{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "ScitaPqhKtuW" }, "source": [ "##### Copyright 2021 The TensorFlow Hub Authors.\n", "\n", "Licensed under the Apache License, Version 2.0 (the \"License\");" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T21:15:56.383848Z", "iopub.status.busy": "2022-12-14T21:15:56.383278Z", "iopub.status.idle": "2022-12-14T21:15:56.387245Z", "shell.execute_reply": "2022-12-14T21:15:56.386690Z" }, "id": "jvztxQ6VsK2k" }, "outputs": [], "source": [ "# Copyright 2021 The TensorFlow Hub Authors. All Rights Reserved.\n", "#\n", "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# http://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License.\n", "# ==============================================================================" ] }, { "cell_type": "markdown", "metadata": { "id": "oYM61xrTsP5d" }, "source": [ "# 重新训练图像分类器\n" ] }, { "cell_type": "markdown", "metadata": { "id": "MfBg1C5NB3X0" }, "source": [ "\n", " \n", " \n", " \n", " \n", " \n", "
在 TensorFlow.org 上查看 在 Google Colab 中运行 在 GitHub 中查看源代码 下载笔记本 查看 TF Hub 模型
" ] }, { "cell_type": "markdown", "metadata": { "id": "L1otmJgmbahf" }, "source": [ "## 简介\n", "\n", "图像分类模型有数百万个参数。从头训练需要大量带标签的训练数据和强大的算力。迁移学习会在新模型中重复使用已在相关任务上训练过的模型的一部分,可以显著降低这些需求。\n", "\n", "此 Colab 演示了对于图像特征提取,如何使用 TensorFlow Hub 中的预训练 TF2 SavedModel(已在更庞大和更通用的 ImageNet 数据集上进行过训练),为五种花的分类构建 Keras 模型。您可以选择性地将特征提取器与新添加的分类器一起训练(“微调”)。\n", "\n", "### 想要寻找替代工具?\n", "\n", "这是 TensorFlow 编码教程。如果您只是希望找一款为其构建 TensorFlow 或 TF Lite 模型的工具,请查看通过 PIP 软件包 `tensorflow-hub[make_image_classifier]` [安装](https://tensorflow.google.cn/hub/installation)的 [make_image_classifier](https://github.com/tensorflow/hub/tree/master/tensorflow_hub/tools/make_image_classifier) 命令行工具,或查看[此](https://colab.sandbox.google.com/github/tensorflow/examples/blob/master/tensorflow_examples/lite/model_maker/demo/image_classification.ipynb) TF Lite Colab。\n" ] }, { "cell_type": "markdown", "metadata": { "id": "bL54LWCHt5q5" }, "source": [ "## 设置" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T21:15:56.391021Z", "iopub.status.busy": "2022-12-14T21:15:56.390450Z", "iopub.status.idle": "2022-12-14T21:15:58.886581Z", "shell.execute_reply": "2022-12-14T21:15:58.885668Z" }, "id": "dlauq-4FWGZM" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2022-12-14 21:15:57.688879: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory\n", "2022-12-14 21:15:57.688988: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory\n", "2022-12-14 21:15:57.688999: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "TF version: 2.11.0\n", "Hub version: 0.12.0\n", "GPU is available\n" ] } ], "source": [ "import itertools\n", "import os\n", "\n", "import matplotlib.pylab as plt\n", "import numpy as np\n", "\n", "import tensorflow as tf\n", "import tensorflow_hub as hub\n", "\n", "print(\"TF version:\", tf.__version__)\n", "print(\"Hub version:\", hub.__version__)\n", "print(\"GPU is\", \"available\" if tf.config.list_physical_devices('GPU') else \"NOT AVAILABLE\")" ] }, { "cell_type": "markdown", "metadata": { "id": "mmaHHH7Pvmth" }, "source": [ "## 选择要使用的 TF2 SavedModel 模块\n", "\n", "对于初学者,请使用 https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/feature_vector/4。在代码中使用同一网址可以识别 SavedModel,在浏览器中访问该网址可以显示其文档。(请注意,TF1 Hub 格式的模型在此处无效。)\n", "\n", "您可以[在此处](https://tfhub.dev/s?module-type=image-feature-vector&tf-version=tf2)找到更多生成图像特征向量的 TF2 模型。\n", "\n", "您可以尝试多个模型。您只需在以下单元上选择不同的模型,然后按照笔记本操作即可。" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T21:15:58.890865Z", "iopub.status.busy": "2022-12-14T21:15:58.890375Z", "iopub.status.idle": "2022-12-14T21:15:58.902162Z", "shell.execute_reply": "2022-12-14T21:15:58.901351Z" }, "id": "FlsEcKVeuCnf" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Selected model: efficientnetv2-xl-21k : https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_xl/feature_vector/2\n", "Input size (512, 512)\n" ] } ], "source": [ "#@title\n", "\n", "model_name = \"efficientnetv2-xl-21k\" # @param ['efficientnetv2-s', 'efficientnetv2-m', 'efficientnetv2-l', 'efficientnetv2-s-21k', 'efficientnetv2-m-21k', 'efficientnetv2-l-21k', 'efficientnetv2-xl-21k', 'efficientnetv2-b0-21k', 'efficientnetv2-b1-21k', 'efficientnetv2-b2-21k', 'efficientnetv2-b3-21k', 'efficientnetv2-s-21k-ft1k', 'efficientnetv2-m-21k-ft1k', 'efficientnetv2-l-21k-ft1k', 'efficientnetv2-xl-21k-ft1k', 'efficientnetv2-b0-21k-ft1k', 'efficientnetv2-b1-21k-ft1k', 'efficientnetv2-b2-21k-ft1k', 'efficientnetv2-b3-21k-ft1k', 'efficientnetv2-b0', 'efficientnetv2-b1', 'efficientnetv2-b2', 'efficientnetv2-b3', 'efficientnet_b0', 'efficientnet_b1', 'efficientnet_b2', 'efficientnet_b3', 'efficientnet_b4', 'efficientnet_b5', 'efficientnet_b6', 'efficientnet_b7', 'bit_s-r50x1', 'inception_v3', 'inception_resnet_v2', 'resnet_v1_50', 'resnet_v1_101', 'resnet_v1_152', 'resnet_v2_50', 'resnet_v2_101', 'resnet_v2_152', 'nasnet_large', 'nasnet_mobile', 'pnasnet_large', 'mobilenet_v2_100_224', 'mobilenet_v2_130_224', 'mobilenet_v2_140_224', 'mobilenet_v3_small_100_224', 'mobilenet_v3_small_075_224', 'mobilenet_v3_large_100_224', 'mobilenet_v3_large_075_224']\n", "\n", "model_handle_map = {\n", " \"efficientnetv2-s\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_s/feature_vector/2\",\n", " \"efficientnetv2-m\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_m/feature_vector/2\",\n", " \"efficientnetv2-l\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_l/feature_vector/2\",\n", " \"efficientnetv2-s-21k\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_s/feature_vector/2\",\n", " \"efficientnetv2-m-21k\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_m/feature_vector/2\",\n", " \"efficientnetv2-l-21k\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_l/feature_vector/2\",\n", " \"efficientnetv2-xl-21k\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_xl/feature_vector/2\",\n", " \"efficientnetv2-b0-21k\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b0/feature_vector/2\",\n", " \"efficientnetv2-b1-21k\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b1/feature_vector/2\",\n", " \"efficientnetv2-b2-21k\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b2/feature_vector/2\",\n", " \"efficientnetv2-b3-21k\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b3/feature_vector/2\",\n", " \"efficientnetv2-s-21k-ft1k\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_s/feature_vector/2\",\n", " \"efficientnetv2-m-21k-ft1k\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_m/feature_vector/2\",\n", " \"efficientnetv2-l-21k-ft1k\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_l/feature_vector/2\",\n", " \"efficientnetv2-xl-21k-ft1k\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_xl/feature_vector/2\",\n", " \"efficientnetv2-b0-21k-ft1k\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b0/feature_vector/2\",\n", " \"efficientnetv2-b1-21k-ft1k\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b1/feature_vector/2\",\n", " \"efficientnetv2-b2-21k-ft1k\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b2/feature_vector/2\",\n", " \"efficientnetv2-b3-21k-ft1k\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b3/feature_vector/2\",\n", " \"efficientnetv2-b0\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b0/feature_vector/2\",\n", " \"efficientnetv2-b1\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b1/feature_vector/2\",\n", " \"efficientnetv2-b2\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b2/feature_vector/2\",\n", " \"efficientnetv2-b3\": \"https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b3/feature_vector/2\",\n", " \"efficientnet_b0\": \"https://tfhub.dev/tensorflow/efficientnet/b0/feature-vector/1\",\n", " \"efficientnet_b1\": \"https://tfhub.dev/tensorflow/efficientnet/b1/feature-vector/1\",\n", " \"efficientnet_b2\": \"https://tfhub.dev/tensorflow/efficientnet/b2/feature-vector/1\",\n", " \"efficientnet_b3\": \"https://tfhub.dev/tensorflow/efficientnet/b3/feature-vector/1\",\n", " \"efficientnet_b4\": \"https://tfhub.dev/tensorflow/efficientnet/b4/feature-vector/1\",\n", " \"efficientnet_b5\": \"https://tfhub.dev/tensorflow/efficientnet/b5/feature-vector/1\",\n", " \"efficientnet_b6\": \"https://tfhub.dev/tensorflow/efficientnet/b6/feature-vector/1\",\n", " \"efficientnet_b7\": \"https://tfhub.dev/tensorflow/efficientnet/b7/feature-vector/1\",\n", " \"bit_s-r50x1\": \"https://tfhub.dev/google/bit/s-r50x1/1\",\n", " \"inception_v3\": \"https://tfhub.dev/google/imagenet/inception_v3/feature-vector/4\",\n", " \"inception_resnet_v2\": \"https://tfhub.dev/google/imagenet/inception_resnet_v2/feature-vector/4\",\n", " \"resnet_v1_50\": \"https://tfhub.dev/google/imagenet/resnet_v1_50/feature-vector/4\",\n", " \"resnet_v1_101\": \"https://tfhub.dev/google/imagenet/resnet_v1_101/feature-vector/4\",\n", " \"resnet_v1_152\": \"https://tfhub.dev/google/imagenet/resnet_v1_152/feature-vector/4\",\n", " \"resnet_v2_50\": \"https://tfhub.dev/google/imagenet/resnet_v2_50/feature-vector/4\",\n", " \"resnet_v2_101\": \"https://tfhub.dev/google/imagenet/resnet_v2_101/feature-vector/4\",\n", " \"resnet_v2_152\": \"https://tfhub.dev/google/imagenet/resnet_v2_152/feature-vector/4\",\n", " \"nasnet_large\": \"https://tfhub.dev/google/imagenet/nasnet_large/feature_vector/4\",\n", " \"nasnet_mobile\": \"https://tfhub.dev/google/imagenet/nasnet_mobile/feature_vector/4\",\n", " \"pnasnet_large\": \"https://tfhub.dev/google/imagenet/pnasnet_large/feature_vector/4\",\n", " \"mobilenet_v2_100_224\": \"https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/feature_vector/4\",\n", " \"mobilenet_v2_130_224\": \"https://tfhub.dev/google/imagenet/mobilenet_v2_130_224/feature_vector/4\",\n", " \"mobilenet_v2_140_224\": \"https://tfhub.dev/google/imagenet/mobilenet_v2_140_224/feature_vector/4\",\n", " \"mobilenet_v3_small_100_224\": \"https://tfhub.dev/google/imagenet/mobilenet_v3_small_100_224/feature_vector/5\",\n", " \"mobilenet_v3_small_075_224\": \"https://tfhub.dev/google/imagenet/mobilenet_v3_small_075_224/feature_vector/5\",\n", " \"mobilenet_v3_large_100_224\": \"https://tfhub.dev/google/imagenet/mobilenet_v3_large_100_224/feature_vector/5\",\n", " \"mobilenet_v3_large_075_224\": \"https://tfhub.dev/google/imagenet/mobilenet_v3_large_075_224/feature_vector/5\",\n", "}\n", "\n", "model_image_size_map = {\n", " \"efficientnetv2-s\": 384,\n", " \"efficientnetv2-m\": 480,\n", " \"efficientnetv2-l\": 480,\n", " \"efficientnetv2-b0\": 224,\n", " \"efficientnetv2-b1\": 240,\n", " \"efficientnetv2-b2\": 260,\n", " \"efficientnetv2-b3\": 300,\n", " \"efficientnetv2-s-21k\": 384,\n", " \"efficientnetv2-m-21k\": 480,\n", " \"efficientnetv2-l-21k\": 480,\n", " \"efficientnetv2-xl-21k\": 512,\n", " \"efficientnetv2-b0-21k\": 224,\n", " \"efficientnetv2-b1-21k\": 240,\n", " \"efficientnetv2-b2-21k\": 260,\n", " \"efficientnetv2-b3-21k\": 300,\n", " \"efficientnetv2-s-21k-ft1k\": 384,\n", " \"efficientnetv2-m-21k-ft1k\": 480,\n", " \"efficientnetv2-l-21k-ft1k\": 480,\n", " \"efficientnetv2-xl-21k-ft1k\": 512,\n", " \"efficientnetv2-b0-21k-ft1k\": 224,\n", " \"efficientnetv2-b1-21k-ft1k\": 240,\n", " \"efficientnetv2-b2-21k-ft1k\": 260,\n", " \"efficientnetv2-b3-21k-ft1k\": 300, \n", " \"efficientnet_b0\": 224,\n", " \"efficientnet_b1\": 240,\n", " \"efficientnet_b2\": 260,\n", " \"efficientnet_b3\": 300,\n", " \"efficientnet_b4\": 380,\n", " \"efficientnet_b5\": 456,\n", " \"efficientnet_b6\": 528,\n", " \"efficientnet_b7\": 600,\n", " \"inception_v3\": 299,\n", " \"inception_resnet_v2\": 299,\n", " \"nasnet_large\": 331,\n", " \"pnasnet_large\": 331,\n", "}\n", "\n", "model_handle = model_handle_map.get(model_name)\n", "pixels = model_image_size_map.get(model_name, 224)\n", "\n", "print(f\"Selected model: {model_name} : {model_handle}\")\n", "\n", "IMAGE_SIZE = (pixels, pixels)\n", "print(f\"Input size {IMAGE_SIZE}\")\n", "\n", "BATCH_SIZE = 16#@param {type:\"integer\"}" ] }, { "cell_type": "markdown", "metadata": { "id": "yTY8qzyYv3vl" }, "source": [ "## 设置花数据集\n", "\n", "输入根据所选模块适当调整大小。数据集扩充(即每次读取图像时的随机畸变)可改善训练,特别是在微调时。" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T21:15:58.905313Z", "iopub.status.busy": "2022-12-14T21:15:58.904830Z", "iopub.status.idle": "2022-12-14T21:16:01.539372Z", "shell.execute_reply": "2022-12-14T21:16:01.538585Z" }, "id": "WBtFK1hO8KsO" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloading data from https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 8192/228813984 [..............................] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8642560/228813984 [>.............................] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22642688/228813984 [=>............................] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36413440/228813984 [===>..........................] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49963008/228813984 [=====>........................] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64397312/228813984 [=======>......................] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76873728/228813984 [=========>....................] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87474176/228813984 [==========>...................] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 98992128/228813984 [===========>..................] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112861184/228813984 [=============>................] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "126869504/228813984 [===============>..............] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140935168/228813984 [=================>............] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "153550848/228813984 [===================>..........] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "165707776/228813984 [====================>.........] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "178757632/228813984 [======================>.......] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "192061440/228813984 [========================>.....] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "202473472/228813984 [=========================>....] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "212598784/228813984 [==========================>...] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "223526912/228813984 [============================>.] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "228813984/228813984 [==============================] - 1s 0us/step\n" ] } ], "source": [ "data_dir = tf.keras.utils.get_file(\n", " 'flower_photos',\n", " 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz',\n", " untar=True)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "cellView": "form", "execution": { "iopub.execute_input": "2022-12-14T21:16:01.543528Z", "iopub.status.busy": "2022-12-14T21:16:01.543034Z", "iopub.status.idle": "2022-12-14T21:16:05.176591Z", "shell.execute_reply": "2022-12-14T21:16:05.175579Z" }, "id": "umB5tswsfTEQ" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Found 3670 files belonging to 5 classes.\n", "Using 2936 files for training.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/autograph/pyct/static_analysis/liveness.py:83: Analyzer.lamba_check (from tensorflow.python.autograph.pyct.static_analysis.liveness) is deprecated and will be removed after 2023-09-23.\n", "Instructions for updating:\n", "Lambda fuctions will be no more assumed to be used in the statement where they are used, or at least in the same block. https://github.com/tensorflow/tensorflow/issues/56089\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Found 3670 files belonging to 5 classes.\n", "Using 734 files for validation.\n" ] } ], "source": [ "def build_dataset(subset):\n", " return tf.keras.preprocessing.image_dataset_from_directory(\n", " data_dir,\n", " validation_split=.20,\n", " subset=subset,\n", " label_mode=\"categorical\",\n", " # Seed needs to provided when using validation_split and shuffle = True.\n", " # A fixed seed is used so that the validation set is stable across runs.\n", " seed=123,\n", " image_size=IMAGE_SIZE,\n", " batch_size=1)\n", "\n", "train_ds = build_dataset(\"training\")\n", "class_names = tuple(train_ds.class_names)\n", "train_size = train_ds.cardinality().numpy()\n", "train_ds = train_ds.unbatch().batch(BATCH_SIZE)\n", "train_ds = train_ds.repeat()\n", "\n", "normalization_layer = tf.keras.layers.Rescaling(1. / 255)\n", "preprocessing_model = tf.keras.Sequential([normalization_layer])\n", "do_data_augmentation = False #@param {type:\"boolean\"}\n", "if do_data_augmentation:\n", " preprocessing_model.add(\n", " tf.keras.layers.RandomRotation(40))\n", " preprocessing_model.add(\n", " tf.keras.layers.RandomTranslation(0, 0.2))\n", " preprocessing_model.add(\n", " tf.keras.layers.RandomTranslation(0.2, 0))\n", " # Like the old tf.keras.preprocessing.image.ImageDataGenerator(),\n", " # image sizes are fixed when reading, and then a random zoom is applied.\n", " # If all training inputs are larger than image_size, one could also use\n", " # RandomCrop with a batch size of 1 and rebatch later.\n", " preprocessing_model.add(\n", " tf.keras.layers.RandomZoom(0.2, 0.2))\n", " preprocessing_model.add(\n", " tf.keras.layers.RandomFlip(mode=\"horizontal\"))\n", "train_ds = train_ds.map(lambda images, labels:\n", " (preprocessing_model(images), labels))\n", "\n", "val_ds = build_dataset(\"validation\")\n", "valid_size = val_ds.cardinality().numpy()\n", "val_ds = val_ds.unbatch().batch(BATCH_SIZE)\n", "val_ds = val_ds.map(lambda images, labels:\n", " (normalization_layer(images), labels))" ] }, { "cell_type": "markdown", "metadata": { "id": "FS_gVStowW3G" }, "source": [ "## 定义模型\n", "\n", "您需要做的就是使用 Hub 模块将一个线性分类器放在 `feature_extractor_layer` 的顶部。\n", "\n", "为了提高速度,我们先从不可训练的 `feature_extractor_layer` 开始,但是,为了提高准确率,您也可以启用微调。" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T21:16:05.180696Z", "iopub.status.busy": "2022-12-14T21:16:05.180124Z", "iopub.status.idle": "2022-12-14T21:16:05.183472Z", "shell.execute_reply": "2022-12-14T21:16:05.182701Z" }, "id": "RaJW3XrPyFiF" }, "outputs": [], "source": [ "do_fine_tuning = False #@param {type:\"boolean\"}" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T21:16:05.186857Z", "iopub.status.busy": "2022-12-14T21:16:05.186305Z", "iopub.status.idle": "2022-12-14T21:16:35.087443Z", "shell.execute_reply": "2022-12-14T21:16:35.086741Z" }, "id": "50FYNIb1dmJH" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Building model with https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_xl/feature_vector/2\n", "WARNING:tensorflow:Please fix your imports. Module tensorflow.python.training.tracking.data_structures has been moved to tensorflow.python.trackable.data_structures. The old module will be deleted in version 2.11.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Model: \"sequential_1\"\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "_________________________________________________________________\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Layer (type) Output Shape Param # \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "=================================================================\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " keras_layer (KerasLayer) (None, 1280) 207615832 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " dropout (Dropout) (None, 1280) 0 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " dense (Dense) (None, 5) 6405 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "=================================================================\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Total params: 207,622,237\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Trainable params: 6,405\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Non-trainable params: 207,615,832\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "_________________________________________________________________\n" ] } ], "source": [ "print(\"Building model with\", model_handle)\n", "model = tf.keras.Sequential([\n", " # Explicitly define the input shape so the model can be properly\n", " # loaded by the TFLiteConverter\n", " tf.keras.layers.InputLayer(input_shape=IMAGE_SIZE + (3,)),\n", " hub.KerasLayer(model_handle, trainable=do_fine_tuning),\n", " tf.keras.layers.Dropout(rate=0.2),\n", " tf.keras.layers.Dense(len(class_names),\n", " kernel_regularizer=tf.keras.regularizers.l2(0.0001))\n", "])\n", "model.build((None,)+IMAGE_SIZE+(3,))\n", "model.summary()" ] }, { "cell_type": "markdown", "metadata": { "id": "u2e5WupIw2N2" }, "source": [ "## 训练模型" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T21:16:35.090843Z", "iopub.status.busy": "2022-12-14T21:16:35.090558Z", "iopub.status.idle": "2022-12-14T21:16:35.105604Z", "shell.execute_reply": "2022-12-14T21:16:35.104934Z" }, "id": "9f3yBUvkd_VJ" }, "outputs": [], "source": [ "model.compile(\n", " optimizer=tf.keras.optimizers.SGD(learning_rate=0.005, momentum=0.9), \n", " loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True, label_smoothing=0.1),\n", " metrics=['accuracy'])" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T21:16:35.109214Z", "iopub.status.busy": "2022-12-14T21:16:35.108592Z", "iopub.status.idle": "2022-12-14T21:29:35.313747Z", "shell.execute_reply": "2022-12-14T21:29:35.312892Z" }, "id": "w_YKX2Qnfg6x" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/183 [..............................] - ETA: 1:34:19 - loss: 2.9288 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/183 [..............................] - ETA: 1:58 - loss: 2.6198 - accuracy: 0.1875 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/183 [..............................] - ETA: 1:57 - loss: 2.3363 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/183 [..............................] - ETA: 1:57 - loss: 2.1891 - accuracy: 0.2969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/183 [..............................] - ETA: 1:56 - loss: 2.1131 - accuracy: 0.2875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/183 [..............................] - ETA: 1:55 - loss: 2.0213 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/183 [>.............................] - ETA: 1:54 - loss: 1.9126 - accuracy: 0.3661" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/183 [>.............................] - ETA: 1:54 - loss: 1.8093 - accuracy: 0.4141" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/183 [>.............................] - ETA: 1:53 - loss: 1.7375 - accuracy: 0.4583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/183 [>.............................] - ETA: 1:53 - loss: 1.6845 - accuracy: 0.4938" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/183 [>.............................] - ETA: 1:52 - loss: 1.6174 - accuracy: 0.5341" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/183 [>.............................] - ETA: 1:51 - loss: 1.5574 - accuracy: 0.5677" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/183 [=>............................] - ETA: 1:51 - loss: 1.5079 - accuracy: 0.5962" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 14/183 [=>............................] - ETA: 1:50 - loss: 1.5197 - accuracy: 0.6116" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/183 [=>............................] - ETA: 1:49 - loss: 1.4844 - accuracy: 0.6333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/183 [=>............................] - ETA: 1:49 - loss: 1.4517 - accuracy: 0.6562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17/183 [=>............................] - ETA: 1:48 - loss: 1.4220 - accuracy: 0.6765" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/183 [=>............................] - ETA: 1:47 - loss: 1.3933 - accuracy: 0.6944" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/183 [==>...........................] - ETA: 1:47 - loss: 1.3815 - accuracy: 0.7105" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/183 [==>...........................] - ETA: 1:46 - loss: 1.3645 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/183 [==>...........................] - ETA: 1:45 - loss: 1.3458 - accuracy: 0.7321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/183 [==>...........................] - ETA: 1:45 - loss: 1.3328 - accuracy: 0.7443" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 23/183 [==>...........................] - ETA: 1:44 - loss: 1.3539 - accuracy: 0.7446" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/183 [==>...........................] - ETA: 1:44 - loss: 1.3386 - accuracy: 0.7552" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/183 [===>..........................] - ETA: 1:43 - loss: 1.3585 - accuracy: 0.7600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/183 [===>..........................] - ETA: 1:42 - loss: 1.3440 - accuracy: 0.7692" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/183 [===>..........................] - ETA: 1:42 - loss: 1.3714 - accuracy: 0.7731" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/183 [===>..........................] - ETA: 1:41 - loss: 1.3610 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 29/183 [===>..........................] - ETA: 1:40 - loss: 1.3549 - accuracy: 0.7866" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/183 [===>..........................] - ETA: 1:40 - loss: 1.3461 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/183 [====>.........................] - ETA: 1:39 - loss: 1.3412 - accuracy: 0.7984" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/183 [====>.........................] - ETA: 1:38 - loss: 1.3348 - accuracy: 0.8027" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/183 [====>.........................] - ETA: 1:38 - loss: 1.3261 - accuracy: 0.8087" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/183 [====>.........................] - ETA: 1:37 - loss: 1.3287 - accuracy: 0.8107" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/183 [====>.........................] - ETA: 1:36 - loss: 1.3250 - accuracy: 0.8089" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/183 [====>.........................] - ETA: 1:36 - loss: 1.3171 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/183 [=====>........................] - ETA: 1:35 - loss: 1.3181 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/183 [=====>........................] - ETA: 1:34 - loss: 1.3075 - accuracy: 0.8174" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/183 [=====>........................] - ETA: 1:34 - loss: 1.2972 - accuracy: 0.8221" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/183 [=====>........................] - ETA: 1:33 - loss: 1.2878 - accuracy: 0.8266" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 41/183 [=====>........................] - ETA: 1:32 - loss: 1.2791 - accuracy: 0.8293" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 42/183 [=====>........................] - ETA: 1:32 - loss: 1.2810 - accuracy: 0.8304" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/183 [======>.......................] - ETA: 1:31 - loss: 1.2818 - accuracy: 0.8328" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 44/183 [======>.......................] - ETA: 1:30 - loss: 1.2723 - accuracy: 0.8366" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 45/183 [======>.......................] - ETA: 1:30 - loss: 1.2633 - accuracy: 0.8403" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/183 [======>.......................] - ETA: 1:29 - loss: 1.2570 - accuracy: 0.8424" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 47/183 [======>.......................] - ETA: 1:28 - loss: 1.2510 - accuracy: 0.8431" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/183 [======>.......................] - ETA: 1:28 - loss: 1.2430 - accuracy: 0.8464" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/183 [=======>......................] - ETA: 1:27 - loss: 1.2386 - accuracy: 0.8469" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 50/183 [=======>......................] - ETA: 1:26 - loss: 1.2336 - accuracy: 0.8487" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/183 [=======>......................] - ETA: 1:26 - loss: 1.2319 - accuracy: 0.8480" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/183 [=======>......................] - ETA: 1:25 - loss: 1.2260 - accuracy: 0.8498" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 53/183 [=======>......................] - ETA: 1:25 - loss: 1.2183 - accuracy: 0.8514" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 54/183 [=======>......................] - ETA: 1:24 - loss: 1.2095 - accuracy: 0.8530" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/183 [========>.....................] - ETA: 1:23 - loss: 1.2075 - accuracy: 0.8523" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 56/183 [========>.....................] - ETA: 1:23 - loss: 1.1991 - accuracy: 0.8549" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57/183 [========>.....................] - ETA: 1:22 - loss: 1.1949 - accuracy: 0.8542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/183 [========>.....................] - ETA: 1:21 - loss: 1.1902 - accuracy: 0.8545" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/183 [========>.....................] - ETA: 1:21 - loss: 1.1852 - accuracy: 0.8549" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/183 [========>.....................] - ETA: 1:20 - loss: 1.1813 - accuracy: 0.8542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/183 [=========>....................] - ETA: 1:19 - loss: 1.1768 - accuracy: 0.8545" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 62/183 [=========>....................] - ETA: 1:19 - loss: 1.1812 - accuracy: 0.8528" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 63/183 [=========>....................] - ETA: 1:18 - loss: 1.1826 - accuracy: 0.8542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/183 [=========>....................] - ETA: 1:17 - loss: 1.1797 - accuracy: 0.8545" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 65/183 [=========>....................] - ETA: 1:17 - loss: 1.1737 - accuracy: 0.8567" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/183 [=========>....................] - ETA: 1:16 - loss: 1.1772 - accuracy: 0.8542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/183 [=========>....................] - ETA: 1:15 - loss: 1.1763 - accuracy: 0.8554" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 68/183 [==========>...................] - ETA: 1:15 - loss: 1.1704 - accuracy: 0.8566" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 69/183 [==========>...................] - ETA: 1:14 - loss: 1.1665 - accuracy: 0.8560" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/183 [==========>...................] - ETA: 1:13 - loss: 1.1615 - accuracy: 0.8580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/183 [==========>...................] - ETA: 1:13 - loss: 1.1583 - accuracy: 0.8583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 72/183 [==========>...................] - ETA: 1:12 - loss: 1.1559 - accuracy: 0.8585" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/183 [==========>...................] - ETA: 1:11 - loss: 1.1625 - accuracy: 0.8570" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 74/183 [===========>..................] - ETA: 1:11 - loss: 1.1600 - accuracy: 0.8581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 75/183 [===========>..................] - ETA: 1:10 - loss: 1.1590 - accuracy: 0.8567" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/183 [===========>..................] - ETA: 1:10 - loss: 1.1586 - accuracy: 0.8561" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/183 [===========>..................] - ETA: 1:09 - loss: 1.1565 - accuracy: 0.8555" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/183 [===========>..................] - ETA: 1:08 - loss: 1.1521 - accuracy: 0.8558" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/183 [===========>..................] - ETA: 1:08 - loss: 1.1497 - accuracy: 0.8576" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 80/183 [============>.................] - ETA: 1:07 - loss: 1.1469 - accuracy: 0.8586" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81/183 [============>.................] - ETA: 1:06 - loss: 1.1432 - accuracy: 0.8588" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 82/183 [============>.................] - ETA: 1:06 - loss: 1.1392 - accuracy: 0.8605" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 83/183 [============>.................] - ETA: 1:05 - loss: 1.1462 - accuracy: 0.8599" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84/183 [============>.................] - ETA: 1:04 - loss: 1.1428 - accuracy: 0.8601" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/183 [============>.................] - ETA: 1:04 - loss: 1.1538 - accuracy: 0.8581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 86/183 [=============>................] - ETA: 1:03 - loss: 1.1488 - accuracy: 0.8597" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87/183 [=============>................] - ETA: 1:02 - loss: 1.1447 - accuracy: 0.8614" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/183 [=============>................] - ETA: 1:02 - loss: 1.1458 - accuracy: 0.8615" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 89/183 [=============>................] - ETA: 1:01 - loss: 1.1423 - accuracy: 0.8631" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 90/183 [=============>................] - ETA: 1:00 - loss: 1.1387 - accuracy: 0.8632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/183 [=============>................] - ETA: 1:00 - loss: 1.1379 - accuracy: 0.8640" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 92/183 [==============>...............] - ETA: 59s - loss: 1.1350 - accuracy: 0.8648 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 93/183 [==============>...............] - ETA: 58s - loss: 1.1312 - accuracy: 0.8656" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/183 [==============>...............] - ETA: 58s - loss: 1.1292 - accuracy: 0.8664" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 95/183 [==============>...............] - ETA: 57s - loss: 1.1275 - accuracy: 0.8664" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/183 [==============>...............] - ETA: 56s - loss: 1.1256 - accuracy: 0.8672" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/183 [==============>...............] - ETA: 56s - loss: 1.1232 - accuracy: 0.8666" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 98/183 [===============>..............] - ETA: 55s - loss: 1.1221 - accuracy: 0.8661" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 99/183 [===============>..............] - ETA: 54s - loss: 1.1197 - accuracy: 0.8668" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/183 [===============>..............] - ETA: 54s - loss: 1.1157 - accuracy: 0.8675" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "101/183 [===============>..............] - ETA: 53s - loss: 1.1128 - accuracy: 0.8682" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "102/183 [===============>..............] - ETA: 52s - loss: 1.1131 - accuracy: 0.8683" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/183 [===============>..............] - ETA: 52s - loss: 1.1102 - accuracy: 0.8689" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "104/183 [================>.............] - ETA: 51s - loss: 1.1068 - accuracy: 0.8696" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "105/183 [================>.............] - ETA: 51s - loss: 1.1046 - accuracy: 0.8696" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106/183 [================>.............] - ETA: 50s - loss: 1.1021 - accuracy: 0.8697" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/183 [================>.............] - ETA: 49s - loss: 1.0982 - accuracy: 0.8709" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "108/183 [================>.............] - ETA: 49s - loss: 1.0954 - accuracy: 0.8715" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/183 [================>.............] - ETA: 48s - loss: 1.0923 - accuracy: 0.8721" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "110/183 [=================>............] - ETA: 47s - loss: 1.0886 - accuracy: 0.8733" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "111/183 [=================>............] - ETA: 47s - loss: 1.0847 - accuracy: 0.8744" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/183 [=================>............] - ETA: 46s - loss: 1.0821 - accuracy: 0.8744" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113/183 [=================>............] - ETA: 45s - loss: 1.0790 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "114/183 [=================>............] - ETA: 45s - loss: 1.0748 - accuracy: 0.8761" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/183 [=================>............] - ETA: 44s - loss: 1.0755 - accuracy: 0.8755" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "116/183 [==================>...........] - ETA: 43s - loss: 1.0717 - accuracy: 0.8766" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117/183 [==================>...........] - ETA: 43s - loss: 1.0693 - accuracy: 0.8766" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/183 [==================>...........] - ETA: 42s - loss: 1.0656 - accuracy: 0.8776" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "119/183 [==================>...........] - ETA: 41s - loss: 1.0627 - accuracy: 0.8782" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/183 [==================>...........] - ETA: 41s - loss: 1.0597 - accuracy: 0.8786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/183 [==================>...........] - ETA: 40s - loss: 1.0564 - accuracy: 0.8791" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "122/183 [===================>..........] - ETA: 39s - loss: 1.0534 - accuracy: 0.8796" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "123/183 [===================>..........] - ETA: 39s - loss: 1.0505 - accuracy: 0.8801" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/183 [===================>..........] - ETA: 38s - loss: 1.0473 - accuracy: 0.8810" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "125/183 [===================>..........] - ETA: 37s - loss: 1.0435 - accuracy: 0.8820" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "126/183 [===================>..........] - ETA: 37s - loss: 1.0410 - accuracy: 0.8819" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/183 [===================>..........] - ETA: 36s - loss: 1.0380 - accuracy: 0.8824" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "128/183 [===================>..........] - ETA: 35s - loss: 1.0345 - accuracy: 0.8833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "129/183 [====================>.........] - ETA: 35s - loss: 1.0316 - accuracy: 0.8837" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/183 [====================>.........] - ETA: 34s - loss: 1.0286 - accuracy: 0.8841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "131/183 [====================>.........] - ETA: 34s - loss: 1.0256 - accuracy: 0.8845" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "132/183 [====================>.........] - ETA: 33s - loss: 1.0223 - accuracy: 0.8849" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/183 [====================>.........] - ETA: 32s - loss: 1.0191 - accuracy: 0.8853" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134/183 [====================>.........] - ETA: 32s - loss: 1.0165 - accuracy: 0.8857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/183 [=====================>........] - ETA: 31s - loss: 1.0151 - accuracy: 0.8861" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/183 [=====================>........] - ETA: 30s - loss: 1.0130 - accuracy: 0.8860" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/183 [=====================>........] - ETA: 30s - loss: 1.0110 - accuracy: 0.8859" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "138/183 [=====================>........] - ETA: 29s - loss: 1.0082 - accuracy: 0.8868" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/183 [=====================>........] - ETA: 28s - loss: 1.0068 - accuracy: 0.8871" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140/183 [=====================>........] - ETA: 28s - loss: 1.0040 - accuracy: 0.8875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "141/183 [======================>.......] - ETA: 27s - loss: 1.0060 - accuracy: 0.8870" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/183 [======================>.......] - ETA: 26s - loss: 1.0028 - accuracy: 0.8878" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "143/183 [======================>.......] - ETA: 26s - loss: 0.9997 - accuracy: 0.8885" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "144/183 [======================>.......] - ETA: 25s - loss: 0.9970 - accuracy: 0.8889" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/183 [======================>.......] - ETA: 24s - loss: 0.9960 - accuracy: 0.8892" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "146/183 [======================>.......] - ETA: 24s - loss: 0.9929 - accuracy: 0.8900" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "147/183 [=======================>......] - ETA: 23s - loss: 0.9901 - accuracy: 0.8903" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/183 [=======================>......] - ETA: 22s - loss: 0.9874 - accuracy: 0.8906" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "149/183 [=======================>......] - ETA: 22s - loss: 0.9851 - accuracy: 0.8909" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "150/183 [=======================>......] - ETA: 21s - loss: 0.9846 - accuracy: 0.8908" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/183 [=======================>......] - ETA: 20s - loss: 0.9830 - accuracy: 0.8907" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/183 [=======================>......] - ETA: 20s - loss: 0.9807 - accuracy: 0.8910" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "153/183 [========================>.....] - ETA: 19s - loss: 0.9811 - accuracy: 0.8905" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "154/183 [========================>.....] - ETA: 18s - loss: 0.9789 - accuracy: 0.8904" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "155/183 [========================>.....] - ETA: 18s - loss: 0.9762 - accuracy: 0.8907" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "156/183 [========================>.....] - ETA: 17s - loss: 0.9740 - accuracy: 0.8910" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "157/183 [========================>.....] - ETA: 17s - loss: 0.9752 - accuracy: 0.8909" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "158/183 [========================>.....] - ETA: 16s - loss: 0.9730 - accuracy: 0.8916" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "159/183 [=========================>....] - ETA: 15s - loss: 0.9705 - accuracy: 0.8923" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "160/183 [=========================>....] - ETA: 15s - loss: 0.9721 - accuracy: 0.8918" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "161/183 [=========================>....] - ETA: 14s - loss: 0.9696 - accuracy: 0.8925" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "162/183 [=========================>....] - ETA: 13s - loss: 0.9667 - accuracy: 0.8931" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "163/183 [=========================>....] - ETA: 13s - loss: 0.9675 - accuracy: 0.8923" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "164/183 [=========================>....] - ETA: 12s - loss: 0.9669 - accuracy: 0.8925" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "165/183 [==========================>...] - ETA: 11s - loss: 0.9673 - accuracy: 0.8924" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "166/183 [==========================>...] - ETA: 11s - loss: 0.9654 - accuracy: 0.8923" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "167/183 [==========================>...] - ETA: 10s - loss: 0.9642 - accuracy: 0.8918" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "168/183 [==========================>...] - ETA: 9s - loss: 0.9650 - accuracy: 0.8910 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "169/183 [==========================>...] - ETA: 9s - loss: 0.9640 - accuracy: 0.8909" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "170/183 [==========================>...] - ETA: 8s - loss: 0.9627 - accuracy: 0.8904" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "171/183 [===========================>..] - ETA: 7s - loss: 0.9620 - accuracy: 0.8900" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "172/183 [===========================>..] - ETA: 7s - loss: 0.9608 - accuracy: 0.8895" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "173/183 [===========================>..] - ETA: 6s - loss: 0.9602 - accuracy: 0.8891" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "174/183 [===========================>..] - ETA: 5s - loss: 0.9580 - accuracy: 0.8897" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "175/183 [===========================>..] - ETA: 5s - loss: 0.9565 - accuracy: 0.8900" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "176/183 [===========================>..] - ETA: 4s - loss: 0.9563 - accuracy: 0.8892" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "177/183 [============================>.] - ETA: 3s - loss: 0.9543 - accuracy: 0.8898" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "178/183 [============================>.] - ETA: 3s - loss: 0.9523 - accuracy: 0.8904" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "179/183 [============================>.] - ETA: 2s - loss: 0.9520 - accuracy: 0.8907" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "180/183 [============================>.] - ETA: 1s - loss: 0.9510 - accuracy: 0.8910" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "181/183 [============================>.] - ETA: 1s - loss: 0.9495 - accuracy: 0.8912" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "182/183 [============================>.] - ETA: 0s - loss: 0.9475 - accuracy: 0.8918" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "183/183 [==============================] - ETA: 0s - loss: 0.9491 - accuracy: 0.8911" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "183/183 [==============================] - 184s 838ms/step - loss: 0.9491 - accuracy: 0.8911 - val_loss: 0.7422 - val_accuracy: 0.9278\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 2/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/183 [..............................] - ETA: 2:41 - loss: 0.6432 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/183 [..............................] - ETA: 1:58 - loss: 0.6937 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/183 [..............................] - ETA: 1:57 - loss: 0.6910 - accuracy: 0.9500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/183 [..............................] - ETA: 1:56 - loss: 0.7040 - accuracy: 0.9464" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/183 [..............................] - ETA: 1:56 - loss: 0.7143 - accuracy: 0.9444" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/183 [..............................] - ETA: 1:55 - loss: 0.7704 - accuracy: 0.9318" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/183 [>.............................] - ETA: 1:55 - loss: 0.7743 - accuracy: 0.9231" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/183 [>.............................] - ETA: 1:54 - loss: 0.8318 - accuracy: 0.9000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/183 [>.............................] - ETA: 1:53 - loss: 0.8527 - accuracy: 0.8897" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/183 [>.............................] - ETA: 1:53 - loss: 0.8341 - accuracy: 0.9013" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/183 [>.............................] - ETA: 1:52 - loss: 0.8450 - accuracy: 0.8988" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/183 [>.............................] - ETA: 1:51 - loss: 0.8676 - accuracy: 0.8913" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/183 [=>............................] - ETA: 1:51 - loss: 0.8833 - accuracy: 0.8850" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 14/183 [=>............................] - ETA: 1:50 - loss: 0.8813 - accuracy: 0.8843" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/183 [=>............................] - ETA: 1:49 - loss: 0.8640 - accuracy: 0.8922" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/183 [=>............................] - ETA: 1:49 - loss: 0.8483 - accuracy: 0.8992" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17/183 [=>............................] - ETA: 1:48 - loss: 0.8342 - accuracy: 0.9053" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/183 [=>............................] - ETA: 1:47 - loss: 0.8480 - accuracy: 0.9036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/183 [==>...........................] - ETA: 1:47 - loss: 0.8497 - accuracy: 0.9020" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/183 [==>...........................] - ETA: 1:46 - loss: 0.8489 - accuracy: 0.9006" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/183 [==>...........................] - ETA: 1:45 - loss: 0.8445 - accuracy: 0.8994" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/183 [==>...........................] - ETA: 1:45 - loss: 0.8480 - accuracy: 0.8953" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 23/183 [==>...........................] - ETA: 1:44 - loss: 0.8453 - accuracy: 0.9000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/183 [==>...........................] - ETA: 1:43 - loss: 0.8401 - accuracy: 0.8989" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/183 [===>..........................] - ETA: 1:43 - loss: 0.8390 - accuracy: 0.9005" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/183 [===>..........................] - ETA: 1:42 - loss: 0.8389 - accuracy: 0.8995" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/183 [===>..........................] - ETA: 1:42 - loss: 0.8370 - accuracy: 0.9009" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/183 [===>..........................] - ETA: 1:41 - loss: 0.8330 - accuracy: 0.9045" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 29/183 [===>..........................] - ETA: 1:40 - loss: 0.8342 - accuracy: 0.9057" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/183 [===>..........................] - ETA: 1:40 - loss: 0.8314 - accuracy: 0.9089" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/183 [====>.........................] - ETA: 1:39 - loss: 0.8266 - accuracy: 0.9119" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/183 [====>.........................] - ETA: 1:38 - loss: 0.8280 - accuracy: 0.9107" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/183 [====>.........................] - ETA: 1:38 - loss: 0.8260 - accuracy: 0.9135" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/183 [====>.........................] - ETA: 1:37 - loss: 0.8227 - accuracy: 0.9160" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/183 [====>.........................] - ETA: 1:36 - loss: 0.8271 - accuracy: 0.9130" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/183 [====>.........................] - ETA: 1:36 - loss: 0.8247 - accuracy: 0.9137" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/183 [=====>........................] - ETA: 1:35 - loss: 0.8218 - accuracy: 0.9144" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/183 [=====>........................] - ETA: 1:34 - loss: 0.8221 - accuracy: 0.9133" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/183 [=====>........................] - ETA: 1:34 - loss: 0.8222 - accuracy: 0.9091" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/183 [=====>........................] - ETA: 1:33 - loss: 0.8180 - accuracy: 0.9114" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 41/183 [=====>........................] - ETA: 1:32 - loss: 0.8167 - accuracy: 0.9120" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 42/183 [=====>........................] - ETA: 1:32 - loss: 0.8143 - accuracy: 0.9127" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/183 [======>.......................] - ETA: 1:31 - loss: 0.8124 - accuracy: 0.9132" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 44/183 [======>.......................] - ETA: 1:30 - loss: 0.8107 - accuracy: 0.9124" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 45/183 [======>.......................] - ETA: 1:30 - loss: 0.8096 - accuracy: 0.9115" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/183 [======>.......................] - ETA: 1:29 - loss: 0.8066 - accuracy: 0.9121" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 47/183 [======>.......................] - ETA: 1:28 - loss: 0.8019 - accuracy: 0.9140" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/183 [======>.......................] - ETA: 1:28 - loss: 0.8042 - accuracy: 0.9145" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/183 [=======>......................] - ETA: 1:27 - loss: 0.8027 - accuracy: 0.9149" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 50/183 [=======>......................] - ETA: 1:26 - loss: 0.7996 - accuracy: 0.9167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/183 [=======>......................] - ETA: 1:26 - loss: 0.7976 - accuracy: 0.9171" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/183 [=======>......................] - ETA: 1:25 - loss: 0.7962 - accuracy: 0.9175" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 53/183 [=======>......................] - ETA: 1:25 - loss: 0.7924 - accuracy: 0.9190" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 54/183 [=======>......................] - ETA: 1:24 - loss: 0.7893 - accuracy: 0.9206" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/183 [========>.....................] - ETA: 1:23 - loss: 0.7866 - accuracy: 0.9209" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 56/183 [========>.....................] - ETA: 1:23 - loss: 0.7855 - accuracy: 0.9212" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57/183 [========>.....................] - ETA: 1:22 - loss: 0.7815 - accuracy: 0.9226" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/183 [========>.....................] - ETA: 1:21 - loss: 0.7797 - accuracy: 0.9228" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/183 [========>.....................] - ETA: 1:21 - loss: 0.7775 - accuracy: 0.9241" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/183 [========>.....................] - ETA: 1:20 - loss: 0.7748 - accuracy: 0.9254" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/183 [=========>....................] - ETA: 1:19 - loss: 0.7714 - accuracy: 0.9267" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 62/183 [=========>....................] - ETA: 1:19 - loss: 0.7682 - accuracy: 0.9278" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 63/183 [=========>....................] - ETA: 1:18 - loss: 0.7649 - accuracy: 0.9290" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/183 [=========>....................] - ETA: 1:17 - loss: 0.7652 - accuracy: 0.9291" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 65/183 [=========>....................] - ETA: 1:17 - loss: 0.7651 - accuracy: 0.9283" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/183 [=========>....................] - ETA: 1:16 - loss: 0.7628 - accuracy: 0.9294" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/183 [=========>....................] - ETA: 1:15 - loss: 0.7617 - accuracy: 0.9295" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 68/183 [==========>...................] - ETA: 1:15 - loss: 0.7606 - accuracy: 0.9296" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 69/183 [==========>...................] - ETA: 1:14 - loss: 0.7572 - accuracy: 0.9307" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/183 [==========>...................] - ETA: 1:13 - loss: 0.7571 - accuracy: 0.9308" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/183 [==========>...................] - ETA: 1:13 - loss: 0.7542 - accuracy: 0.9317" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 72/183 [==========>...................] - ETA: 1:12 - loss: 0.7516 - accuracy: 0.9318" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/183 [==========>...................] - ETA: 1:11 - loss: 0.7505 - accuracy: 0.9319" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 74/183 [===========>..................] - ETA: 1:11 - loss: 0.7514 - accuracy: 0.9311" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 75/183 [===========>..................] - ETA: 1:10 - loss: 0.7491 - accuracy: 0.9312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/183 [===========>..................] - ETA: 1:09 - loss: 0.7464 - accuracy: 0.9321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/183 [===========>..................] - ETA: 1:09 - loss: 0.7481 - accuracy: 0.9322" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/183 [===========>..................] - ETA: 1:08 - loss: 0.7453 - accuracy: 0.9331" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/183 [===========>..................] - ETA: 1:08 - loss: 0.7458 - accuracy: 0.9315" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 80/183 [============>.................] - ETA: 1:07 - loss: 0.7436 - accuracy: 0.9316" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81/183 [============>.................] - ETA: 1:06 - loss: 0.7411 - accuracy: 0.9325" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 82/183 [============>.................] - ETA: 1:06 - loss: 0.7403 - accuracy: 0.9317" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 83/183 [============>.................] - ETA: 1:05 - loss: 0.7439 - accuracy: 0.9303" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84/183 [============>.................] - ETA: 1:04 - loss: 0.7448 - accuracy: 0.9304" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/183 [============>.................] - ETA: 1:04 - loss: 0.7464 - accuracy: 0.9297" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 86/183 [=============>................] - ETA: 1:03 - loss: 0.7442 - accuracy: 0.9298" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87/183 [=============>................] - ETA: 1:02 - loss: 0.7422 - accuracy: 0.9306" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/183 [=============>................] - ETA: 1:02 - loss: 0.7410 - accuracy: 0.9307" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 89/183 [=============>................] - ETA: 1:01 - loss: 0.7389 - accuracy: 0.9315" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 90/183 [=============>................] - ETA: 1:00 - loss: 0.7379 - accuracy: 0.9316" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/183 [=============>................] - ETA: 1:00 - loss: 0.7369 - accuracy: 0.9316" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 92/183 [==============>...............] - ETA: 59s - loss: 0.7347 - accuracy: 0.9324 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 93/183 [==============>...............] - ETA: 58s - loss: 0.7343 - accuracy: 0.9318" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/183 [==============>...............] - ETA: 58s - loss: 0.7322 - accuracy: 0.9325" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 95/183 [==============>...............] - ETA: 57s - loss: 0.7305 - accuracy: 0.9332" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/183 [==============>...............] - ETA: 56s - loss: 0.7282 - accuracy: 0.9339" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/183 [==============>...............] - ETA: 56s - loss: 0.7275 - accuracy: 0.9339" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 98/183 [===============>..............] - ETA: 55s - loss: 0.7262 - accuracy: 0.9340" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 99/183 [===============>..............] - ETA: 54s - loss: 0.7251 - accuracy: 0.9340" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/183 [===============>..............] - ETA: 54s - loss: 0.7245 - accuracy: 0.9340" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "101/183 [===============>..............] - ETA: 53s - loss: 0.7224 - accuracy: 0.9341" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "102/183 [===============>..............] - ETA: 53s - loss: 0.7207 - accuracy: 0.9347" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/183 [===============>..............] - ETA: 52s - loss: 0.7195 - accuracy: 0.9348" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "104/183 [================>.............] - ETA: 51s - loss: 0.7193 - accuracy: 0.9342" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "105/183 [================>.............] - ETA: 51s - loss: 0.7179 - accuracy: 0.9348" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106/183 [================>.............] - ETA: 50s - loss: 0.7191 - accuracy: 0.9336" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/183 [================>.............] - ETA: 49s - loss: 0.7194 - accuracy: 0.9337" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "108/183 [================>.............] - ETA: 