{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "GWEKvPCCxJke" }, "source": [ "##### Copyright 2020 The TensorFlow Authors." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "l-m8KQ-nxK5l" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "O8FuVCLYxi_l" }, "source": [ "# TensorFlow Addons 图像:运算\n", "\n", "\n", " \n", " \n", " \n", " \n", "
在 TensorFlow.org 上查看在 Google Colab 中运行在 GitHub 上查看源代码下载笔记本
" ] }, { "cell_type": "markdown", "metadata": { "id": "2a5ksOt-xsOl" }, "source": [ "## 概述\n", "\n", "此笔记本将演示如何使用 TensorFlow Addons 中的一些图像运算。\n", "\n", "下面是此示例中将涉及的图像运算列表:\n", "\n", "- `tfa.image.mean_filter2d`\n", "\n", "- `tfa.image.rotate`\n", "\n", "- `tfa.image.transform`\n", "\n", "- `tfa.image.random_hsv_in_yiq`\n", "\n", "- `tfa.image.adjust_hsv_in_yiq`\n", "\n", "- `tfa.image.dense_image_warp`\n", "\n", "- `tfa.image.euclidean_dist_transform`" ] }, { "cell_type": "markdown", "metadata": { "id": "DMbjxr4PyMPF" }, "source": [ "# 设置" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "5hVIKCrhWh4a" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "TensorFlow 2.x selected.\n" ] } ], "source": [ "import tensorflow as tf\n", "import numpy as np\n", "import tensorflow_addons as tfa\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": { "id": "Q6Z2rsP8yp2v" }, "source": [ "# 准备和检查图像" ] }, { "cell_type": "markdown", "metadata": { "id": "9gbgJP10z9WO" }, "source": [ "## 下载图像" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "IgUsVhBQ6dSg" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloading data from https://tensorflow.org/images/tf_logo.png\n", "40960/39781 [==============================] - 0s 1us/step\n" ] } ], "source": [ "img_path = tf.keras.utils.get_file('tensorflow.png','https://tensorflow.org/images/tf_logo.png')" ] }, { "cell_type": "markdown", "metadata": { "id": "uheQOL-y0Fj3" }, "source": [ "## 检查图像" ] }, { "cell_type": "markdown", "metadata": { "id": "MFGirRRZ0Y9k" }, "source": [ "### TensorFlow 图标" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "NRlvNQdm1YI8" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAAEICAYAAACTenveAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAfbklEQVR4nO3deZwcVbn/8c+3J2FfwhK2JBCQIJdF\nll9AFuUqu7iwCAKiRC4SWQR3DagXF0DAnwZwAaMgoMgmXuFyUXZRrywG2UEgIEhiQgIkAWSRTD/3\nj3N6UnRmMktNT/fMfN+v1yRV51RXPd1d/dQ5p6q7FBGYmZVRaXYAZjb4OZGYWWlOJGZWmhOJmZXm\nRGJmpTmRmFlpwz6RSNpU0qJmx9EKJO0u6b6l1PfLayVpb0kzyq6nP0haQdJfJa3Z7FhakaT/kfSu\n7pYrnUgkvVz4q0p6tTB/WNn19xdJcyS9UhfvGgO07TskfWQgtlVGRNwUEVvV5vNr9o5mxjQAjgN+\nGxHPAUg6XdIbdfvJerWFJW0n6d68L90laYtCXUXSVEnzJT0n6ZSeBiHpaEmL6ra7Y6H+LZL+kLf7\nkKRd6h4/RdKzkhZK+pGkkT3c7l6SHpS0IMd8paS1C4ucAZza3XpKJ5KIWKn2B/wdeH+h7JKy6y9L\n0ojC7J7FeCPi+aYFZq3iE8DP6souqttP/gEgaXngamAasBpwJfBfhX3seGAPYDNgW+BgSR/rRSy/\nq9vu7YW6XwJ/AFYHTgF+LWlUjmtf4ARgF2AjYEvgyz3c5n3AHhExChgL/AP4XqH+D8A4SVsubSUN\n79pIapP0VUlP5ox3SeEF2DRn4SMkzZQ0T9IXCo/dWdI9kl7MR8dvFeo+KOnhnElvkjShUDdH0ucl\nPQS82Mt415d0naQXJD0maVIuX0nSa5JWyfPflPR63rmQ9G1Jp/fh9Vna89he0n2SXpL0C0m/kvSV\nQv1xkp6Q9HyuW7uLbVwu6bg8/RZJIenIPL+5pDl5uqPLIelKYC3ghnx0PKGwvk7fr062u69St+El\nSc8U15HrT8rrmKVC61XS/vl5vyjp75JOKtTV9pmjJc2W9A9Jxxfqu9zfOolvk/wc/9LVc6izB/Ba\nRPwwIl4HvgOsDNRabZOAMyNidkT8HTgL+FgP190lSW8DNgG+GRGvRcSlwBPAfoXtnhcRj+aD46k9\n3W5EzImI2YWidmDjQn0AtwH7LG09AzFG8nlgT9KLPRZ4A5haqG8DJpKC3wc4VdJGue77wGkRsQow\nAfg1QM6OFwLHknaE24Cr61ofB5Pe+N52X64EHgXWBT4MTJW0c0S8DNwPvDMv9+/ATGCHwvxtvdnQ\n0p5H4eh3Luno99/A+wuP3Qf4KrA/MAZ4jiWPrDW3Ae8qxPkk6ejVZdwRcRAwl8WtuHNy1dLer3oX\nAIdHxMrA1qSjW80GgID1gE8C50laKde9SHrtR5E+LJ+XtHfhsW3AjqSj73uBr2txF6y7/a1oS+Dx\nWPJ7IgfmA8kDkj5eKN+cdAQHICKqwIO5fIn6PL05PbdDPig8KulESbXP5+bAYxHxahfr7my7GxRe\nz6WSNEHSAuAVUlfv23WLPAJstcQDiyKi3/6Ap4Dd68r+BuxcmN8wByxgUyCANQv19wP75em7SE20\nNerWeSpwcWG+DZgH7JDn5wAfrnvMHOAlYEH+uyyXbwosytMTgNeA5QuPm0rK9uQX+ExgWWA2aaf9\nGumo9BqwShevyx3ARzop7/J5kD4MT9YtPx34Sp6+BPhGoW4UUAXW6WQ7mwPP5ukLgaNq6wYuB47N\n03sDM+pes3cU5pf6fnWy3bnAEcDKdeV7AwuBSqHsRWDrLtZzHvCtuhjGF+rPAX7Q3f7WyXqPJHUn\nimVbAOvk92KX/H7sX3i/Lqxb/ipgCjCyk7i2JLVgevLZ2RgYTzq4bw08Bnwm1x3VSZzfKeyXs4B3\nFepWzrEssS90E8OawInA/6srPx64bmmPbWiLRJKAccB1uem+ALgnv1i1lkJ75IGu7BWglkknAW8D\nHpN0p6S9cvl6wNO1B0REO+nFHFNYzzOdhPSeiBiV/w7ppH49YF68OfM/XVhv7cj+dtKH+hbSEX1n\n4IGI6FU3qpvnsR6pxVNUfE71j11A+jCOYUkPAxVJm5GO1P8FvCxpPOnD0puW1NLer3r7Ah8E/i7p\nFknbFermRTqiL7Ge3KW9LXd7FpKa6fVnVYqvxdPAej3c34rmkz50HSLiwUjN/faI+D3wA+DAXP0y\nsErdOlYBXoqIN4B/1dWvQjp4dSsiZkTEUxFRjYh7gdN6st0u6lcplPdYfl8vJbWKVahamXTw7VJD\nE0mkdDYL2LXwAR4VEcvV7YxdPf6RiDiY1Ow/B/iVpGVIA0Ib1JaT1Eb6AM0qPrwPIf8DGF0b98jW\nL6z3j6Qm3ntJH757SUfIPellt6awva6ex2xS07xo3FIeO4q0A82qe0ztffg98BHSEfK5HO9kYAQp\n0XSm1FfDI+L2iHgfsDZwA/CLHj70ClJLaVxErEpqRalumeJrsT7wjz7sb/cDG9d9aJZ4GoVtP0Sh\niZ+7Hlvk8iXq8/RD9E39djeRtFwX6+5su09H6o731gjSQWqFQtm/8eau0xIGYozkPOB0SeMAJK0l\n6f3dPIa87OGS1shH6oWkFzdIO9n+knZROs01BXie1EooYwbwAHCKpGUlbUtqFf0cOo76DwHHALfl\nI+p04ON0n0hGSlqu8Deim+fxe2B5SZPzmMmHePPOcilwlKQt8g52OnBLRMzpYvu3kcYianH+Ls//\nPn8AO/MsaRyi1yStKOkQpcHpN0hHz2o3D6u1YlcCno+I1yTtBBzUyaInS1pe0lbAR0mvJfRif4uI\nGaTnuE1h+/tLWlXJjqQxg6tz9Y2k9+RoScsCnwH+STrAAFwMfEHSOnn7nyYlwdq650jqrCWMpPdK\nGp2ntyB1Ma7Ocd4PPA58Ne+XB5O6QrW4LgY+IWkTSasDJ9Vt9w5JU7rY7oGSNs7Pd23g/wN3RMQ/\nc71IrdbfdPb44ovZ6DGSNuBL+YV4ifRhPTkW93cX1S3fMZ5AOjI9lx/3ALBPYbkPkQaBFpC6GG8t\n1L2pb99VWWcxkPqpvyE1ex8H/qNu+ak5nrY8/3nSSPdqS3ld7mBxEqz9/aQHz2PH/LxfIh3NrwW+\nUKg/gTRw+gJpIHrdpcSwVd7uwXl+NOmD/anCMvVjJAeRuhALSElnqe9XXfmKpFbIfFKX607g7Z1t\np/79AQ7N230pP6/zCq/XpsAi4Oj8mNnAp3uyv3XxunwOmFqY/1WO+eX8vhxTt/x2pJboq8CfgS0K\ndZW8f8wnHRBOLdStQEo6G3URxzmkMaV/5pi/UtvHcv3GpMHqV0ktyH+ve/yU/PiFpNPTIwt1M4F3\nLuX5P5W3O5s09ja2UP9O4E/dffYVXR6MrNUoXXV6eqTTf8OSpE2BByNiRLcL92x9K5BO/74jetDd\nLrGd3YHDIuKIRm2ji+1uDPw4It7dx8dfC3w3Im5Z6nJOJK1L0rtJXan5pLMf3yWdFWjYDt/q+juR\nWP9oyBiJ0oVNj0qa0VXfzHpkc9J1CvNJ15ocMJyTiLWufm+R5DMPj5EuBptJ6kceGhFdnRkws0Gu\nES2S7UkDaU9GxL+Ay0jXE5jZENWIfuYY3nyx0EzSBVxdWnPNNWP8+PENCMXMau6+++7nImJ0I9bd\ntAErSZNJF0Sx/vrrM3162UtAzGxpJD3d/VJ904iuzSzefNXhWDq/2nJaREyMiImjRzckSZrZAGlE\nIvkzMEHShvly9kOAaxqwHTNrEf3etYmIRZI+CVxPusrwgojo6/cNzGwQaMgYSURcB1zXiHWbWesZ\n9j/+bGblOZGYWWlOJGZWmhOJmZXmRGJmpTmRmFlpTiRmVpoTiZmV5kRiZqU5kZhZaU4kZlaaE4mZ\nleZEYmalOZGYWWlOJGZWmhOJmZXmRGJmpTmRmFlpTiRmVpoTiZmV5kRiZqU5kZhZaU4kZlaaE4mZ\nleZEYmalOZGYWWlOJGZWmhOJmZXmRGJmpTmRmFlpTiRmVpoTiZmV5kRiZqU5kZhZaU4kZlZat4lE\n0gWS5kp6sFC2uqQbJT2e/18tl0vSOZJmSLpf0raNDN7MWkNPWiQXAnvXlU0Bbo6ICcDNeR7gPcCE\n/DcZOLd/wjSzVtZtIomI3wMv1BXvC1yUpy8C9iuUXxzJHcAoSev2V7Bm1pr6OkaydkTMztNzgLXz\n9BjgmcJyM3PZEiRNljRd0vR58+b1MQwzawWlB1sjIoDow+OmRcTEiJg4evTosmGYWRP1NZE8W+uy\n5P/n5vJZwLjCcmNzmZkNYX1NJNcAk/L0JODqQvnh+ezNDsDCQhfIBqnI/0akvzdXBvVFNvz05PTv\npcDtwFslzZR0JHA6sIekx4Hd8zzAdcCTwAzgx8CxDYnaGi9IiQNQQFywFZp+zpKLXbwNXLVXTjLV\nPnRybSgY0d0CEXFoF1W7dbJsAMeVDcqaL1QlQug3HyfuPx9CoEBS/YLobzcQ36mg911C9a2HUPF1\njsOO33HrUI1ILRECQlTOqKD7zkeAtJSmhkBA9X8OQ99p62jJLNENsiGr2xaJDR8VIG4/DW77MgBV\nRGVpCaSOIjdcpubj04E3wfpLNFxtCHIisdRyEHD2GPTqHNJMN62QToiUTFAeKvnl7lTfeija5xep\n1RIB9V0jGxLctRmucjcGAu74DpxWgVdm9+tYaQB69DJ0luDJ/86bdXdnKHKLZJgKBBftDDP/lLoj\nqrVD+kdtXakBIrj6A4CIt01Gu/0wL+HWyVDhFskwElTTQOjj18Ipgmf+hCpQ6eck0hnlLVQe/BFx\ndhsxf0Ya1LUhwYlkOAnBL/aBy96fM0dzWgQRQhdvArd/rSnbt/7nRDLERe3Csju/B6dU4MnfIoRC\nTetY1M4E6a5vEGcL5tyRxk7cQBm0PEYyRHUMal57NLpnWiqDJS8oazIBXLkTEMReP4dNPpwqovVi\nta65RTJU/fXX8PUKcfePmx1Jj4SEbvgIfL8CC2c0OxzrJSeSISS1Qqrws73gigMQUBkk/YUK6VoW\nCfSzTdDtJ3b+JUFrSe7aDGLpUvbaNOjktnRF2ACchWkoAfecge49E4A4pn1xlbs7LcktkkGtmv77\n7efQyZV8WekQdG4FHr2IQZ4ehzQnkkEmar//Ee3w8nNwcgXdfla/X1DWSiSIW45A51WI6hv5C4HN\njsqKnEgGIRHE9VPg9HXStSHDgKQ0XjJtGXjyKlC12SFZgcdIBo088PjVEYQCUcsh+VtyQ5yIdCk/\nEDccuPj5T64uPlU89F+GluUWyaAQxB0/RF9pA2LIDoX0lFj8fUN+XIH5D9R1d9xaGWhukbSwjq/3\nf7mS5/OX4Hzk7XgJqoCu2iqVHVXFXwZsDieSFlONfE3Fw1fBJQcRiErtlGdlmDdFOlFLGwHwk0pq\nlRz6N7TSeOeTAeRE0hLSOEft3zip0tHvl4bHGEh/kYDLN0yv5cerHV0gX3/SWB4jaQGBiKiie38B\nU9JbogpD97qQRssX+MZPKsTcO5odzbDgFkkTRfpVVIgqnDiiY0zEx87ypPz7sdfslH5w5YgqoZRh\nRFuzwxtynEia6fmn4My3pKZ3JX/RJH/nxMqr/eRKEFR/mn824ZC5xPKrIXnX709+NQda5H77l0ag\nCKKi1I2xhlEhN1cvXwu1rQCHv5zHpJy1+4N34YH2+M3whXQ9SHT8awOlAmjRq/DTCvH6wmaHM2S4\nRdJoEaAg/vADuPoEYPHpSp9IaIbFg1C6dLV0deyeN8I6uyI3DfvMiaSBItrh6bvQ93dyA7oFdVx/\ncsMeAMRBz6Ll18yX4jup9IZfrUb60opwzk7+pmqrqyqdb79yHfjbpR436QMnkgbSotc7fvXLWpcU\nENX0Pv3vR/Fps95zImkkXxNiw4QTiZmV5kRiVhThU/J94ERiVuCL1PrGicSsyDmkT7pNJJLGSbpV\n0sOSHpL0qVy+uqQbJT2e/18tl0vSOZJmSLpf0raNfhJm1lw9aZEsAj4XEZsBOwDHSdoMmALcHBET\ngJvzPMB7gAn5bzJwbr9HbWYtpdtEEhGzI+Ivefol4BFgDLAvcFFe7CJgvzy9L3BxJHcAoySt2++R\nW6faqRCh/D2eQWrZUf7V1UGmV2MkksYD2wB3AmtHxOxcNQdYO0+PAZ4pPGxmLrNGicXnGSpU4aQF\ng7urv+EHqRz2VyB9qXHQJsRhpMeJRNJKwFXApyPixWJdpBu09ur9ljRZ0nRJ0+fNm9ebh1qdyL9c\nGoddC1+rUl1mJWAQjxsqYNRbqR7bDtt/s9nRWA/0KJFIGklKIpdExK9y8bO1Lkv+f24unwWMKzx8\nbC57k4iYFhETI2Li6NGj+xr/sJZ+uEfwmRnwtXa0yXuRRNsQ+RZrBaGJX4Gjq8ReV6afTxwmNwQb\nbHpy1kbA+cAjEfHdQtU1wKQ8PQm4ulB+eD57swOwsNAFsn4Uu0yBr1dh9Q0Z2vdyCdjwQDi2ijY6\noNnBWCd68jMCOwMfBR6QdG8uOwk4HbhC0pHA08CHct11wD7ADOAV4Ih+jdhSV+aYu9F62+QSgYbu\n75Au/p0QwZ5XEE9dja4/gKACg3tYecjoNpFExB/puru9WyfLB3BcybisIELpXrchOGVRuvJyuH6l\nWBW04f5wdKQbqf94BLXbYlnzDI3O9BAXCvjgT+GUdlDFx98ObeioKtrqi80OZNhzImlB6T62lY4f\nRKqcUoVtDk83zMI3e6pJt5wQvP10OKpKFfwjUk3in1psMelEumC7I9ABP+ko90//dU61fwU6KogI\n4rrdiNm3pi5gxLDtBQ4kJ5JWdNqi4TsGUpYC9rkJRcAFI5sdzbDhw1wDRO3eNT1UrearN99+DDq9\nHanir7L3kaik16/SBh9vh9X+LSVl+dxOI7lF0hCVdEahh4TgW4sI5IZIf4qAAx4CRFxQIfI1wNb/\nnEgaICWDbq7rCKiuvxP65B+B8D1VCqoRKKXVUut502t6ZDsKwSUrE2+87ITSz7z3DqAq6Vu5VQFn\nVqkc/0eQPJBaR3/9KakjkruIvWjdLXW9CtoPm0/1Y/kMD6Kzj0AM6auEG8N78ACpnZbUBjuiM2uX\nUKnjRte2WATwgza46xsQEP1w1W4+cU6bKlQIKh+rwkrjl0waHkjpEyeSBovaPzt+An27HY7/U7oe\nxMmjS5XabTymfwOdW4GrdkqndfvlIpE0GIuEDnwSHb6IWGPbvMHa3cb9segtj5E0SMevaCyzEnFa\nulm1z8T0jZ69nThvBOx5KbzlIAp3Ty655mq6w977/oxUIX6+LFT/le/X7PeqN5x6GyCItC9+8wXi\nWwvT90NUcRemrwRQhesPIc6tEJG/d1RaOs3eMSh72Kswert+WO/w40TSAKqdxl1+VN5V3fHuF8pX\nqf5oBNxzOhEpaVf77XfUBHvf6a8g9IETSYMs/oZu7c/KKL6CqgbcdSJME9x8aBra6IcWShq78nvV\nF04kNvjkvVYBPHE5mlYhnrwid3kg+ul0sfWcE4kNDTcdDL/Zk6piSP/IU6tyIrFBr9aD1Kyb0bQK\nVD0mNdCcSGzI8bcNBp5fcjMrzYnEhhT5OwdN4URiZqU5kZhZaU4kZlaaE4mZleZEYmalOZGYWWlO\nJGZWmhOJmZXmRGJmpTmRmFlpTiTWelZ5C9XCr59Z63MisZYTY3ZB/zEH8A9mDxZOJNZyhNAKa8PR\nVdj9Enp1F4oqxBsLGxabdc6JxFqWKkKbHIqODWK//wUgops7qFTwnQubwK+4DQ7r7ADHtBNbfqLZ\nkVgnuk0kkpaTdJek+yQ9JOnruXxDSXdKmiHpcknL5PJl8/yMXD++sU/BhgOpgqignb9HHHBXundv\n7T5Z1nQ9aZG8DuwaEVsBWwN7S9oBOAOYGhEbA/OBI/PyRwLzc/nUvJxZv5CE1tqOytEBk9MtNquR\nbo7XL3f0tD7pNpFE8nKeHZn/AtgV+GUuvwjYL0/vm+fJ9bvJNwuxBggCjqqinc/2HTabrEdjJJLa\nJN0LzAVuBJ4AFkTEorzITGBMnh4DPAOQ6xcCa3SyzsmSpkuaPm/evHLPwoalSr6hlbY4AR1VBei4\n/sQGVo8SSUS0R8TWwFhge2DTshuOiGkRMTEiJo4ePbrs6my4U6CjqlS2Oamf7gtsvdGrszYRsQC4\nFdgRGCWpdi5uLDArT88CxgHk+lWB5/slWrMuVdIvP293Klpm5WYHM+z05KzNaEmj8vTywB7AI6SE\ncmBebBJwdZ6+Js+T62+J8DCY2VDWzdU9AKwLXCSpjZR4roiIayU9DFwm6RTgHuD8vPz5wM8kzQBe\nAA5pQNxm1kK6TSQRcT+wTSflT5LGS+rLXwMO6pfozGxQ8JWtZlaaE4mZleZEYmalOZGYWWlOJGZW\nmhOJmZXmRGJmpTmRmFlpTiRmVpoTiZmV5kRiZqU5kZhZaU4kZlaaE4mZleZEYmalOZGYWWlOJGZW\nmhOJmZXmRGJmpTmRmFlpTiRDVKB0X9zBdK+owj18fQeTwcWJZIjSye3EVpMYTHkEgJ2+Bbue73v5\nDjJOJEOVhPa7kPjPasdRvmUFxKoTqB7XDtt+CSlg8KXAYa0nN8iyQawiwcntVENw3hbw3MOAmvox\njRBSEKrABnvCB65LNwNvYkxWjhPJMBAhKoI4+kGkoPqNNtTsvoMExy8CBbRya8l6xF2bYSAlDeX/\nK+gr7cSKawFQHeAPcQQwdhfi+PbcCqk0P6lZaW6RDEOqVOCzc9L0z99NPPU7qNRGJfp3fCKItLoA\ntjyK2O08KvLxa6hxIhnm4rBbqMQiOGNFIt7o/3GKEFp+NeITzwEeQh2qnEiGuYoEGgkn/gtefQHO\nWoOIKNXdiML/OuE1qm0j03ZsyHIb0xZbbhQxpQojlyu1mqACK66LPlOFtpGEPJo61LlFYh2kSrqi\n9POvAEFMXQP+tRD18LRKAFprW/TR6ek6llze5g7NkOdEYm+yuEsj9Nn5VKMKZ7YV+iv13Z5qqpLQ\n56r5kTbcOJHYUkmCL1bhwYvh9Rc7W4D42P1ojc0HPjhrGU4ktlTKX/5jy0mdDsJq0r1ugVjPB1sl\ntUm6R9K1eX5DSXdKmiHpcknL5PJl8/yMXD++MaHbQPOFY9aV3py1+RTwSGH+DGBqRGwMzAeOzOVH\nAvNz+dS8nJkNYT1KJJLGAu8FfpLnBewK/DIvchGwX57eN8+T63eTD2VmQ1pPWyRnAV8Eqnl+DWBB\nRCzK8zOBMXl6DPAMQK5fmJc3syGq20Qi6X3A3Ii4uz83LGmypOmSps+bN68/V21mA6wnLZKdgQ9I\negq4jNSlORsYJal21mcsMCtPzwLGAeT6VYHn61caEdMiYmJETBw9enSpJ2FmzdVtIomIEyNibESM\nBw4BbomIw4BbgQPzYpOAq/P0NXmeXH9L+Ac4zYa0Mt+1+RLwWUkzSGMg5+fy84E1cvlngSnlQjSz\nVterC9Ii4nfA7/L0k8D2nSzzGnBQP8RmZoOEv/1rZqU5kZhZaU4kZlaaE4mZleZEYmalOZGYWWlO\nJGZWmhOJmZXmRGJmpTmRmFlpTiRmVpoTiZmV5kRiZqU5kZhZaU4kZlaaE4mZleZEYmalOZGYWWlO\nJGZWmhOJmZXmRGJmpTmRmFlpTiRmVpoTiZmV5kRiZqU5kZhZaU4kZlaaE4mZleZEYmalOZGYWWlO\nJGZWmhOJmZXmRGJmpTmRmFlpTiRmVpoTiZmV5kRiZqU5kZhZaYqIZseApJeAR5sdRy+sCTzX7CB6\naDDFCoMr3sEUK8AGETG6ESse0YiV9sGjETGx2UH0lKTpgyXewRQrDK54B1OsjeaujZmV5kRiZqW1\nSiKZ1uwAemkwxTuYYoXBFe9girWhWmKw1cwGt1ZpkZjZIOZEYmalNT2RSNpb0qOSZkia0gLxXCBp\nrqQHC2WrS7pR0uP5/9VyuSSdk2O/X9K2TYh3nKRbJT0s6SFJn2rVmCUtJ+kuSfflWL+eyzeUdGeO\n6XJJy+TyZfP8jFw/fqBiLcTcJukeSde2eqzN1NREIqkN+AHwHmAz4FBJmzUzJuBCYO+6sinAzREx\nAbg5z0OKe0L+mwycO0AxFi0CPhcRmwE7AMfl17AVY34d2DUitgK2BvaWtANwBjA1IjYG5gNH5uWP\nBObn8ql5uYH2KeCRwnwrx9o8EdG0P2BH4PrC/InAic2MKccxHniwMP8osG6eXpd0AR3Aj4BDO1uu\nibFfDezR6jEDKwB/Ad5Oujp0RP0+AVwP7JinR+TlNIAxjiUl4V2BawG1aqzN/mt212YM8ExhfmYu\nazVrR8TsPD0HWDtPt1T8uTm9DXAnLRpz7ircC8wFbgSeABZExKJO4umINdcvBNYYqFiBs4AvAtU8\nvwatG2tTNTuRDDqRDjktd85c0krAVcCnI+LFYl0rxRwR7RGxNelovz2waZND6pSk9wFzI+LuZscy\nGDQ7kcwCxhXmx+ayVvOspHUB8v9zc3lLxC9pJCmJXBIRv8rFLR1zRCwAbiV1D0ZJqn3vqxhPR6y5\nflXg+QEKcWfgA5KeAi4jdW/ObtFYm67ZieTPwIQ8Er4McAhwTZNj6sw1wKQ8PYk0DlErPzyfCdkB\nWFjoTgwISQLOBx6JiO8WqlouZkmjJY3K08uTxnIeISWUA7uItfYcDgRuya2rhouIEyNibESMJ+2X\nt0TEYa0Ya0to9iANsA/wGKmv/OUWiOdSYDbwBqkPfCSpr3sz8DhwE7B6Xlaks05PAA8AE5sQ7ztI\n3Zb7gXvz3z6tGDPwNuCeHOuDwH/m8o2Au4AZwJXAsrl8uTw/I9dv1KR94l3AtYMh1mb9+RJ5Myut\n2V0bMxsCnEjMrDQnEjMrzYnEzEpzIjGz0pxIzKw0JxIzK+3/AIUWUpOmeHMPAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "tags": [] }, "output_type": "display_data" } ], "source": [ "img_raw = tf.io.read_file(img_path)\n", "img = tf.io.decode_image(img_raw)\n", "img = tf.image.convert_image_dtype(img, tf.float32)\n", "img = tf.image.resize(img, [500,500])\n", "\n", "plt.title(\"TensorFlow Logo with shape {}\".format(img.shape))\n", "_ = plt.imshow(img)" ] }, { "cell_type": "markdown", "metadata": { "id": "clXQrFVa2nN7" }, "source": [ "### 制作黑白版本" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "tbaIkUCS2eNv" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQQAAAEICAYAAAC5yopxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAeJUlEQVR4nO3de5xVdb3/8dd7QMELiiAaB/hBllZ4\nCZWL4cG7ectLpzLNk2gaeS1/9vil+TvHzMpjakdP9/BoYKlI5UlLfvkz8pKmIHgBkVDkgGgKqNwU\nNZj5nD/Wdy8Xwwwzw+yZvffM+/l47Mfstb5r7fXZe/Z67+/6rrVnFBGYmQHUVboAM6seDgQzyzkQ\nzCznQDCznAPBzHIOBDPLdelAkPSApLNbuew8SYd0cEmdQtJlkv5zM+1nSHq4DNu5QtIv2/s45SBp\nuKRZklTpWqqNpF6S/ippQEvLVjQQJC2W9HdJOzea/6SkkDSss2qJiD0j4oHO2l5HioirIuJsAEnD\n0mvZs9J1dbBvAddFurAmfRi8I+nNdFtQXFjS5yQtkfSWpN9K6ldo6yfpv1LbEkmfa20Rkial9/Sb\nhVuPQvvhaedcJ+l+SUMLbb0k3SxpjaRXJV3chu0emh5vtaTFxbaIeBe4Gbi0pcephh7CfwOnliYk\n7Q1sW7lyrNZIGggcCvy2UdMFEbF9un2osPyewM+AzwO7AuuAHxfW+xHw99R2GvCTtE5rXVPY7vYR\nUZ+2uzNwJ/CvQD9gFnBHYb0rgN2Boen5fE3S0a3c5ltkO/3/aab9NmC8pF6be5BqCIRfAKcXpscD\ntxQXkHRc6jWskbRU0hWFtt6SfinpdUmrJD0uadfGG5E0UNIcSU2+YKm3ckS6f4WkX6XHXStprqQ9\nJH1d0vJUw8cL654paX5adpGkLzV67K9JekXS3ySdnT6xP5jaekm6TtKLkpZJ+qmkbZqpcYmk/dP9\n09Lj7Jmmz5L020L9pa78Q+nnqvRp9bHC410naaWk/5Z0TFPbTMtdIunl9PwWSDq80Ly1pFtS2zxJ\nIwvrXSrphdT2rKRPFtrOkPSIpB+mT7W/Fh9X0o6Sbkqv28uSvl38pG3kSOCJiHinuefQyGnA7yLi\noYh4k2wH/SdJfSRtB3wK+NeIeDMiHgbuJguP9vonYF5E/CrVegXwUUkfTu3jgW9FxMqImA/cCJzR\nmgeOiJkR8QtgUTPtLwErgQM29zjVEAiPATtI+kj6hZ8CND4ufYssNPoCxwHnSjoptY0HdgSGAP2B\nc4C3iytLej/wIPDDiLi2lXUdTxZWOwFPAveSvV6DgCvJPmFKlgOfAHYAzgSul7Rf2vbRwMXAEcAH\ngUMabedqYA9gRGofBFzeTE0PFtY/mOyXf1Bh+sEm1im1902fVo+m6THAAmBn4BrgJmnT429JHwIu\nAEZFRB/gKGBxYZETgClkv5u7gR8W2l4AxpH9fr4J/DJ9mpeMScvsDHwDuFPvdd0nARvIXpN9gY8D\nzY0H7Z2eS2P/Jum1FDyHFObvCTxdmoiIF8h6BHuk24aIeK6w/NNpndY6T9IbkmZL+tRmtvsW2fPf\nU9JOwMBi+xZstyXzgY9uboFqCAR4r5dwJFnRLxcbI+KBiJgbEQ0RMQe4nWwHAFhPFgQfjIj6iJgd\nEWsKqw8H7ge+ERET21DTnyPi3ojYAPwKGABcHRHryXaAYZL6pvruiYgXIvMg8P/JdgSAk4GfR8S8\niFhH9qkAQNoBJwD/OyLeiIi1wFVkodiUBwvPexzwb4Xp5gKhOUsi4sbUnZ1M9mbcpGcF1AO9gOGS\ntoqIxWkHKnk4Iqalx/kFhTdc+iT8W/q93QE8D4wurLscuCEi1qf2BcBxqYd3LHBRRLwVEcuB62n+\ndekLrG007xJgN7KAnQj8TtIHUtv2wOpGy68G+qS2Nc20tcb3ybr9u5D1PCZJOrCV26VRe1u22xpr\nyV6rZlVTIHyOrHt0S+NGSWPSgMkKSavJegE7F9a9F5iSuuTXSNqqsPppZAHz6zbWtKxw/23gtdKx\nIO/1QLZP9R0j6bH0qbCK7M1cqu8fgKWFxyreH0A2XjI7He6sAv6Q5jflQWBc+pTtAUwFDlQ2+Loj\n8FQbnt+rpTspqPLnUxQRC4GLyIJsuaQpkv6hqcchOxbvrTSAKel0SU8VnttevPe6ALxcGgRMlpC9\nXkOBrYBXCuv+jGwna8pKGu04ETEjItZGxLsRMRl4hOz3AvAmWW+uaAeyHWZzbS2KiCci4vWI2BAR\n04BbyQ4VWrNdGrW3erut1AdYtbkFqiIQImIJ2eDisWSDLo3dRtYdHRIROwI/BZTWXR8R34yI4cBY\nsq57cUziCuA14LbNHINuMWWDNL8BrgN2jYi+wLRSfcArwODCKkMK918jC5c9I6Jvuu0YEZvsmJDv\nnOuAC4GHUk/oVbJexsMR0dDUalv+7PLt3hYR/0i2owbw3ZbWUTZ6fiPZ4Ub/9Lo8w3uvC8CgRocp\n/wv4G1lovgvsXHhddoiI5rrPc8i6+pt9GoVtz6PQk5G0G1kv6Ll06ylp98K6H03rbInNbXc74ANk\n4woryd4rxS59e7bblI+w8SHJJqoiEJKzgMPScVVjfYA3IuIdSaPJehNAfrpl77SzryE7hCjuGOuB\nzwDbAbdIKvdz3prszbQC2JAG5z5eaJ8KnJnGSLYl60YCkHbgG8nGHHZJz2eQpKM2s70HyXay0uHB\nA42mG1tB9nrs1sbnRarnQ5IOS8H3DlmANRU8jW1HtjOsSI9zJlkPoWgX4MuStpL0GbI37LSIeIXs\nsOt7knaQVCfpA5IOpmn3AftJ6p221VfSUcoGnHtKOo1sLOUPaflbgeMljUs75ZXAnalH8RbZh9KV\nkrZL3f0TyXqixdO4w5p5vT4taftU88eBfyb7MAP4L2AvSZ9KtV4OzImIv6b2W4B/kbRTGmj8ItlY\nSumxQ81cK5O215usZ6X03LcutA8iO7PxWDOvIVBFgZCOwWc103we2S9oLdmLOLXQ9j6yw4E1ZOMP\nD5J+eYXH/jtZt21X4OZyhkI67v9yqmklWVjdXWj/f2THlfcDC3nvF/Ju+nlJab6kNcAfgfwUWRMe\nJAvIh5qZblzfOuA7wCOp+73ZUeYm9CIb+HyNrDeyC/D1llaKiGeB7wGPkh1+7U3WbS+aQXa8/Vqq\n8dMR8XpqO50sbJ8le11/TTbO0dS2lgF/IttxIdspvk0WRq+R9ahOKg0URsQ8ssPOW8nGMfqQvcdK\nzgO2SW23A+emdSDr4S2h0ThXwVdS2yrgWuCLpetbImIF2RmM76TnNIaNx0W+QTbIuITs93ptRPwB\nQNIQssOHuc1s9yCysJ5G1tN6myxUSz4HTE7XJDRL4T+Q0qkkfYSs69wrDVh2S5LOAM5OhyLleLzh\nZIOjo6MD39SS/gVYERE/a3Hh8m73n8kOLVsM4ybW7UV2qHBQGqBtflkHQsdTdv59GtkA4mSgISJO\n2vxaXVu5A8HKo0MOGSQdrewCloWSWrxcshv4Eln38wWy03jnVrYcs6aVvYeQBveeI7um4CXgceDU\ndExpZlWsI3oIo4GFEbEoDeZN4b3BHjOrYh3xDbhBbHzxzUtko6nNkuSBDLOO91pEbPYr0BX7Sqyk\nCWQX1JhZ51jS0gIdEQgvs/HVeINp4pxt+l7BRHAPwaxadMQYwuPA7pLen66UOoXChTpmVr3K3kOI\niA2SLiD7wlEP4ObCVV5mVsWq4sIkHzKYdYrZETFycwtUzXcZzKzyHAhmlnMgmFnOgWBmOQeCmeUc\nCGaWcyCYWc6BYGY5B4KZ5RwIZpZzIJhZzoFgZjkHgpnlHAhmlnMgmFnOgWBmOQeCmeUcCGaWcyCY\nWc6BYGY5B4KZ5RwIZpZzIJhZzoFgZjkHgpnlHAhmlnMgmFnOgWBmOQeCmeUcCGaWcyCYWc6BYGY5\nB4KZ5RwIZpZzIJhZrsVAkHSzpOWSninM6yfpPknPp587pfmS9H1JCyXNkbRfRxZvZuXVmh7CJODo\nRvMuBaZHxO7A9DQNcAywe7pNAH5SnjLNrDO0GAgR8RDwRqPZJwKT0/3JwEmF+bdE5jGgr6SB5SrW\nzDrWlo4h7BoRr6T7rwK7pvuDgKWF5V5K8zYhaYKkWZJmbWENZlZmPdv7ABERkmIL1psITATYkvXN\nrPy2tIewrHQokH4uT/NfBoYUlhuc5plZDdjSQLgbGJ/ujwfuKsw/PZ1tOABYXTi0MLNqFxGbvQG3\nA68A68nGBM4C+pOdXXge+CPQLy0r4EfAC8BcYGRLj5/WC9+q+3bvvffGmWeeucn83/3udzFp0qSK\n1+dbq26zWtoXWxxDiIhTm2k6vIllAzi/pce06icJgKuvvppTTjml2eXq6uoYN24cCxcu5KKLLuKe\ne+4phbzVIF+paDlJeRAALF68mFNPbe7zYNN1b7jhBp5//vmNHsNqiwPBNnL++eezdOlSlixZQl1d\n298eEcGCBQtYsGABBxxwQAdUaB2p3acdrfZJIiJ48skn6d+/fz6voaGhTZ/2pR5GfX09kpg8eTLT\npk3j4osv9mFEjXAPwTjnnHNYunQpAwYMKOuOK4ljjz2W+fPnc+ihh5btca3juIfQTUnirrvuYtSo\nUUQE9fX1+fxyKgXMT36Sfa1lypQpXHHFFWXdhpWPewjd0BFHHMHf/vY3Ro0aRUNDAxGxReMFW+Lk\nk0/m2WefZejQoZ2yPWsbB0I3M2XKFG699Vag/L2B1pLEtGnTuOCCCyqyfWueA6GbOPvss1m2bBmH\nHHIIEVHRU4Olw4hzzz2XefPmsddee1WsFtuYA6ELk8T3vvc9li9fzlVXXVXpcjZRCqXbb7+duXPn\ncswxx1S4InMgdFHHHXccK1asYPz48ZUupVUigquvvpqnn36awYMH++KmCnEgdEFTp05l0qRJQOXG\nCdqqeLrznnvu4ctf/nLN1N6V+LRjFyGJ119/vctcAPSFL3yBM844A4B9990XeO8CKus47iF0Ad/5\nznd4443Gf+Wu63jiiSc4/vjjHQadwIFQY0rXC0hi5513ZuXKlZx33nldfme58sormTVrVqddL9Fd\n+dWtMaXvF1x55ZUsWrSo2xxnNzQ0UFdXx8yZM30ZdAfyGEKNWb16dX4dQVfvFRSVgk8S1113HQ0N\nDQCMGjWKurq6fNraxz2EGvHFL36RtWvXArVz5qCjlAKx1GPYbbfdNvlbDrZl3EOoAaUgsEzjHf+2\n224DYPTo0ZUop0txD6HKlD7pTjjhBNauXbtRGHSnQ4QtMWPGDGbMmMH73ve+SpdSs9xDqEJvvvlm\nflzsY+O2iQjuvPNOAMaOHVvhamqPewhVQhInn3wyb7/9NkAeBD7N1jaS6NGjBz169OAvf/kLe+65\np8cW2sA9hCqxbt26bnfmoCOVXscbb7yR+vp6xo0bV+GKaoM/fipot9124+233+bdd98FPEZQTsVe\nQV1dHY888gh//vOf6devn3sMm+EeQgVI4p133qGuro76+nqPE3SwUgD06NGDu+66i3feeYcjjzyy\nwlVVJ/cQOtnhhx/O+vXrASr+h0q6q969e/PQQw/Rp0+fSpdSdRwIneTCCy9kw4YN3HvvvYAvLqo0\nSdxzzz088MAD7LfffpUup2r4kKEDSWLMmDE8/PDDDoAqJYnrr7+eiOCTn/wkK1eurHRJFeUeQgda\nt24djz76qMOgypX+Kc2dd97J4Ydv8i9LuxUHQgfq3bu3zxzUiFJoX3bZZRWupLIcCB3IYWC1xoFg\nZjkHgllBdx/vcSCYWc6BYGa5FgNB0hBJ90t6VtI8SV9J8/tJuk/S8+nnTmm+JH1f0kJJcyT5qg+z\nGtGaHsIG4KsRMRw4ADhf0nDgUmB6ROwOTE/TAMcAu6fbBOAnZa/azDpEi4EQEa9ExBPp/lpgPjAI\nOBGYnBabDJyU7p8I3BKZx4C+kgaWvXJrUmlQLCJq9rTnmjVrarb2WtemMQRJw4B9gRnArhHxSmp6\nFdg13R8ELC2s9lKaZ51k6NChlS6hXaZPn86JJ55Y6TK6pVYHgqTtgd8AF0XEmmJbZHHepkiXNEHS\nLEmz2rKebarUK/jsZz9Lv379WLduXYUrar8lS5aw77778uMf/9i9hU7UqkCQtBVZGNwaEXem2ctK\nhwLp5/I0/2VgSGH1wWneRiJiYkSMjIiRW1p8d9fQ0EBEMGLECPr37899992Xz+8qbrzxRkaOHMlX\nv/pV/zm5TtCaswwCbgLmR8S/F5ruBkr/a3w8cFdh/unpbMMBwOrCoYWV0Q033MBOO+3E4sWLK11K\nh7v//vsZMWIE06dPr3QpXVprvv58IPB5YK6kp9K8y4CrgamSzgKWACentmnAscBCYB1wZlkrNiKC\ngw8+mKeffnqjeV1V8bldcsklHHzwwVx77bV5W3e/urCcWgyEiHgYaO4V3+S7omk84fx21mVNkMQO\nO+xQ6TIqKiJ44IEH8n/h9uijjxIR1NXVdelQ7Cw+KKsR55xzTh4G/kTMRARjxozhl7/8pcOgTBwI\nVaz0hzv69OnDbbfdlr/p/ebPlF6HH/zgB4wZMwbAf8q+nRwIVab0r9wmTZrEtttum/8hUL/JN6/U\nWxg9ejSPP/54fgbG2sZ/U7EKbbfddn4zt8OFF15IXV1d/rcs/Vq2nnsIVaBHjx5Ads7df3atPBoa\nGhg7diyLFi2ivr6e+vr6SpdUE9xD6CBtGfiLCLbZZpsOrKZ7ksRpp50GwCOPPFLhamqDewgdZHOf\n8qVz5zNmzKBXr1707t27EyurfuU6i1L8HRx44IGMHTu2S1zW3ZEcCJ2o+A3ErbbaKv8HpD5E2NgJ\nJ5yw0XQ5T7Mee+yxHHTQQUD2ujd1mXd3Pq3rQOhkjz76KD17+khtc+rq6njqqaf40pe+BJQ3MEtj\nCePGjePVV19t8vsR3TmgHQidZOLEiRv1CmzzJHHOOefw5JNPMnny5JZXaIPSDv/Zz36WQw45hAUL\nFmw0vztzIHSwt956ix49enDeeef5DbeF9tlnH2bPns0RRxxR9seOCCZMmMChhx7qMxE4EDqMJPr1\n65dfbuww2HKlQdhrrrmG2bNnA+U9zi/9bo488kjmz5/vMQQrv4hg1apVDoIOMGvWLMaPH9/yglvg\n/PPP79a/MweC1Zy6ujouuOACHn/8cb71rW9160/0cnMgWM0pHULU1dVx1FFHMXPmzI3GFxwQW86B\nYF3CVVddxQ9+8AN/d6GdHAhW80oBMHr0aB577DH/7cV28CtnXU5X+iOznc2BYGY5B4KZ5RwIZpZz\nIJhZzoFgZjkHgpnlHAhmlnMgmFnOgWBmOQeCmeUcCGaWcyCYWc6BYFXnxRdf9N80qBAHglWdJ554\ngkMPPRTw36LsbA4EqzoRweuvv87+++/PZZdd1qZ1JbHtttt2UGVdnwPBqlZDQwN/+MMf2G+//Tjz\nzDM3+s9XzWnNMtY8B4LVhDlz5rD//vszderUSpfSpbUYCJJ6S5op6WlJ8yR9M81/v6QZkhZKukPS\n1ml+rzS9MLUP69inYN1B6VP/mmuu4fOf/3yz/5fR2qc1PYR3gcMi4qPACOBoSQcA3wWuj4gPAiuB\ns9LyZwEr0/zr03JmZfPss88ycuRIRo0aBWTjBj4rUR4tBkJk3kyTW6VbAIcBv07zJwMnpfsnpmlS\n++Hyb8s6gCTGjBnDdddd53GDMmnVGIKkHpKeApYD9wEvAKsiYkNa5CVgULo/CFgKkNpXA/2beMwJ\nkmZJmtW+p2DdVWkA8Y477mDMmDGAewvt1apAiIj6iBgBDAZGAx9u74YjYmJEjIyIke19LLOIYMyY\nMdx8882VLqWmteksQ0SsAu4HPgb0ldQzNQ0GXk73XwaGAKT2HYHXy1KtWQt++tOfsm7dukqXUbNa\nc5ZhgKS+6f42wJHAfLJg+HRabDxwV7p/d5omtf8pfIBnVhN6trwIA4HJknqQBcjUiPi9pGeBKZK+\nDTwJ3JSWvwn4haSFwBvAKR1Qt5l1gBYDISLmAPs2MX8R2XhC4/nvAJ8pS3Vm1ql8paKZ5RwIZpZz\nIJhZzoFgZjkHgpnlHAhmlnMgmFnOgWBmOQeCmeUcCGaWcyCYWc6BYGY5B4KZ5RwIZpZzIJhZzoFg\nZjkHgpnlHAhmlnMgmFnOgWBmOQdCF1ar/xq9rq7O/32pQhwIXdSAAQOYMmVKpctosxtuuIHLL7+8\nJoOsK3AgdFERwYUXXsiAAQOq+v8dlup68cUXGTFiBD//+c8rXFH35kDo4iKCAQMGsMsuu/Dcc89V\nRTCUaqivr+ehhx5in3324fjjj3evoAq05j83WRcQEYwbNw6AZcuWVXzna2hoYJ999ql4HbYx9xC6\noYEDB7JixQoiotN7DJKYOXOmw6BKORC6oYaGBvbee28GDhzII488giQaGho6bHulHX/q1KkMHz6c\n8ePHOwyqlA8ZurmTTz6Zuro6Fi1a1CGPL4mVK1cyduzYivRIrG0cCN1cRFBfX8/QoUPp27cvc+fO\npa6url09huKOv9dee7Fhw4a8R+CeQXXzIYPlVq9ezZAhQ1i3bl27HkcSy5Yt40Mf+hDr168vU3XW\nGdxDsFzp03uPPfYgIpg3bx7bb799mx7jmWee4aSTTtqoJ+BeQe1wINgmSjvwnnvuiSQWL17c4jr1\n9fXsscceHVyZdTQHgm1WRDBs2DA+9alP0adPn03aGxoaOOaYY3juuecqUJ2Vm6qhOyep8kWYdX2z\nI2Lk5hZo9aCipB6SnpT0+zT9fkkzJC2UdIekrdP8Xml6YWof1p5nYGadpy1nGb4CzC9Mfxe4PiI+\nCKwEzkrzzwJWpvnXp+XMrAa0KhAkDQaOA/4zTQs4DPh1WmQycFK6f2KaJrUfLl+NYlYTWttDuAH4\nGlC6WqU/sCoiNqTpl4BB6f4gYClAal+dljezKtdiIEj6BLA8ImaXc8OSJkiaJWlWOR/XzLZca047\nHgicIOlYoDewA/AfQF9JPVMvYDDwclr+ZWAI8JKknsCOwOuNHzQiJgITwWcZzKpFiz2EiPh6RAyO\niGHAKcCfIuI04H7g02mx8cBd6f7daZrU/qeohnObZtai9nyX4RLgYkkLycYIbkrzbwL6p/kXA5e2\nr0Qz6yy+MMms+yjfhUlm1vU5EMws50Aws5wDwcxyDgQzyzkQzCznQDCznAPBzHIOBDPLORDMLOdA\nMLOcA8HMcg4EM8s5EMws50Aws5wDwcxyDgQzyzkQzCznQDCznAPBzHIOBDPLORDMLOdAMLOcA8HM\ncg4EM8s5EMws50Aws5wDwcxyDgQzyzkQzCznQDCznAPBzHIOBDPLORDMLOdAMLOcA8HMcg4EM8s5\nEMws17PSBSRvAgsqXUQb7Ay8VukiWqmWaoXaqreWagUY2tIC1RIICyJiZKWLaC1Js2ql3lqqFWqr\n3lqqtbV8yGBmOQeCmeWqJRAmVrqANqqlemupVqitemup1lZRRFS6BjOrEtXSQzCzKuBAMLNcxQNB\n0tGSFkhaKOnSKqjnZknLJT1TmNdP0n2Snk8/d0rzJen7qfY5kvarQL1DJN0v6VlJ8yR9pVprltRb\n0kxJT6dav5nmv1/SjFTTHZK2TvN7pemFqX1YZ9VaqLmHpCcl/b7aay2HigaCpB7Aj4BjgOHAqZKG\nV7ImYBJwdKN5lwLTI2J3YHqahqzu3dNtAvCTTqqxaAPw1YgYDhwAnJ9ew2qs+V3gsIj4KDACOFrS\nAcB3gesj4oPASuCstPxZwMo0//q0XGf7CjC/MF3NtbZfRFTsBnwMuLcw/XXg65WsKdUxDHimML0A\nGJjuDyS7kArgZ8CpTS1XwdrvAo6s9pqBbYEngDFkV/v1bPyeAO4FPpbu90zLqRNrHEwWpocBvwdU\nrbWW61bpQ4ZBwNLC9EtpXrXZNSJeSfdfBXZN96uq/tRN3ReYQZXWnLrgTwHLgfuAF4BVEbGhiXry\nWlP7aqB/Z9UK3AB8DWhI0/2p3lrLotKBUHMi+wiounO1krYHfgNcFBFrim3VVHNE1EfECLJP39HA\nhytcUpMkfQJYHhGzK11LZ6p0ILwMDClMD07zqs0ySQMB0s/laX5V1C9pK7IwuDUi7kyzq7rmiFgF\n3E/W7e4rqfS9mmI9ea2pfUfg9U4q8UDgBEmLgSlkhw3/UaW1lk2lA+FxYPc0crs1cApwd4Vrasrd\nwPh0fzzZcXpp/ulp5P4AYHWhm94pJAm4CZgfEf9eaKq6miUNkNQ33d+GbKxjPlkwfLqZWkvP4dPA\nn1Jvp8NFxNcjYnBEDCN7X/4pIk6rxlrLqtKDGMCxwHNkx5L/twrquR14BVhPdox4Ftmx4HTgeeCP\nQL+0rMjOkrwAzAVGVqDefyQ7HJgDPJVux1ZjzcA+wJOp1meAy9P83YCZwELgV0CvNL93ml6Y2ner\n0HviEOD3tVBre2++dNnMcpU+ZDCzKuJAMLOcA8HMcg4EM8s5EMws50Aws5wDwcxy/wM93kmhqFBV\nNgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "tags": [] }, "output_type": "display_data" } ], "source": [ "bw_img = 1.0 - tf.image.rgb_to_grayscale(img)\n", "\n", "plt.title(\"Mask image with shape {}\".format(bw_img.shape))\n", "_ = plt.imshow(bw_img[...,0], cmap='gray')" ] }, { "cell_type": "markdown", "metadata": { "id": "UwqfpOm--vV2" }, "source": [ "# 使用 tfa.image" ] }, { "cell_type": "markdown", "metadata": { "id": "jIa5HnomPds3" }, "source": [ "## 均值滤波\n", "\n", "均值滤波是一种滤波技术,通常用于去除图像或信号中的噪声。其理念是逐个像素遍历图像,然后用相邻像素的平均值替代该像素。