{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "DweYe9FcbMK_"
},
"source": [
"##### Copyright 2019 The TensorFlow Authors.\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"cellView": "form",
"execution": {
"iopub.execute_input": "2020-09-22T18:02:07.410695Z",
"iopub.status.busy": "2020-09-22T18:02:07.410082Z",
"iopub.status.idle": "2020-09-22T18:02:07.412091Z",
"shell.execute_reply": "2020-09-22T18:02:07.412520Z"
},
"id": "AVV2e0XKbJeX"
},
"outputs": [],
"source": [
"#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n",
"# you may not use this file except in compliance with the License.\n",
"# You may obtain a copy of the License at\n",
"#\n",
"# https://www.apache.org/licenses/LICENSE-2.0\n",
"#\n",
"# Unless required by applicable law or agreed to in writing, software\n",
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
"# See the License for the specific language governing permissions and\n",
"# limitations under the License."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "sUtoed20cRJJ"
},
"source": [
"# Carregar dados CSV"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "1ap_W4aQcgNT"
},
"source": [
"
"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "C-3Xbt0FfGfs"
},
"source": [
"Este tutorial fornece um exemplo de como carregar dados CSV de um arquivo em um `tf.data.Dataset`.\n",
"\n",
"Os dados usados neste tutorial foram retirados da lista de passageiros do Titanic. O modelo preverá a probabilidade de sobrevivência de um passageiro com base em características como idade, sexo, classe de passagem e se a pessoa estava viajando sozinha."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fgZ9gjmPfSnK"
},
"source": [
"## Setup"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:07.417135Z",
"iopub.status.busy": "2020-09-22T18:02:07.416484Z",
"iopub.status.idle": "2020-09-22T18:02:07.418761Z",
"shell.execute_reply": "2020-09-22T18:02:07.418297Z"
},
"id": "I4dwMQVQMQWD"
},
"outputs": [],
"source": [
"try:\n",
" # %tensorflow_version only exists in Colab.\n",
" %tensorflow_version 2.x\n",
"except Exception:\n",
" pass\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:07.422311Z",
"iopub.status.busy": "2020-09-22T18:02:07.421728Z",
"iopub.status.idle": "2020-09-22T18:02:13.366152Z",
"shell.execute_reply": "2020-09-22T18:02:13.366589Z"
},
"id": "baYFZMW_bJHh"
},
"outputs": [],
"source": [
"from __future__ import absolute_import, division, print_function, unicode_literals\n",
"import functools\n",
"\n",
"import numpy as np\n",
"import tensorflow as tf"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:13.372218Z",
"iopub.status.busy": "2020-09-22T18:02:13.371586Z",
"iopub.status.idle": "2020-09-22T18:02:13.403410Z",
"shell.execute_reply": "2020-09-22T18:02:13.402954Z"
},
"id": "Ncf5t6tgL5ZI"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading data from https://storage.googleapis.com/tf-datasets/titanic/train.csv\n",
"\r",
" 8192/30874 [======>.......................] - ETA: 0s"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"32768/30874 [===============================] - 0s 0us/step\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading data from https://storage.googleapis.com/tf-datasets/titanic/eval.csv\n",
"\r",
" 8192/13049 [=================>............] - ETA: 0s"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"16384/13049 [=====================================] - 0s 0us/step\n"
]
}
],
"source": [
"TRAIN_DATA_URL = \"https://storage.googleapis.com/tf-datasets/titanic/train.csv\"\n",
"TEST_DATA_URL = \"https://storage.googleapis.com/tf-datasets/titanic/eval.csv\"\n",
"\n",
"train_file_path = tf.keras.utils.get_file(\"train.csv\", TRAIN_DATA_URL)\n",
"test_file_path = tf.keras.utils.get_file(\"eval.csv\", TEST_DATA_URL)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:13.406976Z",
"iopub.status.busy": "2020-09-22T18:02:13.406404Z",
"iopub.status.idle": "2020-09-22T18:02:13.408691Z",
"shell.execute_reply": "2020-09-22T18:02:13.408178Z"
},
"id": "4ONE94qulk6S"
},
"outputs": [],
"source": [
"# Facilitar a leitura de valores numpy.\n",
"np.set_printoptions(precision=3, suppress=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Wuqj601Qw0Ml"
},
"source": [
"## Carregar dados\n",
"\n",
"Para começar, vejamos a parte superior do arquivo CSV para ver como ele está formatado."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:13.417749Z",
"iopub.status.busy": "2020-09-22T18:02:13.411760Z",
"iopub.status.idle": "2020-09-22T18:02:13.528719Z",
"shell.execute_reply": "2020-09-22T18:02:13.528154Z"
},
"id": "54Dv7mCrf9Yw"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"survived,sex,age,n_siblings_spouses,parch,fare,class,deck,embark_town,alone\r\n",
"0,male,22.0,1,0,7.25,Third,unknown,Southampton,n\r\n",
"1,female,38.0,1,0,71.2833,First,C,Cherbourg,n\r\n",
"1,female,26.0,0,0,7.925,Third,unknown,Southampton,y\r\n",
"1,female,35.0,1,0,53.1,First,C,Southampton,n\r\n",
"0,male,28.0,0,0,8.4583,Third,unknown,Queenstown,y\r\n",
"0,male,2.0,3,1,21.075,Third,unknown,Southampton,n\r\n",
"1,female,27.0,0,2,11.1333,Third,unknown,Southampton,n\r\n",
"1,female,14.0,1,0,30.0708,Second,unknown,Cherbourg,n\r\n",
"1,female,4.0,1,1,16.7,Third,G,Southampton,n\r\n"
]
}
],
"source": [
"!head {train_file_path}"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jC9lRhV-q_R3"
},
"source": [
"Você pode [carregar isso usando pandas] (pandas.ipynb) e passar as matrizes NumPy para o TensorFlow. Se você precisar escalar até um grande conjunto de arquivos ou precisar de um carregador que se integre ao [TensorFlow e tf.data] (../../guide/data.ipynb), use o `tf.data.experimental. função make_csv_dataset`:"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "67mfwr4v-mN_"
},
"source": [
"A única coluna que você precisa identificar explicitamente é aquela com o valor que o modelo pretende prever. "
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:13.532991Z",
"iopub.status.busy": "2020-09-22T18:02:13.532354Z",
"iopub.status.idle": "2020-09-22T18:02:13.534308Z",
"shell.execute_reply": "2020-09-22T18:02:13.534664Z"
},
"id": "iXROZm5f3V4E"
},
"outputs": [],
"source": [
"LABEL_COLUMN = 'survived'\n",
"LABELS = [0, 1]"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "t4N-plO4tDXd"
},
"source": [
"Now read the CSV data from the file and create a dataset. \n",
"\n",