49s - loss: 0.7178 - accuracy: 0.9343" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/183 [================>.............] - ETA: 48s - loss: 0.7165 - accuracy: 0.9349" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "110/183 [=================>............] - ETA: 47s - loss: 0.7164 - accuracy: 0.9349" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "111/183 [=================>............] - ETA: 47s - loss: 0.7149 - accuracy: 0.9355" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/183 [=================>............] - ETA: 46s - loss: 0.7142 - accuracy: 0.9355" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113/183 [=================>............] - ETA: 45s - loss: 0.7152 - accuracy: 0.9356" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "114/183 [=================>............] - ETA: 45s - loss: 0.7148 - accuracy: 0.9356" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/183 [=================>............] - ETA: 44s - loss: 0.7138 - accuracy: 0.9356" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "116/183 [==================>...........] - ETA: 43s - loss: 0.7151 - accuracy: 0.9351" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117/183 [==================>...........] - ETA: 43s - loss: 0.7148 - accuracy: 0.9351" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/183 [==================>...........] - ETA: 42s - loss: 0.7146 - accuracy: 0.9351" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "119/183 [==================>...........] - ETA: 41s - loss: 0.7128 - accuracy: 0.9357" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/183 [==================>...........] - ETA: 41s - loss: 0.7119 - accuracy: 0.9357" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/183 [==================>...........] - ETA: 40s - loss: 0.7122 - accuracy: 0.9357" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "122/183 [===================>..........] - ETA: 39s - loss: 0.7111 - accuracy: 0.9362" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "123/183 [===================>..........] - ETA: 39s - loss: 0.7120 - accuracy: 0.9357" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/183 [===================>..........] - ETA: 38s - loss: 0.7120 - accuracy: 0.9352" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "125/183 [===================>..........] - ETA: 37s - loss: 0.7112 - accuracy: 0.9347" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "126/183 [===================>..........] - ETA: 37s - loss: 0.7120 - accuracy: 0.9343" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/183 [===================>..........] - ETA: 36s - loss: 0.7135 - accuracy: 0.9333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "128/183 [===================>..........] - ETA: 35s - loss: 0.7125 - accuracy: 0.9338" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "129/183 [====================>.........] - ETA: 35s - loss: 0.7121 - accuracy: 0.9343" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/183 [====================>.........] - ETA: 34s - loss: 0.7112 - accuracy: 0.9344" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "131/183 [====================>.........] - ETA: 34s - loss: 0.7103 - accuracy: 0.9349" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "132/183 [====================>.........] - ETA: 33s - loss: 0.7091 - accuracy: 0.9354" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/183 [====================>.........] - ETA: 32s - loss: 0.7081 - accuracy: 0.9358" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134/183 [====================>.........] - ETA: 32s - loss: 0.7079 - accuracy: 0.9359" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/183 [=====================>........] - ETA: 31s - loss: 0.7073 - accuracy: 0.9363" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/183 [=====================>........] - ETA: 30s - loss: 0.7071 - accuracy: 0.9363" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/183 [=====================>........] - ETA: 30s - loss: 0.7086 - accuracy: 0.9354" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "138/183 [=====================>........] - ETA: 29s - loss: 0.7076 - accuracy: 0.9359" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/183 [=====================>........] - ETA: 28s - loss: 0.7069 - accuracy: 0.9359" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140/183 [=====================>........] - ETA: 28s - loss: 0.7068 - accuracy: 0.9359" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "141/183 [======================>.......] - ETA: 27s - loss: 0.7067 - accuracy: 0.9364" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/183 [======================>.......] - ETA: 26s - loss: 0.7086 - accuracy: 0.9360" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "143/183 [======================>.......] - ETA: 26s - loss: 0.7080 - accuracy: 0.9364" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "144/183 [======================>.......] - ETA: 25s - loss: 0.7077 - accuracy: 0.9364" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/183 [======================>.......] - ETA: 24s - loss: 0.7076 - accuracy: 0.9356" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "146/183 [======================>.......] - ETA: 24s - loss: 0.7082 - accuracy: 0.9356" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "147/183 [=======================>......] - ETA: 23s - loss: 0.7074 - accuracy: 0.9360" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/183 [=======================>......] - ETA: 22s - loss: 0.7066 - accuracy: 0.9364" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "149/183 [=======================>......] - ETA: 22s - loss: 0.7053 - accuracy: 0.9369" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "150/183 [=======================>......] - ETA: 21s - loss: 0.7065 - accuracy: 0.9365" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/183 [=======================>......] - ETA: 20s - loss: 0.7058 - accuracy: 0.9369" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/183 [=======================>......] - ETA: 20s - loss: 0.7049 - accuracy: 0.9373" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "153/183 [========================>.....] - ETA: 19s - loss: 0.7040 - accuracy: 0.9377" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "154/183 [========================>.....] - ETA: 18s - loss: 0.7046 - accuracy: 0.9377" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "155/183 [========================>.....] - ETA: 18s - loss: 0.7046 - accuracy: 0.9377" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "156/183 [========================>.....] - ETA: 17s - loss: 0.7038 - accuracy: 0.9377" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "157/183 [========================>.....] - ETA: 17s - loss: 0.7031 - accuracy: 0.9377" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "158/183 [========================>.....] - ETA: 16s - loss: 0.7031 - accuracy: 0.9377" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "159/183 [=========================>....] - ETA: 15s - loss: 0.7021 - accuracy: 0.9381" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "160/183 [=========================>....] - ETA: 15s - loss: 0.7025 - accuracy: 0.9381" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "161/183 [=========================>....] - ETA: 14s - loss: 0.7020 - accuracy: 0.9381" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "162/183 [=========================>....] - ETA: 13s - loss: 0.7022 - accuracy: 0.9377" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "163/183 [=========================>....] - ETA: 13s - loss: 0.7015 - accuracy: 0.9377" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "164/183 [=========================>....] - ETA: 12s - loss: 0.7020 - accuracy: 0.9369" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "165/183 [==========================>...] - ETA: 11s - loss: 0.7042 - accuracy: 0.9362" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "166/183 [==========================>...] - ETA: 11s - loss: 0.7032 - accuracy: 0.9366" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "167/183 [==========================>...] - ETA: 10s - loss: 0.7024 - accuracy: 0.9369" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "168/183 [==========================>...] - ETA: 9s - loss: 0.7017 - accuracy: 0.9373 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "169/183 [==========================>...] - ETA: 9s - loss: 0.7010 - accuracy: 0.9377" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "170/183 [==========================>...] - ETA: 8s - loss: 0.7002 - accuracy: 0.9381" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "171/183 [===========================>..] - ETA: 7s - loss: 0.7001 - accuracy: 0.9377" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "172/183 [===========================>..] - ETA: 7s - loss: 0.6997 - accuracy: 0.9373" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "173/183 [===========================>..] - ETA: 6s - loss: 0.6997 - accuracy: 0.9373" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "174/183 [===========================>..] - ETA: 5s - loss: 0.6985 - accuracy: 0.9377" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "175/183 [===========================>..] - ETA: 5s - loss: 0.7001 - accuracy: 0.9377" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "176/183 [===========================>..] - ETA: 4s - loss: 0.6995 - accuracy: 0.9377" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "177/183 [============================>.] - ETA: 3s - loss: 0.7010 - accuracy: 0.9366" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "178/183 [============================>.] - ETA: 3s - loss: 0.7002 - accuracy: 0.9370" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "179/183 [============================>.] - ETA: 2s - loss: 0.6994 - accuracy: 0.9373" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "180/183 [============================>.] - ETA: 1s - loss: 0.7003 - accuracy: 0.9373" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "181/183 [============================>.] - ETA: 1s - loss: 0.6994 - accuracy: 0.9377" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "182/183 [============================>.] - ETA: 0s - loss: 0.6988 - accuracy: 0.9380" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "183/183 [==============================] - ETA: 0s - loss: 0.6983 - accuracy: 0.9380" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "183/183 [==============================] - 149s 816ms/step - loss: 0.6983 - accuracy: 0.9380 - val_loss: 0.6317 - val_accuracy: 0.9514\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 3/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/183 [..............................] - ETA: 1:58 - loss: 0.6046 - accuracy: 0.9375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/183 [..............................] - ETA: 1:04 - loss: 0.6683 - accuracy: 0.9167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/183 [..............................] - ETA: 1:30 - loss: 0.6637 - accuracy: 0.9250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/183 [..............................] - ETA: 1:39 - loss: 0.6494 - accuracy: 0.9464" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/183 [..............................] - ETA: 1:43 - loss: 0.6432 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/183 [..............................] - ETA: 1:45 - loss: 0.6323 - accuracy: 0.9659" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/183 [>.............................] - ETA: 1:46 - loss: 0.6422 - accuracy: 0.9615" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/183 [>.............................] - ETA: 1:47 - loss: 0.6434 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/183 [>.............................] - ETA: 1:47 - loss: 0.6365 - accuracy: 0.9632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/183 [>.............................] - ETA: 1:47 - loss: 0.6317 - accuracy: 0.9671" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/183 [>.............................] - ETA: 1:47 - loss: 0.6251 - accuracy: 0.9702" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/183 [>.............................] - ETA: 1:47 - loss: 0.6328 - accuracy: 0.9620" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/183 [=>............................] - ETA: 1:47 - loss: 0.6361 - accuracy: 0.9600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 14/183 [=>............................] - ETA: 1:46 - loss: 0.6339 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/183 [=>............................] - ETA: 1:46 - loss: 0.6344 - accuracy: 0.9526" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/183 [=>............................] - ETA: 1:46 - loss: 0.6288 - accuracy: 0.9556" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17/183 [=>............................] - ETA: 1:45 - loss: 0.6243 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/183 [=>............................] - ETA: 1:45 - loss: 0.6337 - accuracy: 0.9571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/183 [==>...........................] - ETA: 1:44 - loss: 0.6257 - accuracy: 0.9595" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/183 [==>...........................] - ETA: 1:44 - loss: 0.6249 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/183 [==>...........................] - ETA: 1:43 - loss: 0.6216 - accuracy: 0.9604" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/183 [==>...........................] - ETA: 1:43 - loss: 0.6216 - accuracy: 0.9593" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 23/183 [==>...........................] - ETA: 1:42 - loss: 0.6202 - accuracy: 0.9611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/183 [==>...........................] - ETA: 1:42 - loss: 0.6165 - accuracy: 0.9628" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/183 [===>..........................] - ETA: 1:41 - loss: 0.6185 - accuracy: 0.9592" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/183 [===>..........................] - ETA: 1:40 - loss: 0.6176 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/183 [===>..........................] - ETA: 1:40 - loss: 0.6211 - accuracy: 0.9552" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/183 [===>..........................] - ETA: 1:39 - loss: 0.6195 - accuracy: 0.9568" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 29/183 [===>..........................] - ETA: 1:39 - loss: 0.6186 - accuracy: 0.9561" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/183 [===>..........................] - ETA: 1:38 - loss: 0.6224 - accuracy: 0.9534" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/183 [====>.........................] - ETA: 1:37 - loss: 0.6260 - accuracy: 0.9488" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/183 [====>.........................] - ETA: 1:37 - loss: 0.6246 - accuracy: 0.9504" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/183 [====>.........................] - ETA: 1:36 - loss: 0.6232 - accuracy: 0.9500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/183 [====>.........................] - ETA: 1:36 - loss: 0.6220 - accuracy: 0.9515" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/183 [====>.........................] - ETA: 1:35 - loss: 0.6197 - accuracy: 0.9529" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/183 [====>.........................] - ETA: 1:34 - loss: 0.6181 - accuracy: 0.9542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/183 [=====>........................] - ETA: 1:34 - loss: 0.6157 - accuracy: 0.9555" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/183 [=====>........................] - ETA: 1:33 - loss: 0.6136 - accuracy: 0.9567" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/183 [=====>........................] - ETA: 1:33 - loss: 0.6134 - accuracy: 0.9562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/183 [=====>........................] - ETA: 1:32 - loss: 0.6138 - accuracy: 0.9557" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 41/183 [=====>........................] - ETA: 1:31 - loss: 0.6118 - accuracy: 0.9568" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 42/183 [=====>........................] - ETA: 1:31 - loss: 0.6134 - accuracy: 0.9548" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/183 [======>.......................] - ETA: 1:30 - loss: 0.6116 - accuracy: 0.9559" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 44/183 [======>.......................] - ETA: 1:30 - loss: 0.6100 - accuracy: 0.9569" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 45/183 [======>.......................] - ETA: 1:29 - loss: 0.6080 - accuracy: 0.9579" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/183 [======>.......................] - ETA: 1:28 - loss: 0.6060 - accuracy: 0.9588" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 47/183 [======>.......................] - ETA: 1:28 - loss: 0.6064 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/183 [======>.......................] - ETA: 1:27 - loss: 0.6067 - accuracy: 0.9592" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/183 [=======>......................] - ETA: 1:26 - loss: 0.6091 - accuracy: 0.9588" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 50/183 [=======>......................] - ETA: 1:26 - loss: 0.6079 - accuracy: 0.9596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/183 [=======>......................] - ETA: 1:25 - loss: 0.6072 - accuracy: 0.9604" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/183 [=======>......................] - ETA: 1:24 - loss: 0.6116 - accuracy: 0.9587" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 53/183 [=======>......................] - ETA: 1:24 - loss: 0.6110 - accuracy: 0.9595" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 54/183 [=======>......................] - ETA: 1:23 - loss: 0.6107 - accuracy: 0.9603" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/183 [========>.....................] - ETA: 1:23 - loss: 0.6107 - accuracy: 0.9599" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 56/183 [========>.....................] - ETA: 1:22 - loss: 0.6091 - accuracy: 0.9606" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57/183 [========>.....................] - ETA: 1:21 - loss: 0.6083 - accuracy: 0.9613" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/183 [========>.....................] - ETA: 1:21 - loss: 0.6070 - accuracy: 0.9620" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/183 [========>.....................] - ETA: 1:20 - loss: 0.6072 - accuracy: 0.9615" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/183 [========>.....................] - ETA: 1:19 - loss: 0.6060 - accuracy: 0.9622" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/183 [=========>....................] - ETA: 1:19 - loss: 0.6056 - accuracy: 0.9628" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 62/183 [=========>....................] - ETA: 1:18 - loss: 0.6053 - accuracy: 0.9624" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 63/183 [=========>....................] - ETA: 1:17 - loss: 0.6039 - accuracy: 0.9630" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/183 [=========>....................] - ETA: 1:17 - loss: 0.6070 - accuracy: 0.9616" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 65/183 [=========>....................] - ETA: 1:16 - loss: 0.6054 - accuracy: 0.9622" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/183 [=========>....................] - ETA: 1:16 - loss: 0.6043 - accuracy: 0.9628" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/183 [=========>....................] - ETA: 1:15 - loss: 0.6036 - accuracy: 0.9633" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 68/183 [==========>...................] - ETA: 1:14 - loss: 0.6034 - accuracy: 0.9639" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 69/183 [==========>...................] - ETA: 1:14 - loss: 0.6033 - accuracy: 0.9635" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/183 [==========>...................] - ETA: 1:13 - loss: 0.6014 - accuracy: 0.9640" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/183 [==========>...................] - ETA: 1:12 - loss: 0.5994 - accuracy: 0.9645" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 72/183 [==========>...................] - ETA: 1:12 - loss: 0.5983 - accuracy: 0.9650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/183 [==========>...................] - ETA: 1:11 - loss: 0.5974 - accuracy: 0.9655" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 74/183 [===========>..................] - ETA: 1:10 - loss: 0.5970 - accuracy: 0.9660" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 75/183 [===========>..................] - ETA: 1:10 - loss: 0.5961 - accuracy: 0.9664" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/183 [===========>..................] - ETA: 1:09 - loss: 0.5973 - accuracy: 0.9652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/183 [===========>..................] - ETA: 1:08 - loss: 0.5976 - accuracy: 0.9649" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/183 [===========>..................] - ETA: 1:08 - loss: 0.5974 - accuracy: 0.9645" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/183 [===========>..................] - ETA: 1:07 - loss: 0.5967 - accuracy: 0.9650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 80/183 [============>.................] - ETA: 1:07 - loss: 0.5982 - accuracy: 0.9646" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81/183 [============>.................] - ETA: 1:06 - loss: 0.5988 - accuracy: 0.9643" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 82/183 [============>.................] - ETA: 1:05 - loss: 0.5985 - accuracy: 0.9647" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 83/183 [============>.................] - ETA: 1:05 - loss: 0.5972 - accuracy: 0.9652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84/183 [============>.................] - ETA: 1:04 - loss: 0.5973 - accuracy: 0.9648" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/183 [============>.................] - ETA: 1:03 - loss: 0.5974 - accuracy: 0.9645" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 86/183 [=============>................] - ETA: 1:03 - loss: 0.5987 - accuracy: 0.9635" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87/183 [=============>................] - ETA: 1:02 - loss: 0.5981 - accuracy: 0.9639" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/183 [=============>................] - ETA: 1:01 - loss: 0.5971 - accuracy: 0.9643" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 89/183 [=============>................] - ETA: 1:01 - loss: 0.5966 - accuracy: 0.9647" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 90/183 [=============>................] - ETA: 1:00 - loss: 0.5964 - accuracy: 0.9651" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/183 [=============>................] - ETA: 59s - loss: 0.5969 - accuracy: 0.9648 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 92/183 [==============>...............] - ETA: 59s - loss: 0.5965 - accuracy: 0.9652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 93/183 [==============>...............] - ETA: 58s - loss: 0.5961 - accuracy: 0.9655" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/183 [==============>...............] - ETA: 58s - loss: 0.5952 - accuracy: 0.9659" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 95/183 [==============>...............] - ETA: 57s - loss: 0.5945 - accuracy: 0.9663" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/183 [==============>...............] - ETA: 56s - loss: 0.5937 - accuracy: 0.9666" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/183 [==============>...............] - ETA: 56s - loss: 0.5942 - accuracy: 0.9663" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 98/183 [===============>..............] - ETA: 55s - loss: 0.5931 - accuracy: 0.9667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 99/183 [===============>..............] - ETA: 54s - loss: 0.5923 - accuracy: 0.9670" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/183 [===============>..............] - ETA: 54s - loss: 0.5916 - accuracy: 0.9673" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "101/183 [===============>..............] - ETA: 53s - loss: 0.5926 - accuracy: 0.9670" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "102/183 [===============>..............] - ETA: 52s - loss: 0.5923 - accuracy: 0.9667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/183 [===============>..............] - ETA: 52s - loss: 0.5931 - accuracy: 0.9659" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "104/183 [================>.............] - ETA: 51s - loss: 0.5925 - accuracy: 0.9662" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "105/183 [================>.............] - ETA: 50s - loss: 0.5921 - accuracy: 0.9665" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106/183 [================>.............] - ETA: 50s - loss: 0.5915 - accuracy: 0.9668" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/183 [================>.............] - ETA: 49s - loss: 0.5908 - accuracy: 0.9671" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "108/183 [================>.............] - ETA: 48s - loss: 0.5903 - accuracy: 0.9674" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/183 [================>.............] - ETA: 48s - loss: 0.5900 - accuracy: 0.9672" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "110/183 [=================>............] - ETA: 47s - loss: 0.5893 - accuracy: 0.9675" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "111/183 [=================>............] - ETA: 46s - loss: 0.5885 - accuracy: 0.9678" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/183 [=================>............] - ETA: 46s - loss: 0.5881 - accuracy: 0.9675" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113/183 [=================>............] - ETA: 45s - loss: 0.5877 - accuracy: 0.9678" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "114/183 [=================>............] - ETA: 45s - loss: 0.5868 - accuracy: 0.9681" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/183 [=================>............] - ETA: 44s - loss: 0.5861 - accuracy: 0.9683" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "116/183 [==================>...........] - ETA: 43s - loss: 0.5862 - accuracy: 0.9681" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117/183 [==================>...........] - ETA: 43s - loss: 0.5869 - accuracy: 0.9678" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/183 [==================>...........] - ETA: 42s - loss: 0.5862 - accuracy: 0.9681" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "119/183 [==================>...........] - ETA: 41s - loss: 0.5856 - accuracy: 0.9684" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/183 [==================>...........] - ETA: 41s - loss: 0.5849 - accuracy: 0.9686" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/183 [==================>...........] - ETA: 40s - loss: 0.5841 - accuracy: 0.9689" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "122/183 [===================>..........] - ETA: 39s - loss: 0.5852 - accuracy: 0.9671" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "123/183 [===================>..........] - ETA: 39s - loss: 0.5855 - accuracy: 0.9668" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/183 [===================>..........] - ETA: 38s - loss: 0.5856 - accuracy: 0.9666" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "125/183 [===================>..........] - ETA: 37s - loss: 0.5852 - accuracy: 0.9669" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "126/183 [===================>..........] - ETA: 37s - loss: 0.5846 - accuracy: 0.9671" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/183 [===================>..........] - ETA: 36s - loss: 0.5846 - accuracy: 0.9674" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "128/183 [===================>..........] - ETA: 35s - loss: 0.5855 - accuracy: 0.9667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "129/183 [====================>.........] - ETA: 35s - loss: 0.5852 - accuracy: 0.9669" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/183 [====================>.........] - ETA: 34s - loss: 0.5849 - accuracy: 0.9672" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "131/183 [====================>.........] - ETA: 33s - loss: 0.5843 - accuracy: 0.9674" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "132/183 [====================>.........] - ETA: 33s - loss: 0.5838 - accuracy: 0.9677" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/183 [====================>.........] - ETA: 32s - loss: 0.5832 - accuracy: 0.9679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134/183 [====================>.........] - ETA: 31s - loss: 0.5827 - accuracy: 0.9682" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/183 [=====================>........] - ETA: 31s - loss: 0.5828 - accuracy: 0.9684" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/183 [=====================>........] - ETA: 30s - loss: 0.5825 - accuracy: 0.9686" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/183 [=====================>........] - ETA: 30s - loss: 0.5835 - accuracy: 0.9679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "138/183 [=====================>........] - ETA: 29s - loss: 0.5835 - accuracy: 0.9677" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/183 [=====================>........] - ETA: 28s - loss: 0.5827 - accuracy: 0.9680" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140/183 [=====================>........] - ETA: 28s - loss: 0.5823 - accuracy: 0.9682" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "141/183 [======================>.......] - ETA: 27s - loss: 0.5819 - accuracy: 0.9684" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/183 [======================>.......] - ETA: 26s - loss: 0.5836 - accuracy: 0.9673" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "143/183 [======================>.......] - ETA: 26s - loss: 0.5842 - accuracy: 0.9671" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "144/183 [======================>.......] - ETA: 25s - loss: 0.5837 - accuracy: 0.9673" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/183 [======================>.......] - ETA: 24s - loss: 0.5833 - accuracy: 0.9676" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "146/183 [======================>.......] - ETA: 24s - loss: 0.5829 - accuracy: 0.9678" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "147/183 [=======================>......] - ETA: 23s - loss: 0.5843 - accuracy: 0.9672" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/183 [=======================>......] - ETA: 22s - loss: 0.5837 - accuracy: 0.9674" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "149/183 [=======================>......] - ETA: 22s - loss: 0.5829 - accuracy: 0.9676" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "150/183 [=======================>......] - ETA: 21s - loss: 0.5822 - accuracy: 0.9678" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/183 [=======================>......] - ETA: 20s - loss: 0.5826 - accuracy: 0.9676" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/183 [=======================>......] - ETA: 20s - loss: 0.5825 - accuracy: 0.9678" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "153/183 [========================>.....] - ETA: 19s - loss: 0.5825 - accuracy: 0.9676" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "154/183 [========================>.....] - ETA: 18s - loss: 0.5821 - accuracy: 0.9674" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "155/183 [========================>.....] - ETA: 18s - loss: 0.5818 - accuracy: 0.9676" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "156/183 [========================>.....] - ETA: 17s - loss: 0.5813 - accuracy: 0.9678" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "157/183 [========================>.....] - ETA: 16s - loss: 0.5808 - accuracy: 0.9681" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "158/183 [========================>.....] - ETA: 16s - loss: 0.5808 - accuracy: 0.9679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "159/183 [=========================>....] - ETA: 15s - loss: 0.5809 - accuracy: 0.9677" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "160/183 [=========================>....] - ETA: 15s - loss: 0.5810 - accuracy: 0.9675" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "161/183 [=========================>....] - ETA: 14s - loss: 0.5807 - accuracy: 0.9677" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "162/183 [=========================>....] - ETA: 13s - loss: 0.5825 - accuracy: 0.9675" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "163/183 [=========================>....] - ETA: 13s - loss: 0.5820 - accuracy: 0.9677" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "164/183 [=========================>....] - ETA: 12s - loss: 0.5822 - accuracy: 0.9675" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "165/183 [==========================>...] - ETA: 11s - loss: 0.5820 - accuracy: 0.9677" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "166/183 [==========================>...] - ETA: 11s - loss: 0.5822 - accuracy: 0.9675" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "167/183 [==========================>...] - ETA: 10s - loss: 0.5818 - accuracy: 0.9677" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "168/183 [==========================>...] - ETA: 9s - loss: 0.5814 - accuracy: 0.9679 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "169/183 [==========================>...] - ETA: 9s - loss: 0.5815 - accuracy: 0.9681" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "170/183 [==========================>...] - ETA: 8s - loss: 0.5815 - accuracy: 0.9679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "171/183 [===========================>..] - ETA: 7s - loss: 0.5814 - accuracy: 0.9677" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "172/183 [===========================>..] - ETA: 7s - loss: 0.5818 - accuracy: 0.9676" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "173/183 [===========================>..] - ETA: 6s - loss: 0.5814 - accuracy: 0.9678" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "174/183 [===========================>..] - ETA: 5s - loss: 0.5816 - accuracy: 0.9676" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "175/183 [===========================>..] - ETA: 5s - loss: 0.5814 - accuracy: 0.9678" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "176/183 [===========================>..] - ETA: 4s - loss: 0.5812 - accuracy: 0.9679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "177/183 [============================>.] - ETA: 3s - loss: 0.5809 - accuracy: 0.9681" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "178/183 [============================>.] - ETA: 3s - loss: 0.5808 - accuracy: 0.9680" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "179/183 [============================>.] - ETA: 2s - loss: 0.5805 - accuracy: 0.9681" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "180/183 [============================>.] - ETA: 1s - loss: 0.5802 - accuracy: 0.9683" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "181/183 [============================>.] - ETA: 1s - loss: 0.5800 - accuracy: 0.9685" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "182/183 [============================>.] - ETA: 0s - loss: 0.5806 - accuracy: 0.9683" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "183/183 [==============================] - ETA: 0s - loss: 0.5803 - accuracy: 0.9685" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "183/183 [==============================] - 149s 815ms/step - loss: 0.5803 - accuracy: 0.9685 - val_loss: 0.5908 - val_accuracy: 0.9639\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/183 [..............................] - ETA: 1:59 - loss: 0.5816 - accuracy: 0.9375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/183 [..............................] - ETA: 1:58 - loss: 0.5934 - accuracy: 0.9375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/183 [..............................] - ETA: 1:30 - loss: 0.5739 - accuracy: 0.9500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/183 [..............................] - ETA: 1:39 - loss: 0.5670 - accuracy: 0.9643" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/183 [..............................] - ETA: 1:43 - loss: 0.5622 - accuracy: 0.9722" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/183 [..............................] - ETA: 1:45 - loss: 0.5601 - accuracy: 0.9773" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/183 [>.............................] - ETA: 1:46 - loss: 0.5715 - accuracy: 0.9615" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/183 [>.............................] - ETA: 1:47 - loss: 0.5702 - accuracy: 0.9667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/183 [>.............................] - ETA: 1:47 - loss: 0.5757 - accuracy: 0.9632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/183 [>.............................] - ETA: 1:47 - loss: 0.5816 - accuracy: 0.9605" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/183 [>.............................] - ETA: 1:47 - loss: 0.5941 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/183 [>.............................] - ETA: 1:47 - loss: 0.5892 - accuracy: 0.9620" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/183 [=>............................] - ETA: 1:47 - loss: 0.5843 - accuracy: 0.9650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 14/183 [=>............................] - ETA: 1:46 - loss: 0.5853 - accuracy: 0.9630" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/183 [=>............................] - ETA: 1:46 - loss: 0.5876 - accuracy: 0.9612" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/183 [=>............................] - ETA: 1:46 - loss: 0.5882 - accuracy: 0.9597" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17/183 [=>............................] - ETA: 1:45 - loss: 0.5847 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/183 [=>............................] - ETA: 1:45 - loss: 0.5873 - accuracy: 0.9536" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/183 [==>...........................] - ETA: 1:44 - loss: 0.5835 - accuracy: 0.9561" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/183 [==>...........................] - ETA: 1:44 - loss: 0.5845 - accuracy: 0.9551" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/183 [==>...........................] - ETA: 1:43 - loss: 0.5825 - accuracy: 0.9573" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/183 [==>...........................] - ETA: 1:43 - loss: 0.5819 - accuracy: 0.9593" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 23/183 [==>...........................] - ETA: 1:42 - loss: 0.5844 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/183 [==>...........................] - ETA: 1:42 - loss: 0.5825 - accuracy: 0.9601" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/183 [===>..........................] - ETA: 1:41 - loss: 0.5805 - accuracy: 0.9617" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/183 [===>..........................] - ETA: 1:40 - loss: 0.5846 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/183 [===>..........................] - ETA: 1:40 - loss: 0.5832 - accuracy: 0.9599" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/183 [===>..........................] - ETA: 1:39 - loss: 0.5872 - accuracy: 0.9568" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 29/183 [===>..........................] - ETA: 1:39 - loss: 0.5868 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/183 [===>..........................] - ETA: 1:38 - loss: 0.5848 - accuracy: 0.9597" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/183 [====>.........................] - ETA: 1:38 - loss: 0.5871 - accuracy: 0.9570" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/183 [====>.........................] - ETA: 1:37 - loss: 0.5889 - accuracy: 0.9563" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/183 [====>.........................] - ETA: 1:36 - loss: 0.5904 - accuracy: 0.9577" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/183 [====>.........................] - ETA: 1:36 - loss: 0.5936 - accuracy: 0.9571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/183 [====>.........................] - ETA: 1:35 - loss: 0.5938 - accuracy: 0.9565" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/183 [====>.........................] - ETA: 1:35 - loss: 0.5921 - accuracy: 0.9577" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/183 [=====>........................] - ETA: 1:34 - loss: 0.5935 - accuracy: 0.9555" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/183 [=====>........................] - ETA: 1:33 - loss: 0.5934 - accuracy: 0.9533" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/183 [=====>........................] - ETA: 1:33 - loss: 0.5919 - accuracy: 0.9545" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/183 [=====>........................] - ETA: 1:32 - loss: 0.5910 - accuracy: 0.9557" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 41/183 [=====>........................] - ETA: 1:31 - loss: 0.5913 - accuracy: 0.9568" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 42/183 [=====>........................] - ETA: 1:31 - loss: 0.5894 - accuracy: 0.9578" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/183 [======>.......................] - ETA: 1:30 - loss: 0.5900 - accuracy: 0.9574" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 44/183 [======>.......................] - ETA: 1:30 - loss: 0.5948 - accuracy: 0.9555" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 45/183 [======>.......................] - ETA: 1:29 - loss: 0.5952 - accuracy: 0.9537" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/183 [======>.......................] - ETA: 1:28 - loss: 0.5930 - accuracy: 0.9547" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 47/183 [======>.......................] - ETA: 1:28 - loss: 0.5931 - accuracy: 0.9543" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/183 [======>.......................] - ETA: 1:27 - loss: 0.5920 - accuracy: 0.9553" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/183 [=======>......................] - ETA: 1:26 - loss: 0.5943 - accuracy: 0.9549" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 50/183 [=======>......................] - ETA: 1:26 - loss: 0.5949 - accuracy: 0.9558" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/183 [=======>......................] - ETA: 1:25 - loss: 0.5951 - accuracy: 0.9567" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/183 [=======>......................] - ETA: 1:25 - loss: 0.5938 - accuracy: 0.9575" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 53/183 [=======>......................] - ETA: 1:24 - loss: 0.5930 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 54/183 [=======>......................] - ETA: 1:23 - loss: 0.5942 - accuracy: 0.9579" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/183 [========>.....................] - ETA: 1:23 - loss: 0.5934 - accuracy: 0.9587" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 56/183 [========>.....................] - ETA: 1:22 - loss: 0.5936 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57/183 [========>.....................] - ETA: 1:21 - loss: 0.5930 - accuracy: 0.9580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/183 [========>.....................] - ETA: 1:21 - loss: 0.5925 - accuracy: 0.9587" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/183 [========>.....................] - ETA: 1:20 - loss: 0.5913 - accuracy: 0.9594" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/183 [========>.....................] - ETA: 1:19 - loss: 0.5905 - accuracy: 0.9601" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/183 [=========>....................] - ETA: 1:19 - loss: 0.5894 - accuracy: 0.9607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 62/183 [=========>....................] - ETA: 1:18 - loss: 0.5887 - accuracy: 0.9614" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 63/183 [=========>....................] - ETA: 1:18 - loss: 0.5876 - accuracy: 0.9620" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/183 [=========>....................] - ETA: 1:17 - loss: 0.5861 - accuracy: 0.9626" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 65/183 [=========>....................] - ETA: 1:16 - loss: 0.5846 - accuracy: 0.9632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/183 [=========>....................] - ETA: 1:16 - loss: 0.5862 - accuracy: 0.9628" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/183 [=========>....................] - ETA: 1:15 - loss: 0.5855 - accuracy: 0.9633" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 68/183 [==========>...................] - ETA: 1:14 - loss: 0.5848 - accuracy: 0.9639" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 69/183 [==========>...................] - ETA: 1:14 - loss: 0.5838 - accuracy: 0.9644" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/183 [==========>...................] - ETA: 1:13 - loss: 0.5827 - accuracy: 0.9649" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/183 [==========>...................] - ETA: 1:12 - loss: 0.5837 - accuracy: 0.9637" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 72/183 [==========>...................] - ETA: 1:12 - loss: 0.5825 - accuracy: 0.9642" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/183 [==========>...................] - ETA: 1:11 - loss: 0.5830 - accuracy: 0.9629" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 74/183 [===========>..................] - ETA: 1:10 - loss: 0.5821 - accuracy: 0.9634" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 75/183 [===========>..................] - ETA: 1:10 - loss: 0.5807 - accuracy: 0.9639" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/183 [===========>..................] - ETA: 1:09 - loss: 0.5806 - accuracy: 0.9644" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/183 [===========>..................] - ETA: 1:09 - loss: 0.5799 - accuracy: 0.9649" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/183 [===========>..................] - ETA: 1:08 - loss: 0.5803 - accuracy: 0.9637" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/183 [===========>..................] - ETA: 1:07 - loss: 0.5809 - accuracy: 0.9634" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 80/183 [============>.................] - ETA: 1:07 - loss: 0.5804 - accuracy: 0.9631" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81/183 [============>.................] - ETA: 1:06 - loss: 0.5799 - accuracy: 0.9635" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 82/183 [============>.................] - ETA: 1:05 - loss: 0.5797 - accuracy: 0.9632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 83/183 [============>.................] - ETA: 1:05 - loss: 0.5787 - accuracy: 0.9636" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84/183 [============>.................] - ETA: 1:04 - loss: 0.5777 - accuracy: 0.9641" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/183 [============>.................] - ETA: 1:03 - loss: 0.5769 - accuracy: 0.9645" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 86/183 [=============>................] - ETA: 1:03 - loss: 0.5764 - accuracy: 0.9649" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87/183 [=============>................] - ETA: 1:02 - loss: 0.5765 - accuracy: 0.9646" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/183 [=============>................] - ETA: 1:01 - loss: 0.5754 - accuracy: 0.9650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 89/183 [=============>................] - ETA: 1:01 - loss: 0.5744 - accuracy: 0.9654" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 90/183 [=============>................] - ETA: 1:00 - loss: 0.5736 - accuracy: 0.9658" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/183 [=============>................] - ETA: 59s - loss: 0.5730 - accuracy: 0.9655 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 92/183 [==============>...............] - ETA: 59s - loss: 0.5735 - accuracy: 0.9652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 93/183 [==============>...............] - ETA: 58s - loss: 0.5726 - accuracy: 0.9655" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/183 [==============>...............] - ETA: 58s - loss: 0.5727 - accuracy: 0.9652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 95/183 [==============>...............] - ETA: 57s - loss: 0.5726 - accuracy: 0.9656" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/183 [==============>...............] - ETA: 56s - loss: 0.5717 - accuracy: 0.9660" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/183 [==============>...............] - ETA: 56s - loss: 0.5709 - accuracy: 0.9663" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 98/183 [===============>..............] - ETA: 55s - loss: 0.5703 - accuracy: 0.9667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 99/183 [===============>..............] - ETA: 54s - loss: 0.5709 - accuracy: 0.9664" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/183 [===============>..............] - ETA: 54s - loss: 0.5713 - accuracy: 0.9661" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "101/183 [===============>..............] - ETA: 53s - loss: 0.5709 - accuracy: 0.9658" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "102/183 [===============>..............] - ETA: 52s - loss: 0.5700 - accuracy: 0.9661" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/183 [===============>..............] - ETA: 52s - loss: 0.5700 - accuracy: 0.9665" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "104/183 [================>.............] - ETA: 51s - loss: 0.5702 - accuracy: 0.9662" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "105/183 [================>.............] - ETA: 50s - loss: 0.5705 - accuracy: 0.9659" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106/183 [================>.............] - ETA: 50s - loss: 0.5708 - accuracy: 0.9662" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/183 [================>.............] - ETA: 49s - loss: 0.5703 - accuracy: 0.9665" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "108/183 [================>.............] - ETA: 48s - loss: 0.5698 - accuracy: 0.9663" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/183 [================>.............] - ETA: 48s - loss: 0.5693 - accuracy: 0.9666" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "110/183 [=================>............] - ETA: 47s - loss: 0.5696 - accuracy: 0.9663" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "111/183 [=================>............] - ETA: 46s - loss: 0.5701 - accuracy: 0.9661" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/183 [=================>............] - ETA: 46s - loss: 0.5703 - accuracy: 0.9658" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113/183 [=================>............] - ETA: 45s - loss: 0.5700 - accuracy: 0.9661" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "114/183 [=================>............] - ETA: 45s - loss: 0.5697 - accuracy: 0.9664" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/183 [=================>............] - ETA: 44s - loss: 0.5693 - accuracy: 0.9667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "116/183 [==================>...........] - ETA: 43s - loss: 0.5693 - accuracy: 0.9665" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117/183 [==================>...........] - ETA: 43s - loss: 0.5694 - accuracy: 0.9662" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/183 [==================>...........] - ETA: 42s - loss: 0.5691 - accuracy: 0.9665" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "119/183 [==================>...........] - ETA: 41s - loss: 0.5696 - accuracy: 0.9662" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/183 [==================>...........] - ETA: 41s - loss: 0.5690 - accuracy: 0.9665" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/183 [==================>...........] - ETA: 40s - loss: 0.5683 - accuracy: 0.9668" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "122/183 [===================>..........] - ETA: 39s - loss: 0.5686 - accuracy: 0.9666" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "123/183 [===================>..........] - ETA: 39s - loss: 0.5691 - accuracy: 0.9663" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/183 [===================>..........] - ETA: 38s - loss: 0.5688 - accuracy: 0.9666" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "125/183 [===================>..........] - ETA: 37s - loss: 0.5679 - accuracy: 0.9669" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "126/183 [===================>..........] - ETA: 37s - loss: 0.5674 - accuracy: 0.9671" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/183 [===================>..........] - ETA: 36s - loss: 0.5670 - accuracy: 0.9674" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "128/183 [===================>..........] - ETA: 35s - loss: 0.5663 - accuracy: 0.9676" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "129/183 [====================>.........] - ETA: 35s - loss: 0.5657 - accuracy: 0.9679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/183 [====================>.........] - ETA: 34s - loss: 0.5650 - accuracy: 0.9681" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "131/183 [====================>.........] - ETA: 33s - loss: 0.5649 - accuracy: 0.9684" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "132/183 [====================>.........] - ETA: 33s - loss: 0.5645 - accuracy: 0.9682" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/183 [====================>.........] - ETA: 32s - loss: 0.5638 - accuracy: 0.9684" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134/183 [====================>.........] - ETA: 31s - loss: 0.5633 - accuracy: 0.9686" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/183 [=====================>........] - ETA: 31s - loss: 0.5629 - accuracy: 0.9689" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/183 [=====================>........] - ETA: 30s - loss: 0.5625 - accuracy: 0.9691" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/183 [=====================>........] - ETA: 30s - loss: 0.5619 - accuracy: 0.9693" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "138/183 [=====================>........] - ETA: 29s - loss: 0.5614 - accuracy: 0.9695" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/183 [=====================>........] - ETA: 28s - loss: 0.5609 - accuracy: 0.9698" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140/183 [=====================>........] - ETA: 28s - loss: 0.5608 - accuracy: 0.9695" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "141/183 [======================>.......] - ETA: 27s - loss: 0.5604 - accuracy: 0.9698" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/183 [======================>.......] - ETA: 26s - loss: 0.5598 - accuracy: 0.9700" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "143/183 [======================>.......] - ETA: 26s - loss: 0.5600 - accuracy: 0.9702" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "144/183 [======================>.......] - ETA: 25s - loss: 0.5595 - accuracy: 0.9704" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/183 [======================>.......] - ETA: 24s - loss: 0.5599 - accuracy: 0.9702" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "146/183 [======================>.......] - ETA: 24s - loss: 0.5593 - accuracy: 0.9704" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "147/183 [=======================>......] - ETA: 23s - loss: 0.5591 - accuracy: 0.9706" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/183 [=======================>......] - ETA: 22s - loss: 0.5586 - accuracy: 0.9708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "149/183 [=======================>......] - ETA: 22s - loss: 0.5593 - accuracy: 0.9697" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "150/183 [=======================>......] - ETA: 21s - loss: 0.5588 - accuracy: 0.9699" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/183 [=======================>......] - ETA: 20s - loss: 0.5586 - accuracy: 0.9697" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/183 [=======================>......] - ETA: 20s - loss: 0.5590 - accuracy: 0.9695" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "153/183 [========================>.....] - ETA: 19s - loss: 0.5589 - accuracy: 0.9697" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "154/183 [========================>.....] - ETA: 18s - loss: 0.5588 - accuracy: 0.9699" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "155/183 [========================>.....] - ETA: 18s - loss: 0.5585 - accuracy: 0.9701" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "156/183 [========================>.....] - ETA: 17s - loss: 0.5588 - accuracy: 0.9699" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "157/183 [========================>.....] - ETA: 16s - loss: 0.5585 - accuracy: 0.9700" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "158/183 [========================>.....] - ETA: 16s - loss: 0.5584 - accuracy: 0.9698" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "159/183 [=========================>....] - ETA: 15s - loss: 0.5581 - accuracy: 0.9700" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "160/183 [=========================>....] - ETA: 15s - loss: 0.5579 - accuracy: 0.9702" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "161/183 [=========================>....] - ETA: 14s - loss: 0.5575 - accuracy: 0.9704" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "162/183 [=========================>....] - ETA: 13s - loss: 0.5581 - accuracy: 0.9702" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "163/183 [=========================>....] - ETA: 13s - loss: 0.5576 - accuracy: 0.9704" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "164/183 [=========================>....] - ETA: 12s - loss: 0.5578 - accuracy: 0.9702" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "165/183 [==========================>...] - ETA: 11s - loss: 0.5573 - accuracy: 0.9704" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "166/183 [==========================>...] - ETA: 11s - loss: 0.5568 - accuracy: 0.9705" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "167/183 [==========================>...] - ETA: 10s - loss: 0.5570 - accuracy: 0.9703" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "168/183 [==========================>...] - ETA: 9s - loss: 0.5566 - accuracy: 0.9705 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "169/183 [==========================>...] - ETA: 9s - loss: 0.5563 - accuracy: 0.9707" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "170/183 [==========================>...] - ETA: 8s - loss: 0.5561 - accuracy: 0.9709" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "171/183 [===========================>..] - ETA: 7s - loss: 0.5557 - accuracy: 0.9710" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "172/183 [===========================>..] - ETA: 7s - loss: 0.5556 - accuracy: 0.9708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "173/183 [===========================>..] - ETA: 6s - loss: 0.5553 - accuracy: 0.9710" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "174/183 [===========================>..] - ETA: 5s - loss: 0.5558 - accuracy: 0.9708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "175/183 [===========================>..] - ETA: 5s - loss: 0.5554 - accuracy: 0.9710" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "176/183 [===========================>..] - ETA: 4s - loss: 0.5550 - accuracy: 0.9712" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "177/183 [============================>.] - ETA: 3s - loss: 0.5548 - accuracy: 0.9710" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "178/183 [============================>.] - ETA: 3s - loss: 0.5545 - accuracy: 0.9711" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "179/183 [============================>.] - ETA: 2s - loss: 0.5539 - accuracy: 0.9713" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "180/183 [============================>.] - ETA: 1s - loss: 0.5537 - accuracy: 0.9714" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "181/183 [============================>.] - ETA: 1s - loss: 0.5533 - accuracy: 0.9716" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "182/183 [============================>.] - ETA: 0s - loss: 0.5530 - accuracy: 0.9714" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "183/183 [==============================] - ETA: 0s - loss: 0.5525 - accuracy: 0.9716" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "183/183 [==============================] - 149s 815ms/step - loss: 0.5525 - accuracy: 0.9716 - val_loss: 0.5188 - val_accuracy: 0.9597\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 5/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/183 [..............................] - ETA: 1:58 - loss: 0.5373 - accuracy: 