHz/eLt2QIUNUXFysjRs32q17+eWX1bx5cxUXFzsVMxznqv5Dcux8draPqFOnjvVH3sDAQPXu3dv6KsD33nvPbccCe61bt9a0adP01Vdf2b12q9S5c+eUnJysqKgouydTSs71d46oaP/kSmfOnLE+SbNUWcdU+nr60tdxlzp+/Lh27txps8wV38e4vsLCQkmX+xZHufs1fY68Jm716tXy8/NTfHy8TdpGjRqpbdu2ys3N1YEDBxw+poCAgEq1K8rxMsqRcqQcKUd3oC6ck5CQIEnKzMwsc7031GlNVDpOvHr8VlRUpPXr1ys0NFR9+/at0pjcfb196dIlDRs2TDt27NDbb7+t1q1bW9clJCRo9erVFYqhImNeT5f/xIkTNXLkyDLXrV27VpJ9v+IJ4eHhevvttxUWFmZ9Q8qVPF2OZaEde7b8AQAAAAAAcG1unSzZsWNH7dq1Sz/++KOysrK0d+9e9ejRw+l8/P39ddddd+nIkSN69dVXdfz4cZ0/f16ffPKJXn/9dbfkMWPGDMXExOjJJ5/Ue++9p4KCAh04cECPPvqoDh8+XCMmS0ZGRuqpp55SVlaWzp49q5ycHI0cOVJBQUGaO3euTdo+ffro0KFDmjdvns6cOaM9e/Zo/Pjx5T6NzdNt49FHH1VoaKimTp2qXr166aabbrJLM2PGDLVq1UoPPvig1q5dq/z8fJ08eVIpKSmaPn26Zs2apYCAAKdjhmMq0kb2798vf39/m1elS46dzxVpSw8//LC2bt2qoqIiHT16VK+88oqMMbrnnnsqfSxwztSpUzVlyhQ99thjmjBhgr755hsVFRUpLy9Pa9asUffu3XXkyBF9+OGHatmypd32zvR3jnLFd1dlhIWF6fHHH9cXX3xxzWN66aWXdMMNNyg5OVnr1q3TmTNntH37do0cOdLu1dyePiZ385YJ8CEhIZKkixcvOrWdO1/T5+irLEtKShQZGWl9xV3pp7RP/u677xw+nuLiYoWGhjqc/mqU42WUI+UoUY6Uo+tRF84p/SOV0id8X80b6rQmKh0nJicna82aNSooKNCuXbt033336fDhw5o7d661zVUVd19vP/nkk3r//feVmpqqu+66y2UxVGTM6w3lv2LFCk2fPl379+9XUVGR9u/fr0mTJmnZsmWKi4vT6NGj3bp/R7Vt27bcPwz0hnK8Gu3Ys+UPAAAAAACA6zAOkmTS0tIcTW6MMWbHjh2mR48eJiwszDRr1szMnz/fGGNMVlaWkWTzefrpp637ufLTr18/Y4wxx44dM2PHjjXNmjUzgYGBpmHDhuaBBx4wkydPtqaNi4szr776arl5O5pHqePHj5vk5GQTExNjAgMDTePGjc2wYcPMrl27Knwc7irvsLAwu32++uqrFY4xNjbWREdHm+3bt5u+ffuaiIgIExoaau68806zYcMGu/3n5eWZ0aNHm8aNG5vQ0FDTvXt3k52dbeLi4qz5T5o0yZq+vLZR3rGU9/n222+drtdSDz30kJFk/vWvf5VbridOnDATJkwwLVu2NIGBgaZ+/fqmT58+Zt26ddY0ZZWxE6eWjbS0tApv681c2X+sWrWqzPLOysoy+/btM35+fsZisZitW7fa5He989kY5/qIzZs3m7Fjx5qf/exnplatWuaGG24wXbt2NQsXLjQlJSUOHYszMjMzyz0PFi5cWOn0jqhM+/zb3/5WZiwFBQU26co6/xs2bOjwfrKzs839999vbrzxRhMUFGQiIiJMp06dzAsvvGDy8vLK3MaZ/s5d/VN5fXV2drbd8hkzZpjPPvvMbvm0adNsvgOjo6PNl19+ae6++24THh5+zT58586dZtCgQaZ27domNDTUdO7c2axZs8b07NnTmt///u//GmOc/y51REJCgklISHBqG3co7SNGjBhh5s6da7Kyssz58+evu11F4l+6dKmRZBYsWFDuupdeeqnMbbOzs01kZGSZ6woKCkybNm2MJPPoo4+aqKgom/WRkZFGkjl9+rTdtqNGjTKSzJtvvmldNnDgQCPJrhwmTZpkJJmvv/7auqxOnTomICDAXLx4sfwDd1B+fr6RZHr06FHhPChHypFypByvVFPK0d/f33Tp0sXpfJ29XqcunPPyyy9br++uVplzo/T6/I477jCjRo0yU6dONampqeaDDz4w27dvN+fOnXNF+JU2ceJEM2/ePIeuq0o5e31V0XsfV48TIyMjTd++fc369euvmffV4yJXXc8bU/n7X2WNmUeMGGFycnKuO4ZZtWqVUzGUcmb8PmLEiEqXvyvuveXn55tFixaZvn37mhYtWpigoCATHh5u4uLizIwZMyp8/jjTnx47dszuGK41lnrkkUfs+kxjaMc1uR0b4z3jaQAAAAAAgGoi3a2TJVFxni7v0slDvmzx4sVOT+hxNyZLwpv5avusCf2dt/OWH3fmzJljLBaL8ff3NwEBAUaS8ff3Nz//+c/NI488YhYvXmy2bdtmiouLbbZz9WTJr7/+2jqBpCzXmoBijDHbtm2zTuy9+sfUBx54wEgyb731ls3ywsJC06RJExMaGmqOHDliXe7MBJQHH3zQSDKffvqpXUwzZ840zZo1c3hyyvbt240k88gjjziUviyUI+VIOVKOV6sJ5VhVkyWpC3sLFy40HTt2tFteUlJi/SPCTZs22a2vzLlRen3+2GOPmfj4eNOuXTvrZNPST/369U1cXJwZPHiwGT9+vJkzZ475xz/+YXJycszRo0crdKzO6tixozWW2bNnm7Nnz153G2+5PgScxf0PVDX6SwAAAAAAAKeku/U13IA3e/311zVhwgRPhwEA8BIxMTEyxujSpUvWV3JfunRJ27dv18KFC/XQQw/p1ltvVXh4uLp06aLx48dryZIlOn36tEvjiI2NVYMGDbRly5YKbe+p1/TNmDFDrVq10oMPPqi1a9cqPz9fJ0+eVEpKiqZPn65Zs2YpICDAmn7kyJGyWCzat2+fXV6bN2+WJPXp08dm+bW2uRrlSDlSjpTj1Xy5HKsadVG2r776So899ph2796twsJC7dy5U6NGjVJubq6eeOIJdenSxW4bV9TpvHnzlJmZqa1btyovL0/nzp3Tnj17tG7dOr3wwguKj49X/fr19c033+jPf/6zEhMT1alTJzVo0EAhISFq1aqVevfurd/85jeaPHmyUlNT9dFHH2nv3r1Ov2q9LD/88IMk6dixY5o4caKaNWumV199VWfOnKl03gAAAAAAAAAAOMXRaZXiL6OrlKfL2xeftLZw4UIzaNAgU1BQYBYsWGBuvvnmKn/92vX46pP7PN2e4Rq+2j59sb+rbrzlSRj/+c9/rvtKtys/QUFB1n+Hhoaa9PR0h/d1rSdLGmPMU089ZQICAszBgwetyzz9mj5HXhN34sQJM2HCBNOyZUsTGBho6tevb/r06WPWrVtnF8c999xjwsPD7Z7UaYwxiYmJJjo62ly4cMHhbcpCOVKOlCPlWBZfLMdSVfVkSWOoi6sVFhaajIwMM3jwYNOqVSsTHBxsIiMjzV133WVWrFhR7nbXq9Nrqej1eVFRkTl48KDJyckx6enpZubMmWbMmDEmPj7exMXFmfDwcJvyq1u3romLizOJiYlm3LhxZubMmSY9Pd3k5OSYvLy86+7LYrHY1Ym/v7+pXbu2mTZtmjl16pTddt5yfQg4i/sfqGr0lwAAAAAAAE7hNdzeylPl/eqrr5b7g1N1t3DhQiPJBAQEmNtuu83k5uZ6OiQ7vjoZjf6jbI5Mxpo2bZqnw7Tytfbpy/1ddeMNP+5cvHjRfPPNN05NlgwMDDR+fn6mefPmpm/fvk7t73qTJfPy8kx0dLQZO3asKw7P65w6dcqEhoaa0aNH263bvHmzsVgsdq9fvdY25aEcKUdHUI6uQTm6RkXK8UpVOVmyJteFqzhSp9fizuvzkydPmpycHPPuu++alJQUM2nSJJOYmGji4uJM48aNbSZAhoSEmJYtW5pevXqZMWPGmJkzZ5o333zTrFu3znzyySfXvJ4KCAgwoaGhZtKkSebkyZPW/XvD9SGqJ0+Ps7n/gapGfwkAAAAAAOCU9P++XwqQNHHiRE2cONHTYbjF6NGjNXr0aE+HAVgZYzwdQo3my/0dynbq1Cnt3bvX7nPo0CHt27dP58+fV1BQkC5cuHDNfIKCgnTx4kX1799fL774op555hmXxxoZGanMzEz17t1b7dq102OPPebyfXiKMUbjxo1T7dq19fzzz9us27t3r4YMGaIpU6Zo2LBhDm1zLZQj5Xg9lKNrUI6uUZFy9KSaWheu4o11eqW6desqLi5OcXFxZa4vLCzUoUOHbK6nDh8+rL179+qjjz7SDz/8oOLi4uvup7i4WMXFxfrjH/+ouXPnasyYMXrqqadcfTioQRhnAwAAAAAAALgWP08HAAAA4Apnz57Vtm3b9O6772ru3LlKTk7WgAED1K5dO4WHh+uGG25Qp06dNGLECKWmpmrPnj1q0aKFRo4cqcWLF2vTpk1q06ZNufkHBQXJYrEoPj5e27dv19tvv61bbrmlUjE/8sgjslgsCg8Pt1vXoUMH5eTkaO3atTp9+nSl9uNNfvrpJ+3du1fr169Xo0aNbNalpKToxRdf1IsvvujwNtdDOTq2zfVQjo5tcz2Uo2PbXA/laGvy5MmyWCyyWCy6dOlSVYUrqWbWhatcq06rg5CQELVs2VK9evXSmDFj9NxzzyklJUXr1q3Tnj17dO7cOe3bt0+TJ0+Wv7//dfMrLi5WYWGhXnvtNbVo0UL/+c9/VFRUVAVHAgAAAAAAAACoSSzGwT+5tlgsSktL09ChQ90dE0R511Tp6elKSkryuSch0J59g6+2T3heYmKiJCkjI+Oa6YqLi3X06FHrU4uu/uzbt8/aPuvWrauWLVuW+WnevLkCAsp+uPawYcOUkZGhkpIS67LAwEAVFxfr3nvv1Ysvvqj27dtXKH4AALwV1+vVU3W4Pp8+fbpeeuklhyY+ll6fFRcXy9/fX/Xq1dNnn32mm2++2d1hAi5Df4qqxngUAAAAAADAKRm8hhsAAHiN8l6VvXfvXpvXOYaEhKhJkybWCZC9evWy/rt169aKiIio0P5btWqlwMBAFRUVKSAgQJcuXdKAAQP0hz/8QW3btnXloQIAAPi8H374odwnnpb+QYoxRlFRUeratat69Oih22+/XbNnz5afnx8TJQEAAAAAAAAALsVkSQAA4HFZWVkKCwvTuXPnJF3+8fzGG29UTEyMWrZsqZ49e1r/HRMTo3r16rkljpiYGBUVFclisVgnSd56661u2RcAAICv27t3r/VJkZJ06dIlhYSEqGPHjrrjjjvUtWtXde3aVQ0bNrTZbu7cuZ4IFwAAAAAAAADg45gsCQAAPC46OlrPP/+8YmJiFBMTo6ZNm1p/VK9KLVu21K9//WtNmzZN7dq1q/L9AwAA+JIDBw7oxhtvVI8ePdStWzd169ZN7dq1s75yGwAAAAAAAACAqmQxxhiHElos7o4FwP/n4GlZbdB/ALiehIQEZWRkeDqMCklMTJSkahs/AAAWi0VpaWkaOnSop0OBE9LT05WUlOTV48e8vDzVqVPH6e0SExO1cuVKN0QEAL6nOo+nAQAAAAAAqliGU3/Kn5ycrG7durkrGFRAVlaW5syZo7S0NE+HAhcorU9fRP9R89A/wVGzZ8/2dAgAAABwg4pMlCzVtWtXPfnkky6MBnBM6fiE9ofqgPE0AAAAAACAc5yaLNmtWzeeNOGF5syZQ734EF+dLEn/UTPRP8ERvvAEjAMHDig9Pd3TYaCaKyoqUnFxsc6fP69Lly7p/PnzKikp0dmzZ2WM0blz59SxY0cFBQV5OlQAPigrK8vTIcBJvl5nTZs2ZSwBjygdn9D+UB34wngaAAAAAACgKjk1WRIAAAD2Nm3apKSkJE+HAQBAhc2ZM8dn/3ALAAAAAAAAAABAYrIkAABApfAkDzhq27ZtateunVPb+Pn5qXbt2nrvvff0y1/+0k2RAQAAAAAAAAAAAIDv8/N0AAAAAEBNcOutt6pjx47y83PsEjwwMFDNmjXTF198wURJAAAAAAAAAAAAAKgkJksCAAAAVeThhx92KF1AQIA6duyonJwctW7d2s1RAQAAAAAAAAAAAIDvY7IkAAAAUEWGDh2qoKCga6bx8/PTfffdp3//+9+qV69eFUUGAAAAAAAAAAAAAL7NayZLnjlzRjfffLPi4+M9HQoAH0d/AwCoat9//72mTZumdu3aKSAgQIGBgeWmfeaZZ/Tmm29ed1IlAACoPhiHAgAAAAAAAIDnec1kSWOMSkpKVFJS4ulQris8PFzdu3f3dBg+xdNl6un9o2rR38BdPF1fnt4/AFsXLlxQZmamhg4dqlatWik1NVWDBw9WSkqKLl68aJPWz89PgYGBWrZsmZ577jnPBAwAANyGcSh8mafbjKf3DwAAAAAAgOojwNMBlIqIiNCePXs8HQaAa/joo48UEBCgO+64Q35+XjPX2mn0NwAAd9q5c6f+9re/6W9/+5uOHz+ue+65R2+99ZYGDRpkfaLkiy++qG+//VbGGAUEBCgsLEzvvvuu7rjjDg9HDwAA3IFxKAAAAAAAAAB4XvWd7QSgyv373//W3XffrcaNG+t3v/udcnNzPR0SAABeobCwUBkZGerdu7d+9rOfafny5frtb3+rPXv2aN26dUpMTLR59faYMWPk7++vwMBANW/eXLm5uUyUBAAAAAAAAAAAAAA38orJkqtXr5bFYrF+CgsLy1y+f/9+JSUlqU6dOoqKilJ8fLzNX+XPmjXLmrZp06bKzs5Wz549FRERoVq1aunuu+/Wxo0brelfeOEFa/orX9XywQcfWJfXq1fPLv+zZ89q48aN1jQBAV7zgE63OnHihCZMmKBWrVopKChIdevW1b333qtPPvnEmsbVZUqdep/AwEAdPXpUf/nLX9SpUyfFxMToueee086dOz0dmkPob0BfBsCVcnNzNX78eEVHR2vkyJGqW7eu3nnnHe3fv18zZ85UixYtytxu5MiR8vPzU5cuXZSTk6NWrVpVbeAAAKDKMA6FN2AsDAAAAAAAAEgyDpJk0tLSHE1eIQMHDjSSzPnz58tcPnDgQPP555+bM2fOmHXr1pnQ0FDTuXNnu3xiY2NNWFiY6datmzV9dna2ue2220xQUJD59NNPbdKHhYWZ22+/3S6fuLg4ExUVZbe8vPSl7r77bnPDDTeYrKwsRw+9wtLS0owT1Vhhhw8fNjExMaZhw4YmMzPT5Ofnm507d5ohQ4YYi8ViFi5caJPe1WVaU+q0quqzop555hkTHBxsJNl8AgMDjSRz8803m2nTppk9e/bYbFcV/Yez6G/czxvbM32Zd7aXhIQEk5CQ4OkwAIfl5eWZlJQU06FDByPJ3HLLLWbmzJnm6NGjTuWzfPlyU1RU5KYoAQCovnz1+pBxaPXgi+2PsbDvtllfbK8AAAAAAABulO4VT5Z01OjRo9WtWzeFhYWpV69e6tevn7Kzs3X8+HG7tGfPntVrr71mTd+pUyctW7ZMF2h3/+4AACAASURBVC5c0Pjx490aZ0lJiYwxMsa4dT9VacqUKdq3b5/mzJmj+Ph41a5dW61bt9aKFSvUuHFjjRs3Tj/99JNbY6BOvdfFixclSbt379ZLL72km266SV26dNHcuXN19OhRD0dXMfQ3vom+jPYCVEZubq7Gjh2rJk2aaPz48brpppu0bt06bd++XZMmTVL9+vWdyu++++5TUFCQm6IFAADVDeNQuAtjYdosAAAAAAAALqtW7yTp3Lmzzf+bNWsmSTp06JDNK1gkKSwsTO3bt7dZ1q5dOzVp0kRbtmzR4cOH1bhxY7fE+emnn7olX09atWqVJKlfv342y4ODg9WzZ08tXbpUH374oX7zm9+4LYaaVKdDhw6t0v056ptvvrnmjWVjjHXiZHZ2tnJzc/W73/1OkrRhwwb169dPYWFhVRJrZdHf+Cb6sk/dki/gyw4fPqwlS5Zo0aJF2r17t+Li4jR79mwNHz5cERERng4PAAD4EMahcBfGwp+6JV8AAAAAAABUP9XqyZKRkZE2/y99Ek9JSYld2jp16pSZR4MGDSSp2j7tzhOKioqUn5+vkJCQMicFNGzYUJJ05MgRt8ZBnaIq0d/4HvoyAI4qKSnRRx99pKFDh+rGG2/UzJkzdc899+jrr79WTk6OxowZw0RJAADgcoxD4Q6MhQEAAAAAAID/qlZPlnTGiRMnZIyRxWKxWV564630Rpwk+fn56cKFC3Z55OXllZn31Xn6uuDgYEVGRio/P18FBQV2N1ZLX9PTqFEj6zJ3lGlNqtP09HRPh1CmZ599Vq+88kq56y0WiwICAlRcXKzOnTvrvvvu0/Dhw9WwYUN179692jxV0lk1qW1WZ/RlAK7nxx9/1IoVK/Taa6/pwIED6tatm+bNm6eRI0eqVq1ang4PAADAinEFHMVYGAAAAAAAAPivavVkSWcUFhYqOzvbZtl//vMfHTp0SLGxsTavdWncuLEOHjxok/bIkSP64Ycfysy7Vq1aNjfs2rRpo9TUVBdG730GDx4sSXrvvfdslhcVFWn9+vUKDQ1V3759rcvdUabUqfcKDAyUJN1000166qmntHv3bn3xxRcaP368zc1uX0XbrD7oywBcraioSBkZGerdu7duvPFGzZ07V8OHD9euXbu0YcMGjRkzhomSAADA6zCugDMYCwMAAAAAAACX+exkycjISD311FPKysrS2bNnlZOTo5EjRyooKEhz5861SdunTx8dOnRI8+bN05kzZ7Rnz55rTvLq2LGjdu3apR9//FFZWVnau3evevToYV1/zz33KCoqSps2bXLrMValGTNmKCYmRsnJyVqzZo0KCgq0a9cu3XfffTp8+LDmzp1rfW2P5PoylahTb1H6+q/SCZItWrTQU089pR07dmjXrl167rnn1LJlS0+GWOVom9UHfRntBSj17bffavLkyWratKmGDx8uSUpLS9MPP/ygmTNnqlWrVh6OEAAAoHyMK+AMxsK0WQAAAAAAAPx/xkGSTFpamqPJnbJq1SojyeYzYsQIk5WVZbf86aeftsZz5adfv37W/GJjY010dLTZvn276du3r4mIiDChoaHmzjvvNBs2bLDbf15enhk9erRp3LixCQ0NNd27dzfZ2dkmLi7Omv+kSZOs6Xfs2GF69OhhwsLCTLNmzcz8+fNt8uvRo4epW7eu+fzzz91SXldKS0szTlRjpRw/ftwkJyebmJgYExgYaCIjI03fvn3N+vXr7dK6ukxrSp1WZX1WxDPPPGMkmQYNGpgJEyaYnJwch7ZzZ//hLPqbquOt7Zm+zPvaS0JCgklISPB0GKgBTp8+bd58803Tq1cvI8ncfPPNZtq0aeb777/3dGgAAOAKvnZ9yDi0evG19leKsbBvtllfba8AAAAAAABukm4xxhhHJlVaLBalpaVp6NChjiT3qPbt2+v48eM6cOCAp0Nxu/T0dCUlJcnBaqy2akqdent9fvTRRwoICNAdd9whPz/HH0xbnfoPZ9WUtlkR3t6ePYH2UrbExERJUkZGhocjga/Kzc1VamqqVqxYoYsXL2rAgAEaM2aMevbsKYvF4unwAADAVbg+vDbGFe5F+3M92qz70F4BAAAAAACckhHg6QgAVB+9evXydAgAADjk1KlTysjI0Pz587V161b9/Oc/19SpU/W///u/qlevnqfDAwAAAAAAAAAAAABUMSZLAgAAwCeUlJTo448/1pIlS7Ry5UoFBgZq2LBhmj9/vrp37+7p8AAAAAAAAAAAAAAAHuT4e3SrgVmzZslisWjLli06ePCgLBaLpk6d6umwUAnUKbwVbRPOoL0A7nXo0CG9/PLLuvnmm9W7d29t375dc+bM0cGDB5WSksJESQAA4BMYV6C6oc0CAAAAAADA2/jUkyUnTpyoiRMnejoMuBB1Cm9F24QzaC+A6126dEmffPKJUlNTtWrVKkVERCgxMVGPPfaYbrvtNk+HBwAA4HKMK1Dd0GYBAAAAAADgbXxqsiQAAAB8265du7R48WK98cYbOnbsmO655x6tWLFCAwcOVFBQkKfDAwAAAAAAAAAAAAB4KSZLAgAAwKsVFhYqMzNTqampWr9+vZo0aaIHHnhAY8eOVUxMjKfDAwAAAAAAAAAAAABUA0yWBAAAgFf65ptvtHTpUi1atEgFBQXq06eP0tLSNHjwYAUEcBkLAAAAAAAAAAAAAHAcvzIDAADAa+Tn5ystLU0pKSn66quv1KZNG/3+97/Xb3/7WzVo0MDT4QEAAAAAAAAAAAAAqimnJktmZWW5Kw5UUGmdpKenezgSuIIvn2O+fGwoG/0THHXgwAE1bdrU02HAw3Jzc5Wamqrly5fr0qVL6t+/v15++WX17NlTFovF0+EBAIAqduDAAcYS8IgDBw5IYiyL6oHxNAAAAAAAgHMsxhjjUEJ+pAaqjIOnZbVB/wHgehISEpSRkeHpMFDFjhw5orS0NC1atEjbtm1TXFycRo0apVGjRumGG27wdHgAAMBDEhMTtXLlSk+HAQDVAuNpAAAAAAAAh2U49WTJtLQ0DR061F3BwMUSExMliZtl1Uh6erqSkpI8HYZb0H/4vtL262uTfeF+pd9XqBlKSkr08ccfKzU1VatXr1atWrWUlJSkJUuWqEOHDp4ODwAAeAkm/8CbMN6Ft2I8DQAAAAAA4BynJksCAAAAFXHgwAEtX75cr7/+uvbv36+4uDjNmzdPI0eOVK1atTwdHgAAAAAAAAAAAADAxzFZEgAAAG5x4cIFvfPOO1qyZInWrl2r+vXr6/7779fo0aN10003eTo8AAAAAAAAAAAAAEANwmRJAAAAuNSOHTv0xhtvaPHixTpx4oTuuecevfXWWxo0aJACAwM9HR4AAAAAAAAAAAAAoAZisiQAAAAq7fz581qzZo1SU1O1fv16RUdH68EHH9QjjzyiG2+80dPhAQAAAAAAAAAAAABqOCZLAgAAoMJyc3OVmpqqt956SxcuXNCAAQP0z3/+Uz179pTFYvF0eAAAAAAAAAAAAAAASJL83L2DZcuWyWKxWD/h4eFlpvv+++81YMAAnT59WsePH7fZpkOHDiosLLTb5up0FotFnTp1cvchucTkyZOVlpZW7rorj6lr165VGht1VjZvrjM4rya0Wdij3wJcIy8vT6mpqerQoYM6deqkzz77TE8//bR+/PFHpaenq1evXkyUBAAANUJNG2NcS/fu3e2Oq/STnJxsk5axinvRLv+LdgkAAAAAAIAruX2yZKkFCxbIGKMzZ87Yrdu8ebM6deqkPn36qHbt2qpXr56MMcrOzrauv/rmlSRruqysLEVFRckYo5ycHLcfiys89NBDmjJlip555hm7dTNnzpQxRsYY+fv7eyC6y6gzW9WhzuC4mtBmYYt+C6ickpISbdiwQWPHjlV0dLQmTpyodu3aad26ddq+fbsmTZqk+vXrezpMAACAKlMTxxiuwljFfWiXFUe7BAAAAAAA8H0efw336dOn1b9/f/3617/W448/brc+ODhY4eHhSklJ0Z133qnhw4d7IErXa9WqlVatWqUOHTqoXbt2Gjp0qKdDchh1Vv3qDNfmq20W/0W/Rb+Fijt8+LCWLFmihQsXas+ePYqLi9Ps2bN13333lfv0aQAAAF9XU8cY15Odne3Q0wgZq7gH7bJstEsAAAAAAACUqrInS5bnlVde0ZEjR/Tss8+WuT4kJETLly+Xn5+fxo4dq127dlVxhO4TGxurhIQE/e53v1NxcbGnw3EYdVb96gzX5sttFpfRb9FvwTmXLl3SRx99pKFDh6p58+aaOXOmevbsqc2bNysnJ0djxoxhoiQAAKjRavIYw1UYq7ge7bLyaJcAAAAAAAC+zaOTJY0xWrRokbp06aImTZqUm65v376aOnWqCgoKlJiYqMLCwiqM0r0GDx6sAwcO6L333vN0KA6hzqpfncExvtxmazr6LfotOO67777Tc889p5YtW6pv3746deqU/vrXv+rQoUNKSUlRbGysp0MEAADwOMYYrsNYxXVol65DuwQAAAAAAPBdHp0suWXLFv30008O/fA+bdo09enTR1u3btUTTzzhUP4nTpzQhAkT1KpVKwUFBalu3bq699579cknn1jTrF69WhaLxfrZv3+/kpKSVKdOHUVFRSk+Pl579uyxy/vYsWMaN26cWrRooaCgINWvX19DhgzR5s2bHS8ASe3bt5ckffjhh05t5ynUWfWrMzjOV9tsTUe/Rb+FaysqKlJGRoZ69+6tNm3aaOHChRo+fLi+++47rVu3Tr/5zW8UGhrq6TABAAC8BmOM8i1dulTt27dXWFiYIiMj1aNHD61YsaLc9IxVXId2WT7aJQAAAAAAAEp5dLLktm3bJElNmza9blo/Pz8tX75czZo106JFi7R8+fJrpj9y5Ig6d+6sFStWaO7cuTp+/Li++OIL1apVSz179tSiRYskSYMGDZIxRgMHDpQkJScnKzk5WQcPHlRaWpo+/vhjDR8+3Cbvw4cPq3PnzkpPT9drr72mkydP6tNPP9XJkyfVrVs3ZWVlOVwG0dHRNmXh7aiz6ldncJyvttmajn6Lfgtl2759uyZPnqymTZta219aWpq+//57zZw5Uy1btvRwhAAAAN6JMUb5Tp06pcWLF+vo0aP68ssvFRMToxEjRmjcuHFlpmes4jq0y/LRLgEAAAAAAGBlHCTJpKWlOZrcaunSpUaSWbBggd26V155xUgy8+fPL3Pb7OxsExkZabMsKyvLBAYGmrCwMPPtt99al0VFRdmke+CBB4wk89Zbb9ksLywsNE2aNDGhoaHmyJEj1uUDBw40kkxmZqZN+oSEBCPJHDt2zLrs/vvvN5LM8uXLbdIePnzYBAcHm7i4uPKKo0wWi8XcdNNNZa7z9/c3Xbp0cSq/UgkJCSYhIcHp7aiz63NXnaWlpRknTstqo6L9R1WoKW22Knhr+6Xfuuxa/ZanVfT7Cs7Lz883KSkp5vbbbzeSzM0332ymTZtmfvjhB0+HBgAAYOXt14eMMZzzi1/8wkgymzZtKnO9N49VSnnrePdKtEvn+EK7NMb7+0sAAAAAAAAvk+7RJ0sWFhZKkgIDAx3epmvXrpo1a5bOnj2rxMREnT9/vsx0q1atkiT169fPZnlwcLB69uyp8+fPl/kqlc6dO9v8v1mzZpKkQ4cOWZetXr1afn5+io+Pt0nbqFEjtW3bVrm5uTpw4IDDxxQQEFDucXgb6uyy6lRncJ4vttmajH7rMvqtmi03N1djx45VdHS0xo8fryZNmmjdunXauXOnnnvuOWsbBAAAwPUxxnBOQkKCJCkzM7PM9YxVXIN26RzaJQAAAAAAQM3k0cmSISEhkqSLFy86td24ceOUlJSkbdu26fHHH7dbX1RUpPz8fIWEhCgiIsJufcOGDSVdfoXM1SIjI23+HxQUJEkqKSmxybukpESRkZGyWCw2n6+++kqS9N133zl8PMXFxQoNDXU4vSdRZ5dVpzpDxfham63J6Lcuo9+qeU6dOqXU1FTFxsaqU6dO2rBhg6ZOnaoDBw4oPT1dvXr1ksVi8XSYAAAA1Q5jDOc0btxYknT06NEy1zNWcQ3apXNolwAAAAAAADVTgCd3XnpTKj8/3+ltFy1apM2bN2vx4sXWm4GlgoODFRkZqfz8fBUUFNjdyPvpp58kXf4LZWcFBwerTp06OnPmjM6fP6+AgMoV4enTp2WMsZaFt6POql+doeJ8pc3WdPRb9Fs1SUlJiT7++GOlpqbqnXfeUUhIiIYNG6b58+ere/fung4PAADAJzDGcE7pUwQbNGhgt46xiuvQLp1DuwQAAAAAAKiZPPpkyVtvvVWSKvQqlfDwcL399tsKCwvTa6+9Zrd+8ODBkqT33nvPZnlRUZHWr1+v0NBQ9e3btwJRS0OGDFFxcbE2btxot+7ll19W8+bNVVxc7FBeBw8elPTfsvB21Fn1qzNUnK+02ZqOfot+qyY4ePCgXn75Zd10003q3bu39u7dq7/85S86dOiQUlJSmCgJAADgQowx7C1atEhxcXF2y40xSk9PlyT179/fbj1jFdehXdqjXQIAAAAAAOBqHp0sGRsbqwYNGmjLli0V2r5t27ZKSUkpc92MGTMUExOj5ORkrVmzRgUFBdq1a5fuu+8+HT58WHPnzrW+JsZZM2bMUKtWrfTggw9q7dq1ys/P18mTJ5WSkqLp06dr1qxZNn8JPXLkSFksFu3bt88ur82bN0uS+vTpU6FYqhp1Vv3qDJVTXdosyke/Rb/lqy5cuKDMzEwNHTpULVq00Msvv6zevXtr69atysnJ0ZgxYxQWFubpMAEAAHwOY4yyffXVV3rssce0e/duFRYWaufOnRo1apRyc3P1xBNPqEuXLnbbMFZxHdpl2WiXAAAAAAAAsGEcJMmkpaU5mtxq6dKlRpJZsGBBmeufeuopExAQYA4ePGhdduzYMSPJ5hMXF1fuPh555BETFRVlt/z48eMmOTnZxMTEmMDAQBMZGWn69u1r1q9fb02TlZVlt6+nn37aesxXfvr162fd7sSJE2bChAmmZcuWJjAw0NSvX9/06dPHrFu3zi6Oe+65x4SHh5vi4mK7dYmJiSY6OtpcuHChzGPz9/c3Xbp0KffYryUhIcEkJCQ4vR115rk6S0tLM06cltVGRfsPd/K1NusNvLn90m9du9/ytIp+X9VUO3bsMJMmTTINGjQwfn5+plevXiY9Pd1r6xcAAMBZ1eH6sKaPMa5WWFhoMjIyzODBg02rVq1McHCwiYyMNHfddZdZsWJFudt5+1illDePd69Eu7Tl6+3SmOrRXwIAAAAAAHiRdIsxxjgyqdJisSgtLU1Dhw51JLnVsmXLNGrUKC1YsEAPP/yw3fr8/Hy1bdtW8fHxev31153KuzrIy8tTkyZNNGLECC1cuNBm3ZYtW9ShQwetWLFCw4YNK3P7gIAAderUSZs2bXJ634mJiZKkjIwMp7ajzjxXZ+np6UpKSpKDp2W1UdH+A9WLN7df+q1r91ueVtHvq5qksLBQmZmZSk1N1fr169WkSRONHDlSDz/8sFq0aOHp8AAAAFyqOlwf1uQxhqtUh7FKKW8e716Jdll51aldStWjvwQAAAAAAPAiGR59DbckRUZGKjMzUytXrtT8+fM9HY5LGWM0btw41a5dW88//7zNur1792rIkCGaMmVKtbjxdiXqrPrVGVDT0W/Rb1VXubm5Gj9+vKKjozVy5EiFhIQoLS1N33//vWbOnMlESQAAAA+pqWMMV2Gs4h60y8qhXQIAAAAAAPi+Kpss+cgjj8hisSg8PNxuXYcOHZSTk6O1a9fq9OnTVRWS2/3000/au3ev1q9fr0aNGtmsS0lJ0YsvvqgXX3zRbrvJkyfLYrHIYrHo0qVLVRWuHeqs+tUZgPLRb6G6yM/PV2pqqjp27KhOnTrpww8/1P/93//pxx9/VGZmphITE+Xv7+/pMAEAAGq8mjjGcBXGKu5Du6w42iUAAAAAAIDvc/truOE5vIal+qkur3VyFv1HzeCr7Rfux/fVZbm5uUpNTdWyZctUUlKi/v37a8yYMerZs6csFounwwMAAKgyXB/C2zDehbeivwQAAAAAAHBKRoCnIwAAAKipjhw5ojfffFOLFi3S7t27FRcXp5deekmjRo3SDTfc4OnwAAAAAAAAAAAAAADwGUyWBAAAqEIlJSX6+OOPlZqaqtWrVyssLExDhw5Venq6OnTo4OnwAAAAAAAAAAAA/h97dx7WVZn/f/z1UZRdVNxwd1xqUgcXSMldXBNzCSRNrSmVmUpBx0lNp6wxk7LMfmpKaps6AeWSpZVblggKllqa2bhkuKOCuOHC/fvDr0wIJCBw4MPzcV2f64pz7nM+r3Pum/tcdr05NwAAdoliSQAAgCKQmJiopUuX6u2339avv/6q1q1ba86cORo6dKhcXFysjgcAAAAAAAAAAAAAgF2jWBIAAKCQpKWl6dNPP1VERIQ2bNigGjVqaPjw4Ro5cqQaNmxodTwAAAAAAAAAAAAAAEoNiiUBAAAK2E8//aT3339fixcv1pkzZ9S1a1dFRkaqf//+KleunNXxAAAAAAAAAAAAAAAodfJULDlr1ixFR0cXVhYUsLi4OElSUFCQxUmQW4mJiVZHKDTMH/bv1vhlzkFexcXFqW3btlbHuGupqalasWKFPvzwQ61fv1516tTRE088oaeeekp169a1Oh4AAECJEhcXx78tUGyUxn/vXrx4UTabTS4uLlZHwR+wl39PAwAAAAAAFBWbMcbkpmFp+p+BgNXsraiQ+QPAnfj5+WncuHFWx8iXHTt2KCIiQsuWLdO1a9f00EMPadSoUfL395fNZrM6HgAAQInzxhtvKDY21uoYQKkWFxen06dPq23btqpatarVcfAHSvK/pwEAAAAAAIpYdK6LJQEAAHBTcnKyoqKiNG/ePO3atUt//vOf9dhjj+nJJ59UlSpVrI4HAAAAAHflwoULeuKJJ7R8+XK9/PLLevbZZ/ljMAAAAAAAAJR0FEsCAADkRnp6ujZu3KgPPvhAH3/8scqVK6d+/fpp+PDh6tatm9XxAAAAAKBAGWP01ltvafz48QoMDNTChQvl6upqdSwAAAAAAAAgvyiWBAAA+CPHjh3Thx9+qIiICB08eFCtW7fWqFGjNGTIELm5uVkdDwAAAAAK1ebNmzVo0CBVrlxZK1as0L333mt1JAAAAAAAACA/ostYnQAAAKC4uXHjhtavX69BgwapXr16Cg8PV7du3bRr1y4lJCRo1KhRFEoCAAAAKBU6deqkhIQEVahQQW3atNHKlSutjgQAAAAAAADkC8WSAAAA/+eXX37R1KlT1aBBA/Xs2VPnzp3TokWLdPToUS1YsEB/+ctfrI4IAAAAAEWuTp062rx5swIDAzVw4EBNnDhR6enpVscCAAAAAAAA8oRluAEAQKl25coVrV69WhEREdqwYYO8vLw0bNgwhYSEqEGDBlbHAwAAAIBiJSIiQqNHj1b37t21ZMkSVaxY0epIAAAAAAAAQG5EUywJAABKpT179ujDDz/UwoULlZycrC5dumjUqFEaMGCAHBwcrI4HAAAAAMVWTEyMgoKC5ObmpuXLl6tZs2ZWRwIAAAAAAADuJJpluAEAQKlx/vx5RUREqH379mrWrJlWrFihf/7znzp69KjWrVunoKAgCiUBAAAA4A7atWunnTt3qlatWvLz81N0dLTVkQAAAAAAAIA7ohoAAADYvR07digiIkJLly7VjRs31LdvX61bt07+/v6y2WxWxwMAAACAEqdatWpat26dpkyZouDgYG3ZskWvv/46f4AGAAAAAACAYotluAEAgF06d+6coqOjNWfOHP3www+67777NHz4cI0cOVKVK1e2Oh4AAAAA2I0lS5YoJCREvr6+ioqKUrVq1ayOBAAAAAAAANwummJJAABgN9LT07Vx40ZFRERo5cqVcnFxUXBwsEJCQtSqVSur4wEAAACA3fr+++/18MMP6/r16/rkk0/k6+trdSQAAAAAAADg96LLWJ0AAADgbh09elTh4eFq2LChunfvroMHD2rOnDk6evSoFixYQKEkAAAAABSyli1bKj4+Xvfee686duyoxYsXWx0JAAAAAAAAyMTB6gAAAAD5cfXqVX355Zf68MMPtXz5clWtWlWDBg3SyJEj1axZM6vjAQAAAECp4+npqbVr12ry5MkaMWKEtm3bpv/3//6fypcvb3U0AAAAAAAAQCzDDQAASpSff/5Z7777rt59910lJSWpa9euGjVqlPr3769y5cpZHQ8AAAAAIGnVqlUaPny4mjdvrujoaHl5eVkdCQAAAAAAAKVbNMWSAACg2Lty5YpWr16tiIgIbdiwQbVq1dKjjz6qv//976pXr57V8QAAAAAA2fj55581YMAApaSkKDo6Wg888IDVkQAAAAAAAFB6RZexOgEAAEBOduzYodDQUNWqVUvDhg1TpUqVtGrVKh0+fFgzZsygUBIAAAAAirF77rlHcXFxatOmjTp16qTw8HCrIwEAAAAAAKAU482SAACgWElJSVFkZKTmz5+v77//Xvfee68ef/xxPfHEE6patarV8QAAAAAAeWSM0auvvqrnnntOQ4YM0YIFC+Ti4mJ1LAAAAAAAAJQuLMMNAACKhx07digiIkJLliyRMUYBAQEaNWqUunXrZnU0AAAAAEABWLNmjYYOHar69etr+fLlql+/vtWRAAAAAAAAUHqwDDcAALDO8ePHFR4erkaNGsnHx0c7duzQrFmzdPLkSUVFRVEoCQAAAAB25MEHH9T27dt1/fp1+fj4aN26dVZHAgAAAAAAQClCsSQAAChS6enpWr9+vQYNGqR69eppxowZ8vf31/fff6+EhASNGjVK7u7uVscEAAAAABSCRo0aaevWrfL391fv3r0VHh4uFj8CAAAAAABAUWAZga6pCgAAIABJREFUbgAAUCR+++03LVu2TPPmzVNiYqL8/Pw0fPhwDR06VC4uLlbHAwAAAAAUsYiICD3zzDMaOHCgFi1aJFdXV6sjAQAAAAAAwH5FUywJAAAKTVpamj799FNFRERow4YNqlGjhoYPH66RI0eqYcOGVscDAAAAAFjsm2++0aBBg1SpUiUtX75cf/7zn62OBAAAAAAAAPsUzTLcAACgwP3000+aOHGiateurcGDB0uSIiMjdeTIEc2YMYNCSQAAAACAJKljx45KSEhQhQoV1LZtW61YscLqSAAAAAAAALBTWd4smZiYqK1bt1qVB0AOHnjgAdWuXdvqGPkSFRVldQQARWTbtm1atWqVDhw4IC8vL3Xp0kWdOnVSxYoV//C4OnXqyM/Pr4hSAgAAAACKm7S0ND3zzDNatGiRnn32WU2fPl1lyvC3/gAAAAAAACgwWZfhjoqKUnBwsFWBAOQgMjJSgwYNsjpGvthsNqsjACjmAgMDFR0dbXUMAAAAAIDFIiIiNHr0aHXr1k1LlixRpUqVrI4EAAAAAAAA+xDtkNOe22ooUQwEBQVJEsUkpZA9FBuW5GJP3HSrmJ7nAwrarecbAAAAAACjRo1Ss2bNFBQUpPvvv18rVqxQs2bNrI4FAAAAAAAAO8A6JgAAAAAAAACAYuOBBx7Qzp07VadOHfn5+SkqKsrqSAAAAAAAALADFEsCAAAAAAAAAIqVqlWr6quvvtLTTz+t4OBghYSE6Nq1a1bHAgAAAAAAQAlGsSQAAAAAAAAAoNhxcHDQjBkztGTJEi1ZskTdu3fXyZMnrY4FAAAAAACAEopiSQAAAAAAAABAsfXoo48qJiZGR44ckY+Pj7Zv3251JAAAAAAAAJRAFEsCAAAAAAAAAIq1Fi1aKD4+Xvfdd586duyoRYsWWR0JAAAAAAAAJUypLZacOXOmbDabbDabateubXWcQuPm5pZxnbc+M2fOtDpWvtjTtaBgREZGqkWLFnJ2ds4YEz/++KPVsQrVmjVr1KRJEzk4OOTY5ty5c5o/f766du2qypUry9nZWY0bN9ajjz6qXbt2FVnWFi1aZPmd/aPPtGnTsv09z+mzcOHCLN+ZkJCgxx9/XPXr15eTk5MqVqwoX19fvfTSS0pOTr7rayru81BBPds++uijjPM4OTkVYEIAAAAAAPLP09NTa9as0cSJEzVy5EiFhITo6tWrVscCAAAAAABACVFqiyXHjx8vY4y8vb2tjlKoLly4oO+//16S1K9fPxljNH78eItT5Y89XQvuXkxMjAYPHqwePXro9OnT+u9//2vXhc8HDhzQQw89pEmTJunkyZN/2Paf//ynRo8erX79+mnv3r06c+aMFi9erJ07d6p169ZauXJlEaWWoqOjZYzJ+ISEhEiS1q5dm2l7cHCwpOx/z7P7dOrUKct3TZo0SW3btlWlSpX02WefKTk5WYcOHdILL7ygFStWqEmTJoqJibmr6ynu81BBPdseeeQRGWPk7+9fQMkAAAAAACgYZcuW1dSpU7Vy5UpFRkaqa9euOnbsmNWxAAAAAAAAUAIUWLGkm5ub2rdvX1CnKzDFNReyR3/hljuNhVtFeKGhoXJzc1PDhg3122+/qVmzZkWYMncKYlz/61//0gMPPKAdO3bI3d39ju2feOIJhYaGqkaNGnJxcVGHDh20bNky3bhxQ88+++xdZSmOpk2bphkzZmju3LmaNWuWmjVrJicnJ1WqVEkBAQGKiYlR3bp11bt3b+3bt8/quAAAAAAA4C499NBD2rZtm86ePasWLVpo06ZNVkcCAAAAAABAMZfzOq4AUIz99ttvkm4uv1QaLFq0SM7Ozrlqm93y1JLk7e0tZ2dnHThwQMYY2Wy2goyYxc6dO3Pd9qOPPsrTub/++uuM//7vf/+rF198Ua1atcp4c+XtXFxcNGvWLHXs2FFjxozRV199lafvAwAAAAAAxc8999yjbdu26fHHH1ePHj00bdo0TZgwwepYAAAAAAAAKKZK7TLcAEq2GzduWB2hSOW2UPKPXLx4UZcvX1azZs0KvVCysDzzzDMKCwvLtG3+/Pm6fv26goKC/vDYDh06qGbNmlq3bp0OHjxYmDEBAAAAAEARcXd318cff6xp06bpueee09ChQ3Xp0iWrYwEAAAAAAKAYuutiyZkzZ8pms+nixYuKiYmRzWaTzWaTg8PNl1auXLkyY5vNZtPPP/+sQYMGydPTM2NbUlKSJOn06dMaM2aM6tevr/Lly6tq1aoaOHBglreTpaWl6fnnn9e9994rFxcXVa5cWX379tWnn36aUUB1p1y327dvn/r06SMPDw+5uLioS5cuiomJyXKdNptNtWvXVnx8vPz9/eXu7p5t+9zmtMrt/XL48GEFBwerYsWK8vT0VEBAgA4cOJDRPq/XP23atIz2v19++IsvvsjYXqVKlSznz21/5cb169cVGRmp7t27q0aNGnJ2dlbz5s01e/ZspaenS5KSk5Mz3QebzaZp06ZlHP/77YGBgRnnzs1YzcvYx//kdk5ZtWqVpJtFhDabTW3btv3D8545c0bjxo1Tw4YN5ejoqNq1a6tbt2567733dPnyZUm5GzO3FMY8VNiio6MlSZMnT7bk+wvL5s2bJd18c+ad3Grz7bff5mtez6vcjqnb54tff/1VwcHBcnd3l6enp4YNG6Zz587p8OHD6tu3r9zd3eXl5aWRI0cqNTU1x++/07Pt9+369+8vDw8Pubq6qkOHDtqyZctdXRMAAAAAAEXFZrNpwoQJ+uyzz7RmzRq1a9dOhw4dsjoWAAAAAAAAihtzm8jISJPN5jtydXU17dq1y3F/v379jCTTqVMns2nTJnPx4kUTFxdnypYta06fPm2OHTtm6tWrZ6pXr24+//xzk5qaan788UfTqVMn4+TkZLZu3ZpxrhEjRhgPDw/z1VdfmUuXLpkTJ06Y8ePHG0lm06ZNecrl7e1tPDw8TJcuXcyWLVtMamqqiY+PN3/5y19M+fLlzddff52lvaurq/Hz8zNbt241Fy5cyLF9XnLmRmBgoAkMDMzzcd9//72RZPr165dl361+6devX8b1rFu3zjg7OxtfX98s7fNy/cbkfP9bt25tPD09s2y/U3/90bXcbvXq1UaSmT59ujl79qw5ffq0eeutt0yZMmXM+PHjM7Xt2bOnKVOmjPnvf/+b5Tx+fn5m6dKlGT/nZawac+exnxuSTGRkZK7aFkf5yZ/bOeXy5ct3PNfx48dNgwYNTI0aNczq1avN+fPnzYkTJ8y///1vI8nMmjXLGJO3MVOQ81Be1apVy5QtWzZPx5w4ccJUr17djBgxIt/fm9/nw++FhIQYSWbt2rU5trn1e57TJzQ0NFN7Ly8vI8ls27btjt8/dOjQjD6+Ja/zWmHNQ8b8b1wPHDjQJCQkmAsXLpgPPvjASDK9e/c2/fr1M99//71JTU018+fPN5LM2LFjs5wnL8+2X375xVSsWNHUqlXLfPXVVyY1NdXs3r3b9OjRw9SvX984Ojre1TXlRn6fbwAAAAAA3O6XX34xzZs3N56enuarr76yOg4AAAAAAACKj6giX4Z7woQJ6ty5s1xcXNSmTRtdv35dVapU0aRJk/Trr7/qjTfe0IMPPig3Nzc1bdpUH330kYwxGj16dMY5NmzYoKZNm6p79+5ydnZW9erV9dprr6lJkyb5ypSSkqLp06erXbt2cnNzk4+Pj5YsWaKrV68qNDQ0S/uLFy9q3rx58vPzk6ura47tCzpnYRoxYkTG9XTr1k19+vRRfHx8tm8+zO31FwedO3fWpEmTVKlSJVWpUkWjR4/WkCFDNHv2bJ0/fz6j3bhx45Senq433ngj0/ExMTE6cuRIpuV98zJWfy+nsY/CN2nSJB06dEizZ89WQECA3N3dVb16dU2ZMkW9evXK1Da3Y6Yk/X6fOXNGvXr1UufOnTV//nyr4+Rav379ZIzJ9Hn66adzbJ+XpcVvb1uY81pux9TvPfnkk2rdurVcXV01bNgwNW3aVGvXrtW4cePUokULubm5KSQkRA0aNNCaNWuyPUdun23PPfeckpOTNXv2bHXv3l1ubm5q3ry53n33XR0/frzArgkAAAAAgKLQqFEjbdu2TQEBAerdu7fCw8NljLE6FgAAAAAAAIqBIi+WvP/++7PdvnLlSpUpU0YBAQGZtteoUUNNmzbVjh07lJiYKEnq1auXtm7dqlGjRikuLi5jyduff/5ZnTt3znMmJycntWnTJtO25s2bq2bNmtq1a1eWYhFXV1e1aNHiju0LOmdh8vX1zfRznTp1JEnHjh3L0ja312+1gIAAbdq0Kct2b29vXbt2TXv27MnY1qNHDzVv3lzvvfeezpw5k7H9tdde0+jRo1WuXLmMbXkZq7+X09hH4VuxYoUkqXfv3ln2rV27VmFhYZLyNmZKyu/3xYsX1bNnT913331aunSpypYta3WkAlezZk1JyvS7m5NbbW4dc0thzWt5GVO/5+Pjk+nnW3lv316rVq1s52kp98+2L774QpLUs2fPLN+ZXfFvfq8JAAAAAICi4uzsrPfee0/z5s3Tv/71L/Xv318pKSlWxwIAAAAAAIDFirxY0tXVNcu2tLQ0paSkKD09XR4eHrLZbJk+3333nSTpl19+kSTNnTtXH3zwgQ4ePCh/f39VqFBBvXr1yiiIyitPT89s30hWrVo1SdKpU6cyba9YsWK257m9fUHnLEweHh6Zfi5fvrwkKT09PUvb3F6/1VJSUvT888+refPmqlSpUsZ4+uc//ylJunTpUqb2YWFhunTpkubNmydJ2r9/vzZu3KhRo0ZltMnrWP297MY+Ct+tPnNycpK7u/sfts3LmCkJv9/Xr19XUFCQatWqpffff98uCiXnzJmjN998M9O2Tp06SZJ27tx5x+N37dolSVkKWgtrXsvrPHRLhQoVMv1cpkwZlS1bVi4uLpm2ly1bNtt5Wsrdsy0tLU2pqalycnKSm5tbjm0L4poAAAAAAChqo0aN0vr167Vt2za1adNGP/30k9WRAAAAAAAAYKECK5bMy/Knt3N0dFTFihXl4OCga9euZVl29danS5cuGd81bNgwrV+/XsnJyVq5cqWMMRo4cGCWZZRzkyunvyq+VRxze7HImTNnsl265fb2eclZkuT2+qWbBT5Xr17N0jY5OTnbc9/NOLpd37599e9//1sjR47U/v37lZ6eLmOMZs2aJUlZruHRRx9V9erVNWfOHKWlpen111/XY489pkqVKmW0yetYRf4V1FhwdHSUh4eHrly5otTU1D9sm5cxU9DzUGEICQlRWlqaoqKi5ODgkLG9UaNGiouLsyRTYQgJCZGDg4Oio6P/sN2WLVt07Ngx9e3bV3Xr1s20Ly/zWl7kdR4qSLl5tjk6Osrd3V1XrlzRhQsXsrQ9e/Zslm1WXhMAAAAAAHnVsWNHJSQkqGLFimrTpk2x+kNXAAAAAAAAFK0CK5Z0cXHJVBR3zz33KCIiItfHDxw4UNevX1dMTEyWfeHh4apbt66uX78u6eYbwPbt2ydJKleunLp3766VK1fKZrPp888/z3OuCxcuZLxt7JYffvhBx44dk7e3t7y8vDLtu3LliuLj4+/YPi85S5LcXr8keXl56ejRo5nanjhxQkeOHMn23Hc7jiTJwcFBe/bsUUxMjGrUqKExY8aoatWqGQVrly9fzvY4R0dHPfXUUzp16pRef/11LV26VKGhoVna5WWsIv8KYizcMmDAAEnSmjVrsuxr2bKlxo4dqxs3buRpzBT0PFTQpk6dqj179mjVqlVydHQs1O+yWpMmTfTCCy/ou+++04IFC7Jtc+nSJYWFhcnT0zPLmymlvM1ruZHfeagg5fbZdmt5+lvLcd+SlJSkn3/+OdO2vP6eAAAAAABQHNSuXVubN29WcHCwHn74YU2cODHHlRoAAAAAAABgvwqsWLJVq1bav3+/fvvtN8XGxurgwYPq0KFDro9/5ZVX1LBhQz3xxBNau3atUlJSdPbsWS1YsEAvvfSSZs6cmenNaH/729+0e/dupaWl6dSpU3r11VdljFHXrl3znMvV1VXPPPOMtm3bposXLyohIUFDhw5V+fLlNXv27CxZPTw89Nxzzyk2NvaO7XObsyTJy/X36NFDx44d05w5c3ThwgUdOHBAoaGhOb6l7W7H0S1ly5ZV586ddeLECb322mtKSkrS5cuXtWnTJs2fPz/H45566ik5OztrypQp6tatmxo1apSlTV7HKvInP2Ph8OHDKlu2bKYl0aWbfdagQQONHTtWn3/+uVJTU5WYmKinnnpKx48f19ixY/M1ZgpyHipI7733nl588UVt27ZN7u7uWZaLP3DgQKF9t1WmTJmiSZMm6emnn9a4ceO0Z88epaWlKTk5WZ999pnat2+vEydO6Msvv9Sf/vSnLMfnZV7LrfzOQwUlt8+26dOnq3LlygoLC9O6det04cIF7d27V0OHDs2yNLfV1wQAAAAAQH45OjrqnXfe0fz58zVr1iwFBATo3LlzVscCAAAAAABAUTK3iYyMNNlsvqN9+/aZDh06GFdXV1OnTh0zd+5cY4wxsbGxRlKWT3bOnDljxo0bZ/70pz+ZcuXKmapVq5oePXqYdevWZWq3c+dOExISYv785z8bFxcXU7lyZdO2bVvzzjvvmPT09Fzleu211zKy1KpVy2zfvt106dLFuLm5GWdnZ9OpUyezZcuWLBm9vb1NrVq1zN69e03Pnj2Nu7t7ju3zkjM3AgMDTWBgYJ6OcXV1zXLvX3vttWz7ZfLkycYYk2V7nz598nX9xhiTnJxsRowYYby8vIyzs7Np3769iY+PN61bt844/4QJEzLa59RfOV1LTp+ffvrJnD592oSEhJg6deqYcuXKmerVq5vHH3/cTJw4MaNd69ats2QeOXKkkWQ2b96c433NzVjNy9i/E0kmMjIyX8cWB/nJn9NYWLFiRbb3NTY21hw6dMiUKVPG2Gw2s3v37kznS0pKMmFhYaZBgwamXLlyxsvLyzzyyCNm//79GW3yMmYKYh7Ki9WrV+c43t95551Mbfv06XPH35HY2Ng8Z8jv88EYY959991sc6SmpmZql93vefXq1XP9PfHx8eaxxx4z9erVM+XLlzfu7u7Gx8fHTJs2zSQnJ2d7TF7mtcKah3Kak+Pj47Nsf+WVV8y3336bZfsLL7yQ72fbzz//bPr3728qVKhgnJ2dja+vr/nss8+Mv79/xvmefPJJY0zefk9yKz/PNwAAAAAA8ishIcHUrVvXNGrUKMv/QwIAAAAAAIDdirIZY8zviyejoqIUHBys2zbj/7Ro0UJJSUlKTEws8u8OCgqSJEVHRxf5d99i5fUXlXfffVdz585VQkKC1VEy2Gw2RUZGatCgQVZHyZeSnh832evzoTTMa8VdcXi+AQAAAABKl9OnT+uRRx5RbGys5s+fr+HDh1sdCQAAAAAAAIUrusCW4Qbsxfz58zVu3DirYwAAAAAAAAAoJFWrVtWXX36pMWPG6LHHHlNISIiuXbtmdSwAAAAAAAAUIoolUeotXLhQAwYM0IULFzR//nydO3eONyACAAAAAAAAds7BwUEzZszQ0qVLtWTJEnXr1k0nT560OhYAAAAAAAAKCcWSuTRz5kzZbDbt2rVLR48elc1m05QpU6yOVWTs/fpXrlypSpUq6e2339ZHH30kBwcHqyOhFLDZbHf8TJ061eqYdsve5zUAAAAAAJA7Q4YMUUxMjBITE+Xj46Nt27ZZHQkAAAAAAACFgIqwXBo/frzGjx9vdQzL2PP1jxgxQiNGjLA6BkohY4zVEUo1e57XAAAAAABA3rRo0ULx8fEaPHiwOnXqpDlz5vD/DAEAAAAAAOwMb5YEAAAAAAAAAJR6lStX1po1azRx4kSFhIQoJCREV69etToWAAAAAAAACgjFkgAAAAAAAAAASCpbtqymTp2qlStXKjIyUu3atdORI0esjgUAAAAAAIACQLEkAAAAAAAAAAC/07dvX23fvl2XLl2Sj4+PNm3aZHUkAAAAAAAA3CWKJQEAAAAAAAAAuE2TJk0UFxenjh07qkePHgoPD7c6EgAAAAAAAO6CQ047goKCijIHciEuLk4SfYOSadasWYqOjrY6Bu5CYmKiJOYgFLy4uDi1bdvW6hgAAAAAAGTh7u6u6Ohovfrqq5o8ebJ2796td955Ry4uLlZHAwAAAAAAQB7xZskSpG3btlmKSRITE/Xxxx9blAhAaVK7dm0FBgbmuj3zEwAAAAAAsAc2m00TJkzQZ599prVr16pdu3Y6dOiQ1bEAAAAAAACQRzm+WZI3wJUMUVFRCg4Opr/snM1mszrCXRs7dqwGDRpkdQwUIeYn5BZvKwUAAAAAlAS9evXSzp079fDDD8vX11fLli1Tjx49rI4FAAAAAACAXOLNkgAAAAAAAAAA5ELdunX17bffqm/fvnrwwQc1depUpaenWx0LAAAAAAAAuUCxJAAAAAAAAAAAueTk5KR3331X8+bN0/Tp09W/f3+lpKRYHQsAAAAAAAB3QLEkAAAAAAAAAAB5NGrUKG3YsEHx8fFq06aN9u7da3UkAAAAAAAA/AGKJQEAAAAAAAAAyIcOHTooISFBlSpVUtu2bbV8+XKrIwEAAAAAACAHFEsCAAAAAAAAAJBPtWrV0tdff61HHnlEgYGBmjhxotLT062OBQAAAAAAgNtYXix54cIFNW7cWAEBAVZHAVBKMO8AAAAAAACgIDk6OioiIkLvvfee3nrrLQUEBOjcuXNWxwIAAAAAAMDvWF4saYxRenp6ifhLWzc3N7Vv397qGHbN6nts9fejaDDvoLBY3V9Wfz8AAAAAAKXd8OHDtWXLFu3du1e+vr7avXu31ZEAAAAAAADwfywvlnR3d9eBAwe0Zs0aq6MAuIMTJ07oxo0bVse4a8w7AAAAAAAAKCytWrVSQkKC6tevrzZt2uj999+3OhIAAAAAAABUDIolAZQcb731lmrWrKmxY8dq+/btVscBAAAAAAAAiqUqVaroiy++UGhoqB5//HGFhITo2rVrVscCAAAAAAAo1Swtlly5cqVsNlvG58qVK9luP3z4sIKDg1WxYkV5enoqICBABw4cyDjPzJkzM9rWrl1b8fHx8vf3l7u7u1xcXNSlSxfFxMRktJ82bVpG+98vV/rFF19kbK9SpUqW81+8eFExMTEZbRwcHIrgLhU/Z86c0bhx49SwYUOVL19elSpVUu/evbVp06aMNgV9j+nj4uPMmTOaO3eu2rRpo3r16un555/XTz/9ZHWsXGPeAXMYAAAAAAAoCg4ODpoxY4aWLVumpUuXyt/fXydOnLA6FgAAAAAAQKllabFk//79ZYxRv379/nB7WFiYwsLCdPToUUVGRmrjxo0aPHhwRvvx48fLGCNvb28lJycrNDRU06ZN04kTJ/TNN9/o7Nmz6tq1qzZv3ixJmjJliowxcnV1zfS9vXr1kjFGrVu3zrT91vldXV3Vrl07GWNkjNH169cztevatas8PT0VFxdXYPeouDlx4oR8fX21bNkyzZ49W0lJSdq2bZtcXFzk7++vhQsXSir4e0wfFx8ODg4ZfwV/5MgRhYeH67777lPjxo01derUTAWFxRHzTunGHMZ4AQAAAACgqA0ePFgxMTE6evSofHx8+Hc5AAAAAACARUrEMtwjRoyQn5+fXF1d1a1bN/Xp00fx8fFKSkrK0vbixYuaN29eRnsfHx8tWbJEV69eVWhoaKHmTE9PzyhQsVeTJk3SoUOH9OabbyogIEAVKlRQkyZNtGzZMnl5eWnMmDE6efJkoWagj4uXq1evSpIOHDig6dOnq1GjRvL29tbs2bMLfSwUJuYd+8QcxngBAAAAAMAK3t7eio+PV7NmzdS5c2e98847VkcCAAAAAAAodUrE+py+vr6Zfq5Tp44k6dixY5mWIZUkV1dXtWjRItO25s2bq2bNmtq1a5eOHz8uLy+vQsn59ddfF8p5i5MVK1ZIkvr06ZNpu6Ojo/z9/fXhhx/qyy+/1PDhwwstQ2nt47i4ONlsNsu+X5L27duX4z5jTMYbJ3/44Qf94x//0D/+8Q917dpVknT58uUiyVhQmHfsE3PY14VyXgAAAAAAcGeVK1fW2rVr9eqrr+pvf/ubvv32Wy1YsEDOzs5WRwMAAAAAACgVSkSxpIeHR6afy5cvL+nmG7JuV7FixWzPUa1aNR07dkynTp0qtCIUe5eWlqaUlBQ5OTnJ3d09y/7q1atLurnMbWEqrX08a9YszZo1y+oYcnR0vGMbY4xu3Lghm82mdevWSZIWLlyoBx98UFWrVi3siAWCecf+MIcBAAAAAACr2Ww2TZgwQU2bNtWwYcO0d+9effLJJ6pXr57V0QAAAAAAAOxeiViGOy/OnDmT7fKip06dknSzGOWWMmXKZCwh/HvJycnZntvqt/pZzdHRUR4eHrpy5YpSU1Oz7L+1dG2NGjUythXGPS6tfRwZGZmxfK5Vn0mTJt0xp81mU9myZWWz2dSmTRu9+eabkqTRo0eXmELJvCqtY7KkYQ4DAAAAAADFRUBAgLZt26YrV67I19dXGzdutDoSAAAAAACA3bO7YskrV64oPj4+07YffvhBx44dk7e3d6a3dXl5eeno0aOZ2p44cUJHjhzJ9twuLi6ZilbuueceRUREFGD64m/AgAGSpM8//zzT9rS0NG3YsEHOzs7q2bNnxvbCuMf0cfFUrlw5SVLjxo318ssv6+jRo4qNjVVoaKjFyQofY7LkYA4DAAAAAADFRZMmTRQbG6tOnTqpZ8+eCg8PtzoSAAAAAACAXbO7YkkPDw8999xzio2N1cWLF5WQkKChQ4eqfPnymj17dqa2PXr00LFjxzRnzhxduHBBBw4cUGhoaKa3ev1eq1attH//fv3222+KjY3VwYMH1aFDh4z9XbtPr+7cAAAgAElEQVR2laenp+Li4gr1Gq30yiuvqEGDBgoLC9Nnn32m1NRU7d+/X0OGDNHx48c1e/bsjKVspYK/xxJ9XJzcWpq6UaNGeu6557R//379/PPPmjBhQqlaRpgxWXIwhzFeAAAAAAAoTtzd3RUVFaVp06Zp8uTJGjJkiC5dumR1LAAAAAAAAPtkbhMZGWmy2VwoVqxYYSRl+jz66KMmNjY2y/bJkycbc3Pd0kyfPn36ZJzP29vb1KpVy+zdu9f07NnTuLu7G2dnZ9OpUyezZcuWLN+fnJxsRowYYby8vIyzs7Np3769iY+PN61bt844/4QJEzLa79u3z3To0MG4urqaOnXqmLlz52Y6X4cOHUylSpXM1q1bC+mOZVWU/XVLUlKSCQsLMw0aNDDlypUzHh4epmfPnmbDhg1Z2hb0PS6NfWzMzXEfGRlZpN+ZnUmTJmXct5o1a5pJkyaZ3bt33/G44pLfGOadomTF/JQbzGHFb7wEBgaawMBAq2MAAAAAAGCpjRs3mmrVqhlvb29z4MABq+MAAAAAAADYmyibMcb8vngyKipKwcHBum1zidCiRQslJSUpMTHR6ihFpiT3V36Uxj6WJJvNpsjISA0aNMjSHG+88YYOHTqkwYMHy8/PTzabLVfHFZf8haG0jsncKG3zU24wXrIXFBQkSYqOjrY4CQAAAAAA1vrtt980cOBAHTx4UMuWLVPPnj2tjgQAAAAAAGAvoh2sTgCg5Bg3bpzVEQAAAAAAAAC7VadOHX377bd66qmn1Lt3bz377LOaPn26ypQpY3U0AAAAAACAEo//wwIAAAAAAAAAQDHh5OSkxYsXa/78+XrjjTfUv39/paSkWB0LAAAAAACgxLOLYsmZM2fKZrNp165dOnr0qGw2m6ZMmWJ1LBQg+hjFDWMSecF4AQAAAAAAeTVq1Cht3LhR8fHxuv/++7Vnzx6rIwEAAAAAAJRodlEsOX78eBljMn2mTZtmdSwUIPoYxQ1jEnnBeAEAAAAAAPnRvn17JSQkqHLlyvLz89Mnn3xidSQAAAAAAIASyy6KJQEAAAAAAAAAsEe1atXS119/rb/+9a8KCgrSxIkTdePGDatjAQAAAAAAlDgUSwIAAAAAAAAAUIw5Ojpq9uzZev/99/XWW28pICBAZ8+etToWAAAAAABAiUKxJAAAAAAAAAAAJcCwYcO0ZcsW7du3Ty1btlRCQoLVkQAAAAAAAEoMiiUBAAAAAAAAACghWrVqpfj4eDVu3FgdOnTQe++9Z3UkAAAAAACAEoFiSQAAAAAAAAAASpAqVaroiy++UGhoqP76178qJCRE165dszoWAAAAAABAseaQ0w6bzVaUOXCX6C8Ud8HBwQoODrY6BizA/ITcCAwMtDoCAAAAAAAlioODg2bMmKEWLVpoxIgR+umnnxQVFaUaNWpYHQ0AAAAAAKBYyrFYMjIysihzoBDMmjVLkjR27FiLk+Bu2UORYVhYmPz8/KyOgUIUGxurN998k+cH8uzW8woAAAAAAOTdI488ovvuu08DBw6Uj4+PPv74Y7Vt29bqWAAAAAAAAMVOjsWSgwYNKsocKATR0dGS6Et7YA/Fkn5+fozFUuDNN9+kn5Fnt55XAAAAAAAgf/7yl7/ou+++0/Dhw9W5c2eFh4crNDTU6lgAAAAAAADFShmrAwAAAAAAAAAAgLtToUIFrVixQi+++KLGjRun4cOH6/Lly1bHAgAAAAAAKDYolgQAAAAAAAAAwA7YbDZNmDBBn376qVavXq327dvr119/tToWAAAAAABAsUCxJAAAAAAAAAAAdqRPnz7avn270tLS5OPjow0bNlgdCQAAAAAAwHIUSwIAAAAAAAAAYGcaN26suLg4de7cWb169VJ4eLjVkQAAAAAAACxVKMWSS5Yskc1my/i4ubll2+7XX3/VQw89pPPnzyspKSnTMS1bttSVK1eyHHN7O5vNJh8fn8K4jAI3ceJERUZG5rjv99fUtm3bIk6XPfoyeyWxL5FZaRinyIq5CgAAAAAAlCZubm6KiorStGnTNHnyZA0ePFgXL160OhYAAAAAAIAlCvXNkm+//baMMbpw4UKWfTt37pSPj4969OihChUqqEqVKjLGKD4+PmN/WFhYluNutYuNjZWnp6eMMUpISCjMyygwI0eO1KRJk/Svf/0ry74ZM2bIGCNjjMqWLWtBuj9GX2ZWkvsSN5WGcYrMmKsAAAAAAEBpZLPZNGHCBK1fv14bN27UAw88oAMHDlgdCwAAAAAAoMhZsgz3+fPn1bdvXz388MN65plnsux3dHSUp6enFixYoP/85z8WJCwcDRs21IoVK/Tyyy8rKirK6jgFgr60n74szex1nOJ/mKuYqwAAAAAAKO06d+6shIQEOTo6qlWrVlq1apXVkQAAAAAAAIqUJcWSr776qk6cOKHnn38+2/1OTk5aunSpypQpo5CQEO3fv7+IExYeb29vBQYG6h//+IeuX79udZy7Rl/aT1+WZvY8TnETcxVzFQAAAAAAkOrUqaNvvvlGgYGBGjBggCZOnKj09HSrYwEAAAAAABSJIi+WNMZo4cKFatOmjWrWrJlju549e2rKlClKTU1VUFCQrly5UoQpC9eAAQOUmJiozz//3Oood4W+tJ++hH2P09KOuYq5CgAAAAAA/I+Tk5MWLVqk+fPna9asWerXr5+Sk5OtjgUAAAAAAFDoirxYcteuXTp58qS8vb3v2PaFF15Qjx49tHv3bo0ePTpX5z9z5ozGjRunhg0bqnz58qpUqZJ69+6tTZs2ZbRZuXKlbDZbxufw4cMKDg5WxYoV5enpqYCAAB04cCDLuU+fPq0xY8aofv36Kl++vKpWraqBAwdq586dub8Bklq0aCFJ+vLLL/N0XHFDX9pPX+Imex2npR1zFXMVAAAAAADIatSoUdqwYYN27Nih+++/X3v27LE6EgAAAAAAQKEq8mLJH3/8UZJUu3btO7YtU6aMli5dqjp16mjhwoVaunTpH7Y/ceKEfH19tWzZMs2ePVtJSUnatm2bXFxc5O/vr4ULF0qS+vfvL2OM+vXrJ0kKCwtTWFiYjh49qsjISG3cuFGDBw/OdO7jx4/L19dXUVFRmjdvns6ePauvv/5aZ8+elZ+fn2JjY3N9D2rVqpXpXpRU9KX99CVustdxWtoxVzFXAQAAAACA7LVv314JCQmqUqWK2rZtq48//tjqSAAAAAAAAIWmyIsljx8/Lkny8PDIVfsqVaooKipK5cqVU0hIiPbt25dj20mTJunQoUN68803FRAQoAoVKqhJkyZatmyZvLy8NGbMGJ08eTLLcSNGjJCfn59cXV3VrVs39enTR/Hx8UpKSsp07l9//VVvvPGGHnzwQbm5ualp06b66KOPZIzJ9RvIJKlChQqy2WwZ96Kkoi/tpy/xP/Y4Tks75irmKgAAAAAAkLOaNWvqm2++0dNPP61BgwZp4sSJunHjhtWxAAAAAAAAClyRF0teuXJFklSuXLlcH9O2bVvNnDlTFy9eVFBQkC5fvpxtuxUrVkiS+vTpk2m7o6Oj/P39dfny5WyXIPX19c30c506dSRJx44dy9i2cuVKlSlTRgEBAZna1qhRQ02bNtWOHTuUmJiY62tycHDI8TpKCvryJnvoS2Rmj+O0NGOuuom5CgAAAAAA5MTBwUEzZszQBx98oLfeekvdunXTqVOnrI4FAAAAAABQoIq8WNLJyUmSdO3atTwdN2bMGAUHB+vHH3/UM888k2V/WlqaUlJS5OTkJHd39yz7q1evLunmkqm3u/1tY+XLl5ckpaenZzp3enq6PDw8ZLPZMn2+++47SdIvv/yS6+u5fv26nJ2dc92+OKIvb7KHvkRW9jZOSzPmqpuYqwAAAAAAwJ0MHTpUMTExOnz4sHx8fBQfH291JAAAAAAAgALjUNRf6OXlJUlKSUnJ87ELFy7Uzp07tXjx4ozil1scHR3l4eGhlJQUpaamZilcubUMao0aNfL8vY6OjqpYsaIuXLigy5cvy8Hh7m7b+fPnZYzJuBclFX1pP32J7NnLOC3tmKuYqwAAAAAAQO61bNlS8fHxGjx4sDp27Kh58+bpr3/9q9WxAAAAAAAA7lqRv1myWbNmkpSv5WPd3Nz0ySefyNXVVfPmzcuyf8CAAZKkzz//PNP2tLQ0bdiwQc7OzurZs2c+UksDBw7U9evXFRMTk2VfeHi46tatq+vXr+fqXEePHpX0v3tRUtGX9tOXyJ69jNPSjrmKuQoAAAAAAORNlSpV9MUXXyg0NFRPPvmkQkJCdPXqVatjAQAAAAAA3JUiL5b09vZWtWrVtGvXrnwd37RpUy1YsCDbfa+88ooaNGigsLAwffbZZ0pNTdX+/fs1ZMgQHT9+XLNnz85YFjWvXnnlFTVs2FBPPPGE1q5dq5SUFJ09e1YLFizQSy+9pJkzZ2Z689fQoUNls9l06NChLOfauXOnJKlHjx75ylJc0Jf205fIWUkZp8gZcxVzFQAAAAAAyLuyZctqxowZ+s9//qOlS5fK399fx48ftzoWAAAAAABAvhV5saTNZtOIESO0bds2HTt2LGN7UlKSbDabfH19lZKSIpvNJh8fn2zP8eijj+rvf/97lu01atTIWB5kzJgx8vT01P3336+LFy9q/fr1GjlypCQpLi5ONptNq1atkiQ5OztrypQpGfnCw8Ml3VxuJCAgQJJUrVo1bd++Xf3799czzzyjqlWr6t5779Xy5cu1atUqDRo0KFOW48ePy83NTXXr1s2Sc8WKFapVq5b69OmT19tXrNCX9tOXpZG9jVPkjLmKuQoAAAAAAORfcHCwEhISlJSUJB8fH8XGxlodCQAAAAAAIF9sxhjz+w1RUVEKDg7WbZvzZMmSJRo2bJjefvtt/e1vf8uyPyUlRU2bNlVAQIDmz5+f7+8prpKTk1WzZk09+uijeueddzLt27Vrl1q2bKlly5bpkUceyfZ4BwcH+fj4KC4u7q5yBAUFSZKio6PzfQ76snj0pc1mU2RkZIktkCvp+ZE7BfH8KCzMVX88V1mtIJ5XAAAAAACgcJ0/f16PPfaY1qxZo1dffVWhoaFWRwIAAAAAAMiL6CJ/s6QkeXh4aPXq1fr44481d+5cKyIUGmOMxowZowoVKujf//53pn0HDx7UwIEDNWnSpGJbsJJX9KX99CVgz5irmKsAAAAAAMDdqVChgpYvX66XXnpJ48aN0/Dhw3X58mWrYwEAAAAAAORaoRZL/v3vf5fNZpObm1uWfS1btlRCQoLWrl2r8+fPF2aMInXy5EkdPHhQGzZsUI0aNTLtW7BggV5++WW9/PLLWY6bOHGibDabbDabbty4UVRxc42+tJ++BEor5ioAAAAAAIC7Y7PZNGHCBH366adavXq12rdvr8OHD1sdCwAAAAAAIFcKZRluFA8sa2o/Svoy1iU9P3KH5wfyi+cVAAAAAAAlzy+//KKBAwfqxIkT+s9//qNu3bpZHQkAAAAAAOCPWLMMNwAAAAAAAAAAKLkaN26s2NhYdenSRb169VJ4eDh/RAsAAAAAAIo1iiUBAAAAAAAAAECeubm5KTIyUq+//rqmTJmiIUOG6OLFi1bHAgAAAAAAyBbFkgAAAAAAAAAAIF9sNptCQ0O1fv16bdy4UT4+Ptq3b5/VsQAAAAAAALKgWBIAAAAAAAAAANyVTp06KSEhQRUqVFCbNm20cuVKqyMBAAAAAABkQrEkAAAAAAAAAAC4a3Xq1NHmzZsVGBiogQMHauLEiUpPT7c6FgAAAAAAgCTJIacdUVFRRZkDhSAxMVESfYniITY21uoIKGS3+pg5B3mVmJio2rVrWx0DAAAAAAAUACcnJy1atEht2rTR6NGj9eOPP2rJkiWqWLGi1dEAAAAAAEApZzPGmN9viIqKUnBwsFV5AOQgMjJSgwYNsjpGvthsNqsjACjmAgMDFR0dbXUMAAAAAABQgGJiYhQUFCQ3NzctX75czZo1szoSAAAAAAAovaKzFEsCAAAAAAAAAAAUhFOnTik4OFgJCQlavHixgoKCrI4EAAAAAABKp+gyVicAAAAAAAAAAAD2qVq1alq3bp2efvppBQcHKzQ0VNevX7c6FgAAAAAAKIV4syQAAAAAAAAAACh0S5YsUUhIiHx9fRUVFaVq1apZHQkAAAAAAJQevFkSAAAAAAAAAAAUvqFDh2rLli06cuSIfHx8FB8fb3UkAAAAAABQilAsCQAAAAAAAAAAikTLli0VHx+ve++9Vx07dtTixYutjgQAAAAAAEoJiiUBAAAAAAAAAECR8fT01Nq1axUaGqoRI0YoJCREV69etToWAAAAAACwczZjjLE6BAAAAAAAAAAAKH1WrVql4cOHq3nz5oqOjpaXl5fVkQAAAAAAgH2K5s2SAAAAAAAAAADAEv369dP27dt19uxZ+fj4aOvWrVZHAgAAAAAAdopiSQAAAAAAAAAAYJl77rlHcXFxatOmjTp1+v/s3Xl0FFXC/vGnIWQlBAg7hAFRdAQNS5BFVmFANtmyIAI6ikQFARneF1xmHBUVlBFxXNgcRhQwCQIjCGhEUQgJJCioKDAiqCxhlZgAYcv9/eEv/RI7gXToTvXy/ZzT50D1reqn6lbde5O+qeqi6dOnWx0JAAAAAAD4ICZLAgAAAAAAAAAAS1WpUkXvvfeepk6dqscee0wjRozQ6dOnrY4FAAAAAAB8iM0YY6wOAQAAAAAAAAAAIEmrV6/W8OHD1ahRIy1btkyNGjWyOhIAAAAAAPB+KdxZEgAAAAAAAAAAeIw+ffpoy5YtunDhgmJiYpSammp1JAAAAAAA4AOYLAkAAAAAAAAAADzKtddeq02bNql79+7q3bu3pk+fLh6UBQAAAAAArgaP4QYAAAAAAAAAAB5r7ty5Gjt2rPr06aOFCxeqSpUqVkcCAAAAAADeJ4XJkgAAAAAAAAAAwKN9/vnnio+PV7Vq1bRs2TL98Y9/tDoSAAAAAADwLik8hhsAAAAAAAAAAHi0zp07KysrS1WqVFG7du20fPlyqyMBAAAAAAAvw2RJAAAAAAAAAADg8Ro0aGC/w+SQIUM0ZcoUFRQUWB0LAAAAAAB4CR7DDQAAAAAAAAAAvMrcuXP18MMPq0ePHnrnnXdUrVo1qyMBAAAAAADPlsJkSQAAAAAAAAAA4HU2bdqkuLg4hYaGavny5WrevLnVkQAAAAAAgOdK4THcAAAAAAAAAADA63To0EHbtm1TVFSU2rdvr+TkZKsjAQAAAAAAD8ZkSQAAAAAAAAAA4JVq1qypjz76SGPGjFFCQoISExN1/vx5q2MBAAAAAAAPxGO4AQAAAAAAAACA11u0aJFGjx6tNm3aKCkpSbVr17Y6EgAAAAAA8Bw8hhsAAAAAAAAAAHi/u+66S2lpafrpp58UExOjLVu2WB0JAAAAAAB4ECZLAgAAAAAAAAAAn9CiRQtlZmbqxhtvVOfOnfXmm29aHQkAAAAAAHiIAKsDAICr2Gw2qyMAPic2NlYpKSlWx0A5iouL09KlS62OAQCA2xhjrI4AL5acnKyEhASrYwAoZ0lJSYqPj7c6BpwQGRmp1atX65lnntH999+vLVu26J///KcCAwOtjgYAAAAAACzEZEkAPmXChAlq37691TE8Snp6ul5++WUlJSVZHQVeZubMmVZHgEXatWunRx55xOoYANwoISGBcRP8TuG4GHAFfr7yPIU/vzCOhasxQdp7VaxYUX//+9/VqlUrjRw5Ujt27FBycrLq1atndTQAAAAAAGARJksC8Cnt27fnL/2L8fLLL3Nc4DTuKOm/GjRoQJsB+LiEhATGTfBLTJaEq9B+ep7Cn1+oG7gakyW93x133KHNmzdr8ODBatGihZKSktStWzerYwEAAAAAAAtUsDoAAAAAAAAAAACAu1x//fXKyMhQp06d1LNnT02fPt3qSAAAAAAAwAJMlgQAAAAAAAAAAD4tPDxcS5cu1dSpU/XYY49p+PDhOn36tNWxAAAAAABAOWKyJAAAAAAAAAAA8Hk2m02TJ0/WqlWrtHr1at16663au3ev1bEAAAAAAEA5YbIkAAAAAAAAAADwG71799aWLVt08eJFtWnTRqmpqVZHAgAAAAAA5YDJkgAAp1WuXFk2m63Ia8aMGVbHKhNf2hfA0yUlJalFixYKCQmxX2/ffPON1bEAlNLFixc1e/ZsdejQQREREapUqZLq1aunPn366NVXX9W+ffvsZWfMmGG/zhs0aGBdaDfJysrSPffco0aNGik4OFhVq1ZVmzZt9PTTT+vkyZNXvX1PH5+4qn7fffdd+3aCg4NdmBDwTv40VurYsaNDO1f4mjBhQrlkaNGiRYkZintNnTq12Pa5pNf8+fMdPpP+g/4DnuXaa6/V5s2b1a9fP/Xu3VvTp0+XMcbqWAAAAAAAwI2YLAkAcFpeXp6+/PJLSdKAAQNkjNGkSZMsTlU2vrQvgCdLS0vTnXfeqZ49e+ro0aP6/vvvfXICFXxTXl6errvuOvXr18/qKJYaMWKExowZo4EDB2rHjh3Kzc3Vhg0b1LJlS40bN04xMTH2spMmTZIxRtHR0Q7budrjaXV9PProo2rXrp2qVaumVatW6eTJk9q7d6+efPJJLV++XE2bNlVaWtpVfYanj08uV7/OGDp0qIwx6t69u4uSAd6LsZI1UlJSZIyxvxITEyVJa9asKbI8ISFBUvHtc3GvLl26OHwW/Qf9BzxTSEiI/v3vf+v111/XX//6Vw0cOFA5OTlWxwIAAAAAAG7CZEkAgM+rXLmyOnbsaHUMwKdd6Tor/CJ6/Pjxqly5spo0aaKff/5ZzZs3L8eUvoN2zfUud0yNMSooKFBBQYFT6/mSzMxMLVmyRPfdd5/+93//Vw0aNFBwcLCaNGmiZ599Vg8++GCpt3W541ke61+NqVOnatq0aXrttdc0c+ZMNW/eXMHBwapWrZr69euntLQ0NWzYUL1799bOnTvLPR8Az+VLYyVX9X2ZmZnFTjR8+eWXXZDSs9B/AJ5v9OjR+vjjj7V582a1bdtW3333ndWRAAAAAACAGwRYHQAAAAC+7+eff5YkRUZGWpwEcF54eLj27NljdQxL7dixQ5J0/fXXF/t+fHy8kpKSSrWtqz2eVtXH999/r6eeekqtWrWy33ns90JDQzVz5kx17txZ48aN00cffVTOKQF4K8ZK5W/btm2lLvvuu+86te3169fb/03/AXiPzp07KysrS7GxsWrbtq3eeustDRo0yOpYAAAAAADAhbizJAAAANzu4sWLVkcAcBVq164tSUpNTS32/S5duujYsWPlGanczZ49WxcuXFBcXNxly3Xq1En16tVTamqqfvjhh3JKB8DbMVbyDWPHjtWECROKLKP/ALxLgwYN9NlnnykhIUFDhgzRlClTLLmjOQAAAAAAcA8mSwJACc6ePau//e1vuuGGGxQaGqrq1aurf//+ev/99x2+yDp69KjGjRunRo0aKTAwUDVr1tTgwYOL3KmiY8eOstls9tfw4cMlST169Ciy/OTJk+W6n660YsWKIvuyb98+JSQkqGrVqoqMjFS/fv2K3AlqxowZ9rINGjRQZmamunfvrvDwcIWGhqpbt25KS0uzl586daq9/KWPfVu7dq19eY0aNRy2f+rUKaWlpdnLBASU/cbKFy5cUFJSkv70pz+pTp06CgkJ0U033aRZs2bZf3l+8uTJIsfBZrNp6tSp9vUvXR4bG2vfdmnOo98f4127dik+Pl6RkZH2Zb4+WQWe5UrXWeE5+5///EeSFBISIpvNpnbt2pVLvuPHj2vixIlq0qSJAgMDVa1aNfXu3Vuffvqpwz6Uti0q5MprtjRty6VZr9SulWa/S5vNmf7Q3Xbu3KmBAwcqIiJCoaGhuuWWW7Rq1aoifemoUaPs5UtTR6U9hwtf+fn5pVrPmQy//4wff/xRCQkJCg8PV2RkpEaMGKFffvlF+/btU//+/RUeHq66devq/vvvV25urjsPuV2nTp1Up04dffjhh+rdu7fWr19fpi+NSzqehS49d4OCgtSgQQP16NFD//73v3XmzJkS13d2DFLImXPqs88+kyRFR0dfcT8Ly2zYsKHMbYwzStuGuOtc27lzp/r27Ws/jiXt06XHOywsTJ06ddLGjRuvap8AT+eusdKV2kvJueuoNP29q3++evvtt9WiRQuFhYUpIiJCnTp10uLFi8u0LU9G/0H/Ae8TFBSkefPmafbs2Zo5c6b69eunX375xepYAAAAAADAFQwA+AhJJikpyWXbGzVqlImIiDAfffSROX36tMnOzjaTJk0yksynn35qL3fw4EHzhz/8wdSuXdt88MEHJjc313zzzTemS5cuJjg42GzatMledtu2bSYsLMxER0ebvLw8Y4wx+fn5pm3btmbJkiUuy36ppKQk447m/ssvvzSSzIABAxzeGzBggP29TZs2mby8PJOammpCQkJMmzZtHMpHR0ebsLAw0759e3v5zMxMc/PNN5vAwECzfv36IuXDwsLMrbfe6rCd1q1bm8jISIflJZUvzb783sqVK40k89xzz5kTJ06Yo0ePmldeecVUqFDBTJo0qUjZXr16mQoVKpjvv//eYTvt27c3ixYtsv/fmfPImP87xl26dDGffvqpOXXqlMnIyDAVK1Y0R48eveJ+lEZsbKyJjY11ybbgPcpa71e6zgrP2TNnzlxNPKccOnTING7c2NSuXdusXLnS5OTkmF27dpnBgwcbm81m5s2bV6S8M22Rq69ZZ9oWYy5/vJ3d7ytlK21/6G7//e9/TdWqVU39+vXNRx99ZD/mPXr0MDVr1jRBQUFFyjtbR2U9hy+3XlnPk8GDB5usrCyTl5dnFi5caCSZ3r17mwEDBpgvv/zS5ObmmtmzZxtJ5pFHHnHmMNqVZdy0YcMGExUVZSQZSaZWrVrmrrvuMosXLzanTuHtQlMAACAASURBVJ0qdp3o6GhTv359h+XFHc/Cc7dOnTpm5cqV5tdffzXZ2dnmmWeeMZLMzJkzL7v+pctLMwZx9pyqW7eukWQ2b958xWM1fPhw+zV96bFwZrzjrvHJpcfpas+16OhoExERYbp162Y2btxocnNzS9yn4o73V199ZXr27GkaNWrkcLyd3afScNe4GP6lrOeRK8dKpW0vnbmOnOnvr7QvpXHrrbeaESNGmK1bt5q8vDyzc+dOM2LECCPJPPzww2Xapit+fklMTDSSzJo1a0osU9g+l/QaP358kfL0H97ff7j6903wLllZWaZhw4bm2muvNV999ZXVcQAAAAAAwNVJ5lsCAD7D1b+8bty4senQoYPD8qZNmxb5sujuu+82kopMfDPmty+wgoKCTOvWrYssT05Otn+5UFBQYO6++27z2GOPuSz371k5WXLlypVFlsfGxhpJDpP5oqOjjSTz5ZdfFln+1VdfGUkmOjq6yHKrJ0t27drVYfnw4cNNpUqVTE5Ojn3Zhx9+aCSZhx56qEjZjRs3mvr165tz587Zlzl7HhUe49WrV18xc1kxWdI/+dJkyXvuucdIcpiMnp+fb+rVq2dCQkJMdna2fbkzbZGrr1ln2hZjLn+8nd3vK2UrbX/obnFxcUaSWbp0aZHlR44cMaGhoQ5flDtbR+6YLFnW8+SDDz4osrxZs2ZGkvnss8+KLG/cuLG5/vrrS8x8OWUdN+Xn55u33nrLDBgwwISHh9snhkRGRhb7hx/OTJYsPHeLy3X77bc7NVmyNGMQZ8+pwskuW7ZsKe7QFFE42eX555+3L3N2vOOu8YkxrjvXCvcpPT39ivtU0vE+cOCACQoKKnayizP7VBpMloQreMJkydK2l85cR870966YLFmSW265xUgyGRkZTq9b3pMli2ufx4wZU+JkSfqP/+Nt/QeTJXHkyBFz2223mZCQEPPWW29ZHQcAAAAAAJRdMo/hBoAS3H777dq0aZNGjx6tjIwM+6PHdu3apa5du9rLrVixQhUqVFC/fv2KrF+nTh01a9ZMW7du1f79++3L4+Li9Pjjj2vZsmXq2LGjjh8/rmeeeaZc9qm8tWnTpsj/o6KiJEkHDx50KBsWFqYWLVoUWXbTTTepXr162r59uw4dOuS+oE7o169fkcfYFoqOjtb58+e1Y8cO+7KePXvqpptu0r///W8dP37cvvzFF1/Uww8/rEqVKtmXOXseFbrllltcsVuAT1q+fLkkqW/fvkWWBwUFqXv37jpz5ow+/PDDIu+Vti1y9TXrTNtyJWXZ78tlK21/6G5r166VJPXq1avI8po1a+qGG25wKF/WOnKlsmaIiYkp8v969eoVu7x+/frF9qnuFBQUpJEjR2rFihU6ceKE1q1bp6FDh+r48eMaPny4vvzyyzJvu/Dc7d27t8N7a9as0YQJE0q9rdKMQZw9pwrr4dI+vSSFZQrXKeSu8U5Z2xBXnGvBwcFq27ZtkWXF7VNJx7tevXpq2rSpy/YJ8AelbS+duY48pb+PjY2VJK1cubLcPtPd6D/oP+D9atasqQ8//FDjxo3T3XffrcTERJ0/f97qWAAAAAAAoAyYLAkAJXjttde0cOFC/fDDD+revbuqVKmi22+/3f7FlCSdPXtWOTk5KigoUEREhGw2W5HXF198IUn673//W2TbzzzzjNq2batNmzYpLi5OFSr4ZnMcERFR5P+BgYGSpIKCAoeyVatWLXYbtWrVkiQdOXLExenKJicnR3/729900003qVq1ava6/p//+R9J0unTp4uUnzBhgk6fPq3XX39dkrR792598sknGj16tL1MWc8j6bcvzQA4KryugoODFR4e7vB+7dq1JUnZ2dlFlpemLXLHNets2+Lq/b5cttL0h+529uxZ5ebmKjg4WJUrV3Z4v1q1ag7ly1pHrsxc1gxVqlQp8v8KFSqoYsWKCg0NLbK8YsWKxfap5SUgIEC33XablixZosmTJ+vixYtaunRpmbZ1pXPXWVcagzh7TklSly5dJEnbtm274udv375dkhwmGLlrvFPWNsQV51pkZKRsNpvD8t+3m5c73oVlXbFPgK9zpr105jryhP5ekurWrSvJc37+c9arr76ql19+ucgy+g/6D/iGgIAATZs2TYsWLdI777yjHj166PDhw1bHAgAAAAAATvLN2TkA4AI2m00jRozQxx9/rJMnT2rFihUyxmjw4MF66aWXJP12d6WqVasqICBA58+flzGm2Fe3bt2KbHv9+vXKycnRTTfdpIceesj+hYg/O378uIwxDssLv/S59EuQChUq6Ny5cw5lT548Wey2i/sCpqz69++vZ555Rvfff792796tgoICGWM0c+ZMSXLYh7vuuku1a9fWq6++qrNnz+of//iH7r777iKTMMp6HgGexJXXmSsEBQUpIiJC+fn5ys3NdXi/8EutOnXqFFlemrbIHdess21LSce7rPt9OaXpD90tKChI4eHhys/PV15ensP7v58gUJY6Kus5fLm68KW2PS0tzT7ZtjiF+/HLL7+UaftXOnddzdlzSpISExMVEBCglJSUy25748aNOnjwoPr376+GDRsWec+Z8Y4znG1DXCknJ6fY5b9vNy93vE+cOOGwzMp9AtzBVWMlZ9pLZ64jZ/p7d477Cu9CWNb20BPRfxSP/gPeatiwYUpLS9P+/fsVExOjzZs3Wx0JAAAAAAA4gcmSAFCCqlWraufOnZKkSpUq6U9/+pNWrFghm82mDz74wF5u8ODBunDhgtLS0hy2MX36dDVs2FAXLlywL9u7d6/uu+8+vffee3r//fcVEhKiAQMG6OjRo+7fKQ+Wn5+vzMzMIsu+/vprHTx4UNHR0fY7jEi/3W3kwIEDRcpmZ2frp59+KnbboaGhRSZXXn/99Zo7d65T+QICArRjxw6lpaWpTp06GjdunGrWrGn/ovDMmTPFrhcUFKSHHnpIR44c0T/+8Q8tWrRI48ePdyjn7HkEeBpXXGeuNmjQIEkq0mZLv92Rad26dQoJCXF4nF9p2yJXXrMXL150um253PEuy35fTmn7Q3crfNRo4aMYC2VnZ2v37t0O5Z2to7Kew5dbz5fadmOMjhw5ooyMjGLfz8rKkiS1bNmyzJ9ReO6uXr3a4b2WLVvqkUceKfO2i+PsOdW0aVM9+eST+uKLLzRnzpxit3n69GlNmDBBkZGRDncWk5wb75RGWccnrpSXl+fwhz/F7VNJx/vYsWPatWtXkWVlaRcBT+fKsVJp2ktnryNn+vur3Zf58+erdevWDsuNMUpOTpb024Q3X0H/UTz6D3izFi1aKDMzUzfeeKO6dOmi+fPnWx0JAAAAAACUEpMlAeAyHnjgAX311Vc6e/asjhw5ohdeeEHGGN122232Ms8//7yaNGmie++9V2vWrFFOTo5OnDihOXPm6Omnn9aMGTMUEBAg6bcvAwYOHKiXX35ZN954oxo1aqSlS5fq4MGDio2N1fnz563aVctFREToscceU3p6uk6dOqWsrCwNHz5cgYGBmjVrVpGyPXv21MGDB/Xqq68qLy9Pe/bs0fjx40u8m0arVq20e/du/fzzz0pPT9cPP/ygTp06OZ2xYsWK6tq1q7Kzs/Xiiy/q2LFjOnPmjD799FPNnj27xPUeeughhYSE6IknnlCPHj107bXXOpRx5jwCPFFZrrN9+/apYsWKRR5J7ErPP/+8GjdurAkTJmjVqlXKzc3V7t27NWzYMB06dEizZs1yuFNeadsiV16zZWlbLne8y7LfV1Ka/tBVSjovnnvuOVWvXl0TJkxQamqq8vLy9M033+jPf/5zsXfKdLaOytpXXKkufK1tj4+P1+LFi3Xw4EGdPXtW+/bt04wZM/T000+rdevWGjlyZJm3XXjuPvLII/rggw+Um5ur/fv366GHHtKhQ4dcPlnS2XNKkp544gk9+uijGjNmjCZOnKgdO3bo7NmzOnnypFatWqWOHTsqOztbH374oa655hqH9Z0Z75RWWccnrhIWFqaxY8dq8+bNl92n4o73t99+q+HDhzs8WtXqfQLcwZVjpdK0l2W5jkrb37vi56svvvhCY8aM0ffff6/8/Hzt2rVLI0aM0NatW/Xwww+rbdu2Tm3P09F/OKL/gLerXr261q5dq6eeekqJiYlKTEws9ikoAAAAAADAwxgA8BGSTFJSksu2t23bNpOYmGj++Mc/mtDQUFO9enXTrl07M2/ePFNQUFCk7PHjx83EiRPNNddcYypVqmRq1qxpevbsaVJTU+1lxowZYyTZX19//bU5evRokWWSzDPPPOOyfTDGmKSkJOPq5j4sLMwh94svvmjS09Mdlj/++OPGGOOwvG/fvvbtRUdHm/r165tvv/3W9OrVy4SHh5uQkBDTpUsXs3HjRofPP3nypBk1apSpW7euCQkJMR07djSZmZmmdevW9u1PnjzZXn7nzp2mU6dOJiwszERFRZnXXnvtsvtS0uu7774zR48eNYmJiSYqKspUqlTJ1K5d29xzzz1mypQp9nKtW7d2yHz//fcbSeazzz4r8biW5jwq7hi7qzuPjY01sbGxbtk2PFdZ672k62z58uXFnrPp6elm7969pkKFCsZms5mvvvrK1btijDHm2LFjZsKECaZx48amUqVKJiIiwvTq1cusW7fOoayzbZErr1ln25bLtWul3e/SZnOmP3SFy50Xu3btMgMHDjRVqlQxoaGhpkOHDuazzz4zXbt2NaGhoQ7bKk0dFXLmHL7rrruuuJ4zGUrqPzMzMx2WP//882bDhg0Oy5988kmnjrOz46aLFy+ajRs3mkmTJpm2bduaevXqmYCAABMeHm5iYmLMc889Z06dOmUv/+KLLxa7T1c6nr8/d+vWrWuGDh1qdu/efdn6KOsYxNlzqlBmZqa5++67zR/+8AcTGBhoPw5Tp041J0+eLHYdZ9oYd41PXHWuXVq/9evXN1u2bDHdunUzlStXvmy7eenxDgkJMW3atDGrVq0y3bt3t2/vvvvuM8Y43y6WhjvGxfA/ZT2PXD1WulJ7aYxz15Ez/f2V+r4ryc/PNykpKWbQoEGmSZMmJigoyERERJiuXbuaxYsXO31sC13Nzy8LFiwoth5yc3OLlCuufa5du3apP4f+wzv7D2fHTfA/77//vomIiDCtW7c2P/74o9VxAAAAAABAyZJtxhgjAPABNptNSUlJio+PtzqKR0lOTlZCQoI8ublv0aKFjh07pv3791sdxW0WLFig1157zf6YUm8QFxcnSUpJSbE4CcqTP9e7P7RFvuqGG27QmTNn9OOPP1odxWswbro8d5xTtDHW84ZxMTwf55Hn8tVxLP2H9Rg3oTR2796tQYMG6ejRo3r33Xfdchd+AAAAAABw1VJ4DDcAAOVg9uzZmjhxotUxAMBrZWdnq3r16jp//nyR5fv27dOePXv4MhJO45wCAACAqzRt2lQZGRnq3LmzevXqpenTp1sdCQAAAAAAFIPJkgAAuMH8+fM1aNAg5eXlafbs2frll1+4CwUAXKVffvlFiYmJ+vnnn3X69Glt2bJFCQkJqlKliv76179aHQ9eiHMKAAAArhIeHq6UlBRNnTpVjz/+uO666y6dPn3a6lgAAAAAAOASTJYEAFhmxowZstls2r59uw4cOCCbzaYnnnjC6lgus2LFClWrVk1vvPGG3n33XQUEBFgdCfB4NpvNJa+///3vpf5MX2+LykN51FudOnX08ccf6+TJk+rcubOqVaumO+64Q9ddd522bNmia665pvx2GD6hvM4p2hgA/sLVYzR/R/8BeCebzabJkydr1apVWrNmjW699Vbt3bvX6lgAAAAAAOD/Y9YGAMAykyZN0qRJk6yO4RajRo3SqFGjrI4BeB1jTLl/pi+3ReWlvOqte/fu6t69e7l8FvxDeZxTtDEA/IUV4zhfRv8BeLfbb79d27Zt05AhQ9SmTRstXrxYPXv2tDoWAAAAAAB+jztLAgAAAAAAAAAAuFDDhg21YcMG9e/fX3369NHf//53FRQUWB0LAAAAAAC/xmRJAAAAAAAAAAAAFwsODtaCBQv0+uuv67nnntPAgQOVk5NjdSwAAAAAAPwWkyUBAAAAAAAAAADcZPTo0Vq3bp0yMzPVtm1bffvtt1ZHAgAAAADALzFZEgAAAAAAAAAAwI06deqkrKwsVatWTe3atdOyZcusjgQAAAAAgN8JsDoAALhSenq61RE8TuExSU5OtjgJvM3+/fvVoEEDq2PAAvv376fNAPwA4yb4G855uBJjJc+zf/9+SdQNAM9Wv359rV+/Xg8//LBiY2P1v//7v3ruuedUoQL3tQAAAAAAoDzYjDHG6hAA4Ao2m83qCIDPiY2NVUpKitUxUI7i4uK0dOlSq2MAAOA2/BoEVyM5OVkJCQlWxwBQzpKSkhQfH291DPiYhQsX6oEHHlDXrl21aNEiVatWzepIAAAAAAD4uhTuLAnAp/DLa89hs9moDy8XFxdndQRYhEmygOvRLwLWY5IbXIlJt76psJ2gfnEp/jgX7jJy5Eg1b95cgwcPVps2bbRs2TLdfPPNVscCAAAAAMCn8WwHAAAAAAAAAACActaqVStlZWWpUaNGatu2rd566y2rIwEAAAAA4NOYLAkAAAAAAAAAAGCBGjVqaO3atRo/frzuueceJSYm6vz581bHAgAAAADAJzFZEgAAAAAAAAAAwCIBAQGaNm2aFi9erEWLFql79+7Kzs62OhYAAAAAAD6HyZIAAAAAAAAAAAAWu/POO5WWlqYDBw4oJiZGGRkZVkcCAAAAAMCnMFkSAAAAAAAAAADAA0RHRyszM1PNmzdX165dNW/ePKsjAQAAAADgM5gsCQAAAAAAAAAA4CGqV6+uNWvW6KmnntIDDzygkSNH6syZM1bHAgAAAADA6zFZEgBKIS8vT9ddd5369etndRQAgIejzwAAAO7GeAMAfJ/NZtPkyZP1n//8RytXrlSnTp30448/Wh0LAAAAAACvxmRJACgFY4wKCgpUUFBgdZQrqly5sjp27Gh1DK9n9XG0+vMBlB19BuB9rL4WrP58AN6H8QauhtV1YvXnA96mX79+2rx5s/Lz89WmTRt98sknVkcCAAAAAMBrMVkSAEohPDxce/bs0erVq62OAgClsmPHDt1xxx1asmSJTp8+bXUcv0KfAQCAd+jfv79eeuklHThwwOooTmO8AQD+pWnTpkpPT1eXLl3Uq1cvTZ8+3epIAAAAAAB4JSZLAgAA+KDz589r5cqVGjZsmKpXr64777xTq1at0vnz562OBgAA4BEyMjL0l7/8RVFRUerYsaPmzZunEydOWB0LAIBihYeHKzk5WVOnTtXjjz+uYcOG8ceRAAAAAAA4icmSAHAFK1askM1ms7/y8/OLXb5v3z4lJCSoatWqioyMVL9+/bRnzx77dmbMmGEv26BBA2VmZqp79+4KDw9XaGiounXrprS0NHv5qVOn2stf+niqtWvX2pfXqFHDYfunTp1SWlqavUxAQEA5HCVrHD9+XBMnTlSTJk0UGBioatWqqXfv3vr000/tZVx9HKlHeKOzZ8/qvffeU//+/VW9enWNGDFCK1eu1IULF6yO5nPoMwD3od8H4C7GGG3atEkPPvigatasqdtuu00LFy5Ubm6u1dGKxXjDP9DvASiOzWbT5MmTlZqaqnXr1qlDhw764YcfrI4FAAAAAID3MADgIySZpKQkt21/wIABRpI5c+ZMscsHDBhgNm3aZPLy8kxqaqoJCQkxbdq0cdhOdHS0CQsLM+3bt7eXz8zMNDfffLMJDAw069evL1I+LCzM3HrrrQ7bad26tYmMjHRYXlL5Qt26dTPVq1c36enppd31MnF3fRw6dMg0btzY1K5d26xcudLk5OSYXbt2mcGDBxubzWbmzZtXpLyrj6M/1GNsbKyJjY112/bhXl9++aWRVOwrMDDQSDI1a9Y048aNMxs2bDAFBQXGGOrdVegz8Hvu7hd9Hf0+16IrJCUlGX4NgkvVqFGj2LFSxYoVjc1mM4GBgaZPnz4mOTnZnD171hjjWecR4w3X85T6pd/znHPCGMZx8Fw//fSTiYmJMdWrVzdr1661Og4AAAAAAN4gmTtLAoCLjBo1Su3bt1dYWJh69Oihvn37KjMzU8eOHXMoe+rUKb3++uv28jExMXrnnXd07tw5jR8/3q05CwoKZIyRMcatn+Nujz76qPbu3auXX35Z/fr1U5UqVdS0aVMtXrxYdevW1bhx43T48GG3ZqAe4a3OnTsnSTp69KjeeOMNderUSVFRUZoyZYrH3kHJ19BnAM6h3+daBMrTxYsXZYzRuXPnlJqaqvj4eEVGRmrEiBHaunWr1fFKjfGG96Lf45wASiMqKkobNmzQgAED1Lt3b02ZMkUFBQVWxwIAAAAAwKPxjBMAcJE2bdoU+X9UVJQk6eDBg0UeOyVJYWFhatGiRZFlN910k+rVq6ft27fr0KFDqlu3rltyrl+/3i3bLW/Lly+XJPXt27fI8qCgIHXv3l1vv/22PvzwQ40cOdJtGfyhHjMyMmSz2crls+BagYGBpSp3/vx5SdKBAwc0ffp0SVK1atW0YcMGderUyW35/B19BuAc+v31btmuv2Jsg0Lh4eFXLFM4VsrLy9M777xjX/7Pf/5TY8eO9ejzifGG96LfW++W7QK+KDg4WP/617/Url07jR07Vt9++63efvttRUREWB0NAAAAAACPxGRJAHCR3/8SsnCiUnF/0V21atVit1GrVi0dPHhQR44ccduXDr7g7NmzysnJUXBwcLFfcNauXVuSlJ2d7dYc/lCP1113nV566SWrY6AMfvrpJ02aNKlUZStVqqTz58/ruuuuU2BgoKKiopgo6Wb0GUDp0e/D1ZKTk62OAA+RmJhYqnIBAQG6cOGCIiIi1LZtW3300UceP1FSYrzhrej3AJTF6NGjdeONNyouLk633HKLli1bpmbNmlkdCwAAAAAAj8NkSQCwwPHjx2WMcfhy7ciRI5J++/KhUIUKFeyPzL3UyZMni922p39h5wpBQUGKiIhQTk6OcnNzHb5AKnwcWZ06dezL3HEc/aEeIyMjFRcXZ3UMlMG2bdsu+35gYKDOnTunWrVqaejQoYqLi1PHjh2pbw/kD20NcDn0+3A1+joUeuihh0p8r2LFijLGKCAgQP3799fdd9+t22+/XcuXL9dHH33kc9ctbZznoN8DUFYdO3ZUVlaWYmNj1b59ey1YsEBDhgyxOhYAAAAAAB6lgtUBAMAf5efnKzMzs8iyr7/+WgcPHlR0dHSRuzPUrVtXBw4cKFI2OztbP/30U7HbDg0NLfIlxfXXX6+5c+e6ML1nGDRokCTpgw8+KLL87NmzWrdunUJCQtSrVy/7cnccR+oR3iYg4Le/kwkPD1dCQoJSU1OVnZ2tWbNmqWPHjhanQ0loawD6fQDlo2LFiqpYsaICAgLUs2dPLViwQCdOnNDSpUvVv39/VapUyeqIbkMb51no9wCUVf369bV+/Xr9+c9/VlxcnKZMmaKLFy9aHQsAAAAAAI/BZEkAsEBERIQee+wxpaen69SpU8rKytLw4cMVGBioWbNmFSnbs2dPHTx4UK+++qry8vK0Z88ejR8/vshdHC7VqlUr7d69Wz///LPS09P1ww8/FHmc7m233abIyEhlZGS4dR/d7fnnn1fjxo01YcIErVq1Srm5udq9e7eGDRumQ4cOadasWfbHk0muP44S9QjvUKFCBdlsNoWGhmro0KFas2aNTpw4oYULF6pHjx7c1cUL0NYA9Ptci4B7VaxYURUqVFCnTp00b948HT16VKtXr9bIkSMVFhZmdbxyQRvnWej3OCeAqxEUFKRZs2bprbfe0iuvvKJ+/frpxIkTVscCAAAAAMAzGADwEZJMUlKSy7e7fPlyI6nI66677jLp6ekOyx9//HF7lktfffv2tW8vOjra1K9f33z77bemV69eJjw83ISEhJguXbqYjRs3Onz+yZMnzahRo0zdunVNSEiI6dixo8nMzDStW7e2b3/y5Mn28jt37jSdOnUyYWFhJioqyrz22mtFttepUydTrVo1s2nTJpcfq0u5qz4udezYMTNhwgTTuHFjU6lSJRMREWF69epl1q1b51DW1cfRH+oxNjbWxMbGum37cK8vv/zSBAUFmTvuuMOkpKSY06dPl2o96v3q0GegJOXRL/o6+n2uxauVlJRk+DUILlWnTh3TunVrM2vWLHPo0KFSreMJ5xHjDffxhPotRL/nGeeEMYzj4N22bt1qGjVqZBo2bGgyMzOtjgMAAAAAgNWSbcYY45JZlwBgMZvNpqSkJMXHx1sd5bJatGihY8eOaf/+/VZHcStvqY+y8od6jIuLkySlpKRYnARlcerUKV24cEERERFOrUe9exZ/aGv8ha/3i76Oa9E3JCcnKyEhQfwaBIUOHjyoevXqObWOL55HtHH/xxfrtyw4J4piHAdvd+zYMQ0dOlRpaWl64403dM8991gdCQAAAAAAq6TwGG4AAAAfFBYW5vRESQAAAH/i7ERJAAC8UY0aNbR27VqNHz9ef/7zn5WYmKjz589bHQsAAAAAAEswWRIAAAAAAAAAAMBHBQQEaNq0aVqyZIkWLVqk7t27Kzs72+pYAAAAAACUOyZLAkA5mTFjhmw2m7Zv364DBw7IZrPpiSeesDoWnEQ9AigPtDWAZ+BaBODLaOPwe5wTgO8bOnSoNm3apIMHDyomJkYZGRlWRwIAAAAAoFwxWRIAysmkSZNkjCnymjp1qtWx4CTqEUB5oK0BPAPXIgBfRhuH3+OcAPzDzTffrC+++EIxMTHq2rWrZs2aZXUkAAAAAADKDZMlAQAAAAAAAAAA/ESVKlW0fPlyPfXUU5o4caJGjhypM2fOWB0LAAAAAAC3Y7IkAAAAAAAAAACAH7HZbJo8ebLef/99h+7k4gAAIABJREFUrVy5Uh07dtSPP/5odSwAAAAAANyKyZIAAAAAAAAAAAB+qG/fvtqyZYvOnTunmJgYrVu3zupIAAAAAAC4DZMlAQAAAAAAAAAA/NR1112n9PR0de3aVbfffrumT59udSQAAAAAANwiwOoAAOBKM2fOVEpKitUx8P9RH94tIyND7dq1szoGLJCRkaG4uDirYwA+h34RsNb+/futjgAfwljJNxW2E9QvAH9UuXJlJScn64UXXtDjjz+ubdu2af78+QoLC7M6GgAAAAAALsOdJQEAbhEbG6sGDRo4LN+/f7+WLl1qQSIAAK5eWfuxkvpFAADgORo0aKDY2Nhi38vIyFBGRkY5JwKA8mWz2TR58mR9/PHH+uSTT9ShQwft2bPH6lgAAAAAALgMd5YE4FMeeeQRxcfHWx0Dl5GcnKyEhATurOUFuJuK/2rXrh3XKFAC+jHAexVev4Ar0A/4n8Kfj6h7/2Oz2ayOAJS7rl27KisrS0OGDFGrVq20cOFCDRgwwOpYAAAAAABcNe4sCQAAAAAAAAAAALuoqCh9/vnnio2N1aBBgzRlyhQVFBRYHQsAAAAAgKvCZEkAAAAAAAAAAAAUERwcrDfffFOzZ8/WzJkzNWDAAJ08edLqWAAAAAAAlBmTJQEAAAAAAAAAAFCs0aNHa926ddq6datuueUW7dixw+pIAAAAAACUCZMlAQAAAAAAAAAAUKKOHTsqKytLNWrUULt27bR06VKrIwEAAAAA4DQmSwLwW++8845sNpv9Vbly5WLL/fjjj7rjjjv066+/6tixY0XWadmypfLz8x3W+X05m82mmJgYd++SS0yZMkVJSUklvnfpPrVr165cMlFXxfPEugL8jT+0NYCr+Vt/XRqrV69W06ZNFRAQUGKZy/X7AHwHbaQjf2kjqXtH/lL3gDepV6+ePv/8c40ZM0bx8fGaMmWKLl68aHUsAAAAAABKjcmSAPzeG2+8IWOM8vLyHN7btm2bYmJi1LNnT1WpUkU1atSQMUaZmZn29ydMmOCwXmG59PR0RUZGyhijrKwst++LK9x///169NFH9de//tXhvWnTpskYI2OMKlasWO7ZqKuiPLmuAH/hD20N4Er+2F9fzp49e3THHXfo0Ucf1eHDhy9b9nL9PgDfQBtZlD+1kdR9Uf5U94A3CggI0LRp07Rw4UK98sor6tGjh44cOWJ1LAAAAAAASoXJkgBQgl9//VX9+/fXkCFDNHbsWIf3g4KCFBkZqTlz5mjJkiUWJHSPJk2aaPny5Xr22WeVnJxsdZxSoa68p64AX+arbQ3gKv7aX1/OX//6V3Xo0EFbt25VeHj4ZcvS7wO+jTbSkb+0kdS9I3+pe8DbDR8+XGlpadq3b59iYmLsE7wBAAAAAPBkTJYEgBK88MILys7O1t/+9rdi3w8ODtaiRYtUoUIFJSYmavfu3eWc0H2io6MVGxurv/zlL7pw4YLVca6IuvKeugJ8mS+3NYAr+HN/XZI333xTU6ZMuezjRS9Fvw/4LtpIR/7SRlL3jvyl7gFf0LJlS2VmZur6669X586dtWDBAqsjAQAAAABwWUyWBIBiGGM0f/58tW3bVvXq1SuxXK9evfTEE08oNzdXcXFxys/PL8eU7jVo0CDt379fH3zwgdVRLou68p66AvyBL7c1wNWgvy5eSEiI0+vQ7wO+hzayeP7QRlL3xfOHugd8SY0aNbR27VqNHz9e9913nxITE3Xu3DmrYwEAAAAAUCwmSwJAMbZv367Dhw8rOjr6imWffPJJ9ezZU1999ZUefvjhUm3/+PHjmjhxopo0aaLAwEBVq1ZNvXv31qeffmovs2LFCtlsNvtr3759SkhIUNWqVRUZGal+/fppz549Dts+evSoxo0bp0aNGikwMFA1a9bU4MGDtW3bttIfAEktWrSQJH344YdOrVfeqCvvqSvAX/hqWwNcDfpr16HfB3wPbaTreFsbSd27jrfVPeBrKlasqGnTpmnJkiVatGiRunfvrkOHDlkdCwAAAAAAB0yWBIBifPPNN5KkBg0aXLFshQoVtGjRIkVFRWn+/PlatGjRZctnZ2erTZs2Wrx4sWbNmqVjx45p8+bNCg0NVffu3TV//nxJ0sCBA2WM0YABAyRJEyZM0IQJE3TgwAElJSXpk08+0Z133llk24cOHVKbNm2UnJys119/XSdOnND69et14sQJtW/fXunp6aU+BvXr1y9yLDwVdeU9dQX4C19ta4CrQX/tOvT7gO+hjXQdb2sjqXvX8ba6B3xVQkKCsrKydOzYMcXExPAzJwAAAADA4zBZEgCKUfiXzxEREaUqX6NGDSUnJ6tSpUpKTEzUzp07Syz76KOPau/evXr55ZfVr18/ValSRU2bNtXixYtVt25djRs3TocPH3ZYb9SoUWrfvr3CwsLUo0cP9e3bV5mZmTp27FiRbf/444966aWX1KdPH1WuXFnNmjXTu+++K2NMqe8+IUlVqlSRzWbz+L8Cp668p64Af+KLbQ1wNeivXYd+H/A9tJGu421tJHXvOt5W94Avu+GGG7R582bdcsst6tq1q2bNmmV1JAAAAAAA7JgsCQDFyM/PlyRVqlSp1Ou0a9dOM2bM0KlTpxQXF6czZ84UW2758uWSpL59+xZZHhQUpO7du+vMmTPFPjaqTZs2Rf4fFRUlSTp48KB92YoVK1ShQgX169evSNk6deqoWbNm2rp1q/bv31/qfQoICChxPzwFdfUbb6grwN/4YlsDlBX9tWvR7wO+hTbStbypjaTuXcub6h7wdVWqVNGyZcv09NNPa+LEiRo5ciTXJwAAAADAIzBZEgCKERwcLEk6f/68U+uNGzdOCQkJ+uabbzR27FiH98+ePaucnBwFBwcrPDzc4f3atWtL+u1xWb/3+ztNBAYGSpIKCgqKbLugoEARERGy2WxFXl988YUk6b///W+p9+fChQsKCQkpdXkrUFe/8Ya6AvyRr7U1QFnRX7sW/T7gW2gjXcub2kjq3rW8qe4Bf2Cz2TR58mS9//77WrlypW699Vbt27fP6lgAAAAAAD8XYHUAAPBEdevWlSTl5OQ4ve78+fO1bds2/etf/7J/8VEoKChIERERysnJUW5ursOXFoWPwKpTp47TnxsUFKSqVasqLy9PZ86cUUDA1TXxv/76q4wx9mPhqagr76krwF/5SlsDXA36a9eh3wd8D22k63hbG0ndu4631T3gT/r27astW7Zo8ODBatOmjZYsWaIePXpYHQsAAAAA4Ke4syQAFKN58+aSVKbHRlWuXFnvvfeewsLC9Prrrzu8P2jQIEnSBx98UGT52bNntW7dOoWEhKhXr15lSC0NHjxYFy5cUFpamsN706dPV8OGDXXhwoVSbevAgQOS/u9YeCrqynvqCvBXvtLWAFeD/tp16PcB30Mb6Tre1kZS967jbXUP+JvrrrtO6enp6tatm26//XZNnz5dxhirYwEAAAAA/BCTJQGgGNHR0apVq5a2b99epvWbNWumOXPmFPve888/r8aNG2vChAlatWqVcnNztXv3bg0bNkyHDh3SrFmz7I/Ectbzzz+vJk2a6N5779WaNWuUk5OjEydOaM6cOXr66ac1Y8aMInd9GD58uGw2m/bu3euwrW3btkmSevbsWaYs5YW68p66AvyZt7Q1gLvQX7sO/T7ge2gjXcfb2kjq3nW8re4Bf1S5cmUlJSXpH//4h5544gkNGzZMp06dsjoWAAAAAMDfGADwEZJMUlJSqcu//fbbRpJ54403in3/scceMwEBAebAgQP2ZUePHjWSirxat25d4mc8+OCDJjIy0mH5sWPHzIQJE0zjxo1NpUqVTEREhOnVq5dZt26dvUx6errDZz3++OP2fb301bdvX/t6x48fNxMnTjTXXHONqVSpkqlZs6bp2bOnSU1Ndchx2223mcqVK5sLFy44vBcXF2fq169vzp07V+y+VaxY0bRt27bEfS9JUlKScbb7oa6sqavY2FgTGxvr9HrwbtS7c3ytrcGVlaUfw2/8vb8uzsqVKx0+u/A1b968Yte5Ur+PknH9whXcdR7RRjrytDbSXeNk6t6Rp9W9s79vAnBl69evN7Vq1TI33HCD+e6776yOAwAAAADwH8k2Y3jWAQDfYLPZlJSUpPj4+FKVf+eddzRixAi98cYbeuCBBxzez8nJUbNmzdSvXz/Nnj3b1XEtd/LkSdWrV0933XWX5s2bV+S97du3q2XLllq8eLGGDh1a7PoBAQGKiYlRRkaGU5+bnJyshIQEpx61Q11ZU1dxcXGSpJSUlLIFh1ei3oHLK0s/ht/4c3/tKqXp91Eyrl+4grvOI9rIq+fuNtJd42Tq/uq5u+6d/X0TgNL5+eefFRsbq507d+qtt97SwIEDrY4EAAAAAPB9KTyGGwBKEBERoZUrV2rp0qV67bXXrI7jUsYYjRs3TlWqVNEzzzxT5L0ffvhBgwcP1qOPPuo1X8JTV95TVwAA/+Wv/bWr0O8Dvo028up4cxtJ3V8db657wN9FRUXps88+U2xsrAYPHqwpU6aooKDA6lgAAAAAAB/HZEkAfu/BBx+UzWZT5cqVHd5r2bKlsrKytGbNGv36668WpHOPw4cP64cfftC6detUp06dIu/NmTNHzz77rJ599lmH9aZMmSKbzSabzaaLFy+WV1w76sp76goAgOL4Y3/tKpfr9wH4BtrIsvP2NpK6Lztvr3vA3wUHB+vNN9/U7NmzNXPmTN1xxx06efKk1bEAAAAAAD6Mx3AD8Bk8Fsk78PhD78HjmP0T9Q5cHv0Y4L24fuEKnEf+i3Gy/+L3TUD5SEtLU1xcnCpXrqxly5apefPmVkcCAAAAAPgeHsMNAAAAAAAAAEBJTpw4YXUEwOfdeuut2rZtm+rXr6/27dszOR0AAAAA4BZMlgQAAAAAAAAAoASPPPKImjVrpunTp+vo0aNWxwF8Vq1atZSamqoxY8YoISFB48eP14ULF6yOBQAAAADwIUyWBAAAAAAAAACgBE8++aQ6duyoZ599VlFRUerfv79SUlKYxAW4QUBAgKZNm6aFCxdq/vz56tGjh44cOWJ1LAAAAACAj2CyJAAAAAAAAAAAJbjmmms0Z84cHT58WG+//bby8/OVkJCgP/zhDxo/fry+/vprqyMCPmf48OHauHGjfvrpJ8XExCgzM9PqSAAAAAAAH8BkSQAAAAAAAAAAriAkJERxcXFKTU3Vvn37NG7cOL3//vu6+eabFRMTo7lz5yo3N9fqmIDPaNmypTIzM3XDDTeoc+fO+te//mV1JAAAAACAl2OyJAAAAAAAAAAATmjYsKEmT56sPXv2KDU1VTfeeKMeeeQR1apVS/Hx8fr4449ljLE6JuD1IiMjtWbNGo0fP16jRo1SYmKizp07Z3UsAAAAAICXCrA6AAC4UkJCghISEqyOgVKw2WxWR0ApxMbGWh0BFli6dCnXKHAFXCMA4N/oB/wXdY/fq1Chgnr06KEePXrolVdeUXJyshYuXKg//elPioqK0rBhw5SYmKjGjRtbHRXwWhUrVtS0adPUvn17jRw5Ujt27FBKSorq1q1rdTQAAAAAgJexGf68FYCPSE5OtjoC4HOioqLUvn17q2OgHKWnp+vnn3+2OgYAAG4THx9vdQR4sf3792vTpk1WxwBQzjp06KAGDRo4tc63336rhQsXasGCBTp27Jh9ktfw4cMVGhrqpqSA79u1a5cGDRqknJwcpaSkqEOHDlZHAgAAAAB4jxQmSwIAAAAAAAAA4AYXL17Up59+qrlz52rFihUKDQ1VQkKCRowYoY4dO1odD/BKv/76q+655x6tXLlSU6dO1eTJk62OBAAAAADwDkyWBAAAAAAAAADA3bKzs/X2229rwYIF+u6779S8eXPde++9GjlypCIjI62OB3gVY4xeeOEFPfbYYxo2bJjmzJnDXVsBAAAAAFfCZEkAAAAAAAAAAMpTRkaGFixYoHfffVdnz57VkCFDlJiYqM6dO1sdDfAqq1ev1vDhw9WoUSMtW7ZMjRo1sjoSAAAAAMBzpVSwOgEAAAAAAAAAAP6kXbt2mjNnjg4fPqy3335bR44cUZcuXXT99ddr+vTpOnr0qNURAa/Qp08fbdmyRRcuXFBMTIxSU1OtjgQAAAAA8GBMlgQAAAAAAAAAwALBwcGKi4tTamqqduzYoUGDBumFF15QVFSU4uPj9fHHH4uHQwGXd+2112rTpk3q3r27evfurenTp3PdAAAAAACKxWO4AQAAAAAAAADwEPn5+Vq5cqXmzp2rjz/+WE2bNtW9996r++67TzVq1LA6HuDR5s6dq7Fjx6pPnz5auHChqlSpYnUkAAAAAIDnSGGyJAAAAAAAAAAAHuiLL77Q3LlztXjxYp0/f17x8fEaM2aMbrnlFqujAR7r888/V3x8vKpVq6Zly5bpj3/8o9WRAAAAAACeIYXHcAMAAAAAAAAA4IFatWql2bNn6+DBg5o1a5a2b9+utm3bqk2bNlqwYIHOnDljdUTA43Tu3FlZWVmqUqWK2rVrp+XLl1sdCQAAAADgIZgsCQAAAAAAAACAB6tcubJGjx6tbdu2KSsrS61atdKYMWNUt25dJSYm6rvvvrM6IuBRGjRoYL/D5JAhQ/T/2LvzuKrqxP/j76vsioi472Zhkwum4oppuWUCGl8Qy7KygmkZMadJLWuYyZmysRSnGremYrIELPmKpuWSjQsaWFpqiVmYG7lCorjy+f3RD74SKFy8cODyej4e9w/P/Zxz3+d8zvl8Pt774ZwpU6YoPz/f6lgAAAAAAIvxGG4AAAAAAAAAAKqZo0eP6u2339a//vUvHThwQHfccYeioqIUFham2rVrWx0PqDLmz5+vP/zhDxo8eLDee+89+fr6Wh0JAAAAAGCNJCZLAgAAAAAAAABQTV2+fFnLli3Tm2++qbVr16pdu3aKjo7WI488ogYNGlgdD6gSNm/erIiICHl5eWnp0qXq1KmT1ZEAAAAAAJUvicdwAwAAAAAAAABQTdWuXVt33323Vq9erW+//VbBwcH6+9//rlatWik6Olq7du2yOiJgub59+2r79u1q1aqV+vTpo8TERKsjAQAAAAAswGRJAAAAAAAAAACcQIcOHRQXF6eDBw9q1qxZ2rRpkzp16qSgoCAlJSXp8uXLVkcELNOoUSN9+umneuKJJxQZGano6GhdvHjR6lgAAAAAgErEY7gBAAAAAAAAAHBCxhitXbtWcXFxWrFihdq1a6eoqChFRUXJ19fX6niAZRYtWqSoqCgFBgYqISFBTZo0sToSAAAAAKDiJTFZEgAAAAAAAAAAJ/f999/rn//8p/7973/LZrPpnnvu0cSJE/W73/3O6miAJbZv366wsDBdvHhRH374oXr27Gl1JAAAAABAxUriMdwAAAAAAAAAADi5G2+8UXFxcTp06JBefPFFffrpp+rUqZOGDBmilJQUcV8F1DRdu3ZVWlqabrnlFt1222166623rI4EAAAAAKhgTJYEAAAAAAAAAKCGqFevnmJiYrRv3z4lJydLkkaOHKmbb75ZcXFxOnPmjMUJgcrj5+enjz/+WFOmTNGjjz6q6OhoXbhwwepYAAAAAIAKwmO4AQAAAAAAAACowXbs2KE333xT7733nlxdXfXAAw9o0qRJatOmjdXRgEqzbNkyjRs3Tp06dVJiYqKaN29udSQAAAAAgGPxGG4AAAAAAAAAAGqygIAAzZs3T5mZmZo6daqWLl2qG264QSEhIVqzZo3V8YBKERoaqq1bt+rUqVPq2rWrPvvsM6sjAQAAAAAcjMmSAAAAAAAAAABAjRo10uTJk7Vv3z4tXrxYp06d0pAhQ9StWzfNnz9feXl5VkcEKlSHDh20ZcsW9e/fX0OHDtWMGTOsjgQAAAAAcCAeww0AAAAAAAAAAEq0bds2xcXFafHixfL19dVDDz2kJ598Ui1btrQ6GlBhjDF65ZVX9Oyzz+qee+7R/Pnz5eXlZXUsAAAAAMD1SWKyJAAAAAAAAAAAuKasrCzNnTtXb775pnJycjRy5Eg99dRT6tOnj9XRgAqzcuVKjR07Vm3atNFHH32kdu3aWR0JAAAAAFB+STyGGwAAAAAAAAAAXFPTpk0VGxurAwcOaMGCBcrIyFDfvn3Vo0cPxcfH69KlS1ZHBBxu+PDh+uKLL3T58mUFBgZq9erVVkcCAAAAAFwH7iwJwGlERERYHQFwOn369NGkSZOsjgEHeO2115Sammp1DAAAqo2kpCSrI6AKSk1N1WuvvWZ1DACVbNKkSdw98So2btyoOXPmaOnSpWrUqJGioqL0hz/8QX5+flZHAxzq3Llz+v3vf6/33ntPf/vb3/TMM8/IZrNZHQsAAAAAYB/uLAnAeSxZskQHDx60OkaVwfHA9dqyZQuT65xIamqqtmzZYnUMANUM4wnURAcPHtSSJUusjoEq6sCBA5wfVdSWLVsY76JCLFmyRAcOHLA6RpUVFBSkxMRE7dmzR/fcc49mz56t1q1b6/e//712795tdTzAYTw8PPTOO+/ozTff1PPPP69Ro0YpJyfH6lgAAAAAADtxZ0kATsNmsykhIUGjR4+2OkqVwPHA9Sq4Wyt3VXIO1CeA8mA8gZooMTFRkZGR4usSlITzo+pivIuKwnjIPrm5uXr//fcVFxen3bt3q1+/fpo8ebKCg4O5Cx+cxn//+1+NHj1a9evX19KlS/W73/3O6kgAAAAAgLLhzpIAAAAAAAAAAOD61a1bV1FRUfrmm2+0fPlyubu7KzQ0VF27dtU777yjCxcuWB0RuG633Xab0tPTVb9+ffXq1UtLly61OhIAAAAAoIyYLAkAAAAAAAAAABymVq1aGjFihNauXavt27erd+/eeuyxx9S6dWvFxsbqxIkTVkcErkvLli31+eefKzIyUv/zP/+jKVOmKD8/3+pYAAAAAIBSMFkSAAAAAAAAAABUiICAAM2bN08//vijfv/73+uf//ynWrRooXHjxunbb7+1Oh5Qbu7u7lqwYIHmzp2rWbNmKTg4WKdOnbI6FgAAAADgGpgsCQAAAAAAAAAAKlTTpk0VGxur/fv3a86cOfriiy/UqVMnhYSEaM2aNVbHA8otKipKmzdv1q5du9SzZ0998803VkcCAAAAAFwFkyUBoAwSEhLUtWtXeXp6ymazFXm1bNnS6niVqm7dusWOwcyZM62OVS7OtC+AlUpqI3fu3Gl1LKBG+/jjj+Xv7y8XF5dK/+zLly9r7ty56tu3r3x8fOTq6qrmzZvrrrvu0uuvv67MzMzCsjNnznTqMVV6eroefPBBtW3bVh4eHqpfv74CAwP117/+VdnZ2de9/ao+lnFU/S5evLhwOx4eHg5MCFQtNW1MdfHiRc2aNUvdu3eXt7e3GjdurOHDhyslJUXGmAr//K5duxZrQ6/1mj59eont7tVeCxcuLPaZ9Av0C/hV3bp1FRUVpd27dys5OVnnzp3TkCFD1K1bN8XHx+vixYtWRwTs1r17d6Wnp6t169bq1auX4uPjrY4EAAAAACgBkyUBoBSbNm3SPffco6FDh+rYsWP6/vvv1bJlS33zzTcKCAiwOl6ly83N1VdffSVJGjlypIwxevrppy1OVT7OtC+AVa7WRgLVQW5urm666SYFBwdbHcVh9u3bp9DQUE2dOlU///yzJRnuv/9+PfHEExo1apR27dql06dPa8OGDbr11ls1YcIE9ejRo7Ds008/LWNMiWOq660fq+t36tSp6t27t3x9fbV8+XJlZ2frxx9/1J///GctXbpU/v7+2rRp03V9RlUfy1yrfu0xZswYGWM0aNAgByUDqp6aNqY6c+aM7rjjDr3zzjuaNWuWjh49qvT0dNWtW1ehoaHatWtXpeRISkqSMabwFR0dLUlauXJlkeWRkZGSSm53S3oNGDCg2GfRL9AvoLhatWopJCREq1evVnp6ujp16qSHH35Ybdq0UWxsLI8zRrXTqFEjffLJJ5owYYIeeOABRUdHM/kXAAAAAKoYJksCQCkKfjyJiYlR3bp11b59ex04cECdOnWyOhrKoG7dugoKCrI6BlBtlXYN0UY6Fm2W413rmBpjlJ+fr/z8fLvWq8qef/559e3bV9u2bZO3t3elf35aWpo++OADPfzww3rmmWfUsmVLeXh4qH379vrb3/6mxx57rMzbulb9VMb612P69Ol6+eWX9cYbb2jWrFnq1KmTPDw85Ovrq+DgYG3atEmtW7fW8OHD9d1331V6PgCVz5nGVI7oI//0pz/p66+/1qeffqrbbrtNnp6eat26td555x25u7s7KGnVQb8AlK579+6Kj4/X3r17NW7cOMXFxalNmzaKiYnR/v37rY4HlJmLi4tefvllLVq0SO+9954GDx5s2R+yAQAAAACKY7IkAJTiwIEDkiQ/Pz+LkwBA1UMbierM29tb+/bt08cff2x1FId56623NGXKFEsevy2p8E5gHTp0KPH90aNHl3lb11s/VtXv999/r7/85S/q1q1b4R3KfsvLy0uzZs3S6dOnNWHChErNB6Bqqkljqp9//lnz58/X2LFj1aRJkyLv1alTR+fOnauUSaLbt29XeHh4mcouXrxY06ZNK/O2169fr0ceeUQS/QJgr7Zt2+rll1/WTz/9pBdffFHJycm64YYbFBISotTUVKvjAWV27733atOmTTp48KB69OihrVu3Wh0JAAAAACAmSwJAqS5fvmx1BACosmgjgarF09PT0s8vmPSyevXqEt8fMGCAjh8/XpmRKt3cuXN16dIlRUREXLNc//791bx5c61evVo//PBDJaUDUFXVpDHVsmXLdPny5Wp5B+fSPPnkk5o4cWKRZfQLQPl4e3srJiZGP/zwg5KTk3X8+HH17dtXPXr0UHx8fI1qN1F9de3aVWlpabrllls0YMAALVy40OpIAAAAAFDjMVkSAK7b22FWAAAgAElEQVQiOTlZNptN//u//yvp18kHNptNvXv3Llb2u+++04gRI+Tj4yMvLy/dfvvt2rRpU5Ey58+f1wsvvKCbb75ZXl5eatCggUJCQgp/KKruCo5XwSszM1ORkZGqX7++/Pz8FBwcrH379hWWnzlzZmHZli1bKi0tTYMGDZK3t3eJx3D69OmF5a/8UW3VqlWFyxs2bFhs+2fOnNGmTZsKy1zPnbYuXbqkhIQEDRkyRE2bNpWnp6c6d+6suLi4wkd8ZmdnFzkONptN06dPL1z/yuVX3sXk2LFjmjBhgtq2bSs3Nzc1atRIYWFh2r59+1WP8Z49ezR69Gj5+fkVLnP2CSioPKVdQ/a0kRXhxIkTmjRpktq3by83Nzf5+vpq+PDh+uyzz4rtQ1nbmQKOvB7L0m5cmbW0Nqss+13WbFWpX/ruu+80atSown60Z8+eWr58uQYPHlyYueDuTFLZ6qis53DB69y5c2Vaz54Mv/2M/fv3KzIyUt7e3vLz89P999+vU6dOKTMzUyEhIfL29lazZs306KOP6vTp0xV5yCtM//791bRpU33yyScaPny41q9fX67HYF+tfgpceS24u7urZcuWGjx4sN555x3l5eVddX17xysF7DlHP//8c0lSQEBAqftZUGbDhg3lbrPsUdY2qaLO3bKMmQvKFRzvOnXqqH///tq4ceN17RNglYoaU5XWDkr2XR9lGRc46v9YX375pSTJ19dXf/zjH9WqVSu5ubmpTZs2mjBhgk6ePGnX9qo6+gX6BVyf2rVrF95VcsOGDbrhhhs0fvx4+fv7Ky4uTmfOnLE6InBNDRo00KpVq/SXv/xF0dHRio6O1oULF6yOBQAAAAA1lwEAJyHJJCQkOHy7I0eONJJMXl5esfcCAgKMj4+Puf32283GjRvN6dOnTVpamunSpYtxc3Mz69evLyz7yCOPGB8fH/Ppp5+as2fPmqysLPP0008bSeazzz5zeO6KOh7GGPPVV18ZSWbkyJHF3is4XiNHjjSbN282ubm5ZvXq1cbT09MEBgYWKx8QEGDq1Klj+vTpU1j+asfQGGPq1Klj+vXrV2w73bt3N35+fsWWX618Wfblt1JSUowk8/e//92cPHnSHDt2zMyZM8fUqlXLPP3000XKDhs2zNSqVct8//33xbbTp08fs2jRosJ/Hz582LRp08Y0adLErFixwpw+fdrs3LnTDBgwwHh4eJjNmzcXWb/gGA8YMMB89tln5syZM2bLli2mdu3a5tixY6XuR1mFh4eb8PBwh20P1ipvfZZ2DV2rjawoR44cMe3atTNNmjQxKSkpJicnx+zZs8eEhYUZm81mFixYUKS8Pe2Mo69He9oNY659vO3d79KyVXa/dDV79+419evXNy1atDCffvpp4TEfPHiwadSokXF3dy9S3t46Ku85fK31ynuehIWFmfT0dJObm2vi4+ONJDN8+HAzcuRI89VXX5nTp0+buXPnGknmqaeesucwlqhFixamdu3a17WN8ownNmzYYFq1amUkGUmmcePGZuzYseb99983Z86cKXGdgIAA06JFi2LLS6qfgmuhadOmJiUlxfzyyy8mKyvLvPjii0aSmTVr1jXXv3J5WcYr9p6jzZo1M5LM1q1bSz1W9913X2EbceWxsGdsVFFjmSuP0/Weu/aMmUs63l9//bUZOnSoadu2bbHjbe8+lUVCQoLh6xJcTXnPD0eOqcraDtpzfdgzLihtX0pTsK9NmzY1Y8eONfv27TOnTp0y7777rqlTp47x9/c32dnZdm/XEf9/iY6ONpLMypUrr1qmoN292ismJqZIefqF6t8vVOT3Kyif77//3kyYMMF4eXkZHx8fM2HCBHPgwAGrYwGlWrZsmfHx8THdu3c3+/fvtzoOAAAAANREiXz7D8BpWDVZUpJJTU0tsvzrr782kkxAQEDhsnbt2pm+ffsW24a/v79TTpZMSUkpsjw8PNxIKjaZr+AYfvXVV0WWl3QMjbF+suTAgQOLLb/vvvuMq6urycnJKVz2ySefGEnm8ccfL1J248aNpkWLFubChQuFyx544AEjqcgESmN+/RHU3d3ddO/evcjygmP88ccfl5r5ejBZ0rk402TJBx980EgyH3zwQZHl586dM82bNzeenp4mKyurcLk97Yyjr0d72g1jrn287d3v0rJVdr90NREREUaSWbJkSZHlR48eNV5eXsV+ALe3jipismR5z5MVK1YUWd6xY0cjyXz++edFlrdr18506NDhqpnLyqrJksb8el6+++67ZuTIkcbb27twAomfn1+xc9gY+yZLFlwLJeW688477ZosWZbxir3naMGkmC+++KKkQ1NEwaSYl156qXCZvWOjihrLGOO4c9eeMfPVjvehQ4eMu7t7iZNi7NmnsmCyJK6lKkyWLGs7aM/1Yc+44HonSw4bNsxIMu3atTMXL14s8t706dONJPP888/bvd3KnixZUrv7xBNPXHWyJP3C/6lu/QKTJauu7OxsM3v2bNOiRQvj5uZmIiIiynStAVbas2ePueWWW0yjRo3M2rVrrY4DAAAAADVNIo/hBoDr5OHhoV69ehVZ1rlzZzVv3lw7duzQkSNHJEl33nmnNm/erKioKG3ZsqXwUWZ79uzRwIEDKzt2hQsMDCzy71atWkmSDh8+XKxsnTp11LVr1yLLSjqGVgsODi7yqNsCAQEBunjxonbt2lW4bOjQoercubPeeecdnThxonD5P/7xD/3hD3+Qq6tr4bLk5GTVqlVLwcHBRbbbtGlTdezYUdu2bdPBgweLfW7Pnj0dsVtAtbN06VJJ0ogRI4osd3d316BBg5SXl6dPPvmkyHtlbWccfT3a026Upjz7fa1sVaVfWrVqlSRp2LBhRZY3atRIN998c7Hy5a0jRypvhh49ehT5d/PmzUtc3qJFixL7y+rE3d1d48aNU3Jysk6ePKm1a9dqzJgxOnHihO677z599dVX5d52wbUwfPjwYu+tXLlSEydOLPO2yjJesfccLajXK/v/qykoU7BOgYoaG5W3TXLEuVvWMfPVjnfz5s3l7+/vsH0CqrOytoP2XB+VOS6oU6eOJGnw4MHFHuEdEhIiSSWOaaor+gX6BVQcHx8fxcTE6IcfftCCBQv07bffqmfPngoKClJKSoqMMVZHBIrx9/fXli1bdNttt2nYsGGaMWOG1ZEAAAAAoEZhsiQAXCc/Pz/ZbLZiyxs3bixJOnr0qCTpjTfeUHx8vH744QcNGjRI9erV05133ln4Q5ez8fHxKfJvNzc3SVJ+fn6xsvXr1y9xG789hlbLycnRCy+8oM6dO8vX11c2m002m01/+tOfJElnz54tUn7ixIk6e/as3nzzTUlSRkaG1q1bp6ioqMIy58+fV05OjvLz8+Xj41O4zYLXl19+KUnau3dvsTwFPzICNUnBNePh4SFvb+9i7zdp0kSSlJWVVWR5WdqZirge7W03HL3f18pWFfql8+fP6/Tp0/Lw8FDdunWLve/r61usfHnryJGZy5uhXr16Rf5dq1Yt1a5dW15eXkWW165du8T+srpycXHRHXfcoQ8++ECTJ0/W5cuXtWTJknJtq7RrwV6ljVfsPUclacCAAZKk7du3l/r5O3bskKRiE5EqamxU3jbJEeduWcbMpR3vgrKO2CegurKnHbTn+qjMcUHbtm0l/dou/FbBdX7s2DGHf25leP311zV79uwiy+gX6BdQ8dzc3DRu3Dh9/fXXWrlypby8vBQaGqrOnTvr3//+t86fP291RKAIb29vJSUlafr06Xruuec0duxY2icAAAAAqCRMlgSA65STk1Pi8oIfKwq+vLfZbLr//vu1Zs0aZWdnKzk5WcYYhYWF6bXXXqu0vFXRiRMnSvxr/98eQ+nXH2EuXLhQrGx2dnaJ2y7px5fyCgkJ0YsvvqhHH31UGRkZys/PlzFGs2bNkqRi+zB27Fg1adJEr7/+us6fP69XX31VDzzwQJGJFe7u7qpfv75cXFx08eJFGWNKfN1+++0O2w/AHo68hhzB3d1dPj4+OnfunE6fPl3s/Z9//lnSr3f4u1JZ2pmKuB7tbTeudrzLu9/XUhX6JXd3d3l7e+vcuXPKzc0t9v5vf/gvTx2V9xy+Vl3Qbl/dpk2bCifvlqTguJw6dapc2y/tWnA0e89RSYqOjpaLi4uSkpKuue2NGzfq8OHDCgkJUevWrYu8Z8/YyB72tkmOVJYxc2nH++TJk8WWWblPgD0cNaaypx205/qwZ1xwvfsSFBQkSSXeDbGgTbhWX1Ld0C+UjH4BFcFms+nOO+/Up59+qh07digwMFCPPfaY2rVrpxkzZlz1vAOsYLPZNHnyZC1fvlwrV65Uv3799OOPP1odCwAAAACcHpMlAeA65ebmFt79ocA333yjw4cPKyAgQM2aNZP0650gvvvuO0mSq6urhgwZouTkZNlsNq1YsaLSc1cl586dU1paWpFlJR1DSWrWrJkOHTpUpGxWVpZ++umnErft5eVVZHJlhw4dNH/+fLvyubi4aNeuXdq0aZOaNm2qCRMmqFGjRoU/Eubl5ZW4nru7ux5//HEdPXpUr776qhYtWqSYmJhi5cLCwnTp0iVt2rSp2HszZsxQ69atdenSJbsyA47iiGvI0e6++25JKtZ2nj9/XmvXrpWnp2exx/SVtZ1x5PV4+fJlu9uNax3v8uz3tVSVfqngEaIFj1gskJWVpYyMjGLl7a2j8p7D11qPdvvqjDE6evSotmzZUuL76enpkqRbb7213J9RcC18/PHHxd679dZb9dRTT5V72yWx9xz19/fXn//8Z3355ZeaN29eids8e/asJk6cKD8/v2J3IJPsGxuVRXnHMo5U1jHz1Y738ePHtWfPniLLytPOAlZx5JiqLO2gvdeHPeOC692Xu+66Sy1atNCqVat07ty5Iu+lpKRIkkaNGlXm7VV19Aslo19ARevSpYvefvtt/fTTT4qKitKMGTPUsmVLxcTE6MCBA1bHAwrdeeed2r59u1xcXBQYGKhPP/3U6kgAAAAA4NSYLAkA16lOnTp68skntXXrVp05c0bp6em677775Obmpri4uCJlf//73+vrr7/W+fPndfToUb3yyisyxuiOO+6wKH3V4OPjo2effVapqamlHsOhQ4fq8OHDev3115Wbm6t9+/YpJibmqnfS6NatmzIyMnTgwAGlpqbqhx9+UP/+/e3OWLt2bQ0cOFBZWVn6xz/+oePHjysvL0+fffaZ5s6de9X1Hn/8cXl6emratGkaPHiwbrzxxmJlXnrpJbVv317jx4/XypUrlZOTo5MnT2revHn661//qpkzZ8rFxcXuzIAjlOcayszMVO3atYs8ktiRXnrpJbVr104TJ07U8uXLdfr0aWVkZOjee+/VkSNHFBcXV+xuRGVtZxx5PZan3bjW8S7PfpemMvulq50Xf//739WgQQNNnDhRq1evVm5urnbu3KmHHnqoxDtl2ltH5e0HSqsL2u1rGz16tN5//30dPnxY58+fV2ZmpmbOnKm//vWv6t69u8aNG1fubRdcC0899ZRWrFih06dP6+DBg3r88cd15MgRh0+WtPcclaRp06Zp6tSpeuKJJzRp0iTt2rVL58+fV3Z2tpYvX66goCBlZWXpk08+0Q033FBsfXvGRmVV3rGMo5R1zFzS8d69e7fuu+++Yo9gtXqfAHs4ckxVlnawPNdHWccF1/t/LHd3dy1cuFAnTpzQmDFjtHfvXmVnZ+s///mPXnrpJfXq1UsTJkwo8/aqA/qF4ugXUFmaNGmi2NhY7d+/X9OnT9fSpUvVvn17jRs3Tjt37rQ6HiBJat26tTZs2KCQkBDdddddio2NVX5+vtWxAAAAAMA5GQBwEpJMQkKCw7a3dOlSI6nYKzU11fzjH/8o/HeLFi3MF198YW6//XZTt25d4+npaQYMGGA2btxYZHvbt2830dHR5ne/+53x8vIyDRo0ML179zYLFiww+fn5DstdwNHHo0CdOnWKHZN//OMfJjU1tdjy5557rjDLla8RI0YUbi8gIMC0aNHC7N692wwbNsx4e3tf9RgaY0x2drZ55JFHTLNmzYynp6cJCgoyaWlppnv37oXbnzx5cmH57777zvTv39/UqVPHtGrVyrzxxhvX3Jervb799ltz7NgxEx0dbVq1amVcXV1NkyZNzIMPPmimTJlSWK579+7FMj/66KNGkvn888+velxPnDhhJk2aZG644Qbj6upqGjVqZIYOHWpWr15dWKakY1yRXXl4eLgJDw+vsO2jcpW3Pq92DV2rjfzxxx9NrVq1jM1mM19//bWjd8UYY8zx48fNxIkTTbt27Yyrq6vx8fExw4YNM2vXri1W1t52xpHXo73