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "SutWnbRoHl6i" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAeZUlEQVR4nO2dXWyk53Xff2e+ZzjD748lubteWVpp\noYvWdha2DPfCkGFAdo0oF04sN3CEQMDeOIADB0jkFmhaoBfxTZQYDdwKlRG5CKK6TgIJhgvDlWQE\nuYgjqXYUy9LKK1vSLsldkrv8nCHn8+nFeYYzXHHFITnDmeFzfsCL932feYdzSM7zf845z5c45zAM\nI1wi3TbAMIzuYiJgGIFjImAYgWMiYBiBYyJgGIFjImAYgdMRERCRh0TksohcEZHHO/EZhmG0B2n3\nOAERiQJvAp8GrgEvAV90zv28rR9kGEZb6IQn8FHginPul865EvAM8HAHPscwjDYQ68DPnAWuNt1f\nAz72fm8YHx93586d64AphmHUeeWVV5adcxO3l3dCBFpCRC4BlwDOnj3LSy+91C1TDCMIIpHIO3uW\nd+Cz5oAzTfenfdkunHNPOucuOucuTky8R5wMwzgmOiECLwHnReQuEUkAjwDPdeBzDMNoA20PB5xz\nFRH5PeAHQBT4lnPutXZ/jmEY7aEjOQHn3PeB73fiZxuG0V5sxKBhBI6JgGEEjomAYQSOiYBhBI6J\ngGEEjomAYQSOiYBhBI6JgGEEjomAYQSOiYBhBI6JgGEEjomAYQSOiYBhBI6JgGEEjomAYQSOiYBh\nBI6JgGEEjomAYQSOiYBhBI6JgGEEjomAYQSOiYBhBI6JgGEEjomAYQSOiYBhBI6JgGEEjomAYQSO\niYBhBI6JgGEEjomAYQSOiYBhBI6JgGEEjomAYQSOiYBhBI6JgGEEzr4iICLfEpFFEflZU9moiPxQ\nRH7hzyO+XETkGyJyRUReFZGPdNJ4wzCOTiuewF8CD91W9jjwvHPuPPC8vwf4DHDeH5eAb7bHTMMw\nOsW+IuCc+3vg1m3FDwNP++ungd9oKv+2U/4RGBaR6XYZaxhG+zlsTmDKObfgr68DU/56Frja9Nw1\nX/YeROSSiLwsIi8vLS0d0gzDMI7KkRODzjkHuEO870nn3EXn3MWJiYmjmmEYxiGJHfJ9N0Rk2jm3\n4N39RV8+B5xpeu60LzP6lVoZqqWmAoFoDJyDWoVd+h9LgRz2K2V0i8N6As8Bj/rrR4Fnm8p/x/cS\nPACsNYUNRl/hoJyHrZuwOa9HYRFKayoKlW0orkL+RuP1rZtQKXTbcOOA7CvbIvLXwCeBcRG5Bvwx\n8CfAd0TkMeAd4Lf8498HPgtcAQrA73bAZqOT1CpQ2YLSOqxf1cq9vQKxNAxMQmYCIjGoliG/AIVl\n2FpUURiYgoEZyJ2GxKD3DKLd/o2MfdhXBJxzX7zDS5/a41kHfPmoRhndwGnF3l6B7Vva6t+8rCJQ\nXIP0iD4TTUJ6HKpF2F6F/HVYe0uvCzdga1lfy0xCagSSwxCJd/uXM94HC+AM3/oXoLgB6+823Ptb\nXgRKm5CdhkROK3W1BJWiikP+Oqxc8V7BREMEsrMwMA25M/q+WNq8gh7FRCBkavWWfwXyi7C5ADff\naIjA6lvqFSBQK8HIPT4Z2PT+0jqs/QpW3oR4GlKjKiS5GRWCkfsgOwPpCRWQ5LCGE0bPYP+NEHEV\nKG83xf0LsDGnFb8eAmwtq3tf2dLKXatyx55gV4HypiYSywUvLssNr2B7WXMFA9OaL4jnLF/QQ5gI\nhEatBFur2vrX4/66AGzOw8pb+lp5QwUAt/8okPpIEec9A1eB0ob2HlSLKgZbyyoGtZL3CkbMK+gR\n7D8QBL67r7gBWysaw2/Ow8Y83HpDz4UlrbTFVW3JAeQwH+U/q5KH4k2t/KkRTRRmZzRUyM7oMXS3\nhg/xLMQybf2NjdYxETjp1MpQ3tIEXn5JK3zd5d+c8y3/LW25K9vgqoer/Lfj0ATith87UFqH4koj\nPNj2ocKAzxdkJn3y0L6Sx439xU8qrqqVv7QBW7fg1hUVgOa4v7CkcX+5oC58J6j5fEG1qGJQK+0W\nga2b6hXUyuoxxHMQTYHYUhfHhYnASaRW1n77rXrWfx6WfcXfmGvE/aUNP8LPtaf1vxPOaeUvVbw4\nbdzBK5huyhcMmVdwTNhf+cTgtEUvbmgFv/WWVviN+UYIUFhUcdhe1SRepyv/e0ys+YTjpu89WNKc\nQGYSNt+BgVkND7IzMPhBFYO4H2NgdAwTgZNAraICkL/h437f37/hW/7N69oVuBP3e9f/OAWgGed2\n5wvK677XYnm3Z5DxnkF60gYbdRATgX7GVf1Ennrc39T637ys57xv/Y+a9e8E9XxBrei7FVe8CCz5\n8MCPL6iVvVeQtXxBBzAR6Efqk3w2FzW5t+EH+yz7ir+5AGvvastf3up+y/++eK+gcAOKtyA/Dxu/\ngo2rjdBg810fKpyC1Lh6BlEbbNQuTAT6jXLBZ/zrcf88rDe1/vlFzQlsrfRey78ftTKUK+oF1MoN\nz2AngbikYlCr6ECjeBaili84KiYC/UKt4vv7b0B+WSt9veXfmFNvYP0qFNc1RKhV+qfyN+OchgfN\n4wtqTb0IzT0JqXHNGUQtX3AUTAT6gXrWfyfun4f1eVh+Q13//KK2/MUVnQ58Emj2ClwFSqu7RWB7\nr3yBeQWHwUSgV6lVGkm/tatNFf9yo+Vfq7f8hf5t+d+PuldQuK5DkPNzsP6WzxHM6DF8Qc+ZUzBw\npil5aJ5Bq5gI9CLlgs7hrw/2Wbq8WwTyN26L+w+8zmv/UZ+2XN3e3ZNQLWquYHtZvaD0BCSGG2Jg\n7IuJQC9Rb/0363H/gib9dmL/+abWf6sxt/+keQB74QBxjVBgr3xBfS5CxucLUhPmFbSAiUAvUCv7\n6b2r2u23/GYj478+r3mArVsaGpTz7LT8IVT+vaiWobamg4xKq9qlmBqD/LuQ8aMOMzMwfJ+KQWIY\nEjYM+U7YX6Wb1Cf5FDdg7Zpv+edh6Y2GAOSX1P2vbDW6/AzFOR2GXLttclLRhwe1oopC5pR2LcZs\nctJemAh0i/JWI+7fXFKXf32+4f5vLmrrX9rQHEHorf/7US3pXIh8RUWhni+ohwrFJRWIlM8XxAYs\nX9CEicBxU6v60X5LjXH+6/Oa/Fuvx/3vatxfLoQV9x8F5xpDkCt5ny+oewb1uQjeK0jW8wVJyxdg\nInB81CpNcb9v+dfmG27/zSs+7l/XuN8d8wy/k8JOvmCjKV8w2uhWzMyoGAzdq2Kwky8IVwxMBDqN\nq+qinjtx/3VYm9vd7Zdf0pl+5a1wuvw6jav52YnbOnW5VlaPoN6TUCuqIKRPgZv1i5kkacP2nH2H\niUAnKW9BKd+I++suf939z9+AQj3rXwBq+j7zANpHtaRemKuqKBRXVAzqoUJmuZEviA/rzkmB9SKE\n9dseF5VtKG42Wv7Va5rwW/QikF/U8vry3Me9uEdoNC9mUlyGwjUozOtsxMyM71qcgYHTkP0gJEYg\nPgCRZLctPxZMBNqOUw+gcAtW3oVbv4LlK424v3BTW/7SJlb5jxnnGjMU8Z5B6ZZ6AsVlqBb8/AMH\nkaiJgHFInINSwYvAO+r2X39Nu/w26nG/3+rbBKA71PMF1dvyBa7W6DWIZSE+1G1LjwUTgXbjarC9\nrsm/66/Bwj/Djdetu6/X2PEKilDNw9a8zklIT0Akpb0GTBHCP8tEoN04v+Dn9jpsr+m5uGFdfr1M\nPXlYWtPxBeV1qG5126pjI7z+kI7jtMJT07PzZ6PHqe0+XI1QumpNBDpCff++ML5EJ4b6noqBYSJg\nGLvwnpxrYSPWE4KJgGHscHutD0MF9hUBETkjIi+KyM9F5DUR+YovHxWRH4rIL/x5xJeLiHxDRK6I\nyKsi8pFO/xLGHlgS8pCEUfGbacUTqAB/4Jy7H3gA+LKI3A88DjzvnDsPPO/vAT4DnPfHJeCbbbfa\neC8SgeQgZMZhYFzPqSGIJbptWevE0ropaXqisfNQPAciJmodZN8uQufcArDgrzdE5HVgFngY+KR/\n7GngR8Af+fJvO+cc8I8iMiwi0/7nGO1GBKIJSGQgNw3xDDv7EpY2dCBMtdRtK1sjktCx+/X9B0W0\n227rul80xBZV6QQHGicgIueADwM/BqaaKvZ1dGQFqEBcbXrbNV9mItBOBIjEIZ6G1CBkxmDsvIpB\nfX8CQfu9+4VIXKf1pschPaVCUFyBaBy2bzX672vVblt6omhZBEQkC/wN8PvOuXWRhn/mnHMicqBg\nSkQuoeECZ8+ePchbDRGtGOlRyIzCwCQMzsLEfeoVbK0ANV28JBLvtrWtE/WeQHoKhu7W/QRK61pe\nmIetRRWF0op5BW2kJREQkTgqAH/lnPtbX3yj7uaLyDSw6MvngDNNbz/ty3bhnHsSeBLg4sWL4WVj\nDoMIJAa05U+Pwtg9WvkHZyA3C+P36ZTZtXd1XHxxHSJ9NCg0koDkKOQ+AOMfhtxZHdqbO6N7FBbm\n9Lx+RcWgvKFhQoDJvHay7zdEtMl/CnjdOfenTS89BzwK/Ik/P9tU/nsi8gzwMWDN8gFHRNCWP56B\n3CnITkJuBiYuNAQgdwoGT+uqRP1W+W8nEtPVgAZmAO/1pMY1TEiNe89gQT2D7UUVgvqmq8aBaeWb\n8gngS8C/iMhPfdm/Ryv/d0TkMeAd4Lf8a98HPgtcAQrA77bV4tCot/7JQXX9m1v/iQuaDMxMQHoY\nkkPsTIPtdySqC4LG0ioKiWG/l8CYzvJLjWuIsB7X3YzLmzoV2IZoH5hWegf+gTt30Hxqj+cd8OUj\n2mVEY9ryJwdh+IxW+sHZptZ/GobOQDIHsRO6wUY9+Zka112IM9MweA6yZyC/oOHB6hkVg8I85K9q\nj0h1S8MioyX62Gc8oYho5U9lNe7PTvqKX2/979NEYHoYUsP9lfg7ChLzW4sl9DoxvNsrSI1pTmHb\nJw8rm0HNBDwKJgI9g6jbG09DbhIGJnzrP9MkAr71T+QgfkJb//2IJDRfEEvr3yGaUAFIjasg5Oc0\nX1Bc0j0KrUtxX0wEeoFoHNIjemQntLUfmm2EAKN3q1eQzPrBQIEjMR1QFM+qR5D7gI4jyPrQID+n\n57XLKgSlVSivWvLwDpgItBtXn4/qmu7vQCSqLX8y1xT3z8Dkhcb1wIS6//F0f2f8O4Jo8jCS8Od4\nIzTY6UWYh60FyEd9iLBt+YLbsG9V22laS8C9zwT1eFpb9syIj/ubWv+JC1qWHlGBCLX1bzXRH4mr\nQA5ENESo9yTs9CKM+3zBknoEdTEwABOB9lOv+DtCcNvr9dY/O6HH4LRW/on7Gsm/4TPaKxBa6++q\netSqjeuWEV0cNJKEWEZHHkYSe3sFxWWfL9hmZ6+HgAnoG3ZcNHkAzZ5ANKaz+jLD6uJPNrX8Q7Pa\n/58Z1ZY/MUCQ0+YqW7C1BPlrsPGOziOolbV7MNLibMhIHCJDEB/0+YK7oHgTsme1S7HgRx6uv+k9\nA7/F+a58QVhLDJkItJvbQwGJ6KSeZA6GT+vIvqFZjfuHfNyfnYTslD4XSpffXtRKOlegcAPW3lJ3\nvrqtFThRn1nY6ldWfJdispE3SI7p/oPJsSbP4LqKQmVzjy3LwxACE4FOEktrXO+q7239Jy9Abspa\n/2ZqZRWBrUVYuwLU9L5agsykTiiK59Tdbwnx05Pj2p0az+nPqOcLkvVhyHHdkiwe5sakJgLtRkRH\n8A2Mw+S9Oqinsu1bfy8C2Ukd8ZfIaItkKBW/IWt5U+dAbLyj8wfqOwoPzOiowawfKxFNt1hppdGl\nmBrX7cYyM7B1A7bmYMB3LSYGYeCsbkPWavhxAjARaDcS0VY9Mwoj57R/H6eu//h5nfefGoREVgXD\n2E2torMDC1W/vfiK7iy83byjcElXHUoO+wrbagglmji83TOI+F6ESEJ3KU76wUiBeGYmAu1GRFv4\ngTEVhGpZ3c2ctf6t49QTqJYaKwpt32yIQLXY5BVUNAkYa9UrAIjoe6Ip9Q4ice1FcE7zB/EcRDOY\nCBiHQyLar58R7Q0APzV2UD2E9ySfjDtSK0O50uQVrDZE4D1ewcgRvYJBtLtQ9GdE08F4aiYC7SYS\n1TxAerhRJkIorUr78V5BJa9ThutDgtOTu/MFmVm/GtGob8lbnVsR0YRgPLfHa2H8z0wE2o4E04Ic\nO3XPIO89g+LKbq+Amib80hPqFSQOsqtwuB6aiYDRHzi0YXZOvYKazxc4v614cVlbf1dVEa4vWmrs\ni4mA0X84/JiCsgpBYQE23vbbjW/pOZLUEMHYFxMBo79xFR3tVyuqGKQnIDWpPQdGS4QbCBknh7pn\nUCk0DltVqGVMBIwTRNNaDrbgaMuYCBgniKYp3IFM/mkHJgLGCcMq/0ExETCMwDERMIzAMREwjMAx\nETCMwDERMIzAMREwjMAxETD6A5uY2TFs7oDRO0QSugoTNKZj14o6JNjoGCYCRu8QS0PKrygcz6gQ\nlNZ0YlCloNOHW8IGDB0EEwGjd4gmdMXf9ARkplQUiqu6NkDxpl9+fEsXI92L+nwB04ADYSJg9A71\nhUDSUzB4j3oFpfWmjUJu6GpCxZUWvAJTglYxETB6h0hCFwzNnYWJD+mW49Ui5M5AvnnL8Su63mB5\nQ1cZ2lXhrfIfFBMBo/eIxFQMMtONpcJS440j4j2D7SXdRqyypcuM7eCaztatsB/7ioCIpIC/B5L+\n+e865/5YRO4CngHGgFeALznnSiKSBL4N/BpwE/iCc+7tDtlvnFQkqtuNxTN6nRzyOwyP6RZi6XH1\nDOr5gsqGLfB6SFrxBIrAg865TRGJA/8gIv8H+CrwhHPuGRH5b8BjwDf9ecU5d4+IPAJ8HfhCh+w3\nTjKCbkCaGveewSnIndNtyAoLKgJrb/gwYUF3JIrnwtrOvQ3s+9dyzjlg09/G/eGAB4F/58ufBv4T\nKgIP+2uA7wL/VUTE/xzDOBwShVhWFxCNxLTC172CVNPGovVtxKLpblvcN7QkmSISRV3+e4C/AN4C\nVp3b2dT9GlBf2nUWuArgnKuIyBoaMizf9jMvAZcAzp49e7TfwgiHSLxRyeM57TmohwmuColhSE34\nzUQsPGiFlkTAOVcFPiQiw8DfAReO+sHOuSeBJwEuXrxoXoLROhLVPQSj3itI+HxBJd/YXzCx145C\nxl4cKHhyzq2KyIvAx4FhEYl5b+A0MOcfmwPOANdEJAYMoQlCw2gvkbi2+vWehGrT2AHLC7TMvhOI\nRGTCewCISBr4NPA68CLwef/Yo8Cz/vo5f49//QXLBxgdRWKNbcbrx557Cxp70YpcTgNP+7xABPiO\nc+57IvJz4BkR+S/AT4Cn/PNPAf9TRK4At4BHOmC3YdyGHGBrcqOZVnoHXgU+vEf5L4GP7lG+Dfxm\nW6wzDKPj2HoChhE4JgKGETgmAoYROCYChhE4JgKGETgmAoYROCYChhE4JgKGETgmAoYROCYChhE4\nJgKGETgmAoYROCYChhE4JgKGETgmAoYROCYChhE4JgKGETgmAoYROCYCRu9iy9MeCyYCJw2J6oYc\n0aQ/J/pjAc5ITG2N1I84iH09jwNbnP2kEUtCegxG7oJyQY9IDAqLUN2GWrXbFu5GYhBPQ2YShu7W\nI3dOlw23vQOOBfsrnzQiMUjmIDutAlArQSwBKzHYXoXyJlS26QlfO5aBRBZSozB8NwzfC4PnIDMF\n8YH+8GBOACYCJ41ITCtWbhpwEIlCYkBd7c0FKCxDYUm9AtclryASg1hKW//0BGRnYOSCCkDurO4+\nHBuwcOCYMBE4aUTikB7VnEB2CoY+APkbMHgWNuZgYx5uXVYhKK7psbOv7DHYlhry24ZNwMh9kJ1t\niEBmSl9L5NRLsA1FjwUTgROJqDcQS6pbnRxUTyAzBplxDQ825iB/Xc/lDagWwdU6Y04kqi1/IgfZ\n0xqq1Ct+dhYGZtQDSAxq5bdcwLFif+2TTCSuAhDzu/emhlUEogk9b4xDNK4hQnEVynkVg3YS87sE\np4bV9R+tt/6z6glkpjQnkBxRu6z1P3ZMBE48ott156bVExg8DbkZDRE25mDojIYIm3NatjmvycNq\nCTikZyARDUcSWcidhoFT2vJnZ33rP6P5gMwpiGe0S9DoGiYCwSBaMSNxzboncpAa0bL0uPcM5tQz\n2FrWXEFp4+DJw0hUvY+k9zqa4/7sLAyf15xFYlA9BGv5u46JQGhIRLsQY0nfaxBv5ArSY418QaHu\nFeRBWqioEoFoWlv/7Ky2/rkZGG2K+zNTWm6tf09hIhAkt3sFgxqXZ7wIpMc1PIh4r4Caj9ebaRpn\nEEtCckgFID0Oo/c24v7RCzAwBakx9RCs9e85TARCRiJaeZOD2mU3eForbv66egGDZ/RcWtcWPOW7\nHhF9byzlRyfeC4khGJhsVPzsjFb+gRntobCkX89iImAAohU66j2D5KAfa+C9guKqj/GnGt2NoGUD\np7RHITOplT47q6KQHlOBieds0E+PYyJgNJCoVtyYj+0jca3M27caCcS6CIioCLiq3ldLKgiZKfUC\nrPXvG0wEjN3U3fxYSoVg8DSU8o3XogkVCZeEAVGPwfn8QNIP9okmu2e/cWBaFgERiQIvA3POuc+J\nyF3AM8AY8ArwJedcSUSSwLeBXwNuAl9wzr3ddsuNzhNNaRY/nt1dLhHAafiw6/kENju9/zjIf+wr\nwOtN918HnnDO3QOsAI/58seAFV/+hH/O6FfqA3+aj0hcxSGa2n2YAPQlLf3XROQ08G+B/+HvBXgQ\n+K5/5GngN/z1w/4e//qn/POGYfQgrUr3nwF/SGMc6Riw6tzO9LNrwKy/ngWuAvjX1/zzhmH0IPuK\ngIh8Dlh0zr3Szg8WkUsi8rKIvLy0tNTOH20YxgFoxRP4BPDrIvI2mgh8EPhzYFhE6onF08Ccv54D\nzgD414fQBOEunHNPOucuOucuTkxMHOmXMAzj8OwrAs65rznnTjvnzgGPAC84534beBH4vH/sUeBZ\nf/2cv8e//oJzrgfWsjIMYy+Oks79I+CrInIFjfmf8uVPAWO+/KvA40cz0TCMTnKgwULOuR8BP/LX\nvwQ+uscz28BvtsE2wzCOAevYNYzAMREwjMAxETCMwDERMIzAMREwjMAxETCMwDERMIzAMREwjMAx\nETCMwDERMIzAMREwjMAxETCMwDERMIzAMREwjMAxETCMwDERMIzAMREwjMAxETCMwDERMIzAMREw\njMAxETCMwDERMIzAMREwjMAxETCMwDERMIzAMREwjMAxETCMwDERMIzAMREwjMAxETCMwDERMIzA\nMREwjMAxETCMwDERMIzAMREwjMAxETCMwDERMIzAMREwjMAR51y3bUBENoDL3bbjAIwDy902okX6\nyVboL3v7yVaADzjnJm4vjHXDkj247Jy72G0jWkVEXu4Xe/vJVugve/vJ1vfDwgHDCBwTAcMInF4R\ngSe7bcAB6Sd7+8lW6C97+8nWO9ITiUHDMLpHr3gChmF0ia6LgIg8JCKXReSKiDzeA/Z8S0QWReRn\nTWWjIvJDEfmFP4/4chGRb3jbXxWRj3TB3jMi8qKI/FxEXhORr/SqzSKSEpF/EpF/9rb+Z19+l4j8\n2Nv0v0Qk4cuT/v6Kf/3ccdnaZHNURH4iIt/rdVsPS1dFQESiwF8AnwHuB74oIvd30ybgL4GHbit7\nHHjeOXceeN7fg9p93h+XgG8ek43NVIA/cM7dDzwAfNn/DXvR5iLwoHPuXwMfAh4SkQeArwNPOOfu\nAVaAx/zzjwErvvwJ/9xx8xXg9ab7Xrb1cDjnunYAHwd+0HT/NeBr3bTJ23EO+FnT/WVg2l9Po+Ma\nAP478MW9nuui7c8Cn+51m4EM8P+Aj6EDbmK3fyeAHwAf99cx/5wco42nUQF9EPgeIL1q61GObocD\ns8DVpvtrvqzXmHLOLfjr68CUv+4p+70L+mHgx/Sozd69/imwCPwQeAtYdc5V9rBnx1b/+howdly2\nAn8G/CFQ8/dj9K6th6bbItB3OJX6nutSEZEs8DfA7zvn1ptf6yWbnXNV59yH0Fb2o8CFLpu0JyLy\nOWDROfdKt23pNN0WgTngTNP9aV/Wa9wQkWkAf1705T1hv4jEUQH4K+fc3/rinrbZObcKvIi61MMi\nUh/C3mzPjq3+9SHg5jGZ+Ang10XkbeAZNCT48x619Uh0WwReAs77jGsCeAR4rss27cVzwKP++lE0\n7q6X/47PuD8ArDW54MeCiAjwFPC6c+5Pm17qOZtFZEJEhv11Gs1dvI6KwefvYGv9d/g88IL3ajqO\nc+5rzrnTzrlz6PfyBefcb/eirUem20kJ4LPAm2hs+B96wJ6/BhaAMhrzPYbGds8DvwD+LzDqnxW0\nd+Mt4F+Ai12w99+grv6rwE/98dletBn4V8BPvK0/A/6jL/8g8E/AFeB/A0lfnvL3V/zrH+zSd+KT\nwPf6wdbDHDZi0DACp9vhgGEYXcZEwDACx0TAMALHRMAwAsdEwDACx0TAMALHRMAwAsdEwDAC5/8D\n5aoQDDBya7UAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "tags": [] }, "output_type": "display_data" } ], "source": [ "mean = tfa.image.mean_filter2d(img, filter_shape=11)\n", "_ = plt.imshow(mean)" ] }, { "cell_type": "markdown", "metadata": { "id": "Mp6cU7I0-r2h" }, "source": [ "## 旋转\n", "\n", "此运算可将给定图像旋转用户输入的角度(以弧度为单位)。 " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "9kxUES9sM8Jl" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO2dfdAk1XWfn9+8y+6CgOVDG0TtUgYV\nGylUSgaxJUNQVVxgVYBIhkg4EcFoZSNtHKQSSI4MWInEhxWZCAssW1IJG6z1h7AcWRUwVkzIgp2y\nYyEWgZAAIRYlgiXArvACKxDL7tsnf/TtmZ6enpmeme6ZnunzVL273bd7us87b99fn3vuuffKzHAc\np7m0Zm2A4zizxUXAcRqOi4DjNBwXAcdpOC4CjtNwXAQcp+FUIgKSzpT0qKTtki6v4h6O45SDys4T\nkLQEfB94G7ADuBc438weLvVGjuOUQhWewFuA7Wb2AzN7FfhT4JwK7uM4TgmsqOCa64AnU/s7gJ8Z\n9AFJnrZYASeffPKsTWg0991336xNyPIjM1ubLaxCBAohaTOweVb3X2Q8FbweSJq1CVl+mFdYhQg8\nBRyT2l8fyrowsxuBG8E9gbLwyl8vzKyOQtBDFTGBe4ENko6TtBJ4N3BbBfdpPGbW9ePUj3n4u5Tu\nCZjZfkkfBO4AloCbzeyhsu/TZObhwXLmh9K7CMcywpsDhajD38oZnRo1Ce4zs43ZwpkFBp3ieOV3\nqsRFoKZ4xV8c6h4gdBGoGV75nWnjA4hqgkf4F5s6/23dE5gRdX4onGbhnsCU8Td+c6nr3909gSlR\n1wfAcVwEKsYrv1N3XAQqwCu+0486dhe6CJSIV35nHvHAYAl4sM8Zhbo9K+4JjEHd/oiOMwnuCYyI\nC4BTBnV6jtwTKEid/miOUyYuAn3wSu9UTV16ClwEMnjld5qGi0DAK7/TVBovAl75nabTSBHwiu/U\nhTrEBRolAl75HaeXRuQJeEafU2dm/WwupCcw6y/VceaJhfIE/I3vzCuzfG4XwhPwiu844zPXIuCV\n33EmZ+5EwCu+s6jMqrtwbkTAK7/jVEPtA4Me7HOaxCye9dp5Al7hHWe61MoTcAFwnOnXg1qIwMkn\nn+wC4DgzohYi4DhON9N8KboIOE7DcRFwnIbjIuA4DWeoCEi6WdJOSd9NlR0h6U5Jj4X/Dw/lkvRZ\nSdslPSjpzVUa7ziLzLTiAkU8gS8BZ2bKLge2mtkGYGvYBzgL2BB+NgNfKMdMx3GqYqgImNn/Av4h\nU3wOsCVsbwHOTZX/ocV8AzhM0tFlGes4TWMa3sC4MYGjzOzpsP0McFTYXgc8mTpvRyjrQdJmSdsk\nbdu1a9eYZjjO4lO1EEwcGLTYwpGtNLMbzWyjmW1cu3btpGY4jjMm44rAs4mbH/7fGcqfAo5Jnbc+\nlDmOU1PGFYHbgE1hexNwa6r8PaGX4BTghVSzwXGcGjJ0FKGkW4CfBV4raQfwCeA3gT+TdBHwQ+Bf\nh9O/DpwNbAdeBn6pApsdp3FUOeHIUBEws/P7HDoj51wDPjCpUY7jTA/PGGwCPkBzIaiql8BFYMEx\nA/vSm7BXnsdsGb735biQWBu6Zm6yqH3MaQ61m1nImYSkAnfajhKYltDvHI4BkUB/eUF8cGkVvPMv\nYe1J2AGrYOk1IEOZyxhADdbMc6qJDbgILAiGIRO2+zE4/PiuB0XvvR+uEyKu18nLXtFe7Ks/l5yF\nZLSTPlaswN5xG1pzPLbyNeig1wWPIb5ucn3DkpIp/JZOFbgILAhC2B+8Cdv1HXRZjkvfqb9d1VUk\n/kOqggPsX0a3nt05p9UCi2LPwsAUl0sQLa1Ev/JKODEibmUa0IrPh/hDiu0EC280b43WAReBBcCI\nkAl2fQcZaNsNsPHS7nPWnoh+9ED3B5P6mqLv+zyK4mNSaGJY+wNafhU+10KtjneAwEKVZ/Mr4XMr\nsMhSzYwIjC4xMIuFJT7u/kUeZTcJXATmHIsiTIJrl+LKI7CtH0YZEYhPJrdWJd7AoIerXRoZtELl\nTjyLpNKGz4vgLrRC2RdXYUud+4sQmwDY9Bx2wMGotQKzFrEyKXgPnYsby2CtlH0WBMNlYlJcBOYd\nteDz65Nq0yZb3/Xe++HTI1aYSNDq01tgnYZEXjOjK/jQoh1sVNxK6Jyy5cjQZAgC0AJbWg37X8Eu\n3I1WHRpaEmoLFUFoFC5qFvX1JhaVMr0BF4G5xWK3+1MrabFMJNEKlUIAOU0CPmqxEAzwBgoRvIGu\nD2a8AaxTSXs/D62eZkjUPkb0Siwcf3R4O/YAsd517hVkb+VBcOgbscP/CZy2Bf2fW9Dr/y25v6ST\ni4vAnGIYum4NKHafW7Ke13+hNnUmLtDzhiniDaROz7vfoDezBh3P6lVbESx2KQy07yXsuW/B7vvh\nB38cX+j1F+TfbMEoyxvw8OycIoB9L/U9bls/nF++9sTyjek3mNwGPKDRkGsOO94lHBYCl6ErYu9z\nQz7spHERmEPs5V3wyRXd2X1JhUs306/NRgpCbCBbGKU+Q056apRTmaMkyzDpK0yZkvl8OjyQR+F3\nmQVvJ/WJxNvpusafrW2MEJSRSuwiMGfYvp+g648i6tfengVGlzcwjoOa+yzneQNdwpc9ZO1zavTt\n1B4XgXkhyfG/9jWpLD3ya0+qMmrbDb2H85oEmQo38hum53WcXGhAPmE0ydimznXbrQ5LHfvKa8e+\nctNwEZgbkiCc9a1vedjWDxdrEqTuksugJgH0eAN5IpKnKxpyvBBpMyzpIfHegaK4CMwF++P/fqOT\nENRF2w3uffAn8QYKk9w3ZVscB+i2a5A30F988u6XbKjdOZHuOGjz4vcLmT/vTBoXcBGoOWZAtIRd\nE6rJcsE3XPrtmNNTUMQbKPRw5XkDIzKyNzCgCRQfDklEt75hdGMaiItA3ZFht5zdScftxxBvILcH\nb9TuwrwmQftimeQhcvr46VPJM70ThbDu7XZCUapYJvcGCuAiUGcsgnt+F3v8r7rLx/AG8poEeu/9\nvZ8Z1l048H4amqHU75CljvfccmAvQaq7MBUgdG+gOC4CNcTMiMwwCbvjQ6OHuHK8gbwAYXxgxGsP\nCxAm18wLEA7wBsYK42W8gTwPxL2B4bgI1BHFmfG6utX+A/X8gfO8gQEPwVQChNkbkl+5x+ouHJYz\nQL/uQvcGhuEiUEfM4JMHDY6qF75WanPM7sKxMghT9x61u3D03zczYGKsazQXF4EaYlevQPv39tSU\nQu7erLsLobuBD7kBwmHeQPEMwu7ttDfQzhnwJsFAXARqhhm00mmvgyLnde4uzJpQ8OEcPf7RGyDs\nKEmqyJsEfXERqAlxJYngqhKaAO2L5l9lKt2FmZyBfkOMcz/OgEFHw7yBlAldCUvg3kAfXARqgp79\nNnx8iUHjgnoeaigtQFhkdGEhov41v2gG4fjeAJ2