0.9375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/183 [..............................] - ETA: 1:58 - loss: 0.5445 - accuracy: 0.9688" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/183 [..............................] - ETA: 1:57 - loss: 0.5480 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/183 [..............................] - ETA: 1:38 - loss: 0.5387 - accuracy: 0.9643" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/183 [..............................] - ETA: 1:42 - loss: 0.5204 - accuracy: 0.9722" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/183 [..............................] - ETA: 1:45 - loss: 0.5285 - accuracy: 0.9545" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/183 [>.............................] - ETA: 1:46 - loss: 0.5272 - accuracy: 0.9615" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/183 [>.............................] - ETA: 1:46 - loss: 0.5205 - accuracy: 0.9667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/183 [>.............................] - ETA: 1:47 - loss: 0.5144 - accuracy: 0.9706" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/183 [>.............................] - ETA: 1:47 - loss: 0.5153 - accuracy: 0.9737" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/183 [>.............................] - ETA: 1:47 - loss: 0.5227 - accuracy: 0.9702" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/183 [>.............................] - ETA: 1:47 - loss: 0.5219 - accuracy: 0.9728" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/183 [=>............................] - ETA: 1:46 - loss: 0.5208 - accuracy: 0.9750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 14/183 [=>............................] - ETA: 1:46 - loss: 0.5193 - accuracy: 0.9769" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/183 [=>............................] - ETA: 1:46 - loss: 0.5182 - accuracy: 0.9784" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/183 [=>............................] - ETA: 1:45 - loss: 0.5222 - accuracy: 0.9758" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17/183 [=>............................] - ETA: 1:45 - loss: 0.5198 - accuracy: 0.9773" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/183 [=>............................] - ETA: 1:45 - loss: 0.5165 - accuracy: 0.9786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/183 [==>...........................] - ETA: 1:44 - loss: 0.5187 - accuracy: 0.9764" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/183 [==>...........................] - ETA: 1:44 - loss: 0.5188 - accuracy: 0.9776" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/183 [==>...........................] - ETA: 1:43 - loss: 0.5159 - accuracy: 0.9787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/183 [==>...........................] - ETA: 1:43 - loss: 0.5159 - accuracy: 0.9797" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 23/183 [==>...........................] - ETA: 1:42 - loss: 0.5165 - accuracy: 0.9806" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/183 [==>...........................] - ETA: 1:42 - loss: 0.5191 - accuracy: 0.9787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/183 [===>..........................] - ETA: 1:41 - loss: 0.5179 - accuracy: 0.9796" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/183 [===>..........................] - ETA: 1:40 - loss: 0.5170 - accuracy: 0.9804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/183 [===>..........................] - ETA: 1:40 - loss: 0.5159 - accuracy: 0.9788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/183 [===>..........................] - ETA: 1:39 - loss: 0.5165 - accuracy: 0.9795" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 29/183 [===>..........................] - ETA: 1:39 - loss: 0.5166 - accuracy: 0.9803" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/183 [===>..........................] - ETA: 1:38 - loss: 0.5163 - accuracy: 0.9788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/183 [====>.........................] - ETA: 1:38 - loss: 0.5171 - accuracy: 0.9795" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/183 [====>.........................] - ETA: 1:37 - loss: 0.5167 - accuracy: 0.9802" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/183 [====>.........................] - ETA: 1:36 - loss: 0.5180 - accuracy: 0.9808" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/183 [====>.........................] - ETA: 1:36 - loss: 0.5173 - accuracy: 0.9813" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/183 [====>.........................] - ETA: 1:35 - loss: 0.5171 - accuracy: 0.9819" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/183 [====>.........................] - ETA: 1:35 - loss: 0.5181 - accuracy: 0.9806" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/183 [=====>........................] - ETA: 1:34 - loss: 0.5161 - accuracy: 0.9812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/183 [=====>........................] - ETA: 1:33 - loss: 0.5156 - accuracy: 0.9817" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/183 [=====>........................] - ETA: 1:33 - loss: 0.5151 - accuracy: 0.9821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/183 [=====>........................] - ETA: 1:32 - loss: 0.5149 - accuracy: 0.9826" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 41/183 [=====>........................] - ETA: 1:31 - loss: 0.5141 - accuracy: 0.9830" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 42/183 [=====>........................] - ETA: 1:31 - loss: 0.5153 - accuracy: 0.9819" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/183 [======>.......................] - ETA: 1:30 - loss: 0.5144 - accuracy: 0.9824" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 44/183 [======>.......................] - ETA: 1:30 - loss: 0.5135 - accuracy: 0.9828" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 45/183 [======>.......................] - ETA: 1:29 - loss: 0.5132 - accuracy: 0.9817" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/183 [======>.......................] - ETA: 1:28 - loss: 0.5142 - accuracy: 0.9808" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 47/183 [======>.......................] - ETA: 1:28 - loss: 0.5137 - accuracy: 0.9812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/183 [======>.......................] - ETA: 1:27 - loss: 0.5143 - accuracy: 0.9803" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/183 [=======>......................] - ETA: 1:27 - loss: 0.5139 - accuracy: 0.9807" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 50/183 [=======>......................] - ETA: 1:26 - loss: 0.5131 - accuracy: 0.9811" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/183 [=======>......................] - ETA: 1:25 - loss: 0.5124 - accuracy: 0.9814" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/183 [=======>......................] - ETA: 1:25 - loss: 0.5115 - accuracy: 0.9818" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 53/183 [=======>......................] - ETA: 1:24 - loss: 0.5110 - accuracy: 0.9810" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 54/183 [=======>......................] - ETA: 1:23 - loss: 0.5107 - accuracy: 0.9813" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/183 [========>.....................] - ETA: 1:23 - loss: 0.5111 - accuracy: 0.9805" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 56/183 [========>.....................] - ETA: 1:22 - loss: 0.5107 - accuracy: 0.9809" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57/183 [========>.....................] - ETA: 1:21 - loss: 0.5117 - accuracy: 0.9801" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/183 [========>.....................] - ETA: 1:21 - loss: 0.5107 - accuracy: 0.9804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/183 [========>.....................] - ETA: 1:20 - loss: 0.5107 - accuracy: 0.9808" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/183 [========>.....................] - ETA: 1:20 - loss: 0.5105 - accuracy: 0.9811" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/183 [=========>....................] - ETA: 1:19 - loss: 0.5108 - accuracy: 0.9804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 62/183 [=========>....................] - ETA: 1:18 - loss: 0.5099 - accuracy: 0.9807" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 63/183 [=========>....................] - ETA: 1:18 - loss: 0.5099 - accuracy: 0.9810" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/183 [=========>....................] - ETA: 1:17 - loss: 0.5092 - accuracy: 0.9813" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 65/183 [=========>....................] - ETA: 1:16 - loss: 0.5096 - accuracy: 0.9816" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/183 [=========>....................] - ETA: 1:16 - loss: 0.5109 - accuracy: 0.9809" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/183 [=========>....................] - ETA: 1:15 - loss: 0.5135 - accuracy: 0.9793" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 68/183 [==========>...................] - ETA: 1:14 - loss: 0.5128 - accuracy: 0.9796" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 69/183 [==========>...................] - ETA: 1:14 - loss: 0.5137 - accuracy: 0.9790" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/183 [==========>...................] - ETA: 1:13 - loss: 0.5147 - accuracy: 0.9793" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/183 [==========>...................] - ETA: 1:12 - loss: 0.5141 - accuracy: 0.9796" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 72/183 [==========>...................] - ETA: 1:12 - loss: 0.5146 - accuracy: 0.9790" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/183 [==========>...................] - ETA: 1:11 - loss: 0.5147 - accuracy: 0.9793" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 74/183 [===========>..................] - ETA: 1:10 - loss: 0.5161 - accuracy: 0.9787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 75/183 [===========>..................] - ETA: 1:10 - loss: 0.5159 - accuracy: 0.9790" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/183 [===========>..................] - ETA: 1:09 - loss: 0.5168 - accuracy: 0.9776" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/183 [===========>..................] - ETA: 1:09 - loss: 0.5172 - accuracy: 0.9779" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/183 [===========>..................] - ETA: 1:08 - loss: 0.5166 - accuracy: 0.9782" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/183 [===========>..................] - ETA: 1:07 - loss: 0.5162 - accuracy: 0.9785" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 80/183 [============>.................] - ETA: 1:07 - loss: 0.5162 - accuracy: 0.9788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81/183 [============>.................] - ETA: 1:06 - loss: 0.5159 - accuracy: 0.9790" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 82/183 [============>.................] - ETA: 1:05 - loss: 0.5161 - accuracy: 0.9793" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 83/183 [============>.................] - ETA: 1:05 - loss: 0.5165 - accuracy: 0.9795" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84/183 [============>.................] - ETA: 1:04 - loss: 0.5166 - accuracy: 0.9798" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/183 [============>.................] - ETA: 1:03 - loss: 0.5161 - accuracy: 0.9800" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 86/183 [=============>................] - ETA: 1:03 - loss: 0.5156 - accuracy: 0.9803" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87/183 [=============>................] - ETA: 1:02 - loss: 0.5157 - accuracy: 0.9805" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/183 [=============>................] - ETA: 1:01 - loss: 0.5198 - accuracy: 0.9800" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 89/183 [=============>................] - ETA: 1:01 - loss: 0.5200 - accuracy: 0.9795" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 90/183 [=============>................] - ETA: 1:00 - loss: 0.5196 - accuracy: 0.9797" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/183 [=============>................] - ETA: 1:00 - loss: 0.5190 - accuracy: 0.9800" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 92/183 [==============>...............] - ETA: 59s - loss: 0.5188 - accuracy: 0.9802 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 93/183 [==============>...............] - ETA: 58s - loss: 0.5184 - accuracy: 0.9804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/183 [==============>...............] - ETA: 58s - loss: 0.5188 - accuracy: 0.9799" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 95/183 [==============>...............] - ETA: 57s - loss: 0.5184 - accuracy: 0.9802" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/183 [==============>...............] - ETA: 56s - loss: 0.5181 - accuracy: 0.9804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/183 [==============>...............] - ETA: 56s - loss: 0.5183 - accuracy: 0.9799" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 98/183 [===============>..............] - ETA: 55s - loss: 0.5205 - accuracy: 0.9795" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 99/183 [===============>..............] - ETA: 54s - loss: 0.5203 - accuracy: 0.9797" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/183 [===============>..............] - ETA: 54s - loss: 0.5202 - accuracy: 0.9799" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "101/183 [===============>..............] - ETA: 53s - loss: 0.5205 - accuracy: 0.9795" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "102/183 [===============>..............] - ETA: 52s - loss: 0.5226 - accuracy: 0.9784" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/183 [===============>..............] - ETA: 52s - loss: 0.5235 - accuracy: 0.9780" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "104/183 [================>.............] - ETA: 51s - loss: 0.5241 - accuracy: 0.9783" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "105/183 [================>.............] - ETA: 50s - loss: 0.5237 - accuracy: 0.9785" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106/183 [================>.............] - ETA: 50s - loss: 0.5235 - accuracy: 0.9787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/183 [================>.............] - ETA: 49s - loss: 0.5238 - accuracy: 0.9789" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "108/183 [================>.............] - ETA: 48s - loss: 0.5246 - accuracy: 0.9785" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/183 [================>.............] - ETA: 48s - loss: 0.5249 - accuracy: 0.9787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "110/183 [=================>............] - ETA: 47s - loss: 0.5253 - accuracy: 0.9789" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "111/183 [=================>............] - ETA: 47s - loss: 0.5260 - accuracy: 0.9785" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/183 [=================>............] - ETA: 46s - loss: 0.5260 - accuracy: 0.9787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113/183 [=================>............] - ETA: 45s - loss: 0.5263 - accuracy: 0.9783" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "114/183 [=================>............] - ETA: 45s - loss: 0.5268 - accuracy: 0.9780" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/183 [=================>............] - ETA: 44s - loss: 0.5274 - accuracy: 0.9776" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "116/183 [==================>...........] - ETA: 43s - loss: 0.5271 - accuracy: 0.9778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117/183 [==================>...........] - ETA: 43s - loss: 0.5287 - accuracy: 0.9775" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/183 [==================>...........] - ETA: 42s - loss: 0.5285 - accuracy: 0.9777" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "119/183 [==================>...........] - ETA: 41s - loss: 0.5283 - accuracy: 0.9778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/183 [==================>...........] - ETA: 41s - loss: 0.5282 - accuracy: 0.9780" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/183 [==================>...........] - ETA: 40s - loss: 0.5280 - accuracy: 0.9782" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "122/183 [===================>..........] - ETA: 39s - loss: 0.5283 - accuracy: 0.9779" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "123/183 [===================>..........] - ETA: 39s - loss: 0.5281 - accuracy: 0.9781" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/183 [===================>..........] - ETA: 38s - loss: 0.5285 - accuracy: 0.9782" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "125/183 [===================>..........] - ETA: 37s - loss: 0.5280 - accuracy: 0.9784" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "126/183 [===================>..........] - ETA: 37s - loss: 0.5286 - accuracy: 0.9781" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/183 [===================>..........] - ETA: 36s - loss: 0.5293 - accuracy: 0.9778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "128/183 [===================>..........] - ETA: 35s - loss: 0.5290 - accuracy: 0.9779" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "129/183 [====================>.........] - ETA: 35s - loss: 0.5286 - accuracy: 0.9781" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/183 [====================>.........] - ETA: 34s - loss: 0.5291 - accuracy: 0.9778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "131/183 [====================>.........] - ETA: 33s - loss: 0.5290 - accuracy: 0.9775" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "132/183 [====================>.........] - ETA: 33s - loss: 0.5287 - accuracy: 0.9777" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/183 [====================>.........] - ETA: 32s - loss: 0.5288 - accuracy: 0.9778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134/183 [====================>.........] - ETA: 32s - loss: 0.5290 - accuracy: 0.9775" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/183 [=====================>........] - ETA: 31s - loss: 0.5288 - accuracy: 0.9777" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/183 [=====================>........] - ETA: 30s - loss: 0.5287 - accuracy: 0.9779" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/183 [=====================>........] - ETA: 30s - loss: 0.5285 - accuracy: 0.9780" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "138/183 [=====================>........] - ETA: 29s - loss: 0.5284 - accuracy: 0.9782" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/183 [=====================>........] - ETA: 28s - loss: 0.5292 - accuracy: 0.9779" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140/183 [=====================>........] - ETA: 28s - loss: 0.5301 - accuracy: 0.9776" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "141/183 [======================>.......] - ETA: 27s - loss: 0.5297 - accuracy: 0.9778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/183 [======================>.......] - ETA: 26s - loss: 0.5293 - accuracy: 0.9779" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "143/183 [======================>.......] - ETA: 26s - loss: 0.5291 - accuracy: 0.9781" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "144/183 [======================>.......] - ETA: 25s - loss: 0.5303 - accuracy: 0.9778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/183 [======================>.......] - ETA: 24s - loss: 0.5303 - accuracy: 0.9779" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "146/183 [======================>.......] - ETA: 24s - loss: 0.5301 - accuracy: 0.9781" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "147/183 [=======================>......] - ETA: 23s - loss: 0.5301 - accuracy: 0.9782" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/183 [=======================>......] - ETA: 22s - loss: 0.5302 - accuracy: 0.9784" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "149/183 [=======================>......] - ETA: 22s - loss: 0.5300 - accuracy: 0.9785" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "150/183 [=======================>......] - ETA: 21s - loss: 0.5297 - accuracy: 0.9787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/183 [=======================>......] - ETA: 20s - loss: 0.5296 - accuracy: 0.9788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/183 [=======================>......] - ETA: 20s - loss: 0.5297 - accuracy: 0.9790" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "153/183 [========================>.....] - ETA: 19s - loss: 0.5297 - accuracy: 0.9791" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "154/183 [========================>.....] - ETA: 18s - loss: 0.5300 - accuracy: 0.9792" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "155/183 [========================>.....] - ETA: 18s - loss: 0.5299 - accuracy: 0.9794" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "156/183 [========================>.....] - ETA: 17s - loss: 0.5301 - accuracy: 0.9795" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "157/183 [========================>.....] - ETA: 16s - loss: 0.5304 - accuracy: 0.9792" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "158/183 [========================>.....] - ETA: 16s - loss: 0.5309 - accuracy: 0.9790" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "159/183 [=========================>....] - ETA: 15s - loss: 0.5310 - accuracy: 0.9791" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "160/183 [=========================>....] - ETA: 15s - loss: 0.5308 - accuracy: 0.9792" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "161/183 [=========================>....] - ETA: 14s - loss: 0.5304 - accuracy: 0.9794" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "162/183 [=========================>....] - ETA: 13s - loss: 0.5304 - accuracy: 0.9795" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "163/183 [=========================>....] - ETA: 13s - loss: 0.5304 - accuracy: 0.9796" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "164/183 [=========================>....] - ETA: 12s - loss: 0.5318 - accuracy: 0.9790" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "165/183 [==========================>...] - ETA: 11s - loss: 0.5315 - accuracy: 0.9791" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "166/183 [==========================>...] - ETA: 11s - loss: 0.5310 - accuracy: 0.9792" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "167/183 [==========================>...] - ETA: 10s - loss: 0.5310 - accuracy: 0.9790" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "168/183 [==========================>...] - ETA: 9s - loss: 0.5313 - accuracy: 0.9784 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "169/183 [==========================>...] - ETA: 9s - loss: 0.5309 - accuracy: 0.9785" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "170/183 [==========================>...] - ETA: 8s - loss: 0.5304 - accuracy: 0.9786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "171/183 [===========================>..] - ETA: 7s - loss: 0.5302 - accuracy: 0.9787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "172/183 [===========================>..] - ETA: 7s - loss: 0.5302 - accuracy: 0.9785" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "173/183 [===========================>..] - ETA: 6s - loss: 0.5299 - accuracy: 0.9786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "174/183 [===========================>..] - ETA: 5s - loss: 0.5298 - accuracy: 0.9787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "175/183 [===========================>..] - ETA: 5s - loss: 0.5299 - accuracy: 0.9785" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "176/183 [===========================>..] - ETA: 4s - loss: 0.5312 - accuracy: 0.9779" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "177/183 [============================>.] - ETA: 3s - loss: 0.5312 - accuracy: 0.9777" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "178/183 [============================>.] - ETA: 3s - loss: 0.5309 - accuracy: 0.9778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "179/183 [============================>.] - ETA: 2s - loss: 0.5307 - accuracy: 0.9779" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "180/183 [============================>.] - ETA: 1s - loss: 0.5308 - accuracy: 0.9781" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "181/183 [============================>.] - ETA: 1s - loss: 0.5315 - accuracy: 0.9775" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "182/183 [============================>.] - ETA: 0s - loss: 0.5315 - accuracy: 0.9776" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "183/183 [==============================] - ETA: 0s - loss: 0.5323 - accuracy: 0.9771" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "183/183 [==============================] - 149s 815ms/step - loss: 0.5323 - accuracy: 0.9771 - val_loss: 0.5352 - val_accuracy: 0.9667\n" ] } ], "source": [ "steps_per_epoch = train_size // BATCH_SIZE\n", "validation_steps = valid_size // BATCH_SIZE\n", "hist = model.fit(\n", " train_ds,\n", " epochs=5, steps_per_epoch=steps_per_epoch,\n", " validation_data=val_ds,\n", " validation_steps=validation_steps).history" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T21:29:35.318330Z", "iopub.status.busy": "2022-12-14T21:29:35.317622Z", "iopub.status.idle": "2022-12-14T21:29:35.603380Z", "shell.execute_reply": "2022-12-14T21:29:35.602745Z" }, "id": "CYOw0fTO1W4x" }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVBElEQVR4nO3de1zT9f4H8Nc22LgPBRmggJh3VPAGopWZFJo/S+2kmSZeyvRnpZGntFNejhWdLt7SX5amVFZq5aWbV0w9JmiipJiaGgEqAxTZuMiA7fv7YzCZDGS4McZez8fj+xj77LPv3l8Xh9f5fD+f71ckCIIAIiIiIgcitnUBRERERE2NAYiIiIgcDgMQERERORwGICIiInI4DEBERETkcBiAiIiIyOEwABEREZHDYQAiIiIih8MARERERA6HAYiIiIgcjk0DUEJCAvr37w9PT0/4+flh1KhROH/+/B3f980336Br165wcXFBz5498fPPPxu9LggCFixYgICAALi6uiImJgYXLlyw1mEQERGRnbFpADp48CBmzZqFlJQU7N27FxUVFXj44YdRUlJS53uOHDmC8ePHY9q0aTh58iRGjRqFUaNGIT093dDn3XffxcqVK7FmzRocPXoU7u7uiI2NRVlZWVMcFhERETVzouZ0M9T8/Hz4+fnh4MGDuP/++032GTduHEpKSvDjjz8a2gYMGICIiAisWbMGgiAgMDAQL7/8MubOnQsAUKlUUCgUSExMxJNPPtkkx0JERETNl5OtC6hJpVIBAFq3bl1nn+TkZMTHxxu1xcbGYvv27QCAjIwMKJVKxMTEGF6Xy+WIiopCcnKyyQCk0Wig0WgMz3U6HQoKCuDj4wORSHQ3h0RERERNRBAEFBUVITAwEGJx/Se5mk0A0ul0mDNnDgYNGoQePXrU2U+pVEKhUBi1KRQKKJVKw+vVbXX1uV1CQgIWL158N+UTERFRM5GdnY127drV26fZBKBZs2YhPT0dhw8fbvLPnj9/vtGokkqlQnBwMLKzs+Hl5dXk9RAREZH51Go1goKC4Onpece+zSIAPf/88/jxxx9x6NChOyY2f39/5ObmGrXl5ubC39/f8Hp1W0BAgFGfiIgIk/uUyWSQyWS12r28vBiAiIiI7ExDpq/YdBWYIAh4/vnnsW3bNuzfvx+hoaF3fE90dDSSkpKM2vbu3Yvo6GgAQGhoKPz9/Y36qNVqHD161NCHiIiIHJtNR4BmzZqFr776Cjt27ICnp6dhjo5cLoerqysAYNKkSWjbti0SEhIAALNnz8bgwYPxwQcfYMSIEdi0aROOHz+OTz75BIA+9c2ZMwdvvvkmOnXqhNDQULzxxhsIDAzEqFGjbHKcRERE1LzYNAB99NFHAIAHHnjAqH3Dhg2YPHkyACArK8toJvfAgQPx1Vdf4fXXX8drr72GTp06Yfv27UYTp1955RWUlJRg+vTpKCwsxL333otdu3bBxcXF6sdEREREzV+zug5Qc6FWqyGXy6FSqTgHiIiIyE6Y8/eb9wIjIiIih8MARERERA6HAYiIiIgcDgMQERERORwGICIiInI4DEBERETkcBiAiIiIyOEwABEREZHDYQAiIiIih8MARERERA6HAYiIiIgcDgMQERERORwGICIiInI4DEBERETkcBiAiIiIyOEwABEREZHDYQAiIiIih8MARERERA6HAYiIiIgcDgMQERERORwGICIiInI4DEBERETkcBiAiIiIyOEwABEREZHDYQAiIiIih8MARERERA6HAYiIiIgcDgMQERERORwGICIiInI4DEBERETkcBiAiIiIyOEwABEREZHDYQAiIiIih8MARERERA6HAYiIiIgcjk0D0KFDhzBy5EgEBgZCJBJh+/bt9fafPHkyRCJRrS0sLMzQZ9GiRbVe79q1q5WPhIiIiOyJTQNQSUkJwsPDsXr16gb1X7FiBXJycgxbdnY2WrdujSeeeMKoX1hYmFG/w4cPW6N8IiIislNOtvzw4cOHY/jw4Q3uL5fLIZfLDc+3b9+OGzduYMqUKUb9nJyc4O/vb7E6iYiIqGWx6zlAn376KWJiYhASEmLUfuHCBQQGBqJDhw6YMGECsrKy6t2PRqOBWq022oiIiKjlstsAdPXqVezcuRPPPPOMUXtUVBQSExOxa9cufPTRR8jIyMB9992HoqKiOveVkJBgGF2Sy+UICgqydvlERERkQyJBEARbFwEAIpEI27Ztw6hRoxrUPyEhAR988AGuXr0KqVRaZ7/CwkKEhIRg6dKlmDZtmsk+Go0GGo3G8FytViMoKAgqlQpeXl5mHQcRERHZhlqthlwub9Dfb5vOAWosQRCwfv16PP300/WGHwDw9vZG586dcfHixTr7yGQyyGQyS5dJREREzZRdngI7ePAgLl68WOeITk3FxcW4dOkSAgICmqAyIiIisgc2DUDFxcVIS0tDWloaACAjIwNpaWmGScvz58/HpEmTar3v008/RVRUFHr06FHrtblz5+LgwYP4+++/ceTIEYwePRoSiQTjx4+36rEQERGR/bDpKbDjx49jyJAhhufx8fEAgLi4OCQmJiInJ6fWCi6VSoXvvvsOK1asMLnPy5cvY/z48bh+/TratGmDe++9FykpKWjTpo31DoSIiIjsSrOZBN2cmDOJioiIiJoHc/5+2+UcICIiIqK7wQBEREREDocBiIiIiBwOAxARERE5HAYgIiIicjgMQERERORwGICIiIjI4TAAERERkcNhACIiIiKHwwBEREREDocBiIiIiBwOAxARERE5HAYgIiIicjgMQERERORwGICIiIjI4TAAERERkcNhACIiIiKHwwBEREREDocBiIiIiBwOAxARERE5HAYgIiIicjgMQERERORwGICIiIjI4TAAERERkcNhACIiIiKHwwBEREREDocBiIiIiBwOAxARERE5HAYgIiIicjgMQERERORwGICIiIjI4TAAERERkcO5qwCk0WgsVQcRERFRkzErAO3cuRNxcXHo0KEDnJ2d4ebmBi8vLwwePBhvvfUWrl69aq06iYiIiCymQQFo27Zt6Ny5M6ZOnQonJye8+uqr2Lp1K3bv3o1169Zh8ODB2LdvHzp06IAZM2YgPz/f2nUTERERNVqDAtC7776LZcuW4cqVK/j000/x3HPPYeTIkYiJicHYsWPx73//G7/88gsuXboEb29vbNy4sUEffujQIYwcORKBgYEQiUTYvn17vf0PHDgAkUhUa1MqlUb9Vq9ejfbt28PFxQVRUVE4duxYg+ohIiIix+DUkE7JyckN2lnbtm3xzjvvNPjDS0pKEB4ejqlTp2LMmDENft/58+fh5eVleO7n52f4efPmzYiPj8eaNWsQFRWF5cuXIzY2FufPnzfqR0RERI6rQQHIWoYPH47hw4eb/T4/Pz94e3ubfG3p0qV49tlnMWXKFADAmjVr8NNPP2H9+vWYN2/e3ZRLRERELYTZAUir1SIxMRFJSUnIy8uDTqczen3//v0WK64uERER0Gg06NGjBxYtWoRBgwYBAMrLy5Gamor58+cb+orFYsTExDR4FIuIiIhaPrMD0OzZs5GYmIgRI0agR48eEIlE1qjLpICAAKxZswb9+vWDRqPBunXr8MADD+Do0aPo06cPrl27Bq1WC4VCYfQ+hUKBc+fO1blfjUZjtKRfrVZb7RiIiIjI9swOQJs2bcKWLVvwyCOPWKOeenXp0gVdunQxPB84cCAuXbqEZcuW4Ysvvmj0fhMSErB48WJLlEhERER2wOwLIUqlUnTs2NEatTRKZGQkLl68CADw9fWFRCJBbm6uUZ/c3Fz4+/vXuY/58+dDpVIZtuzsbKvWTERERLZldgB6+eWXsWLFCgiCYI16zJaWloaAgAAA+nDWt29fJCUlGV7X6XRISkpCdHR0nfuQyWTw8vIy2oiIiKjlMvsU2OHDh/HLL79g586dCAsLg7Ozs9HrW7dubfC+iouLDaM3AJCRkYG0tDS0bt0awcHBmD9/Pq5cuYLPP/8cALB8+XKEhoYiLCwMZWVlWLduHfbv3489e/YY9hEfH4+4uDj069cPkZGRWL58OUpKSgyrwoiIiIjMDkDe3t4YPXq0RT78+PHjGDJkiOF5fHw8ACAuLg6JiYnIyclBVlaW4fXy8nK8/PLLuHLlCtzc3NCrVy/s27fPaB/jxo1Dfn4+FixYAKVSiYiICOzatavWxGgiIiJyXCKhuZzLakbUajXkcjlUKhVPhxEREdkJc/5+N/pCiPn5+Th//jwA/eqsNm3aNHZXRERERE3K7EnQJSUlmDp1KgICAnD//ffj/vvvR2BgIKZNm4bS0lJr1EhERERkUWYHoPj4eBw8eBA//PADCgsLUVhYiB07duDgwYN4+eWXrVEjERERkUWZPQfI19cX3377LR544AGj9l9++QVjx45Ffn6+JeuzCc4BIiIisj/m/P02ewSotLTU5IoqPz8/ngIjIiIiu2B2AIqOjsbChQtRVlZmaLt58yYWL15c78UGiYiIiJoLs1eBrVixArGxsWjXrh3Cw8MBAL///jtcXFywe/duixdIREREZGmNug5QaWkpvvzyS8Md1rt164YJEybA1dXV4gXaAucAERER2R+rXwfIzc0Nzz77bKOKIyIiIrK1BgWg77//HsOHD4ezszO+//77evs++uijFimMiIiIyFoadApMLBZDqVTCz88PYnHd86ZFIhG0Wq1FC7QFngIjIiKyPxY/BabT6Uz+TERERGSPzF4G//nnn0Oj0dRqLy8vx+eff26RooiIiIisyexVYBKJBDk5OfDz8zNqv379Ovz8/HgKjIiIiGzCqleCFgQBIpGoVvvly5chl8vN3R0RERFRk2vwMvjevXtDJBJBJBJh6NChcHK69VatVouMjAwMGzbMKkUSERERWVKDA9CoUaMAAGlpaYiNjYWHh4fhNalUivbt2+Pxxx+3eIFEREREltbgALRw4UIAQPv27TFu3Di4uLhYrSgiIiIiazL7StBxcXHWqIOIiIioyZgdgLRaLZYtW4YtW7YgKysL5eXlRq8XFBRYrDgiIiIiazB7FdjixYuxdOlSjBs3DiqVCvHx8RgzZgzEYjEWLVpkhRKJiIiILMvsAPTll19i7dq1ePnll+Hk5ITx48dj3bp1WLBgAVJSUqxRIxEREZFFmR2AlEolevbsCQDw8PCASqUCAPzP//wPfvrpJ8tWR0RERGQFZgegdu3aIScnBwBwzz33YM+ePQCA3377DTKZzLLVEREREVmB2QFo9OjRSEpKAgC88MILeOONN9CpUydMmjQJU6dOtXiBRERERJZm9r3AbpecnIzk5GR06tQJI0eOtFRdNsV7gREREdkfc/5+m70M/nbR0dGIjo6+290QERERNZkGBaDvv/++wTt89NFHG10MERERUVNoUACqvg9YNZFIhNvPnFXfIV6r1VqmMiIiIiIradAkaJ1OZ9j27NmDiIgI7Ny5E4WFhSgsLMTOnTvRp08f7Nq1y9r1EhEREd01s+cAzZkzB2vWrMG9995raIuNjYWbmxumT5+Os2fPWrRAIiIiIkszexn8pUuX4O3tXatdLpfj77//tkBJRERERNZldgDq378/4uPjkZuba2jLzc3FP//5T0RGRlq0OCIiIiJrMDsArV+/Hjk5OQgODkbHjh3RsWNHBAcH48qVK/j000+tUSMRERGRRZk9B6hjx444deoU9u7di3PnzgEAunXrhpiYGMNKMCIiIqLm7K6vBN0S8UrQRERE9sfiV4JeuXIlpk+fDhcXF6xcubLevi+++GKDCz106BDee+89pKamIicnB9u2bat1zaGatm7dio8++ghpaWnQaDQICwvDokWLEBsba+izaNEiLF682Oh9Xbp0MYxWERERETUoAC1btgwTJkyAi4sLli1bVmc/kUhkVgAqKSlBeHg4pk6dijFjxtyx/6FDh/DQQw/h7bffhre3NzZs2ICRI0fi6NGj6N27t6FfWFgY9u3bZ3ju5HTXd/wgIiKiFqRBySAjI8Pkz3dr+PDhGD58eIP7L1++3Oj522+/jR07duCHH34wCkBOTk7w9/e3VJlERETUwpi9Cqw50el0KCoqQuvWrY3aL1y4gMDAQHTo0AETJkxAVlZWvfvRaDRQq9VGGxEREbVcDRoBio+Pb/AOly5d2uhizPX++++juLgYY8eONbRFRUUhMTERXbp0QU5ODhYvXoz77rsP6enp8PT0NLmfhISEWvOGiIiIqOVqUAA6efJkg3bWlMvgv/rqKyxevBg7duyAn5+fob3mKbVevXohKioKISEh2LJlC6ZNm2ZyX/PnzzcKeWq1GkFBQdYrnoiIiGyqQQHol19+sXYdZtm0aROeeeYZfPPNN4iJiam3r7e3Nzp37oyLFy/W2Ucmk0Emk1m6TCIiImqm7G4O0Ndff40pU6bg66+/xogRI+7Yv7i4GJcuXUJAQEATVEdERET2oFHrw48fP44tW7YgKysL5eXlRq9t3bq1wfspLi42GpnJyMhAWloaWrdujeDgYMyfPx9XrlzB559/DkB/2isuLg4rVqxAVFQUlEolAMDV1RVyuRwAMHfuXIwcORIhISG4evUqFi5cCIlEgvHjxzfmUImIiKgFMnsEaNOmTRg4cCDOnj2Lbdu2oaKiAmfOnMH+/fsNIaShjh8/jt69exuWsMfHx6N3795YsGABACAnJ8doBdcnn3yCyspKzJo1CwEBAYZt9uzZhj6XL1/G+PHj0aVLF4wdOxY+Pj5ISUlBmzZtzD1UIiIiaqHMvhVGr1698Nxzz2HWrFnw9PTE77//jtDQUDz33HMICAhoEaupeCsMIiIi+2PO32+zR4AuXbpkmHsjlUpRUlICkUiEl156CZ988knjKiYiIiJqQmYHoFatWqGoqAgA0LZtW6SnpwMACgsLUVpaatnqiIiIiKzA7EnQ999/P/bu3YuePXviiSeewOzZs7F//37s3bsXQ4cOtUaNRERERBZldgBatWoVysrKAAD/+te/4OzsjCNHjuDxxx/H66+/bvECiYiIiCzN7EnQjoCToImIiOyPVSdBx8TEIDExkTcMJSIiIrtldgAKCwvD/Pnz4e/vjyeeeAI7duxARUWFNWojIiIisgqzA9CKFStw5coVbN++He7u7pg0aRIUCgWmT5+OgwcPWqNGIiIiIou66zlAZWVl+OGHH/DWW2/h9OnT0Gq1lqrNZjgHiIiIyP6Y8/e7UfcCq6ZUKrFp0yZs3LgRp06dQmRk5N3sjoiIiKhJmH0KTK1WY8OGDXjooYcQFBSEjz76CI8++iguXLiAlJQUa9RIREREZFFmjwApFAq0atUK48aNQ0JCAvr162eNuoiIiIisxuwA9P3332Po0KEQi80ePCIiIiJqFswOQA899JA16iAiIiJqMhzGISIiIofDAEREREQOhwGIiIiIHA4DEBERETmcBk2CXrlyZYN3+OKLLza6GCIiIqKm0KBbYYSGhho9z8/PR2lpKby9vQEAhYWFcHNzg5+fH/766y+rFNqUeCsMIiIi+2PO3+8GnQLLyMgwbG+99RYiIiJw9uxZFBQUoKCgAGfPnkWfPn2wZMkSixwAERERkTWZfTPUe+65B99++y169+5t1J6amop//OMfyMjIsGiBtsARICIiIvtj8RGgmnJyclBZWVmrXavVIjc319zdERERETU5swPQ0KFD8dxzz+HEiROGttTUVMycORMxMTEWLY6IiIjIGswOQOvXr4e/vz/69esHmUwGmUyGyMhIKBQKrFu3zho1EhEREVmU2fcCa9OmDX7++Wf8+eefOHfuHACga9eu6Ny5s8WLIyIiIrIGswNQtc6dOzP0EBERkV0yOwBptVokJiYiKSkJeXl50Ol0Rq/v37/fYsURERERWYPZAWj27NlITEzEiBEj0KNHD4hEImvURURERGQ1ZgegTZs2YcuWLXjkkUesUQ8RERGR1Zm9CkwqlaJjx47WqIWIiIioSZgdgF5++WWsWLECZl5AmoiIiKjZMPsU2OHDh/HLL79g586dCAsLg7Ozs9HrW7dutVhxRERERNZgdgDy9vbG6NGjrVELERERUZMwOwBt2LDBGnUQERERNRmz5wBZ0qFDhzBy5EgEBgZCJBJh+/btd3zPgQMH0KdPH8hkMnTs2BGJiYm1+qxevRrt27eHi4sLoqKicOzYMcsXT0RERHarUQHo22+/xdixYzFgwAD06dPHaDNHSUkJwsPDsXr16gb1z8jIwIgRIzBkyBCkpaVhzpw5eOaZZ7B7925Dn82bNyM+Ph4LFy7EiRMnEB4ejtjYWOTl5ZlVGxEREbVcZgeglStXYsqUKVAoFDh58iQiIyPh4+ODv/76C8OHDzdrX8OHD8ebb77Z4DlFa9asQWhoKD744AN069YNzz//PP7xj39g2bJlhj5Lly7Fs88+iylTpqB79+5Ys2YN3NzcsH79erNqIyIiopbL7AD0f//3f/jkk0/w4YcfQiqV4pVXXsHevXvx4osvQqVSWaNGg+TkZMTExBi1xcbGIjk5GQBQXl6O1NRUoz5isRgxMTGGPqZoNBqo1WqjjYiIiFouswNQVlYWBg4cCABwdXVFUVERAODpp5/G119/bdnqbqNUKqFQKIzaFAoF1Go1bt68iWvXrkGr1Zrso1Qq69xvQkIC5HK5YQsKCrJK/URERNQ8mB2A/P39UVBQAAAIDg5GSkoKAP38HHu9OOL8+fOhUqkMW3Z2tq1LIiIiIisyexn8gw8+iO+//x69e/fGlClT8NJLL+Hbb7/F8ePHMWbMGGvUaODv74/c3FyjttzcXHh5ecHV1RUSiQQSicRkH39//zr3K5PJIJPJrFIzERERNT9mB6BPPvkEOp0OADBr1iz4+PjgyJEjePTRR/Hcc89ZvMCaoqOj8fPPPxu17d27F9HR0QD09ynr27cvkpKSMGrUKACATqdDUlISnn/+eavWRkRERPbD7AAkFoshFt86c/bkk0/iySefbNSHFxcX4+LFi4bnGRkZSEtLQ+vWrREcHIz58+fjypUr+PzzzwEAM2bMwKpVq/DKK69g6tSp2L9/P7Zs2YKffvrJsI/4+HjExcWhX79+iIyMxPLly1FSUoIpU6Y0qkYiIiJqecwOQJZ0/PhxDBkyxPA8Pj4eABAXF4fExETk5OQgKyvL8HpoaCh++uknvPTSS1ixYgXatWuHdevWITY21tBn3LhxyM/Px4IFC6BUKhEREYFdu3bVmhhNREREjksk2OvMZStSq9WQy+VQqVTw8vKydTlERETUAOb8/bbprTAcjSAIdrtSjoiIqCVhAGpCadmFGLb8v/gi+W8UlVXYuhwiIiKHxQDUhDYdy8b53CK8seMMBrydhNe2ncYfV3nVaSIioqZm9hyg3r17QyQS1d6RSAQXFxd07NgRkydPNprcbG+sNQdIdbMCW09cxsaUTFzKLzG09w1phYkDgjG8RwBcnCUW+zwiIiJHYtU5QMOGDcNff/0Fd3d3DBkyBEOGDIGHhwcuXbqE/v37IycnBzExMdixY0ejD6Clkrs6Y8qgUOyLH4yvno3CiJ4BcBKLkJp5Ay9t/h3RCUlI+PksMq+X3HlnRERE1GhmjwA9++yzCA4OxhtvvGHU/uabbyIzMxNr167FwoUL8dNPP+H48eMWLbapNOUqsDx1GTb/lo2vjmUhR1VmaB/cuQ0mDgjBg139IBHXHnEjIiIiY+b8/TY7AMnlcqSmpqJjx45G7RcvXkTfvn2hUqlw7tw59O/f33CjVHtji2XwlVod9p/Lw8ajWTj0Z76hPVDugvGRwRgXGQQ/T5cmqYWIiMgemfP32+wLIbq4uODIkSO1AtCRI0fg4qL/A63T6Qw/U8M4ScR4OMwfD4f54+9rJfjqWBa2HM/GVVUZPtj7J1YkXUBsD39MjArBgA6tTc7DIiIiooYxOwC98MILmDFjBlJTU9G/f38AwG+//YZ169bhtddeAwDs3r0bERERFi3UkbT3dcdrj3RD/EOd8fPpHGxMycSJrEL8dCoHP53KQUc/D0yMCsaYvu3g5eJs63KJiIjsTqOuBP3ll19i1apVOH/+PACgS5cueOGFF/DUU08BAG7evGlYFWaPmuOVoM9cVWFjShZ2pF1BabkWAODqLMFjEYGYOCAEPdrKbVwhERGRbVl1DpAjaI4BqJq6rALbT17BxpRM/JlbbGgPD/LG0wNC8D+9uJSeiIgcU5MEoPLycuTl5UGn0xm1BwcHN2Z3zUpzDkDVBEHAsYwCbDyahV3pOajQ6r9GuasznujbDhMGhCDU193GVRIRETUdqwagCxcuYOrUqThy5IhRuyAIEIlE0Gq15lfczNhDAKopv0iDLcez8dXRLFwpvGlov7ejLyYOCEFMNz84SXjRbyIiatmsGoAGDRoEJycnzJs3DwEBAbVWI4WHh5tfcTNjbwGomlYn4MD5PGxMycSBP/NR/c36e7ngycggjI8MhsLLPudlERER3YlVA5C7uztSU1PRtWvXuyqyObPXAFRTdkEpvjyqX0pfUFIOAJCIRXi4uwITB4Rg4D0+XEpPREQtilWvA9S9e3dcu3at0cVR0whq7YZ5w7vipYc6YVe6EhtTMvHb3zewM12JnelKdPB1x1NRwXiibxDkblxKT0REjsXsEaD9+/fj9ddfx9tvv42ePXvC2dn4j6e9jpjU1BJGgEw5p1Tjy5QsbD1xGSVVS+ldnMUY2Uu/lD48yNu2BRIREd0Fq54CE4v1k2lvP33CSdD2o1hTaVhKf05563YlPdvKMXFAMB4NbwtXKZfSExGRfbFqADp48GC9rw8ePNic3TVLLT0AVRMEASeybmBjShZ+OpWDcq3+kgaeLk74R992mBAVgo5+HjaukoiIqGF4IcS75CgBqKbrxRp8k3oZXx7NRHbBraX00R188HR0CB7qroAzl9ITEVEzZvEAdOrUKfTo0QNisRinTp2qt2+vXr3Mq7YZcsQAVE2nE3DwQj6+TMnE/nN50FX91+HnKcOT/YMwPioYAXJX2xZJRERkgsUDkFgshlKphJ+fH8RiMUQiEUy9jXOAWpYrhTfx9dEsbPotG9eKNQAAsQgY2k2BpweE4N6OvhCLuZSeiIiaB4sHoMzMTAQHB0MkEiEzM7PeviEhIeZV2wwxABkrr9Rh9xn9UvqjGQWG9hAfN0yoWkrfyl1qwwqJiIg4B+iuMQDV7UJuEb48moXvUi+jSFMJAJA6ifE/PQMwMToEvYO8eYFFIiKyCasHoAsXLuCXX34xeTPUBQsWmLu7ZocB6M5KyyuxI+0qNqZk4sxVtaG9e4AXJg4IwWMRgXCXmX2dTSIiokazagBau3YtZs6cCV9fX/j7+xv9v32RSIQTJ040rupmhAGo4QRBQFp2ITamZOGHU1dRXlm1lF7mhDF92mLigBB0UnjauEoiInIEVg1AISEh+N///V+8+uqrd1Vkc8YA1Dg3SsrxbdVS+r+vlxraI0NbY+KAEAwL84fUiUvpiYjIOqwagLy8vJCWloYOHTrcVZHNGQPQ3dHpBPx66Rq+SM7EvrO5hqX0vh5SjOuvvyt9u1Zuti2SiIhaHKsGoGnTpqF///6YMWPGXRXZnDEAWU6O6ia+PpaNTceykFd0ayn9kC5+mDggBPd3bgMJl9ITEZEFWDUAJSQkYOnSpRgxYoTJm6G++OKL5lfczDAAWV6FVod9f+Tii5RMHLl03dAe1NoVT0WGYGy/dvDxkNmwQiIisndWDUChoaF170wkwl9//WXO7polBiDrupRfjC9TsvBtajbUZVVL6SViDO/pj4kDQtAvpBWX0hMRkdl4HaC7xADUNG6Wa/HD71ex8WgmTl1WGdq7+ntiwoAQjO7dFh5cSk9ERA3EAHSXGICa3qnLhdiYkonvf7+Ksgr9Unp3qQSjq5bSd/Xn90BERPWzeACKj4/HkiVL4O7ujvj4+Hr7Ll261LxqmyEGINtRlVbg2xP6pfR/5ZcY2vuFtMLEASEY3tMfMieJDSskIqLmypy/3w06v3Dy5ElUVFQYfq4L523Q3ZK7OWPavaGYOqg9ki9dx8ajmdhzJhfHM2/geOYN/PtHKZ7o1w4TIkMQ7MOl9ERE1DjN4hTY6tWr8d5770GpVCI8PBwffvghIiMjTfZ94IEHcPDgwVrtjzzyCH766ScAwOTJk/HZZ58ZvR4bG4tdu3Y1qB6OADUvueoybDqWja+PZUGpLgMAiETA4M5tMDEqBEO6+nEpPRER2dccoM2bN2PSpElYs2YNoqKisHz5cnzzzTc4f/48/Pz8avUvKChAeXm54fn169cRHh6OdevWYfLkyQD0ASg3NxcbNmww9JPJZGjVqlWDamIAap4qtTokncvDxpRM/PfCNUN7W29XjI8Mwrj+wWjjyaX0RESOyuoB6Pjx49iyZQuysrKMwggAbN261ax9RUVFoX///li1ahUAQKfTISgoCC+88ALmzZt3x/cvX74cCxYsQE5ODtzd3QHoA1BhYSG2b99uVi3VGICav4xrJfjqaCa+Sb2MwlL96VlniQixYfql9FGhrXlKlojIwZjz99vsGzNt2rQJAwcOxNmzZ7Ft2zZUVFTgzJkz2L9/P+RyuVn7Ki8vR2pqKmJiYm4VJBYjJiYGycnJDdrHp59+iieffNIQfqodOHAAfn5+6NKlC2bOnInr16/XsQdAo9FArVYbbdS8hfq6418juiNl/lB88EQ4IoK8UaEV8OOpHDz5SQoeXnYInx35G+qyCluXSkREzZDZAejtt9/GsmXL8MMPP0AqlWLFihU4d+4cxo4di+DgYLP2de3aNWi1WigUCqN2hUIBpVJ5x/cfO3YM6enpeOaZZ4zahw0bhs8//xxJSUn4z3/+g4MHD2L48OHQarUm95OQkAC5XG7YgoKCzDqOBruSCiQtAdK3AtcuADrT9VDDuThL8Hjfdtg+axB+fOFejI8MgquzBBfyirHw+zMY8HYS5m89hfQrqjvvjIiIHIbZp8Dc3d1x5swZtG/fHj4+Pjhw4AB69uyJs2fP4sEHH0ROTk6D93X16lW0bdsWR44cQXR0tKH9lVdewcGDB3H06NF63//cc88hOTkZp06dqrffX3/9hXvuuQf79u3D0KFDa72u0Wig0WgMz9VqNYKCgix/CuzQ+8D+JbeeO7kCft0ARRig6AH499D/7NqwuUpkmrqsAttOXMEXKZm4mFdsaO8d7I2JUSEY0SsALs5cSk9E1NJYfBl8Ta1atUJRUREAoG3btkhPT0fPnj1RWFiI0tJSs/bl6+sLiUSC3Nxco/bc3Fz4+/vX+96SkhJs2rQJ//73v+/4OR06dICvry8uXrxoMgDJZDLIZE0weTYwAugzCcg9A+T+AVTeBK6e0G81ebWrCkVhVaGoB9D6HkDCqyI3hJeLM+IGtsek6BAczSjAxpRM7D6jxMmsQpzMKsSSn/7AE33bYUJUCNr7ut95h0RE1OKY/Rf1/vvvx969e9GzZ0888cQTmD17Nvbv34+9e/eaDBf1kUql6Nu3L5KSkjBq1CgA+knQSUlJeP755+t97zfffAONRoOJEyfe8XMuX76M69evIyAgwKz6LK5jjH4D9Ke/CjKA3PSqQJSu3wqzAPVl/XZh9633OrkAbboajxQpegBurW1zLHZAJBJhQAcfDOjgg/wiDbYcz8ZXR7NwpfAm1v43A2v/m4H7Ovli4oAQDO3qByeJ2WeEiYjITpl9CqygoABlZWUIDAyETqfDu+++iyNHjqBTp054/fXXG7zUvNrmzZsRFxeHjz/+GJGRkVi+fDm2bNmCc+fOQaFQYNKkSWjbti0SEhKM3nffffehbdu22LRpk1F7cXExFi9ejMcffxz+/v64dOkSXnnlFRQVFeH06dMNGumx6SqwMpV+dKg6EFWPFlWUmO7vGWg8UqQIA3w6cbSoDlqdgF/O5WHj0Uwc/DMf1f/1B8hd8GT/YIyPDIKfl4ttiyQiokax2jL4yspKfPXVV4iNja01cflurFq1ynAhxIiICKxcuRJRUVEA9Bc+bN++PRITEw39z58/j65du2LPnj146KGHjPZ18+ZNjBo1CidPnkRhYSECAwPx8MMPY8mSJQ2uudktg9fpgBsZNUaKzgDK00Bhpun+EhnQpgvg3/PWqTRFT8Ddp2nrbuayrpfiy2OZ+Ob4ZRSU6C/n4CQW4eEwBSZGhSD6Hh8upScisiNWvQ6Qm5sbzp49i5CQkLsqsjlrdgGoLmVqIO8skHu6KhSlA3l/AOXFpvt7+BufPlP0AHw7ARLnpq27mdFUarHztBIbUzJxPPOGob1DG3dMjArB433bQe7q2P9GRET2wKoB6IEHHsBLL72Exx577K6KbM7sJgCZotPpR4Zqzi1SputHkEyRSPWjRYrbgpFHm6atu5k4m6PGxpRMbD95BSXl+ssUuDiL8Wh4ICYOCEGvdt62LZCIiOpk1QC0ZcsWzJ8/Hy+99BL69u1b6wKEvXr1Mr/iZsauA1BdNMX60SHDKbSqx/Ii0/3d/WqMFlWdSvPtDDhJm7ZuGynWVGLbySv4MiUT55S3/o16tZPjyf7B6N++FTq08eA9yIiImhGrBiCxuPZKGZFIBEEQIBKJ6rzYoD1pkQHIFEGoGi06c2teUe4ZoOAvACb+sxA7V40WhRmPGHlabj5YcyMIAlIzb+CLlEzsPK1EuVZneM3FWYxuAV4IC/RCj0A5erSVo5PCAzInXmOIiMgWrBqAMjPrmHhbpSXMDXKYAFQXTTGQf+7W6bPqgKSp42rK7m2MT5/596gaLWpZNya9VqzBN8cvY9/ZXJzNUaO0vHbYdxKL0FnhqQ9FbeUIC/RCtwAvuMu4Ko+IyNqsGoAOHTqEgQMHwsnJ+H/QKysrceTIEdx///3mV9zMOHwAMkUQAFV2jdNnVdv1SzA9WuSkD0E1R4r8ewAeCqAFrKzS6gRkXCvBmasqnLmqxpmrKqRfUUN1s/a9x0Qi/b3LegTKjYKRt5tjnE4kImoqVg1AEokEOTk58PPzM2q/fv06/Pz8eArM0ZSXAvlnjUeKck/rr2dkipvPrZGi6usX+XYBnO3/2juCIOBK4U2kX1Hjj6sqpFcFo1y1xmT/tt6u6NHWC2GBcsOjn6eMS++JiBrJ6nOAcnNz0aaN8SqhP//8E/369WsRd1JnALpLggCor9QYKapajXb9IiDoavcXSapGi6pv/1E16dozoEWMFuUXaQwjRelX9I9ZBaZvG+PrIasaJaoKRoFyBLV2ZSgiImoAqwSgMWPGAAB27NiBYcOGGV1RWavV4tSpU+jSpQt27dp1F6U3DwxAVlJxs+q6RWdqLNE/DZQVmu7v2rr2jWLbdGsRo0WqmxX4o2qEqDoYXcovhs7Eb6Oni5NhonVYW/0jV6AREdVmlZuhyuVyAPphfk9PT7i6uhpek0qlGDBgAJ599tlGlkwOwdkVaNtHv1UTBEB91fh+aLlngGsXgJsFwN//1W/VRBLAp+Ntt//oAXgF2tVokdzVGdH3+CD6nltX575ZrsVZpVo/p6hqpOi8sghFZZVI+asAKX8VGPrevgItLFCOzv5cgUZE1FBmnwJbvHgx5s6dW+v6Py0JR4CagYqyqpVoNYKRMl0fikxx8b7tRrFhgF93feiyY+WVOlzIKzIKRX/UswKtk8ITPQK9DJOtuQKNiByJVecAOQIGoGZKEIAi5a2J1tWn0q79Cegqa/cXiYHW99S+oKO8nV2NFt1OqxPw9/USpF9R4Y+raqRXnUYrLOUKNCJybBYPQMOGDcOiRYswYMCAevsVFRXh//7v/+Dh4YFZs2aZV3UzwgBkZyo1QP752rf/KL1mur+LvMby/Kpg5NcVkNrvqGb1CrSaI0XpXIFGRA7G4gHo008/xYIFCyCXyzFy5Ej069cPgYGBcHFxwY0bN/DHH3/g8OHD+PnnnzFixAi89957CA4OttgBNTUGoBZAEIDiPOORImU6cO286dEiiACfe4wv6KgIA7yD7Xq0qOYKtOprFXEFGhG1VFY5BabRaPDNN99g8+bNOHz4MFQq/XVeRCIRunfvjtjYWEybNg3dunW7+yOwMQagFqyyXH/KrOa8otwzQEme6f4yrxojRVXBqE0XQOZpt8Ho9hVoZ66qcDGv/hVoNUeKOvi6w0lS+5Y4RES21iRzgFQqFW7evAkfHx84Ozs3qtDmigHIARXn1b5RbP45QFd7Xg0A/X3RXL31k69rPbYy/ZprK/3Pzq7NLjzdLNfinFKtv3hjjRVoNe99Vo0r0IioueIk6LvEAEQAAG1F1WhRjRvF5p4BipV3t1+J1LzAVLOtCVe1lVfqcDGvGOlXqyZbX1FxBRoRNWsMQHeJAYjqpSnWX7zxZuFtjzdMtFW1V/8s3OWtYiSyusNRfWHKxdsiF5CsXoF2+2RrrkAjouaAAeguMQCRVQgCUF5cdzi6U5gydRsRczi5mn+6rrrNqe7QIggCrqrK9Lf5aOAKtJqBqEdbrkAjIstgALpLDEDU7AgCoCkyLzDVfMRd/po7u9V/as5EmLqmdcWZAhHSlTcNE64zr9e1Ak1qNNGaK9CIqDEYgO4SAxC1KDodoFHXf2qurjBVpsZdhyephyEUVUq9oIYH8itdcVXjgr9LnJFR7IxCwR0quEMluKOw6lFwkaNrYCuuQCOiBrNqAMrOzoZIJEK7du0AAMeOHcNXX32F7t27Y/r06Y2vuhlhACKqotPqw1O9gcnUaypAo7rrjy8SXKGCO9SCOwoFdxSLPSBy9YaLpw+8WrWBr68Cfgo/OLv7GI9EucgBMVelETkaq9wMtdpTTz2F6dOn4+mnn4ZSqcRDDz2EsLAwfPnll1AqlViwYEGjCyeiZkYsqTq11QpAqHnv1WmBMpXp4FRnmKrqX14EAPAU3YQnbgKiGlf1Lqva8gH8Wc/ny7zqnhDu4ae/JYo8SP/o7geIObJE5EjMDkDp6emIjIwEAGzZsgU9evTAr7/+ij179mDGjBkMQESkJ5YAbq31m7m0lfrwZAhHN6ArvYGCa7nIv5YHdUE+bqqvQ1t6A+66IshRAi9RCeQogYeoTL8PjVq/IevOnyeRAl5tjUORd9Ct515tAamb+cdBRM2W2QGooqICMpkMALBv3z48+uijAICuXbsiJyfHstURkWOSOAHuPvqtihiAb9VWzWgFWtXS/HNXCnCzqADeomLIUQK5qAReVY9BruUIddcgUFIE78pcyDW5cNPkQawtB25k6Le6uPncCkeGx6qfvYMAN1+OIhHZEbMDUFhYGNasWYMRI0Zg7969WLJkCQDg6tWr8PHxucO7iYgsRyQSoa23K9p6uyI2zN/Qfq1Yo1+Of0V/Ecffr6r0K9CKod9qkEALfxQgUHQdgaJraGt4vIZA0XW0FV3TjyqVXtdvOWkma6kQSVEk9UOJSwBKXQOg8QhEpUdbaL3aQSQPgqRVO7i6ucNd6gQ3qQRuUie4OIu50o3IRsyeBH3gwAGMHj0aarUacXFxWL9+PQDgtddew7lz57B161arFNqUOAmaqOVRl1UYrmidqy5DabkWpeValGgqcbNC/1jdVlpeiRKNFjcrtAAEeKG0KgzlVz3qQ1J1QFLgBsSiO/9Pab7ghauCL64KPvpH+OC6RIECJz+oZQqUS33gJnOCm8wJ7lIJXKUSfWCSSeDm7AR3mT446QOUBO4yp1t9arTJnBisyDFZfRm8VquFWq1Gq1atDG1///033Nzc4OfnZ37FzQwDEBEBgE4n6MNReSVulmtRotGHo5ohqbRCi7KbNyEqVkJacgUupTlwK82BlyYH8vJctKrMQxttHlxRdsfPKxOccVXwwRXB91ZQQvVzH+QIPtDgzlfSFotgCEruMie4OktuC0/6MGUcnuoIWM76RzephMGKmj2rrgK7efMmBEEwhJ/MzExs27YN3bp1Q2xsbOMqJiJqhsRiEdxlTg28p1nXul8SBP2E7sJsQHUZusJsVN7Ihq4wCyi8DEnRZTiV5sFFVIEOIiU6oO77zakkrXBN3Aa54jbIEXxxWfBBttYHGRWtkFHRGgXwhE4QoVhTiWJNJVBk+orcjSEW4daIVHXAklaNQt0esKpHsGTGbW6yGgGr6r0MVmQLZo8APfzwwxgzZgxmzJiBwsJCdO3aFc7Ozrh27RqWLl2KmTNnWqvWJsMRICJqcpXlQNFVQHXZEJSgqn6s+rnC9JW0axKcXKH1bIsKj0CUuQWi1DUARTIFVFJ/FDgrcF3ii+JKCUo1lSipdcqv8rZRLv2pQU3lXd6G5Q4kYpFRKKo+5ecmqxGwqsOTs/7RxVkMFycJZDUfnfVhytSjVCKGWMyQ1dJZdQToxIkTWLZsGQDg22+/hUKhwMmTJ/Hdd99hwYIFLSIAERE1OScp0Kq9fjNFEPTXSKoZigqzagSky0CxEqLKm3C6cRFONy7CFUArU/vyUBivZgussarNO1h/3acaIzJanVArFFUHJ+N5VCZOEVb/XK7FzXLjgFUdrLQ6AUVllSgqqwRguRGr20mdxHUGpPoeZbc/r6uvqVDmJGHwaqbMDkClpaXw9PQEAOzZswdjxoyBWCzGgAEDkJmZafECiYgI+kBSfV2lgHDTfSo1gPqKcShSZdcYUboMVN4EinP125VU0/txdquxzL8dJPIgeMqD4Fndpmhb7w1yG6pSq0NphbZqflWNgFVeidIaQen2OVgl5VpoKrQoq9QZPWpue15WqYNWd+skR3mlDuWVuqqg1XScJSJDIJKZCEgmH+8QwhryKGHwqpfZAahjx47Yvn07Ro8ejd27d+Oll14CAOTl5fF0ERGRLTnJgNYd9JspggCUFtQYRTJxqq04V3+q7dqf+s0kkX4Uyfu26yHVfLxtFMlkuRIxvCRieLk4391x16NSq6sVlMoqdNBU1n7U1NFe/+Ot8FVW47GyRvCq0Aqo0FZacjpWgziJRfUEKX0Yq+vR1KhWneHtts9wFosAXaU+kGvLqx41gLbi1s+V5YBXQN0jnk3x72PuGxYsWICnnnoKL730Eh588EFER0cD0I8G9e7d2+IFEhGRhYhEty4wGRhhuk9FmYlRpNtOtVWWAcVK/Xb5N9P7cXavcVrNxAUkvdoCEusFn2pOEjE8JGJ4NGgiu+VUaqvC0W3ByNQoVb2jWHcKYeVa6CrLoavUGAKHVFQBKSohEyogLa+EtLwCzqJKSFEJKSogQ6WhjxQVVVslnEWV+tdqtBn3q4RUdOtnJ1RAgkqIRBUAKqFDJbRVbQ25LMS5TtPRdcJ71v8y6tCoZfBKpRI5OTkIDw+HuOrKp8eOHYOXlxe6dq1nJYSd4CRoIqI6CIL+gpC3zz9SZd8aSSrJb8CORIBngNGpNsNVtaufu3jfcRSpSel0+hGN6hEMbXXoqDDRVl77sVZbjffcPjpS69FUW9W+mjmtIEI5nFEOJ5TDGRo4o1xwQmboWAyZssSin2X16wBVu3z5MgAY7gzfUjAAERHdhYqbgPpq7flHNU+1aRtwPkjqYfrWI/K2gNi5nnBwp+DRyHCiq7D+v93dEjsBEpl+jpZEWuNnE48SqYnXqturHmv+bPRY8zOk0ImlqBA5QyM4QwMnlOmcUCZUPeoATUXtkbDugV6ICPK26OFbdRWYTqfDm2++iQ8++ADFxfprynt6euLll1/Gv/71L8OIkDlWr16N9957D0qlEuHh4fjwww8NN1y9XWJiIqZMmWLUJpPJUFZ26yJjgiBg4cKFWLt2LQoLCzFo0CB89NFH6NSpk9m1ERGRmZxdAZ979JspOh1Qeu22FW3Zxs9LrwHlxUD+Of3WHImd6wgHdwgOktvfZ8FwIpbY5p8CgKxqsxdmB6B//etf+PTTT/HOO+9g0KBBAIDDhw9j0aJFKCsrw1tvvWXW/jZv3oz4+HisWbMGUVFRWL58OWJjY3H+/Pk6ryrt5eWF8+fPG57ffgGtd999FytXrsRnn32G0NBQvPHGG4iNjcUff/wBFxcXM4+YiIgsSiwGPPz0W9u+pvuUl1aNIpk61XYZEHQmwoHzXY5m1AwnpkZOanyGRMqb39o7wUwBAQHCjh07arVv375dCAwMNHd3QmRkpDBr1izDc61WKwQGBgoJCQkm+2/YsEGQy+V17k+n0wn+/v7Ce++9Z2grLCwUZDKZ8PXXXzeoJpVKJQAQVCpVww6CiIiIbM6cv99mx9eCggKTE527du2KgoICs/ZVXl6O1NRUxMTEGNrEYjFiYmKQnJxc5/uKi4sREhKCoKAgPPbYYzhz5ozhtYyMDCiVSqN9yuVyREVF1blPjUYDtVpttBEREVHLZXYACg8Px6pVq2q1r1q1CuHhdVycqw7Xrl2DVquFQqEwalcoFFAqTd8Lp0uXLli/fj127NiBjRs3QqfTYeDAgYYJ2dXvM2efCQkJkMvlhi0oKMis4yAiIiL7YvYcoHfffRcjRozAvn37DNcASk5ORnZ2Nn7++WeLF3i76Ohow+cCwMCBA9GtWzd8/PHHWLKkccvp5s+fj/j4eMNztVrNEERERNSCmT0CNHjwYPz5558YPXo0CgsLUVhYiDFjxuD8+fO47777zNqXr68vJBIJcnNzjdpzc3Ph7+/foH04Ozujd+/euHjxIgAY3mfOPmUyGby8vIw2IiIiarkaNYU9MDAQb731Fr777jt89913ePPNN6HT6TB9+nSz9iOVStG3b18kJSUZ2nQ6HZKSkoxGeeqj1Wpx+vRpBAQEAABCQ0Ph7+9vtE+1Wo2jR482eJ9ERETUsllsDd/169fx6aefmv2++Ph4rF27Fp999hnOnj2LmTNnoqSkxHCtn0mTJmH+/PmG/v/+97+xZ88e/PXXXzhx4gQmTpyIzMxMPPPMMwD0S+LnzJmDN998E99//z1Onz6NSZMmITAwEKNGjbLIsRIREZF9a9qbo5gwbtw45OfnY8GCBVAqlYiIiMCuXbsMk5izsrKMLq5448YNPPvss1AqlWjVqhX69u2LI0eOoHv37oY+r7zyCkpKSjB9+nQUFhbi3nvvxa5du3gNICIiIgJwl7fCqOn3339Hnz59oNVqLbE7m+KtMIiIiOyPOX+/eRlLIiIicjgNPgU2ZsyYel8vLCy821qIiIiImkSDA5BcLr/j65MmTbrrgoiIiIisrcEBaMOGDdasg4iIiKjJcA4QERERORwGICIiInI4DEBERETkcBiAiIiIyOEwABEREZHDYQAiIiIih8MARERERA6HAYiIiIgcDgMQERERORwGICIiInI4DEBERETkcBiAiIiIyOEwABEREZHDYQAiIiIih8MARERERA6HAYiIiIgcDgMQERERORwGICIiInI4DEBERETkcBiAiIiIyOEwABEREZHDYQAiIiIih8MARERERA6HAYiIiIgcDgMQERERORwGICIiInI4DEBERETkcBiAiIiIyOEwABEREZHDYQAiIiIih8MARERERA6nWQSg1atXo3379nBxcUFUVBSOHTtWZ9+1a9fivvvuQ6tWrdCqVSvExMTU6j958mSIRCKjbdiwYdY+DCIiIrITNg9AmzdvRnx8PBYuXIgTJ04gPDwcsbGxyMvLM9n/wIEDGD9+PH755RckJycjKCgIDz/8MK5cuWLUb9iwYcjJyTFsX3/9dVMcDhEREdkBkSAIgi0LiIqKQv/+/bFq1SoAgE6nQ1BQEF544QXMmzfvju/XarVo1aoVVq1ahUmTJgHQjwAVFhZi+/btjapJrVZDLpdDpVLBy8urUfsgIiKipmXO32+bjgCVl5cjNTUVMTExhjaxWIyYmBgkJyc3aB+lpaWoqKhA69atjdoPHDgAPz8/dOnSBTNnzsT169ctWjsRERHZLydbfvi1a9eg1WqhUCiM2hUKBc6dO9egfbz66qsIDAw0ClHDhg3DmDFjEBoaikuXLuG1117D8OHDkZycDIlEUmsfGo0GGo3G8FytVjfyiIiIiMge2DQA3a133nkHmzZtwoEDB+Di4mJof/LJJw0/9+zZE7169cI999yDAwcOYOjQobX2k5CQgMWLFzdJzURERGR7Nj0F5uvrC4lEgtzcXKP23Nxc+Pv71/ve999/H++88w727NmDXr161du3Q4cO8PX1xcWLF02+Pn/+fKhUKsOWnZ1t3oEQERGRXbFpAJJKpejbty+SkpIMbTqdDklJSYiOjq7zfe+++y6WLFmCXbt2oV+/fnf8nMuXL+P69esICAgw+bpMJoOXl5fRRkRERC2XzZfBx8fHY+3atfjss89w9uxZzJw5EyUlJZgyZQoAYNKkSZg/f76h/3/+8x+88cYbWL9+Pdq3bw+lUgmlUoni4mIAQHFxMf75z38iJSUFf//9N5KSkvDYY4+hY8eOiI2NtckxEhERUfNi8zlA48aNQ35+PhYsWAClUomIiAjs2rXLMDE6KysLYvGtnPbRRx+hvLwc//jHP4z2s3DhQixatAgSiQSnTp3CZ599hsLCQgQGBuLhhx/GkiVLIJPJmvTYiIiIqHmy+XWAmiNeB4iIiMj+2M11gIiIiIhsgQGIiIiIHA4DEBERETkcBiAiIiJyOAxARERE5HAYgIiIiMjhMAARERGRw2EAIiIiIofDAEREREQOhwGIiIiIHA4DEBERETkcBiAiIiJyOAxARERE5HAYgIiIiMjhMAARERGRw2EAIiIiIofDAEREREQOhwGIiIiIHA4DEBERETkcBiAiIiJyOAxARERE5HAYgIiIiMjhMAARERGRw2EAIiIiIofDAEREREQOhwGIiIiIHA4DEBERETkcBiAiIiJyOAxARERE5HAYgIiIiMjhMAARERGRw2EAIiIiIofDAEREREQOhwGIiIiIHA4DEBERETkcBiAiIiJyOM0iAK1evRrt27eHi4sLoqKicOzYsXr7f/PNN+jatStcXFzQs2dP/Pzzz0avC4KABQsWICAgAK6uroiJicGFCxeseQhERERkR2wegDZv3oz4+HgsXLgQJ06cQHh4OGJjY5GXl2ey/5EjRzB+/HhMmzYNJ0+exKhRozBq1Cikp6cb+rz77rtYuXIl1qxZg6NHj8Ld3R2xsbEoKytrqsMiIiKiZkwkCIJgywKioqLQv39/rFq1CgCg0+kQFBSEF154AfPmzavVf9y4cSgpKcGPP/5oaBswYAAiIiKwZs0aCIKAwMBAvPzyy5g7dy4AQKVSQaFQIDExEU8++eQda1Kr1ZDL5VCpVPDy8rLQkRIREZE1mfP326mJajKpvLwcqampmD9/vqFNLBYjJiYGycnJJt+TnJyM+Ph4o7bY2Fhs374dAJCRkQGlUomYmBjD63K5HFFRUUhOTjYZgDQaDTQajeG5SqUCoP+HJCIiIvtQ/Xe7IWM7Ng1A165dg1arhUKhMGpXKBQ4d+6cyfcolUqT/ZVKpeH16ra6+twuISEBixcvrtUeFBTUsAMhIiKiZqOoqAhyubzePjYNQM3F/PnzjUaVdDodCgoK4OPjA5FIZNHPUqvVCAoKQnZ2dos8vcbjs38t/Rh5fPavpR8jj6/xBEFAUVERAgMD79jXpgHI19cXEokEubm5Ru25ubnw9/c3+R5/f/96+1c/5ubmIiAgwKhPRESEyX3KZDLIZDKjNm9vb3MOxWxeXl4t8j/sajw++9fSj5HHZ/9a+jHy+BrnTiM/1Wy6CkwqlaJv375ISkoytOl0OiQlJSE6Otrke6Kjo436A8DevXsN/UNDQ+Hv72/UR61W4+jRo3Xuk4iIiByLzU+BxcfHIy4uDv369UNkZCSWL1+OkpISTJkyBQAwadIktG3bFgkJCQCA2bNnY/Dgwfjggw8wYsQIbNq0CcePH8cnn3wCABCJRJgzZw7efPNNdOrUCaGhoXjjjTcQGBiIUaNG2eowiYiIqBmxeQAaN24c8vPzsWDBAiiVSkRERGDXrl2GScxZWVkQi28NVA0cOBBfffUVXn/9dbz22mvo1KkTtm/fjh49ehj6vPLKKygpKcH06dNRWFiIe++9F7t27YKLi0uTH9/tZDIZFi5cWOuUW0vB47N/Lf0YeXz2r6UfI4+vadj8OkBERERETc3mV4ImIiIiamoMQERERORwGICIiIjI4TAAERERkcNhALKC1atXo3379nBxcUFUVBSOHTtWb/9vvvkGXbt2hYuLC3r27Imff/65iSptHHOOLzExESKRyGhrDqvx6nLo0CGMHDkSgYGBEIlEhnvM1efAgQPo06cPZDIZOnbsiMTERKvX2VjmHt+BAwdqfX8ikajO28rYWkJCAvr37w9PT0/4+flh1KhROH/+/B3fZy+/g405Pnv7Hfzoo4/Qq1cvw0XyoqOjsXPnznrfYy/fH2D+8dnb93e7d955x3B5mvrY4jtkALKwzZs3Iz4+HgsXLsSJEycQHh6O2NhY5OXlmex/5MgRjB8/HtOmTcPJkycxatQojBo1Cunp6U1cecOYe3yA/mqfOTk5hi0zM7MJKzZPSUkJwsPDsXr16gb1z8jIwIgRIzBkyBCkpaVhzpw5eOaZZ7B7924rV9o45h5ftfPnzxt9h35+flaq8O4cPHgQs2bNQkpKCvbu3YuKigo8/PDDKCkpqfM99vQ72JjjA+zrd7Bdu3Z45513kJqaiuPHj+PBBx/EY489hjNnzpjsb0/fH2D+8QH29f3V9Ntvv+Hjjz9Gr1696u1ns+9QIIuKjIwUZs2aZXiu1WqFwMBAISEhwWT/sWPHCiNGjDBqi4qKEp577jmr1tlY5h7fhg0bBLlc3kTVWRYAYdu2bfX2eeWVV4SwsDCjtnHjxgmxsbFWrMwyGnJ8v/zyiwBAuHHjRpPUZGl5eXkCAOHgwYN19rG338GaGnJ89vw7WK1Vq1bCunXrTL5mz99ftfqOz16/v6KiIqFTp07C3r17hcGDBwuzZ8+us6+tvkOOAFlQeXk5UlNTERMTY2gTi8WIiYlBcnKyyfckJycb9QeA2NjYOvvbUmOODwCKi4sREhKCoKCgO/4/HXtjT9/f3YiIiEBAQAAeeugh/Prrr7Yup8FUKhUAoHXr1nX2sefvsCHHB9jv76BWq8WmTZtQUlJS562M7Pn7a8jxAfb5/c2aNQsjRoyo9d2YYqvvkAHIgq5duwatVmu4inU1hUJR55wJpVJpVn9baszxdenSBevXr8eOHTuwceNG6HQ6DBw4EJcvX26Kkq2uru9PrVbj5s2bNqrKcgICArBmzRp89913+O677xAUFIQHHngAJ06csHVpd6TT6TBnzhwMGjTI6Erxt7On38GaGnp89vg7ePr0aXh4eEAmk2HGjBnYtm0bunfvbrKvPX5/5hyfPX5/mzZtwokTJwy3sLoTW32HNr8VBrVs0dHRRv/PZuDAgejWrRs+/vhjLFmyxIaVUUN06dIFXbp0MTwfOHAgLl26hGXLluGLL76wYWV3NmvWLKSnp+Pw4cO2LsUqGnp89vg72KVLF6SlpUGlUuHbb79FXFwcDh48WGdIsDfmHJ+9fX/Z2dmYPXs29u7d2+wnazMAWZCvry8kEglyc3ON2nNzc+Hv72/yPf7+/mb1t6XGHN/tnJ2d0bt3b1y8eNEaJTa5ur4/Ly8vuLq62qgq64qMjGz2oeL555/Hjz/+iEOHDqFdu3b19rWn38Fq5hzf7ezhd1AqlaJjx44AgL59++K3337DihUr8PHHH9fqa4/fnznHd7vm/v2lpqYiLy8Pffr0MbRptVocOnQIq1atgkajgUQiMXqPrb5DngKzIKlUir59+yIpKcnQptPpkJSUVOf53ejoaKP+ALB37956zwfbSmOO73ZarRanT59GQECAtcpsUvb0/VlKWlpas/3+BEHA888/j23btmH//v0IDQ2943vs6TtszPHdzh5/B3U6HTQajcnX7On7q0t9x3e75v79DR06FKdPn0ZaWpph69evHyZMmIC0tLRa4Qew4Xdo1SnWDmjTpk2CTCYTEhMThT/++EOYPn264O3tLSiVSkEQBOHpp58W5s2bZ+j/66+/Ck5OTsL7778vnD17Vli4cKHg7OwsnD592laHUC9zj2/x4sXC7t27hUuXLgmpqanCk08+Kbi4uAhnzpyx1SHUq6ioSDh58qRw8uRJAYCwdOlS4eTJk0JmZqYgCIIwb9484emnnzb0/+uvvwQ3Nzfhn//8p3D27Flh9erVgkQiEXbt2mWrQ6iXuce3bNkyYfv27cKFCxeE06dPC7NnzxbEYrGwb98+Wx1CvWbOnCnI5XLhwIEDQk5OjmErLS019LHn38HGHJ+9/Q7OmzdPOHjwoJCRkSGcOnVKmDdvniASiYQ9e/YIgmDf358gmH989vb9mXL7KrDm8h0yAFnBhx9+KAQHBwtSqVSIjIwUUlJSDK8NHjxYiIuLM+q/ZcsWoXPnzoJUKhXCwsKEn376qYkrNo85xzdnzhxDX4VCITzyyCPCiRMnbFB1w1Qv+759qz6muLg4YfDgwbXeExERIUilUqFDhw7Chg0bmrzuhjL3+P7zn/8I99xzj+Di4iK0bt1aeOCBB4T9+/fbpvgGMHVsAIy+E3v+HWzM8dnb7+DUqVOFkJAQQSqVCm3atBGGDh1qCAeCYN/fnyCYf3z29v2ZcnsAai7foUgQBMG6Y0xEREREzQvnABEREZHDYQAiIiIih8MARERERA6HAYiIiIgcDgMQERERORwGICIiInI4DEBERETkcBiAiKhZaN++PZYvX97g/gcOHIBIJEJhYaHVaiKilosBiIjMIhKJ6t0WLVrUqP3+9ttvmD59eoP7Dxw4EDk5OZDL5Y36PHOsXbsW4eHh8PDwgLe3N3r37o2EhATD65MnT8aoUaOsXgcRWQ7vBk9EZsnJyTH8vHnzZixYsADnz583tHl4eBh+FgQBWq0WTk53/p+aNm3amFWHVCptkjt+r1+/HnPmzMHKlSsxePBgaDQanDp1Cunp6Vb/bCKyHo4AEZFZ/P39DZtcLodIJDI8P3fuHDw9PbFz50707dsXMpkMhw8fxqVLl/DYY49BoVDAw8MD/fv3x759+4z2e/spMJFIhHXr1mH06NFwc3NDp06d8P333xtev/0UWGJiIry9vbF7925069YNHh4eGDZsmFFgq6ysxIsvvghvb2/4+Pjg1VdfRVxcXL2jN99//z3Gjh2LadOmoWPHjggLC8P48ePx1ltvAQAWLVqEzz77DDt27DCMgh04cAAAkJ2djbFjx8Lb2xutW7fGY489hr///tuw7+qRo8WLF6NNmzbw8vLCjBkzUF5ebujz7bffomfPnnB1dYWPjw9iYmJQUlJi5rdGRLdjACIii5s3bx7eeecdnD17Fr169UJxcTEeeeQRJCUl4eTJkxg2bBhGjhyJrKysevezePFijB07FqdOncIjjzyCCRMmoKCgoM7+paWleP/99/HFF1/g0KFDyMrKwty5cw2v/+c//8GXX36JDRs24Ndff4Varcb27dvrrcHf3x8pKSnIzMw0+frcuXMxduxYQ9jKycnBwIEDUVFRgdjYWHh6euK///0vfv31V0MoqxlwkpKScPbsWRw4cABff/01tm7disWLFwPQj7aNHz8eU6dONfQZM2YMeAtHIguw+u1WiajF2rBhgyCXyw3Pq+82v3379ju+NywsTPjwww8Nz0NCQoRly5YZngMQXn/9dcPz4uJiAYCwc+dOo8+6ceOGoRYAwsWLFw3vWb16taBQKAzPFQqF8N577xmeV1ZWCsHBwcJjjz1WZ51Xr14VBgwYIAAQOnfuLMTFxQmbN28WtFqtoU9cXFytfXzxxRdCly5dBJ1OZ2jTaDSCq6ursHv3bsP7WrduLZSUlBj6fPTRR4KHh4eg1WqF1NRUAYDw999/11kfETUOR4CIyOL69etn9Ly4uBhz585Ft27d4O3tDQ8PD5w9e/aOI0C9evUy/Ozu7g4vLy/k5eXV2d/NzQ333HOP4XlAQIChv0qlQm5uLiIjIw2vSyQS9O3bt94aAgICkJycjNOnT2P27NmorKxEXFwchg0bBp1OV+f7fv/9d1y8eBGenp7w8PCAh4cHWrdujbKyMly6dMnQLzw8HG5ubobn0dHRKC4uRnZ2NsLDwzF06FD07NkTTzzxBNauXYsbN27UWy8RNQwnQRORxbm7uxs9nzt3Lvbu3Yv3338fHTt2hKurK/7xj38YnQoyxdnZ2ei5SCSqN3SY6i9Y6HRRjx490KNHD/zv//4vZsyYgfvuuw8HDx7EkCFDTPYvLi5G37598eWXX9Z6raETviUSCfbu3YsjR45gz549+PDDD/Gvf/0LR48eRWho6F0dD5Gj4wgQEVndr7/+ismTJ2P06NHo2bMn/P39jSYDNwW5XA6FQoHffvvN0KbVanHixAmz99W9e3cAMExGlkql0Gq1Rn369OmDCxcuwM/PDx07djTaai7d//3333Hz5k3D85SUFHh4eCAoKAiAPsQNGjQIixcvxsmTJyGVSrFt2zazayYiYwxARGR1nTp1wtatW5GWlobff/8dTz31VL0jOdbywgsvICEhATt27MD58+cxe/Zs3LhxAyKRqM73zJw5E0uWLMGvv/6KzMxMpKSkYNKkSWjTpg2io6MB6FewnTp1CufPn8e1a9dQUVGBCRMmwNfXF4899hj++9//IiMjAwcOHMCLL76Iy5cvG/ZfXl6OadOm4Y8//sDPP/+MhQsX4vnnn4dYLMbRo0fx9ttv4/jx48jKysLWrVuRn5+Pbt26Wf3fiqilYwAiIqtbunQpWrVqhYEDB2LkyJGIjY1Fnz59mryOV199FePHj8ekSZMQHR0NDw8PxMbGwsXFpc73xMTEICUlBU888QQ6d+6Mxx9/HC4uLkhKSoKPjw8A4Nlnn0WXLl3Qr18/tGnTBr/++ivc3Nxw6NAhBAcHY8yYMejWrRumTZuGsrIyeHl5GfY/dOhQdOrUCffffz/GjRuHRx991HAxSS8vLxw6dAiPPPIIOnfujNdffx0ffPABhg8fbtV/JyJHIBIsdYKciMjO6HQ6dOvWDWPHjsWSJUua/PMnT56MwsLCOy7FJyLL4yRoInIYmZmZ2LNnj+GKzqtWrUJGRgaeeuopW5dGRE2Mp8CIyGGIxWIkJiaif//+GDRoEE6fPo19+/ZxTg2RA+IpMCIiInI4HAEiIiIih8MARERERA6HAYiIiIgcDgMQERERORwGICIiInI4DEBERETkcBiAiIiIyOEwABEREZHDYQAiIiIih/P/mREQEYm+pjcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAG2CAYAAACDLKdOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDTElEQVR4nO3deXxTVf7/8XfSJaUtXVhaFmvZkWFfK6jDjKIoiAIzguhDEJifyyCLVUdwAdHvWHQQUWFEUQEdFUQRnQFRLCKK7AVBWZRFigoFBLpCl+T+/mgbmm7ktglt4uv5eOTR5OTcm881xvv23HPvtRiGYQgAAMBPWGu6AAAAAE8i3AAAAL9CuAEAAH6FcAMAAPwK4QYAAPgVwg0AAPArhBsAAOBXCDcAAMCvEG4AAIBfIdwAAAC/UqPhZt26dRo0aJCaNGkii8Wi5cuXX3CZtWvXqlu3brLZbGrVqpUWLlzo9ToBAIDvqNFwk52drc6dO2vu3Llu9T906JAGDhyoP//5z9qxY4cmTZqkv/3tb/r000+9XCkAAPAVltpy40yLxaIPP/xQgwcPrrDPww8/rBUrVui7775ztt166606c+aMVq1adRGqBAAAtV1gTRdgxoYNG9SvXz+Xtv79+2vSpEkVLpObm6vc3Fzna4fDoVOnTql+/fqyWCzeKhUAAHiQYRjKzMxUkyZNZLVWfuDJp8LNsWPHFBsb69IWGxurjIwMnT17VnXq1CmzTFJSkqZPn36xSgQAAF505MgRXXLJJZX28alwUxVTpkxRYmKi83V6erouvfRSHTlyRBERETVYGQAAcFdGRobi4uJUt27dC/b1qXDTqFEjpaWlubSlpaUpIiKi3FEbSbLZbLLZbGXaIyIiCDcAAPgYd6aU+NR1bnr37q3k5GSXttWrV6t37941VBEAAKhtajTcZGVlaceOHdqxY4ekwlO9d+zYodTUVEmFh5RGjhzp7H/PPffo4MGD+sc//qG9e/fq3//+t9577z3df//9NVE+AACohWo03GzdulVdu3ZV165dJUmJiYnq2rWrpk6dKkk6evSoM+hIUvPmzbVixQqtXr1anTt31nPPPafXXntN/fv3r5H6AQBA7VNrrnNzsWRkZCgyMlLp6enMuQEAwEeY2X/71IRiAABQPQ6HoQKHoQKHQ/l2Q3aHoQK7o7DNXthe4DCUb3fI7jBc+uQ7DNlLLJdvd6ig+LnjfP+GdW26qXOTGttGwg0AACUYRuHOv+TOuzgMOJ9XEgZK9ikdBgrsJYKBwyG73VB+Ufv5IOFwthV/hrMWR+nPL1tHgb1Eezl9HBfheE33+GjCDQDg4nA4DDkMQ3bDkMMh53PDIdmNwp2oUfy+UdjfXrSMo6jN7ijup6J+RtF65dLX2cdR9BmGIXvRZxa/X/wZ52sqCgEldsylw0DZUQVHOQGhRB+X9873KXCU7V8can5vrBYpMMCqQKul8FH0PCjAqgCrRYEBRe1W6/nnxf1LLFfcv0XDsBrdHsINAJ9XYHfoZFaejmee0+mc/Ap3yOd3qnLdITufu+60nTv68nbIxTviUusxSu20S4aE88uXHwRcd/QqtybXz1XZbaowVBgX5f/Y/VlQQNHOvWhnH2C1FraVaA8o2sG7GwbOt51/HWQtXLdLW0DRuq3nw0ZxkAgqrqWo7/m2olrKq6NkfVaLrFb/uh0R4QZArVUcWtIyzul4Zq7z7/GMcyXacvVbdq5+X6dGeFeA1SKrRbJaLLJaCneSFkthe4DFIovFogCr6/tWi2S1Fr22WIqeq2hZiwJcnltkLbP8+f5Wq8W5oz6/47dWGAbKBoXzYaBkGCkdBkqONFQUBorbrBb3Lh5XqzkckiNfsucVPvJLPLfnl3ivVLu9gvYy/Uv0jY6Xrqy5y7QQbgBcdOWGllIB5kR6js7mZCjEyFMdS67qKFehylWIJU+hOqcw5ekPllx1V65CrbkKteapflCBwoMMyWKVwxIgwxIgw2KVwxIow2Itel34kCVADmvh3+LXhrWwn6yBhW3F7xf9lTVQshb2twQESpZAyWqVxRoowxogizVQFmthv8K/AbJYA2QJCCp8HRAoiyVAVudfq0tIsJYTGsqGivNBIqB4uaJlSoYSZ2AoDhnO50Xrsha2OT/Dcr4/3GQYbuzwzQaEivoX/XXkV33djoKL98/mkl6EGwA+xjAK/2OZly3ln5Xyc6T8HBWcy1JGZqbS088oKytT2VkZOpudqbyzWco7myV7brYceTmyFuSojvJUR7mKsuSqiXIVojyFFoWYOsqVzVIglb1zSuUcknK9scFeUhygrIElnpd8XRieKn99PoSdfx0oFYW0ytfvzudVZ/1VWV+gJMNLAaGyEYfSy7gRKBz5Nf1vUDVZpECbZA2SAoKkgOCiR1CJR8m24Ar6BpftH1n5jS29jXAD+COHQyo4K+XlOIOH8nOKXp+V8otCSalwUtH7Rl627Hk5MvJyZMnPkbXgrKxylPnYQEn1ih6VCnB/UwxZZAkKlYJDpaA6UlBY0d9y2oJDC//Dajgkh73wYdgL/4/VUfTXcJR6bT/ft8LXBUVD+gWl1ld6/eV8nio5XmbYJbu9cIcJP2C5wE6/xM7fGlhO32ApoJx2dwOF2f5WEz9EH0O4AWqCPb9EmCh+VBQ2ynu/OHxU8H7BWY+Wa1HF/7HIMwJ0TjblyKazRrDOKkQFASFyBBYGEEtwqAJtYQqsE66QOuEKCaursLC6Cg2PkDU4tDCklBtUCv9aAkMkX57r4HCUCEyVhSc3w5LbYczd9bkT9qoR7ipbv1GiT0UCbBXv9AOCinbkbgQEs4GiKgHEGuDb/676EcINUJphSAXn3AgTVRkJKWq/iMPZ9oAQ5VvrKM9i01mLTTlGsLIcNmXYg5RREKgc2XTOKAonCtZZI0RnFVymPdcSojqh4QoNj1DduhGKiIhUvcgoNYwKU0zdEMVE2BRTN0TxYcHM2yjJapVkLdwJonyG4Rp2pMJQQ1hAFRFu4N8KcqWcU1LOb4WPs8XPS7TllGg7e6owoFR2KMGTLNbCkYryDq8ElR3VsAeGKtsRpAx7sM7kB+q3/ECdyg1Q2rkAHT9r1S85Vv2aLf2aY1WOEaxzCpZxgVvIBVgtiqlrK3xEhCi2KKS0K/obE2FTbESI6oUSWuAlFkvhaIgCZX6iFVAW4Qa+w55fKpSUDCzltOeclvIyq/eZAbZSQaPkXI8SbcEl5oFU+n6p8BIQLFksyrc7dDKr8LTm4xnnlJaZqxMZ55SWkau00+d0PCNXxzPP6bfsPLdPeQ6wWtSoKLDE1LU5Q0ssoQWAnyPcoGbY86Wzp8sZPSnx/GypttyMqn2WJUAKrSeF1i981Ik+/9zlUa/wPVvd80GlmhPuXELLqcLQcjwjS8czflNaZtVCS6DVooYVhRZnG6EFwO8X4QbVZy+Qzp0pZ+SkvENARaHlXHrVPstiLSecFAWXOvXKaa8n2SKL5j14TnkjLcczCsOKJ0NLbPFcFkILALiNcANXDrt09kw5IyclA0up9nNnqvhhlhJBpV6pv/XLCSz1pJAojweVkkqGlpJXwy0OLWkZuTpRjdASW9dWeDioRGgpfk5oAQDPINz4M4ejaESlnJGTikZXzp5WlSfThkSVP3JS+vBPcWCpE1Uj11kwDEMnsnJ18ES2Dp7I1oETWTp4IksHTmTr59M5bt9/J7BoIm7DUqElNiJEDUsEGEILAFxchBtf4XBIuenlj5w4Q8vpsq8ru35EZUIiKzjMU87oSmj9wmATULv+dcotsOvwbzk6cDxLB08WhpgDJ7J18ESWMs9VfBny0qEltsQhoYbOAGNTNKEFAGql2rU3+r0wjMLJsRWeklzidclTlw171T7PFlHBvJQKnteJ9plrchiGoZNZeUWjL9lFIzCFYebIqYpHYawW6ZLoULVoGKaWDcPP/20QpgbhNkILAPgwwo2n5GZJJ/eVH1BKB5ezp6p+A7Pg8EoO9ZQz0lKnnhQY7NltrQHFozDFh4+Kw8yBC4zC1LUFlg0wDcMVXz9UIUH+e+lxAPg9I9x4yq/bpUU3mlsmKKwohJR3anK98g8LBfrvBa6KR2EOljh8VHw4qbJRGItFiisahWnRIFwtY87/bRhuk4UrnALA7wrhxlPCGkoRl1QyL6X0YaF6hddS+R3KLbAr9bcc5xyYkoeUMtwYhWnRMFwtnX8ZhQEAuCLceErMZVLi9zVdRa1hGIZ+y847P5m36O/BE1lKvcAozCXRdQpHXkocSmrZMEwN6zIKAwC4MMINqiWvwKHDv2W7jsCczNKB45WPwoTbAp2jLy0ahKllTGGQaVY/jFEYAEC1EG5wQcWjMKWvCXPwRJaOnD4rewXDMOWNwrRoGKZWDcMZhQEAeA3hBk55BQ6lnsrW/uPFoy+Ffw+eyFb62fwKlwsveUZSg6K5MDGMwgAAagbh5nfGMAydys5zjryUPKX6QqMwTaPqlDqluvBvDKMwAIBahHDjp4pHYUpfE+ZCozBhwQGF818anL8mTIuGYWregFEYAIBvINz4sOJRmJJnIxX/TT2Vc8FRGJdTqosm9TIKAwDwdYQbH1ByFKb0pN4LjcKUviYMozAAAH9HuKklSo7ClDwb6cCJC4/CNImsc/5QUkzhKEyLhuGKjWAUBgDw+0O4ucjy7Q6XeySVvNHjmZwLj8KUnszLKAwAAK4IN15SeEZS4eGjkpN5D1cyCiMVz4U5f1Xe4km9jMIAAOAewo2H7DuWqde+Oui80WNlozChwQElrgtz/kaPzRuEqU4wozAAAFQH4cZDcvIKtHTbzy5tpUdhiif1MgoDAID3EG48pFVMuO7v18ZlLgyjMAAAXHyEGw+pGxKkif1a13QZAAD87llrugAAAABPItwAAAC/QrgBAAB+hXADAAD8CuEGAAD4FcINAADwK4QbAADgVwg3AADArxBuAACAXyHcAAAAv0K4AQAAfoVwAwAA/ArhBgAA+BXCDQAA8CuEGwAA4FcINwAAwK8QbgAAgF8h3AAAAL9CuAEAAH6FcAMAAPwK4QYAAPgVwg0AAPArhBsAAOBXCDcAAMCvEG4AAIBfIdwAAAC/EliVhVJTU3X48GHl5OSoYcOGat++vWw2m6drAwAAMM3tkZuffvpJDz/8sOLj49W8eXP17dtXN9xwg3r06KHIyEhde+21Wrp0qRwOh6kC5s6dq2bNmikkJEQJCQnavHlzpf1nz56ttm3bqk6dOoqLi9P999+vc+fOmfpMAADgv9wKNxMmTFDnzp116NAh/d///Z92796t9PR05eXl6dixY1q5cqWuvPJKTZ06VZ06ddKWLVvc+vAlS5YoMTFR06ZNU0pKijp37qz+/fvr+PHj5fZ/5513NHnyZE2bNk179uzR66+/riVLluiRRx5xf4sBAIBfsxiGYVyo05QpU/Tggw+qfv36F1zhqlWrlJOTo6FDh16wb0JCgnr27Kk5c+ZIkhwOh+Li4jR+/HhNnjy5TP/77rtPe/bsUXJysrPtgQce0KZNm/T1119f8PMkKSMjQ5GRkUpPT1dERIRbywAAgJplZv/t1shNUlKSW8FGkq6//nq3gk1eXp62bdumfv36nS/GalW/fv20YcOGcpfp06ePtm3b5jx0dfDgQa1cuVIDBgyo8HNyc3OVkZHh8gAAAP6rShOKPeHkyZOy2+2KjY11aY+NjdXevXvLXea2227TyZMndeWVV8owDBUUFOiee+6p9LBUUlKSpk+f7tHaAQBA7WX6VPC0tDTdcccdatKkiQIDAxUQEODy8Ka1a9fq6aef1r///W+lpKRo2bJlWrFihZ566qkKl5kyZYrS09OdjyNHjni1RgAAULNMj9zceeedSk1N1eOPP67GjRvLYrFU6YMbNGiggIAApaWlubSnpaWpUaNG5S7z+OOP64477tDf/vY3SVLHjh2VnZ2tu+66S48++qis1rJZzWazcZo6AAC/I6bDzddff62vvvpKXbp0qdYHBwcHq3v37kpOTtbgwYMlFU4oTk5O1n333VfuMjk5OWUCTPFokRvzogEAwO+A6XATFxfnsSCRmJioUaNGqUePHurVq5dmz56t7OxsjR49WpI0cuRINW3aVElJSZKkQYMGadasWeratasSEhK0f/9+Pf744xo0aJDXD4kBAADfYDrczJ49W5MnT9Yrr7yiZs2aVevDhw8frhMnTmjq1Kk6duyYunTpolWrVjknGaemprqM1Dz22GOyWCx67LHH9Msvv6hhw4YaNGiQ/vnPf1arDgAA4D/cus5NSdHR0crJyVFBQYFCQ0MVFBTk8v6pU6c8WqCncZ0bAAB8j5n9d5VGbgAAAGor0+Fm1KhR3qgDAADAI6p0ET+73a7ly5drz549kqT27dvrpptuYlIvAACocabDzf79+zVgwAD98ssvatu2raTCqwDHxcVpxYoVatmypceLBAAAcJfpKxRPmDBBLVu21JEjR5SSkqKUlBSlpqaqefPmmjBhgjdqBAAAcJvpkZsvv/xSGzduVL169Zxt9evX14wZM3TFFVd4tDgAAACzTI/c2Gw2ZWZmlmnPyspScHCwR4oCAACoKtPh5sYbb9Rdd92lTZs2yTAMGYahjRs36p577tFNN93kjRoBAADcZjrcvPjii2rZsqV69+6tkJAQhYSE6IorrlCrVq30wgsveKNGAAAAt5mecxMVFaWPPvpIP/74o/bu3StJateunVq1auXx4gAAAMyq0nVuJKl169Zq3bq1J2sBAACoNrfCTWJiop566imFhYUpMTGx0r6zZs3ySGEAAABV4Va42b59u/Lz853PAQAAaivTdwX3ddwVHAAA32Nm/236bKkxY8aUe52b7OxsjRkzxuzqAAAAPMp0uFm0aJHOnj1bpv3s2bN68803PVIUAABAVbl9tlRGRobzon2ZmZkKCQlxvme327Vy5UrFxMR4pUgAAAB3uR1uoqKiZLFYZLFY1KZNmzLvWywWTZ8+3aPFAQAAmOV2uPniiy9kGIauvvpqffDBBy43zgwODlZ8fLyaNGnilSIBAADc5Xa46du3ryTp0KFDiouLk9VqeroOAACA15m+QnF8fLwkKScnR6mpqcrLy3N5v1OnTp6pDAAAoApMh5sTJ05o9OjR+uSTT8p93263V7soAACAqjJ9bGnSpEk6c+aMNm3apDp16mjVqlVatGiRWrdurY8//tgbNQIAALjN9MjNmjVr9NFHH6lHjx6yWq2Kj4/Xtddeq4iICCUlJWngwIHeqBMAAMAtpkdusrOzndeziY6O1okTJyRJHTt2VEpKimerAwAAMMl0uGnbtq327dsnSercubNeeeUV/fLLL5o3b54aN27s8QIBAADMMH1YauLEiTp69Kgkadq0abr++uv19ttvKzg4WAsXLvR0fQAAAKZU+67gOTk52rt3ry699FI1aNDAU3V5DXcFBwDA95jZf5seuSktNDRU3bp1q+5qAAAAPMKtcJOYmOj2CmfNmlXlYgAAAKrLrXCzfft2l9cpKSkqKChQ27ZtJUk//PCDAgIC1L17d89XCAAAYIJb4eaLL75wPp81a5bq1q2rRYsWKTo6WpJ0+vRpjR49WldddZV3qgQAAHCT6QnFTZs21Weffab27du7tH/33Xe67rrr9Ouvv3q0QE9jQjEAAL7HzP7b9HVuMjIynBfuK+nEiRPKzMw0uzoAAACPMh1uhgwZotGjR2vZsmX6+eef9fPPP+uDDz7Q2LFjNXToUG/UCAAA4DbTp4LPmzdPDz74oG677Tbl5+cXriQwUGPHjtW//vUvjxcIAABgRpUv4pedna0DBw5Iklq2bKmwsDCPFuYtzLkBAMD3XJSL+IWFhalTp05VXRwAAMAr3Ao3Q4cO1cKFCxUREXHBeTXLli3zSGEAAABV4Va4iYyMlMVicT4HAACorap940xfw5wbAAB8j1evcwMAAFCbuXVYqmvXrs7DUheSkpJSrYIAAACqw61wM3jwYC+XAQAA4BnMuQEAALUec24AAMDvlumL+Nntdj3//PN67733lJqaqry8PJf3T5065bHiAAAAzDI9cjN9+nTNmjVLw4cPV3p6uhITEzV06FBZrVY98cQTXigRAADAfabDzdtvv6358+frgQceUGBgoEaMGKHXXntNU6dO1caNG71RIwAAgNtMh5tjx46pY8eOkqTw8HClp6dLkm688UatWLHCs9UBAACYZDrcXHLJJTp69KikwruBf/bZZ5KkLVu2yGazebY6AAAAk0yHmyFDhig5OVmSNH78eD3++ONq3bq1Ro4cqTFjxni8QAAAADOqfZ2bjRs36ptvvlHr1q01aNAgT9XlNVznBgAA32Nm/236VPBz584pJCTE+fryyy/X5Zdfbr5KAAAALzB9WComJkajRo3S6tWr5XA4vFETAABAlZkON4sWLVJOTo5uvvlmNW3aVJMmTdLWrVu9URsAAIBpVZpQvHTpUqWlpenpp5/W7t27dfnll6tNmzZ68sknvVEjAACA2zxy48zdu3fr9ttv186dO2W32z1Rl9cwoRgAAN9zUW6cee7cOb333nsaPHiwunXrplOnTumhhx6q6uoAAAA8wvTZUp9++qneeecdLV++XIGBgfrrX/+qzz77TH/84x+9UR8AAIAppsPNkCFDdOONN+rNN9/UgAEDFBQU5I26AAAAqsR0uElLS1PdunW9UQsAAEC1mZ5zQ7ABAAC1WZUnFHvK3Llz1axZM4WEhCghIUGbN2+utP+ZM2c0btw4NW7cWDabTW3atNHKlSsvUrUAAKC2M31YypOWLFmixMREzZs3TwkJCZo9e7b69++vffv2KSYmpkz/vLw8XXvttYqJidH777+vpk2b6vDhw4qKirr4xQMAgFrJI9e5qaqEhAT17NlTc+bMkSQ5HA7FxcVp/Pjxmjx5cpn+8+bN07/+9S/t3bu3yhOZuc4NAAC+56Jc56a68vLytG3bNvXr1+98MVar+vXrpw0bNpS7zMcff6zevXtr3Lhxio2NVYcOHfT0009XeuHA3NxcZWRkuDwAAID/cuuw1NChQ91e4bJly9zqd/LkSdntdsXGxrq0x8bGau/eveUuc/DgQa1Zs0a33367Vq5cqf379+vvf/+78vPzNW3atHKXSUpK0vTp092uHwAA+Da3Rm4iIyOdj4iICCUnJ7vcLHPbtm1KTk5WZGSk1wqVCg9bxcTE6NVXX1X37t01fPhwPfroo5o3b16Fy0yZMkXp6enOx5EjR7xaIwAAqFlujdwsWLDA+fzhhx/WsGHDNG/ePAUEBEiS7Ha7/v73v5uaw9KgQQMFBAQoLS3NpT0tLU2NGjUqd5nGjRsrKCjI+bmS1K5dOx07dkx5eXkKDg4us4zNZpPNZnO7LgAA4NtMz7l544039OCDD7oEjICAACUmJuqNN95wez3BwcHq3r27kpOTnW0Oh0PJycnq3bt3uctcccUV2r9/vxwOh7Pthx9+UOPGjcsNNgAA4PfHdLgpKCgod07M3r17XUKHOxITEzV//nwtWrRIe/bs0b333qvs7GyNHj1akjRy5EhNmTLF2f/ee+/VqVOnNHHiRP3www9asWKFnn76aY0bN87sZgAAAD9l+jo3o0eP1tixY3XgwAH16tVLkrRp0ybNmDHDGUrcNXz4cJ04cUJTp07VsWPH1KVLF61atco5yTg1NVVW6/n8FRcXp08//VT333+/OnXqpKZNm2rixIl6+OGHzW4GAADwU6avc+NwODRz5ky98MILOnr0qKTCuTATJ07UAw884HK4qjbiOjcAAPgeM/vval3Er/iaMb4UEgg3AAD4HjP772rdfoFwAAAAahvTE4rT0tJ0xx13qEmTJgoMDFRAQIDLAwAAoCaZHrm58847lZqaqscff1yNGzeWxWLxRl0AAABVYjrcfP311/rqq6/UpUsXL5QDAABQPaYPS8XFxakGbyQOAABQKdPhZvbs2Zo8ebJ++uknL5QDAABQPaYPSw0fPlw5OTlq2bKlQkNDFRQU5PL+qVOnPFYcAACAWabDzezZs71QBgAAgGeYDjejRo3yRh0AAAAeUa2L+J07d055eXkubVzYDwAA1CTTE4qzs7N13333KSYmRmFhYYqOjnZ5AAAA1CTT4eYf//iH1qxZo5dfflk2m02vvfaapk+friZNmujNN9/0Ro0AAABuM31Y6r///a/efPNN/elPf9Lo0aN11VVXqVWrVoqPj9fbb7+t22+/3Rt1AgAAuMX0yM2pU6fUokULSYXza4pP/b7yyiu1bt06z1YHAABgkulw06JFCx06dEiSdNlll+m9996TVDiiExUV5dHiAAAAzDIdbkaPHq1vv/1WkjR58mTNnTtXISEhuv/++/XQQw95vEAAAAAzLEY1bxR1+PBhbdu2Ta1atVKnTp08VZfXZGRkKDIyUunp6Zy2DgCAjzCz/67WdW4kKT4+XvHx8dVdDQAAgEeYPiwFAABQmxFuAACAXyHcAAAAv0K4AQAAfsX0hOKMjIxy2y0Wi2w2m4KDg6tdFAAAQFWZDjdRUVGyWCwVvn/JJZfozjvv1LRp02S1MjAEAAAuLtPhZuHChXr00Ud15513qlevXpKkzZs3a9GiRXrsscd04sQJzZw5UzabTY888ojHCwYAAKiM6XCzaNEiPffccxo2bJizbdCgQerYsaNeeeUVJScn69JLL9U///lPwg0AALjoTB83+uabb9S1a9cy7V27dtWGDRskFd5EMzU1tfrVAQAAmGQ63MTFxen1118v0/76668rLi5OkvTbb78pOjq6+tUBAACYZPqw1MyZM3XLLbfok08+Uc+ePSVJW7du1d69e/X+++9LkrZs2aLhw4d7tlIAAAA3VOnGmYcOHdIrr7yiH374QZLUtm1b3X333WrWrJmn6/M4bpwJAIDvMbP/rvZdwX0N4QYAAN/j9buCnzlzRps3b9bx48flcDhc3hs5cmRVVgkAAOARpsPNf//7X91+++3KyspSRESEywX9LBYL4QYAANQo02dLPfDAAxozZoyysrJ05swZnT592vk4deqUN2oEAABwm+lw88svv2jChAkKDQ31Rj0AAADVYjrc9O/fX1u3bvVGLQAAANVmes7NwIED9dBDD2n37t3q2LGjgoKCXN6/6aabPFYcAACAWaZPBa/sTt8Wi0V2u73aRXkTp4IDAOB7vHoqeOlTvwEAAGoT03NuAAAAajO3Rm5efPFF3XXXXQoJCdGLL75Yad8JEyZ4pDAAAICqcGvOTfPmzbV161bVr19fzZs3r3hlFosOHjzo0QI9jTk3AAD4Ho/PuTl06FC5zwEAAGob5twAAAC/YvpsKbvdroULFyo5ObncG2euWbPGY8UBAACYZTrcTJw4UQsXLtTAgQPVoUMHlxtnAgAA1DTT4Wbx4sV67733NGDAAG/UAwAAUC2m59wEBwerVatW3qgFAACg2kyHmwceeEAvvPCCTN61AQAA4KIwfVjq66+/1hdffKFPPvlE7du3L3PjzGXLlnmsOAAAALNMh5uoqCgNGTLEG7UAAABUm+lws2DBAm/UAQAA4BFcxA8AAPgVt0ZuunXrpuTkZEVHR6tr166VXtsmJSXFY8UBAACY5Va4ufnmm2Wz2SRJgwcP9mY9AAAA1eLWXcH9CXcFBwDA95jZfzPnBgAA+JUq3Tjz+eef13vvvafU1FTl5eW5vH/q1CmPFQcAAGCW6ZGb6dOna9asWRo+fLjS09OVmJiooUOHymq16oknnvBCiQAAAO4zHW7efvttzZ8/Xw888IACAwM1YsQIvfbaa5o6dao2btzojRoBAADcZjrcHDt2TB07dpQkhYeHKz09XZJ04403asWKFZ6tDgAAwCTT4eaSSy7R0aNHJUktW7bUZ599JknasmWL83RxAACAmmI63AwZMkTJycmSpPHjx+vxxx9X69atNXLkSI0ZM6ZKRcydO1fNmjVTSEiIEhIStHnzZreWW7x4sSwWC9feAQAATtW+zs3GjRv1zTffqHXr1ho0aJDp5ZcsWaKRI0dq3rx5SkhI0OzZs7V06VLt27dPMTExFS73008/6corr1SLFi1Ur149LV++3K3P4zo3AAD4HjP7b1PhJj8/X3fffbcef/xxNW/evNqFSlJCQoJ69uypOXPmSJIcDofi4uI0fvx4TZ48udxl7Ha7/vjHP2rMmDH66quvdObMGcINAAB+zGsX8QsKCtIHH3xQreJKysvL07Zt29SvX7/zBVmt6tevnzZs2FDhck8++aRiYmI0duzYC35Gbm6uMjIyXB4AAMB/mZ5zM3jwYLdHSS7k5MmTstvtio2NdWmPjY3VsWPHyl3m66+/1uuvv6758+e79RlJSUmKjIx0PuLi4qpdNwAAqL1MX6G4devWevLJJ7V+/Xp1795dYWFhLu9PmDDBY8WVlpmZqTvuuEPz589XgwYN3FpmypQpSkxMdL7OyMgg4AAA4MdMh5vXX39dUVFR2rZtm7Zt2+bynsViMRVuGjRooICAAKWlpbm0p6WlqVGjRmX6HzhwQD/99JPLxGWHwyFJCgwM1L59+9SyZUuXZWw2G6eoAwDwO2I63Bw6dMhjHx4cHKzu3bsrOTnZeTq3w+FQcnKy7rvvvjL9L7vsMu3atcul7bHHHlNmZqZeeOEFRmQAAID5OTdPPvmkcnJyyrSfPXtWTz75pOkCEhMTNX/+fC1atEh79uzRvffeq+zsbI0ePVqSNHLkSE2ZMkWSFBISog4dOrg8oqKiVLduXXXo0EHBwcGmPx8AAPiXKt04Mysrq0x7Tk6Opk+fbrqA4cOHa+bMmZo6daq6dOmiHTt2aNWqVc5Jxqmpqc4rIgMAAFyI6Yv4Wa1WpaWlqWHDhi7ta9as0fDhw3XixAmPFuhpXOcGAADfY2b/7facm+joaFksFlksFrVp00YWi8X5nt1uV1ZWlu65556qVw0AAOABboeb2bNnyzAMjRkzRtOnT1dkZKTzveDgYDVr1ky9e/f2SpEAAADucjvcjBo1SpLUvHlzXXHFFQoMNH2iFQAAgNe5NaE4Ozvb+bxv374XDDYl+wMAAFxMboWbVq1aacaMGZWetWQYhlavXq0bbrhBL774oscKBAAAMMOtY0tr167VI488oieeeEKdO3dWjx491KRJE4WEhOj06dPavXu3NmzYoMDAQE2ZMkV33323t+sGAAAol6lTwVNTU7V06VJ99dVXOnz4sM6ePasGDRqoa9eu6t+/v2644QYFBAR4s95q41RwAAB8j5n9t+nr3Pg6wg0AAL7HzP7b9BWKAQAAajPCDQAA8CuEGwAA4FcINwAAwK8QbgAAgF8xHW6aNWumJ598Uqmpqd6oBwAAoFpMh5tJkyZp2bJlatGiha699lotXrxYubm53qgNAADAtCqFmx07dmjz5s1q166dxo8fr8aNG+u+++5TSkqKN2oEAABwW7Uv4pefn69///vfevjhh5Wfn6+OHTtqwoQJGj16tCwWi6fq9Bgu4gcAgO8xs/92695S5cnPz9eHH36oBQsWaPXq1br88ss1duxY/fzzz3rkkUf0+eef65133qnq6gEAAKrEdLhJSUnRggUL9O6778pqtWrkyJF6/vnnddlllzn7DBkyRD179vRooQAAAO4wHW569uypa6+9Vi+//LIGDx6soKCgMn2aN2+uW2+91SMFAgAAmGE63Bw8eFDx8fGV9gkLC9OCBQuqXBQAAEBVmT5b6vjx49q0aVOZ9k2bNmnr1q0eKQoAAKCqTIebcePG6ciRI2Xaf/nlF40bN84jRQEAAFSV6XCze/dudevWrUx7165dtXv3bo8UBQAAUFWmw43NZlNaWlqZ9qNHjyowsMpnlgMAAHiE6XBz3XXXacqUKUpPT3e2nTlzRo888oiuvfZajxYHAABglumhlpkzZ+qPf/yj4uPj1bVrV0nSjh07FBsbq7feesvjBQIAAJhhOtw0bdpUO3fu1Ntvv61vv/1WderU0ejRozVixIhyr3kDAABwMVVpkkxYWJjuuusuT9cCAABQbVWeAbx7926lpqYqLy/Ppf2mm26qdlEAAABVVaUrFA8ZMkS7du2SxWJR8U3Fi+8AbrfbPVshAACACabPlpo4caKaN2+u48ePKzQ0VN9//73WrVunHj16aO3atV4oEQAAwH2mR242bNigNWvWqEGDBrJarbJarbryyiuVlJSkCRMmaPv27d6oEwAAwC2mR27sdrvq1q0rSWrQoIF+/fVXSVJ8fLz27dvn2eoAAABMMj1y06FDB3377bdq3ry5EhIS9Oyzzyo4OFivvvqqWrRo4Y0aAQAA3GY63Dz22GPKzs6WJD355JO68cYbddVVV6l+/fpasmSJxwsEAAAww2IUn+5UDadOnVJ0dLTzjKnaLCMjQ5GRkUpPT1dERERNlwMAANxgZv9tas5Nfn6+AgMD9d1337m016tXzyeCDQAA8H+mwk1QUJAuvfRSrmUDAABqLdNnSz366KN65JFHdOrUKW/UAwAAUC2mJxTPmTNH+/fvV5MmTRQfH6+wsDCX91NSUjxWHAAAgFmmw83gwYO9UAYAAIBneORsKV/C2VIAAPger50tBQAAUNuZPixltVorPe2bM6kAAEBNMh1uPvzwQ5fX+fn52r59uxYtWqTp06d7rDAAAICq8Nicm3feeUdLlizRRx995InVeQ1zbgAA8D01Mufm8ssvV3JysqdWBwAAUCUeCTdnz57Viy++qKZNm3pidQAAAFVmes5N6RtkGoahzMxMhYaG6j//+Y9HiwMAADDLdLh5/vnnXcKN1WpVw4YNlZCQoOjoaI8WBwAAYJbpcHPnnXd6oQwAAADPMD3nZsGCBVq6dGmZ9qVLl2rRokUeKQoAAKCqTIebpKQkNWjQoEx7TEyMnn76aY8UBQAAUFWmw01qaqqaN29epj0+Pl6pqakeKQoAAKCqTIebmJgY7dy5s0z7t99+q/r163ukKAAAgKoyHW5GjBihCRMm6IsvvpDdbpfdbteaNWs0ceJE3Xrrrd6oEQAAwG2mz5Z66qmn9NNPP+maa65RYGDh4g6HQyNHjmTODQAAqHFVvrfUjz/+qB07dqhOnTrq2LGj4uPjPV2bV3BvKQAAfI+Z/bfpkZtirVu3VuvWrau6OAAAgFeYnnPzl7/8Rc8880yZ9meffVa33HKLR4oCAACoKtPhZt26dRowYECZ9htuuEHr1q3zSFEAAABVZTrcZGVlKTg4uEx7UFCQMjIyPFIUAABAVZkONx07dtSSJUvKtC9evFh/+MMfqlTE3Llz1axZM4WEhCghIUGbN2+usO/8+fN11VVXKTo6WtHR0erXr1+l/QEAwO+L6QnFjz/+uIYOHaoDBw7o6quvliQlJyfr3XffLfeeUxeyZMkSJSYmat68eUpISNDs2bPVv39/7du3TzExMWX6r127ViNGjFCfPn0UEhKiZ555Rtddd52+//57NW3a1PTnAwAA/1KlU8FXrFihp59+2nkqeKdOnTRt2jT17dvXdAEJCQnq2bOn5syZI6nwmjlxcXEaP368Jk+efMHl7Xa7oqOjNWfOHI0cOfKC/TkVHAAA3+P1U8EHDhyogQMHlmn/7rvv1KFDB7fXk5eXp23btmnKlCnONqvVqn79+mnDhg1urSMnJ0f5+fmqV69eue/n5uYqNzfX+Zp5QQAA+DfTc25Ky8zM1KuvvqpevXqpc+fOppY9efKk7Ha7YmNjXdpjY2N17Ngxt9bx8MMPq0mTJurXr1+57yclJSkyMtL5iIuLM1UjAADwLVUON+vWrdPIkSPVuHFjzZw5U1dffbU2btzoydouaMaMGVq8eLE+/PBDhYSElNtnypQpSk9Pdz6OHDlyUWsEAAAXl6nDUseOHdPChQv1+uuvKyMjQ8OGDVNubq6WL19epTOlGjRooICAAKWlpbm0p6WlqVGjRpUuO3PmTM2YMUOff/65OnXqVGE/m80mm81mujYAAOCb3B65GTRokNq2baudO3dq9uzZ+vXXX/XSSy9V68ODg4PVvXt3JScnO9scDoeSk5PVu3fvCpd79tln9dRTT2nVqlXq0aNHtWoAAAD+xe2Rm08++UQTJkzQvffe69F7SiUmJmrUqFHq0aOHevXqpdmzZys7O1ujR4+WJI0cOVJNmzZVUlKSJOmZZ57R1KlT9c4776hZs2bOuTnh4eEKDw/3WF0AAMA3uT1y8/XXXyszM1Pdu3dXQkKC5syZo5MnT1a7gOHDh2vmzJmaOnWqunTpoh07dmjVqlXOScapqak6evSos//LL7+svLw8/fWvf1Xjxo2dj5kzZ1a7FgAA4PtMX+cmOztbS5Ys0RtvvKHNmzfLbrdr1qxZGjNmjOrWreutOj2G69wAAOB7zOy/q3QRv2L79u3T66+/rrfeektnzpzRtddeq48//riqq7soCDcAAPgeM/vval3npm3btnr22Wf1888/6913363OqgAAADyiWiM3voiRGwAAfM9FG7kBAACobQg3AADArxBuAACAXyHcAAAAv0K4AQAAfoVwAwAA/ArhBgAA+BXCDQAA8CuEGwAA4FcINwAAwK8QbgAAgF8h3AAAAL9CuAEAAH6FcAMAAPwK4QYAAPgVwg0AAPArhBsAAOBXCDcAAMCvEG4AAIBfIdwAAAC/QrgBAAB+hXADAAD8CuEGAAD4FcINAADwK4QbAADgVwg3AADArxBuAACAXyHcAAAAv0K4AQAAfoVwAwAA/ArhBgAA+BXCDQAA8CuEGwAA4FcINwAAwK8QbgAAgF8h3AAAAL9CuAEAAH6FcAMAAPwK4QYAAPgVwg0AAPArhBsAAOBXCDcAAMCvEG4AAIBfIdwAAAC/QrgBAAB+hXADAAD8CuEGAAD4FcINAADwK4QbAADgVwg3AADArxBuAACAXyHcAAAAv0K4AQAAfoVwAwAA/ArhBgAA+BXCDQAA8CuEGwAA4FcINwAAwK8QbgAAgF8h3AAAAL9SK8LN3Llz1axZM4WEhCghIUGbN2+utP/SpUt12WWXKSQkRB07dtTKlSsvUqUAAKC2q/Fws2TJEiUmJmratGlKSUlR586d1b9/fx0/frzc/t98841GjBihsWPHavv27Ro8eLAGDx6s77777iJXDgAAaiOLYRhGTRaQkJCgnj17as6cOZIkh8OhuLg4jR8/XpMnTy7Tf/jw4crOztb//vc/Z9vll1+uLl26aN68eRf8vIyMDEVGRio9PV0RERGe2xAAAOA1ZvbfgReppnLl5eVp27ZtmjJlirPNarWqX79+2rBhQ7nLbNiwQYmJiS5t/fv31/Lly8vtn5ubq9zcXOfr9PR0SYX/kAAAgG8o3m+7MyZTo+Hm5MmTstvtio2NdWmPjY3V3r17y13m2LFj5fY/duxYuf2TkpI0ffr0Mu1xcXFVrBoAANSUzMxMRUZGVtqnRsPNxTBlyhSXkR6Hw6FTp06pfv36slgsHv2sjIwMxcXF6ciRI355yMvft0/y/21k+3yfv28j2+f7vLWNhmEoMzNTTZo0uWDfGg03DRo0UEBAgNLS0lza09LS1KhRo3KXadSokan+NptNNpvNpS0qKqrqRbshIiLCb/+llfx/+yT/30a2z/f5+zayfb7PG9t4oRGbYjV6tlRwcLC6d++u5ORkZ5vD4VBycrJ69+5d7jK9e/d26S9Jq1evrrA/AAD4fanxw1KJiYkaNWqUevTooV69emn27NnKzs7W6NGjJUkjR45U06ZNlZSUJEmaOHGi+vbtq+eee04DBw7U4sWLtXXrVr366qs1uRkAAKCWqPFwM3z4cJ04cUJTp07VsWPH1KVLF61atco5aTg1NVVW6/kBpj59+uidd97RY489pkceeUStW7fW8uXL1aFDh5raBCebzaZp06aVOQzmL/x9+yT/30a2z/f5+zayfb6vNmxjjV/nBgAAwJNq/ArFAAAAnkS4AQAAfoVwAwAA/ArhBgAA+BXCjUlz585Vs2bNFBISooSEBG3evLnS/kuXLtVll12mkJAQdezYUStXrrxIlVaNme1buHChLBaLyyMkJOQiVmvOunXrNGjQIDVp0kQWi6XC+5GVtHbtWnXr1k02m02tWrXSwoULvV5nVZndvrVr15b5/iwWS4W3MqlpSUlJ6tmzp+rWrauYmBgNHjxY+/btu+ByvvQbrMo2+tLv8OWXX1anTp2cF3fr3bu3Pvnkk0qX8aXvz+z2+dJ3V54ZM2bIYrFo0qRJlfarie+QcGPCkiVLlJiYqGnTpiklJUWdO3dW//79dfz48XL7f/PNNxoxYoTGjh2r7du3a/DgwRo8eLC+++67i1y5e8xun1R4BcqjR486H4cPH76IFZuTnZ2tzp07a+7cuW71P3TokAYOHKg///nP2rFjhyZNmqS//e1v+vTTT71cadWY3b5i+/btc/kOY2JivFRh9Xz55ZcaN26cNm7cqNWrVys/P1/XXXedsrOzK1zG136DVdlGyXd+h5dccolmzJihbdu2aevWrbr66qt188036/vvvy+3v699f2a3T/Kd7660LVu26JVXXlGnTp0q7Vdj36EBt/Xq1csYN26c87XdbjeaNGliJCUlldt/2LBhxsCBA13aEhISjLvvvturdVaV2e1bsGCBERkZeZGq8yxJxocfflhpn3/84x9G+/btXdqGDx9u9O/f34uVeYY72/fFF18YkozTp09flJo87fjx44Yk48svv6ywj6/9BktzZxt9+XdoGIYRHR1tvPbaa+W+5+vfn2FUvn2++t1lZmYarVu3NlavXm307dvXmDhxYoV9a+o7ZOTGTXl5edq2bZv69evnbLNarerXr582bNhQ7jIbNmxw6S9J/fv3r7B/TarK9klSVlaW4uPjFRcXd8H/Q/E1vvT9VUeXLl3UuHFjXXvttVq/fn1Nl+O29PR0SVK9evUq7OPr36E72yj55u/Qbrdr8eLFys7OrvD2Ob78/bmzfZJvfnfjxo3TwIEDy3w35amp75Bw46aTJ0/Kbrc7r5xcLDY2tsI5CseOHTPVvyZVZfvatm2rN954Qx999JH+85//yOFwqE+fPvr5558vRsleV9H3l5GRobNnz9ZQVZ7TuHFjzZs3Tx988IE++OADxcXF6U9/+pNSUlJqurQLcjgcmjRpkq644opKr07uS7/B0tzdRl/7He7atUvh4eGy2Wy655579OGHH+oPf/hDuX198fszs32+9t1J0uLFi5WSkuK8JdKF1NR3WOO3X4Dv6t27t8v/kfTp00ft2rXTK6+8oqeeeqoGK4M72rZtq7Zt2zpf9+nTRwcOHNDzzz+vt956qwYru7Bx48bpu+++09dff13TpXiNu9voa7/Dtm3baseOHUpPT9f777+vUaNG6csvv6wwAPgaM9vna9/dkSNHNHHiRK1evbrWT3wm3LipQYMGCggIUFpamkt7WlqaGjVqVO4yjRo1MtW/JlVl+0oLCgpS165dtX//fm+UeNFV9P1FRESoTp06NVSVd/Xq1avWB4b77rtP//vf/7Ru3Tpdcskllfb1pd9gSWa2sbTa/jsMDg5Wq1atJEndu3fXli1b9MILL+iVV14p09cXvz8z21dabf/utm3bpuPHj6tbt27ONrvdrnXr1mnOnDnKzc1VQECAyzI19R1yWMpNwcHB6t69u5KTk51tDodDycnJFR5P7d27t0t/SVq9enWlx19rSlW2rzS73a5du3apcePG3irzovKl789TduzYUWu/P8MwdN999+nDDz/UmjVr1Lx58wsu42vfYVW2sTRf+x06HA7l5uaW+56vfX/lqWz7Sqvt390111yjXbt2aceOHc5Hjx49dPvtt2vHjh1lgo1Ug9+hV6cr+5nFixcbNpvNWLhwobF7927jrrvuMqKiooxjx44ZhmEYd9xxhzF58mRn//Xr1xuBgYHGzJkzjT179hjTpk0zgoKCjF27dtXUJlTK7PZNnz7d+PTTT40DBw4Y27ZtM2699VYjJCTE+P7772tqEyqVmZlpbN++3di+fbshyZg1a5axfft24/Dhw4ZhGMbkyZONO+64w9n/4MGDRmhoqPHQQw8Ze/bsMebOnWsEBAQYq1atqqlNqJTZ7Xv++eeN5cuXGz/++KOxa9cuY+LEiYbVajU+//zzmtqESt17771GZGSksXbtWuPo0aPOR05OjrOPr/8Gq7KNvvQ7nDx5svHll18ahw4dMnbu3GlMnjzZsFgsxmeffWYYhu9/f2a3z5e+u4qUPluqtnyHhBuTXnrpJePSSy81goODjV69ehkbN250vte3b19j1KhRLv3fe+89o02bNkZwcLDRvn17Y8WKFRe5YnPMbN+kSZOcfWNjY40BAwYYKSkpNVC1e4pPfS79KN6mUaNGGX379i2zTJcuXYzg4GCjRYsWxoIFCy563e4yu33PPPOM0bJlSyMkJMSoV6+e8ac//clYs2ZNzRTvhvK2TZLLd+Lrv8GqbKMv/Q7HjBljxMfHG8HBwUbDhg2Na665xrnjNwzf//7Mbp8vfXcVKR1uast3aDEMw/Du2BAAAMDFw5wbAADgVwg3AADArxBuAACAXyHcAAAAv0K4AQAAfoVwAwAA/ArhBgAA+BXCDQCva9asmWbPnu12/7Vr18pisejMmTNeqwmA/yLcAHCyWCyVPp544okqrXfLli2666673O7fp08fHT16VJGRkVX6PDPmz5+vzp07Kzw8XFFRUeratauSkpKc7995550aPHiw1+sA4DncFRyA09GjR53PlyxZoqlTp2rfvn3OtvDwcOdzwzBkt9sVGHjh/4w0bNjQVB3BwcEX5c7Pb7zxhiZNmqQXX3xRffv2VW5urnbu3KnvvvvO658NwHsYuQHg1KhRI+cjMjJSFovF+Xrv3r2qW7euPvnkE3Xv3l02m01ff/21Dhw4oJtvvlmxsbEKDw9Xz5499fnnn7ust/RhKYvFotdee01DhgxRaGioWrdurY8//tj5funDUgsXLlRUVJQ+/fRTtWvXTuHh4br++utdwlhBQYEmTJigqKgo1a9fXw8//LBGjRpV6ajLxx9/rGHDhmns2LFq1aqV2rdvrxEjRuif//ynJOmJJ57QokWL9NFHHzlHr9auXStJOnLkiIYNG6aoqCjVq1dPN998s3766SfnuotHfKZPn66GDRsqIiJC99xzj/Ly8px93n//fXXs2FF16tRR/fr11a9fP2VnZ5v81gCURrgBYMrkyZM1Y8YM7dmzR506dVJWVpYGDBig5ORkbd++Xddff70GDRqk1NTUStczffp0DRs2TDt37tSAAQN0++2369SpUxX2z8nJ0cyZM/XWW29p3bp1Sk1N1YMPPuh8/5lnntHbb7+tBQsWaP369crIyNDy5csrraFRo0bauHGjDh8+XO77Dz74oIYNG+YMUkePHlWfPn2Un5+v/v37q27duvrqq6+0fv16Z+AqGV6Sk5O1Z88erV27Vu+++66WLVum6dOnSyocJRsxYoTGjBnj7DN06FBxuz/AA7x+a04APmnBggVGZGSk83XxXceXL19+wWXbt29vvPTSS87X8fHxxvPPP+98Lcl47LHHnK+zsrIMScYnn3zi8lmnT5921iLJ2L9/v3OZuXPnGrGxsc7XsbGxxr/+9S/n64KCAuPSSy81br755grr/PXXX43LL7/ckGS0adPGGDVqlLFkyRLDbrc7+4waNarMOt566y2jbdu2hsPhcLbl5uYaderUMT799FPncvXq1TOys7OdfV5++WUjPDzcsNvtxrZt2wxJxk8//VRhfQCqhpEbAKb06NHD5XVWVpYefPBBtWvXTlFRUQoPD9eePXsuOHLTqVMn5/OwsDBFRETo+PHjFfYPDQ1Vy5Ytna8bN27s7J+enq60tDT16tXL+X5AQIC6d+9eaQ2NGzfWhg0btGvXLk2cOFEFBQUaNWqUrr/+ejkcjgqX+/bbb7V//37VrVtX4eHhCg8PV7169XTu3DkdOHDA2a9z584KDQ11vu7du7eysrJ05MgRde7cWddcc406duyoW265RfPnz9fp06crrReAe5hQDMCUsLAwl9cPPvigVq9erZkzZ6pVq1aqU6eO/vrXv7ocnilPUFCQy2uLxVJpoCivv+GhQzgdOnRQhw4d9Pe//1333HOPrrrqKn355Zf685//XG7/rKwsde/eXW+//XaZ99ydPB0QEKDVq1frm2++0WeffaaXXnpJjz76qDZt2qTmzZtXa3uA3ztGbgBUy/r163XnnXdqyJAh6tixoxo1auQysfZiiIyMVGxsrLZs2eJss9vtSklJMb2uP/zhD5LknNgbHBwsu93u0qdbt2768ccfFRMTo1atWrk8Sp6+/u233+rs2bPO1xs3blR4eLji4uIkFQa0K664QtOnT9f27dsVHBysDz/80HTNAFwRbgBUS+vWrbVs2TLt2LFD3377rW677bZKR2C8Zfz48UpKStJHH32kffv2aeLEiTp9+rQsFkuFy9x777166qmntH79eh0+fFgbN27UyJEj1bBhQ/Xu3VtS4ZleO3fu1L59+3Ty5Enl5+fr9ttvV4MGDXTzzTfrq6++0qFDh7R27VpNmDBBP//8s3P9eXl5Gjt2rHbv3q2VK1dq2rRpuu+++2S1WrVp0yY9/fTT2rp1q1JTU7Vs2TKdOHFC7dq18/o/K8DfEW4AVMusWbMUHR2tPn36aNCgQerfv7+6det20et4+OGHNWLECI0cOVK9e/dWeHi4+vfvr5CQkAqX6devnzZu3KhbbrlFbdq00V/+8heFhIQoOTlZ9evXlyT9v//3/9S2bVv16NFDDRs21Pr16xUaGqp169bp0ksv1dChQ9WuXTuNHTtW586dU0REhHP911xzjVq3bq0//vGPGj58uG666SbnhRAjIiK0bt06DRgwQG3atNFjjz2m5557TjfccINX/zkBvwcWw1MHrQGgFnE4HGrXrp2GDRump5566qJ//p133qkzZ85c8HR0AJ7HhGIAfuHw4cP67LPPnFcanjNnjg4dOqTbbrutpksDcJFxWAqAX7BarVq4cKF69uypK664Qrt27dLnn3/OHBbgd4jDUgAAwK8wcgMAAPwK4QYAAPgVwg0AAPArhBsAAOBXCDcAAMCvEG4AAIBfIdwAAAC/QrgBAAB+hXADAAD8yv8Hy+NXgsDY8okAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure()\n", "plt.ylabel(\"Loss (training and validation)\")\n", "plt.xlabel(\"Training Steps\")\n", "plt.ylim([0,2])\n", "plt.plot(hist[\"loss\"])\n", "plt.plot(hist[\"val_loss\"])\n", "\n", "plt.figure()\n", "plt.ylabel(\"Accuracy (training and validation)\")\n", "plt.xlabel(\"Training Steps\")\n", "plt.ylim([0,1])\n", "plt.plot(hist[\"accuracy\"])\n", "plt.plot(hist[\"val_accuracy\"])" ] }, { "cell_type": "markdown", "metadata": { "id": "jZ8DKKgeKv4-" }, "source": [ "在验证数据中的图像上尝试模型:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T21:29:35.606887Z", "iopub.status.busy": "2022-12-14T21:29:35.606380Z", "iopub.status.idle": "2022-12-14T21:29:40.505311Z", "shell.execute_reply": "2022-12-14T21:29:40.504635Z" }, "id": "oi1iCNB9K1Ai" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAGFCAYAAAASI+9IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9x49l2Zbmif22POIquyZchLuHfDorK7OSVdksVncDDRAkOOG/yhEBEpw0CLKqq1lZleLJeCFcmja76sgtOTg3IosjvsFrkANfAQvADeZu1+yevdda3/q+b4mcc+ZjfIyP8TE+xscA5P+vX8DH+Bgf42N8jP//iY9J4WN8jI/xMT7Gj/ExKXyMj/ExPsbH+DE+JoWP8TE+xsf4GD/Gx6TwMT7Gx/gYH+PH+JgUPsbH+Bgf42P8GB+Twsf4GB/jY3yMH+NjUvgYH+NjfIyP8WPoP/UL/6kJ5ORJsUflTCFm1MowKyNGJ2LOHFzg7XbP+9uGw5uRwwdHKCKxTOjSoEuNrRSmVBhbIKWh73oOuz2u3RP7lvVsycXJBU/WZ5ytTiBl2uZAVBm9sCzmlnVtKK1EKIEUAgV0bsv7ze/57v1/4evf/s9sHjY8f/lvma2fcdf+A9vD9/iDxvqnvFj/G16e/1tEWSEqS1VLjIXRjxzaA++vX3N59Zrz8pyfnH5Fe3jD1c3fsWlu6cYRbS2z2ZKYEvtmx7594NDc0Pb3jO5AURguzp6hdcnu0NL0LS51+ODBGcRYoEOJQVNUHlsn9LKAyjL4QNONdA87uocdwzYwHjJDA94pluszXn75BX/1v/rv+dv/9v/AkByv3/2B92//iZsPv6cwmWdPn1EtLMkOeNEw+h0pBEyeIYMl9SCjplRzCllhpEGjySmRUsSlQD+O3DzcsW8P1HPD/MSQRI8LBzYPHduHAasryqIiJ/A+4L3DuZHR9Yyuo5oVrNYLpBY450gkhJTEDGMIZCTWllhrMVpjjaIsJEWpqesSaxU+BMZxpG172q7H+0CMkRgFGYnSGq01OUdSilSloa4sbhwY+xbvIymCUhatK2KSjC6is6RSGi0zWXhC9rg4oo1ltXrCYvaE0p4xr59wMj/n5Sef8a//1d/w5RefMqstxgikSEgyKQtigr6P9EOgHzzDGBjGgAsRbTW2KskiEXNg3+zY7Tfc3Lzm5upbxtRil5bVyTOenv6UOBjurh4ozIzPP/8ZEsG713/EDY5Pnn7FYnnBgONq+55/+PX/yO3993zy8hUXT54ijMKnRD8EMoq/+OVP+OLzV/zu19/zm3/6hg9vv2e/vWFWa85PFxibyGIke0gDNId7Ds0l82XJi88+5ZOXv+DzL/6Wi/MvWMxXzEtLKQMqQGwV3W7L7e3vuLz8I99+8x03t1vKxVNEtWCT9uzChna4odDwL3/6t/zs07/msHW8e3vFv/+n/yv/8O3/g//d//b/yH//7/73/MN//nv+b/+X/zMPd5eIPKIALTVaG4yxSCGZ3nWBEhKtBEWhWK4vOH/xc37+q7/hX/+rv+GnX3zB2WLGzFhU1sioSAFSFAidQQEq0Q49v/ntO95+uKE8yZxclJh4QW5WfP/u7/nj6//At+9+w/ubN5ADRWFIJMbo6F1H17fEMSGdJPlEiJFhGGmanhg9xgq0FkipOF0/5asv/wWfvvgZF+evGAbHf/yf/+98/c0/oEyDth5SRQyWbt/TtwPJZ2SWlLWmnhvKucbOFTF7Qhhxncf1EbxARAVSkA1kkckklJaYQpNzwnlHjInHP/x/1yr/yUnh6v09wXv6psUqybNzgT2d41NApIhIIEMgOU9KAV0bVs8K5ktBtZREqYlCgVKgBCEmXAgooDQatGYUCiUlxmSKIlLPIkYpqqrC5cwoJSllfD9iYsaUAmkkGUXM4OIMF9bktIDUEMaBvmlp95qxv2BhX3K6/JLZ/CWhyIjiEcxIjnP0MEMry3J2wheffM7FakGtCpamJqgK1a7IwxbXbRm6A6PfE1Kk7Tu6/kDXdwQPRlUYqXEu4FxL33eMoyMhIRlSSpAdJIPAUqk5xiqUhiwjOQWCH0gkpDFUsyWlKil0YOgDQmYO+wc2j/fsHhvMrGA5X7FYzNiUCWMS1UwxX1RkW9I5aLst7aFF+JE8KuIgUMkyLzKzAkqdKbRACshACBHnPDEmcoIYM85lIgkXElIaZjODlhatLW50+BAIKSGVop7NWKxm2FJT1paUIzHn6UBrhRagkyXEiA+OvvcEbQhe4RyYQdIPPWVpKcsCa0uczygX6fuRrh9IUSGExphMMpEYAzEGRJIYYTCiwJYrovH44BBSoo3BhURIIyIJpJQYo9F2RswJOYwYW7Kav+TZ0095evEZ56cvmNdLTk/OWC5nCJGAhECS05TghJBIAVqDtRlERltJVRtCgiQEWQiyUGQMGYGQhq5reHi4pW8d3c5R2xH7PFPOF2g1p9Q1F2dzjILKvqJtO0IcOLhr0AXEQBhGuv2eh9s3uOGRkBKjD7gQEFKg4wPt4wc29yM6ep6cnHA+K7BaUhSawW3Zdw+M/UDoE9GPKCoKtaaQF4i4oNsntrIlOAmLGXZhIUcO/Yb9/pZm+0DoBub1knBREmSJB+bCInNNGmtEFNTFGYuTcx4e33F1/wF3ODAbM9d//Jb/GP5H3r5+T7c5IJzE6BotJVppZvWK2fyEsqwwVuFcy6G5J2eHKC2mnjOfrzmZr1lUCypTIhHkHAHIMpEFZCng+BFJRCmYr5c8QzKbw2Kp6FrNY7NlN95w335gDC3WKNyQ6ZqIEBGhAmL0hG7A+wgopFQINNqALSIpKWwhkHI6TylPf7esJU+fnxBCYv3NkqIoCGnAuanoJsNsXrFerShMiVGGkEZCHBA2IURCZBAItDbI0uBzJPhEyhmhBMh/vvjF8X8CEOJPu+v/5KTw+ttvCC4zNJlFPWNVLognJb0fCSFSZoVyGRUEGg1zg5mXfPa84JMnlj5oWqcYHAwu0nQdh9AijMbOaywwZM1iXrFYFMyXkvkyUhYKkQp6D9shkZ0H5yAntBWILAlofBKM/pSYPqMq70gzi5YVIkCRn4J+yen855wuvkTXGl8Fgrgjpmuke4ZOL1jVBev5jGenC+ryE1IOdONAr+cUwymiu8LvO7ruERcGfAyEkPA+MA4BJSWFXWCUYOxHxuBouwEXEkqXCGEReSSR8DlNl4lZUtVzqoUm28A4XuPGLVmCXcxYn33OXL+k2fQ83t2zP9yy295z+f573nz3NU9fPme2tCwXBco6UB5ZDJiyQlclURSkkGkPLa4ZcW1ibCUqV5zMIqtZYllnci0xSoJIDM7RDQPOR2ISxKxISRGSxDuJEpq6MggUOQtS9oSYSCmjtKSsLLN5hbESocBHT5SClBNSK6SSSAXeew6HhqEfCGFkQCDE9PBqLanqgvPzM5bLEqUNShl8yHSdI2eNkpBSJMZMCIHoEyqWFEhsNacqSwSemAdsaajnc8aQ2e17fO+QPjKrak7WZ0hV0A8Ra2c8e/aKzz77CT/7yc959eJTCltgtMKojFagxFStpizJWSLEdPiNyQgJtpBkIAtJQtIPjkM3kJIEoVCyoLQSaxcIWRG8YOx7XN2hpGO5KqjLEypTs14qZpXm5Scrds2B333/HXf3d1R2DdEjsyD5yMPNJY/3iZQkwWcGfyDlAb9/oLndUugTCjmjXsxQooQEwUdaB81uoDlscF1PZSuW8xPm1XMq/RwRFuy3HT48Mo4RCZSFIbmRd/fv2Fy9Zbx7h28bbDljWczZtR1u6FhqzUl1QpksFCWnJy/R9ZzHdsM3r39N93jHwgs+/O5r3nz9lr4PDK1DS02hLUYrrNUs6hNOVp9QzRfY0nDobunClpAidr5ktX7Ki2evePX0JRerM+ZljRGRnBJZBECQVCYJgZCKhKALni441ExyYueczkuWhea927Ed7nnsbtk2D8QcqYsFhEA3elIeUTKSukTYj7gcobRYbShNgTUFxhggobQgxEDXdoSYGH3PGBqS6FBGYorpDvODIgSJEBljMqfrBafLU5bzFVYbtvstD9s7XOwJOZBSImeBUhKFJDnBmEdynjoLMiAyAoFkehallGT+NEejPzkp7Jq/oy7P+Ozzv+TZ2SuenFoKmdh3nhgSS2MxwrIsS3zyPPiOrhsJSSOUoNSASvjgicEhRKKuSxAVSkpYASGzrBXrhWZeCYTKhOQQeUrw82M7VosaqwVCC2JOE6wVJCKfMK9r5l89hbgB1aFNYlHOycnw+v2O68fXzPRTFos1zR7afUdlE3WhaEWPyA1SZqoKhC2Q1mLWlrI1lI2kaKBzjmE8EEJESoMyipISiUZLQ44RHwaC9+Qcp+5HGZQsyLIgyYwHkAFVZ2YnC15+8pfM6qdk/x/58GFHUQWWJxV/8cW/5vOn/w03r7d8/U+/5+3b33J981tur7/lP/+X/xNftF/x+U8+o+tuaJqGmHZI03Jwc+YnSzKCshTM5xW7oSeEnq4TJBdxnWDsEvJcU9iSnBOZwOjG44cnxIzRFfP5EhcKQDK0A0Prjp1EBiGoyhofHKMbaNqOwXXYUmNLg7aGoqzIguPvDIpCUNea+aygbQe2mz1dNyClmh7gHKF3bLd7XAjknIk5ooymqEskEiUVEICAMQKrC7SA4Hra2DP2maqWLJYFL14+46uf/DVKnbPZKO6urrm9+oZZVfL5Fz/l9OwZZbnCmAqlLCcnJ7z85BOeXJyjlUQJEDkhRULL6bgpKaZjJjKQJyhTKgSKlCGkhHOBpunYbPd0g2N0gbbv6bqex+0lTXNHSg3WOogDm7sNblDEdMXMzsnujLBccbJeILUFZsToGF0kS/jk1Reo0nJ9/YZx7Hnx7FMW8xM+XP2em9vvebr+FT/97N8SQ6Jp9ry/+jXXt1+TU6awc7JUoNboQhDCPeVixvr8nNX6BFMqkujp44jMI3OrGai43jVsN4/84dvv2N6+phgf0WHA5x3OZbp2R8oR+/QJ62cv+MWLv2GxfsYhRX739mu+fv0PXN38BukGyroEWZIpqKSgsAmBR0mHLUaKaiRL2O0dd48wjA6fWrJoWMyXnM6f8fknP+Evfvozfv7lp5ytZpRaIZOGnEkxkklkkUkiE1Kk956Hw46H/SM3j1eMrufz5y94ef6SzW7k/jojxnOeLX5Fkw70eWR5nhEvMvvdgdurO8Yhk0NPoaE0c0xh0cfOs7AFOcMwOPpuhFhDEtzcbNjt/jN/95//CyGM7Pb3dG6PVJlZqZjN58xnM6pihtbQDBuCCwxjP3UTvmd0PZmEEILgMnHMZA/aaDKZLBLHrDD9J+RUfMrEsW/48yWF3l2jrUTogLUaKwQqZaLXNC4wDANWecqq5tnJjALBzkAmcXeYsF3nIofW0Q4RVIEyFSFm+t5DTKicMFJjVUKiEUgKI9Eyo6XAINE6Y2VEyKlDiEkhAUUgxUAEiuoMKSxD+JrAI4UGK5YsZwUHbymrEqs1C3tBWUm0PsPYCqkjXjh2wwG36ZB2DvaUmDNVWVJVBboAZQXaWLKYXmfIEGIgh0hwASVBKoUxBUJJYs4gE+SAAKQEXWaUichyJKuOmHfkPGNZr3n17K+xi8TsVDM7W5HrjvIULl6eMrhz+n5F53Zcffg9STzi4zWj7/DDQFaRfjyge4eqRrQuUBqslkgEMWS8C/g+I4KhUAPOOWKMKCWPLWYipYB3jn506INBKEmIA8Pg8EPAjxHvPCFEhBRIpYjHKsZazXxeoq0EmVFKobUhCwCJlBmjwViJrCauw267J4SA0gIh5fFhFoQUGF1PyomYEqiErTRaiGOnkEg5IFBoMipHZB6nBDWOZGEp6xUgKYslp+vPefHsGe3Llsfbr8jJM5+fcLK+4OnTF1hb0vU9Wgm01qQUENqgpESiEFlCggQIOb2vOf9Qgx0TVWL6XJo6Ga0MVVkxjJ5h6NlsHthsNoxui5aglaTtRh63W6S+oao6EJHVYk2hMmWlmecarS3r5RkxFSADPjrMrKSYrwkZtptbbDlDak3KCR96Rn9g9DuCV4wuIOWSqn5BJmGMpbAFhTG0jWUrOlazivWiZlkZChlJYc8wthB3lCZTKDAzRfADh/0jNzeXuN0H5NBS6zlGaLxviNJzk/d0scEsVoTCcnl9ybff/YH9/VuWtSCbEo3lZHVBuTjHqiUyFnTtI21zydnpnE8/e0EMhs2D5+rmhvbwDu8zxtbM7DkvnnzKF68+47MXz3l2vqIqLfr4nOUMOU8wUsiekANjzOz7nqvrW95eveG7D79h395zd/8Fu8/+AhnPePn8lGenP8eNZ1xe3XNzuyWKDmEHlBZsdxuMF1RGURclJ8snhJDYHnYoJVmsFhS2YhwjAkNVLgDBodmx3d5xc/+OtntEm4Aupq7YGoktE9omhA5kKYgiEvAEHCE7Uo4kEjEmUszkKACB1BplNCklfHI/dgRCCKRQIEAJjfgT8aM/OSkgNSFmdk3D3OxZqzllbckY2uh42F2jsuennzzn1dkF67qkHQ3X7YHvb/YMTYfrB3yKJAG2XGILyTBEDvue5DqIA6u6oJvP8Ccr9OkKOzPoEqwUqCQQOJAtIYOLFRmLUQYpEi5uOAwHOmFIeUc3/oEU3tPfrVjoF8yWf80vzr4iCQf0FOUX2PNf0rmBPgyIwoOx7FvH24dLpLCUxQ6CI40JETMZj9KSqlpigiAGcGNL0zSMnUMLTVWWLE9mFEVBZMAnx+g9PgwQBRKBrhS2TCTVchgueXt9Q2lnFOZLfvnTf4M9mWHmml3zht+9//fo0WBPas6eF4zDE25uPXeba94MOx7v31HOC2xVUJYFSgmk1FNdkAPETI4RgoY4dTLkiCQjgZymhKpFgTaaXgkECe8H2qal73s2DxsykZw8RimM1IQx0Q8jIXpyTigjp+HycsknL54gFDT9AeenbvK/ql/IOf6I+SLS9MDnjBYCrRTGGmyhfixEonO46EAKjJUYLdAyE3MmpYQUYKRAC4Um4brI2AW8FzSNZ7sdeHjoWK81rz77lPXiDJX+12w3j1xeXqG05uzsnKIs2e0ecX5gGAd2h8ysLKmsxSqNEpKUgJwROiPFhOXmzDQIFQIhfkgRAqMMdlGwXC3RxjB6j9opUopYrSntCY9x5N1uwPsD+61jXtWUxhCettQLQ+k19VhT2xMuTlcsFnO8HulDoN4JtD1lcC3aZtzQsru/ZLN7R9Nd8+7q/0VIN1j1HKOecXHxFT//+X8HMjD6HTL3yNSxuUvYtGVWWlalYaYzOg+MQ0fq7ukajXY9hfesXmjK1CLGHe3jDe+/+Rq/3fJiccHFYomqM1E5Ply/o/3D7/nm/S3z9VPa+zvah2uKEj795CnjqAi+4NOvfs5nX/6c9eJzCnHKzdUb3r/9LT/58kv+u3/3PzAOkm+/veYff/2f+LX599w/XhGiZzl7xosXn/Lpqxc8OV8zn5UoISAlUpaQpyEvKZN8YnSOMUCzH7h8d8Mfvv4jv/nmP3G3fcu7d294eDzwr//ib/nbv/kCa57hw2f87utL/vDNJX2/JcYN3u+4XXUE01PJxNl8xierZ9zfNXy4uaYbR84uzrGVpZoVnJ0+48svfoHRBd99+0e+f/0HothjDh1CjSgVj89MxMWW2I3U5ZyiqNC2QBqDZ7p/sgSlNSF4xjFipKGwFiUmKDcEj3eenCboiB86BSmQMiP+RLLpn5wUvvjk31AUK05Wn3OxOGVWa4T09H7DQ3/Jm9vfkcaOSv2C2kQKOyPLAh8FzleUxYJlIfFxYAgTzu7agbqoePrqGaXOWOWpjKTSmllhmZcWozIyO3LKBCGRIqNFiRESIQw+S4aU2QdHEzv24z1pOCDjQF08pZDPCW2gFRVPlwUXS01RZpSMbHew3Y504yNj2lEWFcYURCq2jaHdv2ds/yO+OxDHnra9oe2viTEj5Axt9FT1a8VxkoWSJWTL0HmG3tH7PT45hCqQymLkBKelPDD6jrj3tDtDch5yYrb8wPrJH/ns9L/l4sl/gykt5IKb7R/ZfPgaepgva9pmxe31I8FD1At8FnjvQEmqZYEUJYW8gGRpmx7XHJBE6hpkKoijQKUSoyRKCBQZKfKEQKZADh6RIorporZSARLk1HFIxNTath3OOxCJxXLGrC6RJB4e7jCFxhiFHwdubx9wPqCNRVuBtJ6inOYGOU1Y6mpZUtcrjCnwwZHxU3clMkWZ0VkxDJHgA1KWGGPRwpApKAtFXRmqwlIaQ3QVfvS0B8fYO4SCk5Mly9UCY6bZSRaZ1cmC5apCaYktKxIwo8J6hVYTDPS4OaCF4Hy9Yj6rEWTIIIVCCIUCMvmYDCJSRrRISAUaSRbTXGZWV5yenGJtzbOnr9huLrm7/QbvPYJIc7jj9v03zIsVz598SYySZui4vL7h+dMNq/n5NMcRiigFIStcXyCc5GL+FXNxyjjecTh8QLsW+gZ/2POu/XtOlgcuzgRPz37KL//iE0wVaUfN5dU1b7470GeoTp5gVGLICRF6CumxleT56hlIgY9we/OaD+/f8bDZ8+bt9zTbHed6CZWm70cu44ZP5s9Zr58y6jX0A/3tju7uQKDD5ZbtdiQ/Zl6++hU/+cW/5Jc/+5d8+dlPOV2tKbSh3V2wffgZ6/WSVy/OCDmxPBcE85K79jlt3rPvr+nUjkfXsBlGhiiJSRNzROQ4JW0xQXxaZSqtUaYgdxGRMr4LDAdHaEGMFuPX6HBGc+h5ffM7ApJmiLy5uuFy98D5/Cmfrn9C6DO/7v6fjN2ecmkp6jnlyZxiSGhdst1v+f0ffo82EikVZVHzX/7+f4KkeLzbst9vcelAlgO2yEeGkkYrTc6ewEBOMDpHToIYIYSpS045EyMIJFZrRBZ4nwjCIwik9F8VWhMmwUS1moqVCVr6MyaFWVVj7XT4sorsnGNwWy7377h+eMPm/g2xH/ieijiWnJ49Z748xzmFTgWLumJRFqTsGMNAP/Q451nOLeenNZWRGJGwcuoKjBJYJRDkaaAnEkkkEhIXLBlJkIIxBdphoBkOpOxAHGjH35NdQ2n+krJ8RVkoZtbw5HTG+cJTGIGQBT4E9r5l9O/Y9W9pdwrd13RDgjwSxi2Hx2/p2w2jczjX4EMzjW8kCDQpQcoTu0UKS0oWPwpiHEiiZ0wDUitO5hfU9ZrgR0LsyUKQkscNkugEOUi0ShSzhiQ/cOh/x+2DJscTCn1KXT6jq1syI1JKbFlQFTNylJi0QoZIDIngPOPQE8MMK1cYuSKYkVHd0YkGIeM0JDYGEQqsKii0RgIpBHyaBnRKgpYCLY6QeZowc8FU5boYSCFNwywxYetCgpIQo8e3HTYaxKwmxTj92+NI9IEQJCZPVU+KxxmDlWgpKKxGKQ05EDNoBVrlKR9l8GLqDmQWKKlRWiN1xtiELjPlLDKfC+rSYlVFewgcNomTJUQ2jOMt3p8zqkjygcIa5vMapTU+BkYf8ClM/CJjEQn65Ik5EfJE95MqTZfOcX6QJ7yInAGRJpaVmNp3wTRbiCFhjOLkZMl8sSKkTEx73rw7cGgeieOBNDaM/Z44OqSw9L6jbmr6fqTQJ6SoiVHgQ8YFhw8RkTWSAivXzMo1Y3+DGzZo5VnOS7b7HYf9Di03LOY7pHLM5gpTaYIoyUnQtSOCktP1p2gcxJ4UHa4fEVFhRYXWBo1k7BtuL++4vL7l9vqe0PVcKImpLWM34EyC+Yzy9DnndcA0Pbv9A02/I6iBoBwdI6NPrGLPwEg5L3ny9JzzkxWlUcTTE9yz52ijKCuJSwMLIakXCV14hPHkMeDTwKHbsG+39G4kJKZnVPyQoBNJTs+nRKERGBOYVTM+ffGCEDr6/gpxNTCvKpRMXN2+527/PbPFE6r6CVe37/n+zdekpz/hdD7HxZGu6+gOAylBW/a0qy0udygTEMLR9T25CyCmwuHh4ZIUJEMT8S6QVULqRPBgrcBaQbYCKQVKCmKYOvIQMykJlJog75wg+UQKiegTwccpYcRE+CEh/Eg3EscORCCEOpIh/syD5r57SwhLhNSMbuTWe3bdI+8ev+dh+4Fw6BGj4OqyYd/c8ayb8/T5CSLCXCtWpWQ5F9OwNWt8sITkqArFYpZROSHi9IK0yKjjGyuQKFGQRQThGX2mHzJDSjiVcaGjb25puh2EESsbQnrNEB/pecFp9SXPnjzn6cmChY2UaiSnEh8touwQJ/eM3XdsN79h2LYQFdasKfWaaHuc9kTtcLmHNMLxzcreTW9SAB8myCMIjesF5IguHdIElJbMlytevfoFJ6sX3N2/ZrO5IkUzXeKDII+SqpTMV4LVaWa5DGy2/8iH279nvfg3rOf/itOTVyzLcw6P1zxcfYcqYLGoyU5hZYUQgSQnevDQdXRNR1hnyrJkVpYM9cC2ySQxYo3GaI2KBYUqMEYjOGoJsieliFQSpSRSSFKM+OSPfwbnHW50xJyxtkQZRcajtSSmABGymJhZwwApBeq6QCpJ8BGlFPNZxWxpqSoFOZBjwrs0DXWlQBUFQip0EdDWE3PEh4xgmiFNh1xitcKUmSx7QmqJUiBKw8nTNRdnJ4hoGRvF2Gr2+z9yeRmw2jOfPSVFjbU1nZtPVWRWOJ/pOo+SGlvUVGVBGSDHSJIClwJWZdTxgGWYBvR5GjaTBUJMVVwGUpqYUaMPCCGZz0sG72n7nt5tud9d8bi9Ymw2qBhZVEtciNzv3tKOj1z4FyyqFTJNyXPwkqbvOWyvaA63eNppMD77OSJVvL38LZfXf4cQA8J6ss4kqRiiZ98feGw23G22mK5kf4B2rxDBMC8WPFmfo3C4fsPQPNIfHhhjz2gi89mMk/WSKhty1zE8PtLcPhDdyHJdomtFYTSUJbE2DNZixYwTWROkw9sePzYkP0KRwSpumyv8N57nn5zy6vML6qXCqBPMzGCrKcnGmDkceu4399zfXbHfv2fsHsEl0hgZmkfa5o6+PzAGT2n1kWmTSDkRkpjeEyQpKTKZelbys599zvmTikP/lsHfYcuednjN25st97sdv/rpv+Evf/GK9vGW11//Bw6b7xniLbe3l+yGjqYJ9E0L4ZaUHc4FkHuq2k/PRZakPHWUpExSgrI2R/gnkGIkjgkfp2JHC4EpLFYd/0qaKn2pFGVZU1eLaS6QJGEMeOcZxxHnPMM4kt1IjBMdWkzVyVSl/TBoFpL052Yf3d/+Fm1OaFtPNXuFrdYEUeGGgtTXrOyM2azGrJ6iZuf0LvL+7RXPLmacnc+oZwFrBSllUsxYK6hNiVGgREJLhZaKnDI+JkYfSSEipEJpiRIShaD3Pddtx3aAkRne70jt14z9JYch0fc9wq0xnJPFmhHJEGHwE488SggR2iHyfvuBd9vfsd1t8W4O0SLCxHl34hZiS1lNXH/fbQjRI+UEnkTysaWLk5xGSjKRYQgIEsVcUs4swkpm84qyqtHGkkRgCA2+9eSjXqC2htk8Uy8yQk08/H509EMij79jaA8sqs8o7RNkmVF1AusJeSDHCVs3QmCMQOgCkqDZBb4dv8bqd0ihSClgSslcrMidgHFi84QYJxKAjmgtSEiG0dP1AyFOYjOOA9OcpkrE+4CPYWJ1kEEJlDGoUiOtQBpACEJyuHbA+XDkYQuMtZRVQT2bMZ+XLBYGKSJKK4KDujqlLOYTJEdgDDtc3JNyxodEGKbvW6qS2hiMCQg1kFRP1j1CWnKypFhBXFEXK1ZFzU70XG8f+fB+x+Pd96yWn3Ky/gnarglRYO2M1ckTlCoZ+oC1BauTiNASVSiCizRDh4+CRVVQFRaZI4IwgWlSIo6tek7HAedx4CwQGCXxyeN8y4fL97x+95pvvvsdt7f3tAdPHizCS0RMKBxGRbSKQIt3W/a7e8rZkpPTJ6zPLPfFDaO757vvf8fd44Z58fdoOWOzectu/2GCAqUgRE8i0acD+/GGq4f3rD68YbE8Q0pFvZzz8otXEw3UVsicsHVNQNPuOqITRFmic0EXFY33bPsDm2HDPmwROTIISaVrSl2SpeTh/Xuu39wQsyEJyHIg0NL5Lb1vkNow0xZ/uOdm/8B/+E+au/0tf/s3/z1/86u/ZVkvkTGjUMisuLt/5Ne/+T2//cev+fD6it12Ow1NbUnsAmMzsj807NuGRE1RaKSYIJe+80QP2lSAYn/Ys9nfs9ldcn3/hqvH1xzGR27evyO+D4Qo0LpmbB7xzSPD9pHd/QP3D7d8uPvA4Ea23Z4sQJNp9i1dP5CJxOgRIpOzIiWJGyPBZ3JykCNCKBBikmppiTaaolBUtaWuDUZOWqHRe4IPU/EpEtYIcp50OQKFIJNTREmLsZP2S1qN9yPBDaQUp3mKUlM3K9SxwP5zdwrtB6RqcN4yBstC1Ag5Y2afYxcLzquSWWUZi8xIJDQBOWoUCVUk0JkA+DhdRFYatDTEnBl9IilJ1pLR+4kjHz0uT1N4oRSFElQCdu2Gy+17btue1hcEt0EO/0gaLmnHhHMVIn1CXbyiNE+Q2rLrPSG0VHXG2MgY9jRdy9XtG+7ub8jZYMULMJ4sW7y7px9uSGlAFAJlQUs/dStSE/MkliNHjrUi4I+VTZqgJSFRCqTJKJMQKpDkSKDHpxbvItIrZtYyn2nmK0mxDIw5sd+OpAQyS4K4pc0bhBjJIuMZySYiTEbqSFaTkEpxxNeTxI8CNw7sHy+RImELTVEVmKJEak2Ux+s8JjyJECEmicyCLDIhgg+JmDLTo5RJU0lMzlOrGnKaChElEEqCSgQigx9QgFCRmDzeO3IWSG2OD/T09VqbH5XIWUSKwlCVBav5mrJYIJiSihojyiek0qSkSMOI9JFFUbCsNNK2JONJSpN0gRYVKSzoDzXbXCDmNfNiwREVodkd2I573JOCevYZYxi4vd2BKLi4gPlijTEFRaWIIuPSSO8axqFHknHGIIVFSoWVoGWaWnUkZMlRJnQ8NVOlOM2dM/3QsW22vHv/hj9+83vu766RKOpyQciKIEaEG1EpUcgSKWF0DXebS8asedzvef7yFfXM8PD4PfePb7j+8D2Xl7cU5pKyWGBVyUxfkBJH2mlGmoSPI213x+PDG25vLohhYD5fo5VmdXKOkmqakRDJ0UKzpYuR0Q8EGfGtowl7ds0ju7HDiQSFIkVJJzRWWOZljcyZ/f0dj487glIkLRE6gvK4PBLxGJ0oVD5qTBLf/PG3vL+5YRgyIhV89vwzzlenzMoKKzNdN3B3u2OzGQhOQ7IgA6BRckGKNftd4OGxJSVBGRSZgb7vuL/bMIyJk9VTjCm5vHnDu8s/8ubDb7m8/Y77x1t2zYam3TEOLUYb5vWSqw9/QPrIh6tvGf3kSrBvtxhTUNsKaQpy8Iz9SLdtJ+q5meDVHAUhCJybKLFCRpSOGKPQeoJ0pJIUVlKUhro2VFWJlQaZFeQO73uCH/HRI8WIEiNBZlRW5Dh1zMZojBKYFNDR4UbJKBPBh+OZm5ICQkL8XyApWJvJBHzoEH1LVQ3M6hOerl6gTyTrZYFUI+8ev+VweGQtX3K2XFMZxRgF0ktiUhOdKiVyYHqxWUBMGCsoJDTBsetb2nGkiwGfHUE4LJKFKOn6G673X3PfXLIdWoLfY+IdhAPOJQhrZuKCwpbU2mB0ZtseuPM7lImgBwZ/Szfc4HcjsRFU5ZKiXBJpcGFk9CNjeCCkkURG6Mi8qujxjE6QoiB5RY4KmSWSQM6BSbAy/eJjBOcSSjl87PBpi0maTI8UCaPA2AlGWS2XLE4Ueh7xB8nYRrRJ00DcOoTtQe1w6YGQJElIdFFQLyqSiOhoJuZQKqfWNEUSCrIky4z3icTIGDxKGFS0CGGPF/7UZk6insmyAWmmils4YvZHdk0+UvwmTD8C2ki0VWQRiDkwuMCYAkpntOVYNSXKYtI55ARd25NyQApB8IHHdgfCU1U189kcYw1KSYZxxB2pqNZYbFEjsIztSHaBWVGzLAtUUZONJciGIHsQJdnNOWwM487Tly3LKhPHAG5GLZaIYsbZ7CvOVi9wyfAopq5sv+2BiounC8pZRciJfXtgu7tj7PtphpMVWiWEyCwKjS3Ej/OEnNOUBI4sJCkSQsSJqhwch8OBu9t7dpsGP8C8OuF8dYJzB7a7G7rDlvEQCWMkZ4GLgX3T8XAYeHe1oyhec/7NmrLSNMMdu/0dzcOI9TWFrFmoNS+f/5yz01eMzk02DKnDxT332+84tHd0+0va3Rtqk7EiYs0KLeeooqAsLDENuDQQ04hPB7rxnnH0PO48IQZG5+idw5Rz6qXGh0SvLCIVaFFjZMYLhSchlUDIxH5o6eOAOFbHg0t0eaQuSmpb0nSOx+6Wb37ze5acE38Vmf2qpjIFEYcpNavTM5598hk+Zh421zT9A9XihPnJJxT1Bc5r9rsRIRS6C/TjLZvdDW/evqPvPS9f/Iz54pTvXv+er7//J16//y23D+8IMSOFpjAr5mZJij1x2PPdd//EH7/9I/24J1vPXFp0LplVSxbLNS54tocdfZ9JMeBdJveQIoSJMwJZoI3CzuR0lnVCaabZgQKjM9aC1mKap5kCLex0bxDI0RF8ZuwDihEvExqN0QZr7ER0MRIfHbhMyoYQDD8MmbWyKK2ne0DlSVP050wKs7NzvKtomwqJ4fykZn1S0+xHUswslxYhJfW+ookGpQPStpBLGBQpZ5KelKBSTJoDlSDFQAgTXp1RE31KW1w3stm2dL4hiAaZAmWCsb9l175h37+l62/I2aFMSWnmVHUNzAjDjjb8gaLfEs2Srov0vcP5DucPDO6W0d9TsKCSJxhrMcnSj4803QeG4YFxHPHxMOHUbiQJQcyCYfS4MRCDmgRUYqIdJqPxOiKEJ8VICBkdEiJFgu847C8JrgG3pxKCURiEqqjWC1ZPV8zXGlUmnCjoXYmyPabsCSKQhAeVMKWksDMKVSFHg9/DmHsYMtYUlEWFqCQzMycqTxSO0bf0/Y4wdtiUETKSs/rxdRdoNAkRx0lcliMuZMYgiemozD0mvZQma4cMCC1ABrJwSC1QUhKiYPSRmBKZ6XNSGCQWLQ2mEFRVxNqCxXxGjLA7bPDRIUVBXSWE8kjrsDKCTpN9xZF7HeOA9yPeJVI1R6kVy2pJOVvguaJLB1wc8cHQHhKP7YFHDDNjmJcVy/mKk09esl59xWLxjJKaUlt++cVPpoJFKKQpMEoy9A4fHDF52sYRfYIUEdkR44EQAoaKua0m0dAPVZiARDgOnSfVacx5KorGSL8fUNFwPn9CXdecrU/ohg3vLn/HvXrPLis6toxjN3XLPuJ8IkZHGltaDW6EffNAP/QUtmb5bMHp+iXPnnzOz37yVzx9+hkPj3e8v/ye91e/4f76NYfhHp862v6Oh833aCOwtsBaSzWvUTIS40j0njgCXqC8IHYDh+aWttvT9h1Zaor5EozFLmtkTAgfSWng0AwQJy0GWSGyQqRM9onowtSlhgwpE/JkiyNDpCwqVtWM8+qMuV5ixQxyyRASXR4o1paf/eXnnJ6t+OrVl1x9+MD7q+8xteLFizPOn5cs1xJZOQ6Dp9tsub3/Izd3r3n/4Xu8j4xhYL1+wfXdJZvNlv3+QNf2GFtS1jNO5s+YFyd0zSO73Qf6vsWPHTGMiJyR0qJViS5rVDEjhpauDwy9I4YICURW5DjdaVIIitpQzyzzRYE2mdF15BwoTYExCiFAISdXipwJ3uNTpGla2qZHCcPiSE8tigopJRKJLQyFNUg1ER9cjATvcIPHjaBUSV3Xk05KHJmR6UiE+HMmBTO3xE4QDx0p7imLlsWsYeg29N7j/AlGF8zNAuaGurbMZgKjFDpqpEukNKJ1RquMFdNHkhmtE0okRIwoAYUtUKInjAE3DgTRkmND73rCsGMcEgwGM048XKsKSnXKYvEKIWse8j3deEne36MHzXB88/w44MbJq2gYO5bzC1hqqjKRk8YPmfYwKXl9AB8cLuzIKZOTwUVwIeJjJqeEEJP1gpSaKAVKBqSYvG6m6lEg8lQptocH/NCAi1gUngqpT1icveT81ROqeSDLFpcsvZMT00r1xJhwMSFCh4l7ZkXFojqjFEtsWrHV9xzuHlEKylJTL+cUqyUUiiGPbA+3jDcjrmswMk/KzkmGS6kUhdAYOdF+YwSfIoPz9GMkHOlvgkxKgeQFIUiyycgiIdUPrbFEaYVIksQknIohT6IabShMRV3OWZ1IFmuD0ZroDPtdmCCyMdM1I8a02LJCaomxFmVL+r4jjn5i9UgB9EAm4gliGkjP5gKfC/CQ+kAfBrp2pNmBCIJOKcJqTjU3mLlg9eyE5ewUk0tm9ZLV+oyYBfe7Pe3oSUoxupHDpqHrOqL3GClRyWCEQQlH1JKULfwgFCL/6Dmc05QkBAop5JHJpbHKUqqKs8U5p/NzFss1p+tzDs0DbhyILuOdoB/CZHsRM1pMAkgXBISEHwdSSrjWIyi4ePaCiyeveHLxBU8uPueLL37Ben1G0o6bXcKLLQd3hadHWRjCgYfduwnTtpqsBoTtMWqJiLPJ2M2PxDCS04AfD+weH9ntNnT9iCxLltpSWIOtDSoG/KFl7A70zYDMgro+ZzF7Qtd3NP0eEQUqTfpNGafhcQyR3k8J4+lyxSfPP+GrL77iqy9+wvr0Cb2Hw+Oe3j+wmJd8+vlzPnv2kv5Tz9WHW775/iW78RFhBrbtNVG07JqK4AS77T1vP/yW69vvuH94S0oB5z2n6zuadioslFCUtsKWhvms5vmzL3h69nOa/QN3t9+x3bxnt71EtoneZ6QqUXZGEIZD79kfBvbblrEbEDmipEIpPdmgyIA2ktmiYLmas1wugMzDAzjnMGpGoQ0hDMQQiCoTRMDFiHdpSlidZ7U6Y3VyTlXVaFsQfyig9TS3++HP49Az9P1E1RYKoy3WFJNgNE8sOHXsXv+sSWF0l4w+MwTI+Z6HXQZ5y/ZwYOwD47iitKdU5gnr5y+Zz0tmdYF3CjdCyAMxdhO1UKsfJeFaKoSo8MnhvCMnicoSKxWlnfD7ICeRWMwZEWtErDH5lFo9I+YdSexISaLECqOeUJkZ3j8w9He49oHm0OHGQGktWmlINWmoSeaU7E9Q+QmFfEmlDZWKRJg8SqIhp2J64yLENM03lIKUNRKDECU5C2KYBqnaWKQ2KJ2QMiKFANLUVhIhZGLUQIExa9bLn/Hk9HNkeUPnv0fbPVJ1jL6ZKLDJE1ImuA1jn2EFy/Nz5k+ecla/4FK95rumIYaOJBzWas7WT9BVRRdacnJsjGGQApQFaclJk7M8QkdMTCOtpu8VpjlACJM5lxIKUKSsCCEyjO5o/CYw1qB1AcqT5YjWEmNLfMiMYwAh0YVitphxfn7BxTPF2fOGlEfuPhwQ7Ui9SCQhGceBx4cMVKRQslzNsKYkhZbgFWVRYErNYslkHGYcXd5yyAKFI4uAE0v6EGh78FEjtcEUBdYWeJO4Ptwy3Ao6qfjyU8lPXv4lF+tnFEXFvukYH3qG4JnNS2KA3c2Oh9s7VIJ5WbKyFjubsaxqVssFVWEmo6YjZHRUCyLlREWd1LSTgZlWiuV8wbNnk/VFzqBNgbEK4xTzesW8PqcpA3s1kmOHEpJ6VhFjZhtaxrFnt+0QMuNcYrE45cWzn/LZlz+jKlcURUXbHuj7lg9X33Bz/w0xO9YnF/hwIOYBpTJubNkdPiBUz759z+39GeuTLzhdfYUAXNzR5VtacUXHA0MeSGqyF9FFgRYSGSMq6QniGre03QZ8YjU74/Ovfsn5yaf84Y+/Y//2j2Qhpm7SSpSWxGFis0Eg5IgsoDipOHm+5uzTc3Rhedxv2Gzv2W6uePn8KU/qC1bzJSeFoJwXyFXBH978kb/77f/E3eMVtVEsqprFYkmII9fXH3h4vGd/OBDSgHdf87i5pywWKG2Zz0uUOSHlEa0TJycLPv/0C9xwwdm65u1riesb/JjI1qJtTVktcS6z37Tst9O9F31GiclbyJrJ16ssNUoryrqgKCzW2skSBjElxCSISeB9JsYJKgwBYki4MTCO03yyLCtOTlbM5gu0tbRtw243Fa2jmyyDvJuciWOIWKMp5xYhBDG0hDCJRZVUCG2Od9GfMSl0/S3BR6TxJPHIw9YxDKeMoyO4TCMWzMonlBe/YjGfMZ+V1KUhWkEswSdDzCBVPkr7M0ZGtJpEQjiBCxGZwKAwgM6B5Fqa/h7nO1IQuH5kaA8oYF4vKLRhiD0x+UmhqWbMZidUsyegvmTwj1zG3xDjJbbIVLZAizUzM2e5WrNanlKUmphbpPZUM0NWJVlVDGNJGspJcNcHxnGqOFKUEM3RjnlGyhKtHUU5VQwxJpIYyWkk+DBZIRAIMiGDIIXJs0lI0LZC65pudGwOd+zbS4Z4MzkrRglpjsoSSY3JS1QuEXmi1c2XF/SHFvOuxO2nTurQNNjHPdKMtK6haVtyVFg7x5Ql1lRISmQwiE7iYyTliUWUj4NkkY8iNgAm2CzFTAyT6d1stubs2RqhR2JuiXiSCGhtMbrGjYq2iRiTmS9htS5YrGrKSiGkJ8cRTI+pRuYIpCnoukhMimFw7HYtORVYa+i6CUJRIkIlUUJRWIFPnn27I+nIIDxSZFKsOexGDpuR6AwizTB2SVHP8eHAw8M1d7tLbh89h0OiH+CLV47nTz9BFob1xZrSB6LSuC4ym5WoizPO5guWVU0hFbU1LMuCZV1g1eTa+yMddfp1He0oBemoT0h5UnHPZzXGGlLME5FASaQS1DUo5VHS4EdNcJK6nuNDA9Izjj05Q9NkhqHDjwGRSwqz4vTkOc+evMSWFu8j1zdvub6+4u3lr3l/8+vJxqKYo81ReZ0mNfnodjRdS2RLpsFaS2FneO/ZH265e/yOx+4DbdpACfNixbw8xZgCpCdkxzA0jGOD8x0+B2LMLJTl/NmnfP7ql9ztHrh8eItBkgIIlUBEpEoYA6VR1JUlicS+7Xh99RrKGWenz5lVJxz6DXe39yzKGd6BWGq0kdikMZ3AiZYP1+94//41y6ri7GSF8yOCRNM09N3AOHp86An+imHcc3H+nOXqFKMzIUA3jHRdojnc0zS3CKbndrJ80RTFnKJY8fTppzx//gV973j//po7e41lRnvY4McWMQ0REGKapSg9iUCHoSMGjw+Rvpu0Wbv9AWMmQ0elJCFB/kF34KckobXmZL3ikxfPOVmvMdZwdX05+SX1B8ahn+aHR3abUmoybdRTIRKDJ4U4zQCRhP8lOoVhaCaLB9sj2LJtWppmPsmps0akkhRvOT1RxGzI+SWCitKCrAQhaUKa2CYiTzCRFhHNpLnTJAyTgCMLycwqFoWhbTOubWi6jhAs49Ay9LdYrbDmOTpLnI/k0CDNe5JyFPYl8+pTFvOfHB08DyA2GJmwOlEua9TiCbP5krqucX5DO14RUgv6gLIdJgpisvhQAJEYIt4nnA/koFFJTf5Nco7UEqlajE0UZrKEHsZMSIEY5NE2OZA0yCghicnDXg2E1NKPBzbNjpvHR9rujsHfIfICLU6mSl1ISntKXZ9TmwU5OjIjymbMTGPnFU2n6caevNtDvENpyxAHXPKUaklZz6kWM4wpyEESu8TYd/g42VpnIX7QvKDkRKE8urITj4SAxGRBPFuc8OzZl3hxTzd6QlZkqdBaTl2E02hbYi0sloHZSmHKRBIcL/8IMmCriFBTRW8LwejAjZ62O5CiQGtLCAM5JVo8YcwEJ0lBMQ4Ol3pcSAwhU9gCK0tCD/QRFSxK1Og8Q4oZMSW6pqIfGm6vXrO589zejtw/tvzFrxznF09RZYk1in3T4d3AvCq5WK347NlzTmYzhkNDCp55ZamNOnYD+ccPIZg48UejyhgnB93JbkBRWENVV5AhJRAqI1VmvjDMZgVW1+RYsZiv8fFA092x2V/R93vquqZrW+7ub9nvGmIwiHxUq0rQJuFCy/Xtd/z2D7/h8uZ33G+/58n5pzy5eIUxJVmORJeIHmIY8b7FhkDKgtHPODSGthvZbG953Lyn6Tb4NKDLmpmtWC/WWF3gfEvTOUKzx/WHSbynDdElsiqoVytOn56zPJ8zO7GMQsI4VcIxJpSQSGMpS0NRFCSf2T82/Hb8Dd9/eMenn33BT3/yC8bGs2sfabpz2n7k0A8gPA+HW64fv+X24Y9sH7+n3d9Q6wtgjpTTkDVnptlWTkf4KEIfaPsSbQXj4OmHga7rAMnV1Ru0qCmsIR8LDhcj88Up65MLfvHzv+IXP/trhiHy+vv3XH54z9WHN1x+eM3N1VsGt0MKPyUFOQnoUgq4wdP+QPsOE9vKdx6tFbNZhS7sxPjLx6SNOHbumqKcrDLqWTHBfRpiHhnHlqY7kFJGCklhKwpr0ZMZGKSEEoLE5IQbg5u8kv7EocKfnBRynC43ZCTmCb9yucGaCi0tOTe4NLDvLQ97kBSU8hNkmZAyEL3E+wlKkSKjjtlUEiB7jIR5aUAakBqj5xj9hMJ6ctpyK+7ZNgO2FMwW54iY6YeA2+/o3CNCb0mqIaoHdt33VP1LlP53zKonLOY1o5vTHG459Afmlaaez8ki0PY72v6GdrgjpJaURrxP+DGRYkBgMLrEWnE09XNkNEJOVhJQkGLCu0mtaPTR/llORFEhNFJGlJ7YB5OraELZiDQ9zXDL/Vazb0f6wxwXKkgGIxdYdUrOHVn0zGtYzKtJIBYbds0VXTuw7w/ousJUC9rBo31G4KisYWGXJL1iJCBnlvnZikTm8eaRw2FL8AIZmeyctUYSj1RagTUSqSWY6fMxOnR0eBFQVmBKQ0oKEUFhjz7ujig2qKJkWZ5QWENZGXSRCOxwAZLqQHikmpgo3oPSUBuL8XBgYBxb+jGgvMFoidEF3iVcH3DDBEc635FwCGGwpmKmJ9V8FQXzlIlDRQ4FxIjv9sgsWc9eIP0jD7fvuT7cMTavSaEkoTm72KBtBUiii+TItMtDaZAZU2rKYoVMCSMEIuWjp4wkZfH/ceDyD8kiHZl2eTJBlFIgfjDPOypus4gok5gtSl58+gmL5QV3d3fc3L/lw1Vg395T1XO+ePoERObd29e8e/uBm+s9u/0jl1dvsDNYnhTENNANVyS2KOMpS4u1BUpapNRkIfFp4s4rKRBJE0NkGPaI/IHoHX6ENPao6CmwCJEmN4HY0/ePOFUQUyDEEeSINBEdC3QqCMojpCLLCGqknCUWJ4IhCiLgkiJ7Mw2hhST7xJgjpZ6UvPebKzbf/Y4P199wu/mWmT3BhAWNe87msGNIA4f+kcvrb/njt3/P99/+Gt+8ZaYd8/qUk5OKJ+fnxJjZPN5M51BltDhSoJVmt92xedwRjhf0dL5rbm9u6ZqItQYpodkf6MaRV5/+jL/45V/zF7/8K7764ufEoHjx/EseH+65u73kn/7p7/i7v8vc3ScSLchp54lS8qi1AYKYzCAlE7uPyRrHlBJlBTlNC6KQcqJrW42Qgs3+ge9eQ3ldIATs9zv6fg8yUJSKFDNkOdG5q5IcE2M/IMSkuyF5xtQyDpNOKMY/s81FCJO/S8zpCDFElJik9lkbrC4RRjOEe/bteyrzObOiJ2HQxhCiIB0xaiU4QkgAnhQ9AomRejo9QjIrCqRaIYQn+hZEwvGWdmxQcnodPjUMfkc3dAgZ0AfBMA7su/ek/B2Pj1tW8+eEfM/odgz9jrFviGHAhQ05zUipJOSOmCaq5GSBXFAWJdGPjOlASoEYJgdQITRKFRhZIKTG+8TYjdMCFOeoqgKjNWUhyMIcD8hEVZUyT1AMU2WnrMOnR/rRIkSmrtakfof3e2IuiEmhTEIbT1lEChMZ/Y5Dv6Es1qzmhnKmOXtyge89h80OFwIpu4mBUGl0UROUQdRzytkKHyNDqXAFBOMRaUQqg1BmepOP3ZpWEi0EIkPOhixKVCWZyYSuHPvhA4mGlBNlvWA2LxBywKc9ZIkUCq0zxkRs5ajmI7ZIIHtS9KggkHJiUMgkkXLysSijmCzWx4EYPSpZEoboI35M9K3HDWmi9iqPV4JOZgwBkwekHxBxZFmdUZondCGycw3z+QlffPoFYz9wu36HkobT009YnT8hBsP9Y0OIBySSmS6QKfPQtuzqh8nN1cC8KimVQufpchdMXdwPHcMPsNEPNA+pNMYeLUDElECEzP/cxk/Vw/TlMqO0oqgk2hpChNEJQrTU9ZwvvvgXLBYzlos11s5I8TXXNw98++3vud984PmLc+qZYbefihspNFafomSFEJCiJ+JQSmBqg1YSkQXJT27DLjqEv5/o4dmzMAPFzBKsJgVFCJoQHWNw+OzxqSebRGFKar0mBM1+v8MWgn1zw9VdST8+IlVAK8m8WrB+8jnL+iV9N7Lf7ei6R/pxh+8HunHDGPb48MjD9Z4Ud5ytXvD85Ctc19Ls91xd7fnDd7/m3Yc/cHvzR7YPHxh32wla291zrQrcEElJ8PjwQN/1k3sxEDOk8AMEKjC6mCix1ZL5bM3p2XOWyzMOzYG7+zsOXaRpA8rUnJw9RRcVh64lJwnKTZbi/pExPpJUQ9aOHBMxREKc2JTVscIXMiNlmkgZAmxhMXZayCOUJ4swmU3K474NLZBK4MPA/vBIPxqUFsQ0wdtChuleDBP1VSmQMuNCoh8cII67Tzxd5xnHMJEf8p8ZPgo+HlWlApjwK6kEMY+I7I+vLOLigWa8o+rfU9g3lOGUwp4cl6RMAhkl5Y8/SE4/mFflY+sHZDBCIW0J8xPi+QvG1LEdrxhijws9o5tUv4PrcL6frJvHFTlKmt0N7XBNu++oqwV1ZdAqMQ67o3/Rjna4hryCfIKxc6yZYaSZXp9SKCkYc8c4OFIU0x6IlIDpZ5BCQE64cWDoB4ZhIEWHtZOmw1o7JY2sSEJNMFCeMrtI6ihx8jjfMLo92hQUlWbwBTmXpKSIIiJ1YkojjpwnSm3b3hBDpDCnZJYUpcWUBlQ64peOEBzkiQ1llEGpCiOWKCWY14E8T9AOBARKTdzmfFwaI4+rDiepWZ4GyEJhixpZS2QRGPw1Qk0XX1nWzOczpKrxyZJiIkaJFAGpI7ZQzJcVRTEVBt45cohINVWsUU5LFhEJY6fXEP3UcnuXiEwLdMKY8eOku5DSg4iMYyBkT44QR4/BoePI6cWcZxefsW0HhocbZvUpz5+/otAVr57+hFKXnCzXYDVNDhzcwNC1KASLeYVKGdf2+HFgs90yO5mByoiiwAhJFkehWpY/zmRE/q9WXGUxudUqdbQMn+YOmXSE6QQxJUKYlPExBQYX6YZI79xE2dQVZXXGYrFgvf6Uk5M5XT/Qtj19P2kGPtxccnX1lr77lCfPTsnKsVhUkyGiEZSFJuMnpksasMZSFAVKGKSYXHNTssSUidFh5EihBmSVoVBEXzIOBV0Ph97j0kjEkWRAqqkYXNSnkDVSeGJy3D++JzOwOzwgRKa0M5ZVxa9++q/5/NVfcX93z5u333J3/5r7R4frHF03IJRjZhTBBQ43G07kOSdP5yyKChkzu/tHvvv9t7y//J6ueyS5SKlXpBxpDy1t/4bH+w2gJ0ppGI725pLoE0KAFAWFqVktT5nPT6irGcvlms8++ykXT17w9t1bdrseqXqECvgEbd9zeXPN9c0dKQbGoef29j1v3nzN2w9f04y3JNFPQk4kRHHU/ExQTkyBlAKIhFQSW0i0nXaG+DjRvaddJposJiO/LJkcAbxAqITUBm0lylhy9sd7GEiTFf0kFPX0biSGjHYBHwLDOJBjRis97a35cyaF5NMEV3lNRqKyJcuMkgkhPT4ocubo+Z2J/CfacM+y/jkns5+wXJwyM/OpcsGQpSTlH5S/+njR6knQxsTuE0JQFzUX66e0ruNye8Pj/p5hvGZ/uGa/aXCDBwSz+py6fMqsPkFKya6pcW5D117jenX8hXgEk7+PJKO1wJiSunxGVb6gsEuUNIzuqFdwxx2/iX9mlKTpZwypJ6ZIdhrvJ2sLreT0b2qB1tMuiTjGaags5NTGR0OKijgmRuXo2xFje3TZkESLSztSThg1rdbMWTAMCiUd5C0xDRgT6bsDrx/fkMNkz9F2G5SZ3Db7cUAeJriv9BFhByqhqeoLymKOWiYKMgwNPROlNB0rCSk0WhmOezhJIRKCJyZPYQtmJxZRBNAJJWu0nKF0nKybtUTJxTHBZKQIKBEozCmL6iV1VUF29HpLdO8YxgNSaURQE7srClLUxwFtxA2BFCYdjMyTD5Y2Bm0UPgl8guACaezpe0/bGCqTqazm88UTnn3+c6qDo2e60A/dnup8zlc//0sWxRwVMy4Fquwphm6yTEuZ5WzJrLCcrlZIK6iXk8J62gv8X80Sjpu9JuEaCDmpy+Gfk4OAH314MnESuB2jHwNN50hH0sEwBvadI0nB+ZNnVPMF67PnKKnwvuDhYeDQeJSp+OKrn1BW1bSV6/6Bx7sD89mKl58/4fTJCj9UNAfJw/Ytm/1rXOhJecK8lRBIK9C6hDQjh5qcAjl1mGqkLj2lASMKhk7xOCqIE2SmZKTQCaMkSaip4i4tOUWsdjTdgdvb1zTNBknC6BkXp2vWy2f8i1/8LT//yd/w/sMbpEyYsgezZfOwIRwGjFRU5oSYJrfhLy9+zr/9l/8bPv/0pywWa/r9nqcnT4mDo5+tkTKzqAvafsvby2/Ztg/E5AGJGyZShDYGiSbGKUHMZgvWq+c8Of+U1fKUEDqMFszrmrP1ms3mgdJazk5POTldM/qB3/zuH9FSkUKi71q2m0ceH2+4f7ikH/ZkxgkdsCVGT/BTTIFx7HFuYHR+OtN6mrvloybBhcl2fhpQT0WYFEyJIgJyWq+pkwJhji6pRx1Qni56bQ1kgRsGhn5kdN20gCkfWXFktDVYq1FK/XmTgs6GmCQhZshpomZmQaEUUk0V29AfkLpDD1vscMNu/JYTd0nnr+jTcxbhnEpfUKg1lZ6DKdFCooSdBplJHCupf96pqqSgKipW86ecn/yCtk8Qwfcw2htSaIjBE+PkYlrYgtJaWMw4tI9HIY0lBzMNxYU6iovSdBDiiNV5wvH1AmtKmu6e+4dLnOuRyONhmmhnUgJpgi9ScgSvCSEjmGiHRh2rbDnZ3EY/GeaJbEhC4BqIY0JXAmMsVp5QmlOEahhzQ0qBEAesBqEhhUiKGucHlHHHd0PQdyP31zdEt0FJA9GhbSCLROd6QoiElKhdoJw5lCkYDw8kN+JST4wDWieKclJT/vjzCT2pJaUghUDIgpx7fIxoIlknkA7kwGr1gvXySwb3yL59Td8PKJnQqsCYkuXiE06WF5yunrJeXqCVwIcdwb0n59tpwN8lulZMFuAxEZObvq+b1ME5MyVcPa27LMyUoJtREAbIbuoistfkFHFeMATF1o0cUksXHd3QsG8eub7/msOrr6aLYb1kYWcgJPPoKZsGwtRmn6xXrFdLikJjrSJrgdaSQmhknNwskvjBfXPCi39QKyCO/UDOk3tl8Ax+YBj/GZ7MR6V3NzqadpwG72JaNrXbObSuWJ+uWZ6tePL8OUJIjNLsdnc87h65vv3AfF5iK1idWBaPhr7puL3acHo+4/kLy3r5lKcXS9L3Gx4Pblr6JOfTgqzjykilBNFNw/BEIPmIEgmj8uT9KgPtkHncOvaNwCeJsJLSlEgzORQIJMmN06UrRrQOIDwQKcqaWTVnvbjgyekLTk/PpvMjAkJ5lJlmNbpS2GRYVBecrj7B6gVVccJf/fKv+ctf/RVPnj6bZiIkkJK7h5/RdJPWaHQN17dvKB5vEM0DIXSTBUlRoWSJsQWCTD/ukQLO1s958exnnK0/oSxqHh7f0B4eub18DxH6w475rCDhOPQtd3fvubwMKCRaKMZhoNntODQ7DoctQiWq2qKNQSgx0aYXM0Lw3N8NR/hqWjRli4KitBSFnZYgeU/wxyVVkmn/sxCYYirMjC3RWhNjom16Ygx4P1FQg/MomUlygsWc+wEmikgx6WTkcbmVMQZr9LRb4s+bFCwiJzKSREQBKitUtsgkIDZ43+GHniwctsqM8Z6YAj4e6MNTZv0TFsXnLOynrOpnaHmBVBolNDlPNL2pjUqg8nTAhCJniTUz1ovP6QaBzAZCQR41Il7Txi3edez2H/BhhykcWQ7TljarpuUyaVq2MZmUMU3j1QyhZwQncHqchshZ0vUd+2ZHjB2FNkdFbTxi7YosJiO0GAOTo5M8CkTUtDdVqUkPkSNEdfRrmTZyDXtHcpGZLtGioi5WLOpzsrXIONB1D2QxgAZVaLSpIRYI0eFjQ86K4Cv8OA2V/DigpELLhJaT5aLPky5COoM0BhMMcWzoDzcM3YYujIyuJfoGITxCKSTqSGsDsiBrRZKRMUukGshhQEiFNNMgMeWRup5xcfaSXSM5tO/xvsVlT1kkyrJgMTvj6dm/YDV/QmHNZLmQBkIQjGOibR27XeKwm+iBKeVpCE1GCX30mVdIEmUpKQuB0VNH6gDpmdxKRUKKiBAQosIPgrvdI+9uv6PbD9zcvWezuWEYNoz9ntlsQVka5q9+ymK2oA5povK5HhcCtrKoylDPa2ZVMVXWR5qujHmaA0yn+GiPLY7DZY6wwbQRbnQDbd+yb/bs9ptpebuaOs0JLhrphm7aYZ0iw5Do2kxVrdAVmOqcxekCow2kzKHzbJsb3t98y7KrEDkwX8CTi4r7O8fD7QM3V4bV2vLk6ZLFfDFZK6hMUcwpC/sjjCDERPCIqTsuhk9E4lSQJUWnIjl79vuBm8dIP0yMstrWFLrAak1w08ZB53tc6lAyU9WWqi6oqorSTkaQi9WS2aKmdwc+3HzH5c333D68Z9dsGUJAFxUrM+eTs6949eQXVMUJ1i549uxTZGVJJiFN5uyTc6rliu1uz/39Hde3H3jz4Q+MYVpRKcXU8UoFVVVQFjOMqUAIdD+dyadPPuXFJ59T2SUxRrxz7LePRBdpth3CKKxWuLHn/vaKvp8u48IUVLYk+0iODiUypTVILSaxrWKyhCEi9OTlK44rSNSRMmqtpSpnzOqaTMa5gHMeIf8ZiUBCURQUxbRpTwg1kXrGkWEcGMdhWjGaIlpGlAjkNO1cSDEfRXTyuNZ2+lBKHaH7PzN8lEeBEhprC4TKZOHIUTLuFwhVUBRrVNnxuLumHTakpFDSokRD5g2du8e27zipWlydUMIwL1cYpSYHwGPrlEWcKJwykEQ8+q1ACAKjahazC0gd4/DAw/23uDBOGTc4fHjHvlVYMzmGam2RnBBCTwz9UZ2rCNGSKTk5+ZKT1VcgFSkJ9vs9KbUMQ6Iuz3H+Ae92eD8Qgp/sbIVE6ekyUiKDFyQ3iUSEEEe3yYKyKvA+0zSZroWujwQXwWWslFgtKcuM1iNSDdjKYtWKIRra4JjNKlaLOXP7BVY+Zbe74f7xLd4HcjSIHKlKMHISR8UwYZ1kibbVBPVUC0o7ievc2KPlPRHYND2969FpoJDT/mt5fHCKwiDEhIV64UhJYIuKWmfWZ0uefnLC4G9ph4RUiZAaQugmy+w8rf+LIdG2DU3Z0tcOI7c43xDzlsE/0PRXHA579ruB3SZw2CdiBAQYm7BWUViL1XaC+RQsFgWzWhH8yNCPE7rlFGkUyCCwVmK0ZAya3lk2m5YPl2/o9x2b+2vGvkchOTwc+O0//gNKlizXp8xXC2aFpbYr5oVm2zbcHLZsb3acjivOVyecV3NmtpgIQyKTBKQf5gQpHoVrYuoO0rFLSIF+6Nntd9w93HF7fzPNTApFTJMXUtNv2ff3uDBOzL5cQK45DDvu95es12tefPKCqqwY+46r69dsDu/o3C3xMCnRy9qxPjPstj37Q8P97TW2nixi6tl7du0VxijWJ+ecLM8Y+kDbNPiwJ+UDMXmSTJAlPmpSB32nSXFS3/ZDoBmm3QDWSApbUOk5hVQE4RhzwqeJclvPZkiTQWhi9MdqfiQER9tu2e4eUZS8fvMNX3/7W1wcQSbOTp5wsX7OVy/+kldPfkHfJ24fHnl99Z6HfMfp0xPOzk85XT7jZP4ENSj2hwcur77h2+//M+8/fMN+vyGGgNIGLe3UtetJSGZtxcnihFm94tUnX/Lk/BludOx3e/puR9Ps0bkkGEhDoPUd91cPXL77QFFaFosZpZkKL89ISi0ShzUZoTICP5EJZMKFge12qvi1tcxmc7qun6BZOTHl6nqFEIJ+8HifycdkLOVEB0fIiRklpsVXk9BUETx0rSPFADljVMZqgVbHvdBpMrKUcur2c87TfRGYfM7+3DoFm6qpUhTFkQm0x8dAGCdnQJELhFKYvMPSkL1g6Cefey8iWjZY1aDiCTZfsCzOceMBKwTYYpon5GlBZBITbz7lTDeOPGw6DkOmixqfGrxocLR0rmNwA4lIFonRdTgncMpgtZ12KiuN954YIlIahND4MO06zblEqTWoaegbgiDmTGFPMOanNE3N4+gIoSfEkRQVORQoo7FWk2QmDAEhJ7XiNGtIuBymQaJOUEZEHxmbkbFJlGqOmVmKesDWB7K8IyaLVqeU9QnLcM6YnjErT6mq5xT6HJ3nePfIYRvx3k+K6qAwqp7cV9OIzxEXPQKDsnJaomMNWanJhjyPKO1JBJzrcMN4dH2d3D2TFkhZoHQx4aJiwsJlnNZfllkzr0pW5Qxr5gh5IKUNu8PvGN2A1YIcDN5P9uWHuMfIN6xWM0QxQ6WOzHDcG9xMzBqvQXi0Dkdut5h2I8tpSPvD2s2yUMzmlrJUDINHREhiuoBDnvy0klQIZQguM/QjMQi0nFEVlvkssppJFvMFWQic82w2j9w/bFifXFCfWHRpkFGBh6wcQ99w93jADTvU6XPU/JRCF5MdMUwVdRYcjdMnaDJlRATJZA9PiIRxZOw6ukODKSxlUaEk03M4PHB3d8ehOxASGFVSFQtCzByahvX6DC0jJ8sVfbtnv7nGj3uIA3GUSCWpqgKJpp4Jum7EO8duu6HtOqR5jzIJW4A2oPRkYXHY9QTfk3GkPJKSJ3sF3pKcJIdJk5KEIGRJPu64gEz0gbF3BCnwfsDHEYeDAhbLGaaEw77nsD/gBkVKmm11z2K55LOXBetFRe9bdrtLtFLMZ0vOFue8fPZTvvziV7x69hVv3r7h1398zcPbS/w3B1anp1xcvOTZxWc8Xb9iv3ng6z/8PW/e/o4373/LZntL8pNddEYhdUGpSmblgqpcTBqNPK2o7d2Oh/0bmqZht9uwH/cIU7C+eM6LZ19yc3vN+8v3jE1PJS2vnn3Jq0+/pGn2XF+9Y+xHMtNCHWUlCUnMcXIuFYkUBCEmrC1ZrM6Qa0nf9gghOTlZM58tKGyB9yP2sJtmDExmmiIrRJSEEPA5ozWTVUWadqsnn8n+uLMDkGpiChqrMHZK5HkMR3PeaY41WftDjmIauv85k0Ipl9MawFTgcXjRMGZHpJkGkgeLlhGjJPPKMuaR0TmSSQQDlQKd47R5y494NxB8RzYT1i8kkPVRCCSISHxWtEPgYbtnNww4KWj8A4fhimbcMMRAFApdGHQC7yQ5CmQuEakgekFOiRgMKUmkqEAostgTc0vvdxy6R2xZo61BGjAalJgh8gLvIooNOfWE0BLHRPICiUXMDFJFkC1Z+EmAkjKdF0Tn6YsMMpGqiHSetOkJQSFUhdJzbNlhqxapduR8guQcK9fMy8/wC41RS5Q6oes9Y3fD4+aO5tCSc6AoE4IlRq9IocP5cdq8dBRNuZiRIVKkeNyzockTKWJ601XE6EiOER8TKQ34mLEmUUqOfGkFOoEOqCJSpISKntyOKJ2xxuDjI765R+WSWlfTEp1uwHWept9TVO/Yu4hOS0ycvOBTEMQoIFVoPWO+8JT1tEFMJE1K0xWrtUCpSFEVVLVBWkGUcULhtCQpiDIR5A97nqcfvncjXd8jECzqcygMIq6pq5pnTy6IybHd31HamubQc3e3mdSoInK3eaAbW5AOYwb2uw3tQSHTtKxlNTulLkuKnNFMc4XE1CX8kBjUj6tMJEZICqUplKFUBfNqxZP1M5TSk3rVBS6vPzA2B/ZNjxA9s6rF+5HNfkt0A+0nnzG3NTJkTAKTJDr9v2n7jx7bsjRNE3uW2PpI02ZXufaQmVmZWV3FZhHVBEg0iUb/L/4ZTkiAE7IbjeomuqqYKjIzItLl9StNHX22XJKDbRHNYQ+CFzC4Az5wd7Nje+31fe/7PArlIkkqKbIpaaKZTDVtc0QrT7SBzu5xWIqqQKqSplnj3IHtqmf92BG9J1H+CfcOOBA2EuyY35cp6GoE+hHkqLAcehoXscOoNzUMeOGIMpBnmiQtKVJBbVeY/Y62yTE2JZaRAceLRDM9u6CcFySZpdKK0yrjdLbkZHnJbLEgmyj6sOHD/T/x4e57BrsnTedMyhsW8yvm81O6fsfHu2/Z7O44Hnd4N5DqJx+LDyihmE9OWc4vSNIJPkT2xw27w0fq7g6dQ9t19IMlxpTp4pxnn33JF5/8itb0HA8Hyizj8vMv+fM//3d8+eVf8rvf/ZYPP63puxV5JZB6TKAZK0bTYghI3NN+QKF0zmR6SllN8N6RJAmL+Zw0TRn6geP+yXkeB6QyKOEJJsUPY8zdBUuSRJwed2vOB7zxSBTyKb2ZppokVahkRNULIkL5cYlt+j9CGQUSR/jD9fZPdygYN0FqjU5yZNoSYsSFmij3eKsxZopzY/RT6mTUOCqF1GMc8w9lLMkUQo5WFWWxQKcFLkp8sCNhVGii0NigMU4gkorZmcPWB+p6jwuSSl1zVga6E0OeZDj3iDV7jOiJLpCljBTCmI2NxnRAyEiZVmRqRu9SersjxD375htUP0XKFOv32HBAy5JUnuAGj4oTdDilHwKmHTB9xDmP1Nkow5YSqT2IHhcE1juEG2fASkdUFkmLQFaAbyDS/RE0lyZzZtVz5pPPyfUzhJ+ifEYacxRjumW727FdrcDBxfmnY9xRavJ0SZGcs1q95+27NR5Lmgmcc3TdgRgF08mc6WzOyfSCLMmwQ8swHIgxR4sD9fGIMZYsYXQiRHDOY2z9BHULCKUpiopIgrOBh/s1LhtwuaBMl5Q6Jz4Vy6TXTJMTRN4SwhrrPPfrA14MnCwzElJcrXC1g2BJs0BagFIpqV6iqPAu4p3FhRqEIc0VOk0IjOO3YYiYQRL6FDFIxGAJwY6pi9gyGEf0noe7n/in4FEiI3jJ5eUN189OWU5PWJ6ekpUVaSb56f03/Me/ecvhuMN5S5pplssJaSpomiNKJLgOTB+QzxKyPCWKQIweHyB4iVZ6vEEoQZSS6CMBgS5ypvIEryQ6L6jKCcv5KanOIEBZaCal4u3bH/j+++943D2y6/d01jyVIQOm81gn0emMtOhJ5YzEZbjQ4ZQfF4myoCibp59/oKkdMhkf7M566mPHYVvjrKWrHaYLpCqjysvRcyFLijKnTMYUknU9JrYYGozvMYMh2IhwCXlaMtUzUp2gNMQocVYyNJLNnSFT4I85pVnijMR7MX6WfGS3/8htHmjChuxkQpos0JMrqtMzpsuSj6vX/O77v+GHH79htbvFOYMWKbbrWR3esHu8Jc1yBtezqzd0ZnyZ0emErJqSlRVaaU6W59x89jWny3OIguPxwPq4Yr1doWqPUJbBDIQYmc/OKHPFtJwxLc7JshmqLPnk1TN+/We/5Jdf/jk3F68wTcPv//GKREXyhcPGmqbbgu2QwQF+RMUDzlnMMDD0/bgPIjI4x0PXE3zADJa+a2jrHhEliUpJdGRwERvd2I6PEP2YTItBjLcAH8aOixQgn24pAaIZfzf+uCsN47MDIdFSj8ylpyLln/RQUPnFE+QphTSDsCH6Hd2wJ4QOryGElCgckoBM5NgO1GpcGkqFVgIfe3q7o7cHOtcitEaT4PzoLhYyR+oJLmgGJ3FRIdOUtEjJTToyVJiSZz1VVWKdputHx3FUCZHxBFVaYgaBdZIoMwRjVtm6YUy0xBRnB4xdAw2gMW6D8zuUzEnlHkWJEimJTElERUjykUKYZkiZQRwIfhh/iMojCDgvwFgYIpoxh/8H96oSEkR8utqNHBqhxutfnhfo9IRIgXcVvX2ktQ+jIwJNUZZMyznIDB9SlCxJREkUD1g3wrHgKTYcxdNYhnE+X+RkqnxaSHlS7XDKE32PN46o1B8Ru855+q7HODcCC9OR/iikwJieY9vhMwOFQ1YFSZZiuo7mWEPM0DqFqEh1TioNKkT8YBjqgA0DtpEMfUAKQ5YCMiVJNGWxINEl3g9YC70dLX1ZKsawgJB4F+m6lqENDLXDHj3ejjfLPyxvR38z7DfrkQuVFBTFlLxIODbXFFXJdDJHZZLernl3+wP/8Ju/Yb/bMakmzKZTjvspWaYZho5EZvhOoELC6eKc+WxGksgxM/0U+YvR4338IxTPiYgTINKEPJFMBaAUeVJQFOWITpYKzwn7/oJs/YgLjqY9sjcHfIgksiCTCQkJZVIyXyyY5AX7h3u645F9c4+LLd1gRy+xHNNnXWsYBkc5G81/zgaGrmPoHKZ3iDhGUlVMEV6R5RPy6YQs0aRS4mwLZhjterZnsO0okfeSFInUgiRTJIVESDFmKYJCBIVygixGCqHIkwSXjE3mKD3aW5rNLY/uwOG4xiYCkwh6EalNw3b/yOPDHT+9+Y7VejUaFGVOolJ8aOndgeiP6JiQpgVn59doXZIkBUlekpUlSicEF5iWFbPinEJNcGYgDZJpUtKXS1wcsKGn9+OIJclKiumUoqzI0pI8nzCdLnn16Zf85V/+W5aTE/CRs7MT/vKv/orV7oHabLlfvWX1sKdvHUqASiRCP+2V3FNfyAyYfkzFWWNo6pa+NwT39NDGo0WOCBbn3IjFeYqIJ1E+3T7j6Pj2cQyuiLEbJBP9tFAWiOCJfizX/kGZMIYJxg+pgDEsof7EN4XZ6csRf5ApojwivSH2HjsoDDvQhsiIQRAxkD1laAUKFSVCtARh6UOPGw4k+4hMNIvZc2aTS7q+YV+vSZIJZQWIAus1vTW0wxg7XaYlaUjZBEuHwcU1IT4SbE1wASgQMiVERXCKxgqsVWScooJn168w9haZpCRZgdAKoRRRdkQcMThULBBeEEL9NGYpoPAIqZnJM9L0CqVLhISmfqQ5HBgGxu0+45va0DmctGgHeaYhaGIYKU+JKkh0hg8HOlNT96/JvWJWzFkub0jrM2JY0K0GDpuPZOkJi+fXI6AuBkIskWFKW1vuNxseH7Y0rWUYLD09WimybEJVpWSFJDCwPTygRDbO3qMjeEG0mvEkH5HX4g/uhDCiPPphwFpN4saDQUgwNtA99QLoOhg8Q97RDQ3HZkfwGsWOREmyJDBLNdfzFK0F3cZjzOhajiKQpKNFypgJwucomaNTicAjsvG2FYMiSTLyLCFPCwiKtrEM/ZH2WNNuDcErpEhAJCDSp9ubx7SWzg+Uk0iWVgyDYbPZoJIRwBb7jnq45/3dD6x332MHx2x6A1Gz33bEMM7fU52BGXWTu6tXzGdLkAW50GgxBg6cN+PIRSVIpfExEmDcwTEWjka2vcR7D0lAaU3nHe/2R75br/h2fct6d48MhiotmVQZi6JinudcTOa8vHk5Lqh7i0XC7Tc8rt6w2dYjnsL1JInlYAe61pAXBZnKsH1LX/cQMnI1JU8DaRIQPkEERVXMOLu8wduBerehaRq6/kDnavowYNz4opOqjLKYMZvOqGYFMol4346pvDShUBlX85SzzOPqhvpQM5Az9IrAgOwdZjVioQ+upnY11kTCEPjRRB7e3bPb3vG4eo81Ecnk6fesJCiBSWt0JslmE15cfc7Xn/wlV8sXzIolSqV03nI4Htg8rDBNiz5I+v2Rvj3g/cCL6RWvTp5RDz27vmF13NIFw+LsjNn5M9LZDJlryknF2ck512c3XJ89Z73e8f7DHcV0wv/xv/mvebi/4zf/8A8cHvc0D57eBqbLEp1KZDpyvWIIo0sEiM5i+o76eGS73dM2A4QRbz2bVaR5ymCP9NaMnw0gT1MymaKCILjxlhGeXniUFONOM8/JtCaVCuEcfhgw0RKDRShJkiT4EBgGQxSSJEmRf+qegk/a8a0/Swle0O8yuvoMGSuSsGXf/8gQV2RlJE80MSa4PkWEHB8FuBafOZRsCHJgfUzoOsUkb5iUlojGBUleRrrQI1XER0XT1uwOW0LoyXOF6QzdusHXNamuyIoz+kHg7YEuNMRomehPuJh+zV9ffU2Zzfjx9lve3X9H5wecaYlDhnVzTs4umS3m7NtvObY/jnApPSXXC6rs9KkNPSFEz2ANaX5JWb1EqRLnHfe3P7K+f6BvdgQ7IBEkWUaiFSrxJDqilUIlKctFySzJx8VQ1pGkCu9zjrUhqntE8s90bsd+m7O61xhjSeQlN+efcnF+w67+jrvH31D3K3ojGLpA7ywurIlxeHrzAJkk5PmUanLKdHpDVZ1DTAkBvB+xJKYfv0SQo8LTg7cOmY4I7TFHHRnMQD+MTU2pRvAaQtK0gdr2nItTyuIKb+857h8RIjKrNEoLSEZOvAmaYEpsVyACFKlFpQMya55KOul42+sMPoBOT8mzl1ycTtCJ49B8T9O9RfgKEQt0IqiqKWXlaHNDvfP0rSRNc8qyQilDFB3WW6x15OmE68tPOT25QsspdojU9Z5dc8e7u2/xseXLL18hAhy2NW29HpWWecXZ6RWTco5WU7wL3H78gHWO0/M502kOwY98rKfSX1lMKfIS/Yf2PuPbtJcJRqdj+WkYiCFirMe3nolJORMTLqsFsj3i24bz5RVffv0rzi9f4ITlYf/AZL9EypTOJcRkyWT+gt5Y7j5+z3G/IUtT8iIl0T2189SHGkH7tDMSXJyespyf0feP1Md7vLWomNC3ezZrMe6X2o6+6elaiwmSqAoSWZLnijIvmE+mTIqcRIMXBgggI1FHnIg01pN6h7QOlKKcLzFlya5ecaz32Hog0wE5ESyrGcFl2EHxcHjkztwzDAcG26BUSZnnLGZnLGfn7Pcp3K6ZVSWvXn3Gp5/+mk8//XOm8yuiSBBCcIJneZyR5xlt25BlCucG+rXDG0Fxcs7J8pwkmSBIRorq0I601iKDXnL3uCItMr7++jPqZsN/99//P7h69pKrl8/Y73t+980btqstpku4Ov+Uf/NfSOphxRAaDB0eAwK0zEhkQqI0dhhomyNNfSA4gxJhRG4E/5RUEyASlM4Q0iEj5GlGqTKkG+PLcsz/I0XESIF60noWeUaV5WQI9FNxeHgKu3jvOTbNU6GtZxgMT6HXP92hMJsvCL6n7R/p2j1dY8Bl5NkULSpaU2OcQdAhxPjL4h1PaQyPxRCiH6/eOoNwBL9DiANCdUhZEoXE9wOd759cwYFuaKmbA4hA7zPcYOn6A94NKFmQp2eYPMO7Cu8eCUGS6xMmk+ecX/2c6XTJxlt2pkVJgcnPMVbhY8Fkcsl0OqdzW2LzQIzmj7RL+eQRiFGRpHOKqqKaXlNNb4houq7msNuQpgtggukNEovW+mlp+iRw9wrIyPICIZLxrUkPSA0xKtrO4eKRKG9pO4s3JwixGNM/UbGYnfPs+ivkumN1+BbfPTCYLX1v6fuANQeiN4g4xgKVTNG6JM+XVNPnzObXCJFinaXttuNDIh7HTLPQoAKjRMejpCBNk6cRV2QwHcPQj4tUrdCJRCUSpctxgZpekKgLZLQE9wA4rB+QYby2NoNnte3JVYH2FblOKVIDqmEwA4N1OBux3uK6IzYUVGLJpLhgOXtGXgVcXHNsf8IYC14jZUpZVcwW42y86wZsHanSktOzK3TWE+WBQzP2Tc7Olrx4/pLF4gqlMlwYWD9uuH38yJsPt0znKS9ursm0oK/rEZUhC6piwuXpDSfLK6QsUapEKUnb7vGrPbuapxSIGuU5ukAiyORYEkqUfnJRgBWKRCiMGJEWNo4WN2MNoe8oheD56TkTDX3TcXJ6wdX5cyaTOU030DQ1TdNQFIp5teDZ6TNKCa6puQ/vsYNgUlQkWYaWPc7sqPcOZyI6zcjziiKrmE6mSBqGbnR5yyhwpmW76dBSkcaxkKpISMQYEVd6NH2VeUqRarQKRO8wpqc3PZ0bfd1GOXJfIDSkVkDQBK2IaPqQcBg0nbXkckALhUo0wXuMs/RNi6kb/FNENU01zvejxjYeiXIgySTVtGJ5ckJRFgymwx9WuCfcuwweOwz0vsUqi0cw0HMUPUYYMhylkszmS06mlyRComJAxAHnBvatY3vYMJgjaMtq/8Dx/Xa80RAwfcLQe6TMmS/OKKcZ5zdTdsePrHcfOHY7OtePh4LKiC7Qtx1tc6BtGpwZ0EogsxSvJAhNIGC8xUU38tB0RqYUhc7IRIKMkagUKlMkScpAoBcRLxmLkNGhRKRMM6okxcVAYw29tVhnx46PeEJpmxGz/Sc9FD599hesNq/57fvfsFr9wLQ6ZTo5G+l8okKqgmZ4hZMfiO4BJS0Kh5AWEQcIGm9S8AlRK5JCk5cJk6liMRM4b+kHS90faA472v5Ib8brqU4VUpa0ZkHwAq8NIQVhC1KhmOcXlNHSuz3BOtJ0DsrxdlihlWVI4Oz0hnT5OTpm9Lancx0qSYgKiu4XTPIZZniDtXe0foszPaIuEWLGyfIrLs6fo/UFQucY03Fs9gzWUFZLZtNLfOfxpiZ6gXce3ztkGHcdQQS0HxB4QnCI4MmUBx0xVjI4g/MWNwiuL8/49NkrPty95v7xLTr9isVSYDjj5PDpyEpqbqn7DcdtR3d0ROtRUY0CI5mhdEGaL5kvX3F+8RlpWtLbltX2/Yju1fsR+5EkY7w1GASRJJEUeYLWY4u47dSYWB0Dt2PMUkaWyzOmpydotUDEkjz3nCw9rbmncY+YQVLKKX4fqQ81szLldL5ApgkyUQxWsVormi4ik54oe7zbk4SCND19ysQXTw7f5+Rqi+kjtgcRBHkhOL1S6LRicBt623D2bM4XX78kzQ2BLZtdzuGw58WLU169umI6vcRZxf3DHXcf7nn/8YHtzhG9ZPNwZDrVJFqTzhIm2QlniysuTl9wefGKanJCmlUIHejtkfv1j+zu7smyCWW5YJJOEMU4KlAxkDC2nwWSEAIaQSIVUUVQgihhwLHtN3zY/khj1lycLTg7XdA7QaorpC9Hf7hIKdHgLYUW/PL5cz5bLviX7x316pZFeYmfShaT5WgTSwYkO2w/7lsWiymT7JxElhAgzyacLm6IbkTWHIcjdbMhTzIm5YK0SMmUxgSPFR6pI2kGWeKQ2JFB5QNNN7A9HkdTXRRkaU6xOCErCpxNCU5yEA0733EwloPVKNOShBrlI7KTkBVEnY+lV9sSn2KlYfCEwdA0D3xcSVSuSKYJfp5xEIH+/h2//+41wkGmJD4EmsGBSqgmc5RO6M2AcQYXzFhqtJG+9eBSqmzGxdU15ydzUg3D0PD96zd8vH/Dx9WP3G1/JMgOqS1/909r/u5v/5Ff/+y/5K//1b9HJZrV9p663dC1BfLeYvoDzvREYLCWvh9o64btekXfNWgZSBJJmmZIleL9uCD2eDo3YH0HOBaTBZNiRh4lSQApx7BApRUkmgFP7S3HvuHYNvTBo4OjEBGVJVjjOB5rBufG3kzgqdWsxxb5n9rRXO+3uF4yzX4G8zPSPCBkYL8PCJlxfvpzXhQVbVdjzJ68aEizHcf6A3V7h5eGIAKDiTTHnsP2lpUyVOU90+n3OC/oBzdSRIXEOsNge1wYRg8wgpSRUzSpPiHLrml9hQk7WrNCpprrX/41qIQ3b/+F1cNbPlFzThYKjIEkUpUpi+qUJJmBnHBse45Ny7R6yc3lntvb/8T9fY81W9AdVblkPnvJYvGMrJxTdy132zusbfF+IOCYzqZgLshlwJkDaeEhsRg1/v9KqUZQWhh3LUJCkiWUk4p8qqnbiA8Z0+mSi4szqmkgylukviPJHmn7DzyuP6DzlFevvsYOWz788Fu6vQMLCk0ik/FtIwxonTJfzLi4OufZi2dcXb8ky0uOzQEbW7rdI60c3wLT/A+9DQnCo9WI8dBakWYpRZ6PIo9xo4rzDmct/XE8/NIykFWBl599wb+++ffs23e8fvefqA9r/BBZVqdcnT4jBMtmd083HJguRnJkks8pVYqLe2xsnsZfBiH3IFY4e0p05yzKV8izCY8Pt2yOjxAciY4U5xPmJwKZJKTlhqqIDGFF31qsramPPV3rOeyP3D+8p+s6pMyIsWe5LPGckpaeQMPq8T1tnVDlE07nF7y4/ppnl59zenLFpDohRAVCkKUlSinyZImkoessg1khZzDNK5JEkecZqVYjItuNSGQlJGVREIaWtu95/+4jbz984P27f+HDh98RXMe0qEh0hZATri/OeXbzKednF+hU4qLn2Le8W38gSzPq5sC3m59Y+5rPvv4VXzjF3cdH6sOBX//ir/mzX/4F3333HT/99IbPXv2SX/ziV5ycVhSloGv3NMftaEvsLenhAb8z4D3O9KQqpSpSSqXxckwxpXlAa4eSnuADwwCJVGRygkgCuYJZrrnJYZkFjCw5ANu2pWsaaHqKwSCjR8ls5Px7UBZksETrRgMZAiETglJ46UdyQIhUesGyOiWzOfsPe7rugd1uh/PDqL2cLFjOn3Nxcs3l2Q1VUeGMQ0vJ6XJBlqYcDjVdbyiTAtM2PG7vOQxb2v7AZvfIm9ff8/rHb1htP7I+3CH0gM4iN2df8+zFFWdXS0gMH+5/4h//+T8zn0/45c9/RqoN97c/0dQdx3aPsRbvYeh73GAhRJJMU5Y5RVUiVULXu9H1bh0+WlQy9hGEkKN97cmnnElFkmjysiAtcgyexA2EvacfOrwztK0nE5BIsB6sDzg/hlmMdfSDw7oRpaGSP/H4qD48gsh4fvnnhEvBEFZ0ZkddD2iV8+zmC+aTBdvthuPhgSTfI9OcEAIuREw8YML4MB16y9BtcGZHkn4gz0ukGnnvaXpClp0iREaCxrmWY7vC2T0y9MyrV6hYkuhzTDfQtkd2h7foIuW8+JSyOiVbn2CHhIwZ2mUMfUvt1xR5QGYVi5NnVJNXfLh95NgFprOKLFkQ/T2mu+V4dDh3INUFJ4tXLE9fMZlfsG8OHLo9zocn+B/EENBaMpuVEAM6c3g10AZw0Y3fPB/HhEAYUQwqy8jLCdVkSlQBHxSz5YTJQuDcPQ/rLcd6g7UN681HlPqRxfklSa6JPqc/amw7lqXkk70pIoHR5KWSiE4DaeEpJ4LJJEHpnNVqxHqLpzf/NE1JUoW1ghDcH4FZUihSDUVRECNjKiJ44uAxxnHYbfHbDdl0wmS55OLmjJPTBcvznLxyrB7fsH74yPnsks9e/QWHwyOPuzd0/QZl5hSqIi1ykkLgYo/1KdZWYx1feII70hxXqKhJdMokP6XJD7TZdnRER4lOxihwNZNMlwLbH7hfdaRJQZbkKLEgTyqcSVg9rtjvD0+NaU1epJycppCkNO0RMxwQMaVKp6TJhEl1SlWdgEhw3o9ky1RT5iU+FlT5OUXScWwf6YY9Ji1xzow3KjlGBiMjtmPUVYzoE28CdVfz07vX/P0//AO3t99yPL4FHHk2pSpPmE8uWJ4aYq7ITmbMl3PavuXux2+5f7yjsy3bw5oPt2+JLvLFi19wNrlGxx95kHcslxlae9aPO1blgZfPv+TXv/rXpLnDh5q6LkiTkq7paeoejxjj625AR0GeJuRZiheOPnQEaVCJIUkEqdJ4FyGATRLyTJCncDLxXFaBT8rAInFsbYlqE7aDoSRwMrGkU0drJEeT0hCxIaCsQLuAdGPsUsiUJMlH37cCrSV5nnBxcs3z68+xAzw+bNltDqx2D/S2QWg4PQssTj9lfnrF9fNPOJmdIpwgT3Kuzs7J0oTV6oHVZkVve9p+z/rdLZ1t2Tc7dsc1D7dvuP/4E02zo+32oAw6hbPlS2QBtdvx9u4H7m7fc//wFmfmbM7n7PeP1P2erj9i2hpr7Gi3s25MH2qFVvKPHnPkk7zqDwoC8UQhTiXiqYEcQsRFQOtxn/c0KnKMUWjxlGoMgXEEFQN98FgPg3UMxuGjfwLxgVCaJPn/Q/ooxgNlecLF5TlpsWTXnDO4bow8ZimFrgjuyNH8Hmf+hsYcGJqWgIJM4HuPc37ko+QCGSKD9+BbXD9QTSom0wlZlpPqOUlyjk5m7Js1zhpW7ZZDv2bbdhwaR67mxGDohw37wxvEVlL0A5cnv+bz5ZcUzz8jFmfUtuVw+D377QNJ8FTJlMn0SKmPHPr33G9es5hWLGcli8UEGb7g7q7j/mGHs6M5Lc9mXJw/5/wKrp8/47Dfsl49cvv+NbvdkXa/IlctWTIK5iOOGC0+jnFBhMAFMR4OyuJxBHGK1CXTuQYpUGlP3b2lOW44bFd0DZg+RYYDwd+yPtQEYXn8+IC3CaBGDwSeqJ6iv0qD8uzrFffr1yxvz9GJ49xd4mwkmj3C96PjWAR0MuIkxhHS2MKOAaQcFalFViKQ4/zf9CM7JUa6vubY1ejukUNzizV7Vvc/8vzlJzx7+Zz8OiDUliyJGGWxuiepOkgHisySJY4oI0JJ8jQBJjhbgtdoSmwT2dkN/bEnzwUqtUi9ZXbSY4cJps84HLbs92u2mx1tfaTeW/pG8OLZV9w8+5oimyPQhOCwvmV3XPG4+UCSwcnZjDQFLS2TIsGnYyIsSVK8h+Ox5zaugTXz2ZzPPv+Mq6tz0jSn6wZSnSC8RIWI9p5gevqupukaatMRlEZrSZDgQsSGEXP9uFtze/+Rh4c7dtsV7fGIbQ02OI79kYGUYjpjM9zzm7d/z0PY8En4HBFgt1/zcPeetx9fs90+kkbB2fQMaQOpTvnyyy84O53zu9//Dd9++49sN3uSVFNVJdWkYrP/yMP6Lc4OiDguup0XVOU5i/kVeSooEomIFu8HDu2e9XFFZzy9CwQXScoEJSRKhieAm0Aljumy5+zE8KyMnOoU2VU0Sca5E8xKxeeXE+al55sPA//8dqBrHbYPo/JSqSf6qhifI3k5+g/CmPwrywXn11/y6c/+FYd9zb7/hrjfjWOsxkDwtOLI+mTNqllzzjWTHBQ5nci4sw7lPIMUmEJS25r18QMfPrxms3kkTTRKCZypEdKjdSRPxehZTwUfbn/k4+OK05OXXJ9/zvn8nF/94s9Z3X/k//5/+79ybB8Q6YDUllkGLgr63iGiAwUuQvSWrvVY74lC0Q8B5/wTtG5E8Afv8DhEVLjgwQcGD8pKVC8Re4mPYcT+uDFEobUendlVhZxMcMeeQ93Rdh2BgNKj41vpJw6T+BOPj47dPzOEOU7VkMzYNlus90ynZ5TpBGEDzqw5dj/Q9reYUGP8gItgQxyvSs6jlKeoINVjltkbRlmE7Rlai2aKlJZJnjOdXZKmkv2xpK4VrXcYs2bTOVJVkqYK5zq6YYNA0Lgfackp5JI0f8l0qVnKE0L/K3bJKYtixjRbYk3C4/o9m/1bDu0HZtPn5PmMRIxvc1UlyFOJNXvuH75BpBqRW+YnN1TlkiJbjEUXkdEfNjz4A/1xQ99uQUWctPQMuCeIHl4S2hGhoBJP5h0ifaA2HSoVqBR6mzCtCsp0weL6M7pDTt8UnF58zvLiGY2rWe0/Yp0Dxh2OioIoxjGekBqpU/IqpZxKfNzw07v/yGb3Dcv5kugU64cjx8caa5qnt4bxjeUP+PLxz9ONQwgSneLD2KYkmrGUZQPCJqRuynxRsTidMpmfIqTm/vGex+0dOg1k6RRjHG/rv6frVgzDAaXCuEjMZ8xmvyDgeNz+fzDuwGySkWmJ6zqic1jbwBNiPYEnxtVIkI1CUBUTMlVQJWdMkpp7tjy0B3AabwTPXr3i1csviDGy2a948/57mr6jHbbsDzVnJyfcnH+CFJZD/QEfDHmWMJ3mvHh+w9XFZ/gARVFyenZOUeZ4bxjsin39I9v998RgSJ6wHFIKXHR0dsBISTQ9nTEcm5r1dj3uMu4+8nB3y26zITjDcrIkqUq6rmN7PBIPLXvxHvyRvr3H1vc09x+RMWG32rB6fOBwd0d32KHzCTH1DE3NIXukqWseH29Zr99xON4zWIPWJb09sDs88vHuLe8+/sB4K8ko8znz0zMuz665vrxGeEd33HF3+5YPjz9Rd4YoSqILNM3A0bcc9fD0uUnoncJYUMLT+MDOOR7cQBda3jew7nPyouFkbjk/K8iSDB48vW8JwZM9YRia6CCFPE1IEpCJJcYnZW2Evgs83G1R4geGvud42GBN88c9mFQaZwfWDz+iEkPf3HF2dkNVnDOfnXN9+ZKyrNgfH1it3vDx9ls+fPyW1eMH2ubIbDKlzEuMGRCxB+yTSCyBkNIcOrphT98O4DxVrnl2c8njJvDh4Q1N88DJWcGyKFjMS2IZqRtD0w3UfaQ1DmMdznq6wRJQOC/G0lkMID1JFkhSCAhsdAQfII6xVhUlwo+o9uDHw2T0b4y3CYtEpJbQDbRdTzsMWB9IM01eZBRFjpBgvRntbn/KQ+Hj5u+RqkTv3xLVhN4aQtSkjwtyNaeQExLhcQhsnGDo6cOWzrX0dgCTIH2CziNZClLnxERiOknfCpwzdMeWVByQRY2SB4TYQtxBrJHBkHqB7QeO5gGtNdUkRz6pI3UikZMDQ/aG3ZAhdgOJ+pRZ9YzPLj4lnP6aaZKSJ4EurNgNH8g1zOcZeabGRasWlGXGYj6OpnaHjs32G0zcU7v3XN/8muurXzGtzlkuTgmmYfNwRnsoqXeWtu9J0oygND6YMRoWPMEJQpsSjUImnnYwNMM9yeYRlRuyUnJxdk2Vfcnl9Z/z2c2/xTQV/TFlenZCucx5ff8bbve/ZTA7ggtoUlRWENGEoAkoApI0FWRFxIUN7z++xjtHnmSIkGAaibIlc31GmUwA8H4caYkna1iMYnz4P43HxNMhEXm6rgZBlS1ZFDOuX15z+eoCWaQMwfG4+8Dd6gfm5ZJPr35BpGV3/IHBbAhANpmQFXOq6Smz2dhN6VpL0++ZVTOyVCKsfSoxjgY+HzTeSNrO0/YR6wxCDJzPPuFkcoMIOV3teD19R+J+IHjFw+0Dv/hK8PnnnzCdzqmbluvrG6bTKY/rjwzDgavLa3725a/RKnC/+oFj/Yi1DYvZlOubc1598hKZ5EQUQ9fz8eGWprlnt3vP7f1v2R8+UGVLJuk5CklwjqapCeKRznvqvmffHFnvNqwfVzzc39HXLW4wJFJzNj8hIaL8QFcfSa3g0O443D2A6ZinGV4duN+9RogUpTImWcnV5IxB5GiVUKoMnKE+PPD23Y/c3r+nM3tmiwnIjqF33N6+Rf1GsNs/sD88khUpcrlgOlFMF3NOry65efGC9rh/ugF23K82OO+YzBdopQh24Hjs6fsDCEeW5wSZ0DtBNAEnDcfW8pj15CrQ2IRA5Kxy6By2BoZGcNtE9j4QRCRNYSAwECnSlDwZ7YMh9kQUqASixFtNs/eswgHnWvrjEW86iBapIdEpEcdh84G2eeTx/WuWyxturr/k2bPPmWYZuAkf33/DD6//kbfvf8vt/bdY2yGIeL9gMBNkjBAsMRocHpxGBjCdw/UtnVizSzPW8xnLkwWNOUAaECbijEGmGVWRk2SaVBkSrQnRY8xAZz2dsdgwHgrIdGyC+1G8I6IikYoAT1j/+PTCBs6Ph8GI0B+b4f6JKC2cQZgRwTKYwNAZrBsx/1qPC2YhBCEErHHjv+9PeSi8W+3I84HTM8VyknKx+AQRSnbb92C23Fz+kvnkGUf7mlUzpd79DY+H7whi1OHpIUE68QS9G0VtSnlkAiJVBFUQ44RpVVBNDJ35jrs3v2Gz23K3umN/ONJ1kW4YlXtKBYSsmUxSrs6mFFmGCAF2a2L5W3bNG95+p0n0M/7s1/8tX37211xMA9PM48IJnV3y4vqGD4dH7j7ecnf3jpNpxdnyr6jyn5OlD+QP3/Fw/8/Y4ZHVfTf+kF3PfHJFqWZsVh94ePiW/eEjNjpmy0ueXX9Cmik2hw8c6w1t09K3AatzrBfjYtUYYlD4IaIyj3QJ+uSSafEL5tOfcXL2JflNhRIpvRPs247b9Xu+ffOf2X28Rx4EqQqUxQyVAErQG0MzDHT9DvOwIQqP9w6ixA2g0aiYkSYVuS7IVfbHcVCMgREROJrRnAtPbyNj3tmFP5BrFSJNWJ5ccHH1krOrF0yXZ6x2H3h4/Ikkd/zZn/2CUi3JzAmCGZNpTtdtOBx2TCYFL25eoAt43P4P7A93CLVhWkyJpmIIOdEKVBSkauS7WGvpXU9rAm0faPuxQTypIkk55+rkFVV6yqJ6h3In/PjjD7x/95af3n7Hl/cv+XL6JS9eXPD8Zsmfff0V9b6l2XcUk5SzmxkqkTTNv+Xx4QM//fgbOlPz4faWY