"(For the full documentation, see `tf.data.experimental.make_csv_dataset`)\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:13.539799Z",
"iopub.status.busy": "2020-09-22T18:02:13.538883Z",
"iopub.status.idle": "2020-09-22T18:02:14.993236Z",
"shell.execute_reply": "2020-09-22T18:02:14.993818Z"
},
"id": "yIbUscB9sqha"
},
"outputs": [],
"source": [
"def get_dataset(file_path, **kwargs):\n",
" dataset = tf.data.experimental.make_csv_dataset(\n",
" file_path,\n",
" batch_size=5, # Artificialmente pequeno para facilitar a exibição de exemplos\n",
" label_name=LABEL_COLUMN,\n",
" na_value=\"?\",\n",
" num_epochs=1,\n",
" ignore_errors=True, \n",
" **kwargs)\n",
" return dataset\n",
"\n",
"raw_train_data = get_dataset(train_file_path)\n",
"raw_test_data = get_dataset(test_file_path)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:14.998381Z",
"iopub.status.busy": "2020-09-22T18:02:14.997812Z",
"iopub.status.idle": "2020-09-22T18:02:15.000080Z",
"shell.execute_reply": "2020-09-22T18:02:14.999567Z"
},
"id": "v4oMO9MIxgTG"
},
"outputs": [],
"source": [
"def show_batch(dataset):\n",
" for batch, label in dataset.take(1):\n",
" for key, value in batch.items():\n",
" print(\"{:20s}: {}\".format(key,value.numpy()))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "vHUQFKoQI6G7"
},
"source": [
"Cada item do conjunto de dados é um lote, representado como uma tupla de (* muitos exemplos *, * muitos rótulos *). Os dados dos exemplos são organizados em tensores baseados em colunas (em vez de tensores baseados em linhas), cada um com tantos elementos quanto o tamanho do lote (5 neste caso).\n",
"\n",
"Pode ajudar a ver isso por si mesmo."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.004187Z",
"iopub.status.busy": "2020-09-22T18:02:15.003589Z",
"iopub.status.idle": "2020-09-22T18:02:15.036607Z",
"shell.execute_reply": "2020-09-22T18:02:15.036088Z"
},
"id": "HjrkJROoxoll"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"sex : [b'male' b'male' b'female' b'male' b'female']\n",
"age : [18. 47. 28. 33. 29.]\n",
"n_siblings_spouses : [0 0 8 1 0]\n",
"parch : [0 0 2 1 4]\n",
"fare : [ 8.3 25.587 69.55 20.525 21.075]\n",
"class : [b'Third' b'First' b'Third' b'Third' b'Third']\n",
"deck : [b'unknown' b'E' b'unknown' b'unknown' b'unknown']\n",
"embark_town : [b'Southampton' b'Southampton' b'Southampton' b'Southampton'\n",
" b'Southampton']\n",
"alone : [b'y' b'y' b'n' b'n' b'n']\n"
]
}
],
"source": [
"show_batch(raw_train_data)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "YOYKQKmMj3D6"
},
"source": [
"Como você pode ver, as colunas no CSV são nomeadas. O construtor do conjunto de dados selecionará esses nomes automaticamente. Se o arquivo com o qual você está trabalhando não contém os nomes das colunas na primeira linha, passe-os em uma lista de strings para o argumento `column_names` na função `make_csv_dataset`."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.040685Z",
"iopub.status.busy": "2020-09-22T18:02:15.040051Z",
"iopub.status.idle": "2020-09-22T18:02:15.103456Z",
"shell.execute_reply": "2020-09-22T18:02:15.103042Z"
},
"id": "2Av8_9L3tUg1"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"sex : [b'female' b'male' b'male' b'male' b'female']\n",
"age : [44. 28. 32.5 21. 33. ]\n",
"n_siblings_spouses : [0 0 1 0 0]\n",
"parch : [0 0 0 0 2]\n",
"fare : [27.721 8.05 30.071 7.733 26. ]\n",
"class : [b'First' b'Third' b'Second' b'Third' b'Second']\n",
"deck : [b'B' b'unknown' b'unknown' b'unknown' b'unknown']\n",
"embark_town : [b'Cherbourg' b'Southampton' b'Cherbourg' b'Queenstown' b'Southampton']\n",
"alone : [b'y' b'y' b'n' b'y' b'n']\n"
]
}
],
"source": [
"CSV_COLUMNS = ['survived', 'sex', 'age', 'n_siblings_spouses', 'parch', 'fare', 'class', 'deck', 'embark_town', 'alone']\n",
"\n",
"temp_dataset = get_dataset(train_file_path, column_names=CSV_COLUMNS)\n",
"\n",
"show_batch(temp_dataset)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "gZfhoX7bR9u4"
},
"source": [
"Este exemplo vai usar todas as colunas disponíveis. Se você precisar omitir algumas colunas do conjunto de dados, crie uma lista apenas das colunas que planeja usar e passe-a para o argumento (opcional) `select_columns` do construtor."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.107949Z",
"iopub.status.busy": "2020-09-22T18:02:15.107052Z",
"iopub.status.idle": "2020-09-22T18:02:15.155707Z",
"shell.execute_reply": "2020-09-22T18:02:15.156054Z"
},
"id": "S1TzSkUKwsNP"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"age : [28. 23. 44. 23. 28.]\n",
"n_siblings_spouses : [0 0 1 3 0]\n",
"class : [b'Third' b'Third' b'Second' b'First' b'Third']\n",
"deck : [b'unknown' b'unknown' b'unknown' b'C' b'unknown']\n",
"alone : [b'y' b'y' b'n' b'n' b'y']\n"
]
}
],
"source": [
"SELECT_COLUMNS = ['survived', 'age', 'n_siblings_spouses', 'class', 'deck', 'alone']\n",
"\n",
"temp_dataset = get_dataset(train_file_path, select_columns=SELECT_COLUMNS)\n",
"\n",
"show_batch(temp_dataset)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9cryz31lxs3e"
},
"source": [
"## Pré-processamento dos Dados\n",
"\n",
"Um arquivo CSV pode conter uma variedade de tipos de dados. Normalmente, você deseja converter desses tipos mistos em um vetor de comprimento fixo antes de alimentar os dados em seu modelo.\n",
"\n",
"O TensorFlow possui um sistema interno para descrever conversões de entrada comuns: `tf.feature_column`, consulte [este tutorial] (../keras/feature_columns) para detalhes.\n",
"\n",
"\n",
"Você pode pré-processar seus dados usando qualquer ferramenta que desejar (como [nltk] (https://www.nltk.org/) ou [sklearn] (https://scikit-learn.org/stable/)) e apenas passar a saída processada para o TensorFlow.\n",
"\n",
"\n",
"A principal vantagem de fazer o pré-processamento dentro do seu modelo é que, quando você exporta o modelo, ele inclui o pré-processamento. Dessa forma, você pode passar os dados brutos diretamente para o seu modelo."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9AsbaFmCeJtF"
},
"source": [
"### Dados contínuos"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Xl0Q0DcfA_rt"
},
"source": [
"Se seus dados já estiverem em um formato numérico apropriado, você poderá compactá-los em um vetor antes de transmiti-los ao modelo:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.160508Z",
"iopub.status.busy": "2020-09-22T18:02:15.159826Z",
"iopub.status.idle": "2020-09-22T18:02:15.200493Z",
"shell.execute_reply": "2020-09-22T18:02:15.200010Z"
},
"id": "4Yfji3J5BMxz"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"age : [ 4. 28. 40. 25. 35.]\n",
"n_siblings_spouses : [1. 0. 1. 0. 0.]\n",
"parch : [1. 0. 1. 0. 0.]\n",
"fare : [ 16.7 7.55 134.5 0. 512.329]\n"
]
}
],
"source": [
"SELECT_COLUMNS = ['survived', 'age', 'n_siblings_spouses', 'parch', 'fare']\n",
"DEFAULTS = [0, 0.0, 0.0, 0.0, 0.0]\n",
"temp_dataset = get_dataset(train_file_path, \n",
" select_columns=SELECT_COLUMNS,\n",
" column_defaults = DEFAULTS)\n",
"\n",
"show_batch(temp_dataset)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.203967Z",
"iopub.status.busy": "2020-09-22T18:02:15.203382Z",
"iopub.status.idle": "2020-09-22T18:02:15.224360Z",
"shell.execute_reply": "2020-09-22T18:02:15.223864Z"
},
"id": "zEUhI8kZCfq8"
},
"outputs": [],
"source": [
"example_batch, labels_batch = next(iter(temp_dataset)) "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "IP45_2FbEKzn"
},
"source": [
"Aqui está uma função simples que agrupará todas as colunas:"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.228123Z",
"iopub.status.busy": "2020-09-22T18:02:15.227535Z",
"iopub.status.idle": "2020-09-22T18:02:15.229273Z",
"shell.execute_reply": "2020-09-22T18:02:15.229683Z"
},
"id": "JQ0hNSL8CC3a"
},
"outputs": [],
"source": [
"def pack(features, label):\n",
" return tf.stack(list(features.values()), axis=-1), label"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "75LA9DisEIoE"
},
"source": [
"Aplique isso a cada elemento do conjunto de dados:"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.233891Z",
"iopub.status.busy": "2020-09-22T18:02:15.233299Z",
"iopub.status.idle": "2020-09-22T18:02:15.298791Z",
"shell.execute_reply": "2020-09-22T18:02:15.298329Z"
},
"id": "VnP2Z2lwCTRl"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[22. 0. 0. 7.25]\n",
" [24. 2. 3. 18.75]\n",
" [28. 0. 0. 13. ]\n",
" [24. 2. 0. 24.15]\n",
" [46. 0. 0. 79.2 ]]\n",
"\n",
"[0 1 1 0 0]\n"
]
}
],
"source": [
"packed_dataset = temp_dataset.map(pack)\n",
"\n",
"for features, labels in packed_dataset.take(1):\n",
" print(features.numpy())\n",
" print()\n",
" print(labels.numpy())"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "1VBvmaFrFU6J"
},
"source": [
"Se você tiver tipos de dados mistos, poderá separar esses campos numéricos simples. A API `tf.feature_column` pode lidar com eles, mas isso gera alguma sobrecarga e deve ser evitado, a menos que seja realmente necessário. Volte para o conjunto de dados misto:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.302653Z",
"iopub.status.busy": "2020-09-22T18:02:15.302079Z",
"iopub.status.idle": "2020-09-22T18:02:15.333318Z",
"shell.execute_reply": "2020-09-22T18:02:15.333763Z"
},
"id": "ad-IQ_JPFQge"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"sex : [b'female' b'male' b'male' b'male' b'female']\n",
"age : [22. 45. 28. 29. 14.]\n",
"n_siblings_spouses : [0 0 8 0 0]\n",
"parch : [0 0 2 0 0]\n",
"fare : [10.517 8.05 69.55 30. 7.854]\n",
"class : [b'Third' b'Third' b'Third' b'First' b'Third']\n",
"deck : [b'unknown' b'unknown' b'unknown' b'D' b'unknown']\n",
"embark_town : [b'Southampton' b'Southampton' b'Southampton' b'Southampton'\n",
" b'Southampton']\n",
"alone : [b'y' b'y' b'n' b'y' b'y']\n"
]
}
],
"source": [
"show_batch(raw_train_data)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.337238Z",
"iopub.status.busy": "2020-09-22T18:02:15.336581Z",
"iopub.status.idle": "2020-09-22T18:02:15.357279Z",
"shell.execute_reply": "2020-09-22T18:02:15.356777Z"
},
"id": "HSrYNKKcIdav"
},
"outputs": [],
"source": [
"example_batch, labels_batch = next(iter(temp_dataset)) "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "p5VtThKfGPaQ"
},
"source": [
"Portanto, defina um pré-processador mais geral que selecione uma lista de recursos numéricos e os agrupe em uma única coluna:"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.362477Z",
"iopub.status.busy": "2020-09-22T18:02:15.361950Z",
"iopub.status.idle": "2020-09-22T18:02:15.363569Z",
"shell.execute_reply": "2020-09-22T18:02:15.363922Z"
},
"id": "5DRishYYGS-m"
},
"outputs": [],
"source": [
"class PackNumericFeatures(object):\n",
" def __init__(self, names):\n",
" self.names = names\n",
"\n",
" def __call__(self, features, labels):\n",
" numeric_features = [features.pop(name) for name in self.names]\n",
" numeric_features = [tf.cast(feat, tf.float32) for feat in numeric_features]\n",
" numeric_features = tf.stack(numeric_features, axis=-1)\n",
" features['numeric'] = numeric_features\n",
"\n",
" return features, labels"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.368101Z",
"iopub.status.busy": "2020-09-22T18:02:15.367494Z",
"iopub.status.idle": "2020-09-22T18:02:15.431495Z",
"shell.execute_reply": "2020-09-22T18:02:15.431889Z"
},
"id": "1SeZka9AHfqD"
},
"outputs": [],
"source": [
"NUMERIC_FEATURES = ['age','n_siblings_spouses','parch', 'fare']\n",
"\n",
"packed_train_data = raw_train_data.map(\n",
" PackNumericFeatures(NUMERIC_FEATURES))\n",
"\n",
"packed_test_data = raw_test_data.map(\n",
" PackNumericFeatures(NUMERIC_FEATURES))"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.435608Z",
"iopub.status.busy": "2020-09-22T18:02:15.435088Z",
"iopub.status.idle": "2020-09-22T18:02:15.473728Z",
"shell.execute_reply": "2020-09-22T18:02:15.474098Z"
},
"id": "wFrw0YobIbUB"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"sex : [b'female' b'female' b'female' b'male' b'male']\n",
"class : [b'Third' b'Second' b'First' b'Third' b'Third']\n",
"deck : [b'unknown' b'unknown' b'unknown' b'unknown' b'unknown']\n",
"embark_town : [b'Southampton' b'Southampton' b'Cherbourg' b'Southampton' b'Cherbourg']\n",
"alone : [b'n' b'n' b'y' b'y' b'y']\n",
"numeric : [[ 36. 1. 0. 17.4 ]\n",
" [ 29. 1. 0. 26. ]\n",
" [ 30. 0. 0. 106.425]\n",
" [ 55.5 0. 0. 8.05 ]\n",
" [ 28. 0. 0. 7.225]]\n"
]
}
],
"source": [
"show_batch(packed_train_data)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.477584Z",
"iopub.status.busy": "2020-09-22T18:02:15.477054Z",
"iopub.status.idle": "2020-09-22T18:02:15.509275Z",
"shell.execute_reply": "2020-09-22T18:02:15.508839Z"
},
"id": "_EPUS8fPLUb1"
},
"outputs": [],
"source": [
"example_batch, labels_batch = next(iter(packed_train_data)) "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "o2maE8d2ijsq"
},
"source": [
"#### Normalização dos dados\n",
"\n",
"Dados contínuos sempre devem ser normalizados."