txrXarLLud1mzVXa/dK3zYs+ePWbUqFGmXr16xsvLy/Tt29d8/vnnZuDAgcbLy6vYtspSRwXsOYfHjh1b6nr2ZLha35iWllZs+UsvvWQ2bNhQbPmf//xnu45zSkrKVfuyBQsW2LUtY+wfT1y+fNls3LjRPP3006ZXr16mefPmxsXFxXh7e5sePXqYv//97+bMmTOF5a8cU115jEqrn99eC82aNTNjxowxGRkZxpir1295xyv2nqMF0tLSzAMPPGDatGlj3NzcCo/D9OnTTXZ2donr2NNmVdRYxlHnbnnGzL893p6eniYwMNAsX77cDBo0qHB7Dz/8sDHG/na2LBISEip0jIXqrbznh6PHVKW1g8bYd33YMy4orY8sq82bN5thw4YZHx8f4+bmZm6++WYTGxtrzp49W67tXc//X95+++0S6+H06dNFypXU7jZp0qTMn0O/UD37BXvHQ6jazp8/b959913TsWNHI8n069fPLFu2zOpYQKF58+YZV1dXExISctW+AQAAAABQbok2Y4wRADgBm82mhIQEjR492uooVUJ1OR5du3bV8ePHdfDgQaujVJi3335bb7zxRuGjR6uLiIgISVJSUpLFSeAINbk+a0I746xuvvlm5eXlaf/+/VZHqbGqy3jCKhVxjtJmWS8xMVGRkZHi6xKUhPOj6nLW8S79gvUYDzknY4yWL1+uOXPmaM2aNerWrZtiYmI0duxY1a5d2+p4qOE2bNig0aNHy8fHRx999JFuueUWqyMBAAAAgLNI4jHcAABUsLlz52rSpElWxwCAKikrK0sNGjTQxYsXiyzPzMzUvn37KuSR4IA9OEcBAACcj81mU0hIiFavXq1t27apY8eOGj9+vPz9/RUXF6e8vDyrI6IG69+/v9LT0+Xr66vevXvro48+sjoSAAAAADgNJksCAOBgCxcu1N13363c3FzNnTtXp06d4g4UAHANp06dUnR0tA4cOKCzZ8/qiy++UGRkpOrVq6fnn3/e6ngA5ygAAIAT69atm+Lj47Vnzx4FBwdr6tSpatu2rWJjY3Xy5Emr46GGatGihdavX68xY8YoPDxcU6ZMUX5+vtWxAAAAAKDaY7IkAMASM2fOlM1m044dO3To0CHZbDZNmzbN6lgOk5ycLF9fX/3rX//S4sWL5eLiYnUkwFI2m80hr9jY2DJ/prO3M5WhMuqtadOmWrNmjbKzs3XbbbfJ19dXoaGhuummm/TFF1/ohhtuqLwdrqIcfW3APpV1jtJmAaju6K8ci34BqHzt27dXXFycMjMz9dhjj+mf//yn2rRpo5iYGP30009Wx0MN5O7urvnz5+udd97RnDlzFBwcrFOnTlkdCwAAAACqNZsxxlgdAgAcwWazKSEhgTv4/X8cD1yviIgISVJSUpLFSeAI1CeA8mA8gZooMTFRkZGR4usSlITzo+pivIuKwnio5srNzdVbb72lV199VVlZWRo1apSeeeYZ9ejRw+poqIG+/PJLhYWFycXFRR999JG6dOlidSQAAAAAqI6SuLMkAAAAAAAAAADAFerWrauYmBjt27dPCxcu1LfffqvAwEAFBQUpJSXF6nioYbp166b09HS1bdtWvXr10rvvvmt1JAAAAAColpgsCQAAAAAAAAAAUAJXV1eNGzdO33zzjTZs2CBfX1+FhoaqW7duio+P16VLl6yOiBqiYcOGWrVqlWJiYvTggw8qOjpaFy9etDoWAAAAAFQrTJYEAAAAAAAAAAAoRcFdJbdt26ZOnTpp/Pjx8vf3V1xcnM6ePWt1PNQALi4uevnll/X+++9r0aJFGjRokLKysqyOBQAAAADVBpMlAQAAAAAAAAAAyqjgrpIZGRkKCQnR1KlT1bZtW8XGxurEiRNWx0MNcM8992jTpk06dOiQevTooS1btlgdCQAAAACqBSZLAgAAAAAAAAAA2OmGG25QXFycMjMz9fjjj+uf//yn2rRpo+joaO3du9fqeHByAQEBSktLU6dOnTRw4EAtWLDA6kgAAAAAUOXZjDHG6hAA4Ag2m83qCIDTCQ8PV1JSktUx4AARERFasmSJ1TEAAKg2+LoEJUlMTFRkZKTVMQBUsoSEBI0ePdrqGKgGcnNz9dZbb+m1117TwYMHddddd+mFF15QYGCg1dHgxIwxeuWVV/Tss89q7Nixmjdvnjw9Pa2OBQAAAABVUZKL1QkAwJEmTpyoPn36WB0DkiIjI6mPam7WrFlWR4CD9e7dW0899ZTVMYAap6A95foDqofU1FTNnj3b6hio4hISEqyOgApQcP1Tv7gSE6Rhj7p16yomJkaPP/64kpOT9corr6hnz57q16+fJk+erJCQEKsjwgnZbDZNnjxZHTt21P3336/du3frww8/VJs2bayOBgAAAABVDpMlATiVPn368Jf+VURkZCT1Uc1xR0nn07JlS65JwAIF7SnXH1B9MFkSpaFNd16zZ8+mflEEkyVRHq6uroqIiFB4eLhWrlypl19+WaGhoerXr5+mTJmiESNG8JQcOFxwcLC2bt2qsLAwBQYGavHixbrjjjusjgUAAAAAVUotqwMAAAAAAAAAAAA4G5vNprvuukv//e9/tXHjRvn6+io0NFRdunRRfHy8Ll26ZHVEOBl/f3+lpqZqwIABGjZsmGbMmGF1JAAAAACoUpgsCQAAAAAAAAAAUIH69eunlJQU7dixQ7feeqsefvhh3XTTTYqLi1NeXp7V8eBEvL29lZiYqOnTp+u5557Tvffeq7Nnz1odCwAAAACqBCZLAgAAAAAAAAAAVILOnTsrPj5eGRkZCg0N1dSpU9W2bVvFxsYqOzvb6nhwEjabTZMnT9bq1au1du1a9e3bVz/88IPVsQAAAADAckyWBAAAAAAAAAAAqETt2rVTXFycMjMz9dhjjykuLk6tW7dWTEyMjhw5YnU8OInbb79d6enpcnV1VWBgoD755BOrIwEAAACApZgsCQAAAAAAAAAAYIHGjRsrNjZW+/fv14svvqikpCS1a9dO48aN0/fff291PDiBVq1aacOGDRo5cqSGDx+uKVOmKD8/3+pYAAAAAGAJJksCQBnk5ubqpptuUnBwsNVRAABVBH0DAACwCuMQAHA+9erVU0xMjH788UfNmTNHn3/+uW655RaNGzdOu3fvtjoeqjkPDw/9+9//1ty5c/Xaa69p1KhRysnJsToWAAAAAFQ6JksCQBkYY5Sfn18t/uK2bt26CgoKsjpGtWf1cbT68wGUjr4BcG5WXzdWfz6Aqo1xCK6H1XVi9ecDVZ27u7uioqL0/fffa+HChUpPT1fnzp0VEhKiLVu2WB0P1VxUVJTWrVuntLQ09ezZU7t27bI6EgAAAABUKiZLAkAZeHt7a9++ffr444+tjgKghjt27Jjefvtt/vq/CqBvAACg+rp48aLeeOMNHTt2zOoo5cI4BACcn6urq8aNG6edO3cqOTlZx44dU58+fRQUFKSUlBSr46EaCwoKUnp6uho0aKA+ffroww8/tDoSAAAAAFQaJksCAABUIzk5ORo/frwaNWqkkSNHasmSJcrLy7M6FgAAQLVy6dIlPfnkk2rWrJmGDBmi+Ph4/fLLL1bHAgCgmFq1ahXeVXLDhg3y9fVVaGiobr31VsXHx+vy5ctWR0Q11KJFC61fv14PPfSQIiIiNGXKFM4lAAAAADUCkyUBoBTJycmy2WyFr3PnzpW4PDMzU5GRkapfv778/PwUHBysffv2FW5n5syZhWVbtmyptLQ0DRo0SN7e3vLy8tLtt9+uTZs2FZafPn16YfkrH0+1atWqwuUNGzYstv0zZ85o06ZNhWVcXFwq4ShZ48SJE5o0aZLat28vNzc3+fr6avjw4frss88Kyzj6OFKPqCouXryoFStWaPTo0WrYsKHuv/9+rVq1SpcuXbI6Wo1A3wBUDYwFAFyvy5cva926dXrooYfUqFEjhYWFaenSpYV9e1XEOKRmoI8DUJKCu0p++eWX6ty5s8aPH68OHTooLi5O58+ftzoeqhl3d3fFxcXp3Xff1Zw5cxQcHKyTJ09aHQsAAAAAKpYBACchySQkJFTY9keOHGkkmby8vBKXjxw50mzevNnk5uaa1atXG09PTxMYGFhsOwEBAaZOnTqmT58+heXT0tJMly5djJubm1m/fn2R8nXq1DH9+vUrtp3u3bsbPz+/YsuvVr7A7bffbho0aGBSU1PLuuvlUtH1ceTIEdOuXTvTpEkTk5KSYnJycsyePXtMWFiYsdlsZsGCBUXKO/o41oR6DA8PN+Hh4RW2fZRPRkaGkVTs5eLiYiQZb29vc//995vVq1eb/Pz8wvWoz4pB34Cy4PqrGIwFuG4rSkJCguHrEud39uzZq46pbDab8fLyMvfdd59ZtmyZuXDhQuF6Ven8YBzieFWlfunjqs45YUzFf78BXI+9e/eaqKgo4+rqalq3bm1mz55tzpw5Y3UsVEPbtm0zbdu2Na1btzZpaWlWxwEAAACAipLInSUBwEEeeeQR9enTR3Xq1NHgwYM1YsQIpaWl6fjx48XKnjlzRm+++WZh+R49eui9997ThQsXFBMTU0cHtyUAACAASURBVKE58/PzZYyRMaZCP6eiTZ06VT/++KNmz56t4OBg1atXT/7+/nr//ffVrFkzTZgwQT///HOFZqAeUZUU3FHy9OnTSkhI0JAhQ9S0aVPFxMRo48aNFqeruegbgIrDWIDrFqgIly5dkjFGZ8+e1eLFixUaGqpGjRopOjpaGzdurFbXHOOQ6os+jnMCKKsbb7xR8+bN0969ezVq1Cg9++yzatOmjWJjY7lDIOzSrVs3paWl6aabblL//v31zjvvWB0JAAAAACoEzzgBAAcJDAws8u9WrVpJkg4fPlzksVOSVKdOHXXt2rXIss6dO6t58+basWOHjhw5ombNmlVIzvXr11fIdivb0qVLJUkjRowostzd3V2DBg3Sf/7zH33yyScaN25chWWoCfWYkZGh0aNHV8pnoWxyc3NLLXPhwgVJ0tGjR/Wvf/1Lc+bMUd26ddWmTRv98MMPuuGGGyo6Jv4/+gag4jAWWF8h28X/YQzk3C5fvlxqmYI/RsnJydHbb7+t+fPnq0GDBpKkXbt2qWPHjhWa8XoxDqm+6OPWV8h2AWfWpk0bxcXFadq0aXrjjTc0Z84cvfrqqxo/fryeeeYZtWjRwuqIqAYaNmyoVatWadq0aXrooYeUmpqq119/Xa6urlZHAwAAAACH4c6SAOAgPj4+Rf7t5uYm6dc7IvxW/fr1S9xG48aNJf06wQlXd/78eeXk5MjDw0Pe3t7F3m/SpIkkKSsrq0JzUI8ASkPfAFQMxgIAUDrGIdUTfRyA69GoUSPFxsYqMzNTzz33nBISEnTjjTfq8ccf148//mh1PFQDLi4uevnll/XBBx9o0aJFGjRoUIX3OQAAAABQmbizJABY4MSJEzLGyGazFVle8GNDwY8PklSrVq3Cu8RdKTs7u8Rt/3abzsjd3V0+Pj7KycnR6dOni/2AVPA4sqZNmxYuq4jjWBPq0d/fX4mJiVbHwBX27t2rlStXXrOMm5ubLly4oMaNG2vMmDGKiIhQXFycJHFXySqsJrQpgKMwFkBlYAzk3PLy8uTl5XXNMi4uLrp06ZJ8fHwUGRmp+++/X4cOHdKYMWOq/F0l7UV7VnXQxwFwhHr16mnKlCmaOHGi/v3vf2vmzJlasGCB7r33Xk2dOlU333yz1RFRxY0ZM0a33HKLwsLC1KNHDy1ZskS9e/e2OhYAAAAAXDfuLAkAFjh37pzS0tKKLPvmm290+PBhBQQEFHmUVbNmzXTo0KEiZbOysvTTTz+VuG0vL68iP1J06NBB8+fPd2D6quHuu++WJK1YsaLI8vPnz2vt2rXy9PTUsGHDCpdXxHGkHlGVuLj8+jcw3t7eioyM1OrVq5WVlaW4uDgFBQVZnA5lQZsC2IexAICK4OLiIpvNJi8vL40ZM0bLli3TsWPHNG/ePAUFBTntJC/as6qFPg6Ao3h4eOjxxx/X999/r/fff19paWnq2LGjQkJClJ6ebnU8VHFdunTRl19+qR49emjgwIGFf4gLAAAAANUZkyUBwAI+Pj569tlnlZqaqjNnzig9PV333Xef3Nzcin3pNHToUB0+fFivv/66cnNztW/fPsXExBS5i8OVunXrpoyMDB04cECpqan64Ycf1L9//8L377jjDvn5+WnLli0Vuo8V7aWXXlK7du00ceJELV++XKdPn1ZGRobuvfdeHTlyRHFxcYWPJ5Mcfxwl6hHWq127dpEf81euXKmTJ08qPj5egwcPdtof850VbQpgH8YCXLeAo9SqVUu1atWSm5ubQkJC9OGHH+rEiRP6z3/+o5CQELm6ulodscLRnlUt9HGcE4Cj1apVSxEREdq5c6eSk5OVlZWlwMBADRkyhGsN11SvXj0tXbpUf/nLXzRp0iSNGzdOeXl5VscCAAAAgPIzAOAkJJmEhASHb3fp0qVGUpHX2LFjTWpqarHlzz33XGGWK18jRowo3F5AQIBp0aKF2b17txk2bJjx9vY2np6eZsCAAWbjxo3FPj87O9s88sgjplmzZsbT09MEBQWZtLQ0071798LtT548ubD8d999Z/r372/q1KljWrVqZd54440i2+vfv7/x9fU1mzdvdvixulJF1ceVjh8/biZOnGjatWtnXF1djY+Pjxk2bJhZu3ZtsbKOPo41oR7Dw8NNeHh4hW0f5ZORkWEkGVdXVxMaGmqSkpLM2bNnS12P+nQs+gbYg+uv4jAW4LqtCAkJCYavS5zf2bNnjSRTu3ZtM3jwYPPuu++anJycUterCucH45CKUxXqtwB9XNU4J4ypnO83ACusXr3a9O7d20gy/fr1M8uWLbM6Eqq45cuXm/r165tu3bqZzMxMq+MAAAAAQHkk2owxxgFzLgHAcjabTQkJCRo9erTVUa6pa9euOn78uA4ePGh1lApVXeqjvGpCPUZEREiSkpKSLE6CKx09elQrVqxQWFiYfHx8yrwe9Vm11YQ2pSbj+nNOXLfOKzExUZGRkeLrEud28eJFzZ8/X6NHj1ajRo3KvJ4znh+0Z//HGeu3PDgninL27zeAjRs3asaMGVq+fLn69eunyZMnKzg4mKdVoER79+5VWFiYsrKytHjxYg0aNMjqSAAAAABgjyQeww0AAFCNNG7cWA899JBdEyUBAABQlKurq5544gm7JkoCAOCMgoKClJKSoo0bN8rX11cjR47Urbfeqvj4eF2+fNnqeKhibrrpJqWmpmrgwIG68847NWPGDKsjAQAAAIBdmCwJAAAAAAAAAABQg/Xr108pKSn66quv1KVLF40fP14BAQGKj4/XpUuXrI6HKqRu3bpKTEzU9OnT9dxzz+mee+7RmTNnrI4FAAAAAGXCZEkAqCQzZ86UzWbTjh07dOjQIdlsNk2bNs3qWLAT9QjAkWhTgOqH6xaAs6A9w29xTgCQVDhBcseOHerWrZsefvhh+fv7Ky4uTufPn7c6HqoIm82myZMna82aNVq3bp369u2rffv2WR0LAAAAAErFZEkAqCRPP/20jDFFXtOnT7c6FuxEPQJwJNoUoPrhugXgLGjP8FucEwCu1LFjR8XHxysjI0MhISGaMmVK4aTJvLw8q+Ohihg4cKDS09Pl7u6ubt266X//93+tjgQAAAAA18RkSQAAAAAAAAAAABTTrl07xcXFac+ePRo1apSmTp2qtm3bKjY2Vjk5OVbHQxXQqlUr/fe//1V4eLjuvvtuTZkyRfn5+VbHAgAAAIASMVkSAAAAAAAAAAAAV9W6dWvFxcUpMzNTjz32mGbPnq327dsrNjZWp06dsjoeLObh4aG33npLc+fO1axZszRy5EhlZ2dbHQsAAAAAimGyJAAAAAAAAAAAAErVuHFjxcbGat++fXryySc1Z84ctWnTRjExMcrKyrI6HiwWFRWldevWadu2berZs6d27dpldSQAAAAAKILJkgAAAAAAAAAAACgzPz8/xcbGav/+/XrxxReVlJSkG2+8UTExMTp06JDV8WChfv36KT09XQ0bNlTv3r21ZMkSqyMBAAAAQCEXqwMAgCOlpqZaHQFXoD6qt4MHD6ply5ZWx4ADHTx4UImJiVbHAGqcgwcPShLXH1BNMIZFWdCmO6eC65/6BYCy8/b2VkxMjB555BEtXLhQM2fO1Ny5cxUZGakXXnhBN954o9URYYHmzZvrv//9r6ZNm6bRo0frmWee0d/+9jfVrl3b6mgAAAAAajibMcZYHQIAHMFms1kdAXA64eHhSkpKsjoGHCAiIoK/5AcAwA58XYKSJCYmKjIy0uoYACpZQkKCRo8ebXUMoFq4cOGCFi9erOnTpyszM1NjxozRs88+q5tvvtnqaLDIe++9p6ioKPXq1UsJCQlq3Lix1ZEAAAAA1FxJ3FkSgFPhy+uqr+DHRX58rvoiIiKsjgAHY/IrcP1sNhvjDcDJMRkOZcH/Z2qegv8fMZ6uefjjXMA+bm5uGjdunO655x4tWrRIL730kjp16qTRo0fr2WefVadOnayOiEp23333qWPHjgoLC1OPHj304YcfKjAw0OpYAAAAAGqoWlYHAAAAAAAAAAAAgPNwdXXVgw8+qN27d+u9997Tzp07FRAQoPDwcO3YscPqeKhkt956q9LS0tShQwfddtttevvtt62OBAAAAKCGYrIkAAAAAAAAAAAAHK527doaM2aMduzYoeTkZO3fv19du3bVkCFDlJaWZnU8VKKGDRtq1apViomJ0cMPP6zo6GhduHDB6lgAAAAAahgmSwIAAAAAAAAAAKDC2Gw2hYSEKC0tTatXr9Yvv/yinj17asiQIdq6davV8VBJateurZdfflkffPCBFi1apEGDBunIkSNWxwIAAABQgzBZEgAAAAAAAAAAAJVi8ODB2rp1q1avXq3c3Fz17t1bQUFB+uyzz6yOhkoSGRmp9PR0HT9+XD169FBqaqrVkQAAAADUEEyWBAAAAAAAAAAAQKUaPHiwUlNTtWHDBrm7u+uOO+5QUFCQ1q1bZ3U0VIKbb75ZW7duVc+ePTVw4EDFxcVZHQkAAABADcBkSQA11nvvvSebzVb4qlu3bonl9u/fr9DQUP3yyy86fvx4kXVuvfVWnTt3rtg6vy1ns9nUo0ePit4lh5gyZYoSEhKu+t6V+9S7d+9KyURdlawq1hXgzGpCuwJYoab132Xx8ccfy9/fXy4uLlctc61xAIDqizaxuJrSJlL3xdWUugcgBQUFae3atdqwYYM8PDw0aNAgBQUFKSUlxepoqGD16tXTRx99pL/+9a+aNGmSxo0bp7y8PKtjAQAAAHBiTJYEUOP961//kjFGubm5xd7bvn27evTooaFDh6pevXpq2LChjDFKS0srfH/ixInF1isol5qaKj8/PxljlJ6eXuH74giPPvqopk6dqueff77Yey+//LKMMTLGqHbt2pWejboqqirXFeCMakK7AlS2mth/X8u+ffsUGhqqqVOn6ueff75m2WuNAwBUT7SJRdWkNpG6L6om1T2AooKCgrRmzRpt2LBBvr6+Cg0NZdJkDWCz2TR58mQtW7ZMKSkp6tevnzIzM62OBQAAAMBJMVkSAK7il19+UUhIiP7nf/5HTz75ZLH33d3d5efnp3nz5umDDz6wIGHFaN++vZYuXaq//e1vSkxMtDpOmVBX1aeuAGfhrO0KUJlqav99Lc8//7z69u2rbdu2ydvb+5plGQcAzoU2sbia0iZS98XVlLoHcHUFEyQ3bdpUOGmyb9++SklJkTHG6nioICNGjNAXX3yhixcvKjAwUGvWrLE6EgAAAAAnxGRJALiKV155RVlZWXrhhRdKfN/Dw0OLFi1SrVq1FB0drYyMjEpOWHECAgIUHh6uP/7xj7p06ZLVcUpFXVWfugKchTO3K0Blqcn999W89dZbmjJlyjUfN3olxgGA86BNLK6mtInUfXE1pe4BlK5gguTmzZvl5+enkSNHqlu3bkpKSmLSpJO66aablJqaqttvv1133nmnZsyYQV0DAAAAcCgmSwJACYwxWrhwoXr16qXmzZtftdywYcM0bdo0nT59WhERETp37lwlpqxYd999tw4ePKgVK1ZYHeWaqKvqU1eAs3HmdgWoaPTfJfP09LR7HcYBQPVHm1iymtAmUvclqwl1D8A+ffr0UUpKir766ivddNNNioyMVNeuXZk06aTq1q2rhIQEvfrqq5o2bZruvfdenTlzxupYAAAAAJwEkyUBoAQ7duzQzz//rICAgFLL/vnPf9bQoUP19ddf6w9/+EOZtn/ixAlNmjRJ7du3l5ubm3x9fTV8+HB99tlnhWWSk5Nls9kKX5mZmYqMjFT9+vXl5+en4OBg7du3r9i2jx07pgkTJqht27Zyc3NTo0aNFBYWpu3bt5f9AEjq2rWrJOmTTz6xa73KRl1Vn7oCnJGztitARaP/dhzGAUD1R5voONWtTaTuHae61T2A8gkICFBiYqK2b9+uDh06KDIyUgEBAYqPj9fly5etjgcHstlsiomJ0Zo1a7Ru3Tr16NFD3333ndWxAAAAADgBJksCQAl27twpSWrZsmWpZWvVqqVFixapVatWWrhwoRYtWnTN8llZWQoMDNT777+vuLg4HT9+XFu3bpWXl5cGDRqkhQsXSpJGjRolY4xGjhwpSZo4caImTpyoQ4cOKSEhQevWrdM999xTZNtHjhxRYGCgEhMT9eabb+rkyZNav369Tp48qT59+ig1NbXMx6BFixZFjkVVRV1Vn7oCnJGztitARaP/dhzGAUD1R5voONWtTaTuHae61T2A69OlSxclJibq66+/VteuXTV+/HgmTTqpAQMGKD09XfXq1VOvXr2UnJxsdSQAAAAA1RyTJQGgBEeOHJEk+fj4lKl8w4YNlZiYKFdXV0VHR1/zr1ynTp2qH3/8UbNnz1ZwcLDq1asnf39/vf/++2rWrJkmTJign3/+udh6jzzyiPr06aM6depo8ODBGjFihNLS0nT8+PEi296/f79ee+013XXXXapbt646duyoxYsXyxhT5rtPSFK9evVks9kKj0VVRV1Vn7oCnJUztitARaP/dhzGAUD1R5voONWtTaTuHae61T0Ax+jUqZPi4+O1Y8cOdevWTePHj1eXLl2YNOlkWrVqpc8//1zh4eEKCwvTlClTlJ+fb3UsAAAAANUUkyUBoATnzp2TJLm6upZ5nd69e2vmzJk6c+aMIiIilJeXV2K5pUuXSpJGjBhRZLm7u7sGDRqkvLy8Eh8bFRgYWOTfrVq1kiQdPny4cFlycrJq1aql4ODgImWbNm2qjh07atu2bTp48GCZ98nFxeWq+1FVUFe/qg51BTgzZ2xXgIpE/+1YjAOA6o020bGqU5tI3TtWdap7AI7VsWNHxcfHa8+ePQoKCtLDDz8sf39/zZ8/X5cuXbI6HhzAw8NDb731lubOnatZs2YpNDRU2dnZVscCAAAAUA0xWRIASuDh4SFJunjxol3rTZgwQZGRkdq5c6eefPLJYu+fP39eOTk58vDwkLe3d7H3mzRpIunXx2X91m/vNOHm5iZJhX9FW7Dt/Px8+fj4yGazFXl9+eWXkqS9e/eWeX8uXbokT0/PMpe3AnX1q+pQV4Czc7Z2BahI9N+OxTgAqN5oEx2rOrWJ1L1jVae6B1Ax2rdvr3nz5ikjI0ODBw/WE088waRJJxMVFaV169bpyy+/VM+ePbVz506rIwEAAACoZlysDgD8P/buPC6qcvEf+GeQHXGBFERcQEWDvGhoKoIruBSIEgOWhpULXTMxr1fMJTE3vNlCZQGVGd9rCkNpDoaJ3ixQSDCXxIQCNVFQ3BAEkeX5/XF/zJVAZYaBMwOf9+s1f/jMOWc+5zznPM/jzMM5RLqoW7duAIDi4mK11/3ss89w4sQJbN26VfXDRy0TExN07NgRxcXFKCkpqfejRe0jsGxtbdX+XBMTE3Tq1AmlpaUoLy+HoWHTmvjbt29DCKE6FrqKdaU/dUXUFrSWdoWoubH/1h6OA4j0H9tE7dG3NpF1rz36VvdE1LwcHBwQHR2Nf/7zn9iwYQMWLFiATZs2Yfny5QgODlbrjr6ke0aOHIkTJ04gKCgII0aMwNatWyGXy6WORUREREREeoJ3liQiasATTzwBABo9Nqp9+/b4+uuvYWFhgY8//rje+9OmTQMA7N27t055RUUFDh48CDMzM0ycOFGD1IC/vz+qqqpw+PDheu9t2rQJPXv2bPRfUV+6dAnA/46FrmJd6U9dEbUFraVdIWpu7L+1h+MAIv3HNlF79K1NZN1rj77VPRG1jL59+2Lr1q34/fff4ePjgwULFqBv376IjIxERUWF1PGoCbp27Yrk5GS8+uqrCAoKQmhoKL/zICIiIiKiRuFkSSKiBri6uqJr1644efKkRuu7uLggOjq6wfc2btwIBwcHLFq0CImJiSgpKUFOTg6ef/55FBQUIDIyUvVILHVt3LgRffr0wcsvv4ykpCQUFxfjxo0biI6OxltvvYXNmzfXuevDzJkzIZPJcO7cuXrbOnHiBABgwoQJGmVpKawr/akrorZCX9oVIimx/9YejgOI9B/bRO3RtzaRda89+lb3RNSyevXqhcjISJw9exaTJk3C0qVL8fjjj+Pzzz9HZWWl1PFIQ4aGhoiIiEBsbCw+++wzeHl54erVq1LHIiIiIiIiXSeIiFoJACIuLq7Ry//f//2fACA++eSTBt9fvny5MDQ0FJcuXVKVFRUVCQB1Xm5ubg/8jL///e/C2tq6Xvm1a9fEokWLhIODgzAyMhIdO3YUEydOFAcPHlQtk5aWVu+zVqxYodrX+1/PPPOMar3r16+LxYsXC0dHR2FkZCS6dOkiJkyYIJKTk+vlGDdunGjfvr2oqqqq955cLhfdu3cX9+7da3Df2rVrJ4YNG/bAfX+QuLg4oW73w7qSpq4CAgJEQECA2uuRbmJ9Nl1ra1dIM+qON+jB2nr/3RClUlnvs2tfn376aYPrPGocQOrTZLxKbUdznR9sE+vTtTaxucbTrPv6dK3uOf4jan0uXLggFi5cKExMTESvXr1EdHS0qKyslDoWNcEvv/wiHBwcRI8ePcTRo0eljkNERERERLorXiaEEI+aUElEpA9kMhni4uIQGBjYqOX//e9/44UXXsAnn3yCV155pd77xcXFcHFxgY+PD6KiorQdV3K3bt2CnZ0dZsyYgU8//bTOeydPnsTgwYPx1VdfYfr06Q2ub2hoiCFDhiA9PV2tz42Pj0dQUBDU6X5YV9LUlVwuBwAoFArNgpNOYX0SaYe64w16sLbcf2tLY8YBpD5NxqvUdjTX+cE2semau01srvE0677pmrvuOf4jar3+/PNPvPPOO4iOjoatrS2WL1+Ol19+mU9l0FPXr1/Hc889h5SUFGzZsgUvv/yy1JGIiIiIiEj3KPgYbiKiB+jYsSOUSiUSEhKwZcsWqeNolRACCxcuRIcOHbB27do67+Xl5cHf3x9vvPGG3vzozrrSn7oiIiKq1Vb7b23hOICodWGb2DT63Cay7ptGn+ueiKTXs2dPREZGIjs7G35+fli4cCH69euHmJgYVFVVSR2P1GRtbY2kpCSEhoZizpw5CAkJwb1796SORUREREREOoaTJYmozfv73/8OmUyG9u3b13tv8ODByMzMRFJSEm7fvi1BuuZx5coV5OXl4eDBg7C1ta3zXnR0NNavX4/169fXW2/ZsmWQyWSQyWSorq5uqbgqrCv9qSsiIqLGaIv9t7Y8bBxARPqJbaLm9L1NZN1rTt/rnoh0Q69evVSTJqdMmcJJk3qsXbt2iIiIwK5du7Bz506MGzcOBQUFUsciIiIiIiIdwsdwE1Grwcci6Qc+1lB/8LHNrQvrk0g7ON4gav04XqWH4fnRdnE83XbJZDIMGDAAc+fOxbRp0+Dg4CB1JCJqZhcuXMCGDRuwdetW2Nvb44033uDjufVQdnY2pk2bhuLiYigUCri7u0sdiYiIiIiIpMfHcBMRERERERERERERPUiXLl2wbt06ODo6YvDgwVizZg1OnToldSwiaia9evVCdHQ0/vjjD0yYMAGvvvoqnJyceKdJPdO/f3+kp6dj2LBhGD16NDZt2iR1JCIiIiIi0gGcLElERERERERERERE9AALFixAUVERUlJSMGrUKHz66adwdXWFg4MDQkNDceDAAU6gImqFaidN/v777/D29uakST3UoUMHfP3111i3bh2WL1+OF154AWVlZVLHIiIiIiIiCXGyJBERERERERERERHRQ7Rr1w4eHh6IjIxEfn4+Tp8+jVmzZiE5ORne3t7o1q0bgoODoVQqUVFRIXVcItKi3r17c9KkHpPJZAgLC4NSqcTevXvh4eGB8+fPSx2LiIiIiIgkwsmSRERERERERERERERqcHFxQXh4OM6cOYPc3FysXLkSeXl58PPzg5WVFXx9fREbG4vbt29LHZWItKShSZP9+/dHTEwMqqurpY5Hj/D000/j6NGjqKqqwpAhQ5CcnCx1JCIiIiIikgAnSxIRERERERERERERacjR0RGhoaFITU3F+fPn8d577wEA5syZAxsbG3h7eyMyMhKFhYUSJyUibaidNJmTkwMvL686d5rkpEnd1rdvXxw5cgTjx4/H5MmTsWnTJgghpI5FREREREQtSCb4vwAiaiVkMhmGDx8Oe3t7qaPQQ+Tn5yM9PR0BAQFSR6FHSE9Px/Dhw6FQKKSOQlogl8tVdUpEmktISOB4g6iVqx2v8usSakh8fDyCgoL4/5k2KD09HQA4nm6DEhISEBcXh8DAQLXXvXHjBhITE5GYmIjvvvsO5eXlGDFiBHx9feHv749+/fo1Q2Iiamnnzp1DREQEtm7din79+mHZsmWYMWMG2rVrJ3U0eoiYmBgsWLAATz/9NGJjY9GhQwepIxERERERUfNTcLIkEbUacrlc6ghErc6IESOwePFiqWOQFrz77rtIS0uTOgYREZHe4B+MUEPS0tLw7rvvSh2DiFrY4sWLMWLEiCZto6ysDAcPHoRCocCePXtQXFwMZ2dnyOVy+Pr6ws3NTUtpiUgqnDSpf3766ScEBgaic+fO+Oabb/D4449LHYmIiIiIiJoXJ0sSEREREREREREREbWU6upqpKWlQaFQICEhAZcvX4aDgwN8fX0hl8vh7u4OAwMDqWMSkYby8vKwadMmfP755+jfvz/CwsI4aVKH5efn49lnn8XZs2exbds2TJs2TepIRERERETUfDhZkoiIiIiIiIiIiIhICjU1NTh+/DiUSiV27tyJ7OxsdOnSBZMmTYJcLsfEiRNhbGwsdUwi0gAnTeqPiooKLFiwAJ9//jmWLl2KDRs2cNI6EREREVHrxMmSRERERERERERERES6ICsrC4mJiVAqlThy5Ag6deoELy8v+Pj4YNq0abC0tJQ6IhGp6bfffsPatWsRFxcHFxcXhIeHY9q0aZDJZFJHo7+IiYnBa6+9Bi8vL/z73/9GfMct7wAAIABJREFU586dpY5ERERERETaxcmSRERERERERERERES65sKFC9i9ezcSExNx6NAhGBoawsvLC76+vpg6dSq6du0qdUQiUsOZM2ewZs0aJCQkwNXVFWvWrIGvr6/Usegvjhw5ArlcDnNzc+zatQtPPPGE1JGIiIiIiEh7FLyHPBERERERERERERGRjunVqxdCQ0ORnJyMgoICREdHAwAWLlwIOzs7eHh4IDIyEvn5+RInJaLGcHZ2RlxcHE6dOoW+ffvCz88Prq6uUCgUUkej+7i7u+PEiRPo0aMHRowYgfj4eKkjERERERGRFvHOkkREREREREREREREeqKsrAwHDx6EQqHAt99+i9u3b8PZ2RlyuRyBgYFwdnaWOiIRNcKvv/6KtWvXIiEhAcOGDcPy5ct5p0kdUlVVhZUrV2LTpk2YN28ePvroIxgZGUkdi4iIiIiImoaP4SYiIiIiIiIiIiIi0kd3795FamoqlEol4uPjUVhYCEdHR/j4+EAul2PkyJGQyWRSxySih/j555+xbt06JCYmYuTIkXjrrbcwbtw4qWPR/7d9+3bMmzcPQ4cORVxcHGxsbKSOREREREREmuNkSSIiIiIiIiIiIiIifVdTU4MjR44gMTER33zzDX7//Xf06NEDkydPho+PDyZNmsS7ohHpsLS0NGzYsEE1aXL9+vUYPXq01LEIwIkTJ+Dv74/Kykp8/fXXeOqpp6SOREREREREmlEYSJ2AiIiIiIiIiIiIiIiaxsDAAB4eHoiIiEBOTg5Onz6Nl19+GceOHcOUKVNga2uL4OBgKBQKlJaWSh2XiP5ixIgRUCqVSElJgbGxMcaMGQNvb29kZGRIHa3NGzRoEDIyMuDs7IxRo0bh888/lzoSERERERFpiHeWJCIiIiIiIiIiIiJqxc6dO4c9e/ZAoVAgLS0NJiYmGD9+PORyOaZMmYJOnTpJHZGI/iI1NRUrVqzATz/9BC8vL0RERMDNzU3qWG1adXU11q5di7feegtz587Fhx9+CGNjY6ljERERERFR4/Ex3EREREREREREREREbUVRURGSkpKgUCiwf/9+VFdXY/jw4ZDL5ZDL5bCzs5M6IhHd58CBA3jjjTdw7NgxPPPMM1i7di0GDRokdaw2bc+ePQgODsYTTzyB+Ph4tptERERERPqDkyWJiIiIiIiIiIiIiNqimzdv4sCBA1Aqldi9ezfu3LmDwYMHw8fHB9OnT8eAAQOkjkhE/9+BAwcQFhaGEydO4Nlnn8XatWvRv39/qWO1WdnZ2fD390dRURHi4uIwduxYqSMREREREdGjcbIkEREREREREREREVFbd/fuXSQnJyMxMRHffvstrly5AmdnZ/j6+sLHxwcjR46ETCaTOiZRmyaEQGJiIlatWoVff/0Vzz77LNavX49+/fpJHa1NKikpwYsvvog9e/Zg3bp1CAsLkzoSERERERE9HCdLEhERERERERERERHR/1RXVyMtLQ0KhQLffPMN8vPz0atXL/j5+cHX1xdjxoyBoaGh1DGJ2qyamhp8/fXXWLVqFfLy8jB9+nSsXr0affr0kTpamyOEwL/+9S8sX74czz33HGJiYmBubi51LCIiIiIiahgnSxIRERERERERERER0YNlZWVBoVBAoVDgzJkzsLa2xtNPPw25XI4JEybAxMRE6ohEbVLtpMnly5fjwoULeOmll7Bq1SrY29tLHa3NSUpKwowZM9CrVy988803cHBwkDoSERERERHVx8mSRERERERERERERETUOHl5eVAqlVAoFDhy5AjMzMwwbtw4yOVy+Pn5oWPHjlJHJGpzKisrsWPHDqxZswb5+fl48cUXsXr1atjZ2UkdrU35448/4O/vj8uXL2PHjh3w9vaWOhIREREREdXFyZJERERERERERERERKS+ixcvIikpCUqlEt9//z0MDAzg6ekJHx8fBAYGolu3blJHJGpT7t27h23btuGtt97CtWvXMGvWLKxZswa2trZSR2sz7t69i1deeQX//ve/sX79eixduhQymUzqWERERERE9F+cLElERERERERERERERE1z48YNJCYmIjExEUlJSSgrK8OIESPg6+uLadOmwcnJSeqIRG1G7aTJ8PBw3L59G7Nnz8by5cthY2MjdbQ2IyYmBgsWLMDkyZMRGxvLu+4SEREREekGTpYkIiIiIiIiIiIiIiLtKS8vx4EDB6BQKKBUKnHr1i04OztDLpfD19cXbm5uUkckahPu3LmDLVu24O2338a9e/fw+uuv4/XXX+fEvRby008/ITAwEJ06dcKuXbvw+OOPSx2JiIiIiKit42RJIiIiIiIiIiIiIiJqHtXV1UhLS4NCoUBCQgIuX76M3r17Y8qUKZDL5XB3d4eBgYHUMYlatZKSEnzwwQd45513IJPJsHTpUixYsAAWFhZSR2v18vPzERAQgDNnzuDLL7/EtGnTpI5ERERERNSWcbIkERERERERERERERE1v5qaGhw/fhxKpRJxcXE4e/YsHnvsMUyePBlyuRwTJ06EsbGx1DGJWq2SkhJ8/PHH2LhxI4yMjLBkyRKEhobC1NRU6mitWkVFBRYsWIDPP/8cS5cuxYYNGzhJnIiIiIhIGpwsSURERERERERERERELS8rKwuJiYlQKpU4cuQIOnbsCG9vb/j4+GDatGmwtLSUOiJRq3T9+nW8/fbb+OCDD2BtbY0lS5bglVdegYmJidTRWrWYmBi89tprGD9+PLZv347OnTtLHYmIiIiIqK3hZEkiIiIiIiIiIiIiIpLWhQsXsHv3biQmJuLQoUMwNDSEh4cHfHx8MH36dNjY2EgdkajVuXr1Kt599128//77sLW1xfLlyzF79my0a9dO6mit1rFjx+Dv7w9jY2N88803GDhwoNSRiIiIiIjaEk6WJKLWIz4+XuoIRK1Ojx49MGLECKljkBakpaXh4sWLUscgIiLSG4GBgVJHIB2Un5+PI0eOSB2DiFqYu7s77O3tpY7Rply/fh179+6FQqFAcnIyqqqqMHz4cPj6+uLZZ59F3759pY5I1Kr8+eefWL9+PbZu3Yp+/fph2bJlmDlzJh8V3UyKioowffp0pKWlISoqCsHBwVJHIiIiIiJqKzhZkohaD5lMJnUEolYnICAACoVC6hikBXK5HAkJCVLHICIi0hv8uoQaEh8fj6CgIKljEFELi4uL4yR6CZWVleHgwYNQKBTYs2cPiouL4ezsDLlcDl9fX7i5uUkdkajVOHfuHCIiIvD555/j8ccfx5tvvgm5XC51rFapqqoKK1euxKZNmzBv3jx89NFHMDIykjoWEREREVFrx8mSRNR6yGQyfnmtBbU//rF7oNovQjlZsnVgfRKRJji+oraI42F6GJ4fuovjXWouHA/ploqKCqSkpECpVEKhUKCgoACOjo7w8fGBXC7HyJEj+QfVRFqQlZWFNWvWICEhAcOGDcO6deswfvx4qWO1Sl999RXmzp2LIUOGID4+HjY2NlJHIiIiIiJqzRS8fz4REREREREREREREek8ExMTeHl5ITIyEvn5+UhJSYFcLse+ffvg6ekJGxsbBAcHQ6lUorKyUuq4RHrLxcUF8fHxSE9Px2OPPQYvLy94eHjgxx9/lDpaq/P888/j8OHDyM/Px5AhQ/Dzzz9LHYmIiIiIqFXjZEkiIiIiIiIiIiIiItIrBgYG8PDwQEREBLKzs3H69GnMnz8fZ86cwZQpU2BjY4PAwEDExsaitLRU6rhEeumpp56CUqnE4cOHYWxsjDFjxsDb2xvHjh2TOlqrMmjQIGRkZMDZ2RmjR4/GZ599JnUkIiIiIqJWi5MliYiIiIiIiIiIiIhIr7m4uCA8PByZmZk4d+4cVq9ejZs3b2L27Nno2rUrfH19ERMTg6tXr0odlUjvuLu74z//+Q+Sk5NRXFyMoUOHwtfXFydPnpQ6WqthZWWFffv2Yc2aNQgJCUFISAju3bsndSwiIiIiolaHkyWJiIiIiIiIiIiIiKjV6N27N0JDQ5GcnIyCggJERUUBAF577TXY2dnBw8MDkZGRuHTpksRJifSLl5cXjh49iv379+PSpUt48sknERgYiD/++EPqaK2CTCZDWFgYdu/ejbi4OLi7u+PPP/+UOhYRERERUavCyZJERERERERERERERNQqPfbYYwgODoZSqcSNGzewa9cuODo6YtWqVbC3t1fdkfK3336TOiqR3vDy8kJmZiZ27tyJkydPwtnZGcHBwTh37pzU0VoFX19fHD16FOXl5RgyZAj+85//SB2JiIiIiKjV4GRJIiLSmvbt20Mmk9V5bd68WepYGmlN+0LU3OLi4jBo0CCYmZmprpfTp09LHYuozbl58yaioqIwbtw4WFlZwczMDP369cOMGTNa9NFo1dXViIqKgru7Ozp27AgjIyPY2dnh6aefxkcffYTz58+rlt28ebOq3bC3t2+xjC0lMzMTL774Inr37g1TU1N06tQJQ4cOxVtvvYVbt241efu6Pl7RVv3u3LlTtR1TU1MtJiTSLW1lTBUVFVWv7frra/Lkyc2eY9CgQY/Mcf9r3bp1Dba7D3p99tln9T6T/QL7BZKehYUFfH19ERsbi6tXryI5ORleXl6IioqCs7Mz+vTpg9DQUKSmpkIIIXVcIp1mYGAAuVyO3377Ddu3b8eRI0cwYMAAhISEoKCgQOp4es/JyQnp6ekYNWoUJk6ciE2bNkkdiYiIiIioVeBkSSIi0prS0lIcP34cAODn5wchBJYsWSJxKs20pn0hak6HDx/Gc889hwkTJqCoqAh//PFHq5zwRK1TaWkp+vXrBx8fH6mjaMU///lPvPbaa/Dz88OZM2dw/fp1bN26FSdOnICbmxt2797dIjleeOEFvPrqq5g6dSqysrJQUlKClJQUDB48GAsXLsSQIUNUyy5ZsgRCCLi6utbbTlPrR+r6feONNzB8+HB07twZiYmJuHXrFs6dO4fVq1dj165dcHJywuHDh5v0Gbo+XnlY/apj+vTpEEJg/PjxWkpGpHs4pqrL3d29RT5HoVBACKF6hYSEAACSkpLqlAcFBQFouN1t6DV69Oh6n8V+gf0C6R5TU1N4eXmpHsedkpICuVyO7777Dp6enujduzdCQkKgVCpRWVkpdVwinXX/pMkPP/wQiYmJ6NevH5YtW4abN29KHU+vWVpaQqFQYN26dVixYgVmzJiBsrIyqWMREREREek1TpYkIqI2q3379vDw8JA6BpFOe9R1UvsDc2hoKNq3b48+ffrg4sWLeOKJJ1owZevBdkn7HnZMhRCoqalBTU2NWuvpspdffhmhoaGwtbWFubk5PD098dVXX6G6uhpLly5t9s/PyMjAjh07MHv2bCxduhT29vYwNTVFnz59sH79evz9739v9LYeVj8tsX5TrFu3DhEREdiyZQvee+89PPHEEzA1NUXnzp3h4+ODw4cPo2fPnpg8eTLOnj3b4vmIqOW1pjGVNvrIB000zMnJgYmJCebOnaultLqB/QKR7mvXrh08PDwQERGB33//HadPn8ZLL72EY8eOYcqUKejWrRuCg4OhUChw584dqeMS6SQjIyPMmzcPeXl5ePfdd7Ft2zb06tULy5YtQ3FxsdTx9JZMJkNYWBgSExORlJSEkSNH8nHnRERERERNwMmSRERERKSxixcvAgCsra0lTkKkPktLS+Tm5uK7776TOopWfPbZZ4iOjq5X7urqCjMzM+Tm5jb7owSzsrIAAP3792/w/cDAwEZvq6n1I1X9/vHHH1izZg2efPJJ1R3K/src3BzvvfceSkpKsHDhwhbNR0S6qS2Nqfr27QtPT88G3/vwww8xdepU2NraNnuOEydOICAgoFHL7ty5EytXrmz0tg8dOoQ5c+YAYL9ApK9cXFwQHh6OzMxM5ObmYtWqVcjLy0NQUBC6du2qepQ3J4AR1WdiYoJ58+bh999/x5IlSxAVFYW+ffvinXfeQXl5udTx9NakSZNw4sQJGBoaYujQodi/f7/UkYiIiIiI9BInSxIRERGRxqqrq6WOQESPcOfOHZSXl+OJJ56ATCZr1s+ysbEBACQnJzf4/ujRo3Ht2rVmzSC1qKgoVFVVQS6XP3Q5T09P2NnZITk5GXl5eS2Ujoh0VVsaU3l5eeEf//hHvfKSkhJ8+eWXmD9/vgSptGPBggVYtGhRnTL2C0T6z9HREaGhoUhNTcWVK1fwySefAADmzp0La2treHh4IDIyEpcvX5Y4KZFusbS0xJtvvom8vDzMmTMHq1evRr9+/RATE8NH22uoZ8+eSElJga+vL55++mmEh4dL8jQFIiIiIiJ9xsmSREQAioqKsHDhQvTu3RvGxsbo0qUL/P39ceLECdUyHh4ekMlkqtfMmTMB/PeHnvvLb926BQCoqqpCXFwcvL29YWtrCzMzMwwcOBCRkZF1vsDYvXt3nfXPnz+PoKAgdOrUCdbW1vDx8UFubm69zGfPnsXUqVPRsWNHmJub46mnnkJiYmKdPLV3spCauvu4efNm1bL29vbIyMjA+PHjYWlpCXNzc4wdOxaHDx9WLb9u3TrV8vc/Dm7fvn2q8scee6ze9u/cuYPDhw+rljE0NNR4HxtT37du3apzHGQyGdatW6da//7y++9w0pjz86/HODs7G4GBgbC2tlaVtfbJKaRdj7pOas+5b7/9FgBgZmYGmUyG4cOHt0i+69evY/HixejTpw+MjY3RuXNnTJ48GT/88EO9fWhsW1JLm9dcY/uCxrZLjdnvxmarqKjAm2++iQEDBsDc3BxWVlbw9fXFnj17WnzChrp9WmPqqLHncO3r7t27jVpPnQx//YwLFy4gKCgIlpaWsLa2xgsvvICbN2/i/Pnz8PX1haWlJbp164a5c+eipKREa8dXoVAAAFasWKG1bT6Ip6cnbG1t8f3332Py5Mk4dOiQRj/cPKh+at1/LZiYmMDe3h5eXl7Ytm0bysvLH7h+S4y7fvzxRwD/vaPno9Quk5KSonGbpQ5Nx6faOnfPnj2LZ555RnUcH7RP9x9vCwsLeHp6IjU1tUn7RCSV5hpTPaodBNS7PhozLmiO/0fd74svvkDPnj0xatQorWxPV7BfYL9ArUuXLl0QHBwMpVKJwsJC7NixA46Ojli5ciV69OiBIUOGIDw8HNnZ2VJHJdIZVlZW2LhxI86fP4+ZM2ciNDRUNWmyLf3BiLaYmpriiy++wMcff4wNGzZg6tSpvMstEREREZE6BBFRKwFAxMXFqb3e5cuXRa9evYSNjY3Yu3evKCkpEadPnxajR48Wpqam4siRI6plT5w4ISwsLISrq6soLS0VQghx9+5dMWzYMLFjx44621UqlQKA2LBhg7hx44YoKioSH3zwgTAwMBBLliypl8PPz08AEH5+fuLIkSOitLRUJCcnCzMzMzF06NA6y/7++++iU6dOonv37mL//v2qzF5eXqJLly7CxMRE7eNQKy4uTjSlezh+/LhqP/5KnX0UQghXV1dhYWEhRowYoVo+IyND/O1vfxPGxsbi0KFDdZa3sLAQI0eOrLcdNzc3YW1tXa/8Qcs3Zl/+Sp36njhxojAwMBB//PFHve2MGDFCbN++XfVvdc5PIf53jEePHi1++OEHcefOHZGeni7atWsnioqKHrkf9wsICBABAQFqrUO6S9P6fNR1UnvOlZeXNyWeWgoKCoSDg4OwsbERSqVSFBcXi+zsbOHv7y9kMpn49NNP6yyvTlui7WtO3b7gYcdb3f1+VLY5c+aIjh07iv3794uysjJRWFgolixZIgCIH374QcPaUZ+6fZq6daTpOfyw9TQ9T/z9/UVmZqYoLS0VsbGxAoCYPHmy8PPzE8ePHxclJSUiKipKABCvv/66OofxgQoLC4WNjY2YM2eORutrMr5KSUkRPXr0EAAEANG1a1cxY8YM8dVXX4k7d+40uI6rq6vo3r17vfKG6qf2WrC1tRVKpVLcvn1bFBYWirVr1woA4r333nvo+veXN8e4q1u3bgKA+Pnnnx95rGbOnKlqI+4/FuqMf5prvHL/cWrquevq6io6duwoxo4dK1JTU0VJSckD96mh433q1CkxYcIE0bt373rHW919aoymjoepddP0/NDmmKqx7aA614c644JH7YsmampqhJOTk/j444813oY2/v8SEhIiAIikpKQHLlPb7j7oFRoaWmd59gv63y9o+n0TtS1lZWViz549Yt68eaJr164CgHB2dhZhYWEiJSVF1NTUSB2RSGdcuHBBzJs3TxgaGgpnZ2cRHx/Pa0RDP/30k7C1tRVOTk4iKytL6jhERERERPognt/+E1GroemX17NmzRIA6kxQE+K/P0CZmJgINze3OuXx8fGqHwdqamrErFmzxPLly+ttV6lUijFjxtQrnzlzpjAyMhLFxcV1ymt/dFAqlXXKAwICBIA6E93kcrkAIBISEuose/XqVWFubq7zkyUbs49C/PcHFADi+PHjdcpPnTolAAhXV9c65VJPlmxsfX///fcCgJg/f36dZVNTU0X37t3FvXv3VGXqnp+1x/i77757ZOZH4WTJ1qU1TZZ88cUXBYB6k9Tv3r0r7OzshJmZmSgsLFSVq9OWaPuaU7cveNjxVne/H5XNwcFBuLu71yt3cnJq0cmS6vZp6tZRc0yW1PQ82bt3b51yFxcXAUD8+OOPdcodHBxE//79H5i5sa5duyYGDRokgoKCRFVVlUbb0HR8dffuXfHll18KPz8/YWlpqZpAYm1tXe8cFkK9yZK110JDuSZNmqTWZMnmGHfVToo5evRoQ4emjtpJMRs3blSVqTv+aa7xihDaO3dr9yktLe2R+/Sg433p0iVhYmLS4KQYdfapMThZkh5GFyZLNrYdVOf6UGdc0ByTJffu3SssLS1FSUmJxtto6cmSDbW7r7766gMnS7Jf+B996xc4WZLUVVVVJVJSUsTChQtF9+7dBQDRu3dvsXDhQpGcnCwqKyuljkikE3777Tchl8uFTCYTw4YNEwcPHpQ6kl7Kz88Xw4cPF5aWlvX6SyIiIiIiqieej+EmojZv9+7dMDAwgI+PT51yW1tbuLi44NixY8jPz1eVy+VyrFixAt988w08PDxw/fp1rF27tt52fXx86jwWtZarqysqKyuRlZXVYJ6hQ4fW+XePHj0AAJcvX1aV7du3DwAwceLEOst26dIFAwYMeNju6oTG7GMtCwsLDBo0qE7ZwIEDYWdnh5MnT6KgoKD5gqpBnfqeMGECBg4ciG3btuH69euq8rfffhuvvfYajIyMVGXqnp+1nnrqKW3sFpFO2rVrFwDgmWeeqVNuYmKC8ePHo7y8HN9//32d9xrblmj7mtO0L2iIJvv9sGyTJk3CkSNHMG/ePKSnp6sefZWdnY0xY8Y0OldTqdunaVpH2qRphiFDhtT5t52dXYPl3bt3b7BPVMedO3cwceJEODs7Y/v27WjXrl2TtqcuExMTBAcHY/fu3bhx4wYOHjyI6dOn4/r165g5cyaOHz+u8bZrr4XJkyfXey8pKQmLFi1q9LaaY9xVW6/39/EPUrtM7Tq1mmv8o2mbpI1z19TUFMOGDatT1tA+Peh429nZwcnJSWv7RKTPGtsOqnN9SD0u+OCDDxAcHIz27ds3+2e1NPYL7Beo7WnXrh08PDwQGRmJ/Px8nD59GrNmzUJycjK8vb3RrVs31aO8KyoqpI5LJJkBAwYgPj4eJ0+eRM+ePTF+/Hh4e3sjIyND6mh6pXv37jh06BCmT58OuVyOZcuWoaamRupYREREREQ6i5MliahNq6ioQHFxMWpqatCxY0fIZLI6r19++QUA8Pvvv9dZb+3atRg2bBiOHDkCuVwOA4P6zWlxcTHefPNNDBw4EJ07d1Zt85///CcAoKysrMFMHTt2rPNvY2NjAFB9wVFRUYGSkhKYmpo2+ENS586d1TwKLe9R+3i/Tp06NbiNrl27AgCuXr2q5XSaUbe+Fy1ahLKyMnz88ccAgJycHPznP//BvHnzVMtoen4C//0xjag1qr0uTE1NYWlpWe99GxsbAEBhYWGd8sa0Jc1xzWnaF2hrvx+WbcuWLYiNjUVeXh7Gjx+PDh06YNKkSaoJGC1B3T6tKXWkzcyaZujQoUOdfxsYGKBdu3YwNzevU96uXbsm/bBRVVUFuVyO7t2748svv2zxiZJ/ZWhoiHHjxmHHjh0ICwtDdXU1EhISNNrWo64FdTXHuGv06NEAgBMnTjzy80+ePAkA9SYiNdf4R9M2SRvnrrW1NWQyWb3yv7bDDzvetctqY5+I9JU67aA614eU44KcnBzs378f8+fPb/bPam4fffQR3n///Tpl7BfYLxC5uLggPDwcZ86cQW5uLlauXIm8vDz4+fnBysoKvr6+iI2Nxe3bt6WOSiSJgQMHIj4+HqmpqaisrMRTTz0Fb29vVb9Ij2ZiYoKYmBhs27YNH3zwAXx8fHDz5k2pYxERERER6SROliSiNs3ExASdOnWCoaEhKisrIYRo8DV27Ng66x06dAjFxcUYOHAg5s+f3+AXN76+vli7di3mzp2LnJwc1NTUQAiB9957DwAghNA4s6WlJe7evYvS0tJ67+vK5EFtuX79eoPHqnY/7/9xxMDAAPfu3au37K1btxrcdkM/zGhK3fqeMWMGbGxs8NFHH6GiogLvvPMOZs2aVWfShabnJ5E2afM60QYTExN07NgRd+/eRUlJSb33r1y5AuC/d/i7X2Pakua45tRtGx50vDXd74eRyWR44YUXcODAAdy6dQu7d++GEAL+/v549913G72dplC3T9OkjjQ9hx9WF7reNoeEhKCiogLx8fEwNDRUlfft2xfp6enN+tmHDx9WTd5tSO1x0fRHm0ddC9qmybgrJCQEhoaGUCgUD912amoqLl++DF9fX/Ts2bPOe+qMf9TRXOPTxiguLm6w/K/t8MOO940bN+qVSbkMTvKmAAAgAElEQVRPROrQ1phKnXZQnetDnXGBtseHH3zwAUaNGgVnZ2etbldXsF9oGPsFaqscHR0RGhqK1NRUnD9/XnVuzpkzBzY2NvD29kZkZGSDfwhH1NqNHDkShw4dQnJyMq5fv44nn3wSgYGByM3NlTqa3ggODkZqairOnDmDoUOH4tSpU1JHIiIiIiLSOZwsSURtnr+/P6qqqnD48OF6723atAk9e/ZEVVWVquzcuXOYPXs2vv76a+zZswdmZmbw8/NDUVGRapnq6mocPnwYtra2WLhwIbp06aL6Qam8vLzJmWsft1b7OKpahYWFyMnJafL2dcndu3frPXrl119/xeXLl+Hq6opu3bqpyrt164ZLly7VWbawsBB//vlng9s2NzevM7myf//+iImJUSufoaEhsrKy1K5vExMTzJ8/H1evXsU777yD7du3IzQ0tN5y6p6fRNqmjetE26ZNmwYA2Lt3b53yiooKHDx4EGZmZvUe09fYtkSb15wmfcHDjrcm+/0wnTp1wtmzZwEARkZG8Pb2xu7duyGTyep9RnNSt09Tt440PYcftp4ut83h4eHIysrCt99+CxMTkxb/fCEErl69+sBJmZmZmQCAwYMHa/wZtdfCd999V++9wYMH4/XXX9d42w1R9xx1cnLC6tWr8csvvyA6OrrBbZaVlWHRokWwtraudwcyQL3xT2NoOl7RptLS0np/YNTQPj3oeF+7dg3Z2dl1ypp7zE2kTdocUzWmHVT3+lBnXKDNfbl9+zZiY2Px6quvarS+PmC/0DD2C0RAz549MW/ePCiVShQWFiI6OhqdO3fGihUr0L17d3h4eGDTpk3Neud8Il3k5eWFY8eOYefOnThx4gQef/xxhISEoKCgQOpoeuHJJ59EZmYmevfujWHDhuHLL7+UOhIRERERkU7hZEkiavM2btyIPn364OWXX0ZSUhKKi4tx48YNREdH46233sLmzZtVd2UqLS3F1KlT8f7778PZ2Rm9e/dGQkICLl++jICAAFRWVgL476OmxowZg8LCQrz99tu4du0aysvL8cMPPyAqKqrJmTds2AArKyssWrQIycnJKC0txenTp/HSSy+pdVcxfdCxY0csX74caWlpuHPnDjIzMzFz5kwYGxsjMjKyzrITJkzA5cuX8dFHH6G0tBS5ubkIDQ194F02nnzySeTk5ODixYtIS0tDXl4ePD091c6oaX3Pnz8fZmZmWLlyJby8vNC3b996y6hzfhI1B02uk/Pnz6Ndu3Z1HkmsTRs3boSDgwMWLVqExMRElJSUICcnB88//zwKCgoQGRlZ7852jW1LtHnNadI2POx4a7Lfj/LKK6/g1KlTqKiowNWrV/Gvf/0LQgiMGzdOre00xoPOC3X7NHXrSNO2/lF1oYtt87Zt27BmzRr8/PPPsLS0rPeI8Ja8G0dgYCC++uorXL58GRUVFTh//jw2b96Mt956C25ubggODtZ427XXwuuvv469e/eipKQE+fn5mD9/PgoKCrQ+WVKTcdfKlSvxxhtv4NVXX8XixYuRlZWFiooK3Lp1C4mJifDw8EBhYSG+//57ODo61ltfnfFPYzX3+PRRLCwssGDBAvz8888P3aeGjveZM2cwc+bMeo9glXqfiNShzTFVY9pBTa6Pxo4LtPX/KADYunUr2rdvr5oA2lqxX6iP/QJRXVZWVggODkZ8fDyuXr2K3bt3w9HRERs3boSTk5PqUd7Hjh2TOipRi5DJZJDL5cjKysJnn32G/fv3o2/fvli2bBkfL90Ijz32GPbt24fQ0FC8+OKLCAkJUf12QURERETU5gkiolYCgIiLi9No3evXr4vFixcLR0dHYWRkJLp06SImTJggkpOTVcu8+uqrAoDq9euvv4qioqI6ZQDE2rVrhRBCFBUViZCQENGjRw9hZGQkbGxsxIsvviiWLVumWtbNzU2kpaXV28aKFStU+3T/65lnnlHlyc7OFlOnThUdOnQQ5ubmwt3dXfz4449izJgxwtzcXOPjGBcXJzTtHiwsLOplfvvttzXeR1dXV9G9e3dx5swZMXHiRGFpaSnMzMzE6NGjRWpqar3Pv3XrlpgzZ47o1q2bMDMzEx4eHiIjI0O4ubmpth8WFqZa/uzZs8LT01NYWFiIHj16iC1btjx0Xx70+u233xpd3381d+5cAUD8+OOPDzyujTk/GzrGTe3mAwICREBAQJO2QbpD0/p80HWya9euBs+5tLQ0ce7cOWFgYCBkMpk4deqUtndFCCHEtWvXxKJFi4SDg4MwMjISHTt2FBMnThQHDx6st6y6bYk2rzl124aHtUuN3e/GZjtx4oQICQkRjz/+uDA3NxdWVlZi+PDh4tNPPxU1NTWNqwg1POy8ULdPa0wd1VLnHJ4xY8Yj11Mnw4P6v4yMjHrlGzduFCkpKfXKV69e3ehj/Mwzzzyyz0pLS2v09oRQf3xVXV0tUlNTxZIlS8SwYcOEnZ2dMDQ0FJaWlmLIkCFiw4YN4s6dO6rl33777QaP0aPq56/XQrdu3cT06dNFTk6OEOLB9dvS466MjAwxa9Ys0atXL2FsbKw6DuvWrRO3bt1qcB112qzmGq9o69y9v367d+8ujh49KsaOHSvat2//0Hb4/uNtZmYmhg4dKhITE8X48eNV25s9e7YQQv12tjGaMh6m1k/T80PbY6pHtYNCqHd9qDMueFQf2Vg1NTWib9++4s0339Ro/b9qyv9fvvjiiwbroaSkpM5yDbW7NjY2jf4c9gv62S+oOx4i0qaqqiqRkpIiFi5cKOzs7AQA4eDgIBYuXChSUlJEdXW11BGJWkRFRYWIjo4WNjY2wtLSUoSFhYni4mKpY+mFr776SlhYWAhPT09RUFAgdRwiIiIiIqnFy4QQAkRErYBMJkNcXBwCAwOljiKpAQMGoLy8HBcuXNBo/fj4eAQFBUEXuodBgwbh2rVryM/PlzpKs/niiy+wZcsW1WNJdYlcLgcAKBQKiZOQNrTl+mwLbUlr1dQ+jZqO46uHa45zlG2W9HRpPEy6h+eH7mqt4132C9LjeIh0RU1NDY4fPw6lUomdO3ciOzsbXbp0waRJkyCXyzFx4kQYGxtLHZOoWZWWlmLLli3YuHEjjIyMsGTJEoSGhsLU1FTqaDrt5MmT8Pf3R0VFBRISEjB8+HCpIxERERERSUXBx3ATEemhwsJCWFlZ1Xt0xvnz55Gbm9ssj0+l5hEVFYXFixdLHYOISDLs00jX8RwlIiIiIl1gYGAANzc3hIeH4+zZszh9+jT+8Y9/IC8vD35+frC1tUVgYCBiY2NRUlIidVyiZtG+fXuEhYUhNzcXs2fPxpo1a+Dk5ISYmBhUVVVJHU9nubq6IiMjA0888QTGjBmDTz/9VOpIRERERESS4WRJIiI9dfPmTYSEhODixYsoKyvD0aNHERQUhA4dOmDVqlVSx6MH+OyzzzBt2jSUlpYiKioKN2/e5N0piKjNY59Guo7nKBERERHpGhcXF4SFhSE1NRXnzp3D6tWrcfPmTcyePRtdu3aFr68vYmJicPXqVamjEmmdtbU1IiIikJOTg2nTpuG1117DwIEDoVAoeAfwB7CyskJSUhLWrFmDV155BcHBwSgvL5c6FhERERFRi+NkSSIiPWRra4sDBw7g1q1bGDVqFDp37owpU6agX79+OHr0KBwdHaWO2CSbN2+GTCbDyZMncenSJchkMqxcuVLqWFqze/dudO7cGZ988gl27twJQ0NDqSMRNTuZTKaVV3h4eKM/s7W3JS2hJeqttfdp2qDta4PU01LnKNssItJ37K+0i/0CEamjV69eCA0NRXJyMgoKChAdHQ0AWLhwIezs7ODh4YHIyEjk5+dLnJRIu+zt7REZGYns7GyMGjUKzz33HFxdXaFQKKSOppNkMhnCwsLw7bffQqlUwtPTExcuXJA6FhERERFRi5IJ/okVEbUSMpkMcXFxvEtfE8XHxyMoKIh/gUuQy+UAwC8XWwnWJxFpguMraos4HqaH4fmhuzjepebC8RDps7KyMhw8eBAKhQLffvstbt++DWdnZ8jlcgQGBsLZ2VnqiERalZWVhTVr1iAhIQEjRozAhg0bMHr0aKlj6aScnBz4+/vj6tWr2LlzJ8aNGyd1JCIiIiKilqDgnSWJiIiIiIiIiIiIiIhaGXNzc/j6+iI2NhZXrlxBcnIyvLy8EB0dDRcXF/Tp0wehoaFITU3lHwJQq+Di4oL4+HikpqbCyMgIY8aMga+vL06dOiV1NJ3j5OSEtLQ0jB49GhMnTsSmTZukjkRERERE1CI4WZKIiIiIiIiIiIiIiKgVMzU1hZeXFyIjI3Hp0iWkpKRALpcjKSkJnp6e6NWrF0JCQqBUKlFZWSl1XKImcXd3x6FDh7Bv3z5cvnwZgwcPxsyZM5GXlyd1NJ1iaWmJ+Ph4rFu3DitWrMDzzz+PsrIyqWMRERERETUrTpYkIiIiIiIiIiIiIiJqIwwMDODh4YGIiAjk5OTg9OnTePnll3Hs2DFMmTIFtra2CA4OhkKhQGlpqdRxiTQ2ceJEZGZmYufOncjIyMCAAQMQEhKCgoICqaPpDJlMhrCwMCQnJ+PgwYNwd3fnpFIiIiIiatU4WZKIiIiIiIiIiIiIiKiNcnFxQXh4ODIzM5GXl4c333wTeXl5mD59Orp27ap6lPetW7ekjkqkNplMBrlcjqysLHz00UfYu3cv+vXrh2XLlvGcvs/YsWORmZkJIyMjDB06FN9//73UkYiIiIiImoVMCCGkDkFEpA0ymQzDhw+Hvb291FH0Wn5+PtLT0xEQECB1FJJYeno6hg8fDoVCIXUU0gK5XK6qUyKixkpISOD4itqc2vEwvy6hhsTHxyMoKIj/X9JB6enpAMDxLmldQkIC4uLiEBgYKHUUohZXVFSEpKQkKBQK7N+/H9XV1Rg+fDjkcjnkcjns7Oykjkiktnv37mHbtm1YuXIlqqursXTpUixcuBBmZmZSR9MJd+/exfz587Ft2zYsXboUGzZsgIEB771DRERERK2GgqNbIiKqw97eXis//CUkJCA/P18LiYiIiPRbenq6agKHvgkICOBESSIi0gvDhw9v8kTJ/Px8JCQkaCkREZH+69KlC4KDg6FUKlFYWIgdO3bA0dERq1atQo8ePTBkyBCEh4fj7NmzUkclajRjY2PMmzcPubm5WLp0KdavXw8nJyfExMSgqqpK6niSMzU1xdatWxEVFYV3330XU6dORXFxsdSxiIiIiIi0hneWJKJWQyaT8S/9dQjrQ//J5XIA4J0lWwnWJ5F0eP0R6ZfaOwfy6xJqCM+P1o31Sw3h9xtE9d29exfJyclITEzEt99+iytXrsDZ2Rm+vr7w8fHByJEjIZPJpI5J1ChFRUV455138P7776N3795Yu3YtAgICeA4DSE1NhVwuR4cOHfDNN9/AxcVF6khERERERE3FO0sSERERERERERERERFR45iamsLX1xfR0dG4dOkSUlJS4OXlhe3bt8PT0xMODg4IDQ3FgQMHeKc+0nldunRBREQEsrOzMXr0aDz33HMYNmwYDhw4IHU0yXl4eCAzMxNWVlYYMWIEvv76a6kjERERERE1GSdLEhERERERERERERERkdratWsHDw8PREZG4uLFizh9+jRefPFFHDhwAN7e3rC1tVU9yruiokLquEQP1KtXL0RHR+PkyZPo3bs3vL294e3tjczMTKmjSap79+44dOgQXnrpJcjlcixbtgzV1dVSxyIiIiIi0hgnSxIREREREREREREREVGTubi4IDw8HFlZWcjNzcWqVauQl5cHPz8/WFlZwdfXF7GxsSguLpY6KlGDXFxcEB8fj8OHD+PevXsYOnQovL298euvv0odTTImJiaIjIzEl19+iQ8++AA+Pj64ceOG1LGIiIiIiDTCyZJERERERERERERERESkVY6OjggNDUVqaiouXLiA9957DwAwZ84c2NjYwNvbG5GRkSgoKJA4KVF97u7u+PHHH5GcnIyioiIMGjQIgYGBOHfunNTRJPPCCy8gNTUVZ8+exeDBg9v8XTeJiIiISD9xsiQRERERERERERERERE1mx49emDevHlQKpUoLCxETEwMOnfujJUrV8Le3h4eHh7YtGkTcnJypI5KVIeXlxd++eUX7Ny5E8eOHcOAAQMQEhKCq1evSh1NEk8++SQyMjLQr18/eHp6Ytu2bVJHIiIiIiJSCydLEhE1QmlpKfr16wcfHx+poxARkY5g30BERERS4TiEiIj0mZWVFYKDgxEfH4+rV69i9+7dcHR0REREBPr37696lPexY8ekjkoEADAwMIBcLsdvv/2GDz/8EHv27EGfPn2wbNky3L59W+p4Le6xxx7Dvn37EBoaipdeegkhISGorKyUOhYRERERUaNwsiQRUSMIIVBTU4OamhqpozxS+/bt4eHhIXUMvSf1cZT684no0dg3ELVuUl83Un8+Eek2jkOoKaSuE6k/n4h0i5mZGXx9fREbG4tr164hJSUFXl5e+PTTTzFkyBA4ODioHuWtD/0etW7GxsaYN28e/vjjD6xcuRJRUVHo06cPNm3ahIqKCqnjtShDQ0NERERgx44d2L59O8aPH4/CwkKpYxERERERPRInSxIRNYKlpSVyc3Px3XffSR2FiNq48vJy3LhxQ+oYBPYNRERE+qympkavf8zlOISIiFqjdu3awcPDA5GRkbh48SIyMzMxa9Ys7N+/H56enrCxsUFwcDCUSiXu3bsndVxqwywsLBAWFobc3FzMnj0b4eHhcHJyQkxMDKqrq6WO16KmT5+OI0eO4PLlyxgyZAjS09OljkRERERE9FCcLElERESkRy5dugRbW1v4+Phg586dKCsrkzoSERERkd6pqKiAvb09xo4diy+++AK3bt2SOhIRERHdx8DAAG5ubggPD8dvv/2G06dPY8mSJcjLy4Ofnx9sbGwQGBiI2NhYlJSUSB2X2ihra2tERETg7NmzGDt2LObPnw83N7c29wctf/vb3/DLL79gyJAhGDNmDCIjI6WORERERET0QJwsSUT0CLt374ZMJlO97t6922D5+fPnERQUhE6dOsHa2ho+Pj7Izc1VbWfz5s2qZe3t7ZGRkYHx48fD0tIS5ubmGDt2LA4fPqxaft26darl73881b59+1Tljz32WL3t37lzB4cPH1YtY2ho2AJHSRrXr1/H4sWL0adPHxgbG6Nz586YPHkyfvjhB9Uy2j6OrEfSBZWVlUhKSsLzzz8PKysrPPfcc0hMTERlZaXU0doM9g1EuoFjASJqiurqavz444+YM2cOunTpgilTpkChUKC8vFzqaA/FcUjbwD6OiKguFxcXhIWFITU1FefOnUN4eDhu3ryJ2bNno2vXrvD29kZkZCSuXLkidVRqg3r16oVt27bh119/hZOTE3x8fODu7o6UlBSpo7WYDh06YNeuXVizZg0WL16M4OBgnR9XExEREVEbJYiIWgkAIi4urtm27+fnJwCI8vLyBsv9/PzEkSNHRGlpqUhOThZmZmZi6NCh9bbj6uoqLCwsxIgRI1TLZ2RkiL/97W/C2NhYHDp0qM7yFhYWYuTIkfW24+bmJqytreuVP2j5WmPHjhVWVlYiLS2tsbuukeauj4KCAuHg4CBsbGyEUqkUxcXFIjs7W/j7+wvZ/2PvzsOaOvP2gd8JCZsg4g51A1zBHVxQGG0NaivRigSstkytHe28LthxRnAr2NEK1BnFtiqofVvcCtFiDWor6HQERSu0WoEKCtq6gIK4gKIInN8f/cErBRU04ZDk/lxXLjU5Oec+eZLnPJ48OV+JRNi8eXOt5bX9OhpDO/r6+gq+vr46Wz89n5ycHAFArZtcLhcACFZWVsKbb74p7Nu3T3j06FGt57E9dYPHBmoIfv50g2MBfm51JTY2VuDpEsN3//79OmMqExMTQSqVCqampsKUKVOEffv2CeXl5bWe15zeHxyHaF9zaV8e45rPe0IQdH9+g4heTFFRkfDll18K3t7egpmZmWBiYiKMHDlSCAsLE86fPy92PDJSJ0+eFEaPHi0AEBQKhfDzzz+LHalJJSQkCK1atRIGDx4sXLp0Sew4RERERESPi+OVJYmItOTdd9+Fu7s7WrRoAYVCgQkTJuDUqVMoKiqqs+y9e/ewYcOGmuXd3Nywfft2lJeXIzAwUKc5q6qqIAgCBEHQ6XZ0bfHixbh48SLWrVsHb29vtGzZEj179sTOnTthZ2eH+fPn6/yX5GxHai6qryhZWlqKuLg4TJw4Efb29ggMDERKSgrfJyLisYFIdzgW4OeWSNsqKytRVVWF8vJyfPPNN5g4cSLatGmDgIAAJCUl6d3njeMQ/cVjHN8TRNRw1cdqjUaD4uJixMfHw9HREatXr0aPHj3g4uKC0NBQpKenix2VjMjQoUPxn//8B4mJiSgqKsLAgQPh5+eHS5cuiR2tSUyYMAE//PADysvL4ebmhsOHD4sdiYiIiIioBmucEBFpyZAhQ2r9u3PnzgCAa9eu1So7BQAtWrTAwIEDa93Xr18/2Nvb48yZM8jPz4ednZ1Ocn7//fc6WW9Ti4+PB/D7iZfHmZmZYcyYMdi2bRu+++47BAQE6CyDMbTjzZs3oVarm2Rb1DAFBQVPfby8vBwAUFhYiA0bNmD9+vVwcHCAhYVFTb9ETYfHBiLd4Vjge52sl/4Px0CGrXrM9CQVFRUAgJKSEnz11VfYtm0bOnTogGHDhjVFPK3gOER/8Rj3vU7WS0SGz9LSEkqlEkqlEg8fPkRycjI0Gg2io6OxYsUKODo6wtvbGyqVCiNHjoREIhE7Mhk4hUKB9PR07NmzB8HBwXBxccG8efMQHByMVq1aiR1Pp3r06IHU1FTMmDED48ePx8qVKxEUFCR2LCIiIiIiTpYkItIWGxubWv82NTUF8PsVEf7oSSdC2rdvj2vXruHGjRs6+9LBEDx8+BB37tyBubk5rK2t6zzeoUMHAM+eVPaijKEdz58/Dz8/P7Fj0HOq/pL/4sWLAICrV68iKSkJCoVCzFhGhccGIt3gWICaAsdAVK36Kt7Xr1/Hvn37AABxcXHN/j3CcYh+4jGOiEg7zMzMoFAooFAosHbtWhw/fhwJCQmIj4/H+vXr0a5dO4wfPx4qlQrjx4+HXC4XOzIZKKlUCpVKhUmTJuGLL77A8uXLsXnzZixatAjz58+HhYWF2BF1xsrKCnFxcYiIiMDSpUtx+vRpbNmyBS1atBA7GhEREREZMZbhJiISwc2bN+stJ3Xjxg0Av3/5UE0qldZ71ZPbt2/Xu25j+EW0mZkZbGxs8ODBA5SUlNR5vLocWceOHWvu08XraAztOHz48JryZ7w1j1tOTk6D2q76JH91mT6FQgEvLy9OlGzGjKFPIdIWjgWoKYh9zOdNt7f79+836H1QPcGwXbt2mD9/PlasWAHA8CbTsj9rPniMIyLSPqlUCg8PD4SFhSE7OxsZGRn4n//5H2RlZWHixIno0KED/Pz8EBMTg9LSUrHjkoEyNTXFrFmzkJubi0WLFmHVqlXo2bMnoqOjUVlZKXY8nZFIJAgKCkJSUhKOHDmCESNGIDc3V+xYRERERGTEOFmSiEgEDx48wKlTp2rdd/bsWVy7dg0DBgyodXUGOzs7XL16tdayBQUF+O233+pdt6WlZa0vKXr16oXo6Ggtpm8eJk+eDADYv39/rfsfPnyIw4cPw8LCAuPGjau5XxevI9uRmpvqL/NtbGwwY8YMJCcn4+rVq4iMjDT40j6GgH0KUeNwLEBEuiKXyyGRSNCiRQv4+flh3759uHbtGiIjI9G7d2+x4+kE+7Pmhcc4IiLdcnFxQWhoKNLS0nDx4kWEhITg1q1bmDlzJtq3bw+lUono6OiaCeJE2mRlZYWgoCDk5ubCx8cHc+bMQb9+/aBWq8WOplOjR49GWloazMzMMHjwYHzzzTdiRyIiIiIiI8XJkkREIrCxscGSJUuQmpqKe/fuIS0tDW+++SZMTU0RGRlZa9mxY8fi2rVr+PTTT1FaWorc3FwEBgbWuorD4wYPHoycnBxcvnwZqampyMvLg6enZ83jr7zyCtq0aYMTJ07odB91bfXq1XBwcMCCBQuQkJCAkpIS5OTkYNq0acjPz0dkZGRNeTJA+68jwHak5qG+L/OLiooQFRUFDw8PXrVFj7BPIWocjgX4uSXSJhMTE0ilUsjlcnh5eSE2NhbFxcXYtm0blEolZDKZ2BF1iv1Z88JjHN8TRNR0unXrhsDAQCQmJiI/Px+bNm0CAMybNw/29vbw8PBAZGRknUnhRC+qXbt2iIyMRGZmJvr27Qt/f3+4u7vj6NGjYkfTmc6dO+Po0aPw9fXF5MmTERwcjKqqKrFjEREREZGxEYiIDAQAITY2VuvrjY+PFwDUuk2fPl1ITU2tc//SpUtrsjx+mzBhQs36BgwYILz00ktCVlaWMG7cOMHa2lqwsLAQRo0aJaSkpNTZ/u3bt4V3331XsLOzEywsLAQPDw/h1KlTgqura836g4KCapY/d+6c4OnpKbRo0ULo3Lmz8Nlnn9Van6enp2BrayscP35c66/V43TVHo8rKioSFixYIDg4OAhyuVywsbERxo0bJxw+fLjOstp+HY2hHX19fQVfX1+drZ+eT05OTs17xtTUVPD19RX27t0rPHjw4KnPY3tqF48N1Bj8/OkOxwL83OpCbGyswNMlhu/+/fs1nz2ZTCa8+uqrwo4dO4TS0tKnPq85vD84DtGd5tC+1XiMax7vCUFomvMbRNT8lJaWCvv27RPeeustwdraWgAgODs7CyEhIUJWVpbY8cgA/fDDD8Irr7wiABAUCoVw5swZsSPpVFRUlGBqaip4e3sLt27dEjsOERERERmPOIkgCMKLTrgkImoOJBIJYmNj4efnJ3aUpxo4cCCKiopw5coVsaPolL60x/Myhpb1GL0AACAASURBVHZUqVQAYPAlYPRNXl4e5s2bhzfeeAOTJk2CtbV1g57H9mzejKFPMWb8/Bkmfm4NV1xcHPz9/cHTJYbtwYMHGD9+PKZNmwZfX1+0bt26Qc8zxPcH+7P/Y4jt+zz4nqjN0M9vENGzPXjwACkpKdBoNIiNjcX169fh6OgIb29vqFQqjBw5kpU9SGuSkpKwaNEinDlzBlOmTEFERAS6desmdiydOHbsGFQqFaysrBAfHw8XFxexIxERERGR4VOzDDcRERGRHnF0dMT+/fvx5ptvNniiJBERERHVZm5uju+//x6zZs1q8ERJIiIiMk7m5uZQKBQ15biTk5OhUqlw4MABeHp6olu3bpg9ezY0Gg0ePXokdlzScwqFAunp6fjqq6/w448/olevXpg9ezYKCwvFjqZ1I0eORFpaGtq2bYvhw4dj9+7dYkciIiIiIiPAyZJEREREREREREREREREz2BiYgIPDw+EhYXh/PnzyMjIwIwZM5Ceno6JEyfCzs4OAQEBUKvVuHfvnthxSU9JJBKoVCr88ssv+OSTT/DNN9+gV69eCA8PR1lZmdjxtMre3h5Hjx7FnDlz4Ofnh+DgYFRWVoodi4iIiIgMGCdLEhE1kTVr1kAikeDMmTO4evUqJBIJli1bJnYsaiS2IxFpE/sUIv3Dzy0RGQr2Z/RHfE8QETWei4sLQkNDkZaWhtzcXCxfvhx5eXnw9/dH+/btoVQqERMTgzt37ogdlfSQXC7HrFmzcOHCBQQFBeGjjz5Cjx49EB0djYqKCrHjaY1MJkNYWBhiYmKwfv16KBQK3LhxQ+xYRERERGSgJIIgCGKHICLSBolEgtjYWPj5+YkdhcD2MAQqlQoAoFarRU5C2sD2JBIPP39E+iUuLg7+/v7g6RKqD98fho3tS/Xh+Q0ieh6FhYU4ePAg1Go1Dh06hMrKSgwfPhwqlQoqlQr29vZiRyQ9VFRUhDVr1mDdunVwcHDAhx9+CF9fX0gkErGjac1PP/0EHx8fVFZWYs+ePRgyZIjYkYiIiIjIsKh5ZUkiIiIiIiIiIiIiIiIiLWnXrh0CAgKg0WhQUFCAXbt2wdHREcuWLUPnzp3h5uaG0NBQZGdnix2V9Ejbtm0RFhaGs2fPol+/fvD394eHhwdSUlLEjqY1gwYNwqlTp9CrVy/86U9/wv/+7/+KHYmIiIiIDAwnSxIRERERERERERERERHpgK2tLVQqFWJiYnDjxg3s3bsXrq6u2LhxI3r37g0XFxcEBwcjJSWFVzemBunRowfi4uLwww8/wMLCAp6envDy8sLZs2fFjqYVbdu2xbfffovAwEDMnDkTs2fPRnl5udixiIiIiMhAcLIkERERERERERERERERkY5ZWFhAqVQiKioK165dQ3JyMhQKBbZv3w5PT084OjoiMDAQSUlJqKioEDsuNXNubm5ISkrCwYMHcePGDQwePBjvvfce8vPzxY72wkxMTBAWFoZdu3Zhx44dGDNmjEHsFxERERGJj5MliYiIiIiIiIiIiIiIiJqQiYkJPDw8EBkZiStXriAjIwN//vOfkZiYCC8vL9jZ2dWU8n748KHYcakZGz9+PH766Sfs3LkThw4dQvfu3REcHIy7d++KHe2F+fv7Iy0tDUVFRXBzc0NqaqrYkYiIiIhIz3GyJBEREREREREREREREZGIXFxcEBoaiqysLOTm5mLZsmXIy8vDpEmT0Lp1ayiVSsTExBjEBDjSPqlUCpVKhXPnzuGjjz5CVFQUnJycEB4erveTbXv37o2TJ09i6NChGD16NCIjI8WORERERER6TCIIgiB2CCIibZBIJGJHIDI4vr6+UKvVYscgLVCpVNi9e7fYMYiIiPQGT5dQfeLi4uDv7y92DCJqYrGxsfDz8xM7BhEZqd9++w3ffvstNBoNvvvuu5orUnp7e8Pf3x8dO3YUOyI1Q8XFxYiIiEBkZCS6dOmClStXwtfXV6+/RxEEAREREViyZAmmT5+OqKgoWFhYiB2LiIiIiPSLmpMlichgSCQSLFiwAO7u7mJHoadITU3FunXrEBsbK3YUeoa1a9eiU6dOnCxpIFQqFa5cuYL3339f7ChEes3f35/jDSIDVz1e5ekSqk/1ZEn+f8b4rF27FgA4njZC1Z95TpYkouaguLgYCQkJSEhIwIEDB1BWVgZ3d3colUr4+PigR48eYkekZuby5ctYuXIltmzZAjc3N0RERGDUqFFix3oh+/fvx5tvvgkHBwd8/fXX6Natm9iRiIiIiEh/cLIkERkOiUTCk9d6oPrLRR5+mj+VSgUAnCxpINieRNrB8QaR4eN4lZ6G7w/jxfG08eL4j4iaq/v37+Pw4cNQq9XYt28f7ty5A2dnZ6hUKiiVSri6uoodkZqR9PR0LFq0CEeOHIFCocC///1v9OvXT+xYz+38+fPw8fFBQUEBdu3aBYVCIXYkIiIiItIPaqnYCYiIiIiIiIiIiIiIiIio4SwtLaFUKhETE4ObN28iOTkZCoUCmzdvhpubGxwdHREYGIiUlBRUVVWJHZdE5urqisOHDyMxMRFFRUUYPHgwZs+ejfz8fLGjPZcePXogNTUVL7/8MsaPH4/w8HD+oImIiIiIGoSTJYmIiIiIiIiIiIiInuD777/HDz/8gDt37ogdhYioXiYmJvDw8EBkZCQuX76MtLQ0BAQE4LvvvoOnpyc6duyIgIAAaDQalJeXix2XRKRQKJCeno6dO3fi0KFD6NGjB4KDg3H37l2xozWalZUVYmNj8a9//QvLli3DtGnTcO/ePbFjEREREVEzx8mSRERERERERERERERPsGXLFgwbNgytWrXCSy+9hDFjxmDOnDn49NNPkZSUhCtXrogdkYiohlQqhaurK0JDQ3Hu3DlkZGRg4cKFyMvLw6RJk9CxY0f4+fkhJiYGJSUlYsclEUilUqhUKmRnZ2PVqlWIioqCk5MTwsPD9W4yrUQiQWBgIJKSknDkyBG4ubnh3LlzYsciIiIiomaMkyWJiIiIiIiIiIiIiJ5g+/btuHr1KhITE7Fo0SJ0794dOTk5WLVqFby8vNC5c2eYm5vDxcUFfn5+CA0NhVqtRnp6OsrKysSOT0RGzsXFBUFBQUhJScHFixcREhKCW7duYebMmWjfvj2USiWio6Nx48YNsaNSEzM1NUVgYCByc3Mxc+ZMhIaGol+/flCr1XpX0nrUqFFIS0tDy5YtMWzYMOzdu1fsSERERETUTHGyJBEZre3bt0MikdTcrKys6l3u119/xcSJE3H37l0UFRXVes6gQYPw4MGDOs/543ISiQRubm663iWtCA4ORmxs7BMfe3yfhg8f3iSZ2Fb1a45tRWTIjKFfIRKDsR2/G+LAgQPo2bMnZDLZE5d52jiAiPQX+8S6jKVPZNvX1dza3t7eHgqFAoGBgYiKikJiYiLy8/NRXFyMtLQ0REdHQ6lUAgDUajWmTp0KNzc3tGzZEk5OTvDy8kJgYCCio6ORkpKil+VOiUj/de3aFYGBgTV9WFRUFABg/vz5sLe3rynlzSvmGpfWrVsjLCwM2dnZGD16NKZOnQp3d3ccPXpU7GiN0rlzZ/z3v/+Fr68vfHx8EBwcjKqqKrFjEREREVEzw8mSRGT0Nm7cCEEQUFpaWuex06dPw83NDWPHjkXLli3Rtm1bCIKAU6dO1Ty+YMGCOs+rXi41NRVt2rSBIAhIS0vT+b5ow1/+8hcsXrwYy5cvr/NYWFgYBEGAIAgwMTFp8mxsq9qac1sRGSJj6FeImpoxHr+fJjc3FxMnTsTixYtx/fr1py77tHEAEekn9om1GVOfyLavTd/a3tbWFq6urggICEBYWBji4uKQmZmJsrIyZGRkYOfOnZg1axbs7Oxw7NgxvP/++/D09ISNjQ1at24NDw8PzJ49G+Hh4dBoNMjLy9O7q3kRkX5q27YtAgICoNFoUFxcjPj4eDg6OuKDDz5A586d4eLigtDQUGRlZYkdlZpIly5dEBUVhZMnT6JFixYYNWoUvLy8kJGRIXa0BjM3N8fWrVuxadMmrF27FhMnTsTt27fFjkVEREREzQgnSxIRPcHdu3ehVCoxZcoUzJ07t87jZmZmaNOmDaKiorBr1y4REuqGk5MT4uPjsWrVKsTFxYkdp0HYVvrTVkSGwlD7FaKmZKzH76dZvnw5RowYgfT0dFhbWz91WY4DiAwL+8S6jKVPZNvXZShtb2pqChcXF6hUKgQFBSEmJgZpaWm4d+9eTUnvkJAQuLi4IC8vr2ZCh5OTE2xtbeHm5lanpHd9VxglItIGS0tLKJVKxMTE4Pr160hMTIRCoUBUVBRcXFzg5OSEwMBApKSkcEK3EXBzc8Phw4eRmJiIwsJCDBo0CLNnz0ZBQYHY0Rps1qxZOHLkCH788UcMHTpUryZ8EhEREZFucbIkEdETREREoKCgAB988EG9j5ubm2PHjh2QSqWYPXs2cnJymjih7gwYMAC+vr5YuHAhKioqxI7zTGwr/WkrIkNhyP0KUVMx5uP3k2zduhXBwcFPLTf6OI4DiAwH+8S6jKVPZNvXZQxtX19J74KCgpqS3uvXr4dCoUBZWRm2bdtWp6S3UqlEcHBwTUnvkpISsXeJiAyIubk5FAoFIiMjcfXqVSQnJ0OlUuHgwYPw9PRE165dMXv2bGg0Gjx69EjsuKRDCoUCP/74I3bu3IlDhw6he/fuCA4Oxt27d8WO1iAjR47E6dOn8dJLL8Hd3R1qtVrsSERERETUDHCyJBFRPQRBwJYtWzBs2DDY29s/cblx48Zh2bJlKCkpgUqlMqhf+E+ePBlXrlzB/v37xY7yVGwr/WkrIkNjyP0Kka7x+F0/CwuLRj+H4wAi/cc+sX7G0Cey7etnDG3/JH8s6a3RaJCbm4v79+8jIyMDO3bswKxZs2Bra4ukpCQsWLAAnp6eaNmyZa2S3pGRkUhKSmJJbyJ6YVKpFB4eHggLC0NOTg4yMjLwzjvvID09HRMnTkTHjh0REBAAtVqN0tJSseOSDkilUqhUKmRlZWH58uWIioqCk5MTIiMj9eJHCu3bt0diYiLmzJkDf39/BAYG6kVuIiIiItIdTpYkIqrHmTNncP36dQwYMOCZy4aEhGDs2LH4+eefMW/evAat/+bNm/jb3/4GJycnmJqawtbWFq+++ir+85//1Cyzd+9eSCSSmtulS5fg7++PVq1aoU2bNvD29kZubm6ddRcWFmL+/Pno1q0bTE1N0a5dO/j4+OD06dMNfwEADBw4EADw3XffNep5TY1tpT9tRWSIDLVfIdI1Hr+1h+MAIv3HPlF79K1PZNtrj761fWOZmZnVW9L77t27yM3NrVPS+6OPPoKXl9cTS3pnZmaisrJS7N0iIj3k4uKC0NBQpKWlIS8vDx988AHy8vIwdepUtG/fvqaU9+3bt8WOSlpmYWGBoKAg5ObmYubMmQgKCkLfvn2hVqub/cR8mUyGsLAwxMTEYMuWLVAoFLhx44bYsYiIiIhIJJwsSURUj4yMDABAp06dnrmsVCrFjh070LlzZ2zZsgU7dux46vIFBQUYMmQIdu7cicjISBQVFeHkyZOwtLTEmDFjsGXLFgDA66+/DkEQMGnSJADAggULsGDBAly9ehWxsbE4cuQI3njjjVrrzs/Px5AhQxAXF4cNGzaguLgY33//PYqLi+Hu7o7U1NQGvwYvvfRSrdeiuWJb6U9bERkiQ+1XiHSNx2/t4TiASP+xT9QefesT2fbao29try0ymQyOjo51Snpfv34dxcXFSE5ORkRERK2S3v7+/ujbty8sLCzqLenNK8MRUUM5ODggMDAQKSkpKCgowKZNmwAAf/nLX9C2bVt4eHggMjIS165dEzkpaVPr1q1rrjQ6atQoTJ06Fe7u7khOThY72jO9+eabSElJwW+//QY3NzecOnVK7EhEREREJAaBiMhAABBiY2MbvPy2bdsEAMLGjRvrPBYRESEAED777LN6n3vq1CnBxsam1n2pqamCXC4XWrRoIfzyyy8197Vp06bWcm+//bYAQNi1a1et+x88eCDY29sLFhYWQkFBQc39kyZNEgAIGo2m1vK+vr4CAKGwsLDmvj//+c8CAGHHjh21ls3PzxfMzMwEV1fXJ70c9ZJIJEL37t3rfczExEQYNmxYo9YnCIIQGxsrNPbww7Z6Nl20la+vr+Dr69vo51HzxPbUHmPpV6h+jR1vUP14/H62l156STAxMWnQsk8bB1DjPc94lYyHLt4f7BOfrTn0iboYT7Ptn605tL2hjf8ePHggZGRkCHFxcUJISIigUqkEV1dXwdzcXAAgABDs7OwEhUIhzJo1S1i3bp2QmJgo5Obmih2diPREcXGxEBcXJ7z11luCtbW1IJVKBVdXVyEkJKTm2EWG49SpU8LLL78sABAUCoWQkZEhdqRnKioqEry8vARzc3Nh69atYschIiIioqYVxytLEhHV48GDBwAAuVze4OcMHz4ca9aswb1796BSqVBWVlbvcvHx8QCACRMm1LrfzMwMY8aMQVlZWb1lo4YMGVLr3507dwaAWr/M3bt3L6RSKby9vWst27FjR7i4uCA9PR1Xrlxp8D7JZLIn7kdzwbb6nT60FZEhM8R+hUiXePzWLo4DiPQb+0Tt0qc+kW2vXfrU9mJ6vKR3aGgo4uLikJaWhpKSkpqS3kFBQXB0dERmZiY++OCDOiW9AwICEB4ezpLeRFQvW1tbqFQqxMTE4MaNG9i7dy9cXV2xadMm9OnTBy4uLggODkZKSkqzL99Mz+bm5oYjR44gMTERhYWFGDRoEGbPno2CggKxoz1RmzZtcPDgQQQGBuLdd9/F7NmzUV5eLnYsIiIiImoinCxJRFQPc3NzAMCjR48a9bz58+fD398fGRkZmDt3bp3HHz58iDt37sDc3BzW1tZ1Hu/QoQMA1HsiwcbGpta/TU1NAQBVVVW11l1VVQUbGxtIJJJatx9//BEAcP78+QbvT0VFBSwsLBq8vBjYVr/Th7YiMnSG1q8Q6RKP39rFcQCRfmOfqF361Cey7bVLn9q+OaqvpHdKSgru3LlTU9I7PDwcCoUCt27dQnR09BNLesfExCA9PZ0lvYkI5ubmUCqViIqKwtWrV5GcnAyFQoEdO3bA09OzppR3UlISKioqxI5LL0ChUODHH3/Ejh07cOjQIXTv3h3BwcEoKSkRO1q9TExMEBYWhvj4eHz11Vd45ZVXkJ+fL3YsIiIiImoCMrEDEBE1R3Z2dgCAO3fuNPq5W7ZswenTp/H555/XfPFRzczMDDY2Nrhz5w5KSkrqfGlx/fp1AL9fjaGxzMzM0KpVK5SWlqKsrAwy2Yt18Xfv3oUgCDWvRXPFttKftiIyBobSrxDpGo/f2sNxAJH+Y5+oPfrWJ7LttUff2l7f2NrawsPDAx4eHrXuv3PnDi5cuIC8vDxkZmYiKysLSUlJiIyMrLlyqp2dHVxcXODo6AhnZ+eavzs6OoqxK0QkIhMTk5q+JDIyEpmZmVCr1VCr1Vi/fj3atGmD1157DSqVCmPHjoWZmZnYkamRpFIpVCoVJkyYgE8++QSrV6/G559/jqVLl2LOnDnNZtzwuEmTJuGHH37A5MmT4ebmBrVajREjRogdi4iIiIh0iFeWJCKqR9++fQHgucpGWVlZYc+ePWjRogU2bNhQ5/HJkycDAPbv31/r/ocPH+Lw4cOwsLDAuHHjniM14OPjg4qKChw7dqzOY+Hh4ejSpUuDf6F79epVAP/3WjRXbCv9aSsiY2Ao/QqRrvH4rT0cBxDpP/aJ2qNvfSLbXnv0re0NhY2NDVxdXeuU9L579y5yc3Oxb98+BAYG1pT0Xr58eU1J79atW7OkN5GRc3FxQWhoKDIzM5Gbm4vly5cjLy8PkyZNQuvWraFUKhETE/NcPyogcVlaWiIoKAi5ubl45513EBQUhL59+0KtVosdrV69evXCiRMnMGzYMIwaNQrh4eFiRyIiIiIiHeJkSSKiegwYMADt27fHmTNnnuv5Li4uiIqKqvex1atXw8HBAQsWLEBCQgJKSkqQk5ODadOmIT8/H5GRkTUlsRpr9erVcHJywjvvvIODBw/WlEqKiorChx9+iDVr1tT69eabb74JiUSCixcv1lnX6dOnAQBjx459rixNhW2lP21FZCz0pV8hEhOP39rDcQCR/mOfqD361iey7bVH39re0Mnlcjg6OkKpVCIoKKimpPfdu3drSnqHhYVh5MiRyM/Pr1XS29LSst6S3vfu3RN7t4hIhxwdHREYGIiUlBT8+uuvWLt2LQDg3XffRYcOHeDl5YXIyEiWSdYzbdq0QVhYGHJycjB06FD4+/vD3d0dycnJYkero2XLltizZw9WrlyJJUuW4K233sL9+/fFjkVEREREuiAQERkIAEJsbGyDl9+2bZsAQNi4cWO9jy9ZskSQyWTC1atXa+4rLCwUANS6ubq6PnEbf/3rX4U2bdrUub+oqEhYsGCB4ODgIMjlcsHGxkYYN26ccPjw4ZplUlNT62xr6dKlNfv6+G3ChAk1z7t586bwt7/9TXB0dBTkcrnQrl07YezYsUJiYmKdHK+88opgZWUlVFRU1HlMpVIJL730klBeXl7vvpmYmAjDhg174r4/SWxsrNDYww/bSpy28vX1FXx9fRv9PGqe2J4vztD6FXo+jR1v0JMZ+/G7PhqNps62q2+bN2+u9znPGgdQ4z3PeJWMh67eH+wT62pufaKuxtNs+7qaW9tz/Nc0bt26JaSlpQlxcXFCSEiIoFKpBGdnZ8HExKSm/e3s7ASFQiHMmjVLWLdunZCYmCjk5+eLHZ2IdOjmzZvCl19+KahUKsHKykqQSqXCyJEjhbCwMCE7O1vseNRIP/zwg/Dyyy8LAARvb28hJydH7Ej12r9/v2BraysMGjRIuHjxothxiIiIiEi74iSCIAhPnU1JRKQnJBIJYmNj4efn16Dlt2/fjrfeegsbN27Ee++9V+fxO3fuwMXFBd7e3ti0aZO244ru9u3bsLe3x/Tp07F58+Zaj505cwaDBg3Czp07MXXq1HqfL5PJ4ObmhhMnTjRqu3FxcfD390djDj9sK3HaSqVSAUCzLY9CjcP2JNKOxo436MmM+fitLQ0ZB1DjPc94lYyHrt4f7BNfnK77RF2Np9n2L07Xbc/xn7gePXqEy5cvIzMzE1lZWcjLy0NmZibOnDmD0tJSAICtrS0cHR3h7OwMFxeXmr/36dMHUimLaxEZirKyMiQlJUGtVkOj0eD27dtwdnaGSqWCUqmEq6ur2BGpgZKSkrBw4UL88ssvmDFjBlasWIGOHTuKHauWCxcuwMfHB9euXcOuXbvg5eUldiQiIiIi0g416/ARET2BjY0NNBoNvLy80K9fP8yZM0fsSFojCALmz5+Pli1b4p///Getx/Ly8uDj44PFixfrzZfubCv9aSsiIqJqxnr81haOA4gMC/vEF6PPfSLb/sXoc9tTw1SX9K4u6/24a9eu1ZpAmZWVhWPHjiEvLw8AYGpqiu7du9eaQOni4oI+ffrA0tJSjN0hohdgYWEBpVIJpVKJyspKpKamQq1WY/PmzVixYgW6deuGiRMnQqVSYcSIEZws3YwpFAr89NNP2LNnD/7xj39gx44dmDt3LpYuXQpra2ux4wEAunfvjuPHj2PmzJl49dVXsWrVKixatAgSiUTsaERERET0gvg/BSIyen/9618hkUhgZWVV57FBgwYhLS0NBw8exN27d0VIpxvXr19HXl4eDh8+XOcXm1FRUVi1ahVWrVpV53nBwcGQSCSQSCSorKxsqrg12Fb601ZEREQNYYzHb2152jiAiPQT+8Tnp+99Itv++el729OLsbe3h0KhwKxZsxAZGYnExETk5ubi1q1bSEtLw+bNm2smWGo0Grzzzjtwc3NDixYtYG9vDy8vLwQGBiI6OhpJSUm4fv26yHtERA1lYmICDw8PREZG4vLly0hLS8Of//xnHDp0CJ6enujQoQMCAgKg0WhQXl4udlyqh1QqhUqlQlZWFpYvX45Nmzahd+/eiI6ORkVFhdjxAABWVlaIjY3Fhg0bsHz5ckyePNmgxmpERERExopluInIYLAskn5gWUP9wbLNhoXtSaQdHG8QGT6OV+lp+P4wXhxPGy+O/wzHH0t6V/957tw53Lt3D0Ddkt7Vf3br1o1XqSPSE5mZmUhISIBGo8Hx48dhaWmJl19+GSqVCpMnT242Vy6k2goLC/Hhhx8iKioKPXv2REREBF577TWxY9U4evQo/Pz8YGtri6+//hp9+vQROxIRERERPR+W4SYiIiIiIiIiIiIiIsPW2JLeSUlJyM/PBwCYmZnBycmpTklvZ2dnWFhYiLE7RPQELi4ucHFxQVBQEH799Vfs3bsXCQkJmDlzJmbPng0PDw94e3tj6tSp6NChg9hx6f9r164dPvnkE8yfPx+LFy/GhAkToFAosGbNGgwYMEDsePjTn/6EtLQ0TJkyBcOHD8cXX3yByZMnix2LiIiIiJ4DJ0sSEREREREREREREZHRsre3h729fZ37b926VWsCZV5eHjQaDdasWYPKykrIZDJ06dKl1gRKR0dH9O/fH+3btxdhT4jocV27dkVgYCACAwNx8+ZN7N+/H2q1GkFBQVi4cCGGDx8OpVKJKVOmoHv37mLHJQA9evTA7t27cfLkSfz973/H4MGDMWXKFHz88cfo2rWrqNk6deqEo0ePYu7cuZgyZQoWLVqEjz76iFceJiIiItIznCxJRERERERERERERET0B7a2tnB1dYWrq2ut+8vLy3H+/PlaV6M8duwYtm7dWquk9+MTKFnSm0hcbdq0QUBAAAICAnD//n0cPnwYarUaq1evRnBwMJydnaFSqaBUKut85qnpDRs2DMnJydBoNHj//ffh7OyMefPmYcmSJWjZsqVouczMzLB582YMGTIESe7GgwAAIABJREFU8+bNw9mzZ7F9+3bY2tqKlomIiIiIGoeTJYmIiIiIiIiIiIiIiBrI1NS0ptTvH1WX9H78apT79u1DQUEBgNolvf84mZIlvYmahqWlJZRKJZRKJR4+fFgzKS86OhorVqyAo6MjvL29oVKpMHLkSEgkErEjGy2lUonx48djw4YNCA0NxdatW7Fs2TLMmTMHMpl4X3PPmjULffv2hUqlwtChQxEfH4++ffuKloeIiIiIGo4/XyQiIiIiIiIiIiIiItICe3t7KBQKBAYGIioqComJicjPz0dxcTHS0tIQHR0NpVIJAFCr1Zg6dSrc3NzQsmVLODk5wcvLC4GBgYiOjkZKSgru3r0r8h4RGTYzMzMoFApERkbiypUrSE5OhkqlwrfffgtPT0906NABAQEB0Gg0ePTokdhxjZJcLkdgYCByc3Mxc+ZMBAUFoV+/flCr1aLmGjFiBE6fPo3OnTvD3d0dcXFxouYhIiIioobhlSWJyKCkpqaKHYGeobqNeOKg+bty5Qo6deokdgzSoitXrvCzR6QFHG8QGTZ+xqkhOKYyPleuXAHAtiei59fYkt5btmzB/fv3a55bX0lvBwcHXvGOSIukUik8PDzg4eGBsLAwZGZmQq1WIyEhARMnToStrS0UCgW8vb3h4+MDKysrsSMbldatWyMsLAwzZ87E0qVL4e/vj6ioKKxZswYDBw4UJVO7du1w6NAhLFu2DP7+/jh8+DA+/fRTyOVyUfIQERER0bNJBEEQxA5BRKQNPDFIpH2+vr6i/0KXtEOlUmH37t1ixyAiItIbPF1C9YmLi4O/v7/YMYioicXGxsLPz0/sGGSE6ivpffbsWVy/fh0AYGNjg+7du9eaQOno6AgXFxeYm5uLnJ7IsFy6dAnffPMNEhIS8P3330Mul2PMmDFQKpV4/fXX0b59e7EjGp2TJ09i4cKFSE1NxZQpU/Dxxx+ja9euouXZsWMHZs2ahSFDhiA2NhYdOnQQLQsRERERPZGakyWJiIiIiIiIiIiIiIj0xK1bt2quQvn4ZMpLly6hqqoKcrkcnTt3rnM1ygEDBsDa2lrs+ER6r6ioCAcOHIBarcahQ4dQWVmJ4cOHQ6VSwdfXFy+99JLYEY2GIAjYvXs3goODUVBQgHnz5mHJkiVo2bKlKHlOnz4NHx8fPHr0CHv27MHQoUNFyUFERERET8TJkkRERERERERERERERPru4cOHuHDhQq2S3llZWcjKykJZWRmA2iW9H59MyZLeRM/n3r17OHLkCNRqNfbu3YuSkhI4OztDpVLB398fffr0ETuiUSgvL8fGjRsRGhoKmUyGZcuWYe7cuTAxMWnyLDdv3sS0adPw3//+F5999hlmzpzZ5BmIiIiI6Ik4WZKIiIiIiIiIiIiIiMhQVVRU4Lfffqs1gTIvLw8///wzbty4AaD+kt7Ozs7o3bu3KJONiPTRgwcPkJKSAo1Gg9jYWFy/fh2Ojo7w9vaGSqXCyJEjOSlZx4qLixEREYF169bB0dERK1asgEqlavIclZWV+Oc//4kPP/wQf/nLX/DJJ5/A1NS0yXMQERERUR2cLElERERERERERERERGSMbt26VWsCZfXfL168CEEQnljSe+DAgbCyshI7PlGzVVlZidTUVCQkJGDPnj24cOECunTpgvHjx8Pb2xvjx4+HXC4XO6bBysnJwbJly7B7926MGTMGa9aswYABA5o8x759+xAQEIC+ffsiLi4O9vb2TZ6BiIiIiGrhZEkiIiIiIiIiIiIiIiL6P4+X9P7jZMoHDx4AAOzs7GpNoKz+u6Ojo8jpiZqfzMxMqNVqJCQkID09Ha1bt8aECROgVCrx2muvoUWLFmJHNEgnTpzAwoULceLECUyfPh3h4eGws7Nr0gzZ2dnw8fFBYWEhYmNj8fLLLzfp9omIiIioFk6WJCIiIiIiIiIiIiIiomerr6R3ZmYmzp49i7t37wIAWrVqBScnpzpXo2RJb6Lf5eXlQaPRQK1W4/jx47CwsMArr7wClUqFSZMmwcbGRuyIBkUQBOzevRtBQUG4fv065s2bh6VLl8La2rrJMpSUlODtt9/Gvn37sHLlSgQFBTXZtomIiIioFk6WJCIiIiIiIiIiIiIiohfT2JLe1X/26tWLJb3JaBUWFuLgwYNQq9U4dOgQKisrMXz4cKhUKqhUKpZt1qLy8nJs3LgRoaGhsLS0REhICGbOnNlkk7gFQUBERASWLFmCN954A9HR0bC0tGySbRMRERFRDU6WJCIiIiIiIiIiIiIiIt24c+cOLly4UGsCZUNKeru4uDR5uVwiMd26dQtJSUnQaDSIj4/H/fv3MWjQIHh7e+ONN95Ar169xI5oEIqLixEREYG1a9fCyckJERER8Pb2brLtHzx4ENOnT0fXrl3x9ddfw8HBocm2TUREREScLElERERERERERERERERN7NGjR7h8+XKdCZQ///wzSkpKAAC2tra1JlCypDcZi7KyMiQlJSEhIQF79+7FjRs34OzsDKVSCW9vb4wcORISiUTsmHotJycHy5Ytg1qthkKhwJo1azBgwIAm2faFCxfg4+ODa9euYdeuXfDy8mqS7RIRERERJ0sSERERERERERERERFRM/J4Se/HJ1NWl/Q2NTVFp06d6pT07t27N1q0aCF2fCKtqqysRGpqKtRqNfbs2YOrV6+iW7dumDhxIpRKJUaPHg2ZTCZ2TL114sQJLFy4ECdOnMD06dMRHh7eJFe1ffDgAd577z1s374dq1atwqJFizgBloiIiEj3OFmSiIiIiIiIiIiIiIiImr/bt28jNze3VknvzMxMZGdno7KyEkD9Jb379u2Ljh07ipyeSDsyMzOhVqsRFxeHX375BW3btsWrr74KlUqFsWPHwszMTOyIekcQBOzevRtBQUG4ceMG5s6di6VLl8La2lrn246OjsbcuXPx6quvIiYmBjY2NjrfJhEREZER42RJIiIiIiIiIiIiIiIi0l9PKul95swZlJaWAnhySe8+ffpAKpWKvAdEzycvLw8ajQZqtRrHjx+HhYUFXnnlFahUKrz++uto2bKl2BH1Snl5OTZu3IiQkBC0aNECISEhmDlzJkxMTHS63aNHj8LPzw+tWrVCfHw8+vTpU+9yiYmJGD16NORyuU7zEBERERkwTpYkIiIiIiIiIiIiIiIiw3Tt2rVaEyir/56XlwcAMDU1Rffu3etcjbJPnz6wtLQUOT1Rw/3222/49ttvodFo8N1338HExAQeHh7w9vaGv78/r67aCDdv3sTHH3+MtWvXonv37oiIiMCECROe+byKiornLol+5coV+Pr6IisrC19++SUmT55c6/HTp0/D3d0dy5cvx5IlS55rG0RERETEyZJERERERERERERERERkZKpLev/xapT1lfR+/GqU/fr1Q4cOHUROT/R0xcXFSEhIQEJCAg4cOICysjK4u7tDqVTCx8cHPXr0EDuiXsjOzsby5cuhVquhUCjwr3/9C/3793/i8h9++CEsLCzwj3/847m29/DhQ8ydOxdbt27FokWL8NFHH0EqlaK4uBgDBgzA1atXIZfLkZGRwTYkIiIiej6cLElEREREREREREREREQE1C3pXf3nuXPncO/ePQB1S3pX/9mtWzeW9KZm5/79+zh8+DDUajX27duHO3fuwNnZGSqVCkqlEq6urmJHbPZSU1OxcOFCnDx5EtOnT0d4eDjs7OxqLZOfnw8nJyc8ePAAu3btgr+//3NvLzo6GvPmzcOYMWOwbds2TJs2Df/5z3/w6NEjyOVyDB06FMnJyZBIJC+6a0RERETGhpMliYiIiIiIiIiIiIiIiJ6lvpLemZmZyM/PBwCYmZnBycmpTklvZ2dnWFhYiJyeCKisrERqairUajV2796Na9euwcHBAUqlEiqVCiNGjGj0hF9fX18sWrQIQ4cO1VHq5kEQBOzevRuLFi1CYWEh5s6di6VLl8La2hoA8M4772D79u149OgRZDIZkpKSMGrUqOfeXmpqKnx9fVFeXo5bt27VXPEWACQSCT7//HO8/fbbL7pbRERERMaGkyWJiIiIiIiIiIiIiIiIntetW7dqTaD8Y0lvmUyGLl261JpA6ejoiP79+6N9+/aiZK6srISJiYko26bmoaqqCj/99BM0Gg2++uorZGdno127dhg/fjxUKhXGjRsHU1PTp67j8uXL6Nq1K2QyGdavX4/33nuvidKLp6ysDOvXr8fq1avRokULhISEYMiQIXBzc0NVVRUAQCqVwsLCAsePH39q2e5n+eKLLzBjxow690skElhbW+P8+fOi9SFEREREeoqTJYmIiIiIiIiIiIiIiIi0rby8HOfPn69zNco/lvR+fAJlU5X0jo2NxZdffonw8HD069dPZ9sh/ZGZmYmEhARoNBocP34crVq1gkKhgLe3NyZPnlxzBcXHffLJJ/jb3/6GiooKSCQS+Pr6YsuWLWjZsqUIe9C0bty4gZCQEGzZsgXt2rVDUVERHj16VPO4TCZD69atkZ6ejk6dOjV6/dnZ2Rg8eDDKyspQ39f5crkcvr6+2Llz5wvtBxEREZGR4WRJIiIiIiIiIiIiIiIioqZUXdL78atRZmRkoKCgAEDtkt6PT6Z0cXGBubn5C28/NDQUK1asgEQiwbRp07Bq1Sp07dr1hddLhuHXX3/F3r17kZCQgO+//x4ymQwKhQJKpRKTJk1Chw4dAACenp44fvx4zRUV5XI52rdvj6+//trgy3JX27BhA+bMmVPvYzKZDN27d8eJEydgY2PT4HWWlJTA1dUVFy9eREVFxVOXTUhIwIQJExqVmYiIiMiIcbIkERERERERERERERERUXPwpJLe586dQ1VVVb0lvZ2dndG/f/9GXc3Pz88Pe/bsqVknAMyYMQP//Oc/aybCEQFAQUEB9u3bh/j4eBw5cgRVVVUYPXo0vLy8sHjx4pqJktVkMhkkEgk+/vhjBAYGipS6aVRUVMDZ2Rl5eXmorKysdxm5XA53d3ckJiY+s6w5AAiCgMmTJ+Obb7555rJSqRT29vbIzs6GpaVlo/MTERERGSFOliQiIiIiIiIiIiIiIiJqzp5U0vuXX37B/fv3ATy5pLeDgwMkEkmt9fXu3RvZ2dm17pPL5ZDJZJg/fz6WLl1ab9llMm7379/H4cOHoVarceDAAdy6davOZMlqEokESqUSX375JVq1atXESZvG+vXr8f777z/xNahmYmICf39/bN++vc5n8Y8ePnyI7du3Y/v27Th69CikUimqqqqeuA2ZTIYFCxbg448/fu79ICIiIjIinCxJREREREREREREREREpI8qKipw8eJF/PLLLzh37hyys7ORlZWFc+fO4fbt2wAAGxsb9OrVC87Ozujduzd69eoFf39/lJeX17tOmUwGa2trBAUF4f3332/Q1fDI+EyYMAHffffdE6+oCBh2We7bt2/DwcGh5nP2LFKpFMuXL0doaGiDt3Hz5k3s378fn3/+OY4ePQqZTIaKigr88et9qVSKU6dOYfDgwY3ZBSIiIiJjxMmSRERERERERERERERERIbmjyW9q/+8dOnSM6+EB/x+NbwuXbogPDwcvr6+z7wiHhmP0tJStGnT5okTbh9nqGW5v/nmGyxduhTZ2dmoqKiAVCqFXC5HeXl5ncmM1SQSCbZu3YoZM2Y0enuXL1/G119/jR07duDUqVOQy+V49OgRgN9f4549e+LMmTOQyWQvtF9EREREBo6TJYmIiIiIiIiIiIiIiIiMxZ49e+Dr69ugZaVSKQRBwMCBA/Hvf/8bo0eP1m040gu7d++Gn5/fEycFPsmUKVPw+eefo2XLljpK1vQePXqE7OxsnD17Fj///DPOnDmDM2fO4Nq1awB+v7qmRCKpmVhqYmKC/fv3Y9y4cc+9zXPnzuGrr77Ctm3bkJeXV1Oq+9///jfef/99rewXERERkYHiZEkiMhz8VSuR9vn6+kKtVosdg7RApVJh9+7dYscgIiLSGzxdoltxcXHw9/cXOwYRkUGLjY2Fn5+f2DGeC8/zEREREREREdGLquc8v5rX4SYig7JgwQK4u7uLHUM0a9euBQD+cpC0ovr9RIZj+PDh7B+IqFH8/f2NfnxFxic1NRXr1q0TO4bRiI2NFTsCkdZV9yN8f5OYDGFCOsehRLoTFRWF//73v6isrKzzmImJCQRBqCnTbWtrCwcHBzg4OKBLly7o2rUrOnbsyEnNRi46OhoPHz6Eubk5JBIJLC0tAQCWlpaQSCQwNzeHiYkJTE1NYWpqChMTk1rLyuVydO7cWeS9EEdhYSEuX76MkpIS/OlPf9LaZ0kQBOTk5KC0tBSurq5aWWdT4fiZiIiItO1p5/k5WZKIDIq7u7ve/mJeG6qvAGjMrwFpD68oaXg6derE/oGIGsXf39/ox1dknDhZsumwfyFDtW7dOr6/SVSGMFmS41Ai3VmzZg0qKyshl8tRUVEBQRBgbm6O3r17Y+jQoejfv3/NzcbGRuy41AyxfyZt4/iZiIiItI2TJYmIiIiIiIiIiIiIiIiMXGVlJZRKJQYOHIj+/ftjwIABcHJyglQqFTsaERERERGRTnGyJBEREREREREREREREZGRSE9PFzsCERERERGRKPgTMSIiIiIiIiIiIiIiIiIiIiIiIiIyaJwsSUREREREREREREREREREREREREQGjZMliYioQaysrCCRSGrd1qxZI3as52JI+0LUHMTGxmLgwIGwsLCo+UxlZGSIHYvI6AiCgGPHjmHOnDno2bMnzMzM0L59e3h4eGD79u0QBKFJclRWVmLTpk0YMWIEbGxsIJfLYW9vj9deew2ffvopLl26VLPsmjVravqNTp06NUm+ppSWloa3334b3bp1g7m5OVq1aoUhQ4bgww8/xO3bt194/c19TKOt9v3qq69q1mNubq7FhESGr6n7WX3v1w8cOICePXtCJpM1+babe58ulubwuuj7+5qI6HE8h6NdYo4diIjIeA0cOLDO/5Oedlu5cmW9/7d60m3Lli11tsnznDzPSWRIOFmSiIgapLS0FD/99BMAYNKkSRAEAX//+99FTvV8DGlfiMR27NgxvPHGGxg7diwKCwtx4cIFfoFIeqO0tBQ9evSAt7e32FG0Ijs7Gx4eHsjJycHu3btx584dnDhxAl26dMFbb72Ff/zjH02S46233sKcOXPw+uuvIzMzEyUlJUhOTsagQYMwf/58uLm51Sz797//HYIgYMCAAXXW86LtI3b7Ll68GMOHD4etrS0SEhJw+/ZtXLx4ESEhIYiPj0fPnj1x7NixF9pGcx/TPK19G2Pq1KkQBAFjxozRUjLSV2J/rvWRtj6HzXV72pKbm4uJEydi8eLFuH79uigZmnufLpbm8Lro6/uaiOiPeA5He5rD2IGIiIybWq2GIAg1t9mzZwMADh48WOt+f39/APX/36q+26hRo+psi+c5eZ6TyNBwsiQRERkkKysreHh4iB2DSO8967NU/R/ywMBAWFlZwcnJCZcvX0bfvn2bMKXhYN+lfU97TQVBQFVVFaqqqhr1vOZMJpMhLi4O/fv3h7m5ORwdHfHFF1+gTZs2+PTTT/Hw4UOdbv/UqVPYtWsXZs6ciUWLFqFTp04wNzeHk5MTVq1ahb/+9a8NXtfT2qcpnv8iVq5cibCwMHz22WdYu3Yt+vbtC3Nzc9ja2sLb2xvHjh1Dly5d8Oqrr+LcuXNNno9IX2nzc62v/TzpxvLlyzFixAikp6fD2tpa7Dhawfc4EZHx4TmchtHGMdIQxw5ERET14XlOIjJEvC48ERER0f9j787Doyrv//+/JpkkJCEEiBJCiBBwQalEjAgqFBRKpKxyJVCLaFsX6gYI9IsLimupQotaFbdqrVtD6Ac0KCpQ8ZKtRtkUWWQTgYSdkEASSHL//vCXkXEmyczkTGbJ83Fdcyln7nPOfc77Pvd9n3vunAOf/fDDD5KkpKSkAOcE8F5CQoK2b98e6GxYpkuXLjp9+rTL8ujoaKWlpWndunUqLy9XTEyM3/KwceNGSdIFF1zg9vtRo0YpNzfXo201ND6Biu+2bdv0yCOP6NJLL3X8RffPxcXFafbs2frlL3+p8ePH65NPPmnkXAKhKdzqbQSPf/zjH4qNjQ10NgAA8CvGcKxD3wEAEEjr1q3zOO2///1vr7a9bNkyx/8zzgkgXPFkSQAAAPisqqoq0FkAUI9jx47pu+++U/fu3ZWYmOjXfSUnJ0uSFi9e7Pb7vn376tChQ37NQ6C9+OKLqqysVE5OTp3p+vTpo3bt2mnx4sXasWNHI+UOAOAOkx0AAE0BYzjWoe8AAAg3d911lyZOnOi0jHFOAOGKyZIA4KHDhw9r0qRJ6ty5s2JiYtS+fXsNGDBA//znP1VWVqZZs2bJZrPJZrOpffv2KigoUP/+/ZWQkKC4uDhdffXVWrFiRaAPw3ILFixwHLfNZtOuXbs0evRotWzZUklJSRoyZIjT01+8PU+PP/64I/2Zr0f56KOPHMvPOussl+2fOHFCK1ascKSx231/mHJlZaVyc3P1q1/9Sm3btlVsbKwuvvhiPfPMM45XAB47dszpPNhsNj3++OOO9c9cnp2d7dj2wYMHNX78eHXs2FHR0dE6++yzNXLkSKe/Cvv5Od6yZYtGjRqlpKQkx7Jwn3iCxlfftVRTLt977z1JPw4S22w29erVq1Hyd2adHB0drVatWmnQoEH69NNPXY7B23rZyuvSk/rjzLzWV3d5ctye5q2iokIPPfSQunTpori4OLVu3VpDhw7V+++/3+g/oGzevFkjRoxQYmKi4uLidPnll2vhwoUaMGCAI8+33HKLI70nMfK0DNd8ysvLPVrPmzz8fB/ff/+9Ro8erYSEBCUlJWns2LE6evSodu3apaFDhyohIUEpKSm69dZbVVJS0uDzevz4ca1YsULDhg1T27Zt9a9//avB26xPnz591LZtW3388ccaNGiQli1b5tPrcmuLT436+mW1re9tv6WGN2X0s88+kyRlZGTUe5w1aT7//PNG6Ut6Wif5q+xu3rxZgwcPdpzH2o7pzPMdHx+vPn36aPny5Q06JoQ+q65rK+v5Gv5oxxrrHsCTvoUvaX/urbfecrlfuuuuu3y61+OemzJeH8o1gKbGX2M49d13uUvn6ViFp/dinuTB6rEXAADwI8Y5GecEwpYBgDAhyeTm5vpl24WFhSY9Pd20bdvW5Ofnm+PHj5uioiLz2GOPGUlm9uzZjrQZGRkmPj7eXHHFFWblypWmtLTUFBQUmG7dupno6GizbNkyv+TRGGOys7NNdna237a/du1aI8kMHz7c5bvhw4c7vqs57sWLF5vY2FjTo0cPl/Tenqf4+Hhz1VVXuWwnMzPTJCUluSyvLb0nx/Jz+fn5RpL585//bI4cOWIOHjxonn32WRMREWGmTJnilDYrK8tERESYbdu2uWzniiuuMG+//bbj3/v27TMdOnQwycnJ5oMPPjAlJSXmm2++MX379jXNmjUzK1eudFq/5hz37dvXfPrpp+bEiRNm9erVJjIy0hw8eLDe4/CWv8sTGpev8azvWqopl2VlZQ3Jnldq6uTk5GSTn59viouLzZYtW8zIkSONzWYzr7zyilN6b+obq69Lb+oPY+o+394ed315u+WWW0xiYqL55JNPzMmTJ01RUZGZMmWKkWQ+/fRTH6Pjve+++860bNnSpKammk8++cRxzgcMGGDOPvtsExMT45Te2xj5WobrWs/XcjJy5Ejz5ZdfmtLSUvOvf/3LSDKDBg0yw4cPN2vXrjUlJSXmxRdfNJLMPffc481pdFHTR5Fk+vXrZzZs2ODTdnzpX33++ecmLS3Nsf82bdqYMWPGmHfeececOHHC7ToZGRkmNTXVZbm7+HjTL6stvt70W7wtoykpKUaS+d///lfvubrhhhscdcSZ58KbPpK/+jRnnqeGlt2MjAyTmJhorr76arN8+XJTUlJS6zG5O98bNmwwAwcONB07dnQ5394ekydyc3MNwyX+5+t5tuK6Nsa6et7f7ZhV9wDu6llv+ha+9L/O3F9lZaWZNGmS+dWvfmWOHDnilNbbez1/33OnpqaayMjIBm3D1/Jt5T13OJVxb9o6yvVP/DlO1hhCPf9AIFg5huPpfZevYxWetGee5sHKsRdfWNF3AJo67sOBhhs3bpyRZBYtWlRrmpp7q9o+EyZMcErPOGfoj3MCTVkd/Yu59DoAhA1/DqL+7ne/q3X71157rctkSUlm7dq1Tuk2bNhgJJmMjAy/5NGY4JgsmZ+f75InSS4/5Hl7ngI9WbJfv34uy2+44QYTFRVliouLHcs+/vhjI8nccccdTmmXL19uUlNTzalTpxzLbrrpJiPJaQKlMT8OBMbExJjMzEyn5TXn+MMPP6w3z1ZgsmR4CafJkjV18rvvvuu0vLy83LRr187ExsaaoqIix3Jv6hurr0tv6g9j6j7f3h53fXlLT083V155pcvy888/v1EnS+bk5BhJZt68eU7LDxw4YOLi4lwGDLyNkT8mS/paTj744AOn5V27djWSzGeffea0PD093VxwwQW15tlTFRUVZtOmTeaPf/yjiYyMNI8++qjX2/C1f1VeXm7eeOMNM3z4cJOQkOAYcEtKSnIpw8Z4N1nSm35ZfZOqPOm3eFtGawYRv/jiC3enxknNIOKMGTMcy7ztI/mrT2OMdWW35phWrVpV7zHVdr737t1rYmJi3A4ienNMnuBHmsbhr8mSnt6PWFXP+7sds+oewF09603fwpf+V83+jh49arKyssyECRNMZWWlS958mVTmz3vuYJ8s2RTLuDdtHeX6J6E+2TDU8w8EgpVjOJ7ed/k6VuFJe+ZpHqwce/EFkyWBhuM+HGg4byZLuru3uvPOO2udLMk4509CbZwTaMrqmizJa7gBwAPz58+XJA0aNMgx5L/oAAAgAElEQVTlu0WLFmnixIlOy+Lj43XJJZc4Lbv44ovVrl07rV+/XoWFhf7LbID16NHD6d9paWmSpH379rmkDZXzNGTIELev4MrIyNDp06e1ceNGx7KBAwfq4osv1j//+U8dPnzYsXzmzJm6++67FRUV5Vi2YMECRUREaMiQIU7bbdu2rbp27aqvvvpKe/bscdnv5ZdfbsVhASGrpk4ePHiw0/KYmBj1799fZWVl+vjjj52+87S+sfq69Kb+qI8vx11X3q699lqtXLlSt912m1avXu149faWLVvUr18/j/PVUB999JEkKSsry2n52WefrS5durik9zVGVvI1D5dddpnTv9u1a+d2eWpqqtt201vR0dHq0qWL5syZo2HDhumhhx7SkiVLGrxdT8TExOjGG2/UggULdOTIES1dulS/+c1vdPjwYd1www1au3atz9v2tl9WF0/6Ld6W0Zq4ntkPqE1Nmpp1avirj+RrnWRF2W3WrJl69uzptMzdMdV2vtu1a6fzzz/fsmNC+PLmfqQ23tTzjdWO+eMewJu+ha/9kC1btqhnz56KiIjQ008/rcjISEvyHir3kv5AGa8b5RoArOHpfZevdakn7ZmneeCeAAAA/2Cck3FOIFwxWRIA6lFRUaHi4mI1a9ZMCQkJHq3TsmVLt8vbtGkjSTpw4IBl+Qs2iYmJTv+Ojo6WJFVXV7ukDZXzVFxcrIceekgXX3yxWrVqJZvNJpvNpj/96U+SpJMnTzqlnzhxok6ePKkXXnhBkrR161b997//1W233eZIU1OuqqurlZiY6NhmzWfNmjWSpO+++84lP/Hx8f46VCDo1VcnJycnS5KKioqclntS3/jjuvS2/rD6uOvK2/PPP69//etf2rFjh/r3768WLVro2muvdfwY0RgqKipUUlKiZs2aqXnz5i7ft2rVyiW9rzGyMs++5qFFixZO/46IiFBkZKTi4uKclkdGRrptNxti6NChkqSFCxdaul1P2O12XXPNNXr33Xc1depUVVVVad68eT5ty5d+WV3q67d4W0YlqW/fvpKkdevW1bv/9evXS5LLBGV/9ZF8rZOsKLtJSUmy2Wwuy39eD9d1vmvSWnFMCF/e3I+4400935jtmNX3AN70LXzthxw9elQjRoxQ+/bttWjRIr311luW5T9U7iX9gTJe/7FRrgGgYTy972rIWIUn92Ke3vtxTwAAQMM999xzevrpp52WMc7JOCcQrpgsCQD1iImJUWJiosrLy1VSUuLROocPH5YxxmV5TYfPXQeoKfLmPEVEROjUqVMuaY8dO+Z22+46qb4aOnSoHnvsMd16663aunWrqqurZYzR7NmzJcnlGMaMGaPk5GQ999xzqqio0F//+lfddNNNTj8kxcTEqGXLlrLb7Tp9+rSMMW4/V199tWXHAfjCymvJCvXVyfv375f045NrzuRJfeOP69Lb+qO28+3rcdfFZrNp7NixWrJkiY4dO6YFCxbIGKORI0fqb3/7m8fbaYiYmBglJCSovLxcpaWlLt//fKDElxj5WobrikUo1t8xMTGSpCNHjvh1PytWrHD8IOZOzXk5evSoT9v3pV/WEN6WUUkaN26c7Ha78vLy6tz28uXLtW/fPg0dOlTnnHOO03f+6kt6WydZqbi42O3yn9fDdZ1vd+U3kMeE0GZFPd8Y7Zi/eNO38LUfYrfbtWTJEr333nu6+OKLdeutt6qgoMBlfW/v9STuuT3RFMs45RpAU2fVGI6n913+GKvwNg+SdWMvAADAGeOc7jHOCYQ+JksCgAeuu+46SdKHH37o8l337t11zz33OC0rLy93GSz/+uuvtW/fPmVkZCglJcV/mQ0h3pynlJQU7d271yltUVGRdu/e7XbbcXFxTj9MXHDBBXr55Ze9yp/dbtfGjRu1YsUKtW3bVuPHj9fZZ5/tGFArKytzu15MTIzuuOMOHThwQH/961/19ttva8KECS7pRo4cqcrKSq1YscLluyeffFLnnHOOKisrvcozYDUrriWr1dTJH3zwgdPyiooKLV26VLGxsS6vNfC0vrHyuqyqqvK6/qjrfPty3HVp2bKlNm/eLEmKiorSr371Ky1YsEA2m81lH/5U8zqtmldS1CgqKtLWrVtd0nsbI1/LcF3rBWv9PWXKFN1www1uv1u0aJEk11edWc0YowMHDmj16tVuv//yyy8l/dh/8pW3/bKG8raMnn/++Zo+fbrWrFmjl156ye02T548qYkTJyopKcnlL7Yl6/uSvvZprFRaWur4C/Ma7o6ptvN96NAhbdmyxWmZL/UsUMOqet7f7Zg/edO38KUfkpCQoNTUVDVv3lzvv/++mjdvrhEjRri8Ysvbez2Je25PNLUybrfbtXnzZso1gCbNyjEcT++7rB6r8DYPVo+9AACAnzDO6R7jnEAYMAAQJiSZ3Nxcv2y7sLDQpKenm5SUFLNw4UJz/Phx88MPP5jbb7/dJCcnm++//96RNiMjwyQmJpr+/fublStXmtLSUlNQUGC6detmoqOjzbJly/ySR2OMyc7ONtnZ2X7b/tq1a40kM3z4cJfvhg8fbiSZsrIyp+VTp041kszatWudlnt7nu666y4jyfz97383JSUlZtu2bWbUqFEmNTXVJCUlueTn2muvNYmJiWb37t1m5cqVxm63m2+//dajY6kRGRlpNm3aZK655hojyTz11FPm4MGD5uTJk+a///2vOeecc4wks3jxYpd1Dx48aGJjY43NZqt1H/v37zedO3c2nTp1Mh9++KE5duyYOXz4sHnxxRdNXFycS3mu7Rz7i7/LExqXr/Gs71pyVy537txpIiIijCTz1VdfWZL/M9XUycnJySY/P98cP37cbNmyxYwcOdLYbDbz8ssvO6X3pr6x+rr0tv6o63x7e9z15S0xMdH07dvXrF+/3pSXl5v9+/ebhx9+2Egyjz/+uGfB8EJt5WLbtm2mdevWJjU11XzyySempKTEfP311+baa681HTp0MDExMU7b8TZGvpTh+tazqpxkZWWZyMhIl3PVt29fEx8f78XZ/dHkyZONzWYzjzzyiNm5c6cpLy83O3fuNP/v//0/I8lkZmaakydPerVNb/tXn3/+uZFk0tLSzNtvv2327t3ryMfMmTNNdHS0yczMNOXl5U7rZWRkmNTUVJftuTt33vTLajv33vRbvC2jNe677z4TGRlp7rnnHvPNN9+Y8vJyc/ToUZOfn2+6d+9uUlNTzZdffumynrd9JH/2aawquxkZGSY+Pt707t3brF69us5jcne+N27caLKyskybNm1czrcv/bT65ObmGoZL/M/X82zFdW2MdfW8v9sxq+4B3NWz3vQtfOl//Xx/y5YtM1FRUaZXr15O7YC393r+vudOTU11W8d5w9fybeU9dziVcW/aOsr1T/w5TtYYQj3/QCBYOYbj6X2XVWMV7tozT/Ng5diLL6zoOwBNHffhQMONGzfOSDKLFi2qNY0n91buMM7pfEyhNM4JNGV19C/m0usAEDb8PYh66NAhM3HiRJOenm6ioqJMSkqK+c1vfmO2bt3qlK5m8Pzbb781WVlZJiEhwcTGxpq+ffua5cuX+y1/xvh3clt8fLyR5PSZOXOmWbVqlcvyBx54wBhjXJYPHjzYsT1vz9OxY8fMLbfcYlJSUkxsbKzp3bu3KSgoMJmZmY7tT5061ZF+8+bNpk+fPiY+Pt6kpaWZ559/vs5jqe2zadMmc/DgQTNu3DiTlpZmoqKiTHJysvnd735n7r33Xke6zMxMlzzfeuutRpL57LPPaj2vhw8fNpMmTTKdOnUyUVFR5uyzzzYDBw506vC6O8eNMXDAZMnw4ms8a7uW5s+f77Zcrlq1yjHQbrPZzIYNG6w+FGOMa52cmJhosrKyzNKlS13SelvfWHldelt/1FV3eXrcnuZt3bp1Zty4cebCCy80cXFxpnXr1qZXr17mlVdeMdXV1Z4Fwgt1lYstW7aYESNGmBYtWpi4uDhz5ZVXms8++8z069fPxMXFuWzLkxjV8KYMjxkzpt71vMlDbW1kQUGBy/IZM2Y4Jhqe+Zk+fbrH57i4uNi8+uqrJisry3Ts2NFER0eb5s2bm8zMTDNjxgyvJ0oa433/qqqqyixfvtxMmTLF9OzZ07Rr187Y7XaTkJBgLrvsMvPnP//ZnDhxwpF+5syZbs9RffGpr19W2/q+9lu8LaM1CgoKzE033WQ6dOhgoqOjHefh8ccfN8eOHXO7jjd1lr/6NFaV3TPjm5qaar744gtz9dVXm+bNm9dZD595vmNjY02PHj3MwoULTf/+/R3bu/nmm40x3teznuBHmsbh7Xm2+rq2op6v4Y92zKp7gNrq2Rre9Kk8Sfvuu++67G/27Nluj6emXvf2Xs8f99z5+fm11p+vvPKK19vzpR6x+p47XMq4t22dMZTrGt7244JNqOcfCASrx3A8HQ/3dazCk/bMkzxYPfbiCav7DkBTx3044LvXX3/dbXtUUlLilM7dvVVycrLH+2GcMzTHOYGmrK7JkjZjeLE9gPBgs9mUm5urUaNGBTQfl1xyiQ4dOqQ9e/Y0+r5zcnIkSXl5eY2+b28F8jw1ltdff13PP/+845WjoSaUyhPq15Tj2RTqm3DVpUsXlZWV6fvvvw90VpqsYOlfBSt/lFHqrMCbO3euRo8eLYZL/KspnGfaMf8IhXqyKZRviTJuJX+U61Dvx4V6/gEAgOeaSv8ZaGpC4f4dQPiqo3+RFxGIDAEA0BS8+OKLmjRpUqCzAQBBraioSK1bt9bp06edlu/atUvbt2/XNddcE6CcAT+ijAKoC3UEwh1lHAAAAAAAAOGEyZIAAFjk1Vdf1XXXXafS0lK9+OKLOnr0KE9AAAAPHD16VOPGjdMPP/ygkydP6osvvtDo0aPVokULPfjgg4HOHkAZBVAn6giEO8o4AAAAAAAAwgWTJQHAIrNmzZLNZtP69eu1d+9e2Ww2TZs2LdDZCjrhfp4WLFigVq1aac6cOfr3v/8tu90e6CwBQcFms1nyefjhhz3eZ7jXN42hMeLWtm1bLVmyRMeOHdMvf/lLtWrVSsOGDdN5552nL774Qp06dWq8Aw5SVl8b8E5jlVHqLCA0BbIda2rtg7f1ZFM7P/5CX82/aP8BIHjQdwAAwBrc5wAIdjbj5uXcABCKbDabcnNzm/ST/HJyciRJeXl5Ac4JwgHlKbwQTwC+oH+Fpmju3LkaPXq0GC7xL84zwhnlG8Eg1PtxoZ5/AADgOfrPAADAanX0L/J4siQAAAAAAAAAAAAAAAAAAAhrTJYEAAAAAAAAAAAAAAAAAABhjcmSAAAAAAAAAAAAAAAAAAAgrDFZEgAAAAAAAAAAAAAAAAAAhDV7oDMAAFZatWpVoLMQUHv27JEkzZ07N8A5QTjYs2eP2rdvH+hswEJ79uyhfgDgtabev0LTQ5lvXPRNEI5q6hHKN9AwtMkAADQN9J8BAIDV6hpTsBljTCPmBQD8xmazBToLQNjJzs5WXl5eoLMBC+Tk5GjevHmBzgYAACGD4RL/mjt3rkaPHh3obABAWMvNzdWoUaMCnQ2fMM4HAAAAAAAays04fx5PlgQQVkJ5EDjc2Gw24hHicnJyAp0FWIzJr0Bg1NSnXH9AaGASX+NiUiqCDe02wkU4TDZkXAkAANA/BwAAvqhrnD+ikfMCAAAAAAAAAAAAAAAAAADQqJgsCQAAAAAAAAAAAAAAAAAAwhqTJQEAAAAAAAAAAAAAAAAAQFhjsiQAAAAAAAAAAAAAAAAAAAhrTJYEAAAAAAAAAAAAAAAAAABhjcmSAAAAAAAAAAAAAAAAAAAgrDFZEgA8UFpaqvPOO09DhgwJdFYAAEGCtgEAANSFvgIAAAhH9HEAAAAAhDImSwKAB4wxqq6uVnV1daCzUq/mzZurd+/egc5GyAv0eQz0/gHUj7YBCG+Bvm4CvX8ADUdfAU1VoMtToPcPAOGOPg4AAGgMgW7HA71/AP5jD3QGACAUJCQkaPv27YHOBgBo586duvPOO3X99ddrxIgRSkhICHSWmizaBgAAfnTDDTfowgsv1G9/+1ulp6cHOjtBg74CAEh/+ctfVFRUpOuvv149e/YMdHYAWIA+DgAAAIBQxpMlAQAAQkhVVZUWLVqkG2+8UWeddZays7O1YMECVVRUBDprAACgiVq7dq2mTZumzp0767LLLtOzzz6roqKiQGcLABAE9u/fr2eeeUa9evVSWlqaHnzwQX377beBzhYAAAAAAGiimCwJAPVYsGCBbDab41NeXu52+a5duzR69Gi1bNlSSUlJGjJkiNNf2M6aNcuRtn379iooKFD//v2VkJCguLg4XX311VqxYoUj/eOPP+5If+Yjvj/66CPH8rPOOstl+ydOnNCKFSscaez28H2I8OHDhzVp0iR17txZ0dHRatWqlQYNGqRPP/3Ukcbq80gcEWjGGMf/nzp1Su+//75Gjhyp1q1ba+zYscrPz1dlZWUAc9g00DYAwYG+ABBcjDFas2aNJk2apHbt2qlXr1565plndOjQoUBnrdHRV0Cwow1FY4qOjpYk7dmzR0899ZS6du2q8847Tw8//DBPpwNCDH0cAABwJu4tAYQkAwBhQpLJzc312/aHDx9uJJmysjK3y4cPH25WrlxpSktLzeLFi01sbKzp0aOHy3YyMjJMfHy8ueKKKxzpCwoKTLdu3Ux0dLRZtmyZU/r4+Hhz1VVXuWwnMzPTJCUluSyvLX2Nq6++2rRu3dqsWrXK00P3ib/jUVhYaNLT001ycrLJz883xcXFZsuWLWbkyJHGZrOZV155xSm91eexKcQxOzvbZGdn+2378M3WrVuNJLcfu91uJJnExERz2223mc8//9xUV1cbY4inv9A2wBNcf/5BX4Dr1l9yc3MNwyXeueiii9z2TSIjI01kZKSx2+1m0KBB5o033jClpaXGmKZznukrhJ6m0G7ThjaN8uzvcRlPTZw40URHR9d5D9utWzfz9NNPm6KiIsd6wZJ/AO7RxwHQWJpC/xwIVdxb0o8Aglkd489zebIkAFjklltu0RVXXKH4+HgNGDBAgwcPVkFBgdunqJw4cUIvvPCCI/1ll12mt956S6dOndKECRP8ms/q6moZY5yeTheK7rvvPu3cuVNPP/20hgwZohYtWuj888/XO++8o5SUFI0fP1779+/3ax6II4JNzRMli4uL9frrr6tPnz5KTU3VhAkTdOzYsQDnrmmibQD8h74A1y2CX1VVlaqqqlRZWanFixfr97//vVq3bq3s7Gx99dVXgc5eUKCvgECgDaU8B4uae9ivv/5akydPVrt27XTFFVfo5ZdfDnDOADQUfRwAAMIf95b0I4BQxWRJALBIjx49nP6dlpYmSdq3b59L2vj4eF1yySVOyy6++GK1a9dO69evV2Fhod/yuWzZMh05ckRXXHGF3/bRGObPny9JGjx4sNPymJgY9e/fX2VlZfr444/9moemEMfVq1c7vUKHT+A/559/vkexO336tCSpsLBQzz77rJYsWaLFixdryZIl/iwy+BnaBsB/6Atw3fpboNv8UPps27at3vNZWVmp6upqnTp1Sv/5z3/01FNPSZKeeOIJx2SZpoi+AgKBNrTplOfRo0cHvI14+umn682nMUZVVVWqrq7W//73P40bN06S9MILL+jIkSP+Pk0A/IA+DgAA4Y97S/oRQKiyBzoDABAuEhMTnf4dHR0t6ce/Kvm5li1but1GmzZttG/fPh04cEApKSnWZzJMVFRUqLi4WM2aNVNCQoLL98nJyZKkoqIiv+ajKcTxvPPO09/+9rdAZwNnKCws9Piv4ex2uyorK5Wenq7Y2FilpaVpwIABfs4hzkTbAPgHfQE0hrlz5wY6CyFjypQp2r17d73p7Ha7qqqqFBcXpx49emjZsmW69957FRkZ2Qi5DE70FdDYaEOblnvuuSfgP9y98cYbWrx4cb3pbDabIiIiZLPZNGDAAH300Ue6+eab1bp160bIJQCr0ccBACC8cW8JIJQxWRIAAuDw4cMyxshmszktP3DggKQfO3A1IiIidOrUKZdt1PZK3Z9vMxzFxMQoMTFRxcXFKikpcemE1zzSvW3bto5l/jiPTSGOSUlJysnJCXQ2cIbvvvuuzsmS0dHROnXqlM4++2xdf/31ysnJ0VVXXaVRo0Y1Yi7hi6ZQpwBWoS+AxkAfyHMPP/xwrd9FRkbKGKPIyEgNGDBAv/nNb5Sdna2FCxdq2bJlTXqipLeoc2AF2tCmpVevXgFvz1auXFnrZEmbzeb4I78ePXrot7/9ra6//nq1adNGNptNMTExjZxbAIFAmwAAQOjh3hJAKOM13AAQAOXl5SooKHBa9vXXX2vfvn3KyMhw+guXlJQU7d271yltUVFRrU9uiYuLc+roXXDBBXr55ZctzH1wuO666yRJH3zwgdPyiooKLV26VLGxscrKynIs98d5JI4IFlFRUZKk5s2ba9SoUXr//fdVWFioZ555Rr179+aGLkRQpwDeoS8ABC+bzabIyEhFRESoR48emjNnjg4dOqQPP/xQN954o+Li4gKdxZBEnQOr0IYi0Oz2H5/hcO655+r+++/X9u3b9b///U8TJkxw+jETQNNAmwAAQGji3hJAqGKyJAAEQGJiou6//36tWrVKJ06c0JdffqkbbrhB0dHReuaZZ5zSDhw4UPv27dNzzz2n0tJSbd++vc7B40svvVRbt27VDz/8oFWrVmnHjh3q06eP4/trrrlGSUlJWr16tV+P0d9mzJih9PR0TZw4UQsXLlRJSYm2bt2q3/72t45JYjWPeJesP48ScURg1byerFmzZsrOzlZ+fr6OHDmiN998U0OHDuUpTSGIOgXwDn0BrlsEH7vdLpvNpssvv1zPPvus9u/fr1WrVum2225TixYtAp29kEedA6vQhlKeG1tlZaXjj/zS09M1bdo0bdmyRVu3btXDDz+s9PT0AOcQQCDRJgAAEJq4t6QfAYQsAwBhQpLJzc21fLvz5883kpw+Y8aMMatWrXJZ/sADDzjycuZn8ODBju1lZGSY1NRU8+2335qsrCyTkJBgYmNjTd++fc3y5ctd9n/s2DFzyy23mJSUFBMbG2t69+5tCgoKTGZmpmP7U6dOdaTfvHmz6dOnj4mPjzdpaWnm+eefd9penz59TKtWrczKlSstP1dn8lc8znTo0CEzceJEk56ebqKiokxiYqLJysoyS5cudUlr9XlsCnHMzs422dnZfts+fLN161YTFRVlBg8ebN59911z4sQJj9YjntaibYA3uP78h74A160/5ObmGoZLvJORkWG6du1qnnzySfP99997tE64n2f6CqGrqbTbtKHhX54bY1