4DJ2Sk+Cj6+fs/jx/c09Uec2aOjp9AzpuUpZXmKM4Ht447m2CP0Bx62j9xtHtjXe/qhZ1JUPFue8epXv+TVs8847DpuPzzy9v03vP34zzjXMDnLUPUCu5YU2QuuX/wblldX9N6SZTk3Z1dMdIbdHhg2W5rdmmFoUZOSPliE7NGZ52xyieAlj/d77t6v+fH3b/nm737P2UnF+cWS64trLi5fItOCujF89+YH3jyMJrPD9oG22ZEsA4XMydOUxGqcOwUxwiK74YjpHT4ajIs479msDUF4pJSU5YTLq2vOTpccQs9x31J/bDi2R9Ztj00DMRlb58pqSqfJSEhFMjbSn/wDUgrKcsHp/Gd89dlf8bOv/oL7+9f83T/8P+namlRlCB9RPJn6vED4EsKcMrvm5uJrLk+fYzrL28cf+eabf+SHH/+BtnskGkciRumMDAnRSoJ0eBmQOpIHsLbD9TVhMETjMBgO8sB7+QbbWazrmVQlhAldf2TnOyo3oUgk/okWnOoErRKckfSNwEc57k3SES+idEBpwSTPKYsEgUUwSoJihK4b6NqevneYwY1GRP0HPP8TbSsAxuNjC9aixLi075oRpSHliJr/A733T3ooHI893gfKUpInCowGn9N2t2iZ4VkhkjmpzKnCDXP3NTZEBrtnsDUj4i4SnSBaRZpVTKsK7yR9F+jaQNd5+mFgt99Qtw0Pm0f2x5pj3dMbh/XjA0wlASE81jra2iOdJpSCxaxkPi2YLjQRR9sPtO0d7+/+liTtKT79lNPFDYWckLuUo3IUoScta2RjsXJG4xc4NUVNFVm/I6/nDMc1zXaN9SnGSvbFjkLOaY4r2naNjx1CRaSWSK1I0pRJNYE4uhO8NARGoideIFRCmpUkicb5sQF92G24v/uOEDz7ZsPV9Secnj9nuxl4uN+w+vieeBhIjB/LHyEydCBsQGhPVJG8GLEgg//DvFIjkSM6N4KS2Th20xmJSiBGfPRY57DejoyUyNNhEP/IS3HBPy1RnwToyYgPlyIiYkBLSZbmEB3mkIKK2NhRlIKqyolqwnEYEOmcrLwhyTq0+hdSvSGbKogZIqb0FoZ+5MMnLnl60ymIlMgAmRAIJRHkJHGGsynGCKpEcH19Q/rXBVJIdrs9bWv5+HHF2fkN5xcJk/mU+ewEfxFwnUclkWwChgC5ow9wvj+y3z4y7Abum5/YPN6T5DmZz3lx+hw/neCGBtNagg0kMUG5kTGVlxVRCgZnkLsNvrN0u5pDcyDOA9PpApKEbDblJJ+hkhJHS9M/0LRbtB5pwcsko5xOMP3A9u6BQ30gy3OqoKgun3H9/CX65gV373/k4eEDjenZ1js2h9FN8OKzV7x8/iXbhyMfXn/ku9//E29++Ia2bTnuNa51pDFhWs3RZYmNPW2/Y7d65P3711gzdhbKfIpWIFXGdHLCdHrCZ59/RWsaVttHHrcrVpsNXXfE9GMxqprM0HIJrsC2EuMl1kj2R0vTDxgCidD8YUSJE8RBYL3E2vC0Z1JMp2ecn33CxdnX3Fz+imfPPuXy6pzO31HOE5KNgNYTfSBKQaJzqrRgsbjg8uIVr158xZcvPmcymbHa3LG5v2Vzf8t+vUKoAS01iIiICu/AMHouUAohRleECGOc3hAQMZLq9Mkc6Nhu7zGm53A40Bxb+rYj6khhawo94BhxFT4GpFZPO7pRXZrlU+aLM6bzObP5jLLKSRJBCIbH1Xt223uk1AihMDIgcBCfjH1CIVXGYrng5GQxUqC1oq4PbLZrzDA88ZfGl7ngIEaBEPLp5v2nLq/lcxItiVax3264bR+wg0MIT1XOyHclvVhR5peU+TnPswXn85+z2b1mu/8Jwxrv6rEkowuqcsnyZIH3lrat8eJI3R9pjgfc9sChadjsdvSDwfmIj44gDEpFkkQRn65EfW3ZGsti7lgsFpyenzE7SYkywfjI3b3lm5/+Z97c/w4b/2uyyZIqyyEKtvWR1XZLkBnV4hnWKO6PYEPL4I/00kNWEpoDXV9j/AZrUg5pRyoqvK0xtkVpSDJFlJFje8T69MnHOnqshfDAk4s6SrSomFRL8knCobUMdstq9QNt947vX/9PJMWCT778K1599lcMx4R6Y+i3B5ackmXQZluGoadvBzwDUVqKScZkMSGVCRhNiAGtR4SzNR7vPFEBQiLlCHALwRNdxLkREDZmkhhBb+F/mV+G+HQwxAgRrBno6gNuckRVFcvplKT4gsOu5bDq6LQnn9fE6BDG0pqWoxvwJrA9wjQklOmMdHaC82BspBsCrfMcO4cxoKUm0Yo8Kcl0gYwpJQVn0zllMaecnlDoOc5EOtlycXbOl599hk4SBhORScbtbcvZZc3Ni0BSRJAekQVE8lTOC9A4w8F1DCqSL58RKKl3dxw39+zevWc6m/MXf/G/45NPvkZLSVe3vP/pjruPt3T9A2JouPz0kueffc7gI8emRekJWkwpsxPWmxVBC5oB3j2uMPI7TuenTOcTrp49w1vDdn/P3mxQvqM4jUgnOK5f0+1bNg+PCJGw++kt68+/5ld/9q84PT+jzRV7HVhv92y2GwYnKMoTrp99yle//BXDq4Hnz55TTTW6gLuP7/m42pCVH5hM5lRlxdnVBc6nbGzHQy/pdw5jAmmWUqYlZXlKkU9QMuX09IyXn76ktz2//+53/O7b31H3v6ftApM8Y5KnXFyeM5tOGbqe4/2aGD0hGoJ1KBdJUeiYELwkOMUTMZqmd7R4ZBooq4z58jlffPFf8uzmK87PX4Iw3G5/x8P+G3zSoMpITALejrypspjy/OwFX7z6mi+++DnPnr1isTyl63vu3+/Yrz7S1TuisyPPK9P4OHKCfITgAgqFJEGM6esxBSctaZIiMCyWCy4uTwBBU9fsdztWj2u6ph/HuXlKpy3WGpquxhNIihQfx2dDIRQqKagmY1z88uqaFy+eszyZY13Pbreiadfc3Y/POK0YX8LShCyOvCOlNHlecHF5yctXL5lOK7SWvH//jt1hPz4nGSP9QTzx1Rib0FKPe68/6aHwv//f/rd4B0MvWG82HFffsFq/wYWONO1om5LjmeaT5xdcXVyTaEmIHSoIdIwM+YwQWvI8pyhKEp1irKBtD+yPns56RD5GPM0QsBYIKZKAUh0wQHRj8cMkWCMwg0VJwXSaM1+m6NzQDDv2bzXH2vHx/sBq09IaT16eMfvxR0L6kovFDdNizoe7Ffd3dzjL6CHQU5ApdfPI3fafse0t0a4JqaFapoiokQSiGwgCzLDncNjg/ECezanKJVV5hhCBtu8ZzCjbyDKNjJJEwxA8ItUUs4y8SjBSEXo1uqtdgYw9gjvWP/zP2NUbPnn+f+Kr63/LXV7xQ3xk6AKddUgZmSxTotAjEydG9ntDVAGZjEpTayKmi3R7D0bis4akzLG6IpXJiCkHlNakjLNK6wLODQyDfcpcj6rIEANN29ANPeV8QXGy4PzlS168+AwH1ENHkU5Zlid0bsXD8fd8/PAd797es90eqYdIkvW0+wPzhWS2HNC6oO8MXevoW4k3KZKCUhSkMgMP9bHhsdujZTV6dL/4nE8//TnXN5ecnMzIE0Wq5Og6EAk/+3lEyik//PSau8cHHjePtK6hkhkQOTZHVo8b+hCQRc4sqTgXFYnKeJgG6swzuUhJNgXDN46ucazaHap9xMsM6wJmqskup7hDTXCetCjI8wkqCAQFz64zFtNr/vyXoCUcDltWq3sO9YHj21tMsWU/rTA2YGRGtrjgMqnouy2HzYpMCc4mC1gu2EwL9nXPsdnzj7/9DT++f085mZCmARkNw7FhmuT82//qv+Hk7Iqf7u747/5f/wMmOlx0DNpz+ulLHuo969Uj/u4DHYF3dx9Y/MMUIz1HBpI04+r5F5zMTzldnHJ9/YwXL16RFxOsf4o1phmr1QPzYsMyeWAZZ+Rlys2LTzk5W6Jkhxk2fDwc2G3XyFSjEoXQo9ckDB7bWZq6Z+gM5xcLzq8XbGqDP/YgPVpo3GDZbu4wQ8+bt7+n7Y4cjiu69sjQD0/IlAVStCAE1aTis0+/5l/92b/hZz/7GYuTBU1Tc2we2O5vWW8/MtgalQqyPCMvsz/urHgKaP9hZ2YGS98OmG7A9IayylguFixOZ0yqlKatqZsNxvQUWUZCRrBwulhy8/wSb3vqdx3HuiH03ROGPkFoSd22HJqB/fHI+4/v+Oa735HnCTE6nBuomx29MUjhkMIihCJJRp5WGiBNMvK8wFjLu/fvGPqetms4Hg/U9XHUukpBQGD8KP7SSqKEQIxtuT/toXCsHzGD57AzbLcHuqZGoSnyJZPJkov551zMv+Rs/orT2TVKaUIwBGeJPmD9gkBHko5jga4/cqhXHNt7Ds3dk/Iy0ttA03n6wRO8hJgin+QZgX4UH4rRmStEgUAQfEJzhNv3Hc3Bo7TAOE996OnbEa/hhgOr++/4XuasJhdMyxNMUGS6pMjU6IAVGcYxqh2dIToDxiKMRw4jsTbREfXkoA2+xQeLVjnz+XNmkysSPWMYaqxZ03fgDHgXcYNDUHB28Qnz82vmkzlSeqIb9ZFCgkg1KsnRWuGc4bi95U78hv448HhY83h/z2Gzp6/rEQ9eZqPIXqQI7xmeSkA2jA5qQsD1ETdEpAsE4bHK0fcDMqqn2+TTrFGM7okQAjE8JR2sZTAGH8YlVde19NawOayQ6xRZKepwxHtB1w9MqyXN6RWD2bLavie6jE9e/he8fJYwDIF9/cBq/z2PQ41zOVJFjoeWw76hrUej3LRcUOaCIh9pmHlWMqlSJpMli/kFl9c3zJZz5ienLE5PSKT44whLRkE5Lzm5mPLtTy0f738gn3tevjvDqxdM5zNq0/BwWLHerelNzTyZ8HzyHIfgvnlkb/cksScPsHjxnEJXGKm436wp8/mI0sYwpJah0oRY0ipN5/3ITCozlCqopiekaUKaKGb7DXlRsl7fPz0sJXmeEqMjYPAhIj0INFlWkggJeY5IBIUPkBakfRiJv9ZiDntCGpA64JVHTnPyi3OyxTn167d8fPuBJJdU84LZtGJWTTis95h6IFUCRaRva3ZdT0wkFJrrm0/42de/4uzsmkk1Z75YsDg5QWmNMR7/hHtvS8N0esrF1YsxWh0jlzefkiQJ79/8jrvbLY8Pe47HlsnJgrIsiMIRoyfNJBqItiG6jqKYU01PcLIBqVkuz7m4uCZGxXHzyH71kSgcwzDQdT0xJCSqpFBLLuflmESj5/rqOa+++hkvvv6asxc3IByPD3e8vv+Wtw/fcbd9S9MfsGGgN4CCLC9IdIKAJw3ACJ0LT8tmY3v6viVJwYeEpqkZTIN1hhjCSKZFkGiN0ilCSXb1EWc7huCJSo28MKWRKiHYiG8Gur6jH3r2hy3y7qlXpECpSJQeIQNSKKR0YwrrCV+jtR5py1pirKHrW6QcQXdpmiNlNzoXfBwx23FMF8YQx7Ec8L8SffS//lD4u3/6DxhjqQ813kGVLzidn7CYnXB++gmf3PxvuDr/OcvlBUU1xXnohoEiP6dyHYPVWH8AIoOx7Jsjq9176u6WxjyMZiQy6iayPzhMLwhWQZAQS4JQTzNHh9YSJTVSjp7YZhvodp5mOzCdOhZnnqyCXOcsyhwXHVKBq9/w+O7AWk5I0zNunv8V18//gnyaIxM4Hga2mwPaC4qQIty4JPI12NqjU0dSGWIM2OCw9jgSYbMZi/kNs+kLiDnBrwm+xBiN6yWmjXT7gSyfcnX5az7/2b9lmk+wQ01fS457RxB7orbEpCQmyTgu85Yf3v1HTPMfaI8ZXZOPJanYEmOC7jSFUCPKOBm9msIKegvOuXHmaiNajh/eTOcjn9562tjDHwdG4zXT+TCOmcL4IfLOj1x40zOYAessNjpW21t27pGP6x/IywnBRlzvSbOKcrocm9um5xc//zf85b/7P7CcX9EdG968+yf+/vdb1vuG/SbinWF/aEaZTTMgYoJbQJhppKzIsoL5Ysnp6RmX19ecnl0gVULUht4PHHsDIeCtIUsUWSKozYajvWPTvOFu9S1ObpksFbvDV7z45BN6a3nY3PLx7bc8fviWTOfcXv+MNC1p6x2Hdsu6WzE/PePf/fX/mVc3X/P48IBpWkoRKJLAxhuOocdnCV5nHGNkfWw4m6ZM8gIhI0J7vIh00ROyhOJ0yUkqKWYVSo5I882+pusdx2PL0IyK0SxbEoGNjXhr8DGQVzkvzhZMsilaZTjv2dZrDubAkEKYZ6z8ONJrhoFUCOZpymlZkVUzkBnt1RHRBnS0VLmiyFLyNPsj5PJnn37Nn//6r5mdXhJVgg2exvWYtmboegSKPC3HIqOG4nTKy9PPEVKQ6imH9Z7b23u+/+Yn2vYAMjA51aTFBKFASskkrchExn5zZL+rOTk9ZT4/QScbJsWRr774C7767K/48PEtf/P3/yPH5gGZWIgKEVJSlZKKlKKcUpxOCNHS9WsW8wuS6ZROw1294Xh85O+/+zv+5bvf8OP9N6yaj4Snz7XtLIMdmPH0DBESose5jsG2Y0Rbg1QDUQwMRnA8Bo41488iG8GLMXUMTY2IkGSawfa8v98AHpWM9FmVjPsT5yIuDshEjCKjYPHG4t0ojE8ySZKKp2j52G6WIoyHsRuJunmWPcl1RqyHc47Ly0suLy7YbDajknh/wAwWEKRP9kT+MD5SEfGn7ikcGo23gcFqCl1xefIlp7MLguuQBibJhJPJCbPJBJ0pdnVN3W8xosYnHbvDPfv9R0LsQRh6U2NcT4gpIpxgrcWawGE/sN9bTBcJViKIaO1Be2JiUVIhhH6asTFq8JRHpzCbpVRlwtC0uD4wmWlOpgVDrzAuIpXF8Yi1PZ1LOe1B2Al5rEgFtO0dw/2G44dbNncfcX6HSDw2CqyWON/jaov3gcFYBtthbIPUGQFDko1GMkTJ4Tilb6fYxuAGh7cBmRYU+oKT2WecX50SqLlvXrPq3tM0gmHfMQgHwhBkQxDt+AbpJd5ZhAnIEIhqTHEFB2YIOG+IYpTGqyTjpFoQvKOp95hoIApKNeFkckaVLhBC4IzheDxiTE/yh/iaHFMPzjmsNRhjnoprBuPGt0IhBDKAsoHhsKVvVgQT8AMIlaN2a/J0xjQ7Yb3v+Jeffo9S37N9XFM3K5zKSasr6mODGQzIlNl8zmIiyNWMk+lLlvNnnJ1ek+YZD/u3/Pjun+hljUk91eQFpZ4hOk9rV5i+Z+galLIkyrLf37Gu32PCBqEH7m4/8B/+e8M3v3/Ni09eIBPHvnlgvfrA5uEji+mSLKs4X14xzwqS4Gjre/zxwHq94XTac12eUZYCIQdiMFzmOUtxxsFaau9I2kgTa6qkIEvT8QHUD6PSLAaEtygfRmduDFjrsd5S5AVffPoZbX1g/fCRtm2wLnDsWg7NgcYc8aFlVhQsTk9YXJ7y4vITMp3z5u1PfLh/xy4c0TrhWuUs0gnd6Qldc4YUBoclDxEtJJ21rPqWKhXMiorrZze8ePaMzhpWxz0hVXTDwMQ6irSgbxvef3zNw+aRzWE3dkMmM5r6yNuffuSwf0QrQ/CevonsNwdu37zGdkcSOZDkAiU6MgWvPvkFVxefMM3mCCv5+O49t7cfePbqBc9ePePj3WseHt+znFwyq07Y5hu0GGO+1nR4P7paqjKlKuZMJ+PLQtc3bLa3fPf9a+73Pf/p7/6WqpIYs+fj3fdsdrf03QGlA2kysqi8C0ghSfRY3NRP0VHbtnjTP7WMBVkh0KokBk0MkiQpKLOKLC/J0xwVB2yuMUOPMQNFkXB6ekZZ5qRZivOe/f5A07QYZ3Hek6QJJaOzxLvxVhDDqPEcX4pH54oI48M8UYpEjo9o7xxD2xKsffr9dGRao4XkeDwyNB1usEQbSNOESVGRlylpqvHR0psG5+2f9lCI5EidUFYZs3zGbHrKtFzgTEKZTSiylDQRCCyDbdnVH7nbvKN1G+phxXZ3z+GwRgiP1oAQpMkErQry1NN1A20caNUBJY4IYRDSE4PDOEMMjhgiCQlKJaN71AWiiFRTSHVkPjdUhQCfk6qK+eyKLJvQDUc6c8RGjwO0KkDP8UJw7A4MHEEOHPf3dOY9xnxg6D4yuIaYgPUO4ywEN0pjHJjhiQUUDHW94+7hB4zrmJRLgg9EepQcE1reWmLwEEenggmeTfNI71fs+g1OeKbTc3KRcNit2G4+4qQhqAEpNDIqrH1CAwhNpgoUAm9H8YZUCqE1MkmoiimnZwt8sDzGSOsaCJpMlmipETFgraPrepq2YRh68iwlS1OkHGes3o3tc2stxoy7Bevd6IRVIybD24gIDqTBG4E1iohF+5bTmys+++JrklLxL9//j+wPW3a7PWmSc3F+xSQ/Z6ZvSCSkuQN6+q5FoFjMrjk5ueHm5hOyooT3OWH9AaUWmEEiqBl6x2rV4WyLM2MPpMgVRSHY7z6wfvyJzh6oKs26afnw9h2H7YHuuCebRLzcs9tveVgfaDtNXj4imPDp+RnLsuCYrOn6gfXH97yTFfLihnyxJM8yEpmTBokfPGp/xB4OtM3AsetxGto4oBFIF0ilItPJaGaTKcZl9K4gMqJRpuWMxWSOaTrmSUnfdBAEm/2Wdw8f+Gh6HtuG3hwJqYCq4PLTL7k4e8YLkRGE5uGnv+V2d0eRTLhY1vRmT6FHj69CUKQpZTZhkVfMkgKiobOO1joMoMqCWZ6QzSYMMnAwLT2Bj48f+fbHb/hw+5719pHBDCil6NuGzfqBrtkjGJ4eDvko4ckSLq6foZQlzSXT0yWnVze8evklr17+jLP5JYXO2Xz+yOPj/Wi/KyqC0AhVMHjP929+y9v3r1ltVxyOLT4MI04mOqLISbKWrOzIvSEqTTY5pd1uePfDj9hvWnTiEWrAhRohBtJUUOb5UzRTYo0nhPHFp2mapxy/p7PdKLn3YWz1o0nTlCydkWcLLi5ecnX1Cp3ko0rVDRjTcvvxDT+9/hbjDegCJyJd3dP3PYfDkbZrx71cgCTRZGkBQj4xpHqssQgRkUKMmH05/rPwNKJCCoIPeO8YnGPo+xG46T1bKXFmtLyZYSAGj1KC5cmcTz95xclySZJq2q5hs3mk67o/7aGwnJ2MpQgZKJIMrQNCehaLC5aza7KiwkXDoetp7YH7zY/crn+kMw2tqenbBmvH0xeZo7VEJwGlIlJ5urynSXpCn2C7SJaM+wPrDH0vGJzAe0d4EmRHIsY4pICq0lRFIC0b8soxK86ZpFeo8BIRS5L0DXk80DaSfkiJ6QxRzDHhyN3u9/Srht4dkbFGij0u/4gs1sTeMDiFsW4sTQU3ajK9IoTR5pboDO8sj4/vOB5XlOWERGXgIPgnoU1IEDEZpfHBsG9X3O7v2R3f8uHD6xHxfPWCi8U5H4Jjc/9hRNULSRQCS6S3AhMUhcrQokB6j+s6QgI6SSiSiqKYsZyNtE1rW9rDEdcEotdEJ+maliEM9ObpYW8MMBbXhBDEGJ/6CZ7w9Ffvx78fjU+jGtMJiwuWVAlSmROVxokxuZGRsJxNefHpJcf2gTe/+2fuH9/TDIbF9IrL2ZLl9BkXZ89Zzs8ophUm9Hx4fMux36EmkrCMcCLIJlNu0l8yP/uScTpmaA631M0968PDiNpQMyblJcvFCcgJu0PDx7t7jBmYLyr8EHFtg3A9pj2Ob4glFLogV4IYZxyGlMOgCaGg1IpFfo3qd5jDgfv7HwhJT5s942X1nJNqgRCSMBgGY6gPgaPt6WxPrwwHc6DIMso0Y1ZM0FmGjIrESiriGHvUijRPmeYVs6zCJgPSCuLck8uUw2HHLM3IhGXoVzw0a37of6L2cHr9BeXsBlXOyKoFm8Oef3n7ex66A6cnF5QDFBbKvGSaLTiZL1nMLjhc7nDrmtVxTWcGHjY7RJIyP1kwPVmSFgUxERxsg+n2fFjfcrd+YLV+YL++57DbUB/29H2L9xbrBoztSLKMs/MblmcXTIsleVLgXQ/CU0wLpos5Ms0x0UEOs/Mp569O+Dp+ybt3j7x9c48NGplOuH38gdv7H7i/u+f+bo1zHq30H5HtjkDrDLrvUH1LUcy5uPmSoljx4cd/Yrvb46QlyWA+zciKEp0wpl+DxzoPEgbnqI81zh+xdoQWSh3HvlyAGCLqyZY3m51xc/0pX331Z3z++S+JKLa7HTE6tAr89rc5t/fv2e3vkfuAdY7NejSsQUAqSBNNWRRMJ1OKvEBKhXOe+nika7vx9ysyAimFwBhLiE98pBDH30U/ltd8GBOAEMebpTUQIUY/upoTmJ+WvPj0hqvzKxKV0NUd2+qEvuv/tIfCv/rZv8e6lrZ9wNoaLUcWytX1LzhbfoFSE3adpTWPHLo7Hncfado9UiWUyQwnenrfYawgDJo8rUjzUeCRJQHldoTkkUynpCqhmFRMZwsigbY7ULd76maPTALTeUEIjq0Z6AdHcBHv9BNAS9AOAWtq/PAOJRNm5z1FrmltR9cecTwSgsDv3xIcDN5jo0XJDkVDf9zQDXuiTEknE3RQBBfwpiPYlr5x9H1PmpaczE+f5OiKEALG9tj+iIwjrncskMVR5i0zIIGYUcg56HO67BLdB0zfc7d7x9o80ugObwzCeqZ5RpkW9FHTDhJp1cjkDx4XQKWjA3q5LLm5umZ5dkJZFbTtgTxd0yU9xlqc62hMxBvBYAZ8CGglybKEPMvI8wznAliLedID+icnbF4UqGwcLyEjEYuJAyLR6CQjRI1QEklESsfD3Wv+3/9TjU4i0Qdm2QwZGhbFhOvlBYvplNYdETZhUp2xLE/wmUTv3rPev+H48Y6mfmQ2PadIzsmTJUIEnG/Y7n7i/vE7HtYfaYeBs5PPmFdLBB5jPE0zcDi0ZFqyvFigkbh2YOgGDpsV0Zec6AlnxZTFteL08hM+/dlfsJguSZoWjOF8fsXJ8hyTBkSZIqOkbw0Px47apSSAMwP33ZGVb5F4UgF+d+S4O9DnGXVRsM0OpFlBkWSUSU4uNSfZhCxNSdOERKVILzE+4on0wdBZi5eRk7MLPlMOmThmqw+8Xa3we0u9rblbPdJuj9zfvYXoWaQJ9uEDD6s70rxiOllys6iYnF9w+ew5l6c3HJuOTd/AKmcwHdWsYrJcYLznw7tbvIMiLcmzgug8ZYTr2QlqGBB2YOgbdgeHiWZ0aqgUHSVaFSTJnNnymq+++Dlnp+dsNivW6wd2+w3bD4/cPtbkP77h5PSEq5tLvvrqCz559YL74wf++fu/48P7d2w2j/TDDmuPNG2PsxolC8qypJqmlJVmMlswnZ5STU6pJmfk+ZIkWaDQPCa/J1WBvMyZzEpOTmekeYKxHd3Q0nQtth/oB0PXG/rBMQxu/MwjSHP9R2qweAq24AVlOePi8orJrMSGhrYf2OzHEbSUnmO3QWcgdOTQHMaRq7WEGJBKkmU5i8WC66srXr18SZEXPDw8sl6vsWbAWTuOk7x/wsmAj3Esi8ZI4H/58k8JQSlAKoGPHmfCqPxVEpUIVB5p7Jbvf/o9+/2a5fSU5eSET55/Sppkf9pDYZFVOJ1Rqnz0K9sVXg/EIuJzQdO3tG3DoX3PsX1P026x5jiy4UWCdwbnBlI1ochOmZcXzKoTtB5A7hjiYYx6Wou3gjxZcDL9krycEPHsj3fc339H77akUjGEHik0xIhzisEo2l4iVKSO7YgCthuSRBOmGVUiMGHAhg4XIz40xF4QB/A+wQWJoSfS4oaBEFLQCahIlmh0mkFWEHxFLTu87ciSnEl5wmJ+SVWcYqxlvbnl2D/QDWvsMBDjSEjEKgQKEQOJgLK8YJnPyUXOpjxhffyJ9eP70XUsFM4JfBepUkGqNSiFF4ylMjOmDFwQECRBCRKVsZgumZSzJ62mQquMLMuRT+Wgcf8w0juVEBRFTlUWFEVOmiaYwT7dDCLOu5GVIgRZkVPOKoQQ+OgQzhJcS6IUSioUARUtUowmrs3uwNu718zm5zy7eUVVzkmSI7NyihAWE460QuAQlPaBiavwqkboDmf39P2eBI/yAZ94jO7wrqfvd9yvfmK1+cBu+4g1jkLOqctHgnMcdMZ6fcex3iMnGqE0WnuUcjjb0RwbTDcQneDqYsrN+RU/++IX/MWv/g1pmvHm7bfU9Z48z5Fa0UeDl4KMCnP0/LD5jm7osMOA6QearsVYy/l8zrKqaPd7mromKonKCopqymS2ZFpNWEymnFYTJlU16haTUdvZmp7GdQxiYGDAukiWpMznV8zPlpxfnXP98S3pP/+OwUdKr7CHAx9vf+Ljxx8JQ8tECnbHDUfTEaspjbQk/Zyls5CnzM+WnD275OK4x8bIYbujrGZM5yesNxvuHtYkac6zm55FNSErSgqpUQGisazu7vGDx1tHlqScnZ0zKaYQUmKQuChQUbNYLHj+8jnT2ZzpZMnjwwOPj3e8+/iWzeFbZK5Znp/wuLtnX/+S73/4F96//47tZkvfDZT5jGJ6SS4OxO4BpQWLRcV8MWEyr5jNT8ZDYXrGZHpGiJrDscOFI0klmF/OmC/mzOezEWkvIrvdhjCMKa8QxxFSDILgGL/siHcJWhFDMqLuhRrn+nGkBgcstw+vef3+dxzqI9v9DmsHwDN0DUkRKKcph2P7hK4YQXdajy9dZVkwnU6ZzWakSYIQEWcN3lvC0608POGyx9KxGKOscmz3iwhjBXwsVkgJSorxWeD8SA0GtAKVBAZz5PZ+4LjfMa+WXJ7c4C48VTn90x4Kb3/6W7JswWL+OdN8gYkNtV3zfvv3bMwd0S5xVmHdBuMbgugRcqDrWuxgafoDPjom1Yyr00+4WD5nMVvS9Xds9mt86LCmwxqHN4qgK7DnFOo5k9kJefKeobWsd4GubjFeIEVGUaQkevQA++CoG0uMDkJHDCU6pMi9pbGR2FkSBEoaRAK5npFWM+qhpDEpJg44WryyODnQ2QNdu0OojFLPSLMSlVZkqUGJI9EnhKDBVZTpK4pEYdqCvgkc+0eGriZhjL55nn6A9oCKe8ryBXl2SlJkpGWBedNxeFxRDBOEg4OJ1INl6D11MuC8xCAhJkinIconYqV+8i/n42w3aHzoCdGhtKIoKgo1wSpPi8UoR+Y0Wmum0wllWaCkeGpM8lSFH1MKIcYRfiEFSZKgtCSKBHqDCBYRA9JHlDckvifKOFb8NVSFJNGaZkgIKiXPIw7H24fvqIYly2evIDfc777jbjPgbIMzNYiG2STn4vScSXFGc4hs7h/Y7h7Y7R8Y7Ga8Xg8KbOS42fHOfk+aF+hUU9dr+n6DIkH6nnrf0XUdQ28YmkhfO47HASg4uXhJnk+Zq5wsK1mfnWImGi/HMYCvJbETWK9p+4YffvzPI0xtt6NuDNppJsmUT7/+AvPJC1a7LZvdFuciqc55fvWcKl8QU+g7S50YVJ5gYyTFYYOjth3WD3hlUalASk2ZTZgslpRFxpV4zmx5wXHv2O8OnKQleXCI4YBp1tj2gBk6OjHQJgPCK2J94OHxgUR94Nn1S148txRZytl0wm0MbPd7RKo5jWdIqUFqgpQ4EUknBWenF9SHmt2xZugtj7cPrN7fM3QNFxdn/PzlVzx79glpMmV/qPn2u9/R7VccNrc0pzMylfP88jkvL1+y327wfcvm4R11O2BMzW8RHB4PdIcj0go+uf6U2WzJtDxDi4oPH35Eur/Fh4bJTDObFEyKE2b5OZP8lEmxZFJO2ddb7u/+icf1e9QkcHJ2wXJ5QlFUI923H+iiZIgKmVaUMkXpDqV6tDSk0mKUHzWwyYhpF0IhkE/2RUHdjAfwsd1w9/iepm9G2mkMCKAqSmbTKdNZQYiGGCTWjFA9EIQQMcPAZr3G2wEhBJvNhsPhQNv2mME+xUfluBsUo5jpD1htIRQRiQqKGMci6R/+ROuRYTy2whMPiTCOoYo8I0bPavvIZrvjhzevkVLzf/lTHgq75pFJDMzml6S6QKqIMS13q+8I9z9hjnN0XHJ+ds1i8YqQd/R2y+rxNU33CKKgzC6YFAsmRU5VJpRlikhm9PGGiY/YWODsloQaLedoIbHGULcdnRkXTULmBNsRQkQ/ncZFlpBoOX5Do8F7gxcWkYDUAWMzaBO002N6JxpC7AhZBiksJi85Ua+IMuKo6bsDx/0jq+0P1OtbnB4IicBGi7EJXW8YuhZCSiIyTNFgY4dOSrJpRmkrmrYgmBbhFN5HrDcIW9P2W4I78OIsZzmf87e/+4mPt+847lp0KCkSgSo0AQu6J0pH3bd4k+BthnABHSySsZmc64qqmLFcXnFx/ZLpyRQfO+rjFOGhEQdwkUFboEWmPdEbkkQxmSXkmcZbz9C7EeLnxl7HaATwBG8Y+iPN0ZKVKWmeQLRENxJPx8STJK8K7BPWV2pJkaXEYNit39McoagsaTo6qw/tPcfmgTTPiNEgsCg18qyk8CipaTYPKKZ4kzH0sK8fOdSrUcPoBrQwaBWwLlC3gdTmpDrD9TXKOlQ2vvWlST56true0Ax0g6PvWzabI6tty+Ox5sFsqXJHz8ihD64HOyBDoG8Mtz994O7ujp/e/hP3q9ds2yO9MWhSqnyK15Zdu6U1hm4wSJlQldMxXScsnWvojkd23Qq9EuRlSlGkQMRbjwgBFUFFiYoJWip6k5CkkaJIyacF84s5Vgwc+w27znLYr4jBMjuZk881zZ2hOUCqJkySOfN8wTyfEmxgu9lwOG5o+y1N90Dd3rEICVWhEExp61O6puUf/ukfqPuGnyeS/f7Itx9+5F/efsdPtz9x7I8s5gtefv4zfv7n/5rr5y/prSN+/IB6nzJs96w27xFvOtrOEoPmbHmDiJogIlleIpxERkWzOvCueYMEtBJUiwlXL645nb8gk0t0lnDstjTNI1IZ0nxGWZ2zPHvG+eU11g98fPyRdx/e8N3339APRy7OKsqiIstShIKu62n7AR8S8vyM+XRKlmr2uxX73SNHvafVDfZJU6kyjUw1zgWsGYjBAZ7VytO2O4LoCb4l1448jVgDQw/BBIKzJDplObugzCLzytG2HU19wA4e0xuOYkfbbInRYazFGIcLniDEiK+QKUkytvj/EPBwzuKDQ0qB1pokkSg9Lsads8QYng6Ucf8o4vjfI7QkyRUhBuzQMwzH/5/uwp/wUGj6GiEVbXdPlCUx9ATvqNsjXeMYtntK6Xh28jln08+xsuc4PLDZPDA4i9LlOEbyhr5b0zQanYAXoPNTJrMEIZcU+sD5rCF6hdQlXkqM6LBxIAhJFCMvKHiHFCNeNtWCPP2DE1fhgsRHR5SAGJt8PkoSpdHJUylrsCA8IpFMJpcspj9DJxoXj2x370bYmFIIEfDRMYSW0BusjXS1oz1aFDmpKEdFpt8StMHLDqH9yAiSGT482ZSsR2g3NrCLnOuzisUsxfRr7h/eo2Pg5PSSQ7OirxuqoqSSF9h+bH82Q8AO48yfGNEiQcqULC2Zz86YzU8oJlN0lmL7nhAFknFuTYzETFBMAioVhCDRWpBWT9x/AozJVWC8wkZASYWWCsL4/S6yCSdnC+o6RUowdkyHqDQlK3KyCJlzCDnW6q1z+GGDc4a+dzgvUSKn7xqa3RotQShHmkJeJmSZRKeRECLN4T2mT0mTBUoWtP2Orj9ijSB4gUodOokkSSQpJLnWZFJTiBwrA2VZUlQVOjpCL1E+QVmFlD1HM9B0Ne/fv6OcTpGl5vTiHCEV4mkUhjP4YeC4XfHm29e8+ek96/09dd+NXt3g8NITouP2LnJsdgiVIFVCUU4IqaZuttyv35MkCYGANT2D6f84VqiKCdNiRpUXVGlOROBcj/AGxaixDUxxRPLFFNUfeTisaOsD1gwspnMWJxNsNGz3PfUuMElOOZ8948XFJ7y4eUW0kZ9ev2X1+J67+3c8bO/o7AGpI9W0QghDKiRvb++4XX/g/vGO3XFP03b8/ne/583bH9h3W/Iq5dmnL3n15Rec3tyQzibsdg80scEnHisMj+sP7OoPbPc7zOA5PXlBli1YH7YInTEpcvIsJU1G9taIQve0puNoDkxkR1EtyGc508VyxMorz2SyZDI7I80rPIHV9oHf/stv+PDxPbttPb4UipIqnVPlE4KAo+1wNlLkC8p8xuX5JVWRc5u+JoZRVjMWxDQRcELgAngfiNESoiVGy+Foqeua+TxjeTolL0fuV1N71iuDkOPDOEsS0nJGoguUStjvD/z4/Q8c93tMP0aZQxhfuBAQkSOXSCqkHBOVWo9lNp5gps6NY+Ik0SO3LNEkqcTagRACSnqiGm8kUiogEN04GsP/f1n7j13LsjRLF/umWHrrfaQJN1fhoTKzkiyFqnsBAmwQYIcNEiAIsMEX4GMRfAC22KAAq3irLiurUkRGZoRrN33kVkuvqdiYJyK7eYEwhwFuwHHzI/ZevxrjGzGEyzuHdwZrfZwk/pRFYWhbsLCTH6nGEp/F7FEdUlJZkFcrlsUZm80Zi+WWeqpxQ4MLS6yPLt/R1JhpR9/e03R7Vl1NWsxRWYkQKWW+YpYuSM5AqxSpc6YgqEfDzb2hqQucE4yjZbIjSebQKsE7ED6uRBIlkSoQhMM6F7EE1oMcyKqEvBBMR8d4EASRoVQFISVJYjg2LmUce3aHD/TTIaadWU/bBayJYeimD7gpmue8Be8cIRiMbWmbHfVpH+P4LOA0wQbcJFFFxvXmBZ+/+IJ8PqdXAS+hKHLOzzesNyW//77hcX/L5cWa51dfoDqY9oY39oY3jzfY0UWvhgxPHo6M5WqJUoLH3Q3DXcPt/VuG9oQ0DuVBE8fSLJOkWUEIOeLpheSdRIrkKUNWMKUCMQSCs2hVooqCrExZbhZ89uWnfPbFp+wO93z4+Jabu9fs9jdIKcmLiqpcUFZzjO05tY84erZJhmeM60EjmPqU4BNUotAJSOlIUhGP3aUmST3eW6wZ8cEiZQ/xDIsEymyNFjMS2ZLqicV8y/LiiiIryXSCNwN27EFHeJ4KI350JEJQ5gllm5F2Le3Q8vqnf2S3u+f1T6959dkX/OrXv+Lq8pw0KXDBcTjdc3v7ntv71+yPd4QAeT5H+BTtR7yfAMvYN3hvSNKCNMvJUoUdNTfvf+T25g1VVTKbzzB2ZBhaJjMSgufq8hVffv5nrOYb1ssF0k60ux2uGzESBp0gdMnkE9LyDJ0PHN/d0R47np2vuNyuKWdLmr7nbXbHUfesqi2X22tevfycT158wZu3b/n9j9/y4eYND7uPHE97AhpZrEiqc4bDRz58/MDrH77nw91bPrx9w3f/8Ht8gLZtsHZgNSu4vrrgq68+5eJ8SV3f87D7wIe799w93jL6EyE17A4t3kw4E2WTb/YdzqdMLkHonLPVhrPrLefrFcuq4ubtHR/e3vL+zXs+PHzk1Sd7Pnn2ivp4YjAnyqrk8uKKopghZMLh8MA33/4D796/4ac332OdZbs+52yzZbNYsZxt2GxWOAxt6/F+ZLW8YrO6YL3cooTgeNyjdUGWFwgZozARcKxHutOANUDQKBmdxN5Gf0mSJiyWCxaLnDRXHNKerj0CgbLMKKuMvFAsFzPONufsd0cOu4+07Q5jJ5yTseFC8kd7cZBIKUh0nACcnzCDwRiHcwEp4zYgS3OyLEcrESf4YMFJRIhqpfi3xbVvICqUrHtaKUHknWkR8eB/yqLw5ee/JE8LNos1SSo5mXv2bYAxQYwZq3LLxfaCi7NzVqs1/WFkchYbwCLp2hoz1QxZgy1HfPAxw7grCCKJ0ivrSYQglZrFYsmyPCeVmkR6ykqzWi1o2iVt94h1PTJ4UjVju3jGologvSRVkrJMkNpRtzua/sgw9TgmAj2DixGJ8ok1TgjkuWO18qSpZpoqunbBejnHuoJxUgzWYKchBgKZgOklttMkecas2LJdXXG+uSKfzTk/u+Txbs1r63lobmjbgaEdCcGSZZKyiC7Sj4cdrenop5FZkVPMU9RcogqP0AbjBvpx4LK65Kqa44ymbnrqY48fwQeBQONcYOgGnBvJM49XhhBqpBxZLRdorxi7CTMZLBGBrWWKQGGtJzgHLnbnUkuyIqPyIWYZ1A2ewPMXn/DVL7/i2ctnXF6d88y85OWrz/n7f/wfGX9/4nRqOLY7qkXJ9Ysz6ubE7nSDVLBZL9GpZzIt4+AZ0iS+4JVBSEucSVKCzwi2wAsRuzjRk6WGokhJM8XMplirkD5HhzmpOCNVCUmZkaqcMi2YlTlD19KZgHMReKZkSjUXLOeKTOVM1nMcBurTSHswtI3j9v0t7amlrR85O1tSpgnCOZrDke5Uk6Ulrz79nKJagVLsunsOzT1j29K1DU3TcNzXLJYr5FLRHo/0TYMHhBTMlzOmcQV4jBlJUkWZF2yWMy4vtlxfXnK1WpEGmJZn4EElGSorkEWBmgx50bJab0m/+hWma0iDI9eaIt2gleOTFz9DpxlCa7I0pSwrVus1bT/QtC3teKAZdhwbwTBM7E8NN/d7Tk2DEw7jBprTHvtgOd49opRGyDjBrc8r5suCJId9fcu3r7/h1NQMpkNrxdX1NenLzxjquCYb2pa+6xmnADJntn7G6uya6xdXLFcl9zfv+Pb71+Si5MWzL3lo73js7vnpze95ePieXJdk6QylFKfDwE8/fODjx3c0XeT7CKk4Xz9jMVtweXnBrCpjFoOXdO3AYFuOxz3OQ/ks5/zynM3qnEQqhvHEZBpOjaIfYsNizEDT9zjf47172uU/RWUmGq1iRGmiE/K8isVhlnK2FjjvEdIy2ppueIw0Z69Ic8vV8wU+bDkeWrpmwvs/FAIVCQL2KaExc6RpJLcSQrxnqFiUniiWmMkyeYfzBmdHrBkBj5B/OFA7fIjqpBAcQkZiwTjaiOVQT6TUP2VRePbsmixNWVaz6BNoekYTmDKJkxmr+Zz1omBe5WSpRmCYTM0wNfRDS9cN2GFE+4xRT4xTTzec8EPLZCJewVsfj5dBsB3PCGlAJintMOJ8S1EmzGcz9vsSMw6oAKlcs6iec7Y6RwVFphXVTIHsEcLjQ49UA1NwODVhggOZkDzRD72rCWGPEA9oGUAr8lRS5iVpkkOIyFmVxCotA3ghMFaTqhnnmxc8v/yUs/MXLNYbkjThfnnGeGwZDhPt7oZpmnDBEITFMtJNLbuHllPfggssqwqlPIOpSXRgO58hEXR1i88D2bKgWlfMViXjaOjGCeF9RF07zziOmKknhAEpJ5LEoRGRw+MSggmxKBiDx+NVQKDi4dv5SIYMPBUFGcXO0jM6RRCCi+szvvjZp8yWc5JcU8zWLDcbPt7/QP6moJ+GyGfJQryDiPHpLiEQJCRKoqSgSBVyUUbj0LBjMpYQQD7RW4NXeKcI6Bj5mEmKUlHOJErnKCXRbEi5ZJZek6sVvenpbU2ZZ8yqAuElY+ei3G9yBA9aKeaz2MFJldJbhxkEYVTc3Rz54af3HE97vvv67/np+0CVl6QyiSl8+YyXL15ydfWc5eYSKzw/vP8d8sbhZnPGZuTG3zANO4TXYAXGOwIWoQQ61QTj8MbGh433pCqjKgoWVcWyKljOSpbzJblK8bMN/inkyMXQPoLvMWOPCI6zszNU2DI2LW6yeJnig6GYz1m6FaM1eOUwYcIEQzUvuH52QTfc03R3PO48w3Di9uYd33/7+4h3CD1eGnyYmKYBN0ZygEo0OilAlhgmDs2O8fjAm7cf6Pue+bzg7OyC7eqSRbWlzo90WY2ZW5wNBDQ6LVltr1luzlltVkgN+7sjbesplgXL9QUdA/v+kceH93wc92wWFzy/+BmTV7Snltubj3y8+Yk0i2u+i/NnXF18wnKxpCpSXBipmwP9dKLfjdT9gYfdLVIl9GOD8xNSebI8Z7WeM4xnJMVE2wWMaxkGRd31cX2pn9AvIWYp52lBUZQsl3OqMk7Dq8U5ZbEh1WuGYeJY77h9/J7doca4I0WpSFTG2UUJbEAEjPEMXSS7xmezwJq4fhQ4BBKlNUIqEIKnzCsIIfqdrI2YmWmMfCbv0FqgdEyoc85HujEwCY9U05PPK8bsSiWfzKl/wqJg5J7gJaLfx/WFCmy2a7abFYQUTEuaNgTXYIaGcdzRDzecTh847G4IJpCINYnekKYbhKiwVuGDwNkIjXPGMvYt49Az2h4jDUJJmqHHO0eCJJUJqSxIxAIRFNJvEH5Dqi/YLBZUVYqQHf10h0o0MgElowxUJQlKJPC05zdjTdcbHh9mpNIxr65QoqI53tGdWqbOIULCrFIUVUqYYGo8jQPRJqznF3z+6iteffolxXLJbLWOcry85HT3gGlGpsYwdjE79VSf2NX33Ne3ODKsgWU+Z7YRnPw99fGRuc746uoLuq6jH0c613LvHqjlCZ8agjZYP+I9KJsTQkBpyTC0vP/Q4WWLMS3CCdqmRbsMZ0AEDUFgbQz2Dk/6NxEi3V5JSZqk6FThgiUJlqVKSLOM5Zl+ItDe8XAaKMslRT6LLm+luX7+gsuLa4wdeP3ua8ZhopilBA+HfUvaSopCs92uefH8E7z3vHn3E/vjA0jzJN8LKDlGMCCBVMeOTaUGqSSzWclivmE1+wXr6mdcrL6kyNbc3L/n3e0PpKlgVuWkukSEkv3uwLE7YacRKTyiyJmVW4pqSZAJi2rN2eqC07Hh2+9+5B9+9/f81X/9jzw+3rCYzSnSAuE12bOKl6++4M/+/C9ZbLac+pqH7iPqMeVsecXy1Zrt5iM3tzcM44gPgTRLyYqMNI3a96oqqGYF1k30Y4c10DY9zbGmP54Y5z1mHtVfg3WM4xRRBtbgnOFw3PPhzY/UzYmiKJnN5sznC7Kl5nA88nC85f3+Lfv6liTVCAS7+o53H1/HaSqBLAkkaopRn80t73/q6I97ZKqi0i60JJXEe0UYQ8Squ8BgJHXfEPZwsgPGBw6HhixNmS0XLBZrmFLa0XI8tVjnuLz6lIvzl8wXK7I0Z5pGhr6nO5yYxomL1RUX//0Fh8OOh8cHmq7GDCP9qaeuT7hOIcY5zuY0dWA2r/if/+t/zfOXz3nx8hM26wvm5RZrDPvdBx5373GhoWlvOXZ7js2BQ31CqpTXb7/He/90jN5iaSjnAhNS0CWQY+2CEBIkCd4bhPQ4G2MxF/MVi+WK5XLGclkyny9ZLLfMZ+dU5Tm73YFjfWToJ9quRSWWfpyjSijnCdswfzKewd1U03djBG7KqHDSSsYm23u8l0hkfMBbEMEBMUwnhICzBmvH+L4lNnZKRNqxDw4pPFIGlCTGmfL0/pbiKZhH/WmLQj0d0QKMlSQqQ+o5QmmENAQ/YNwDYiyjDFPHIBNMYJ6tuVp/jjeR/ldVS6pyETsQcmbFnKqc46xh7HsOhwcO7gFjAsfjAcdE29fgRYz8JOeT658zrA1tN2Emy5uf7ri/PXB9uWa1ykC1TH7PqbulmxpE4hFKEULMBFBSkiUa6eImTliPaQ2DPyJli+tbEp+yyLdkKaAHVGIZfMQ9uMljBxmt/VpTlppqrlmuUlarEiWWnJ9vedxsuCtnTzvBEu8C7979RLWc8/L5L7g6f8nm2UvSxLFrP3B3fMPh8Z4TGdtF/OHuadlPe2q3J2Q9+VyAK/BDAtbTDS2Pj/d0QaAbg8oMQlhSmRJUQoZEhBTxdJhWKjztH0E97Si9sXhnMXYkeE8/9oxmQiiJzjT9tOfjw49MZqTrO4pyQZEveNx9ZBg6lss15+fPqZsdd49vCViqKsoCvbPkWc5yvmC9OKPKNljnKLKaqfDIZEBpi0oEAcc4DnjvSdKSNC1JE0mea/J8TlWcs168YDN/icpyet/R2ZrBNJggQFqESlistvSt52g6xrbHO0OZWsZBkKUJWlcEq+nHniAdm7M527MNia6wk6LrJpz1aJkw+gEnPEZ46rFhV+94OEQku3QVufLR4HQhOZyOdH1HnmeUZUGSapJUoZMEhGCc4tEyEPk0bTtgjaQfHHe7HaOdeNzvqNsGMxnyNGe72kSDVVBMg41pdY+3nF1s0Ini3bt3fLx5z+MhRnGmecZy6NFqRpltWc6WMe4yz5lVJWWRkGqLMXsOR4PKU0ShEHqkmqckRGkqQaPTFJ0ngGIaHV7EojCNDgVMQ8COIPJ4sxrGARccs8WKi6vnOGcxNpJM08xE0ueyYLGckeSS//A/vOZvfvufGbsaFRyFLKnWn7JdX3J9+Tl5sUTqkrPzLVfPL1it1xTVHC0zghM09ZEpOI7NkXcfX/O4/4gXDpRkvToHqTkdT3zT/Y7d7gOrZYVUEzAwTT0IuLx4xmKxYbN8weW2ph+ODOORECJmoqpKyqokTQVKR+PmOLYxBMcY7vcP3D2+pm73CJH88cY5ThPOOkY7IrQhr6BaSIJQsblGPglZwhOZ1eJ9xGU5+4S5kBKtAkrF24NUASED3oY/Ho29B28FzsQyIfXTXSHEYCzvAB3wKm4E/rRFoZvQUmC1JNMaaULk3oQjwbUIe4BkhZniWCucIFcFl+tPWGVXTGODsT1CJwid4Z1gmjzzKmO9OAcPQ9aD11gHJrRM08DkWvruiAoZWTJjNT9jvT7HOsH9w57buxvevvuO8fZI3ZUsVvEFHmSH8S1eTiSFRKcQo7E9WqQUWUGhNDIUrGZnLMqLqMQJhiqvuFxnLOyC0Ve00z3d+MDUW/rGMjSesQ/0bU9T76mbR2TlKW2KCyUIS5II0lSjdBwLszQniMDh7oG7+U98evEpl6sFz66vqaqMdthw/rjkG77mVHes5hWbxQz7+Jq7hx3GD4jEklWShIyplUytwPqRtgOXCrIkoL1HKg9SkSgbD7kSpNBonSK0jOOkFGgdFQtT38fDuDGYKeIbjLWoROLCRDfU7I8S4ybGaWAYO07qyOH4wDC2TNPENDlCEGRJzA+OmRkKKR1lXrGsNpT5InpQvGI5OydJEozfg+zQWcynRTi8F8yqDWWxJNGKJFGkiQRSQoDJ9hy7E6f2xG5/x7F9IE0SAjPKbEmelxF05gJmMFg7MQ72n46IImMcDE1/iA70yaK05Gx7xdAbpvEYVVVaYvzIw/GR1x/eElTg8bjj/c0dD7sa2wWGenh6cwPEN7DSEinBOYMdBoxTTFbRdQ1t2yB1JGJOztGbQN2PDN7Q9jW39zecTieMsSxmK5IkI9EZSVaQ5CXH7sTQ1TjRIYTn8eGe5rTDThPCC4IFO3r6dqQ+tWSqIJUpEB31WkW/icOAGkFY8AolLHmmSJ3Gy4RUlxTlHJlJQmoQiSRJU6wXyOwpH6EPmM7CWpDkKdV8RiBQFSUEz93tG/bHO6oqYbGYsVqdM5utQBhOzS0Pj6/58OEHZmnOxXrLerlltTzj4uIFz59/xmqzoVouqeYz8qrEeugHw2SemGje4EVg8o5T09F1hvlyyXKzYbU5wwfBhw/vORwf6fsdt3eWNLUkSXyiFsWci/PnLGZbVlXBdmU5HG/ZH9+jZHz/xqIO1nVMU4fpB/qhR6oDiITdfs/u8J5xakl0gZaScfRMU8c49gzDwDBOBGko5wKdpngbI0TjBOAxk2cynuBiRnoMwhIkiUAnkkRLpAKlxRPMMkQRS4gIDOuIf+bJ/eafqgXxVigAbx0i/PPkR//sonDcZSRa4LMEoxNc8LhwxHCLUgeWRdT6OvHI5O5J9MB6kaNma3CadrinGR449S1N90jdDoy9w5o9mp4iKZEotDLkhSYYiXEOM024yVDmc67OXnB98QXbs2uM9xTlDSqF0d1xqGtCcqQeB2zXY/0YbzRKokYdueXSk2pYVBnVfEGmC4p0yfX2c84Wv4jQqalFbisECw71DTe73/P2pqY5Npz2Ne0pMPQSaxPa7si7Dz8QsoFFs+HQnmjaCTNMnE4HhrHBhYEgppjEFgSpFRRGUKlAlTmSJJCmGbPyOVVW8fHxQMv3zFSKyiqKZM5cLphUjUtapsxhTEA/8e2rsmS1XrI4r5idp6As09TiJg+jxDmLli4G6ciEIJMI2ZMSJWU0yThFcDLq8wNkqUInHhcM3keVUpbnpCIhtRo7KabhacT2huPpnjdvv0XpJw6TmlNkK7JUolNDniZkqYgoinEiL2Z89umXWN/x/vZb6vaBPE3QiaYqQKuc1fKaWbX+412oH+8YzJ5d8zV1/5F93XOsO5zxqCDRyYq8yFAyrr/sNGCHFm8GBERy5GLB9uyc5WxLN3bc7XrqtuF4PGDdyC9++RXn52u++fY37HY3JKnGBs+b9zccO4cXhmY4cf9wR9s1dIc9t9ZF56lSlGVBXuQoYwnE4tn1LULF9C2lBVKJyMFZ5ARpuD3cYhVsVnMIgTIrUAv5dIzX7JsjSmlCCouzBWkBfVcy9A3BOr549oqvXn5O258YzYjOcpTOGXp4vDugfAZWc9xP7PcTdRcYnQYtSMokTo5hBGewzlAWS+arc1bLSzabS4SG3hzx0pHkGSFIxsFH2ige5RQmGGaV5mfnv2KWVySUHG5v+OHb3/Dx7ieWZysurp8j8hyyhG+/+zv+/jf/mf3diVfXL/j8k1d8/upTVssrquKM1eac7fk5eVWgcsVgLE0/cTg2HA6RX7VZzakWBSuz5ry75nQ8slpccn55yfnVNWfnl1hvKYvf8e7997TdDZOpsW6KCXwkmCmjrQfq48B6OWe1mhFoGW1CkmjyPEdISwgjph8ZTROVj5PEe4lHMAwDNkzReOY14zhR10esGwkh+n7GKTLbdJ6QFgmChOCejsejxweBCgopFIRYtLWSkfmkeGqUDN6D1CFSigGCIHrk4vqIENdHBPGUwxAzYP6Q/SD+1D6F/qQJaUIQFVKmuBCidVyMSNWjiwSR9uzbb3k8NTTTic40JGJBQsU41VjbME4HmuHIqavpmp5xuKVvPrKqNszLNcYHjBkxpmM0Pd5YUplQZiVVUTGbzZjPZ9jgGcyM3lQcuxKZ5agk4NzEsY5BMkEqhE5IvEBpHfOHRUAGixQdoQwkSYoNDYYaqTRJlpCnc/J0g8oshnO68YJ+2GMayVS36MSTJAGlLJ7hqYso6LqO/f7I0A3s9g+cmh2jqePHBEOmClbzFdcX12zXS2bzjDSTSC1Jkpwih6rcMJ+dUc0XVKstn+UV2/U1tw9v+XD7mrubW+7HR4QXzMqSy4tLnr94yWI7J51rBtOw398ztG1UUliH9R3eq5gXqzRSxBuWf4LdCSFJdE5IJSLoJ/qrQwaNVOAdTOOE0FGVVBYzFkXFOO1x7AlBYG0NqLjbL2es5lcIYRinBwSeJBEkMoC3ZCksqpLJx4OcJEGrnCxLntzTOWWZkxdp/P8HjwmewdY0Q4f3mlPt6Hoo9ZLl7Jz16oL1+hl9ZzntG+q65nTaMw4jWVGQVyWbywsuXzxjPdvGPbaYOHU1ffeRcRgoi4r5LEE/0XmV0iiRMA4TTd2h0oCdLGbsMGON8sRAlCdZ4DT1ODcyTTEQZRg62q4mCI/SkqLMKKsCreMu+XDcofJ3WCyIC8qsQKsMXWQgJMZZ+mlEJ5bVakmRLRFugxtHulON8J6z7RllWVC3Dd3Qg9JM1vH+/S23t4+IIEh0SpEvWVSXXGxrAgLjW1AjwQ14Y7HS44MlKTKWZ+e8evUVX37xS9JUsT9+ZL+/53H3SNP0YGU02sloLn338Q2NHfjLX/0LXrx4ju1AWEueAnQ87DoO3ZGbxz1JUvDTD7/l9Y9/z6fPfsa/+st/za9+8QtevfoEKUqMTSjKOfPVkslP7E9H6n6k7S2PjwceHh7IUw1sKdIoQ1/M11ycXzNNA+uzM7abM1brFdYbzs43jGZHemrpuo40TUkTSPWMPF2R6RnTEKhlTZ+caIdHbGjAKcQ0EYQhMOIY0KlgsoLRGIbePk3U7p/Cbaxjmgx9P8WigMXzZDCT4EXMgtZKIoKKT2yhQKRPGO0oM02zjDRNkE+kAWsnnLME4hShkrj6hUg2kCoqRbwD8YS3/4NsPTxB+f6Z+Tr/04oCY4pWFbP0gvmswsopQtr8DuSA1BrjPY+H7zgdv6eZOno7krIkFfOYkEbcy3ZjzTCd6KeGvn2kfrylX18Tzl4idI4NME0DXdcisVR5RpElIExUC5gaj8eFFqkmshxKF7uecbLI0MUMWBEPNzrTaKkxRjA+YW+HYaSbpYxTRwgF/TRSZmuydE5ECgWEHlgsK678i7gP9W9ww3tsV+N6R5J5styT5YK8iDRH5x3jNNCPDcNYY0OHFyOBgEoSFmdbzp89Z7FekRUpKhEgY8h3QLEsNrw6+4zlesb6bEWZpijgw9175otniPBbjrsWmQi28yXPX17x6aefUCwrnPKcmoS2bXGjhWzCiQlrRpwTJKQIkeKDJTjxT+ojohtcK01IRJS7hqf9eyZxDo7HGpVCmmtW6wvO189IsoasrDEGBDOsm7CuoSg069WScWxp2ngYY1ah02gMS5IB71u8ndDSk6YCnTik9gRhcKKjMw7X12itQVgmW2NcG0mRVmKdQsuCeVFxvrzmbPMpq/VL7t0jO9PTdYa27QnBU6Up1WLJ5vKS5fkZmcoZw0Re5hR5QZ6XTP1AU+84Hu6Yhg7hQaFQUqNVDKWZLStGW/Dw8IFEwWK+YD1bk+cZWkoOxwP16UTXdDhvGceecepBhJgUCCgR07TMaPEhBZkTnMNbw6JaUmTRmZtnGdJpjDFkKuFssWK9XKKFQnpwk0MJxWIxQ+uE/elE03UEAcM00HeGtmlZLSsuzjaUacKymnO22fBweMHD/h33u9f0w44xRF9HSBVyVpBtV2xevuCzX/+KMk94eFjw/been9685uP7G4KPWcGrzQrvPR8/3vLY7Hh+teH6ckOiKvJ5xmo7Y9FkvL39wMPHn+i73zOOEu8askRwefmMX//6z/j01adszjY07URzbOM6pTbUXcf9bodxAqlyunGgbmoGBVniWZRlBGjqlKoqUIlDKsPkTrS9w2MRqqMowfmURFekKRRZyrw6o8zPSOQWETKOxxODecT4HTbskULSD5ogDAhDkkp0ptBWgXBM1tJ0XaSsBkHwDu8s1kYYXggS51XMWU4EQgasm3DBoqWK6yH51KQpj9Ie/xS6k2WCNFUEH9dC3gucE/ggI7BPEdfAT0dooQJCy5jyOAWkkLEBlBCepLXIfzKn/smKwjxZsyrXPD/7irOLM6weOE4feXdnODWK1kp6AsdTy6FuOHUdzTCh/URKS5bmcYcsQYgMpUqUjF1gsAmpXLGorknyEkPAP37ksbtHiYlFqVHKYak5tB84DY/048j+uKNp9/RDhxkdh6ambWuG3hNsSlpoMq1IpUcwYbyPld17rA8EEUFZJnjq4Y55eU6Zb0h0iVYFVblgVq1YhnO8m9PsE+qFp9nB0e1ouxO7wweKdUAvJDM5Jyu2gGa5yTkectI7hVKKPC8pZmeo+RJTZjTGcjy0eCR55Qg5yCTlanVJcq0Qc4VcanAGNw4ovaGsPIvlidXmAwme89WWcp5j3ASDAi3xTpDoDJ9l8euTxAOZCOjUgRixk4+SQR8IDpwFb8C7CNmyNrouy7Iin2XYMDCOHQmCNIU0DczmktFWjPacxfya7eYzHncf+PbH/4p1PZM7MrkGY084G6hrhbeGIitIgmdyFqE9qzNLNoELDZPvGMwRM1hCU0IowCd4JzD2hA89WTojUSXSJ2iRUyVrVvk18/SaQl0wyzSrmWU5v2E+u0Uoweb8ktXZBcV8RW8cHz684fbjG27ufgIX+OzTL9nPHvjrv/rPvHv9Dm+gzGYoINgBKXry3HK2WSPVGX17JFGS9WLL5dkV2/WGqix5/+4t79+94+PHDzzuHnAj4BKyPKGsCsqqoCgLVKKQQmKHQLurMa3h8f6ecj5ntd7w7OoFLxefUKo5ymmqNOeqOmc7X0WcgYhr4yAFSivGyXDqJ45Nz3xRUS7mbM6XuNDxyctzPn3xDJzAjIZTHeWav//mb/ibbsfQ7eimEaMEyXKGWs1ws5xGOW76A4XT1EPLfmh4rPfc7G6ZRs9ytWZ5vaZaFCxliwkNX3//X3g8/ECVXSFDwt39dzw2N9TNO7rTnqZWEOZ88vI5X331GZ988gKfWL57/z3TT18/BVcZhskymUCWz5jNz1kst8wWK5RWBDcgvKHIElKtyXSGlS0+dPTjHaOHepQkJ4X1E8fjnratCW5AioDwMcUt0zOqbAVhFpltY6DrYxOFdEjpkRKsG3C+Q5qo8hsHwWh8XE+LCRue3MLOIZ7gdjxFBos/PF6fFEBFGl3L0aGswCmcgV5GB7UQluAdgQiwtDZmplgX4Al/InWK8yauk0K0PgcRkNojn4pIkBKZaJSK4g0hQlT1/amLgvU1o5HU3QNZJ9BzhVIphbrEyYQUifUjzfSG+/aRph0Z2okc8AJCBi4DmWVkuiAtVyyTABNII1kuLlBJhZApKgTKbM52uY0+Aw297bDtR0JzwziNdP1AWw+EEPkwWhbYcWBqLcHl8X6QBJLUImQfbevErG4h46E1JhIZXG3ph5pxaplXR7KkIk9nZNlLkuQ84qXzhLJYMitWZOkBLzzt2HN/8MhHR6g8shQEFfCTZHIjQUiEStFpSaLnLJdrNtsr1ptr8rQCH7ObjZoQYiLRCWVekW4TxsIyZIb22NIcD7T1hJkkSuZU5QyFRaXxcIwWBBFNK95bwIKwCBXzH3SSIIQEEY/4zk4YG8NEggNnon7aOY9zHmMNCDBOkvhAYESImNrkA3gxEVTMbbYjzC4v+PSTf4HWOT/89LcRV2xrpArMZ0uCt3gCkx9JpcJJiUWhJRSlQCSSdphwfcPQ1wzjhLUt3qUIUiRxvNYqJREzimSFTktSOaMsV6AyrBeYyZOnFVdn1+zPP7B/eI/BoGeaSYzsDvekdc3x/sD93Q23d29ZzBd8fvYlwXq6dmS/b0i1pshTlBB4N2KnDjP1ECxpVnJx9YxyPmO7ueLq4jmL+YwsUU90W0/fj4yjoSzmMajlKSw+yTQ6lQgFyECe5pRphlQSvMEPHVOdMM1a7DDhy5yQSEKmEUmC0imJiC5WJwNeBBDgvKVujzzsd4x+pFpUpFXF1cuXrM/PKRczMpmAg3JWorOEY3vPh901J7vjtvmIDZCmKYGJrr/l453H+QcymWC6gZv3HzidaqYxrkycH3F+QIqMZZUzWMupec++eYOyG7xJ6bobhv4OOxzIVQ+lRiY567OU9XbJ5Fte3/yew/7E8djEB6nSNG3P8dgxn215dv0Z27NrFust+ICwY0wKTJMoMZeKJNEURcFgMibb0zcd9WlkND1te2IyPVoSD7ZBYlVgHB2dGiF0WCPphj5mIGjQqeZpUxMx2l4xTQY3jIyDYxiiUSxNFd7HWNmnJCDwIcIlQ/jjzsb7gPACTTSiWeNweCQB76NZUwgXBSJ4nJuwzuGMxNuIwUh0FoF43mGswgZJURYUZYl3nmEcadsB54a4PnpCZoQ/FKn/Cb/+2UXh7vQ1hyHlOPzA+rBlfXnOfH7GTG1Zzp+jEsFx2jM87rnrLEMzEVpDmkSdtPICERQJJZlesKhWLIolMkiC89gQMMA4GQgwKxeslxWdOfDY3LDrD5j6I91wpG33jIPBjckTMfFzymLLkOeYvmcyFtREmg8kRcvgGozt8EiSJCHNEpI0ITBFCFzvGDuLN55gRxazNWWWxVHf5wQfcGJCSEsqNVmSoFLFFALHsUeeHvCPIwM1u+MdweYcHwaOTY8nIy+WJCLnbL3gs+tP+fnLX7KoJHlKNKsYhREBrx2JTijWCagBg2XqW+rHe+rjSNsYzDCghMQ76IaRefCkRY7ONJOJ8j8fWlxowY8oIcjSEhky7CRwxhNsjPd0LvwxxMMH9xREEo2FzlvQI46UtJAkuUA+7S2djzeHpu3Z7Y5cnAe0WpOnWzK9wIYDJozMihmr6hOsHTiNR7wMOO2xMjA5iRcSnhKxnAUzCkyXYXqBtfE9leWSPNMkSUaalpTZmiJfMSu3ZNkS70tOrsN2e2zQrGdLzldXnA4X3O1X7Psdg2q43b9BfB1YZRtKSpQzhDAShEEqRxCOYbRMk6fMc4pcP9F2LWPf09YNp+aEynPOLq54ln/O9vw5m+0VwQ1MfU02nzNfrznve/K8ZFYt2KzPkErivWXyA5Mb8DJ2o0WeMyvnkZujBToopE3Ie4E9TTSho2FkEoGd70htwUJmZFJivMXhUUrhzETb7nnYv+f+pMlnc87Oz7i8uCbkJcdpJFPxIF87Q4tHrysuP3/G3fCR8EHgJhsNi/UDfryj28PNjxItSrRb0p0CY92TioQsU2QqMNQnUgVZnqCzlJOZONWP7D/ccHqweDp0MrCuAssqYb5JIBeIrON+/5HxpqXtjxwPNU3dk6ZxlVc3I7v9iVxX3L/9gfnyjGK5Zj3fsClXrDdnhMWcoBWOgEoz1utLpIT94ZFjt6drB/phoh/ig9KnEjKNSBWTdOyOB47NCOR4L5nMgLUdaR5IsnhgFtIi0WhyTC/oW0vfG/phjAq7fIbC46cBY0cIBouBP2LnI2XYO48N4H1katjJ4B1oqVHEHBa8R4qIx3bGYgZHsAkiKNI0IU+KJxDeRJFHKsLl5TXn51e03cjt3QMPPDCa2+i10H9Y2LtYGEL4Z98V/tlF4YeP76iKhOd+Tp4NFFqyFhtebF8wyy+i6mefUbkl1ZQj+gHXO7Sq0MU524tLlqs1QgIiUBQJVaWQIcUbjZsUbpIkeUlWlRh62ukRc6gZuoGhb7D0TMPE1EvGXuFMIFGOyTqSBNIiIR0Mdd/gjeUsP2O+OOd+b2j6DikFeaaYzSpm85K2rWlahyRBioS+NYztnqENOJNjp1uGIWecHMf6yN3jB24ePtBPLZuzDXn1jO2zJfkcnKhpTx1d/RNmDPQni+k8OpXMFwrhJWUh2SxyrjYL5ssKnSUYG2JYjnzioYuARGCCRrgMmRaoskC2I8I2DN0tj4c3SB/YlOeYekF/OEIiaV2HDQNpXiB8YGgCYfL4RBOEZnIw/QFpIaKD2Xtw/g+7R4FAQpAIFGlSUmQVQkYBtVSSVBfMkwXbdE5dFuxKwcPjD/zm7/7flPmS/9mv/td003t23dd05pHdJBmtY/Ij0mtclzCMllY3KOlB9AQxEEKClktSXSBy0H+UTz5ps73BmIFB7EGYeIjTKf1g6LuWLrV4p1ktZqw2c5brBeWs5GQOdFPHw+6OoR25WFzybP2Cosi4vnwOAm5u3vP+zQfa+oAInjyNjmPrJ5BRMaSSwHyec3a2Ii8XqKQENPuHHc72TEPLNFnKasYvf/FrZmXFdn3Oen2Gc462bfh4/54Pt2/pxxPWD0ipcUIgkoyqWjBLCgpS5rMli/mcQQT2pwHTTtz7DD040s0WVeS0fUdnLEoWnBrL47Hm4/0H9s09homzyy1Xz6+ZVQuqYkmVrUllRde0HA8P3N1/y9t333J/e48ZBM4KRhm/3piwmKJ0SZVvmGeXdIlhaKcoQTY9bReoTyM+jIhkIogBZ3tsPdDfT3QHS1J5VKqpkYw+oQgLClfRHQb6/TdMfbzttXZkcJas7/HHDtDM0oIkJITTSNPtaB570ueaZ59dUuocOTiCMvhSYxOYXHQ139594LB/jKRkN8YoXzxCRqmwczAM8WO7fozeAp2SZZq8TFBeY63GugnPgA8T3j9RTa3DOUmwOdZppieoXVHEKGJvFONITEPzDi8ih8h5j/cCI93T+0vH7t5G13GeJqSJwjkXfQpOIqQmyQqUyJFCYZ6yF6SCTz59yedffEaS5ljn6d7f0I4n2vGE9dNTwzfxh4CG6GDgnz0w/PMzmnVApYKy0hS5wofAaCUim5HNVwwcybKCzeqSq+4VD1ZQT/dUVclmtWazvWSxOUeGieD6GKdp+ujkcwXBSrCCQkUH6BgsPQ4vDTaMBBxJoiAUeKMRfsSoAalHBvNIkBODFRg/MU4txjjqUwkiyieFByk1UqTgY1SmQKFVjrcC6yC4gASsEVgjGMYemlv6oefY7Dk2D9T9DgcUs4rFasnZ9oK0FIwmwfiGECaC6fG+xViHdxq8RgaHDQ29OdJONanJkUmBVpJEB6SI9ncho5IgD5LgUsxsgxkdu2NLZx5pxnt6cyAVOSApshnr5QVd6Lnf7xhMg5YeYUGEAhUUypcEqUDGXaRz8beUTylT3uGde9rzSbwVgGJerrk8vyTJNUJFWmwgYEbFw+OJuumxLuBNIEww3665fPaMyVxx91Bws3vD/emRaXik7/fgJZNyaGVQUsdQHtGjlCXNFUIkUV2hJGmSk+g4zVnX03Ut49iiE02elYSgqayk7RRtKzGFoEgXuDAhNaRFSllV6CbBNoap7elDz3QamE4DRZkREod1hvv+jvuP9wgMszKLWdbEkCKVRKKp1jBNLfVpzzA4lJ7QOkepFIFDBpBIEp2y3Z7x7PKas7NL1qstIQT6vmO5XjBfzDgc72n7IzY4ZKKZz1Zcba5ZlwvmSUpVlmSzkuMwcBwGJuvARURzCAYhkifTk6czI/U0oYucal7y8b7m9v4Nx+NbHvc/kGQZaV5QZGdkyQrhJHacqI8fOR5rxnFCSuJRMlicU1ijUPmc5ewZ29VzzpcvOB5OHHY1j/sHhnFkMoYk2TMYgxMChCGTPW4yeDeiU8HZZst8XTGKES9gmZ+xSFcMY8Op29O0I013itkDIurx8zQjyeeocsmqPOO8PMd6TT1Z1ustVbUghMBud499tDjhmUzD0N1Tnx7o+gNBRNCdThISXyGkoChzsjxHKfX0rGwRomcYR6ydUEmUV4+TxDqBZ8SHIfo4cEyTj1JcE5MTnZN0xiKEQ0gX97A8ZS1rBSKJ8HkP0+SiRNQnCFSM2vUeHyYEHikSlNRxuiCqAYXUJElBoguCj2RnF+KEjvKkhWKyPYf6xO50y7F7pBtqJjMRnEPJJyezlE8H6xjt+SctCi8/OWdRFTy/3LCcb2jcnKOW3PsJ51qcrNGV4+LlS/w8xWnBxMD5+ZJPL7dk6w26WpFKjzQdh+OBw/6IwyC0QoX4jSp8Fw8z1ChRI1VD0CMqi4EWoRDkqWMYGwZj8KGlNW9pphQzZPSjwviJfrD8+ENLlntmq4ZqrkjTCiVzuraj6Q7k+ZwyX9I2PdM4kKioqiiKJVkWk5uGaUczHmmGB0bfQmKRXiL1FE1ywaBlTlotUboiSTxNU2O7W4bTiaZuMYMnSzSnWc6Hwzt+uHvDtRFsZrCcJeSZQsgUHzRBOkgsJZJFSNDLM4Iv+eH9j9x1HziMd6A9WuXofMXZ9Rf88i/+LbenD7xvbjgdG+zYkfqUldpSVHMSlRGUJ4gaOw60ncGMI0kSkEITrCOYiOAVXuEmEEKxqM55+exnLDdLkkxzPB25f7znbn/kuw839P0Obz0vzl7xq8//O7bPL8jOPMGdc77+OYu33yLtf8Mf/x7XPNCNNZ0YCaJAqTJK7hhQiacs06eiLxCAseZJe20wZuR0aqjr49PPaCL4GeOk6XvF0GsSWeLDRD827E+7qNlP487Zjoa+bbGD4zA98Mb8QJpm5LMipmCNPW4wzMuMUifYKTANhrwqKKuccp6hteT29gM3tw8IKop8zbPnL3nx/CVFXqDVDIyh9o5EpyidIJWOxsUsY7Vcstms+PTVJzw83vDwcEM3djhgMd/w4vIVm8WKeZaQphI0lE2LkQmjMaxmFYt5QZpEv02VZ3ipaZoWIwfOr87QycjDxze8Ow48Hh95/PgDIx0TIzqZk2UrNovnrGYXMalLz8nziiwHJhfl7UHjbUKarDnbfsn1+Su2y2uUuCVNf8I5Rd9H1EqQjnQosCFFKsG8GtB6gmpktiz4/PNPuD57zuPphm5oeLZ8xrZ6xkPT85YHGvs9/Xik9JqFLFnOz1hszikXZ8zXV3z56a/4i5/9JaMTvL9/pO97hHPsjve8vf2Rx4cPNA+3TGMDmaOcp6xXS86Wi6jNF7HJSXRGWS3I8wpvAwFJ+iIjELi5/cDD7hYbjjjfMPVPTZOPq2WlBEoJxtExdB4pIE1KnPP0XY+QjjQTSDzeOkKALMvIyEAInINReZyNoWDBy6g8w5GlBVoLklREjpECqwIGj3MCneRkaR4bNgKTi96XD7fvcWJkMCN127I/HDm1J/rJME0BLaN6KU01WmnM6GjNiDHuT1sUtrM1aSYZsCg/kaQJhYJp95r6dEeS6cjd8J5MpJznn1As51wuz1guL5nNz8iqBVYahqlADJIk1ZzPzrk+e0WalZGMlkygBvZ1z3QY6eqW9lhjbY/0hiwtybMKJROCCIymfQqiUMxXBVWVIAhYZ+hOA9MIi/maeT5jvligE8Xj8S2Hek9VrFnM109OzwYRQCmFMZbj8USQHi9GvJiQiSGrIKticI8QFqEmrB0YeuKfhUHIka5tGVqLGcCMEmvikUspzbyYcbZYs1zPKcqcyVvGYUBLT5JkSKWQIkUID97R2xO74Y7Hwy2Hj4/09wNhTJBFHuWDyZz5bIvFc7V4hqt7ju0dyom4+00EWnmEivjohBQ1XzLljkRnCCSDnhjUhDGOwRkSZQgIxt6xe6ypm/FpFHYYG5iakak+orShqnLOL1Y8e3HO+uwSn8Xj+aBH8mxFll9w/eLf8NXP/nvuH9/wt7/7/3KoH6iqBVonEVbmImsn0cnTz0KBzpG6IE0ziiIhE4ZtaUl0TpJoZDoR3IgkUKQJq8Wcs82Kpqn5m7/9G356/T2v3/zA/nRPN9T0XUvf9HgTUF6RpBnZUEDw2KEjkYpluURqycl2KCXYbFeszyPXP0jBaD2QUhYLNqszXlxe8Pzi7ClSceL51RX2Yvt0+Bto25qiKKIju0zJs4pZmVFmCZvFkilYgpakacE8X1IkGbmWaB2PnMuZ5JmXWOcjSTfTJEnELyulqbKEK6lIveXrN9/w4/df0+xPaJkyjC1t32Flj1cjcgzYwbPQK5LMkZAgpwQ5yVgEx1gUZrOE9WrFZjOnnEM73PLh3Wtu3t/x/v172mbA2gAqSqlVYsi0ikYrbQnKkpaBJPUE0dAPj9TdjsEa5Kxi+fwl0+HAPEwE9YJVPuNss2a9XjNOln60LM4u+fxnv+Ls6hO6eU4zGtp5wuB6qAcG02OYyOYp8/kV3oz04wACtM6jbPOJ6RBC3AJMo8dbizUeKTWL+YKiKqibgf3hSNftML6lKDTzRUnTeLpT+3R3ixGeIUhCmBjHhyjhTjTn55e8ePESO43c3Xyg62o8JiI+zAQSZlUGQWMmwTg4nImKJZklaJWSpzF0ScgE7wV13TP009PEKvDeY8xTbrr39EPP4XhEaoXWGqWiex+inDVLE6oyJ01ixkznJrw1mPFPXBQ+ffkXuDAyupphkmgUyjmcHTAaku0SmShwPYlRPKuekySfsrjYMD9bkiQSIRyDmejHgJQFm0XJ8/OXfPHy51GKKiWjaxlNjbWWAw/kckeeLRiI3xitLFWpEUJDN2Amh7EtSRpI55psliOVJEkTHlXs0mVYIuyGeXFBNdeMU8vxdIcgunvTROPyNFZYHXNnJzNg/IQNLTLx6EwSpEWmFumINvUno1WWzACHcy3T2DONFikkSZKRpQkihAig85oqKdmUM4o0AQWj81gXyGUcJw+7ln3XskgTZlry7c13/P7917z96Ru6h4bQaDRLVD4DFJM3tFOHSlKuzj/FDg7XOOzQRbAXHdY6hIuYXRkERVqRahGnBA9eK5wW2KddqEBHbpGXOCPQiYprmzwhSRSr2Ryz3iIyQ1ZJXrx4xWqzIE00bdvRtSfq02M0PR33qESyuViTTTXIiEmPMrm4ErHeYW184Gdphs5LqvyK1fyS1fycebVGohBBYMzEOLY81j9yaj8gnSRLSzaLFVfnF5wOLfWhwT5hA5gEoQ/4PuBHF5UfT1I+rRXBe8ZuIslL1vMVaZIhecSFQF4kZEVGkmdIpcm9IE1Lri+e8+zqBZfnV2zWW8ZxYDIDOk2QSlA3DW3bIRVYO+J9hhQFiVIkSpIsl8yqksEZOv8HiiWgHF4KwpPCKE9StgtJAJIkeaJcOiwBkPhgMUNLe3jg/uNH9g87lvMtxRcLXr//luO7IySxE1V4Uu9IPaQiZT2/ID8vSIscw8jD/pama0kSSV5KhOpp+o/09cS7H++5+3hkv4vAu2o2Jy0CeeXJCkmeBaTy2CCwQaOVQEnNqWuxVtCbEZSidhM33YGH0z3H5pHNfMPli6948dknbK7O+XjzkTdv3qDTlG5q+HD7E+9v3mFRGCTaQioC81nFq/wVUjqqLP4M2y4ela0bsLbH2g5jhieW1oAxFq16zORQKmHeF8gkpjCCZRw76vaIMVlc93WGoQvxhhDUkxQ4eg2M6RBSkiYFQlxSlQsoAkM/oJTEuMhW8sEivSfLIu/I2YjQV9o/KYTEHzMTJGm85XmQIToQtFKkiYbgMVqhTAz0GXvDUTQkaYJQEjP6GDwlJYmO/42SMn7OUkS15ZO7+U9aFL744t/QdQ239x/o6iNm8gxiItFnhPQMUc4gc/hDgxw8F9WKi6tz1OWWsK44HW6p94+cjifGYWKWLzg/u+Dq4pLV2QovMzABZVMKOcPmlr5ssGuPTzyH+gPt8R7vLUIahIwKlbEP9OOETgNl2ZLlmvWmYl7NmZUtzcHgxpT2pHAXkdNeFluqYk1wkqZpsXbA+ZGqrJhXJc4oujbgDAQbQ33aYWJoHZNxGKfinUDlLBfXrJdbpPSMZsexCbFTsAFBipaKrvUMfc80Btw4YoeGrk4Ro8PLBKE1LhEMruMf3/zA33/zHc+XG56vVvzDj3/Nb7//K3bv7jD1gKIgKWboosInnn3/wI8331HNVuTLM9ajo25GuuM9no7ONExjh/OgVIGUOQqN8ArrAmayDL1h6AzjYJjG2E0prcizgu3mnGcvX3B2eY5U0Ropn/5BDghlWSwuCDJjf3jk/vY1h+aWQ3/Hm/evefvTj1gxcH/MGKcW5wxFNifV2R/pkGaaEEiCl2Q6kCUF59sXvLj6iovtS87X15R5ipKBh4d33Ny9YRhvqY8ZqUhZ5ms28y3nmws2S8F2c8VmteHq/IofvvuaH779PdZbUCFmSgBpFhn5zjhM0BTJjMvzZ8yriixLOLYnRtNxOCk22RWz2Zo8r1gt1nz5+ee8evGCqpiRp3lEGtuIyg4Clss5wzhgjY2r0JgCHw+eIhajRCv6ZuJwOBLwLKsCkRdIWcQHBFFYrhU45xhHF4uFThBKIwnUbcPX33/Nj2++5/6wIylnPH/+KWVR4oPg47v3yBBI8aQ6Jc8yijQlzedcvfo5n335a/b7n9h8s+DbH37DT2++JYgR4w7sjzX7w3vG3lN3BuMNQRiKKspJ80riVYNQI1p5EB7vE4TTaB/9AKdOMDrJxfYZs1lBO/T85vd/x3G3Z2oaLn+95fOff8mrT79ktT0nT0pMP/Du/h3/9a+/IfQjhYH1+oLN5Uvm6yvmsy2LyytWyzVaKOww4nzAJylN33D/8J7H3QeO9S3jONH3LcZ0mDzGXVprAcnNQ03eFbRNgwtHxrHhcDix28VJIjaMafRXpVkM0TIdxg4YG29pbRhJklvStHr6nkt0WuAmj1Am4kmERUqP8xbvW4T0VLMcKVNCUAiiN6jtJqZhZBpHrH0qGnlJnsX8eYSLqZWDYugm+m7ChRikY53Du4CScV0aAvTDgFGKLE1AONIChPoTYy6+/uk/4Yxj6kdEEKRlScgGOh4JqUOquAK4Pf7E7v4dfvGcJPHY/YGplzSne4bmgHoav5eLOcv1hmJeIbUAN6HsxNB3tEMbDWqyZQw1Y7djbA6YaWTEMbkRKTLKogBRYfc1zg30/UDwgaF/xJvYQc5XOWOrCc5x//BAO+yZfI9OKqyDpu2wtieEEYEjOEtwmnGUDKOhG3tGM2DcyNSD6SXBKbTU8XOoKubLeZSv9T29zZBtgg0tLjh0pilFgk4CIgn8ePua4psFn33+S87PXxBcYBqhayd61wGOq8sVz9dnPF9ueTw94+PdNQe9Yz/t0UKzylXM8nWW8Xjk9vVrVH7HFAKJlLx8+RyzmrF/9xNjZyl1TpASIyXWx4O+t4FptPT9yOlY0zQt3kejjLP+acepyfKc7faMFy8+wXpH1/e0g6UxjnV1zmZeMNnAu5sbHu7e8fH91wyuhSyGiVys5hiTEiZJ3w34ccSZGmtbEAE7TTgTUDIDBcFbjGk4HN8isXTtjuZ0z9X5c7bLLVW+4morkQg2yzNAUuZLLjfXFGnJODmUtlxcPmMxX9LXHd/94zc0px5jRtZnaz757BUQeHy8p25P8UaIRMmICi+rks62PNYnajNRLLacZRXPX7zi+vKaZ5dnLBYzUp2SSIVSkKQq7rAlZKmmKrM47jtHmqRI9SQkgCh08B4tFIu0REhPWSQkqcIrwSBBiMAwdtSHBw6HA4/7iIJ+9eoLLrZnCGcxzcDupubm3YnT0DL5gcOPvyFITxMOPP/FS8w0I7gTZVExK1YsFi9YrM6Yr7csNmtG+0iaZVE2ridsGHDeRjWgUeBSqllJlkiq0sYHlnIYF2F6QgoEBaAIwiG1JZOeRCWg16yWL/mXv/4LXl5e8+72gTcfbpHPIFEwigN/8/Y/8O3ud1RFzIio9w88HB84NDuW5YLzZ89Zr68pF2dk+YIkKSmLOZvtBVJKjocdwVqyNIuRvcExjD1dV9MPDUFMCDVhXM/0VLy99wzmAaVTnIVxnOIKWiT0/UjfjaSJosgTUp2ghGayA0PfPVFfA2maU5YLiixl6BuGvqXvB/qhYxhanJv+qCicJocUAaUFuVSRbiECIsh4w/ECaz3TNDEOw1PQj6Tva0KILulhGOj7HjPZp68hFgPrHIg4cXgZmLxBiChcEWnAe4VSkbgQoZJ/wqJw//A9Ek1CSZ5WMT+1MOAfGDmyPxwYJ8v94w8cmluqTDIzKc3OULue5nSPGVouli9Yni+ZzefMV1uysiLIgLc9wR6p2xtuDx+5O73n/viW3fEtu90P1PWRwTgmY3HOkmVz1svnaBnzEabBUR86Gnq61iBJuLjMWKxK1ssVwSfUTcPD4560tGTlAutGJjvgXOT7jINF0iFIcEYzjZahtQyTw7iIy3ZjpE0mRYnWCZ6B3uyYXEvb7am7hnYYaXvDZD2pFhSppijjwer2dIv9UdAx8sl4YLv8hCxZ0LYtp/ZAKiwv1hWrWYpKBdvtBZ+9+jk39+85vf4HlPfMgibPZmwXc0qdMjQdx8db7uoHVosZX33yGXmiSV2B9JIqqyCTtGKgtxOTszgXw8GHfqDvOrq245/Ea9EpmxcF1WxGUVZkeYlyDuMFYRoYzMhkFcZr2q7l/vHA/cMju8OBNM9Yr5+xnV3jl9f0fU/dWwg/sU/fEkSgyuZonZErh7NEzpBWaC0IvuZweMvYH+mbI24cKZKURbGgzGfMyyWr5ZLRNIQASiTkxQIlkqfPZfcU2mRp25H62HHcN1g3cnF1zavPvmQyI7vHPUM/YY3DTIamqVEqMEwDNgS8FCAlU/B4IZgvl2zPz6iqWcSeSBEzwIVHhPDElIpU3DRRhJBGIxPiaccdlSUOsD6Q6pSzeYKUAZEFBm/ZtzXtZJis5Xh45P7DG/aPjxzqlrJcIPPIxVkohQoCKaJA4djU3J/ecXf4SG87rq8veXZ9yTQEpkGiVIbXKVaCEQbDwOQ7+qnmVB9p2hPj1GDDQBAJghRvUxKVUuQJRa7Ji4RpitOylAl5tURoER3I1hCcQQYQwpGojHK14uLqGdcvf8bzi5e48AYzij/6QP7xzX/h+ze/Q/KOXG+Q3uNMTz+1TL6HpEItE8bc05oTnZfYRFDO51gdqaGjcNTDgfHY8Li75d2H19w/fKBr91jXovSEUJZxqjGmi7beAH3d4qzAex2JzaND+IxgA3YwqKDwWsacF2vwzj4ZPcFZSaYzqnxBmiRMY0vb9+yODc7FYJ6qXLBaLinyFILBuZ5xbDFmiJ299zhn8RZsCNFUiicIj/VRfkrvmWyPc7FgDOPEZCPW3bmAkDJGCAdi6ppzOGuRSpA9NSnh6R2tlECKP3FR+OrTf4W3Ctul4CRaTCR2IhMG2zfcv3vHoW6wxrEsViyWBcUKut4xNAMPpzvqwz3BSKp0w9nGUxRzdFoyBYFhYJAnGvOGXf17Pt59x/v7n2i6A8Z3jIw0w0jfBZxRKDHSnw54L2gaw2Q8vRrI85TF4ozFYkORV5TFmmfPXlEUFTe3H7h/+IjUFpVYrNMoK3E2IQRHkSvKQkEAM4H3jrHXOKkBjdAS5RPyJEL5tHY87H/i9jBwah7ohg5nBWYIDL1HBEWeC1ItCd5HHG+mGaaW//w3/y/+9ncF/4t//7/hl1/8K8BjmoFpOmJMzUf/li6ATkGkgSTXkV8SLKSG+abiky8/JyuX9NZyuK859HfsmnfUh1uWcs5smlPoBSak0SCYGIKKNLwQfHyhe0uSKIoiZZwsxnqUTsjzgs3mjPPzK7TOaJselcYpL5VLVlmg6R54++4NzsdM7e3qiplOWCyXXD9/hSNwOB3YNztUu2fKRzou8WbLxfLPqdIzjOvwtCA7rK/phgPGWBJZMCs2PL/8glfPfs3V+QvO1pekqXgax3NcOEcS6ZLWB7rJcKxbPtzecPPhhsf7B3765lv2+xoz+ZhKZV3EOkyG8QlBHEJgHDvu7j9yajLaqcdryXJ9TrFcodKEuq851Ac2zYp5UURZqBRAzPB1PiK/Y9BJTLmKp784sofgY0C8D5GVIyVKKKSOi6XJGR6ODd9/eMvN7p62a6kPe+qHe/Ce+XqNzATv7t9h/MTnF9eUecby+YLVOOPb+wM396/p+w4lBeO+4SgUSo0gRvbHB/pxpChv2bR79FxSbRLud++4f7hlvz/S1JH4mYxRoioCGOXwrotYhqBI8wXr7RWLxTnr7TnWD7z58FseHvZ4C66HzgtcISmXAS9avr/5lve7Dzzcxd/aBVIkUih+tfl3rOaXVMWGx9Mt7x5/YJxGhubE22bH3ftvCSrHypzLzSu+uPwZQY2kZyVZUlAfD9x8+JEf3/+W9zc/cNyfmKaJROuo4orAUMbBYKxhNp+RpjlNMzEOhrH3TGNgGjzjIMCl8aCfapS00bhqJVomzKsNuIbd8UiwE4lsmYYRnXh6M9FPI+v1Jb/6+b/g05df8uL6JUWe07YHbm9f89NP/8jdwztwA9M0RUFK70EUiJDiQ/Q22BBjN2WQsdFIJIlUWC8QJjy5p6Eoc6qqYpoMbdvgbXy1aSXJspRExeeOtS6mLro/MTr7zf075umCT2afsZldQKFoXc2H2x+5f2hpHw1DA4MxyGykqG4Qs4Z9azkcB/q+w5pAM448didWzZH16UgxRUPH6DoG27NrGvbNgbo9MAwN3luSoiQt5sxXguZkOTwMdK3lWD8QnCcEh5LxcJqqGfPqjO3qkryoSLKEQ/2Ru33Hw/0jx+MpMspTRcAQsGRpTp6lKGGf9tvhjy51KTRKBZCCRATQEqU8gZG6GdjVLaNr6M0JH0IMcHEJkyVyVgbBJEbcFEOGvBekacLxeGSP4K+y/8C7j+9wPie4jIv1hs36BR8+fsM373+PGFukGTjdfmSRzdF4CpmjhCQIR9AOqYm73sUCrGGVzyhchjAB48bYNfuAsQbrLc7aWFyER2lBlqdR06wN1gXSrGSz2XB5ecX5xSVSJRxPDWlekBWCyRp62/H+8Vs+3v1AIhMW1YaqmLG+vGS12DIv1wxmQOuaRGkKnbMur+DiL8AHVvkLElkymo5AT5JbHC2n+hZrDfNyw3b1gk+uv+Dl1WfMyzVlXv2x49Y6HmSjjhKE9yRIkixF5xkX15dsz84Q1nG8u4/ZBn7EAfe73VNQiSLLSqQ26ETQ9TWj6ZlCQGQ5ygT8MOEGgxeStm8wdsL7QAgC7yN3BinRxC5MIJ5QxRD59kRkghAxUN17jPVYG/Ay7hesi2iMm/sDb96843R6JFWCszTj1YvPQQiaMHHsG97cveW3PypeP/uUy82Wfmpw7BGiIdeW9XZFmVVMk6N+qKmWgnwm8WJksHtsN+EZkV93HB9+pD4+8OHjt7TdDiEUqVqS6Fk0W00To5toadFKkGcFQhRPqw5HXbcY2zC0J8xwYhzAOUVaZJBPHA/vCK6hUAGxPsOMt8hw5PziMz55/isWxYpZNqfMFqSqoB323O3f8Lf/8D/yP/yXG4auJSkCKtWo1GHqmkf1Hucnbo/v8QTq3SOH3S2Pjx84HHYMnSXRBRdnVywXK+aLjMDIXZAcT7cEr/E+3q+8E/T9RN96gtWIMCNPHKq0BCYQPWfbay4uLjFTYL9raI+Bqa8JzjFVFkLEpI/eMnqPcY7JCIQoWSxekMiEd292vHtzZPc4UteGYWoZxj7eEUYPTEBKMJZg4/tSSIELjslNkWgcQCSCclYgZFQcZWlGmqR0XctkJF6A8AIpow9r8sRo1z+k9/wz3Wv/7KLwcDwRKklY9GSZwakEY3Iex4IHu6KavWCZC1T9kWG64eF0YOc/0HfQtxCmgAo5TT/x+uGGia9pBseqPGOerZjo6Nyem8c9Hx9qDrXDjhlCJCQyI8szsiQl1wOmP2CmE5NvEcLGYBMZ5V1FkZEkMZRCpxLrel6/+Q13D28IXiHJEUJGBcJixXyxiftPLxinBuciDEspifMCoUB6iXcKjwEGrLVMdsJ4w2hrTOgIcooZq6iIjnASLJhgcUFgRo/CkSc1ucrZzhYYJ/jmm7/mb37/n0hm12zPv+LPq3/J2fJz0vYG/SB49/0PPP70I0Jo5tWCRCaIKaVvLPvDI4ltGYPDm4nz+RmFSlnnC1xn2LUPtMMhBoULEdHhweHdk+sxWIIElSqklqgsGm7SvGS2KklyhROO0TjafkRZg5oGHk8fud295f3H3/P48IazxRl58jNW6xmz8w1SZuxPO/qxph8PaBybbE5JQq5Kxqkh+J7J3mN9HHeTNKfQacwGloKrixdcX7zicvsZ22UErIkQyZHhCQ8cRAQqeh8BZForyiJntVhw8cUXXJ1dcD6fs7+5IQQbjVLWcffxhiKr2Ky2LPKSvtnh7RBT9QigUpRMogrLx5ZZCsgSHZsHKePPmLi7VTJiyf/4KwD4Jyyl+ENVAP7pMDhZyyAEvZOM1jM0E3f7ht39A344sdks+Pzyip998nNcgL9//Xt2P/2eN2++56E+cH9/y+V2SyJ7pn6P2ehupwABAABJREFUnY7My5Sz9RmLasP+cOJxv48ZIU/GJyEd3jX0teHt8Z63X/8d1o+Y0OGDJMsLtJqj9QJrLHY84uzAZMaY/iUy0sQxDCPO79if7jHmRFc/YPqOyUFINPlcIjI4PD7QHO5ZLUoWpWSRwur8gp/94l/y67/4X7EoS0qtwCuChWB72voTsJYPb9/hx5Fn23PSco7XOV4ICJ7TYc+Pr3/LoXugGQ9IJKvsjHV5zihB64J5uaHM5xR5gvc9UuY4qxlHF+Nsg3+6g1qMsSgSEpWhE4tOPF5YUAPbi4xXn12wux/Y33UEI8lUxnJR8uLZFQHDYf+IcQOZjij1cZg4HBpuP+6YBstv/vYbfvzpu3jQtiN1U9OPLT6EqGIUIa6YJkewjjSNKj/nHXa0T1OmIElS8ionywqyLIvTv7EReqciEC+I+B7vRxtfgl48TQ+xMfmTFoX//b/7P7Pr7vn97d/xH7/7vzN9rClZ8ekv/i0/+7N/R7Vek6USNe5o9m/4zXd/zd9//zdMw4SbLJnWaAkPxzuatx/5JvmB7exv+fT6C3726hdYMXIa7rnZ/cjt42v6psMP0fWqswnnG8YxgsamwZMkKZurlwgR4orJ9ah0JKQ7GlszHt4hjxlmcjzcP2IMvHxxzdnZlvuHB47Hjp+9+gt+/rN/y/c//p4ffvxHXHAkaYpSCh8kKENWDUy1oT1Z2lPL2EU5WlbmzJYFl9cXKO3oh5qhH5k68COkriKTCxbFiizNcH4kzQLb65LtxYKy2mAc/P773/D29i1SHLH9e96+Btfv+OzVl/xv/5f/J/4/4f/Gf7xtads9vusILkH4gK5GNl1Ht7/lzfs3ZGnF1fkniDTj5lAzdh3HwwPT2CJl3NlLmSOCBBODi7rRMDmPUBKVSFQBWoOn5Th95Lff/VceugfOn71kfX7JIC1N+8A33/w1v/vtX2HtjiwPfPXJz/mzX/93rNfXWB+4fXjL69f/gPeC+eyCi80lV5sz6npH8/UDt8eP7Ju3OJqYX1wWYDJyUVBWM5azM55f/Yyrs08p8w2SLHbn/on4qMIfH75/QNI76zDjgJ9GtLVkPlBIwbzIWK1mVGVGV1vscWBwluvPVvzi1/+Cpq756//2/6NpGxaLiiTNQCpWyyVf/OwrLq6f4QNU1YyfvfySy9U5RZKAM0iiDFD4AML98dAcxB8mBBEdrEIQkH/8mCyTJFmGm0aO3cBoBUZoglJIMWFczalz7KYtdZaQZQWLzZbr4zn72TmzSXKRVKhx5KcP33D7+A5rHUqm0A6MoqVaz3h1ueDd+2/56afXBDGgVDwABxkhiVlRYigZXIGxHm+i5NKOd4ClKA1F4fA+h5DEopBmLJY5WZ4wWhOZYW0gKA1FhtUJznhGawjFAqMyvr27Yz96/uzVn/PVi79Aygu+/v4Dl9sZV+uKNJkRQsLN7S0fPn6PXi743/0f/o+sZivO51fgCvpeYozB+ZEf3/6Wv/r7/wfKDyxyycX6GX/+6b/nbP4pXW952N3z04d/5ObtNxz7G9rhyGgMIQSqeU41S9GJoJgFli5FKY0ZDWZ6ZGg93liqrWGxDbTuHT/dHnh4O/LhTYvwii8/2fKrP/85/+bf/UuaeuAf/+5bbh4f6MTA9vKKX/3iF2TJjO++/Vt2jwfGqWW5Kmj7ganR8ZZhYzBTZLHFtELXxyLgvccbjwkOj4/oESkRMiCsxdiGpqmfPmcTbx7W4Xxgck/YGhfDdbRUCBmn2j85JXUY9/Tdke7YM7WSND9nM3/O87MXbKs5j/2OU9dzXWrW84o0KbA+JUs0Wju68UTdtgwD+EnhtKfFc/MITrYY29O2e7p+zzA2CDRZWmDNQH3cY1yPJxaD9bYkzTJ0ogh4SHOsExEpGyyDdfTjgHvKLhUyoSrmBFfQHAVjF7W979/dYsd/5NTcxaOzGeiG8clfUCCUI4gRcNF5qFKsiBA5Z+LRCR85+ZLINwrWgwUZoqTzfHvOfF4xmZrRtdSNpR4OzBeeosx5dv6K7fKM+/sb2uYj5eqcy2rLebFim1dcrC65vPiUmztPP+xRUlFWJYvlkuVyRRVKhBRMo8XZgWPfY3qLGYfo9MSSaI3QHqkt0j+RE7Wk1BUZAofDYbA+Ort9cExW87hP8dJyGvbkDwu8Ekx+5G73DSa8YzQHJhvY1x94OL2nnWqOpz3vPn7H969/gzUwLy85W11xuT1jHGrevf+aU3OPlT1CWbrBME41BCizOVdnn7CepWiZo1WBEilCKKT0xN7cP2VtP4EoI/Y2cut1ynq5JtEp3js+fPjIh483nNqGyVqEkFTVnOuLSz65fsGLi0v08xdcnW949+Ed3/3wHXVbU84KdFGATiirGVeX15xvz9muNsyKCi1lXFdKiZA8mdcinE4G+Yfgq/jmfppi4u0h/mvMr4BMahY6oRSSoDRhNme33HLwjiA01md4oTkOA7/94Qfub2/47LMv+MWXX3L7cMOH+3cMbYOb4trTCoOWMXTF0aFHsH4kzRIgIIRHhOiynYg0Ty8DXvBktrKIEJ4QCQElFFk6Y1GdsZhfsFo8I00rrI9EAd/eI1JYXJ6Tyhw1W2CC5/buex52H3AugPaoRJOrOfPqJevNz0mLEpUlLPOUVGoElskNvL39lr/5h/+EcR3z5Zyz9RX7rSVTc7AaayxmHBksbFZfMKuuqOYpVxfP+fyTX7NdXRN84Ob2De63B9rvbrg/DjR1S5bOoxO58xxb+4Sv8HirEE6RKk2aCyZtmZxBZhqPZxg0SkBRLPn8q2esqgteXH7K5eUliVtzenzN7f2Bu/0jTjt0knF3854sKznWR0bTI5RHyChkOB0bglfk6ZwsT+Pu/wml7bXDJpZ+GBjHkeAC1vmn15OPnixlqaqSqqwwyjDKgWmSWGFQQColPhCbBCGfomzjb/WnlqR+8/Y/MvQWdxo4y864ePk5z68+5dnmDB963r/9HY+nO+zZGZsykkXn8zWzRJPKwPv7CTOcWBRrlstzkixBpoEh9Pzw4R8wY4/rR1IpyZKELC9JspIGy3CYMH4iL1OKWcZiWSFloO1rvLekRUoScvoB7AjeBpyLo5NSmtlshpY5dR24vzk95SgIvvvua37/u+84v5yx2mYYZxm7HoIkT+fgLdZFa3tZaITVSJPHxKVxom8MTdqTFrEsyBh7HpOgvQPhyApFOUvwfeB07Plw13BsR+bzPRfnG37985/z8vIzwjAw1QfO53O+fP4ZSgrub19jxo5ZNSdNc+rOodPAbJ6SFwoIzGczqlnBfrfj5uMNXdPhJ09wLuZRK0GiIU1AJz76C4QiJIpAgguC0U70ZopvuLGOCVyJZl7N6duU/fGedhoQqUIXEqkallvB7tFQH0+8fv870rRAiJTjcc/+dM/+9JGhH3FGUaRzFrMVeapRYkIngiyLmdVDFw1/zlhmBawKh1vFTspbCCpOBlJIgoruTvdUEAJPmbYQmUk6ZbFMmC+WfLy54cOHWz7c3LLbnxiNI6vmXF1f8atf/pLPX33K+faCi4tzzi//Pd98/x13/9f/C7ePO4qFwiPZHY6s6oZf/HzDq1efkggVVUZEhMIffAnOe1wIf1zZxs/rCYbmYjaFfALaC/FUlD1kQpJkRTwoAsl6Sf/8c4pyhTEOna3oh4ndccf3b97Q9TV/+Zd/yfPzLeN/+898vHvLerYikZL7hxuGoUOXGakwdKeGYRzIcsXl+TXDWNP3DWYyGBuDoAQOoQMysX/M59ZPGQVSKkRQFPk5F+c/4+Wzr3jx7Cu8F7x9/xO3wxtwCXla8Ozsl1xuPmW73DCZlv/G/5PmcGKqTwgJF1cbPrl4xWx2wf+ftf/alSzL1jSxb6olTW3pKjw8ZGYeWSx2N0j0DW/4NnwFPhkB3hFFdBcKXVVHZEZmhnC9taklp+TFtMhTvDsXiYAjAuGAu20zW3PMMcb/f3/SCy7OVjy/aPAu5Kxsu2M3PPHuwz/xw5//M/fbe3yC8/OXfPn6N1ycXbFsloggsJNDxoLN+RuqomHRNLTrBa5s6cvIqqk4K855OXzJEA/M1qJFixY1KWj2uz2Hw4lqKiJlWVHWBVVVUVSGSju8dhTaUJmChSlZFBXLyzPWm+e8vPwNX17+PckKHm5v+PDun/nzL295PN5SNiWTtVg3s1mvWSwWNAvFMMyMc04C7Lqetm1pm4a6KdFaEaPPLDaR4zYTAh8S3md5eIh57AiZuLCoFyyaJaH0jMowqZFZTSBBFRJOI0olBYXRLBc1m82Sqiz+ukVBh1tSDHRpIoSWs3GBmtaUxTmyqFhWK477gcddYDxOmHjGN2e/I4qEi55nV0vOzya+OPuGF+s3uDDw1H/kl5s/8vn+AwrJqlpR65ZCVYSomY5ZFaDjc2LomKcRF6ac5iV95rmrzBqRSueUogA+5Dnv5nxN09TEYJmGkclKul7QtJJ2WVOYRPSCuhEUhUTrJW29pKnOWSwumO2O/TEgsSSpmHaO4eDoupE5DpSNRMrImVpwdnZGrBM7nyWF3s8cuy0fPv/C/VZx7B8Y5h6KmvXFksXiHFOtudk/8TQ+cAiaYvM1rAqO5iP9MfJ41/HDux/48/t/Yvv0gJ08Ts9Ed8vu8Mif3/4TZa0pKo1ImuAkhSppqwYtEykMhDBh7YEQNI1cUxQtxaLEzYH7+yf2xyHPNk9gLy0002yZrWUeLa6yTPNEN3YkFVEFVI2mrJcQJqJ3fP58y3H3/wUKQlAslg0vnn3FMB25u/tMZAS5YnP2jDevvkUK+Hz3C0/bW6ZRkGJBXS5ZLy5YNOc0VZaelqZGJJXNdDLnEEgpc3iJytgBfwpOmp1ntg7rso5bCMXVs+ecXVyii5KqWbJZLfn2++/5+//4P/H1V1+xXq9YtA1VVVLf3FCZ+oR/ALef2E9PbOsH3DDlQqAUMURc8MQUs6tfa4TK6WxSCJLIF4KUsgHJGIMkK75iyA84v6L2f+02AEXk8nxB3f6G7TzxaEd2xyN//PgTfhj5j9//fcbQy5b9MfDNF//I9eIln+5/4sPnH7FDjwiei805V1fX7I89u31P0zaUteHu4T3TeGSeZ0J0pJRHWzpqSlmghKQscnY3IiGVwuiWullRNxuSKNnuOvq+4+PHd+z2H4nsKdeXLC+vuHr1Da8vL4nuyMfH3/P+bpPR7VJyeXHO2fkVTlnuhg9s/JcoueLzwy0/v/2ZT3fvuH/6xPvPPzJ1PbiAiJEauKhqvjx/xvXFS0pTEk657cM4cn//wH/5b/+F/TigVw2by3NeXj9j3bYoteL1q3+g5JybxTvev/uZDzdv6boj0zxiioKirKjbmqIpoYjM5YApPOtG8PriS768+JayEKAdkwg4EyguC57/9jXraoPv32DlI3/66X/HuY5ytaBuKkJ0uDAgdT6Eu/GRbnhCKlgulqyXG+o6s7+ctxx3B47HXUZtx8g0OuY5QIwn0UvK+cwiE4zHw8RDeiJEh3U2FxOV3e7OjfwqcBDSIIDVcs23X3/NZrP+KxeFckWj4LmEECpKoxn9yH44YsKSBWteNIbmbEHZGJb7R7rdA0/jgPOOb758ydX5GW11jqJiu/sI43tEnNChy9RMWaKKBdrUCG+IKXF1fs63X/+OKey43f/IrrthnE75CGlGKXAuUNcti3ZDtWlyoHXKKhVnLd7POO+RWmEqeYJJ5RCUumrzn2E9VbGiac9YLZ6xaM/Z7W/Y73a4MWM35jHgp0SwOTjDS8/YTRgl8lwZkfHbk2MeLSMWFyfKWqNMwJQJVfaowpEi9P1AN0ZickyzB6EpPr7HA24U9DvL/f0nusMTfhwRPquirIJ0CqtxUaGtQokcCI6JFFpSVCWLxRqtVjhnkVJSVS1Gl/k7IyZQgYQ7Ld41RVHlwlitKcqK337/d7z+8muiFPTTwLZ75HF/w2G443h4YBqHjBjoDhx3R0glkpahXzDPjigGfOgJdOy6EWMCq8WKRXPGor1EyYq+O0AMeTl88Yw3X3zD86vXrJcXlLpCJP1vn+cppDzPRvMC99e5vtGKlFKWms4zWmmaqqEqa4wpOb+45Dfff8ff/M3v+O773/Ds+TVFeTrMEZiyYnV2wWpzjlAa6yNJBoZh5Pb+novbGy7OL6iqCnXCESQEPv4bpz6/vBNz59dXePoPeRp1CSlICUh5bBOzdCovC6XA6BpNIE0H3HhgOmwphOGLl1/SNAsO44GUIq+evaZ59Q1fHL7k+afXCGn48Okn6qrG+8Q0BqYxcna25vL8kq7rSfEuz5tTPL2PCaMNVVEACecFIUa891mhQyAg0EWB1BIXJ1wYkTKHwtgpa++DtARjObgjc7flMO4JyXNx9ZKqaBimkT//8q+Ui8+szp4R7YHx2PH+w8/8+MsfuL37ie32I12/x9qJUkrqZsG3L7/kf/6b/8CLq6+pisy1ut9/5uPNL/z07o/cPtyy3e9Bl2z0C9xQc9xukc6xrGtKXXG+ucSPM3e3N/iYEe5RezbPz7m43qCMJIqAxROFZ7VouFytudgsqZegjCIKiQwTIk1M8w3b/g9U9decPX/GV99/zz/84/9C+VPLbj4wuZ5xe6Trt/TjDq0kfT8SoqWsJJKCotSQEkM3MvQDx2PHMMzoUiCNQGiFSYLoAtFHgovEkF+LocDPgaM/EpInpIDSiqLUCJVO2gaBRGKnxNhZmtLSHyOV+Xee9f/eohCLC5qq4vrsDC0bZh8JaO6PPaaLVKJhfX7J+qtrzFpz/8sfGPafmeYj/Tzz3Zev+fL5G/bjwKfHjzzsfuJh/w7nnliVeaod0o4xKLyUaNlS1jWXF2d89dWXjH4H7w94Dng/ErzMLz+S9walZrM843xzCUIwTRP393ccDn3G2wpJWXNaCveMc09dFZTlGmcD0xyoTUVTXtJWF1RmTVM6FvVz/Kyw45HoAiIptFCgdJ5z+0h/7LP5KwlSyAA8byHhCDgCJReLFYuVwoZHXNgyzYestQ8K5xOzmxFCUSlNqzYoNDiPDBEdFYWQCBNOHKZAs6hZrdeYogAh8M5h5xnnRiaRqI2iba5Ytm1exp4S50LK2cEyCJpVdbrZSqTQVEVBUZRIVbBen/OP//C/8jd/9w9Udc04j/z57R/473/4LwzvHjns77DzmA09NmEnSNFCEnTdwO3NDVWbWK4TQs103Q3TuMOOM8+vvuXL17/h6uIl49AhSWxWK67Or/ny1Rsu1lcUeoES2ZhIvi/lwpASSZySrcijHKNyUaiKIrfOPvOEUhIYmaV7dV3x+ss3vPriC9abDUWRkdfZPaooyorr5y943B3YHQ5M3iEUzMlzv33k890tTV3TVhVS5YPCAy4m4smMpKT4y65BCnm65WVJSBTZPKSlyj9DTKcIlPBrFApzTHQ2cexHpu0OOUycVw1l1VA0NV4lxulACha/bKlWa748/y3N+py77SPHoWe0e7rtI4/bA10/c+EvUTp3NFJqhFCAQoiE1hqjNUbloJdwKnLOB8DnPZt1IBJFqWiqkrpSVEVi0Wg+fQqIWBDCxDA/Yacjh+0jD7t7fPA8v/yWtjnn5/d/4H73A5uLS569eIPvJ+5uHrm9e8fHmz9z3H9gGh7w3iHQNPWSi7NLvnj5hu+++R2L+oL+aNnttvzy9s/8yw//lf/2r/+F0Q08e/GC1y+uePP6NdeXLzBa5zAoNzLNI/N8xIaBJHMYjyxz9sH1l2tevbnA+oFh6nAuIZJm0y64WF4gNDzZezQt6oSvlmFm2L7j7U8jw/GOZ1f/iBOCF19+w37s2L/9PUM/Ms1HEp79fospFForlNBoo5BkOftsZ/b7A8dDj3ch7yaFQhmJ1oJoEvNgsykwClIEokSiiC5gZ5efgxP2HARSKIQ6Hekx43m644xKR5b1A8ed/esWhX6YWS+XXD5/w8XmJcEl9l3Pu7sbDtOer8++5PrsCrksGWLPbtzyYfeRj/e3bI9HChHYPd1yc/jMp6d3eLdHpR4jZjZnK0Y70c0T+91HxvEzi+aCZ+cvOY6eH989MrmB3f4JPydUKmkKk2mZUhBioNI1lW7QQjGMA+PQI4GmLPm1X08CQh3QZck8Z93+49MTWlWUpsHoEqM13jvGYWCzOufVF894eLznw/sPvJ3f0T98BLK+35iMpxUq4VzA+3TCqmfEAyIRvM9RecNI0pogPUkkhPIgJlJwkAKlglV7zj9+/y3/y3/8vxO8YL/r6A89b3/5BYygaguUFqfgl3SaMyq0KrJx6NcoPqWRqiBGBanA6AIhBc7P2RoPCKNoli3a1H9ZmFdVRVnUSFnQLjaU9RJlGqJQDM7y+e6OH374gfune6Y+4aaCYCV2EtgJQphJbJEaTKkRVY0ITQ4WCRPB+azQmj0iGdbLK149f8OybWjrmmW9YL3YUJkGEU/kx5MjWApxMovlwz6mzE0SMpughMgH8qqpqYzOHHvnWa9aztYrhABnZ4Z+YBhHitIgNWilEVrQLpd8/c23jLPjX3//e7b7HSF6hnFBJKC0BAkh5ZCiEPJNP5G7E+csSmaIWVkWpwhUTigD+B814tk5Tr7RCUkKgmQFMgjqKLgo1zSX4M+vQRhCTAzTwO3NW/7l9/+JXXfHl9/9LV9/+/d8efUtPgkO08T94YnJPRJSz5wGonLcPv5AP32mH44Ikbn+bs7SSRkNc/D4eQci5cKLQmJIGFJQebcToShKLi4vOV9dUOmK/XbPH3/4gW7o2NRnmAhGKqqiZLU8p++fU5oLVFhSxgVNalhQUgewh0duDkfe3fyZd5//hO13YGeKqqBZLFF1hWyXzLrgbh64m3oe7j9xs33Ho/+AKzvqdUkrG7744jVvXr/mq+cXPL+8pGlWzNby6eYtj8dHPt1+5PPNDXe7J6YQKZuaZtWwOa9ZrTXjKBBJIssmJ6GJwGTv0XKFMWuqqqZtF4Rpj+0mwjRzeAjsH0Z+/8+/cNjPbB8eud/dMQwDREFTrU4sKIubHfOU86GN0RSmQMlITGSWkp1IQYGQ2NljY0SJDH/0J+eylCL7klJkHMfsXo4RU0oKrWjqmuV6gdSKcMLUOOfRcqbU+SJ1PPan/Oi/ZlFwdxgXGP0lg5PMc2Tf9xy7e1LQFLWiXtV0yXEYOmIUNOUSY/YEDnx+umXX73h4+pnH/TvqSnOx2dCszlgtWvqhR+x3pDSRfECSGO2e8fGJ6XOH0pqmWXF19gp1kamFMj91pJTDKYINPD1sT9AqiyRQlhqlJEhBhByQU+dc0/7gGHsHMaCEZxgPKKUgPkIyfPHFa16dfYtUhnmG7X3HffVAYKZoDfVCs9zUKKNxLjH2nqGzzJM/zQF9drDOlv2hY/QKUSSEKZBIlEhoLakKQaE1m1VN1eYwHBtgtJakFEXboFKiWki0zAYppQp+1b8rbVjXCy4vn6OFRCEolCElkbkrEmQUWCuYPcwp5bGH1hRlzvsVMdNQhUq4YBnmnn2343H/gNCJx/0dNw/v+Hz/jq57xDuLjAWGCucFro+ZCmnIRUHl23LykrIoWJwtaZslZ8s15+cr2sWKul6zaBesVyvWyyVt2WCERiR1Sn8T/DqbSb/OSU/FQSLI6u2cNS1ICJkppEoURMBolZHaFxv2+wN3tzc51MhounGDNJKmaVkv1pR1w3fffoebLT/+6Y/0hx3Rlxz3Jfd3n/h8tqRpq2xi1FW+cf86BgoRgfjLeChLUHMzE09xp38pYPLXwdJptJRgcoHd6IkBCqVoi4J1cwFKEkRBN0y4eWbsD3y++5mfPv+RT+OWt9s7vr5+i4mSP/3yz3x++IWkjpjCgQ4YGRjdxLh9QGLQRlOXLYocNCURBD/j3IxUIqM7lEbI4sTkUczTzNPjPaUpSSFkXtPzN7x88RVGn7PdPrI9fuTh9iPzOHLsd+yOexySfbenVfD6+bf8zbd/x8XVGVVb8v7TT/zxp3/h5uEt9/sPhN6jnKCNAl0GkhBIozjajp8//YT3E9unj+x2t3T9EzZ1VG0+D549v+bFi2c8uz7n+uKctr2iGybutw+4mNgddzzsHhjtiDJ533V+YVi3mkYHlNaYos7peloSEYSkcqb45LBmoJDg7cRsIxqDTAY7jzmN8eGRu/s7DseOmAJ11VKUBSnlicRse4LzJJVoGklRCFKcT8wih5J5sRxjltx6l7PatcywPK0VMSRSOF0CT2q23P3JjIYxGmMKpFK5+/WOFBPGGMpNiVKSaRyY5/GvWxRmcc9h7vjwuePmtmY7WPpBIOaas+YlMTlcCozW45xks7im/AJsMgxREpJnCDPBO6oIS9Wwaa9Zry9Znp1R9ANKbFlXiXQh6eeO/fDIcXikHx9ZLc94dvWa68uXNE2b+SXDAClS1QXWjXz49Jb94UBZKdQp3i6JiNQglCT67GQsdIEuTfbkx5HgHNYN7I+eYdoSfMpmNdlTNNmlab1FGUXVluhqwWKjWaxLlpuGoqhISdMdLI93B/a7Y67o0eUDIXnGIWK9Qp5iJFNMaC1Yn9WUjaasFJSKt3e/8Hj4f2FnzTQkdv0Tq/MVMZYoldAqH7hKG5QuMUVNUdRcXlzz/NlziInD4xN2GkkxMfsZ4XJr6nzMo6oQcDEggkLEXyfiOYDce8swOfpp5PbxI9W6QhrY94+MbocqHXJwpDBTFgV1W5BcoEsWeUqCM2VCKRApEuJAUSmunjecn51zvrrifHXF2fkZRVkz20Dfz7TVklRIYhJAQp0gX3mBcOK6hHhiuAiEVAjxqxw0QMypeTFm5ISQCq0kbVux2azp+o77hzuSSCzXS2x0RC1YLteAZlk3PLu+ZvtwjyIy90dKExn7Hb/8/EdcmBBGEiVsNlfU1SK7RH02OhqTlSRSSaQU+BSxzjHNMyGEk9tdY4zJrx2BSJEUA/vJ8rkf8cGxkLCuNJu2pJA1EqiUoi2rTP5dnqEfKrb3Txy2/42b9k/I6Pj0+We68Y6iiqhCoHW+YebFhcjKuFRiZEVdRILP1E3nM/VXniS9SmWuf0qnXzGwfbpnnkZubz5wf/eZw9dbXlx/xXJ1RZJrPtz/Kz+9/VduPv/CdndPrEqEKTn4jst24m9++3/j7373f+L86gobBnbdAw+PP7HvHnHRZyVZFFgXmWaLsyPBd/T7G25ERAmJdzNxjMzdzNSPzPOAKQxROJKKRC3wUjInyRwlNklcFPjcaFKUBq0Fm7XiYqNpC0mRIlpl2bxnJohAUW1Q5TlDN9MfB+I0MZcKMkuARXVGVT2jMhHFnsP+kWl+wgdHU5+hVQkIfLAnKbWhLBNlJVmtarSW9MeeEF2+ENYF3iqczTfWFLOijVNB4LTvtNGhToVbaZXNhCpHxeYwn0giEYIjppzQV1UVy8WaGAKHwx47/5XHR1aMxHkg7O8JMzw6mEPDkivK2LLrtrSrc87aJed1w7auGGUgffyFeOgZw4QXFgIsqg1nyws2yysKU+e2aYpEa6h1Q92sKKYnXBqwXjHbRIwz/bDl8Ql2+1xVh77HGMP19XOqquby8gWr9QUxRXzIKVzj3LE/dEzzkWGyOJ+oyoamrIkh3+CkSnkerEMOL/cTfTcy/Lzj5v4DiILgJXYIqMpQSImuAiEFjt0RIUeIJcFlbMKiBe8c3mfNN1Ke1CkSpoAEtG4pZIl2kjBFBmsZ1Ex3dJTFltqcU+kVqxZK0RBdndscFVBVYLW54vLiS7RpiUnkrIq5x049/bTHzx4Rs8sbHEK6EykyO3dTEigUCpkPVueYg8cFj4v597a7HerTR1yc2fcPbHdbjDFU1QYZGqpCUhQSaXqQe6SUFGWNKRJoh6kc1UJQLUqKuqCsFtTVNXV9RVEssjPTZOmfs56ekaaoKHRxukz/28hFytP8j8SvqYJ/YQuJPFjNoySy0UdIYkrUVc3Z2RlPux27w4GiLHn58iXPnr/A/zrvt4ExTsTC4IhY4QkmopcG0Qie+gfSTeT6xTPOz85YL9ZUWuFTwoXMVBInJ51QEp8ik5153D5x//CA9TkBoV0sWa1X2WF+kqz6EBgmy/bQceif6Mc7mlLy4vySZ2cvOF+/xBQ1m/U5r59/xX/45n+mkQ23xx2P3SNjd4ud9yhhOVtuqOqCopC4MOL8iBL5EkKsSEHj/Yy1FiU9uvQkmfCTJqaEdSFjtpWkqRcsmgsW7YblKqtWhrHj4fET1o7cP9zw4sXX+OB5OHxm3z8yuB2Wnry10EBBQOFkZEqebWfphpldPzLTZyOfWiCbiKpi/i4px9A/cPNxxPU7xDTx/PIrXmy+ZShf0LDB9X/iZrzj0+ED4zTz4eMtr158zfPrN6zXl0zTwJ9//Cdu794yDFvKEowsUTQsF4q20jkYSECQniAjfgrMIVGrinJxThIDkwMfLCEGymJFU73g2dk3fPnse3ZPNzx+/t8JTnN+/oaVT2gK5mlmt98yzQMJT1OXLFcbqlqDiHhncy60gqbVFBq6Q859kEKghSb5hAsu+xe0wpQSXRZZJdfUpBQJIRshtZLUdUPbNiASzieKQtDUJYt2xcXZFdM0460j+r/y+AiVl4reC+womCbJMDt8OKLsPZeXn1ktFixLw6I6wzYrlmeBly++gP5AZwemaInhCoVjvVyx2ayxfuDYPzF3NsdW1huKYs1CgU17pJopTGacKykZp47ZjkxTzzgOmRIoA2dn12zWV5TVgmmeOfYHJheZbc+hH+mH/SmPNTKNA2NRURqTZ3xaZ312WaC0zFGQWI7DTDd2WdePwqQWI1ckJXFhxs2ONAeE0HkUJBq0LqiqmrIsMiVTAioidTYshdmiEKyWDXW7QmhL8AOzn7FhQOuBshxhkTANIDxSO0pTUeoGU0mKVrFaX3N+9hKtG0IUTPOBYXzE+pFxPhKsR1ETUyAkh1CRxAmLHCQERToZ8fCR5ENuc2OiaZfUq3OqcgmpwFqHnSXGLLk4f0VrZqbSIRghDSh9RBUu34yUyMuyKlEvIu06UbUGpRqU2lCV11Tl5SnfWGFMkT9DIf9iSCPlJeyv6qLTcP5XwOVp6fxv+AhxUlzEX8dLJ08AMVJWNevNhnaxyAY3k4F9F5eXxAjzNNN3A7O1/GqR3pyvuXp2TrUoiNIyzzP7I3z6/IFFu2K1OGO9OMt7jFNH6p3Pmcv+34rCtjtyu3vK4S8x0Qw9q3kk3yQ9RpVUZZNjHK3juH/iz5//iFCRx+OXDN6gzCVnbYsyJYvFhudXb+iHgcH/wP44E2OgEIqy3KB1w2q1pqwM++Mdu+MdhTFoXWInwTRH5jkwzzNFGdBVQsREBFJMJDKBOIZAXba8evaGq6svOD+7xjrLp8/v2R+37A8d1n1ictkQOPWOptxQvtQgPJVeoFPDOCikanFe8LjfsvQn57CPJFlgELRRIXVEmUgSOQCpn3t89BRmydnaMUyOYz9irSOl7LOJKXLs9uy6HZ/ub3h784nzsz+xWi7xdubzx5+Zx0NGbLQtlWkxqsiIF+ex1jCdPrvJRw6TZ5gjK+1QlWMeHdM4k8LMICOlGXH1yKqyTOcRFxWehuur7/jNxTnzPPFwe8unzx+4n2+Ypp6yUVSVoT5FzQ7DyDxHpKyp6haZNL6IeJeYpxnhJUTwwROJaJMXz0VZUpQFVV1SVgXBB6y1aKUpjKEwZQ4HIyBFJEh/ylfIngUBubiYf5/86N9dFBrtMKqhKq+wZcv4OTB0uer74ZbnV285LPN2fTEH6uaMb9ZvePM/LbD/+DuOhyPHY8duPNLNAxKPSjP7x3cchy1pChBLkhCgSkq94lxe09aGaXWGUJqqWmKd5XB8ICabzVcx8LR7yOllzZpmUVCgUNYyOctxPGDjAMZRG4FAE0MkhokkBVLlNypGUKqgLrOkr2omGqWpm5aYYmYdDRLfB5zzOQpSe0whKU1BUy5QoiZagVeBqi5RJiCUARmIIgffo/PsfvmsZrVaMM+Zw25jILoZO0X8rAjzlqGf8SEvpc7PL1k/O+fy7JLz1TkkwzQ7QhwpiprFomWx1Bid6I977Dyj1IxPlmnyCJEoKw2oUwHIowsZBTKSZ8wpx1ReX7/m8vlrNldfUC3WDHZg2V8yTk/0wyPd4UC/7xj6J4Zhiy5GymrI8K2U39O6rWiXiaaNlOUCKc9R8pyq3lBWLULkxTcps+abxYamrFFJEFJW7eTvgkTJ02w+Lw9IIiO+Y5InYarIh9qJYvg/pkwVVcFys6ZuW2JKDOPI9nBk2ffoosIDnpSlpDGyblr+4be/wwjL54f3bI8PIMBZyS/vf2byiaJdUyw2rBdL6qJkcjPDOGaT0cl37WJgdJakBE5EejtxfBq52z/hQyD4yPPNM759vqLQNaIKSCT9vmcKHqMnlq3nYumRyRLDyGHo2CXLU+y5e/qFp7uf2LQXrOpXeFegVc3V6jmLVYPCYOeJsjKYomBnR6zNkash5vcvifxaQ4yZwa8EKUWcdRhV8uzqS9588Tuur76kH0bsVAF3CJkRz8eDIwVBma7YXLzi/EXFxcWSc3GBmmve3W65Px6RZPnl5cKzWRkWZQNhjbY9ZgpQZ7TI4DtGO2PKCtNuSPU5tlzyy/aO//rj7wl+wqjAOB6RZaReaIapY5wHxoctn58UBIg24gZPU5Ssm5csm5LL8zVlWfL55hO73Y6oV8ypxUfFZCXbKTLYmdAdMOKB6XBgPjzSD5F5FsS0Q6mPfL7/wM3+FxbtBc3VS75//RX/+P133N9/4j/95/8PT0+3GWeCpyg0SkfG4UgXE+NgiVFm5HZZI5F46akbi51nxt7ibDax5QuMpqorlusFi1V7uufkC6YyiqqoqIpsFPbWZ1NkkgQHwzjRd3N2UCfyDlD/lYF4323+V0J0zL7jEGeKStLWmraoaBqBkzfcdDO3x0fa8p7ffv13vDz7DU6sGHxktD1xnDBVpNGKvh952j9xe//EzV1HVdZszpdUJQTxBASk0rTFJZvyObrQSKM4HLd00y7PbIMnxQBCMkw73n/4Vx4fP1KVZ8QkiH6kUBHdLBFikZeRJ2BgCBKtCqQw2NkyupHJWsrKABlBUZU1bbtCSpPTjLpApx0hCIRqUCqnaBW6oSxaiJo5WaS3CDMh5ITUEWReFMkoKIsSJRTdYcc0DlkqKgJaF7RyRbCaYDXjwdNtdygDppSMXUVXDpwtKtr2TZ6FTiMpOaQIDMOBw+GB/e4JN1lkykY2LUwO8UoSHSUhBbwYcGLO6IcgKFVNoTMo0BQrVovnbFYvIWjG40hZG55fXHMcFFJ4nJ0Yp0ApDbpeY0NkdoJp6klpJoqAkIbgBWOXIFlIHQ/pHV0/sWquuVq/4Gx1yWK5QIhr2qbApxrnFTIJCg1KRRAhF4PMHyVGQURgY2IOnmly2MmjtKQsTxJLrVEqP5hJJIwyKAR2Gni8veWnP/yJ6BVnz14R8ex3t0g8m8WKctnwf/5f/i+8fP2Kf/rX/8IPP/4z28MD4zxxOGwR0vCHP/4L1juev3jJxeUlfTfTdTPT7JhnS9fvGedjVjcVEuctsx15fHrg4eGBotSs10vWlcGmrzJgT0XKUnK2XBETPN+cURnJ4+GW2/u33Nz8zNPuE/30yHb7kf3+DikEy82S1XLF/nCkH/a8u7tBPAT6cZ+FE5NGKYOzAqEiGe2UIWxu5pRlkc2eRheIVCJSiS5amuWK9cU5V8+vqY4jy/s7pNZcXJ5Rt3mMMQ4T93dHQvSszlacPzvjvL5CUzMtG8LdPU/7TzzsHnDhHik87z79yH7Xo4FmU6MKRVIwOUGYPTLNhLJne/eWYX9H8I55GiHlnVI2+yUWVU0hJQGPKFKmik6BqKBe1DRl9jxFCqIoQJYo06JLhxRljgJwHj8LlK9YqIbny694c/UNn+R79uNEOI5MXWC2e4Lo8X6PSo4Xr7/l5VdnTMrzp4+f+eXd7/lvP/1nPj39gqwTjVnkPUmfhQ0gkEHhpsDd9kiKHVVVo6VkmgIhgRMRrxKmqKjKirZd0DZ5ooEH62amacSflI6dnNFqpCgKjDGE6Bn9Me8ViMQUGMcOpSRFobMc+q9ZFK7b7+ndE5+Pv+cw39KPgugL1ssVi3VDMnCce2x3z6AMb55/idH5rzCxBAEBi48D1k10w46n/SPbrmM/JVRpMHWNkAHnt6SU3atl0bBc5vxnF2dCisw2P3zeO0igZF7G7O0WOzueXa6oqwVNURPKJaYoc+sUHcFnXK21kYQiRkmMPi+57EQ3BMrK0DZNXnQmgRI6h5kYR6gBobJiQXCSTZ66j5hR3EJHTC0yOltljb0MghjIpicfGfueJHraxYKqrjBKkZLHJcFsIboM/qsagSokcY6MR8c0QIwtqqgoC0XwXY7p649s7+/o+w4RE4Uq0BgKWWF0gSLfomxwFDLhZXaaB+8xMi/k8/hHY4oMPnMx5fcY0FoiRcpJUGFk9vuctFXAYt0Q0xXTWGHtHlMEylJBDIx9ABymmJjtDX3/kdos6K+/Yr56zUV8jjGSutogWCKjQomc5y2lR4tfw2s0WS8DKUYm59nPM0+PHfvtEaUFdWNo64amainLhNaeMViikDlLwc3Mk+XtL+/Q1QZdX1C2Oie+kS0Rpq65uLxmvTknnNj2//rDf2V/OOJDD/sHfvrpX9gd7rm+e8XF9Uui13iniEHgvGe3u+fYP1FWgsWiRKq8ED/sbrn59JblqqY0l3TDJQ+7ewpTMNpHZjuwqlsQEp0i3eGB7dMt2/0D797/nsPhBq0syQ+QHFVdU9YlqpL4Y0833zGOB2Y3Zu7SSbIs0dkUpwq05qSckhAiCiiNQEp9WpLmopBQjHbk0G953N8xT44kPHVTs9mcs96sUEqyPxzZHkf640A3WpreUTdQFhJfBCw9D7sPPDy9Q0pHiBPv3r9nHDoWbYtqC8SvC1IfSC6BTAjnmNyO49MtgoTSMqujyNhobRTCGOpS5++uDoQYcSYSo8bIhqpsaRYrhKqYbMKHmckGfABrPYKMTVFoGq0xumFTX7Fur9gOe1RZIPWMFKd+Ms1ENxLGjnk4cBwemOaRH/vIh49/4N3dTwzznrZcIwuDG3KIDlIjEcgoiD7QH0as9TRtoCpzjoLUEl0qMIK2WZ3ICg2F0aRkmccROw+nCIJI8AIhI1qDUhWLRZuVhYPF+Rmt8q7Q2pmi0JTKoM1fuShoKbDe8mn7wI8ff2L/c4+aljTf/SOmfoU0CwQFRVDUVBAVMwmjSpZCsGkvmOxIN3Qc9o903Q7nB5QSLJolRlc4C54ZbyekzIqBmPSppQ0cuj3bxx37pwNjN54CsBV+lghV0TRLrs5e8PWb37JYrlA/GxQLqqahrDQxddj5wOHQM8/9/xBnJzFFyTha5mnG+wBIvIdpDEhZIIWGlMcvZVHSNgUheLpuYBpHvB2ALA/TRrGq1iBbQrInTb3K+4x+wvoJoQTaaBbLFYvFEu8t8zTmWw8RrQyygKrU1KWhMAukqPLte5oyMtqNeJf/7qEbmQYLQdCULVIoUshoaaUVRuWgHbyi8RUyzAixxaUOnMfHDikLhChIokfIicViQZIlcxh4Ouw4dI8chweO/R2H4y0pOZQU1OWSL15fkOIG586J0RKTZ5wGbNcTnICocG5m+/jAjltIRyIHgvIos0aIA96tWZSGUsOURkJwVGVBZTIUTwiZ+fXJMtqRp8OR97c3fPxwi/PZ3b5enXO2vmKzKVksNCIJZilwSjGmxDSOfHi8Z7174lWYuVyecXm5QMlAChkY5wKoouH77/+BJCTvPnxmHD4i9YRzM7v9Z35+mzD/sqZuL9msrlivr9msz6nqmhg6iD2HXc/2aaIsS+q6xs09Ek8KFjsPPDx8ZOoTKUqm+YBS0NQV3gfevv2FfuyZ7cBoD3TDLTCwMIaylojUQsyqk+Ox43Do6Lrhf4hqjPm7nSKSBOUJBU4uAEpkJ3j6Hwx2eR9jEFIzzR1v3/2Jx8d7jPmvGF2jdEnbrnjc3jNOA1Ipur5ju71hu9/RdzsOuwE3lqyWjo/v3/PjT//CH/74v/Hx85/wYQA8zp7ggLJBCJjG6RQ4M0GUGFlRmmUG9vkMHTRa0bYV7aJGKQjBZjAikZgEPihUklSFQamKwjRZ9NEs0NowTD1d33HYbxnHnrauaJqapq4pygqlGwqzQIjEobvLKsQ0YSrHYhMo5gIfN6zbFctlzTQd+OMf/gVnA3Geme0RrQsW7Tk6lYggkWUmGisRCTETXmOymBKkUrmbFY7CQKlKGgqEUizbM+pyiUASvGcYOsb+gHMzIeQ9jtaaqqqpmyWXV1dcXJ5z7LZ03RN+ctm35BPRQkoKVVWnov9XLApF2RC7iscnzeOTptYLzs9XLNc1ZZNbMy1qVusFl/UlddMwp0jyHulHREoYlYmDJI8SUBpDXbT4oiB6yWHniLEnxI6iSDSUJCwhWLSpKWTJurlgXA7ISG7pfCRFiTYN1+df8vzqFcZoQhhpm4ZwdoVUEYRjdp6YAlVVIs4M+32uvM57fPCEIABNCDCNjuAF3kBVSMrqxNhPBu99RuLOM8Mw4l0CNFVZ52VQqZE65NDumLnoIZDdyQX5Nl4KdKEQQjGOHilVDugpAviAFpKocraAxHB1+ZrXr79hc/6CdrFgGgd22yf6wyNTv8fPPTJpjDYUymTznJYYXVAVNQKBDRMpJYwokVohS8tM3q/EGJBSoqTO7ktd0LZLRKGZdwOHbs/++Mihf6QbnxinJ5wbshKiPcdoRWlKyrIGGkDQNp5FY0FZtLLZHUvC+pmn3V2Wb5oFdf2M1aJHKI8qE9oIZMrjIpIghl9leuQAEiJCREgRO08cj1umeczC/6QoihalIyEq6qrGlA1lk416Pk10Q88w70F2KD2CUEipMKbEzpb7p1uCD5ydnXF1/ZqXL37Dp09PPDx95DjsUcYjdaQfJh4eduwXW9brLd35Jav1mqIALQOyFISgIEXmYSTYgJEGPwd2D3vmXtHXWS4c/EzbNizbFUInSD0CqKqCol6yWCa877BTds/b0Z2KfgdSZPigj5lnpEqkjGidUMKgpMHoEqVMHpc4j0sBl3LXkIsFJwObI2G5szNPT/eAJiZF26y5vHjJ+dk1j4sNZXHKZSYgROR8s0LLBaVa5J/PP3J39wu3d3+m62/x4Yi1Q1bNoFDaYF3Pbu+Yx4l5GhFCUNUFy9WCzXrFbGfmecqzcmTe+VUtUsI0S6ZpYBgmrHMkcuRoWWhEeZIme880T4h54ng80PUHgndZxikhpIj1+bNs2ob18pJSVTib6A+W/ePEarHii+sz7DxzPBxIwXHsnpgOezqvCAFUyKganxJSGqTKuSDoXJCNSYSQZfk+CmJU+JDQUqBkzF2xSLlDL2uqokQLiZ0t0zTi7K/5D9mh733Cu0A67YF8sHT9keAim+aCkhprZ6YwZaPnCF0cGNX01y0KXkicN/T7Btef8XxtuD5b0a5qkI6xO+DwPL864+rZhqbN8CobJpId8M4hkqAqKlbtColCUaFCQMWAc4EYPePcM9kBFyw+KsxoUPJAe6KrVqZg2Sxwc09wA4ks3aqrgqrMiWRdtwVpSUlQVZoQB5wfcHbIzlNVUrcV4xQQcs63dOtOmOM8SwhBoCQkLZBKURYFgjwnn8aZ/W6bC4rzgMSYU3jPKAlRI03M/HMFkENZksj+AmMM7VKjjKTvAuPkaOuWuqyQcSbaCRE1CZ13AE7Q1ktevHhBu7zAJYU9WA6HA9uHR7rdE0ZE2rpEFQaFyVGPSqPyvIAQQx4XxYhMuTgXWiFSDi8PKSJ1jZQl1kHfO3Tt8yz+lI09W8s8T8ToEPL0ILiZaS4YxwOSBXWdWUNGl4AiRrC+Y3SPSGlo6gWz1fiQ6LqZ7f6J1fKG87M7NuGcQIlQkI8qfdojnDhCIiFOWbOF0tTa0BaGtixQKT8kdVnQnLqLQmsqU6NkQaFKiAJvPfM40PeP7I/vaXYeQXZyL5pcbN99/plpnnidviJFydnlC168/Cbvs/onTCEoC3M6VGaGcU9KESkCMU7UjcmZCUZRFoaUFClKFs0ao2qmecDOE3PyiDRidIHRAikFMfx6QXFIkSiqEmUMQmjGSfPQ93TdiJss/Br0o2TuCFWeXSMSMmW1ltEVWpfI0/faW4/3Pqfxhfj/VxAgkETI/yYRYmbzh6Bom4GU5EnpFmiaZRY4tA3PLs6pypK+T9g5cTw8Ms477u5/Yrd/j/c5uS2eXp8xBYUpCIG/3H6lkNR1zXK1ZL1e0S5qRB8xWhBi/uxTSjiXZZXzlBiHvOyerc3yTJMIpcB7gS8STmekOCnR90fmeUApidYnj0uITPNMjJJFk9CyIAXJODj6zjMeI88vznj56hvs2HMvP7LfPXLYbxkcTKmEbGcjhoCNAaMlVa2RQhGiBRGRpzwErQVagy4EwuctWfbgZMVXoSsKWVDpCqOr3Ak6j5cZrZ0dzh7vEy4krM20BHHs8N5R6IJ1e0ZjFgxDj4xHooV5nujn4ZQX/lcsCnfHA9vDhN2XGHvBYtOyet5gjGQedtx82COpeHW5prqQeaF1wvRam5jnSPSCVXNBZRoOVcdOHVmUkbOVIBFAem7vPZ9ubun6A/v9hCRHbC6afJuQMmHtESEmlEzoUrNcF1Rl5HC8oRu2FLXP2l5VI4TExyPW58wGHzwxZqesNuqUdWDph/ywIEEYTSGLnKtQZnNaXtYFhsFyPHbs98fTAZmQUhF8Yhon7u8dQkJZG6qmoG1riqrIKGLxbwx+BLn1jZEUNVW5YLVcsXOP7O0eQkKi8M7ibFZcTPOBpBWj03R9x2wt4zBx2B8xIiF8RDSgG5Nt8WS985xmQvR4n0F8KgVEEkThkFqhixYhFYmCJAwPj1sOY6B9eqRsa5JyKFFgVJbkNuWAWM0URjFPAxLFNM4ooSmKbNYpypxuR1KIyTJaiVE1Z+sS5xJ2jogkOR5Hbu7fUpQV4BHJInnBomyRqjzB8E6qVETOrZDQaDhvEv7yiiLCbGdiyrj29fqC5WpB29QIFGM/I2zCdiPToUNFz93nX/jnfx34fP+csrimbTasNiuG8cAff/xnuu7A7faWVXuBqgTPXz/j88OKbjJoEzFG02pBUedYR5gJccA6ybRzxOhpmprVasNycc5qfUlVLTBFxW635eH+jnGcT8ykxHLZYEzK3+H+yH6/J6RAaWtMkfMk5nmk7waGviOGGQlIB0bkbBEhSpzPu7Z4MnNozanYxIw/sKdglhCySzYGYsivN+GROmGMpKwrFvUCpUsEJdq0FGV56qgKNptzXrx8xfXVNS+vLok+8E///Afev/0z/XTPofvI/ePP7PafmaYpj4FSSaEkq0XLar3A2sA8BaLPTJ/Vasl6s0RrCNFitGCxKHDekUjMtsc9TQQPdg4ntIzOiiPhsGHG24AZZ8qyOhUfgxTg3QwhF7uYYPYpQ/AiaO0o1A4jGqKVjEdLdxxQQlKVC5rmAplykZeCzDhLAZIlxYCPEu9DpiiUEllLSGQ2WLQkFEIFfJiJ0SP4lXiaVY/e5q43FhJNzWZ5yXp1hg+eYeh5fLrl/tEzDj4TooVGqfwcdd2UC22haSrNol6RYqKoKhIy71+tJ6TIv5Ny8e8vCr/cvOfp/sh8PKCcReiKWER88MiouVheoFXDHGY+bz8SgkGHmiAkIWlmlxhHd1L+FMS5JDmHkYmykQQxEphBz9gwMk4jdpwRQVNITbAJHzpMmRDSo02gaXN4CKJnsjlURtDQxoo6VVjG08HY4cNITHneasOMDzZHZoqUHbInNEH0EZv8SbKuMSbSdSPHw4CbPfPkGIaRcRwzeA2IIuC9I3jPbGcAiqmgnit88DS+xpQFSsm8JAqObpwyH8VVaLFgni2jGhmGnr7fI2KRkd0poDRM846n3UfMNDL5Bjs5hMwGrb4fUDGgU17FSqFIJWidg0Jma5nsiLUzJCiLCqNNBrcpjTgt1Gc/M9uRMO3gqKmHJc1yxeZszXK9pCpesG5XPO4MD08zfvY4EsELZp8AC/KIj46QMuDP+4RzlhACShQokzHNMkRC9ESfTYhPT/c05Zrz1QvW7QXBVCR1Wn4LkSdDJ+4QAgplWNUKfS3ZLBdZ5pnSaSZuqMuaytQEnyDOlKbgYrNh6neEOHJ//5Eu3XL5tOX5tWS9VnSz5Tg88v7mF7a7G+73n9gsz1kvNkRtWZwJ1nOJsz1z6JHaYLTBu0SMDh81sz+lw5GwHobRoE1D3UQ2dcv5+TVKFbnrsjccugdmJ1BmiZSRaTrS9XuO3QEfA3owSCVJRLybGfodLnSQHEhBSBoRToC9E65bCIn3Duf+DaYWXMiqFedJKZywIOTnh0BMLrOrgsgXGGrKsqZp1lTVGXW1pqrWlMUCrUuU0rRty2LRopRhHmf6fs/j0wcet7+w3b9nmJ6YbY+dEylqmmZB27ZZJmvymLLUmmVzzrI9o2kqilLS9VuetjekqKnrBYwd/dARYu4oUsp5A78ypZRMJ1FILnLJC5J0RMCH8BfnewYRBjz5gEwRvE/AhJ9hvz1muOPgcHJAmJHd8Yaf3yrc2HF4fMDOFlNULEpJLSTDMNId8hhbqoKyMLRtgxYSES3eJZRKhJPhLIQIGJQyKFmgpUYvJXVVcr655mxzTVMvMabEB49SZfZddR2+kQhZYUxFXS9Yr89YrlZ5XK3yz+aczZ0mAbREmoLzq2ecnV1QV/Vftyj8+MvPjPuReXhAJkeIitkrGCJlLHlx8SV1vcammU939+iwpJFrKEqCBBdHrB/wNhKcIDiNokEZ0CWMfmKcR5zPCqOUJIIiK3u8xE6WJDvKFCgriTYFTdHkRcz8hLWO6BcYLYAWKJmmCecnwJ94NCLjc53H2kAIIu8RRKIqi6yddw7nPPNk84GCxFlH3/dEHzNzJ6bTl/HEX8r3D5KKFIU4Za/mzf/QS1JKNERMYfA+Ms8Tk90ToqVQG6qyoDsecfNMdzhgp5HgJlIcaNqCuqpyRObxFjk5fDzDqJL2lAUQYg78jikSQsQ5dzrwVdYo+4CdLMM45IM15bGDMUV2UEIe3bmefu6xYSaKRBka2rBGF69oW0nTrFi211i74+mpIfjy34BesmC2kXDMXZkNWcZrbUCQW3YpKwQFEoVR7uT2FkgKktd4J3E2MVmHFiPESGMqtM7ZzH8BCpGQUlOVhrIsWG8W+JiwITKOM8M4n8JOgCQIKbLcLPn2N9+gCsvnm585Tk/s7ixOFLTt15hyxkbH7rjlcXfL3ePPPOwli7bl8uyKqqhQ1cTirGC/6xjHCYOn0HnEJqIkcsR6R1EYlNbENNGPGTKXMFlqWDe4MJOEx8Ujx/4j4HB+gVTg3cg094zzERcsTLkY+nDCeaSASHmOn4QkxJnkEt4HYkyn2NXMy5mmfAlIMeaxkfMnNuSpVQWEzDnT+jSaO1kDT9A/0KrmfPOM87OXrNZXpCjZ7w94nzvPcRxw48B++8TD0yf2h1t2u1t2+3tCnHMAkRMoqWibBZeXF/n9UQY/G4IveXb5ksvLa6QE6wasjRjV433OEXC2pz9OxOQoCp3xDoIs9U75+2VkiUCdDl2RfSc+4MmB9emENM8TG3ECx2WQZQiJvh8R8h5xuljpOmEkPO1u6KaeImq0k0gqtEm0TUO7WrHfPeLnA1NyKF1QVYb1apGNsToxT5qIZZoz8yoh0aqiKBYsmg3r5YaLsw1XF5ecnV2xaDb0/cTQjzkISWjK4khZLiirBWVZ0TQr2nbN9bNnXFxe4tzIdnfP49Mt28MD0ziSkmTyliASZ5tzvv/d33FxfvnXLQpvf3oHzpP8lFPIQmLuItN+wgRDKyNNWVLpJuOclWZIe5ztcanHMaIqjzIVIjQsFisEFUIpkow87kv6ecaYC5aLAU2Ln2ZESOioSCS8cMSQZZRSZidf0hpsSQSQEqllPuyU5uhGrBtYr1dUZcGx3zP1OeZOIpjczDQ5tCpYrxdZHTRbdtsDx0OXlzlR5PFS12O0pKnKHN6uijwTTBlqZ8qcoRqCx7ocdh/CycjkHYmCosgUyaYuGUaY7QTBkHxgGgfCPJNioCxrunlgHA60yzXtsqWoEjFlh2UkUNUVl5sVc3+gbRtEDKzPNjRVhRR5DyJEnloWShN1SdIRHy0xWqzLh0yQOaMWAZFIEh4bOmwc8VITxI4kDgzTPcv2nLZasd89YeeEnQXzJCmKkqpekcSM8xPjPJFODKAUc4hy9DnCUssaQUDqHiUSxixYL55zdfk9Z6s3OFfw+HSk0wfaquDy7IqiLE8O5fweIzPeIpB3IT56hnnmOIwM08w4zYxjwk2Ctm1Yr2vOX17wt+bvKDae+Z8e8Nt9jmAsIy7sGaeCgoJ53jGMT3T9PaZI+KAZpwcKXWNkBuKposTEQFFEijIry/Im3JPomeZInEBgUKJimma6YeRw3PLp8y8gAt6PDNM9Ie5w1mKn/i+qoIgnhfwTZpNmzCQPsgQ6RpkP9ighBVIaGaeZGDil9NUIqU5L+pTzq32GrWXQoCSdaJqJSBKJotTUTXW6REScCxwPI22TWC0vefniKy4vXjCOjmn8Ge8c0zCwE4H+eODp8Za7hw8M0z4HEKmKGAUieYwRFKbAGEFZKL549ZoXz99w93nk5lMHQjL7A9M00g89hVa8fPmGu7vP/PnHH3h8PDKMDiEDVSUwJ7aTkPk9kkIhUsxYexQxidwZpXByaud/pARjDFrr7J6XCaXyJS4/F4nVYsFmtWZ2jsk6jFlydnHNy81rrqprHp5u+fHj71kszvjdb/4Dfb+jqUpubj9zOE5IAW1T01QNIka0kvg4EQGlHcZEqvKMzTpnh7x5/RVvvvyCL16+pDQNJMXd3SMPD4/sD1u2+wcetw8gNFdXV3zz7bds1pc0zRqlFSlF7h9Gjscj2+0Tu/1T3jOgmCZPP05UY8exP6KLv3Ly2vbuQCFhXQiqQuL6xCQVhVrQVhuUUggii+qCdn1GsyxIZWC7fcfj7qecOIVCxQYjV6ya52yWr6jrJaZsQAqG2WcbuKjwmyMizOgU0EkABV5UuDgy+wd86Ikpt41Ne5kfbpsy+C2MxGnC+h0+znhv8FoikRSqwCVPip5Ca2QtKIoaU1Qnomiejxcmt3ZSSApdIhpJUxtWy5qqLFGqJLjAOAxIBe2yQBlxat8SMWm8jwwn+eivGn9xyvctTJ6X+5ilo5xuODJptChRwiFweTFmBD7kbsWULUWVIx2nacyzdCJKJYSGpLJDNYVIsgktNaUpkVHgp5wI54MlaYmpDEoKRMwAN28DdsoeEBstyJh9FoeEnR3Re6QA66ZT+565Q1obqroipIRPeelprc/gLlkQgsNaixSWqsjZB0oNGe5lBEVZ0zQbimrJOAem+UBVBCIlC78giACnnUzMMw/mEJisp586Dv2O7X7P4/ZASBGkxLuC6AusiKgmkZhJJiCqhGoipRNIozHFzDB+JoQObQq6foudDsjkKJRECs/YHxnjTFWuUaLA+6xSkzKiVV7I+hBIMRAThJgNd4ICKXLYE93M0B041nU2NArHNO2xNuvORcxZC1KbbGgkf/4iir/gOVKU2JD+Mjr5i5yUX/MlROYp+ZgheMIAipgyxiJmngUi5eISwokjJSCabAlD5PFcCCljJSKZg3QqNvMc/zKOmueZEGbu7z9xd/eJx+0dw9QhpKRulmiXaaFFoSlLQ1WXaKXQsjhdDlxOc+yfGP2MdTN2chhdUJiS7XbHbtszDhFSiSA/4ykmkk4oneMphdSAzl4WkbsE70/7Ovi3/R0gTvDEBKASRkt00qiQx29lbSibmppzEDXnL59x9eo5X11+z6vFa27v3+F1YLHa8OzqG57kLZX5gGBL8EPuoELedwzjnAN2kmWygRgVRdFwdvaMly++4vvv/47vv/0Nr1++4NnVJSTJPHtSUoSY6IYD4zQyTCOTnU5qrOyej1FhrWUYex4fP3Nz95mnpwf2u/1p7FTgbcR7y27/xJ9//CN13fx1i0K/d8hG0a4KFpVhOkZUMnz57dc8u3yGCoFCay42F6wvXxDNSO9v+Hj7E3/++X/D2kBCY0RJbRY8v/yaL18OXOqvadrXlEVDoc9oakfCoMVEbQKVgkppyvIcU7/iMO75fP8vPGx/ohtuiBGa8oqYDON4ZJ57DsMDMQ6klPMFxslkLLEpWC5WjONISsNfuPdSZf/BIGa8kzR1Rdis0VJTVQ2Fzu1uXUvaJnciSpQM/ZjpjcmiVERnrjWFLCjLJTEI9scuyyUJ2HkgCIdIuc1NIS8pU8gqpaxYSAQHSjbUtUZKg3eOruth9LTLJSsdOB4P7B5H7m4/040dhYbjeMCFjEUWSLTQtGVLs1yjUfTpSJoyHVMYTVlqGl3hQh4vuNEz9ZbZRbyQlFWFEg0xKLzLN9+qqBnMhBASeSpYUiUijpT8idSYcMGfboYC5wL92CEYCDFSlQXNr+Ra4XBpZPI93XRgGj0xBhaNIKqGZlxQji1aNkhZAzmYvB8th+7I3eMnPt+94/b+gfuHLaY0tMuWqrigLC4QBuK2Z5623N39ws39e6ZwQBWWolSQeo7HtxyiRmCwdgI30RYlTZnjKXsbsU4w+YDAZUECAaJBBYWzDjs5wukgymlqoE+FOgaPdwPJO1IcScz4mJVwzjpELDDSoESJkiVC+TwiSgH/a6ynajKTXEWQgeB9NksKi1RQVQ1CaGIUTFPGKRhTZeULCSlyEcvfjSx40EUOZZHKnGBtPu/dUh6HihSQUlDXJWVR5DHUaQQVfKA/dsTkuLu75+7+jt1+yziNlIWmPGUeS5lo24KqzDN0Yxqck+x3I91xTz884NiT1Ji9Nz4x9DOH3UB3HOi7ESnUaR4esz/Be8LpcBcmCxqEKhHSkNvISEouF2aZ/5cQAkQO80op732kFpiiyAwun+GGQoL1kYvNGZfnX7J5+YLNs2e8vPyeN+uvOD9/RnXW4GOiUBvG7o7to2W/tYyjw+iZ46FnVI77+y3Hbk/C5+8EktVqzatXX/HtN3/Db37zt3z95mvWi5ayKJity8IQN9GPRz7ffeLndz9ze/+ZY7cnpPx7Tb2iKpdZUWhnun7L4XDP4bilP/Z50WzyZYUQ2T89cX9zdxqt/RWLgncBiWC1jGyWkfttRMmaF9dv+M0336HSgJLQnj0jFTU/f3jPH3767/z0yzvevt9i7UxKkbKINKXk7u4t7z/8K2ebN2w237A/Jm4few7dgWk6UhnYNAXrquW83XBxVbO+OCOoBI8qo27VkcnNbHcRNxX5NshAEgcQPYJIYWqaZsGyucIYBSmglEKpDDNTWp029CPeWWLwaCVoq4qiqGibFXXVUJblyfj2gEhgdIP3gRQ9MTm6bqKqNHXboLTGuxnnTjNPCc7PWOcpZIlAM08eOydi0MjTsjDYgJ/ATjkvoSkrnO15fNxRtS31omToLM4+EEPCTh277R39cGSWCSF8dkYHMNLQli0yCipToVEUuqTSLXECGSTGl5QYRLI4AjoFZEpoMld/2Txjs76kKDLG4+LsmtXiktm9p64P9KOAybE/9jzt7onJEcUM5IeuLCrqSqFNNmVlmGlekENNiBoXR+6379n3I8aco9WCwlS0jWHb1WwPez7dP7Bsr2nrK5SqISmmsac7PnFzd8Onzx9z8R1mxnmgH48sGljUhnk88HDfczzccnPzI4fje8bpkZgm/KwRnEY/SUI0ef9jKpKRnJw/LOuGWORMDesCUs0gPMSCaGtUrCkIDHZkmkasm0kislq1rNoNWpWkpJjtxDT0hNQTOR2CUWRzmQgI6U4HVUJqRRQV1stTiLuCpKjKmroSOWLW9Uw245DX6w1l2bJ76tiPPUYb6rrNDKkYkEJm7Xwg73RMSV0tWG+u2Vw84/HpnvcffmQcdoTokCIiy4CQEaWgbgrWqzVGG/a7LTdjz4f3H0/7jx7nfs2JiAxTD7OnKhVFKRnniZBKNotnnK1f8OrFN1xdvOB42HHsP1EvalarHBn6sH3k/vMjdx+fSESq1lBUBdqcFDuYE5I6klIgeIdPZLBi0SClJsREEjPJ2Vw4U0QbgzYFSkekTgh5koyLgE+OOTjsHE4I6vxe+Tizcweaw4E2bHiz+pqLi1foVc3nm0/89Oef+dOf/8i79z/xuL0lyYgxNbt9h9EFk/V4Dz5EpJJUTcPZ+RVfffUd3333W66un2HKin6c2O62+X29ueG//ff/xu//8Hs+fHrL0/YO6weScNgw4YLl2ZVkudzw/PySdtHw+PiZt28tIQxMg2aeZuZxzGR3n/BzwM3+r18UzmvDupI0JSzbClO84fzib/nixXecX77geLyhG3dsHz5wGGf+9PM/88Of/w8eHj+y2x4JfkYQSHUekUiZw+KnMLMbntjt4f5upussdnIUOrJrBMumZrvYsJ/3dBwZ/YH7p5/Z7e+Y/TGzWwSo0gAabWrKeoXSM/PcZbVNqdFFQsgcZiGURmhz8gDY3JrNFh89yIAyCYPEFBlbK1TCR8c4zxyPE95aEMNJ7eBJwiGcJ4oCU5UnVIfDhZyFq42irDIWQKEILuGmgeTcKW5SZVNLCgQniB6qStIuIUpNpMBNHmcPVJWgqbNJy1uHConG1GjNSfvtGaYekWQOmBeQpKBQmtmPjHFg8hMSRT8NJA0+ekY7Mc3uL0a8Utecr57z4vlXtO0ZVbWmrlYURYNPmiAkdk50+xk3PDGNI0IFTCnwKceL2uKkOmk1dWVQKiKSRyYJqUGITHcUoiL6wGgPxDgipWEcK6ZpgbUC50sm2zDZGq3jqajO9GNkdBCEBCWQOuLjhLUzXfJ4e0QKQQwT+90ttzdvCf5I9atcbxrzAZhk9p8MmWBaNwpT5rGE0hJjFqSkIU3ZFyPzMtekAqJGCoFSihRn3AmhQko4E3F1QJiYD7QIBIFWFcoUxORPruOM/E7SE0UgkEB6hEwUSpFszHBEZ2lqKIqsihNS4JEgMkmzLCq0tkiyiii4mA8/8rgpp9FlFc75YsPly9e8ePYN15dfoeQf+fTxM9Fnz0WSkE6YhMNxz3b3SEqCw+HI4/YDt3dv2e0emeYhhx3JiDGKzeaM6PNYyxgQ0jG7HYPbo0VJU20IwaJ0XpJPds9SLVg3V7hR4oYH+sNMtx/QBqo6F2zvE8Up6RAE3geCD3lURs4SSCIRUhZcoAJKJH7NNJKaXAxyyNkJr57VSt7H0+Lck6IkxR5nPcfuwCUlTXvN4bDlxw8/oI2msx0fP7/jxx//wOPuI2Vt2KQ13nsUku54RCAZhylfEFJAoUkpv8YoPC7ODG5EjT0xROw0szt2PDze88vbn/jhT7/naXePCzOLRcPZ+SVnmzOuLq549eILXr14zfWzK9arJW/f/Yy3FjsFjruZOWVEd4rZ67NYb1i2G4qi+usWhS/WNWWd4xGVXvLdy//Aq1f/V842zxld5Jf7B959/om7xzsetzc8bd+z3b0nRpsXLCKggbZqaNsF9aKhXlQINTPGt3Sjozs4uh3MvSSJkX15oGoE98uWT/2C1dOKRGIYepxzCJlNR+uLNWWxzAlwpuLsfIkpI0/bT3T9IxBxcU/0FSFoJusZnce5jC3wweU5cIxEmcCk017TMYeRYR6ws2ccRubeM88zs93n4HMj0UaiC1AeZhdJKoDKWQopSEpdsllf0NQLvHX0xwE7PuHGATCIpAkuYV1u7zPiY6ZZZq5JTA3b7Zbt7pbVYmD5DArVUChDVTUsVIUuJGWj6Mc9x37PbC0Wj8UzM6OFxE0j8zhhnUcmhTt6al+TEDgf6ceZyUaUKSj0gvP1M169+Iqz8xc0zQUxGpwXVIsNm8tXTJ3h4YNFzglloSgjtVaMvqOfe1KKFKWh9CUp5GWgjDMyRtAtShoW9QVlsQFKptmz3T0xzDuCq4neo2SD0Z4Ye2ar0LoDoZlcVik5VVCvN8TTCEv5HG7k3Gd24weMqjGqxtmOeewwSrOqr/CxZ57eYacZosFOkuM+ZIOXlyxWmnZRUVUVSjUZs21GChK6qNHKEKwgzpF0WtKH6HLmc8zzeTs6Do97lO6R6oRA0ZqqWlDXFQGH9X2W5iaAgGPGeQvRoY2kqmqESMzzcBqtWapQUJQJZRKlLEhCERLM1pGiRAmDdzN2GlE6Bx7NNjK7PAaTuqBYX/P8q9/x8uo7LppXPNzsIRSIIDAqS7SJiaEf+HzziZgkTfOR7faBP/7xX7m9+YS3Y1a+ISjrkqurC87Pr6j0GUrWODsyTE887Aa68QlrZ5ydKIp8QD7t7pjtiEgSIyqk18Q5kXxCqqyMSjEQXF6ia1WhdUGIed/hXHbIC5XzUzgd7pGQuwAjMCYn9aWUn28f4qkwZ2xK8NljEL3IYzWRF/HTNNP1ljdf1nz97DXOHvlP/8f/m77vGMaRw/GR/eGWstS8+eZLvHXsHp8YuoFp6E+4eZv3njpfWmY7sj888PbDn/DC8dTvOT97TrvYUOgKm/JC3EdLiDNFqVlUDS9ffsE3X3/HN19+zXdff8ezqysuLs5ZLhY5XU033H/es3+yPDYDMRpEG/PuJSRevviSv/+7/8jlxdVftyj0QTFNkfle4JKgrAKqfOD9wwe6+ZHPj39me/zE5J7w8YgxE8+fCYwWaCmxY423FWVdUzUlpkook29eKVgKLVk0GnsMjHbC+5HkLIuq4Wq9oWzNiS+y4frs7znfvODq+ozIyM3dDxy7B4TUJFUTUkIGfXITalKMpCgIwTNbx/F44NAd0VqjdWbCEAN2mplnm+PvkkBgGVKeITvnsaPDjo4Y4slAktORikJTVIqmaWgXC+qmPikcBLMNmT0iC+wc6PqR7tgzeUeQEUHI5FaRw9vzYlAyjg52M1JZIHcATVPQLEvKRSYeillkyZ/1JA9YyTznOXVwGSaXdCL5nC08D5ZpzGwnIRRyHvEkpFIgJaoSVEVBFIokYXKefpipF556kR/8RVEh1IqQzvn07iNF8QtS7pFiAjGCtFRt5GpR5sKoPUInAhKCgzChU4GIS6wb6Pp82xRKE2Ig6Y4UJ3qXGPYFh+kTt48/o9USoxaYos66eDcRoqNtaxZNjYgKnTaUxRpTwDjvmWzH1eVzXr38mu3jE0otGftDjrmMA0JncqgLM/ViwxevvkKgedp+IoaJsljTVE12dNspe1GCQ7hE9Il5jMxDNoUFlzla2hi0MghEzn8+dY3eBkzQlFWJ9AHhfDYcNYtTehY4NzFOXQ5BChKPxAmR9frVAil85oA5d/ruFpTGkJJmHhLd3NEdBuZxojCSulLMtqcfJ4RY0JQX/O77f+Srr/6ei6tXrDfnVFoR3MhsjzhrSVFiihohEzEFvBsYhid2O0PXlTxtn3h6eqAf9igZc9SrlCRmuv4h+4euVjlitxPM80gKBu/yrH+cOn55+yc+fb7l/v4TXX/g/vETMSQOhyOzP6BLR7uWGWlyyiIpihwnmrsSQVVVaK1P+51sbLMhv2ZEyqNhmR3YkpxSpmTKe5MYSdIgpSYnV3mk8OhCcHlxxdXlV8xzYJoD33//Hd//5g0//PAH/vjnf6IqF3z37d9zOV/z4VOB95l5JoSjrDTBK3zIi/qiUCAy4wwpcNZyf3/HNFvevn/HanXNxcUL3nz1HS9ffEGwA5OYMVXJ2fklr5uG66sLvnj9gtdffcH1s+dcXl9RlQtmpbDdiJ/33Nzccdg9ooXny9fP2Zz/DV+++YrH3Z5/+uff0642XHz7iuvnL/+6ReH2MbNUqhpkkXjuJjp7w+32Tzwe3zG6J1zsSMwo6dDKU+hAUyvKQjNVNdZWSF2ijUZKS4iW4CfsPOMmAw7i5HH9jBSKtr5gXazZVFeYUtCHjrq55vnF3/Ls6iuurjf002fu7n9gGLe58oeGolDE2OBsOBmLyA/TqShMtmeaBoqiQpA5JM5lO3+KOrelLuT0NGeJIWvAoxf5RiH0X0LaC2Py4rTN7uWybLI5rMxLL6Ujdg6Mo2UcLN3Q0/U98zThnctZzagc5KNymxwdIC1RWoQIJCxSRkwBppLoWiESBOeZ/Ew3jnjvsvnJDozDRIoJhcfLgJMeLST4HFKeyPkOjgDBkaLNITYqJ4chIIjAcRy5e9oyeMnjcWC5XNAuG6zvGcYdH29/4DDcgfK06wVFVVI0M0GqjDRX2QthVI6fJGoQipA00xyxoUPIPuvOtfjLQRSI+CiJqSREhbUSyYykR6oyj01cR4gjx8LQVAtKdU2lXtCUNXVjAIP1Ca031PVL4mbJ5bOOh4e39MNnRnskpIgyGqklq7bh6vqMFDXDvMc6QdtsaNuGeDwixIzWGkRxumgoQrCncUweRxSVRlb5xnmKAMoL21PCH9rlXA0igUChFhRFDlAxRuF8hdKScZTMLrtzvc2yaFBoLU7U2nQyPhWEdFICDZ5psIx9j5tHtKwo6oayWMFihXUGqLKpr2gJNrG932KUR6aBY/eEtSMpRZSUCBUhBXwY6bodZdWyXtVUZUNdN/S9xtoDKXi0yd3u7GfGWTD7A0mcsVguUFqyPS5Jh3w5y2qYe7x7ZJoGBIm+3+L9lA2OpaVZSlDmpC4UGKMzflomnLekeEJDxHjCqkeIeUyGSKfl+smf4TkxgwxK5Z1HDB5PXpY7my98MQaM1gQPoGibmuXSZNFJmDkcn3h4vOHy/AVtW2EKgTGGYfS58EWbR6Mqs4yEiEiVC2ZRGGKKjPPA1Fm22y1Kl9T1B87OntEd9uy395AmpunAcXrCVJLNxZrnr17y5uuvef3Vl8QEN/ePDMNnxsFixwE79dzffOB2+56gHZuLDV+++Yrf/vYf+Pz5ng93D1jreNreEtJfmX30cGepasmlLrOKZ21Yns08zh+Q7keWqxPuwRmcVdipY55njGopdJszUktNjDJL+HwkxmxzH7tA9xTpHz3jPuBHz3q54XrzgvPFAh0LjICzZc1ydcXZakWhJcNxz+5wz3F/oD92ALgyYPSC4DXD4BmHbOGPKbN/ZmfxYUaqSIyWaY4nu3xECUNZaIiRebTM08Q05KxjKSRSlChRZOVNXkchRYHR1Uk9VWTZoIu5hRXZ7WttYPu0Z7s7norSKYc2OAqlMcpQqgYtFXbyDNOMLCIl8uSC9GgdUYUEGUDHbBxyln6e6MeRcRhOwDGXUbxCI6JDxBkVFJUpsoO0KPM8ViSSBE88SUxnhDrdsHRD0obRznmJfBhx4S1Vo6haweF4w3b3ntuPt2wfdmyWZ1w/f8ly1WBKwb5/ZHp8T0gOVVZobdBIVJKgIATPNE342IOwSB3QZUIbiRAaKWuKYkWhL6iKawpzCakgJXWS/M3IVODdTH94Yv94z7OLiuuXv6Vua7SJ7PrEOI7c3m9J8RYpJVW7obFbDvMHbHJEoTGlzCTWsmDyHcEJhEpUuqSoqlMyXw5Jr2SV0/SiwTmJkj1SRYq/4BTyYZRNdplnH0/jlUqo7D9IAWU8ujQZ1MhJKWYMSudDCyQxjrh5OnWuIRdOmV3qebbeoJTEjkfmccTPiugCwWbKsNOSWDU8e/aC8/Mr7h6eeHja8enTDzxt7ylMQ1E2LJqKRV2w3d3jw0z2WkiEiAjpCSH7K9r2nBfPFlRly/G4ZZy2DA93zLajpEboikIqkpg49g8UuuXZ9VfU7TmfbltIKruNUz7MQwCjBUZVhGQZ7IgxmmZhTtkpBSmBUpp0ch+HkNld3mdUR0rxRAzN3YBSMps2M2s9YyRCJMZEkolEzmiPURJcIIZsYnUuEENO+Uuhw00fOTs/Y3N+xv39LeMY+PDhA9ZOTPbI4+491k4cuhv2hy129miVaGpJxOfPOUc3ASJzm2LEzjND3+NczhCfq7yfDHbk/uYtMY74MDBOGWQ3poYxTQRtQC94vHngjz/8ibvbTzw+3jJOO6zrEacup1q2FPWSUQQeDjv2xyPEyPHxnn96/IgUEf4f/8+/XlFYtR3r9YKvXl/wt99/y998+1s2ly1JfkQVe2ycc+pUlFjn6aRj7B2RFTFdslg0lLVhnGb6vsfaOW/GrcGNBcNhZvcwEn1iuRZszgSrTaRsJrwY0ELS1gVSP7Ef/pntwTDPM8f+ge3uMyHkWaWQlmHYMwwz4zRl+Jg74MKI9xmLHGIkhvCrqRPnPMFHtC7R0hCTJ6Upc0tSTslygQwqie4vPPciZXelNhI9KRIRxpTxFSmRyFpx7yL73YHuMJzc1J7gLYIIVY6jrMsaLSv8PGSfRCmpW5UJkLNDlYKiUgiZmOcJb7OmWQnJarnESMWxi1ibpWgpgfMeKSxWGrRSlFqhhEILlUcDwZNCwAeLTzbL+HzAh466Dnz51d/x4uUrZufZ7p849Ld8frijqko2qxccnma2sqNpV7x49TUvn79mc37FsT/w4fMvWVXU3UL0lHWFFgXJydPN6gZnp+zqLiXtoqFpC5ASoxesl69ZL79hs/yeRfM6a7KnnkP3kWF8AFYosUTwDKMLnl99zxfPv6YbDjxuPzPYG3b9O56O9zztdqyX15xvrri8+I7V6ozD4R277S9ZiRRHhqlj6C3Rn6IytcqjLatPMLUJobKsMFiwFmIUaC1RWuRF5ulZCT5fRIQAZchGMin+wt3RZTZfQV7kOufoh0AinGSGkegVpVnS1poYHdN8BPypGy2JId90RVRIFDHa7JFxWSxgZ880WYJXiNQQ7IGpDwQesa7n8vINZ+svCH7i9v49x+6RstB4XxJPsLwkwCbHoI88Pd2gTqavx+0N09yfbsEFWkuEzHkG09wT/D3zlJitxaiCw/GREHPXG3xkniLzGP5STFERIQNSg1AJGUEXCq0MZVkxTZbu0OVOQiqkzO97PDncsww6+zmkzDC6LMRNpJhl0m4WBAkxqtwtp9xZVGVNaSTTkLCTJLmaGDTdcWC2M8eDpSjuuL37zDDuiY8jv/8hd+XjdESoSFlptJKoDMTNBVydsDkkrMtFzM32lJCWEEmQgmUeDtzNA4936nSBCEgDRW0oDgbzqCjeaSY34CePkjNVGWiqyDzPONsjtESKOneKbz+w/fjIL+WPHHYdnz9+5nh4IvqRFP2/66z/94fsXEauLmv+5rs3/O13v+X19SuqRcXx4vtMIbQDc5hxcWBy3am1kxi1QetzmnpJ2xaIdMBOEZsmvFX4yRAmzdwHumOgqTXrs5rrVxuev76gqAU27dGlQxcRFyb2hxsO+5n9bmCaJyIjyiSUzgH2x27HNCmCFzhvGeY9szvigySe3NGZ/ZJO0XciL4NIeWEFaB0xRhKcyiHkKiOJja4yllqSdwqFQkhJCPGUxevwIaMypFTUVQtJngpPABtRDkRQSKEpUkVBjaJAJEnGQrv/H2v/1bPblp5nYtdIM77hiyvsWMUKDFKTogXJcgtoAwaMBnxin9iGf4D/nwH7HxhudVt2SxZJUWSxwo4rfeFNM43og2euRR3yYBdQRG2iau1vrf2+c47xPPd9XeJm7TR4SYL024b9vkcZy3geyNFhSk3ddNSmZbQNKhdmY1d2eyYmZFadA3OAjEGZIlyUImUdKaCB0Wp9qUeCD1DOTMMFP48Ya2kbxeE8cDm/Y7f5Ba9f/JLj48gb9SMhe3ya8GkhZbC2Zbu9ZfInJv9EiDNLuJB0hVW9GMmMwBZ8iAQFJdWst/+1MOhoq5auaenbBmtEATkuA/gDWtc09Z7r/Qte3L7m+uolu/6a+YcLl2FkmjwxZRYvS3elPdtNz6buaeobtJqI4UTKI8M84MNMWpee1hiy0hzPghT/eFq3zmBMDalGK0dT11TN2k3IXlr1hRVK5+XhhUGVIhBSnVfaZxYPuPISMogJH8TC56qKkqVvoJTGrGOPlC1KC0q7ritigFAyWWticZR0IKV5hZ45nNvRNS9w5pqSe3K24pIuIyEFjM5s+g2UBq0ncpqhRM6nR8bxRM4JYzQ5KuZx4Sk/MIwz2mhSWlBK0kY6WUG6hEjKMM8eiseoM09P77HGME3PpDJ8cryHBcJSkGgc2FZRVZXstlgf7kbLKFOLIlSW8Rmj5CWM0ujCf0X+FMR6Wm8IWq9Up4REVEsABLehtCInjVKKrtvS1B2+M/jZyDjPVng/cRmPnM8T2tRchmdiOjFOinfvFlylMbaIErOrJMEW1khrQQqdTUUpmmUJ+EUMgSlkue1ZR2UshkxcRqYQxDGuFd22waBIfuJ8eMd3ZeFyeiMk5arFuBHXJOwoz6BSIC1CMZ7OZ5bZ431mmjzjOLPMEqjJOf20L4XXrz/j5f1nfP3Fr3l5+xUkWAZPp1/yYlsxx8gYLhymb0jxB7rqCtP1NO6GttrijCXHgioOqzbYklFJkRbPPMrpRmtF3TT0+xvuX3/JV7/8FbZJHMbv8OFAShPL7JmnxDTOIlwPAVcrjHPkpMk5Mw6JadQUKlLSLLNm9uL+FSieJBGMVThraDs5fcUgMh/QVK6CLC1Vqypq17LbXrHbXwEwzTOpyGkQIy+YkBZSjPKFXzk0dSWCnmlccNpTWcnFF12E2UKDjg4/RlJamKeRmCeKNihnUSQMsNm3XL+4Zr54Hp9PWGXY9ztqs8FQo6PC1zNWa4rKxJxYQhTZSo7EEJhSRmthwCgtJzHBLUtUX2lFlg0HuWh+/P4b5iFydSMNdZUnapcxyGI1hJnFn3l4OvH3vzvxw7u/pa53KC17C9SMsQM+Hng8PKGVZbe5pTI1rrI0uSPGmRhGDs+BaXI411JVhbS8ZbgoHh6faerfoHUmM3Me3zPOZ5S+wocN280WY1/jQ83j85nnZ8/lXGP4jOttR8wnUBNNnYnpgdP5PSE+M01PjPOBmD2QMKagK40qMoaQxviMX7zgIEomRI1zhbbeUFcOZQuFxDCuexzBMpGKnPpDyvj4cc4tJ0hjNCEmtA7UTtPWtcyhY8YYQ13XImQKkWWZmcYLSmeqpmCNYl4mUorUlYxy0pIh16gS0CpgbMRay93dz/nq83/GfndF3dacpwPDUjEuAaUsPixM0zP396/48qt/xYf33/C73/8nQjwyjOtuwXQoLNGL7MUvA21fs9k21DWkeJYH3sork1m+JpcZxYWT/YC14FxC64z3kLwW2KOq173dRGcbXNOglV5fagVKYlkC8yS3HxDaa/nY3lYfl9wf5UtaEB1JDmUiEFpHTh93OkqJvc1Y+f4bS1U7dvst7raHXMs4e/KIdAhSWchpoagL1nmskfE5pbBMM4ZI18iLXn7eQAwJV9Xs9lcoDM/PBy5lkN9bFkJC20gh0BhFsoboDEkVlDVcbXdsNj210ejFMx8/8OifGLqWuu2Zp8TlEhiXmRAyOQZIg2C1fZTuRvCUFDAq07iaVneoT1KSn+il8L/93/0f2fbXfPn619zsX0ORccmLumEf7zgORz4cfuTd+4Hj0yObzTUv739O615TmSvO8zum6RFnttxfv2RTL9TqyPj0HU8ffgd4Xn/Zcvdiw/3LjqtXBtN5og54IucpMB1niJmqrtnuLNpopmVi8aP4oz1oI3X6qrLEqKQlmBtyKSgjpwMfIiGEtcRmyMGxJGkZi+our3RNsyoAxW08LgP5mFZHARhrsJUFVUg5UGJZ56VpnVlmLpyhGMbLSFwCDRWVXYU9SpbcaSkU9Y97iLox9JuK7a7ieB6Y5oU5CDl2mSJhjrRtxXV/TeO2lGhwWHFJjCfO40lObjFL83Ot+cccIAnmwGqLqUST+hGSV5SMDDRyWq6dwpkEecIvE34+MY8n3r79HYenA+/ff0uMA6UkHp4C5+EZt8Y1tbEYI/7fmAs5OIrOjNOJ5Bpau6XrrtDGMM0XlmXEL0U0jo1CFU9KJ+YpU9cjTdPRNC1Xuy+5u63R9g7nbtn0N8RkOQ/ycnFNw89+/keM02uGcWQYHxmnR7SGpq5RBLTqGIcnLpcDiz+gjUjPh4snBdZ/5mp1DihKFlTEsoxMasTXiboeUEYaxX7xeB+FXaQNVe3Qpl5z9AJk+/hAK2trN5KxOqFUkiKllf3R5XzGmoau62maimkayCXgrCKnwPl8oaTCdhOo7IZ5FgSKqxOdE+y7NVs+/+KX/Omf/Fv2V1uaVrO9cWyuKp4PF5bZsN/estncoE3FNC9cxpFhmFkWkU3lqPCIJ1sb+VzmEghhYRycjB+9IkcrY8ASsVZIwFLeTWiTV0e5jFNzUaRsICbIEeG7yHcuLHJgCyHIziAGUkykJH9+4tMQcKOMj4z0fqykjIQMm5jnaSXyWgFWaoVzBqWFCmxWKrC8FAxtLya7GGfm5cK8ROYlEPJEypPcWLQmJU/OkZgNU5lXjP7E1GZUqlc8ThQTWy4olVkWLyY/H0Ap+r6n66Cua5wVXW2KkRA8OSds46hqt6akZpZxIaZZOiCVpt9u2O6v6fsr7u9uOJkzpMR0WfBxZgmRKSZCDiQ8yik6V/NHX/6Sf/nf/Gte3r3+aV8K//Z//b/HaEdteqxqKFGhyNhqIZYBd3DEPLFprrm4GzbVHVf959xsf0Ffv+S7h8QUnlAqY6zU7lOomEc4n2aubxSvP++4f+3Y30Sq/onzEhmXzOPzictxwZ8Um3bD9e0e6xK2UbTeAHty0YRQiEkq7TlnlhDQVqPMnpj2n3DR07wwTvPKf4GcIAYZWzirqZ2YuCprcM4yTxOXy4VhunA6HzDWrn7chtY0cqUu8gBOOUuqIUjUdhnEkLXMEaJC1zVNXeNcjdbCR0q5YNZ0xXksTN7LqMLqTw+TeZ45n8/EsVAS1KZi222p7ZYwF+G9GylSzcsE+ePvby0iEUk5QEloNEUrtI6Uoj/dnDLyYgDQLmN0wljP4j3naeJ8eeB8fsL7d4SYCSFiVKJpGpq6xVhFKXJVxRuMqUQBqCpU6chxZkwXglvQbU1b79jtNrRt4ngSIFqMCuVr6kbSMnV9zaa/x7kNTbNlt79is72iau6wbrvm2CdCgOgtm82W3W4vIEMfeHh85P37tyJ6sZ4QLiyzjJdOxyd8eKbrK1IoTIPHzxlrjMyulWDIlTIiPImFlOf1s3WhIDcCAUfIWEJpack750jGonVaCZ2SrMoprfrLLA8EP6GUPKT8EpimhbqJ3NQ1VW1XrlKR0EKKq2EtiW7SbdhfXZGz4ngZiFOi6Xu2/We8+vzn/OwXf8r9iyt2u4rdXcP2+pofv//A4XkSH8Lr1+QcOJ4eOJ0HTueBaYrktELlYkGRMTbJkrJk5jkxDmsiqhhUthjlUEqa0qoYcQc7aFqLqyDGZS3SGUkqGYtKgpYBscVFXwghyL4sBVKK659vwa5iHKHFSuNYeh8OVwm/S9hGUj6lJPGEGFBKXhjGmE+QSJQio+SBbxMhT1zGmdNhkDFvShQVpLUeHRTHPAfmKVOyx3AheoRT5CMm+/WwuazdJWlcD8Ow/v0ym22Hva7QaGJIBO+Zg8cv85r4UjS2oas6Soksy8A4X6QcWBLWGLZzoiRHa3r6rcHuepxWXJqGy2Ugnc4s85GUs7i7i4YE+9s9v/pnv+JnX/3RT/tSUHRyNc4ebQpN02GNIysP2bHdvcDUO7ZXL3g6vuPNm+95Phy4uips7hzXpmMyFe8/fMPDm3d8eDPx4QfPcMi0VUffOJxxkD0hDOThRBofOZ4V799nSuzYN/fS6rvbsIQDb979iDEV/80//9dcX73k8fHA2/fvePv+ew7H91IkUobt5oaq7nFWKIGXYcSaC8MwEMOMNRbbVFRVRdu23N7c8OLFS5qqQqnCu3dv+f777zgcDsyjiHp89ORJEiYSsVXrTSMKXTUKmjeFhRKhZIHxVU1D1bXy4LCOfdfStB1d34OCb779A3/49sDpNGE+TBQ0XbulrirIBXLBaDlZGmsELJDSKuVR1LZm026lZ6FGhmlkXCYWP5HLglJQVzXaFukz6CK3dZBYrIIYA4u/kMv3HM8PchMqgZhnQprlwVg8xlTUVcf9i5e8ePmKlDzPhw8sy0QKgbpquNptWfzEw/OBJRxRdiIkQ0qFWOD26muu+muaToQix8t7Mglbbdntv+DrL/6Sl/d/yjAExmkh+InTKbIpgU4XnDVUpqc2O7KxlFS4HDNXNzW393uqxhJi4jIYYnzi9PzMt9/+PQ8Pv2UYn1EsKwPO4XSLrgDk5pBSJpV1RKEtddWjjMNYESXFWIixoLRZxffCSgpeZsgiYykyy48f4YZG2P8oYggc/CzjRGSPkBMs88zT03uULsQo/8wqV6OUpus2WO24ub7h1Yuf8cVnf0kpNf+v/+n/xnc/vme3vWe/+2O6zS22TXRby9XNjsl/xTRrDsfAaTzT72pef/YlShX6w4bT6RlX9fLgNAWjxSLmrME6wc77pRBiIkUPZAEbWk3fNmRqFr8Qw4KyyAOXapXJyC3AugrXtNSuo7btSmpNhCilMqWk21FyIpPlRWM0rhJ5U0yJvAg4siih7yrlSDkxLzM+TMScJAWm9YpTEU959FFezlrLy1sptDWczifGaSL6ImM/FchaWGbGwDInlrFIknEqqJKobBAUy1UPyTFfxOA2LWeqxnJ7u1/HsgXrLNvdhqbuqFxNWCLv33/gcllY5pmcI23bsOl6uuaKqurw+cycE7Z161hbekgpZ6Zh4l34kePDAy9ff8EXn39Byo7DaebH775lOJzRpuL+7gWz97x5957/8T/9f/jb735L1TT8x//Hf//TvRTCMMmC1TiMU2TWObSRBE7VWJLusClg/ExzFagwfH/8lm8Pf0+ME95HhjEzjpFxjMxTweqW7dWWV7d7Prvdc3Vd0241U7zwdH4kDGdymMjJM4WFKc749IIleIZBEX3mD7974nEXGOYnLuMTIV2oaoM1G0Ei+MA8X2ivXrLpr2maha4bQEnGOcZAyhHrrCQi6opURubg0UrT9S1fff01L168YFkmLpeB0/nMvCyEGAkxYp1ZS25pbUh+pI5GTLHstjt22yvaTsYg1glGo2lr2tbRdRXGOD7Ln2EqwxTeMg7vgfUU4TS1dWiXSCaTShLeuqkkhqc0KoPTll23W/lBgcs4cDyfuAxHFi+e2JLVqvYLgh5Zpe1ymrJCdFVJTHXjRGIFkAlsHqNlEZyiXI0v5wvWPWGkq4NWhVBmljlyxLMsnvEivYC63eBqEY67xjHFA2M4M80LKSv6/YbN9o6X97/g/vaP2O1fo6saHaX4NkwfiMtAUhNaRarNFX2/pd4JLn2eM+OYsLYRZ2/Ts93fYKueFF8weY9u/hrTBDZqg1Hyws0BLksg42VUoqLMpyOUHFHK4KqCrWRsoZTCWYsxRSKTILcFtIwX0YQQ1uatzMVdZdfYpHynfFyYpws5KZRq16+jLFIzC0oL2K1pWvb7PZXrGC6TvHR84MPDDwzzQi6WaQnc3/2CX//xX/DrX/852+0tcxo4XAZitvz2m+/4zW//mt9/+1c8PH7D0/l3nJdvudq9ZNPecnN3y5/+2Z/zh1rzh9/NLMsJpaM4C8iAXVEeBpSUvowSr0FJWR7iCFaDIv2AaVKEYCnFAEZIt1oQ8DFn0U9WDek84mfBk8hCOQoSex2rWavQBozSuCxeik2/QxtHDIlpnpjmSAgZa9c9WTErYlzJSyHIArjpapq2lYOcMWvYQkIqra1QdCiliGkhhImUPPOyAJmuq6hMS2035Fjw84KfF6KHuBJZ9XozqVbPx26/ZbPdolAcnk5cpgvjNMh3V8sYN6XIZTrjU6KOE3UrciEbK3yYmePCkj2XS+B0fBLqAYpAS7u9Q+tIWM4YE7i+7smpQIIX1y/45c/+mOPpwG9/9xvevvnhn/Ss/6ffFLLM9bRy5GSY/MgYF1nEUEB3TCHwcHjHh+MbMoqq7/n2x2958+531Lqj0S05tdT2jr6e8V1Ep4a+2vL65Rf8/MuvuL27p+t3fDi8YRr/hkp9R1MHlnBiSSeeL2fs+5HgjfiNh8gy/Za60dT9hK08WkPXuXU8o1jGEzEmttsN1l5RFUVRjqq2OGfwcSbEBa3FkzuOJx6fL5A1zjb07Za+39H3HTF42vaENorz5cI4DgDSw7CaGCIprNTQLLsJpaGuGzbbLVXXUrc1VWNwTktfwgSimlEGdjcbqq7i8TnzdJjW5EBeJSrCeFEaYooM40S2FaZUpJQIMZJTQWFwpgJlKesCTq2Jq8XP5KJEYqSkbSGIj4LJBVPkoaSMJhVPjoGYI6kkwX4bKx2I4sgpEULk8PzMtIx0Xc1mU4sAhsA0j4zTSexrXsxUqqxKz+4abeF4eeAynPA+0rXXvHz1Ja9f/ZLr/df07S0hBZ5PP5LKQuLCEh+Z5wuVcXS2Z7Ya4xJZK5wBZXu6bkPrDK7Apqp5cX3F2CSGMdC0W2ybcH1GVR21qmldS1oSeTqzpLKyrrLEO2MkBnkoohzGOlgTMHpFcKYgtwqrjFjltKUgJrt5GklRMvXOWjRuVdxEVJa2eU5FfABa5u8pQfZlLfWZVUi/obItYw6EeSH6iePxmcs3f02Iia75kvu7n/Pq1R23dw3LMvDh/YifAnV94j//7X/kr/7mf+DD4++Y5gc+PMK7h//My7uf8fmrP6Oreq6utuz2e4ytKYsik4g5EXNYKasNxhjIkhIyWtI/PnhiSegV7RJzlu9A9hhTxDJmDMUgybi4sJRCV+9oKi2HKR9YZkF8KJOxbj3NG0DJTQMlN62mqek3G8BwDoOwi0ImJ9DOopWjZMhFYYzFGU1lO6yzdH1H27Wf3OXzPLOEZU2GseLGnSSZQiD6hRwjzlratqEyPbp0DMvE5TTKblIbXF3TtxvarqZpRYB1/+Keq6sd2miGy8AwDZzOR/GolLzqBgohzMzeM6WZiomr+pqN2qCzQoWC8pm8BMY5MkyLHCIw7D+MXF2dsCYxDs+kNLG5bomhUJLis8++4L/9X/5bzscD/08M3333zU/7Uri5f72KRBRLvPDsv+Hx+A1Pj2/xs2fTfI7G8e7ptzyf3mBUh6anzRtebv+Y4XRmugxs+obtVU2VJ0wciZMgnq/udnz9q895/eoL+s01/Zstp8WzZIMvBW1rUpk5DTPv3n1H8hmVLY2raCu42vfcv7ij7hSH8zNPxwPH83vGxaO0oepqfH7L4+HEOAXOl4nLMDMtnu12y2a3oa4tShculwvH4wmrK/pmxziOPD09U1ImRU9KgZQDba3ou60Ix7c7Ysg8PBx5fjxxPg6MeaJEEabPy8h5PHDVWVy3pe1qrFX4RfLQqURsHAlBviDdtqbf/xHH0zPH0zNjmBkfR1xxNPSUBOPgWYqcNCXaICLvy0UKMNMyyXir0gJfi5GUELaRa2jaFq0Vw3RhnC7MYaGEhKs1pihS9iIfWZHYxhqsy8RgmbLM0LVxcvqlQImkJOpIY+UUFmPGOI2ra9EoxpFpMrTDFUVpnh8XvC9suntu+q+42/wRG3vP5fHEU3jGWoerauq6lxJc2FCnhjq/osRr3jx+4PnH/8gwnwlL4Fef/TH//Ks/58pdc9soTOuY+57v33/gr97+hg8f/pYPz284DE8Y7dhVWzpT09cVzW5HDB1RJaboKWUixEGQGGTquqXtO5ptwjSJHCEFMcdVaKqqYEziPEyczhPjMDBPA9ZC3VTUpqaprrEloOOFym5oNztSFptfIZD1yBwyw2hQtqbfdSyh4vvvDqT5gelyBgrXd9d03V7auGEkhwvPj7/j//3v3vNX//P/SF13bPtrvv76F9zfv+Tpzd/w/tu/w8dBRFHaUceK53dvePjxjXBySmGaBpIesY1ZGUOyDKUktEkYLcELrdQniKMPUg51SlDc8muJi0MiuJ6cZcmssoyTSs4chyOH8xmdW6xrKUtmWqREWStDMWbF0yRULmsxzRJzYBgvlCxYl5IilVwOMFoW0zmB1hZX1Wx3O168eMl+f7VqUD0hRnzw8vKImRQnWTbPgXmMpCi/Rgrgck1VGkxsGIfA6fgj3ntyyVRNRd91bPdbtlc7mrbCOc1ms2Hb9wQf+P7773l+OlCygCm3XY83jnkSfLrWmrbqMG2NrgWhvcwH4uIJKy8qrIKkrmqxpqOyHY3Z4i+FbKDEipI8Oc8025b99Qt+/s9+wR/9s18Tzp7x6Pn85S9/2pfC4/MPXOaRH5/f8zy+oegfCemBefSo1JL7jt7dsrev6LY7fEkyM970WFoutzPDMhLiI7N/ROlIUQm1fpEu/pE/vPl7ni4P1NWeeVE4t+WrL/6Mn//i5xyHd/zw9g88PL6FdIIq0FTC66/rSNPNNH1PXVvctKZnqgYf4fkwEsLM3bXjausIqzDGaEXbOLrO0baWGBemcWSZF1QplJiZxwUP6CIc9pK9JAG69tMowVi7unENfddDttSuI+7FD2uN8JHavmN7dc1mt8M5I6Wk+cL5cha2TvjY0lT0m5a+b7m+vuPm9obT+cDpeMBkRa87OtdSVRU5KMIS1tOojGqWIB/8ZVlkEWpkoaeNlhhwDMxZROPGykO8bWts1aGNEsdyDuiisDixnX1KKa258I9IilhWHr8TOUhUxMSnpnjOSbwLVnAFbVuz293y6uWvWbzi/duBaVDc7F9xe/1LXr/8M6729zw8fSCdn9EOXKPYX3ds+j3T1DMMM5fxwtPDEaUXqkpzvbvnarPh87vPeHnbUDeWCcU0LRxOR77/8B3vHv6O6fwjXVYou0fbms7tqe01fdPT7CSNtaSZwV9ohwNX45GwtDJHVwllL+sS2lBWt7fWBbTMtUPyTFMhek1ldrTbK6paUzXSS4njCCpgdSSrTNSKkBTBa6LPhJjwXnolynpinGR2XyCHhJ9GrLa0Y40xW6xu6buKTb/BGMvz0xPv3nxP323Y764Yhre0Tcs33/6BaXwACklXhJLI3svPG+YVG1Hk96Oku5Ky5PxjWtM/H53OSiQ1svSFyjUUJV2CFKRNb52mbiqMlQVsjJLeCfofm8c5Cvq60g1WuU+JIUGsq3VfJru5vPpYtQa/zITl40kb6gZc3QD16nCG4COlQCYS4sK0XDAjkhiaBeSXshQ4c5GbcEoKhYz4yvp7u95f0bd7/BI5nwbG88j5KDIdrTVGV4DB+8jh+YA6IgnCuuL58Ul8HINQV62p0MoI+SAVpgI5F7quY7Pp0bYCpZmmkWUZCdETQlwR3Iqr63tevfqKz19/yWevPueLl694cXOLKYVxOPPbP/yW//Bf/oq+ueUv/+Lf8Jd//pd88fpXLO3IH/985kX/+U/7Unh4/z3P45l/+PAt7y/fYfQ7ajvRV7fs2p6m2tLXN7imppTMJR2Y0oUtWzZ6C+2GYBVvPvw93/844+MHJj9Jxb9RHMb3xO8PONdj1Jbd9hU311+w3d3RbRXdsV+x1Zldv0GpGWNmYCblkWQSsXSoXIgZoKZ2Hd54ljEwXGb2jcNstzQ2otqG3VZjnKHta1xlOJ0zc4LGtmz3NWQZlUUP0csXxjpH01b0G1kWxywI33meViy3oet73MfFYNvIaMlo2VnUHbaq0WolPXrP5XzhfDoyT5MIPyrHPM2Ml5H7l3dc31xJBttHVMhU2sqC1Vl8kpjeskzEOK0cF0mraC3djJQDGRGmGKPwIZBCgqAw1lC3NU3T0HYN1hnGeWTxYDAoI0AvYzTeexYvxSWtMz7I+Eiw0pqcNMtcCCGLkjKDMgYohBIw+uOLoaXrdityWvwSHwUsXX/Fbn9PwqCdI2UhfXZ9x/5mxy5vGaeZP/zwPeP4yE234eubL/jZ61f8/IvPMNYRgVPInIeZ94+PvH33PR/e/54Pj9/ihwNt0tRqg9EdpmzIviaaDru7xtUOm2acP1FvYDtlcmgJy8wwHdcxo6RnUpAHqyriQxjDwjhHSA5jGxrX01W9jCkbTYkX4nLCWI+pMkP0TJNnzproa/yQ8IPoZpXOKJtZUiE6+XPTACaQiUzTRfYcbUXT9DRtK1Y1Vch5ISbNtBSO379lmWd88GgTpbxVJAwRgqCmPxbDSpHuzEd2E5/+rxTpPs7LQa0OZznAVK6SjssyUVLGVo7KOWpXoQyyKM0SxMiqgFMoq1bvtpIo97qjaJwFk1bXuoxBcoKY9KfdF1XBGUFzV5X8TCnrtfAnv+5HHamzYpM7X05cxgvzPEvhNSeKymss3aJVRVX3VJWmbRSX88RwnnBVz3Z3zfk0EONFbk6hkCJkVQhLlmW0H5j9RM4RYxRV5ThuTjRNLbcrJaj7strvQojroQm0djjXoIqRLlfMlBg/dSuUrqmaltef/ZK/+Bf/ij/94z/h17/4I758+Yr7/RU6wuVw4n/6//4Hfnw70fV7Xt/8mm3ziuUM4yljaGmq3U/7UqhixV17z+aXn/Fh+iN++/2/Z7i85UX/Ja92X/Hi+nMq1/FwOfA8PJPSSEmekw/4Eni1v+Lm9hafnng6blHWsKQZyOic6a2i2tT0XUNbb7neXXN7dc0wDPzNX/89h9MHfJxoqhZt12JKnvHRi+SjaDq/pVEVIRqCdwxDZJkU+/6Wq43lxe09V7trUo6E6Ff2esKUCpUMjg19XdG1HVe7G5q6wWjDw4cHfvzxR5RW9JudwLmUdCCmaSbl/I/1ei0PUm3lJYKR08rkI3lKKM5oLWmKlALHpwOnwwm/CP9caQPJ8Pxw5sf5HQ8fntlfbyhKjGkWiNqTq4oSe5YJTqcL43BhWQZKAW2q9UsbCTngkyeRyEUWxVVt0MZ98tWiIOfE+XQgZolM5vWZIKe6j8magtFlbXsXnLOklNcCEVK7X287WmvaRmasKQfG6cI0BYI/MJwjTx+G9UHzyH6XiOFHDk8bnj58tUbzatz+lncf3vD8/IzOHTr3vLi/4/blC9q65/PbA7uq4uV2z/3VNZt6w2EJvB9G3p2OfLgceXj4kcf333B5/pHh+Qcuzx84PT1iKPS9JzNxmQ64dsOoRnZXO/mMuYYy16TSiMjRNDTNhjqLkzvnRLh8YD4+U1cF5xTGNVgts2BXoCozOmdM2dDoDbevdtxf1xR3ZuHCd08jhx8GclKYmKiiAp8Ej6IdxumVd7WywpC0lVZCH6UYbrcvca7m3bv3nM4HIONqhWsK2gbyMhLigHWGtq2oq4bK1uQkEdA5ePInaKTwy7TWqKTFB600IBjmnASdr1hTVWtlPmdpbyttaJyT7oAyhCUJtbRoKtMIPUApuWnE8okuW9KELgKFqJ2VhBByG8llNcWhPkV9+03D1XVLVStKWVj8wmUILOvtwNmKrtvQtT19v8EZx7zG0EuG6DPn4cyyeKqqpu0qrnY7drsbjLGkmBkuP3J4fmQa3nN4HiVW7lee0Yra0EaTE4yXmUIW1pfVVHXDfrvj/sUtFHj79j3Pz0epZaytZdZmu9aK02XExyx05vxRAKQxSsIT+6sdN9ef87/4i/8V/91/97/hy88/5/72mm3X0VQVuhSqquHXf/IL/rvhkYfnZ779zd/x9tsf6Nsdfgo8v39gHmf+Lz/lS+F6v8dUNfVuz82y5TK/5/uUiL5wenqiLJC15tvLD7y/vMPFTFcs+/aeq63iHJ5JY8bnEVtr+l3L/n4PFJqmodrUZKOY4oQPT/hQuAwXhvOJH9/8nkJgd7Wn7bYo2+Cj4jJMzNGRsqMkQ4gVzrUYW2HdQkongvfUVc2m3/H5Zz/jxd0rjudnHp/fEeeLLMmSuJPHYWYcRZRSkmXbF7quBQXWmnV+6plXXk2MiZgzxjiaxuKqBusqUkwsfhEhexyBjPczKSacqXGmxhhDSpHhPOCnj8juTLQZazLLEgm+8Phw4Pn5IMRFA41V9JUjdhY2O5I3n1wQKcuXVNaA8iUPIbDEUdrXa8VfqSxLLCXJkpIzMcn4I6Yoi/C6XkFwdpWuV2htsMbSdhV9X7H4hXmePhWOcoqUElcmjsVVIqMR9ajFL4khLKS8oNQRWyvaHuq6Ypg1j8e3vP3wPU1/w1df/4z73S3NzvL03DAvkbePPzL6gb7r0bFQJ4tzjpw1lwXCKfH9wwO/ffsd373/Bz48/4F5eKLMF4pfyLOQOJORRXhCmrG2NihbWJbA5TwTbEGTicFRdEdyI0EFFp8pQbOhx1GoeKS1M3d7xWZj+OFUmC4aaxy9NWx0odcZpUVAtKkKN7tIVJ6zj+gM0RuImc4uqLqw+EgyFkwteX4nxcIYpZ8SM2vazJKLYhwHYvEoU+g3rbBzlDTXc5FR59Z0gBIxkJGXSlk9xRIeUXyMRCmZE5JTktBETIJtMFZw1cauKI9ITssqu5GXiXXm0/8+hbC6FjKusp8OH2KCkyh3SUqScCmsknuLcR+byIlUsny/nKPtnKDp+46mddSNoRBZFgirBtUaI0SEbsNue0VTt/LnlBTOiANbFcgxEpeasCgqs8GyQ6kNrtry1Zdf8fr1Z/znv/4boldM4yRx2QKucmu8tGaellXHK70GCQWIBz6FLOSFcaaUwjzP4n9Z02lrbRvW76hw2jwxJ5TR3N3e8uL2js9efs6r+9fcXr/k/u4zvvjiZ3z1+Re4qmK4TGJfbBN+Hjgdn7gsJ+5f7SnG8+7DA4+PH3gscDleeHz3wDRO/6Rn/T/5pbC/lfapqRU9iv1uz9N5w3h4Znx6xOoHlpL5bvyep+UDfbbc2i3udc3WXvPu8B3x6TvmcGQOA66x7NexiLGOWAKPz2eW6YllijhT09U91oDWYh/a7y1VY4kpk4pD6w6rC1UljcJStsTUoE2RSKqb5KquC3Vlubl5ycuXf0RMv+fd+3f4IBpOpQWq9Xw8cXg+Q5FM+qbfstvKmONj0ewyjIIfmBYKiqqqqWtDWp2oZhW3j/PIPI1imFvjo+RMW23JVrLrwXvmaaakQo5ZROlTABZxDbf9qvFcWJYg6AQDpbE4NdHWEYPFuYpURwFqlSKuZ4TDEkIUq1wJGOtW+1wEMpNZ1puAAQU+hrVoJTiAtmtxdYW1FmWUNF2zpm06urZH64mSFSUPpOTRuuC0PF+MKaTkGUe/Lu2UjOOiAAiXtKCWTCjQpISzNfXiucwTc5ipu5r7z+64ed1zHvb8/ptv+fa7H3n44QMlaq7dlutqy9y1XMZA3WdsHfnDm+/4zR/+M2/e/Seen36DyROdcThVoaiwlaO76lEEnNYY29C6DdZdUbtbdLYs5wspLWhbKK6CKpJNYDhPxBlM6oUHVSn6uvD1K8XNlebyu8SPT4GqqunbmtfbzItuwceR8yKY6hIkzbScC/4J8qmlzpGX2wXTBAaVuCyKKWd8yaQQKVl6LyXJuEJbR7+pMVXFMJ1ZsuL+/pauv2G4XLhczvKCDpm6bsT/uwS89xKZLkUONCGR11udKvIwL6Wst8x13p7lJlhVjrZtqZzcQs3i18a3NJXLSj4W5aPM/5VCyqNFoH0fpfZrKwaKlpYymVwCWoFRDpAbQsrS8q+cpd0YNjvHZiMR7Bjl9zNNgRCEYtx0LVdX12w3O7qmg6K5nEemSeRD0kfRaOWonQAo9/sbNtsdRcG8RPrtnl/9+o+JIXE6njg8PbNMi8DsYkQUPJrj4bQuisOaQpPbUcmFeZrIKUARZ4Y1mqv9dk2lIUj/GFcEh/znXDJJZZyp6Potr15/xb/8y3/Fn/3xP+fu5o62aRnnmTfvvmFeIiEU7l/c8+LFLcfjIz98/zvm6UwhoqpEvzcom1imEWOPVNWFHH9idHa1vSWRmJgZUqKMBjf1BA2qh6rao2LCHQ/Y04F2u6Xf3VKi5vDuicfzicN4AhNROnK6nHk6HFi8zNaWZWKZR6IP5Ji5u7nly88/p24qnFWi9fNnThfP49MzMWXabkPb7NjtpZS2+JnLsJBTJqRA3a61e6Bua1LJDMvEsMxMwYuMx1pQgqee/cLpIqmGuopM88J5OLPpe7abHlc7tNXCE4pygkhJ4X3mfBGVI6xjmyClo7athaSpDBlFCpFxHpmmkXmeRdhTNF2zoakKl8sg7cSUUG3D1fUV/bZlmgfOwxFSwFmNNqur9uNyThlyLnjvSdGz+Mg0T8xhIZYMRv43UpxaW8wJKApdSYPXGlFzLosHBW3f0rY1uWQWL9d07xeOp2co0LaNIEXqGmMV8zIyjov87EqRkzRQjZaSW9s29J3BL57T6YAPI3ko5GwxLXTKcVV3XDUdddHoJclJMxt21Za7zS2nNOJLpKlbbF1zCTPvPzyhnt+greHw/IE0PHBTtVy/+DnLIpwjwXFc0NqwbfZUtsPpnlgiYzxTV4XXL39GrVseH/6e4+HIOEwUXdNf/5ym7lHbZ2Z9IoeFpZzZ7Tx3u8TXt7BvIr9RGrNoqmpk13m+ej3z69cXpuD5cA40jWK/VQznggqZK1Nxoxqury3/8k8SlSm8eaf5hx8Kf/dm5MOxELwYC7dW47RGZSWLWJsEiqYLxmaWcCadJ+bZy6m0KNnT2J66bgl+kBdMKeunVAvZVWmcsuQsSIlSBC2ktYQ1Usrk9a9DCjKCRObpVSPSe79IWketz/qcJf5sK7ll1q5GG0XwET+L9/qTElPrldibUNZgNSijcJWmthXGKYzTaBOZ/JHp6bziRCqx4S1SPGwqQ2NrSIUwL8wZSi5Mw8A8LQI4zmKV2+8Nm02PMZabm1uatuf94zPv3r3hf/h3A7/5zX8RP4Mu7K825L5lGkfGi6gzSy5ok7HrQVAboTuEKBDBqjZsty3399e0XUuKWQ6gs2ecFuZpYlmWNWK+dns0OKtpKouhEBbP6XLh7cN7fvjwhufTM99+9x1/+OYb2nbD7c09f/nnf4Gt/pRlOjONT1yGJ3waWBbPPEUMNVf7z/nZl3/Ozc09bd3+tC8F7WpCDoyLZ/HQKsN92xM2V0TtyEWTxwsb15NtT121JKs4z08M/gNzEkm6UoK89T4zXGamWU7B8zwxT/N6Mso407Drz5Tc0rbiodU2MM+BcYrkIldFraThGXNgms6M04BSHwUhazMSg4+Rdw9vOA4jh+Mjc5jXzL8jZUVMhUKFsS1aGZqmW6FaiSWOMAWMtqhiBYO7IrCXlZte1i9LKbLkNVramHMpK+grQy5Sn88r9rgo+TURnEJW5dNf5ySGLWllS7mmchrlHLVxnxbZUpySk1opCJp4kQ9hWK/+KLMmRxQgiQnzEfyv+AQT09ritBJ3dYx4vzDPYkRb/LzeWOTf3ge22w3bvKWqHHolTwbP6s2VUlPKBWwim4RZy1BaFZyxlFRTUiRHA8WSU2EcTjx8+AGlPG/fd4Q0scSZZQlM87rDSZnYFoJJzMlz8heW85nFn0njQJpGal1RV7cE21FXPZM/MM3PrMxpQgz4vDDHmUt8xmfD7fWAqhVFeawLbMjUVcvd/uf0my/wdyPj/Mzh+QeW8Ruu+54Xe8uLfeKqTnxxa/hwLNRt4G7reXk98uWLM6MXNpFxlr6rcElRavhin7FEXt4V/sWvEyVnNIW3R3nwh1TIKeJc5npnqI3lcKnwRZGLJyvpBhRVBPudIUUo2eBsjdE1BUeMmmXJjJPwhJRidU+vKA8tnxGUXhlDYvTTRq/8IfEWaCM/F2vvBS3/1qu+U6uPpGF5sxgjLCij9LoXWMcrJVPSWnZbzSRKr1RUW9BOkOPWKWytKcj+YvaZ4DMKR1UVoRa7BqsNTkuEdB4W4pJITUIrAfnFGBiGCe8Ddd2tBIGOqm4xRgnTarpwPj9zODzw4/d/4Ob6hrubW0iZ4D3TNDCOF3LKkorKHmPBFYF0pyw/o7WOrq+5udnz+rMX9JueeZw5nS48r9FetQISy4r+1kpjtGb1WzEOZ969/wH1t4of3vzAsEw8Pj/x/uE9Hx4+0HUdN9fXoEcKZ1pX4acJpSxNc8Wmdzhd0zc7tv019/evePX6S7p+8xO/FMiQCnFR6KS528LOVSz6lkus+PD8QAgDm85Q6Q2TKRyXE8yPuDzz8uW/4Obm16ScOA8HUtIcDxdKlnmlNQannWBf58hw9nz77Tu2256bmx03Nw7jLLaq2V/VpAxKO+bZM04jPkxchmd8GEXurWCaPMFnrK6Z9cTT8bek8o+4bGM0RhtCLHifMWbDblfJdbVtPo1+punC0/MDJSsMNd5HxmEWL0L6mEqS+XblRPauKMQYOT2fiV4+oMYYQeY6geI1VbMWbyLeB5bFk1KmqhtQAk87HKWlrVc0eFtJ9d06u1IhPxbbZOwjy1ukUGOdlJD1WkRKGZUVlXGyODZaiDHR41MUL4R1aAzowjCMLH5eHxpFdJmlrOkKRYgLp1P+tLCOIZEW0UcqLW3Xjy3nGBaCH2X3UDSoDl315LKQsMSsOY0Dv/vu73n79Ja6NWhXWIKgnuu6oaprlBG2jM937NMNmRqfC6fhPc9PP6DDTJUzoezx6op2s+N2/5IpPPF4/B3jICrJ6fKWcQjMKRJtpp0WCn/DtruiYmbTNNze19xf7Xmx37DdXqHrl4z+FX/4oeXDQ2arn7hq3rDvj9xuZ379M4tu5AS7aQo3rQQoTFHMtUJZQ2UsxRiyU9SvMl//bOH2OvL1y8DzUdAKWtXUruVmU2hs5mYb+Pq1SOh/8zvLh6OhlCjmQi8jn5RZZ/TyoK+cxriKlDJjmBnGiWGQ1nAuibp2dF2z8rXKGq8UPpAWhgdBgGArE8zRNO26CxOW/+wDMUWMtZ/ipAA6yE7gY3M7xrTGTGUJG1MUlweZnKTU6CqHrQraJUyVcXVBGwlG5LiOLqOhJIk+h6ywnWW72WONxk8DfllIOWFNRCEwy5I1KSpOx4nT8UK3Sez3jrbpqN2e0/HC4XRkmC9onbFW2vpGQ4zicTgfTpzXnpXWmrqSvaFgq+XAp1ZLnHVGSpy7lv3VhrZtpRF/yaTkSSnS1NWK5/brn4005BOJ0UfC8YnT5cibt9+jtZOOB5Je3PY9IU68efs7/sp5huGBLz/7ms9ffMXd7Zfc3X7O/c0d9zdX4p9BXs7KuvVg+BO+FExS1LmwUx70gefyO8blB+bllpSuubYd29trhq1iClcEDEsKnA4KP7+n3+24vX3BsszkEtlvt9zd7BgmzbIsTFbhFCQfGaMnRY3CoLXHOo/SM6kYqsatcznPOD6Rc6SqDYWPsdCEtbXMUvd7QGr23keenp84no5rykLT9x1d28q1OSWsKVBDyTIL/3SCTxajdgKLy5nkE/M4y2jESP3fKrneW6MpKYkJbQlEX9YxjUhYvE0Ys+BWZPU8r3atLDX8lOVlUDUGW4uJqu0d3aYWzWQu5CWjs6SaUlyjrXFZdwVyNTdG45RBA9koSSEFWQZnpUEbrJWyEWSxdn2cCasCOhNCwVjNdtfT9x0+BKZZYrMgs2VZZkdRR4aE94ITt8qscT9FyYkQpDOhtaA4qtWNHVamSxpGxpDBT2Tf43RPZR0hLZTFE6IlL9JeThZ+OL7l+1ThU8HniDaSijJZk5IhFk9koUwDEc+wHHh+PskMWFcU68nmTGEEHVC6RWFo6y95uf+KF9eRq/3/zH7zDzT6byEYju+uORwahqcJ5gv9fuCm21HXHlXN3OxG/igvgKZxsO8k7mm05qqvJbmiAqrxmJuMdoVmU+gahVMOPyvmSU77rRm5+7zwF3+i+fLziutreHgyHEbNcam5udrSXzmmaZCIpS7I9U/SYnXlsFb8GKkkjIO2rzAOcUanxOF4Wvc/rARRSfdUlcztnXM4xyfktHNuTSYlinJkGnKTccqhimKeF/yyiDe5QM4ypvReIqCuchKtNRq9lhwLBWcrMc+5jLIKYzPWrDcQLY17P0vwIieFsxWN62ldJ6ENrciuABaTxeh4Os/EGFlmgQxezp5xVkyLtKa//PIFX339K/wSOZ6OfHj+lqfjD3Jb0/KSW2ZPCgWFNONSkpGohBAS8yzfN+cMrpZ+ha0MMXsOxyfyNxFjNOMwMV4mpslTiqJyDbZxlG5DyYWYJMAyxBmfVhZXAXyBJD9DyQrV1FKkMwVnHVfbPS9evOaXv/rn/Nmv/gV313f0dUtbVTS2goR4HAoUk0HDZv8TvhSCH/DxzDx9xzD9HaflD5yWH8jDO0g7XC0kS1uJ0lFnh/WG6PYiKscR48w4nblcDsQw4Rw4n1nyTIkLKXrxBZe0OpUXZq9xk0MZRSRTTYKqjmFmmi5QEl1aSaVBDExTktmlsXLaKAifKOYAyKm65LKSe43cgpHbkCbhU8Avfr0mW1FEKgtFWDQlyzKODNrJl8l8jNGlSAqCIkg+Y1WFMsIJkhl7wKvIosQ1O00T3kurURsj6QwyDoWxiqat2Gwb+l1N01qWcWEYZ3JcUNqTs6WUuI6YNCAylpTkAZlVoliLLQa1CF6YLKkjvXYQKBWQ8WEhBBnxCMGhoFjpoHElyubVUW00IJn6lKT1mpNEfBVqjaqW9QWSP5XyrBElaFs7jHakqAlrZl6VhFGLiFS0waqCU5msNFoZ6U2USAmLlJDGzDx5Qgy0Xc1m25G0pRRLsjXFVUKcnDLDeGAaBrTV9Js91rX4mDCloelauu412+aW1u1omluMnfGxMM7vsM23OHVCxy0udOysoW8NV3VF6ySGHJWiawIvtgu6aKzWOAM+ygmyMmL7Kknc1botOFfoGomZpgxz1ExBUdfwsy8yn7+Ef/3PCy/vND5blsnStBXtpuf25p7ddcvDwwPRnyhqHQWuC16lEqV4+WtTcDWgLLZSxGhX8YuA7WQPlvBBXha5ZOq6Xq1qdjWa6ZU+nD45CzLCwyoqSTM4S+JIfs3VUJ3TpzGopJAMeU0LqRWBXbeWuhYYo6hA9brQNXIwLAlVPEZJssvZBmcqdLGkRZrMpdhPyTpKJGb55xdyoSiNqxs6XQOWpu1wTYOrG2wlxOApPDFMgov5+PdVRcZw1Bp33XC9vZVwyDwxpIFShImklJRTXWvQGlKJDJMk/igwTzPLHEhhfZ4U8bErCqWs/Y1UICd0yZBXsitrPFhL0c6ogjOabrul33a8uvuC2/1r7q9e8+ruc26vrmicxhQgQggJ0ooUL55E4dW+/+leCg/D7xjmd7x9+Pc8nX/DEkdyGGh4h06J02PFlDuW7oZQ7VHBoGZNvWiq9IrluPDD8lsent7z+PgW7wdSGhnOJ07HA8NlYRwDOSmaWsuMrgws0WOWSFLiFEAhyRAi1ioqZwh+5c1kS1giz8OFYRRiYlFZ1JmVoWk1XW8E+VsqmrrHmQ1ZZVSJpDBIZttHQRjESE5eFrpaongUyXRb4yi6YLXBrG7eHCPRy9yW9UTQ1VuMqvBTZvaBJRVSjkTSWk4RL4PkwyX2WlgTgkp4OMoUQlwIl5HpPHE5jDgym7rHlhZtNHXtqCsxwMUoxaKQIkUXdAVJZZoQ8LPHj4ssArWmthar5QWULlE4MEleBtZYlDaMg7yIJKOl1hPk6rpNSKokSqnNOjFlxRQhitBFqY/GKyP5e1tR9271G/SkpOTUpRTdRl5+IUXikIjRQWlpmyuapsWnEz6d0HbB1QG8wswOdYZ5XsjVTK6gv9LY3qK1mM2ymTEGNt2eVy9+zrxEvO+o3ZavP/9TuuaKefHkdOb5+Fc8H0748R27pvAnP3d8dae5fnlA3z7iA3jvSP6KnHpiDvhcqC00NeBllJODYln5PVZFdC7y72TQxaJSpsyBWGWiWZjRBOW4f9Xw9VctX99HPu/PxCnxw7cN33/XE0PH/nrH7d0V223L+ThB9iglM3rRqsqJNK/ZfmNEDvSxfFlKTdcrobjmREqBeZoYp5GUZR9lrKE2DXaNk36MN8+z/PeEUxQoSdSSmvVF7sSDLBvUsu7E+HTTMMYQp4nLMNA0Na5qqRtN2ytiVPhZQRJBFsWhbUVlEtQBKoO1lRQlY8FPnjgXoaFaLYj4Ip9dV3fUTSfpppLxa4eh67b0mx3KLbx9/D1gCN4zjEfxJaeCptA2DW2zwZtENJkX9y95/fIVx8OB3/7D3/P23RspoMUFkI5GVTerR0Gin9ZW0t+ZJW4eVmTIMiVKGeSvU8ZaI0pTG2h0QgUNEWzTUDU1sVoIxdNuGvY3e169+oJXL7/ienePyxvmY+D44ZEajdvv5UZnJECilcaP8pwdvYfP7366l8J/+eb/zjKfODx+wzw+UhmorcHaFrQiqMCcZ/xypORCba5wjWBgl/TMcXxkuWQeHj7w/PiBHD0a+UOqlKJUFoOC9aFRUMSS1g/ihfPpsEbPxGbWNAKeChZm46mqwna3xVU1S5hRc8QombProghLYhjOFAJdt2W3vcZUiqrThJCFBFo8Ic4r1VIy2jlmWYbmRTLGSpqSlW0+oX2lj1MkajgHUpTldmWlKWl0hVIyjjLWok1N2xdcVYhB8vvzqFhmYQhpC+0GtleabmuoGsWyFIYhkxeHVVc43aOVXUtFcvqXcdfq/1WZRBDssq3Q2tGbimhaopMFtHOV3LCQnYd3crUu5PW2sMpRclnHWlCKIiwLhiKLQAuGhDaGzeaK69tbYsqcL8PqYg4oA1Vj1px6ImtPpiJRrYtGgzIAWYpu84I/iw+iqq7omkaKPUlBcpTYUKKgSfu+x3W1SNUXsU+lAK3Z8mL3Bbe7GzZ1y/l44s3bt1Ttnhevf4VfPDr2tF3P17/4FUolvv/ubzg/vyeexFud84RPPe8fd7Qlcl8d2FiPswXTZpI9kaPHlBk1ZQgFonwWlJJ0V5nFDVy0HChYMeVKs7aPM3EoTAuoAHefZ1wb+OoOXrawKZr3o+H3P2r+4U1mLglTB07DzBIVPoNtpAiZSxHFpTIyotGKZRZCa1U11FVNSoUQxPtBKoJzSOLba6tu7S8octDMg4w/XSXzzxgCyxIIcyYGKMl88ocoXWhX3/jH1pncxvPqBCmrTEZ6CrWrqF0l6aS6pelqYowUtZrushYa6maHXwI5XlbYo+gncy4sy8Q0PkNWtPUG55wscs1aJqwNVVuhrMNaB1qz3UrXKcbE+TzQNhsa13G3e0GvLKfLkct4oe5rdve3nB9ncvR8+eWv+G//zb/h/PTM3m356/L/43Q8sgQP2smt5HBBG2mfN01L1+6hwKiDoE0qs/q5DSA+BsFlCG1AKcHfK2Vwrub67obdbscSR8blTNs1XF3tePX6JT//2c9oqg0ay3l+5r/8/q95vLziyy9+zvX+hr5uGKeRDw8fePv+A+8fHhjniX/zZ3/8070U/vDDv6fERJk9NmZh2WBQakNWNa7O1E4EGEkbYaebCh88YXniMkUuU+R4fGK4PKNykogdCqsUxcrJRVlZqGjrUNqs45WF4BemwdPUPd3umq7rYU3pSKJCxhNuvRXUlUQ0c1aUrGVuNydC8lBmrB4xWjLRwYvcYxgujMNA8F5YQisUK4e8tjfNigo32DUqkIr4jslllWfIw0srTVFaDG5aymEpC+9GV1C3mq6HlArLpMgZglefqvx6vSFkMj5G5kUxjxpdHK2uJFmSkSLQx1EWgJKHjdIJSpBEeJIMtVWaunLgDKyJj6IUscgpvXIzLiykEmQkUDIlIxrTLAmLnAq6ZFKRspGzlpQNpSj2+zt+9vWfElPh3fv3PB8/MAzPoAOmWq/WGVArrTULrpuipIBUAiF7UDKL19rR1GqdZUuO3mhLZWuRsBRFV+3oqy3zNMHF4pQC59jWn7G1r7npXnC729KZJ8YhMKXC8+mAJXOzr7i9Mnx2fSCEAwf9DyzlPQFRqAYDMVoen3uqkNAbyO1AVS8YG9HFY0oEL9GvHBVk9SmaGVMhrGMSJXEviTPqJMhpA9Eo4UXNhsbBl58V6iZwYyMViiXBabE8DZoxwHYf0M1MSTPDKJgVzNoNyEWscdpitMhdYpgYhxlVLFZXpJgJs6TnYpDbqqLI3kBZilECviyK5CX9FKN8FlJcBfReYICl6JVGmmTcYwzGVYL9yIUcE7lAKTIWzUmCGwpFZd26rwOUxdiaXDRKJ9k0FHk5WesIiyBVUkhYK3+G3kemaeZ8OUtMNxZ03eKcFqR3ghIyURd0thjncHVLVbdUVbdO2hzX+xdcbfYQF+bzE9//+A3TONF2G25evaQ2C5NeuL//jBcvv8BkQ2UqVBEkd6GAFmifn2c59ZsKrSq0lhek1hXGOqyT51PTVmgDy2JFSPWxvR2hZCU9isaxu+m5u7/Gh5Zxrqnrmt1uz3a7oWkcldOUUjgOj/z44cK7p3cchzMv719yd33D6XTkD3/4hm+/+5a3b94yDgP/1//z/+mneym8efdAW9fcb/fsmwaTIzobUtyA2rHfX7N1NZc4MUYPxQiTvCz4PDFOM+ezZ54upORlKWvFhRv8iiiOokHLpVApRW0dTd2w6bcYHG0dub2555e//BWVq/nw8MjlciEkwV4Hv/JCisIaR8iJkuTXTznTuoauqYgxc3g8MhwnnK0kDRHi+vIRSXtJWU5dq/gkxzWCZ9KnU1hZ7VmUsrLlBZSGlTJQyplpmqBIhNOHQFQeXSJNJ9CwUqSNLP9SYrwKinFMZC0MIVuFde5fr0UzRcxJbi/Jossq25H5FpDJRRj3OSXKAjElnKkkXVE5zNpZKOuvhVFMy4TzjpLyyoeXL+fH8HpJcnNSyqJ1hXU1VePkxR8LbX/D689+LbKY0hMTqyo1rtl6i6Ehx8g4DCgWmkZjTCeK1DiT8oBxmd1uy3Z7Rd9f0TfixUBnmsqgTItxgh1o3ZauusbqLVrvsE1P3e+o3Y64bBjPilp7xmlgXB75/v13/Pj0nrt9y1/8/DPuu4oX8T9SwiPZfs/dPlG6l8xsOJyCuD9OijfTFpVbfJnZ+yd6fcQQMSWsf+RKvAFFryA5EdKElNfxjRWUQ04CW1SJaDSlMmRnUb1l3ydebWYsmTIp5kVxjvCQJJr5+s5w/3XE9gvv3gXevg/kPBPjSMpJkjF1TVU5co5r0kj2BdM8k1YpkPdRUn7LWji0Gr2OCo1xWOPWRIwUy8IiqRn5jkZylENCThKHldSNgO6sWbOWqqwLUwmjUgpqNZ/FNdjhl0xMnj7IzTUlsc/5JSIW2QWjRobLyOFwJqdCXdXrS8ELqTQlNBDzABq6fkvdVOSSCDFwOZ8oWrO/uadpNjgrlNF+v2Pb3fDl5z/j/uaeEmeOT2+ZfeLt+wc27RWv7j5DbQzxLrPb7nj74YF/+M3f8R/++j/wu+9+i48zxoLW644E+EiATTEKWFMJWdo56SvVTcVuv8E5w+ynf3wplEL0ihhAUCWWzd6yu66Bhhh31HVL320xxvL0/EDbdlSu4nh84u2Pb8nld3z7h7/j/v6O169eMVwufPP7P/DNN9/w4w8/cLkM/6Rn/T/5pfD0fOZqq3h927Pd32JSQZcWzUuse0m7f02pKh7HDzycfuTh6QceHr/D+yf8fGReWJM4ClUMTdWw2/RC7DQTRbHW2iMhjMQUmOeRsn6gNpuO6+uW+7uX3N5eo7UVnCyZYUyiwoyRnAUcl2PGKHmQjH7Ge0/bWmor3oOk5R9eWKZVhCLLMGG7yPxVrW3fYjTFrnA5Pj5sJeUQfEAhuXtrtJzQijyES054orQ9w9oQVQFDYhqSLJOMWjk0kSVmFBXG1ASfSWeIEVkSkih5/lTo0QJ/wq74grJ2HwqJoqTdvIbO5TaT1rhqsevJTgvfaJV5y89ihX1fVqGOyhT1j95p+VsmfIKlKHSdMLWRf0Yaxmnmhx/fkDM8PT8zTtOadze4qpYClBfypnxV5PSpVKKuKurGkbFom2k3Pa6uiSlyuhxl7agNm40gRera4lxDrVvMRypnUehKFJgxX0h+4vH0wDAlLuMHHp6/43R5xzIdOHHi2zcjVzbzZX3itr2w/WxgiYpBRS6h5VxlDmc4XAwhW07RQbBkarJpqOKMS/OnkzVYcrEsPjMva64+QOU0XWNwKmNLwZaMIUMlTuxSFWgTzmbcktEx471iGB3vh4Y5WH75c4+pIvWVZQiR4+ORFEaCH1j8SIgRgJwbYqogC4hOOjViS4sGiY5icQaykZN7SsLVKkUJNM9GIZBqDUXop9KhUNS2QjuzdmKKWAjL/I8Hh5zWUV+GLJ2HqqqkU1MkqppTIkYR4lS2pnYy2spJMC0hJKbJM1w8x+cRv0SmaUEVkWpZayU6rSXgUVKkECkq4GpN0zrRQJc1/JANVVWz6bdo02BNxabbcn11y+3NPbe3L0RybwxXN+/Ybn/A6pY4RlpdUXc1l+HIw98/8A+/+RvePP7AGM64RtNWjrZuiCEyjB8b4RLZVSi01muZU0s2G/Xp1h1TJqYin11XsdtssbphDmey8lQtuDphbYtWDW2zpWt3hBAYhguQ0Kpbd0iBZZl48EeOp7d8+93fMY8Th+cDz8/PXMYjPiw/7Uth031G323p2pe07S1OGWq9p66+pqo+x7Z3RK2JpmbwA9P0D7x99z1KBVRJLJMhTIrlUpinRKWATq651kaM9iiycP9zJieDYGwlbdC2FZvNjq6r8WFVGKqE1pkYFlKKqNZhtZFTCYq2aSkZhvNICp5sC7oSLo82di2gBbJey1WmfCJBqk/JB/k5wBBzxueIDwHvl/UfakKBCEfkIi7sl5zX9mP6BB8TxpKQIudxBYU1FoU0iVNOGG2krBMUJWiMkTmtYKqlZu+skdNmQsQj1pFLFshfDvIFIYPKK7pgPbwpjVIBQP68tBSWCuofuUnGYIuVd4KWVmfOmaQVquQ1M14IKTLOimKSmLGs4en4QPiH/0QuyNgvDKS0UNWSM08JQXkkYe9bY9AG6kqz2W2pmoaiI0UnQXoXWCaPX0aMEiqsdQ1a16DdJ7iatoZN07MzDp9n5jgR4oEQZ4Z5oeSJcTxyOD6QU2Dft1ASP7470uWBe3fGvfDc7ws3TjGEB4agWFrNqTM89pbTUhF0y5wNF11AO6rssROr51uSJDkbLiMMQ2KaIQRoKth20BioNNQKKqNwDRiT0I0oJHMuhKlQPMylMHtNDC19o/n89Zm6g8fxltP7DcEnlmVmXqQZ70NYH0iRGGspSAbZc2nlqKuWpmpQ68insoWmavBhYl4u0jFJskcyMX8S1kNZY5ryuXO2kvl8UUSdWIKSXcGaoIlR0Bw5SjHNrrwlYywhSq8nJRlLNnXLbrujshUpfJwUKGJIjIMQkUse1+a+tO4pGmcrNpsepWCeR8IyE/0s4ZSV4xVCXNNUef1yypcgBvFkxGYmpYllOTMvrQAtXcN2f8urV1/R9S0qQlKeFBceDk/8+P4N33/3e07LEdPKfqKysgud5+UTxkMV6WZMef40VVDrP9/FB8rlAgqJEpfMZtvS9zU31/ds+muO57eMyzPoiI8DRYEzbt3vyXdoGEZSlO7PcBkIcSSmmUTgcJH/3zLPqx44gknY9p9WVPgnvxT+zb/8P2A1NBas0bTO0dVXNPUtynSMPjCGhVhGtFmXdH6mMhu0agnTzPn5zMOHkeF0ZDoF4lxwFSgdGeeJy3gmqyIln9rRth3O1lhTo40jlYXD6ZHD+enTLmGaRp6PzxhjuL+/ZrvdkKLYkK6u9mhlWaaJHBeczSgl2WFX8SkGqq3FRRm9aK1FCG5rSjbkqFbrlDSfQxb+UTyI5SwGmZFaXT41ElWRnYIyao3ZJbKXKJ9GQYRlWRvQZIyR/35VCZPGLzMFSTwZGmrbggpEO8v1uyRImRxZy0WGkjJL8lIOy8JJkgJcgSLpn5TWsUbwMuZSeoXkWTLIFXglveoiy2OtC8WsDHwlJx+XIeSV8TSIs9tYCGFgmh8pReQsan3J5KTxcxC9ogFr5Gd21lG3Fdt9y82dFM1iEXNXiJ7Fz8R4RqeIswVnFaUE5qWw+AspG662js3NS+7uP+fu9iXHywfePX3L4+GBcXlDiGdKWtZi00JtJXUWguZyifzwwfHvlsybD4Z/9nN4dZup68CmjdR1oe0U97eO0Sc+HDznRZEMnIx4sdNkmIbMNAj1M8fIcCkMF8U8K0LQ1FWhbxOty9Q20teaTWPY97DPhV5D1UlAIPrEEgsDUGp4vcu0XWa7S4yh4c3DC373/S2Pl5ElH1jCxLJIlFQrgyoWisUvnmXyWOPYbra8evGK6/0Nh+cjT49Pn07w42hJcRY6p5LbpFpvuyWmdbaf5WWitHgTiox7gpcHTk4SJU0BYsmkkMlR9hxJF6RFLw39EORQUleO7abn+vqKMRw5vHkWJ3ZSxJAJSyQnjTWWqmqp64amqqnriqauaJqKUqRANivFnBQhwOnkGQaZMnw0wtnKcTg8IdAUgzEV03Dgcv7A5fyWt/tbNttbqqrHVpbPv/ycrq3oNw3H52cenj/w7Q/f8Pvv/8Dh+Eiygd12y6tXL8ghcHh8IkYJdRgt/RyUUA5KLsIcUxBSZPEz54snJMH7CIpfPO376xuur+4pZiEdZxa/8Pi0oDhh1JG6PtHW50/e63G4EPzIOJ6ZpjNFF0wjEiKvPEvxQkjOiaLKurn4CV8Kr+6/IkdPXC6rTk9hFDSNxjmNLRGVBubLey7nH8j5SNtkdDaUUDMPF86nibhkrGmpq57a9eS8ME4jkw/EWKjaiqaXOFlVdaLHK5oYEkuYPxVpFBKnKwSRmDgnGknFp1NN2zbUrma42pFzABXXZc/aPq5ldOKjJ0ShpVKg63r6fksKMI6RsIhWExRWO6yyqLyiJbJU/svKWgFg/Rkkb6rQRlEQt7VaJSKlBHwoAl37eMNQhZwDPkivQxtF9JGwRFxdqKxkufPHm0guqKwxCOtGGyNjiRVmJmW1tP7clmxkz2G1WW8NKz7EOBkzrS27UtYZqSoiSKeg11ih1hpLwhEJQRGC5KyjT4DA/ITBVNDKUbla9jKqYB2rDF5TuZqmqWm3Ne3GYqoCOkGuVr68sJ1SnCU7n+NKnq0FKVzVNE2LtoYlBs6DMHGG+cAyX/B+kBdHmtffk0GXBlMcJhp0MhStMeqKIez4MES+e5zxeWDbH+la2W1Yk6kKWFVQrqbJmkOMHJfEeDGcjx3HJ8/5OZK9ogSDnyzLpAheRENaZ5yNWJOxBnY97DeKz681VYZGa4o10CWK9SiXBOLYRq73IyjD47Plh8eG376xfH8wjMlQKoeyDrBELxIoZ2S/lYIiRSQyrSvapme72TGcR4KXB7NeW/2bzVbGOpkVhiefr5TWcapeY63GCqYmp/XwEvAhEpNYnFWJRCM3i5LkM0TxzKNfmVvymaqqirpyaF2IcWaZJqZJvttqLcJpZVBGxj5t29H3PV3b0Ta10ALCwuJnpmnEL54kqzTOl5mS46ddlnWGApyOooxFi4f8fHrkqen48LCh73Zsdvf0/R1OG6wChSeFkfPlwLQcmZcjiz+BjnTbhnbTYpxlmWeGYWQYRmIs/9WYSEbISilyKVgrEwD5axk9ozLaFFwljpHdfsvN7TUhX/DxwunsGYaBGC7AiU3nYW958eIzXt694nR64vHhDd4P5OLl1jRFuVGUQswS3IjrjvQjiucneymUPJBzIOaBHALRO1SJbLdgraY1CZ9npulHDs+/peRHNptEWhJLiIQwE5aJuq7o9zvubq+4vt5xOj3xfDgQs8balr7fsb++pqpalK7IUbEsiRgnlnnBOEXbVVgjpipjLG27l+WYKqtVSXjkYotStF3DLm5JKxGyqiXSap1BGzFDLWFmnOQL07Q92+01fsmEODKPI+fz9GmBnRaZ0ZticMrJSAeLVXZ94K6nhPVDYKzGVnIVV0o0ldM8SuyxyEw+51V2ksvKK5K3yzyPgKfrLU2rwehPL4WUCopIIFLZiqquoVhCMrAU5rDgk4ycPgLBUi4kndc0j5ibtY2gtdinciDnjzuJ8qmGJJ9zjTYapxNGZ6yFylmWGZYlU4Iiq/Xv5QtoGU0prXBWU1eattW0bU3XbmnaWvYlxnOZnlDLBOzQqpWXApJaSWmRDHnIqNzhrObF9p7rm1ugZvYDbz9MvH3/HagJGAnLKIjiIs1pjVpn+lBnqKvAbZto2p62v6WrFVN85v3hicvk2fQL/Qb6KlH5hAmKLgJJcZ4S4yXy/qnn3UPL4XHi8uTRscOkDkJNCY4UZFcU0rxqPScKib6H/Q6WAZqoIRpytPQ3ivo2U/eFqs7UXWK7mTmcK/7wQ8/ffdfw7WnhaTqilIw7K+twpmZYSbq6LBA+4srllpYjLHNcH14DwzDIIjrUNE3FZiNieYl5eqbZQwgr+E1u7c4JxyinLNTdKIvcEBIhsgYkAlpH9MeIdgwrZE9htKZpLG1bUVWWunYEP/H0OLKkhZgTxjqx9BlBaiglt4S+awWZXTcillomhuHMMFyYppGUktBVixL0eAyk6FFaFLKUzDhcKNMZPhXxZBzlnJMx1tULdlev6JqOxtXS2o4BZTJZR5TxNFWR27ur0UZzOV04Ph95Pl5Y5kWKdU52MXlNSKWcsDFQVZWoOiuLsg0uSyepqi1VpdYXRMY6aJqGrhUNcE7Tit2fsKYiF8/tzTV//Cd/xuPjO5xTpDIyTB8I48jpfBKMuLVy4CvgNGQ+7r1+wpfC+8f/hFwSC5VuaeqXdP2Out5hXUeKFyiRFEdiOJPzGaUuGOtwjabbZLZ7qY93TUvXN7iqwtgKY2uUsrjG0fc72vaKvt/R1Dty0gyXhcqdcM58SqYoVdYPd6auGrQy68JYyiTaaM7DwHkYBDmREqUYKt2y391xd39HLiLbmf2InQdiUITlwjxGDulCDDBdApfjwuFpoORCZS0lS1u4tQ2NrjBa46pqva1Ic1U8DUE8BiD2tUrkPCklEgYVLXVT45whxERKC0pD3UiKw2pNCDPnYySFihwbdGXIWhJRJUFRlqLXYpK1Mn/NiqIyVQoSiF+z3TEhwEFT1sSGnCg+jQyMJKwy0mr+mK1MeQXbrS8rbRPa5U90R2ugGOHWx1EL2ygDRpEVmFbTbyo224p+V7PZbNjtb1EaTpcPHE4HZp8opaapX1DZLdpYUlo4D4+M0/MqYP+4lNxizRatelCQbSCliZwWrIlUNpMxFDrmJeMXKDHidGLfZl5cw/Uu0PcLu61nv0X4RMcTaRnQKlNlSxUUThncGqc8nUaez4rDBS5nw8MD/PhQSEsHaU/jruiaHTo1lGBW+u/CNJ1J0eIDzJ+owAkVMiloHpfIl2rmZae5U4Zt59hcebTVzKFmHBtCbmWePp6pj6O0yhPMsWBXoBq5MA0Tfoyr+8JhtSJHeHp84ng4cjw8MYwXJAYpo8u2qQEl+PYlMo0zUWIwVE1FU9fUjQQFYojEnNBBXvbCuFKfXMcCoPwIiZPPSFM72rZms+no+1YSShQxDl7OJFVQztC2FtsZ6lrMdVqbNbXjKEQuw5Hol7VHJK50rSQBlcry6SCmrQigZEwsXRyy7CpZR6gle3wBrxdyW7i9het9hQ8LD8/PTOcLy2Wgv+ro9y05Byoji+55nEixUEJhuIxMS8Tamu12R9e2uKqSPUspjJPYEFFQNWKkq6wF6nV6kVmWmYeHdxhtuZzPfLTabfodVeWYl4HFT5KoTBPDdOR4euQynpj9xBJm2bOmRIOT29sUcXXDfrOjaVqsrdbb2k/4UjidH9YRAlDtaNwNrCRQyIzTmdPliWVeSFGTgsbPMI8T0yXjl0UAV6UQYuA8DISQ8SHTdXtsY2j6Gu2szBWTwphKmsNtJfAsJoxNNHUjqIsVsSAtTS0xOK1xrqIUJXKLGOTDUdfMk3wZU9JoXTGPC5dxkFtMlMJaWALDMvEUDuSoydEwTxEiUixJoItcczEWZcBZS13LvNNVhlRWn4L/aGvKa5t31RGqiGsUpogfwlhDk6oVZ72OsNqatm45HgbOp5nkLdnLVTTpILiJqIk6oUvCqIhCozVklSkojHNU64gox4IvUdwNawL2UymNJLRLPkJTpfexolTJK5+lfDxp5CSxKECkKvpT30AAqcKtcZWiboxwnCrQVcFU4FpN3VtyKYRTZJgnlmUlSOYL2ZY1qSLM+dr27PZ7dtsb2uqGyu1wtodimf3ItJzIeYHiqZ1CZ72m3GqsLlAVbFXoXOD1zczPPo/cXwfaJtDXA5vqgonge0+cpbRIMphS0EHy/yFmlpIZIzw9G9691Xx4ihyPkbbasql37Lp7NvWeEo04hBcvGXYVqGlILKTigQXvMw9HWdgvptDfF660RTsjIzYsFIUumrbNfPHFRN3M3LWZ07OiaMtpMfzuXeEyRTRZyLxKYdQquomSjpuVFrMfmWWW1rJCwg/BB/wiL4AQEmFN7oHGOiOf67aRmGsplBjWuLOwlrTV6NUYlktetZ7yGfi4o5MXQs+m72ibZuUhLSxzYBwW6q6lqXq6tqdpWlkOe4+xhqo2xOgZLjPLNMtzRCnqSg5gSjlUgCUKDE+vjumPBrmSC6nktbNUpDfBR/UoMtqMiRwWShhJQfA6S1iYloUyFpKJxHlGxUTxkWkK+DkSl4SPCYyl6Xu2+z1d22GtFefKvKwO6Cw/q5HDal0ZjJWRMisqZPETDw9vGS8XXLWyoKxewZ0Woy0xBs6XZ77/4ffEKDbDw+GR0+lxTZ8ZNA6jNEUlGtuz7a7oug3GVSvF9id8KfgFlIpyAo6FFA9Yc2a/WzCuYZjOnC8XQjCovGOZThyejhyeZk6HcYU6ATkylcg0Jpoq0/UtN7evcK0IfKZl4jKOpKLQxlHZloJEN62RGJoguMtaeZeZpiAjHNYJryTlgh8mvI/0mw5nLMPlzDxeOB6P1LXjcHjg+fAIKqK1xCNzWBjPF47PJ8gWp1uRoze1xPmUSL1jkH6CVhIn65qOpqupakvMEa1ZG8FiVEJJKSerQNEJ10pczxi5fTWd3Bi8X0gxsN+37LdbyAk/zRgMJQi8Lmn5kJe4Lv/0esozssxVRk75Wht0LZrQZMSZnJGorkavGI0kWlIlazgooNJ6+5D5aFZl7UAIIUrq/XmloAr0zliNtgW7xlmVVjRdIzfCWqOMxHGzVkQ14RmIGZYUSEVJmEBVKCIljawEEDbNhq7vuH/xmru7lzTNHq1rLqeJ4/HMZTxxGh8oKaBVphNx7yqcVyhjaRtDU0X2beTlqwtffz1wfyUnP5cyzgfhLN1oyKJyXcY1KTdklpCZQyYCi1I8Hgs//Jh5PCbmOdFdOdrN9tNDbVkiKXli8iQnLC9TNLV2KNOsJaXANCdmn2h6xZRk/1S7glOKMGmwCltlbq8Xru88v/g8cXqhOT1rJuC7g+Hga949a+oKdJGYrtEVyxJZ5ihpmxVc+JGrZYyFFVkSY8LPcqr1IUkar8j+qGnE3e3qGqUh+oUleJaw4FOgqIIyYARKvPZT5IUk/9JYa3DVR3OfXePZRToKEciWtu653t3QdI3siJYZT0GtM3c/T4K7n2ZySnSNpHUq68T/TIb0cS8nu7ySpTyolKDtc5GXg4h7/isqrFaQM9PlzPPDO7KuidlSlEFZxxwi88mjlhkmT54jaZI9X1gSqrJ0fcdut2e3v6Kp6pVamzHWYl0FWhSuZqUfSOtZrIZKSVcjxsD59MTp8ExV19RNRVU32FV5G0IQflscGIYz3//4W1IS46G4GAyuailBXv7aQbvdsr26pm57ESHxE4+P2m6DXxcvy3SCWHjetVTVV3z2+p7N5jNeqIqQDKdzZjg98f13M/OUmadCDpmSQGOpXM39y5d8+eXXtF2DtvB0fs+HxzeENIPJjMvC8nDBaIfVsnRURVC18xzIRRaPH0+wOStSFANStPIHUIqmFM35PJJSZLpMhCXw4SEwjA8Mw4lxOmEt1M7QtjXbjaNxPZvGEj3kaDCqotINCgfF4OfIFCZKyThjVwx2Tb2yThTIrcpo6rrCogVLXYGqIGvEdxASi/eUJC1Iaxx1XSiVpqo02mSc07R1JXHeIWJaTbWtSTmt+XM5sSclcVZttfQYrCy4jTbrgnj980hQrZYopeUlEUsgZk8ikMpCzJmUIrrodT+CLLFNjbEV2hvwSHsXI79XV6g76HqNaxSukg9pVW0pKHwK2KpQbxTFBY7jo5BwjWG7u8HpGoOFnDHKrMawFq1rrGlxZsM8KVF56sBlPDEtR4q6UDdRYsnBU5BRiOCdE8a0aBqWYHk6JZoYuDYeN3iu2oIqljg3ggkxM5lISJ4YLMlbYqpXF3fmeFYcnxXjoAhRk4Ij+4q4aOYx8VwGTmNgnCYu40SIgZSCvCDCAjGubfUKjcHlhI2ZbgJ3UFTnTJMCTmeiKWAExGgi4MF4g2p6Qlvx47vAD+8KITo2G0dVt6Qoy+Xg5UaekzTAtTYsi5S9Pj6QhAfmqJ3DWceyeIIXwZIPAessxhlsjHjvQRXhHs0j0zyxeCntCaLaSAhiTbcIBFGtZjaZEpxiYh5m4R9pWVg729C14GwDRTPPXpzOShSt1lmsE55SVRlKsZQsjeCurdFKE4OXwIWSl47K6tOtQK0/i9IiwVnvvRJZV6C1bKdTDozDGUXCF8eULGFJxCVSbEJVGes9bvKoYth2W/pWr+RSh+4rNpsN226LyoXL5cJlHDldLkzzRNM4jHWryAhSyEQl/3tI+DCth0G5xS9hYJxl9GVNBUoorXotB8Y8Mw/PsqwGrnbX3N7eU1LhfD4xDAPjvGC2hu3LLU3bMy2eEDP/lH/9k18KuamIecEvkXmYUGZgyQcuww9cThaMXG/mZWCYDkzLwOI901iYBkVegCjRTd3JfNpZ0CYSi8eHkXkZBfOLlQdk1WCUzEohU7Qo/eZxJq4jn6IKuqoxrsa1FVbXqGIga9zG4V3D8+nAOM7kJA+UeQyEyVL3jrv7W3KZyWWhbjV9U6E2FftdyzxFpiGCd+jkoFRkNNGWFVug/iuCpEDA8koULUkL2Cutb2ir15uBuJZDjJSS1pp8RluzpjJ66kpaxd5LoU4bRUY0jm1T01QNORtUiOSiPukONVJqU7mgVtSG1gpVClaDac067xVXbKFIlSFpSjKymM2WzBpFTIKPlfmsW3sNgDIoalGmaI0yCW0D3f+ftf/osSxL03SxZ4ktjzbhKjxkqsqq7uruqibY5MUFCBJ3wCGH/AUc8B9yQoAD3r5N3u6q6sysyowM6dpNHrHVkhx82ywK4CQH4UAgEB7hYe7H9l7rE+/7vAvD9ryhbgy2tBhbY3RDCKBGGTMmr5hcYpp6YgBFSWEK9HxYJCJKG6qqpW2WaF2hsDg3yeItibKq648MQwfKo4yM3XIMohgKimEM9L1HaUdROmI44cae+0PkMFjebDPntee8SWzrSFNmdJnIOhK8IjnQgyJ2muGkuD8o3t3Dm7vM1Z3mOBhCLNC5JHjDqUt044lEoh9PjFMnIDhtIGSij6gEOhmpgLUcSiZLB+0mxalT7PeaXECwmaAh6YwPmr5rGaeSyW+52lv+9PqO7z8OnCZD1CW2khGdmwIBj4lQac2ibWnqJX03cDrJ4SOJX9KJm6LAVJZCZ0oiqoQyFRRlQds2mEITknQFpjQszIKyLvEuSIhTfHAuz+q72Q8jTC5hZ/nRoRDwX50QLpGRPJCEksLo1D2G+BhrJN+70FgMhbKzei4JR8sWs4fi4YcEW0GeJeBzZ5SQ3ONHpYSMOgVeKVkkWktX0ekJnxIuKkaf0dmgsxaPRdIkn+jHSZa3JZIDXxWYSknWSZpwoyBzDocT3emId05UWAHClIgu4CdFDgXBa8wDwdmPM/pefBiiThKET9AyFgIrmS2lIaaR8CgjNsQA0WnQCWUTukronDAV6NKyu3jG55unlOXPnLx2SqJ5HSeROS5WmWpxYhr+xM3VNdEuOY0jH2/+hbv9n8nqnuXSMh49UxfQ3goKtpBZbfAnjt0HbFQkHQh5pKpLYhL886LZcL7dYVRmGjrBWSeYYiR6jxtGpqlHWU1VGEzZUDU1hWnIU0YFGeuEKnA69RIXSMBqTw4GrQpePHvJJ58/Z3/6yP3hg/x7oyntzAnqI0Y73LEgdJaUtSBvjTCakHG9LLpSxAepUlxIeJfxDiaXiER5mKwmO022Wjg5GazNWAt1rWhbw6JpaaqW/d2R07HHx4AyiWy8kFUBoypRghhDRrTpMkuWl0ORBC+QhLaYc0BbKEqFsorw0E4HwSQLDFAAcyprdCrISS4ixbwzaUpiEhSF1Qpblo8XnDIJZQ3tomG5WlMUorBSWfYMOWZyQBg/vZ55T4LgMBZCoYiVEhBiZm61E6iI0RNk4VJ1pxPjKCq0YRzmfZGQcgsjFetkA3mc6PuJrptAdRhr8XFgcB37IXEIDe9uC7Zm5OXO88Uzz/km0xRgsiFFhfZgnSf2MO41+zvFx7vE+zu4udd0nSJHUWP5kIi9IyRHiJOY9sJAaS1FWUHQaJ/JYV6+FhGtHVFL/vKkFZ0x7KPh6lgyGikUnII+Zw6j4mrfsO+WnIYt13t49f7AzT5RVDL7Vwpx0HsvsZk2UxaW9dmC7XpHd6wpq4L9/kB36kWeqEBZja4MVaWwrVTV2ug5+6DAh0B3OgHQtM1jHnpMiWmc5lCsCT8JHTj6OKPW06yAEp+MmCRFjSaKtoybI3Bd8hTBUVUFZVXOzuiMRlPoAhUk2MtmKxdH1hI5Co8jLGIAIgnxBkVkF5aC7DiMlsWz0sL9iikSslwK1kJWEcd8sSXJK6hsRV1arLEc1cghyj6lUJFSe7Su0MmRBsXQQ5eVMJl6SQo0KokHSouLXOo/gQ2GnPB4SdDLQepeBEsvhRszzmpOvVNAjESX5ndLPgeyYeoCd/GAsomke1L2FIVCa0UMiUV9xm+++nvOz178vJfC/fuPTGPH4XRP9g7VFdQqceM+0HUlvlzSR8Vh+Ah5YrtYoi4Kupsrgr9j1Sg2y4KmKWgWJautpqwjzbKlatcsfWQ1OJxPxKSoy5qyKB5DL4o5/Wm9XGEvzulPRz5evccFR1nUEDWHuwPBHVBBHqbVYiX8lhjJIeCnAUVPvWjYXKz59PNP+M0v/y3v3r/BppZD/4Yp3oKxlOWCpmox9Y7jGDloL8tbKw9nWRSkGLHzXDKlOWwmREY3cuxPTH4g4FA2z9JKmAaZraNF+aF0oqgUZxct2+2GqXfcH94zOgdWrO5aW3yQABvnHadDh9E1KlVoRNElpjlxV6t5pppmnoTSmWhFf46BqAJpjkYUx/M8b86z/T6EmZef0AaMD2ijhREVnIz0rCUmMSO1Zclmu2K7W7HZrPB+4n4vjmKtLDEgsmInWG+BhMkL4EMWGWw2aDPD/RgZR8feHEgzFiHPf09BMhyUz+ioMVm+J4UtqesaksF5xTTA1CeszlRVpLGes1axXGi2S82qsdSmRJuCm14zkVmHwKIINNlTqoBpIGYlh9KkqU+WpdLUk8aewBlPKDIxOHQwMwE0i/qLBT7K7Fwbj6o8yXiSi9gcKKM4h20U3r9tFcVGU+wMxRaUyaiUiQ4ao1ln+b5NvocAadCkvkWbGq3to7N5HCZCiFRVTduU+CFzyoOoZHrBUTStKOWaxlCWMve3RTX/3c6doUgrJydsnhgT5bwbsNYCmrpq8I1n6HqGbqDvRWmTZa4kEDhbUpeNgO28SFRBxjoZ6ZjroqQo9PweiScFDyl6SewLnpzTbH4Un8TQ9wCPCij5+SSO6ihy7RjE0U2ekR6YeSTKTD1A/mwz7M/ozGKxYL1YYZRGJ3Em95NjmDw+QVGWtMsVVSkcsRgCfpzwPuHj7NmJkilhLVhbsGiXbDbn7LYXFEXB4XDPqbunH27F0Go0hVVoLd24UqIMEyqsZb3esFmfPwYWja7DPVwOJJzr8T5irMJUScKSjBbAYYh0h3vev/mRbn+CX/7Nz3cpGKcxUZaYKSbSFMk2wkITjOPu+J7TEEle05YbsnfzLryiNRVPL7c8f7FjsWqpqoqiLqjqUsLhly3FHBZvXBSUdXTc30v1EXygLEuWVUlZFkACM+GjYhgTCU/KnsOhZxgcWhUUtuSuvEMrRd+diNNEChFjLKvVlufPX7Bdn1MVK7bLJ/gzj093dPu3AFTWUtkly+UWN43Ewz1pNqOI/j1LdW7Egp9yJvrAOI10fc+hPxCyp1mKa7coZ6qqV8SsqeoKYywh5ZkFZDDa4kPP6STh28FFrK6pFzXGLGhb6E8Th/sBo6ApC0qLBPyoB0eqVEUpC5AtZRkBqZhQPsrYa/7rseVOAIL1NlYL78hlUhSQoJuCJLIxm2JyYCSBCqAjRTKEKNm8MUJMmpytvJQp4lxkGgN+/t5aY1msllRVPbum9cyISXKwOE936khB8nFTiDRVQ1NWWGOodEVdz8qMQmMrjS0LjLVMU8IHmY1PQ4+tMouF4XybeHpu2G0i29VEU0UKHclK45VQbyugTIkqQwniui4NyyWcuUx/UowWrnMmh4hLgSmPGC0faU4GogFVolTxKC3MOWGthAjBNCt1FK3SbGvNs43m+aXh6VPF2WVksRGpbwywHGHjEhfLiWEXOFz0fHap+eIpvP1geH0VuLqPjINjHD3jGAl+fj8njzsdsWYQ45+fKCtDuyhpFxWLRY0tJARKzf4asuR8h9nN7JyTBMEQZoCe+WlcqhQ5Zbzz8wz/ITcjo+b5t1YyFtXKCOYizcqf+d2RKFeD0YoYPdMU5/Ang3og58554dpokVaaB8+PLPBUEhwkD47dDGS5oNUDvC8HkVUjl89cRc1O33k3Zkq22ws+efEJwXvGbqDrOnweKBdLtnVD2zZs1xvIGTcMuDAAiZC8OLFn5lmeC6qqtmw2K15+8oIvv/wNZVHzzbd/5s3byDgdSUkWz1rPC3st3UFO8mwabWnbFdvtOW5y7OM9RjnB5me5LGPy5JSwSeis2SpSyPjO0dt7PuTv6A8niqKF/+n/8vNdCrvVOaMvQffEybFVT9kunrJ7skXVcP/9G1LfsWp3qLrieHjNze012cG2WfDs8hmfffaC5XqJLUoJh08OW8g3NKYRH04z0ldxOk4c7weJhNQF6/WKpl5IxOfpyM3tDR9vjozDQGlHcsz0s9pIFfLpRoG+U2iJytSmoGk2PNl9yWeXf0Wl1xz3HejEcluz7BuOhxKiyPJykdAL4AgxZfzkyT6QYiT6IIeZmpexSbwJfT/QDR3jNKELqOqKxbIGI3gAE4FosNpgdRIlRnDc33qi73FTJAbLODiGIdDWULQl2/MNRrV8fHvL3VUP0aPbgKkipsgPuetopbFGsOF+1tfLgl7UGcpIZKBRc74BQJ4Z7pXAAk1pMZP9CRUwh7eb+TAYJ8/gHHUrcaEJ6McJfbJgHmI4a6yVGNQY0nwhSEKXKgzW1rSLNU3bSL5z8Iz9KAyZGOaRhMNPXtp5DJiKwlrKsqKqxfdhS4MympAjLoTHxW7KA6gBYzJVZVlvNE+fKc62iUXT0xaeSkHKBpcjJE2VFMaDD4oYC4yqZDeVPQsbWJhAbUEVGmcULsio0BSzMz3ZOSNZEuQ0hgKD8RrjK+FVZXEJazTrWvNyY/j8XPHyQvFsl9itPG2b0EpBVAStSJWs1WTfnBmipncV376y/D/+X44fXwlAj6TRScJ7plNkPJ7QRsYmOUeUjhRlQ2E1bVOwXFUoXRKTZXKeaZo9ALPpTCrvwDRHbKa5ulZqvkDmOb1kAOgZa2KFBItknyj0zAWKj13CA5/IGKEOKJ2JMTA5xzT52SzXyEgsP/y7iaIQ01tZFtR1hVIKH4KMkmZPjVKC1IgmY0yEzIyiAeb4z4ywiHjA0miFKSqadsV2d8GTZ88ZuoF7fQ/WUjQNDxG+TVWzaFrGrsN1AyZpqrKFNDG4bjZ+igJP5xkLU1jq2adRWBm7SkeUHgsHglxQRs84CiUBSQ/Y+BQD3jtZSM/FqVaalB++AxZDSUFDDgnvB7rQQciM3cBdcYU2f9lx/5d3CgXYbCnUilW74FfP/yNPLr7ENYE+9Fzsztg1id35cyKWj9f/C93xNd4FtOooypGy8ZS1tEkpqNnF61HRY/RE20aM0bhJcbh33N3f4H2gaRqqSuH6JWjD6TRx6j3jTKN0XYAguNqc5twCDeSIVnn+0AwpFWjVcrn7nN988fcUtSGZwM19h+s66mLJ87NfghKU9OQSt8cbjmN8fIC896icxaimjUhU59GRKDfc7Cg02FJjrLgVM4LkyDgykRjEsWuUqJqGk2fobsk5EmaKZM6SdTDFEZM0hXHE3MlLFxXEDEnN0YUyC1Upo+ZlmlZ6ToVTs0RTyKcqJ3Q2Eptq1IzjThht5z2JqJi0MfNYRJQsqDTTLhPaJupGLuuLy3POzs/QWjFOE33fCZBrcsQo2c3BB7Qy1I1wbIwWx+84OBQO7x3DMDD0A26ccOMkAEAlHUyMiXGa5DO3BUH0zaSkICeJOQ2TZDrriWalaRZLCpUYSby99ex7x6L1LNpM1Ug0Jbkk+YrQa9whQUzSwbbQLiylzcTB47vE4DWDVmSTKIyiihU5FQQ/4YJ7HGWgJMdXa8kd1ymgoxzKWit8ULiQGFKiJ9KjGbMm6oQtA1WV0EnB/Oudh9MAd0fFu2vD+1vYD4G3V5mbWyu8oxhFYz8FnIuPC1+lBI+e5rwFMiitCTHR9SMxTUxTZuhHhmGYabgz/nm+FNzkiUkO1qIsaRpREBojHbKb5CJ5CL+ROX6WnGWlpUMIcYYyymLZ/ysUt9EJY4A8Y7y1mj1I0lnEHDF6JhbPGic1Z4ybQjpEyD/RAABmAabKimjTjG7Js2VPRkoGTVlXVHVNUbc0yyW2KKS7U2CLgnW1RWvDOA4MfScih9OJfr/ncHuHzVA2LZqMjxM+Oax5wFwkhsFxPJ14+/4N/dABmfcf3nJ/uJFRoIqPKkmlKqwppGN48GElx7G7JQQnHbAbydGR8WgluTUxaGIyWF1TFi0P2RqkiJsELz7qTi7Cn/NSOJ0GpmnksHfEckFWNVm33N0dGWPJbvMblk9bcmW5urvhePDcvT+Rw0RTZ6rWUS9GqiajdY3yijSVxCjLQ6Wgsg2rZoM1O9riiEpruuEAxtG0kq2ALllmRdKWsm45HQ4cr26YXIdFUVUl1arB1jLzTtGBd6jErFkXouipO2EcJO2ZBoeKJevFczbtCyY3cOr23J+uub66Y+o16BpTaGn3lISa6xkHnOIDflgQ3kqLS9TWcujG7AlhIilHUUGpIIVIDBpbNGitcb7H+V6WTvNiuqoa1ps169WChGcaDmQ1UFcKtMEo0GoG8WWZzccsP6eUOKL1Q5vvRQoXYyB5CEWkaiqKSi6CrJWMAVwiJHkAw8yvSQ8ZLshYY7lsKVdrVusly+WS7XbHcrmW0JPjPff3Bw77PSHIy2y0LOvqumG5XFIWtbS/ITNOA847pml8rFLz49dNQsbUipASg5tIwBg81ilMKQtRYy0pSfxoioIqb9qWpqlIIeBGyfN4f68gyVJe24QpknCYjEEnAy5T2cTOBLYqkVUiEIkqkS3YlWaZDdvbyGmfORmN9YbJF/gIRmVJpFNgtKLQUJoMyZH1HMiOpiwSqko8uYBnnykuv0wsn2hUnek8DHcF01AyjobRw6nP3NxHPt4oXr8pePsebvaO/ckTkgggmHFvqCR+EWNmxdhczUSRFrsQOJ4GRu+xheRvuykyDCPjOEoBaIyMkWb+kQRMiSrI6oKmbKjrBmOMXCJRRsrxgU46jxvLQhDcMcR5V/RQ3SZUkoM/xUTZFNR1gcS4zlX9v/r62mrKukRpESk45zHGEaIlAyHIiCml9DjaUki2tzVCsP3p/UwCiMsJVKacVVa2rCmNYeo7Pn54J8a/4KWIqWu8H9nv7wjOoWNmPJw43e1ZFCWrokQTMdZjlJf40iQ0Yecdx9OB0fW8fvstKTlicjPMTzhgoGRvamvqqhFBiE4MQ8cwDByP9xz2B7QSdZZotiKFrTCmRCmhOMcoOxo1m1dTgjgElPbzDu8vO+v/4kvh/esD/dRxff8OrT/ipsxu/R3dYGgWF5z97TOq9Zav3/2Of/z9f+Gff/9f+PDtd+yeLTh/vmW5q1isM6tljTVnuKnG9pHD8QPHQ4/RlroquTj7DZ88/2vSl4a//s0dV3eveHfzR3TKnLdP0aZmGwMuSUVzf3PDN7//PTfxPSoHlquWl199yuZ8zd3+lv3hjuF4JPtA27Y0reH91R95d/Mjhoq6WPDFp1/w4sVXJJPppp7T+JG7+1sONwl3Z2TZWMyHECU6wQMF8UF2J3PxGR5nECNbY9BFJGWH8x3owPpsTVM3HO4jYw8qVxS6wNaSFje5nsmPaFNRVgs+//QrXnzynLv797x69Q1l5VivG+Jo5qpPKviU5OKJKpOxWFtijSCmM8xJZTIjHgeH0ZJNW9QlyiowyFw0SSC7hJS42a8wu7lnp+jZ+Y5nnz4RbAeKvh/4+PGK/eHI3e09zgsxsrAy4qmqmqZuZqZLK5yqKJBD7yN+mJiGgRDDLEUsH6tIHyWophSsLcepI/YRpT3WZtply2K5hCwJcCmV5GwpacBWaOsojMI2NXU0DKfI8d6T73uqeMKsHOVTx9kTy7OLiqfbzPPtwKaaUFOWtQmQk4Te3N2APVlUBx9OE2kYaEyJ8gWGCYPHKkFMaJNnymwWhIhPECK7LVxeZn7515a/+XvLsy9g+yzhMlzfWd5dtXy43vDxruFmr7ndB65uBk4ncVr7IXLaR8ZxQlUObBJ9v4FmIfwgY2VZ7IPA6wiKGDWnfuLYDRSlpW5KcT+nTHRBIk6ZV2aIEkeh5pGHCD3qopaOMkGYK3mjLVWl0FrS8KYpiOSahIk/+Qa0Fud7oQvBps9BVev1mtVqwTiOnE6n2QEsYDoAbcVrE2YntBu9BF/NYTspBZQW6FxVVSJuUEmWyw9fO+pZwTTjtYN/XIhDRuVEdBMHN3B/83EOsUqUVUVZFXTdif39nhwCNmvi6PFuIs15DkUZWa7ARsk1iUHNnWgipJ44KVL2oCQ9rrCaohSeVJg/92J+V4wVqarWgq3xfmIaR4kZKAxaSZUmnZmCXJFSZoyeYdoL8sbYWfwSZ+6U7ON+1kvhv//p9/Pnl9msN2STMW1kWVmMHnnz7k/88C7ypze/449//j3XN7doXWFMQVawPxx59y7SLddU5Qrva3F0TidicDSLks1qwXa1ZrPcUNUrzi/POT9UtB96sX+7kq5zHI8HjkPP5DyH/T2nvsOWBc8unnJ5ecb6bI0uNUddUJcLzj99QlUUDF2HGycJ92haDEuaYsvZ+SdcPHnJcbjmMF6T9Ui7MFT2CU/Pn3M49tweDoQ4oVSeNeaGGGXp+pBfjJY54GMSlYWsJJ9VoFeKoe8ZTiP9SRN9icq1qIfmBzjO+4rFZsfZ7imlXTL2sL/z7O8CKRrWuxY/ZIbTQ640EpaSosxWgywybRKDWszMyo8w2/ulOok+AQFlFVlnQvbEHOeLBqkAg4wRHn6YGDnsj9hKo4z+acTgHKdOFC5lVbLdbtms1ywWC7RS89xXCJHTNOI6hxuFTOuCJ3g/y2RnaGE5L+Ln+elytaJtmzkT2BPdQE5BqtZigS4KlJEcXrTEFA5uEqhZyJRFYLUYefEksl5GLtcTz5aB1SJRtprSRpo00KjEUnssEVdnYgKdCwia0EcWUyCdK9KdYt/B/l5RFZGmiBgdsUDykeEkewNrFFUVWS4Szz9XvHyp+OyzzIuXiiefKi4+1bQbha0ULiqa0rJcwsXTI58Mkf204btXluv/2XG6CSybHW1dY6qWahwY/MTgHcMoooB2YWkbSzHH2q7KJcaUHA89p2MPo2QMpKBwQ8boJIdMBmtEVfTAyMmzvv/hn4OPdGHAjZ5iNr0VlaCflVYMw4DWmsVySc6Zvu+YJuk+1GMyoXxvUpaO2swL6GPXEbx/PIxDjNR1zWKxkGfGObTRrJZrQgwMvRQRggAXB3BdVxLog2Ya3RwwFMg5/IQFlyWCdAspPRJFC2uoZ2bR6CeIs1w4OtwkBdF2s0AlICS8nZgQerALI1FHkfdaCbFSJLlw5yJRBCoAD0h9gfeBF7+KMYQwMAxIpZ+jZL0nA6mQtDskLqAoFWUlHZePA+RAznbOkZggG6ypSdEQPJztzvjss6/YrDc/76VwGA9UpmJTbVhVa2xZYBtoKosmczq+5+rmnu+++5pX37/icJpQRYMyJSaXmLzG5B2GMxQt3gVOpwMhntDaUZUVq7bE6sjYH0QyVhqsVdRNRfQT0UeG4cD11TtOw4AtBaPbtA26qdldXnD55JLt2ZaUE7fXR4iRJ0+/4uzsnLuP1xxu71guN2w259hiSVGuaNdLxtQz+Dt8vEXbI+0yYpYtVq1RHyzdsSdlh2iJ5WVB/YS9llFmZkZEkrNUTcZmysKgi5qMFw3zGFHI0lQrN2dDTIQ4CN1RQVkY6soyDCdOXcfNzZ6xT1S6ZLlpmWyQ3Fr3kDv9+DuQyyUFQpjIWbAFLkxy8CbJORC2UCYTRb2h5eXIgC4eaKgZbRUxBUFhJFFX3N3fM0w9xgreWC5CgeBZa6mriuViwcXFORcXlzg3cfXxI+M4ypzUB4aTEGkld0JT1bVkRiNy1aZYoI3Cz6ydqpblsjYKRY0KC4gZYyy6KEga4UrpCDYydhPDacTkRGsVZelZViNPdp5nzyLPzhOX68yykmCmSkVaRsoYZLQZNYVO+AhplKrU2EiuM7tdweVTy7MR7qaEsRFjAjkoclAomzBtpikUy1ax2SguLwq++k3mV7/NfPK55vIZVEsZGWUlWeAWw2JZsEuak0/cDZnrY2YKie02cDjAZr2gbnbCA+pPXN3cMhw8RVNRasNiYWlbO5sqDXXdUhY1Q+9n5pWILpTScwckXhUeDu0Zqw6y01CzQTN4zzTIIatRlGXBYik56doalBHQIwqapppz1sGOeu6iDcyGNu89znnIipgUYehRo4zctBZVWc6CSrHW4oLHB0+pCqqyQntFnzrImaqqaNuWdtmKMlEpQdDgpWibF9ExPuwUZvR8nLsEJX8+o+UCj15yqXPw5CT7vTifMYtlKzuKyaNzQuUSfGScO/RoHnwe4lSeYw/mneK8b+InSoAP8j4amymIjGNPmFlpOSfIhpQ0KWoU5aygihRKC1bG5HkRL3DANDu15ftnsabC6pKL80/48svfcnn55Oe9FH71V7/FZk0TCgqtOR1uyXrg6ZNnbDdPWC4uKGzDn/74B/Zv79nfB3wsOGPDtvmUf/vL/8Tf/Nu/ZbF+gk+WH15/x5+++R19fxA5W5a/jvt7DrffklVF0oY+HLgb9+Q4UmFxoWPo7lgt1/z7v/97mnbBq1evuP7wge5wZJgC//HL33K2PefuJnB//yN1/Zwnz37Jk7NM7D0mKYzS2GUJVeb11de8f/U9TelYNhlrR0ZO4szuP3C6C8TRY5LgHlLOM+M/Y+ZkHcFtSFsa8wQGTFGwXba06wJtAlk5vK9kTqpKcjIMvafvOsbTwDhOlLVh0Zbk3HF/eEVMsiSOQbFaNlRW0AQ5K6qxYiISfRau1vywPXgUJDJUYk5j9HMGcoTkZYZZlLIbmbXbOf0r3Lcx1G2BtoqEFzd7EIZ9jJ7uFOVlXNSy5k5J3J9tjTKKrjvg/YbFskX34NzE8Xh8xIqjI0VjZkxyy2K1xhYl4yhOzbZtKUoBi/XDicPxnsPhmrouaduWbXtGW63w0dGPJ/aHI/f7o8zXlcW5nuB7zneWi2c1q5WhLhT7a3j//cRxbzjsWyprebKFX/9y4j/97zOffZqosFRZJKqhT3QhMGaIBbhlyXR+RmMa/ocvjvyPYc/VdeTDx8S7t4rjEZ6+0Hz2hebFy8Qnn2TOzivOzlqqlcO0PeVCQVsQy4QpPCFmpijVo7HQTxtuuwu++c7yj7/v+O7VQHdasVrXLFZPqOs1IR+JdkIdEmVjePnkGbvtDkWWiNvRMQ4T/clxO3Tc3Rw47E9oJQE3VSXPUUxispSsAz3naPCoqlNKkUMmuMQ0SoaCyFahMI6UIneHOyKyRNdG0/UniqKgWbRsdztsIT6aaZyEX5QTOgSGwTEOgaLU1JWlrBqauet4YP8PU08IQVL/YmAYOlJMMkoxBXVZyh6xrAE4HU+cTh191z8KHdIsgxWwo3R/xqpZyVRTVdKBHo9HutOR4/EgLDXARyEEu3HCTQOQCS7IXtEK9n6anCi/KCTwSglzy6Dmz9c/7krkghTsTFFYcS6nyDRlogoEJfJUyDOaJKFU8egNMtZSVmBLRVkJrmToJ45+QOmCZb2isAusWVJXa9pmzScvPuHi4pzNZvnzXgo371+jMdhcY5VG6YltV7AqO9ZtDzXkKhLcCAOcb55y/ovP+Pu/+S1/92/+hl/86pc8efEclyL3xz2oAW16tPWopEkxMw6B5aZid35J1W7ItuDdzXve/fktHz68YzjcEJ2Mf7brhSzyCs3ZxZlkFAwTXe+4vz2xKM749PmvWa2/4LNf/TXPXnxK4QPxdOL27oab+2tydyCOPYfTW/r+A5Pz9BO4ceR06JiOgemUiUNBTiVKm5mzNI95ZtDYw/hEgtIjzBRGW5Tsdmt2lwsyIz72dP0R5wLWSiThNI7EMEmKWmjwA+So5mzZ8DgbJku2hA+eFCdCQPhG1hBmZ/JjkEZiVjTMkkGlSXpORpB93+MsVRaA4rl4SIxLPuNzAKWxKLIOs8lOo6sSP4AfFMnDNAj+FyVQv816TVULN94WhpubK8ZhFNyAVlJpKkXVlgISW21omiVGF7hJmP/DOMp+wVoywgivSovRNWVpKEymG48cTh39MND3nZAuUxLFlZaQmlwU5Elz+zFzvE0YpRn7zOGQqIrE+Xbk8y80f/ubzC++inzyqSC+w2BwAzBBGBQOw1SvmeIvidWSi907npgPVHlEjbB+Baszxa9+K93M+XPPxXPP9iKzOVNUJRgDw2Dp+oYpJaoA9dJQasvgFB9vFa/eKb77IfHxZqIbRm73mg/XJ45Hj/OKlBJ9f0XmFheO+DRgi4LdWSMJZNNAaUtS1NzfDnx8fzunwSWCC5isMTqjc5CqPYjZchr93KFJRS+4EfEey9xafAuKLNjr2QcwTRMhaigyphDvzQOzSBtDIjFOA3mc3xPvZ1aXoqykqrdW0A1VZVmtViyWC3LOeOdEXm2tLLCddMPiZwkoVc4Mo8Q0DoyTw7lA33US+ZohZ4VCQHTWyO9J8B4iEa2bWmCZ1tIfjxwPB6ZxkDS5h4tkdn5nkmS0p8jop0cQZowJ5wM5ZDRhznHRlEXNYrFmsVjRNDUpee731wxjh5nl42nOaA5egOOVqSl0CSrIjlCNaOXQOmGLhLWaolTYEozNGCufX1kq6loyORQ1dbnlbPeU87On7HZnhOD43e/+V4ax4//+f/2//XyXwusff8SYgqpaSbBHnlCh4LRTHBaKQ4TrfaYbOgrV8uLiJb/5q3/H/+bv/o6//3f/hmZZg8kM3ZFpuiPnI2XlxHISS5S2s/vTst6saBZrfNbYe8PYD+zv9xz3t7RlybMnlzRVw8e3V1RNz2Kz4mx3iZsS08nx7t0dsa94svuEX/ziCYtnz2nXa2ofyHWLTyM343v2/TsO/WuO3R3Rj/OBD13v2O9P+FMgdhkdanQGsuAf4r+6FGIC7yLj5PExoo2mrGsWa8Nm19CuKsraEJImuBkLoSXKMoZAUgFlERxCLmWEk2YJp5F5usFK2NA4o7WTg2jIoXw8+HNWojiMsywvy7zzp0Vanu3zP/Ga9CypJat5+iSeETHpJUiCBHiA2ygtCW65kIurKAqqsiAhpNW6rjg728mLVhbEFDmdjjjvqepSZqKnbjbUyfxVF4XMYaOEwEtXE+gHj9ECQitLw3LZolQtL2cMnE4njt3E0AtiobQFbVkLPpr8mD8dIxwOAopLIUsrnktePk/83d/C3/27wL/9reNil9HJECeD6zXTEdxo6KeKY14z8ARVvKSpSy53b1kv7nFD5rjXNKNiZzQvX1qevyxYbBJFG7AN6BKGIXF/8Hy8Lvj4vmHZJi7OI2eALg2T19wdNd/+mPnP/9/ED68jQzjhYiZmIYMmZ4jeEcIe7z2TnzAWzs93lIuK/thxDEeqoiFnze3VnqsPd6gsKG1jJOReIbC8/GAs9EHAgVaqTqOFoPtQ/KT8YDYTuagxzHupTMwerawodJpyZvMUc8CLelQ0OefmfIYHrIR0qVVTUDcVVSNhP4vlgqaucdOED044R3VBThZr9aNaSSOgyQeFmnMO5+UddJMj5yw5DPNiVTrfubjS8tyu1ivaRYspDHH2t4zDIF2JegjKSo8GT4EqzUXVTBxNWRHRBDQxBZTz4i0wFUpbiqKhbVesNyvAE/II2gOzRyGKF0VjMbqgNC2FKYhxEjSH8XM3oCkrjS2V4Cus7ClkUa+AWR5vSgrVUpqGwsifXys4Hm75+k9/4Ob241901v/lmItTpq4zVRuxJYTe0feGw7EmXyk+vv4z76+PfLzvKNodzy5e8Jvnn/Pi/JLlssFHyRJ1bsSoxLItuDxfMkzgnCPP6ohD3/Hu6j3uzQdub498vH7H8eo9y7Li2S/+mtVyy7Jdc7zr+eM//khV1vz9f/w7vvzqM15+9Vfc3p/45j//kdtXP/B/+j/+kr/66pd0JUwqsKhr2nWNWibieuD47e/4ePVf6e8VTAvOz56xXW4p8g39YSCWkxi/ekXqhfmU0HPWMbP2X+O9YvKAMdRtydmTlpdfnNFuDGPY8+H+lskPpBQorUHbhu7kGMeIKkpWZ4apsbjJUliLLcSF3XUdQy966+CF3y5eBDXLACcUGo04QlUWM4u4aMWvkedFcJqjFcXMmTEKSiMYgvQQv5gcCY8tE2WlWG8kLjPkwBQco/eMzgl+u86cP11zeXFBCJ6hH1gsFlxenFPWFSBZAbawNIjuuxs6gnb03UjXT3Qnx8f391RlyaJdUtUVTVNR14VUhiqzWLY0bTVzlxzDIKDFpBA0wqomLxv5DJKk4k2jRxUOXXpUaTBNgXaghsSTpeUXnzT8+781/Ie/Vzx9OWDqOzrnCTeRdDTksWBwlqtk+OC2fDh9RdBLPnn2LYvNBxb1HcvsuQpwCApXGeyZZvGJZ/OZp6iVhB8ZxZQSH46Jb35I/OGPij/+ueKz54Z/91eKXzSBajXNShqNLS2b84LVoHF7cMdA30fc6AnDQA4RRUTNks48ae6ne47mKPuBDDHe40NkmgKFesBFgw8Sy1qVJaqs58xlRQwTMWXauuX8fCOGMBclBjZ4DGJGzDnh/SSY5yhihLKUEeNyt6SoSsap5zQcSDMQ0uoKlUpcN4nHxCaKClLWRBx1vaBqFmx2G1brBdYYcor4MdBNJxEL+AGrJQbWe88wjBgtjDCjlMhT0dTaYq3FF5L7IBkEBj1fDCFIAJcPYjqtmoImV7jRMY3jnDPh57WguJsxGu/nqN4pYbWE5VRa8g7KqiEnTWUjPo3E3GMKRV0LAsOnI1f3Jz7cRSCglHS9KWaiT0xDInphmVmtZwpBeuRXYaQ7X20rVttaTKo6iDosIRRfp5n6xNhllnXF5e4Shebm4zvev/0RYDZ0etaL1c97KfztX/+1kDpTjybQtDXPzl7y61/972jXl3Tf/544fQPe0+iCpxeXfPnVF5xf7Chqi8k1ymZCUqgxUOgtdekI/o4x3EqwuhvI8ZZxSqRoGfuENSXPL75k8BNjiKBWbDZPKdXAzepAZVrOl5/zbPdL9BPLYnPNxz+8YugPLBcl62XLFD2Dd2SbpCqvoGqYY+zuMHpDu1iwqJe05Zr2csfZ7guGk+N0N3D39oa700fBXcweAhB2S4pRjCV+xGokarDUZORw2h8PnPrDI0NmtVjSNjWLtqauEqfOMQ6RlJQs1WtLWRb4aYCUmAZZJrtRMAM5SnqUMUYuEKvEzTy7SiUtTc3Lqp8uAvRPUsOIqD+SGzExisRQKTwRTGa5aVntapa7hnpZYStR9XTjxKnrRWOtMtvthuV6QQyRsioxxjA56ZhyTvjgmbwDDWZ2ma+3O9o2EMfM1DsxunUnvHOUpWBMZFwm+5oYghBE+46uP8mILiaqsmS1bPFhjj30Dh96SEZyGZRBUcxcp4zCU5ael59a/of/wfCbv8rsnni0Gkm3kTBoXN/QTQtuxw3vDiU/Xo/sB8WyPfDkYs/T9RuebG8p8RxPmTfvND9+MDx9WvLpFwVnTzy2CWgroLIQDH0XeffG8rvfFfzjHzR//DPc35VY0zCOgZubgZjh+r7k/q7AO0OKjuA63DjghhE/BXKIWKVpm5KqqFG5InpNd+rojiPBycWf8jxKVPCQI5AyM366YLVcslq0KBQpRppcslQNVVNRtRXT6OjHUQif885Mmxl9ojIRCYrSmn8lZQ4kn5nGET8JZkajZSzigaQwqkArYQJpLcqodrFgvdmy2cnuaZpGutNAVpl2uQAkNEgpjZo7FxskH0QUZjyq31KQPGzn/QxVhFwoSm1lwZsFVZ3izCELMpJ6oO8Og8N7NRMBCtmnoLBFRasKtJj15fNMUJYli8WKFy8+59NPv+Tu/iO/++f/wuF4B2RicjgvO7w4S2bL0tI2DednW5btirZaEz28efWB92+v8NnJC6ozxkK7XrFYl1Stpqwh5ulRYhx9xo0ON2pSkByNzWbJs+fnjP3Efn/L/d093geU0lRVNSPNf8ZL4f/wn/5HTsOJt7dv6YcDm6rk5ZMvePnp31A2T3l1E1gWjjZ3aByrpWL1xKLqiTEcRKteLOmnhMJhzRmLqiHHFSlURHfN4O4gelTyLBcLds+2lGULyvL++pp/+fbPHE+BkGCzW/Gb3/6Cxm64PP+ERXWOrcGHkbPdktPoKMpIiCe6rueuPxFM4mQCfTowTbf4aSQFTW2Fz25sJKaB5eIJ58undHvPdbinLxIx3Qq8jSRSOo24I7Mj5QkY0UpRmBKVA1M34MaE7zNpsOQAoPCqJOiC1aZAaeiPiuk0zQ+yuJJ1FmcyIeOHwNhl3BhnEqXMO+u6wi7FFS3jn/zTCOhhbDTnZRqjhDPv3GP6VIqRMQyAoywlr9qnILPKpqLZrmm2Dc26pl0tsVVF1fXo/QFiwKok0shCug1jS/zkOByPstzLkuw1zlLCqqlplwt2mwuZ7Xc9XXFCqUh36nDTwDh0jxykopDowhgD1hoOxwOnk1SPxhhKXWPKikggBY+fHGE6oXOFVYISJxvZNYRAqRXLZebyReSz30zsngd6N3C4C+g7jRtqjnHNtdvwfbfl9Y3l5u2eOu359Fc/8Ovzic83gWWp2e8LPl5n3lxpDgfDl78oePm5xRiFd0YAegpcp7j7aHjzveXPfyz58c/w4ccJm2oWTUV3qnizlVxflxbc7jWnY2TsDoynSOgn8B5LwpSGuqxYrVa0zQar1wRvscUt5HvuunuGTubP2szP5pyxLSMTw2JRsloXLJYFpIT3gdJYlK3IZHxwdEPPqT8Rg+RzFFhUCGSVCSnJiHJ+vpISU+E4CFI6OI/KiqZpsKaiO4pTXSmRGKMVSgUZQ5c1dd3MvhXzuDfwzqO1Yblczvjt+OhSNtpQFdUcGgRuzogYh4ngJGXOeQnVqcpEWUFOslMIIT8iIbSSy8G5wDg6ptETo8aYRvwYxgiuIgfqpqBpGlCSX56zAiWYlrKsODu75Ne//ms+Xq159fpP9N0RknTrIQSygqIo55S4jDUF282Op0+e8/TyBSlopjHx/v0VwYtasK5q2mXL2cWO1VaMq8538j5Nciml2bSsjDDQFs2Ss/Mlm22DyrP6KvlHl3eMjpm9+vNdCv/bv/o/08WBD9MVd8f3+LuPxNHz9Q/fMMQ3vH39Hndw2JgozIhP33HT/2eOcUV9WLPbPGPR7piS8L7X5Zrd2XO0/oKcB3744c98/ac/YnXLdvWMT158wmeffUK7XBCS4rvXr+hS4vr2NR+uf+DJ+Ypf/fZztotLtHc4d0uRLinyihwKnJvoho9c32f+9PpPfP/+B6x3LC2szhYUKw2ppzI1zk3cTe9x7R1jKLnvf8C/rjnceW7fDXS3HcPUEbMQLXNiDsyIxORQOlDX0oEoHIVpOVvtqJuaU9UzNl7mjynjo8ePA7dTR8qOODU0xUYyXYMjB0cyE37wDHvF6dbRn5KoGyRrUxZsWWFnzrzQJdNMdnkwmWmpFudKOWZhIcWU0FgZH4RIip7Ry0UXVcQGRXccaZY12/Mdq8UObS3OB7rTwN3tnpwcRifKp89YrNeURhKwjvsjp1NP1w2z/DSSMjRNQ9uULKoV55snpBToDieGqZcq6gFOlpPwpXJmBIyxtJOY3lRStFX76Ertu4FhmMjIUi7FIIt4PzHGSWS1pcbYClvWbDctX7zUXDwJjG7k9trhhsTdXcmH6xXvrhu++1BxfYj001tq6/hiF/jrLx3//rcjn770ZKN4f2v5/T83vH1fcHGZ+PV/CKwuHKdhIk41capZFoFSed5/gD9+a/j6j5bXrw031yP9oef6puC7NyuGVHFwLevNgnZ5JhLsYqLQVkiqSlOVYQ5raqjKmqKuaNo17eKSwi44v3zK/e0V3/zpGxnDPjiMs2jwTSHeGaNkjLA/7Dl2Bx5S9pTVmEKMTsHPjKtCnOLWFJK/LFtbjDWgJYMDnee9g4Zo5v1UidFKfp+mxlnwJovWXkXyA59oLmS885yOJw7HPSlHilLowzFEulPPNAoLqypLFosFi3ZBUzUCTux6xnGi6weGboSk525BBBVGJbSK5ORQSsm+KgYgY7PBTQGjBWKnlGG5aLDrEiHCBqaxY5r8zAUTVVYMsFwtOb+4JATFfj/wz3/4A99+8yMgjLDt5owQoiApcCitWa4WGKsZxwE3RT58vKXvPLc3EiI2OcfZ+Q4fT2QmmVosV2x3O9plwziNYhJMiqqylIWk4lVFJSZVXaC1lbMsdBxOYto9dSdULkjJSKb7X5ax85dfChfbFxTTPbdxT2FLNptnmJWmsyuG/cjh/pb79+8IY6CpWqxt0BTEoBimTDV6lJnEwRo9bppw04EQRqbpyNWHK8YhcHG24cnF5zy5/ITd7pyyKhiDY7FasD3b0vsPTNMHjuOBuy6g9D2N2kK6xE6KcZgYp3uO/TveXkNvK77+9lt+ePeOVke2C8M2rml9C3lgs14xnBx+mvApwDTQ95H7W0e3T/SHTJ6kGlZaKgxxaDIrDzwxOVAiWQ0BCRUPEaNKzrZrUlScujmNy3ekEMA0aEpJoSpEI52zIueevuvoj4nxaPBDIjoh0WNkFPS4IH78MeO+UhIY11xaSducRWZoMkVlMXPoR0wym845kUJEGUO9KFmsa5q6xChIc26F8hqXAsk5rAJdlrL4KiwxRVzKeBdmo5kmRVGCuUk6k8LKyKMqmtlZK0vvsqqoyhq1kVbdTY77u3uGfpjHRxIKJMYqM2dIiElvpiagjSwFk7FELbjkGBNJScRoWWtWq5bNpqGuCg73Hf/9HwZiChz6xN1Bc38s2Z9q7k81wzSh4oFPn5z49eeGf/9vMxdnnsElfnir+f5N5utvM90A588NT54rTneBj689dWFpSouzkmH9zXeG3/3e8N0bw/4gJFlrPaM78eG2gHqBXTSYZUtdWMply+ZsSfA1mgk5BCoAAQAASURBVIboA8tlzWq15Gx3TtO2c0RnSVVvQVlOh2s+vF1wPN7Sdff40ZFjlpjKkChMQVWWtK2QiSc/0A8DqIwxkgEd5gSvnEWKqq1sqhQ/FRUZ0b9rbRBDlqaua6GWZiu5CVHhY+TgexSeECQy9+z8nKapuD9ccThdy1JUyy5rHCfcHJhVFJayLKUinjlMAFVZYY0V2J7S+OA4nbqfaMIxYTHzyFAW4w+7tJzEO/RAZtVadiSSCCc+gZx+SiCMMRKCn1PrChSWFAwhJoKX7PkcDVVRstuUTC7ipgFtMsvFkpxr+nFkGEa8E4Nc8PFRDRVjYn9/pDtNdJ2jrReYouTp86eE1JIYKMqSsqxpFhVVXWHLgrKpCMERop9JyIpyNhCqh85nmjgdT9zc3NL3PcEHeWeSklFeyvwlP/7iS2EI9+xP73n94z/Tj3v+5pNf8/L5L0mbZ7z6cMOf/ut/4/bqLTZYdpvntPWnbOrfkG0JtqQsWowq8EqUCNc3H3n75h0fr95xff2eumjYLM9Zr1ZcXl7QLhr6YeDQ33MaD9zcv2P0e7IeUHbg0F3zT3/8A7vlit988VueLD/n0J+4vZ/ohlecxle8uXnNTcy8edNxe+sodhpjC5yPpMNAaTVPLy841R1dNxCjInpFd/TcXY34UaFSRVk0VOWK6APOjYQs45EUwLlISB6lA8pASIbJB079SFUnLi7WKGXZnwa6fiBrTVWtKStJXhrHHu8dZVmgVcX+fuL+ZqI7KFxvybHAai0mtOQl30BblOKR56L1A3JD5peQZ2Kq4gFmWRSWRSGsmGGYcN5joqZIotIpq5Lzyy3b8zVloykqRQgj+7tJsNSFpSk01cWWoioo64IUM4fDQdr40ZFCmlO9IPogM2YfaZsWlSE4z931HVklyqrhommEelpU1GXFNE28ef2G+/s7VBYkuEhy9UyVlN1LxqCtRBwaLQjwFBLJi6Zbq5LBnRj8kXZRs9u0lLbi/lZx/SYznhwfDo7Xp4RzkQbPsozsVpqz1lAvMp+/CHz1K8XZC8X795ofvod//IPh1VvF5D3bs0SKFYSCtz94fvwm8OnLxIsXE/3RcX8T+P0fNf/4L4abo8UFS93UGB1JpSUrT8SDrchFBDvR1AuqYsd6ecnFxSdURc3l5TmXl5c8f/6c5WpBUoGQApOLHI4H3r9LOH/N5rxmfVMxnjJhCExZMjWssVRFzaJZUy9rjv0BFySr2VotlT/C4Le2eCTaxhBI0SNcHv0I+xODm3QSi2aBMQV+SLjg8FNkGAfG/kQKmsVyxeXlJZ9/9iVnF2d89/2f6McOa5RIZxNCw53heOMwmxvn7IymqVmv1yzaFmtLvJdxz/Fw5PrjNX0/EGOaPRVyiT3kKjy8D2QJ63lAf9gHiTcJLwYNcs6SfeKF3ZR8pKoq6rqRuFanJachWLpDQHHP+fk5z549ZbFczMj2gdPpwKk7kbKayawSuhNSJ+PQqqQqS+JsujSmoKxrlosVdV0TUktInRR2CP8oE6makkXRSupg8AzDwDgOMvpSYqjNUZ7rw1XH/c1RoIhoURoqhZZ495/3Uvj6/f+Hvh/QbmJjFhSFxOU1RcW6amkXFdVao/0A7T1e7RncCUtLaa18gzdbtqpksw6k2HK4d8RgWTZP+OTZJ3z5+Zcsl0uKQjG4K+5OJ+5OH3h79Wdev/+RH969puvusHqkLBxV5Vk0mWxu8ETu9n/g3XXPsR+AmqJO1AtPWSgKlSmrxGItl9Z6+RkhZUY/cV28Qpn3dKfIOEB3jNxdD6hkWVSVBNMQxL6uhJce3BzgEQ2FbWlWS5qlpmosm7Nznr/8jM3mDJTheOq47+9xTHz1+W/Ybs/5/vuvub17z25X83y3oiw03nmGk6e/n5i6QSB6DxyaGXaWcoaYiVGRopGc1zxn0D7kI2TRl2vEXVmYgqoqWSxairok2iwUWWRE0zTNzIWqKCs7z08do+vFLa0D1mqaRUvTtnTDyPHUSXfgA13X0R1PpJhQaPzkZZSRMhroTx2vf3xFVVVYa1lt1jz/9BOaZcs4DEzO4dyAAi6fPOPs7IJpGohhxikUZoaleY6nI8Mwokwtc10rXRYpk5Oirpc07ZrRDwzjaebGeI7dkX7fMRxPjH3PcYocIugiYhcnvIoMfWaziPzmV54vf6HYD5b/5/9s+V/+35l/+T0cDrKfeflJZPkkE06K67eKri+ggsWZZnmm+PpfFP/wT5nf/Snx9Q8RbRWrTc12+4S2XbO92LG52LA5K1htFLZwJAaq0rLcbCmfn0FusFZ8D0VhmRhxp5GYPMfjgdev3vDDD9/x5s233Fy9ozt2NK0lOoUfgoDxNLMxynG/P2DHnpCDuGRn6a9SCWMSupACIoeEHx3Bi0rmgaMjclNR3djZwR6nhE8TwWXc5BkmxzR3h7asWG9XrLYbhslxdXVL140oLOSMnyKnbqDrBrQVn4M2c4SsMahCsWhals0KEuzv9ngvF8Y4ToyTE5Vdmn0UcZoPvYzWag6wUqL2SfMBqZKwwR5ltlBVNXVdU5gSrexssBse0dQCtkuSx5wNOSrcGJkGx9CP2Dk6NMaHcCElh7ARZDZauqW6bWbG05rlek1dN1gjznPy/H3ynuTDjK2IDH7gNJ5kVJ3jjE1Q8xJ8xvYji3GjLTF4DoeRU+fIGIydqS8Gea//wh9/8X85JY0ylrPlAqsyWXlO7oQeJpjmmMjastk0PHv6lNXuAlNtUErQvoVtaOo1KZY47QXzWpacnZ3RVC2fv/ycL7/4ipQCp+6eQ3ein04c+1v2/Xv23VtOx/dM44m2FhSD0QXaVKJHZ8LHj7hwxDmLc2bm4htUMhSUVIVlsdjx9OIXvLj8D7gQ6aYTmIIpRIl77Ce6Y2I4TVRGY2uLUQU5WlHygMCzQiJ6QTeXpmKxaLh4uuLscsPZ+Y7N7pzClhKYnTy6zNS6YLFqaZqGnDLjMJB3GVsYirImhZLoKvpDhXduDiuRakeURLOSxiSRlWqFNXrGCisUBTaZGVsgD4SdGTh1XVFXDVVbU6wbyramaeSFqOuGuq7kRZpnz95P9MMJ50aUknlyZQpMsvjOs785CE4bmLqJsR8f+Tkp/hRCpI0hOM/t9Q3Gyu8jpki9WOBCnFt84cQURUFTN+ScJEVsEhy1scKq8RLqPJujCmxRUZWG0iqiy/hJkMqqkMtIBY3rEse7ke5wpDvc48ZR5L1RUUQlsZ96IhqFTw0hQgiZm5vM199GXr0y/MsfCt6/UZgUWS4i/XniOMD1bWDRwGkMBJs4jpn3V4qvv7f84duCm27L4vIJTy4v+PyTJ2w3Fyzacza7NZttS1WDso5huuL+8AMGwcYsFi3WblCmIKvIOI3sr2+4v7vn5uNHPrx/z7u373j39g139x8ZhiO1LTFoUabIHEgQJTkR3IRXAZsEia5m/WoIAY3IW30O5Kjk1wdxw+cofg+lFYUWSrEt5mzlKFjmGDM5GVISBZy2Zj6ECuq2pmkXLFcbmqYWtHSc6LsDp+OBYRhxoxMcRlRUdUUxq9i00VhdSPXuHF3f49wcuhUEE/6Qtyw/knTHcxKinnEzKaefxqkISl6b2fMwGzeLouTJ+XO2qzPu7u/48OE909jLGDiGR3yEnomzOUUZcY0TRVmAEmpARtryrKAoC3bnO+nAipKqrmmaBe1iwXK1pq5rUXXljHMT4xhk7xelc4kpMk09kxtmZll6NBYWRUVpa7QycySnJiZ5bkOc40eNIZvZX1Iqqrr8+YF4m81fo+OBov2R6G85pDuGO4UfluyvJw6nE0EZXjz/NX/767/j5Zf/hrMnv8J1HXGaUHFBdCWH48j19R13d9f4eGC1aHh6ueL8vKWpDSEqQmwY3EhWJaaoWaxXbPoNp31Hqg27rUg/Q6owek0MS2IoKIuWqhyJeeTQBa6uCoagcaeCIlZUumVRP+Ni+ys+e/Yf8ClwGg8MLnC3nwjjW/Y31/QHqcbLUrOoajQtLlWSLatHZs6V6I2DYKrrpuXZ8+f85q9/wWLZcn2z5zgbtYzVbHcrYvAM/Z7+eKLvDuQkCWPa3FPbM/yw5HCX6I+AMlRViTYjXnuChxTNvMjTtE3NcrF8rL4fZus/8XHzrNQRGmNhZSFd2oZVfcZ6s+Pi8oLlcimLa5ixw3Mcp3f4auYlxUCIjnEY6W6OHO9GjncD1orMUUdDkSURqy4rHI44iQxPKYX3kWGY5KWal937rqNdLNlsN6xXa9q6RjN3S8PA+3cfub+/Y7lsaNoa7ydiirStoBB0UWGMpiw0pVH0Q2ToPKMfOYUbRidwvtOd53QdhMIaBmE9lYbSgw6ZHBLRB7yJ5AKOg+b3v1dMU+bV64nDMbNaFzx5ZlDThFKO+xG+vVboKhLyhCcSUqT7Z0UcDP/y5xWvPpxz8fJX/P2/+zf85qvP+asvP6NuFmTKeRnsxLUaJ+5zZJ9fk0OA5MnR47MEDI1+4O7+jlc/vuG7r7/jv//Xf+LHb7+XWXiew1xUxuppDuZBDGuFxZSayQdcCGhAWz1r3QGfiTnO5mSNmyJjCrMj3KKtANj0HINblRVNLcHvp76XTnBGY4gfQKOKhE2amBPWis6/qCs+//IrXrx4wft3r6n/XPLNN3/i7Zs3wrgqS+Fq+YgqFaWRuE814+VP01FS9CaHd/NoaU4KZN5xaK1QNs/7Njm4H0JsmM16SslBKY7rcg4UCo/dxtnuCZ9/+kuK1z9yc3PLkI5MrsOHiZRkCV4VNboo0aWcnFEg92QteAubIsYbMIq6bDg727FcyohNIHyiGuq6nmGYaBa1qP6iw8WJyUl6XsoTMU6MU4/3A2UpxZS1M+5Clxhdzgt7LebZYWCaHNoqoTMHSFmk4WWrWW8aqqr8eS+F1999T2kmVuWJlHuu+hP74R05vOL2puf9h+9RPrFrLnl+9gWXFxesL2qGQjEeLffHAzf7Kz5efeTq+gOj2wM9ZRHo+obDcUlZLKjrJXW9onIjHB1TPNKNt3T9PVPXs6xqnp89pSgXfLxJjF3i5vaeKU54e6LvOkLqmXzg1Q8VzdWSRXHJxbqhKnpOwz1vP/4zyUcijsGfePXuW959+JHXb294+/aERfPFZ89py4batDgHITpydnNmtMIWBcZnkh8FiYvndLrj22/+hbKq8JN8vHXdQobQOQ7HW66md4LjOA4EP6GBMGj648TpztIfFaulJacWVEFdFYAjpwKoqKuS5api0QoyuiormVeW1fxXOUcciuFH3KPFY/4tSksqmikw0cBRQnMySCurFXjIXmbTbpJxAxQUWbNSJWlRUNoFPjpSDJg4QGGIweN6AZDlIDymREKjaGuZpU7DREqZdV1jVMZ1HTd9z8cQH+W2OYmO3GCYOocfw4x6btmuzlkuF3RDx/F0YD844uBnM2Em6olwN4oRe8ZCl0WW2LJY4UJkctJJFZXGmohxCZ0DPpzYD4brawihICbYbA2rM8Fy5LgWVLHqGbuRP3+beP0qUVnJTnBdxI2GYJ9y8fwLfvGrv+LXv/wVu82KbvAM/p6sEilMRD+Jr0RbhjASmeZ4ygwpMHQnfnz1gX/63T/x4+tX3N7uOR6ODIcj1iqSl4xeAXsb8jxmfOjOqrqirEqaKPhxTBL6LVHGeipSWFn6h5gwRlLN6low595JmEzwgckHwulEP03ElBhHR9su+PSzT1mv18So6MeBm7t33O+7GXcOCy+5HC6IVFSS9yTbebvZMA4D3k8oJVnGla2obEXwnm7oaduW890Fx9OJ/vQRP4W56Jlnn4+ua9lBaM1jvrRWZkZOzFiakHE5UBRZxo3ZkFNiGgM37p5//O//nT//+Uem6UTX36NNZLlrQFVAms1q9Vzpb6hbiRUu6xJTyRLZ6pLWLLC1kSz1/sixO2DnrGpjhBptjKUoFTnHuStwhOhmRI4IQ2JKKKUoivKRFquQ8VWOsjg2VmJkU3JMU09IPWXt0FbGXSkJUK9pSparmqquft5LwXfvUaXG2QJbPWFjzlCF48N+4D6MRB9osuVsseHJ+QWr1QJbgsdx3++5vXnD/d0Hbm4/cuwOlIWoQuqqxIeOfrphf4LRLzG25Pbwlg+33/Dh7juu7t9xf3dLfxholgUm1bTVlt22IDKS1TXTlEiphWgxBrQZmcYSrWqerjec7xqiPrE/3VOZJTZXdOOe+9MN3797y+t3V3y8OnE4es6WFdvtkkrX4CzRZGwhLPQUFUpSbcgz1zwmh3MnumMETiwWK5btOYWtxak9BWIfSaMjuiPEgbq0qGJBRQGTJvYTcQos6oaz1RKlCgnKKYV7onWJ1hV1XbFYVFRVMYeol1gzw+1sOc/gpdqSpZrFzNXTwwIvPSh0UpCDeNaqaQNZqTkKdGToOqZpgjlvVhtpvSvTsmkMPkh8Y6FqKtMwzl6DrKCyENTD/1va96AjzvkZfhhJbuLUdaIvn5xgjpNUnzKqKMUIBzRNjVWZqQuo5Dh2E/tDz9R1+L5/TABKJhKLIItRZTDJSIhOockBYgKS0FiTyaK60u0ML/OM0XHqIilqVq1lsaxYLRfUiwWRJSEZYrD4YDg4uB8sT9olddEQppF+cmi7oC4zKQ30h3vCcORdHPFxIsQJ73q8HzG2pag2ZO7x8Y6zzQKtI8H1XL+/5rs//pnf/8N/48fXrxlHmdWXxsihptQ87xa8iXBN1Yy6VhirKCqDVYZK5XkcLdW0mcdHkq4mDuO6blkul6yWK9qmZRonbm9vOR6OnE4d3jsm52a5ZSKkRIgJP/+z846Yk5gko4w7RzfR9R1d1zOOjqKo2Gx2dKc9p8PtzA7y8ygnCkI+zZ2OMqJaqxqGfiL6THBxzvSWMZHSAu1LKQr3K2VyFB+FNMxqZoBFGXPlhMJQFPUMmZPFtXOe6+srrtU1xcwRWm0XrLeLeRk/K/5sIcqgppYshEKTlWOIg0jFsQiPUZNDYnQD3vv5IigxZqIsZFyrjCJEcZWH6InZk5FdkHQ1UrxpDVVZYrREwwrOJj/gp4hEQpjwYSQxoKuRqgSlLClqiTMuFJk59vPnvBRWzQFTrCjaZ2x3L3lx/pSoLf/w/jW9+T3rr9+hxjs2bcFybVAqcTx0vPv4lh9+/J53r77h9uNbxqkHlVkttxRFQ8oaW0HId9x3d/i9ZLW+v3nNj++/5mZ/zaE70t04xkOiSZ77mwN12/LskzVFtSQ6I/hYapwOtOUHlu0ejGG5bLi8rNltFR/HkcPpyLKecD5xfXXkx7fv+eH9O95eXXN/5wlz2xWiwURNcgU5Q1HJwjCGQmabaSJlMXtplfCuJwZFVbRc7DY8u/wMRc2Hdzd0fYeJBetqTbmrsVVG5ZYcWvzQEEbNrulIT0cKW1OVK8piSVUuqZrykYZoCslfNlaqHJHsyeGXZ+7RfP7KrDFp8UYkP7t6mV+QiYT4A5TJPwmYC8lh6NyB++NeIjXdhNIIqlczq5pE/md0ibYFdbEgt4nJDXTlkdENOD/OxNhIiIEQRf5Xl5XMZb2jnwZhF3k/G2vUnBQ3q1KmIL8vrUkBpjGwvz+hlCYkIzuN6FFxIvhE8ArdFFhV4WeHa20KlmWNKkZBgOtI8qKcUslT2Jq22aIMdGnPmCZGHSFbfC7IaUmR1zRqQbIFQWXGVBBThUkVlVrxZPOSl8unHLojt909N917bvff4b6+5ebDK0wJ2UwMw0DfDfRjx+gGbLGhXTxjuU6cnR2w5gkxOqbultff/8Dr7//M6f6a7HoMSXAnwZOVoio02ljczDFSs0nRGIUtFLbU2NJQ1DVlVVHMHWRVlBTWooR0hzJGUCvrDdvNltViSV3XjMPI7c0NHz9+4NWrV9zf3+Gcw3uPzYmYJn549T0ZuZi00SyWBcv1CjuN80UxceqOkuimFLuzc+q6IAZHfzrQtjXLtuX66iNX11ekLCqksixZrVdYW8gIrZfvb4zS0WpjZnNjSVGU5CTgvRhmNVGS8NucH/At8mu1tlRVy3ZzjtYS8Xo4HOn6jqg8upCI2cWy4eLijPPzM4y1j3LcjML5icENpDhSWEOII8PYoZKh1EtSzAxDhw+OrMGWBSB7Pj+NghvRM4VgipioCHEipyCjTSWqMKVKytLOeeuQnPhCVJYlvzUaH+SZGsYeHwZSHkFPGGsoS3G8pz7gk+fY92g1/byXwturjsWi4EUNS12xrNeMSpNCZhxG/DSRxxMfbl7xzes/oG/PmHTN+w/vub6+YtusefbVhmO/5zgeUcaABVUWFM2GwR853nxk8tf4eMehuyb6a9I0MN1F3MGCL4nR0o0nDt1H8j6zWp2xWX0C2XB9c09/uCOnCmsXkriUNVXraXaKuqvpTktuh3tO0++4vrrl4+0NN9cHDlcOd4jkSeGGwOHohBDqPVrXWFtBNqiUsDpTlR6lDG1uWKwqLp9uefJ0x263Yd3u0KoW/ostaNvFvMg9Z7moJKxcVZAKgjMErwCP8FEErWtthTXlT0A7Pc+C4VFxpJV5PEgzmaxngFl68CkYAV6kMKOIlahSrHCSYook8uNiz1g7B6w7xrHjeLoXAunMtpeVhZo7ErHNGyN7haKw1GZJ0VaEyuPjJOwlxAkakjDxnZ/mSyIyOYchI3fZzILX4kCVMYDwYGSJN+HiSPJSJRldYEyBthGMRSFy2OACU0iPtttUQLAZsgZdopVD5YAiYkzCFFDUUn2FQySMYuAjQ3SB06lHKRhcoJp9Av00ShCLAl2UnOyJW1OTbaZclhShJI+Z+7sbDve36AJMyRyJqAlxxAc5IIKfIDWsmgY3ak7DHu8hmQFlQasKck0IIykHtIKsDCEWKFWSlcGUmqrW1I2mXUp3s1guWK+37M6esNs9oWmWlGU9pwMmjMkYI4tkWdqXFFbm1taImubF+IIP788pG8Xb13Bzfc3p1EseekzEIFj3KSnaxZJnzz/l/GzDzc01+/2elBSLuuTiYsOTp+f0/cCx01w8fcl2+4TLs3N26zW///1/4w///A8c+1uwgdWmZnd2hhsit1dHxsGRvJB4VSkz8tWqZdlsWVY7coocuo903R3jvCsgQ5pBj+IpAihYrc548ckXLJdrtLZ8+PCRu/sbKD3lIlPVBVUtSXMuB+I0EWPE2oKiLEgqIvkIzMh/S2FaeW+VFRPlTBdQ6qduJqNQZo7ONZGEl47rAQT5APorirlL0HP+AkAk64dnmnl3An7wMya8YxwnGdXaAmMbynJD1OBcDyHPwVk/s0/h7qRx3lGr97SmYLFYMtmKu9srDjcfcNOJFHreXb+j/PMfScUCnyuGcUQl+NUvf8sXn7zk9nDD2+vX3HV3DLFn8Cf2/Z7udM31x1eE8B70LUoFVm1BdhXTvUJZRagU2gRG17M/BMExJ81m8ZycS26ufuD9m/eMPWQi49ChSLgU0PWSXXWOajbsDzd8uHvL/tBLWtgp4o+WMjUs6pplWWKQQ09pQ2EWFGYtzkEFqQ3s1k4UAUaxWi+5fHrJdrelqRuKokChCCSWix11tZJRkC6oy5bKVtL+Zx5572r2FAiuN815rEr4LLMR6UFqmpIscNWsssiPiVKzLFUhuIMZl621hOnMFGC0kWGDjDAfLgUz670ffi9ZyJGjtMAPv0f5b+e57Wyiq6qKuqofdxlWVxhr5f8lci2yEtPi5AYm5xknT6EmCtXgSlnmZdmSoozCPgS4pyCZzXmWEs5ia6UzWsuoKSdZ7imbSS7hncMogzGWqALjNAKJEAW6qHLAalEx2VKTVBDEtAe8xs7IZQ2yQB4nfE5UzqOtvAcpJapCUWlBCPS5py5qmrpmHTeE4Dme7uj6PbhE4eaQ+KrCGk1prSzzxwlfrEnTCj9pTv2RFDLYSNmU1O2GpgUdjoCnqqwUC7kGSrRR2MqwWpcs1yW73YL1tqVpFizbNZvNEzabS+p6SVHUcjCoiC0URalneWlBznpGIsjBk3Mk+oaUJ66v19zd1ahbyeXISbIBjDLosqAoGs4vn/KrX/41z5885btvvkb5H+jHAatlFLharSmrBqUL4naHiondaseyXrBe/UBTLfC5Q9eG7eWKp8/O2d/03H48EENGEuEMpsgUtaJuDW1bsqoXqJzRpkfpSWTbSWJepZHWs89CJow+RCbnWRtL2y44u7igbEtU6bBtlI7ciPt4GMRDFGOQ7ANkJv+QN2GwKF1SFO1MPZ13c0pGXMbM/olZ/JFJckloGa+FWb2XUoY07/+MwVpRfKU8m1F5iOCcu2lm2rGSfYnIZQsKXVEWFat6yXa5FYNwF5myw8x4j5/1Uijtkmka+Pb7f+bm7i290ujFjg/vfmR/846cJ0xhmFzm5ranz0fGFFjUSy42F+zOLrh89jm6XtDHxHHqOe3fMPor9qdv8e7E0N2jco8xE9v1jrOzT9g0DRWZ+7rjtL8jpnumydGdEraoGMcjh8MHhj7xw3ff8PrVe5p6BUlx6j8wesep+5QcV5zvXrLbLXnLjwy3gYqKWlU0esCXgeXmjLPNBW1bUNWIY7AoMapFqwWFqSmLQhDESg5Xa4Uj3y5byqqUB3D+RqeUaKs4a6KN/HwU/HWcTTreyzz14ZCfR6FiOkk/2fPTnEmd56paK41RMpOUn+HxQjA8hHTHxwNUMRu88k8XirEWA7OFP5C0pGcVhXgXqqqiKOycXBXlYVWK4CfGwT+ahKyRVr4s69nlKtJHaw1FIbkKxpaUtsCYisJ6CuOoi0BM8mdLM9XVR3Ftxhhk/BQlBQ3yHOc4X4ZyB4qJMEpmAElm5nZeMJKzUC79JM7tLDsgEPlrXYtiahonQpALpjAFIcrXevjzFKVFKUXfDaQs8L+maVkt1mzWOzbbHevtlrIQLIT8uSXIxsxtfkqBOElEaJoDX9wkF5hVE2MfGfpA343kBCFIlsZ6tRaVia6xZaapl3K4YlAGbDlSNInVaiE7gdWGtl2S59SuYTrRfejnkBYJpCnr8tE9XFWl5AIb+2hSQymCc/TDiePpyPE0cDpNHE+RYUwCYVRSaJR1xe7ynM8++4wvv/gFF7tL7m/u+PD+PfHU0Z0Gbq727O96Xn76ks9efsaPP3zNN1//M7dXbyEqvv/+W/b7PbpWrDcrzs63nJ1vIWjatpbn0FbSpZqM0ZqcHTF3xHSPUZaitLTNkhggeIVzg6iGCkkHREdScrx5+wOH055nz55zcXHBYrmkXZVkJWqs5IKQZELCoDFFBUUl79OMmDHMBV5Ro5ThISvahYEUkjync670Q5RpSkm8Bihy0iQlSHOl56yHQlNZ6bjFxJ/RWVzIVgJS5m5Ez0mNgbpsWC+gMg3BB0pbsGwXLBcLlm3LMR04pSOkTDUXaj/rpXC//0AKjjQdGPxI+Paf8Kbimz/9kes3byiiYrU6Z7d7wtn5E4oYKaJnVdVsViuK0uDxjGGgHw/cHd7x7sOfUbpnsVDUpaG0Vg673FAXZ2yXnxKrBb73JPeRFO8YxyCy46Rnw0bg6uod+7uR66s7jvsJlWrqqqRdNCzaBevFM9riE2r1lJRaGgZW9oRdeJZE1jox7hTb5Tln23NxG1t5oIqiRKsWTTP7Iux84IrG+UEFqrSS7izKUoc5Sc4oO//zA1FV5J1pZvikhzjELKMuW0qbmmc8hbZGfCHZzD8nmAc9x/7lnAnRP1CP5PeCXCoxm7k6EDZ8zPNl5KXafqAmPhzuxpjH6kR02WoG1P3rLiaScphBgHOutMr4MNMnoxcVE0raYGvlAKqKeS8hi4lC1xQ1j59fRr6uC4IqHt2IcxN+jmIU5pEoZxAvEnk2IqU4ZyWEeXSWmQ//PEMLZ/RBfuic9FwZP3x+aQaqBalKswajH8FjWlmRXOJn1KzCaEPTLNhuz9hstiyXK/ksQqAwJW3dEsOWFBP3+1vu9qc5JpJ57GYZx0jfO6Lraas9bWNYrxN1JSqVpqmpm0BMmaIsJKGsXtI0LU1raZZQtT3KjIxjwE0Hbm89tzcHxjEyDPLZhRixhaWqKlbrNevVmqpuhKc0O3flciglfKYqydkxuY5hlNAj7yXrpKpbilI+38nJ/Hq1bFguG1KK9F3H5EZS8igdCXHg9evvKYqGYTix3S75wx/+if/2v/5noksQFDfX1xwPe158uWN3fsbufMdi2RBd5umzJ4yDpLS5pCkbaBcFq03DdlVxtqhQuWB/gGnyKCxaW+qqIZV57oozIFGyPgwMk8bHNUktyUbAlEpn4YFlGY2prB6R3Wb2EzxgIrTWlIWgW0AKqajiwyMnxAGt5otWqnmRY0vnIHTjhyQ1wW5YI4t1a+xjASNThDgvyGcECYpu6jgderTSrJcbQi0wwEJbmrIhB7i9OtJ1A6SKs80Zz148Z7H4mZPXuu6OqqjYbF9gSsvH+yve3V7xzb98z/HqxIvtJZvLl3zx5a94+cWXfOwcV8eelYZtXWIKyxQnjuOeu+MHrm9e8eHDtxTWk3xLc37JdrPDGuGXLOotTbnA5QqjItZkqioBhpyX1OWCutxCNuxvj9zdjqgo45+6XLBsGy7PL9luF1zuvqKxz2FcEFym8Gdsy8C20Kh1QTwvIZY01ZK2WWBsAu3mg9GgVYWmhnl2H1MkzhV8nC36wU2k+Zv3/9elZeQbnSIx+58uggfDzTwSSkSUlsNTDFYzssL8VPkSeUx3kwfSM03z135oU/NPTlRxdcqD6/xPlNWHhxvUrOnOj4iAU3eiO52YpvERIiZGoCgHbw4oleeK0aC1sOvJzAd4IoR5zPNQOVfFrIySl0FyIyRe8KHzwkBpazG3FQ5fSZB7CH52PU8EH2aInsxJU4poIkqFeeT68Nnkx8/+weWdklzWKWpyijNuQAtTB+bPRmSARluCTwxxIif5M4iqRuGnwKgn3MLjnCDSrZFZtvcyViQb6rIhNmuO9yf6g2foe2JMj12V9xImFKeBa31HWyt2Z4qLi4JFu2JYGrQ+EoOXwypk/DSSk2KzW3J2XlI1Dc5HPr6/5d3bPX2nmEbFOAUm52e3MDRtSbOoWJ3WLBcrikIc4daUlGVJ2zYsFg3b7YrtZkWMkdPxxDieQCXqRck2bZjGiowcVkXdUNUyNvRu4sOHt9woy+39B3w6UVQBVOT6+gfGoeP29hXtsuG7b7/mT3/6FwwFpa4Z+oEQPVXTcHZxyfZsR7OsJbLWWzJiCJviQLlUrDYl5+cNu/WKi9UWN0D88Z77+54Q4hznWouBS80zewKJQN0WrLcN613DYlNhi0xWTpAqupgVOmEev89u7ocKO/Mo85ZDvZhNfh6NxyhLMlk6gJmzJLNceRaL+ddKB178pBC0UiRoZVDoR3yNYv59xyAju/l9HfuJ25t72qZls9pQWoNKSnYaGKbJcdj3knKoG7a753z22W/Z7c7+orP+L74Unl6+YLd5wi+/+HeYuuL3r/+Bdzf3nG4n9h8GLqqSqr7k5cuv+PWvf43//j3v79+itaGyC6pyTVGtQReEuWLOIVMULev6KRfrT3l2/gnWJmLqKGuFC1ccu8jhdGJ0HcZYlu0TrF1S1wtqUwOZQvWsmkT1vCHHah4NFCyWltWypS0vieNatMrOYeKSdaNl7qwLSDUkSVXLOc3pZVpa/ugR7rWbNzwPUk7/aJB5GHXk2SzzcCnI7FH9lHerZVZuVDGPkeYEphlvm1JkGnqmccB5j/N+XgDPYepZYjpjdDyQUL13jNM4XwQPlY60qdaKKsk/xoUKPreZX+SHfcaDqkTGWV6yaruOfuiZ3JxzG9PcRQhuQ6v8mPFszJxNmyCE+HgTPlRWD9V68J7JSAus1RyTaO0jNsFYQzHnKVS2oi7rx4vLeSfhI94Tgp/VTP7xgvbe4bwkdj0ondKDDC/NkZQhzrp26Z6UUrRtw3pdU1hFCoINedCEn7qOvh84HDoUggqwVgOJ/tQz9oH7uxOLxZK2XTxKgNtFQ12VxCBZxpqCqmgYomc4DjjtKMssnyNAykyDZ+gmplHEButVS39KTO7E1fUHhnGQzIQA27MWUz6lXm7ZHxKH+44//8stb17fMU1iRtOmoKgKlpuK5bJiua6oW3Hl7w+3eJdwLpGjgqxp24bVsmW3XbPdrrHWEFNgnBztynJptiy3DYfDifu7A5aKs+05ddXgQuL2Zs9wcigSp9MVWU00C40tDIqJEK/5+PGEvS1QBH71yy9ZL89ZtTvu93cc+3uevjyjWS0p24Z60WJNhCRjsvVZQ1QO22SapWW9qli1DctyyeF25PpmROssIUDJ0RQlVS1mLecVo1MkNLuzNU+eP2W729C2D62qVPdGG5ROKG1wWUyEOWtAnlFjLIWVkbJSipwyIThigowR8YW18q7CT/sZxDsi47pKRqxFIV3449hYdjoPyG2B6M1FiJ/HjFoQGkM/0p96/ODwo8MoKRqNLSkrKOua56sVfhQKLcA4DHTF6ee9FD558ZLN+ozLZxtMVfPcf8qbNx9ozDcc4jXajKiiI3BkdLeM7iPOvyPZFWAkaOYWbu/uOB17iJZ1c8FmueR89ZJN+wnL8jmmCKR8QtsAKWFUoqkLDDt0forVLdYuxepdWTKJUjliA+QGcoHo6jOFhcIa/KiJTgitwUvVpZQla0PGzG2/l+o8iB8BLY5ROQi1VJcqgQ4i4Xxo6WY7vdaJRJyXwWl+KHi0yBstCWkoK7P7FInRS6WR0uOvm0ZJqQpBFunGWowtHv9/MXi8849fQw5E/692DpIrq+dZZQa5YJw4QvUMl6tKebBjTLJU63umcZZNDj3jOOLniiXEgJ87lxAk30CycxUpSti8LMLmLkUryrL4Vw5rad+lShfefUKRgiJ6j5tVFsKLKTDzLPbxn40VhIaymNJAKQtTqf7le+b8hHMjLkz4MD2mVznnScFDzPNlLy+gtQVlWdBUEl2YEhgdsUXJdntOU7eM48ThcOT66orudJLrLc3yYGUB9ch+ijFxcXHJbrebnaOZYeg57I94F6irBXUZGBBjX3zovlSGHJkGYTT5ScYQZaVpWkNZCRht6Aem0VGWgk1ol3JQ/fDNHa++u+HduyOHg6RyaWMoaxkdmsfqtKapKiY3EbxjHOXrpaggGaZ+4nh74OrdNWUhEZCmhKIyVG2FrS2rukQXS2LOVHbJ55/+kvXyDO8zXddxdfWW/fFO+FarnQgdVCL6SE7DPFIFoxRlWfPZ5y/5xVe/5OPNB95fvaNYaCKK0SfKICKOallwXqxYnxck7cg2YEtNXZWUuiAnI5+lTthK0S5LbAmLRY1SmsOxpx+kaFouF1xcXvL8+QsWywVlWZGQ98Xo2fCWpFOwVlrXsixF0jsTSY2xos6aURcZ/VhkCCzQyPOrZufI/HNFWT7iZMqylLzo/NP7mlMizCNUYyS0Is8BPUYb0rxLCHHODnGebKL4ToyhMAXnZ0/56qt/w6JZEZ3neL/nrrghxUh3fWS6H37eS2G1rqmagM+v8b6k0LCudmzaBcPSsNqMFO0t++4H3rz37PfvieGKnC9J2XJ79xZ3d83H9x8YThNtsaW5LNmsVlxsLllWF+i0Q8eM0WtUdqjkqUzkfB2JTYlmhaZBUcpYZ2b1pPKBC/RQKTtidKQUpCIaj6QIIcpSUuR4YHQSs5AfROceZOaeVQSdHsmQMUIIaZZ2CrrWalEJFPPcUev5pg9plqOpuYuQg19rBdqQtSjO47xsTkG4JnYeoXg/MfYdPgTBW2tRQIkELsnF5cJMk/SPD1aIElcJzGRReXizkq8VYiSGhDGaycrnZLSMi7wTdPg0DIx9T/QeBVSFJReWySn5XJIgIVJIBJ2JHnyR0do/7h/Mg4a8KucOQMkDHyUZLM+8Ga3UT74JL/uTDIxqRGk1L87V48hJKJ4WW8gyzlpZEuf5Mw5lha9qeWnifEn42YTHwKQ8WgXSLOVtmmZGEFhCjCSfMLqkbZZcnj/l/OISrQ339/fkJFhi6QI1VfkAEJTxiRijMpvNhhcvXhBC4HC453TquL6+kSW9MZRlQVlYok+oqEgK0sO82we8C3gn1aJSgbJKLNcli0XF3Y2IGi6fLnn5+Y6z8xUqG979eODrP1zhY0QZMa3ZQlMUUJQZW6jHgkRlCzGQo0Zlg1FZvkcUEoF5GpmGETc5MIGiyax2NZfPt/z/WPuvXcmyNUsT+6ZaytTWrkMcmedU6mxWEyAbvGG/RoNPySfgDQFWFbOysirziNDhcitTS03Fi3/ajmz0TQIMBxyB8EC4m5vZmmL8Y3xjdbai7jo6Y8lqw7K55uWrL7i5fE3XnLPb7fjP//j/4tDvuLy8YLNeCUNrGuiP93jf0zYtddXR94EYFefnS7789XPqdSLant6PjH6GgyahqIzCEqkXinW7IGTD0R/IJKLOjDGR+pnj6Mkm060cF2qF9wFrHePo6ceB/aFnvVlwcXHB9dU111c3mHLaj6VrRCGhOYhko3Ha4WpF27TFPGGfnEQ5Z5KHnEPhHWmUNhhcsWg3WOsKpls2k6oWZ5psCPYpTCpGkkiIUX4/I7eBbARwF4PCVGCVYp4GhlGwM1pJertpa5lHApcX1/ztX/5HunrN3ccP3NtPLPWKh7tbHm7vJC/yc24KX337/6XtNLvREoLiz38KfP3HR0gzL15e8vqzNdfPHJmR/XZHnjIL3WGV4A3m45YhZPAzq3rD5eKMRWtlwOwsRneEWRNDhVJLtJF2M5USVU4k9ZMdM6aZpDQ6mZLUO+n7cvqO0ZNywhpxAvnZE2KQ61zpppQPOIujQAlkThc/cCqn9rJ8kaRy/mkh10qBPZEKZS6ZUrFNJjlhPOF5Q2Cei1SUM0nJYkCB3CUveqHRZTCrFavlkuPxwOEop95UMgZCVCyzheIYggK/Kov7yTaqyuxDKV10UQeVaKK1szhzkrQM9dKx7hYEL+lSOe0LTlsbQz+O7I8Hjn3PYX9g+7jn8XFP8FL5qVT8N24sU16TLv8NchmoK8qNqQybM0iISuV/c6MoLXIpCcwtBKZpKpuCnLhE45XT2el900bhbE1dN7KplKG48GRGhnFiHCZmL+XvVVXRtR2z9+z2e1KCbrnm/PySm5vnvHz5irbtuLu75ccffuSD+YCxmqYRt45zrlA05bWmEEXKGwZ2+y0fP37gw4f33N/fQc44a8VLnmNBeYC2UNdWzATGCMYgWULITPORmCbq2tDUFSopauN48+aK159dMBx73n1/5O7jjmkI2EphHSgbUTagTECZTF0vWC5acswcdgKV83OSsJWV07FRBpsMJhpccngVyNqj7IzOinkeGSZIJuDcgtVmwbJpoJCDV6s1bbvk5cvXGJt4/foLnt+8pHY1wY+8e/tH7m5/YJ7E5bXoFMY5spm523/P7cNbHh7fE1DYrhXr6BzQOaLzzOXlgtXmHD+P7PZ7pjlgdI2lpcotyjiWmyUxyS1iGEZCSNgYWK4qXKU5Ozvn4uKKrlsKBcDVaOMAVXrNi0ogDz21lRtC13UF0ihNgvIz4EMgpFykIY1TFVpVVM7RtB2VO2U+KvlnkVq1kdlbSgl0hGwwKmFURCuPViIJx1yQ4NbirCZZg8oiL9uyGVxeXnJzc83xeOT+/oHDcOTD/UcWjcAslVVsLs+Y/cSHTx/YH39m+WgchdXS76WUO/eelW1Yff5bus7y8rOOi7MFjjPitGChNtS1pTYWjcUSaHREVxUd5zTO0rUGpTwxDcSQmaKcdAXxILbDHOV0CkmIoSo92T1T/knnfvIJl1O6Nic3b36yXGbk+lrwYKKpCt6xnFr5yfapkCtc0dNzEjaPL7p8Lr2ESllAmpZOMXJjxOsOmowVmQDx3PtYMLhiR8LPEykEnNW0dc1itWS5FDQ5wDwLItg6GQiqshCFIDcDrYSCOvuZfuhBSf0fSvT9EzFRlU5bZw1tISamGFFZThxWm5/exzKoruoabTSH/ki7r+mHjmXX0TQdbbMomxVFXpqfkBapXK1DKBtClA1VK/XkvDDOPr0m+Ck7cZoh/HS1PmmrSepQC3sqZxmgm7IRaaN/CuHpn/IUjbVUi5aujviuuJhOn5PW6DzSVS0xQ1e3nK03fPbmM968+YyY5Pv0xRdflFtJwBhN3VQiS3px98jQ0LHbPjIMRx4fH7i7v2W3faQf9mLjjU5kvhyIJ6th1uIqS6mU0k/stiO77ZHFKhATLDop2anrGmMTL1+ecXO95I9/eMtXf/jI8TCLs6sC4xJZZ5ROaKtxlWa9WXJ1dcXxMLDb7ekP0oqnlRbHUVOxaFqSy8w6ckwDaYp4X+ZctSJHcWoJfTdiXATTM/oP7I+Z9qAxxrHYJJ5Va66eLVltWqLPTJO8397H0lmSubp+xotXL1lvKobpiFKBZedI2mKaDutqjK3QOaGi8LR++PaWbf/Ap8c7QozUVceiSZwvRI5ZbpYoA6ayVAeBIRprcVWN9zKkn8ZZ+ryD9CW7QlhOOaMQhLVWEqoVpPZPtuwQIkFgXkIBjmILl6Ib6UuvKwEH1k0rNwVl0doVs8pPz2AoxT5kwdtnsjBmUKgs3QjaKOrOYa1mHI7st4/0x4Hddsc4DKIaBM8w9ByP0l4X+RPpv0JTdcTJ45SmtRWP9w+8f/yG3Xb3824Ki/aKyjls7jAYnq8nzq3GNmc0XcdiqalcYY3Eik6tMG5BYCaGCa0DtUpYJ3ZAqzU6JGIJFQlEK5HwiN8wo1OpFvTiNDGVpHozqujIQxkEi1ack3wIVVVhlCLnk9MmFUulNCFlpQlZlU7YuVhKKe4d0QFRhkJV+2kTKhWcxXEqJlAtPuVxnMqCJTJHymLlzBgJWtnCp8nigT5B36bJk4PH6hpnbXEUrMVtlBJT4cY3TUPbdSIVFYdPzoUdb6XjdiqhqlwW6nEcRYrQ5smZ5Jyl61qcEYcTKQvYy7mfTr3llmSsyFambNCVc6jVAudqVqs1Mcj70ffS6zvPJU0qW3vZkuV9TyGLVJIiKYIps4dihEKb0up1GkCfGtWSyHan9z+lEvrJ8vvHqP/Nn0kJ3qkCArQ//VNbbOWeTACxmB2oQG8MKYNxDV274PzsnPV6w93dPSklnj17Tt3UzLNwoJpGaie320cO+z3dYkHVNOwPez7d3vPweM9+vyOGGVebp3dCmSx4AyN25ZQTIQBRIV3VI3e3e1ZnmtV5R103LJcd5+eJxeoWYwJnFw1dp9neHXn7/RayEwnByLwrncJ9SCitqTuWizXBZ5Q6Mo0zh91BJA1jqIxmsaghKGYViKOnT4k4BzmMWcM0ZpxXuKSRT3Ek5MQwD3DcEtU9rmqI5ki7huweOM6e3X3P4/2W+7v37PYP9MdBbiZGs1gtyQT2uwGtNBdnK7KyJNOgTI3RNTorVMrc33/k/ccPPOzuOUwHjDOsVhpz3qIWMr+Sr45GW0GqG7PHWU/uFOPo+fTxjv74yNnZJWEO6E7jbCUNfjFKr7epMJUucEABTELxmcSMzgqjNE4bjFWccNrGappi7a0q4ZEpVbpO0LKelHR1LD7nn/6b3JA1wlhSVg472UTausIYxWG74+H+gfu7e5Ezc8K5imEYmeYP9P2Rw3HPftjxcPgo607I1KZiUTfMw8TD7oFx/JkxFzfXv0Rng8kNNiu6sxHWidlURG2liq/PJDw595ACOR3o88iQJ8gBRUanCp0cXok8hMnFEy5Dz5BHYvZoFbGA1Y66bgBDKAyTdGKHh1iGiqPsrrrDmlZY73MmpIGcI85WMqwsBM6T51eRpTAnioulCNniPMrm6dp3chNohC0jWQGP8jJEjjExjAMxZaqqklRVSQaffP8xCi/dWIcylnkSL7dYz2DRdVycn9M2Dan0CzSugpTxCNKYLAPxcRjIpFK1l+VUJ+qmOJhmwfBOhWp5qlHUShGDIYW5WEglCCRh6LLTnRZWraQ9rbiRttstxlqqusa0Flc5pmlmnmaGMZcOBl/Cb0J1PKW7c0zC3veyifgwcxyPTH56ut2dBssnDbZum3IzkoSosRqDETRHKvCzxJOv/FSTepKVlJ7F+aVlkzBalZmE9ACfEtxN3VDXrejCxmG14eHhEe8j7z584P7+XuTIlAU8WFkuL8+kn6Kp6ZqWy+sr1psNu/2Wh8cHPt4uedzeIwx8mKeJ/tgzDRPOzcyDZ54kRR1jLmwpw+wjD/cHNg+aZ4OibVvWmw2XlzUXZ/ekdMSYhPcDY+8Z9gnrMrbiCXmSSibFT4ZxUOy2E22zw3tf5K7ENHrcwtK2FW1bUVUaZTQmKabW0TYOHybGOTDtZkYm+jBzpTdYp7EmkZHw2Ogf8Pv3KGvAyDzLbz+iqeh3s+Qw1EzdJmGdRc2Hj+94++EDy7Ml64sV52vDqlMok4jzxDBKJa7KGofl8XHP3aeB7dHT+0y3spytOmrb0VSOuraooMiFGEvWRJ8IXqTO3eOB/W5PSko6JFQJnHYt0zyTUnxK4p/cQYKi10zTJPwvoHYiD6VUI/Ml9RQCPAXVtJKDTc6KUGRodWqGO8EKjcymTpJpejKaGMiOytbE4Dnudzw+3PH27ff8+OP3xDBjjOLi4pzLqwu2uwdu7z7JzalugQyzwAnncWJImaM2aGllZ9m2P++mUMUVOWlyEC640QplZUga/AxRQ8rEPJNzIGTRI6fkmZIHxH6nVcBg0ShCBJU0REWIIsH4OBHSjCJilRIftZElWZK9RXdOAXKUhT4GFIqusVSVk9eUAjmdPO1FjogStkohgoJplIBULqU0SUKxYstXmqT/ja0sQ0iZuRSPOFccBFqLfJKEeWIw6Fy05gyhUCB9STArpYkhctjvmMcBZ6UbwVYOjGbf98yPU+mwnvBBZhFVhpAzPgh6QilZSOS1pZJpFllpKvbNKQhZU1wRSdqyciakjFEag3injVYIz0VDUk8zgCl4hnnift+zGxKLVlPXjhgD45Tp+5lh6OnHCR9jCbb9tAmSM85IgdCyXYhEl8Qiexx7hrFn8gPej2UWJMPwGKT32s8VtjRipTwCAecanHFiDUa6mstdkKx4cnLEKH/P0wOnSqPXCTNurCA9JDgkV3wV4bDd88PX3+Iqx3a3YxgE4Gi0Ei3XdtTGsVlsWDZr4nNYLJe0XcvV1cQ4DbzePfC4e2C/f2S7e2C/35a9KsvMSgWizqggQTuxQiumIfIYBh7WFftXCzYr6DrFxbXlxZuOfhDy6HgbGCe5AUoSPImrKksIMGeIPjHtPXdvH/C7iLWarCIqK7pVTbepqc4sulMkJ+nkYCJBe6L+yR8fYiDvFbNVTE3FbDTV2slAxCjBl6QdhAhJoZJmDg8oNAEFjaJyhiZLWVX0ih9/vOX9+0e+XP0Fm83nWB0Yjj0x90zR87g98Ol2Twwaqxvm2dMPR+Y4o5TkAMiacZz58PGOyllxEybEDXboub/b8nD3wN3dI7vtgXmaaZqFSD61LO6VM+RsgYzVltoKYK+qqqdnPqlA0gKmq+rSh1zkX3Vy/jgZQmd+Yi3lJGHS021A5OmTyUJmYJRQqKxpCa0zIMjyvt/zuL1nu9+hdMWzZ5+z6Bacn1/w7OaG6+tLvv3uz/zpz//Cw+Mt89QDEW0y49ATizHCWOk4qUt50c+6KcyPnpLnQCkIGhJRwko5Fh89BVEQOdXFnUrWlVIykM0J8CV6JdecnEogLJWgRpTFJeQsJyMnp3tZ/CnzgowmYjTCCzGWZUFKT/OMmhWKmpgcKWe8F696jqnMDSLTNDD7iaquqVyFLz2/RlvcyUFgnMwkUmAOmclLurRrOqw25ZaBpGJLM5iEzmSYNM2ChJ6D+OtTCPhp5LDfEUPk5vqSqlmTFByGnv54ZLfbSQFIkMCKMgYXIu5UeOMn0GCiKdp5SSzHUCB3CP5Cy+2isIYp1VSUu7YgrJWS0nISKYucE6YJP08cp4HDPHOcMrOqqHGkrJh84th7DkepLvQhoLRYJbWRnMI0DOicyTGwaGVYV7kKawQJfsalUB6nR4ZxxzQJXnkYE94nyJK81knQC8ELBdIpi7UtSiWyKnY+Izc5hbhJUkz4GAQ4FwWGlnISZHjK+NJRnPKM1iIjWO3Q2jIcB6a+p6qqp5R1zpGggLohKMN8GEltYrm6oF2cyXseo7CP6g2L9oz16pIf337H9nFPTiLlGGexSU7kBtBJYTIkr5gH8GPC9579feD4qJhvFOv1xOoi8eKLisfHmuMQ2D8OTD5hGkXOnlTswKjTu6BQyZKmwP7TjuG2p+lq6tZhF5qzqxXNxmHWimQTXkWSAq8jswpM2RMR84PVlsoY6mhJh4B3nqAdUTuSqQSprqZiNpDhXM6RqDy40pCoBATnrFhgFz6ySYrrFytevLjh4cMtHz/dEdORrCa5bX24JSaLq5cybzIRZxNOK4yJjP2RaTjyox+lr6NucbaCBEM/cHd7y/Zxx34/ME0BpQx1XVM3gs0w5TsjEqPB6YrKVOVGXt7OLJKpLeuLqxzwU5vb6XZOYdXlMrQ+GQlOWApUkVHTaeb5b+aeCpIum7oKeD9w9/Ce20+f8F56HN589iWXFy84P7vm6uIZF+cXnK3XrJfP0DR8/8OfuLt7S8ojtlZUlSGnCDnRln4MmUn93JvCPIq7pLLFWVKkGFX00cKrmWY5GZ+u8TGeTo1JTmbayIBPnWDJqqQEDbVzVNbKEKXYKFEn8FMqnKBUytqLOJylhjIm2B96Dv0ocDPkKqu0k3Rilnas4INIChpSWTitczKQimJjrCoZUBrrUFoTkmx+OUWs0jgUykdC9oxDz2G/Y7t9ZBjFB3zCWqecS8pWXmtMkXkaCV5qJtumYdG1LNsGTWYaBqZxJBRufUxlUUyJMM8cSj4i5xPTSNG0TalvlFa2EDWKUPATiaxkwVJKPaWKtZYha2sNVlsywsmJUV63MgpTGdIsm53SUNcKWwWSzrg6stQaYxvqSjFPTfnMM6de4Oh9mf1EhmkiZtDTJCc9LUEfraXwpKkbrDHUVWbRGQkDpSABuUqsmClVpeazQVHaurIp70eZ5RjzlNU43TwleyLvQQwnN9MoC7mS21OwUWy1GCYzMQ1jkQMEJWKMnAhTkaxAMwyetttRNcsnPpVSkFXG+5F+OHB7J0joEAU/3tUdXdPQ1D193zONI36cyVnS4TlkZj8xDYHxaAizaNfN0vLyzRl163j7wyN3t55h8qA9WqVC0C3dvUqjMBgsJhuR7JKXxcJYXOOoFlZyDEZmRjFJj3C1aAmrzHD04oRqOoyW26FxQEr4XjFYMVrMYxI8dyX++/XmjLqpGPxWNnu/I8T+yf0WU8Bqx7NnZ1xfPCdNkX/6x//Oh7fvuP/0kdW64+x8zXhUzEOmagznm6U4ypRmLDLc8XHi4eOHEsgcUWSapqLrOhZdR2Urlqs1i8WKXA46OWWauuXq8oq6qktjm7CuZE0SuKPMC/PTbKrSlVhE80+2aV1OxvnkkiCT0qmSs6iwJ4ch6ekXdNk0n2SkskjPc2AYjmx399zdvuebb7/h7u6Oq6trXr16w/XNNW9ef0bXrmmrFZv1hsuLC26un3H77CUxjtS14XjcMU0Dpmrobs6Yp5Fx6CE52mZN83OX7ARmdJYFSqa9cnp3RoYvY/ASx0/iFJKdscgn3mMUAl9TiVw2BAnXCLAqa5GflEI+HHO6klGMOsLXSQmiKc4RI6/Dl0V4nMfT3i3DIl1htCGmJCfGVCAIKctigkIZGTL6IAUwsw+gPHUMT35/FSQHMM8TfvZMIxyPmjBPHA57Doc9+/2OaRw5UU5lCGxo2gZXgmIAVksX7XK5YLVacrZc4rQmzrNY9uYZlTNWS9HI6WaWUeisxAWSigU2ZnIUCU0b6dBWKKGKKo0zpnyhwTlH17RUtUNrySvUtsHqipQ0wWdSniTE5Qwagx57lIpUBW5XVRZbGerWstLQHxz9oaY/zkyjFxhcpQlhZhx7ebiMJWQIc8mNRGmba6xA2U4DQiF+akyWXgBrpDOgW2qaTqOwpGSYJ6nK7KeBcR6I80xICSNWjvK9ULiySQRjCKW85zTcn2dNyImkJLsi6VFBF3stQT1j5OBirGxK2mjoB7Q+8LjdUdV3BRVRP31Gp00hxsDsJ/p+jx9mVOHqt21N2zXy3+fpaVYz9jN+jBKyQ8wF28eJ7ePE+eBY1ZZ2oamPhuMxcHc/SvWiicW6bZ46LiT8UIaVWQpWtHWYTqObjHIFo5whe+FWkRNVbVg0S/CGOMPR9My9fFZ1XYHKzHEieQuhI04VfkrYyrJeb6iaC5b2OevFmmwn5vjI/fZbtof3zPNRDos64Gygq2vqquXrb2756g//ym73SIoTv1z8mrPNS5xdMwwRbRK1zZyvlpxtrtnvB975j/SP77n79MA8jbjK0i4anG1YLFecn52xXq1YdB1GG+ZS5TlPHq0sy+LkcrbCmYKA1xZ9+vyK600X5LUphodQckOUDYN/Iwmd2GE5yZoifemn4KY89yf5kiIBT5Nn3o0M48jhsGe7feTh8Y6724+8//CWw+HwtNlZawhhZr06Z7O6xIcD4/TIx9u37Pb3ZJVYrVdEAvvhQEyJunIQvFSxGi3gPed+3k0hqaIZF7fOCVNQWcFJq7IjntCvcgKRkyoIAbDS9gnvgDrB1orMdLJ7avkLaCPBD8EjFLRxPmGiLcpIMCrkwOiljF04OsIuJytiCdJOcyB4D0phjCOEmRCEn6O1YQ6ecfZM0/zkVT7qAzlnFkaTokg+u/2OQ3/Ai9cSP88MvbSThTDL4LZgKYwxVHVdkMFN4SIpGmNpq4rVQjoWUk5E7wVtMU1kKBmCUo1ZThZVJUUpPniGcSzDT1ncU4xEpYVFhJwWjTmFbXSp/6ukurMyGBsLl6UFKqwFY2LZzEBZTcKQdCYzY2modY0zdUlmQuUSKo+EWeFHWVy0VjilUSYTXSV2WCvyXcgBn2VOkWNgHkdcGVxb58jZEENimoSF3zUVlRE65qJt0dqCMvigGKdE3GbG4AlpYpolbOe1f2LR2zIr0UphFGhnStm5yAahzGgO/cDj45558k825JCD4Ii1HCRmL/LTPHtSogTqysJiK6wTh5NYUw3KaDSZxtXFcijNdctmKTC6qkJrxW6/5dPtJx4ftjzc7fDTAWMUsxeo3ccPls1NAluRdWKYenb7A7vdIKduVwKD2uJ0hcYS5/TkrEpkFpsFi02LbiC7iCeTfZTnMku/cwAai9hKl1baC/Mj99O93Ky9SK4+KrStqPQKpxsmP6NCTaWuacw1Jl3SmGuePb+kXWref/oD7z/9kQ+f/sR2/54UZMA+bvdMx57vvr7lh28/YR2szxY8f/6CX//69xwOW8Cz3X5kODxwfX7O6xfPOCxn5uPM/nErm1XluL654ubZDdcvbri+uWKzXrFYLKTRcfZ8/PCB+7t7YoyS0akr2ralrVsq1z4xh1BZJMkns0VxD+aT8zA9yXOcbmRK/7Qh5BOQUg7JuqxhqqgluSSeQvT0hz2Pj498/PiB29tPPD4+sttty/xxYhyP5Ox5ePjAMG7581f/QuUaXr38jC+//HVhV9V8/PCOD+9/xFpYrlrmNHJMe0Y/YL3QAjwjVsOcRkzg3/Xj370pTL4MN4tmKQOyxD6evP7qKQxF2Vl98IQkO+w4RnzWT+yQU+F2KvMEweQU+mBd2CDGEENkVCNZebGslWBVyhk/CQzueBwJURqbhAfkyQmqesRVVaFSGpzRGJ0JPhMi0lRllWjQIcjinETuOB52bK2jco5+6NnttmLxDIHKORbLBZv1kubmiqaWQY5zcuKgbIjGGJquQ2vDse8Zh4FYTq0xBoa+zGQKdM7VlrbtWCw6TlTGUNw20p5VCw/JGuZ5JnhPTKLBK52ptMM6GexSvqC6EDmlcAcEZCeL/xTkVCy84YAPuZR+wBRmdvczh8dAayNuEYhEZjeQRsc8O4ZRJBptFe2i/snlkyTan7LcCkP6aT5inSVrhYoZ4yq61RptDLvdkX4ciT6RQ+S4v+fhDraPa9abFa6WMhmUIWbFOMnmYo1GVXUJFsoJLIYgxM9a0p4pRpFSdJbyeisMIMmHWJaLFu8q8tMNTPqEUxKLZ86nOktZDPCSl/DzVKQR8xOaoxxqjJY/xxYZ0jqDVRXZK+Zy4gyzYJatcXJqtRVV5VEqMYw9fb8gBk1KMrvyYQaVEOqJ5GNSShATldIYtPjpJ6kjrWpLt2pYXHR4NTGnUSo0R0WMlfRpEIFIZSa6xtO4lvOLBo1mHCe2jzse9ztC+fxCUlh74Oyi5ubyBdZVHA4jh+333C+2HPcjbbVh1X7G87OWRXVNZWraqiZGQWv88M0DX//pHY93O8gTZ2eXvHz1nBcvrrm8WOFMYLNqSbFmnCaqCqwNuCpQtYlnr9Zcvfw9bVdzfXPN2dk53XJF03YFR2FxTtYOVGa1XpFiwpqKi/NrNqtLtLKARaY7iowcep/ILOXHSf4uWwWUtL0oIQUDE8oGezqElPXGWsM8TWy3j9zd3fJwf89ut6Xvj4zDQN8f6XuREodRnJKptK8ZHUsOZl+wNYYQDxyHO5ytMcoyjiPjOEAWpcBUjrpZU7klYZrRLuPWIrHu+pHHQ//zbgr397cYLbq/szIsTDEzDSM5Jbq2o6pr+XXEIme0PDwnN0gmY4v1T5drmVLSNWALUsJWFbY6Fdxo8fvbiIoSnJEdWbz6fS+MnnEai9tHULkxlMBTub25qqOqLEaSJ9giM8jpzjxp0CZnVIqMg4RuCDM+BeI8onKgqyyuWNlWqxWLhfTadm1bmtXkA5CZiDxEddOIAygl8jwzhsCc4hMBVWYtMvCq65p20dJ2bZFUKLyh0k1rDLGUiJ8SlbFYOk1SZCUtWj/Z34wMsrKU2icRV5lHGaAOQaB7aQ4QMtZZUIrdYWJ/7DnudjD3tE1k00W8Nhx7xewtfrYyA5kGFFlyJ0pLzy7ipslZhtgxBIKXcnLBX8sgzmSZ62QFc/LMYS7hoEB/2JPDRAw9MeykF7epyNqSlSEFcducZCOVQRktDrlywvNllhBCwGpTzmoak6WnYpoHUs50bU2qYZ68fHeSIiYlm2RKxFJqZK1srgItmwk5MyNS5UlmgOKX10ZoqOUm5LxQV8d+LgNGTUwzJEVlK7p2gcqaylnQuZxCMwqLVhWqtPJBfMrfxEApdsmELDdyX6yui3XH8nxBs6rRtYQwY/n/dFboYCSMVaTJcZrphwHdWBpncU1Fu+wYppH9YccwDUgdZSiQxETXLrDW8/7dW47HI8vVmhhnXj7/gnBl6AfD4WAIfYVOLcZUoANhOrC/jxArzlY1L5+94vM3n3N5fo4xAZgwOtG1Lctlw3K5IuExVeTsumVz07BcLVisF6w3K5q6Q1FBNpww00qBdYaz8w2bzYqcFBpDZcW6eZIUtbKSKVDyPqryP59O/2KBT08bwmkIfQpU5iysKYohNqfEMPSifATP4bDn7vaWDx/e8+H9ex4fH/Dz9NMMqiSlQ5ADXiZhrGRZovfE5MlKZkbhznPY71h0KxbdUvqe6/rpta4WF1zffEZTN6iUqCvLom04HLa8ffs9h8P+590Uvvv6aypXsVquWC5XgpjWlhQBNFXd0XWdcGRypm0ksbo/7jn2vfDgCw9EHC+yJZvaUpdT1snXP4VILrRNSe5FJi+2tFg8xfPsORx2TPP0lC/wIWFx1E0tgRYtdrGulQTqfBzx47HUPRoqg3Tdag2qonOWVdsSvLBIVJl5pCyLi7OuDKnEXxxTxM8zx8OW3WNBaJdThdYC02q7BTnD3cM9u/1BTskFVif2SIdzon+fWET7w4G2a2m6DpUMypb6Si8tbHOIDLNnf+xFbnIVNoNP+amhTUb48sUchkFkAKMhQhglBJbsLCekGUzWrM4rjIPd7p67uwc6tefqfOLLLzTPX1T8+HHF/dcrPtwO3D0OzPOBmI4o5TE6YY2lMh2Vk6u5zISSZElmcXpJ8jmDshzrmSF4rDOC2tbIDpYTFo02sOj2rM+O2OoSbSqmIO4hjRLpI0gVrLWWRdNgVgvpLp4E+jaOE/0wiBSpLXMSx848j4zDnrquODs7LxKmZBu6bil++yAcpVCkOlV6fQ+HI+M4lA0kP50KtbYlgCenkX7oebqxaf2EGF8sFiwWS6paUrWmFYpqWK+YZ2mo82mSRRSpeWyrJbXzRC/yg58y0Yv8Y5RmnGdUCvgpYIxhdbbh5Wc39PnI0e+Z0kTIQbj92mGRQJUqUof3ge1uzzQGajugMrSLhk1aMYdB9Ordkf3xgNoqHh7u+fTpA9po9sctWSWuLq84O1+Qke/GP/3Tf+WPf/pvJPUjrtmzXDYYU2HVgovNC7QyNE3Nl6+/5IvXn7FqW4bjA/v9HbOfaNsVV9fPWK4WGOtYLBqWV0u0k94RYwXcp5VGRekkPykYp4W8qkRHnwfPOIxsh2OBDopFtqklJKht6cx46g5JT1Z1OXUgaWPy08ag0aVAyj5hZg7HI7e3n7i7+8T7D+/ZPj7i/cw0DoxFIpZnID71lKQUi1uoWLajgHVOZpusTr0tkcF6Fu05V5cvuTy/fFqL23bBanHJxdkrLjdXXJ2fsVksaJ3l0/t3/I9//ifu725/3k1hOBywyyXLtmW9XBHKw9l0QhusmwXKWEjC+I+TL33BiLZaCIOnzlLgae4QCiffe/9UpCJSlHCL+qEnBi86fhCWzTzLXMA6x3q9pqoqYpDdt64MTf1vNF4CyXsMEVOVOHpTPQ0QcxIbo9UaXddQy0wCSklLsXqGGOi9VPT5Wbj5piBxu/UCpTWz9wzjxLHvOfaSDtXGEK2hWi6IxcGSyIRyWraITVRZU1js4r0fxoFhGBnHqQy6ErMPjJNnnGSDkC4AkeH8HJgRx00qBR0hBGY/k5PAz0TuqGhcRduuqCqNphTpVAl0pm025M9fsK6+43z5lucvtiw3d6C3vHu/5A6xT0qhTiRFj0+C3PA2MEwjmkNJmQsiJBPJSTbODGST8Sky+B5jpfeZCPNhQIXAWWt4dlXxq98PvP4y0B8Su0f4eBt5eAyEYmVWKckMhkzwU6HcqoIzzujy90Vp5pAgzOW6HzAF2Ce9EYnjfo/WmrYVa3NVGbKS1q2QIn0/MYwTzlpxuVTCs0nF6OCDvN9+9gUxIquH3CSc2EdTKpJnL99PY1A6Al4AarrD6JqsDCpXeC8ztdoanKmoXUfjOlTwwvfRUrwiQbhA1hnbauplRbNumYaReJQFxyhD5Woa26CSIvuMnz0xy++VEyXT4mjrhm65ZHW24fzqgvu7O969fcv2cSc3mKyY/ZE4JebQk1TiYXvPn7/6Iyn8P7m6+kcO+wPT3LPaiMuuckIVfv6sY7N4ickrKrvhzZsbnj/bcBw+8vbjj/RjT1uf0bRr6uqG5XLD5nIJ1jP6I1llWYiVYN9VDjilMcXho4xDlU6SU3Dt8X7HftejcVhds2hXrFdnnG8uuLi4lFvQLKiY4/EggUIjaeWT7fvkSDrdJGJKHA4HttvdU3Xn48M9P/z4A9vtg1B75wnvPdM0Mo2DHC5L5ac8n0XV4ITr14QI1lX88svf8Pz5c2JKRV7KGG25urrh2c1z1ssNi27J+dkll5fXrFcb1osNm+Was9WayhhyCHziI30/s93+zPLR2XLBarXi4uyMxXLFdt8ze0ENu7oma42PmTkE5tk/4aCNVsUqKB5yA0+BjROK2QcpUJmn+Wlwc0qjej/T9z1GQdvUWAUqR7TK1JVILou2oa6bJ6um1eZJV9QlmZtiQJNwVlM5gYGlnAiTLBIhCo8ko0XjdZWE4Ao5NUSRWuYTyz/IolLXjdTfrZZobRimGfSB4zji/QyzR9Ztja0qCKcraZQQWZlkjtOEQpATdV0TJ2kgE16LL0ne/NP1PZX3SI41BO/LED89obQpxTtWi5X4lL5sqpa2rlk2FU1tJUijYEqJkOByZejsxHn7yNniE+uziGmOHJ+PPP7iiA81x6NjnIXd40PF7EUGygpi9vjkyVHJwDYrmbVkRfF0itafBAgYfMYrj4qJ0Pe0JnGxavnijeP3v8384i8Stx88734YGI+Z3X2kHzJzoJAof6LI5pKAyaeBIBQZIBCiMIdiTFgDdSWNWsM4Esvt0JUipVPa21hD1VSl9nNH8BHVSCip7YSgOfv5qa/Ce89sBJqWi4XxyZJcZjjRB+ZpKpuFRbqmPcY6nE1oU4M2pKDxU2KeAsbKjWCzOuPmKtPve6bjhEpKZNw8ElTAVYp6VaMbRdSBXMwUDofSFY2rqV1DCok5FEeYl1xRtHLwSDmTtcbWNXVVsTk/p1su0dbQtLf0x57oo3QQWIN2FyQyQy/f1WHa4cOSdmFYbdZsNgsWiwrrPErPhKUinDsa85K2esFmbald4PHRs98d8SFKPkF3pNzgqjPOzq6ZwpHj0TOHCWMzwkFLUnNiIsrIzMlo0NYQQ+DhbsfHD7ccdgPBZy7PVlyeXbFZn3N+dsnrV59xeXElVIJhZH/Y07hGDrZJ+r2H44GYJKgrPCUB6cUYubu95e279xz2O0Lw7HaPvP/wnnHssU6gmDEJOFAQISUkSqmSzfJdS5wqfEu0SDnONle8ef0LXNWQkygCTcHgrFcbYkj4KVLbFV19xmp5ztn5hkXbitMolxCnSgQyp8nIz7Yp/NVvf0NV1yzXZyjjhDaZZ7leD1kgWUiZg589zhhJDCZ5KOdUMA9Ocg7zNNEPPbOXB0m8wVnslOWDPp2au9rS1DXLRVeugwV5G06VluLC6bqloIlPSOokgbUUPLk4AKJWRKPxWkmPwDhKJiBIW1hC0TYL0TFTZJplcY8h4Kxi6Rz1oqOuapq2oVssnko3pmkmpICNigZXrpxaNoKUJGGrIOaiBedEnjIpBXaPjwzHI+v1mvPzM+lN8P6JwSIaeZD305bmtJJQzCkR5lFcDvHk25cIfts1rFdLFosFVS3YaWM1TmsawGbJM3gUMXTkrMnzI9nfUVc9SzJuEnvmFy891y8Dm/OMNYZPnwyHvWWaO+ZoiESinpCvYIJsIdeoqMkxE8NEPvVZaGT47SwhBPp9Tw4zmzrx7By+/Lznt7+CX32W+OyZYqG3mDDw+BHuVOZ2UDwepUO3bdpSYyrDfltw2LJITwz9ofCR1JNlOVkD2eKL2cFoQ7dYlZ4JkVOUUtRK43SFsYbQZjSOGMV3bko5kNWZbKDq5Lt5GlSepM9xGDkeewngK7HE5VOOJcWTl5WcJ1LuxeFTL1kOlrGHsc8oPaIUPL95TpVu2N5v2T/smY+eeZoYXI9XHrc01KuK7DKP/ZacE23dSq+1VqUTwBAJRJcwOaFTKgNyI3iGmJl9YpqKdblpObuoqaqORbfh7Q8/4ifP2eaMi6srnr98BVrz5z//GXLmf/1f/+/81V/+Fe/e3nJ3+wgZrFW0ncdWA9vHR7bbnqvNisuzl/THD9w//shx3GNMzeQntvsBHytMPYOy1NUZwSuGnaLvZ4zJWJNFtnSK4ASfLYExhzGK4eh5uO3Zb2e65ozrl8/43W9/zy9/8Su6diGHo6alslWB9oViMph5eLzj9v4T33z7Nd//8D3397cc+j1VXbFeb7DWkjM8brfc3t5yOO4JQaQhUiwpZ0hZlaxHRVXJ2jSMA2EKT6YEoS1EIp5IQhuH1pn7+3u+/+5HXr/+nM/efMGz5y958fwlm9WaZbvgq6++5k9/+hO3n+4Is8y+2s0GnaEfe2pjaGvH5vKc11++YbFZ/LybwsV6hS6n7zkKpGzyI3PIhIzIH6qE0nLGDyOHfZBcQ0oEBbEEi2KKHPsjh8O+tIRlqsoJtdGJ46drWpaLTt7MU4VjQd1KwUVgyvNTUCwmOfWrKO6RGMSNMs8Tx8OBEDxtIyjck2e4qhuqupHynZAA8fpXlfBwck40wTNPI9M80laGZVvTNBWukjh8VYn1cpo9U4xMITCnRNSabAxZGXHgIENLHwXn3B8OT84BheQX2rpltVhytlqXFi8txfGuYppEGxesrnjLVLEFy9wjP6G0T7csY0TzrKrT7MKijSnYcTA+oVMk6iDW3knwCU24ozafMMsP2PwJHQ8oH6mMxdiaz65bpt81fNNUvH/rmOYzklpz9D3b6T1T3BPzVPoTDHFW+FF6K3wY5ZZnFcZmspfTdONqFsuG19eWL15F/u5vDvz21xPX55o6aa5WM/qVZ39fMRwqjrFmoCImg88KP3n6aS5Vn6ZIghGVE11doRpBGYvUJm6zqYAFASqnoDakpDgeBo4kCVTWFSHEAkcz1FXLNM4lcS4b3DSNUomaZDOUXglbbn0VlVnQFcNBzoh3vtSLzmEiekP0DTFlkjqA7hmnmeZRc9iuWG1q2oVCq4ifRsZjYB4CyRus0mhn0ZUhVZH6zOFWhqg8UxgxyuCMpXY1tRN3XiYTtFhwxQLuC3a8lmeiaqnqjqpZ4KoWa1vqquL87IbN+orl4pzddksKCUVFCK7cIhY4i2BETMN69YwwLbn99ImHu3u0fcDUOzIebTVJ7xnDJz7e/5EPH/4gHn/TMYwz7z7e4up7jvPA9bNLkUnWF7R2xX57x/Fwy3B84Hh4oJ+H4iyz1FVL0yzouoraLnj5/DNurj7j6uKGF89e8frla57fPJP5pioY65DlVt7PPDzcc3f7kcNxTz8eOVudcfXXl/z44/f8+es/MYwDx8Ox3D6FALtaLFFkHnczWisJkzpLXVf4OPP4+EA/HIEs82qj0dlw6j9PSQbJxgmwJacEeeTT7VsOx2PpQZD5T1PX7LYPxDnw/v17Pn36gJ9nPn54y48fvufrH79htV6x7FpeXN/w5sULNmdn/Pa3v2OefuY+hTkKemBKA4MPPO523G/3DJNn8kFQFlpetNWa4dgz9keICUXGOINxpuhx8iDN4wgUb39WOGVZNBWr5VJ+rpbUVVUY/YoUZcYQg8wI4jSRQ8AgPJHsJ0I6MdGLCyHLtX32Xh5sZdG2wlbtkzNknqXgROnSlVosnAAmRbJSzCESsmLOWvTYVIT/KHbFkDMRyFqBkeJ3kiYrib5nXdwLPqHKa3YFAe2s4Wyz4fLsjM16w2azoSlxfG0Et7s/HABNrBu0OQ2nAsYIyyeTCFF0fWcltCfx+kRMHlQq0LtUpBBEfkkZrwMzE+M4M04BQ0/SA1ntUWaL0jMqQeg1Acd5Z/ndrxV5dky7lmFekt2aarZwHDnOMITMVDaqWBxFGuiaBc4qaiccmTmKlW9RV9ycG377ReZXX8z8xW8GXr/KEGA+gq0iZ+vMy+eWsVfsfM2QWnZ9YpqlYc17j9Xgig5sjDx0dVvLENxVKMRm+JT1AFI2xGyYQsLHCT8fIcpCOQ01/WEWPPNSkuM5DIRpIgIhpafq0hhmcoo4I4aE3HXy3bRWmsx0hVGOUM34qWfyiWGemUfFlC0hKbKpCGmWNOpxZD4q4mSl1UMJGfhwHNnvR8Z9oFJO2FVWYawVDtN5zXE6cBwOgjPRVpoKq7acXpPg7KsK5zzWBZytaeoldbOkrqTutmuXhRNV4aqWRdfRtivabsVuu2P7KFbVEEBnxcXmmrZxjH3g/Y+fMGqFoeKwG/nx3Qf66Xtw91zfrHn+4oreP9Dfed7ffsOnux9xrqOuE4/bB96+/QG0Znd45Ob6hodf/p7XLz/js1dfsl+tef8ukcPENByZ8oSfA8RTTayEPOu65fmLMxbtimfXL7i5fM6ikxuCRm5yx4NUrvbjxOHYc393x/3trSTqjeL64pqrywsqYzns99w+3DFM41NfS1PbYkfX9OOelIIwsuqaxbJj9k5a+7IqUpHCaIuy+n+fbyihS5SAPoOPDMPEoT+Qk8f7kceHj7z/8B2zn8tBN5CjDLyNsVTHB+5395yfn/P8+oZN2xF9ZLPZsGqX/96l/t+/KXz/IAUNKcMwTNw/bHncbsUWOk+c6iBPBfPehycioTWa9apmvWq4vDjnbL2hrq5/wl0oVfILjm6xZLFYgtL4EEtdpIDdchSpROWMVWBzwOpE09QlI1CKaJQCpcnaEDOsL86Lm8jibEO36GiLU2r0gWHyjFMkBKGKAiWRCJA57Hc8Pj4SQ0Jry7JbcL5ZsV520gHd1tRVg+2kl8AoyCHQ5yQsniSyQVKZ1mlcveTsi1cs1wtc7Z7K6yWZ6uRLoyyg6YeJfhw4HI8ch+mp6jIFTxgHUu7JWOY0M4cD1hgW9ZLKLdC2I2uIasKqRKfBoclRhuSDcmUGEPEpo3NFrSuU9gQ34OuaUFuciaiUSNkT1IHz85GXC8f+1vL+uxVzHpjtSOsalu1LxvmK7bhjP+3ppyOqjTSrhlW34Oz6gqq24ln3icNsyDGx0AOvLg78zW8e+cXnRy7ORzKJ0SfmUWEn+UzWy5k3bxIPe81+lwlz5jgEQoEdKg1OJVxl0JUhJJimxDiNqEEGbVpLoG3TOkIy9KnCZ0UfEzCi1QFnoqS6g5Pgo/d4d8SoSG09ro1MVByDJYwDY+4xJlFVmmVV09olKWW2j1um5BmTR+cGx4LLpeVyDdWmImsYZ8X2YJlDRaJhHD2H7UijOlxq0MGR4ki2iWZR06wyD/c7DsMOl0WmmPKE8xU3b665uXzB4+GRmEs+xzqwjngKVSmB1Blr8CExTAFnK5paujKauqNyDbWrpX+72HCP44S1jsXZJeurGz4zlhwT/jCgk2LVXdDWHTFM9A8DVRVLFeyWvt/z8f6WOX+iXTts6zjsdjzc3jP0A8osOfYTn+5+4MPHW+5uP+JD4vFhS+NWGGp+//u/4ssvf4H3Iw/9yKQtmxev2GiFj/KciXSXCDFBnKiamqZ1tG1F0zpJ+QM6C+Pr09vvefvhPUcFqWm5vDnj73/9JY0xmJy5//SJt9+95e337zjuRlJQVFVH00rPRU6Jse/Z8UhOAR8mYpzx88Qw9jInCFDZhhQTsbS15eQJs1i0Zd3KBGaSmohZkXPJvuTMcLzj+693/PDdvwj9wSpw0DQrFt2a51cveXP5OdeXN1xdX3N5ec315Q03Vzd03VLkKNT/cVH//3dT+PjhHXXdsNmcsepawjShU+R82ZFyJARB0J6CGz/RRWUY2nZiKbu8uOD8bIMr6ObTz8q5QicUNPU4SVtWfPqkVYFMidTirMYuO7SCyklNo2QbjJzgYmb0kZASytVonRiHmcNxz3GccYeBqVzjT8M17z3TPDEOI8M4CMbDmuIuCRhT4bQhKQMYcjZPSAGtxHJYVxWhbfEhYJxYGGNKglJICas0tXMslvLFqltJxBptUGhygugz4zQyjZ798cjhNHspoEE/BFSeyWli9J5+DswxSVFMA7UZsQaISnR9pchaC1U0eZIX3k60ApOT3KAUkjhr0USUG8G14ByoGa0yuqCgK5dZNIlnzx/5/NeB41eWd+8MOXasqrU4nWJgaQ1NvaDWlqVuaBtHszQok5lGRcwK7TPoSFd7zjczL56NPH82YtskWQGfGKeM0xarNW2buNCeq6uJy1vNY6/RByWWUFfT2ExjM1hLwskxRWdSmIm+B5UwtqAfXA1JoeeAjmDQBQ9fsekSr15aXjyrWG9qFitFuxhwbsbkkXnyfLr3/PDe8dXXmnm/QlsnQ0jlmJIhxJEpzIxhYooBh7Chzs41v/m1LMzHvuJxL5LeMFkSFmsiJguWO4bEPMp31CglvH8HPkz0/ZFaSwPcmEZMqzk/u+AXn/+C+/0D7d2CmKVoiYJGP+FlnLVFAlXUjXx3xXLdULm62Md1oRcIw0fcZsL+qZyjW7QYFLMz6GTYdJesujOcSUzjjq+++iNv3/3IOGcWXU21d0yjYERVToz9wPbxgFWWtj1jGrccDgfGIaF1TddqVqslXadQZkc//8jtNhCTYkpHolJEGnFM2YRCbgopBnwYyDEXYGWZcVF6vaOoCCkmxnGkPx4ZjRhB2rbh+vqa1lh0SszjxMPDIxhLNobF+ozz6wvOz884W695uLvju6++JvmMNQ1NlZ+S0KEcjCUMLU2EMZYCqtMsNSUw4pzKGWJW5afcvjIlw5Omn2jMVqTOZ88dF5fPuLi44vnzl5yvz6U+tKroWoHgaa0JPhJnT46Jzdnq59sU4tRjK8vlWoawZ4sO7wNt10hybx6JJVUsfHGxoMYgA5CsRfvs2pamrvHzxNT3pBAgJeqqom1qKWzZ7p7K60+l10prkiqnPCNIbetaUKUwJUPMgn4OOTNMgcfdnn6Y0daSUfSHnmkY0cYWfr18aOY0fIvSRbDb7dhutygFTVXTLVoW3UKCat2CZSsQu6ZyT4RS7z3oUgJuDE3boqwTemqIeCPODmdlkLkbZ7bjQFU76tpROyedygV7PPYjfS/BvMnPoCRwF704IowOVNVEzgM+9YTUAmdo5bBVpHIJraIEc4xFq4RhBiUNdAn15H6QIaRBaYvCQehQLFGqFmSDBp0SJkuWgiSv8erZI7+rH/k4LPnHP67pj55xsaXWGpc1bdPguo66XlCbJaiZ3t8Rhok4WcYxM42eys60ZyObzcDqbKZbCdIkjJocIAVIRm5/VSVlSxeXnqsbw+2x4e5Qk7IM5BsHjUv45JhjJYu9CVgzE40lM6OMbPDYljzPqLij05mL1ZJlY2lszfVN5Le/1/z29/Dms5rLK4NzAfJEmBS7+8S//I+ZOiaOH5bc6yXRtGAsQ5wJvhTVK5EYllaxWcDFauZv/zryt38TGceGr/68YpxtgbGV7I61tAvhLh2Hnt0hcB7LQu7AVbqE5cocz8ihpKoc52cbXr54wWLdUbdVofMG5nHGTydXWi4Dcktta7Rtymevii1W3DHFkF0kKDEHgFCQ5zlgdJTvrE7Sp+Ay9aLi9Ytr/HTkH//pP/OHP/6Bs/NrumVH21TM0QoDbZ6Z+yPDbs9ycUGzXFPXmbqa2GwMi9WG1brl5tmGN58/4+VnLVW75/FwJOcKbVpMrhiHQMqBrAPaJIxRJUAqbp9pGhkGaZvz3gsokHJQQiSmxWKFzRmdDWr0HHc7knMStLWG7mxNd76hOW5YbVb88te/4ubyknXb8eO333O429IfepSuGOeBEORw2Q8HYuhJKRBCKj3qvhgg5qfPQmlEas4GkiMG8AFyFFXElWIfAfhZ5hyZp8yqO+ez17/k8ze/5ObqJdF73r17y+PjoxTqxEQrlXwMuyN+8j/vpvAf/ubv0MZSVzXKVmyulwUnW6EVUpQ+T5IfyFmuWN2iuCqEWZSVdBrPITFPME0SCLHKEoNiniIaTdcuWLQLjNVPobZMFtfOSRPPQhOZZs9uf+Rw7NkPA5MPGFsRU2Z3ODDOnrqWXbNxFYvVSvzlVVUwEqkM/QIYQ+cci8WSly9flmSkJK2NVk8215wDw3gkzJrZSgpV2p80SWV8DMJSetK6QyGQJg65SGFElM60QYbIJ0zDicNutWwS3aJhaTpQ4mCaxolB96h8xOg9q25isY7MoWKaBHWcgyWqBuvOpDfA7VEM6BDRKGzdkDBMpNIZLHkRxSTNaDNk6wjJgtYYp7DlUhezlAqNQ2TROD570fD5ywtePn/OdqdYtkc6k2mTIaEZc2I8evZ+Ap0wVY1RFQbHosl0y4GzTeLL14HPXo003cw8R4LXTLMhR0GTCA00YowcDDbrxLObxLZ39POakKRgqW0MXa3RbkUyC/b9jofdR4g1tXpeZKvHshk2kogeIzfnM3//14Zf/Qpef35kcz4TZo3OFo739MFQO08Okd2d5t0PLf/6T5p//ifDp0dN0jOzkrmTMjPaeGw0tKrl+lLx5s2RX//S88tfRD5/qbi50Hz9Tea7rwJ+apjHBdPgiCpIijoEdDB4PG7VEeOGqmpYbRTX15bxZcbGJakkxatc0S5aZj9x/3DH6EdSTLR1jekW9KZnYHjq4JZTs+jbXd2VMnlFLNDAXICRcstMRZHNGAOuFO2kMDAHRcoK3RgWm5bLm3NW6yVTD1dX11xcXrHbH7l7uOUw3IEuTsAYCNPA1O9xak3jLIvFOZ993uCayGJlODtfcHG5JisYx5mwVdT14qlRTzsFeEHkFObZafivtCTej8cjycOiWbJoVuiVoekEA2Os4+LiBusadvs9h+ORx3cfeXz3geVqyWK55PbxgY8PtxzmifX1JVfXV9w8f8HV2TnLqqUzLRfLMz58/MSH2zvefnjP9z98y/3jHTGC94k+Cl7+tOEbZ4Wo6mU2OM+CGtE5IwVBUcwvPkECVdXUjRPcty2NkjlxdnbJmzefc331DGMMb3/4gf/0X/7fzPPE1cUN//M//EfW/8uS67NLwjjjh5950LzZXEniLqvirGipqqake8HZlsrNHPJBdmTd4myH0Q6lDXOUVPJ2t+Ow3+PHgRRmkVKaWvT9KT9ZUatarnLGGmkBK4neYSqtYl505HHy7A49x2FkmOXXDLEgFnSZTYi9sDIGpZx4/qfxaXNJURDgYoGVFHRdye1Ba/XEKkox4GepItRknNZ4Z2nqiphqGUJqKZEZp4lxmssJRQp4ZPGVJghrNZXRUnWpZCCdC/IBFFnlp3i7tiW+nxPKKUynqcgszMRqfWB1PjCMkfv7hv6oCL5iDJkQJ0xKqHhE5xE1gU4G4ywY8CoS1akZqrTExUCYLURHCJasLMoorFaFeougEZKicpm6SiwbxcJaqg28eKVYVVAFxW5v+Lg1zL0iZeFRESXAaLKlqhLtwvPsOvP6zcyz5yOukmBaikocGipjSpNdyokY5WGvbGDRziw6T9cGmSuEyDzJe6ryQDQjwywBKnyB2ogvFGsS1s2cX3he/CV8/iLzu1/1vHqR2FwMGBPYPsB0tKg+EkZDwDNPcPu+5e33FR9uWx6GmllnbBeZQk+ME20VWbeKZ+eGN9eaVy8mPvts5vULz4tniU1nqK2i0gmjPTlr5tExDplkBA2SchB3TBCUuDE1dd2R2kjdSIGRnwIhzBgHl5dXnN+cYyvH7rBnDjOTHwlBOFQxxMJnKnjxlEsa3lKdXGlkVFIF+5CRUqBSIWplNmiNHOxUwebnDCEkJmXx80DwAyEKSqJpG87Oz1mtN8Tkud9m+gmstbLIh4jWYCuoO0W76KjbjqqBuoWmrajbhhDBxQqlKrRqBWkhUAlQUVA5uixlpmRjlHi/c454P3Psj2y3DyQvclxXd1Ku5Bxtt0AEHri9veP27pb7hwfqrmHXH9mNRxbrFc+fvebs7Ews0NpS2Qq7XKGTom1WXF294ub6Jeebcz58es/t/Xs+3b1H68x2n5nDiNKKTdOKCyxBmAOHw5Gh79EponIkqtJZRnp6JmP0EOW2IM2PEvLVCurGsW4XXFyecf3smnmauTy7ZLlcYkpKu6ocKv/MOYXsJapfOcHNOlNhsOQof5A1ouvnWjErT2UaLDVOVyhtmKYj/XHgx7fv+fj+PSkGmsqyWS0L6RFyEsBZVVl0VlTalBMMzCFwGCe2hz2HY2n7KqlqHxMZw2LZYZwrQaZI0zYFdT0KA8dP9Emub9MpKKcoG1xdKhoVMQd8iqja4eqqRM7FDjj5EWLEgBBiabBG46wlls5hHyJ+DkzTzDAKblt+aNACUOvqirZx1E7jjMZ2jTD7C29lKIiGkBJ4/1REFEwi14q6Uly3kTfPd7x8dcux3/PDD4n3Hy/4eLtkNxjGPhJ1xhiFTgo7yWJs64iuDKoGU2kqW2OsJZHJKhGihmjxwRGTBW0wThqljFYYBPimdUSZAceOjpblheZv/2pk0WbGg+WHHxc8+k5OzJUnpvxUemNJaCKN9WwWE1eXAxcXA3rKRC+Lj9HS8hdCKRFKkTBLnkXlTGUyzvSQHeMwsz8MGFVROcvMljE/4IMizDV5zijvqayha2vOzjPnZzN/89ee/9v/Ap+/UNRxJPSBh7vEcS83I6uhqjUmG46T53GfeX9veLdtOZoN5nJFPU2ksUcNW9rwyOVa8+a55a/+Q+Tv/jZwcx05WyXwijAo5oPCk5nGjOQGBZc9jRlVGzBykxTKF6AM1rZUVUuojqQ8cn9/y48/fAAbOb9a88uXv+azX3yGaQ3744GQJOQ1TZKuXrRL2laskpLVlx+1c9gKMgXBbpXYW7P0AyiN9Gs4LU4kIHov7YWl6ezQD5C3xENk3PVMr15SO8nWXF5c8vLVS5brjm++/298+8M/o8zMdi8htaqpWGxgdelZr1vathFJOCXGIXE4jHTdivX6DK0lI5Lzqd0sPd16SAGlJZiaKfyzJBuQ0ZppGri9v+X+7p7Ktlxf3rBenhUAYsI1NRt3xr4/Mn/wgqB+ELy6rizPrq75za//gso5xmEkB6lpzAliEA7U1eUzXr16xRdffM77j2/5w5//B19/28op/5Nmu38EBc+ePedsc05Td0Sfef/uA+/fvWM+bpn6LSZ4TAgYpQizR+WInwdiMqiomVNkypHd9oFPH99xvTnnar3m8y/fcP78gqZuuTm/4nJ9waJb4mMgW4X+dy73/+5NYblZYK0VTog2TJNnnIpvPgpd8NSHa2uFTyPjfpAeBB942O3Y7nfsDzsSgeWq43xzxmLR0nWdYAVKsM0UK+WYIrf3D9zf3bE/7CVoliIoWTx9kPSqKUOxED3eC/4iBE/0M6nUQhogpZkxJYmy970kSq0lTCODlk5m5xxd21IZRRgD02H/pEtaZ2m7mqptqIylcRVd2wiS2lrQEqqzQN0g2Q1t8JWXFQbQGJw1dI2jsho/DAwpyHuw6MBYgs4cjgP74yBXY2WeCjqmPDOpgWa9o1odqPIRDkc63fP6+YG2q2kWFd+/U3z8OnO/61Dmmqa6YNV0tLXGhYxRQUpulCkhswIFS5qYFGTD7IWGGhtxPIh0N8ug1kGIltQbri4m/ud/+MBq7fjFZ4bee77uB7Z+w3Y2HKYKkydSmmWzzQp0TRUSaT6g/AGbZ5wSuF3WGXSROYpu/lOrl3wfmzqzXsOildYsnbUEFvUEOjClwBQEH15bSblWlaJrIutNz29+N/E3/zDyi88SN2sNg2GeV0zHyHA44v1M20JVJSIDc7aMxrJLDX/6eM6/fLNhosU5TRwDJg98/iJzc13x618HvvyF5/IysV5FuhbJ9wTFHFUpX/Ls58C+N4yTAlqRFipFJDBPgWkOMGa6rWO3PbK6MOQ0Y2wS6qqryDagnEE7QZ33xwPH6Yi26skCbp2TLIP9ic10yrE4Z7CVFECFYi3PueR1ClxRToUKlQWJklPm8XHH999+x4d37/n08ZZxmFm2G64urnnz+g2ff/Y5L16+5C9+81sO45H3H95xHHq0q5j8yK4/cDjOjHOi83uGWRF3R3aHltXyivOLF1jTiGGlEBBiEhhgzidZ11DZWnIXwUtNZjYn0yAgJGStZDC/O0TG40SOisPhyHp9XroUNHVbS49IV3Pz5iVaCRlBaaGeXl9fs3a1EJJNhVEykzGVZn12LkHaGKU7RiuapmK1WrJYLtCfNHXd8Hr9Gav1hmfPXvDs5gVffPYL1sszPn2654fvvuOP//2/8Md//a98uP2E329xRn7/XNoocxa5XaqAFfvdjn/57//C269/ZFl3vPrsc/7ib/+a6+cvWF9cYEzN9njk7uMnfvjuO/b7Pf+P/+1/+/k2hd00YKOlzkI1PcHGZI4wMXuxpVpjnixssWAFQojsdzuOx2NJHhfKYfF9++jJkwS7TEleCnAusD8O3G93bHdbhlG0uZ9MSxLhr0tzVy7ojHmciCFgjaJylq6UwGulSTnR1pZl1xQMgmC4QWGto65roTMuOrSSoFPwDX7RURVyZO3EheSspXYV1tgy94CQEyEl6kLnXJZuZkCubzljlaKrLUZljkTmKdFYQ1tVJG0E4q80IQnKGqS/QilFALnap4hmJscZPwZMNWP1wHopKUlnNSor3n3a8HCoCKkl2IboHFVt0TaT9VzwHjOh4LdT1szBonOiHzOHo2LpNLWWIvKYxQWDLdWD0XC5zjS/nGkqz7pSjP3MMEw87BTv72qGQ8PCKIzOJETvNXYG5enqnlUzUSsw2ZQ/oxBdE6DyU+AKJcY6jaKpNcvsWC4t3UJRHyz2qOXES5AUqWuwxlFbS6Og05Hr64E3Xx747W8Dv/kic75MMEfGGQiGeTL4OJG1R1egWwhRc+gt373t+PqHjn/90fHtfUTpHU0d2CxHrl8O/ObXE7/4IvLydebiMksvcpba0zBn5lExT8WfrhTjAIcDTJPG2IqqtmBjWWACwUsidh480xjxUwBmUpb+3Yx6uinbqqZbLEljZgwjylCY/k6+15Xg6AVJXxxnZJQFZRM6FQRNGXafAniyaBoMhhwy+8OBx/sH3n7/A3/+w5/4+P4Dh90BP3mccbxtvueHr7/hmxd/5stf/pLzy0u2x0f6ec/izNKuGqZDzzBHsBXdqqZdnNE0a5pGJOdusaauW4yu5EZwGnknqb4VUF1Gawl7yd+kMIQKGlkrLe9BaVM79gf648Dj/Y559Gx3ey7Or2mbBa6qMUeLrSsWbcvNqxe0rqJ96opRdE1DV9rZlNMiT0cJXp5mBGGSPgSIxChE0/1uyzwL16rrVpydXXJ58Yyry+es15ecb6442zznxfVrlnVFpTX5X/6ZfgxEf4TshZSrC+I7awFOLhc8u37F61efY6JiOgxst3vefvhA1XZ0zYKRicPDjvc/vuP7t9+z3/3MlNSvf3wrs4RKiililERfSoFpnjjst4zT8PRGnco/pMRCM/ZHgh/ZtGvWqyVNUxNzYB4kGu69hNKk4aukm+uqWEHN0zWwnyeOh6PA8IykNYOrhKuvFClG5kmKgFabDZvVks1mQ9u1T8x7peWhmMsgOJZrqPDspYxG8BJVWfSLv9uKG0FS2/IAKbnfAyfIXWHtp1g2G5Gydbm0pxhQOVIbhUoBR2KeHG3bUbctU8rMaS5DPl1AWbIU6jKArpyU3qgkfHufFd7DnBJaJ66XcLPW/Oqzig/3nn/9ds+Pdx1zXqKMpqparFH4JHOHMM/k6FEGQDN5jcmR3X7m4SHRGWisBi29yDkXgkuZraxbzVpbcvCEfY/fZUKvOexmPny8ZTh0XLZLmqpGuwZrIaqAtYHzc8/1eaB1CoJ56nPQT0X0AWUzKRZ3BqVExxra7OgWhsUKFkfHcehISUJxlbagG6xqqHXFuo5crwd++WvPf/h7eHapcb7C3wVSmkvvbhCpyiqRLZtEdJohNnx47Pj//GPHf/+D42MfOPgRk/aofOT1bw3/099pfv+7mTevhfk0j5qMhazxY2Q6BvwAaYScDCk55h0cD5rJN5i6xhlFUDOEKN+rpCSbE4CgyVEJvC6OhDTjg6efB+qhpqlbLi8vaeeGqnWE5ElErBW511qHsU4Cm5UTDIifQUvhjraKyjrAoLJUej6FokxNmAKH7YG337/l6z99xQ/ffs/H9x8Z+1HgikYa5fr9jv6w54cfvuc//Zf/jK0s9bLi/GbNX/39b7h+9YaApx9HumbDanHJZnPBenVW7KcNSkk7mQ89IaSngGaMTg6aWYbJKc+ofBpyyXudy4FKMj8aDfh5Zn/Ycvfpjk+fbukPYjkfpoGL82sWizVxUBhnadpXXF1ds2pbWluhT7O8nNGocrCj9HInOQRm8GGW4KMfGeae+/tbvv7mK7777jt8lHCgUgayFhksZD6+v+W4nXh284Kb6+fk3/wlldbsjiO39zuGXtZFoyxVKS5LWVFXK8421/zl7/+O//k//p/RPvHxx3d8fLznq6+/4ThOVLamszUPn+7Y7R7BKNpl+/NuCu+/OeUUzmmatpSmKNq2Ydm1rFxbghvhCVurKKXVGUZjCKGhaWqUVgzjwH4v1EipSRTQXNc21E5jSOgcMTnhdKZ1BtXWGJVoSxqwslaa3p5qJ4Vh0zRSzXd2dk7XLcopXqirKPWk21cuEpsoSWZtqKq63ChK0CMj9j0lsxRtNFnLDYVUYu5FuzxVh0YyPgpRNeUsdkGtKbdgOQnHwOHQk6YRgseqknZWCh9kKHbsDxz6A6kM/pqqpXI1yiS0jVTGoXWHoiPSo3Qm6whKFupKZZZdoLY9xkU2F4pP2479sSEGwzhbqUYtu9ap4zejyQi6+XCceHxMnLWasHLYOmOdOFFiAK2CsJNiwM8WvCaHmsYErs89FytDrTRHD72eCSmjfcC5ExhvpusGusWAzpEwy80yK1UCN4bkZ2LyArOL4HRppaOE6WIiRouxLavVGpRDG7H0zd4RB8s8W7pVz69++54vv9xztpjRIeKHjFGGumtJGY6DmAhsjXSR15n9oPnjn+APf4z8+dvEpwcYY6aqMtdXli9f1/zdPyj+4f8Em0WDyg4fvRTX5whJ48fM+JhRCWoTGWfF8aA5Hlu8X5JyQ0KRdUQpj7WZuqohQD9FwhgIcySFJE4wK/KqwBpF23bG0lYNymRSFiklq1IOhKYqDC1biUwSUsI6jSJidCwnYk1OQg7Q2WCxJJ8Y9nsebh95+/2PfP/tD7z/8R3bxy0qZlpXobXMKbSGiNizM4rGSof4zYsLnr++5uJqw2LZ0i5qrq9vaKoVbb3BmhqtJcSZ0imFL7cDcepKdwhKSb1ottLCmOXkfPo7ZmQNUOWWGXIg+hk/CfivagyLZUMmMYeB/fGRy6sr1mdLrBOczPlqRWUt1hihKGcBOlKSx3IbiaVfQw4xfp6Z/UTwMw+P93zz3Tf8+es/8+0337I/HLm6uWZzfkZVN3TdAlJmnmYq28gguEyPFouOy4tLLq+uODs/Z3fY0Y9HQvSonLCuoq4a6kpeq9EWlWEaJx4fHrm9/cjHcUe36KR4qbbU1nG+OeP68vLJavyzbQr77QOjq4jzTF2L9FI5h0oL6qbG6IypTLnm8FQCP8+huH9K9eXsmcaZaZqYplHkFC1eeKNBVRarEk4lbA4ok1k1jsZ0xFzjfYufpNjHGVPAe/Ihgsa6iq5bsliuWazWGFtxOPYM4/TUohWiDI5zFihb5aRm8gkWFhPhFCzJ+WnRV1GssUopNEKnTKFE1Yt8lBA3UwwnYqeGJLKLD4HjPHEYjhwfH0jjwMWyY7Nc4qM4ovbHI4+7LeM8SjrXWJytaCtpr8o6k5QGWsJcEaO4g7STRrycDDFqAXGZzLoO2Jeexbpi+X7H+09rPj0KO0hbaWbTKFQSZnzMkJQnpoFhDBwOMI6WFCpUnVBGyoFSkMUjxcw8esYpQDCY7GhqeFHDy4uay+4cP9TUnYTUQhBeVZ0V6JmqmmlrjwEIFJlIobV0BWSfSUkBMp/JJdwoYUPwXv4ZI6W9L6NyJEVLCobKajaLzOs3nt/8tufZVY/JgThkoleoCjBClAxJviNta9DWcDgavvlO85/+s+K//0vk7mFk9JGq0lwuM3/128T/9A/w+99H3rzK+KNl3NfS/4wn+kgcA/PRkEaLdRHlIoe94d2D5uNjTT8u8LESp5mRXgqyQpmKqEEnGWqGKQiZtCq9y0ZyDDUOg+L2wye+/tNXZB0EY+5kpmCKAQTrpJRIIQues2TlIEdUDmVh0oQ5EmbPPIwcjjPH3ZGHu0duP9zy4e0H7m/v6Q9HcojUJ0R1zE8FMUrJYtR2Ha/evObFm5e8/vI5Vy/O2Vx2LNdN6Z1wON1idUdIqTQMTozzT8PjJ7NMysSc4Qm7r8rsoPQcUH4ppSdAppznJCM0+5njccfj4wPb3Y5hmEhtpuk6sk5UjePq7Jyz5Rld29EYhy0DLNlY81OjYj7BLE+OwZglIEjGOUvOmf3+wPF4xLqK8/NLXrx8xc3zZ7RtJ82K7YK2bmlLgtxamOeeYTjQD3tmP0ipkIOqMcRJ8PTSQePIORDCxP39R7795s9Mh553P37PYR6pF471aslmveL67JJ13aFRtE2DtT/zoJkqMGfPp91BdPyqpq5qdoMMTl0lrqF20VJVjinMDMNAfxwY+gmtK7SyeB/wpQs5xVgGOoq2rqiaGk2GKCXmmYghs6wcVJaspIlsnpz8v4jrSYa9FdZVGFtJEMc4gY/NgeMwc+yHJ3xtOuGBM6BkAU0ovI9y2g+R6ENpZ3NoHZkmCZBl5DZSOZlRCNMCKJIUp2KOE2NGn8JtgX7oud3tuH184Ph4j4meurphpRdMwZO8Z19YLEYLD8nZCmsqKuNw2uCTYkoOH3qOB8e6A6Ui2gYpAcmGmCtCVAQfcTawbDzazOi5R/sjw7hkTnUh1kqnsCoSPiGidSQqT4jIoDmE4luXOYUCVFLEwZIGw+QjYwrkHLDKU9Waq9bybLPgortg8i2Ly0BgZLc7kGNCu4ixCecyziixkcpjJ9IAHrInpQxJYUwl9mYlfKuYDcEbkZXIhBAYhoGUjih1JIYFpI6b55nf/mrkt7+KvHpe07mZYR+JIZebX2YKw1MrnbWZug4MM3z3jeGf/qvln/+b4atvIaqRth3YdI4vX2r+4W9G/q//l5FFDWpUMNaoUHT5rJmPiXGXUbOmspZkFaPKfOpr/vxpwQ93C/Z9VWyjknY/NdFl5D1x1mCNJkcIc8K1gkyvaku3rFHZUVnF13/6Ix8+/IBrLK6xVI2jWdRSirVaM3eepvN0qyWdUrimKnRfmU9Rbr8pjvje8/Dxjvffv+Puwy2fPtxy2O6ZxlmsrVnw8rJep3LLLfMya1hv1rx48Zzf/eV/4Be/+gVXL89ZnjUoG0kEgk8En0kh4vNI0oGsIjEL1kZ82UVDT4ULpMsiXfhBMgWUW6OEL6X6NcXTcy1hT1PXeD9x/3jPt998zePDluAjr19/zsXFBfMsJpL6yvHs/ILKVeXmXGYZubCsy+aTkY0i5SQHwMJYq5yjcjWb1YbLi0vGeaJqWzCKq2fXXN/ccHF+xmZzxma1oXIVYQ4ELzLU2Pc8bu/48PEtt3fv2e/vUMqzWDq8TfhxIqtZeGWjgkPm+++/xs892ifm48Dy4owvfvEFv/7lL3h+c8Wz8xvs1U89EyeZ+2fbFLSDoqrJqVglptAz9HLKWy4a7KrDrmqsyxzHgeOwZZxGgvc426BNhVOyILSVQetKPjilC91SBrbzLClMSvtRTrF8OLGcIqW0xBiH0pYhWrzX2BSpcqBuHJU1YiMNkiaMSctpJOeTKlQ2B+mH9inhrC2FGsV6W9rRpLPg1Nca8UhnhCm1i0YLHkE2jdMQDHHKJQmlBT+TYqRymtWiwcQGFRVVo1A2gJbCdKdrWpvBaGHCJ8EsayvJ7hQzcVLMsaHP1/TTkWHc05qMMwXDfPKYG/E55ymj8shqectVqjiEFWbXirySNTjRX01WJJ9Q0TNmjY4NISyIaUZpjzIJZZV42bMiB0XyijjLjSGRyS7SaFg20FSBpA/EnGXxMoIuIHmaaqaqpXBEGyVEDtkTxIEeS+Q/QcgKW7oyFCKR5SgmAKsrlu2KsF7hbEfwhhwU02CJk+LyrOezL7bc3BxQqSeMnhwSWmdMK+9XDImcxOZrC4Dw8cHwr/+j4p//qeVh6zB1xtmBzdrzxReJ3/9F4osvE5fXinBwjHtDihnUKKnzMTIfMmHI1CZSdzP7yXJ/1/LDu45vf1zw6aFmTqBMxGgpuUlzLfRRl6gWoGvLYl1jVE32LYSMUTNNZ1mdW0yyWBR5njg8DChrsJWl6RxzXzHtjuzqHdYtqeoFZ1dnnF2tWaxbulVD09bUTYPJGXygH0b2H++4/fYdH775gYf7B46HPdM44X0kBkVOtizIGe00bmkkU1AvWK8XvH79ijefv+HNZ59xeXNF1Th8VJDKTS8nsT7nRGYsIVGxGp+4ZQpDWf9LlkjAlEC5LQiCIyN6vyGV2Z0VJIsOoLLITEpqWDNSVGRzxDITpi27h3tu3RnPNkfCdShrgC0Pb/6pWAeRjXM6KQc8beLShZBKvadisVxwdn5OsnJoPD+/5HxzwfnqjM1izbLpsNYSq4SPUoIVlKdbrlivLlkvzlm2a+kcnyPZanItUrwymYxnno483H8khplF07JoF1zeXPO73/wFv/r8F5yvNjTWoTWkEAklGEvX/XybwuZ8idIGXXjzMQTSOBN70DHRVZa2MjiLSEla7GBdXaGMxZqfMA7kXApF6id3wGkXUygZ1hYERQihpH0nQhAgV9OuaBqHw+GzIc0RmLEq0baOC+twNYLXnsvpA9HmdcECKC3ugZRK6XUZZrtKNidrBT2glSJ4+eBObqqTP1qcTxUJAzk8YcEBVDnZpBSI5adSsGwWtFXN3FmII4vOiZsBg9IVbVth7JKIJ2TP0A+M84zVmWjFLppTJKSagQt2w0j1MHGWLavlDmsmsvUYlcg641MiTpCNp24f2BjHjb9A65aH7YJ+qkErlBU0hVKKOBuSN/i5ZppqQlSgPdqUxiufpaeivBcxZOIM2SiUFZNBZUDrkTnfMwXPNKxwdYMzLdpVVE7jnLSYaaPJKhOl5QiFgiiky5hkTmNyhBRRVkJTKSZhyAc5yVWVReuWOCvSlHFxJuSJ89WWm+tPLBcDvnQwkxK2UVStIkaYBgHkrTaKjOHTneXrrxq++XrJ+48N0SiWZ5GuTjy/UfzVXyf+/u8jL15KiG+eNeNoZOMk4afEdEiEMaMzKJNIVvF4Z/jmu5Zvvq75/nvN/hiL5FJOoSETJ01CMMrWCbjN1hCjwo+QvJyA20XF6qzBzAaT5LaHhoBH2cSi0yxXiphG/DQyHI6kWHN4fOThY8diXbG+aDm/uuL62QsWdUVlFTZNhOMD4+6OYffA3B8lv6DlRJ61hEJ1CXl264azV2dsblZszlZcXZ3z7MUN1zfXtJ3kIuaQiJ5yoJPudXQk6UjKUU6yJzOFVsVtI5mElEsvSi6yoinZDYnayXypEEKeCKSA1hl0JmaHqxWbs2c8f54ZO5nlLTqF1anMUiSXEWIs7jrKPPG0IlGCu7JLnf5dxSg/Q2A67umPO+6392x3HzlOW3weIBmOg6U9OBauwpuKMckhOGvpMskaqq7m/PKSMHhevfieu7tbUpwJfkQboT4oLQdFATd5xuFYVIgFSWXGMD3Vgu52O3w/yoYwzUyjzHv/+uzi59sUXry+LpuCA6WJcyDNHuMjJmWshIfJROY5UVnH1dkFNsmwptxOn4qwlZJ0HlnJDnbyHqtSqVcsWKcO2UyGJKjjXMItBA95JvoZcqR2isqKwycnGcIFfxoGC+rWOkPlpJBFUvyn/lz5Qup/Ix6mmJi9ZxwGhmEQV0tVFfSGOGBscQV472XHL5WgVV1hjHyAqjielMpYKpxp6BYOrWf58qKJyZGx2M5SO8PoDwzjiIoJHVP5vZPUNCIPgleG/XRGupfhbNUMWDvgbKkujZCVkpmDQXhJpqdrH+jahsNBZgkpJhJRnBUhEnIkJs04QVYJ76UjVkiuipAC3idxxSSIKRPLJcUomVGIGhMxaoTs8EEqJrPOWJsLp08Xl5pGlca0dHrvi7yXT09nTuWWKqe34DXDEXa7A/fbD4wecq5I00yeRlQeqLuRtj1QVzNWi9dbvnsySzHGyWxkitg60q0T+6Phqz+1/I//tuIwLmlWlpRGTBW5ulR88bnl938Z+N1fJjSJYeuZ5kAwCpUcOVjCpElzQKuAqhMew/5Y8cPHij9/W/HDj4mHu55+ElChMVa6HlQWJ5BSaHUKTU5MfmKYesZZ06QDygy0Xc1ypYmHGZsN67MbmuWCoPZQHTi7dGwuHX7yjMPE4TFy2B44PG759GPEOlhuKl68fkM6Kl68OGdxUbNoM6t1YnmWadeGMTrC4NBW0bSGWosMUdWO1XLBxfU5r3/1huevn3FxecZ6vUDpjNKydIcQQFnJTJx0euS0jVJoZQsxQJ4DrQq+XlvIsumrAvJT+tQdQslGaVzpYpdZlAy7NRmtpYJV6ZaugWfXlq5acbjfMx2O1F1ktWl5/fkXvHr1JTfX19RNeWb5aV0QGGa5hZRfAwjeM4wj4yhdGnd373j/4Svef/qBt7fvOExHsAaM5dNtzf3dDeHVr4mXrwW3oS3jPBFUoFk11J0rn0nD5dWaq6sz7h9rHrYik1njykxFypCkuyaT4sxuO7Lb3jL5gSkHvn/3A5+/esO6W6KTkplUaQL867/8+59vUzg/W8pVTmspkadokUSIqTiJZfCXsoS0LA6HxWKYUiwAKCki18YUMqgqi796wmgDxBhQSGpWG4syGmNVsVTW8uElAV/FOGNUFiZ8ZdAkcpTF2cjnQkaXSP/J7iouKPUE/6JIVbnYzYpfPEjfMTkVz/epPKXGOVfAel7CcuVGgFKoGGRxLaGWlKSYaB57iFGqRWuHLg6tmDKRgNUOU1l0tihraDrpkxgOif6QUCpKArUyROsY2BCnjqrPLA4jBmirR4zOYuFUCm0z2sjnpXJPVX2kaaDSBpMs0TtCNKA8pCB8o2yYZk1KSuBcWRbmHJTcEmI+TXaFiRQpklkmxSy5BxXpWk3byEOVMvKZlSKk9HSDkw3zJB8VCVceTmRDEo9mlk1UKXK2hFARsyMpjc8e74+kMZH6zLPryIuXMy9eeFoX5KahMspqjHMoo8TtFBWuMiij2B0C3/8I//kfE//4Xz2zHfHaggqsFom/+F3ib/4y8MVnE6tuZh4SwyzZiKQyY5+Zj4Y8ldmL0USdudsZfvxY8efvW759v+RhLx0XSgmYMCYkze8UVaNLo54QXq2qWC7XdItrmmZBXVu0q3j2QlOZxHAYUElzcX1Nu+6YsgQcMZ5dnCRLoqFeVbhaQZqY+sDx0bO/nZj3H2CsqOILzpobrA40bWaxtmyuOkzbkdQSZVp0VWGsRVlYLFouL844u5AO59VmRbdoqCorNucwPw19kREplBpK2exl7nKSaUjgin02UxxQylBX5t/IvOmpqEhlucWTVLFIJ/Rp8SQxjT3jOHMcDkxjJISBOI+olFgtOq6eb7h+fsPLz37N9fUbOlcz+wBZ8C0CHCyD7f+da0euEbP37PZ76V+4v+fu/j0Pj+953D9w7A+MvifqhK0qFu0ZXWtYLhucU9w/3LJ93PLh9h3Hcc/yvGF1tqAxNWmO3G8/0o87xqlnnidSziI3xcw8BVDS2matoakE7NkPRz7e/sj0L/Du0we++vrPPLu85mpzwfOb57y4ecGi+5mb1xonbJQ5J3zyhDAw+UE6iFOmrlwJcck+cWq+SiUhG0JkTlF2e6PEB63dT6f0cmqUQaNMiqIVDAVJlai96P3WOshKupJTQCnpXm4bR1NXKDIxeLSyWKPk9KDF5VRbS20sVZkdKK0FApZSIZqKXBXCaY4B1hqUEhtY3TS0bUu36LDGiqOJXAq+pSM2JvFZx5RKI1fCOYdSiZx6cpggLtBZktHagvIzU0ykEJmGBUPv6QfBPBtrSDkyzjNGxbLJVXhliblmjh3VEGh3AZ0tepmoq2NZcItRtmx4Kk/U7o6uybTVil4vSFkTk1zpM4GEJWKYvSEEjfeqhHUyOchGl6I0zapiOU4JCOLGCj4xzzJ0vDyDba/oJwnjZQLkgFdz6ZVOnEgFTwvGaXd4eg7z0/OodZHmsOTcAAvQHQmNzz0xKPCJ87PEr38TefUy0NqATrKgaGep2kpsieOEAtq1Yw6Odx86/vS15Zt3Fe93Fc2Zpl1klg7evIa//ZvE3/y153I9EYeZNGvxxgdNmBP/P9b+q0my9UrTxJ5PbeEqVEbqPAoHQAFd3dPVwjikGX8B72hGzgX/K42X5AzZ093TU1MACuKoVKFcbfVJXqztkYlqa1qZ8QQQJ7WHh/ve31rrXa/ojol+F6m0pXGOYmt8tmyHJT/ebbg5rhjKErvMnDlRd8eSQSWhGTd69vuqKLlCG4utDavlhqvLV5xfLFmtN1TNxKIynG8iD3c7hmmkPkuYxR6dj+Spp+sG+s6jUoXJDY12VDicVTQOxqwZD55d6bixP/HswpBerbC60C5qzi43TKnikpbF2TOq9gxT1WI5bhWLZcPl5Zq2FetqKd/CsJNpXgupA3gMvFKnwiDqaHmXZx1OKSjl0LoS64ic5OBzTrLU55jMECZKYdY/WThllRBRSiDYGCIPd/fc3Nzy4d2Ow6GncpFFU7hYt5xdXnC5fsGTs2sau8BPgXHXkYeRuqpYLMTJua5rCWpSs9/QfCbknOi6joeHB969fctPP/3EsTsg1iRLlgtNVQZ8mXCV5eLsiqvLSzZnKzSZu7u3fPfdX/juxz+yPdywuqg5O1/QVBtUtvz001tu7j9wOO4Zx2nWN1hCzPgpzEw1xXLZ0tYV1orNfFaRfuxQ23uSDxgU6+Wa5XrFF19+ydXVk5+3KDBKbCaqUGImeWERET3KGJrFmkW7IKOIMRPGTBwyxRdZ8HKCC8xchU+c31m9qvnEA86JVCIpJ/FCz4I35/nQ0EVR5gzekqOYi9XiYKo1pCSZz8ZJN5KiJ4QshYB6PnxOTIYy/1wotI87jJzECsAaqrl4OedwrprzWTM+TAIbRY+2mqZtKKUwBU/XdTJeThMgQeKrtuF80dCYiNYD1h6pa2EGDeNE1yeGfsPhuOH2znP3MFItC/WyEOJIKBPGWWzVgIpMvqcUi8bhppZ6/xW21BIQoz7iXIcqE8lHlBa2jVaF2g0s6yPrxUhYZUy02NwiKmqN9oLl+lhQkyJEQ8qGnCM6x1Or99eH98nwz2eiVwSnqJ2M7bvBMH4EP0ZymlAqkF14tDPOczofn2G5p8lzvuQ4SUcExgKlDLk4vK8ZhxrvNTkLHGdt5uxs5Plzz9VFpNGC7/sJKqUxTlhLaYrYOtKcT/i+5d1fvuL2cMHFF5pfngmEsVp4nl3f8s3X9/z614ln14k0FPZb0EpgSX8wDAdH7ARjxmVSBUld4MtLdPuUzZOnPLWO6lzhp9lcMYk2x7pIu8yirFVrrF1iqwZXGWydsNbgTEtd1axW59S1I68sTTVw2P6Jw+4vfLz/PVHdkpBJlVKjcoMKEKbIbn9kOhbSBCkKl3+11qwWitpknM44WzBVy3pzTdbnuEXGtWuevHhOs1yTMeRiAYNSGWMjSufH6TBE0QNoAeplyYvYRejPUIET1fTUiSeSQGVRVMtCo60frV0UIoSNSrIJ5KQwkqNgDOh5sVwiIfTsdlu+/+7P/OWPf+GPf/iew+6ep08zb15VnDfPaN0XTPua9xN89+ePTEnj+4E8TbRty+Zszdlmw2azYbVa0TQN0yixvp+iV2X6v7u74/buDjBsNle0qwbbgqkKymaKEnYR2bHf7YlT5P3H77m7/5FxfAB6SgqMo59z2hMP2x3Hfo8PgZTEwmMaZKqWyGDZNWklcK7ShuWyZXX+hGdf/g3X1y+4Pr/i1bOXvH7+ilfPXnK+OqNW7uctCvmYKVqhrUYnRR4L2ReccXNAjlAcvQ8M0T9GUGY93+xayeLW6FlEJnYGgkUr8a7BSJFIiRA9Pvo5zlGoorKg0nNvDmgJkF8sGpZNjauEjWSUxszL4lQUZp4UjNUiSnJG1MlzSluZVcipyMWJRsKC9KyktgY77zhiEgV3TIEQI95PYmOhTvi3LKxyzlhrWVmHMhKRqXCQ3Ew1u6VdvaOudhjVs6w9qyoxti3HZkEOimlQoNaYtERbgb6cdRhdEXMipYmCfO3BV9znFYprrB1RSrOx32PoIEqeRVEy+lc6kKvA2WqgxAEznWF8Tcbio+PAAR8l5KiMgWHIhEmTWgSGEicJcswws44eLXISYulgC5XJPLvMfLiP/PmHkf1eJiWjA6WF4OM8dcjCT96LuTGYC/ecjSJTAszvpSYkTT8qdofI/f1EPwmD5XqdePk08vTpwKIaMCVQYkFnLU2BUgQ/UbKwidEVExWjfkle/GuWT1/y1YXiTco0ynOxvuH1qx0vngYuN4E0ZmLQ4vsUEmlMDDuNPyq0MlTOgFsS7BlT/pK+fItqnnPx9JrFE8OLLKybPEOfEqmaqZqCMY6SFzJBW0AFchkkYlWtMMoJvBcnYjwQwgdU/D1L/R0X63uqZkCRxY6ehFUZkqUEzdgnpj4x+szo4XhUHA+Gyq2ojKWqDHULOIWaDBkISeH0gsVqzepsSZ7NCYMXxlYKo0x+SrIdrFWfjpSC7BGK+BY9XiezStrMpJNcxMaEWceklUCeqZxyHKWwFCUeZ037KdYyo2TxWxQFR4ojsd9zd/eOH/78Pe+++wH8Hc8uOn77K/jN33ieXWnWbeT244EfP/6Bn24Kd4dMjAqNoaoq2kXL2dkZ5