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.512916Z",
"iopub.status.busy": "2020-09-22T18:02:15.512347Z",
"iopub.status.idle": "2020-09-22T18:02:15.545005Z",
"shell.execute_reply": "2020-09-22T18:02:15.545457Z"
},
"id": "WKT1ASWpwH46"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" age | \n",
" n_siblings_spouses | \n",
" parch | \n",
" fare | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 627.000000 | \n",
" 627.000000 | \n",
" 627.000000 | \n",
" 627.000000 | \n",
"
\n",
" \n",
" mean | \n",
" 29.631308 | \n",
" 0.545455 | \n",
" 0.379585 | \n",
" 34.385399 | \n",
"
\n",
" \n",
" std | \n",
" 12.511818 | \n",
" 1.151090 | \n",
" 0.792999 | \n",
" 54.597730 | \n",
"
\n",
" \n",
" min | \n",
" 0.750000 | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" 25% | \n",
" 23.000000 | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 7.895800 | \n",
"
\n",
" \n",
" 50% | \n",
" 28.000000 | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 15.045800 | \n",
"
\n",
" \n",
" 75% | \n",
" 35.000000 | \n",
" 1.000000 | \n",
" 0.000000 | \n",
" 31.387500 | \n",
"
\n",
" \n",
" max | \n",
" 80.000000 | \n",
" 8.000000 | \n",
" 5.000000 | \n",
" 512.329200 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" age n_siblings_spouses parch fare\n",
"count 627.000000 627.000000 627.000000 627.000000\n",
"mean 29.631308 0.545455 0.379585 34.385399\n",
"std 12.511818 1.151090 0.792999 54.597730\n",
"min 0.750000 0.000000 0.000000 0.000000\n",
"25% 23.000000 0.000000 0.000000 7.895800\n",
"50% 28.000000 0.000000 0.000000 15.045800\n",
"75% 35.000000 1.000000 0.000000 31.387500\n",
"max 80.000000 8.000000 5.000000 512.329200"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"desc = pd.read_csv(train_file_path)[NUMERIC_FEATURES].describe()\n",
"desc"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.550009Z",
"iopub.status.busy": "2020-09-22T18:02:15.549396Z",
"iopub.status.idle": "2020-09-22T18:02:15.551382Z",
"shell.execute_reply": "2020-09-22T18:02:15.550966Z"
},
"id": "cHHstcKPsMXM"
},
"outputs": [],
"source": [
"MEAN = np.array(desc.T['mean'])\n",
"STD = np.array(desc.T['std'])"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.554836Z",
"iopub.status.busy": "2020-09-22T18:02:15.554266Z",
"iopub.status.idle": "2020-09-22T18:02:15.556493Z",
"shell.execute_reply": "2020-09-22T18:02:15.555943Z"
},
"id": "REKqO_xHPNx0"
},
"outputs": [],
"source": [
"def normalize_numeric_data(data, mean, std):\n",
" # Center the data\n",
" return (data-mean)/std\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "VPsoMUgRCpUM"
},
"source": [
"Agora crie uma coluna numérica. A API `tf.feature_columns.numeric_column` aceita um argumento `normalizer_fn`, que será executado em cada lote.\n",
"\n",
"Ligue o `MEAN` e o` STD` ao normalizador fn usando [`functools.partial`] (https://docs.python.org/3/library/functools.html#functools.partial)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.561436Z",
"iopub.status.busy": "2020-09-22T18:02:15.560820Z",
"iopub.status.idle": "2020-09-22T18:02:15.563572Z",
"shell.execute_reply": "2020-09-22T18:02:15.563024Z"
},
"id": "Bw0I35xRS57V"
},
"outputs": [
{
"data": {
"text/plain": [
"NumericColumn(key='numeric', shape=(4,), default_value=None, dtype=tf.float32, normalizer_fn=functools.partial(, mean=array([29.631, 0.545, 0.38 , 34.385]), std=array([12.512, 1.151, 0.793, 54.598])))"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Veja o que você acabou de criar.\n",
"normalizer = functools.partial(normalize_numeric_data, mean=MEAN, std=STD)\n",
"\n",
"numeric_column = tf.feature_column.numeric_column('numeric', normalizer_fn=normalizer, shape=[len(NUMERIC_FEATURES)])\n",
"numeric_columns = [numeric_column]\n",
"numeric_column"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HZxcHXc6LCa7"
},
"source": [
"Ao treinar o modelo, inclua esta coluna de característica para selecionar e centralizar este bloco de dados numéricos:"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.567688Z",
"iopub.status.busy": "2020-09-22T18:02:15.566994Z",
"iopub.status.idle": "2020-09-22T18:02:15.569976Z",
"shell.execute_reply": "2020-09-22T18:02:15.569437Z"
},
"id": "b61NM76Ot_kb"
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"example_batch['numeric']"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.573421Z",
"iopub.status.busy": "2020-09-22T18:02:15.572849Z",
"iopub.status.idle": "2020-09-22T18:02:15.861412Z",
"shell.execute_reply": "2020-09-22T18:02:15.860897Z"
},
"id": "j-r_4EAJAZoI"
},
"outputs": [
{
"data": {
"text/plain": [
"array([[-1.01 , -0.474, -0.479, -0.499],\n",
" [-2.128, 0.395, 0.782, -0.154],\n",
" [-0.13 , -0.474, -0.479, -0.485],\n",
" [-0.37 , -0.474, -0.479, -0.501],\n",
" [ 0.989, 0.395, -0.479, 0.323]], dtype=float32)"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"numeric_layer = tf.keras.layers.DenseFeatures(numeric_columns)\n",
"numeric_layer(example_batch).numpy()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "M37oD2VcCO4R"
},
"source": [
"A normalização baseada em média usada aqui requer conhecer os meios de cada coluna antes do tempo."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "tSyrkSQwYHKi"
},
"source": [
"### Dados categóricos\n",
"\n",
"Algumas das colunas nos dados CSV são colunas categóricas. Ou seja, o conteúdo deve ser um dentre um conjunto limitado de opções.\n",
"\n",
"Use a API `tf.feature_column` para criar uma coleção com uma `tf.feature_column.indicator_column` para cada coluna categórica.\n"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.866004Z",