cgYw3IJN7A31wEZgxZuHn8ydhqPjbr/ANuocY\nQ//uwmHeQKEAYfq+2YqYe82cwpT4FH6pWfcd0kFG9wYG4yIwcwyiffEbTFZobrwyxpDneQMDzx/3\nRv1MHTThyICPAYWHGGe7CzXknk3FRWCGmAEv7YQrV3ZPEzVqau2wJkHOhCOFuwuHDTEuOuGI0Zko\nlE7IoN/bvrLuwv/2RvcGMrgIzIjlJBB47es6AjBKhm5F3kDp04+lswcvjtAF38PeFq+H2I7rmzDr\nNIVMEEWtzv6Y3YXJteJrTP59LSo+0egMiKfkN7jmkHabVUq9MqHzmkyTs1hIm2XBUjZ91+hpX4Tr\njhbsi++bWDfyBJfh1Nbd74PTb4I1G7Dj/w0i6kw1/spz2Is/gJefRne8M3gQIjJLJheOxUDJ5OM5\nv2J7J7a0a+BU6vu0W9+ALoyYoJGzUKgOCrlx40bbtm3brM2YGmaGPrMBe/7xruQ6SXR1D+Q9o63M\n+WmyIgCdGpJzXYP8JcvypiVP3ZfsvfvNRtzKufcHOw0Bi0f6ILVoNxLa7fbl+Kb79sArz8VrE+x+\nCO54R0eNkssnMUil7EoWP+mcFrdOFH/Y3mONkIDMM3KfmW3MnuOewNQx+PIvwO7H2284SD+8KSHI\n8wbSVyryRk7ejpYRmOTS/ZYs2/VA970z3kAXg6Yl77pZ947iWttV0jlvKf5v5SHYAYfEHsAhx2Hv\ni4jf8vFnLTQrJMNeeBz7u83oH7bBvpdiL0Ip84ywfFoL7fp77LWn+iIluAhMHcPg4a/17UMfWqkH\nVca8JkG+EQPFpchqRYUEKFmkJL1a0V0XxU2CwqironaaTb1lOnQDdtZdXbdDhiKwH/8Q/uY8eP5h\nUIT999PgwuWeazWRoYFBScdIulvSw5IeknRJKD9C0p2SHgv/Hx7KJemzkrZLelDSm6v+JeYBS/75\n2BK9E4EnTeC8KH8ZN8/2maUOjZkz0MOgnIEEAQ/fPNp1h12ySyFoT74iQUtCtFCrhQ45Dt5+L7rw\nJ/CLe+HC5casYzisyV+kd2A/8KtmdgJwCvABSScAlwNbzWwDsDXsA5wFbAg/m4EvjGf6YiEg+lgy\nO1B+d6AlMwoPq/ipyHihDMI8Ut1n2nZDfndhn/t24nCjdGeo44HcdVHxz42NenaT9Qr7Cm5DGSoC\nZva0mX0rbO8BHgHWAecAW8JpW4Bzw/Y5wB9azDeAwyQdXbrlc4QZ2CePomWpitOnbzzP3e3HWI9x\nH28g/9wRr110wpGSvQFnOIMEe6Q8AUnHAicB9wBHmdnT4dAzwFFhex3wZOpjO0JZMzGDV1+EPTsz\nXXP9vYFs2aDkoa7PJBQdT5DxBnoOVzHhSKJxU/EGnCIUFgFJBwN/DlxqZi+mj1n8FI703pC0WdI2\nSdt27do1ykfnBgNs/8tw5RqU90338Qbir7NCbyDPlGlNOALuDdSMQiIg6QBiAfgTM/taKH42cfPD\n/ztD+VPAMamPrw9lXZjZjWa20cw2rl27dlz7a0rcttcDX4b/dHBX1lx8uB26zv10bgbhEImdqwlH\nird4nClQpHdAwE3AI2b2mdSh24BNYXsTcGuq/D2hl+AU4IVUs6ERmFncA3DLBYTe8P4PvWX+JxUg\nnMQbKBogTJsy5oQjhciLDdx1Ue+1bXmUqzolUMQTOA24EDhd0gPh52zgN4G3SXoM+LmwD/B14AfA\nduD3gIvLN7vetDPgVGQxrBG8gSwlDzHOzT1geHfh2EOMH76ZSBHGMsmYatNS10Ajp3o8bbhk4nyA\nCC5bQi11H8lKbifpvaMFmbo5lVTi9EfOuL4ngxAYmkrcc99BqcTp+5owGSZoISIDve4UeOffhmzH\nFp1vo4URdfWixEci5GPhhiLJ04angkVw2QoYqR+69x0cNyEqbjgnqcTpwTVbPwwbL+2p77b2RPSj\nB/pfKptBOCiVuCuF2TozASlO/9Wzf499YSkUhLRnhfTgVWvh/EexpdXQWo21AERkEUu50VdnGC4C\nJWJGLACEB7arKuU42wNG+XVOscExhR4bRhzhl0GQO55A770fritZlHIcnM53ZnHKb1CIKDhLemUX\ntuWI9mdbrfC9H3kCvOuhcu1rCC6dJWEGds0x7Tdc7ktwUBs+tzFuvclDA65bOEA4bEHPoqsVDcsg\nnGB9AinpLo33W6SFIhxX6tznHs6z2CmAi0BZ7N0DL+5Ag5J48hjSXTgow7BfcsbI6bwZptpdmLlv\nni1592w3JmYf0pp7XAQmxMywfT+B/3ho/GUGdz7/2ex7IHPR3nukq0McPRe28qDOSYMq45jeQBHb\nEkYaT5CdkTjT/Ik3Bjc9skd9KMD4uAhMjKErDupu/UftQ3mn55QNHk+Q/awMTIZ+/aWeh7/MupCb\nQVgmBdcnGES6yWC/50owDi4CY2OYLcMP7+mtu0mkm7w34yBvIHUsXTHC5BnJcQP0iSh++j9huTWn\nqgxCPmqjJQ/1yxnIegOZZKkuuwrGV4QLwTi4CEyAvnYJ+p3T8tuySbu1qDcwgPYMvRYvV87HXo4T\nkbIJRZMsWdanwhUydZwZidP3zfSI5J09SNM05LgzGBeBsRH2vz9H+9WcJZ0Pk+cN9JyfEyBMXUMh\n+1AffxmtPHAqqff94gKlz0gMA6KcA37TPt6AMxouAhOg3xry+lF53gBmcO5N2NKq3mNXpi42yRDj\nnPUJ+k44UkV3YV6AMLknw72B9me9STASLgJlkRfU61pOq4CfPWwugZN/mSKjEZJ7lkHfXoKyMbq8\ngXHstwk+22RcBCblor/ofyzdXdhT6YcECLsuI6Krh4yuK8sb6Ny0bcm4OQMjj0vJeAOdC6l9OO+e\nuXrq3kBhXAQm5YS3d7YLuqtFzu+Kll/1auwBDKtTFXUXjjvhSA/Dph/LeAN5IjJoybJCNjg9uAhU\njMKs1nGCT4HuwlSA0AwitZBWhNGEQ27Wp1LOxYQjyX1T3kBXM6qAN+C9BOPhIlAGg5oEaQoHCK2z\nqMbVr/Y7qZcrUzkDk3QX5tg27oQjI2cQ9uslGEJXYNCTh0bCRaAM0k2CHAYGCKHnoY+SZKN3/QGi\nNdqowEnehEO8gVwNK3N9gvR984J84figBUq7MjdHs6yxuAiUReIN9HnbJ8P2iwQIWwBXPAMnbRo9\nKb6PNzDp+gSQ3yQofX2C9oVHP9TVqWLh5/ddCobhIlAWQ7yBhEHJQxbFM+VEl+9AB68df16AMtrF\nI6xWNPL9is5InBcgHOANKPu/YvFl354RDWwWLgJlMsQbyN1OlwWfu3XoOib601yZXyvH9gYCUwkQ\nZm9I/pt/pO7CLYeWYMzi4iJQJsO6C3vT5DunR8Svt/9c0my7RQKEeYwx4Uil6xMkbr0ZhrrsG+YN\ntJOHvMdgIC4CUyQJEOZ3F4I+ube9Xt7EzHN3YfaGFy+DloCoK64SV/TuGfIsUncmdLLtTYK+uAiU\nTYEMwvZ2mt94GWsdUEpzHijeXViUWXQXJh/86/ehi/fDvze4OIKLDX7FsHP/Dq04oO1UxAMSreNI\nWOci3iToj080WjYFugvTL9goCpNprlhd/kq5RRRlWfnTkrevoVx/Oq9ZM2xG4h6GzUgcfoFkvIQE\nkUWIpfjmrzsF3vcywsKZRjz1uGFP3I7+x3nAqx3H5tU9aOUhxe1rCO4JVMGwAGFI/rPI0IFr4NrJ\nZgjuS9obCBTuLhzw1u7XJCgyurAQWW/gkZvbC5i2tNQ5pFb8XYa5FaRWe3Zi/dQ70Pv3ovcvo83L\n6P3mAtAHF4EqKOINAKgFV+4OUcGKSOpTyasV9esurGy1ohHojqu08Md8MP7tVMUAb6C9hvOnXmUq\nq+fkvuinHzIf29cxfBXjCnERqACzCBvgDQjgv0TQaiEtVZvfeqX1eAOFxxMMmXCEa9WjcYOaBJ3L\njthdmAwq+l3P/qsCF4EqUIuu1XXbmW9gLLXriKb1Ni6aPDQGuZORls2Yg4qcYrgIVIAgfsPnYERw\nXRSGBk/x6890F+YyxoQjeVQ64UgIEDrl4SJQJWd/qrOd9Aq88/OFpwirkrIsGDdnoBDpJkHiDXhs\noHRcBKrkjMvbmwZwzW506r+bjS398pULfbakIcaDYhKDegnSN5u9fi4cLgJVE7wBAbZ6zehDg8si\nZw7CyocYD/H4R8ogTHsD3iQoFReBirEzLiMyYdctz369vEmCawO8gXFzBnoo6g14k6BUXASqxkCf\nieJstln7sjnjCWByb2BgBmGWSSYcSa9W5N5AabgIVEyyclBtyNS5sWyb1YQj6Wu6N1AaQ0VA0mpJ\n35T0bUkPSboqlB8n6R5J2yV9RdLKUL4q7G8Px4+t9ldwRmKSCUfGGE9QyRBj7y4slSKewF7gdDP7\naeBE4ExJpwDXAteb2fHAbiD5i1wE7A7l14fznDpR4RDjqUw44t2FpTJUBCzmx2H3gPBjwOnAV0P5\nFuDcsH1O2CccP0OVDJFzxmYRJhzx7sLSKBQTkLQk6QFgJ3An8DjwvJntD6fsANaF7XXAkwDh+AvA\nkTnX3Cxpm6Rtu3btmuy3cEajzxDjHkacgxCmlDzUvhneJCiBQiJgZstmdiKwHngL8MZJb2xmN5rZ\nRjPb+MQTT0x6OWdUKhpiPFLyUPr4uEOMvUkwMSP1DpjZ88DdwKnAYZKSmYnWA0+F7aeAYwDC8TXA\nc6VY65RHRROOwJQnHPEA4cQU6R1YK+mwsH0g8DbgEWIxOC+ctgm4NWzfFvYJx++yAo1NDxvMgEWZ\ncMS9gYko4gkcDdwt6UHgXuBOM7sduAz4iKTtxG3+m8L5NwFHhvKPAJfnXNOpA/M+xBg6QuDewNho\nFjPM9BihzkyWdbCnUVyVeqOGV4KR45nlTUaanKOMix6uwWXW6+p/Wr3+f+q+5N07bzLSljrHksMf\n9GdnEJLuM7ON2XLPGGw6k3QXtk+esLtwErzeT4yLQNPpM56ghxEnHBnIkADhWOsTeEhpbFwEnB4q\nn3CkTHyI8cTUTgS8l2AGfKK3uxDKySCkX5NglOShfr0EWW/AewnGonYi4MyYUWckziMnsS/NoCHG\n7c/4EOOpUUsRcG9gBpQRYOszxDj31ComHPFBRWNRSxFwZkDO9GMwRgZhzvoE2nbDSOsTjDS6MH1f\nzyAci9qKgHsDs6fKAGFppOMCqSHGnm9SnNqKgDMDyvIG2mXxf5MMMR6nMhvA039LOW2cxafWIuDe\nwAwoMsR4DMadcKSHYROOAPzyM+jotw66ipOi1iLgzIC5nnDEsDUb4MB/5D7ACLgION3kZBDOzYQj\nEfCLj8STu7oXWZjai4D/MWdAmesTTGnCEQPsQ1HfNSCd/tReBJwZ0McbqHS1oiwFxhPEnQFhefQP\nTTppYXOZCxFwb2AGVJg8VNb6BHFagKF/do03ASZgLkTAmQEVTThSdoDQ1v1zbOOvT2RT05kbEXCV\nnwHjBgiHDDEua30CM9C7/hppbh7jWuLfntOfOkw40scbMAz+6fsxeWfgpLgIOP0pOuFIHgW8gSxF\nvQHD4Nh/AWd8cUSjnDxcBJzBZCrlWDkDOd5AzqVH49y/Cou9ejNxUuZKBDwuMAOKrk+QxxgLmPJR\n61WHdDclwKURkbxLsCzmSgScGVFkfYKi3sCY6xMYsaa0/tXXQWLJH93SmLtv0r2BGVGDr93eejUc\nd1YdTFkoarfuQBHqYHPjuDJV9VoD1ggYtD4BdNYoGGF9gkigX/oeHP6P/SUwAQu17oA/CLNnpOnB\nh11rwGpFZsCK1eiIN/jfvSLmUgScGRAChGYQ5U7zFcRgjAlH8kjiAgL0oZ+Maq0zAnPZHEiog+2N\nwiye2NdA3/gtePwObM//Qy8+CXv3dFz8FsiEWvH5SmYCTk4o2CSwT7fgP+z3jMCS6NcccBFwRsei\ntldAu6fe4n2J6LYLaO15Gp5/Au15ErN9oVsR1FJbBEypZsVlBmZdLn+0vJ/W0opp/mYLjYuAUzoR\nEa1kLJ+FN7k6r3cjVGqzTlfgX1wIux+Dp78JBlErrDd6xvWw8ZKedr9lhMEZn34iMNcyK8mFYIa0\nUiGl3oqaqrwS2DLSEvaOP4r3I8NknYy/v7mCzgoiHVwAqmeuPQFwb8BxirJQXYRp/E3hOJMx9yLg\nOM5kLIQIuDfgOONTWAQkLUm6X9LtYf84SfdI2i7pK5JWhvJVYX97OH5sNaY7jlMGo3gClwCPpPav\nBa43s+OB3UCyCuRFwO5Qfn04z3GcmlJIBCStB/4l8PthX8DpwFfDKVuAc8P2OWGfcPwMub/uOLWl\nqCdwA/BrdEaUHwk8b2b7w/4OYF3YXgc8CRCOvxDOrxTXGccZj6EiIOntwE4zu6/MG0vaLGmbpG0l\nXrOsSzlOYyiSMXga8POSzgZWA4cCvw0cJmlFeNuvB54K5z8FHAPskLQCWAM8l72omd0I3AiTJQs5\njjMZQz0BM7vCzNab2bHAu4G7zOwC4G7gvHDaJuDWsH1b2Cccv8ummNbn3oDjjMYkeQKXAR+RtJ24\nzX9TKL8JODKUfwS4fDITHcepkrkfO5BHHX4nx6kbCzt2wHGcyVhIEfC4gOMUZ67nE3AcZzjDXooL\n6QmAewOOA8XqgXsCjrNAjPPyW1hPANwbcJqDpLGfd/cEHGeOKeNFt/Ai4JOROotG2R7uwouA4ywK\nVTVvXQQcp+ZUHdta6MBgggcInXlkkmDfKLgn4Dg1YVYvq0Z4AuDegFNfpvXG74d7Ao4zI+ryYmqU\nCHh3oTNr6lLx0zRKBBxnVtSx8ie4CDhOhdS58ie4CDhOBcxD5U9onAh4XMCpgnmq9FkaJwKOUybz\nXPkTGpMnkGYR/nDO7FmU58g9AccpyKJU+iyN9ARgcf+gTvnMOqOvatwTcJw+LHLFT9NoEfCeAidL\nUyp+mkaLgOMkNLHyJ7gIOI2myZU/obGBwQR/CJrJogf7RsE9AacReIXvT+M9AfAHZJHxN/5w3BNw\nFhKv+MVxEQh4d+H84xV/PFwEnLnHK/9kuAg4c4tX/nJwEXDmDq/85eIikMLjAvXEK321eBdhBn/g\n6oN3700H9wSc2uEVf7rURQR+DDw6ayMSCjyErwV+NAVTymCebIX5sneebAX4qbzCuojAo2a2cdZG\nFEXStnmxd55shfmyd55sHYTHBByn4bgIOE7DqYsI3DhrA0ZknuydJ1thvuydJ1v7Iu8Xd5xmUxdP\nwHGcGTFzEZB0pqRHJW2XdHkN7LlZ0k5J302VHSHpTkmPhf8PD+WS9Nlg+4OS3jwDe4+RdLekhyU9\nJOmSutosabWkb0r6drD1qlB+nKR7gk1fkbQylK8K+9vD8WOnZWvK5iVJ90u6ve62jstMRUDSEvA5\n4CzgBOB8SSfM0ibgS8CZmbLLga1mtgHYGvYhtntD+NkMfGFKNqbZD/yqmZ0AnAJ8IHyHdbR5L3C6\nmf00cCJwpqRTgGuB683seGA3cFE4/yJgdyi/Ppw3bS4BHknt19nW8TCzmf0ApwJ3pPavAK6YpU3B\njmOB76b2HwWODttHE+c1AHwROD/vvBnafivwtrrbDBwEfAv4GeKEmxXZZwK4Azg1bK8I52mKNq4n\nFtDTgdsB1dXWSX5m3RxYBzyZ2t8RyurGUWb2dNh+BjgqbNfK/uCCngTcQ01tDu71A8BO4E7gceB5\nM9ufY0/b1nD8BeDIadkK3ALDqcoAAAGOSURBVAD8GhCF/SOpr61jM2sRmDsslvradalIOhj4c+BS\nM3sxfaxONpvZspmdSPyWfQvwxhmblIuktwM7zey+WdtSNbMWgaeAY1L760NZ3XhW0tEA4f+dobwW\n9ks6gFgA/sTMvhaKa22zmT0P3E3sUh8mKUlhT9vTtjUcXwM8NyUTTwN+XtL/Bf6UuEnw2zW1dSJm\nLQL3AhtCxHUl8G7gthnblMdtwKawvYm43Z2UvydE3E8BXki54FNB8Winm4BHzOwzqUO1s1nSWkmH\nhe0DiWMXjxCLwXl9bE1+h/OAu4JXUzlmdoWZrTezY4mfy7vM7II62joxsw5KAGcD3yduG36sBvbc\nAjwN7CNu811E3LbbCjwG/E/giHCuiHs3Hge+A2ycgb1vJXb1HwQeCD9n19Fm4E3A/cHW7wIfD+Wv\nB74JbAf+K7AqlK8O+9vD8dfP6Jn4WeD2ebB1nB/PGHSchjPr5oDjODPGRcBxGo6LgOM0HBcBx2k4\nLgKO03BcBByn4bgIOE7DcRFwnIbz/wEU6YHlJ93xtwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "tags": [] }, "output_type": "display_data" } ], "source": [ "rotate = tfa.image.rotate(img, tf.constant(np.pi/8))\n", "_ = plt.imshow(rotate)" ] }, { "cell_type": "markdown", "metadata": { "id": "WjMdSDKlBcPh" }, "source": [ "## 变换\n", "\n", "此运算基于用户给定的变换向量来变换给定图像。 " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "HTh1Qpps8Rg5" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAeV0lEQVR4nO2dfdQkVX3nP996hgEM6AzDOMGZQXDB\nGI0vyIigZpPlxTNmXSEb3EWijOyE2RhGMbrqgKwLCALOKolJ1l0SXDFG8S0bOCwnhACemBxeHHTk\nbQQGgsvMGZ3hZUDAAPPUb/+o2/1U91PdXd1d3VXV/fuc88xTdau6751+qj59f/d3+7bMDMdxppeo\n7AY4jlMuLgHHmXJcAo4z5bgEHGfKcQk4zpTjEnCcKWckEpC0WtJ9krZK2jCKOhzHKQYVPU9A0gxw\nP3ACsA34PvAeM7u30IocxymEUfQEjgK2mtlDZvY8cBVw4gjqcRynABaM4DmXA4+k9rcBb+72AEk+\nbbFmHHnkkWU3wemTO+6441EzW9pePgoJ5ELSOmBdWfU7g+NTzeuJpJ9klY9CAtuBlan9FaGsBTO7\nHLg8NM6vqprgApg8RjEm8H3gcEmHSloInAJcM4J6nDHjAphMCu8JmNkeSeuB64EZ4Etmdk/R9Tjj\nxQUwuRSeIhyoER4OVJoqXCPO8Ei6w8xWtZf7jEGnKy6Ayccl4HTEBTAduAScTFwA04NLwJmHC2C6\ncAk4LbgApg+XgNPEBTCduAQcwAUwzbgEHBfAlOMSmHJcAI5LYIpxATjgEphaXABOA5fAFOICcNK4\nBKYMF4DTjktginABOFm4BKYEF4DTCZfAFOACcLrhEphwXABOL1wCE4wLwMmDS2BCcQE4eXEJTCAu\nAKcfXAIThgvA6ReXwAThAnAGwSUwIbgAnEFxCUwALgBnGFwCNccF4AyLS6DGuACcInAJ1BQXgFMU\nLoEa4gJwisQlUDNcAE7RuARqhAvAGQUugZrgAnBGhUugBrgAnFHiEqg4LgBn1LgEKowLwBkHLoGK\n4gJwxkVPCUj6kqSdku5OlR0g6QZJD4Tfi0O5JH1B0lZJd0p64ygbP6m4AJxxkqcn8GVgdVvZBuBG\nMzscuDHsA7wDODz8rAO+WEwzpwcXgDNuekrAzP4BeLyt+ETgyrB9JXBSqvwrlnArsEjSQUU1dtJx\nAThlMOiYwDIz2xG2fwosC9vLgUdS520LZfOQtE7SJkmbBmzDROECcMpiwbBPYGYmqe8r2MwuBy4H\nGOTxk4QLwCmTQXsCP2t088PvnaF8O7Aydd6KUOZ0wAXglM2gErgGWBO21wBXp8pPC1mCo4EnU2GD\n04YLoNoYyd+o8dN60JiUP1+eFOHXgVuAX5G0TdJa4BLgBEkPAMeHfYDrgIeArcCfA38wklZPAC6A\nKmIYMQbEu+5Cl0QgkISkudM2CvvOalAcRFFWe4uh55iAmb2nw6HjMs414MxhGzXpuACqR2wxIPTZ\nBYAhAcdfhlDriRvD/sN/F27+mEj1nnNX79bXEBdANTADLHnvZ/utRJfOEF0aIQwBOvYyWPXh1gdt\nFMlBMIG+dTxChKeqLarCRTkt2YEqvNZTj0GMEX3uxdjzTyfv8xE03vAN4BPW/v4/JwAgFshAEdh+\ny+GMbWjeA6qHpDvMbFV7ufcExoQLoFwMw557CrtYRJfMwAvPoIgWAQA9BQAQNQQA8PR27LpTMYtr\n+zd2CYyBul4ctcas2ee3W/47umgGfe4lNN+yszqfx13WUwAAROnuv4ju/zpISWjQ/FvX528+9GQh\npzN+848fI07uvwv3AlkysBdZ6L+HYb6GAPoIAYDmW2bjryolcYEB/MlCWP986uQaxAcBl4BTawxD\npiRvf8k+MPs8mgFm5s5Ibvy2HkCfIcDcs4WHN57PErHY7B7sL5bD721P2lQjCXg4MCK8FzAmdv8/\n7NMRdlGE4hcSAbRTcAig9lHAyJLzn90Bt55XKwGAZwdGQhVe00nFDFAMt/0Z/N2HWm+4mYzXPUsA\njYcc1yUNmCYVBmQKAELOMAkN9B9vwZa9OWlbhXzQKTvgEiiYKryek4ZZjP3iCaKNByY5+lDeckPm\nEUDqdMsbAvTqAbTsJ8cNw858HmkG0PzHlYSnCMeAC6B4bMv/gfNniDYubblBhxFAYSFAy35yPFZS\ntf7m7bXJD/jAYEG4AIan8RpKRnzeDGHwPSFszOuS5w0BGvQZAtBeH8wXQPNEa7gAdnyX6JZzsGMu\nzj63QrgECsAFMBhzL5sR/+mriHY9gMINFiXFNHaGDQGGSgM2j2XUF7XVZ3N1svmz8PQj8PavhrEM\nKjlo6GMCQ1KF16+OGLMwG8OF+0P8HGYQZQWnBQgARjsGkDnoqJC2FPCB2fBc5Qqg05iA9wSGwAWQ\nH7PUW+QzP4PP/nLI3ydFmR/E69QlHyAEKFwAzXpDejDdA2g8Nkp6O9G3X4edfHcY1JwlIiuPWR4+\nMDggLoD8mIV34es/Bv9VcOlBvdNn3dJy7fSZBrQvHzH8GECkOQGk60u1pTFlyB67B/75O0BcOQGA\nhwMDUYXXrOqYAU9tg40Ho3mDehk3T5oahgAtsmofj2j0Eg47FY7/avLfLyFt6OFAQbgAsjEASxbj\nsHMXADEwd49a+sweAmhQ1TRgVgjQSQAt2w99DewrIGGmynz82MOBPnABZGNmsPMeODfCPhkhi5O1\nN9oEkHzgpssTdQoBKpYG7BYCNNrf8hDAGnV97wOoKYBqXE8eDuSkCq9TJbDGhS74zDJ4eldqUK/L\nDTKGECB3GrBbfXnSgKHObiFAe12N9knAol/FTr4XG/PSZD5jcAimWQDWtmN7nsXOieCTQs/sxKLO\nN3k/IUARYwBDCyCLLmnAPAKwNgEYwnZvwTZ/migpKL0/4BLowVQLwGJkMWYxbP4adnYEn9qPdK8+\naqywl0cAWZSQBsysD4YKAToJoDl00Hxc8ly641PEO28NHzsuFx8Y7MK0CsCIERF6eid20cuak17m\nzXdp3gi0/G4dA8hI2zUYJA3YUhZ+d0gDzntInk8DtpT1TgM2n6/toZkCCA+xKDmga9+KTo+TxU7D\na97dmKPBJdCBqRXAufvB88+Emz5Mcs26Njuk+lrTgN3j5FGmAbMEMHAaMNzlncYA8gqg0Q6RfPLY\nMHTN6+Fdm/OJcER4OJDBNAkgNsOefRz7eAQfE9rzLIrUerH3IYDmVo8xgLmnGk8IMHAaEPoeA+gm\ngAYKVdujd8GP/2ep313g2YE2qvB6jI37b8D+/O3Nq9YiksGqBh0FQPbIPEOEAGUuCNJSplz/76yb\nPK8AWsri5Hd86hNEey/KOKk4fLJQDiZZAGYxzD6HbXhRayjf2J5p+3xbHz2A5gKeJYcAhc4E7DME\noB8BNEdWLVkL0UBXLcZOm0Ul9Ag8HAhMogAMw2wWe/gW7L/MoA0vSsJ7m4tLARS1XbVVCwHSzzfq\nEKDZhrbH9pEGbG9HC2kBNP5tPOaf1iSDhBZjYcblOPCeAJMqAODj+8Ke50Bz1zmQvMM1rsXcAiCf\nALKo00zA9FB/gWMAc/VA85ULTTcLf6AHv4pethpecSrjXHdg6iUwkQJ48B/gf/zG3Mh+Gs31AHoK\noNtsv5YQoO1YmhouCNIpBJj/+AFDAM25xiCskGxwyqOw95KMikbLVIcDkygA7r0WNQQw7x29zxAA\nqNVMQDrUl8WQU4EHDgHU1tlotoNSBABTLIFJFQBX/Ltku4MARA3GANKMY0EQ6HsMYNAQIC0AS9f9\nvvGNAbQzlRKYSAFAZwEwJwCbd7P3PwYw8KcBs6jogiCN9rfTfxqwcTbNMQCgORkLDHvfbMYDx8fU\njQlMpABy9AAAiAZPA87d0OWmAcucCVjYGED4OxiGTiv/swNT1ROYVgHUIgRIP19FZwLC8CFA4+9g\nSgRQBXpKQNJKSTdLulfSPZLOCuUHSLpB0gPh9+JQLklfkLRV0p2S3jjq/0QeplkApYYAVUwDQscQ\noJAxgC4hQPLb0Puqcz3mCQf2AB81sx9I2h+4Q9INwPuBG83sEkkbgA3AJ4B3AIeHnzcDXwy/S2Na\nBQD0DgFypwFHGwLkTgN2q6/KacDG3+GkH6MXvzKjovLo2RMwsx1m9oOw/XNgC7AcOBG4Mpx2JXBS\n2D4R+Iol3AosknRQ4S3PyTQLoOg0oJFMdW95Reu2IEg0Q0w+AQw7EzArBKBiAoA+xwQkHQIcAdwG\nLDOzHeHQT4FlYXs58EjqYdtC2diZVgEUNQZgrSrAzpttvWDqtiDI+hhOvYdISv4/I54JCNUNAdLk\nloCk/YDvAB82s6fSxyy52/r6H0paJ2mTpE39PC4vEykAGCwNmDWtt+dU4PDu