zGExMnTjRt27Y1kydPNl9++aXH6wVL/gE4o48DoLE1lf45EKq4t6QfAQSrOsaf59qMMcaHOZYAEHRsNptyc3M1atSoQGelTpdccokOHTqkPXv2BDorfhUq8fBVU4hjTk6OJCkvLy/AOcGZysrKVF5erlatWnm1HvEMbk2hTmnKuP7CE9dt+Jo7d65Gjx4thks8t2/fPrVr186rdTjP3qHOaTy02/5HeW4cwTIuU1hYqOTkZEVEePeSq2DJPwD/ok0AUB/65wBqQz8CQF3qGH/OswciQwAAAPBNbGysYmNjA50NAAAAB28nSgIAmo6UlJRAZwEAAAAAAMDBuz/nBAAAAAAAAAAAAAAAAAAACDFMlgSARjJr1izZbDatX79ee/fulc1m07Rp0wKdLXiJOAKwEnUKEHq4bgE0JuochBPKMwCgBm0CAADwFf0IAA3Fa7gBoJFMmTJFU6ZMCXQ20EDEEYCVqFOA0MN1C6AxUecgnFCeAQA1aBMAAICv6EcAaCieLAkAAAAAAAAAAAAAAAAAAMIakyUBAAAAAAAAAAAAAAAAAEBYY7IkAAAAAAAAAAAAAAAAAAAIa0yWBAAAAAAAAAAAAAAAAAAAYc0e6AwAgJVmz56tvLy8QGcD/z/iEdpWr16tXr16BTobsNDq1auVk5MT6GwATc7q1asliesPCBF79uwJdBaaFOpGBBvabSB4MK4EAADonwMAAF/UNc7PkyUBAH6RnZ2t9u3buyzfs2eP5s2bF4AcAQDQcPPmzfN6IlWvXr2YfA4AQIhw125zHwsAAAAEBuNqAACr+fI7D8ILT5YEEFbuuecejRo1KtDZQB3mzp2r0aNH82SAEMBfaoafXr16ce0BDWSz2ehvAGGupr+KxkHfBKGA+1iEIpvNFugsNBj9bgAAAACA1fidp2moa5yfJ0sCAAAAAAAAAAAAAAAAAICwxmRJAAAAAAAAAAAAAAAAAAAQ1pgsCQAAAAAAAAAAAAAAAAAAwhqTJQEAAAAAAAAAAAAAAAAAQFhjsiSAJuutt96SzWZzfJo3b+423ffff69hw4bp+PHjOnTokNM63bt3V3l5ucs6P09ns9l02WWX+fuQLHHvvfcqNze31u/OPKZevXo1Sp6IlXvBGCsgnDWFegUIhKbWfnviww8/1Pnnny+73V5rmrr6AQD8i3rLFfVW8KK8Ojt9+rRmz56tzMxMJSQkqE2bNho0aJDy8/NljHGko7yGHsaOfBfIOpx4uCIewYV4BIfevXu7HFfNZ+LEiU5piUfjCHSfinjUbtiwYbLZbHr88cddviMejY94BB71VfCwqj0P9G/gxPRHxhitWLFCd955p84//3zFxMSoTZs26t27t9566y2n68uX9H4flzEAECYkmdzcXI/Tv/nmm0aSmTNnTq1p1q5da8466yzz97//3Wl5QUGBkWQkmXHjxtW6/qpVq0xSUpLHeQoG27ZtM+np6WbatGl1pouMjDQ9e/b0evu5ubnG2+aHWLnn71hlZ2eb7OxsX7OHIEM8rRPO9Qrq521/A3Vriu13XbZt22aGDh1qunXrZlq0aGEiIyPrTOtJPwDe8xslOXYAACAASURBVKW/Cu+F6nmm3nLWVOotymt4KC0tNb179zbdunUzn332mTl58qT5/vvvTXZ2tpFkvv76a0faUC6vNUK938o4n/8Fug4nHs6IR3AhHsHlqquuchz3zz8TJkxwSks8/C/QfSriUbs33njDcQ4ee+wxl++JR+MiHoFHfRVc/NGe+/obuK/3y8T0J5s2bTKSzIABA8z69etNWVmZ2b59u7n++uuNJDN58uQGpbfimqxjPG9u6I3yAUAtrB5ELS4uNu3bt3fboBUUFJiYmBiTlJRkJJl33nnH7TZCtcFbt26dsdlsdZ7PYJosSaz8Eysm14UX4mmdcK9XULdQ/9E5mDTl9rs2119/vZkxY4Y5ffq0SU1NrfMHOWM86wfAe6E6KSrUhOJ5pt5y1VTqLcpreLj99ttNixYtTFFRkdPy0tJSExMT4/RDmTGhW15rhHq/lXE+/wtkHU48XBGP4EI8gstVV11lCgoKPE5PPPwrkH0q4lG7vXv3mlatWpmxY8fWOjnPGOLRWIhHcKC+Ci7+aM8bc7IkMXW2adMmY7fbzZEjR5yWV1RUmKSkJBMTE2PKy8t9Tm9Mw6/JuiZL8hpuAKjFU089paKiIj300ENuv2/WrJnefvttRUREaNy4cdq6dWsj59B/MjIylJ2drcmTJ6uysjLQ2akXsQqdWAHhIpzrFaCxNOX2uzb/+Mc/dO+999b5ircz0Q8AGhf1livqreBFeXW2f/9+vfzyyxozZoySk5OdvouPj1d5ebl+8YtfOC2nvIYXrglXgazDiYcr4hFciEdoIx7+E+g+FfGo3a233qqcnBwNHDiwznTEo3EQj8Cjvgp9wXZPTkyddenSRadPn1arVq2clkdHRystLU0VFRVOryT3Nr3k3zLAZEkAcMMYo1dffVU9e/ZUu3btak2XlZWladOmqaSkRDk5OS4VeCi77rrrtGfPHn3wwQeBzkqdiFXoxAoIN+FcrwD+RvvtXmxsrNfr0A8AGgf1lnvUW8GJ8urq/fffV1VVlXr37u3VepTX8MA14V6g6nDi4R7xCC7EI/QRD/8IZJ+KeNTutdde08aNGzVr1iyP0hMP/yIewYH6KjwEyz05MfXcsWPH9N1336l79+5KTExscHp/lQEmSwKAG+vXr9f+/fuVkZFRb9rp06dr4MCB2rBhg+6++26Ptn/48GFNmjRJnTt3VnR0tFq1aqVBgwbp008/daRZsGCBbDab47Nr1y6NHj1aLVu2VFJSkoYMGaLt27e7bPvgwYMaP368OnbsqOjoaJ199tkaOXKk1q1b5/kJkHTJJZdIkj7++GOv1mtsxCp0YgWEo3CtVwB/o/22Dv0AoHFQb1mHesv/KK+u1qxZI0lq1aqVJk+erLS0NEVHR6tDhw4aP368jhw54nY9ymt44JqwjhXXBPGwDvEgHk0pHm+++aYuueQSxcfHKzExUX369NE777xTa3riEX59KuLh3p49ezR58mS99tprSkhI8Ggd4kE8mkI8qK+CKx41AtGeW4GY1u/48eNasWKFhg0bprZt2+pf//qXJen9VgZ8erE3AAQhSSY3N9fj9G+++aaRZObMmVPrd3/+85/drltQUGASExMd/z548KBJS0szksxbb73lWL5q1SqTlJTktG5hYaFJT083ycnJJj8/3xQXF5stW7aYkSNHGpvNZl555RWn9MOHDzeSzPDhw83KlStNaWmpWbx4sYmNjTU9evRwSrtv3z7ToUMHk5ycbD744ANTUlJivvnmG9O3b1/TrFkzs3LlSo/PT3FxsZFk+vTp4/b7yMhI07NnT4+3VyM3N9d42/wQq7r5K1bZ2dkmOzvb6/UQnIindZpCvYLaedvfgHu03/VLTU01kZGR9aarrx8A7/nSX4X3Qu08U2/VL5zrLcrrT0K1vNbko23btmbMmDFm+/bt5ujRo+aNN94w8fHx5vzzzzfHjh1zWS8Uy2uNUO+3Ms4XvnU48agf8SAexMPZVVddZcaOHWu++uorU1paajZv3mzGjh1rJJm7777b7TrEI/z6VMTDvaysLHPHHXc4/l1znh577LFa1yEexKMpxIP6yvk8BDoexvinPff1N3Bf7zeJqXuPPfaYkWQkmX79+pkNGzZYlr4h12Qd43lzQ2eUDwDqYeUg6lNPPWUkmeeff97tuj9v8Iz5sXGLiooy8fHxZtOmTY5lP2/wfve73xlJ5t1333VaXl5ebtq1a2diY2NNUVGRY3lNg5efn++UPjs720gyBw8edCy76aabjCTz9ttvO6UtLCw0MTExJjMzs7bT4ZbNZjPnnnuu2++CZbIksfqRP2LF5LrwQjyt01TqFbgX6j86Bwva7/p5+oOcMXX3A+C9UJsUFapC7TxTb9UvnOstyutPQrW8ZmVlGUkmPT3dnD592um7xx9/3EgyDz74oNt1Q6281gj1fivjfOFbhxOP+hEP4kE8PHP55ZcbSWb16tVuvyce4dWnIh6uXn75ZdOpUydTWlrqWObJ5DxjiAfxCP94UF/9KFjiUZeGtOeNNVmSmNavoqLCbNq0yfzxj380kZGR5tFHH7Usva/XZF2TJXkNNwC4UV5eLkmKioryeJ1evXpp1qxZOnHihHJyclRWVuY23fz58yVJgwcPdloeExOj/v37q6yszO1jhHv06OH077S0NEnSvn37HMsWLFigiIgIDRkyxClt27Zt1bVrV3311Vfas2ePx8dkt9trPY5gQax+FAqxAsJZONYrgD/RfluLfgDgf9Rb1qLe8i/Kq6v4+HhJ0oABA2S3252+Gzp0qKTaX+lEeQ19XBPWaug1QTysRTyIR1OOR3Z2tiQpPz/f7ffEI7z6VMTD2e7du/WnP/1Jr732miMu3iAexCOc4yFRX/1coONRF3+351YgpvWLjo5Wly5dNGfOHA0bNkwPPfSQlixZYkl6f5QBJksCgBvNmjWTJJ0+fdqr9caPH6/Ro0frm2++0V133eXyfUVFhYqLi9WsWTMlJCS4fJ+cnCxJKioqcvkuMTHR6d/R0dGSpOrqaqdtV1dXKzExUTabzemzZs0aSdJ3333n8fFUVlYqNjbW4/SBQKx+FAqxAsJduNUrgD/RfluLfgDgf9Rb1qLe8i/Kq6uOHTtKkpKSkly+a9OmjSTp4MGDbtelvIY+rglrNfSaIB7WIh7EQ2q68UhJSZEkHThwwO33xCO8+lTEw1l+fr6Ki4vVr18/p22OHTtWkvTggw86lm3bts1lfeJBPKTwjYdEffVzgY5HXfzdnluBmHqnZkLywoULLUnvjzJgrz8JADQ9NY1ycXGx1+u++uqrWrdunV577TVHw1kjJiZGiYmJKi4uVklJiUujt3//fkk/zub3VkxMjFq2bKnS0lKVlZW5/JWMt44fPy5jjONcBCtiFTqxApqCcKlXAH+j/bYO/QCgcVBvWYd6y/8or6569+6tv/3tbyosLHT5ruYHmZofIc5EeQ0PXBPWseKaIB7WIR7E40xNMR41T06qmfRyJuIRfn0q4uHszjvv1J133umy/K233tLYsWP12GOPadq0aW7XJR7E40zhGA+J+spb4dyeW4GYer9vSTpy5EiD0/urDPBkSQBw4xe/+IUk+fTY4ebNm+s///mP4uPj9cILL7h8f91110mSPvjgA6flFRUVWrp0qWJjY5WVleVDrqWRI0eqsrJSK1ascPnuySef1DnnnKPKykqPtrV3715JP52LYEWsQidWQFMQLvUK4G+039ahHwA0Duot61Bv+R/l1dWvf/1rpaam6qOPPnK8PqtGzau+RowY4bIe5TU8cE1Yx4prgnhYh3gQjzOFazxeffVVZWZmuiw3xmju3LmSfnoa0ZmIR/j1qYiHdYgH8ThTuMaD+sp74dqeW4GYupoyZYpuuOEGt98tWrRIkvOrwr1NX8NfZYDJkgDgRkZGhtq0aaP169f7tH7Xrl310ksvuf1uxowZSk9P18SJE7Vw4UKVlJRo69at+u1vf6vCwkI988wzbv+SxRMzZsxQ586d9Yc//EGLFi1ScXGxjhw5opdeekmPPvqoZs2a5fRXAzfccINsNpt27tzpsq1169ZJkgYOHOhTXhoLsQqdWAFNRajUK0Ag0X5bh34A0Diot6xDveV/lFdXMTExevXVV3X48GH95je/0Xfffadjx47pzTff1IwZM9SzZ0+NHz/eZT3Ka3jgmrBObdeEN/smHtYhHsTj58I1HmvWrNGdd96pbdu2qby8XFu2bNHYsWP11Vdf6e6771bPnj1d1iEeodGnIh7UV+4QD+/3TTxcUV95L5Ta88ZGTN1755139Oijj2rXrl2qqKjQrl27NHXqVL311lvKzMzULbfc0qD0kh/LgAGAMCHJ5Obmepz+zTffNJLMnDlz3H5///33G7vdbvbu3etYdvDgQSPJ6ZOZmVnrPm6//XaTlJTksvzQoUNm4sSJJj093URFRZnExESTlZVlli5d6kizatUql3098MADjmM98zN48GDHeocPHzaTJk0ynTp1MlFRUebss882AwcONIsXL3bJxzXXXGOaN29uKisrXb7Lyckxqamp5tSpU26PLTIy0vTs2bPWY69Nbm6u8bb5IVaBiVV2drbJzs72ej0EJ+LZcOFWr8A33vY3ULum3n67k5+f77Lvms8rr7zidp36+gHwni/9VXgvFM8z9ZarplJvUV6dhWp5NcaYlStXmqysLJOYmGiio6NNly5dzMMPP2xOnjzpNn0oltcaod5vZZzvR6FSh3u7b+LhingQjxrEw1l5ebnJy8sz1113nencubOJiYkxiYmJpl+/fuadd96pdT3iERp9KuJhTTyMMWbcuHFu66ysrCyXtMSDeNQmHONBfRUc8bC6Pa/h62/gkvf3y8TUWXFxsXn11VdNVlaW6dixo4mOjjbNmzc3mZmZZsaMGS7XmLfpazRkXKaO8by5oTXKBwB18LZRq28Q9dixYyY1NdWMGzfOqiwGlaNHj5rY2Fhzyy23uHy3bt06Y7PZzLvvvlvr+sE0WZJY+SdWTK4LL8QTsIYvN9Fwrym331bxpB8A74XipKhQFIrnmXqr4UK13qK8Bh/Ka/1Cvd/KOJ93AnlN+LJv4tFwxMNzxCO4EI/gQjyCC/EILsQjuBCP4BIs9+SNOVmSmDa+ho7LMFkSQJNg9SCqMcasWbPGJCUlmeeee86KLAaN6upqM3bsWJOcnGwKCwudvtu+fbvp1KmTuf/+++vcRjBNljSGWNWFyZIwhngCVgn1H52DTVNsv63iaT8A3gvFSVGhKFTPM/WW70K53qK8BhfKq2dCvd/KOJ/nAnlNNGTfxMN3xMNzxCO4EI/gQjyCC/EILsQjuBCP4BJM9+SNOVnSGGLamKwYl6lrsmSEAKCJu/3222Wz2dS8eXOX77p3764vv/xSixYt0vHjxwOQO//Yv3+/duzYoaVLl6pt27ZO37300kt64okn9MQTT7isd++998pms8lms6mqqqqxsutArEInVgAAeKIptt9WqasfAMB/qLd8R73V+CivvqO8hi7Gjhr3mmjIvomH74iH54hHcCEewYV4BBfiEVyIR3AhHsEl0PfkgfwNnJg2Hn+Py9iMMcYvWwaARmaz2ZSbm6tRo0YFOiuow9y5czV69GjR/AS/nJwcSVJeXl6AcwIrEE/AGvQ3gPBHf7VxcJ4RSiivCEWh3m8N9fwDAAAAAIIT95tNQx3jeXk8WRIAAAAAAAAAAAAAAAAAAIQ1JksCAAAAAAAAAAAAAAAAAICwxmRJAAAAAAAAAAAAAAAAAAAQ1uyBzgAAAAAAAAAAAACAxvH000/LbrerW7du6tatm1q2bBnoLAEAAABAo2CyJAAAAAAAAAAAANBEbNiwQa+//rrj3ykpKbr00kt1ySWXKCMjQ926ddO5556ryMjIAOYSAAAAAKzHZEkAAAAAAAAAAACgibjgggsUHR2tU6dOSZIKCwv14YcfasmSJTp9+rSqq6tlt9vVoUMHXXnlleratasuuugi9ezZU23atAlw7hFox48f1xdffKGEhATZ7XbFxcUpJiZG0dHRio+PV2RkpFq0aBHobAa16upq7dq1Sx07dlRERITf93fy5EkVFxcrJSXF7/sCAAAIdjZjjAl0JgDACjabLdBZAMJOdna28vLyAp0NWCAnJ0fz5s0LdDYAAAgZDJf419y5czV69OhAZwMAwlpubq5GjRoV6Gz4hHE+AAAAAADQUG7G+fN4siSAsJGbmxvoLABhJy0tLdBZgEUmTZqknJycQGcDAABAknTllVdyDwcAfnbllVcGOgs+o40A/KuwsFATJ070OH1kZKSqqqrUq1cvXX/99Wrbtq0fc4dQ8NRTT2nt2rWqrq72ar02bdroT3/6k8455xw/5SxwTp8+rT179mj37t3avXu3du7cqd27d6ukpESSZLfbVVVVJWOMBg8erBtvvNEv+SgpKdHnn3+uJUuWaO/evZKkm2++WQMHDvTL/gAAAEINT5YEAAAAAAAAAAAAwtThw4e1adMmbdq0SVu2bNHGjRu1ePFiVVVV1blezSTJfv36adasWcrMzGykHCPYvfHGG/rDH/7g8WRJm82mESNG6PXXX1diYqKfc9c41q1bp4ULF2r9+vVau3atdu3apaqqKkVGRioqKkoVFRUuTzKy2+0aNmyY8vLyLH39dnV1tZYuXapXXnlFCxYskDFG1dXVMsaoS5cu+vrrrxUZGWnZ/gAAAEIYT5YEAAAAAAAAAAAAQll1dbW+//57bdmyRd9++602b96szZs3a9OmTTp06JAkKT4+Xl26dNEFF1ygNm3aqLCw0O22IiIiZIzReeedp0cffZS3lcDF0KFDZbPZ6k0XGRmpiIgIzZw5UxMmTGiEnDUem82m6dOnyxjjNCmyqqrK7UTkqKgoXXbZZXr77bctmyi5b98+vfnmm3r++ef1ww8/yG63q7Ky0inNCy+8wERJAACAMzBZEgAAAAAAAAAAAAgBp0+f1g8//KCNGzfq22+/1Y4dO7Rx40atX79epaWlkqRWrVqpU6dOuuiiizR48GBddNFF6tq1qzp27OiYpJWdna358+e7PBkwIiJCbdu21fTp03XLLbdY+vQ7hIfS0lItXbpUbdq00f79+2t9umRUVJTat2+v+fPnKyMjo5Fz6X8ZGRn63e9+pzfffFOnT5+uM21UVJQ6dOighQsXqlmzZg3a76lTp/Txxx/rn//8p9577z1FREQ49n/mRMmoqCgNGzZM/fr1a9D+AAAAwg2v4QYAAAAAAAAAAACCyLFjx7R9+3bHZMhvv/1WGzdu1JYtWxxPrUtJSVHXrl0dkyE7deqkX/ziF2rbtm2923/wwQc1c+ZMVVRUSPrx9cDx8fG67777NHHiRMXExPj1+BBaDh06pPfff1/z58/XkiVLdPr0aaWnp2vnzp1un6IYjq/ddmf//v3q1KmTTp48WWsau92uhIQEffHFFzr33HN93teRI0f0xBNP6PXXX9exY8cUERHh9tzXiI6O1tatW9WhQwef9wkAABCGeA03AAAAAAAAAAAAEAj79u1zekJkzf/v2LFD0o8Tns4991x17dpVQ4cO1dSpU9W1a1ddeOGFiouL83m/F154oU6fPi273S673a6pU6dqypQpat68uVWHhhC3e/duffTRR8rPz9fHH3+syMhI9e7dW3/5y180evRoVVVVKS0tzWmdcH7ttjvJycmaOnWqHn30UbcTFyMiIhQZGalFixY1aKKkJLVs2VI7duzQ0aNHJanOiZJ2u1333XcfEyUBAADc4MmSAAAAAAAAAAAAgJ94++rsmqdEXnTRRbrwwgv98irsNWvWqFevXrrtttv00EMPqU2bNpbvA6Fnx44dys/PV15enlauXKnY2Fhdc801ysnJ0YgRI9SiRQun9N27d9f69etljFFUVJTS0tL0f//3f2H52m13Pv30U02aNElbt25VeXm529faz58/X8OGDbNkf2VlZfrlL3+p9evX1/rq74iICLVp00bbtm1TfHy8JfsFAAAIIzxZEgAAAAAAAAAAAGio4uJibdu2zeXV2Vu3blVlZaWkn16d3bVrV+Xk5Dj+PyUlpVHzeuGFF2rTpk3q3Llzo+4XwWfjxo3Ky8vT3LlztWnTJp111lkaNGiQpk6dqoEDB9b5SvZRo0Zpw4YNMsYoJydHL730UpN4OumWLVv04IMPKi8vTwMGDFBOTo6mTZvmku7vf/+7ZRMlJSk2Nlb5+fnKzMzUgQMHHPXKmYwxevbZZ5koCQAAUAueLAkAAAAAAAAAAAB46OjRo06TIWueFrlz504ZYxQdHa327ds7nhJZ898uXbowgQkBV1VVpVWrVikvL0//+c9/tHfvXnXo0EHDhw/X0KFD1a9fP9ntnj1vZ/Pmzerevbuee+453XzzzX7OeeAdPnxYM2fO1OzZs3Xuuefqqaee0uDBg2WM0aWXXqpvvvlGlZWVioiI0LRp0/TII4/4JR/z58/X2LFjVVZW5vQ0S7vdrssuu0wrV66UzWbzy74BAABCXB6TJQEAAAAAAAAAAIAz1Pbq7A0bNqikpERS7a/O7tKliyIjIwN8BMBPysrKtGTJEi1cuFALFizQgQMHdNFFF2no0KEaMmSIrrrqKp8n123btk3nnnuuxTkOLqdOndKcOXM0ffp0xcfHa/r06br55pudrvPPP/9cv/zlLxUREaExY8bojTfe8MuExffee09jxozR4MGDNW/ePKfJkhEREVqzZk2TeQ06AACAD5gsCQAAAAAAAAAAgKbJ3auza/6/vLxc0k+vzv75xMhOnToFOPdA7Y4ePaolS5YoPz9f8+fP18mTJ9W9e3cNGTJE119/vS644IJAZzHoGWM0b948TZ06VQcOHNBdd92lBx54QAkJCW7TjxgxQsePH9fHH3+sqKgoy/PzzDPPaNKkSfr973+vOXPm6NVXX9Udd9whSYqKitIf/vAHvfjii5bvFwAAIIwwWRIAAAAAAAAAAADh7cxXZ585MbLm1dlRUVFKS0tzeUrkJZdcoubNmwc6+4BHDh48qEWLFikvL0+ffPKJqqqq1KtXL+Xk5CgnJ0ft2rULdBZDxqpVqzR58mT973//05gxY/Tkk08qJSWlznV2796tli1bqkWLFpbmpbKyUhMmTNCcOXP00EMP6eGHH3Z8d8899+jpp59WQkKCduzYobPOOsvSfQMAAISZPHugcwAAAAAAAAAAAAA0VGVlpXbv3u00GXLjxo36+uuvdfz4cUlSy5Yt1blzZ3Xq1Eljx45V165deXU2QtqOHTuUn5+vvLw8rVy5Us2aNVP//v31yiuvaPjw4UpMTAx0FkPK1q1bNW3aNOXl5WnAgAFevdb6nHPOsTw/R44cUXZ2tgoKCjR//nwNHz7c6ftZs2Zp+/bt+tWvfsVESQAAAA/wZEkAAAAAAAAAAACEjIqKCm3bts0xGbLmaZHffvutysrKJEmtWrVyPCWSV2cj3GzcuFF5eXlauHChvvrqK7Vu3VqDBw/W0KFD9etf/1rx8fGBzmLIOXz4sGbOnKnZs2erc+fOmjlzpgYPHhzQPG3btk1Dhw5VSUmJ3n//fV166aVu0504cUIxMTGy23lOEgAAQD14DTcAAAAAAAAAAACCT22vzt61a5eqq6trfXV2RkaGEhISAp19wDJVVVVatWqVFi5cqP/85z/atm2bzjnnHF177bUaMmSIrr32WkVFRQU6myHp1KlTmjNnjqZPn674+HhNnz5dN998c8CfNLt8+XKNHDlSqampys/PV/v27QOaHwAAgDDBZEkAAAAAAAAAAAAEhrtXZ+/YsUMbNmzQgQMHJEmJiYk699xzHZMhayZG/uIXv1BMTEyAjwDwj/Lyci1fvlz5+fmaO3euioqK1KlTJw0ZMkQ5OTm66qqrZLPZAp3NkGWM0bx58zR16lTt379fd999tx544IGgmGj92muv6fbbb9ewYcP0xhtvKC4uLtBZAgAACBdMlgQAAAAAAAAAAIB/nfnq7DMnRnry6uz09HQmhaFJOHHihP773/8qLy9P7733no4fP66LLrpIOTk5Gj16tC688MJAZzEsrF69WpMnT9bq1as1ZswYPfnkk0pJSQl0tmSM0SOPPKJHHnlE48eP1+zZsxUR8f+xd+dhUZWLH8C/wz6sCqkgmonmAhkqWiaQG4peB0FjsVRaVOzeUtS6QVFXUvNKWWFpGbaplcFoLoOaoqaJQOGSKSooZIqIyiqLyPb+/ujHXIlFBoc5LN/P8/A8ejjL95zznvd9Z87LOXpSxyIiIiJqTzhYkoiIiIiIiIiIiIiIiLQjPz+/1mBIvjqbqHE5OTnYvXs3lEol9u3bh6qqKowYMQJ+fn7w9fWFvb291BHbjbS0NLz55ptQKpXw8PDAqlWr4OzsLHUsAH8NlJ05cyb27NmDqKgoBAYGSh2JiIiIqD3iYEkiIiIiIiIiIiIiIiLSTFZWVq3BkBkZGTh9+jSuX78OALC0tMTDDz9c59XZTk5OMDExkTg9kbQuXbqEHTt2IDY2FocOHYKhoSHGjRsHLy8v+Pj4oGvXrlJHbFdyc3Px3nvv4cMPP0SfPn3w7rvvQqFQSB1LLSsrC1OmTMGlS5ewdetWjBo1SupIRERERO2V0kDqBERERERERERERERERNT6lJeX48KFC3VenX3u3DmUlpYCqP3qbA8PD/W/+epsotpSUlIQGxsLlUqFo0ePonPnzvDw8MAXX3yBadOmwdzcXOqI7U55eTk+/fRTLFmyBGZmZvj4448xe/Zs6OvrSx1N7bfffsOUKVMgl8uRmJiIhx9+WOpIRERERO0anyxJRERERERERERERETUgf391dk1/z5//jyqq6thYGCABx98sNZTIh0dHfHoo4/C0tJS6vhErVJ1dTVOnjwJlUqFzZs3Iy0tDV26dMHEiRPhd5Gk0wAAIABJREFU5+cHT09PGBkZSR2zXRJCYMuWLQgJCcH169cxf/58hIWFwcLCQupotWzduhWBgYFwdXVFTEwMOnXqJHUkIiIiovaOr+EmIiIiIiIiIiIiIiLqCGpenX33wMiUlBRcu3YNAGBsbIw+ffqoB0PWvDrb0dERcrlc4vRErV9lZSWSkpKgVCqhVCpx7do1ODg4QKFQwM/PD66urnziagtLSkrCK6+8gqSkJMyYMQMRERGws7OTOlYdq1evxuLFizFnzhysWbMGhoaGUkciIiIi6gj4Gm4iIiIiIiIiIiIiIqL2ory8HJmZmbUGQ549exbnz59HSUkJgIZfnf3QQw9BT09P4j0galtKS0tx4MABKJVK7Ny5E4WFhXB0dERQUBC8vLzg4uIidcQOIS0tDW+++SaUSiU8PDxw4sQJODs7Sx2rjvLycgQFBeGbb77BihUrEBISInUkIiIiog6FT5YkIiIiIiIiIiIiIiJqYxp6dXZqaiqqqqrqfXW2g4MDHn30UXTt2lXq+ERtWm5uLnbt2oXY2Fjs3r0bZWVlGDFiBLy8vPDUU0+hb9++UkfsMPLy8vDuu+8iMjISDg4OePfdd6FQKKSOVa/c3Fw89dRTOH78ODZv3txqcxIRERG1Y3wNNxG1XYmJifjggw+kjkHUoSiVSqkjUDN98MEHSExMlDoGERFRm8F+T8vi5zkiopa3ePFiPPHEE1LHIC2o79XZGRkZyMjIAAAYGRmhb9++tV6ZXfMabb46m0h7/vzzT2zfvh2xsbE4dOgQDAwM4ObmBoVCgYCAANja2kodsUMpLy/Hp59+ivDwcJiammLJkiWYPXs29PX1pY5WrwsXLkChUKC0tBQqlQqDBw+WOhIRERFRR8TXcBNR23XlyhVs2bIFvr6+UkfpULZs2YIRI0agR48eUkchHcrMzERSUpLUMeg+JCYmIikpCSNGjJA6ChG1IWz3qSNiv0c3+HmO2rOaeoTlm6S0ZcsW+Pn5cbBkG1JRUYErV67UeUrkqVOnUFxcDOCvV2fXDIbkq7OJdCMlJQWxsbFQqVRISEiAqakpxowZgy+++AI+Pj6wtLSUOmKHI4TAli1bEBoaiuzsbMyfPx9vvPFGqz4X+/btg7+/P5ycnLBt2zY+3ZeIiIhIQhwsSURtHp/4olsymQyLFi2Cv7+/1FFIh2JiYhAQECB1DLpPI0aMYJ1JRBphu08dEfs9usW+CbVHNfUIyzdJSSaTSR2BGlBQUID09PRaT4m8+9XZAGBnZwcnJye4uLggMDAQDg4OeOSRR/jUOiIdqK6uxsmTJ6FSqRAdHY3z58/jgQcewKRJkxASEgJPT08YGRlJHbPDSkpKwiuvvIKkpCTMmDEDERERsLOzkzpWoz7++GMsXrwYAQEB+Pzzz2FiYiJ1JCIiIqIOjYMliYiIiIiIiIiIiIiItEiTV2d7eXkhJCQETk5OGDhwIExNTSVOT9SxVFVVITExEUqlElu3bsXVq1fx0EMPYcqUKfj4448xevRoGBjwlqqULly4gLCwMGzZsgXjxo3DiRMn4OzsLHWsRlVWVmLx4sVYs2YN/vOf/2DJkiX8YwYiIiKiVoA9eyIiIiIiIiIiIiIiIg0159XZNf8eOHAgX51NJKHbt29j//79UCqVUKlUKCgogKOjI2bOnAmFQgE3NzepIxKAvLw8vPvuu4iMjISDgwOio6Ph5+cndax7ysvLg5+fH3755Rds3boVU6dOlToSEREREf0/DpYkIiIiIiIiIiIiIiJqQGFhIS5evFjn1dlpaWmorKwE8L9XZzs5OcHPz0/979b+eliijiQvLw+xsbGIjY3Fnj17UFpaiiFDhiA4OBjPPPMM+vXrJ3VE+n/l5eX49NNPER4eDgMDA0RERODll1+Gvr6+1NHu6cKFC5gyZQqKiopw+PBhuLi4SB2JiIiIiO7CwZJERERERERERERERNTh5efn1xoMWfO0yD/++ANCCBgZGaFHjx5wdHSEl5cXHB0d4eTkhAEDBsDMzEzq+ERUjytXrmDPnj1QqVTYu3cv9PT04O7ujuXLl8Pf358DmlsZIQS2bNmC0NBQZGdnY/78+XjjjTdgaWkpdbQm2bdvHwICAjBgwAD89NNPsLW1lToSEREREf0N3/FAREQtytzcHDKZrNbPqlWrpI7VLO1pX4i0KTo6GoMHD4ZcLldfG2fOnJE6FhEBmDJlCmQyGZYvX66zbVZVVWHdunUYOXIkrKysYGhoiO7du+Mf//gH1qxZg0uXLqnnXbVqlbre6NGjh84y6sqxY8fw3HPP4aGHHoKJiQk6deqE4cOHY+nSpSgoKLjv9bf2vom2zu/333+vXo+JiYkWExK1f7quZ9tivZ6fn49169Zh7NixsLa2hlwux8MPP4wZM2bg1KlTOsvR2ut0qbSG49IWyzU1rqKiAhkZGVCpVIiIiMC8efPg5uYGS0tLWFtbw93dHaGhoTh69Cjs7OwQFBSE6OhonDlzBqWlpUhPT4dKpcLKlSsRGBgIFxcXDpQkamUyMjKwevVquLm5oVevXli0aBEA4PPPP8f169cRFxeH4OBgDpRsZRITE+Hu7o7p06fDxcUFZ8+excqVK9vMQMmoqCgoFAp4enri4MGDHChJRERE1EpxsCQREbWo4uJinDx5EgDg7e0NIQReffVViVM1T3vaFyJtOXr0KJ5++mlMmDABN2/exMWLF3kDkdqM4uJiPPzww1AoFFJHaREbN26ESqXS+XZnzZqFl156CT4+PkhJSUFRURGOHDmCIUOGYMGCBRg2bJh63ldffRVCCDg7O9dZz/2eH6nP7+uvv44RI0agc+fOiI2NRUFBAf744w8sWbIE27ZtQ79+/XD06NH72kZr75s0dn41MX36dAghMG7cOC0lo7ZK6uu6LdLWddhat6cN//73vzF//nx4e3vj7NmzyM3NxZdffonffvsNLi4u2L59u05ytPY6XSqt4bi0xXJNfyksLMTx48ehVCoRHh4Of39/DBs2DJaWlujTpw+mTJmC1atXIyMjA05OTli2bBni4uKQnp6OvLw8HDt2DBs3bkRISIj6tdpt4fWvRB1VSkoKwsPD4eTkhD59+mDZsmVwcHDAjh07kJeXB5VKhcDAQFhZWUkdlf7mzJkzUCgUGDlyJCwtLfHbb78hJiYGvXr1kjpak1RWVmL+/Pl48cUX8cYbb2Dz5s2Qy+VSxyIiIiKiBvA13EREOmJubo7BgwcjPj5e6ijUCJ4notrudU0olUoIIRAcHAxzc3OYm5vjypUrOk7ZfrAO0r7GjqkQAtXV1aiurtZoubYgKysLCxcuxKxZs7Bp0yadbTc5ORmbN2/G3Llz8dprr6mn9+nTB++88w4KCgoQHR3dpHU1dn50sfz9WL58OVauXIl169Zh3rx56ukmJiZQKBQYO3YsnnzySUyaNAm//vorBgwYoPOMRG2RNq/rtl7Pk3a98MILCA4OVv/f3d0d3333HQYPHozXXnsNPj4+EqZrHpZx6kjufnV2RkaG+t81r842NDREz5494ejoCA8PDwQFBcHR0RGDBw+Gubm51PGJqJmqqqqQmJgIpVKJH374AZmZmejVqxe8vb2xevVqjB49GgYGvA3aml29ehVLly7FF198gcGDB+PAgQMYO3as1LE0kpeXBz8/P/zyyy/YunUrpk6dKnUkIiIiIroHfkogIiIiomarGRhpY2MjcRIizVlYWCA9PV3qGC1i7ty58PPzg7u7u04HS6akpAAA+vfvX+/v/f39mzxY8n7Pj1Tn9+LFi3j77bcxdOjQWgMl72ZqaooPP/wQTz75JBYsWIB9+/bpOCVR29Se622Szueff17vdGdnZ8jlcqSnp0MIAZlMpuNkRHS3yspKXL58udZgyJSUFJw+fRq3bt0CAHTq1Al9+vSBg4MDZs2aBScnJzg6OmLAgAF8IiRRO1FWVoa4uDjExsZix44duH79OhwdHTFjxgwoFAq4urqyzW4DiouLsXbtWrzzzjvo1KkTPvnkE8yZMwd6em3rhYgXLlyAl5cXiouLcfjwYbi4uEgdiYiIiIiagIMliYiIiKjZqqqqpI5ARH/z5ZdfIiUlBd9//z127Nih021369YNABAXF4dXXnmlzu9HjRqFnJwcnWbStXXr1qGyshJ+fn6Nzufu7o7u3bsjLi4OGRkZcHBw0FFCIiJqipKSEty+fRuPPvooB10Q6dCdO3dw8eJF9WDImqdFnj17Frdv3wYAdO7cGY6OjnByclK/HtvBwYH9KaJ2Kj8/H/v374dKpcL27dtRUlKCIUOG4MUXX8T06dP5pP42pKKiAl999RX+85//oKKiAmFhYQgODoaJiYnU0TS2b98+BAQEYMCAATh06BBsbW2ljkRERERETdS2/kSHiOg+bN++HTKZTP2TmpoKf39/2NjYqKfV3Ly/efMmFixYgIceeghGRkbo0qULpk2bht9++63WOu/cuYP//Oc/GDBgAExNTWFtbQ0vLy/s3LlTPYBo1apVkMlkKCkpwdGjR9Xb+vsrQJq6TQDIzc3F4sWL0adPHxgbG6NHjx7w8PDA119/rf7iGADOnz8PHx8fWFlZwdTUFI899hhiY2Ph4eGhzjFnzhxtH+om+fv5uHTpEgICAtCpUyfY2NhAoVDUempMzXGUyWTo0aMHkpOTMW7cOFhYWMDU1BRjxozB0aNH1fMvX75cPb+bm5t6+o8//qie/sADD9RZ/73OkyYqKysRHR2N8ePHw9bWFnK5HIMGDcLq1avVrw4sKCiodRxkMhmWL1+uXv7u6b6+vup1N6W8aFLmif7uXtdETfmqGYgll8shk8kwYsQIneS7ux40MjJC586dMWnSJPz000919qGp9UYNbV5fTakH7s56rzqoKfvd1GxNacN0RdP2qinnqKlluOanrKysSctpkuHv2/jzzz8REBAACwsL2NjYYNasWcjPz8elS5fg5eUFCwsL2NnZYe7cuSgqKmrWsczMzMQrr7yCL7/8EhYWFs1ax/1wd3eHra0t9u7di0mTJuHQoUPNel1uQ+enxr36Qg0tr2n/o4YmZfTw4cMA/noi2b3UzHPkyJFm11maaGqd1FJl9/z585g8ebL6ODa0T3cfbzMzM7i7uzf4Gtmm7hO1fdq6rlvi81lLtGO66ss3pW/RnHn/7ptvvqnzuefll19u1me2lqwn76ZUKgEAYWFhWltnc7CMa47lum3Iz89HfHw8oqKiEBoaCi8vL/Tp0wempqZ45JFHMGPGDGzatAm3b9+Gh4cHIiMjceTIEdy6dQt5eXmIj4/HZ599huDgYHh4eHCgJFE7c/PmTWzcuBFeXl6wtbXF008/jYyMDCxbtgyXL1/GsWPHEB4ezoGSbYQQAkqlEo6Ojpg/fz4CAgKQnp6OkJCQNjlQMioqCpMnT8bEiRNx8OBBDpQkIiIiamsEEVEbFR0dLZpTjXl7ewsAYtSoUeKnn34SJSUlIikpSejr64ubN2+KrKws0atXL9GtWzexa9cuUVRUJM6cOSNGjRolTExMREJCgnpdc+bMEVZWVmLfvn2itLRUZGdni1dffVUAED/99FOt7ZqZmQlXV9d6M2myzWvXronevXsLW1tboVKpxK1bt0R2drZYtmyZACA+/PBDIYQQFy5cEJ06dRL29vZi37596nV6eHiILl26CGNjY42PnRBCABDR0dEaLXPy5EkBQHh7e9f5Xc358Pb2FgkJCaK4uFjExcUJuVwuhg8fXmd+Z2dnYWZmJp544gn1/MnJyeLRRx8VRkZG4tChQ7Xmb+i4u7i4CBsbmzrTGztP99qXv1OpVAKAWLFihcjLyxM3b94UH330kdDT0xOvvvpqrXk9PT2Fnp6euHjxYp31PPHEE+Lbb79V/1+T8iLEvct8UzT3eqPWw9fXV/j6+mq83L2uiZrydfv27fuJp5GaerBbt25CpVKJwsJCkZqaKqZNmyZkMplYv359rfk1qTe0fX1pUg8I0fjx1nS/75VNkzasJWnaXml6jppbhrXVbt+9jWnTpoljx46J4uJisXHjRgFATJo0SXh7e4uTJ0+KoqIisW7dOgFALFq0SJPDqObp6Sn+9a9/qf+/adMmAUAsW7asWetrTrt/5MgR0bNnTwFAABBdu3YVM2bMEN99950oKSmpdxlnZ2dhb29fZ3p956epfaGGlr97elP6H5qWUTs7OwFA/PLLL/c8VjNnzlTXEXcfC036Oi3VN7n7ON1v2XV2dhZWVlZizJgxIj4+XhQVFTW4T/Ud799//11MmDBBPPTQQ3WOt6b71BTs9+jG/X6eu5/rWgjt1fMt3Y5poy8vRP31rCZ9i+b0v+7eXmVlpVi8eLEYP368yMvLqzWvpp/ZNK0nmyM7O1t069ZNzJkzp1nLN7d8a/Ozc3sq45q0dSzX/9Ocfpy2VVRUiPT0dBEXFyciIyNFUFCQ8PDwEF27dlX3Fa2srISLi4vw8/MTS5YsETExMeLYsWOirKxM0uxEpHsZGRkiMjJSuLq6Cj09PSGXy4VCoRAbNmwQ+fn5UsejZkpISFCfUz8/P5GRkSF1pGarqKgQL730kpDJZGLJkiWiurpa6khEREREpLkYfvtPRG3W/d5c2717d72/f/bZZwWAWoPThPjrS3RjY2Ph4uKinta7d28xcuTIOuvo16+fRoMlNdnmc8891+AX3hMnTlQPEPDz8xMAxJYtW2rNc+PGDWFqatrqBkuqVKpa0319fQWAOjcAnZ2dBQBx8uTJWtN///13AUA4OzvXmi71YMnRo0fXmT5z5kxhaGgoCgsL1dP27t0rANQa4CKEEPHx8cLe3l6Ul5erp2lSXoS4d5lvCg4aaPva02DJmnpw8+bNtaaXlZWJ7t27C7lcLrKzs9XTNak3tH19aVIPCNH48dZ0v++VTZM2rCVp2l5peo5aYrBkc8vJrl27ak13cnISAMThw4drTe/du7fo379/g5kbEhUVJRwcHERxcbF6mhSDJYX4q1xu2LBBeHt7CwsLC/XNcBsbmzplWAjNBks2tS/U0PJ3T29K/0PTMlozWPLXX3+t79DUUjNY8r///a96mqZ9nZbqmwihvbJbs0+JiYn33KeGjvfVq1eFsbFxvYMlNdmnpmC/RzdaarBkUz9XaKueb+l2TBt9eSHqr2c16Vs0p/9Vs738/Hzh6ekpgoODRWVlZZ1szRlUpkk9qamcnBwxePBgERAQUG/epmjJwZIdsYxr0taxXP+PLgdLlpWViTNnzoiYmBixcuVKMWvWLOHi4iLkcrm6H9i5c2fh6uoqgoKCRGRkpIiLixPp6ekcaELUwZ05c0YsWbJEuLi4CADC2tpazJo1S8TExIiioiKp49F9OHfunLof4eHhIU6cOCF1pPuSm5srxowZI8zNzcW2bdukjkNEREREzRfD13ATUYf12GOP1Tt9+/bt0NPTg0KhqDXd1tYWTk5OOH78ODIzMwEAEydOREJCAoKCgpCUlKR+bWlqaipGjx7d5CyabHPbtm0AgEmTJtVZz549e7Bw4UIAf73iCQA8PT1rzdOlS5dW+XqS4cOH1/p/z549AQBZWVl15jUzM8PgwYNrTRs0aBC6d++OU6dO4dq1ay0XVAMKhaLeV3c5OzujoqICKSkp6mkTJkzAoEGD8PXXXyM3N1c9/b333sP8+fNhaGionqZJeblbQ2WeqK2pqQcnT55ca7qxsTHGjRuH27dvY+/evbV+19R6Q9vXlyb1wL00Z78by6atNux+adpeNfccaVNzMwwbNqzW/7t3717vdHt7+3rbv8ZcvnwZ//73v/Hll1/CzMxMo2VbgrGxMQIDA7F9+3bk5eXhwIEDmD59OnJzczFz5kycPHmy2etual+oKZrS/9C0jNac17vb84bUzFOzTI2W6us0t07SRtk1MTHB448/XmtaffvU0PHu3r07+vXrp7V9ovZLk88VDdGkntdVO9YSfXlN+hbN7Yekpqbi8ccfh56eHiIjI6Gvr6+V7C1VT5aUlMDT0xOOjo749ttvtZZXm1jGG8dy3bLy8/Nx/PhxbNy4scFXZ0dFRSE/P7/Jr86WyWRS7xYR6VB1dTXi4+MRGhqKfv364ZFHHsGXX34JFxcX7Ny5E9nZ2di4cSP8/Pxgbm4udVxqhqysLMybNw+DBg3C2bNnERsbi7i4OAwZMkTqaM2WlpaGkSNH4sKFCzh06BB8fHykjkRERERE98FA6gBERFKpbyDBnTt3UFhYCACwsrJqcNkLFy6gR48eWLt2LZ544gls2LAB48aNAwC4u7tj3rx5mDp1apNyaLLNLl26oLCwECYmJrCwsGh0nUVFRTAxMan3S6XOnTs3KZsu/X3fjYyMAPz1BdrfderUqd51dO3aFVlZWbhx4wbs7Oy0H1JDhYWFeP/997Ft2zZkZmaioKCg1u9LS0tr/X/hwoWYPXs2PvnkE7z11ltIS0vDwYMH8dVXX6nn0bSM3q01DJ4hul8110BD9WC3bt0AANnZ2bWmN6XesLa21vr1pWk90JDm7ndj2bTRht0vTdur+6kDteV+MlhaWtb6v56eHvT19WFqalprur6+fr3tX2NUKhUKCwsbHOj61ltv4a233lJn69u3r0brvx8GBgYYO3Ysxo4di169eiEiIgJbtmxp1o2Se10LmrpX/6M5fapRo0bh+PHj+O233zBx4sRGt3/q1CkAqHPeWqqv09w6SRtl18bGpt7BEH+vhxs73l27dkVaWppW9onaL00+V9RH089numrHtN2X16Rv0dx+SH5+Pnx8fNCjRw/s2bMH33zzDWbOnKmV/C1RT1ZWVsLPzw/29vbYsGFDqxwoCbCMN4blWnuysrJw9uxZpKSk4OzZs8jIyMDp06dx/fp1AH/1DR5++GE4ODhg1qxZcHJygoODA5ycnGBiYqKTjETUdpSVlSE+Ph4qlQoxMTHIzs6Gg4MDFAoFvvzyS7i6unLgdDtQXFyMtWvX4p133kGnTp2wdu1azJ49u9X2qZpq7969mD59OgYOHIjDhw+r+whERERE1HbxyZJERHcxNjZGp06dYGBggIqKCggh6v0ZM2YMAEAmk2HWrFnYv38/CgoKsH37dgghMG3aNHzwwQe11t3QFz6abNPY2BhWVlYoKytDUVFRo/thYWGBsrIyFBcX1/n9jRs37uMoSS83NxdCiDrTa/ara9eu6ml6enooLy+vM+/fb6TX0OYXc15eXli2bBnmzp2LtLQ0VFdXQwiBDz/8EADq7MOMGTPQrVs3rFmzBnfu3MH777+PZ599ttYNKE3LKNH9am1fVt+rHqy5eWdra1trelPqjZa4vjStBxprK5qz343RpA1rKZq2V805R80tw9pot3XppZdeqjfHpk2bAADLli1TT2vJgZJHjx5t9MZBzXHJz89v1vqb2hfSlub0qebNmwcDAwMolcpG1x0fH4+srCx4eXnhwQcfrPU7Tfo6mtC0TtKmmsEzf/f3erix452Xl1dnmpT7RG2btj6ftXQ71lI06Vs0tx9iYGCA/fv3Y8eOHRg0aBDmzp2L5OTkOstr+pkNaJl6ct68ebhz5w5iYmJgYPC/vy/v27cvkpKSNF6f1DpiGWe51kx5eTlSUlKgVCoRERGBwMBADBs2DGZmZrC3t8f48ePx9ttvIyUlBQ4ODli0aBF27tyJ9PR0FBQU4NixY4iJiUF4eDj8/Pzg4uLCgZJEpFZaWgqVSoXAwEB069YN48ePx/79+zFv3jykpKQgPT0dq1evhpubW6v77ok0U1FRgaioKPTt2xcREREICwtDWloagoKC2vxAyaioKCgUCkycOBEHDhzgQEkiIiKidoKDJYmI/mbatGmorKzE0aNH6/wuIiICDz74ICorKwH89Vf/58+fBwAYGhpi/Pjx2L59O2QyGXbt2lVrWVNT01pflPfv3x9RUVEab7PmaV+7d++uM++QIUOwaNEiAP97NWXNK7NqZGdn13kiT1tTVlZW52bE6dOnkZWVBWdn51pPWrCzs8PVq1drzZudnY3Lly/Xu+7GzlNTGRgYICUlBUePHoWtrS0WLFiALl26qL/4u337dr3LGRsb41//+hdu3LiB999/H99++y2Cg4PrzKdJeSG6X9q4JrStph78ez17584dHDhwAHK5vM5rAptab2jz+qqqqtK4HmjseDdnvxujSRvWkjRtrzQ9R80tw9pqtzsaIQRu3LjR4KCSY8eOAcB9vX6rqX0hbdG0jPbr1w9LlizBiRMn8Nlnn9W7ztLSUixcuBA2NjaIjIys83tN+jpN0dy+iTYVFxern6RZo759auh45+TkIDU1tda05tSzRDW0Vc+3dDvWkjTpWzSnH2JhYQF7e3uYm5tj586dMDc3h4+PT51XCWv6mQ3Qfj0ZHh6OlJQU7NixA8bGxhot21p1tDJuYGCA8+fPs1zX4++vzvb394eTkxPkcjkeeeQRPPPMM4iKisK1a9fg6uqKDz/8EEeOHEFhYWGtV2eHhITAy8uLr84mogbl5uZi48aN8PLygrW1NaZOnYqMjAwsXboUV65cQUpKCsLDw+Ho6Ch1VNISlUoFR0dHzJ8/H97e3khNTUVISEibHzxfWVmJl19+GS+++CLCwsKwefNmyOVyqWMRERERkbYIIqI2Kjo6WjSnGvP29hYAxO3bt+v9/fXr10WfPn2Eg4OD2L17tygoKBC5ubli3bp1wtTUVERHR6vntbKyEqNGjRKnTp0SZWVl4vr16yI8PFwAEMuXL6+13okTJworKytx+fJlkZCQIAwMDMTZs2c13ua1a9dE7969hZ2dnYiNjRW3bt0SV65cEf/85z9Ft27dxJ9//imEEOLixYvC2tpa2Nvbi3379omioiJx+vRpMXHiRNGrVy9hbGys8bETQggAtfI0xcmTJwUA4e3tXed3DZ2PkJAQAUCcPHmy1nRnZ2dhZWXp/o1pAAAgAElEQVQlxo0bJxISEkRxcbFITk4Wjz76qDAyMhKHDh2qNf/LL78sAIiPP/5YFBUViYsXLwp/f39hb28vbGxs6uRp7Dzda19q6Ovri3PnzomxY8cKAOLdd98VN2/eFKWlpeLgwYPiwQcfFABEXFxcnWVv3rwp5HK5kMlkDW5Dk/LS2DHWRHOvN2o9fH19ha+vr8bL3euaqK98/fHHH0JPT08AEMePH9dK/rvV1IPdunUTKpVK3Lp1S6Smpopp06YJmUwmoqKias2vSb2h7etL03qgseOt6X7fK5smbZg2NFQuNG2vND1HzSnD91pOW+XE09NT6Ovr1zlWo0aNEmZmZhoc3YZt2rRJABDLli1r1vKatvtHjhwRAETPnj3Ft99+K65evSrKysrEH3/8Id577z1hZGQkXFxcRFlZWa3lnJ2dhb29fZ311XfsmtoXamj5xqbX1/9obp/q9ddfF/r6+mLRokXizJkzoqysTOTn5wuVSiWGDBki7O3txbFjx+osp2lfpyX7Jtoqu87OzsLMzEy4ubmJpKSkRvepvuOdkpIiPD09RdeuXesc7+b0t+6F/R7d0PbnOU0/V2irnm/pdkwbfXkh6q9nNelbNKf/9fftHTp0SBgaGooRI0bUagc0/cymaT15L1999ZUA0OhPYmKiRutsbvnW5mfn9lTGNWnrWK7/B4AwNzdXl2MLCwsxbNgwMWvWLLFixQqxdetWcfbsWVFeXq7xuomIaly6dElERkYKDw8PYWBgIExMTIRCoRCfffaZyM7OljoetZDExETh5uYmZDKZ8PPzE+np6VJH0pqcnBwxZswYYW5uLrZt2yZ1HCIiIiLSvhh++09EbZamNx8SExPrvelRn9zcXLF48WLh4OAgDA0NRZcuXcSECRPq3Gz97bffxLx588TAgQOFqampsLa2FiNGjBDr168X1dXVteY9f/68cHd3F2ZmZqJnz55i7dq1zdqmEH99YF+4cKHo3bu3MDQ0FHZ2dmL69OkiLS2t1nypqanCx8dHWFpaClNTUzFy5Ehx+PBhMXr0aGFqatrkY3c3TQdNmJmZ1Tnm7733Xr3nIywsTL2Nu38mT56sXl/NzYmzZ88KT09PYWFhIeRyuRg1apSIj4+vs/2CggIxZ84cYWdnJ+RyuXBzcxPJycnCxcVFvf6QkBD1/I2dp/r2paGfc+fOiZs3b4p58+aJnj17CkNDQ9GtWzfx3HPPidDQUPV8Li4udTLPnTtXABCHDx9u8Lg2pbxoUubvhYMG2r7mDpZs6JrYtm1bgzeSawbFyWQy8fvvv2t7V4QQdetBKysr4enpKQ4cOFBnXk3rDW1eX5rWA/dqK5qy303Npkkbpg2NlQtN2ytN2kxNyvCMGTPuuZwmGRpq65KTk+tM/+9//6seaHj3z5IlS5p1vOfNm1dvOfD09NRoPZq2+1VVVSI+Pl68+uqr4vHHHxfdu3cXBgYG6pvzK1asECUlJer533vvvXqP0b3Oz736Qg0t39z+R3P7VMnJyeLZZ58VvXr1EkZGRurjsHz5clFQUFDvMprUWS3VN9FW2b37/Nrb24tff/1VfdOpsXr47uMtl8vF8OHDRWxsrBg3bpx6fbNnzxZCaF7PNgX7Pbqh6XHW9nWtzc9nLdGOaasv31A9W0OTPlVT5t28eXOd7X344Yf17k9Nva7pZzZN+3b3Mnny5HvWoboYLKntz87tpYxr2tYJwXJdA4B4/vnnRVxcnLh8+XKz1kFEVJ8zZ86IlStXCldXVyGTyUTnzp2Fn5+f2LBhg7h165bU8agFnTt3Tvj5+QkAwsPDQ5w4cULqSFp1+vRp4eDgIHr16iVOnToldRwiIiIiahkxMiGEABFRGxQTE4OAgACwGtPcgAEDcPv2bfz5558aLyuTyRAdHQ1/f/8WSHZvgwcPRk5ODjIzMyXZvi589dVXWLt2rfpVpa0Br7e2z8/PDwCgVColTqJ7HaHeaK/up70i7ZC63W/tWqKMss6SHvs9utERjjPbsZbRFurJjlC+AZZxbWqJcs1+HBFpS3V1NU6ePAmVSoXvv/8eqamp6NKlCyZOnAg/Pz94enrCyMhI6pjUgm7evInly5fjk08+Qf/+/bFy5UooFAqpY2nVjh07MGvWLDg7O2Pr1q3o2rWr1JGIiIiIqGUo9aROQERELSM7OxvW1taoqKioNf3SpUtIT0/H2LFjJUpG97Ju3TosXrxY6hhERDrB9opaO5ZRImoM6whq71jGiYg6pqqqKsTHxyM4OBg9e/bEsGHDsHHjRnh6euLIkSPIzs7Gxo0b4eXlxYGS7VhJSQkiIiLQp08f/PDDD1i7di1OnTrVrgZKCiEQERGBadOmISAgAAcOHOBASSIiIqJ2joMliYjasfz8fMybNw9XrlxBaWkpfv31VwQEBMDS0hJvvfWW1PHo/33++eeYOnUqiouLsW7dOuTn5/PJD0TUobC9otaOZZSIGsM6gto7lnEioo7h9u3bUKlUCAwMhI2NDdzd3bF//37MnTsXx44dQ0ZGBlavXg03Nzfo6fH2YntWUVGBqKgo9O3bFxEREQgLC8OFCxcQFBQEfX19qeNpTVlZGQIDAxEWFoYVK1Zg/fr1HPxLRERE1AHw0wwRUTtla2uL/fv3o6CgAE8++SQ6d+6MKVOm4OGHH8avv/4KBwcHqSNqZNWqVZDJZDh16hSuXr0KmUyGN998U+pYWrN9+3Z07twZn376Kb7//nsYGBhIHYlIq2QymVZ+wsPDm7zN9l5v6IIuzlt7a69agravDdKMrsoo6yyitknKdqyjtQ+a1pMd7fi0FPbVWhbbfyKSWl5eHjZu3Ah/f3906dIFPj4+yMjIwOuvv460tDSkpKQgPDwcLi4uUkclHVGpVHBycsL8+fMxZcoUpKamIiQkBCYmJlJH06qrV6/iySefxO7du/Hjjz8iJCRE6khEREREpCMyIYSQOgQRUXPExMQgICAArMZ0SyaTITo6mk8+7GB4vbV9fn5+AAClUilxEiJqS9juU0fEfo9u8DhTe8byTa0B+3FE1JDLly/jxx9/hEqlwt69e6Gvrw83NzcoFAoEBATA1tZW6ogkgaSkJLz22muIj4+Hr68vVq5c2W7/KCIhIQFPPfUULC0tsXPnTvTv31/qSERERESkO0o+toqIiIiIiIiIiIiIiIioncrIyIBKpYJSqURCQgLkcjnGjh2Lzz//HD4+PrC0tJQ6IkkkNTUVb731FpRKJTw8PHDs2DEMHTpU6lgt5ttvv8WcOXMwduxYfPfdd7CyspI6EhERERHpGAdLEhEREREREREREREREbUjKSkpUCqViImJwblz5/DAAw9g0qRJCAkJwYQJE2BsbCx1RJJQTk4Oli1bhk8++QT9+vVDTEyM+s007VFVVRXCwsLw7rvv4rXXXsOKFSugp6cndSwiIiIikgAHSxIRERERERERERERERG1YVVVVUhMTIRSqcTWrVtx9epV9OrVC97e3vjoo48wevRoGBjwtmBHV1JSgjVr1mDFihWwtLTE2rVrMXv2bOjr60sdrcXk5eVh+vTpOHLkCDZs2IBZs2ZJHYmIiIiIJMRPRURERERERERERERERERtzO3bt7F//37ExsZi+/btuHHjBhwdHTFz5kwoFAq4urpCJpNJHZNagYqKCnz11VdYsmQJiouL8corryAkJARyuVzqaC0qLS0N3t7eKCoqws8//4zhw4dLHYmIiIiIJMbBkkRERERERERERERERERtQH5+Pvbv3w+VSoVt27ahtLQUQ4YMwT//+U88/fTT6N+/v9QRqZXZv38/Fi1ahNTUVDz//PNYtmwZunbtKnWsFrdnzx4888wzGDhwIH766SfY2tpKHYmIiIiIWgEOliSiNo9/Gat7AQEBCAgIkDoGEWloy5YtrDOJSGNs94moJbFvQu0ZyzcREWnLzZs3sWfPHiiVSuzbtw9VVVUYMWIEli9fDj8/P3Tv3l3qiNQK/fLLL/j3v/+N+Ph4+Pr6Yvv27ejTp4/UsXRi9erVWLx4MZ5++mmsX7++3T9Bk4iIiIiajoMliajNi46OljoC1SMxMRGRkZE8P+1Ezfmktm3EiBFYtGiR1DGIOpwPP/wQAHj9EbUR7PfoFj8vUGvDdpvaC/6xC1Hbl5GRAZVKBaVSiYSEBMjlcowdOxbr16+Ht7c3rKyspI5IrVRqaireeustbNmyBWPHjsWxY8cwdOhQqWPpxJ07dxAUFIRvv/0WK1asQEhIiNSRiIiIiKiV4WBJImrz/P39pY5ADYiMjOT5aUc4aKDt69GjB69JIgkolUoA7LMQtSXs9+gO60ZqbdhuU3vBwZJEbVNKSgqUSiViY2Nx/PhxWFtbY/LkyQgODsY//vEPmJmZSR2RWrGcnBwsW7YMn3zyCfr164fo6Gj4+flJHUtnsrKyMHXqVFy4cAF79uzB+PHjpY5ERERERK0QB0sSERERERERERERERER6VhVVRUSExMRGxuLrVu34uLFi3jwwQcxceJELFmyBBMnToShoaHUMamVKykpwZo1a7BixQpYWlpi7dq1mD17NvT19aWOpjNJSUmYNm0azM3NkZCQgAEDBkgdiYiIiIhaKQ6WJCIiIiIiIiIiIiIiItKBsrIyxMfHQ6VSISYmBtnZ2XBwcIBCoYCfnx9cXV0hk8mkjkltQEVFBdavX4+lS5fizp07eOONN7BgwQLI5XKpo+nU5s2bMXv2bIwaNQqbN29Gp06dpI5ERERERK0YB0sSERERERERERERERERtZCSkhIcPHgQSqUSO3bswK1bt+Do6Ih58+YhICAAAwcOlDoitSFCCMTExODNN9/ElStX8K9//QthYWGwsbGROppOVVVVISwsDBEREViwYAE++OCDDvU0TSIiIiJqHg6WJCIiIiIiIiIiIiIiItKinJwc7N69G0qlEvv27UNVVRVGjBiBpUuXwtfXF/b29lJHpDZo//79CA0NxcmTJ/HUU09h7969cHBwkDqWzhUVFWHGjBnYt28fvv76azz77LNSRyIiIiKiNoKDJYmIiIiIiIiIiIiIiIju06VLl7Bjxw7Exsbi0KFDMDQ0xLhx4/Dxxx/Dx8cHXbt2lToitVFnzpzB0qVLoVQq4eHhgePHj2Pw4MFSx5LExYsXMWXKFBQWFuLnn3/GY489JnUkIiIiImpD9KQOQETU2hUXF+Phhx+GQqGQOgoREbUibB+IiIioMewrEBERdQwpKSmIiIiAm5sbevfujbfffhudO3fGF198gRs3bkClUiEoKIgDJalZ/vzzT8ybNw/Ozs74888/cfDgQcTFxXXYgZJ79+7F8OHDIZfLkZSUxIGSRERERKQxDpYkIroHIQSqq6tRXV0tdZR7Mjc3h5ubm9Qx2hWpj6nU2yeihrF9IGrfpL5upN4+Ed0/9hWoo5K6PEm9fSJq/6qrq3H8+HGEh4ejf//+eOSRR/D+++/DwcEBO3fuRHZ2NmJiYhAYGAhzc3Op41IblZOTg9DQUPTv3x+HDx/G999/j6SkJIwZM0bqaJJZtWoVJk+ejClTpuDo0aPo2bOn1JGIiIiIqA3ia7iJiO7BwsIC6enpUscgIgIAnDhxApmZmZg4cSKMjIykjtOhsX0gIiL6y9dff42RI0eiX79+UkdpVdhXICIiaj8qKyuRlJQEpVIJpVKJa9euwcHBAQqFAl988QVcXV0hk8mkjkntQElJCdasWYMVK1bAwsICH330EV544QUYGHTcW7qlpaWYO3cuoqOj8e6772Lx4sVSRyIiIiKiNqzj9qyJiIiI2qCzZ89i1qxZsLCwQEBAAJ555hmMGjUKenp8YDgRERFJ44MPPsDzzz8PZ2dnBAYGIiAgAPb29lLHIiIiIrovpaWlOHDgAJRKJXbu3InCwkI4OjoiKCgIXl5ecHFxkToitSMVFRX46quvsGTJEhQXF+Oll15CWFgYLCwspI4mqczMTEybNg3p6enYs2cPxo8fL3UkIiIiImrjeFediKgR27dvh0wmU/+UlZXVO/3SpUsICAhAp06dYGNjA4VCUesJIqtWrVLP26NHDyQnJ2PcuHGwsLCAqakpxowZg6NHj6rnX758uXr+u18d9eOPP6qnP/DAA3XWX1JSgqNHj6rn6Sh/bZqbm4vFixejT58+MDIyQufOnTFp0iT89NNP6nm0fUx5TklKMpkMRUVF2LBhA8aOHQtbW1ssXrwYx44dkzpah8H2gah1YB+AqHWoqqoCAPz+++8ICQlBz5494ebmhvXr1yMvL0/idNJgX4FaO7ahRET1y83NxcaNG+Hl5QVra2tMnToVGRkZeP3113HhwgWkpKQgPDycAyVJa4QQUCqVGDhwIObPn48pU6YgPT0dK1eu7PADJY8cOYJhw4ahrKwMycnJHChJRERERNohiIjaqOjoaKGraszb21sAELdv3653ure3t0hISBDFxcUiLi5OyOVyMXz48DrrcXZ2FmZmZuKJJ55Qz5+cnCweffRRYWRkJA4dOlRrfjMzM+Hq6lpnPS4uLsLGxqbO9IbmrzFmzBhhbW0tEhMTm7rrzaar83Pt2jXRu3dv0a1bN6FSqURhYaFITU0V06ZNEzKZTKxfv77W/No+ph3lnOryeqPGbdq0Sejp6QkAtX4MDQ0FANG9e3cREhIizp07V2s5X19f4evrK1Hq9ovtAzUFr7+WwT4Ar9uWwn6P5hwdHev0TWQymdDX1xd6enpizJgxYsOGDeLWrVvqZTrKcWZfoe3pCO0229COUZ4BiOjoaKljELUJly5dEpGRkcLDw0MYGBgIExMT4eHhISIjI0V2drbU8agdi4uLE0OHDhV6enrCz89PZGRkSB2p1fjss8+EoaGh8PLyEoWFhVLHISIiIqL2I4ZPliQi0oI5c+bgiSeegJmZGTw8PDB58mQkJycjJyenzrwlJSX45JNP1PMPGzYM33zzDcrLyxEcHNyiOaurqyGEgBCiRbejS6+//jr++OMPREZGQqFQwNLSEv369cN3330HOzs7LFiwANevX2/RDDyn1BpUVFQAALKysvDBBx9g4MCB6NevH8LDw5GRkSFxuo6L7QNRy2EfgNcttW5CCFRVVaG6uho///wznnvuOTzwwAOYPHkylEolKisrpY7YKrCvQFJgG8ryTERASkoKIiIi4Obmht69eyMsLAwmJib44osvcP36dcTFxSE4OBjdunWTOiq1QzVPVx4/fjysra1x4sQJxMTEoHfv3lJHk9ydO3cwZ84cvPjii1i8eDG2b98OS0tLqWMRERERUTvCd5AQEWnB8OHDa/2/Z8+eAP4atHT3K6EAwMzMDIMHD641bdCgQejevTtOnTqFa9euwc7OrkVyHjp0qEXWK6Vt27YBACZPnlxrurGxMcaNG4dNmzZh7969CAwMbLEMHemc+vv763R7VFd2dvY956kZOHnx4kW88847WLp0KaytrdGrVy/k5ubCxsampWPS/2P7QNRy2Ac41CLrpf9hv6fp7tU/qXlNd3l5Ofbt24fdu3dDLpcDAA4fPgx3d3fo6XXMv+dlX4GkwDb0UIusl4hat+rqapw8eRIqlQrR0dE4f/48HnjgAUyaNAkhISHw9PSEkZGR1DGpnUtLS8Obb76JLVu24LHHHsOhQ4cwatQoqWO1GllZWXjqqaeQkpKCH374AT4+PlJHIiIiIqJ2qGN+E01EpGVWVla1/l/zxVp1dXWdeTt16lTvOrp27QoAuHHjhpbTtV937txBYWEhTExMYGFhUef3NX/53ZTBZfeD55SIGsL2gahlsA9ARO0F+wqka2xDiagjqaqqQnx8PIKDg/Hggw9i2LBh2LBhAyZMmIC4uDhcu3YNGzduhJeXFwdKUou6efMmQkNDMWjQIJw+fRrR0dFITEzkQMm7JCQkYNiwYcjLy8Mvv/zCgZJERERE1GL4ZEkiIh3Lzc2FEAIymazW9JobATU3BgBAT08P5eXlddZRUFBQ77r/vs72ztjYGFZWVigsLERRUVGdGz01rw2ztbVVT2uJY9qRzmlMTIzUETq8b775BkePHm10HkNDQ1RUVKBv37545plnEBgYiJCQEADgUyVbsY5UlxDdL/YBSBfY72k6Jycn5OXlNfh7fX19VFdXw9DQEB4eHnjuuedQUVGBGTNm8AaxBljnkDawDSWi9u727dvYv38/lEolVCoVCgoK4OjoiJkzZ0KhUMDNzU3qiNSBFBcXY+3atXjnnXdgZWWFjz/+GC+88AIMDHh79m5RUVGYP38+PDw88O233zb4RxVERERERNrAJ0sSEelYWVkZkpOTa007ffo0srKy4OzsXOs1U3Z2drh69WqtebOzs3H58uV6121qalrrBkL//v0RFRWlxfStz9SpUwEAu3btqjX9zp07OHDgAORyOTw9PdXTW+KY8pxSa2BoaAgA6N69OxYvXoxz584hLS0N4eHhcHBwkDgdNQXrEiLNsA9A1LrJZDLo6+tDT08PTz75JL7++mvk5ORg165d8PPz4w3iZmCdQ9rCNpSI2pu8vDxs3LgR/v7+6Nq1K3x8fJCRkYHQ0FCkpqYiJSUFK1eu5EBJ0pny8nJERUWhb9++iIiIQFhYGNLS0hAUFMR+8F0qKysRGhqKF198EYsWLYJKpeJASSIiIiJqcRwsSUSkY1ZWVnjjjTeQmJiIkpISHDt2DDNnzoSRkRFWr15da94JEyYgKysLa9asQXFxMdLT0xEcHFzrCQt3Gzp0KNLS0nDlyhUkJiYiIyMD7u7u6t+PHTsWNjY2SEpKatF91KX//ve/6N27NxYuXIjY2FgUFRUhLS0NzzzzDK5du4bVq1erXyMGaP+YAjynpHtCCAD/GyDZpUsXvPzyy0hOTsbVq1excuVKDBgwQMqI1AysS4g0wz4Ar1tqfWQyGQwMDCCTyTBy5Eh8+umnuHnzJg4ePIjAwMB6X/lLTcc6h7SFbSjLM1F7cOXKFURFRcHLywu2trYICgpCfn4+li9fjszMTMTHxyMkJAT9+vWTOip1IFVVVdiwYQP69euHhQsX4rnnnkN6ejpCQkIgl8uljteq5OTkYMKECVi7di2USiVWrlwJPT3etiYiIiIiHRBERG1UdHS0aOlqbNu2bQJArZ8ZM2aIxMTEOtPDwsKEEKLO9MmTJ6vX5+zsLOzt7cXZs2eFp6ensLCwEHK5XIwaNUrEx8fX2X5BQYGYM2eOsLOzE3K5XLi5uYnk5GTh4uKiXn9ISIh6/vPnzwt3d3dhZmYmevbsKdauXVtrfe7u7qJz584iISGhhY7Y/+ji/NTIyckRCxcuFL179xaGhobCyspKeHp6igMHDtSZV9vHtKOcU12eT2rcpk2bBABhYWEh5syZIw4ePCiqqqruuZyvr6/w9fXVQcKOge0DaYLXX8thH4DXbUtgv0dzgwYNEgCEs7OzeP/990VmZuY9l2nvx5l9hbaro7TbbEPbf3kGIKKjo6WOQaRV6enpIjIyUri6ugqZTCZMTU2FQqEQGzZsEAUFBVLHow5u+/btwsnJSRgYGIg5c+Y0qU/cUZ04cUL06tVL9OnTR5w+fVrqOERERETUscTIhPj/RxMREbUxMTExCAgIQFuqxgYPHoycnBxkZmZKHaXFtcXz0xwd5Zx2lPPZFpw4cQKZmZmYOHEijIyMmrycn58fAECpVLZUNLoPHaUu6ah4/bVPvG7bL/Z7NPf1119j5MiRGj25icdZM6xzdIftdstjedYNmUyG6Oho+Pv7Sx2F6L6kpKRAqVRCqVTi7NmzsLGxwT/+8Q/4+flhwoQJMDY2ljoidXCJiYkIDQ3Fzz//DA8PD3zwwQcYNGiQ1LFare+++w5z586Fu7s7Nm/ejM6dO0sdiYiIiIg6FqWB1AmIiIiIqOmGDh2KoUOHSh2DiIiISO25556TOgIRERG1E1VVVUhMTIRSqcQPP/yAzMxM9OrVC97e3li9ejVGjx4NAwPe2iLppaSk4O2334ZSqYSrqyuOHDkCNzc3qWO1WlVVVQgLC0NERASCgoKwdu1aXstEREREJAn2QomIiIiIiIiIiIiIiEgSZWVliIuLQ2xsLHbs2IHr16/D0dERM2bMgEKhgKurK2QymdQxiQAAf/75J1asWIEvvvgCQ4cORVxcHDw8PKSO1arl5uZi+vTpiI+Px4YNGxAYGCh1JCIiIiLqwPSkDkBE1BGsWrUKMpkMp06dwtWrVyGTyfDmm29KHYvuA88pEWkD6xKitofXLRHpEuscak9Ynonobvn5+VAqlQgMDETXrl3h4+OD48eP48UXX8S5c+eQkpKClStXws3NjQMlqVW4efMmQkND0b9/fxw+fBibN2/GL7/8woGS9/D7779j+PDhOH/+PI4cOcKBkkREREQkOT5ZkohIB1599VW8+uqrUscgLeI5JSJtYF1C1PbwuiUiXWKdQ+0JyzMR3bx5E3v27IFSqcS+fftQVVWFESNGYNmyZfD19YW9vb3UEYnqKCoqwieffIJ33nkHVlZW+Oijj/DCCy/wFdJNEBMTgxdeeAFDhw6FUqlEt27dpI5ERERERMTBkkRERERERERERERERKR9f/zxB3bu3AmlUonExEQYGxtj3LhxWL9+PaZMmYJOnTpJHZGoXuXl5fj666/x1ltvobKyEmFhYViwYAHkcrnU0Vo9IQTefvttLF26FHPnzsWaNWtgaGgodSwiIiIiIgAcLElERERERERERERERERakpKSAqVSidjYWBw/fhzW1taYPHkygoODMWnSJJibm0sdkahBlZWV+O6777BkyRLcuHED8+fPR2hoKAf2NtGtW7cwa9Ys7N27F59//jleeOEFqSMREREREdXCwZJERERERERERERERETULNXV1UhISEBsbCx++OEHXLhwAT179sSkSZOwZMkSTJw4kU+Vo1ZPCIEtW7bgzTffxB9//CSY9AMAACAASURBVIHnn38e4eHhsLOzkzpam5GWlgZvb2/cunULhw8fxuOPPy51JCIiIiKiOjhYkoiIiIiIiIiIiIiIiJqsrKwM8fHxUKlUiImJQXZ2NhwcHKBQKPDll1/C1dUVMplM6phETbJ//36EhobixIkT8PX1xa5du9C3b1+pY7Upu3btwowZM+Dk5ISDBw9ykCkRERERtVocLElEbV5MTIzUEageiYmJAHh+2oua80ltW2ZmJq9JIglkZmYCYJtI1Faw36NbrBuptWG7TUTUsNLSUhw4cABKpRI7duzArVu34OjoiHnz5sHf3x+Ojo5SRyTSSHJyMl5//XUcOHAAHh4eOH78OIYMGSJ1rDZFCIG3334bS5cuxdy5c/Hxxx/DyMhI6lhERERERA36P/buPD6mq3ED+DPZVwlBEokiKe1rKd6IJagtEksiRBZqqV/RaJWgrdiKWmqvRkstqWpqS4ZaJiiJokKUkFBpYy9iK0EWEiQ5vz/a5BWTbSaT3Mzk+X4++cPd5rnnnHvumZljLidLEpHWCwwMlDoClYD1Q1R1nDhxgtckkYR4/RERKWPfSFUV2yYR0T9SU1OxZ88eyOVyREdHIycnB+3bt8ecOXMwcOBAODo6Sh2RSGXJycmYOXMmtm3bhnbt2uHQoUPo2rWr1LG0TlpaGoYNG4b9+/fj22+/RVBQkNSRiIiIiIhKxcmSRKT1hBBSRyAVyGQyREREICAgQOoopILIyEh+WagD/Pz8IJfLpY5BpNV4HyPSfRz3VC6+nyNtkN8vsL2SNuHjj6k8rl+/jp07dyIqKgqHDx+GgYEB3N3dsWLFCvj4+MDW1lbqiERqSUlJwdy5c7F+/Xo0adIEERER8PPzY5+phgsXLmDAgAFIS0vDoUOH4ObmJnUkIiIiIqIy4WRJIiIiIiIiIiIiIiKiaiwpKQlRUVFQKBQ4fvw4rK2t4e7uju+++w4DBgyApaWl1BGJ1Pbw4UMsXrwYK1asQJ06dbBy5UqMHDkS+vr6UkfTSrt27cLw4cPRokULHDx4EPb29lJHIiIiIiIqM06WJCIiIiIiIiIiIiIiqkby8vKQkJAAhUKBrVu34sKFC6hTpw569eqFkJAQeHp6wsjISOqYROWSmZmJ5cuXY+nSpTA1NcWiRYsQFBTEtq2m3NxcTJ8+HYsXL8bo0aPx9ddfsyyJiIiISOtwsiQREREREREREREREZGOy83NRVxcHORyObZt24bbt2+jUaNG8Pb2RlhYGNzc3KCnpyd1TKJye/78OTZs2IBZs2YhMzMTY8eOxbRp01CjRg2po2mt1NRUDB48GEePHkVYWBjee+89qSMREREREamFkyWJiIiIiIiIiIiIiIh0UFZWFmJiYiCXy7F7926kpaWhadOmGD16NLy9veHi4iJ1RCKNycvLw/bt2zFlyhSkpKRgxIgRmDNnDmxtbaWOptUSEhIwcOBA5OTk4Ndff4Wrq6vUkYiIiIiI1MbJkkRERERERERERERERDri4cOHiIqKQlRUFPbu3YusrCx06NABU6dOha+vLxo3bix1RCKNEkJg27Zt+Oyzz3D16lX83//9H2bOnAkHBwepo2m9jRs3IigoCG3btkVERATq1q0rdSQiIiIionLh8xSIqNrZuHEjZDJZwZ+FhUWR212/fh39+vVDeno6Hjx4UGif1q1bIzs7W2mfV7eTyWRo06ZNRZ+SRkyZMgURERHFrnv5nNq3b1/J6Vhvxanq9UakS6pDn0Ikhep27y6LvXv3okmTJjAwKP7/N5Y0BiCiisV+Sxn7raqL7bV4/fr1g0wmw7x585TWsb2SNrpx4wbWrl0Lb29v2NnZISgoCI8ePcL8+fNx69YtxMbGIiQkhBMlSefExMTA1dUVgwYNwltvvYWkpCSsWbOGEyXLKScnB1OmTMHw4cMxbtw4xMTEcKIkEREREekETpYkomrr22+/hRACmZmZSusSExPRpk0beHh4oEaNGqhduzaEEDh16lTB+gkTJijtl79dXFwcbGxsIIRAfHx8hZ+LJowePRpTp07FZ599prRu4cKFEEJACAF9fX0J0v0P660wbak3Il1QHfoUospWHe/dJbly5Qr69euHqVOn4t69eyVuW9IYgIgqDvutwthvVW1sr8ULDw+HQqEodj3bK2mLq1evIjQ0FJ06dULDhg0xceJEAEBYWBju3buH6OhoBAcHw87OTuKkRJoXFxeH7t27o2fPnqhZsybi4+MRGRnJCcEacPv2bXTp0gUrV65EZGQkFi5cyM+XiYiIiEhncLIkEdEr0tPT4e3tjYEDB+Kjjz5SWm9sbAwbGxusWbMGW7ZskSBhxXB2dsaOHTswf/58REZGSh1HZaw37aw3Im2lq30KUWWqrvfuknz22Wdwc3PD6dOnYWlpWeK2HAMQVT72W8rYb1VdbK/Fu337NiZMmIBhw4YVuw3bK1VlSUlJmD17Npo2bQpnZ2fMmzcPTk5O2LVrFx4+fAiFQoHhw4ejRo0aUkclqhDnz59HQEAA3Nzc8Pz5cxw5cgTR0dFo3bq11NF0wrFjx9CmTRvcv38fJ06cgJ+fn9SRiIiIiIg0ipMliYhesXjxYty9exczZ84scr2JiQk2bdoEPT09BAUF4eLFi5WcsOK0bNkSfn5++Pjjj5GTkyN1HJWw3rSz3oi0lS73KUSVpTrfu4vz3XffYcqUKSU+xvZlHAMQVS72W8rYb1VdbK/FGz16NPz9/eHh4VHidmyvVFXk5uYiNjYWwcHBcHR0RPPmzbFhwwb07NkT0dHRuHPnDsLDw+Ht7Q1jY2Op4xJVmAsXLmD48OFo2bIl/vrrL+zevRuxsbF4++23pY6mM9auXYvu3bvDxcUFJ0+eRLNmzaSORERERESkcZwsSUT0EiEEwsLC0K5dO9SrV6/Y7Tw9PTFjxgxkZGTA398f2dnZlZiyYg0YMAApKSnYs2eP1FHKjPWmnfVGpO10uU8hqmi8dxfN1NRU5X04BiCqHOy3isZ+q2piey3e+vXrkZSUhKVLl5Zpe7ZXkkpWVhYUCgWCgoJQr149dO7cGTExMRg6dCiOHj2Ka9euITQ0FO7u7mWesE6krW7evImgoCA0b94c8fHx2Lp1K3777Td4e3tLHU1nZGdnY+TIkRgzZgwmTpyIXbt2wdraWupYREREREQVgpMliYhecvbsWdy7dw8tW7YsddtZs2bBw8MD586dw7hx48p0/NTUVEyaNAnOzs4wMjJCzZo10bt3bxw6dKhgm507d0ImkxX8/fXXXwgMDIS1tTVsbGzg5eWFK1euKB37/v37GD9+PBo2bAgjIyPUqVMHvr6+SExMLHsBAGjVqhUAYP/+/SrtJyXWm3bWG5Eu0NU+haii8d6tORwDEFUO9luaw36r4rG9Fi0lJQUff/wx1q9fX+pj4/OxvVJlevToEeRyOYYPH466deuif//+OH36ND744AMkJycjKSkJCxcuRKdOnSCTyaSOS1ThHjx4gClTpqBJkyb4+eefsXLlSvz+++/w9/fnNaBBN2/exNtvv41t27Zhx44dWLhwIfT0+PUxEREREekujnaJiF5y/vx5AICjo2Op2+rp6WHTpk2oX78+wsLCsGnTphK3v3v3LlxdXbF582aEhobiwYMH+O2332BmZoYePXogLCwMANC/f38IIeDj4wMAmDBhAiZMmIBbt24hIiICv/zyCwYPHlzo2Hfu3IGrqysiIyOxatUqPHz4EIcPH8bDhw/RoUMHxMXFlbkMHBwcCpWFNmC9aWe9EekCXe1TiCoa792awzEAUeVgv6U57LcqHttr0UaNGoV33nkH3bt3L/M+bK9U0e7fv1/wCG07OzsMHjwYV69exbx583Dz5k3Ex8dj9uzZeOONN6SOSlRpMjMzsWjRIjg7O2P9+vWYPXs2Ll68iPfffx/6+vpSx9Mphw8fRps2bfD8+XMkJCQU3LeJiIiIiHQZJ0sSEb3kzp07AAArK6sybV+7dm1ERkbC0NAQQUFBSE5OLnbbqVOn4tq1a/jqq6/g5eWFGjVqoEmTJti8eTPs7e0xfvx43Lt3T2m/UaNGoUOHDjA3N4e7uzv69u2LU6dO4cGDB4WOff36dXz55Zfo06cPLCws0KxZM2zduhVCiDL/OgQA1KhRAzKZrKAstAHrTTvrjUhX6GKfQlTReO/WHI4BiCoH+y3NYb9V8dhela1btw6XLl3C4sWLVdqP7ZUqwtWrVxEaGopOnTrB1tYWH3zwAYB/2mlqaipiY2MRHByMevXqSZyUqHI9ffoUoaGhcHZ2xuLFizFx4kRcuXIFISEhMDY2ljqeThFCYNGiRXB3d0ePHj1w7NgxODk5SR2LiIiIiKhScLIkEdFLsrOzAQCGhoZl3qd9+/ZYunQpnjx5An9/f2RlZRW53Y4dOwAAffv2LbTc2NgYPXr0QFZWVpGPdXJ1dS307/r16wMAbt++XbBs586d0NPTg5eXV6Ft7ezs0KxZM5w+fRopKSllPicDA4Niz6MqYr39Q9vqjUiX6GKfQlSReO/WLI4BiCoe+y3NYr9VsdheC7tx4wY+/fRTrF+/Hubm5irvz/ZKmpCUlITZs2ejTZs2cHZ2xpw5c+Dk5ISIiAj8/fffUCgUGD58eJknORPpkhcvXmDt2rVo3Lgxpk+fjv/7v//DlStXMHv2bFhaWkodT+dkZmYiICAAM2bMwPz587F582a17o9ERERERNqKkyWJiF5iYmIC4J8PaFQxfvx4BAYG4vz58/joo4+U1j979gxpaWkwMTEp8gMeW1tbAP88zupVr35IamRkBADIy8srdOy8vDxYWVlBJpMV+jtz5gwA4NKlS2U+n5ycHJiampZ5e6mx3v6hbfVGpGt0rU8hqki8d2sWxwBEFY/9lmax36pYbK+FKRQKpKWloWvXroWOOWzYMADAZ599VrDs8uXLSvuzvZI6cnNzERsbiylTpqBx48Zo3rw5vv/+e7i4uGD37t24e/cuwsPD4e/vz0lKVG3l5eVBLpejadOmGDduHLy8vHD58mUsXLgQ1tbWUsfTSZcuXUL79u1x5MgR7N+/HyEhIVJHIiIiIiKqdAZSByAiqkrs7e0BAGlpaSrvGxYWhsTERKxfv77gi4l8xsbGsLKyQlpaGjIyMpS+VMh/RJWdnZ3Kr2tsbAxra2tkZmYiKysLBgbl69rT09MhhCgoC23AetPOeiPSRbrSpxBVNN67NYdjAKLKwX5Lc9hvVTy218LGjh2LsWPHKi3fuHEjhg0bhrlz52LGjBlF7sv2SqrIzs5GbGwsFAoFIiMjcffuXTg5OcHLywv+/v7o2LEjZDKZ1DGJqoSYmBh8+umnOHfuHAYOHIj9+/fzMdAVLCoqCsOGDYOzszNOnTqFBg0aSB2JiIiIiEgS/GVJIqKXNG/eHADUeqyThYUFtm/fDnNzc6xatUpp/YABAwAAe/bsKbT82bNnOHjwIExNTeHp6alGasDX1xc5OTk4duyY0rpFixbhtddeQ05OTpmOdevWLQD/KwttwHrTznoj0kW60qcQVTTeuzWHYwCiysF+S3PYb1U8tlfNYXul0jx58qTgEdq2trbo2bMnYmJiEBQUhD/++ANXrlxBaGgoOnXqxImSRABiY2Px9ttvw8PDA46OjkhISEBkZCQnSlYgIQQWLVoEHx8feHt74+jRo5woSURERETVGidLEhG9pGXLlqhbty7Onj2r1v7NmjXDmjVrily3YMECNGrUCBMmTEBUVBQyMjJw8eJFvPPOO7hz5w5CQ0MLHlmlqgULFsDZ2Rnvvfce9u3bh7S0NDx8+BBr1qzBnDlzsHTp0kK/yjB06FDIZDJcu3ZN6ViJiYkAAA8PD7WySIH1pp31RqSrtKVPIZIS792awzEAUeVgv6U57LcqHtur5rC9UlEePHiA8PBweHt7o1atWhgwYACuXr2KOXPmICUlBUlJSZg9ezb+85//SB2VqMo4ceIEevTogc6dO8PCwgLx8fFQKBR46623pI6m09LT0zFgwADMmjULq1evRnh4OExNTaWORUREREQkLUFEpKUiIiKEOt3Yjz/+KACIb7/9tsj106ZNEwYGBuLWrVsFy+7fvy8AFPpzcXEp9jU++OADYWNjo7T8wYMHYsKECaJRo0bC0NBQWFlZCU9PT3Hw4MGCbeLi4pRea/r06UIIobS8b9++BfulpqaKSZMmCScnJ2FoaCjq1KkjPDw8RHR0tFKO7t27CwsLC5GTk6O0zt/fXzg4OIjnz58XeW76+vqiXbt2xZ57aQCIiIgIlfdjvUlbb+peb1R1+Pn5CT8/P6ljaDVd61NIPerex0hZdb93F0WhUCi9dv7funXrityntDEAqY7jnsqhjeXMfktZdem32F4L09b2mi8oKKjINuvp6am0rTa213wct2rWtWvXxFdffSXc3d2FgYGBMDU1FV5eXmLNmjXi3r17UscjqrISExOFt7e3ACA6deokfv31V6kjVRuJiYnCyclJODo6ihMnTkgdh4iIiIioqoiUCSFEydMpiYiqpsjISAQGBkLVbmzjxo0YNmwYvv32W4wZM0ZpfVpaGpo1awYvLy+sXr1aU3GrjMePH6NevXoYMmQI1q1bV2jd2bNn0bp1a2zevBmDBg0qcn8DAwO0adMGJ06cUOv1ZTIZIiIiEBAQoNJ+rDdp603d642qDn9/fwCAXC6XOAmRdlP3PkbKqvO9W1PKMgYg1XHcUzm0sZzZb5WftvZbbK9VD9tr6ThuLb+kpCRERUVBoVDg2LFjqFmzJtzd3eHl5QVfX19YWFhIHZGoykpOTsYXX3yBzZs3o2nTpvjss88KPpuiirdlyxaMHj0aLi4uiIyMVPtXn4mIiIiIdJCcj+EmInqFlZUVFAoFtm3bhpUrV0odR6OEEBg/fjxq1KiBuXPnFlp39epV+Pr6YurUqVr5JQDrTTvrjYiIqq/qeu/WFI4BiCof+63yYb9Vudhey4fttXrKy8vD6dOnMXv2bLzxxhto3rw5li1bBicnJ+zevRt3795FZGQkhg8fzomSRMW4ceMGgoKC0KJFC5w+fRpbtmzB2bNnOVGykrx48QLBwcEYMmQIgoKCcPDgQU6UJCIiIiJ6BSdLElG19cEHH0AmkxX54Wbr1q0RHx+Pffv2IT09XYJ0FePevXu4evUqDh48CDs7u0Lr1qxZg/nz52P+/PlK+02ZMgUymQwymQy5ubmVFbdIrDftrDciIqKiVMd7t6aUNAYgoorDfkt97LcqH9ur+theq4+cnBzExsYiODgYjo6OaNOmDX788Uf06tULR48exb179xAeHg5vb28YGRlJHZeoyvr7778xZcoUNGnSBAcOHMDKlStx7tw5+Pv7QyaTSR2vWrh16xa6deuG9evXY8uWLVi2bBkMDAykjkVEREREVOXwMdxEpLW08TFYxMdAaSteb9qPj+Em0gzex4h0H8c9lYPlTNqE7ZW0EcetxXv69CkOHjwIuVyO3bt3Iy0tDU2bNoW/vz+8vb3h4uIidUQirZGamoolS5ZgxYoVqF27NmbMmIH33nuPk/Qq2a+//opBgwbB0tIS27dvR/PmzaWORERERERUVcn5boWIiIiIiIiIiIiIiHRWamoq9uzZA7lcjujoaOTk5KB9+/aYOnUqBg4ciNdff13qiERaJSMjA6tWrcKCBQtgZGSEWbNmITg4GCYmJlJHq1aEEFixYgU+/fRT9OnTBz/88AOsrKykjkVEREREVKVxsiQREREREREREREREemU69evY+fOnYiKisLhw4dhYGCATp06YdGiRRg0aBBsbW2ljkikdZ48eYJvvvkGixYtgkwmw4QJE/Dxxx/D0tJS6mjVTkZGBt577z3s3LkT8+bNw+TJk/nIcyIiIiKiMuBkSSIiIiIiIiIiIiIi0npJSUmIioqCQqHA8ePHYWZmhm7duuG7777DgAEDOKGLSE3Pnz/Hhg0bMGvWLGRmZmLs2LGYMmUKrK2tpY5WLSUnJ8PX1xepqanYv38/unfvLnUkIiIiIiKtwcmSRERERERERERERESkdfLy8pCQkACFQoGIiAgkJyejdu3a6N27N0JCQuDp6QkjIyOpYxJprRcvXuD777/HnDlz8OjRI4waNQrTpk3jL7NKaNOmTQgKCsJ///tfHDx4EPb29lJHIiIiIiLSKpwsSUREREREREREREREWiE3NxdxcXGQy+XYvn07bt26hYYNG6Jfv374+uuv0bVrVxgY8KsPovLIy8vD9u3bMW3aNNy4cQMjRozArFmzUK9ePamjVVs5OTmYMWMGFi1ahPfffx/ffPMNDA0NpY5FRERERKR1+IkBEWk9f39/qSOQipYvXw65XC51DFJBSkqK1BFIA06cOME+k0gDeB8j0m0c91Qujk1IG+T3C2yvRNLJyspCTEwM5HI5FAoFHj9+jKZNm2Lo0KHw8vJCp06dpI5IpBOEEIiKisKMGTNw/vx5DBw4EPv374eTk5PU0aq1lJQUBAQE4Pz584iMjOSYhIiIiIioHDhZkoi0Vv369eHn5yd1DFIR60w7OTo6su60XIcOHaSOQKQT2BcS6T6OeyoH38+RNmG/QNrIz88P9evXlzpGuTx8+BBRUVGIiorCvn378PTpU3To0AFTpkzBgAED0KRJE6kjEumUmJgYhISEIDExEQMHDoRcLud1VgUcPnwYgwYNQs2aNREXF4dmzZpJHYmIiIiISKvJhBBC6hBERERERERERERERFS93bx5E/v27YNCocD+/fuhp6eHzp07w8vLCwEBAbC3t5c6IpHOiY2NxfTp0/Hrr7/C3d0dixcvRuvWraWOVe0JIbB48WJMnz4dAQEBWLduHczNzaWORURERESk7eT8ZUkiIiIiIiIiIiIiIpLE1atXoVAoIJfLcfz4cZiamqJ79+4ICwuDj48PrKyspI5IpJNOnDiBGTNm4ODBg3B3d8fJkyfh6uoqdSwCkJ6ejhEjRkChUGD+/PkICQmROhIRERERkc7gZEkiIiIiIiIiIiIiIqo0SUlJkMvlkMvl+OOPP2BjY4M+ffogJCQEHh4eMDY2ljoikc76/fffMXfuXMjlcri5ueGXX35Bt27dpI5F/0pMTISfnx+ys7Nx5MgRuLm5SR2JiIiIiEincLIkERERERERERERERFVmNzcXMTFxUEul+Onn35CSkoKGjRoAB8fH4SGhqJr164wMODXFUQVKSkpCbNmzcJPP/0EV1dX7N+/Hx4eHlLHopf8+OOPGDNmDFxdXbF161bY2dlJHYmIiIiISOfw0wciIiIiIiIiIiIiItKo7OxsREdHIyoqCrt27cK9e/fQtGlTDBkyBF5eXujYsSNkMpnUMYl03oULFzBnzhxs3boVzZs3x44dO9CvXz9ef1XIs2fPMHnyZHz99dcYN24cli1bxgnkREREREQVhCNtIiIiIiIiIiIiIiIqt0ePHiEmJgYKhQI7d+7EkydP0Lp1a4wZMwaDBg3Cm2++KXVEomrj+vXr+OKLL7B+/Xo0btwY33//PYYMGQJ9fX2po9FLbt68CX9/f/z555+Qy+UYOHCg1JGIiIiIiHQaJ0sSEREREREREREREZFa7t+/j3379kEul+PAgQPIzc1F+/btMXfuXPj7+6NevXpSRySqVm7cuIFly5ZhzZo1sLe3x8qVKzFy5EhOkqyC9u3bh6FDh6J+/fo4ffo0Xn/9dakjERERERHpPE6WJCIiIiIiIiIiIiKiMrt27Rp2794NuVyOuLg4GBsbo0ePHli3bh369esHa2trqSMSVTspKSlYsmQJ1q5dC1tbW6xYsQLvvfceH+dcBQkhsHjxYkybNg3vvPMO1qxZAzMzM6ljERERERFVCzIhhJA6BBERERERERERERERVV1JSUmQy+WIiorC6dOnUatWLfTt2xfe3t7o3bs3LCwspI5IVC3dv38fy5Ytw4oVK1C7dm18/PHHGDNmDIyNjaWORkVITU3F0KFDcejQISxatAjBwcFSRyIiIiIiqk7knCxJRERERERERERERESF5OXl4fjx44iKisJPP/2ES5cuoX79+ujduze8vLzQq1cvGBoaSh2TqNp68OABli5diq+//hoWFhaYNGkSgoODYWJiInU0KsaZM2fg5+eHnJwcREZGon379lJHIiIiIiKqbuT87X0iIiIiIiIiIiIiIkJ2djZiY2OhUCgQGRmJu3fvwsnJCV5eXli/fj06duwImUwmdUyiau3hw4dYsWIFli9fDmNjY8ycORPjx4+Hqamp1NGoBOHh4RgzZgzat2+PrVu3om7dulJHIiIiIiKqljhZkoiIiIiIiIiIiIiomnr69CkOHjwIuVyOXbt2IT09HU2bNkVQUBACAgLQtGlTqSMSEYCMjAysWrUKCxcuhL6+PiZOnIiPP/4YlpaWUkejEmRnZ2PcuHH47rvvMHnyZMyfPx/6+vpSxyIiIiIiqrY4WZKIiIiIiIiIiIiIqBp58OAB9u7dC7lcjujoaOTk5KB9+/aYM2cOBg4cCEdHR6kjEtG/MjMzsXLlSixatAgymQzBwcGYOHEirKyspI5Gpbh+/Tr8/f1x8eJF/PTTT+jfv7/UkYiIiIiIqj1OliQiIiIiIiIiIiIi0nHXr1/Hzp07ERUVhcOHD8PAwADu7u5YsWIFfHx8YGtrK3VEInrJkydPEBYWhgULFuDJkycYO3YspkyZAmtra6mjURns2rULI0aMgLOzMxISEtCoUSOpIxEREREREThZkoiIiIiIiIiIiIhIJyUlJSEqKgoKhQLHjx+HtbU13N3d8d1332HAgAF8fC9RFfT8+XNs2LABs2fPRnp6Oj766COEhISgZs2aUkejMnjx4gWmTp2KL7/8EqNGjcKKFStgYmIidSwiIiIiIvoXJ0sSEREREREREREREemAvLw8JCQkQKFQYOvWrbhw2Rv6OAAAIABJREFU4QLq1KmDXr16ISQkBJ6enjAyMpI6JhEVIX+S5Oeff47Hjx9j1KhRmDZtGn/1VYvcunULgYGBOHPmDNauXYtRo0ZJHYmIiIiIiF7ByZJERERERERERERERFoqNzcXcXFxkMvl2LZtG27fvo1GjRrB29sbYWFhcHNzg56entQxiagYL168wJYtW/D5558jJSUFI0aMwOzZs2Fvby91NFLBL7/8giFDhsDKygq//fYbWrRoIXUkIiIiIiIqAidLEhERERERERERERFpkaysLMTExEAul2P37t1IS0tD06ZNMXr0aHh7e8PFxUXqiERUiry8PGzfvh3Tpk3DjRs3MGLECMycORMODg5SRyMVCCGwePFiTJs2DYMHD8bq1athYWEhdSwiIiIiIioGJ0sSEREREREREREREVVxDx8+RFRUFKKiorB3715kZWWhQ4cOmDp1Knx9fdG4cWOpIxJRGeRPkpwxYwauXbuGQYMGYf/+/XBycpI6Gqno/v37GDp0KI4cOYIvv/wSwcHBUkciIiIiIqJScLIkEREREREREREREVEVdOPGDfz8889QKBTYv38/9PX10alTJ8yfPx+BgYGws7OTOiIRlVH+JMmZM2fi4sWLGDhwIPbs2YPXX39d6mikhl9//RWDBw+GoaEhfv31V7Rt21bqSEREREREVAacLElEREREREREREREVEVcvXoVCoUCcrkcx48fh6mpKbp3746wsDD0798fNWrUkDoiEalACIGoqCjMmjULZ8+excCBA7Fr1y40adJE6mikBiEEVqxYgU8//RR9+vTB999/j5o1a0odi4iIiIiIyoiTJYmIiIiIiIiIiIiIJJSUlAS5XI7IyEj8+eefqF27Nnr37o2QkBB4eHjA2NhY6ohEpKL8X5KcM2cO/vjjDwQGBmLTpk34z3/+I3U0UlNqaiqGDx+OAwcOYN68eZg8eTJkMpnUsYiIiIiISAWcLElEREREREREREREVIlyc3MRFxcHuVyO7du349atW2jQoAF8fHywYsUKdO3aFQYG/PieSBvl/5Lk7NmzkZiYiD59+uDHH39Eq1atpI5G5RAfH4+AgADk5OTgyJEjcHNzkzoSERERERGpQSaEEFKHICLShMjISKkjEOmc+vXro0OHDlLHIA2Ii4vDzZs3pY5BRESkNQICAqSOoNNSUlJw/PhxqWMQEVW6R48eYfPmzTh9+jSePHmCBg0aoG3btnB1dUWDBg00+lpubm5wdHTU6DGJqHhFTZKcO3cuJ0nqgLVr12LcuHHo2bMnfvjhB9jY2EgdiYiIiIiI1CPnZEki0hl83AWR5vn5+UEul0sdgzTA398f27ZtkzoGERGR1uDHJRUrMjISgYGBUscgItJpERERnPxPVAleniSZkJCAvn37Ys6cOWjdurXU0aic0tPTMWrUKPz000+YMWMGZs6cCT09PaljERERERGR+uR8jgcR6RR+CKy6/C8p+WUwvcrf31/qCKRhnPxKRKqSyWQcX1G1w0l8lYvvQ0gX8X02VQX8T8VEFS9/kuTnn3+OM2fOoG/fvggLC+MkSR2RkJAAf39/ZGRk4Oeff4a7u7vUkYiIiIiISAP435+IiIiIiIiIiIiIiIiIyigmJgaurq7w8fGBvb094uPjoVAoOFFSR4SHh6Njx46oX78+EhMTOVGSiIiIiEiHcLIkERERERERERERERERUSnyJ0l6eHgUmiT53//+V+popAGZmZl45513MGLECIwfPx4xMTGwt7eXOhYREREREWkQH8NNREREREREREREREREVIyYmBhMnToVp0+fRt++fREfH88JkjomOTkZ/v7+uHv3Lvbu3YtevXpJHYmIiIiIiCoAf1mSiIiIiIiIiIiIiIiI6BUxMTFo27YtPDw8YGdnh1OnTvGXJHXQjz/+iDZt2sDMzAzx8fGcKElEREREpMM4WZKIiIiIiIiIiIiIiIjoX/mTJHv27AkrK6uCSZIuLi5SRyMNys7ORnBwMN59912MHDkSsbGxaNCggdSxiIiIiIioAnGyJBGRCpYuXQqZTAaZTAZHR0ep41QZFhYWBeWS/7d06VKpY6lFl86FqLJERESgVatWMDU1Lbhuzp8/L3UsomqpU6dOSvex/L8JEyZUSobc3FysXr0abm5usLKygqGhIerVq4c+ffrgm2++wV9//VWwra6PreLj4zFixAg0bNgQJiYmsLa2hqurK+bMmYPHjx+X+/hVfdyiqfrdunVrwXFMTEw0mJBI91V2P6uN/boQAseOHcPYsWPRpEkTGBsbo27duujUqRM2btwIIUSl5KjqfbpUqkK5aGO7JiL1xcTEoF27doUmSUZHR3OSpA66ePEi2rVrhx9++AFyuRyhoaEwNDSUOhYREREREVUwTpYkIlLBJ598AiEEWrZsKXWUKiUzMxMJCQkAAB8fHwgh8Mknn0icSj26dC5EleHYsWMYPHgwPDw8cP/+fVy+fJlfIJLWyMzMROPGjeHl5SV1FJ0ybNgwjB07Fv3790dSUhIyMjJw9OhRtG7dGuPHj0ebNm0Kti1pbFXe+pG6fqdOnYr27dujZs2aiIqKwuPHj3Ht2jXMmjULO3bsQJMmTXDs2LFyvUZVH7doauw8aNAgCCHQo0cPDSUjbSX1da2NKvs9rDa+Z75w4QI6deqEixcvYtu2bUhLS8OJEyfw2muvYdiwYfj0008rJUdV79OlUhXKRRvbNRGp7uVJkjVq1MDJkycRHR1d6P0L6Y4dO3agXbt2MDQ0xJkzZzBw4ECpIxERERERUSXhZEkiIqp2LCws0KlTJ6ljEGmF0q4XuVwOIQSCg4NhYWEBZ2dn3Lx5E82bN6/ElLqD/ZPmlVSmQgjk5eUhLy9Ppf2qulOnTkEIofT31VdfVcprb9myBSNHjsTkyZPh6OgIExMTODs7Y/78+fjggw/KfKyS6qcy9i+PefPmYeHChVi5ciWWL1+O5s2bw8TEBDVr1oSXlxeOHTuG1157Db1790ZycnKl5yPSVpq8rrW5nyfNMzAwQGRkJN566y2YmJjAyckJGzZsgI2NDb755hs8e/ZM6ogqYxsnIiqbmJgYtG/fXmmSpKurq9TRqAI8e/YMwcHB8PX1RUBAAI4fPw4nJyepYxERERERUSUykDoAEREREWmvmzdvAgBsbGwkTkKkOktLS1y5ckXqGDolKSkJAPDGG28UuT4gIAARERFlOlZ560eq+r18+TI+//xz/Pe//0VQUFCR25iZmWH58uV4++23MX78eBw4cKCSUxJpJ/bbVBHefPNNvHjxQmm5kZER6tevj8TERGRnZ8PY2FiCdEREVFFiYmIwY8YM/Pbbb3B3d8fJkyc5QVLH3bhxA4GBgUhKSsLWrVsRGBgodSQiIiIiIpIAf1mSiIiIiNSWm5srdQQiqkJsbW0BANHR0UWu79KlCx48eFCZkSrd6tWrkZOTA39//xK369y5M+rVq4fo6GhcvXq1ktIREVFZPX78GJcuXULr1q1hZWUldRwiItKQ2NhYdO3aFT179oSlpSV+++03/pJkNaBQKNCqVSukp6fjxIkTnChJRERERFSNcbIkEdG/nj17hpkzZ+LNN9+EmZkZatWqBW9vb+zevbvMk4FSU1MxadIkODs7w8jICDVr1kTv3r1x6NChgm2WLl0KmUwGmUwGR0dHnDp1Cj169IClpSXMzMzQrVs3HDt2TOnY9+/fx/jx49GwYUMYGRmhTp068PX1RWJiosbKQNN27txZcK4ymQx//fUXAgMDYW1tDRsbG3h5eRX6ZRhVy2bevHkF27/8eLGff/65YHnt2rWVjv/kyRMcO3asYBsDA/V/aDknJwcRERHo2bMn7OzsYGpqihYtWiA0NLTg8YCPHz8uVA4ymQzz5s0r2P/l5X5+fgXHLkudv1rGFy5cQEBAAGxsbAqW6fqkFKoYpV0v+W1v165dAABTU1PIZDK0b9++UvJJ3d+W9dorSx/xctbS+qeynHdZs2nivqcpycnJ6N+/P6ysrGBmZoa2bdsiKioK7u7uBZlHjRpVsH1Z6qisbTj/Lzs7u0z7qZLh1de4fv06AgMDYWlpCRsbGwwbNgyPHj3CX3/9BW9vb1haWsLe3h6jR49GRkaG2uX5448/olWrVjA3N4eVlRU6d+6MzZs3q308VXTu3Bl2dnbYv38/evfujcOHD6v1uNzi6iffy9eCsbExHB0d4e7ujg0bNiArK6vY/VUdm+RTpY0eOXIEANCyZctSzzN/m6NHj6rdZ6mirH1SRbXd5ORk9O3bt6Acizunl8vb3NwcnTt3RmxsbLnOibSfpq5rTfbz+SriPlZZ4/yyjC3U2fZVGzduVHpP9NFHH6n1fq4i+0kASE9Px7Fjx9CvXz/Y2dkhPDy83McsD7Zx1bFdE1FR9u3bBzc3N3Tu3Bnm5uYFkyTbtm0rdTSqQDk5OZg9ezb69+8PLy8vnDp1Ck2bNpU6FhERERERSUkQEekIACIiIkLt/UeNGiWsrKzEgQMHxNOnT8Xdu3fFJ598IgCIQ4cOFdq2ZcuWwsHBodCyO3fuiEaNGglbW1uhUChEWlqauHDhgvD19RUymUysW7dO6Rjm5uaiQ4cO4vjx4yIzM1OcOnVKvPXWW8LIyEgcPny4YNvbt2+LBg0aCFtbW7Fnzx6RkZEhzp8/L7p06SJMTEzE8ePH1T7viIgIoYnbQUJCggAgfHx8lNb5+PgUrMs/1+joaGFqaipcXV2VtlelbIQQwtzcXHTs2FHpOC4uLsLGxkZpeXHbl+VcXqVQKAQA8cUXX4iHDx+K+/fvixUrVgg9PT3xySefFNrW09NT6OnpicuXLysdp0OHDmLTpk0F/1a1zvPLuEuXLuLQoUPiyZMn4sSJE0JfX1/cv3+/1PMoip+fn/Dz81NrX6p61K3P0q6X/LaXlZVVnngqqUr9bWnXnip9hBAll7eq511aNlXuexXp0qVLwtraWjg4OIgDBw4UlLm7u7uoU6eOMDY2LrS9qnWkbhsuaT9124mvr6+Ij48XmZmZIjw8XAAQvXv3Fj4+PiIhIUFkZGSI1atXCwBi4sSJqhRjgY4dO4phw4aJ06dPi8zMTJGcnCyGDRsmAIhx48apfDx1xldHjx4V9evXFwAEAFG3bl0xZMgQsXnzZvHkyZMi9ylqbCVE0fWTfy3Y2dkJhUIh0tPTxd27d8XcuXMFALF8+fIS9395eVnGJqq2UXt7ewFA/Pbbb6WW1dChQwv6iJfLQpVxUEWNW14up/K23ZYtWworKyvRrVs3ERsbKzIyMoo9p6LK+9y5c8LDw0M0bNhQqbxVPaey0NT4mEqmbjlr4roWQnP9fEXfxzQ1zi/ve1h1xl8vv15OTo6YNGmS6Nmzp3j48GGhbVV9P6dqP6mK/HsJANG1a1dx7tw5tY6jbvvW5PtqXWrjqtzr2K7/p7yfkxHpgry8PKFQKETbtm0FANGnTx9x4sQJqWNRJblx44Zwc3MT5ubmIjw8XOo4RERERERUNUTy038i0hnl/RC4UaNGws3NTWl5kyZNyjRZcsSIEQKA2LJlS6Hl2dnZol69esLU1FTcvXu30DEAiISEhELbnzt3TgAQLVu2LFj27rvvCgCFJtMJ8c8H+8bGxsLFxUWlc31ZZU6WVCgUhZb7+fkJAEpf8qlSNkJIP1mya9euSsuHDh0qDA0NRVpaWsGy/fv3CwDiww8/LLRtbGyscHBwEM+fPy9Ypmqd55fx3r17S81cVpwsqVt0abJkVepvS7v2VOkjhCi5vFU979KyqXLfq0j+/v4CgNi2bVuh5X///bcwMzNT+gJe1TqqiMmS6raTPXv2FFrerFkzAUAcOXKk0PJGjRqJN954o9jM6sj/clDVLwbVHV9lZ2eLH374Qfj4+AhLS8uCiSc2NjZKbVgI1SZL5l8LReXq1auXSpMlyzI2UbWN5k+WPHnyZFFFU0j+ZMkFCxYULFN1HFRR4xYhNNd2888pLi6u1HMqrrxv3boljI2Ni5wsqco5lQUnS1aOiposWdb3HJrq5yv6PqapcX5538OqM/7Kf71Hjx4JT09PERwcLHJycpSyqTOpTJV+UlXPnj0Tf/75pxgzZozQ19cXc+bMUfkYFTlZsjq2cVXudWzX/8PJklTdRUdHC1dXVwFAuLu7l+k/M5Hu2LVrl6hVq5Zo2rSpOH/+vNRxiIiIiIio6ojkY7iJiP7Vq1cvHD9+HO+//z5OnDhR8AjSCxcuoGvXrqXuv2PHDgBA3759Cy03NjZGjx49kJWVhf379xdaZ25ujlatWhVa1qJFC9SrVw9nz57FnTt3APzzeCo9PT14eXkV2tbOzg7NmjXD6dOnkZKSotL5SsHV1bXQv+vXrw8AuH37ttK2ZS0bqXl5eRX5eK6WLVvixYsXSEpKKljm4eGBFi1aYMOGDUhNTS1YvmTJEowbNw6GhoYFy9Stcz46iKqDqtjfFnftqdJHlEad8y4pW3nve5ry888/AwA8PT0LLa9Tpw7efPNNpe2rwj1R3Qxt2rQp9O969eoVudzBwaHIe2N5+Pn5AQAUCoVGj1scY2NjDB8+HDt37sTDhw9x8OBBDBo0CKmpqRg6dCgSEhLUPnb+tdC7d2+ldfv27cOECRPKfKyyjE1UbaP59fryvb44+dvk75OvosZB6vZJmmi7JiYmaNeuXaFlRZ1TceVdr149NGnSRGPnRLpLlfccxVGln6+s+1hFjPNVGVuoOw65cOEC2rVrBz09PXz11VfQ19fXSPaKfL9oZGSEN998E99++y369euHmTNnIiYmpryRNYZtvGRs10TVmxACCoUCbdq0gYeHB2xtbXHy5Ek+brsaycnJwZQpU9C/f3/07dsXJ0+eRLNmzaSORUREREREVQgnSxIR/WvlypUIDw/H1atX0aNHD9SoUQO9evUq+PC8JM+ePUNaWhpMTExgaWmptN7W1hYAcPfu3ULLra2tizxe3bp1AQB///13wbHz8vJgZWUFmUxW6O/MmTMAgEuXLql0vlKwsrIq9G8jIyMAQF5entK2ZSmbqiAtLQ0zZ85EixYtULNmzYJ6+fTTTwEAT58+LbT9hAkT8PTpU6xatQoAcPHiRfzyyy94//33C7YpT52bm5tX1KkSVQlVtb8t7tpTtY/Q9HmXlK089z1NefbsGTIyMmBiYgILCwul9TVr1lTaXup7Ynky1KhRo9C/9fT0oK+vDzMzs0LL9fX1i7w3loe9vT0Aae6fBgYG6N69O7Zs2YKQkBDk5uZi27Ztah2rtGtBVaWNTVRtowDQpUsXAEBiYmKpr3/27FkAUJqgXFHjIHX7JE20XRsbG8hkMqXlr/bDJZV3/raaOCfSXaq85yiKKv18Zd7HND3OV2Vsoe445NGjR+jfvz8cHR2xb98+bNy4UWP5K+v9ore3NwAgKipKI8fTBLbx0s+N7Zqo+snLyyuYJOnj4wN7e3ucOnUKCoVCaZI56a7r16+jc+fOWLVqFcLDwxEeHs7PSomIiIiISAknSxIR/Usmk2HYsGGIiYnB48ePsXPnTggh4Ovriy+//LLEfY2NjWFlZYXs7GxkZGQorb937x6Af35J4WWpqakQQihtn/8BeN26dWFsbAxra2sYGBjgxYsXEEIU+detWzd1T71KKkvZ5NPT08Pz58+Vtn38+HGRxy7qi3p1eXt7Y+7cuRg9ejQuXryIvLw8CCGwfPlyAFA6hyFDhsDW1hbffPMNnj17hmXLluHdd98t9CVTda1zqpo0eb1ogrb1t6r2EcWVt7rnXZLy3Pc0xdjYGJaWlsjOzkZmZqbS+le/EFanjtRtwyXVhTb20fm/NlXUZDNNOnbsWMHkgqLkl8ujR4/UOn5p14KmqdpGASAoKAgGBgaQy+UlHjs2Nha3b9+Gt7c3XnvttULrVBkHqULVPkmT0tLSilz+aj9cUnk/fPhQaZmU50TaTRP9fGXcxyqKKmMLdcchBgYGiImJwa5du9CiRQuMHj0ap06dUtpf1fdzQMX1k68yNjYGUHT/U9VVxzbOdk1U/eTl5UEul6N58+bo378/6tWrh9OnT0OhUMDFxUXqeFSJfvrpJ7Rq1QoZGRmIi4vD0KFDpY5ERERERERVFCdLEhH9y9raGsnJyQAAQ0ND9OzZEzt37oRMJsOePXtK3X/AgAEAoLTts2fPcPDgQZiamio9tio7O1vpQ/Xff/8dt2/fRsuWLQt+BcrX1xc5OTk4duyY0usuWrQIr732GnJycsp+slqgrGUD/PNrWbdu3Sq07d27d3Hjxo0ij21mZlboS4s33ngDa9euVSmfgYEBkpKScOzYMdjZ2WH8+PGoU6dOwRdSWVlZRe5nbGyMDz/8EH///TeWLVuGTZs2ITg4WGm76ljnVDVp4nrRNG3pb3Nzc1XuI0oqb3XOuyTlve9pSv6jlPMf8Zjv7t27uHjxotL2qtaRum24pP2qah8dFhZW5BeCQghERkYC+N8vZFUUIQT+/vtvnDhxosj18fHxAIDWrVur/Rr518LevXuV1rVu3RoTJ05U+9hFUbWNNmnSBLNmzcKZM2ewZs2aIo/59OlTTJgwATY2Nvjqq6+U1qsyDioLdcctmpSZmVnwS5r5ijqn4sr7wYMHuHDhQqFl6vSzRPk01c9X9H2sIqkytlBnHGJpaQkHBwdYWFhg9+7dsLCwQP/+/ZUeJazq+zlAs/3kJ598UuyEin379gFQfvS1NqhubdzAwADJycls10TVRP4kyWbNmmHQoEFo3rw5zp8/D4VCUa73GqR9srOzERwcjIEDB8Lb25uP3SYiIiIiotIJIiIdAUBERESovb+VlZXo0qWLOHv2rMjOzhb37t0Ts2fPFgDEvHnzCm3bsmVL4eDgUGjZnTt3RKNGjYStra1QKBQiPT1dXLhwQfj6+gqZTCbWrl2rdAwrKyvRo0cPcfz4cZGZmSlOnTol3nrrLWFkZCQOHz5csO29e/eEs7OzcHJyEnv37hWPHz8WqampYvXq1cLMzKxc5x0RESE0cTtISEgQAISPj4/SOh8fHwFAZGVlFVoeEhIiAIiEhIRCy1UpGyGE+OijjwQA8fXXX4uMjAxx+fJlERAQIBwcHISNjY1Snl69egkrKytx48YNcfz4cWFgYCD++OOPMp1LPn19ffHnn3+K7t27CwBi8eLF4v79++Lp06fil19+Ea+99poAIKKjo5X2vX//vjA1NRUymazY11C1zosr4/Lw8/MTfn5+GjseSUvd+izteimq7V27dk3o6ekJAOL06dMayf+yqtTflnbtqdpHlFTeqp53adlUue9pQnHt4vLly6JWrVrCwcFBHDhwQGRkZIjff/9d9OrVSzRo0EAYGxsXOo6qdaROGy5tP021E09PT6Gvr69UVl26dBHm5uYqlO4/1q1bJwCIDz/8UFy6dElkZWWJ5ORkMWTIEAFAjBs3TuVjqjq+Onr0qAAg6tevLzZt2iRu3bolsrOzxbVr18SSJUuEkZGRcHFxEdnZ2YX2K2psJUTRZZd/Ldjb24uoqCiRnp4ubt68KT744ANha2srrl+/XuL+JS0vamyiahvNN3XqVKGvry8mTpwozp8/L7Kzs8WjR4+EQqEQrVu3Fg4ODiI+Pl5pP1XHQRU5btFU223ZsqUwNzcXnTp1EidOnCjxnIoq76SkJOHp6Snq1q2rVN7qjMVKo6nxMZVM3XLWxHUthOb6+Yq+j2lqnF/e97DqjL9efb3Dhw8LQ0ND0b59+0L3AVXfz6naT5bm448/FjKZTHz++efi2rVrBfetyZMnCwDCxcVFPH36VKVjqtu+Nfm+WpfauCr3Orbr/ynv52REVdHz58/FDz/8IJo0aSL09PSEv7+/SE5OljoWSSQ5OVm0bNlS1KhRQ2zdulXqOEREREREpB0i+ek/EemM8n4InJiYKIKCgsR//vMfYWZmJmrVqiXat28v1q1bJ/Ly8oQQQixZskQAKPQ3ffr0gmM8ePBATJgwQTRq1EgYGhoKKysr4enpKQ4ePKj0evkfsv/xxx/C09NTWFpaClNTU9GlSxcRGxurtH1qaqqYNGmScHJyEoaGhqJOnTrCw8NDrS+AX6aJL4PNzc2VymXJkiUiLi6u2PJ6dXnfvn0Ljqdq2Tx+/FiMGjVK2NvbC1NTU9GpUydx6tQp4eLiUnD8kJCQgu2Tk5NF586dhbm5uahfv75YuXJliedS3N+ff/4p7t+/L4KCgkT9+vWFoaGhsLW1FSNGjBBTpkwp2M7FxUUp8+jRowUAceTIkWLLtSx1XlQZa+rLfU6W1C3q1mdx18uOHTuKbHtxcXEFk+JkMpk4d+6cpk9FCCF9f1vWa0/VPqKk/qms513WbGW572lSSe3iwoULon///qJGjRrCzMxMuLm5iSNHjoiuXbsKMzMzpWOpck9UpQ0PGTKk1P1UyVDcffDUqVNKyxcsWFAw0fDlv1mzZpW5jLOzs4VcLhcDBgwQzs7OwtjYWFhZWYmuXbuKzZs3l/k4L1N1fJWbmytiY2PFJ598Itq1ayfq1asnDAwMhKWlpWjTpo344osvxJMnTwq2L25sVVr9vHot2Nvbi0GDBomLFy8KIYqvX3XHJqq20XynTp0S7777rmjQoIEwMjIqKId58+aJx48fF7mPKn1WRY1bNNV2X65fBwcHcfLkSdGtWzdhYWFRYj/8cnmbmpoKV1dXERUVJXr06FFwvJEjRwohVO9ny4KTJSuHquWs6etaE/18voq4j2lqnK/J97Bl2XbLli1Kr7d8+fIizye/X1f1/ZyqY7vSpKWlibCwMOHp6SkaNmwojIyMhIWFhXBxcRELFixQeaKkEOr1I5p+X60rbVzVe50QbNf5VB3HEVVl+ZMkGzduLAwNDcWwYcPEhQsXpI5FEvrhhx+EhYWFaNOmjbh8+bLUcYiIiIiISHtEyoQQAkREOkAmkyEs2tEcAAAgAElEQVQiIgIBAQFSRymTVq1a4cGDB0hJSZE0R2RkJAIDA1GVbgdVpWwq0vfff4+VK1cWPI60KvL39wcAyOVyiZOQJlTn+qwOfYquevPNN5GVlYXr169LHaXa0rbxVWWriDbKPkt6VXF8rIuqQznzPlYxtKGfrA7tG2Ab16SKaNccx5EueP78ObZu3Yo5c+bgxo0bGDRoEGbOnInXX39d6mgkkaysLAQHByMsLAzjxo3DkiVLYGRkJHUsIiIiIiLSHnI9qRMQERFVR6tXr8akSZOkjkFEJLm7d++iVq1aePHiRaHlf/31F65cuYLu3btLlIzoH2yjRFQS9hGk69jGiUgKz58/x9q1a+Hs7IzRo0fDzc0Nf/75J8LDwzlRshr7448/0LZtW+zYsQMKhQKhoaGcKElERERERCrjZEkiIqJKEBYWhgEDBiAzMxOrV6/Go0eP+OsORET/evToEYKCgnDz5k08ffoUJ0+eRGBgIGrUqIHPPvtM6nhEbKNEVCL2EaTr2MaJqLI8e/YMa9euhZOTE8aNG4c+ffrgypUrCA8Ph7Ozs9TxSELh4eFwdXVFrVq1kJiYiL59+0odiYiIiIiItBQnSxIRVbKlS5dCJpPh7NmzuHXrFmQyGWbMmCF1rCpB18tm586dqFmzJr799lts3boVBgYGUkciqjQymUwjf7Nnzy7za+p6n1IZKqPe7OzsEBMTg8ePH+Ptt99GzZo10a9fPzRu3BgnT56Ek5NT5Z1wFaXpa4NUU1ltlH0WkXaS8j5W3e4PqvaT1a18KgrHahWL93+ifzx58gShoaFwcnLC+PHj0bdvX1y7dg1r1qyBo6Oj1PFIQunp6Rg8eDBGjBiBUaNGISYmBg4ODlLHIiIiIiIiLSYTQgipQxARaYJMJkNERAR/rU9FkZGRCAwMBG8H9Cp/f38AgFwulzgJaQLrk4jUwfEVVUccH1cOljPpMrZvqgo4jiNt8OTJE4SFhWHRokVIT0/HyJEjMWXKFNjb20sdjaqA+Ph4DBo0CBkZGQgPD4enp6fUkYiIiIiISPvJ+cuSREREREREREREREREVCkyMzMRGhoKZ2dnzJgxA/7+/rh8+TJCQ0M5UZIghEBoaCg6duyIBg0aIDExkRMliYiIiIhIY/j8TyIiIiIiIiIiIiIiIqpQGRkZWLVqFRYvXowXL17gww8/xOTJk1GrVi2po1EVkZqaihEjRuDnn3/G9OnTMXPmTOjp8XdfiIiIiIhIczhZkoiIiIiI6P/Zu/P4qKr7/+Pvyb4SMMq+ioAWMVhA9qKAIJAApYEoQhRl0SoEBQtUUSxYwCIQqkBAUKNCQ2hZIqICQh8GgiISECygLCJL2IlhCRByfn/4TX7GJJAJM7kzk9fz8Zg/crf53HvOPefMzCfnAgAAAACc4vTp04qPj9esWbPk5eWluLg4xcXFqWLFilaHBhfy5Zdf6uGHH9a1a9e0fv16tWvXzuqQAAAAAHgg/h0LAAAAAAAAAAAADpWRkaEXXnhBdevW1Zw5c/TCCy/o4MGDeuWVV0iURL68x263b99e99xzj7Zt20aiJAAAAACnYWZJAB5lxowZSk5OtjoMt3L48GFJUt++fS2OBK5m8+bNatWqldVhwIE2b97MvQ7AboyvUN7kjY9RNhibwBPxORtAeXfo0CG98cYbmj9/vkJDQzVq1Cg999xzCgsLszo0uJiTJ08qNjZWa9eu1aRJk/SXv/xFNpvN6rAAAAAAeDCSJQGgnKtZs6aio6MdftylS5eqVatWqlmzpsOPDQCAO9m8ebMkuWUCujPGCAAAuDJH9NvO+pwNAK7uwIEDmjlzpubNm6fKlStr8uTJGjp0qAIDA60ODS5o/fr1evTRR+Xn56cvvvjCLT8zAwAAAHA/JEsC8CjPPfec+vXrZ3UYkGSz2SgPN8csKJ6nVatWzA4HWCCvPeX+A9zDkiVLFBMTY3UY5QZtI1wN/TY8BTOzoSzt2rVLU6dO1eLFi1WrVi1NmTJFTz31lPz9/a0ODS7o2rVrmjhxoiZOnKjevXtrwYIFPJYdAAAAQJkhWRIAAAAAAAAAAAB22bFjh6ZNm6ZFixbpzjvv1IIFC9S/f3/5+PDTE4p2+PBh9e/fX1u2bNH06dMVFxdndUgAAAAAyhkvqwMAAAAAAAAAAACAe9i0aZOioqLUtGlT7dixQwsXLtT27dsVGxtLoiSKlZKSoqZNm+rEiRPavHkziZIAAAAALEGyJAAAAAAAAAAAAK4rNTVVUVFRatu2rc6cOaMVK1Zo27Ztio2Nlbe3t9XhwUXl5ORowoQJ6t27t7p3766vv/5aERERVocFAAAAoJziX/wAAAAAAAAAAABQpLVr1+rll19WWlqa2rZtq5UrVyoqKsrqsOAGfvzxRz3yyCNKT0/X3LlzNWTIEKtDAgAAAFDOMbMkAAAAAAAAAAAA8uXm5iolJUX33XefHnzwQQUHBystLS1/dkngRpKTkxUREaGLFy9q27ZtJEoCAAAAcAkkSwJACZw/f14NGjRQZGSk1aEAAFwEfQMAALgexgoAAHeUm5ur5ORkNWnSRL1791aVKlX01Vdfac2aNWrVqpXV4cENXLhwQUOGDFG/fv3Uv39/bd68WY0aNbI6LAAAAACQRLIkAJSIMUa5ubnKzc21OpQbCgkJUbt27awOw+1ZfR2tfn8AN0bfAHg2q+8bq98fwM1jrIDyyur6ZPX7A+7q6tWrSkxM1F133aWHH35YjRs31s6dO5WSkqIWLVpYHR7cxK5du9S6dWslJydr8eLFmj17tgICAqwOCwAAAADy+VgdAAC4g9DQUO3bt8/qMABAly5d0qVLl3TLLbdYHUq5R98AAMAvjh49qurVq1sdhsthrAAAcAeXL1/We++9p0mTJun48eOKiYlRSkqKGjZsaHVocCPGGM2aNUtjxoxR69at9fHHH6tmzZpWhwUAAAAAhTCzJAAAgBs5cuSIqlatqsjISP3rX//SxYsXrQ4JAACUc927d9fdd9+t119/XYcOHbI6HAAAUALnz59XfHy8br/9do0YMULdunXTDz/8oMTERBIlYZeTJ08qKipKo0eP1tixY7V27VoSJQEAAAC4LJIlAeAGli9fLpvNlv/Kzs4ucvnBgwcVExOjihUrKjw8XJGRkQVmEZk2bVr+tjVr1tSWLVvUqVMnhYaGKigoSA888IA2btyYv/2kSZPyt//146M++eST/OW33nproeNfuHBBGzduzN/Gx8dzJxE+ffq0nn/+edWvX19+fn6qVKmSunXrpvXr1+dv4+jrSDnCFVy9elWrV69W//79dcstt+iRRx7RRx99pKtXr1odWrlB3wC4BsYCgGu4evWqdu3apRdffFF169ZVq1atNHv2bJ06dcrq0CzDWAGujj4UKL+ysrI0depU1alTRy+99JKio6O1f/9+JSQkqFatWlaHBzezdu1aRUREaOfOnVq/fr0mTJggb29vq8MCAAAAgOIZAPAQkkxSUpLTjt+rVy8jyVy6dKnI5b169TKbNm0y58+fN2vWrDGBgYGmRYsWhY4TERFhgoODTevWrfO337Jli7nnnnuMn5+f2bBhQ4Htg4ODTdu2bQsdp1mzZiY8PLzQ8uK2z/PAAw+YW265xaSlpZX01EvF2eVx7NgxU69ePVOlShWTkpJiMjMzzZ49e0yfPn2MzWYz8+fPL7C9o69jeSjH6OhoEx0d7bTjo3T27t1rJBV4+fr6GkkmJCTEDBgwwKxcudJcvXq1wH6Up3PQN6AkuP+cg7EA962zJCUlGb4usc/vfve7AmMTm81mvL29jZeXl2nVqpVJSEgwmZmZBfYpL9eZsYL7KQ/9Nn1o+ajPzv5eBu7n5MmT5pVXXjEVK1Y0FSpUMGPGjDGnT5+2Oiy4qStXrphXXnnFeHl5mejoaHPmzBmrQwIAAACAkljCzJIA4CCDBw9W69atFRwcrM6dO6tHjx7asmVLkbOpXLhwQbNnz87fvnnz5vrggw905coVxcXFOTXO3NxcGWNkjHHq+zjbuHHjdODAAc2cOVORkZGqUKGCGjZsqEWLFqlatWoaMWKEjh8/7tQYKEe4irwZJc+fP68lS5aoZ8+eql69uuLi4pSamko9sRB9A+A8jAW4b+G6jDG6du2acnNztWXLFj399NO69dZb1b17dyUmJurixYtWh+gyGCvACvSh1GeULz/99JNGjhypOnXqaM6cORozZox++uknTZkyRbfccovV4cEN7d69Wy1bttT06dM1Z84cJScnq1KlSlaHBQAAAAAlwjNIAMBBWrRoUeDvvMfWHD16tMBjoSQpODhYTZs2LbCsSZMmql69urZv365jx46pWrVqTolzw4YNTjluWVu2bJkkqUePHgWW+/v7q1OnTnr//ff16aefKjY21mkxlIdyPH36tJKTk8vkvVAyGRkZ111/5coVSdLJkyc1e/ZszZo1S/Xq1VNgYCCP07IAfQPgPIwFNjjluPj/GAOV3Pnz54tdd+3aNUm/JCetWbNGn3zyif785z/n95HXrl0r149qZKwAK9CHbnDKcQFXs2fPHk2dOlUffvihKleurNdee01Dhw5VUFCQ1aHBjSUmJurPf/6z7rrrLm3dulUNGjSwOiQAAAAAsAvJkgDgIGFhYQX+9vPzk/TLj4K/VbFixSKPUblyZR09elQnTpxw2o8CnuDy5cvKzMxUQECAQkNDC62vUqWKpBsnld2s8lCO33//vfr162d1GCilnJwcSdKBAwckSUeOHNHatWvVuXNnK8MqV+gbAOdgLICywBio5PL6txvJG5tcuHAhP1lpypQpGjNmjHx8yudXVIwVUNboQwHPt337dr3xxhtatGiR6tSpo9dff13Dhg1TQECA1aHBjWVmZurpp5/Wv/71Lw0fPlz/+Mc/SjwGBAAAAABXUj6/iQYAi50+fVrGGNlstgLLT5w4IemXHwfyeHl55c8U92vnzp0r8ti/PaYn8vf3V1hYmDIzM5WVlVXoB568x4VVrVo1f5kzrmN5KMdWrVoxq5KL+f7779WwYcMbbufr66urV6+qWrVq6tu3r7777jtVrFiRREkXVh7aFMBRGAugLPB41pJr3Lixvvvuu+tu4+Pjo9zcXPn4+CgqKkr169fX66+/rhdffLGMonR/tDlwBPpQwHOlpqZq6tSpWrVqle655x4tXLhQjz76aLmewRmOsXnzZj366KO6cOGCPv74Yz300ENWhwQAAAAApeZldQAAUB5lZ2dry5YtBZZ9++23Onr0qCIiIgrMnlCtWjUdOXKkwLYZGRk6dOhQkccOCgoq8CNCo0aNNG/ePAdG7xr++Mc/SpJWrVpVYPnly5e1bt06BQYGqmvXrvnLnXEdKUe4mrz/6A8LC9OgQYP0xRdf6MiRI4qPjy925ha4DtoUwD6MBQDX5+3tLW9vb/n4+OjBBx/UO++8ozNnzmjp0qVq1qyZ1eG5HdocOAp9KOA5jDFKSUlRmzZt1L59e509e1YrVqzQtm3bFBsbS6IkbkpOTo4mTJigdu3aqUGDBkpPTydREgAAAIDbI1kSACwQFhamv/71r0pLS9OFCxf09ddfa8CAAfLz81N8fHyBbbt06aKjR4/qzTff1Pnz57Vv3z7FxcUVmGXh137/+99r7969+umnn5SWlqb9+/erffv2+es7duyo8PBwbd682ann6GyTJ09WvXr1NHLkSH300UfKysrS3r171b9/fx07dkzx8fH5jw+THH8dJcoRrsHX11c2m03BwcHq16+fVq5cqVOnTikhIUHt2rVjVhU3QpsC2IexAPctXJPNZpO3t7dsNpuaN2+uN954Q8eOHdPHH3+s2NhYBQcHWx2i26LNgaPQh1Kf4f5yc3OVnJysJk2aqFevXgoPD9emTZuUmpqqqKgovgvATTt06JA6duyoqVOn6o033tDq1asLzDoMAAAAAG7LAICHkGSSkpIcftxly5YZSQVejz76qElLSyu0/MUXX8yP5devHj165B8vIiLC1KhRw3z33Xema9euJjQ01AQGBpoOHTqY1NTUQu9/7tw5M3jwYFOtWjUTGBho2rVrZ7Zs2WKaNWuWf/wxY8bkb797927Tvn17ExwcbGrVqmXeeuutAsdr3769qVSpktm0aZPDr9WvOas8fu3UqVNm5MiRpl69esbX19eEhYWZrl27mnXr1hXa1tHXsTyUY3R0tImOjnba8VE6e/fuza8zfn5+Jjo62ixfvtxkZ2dfdz/K07HoG2AP7j/nYSzAfesMSUlJhq9L7PO73/3OSDI2m800a9bMxMfHm2PHjl13H0+/zowV3Fd56bfpQz2/PpfF9zIoe9nZ2ea9994zDRo0MF5eXiYyMtJs3brV6rDgYZYuXWoqVapkfve735n09HSrwwEAAAAAR1piM8YYRyRdAoDVbDabkpKS1K9fP6tDua6mTZvq1KlTOnz4sNWhOJW7lEdplYdy7Nu3ryQpOTnZ4kjwa/v379fw4cP1yCOPqFevXgoNDS3RfpSnaysPbUp5xv3nmbhvPdeSJUsUExMjvi4puQEDBuiuu+5S//79Va9evRLtw3W2D21O2aHfdj7qc9nw9O9lypusrCwtXLhQr7/+uk6fPq1+/fpp/PjxatCggdWhwYNcunRJY8eO1axZszRw4EDNnTtXQUFBVocFAAAAAI6U7GN1BAAAACi522+/XatWrbI6DAAAgHwffPCB1SEAAOCRTp48qbfeekuzZs1STk6OBg0apDFjxqh69epWhwYPs3XrVvXv319nzpzRihUr1LNnT6tDAgAAAACnIFkSAAAAAAAAAADARRw8eFAzZszQ22+/reDgYI0YMUJxcXGqVKmS1aHBwxhjNGvWLP3lL39Ru3bt9Pnnn6tGjRpWhwUAAAAATuNldQAAUF5MmzZNNptN27dv15EjR2Sz2fTSSy9ZHRbsRDkCcCTaFMD9cN8CKEu0OfAk1Gfgxnbu3KnY2Fg1aNBAK1as0N///ncdPHhQEyZMIFESDnfixAn16NFDo0eP1rhx47RmzRoSJQEAAAB4PGaWBIAyMnr0aI0ePdrqMHCTKEcAjkSbArgf7lsAZYk2B56E+gwU75tvvtHMmTP14Ycf6q677tKCBQv0yCOPyNfX1+rQ4KE+++wzPfbYYwoICNB///tftWnTxuqQAAAAAKBMMLMkAAAAAAAAAABAGUtNTVVUVJSaNWumnTt36p133tH27dsVGxtLoiScIjs7W3FxcXrooYfUvn17bdu2jURJAAAAAOUKM0sCAAAAAAAAAACUgdzcXK1atUqTJk3SV199pbZt22rlypWKioqyOjR4uP/973/q37+/9u/fr8TERA0YMMDqkAAAAACgzDGzJAAAAAAAAAAAgBNduXJFiYmJaty4sXr37q3KlSvryy+/zJ9dEnCmxMREtWjRQn5+ftq6dSuJkgAAAADKLZIlAQAAAAAAAAAAnODChQuKj4/XHXfcocGDB6tFixbauXOnUlJSdN9991kdHjzcuXPn9PDDD+vxxx/Xk08+qdTUVN1xxx1WhwUAAAAAluEx3AAAAAAAAAAAAA508uRJ/fOf/9Ts2bOVnZ2tIUOGaNSoUapZs6bVoaGcWL9+vWJjY2Wz2bR+/Xp16NDB6pAAAAAAwHIkSwLwKDExMYqJibE6DPwfysP9RUdHWx0CHGjp0qWy2WxWhwGUW9x/AFAYbSNcFXUTQGnt27dPb7zxht59910FBwfr2Wef1fDhwxUeHm51aCgncnJyNGnSJE2aNEk9e/bU/PnzqX8AAAAA8H9IlgTgUUaOHKnWrVtbHQauIy0tTTNnzlRSUpLVoeAGZsyYYXUIcLBWrVrpueeeszoMwK3FxMQw3gA8XN54FWWDzwVwB3yOhTvin1fLXnp6uqZPn67FixerZs2amjx5soYMGaKgoCCrQ0M58sMPP2jAgAH69ttvNXv2bA0dOtTqkAAAAADApZAsCcCjtG7dWv369bM6DNzAzJkzKSc3kJycbHUIcLCaNWty7wE3KSYmhvEGUA6QLFl2aE/hLvgcC3dDsmTZSU1N1dSpU/XRRx8pIiJCCxYsUP/+/eXjw88vKFsLFizQyJEj1aBBA3399de66667rA4JAAAAAFyOl9UBAAAAAAAAAAAAuIvc3FylpKTovvvuU/v27XX27FmtXLlS27ZtU2xsLImSKFPnzp1T//79NWTIED3xxBNKS0sjURIAAAAAisEndgAAAAAAAAAAgBs4f/68FixYoOnTp+vw4cPq3r27vvzyS913331Wh4Zyau3atXr88cfl5eWldevW6YEHHrA6JAAAAABwacwsCQAAAAAAAAAAUIyTJ09qwoQJqlOnjl588UU99NBD2r17d/7skkBZy87O1tixY9W1a1e1bt1a6enpJEoCAAAAQAkwsyQAAAAAAAAAAMBv7N+/X/Hx8Xr77bcVHBys4cOHa/jw4QoPD7c6NJRju3bt0oABA7R//37NmTNHQ4cOtTokAAAAAHAbzCwJoNz64IMPZLPZ8l8hISFFbvfjjz+qZ8+e+vnnn3Xq1KkC+9x7773Kzs4utM9vt7PZbGrevLmzT8khxo4dq6SkpGLX/fqcWrVqVSYxUVZFc8WyAjxZeWhXACuUt/67JD7++GM1bNhQPj7F/3/j9cYBAJyLdqsw2i3XRX0tXs+ePWWz2TRp0qRC66iv2LZtm2JjY9WoUSOlpKTo73//uw4ePKgJEyaQKAnLGGM0b9483XfffQoICNDWrVtJlAQAAAAAO5EsCaDcmzNnjowxOn/+fKF16enpat68ubp06aIKFSro1ltvlTFGW7ZsyV8/cuTIQvvlbZeWlqbw8HAZY/T11187/VwcYciQIRo3bpzGjx9faN2UKVNkjJExRt7e3mUeG2VVkCuXFeCJykO7ApS18th/X8++ffvUs2dPjRs3TsePH7/uttcbBwBwHtqtgmi3XBv1tXiJiYlKSUkpdj31tfxKTU1VVFSUfv/73+vbb7/VggULtHfvXsXFxSkoKMjq8FCOHT9+XJGRkXrmmWf0wgsvKDU1VXfccYfVYQEAAACA2yFZEgCK8fPPPysqKkp/+tOf9OyzzxZa7+/vr/DwcCUkJGjx4sUWROgc9evX17Jly/Taa69pyZIlVodTIpSV+5QV4Ck8tV0BylJ57b+vZ/z48WrTpo22bt2q0NDQ627LOAAoe7RbhdFuuS7qa/GOHj2qkSNHauDAgcVuQ30tX65evark5GS1aNFC7du319mzZ7Vy5cr82SWvN2suUBb+85//qHHjxvrf//6nDRs2aMKECfxzNAAAAACUEsmSAFCM119/XRkZGXr55ZeLXB8QEKAPP/xQXl5eGjZsmPbu3VvGETpPRESEoqOjNWrUKOXk5Fgdzg1RVu5TVoCn8OR2BSgr5bn/Ls6CBQs0duzYEv8gzzgAKFu0W4XRbrku6mvxhgwZor59+6pLly7X3Y766vnOnz+v+Ph43XHHHXr44YdVtWpVffXVV/mzSwJWy8rK0rBhw/SnP/1J3bt3144dO9S2bVurwwIAAAAAt0ayJAAUwRijt99+Wy1btlT16tWL3a5r16566aWXlJWVpb59+yo7O7sMo3SuP/7xjzp8+LBWrVpldSjXRVm5T1kBnsaT2xXA2ei/ixYYGGj3PowDgLJBu1U02i3XRH0t3sKFC7Vr1y5NmzatRNtTXz3TiRMnNGHCBNWpU0cvvfSSevfurQMHDiglJUUtWrSwOjxAkvTVV1+pWbNm+s9//qPly5crMTFRISEhVocFAAAAAG6PZEkAKML27dt1/PhxRURE3HDbV155RV26dNGOHTs0fPjwEh3/9OnTev7551W/fn35+fmpUqVK6tatm9avX5+/zfLly2Wz2fJfBw8eVExMjCpWrKjw8HBFRkZq3759hY598uRJjRgxQnXr1pWfn59uu+029enTR+np6SW/AJKaNm0qSfr000/t2q+sUVbuU1aAJ/LUdgVwNvpvx2EcAJQN2i3Hod1yPupr0Q4fPqxRo0Zp4cKFN3xsfB7qq2fZv3+/4uLiVLduXc2ePVvDhw/Xjz/+qPj4eNWuXdvq8ABJUk5OjqZOnap27dqpbt262r59u3r16mV1WAAAAADgMUiWBIAi7Ny5U5JUs2bNG27r5eWlDz/8ULVq1dLbb7+tDz/88LrbZ2RkqEWLFlq0aJHi4+N16tQpffnllwoKClKnTp309ttvS5J69+4tY0z+l2EjR47UyJEjdeTIESUlJenzzz/XI488UuDYx44dU4sWLbRkyRLNnj1bZ86c0YYNG3TmzBm1bt1aaWlpJb4GNWrUKHAtXBVl5T5lBXgiT21XAGej/3YcxgFA2aDdchzaLeejvhZt8ODB6t+/vzp27FjifaivnuGbb75RbGysGjZsqI8++kiTJ0/WwYMHNWHCBN1yyy1Whwfk++GHH9S+fXu9+uqreuONN/Tpp59ed4ZgAAAAAID9SJYEgCIcO3ZMkhQWFlai7W+99VYtWbJEvr6+GjZsmHbv3l3stuPGjdOBAwc0c+ZMRUZGqkKFCmrYsKEWLVqkatWqacSIETp+/Hih/QYPHqzWrVsrODhYnTt3Vo8ePbRlyxadOnWqwLF//PFHTZ8+Xd27d1dISIgaN26sf/3rXzLGlHiWCEmqUKGCbDZb/rVwVZSV+5QV4Kk8sV0BnI3+23EYBwBlg3bLcWi3nI/6Wtj8+fP1/fff6/XXX7drP+qr+8rNzdXKlSvVoUMHNWvWTHv27FFSUpK+//57xcXFKSgoyOoQgQLmz5+ve++9V9nZ2dqyZYuGDx8um81mdVgAAAAA4HFIlgSAImRnZ0uSfH19S7xPq1atNG3aNF24cEF9+/bVpUuXitxu2bJlkqQePXoUWO7v769OnTrp0qVLRT7eqUWLFgX+rlWrliTp6NGj+cuWL18uL7W5JvwAACAASURBVC8vRUZGFti2atWqaty4sbZu3arDhw+X+Jx8fHyKPQ9XQVn9wh3KCvBkntiuAM5E/+1YjAMA56PdcizaLeeivhZ06NAhvfDCC1q4cKGCg4Pt3p/66l4uXryouXPn6q677lLv3r0VGhqqDRs26Msvv9Sf/vQneXnxkwhcy4kTJ9S7d28NGzZMTzzxhDZv3qzGjRtbHRYAAAAAeCy+GQCAIgQEBEiSrl69atd+I0aMUExMjHbu3Klnn3220PrLly8rMzNTAQEBCg0NLbS+SpUqkn55rNVv/XZGCD8/P0m//Kf8r4+dm5ursLAw2Wy2Aq9vvvlGkvT999+X+HxycnIUGBhY4u2tQFn9wh3KCvB0ntauAM5E/+1YjAMA56PdcizaLeeivhaUkpKizMxM3X///QWOOXDgQEnS+PHj85f98MMPhfanvrqHEydOaMKECapTp45Gjhypli1b6ttvv9VHH32kDh06WB0eUKRPPvlETZs2VXp6utavX6/4+Hj5+/tbHRYAAAAAeDQfqwMAAFdUrVo1SVJmZqbd+7799ttKT0/XwoUL83+gyOPv76+wsDBlZmYqKyur0I8LeY+qqlq1qt3v6+/vr4oVK+r8+fO6dOmSfHxuron/+eefZYzJvxauirJyn7ICygNPaVcAZ6P/dhzGAUDZoN1yHNot56O+FvTMM8/omWeeKbT8gw8+0MCBAzVx4kS99NJLRe5LfXV9e/fu1VtvvaX58+crJCRETz75pEaMGKHq1atbHRpQrIsXL2rcuHGaNWuW+vbtq4SEBFWqVMnqsAAAAACgXGBmSQAowt133y1JpXq8U0hIiP79738rODhYs2fPLrT+j3/8oyRp1apVBZZfvnxZ69atU2BgoLp27VqKqKU+ffooJydHGzduLLRu6tSpql27tnJyckp0rCNHjkj6/9fCVVFW7lNWQHngKe0K4Gz0347DOAAoG7RbjkO75XzUV8ehvrqu1NRURUVF6c4779THH3+syZMn6+DBg5oyZQqJknBpmzdvVtOmTbV48WL95z//0ZIlS0iUBAAAAIAyRLIkABQhIiJClStX1vbt20u1f+PGjZWQkFDkusmTJ6tevXoaOXKkPvroI2VlZWnv3r3q37+/jh07pvj4+PxHV9lr8uTJql+/vp544gmtXr1amZmZOnPmjBISEvS3v/1N06ZNKzA7w4ABA2Sz2XTgwIFCx0pPT5ckdenSpVSxlBXKyn3KCigv3KVdAaxE/+04jAOAskG75Ti0W85HfXUc6qtruXLlihITE3XPPfeoffv2Onv2rFasWKG9e/cqLi5OQUFBVocIFCsnJ0cTJkxQu3btdPvttys9PT0/AR0AAAAAUIYMAHgISSYpKanE27///vtGkpkzZ06R6//6178aHx8fc+TIkfxlJ0+eNJIKvJo1a1bsezz99NMmPDy80PJTp06ZkSNHmnr16hlfX18TFhZmunbtatatW5e/TVpaWqH3evHFF/PP9devHj165O93+vRp8/zzz5vbb7/d+Pr6mttuu8106dLFrFmzplAcHTt2NCEhISYnJ6fQur59+5oaNWqYK1euFHlu3t7epmXLlsWee3GSkpKMvd0PZWVNWUVHR5vo6Gi794Nrojxvnqe1Kygde8cbKF5577+LkpKSUui9817z588vcp8bjQNgv9KMV2E/d7zOtFuFlZd2i/pakLvW1zzDhg0rss527dq10LbuWF/zeNK49dy5c2bmzJmmZs2axtfX1/Tt29d8+eWXVocFlNh3331nmjVrZgIDA83MmTNNbm6u1SEBAAAAQHm1xGaMMTdKqAQAd2Cz2ZSUlKR+/fqVaPsPPvhAAwcO1Jw5c/TUU08VWp+ZmanGjRsrMjJSc+fOdXS4ljt37pyqV6+uRx99VPPnzy+wbvv27br33nu1aNEiPfzww0Xu7+Pjo+bNm2vz5s12ve+SJUsUExMje7ofysqasurbt68kKTk5uXSBw6VQnoBj2DveQPHKc//tKCUZB8B+pRmvwn7ueJ1pt26eu7Zb1FfXQ329MU8Yt+7bt0+zZs3SggUL5O3trccff1yjR49WrVq1rA4NKBFjjObPn6/nnntOd999t95//301bNjQ6rAAAAAAoDxL5jHcAFCMsLAwpaSkaOnSpXrrrbesDsehjDEaMWKEKlSooIkTJxZYt3//fvXp00fjxo1zmx8DKCv3KSsAAPKU1/7bURgHAGWPduvm0G6VLerrzaG+Wis1NVX9+vVTo0aNlJKSovHjx+vQoUOKj48nURJuIyMjQ5GRkXrmmWc0fPhwpaamkigJAAAAAC6AZEkA5d7TTz8tm82mkJCQQuvuvfdeff3111q9erV+/vlnC6JzjuPHj2v//v1at26dqlatWmBdQkKCXnvtNb322muF9hs7dqxsNptsNpuuXbtWVuHmo6zcp6wAACiJ8th/O8r1xgEAnId2q/Rot8oe9bX0qK9lLzc3VykpKWrTpo3at2+v/fv3a+HChdq7d6/GjBmjsLAwq0MESiw5OVl33323du/erQ0bNmjKlCny9fW1OiwAAAAAgCQeww3AY3jC44XKA3d8fFl5xWObPQvlCTgG4w3A8zFeLRtcZ7gT6ivckbuMW7OysrRw4ULNmDFDP/30k7p3765x48apTZs2VocG2C0zM1N/+ctfNH/+fA0ZMkTTp09XcHCw1WEBAAAAAP6/ZB+rIwAAAAAAAAAAAOXHsWPHlJCQoFmzZunq1avq37+/Ro0axWOK4bbWrl2rQYMGKTc3V6tXr1bXrl2tDgkAAAAAUAQeww0AAAAAAAAAAJzum2++UWxsrGrXrq2EhASNGDFCP/74oxISEkiUhFu6ePGiRowYoS5duqh169basWMHiZIAAAAA4MKYWRIAAAAAAAAAADhFbm6uVq1apVmzZmnt2rVq2rSpFixYoEceeUS+vr5WhweU2ldffaXY2FhlZGRo7ty5Gjp0qNUhAQAAAABugJklAQAAAAAAAACAQ2VnZysxMVGNGzdW7969JUkrV67Utm3bFBsbS6Ik3FZOTo6mTp2qdu3aqXbt2tq5cyeJkgAAAADgJphZEgAAAAAAAAAAOMShQ4c0e/ZszZ8/X9nZ2YqNjdWKFSt4zDY8wq5duxQbG6v//e9/+sc//qERI0bIZrNZHRYAAAAAoIRIlgTgUdLS0qwOATeQV0ZLliyxOBLcyOHDh1WzZk2rw4ADHT58mHsPcADGG4Bn4x4vW4xN4A74HAuUTGpqqmbNmqVly5apcuXKev755zVs2DDdeuutVocG3LTc3Fz985//1JgxY3TvvfcqPT2dBGAAAAAAcEM2Y4yxOggAcAT+gxdwvOjoaCUnJ1sdBhygb9++Wrp0qdVhAADgNvi6xLmWLFmimJgYq8MAAI+WlJSkfv36OfU9rly5ohUrVmjGjBlKS0tTs2bNNHToUMXGxiogIMCp7w2UlQMHDujxxx9XWlqa/vrXv2r8+PHy9va2OiwAAAAAgP2SSZYEAAAAAAAAAAAlduLECb3zzjt68803dezYMXXr1k1xcXHq3Lmz1aEBDmOM0fz58zVq1CjVq1dPiYmJatq0qdVhAQAAAABKL5nHcAMAAAAAAAAAgBvatm2b5s6dq/fff1/+/v6KjY3VqFGjVLt2batDAxwqIyNDQ4YM0SeffKJRo0bpb3/7m/z8/KwOCwAAAABwk0iWBAAAAAAAAAAARcrNzdWqVas0a9YsrV27Vo0aNdLkyZM1ZMgQBQUFWR0e4HDJycl66qmnVLFiRa1fv17t2rWzOiQAAAAAgIN4WR0AAAAAAAAAAABwLZmZmYqPj9ftt9+u3r17S5JWrlyp//3vf4qLiyNREh7n5MmT+tOf/qSYmBhFR0drx44dJEoCAAAAgIdhZkkAAAAAAAAAACBJ+v777/Xmm29qwYIF8vLy0iOPPKLnnntOd955p9WhAU6zevVqDR48WD4+Plq7dq06duxodUgAAAAAACdgZkkAAAAAAAAAAMqx3NxcrV27VlFRUWrUqJFWrVql8ePH69ChQ0pISCBREh7r559/1rBhw9S9e3e1bdtW6enpJEoCAAAAgAdjZkkAAAAAAAAAAMqh8+fPa9GiRYqPj9d3332ntm3bKikpSX369JG3t7fV4QFOtWbNGg0ePFjZ2dlatmxZ/uPmAQAAAACei5klAQAAAAAAAAAoR/bv36+xY8eqTp06iouLU7NmzfTtt98qNTVVffv2JVESHi0rK0tPPfWUunbtqlatWmnXrl0kSgIAAABAOcHMkgAAAAAAAAAAlAOpqamaNWuWli1bpttuu03Dhw/X8OHDFR4ebnVoQJlITU3VoEGDdPr0ab333nsaOHCg1SEBAAAAAMoQM0sCAAAAAAAAAOChLl++rMTEREVERKh9+/bav3+/FixYoEOHDmnChAkkSqJcuHTpksaOHasOHTqoYcOG2rlzJ4mSAAAAAFAOMbMkAAAAAAAAAAAeJiMjQ3PnztVbb72ln3/+Wb169VJCQoJatWpldWhAmdq0aZMGDRqkEydOaM6cORo6dKjVIQEAAAAALEKyJAAAAAAAAAAAHuKLL77Q7Nmz9e9//1vh4eF69tln9dRTT6lKlSpWhwaUqUuXLunVV1/VtGnT9OCDD+rzzz9XjRo1rA4LAAAAAGAhkiUBAAAAAAAAAHBjWVlZ+uCDDzRnzhx9++23atGihRYsWKCYmBj5+flZHR5Q5jZv3qxBgwbp2LFjmj17NrNJAgAAAAAkkSwJAAAAAAAAAIBb2rNnj9555x3NmzdPFy9eVM+ePTVnzhy1bdvW6tAAS2RnZ2vChAmaNm2aOnXqpM8++0y1atWyOiwAAAAAgIsgWRIAAAAAAAAAADdx5coVrVixQvPmzdO6detUv359jRkzRoMHD1Z4eLjV4QGW2b59ux577DEdOHBAs2fP1pAhQ2Sz2awOCwAAAADgQkiWBAAAAAAAAADAxR09elTvv/++3nzzTR09elQdO3bUihUrFBkZSUIYyrWrV69q+vTpGj9+vFq2bKmtW7fqjjvusDosAAAAAIALIlkSAAAAAAAAAAAXlJubq88//1zz5s3TsmXLdOutt+qxxx7T008/rTp16lgdHmC5HTt26PHHH9eePXs0ceJEvfDCC/Ly8rI6LAAAAACAiyJZEgAAAAAAAAAAF3Lq1Cm9++67SkhI0A8//KD7779fixYtUu/eveXr62t1eIDlcnJy9MYbb+jll19W8+bNlZ6ergYNGlgdFgAAAADAxZEsCQAAAAAAAACAxXJzc7Vp0ya9//77ev/99+Xr66uHH35Y//nPf9SkSROrwwNcRnp6ugYNGqS9e/fq9ddf1/Dhw5lNEgAAAABQIiRLAgAAAAAAAABgkWPHjikxMVHz58/Xvn371KxZM82cOVP9+/dXSEiI1eEBLuPKlSuaNGmSpkyZopYtWzKbJAAAAADAbiRLAgAAAAAAAABQhnJzc/X5559r3rx5Wr58uYKDg9WvXz/9+9//VkREhNXhAS5n+/btGjRokHbv3q2JEydq9OjR8vb2tjosAAAAAICbIVkSAAAAAAAAAIAycPjwYX344YeaM2eOfvrpJ7Vu3VpvvvmmBg4cqMDAQKvDA1zO1atXNX36dI0fPz5/NsmGDRtaHRYAAAAAwE2RLAkAAAAAAAAAgJNcuXJFK1asUGJiolavXq3KlSsrNjZWQ4YMUf369a0OD3BZX375pZ544gkdPHhQEydO1AsvvCAvLy+rwwIAAAAAuDGSJQEAAAAAAAAAcLA9e/bonXfe0cKFC3X69Gl17NhRixcvVu/eveXr62t1eIDLys7O1oQJEzRt2jS1bdtWK1as0B133GF1WAAAAAAAD2AzxhirgwAAR7DZbFaHAHic6OhoJScnWx0GHKBv375aunSp1WEAAOA2+LrEtfB5DwB+Qf8ET5eWlqYnnnhCR48e1T/+8Q8NGTKEcQAAAAAAwFGSmVkSgEcZOXKkWrdubXUYLikmJobrA7vMmDHD6hDgYK1atdJzzz1ndRgA3AjjB5RHaWlpmjlzptVhoAi0R3AX9J/Ik5mZqQoVKjgk0Yv+CZ7u0qVLevXVVzVt2jR17txZn376qWrXrm11WAAAAAAAD0OyJACP0rp1a/Xr18/qMFxSTEwM1wd2YUZJz1OzZk3aAAB2YfyA8opkFNdEewR3Qf8JZ6F/gqfauHGjnnzySWVkZGj27NnMJgkAAAAAcBovqwMAAAAAAAAAAABA+XLx4kWNHTtWf/jDH1S/fn3t3LlTQ4cOJVESAAAAAOA0zCwJAAAAAAAAAACAMvPFF1/oySef1MmTJzVnzhwNHTrU6pAAAAAAAOUAM0sCAAAAAAAAAADA6fJmk7z//vvVqFGj/NkkAQAAAAAoC8wsCQAAAAAAAAAAAKdavXq1nnrqKV26dEmLFi1STEyM1SEBAAAAAMoZZpYEADstX75cNpst/5Wdne2wY0+bNi3/uDVr1nTYcZ0hJCSkwHWw2WyaNm2a1WGViiedC2CFpKQkNW3aVIGBgfn30M6dO60OCyi3rl69qhkzZqhZs2YKDQ1V5cqV1a1bN6WkpMgY4/T3v3btmubOnas2bdooLCxMvr6+ql69urp3764333xTBw8ezN/WncY+pfH111/r8ccfV926dRUQEKCKFSuqRYsW+tvf/qZz587d9PFdfQzjqPL917/+lX+cgIAAB0YIeLaybmPdvU3/+OOP1bBhQ/n4WPO/5fb0n+7OFfovd6+vgLs5ffq0YmNj1b17d7Vp00a7du0iURIAAAAAYAmSJQHATr1795YxRr169XL4sUePHi1jjCIiIhx+bEc7f/68tm3bJknq1auXjDEaPXq0xVGVjiedC1DWNm7cqEceeURdunTRyZMn9cMPP/BjI9zG+fPn1aBBA0VGRlodisNcuHBBHTt21LvvvqsZM2boxIkT+vrrrxUSEqKePXtq165dTo9h4MCBeuaZZ9S7d2/t2rVLWVlZ+uKLL3TvvfdqxIgRat68ef621xv73Gz5WF2+48aNU6tWrVSpUiV99NFHOnfunA4cOKBXXnlFy5YtU8OGDbVx48abeg9XH8M4amz78MMPyxijTp06OSgywLGsbm+KU9afL93p8+yv7du3Tz179tS4ceN0/Phxy+Kwp/90FKvqriv0X+5aXwF3lJKSonvuuUdr1qzRv//9by1evFi33Xab1WEBAAAAAMopkiUBoBghISFq166d1WHAQShPoHRudO8kJyfLGKO4uDiFhISofv36+umnn3T33XeXYZSeg7bK8a53TY0xys3NVW5url37ubIXXnhBO3bs0GeffaY//OEPCgwMVO3atfXuu+/K39/f6e+/ZcsWLV68WE8++aT+8pe/qGbNmgoICFD9+vX12muv6emnny7xsa5XPmWx/82YNGmSpkyZorfeekszZszQ3XffrYCAAFWqVEmRkZHauHGjateurW7dumn37t1lHh+Agm62zbeyvcHNGz9+vNq0aaOtW7cqNDTUkhhK239SdwG4soyMDEVHR6tXr17q1KmTdu3apT59+lgdFgAAAACgnLPmuTIAAADwCD/99JMkKTw83OJIAPuFhoZq3759VofhMMePH9e8efM0dOhQValSpcC64OBgZWdnOz2GvJkrGzVqVOT6fv36KSkpqUTHutnysap8f/jhB7366qv6/e9/r2HDhhW5TVBQkGbMmKE//OEPGjFihD777LMyjhKAI3laf1LeLFiwQIGBgZbG4Mj+0x7UXQDOYIzR+++/r+eee05hYWH67LPP1LlzZ6vDAgAAAABAEjNLAgAA4CZcu3bN6hAA/J+VK1fq2rVrls6ImZekuWbNmiLXd+jQQadOnSrLkMrc3LlzlZOTo759+153u/bt26t69epas2aN9u/fX0bRAQB+y+pESYn+E4DnOHDggLp06aJBgwYpOjpaO3bsIFESAAAAAOBSSJYEgN+YNm2abDabLly4oI0bN8pms8lms8nHp+jJeDMyMhQTE6OKFSsqPDxckZGRhWZmyMnJUVJSkh588EFVrVpVgYGBatKkieLj4z3ucVfLly/Pv2Y2m00HDx687vXJu942m001a9bUli1b1KlTJ4WGhiooKEgPPPCANm7cmL/9pEmT8rf/dTLIJ598kr/81ltvLXT8kpZnSZSkPM+dO1fgOthsNk2aNCl//18vj46Ozj/2yZMnNWLECNWtW1d+fn667bbb1KdPH6Wnpxd7jffs2aN+/fopPDw8fxk/pOFm3ejeyauHK1askPTLj8w2m02tWrUqk/hOnz6t559/XvXr15efn58qVaqkbt26af369YXOoaTtSx5H3oclbf9L2laV5LxLGtvly5f18ssv684771RQUJBuueUWRUVF5SfclaXdu3erd+/eCgsLU1BQkO677z599NFH6ty5c37MgwcPzt++JGVU0jqc98qbdbGkZVGaevLjjz8qJiZGoaGhCg8P18CBA3X27FkdPHhQUVFRCg0NVbVq1TRkyBBlZWXZfR2/+eYbSVKlSpU0atQo1apVS35+fqpTp45GjBihM2fO2H1Me7Vv315Vq1bVp59+qm7dumnDhg2lGusUVz55fn0v+Pv7q2bNmurcubPeffddXbp0qdj97R2n5LGnjv73v/+VJEVERNzwPPO2+eKLL0rdZtmjpG2Ss+ru7t271aNHj/zrWNw5/fp6BwcHq3379kpNTb2pc0L5U5J+zt6+oqg+9e2337asvblZJRlXlGbb3/rggw8KfTZ69tlnS/W5zpltpJXs7T/LY92lvgKuLTc3V/PmzdM999yjjIwMpaWlKSEhQSEhIVaHBgAAAABAQQYAPIQkk5SU5LDjBQcHm7Zt2xa7vlevXkaS6dWrl9m0aZM5f/68WbdunalQoYJp0aJFgW1TUlKMJPP3v//dnDlzxpw8edLMmjXLeHl5mdGjRxc6dkREhKlRo4bDzsUYx18fY4zZtm1b/jX4raKuz5o1a0xgYGCh62PML+ccHBxsWrdunb/9li1bzD333GP8/PzMhg0bCmxfXPk0a9bMhIeHF1p+o/K83rn8lj3l2bVrV+Pl5WV++OGHQsdp3bq1+fDDD/P/Pnr0qKlTp46pUqWKWbVqlcnKyjI7d+40HTp0MAEBAWbTpk0F9s+7xh06dDDr1683Fy5cMJs3bzbe3t7m5MmTNzyPG4mOjjbR0dE3fRy4htKWZ0nbwkuXLt1MeHY5duyYqVevnqlSpYpJSUkxmZmZZs+ePaZPnz7GZrOZ+fPnF9jenvbF0fehve3/9a63ved9o9gGDx5swsLCzGeffWYuXrxoMjIyzOjRo40ks379+lKWjv2+//57U7FiRVOjRg3z2Wef5V/zzp07m9tuu834+/sX2N7eMiptHb7efqWtJ3369DFff/21OX/+vElMTDSSTLdu3UyvXr3Mtm3bTFZWlpk7d66RZJ577jl7LmOB96latap59NFHzb59+8zZs2fNe++9Z4KDg03Dhg3NuXPn7DpmacYPX3zxhalVq5aRZCSZypUrm0cffdQsWrTIXLhwoch9ihv7FFU+efdC1apVTUpKivn5559NRkaGmThxopFkZsyYcd39f728JOMUe+totWrVjCTz5Zdf3vBaDRgwIL+N+PW1sGdM5KwxzK+v083W3YiICBMWFmYeeOABk5qaarKysoo9p6Ku944dO0yXLl1M3bp1C11ve8+pJJKSkgxfl7gee9sje/q5kvYV1xt3W9HelFRRbaw944rSjL1+/X45OTnm+eefNw8++KA5c+ZMgW3t/Vxnbxtprxo1ahhvb++bOoYxZdd/unPdtaf/or7+gv4Jrmrnzp2mZcuWxtfX14wZM8ZkZ2dbHRIAAAAAAMVZwrcrADyGVcmSKSkpBZb379/fSCqQrJaSkmLuv//+QscYMGCA8fX1NZmZmQWWe1Ky5G+vT3R0dKHrY8wv5yzJbNu2rcDyHTt2GEkmIiKiwHKrkyVLWp6ffvqpkWT+/Oc/F9g2NTXV1KhRw1y5ciV/2WOPPWYkFUigNOaXH3v8/f1Ns2bNCizPu8Yff/zxDWMuDZIlPYsnJUs+/vjjRpJZvHhxgeXZ2dmmevXqJjAw0GRkZOQvt6d9cfR9aG/7f73rbe953yi2evXqmTZt2hRa3rBhwzJNluzbt6+RZJYuXVpg+YkTJ0xQUFChH9ftLSNnJEuWtp6sWrWqwPLGjRsbSea///1vgeX16tUzjRo1Kjbm4nTt2tVIMvXq1TNXr14tsG7SpElGkhk/frxdxyzt+CE7O9u89957plevXiY0NDQ/8SM8PLxQHTbGvmTJvHuhqLgeeughu5IlSzJOsbeO5iVLfvXVV0VdmgLykiUnT56cv8zeMZGzxjDGOK7u5p1TWlraDc+puOt95MgR4+/vX2SypD3nVBIko7gme9sje/q5kvYV1xt3W9HelFRRbaw944rSjL3y3u/s2bOma9euJi4uzuTk5BSKrTTJZ/a0kfayMlnSGPv7T3euu/b0X9TXX9A/wdVcuXLFTJkyxfj7+5t7773XfPPNN1aHBAAAAADAjSzhMdwAcJNatGhR4O8aNWpIko4ePZq/LDIyssjHPUVEROjq1avatWuXc4O00G+vT61atSQVvD55goOD1bRp0wLLmjRpourVq2v79u06duyY8wK1gz3l2aVLFzVp0kTvvvuuTp8+nb/8H//4h4YPHy5fX9/8ZcuXL5eXl5ciIyMLHLdq1apq3Lixtm7dqsOHDxd63/vuu88RpwW4jWXLlkmSevToUWC5v7+/OnXqpEuXLunTTz8tsK6k7Yuj70NHtv+lOe/rxfbQQw9p06ZNGjp0qDZv3pz/SNI9e/bo/vvvL3FcN+uTTz6RJHXt2rXA8ttuu0133nlnoe1LW0aOVNoYmjdvXuDv6tWrF7m8Ro0aRfaTNxIcFxwgYQAAIABJREFUHCxJ6ty5c6HHhkdFRUlSkXXEGfz9/RUbG6vly5frzJkzWrdunR5++GGdPn1aAwYM0LZt20p97Lx7oVu3boXWrV69WiNHjizxsUoyTrG3juaV66/7/eLkbZO3Tx5njYlK2yY5ou4GBASoZcuWBZYVdU7FXe/q1aurYcOGDjsneD5n9HM3M+52RntzM+wZV5R2DLJnzx61bNlSXl5emjlzpry9vR0Su7t8biwNZ/Wf7l53qa+A60lPT1fLli316quv6tVXX9WWLVt07733Wh0WAAAAAAA3RLIkANyksLCwAn97ef3StObm5uYvy8zM1Msvv6wmTZqoUqVKstlsstlseuGFFyRJFy9eLLuAy9hvr4+fn5+kgtcnT8WKFYs8RuXKlSVJJ06ccHB0pWNveY4cOVIXL17U7NmzJUl79+7V559/rqFDh+Zvc/nyZWVmZio3N1dhYWH5x8x7ffPNN5Kk77//vlA8eckxQHmQd68EBAQoNDS00PoqVapIkjIyMgosL0n74oz70FHtf2nP+3qxvfXWW0pMTNT+/fvVqVMnVahQQQ899FD+D8xl4fLly8rKylJAQIBCQkIKra9UqVKh7UtbRo6MubQxVKhQocDfXl5e8vb2VlBQUIHl3t7eRfaTN1K3bl1JUnh4eKF1eXX95MmTdh/3Zvn4+Khjx45avHixxowZo2vXrmnp0qWlOtaN7gV73WicYm8dlaQOHTpI+uUH5BvZvn27JBVK3HLWmKi0bZIj6m54eLhsNluh5b9th693vfO2dcQ5wfM5o5+7mXG3M9qb0rJnXFHaMcjZs2fVu3dv1axZU6tXr9YHH3zgsPjd5XPjzXJk/+nOdZf6CriWS5cuaezYsWrevLlCQkKUnp6uMWPGOCzBGAAAAAAAZyNZEgCKUdSPuaUVFRWliRMnasiQIdq7d69yc3NljNGMGTMkScYYh72XOzt9+nSR1yLvx4Nf/0Du5eWlK1euFNr23LlzRR7byvJ89NFHVaVKFb355pu6fPmy3njjDT322GMFfjTy9/dXxYoV5ePjo6tXr8oYU+TrgQcecNh5ACXhyHvHEfz9/RUWFqbs7GxlZWUVWn/8+HFJv8zw92slaV+ccR/a214Ud71Le97XY7PZNHDgQK1du1bnzp3T8uXLZYxRnz59NH369BIf52b4+/srNDRU2dnZOn/+fKH1v/3xuDRlVNo6fL2ycNX2ul27dpJU5AxFedcyL0nAWTZu3Hjd98i7LmfPni3V8W90LziavXVUkoYNGyYfHx8lJydf99ipqak6evSooqKiVLt27QLr7BkT2cPKMWlmZmaRy3/bDl/vep85c6bQMsbZKI49/ZwrjHdK097czHuVdFxR2jGIj4+P1q5dqxUrVqhJkyYaMmSItmzZUmh/ez/XSc5rI61U2v6zPNRd6ivgOj7//HM1adJECQkJSkhI0H//+98iZ/4GAAAAAMCVkSwJAMUICgoq8CV4o0aNNG/ePLuPc+3aNW3cuFFVq1b9f+zde1xVVf7/8fdBriKi4v2WlzJLDU3NS6KVt0xKc0At02lKczIDUxu1LJ2stLIMR0vTKUcrA5xHTmg3dbSvF5wwU1NTzEuj4g0VBLyBrN8f/WCkA8rBc9iHw+v5eJw/2HvtfT57r7U/a51zFnsrKipKNWrUyP9B48KFC06L1xNcvHjR7geJn376SSkpKQoNDVWdOnXyl9epU0dHjx4tUPb48eP673//W+i+nVGf3t7e2rVrl8P16efnp1GjRunkyZN6++239cknnyg6Otqu3IABA5STk6ONGzfarXvjjTfUsGFD5eTkOBQzcKOclQud6eGHH5YkrVy5ssDyS5cuac2aNQoICLB7BGBx84szr8OS5P9rne+SHPe1VKlSRXv27JEk+fj4qGfPnlq+fLlsNpvde7hS3qOU8x7fmOf48eNKTk62K+9oHZW0DV9rO3fN1w888IDq1aunr7/+WhcvXiywLiEhQZLUv39/l8ZgjNHJkye1efPmQtdv2bJFkm7oEX1518KXX35pt65NmzZ67rnnSrzvwjjaRps1a6YpU6Zo69atmj9/fqH7PH/+vMaMGaOQkBC9++67dusdGRMVR0nHMM6UmZmZfyfNPIUdU1HnOzU1VXv37i2wjHE2rsWRfs5dxjuO5psb4ci4oiRjkKCgINWrV0+VKlXSF198oUqVKql///52E/od/VwnOT9HuoOS9p+e3na9vb21Z88e2itgsbS0NI0cOVI9evRQ8+bN9dNPP+nJJ590iwnbAAAAAAA4ismSAFCEO++8U8nJyTp8+LASExN14MABhYWFObyfChUq6J577tHx48f11ltvKTU1VRcuXNDatWs1b948F0RedgUHB+uFF15QYmKisrKytGXLFj322GPy9fVVTExMgbK9evVSSkqK5syZo8zMTO3fv1/R0dFF3pXB6vocNWqUAgICNHnyZPXo0UM333yzXZnp06eradOmeuKJJ/TVV18pPT1dZ86c0fz58/XKK69o5syZ8vb2djhm4EaU5No5dOiQKlSoUOCRxM40ffp0NW7cWGPGjNGKFSuUkZGh5ORkPfroozp27JhiYmLs7sxT3PzizOuwJPniWue7JMd9PX/+85+1Y8cOXbp0SSdPntSbb74pY4zuu+8+h/ZTHEW1i9dff13VqlXTmDFjtGrVKmVmZmrnzp3605/+VOidMh2to5Lm/+vVhTvmaz8/Py1cuFCnT5/W4MGDtW/fPqWlpWnJkiWaPn26OnTooKioqFKJZeDAgfr000+VkpKiS5cu6dChQ5o5c6ZeeeUVtW3bVsOGDSvxvvOuheeee04rV65URkaGjhw5olGjRunYsWNOnyzpaBuVpMmTJ2vSpEl65plnNHbsWO3atUuXLl1SWlqaVqxYoS5duuj48eP65ptv1KRJE7vtHRkTFZfVY9LAwECNHj1a//nPf655TIWd7927d+uxxx6ze7yr1ccE91fcfs5ZnxVuVEnyTUk5Mq640TFIo0aNtGzZMp06dUoDBgzQpUuX8tc5+rlOck2OdBeO9p/lpe3SXgHrfPbZZ2revLkSEhIUFxenFStWqH79+laHBQAAAABAyRkA8BCSTGxsrNP2t2fPHhMWFmYCAwNNgwYNzNy5c40xxiQmJhpJBV4vvvhifgxXv/r27WuMMebUqVNm5MiRpkGDBsbHx8fUqlXLPP7442bixIn5Zdu2bWveeuutIvd9o5x9fgIDA+1ifeutt0p0fowxJjQ01NSrV8/s3r3b9O7d2wQFBZmAgADTrVs3s2HDBrv3T0tLM8OHDzd16tQxAQEBpkuXLiYpKcm0bds2f/8TJkzIL19UfRZ1LEW9fv7552LX5++NGDHCSDLfffddkef19OnTZuzYsaZJkybGx8fH1KhRw/Tq1cusWrUqv0xh59gVXXpERISJiIhw+n5hjZLWZ1HXzueff15oO0xMTDQHDx40Xl5exmazmR07djj7UIwxxqSmppoxY8aYxo0bGx8fHxMcHGx69+5t1qxZY1fW0fzizOvQ0XxxrVxV3OMubmzbtm0zI0eONLfddpupWLGiqVatmunYsaNZsGCByc3NLV5FOOBa7WLv3r2mf//+pnLlyqZixYqmc+fO5rvvvjP33HOPqVixot2+ilNHeRxpw0OGDLnudo7EUFSfmJSUZLd8+vTpZv369XbLp0yZ4vC53rRpk+ndu7cJDg42vr6+pnnz5mbq1Knm/PnzDu/L0fHDlStXzIYNG8z48eNNhw4dTN26dY23t7cJCgoy7dq1M6+//rrJysrKL1/U2Od69fP7a6FOnTpm8ODBJjk52RhTdP2WdJziaBvNk5SUZP74xz+am266yfj6+uafh1dffdWkpaUVuo0jOctVYxhntd2r67devXrm+++/N/fee6+pVKnSNfPw1ec7ICDAtG/f3qxYscJ07949f39PPvmkMcbxPFscsbGxLhlb4cY4mo8c6ecc+ez3+7bhLvmmMNf7fOnIeKo4ZZcuXWr3frNmzSr0XOTldEc/1zk6riuOhISEInPnggULSrRPV/efecpq23W0/zKG9moM/RNK19GjR83DDz9sbDabGTp0qElNTbU6JAAAAAAAnCHOZowxAgAPYLPZFBsbq4EDB1odilty9/PTunVrpaam6siRI1aH4jIfffSR5s6dm/8INXcXGRkpSYqPj7c4EjhDea7P8pBfPFXz5s114cIF/frrr1aHUm65+/jBaq5oo+Qs68XFxWnQoEHi6xL3Ut7zEX3ib8pKjizv7fVq5bntOru90j+hNOTm5mrhwoUaP368atWqpXnz5ql79+5WhwUAAAAAgLPE8xhuAABKybx58zR27FirwwAAt3L8+HFVq1ZN2dnZBZYfOnRI+/fvd8kjwQFH0EYBlBbyDcoq2i7gGXbs2KHOnTtr9OjRGjVqlH766ScmSgIAAAAAPA6TJQEAcJGFCxfq4YcfVmZmpubNm6ezZ89yZxEAKMTZs2c1cuRIHT58WOfPn9f333+vQYMGqXLlynrppZesDg+gjQIoNeQblFW0XaDsunDhgqZOnar27durQoUK+vHHHzVjxgz5+/tbHRoAAAAAAE7HZEkAgKVmzpwpm82m7du36+jRo7LZbJo8ebLVYTnN8uXLVbVqVb3//vv67LPP5O3tbXVIgCVsNptTXlOnTi32e3p6fikNpVFvtWvX1urVq5WWlqauXbuqatWqeuihh3TLLbfo+++/V5MmTUrvgN2Us68NOKa02ig5C4Aj+aa89Q2O5sjydn6sxniuIPp0lCXfffed2rRpo3fffVdvvvmm1q9frxYtWlgdFgAAAAAALmMzxhirgwAAZ7DZbIqNjeXOfUXg/MBRkZGRkqT4+HiLI4EzUJ8ASoLxA8qjuLg4DRo0SHxd4l7IRyhLaK9wBfonONPZs2c1ceJELViwQH379tV7772nBg0aWB0WAAAAAACuFs/trQAAAAAAAAAAAMqB+Ph4PfPMM/L29lZsbGz+P1cCAAAAAFAe8BhuAAAAAAAAAAAAD3bw4EHdf//9GjRokO6//37t3LmTiZIAAAAAgHKHyZIAAAAAAAAAAAAeKCcnRzExMbrjjjt04MABrVmzRosXL1a1atWsDg0AAAAAgFLHY7gBAAAAAAAAAAA8zA8//KARI0Zo9+7deuGFFzRx4kT5+vpaHRYAAAAAAJZhsiQAj5KYmGh1CG6N8wNHHDlyRPXr17c6DDjRkSNHFBcXZ3UYAMoYxg8ob2jz7ou6QVlCe4Wz0abgiIyMDE2ePFlz587V3XffrW3btql58+ZWhwUAAAAAgOVsxhhjdRAA4Aw2m83qEACPExERofj4eKvDgBNERkZq2bJlVocBAECZwdcl7oXPewDwG/onXE9CQoJGjx6tjIwMTZkyRc8++6y8vLysDgsAAAAAAHcQz50lAXiU2NhYDRw40OowoN9+zKQ+yrbIyEirQ4CTMfkVsEZePuX6A8qGuLg4DRo0yOowUAg+X8DV8q5/JqPBHdE/4XqOHj2q6Oho/fOf/1RkZKTmzJmjmjVrWh0WAAAAAABuhX8nBAAAAAAAAAAAKINycnIUExOj2267Tdu3b9e3336ruLg4JkoCAAAAAFAIJksCAAAAAAAAAACUMVu3blWnTp30/PPPa9SoUdq5c6d69uxpdVgAAAAAALgtJksCAAAAAAAAAACUEenp6YqOjtZdd92lwMBA7dixQzNmzJCfn5/VoQEAAAAA4Na8rQ4AAAAAAAAAAAAA15eQkKBRo0bp/Pnzeu+99zRixAjZbDarwwIAAAAAoEzgzpIAAAAAAAAAAABu7MCBA+rTp4/69eune++9V3v37tVTTz3FREkAAAAAABzAZEkAAAAAAAAAAAA3lJ2drZiYGN1xxx06evSoNmzYoMWLF6t69epWhwYAAAAAQJnDZEkAKIbMzEzdcsstCg8PtzoUAICboG8AAACOYvwAAHDEhg0b1KZNG02aNEnjx4/Xli1b1LlzZ6vDAgAAAACgzGKyJAAUgzFGubm5ys3NtTqU66pUqZK6dOlidRhlntXn0er3B3B99A2AZ7P6urH6/QG4BuMHeBKr24jV7w+40tmzZxUdHa1u3brppptu0u7duzV16lT5+vpaHRoAAAAAAGWat9UBAEBZEBQUpP3791sdBgDo4MGDeuaZZ/TII4+of//+CgoKsjqkcou+AQAAx8XGxurrr7/WI488ou7du6tChQpWh1SqGD8AAK7FGKNFixZpwoQJ8vHxUWxsrCIiIqwOCwAAAAAAj8GdJQEAAMqQK1eu6KuvvtKwYcNUvXp1RUREaPny5bp06ZLVoQEAAFzXuXPntGjRIvXu3Vs1a9ZUVFSUEhMTZYyxOjQAACy1Y8cOhYWFacSIEXrkkUf0888/M1ESAAAAAAAnY7IkAFzH8uXLZbPZ8l8XL14sdPmhQ4c0aNAgValSRSEhIQoPDy9wx5CZM2fml61fv76SkpLUvXt3BQUFqWLFirr33nu1cePG/PKvvvpqfvmrHyv19ddf5y+vXr263f6zsrK0cePG/DLe3p57E+HTp09r7Nixatq0qXx9fVW1alX16dNHa9euzS/j7PNIPcJqV08kuHz5sr744gsNGDBA1apV09ChQ5WQkKCcnBwLIywf6BsA98BYACib8trzmTNnNH/+fHXu3Fl16tRRdHS0fvjhB4ujcx3GD7ACfSXg/rKysjR16lS1b99eFy9e1KZNmxQTE6PKlStbHRoAAAAAAJ7HAICHkGRiY2Ndtv9+/foZSebChQuFLu/Xr5/ZtGmTyczMNKtWrTIBAQGmffv2dvsJDQ01gYGBplOnTvnlk5KSzB133GF8fX3NunXrCpQPDAw0d999t91+2rZta0JCQuyWF1U+z7333muqVatmEhMTi3voJeLq+jh27Jhp3LixqVWrlklISDDp6elm7969ZsCAAcZms5kFCxYUKO/s81ge6jEiIsJERES4bP8omeTkZCOp0Je3t7eRZIKDg81TTz1l1q9fb3Jzc40x1Ker0DegOLj+XIOxANetq8TGxhq+LnGdDz74IH/M8vuXr6+vkWRuvvlmM2XKFLNv37787Vz9+aI0MX5wX552/dNXelYb9bT2id988cUXpmHDhqZq1arm3XffNVeuXLE6JAAAAAAAPFkcd5YEACcZPny4OnXqpMDAQPXo0UN9+/ZVUlKSUlNT7cpmZWXpvffeyy/frl07ffzxx7p8+bKio6NdGmdubq6MMWX+MXeTJk3SwYMH9e677yo8PFyVK1dWs2bN9Omnn6pOnTqKiorSiRMnXBoD9Qh3k3dHyfT0dH300UcKCwtTvXr1FB0drbS0NIujK5/oGwDXYSzAdQvPc/nyZUnSL7/8otdff1233HKLQkNDFRMTY3FkpYvxA5yFvpI2Cvf1yy+/6P7771e/fv3UrVs37d27V9HR0fLy4icbAAAAAABciWeTAICTtG/fvsDfDRo0kCSlpKQUeFyUJAUGBqp169YFlrVq1Up169bV9u3bdezYMdWpU8clca5bt84l+y1tn3/+uSSpb9++BZb7+fmpe/fuWrJkib755hsNGzbMZTGUh3rcvHmzbDZbqbwXnCs7O1uSdOzYMc2ePVuSFBwcrNWrV6tHjx5Whlau0DcArsNYYJ1L9ov/YQzkOhUqVLhumbyxzI4dOzRmzBhJ0htvvKF27dqpSZMmLo3Paowf4Cz0letcsl/gRly4cEFvvPGGZsyYoebNm2vDhg3q3Lmz1WEBAAAAAFBuMFkSAJwkODi4wN++vr6SfruTwe9VqVKl0H3UrFlTKSkpOnnypMt+LPAEly5dUnp6uvz9/RUUFGS3vlatWpKk48ePuzSO8lCPt9xyi9555x2rw8BVjh07Vuw7sHh7eysnJ0eNGzdWQECAGjRowETJUkbfALgGYwGUhri4OKtD8Ehr1qzR3//+9+uWs9lsqlChgq5cuaIOHTpo8+bNGjVqlMdPlJQYP8A56CsB95OQkKDo6GidOXNGb7zxhkaPHl2sfyAAAAAAAADOw2RJALDA6dOnZYyxu1vNyZMnJf32o0EeLy+v/MfRXa2oR+qWhzvg+Pn5KTg4WOnp6crIyLD74SfvMWK1a9fOX+aK81ge6jEkJESRkZFWh4Gr7Nu375qTJX19fXX58mXVqFFDjzzyiCIjI3X33Xdr4MCBpRglSqI85BTAWRgLoDQwBnKNtLS0a06W9PHxUXZ2tpo2baohQ4Zo6NChatq0qWw2W6ETvso78hCKQl8JuI8jR45o7Nixio+PV3h4uN5//33Vr1/f6rAAAAAAACiXvKwOAADKo4sXLyopKanAsp9++kkpKSkKDQ0tcFeFOnXq6OjRowXKHj9+XP/9738L3XfFihUL/Lhw66236oMPPnBi9O7h4YcfliStXLmywPJLly5pzZo1CggIUO/evfOXu+I8Uo9wFz4+PpKkSpUqaeDAgfriiy907NgxxcTEqEuXLvyIWEaQUwDHMBYAPEfeWKZu3bp6+umntXXrVu3bt09Tp05V06ZNLY7OvZGHcC30lYC1srOzFRMTo9tuu03btm3TN998o4SEBCZKAgAAAABgISZLAoAFgoOD9cILLygxMVFZWVnasmWLHnvsMfn6+iomJqZA2V69eiklJUVz5sxRZmam9u/fr+jo6AJ3X7janXfeqeTkZB0+fFiJiYk6cOCAwsLC8tffd999CgkJ0ebNm116jK42ffp0NW7cWGPGjNGKFSuUkZGh5ORkPfroo/mTxPIeKyY5/zxK1COs5eXlJZvNJn9/f0VERCghIUFnzpzRkiVL9OCDD/IorzKInAI4hrEA1y3Krtzc3PwJktWrV9fo0aP1/fff6+jRo4qJiVGbNm0sjrDsIA/hWugraaOwzrp169S6dWu98MILGjdunH766Sf16tXL6rAAAAAAAIABAA8hycTGxjp9v59//rmRVOA1ZMgQk5iYaLf8xRdfzI/l6lffvn3z9xcaGmrq1atndu/ebXr37m2CgoJMQECA6datm9mwYYPd+6elpZnhw4ebOnXqmICAANOlSxeTlJRk2rZtm7//CRMm5Jffs2ePCQsLM4GBgaZBgwZm7ty5BfYXFhZmqlatajZt2uT0c3U1V9XH1VJTU82YMWNM48aNjY+PjwkODja9e/c2a9assSvr7PNYHuoxIiLCREREuGz/KJnk5GTj4+Nj+vbta5YuXWqysrKKtR316Vz0DXAE15/rMBbgunWF2NhYw9clrvPBBx+YypUrmyeffNL8+9//NleuXCnWdqXx+cLVGD+4P0+8/ukrPaeNemL79EQpKSlm6NChRpIJDw83Bw8etDokAAAAAADwP3E2Y4xxyqxLALCYzWZTbGysBg4caHUo19S6dWulpqbqyJEjVofiUmWlPkqqPNRjZGSkJCk+Pt7iSHC1Cxcu6OLFi6patapD21Gf7q085JTyjOvPM3Hdeq64uDgNGjRIfF3iGqmpqapcubJ8fX0d2s7TP1+UBHnI+bj+nYs26ly0T/eWnZ2tv/3tb5o6dapq1qyp2bNn64EHHrA6LAAAAAAAUFC8t9URAAAAoPgCAgIUEBBgdRgAAAAlUr16datDAADAqdasWaOoqCgdOHBAf/nLXzRx4kQ+twMAAAAA4Ka8rA4AAAAAAAAAAACgLDl69KiGDRumHj16qEmTJtq1a5f++te/MlESAAAAAAA3xmRJACglM2fOlM1m0/bt23X06FHZbDZNnjzZ6rDgIOoRgDORU4Cyh+sWgNXIQ3B3tFF4uuzsbMXExOi2225TYmKiVqxYoYSEBDVp0sTq0AAAAAAAwHXwGG4AKCXjx4/X+PHjrQ4DN4h6BOBM5BSg7OG6BWA18hDcHW0Unmz16tWKiorSr7/+queff14TJ06Uv7+/1WEBAAAAAIBi4s6SAAAAAAAAAAAARdi/f78GDhyonj17qmnTptq9e7emTp3KREkAAAAAAMoYJksCAAAAAAAAAAD8zoULFzR16lS1bNlSO3bs0Ndff62EhATddNNNVocGAAAAAABKgMdwAwAAAAAAAAAAXCUhIUFRUVE6deqUJkyYoBdeeEG+vr5WhwUAAAAAAG4Ad5YEAAAAAAAAAACQlJycrD59+qhfv34KCwvT/v37NXXqVCZKAgAAAADgAbizJACPMmvWLMXHx1sdBv4/6qNs27x5szp27Gh1GHCizZs3KzIy0uowgHJn8+bNksT1B5QRR44csToEFIHPF3C1vOufPhvuiP7J9bKysvTWW29pxowZuv3227V+/XrdfffdVocFAAAAAACciDtLAgBcIiIiQvXr17dbfuTIES1btsyCiAAAuHHLli1z+Ifqjh07MvkcAIAyoH79+oqIiCh03ebNm/P/AQKAZzHGKD4+Xrfddptmz56tN954Q0lJSUyUBAAAAADAA9mMMcbqIADAGWw2m2JjYzVw4ECrQ8E1xMXFadCgQaL7cX95d1Ph7j2egfoEnIPxBuD5GK+6J/IvrMZ4Glajf3KNrVu3KioqSps3b9aIESP02muvqVq1alaHBQAAAAAAXCOeO0sCAAAAAAAAAIBy48SJExoxYoTat28vSUpKStL777/PREkAAAAAADwckyUBAAAAAAAAAIDHy87OVkxMjG699VZ99dVX+uijj7R+/Xq1adPG6tAAAAAAAEAp8LY6AAAAAAAAAAAAAFdavXq1oqOjdfDgQUVFRenFF19UUFCQ1WEBAAAAAIBSxJ0lAQAAAAAAAACAR9q7d6/Cw8PVs2dPNWnSRLt379aMGTOYKAkAAAAAQDnEZEkA5dbHH38sm82W/6pUqVKh5X799Vc99NBDOnfunFJTUwts06ZNG128eNFum9+Xs9lsateunasPySkmTpyo2NjYItddfUwdO3YslZioq8K5Y10Bnqw85BXACuWt/y6OL7/UsNWEAAAgAElEQVT8Us2aNZO3d9EPg7jWOACANchn9shnpYs2WFB2drZmzZqltm3bKigoSDVr1lSfPn2UkJAgY0x+Odqg5zp79qwmTpyoO+64QykpKfruu++UkJCgRo0aWR0aAAAAAACwCJMlAZR777//vowxyszMtFu3bds2tWvXTr169VLlypVVvXp1GWOUlJSUv37MmDF22+WVS0xMVEhIiIwx2rJli8uPxRlGjBihSZMm6aWXXrJbN2PGDBljZIxRhQoVSj026qogd64rwBOVh7wClLby2H9fy/79+/XQQw9p0qRJOnHixDXLXmscAKD0kc8KIp+VPtpgQVlZWbrvvvu0aNEizZo1SydPntSWLVtUqVIlPfTQQ9q1a1d+Wdqg58nNzdXixYvVvHlzLVy4UG+++aaSkpLUtWtXq0MDAAAAAAAWY7IkABTh3LlzevDBB/WHP/xBo0ePtlvv5+enkJAQzZ8/X0uXLrUgQtdo2rSpPv/8c7322muKi4uzOpxioa7KTl0BnsJT8wpQmspr/30tL730kjp37qwffvjhuo+FZBwAuA/ymT3yWemiDdp7/vnntWPHDn377bfq2rWrAgIC1LBhQy1atEh+fn4FytIGPcvatWvVpk0bDR8+XIMHD9b+/fsVHR3NP5ICAAAAAABJTJYEgCK9+eabOn78uF5++eVC1/v7++uTTz6Rl5eXRo4cqeTk5FKO0HVCQ0MVERGhcePGKScnx+pwrou6Kjt1BXgKT84rQGkpz/13Uf7+979r4sSJ13xc7dUYBwDugXxmj3xWumiDBZ04cUIffPCBhgwZolq1ahVYFxgYqIsXL6ply5YFltMGy77Dhw9r2LBhuu+++1SzZk1t27ZNMTExCg4Otjo0AAAAAADgRpgsCQCFMMZo4cKF6tChg+rWrVtkud69e2vy5MnKyMhQZGSkLl68WIpRutbDDz+sI0eOaOXKlVaHck3UVdmpK8DTeHJeAVyN/rtwAQEBDm/DOACwFvmscOSz0kMbtPfFF1/oypUr6tKli0Pb0QbLpqysLE2dOlXNmjXT999/r5UrV2rVqlW6/fbbrQ4NAAAAAAC4ISZLAkAhtm/frhMnTig0NPS6ZadMmaJevXppx44devbZZ4u1/9OnT2vs2LFq2rSpfH19VbVqVfXp00dr167NL7N8+XLZbLb816FDhzRo0CBVqVJFISEhCg8P1/79++32ferUKUVFRalRo0by9fVVjRo1NGDAAG3btq34J0BS69atJUnffPONQ9uVNuqq7NQV4Ik8Na8Arkb/7TyMAwBrkc+ch3xWMrRBe1u3bpUkVa1aVePGjVODBg3k6+urm266SVFRUTpz5kyh29EGyxZjjOLj43X77bdr9uzZmjp1qnbs2KEHHnjA6tAAAAAAAIAbY7IkABRi586dkqT69etft6yXl5c++eQTNWjQQAsXLtQnn3xyzfLHjx9X+/bt9emnnyomJkapqan6z3/+o4oVK6p79+5auHChJKl///4yxqhfv36SpDFjxmjMmDE6evSoYmNj9e9//1uPPPJIgX0fO3ZM7du3V1xcnN577z2dOXNG69at05kzZ9SpUyclJiYW+xzUq1evwLlwV9RV2akrwBN5al4BXI3+23kYBwDWIp85D/msZGiD9o4dOyZJeuKJJ3TixAl99913OnnypKZNm6YPP/xQnTp1Unp6ut12tMGyY8OGDerQoYMeffRRhYeHa9++fZowYYJ8fX2tDg0AAAAAALg5JksCQCHyvlgPDg4uVvnq1asrLi5OPj4+GjlypPbs2VNk2UmTJungwYN69913FR4ersqVK6tZs2b69NNPVadOHUVFRenEiRN22w0fPlydOnVSYGCgevToob59+yopKUmpqakF9v3rr7/qnXfe0QMPPKBKlSqpRYsW+uyzz2SMKfadIySpcuXKstls+efCXVFXZaeuAE/liXkFcDX6b+dhHABYi3zmPOSzkqEN2st7xHhAQIAWLVqkJk2aqEqVKho2bJgmTZqk5ORkvf3223bb0Qbd3/79+xUZGamwsDBVqVJFW7du1dy5cxUSEmJ1aAAAAAAAoIxgsiQAFCLvi3UfH59ib9OxY0fNnDlTWVlZioyM1IULFwot9/nnn0uS+vbtW2C5n5+funfvrgsXLhT6yKf27dsX+LtBgwaSpJSUlPxly5cvl5eXl8LDwwuUrV27tlq0aKEffvhBR44cKfYxeXt7F3kc7oK6+k1ZqCvAk3liXgFcif7buRgHANYhnzkX+cxxtEF7gYGBkqQePXrI29u7wLoHH3xQUtGP2qYNuqe0tDRNnDhRLVu21E8//aS4uDh9++23atWqldWhAQAAAACAMobJkgBQCH9/f0lSdna2Q9tFRUVp0KBB2rlzp0aPHm23/tKlS0pPT5e/v7+CgoLs1teqVUvSb4+6+r3f3yUi79FCubm5Bfadm5ur4OBg2Wy2Aq+tW7dKkvbt21fs48nJyVFAQECxy1uBuvpNWagrwNN5Wl4BXIn+27kYBwDWIZ85F/nMcbRBe40aNZKkQu82WLNmTUnSqVOnCt2WNuhesrOz9cEHH+jWW2/VwoULNWPGDO3cuVORkZFWhwYAAAAAAMoo7+sXAYDyp06dOpKk9PR0h7dduHChtm3bpg8//DD/R4s8fn5+Cg4OVnp6ujIyMux+cMh7fFXt2rUdfl8/Pz9VqVJFmZmZunDhgt3dExx17tw5GWPyz4W7oq7KTl0B5YGn5BXA1ei/nYdxAGAt8pnzkM9KhjZor0uXLnrnnXcKfZz2yZMnJf1vsufVaIPuZfXq1XruueeUnJysP//5z3rllVeK/bh5AAAAAACAonBnSQAoRMuWLSWpRI98qlSpkv75z38qMDBQ7733nt36hx9+WJK0cuXKAssvXbqkNWvWKCAgQL179y5B1NKAAQOUk5OjjRs32q1744031LBhQ+Xk5BRrX0ePHpX0v3PhrqirslNXQHngKXkFcDX6b+dhHABYi3zmPOSzkqEN2nvggQdUr149ff311/mPKc+TkJAgSerfv7/ddrRB97B792498MAD6tmzpxo1aqSff/5ZMTExTJQEAAAAAABOwWRJAChEaGioatasqe3bt5do+xYtWmj+/PmFrps+fboaN26sMWPGaMWKFcrIyFBycrIeffRRHTt2TDExMYXe4aA4pk+frqZNm+qJJ57QV199pfT0dJ05c0bz58/XK6+8opkzZxa4Y8Njjz0mm82mgwcP2u1r27ZtkqRevXqVKJbSQl2VnboCyouyklcAK9F/Ow/jAMBa5DPnIZ+VDG3Qnp+fnxYuXKjTp09r8ODB2rdvn9LS0rRkyRJNnz5dHTp0UFRUlN12tEFrpaSkaOTIkbrjjjuUmpqq//u//1NCQoKaNGlidWgAAAAAAMCTGADwEJJMbGxsscsvWbLESDLvv/9+oetfeOEF4+3tbY4ePZq/7NSpU0ZSgVfbtm2LfI+nn37ahISE2C1PTU01Y8aMMY0bNzY+Pj4mODjY9O7d26xZsya/TGJiot17vfjii/nHevWrb9+++dudPn3ajB071jRp0sT4+PiYGjVqmF69eplVq1bZxXHfffeZSpUqmZycHLt1kZGRpl69euby5cuFHluFChVMhw4dijz2osTGxhpHux/qypq6ioiIMBEREQ5vB/dEfd44T8srKBlHxxsoWnnvvwuTkJBg9955rwULFhS6zfXGAXBcScarcD13zr/kM3uemM/ceTxNGyzcpk2bTO/evU1wcLDx9fU1zZs3N1OnTjXnz58vtLy7t0FP7Z+ysrLMjBkzTFBQkGnQoIH5xz/+YXJzc60OCwAAAAAAeKY4mzHGFG9aJQC4N5vNptjYWA0cOLBY5T/++GMNHTpU77//vv785z/brU9PT1eLFi0UHh6uefPmOTtcy6Wlpalu3boaMmSIFixYUGDd9u3b1aZNG3366acaPHhwodt7e3urXbt22rx5s0PvGxcXp0GDBsmR7oe6sqauIiMjJUnx8fElCxxuhfoEnMPR8QaKVp77b2cpzjgAjivJeBWu5875l3x248pCPnPn8TRt8MaVhTboaf2TMUbLli3T888/r9OnT2vcuHGaOHGi/P39rQ4NAAAAAAB4rngeww0ARQgODlZCQoKWLVumuXPnWh2OUxljFBUVpcqVK2vatGkF1h04cEADBgzQpEmT3PYHgt+jrspOXQEAkKe89t/OwjgAcB/ksxtDPrtxtMEbQxssfWvXrlXbtm01ePBgde3aVb/88oumTp3KREkAAAAAAOByTJYEUO49/fTTstlsqlSpkt26Nm3aaMuWLfrqq6907tw5C6JzjRMnTujAgQNas2aNateuXWDd/Pnz9dprr+m1116z227ixImy2Wyy2Wy6cuVKaYWbj7oqO3UFAEBxlMf+21muNQ4AUPrIZyVHPnMO2mDJ0QZLz549e9SvXz/dd999qlOnjn766SctXrxYtWrVsjo0AAAAAABQTvAYbgAew50fy4b/8bTHRnkyd37MHBxHfQLOwXgD8HyMV90T+RdWYzwNq5Xl/un48eP661//qoULF+r222/XzJkz1bNnT6vDAgAAAAAA5U+8t9URAAAAAAAAAAAAz5KVlaU5c+bo9ddfV1BQkObOnasnn3xSFSpUsDo0AAAAAABQTjFZEgAAAAAAAAAAOEV2drY++ugjTZkyRZmZmRo3bpwmTJiggIAAq0MDAAAAAADlHJMlAQAAAAAAAADADUtISNC4ceN06NAh/elPf9K0adNUs2ZNq8MCAAAAAACQJHlZHQAAAAAAAAAAACi7Nm/erK5du6pfv35q3bq1fv75Z82fP5+JkgAAAAAAwK0wWRIAAAAAAAAAADhsz549GjhwoDp16iQ/Pz9t2bJFcXFxatq0qdWhAQAAAAAA2GGyJAAAAAAAAAAAKLaUlBSNHDlSrVq10u7duxUXF6dVq1bpzjvvtDo0AAAAAACAItmMMcbqIADAGWw2m9UhAB4nIiJC8fHxVocBJ4iMjNSyZcusDgMAgDKDr0vcC5/3AOA3VvdPmZmZmjt3rl577TVVqVJFkydP1pNPPqkKFSpYGhcAAAAAAEAxxHtbHQEAOEtsbKzVIQAep0GDBlaHACcZO3asIiMjrQ4DAACgRPi8BwDWys7O1kcffaSXX35Zly9f1osvvqjo6Gj5+/tbHRoAAAAAAECxcWdJAAAAAAAAAABgxxij2NhYTZ48WUePHtWzzz6rSZMmqWrVqlaHBgAAAAAA4CjuLAkAAAAAAAAAAApavXq1Jk6cqB9//FF/+MMftGrVKjVu3NjqsAAAAAAAAErMy+oAAAAAAAAAAACAe9i4caO6deumnj17qm7dutq2bZvi4uKYKAkAAAAAAMo8JksCAAAAAAAAAFDO7dq1SwMHDlRYWJhycnK0bt06ffHFF2rVqpXVoQEAAAAAADgFkyUBAAAAAAAAACinfv31V40cOVKhoaHas2ePYmNj8+8uCQAAAAAA4Em8rQ4AAAAAAAAAAACUrqNHj+rNN9/U/Pnz1bhxYy1dulQRERGy2WxWhwYAAAAAAOASTJYEAAAAAAAAAKCcOHPmjN58803Nnj1b1atX1+zZs/XEE0/I25ufCwAAAAAAgGfj2w8AAAAAAAAAADxcVlaW5syZoxkzZsjb21tTpkxRdHS0/P39rQ4NAAAAAACgVDBZEgAAAAAAAAAAD3X58mUtWrRIU6ZMUWZmpp555hm98MILqly5stWhAQAAAAAAlComSwIAAAAAAAAA4GFyc3P1z3/+UxMnTtSRI0f0+OOPa9q0aapZs6bVoQEAAAAAAFjCy+oAAAAAAAAAAACAc+Tm5iouLk633367hgwZop49e+rAgQOaP38+EyUBAAAAAEC5xmRJAAAAAAAAAADKuNzcXMXGxio0NFSPPPKI2rZtq927d2vevHmqV6+e1eEBAAAAAABYjsmSAAAAAAAAAACUUbm5uYqPj1fLli316KOPqlGjRtqyZYs++eQT3XzzzVaHBwAAAAAA4DaYLAkAAAAAAAAAQBmTN0myRYsWGjx4sFq2bKldu3YpISFBbdq0sTo8AAAAAAAAt8NkSQAAAAAAAAAAyojs7GwtXrxYt912mwYPHqxWrVpp9+7diouLU/Pmza0ODwAAAAAAwG15Wx0AAAAAAAAAAAC4tuzsbC1dulSvvvqqDh06pMGDByshIUHNmjWzOjQAAAAAAIAygcmSAAAAAAAAAAC4qcuXL+uzzz7TtGnT9Ouvv2rw4MH68ssvdfPNN1sdGgAAAAAAQJnCZEkAAAAAAAAAANzMuXPn9MEHHygmJkanTp3Sk08+qQkTJqhhw4ZWhwYAAAAAAFAmMVkSAAAAAAAAAAA3cfjwYcXExGjBggUyxmj48OEaN26c6tWrZ3VoAAAAAAAAZRqTJQEAAAAAAAAAsNj27dv19ttv67PPPlNISIiee+45RUVFqVq1alaHBgAAAAAA4BGYLAkAAAAAAAAAgEU2bNigN954QytXrlSrVq00Z84cDRs2TP7+/laHBgAAAAAA4FG8rA4AAAAAAAAAAIDy5PLly1q8eLFatWqlsLAwnT17Vv/617+0bds2PfXUU0yUBAAAAAAAcAHuLAkAAAAAAAAAQCk4d+6cPvroI82cOVMnTpxQ//799eGHH6p9+/ZWhwYAAAAAAODxbMYYY3UQAOAMkZGRVocAeJxOnTpp7NixVocBJ3jnnXeUmJhodRgAAJQZ8fHxVofg0RITE/XOO+9YHQYAlKrc3FytXLlSubm5atKkiW6++WYFBAS47P3Gjh2rTp06uWz/AAAAAAAAZUw8j+EG4DGWLVumI0eOWB2GZcr78cP5Nm/ezOQ6D5KYmKjNmzdbHQaAMobxBcqjI0eOaNmyZVaH4fEOHz7MeYbHIo+gKF5eXrrrrrvUt29ftWrVyqUTJZctW6bDhw+7bP8AAAAAAABlEY/hBuBRnnvuOQ0cONDqMCxhs9nK9fHD+bhbq+fp2LEjd8kC4BDGFyiP4uLiNGjQIKvDKDcYm8AT5eUR2jesZLPZrA4BAAAAAADA7XBnSQAAAAAAAAAAAAAAAAAA4NGYLAkAAAAAAAAAAAAAAAAAADwakyUBAAAAAAAAAAAAAAAAAIBHY7IkAAAAAAAAAAAAAAAAAADwaEyWBAAUS6VKlWSz2Qq8Zs6caXVYJeJJxwK4g9jYWLVu3VoBAQH519TOnTutDgsod+bNm2fXv/3+1adPH5fHceXKFc2bN0+dO3dWcHCwfHx8VLduXT3wwAOaM2eODh06lF925syZ+bHVr1/f5bGVti1btujxxx9Xo0aN5O/vrypVqqh9+/Z65ZVXlJaWdsP7d/cxjbPq97PPPsvfj7+/vxMjBDxfaedZT8nrDz30kGw2m1599dVSe093z+lWcYfz4intGgAAAAAAAEyWBAAUU2Zmpn788UdJUr9+/WSM0fjx4y2OqmQ86VgAq23cuFGPPPKIevXqpVOnTumXX37hB0SUGZmZmbrlllsUHh5udSilpnPnzi5/j6FDh+qZZ55R//79tWvXLmVkZGj9+vVq06aNoqKi1K5du/yy48ePlzFGoaGhdvu50fqxun4nTZqkjh07qmrVqlqxYoXS0tJ08OBBTZkyRZ9//rmaNWumjRs33tB7uPuY5lr164jBgwfLGKPu3bs7KTKUVVZf12WRs65Dd30/V1i8eLESEhJK/X3dPadbxR3Oiye0awAAAAAAAPyGyZIAAI9UqVIldenSxeowgDLvetdSfHy8jDGKjo5WpUqV1LRpUx0+fFgtW7YsxSg9B7nL+a51To0xys3NVW5urkPbubO8SQS/fyUnJ8vPz08jRoxw6fsnJSVp6dKlevLJJ/WXv/xF9evXl7+/v5o2barXXntNTz/9dLH3da36KY3tb8Srr76qGTNmaO7cuZo1a5Zatmwpf39/Va1aVeHh4dq4caMaNmyoPn36aM+ePaUeH1BWOfO6Lqt5Hq6VkpKiMWPGaOjQoVaHcsNo4wAAAAAAAIA9b6sDAAAAQNl1+PBhSVJISIjFkQCOCwoK0v79+60Ow2luvvlmhYWFFbrub3/7m/r376/atWu7NIZdu3ZJkm699dZC1w8cOFCxsbHF2teN1o9V9fvLL7/or3/9q+68806NHDmy0DIVK1bUrFmz1LVrV0VFRenbb78t5SiBssnT8jbcz4gRIxQZGamwsDAtWbLE6nAAAAAAAAAAOBl3lgQAAECJXblyxeoQAPx/PXr00Lhx4+yWZ2Rk6B//+IdGjRrl8hhq1aolSVq1alWh67t166bU1FSXx2GlefPmKScnR5GRkdcsFxYWprp162rVqlU6cOBAKUUHACjKhx9+qF27dmnmzJlWhwIAAAAAAADARZgsCQDFdPr0aY0dO1ZNmzaVn5+f6tevrx49emjRokW6cOGCJCknJ0exsbHq2bOnateurYCAALVq1UoxMTGWPAKyNCxfvlw2my3/dejQIQ0aNEhVqlRRSEiIwsPDC9z9ZebMmfll69evr6SkJHXv3l1BQUGqWLGi7r33Xm3cuDG//Kuvvppf/upHiH399df5y6tXr263/6ysLG3cuDG/jLd3yW+mXJx6TUtLK3AebDabXn311fztr14eERGRv+9Tp04pKipKjRo1kq+vr2rUqKEBAwZo27ZtRZ7jvXv3auDAgQoJCclf5ukTT1D6rnct5bXLf/3rX5KkgIAA2Ww2dezYsVTiuzon+/r6qmrVqurTp4/Wrl1rdwzFzTd5nHldFrdfKG7uKs5xFze2S5cu6eWXX1bz5s1VsWJFVatWTQ8++KC++OKLUp8Eu2fPHvXv31/BwcGqWLGi7rrrLq1YsUI9evTIj3n48OH55YtTR8Vtw3mvixcvFms7R2L4/Xv8+uuvGjRokIKCghQSEqKhQ4fq7NmzOnTokB588EEFBQWpTp06GjFihDIyMpx2fj/66CM1bNhQXbt2ddo+ixIWFqbatWvrm2++UZ8+fbRu3boSjYGKqp881xuXFbW9o+OWPI600e+++06SFBoaet3jzCuzfv36EucsRxQ3J7mq7e7Zs0d9+/bNP49FHdPV5zswMFBhYWHasGHDDR0Tyj5nXdfOzPN5XNGPldZngOKMLUpS9vc+/vhju89Lo0ePLtFnPVfkySNHjmjcuHH68MMPFRQUVKJ9uApt3HG0awAAAAAAABTJAICHkGRiY2Ndsu9jx46Zxo0bm9q1a5uEhARz7tw5c/z4cTNt2jQjycyaNcsYY0xCQoKRZF5//XVz5swZc+rUKTN79mzj5eVlxo8f75LY8rjy+PP8+OOPRpLp16+f3bp+/frlr9u0aZPJzMw0q1atMgEBAaZ9+/Z25UNDQ01gYKDp1KlTfvmkpCRzxx13GF9fX7Nu3boC5QMDA83dd99tt5+2bduakJAQu+VFlS/OsfyeI/Xau3dv4+XlZX755Re7/XTq1Ml88skn+X+npKSYm266ydSqVcusXLnSZGRkmJ07d5pu3boZf39/s2nTpgLb553jbt26mbVr15qsrCyzefNmU6FCBXPq1KnrHoejIiIiTEREhNP3C2uUtD6vdy3ltcsLFy7cSHgOycvJtWrVMgkJCSY9Pd3s3bvXDBgwwNhsNrNgwYIC5R3JN86+Lh3tF651vh097uvFNnz4cBMcHGy+/fZbc/78eXP8+HEzfvx4I8msXbu2hLXjuH379pkqVaqYevXqmW+//Tb/nPfo0cPUqFHD+Pn5FSjvaB2VtA1fa7uStpMBAwaYLVu2mMzMTLN48WIjyfTp08f069fP/PjjjyYjI8PMmzfPSDLPPfecI6exSLm5uaZZs2bmvffeK9H2JRlfrF+/3jRo0MBIMpJMzZo1zZAhQ8ynn35qsrKyCt0mNDTU1KtXz255YfVT3HFZUdtfvbw44xZH22idOnWMJPOf//znuufqsccey88RV58LR8ZIrhrTXH2ebrTthoaGmuDgYHPvvfeaDRs2mIyMjCKPqbDzvWPHDtOrVy/TqFEju/PtivF3bGys4esS1yvpeXbGdW2M8/K8q/sxZ30GKCzPOjK2KMn46+r3y8nJMWPHjjU9e/Y0Z86cKVDW0c96jubJ4ujdu7cZNWpU/t9Lliwxksy0adMc3pcxJW/fzvzM7Ult3JG+jnb9P6XxPREAAAAAAEAZE8e3/wA8hiu/BH788ceL3P/9999fYLLkPffcY1fmscceMz4+PiY9Pd0l8RnjPpMlExISCiyPiIgwkux+yAsNDTWSzI8//lhg+Y4dO4wkExoaWmC51ZMli1uv33zzjZFU4Ic2Y4zZsGGDqVevnrl8+XL+sj/+8Y9GUoEJlMb89oONn5+fadu2bYHleef4yy+/vG7MzsBkSc/iSZMl83Ly0qVLCyy/ePGiqVu3rgkICDDHjx/PX+5IvnH2delov3Ct8+3ocV8vtsaNG5vOnTvbLW/WrFmpTpaMjIw0ksyyZcsKLD958qSpWLGi3Q/wjtaRKyZLlrSdrFy5ssDyFi1aGEnmu+++K7C8cePG5tZbby0yZkesXLnSBAUFmYyMjBJtX9LxxcWLF80//vEP069fPxMUFJQ/cTIkJMSuDRvj2GTJ4o7Litr+6uXFGbc42kbzJkt+//33hZ2aAvImS06fPj1/maNjJFeNaYxxXtvNO6bExMTrHlNR5/vo0aPGz8+v0MmSzh5/M1mydLhqsmRxP484K8+7uh9z1meAwvKsI2OLkoy/8t7v7Nmzpnfv3iY6Otrk5OTYxVaSSWWO5Mnr+eCDD0yTJk1MZmZm/jJ3nixZHtu4I30d7fp/mCwJAAAAAABgJ47HcANAMXz++eeSpD59+tit++qrrzRmzBhJUnh4eKGPagoNDVV2drZ27drl2kDdQPv27Qv83aBBA0lSSkqKXdnAwEC1bt26wLJWrVqpbt262r59u44dOy8jpDsAACAASURBVOa6QB3gSL326tVLrVq10qJFi3T69On85W+99ZaeffZZ+fj45C9bvny5vLy8FB4eXmC/tWvXVosWLfTDDz/oyJEjdu971113OeOwgDIrLyf37du3wHI/Pz91795dFy5c0DfffFNgXXHzjbOvS2f2CyU57mvFdv/992vTpk166qmntHnz5vxHb+/du1f33HNPseO6UV9//bUkqXfv3gWW16hRQ82bN7crX9I6cqaSxtCuXbsCf9etW7fQ5fXq1Su03yyJ2bNna9iwYapUqZJT9ldcfn5+GjZsmJYvX64zZ85ozZo1Gjx4sE6fPq3HHntMP/74Y4n3XdxxWXEUZ9ziaBvNq9erxwFFySuTt00eV42RSpqTnNF2/f391aFDhwLLCjumos533bp11axZM6cdEzyXI59HiuJIni+tfswVnwEcGVuUdByyd+9edejQQV5eXnr33XdVoUIFp8TurDz53//+V88//7w+/PBDBQYGOiU2V6ONXxvtGgAAAAAAANfCZEkAuI5Lly4pPT1d/v7+CgoKumbZ9PR0vfzyy2rVqpWqVq0qm80mm82m559/XpJ0/vz50gjZUsHBwQX+9vX1lSTl5ubala1SpUqh+6hZs6Yk6eTJk06OrmQcrdcxY8bo/Pnzeu+99yRJycnJ+ve//62nnnoqv0xeu8rNzVVwcHD+PvNeW7dulSTt27fPLp6y8iMe4ArXy8m1atWSJB0/frzA8uLkG1dcl87qF0p63NeKbe7cuVq8eLEOHDig7t27q3Llyrr//vvzfzQuDZcuXVJGRob8/f0LncxXtWpVu/IlrSNnxlzSGCpXrlzgby8vL1WoUEEVK1YssLxChQqF9puOSk5O1rfffqtRo0bd8L5uhLe3t+677z4tXbpUEyZM0JUrV7Rs2bIS7cuRcVlxXG/c4mgblaRu3bpJkrZt23bd99++fbsk2U1QdtUYqaQ5yRltNyQkRDabzW757/Pwtc53XllnHBM8lyOfRwrjSJ4vzX7M2Z8BHBlblHQccvbsWfXv31/169fXV199pY8//thp8TsrTyYkJCg9PV333HNPgboYOnSoJOmll17KX/bLL784J/gbRBu//rGV93YNAAAAAACAojFZEgCuw8/PT8HBwbp48aIyMjKuWfbBBx/UtGnTNGLECCUnJys3N1fGGM2aNUuSZIwpjZDLjNOnTxd6TvJ+ALj6B3EvLy9dvnzZrmxaWlqh+y7sx/iScrRehwwZolq1amnOnDm6dOmS3n77bf3xj38s8EOSn5+fqlSpIm9vb2VnZ8sYU+jr3nvvddpxACXhzGvJGa6Xk0+cOCHptzvXXK04+cYV16Wj+aOo813S476WvIkAq1evVlpampYvXy5jjAYMGKB33nmn2Pu5EX5+fgoKCtLFixeVmZlpt/73PwiXpI5K2oavVRdlJX/Pnj1bXbt21e23315q77lx48b8yQWFyTsvZ8+eLdH+HRmXOYOjbVSSRo4cKW9vb8XHx19z3xs2bFBKSooefPBBNWzYsMA6R8ZIjrByrJqenl7o8t/n4Wud7zNnztgtY/yNknJGni+NfsxVHBlblHQc4u3trdWrV+tf//qXWrVqpREjRigpKclue0c/60nOy5PPPPNMoXWwZMkSSdK0adPyl918883F2qe7KI9tnHYNAAAAAACA62GyJAAUw8MPPyxJ+vLLL+3Wtfl/7d17dBTl/cfxz4RcyI0A4RYuaqBCW2qDAuVSUBEkx4IgaS5UwKLFg1cI1HMERe2xKlURoRUBodaioJvQA6cQ0VK8tGCQoAfwUojloiYQICCBIIRLnt8f/rIlbhKyYXdnd/b9Omf/YOaZme/M88z3ebL7MHP11Zo2bZrOnz+vTZs2qUOHDpoyZYratm3r/nHi1KlTAY03VJw+fdrjR4VPPvlE+/fvV1pamlJSUtzLU1JSVFpaWqtsWVmZvvrqqzr3HRcXV+uHiR49euill17yKr7IyEh99tlnXtdrTEyM7rnnHh06dEjPPfecli9frqlTp3qUy8jI0Llz57Rp0yaPdU8//bQuu+wynTt3zquYAV/zxb3kazU5uaCgoNbyqqoqbdiwQbGxsR6vCWxsvvHlfdmUfqGh692U825Iy5YttXPnTklSVFSUbrzxRq1evVqWZXkcw59qXqVc84rHGmVlZSouLvYo720dNbUNN7RdKOTv48ePa9myZbr33nsDelxjjA4dOqTNmzfXuX7r1q2Svhs/NVVjxmW+5G0b7d69ux577DF9/PHHWrx4cZ37/Pbbb5Wbm6vk5GTNmzfPY703Y6TGaOqYxpcqKyvdT9KsUdc51Xe9y8vLtWvXrlrLGH/jUvgqz/u7H/Mnb8YWTRmHJCYmqlOnTkpISNDf//53JSQk6JZbbvF4lbC3f+tJvs+TThRubTwyMlI7d+6kXQMAAAAAAKBBTJYEgEaYPXu2UlNTNW3aNBUUFOjEiRMqKSnRPffcowMHDmjatGlq1qyZrr/+epWVlenZZ59VeXm5Tp06pXfffVeLFi2y+xSCUlJSkh566CEVFhbq5MmT2rp1q8aPH6/o6GjNnz+/Vtnhw4dr//79euGFF1RZWandu3dr6tSp9T5Z4ZprrlFxcbG+/vprFRYWas+ePRo8eLDXMTa1Xu+55x7FxsZq1qxZGjZsWJ1PIZk9e7a6deumO+64Q+vWrVNFRYWOHj2qxYsX6/HHH9ecOXMUGRnpdcyALzXlXtq3b5+aNWtW61V7vlSTk3Nzc7V27VqdOHFCxcXFuvXWW3XgwAHNnz/f48l2jc03vrwvm5I/GrreTTnvi7nrrru0Y8cOVVVV6dChQ3rmmWdkjNENN9zg1X4ao7528dRTT6l169bKzc3V+vXrVVlZqU8//