"iopub.status.busy": "2020-09-22T18:02:15.865467Z",
"iopub.status.idle": "2020-09-22T18:02:15.867467Z",
"shell.execute_reply": "2020-09-22T18:02:15.867046Z"
},
"id": "mWDniduKMw-C"
},
"outputs": [],
"source": [
"CATEGORIES = {\n",
" 'sex': ['male', 'female'],\n",
" 'class' : ['First', 'Second', 'Third'],\n",
" 'deck' : ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'],\n",
" 'embark_town' : ['Cherbourg', 'Southhampton', 'Queenstown'],\n",
" 'alone' : ['y', 'n']\n",
"}\n"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.871334Z",
"iopub.status.busy": "2020-09-22T18:02:15.870775Z",
"iopub.status.idle": "2020-09-22T18:02:15.872608Z",
"shell.execute_reply": "2020-09-22T18:02:15.872973Z"
},
"id": "kkxLdrsLwHPT"
},
"outputs": [],
"source": [
"categorical_columns = []\n",
"for feature, vocab in CATEGORIES.items():\n",
" cat_col = tf.feature_column.categorical_column_with_vocabulary_list(\n",
" key=feature, vocabulary_list=vocab)\n",
" categorical_columns.append(tf.feature_column.indicator_column(cat_col))"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.876739Z",
"iopub.status.busy": "2020-09-22T18:02:15.876036Z",
"iopub.status.idle": "2020-09-22T18:02:15.878835Z",
"shell.execute_reply": "2020-09-22T18:02:15.878408Z"
},
"id": "H18CxpHY_Nma"
},
"outputs": [
{
"data": {
"text/plain": [
"[IndicatorColumn(categorical_column=VocabularyListCategoricalColumn(key='sex', vocabulary_list=('male', 'female'), dtype=tf.string, default_value=-1, num_oov_buckets=0)),\n",
" IndicatorColumn(categorical_column=VocabularyListCategoricalColumn(key='class', vocabulary_list=('First', 'Second', 'Third'), dtype=tf.string, default_value=-1, num_oov_buckets=0)),\n",
" IndicatorColumn(categorical_column=VocabularyListCategoricalColumn(key='deck', vocabulary_list=('A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'), dtype=tf.string, default_value=-1, num_oov_buckets=0)),\n",
" IndicatorColumn(categorical_column=VocabularyListCategoricalColumn(key='embark_town', vocabulary_list=('Cherbourg', 'Southhampton', 'Queenstown'), dtype=tf.string, default_value=-1, num_oov_buckets=0)),\n",
" IndicatorColumn(categorical_column=VocabularyListCategoricalColumn(key='alone', vocabulary_list=('y', 'n'), dtype=tf.string, default_value=-1, num_oov_buckets=0))]"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Veja o que você acabou de criar.\n",
"categorical_columns"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.885565Z",
"iopub.status.busy": "2020-09-22T18:02:15.885017Z",
"iopub.status.idle": "2020-09-22T18:02:15.901855Z",
"shell.execute_reply": "2020-09-22T18:02:15.902239Z"
},
"id": "p7mACuOsArUH"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]\n"
]
}
],
"source": [
"categorical_layer = tf.keras.layers.DenseFeatures(categorical_columns)\n",
"print(categorical_layer(example_batch).numpy()[0])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "R7-1QG99_1sN"
},
"source": [
"Isso fará parte de uma entrada de processamento de dados posteriormente, quando você construir o modelo."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "kPWkC4_1l3IG"
},
"source": [
"### Camada combinada de pré-processamento"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "R3QAjo1qD4p9"
},
"source": [
"Adicione as duas coleções de colunas de recursos e passe-as para um `tf.keras.layers.DenseFeatures` para criar uma camada de entrada que extrairá e pré-processará os dois tipos de entrada:"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.907180Z",
"iopub.status.busy": "2020-09-22T18:02:15.906620Z",
"iopub.status.idle": "2020-09-22T18:02:15.908795Z",
"shell.execute_reply": "2020-09-22T18:02:15.908288Z"
},
"id": "3-OYK7GnaH0r"
},
"outputs": [],
"source": [
"preprocessing_layer = tf.keras.layers.DenseFeatures(categorical_columns+numeric_columns)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.912398Z",
"iopub.status.busy": "2020-09-22T18:02:15.911795Z",
"iopub.status.idle": "2020-09-22T18:02:15.926560Z",
"shell.execute_reply": "2020-09-22T18:02:15.925959Z"
},
"id": "m7_U_K0UMSVS"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ 1. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0. 0. 0. -1.01 -0.474\n",
" -0.479 -0.499 1. 0. ]\n"
]
}
],
"source": [
"print(preprocessing_layer(example_batch).numpy()[0])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "DlF_omQqtnOP"
},
"source": [
"## Construir o modelo"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "lQoFh16LxtT_"
},
"source": [
"Crie um `tf.keras.Sequential`, começando com o `preprocessing_layer`."
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.938789Z",
"iopub.status.busy": "2020-09-22T18:02:15.938232Z",
"iopub.status.idle": "2020-09-22T18:02:15.957367Z",
"shell.execute_reply": "2020-09-22T18:02:15.956799Z"
},
"id": "3mSGsHTFPvFo"
},
"outputs": [],
"source": [
"model = tf.keras.Sequential([\n",
" preprocessing_layer,\n",
" tf.keras.layers.Dense(128, activation='relu'),\n",
" tf.keras.layers.Dense(128, activation='relu'),\n",
" tf.keras.layers.Dense(1),\n",
"])\n",
"\n",
"model.compile(\n",
" loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),\n",
" optimizer='adam',\n",
" metrics=['accuracy'])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "hPdtI2ie0lEZ"
},
"source": [
"## Treinar, avaliar, e prever"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8gvw1RE9zXkD"
},
"source": [
"Agora o modelo pode ser instanciado e treinado."