9d5rsfNi4vNmic6f\nmTsy4gVBOgkgs748acD1yXtzvOiV2FEXgKx5k7cz7BjA3I2ftLXKAoCcKUJJe5EI4K/M7K9D8c8k\nHWRmO0J3f2co3w6sTD18RShrwcwuBy4Pz1/oKzSRAhhDGhCARQfDRx6ed6PNnJe6+uuWBlw/d04E\n2JGfhB99jviF3UTW+Dzv3AnDjgHIaP4dqi4AyJcdEHAFsMXMPp86dA2wJmyvAa5OlZ8WsgRHA0+m\nwoaRM60CGDoE+NcbsAsM/vDh+Vf/eenBt/RTjScEGCoNmBJA8qnKcKueeh/JtyDNCaCoNGAdQoA0\nPRcVkfQ24HvAXcwp8xyScYFvAgcDPwH+g5k9HqTxp8Bq4FngdDPr2uUvqicwkQIA+Ghb171BSgBz\nM9Aax7qFAOHClbAL9nRf1SZDAAOnAbuEACNZEOTMztdDbIYe/ht0/b9PbloJhVGQQUKABlUOATot\nKjIxKwtV4f9ROAVmAZKBMIhe/hbsjH/KDNPncb7m3obrtCAItPQAumGP341967VJ9Ro8BGikAaG6\nPYCJXlnIBZA+Nl8AsUR04Wy4aHN+Ur2oECBd2bgWBMkpgFlmmVn8GogWgO0pLA1YRQF0o/bThqdV\nAJ3GAExgFmFE2MFvgYsMXbgndHcHF8DAIUCDcc0EzCmApKqZ5LU85f7wumW3Y64eqGsasBu1Dgeq\n0PbCGaAHYOn3pItne6fsulFwCGAwngVBoC8BpDGL4Rc74Wutc9qaTcgRAnDSjys5EShNp3Cgtj0B\nF0CCYXDgK+HiPcML4LzixwDGtiDIgAIIT0S87zL49Ssauz0FAFR+JmBeajkmMGkCMIvRluvyfRiI\n8P+X4NPPoL32LaYRdUkDNuu1uRdkKAEkdc4A9iunw/fWhsIkPFCHMYC5rEw9Q4A0tesJTJ4AACz/\nTMDFK+GS2eRdf4QCyEzLtVOFBUGGFECzbRaDgR2zERCxNd7ps8cAqpoGHIRajQlUoa2Fc+MlcN3Z\nyXbbPWCNsg1b4YB/BcQUvi59jdOA8fpZooLfx8xm0c5bset+HTDUYQygjgKofYpwWgSQfC1l+OjO\nxjhchEnftHAB1DENGO5GW7h/CNUNk5DNEpbtHRjDQBH20mPQy3+b+Cdhhnyos2UMoOQlwYqkFuHA\nNAjALAjg5UdjG2PYaOHmSNJ6Qw34ZVHjNGAM8MLP0e0XEDem/Q4pAAivdDJ9EP7Nt9H+hxKH6KOZ\nBiQRgOpx6+Si8uFAFdpXOA0BWJivfsHj6EWLx1d/WWnAbvXlTQNqTlaxgdY+CvssRpZR1xCYzSaN\nvTJCUZTU+Y5/hKXHFFfJmKllinDSBGBmcOPF2HVnwzn/jH1+Fm2M0b5jFECZacBhFwRpFIXHRjL4\n0hKI4+TDQUnupPvz5sEMNb4k8I0XkHwlWIwdWF8BdKOyEpg4AWDYzRvhmN/HPjeLHXBw0qXstXZf\nkZScBsysDwZeE9AUnvf/Hk/SrUqfOAThbyJF8NpzYemb4H1xvs9b1JBKhgNVaFPRGJbcQ80LacxX\nVN40YLsE2j+ZCD3TgHp0c+tzDPtpwPa2yFI9ivB5iKM+A0dswDQ3f3LY7/NrXIeFj8eURG0+RViF\n9kwcbQKoUxowPQaQ1ZaYxg0PdvrjsPeioW/+SaUWYwIugBFQl5mAA34vQBR2LQK++RqI5yb+OPmo\njARcACOgyDRglxBgnN8LkPVIi5ID9osd8LcnJIuleGcgN5WYLHTkkUeW3YTJ4/yahgAhoO8UAsyr\nv7EmYCNd+YsdRB4O9EVlegJOgbSlARtUeiZgsw1tj+3newGW/CrR79wz/0Sn6+CmS2DSqPFMwE4h\nQCcBiDkBmEH0O/dm1zHl9MpuVCIccAqi4BAg90zAYRcE6RECzH98mwAArfMxpSzypDe9JzAplDkT\nkOFnAuYVQHsIYIDOcAFkkXd+g0tgEqhLGrBZb39pwAZZ3wzkAsimnwlOLoG6U+cFQfpMA7YLABdA\nJv3OcPQxgTozxjRg1nLcY08D4iFALwaZ4uw9gbpSxzTggCEAeAiQh0E/4+ASqCNTmgYEPATowDAf\ncvJwoG6UlQbsVt+40oAugEyG/ZSj9wTqxAQtCOJpwGIo4mPOLoG6MGELgrSUp/A0YH6KWufAJVAH\nhk0DtpSF332mATPr8zRgaRS50ImPCVSdMS4IUnQaMF74YvTCz0FCmKcBC6LolY68J1Bl6jITMCMN\naGfG6L33I9k8AbTjacD8jGKpM5dAVanzgiDrw3cm7PNS0MLGV6nkCwFisPfvzq5jyhnVWoceDlSR\nOi8IkvpuQEWC338O/vJg7NlH5ndM2kMAgf5zRjudkS526j2BqlHHmYANMr8c1OCUe5pf7NMsbU8D\nCvR7HgJkMerVjntKQNI+km6X9CNJ90g6P5QfKuk2SVslfUPSwlC+d9jfGo4fMtL/wSRR55mAHb4d\n2AD22g/99u3J14c1bnjaxgBcAJmMY7nzPD2B54Bjzez1wBuA1ZKOBi4FLjOzw4AngPDF7qwFngjl\nl4XznF5khAADCSC84xpJCNBTAFGX+iLL7gE00oAwLwSY3zwlPy99E3rvtpZxgUYPwNOA2Yzr+w56\nSsASng67e4UfA44Fvh3KrwROCtsnhn3C8eM0Kd/eMCrqvCBIFwG01GGz8Esvg2jhnKQ8BOjIOG+Z\nXGMCkmYkbQZ2AjcADwK7zWxPOGUbsDxsLwceAQjHnwSWZDznOkmbJG3atWvXcP+LOlOXNGCz3t4h\nQObDNJPUsSb5WxsugE6M+z0zlwTMbNbM3gCsAI4CXjVsxWZ2uZmtMrNVS5cuHfbp6kmdFwTpQwBz\nxGiv/dER56D3PzXA4yefMjrNfaUIzWy3pJuBY4BFkhaEd/sVwPZw2nZgJbBN0gLgJcBjBbZ5Mqjz\ngiADCSBULOBNF3kaMIOyouY82YGlkhaF7X2BE4AtwM3AyeG0NcDVYfuasE84fpP51wu1Usc04FA9\nAKcXZQ6b5ekJHARcKWmG5JL9ppldK+le4CpJFwI/BK4I518B/KWkrcDjwCkjaHd9mcA0oDMcZY+b\n95SAmd0JHJFR/hDJ+EB7+b8A7y6kdZNGnRcEcQGMhLIFAD5teHyM4NOAY1sQxAUwEqogAPBpw+Oh\nzguCuABGQlUEAC6B0VPnBUFcACOhSgIADwdGy1SmAZ1uVE0A4D2B0VFUGjCNpwFrTRUFAC6B0VDz\nBUGc4qmqAMDDgeKZkAVBnOKosgDAJVAso0gDlrogiDMsVRcAeDhQHCNKA3oIUF/qIADwnkAxlDUT\nMDXeMK8+nwlYKnURALgEhqfMmYD4TMAqUicBgIcDwzElC4I4+ambAMAlMDhjSgNWZ0EQpxd1FAB4\nODAYPhPQaaOuAgDvCfSPLwjitFFnAYBLoD98QRCnjboLADwcyI8vCOK0MQkCAJdAPnxBEKeNSREA\neDjQG18QxGljkgQALoHuVOB7AXxBkGoxaQIADwc6Yo0sQJTc03VIAzYWdrcz97jdR8AkCgBcAtmY\noWgGi2dbbtBKpwEBznwetKBZ7BTHpAoAPBzIRsLe/10QmFU3DWgmbNFhxGfOYutjFO0VHje5F2wZ\nTLIAwHsCnVn5VviDu+CLrw0WCOXjTgOG5zWEyZAWwBmPwt77I0Xp6pwRMOkCAO8JZBITJ/f9ga+B\n3/xv2AACAIoRQJQM9mnhfuiDMax/HvZ5cVMAzuiYBgGASyCTiIhIAmJ426fQfsswQdzugBGmAQ3D\nZNjy34APGXzgKSQlP/7eP3KmRQDg4UB3NJNkBv5wB3wmIjKwKNzzhS8IAiYDLYAPPYca3+DrjJVp\nuvkbeE+gB4YlN+o7/zcWqasAgIEWBAERv/tmOCt2AThjx3sCPRAhj/+6NcS3bUSP3QtY9k2aMwSw\niOYcBD74HDazVwg/khqdcpjGXgB4TyA3hqEz7sYW7NN6n3aZCZglgDiK4JcOwj4yCx+OiRcsSAnA\nKYtpFQB4T6B/Pvo0dulCJGuGA51mAjYihxjQ6T+GxYcRaQZIZRz9nb90plkA4BLITTMlpxl46a9h\nj96Z7LeFAIbBxiSmt6PPQW+7yLtbFWbaBQAugb4xDP7TZviTX4a3nAtHrm89YeMMdvqdaMlriDyX\nX2lcAAkugT4RSZxvH/xp5kWkj8Xewa8BLoA5cr9VSZqR9ENJ14b9QyXdJmmrpG9IWhjK9w77W8Px\nQ0bT9HLxi6i++N+ulX76q2cBW1L7lwKXmdlhwBPA2lC+FngilF8WznOcSuACmE8uCUhaAfxb4C/C\nvoBjgW+HU64ETgrbJ4Z9wvHj5K+8UwH8Mswmb0/gj4CPk2S7AJYAu81sT9jfBiwP28uBRwDC8SfD\n+Y5TGi6AzvSUgKR3AjvN7I4iK5a0TtImSZt27dpV5FM7TgsugO7k6Qm8FXiXpIeBq0jCgD8GFklq\nZBdWANvD9nZgJUA4/hLgsfYnNbPLzWyVma1aunTpUP8Jx+mEC6A3PSVgZmeb2QozOwQ4BbjJzH4X\nuBk4OZy2Brg6bF8T9gnHbzKzjM/aOs5ocQHkY5jZLJ8APiJpK0nMf0UovwJYEso/AmwYromO0z8u\ngPz0NVnIzL4LfDdsPwQclXHOvwDvLqBtjjMQLoD+8HmtzkThAugfl4AzMbgABsMl4EwELoDBcQk4\ntccFMBwuAafWuACGxyXg1BYXQDG4BJxa4gIoDpeAUztcAMXiEnBqhQugeFwCTm1wAYwGl4BTC1wA\no8Ml4FQeF8BocQk4lcYFMHpcAk5lcQGMB5eAU0lcAOPDJeBUDhfAeHEJOJXCBTB+XAJOZXABlINL\nwKkELoDycAk4peMCKBeXgFMqLoDycQk4peECqAYuAacUXADVwSXgjB0XQLVwCThjxQVQPVwCzthw\nAVQTl4AzFlwA1cUl4IwcF0C1cQk4I8UFUH1cAs7IcAHUA5eAMxJcAPXBJeAUjgugXrgEnEJxAdQP\nl4BTGC6AeuIScArBBVBfXALO0LgA6o1LwBkKF0D9cQk4A+MCmAxkZmW3AUk/B+4rux19cCDwaNmN\nyEmd2gr1am+d2grwcjNb2l64oIyWZHCfma0quxF5kbSpLu2tU1uhXu2tU1u74eGA40w5LgHHmXKq\nIoHLy25An9SpvXVqK9SrvXVqa0cqMTDoOE55VKUn4DhOSZQuAUmrJd0naaukDRVoz5ck7ZR0d6rs\nAEk3SHog/F4cyiXpC6Htd0p6YwntXSnpZkn3SrpH0llVbbOkfSTdLulHoa3nh/JDJd0W2vQNSQtD\n+d5hf2s4fsi42ppq84ykH0q6tuptHZRSJSBpBvgz4B3Aq4H3SHp1mW0CvgysbivbANxoZocDN4Z9\nSNp9ePhZB3xxTG1Mswf4qJm9GjgaODO8hlVs83PAsWb2euANwGpJRwOXApeZ2WHAE8DacP5a4IlQ\nflk4b9ycBWxJ7Ve5rYNhZqX9AMcA16f2zwbOLrNNoR2HAHen9u8DDgrbB5HMawD4X8B7ss4rse1X\nAydUvc3Ai4AfAG8mmXCzoP2aAK4HjgnbC8J5GmMbV5AI9FjgWkBVbeswP2WHA8uBR1L720JZ1Vhm\nZjvC9k+BZWG7Uu0PXdAjgNuoaJtD93ozsBO4AXgQ2G1mezLa02xrOP4ksGRcbQX+CPg4EIf9JVS3\nrQNTtgRqhyWqr1xKRdJ+wHeAD5vZU+ljVWqzmc2a2RtI3mWPAl5VcpMykfROYKeZ3VF2W0ZN2RLY\nDqxM7a8IZVXjZ5IOAgi/d4bySrRf0l4kAvgrM/vrUFzpNpvZbuBmki71IkmNKezp9jTbGo6/BHhs\nTE18K/AuSQ8DV5GEBH9c0bYORdkS+D5weBhxXQicAlxTcpuyuAZYE7bXkMTdjfLTwoj70cCTqS74\nWFDyUb4rgC1m9vnUocq1WdJSSYvC9r4kYxdbSGRwcoe2Nv4PJwM3hV7NyDGzs81shZkdQnJd3mRm\nv1vFtg5N2YMSwG8B95PEhp+sQHu+DuwAXiCJ+daSxHY3Ag8Afw8cEM4VSXbjQeAuYFUJ7X0bSVf/\nTmBz+PmtKrYZeB3ww9DWu4FPhfJXALcDW4FvAXuH8n3C/tZw/BUlXRO/CVxbh7YO8uMzBh1nyik7\nHHAcp2RcAo4z5bgEHGfKcQk4zpTjEnCcKccl4DhTjkvAcaYcl4DjTDn/H8uriv6cJG31AAAAAElF\nTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "tags": [] }, "output_type": "display_data" } ], "source": [ "transform = tfa.image.transform(img, [1.0, 1.0, -250, 0.0, 1.0, 0.0, 0.0, 0.0])\n", "_ = plt.imshow(transform)" ] }, { "cell_type": "markdown", "metadata": { "id": "O79BrK-bC8oh" }, "source": [ "## YIQ 中的随机 HSV\n", "\n", "此运算可将给定 RGB 图像的色标更改为 YIQ,但此处是从给定范围随机选择色度增量和饱和度值。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "zZBI-9XvBSuh" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAVa0lEQVR4nO3de3Bc5XnH8e9jyZIljCVfhW7BBhuw\nCISLY8iQaRvAHUJooA1JgUxxG6fGCSRkkpkU2pnOZNI/kn9CYnKzCwkkkwRyIcX1MEOIcSaTtrER\nMRhsYyMcEkkWki3fZOQLRk//OO/Kiyzbuuzu2dX7+8ysdc57jnYfr/b8znsue465OyISr0lpFyAi\n6VIIiEROISASOYWASOQUAiKRUwiIRC4vIWBmN5jZdjNrM7P78vEaIpIbluvzBMysDNgBLAE6gOeA\n2919a05fSERyIh89gcVAm7vvdPdjwGPAzXl4HRHJgfI8PGcj0J413gFcdbpfqK6u9tra2jyUIiIZ\nXV1de9x99tD2fITAiJjZcmA5QE1NDZ/85CfTKkUkCl/+8pf/NFx7PjYHOoHmrPGm0PYO7r7a3Re5\n+6Lq6uo8lCEiI5GPEHgOWGBm88ysArgNWJOH1xGRHMj55oC7Hzeze4CngTLge+6+JdevIyK5kZd9\nAu7+FPBUPp5bRHJLZwyKRE4hIBI5hYBI5BQCIpFTCIhETiEgEjmFgEjkFAIikVMIiEROISASOYWA\nSOQUAiKRUwiIRE4hIBI5hYBI5BQCIpFTCIhETiEgEjmFgEjkFAIikVMIiEROISASOYWASOQUAiKR\nUwiIRE4hIBI5hYBI5BQCIpFTCIhETiEgEjmFgEjkFAIikVMIiEROISASOYWASOTOGAJm9j0z6zGz\nl7PaZpjZM2b2avg5PbSbma00szYz22xmV+SzeBEZv5H0BB4BbhjSdh+wzt0XAOvCOMAHgQXhsRz4\nTm7KFJF8OWMIuPtvgb1Dmm8GHg3DjwK3ZLX/wBO/B2rNrD5XxYpI7o11n0Cdu3eF4TeAujDcCLRn\nzdcR2k5iZsvNrNXMWvv7+8dYhoiM17h3DLq7Az6G31vt7ovcfVF1dfV4yxCRMRprCHRnuvnhZ09o\n7wSas+ZrCm0iUqTGGgJrgKVheCnwZFb7neEowdXAgazNBilRSVfPcU8e75jmjo+6HyjFZCSHCH8C\n/B9woZl1mNky4CvAEjN7Fbg+jAM8BewE2oD/BD6dl6ol/9wHF3Bz6HnlMd7cs/mk2Xp2/JTeP64Z\nDIihISHFr/xMM7j77aeYdN0w8zpw93iLkvRlFuX97c/y5t6tgw1mdtK8R/ra6dz8bWa8awlVtQsK\nV6TkhM4YlEFD1+adL3yLN3u3JhNPXvZPsvfPz9C5+duDPQj1CkrDGXsCEpe+7uc52PX7cT3Hrpe+\nDcDM825mytSmXJQleaQQkLDGNrpe/j4Dx3N3zkbvziepqlnA9HctATNwH3ZzQtKlEIjUYFfd4FDP\nJg7s+t9kuz+Hy6hjHD7QxuGX2pgx90amnH0uriAoOgqBiO3e8QuOvdmFY+RnuTyRKntffwqA6pkX\nU9v4FwBYLhNHxkwhEBHHweHIwdfpfW1taA2LYoH24fXv3UL/3i3MueAOyitq8xQ+Mho6OhAThz1t\n/82etrWD42np2fFj+no2pleADFJPYILLbPsf2r2Z/e2/xaCga/7T6etppa+nldnnf4TJVXOA4c9D\nkPxSCExQmYV/35/X8+aeLUBO9/nl1O6dTwAwvek6qmpOnGykQCgMhcAEdXj/TnpfS3bGFe3SP8S+\njnXs61hH3QV3UDZ5WtrlREP7BCYQd8dxdu94kt6dT2VaU61pVMK2SveOH9PXvUHfRSgQ9QRK2ju/\nwdfR+mDJrPVPy6CvdxN9vZsAaGhZcWKSNhFyTj2BEnbiSz6/mzgBMIxdW7/L4QPb0y5jwlIIlJjs\nL+cMvHWYjtYHOdS9acIGQMa+zvV0bVuF+wCgLyflkkKgJDkHOv6HXZseSruQAjLcnV3bVnH44M4J\nH3qFpH0CJSJztl9H64MnGqNaEJI1vwF7O36FhZaGhXeFdovs/cgd9QRKgOMc6t5Mx3MPnnnmCFi4\n4JnhdG1bxfGjewcvfwYhMGXE1BMoYpkPdcdzK2Fw3afVXTYHdv/xZwDUX5TpFchoKASKTGbBP7yv\njd62p5Jv+A1+rPXxHirzjrhD1yurAJhz/scpmzxVhxNHSCFQFJI1fKYT2/7cSvBw7ow+x6PWs/NH\nADRcdFcSou56I09D+wSKgHuy57u/dzvtG1eeWPiL5Zs+pSbcDmfXK6t463C33sEzUE8gRR46++B0\nbFyZdjkT0p4//RIw6i9cnjSYLmYylEIgRW8fOUjXi4+Q3VvVxzMfnK7tqwGom38nk8oqMVMnOEMh\nUGCZHX/tG1aSbPjn69Je8k7J+97d9gNsUjnnXPAJQL0C0D6Bgjt6sJ32Dd9A2/opMfCB43RtX83A\n28fSrqYoqCeQZ+7Jbv5DXS+y7/XfnHy4X4f+Cy+8391tjwAws/kmKqoaoj2kqBDII3fn2KE36H75\n8azG9OqR4fW2J9dcrDv/TiaVTQHi+sqyQiCPOjZ8Ex94W2v6opfsl+ne+UOmn/MBqqbNT7uggtI+\ngTxyVwCUBh/cKtv/xnpi+6MpBEQipxAQiZxCQGSI2L6KrBAQyXLiVO54KARE3iGuAIARhICZNZvZ\nejPbamZbzOze0D7DzJ4xs1fDz+mh3cxspZm1mdlmM7si3/8JERm7kfQEjgNfcPcW4GrgbjNrAe4D\n1rn7AmBdGAf4ILAgPJYD38l51SKSM2cMAXfvcvc/hOE+YBvQCNwMPBpmexS4JQzfDPzAE78Has2s\nPueVyykMXoigZE2aVJl2CVEZ1T4BM5sLXA5sAOrcvStMegOoC8ONQHvWr3WENikIp/Hyu9IuYlym\nTJtH3fzb0y4jGiM+bdjMpgK/AD7n7gezz612dzezUR1XMbPlJJsL1NTUjOZXZVjGrPl/w5Sac9Mu\nJCfKK2tpaFnBoT1/oG/3RnSvkfwZUQiY2WSSAPiRuz8RmrvNrN7du0J3vye0dwLNWb/eFNrewd1X\nA6sBGhoa9CceM6P+kjspq5w24b70YmacPftKps66giN9O9nb/itwg9Gtb+QMRnJ0wICHgW3u/rWs\nSWuApWF4KfBkVvud4SjB1cCBrM0GyaGz66+kadE9lFVO/Nt4Tzn7PBpaVjBl2ry0S5lwRtITuAb4\nB+AlM3shtP0r8BXgp2a2DPgT8LEw7SngRqAN6Af+KacVCwB1LbdRcdactMsoiOwezvSmv+ZI3+vs\n63g6TEypqAnkjCHg7r/j1G/1dcPM78Dd46xLTqFp0WeAuL7vns3MqJo2j6qWFbj74L0GZOx0PYES\nMWPe9VTPWsiJSxMJJHcdOtizgUO9L5x5ZhmWThsuVm6Dy3rTez9D9ayFWLgoaay9gKEs3JxhWt1V\nNCy8S9E4RuoJFCOHs+a0MGPe9WlXUvSSPEzuSNy4MNlE6G1fy9E3Owfv6SCnpxAoMg40L/5s2mWU\ntJnNNwEM3mtATk+bA3ng7qM6uSUz79Q5l9K8+LOh268u/1hk3jszo/6i5ZRXTGcinEqdT+oJ5M3o\nuqFNV31Wlx/PNYfZ8z6GmbHrlVXozR2eQiAPRroWr5haT93FyekVFrZrJZGLi3tk/x0y9yLsbvs+\nAwNvjet5JxqFQEGFHVUGzVfdqy7/KfTvf4Xaxr9KLvPlBgyM+96Bmfd6zvx/xDC6dqwmc6lxH7Lt\n5u5R/W20T6CgnMqz62m+6t60CyluDru2fJe+ntZkPIc3D80s3PUXLKds8tSTAsAG/4mHegIFMrXu\nEqbPuzaqNcyYhbeob3crfbtbqaiqY9a8v00mjfP9y97sqjvvDtydPX9+greO9pLZCEm+pDSulykp\nCoE8yaxgbNJkmhZ/Ot1iStyxw93s2rqKGc1LmDLtvKzj/+NbUjNXFZ71rr/DzOh69SHwgfEXXGIU\nAnmQ6WI2vXcFVlZJZttTxsOTrxIDDS0rAMb9ng7dGXvO/GX0tv8XsR2m0T6BPMh0Wa2sMhyi1llr\nuWIGXdtWcah3E+6ZczI8Z/cKmNl8S3SbbOoJ5ElsH6RCcnf6ejZwsGcjVTXnM73h+pzcKyDWv5lC\nQEpOZlk1nMMHXuPIgdeY3nQ9U84+P2ueOBfosdDmgEwI+zp+TW/72jCmABgNhYCUtMxxfQeOvdkZ\nLjKifTCjoRCQiUcdgVFRCIhETiEgE05sdxUeL4WASOQUAiKRUwiIRE4hIBI5hYBI5BQCIpFTCIhE\nTiEgEjmFgEjkFAIikVMISNEpnzxNXwQsIIWAFJ2Ksxo456KlYUzfA8g3hYAUpbLyahpaVjC96brR\n/aLDwMCx/BQ1QenyYlK0zIzqmgVU1yzgWP8b7H79lyTrrdNcFlwdh1FTT0BKwuSqOhoWrqB6ekva\npUw4ZwwBM5tiZhvN7EUz22JmXwrt88xsg5m1mdnjZlYR2ivDeFuYPje//wWJQeZ24zXnvJ9Z8z6C\nQ3K3IBm3kfQEjgLXuvt7gMuAG8zsauCrwAPuPh/YBywL8y8D9oX2B8J8IjlhZlRUzaGx5VM0LLwr\nub6gjiSMyxlDwBOHwujk8HDgWuDnof1R4JYwfHMYJ0y/znT9Z8mT+ovuouaca9Iuo6SNaJ+AmZWZ\n2QtAD/AM8Bqw392Ph1k6gMYw3Ai0A4TpB4CZwzzncjNrNbPW/v7+8f0vJEqZTYSpMy5JegXo9IKx\nGFEIuPvb7n4Z0AQsBi4a7wu7+2p3X+Tui6qrq8f7dBI7S3oFZ8+8QkkwSqM6OuDu+4H1wPuAWjPL\nHGJsAjrDcCfQDBCm1wC9OalW5BSMpFcwbc5iJpVVpF1OSRnJ0YHZZlYbhquAJcA2kjC4Ncy2FHgy\nDK8J44Tpz7pr141IsRrJyUL1wKNmVkYSGj9197VmthV4zMz+A9gEPBzmfxj4oZm1AXuB2/JQt4jk\nyBlDwN03A5cP076TZP/A0PYjwEdzUp2I5J3OGBSJnEJAJHIKAZHIKQREIqcQEImcQkAkcgoBkcgp\nBEQipxAQiZxCQCRyCgGRyCkERCKnEBCJnEJAJHIKAZHIKQREIqcQEImcQkAkcgoBkcgpBEQipxCY\nsAzMKKl7dTuDNw7RVeoLRyEwQTVdeQ9nzRz3jaIKblrdVdQ2fKCksqvUKQQmKDNjxtwlNF15T9ql\njEh5RQ0NF69g6qzLwRxTChTMSG4+IiXMzJIgcOje+mPeOrK3eBYvMyqnNjPz3A+hG1enRyEQAzcw\np67lDjDoeP6b6QaBA2Y0XLwizSok0OZABMxO3LDTMJquuIdJk6vBLJUb+FZMbaDh3SsGby2uXkC6\n1BOIkJnRcOkyAHa/+kuO9nUmO+LylQgG7nDWjBZqG/9SC32RUQhEbtb8WwCn84Xvgg3k5TUmlVVy\nzsJP5OW5ZfwUApGzcC5B0+Wf5u3jR+h66aFcPCuebPjT8O67wCZp7V/EtE9ABk0qq6TxsruxSWXj\neh4HysrPovGST4HpI1bs1BOQQWaGu9NwabLXvuulhxh4++ionqOiajazF3wUMLTyLw0KAXmH7G57\nw6X/jLvT+eK3BtvcGbJwJ3sTDWh8z92FKVJySiEgp2fJwt2/9xV84NiwM8y58DYmV84oeGmSGwoB\nOS3DwOCsmQtx95O6+HUX/n06hUnOjHivjZmVmdkmM1sbxueZ2QYzazOzx82sIrRXhvG2MH1ufkqX\nQtMe/olpNLtu7wW2ZY1/FXjA3ecD+4BloX0ZsC+0PxDmE5EiNaIQMLMm4EPAQ2HcgGuBn4dZHgVu\nCcM3h3HC9OtMqxCRojXSnsDXgS8CmVPKZgL73f14GO8AGsNwI9AOEKYfCPOLSBE6YwiY2U1Aj7s/\nn8sXNrPlZtZqZq39/f25fGoRGYWRHB24Bviwmd0ITAGmAd8Aas2sPKztm4DOMH8n0Ax0mFk5UAP0\nDn1Sd18NrAZoaGjQtaREUnLGnoC73+/uTe4+F7gNeNbdPw6sB24Nsy0FngzDa8I4YfqzrgvGiRSt\n8ZzY/S/A582sjWSb/+HQ/jAwM7R/HrhvfCWKSD6N6mQhd/8N8JswvBNYPMw8R4CP5qA2ESkAfcVL\nJHIKAZHIKQREIqcQEImcQkAkcgoBkcgpBEQipxAQiZxCQCRyCgGRyCkERCKnEBCJnEJAJHIKAZHI\nKQREIqcQEImcQkAkcgoBkcgpBEQipxAQiZxCQCRyCgGRyCkERCKnEBCJnEJAJHIKAZHIKQREIqcQ\nEImcQkAkcgoBkcgpBEQipxAQiZxCQCRyCgGRyCkERCKnEBCJnEJAJHIKAZHImbunXQNm1gdsT7uO\nUZgF7Em7iBEqpVqhtOotpVoBznX32UMby9OoZBjb3X1R2kWMlJm1lkq9pVQrlFa9pVTr6WhzQCRy\nCgGRyBVLCKxOu4BRKqV6S6lWKK16S6nWUyqKHYMikp5i6QmISEpSDwEzu8HMtptZm5ndVwT1fM/M\neszs5ay2GWb2jJm9Gn5OD+1mZitD7ZvN7IoU6m02s/VmttXMtpjZvcVas5lNMbONZvZiqPVLoX2e\nmW0INT1uZhWhvTKMt4XpcwtVa1bNZWa2yczWFnutY5VqCJhZGfAt4INAC3C7mbWkWRPwCHDDkLb7\ngHXuvgBYF8YhqXtBeCwHvlOgGrMdB77g7i3A1cDd4T0sxpqPAte6+3uAy4AbzOxq4KvAA+4+H9gH\nLAvzLwP2hfYHwnyFdi+wLWu8mGsdG3dP7QG8D3g6a/x+4P40awp1zAVezhrfDtSH4XqS8xoAVgG3\nDzdfirU/CSwp9pqBauAPwFUkJ9yUD/1MAE8D7wvD5WE+K2CNTSQBei2wFrBirXU8j7Q3BxqB9qzx\njtBWbOrcvSsMvwHUheGiqj90QS8HNlCkNYfu9QtAD/AM8Bqw392PD1PPYK1h+gFgZqFqBb4OfBEY\nCOMzKd5axyztECg5nkR90R1SMbOpwC+Az7n7wexpxVSzu7/t7peRrGUXAxelXNKwzOwmoMfdn0+7\nlnxLOwQ6geas8abQVmy6zaweIPzsCe1FUb+ZTSYJgB+5+xOhuahrdvf9wHqSLnWtmWVOYc+uZ7DW\nML0G6C1QidcAHzaz14HHSDYJvlGktY5L2iHwHLAg7HGtAG4D1qRc03DWAEvD8FKS7e5M+51hj/vV\nwIGsLnhBmJkBDwPb3P1rWZOKrmYzm21mtWG4imTfxTaSMLj1FLVm/g+3As+GXk3eufv97t7k7nNJ\nPpfPuvvHi7HWcUt7pwRwI7CDZNvw34qgnp8AXcBbJNt8y0i27dYBrwK/BmaEeY3k6MZrwEvAohTq\nfT9JV38z8EJ43FiMNQOXAptCrS8D/x7azwM2Am3Az4DK0D4ljLeF6eel9Jn4K2BtKdQ6lofOGBSJ\nXNqbAyKSMoWASOQUAiKRUwiIRE4hIBI5hYBI5BQCIpFTCIhE7v8BoH/76euDR1kAAAAASUVORK5C\nYII=\n", "text/plain": [ "