VS33357nU/K9LaOmtofXKwugj1/v/zyy0pISHBPAgi07OxsrVixQvv371dVVZX27dunOXPm6PHHH1fv3r112223NXnfjRmX+ZK3bVSSZs2apZkzZ+ree+/V9OnT9dlnn6mqqkrHjh3T2rVrNWjQIJWVlentt99W165dPbb3ZozUWHaPVePj43Xffffpww8/bPCc6rren3/+ucaPH+/xCli7zwmhzVd53t/9mD95M7a41HHIFVdcoZUrV+rw4cPKyMhQVVWVe523f+tJ/smTThOubZx2DQAAAAAAgAYZAHAIScblcvlt/+Xl5SY3N9ekpqaaqKgok5KSYsaOHWuKi4vdZQ4fPmwmT55sunTpYqKiokz79u3NxIkTzYwZM4wkI8n07t3bL/H5+/zj4+Pd51DzefbZZ01hYaHH8ocfftgd04WfESNGuPeXlpZmOnXqZD7//HOTnp5uEhMTTWxsrLnuuuvMxo0bPY5/7NgxM2nSJJOSkmJiY2PNoEGDTFFRkendu7d7/w8++KC7/M6dO83gwYNNfHy86dKli1mwYEGD51Lf5z//+U+T6/XOO+80ksz7779f73U9cuSImT59uunatauJiooybdu2NcOHDzfr1693l6nrGgeiC8/MzDSZmZl+Pw4Co6n1Wd+9tGrVqjrbZWFhodm7d6+JiIgwlmWZHTt2+PpUjDGeOTkpKcmkp6ebDRs2eJT1Nt/48r70Nn80lLsae96NjW3btm1m8uTJ5kc/+pGJi4szrVu3Nv379zdLliwx1dXVjasILzTULnbt2mVuueUW06JFCxMXF2cGDhxo3n//fXP99debuLg4j301po5qeNOGx40bd9HtvImhvj6yqKjIY/ns2bPNv//9b4/ljz32mNfXurq62vzgBz8wjz76qNfbfp+344vz58+bjRs3mgceeMD069fPdOzY0URGRprExETTp08f89RTT5mTJ0+6yz/77LN1XqOL1c/FxmX1bd/UcYu3bbRGUVGR+fWvf20uv/xyEx0d7b4OTzzxhDl27Fid23iTs/w1pvFV272wfjt16mS2bNlihgwZYhISEhrMwxde79jYWNO3b1+zdu1aM3ToUPf+fvOb3xhj/DP+drlcARlrhTtvr7Ov72tf5Pka/ujHfPU3QH15toY3Y6rGlH399dc9jvf888/XeT41ed3bv/W8Hdt5Y/LkyXVe9/T0dK/205Q84uu/uZ3Sxr3t64yhXdfwdhwHAAAAAAAQBvIsY4wRADiAZVlyuVzKzs62OxRbhNr59+rVS+Xl5SopKbE7FL/5y1/+ogULFrhfORpqsrKyJEn5+fk2RwJfCOf6DId841Q//OEPderUKX355Zd2hxK2Qm18EWj+aKPkLPvl5eUpJydHfF3iX+FwnenH/CMU8mQ4tG+JNu5L/mjXjOMAAAAAAAA85PMabgAA/GTRokWaPn263WEAQFArKytT69atdfbs2VrL9+3bp927d/vlleCAN2ijABpCjoDT0cYBAAAAAADgJEyWBADAR5YuXaoxY8aosrJSixYt0jfffMMTHACgEb755htNnjxZX3/9tb799ltt2bJFOTk5atGihR555BG7wwNoowAaRI6A09HGAQAAAAAA4BRMlgQABNScOXNkWZa2b9+u0tJSWZalWbNm2R2Wz6xevVqtWrXSwoUL9cYbbygyMtLukICgYFmWTz6/+93vGn1Mp+ebQAhEvXXo0EH//Oc/dezYMV177bVq1aqVRo0apSuvvFJbtmxR165dA3fCQcrX9wa8E6g2Ss4CQpOd/Vi49Q/e5slwuz7+wljNv+j/AQAAAAAAAssyxhi7gwAAX7AsSy6XK2yf5Bfu5w/fy8rKkiTl5+fbHAl8gfoE0BSMLxCO8vLylJOTI74u8S+uM5yM9o1gwDgOAAAAAADAQz5PlgQAAAAAAAAAAAAAAAAAAI7GZEkAAAAAAAAAAAAAAAAAAOBoTJYEAAAAAAAAAAAAAAAAAACOxmRJAAAAAAAAAAAAAAAAAADgaEyWBAAAAAAAAAAAAAAAAAAAjhZpdwAA4Es5OTnKycmxOwzbhPv5w/cyMzPtDgE+tHLlSlmWZXcYAEIM4wsA/sTYBE5G+wYAAAAAAACCC5MlAThKbm6uBgwYYHcY0HcTK6iP0Pb888/bHQJ8rH///po2bZrdYQBhpyafcv8BoaGwsFDz5s2zO4yw4XK57A4BqIV+G07Bf3YBAAAAAADwxGRJAI4yYMAAZWdn2x0G9N2X8tRHaMvPz7c7BPhY586duScBG9TkU+4/IHQwWTJwyI0INvTbcAomSwIAAAAAAHiKsDsAAAAAAAAAAAAAAAAAAAAAf2KyJAAAAAAAAAAAAAAAAAAAcDQmSwIAAAAAAAAAAAAAAAAAAEdjsiQAAAAAAAAAAAAAAAAAAHA0JksCAAAAAAAAAAAAAAAAAABHY7IkADRCZWWlrrzySo0cOdLuUAAAQYK+AQAANISxAgAAAAAAAAAEFyZLAkAjGGNUXV2t6upqu0O5qISEBA0aNMjuMEKe3dfR7uMDuDj6BsDZ7L5v7D4+gEvHWAHhyu72ZPfxAQAAAAAAELwi7Q4AAEJBYmKidu/ebXcYAKDDhw9r7dq1ysjIUFJSkt3hhDX6BgAAvvPKK69o4MCB6t69u92hBBXGCgAAAAAAAAAQXHiyJAAAQAipqKjQHXfcobZt22r06NFauXKlTp06ZXdYAAAgjM2dO1c9evRQr169NHfuXJWWltodEgAAAAAAAAAAHpgsCQAXsXr1almW5f6cPn26zuX79u1TTk6OWrZsqeTkZI0cObLWU0TmzJnjLtu5c2cVFRVp6NChSkxMVFxcnIYMGaJNmza5yz/xxBPu8he+Puqtt95yL2/Tpo3H/k+ePKlNmza5y0RGOvchwkeOHNH06dPVrVs3RUdHq1WrVrrpppv07rvvusv4+jpSjwgWZ8+eVUFBgbKzs9WmTRtNmDBBb731ls6dO2d3aGGBvgEIDowFgOBw/vx5SdKOHTv04IMPqkuXLho0aJCWLFmio0eP2hydPRgrINjRhwIAAAAAACAsGQBwCEnG5XL5bf+jR482ksypU6fqXD569GjzwQcfmMrKSrN+/XoTGxtr+vbt67GftLQ0Ex8fbwYMGOAuX1RUZH7605+a6Oho895779UqHx8fb37+85977Kd3794mOTnZY3l95WsMGTLEtG7d2hQWFjb21JvE3/Vx4MABk5qaatq3b2/WrFljKioqzK5du0xGRoaxLMssWbKkVnlfX8dwqMfMzEyTmZnpt/2jaYqLi40kj09kZKSRZBITE82ECRPM+vXrTXV1tXs76tM/6BvQGNx//sFYgPvWX1wul+HrEu/8+Mc/9hibWJZlmjVrZiIiIsyQIUPMX//6V3P8+HH3NuFynRkrhJ5w6LfpQ8OjPfv7exkAAAAAAIAQlMeTJQHARyZNmqQBAwYoPj5ew4YN04gRI1RUVKTy8nKPsidPntSLL77oLt+nTx+99tprOnPmjKZOnerXOKurq2WMkTHGr8fxt5kzZ2rv3r2aN2+eRo4cqRYtWqh79+5asWKFUlJSNGXKFB08eNCvMVCPCCY1T5Q8ceKEXC6XbrzxRnXo0EFTp07Vxo0bbY4ufNE3AP7DWID7FsHNGKPz58+rurpa//rXvzRx4kS1adNGI0aMUH5+Pk/D/n+MFWAH+lDaMwAAAAAAQLjiHSQA4CN9+/at9e8uXbpIkvbv31/rtVCSFB8fr169etVadtVVV6ljx47avn27Dhw4oJSUFL/E+d577/llv4G2atUqSdKIESNqLY+JidHQoUP16quv6u2339Ztt93mtxjCoR6Li4uVnZ0dkGOhcSorKy9a5syZM5KkQ4cOaeHChfrjH/+ohIQEXX755dqzZ4+6du3q7zDx/+gbAP9hLPCeX/aL/2EM1HhlZWUNrq95TfeZM2f0j3/8Q2+++aZiY2MlSe+//74GDx6siIjw/P+8jBVgB/rQ9/yyXwAAAAAAAAS/8PwmGgD8ICkpqda/o6OjJX33xILva9myZZ37aNeunaTvJjihflVVVaqoqFDz5s2VmJjosb59+/aSLv6j7aWiHgFcDH0D4B+MBQA4BWMFBBp9KAAAAAAAAMIZT5YEABscOXJExhhZllVrec2PATU/DkhSRESE+ylxFzp27Fid+/7+Pp0oJiZGSUlJqqio0IkTJzx+4Kl5XViHDh3cy/xxHcOhHrt37668vDy7w8AFvvjiC61bt67BMtHR0Tpz5ozatWunsWPHKisrS/Pnz5cknioZxMIhpwC+wlgAgcAYqPF69uypo0eP1ru+WbNmqq6uVlRUlIYNG6aJEyfq7NmzGjdunK677roARhrayDnwBfpQAAAAAAAAhDOeLAkANjh9+rSKiopqLfvkk0+0f/9+paWl1XrVVEpKikpLS2uVLSsr01dffVXnvuPi4mr9iNCjRw+99NJLPow+OIwZM0aSVFBQUGt5VVWVNmzYoNjYWKWnp7uX++M6Uo8IJpGR3/0fmMTEROXk5Gj9+vUqKyvT/PnzNWjQIJujQ2OQUwDvMBYAgptlWWrWrJkiIiJ07bXX6pVXXlF5ebkKCgqUlZXlHrug8cg58BX6UAAAAAAAAIQrJksCgA2SkpL00EMPqbCwUCdPntTWrVs1fvx4RUdHu5/+VmP48OHav3+/XnjhBVVWVmr37t2aOnVqracsXOiaa65RcXGxvv76axUWFmrPnj0aPHiwe/0NN9yg5ORkbd682a/n6G+zZ89WamqqcnNztXbtWp04cULFxcW69dZbdeDAAc2fP9/9+jDJ99dRoh5hv2bNmsmyLMXFxWns2LFat26djh49qmXLlmnYsGE8USXEkFMA7zAW4L5F8LEsS5GRkbIsSwMHDtTChQt1+PBhvfPOO7rtttvqfOUvGo+cA1+hD6U9AwAAAAAAhC0DAA4hybhcLp/vd9WqVUZSrc+4ceNMYWGhx/KHH37YHcuFnxEjRrj3l5aWZjp16mQ+//xzk56ebhITE01sbKy57rrrzMaNGz2Of+zYMTNp0iSTkpJiYmNjzaBBg0xRUZHp3bu3e/8PPvigu/zOnTvN4MGDTXx8vOnSpYtZsGBBrf0NHjzYtGrVynzwwQc+v1YX8ld9XKi8vNzk5uaa1NRUExUVZZKSkkx6errZsGGDR1lfX8dwqMfMzEyTmZnpt/2jaYqLi40kExUVZUaNGmXy8/PNt99+e9HtqE/fom+AN7j//IexAPetP7hcLsPXJd656qqrjCSTlpZmnnvuOVNSUnLRbZx+nRkrhK5w6bfpQ53fngPxvQwAAAAAAECIybOMMcYnsy4BwGaWZcnlcik7O9vuUBrUq1cvlZeXq6SkxO5Q/CpU6qOpwqEes7KyJEn5+fk2R4ILHTp0SAUFBcrIyFBSUlKjt6M+g1s45JRwxv3nTNy3zpWXl6ecnBzxdUnjvfLKKxo4cKC6d+/e6G24zt4h5wQO/bb/0Z4Dw+nfywAAAAAAADRBfqTdEQAAAKDx2rVrp9tvv93uMAAAANwmTpxodwgAAAAAAAAAAFxUhN0BAAAAAAAAAAAAAAAAAAAA+BOTJQEgQObMmSPLsrR9+3aVlpbKsizNmjXL7rDgJeoRgC+RU4DQw30LIJDIOXAS2jMAAAAAAADsxmu4ASBAHnjgAT3wwAN2h4FLRD0C8CVyChB6uG8BBBI5B05CewYAAAAAAIDdeLIkAAAAAAAAAAAAAAAAAABwNCZLAgAAAAAAAAAAAAAAAAAAR2OyJAAAAAAAAAAAAAAAAAAAcDQmSwIAAAAAAAAAAAAAAAAAAEeLtDsAAPClwsJCu0PABaiP0FZSUqLOnTvbHQZ8qKSkRHl5eXaHAYSdkpISSeL+A0IEY9jAIjci2NBvAwAAAAAAAM5lGWOM3UEAgC9YlmV3CIDjZGZmKj8/3+4w4ANZWVlauXKl3WEAABAy+LrEv/Ly8pSTk2N3GADgaC6XS9nZ2XaHAQAAAAAAECzyebIkAEfhS+DgV/OjKD8+B7+srCy7Q4CPMfkVuHSWZTHeAByOSXyBxd8FCAX8HYtQxH8qBgAAAAAA8BRhdwAAAAAAAAAAAAAAAAAAAAD+xGRJAAAAAAAAAAAAAAAAAADgaEyWBAAAAAAAAAAAAAAAAAAAjsZkSQAAAAAAAAAAAAAAAAAA4GhMlgQAAAAAAAAAAAAAAAAAAI7GZEkAYeu1116TZVnuT0JCQp3lvvzyS40aNUrHjx9XeXl5rW2uvvpqnT592mOb75ezLEt9+vTx9yn5xIwZM+Ryuepdd+E59e/fPyAxUVd1C8a6ApwsHPIKYIdw678b480331T37t0VGRlZb5mGxgEA/Iu85Ym8Fbxor/8zaNAgj/Oq+eTm5tYqS3sFAAAAAABwJiZLAgh7CxculDFGlZWVHuu2bdumPn36aPjw4WrRooXatGkjY4yKiorc67//hbokd7nCwkIlJyfLGKOtW7f6/Vx84c4779TMmTP1yCOPeKz7wx/+IGOMjDFq1qxZwGOjrmoL5roCnCgc8goQaOHYfzdk9+7dGjVqlGbOnKmDBw82WLahcQAA/yFv1UbeCm6016ajvQIAAAAAADgTkyUBoB7Hjx/XzTffrF/+8pe67777PNbHxMQoOTlZixcv1uuvv25DhP7RrVs3rVq1Sk8++aTy8vLsDqdRqKvQqSvAKZyaV4BACtf+uyGPPPKIBg4cqI8++kiJiYkNlmUcAAQeecsTeSt40V7rVlRU5P6PhRd+5s2bV6sc7RUAAAAAAMCZmCwJAPV45plnVFZWpkcffbTO9c2bN9fy5csVERGhyZMnq7i4OMAR+k9aWpoyMzP129/+VufOnbM7nIuirkKnrgCncHJeAQIlnPvv+vz5z3/WjBkzGnyN7YUYBwCBRd7yRN4KXrTXS0d7BQAAAAAAcB4mSwJAHYwxWrp0qfr166eOHTvWWy49PV2zZs3SiRMnlJWVpdOnTwcwSv8aM2aMSkpKVFBQYHcoDaKuQqeuAKdxcl4B/I3+u26xsbFeb8M4AAgM8lbdyFvBifbqO7RXAAAAAAAAZ2GyJADUYfv27Tp48KDS0tIuWvaxxx7T8OHDtWPHDt1///2N2v+RI0c0ffp0devWTdHR0WrVqpVuuukmvfvuu+4yq1evlmVZ7s++ffuUk5Ojli1bKjk5WSNHjtTu3bs99n348GFNmTJFV1xxhaKjo9W2bVtlZGRo27Ztjb8Aknr16iVJevvtt73aLtCoq9CpK8CJnJpXAH+j//YdxgFAYJC3fIe85X+01/q9+uqr6tWrl+Lj45WUlKTBgwdrxYoV9ZanvQIAAAAAADgLkyUBoA6ffvqpJKlz584XLRsREaHly5erS5cuWrp0qZYvX95g+bKyMvXt21crVqzQ/PnzVV5erg8//FBxcXEaOnSoli5dKkm65ZZbZIzR6NGjJUm5ubnKzc1VaWmpXC6X3nnnHf3qV7+qte8DBw6ob9++ysvL04svvqijR4/qvffe09GjRzVgwAAVFhY2+hp06tSp1rUIVtRV6NQV4EROzSuAv9F/+w7jACAwyFu+Q97yP9pr/b755hu9/PLLOnTokLZs2aLU1FSNGzdOU6ZMqbM87RUAAAAAAMBZmCwJAHU4cOCAJCkpKalR5du0aaO8vDxFRUVp8uTJ2rlzZ71lZ86cqb1792revHkaOXKkWrRooe7du2vFihVKSUnRlClTdPDgQY/tJk2apAEDBig+Pl7Dhg3TiBEjVFRUpPLy8lr7/vLLLzV37lz94he/UEJCgnr27Kk33nhDxphGPyVCklq0aCHLstzXIlhRV6FTV4BTOTGvAP5G/+07jAOAwCBv+Q55y/9or3XbuHGjli1bpmuuuUbx8fHq0aOHli1bpp/97Gf605/+pA8//NBjG9orAAAAAACAszBZEgDqcPr0aUlSVFRUo7fp37+/5syZo5MnTyorK0unTp2qs9yqVaskSSNGjKi1PCYmRkOHDtWpU6fqfL1T3759a/27S5cukqT9+/e7l61evVoREREaOXJkHqkHzAAABxVJREFUrbIdOnRQz5499dFHH6mkpKTR5xQZGVnveQQL6uo7oVBXgJM5Ma8A/kT/7VuMAwD/I2/5FnnLv2iv3snMzJQkrVmzps71tFcAAAAAAADnYLIkANShefPmkqSzZ896td2UKVOUk5OjTz/9VPfdd5/H+qqqKlVUVKh58+ZKTEz0WN++fXtJ373W6vu+/0SI6OhoSVJ1dXWtfVdXVyspKUmWZdX6fPzxx5KkL774otHnc+7cOcXGxja6vB2oq++EQl0BTue0vAL4E/23bzEOAPyPvOVb5C3/or16JyUlRZJ06NChOtfTXgEAAAAAAJwj0u4AACAY1XxRXlFR4fW2S5cu1bZt2/Tyyy+7f6CoERMTo6SkJFVUVOjEiRMePy7UvKqqQ4cOXh83JiZGLVu2VGVlpU6dOqXIyEtL8cePH5cxxn0tghV1FTp1BYQDp+QVwN/ov32HcQAQGOQt3yFv+R/t1Ts1T7ds166dxzraKwAAAAAAgLPwZEkAqMNPfvITSWrS650SEhL0t7/9TfHx8XrxxRc91o8ZM0aSVFBQUGt5VVWVNmzYoNjYWKWnpzchaikjI0Pnzp3Tpk2bPNY9/fTTuuyyy3Tu3LlG7au0tFTS/65FsKKuQqeugHDglLwC+Bv9t+8wDgACg7zlO+Qt/6O9elq6dKl69+7tsdwYo7y8PEnSzTff7LGe9goAAAAAAOAsTJYEgDqkpaWpXbt22r59e5O279mzpxYvXlznutmzZys1NVW5ublau3atTpw4oeLiYt166606cOCA5s+f7351lbdmz56tbt266Y477tC6detUUVGho0ePavHixXr88cc1Z86cWk9nGD9+vCzL0t69ez32tW3bNknS8OHDmxRLoFBXoVNXQLgIlbwC2In+23cYBwCBQd7yHfKW/9Fe6/bxxx/r3nvv1X//+1+dPn1au3bt0oQJE/TRRx/p/vvvV79+/Ty2ob0CAAAAAAA4jAEAh5BkXC5Xo8u/+uqrRpJZuHBhnesfeughExkZaUpLS93LDh8+bCTV+vTu3bveY9x9990mOTnZY3l5ebnJzc01qampJioqyiQlJZn09HSzYcMGd5nCwkKPYz388MPuc73wM2LECPd2R44cMdOnTzddu3Y1UVFRpm3btmb48OFm/fr1HnHccMMNJiEhwZw7d85jXVZWlunUqZM5c+ZMnefWrFkz069fv3rPvT4ul8t42/1QV/bUVWZmpsnMzPR6OwQn6vPSOS2voGm8HW+gfuHef9dlzZo1Hseu+SxZsqTObS42DoD3mjJehfdC8TqTtzyFS96ivdYWiu319OnTJj8/34wZM8Z069bNxMTEmKSkJHP99debFStW1LtdKLbXGoxbAQAAAAAAPORZxhjTqFmVABDkLMuSy+VSdnZ2o8q/9tprmjBhghYuXKi77rrLY31FRYV69uypkSNHatGiRb4O13bHjh1Tx44dNW7cOC1ZsqTWuu3bt+vqq6/WihUrNHbs2Dq3j4yMVJ8+fbR582avjpuXl6ecnBx50/1QV/bUVVZWliQpPz+/aYEjqFCfgG94O95A/cK5//aVxowD4L2mjFfhvVC8zuStSxeqeYv2GnxorxfHuBUAAAAAAMBDPq/hBoB6JCUlac2aNVq5cqUWLFhgdzg+ZYzRlClT1KJFC/3+97+vtW7Pnj3KyMjQzJkzQ+bHAOoqdOoKAIAa4dp/+wrjACDwyFuXhrwVWLTXS0N7BQAAAAAAcCYmSwIIe3fffbcsy1JCQoLHuquvvlpbt27VunXrdPz4cRui84+DBw9qz5492rBhgzp06FBr3eLFi/Xkk0/qySef9NhuxowZsixLlmXp/PnzgQrXjboKnboCAKAxwrH/9pWGxgEA/Ie81XTkrcCjvTYd7RUAAAAAAMCZeA03AMfg9UKhIRRfXxaueG2zs1CfgG8w3gCcj/FqYHCdEUporwhFjFsBAAAAAAA88BpuAAAAAAAAAAAAAAAAAADgbEyWBAAAAAAAAAAAAAAAAAAAjsZkSQAAAAAAAAAAAAAAAAAA4GhMlgQAAAAAAAAAAAAAAAAAAI7GZEkAAAAAAAAAAAAAAAAAAOBokXYHAAC+9Pzzzys/P9/uMNCAkpISSVJWVpbNkeBiNm/erP79+9sdBnxo8+bN3HuADzDeAJytZryKwGBsglDA37EAAAAAAACAM1jGGGN3EADgC/xoAfjegAEDNH36dLvDgA/MnTtXhYWFdocBAEDIYFK0fxUWFmru3Ll2hwEAjjZ9+nQNGDDA7jAAAAAAAACCRT6TJQEAAAAAAAAAAAAAAAAAgJPlR9gdAQAAAAAAAAAAAAAAAAAAgD8xWRIAAAAAAAAAAAAAAAAAADgakyUBAAAAAAAAAAAAAAAAAICjMVkSAAAAAAAAAAAAAAAAAAA42v8B1IRCwfcsIYEAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tf.keras.utils.plot_model(preprocessor, rankdir=\"LR\", show_shapes=True)" ] }, { "cell_type": "markdown", "metadata": { "id": "IURRtL_WZbht" }, "source": [ "전처리기를 테스트하려면 DataFrame.iloc 접근자를 사용하여 DataFrame에서 첫 번째 예제를 조각화합니다. 그런 다음 이를 사전으로 변환하고 사전을 전처리기에 전달합니다. 결과적으로 얻어지는 것은 이진 특성, 정규화된 숫자 특성 및 원-핫 범주 특성을 순서대로 포함하는 단일 벡터입니다." ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:06.181620Z", "iopub.status.busy": "2022-12-14T20:54:06.180841Z", "iopub.status.idle": "2022-12-14T20:54:06.224255Z", "shell.execute_reply": "2022-12-14T20:54:06.223603Z" }, "id": "QjBzCKsZUj0y" }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "preprocessor(dict(df.iloc[:1]))" ] }, { "cell_type": "markdown", "metadata": { "id": "bB9C0XJkyQEk" }, "source": [ "### 모델 생성 및 훈련" ] }, { "cell_type": "markdown", "metadata": { "id": "WfU_FFXMbKGM" }, "source": [ "이제 모델의 본문을 만듭니다. 이전 예와 동일한 구성을 사용합니다. 바로, 몇 개의 `Dense` rectified-linear 레이어와 분류를 위한 `Dense(1)` 출력 레이어입니다." ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:06.227800Z", "iopub.status.busy": "2022-12-14T20:54:06.227309Z", "iopub.status.idle": "2022-12-14T20:54:06.236576Z", "shell.execute_reply": "2022-12-14T20:54:06.236007Z" }, "id": "75OxXTnfboKN" }, "outputs": [], "source": [ "body = tf.keras.Sequential([\n", " tf.keras.layers.Dense(10, activation='relu'),\n", " tf.keras.layers.Dense(10, activation='relu'),\n", " tf.keras.layers.Dense(1)\n", "])" ] }, { "cell_type": "markdown", "metadata": { "id": "MpD6WNX5_zh5" }, "source": [ "이제 Keras functional API를 사용하여 두 조각을 함께 연결합니다." ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:06.239717Z", "iopub.status.busy": "2022-12-14T20:54:06.239247Z", "iopub.status.idle": "2022-12-14T20:54:06.243711Z", "shell.execute_reply": "2022-12-14T20:54:06.243151Z" }, "id": "_TY_BuVMbNcB" }, "outputs": [ { "data": { "text/plain": [ "{'age': ,\n", " 'sex': ,\n", " 'cp': ,\n", " 'trestbps': ,\n", " 'chol': ,\n", " 'fbs': ,\n", " 'restecg': ,\n", " 'thalach': ,\n", " 'exang': ,\n", " 'oldpeak': ,\n", " 'slope': ,\n", " 'ca': ,\n", " 'thal': }" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "inputs" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:06.247007Z", "iopub.status.busy": "2022-12-14T20:54:06.246469Z", "iopub.status.idle": "2022-12-14T20:54:06.333926Z", "shell.execute_reply": "2022-12-14T20:54:06.333288Z" }, "id": "iin2kvA9bDpz" }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x = preprocessor(inputs)\n", "x" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:06.337378Z", "iopub.status.busy": "2022-12-14T20:54:06.336886Z", "iopub.status.idle": "2022-12-14T20:54:06.379688Z", "shell.execute_reply": "2022-12-14T20:54:06.379019Z" }, "id": "FQd9PcPRpkP4" }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result = body(x)\n", "result" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:06.383212Z", "iopub.status.busy": "2022-12-14T20:54:06.382729Z", "iopub.status.idle": "2022-12-14T20:54:06.395871Z", "shell.execute_reply": "2022-12-14T20:54:06.395230Z" }, "id": "v_KerrXabhgP" }, "outputs": [], "source": [ "model = tf.keras.Model(inputs, result)\n", "\n", "model.compile(optimizer='adam',\n", " loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),\n", " metrics=['accuracy'])" ] }, { "cell_type": "markdown", "metadata": { "id": "S1MR-XD9kC6C" }, "source": [ "이 모델은 입력 사전을 예상합니다. 데이터를 전달하는 가장 간단한 방법은 DataFrame을 dict로 변환하고 해당 dict를 `Model.fit`에 `x` 인수로 전달하는 것입니다." ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:06.399310Z", "iopub.status.busy": "2022-12-14T20:54:06.398893Z", "iopub.status.idle": "2022-12-14T20:54:11.530549Z", "shell.execute_reply": "2022-12-14T20:54:11.529724Z" }, "id": "ybDzNUheqxJw" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 3:55 - loss: 0.7060 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/152 [=>............................] - ETA: 0s - loss: 0.6839 - accuracy: 0.6667 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 23/152 [===>..........................] - ETA: 0s - loss: 0.6487 - accuracy: 0.7174" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/152 [=====>........................] - ETA: 0s - loss: 0.6341 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/152 [========>.....................] - ETA: 0s - loss: 0.6324 - accuracy: 0.7609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 0s - loss: 0.6213 - accuracy: 0.7672" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/152 [============>.................] - ETA: 0s - loss: 0.6110 - accuracy: 0.7714" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81/152 [==============>...............] - ETA: 0s - loss: 0.6080 - accuracy: 0.7531" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 92/152 [=================>............] - ETA: 0s - loss: 0.6051 - accuracy: 0.7391" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/152 [===================>..........] - ETA: 0s - loss: 0.6071 - accuracy: 0.7282" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.5946 - accuracy: 0.7348" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/152 [========================>.....] - ETA: 0s - loss: 0.5969 - accuracy: 0.7283" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/152 [==========================>...] - ETA: 0s - loss: 0.5959 - accuracy: 0.7230" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/152 [============================>.] - ETA: 0s - loss: 0.5859 - accuracy: 0.7252" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 2s 5ms/step - loss: 0.5852 - accuracy: 0.7261\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 2/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.4935 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 0s - loss: 0.5104 - accuracy: 0.7308" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/152 [===>..........................] - ETA: 0s - loss: 0.5463 - accuracy: 0.6600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/152 [======>.......................] - ETA: 0s - loss: 0.5099 - accuracy: 0.7162" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/152 [========>.....................] - ETA: 0s - loss: 0.5047 - accuracy: 0.7347" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/152 [===========>..................] - ETA: 0s - loss: 0.5015 - accuracy: 0.7377" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/152 [=============>................] - ETA: 0s - loss: 0.4833 - accuracy: 0.7740" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/152 [===============>..............] - ETA: 0s - loss: 0.4743 - accuracy: 0.7824" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/152 [=================>............] - ETA: 0s - loss: 0.4604 - accuracy: 0.7865" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "108/152 [====================>.........] - ETA: 0s - loss: 0.4600 - accuracy: 0.7824" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/152 [======================>.......] - ETA: 0s - loss: 0.4671 - accuracy: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "132/152 [=========================>....] - ETA: 0s - loss: 0.4561 - accuracy: 0.7765" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "144/152 [===========================>..] - ETA: 0s - loss: 0.4622 - accuracy: 0.7639" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 1s 4ms/step - loss: 0.4585 - accuracy: 0.7657\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 3/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.1753 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 0s - loss: 0.4180 - accuracy: 0.8077" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/152 [===>..........................] - ETA: 0s - loss: 0.4001 - accuracy: 0.7708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/152 [=====>........................] - ETA: 0s - loss: 0.4001 - accuracy: 0.7714" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 47/152 [========>.....................] - ETA: 0s - loss: 0.3767 - accuracy: 0.8085" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/152 [==========>...................] - ETA: 0s - loss: 0.4081 - accuracy: 0.7797" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/152 [=============>................] - ETA: 0s - loss: 0.4048 - accuracy: 0.7676" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 83/152 [===============>..............] - ETA: 0s - loss: 0.4090 - accuracy: 0.7771" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 95/152 [=================>............] - ETA: 0s - loss: 0.3995 - accuracy: 0.7895" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/152 [====================>.........] - ETA: 0s - loss: 0.4039 - accuracy: 0.7804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "119/152 [======================>.......] - ETA: 0s - loss: 0.3979 - accuracy: 0.7773" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "131/152 [========================>.....] - ETA: 0s - loss: 0.3853 - accuracy: 0.7863" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "143/152 [===========================>..] - ETA: 0s - loss: 0.3848 - accuracy: 0.7797" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 1s 5ms/step - loss: 0.3868 - accuracy: 0.7756\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.1703 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 0s - loss: 0.2550 - accuracy: 0.8077" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/152 [===>..........................] - ETA: 0s - loss: 0.3369 - accuracy: 0.7800" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/152 [======>.......................] - ETA: 0s - loss: 0.3219 - accuracy: 0.7838" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/152 [========>.....................] - ETA: 0s - loss: 0.3530 - accuracy: 0.7959" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/152 [===========>..................] - ETA: 0s - loss: 0.3299 - accuracy: 0.8033" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/152 [=============>................] - ETA: 0s - loss: 0.3151 - accuracy: 0.8151" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84/152 [===============>..............] - ETA: 0s - loss: 0.3271 - accuracy: 0.8095" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 95/152 [=================>............] - ETA: 0s - loss: 0.3338 - accuracy: 0.8158" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/152 [====================>.........] - ETA: 0s - loss: 0.3310 - accuracy: 0.8178" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "119/152 [======================>.......] - ETA: 0s - loss: 0.3228 - accuracy: 0.8235" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/152 [========================>.....] - ETA: 0s - loss: 0.3225 - accuracy: 0.8269" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "141/152 [==========================>...] - ETA: 0s - loss: 0.3377 - accuracy: 0.8191" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - ETA: 0s - loss: 0.3471 - accuracy: 0.8119" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 1s 5ms/step - loss: 0.3471 - accuracy: 0.8119\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 5/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.3056 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 0s - loss: 0.3067 - accuracy: 0.8462" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/152 [===>..........................] - ETA: 0s - loss: 0.3621 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/152 [======>.......................] - ETA: 0s - loss: 0.3276 - accuracy: 0.8194" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 47/152 [========>.....................] - ETA: 0s - loss: 0.3058 - accuracy: 0.8298" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/152 [==========>...................] - ETA: 0s - loss: 0.2834 - accuracy: 0.8448" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 69/152 [============>.................] - ETA: 0s - loss: 0.2994 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 80/152 [==============>...............] - ETA: 0s - loss: 0.2850 - accuracy: 0.8375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/152 [================>.............] - ETA: 0s - loss: 0.2828 - accuracy: 0.8462" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "102/152 [===================>..........] - ETA: 0s - loss: 0.2976 - accuracy: 0.8382" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "114/152 [=====================>........] - ETA: 0s - loss: 0.3012 - accuracy: 0.8289" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "126/152 [=======================>......] - ETA: 0s - loss: 0.3005 - accuracy: 0.8294" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "138/152 [==========================>...] - ETA: 0s - loss: 0.3108 - accuracy: 0.8261" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "150/152 [============================>.] - ETA: 0s - loss: 0.3274 - accuracy: 0.8167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 1s 5ms/step - loss: 0.3270 - accuracy: 0.8185\n" ] } ], "source": [ "history = model.fit(dict(df), target, epochs=5, batch_size=BATCH_SIZE)" ] }, { "cell_type": "markdown", "metadata": { "id": "dacoEIB_BSsL" }, "source": [ "`tf.data`를 사용해도 됩니다." ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:11.534485Z", "iopub.status.busy": "2022-12-14T20:54:11.533906Z", "iopub.status.idle": "2022-12-14T20:54:11.558779Z", "shell.execute_reply": "2022-12-14T20:54:11.558008Z" }, "id": "rYadV3wwE4G3" }, "outputs": [], "source": [ "ds = tf.data.Dataset.from_tensor_slices((\n", " dict(df),\n", " target\n", "))\n", "\n", "ds = ds.batch(BATCH_SIZE)" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:11.562691Z", "iopub.status.busy": "2022-12-14T20:54:11.562097Z", "iopub.status.idle": "2022-12-14T20:54:11.581460Z", "shell.execute_reply": "2022-12-14T20:54:11.580652Z" }, "id": "2YIpp2r0bv-6" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'age': ,\n", " 'ca': ,\n", " 'chol': ,\n", " 'cp': ,\n", " 'exang': ,\n", " 'fbs': ,\n", " 'oldpeak': ,\n", " 'restecg': ,\n", " 'sex': ,\n", " 'slope': ,\n", " 'thal': ,\n", " 'thalach': ,\n", " 'trestbps': }\n", "\n", "tf.Tensor([0 1], shape=(2,), dtype=int64)\n" ] } ], "source": [ "import pprint\n", "\n", "for x, y in ds.take(1):\n", " pprint.pprint(x)\n", " print()\n", " print(y)" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T20:54:11.585367Z", "iopub.status.busy": "2022-12-14T20:54:11.584843Z", "iopub.status.idle": "2022-12-14T20:54:15.484760Z", "shell.execute_reply": "2022-12-14T20:54:15.484022Z" }, "id": "NMT-AevGFmdu" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 1:04 - loss: 0.1742 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 0s - loss: 0.2546 - accuracy: 0.8846 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/152 [===>..........................] - ETA: 0s - loss: 0.3122 - accuracy: 0.8400" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/152 [======>.......................] - ETA: 0s - loss: 0.2727 - accuracy: 0.8611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/152 [========>.....................] - ETA: 0s - loss: 0.2431 - accuracy: 0.8854" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/152 [==========>...................] - ETA: 0s - loss: 0.2692 - accuracy: 0.8833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 72/152 [=============>................] - ETA: 0s - loss: 0.2886 - accuracy: 0.8611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84/152 [===============>..............] - ETA: 0s - loss: 0.2789 - accuracy: 0.8631" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/152 [=================>............] - ETA: 0s - loss: 0.2780 - accuracy: 0.8646" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "108/152 [====================>.........] - ETA: 0s - loss: 0.2995 - accuracy: 0.8426" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/152 [======================>.......] - ETA: 0s - loss: 0.2971 - accuracy: 0.8500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "131/152 [========================>.....] - ETA: 0s - loss: 0.2917 - accuracy: 0.8588" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "143/152 [===========================>..] - ETA: 0s - loss: 0.3013 - accuracy: 0.8601" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 1s 4ms/step - loss: 0.3107 - accuracy: 0.8548\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 2/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.1596 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 0s - loss: 0.2418 - accuracy: 0.8846" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/152 [===>..........................] - ETA: 0s - loss: 0.2986 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/152 [======>.......................] - ETA: 0s - loss: 0.2573 - accuracy: 0.8611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/152 [========>.....................] - ETA: 0s - loss: 0.2280 - accuracy: 0.8854" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/152 [==========>...................] - ETA: 0s - loss: 0.2530 - accuracy: 0.8833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 72/152 [=============>................] - ETA: 0s - loss: 0.2726 - accuracy: 0.8611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84/152 [===============>..............] - ETA: 0s - loss: 0.2638 - accuracy: 0.8631" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/152 [=================>............] - ETA: 0s - loss: 0.2641 - accuracy: 0.8646" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "108/152 [====================>.........] - ETA: 0s - loss: 0.2859 - accuracy: 0.8426" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/152 [======================>.......] - ETA: 0s - loss: 0.2833 - accuracy: 0.8500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "132/152 [=========================>....] - ETA: 0s - loss: 0.2760 - accuracy: 0.8598" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "143/152 [===========================>..] - ETA: 0s - loss: 0.2883 - accuracy: 0.8601" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 1s 4ms/step - loss: 0.2972 - accuracy: 0.8548\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 3/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.1502 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 0s - loss: 0.2320 - accuracy: 0.8846" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/152 [===>..........................] - ETA: 0s - loss: 0.2873 - accuracy: 0.8542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/152 [=====>........................] - ETA: 0s - loss: 0.2538 - accuracy: 0.8714" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/152 [========>.....................] - ETA: 0s - loss: 0.2229 - accuracy: 0.9022" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57/152 [==========>...................] - ETA: 0s - loss: 0.2475 - accuracy: 0.9035" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 69/152 [============>.................] - ETA: 0s - loss: 0.2668 - accuracy: 0.8913" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 80/152 [==============>...............] - ETA: 0s - loss: 0.2562 - accuracy: 0.8875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/152 [================>.............] - ETA: 0s - loss: 0.2570 - accuracy: 0.8846" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/152 [===================>..........] - ETA: 0s - loss: 0.2740 - accuracy: 0.8689" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/152 [=====================>........] - ETA: 0s - loss: 0.2714 - accuracy: 0.8652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/152 [========================>.....] - ETA: 0s - loss: 0.2702 - accuracy: 0.8701" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/152 [==========================>...] - ETA: 0s - loss: 0.2833 - accuracy: 0.8669" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/152 [============================>.] - ETA: 0s - loss: 0.2878 - accuracy: 0.8642" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 1s 5ms/step - loss: 0.2870 - accuracy: 0.8647\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.1446 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/152 [=>............................] - ETA: 0s - loss: 0.2339 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/152 [===>..........................] - ETA: 0s - loss: 0.2785 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/152 [======>.......................] - ETA: 0s - loss: 0.2424 - accuracy: 0.8611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/152 [========>.....................] - ETA: 0s - loss: 0.2134 - accuracy: 0.8958" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/152 [==========>...................] - ETA: 0s - loss: 0.2367 - accuracy: 0.9000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 72/152 [=============>................] - ETA: 0s - loss: 0.2554 - accuracy: 0.8819" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 83/152 [===============>..............] - ETA: 0s - loss: 0.2495 - accuracy: 0.8795" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 95/152 [=================>............] - ETA: 0s - loss: 0.2431 - accuracy: 0.8842" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/152 [====================>.........] - ETA: 0s - loss: 0.2706 - accuracy: 0.8551" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/152 [======================>.......] - ETA: 0s - loss: 0.2645 - accuracy: 0.8602" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/152 [========================>.....] - ETA: 0s - loss: 0.2600 - accuracy: 0.8654" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/152 [===========================>..] - ETA: 0s - loss: 0.2725 - accuracy: 0.8662" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 1s 5ms/step - loss: 0.2784 - accuracy: 0.8614\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 5/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/152 [..............................] - ETA: 0s - loss: 0.1432 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/152 [=>............................] - ETA: 0s - loss: 0.2176 - accuracy: 0.8462" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/152 [===>..........................] - ETA: 0s - loss: 0.2627 - accuracy: 0.8600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/152 [======>.......................] - ETA: 0s - loss: 0.2332 - accuracy: 0.8784" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/152 [========>.....................] - ETA: 0s - loss: 0.2036 - accuracy: 0.9082" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/152 [===========>..................] - ETA: 0s - loss: 0.2279 - accuracy: 0.9098" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/152 [=============>................] - ETA: 0s - loss: 0.2458 - accuracy: 0.8904" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/152 [===============>..............] - ETA: 0s - loss: 0.2372 - accuracy: 0.8882" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/152 [==================>...........] - ETA: 0s - loss: 0.2502 - accuracy: 0.8763" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/152 [====================>.........] - ETA: 0s - loss: 0.2654 - accuracy: 0.8578" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/152 [======================>.......] - ETA: 0s - loss: 0.2555 - accuracy: 0.8636" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/152 [=========================>....] - ETA: 0s - loss: 0.2570 - accuracy: 0.8684" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "144/152 [===========================>..] - ETA: 0s - loss: 0.2615 - accuracy: 0.8646" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/152 [==============================] - 1s 4ms/step - loss: 0.2704 - accuracy: 0.8581\n" ] } ], "source": [ "history = model.fit(ds, epochs=5)" ] } ], "metadata": { "colab": { "collapsed_sections": [], "name": "pandas_dataframe.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" } }, "nbformat": 4, "nbformat_minor": 0 }