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.961434Z",
"iopub.status.busy": "2020-09-22T18:02:15.960809Z",
"iopub.status.idle": "2020-09-22T18:02:15.963383Z",
"shell.execute_reply": "2020-09-22T18:02:15.962854Z"
},
"id": "sW-4XlLeEQ2B"
},
"outputs": [],
"source": [
"train_data = packed_train_data.shuffle(500)\n",
"test_data = packed_test_data"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:15.967084Z",
"iopub.status.busy": "2020-09-22T18:02:15.966535Z",
"iopub.status.idle": "2020-09-22T18:02:24.980795Z",
"shell.execute_reply": "2020-09-22T18:02:24.981202Z"
},
"id": "Q_nm28IzNDTO"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/20\n",
"WARNING:tensorflow:Layers in a Sequential model should only have a single input tensor, but we receive a input: OrderedDict([('sex', ), ('class', ), ('deck', ), ('embark_town', ), ('alone', ), ('numeric', )])\n",
"Consider rewriting this model with the Functional API.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"WARNING:tensorflow:Layers in a Sequential model should only have a single input tensor, but we receive a input: OrderedDict([('sex', ), ('class', ), ('deck', ), ('embark_town', ), ('alone', ), ('numeric', )])\n",
"Consider rewriting this model with the Functional API.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/Unknown - 0s 455us/step - loss: 0.7093 - accuracy: 0.6000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 18/Unknown - 0s 3ms/step - loss: 0.6065 - accuracy: 0.6444 "
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 36/Unknown - 0s 3ms/step - loss: 0.6114 - accuracy: 0.6444"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 53/Unknown - 0s 3ms/step - loss: 0.5786 - accuracy: 0.6679"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 70/Unknown - 0s 3ms/step - loss: 0.5628 - accuracy: 0.6974"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 88/Unknown - 0s 3ms/step - loss: 0.5413 - accuracy: 0.7094"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 106/Unknown - 0s 3ms/step - loss: 0.5194 - accuracy: 0.7287"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 123/Unknown - 0s 3ms/step - loss: 0.5166 - accuracy: 0.7402"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/126 [==============================] - 0s 3ms/step - loss: 0.5113 - accuracy: 0.7400\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 2/20\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/126 [..............................] - ETA: 0s - loss: 0.4266 - accuracy: 0.6000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/126 [===>..........................] - ETA: 0s - loss: 0.4363 - accuracy: 0.7895"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 37/126 [=======>......................] - ETA: 0s - loss: 0.4753 - accuracy: 0.7730"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/126 [============>.................] - ETA: 0s - loss: 0.4560 - accuracy: 0.7927"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 73/126 [================>.............] - ETA: 0s - loss: 0.4480 - accuracy: 0.7983"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 91/126 [====================>.........] - ETA: 0s - loss: 0.4241 - accuracy: 0.8031"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"109/126 [========================>.....] - ETA: 0s - loss: 0.4244 - accuracy: 0.8044"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/126 [==============================] - 0s 3ms/step - loss: 0.4204 - accuracy: 0.8102\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 3/20\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/126 [..............................] - ETA: 0s - loss: 0.1026 - accuracy: 1.0000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/126 [===>..........................] - ETA: 0s - loss: 0.3695 - accuracy: 0.8526"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 37/126 [=======>......................] - ETA: 0s - loss: 0.4410 - accuracy: 0.8187"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/126 [============>.................] - ETA: 0s - loss: 0.4198 - accuracy: 0.8346"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 72/126 [================>.............] - ETA: 0s - loss: 0.4083 - accuracy: 0.8347"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 90/126 [====================>.........] - ETA: 0s - loss: 0.3929 - accuracy: 0.8345"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"108/126 [========================>.....] - ETA: 0s - loss: 0.4214 - accuracy: 0.8194"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/126 [==============================] - ETA: 0s - loss: 0.4088 - accuracy: 0.8246"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/126 [==============================] - 0s 3ms/step - loss: 0.4088 - accuracy: 0.8246\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 4/20\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/126 [..............................] - ETA: 0s - loss: 0.6042 - accuracy: 0.8000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/126 [===>..........................] - ETA: 0s - loss: 0.3795 - accuracy: 0.8421"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 37/126 [=======>......................] - ETA: 0s - loss: 0.3670 - accuracy: 0.8324"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/126 [============>.................] - ETA: 0s - loss: 0.3764 - accuracy: 0.8327"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 74/126 [================>.............] - ETA: 0s - loss: 0.3706 - accuracy: 0.8447"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 92/126 [====================>.........] - ETA: 0s - loss: 0.3911 - accuracy: 0.8293"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"110/126 [=========================>....] - ETA: 0s - loss: 0.3898 - accuracy: 0.8282"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/126 [==============================] - 0s 3ms/step - loss: 0.3902 - accuracy: 0.8309\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 5/20\n",
"\r",
" 1/126 [..............................] - ETA: 0s - loss: 0.4116 - accuracy: 0.8000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/126 [===>..........................] - ETA: 0s - loss: 0.4069 - accuracy: 0.7895"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 37/126 [=======>......................] - ETA: 0s - loss: 0.4074 - accuracy: 0.7892"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/126 [============>.................] - ETA: 0s - loss: 0.3873 - accuracy: 0.8182"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 73/126 [================>.............] - ETA: 0s - loss: 0.3943 - accuracy: 0.8149"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 91/126 [====================>.........] - ETA: 0s - loss: 0.3767 - accuracy: 0.8296"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"109/126 [========================>.....] - ETA: 0s - loss: 0.3832 - accuracy: 0.8321"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/126 [==============================] - 0s 3ms/step - loss: 0.3828 - accuracy: 0.8357\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 6/20\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/126 [..............................] - ETA: 0s - loss: 0.2257 - accuracy: 0.8000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/126 [===>..........................] - ETA: 0s - loss: 0.3763 - accuracy: 0.8211"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 37/126 [=======>......................] - ETA: 0s - loss: 0.3512 - accuracy: 0.8462"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/126 [============>.................] - ETA: 0s - loss: 0.3359 - accuracy: 0.8566"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 72/126 [================>.............] - ETA: 0s - loss: 0.3552 - accuracy: 0.8459"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 90/126 [====================>.........] - ETA: 0s - loss: 0.3533 - accuracy: 0.8389"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"108/126 [========================>.....] - ETA: 0s - loss: 0.3682 - accuracy: 0.8399"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/126 [==============================] - ETA: 0s - loss: 0.3705 - accuracy: 0.8405"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/126 [==============================] - 0s 3ms/step - loss: 0.3705 - accuracy: 0.8405\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 7/20\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/126 [..............................] - ETA: 0s - loss: 0.0615 - accuracy: 1.0000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/126 [===>..........................] - ETA: 0s - loss: 0.3637 - accuracy: 0.8632"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 37/126 [=======>......................] - ETA: 0s - loss: 0.3762 - accuracy: 0.8432"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/126 [============>.................] - ETA: 0s - loss: 0.3724 - accuracy: 0.8364"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 73/126 [================>.............] - ETA: 0s - loss: 0.3619 - accuracy: 0.8425"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 91/126 [====================>.........] - ETA: 0s - loss: 0.3739 - accuracy: 0.8429"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"109/126 [========================>.....] - ETA: 0s - loss: 0.3630 - accuracy: 0.8561"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/126 [==============================] - 0s 3ms/step - loss: 0.3695 - accuracy: 0.8517\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 8/20\n",
"\r",