" ] }, "metadata": { "tags": [] }, "output_type": "display_data" } ], "source": [ "delta = 0.5\n", "lower_saturation = 0.1\n", "upper_saturation = 0.9\n", "lower_value = 0.2\n", "upper_value = 0.8\n", "rand_hsvinyiq = tfa.image.random_hsv_in_yiq(img, delta, lower_saturation, upper_saturation, lower_value, upper_value)\n", "_ = plt.imshow(rand_hsvinyiq)" ] }, { "cell_type": "markdown", "metadata": { "id": "ruyvVnmCDBgj" }, "source": [ "## 调整 YIQ 中的 HSV\n", "\n", "此运算可将给定 RGB 图像的色标更改为 YIQ,但此处不是随机选择,而是由用户输入色度增量和饱和度值。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "vbCdwGtYChnQ" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAU3klEQVR4nO3da2xU553H8e8fY8DgcjEXB2xiEyAB\nSu6UQEMgmJCQyzZ5ka4SVVu0QqLSZqVUrdRNNtJKlfZF+6ZpK62qZTdV01XVy7aVkrLZTbk2SRto\nICThFhJzMcZcDASTQJoS4L8v5hkzGBOP7Zk5Z/z8PtLgc55zZvzHnvmd5znn+Bxzd0QkXoOSLkBE\nkqUQEImcQkAkcgoBkcgpBEQipxAQiVxRQsDMlpnZHjNrNrOnivE9RKQwrNDnCZhZBfAesBQ4BLwB\nPO7uuwr6jUSkIIrRE5gLNLv7Pnc/B/wCeLgI30dECmBwEV6zDmjNmT8E3PFZT6iurvaxY8cWoRQR\nyTp48OAJdx/ftb0YIZAXM1sJrASoqanhmWeeSaoUkSh87Wtfa+muvRjDgTZgcs58fWi7jLuvcvc5\n7j6nurq6CGWISD6KEQJvANPNbIqZDQEeA14swvcRkQIo+HDA3c+b2T8CLwMVwI/dfWehv4+IFEZR\n9gm4+0vAS8V4bREpLJ0xKBI5hYBI5BQCIpFTCIhETiEgEjmFgEjkFAIikVMIiEROISASOYWASOQU\nAiKRUwiIRE4hIBI5hYBI5BQCIpFTCIhETiEgEjmFgEjkFAIikVMIiEROISASOYWASOQUAiKRUwiI\nRE4hIBI5hYBI5BQCIpFTCIhETiEgEjmFgEjkFAIikVMIiEROISASOYWASOQUAiKR6zEEzOzHZtZu\nZjty2mrMbI2ZvR++jgntZmY/NLNmM3vHzG4rZvEi0n/59AR+Aizr0vYUsM7dpwPrwjzA/cD08FgJ\n/KgwZYpIsfQYAu7+CvBBl+aHgefD9PPAIzntP/WMTcBoM5tYqGJFpPD6uk+g1t2PhOmjQG2YrgNa\nc9Y7FNquYGYrzWyLmW05c+ZMH8sQkf7q945Bd3fA+/C8Ve4+x93nVFdX97cMEemjvobAsWw3P3xt\nD+1twOSc9epDm4ikVF9D4EVgeZheDryQ0/7VcJRgHnA6Z9ggZcrdL3t0t0zKVz6HCH8OvA7cYGaH\nzGwF8B1gqZm9D9wT5gFeAvYBzcB/AP9QlKql6Lp+6Ftf38Tpg61XrNe6eTNHtm27akhI+g3uaQV3\nf/wqi5Z0s64DT/S3KEmP9l27+LDtcOe8mV2xzscnT7J37Vpqb7yR6traK5ZLuumMQenUdWvevGbt\nZQHQk2M7trN33Vr1CspMjz0Bicup/fs5+X4zmJE56HPllr8n+9atA4OJt97G8JqagtcohaUQkM4t\n9v6Nr3Dh3DnAwue/lwGQ3fCH/Diy7U1GTKildvbszlW6G05IshQCkcrtqp860MKJ994Dwoe0UL14\nd84eO8a+9mNcc/PNDB87DndXEKSMQiBirZvf4JOOjst7/AUdxlvnax99+20ARtbVMe6GGZmlCoNU\nUAhEJLv1P3v8BIff3JZpLPHn8KPDbXx0uI36eV+ksqpKQZACOjoQmbatb9KWDYCEuMOhTX/i1P59\nidYhGeoJDHDZrX9HSyvH330XKPnG/wrZjX/Hgf10HNjPpNu/wNCRI8OypKuLj0JggMp++I/t3MXp\n1kOZRrPEA6A7h7duAXMmzJrNiAmXTjZSIJSGQmCAOnOsncPb3kq6jF45vmsnx3ftpH7efAYPq0q6\nnGgoBAaQ7Na/bcubnD1xIjSSfP8/D7l9lEObXmfUtQ2MuW5qZpl6BEWlEChjXU/L3fO/vy+Hz3te\nTh9s4XRrCwCNi5o62xUIhacQGADad+/h1IGWpMsomgN/WM+4GTOprtWV6opBIVBmcrf+F86do3nd\nxuSKKaET7+7m5J53aVh4N9nxjXoFhaHzBMrU8Xffo3ntxgKf4Zdu7k7LKxv4+MTxpEsZUNQTKBPZ\nHsCel36fcCUJc2jfub3zXIOGhdpf0F/qCZQBd6ejpZV3/+flpEtJBYNMD8ih5ZX1fHr2LHApKHUd\ng95RTyDFsm9mffg/2+Gtm4HLewWSP4VAymQ/+GeOHuPQ1stP9lFv92oyFzA4+OoGHKifO5+KocM0\nPMiTQiAFsn9jn7vld9eHvi8MaHvjdQCuXbD4Urt+mFelfQIp4e58ePgIu1dnuv56z/aDZ/5S8eCr\nGzj30YdJV5N66gkkKPcqO++ufjmmo31FZ+Gfo29vBdQr+CwKgQR9+vFfaF7/StJlROHgaxsAqLtj\nARWVlQqCHAqBEsuO+3f/7mVAA/9Sa9v8GoMqKqifvxBQrwC0T6Dkzp44ya7f/R+XTvXTIKCUDOPi\nhQu0/nEjFy+cT7qcVFBPoMiyW/4P9rdwdPvubi7nry1RqVk4pNi26VXAmDD7ZoaOGhNtr0AhUETu\nzl9OdbD/1U05bQkWJF1kPvTtOzJXQq6beyeDKiszSyIKBIVAEe1e/Xv84sWky5A8mEHbG39k7PWz\nGD5uQtLllJT2CRSRAqB8ZEdoH7y3K6peACgERKKnEBCJnEJApIvY/hRZISDShfYJiEhUegwBM5ts\nZhvMbJeZ7TSzJ0N7jZmtMbP3w9cxod3M7Idm1mxm75jZbcX+T4hI3+XTEzgPfNPdZwHzgCfMbBbw\nFLDO3acD68I8wP3A9PBYCfyo4FWLSMH0GALufsTd3wzTHwG7gTrgYeD5sNrzwCNh+mHgp56xCRht\nZrpgfIl07tIq42HtoEqdw1ZKvdonYGaNwK3AZqDW3Y+ERUeB7J0k64DWnKcdCm1SLF12Zk+7d0lm\nokyDYPi4CdTfMT/pMqKRd+SaWTXwG+Dr7v5h7h5Ud3cz69VxFTNbSWa4QE1NTW+eKldRP+c2Rowf\nl5kpk3sQds+pHD6cxkVNnG45QMeBffpbyyLKKwTMrJJMAPzM3X8bmo+Z2UR3PxK6++2hvQ2YnPP0\n+tB2GXdfBawCaGho0O+4rwyuu/suKquqBtyhLTNjdOMURjU08vGJ47Tv2I5bGWdbSuVzdMCA54Dd\n7v69nEUvAsvD9HLghZz2r4ajBPOA0znDBimgsVOncMP991JZNfBv4z183Hga725ixPi4/rinFPLp\nCdwJ/B2w3cyy18D+Z+A7wK/MbAXQAvxtWPYS8ADQDHwM/H1BKxYAGhfMZ9iokUmXURK5PZzxs2bz\n8cnjHN+5HfUJCqPHEHD317j6T3tJN+s78EQ/65LLGJjjDjMevDfTMsC6/vkyM0aMm8CIRUsy9yZ8\nNXPtQO006DsdiykLzsSbbmRU/aSkC0mdhrsWc2r/Xj5sHbi3Zi82nTacZmHrNuPB+xhVPwkz63zI\npd7QmClTaVjYhOO6clMfqCeQUqOvrWfiTbOTLiP1cgOxcWFmiNC+/S0+6TiVYFXlRSGQQjMevC/p\nEsrahBtvAcK9Bsr6fInS0HCgCNy9d3+THtYd0zCZmQ/dpy5/P+QOma5dsJjKESMy7QnXlWbqCaSC\nMfMhbf2LYeJtc4FLdyCSKykEiiDfrXjVmNE0LpjXq+fEIvc+jX2V+/zsvQgPbXoVP6+bjuRSCJRS\nzo1HZv7NsqSrSa0zR48w7oaZlw2pChWS9fMWAEbrH0PPIPs7yVGIACon2idQYsNrxjArBIAO+XXP\nHQ5sXE9Hy/6Cvealn3PmZz35zsUMHjZMJxmhnkDJjGmczMSbPq8PfB6yP6GOA/vpOLCfoSNHMfHW\n2zPLCjhEmDRnPu7Osbe3cO7smX69bjlTCBRJtis7qKKCGQ8uTbia8vbXD09z4A/rmTBrNsPHT8DM\nCtJlz/6Oam+eg5nR+qeNUd4nTiFQBNk314z77+m8So56AP3XvmsHAI2Lmgryel1/J/XzF9G+/c2C\nvHY50T6BIsi+uXSZrMIzoOWV9Zxubek8H6PX52V8hgk33hZdYOtdWiSxvZFKyR069u+lY/9eRkyo\nZdyMzxfkdWP9nSkEpOwYdO7VP9t+jLPtxxg/M7O/oHOdSD/QfaHhgAwAxvHdO2nf/lbPq8oVFAIy\nQDifdJy6dJERyZtCQCRyCgGRyCkEZEAxtFOwtxQCIpFTCIhETiEgEjmFgEjkFAIikVMIiEROISAS\nOYWASOQUAiKRUwiIRE4hIKkzuKoK12WAS0YhIKkzbPRorr3zrqTLiIZCQFJp8JChNC5qYvzM3l06\nzB0u6g5DvaLLi0lqmRnVtddQXXsNn5zu4Oi2rWD2mZcFz7m/iORJPQEpC0NHjqJhUROfm1SXdCkD\nTo8hYGbDzOzPZva2me00s2+H9ilmttnMms3sl2Y2JLQPDfPNYXljcf8LEoPsbcRqpl3PxNu/EC4c\nkHRVA0M+PYG/Ak3ufjNwC7DMzOYB3wWedfdpwClgRVh/BXAqtD8b1hMpCDNj6OdG0rhoCQ0Lm8i9\no6iOJ/RNjyHgGdkbtVWGhwNNwK9D+/PAI2H64TBPWL7EdKkXKZKGhYupmXZ90mWUtbz2CZhZhZm9\nBbQDa4C9QIe7Z3fDHgKyg7U6oBUgLD8NjO3mNVea2RYz23LmTLw3g5S+yw4RRtZNDr2CcAs4dQl6\nJa8QcPcL7n4LUA/MBWb09xu7+yp3n+Puc6qrq/v7ciI03LWYUdc2Jl1G2enV0QF37wA2APOB0WaW\nPcRYD7SF6TZgMkBYPgo4WZBqRa4i2ysYM2UqgwbryHdv5HN0YLyZjQ7TVcBSYDeZMHg0rLYceCFM\nvxjmCcvXe6HuFikiBZdPZE4EnjezCjKh8St3X21mu4BfmNm/AtuA58L6zwH/ZWbNwAfAY0WoW0QK\npMcQcPd3gFu7ad9HZv9A1/ZPgC8XpDoRKTqdMSgSOYWASOQUAiKRUwiIRE4hIBI5hYBI5BQCIpFT\nCIhETiEgEjmFgEjkFAIikVMIiEROISASOYWASOQUAiKRUwiIRE4hIBI5hYBI5BQCIpFTCIhETiEw\nUFn4p0xvAKer1JeOQmCAun7ZvYysm5R0Gb025rqpjLthZtJlREUhMECZGRNvms31y+5NupS8DK6q\novHuJkZd2wBk6pfS0P2aBjgz6wyCA6/9iXNnzyY+QnAHM8CMqpoarrnpFn3oE6QQiEjjgi8C8N7L\naxIPAjCm3N2UdBGChgNRyN6sM/u4/r6lVAwZkkgt7lA1ZgxTFjddVpMkRz2BCJkZU5vuBuDQG1v4\n+OQHJTmKMHJSHeNmzNCHPmUUApGrm3M7uNO8dl04LOcUOhEqKitpuGthQV9TCkchEDkzAzOm37uU\nC5+eY9/6jTiO9ScIDHDHgamLl4C6/KmmfQLSadDgSqbdu5RBFRX9eh13qBg6lKlL7gmHASTN1BOQ\nTmaGuzN1SWav/b4NG7l4/nyvXmPoyJHUz53b+XqSfgoBuUzuB3dq02LcneY1azvb3P2ydSzneVPv\nuadUZUoBKQSkR9OW3sNHh49ctVcwef48hoyoLnFVUigKAflM2a3+yLpJV/QCACbPm5dEWVJAee8Y\nNLMKM9tmZqvD/BQz22xmzWb2SzMbEtqHhvnmsLyxOKVLqWmMPzD15ujAk8DunPnvAs+6+zTgFLAi\ntK8AToX2Z8N6IpJSeYWAmdUDDwL/GeYNaAJ+HVZ5HngkTD8c5gnLl5g2ISKplW9P4PvAt4CLYX4s\n0OHu2T1Fh4C6MF0HtAKE5afD+iKSQj2GgJk9BLS7+9ZCfmMzW2lmW8xsy5kzZwr50iLSC/kcHbgT\n+JKZPQAMA0YCPwBGm9ngsLWvB9rC+m3AZOCQmQ0GRgEnu76ou68CVgE0NDToWlIiCemxJ+DuT7t7\nvbs3Ao8B6939K8AG4NGw2nLghTD9YpgnLF/vumCcSGr1528H/gn4hpk1kxnzPxfanwPGhvZvAE/1\nr0QRKaZenSzk7huBjWF6HzC3m3U+Ab5cgNpEpAT0V4QikVMIiEROISASOYWASOQUAiKRUwiIRE4h\nIBI5hYBI5BQCIpFTCIhETiEgEjmFgEjkFAIikVMIiEROISASOYWASOQUAiKRUwiIRE4hIBI5hYBI\n5BQCIpFTCIhETiEgEjmFgEjkFAIikVMIiEROISASOYWASOQUAiKRUwiIRE4hIBI5hYBI5BQCIpFT\nCIhETiEgEjmFgEjkFAIikVMIiETO3D3pGjCzj4A9SdfRC+OAE0kXkadyqhXKq95yqhWgwd3Hd20c\nnEQl3djj7nOSLiJfZralXOotp1qhvOotp1o/i4YDIpFTCIhELi0hsCrpAnqpnOotp1qhvOotp1qv\nKhU7BkUkOWnpCYhIQhIPATNbZmZ7zKzZzJ5KQT0/NrN2M9uR01ZjZmvM7P3wdUxoNzP7Yaj9HTO7\nLYF6J5vZBjPbZWY7zezJtNZsZsPM7M9m9nao9duhfYqZbQ41/dLMhoT2oWG+OSxvLFWtOTVXmNk2\nM1ud9lr7KtEQMLMK4N+A+4FZwONmNivJmoCfAMu6tD0FrHP36cC6MA+ZuqeHx0rgRyWqMdd54Jvu\nPguYBzwRfoZprPmvQJO73wzcAiwzs3nAd4Fn3X0acApYEdZfAZwK7c+G9UrtSWB3znyaa+0bd0/s\nAcwHXs6Zfxp4OsmaQh2NwI6c+T3AxDA9kcx5DQD/Djze3XoJ1v4CsDTtNQPDgTeBO8iccDO463sC\neBmYH6YHh/WshDXWkwnQJmA1YGmttT+PpIcDdUBrzvyh0JY2te5+JEwfBWrDdKrqD13QW4HNpLTm\n0L1+C2gH1gB7gQ53P99NPZ21huWngbGlqhX4PvAt4GKYH0t6a+2zpEOg7Hgm6lN3SMXMqoHfAF93\n9w9zl6WpZne/4O63kNnKzgVmJFxSt8zsIaDd3bcmXUuxJR0CbcDknPn60JY2x8xsIkD42h7aU1G/\nmVWSCYCfuftvQ3Oqa3b3DmADmS71aDPLnsKeW09nrWH5KOBkiUq8E/iSmR0AfkFmSPCDlNbaL0mH\nwBvA9LDHdQjwGPBiwjV150VgeZheTmbcnW3/atjjPg84ndMFLwkzM+A5YLe7fy9nUepqNrPxZjY6\nTFeR2Xexm0wYPHqVWrP/h0eB9aFXU3Tu/rS717t7I5n35Xp3/0oaa+23pHdKAA8A75EZGz6Tgnp+\nDhwBPiUz5ltBZmy3DngfWAvUhHWNzNGNvcB2YE4C9S4g09V/B3grPB5IY83ATcC2UOsO4F9C+3XA\nn4Fm4L+BoaF9WJhvDsuvS+g9cTewuhxq7ctDZwyKRC7p4YCIJEwhIBI5hYBI5BQCIpFTCIhETiEg\nEjmFgEjkFAIikft/x2XfotEpnLcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "tags": [] }, "output_type": "display_data" } ], "source": [ "delta = 0.5\n", "saturation = 0.3\n", "value = 0.6\n", "adj_hsvinyiq = tfa.image.adjust_hsv_in_yiq(img, delta, saturation, value)\n", "_ = plt.imshow(adj_hsvinyiq)" ] }, { "cell_type": "markdown", "metadata": { "id": "fdbCDYJkG8Gv" }, "source": [ "## 密集图像变形\n", "\n", "此运算用于由偏移向量的流场指定的任何图像的非线性变形(例如,此处使用随机值)。 " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "dG557eQDDtSK" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO2dd9weRbX4v+d5UxFIIyC/BAglgIAI\nkitN70WKBuQSVBRQilICFxAUgVAsQZRLIIC0Sy8B0aCIEhGNoVkRDEV6IARCQi8pJJQk757fHzO7\nO1uetyRvffZ8+Tw8u7OzM2ffPHP2zJkzM6KqGIZRXWrdLYBhGN2LKQHDqDimBAyj4pgSMIyKY0rA\nMCqOKQHDqDidogREZKyIzBKR2SJyamfUYRhGxyAdHScgIk3As8AewHzgX8CBqvpUh1ZkGEaH0BmW\nwKeA2ao6R1WXAVOBcZ1Qj2EYHUCfTihzBDAvOJ8PbN/SDWuttZaOGjWqE0QxDCPmoYceektVh+fT\nO0MJtAkRGQ+MB1h//fWZOXNmd4liGJVAROaWpXdGd+BlYL3gfKRPy6CqV6nqGFUdM3x4QTkZhtFF\ndIYS+BcwWkQ2FJF+wAHAtE6oxzCMDqDDuwOqukJEjgOmA03Adar6ZEfXYxhGx9ApPgFVvRO4szPK\nNgyjY7GIQcOoOKYEDKPimBIwjIpjSsAwKo4pAcOoOKYEDKPimBIwjIpjSsAwKo4pAcOoOKYEDKPi\nmBIwjIpjSsAwKo4pAcOoOKYEDKPimBIwjIpjSsAwKo4pAcOoOKYEDKPimBIwjIpjSsAwKo4pAcOo\nOKYEDKPimBIwjIpjSsAwKo4pAcOoOKYEDKPimBIwjIpjSsAwKo4pAcOoOKYEDKPimBIwjIpjSsAw\nKo4pAcOoOKYEDKPimBIwjIrTqhIQketE5A0ReSJIGyoiM0TkOf89xKeLiFwsIrNF5DER+WRnCm8Y\nxqrTFkvgBmBsLu1U4G5VHQ3c7c8B9gRG+8944PKOEdMwjM6iVSWgqn8B3skljwOm+OMpwL5B+o3q\n+CcwWETW7ShhDcPoeFbWJ7COqr7qj18D1vHHI4B5Qb75Pq2AiIwXkZkiMvPNN99cSTEMw1hVVtkx\nqKoK6Ercd5WqjlHVMcOHD19VMYyeQLt/BUZPYGWVwOuxme+/3/DpLwPrBflG+jSjEVDXyjWTpMkl\nffOxbhDKWFVWVglMAw71x4cCtwfph/hRgh2ARUG3weilaPMydyDivsKLj1yGqiKiMPzjXS6bseq0\nZYjwF8D9wGYiMl9EDgfOAfYQkeeA3f05wJ3AHGA2cDVwTKdIbXQZqgpN/dDffgWdJET/mpzNsO2x\nLt/S19P8Rq+iT2sZVPXAOpd2K8mrwLGrKpTRPcTuHZFa2pgnNcGEZph1KyjU/uMkdNGLyKBR6MVD\nYNlCd++QzZAvToPf7w8HP5KUJyJ1ajN6ChYxaCQoIJL+JGRSzaXeewoM2QS2P8mlDxrlvo9fgChw\nxPPIOtvC9ZuDuPeKLnvXfecsA7MUeh6tWgJGNVBVaiJpIz2nD4jv//9rMtpnIEjNKYr4nqs3gcNn\nIVdvjMaJWx8FFwgM3Rz2+Q0M2SxTh9HzMEugoqRe/cgdP3CBM9/PaYJf7YNIRNKyFWTF+8gukxBA\n/3YmALLoeWTopomyEED+dCT6penwzjPw0AXw7jyipa+iFwo8PcV3D0wZ9CSkJ2jnMWPG6MyZM7tb\njMqgqnB2DTk9AhH0x64Vx913lVqqBETTV/+EOr+Vybl+v9cIcW4deyPysYPSy97iMH9B1yIiD6nq\nmHy6WQJVIwLOaoIhm6Fn1+BsP+wnoBoPAWqqAHLopGzD1clN2Qw1nAIIdIf88RD4qf+pXVRDLxJn\nUUTLO+65jJXGlECDo/59rNMOByBasRQ+dx68PQsi3+j9r0BEU3MgW4j7umYLxFsD+tJ96L0nIhpl\nrfvIf0vsaBT3QWDq9k4xqL+lZi6pnoApgUZHXb+fR69Hbx6L/GUiMuNk+F5U+qanrHsY64VxtyTt\nXdbfBfnsBejX/pGLHsreEnY35TXX5RMBog+Ri2po84foxU2JsqLkPqNzMSXQoGQbkcD3m+GFu+Af\n57uUHzclFgDNvslK7Bio0wDfetKVPecP7vvd+aAr0G2Pz+bLGQeJE1I0HUW4dKD7vmwAfGsFvoOA\nqqIamb+gCzEl0IBotBy0GZ3+XZi8DpxVgx/VIGrOvv2b/acptveT93w2X3z4+2+6N7xXArLGSGTk\nZ5DdLkrzxvrEdwvi7gCAqKR+AtLuApf2RV9/EL0k/TnmLQOj8zAl0IBIrS9M/ih8bjKy1E/TTuzz\nIGOT/+RRTYcHg3vlpPddw9394mz+eHQgZ0S09i5PFII0w6+2hxH/5dJu2Q4WvRAUtlITVY02Ykqg\nAUjM7eZlKBGKIu+9DWe6f16JWm+QLqNkv8u4NLdGzGRBP+OnjoTttOabbr5vnz/1CkcAXvkzelkN\n3noUbtoYELgsiUAIijCF0JGYEujFxA1MRNDXH4O3noHpp8DEbGQfifdfsn3t5lxjzzRYfxy83RWQ\n4151jfuZW1zalt9A/noqGbwCKFUl+ZACcV0PDS9714ReJokiiT/usvkLOhIbo+nl6PL34KyPwMa7\nw5y7Mi/xTIgvJI28Raeb5oYJw0KWvAqrr+tON9/flbXn9fDkDbkyyAYLJYFBdd7gsSWQ80NITdCj\nV6BX1JCjo/J7jVXGLIFeRBLiC+ibz7jjnwyCMxYjc+5yL+18n7y9/8JJl4DMtwL8bKeiTDNKJo2W\nxxlRxzbwUYmaOY0fRq7ogwzbBq6owRU19HJBX/iNG/YM5bAuwkpjSqDX4Kb4igh6+9HQdyDywyaI\nVsDZa2as9wwRaQAPJVZAvksAqWMw8McJIEe/4CXxnCfw2NUlkpYJAtS03BhI5iiE/f44q8Jbj2ZH\nFjb8IuBCj/XGjzpLo6RYo22YEugl6Bk19P5L0O8JbLEvvPgXf8ENvbk3Z52mUEtda4mjrknTT6ai\nON5Xiw15UnZlIe23BgzepFBd3vBPFE8kRRmjOn4I4jkG3gcgmlzSK8RZBtM+jRzymhfbLIGVxZRA\nTyP4Mev009P0g25H7jjBxfPcuCfy60N8PzpoVLU6DSGqM8hWZgUAGW98bBAc9jh6zHz0tYfTXCcs\nBr9uQFkJpZTJqEUzJlZYseMwCTUWYNQ4ODqCj5+IPnkpXF2Dm9Y1RbCS2CzCHkTZzDpVhXn3wxU7\nZ0fKyrzsZQ0sUPMa5o3JWwKJAy/o2MfW+l43IB8/tFjHeZKVp1anvpo6ayAvZy1WOKn1kblXko5B\nYfRSB4+GRc/B+Gaf395r9bBZhD0YNwwWtKPTfX/3dEHPaEKu/LSfhOMje8npgxrJ2zIpMFdBmxRA\nKFCZZ+/Ob2Sz3TgGnX178bWv6aBCpr4yBQCuSxDX502W9PlSK6B0UGPxcy7jVU1wbT/0tu3Qxyej\nt4xyjtTfbmsWQiuYEugJ+LX9FEVPE7Q2AM5cExBqWt6yY/NeRLKXygbow5G3fIMInexhsFDYd48N\nggk5H/zeN8OS19CB64Sp2Vvb0gATSyBbZawc40thUVpL0wWnCEWbkbcfhq1OhMVz3ZVxaffFKMeU\nQDeifsKMe1sKvL8QBm3g3orLlrhffU38rz9rJyftJd/IWhiOL9As2V9AvRmEsV9gksDsaalVMXQz\n+OvpyPuvZ2+JUlELoxFlw/3haISvM7Yikr8NWUsgriPxd2igGK8JYqFv6IcuL/dbGA5TAt2Juh+5\nnjcaztsUfrQWsnAurPiw6FiL+wt5Z34hX0k9Zf/KdbsC2YCdjHk+QeHX4zKyybfeLi2mvmOwrE6y\n/oe4Z5CYAVp35ENrgQET/4n8wiZcW4MBayN/dqsaabQMvdYGE/OYEugi0jX9FH3qDpd4ilvaW95+\nHnlndvy+CybWBAehQzBvPQtosJhHhtybN7lcd2SAkogjnzxJkkVFkrTrtiovIikqLEuLlkBN0u5A\neCOpFaH+3nqGiqqzDBJDwi+VIAry3isw7w7X+K/vD3v/wwcapf8eVceUQBfh+u7+tTr3fvQUgaGj\n4FT3T5Bu6Zgbn8+/mQvl+lukTp5AYRSGFOtZA+G9rWU57IliYvCrynQHVIq/uEjT7kBJvarq4iAo\n6jdIXSCxRZBp037FdPHBRAJw506gEfrOY+grd4E2t/yAFcCUQGcT/Jj11qPge4Ng+GiXuOCFJFvS\n9637LxKOB2SKTi8HferSTEpmIk6pNZAsLJIrG2Cfqekbfvn76B8Oc8OD9VwJLSxVVkgLTf7ABSJS\n/7bM7YH4CSX+B1Xghr4wY29Yd1d4+qJipophSqCTUQE9uS+88yJ8+XJk2RL45TezecLXV715Mloc\nRouTk7QSa0BrpCv91CQ7k7AlSyAXIwDAtAOcrpn1a6TvQGTP68p0U/IMGYWTlJuvh2x3IBE8zKBF\noyS0cMpkKKtPhJp6h+N782FKE/LgSZmS9b1XKzcLwZRAJ6Knrw4onLsczt4Izlw32+fNN0pwP9q8\nIohn9uVM5sKLVnLfeC+6xH3nNvy8Q2UDicJRSPwBstmX3aULV4OTystMjJLWIhrDpFDxlBkpmlN6\nsXhhelIXxV93MtoSJAnoomfRG2roFIG3HqjcPARTAp2EovDhUvhuDab/wCUucav8iPdLaaRoGDsf\nT7Dxb+8EcSUmAUGxiZw3/0NrIE6vZdMKVkde4cTKJiw7ViJP3JRUAyDfeQ9dtqT48GVzFWIFkK+z\nxArQ/Fn8vHV6KgWdESvSMqsq0qKC+e3m7m+7z2Nw7xfLLZgGxpRAZzH3QeR8hd1Ohz+dBeR+wGHD\njBVBJKkCKPzLBPZv7oXpRgZKPOxKappT0kdXKSqcvGYJ3rg0f4B++G62Dd30qbygBTGSZ4ufL6uV\nUlnimp2wqRwalJVrm1pMKncgxL6OWrZjIWH+27eGry9Bbmqq1EKnpgQ6Cdlge3j+L8jdZ2dG+IAk\n2q10HkBdBVA+NKCQhg1D0RrwZZZVlVBmNpdIwBuPIf3XyF5YNKeQN2PhF4KFJNstCAf5w8pKhinz\nwZHxpbqDGJk/ejwKkasmzF4T5JUZ8JmflZXWsJgS6Axec0tzs/F/1u+nQ/pGb/Wt41t2LpQ3MVnb\naLmqtmHpjbLRAQWdoLDHJdn7Jwvsf28LRZU8V94vEAVOh2yVwYmkPaKiaHWtBFd+XG+gbHJ/yrR7\npeiIseioA+HG6jSN6jxpV/LRLd33B4vTN3Orra9Ohozru8RjD0n4wUqU3rY7BGSSIJPELVsec5Ii\nI3Ys3CnB6ECBKHQUBhoy89bOSRI4DOt11SX5X66c+BceaRI3QCQZ94qE45A3D3R/8kOqs5yZKYHO\n5IxBpZZAMvlFnQmayZBXGKHrO76WM/mTGIOcrigj3gy0LgVvY+5tWytbozxHrZ4ImrUEIk0VQf6Z\nCre6lDLjolQBeDky/o7IF5B7fo00GJgQtEJWAJgS6HiWvZc9L3lLJ2/KWskIAZR0VoUkmCYwDJI2\nHw/rJa+2lkUUkTRGIB8wl9ybmuiiwPYTspfDR/ziHbmEOhWX/dqiQOnk7/NeelEpdiP8LYlebGud\nWpIWckiEHFKdkQFogxIQkfVE5F4ReUpEnhSRE3z6UBGZISLP+e8hPl1E5GIRmS0ij4nIJzv7IXoU\n/VZrNUviGIwtgYwpLEXnnqp/owU/zqAbnQ3NzXxlxsvjITtVddGCTVrcfCS5MZBLgAcmpVkWvpAe\nX7Ee/O372TJCoyYcIoxa0E659QsSg6elkMFg9KPNeCWZD05U8f8WN9bQGwWWzG1nwb2XtlgCK4Dv\nquoWwA7AsSKyBXAqcLeqjgbu9ucAewKj/Wc8cHmHS93byP32JfjhapQb/wpW18kQKI7MEKEIGXdf\nychAULrLEjesliYRJTdJUmzSMAdviP780y5kuNYPlr5auK3gBmlJAQT1JPeXOQrzaTX3qVty3ehL\nKQREJvXt+yyCwOobtCxvA9GqElDVV1X1YX/8LvA0MAIYB0zx2aYA+/rjccCN6vgnMFhEctvWVIyS\nH2+yV19Nsn4BoeW3W/5NFkykV0C/+mv0oOn+7ZZuKxHuDZhQFjac73SHKwRPUHh3vsv2tb/ByYos\nnoO891r2nqhE4bT0PJBt9et/3gcG5VRJiTINZw+WRg1mbgicJpJTVDVxXbM/f7lSTkFop09AREYB\n2wIPAOuoavwKeA2Il5cZAcwLbpvv06pHnwHuu+THG3cJNL/abhgnEA7X5fr7pQMOTf1h6EZw0+fR\nH0Z+A1J/La6vlVmJhYtB10QA1hiZzXZScXgvfsZCfVC0CPId+g32RNf+D+RYv+vQjuel/g6yftLY\nEkjqDIvOOwXBlRP5BwrEVi+n1ARZ8HjxYRqcNisBEVkd+DXwbVVdHF5TbcsgVaG88SIyU0Rmvvnm\nm+25tXfwyFRYe3N33Oa/TK7/G//iQ0UQ/HITr7iAbrQHOmAwus7WMLEZObOGiMLBd5VH1UmdPnp+\n7kB4iYI+y4idIdj6LJuuxXxxpxxg7h+QHc5yXZxjI/jnqai/Fv8pkviiKLBw8vXHyjSjY8XL5Z4k\nMUJq6fwN/cJDZU/Y0LRJCYhIX5wCuFlVb/PJr8dmvv9+w6e/DKwX3D7Sp2VQ1atUdYyqjhk+fPjK\nyt9z2fYAeOVRd5x/+YX9e3Jvy1ysfzKklS8jdqYrcGYE7zyLnPIaNamlK+4eeDvcuHvGB5Gu/Fsi\nc6Js6gwxPPOrrAzXbFZSCBlHf2sbkhKHPMeK5ziFn23mlZzA0cuRYyL4n6ggkyKua1Wms2JLIO9g\nLYkxjK0xjRR+Xy0/NrRtdECAa4GnVfWC4NI04FB/fChwe5B+iB8l2AFYFHQbqknwKg7N19K3ZSTF\nWP5kBqGgcQvrt4b7fX9/CVy4MexwfLHZ/mJcMjpQaNaxUzAcIszsQ5jznAFy+1czxcsRs9Bbdit9\n3oIstWJ5xfsELhVYe0zi8EziGt56FI5uTq2CIFQ63n8oo2/qdevzw7GxTJHCdj+hipudtsUS2Bk4\nGNhVRB71n72Ac4A9ROQ5YHd/DnAnMAeYDVwNHNPxYvcC7js/e15iwiZDhBlKWpAquv/Pk1EA7TsA\nRm6P7jrRbUd24hxkpxNd3jl3w0SBL9/szktGBxKa6hr4qcyh03FCsQHJS/egH6nv8snsPlQmRE3S\nhhm/0t9+3FcvSRkyfFu4bQc4fAHRVsfBp69E9/u38/R7BVNUPCXPk3QHsrKogDzyvUrNHoyxzUc6\ni+Xvw6lBzEDenG+ivhKogaq4Pj0QiSBbHwhP3gKfnwzTT4Yzl9X3vN99Buz2E6cM4lIDq0NVkSac\ngsjHCWTWNkjf3smvZO+bkC3dwp1MlqyjIFYauQ1PWlxToFZSH7huQRvQKwXGe003++fIfQcFZZOV\nL04jTUtGMUI5Dongg7dgwFptkqG3YJuPdCWz74XfHA//5d/OZW01+HFmRwjExbZnOroKe06GTb8A\nO58AB/++5fpzCiApOVYAybRGKcYKaO6tDOja28CJS9yiIh8sdGmPX+9GBk7Oudkhmcuf8QuE6wnE\n5K0ABTYaB0fnoi5zosVlNmuEjFf41RZwTQ2576A0T5lPAAhbv+aSXLK3tub+slSGRsQsgc7il+Ph\ngWDH3jLnYNxFSFbVjZfRco4yEdATZ8G1n4MJLyTmcdl2ZQUmSuYNnVEz+XvDeIGyqb2x/BPiPnha\ntH64CLlkcLH+YCsyyVsXedFruTr7D4IPF7VoDWi0AsTvylyL4yG81/+a3M4kZXXFjT34G4kIuu2P\nQPohW51St+7eilkCXc3bs9Pjeu1Vsw1EcLvwJm/NsxVZa1NkwouZ29q04MVELY7x5ylzq4eLfCS2\nsk+acXx6ep6gs25tkwLILjveBjmOXNhqd0BqfdxwYVNf//eI3KjIX4+AIxWtNaWPUqcMzf1tVBV5\n5AcNqQBawpRAB6Oq6PsL4X/uCRJbyB/5oBj/HwL8JEL+V9HT0n+ednutz4wdcmRM8ww1yqMGk3j/\nVH6doMjDwXoCJyuy2X7lawymy/rnrJaSvDU/8hEqikvb+qyhZdSErngfZl3nyjpseWIBuZ6Pzxuv\nX5ApwR+LoJ+/t411Nw6mBDoYEUEGDkbn1Q86KW2QnzoaTnke+jpnoqrC2auwJn6JNS8EVkSdgCB3\nzXv4AktAJokbHXjNPZcufaPu7dRIJjxmBSpp3JGmc/0Bvjm/frl1xfWjCH0GIkdq2gUR4LDIr7eg\nySShcJuDwl9h+i4QLW+3DL0ZUwKdxcgg6KS1F9uuZ8BuZ8A5GyNnLU1WIF7lde4k++3aQmDu19t3\noDDZwX8mCfLR7Vy2j6yNTt3VjRC0JILkhCiTMbYGNtgTrh9Znq8dJHVueSJc3wQHznON/sBXSfwG\noZMxuEcQqPWFpS+tshy9BVMCnYTc/PX0JLBAk/fhJru5k/9dhnz+xzBoJHJuBzppJwZv8ozfzzeQ\nlvYizDvUfBst7Er8uSvK5w4Ei5u2urpQaJnM/UMqRpSN9lGtF/1TH9nhfOSwCFYbAYdFsOIDVPrB\njhejTX2dIgi6LQAc8LabSvyR9dtdX2/FlEBnsWYwcdI3Kj1jrgtOW+djcOQMODeCiWslWTqUq8ak\ndUPxx15vGnF+fwN/rwD6wQKYm/aZZeim6JUblnjgw+JyMQL15ivk62z+MCPvykTyhQoomR689vbI\nx46Dgz9ED16art6mAIpOHQqjXGRk94+bdQ2mBDqLfc6H810/FAWNQIasj05ahhw01eVpXg5nLeyc\n+l95KLEGwuHIAnm3Q8kS4Akv/AnZ4LPucpy2we6llkDsf8is4R+vNJxfYixeOSkWAeCq1dEr+sP9\nJydp7R3OTkz8IASZPf+MvvQ7mDocmga6ugS3LkL8R9r+CrS5ZGfoBsWUQCehKNx8kHvJ+N+53rQ/\n1Pog627tfpB9+nZJrHo40y7rZ9A6EYNZD3oSZzDtgPyoIQz7WKG+ZJq0HxnIjA7k23FySbJpNYHm\nZbDFUWjYTSh/xFbJhCCv/9/IgW85uQ6NYLUNIFrmyj44QvoPgaVzV7Km3ocpgQ5GVeGB69zv/Ws/\ncxuDNPWB8xXm/CXT6DtVARz+9zRgKBi3T9+mJQrAPQClUTYD1yqNvZE/f7dQhMSVJUUGQ455v6OI\ntwYC011JVjWWn28Gv9/LXbiiD1yesy5WgaSrsd+L0GegU0S/GYUung1rjF7l8nsLpgQ6g+0Pg79e\nDChygcLYH7m34g9f7YTOfx2u3dl953wCGW99Xb9AyejAfr8rz1s28heRWfmoMIkozB+VWSMlVsvM\nH7mCj47g6v7w7/NKZGl/dyHpMhz0nqt00Jbw9IUlD9W4WNhwF9CmMN+OZKI4f0A4f6ApjdzLxAqo\nlIcNx9eTY5KwYcCtL3iyopePQJa+kq2/lgstDuuMlyuLL+ZDhoP60vH+eOwf9KgIbvkY7P908izJ\nb1hW0boKNmdpxG3I6oUNmxJoVGIFEG9NXksbTKaPXtYlyAcUSdBuc9OJ9a2nkBu2TBNytmVGAUD5\nLMJ4/4HQOSg5eXMrg8byaA049G2k/1AAIlVqIqhG6eIq7cEX3OWKuwuwuQNV4srt0uPYKRjlvOtN\nftwv7BKEmyaG+xyQxgjoP88hRNbaIlt3Lky5TQ2piYIlkIiRGzlAS6z+KcPQq5syCzCtlAIIKm40\nBdASpgQakaNKQpbL/qXzXYFww06FeHqvjvw0TBL46nRkh1OzZZRFDNaK/r+k0MJwovq5BsVyyiYe\nxd2CJPfQrXw5ETS/7/LcvlMlFwdZWUwJNCITsw1Ky/6Vm6V+1CBk/GIy72/oqM/B3ya68pakq8Xp\n0C0pI9ElmcYolHbZy8QQ8cOr6sspiOW6OG894ScIAbdsDNfUYPGsSr3JVxVTAo3IxKJpXWqe1918\nJPfGFpAX/wR73+ROV3fRkHpeDbY+PHtrrshCYyyLE4j9AYXxR++9z8cQxIfB0u0CyHuvusv7PWOW\nQDswJdDo+CW24jaWiRMoI4mjLVEQV22SPR80Crn3xPJi4loyKymXN3SXUbIihbEAfoEV57Ar1qXh\nR4FnrzVLoB2YEmh04rn9Ncl66vMRPTF1lITu8wsYtQd6d9roZfwcdM0NcvdTf/2CevMG4jn+wRs/\nc3+gIOruShx/D/u4C8c22owNETYiE0taSrirUSa93ts5lx465vLDhJetg7wfrC8QbE3e6uYjUB4r\nIKGsWmqc5HcfUsWtOWiUYkOEVSL2CawxItl3IDWXS4YJQ/Lz/4PGpxMUjppTrO+DBdnz9sz6DYck\nwzTJaqBS32FUFF+vtm5AezEl0KhMVNj5lDROoCxPmWMw3lEubpT51vf4dWnWazaFyYJoufmdKb1W\npzz1/wudf5rPoMlErAJRYAUIbmUhUwTtwpRAo/LEVPjjCe64vcE78SoiMfHNkwTGfCfNdcSzyTVd\nc0N3EGwSmrE8yuYNhOUX5it4x2DsEISMIki6ArHjMy73akGOtC5BezAl0KjcemB6HLbnNvmAinH8\nAHz1T8jAodmca23lGuHiF1xClDXTW1Q5iS8gP64YSKBOIcWxAOFmpImoUbvnDhkBpgQaldCRFkYD\nhw2uSV2XoNCAivF+CtD8gTue+VP0ojVdzm8+XuqwqzPGkM0YbrpSYnlkZA3HAfNF1oKRxjFngXUH\n2oUpgUYlaDDZ4ffgLI4azPjgim/l5GvhHHTF+8iYbyMnLKYUyRfXhgYpgQ9CgjKSLoEm1kFBB8RO\nz/j2md8H6w60C1MCjUwuJKCwgnGLy47779DTP2AIvJtbEjw/d0BbUDr1fm1hoFCupbuIwfpixqIm\nq6R/6ZGWMxsFTAk0KqFFH+5MHDfKppxHPk/ZtbU/AUPSFXf0ruPRHSeWVl3a/YikPGAouSs9VHdz\n5lwkHQkI74oHGBivyG3bovd/u/5zGQVMCTQa8x9wwUJxQ4mX9Apc66pafwJR3sMW97U/dgBy/TZZ\nU3/3i5H7Jwb3pt/JYb68lnYlLlablCeBUsr0MKJUEehVPp7giYtKyzTKMSXQaIzcPg0W6tM/Ma9j\nKzvTJWhpAlEOeXpq6pt754QroXwAABJGSURBVDn0Zzu5nMO2CjKl33VtjLwlEIcM59cMAHTHc9FD\nXgIEFXUznUPRgkCoZPQAbIiwnZgSaFQmqlu7v157qOcPiGfq5LfoAfjKH+D2ryJDRyMH/cNl/+bj\n2fv9uH2x9NhzV2Z9BIdfmIZudxpIDfn7yciN66NoelvOCgg3OkksAhsvbBemBBqVcHmxgMw2ZC0R\nOgTjrvlGY2HcL9P08wS9YZtsi4/INNTMwqb5eQpxVyC8/7GLkR3PRo5pRo9ZThItSOr8yzxPzQ8e\nxL4CBa62n3V7sL9WI/NDbaFR0rJPIPbKx153cHsRhnlPVuStfxdt/0JMfy5qMMlXjBOQcTPgUr+2\nYK0PHKPuc/Qy1x04JF3UNOwGxGHDCMh4RU0RtBn7SzUq/3FMYg3ESwUWxuzr+gQgXYAA9z144/J8\nZVuTx/30xJqQYvhwkldSi2C93ZJtyWVJOhSp1wwC6QM0weLn3YrDXiwNylP8akRXCXJk+/curCqt\nKgERGSAiD4rIv0XkSRE506dvKCIPiMhsEblFRPr59P7+fLa/PqpzH8Eo5V//lxyGza4wi7AecRuK\nuwILn0fHXlPIpi/dW/deraX1lW6JHq807HLDvLvd4Rd+C2usl8p/xCLn0PyfFcg6OyBX1tBx97qO\nQlzeJ04iXjLcphO3j7ZYAh8Cu6rqJ4BtgLEisgMwCbhQVTcBFgDxOlOHAwt8+oU+n9HVTMx3nikO\n/+X3IQwzJ3G4pN2BPx5RzPrbL7VdprxPIF5qPGS1j8KG42DO7UWp4i7C0QrTPgtHNSci8ujkRF69\nWmDF+22Xq+K0qgTUscSf9vUfBXYFbvXpU4B9/fE4f46/vpvYWk9dy5y7XFfg0HvceewXqBMSXCQ3\nOhBnPSUqeP3l+AXlzrr4ej5YqJSggPdeg2duhDv3LeQKNxqRoxS9y+0ezGEfpBaL+CHCPgPrPZyR\no00+ARFpEpFHgTeAGcDzwEJVXeGzzAdG+OMRwDwAf30RMKykzPEiMlNEZr755pur9hRGlo12d99T\ndnWNI9ggNEPZv34SfxumxZcE7johk11//d/o8E9ki6CFYKE8UWwdBApi0wPhuPL7Mopgzq3IUeqW\nGt/lBhi0CZGCLl+C+q3NjdZpkxJQ1WZV3QYYCXwK2HxVK1bVq1R1jKqOGT58+KoWZ9RDM1+51YbL\n8ic+d38uaZDQJEF2z0bjyZd/50YIyN4WTydukxEY4SyPI/027f/Xr8Xsyf6BR/mn6jcIRh8CO12C\nHNmM9F0daerfer0G0M7RAVVdCNwL7AgMFpE+/tJI4GV//DKwHoC/Pgh4u0OkNdpOSWhtTPp2Lmmg\n4bi+AqKpaT9BC92BDPHFiMw6g63KGS8rfvVgl1bHCqhbhI+ClPXGrvzOQxWmLaMDw0VksD8eCOwB\nPI1TBvv5bIcCsSdnmj/HX79HLYSra7nt4OzcAbLmuUg8b6ClOIHAiRdbE/k4AUD/cVY2oaS+pLwy\n4uRRn4c+A2DYlskwodE19Gk9C+sCU0SkCfdP/EtVvUNEngKmisiPgUeAa33+a4GbRGQ28A5wQCfI\nbbTEl26CWl949Po0Wpdck2/OtfAMuTQfZ6Cfu4JcZwEezA3+BBuCQNqHT9RHvoCaj/SZ+0cf0NAE\nnz6/DQ9pdBS25HijMlFgjf8H775CfslASeJv68wkzC05rt98GLnhk041HPR3ZMRO6G3jYLW1nYJ4\nvBg/AKkyaHFXYsguOa4C37JAn87AlhyvGht/Dr7r3TSl1nWJAqjjxIsVgIBTAIB86XZk7NXw1M2F\n/Opn97kifdSiqlMA+fYdBwxJ0G2w7kCXYkqgUXn+T+kkothTX5Yv1ANJAH4xswBMUPTFu7NrCrQx\nKEdEXJxA/heXDxgabb3HrsaUQCOz2T7JYakbsFnqBwxp9ji5/+HLsvnKBhjCW1vqbpbV/dxU+Poz\n9e8xOhxTAo3IBwthj3Nh1rTMv3Bh3L7uLMKc9y7WFZME+dJtadYlrxS1S0tDg4W9BSiGDR/wKNy8\nymEoRjswJdCIDBgMM05xx37Mvs297GRX4tYdxrL6/4OTFd3nV2lilL07u2x4iRSRuk8cuHTrju2O\nEzBWjbYMERoNQmF4r946g2X3fvwbyF7Xu8a9eB6yppvlpxcMQKJciG57FQ+kryOb+NPlmCXQ6ATB\nO60uN162lG9887y/pMFCawbTfE/8oLTa2Boo+ATKJhHFi6Ea3YIpgUZlosLB0zMbkqrfzEPVj8fn\nrYBMdF+wWIeALJwDu0xCP1yUveXNx1tc/LOoeHLrCSTS5bimMOfM6CSsO9CIzP0bXP+ZTFLYR0/e\nzs1AU8n98dRj35KTJrr9KYXmKlO2Lt4LSK2k+6HiYwXib81ei62TS8X8Al2IWQKNyPWfcZbAx7/u\nznMBOlInFiDNAGVbk8skySehWx1OgXAvwoyZ4I/jqMHYEgiDhcApgPdtenlXYUqgkXncR/PVSNb7\ny+5AVOc+odSTr1BYbFTiJcc0ly++ngkZzhUYWwJxevz2f2YKDLTp5V2FdQcakYmaRguCH4/P5ak3\ngUh8GG/8tg66BfipxJlgoGs2L6wJkl9UpNU1BSJctyQOF9780JZyGx2MWQKNykSF78zNbAZSaIr1\nhgdLliGLrQAeODdJ1uu3Ro54pkXPfukCo0G5CE4BtLYPgtFpmBJoZC7cIBmzhzphw3nCzUmCV3oy\n9+C+CUlW+eZj6HVbZe8vcwjG5eWHB+PBgtApCDDz7BYeyuhoTAk0KmF3IFhZKHkzNwUmf0gyzVgL\n/Xzd+2dw0N+z+fPbkLESQ/6RH7Lst7o7H3N6e0swVgFTAo1KZuGOEm99vY1HNG78WZ+CKPDI5ciI\nndLku08o9Pc1952pE+oEC3lLYNkS+OiONpW4izEl0Kjk3uKlU4nLGqSI/wRDhAI6bHPkoL9lPf+7\nuUVH9bM/TdOCTULTIn09tTrWR8hr91uMQBdjSqACSFRnQk8Z6l/7Oc0h7zxTCAHWKzdwBw+cU6yz\nrOxIKDgm4uXFIL32qx1altHoUEwJNCpxK4xX+InXBIjDhuveJ95TL8UZxefW4IkpqUI5ai6cJ8jS\n17L1+hEJKJk7kNcOUeh78BdH7tra0xkdiCmBBiXu2uv+bhHocFPSzLBd3jeQb7Rht2KCwltPp+14\nsitUa0G4ib8Yj/gVLI9Mf6I8PXqoaFkYnYcpgQZEzxqIHP+ce6v/Yt/6y4DXaGEqcXF0gEmC7HIO\n+t4baZav3IVEK9KMwYSlUuo0/PBC7bio9Z2LjA7DlEAjsu030Bv3gB+sABSNyM4BiN/OZSMEsVMw\n70mc4ArQqXsgq63t0k5WZIPdSkz89LBsKnFm5KAm6Hr/iX7tMbTvAJf2ge1V05WYEmhAZO/LkW+/\nQGbR0FG7AKA7nZxmrJV0B8DZ8knH33/5OQNywIxs1ktLYvyDIclCd8CPDiSTihWY/1f4xTaw562o\n9EUGDGvb9mVGh2BKoJFRhR9Gbvnxr92JDhsNfz+XZDOxeEpvSLL0d0lxE4omuhxXPtuvsJZAIJLb\n0/pyOOJlGP82bPtt9KjFyAZ7Iccua/vzGR2CKYGGxjfCef+A1x9GFr8CZ3yINEH0me+T2WosJr8v\nQBj9s2A2+sL07PXJxXkGya1BV0BH/qe/7jNsdRTctjvcMQ4+NZFa39Xa+WxGR2FKoIFJNuo8bTEy\ncmc49V2o9SVaezvkw4VE427KruvhbgpOSCcPCciQTZANP5/1551UMpoQ5Xx+AON+59J8hYIgBz+F\n7PcX6L9GBzytsbLYVOJK4Bp2vKpQ7YiZborvJaMIZwmlS4ZImh4bC4JbY3CCZo2H81pZoARc9+Oy\nNeHbK4Aa/HOiK89PMy5uc2p0JaYEKkbcTxcRdOylyKb/jWoE5wyEj24Drz5YuhuZrrk+LH6pmD70\nY8iCp7OJsX05bAuiQx53jVyD6YxjJmRkMboX6w5UGKcAmgGBcTfC0tdh8EZAiTm/+CU48J5iGYc/\nlYkvSnYk7rsmvP0UcmET8tMmkFraPbH+f4/ClEDFEWlyb+QtvgLHvgAL5wAK2x2TjBQmHYT1P1tU\nDuelnYj4QI98CZYvgYMfRk5UdM/ipqVGz8GUgAGA4N/Upys6YQX8+3p3YY2RbjrBJ4913v6X7kvu\n0ck1tP8Q1334bpSO+/dbAzmxGdbaxpW9+YFm+vdgzCdgFBFBTl6KaoReOAh2PhN2PM1dW2dbwFsH\nJ0Xo5SPQz54Hk2twUpQ4H93woDX83oApAaOASM177mvwncU+TdB3noUho915nPno+e7a9CMyTkej\n92DdAaOUpCH/cmzauIduCoC+8Zj7VgX/5pd8vIDRa2izEhCRJhF5RETu8OcbisgDIjJbRG4RkX4+\nvb8/n+2vj+oc0Y2uQPZPIwR1xrec32DteNchhbYsKW70aNpjCZwAhAPCk4ALVXUTYAEQb0VzOLDA\np1/o8xkNgOxxSfZczJBsBNr0rygiI4EvANf4cwF2BW71WaYA+/rjcf4cf303sVdFw2L/tL2ftqry\nnwKnkE4vGQYsVNV4NYn5wAh/PAKYB+CvL/L5DcPogbSqBERkb+ANVX2oIysWkfEiMlNEZr75pm0+\naRjdRVssgZ2BfUTkRWAqrhtwETBYROIhxpHAy/74ZWA9AH99EFBYKkZVr1LVMao6Zvhw23zSMLqL\nVpWAqp6mqiNVdRRwAHCPqn4duBfYz2c7FLjdH0/z5/jr96gtGGcYPZZVce9OAE4Ukdm4Pv+1Pv1a\nYJhPPxE4ddVENAyjM2lXxKCq3gfc54/nAJ8qyfMB8JUOkM0wjC7ABnoNo+KYEjCMimNKwDAqjikB\nw6g4pgQMo+KYEjCMimNKwDAqjikBw6g4pgQMo+KYEjCMimNKwDAqjikBw6g4pgQMo+KYEjCMimNK\nwDAqjikBw6g4pgQMo+KYEjCMimNKwDAqjikBw6g4pgQMo+KYEjCMimNKwDAqjikBw6g4pgQMo+KY\nEjCMimNKwDAqjikBw6g4pgQMo+KYEjCMimNKwDAqjikBw6g4pgQMo+KYEjCMimNKwDAqjikBw6g4\npgQMo+KYEjCMiiOq2t0yICLvArO6W452sBbwVncL0UZ6k6zQu+TtTbICbKCqw/OJfbpDkhJmqeqY\n7hairYjIzN4ib2+SFXqXvL1J1paw7oBhVBxTAoZRcXqKEriquwVoJ71J3t4kK/QueXuTrHXpEY5B\nwzC6j55iCRiG0U10uxIQkbEiMktEZovIqT1AnutE5A0ReSJIGyoiM0TkOf89xKeLiFzsZX9MRD7Z\nDfKuJyL3ishTIvKkiJzQU2UWkQEi8qCI/NvLeqZP31BEHvAy3SIi/Xx6f38+218f1VWyBjI3icgj\nInJHT5d1ZelWJSAiTcBlwJ7AFsCBIrJFd8oE3ACMzaWdCtytqqOBu/05OLlH+8944PIukjFkBfBd\nVd0C2AE41v8Ne6LMHwK7quongG2AsSKyAzAJuFBVNwEWAIf7/IcDC3z6hT5fV3MC8HRw3pNlXTlU\ntds+wI7A9OD8NOC07pTJyzEKeCI4nwWs64/XxcU1AFwJHFiWrxtlvx3Yo6fLDKwGPAxsjwu46ZP/\nTQDTgR39cR+fT7pQxpE4BborcAcgPVXWVfl0d3dgBDAvOJ/v03oa66jqq/74NWAdf9yj5Pcm6LbA\nA/RQmb15/SjwBjADeB5YqKorSuRJZPXXFwHDukpW4KfAKUDkz4fRc2VdabpbCfQ61Kn6HjekIiKr\nA78Gvq2qi8NrPUlmVW1W1W1wb9lPAZt3s0iliMjewBuq+lB3y9LZdLcSeBlYLzgf6dN6Gq+LyLoA\n/vsNn94j5BeRvjgFcLOq3uaTe7TMqroQuBdnUg8WkTiEPZQnkdVfHwS83UUi7gzsIyIvAlNxXYKL\neqisq0R3K4F/AaO9x7UfcAAwrZtlKmMacKg/PhTX747TD/Ee9x2ARYEJ3iWIiADXAk+r6gXBpR4n\ns4gMF5HB/nggznfxNE4Z7FdH1vgZ9gPu8VZNp6Oqp6nqSFUdhftd3qOqX++Jsq4y3e2UAPYCnsX1\nDc/oAfL8AngVWI7r8x2O69vdDTwH3AUM9XkFN7rxPPA4MKYb5P00ztR/DHjUf/bqiTIDWwOPeFmf\nAH7g0zcCHgRmA78C+vv0Af58tr++UTf9JnYB7ugNsq7MxyIGDaPidHd3wDCMbsaUgGFUHFMChlFx\nTAkYRsUxJWAYFceUgGFUHFMChlFxTAkYRsX5/08fr0WdP5khAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "tags": [] }, "output_type": "display_data" } ], "source": [ "input_img = tf.image.convert_image_dtype(tf.expand_dims(img, 0), tf.dtypes.float32)\n", "\n", "flow_shape = [1, input_img.shape[1], input_img.shape[2], 2]\n", "init_flows = np.float32(np.random.normal(size=flow_shape) * 2.0)\n", "dense_img_warp = tfa.image.dense_image_warp(input_img, init_flows)\n", "dense_img_warp = tf.squeeze(dense_img_warp, 0)\n", "_ = plt.imshow(dense_img_warp)" ] }, { "cell_type": "markdown", "metadata": { "id": "FcLMnSKYPcjA" }, "source": [ "## 欧氏距离变换\n", "\n", "此运算可将像素值更新为从前景像素到背景像素的欧氏距离。