" 1/126 [..............................] - ETA: 0s - loss: 0.2391 - accuracy: 1.0000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 18/126 [===>..........................] - ETA: 0s - loss: 0.3660 - accuracy: 0.8444"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 36/126 [=======>......................] - ETA: 0s - loss: 0.3438 - accuracy: 0.8556"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 54/126 [===========>..................] - ETA: 0s - loss: 0.3869 - accuracy: 0.8333"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 72/126 [================>.............] - ETA: 0s - loss: 0.3717 - accuracy: 0.8333"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 89/126 [====================>.........] - ETA: 0s - loss: 0.3813 - accuracy: 0.8315"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"107/126 [========================>.....] - ETA: 0s - loss: 0.3610 - accuracy: 0.8374"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"125/126 [============================>.] - ETA: 0s - loss: 0.3557 - accuracy: 0.8441"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/126 [==============================] - 0s 3ms/step - loss: 0.3575 - accuracy: 0.8437\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 9/20\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/126 [..............................] - ETA: 0s - loss: 0.3238 - accuracy: 0.8000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/126 [===>..........................] - ETA: 0s - loss: 0.3500 - accuracy: 0.8211"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 37/126 [=======>......................] - ETA: 0s - loss: 0.3031 - accuracy: 0.8681"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/126 [============>.................] - ETA: 0s - loss: 0.3029 - accuracy: 0.8640"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 73/126 [================>.............] - ETA: 0s - loss: 0.3231 - accuracy: 0.8591"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 91/126 [====================>.........] - ETA: 0s - loss: 0.3480 - accuracy: 0.8451"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"109/126 [========================>.....] - ETA: 0s - loss: 0.3603 - accuracy: 0.8432"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/126 [==============================] - 0s 3ms/step - loss: 0.3656 - accuracy: 0.8437\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 10/20\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/126 [..............................] - ETA: 0s - loss: 0.4949 - accuracy: 0.8000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/126 [===>..........................] - ETA: 0s - loss: 0.4774 - accuracy: 0.7579"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 38/126 [========>.....................] - ETA: 0s - loss: 0.3723 - accuracy: 0.8211"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 56/126 [============>.................] - ETA: 0s - loss: 0.3826 - accuracy: 0.8214"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 74/126 [================>.............] - ETA: 0s - loss: 0.3744 - accuracy: 0.8338"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 92/126 [====================>.........] - ETA: 0s - loss: 0.3426 - accuracy: 0.8556"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"110/126 [=========================>....] - ETA: 0s - loss: 0.3286 - accuracy: 0.8592"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/126 [==============================] - 0s 3ms/step - loss: 0.3425 - accuracy: 0.8517\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 11/20\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/126 [..............................] - ETA: 0s - loss: 0.1793 - accuracy: 1.0000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/126 [===>..........................] - ETA: 0s - loss: 0.2845 - accuracy: 0.8947"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 37/126 [=======>......................] - ETA: 0s - loss: 0.3418 - accuracy: 0.8595"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/126 [============>.................] - ETA: 0s - loss: 0.3706 - accuracy: 0.8400"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 73/126 [================>.............] - ETA: 0s - loss: 0.3822 - accuracy: 0.8370"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 91/126 [====================>.........] - ETA: 0s - loss: 0.3716 - accuracy: 0.8429"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"110/126 [=========================>....] - ETA: 0s - loss: 0.3545 - accuracy: 0.8501"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/126 [==============================] - 0s 3ms/step - loss: 0.3444 - accuracy: 0.8501\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 12/20\n",
"\r",
" 1/126 [..............................] - ETA: 0s - loss: 0.7250 - accuracy: 0.8000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/126 [===>..........................] - ETA: 0s - loss: 0.3498 - accuracy: 0.8842"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 37/126 [=======>......................] - ETA: 0s - loss: 0.3590 - accuracy: 0.8811"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/126 [============>.................] - ETA: 0s - loss: 0.3372 - accuracy: 0.8824"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 73/126 [================>.............] - ETA: 0s - loss: 0.3357 - accuracy: 0.8702"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 91/126 [====================>.........] - ETA: 0s - loss: 0.3272 - accuracy: 0.8695"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"109/126 [========================>.....] - ETA: 0s - loss: 0.3448 - accuracy: 0.8524"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/126 [==============================] - 0s 3ms/step - loss: 0.3461 - accuracy: 0.8517\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 13/20\n",
"\r",
" 1/126 [..............................] - ETA: 0s - loss: 0.0474 - accuracy: 1.0000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 18/126 [===>..........................] - ETA: 0s - loss: 0.3032 - accuracy: 0.8667"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 36/126 [=======>......................] - ETA: 0s - loss: 0.3609 - accuracy: 0.8222"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 53/126 [===========>..................] - ETA: 0s - loss: 0.3759 - accuracy: 0.8151"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 71/126 [===============>..............] - ETA: 0s - loss: 0.3589 - accuracy: 0.8338"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 89/126 [====================>.........] - ETA: 0s - loss: 0.3444 - accuracy: 0.8462"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"107/126 [========================>.....] - ETA: 0s - loss: 0.3361 - accuracy: 0.8496"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"125/126 [============================>.] - ETA: 0s - loss: 0.3289 - accuracy: 0.8569"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/126 [==============================] - 0s 3ms/step - loss: 0.3269 - accuracy: 0.8581\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 14/20\n",
"\r",
" 1/126 [..............................] - ETA: 0s - loss: 0.1820 - accuracy: 1.0000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/126 [===>..........................] - ETA: 0s - loss: 0.3688 - accuracy: 0.8211"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 37/126 [=======>......................] - ETA: 0s - loss: 0.3120 - accuracy: 0.8649"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/126 [============>.................] - ETA: 0s - loss: 0.3140 - accuracy: 0.8655"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 73/126 [================>.............] - ETA: 0s - loss: 0.2854 - accuracy: 0.8712"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 91/126 [====================>.........] - ETA: 0s - loss: 0.3195 - accuracy: 0.8593"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"109/126 [========================>.....] - ETA: 0s - loss: 0.3266 - accuracy: 0.8606"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/126 [==============================] - 0s 3ms/step - loss: 0.3354 - accuracy: 0.8501\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 15/20\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/126 [..............................] - ETA: 0s - loss: 0.2959 - accuracy: 1.0000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 18/126 [===>..........................] - ETA: 0s - loss: 0.2620 - accuracy: 0.8889"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 36/126 [=======>......................] - ETA: 0s - loss: 0.2754 - accuracy: 0.8701"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 53/126 [===========>..................] - ETA: 0s - loss: 0.3063 - accuracy: 0.8664"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 71/126 [===============>..............] - ETA: 0s - loss: 0.3223 - accuracy: 0.8665"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 89/126 [====================>.........] - ETA: 0s - loss: 0.3228 - accuracy: 0.8620"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"107/126 [========================>.....] - ETA: 0s - loss: 0.3273 - accuracy: 0.8571"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"125/126 [============================>.] - ETA: 0s - loss: 0.3211 - accuracy: 0.8666"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/126 [==============================] - 0s 3ms/step - loss: 0.3225 - accuracy: 0.8660\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 16/20\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/126 [..............................] - ETA: 0s - loss: 0.0785 - accuracy: 1.0000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/126 [===>..........................] - ETA: 0s - loss: 0.2118 - accuracy: 0.8842"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 37/126 [=======>......................] - ETA: 0s - loss: 0.2635 - accuracy: 0.8791"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/126 [============>.................] - ETA: 0s - loss: 0.2943 - accuracy: 0.8603"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 73/126 [================>.............] - ETA: 0s - loss: 0.2800 - accuracy: 0.8729"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 91/126 [====================>.........] - ETA: 0s - loss: 0.2857 - accuracy: 0.8695"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"109/126 [========================>.....] - ETA: 0s - loss: 0.3004 - accuracy: 0.8635"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/126 [==============================] - 0s 3ms/step - loss: 0.3213 - accuracy: 0.8533\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 17/20\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/126 [..............................] - ETA: 0s - loss: 0.1402 - accuracy: 1.0000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/126 [===>..........................] - ETA: 0s - loss: 0.2376 - accuracy: 0.9158"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 37/126 [=======>......................] - ETA: 0s - loss: 0.2356 - accuracy: 0.9121"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/126 [============>.................] - ETA: 0s - loss: 0.2688 - accuracy: 0.8897"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 73/126 [================>.............] - ETA: 0s - loss: 0.2915 - accuracy: 0.8840"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 90/126 [====================>.........] - ETA: 0s - loss: 0.3129 - accuracy: 0.8770"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"107/126 [========================>.....] - ETA: 0s - loss: 0.3185 - accuracy: 0.8684"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"124/126 [============================>.] - ETA: 0s - loss: 0.3185 - accuracy: 0.8671"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/126 [==============================] - 0s 3ms/step - loss: 0.3193 - accuracy: 0.8628\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 18/20\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/126 [..............................] - ETA: 0s - loss: 0.0973 - accuracy: 1.0000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 18/126 [===>..........................] - ETA: 0s - loss: 0.3765 - accuracy: 0.8391"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 36/126 [=======>......................] - ETA: 0s - loss: 0.3184 - accuracy: 0.8531"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 53/126 [===========>..................] - ETA: 0s - loss: 0.3120 - accuracy: 0.8702"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 70/126 [===============>..............] - ETA: 0s - loss: 0.3058 - accuracy: 0.8732"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 87/126 [===================>..........] - ETA: 0s - loss: 0.3237 - accuracy: 0.8588"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"105/126 [========================>.....] - ETA: 0s - loss: 0.3102 - accuracy: 0.8678"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"122/126 [============================>.] - ETA: 0s - loss: 0.3132 - accuracy: 0.8633"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/126 [==============================] - 0s 3ms/step - loss: 0.3155 - accuracy: 0.8612\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 19/20\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/126 [..............................] - ETA: 0s - loss: 0.0096 - accuracy: 1.0000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/126 [===>..........................] - ETA: 0s - loss: 0.2066 - accuracy: 0.8804"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 36/126 [=======>......................] - ETA: 0s - loss: 0.2172 - accuracy: 0.8870"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 54/126 [===========>..................] - ETA: 0s - loss: 0.2529 - accuracy: 0.8839"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 71/126 [===============>..............] - ETA: 0s - loss: 0.2536 - accuracy: 0.8920"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 88/126 [===================>..........] - ETA: 0s - loss: 0.2970 - accuracy: 0.8696"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"106/126 [========================>.....] - ETA: 0s - loss: 0.3064 - accuracy: 0.8672"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"123/126 [============================>.] - ETA: 0s - loss: 0.3122 - accuracy: 0.8644"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/126 [==============================] - 0s 3ms/step - loss: 0.3075 - accuracy: 0.8676\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 20/20\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/126 [..............................] - ETA: 0s - loss: 0.1408 - accuracy: 1.0000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/126 [===>..........................] - ETA: 0s - loss: 0.2732 - accuracy: 0.8421"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 36/126 [=======>......................] - ETA: 0s - loss: 0.2767 - accuracy: 0.8667"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 53/126 [===========>..................] - ETA: 0s - loss: 0.2784 - accuracy: 0.8792"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 70/126 [===============>..............] - ETA: 0s - loss: 0.2585 - accuracy: 0.8886"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 88/126 [===================>..........] - ETA: 0s - loss: 0.2745 - accuracy: 0.8750"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"105/126 [========================>.....] - ETA: 0s - loss: 0.3010 - accuracy: 0.8602"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"122/126 [============================>.] - ETA: 0s - loss: 0.3041 - accuracy: 0.8616"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/126 [==============================] - 0s 3ms/step - loss: 0.3061 - accuracy: 0.8596\n"
]
},
{
"data": {
"text/plain": [
""
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.fit(train_data, epochs=20)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "QyDMgBurzqQo"
},
"source": [
"Depois que o modelo é treinado, você pode verificar sua acurácia no conjunto `test_data`."
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:24.986319Z",
"iopub.status.busy": "2020-09-22T18:02:24.985484Z",
"iopub.status.idle": "2020-09-22T18:02:25.368572Z",
"shell.execute_reply": "2020-09-22T18:02:25.367912Z"
},
"id": "eB3R3ViVONOp"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"WARNING:tensorflow:Layers in a Sequential model should only have a single input tensor, but we receive a input: OrderedDict([('sex', ), ('class', ), ('deck', ), ('embark_town', ), ('alone', ), ('numeric', )])\n",
"Consider rewriting this model with the Functional API.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/Unknown - 0s 325us/step - loss: 0.1994 - accuracy: 1.0000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 21/Unknown - 0s 2ms/step - loss: 0.4007 - accuracy: 0.8762 "
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 41/Unknown - 0s 2ms/step - loss: 0.4847 - accuracy: 0.8390"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"53/53 [==============================] - 0s 3ms/step - loss: 0.4557 - accuracy: 0.8447\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"Test Loss 0.45572778582572937, Test Accuracy 0.8446969985961914\n"
]
}
],
"source": [
"test_loss, test_accuracy = model.evaluate(test_data)\n",
"\n",
"print('\\n\\nTest Loss {}, Test Accuracy {}'.format(test_loss, test_accuracy))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "sTrn_pD90gdJ"
},
"source": [
"Use `tf.keras.Model.predict` para inferir rótulos em um lote ou em um conjunto de dados de lotes."
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"execution": {
"iopub.execute_input": "2020-09-22T18:02:25.373557Z",
"iopub.status.busy": "2020-09-22T18:02:25.372946Z",
"iopub.status.idle": "2020-09-22T18:02:25.722155Z",
"shell.execute_reply": "2020-09-22T18:02:25.721632Z"
},
"id": "Qwcx74F3ojqe"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"WARNING:tensorflow:Layers in a Sequential model should only have a single input tensor, but we receive a input: OrderedDict([('sex', ), ('class', ), ('deck', ), ('embark_town', ), ('alone', ), ('numeric', )])\n",
"Consider rewriting this model with the Functional API.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Predicted survival: 598.16% | Actual outcome: SURVIVED\n",
"Predicted survival: 223.96% | Actual outcome: SURVIVED\n",
"Predicted survival: 295.53% | Actual outcome: DIED\n",
"Predicted survival: 493.27% | Actual outcome: DIED\n",
"Predicted survival: -175.62% | Actual outcome: SURVIVED\n"
]
}
],
"source": [
"predictions = model.predict(test_data)\n",
"\n",
"# Mostrar alguns resultados\n",
"for prediction, survived in zip(predictions[:10], list(test_data)[0][1][:10]):\n",
" print(\"Predicted survival: {:.2%}\".format(prediction[0]),\n",
" \" | Actual outcome: \",\n",
" (\"SURVIVED\" if bool(survived) else \"DIED\"))\n"
]
}
],
"metadata": {
"colab": {
"collapsed_sections": [],
"name": "csv.ipynb",
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}