\n", "\n", "- 注:它仅获取二进制图像并生成变换后的图像。如果指定不同的图像,将产生具有单一值的图像" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "-OMh6oeRQaYQ" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAe6UlEQVR4nO2dXahk13Xnf6u+q271bbV7jBCSGDlY\nEPyQ2InwB56HYGOQPSHygydjExJlEOglAYcEEnkGZhiYh/gligPBTDMykYcQO+NksDADxpEdwjzE\nsWR7bMfCcTs4SEK2Plp967tOfex5qLO2dpVuq2/3ra/b5/+D4tbZ59y6697u/d9rrb323hZCQAhR\nXEq7NkAIsVskAkIUHImAEAVHIiBEwZEICFFwJAJCFJyNiICZ3W9mPzCzy2b2yCZ+hhBiPdi66wTM\nrAz8E/AB4DngG8DHQgjfX+sPEkKshU14Au8ELocQ/jmEkAGfAx7YwM8RQqyBygY+807g2eT6OeBd\nb/QNZqayRSE2z8shhDevNm5CBE6EmT0MPLyrny9EAfmX4xo3IQLPA3cn13flbUuEEC4Bl0CegBC7\nZBM5gW8A95rZW8ysBnwUeGIDP0cIsQbW7gmEEKZm9tvAl4Ey8JkQwj+u++cIIdbD2qcIb8oIhQNC\nbIOnQwj3rTaqYlCIgiMREKLgSASEKDgSASEKjkRAiIIjERCi4EgEhCg4EgEhCo5EQIiCIxEQouBI\nBIQoOBIBIQqORECIgiMREKLgSASEKDgSASEKjkRAiIIjERCi4EgEhCg4EgEhCo5EQIiCIxEQouBI\nBIQoOBIBIQqORECIgiMREKLgSASEKDgSASEKjkRAiIIjERCi4EgEhCg4EgEhCo5EQIiCIxEQouBI\nBIQoONcVATP7jJm9aGbfS9reZGZfMbMf5l8v5O1mZn9iZpfN7Dtm9gubNF4IcXpO4gn8GXD/Stsj\nwJMhhHuBJ/NrgA8C9+avh4FPr8dMIcSmuK4IhBD+Driy0vwA8Hj+/nHgw0n7Z8OCvwduM7M71mWs\nEGL93GxO4PYQwgv5+58At+fv7wSeTZ57Lm97HWb2sJk9ZWZP3aQNQog1UDntB4QQgpmFm/i+S8Al\ngJv5fiHEerhZT+Cn7ubnX1/M258H7k6euytvE0LsKTcrAk8AD+bvHwS+mLT/Rj5L8G7gKAkbhBD7\nSAjhDV/AXwAvABMWMf5DwEUWswI/BP4GeFP+rAF/CvwI+C5w3/U+P/++oNd+v+r1eqjX6ydu12sv\nX08d1/8s74Q7RTmB/aVer1Mulzk4OKDT6TAej193//DwkPF4HF9ib3k6hHDfauOpE4Pi1uXw8JBS\nqUS9XqdWq9HpdI59rtFoUK1WKZVKlMtlBoPBli0Vp0EiIJao1+vx1Wq1qFar1Ov1awqAc+HCBVqt\nFlmWMRwO6ff7zGYzeQZnAImAiNTrdZrNJq1Wi1qtxsHBAc1mk9FodN3vNTPa7TaTyQQzo1QqRQGQ\nEOw3EgGxNPo3m80lASiXyycSAYCDgwNmsxlA9CCq1aryBXuORKDArI78jUYjvjwcuF4YsMqFCxeo\n1+uMx2NGoxGj0YjhcMhoNGI8HjMcDiUGe4ZEoIB4xr9Wq3F4eBhH/mq1ysHBQUwE+qh+o5w7dy56\nFpVKhXK5HD0DgHK5rHzBHiERKBitVot2u42ZUa/Xabfb1Go1Wq0W9Xp9SQSuXr16Uz/j3LlzZFlG\nrVYDoFKpUK1WybIMYCk0kBDsHolAQUjj/sPDw9jWbDZjx/fQwEfs0/4sFwG/7vf7mBm1Wi3mCzSL\nsHskArc4acKv0WjQbDZpt9vRVfdO32w2qdfrnDt3jlKpxNHR0al+7vnz55lOpzE/MBwOabVaDAaD\nmC/o9Xo0m82lXIHEYPtIBG5R0pG/Wq0udfaDgwNarRaVSiV2fk8IttvttRX7tNttSqUS1WqVSqVC\nrVajXC5HuwAmk8lSuzyD7SMRuAW5Xtb/3Llz8X2j0Vh6plqtrtWOUqlEpVJZEoEsyyiXy8AiJ+Ai\nMRwOVV+wAyQCtxDe6b2jp27+wcFBvNdut2On97qAarVKs9m84SnB63Hx4kWGwyGTyYTxeMxgMGA0\nGi2FBlmW0ev1GAwGZFnGYDCIYYRfi80hEbgFSON+T8h5sY/P96cCkd7zqcF6vY6ZbcS2Wq0WR/zU\nM/BpSp818EShewYuBJVKRfmCDSIROMOkK/zSuN/n+z0Z6LG+d8hWqxW9APcQarUavV5vI3amdQNe\nM1Cr1WJH94rEcrlMqVQiyzLMbClf4IuTlC9YPxKBM0o68nuHXq32W836e0f059P26XS6MVu9s/uU\nYbVajaO9j/RATA6mo7/nKFa9AQnB+pAInDFardaxI78XAbnLnyYFfcRP1wX4vXa7TQjh1FOC16Pd\nbsd6BI/1+/1+LC2u1WqMRiOyLIt5AJ9KbDQajEajpbzCYDBgPp/T6XTiZ4qbQyJwRnBX2jP7qyO/\nj+ouAn7fO3uaKEzzA+12m263u5XfwacMPQ9gZjE/AMT20WgU8wWVSiXuabDqGXjtwc2WN4sFEoEz\nwLWy/mmJb5r1T8uAPeu/KgL+fZtIBl6LSqUS7RiPx5hZDAv8vecBvNQ4TSCm9QVZllEqleKU4kn2\nPBDHIxHYU45b3rva+dOR30MA9w68o3tnT6cFPUlYrVa5cmX1XJnNcvHiRSaTCcPhMIYAo9GIZrNJ\nlmUx7u/1ejE88NDAKwur1Wr0ArzScDKZqNjoJpEI7CE+8qebe1Sr1aUwwHMAPvKvikBaF+CfkeYH\nGo3GRpOB18KThB4C+IjvRURus4cKk8kkegLuGcAiuTgajWLV43A4BFCx0U0gEdgjrjffnyb8fA1A\n+qyP/j7ap15Cs9lcmhGo1WobTwZei3a7HWP7dLpwPB7HmgIgvvdpxdX8QbppSSoOLhq+h4HE4I2R\nCOwJN5P1d0/gWln/NF+QCsS5c+d23jHa7TbwWkf3smIf8dPVhi4CqSfgScRKpcJoNFpKGFYqFabT\naUwqavPTN0YisEOutblHOvLXarWlOf7VzH5a/pt+n3+OhxFpjiB1mXeF2+N5AC8n9rjfVxd60s/b\nPX+QlhT77kWeBJ1MJkynU7rdbixPdtFQvuD1SAR2RNqZvUO7S5+O/GlSz0XAO/ZqVWCaB/C4P50t\n8NF0XzqB2+RVgW5fuurQZzDczU+/TqdTyuXyUphQr9djPQG85hmkxUbyDJaRCGyZdL4/dddvJuuf\ntq9m/SuVCvP5PBbZ+NSbv/aBbrcbi4N8lIaFq++1AZ7w847sSUX3IoAoBED8Xf37UuHwv6kLhLyC\nBRKBLZEm/NKR/7gy33TkXy3zXV0D4Pe9U/T7febzObDYBtxHUe887jHsmqOjo1gxOJ1O4zRfcjRd\njOd9JaKHDu7yp5WGHiZ4u99Lww2vQMyyLAqMdkKWCGycdJHPteb7j8vsH7cOIBWBVFTG43E8Isyn\n/UIImBnlcplyuRzDAu9ozWZzZ3+T2WzGcDik1+vF2H40GjGbzZjNZtF2eG1KsVqtRg9pdc3Bqsuf\nhgc+7ZhuZtLv94GFyDQaDbrdbqEXJ0kENkga93vnPm6+P60J8Oz9SURgPp/T7XZjRxqPx7EjAbGi\nrlKpxNHPXWj3FnZBv99nMBhE232Enk6nzOfzaJsLmAtllmU0Gg0ODw8ZDodLIuCzCi4SPjPgHkG6\nmUmptDiM2ysUzazQi5MkAhuk3W5zeHgYR7Lz588fO/Knsb6PeD7Kr5b5ttvtpUU07vp69nw2mzGf\nz+No6h0iTSC6+72LsGAymUQR6HQ6S2cTTKdTptNptN3DgeO2QEuXQbsI+uyBf200GsduZjIcDuM9\nr1z0mYb5fC4REOsn3dfvuJHfRSAd+Vez/h5WuAs9Go3o9/tLU2eeBHQR8E7kmXSfOvOtvba5bsBx\n8er3+/R6vWj7YDBgMplEEXMR8NHaxcvDHU90eojglYXpVmbpcuTVzUzK5fLS1mb9fj96SUVDIrAl\nSqVSHOHTMCANFVIvIc36HxwcMBwOYwdK6+vTk37SjuQi4B1iPp9Hd9uLcTxc2Cbp7+EegQtalmXR\nRs9nuID5azKZAMT6gdlsFkME93zSaUcPnVarDr3s2BOLRUYisEXctW2320vz/enqwNVQoVar0e12\no8uf7svX7Xbj/n2eaEtdah8ZXQQ8V+Cdwrcc3yap+58KQa/XiyIwm82WQpnZbLYkBCGE6MK7uE2n\nU9rt9lJ9QboeAXidl1Aul3eyfmLfkAjsgFKpxPnz55eKgry4x8MBn+o6OjqKncY7jo/+aU7ARSHL\nshgSpB0iDQc8oWZmWxcBDwO63W6cJuz3+1y9ejXWC0yn0xgKpAlBzw30+/34txqPx/F9v99fKo1O\n/1a1Wi1OCXrY5LUERUcisEPSqcM0J7Dq5vt/3uFwSLfbfV2yy70E9xh8GtCn13xq0nME7kp7Yc22\n8J/nMxmpRzAYDOLvOZ1OY31Do9EAiKO9i0Rqu/89vG06nV5zFgEovPu/ynVFwMzuBj4L3A4E4FII\n4VNm9ibg88A9wI+BXw0hvGqLbNOngA8BA+A3Qwjf3Iz5twae4JrNZnS73SgC3vE91k/d5lVxcFHo\n9/sxL+Du/nw+j8VCnkRzj2FXIuBf/ffwsGAwGMTkZbVajdOFs9ksTnN6ojAVgdXcgYcNHmr5jIh4\nPSfxBKbA74UQvmlm54CnzewrwG8CT4YQ/tDMHgEeAf4A+CBwb/56F/Dp/Kt4A65evfq6hF96XJd3\nHJ9W807vo2q/318SA0+YeWjgi4ncvU5HzW2RjuAuAC4CHiL4ZiLlcjlO57lrn+ZMPMGaZVn8vVYX\nVA2Hw5gYFNfmuiIQQngBeCF/3zWzZ4A7gQeAX8ofexz4WxYi8ADw2bCo/fx7M7vNzO7IP0ccw3w+\nj9nxVAQ86edu/nQ6jdNqx5XCpuKR7uXfbDZj1j2EEL+mJbrbIP2ZqS0+cvvv0u12qdUWR6P7aO/3\nfUbAPQPPfayGDS5wnmfwpcvi9dxQTsDM7gHeAXwduD3p2D9hES7AQiCeTb7tubxNInANer1eHO29\nc/v8uXduf+/Tae5CezycZRmdTmdpIc42O/i6CCHEsmLv5PDalKDH87PZjGazyXw+j4lPWA45XCiK\nOv9/Uk4sAmbWBv4K+J0QQictNAkhBDO7of9xZvYw8PCNfM+tyGw2i6NfmgxMi4DSpJnf86x6ui+f\nPwOceRc4XekHxENJfLrPZ1A8T+Ai4F6Ahzy+dyGw0/US+8yJRMDMqiwE4M9DCH+dN//U3XwzuwN4\nMW9/Hrg7+fa78rYlQgiXgEv555+9IWsNzGYzXn755aXM/nEba/p1uupuOBxydHR0y2+UMR6Peeml\nl5YWYvn0aboq0vMjxy3B9tWFyg8cz0lmBwx4DHgmhPBHya0ngAeBP8y/fjFp/20z+xyLhOCR8gHH\n0+l0ojvvLr6P/Ok0WhoOeEGQz3Pfqp1/lVXPYDKZxD0TptNprHdIlw+n+YYQQmwXy5zEE3gv8OvA\nd83s23nbf2TR+f/SzB4C/gX41fze/2ExPXiZxRThf1irxbcIaUJvMpnEju4jf+rmpysFO51OXORS\nxP/Qvmzat0mDRcf3JKOvlPSwwROELgLuKYjXOMnswP8FrrXS5P3HPB+A3zqlXbc8V65ciSO/1wB4\nPsAFYfXYLR3TvSAVwCzLYjiwukFrlmU0m82YU/EpxkajsZPFU/uKKgZ3gO8D4CP/6u43q3sEpDvg\niGW8JsKnDn2095kRLyzyvIknEfdhd6V9QSKwA7rdbpzOcw8g7fDuCaQ76opr4wLptQStVivOFqT7\nF3q1ZLpcWUgEts7R0dHSxhre8fv9fixuSYt+xMlJ1yD41KC7//1+f2l1pi/lFhKBreKjvW8Imrr6\n3W43Jvx0sObpcPFME4VpcjD1DLzSsMhIBLZIuqdeuvjHi4Vu5fn+beN/57Q2wFcXekjgeYSiIxHY\nIr1eL64I9ERgGhqI9ZOGVen0YbrasOhhgURgS/gKuXQzzOl0qs6/JTzEcs/AQzLf2q3ISAS2gI/8\nXiGokf/a+N6CmyQVBF9XUOQCIonAFvAa/3QhUBHxE5F8k1P/mh4x5kuH/WThdYul/+296tAXFfm+\ng0WkmL/1Fjk6OopxaVE7v+O7/PomIL4pyGQyod1uL20x7jmTg4ODeLrSukmTtEVeXCQR2CB+IEbR\nO7+TCkAqBF7B5yIwHr92lJhvBtrv9zc2e+JicHh4uPbPPgtIBDaIBGCZVAS8aMer97Isi3sgpucE\neH6gVCrFHZg2lU/xEKFoSAQ2iATg9aS7HLdarVjj74VS6WlCg8EgxukeJngOYVPhVRH/zSQCYqv4\ndJyZxdOQ0jMEvKrSVwL6BqO+0jJddr26m5K4OSQCYqv4voAhhKWRvVQqxQ1BvHjHdx1OzxT0Dl+t\nVuOyYSVeT4dEQGyVNATwsxE89ndvID0sxI8L85OUqtUqsBwe+IGjUEx3/rRIBMRWqVarXLhwIR6G\n4iO4b5riFZW+s7BX9qUHlfjU4ng8jucLeOjQ6/W0AOsGkQiIrePTgUAc4SuVStw8dHW096PTUs9g\n9aDRNFQQN4ZEQGydcrlMu92O5w2mpyT7C4jhgecNPCxwD8JFoFQq6XThUyAREDshPSugXC5jZjSb\nzbgBa+ryp7MBo9GIVqu11C5Oh0RA7IRutxtPWPZ43wuH/FQh3xg09Rh8l+FtHqR6qyMREFvHt1X3\nw1RcBNLzEoG4wKjdblOtVsmyjHK5TLfb3fFvcGshERBbx0t/fcdlL/rxg0ZTEfCpw2q1WthVfptG\nf1WxVdwDGAwGHB0dLZ2w7Nt+rYqAVxQWfQegTSEREFvFdwT2A1V9w1U/YdnzArDI+vv0oAuBNgZd\nPxIBsVXSo9bcI/D3vrdA6glUq9V4oKgfKSbWi0RAbJV+v0+v16Pb7XL16tUoAL5xiHsDQFxOnJ4u\nLG9g/UgExNbwTUF8vt9PYPZyX58pSEWgVqsxm83izsB+0pBYHxIBsTW8JsBfLgaeG/ATmbyT+76D\nPmuQZVksMpI3sD4kAmJreGeeTqdRENLzFvv9/tL+AL6IyL/Xlxr7Z2x6V+KiIBEQWyN1610I3Bvw\ng1g7nU7cPszj/8lksrT5SKvV0lmCa0QiILaGZ/1DCPEFxFJhFwffXDTLsvicbzu26hn4ikNx80gE\nxF7i5wj6mQ3pEWLAklfgy5K9zNhXH4qTIREQe4t3ZBeEcrnMwcFBFAM/POTg4CBWFNZqtehJiJMh\nERBnAheE2WzGZDKJnkEIgel0SqvV2rGFZ5frioCZNYC/A+r5818IIfwXM3sL8DngIvA08OshhMzM\n6sBngV8EXgH+fQjhxxuyXxQMFwOfWYDF7kSeXxA3TukEz4yB94UQfh54O3C/mb0b+CTwaAjhrcCr\nwEP58w8Br+btj+bPCbE2fMHR1atXefnllzk6OuKll17atVlnluuKQFjQyy+r+SsA7wO+kLc/Dnw4\nf/9Afk1+//1mZmuzWIiEwWBAp9OJpcjixjmJJ4CZlc3s28CLwFeAHwFXQwhev/kccGf+/k7gWYD8\n/hGLkGH1Mx82s6fM7KnT/Qqi6Pix791uNx41Lk7OiRKDIYQZ8HYzuw3438DPnvYHhxAuAZcAzEwB\nnTg1g8EgrjsQJ+dEnoATQrgKfA14D3CbmbmI3AU8n79/HrgbIL9/nkWCUIiNo5OIbpzrioCZvTn3\nADCzJvAB4BkWYvCR/LEHgS/m75/Ir8nvfzUodSvE3nKScOAO4HEzK7MQjb8MIXzJzL4PfM7M/hvw\nLeCx/PnHgP9pZpeBK8BHN2C3EGJNXFcEQgjfAd5xTPs/A+88pn0E/Lu1WCeE2Dg3lBMQQtx6SASE\nKDgSASEKjkRAiIIjERCi4EgEhCg4EgEhCo5EQIiCIxEQouBIBIQoOBIBIQqORECIgiMREKLgSASE\nKDgSASEKjkSg4GxzY05tArqf6ASigjKZTOh0Osxms3jE1ya5cuUK4/GYfr+vPQD3DIlAwQghxF15\na7Ua8/mcLMtoNpsb+5nj8ZjhcBhFYDQaMRqNdGrQniARKBBZltHpdIDXDvn0I8Enk8nGjvnudDpk\nWcZwOIyewGg0otfrKUTYAyQCBcFHfx/x/UBPgOl0Gk/5XTfe6f3swG63G7cF98NCFB7sFonALYy7\n/tPplOFwSLPZpF6vc3BwQK1Wo9FoRI/Ar9cdFrzyyiuMRqPY2Xu9Xrzu9XoMBgMmkwn9fj+eMrzp\n/IRYRiJwi+JHc9Xrder1OiGEeKy3JwNnsxkhhCgE0+n0+h98AwwGA/r9fswHZFnGYDBgMBjEPIF3\nfn9Gh4dsH4nALYx3KHfzJ5MJtVqN6XTKdDplNpvFBKGLAyyO+l4H3W6XwWDAcDiMo7+HB6kA+DPq\n/LtBIlAAxuMxL730UvQK3DWvVCo0Gg1arRb1en0pPDitS37lypXY0UejUTxO3GcGPBzQyL97JAIF\nwjtcqVRiOp1SqVSYTqeEEMiyjPl8DixmEU7jDQwGgyg0nU6H8Xgc437PAfg9sXskAgVkOBwyHA5j\nmDCdTmm1WjFM8CThzdLtdl832mv0318kAgXEO6B3xmazGUVhNBpRr9epVqucO3fuhj/bk4E+2qfx\nvjr/fiIRKDjeKd19d0+g1WoB3HDtQL/fX5oG9NBgMBis3XaxHiQCIgrBbDZjPp/HSkLghqYN3dXv\ndDrRE9Dov/9IBETEO2yr1WIymQCL6cJK5fr/TabTKaPRKNYBaMrv7CAREK/DO3KWZVQqlTh9+Ea8\n8sorMZyQ63+2kAiIa+Kd+fDwMHoGx+FrANT5zyYSAXFdvPz4Wsj1P9tIBMSJuFYnV+c/+5x4ezEz\nK5vZt8zsS/n1W8zs62Z22cw+b2a1vL2eX1/O79+zGdOFEOvgRvYY/DjwTHL9SeDREMJbgVeBh/L2\nh4BX8/ZH8+eEEHvKiUTAzO4C/i3wP/JrA94HfCF/5HHgw/n7B/Jr8vvvz58XQuwhJ/UE/hj4fWCe\nX18EroYQvJLkOeDO/P2dwLMA+f2j/HkhxB5yXREws18GXgwhPL3OH2xmD5vZU2b21Do/VwhxY5xk\nduC9wK+Y2YeABnAIfAq4zcwq+Wh/F/B8/vzzwN3Ac2ZWAc4Dr6x+aAjhEnAJwMy07awQO+K6nkAI\n4RMhhLtCCPcAHwW+GkL4NeBrwEfyxx4Evpi/fyK/Jr//1aC9pYXYW05zAtEfAL9rZpdZxPyP5e2P\nARfz9t8FHjmdiUKITWL7MEgrHBBiKzwdQrhvtVFnEQpRcCQCQhQciYAQBUciIETBkQgIUXAkAkIU\nHImAEAVHIiBEwZEICFFwJAJCFByJgBAFRyIgRMGRCAhRcCQCQhQciYAQBUciIETBkQgIUXAkAkIU\nHImAEAVHIiBEwZEICFFwJAJCFByJgBAFRyIgRMGRCAhRcCQCQhQciYAQBUciIETBkQgIUXAkAkIU\nHImAEAVHIiBEwZEICFFwJAJCFByJgBAFRyIgRMGRCAhRcCQCQhScyq4NyOkBP9i1ETfAvwJe3rUR\nJ+Qs2Qpny96zZCvAvz6ucV9E4AchhPt2bcRJMbOnzoq9Z8lWOFv2niVb3wiFA0IUHImAEAVnX0Tg\n0q4NuEHOkr1nyVY4W/aeJVuviYUQdm2DEGKH7IsnIITYETsXATO738x+YGaXzeyRPbDnM2b2opl9\nL2l7k5l9xcx+mH+9kLebmf1Jbvt3zOwXdmDv3Wb2NTP7vpn9o5l9fF9tNrOGmf2Dmf2/3Nb/mre/\nxcy+ntv0eTOr5e31/Ppyfv+ebdma2Fw2s2+Z2Zf23dabZaciYGZl4E+BDwJvAz5mZm/bpU3AnwH3\nr7Q9AjwZQrgXeDK/hoXd9+avh4FPb8nGlCnweyGEtwHvBn4r/xvuo81j4H0hhJ8H3g7cb2bvBj4J\nPBpCeCvwKvBQ/vxDwKt5+6P5c9vm48AzyfU+23pzhBB29gLeA3w5uf4E8Ild2pTbcQ/wveT6B8Ad\n+fs7WNQ1APx34GPHPbdD278IfGDfbQZawDeBd7EouKms/p8Avgy8J39fyZ+zLdp4FwsBfR/wJcD2\n1dbTvHYdDtwJPJtcP5e37Ru3hxBeyN//BLg9f79X9ucu6DuAr7OnNufu9beBF4GvAD8CroYQpsfY\nE23N7x8BF7dlK/DHwO8D8/z6Ivtr602zaxE4c4SF1O/dlIqZtYG/An4nhNBJ7+2TzSGEWQjh7SxG\n2XcCP7tjk47FzH4ZeDGE8PSubdk0uxaB54G7k+u78rZ946dmdgdA/vXFvH0v7DezKgsB+PMQwl/n\nzXttcwjhKvA1Fi71bWbmJeypPdHW/P554JUtmfhe4FfM7MfA51iEBJ/aU1tPxa5F4BvAvXnGtQZ8\nFHhixzYdxxPAg/n7B1nE3d7+G3nG/d3AUeKCbwUzM+Ax4JkQwh8lt/bOZjN7s5ndlr9vsshdPMNC\nDD5yDVv9d/gI8NXcq9k4IYRPhBDuCiHcw+L/5VdDCL+2j7aeml0nJYAPAf/EIjb8T3tgz18ALwAT\nFjHfQyxiuyeBHwJ/A7wpf9ZYzG78CPgucN8O7P03LFz97wDfzl8f2kebgZ8DvpXb+j3gP+ftPwP8\nA3AZ+F9APW9v5NeX8/s/s6P/E78EfOks2HozL1UMClFwdh0OCCF2jERAiIIjERCi4EgEhCg4EgEh\nCo5EQIiCIxEQouBIBIQoOP8fIPbL/VrfJikAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "tags": [] }, "output_type": "display_data" } ], "source": [ "gray = tf.image.convert_image_dtype(bw_img,tf.uint8)\n", "# The op expects a batch of images, so add a batch dimension\n", "gray = tf.expand_dims(gray, 0)\n", "eucid = tfa.image.euclidean_dist_transform(gray)\n", "eucid = tf.squeeze(eucid, (0, -1))\n", "_ = plt.imshow(eucid, cmap='gray')" ] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [], "name": "image_ops.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 0 }