+fnPH/+jKurK0IIHHZ7Doc9h8MB5xyr1eqRDGMsJEZiBpUsOlmMqfBeQnqGvsPq7wnTyP3tDcfDTqChBIftxH43zJqujHM1T6+fUdsFy8Weh9s9u63E8QqNWFjA0SeOh47FynF1fsmL11/wi1/9htevvuLF9TPW7QqnLKEbedf/hEbxN7/+Fz9jUeiLRDvaIrjeVFBJ/H+crYBTtN9EN05oDEbbuc2Dk28N85ucc5nNtz7RvnTSjwKUGGVxeyoKoiCsUCkTipfuBET4Zh3KOFJRxCjPE4XsINQcypOlEIUchfqXynwxgfdegi+iqLHVjNcVJRwH5uX4acdwmg5CCHNYRp4hjVPOwzwVGUs1s7VCiHRDYAqOVA1sLj6yXv9EZW7R+UirImtXyMrgs6WpLU1bM4XnJJ5R1DlFLUnZEaNCZS/ivnn5VjAM0bCfFjTDE5wbaJoP0kkUZuxVfm7Q1CazaHtiPBC5mD1lasgWpTpyCYQUyCHhPQSvyVGjKiVZzxnKo3gPyZctBVUkFCd6sDpzsQksmolx0hyOGaN6apdIVmI45bOQlZIGd55A8mc/wqdp4WS6GKLi2BcOx8hhXxgncCazeZ74xS8iz64nnPZkH4lZvue2cWRVmEaPUoWqMhR7Rj+9YIi/xq7/BRv3gg2BxnZcLD7y9Owjz649q3ZgOnrGg1CYU9T4rjDtC76H7DO6dijXEOwzvHrJUL6mz7+g2EsW9YZVpTF1IesyO/ZIxyd7E7l2UlYzY83j/cTQe3JUOLtA6wTsKdxT+IAz3/Pk4g9ctR+5emI4O5O0MJUTtngMhZLEKiPkhI+R+33m5h5++rEi9Aus0pLfXFuqNhPIhDLRjYntVjGGgfXZQRa7upBCYRqQ6750oBOurua85wpjrKwai0TsamUkgSxLlocIJZUojmMkhih0ZKWoG4ut3KOJZlYFY818X2XZJ7pGbGS8eKCJPFSjqYkp0B2PPNzdcvPuI8P+gZfPCr/4Rcu/+7eKv/0tONXju4HDhxu6O8OPfyz88B4iDdq1M5xtWK1WnJ1tePPmDS9ePKeUQnc8stvu2O221HXD1dUlTdOitaJSljEE0mAxXpyhUZphGLm7v+Vw2JHiSIoTKQRKlhRFTc00eMm6jyPoxHp9zvnmkvXyktVij0rv6I9hVppbiRNV4MfEgZ52ccHV5RPevHzNL15/wcsXr7k8uyCOke3tA8fdgXEYiTH+zEXBZ0k0K5I3WxKyFMWikmbqPcWIxbUEmMxJlTqTVZqZKkJJO5k75dMdzyco4qQFSLNneJ67bqMNRmVCnPDBz8sXQ7KWfOgYRk9tDFbrWe1sWa3XVE31+NjH/si+67HWYt0pfakwThN+ksdUSuGcGOPpuZCluRso5cRAUDONVQNOFsxJ/k6YQ0xkNNZMw0AIicPhiB96Fjry5LznRX5PXd2g0w7CQFUK1kK1LNiF0COfvLB0Q2IYI8NQGHrHoVPsPVgMTbXBOou2jlwUIWWiVgzRcphq6n6BoqV2E1rLoj8nNWc4ZJzbU1U3OLvGqQ2oDcXU1G7uHGtLig6tHXlWSqf5hjdoEgLrFWQC1LmgSZCEGGZUYr2YaGsjvjUR6kqJVbgRqE8xQ3kJMfoT7EhyrU8Q1ay7ERNVseKYInQTeC8MqkpFlpXn2WXmF18Wrq8SjU2UmJk8tLWiXRl8THRH0DbTbgrZXhGm/wNT+A1Fv8JUFssdm/aGF8/+gafnv6dWHyjTQJkFl+MIflBMe004OpTOmApK1RDNJVP5ij7+kiG9YCpPAIvJIy5rVDZAJquMmdPPSoJpLPjQE/KWcRqY+shx37F72JJ9pDELLs7g1Zcd18+3FG7RfKD+1Y6aSF0VKpuxRCwZk0Fn2XV4n5lKpA8J/YNme7SkVDMOG5bLDcvFkrY1GDfhUyDmjmGIPNxB/NCzu9+xWlvahWQpTKNMOdok6lazvFxQLxuMcmjlyEljdM1mdUZVN+KfpDN2poseDx3b3QPjMDJNnlAyxWguLq+4unoi0PLMXFBFS9xvCnNDcKKcCgyltSyXK1eThkC3DWxvjoy7PY3t+e3f1Pz7f1/x21/CFy8jcZg4qJHXzxVDb7i5W/Fw37KfCn7OWAGkIA8dKQX2+y3GaGKI9H1PdzxinaUfOtrZbHO5qdgoSxUdFIefEvt9zzhOIvAjoXVmNnwADJWpUFjqKmPtiN9+YBhGUiwY7VguKkrU7Dcd24UosWMUmp/SIk7NZKypubp8xrPr5zw5v8BRuH//gbuPd7z78R3b++1cFBL/l//r/+3nKwrD2BNyogseT0I7gVdKLIQsYi4MqNrS1q1MA2kuDMjoKPTTWYySy6w+/LRXSDk/FoUTFTHPv2eUoUTp2IdpJJUiLBItUnOjDIu6xmpNnDy1szwvijO9eVxUej9JMtss/dfzbsOHQIhhnirsTJOUdy/HRAifYCI58PnMyTWRovx7se1On+kZZsvfJHmtVo805wfOzrcs2jus2hH9QOgjJhuK0RgLriosq4i+mFivP+LjwNj39McdD/s11q6IcY1RZ6BFgZkocxiOIamaMa7Yd08Az3p5T2sGdClzlyYUUOcO1K2mns6YpgtyqknK0VjLoqlZrRZkHVm0E872KCZSkC5vNvqYqdyzK6XKMFuB5AimzmzawHqRRJlrDW0Li1oC7o3xAg/k+fqYKcInmvLJB6lwGiFEF5BLYQoS2BKiwSrHxXnhzUvFV68y1+eBRRUQtFqhtaMoRYjitWVUJmU4DAXPkmP8ki69IgJVdceT1Z+53vye683vWJjvCcPENM2Rih78PjPsJS40Bo1uhKqdqpdE+4Yuf0sX3xDKGUnXKFGlMe56/DQw+pEpBkCCnVKEaSpo46kWHTEMdPvA2PX4cUdlJpZnistN4uV1z7PnHTkMqDzQ2PAYRq8oWDQ6K7LPpGkS7y2r6HaW7Z3j7XeG7/7guP1Yg7aszhTXzwp103PYRTwaVaB2htYVbrcHfv/DdygVOTtrqCpDjJKz4GrN8qzmmjWL1BA9hEkmCbJjvTxnvTpjtVyxaBqKE3X82+9/4M9/+sssiIsMUdIanz1/zqvXb7h68oSLi3NJdTRqhoBnLyQEYbBKzbqFGVdPkXHfcfPjHdsPN7T1kScXI7/5Dfzm15nLZcH4hM6epQ1sFnC+trR1wSpNiRmfJPdEa03ws8Yoeu7vbyUIi/IJLjKG7W77GD+8WDnW24p20dBUSxSWEDK6aHF/aCrahQOd6fsjfprQRc90U7lGh+lISJ6xn3i4u6dkcRwOfpoTB4vgsxiMMmSE8BFjYZqSuKT++B0azWF74LA90h96tg877u/miM5/xsc/uyj4MskImj1RSW4oRdKffI6kktBO05olrq5nRk86jQCyZJqXyynN8ZQxf1YUpOuUAzX91eQQgkcViEp4/ydXoTBNxJSZpgBFsahbnDYkP7FoKi4uLz/TPvBYZFARElgK2li0UnPnKqKSalZXUyQCFGtRpTCViSl6og+z8V+a/VVOBUEWQ/lkG56k8CmERrtaOJ5cJZ5d9yzbHlVGid6bFDErkhaFZCyAVRiTaExPbUcWdmBdP1DXl5j6mmEohHFBCEb0CEV48yjIaUGIFwy6x4aJuvTUjLii0Ekg+qwz2g5UjaaqDzi3J+QlJUlCkzOGpqqAmqaR5TrFkIIwV1V+fGtnZSknOYGM9RqcLtRNYdkqmlqowE2tqOuMdQWjIzAz1U4wolHzQnK2O1CnX5d5mS38qClkhpCJUeN0xbMnhb/5lef1i8zCBXSOhCRmh66R7rwfRdTXVor9oPhwD4cA3kRojrjNns3qHS+u/4Hr1R+p4jvKsMePEh0bvSIMCr8vpL18w9pCtg3BnhHtFwTzLUN5wVTWZKywuUIgDj3bu4883LyjO/SMo1xDBUmaC0GzWMGTZ4W6iSQ/0Zie84sjZ2vPi6eZ5888L647zhaeNChyQDQBSqBBsiJGRQ6F4APeJ+ncs2O7dbz/yfLxrWZ7L3u965eel68nnr8aqKrI7l6R9ArFhmVtuThL7O533L5/y9D1nJ+vqRtJLrTOsFgvSWXB+kphqonu4DnuPIddYOwKtVuwbDdcXz/l4vycpnJ4P/Gnf/wjv/+Hf5BONxe6aWSKkfuPtxwednz19dfUxrJaL8lGkbLAtVA+0/wI4qABUmCaAsftPQ83N0z9A9dPRr76KvHmzcTVRUT3he6YqUyEAMkrwqQIvhBCJsx25fLYc4hPyBz8RN7P59RMj37U1xgzf2qqraO9r1guF6xXZyzaJW27pK4bnLHUrmWxWKENlOxQpRf7mCRC38pC2ywk1nj03A13pJjwU6TrjqTkoUQkaW4em2d4dRgm7u63aK3Z7x4oKdMfBwyGZbOSa5RISP7nLQquNeiiKdkQstAIQ/T4fsBPIz5MYBTLMNKMy08CiyS4aYZ5V3AKo0jElGWDbmfdgnJkMydsRbGomEKk7wZKCDhgsViwOT8nG82+k/SmkPJ8GE04bbFKYV1Du1iyWCxJaSIXYXHYeTrJMRFyQcU4H+CyF0gxSp5BzjN8pHDaUDWzT5DXjEUYAQVZSMvQILQ7ozOqEraEMJ8SFCUOs6vIpj2ysA6dNSUqtHLYSosugsBUIEeFVQ6ralTylOKpypFaB/TaYxaR/VGxva8J+xVhsExeaMLOtKj6ErOoSU2guIFitxTVo6JgmT5AsuAWBVdH6ranGvZMfcvUF8ahZ+xHofWWBEqsJXIqpKTQUV63k9wf5gKRP53lOQt9tGmgbTV143CVxZiAUvlRkyIaB9EfqFnop5U47GolDHeZFPLsbisq7X70dIMlpSVtbbm+Cnz1ZebpRaJxkXHMTKPGLTLNyotxX5cxzrBaVtzca/7+P8OHQ485/3uefvUjv/nFni9e3XBl/kIbPuB3Hj8Uoi34qNg9KKatwnYKGzN6kSlLmOpzfPUlffmaIX5JUEuoNDmMTP3A9ubA7dt77j78wPbuB/whUkYrNEsmfCiEybA+U4Rj4c3XkZdvJp49m7i88JyvMuetYuESjhFzDNRY2eNUwuzzY8U0GIYuMU0RbTO2Eit1lQtVHVhtIl//MvPkNei6YbGG1VqxWSW6fsHDtiGhMVWDKZq26Wlqj8o9fjhyRNFpg48Ti9WC1fqSRbOmrgxWJ3KaGIeew65nez/i+4wqlvOzc9arNbUT48G721t2d9uZeg7D5JlC4DYkfNezv7vn5u07zi7OWK6XhOTphyN123B+fsF6s2G52uBcRVKFME30+z3d7gbNgfPzidevMt9+A9fXirZW+COEgTnvWXH73vDuR8vDtjAET0amjjzf26dm8pPNhTAU5TknUlKkdLr4wfSO7lixdxP3VSe5LIuWumlmF4aW5XpD07bCxFI1GpkiJW6z4ExNW7dM00SIfnbBDZQcgAiIv1gIsnMquoCBruu5u70j+IGHB4nuDVPk4uyKs/Mznp095fzJFSl+RvP+OYpCQgszZ6YInuyjpfNPTH626zWKmCQP1lhHZazgpvP/UvKSYTDbJGAMOs8Ycs7z8lYmD4GZEtaKlXKFYr1ccHVxRtHilW6VZrKC9zvjqKyjrhznmzXVabEYA6MPogie8erCHIWo1Zz9G8XTJ2emlIh+kqnBuflNnLOXQ2QKmRAF39ZKMqi1Ayq5UY0xwjUvGu8luKZyFVUlzJGhG6lWHarpJeCkBoJATQU5JJUWiCrP3YDYiE80DlgkjI7oOKHDCxiviSUz5pGiNJXKhKIZ+wpbakxs0G2FriLWzMvHKLg/JrCwD5TG4Y0lZ83ovVg2J0ujWtCOpBFGSICS8qccidkyPCMRmfZxMpRCEbOiqQqvLyOx1/ikScVgimTMlqRQc+4yZqYGnzy2kIlEnUpDVsRUmAL0Q2EaM00VuVqOPHsycL7pcC4QkiImeV9VzvPyVWGypmSLj5bbO8s//oPhkHq+vPh7ri41r570XC8PqPsHxv1AGcXuw3sYxkK/K0yHzCKI0yh1Besz0F9Q1N+A+hpVnlKSZ/J79ncPPLy/5fbtHR9/uOGwvWM4bsmTpgRHCJkpepTJLNrC+TLz8rrwizeRr34RePY0slokmgoarTGlkEOGLEJOFEyhMPnM1EV8XxiHQvAFU8lUZW1G6UDbaJ5cai4uMpiMrQquzhQ9EnLPMASGDsYwgOtQrqZeWNZnDat1S3+cHsN/fPIs10vOLlZcXq9ZLicJbPKBsYuEUZFGTb8f8OOBbtdRuxpnHAojMO6UxQZeF0wpVMWQB88h3OOPRx4+fmCxXNCuVqQsBJaziwtevHrFi5fQVEucFcX32G85bN8x9T+yaA9cnSW+/bbw9ZeK9VJB0lIcjRAUDr3iw63hh3eOu60WGDIVki6zpcaseld6blbVTKBUMxFihrbTiZpdSFFe90kFOtVhrKitnbMz4aSmbhe07ZLlasWiXbBcLlk0DU3Tsl6fcWkuSfjHzOYYAtHL8ny73XF/98Dt3Z1AWEkMMLXShClyPPQYUzC2RhsNWuGamuXZGc+fvWazuaSqmp+3KIQgyksfRFloraGyFboVVXCiyIiXEavXmEkmQlWDK3OXKdx+P1MCFRJSnnLGez+nuY1MfkJphZuVx2cbSTurlWW9XHG+2VAAnTMLZ/ExAIq6rsQz3lmapqaoxHHo6PuecRxlx1Hm6q4Vyhi0tRAjmYyZRTQxBHyKwoQojWCJOTH6wBRk7NcqYjDoInRajdBX64XFVIastBxMRpK7sI6kHIfhCpUTZbUnLw60pse6KHh/EDyXpMg64bXcOMpoYfRkJVMDnlU14NZbnI9Yv6TQEHxFtoqyGAilkPaFsKsIdUs5b7DPPMsqobMR6uiUwURafUfTBoZqgTULslIEFEo3WNOA2RGUwhbQafbzUXL0l6wf83zF7mzWrRZIUdGPwnT69nrAeM3325ougDYDRolvj04WrU7eUbOhoDjioHKSkPiTtUdQDF4xjpocFOeriVdPEs8uOip9IATD6CtZpNfisls6uaErY/BR8+6j4t0Hw/7gWF6N/ObXP/CbX3qum4DrIoePhXTQtK0UvWGnOO4LoY+yH7CGUlWE5oxQP2P0b5j8F0S1IVPoj3u2D+95/8M73v3xJ/Y3txzv70ihQJbMgFgSsYgA8Hyd+PIXE7/+TeRv/1Xh668yl+eFpsqUWFBTAZMpZjamVJqAYvKil+gOEMdICWIUSJm9krzC1QVXZSqruVgroVkb2f8UjgzFss+R4B1937Ltj3giy7MLrq6v2Fyec/HkCUNX6A8TOUeatmJz0XL1vOHi2lK1A8Po6Y8Th20gDhYdDZZIIpGmwDAlhiJLWGkbHFp5UHGOtjSUksgxMh2ODIc991qDNuRiSGiePI0YWhbthqfPhM47jju6/iN995aSbzg773lymfn6C8Wb55rWQgoZ7Qp2Cf0BDiPc7A3v7w3bg2EYFYE055HIs9Mosjp1kCec9ESmVI9aGk7N0cnnDICM8jBOJwud2VbFChtxsVyxWq958uQaffWEdnnB+eUFy82SqnEcDkeGfnhMapyGge3Dlj/+8R/pxzDDSWHWKRhygqn35HVLu1xJznWxXF0/5/L6OS/ffMWrV1+xWm1+3qLQLtaUkmlmTr5oAjQpR8ZpomqWjNMAiLWsQETibBq90AD96D8TK+lZ1FLQKhNjlmB4U9E2FuPETsLNCWwnWAil8UEEMtY6FgtFC/OSWJbDIUb6rocCrqqIUUQvj5R3LQqokCXvYZxG/DhKNoOxj0K2UAo+JWJOhBBYtiMvLkcWy4Gm7YlR0e1bjrsl3WHFNDVMsaCcWAHHnAhevi9nLME4Ju3w5ZLy8RnFT7jrjzSr/aP/S85iBJdnemdTaioqogl47aUjnwyqeOr6gdXZT6Atpf4CDi+ZiqOoObYwXxNzQ4gKHwpTiNgwoWOiFGHxaMC4TLEDxn7EOsWivWSdN3Rey40XEl0fUUAdDMoITJZiJnjRmpR82ifMi+YEcSqoY0aXwpNzzRgXDNUTFsGxcB1Prh5YLiPGjJKHcNLnGGkgyLJa1MaAEuhoCIV9B36QsrFZBZ49mzi/GKmtCOf8kFksDKuFovjIeAy4ptBsEg83Fb/7+5bjzvIv/13izS8Df/d3nvMLT/cxcBgUVaowVtF1kaEP7HbQDwJ/Oqto1xX1csUdF3y8u2J7Bw93N2yP33Hsj3T9wND1HHcHjg9bwtATQxLvqJnSq0rh+lng9YuRL77y/OpfTLx6k3jypLBqFWYuuNbKItUaWdiEkBiGzGGn6A9QRshBkZMRSjaZojPaaqytsVSQ5wPYeCiWHJzsZlJhSEs6f0F/WDMeF3QHRZ8mjPXYZ5rNasHTp5f4LnITtxRVOH+65sVX52yeFnTbMYxHHu6O3N3uuf3YMx01YUAwcMocJKMJXnJK9GxZk3IhlQhJzYX/NHkqYbUFySqIyRNzol/WTMOGqX9gOJ7jJ/hw8xPDuMdazfLpik3T8eqi8PpS8bQF4yJKg3KaCehvFLe3hpuPmrs7OA4jIRfyTEWdj3w5x057zs/OQemF1KffmJdp5XGfVk6/icqfioKKCjyMk6Efew7HPcfjntvbj6zXIpRbn21YrJdohAH5/Okzrp88oa0bvJ9YLpfs9nvevv2Jh4d7tFE4V5NiZrfdUy8cz8tTlqtzNutzvvziF/zy21/z8vkXbDZXP/+kkIpCwt1lsM95ViXjMEZRVxmlHIUT9htnbrPwzytr0XVNZYWhrZV+VDqeTKYozN7oM8XRmE9LzCyxeMyGWAqNcWIFwPxGaSPmbtPJepsRF2antjLrIpBFkXRTeY4ljKTZCTLJl5KkrxBnU7JEiIFVM3C16rh+umN99UBIibubmvvqDKOf0nXnxFwRBkOYl80lZ6FeVqI4GbKM++luTeyf0RhPawLWDKgqSA5Cmg+OKIdiQpO1sJPEznHmtutC3WzFDbUYQtiwH1ccx0iKFpNr+X7jJZU/sByPOBuoSj9DMoLXR9nW4eotm7VitA3YM0yaF8vWEaPDY9BBrEz0KT0tFVQCg5JMBlmhyOsYEIFhKWxWsPGGemyJpmHVWlarQFXdiu/RnKI18wFIqVBSQRn9qGzNgPeaaRTTvUVTONsEzs4jbR3n51KwKuK0mZlYWei6MVOmzO4Ad3eWeq34F38X+OKXnusnkRJg2FlirzELMVg7HjLHh8QwzElzTpgpUWvGSfPnj/C7nzwPt+/Y3n3kcNjR98f5fWemAIsRWcFiraaqNYtVZLH2fP2F57e/8rx+E3n+OrFcJ6yTXZbOsqvSWgR9Q5+JU2bqYeyg28PUgUlFJtXZpjmbQjZgKnFXnUlyAjUgCYBJZSIGnyuGcE7fX3M8OPa7zG4v1NV2EVEZ2tpxfrZkt15wf3fAVJqnLy949npNs0kkNXLYd+zuBqYuUYKiRHnvUFmwgAyUGYfPkhuttJW9YZrEBE/PR27WIkDVRpTOwZOSJ6UR8ogxnhQO3N+8JcSJn97+SFSRJy8uOH9Sc/6k4fKiollorC5iuZ7AR8Vhp/nxB8Xv/gA/vIf7g7DYmFlNJ/5z4fOD/rRHOB0z6q9+nC/XE2salBQTwdg/Ce306XGjQNXeT4zjwG63o65rmrahWbS0iwVt07JeruT8SYmLszPZZ2pF27bUdS20eiti1pRkzzD0E4dDz3I1sVxAVbWcn12wXp9hjZWz45ES+zMUhe2ukw5w9pA5VcOTpF1eKYsxGqc1uPL44mmtqc7rWeSm5jdhVjhr/WiOZ2YLa23EndDHWcAzjMQgOcLWGFzVzFYT5dGaAsBZBxZiKpQykWe4S50OlSxORZJ9q8SwK4nO0rgabQxFaVKRHYlQVQW/iyWTwkCjRs6aA1cXtxTTs6gVZ6s1l+c9u4dr9vsNh+OCrquJ2WKsxVWGpqnBFHZhx2Hq6SZHd3hKYyNN0ayf3FKv93NHYVBRoX1myoHBJowzOFWhVUSbIDYNscIoT9u+ZfKJposc+meM+wumtJCULhXpvaboNe3iGbUF5z5gdEeOcthNRST5y+WR505hu2uqNqNNLc6cqw3KrskhMMUJ5eS9UiZhVZpti7UwyGIWGvJMIFIRKl3YLANtL7GFw2hZ18ybA5FH66I5hfjIdSbUXlXE/8na045F0ubaWnF1Hrk8j2xWot71ncLZwnqVMKoQB7kV64WinxQ3b+HhoVCvEy+/yfz2vxs5v5jodolhb9ChwSoteR5j4LDL9HtQUVMZha0y2ML9ofDuPvL//E8H/sf/POHHnuhHdHEY5bCVwlZibSINjwKtqSvNZqX5+lcTv/j1jl99m/jVl5plrQjBkoKkytka2oWSfOEp03eF7YdIv8vEwUB0OKOoVSFl0QXZClyrcW7OmLZJKL/BQ1SY0oi1uAkE7SG3FL8gxDWdX3N/mHh/d+R+G/BRsd5M5JCpK8tqWbNYOpQpmFpx/rTl/FmDW4h78O5hYH8b0LFms1gQrcbXiXE8ME2dZKrERMkWTQXOohWzoHOkaWu0c7OlQxJBbNWQihSDkhNaF+pasVwYSh74+P57jl3Hx4+32EazPrNgGqrzBeZyzaTv6HJmlRXKaw5bzU/fa/6X/1L4n/5z4U+3mZupoEqFU1rgvPkc+fzAz/+kKJz+XM2U2BlEEu2Ples3qTQzqE/Qk1hIa6Xnc0j0V1OKTH6k6w16J39mjKFtFizaBd9/950Qa9Zr2qZhv9/TdR1aaxaLBcYYnHGSR200ISbev79l8on+GLm6eMk0iU1QDlGezz/D6eKfXRSOfS+r4jxn8oYwTwJifaxnSqc+OQueXtf5BbW2EsM8Pjminmhd9lQQrHiZaKNnmO6kW5jDu5tWojet6AzsDBeJEyNYK57j5ynNFEf58ifl8TgNIgwKQawqYiLm/GhpEXwgz6rllGRoNMZKT50iITi6rqI/Ola9pqqgVRHbHlipxPX6lpAdU6oYY42PDaNfMY1rhuMV+/2K0FdEb1ksHFWrefBL4odrLv1fuLj4geVyYNF4vFb4yYkpX0pyeBYwJuNMJikk4B3pyJb1jnT2J0Lq6adIGjeMiGBMTQmwLHvLoja0RuG0mllh82SiC02VqGxPN3zEJYk6jdWGkDKHQyKrzFIpYilMIaGTRJdQxPKiRJidksWd1mgJrXGKWCUWRw/K44NhGALjOJBzxChIyKSQZ8ddpQrG8BiHKGErmnHKTGNhtVRs1nB1qVk2BZ2y2K44xaZVjEOmO0RcW2hW4I+Ktz8pdBv5m39/4NUXirMW4s6w/TGRJlitDEkpbm8yh12kTKJ/qWyDqzSmnRiAjx+X/OX7Dd2hYlVZVNWg9Gx1oooYl/lEN3hC7NmsM8+fwm9+bfjtbwxff5l5/rxhs/DUxkPSVKpGmQXGaXIJjLtBlr8HGI+a8WDxAySfZM/SGOpa4xYWbCbpRDSZdmmpq4owQugzzgbqJqCsRI2O/Yb94ZzIJYFzbrrAn24/8uebIz/e9XR7QykNl/uRw/6IPltKdvD1BU/3PbouLDYGbRPjlOgOmeNDZn8XOGwHhiMoqll/kuWwBMhppqBGYgpM3s0UST07DCSsrnCNJSfFMMh546qai/Was/OWJ0/PaBctq82ai8sLrHVMU6DogF0FVusOZQZiSWQntOghFkrKpMpQb+DFF5lv+sIOy8Po6FIkElEpC6lBnTId1CPC8OiTJhVBpoL5iFOnX2uByE7JjicBLvOfaX2aeB/BqXkDx6MHlDaCdqQQmfqe3fZBmuU5M/qk5yql0LaL+fzUMxrTYiqhJQ/dyD0PHPYHSpIiW5lqBot/xqIgPGEA6bB9jMR5wavV3OF/ZjGr1Mm3RA4NxSTfPJ8qrZr9+eXfz2/GHOah9ClCbn6ixhArRwhudkqV4nASlSglNMHTpKGVQAClFKnS2sokUbIUnqDp88jkRVugVZKRNwu11Bo3PweNsRmbEkrDMCUOnWNxMLSNRoWMTQGj9yyXe3QNxRqCckyx4TisOB7XHHd7jL0gscKoNYu2wdSOnW/YTxXHIK6oV+cPlIstykZUdYJn8qO9sKoK2oAyBYiPyt/GTqjlPTEZBr8kahjHBT5aSIUxQu8Ng3ek1nKyMVazkd0J5zZEar2jMRWr5ikqLyk50nUBV0UWdSJTiAmqIv5BuTAziXh0vDxRVEtUaJtxdqSuJto6Y0xk6A903YGcg3w/6rSXKBQlQTpK82gHQZkLRJLHXdaKtoV1K3Yaag5616U8esifFow5z2CZgfVF4otfZi7OLOFoGbaG0itUgthnvFd0h0TfFRxgNVgL1mlidnST5fZ+zc39BoXh+kpjbIW2lqw8IQW6PjB0HlcXrB159SLyy28Df/tbxW9+bXh6rlnWkiUSZpdYrbMEUAZDnArdQXM4FLpDJoyFkow4AhiNdlmypeuCbjXK6Rmry+I+mgxWCYnC+8zxGDgMkX5SYDZo9yXFnTNRs5seuD3ecrvvudv1jJ0kuXXdxLHraRcOW1dsLjc8GwaKm2hXkItnOEYOD4njNtHtIvuHgb6LWCMNoNhyyP0kWSWCLxQyMUkGukKTYyEpIXZYpwknbZICV0kDWDfihLs/Dpi6ZnV2znKz5OrpClV5xvIRXR3IKZCmWUhrDZqAMoWmzqwX0ghsGlg4SSosJhBKQCUk+0VB4VFq/2iWmU+FYaZNq/Iph+VErS7MYtVcZmhakiNP4k5RZOtPDfN8noLA7DpL+mFJmTi7BCilZ7vw8qijEmNONyMlGYPBOC0QVSrEKTKqkYe7O374/nsqW7NeCoX31dM3P19RKKo8+uxoq8iIAOEkVpJO7hSaLUZ1xliBCNQp5Sw+VtyTGOSxXqoTsFQeD4HPCwgI1n9aKOsZa5Y/14/+4tZamUi02HVDEdWhczSVoXISKo7W3N7fM4z+MXtW6Kw1tXM4a+eFaRb7BSWJct3keTgY7L1i1SpqpTEZiBlXQWPB2IQuGa0Duu5oq1uur77jxasNH99/yd3NF/TeMfiKQ0hMobDvr3m4X3N7+4En52+5fnHPk2dbUIk8Ch2zRP34WiubcTaSEqSgqDVUDZTSEcoNySj6DxU+VaADaJhCwzAt8amlKSOlCI2YIgrkkMCWQms9V5senSaaEJm6hB8jQQdo/aw6FozTWARDPi2Fldif55jxsu3GuIhtJ2q75OmVYQhw/37LdndHiOMcyPJJ+aZOpI7Ha+CE2SoqZ1g0Ap+0Vky+yQFtMraVhzhuCylDZWVp33dgK8WXv4Szp3B5oUi94vY7RZkUm40oWG/eeo5HiDrjLKioKKpg2oFiHNvjmvf3az7ebdj3As9drRXGLdFmgU8eHyfqaiKvR55cKt68yXzzdccvfzlxsY4sXEZHQz8YSVdbCMMsp4wfPL6zDAfFcISxt0xjJOWCsR5XWepFha0VRU+gI4UKnQ2tLShkqT7GyHJd49qKv7xV/O53mn/8E9zcO/7mX13xL/7NFxhj2A9H9iMM44KuHzgceqY+UpuRfuzph54xtCwWLcvzBc/NBdl0tItACBP7u5GH9yOH+0h/SExjIvhINpBtFBqoyrPtjaFqDAr7GKAVApQgjU/KiYTHoCScA8nnDiGw3yemMGLvNcrB8uaO9/f3vHz1gm++/Yp1bYhmwKiBHCZyL1YK1mnaSmMpjBn2A+x/0Hz4h0x3M1KCwmqonOxtiHPR+oxtlEuZqfH5EZFAiabJzN27nv1apGmZ9Twzzb7M9PesEqfckM/PtEf3X+msJHEYEdHVdYOt5H46Kanj7L1m5+hiBVhncc5incZGDXXBassP333P/8P/3/n9737HixevWC6X/J//T//Dz1cUbGUf9wM5IVUsMTuYCm6mlCKr0wsnwSWng1t8gnjk9eYirqSU+V/Pj33q7k8hN3le1pai5oxW2eKfaF7WiJYgU5gGMcozRp5rCGF2KzU4a2isoXYG11Qoa7nfbtntdnMmdMLMjCgJ4Xbz9JhnR9LEzhT2DvqjxWfDkyvN1XmitoqcLClocqdxAXSVsUbUiijxPQnmQP3iLyyWO95/fE64u0aHK9S4xuvE3jaMneEwLkjlhjp/5Oxiz3LTE8fI1Bf8pMnFoF1Cmdkq2iC5FdHitGe1+MB5nOiHgi5PCGOLjmvCtKTrDTu3h9hT24S2ES1XtOQeF0VlIkvd0w8f6HOiMh2mrakbSYdScxERMyJZXpV5yrPKyM1R1COmahQ4ozhfOb5+vaBoTfcwZ07MliA5J3JRjyN2iWJ1obS43BoKVivWC4czNSUG1FzJoi6YCoxTlKkwjRFjKpx1BGQ31W4yz58pTKXpbizTHuLoISb6LjGNin5fmEaFbWcdgq7RVkEzEZRm25/x8f6c+73mMETqqgXd4kzBmh5dNAttef7iyNXVni/fDHzz5cjFWWS9kE15GqTJ0C5haoWxmuAVxwfFcChMR4/vIE5i2mhMoarANlqs4PWs/jaz4G8qGK+ol05cSWvPLiT+t98nvv+h8P3bhp8+LBhThWmW6PVzdHvBMB1593bL2+/3vPvzyO59IByTQJJ1gjySUkApqJc1i9rQXIhzai47xvtAf99zvBuZ+gylYrlwLBezoFNDSp4YJ/qhx/tAKRGlInV9EnUZmqbBqDmXu2RS/pSbIPd3BUqsdHISFMGEiePY0/keTyQbA0XPJpQK02TsOpFtYjsp7m8M/9v/avgv/1Hzh99l/vhnxV1fc4wObQvNnGWerKyMTx39Cfn4tEv95MAg6NJpJyoj0KOTQT41y3I/nRhJivxfi+LmIqG1vN+naYpcGMuI9342Dy2P5+9pj3pqmGy05OQIQaHGgnOWaZiY+on7m1t+/PFHnlxf07Ttz1sUTjGVMkpJtqwc/vM3PFsaq/nvaaNRj3mq8yH+eddfsoz5fBqNHt+EUkhhLiJCHpiFJJYTfEURsnyZl5qlFHE5TQljhVkjthMJH+RrjyrjtMJWFdpZdscD3ayKzllUziVJGI+zEiivFY/so4qKTreMo8GXhhA9VZ1Rq4R2ipI0ozfEWHC54JzI140RLUNlEnr9gKqPFA4YtpgY2MZr9hPsh4BKhl05owTIveP1a83184jWCVUlyQSOCI1Pa+oq4+pHYwisDizqgfNVIEdFowP77VOm4ZI4Leko7PUlhhGzzjQ6cbKoFl8hhdaFSk+48p6qdFRVS2VbWldjDBCQnGZbyFaw26y1WKvPvN+cpIjLFCACtdoVrs4Cna+4uVpS5Q3apLkDEhhLP2bgyiGqleT36pwxGtoKnC3EIZJ8kOk0KXKWhW5GLNlV0RgqjI44m2gXhdVKfHnuf1TEMeNcIOvMbqeYekWI89QaNUYZuU5qg1eGLjQc/BWdP6f3B7pxZPKOcco0TU/bDpwtDZcb+PKLHV98sePF05Hri4AumTTl2YkWqAvGyTEx9YbhoNndKPpdxg+REhNGyXLdVgVbKYwTyDCrNCvyRc9RkzElMXWGMRhudpYf3yv+4Q+G/+0fNPuhZSoL3vziCV/+8gnPXl7hnGfotqT+hng4kPaeJZ7XV4acC0onWjfhh4Fp8pgK2o2hUoZ+UOy3kf4wcrwfGLaB5A3GVNS1nlkyck54L4vwUtRc+CXT4wT3CoXcSDa0mZs4P0MpxmCswdWOdtnSrFqqhcM1hnZdsz5fsjpvyToyhkIsiYXOOBNoTMCR8EPhpx8Vf/qz4n/9e80/fqcYgfPn4CZDP1qmPuHHzFSY3VpFiGnm/vN0LpXPpoU8C9weD7dHQRuf2WDwCF2fRL9wypIoj3DoqTAUPpsaTpBUysKak3/KKYPmdEaezDlL/sRyRIOfAsMwcTzIUvrm9o53795JBPE/4+OfXRTGcXx8Mp86u5leqvUcPmMex/4THJTmJ5xPy+XT7kHJDZ9Pr5EqMmXMJnIZyQDQSjokYyzOzeZvKT06l6acGMb0+KYBs0WFerz4ZMnDI0W0GEl/yzOEdeKTnaw4Uk6EFDBGbLclhrQQcuIYPWGr6KYzphHqKqGfj5yt5JCJoydEJG8igmoE9jBOYbXGYlhWmdXLO15e7Phhs+W7H8/Z/WPL7Y81pQheeDgo3t9u+LDd8+rDjpdvJp48L6AC45DIUaGCwmDIDlAJZRPOwLIoKj2yMO9Yu54bNXJXAofuCTkaFtUVbZNZq4gygeIDOUSUNhStMLmg8DT6jo07gn2GrS6osGKolwoqztRTAxFFPG31YxSTrgSYgq4ALyP1ZA9k+xPL+opf/OIlVdmwWPye4AdiLKRSxGk1i0e+Knr+ejxCecpOGJXQNpCJJBRZW8Hno0YRMU4yukP0VE1hcS5TxOEu0+8S/Y0Uq/qyEKNmvzf4AazJOAc5OJSyLC4KNJqPuwtu9+d08SnJtURGvN8zxAd02bFeTDRq4tXXI7/+VeCrN4Xrq4JKnm4rYepKKaq20C7lYktBMx41/YNh7CU7w4+FMIK1imaNFHstjVUIktVdL0AZ6PsiavFNIZH5y58Lf/yj5j//F8fv/9QwJE3QYkW9Omv51bdv+Lf/9gvWqy0l/57iPvLF0xucH6l9pLxyNE1L30e2O48vkX57YLvac/V6oDaJrPcMYcvd7Y6P7zp2NxPDLpOzOA7HlAjJC3Msh5ngEcgoXNXMOQpm7nbFNjvGSGwMdWNnWNRRaYutFcZpqtZy/fySF6+ecP5kRbupWKwbFqsWZTRT9GwPA9keMLqjjjsWh478vrB7b/lf/mPiz28TegV/97ea108LF5vMx+3AD+9H/uN/yfz+T4WxV8SoH90ORBgmGP7noWCnJXKezzXUp92CfG+GrDM5y+JYYHM9w6snTvxcQDjBpp+gcZTGGmEtqjlbAqRQneCjU2GyxqCVFjdpH+dCKhqUEiKFAKXQdQP73eGvdr4/S1HY7w6fvin5jh6LxMmD/K8XKPIhFth5Vi0KT/rTQXzC1z4tbHLKlDgLl+Qvc7KhPk0hMAfJzxeYUvD5Zl4x7zfmz5TmUPocJNS7clJh1UyILKKqzmTxE+GEA/L49bIqoiq1iZwM4bjA3UYuNh0LE2iVol4k7CweooiqdBwl/8DmjHEJNNQmYatEXU28QlPXA21rWJ9X/PDDGT/+eMGhtuwW0A0rbj6+YggfMfaWxdqjbMYa0POOoT8WtC0oKxdzhcaogjEjqimUi0zII3u/Y983qHvxxa+qjNUJHTI6F9ASf5pmEc7CZazNdOHA0BmKmXBGLJltMVCKvHZA1moO2jlZoYj9xQnuKKGQ8gjcs6xXtK+/pVJX1OEdIb4HTlG4sjRRyCI2B7F20KagnRRFZSIwM5+0LJAzCh+YLaMVspGesLVmfaYZfeH2QyJ2UFsATXewDFPBRzE+1EkaF2cyVeXFFkHVhPKMfrrm3Y3iw+2RcUo0tUW5yKIa+fKrI7/4puPXXxfePIdFDWUs+BjxKWErTd0ajBWX4PGYGfaFYSc/JhmFsSpj2oyyki8R5klJzR2h0aBixpTC2hlCrjkcLnl/W/M//b/3/Je/H/n+p4a7XYVdeNZXI1/9qvDb38K/+bu/8KtvHzBlx9TfMDZHLtqRp2v45Ss5DJXO3Nwq3r5V3G4du7GiJE3KQkUe8y3bwx339z3buyBwWweheFKZxI+nJJmMjZqnDiNWD0oOWK01Ifg5YEYiYmMuqJQoGLFoj0JeWC9bnlxf8PrNU958dc3VsyXLMych93VFiIn9oWf0nqwTNZ7YRz7sI3/6x8S7Pyb+598n3m5h86zwLChaXagy4KHWmtpCZQvWzO6yZc4QL8LwS/Phe4J7JFclfrb8nfNh5v+ezsTHyUEL9fqT4K1w4h79FbOpyIJbFSG51FWN0nIPSVSwiB+LMfPrKCiG+mwhLijK6Uud4CmBpcYw8enw/v/98c/PU4jzgpE5aP1U52b8P/qJkk5RfLIyzrNtQS7S9WetBXooAjcJA2lmIc2Og8J1T6QgpngUhbH2Me1LIW9cUcx48zyyqlmHkE5whCzC5TWbD/2UxC8py42V5n3BKSlNobBWpgqtZE8iSGAiE2cqiiYHCJ1ju6/46ccamxM1GXudaBuPMSJ6y1kToyUkjUoeUxXqKlApIMn+4moZOK8Tz58G3nwD//E/efpJcxw02wH6/Yq7spFuPHlev+p49ixRNxmaLFbFY0EHRV0LBdQiMI4qsLQetXkglI6D/0iIS7bbNaHL1JV03SsLrRMbiaJlCiGLtY/TmWk6EsdAqb3AGPr03p/U13q+aeYl+CNmeuqGTsNjpFYdVT3izmsMLWpbkcOM486mePMlTSlq3isldIWwlGaaXz4poLVCqTkKNIqfkingKoVrxGVFIWZox3swCTZrmAI8PCj6WWCnrewxlIblOmIqOPaO7bbmYTjn4bDmp3c3fLzd0jaJZ08SV5vIi+uRb3/d8YtvOy7aikbVTH2iGxLFFkyjsa3B1hVxlALe3QWO9xE/lnk/J0Iz6+TnRSlSgRxlZWOdwtVyz3Wj5GYbWzGGM366f8Mfvmv5f/2vf+ZPf/a0S82bXxs254VnLyP//t8l/u3fjTy7+sh6ESkxE6qMb2HyCn3tsLrGT56uD2gsh4eaY6fp4xwQlQb6YeQwbNk/dPT7TBgNqtQolcgxzEmJI7kEqsricFhdUSkzL1fLDCfPXldKKORGa3BQjAIMRjuapWO5qnn2/Iw3Xz/hxasnXD+9ZH3RUC81mETIEyGL8V+VReLpciD4yNRFbraBD8dItAq3BJ8zH+8hHC0/OUfSNV0w7PYycaqZHaVzIc9nTJ4fN/GJTSmTwgkHVDM/4pMH3HzxCqW1PHaVfKKyqsf74cTUm+uDXPuPkcWyF83zOVVmub+dHZydtfMZO08tKZOKoCE8sjkFaZHgsvgJSfm5isKXL6/mRY6jIGH3IST8KDnFJQv9zGqx5Y0pElIUn/ciN3EMEmQ/ef9paT3DNfoUffmZwrkU4bo7VYGqKKFgtEVbA1lwfmLBzmIqraRrJAnrwdnPKGOpMA2aGBIpi0+TD35+7gWD2GdbrTAqo3QiJU2INUWPZDOCtmhlBLdWnu2QCW9bpsmQVCGZyPOXnnU7ofIgPP4s6tYYMj5kcoKUNa2pqbVFpYgtE9pF3CUs/3d3fPntwH/4n2r+039oSFnhjeVPH9fcHl/z24c9C79HP5lgHYgmkhaJkjQhOFRUGJMxquDMXOBShuVI83LkQzXy/RQZe8PDtmBdhb6CpiloAjrPRnUZigelMms70J5NVJUUirFI8I/KGpOMwD2zNYeoxmfGVkYS+qzEPtRVoaki0RwZ4lsCmkZPQhWORRTrJ9xRxcdpEg3ZQjSgExCVGJgVhU4Wi0OViMkBitwcZ+uGi6sWHyI33w0MXcIGMKrgh8AUxBBQZYsxDUYXlJmom8TyAsbQ8uMfL/nTuyvu/MS2v6E77lnYjmdXA1+9GfntLyf+5hcTWgcoiWE70cWIdYpqIfCPqyxh0hweCsOu0O8SYcxkcZyAFaIyVTJZRi+NSdsotJUptqhEspkxW951C97dLrm5X7Hrz6Dd0CfIZ/D8a8+//Beef/2vLG/eOF69WnK+iKxrT44Rvw2cSKJZK7CKyWcO/YgfM35IfPiQ+cMf4K4bKauBUg4cvccdCv2DJd2vqWNm3WTMVaZpE76b8N4xJYtPElVbUsTpBbWuQR1IaiBkTVQO11Ys1meiC0iQbU22Na6qWS0bvvn2ir/910+5uFbU7YhSDSXVZAx9nxninv3wgWPfczwWSgosqoGrledy0/P0m5F/9VXGDob9rWW3Vzz4wM0R3n1Y8/bDio93hvtDZj90dCXicyLJ5TOLauXwPjWrp2ZUzSf6CeEAPhPzSlOhP2uaT4zMU5P+2AgDJ/nmiT+jtBb7nZTAT4+Pn+Y86PkRHrNGpL4YIYmAFI4y553PX7LoMje7so/9WYvC+flGKpitKGi8T4SQiK0wfDSyOTdGaFc+BnyMaCsUNBGFJYm9DGGuhkYk3zNL6PQmWGvlBZ0Dd2KKpGkilDgfPHmOxZTi0jQNztm5OpcZdyufwUtzlS4ZZzOFickP+DAQkp9NxAxeHKLRyqOUpxQnVroMJNWhzYjTHlWM7EkwdGnBx31N/nPC+wkf4MXzyPlGUblCTlGWruTHmyCNMOiM14nKZczsLV6rwvOV52KZqfzIWTPwww+ajx8L3dDST+eYbDA+8cWXilffaJqlwj1245mYgSxFQRuByIzRLBrhZesYmJ5M7I+WqoaSHSHA5At2Pp9O4ocMKFWwKmG1jNFGW7RJYCSQpBQpCHPrcxqMZXk2U/I00gmqDCZnShkx6oGsNKhRSAtJFq9E+U4MMySGlknECIT36OQt9w+UQgqz+RIFY+eO2yWyiuKzf0jkAHXlxGt+kOWkfH9JCrMrLBYZFHy8cWz7DcfymsGe8/b9ke3+jieLIy9fjPzqG883X3mePRlZVRPDIDsBZQraRtxMfc5R0XeKoct0u8jYZ8KQZVq1GmyR66IoFGL1oCsZSA3SXTuX6YLih+8NN/uG++6C2+MZD8eGgOXp+T1vnnZ8+XLP0iW++SLy1ZvA5iyxWlaoEoS7j7jP+t7gB03ycm0WktyvvWZ7b3j7k+bPf0mMrnD9zODOCsX2+KAY9oph65gOiTgIqQOdcE3BVobWrClsSClC1tRqjcWBaojlyJACU86f9Enz2VJMwdTw+usN3/7ympdvFjx9pgBJyUvRU8oeHzKDD8QSyaohRkP2IzFFjinTVoCzrM5rnq0LTVSsWs3yNrOaEnVd8KPhbmfxwXDoCpmapiqQknTbadYl5NOkoB4Pbj2bMlo7/1qbWWA7Cy5hRj3myKMyh1qhRK/AaXqeG5/P0Hhmwo147ATZa5wg9c9ZT0CcofJPGonyqTDNTKeS1Qw9fZrcf/ai4OoGpQzaWHKREVBnTW0rjDE0lRPGzqzqTzmRSsFVFdZVFB8pXgyylFLzMsWQkthln7p2UfaJstUHT9f17HZbujQypYlxGpmmiZQCpSBCDqvE2Dud8EB5fZJKqBPDXUHjMs4lkkqkHNEmU9eOFBU5CW86jpmSAooeYxzOZlQJkBMFT9I9xtYYt0JbR1GWvU/svg9s7xLbW8O3Xxt+9UvD1ZOENhFtoark3Moeki9MypOtonVioaC8QodCbcX24N//2vPbXw38j/+fxP/8n0be31xz7C74cVvz/r7lb46F/94pXj0tLNqMrhLJRGIqhCBcf2tFeq+twWbRU5wv4PUrTzfKBGOLg6QYD1A5jTNqHhGiXBxq5lsn5r2RQ6uCdWruTGYk9bHb4TGApxT5d5nZSVdJcSx2wugHgaFyT4wJnYWLV8JMY3VFDg6nyVlSplJKqCgurUYz0x4l9a5kufDrRrFYFzKe3c4zDBBzQVuHrSx+zHRjwqeCcrJ7IQ1YFKvacBxr/viXNe+O1zQvn6KvWvwPW1Te8uXrA//drzx/+7XmxRXsO/jwVozrtNaszjLLJShlSJOh28HuXiy+vZeln9JgnaFyBrJMDMyZIq6GupUxf+hhGiBazfs7x3/4X1re3a1wmzX1ZsFqU7i8PPD1y3d8+eqBL78sXF7KwZRiYhxH9seJosWg0igFWtEPlv6joQwRnQr1MlOvNA+d5eZtzfv3mpudonq6YPF0yfLaoaqO6RDpDpr9neJ4lxm6wJR7Ml7Enc4I1bRayLSvHCrWkCxarymM1GHP4A9MU2SavDDolKLeWFbPNb/+uyX/5t9dkOLAux9/4OZt4f5dhXWa1VkBk/AhUTcXnJ29prYG1z4whBuGOOCTorCgaIU38jruSmEX4+Ner9ae1kyo7EhBC4HFNuASuRbI+mR3UUqa2UQ87nUkBlT/FdKhZkZY+YytNJ/zsmsr+r+yyiilzJDQJ+ZS+Se018/FcZ9/nBbNf613+ER9lXvv02PJgyv++hn8tz/++ewjL1a1MY2MPtIPI9MU51GKGX7RVJWjnlWIxllQIyCMFpMLblYiJ5Mfv2mtLLXTOFs/viBZZbSyGOWoXc0YBsbYkUhorajrmrZdUFWiJ8gpMfQT0zSJ42o6QREiqMop0e17pmHAtRVnywVX5y3GNhgj2cJxyIQ+4qcDIVQYq6mqBmNqwBHyyBQ7cRz1lnGMdENH9COqRD7uMvf3mrfvGm4fCl9/o/nqy4nLS9llJKAr4DPUlRzAuc+MpWB0xhphE5lUU+JElSP/6tuOL14Hfv/nzO9+7/nxreHm1vCHHx3j0fOvfm34139bcVbL7sarhDezV1Mp2AxNFkqsWHokzjY9i5Uh+RZigylORmY1zZS52VZDlUfhWJkP7EQSO+fPIFNt5IDOiO6oKITfFwW2A03R8plVIfqOsf+JpAp26qgSOF1hlCZqTykyXUU+CYdiEd8qW2a0Jct7K5TxQimaUqzoNiqB6vo+E8Lsjlsyw5TxUyYkufStruS9Nx6jDMNxxTGdM54/Y6tW3P3wQOh/5M1my6uvOv727wbevPIsB+h+UgxF3DXXZ4rVGjloJkN/zPTHyDQkpmF2/y0aaxXOaU6OrxZozNztKUnOyyVznBS3W8uffnD8/T9W/HTT8NAvsUvFN09u+PKr7/nVt4VvvihctIVF5YDIcJ8RKa/C2MSmTfjeMnWWbhvp9hE/TOSgsC5TLwujsux3jrcfF3z/boHXG579YkPzdMXqcomygfGQON4O7D8G9reFYacYhsSUPYFAUoGiwKkRp8Ug0xoDxWFMJWEztQEl2p1QNGUSXzIM/MvffsG//j9+w/oi8bC95eat57vfKT6+7bm//UCzKFw9dVw/O+Pq+oLlYi2vo1Yo7SSjOcBaJ9yUKUPAL3t0G9l8YXEb2L7N3G0Td3cD3/+UePfQ8rFzlDRi8PM88OnwPp1NJ/bR6fA+sY9OO4S/Yj3OB/PntNHTx+cH+Oe/V0r5rNv/RHk9FYUTfOWce/z15xHGf/1vTp9wmjxOE4+YEv7Mi+a37z9IVa0aCpopZEYvHkElFSgyFhutZiqn+BiV+WCujaG2lqaucZX7K2pX/vxFPFGwssRy5tm0LpUoC5cio1qORsRhc3cqnaKeFzSZYsuMyc0U1pNDoNEoLDo5WmdZV4rzi46zsyNt7altIJeemDoRhOWG4Nf48YyHveNht6AfIURNiIUpNMQsuo04ZaYuE1zk/Tag3w7YZkuiZ7NINFWirkVHoUuGpClRnE+zlo5WlUwpAaXkUN4sE6vNRKV2nNeeF1eOP/2kuX+v+eFdNR/omS+/GHlyPWCqU5tuoEjQTypZMHqTsTrTkHE5k7WjxITGoYuehTYKMfD6zCaEefDMmRzCPAqXRyxUczqoZ83CPAXnJGMsaZ4Y5vjVaBJ58hQjxTwX/anAnJheWRg4OQsjJUaICdIMLaXZeRKtwCB0PDdbKSRNCmIpTZJrJAfFOGVSQLIatDjVWAVV7fA0vEuX7PVT7PM3PLu0LD98hxse+PJ8z8urnqszTxsTYSr4ALo1rJYaV8nN5zuYukK3zwxdIgcZl4yZLbCt3BupzAtCZi2HAWUSvTfsdjXvtw1v72u++0nzp/fi4PvNNwNvvsh8823P19+MPHseeHJZcMpiihGxXzKUbOa9VWYMYpPRHTJTZ/GjI+eAUhGtDGFsGcqGXbykM1fUTy54tmnZKIdeFdrLQCkDfd8Q94E0TKQgnmE5z69jMYQoNvExBwIR58T7Shhplim3VJOjqSJGia6klIr1Zc350wVf//qML7+x3N+O/PkfDvz0l8D77wr7bUc/7FmEgnE1y+WCywsr6ELcSuiV70h5h9aeYoQWUshMPlJUBGUIyrDdW96+he++T/zww8jBAzpiKJjZ8Vnpk57is4Xs7GagtZ4RHy156vMoLPkfPJ5h8vN5gn4sELJveNRpnWrDiYyhThCV+istwuOZ+NnHPy00jzsPJWaKMYaZGXViQc0U/5T/uTXhn18UfvzpLYvFkifXz2naBuMKOgpXOquEUVJlpxCIQ3g0shMer6Fd1LRNRZ0CdrJMfmLoByY/zao9IXWJAE6TcyKEeWNeBFs2WMiyxK4rx3oz0LT1HHyt5s72kzbBWunKxkGWylllzMKSo2HqFHX0qDJw/vQdb64/8uJFz9WVp2oCyiSmoOn6iv1uw357xof3LR8+VBx7S0iOrFqUW5NVjU8KHzyT74XzHxS7fuKHn24Zhh3PrweeXA4sm5GFmxi9mKahJdmtZAkY8Ulsv3UtHH8TxafpxXri+a9GvnymePXc8oc/rPhdPOPuWPOf/kExhAO/qSfONgVVFLY4NEsUENORZDzWiVcRae7+dZAsaA0oS/CemGY5PnYeQcVWWJ8odDkKfvoZRDlrZiinqbnwmA1RCujTzRMkbCnrggonozRFzhCEWobWc8ZfgZTVTFF0eA8hgGZmkBWFLpLtoC00S6gaCZT3I+SgMVmhZ5zWe0XoCxSNcwZlhJeolENVK0Z1zrt0zeiuuLpc8dolmqeZZRxZtwO1HonHgt9DthqzVLRrTd0qxj6z3SbGLuF7YTolL2tEa7QIJh0zPTdTZLlCKooxm9mx13Kza/jL2w1v75c8jDVjCjx9s+Xls47//u9Gfv1N4eqyZrGqmIrkMMciQUKNtjglVuexyxz3sNvBoU/0U8bYJc62ZDWQQmHsGuJ4xpZn3OjXJPua6tkLntUJmiNZH4jpwHA0jH6J8mBURBtP1oFiwGqHwpGTwybxB7NF9llKZYKKhOIZuhGtDJulY9lUxKzBOl59+4y/+TfPefFVIcWPvPvuyD/8h44PP00cdxMpjSgzkZMljDD2MBwVKU+SFjf27A4HYGC9jlysFLrOqCrhYyF4RRg124+G777T/OGPhu9+jNzcZ/IisV4qKhpMqcQYMmdCDI9OCCfLnnn7NNu460f36VIKOiX07LiccnksFpmTluuzxupzuGfeK6h5OX0qFieh3Onvn6CozyGj09c+7UxP08yJ/SQTjHwVmRZOK7+feVI4CU/MbAecs+QtlwLGOtq6xllDnr05wmw9nWfqlnEVWMsUE/3kCT4wzRLuMltWy9QAJSX85OmHQdxYYyRMkTgm2mbB5cUFVbOkqpdopRknYTwwj2Jm9kByrszP1ckLbA2FRAqKNCqmovBWEwPEmOkOHvJAU0Nda7QtLNxEfXnPxdmep9eWX3xjuLl1/PC+YXu4oPOaMSh8YlZGK6ypWdY1lTqj7y55O3Xs+ls+7u55fTHw9LzDLo6YViC46EVFbFAkb/CTRqeESQmlHUZXKCK6BM5qw9dPKy5a+PbLge3WcthtiNbw4wcYx46nZyNtVShMJDKhBITjODMrlEUVLfYdeaCUiYImZuHMm1nDIQNBQitJCJu3MyJCVDzK79NcCE4izxNje9ZikjIQiuDbBkpQMGlK0mRvyEHw22ISjZV9SPAw+oIPCe+FvZVTwVlwFnKx6GJIPlFMRNWFhZWvFTyQZ955KIQpkwMYtNBPdcFYsZDw1ZJb94qju8K4FRsLl/yRi+kBG2+xcU/sA0VDraBqFXnhyJUjpMJ4VxiOhaFLxAlKEBqpMwg92MjXTEnMC1OZi70TTvk4Fe73FW/v1txsl+yOLdZovn4aeP7M8/qV4eqJY3U20i4C2WamZHBa06pWJsEIk0/s+sD2IbPfFpJXpGiBTKUzRkVKmjgcE3dbxf0D3N4lbqY9H+NP6GqibQ5cv1Bcv/bU7QhlICeFUjXKteR6IlYebwOTj6g04WzD1fkGZx3KTxQ/EWIkpCDxrfM5gVJkKrRdolzGVJpX3675l//7Z/jjPT/8bstf/v6B999tub/tGIYBSFgHzp3BukaXllKcNIhGYytF1SisNpyvNZdnE+tNZLGYsAFCrzl+LHz8IfHTO3i/Nwyqwa0drgFTKxwOgyUVoarbJIZzn2P7j7BRSI+//tyqQlTcGjVDNaeFcSnzAvuzwnA60E8fj48zH+Byhgn76dHf6DPY6Z8+r9MiWorJbMD36Ss9KslFbPczFwXpFIX149WEnyYmP4nnvRLf+pwsah5ZZAvv5IUqYpgWQ5xHHFEk5zQXDG1xjxawshBxZkIpNf+bTKwDofKsli1Pnm5Yr1c4Z2WSSJkcEiHKjqMqNcydrkLw2wyCa+g5U8EWxmJ4GMB+aDnGS9qqobaezSZxdZlZbybWZz11PVHZnnqlOV8YlgvHYlNxd/Dc7gJ32yUPDxVxsuhkKbli9IopO4K3FBbo45LlNrG9XfHics2T5w9szvYoBjRxDkORaadQKBFymQNwNCTNjKHCWZtZtSMvrie2h8jtQ2QYKkpcM/qKbthT8og1AXScR2o1ay6MFAUFioRSQaCeLP5JcsiIq6hWYs19YhQVDKUINowSem0Wz0GBnqKarTJkMpDGpcxxnYARlSpGUzpDQDP2kHzGkmmrzFkC52CcoBtgGBPjIBm4JRfqevYCmkVBCVA2U6ci7LEihqE6iYgtTgU/ZDISkqOsQjmFqleo+oxUXdLbK6K2nJUtbdxzlm6p0x6hciWMKVgNKE3SShLOpozfw7Sfo2qD4GaqgDFSvLSSIKRT5Gw5vZfREULFttPcbBW7znAcoDIT37xJXJ5nri4mnj1PPH+VaVcZny2pCETgJ2k+fIBpLIxjoesjQ5/pOphG/egl5oNi8pp+bOiGiptt5mab2XWOfVdz8IVj6GiWFeWsxl9aSJHoe/rxwDRYpmQoi5rV8yfEqsHbivzQkXtZyOoiVhs5e0qeZkrziVCiBWtXlpRh8DKtn102XL6q2DxR/PnHzB//88SPf9hzeLgjjh6dxReqdo7aVjhVEX3iuD+Qi8G1BWcsq0VLZWHTdiztQKVGah1ZNIoUNYMumJQZfWbnNaNuyE2DrR2mEsaXUSJ6zBn0THY5Qduf/5j+yQF/6uQ/p6dKZkJ5ZEKelMwnA1D5/4l2dLL/nDU+glTNFhn6cTL4q73FZx+nYnB6bqcCIsvwE6V/fg66PDZpP1tRMEj1i34kxsw49gz9gPdC/+yNFp7/LL3WsxFHSnJDxCA444mhW8qsolXibVM5R13Xc1EoeOuorCRCWGtmGVmgaSrWmw3WWkKIhJDEmiDL2CQPKTCS5CKIniLnJCEhNstnm/ExMwXN/v0Cc1OJ6Mlkrq8Cr14OPLnacX2l2KwGls2EswqjDG2l+OJ14jrtud8f+HBT8dOPLQ/3K8K0oO8aDtuKcTSCl+uC8pHdseHu1vLjxw1vdhUvnzRcbh5YtR3KRJTOaJ1wdaJkTYmGUDKBEeUkjF2rhNZhVu7CWT1QPdky+nOm6QkpVBxDy5QyyzrQ2IJRoh0RPY3EIM46mUfYTy5NUOQ5XrNgjZjtlfnQZwaS8mk8jmJnUbKalwkGoiHGzOQ9afYSigk5sI2iwqGKIY6K3he2h8Q0JZwurBtQQdE0MHhFNyr6HoYhk2NBZYgNhErcWU8qZ+dgioquB6uU3OARSpTuPURmK+WMrg26coTmEt9+gXcLtAos/B3r7ifasKPSAmUlXWGdpW0T1kDvJXEtdZHoM/5oCJ1MeVqr2RF49s2Zb/mU02zhwowha/zY0PdLbh8MP90XlPZcnx159SLy5ZewuShgE6oppFrRY1CqhuwoPhDGyLHLDMfE8Zjp+8I0FXLSWNNgbE3WiiErbnaODzeOu23L7lBztyvs+0zWYGs50DZOc76uuXra8OTSsFwoBg+7B0/Xe2KqMM7QXi5QrSMbqOoKv5vIQySGCd93xNCRwgTFSqPohE1X24qCxQchZrx4esVXv75kuTbs9wc+/Hjkxz9N7O4mVPE0jcGqlUTxtmKap0qmP+wJ4ciiq1ifL6hbh3W1eB2VCZN6dIjYolgtDNpp0gD7ndCNlSlkAiFHKA2GGkxC6ZkWHPmr5fHJeO5x9/nZwfz5BPHXrgz68WCmGFm2lZOIVk79x+JwKhTwSHv9vNCcDn7gr1hGnwrRX7OPZGo54boKpfJnFFj984vXrq8uMMZh65opJMI0cjzs6YeRlBK1q6grR+XES13wLFl45Sw3ilE8St1PL+wpF6GyFZWrGMeJrjsyjCPei7BptV6J/mHGkR1W2CpWozNEFR/FZ2V2DVXlBGNFYpJMYpdrNC1WaaxREkxiE175eblp0cHht5k+LrnbtjzcLXj5bMvzZzsWiwljhNfOKG/ipdOsX0y8edqz7zoetitublrev2vYbi3doJgmQ/QtU2o4Kth2cL+74IfFgtdPF7y42vPsyZaL8wPaCrXNR0MoErVHibgoDCJsQZk05ywqbMm0OWLtjlpFJlsxeEfBkYoTOAg5QJOLZNLjiGmVLGitkq42JYE3MnnucJiL7IlWLYvwPDObUoQcFTFoYhA4qESNHwv9UeAnYzQ+Qj8mitK4UahKKUeOY+Jun5l8YdFAWRjqbJgqTR+gmzL9lJh8FmuNx5tAU4IcwK5VYA19p8gRaqOptELnJE++FDCKZAsRhVIWbRqiqRiLgulIFT6wCDvW6UhVJN8aB/UioK1kW/ddIQRF8BCmQvQSKqSLFo3OnBugCsQoU5NxRRb/YvUlAq+pIqUaMDy9Lly/itRNZrNSrNea9VnGtolsElgpNtkXfI9oDI6KsbOMQ2YaEtErYoRgFMk6fHVO0hcc+pq7rePH7yfe/RQAEYAOKTKGQCoJHSO1VSwrS1NHlusJ2xh8TnR94bBVHHaRye8p+oBuRCjatI7lyxZ1tSD1iWE30R16jseJUDxlVvxapbBKtC1FGXFK1YXnb1b8d//2Na6Gmx8Gbt7vOBwfAFitLmf2kkbhKMUSfSKEHRzEkdnVFYvlksVywXrTUq4Ky6cO7AJbB6rGYK28H67NLFaay7OKpytNdygcQo9SSVL8YpntWSy5mMci8E8hon8K+ZwO5k+MIB4x/dP59rkB6OkxP//4pyylR5ueGZL63Hfp9Pf+W9Ggj44Cp/tVMU8MRuztmZu3f8bHP7sovH7xnJgywxTp+4Gp7xm6oyyJi8BLWhU5q+Zte8lFmAkpiTBVia7AOkkUK7lgUyIhB2EqhcPxwHa7Y/ITpRQRptU1WIOKCUckVJHKOBZ1Q+OsqFlVpK4KpSSUjpTsyWkCF0TMpBRWJ5yJWFtjbEW2iqw0Uc8eSEmRk6ZPmvCgGY4V/XaNHxb4UHN9dc9ms8Np4cVLAE9hVcPlKvJkkzhsIs8uBl48q3jYOW4fLPcPNdsHxf4AUyqMQXF8sNzeLTl0lu1hwXFoeDk1rNcTy4UXh9DCDCdlKEpgnayIxoklhJYrQDIuEpU+4rTDqoYUhfccZpaiRaANVJYCCCQMpnziYIvSrFC0IqnZSiLKa2f0rEFQs0NuAZU1JRn8CEMHwQu7x8+QjzGGuhYn0e2+MPlC0VnS42yk94nbBxi94mypKYOmHDSV0UwFpqIIcwFySqGUwSslLKQiOws7FYZRVMDOaGoDtZUO1VmHazK6yQQDXdJErynKUMpIie9pykgVb6jzCEq8ZYzRaFcweHJI9Afwg6KEAlGU0DkqjC7okyhjFtSpeR+DQl5HDCUrYtKE6EjZYutC1YyszhPry0DTSt6D0loiuLOZFeWFEhVhhOEQ6Y+J/mCZRjPDMY4xgs+a6GoiC3w5Y0hr7h5qPr63fPjQcXfbUTlF5SLjOItOs9C5TGtRlcatFe4iEV1i6AK7baC71wwPhak/kMoIzUS7sZxfnLFZL1lctRAM3UPDfgv6IZJ2EEeBPyvrqIxFlYpUFJUp1GvNi9dLfvGrNW+/3/OXP+z4+NORYxcAR1M7tAnARI6ZFIU1U+ZmppRCHifykMl9pEqQWg3FYK2jsuKxlotFq0JzFrh6mfnmAfq92KYMfeSYCn6KFK9munQmY0Uom/JnZBUhymh9WuTOZ9tnrKIT/qHmyM1TnkvJZc4Xkb91Eph9OuT5xPCbKajwSUX93yoKn9NWP//4r6eJE7VW/dUC+2crCleX5/TDyDA+4KeBkoOYsjXij2K0xdrTN6MfMbaCKP5SyUQEKyv5k9OpCgrjR+zosNbSjwPd2KGUkpCJuqLMXbHTFoMmhQC5YtEsMbbC2cjkM5lILpMoOHMgpUgpeabIFhRbFBmtGrRagKopWELOhJLxMRBCIXnBpadQsd0vKFlz7DT+daJ6PVCfFVwtSP00JYZRox8kn7ppAsuzyIsnA320fHho+XifePcx8PG24tgZuoOls5Y4OXbRErcrDn7Bx90TXj458PrploU7UNsjWosBTqAQi+DRZarQJmKcxxqBAUyyECymZCp9wKtMnzMeSA6cVlRZoZVBa4E0Uk7kNBtrzRioUmL1rYrBD4UY5GItVs3Qm7B/HhOqkiaMheNOCkEICu8L3osWA2UZp8zxkNh3idF7nFNcnClC0XTHQjcAwZB7zUjC6US2huJAuVmAp8SJ9aSDiGVWdpYCqlC7QlMpnE4YFdgsHeuVo1EJ7TxjVuyiYRoVaQi09QNnzS3LKlLbAKYwJEVUhVWlcYA/aqYx4UdZXpc4H/5ZYYowm5TJs3pUePPaKFydUa6QsiYEI5/RYqvCehWpF56qTdg2U2wmKEVRRpKziizi02jwHYwHxTjAMGWGqdANkVQU680S1bYydXpHCpfksmLKmX6KbB8GHm4z0xQwNjEMmf0uk6Ls2NAFUylUZbHnDfaiwZ7XhDSx3Q90+5EyJaoYcXnEWE/dZprWU9kHlq5js2mwqmbVNCyWGtXU6BrGrpBGRVUWmFLhJ2HnLBcV59eW8wtDVR8YDjs+fLdje1MY+wVGJ4yN5BAIfhI6r/I401LZpZjWqYQ20li0VaG2iUpnah1wTNjYg/fEvMBYQ73xXFaer4MnR81htNwdHH5f0U8OZjW+KqIVyeLT8hnd084H8ieVcymz4NZ7TsFh1kiy4wlCV1rNFhOQs0zJqDzvDU7Mo1NhQJo7K4Lez+UM/1Skdjr0T9PL5wtnUFhr5qIgBqWSSaLR+r8uIv9/F4U+jIQSqWrDk8sNq0XLME7040QIkTI/EevsY3ZyyZlxUAxODKkSwhRwWpNjJqJmLUJE5SxxkCrhrHSZbW1onKYxmlXVsK5a2qbGNZrFqmWxWOKsobULlLqlXrzH1d9jtRf/oiTWF7YKaCvB1UUhaksqvFd4rxhGwzgZhrFlGBuGoaLvLcEnYojcjZFtdOBW1PaKwsDFdcRWHsMIPku+QITQadJUUG7CmpFny4nL1vL1U8Oxc9zcOT7eOG7uHbtjw5Q2pLziPtYcHzT7acXDfsnTi1uuzxWrRU/TTNgCqmh00bK0jbOYxhSSKTNNNIldNQmnCo2SpSiIA+hMHJXZ8rTsUkXw9pkZJN4tCG1yLo4pyKLXmIK1UmCsEpgoHBL9vWZ3U9FPGp81PspNU1UwRY/3MEyGwVv2k8ZECZfPKdN3nnECqywlK0aT0Vo6TSaJUZWQHtk7OFujtGXMmTElQsqQE6u6cL4IRJPRKlOpTGMycdYP7IviIRlMUzhbT6xU4oLMikKtBNuM840z9Jk+KnyfSJPsS1TSAoukzzQaM5vDOI2uDLrWaKfAJHn9QCAkV1iYjGsKri2YOqJcRFcnRhyyDPeFNBZCr4gDDJ2m6xTdCPtRcQyaLll0e86zqy9wyzO2/QPbMGHNEsWCcfIcd4n7myM37ztStJTkCEkJFVTJXk0bMQtsz2H5QtNeKpyD5EfU9MDSHrl6MbH6wnO+8pyfJc4uFIsVGCsGgkZrYqrouxWHfc3dLdzdZna7kd02c9hpjgfNWArZGp69vODrv1mxOTN0+xv2twOHDwnlNau2IsaJMBXAYtSK2QpIuu0SiT7KMhtxe5x8Q1YOtzCsDom+hzA5ko9MaSL5zHQI+FmfsmoUZ23NebtkOzmGbHBaigoFibLMEJQ0s/9f2v60R5IsS88En7uKiG62+BLuEZlZzCSLzWFPE5iP82V++PyCBqY5YAM9042uYlXlFuHhi5npIttd58O5qu6Z7MYEgaQFNNzNzN3NTFXknnPe8y7k2uKBtdBRtWTAawVrWJnG0tTPDf6hELPoqW6K52uUZ/tP7FkET/zKCGpQleYvCsJ1gv828EcKhRBArgXqW5fVlEVIjJLrNOV8c339hXvmX14UXk5HFLLIuDvseLy3pFw4ny9My0IqAgFZ68T7o1ZqzsTBEkPHWiqxyDcsQqcKuZCyeIQrZzHesQSD9wLNdM4zdB37YWA3bDkMG/reYzpF13d0naezHc5rOhcY9oXN9sx2mEWEFqQTcP2K8bGBbTIKKqQLnOfCshjWRfjYa9wwzh2n0TNOnsvkmRbLEg3TsuXzF41zI6a/sNkXjFXYrlB1oqyQgiWvlUoSSGcIDJ2i31jqveO7g+Pzo+PpZHg+z7xcMucxchl3hHlgih0fTq85LZWfnzPv32747jGx6RacWmS5qhK1ylK9JLmYlcoYJQIEsWFXdPqapoZ0RG1UvWLfYk8hoh2usJ9q46ypaGfQSRFiZVmEyWUNeKNwRiCj8VQ4PmmePivWaiidYYmZ6ZKxOjNPlZwV06RYkiXiWIsmnRM5FqZZNA1rFOx/pekPsKgioixqxTvwThgnWjvmlJlTs11Go0qmu3lvyU4rBkhKMWXFZDSz1xz2EsSyMYVBK/rUUgGL0CdjY6qkoMgrEKUQU1tAShWISJhgkgGte3B9YzcZYVuVxvywLmN9xXdF0uE8VNMgvKKoiyKlSpwLYSqsF/EhCqtlmi2nyfHlXPnTU+BSLN3jKw6793Tdr+j7HatTFHOmak/NimnMPH1Z+PL5zOcvRxQDWm+oeKT6J4zO2L6wuVO8emP44QfLw2Nm113I9YXDqyeG7868PgQe7xJvX1XuD7DbKrpr8l6uxFBZguE8L4yjZ37tGI+K82Xlw+fK//aPmn8KiXXWVNfz+P2G3/79G7abkZefn3j+sHJ8CpRU6X1hyollkdx359zXRLMayWUmxYUYVlIpVDRuLqzZUaxDbyKHfeG7jWbnFN0gmptPXwqnFygXOH1STJOj1K5lwCiGTrOxUDPkWMjZEFMS2/OU5NBWVdwVrMY5i/MOHw3GQGpizpSr5KgUWqiOuh3611Ce61K5KoGVvtUhXHcA12Uz6prr3KKHtTA+ShOO1hZdW28wkniNyd8tKF2abCD9F6ypv1lRmC4TWuu2SFZQRaPgvKdDUUOQCmnEx0Wj0B522y1Ga9ZcWlcnAeXeWLyxzW01UrWiGs04T5zHiZILVhu2my2Pdw8MncHoiLYzxjXNBBWnK1tX8MahwhuqOqPMFyrPTHMgxoTPBZ/kz1rddh8YumxwxrLfRdhHsCvYF2JWzKvhct5yPD5wPt5xOe8h9JTVcHzKKHPmsGbuHsD5StUZbEEhzKDaqJjjBc6nZvHtDW6v+P43hV+RyOvCy5dr1EETAAEAAElEQVQTL0+GL88Dp8uBat4Syyv+5Z97/tP/suPv/9WBf/evt7x78xN3h3/B2bH5PNWmFNaU3AQugFYFbQqKwjWjQ1xqVbtortijFpVxVZQsRbKSKDXfhGfWOVS1zFPkdAlfXSRNwVpFCpqwWL6MhY/nFdVFNneGmAvP54zOhth5cq6cx5WsFXrbUyt8OQfWdaUW4fRnAjEbVBAdhXc9WmlCGsl5RbsOYzrWVIhxJq+JkhLVFnRXCNlwXjuUchQcX061qaUDRYE/KHZvFD5COUJQlbUTTyCdxMJ6XSo1aXS1EuIe5aCI8aqI1ygrbY024LYRu0konVGqKfozjVcoExjNnA+vZLOvxJ5ZU4ljYTlF4korvJVphjU4chk4TwOfjx2//ynyP//DC6v1/If/+w+8e/UrSmcIesJvLLu0Jy2eyyXz8eOZP/7xI8fThcsyU8igEtps0bqnsmLMiu0127c9P7zv+B/eDdwdFqz9RN8/MQwv3O0jr+4Vg9cYCiUWlimzzEDVDQIxQiDpZzZ25GGr8N9ZUB0fv3RMYeXPL4k0OYozbB8Vb953sMLzT5EvH2eeX45CI/eakAJrEuJKXcBd7R0oQCLHKEzCWqlKk2oinyay1kSb8G7mYGc6HfnhncJUw/Jc+PiHwtNH+PlD4fc/B34+L1wiZGVwbsemH6BCKtf8lcJ5HFkvo3T3jY5Pzg3eUfiuxznfwr7k+wqxwU+IUj/GSGzu0dB2AgVqyWLH0vzfri28MqpBPaqlr+kbk1M16mlJYqUtltryuMK+MvB+9Uv6lqX0X/P2i4vCttsIzqYFYyhZQkSWeWEJQbxplEK1MAjnPIP3dM7jrBW8PkVBK67ffIVlbb7o2shOYrdhM/SiZcgSzrOGmTUkUr7gnWW3PVB7jS4nTHF01QkrqLwilZk8nLE+Y61HrB5WQowiktOGIo0eWmdRxF49foxgxMaC84V+uHC4D4T4Qkody8WyHA2oGeXPVBPQTiizuQrPX2OEnqmuknmh7OasyItoKcy54k3B6sqDL9y9Ubx/NbHmkSmeOU0fscowdJreJz6fAlEPnNL37Iczh+6EURI0U5V09dcuoraCcW3+m0q/qZZVUwqLyjEl6ZCuhUIpC8pQW3a20gaUMDLGEebJss5GxH4ZYXlpxZdj4elUoC/MXWENihVDTY6UPKpWshJzO+MrKVfWAmtp+hQn32zJUFaDrmLep1y9XaVJWaiOtciNZkpGlyJajuIowRCSiJqUVsTUogxLQevC3mv2i6JUw3SyPC+KHAvDVhxLFYhbblZiBZ4VNUGO+qYxcEODg7qE6cTB1KBarKymKkUxCm0LuqsoL7+KdFuCjdIEZVHk1bBOmmnSrEHyHaZguMyecd2xxAPHaeDpbPk0rqTBsXscePe7X/H+X33HUp5Y4xljwVjDy3nh008TH/904uXnCaXgYeixHly3MmwqwzDT9YHNJvLmreXvfpP53d8t/P3ffWTTByozzkSczTijcFWhgoFqKFEW7WEqhDURo+xSUi0EMsoUeqepBY7Php9+dJxPkidubYfuO7Y7GIaV55eVD38KvDxnllipJRBzQWnFMHjWEFmWlTlElrBgjRIbfGUw3kAWb6ucoJpKGWH6SabYx0HxuIM395VBQb14lif48KPhH/+k+fMRfh4XohYMvxRpglBiUx5iYF0Da4y3e/gKGyqVCCEwjuNXX6LmimqsxXPVM4j1xRVGl7PmK8xzpa2CatnLNDhJ/OWMseja8pplgy0qatWKBgJjVa1E89Omf631zfZbN8sOoaj+8iXzf1VR2HS9/KaqFpxTxJYhrMQQUG2XYLTCaIW3lt53dM7hjEXVgq4SEq+VoqZMDIF1npjHEeMdSg1Y3+H7rrmkJnLKrMtMiAtrmvCuo5YNNQdqitRsMbUjKw1xIIUD/d7gVWpLIkOpwhZCGyqWVMXwzdTr1IAU66TFxE0p0BWrImZY2ezOaKtZJse8d6SYQa90fcXZZpV7yxQQdbZqJE7nrqOcGGjluUi2ghKMfhgqXQ/DNqNNZFomtvaZzW92vH/ccRpXpsUwJ0u8dORccLXQu4BSGa2kU6WmbzoReYjFV1MgNx40QGrGa1XgeGoubYpolr9KBIRJFULMTHNlmjXjxTGeO+apsMwJ11Wcr5xGy5occS7Mz5lcFbEJy+Y146yhH3pUV8lacM6MkhSpzmKsIhXx0zE0q3UkbSqUTCzCQlIpi21yyXgKRkEsmjU6TASvCt4lOi9d35pbQI8q+EURR1iDMFVqqsRcG/NHKMqyYAdyoeYsYTBUjJECaLz8vLYvWN9o1ll97eysBquonaL4gnKIirtATRAnCJdKvCjCqJgWw3l1TKviMsO0esZ1yxT2zHHPGDvGCKt1vPrB8OaHDe++33J3r+ESyXFGGSvU1XJB5RNbP/P2rrLZGA4HzWYX2ewD93eR/QF2+8R+V3h8sBIU9Cry+vWC0VmW+MlCcaRVMy4tFa5oapFrPKyJacqERYq7QI1itTBZxzp5/uEfHf/wL5bP5x5tPEMnVPbeFYyamceZTx8vHE8rayzUnMgm4r0TTZJWXzUeJVMbnCh0dnGXzSVQkUClEBXT0fJ5cHw5eo6XQlgDva24YjHJMo2Wzy+ap6lwWouQM9pBHHNEaU2qhTVGxnkW6Ed20GKNfVvqNtud1ol77+g6j2neSAqxgimlNGagHNy3br1pGmrlBu189UOSXcmNXnrtXm86oiZOa9nWaI262s5cGVC1As3nqF73FVdK+d+4KIh09eYliEGmYacV1Vl83+G6DmsMzlo67+mdlQqXI6SreY3kMi/zwni5ME0T87Lg+k4O0Zwx1qG0boE9iqxE9eztFlU902QkBzhluTCLwVZDvChxH70z+D1Qp3Y4FqyqeF2xRtLWckq3Cl1vTIBKbaZwteHCBRndtLFoA7ttFMwO4VJbpSUnQMmUoepXhkdFMgGclUnBZKFJkjXjnJlDZooZPRYJoLEVU2BXKvvdCHcTY6lcInw6GZ7OhhAdITgMPdY1a26ToLG6Klm6myKMCiHJX9kOcpFY0+i0VFIVK4m4iFFZaZGEuVYxPVwVp6Ms4+fFMy89y7KyLpFlTaAh1S1dvyPFzMvTSFYBbROpJGJWDL7DbzZgNMsSWRYRA1kDXa/QFcZLRhXNq4eOzcaR0si8LhzPifNYUHZCu1m8+10labl5pmiZZkVnEgeX8Mbg22tQ1kqMTaqQFUelyNvKZmiK8aNiuchy3XiD7x3KVFJeUES8haGH3RaGoeJbOpozMu2KEWBFO4GwVGfAXSNeocxGLFWCIi2KZa4sc2aZC8tSOM6aL1PP00nz5Utlmj2pDFTtwCW0zyifudsbXn235e37DfvujF5GtjzTefnmYym49yde70bKbxMGw2YQptP+EDncRe7uMvt9Ydhquk7jydgyA4UyV9ashHmXxDwtrTQtRGWeF2oB7+RnFot66XqtMXSmo5aep6cNv/+z5//1nwL/8AfF4f2ew8OeUCNaQ1czNaxM54nnpwvH08g4TRIJS2WZV0pZmrapoLXCWA+13pADrQy5iG2IuONmaraU6omLZVwsl2CYQ2JrAkNv2G/BOMhKnHq1bftKJ+dMrhGjXAv4EssKqtwv7YhorgwFow3WGYFvUiKskZILzgrS8a36uVzPFPnHuMYKV8Q0L5X0TeojOGdwzgjL6goBqaZ3QBoUVVVLq2wFQun278uoXVIU8k5uRJSr7cZto/E3LArLPKOuodLG4LTCeI/R4vqorRFK1XWkUgpyanJrWTrXkpsyFmIKrHElZdneW63p7HXaEClQLpkUA+sqOKMyBuuuy54e6z1FwzlEiJk0e7qwp/v8Cu2fuT8c2W5nTL6GXchJbxE31WvsZs7XTr4dpsiy8qpQJQO5UnQBI9bdxgiXfFnFG0gmxdqcQduvKCyNntsWu1Vl4er7gjdXCpyCoIhBE3NBl4jrwPeVrVF0PfTK8NiJrYeuGaWN0EvxKDyKjBBXxQWz6oyqGdU0BeIreB1fBVbSVRqR2+JwVWIiFiFEGJfCuMA0GS6TYp5gWitVGczgOJ4qpzHi+kC/WwSXvcCahd6XC+Sk0KawhhWtKvOYSLHgFXiv6GxjYKhMUVBspfhCMcIBt5uOrgprSulK7zSuU4SYmELitFTGNbHzlW6jqE5gjyUV8pJYY77hrp0VhkZAHG6TFv1GpqBtxG8qtkMIAr7SdeA20O3A9y38xghcaK1GOzHjwwiEV2qhrJCT9EBpVYRFsS6GedGcRsNxchwnuCyVMQ5MaSveWTZhD5qNy/h+xneKfqh0m8zdvea79yuPr0d2+090faaUmVJWdKmoQ6a8mVFEOleaDYg0I10neL2xEuaktUzGNVSWGdJqSMGJdiElMXUjXdn4qJtzr/R2RQQYgHigpWy4HDXHi+JPHyz/8ueOP79YZmvYDQ5/MLx2oh/Y9I51LJyfA0+fZqbzSE4XsWqoctCmnG/Z6ihFVlq631ox2qCsGCla0yikaRF/oeIIo+bpSfPzF8fTZNlvEv1d4v5tYfMHg3eOTdlQ7IbeezqnAVkoi17nm69TW8a01RKC1Z4RBVxVYtVayUBotu4YjfMW13uZckOk1iraLGsb7F5Y1hVSorMdJmfWVdIrBdMV9wVxZdVfz1zrrscXurbP1aY9Aq5zgNH6duaCWGZw01X8jYtCyrIckeokfFhnHd67ZopWvko5aqWk1ERtUuGuucm1yqJkDZGYE0UhASPOtfGxPXkpEdbAsq4sywxK4bXCGOg6RT94fL9DKYjpRKZIO8Ce5+NblL5gyHQm4G2V7AKtKLqNYlcdRcPcueXXKZoKSRgBSkk3UiXjucQiAicrOoUUCwqx2rh6jpQiC+BaFTmb9gwI1znWTEFYK4NFcgeyoiZDyZqUBfYIwJrAOjFVu7OK+x0sKXKJAbBo3aGVQ1cLVaCPSm0unLndTE2d3C6oWhAmUpELqba9Qs2QohwU86JZFi2QxiKPcaksS2YNUfyDrOWUEh/Pii2Bx32mWrFLt1mTq6MkKNFQom6xqYWtT2ARoz8jN1ym4HsxiFtLoKySr12tpduK2DFHScbqncNaTUwrqYS2HKyyW6hO4Du0LNqVMEcyIlLMaGLWlFWuL1HCp9tE50ugz5XNTqwz+h6GjcJ3FeebS7eR3Yj2BpymukarzpkcMjkU0iKCs7DAMiumAJcVjovmuBhOQTMGyNqiO9jvKp0vDH1mu4lsBsXQwdBXur6w2yoeXo3sdgrrkmSA10itGatyEwNKip/vhDZMlfCfUg0liz5jjmIpXlOhJEUJihoUZTGkqEhZKLypCEVZO6goYmndeQGFw9geawecGViK5cMl8+MnxR/+1PPjB8eSwe801VayTdy9PXDYDfhBMV4C55fI+BLJa8TrhNMdVgvpJDVn3twsGQpFyADtYdoi1jaPoUqllICuibI6np8cHz4ZPh0dD3eR+33k8CaxOxi2gyJqjU4d3lmMUawhEWIipYJWmZyKnFlaoPDbm1JNcyCTgDYt4rJRS40z+MHjvJczsVQ5t6DlvngqEGPkfL6whgDNWHQcR+ZpkrS9Kt1jbdMQVZbW5uZeLPRY8SH7qlOoDSYyLQTor+0x/psUheHuThwPQyTWgqHZVVSBZ0puY2eLzLx2pdfRZw2BEMU5NaRIypGUxEzPeAMt0S3GRE6FeVm4TBMxZ2qzh9XKi87BJYxdUcqjjGnKVVAbQ42ey/KK6c8LXz6PPBxWfvsbePedoj+smC6SM815U7o65QWessiBmVIhRVFUiwpYutSrYvuqZK1FOqlSIBa5aBv1pIn0YI0C52itWzym3HASuYjwi4t0SiiD7WRJFaNQI20sOFXxOmO01BAFqGYxrYhoZZClcwKdEBFDbuNvlcausRNygRgrKaoroYK4whpgnBWXi2K8KKbZsATLEjTnKXGZxfkyFlkkLxU+z/CShG3kc8Kh2Awes/E4r7mMhacviU477jcDjw+J/fZMLpXn48BlVoS8UHVhe++IqXI6L4RzxXearrM4I4vdlAsxVPQio7HBsus1XZdIJaOUQSlH0JWpVkpn6K1rOydF7w3D1uC0WD3Pc+QcR4yW3GmXK2sSy+RND51WbIxmYxWdKfJ9eIVxCixkU8lVk1dDCZWyZtIMaYZlUiyTYVosl9kyZ/EhyhZ0V3h1l3nrod8GtvsTfQfeKunybWE7KPYbQ2fbTkMrrHGYoiCKzUrVsdGQFbqASaJFKXNlraCUoeJY1sy8RBEUJkUK5eZJZZQcODlGYtCEYJgmx2VUzGtlDkUccI0YASag2xy4e3jH4f4dh/47ou75YgOf68wpHVnXE6WpP8dLQG01b/+u4/X7A9SZL58vnI4reY70ytFvD3TdBucG5nVBTRfW2Gj2CCHFGou37obbW2vwnW33U5HI2zWiVGG6GD5+Uvzhg2e3i2zeV4aHzN2D4+GuI58dddX43ojNeoQYMiUnriVAIcw7ax20/ZpkyReZrI3Cekvfd3RDT9d3+KHDdQ7fd/R9L2LLlNBaM2w2OOeopbKGldPlzLqubZFdmOeZZV7QtVJTYZ4m5nFmukws80KOiRhXtDJYYymYbxYEzfCu5d4WJPrzarnxX8s8+q8qCvs3b1mXhfD8wrosYndQZUkp4ogsquVSW1chT2LJ+TZKxSyZzdZ5+s2mhUk3SEcJlp9TJjXr7SwtC957vBvwbkPfdQydxdpKyRehWjYcxJhMLoUxapbzDtI7Pn22LGnkeVl5eKXZHTq8tzhnwSa0jRiT0Tq1Kl1QsYjNZgFd5fCsud467VJrW+zClW5WhJosm3+lbklkVTWGkGqXW1aoZCiqLZWuRcdKhyI6hOtSuMqFUhVrrtSILIG1RtlGdTORenNXbda5tVxFCPK5BtkpVYVjj6YUWNdMWCvrUplGOJ0qpyNSGGbFsmpx2AyaOSiqFo79UhVTUUQJrCXlzDQmBqPplWK70Wz3GmMz5zGBEWPAUoSNUWpmCpHTpAgpgy74QVC6WDIxgjGOqAyhShZwCVCTksSyLPj+pqtYX1GmMq2Zy1w5B2EdOSt7oIxiLRVdKqG05XwVqOSyRmEruYGaYV0maopsO4gD5L5CFvqoMQIdoSG2ApUCxCVT2oSQV8hBE5JlLYbVaPIgTVNnCr6vdENhu9VsN4phA/1QRG1fy+3RO83ee7xVUEvjsGcJgUGYYWIQKSLQWiqpyiI4rlrS5irkmllDZolFcimKJayKdW5rvghLyowpMU6ZaayMF4ELp8UwByc2Hc6ivEV3nvs37/h++zuq/jXYt1S7Qb8qDPXI5vSPnI8zl09nLtMZWy1qA0nN0PUsY+AyFmoxbDc9tXTCwXcOjBX1eqdA79FGEWNkmRY0Gme9hCo1Rs0NwrMKXQuqS5SqibZnXSs/fyocNppDtzDoDMqxGXr66FjQdL3oDsIaiSaypEBM+esiN+WrNpFKvdFVu6Fnf9jhO4l37bcD2+2WbuixvRcNg/e3UJ5rapr4IxViSvR3G6HhN8uKGMV9QaOoqXB6OXE6njg+HbmczizjTFiCeL/pa+cvbC2jNCLnaOI2daWpqjY9fLXm/psXhd2b71DnMy/niTlOUBKBRAmpBYAjo5QSdDukzBoD8yKZykoZrHMcdhsOd3cMmwHXOXKMrPNEmlfiEkghkGIkNUtuaw3OeZzv8K49rEWRyWEipiR2BygZx6omlEq0G2r5DSm94p8/fuTTfOL1c+HNK8vjq4GHVx3OLRg7g54oLKjSoiBVli7MiOtmTc3pldQ4wu3w/WaPe7UBr6hGIytNACZwmtZZRFDZUJMW+2VVMA60AaUa/o9A1No0K40GR8WoxMeoaEwVcWApiaaT4faaNwhMVRkj69XdtOGyslsw5KJYFrhcMuNYOZ3gfIbTWYRm4yyd/rwWYqkUZbBeYY18LaOk+1bZYJSmrArlNX0P3oqTq7IJu02konmeVkIpnMdMSJGfj4nzLN+bMeBTRgsigLcGqx0UyzRlliVhLVgtz4GJFd1VBlvY9mK1XWrhZYqsITPlzOA7+q5jiorTUlicdNg7V+m05GekXFB6g9IbUIo1SIrg+QyDLziX8F3BdgqTGuoWK0sQV9K0JNKihDuekcKHplqN6jWdqXgbwIg9SN9VNh62vWHTiS2MMuIDlksUg8GsqFETV3kNlapoU4RMoKWBqlVRk5VrPQqEWYtAQuvSHlGIAtXIgVuVpVTLNBnGk+ZyUpyPcFwiT2HleI6cTllsQJIiZUMsjqIcWI/bbtje32Eff02wvyV23zPaPcb3bAbP6/5AWZ6J889cphfiOZNnWC6BdZpYFkscRYehjefuYSeqdSDUQqRgrGa33XK433P/cM94Gfn44RPLtDa68Fcb6pQErvZarCic8dB+j4Lji+FH27NhZOcjl4uVnO6uJSh0slgefCL7xnJMX+EayUa5huxUtNXYztPvBh7fvsIPnZhveoftPHbo8EOPsbaxF3UTnWlx0mhJisorEdxWJ4mSJdPXTu57baCAGzx+29NvBnbHPeP5wnQeJWI4SwRBDEKZVY00ohpLSVCaJqCj2dpcRQx/86Lw+JqsDfz8iaVUwrpQ10gOgRyk0qEUru9RzjKHhcs8cxlHYkr8+je/4Yfvf2B32OO8J+bItMws44XpdCFMM3leSEFCdQCUMehiJZaxVkpNQEcJHQZFSZmcE6kGlpA4jpmiHa/fv+K7v3ug7weUVszThVIm1q4weY03PaZ0EBZUmDE6YZQwpGpayOtEDhe8SfRdxqiAdhFtX7D1GQgI7UtGt5wUuWhyFutooH2vwjW+Gp2hQPuCdqI0rtWhTZsqioywgvlfdQPi+aO0Ai/2AjVXVHMArakKu6WqG9VNMq8brZY2NJR6Y0SFKEHy0wQvz5XjsXK5SEGYF828WELqWYvjZV45XQLKWHznWoGp5BSpMTCYwmbvcLrS2crdFu53innJfPhp5ZIV+IEYFT+dF8ypsHWGgucYEiGD1SIUC1HsOYxOWJMb/GVxpoPOoX0GnSVSMwdcgS2KEi0lO0qo1JJRRFCyULUqUUthXjPLoqlLx2wLvY44C8aKorXv5TmLyZCL4RIzZpRFdKyKkDW7WayIa70ydK4FuE2BTm5QY5WwkVzFWmG7GVMwuggM1GBDyYdIYufuwPfCikHVZvEehWpqZMkZsliVxxXSCnmFFLXoX7Ilp0xMlWXVLItjXB1r6tm/esP28ZEpLlzWhZcpc5rgMlrOF8vxXHi+BJZFEv9KlkkkU9q2xWCUxfsNd/evuH98xXa3wToodYKc0GrH4Cxv3r+ns3D35nve/fSFnz5+JJUFsw6YecN0XricFkI26H6APEOZUblKJndNGG14eHPHf/9//fcs88of/uVP/PjHD3z+8IVpWsjxqqGpaIPYrhiL1x22q5htoeJZpnu+fKzU0xc6deYywRIAa3BasilSkI7LNzhXoQlJHBYEblVyuGrF4+GRt++/Y3e3Z9htcJ3HeEMqiRCDQNFOYym3/YfOTTNg9A1BaBcNhUJR8qhFHhmx1fC7gYfe8/jqFTVVlnFmPo+s08J8mXl+eub56YkQIinkb6iq+gax0frEWyn4b7FTECWf0N/GZSWMM3EUvCtHwXVRCrcEjLe0fTybw4Gu73h485r+sCPWwuV05Hw5cToemceRdZrIa6TE2MRWLWLOKzQZyooJEWNmGZeqaTYZcmdqI9m9U4y4rcduOzavNwzbHm0HzLwlF0W/teidIfaWC0bGTjIqZciJZTyxzmd0Y3F0JrKWlZwvxHDCxC0ubrBqwZiIViuaqWUcgLXNWrpUYpR4vnx1F9WNtKEazt8EJaoVASkwqi2Zri/pDfn5q8hLsRQpRYtT6ZVQ3VgH5fZ1aMH3MlLGXAixMi+VcVKcR8PxrDieCsdjZW1wUVGVWDPVgdlIh6W9pejCkjLLUliWTOcNfS/FyvmMcQZlHakqLsvKKDWcNRWmdcWoinEa5w3b3tNXSUbLsRBDE5op8eWxObZiaUQUWWX5tiRZBoZsidkwVYWqiSm0sVnRBEVCEexMZaMLNYMpClU9WvvGLsp4a4hhaYt4BdUxry29IwkcWoA1NDV8oykaDa7ZVhQteyZsBVswTmGdwlqxBDFaRnx9uxaqqKCNQhlxSPVdQZlroEoVh9DIjTmWYxXR4Aph0YTFEIInVs+cNMfTwjhlYt5Q2KO7HW5zh+kfMMOO53Dk03jk6Zg4vsB0UUyjYp4q82yAAd8J1FXJwvyrGeMsw27Hw5tXfPer97x5/5rtYYv1lqoaTTNF6b539wzec/fwmsd3r9n8cc80Hrk/bHE41nHh+BQZTytzCJKPrBVZVarJeGcZ9gP3b3e8+mFPzlvwkawSyxKY58h8Wcg5tTwNUAmsznhd6avHN7LDVBV51Ry/tIyPkiWbRCeiEhppTlDmhRQCudLcUOW1Eb6xwjuP6x37Vzv2r3Z0g6fqQtZJPIyA0rQJKQn/WTe/Jt2mBUO7+Ztz6c0vRXgQXLOUaRoIbRXWebxxaKXZ7HvWw0BYAvNlJqnEcToS14V1kfRKpRTOCMOKKtoKOUAaWeYXE1L/K4rC5XSUw/x44vnlyOU0ss5BtuH6+gMrVEyYmtltB+7vD7x/9x2vX79iWhdOlzNfPn/m6csT4+XMPE4tgS2J/kFpvO/x3lKcwxgHVZHWTEqBFCIpBUoO5BQoKWGsZbfbszl4hvvE5q2G+8DSnYnqDmvuca9eMXT3bId7er+j5sKcC04brNLENbDOM1+eE+dTYH944M3hkWwK5zzxcvzIly8fqMcdbvqeQa9s+glvX7D6Z7bDhYf7xH6b6ZwUqpVKTOKHkjMoA7WpDGlSd2qS5LAmctEt9FI3RsMtbLu9nkoJOb4aYUgZSclpTJPcRDNizHf98xWxmc5FgsRihGVRTKNhnDrOk+b5GHl6zsyzJgRQbkF30O06Nq96qrKkAstSGMfEy1Q4jrDrDIdiyX2kIouuVDxLMCgfoSTmaSWkjCoJ11f6nWa3GxiGA7UYjscz5/PEXCIhyD6hBNA6NAvlxtdOsmGPqUCp5GwIybGqyJoXsb/IErlZlOw6rO/ZlYjqZNnvbMb3nn7Y4JzGmkgIM8+nF0oGbzcY7VirZZk181KIOVB1IWToXcVb6L0SM7uh4jc3+proVDQYqzFWMsKN1W0fUdC23hw+xRjAiDmjlqCdHKuEAi2aHI1QlFcxOcsUYq6ifg6GHDcsectF7XiaNb//w5EvTxFtH9ndveXd373hh/ePrIdINDM/jpUfP1aePmouz4p1iqR1pcaCytD5XiZrI1Nt1YBVbO62vHn/htfv3vDqu9fs7+8wvkMZgSB1FWjNUal2Q+d7Noee3Zuew3d7wjIxdCdSOLNeMs8fF07HJ6bpiPd3dN09ygij6u7VgTc/vOHh+wNqH+iM4o3fspZHQogsS+Dl5cQaV1zTE9SiMbUIGytAGT01J2ocuShY5oQwQEUMp9tzrRqtNMRAThmjHM53AjFVS1GZagr7+y37hz3bwxbVZQKzMJSqJZYOrc2Nhq+y5D3UIsJM0cBKQyOPenPCpQpBoFaxhNe6HdtXTYEqJARCzzbDptINHr93nMKZ7rxhXCN1TeQrctAsalT7d2QpXpteovziYeEXF4X/+X/6T5zPJ/74+z/y6eNnYoj0/cAPP3zP67dvGLYbXOfENMpqus7R9x5nDTUlnn//kT//y5+Y55kCHLZ73r19B0ZTqKJxcGJkVooIZHIUh79aCvNl4bycKbFiLNjOkr3FDgb/XUU9zMy7kXiIzL7nS3xCrxpHx9Y9crd5j7f/gbvtA9hEDivT9IV5OnI+PjOPF7Sx9IeeblNJOXI+B16ezrx8WTm+aFQ60KsOqyt2DaT1hfm8RdcXdsPM493Cm9eRV4+Jh7vC5lAYyJQkgqWwZnKjjba9syB/DZKgXsUywsVWWjcBmryopTTRVYDaRC/yiss2Q7eFtjQjilI0MbVIxqVFXI6Kl5PjdNI8P8PzsfLlCJ+OcF4USzL4XjMUuHeJziZqtLBafInkGtFkUq1MsaAmCXpZjWe0is4vDQOHzUZYPfNSmSdIo+F59Vw6Q7edhf0RIiEqShUls7EtD1pfIbQGBTk5ZLV2GK3Y2oLRgZLB5o4SKyXIk1F0g2B2hSlnnmOmJstAB2MhnZ/JjUSdmkcNBZyZ8M6y6Qy7Dex7Q4fnsoIaC8Fnhk6gIW+qdPlWBG3WCyPaWrE0UKZitCyo5eDohO1VZBexxEhNhZoCOUsDUaqiaif0WaUopqP2O0LdMMWBl6D5+WXieMko21PVjpDvuYyOn6Znznlhu71je/8K9+oR/7Dn+fSBL3/4zJ/+85mf/7AwftGEi6HmjFaBqlYqkdNk4MWD9mjjOTwcePvqFe9+eMtvfvs9j6/v6Tc9xkquQE0Ze7NqgFUhbBoyuawUMtv9wG5rqWXkElZSXAjTynJZGc8Ls65Yu7LZbdkd9uy2b3jz9tfc3d2j1IacI7nC/n7gd//2LTVNzONnzseMsxuUdhTk8LUqY3Rb3IbQ9DiVZQ2sq9hcp5RuSmTTcjNAMuZ7P+D9QC6JmFdCWYk10vUd2+0G5yRrQXZ4qiECQhM1+sryqQ1O/Ku17pU2Wq555tf3y42pWYuIakstQtU2pllgZMl4iAKtWev47v13HA53xClJw7wm1jVyfHrh04efpdluWgdJrxRJwN88ee2f/+GfWNaV0/GEMZr7797w5s0bvv/VD7x++4btfovvvVgFaIFIckocn554+vyZy3gWP5bHR7aHA/vHB3YPdyhvxcOjjYMhzazrxDQemcYjOa2oktHbRPGatO5w2jaXQXC7wu59xN5PLC6Quwu6m0ArnMoMaHbqEweeuVOaez1RciCWM6Yc0fmFnJ4gj+z6PYf9A73fYVSPI1AZ0W6k7yfQHbbfgrLC3jgX5pNhHTuez5Wno+bzS+L1Q+a714X7fWK/iXgTqDkgDb5w5q/q4qs1Rbni062jUFdrijYm1KvGIF+1BcKKEhypwQ5tz3FjSbXJYA2KeYF5rpwv8PJSOZ7heDKcL5VxSSy5EJU4fUiqGXJQKog5EedMbIFIm87xXe+oSSMWTJV4E0EI9p9UwnjwG0u1RjIrgqbiWSOMx+XGpFGKxkLRojCowtHOrfNSjUB19WgCxbQWlpLRLY2PonFoIQLkwjQnOEJMCrvZoNBivJcyZYrN4M62Ra4CVVAq3p5vqqbE2kRoUJzCeC3UUV/pO+g7Rd8prEdsL2y5dXy1CgRUUivySmJOc4IYJHeiRKEg5twiQ7XGdBqcpphKbaI4RXu9taZqI/eKUyhTsCniakW/TcSU2N0vPL458/YV3PUzcfyZS/nAoZsph8weS95asarX4iO15MTaXEFtZxl2Gx6/e813v/4Vr9+9YffmEb/v0QaanSiqVqwS2++I6AuuQq5cM0pV0ZQYiCFSyooiN1GrEBNyXSkm4YwnDxrvNuz3e/p+aAUUKmKR4l9bHl7t2e56cqg4vUFrJ261Sg5P8TG65hVHeRmLWEDUWv+CpinZCK3Lb67CWm4l4Jp+prHNFdUYg1z9qgXX6NsOzxjzF9bW3ya2fasTuBWA9rgG5fzlg2aql8lVXI9r/brwhspmt+FwuMMgPmElQVgTP/3pR5ZlIsRAmKUIiAejgILlF44Kv9w6+8uzGFb1PY+vX/H3/+7f8sNvfsA4g/WWru+a418m58i6LEyXMz9++DM//vgj++0d/+o//DvevvuexzdvsH3f5KGKaiqZlVQn5vWJeVlx5xVOT6R0QevIkB2HsKOu96j1EVscTgc225m7707YbWQuilgj1owMNnHwsLeKvT2xd1+47z+xKf+RFBZCGNEmwy4zm4l1G+i6gaHfYowTup+t5I1Ej4ZlJRlH6QYiPWH1nE6Fj/uVl6fMeIZ1gs+fDcfPhg+/r9xtJXLx9WPm4UGx2yswjqp0U1HLFHEL1G6FvFSoqTaIqV1o10eRh9BXxaysakOKhRgiMQolM2cRCaZUCbHcisLpUjmeA6ezY1z2hOzAZrptwFW5oZZLlSyDOqCdI66BS15ZFoFt7r/b8tv3O+ZLZHxpeRo1Ya3FWfH//3xMdFvDq61DDRqVK3YDrtPEkDg/CUZsjMj7OyOqV2MspUAYJYazNOGdXQvWJGzzlw9JdgC9K+y6QqcNzllq1uQET18yP3+K3N3vePPdgc4naj5SlsLGeozq6foeWFnTCyWvYm6HkHxsKeglk1UCB3ar2HrD3UazGwrbDvrO0Hkjk0Ep1CA4fMoSTpRSJcXGYinh681Uv3lFtVB9tZMJ2HWgbaEoWfWWtGLqC7oYOmu4f1TEO43SFqUsplo0lWpmsBE/OLpNh+16tHEcDhe+cxfW14mwFuJqycFRs4glLzM8XyxjqKwJto87Hr97z/7xB3YP77DdQNWBYFZys6NQVEw1aNXLeyWQSySV1Kyd5ZAsJVD0SowzMS5oXem77kb0UCpidEVVuQ+0KvS+Ym0il0gFnOsxxZJrxPoN1m3wXjO4jdCObRTKaLKsAVJOwtKhithLa4x1mBj5Npjm2jVf3w8qUHMllkjIC9o3R2jb8qb1leUjVGfTnB2sNS1+mP/DTvwvIjevyXG1foVzrsIzRAyntGqZ0A0lUfVWnFTbRioD2iqcsVjjcMZL7nle+fnnA5fpwrjOtxAzBaQopItf8vaLi8L3v35H13sOD3c8vH7k8e0rhru+LZQrkZVSxK9Ia4VRCm8db968ZjNs2L1+w/6VMBd8ZwhpZJ5PxHUippFcZnJdiWkmpRVD5tX9G6z7Du8tnV7o6gsmHSEkrMr03Ym+v7DZXrB2JsWVHJNwmTFsnKUzCqMiRo3oVFjzMyVGagqYFvpuTWIYChBRehJFINKBWFcxutB1CV0NWp2pGJI1LFbxtqtM3ylCtMSkbjGYuia8yWyHzHYo+EGhrOeqbK7tRb/6FIFMEVfZ+rXjv8JBVyXndWQQn/aWt1wlXMf4FvYTxGZhmSvTCtMElwtMzapiXatw5/uMHRx7uyGpjhgC0xh4zpFxrDwf4RIUWEvZCktGBU0qmcvxLG6ZJWI7R9ftQSlSyhQD2nRMS2H5aSHVypoqyih8ryi5MoVEypVcmzK8JNYEnVeSmDX0dEPXxvBCyZFaoogHVWWzbcyu5FDJy0lrCqppTjQaouE0JZYfTxibsHrFKo3Do5QiL6KpSVmS5q6dl0rgNewHi6la9AwXgYRiUSy5Mq9gjkWYa6Yd6EZ8pVRbKF6ZX6Ves3cFFtNGKMc4BVYJ1TXLwjLqyHV9qQBV0y3pbbCabecEZy5FMhuUFTdNHcBkrJdmoSZNjZptTWxsou6gbkHR9oAoalFMSdTWMWlqMuw3n7jbJ3a7D2y2A1VrllxZimUtG1YeSPoVWT00lbiBvKKu0vis0NrilMW7jFaiU5rnxDhF5iVQqsb3W5zLdD1s9j37e83QBUqcKEFjTYeSRCcyCmrGbxWbe4OzA/e7R6wyLOvIZTwzni9cziMhyoTgnJMkNGubhU1puif11UtIXdPVzNcY4SJjuzXS6GolegmMw/jmi9Tevk4BQv+8fuxbwdi3iuOvgThtsXydfrlaXMuv1orrbkqpTV3t61BlesjXQhhRaMm3tx3DvuN3//bvuHvY8fnjF56fjoznkRSyeK79wrdfXBR+869/wHcd+4cDw36D7R3JSJrZ7Qkoipp1Y9RUBtexefse3mnYOGpnSPnCcl5IcSKFkRwXcpJ4T1UTndIMeofzPV23wVgRgmz0Rw48M/gn1PYJ51b64YJzE0bNGJXlRSsi61dV7CGUvi5aC7nO5LKCyjIlNFhCu4qzSDxlKdL9NJyeq3DJgskFnSMK8Aa6DWy85PAWZVrknoizapbEDQWtA7WC8zd4o7akuetuQaFuNteifxDjQXn3aozV0KLrn7nBmG2TdfVoqXJ/FqNICtZSWbJiirBERS5yAXYGMIWiNbEaUtGkpAhVsSKOok4ZNgcYtpW0VJZaGZfIcZGApFwKm95TXEcpmWlZWJZCrBrbKzZ3MC+Zy5dMnCrrKndCzoqi5PKLGQkpyZlSE7ZUrNFNySuaiKo1tZrbx5zPaFMJsyIkRSwVXTNVJSoZ01kOm1447WWlpCQWI1oLS0hJZ5uziCRV1VjlMShUSVhTMd5gvCYWuMzCM49FHKZCrXS64rVcG9ZUslM4q5rj6o3AglGaqq8FQRhH2lSqrRT31fZYBEdfu9m2LLqxVJTSeFPRRt8oz8bYBn8JbHelQCtkilRIMZb7VOAtrWkWIPCAaHxUNZjqMOUJXU7ki2J9gjUaxuiY8oax3DGrM8GM1G7GbiO2H3Bdxmnk2hkz63IGlXl8DV2/si6JcYLjeeX5fGEJiaIK3lqst2wGz27Q6BQYX044b0UVrKHoSK0B7SO7R8v3v7unLLDzd+QAz18Sc1wwVhwDdDOCu/58X7OKm9ndFdbRX91KBevPQgvN6XZwU69GeBWtDd73Av/WIomA5qurw5XC+n9UEOT35TYhAF8FZd/CTDfo6loo5Bwt32QyyIJcPk5rOmIOxLyiNDy83rPddrx+88CPf/rA7//pD5yOl3Yp/cWm4//07RcXhXe/eQNKYhSjiSQyuo2JRkmOgC6QlkANGactne3ouwFjDc/TR16+fOZ0OrLOK0M3cLc7sHOv6LpOvuGKCNWcpypFzoWwRJZlpGSLwdL5iO9PYhpWxTa6FGF9uE6cHHEiYUcH0IlcRFiUaVqHWgWbL9w28pLzIBSy64lbmyL76oFUVCWqr1WeCtVUFAmrUlMyty6x7QpqVtIF5iKCm7ZAUIg6UQtoePMnuh4ANOzyxiQrtWk12rCpdLO3EEpqLIUUEyEK7TRludCsU2JxHcCECkETFyPPZ9bUtTKFmXOIPK+Zl7VwCoqgDFtn8YNlt63sNoVLTIwxc1oUL1ETG7rVLZlhjuQcWdaVnOTa+M17x7//Dx2nk+F/+X/PPH+psNCYakYOM654qfzsa2yJV1leHGfBWfBWC2NIlH6EKmP2UjMLy83dk1LQFd4+Wl499mz6glGVFCrTVAgrjW2SG6SUiSVTssVimjNnYBgyD3vFZhC4JUfLsgp7yG0ivia2vWK/kfxvo2qzP6noG1e9iq220WJx3Rh6wiCWyq1CktjJBk1cocWYZAZXpl2NjbKYoxwG2lRZcLuMdaqxaq7OmQZneqztb44CKS+kmls4izRwVIVVMDS75krlPEWenyM/foA//BGeTwNz3BJKJ87y5oVsXuj3H3jz/i1v3r3m+1+/od8MTFPm+PPIn//8E9Ny5Hf/3ZY37zvGMTJOmuO48mV8Ia/iZ0Tp0FmJ03GsTMcFpY8467l/2KJqIKULIQdSTexeGf718I68FsqiGI+BpVgOdUvXdRz2e8ZxYl0DtUpBsMZRK813jVuxrbU2a55EoiJ5b4prPO0aVtJYsINjayxd1zP0G9DqtsQ1Rrrvmr/t/P9yjwC03UG5TQzXz18T1r5mLn+TolYLKbec+dL2bi27QSHNIe14SCWQQ0CVgs6VbtNx//AWqDw/fWGaJ9Y5Nljtb1gU3MZKq2oN1SiKnJStK2meDgW8tWjlZBmM5ny5MF5Gvnz6mePLE+u6yLLmwYPz9Js77u7vUc0rJMbIEiWnIayBlIRuZfVrQrcldI+Y4f9LcQuZhE4VlXtAEWsg5Ug1WezGlSRiXQ9g4xTWaq42EKqxBK43ammW2deFz1ftQIVSSaWZjGVRnqrSxr/SLApUQbXDXdSpt2m05RdIMfpmuGoFoNFU65W3LMvm66eunYFML/o2/rdqgapgkWVDQWJPa6ykGcKkiKMhjYY6G9KsOI2Zea3olvWadaK6wquHgXvr+PxceTnKuL0uI2HJJJtZl8w0JeYggq6rkjyXTEiLUOLKtegljif40++VWEWv8vOolk9bye3GrW2Z9nVBrhW3UbpUiKnK97IWrCli/W0KVRXWSMOSIWd1G5iWNbOuQQxMUaSsCVkzxcI4RTa9ZXPo0KWwritrrCxJyABdl+k6oYyCZl0jJRWctehqKDGzTjDVik4yJRjdXFR1y17QAikZI9oGrfJ1GXSbUJVSGK7+Ou2gqpLvbKwIqrR8+gYxmibaukJRRRVSFRt7o2S6lYYzQJGCqK3sY3KtYpBXHPPYMZ4805wZ58h5LFwuiqcXzdNRc7w4TpNniY5QvFiBq0DVItKzz4nPP488/XBmM/S8em15+XTkwx8/8uc//khIF374u3do5VjXzGVMhJIxg8INjs5ayLCWyLyuTJNBGU/VC932TLfTmG0m6klyvqMIVSkZg8JuNPvOsDkcWE4HLl8Kz59Hnr48czqdWZa1nScC0y7Lyrpe9zr1JvC92kbklCQRzYr78DpH8jKx2W/aItk0pqBcm7LV45ZdIuuhb3IT+AY6atqTG6pyg4OAWrmCT81liZikGOTSiBa6LYsbXJxz/mbq0a2pFOTB1orKlRoqtle8/807+k3P6TgSQ/pFZ/0vLgq1dSK6XfWqXZWSoKabb0tbgCKVdllWvjw98fT0zHqayVPEOI/vPSjLFAM6jtQkKUjYynm+cDqdiKtgqbZNHLPdk3jNQs+DrVTrqeVHOj3ReYcxYrecdSIpROWbFapoDHKzmqLQWewDqF8TiuoV3KPdae001kqhzNVTqOUQGEnXqhn5/lBiX1G+TgAlQ1SFrOQGFk1a6yaSEVfU6yFfK1S50a6wpoyMMj1Qvx4ISjXrg9KKV8m3UbcUWtFB/PAiYuM8K9JkSJMlT4Y4i9X0acmsUWI3jctsdpq3G8P+4BlM4WAT0yomeLUUXs6V46VyWhSYyt0mS4azM7jB4DrZWTw/aWKQqe/lSTGdpVCsob0IXvB8nTPUIslQim9835s834ivi1BxxaW35nLbV5m28IxF4DBjNb7Tt466pML5FJgRvK0ARWlChqQMQVnG5NA1s+pItlLha4WSFGoGe5aYzLiKR9W8VLHKtmK+Z0pGV8mFcBYxsLOAUTfBogxzlaLF+ZXmn4QBjSyKKWI/X0qlKNEzWKvka92WTMJ2cVYokKVkUqmkqkhJo6JUmprVV2ZayQ2y1BR6qtJo21Nqz9NnzU9/rjxfIi8zfHnOPD9VTifLNHuq6nHDgLJKIBy1ti7XYrJnmirzODJPit/85oy3HcenF16+PHF+PlL1CiXjnEYZg/Edb75/zeZuR+88ve+Yx5V1DByc5+B7rOtRtmMaA3/+42fMUNBDBitizZAm1uWE94q7/ZZhMzBsNlijWc6lXStClogxEkK6TeghiGL7eh+ZZkGhtWgMZDFTMM6ivSHkSKgJ5zv6YYOxriWqqZs6uZZv9wjcJrWvnf83S+a/fmsaIm7Nn0To1pol3jNFrl5lClG6X7VL1wJkjGk51uI1p4rkoywxQB2pBfaPO/zg2T/OxPg3LgokuWBzFvm98R3GOQwag5KQGTJxXZnHieP5yPF0ZM2RpBKbN57B7/C9R1vNFGc+Ln/izz8l6sfKbr/ncHdgnhaO5zPedNxv7zDeUXXhPB85fhk5XCzwP2C276jqP6L8H+h3J7rNgu0qaMMcFGuAGDQlKlISSXu9iIJLchJso3I2XQQKZSza2uZnVNG6YHSWbkuJcZnVBW0y2kuR8NagqyEnK+lUTamca0SE64VCyxYoCpU8NVphGOQ2RlRQVyvTUpvaMgt98pbxIBdayZVcUrPnbp47WaI1Y/s1JTlEjDU4LxkUShdSieSSJT2swjFlTkGRZo0bC9N64c3hwsbBu73Cvx/IpufHzyt/+LDyvMKsNA/bwtu7yv7BMdx7Ht55tg+O3/8+8h//x8pxBa0MpSqWUCk1ShynteAH8arJSSYsqihja8sjqOlGwcs1t4oodg/KNiy8CoWzZOnMfGfYHzR394aaCylkapD9yBoqOchUooyh33ruHyXu9dPHCUVgs6ls7z2bfkdNipcvI8dLYF5XtoPh7s7TdYov08rznHlVHPie7T7Q71a8h85JnnHnFd5prBVqNqqI942uFCVq83qTp8t9RcOQ9fUmN4CthFrEZbdqjO6w1pOVQymIZSbmSFaWmC3L6FlHIw6ts+RNL0tlnDTTYkjKUa3D73do7/np5xf++V9+JhPohkpOsGZYNURboAZiKKhEW94LdVfpTC6KHC05ecJieXoa8RtLyitdD11vKY2WiqrsDzt+Ze/4V//G0vWeznV427GOK+u0sjGW3hjGc+L5ZeF0mTkfJxjB7xy7B8fhwTMthWn6xLoWVu+Ia2E+vXD8GPj8h5Wnn2fGcZbgmyYMExjWNGv7r3nI1n7DHrKG3jt671BGBKHKa7S3PL57zeHunqIqa1yhVpQxAn9qI/OChJKI8SVfF9B/CRMBmP8SYkKIKVLQYrv+s+yflG55CPUGZeckeS5VG7lvEKO9kjOpfOuOqskxExbJQbc7i9e/7Lj/xUWhsz2NhU5FDkKVv87C17hHYwxd7zjYPXZnucwXxnAh6QtnvZBiZrlEjscLx+MFazt22wNGOw7bO0oshHkhqQnKhHPCrpiOkePPK3n3mu/377kUzY9P71mnCyWP9B28eb3lbi9JTYqMVQlrEs5K8lqlgJEuzDWfGXkG5cXJtbkhNpGR+AVdF8ItoMQUrj7uRmtsM7xLWRZV4kJaaTIVeV/pb9LQ8m0/cB0n6/X/Fa6LhdrCrJVSNxthebGb70sbW1UFisIUSRdLCWIAVonELEsl1sIcC+OaWFaNTj1DMRy6jLaVMSjWVHkaI+uaeLWx3PUePxuKtqgM253iUgOpRPEDmjSTubKGKuZL5PMXodk5K5DalXGhdRZIxWkJfNGtk/5mYy48asjNtsMY0/jk+ebHcx3FlZLQm97B3Z3j4d6xHTRdB9MYOZ+TKFgzTCPMuRJjpQaIOlI1hFQ5XcQ3P5sELmMJ1KpYUiKkirWOUgzTVEhB/PatkxswroWwFtYgPw9OtwUyMhlc8zmoVCylWFKRZX7IEHJFdxvcZo/ddjhvUdaSsVymzNPLzGWKrBG6oeft20e224FTyazLyvl8YRwDJTlK8tS4Ja6W0/PI+TQRgyjE1wghafr9RpyJtzv0pkOHAXs2+FLYe0dJldUnLmZlJDSbFiEs1NQOtwaDabWS80qYEkc988//XJnSA4f9hvtXA5dxQ4iq5QNXdvuBYbfBDyKMNDhUtvQeYg95LSwhEXXEbuDV9p639h2X6cKX4ye+fHri6biQ60SIEa00aV4pYWU+L0zHRFhlB+eaALYWafZSKqhcb4VBNSbHFTYSZluG6tD6Su2Ah4dHXr97S7cfML1liUGsfADb7Ce0+hbGlf3Y9dD/9k3+3St8+peTxNV0T/QdMilcd5i1SHRvG3+/MtjaZJJzvk0/ILuL2BbaUEgpsKRZhIr5lzul/uKi4J04SVZtqNqCtjdsW6uK08Kvrk7ji6bXjr5o4pczx6cTx/UnLuEzp5cLl5eFy3ElzPD6/jt2wx5TNSoryhoJ04UQJi6n3CwCFPGsmT46DuUAOTNOjn/8pzv+9KdHnp5esFrzd7965N3rAa8iGxvZDYlNn9hsI75LaK8wTtN1hs5L96x0RukIKhKzLHdaa0dJlRJlnyBB2mJRUGi2S8jCr1SJ1RMWUHvCGv5vlLnhfoJlJtS3S4W2M6ht+aeuy+Yr8Fyvf7UdioLRcXXKNa1RsVVhiyIGqAZCUSTESG2O8lhTJUZNDR6vHA9DZusKlwjntTBNmZdZoYolLpYyCRXUPmr6e49PiTpnlmB4WSyXpcJLYowr5yVTlSgureXmaKl0bcHrHmsd2lZAWEYiHLse/lVsE4oA5s55jDakJFBAbp5H10Wct4XdFl6/Mrx9ayWvea1QxZiwaIVyRSaHpYLRdM6hqUzrQoyajKdWzWW+3pAzhkpWCddrdgfPYA3TZWStK68fDIetYbAJlQvrAseLsM+qNRQLUQMZanuVa9VU5SmqJyTPGi3zqliCwj0+srt/z/Z+y+ZgUMYSkuHnGPiX84XTqWLMwKHbYv09izMcT0deni88fwmcnzN51ajSsekPWOUY85GpvhAZSXqmdhmzU9z96oE339+xu99gOsfh/QOvvn+Hjo4+9yzjwul84en5yNPzkXkOxJiJIbGugRQSKYhozZmW6ldXUlj46adAthN3D7/j1asHpiUyjgbjbINdNboq4jgzvSwtfElBLNSYOV8i45xwztyYM29ev+Pj58+cp0/8/OMXPj//hLawP+wwSpHW6UYOsbpnt+vwqnAxI8sSKFls1jWJ3Lj+V4FZhW9gJhHembZfLGSwmvd9z7vvv0d5zVICRdGCf5qeAFq6Ijf7+2/fpPaothRWXz/4TdEoV6ZRu6a1upJI5I/nUpo5aIPutWr3i7QaKYt5nwK0MY1lKR5gtYkIq0acpNcouqdf8PaLi4LQ1R2b/kDndxglqV/ywxaUiRQW1vjE6fLMTx//iT9/+Aeenn/m+fiJUAqpSvddI2x8x76z3D94tveZaL7w8/nI08sTn54/UyMMdmBwG7Z+iys93eBx2x2m09SUxKu07+l//RbVRU67PTOW5XimXCpdfYOtOzIzqEhnLZ3v6FyPtx0praQ4kfNnqM8Mw8xhm3i4N7x+8PQu4c1K3yV8n+m7lc6tGJObDYMccLkInJHideEpkI7sBCq1db/X98t1eXy9eFoBUPXqi9LUnI1yVvM1a5VbESntzwjtrpneJQirYpmQ6MxRsY6KGiRXeLvRVFU4TReWLKlcKhl2yrCxcHGwUtkMEecKQYsr52kyXEbDuEbMCqYz6K1ns4Guq9RL4BSLdOON422dxjiD9ganDH2z+04lkWuiFuGze9ehtRYuOKktmZXw729sEIMqsqS9TgvzBPNY+fy08r/+5yCZGkDOG1J6pJZZcNWcMFXx/t2B/+7fvsEbzfFl5suXiafnhWku1NKjkkLlSt8n9m8yvS30PlCLZslZ9gydw3aazlc6lygWJiONUkQzFo9Jnlg7QvGsxbJmS6iaUCTBLGVNKo5aPY/6nh+6R2zn5P6piTksBBSbw5794Z5Xj+/xTjMtH/nzl5/5/PGJ49NKCnti6Ik5gUlUtbDbad68e4Nz33E6vXA8PpPSijKVV7/9ge9//R3GicBrc6d59yuHVQ6L5fjywudPnzm8bPlufMt0icznwOU8cjq+ME1nwiLMLVUtzu4Z+p10/v3IYddxeNxzePPI4SR24bazxFKZns9cns58+pcTzz+dULbgOnDFY0sH3qIHy/Ztz6EfII58/OkfuYwrg3Ns7T3PYWGdVs4roBdyDRzutvzwm3f0asP5w8qX+cg6L0yXBaOtXF/Wob3g70qrG15fEAxf61a4qyKmTKwCPS05EFSSHIdqsbXDtUbPaisZH7kFgGuNuo3zXxu+W2FoxeFro15vG+prQqAo4YUiW5qlzdWSo16PCGjnhxwCpWYKwr4saRUo/OoVpjXWejrjqG6gXJvWv2VR+E//n/8n3nXc7R7YDXd4u0XjSamwxsC0nlnChTWdmdYXnl8+8PzygRAniU5s37DVDqcFu1No1nXm06cPYsSlKtNl5nIa6fSGrh+QQBhNzQVVV0AiGI31bB/u2KsZUmROI59fCjlEVOiwuSfqB3TZy42WQoOSFEYZjDJoBjQdXXeg87LILCssL4rjohk2iu1Ws1OWnbOU85EwfybHCzUvlLJCWaCuaBVFcWsKThecSTjd/G8aXVVdNwzfTHFfD/rGQGq/bTTp29V1jfq8eh0J2iQjcs7ioBkDLURFCsPlUjidK6cLTKuErBSjUb2ihMppLqwhY4qM22tShOIZi5HYyRLRutBtB/puwL7M5DlSQmbWgf3esTtY6CrRZsZLYb3kVqCMLJaLpirTpiDREaC+8ryvXO+UMlqZ23gNVxsAoWUJHa/laFcZk1OWglkXmkeUptZEZabWlVplKjNGcZpWPvx8ZtNbyOJ46o0smHMpeOPobIdXVvK+o4jpcq6MszQz/ZjpXWXfV6GjDpX9UOn7LOlpfcW4QtWZrCJZGZI2FF2purbcCwVKGHrD9oXD7mc6q7Akik4En1kfLGHoUWpHP/yRUgtH+5ktJ7ZMLPsCdQtsKbpHu4HNNjMMmb5PGOOY58w4GqZFE2LkcLhgiqGu3Bb2okCXsPjHVyu7baJmj6pbSjASKxqr5DfnTEqFZU3McxbKs/bENfDy9AVrYece2Lk9b14FNhvFfheoceLD71/46Z9Wnn5cmZ4j1kPfK4yascbw5oe3PN7fsx16ctB8ernw+csXvnw58fnzifNlYllWNrueu+GAMoV5GSmz5vOfZlRemV8WLseJJSRZqLsOY6z4SpVCrAnpzQtVg7MepZpALAlDUeAdg/WaqhUxRck/0YLR25aTfNMXIBb1V+sVdZsW6rcVAK4IwnXq/3pno1BNh2MAI1BSEUW7VoqszU3jQAOhSmMb5SyJl7nlMigle0TdqM+0L1u0kGH+5kXhf//f/kecc+w3Ozb9Dm83KCzLGrlcRj5++cRpPJNqRNzYpQq6lrucapHRzFmMpTFmEsu08uXz89cbpgpjaNgYvO2wxguuGSOkRE0TMUX0pmfz2LNlw/jkCePE5TlQVs2+3zEMezqnUKxElcgmUfVKNIlYZjSOwUkQy93hjsNuK0lwVbqJY0gE21G3W6hbSt0wjk88ffmRaXwmridKvFDzEatGOr+w7QO7IbHrE9tO07tE7zJWy5JaxDhyIV2LwU0rcaW2XVlK1xfwlpzWBHVFWE+lecOk3CYGZKrQWaEbCyarSiiVOSrGRZGqIeOQjW1hWieOl9C8lzSpihVzGmUht/OVw7aw2w7s7neUVDl/mQX/TYmwr6iq6DrY7w21VOIs+HutzTFSGn0Kpi3svy7arrhq/qaLuV7QVw8b8ai5KoLb2F1btLVVGJAOrmh01iKk6mdiFLw/FEWqlY9PM8/PC/c7x5tXHV4Xei/ZDaVmnFV0todsmY+GHAveQ9WKsAgmvCyVec7EnbDM7hx8v61yGA+Zrgu4TjIVlBGo0niF8QXrhWaqDTc8OmeIRXYdqgirqyioGwM7TyyKOQqV8/5QyXf1RgNWSqPMgLavsO6ezo8Y05OSIqbaSGyVcVq5jIF1eSJEQ84GXTSlVlItJG1YjcUYjzOeYbtl6DSd7/BuQ9dt6PoDxvaAYV4Tp8vIZZpZ1sT5ZeHD7/fkBV5tXnHfbeneKQIe65+Zx2cun0Z+/sOF87ESg8JFTVhBuYjfVH44fM/b7x+pVXF8Gfn5w8Qffv/CTz9+4MOHnzEO7u4GhvstD9sNSmtcclwuCz9/OIl9dJKgnFxAOY/2HShDSKtkMGfJtNZa4Zxl4zu886iQgCgGk7WirATwoCQaWMV05fpijWkN/leV8tfT/RvBIW2x/M01+1UjcasGAr9rQJlWUBo1WZc2LWTM7fpvH6sFVbIQFup1mX7V/WjZTSna9NDun5zITTD7Ny0Kv3v7/5AnI2WYpetJJZPTSl4iadbEuRKKsG2um/iwZnHvNAVlIC0LiwpohGJ3NXJrPCt6L/5D+80D++0Dne4haLGErQVdHUXNBDUylQ+M4QvTeaHOjsdhh9/2WG1RVbMGKSAhL2QqVm1x+oCxCqehM5bOVOr6ibX8Eb+7cNhf2A0zu2FlO2j2g6d3Gqc1cZNY3gdyjY0OKtxPRUaR0BSMatxwVSU/lwaDIF2Bbb9+fbse/vWGLdaW7CbhG99chBV0leS1UpD8agl9FkVwFC7/NElwut0Z3F5jNpryBZ5eEvNcUFmjMvSqUjYV6xRVKy6r4rJAWiWruJpKRPHh80T6FFmnypoHKitKrYyXyIcfC2upnNcsWQzBomvbnagIFMlBdlu87VB2IJbEZZpYw0yMUUbkNg2oFhJ0fW5SSoQg/PKvRmaVXBylGhnB65UaWvj1rzf8m7/f8flL5k9/DDwdI+c5kUsiqURSgeoz/bZyd18wyoDuiKtlfImEC+TVNEFSwg/w+MrRDz0bJ3nN47jw88fMZle576F2kB0kC1ZVsUu+aiYyqLWidLmSVFA0VlUTkKEMSluJO1UZ0yn8UOSeKWIhves7tJUY16oL2hSUXoEntD7jnUI7yE7EaYJfV+JehHAxqfYwxGBYZsX5Unm6GD4+O56fd5ye91APOL/jcL/h1ZuBza6j858l8jELz1nVFU3BKc/DMPDu/3aH93sGs8W5juw3RHUgjPcceeTXb3as33/mD+XIzx8vLEvA1Ex3p9GHHtsr+o1iGhPjOLHMEV0dd/tHet/TdbDbW7TJvHz+IK9N0XTKsTlsSZst8xKZ5pVlkd3gMgcKCCTUWDspRQk2Qq7xznfULIydcj3kCzjTKKw5iweWEaGodkL1le48EVNAAc6LE2lprDlZQHPdat9+vbGR2sf0lXChZMoojYqulJx1RrtWfKRzrA1pqN+eEd8QMLhmYWTJdijUpthv5pLlbzwpbOpbUorM00SKQSiC2mCVotOJwW1Y7Exck2QeXDveqzz7GjLyzbhF/fq8tWcP1XtcqURdWEzEDQO7zQ6/dagMu4cefGUMM8+nM+fzgsqewWg6ZTFoUo7SyaZMvvqYaINBYwlsushhH3i8izzsI5254PSFbT+xHRY2Q2DoI96LN5K5Jho1S2Z9tSto002t1wvl+sIqEcIVsS4oRd1ecN3k6bfl8nWJXLgtk+X968euf1aeL/0N5piy2C2Dujlwliao07qK0laL2vtWbAoYVfBGsdsovDJYowBD5xy9M4xupZTEq0fHbmd5GTNfjhNrVhSj+f5Xnu9/3fP8OfDpx8A4K0JxlCJ7E2VKuz6uP6ACLW64ua6kHFvXcw0DUd9MCJIxobW64aiywP+q7QDQ7bqSTGtRp661cJkLT0/CDtp0FX2n2G8162pZFkXNmeMpU6Pi4AVzxlhCgCWupFqwHTho47jGWYszWvyTbKLzhc2+4gaFcgrlKtqDakMYmhshoOjarhuufQ+tR5SJsTFNjBbH0ZSrwE9FxJCmFlQx6FXBKtGflYJyYvNRSVQNyZWmcFZ4p0AJjNVroFPUXvQKMSlihDDAvIHXB8P7e8fp1ZnL9ETIA1kNKLfHDHcUteMcduTUk5NDI1npzoLTBV0Kx/MThiMbu6H3PdUL2UGFjNWW3/3uLd+9feS/v6wcL4H1ElmnBH3FbDWvH3ekOHJ6OfPy9Mx0WVAUtkPHfuvxjbUWw8I0QQyBWtp0t5G8dVM7SJq0FkJMhJxIhVs3r5XGWScRoFUYSXVN0k3nTFJVPLu0wmKl624Oqdoarq63tVwJI3Iu1MYUFFagvk3CkoCobyLMb+Gkb4VzYrkh75dcKH8xcfAXE0jlGwjpWihasZCJOxLTLKykmAhrILZ441K+sW/4//P2i4tCmlahuY0zKQW8t9hOtXQrz9ANLGFgXhdyFIb+FT77FmETFgB/JcRQNyjFpIjLiSkvuDIx6B3bxx277SA3Za+IRE6XheNTYjqCzx6jDCUVQlxZ8kwsCYXH6Z6t2TE4g7Nnev/E/cPE6zcT797OvH090dkFq6NkIzdsUELqIRhJQtLWYHPBJsGpq6HZ9uornUFUx1d+dBUxTP3m8C8NB6zfWGzIQdpgpBbxeL0mrpRNddWzo1DNE/tWfJpqOickFjRzY02lJRNmCBOkVeAVo7RcUlpweINB4mMVvVKYTuNal/n2QbPfG4zNLGumBlF1v3675d/++y3/8L9O/PRjImWNVp6qKkVJHKacfhqKEzpm1ZSciPnSolsbG0lfc7iFfx/C2jo3dWNzKaNv4/f1spaJrLRDuFKV2Hv86eeFL18K+w1sh8J2gDsrrKtp9sxrYbkk8gjRGpwVplJWbVz3CesqXhtU9qjqCKsUE1UCfpfY7gsPjxLlSRCoTueW84E0P2j5uLIieNOu+WdZMFr2WkVXshE/ImuAInuhkiu1it+NQa6tnFJLqBPlrXWS733dwSRViUbRDQbXGSqik5Fr9+shpUvFURm6yv0g+iKrM7iR6s8sRbEky2Xdc5xfc5nvucyPzOsja9iRywPa7KhKsaiZaXzm05//RBhPPBx69jsvzsnO4JFpfLvd8fBqx7/ZvsZ2njCLnmKtibUklsuZ+XRB5UBnC9uNpIiVpIWfXyppLeTgMcVRSiDGmZQTQa8YmyB7TK2QMyWlW0BVbYJb2V8BxTXlr9xfqQomL6JCjes7doc9292WftPTdR5ltDgQX7VF7QZ1ThImrzs/rV2zN7m6qppWFL5VOn9z4F/flHxc/I7K7Vq//lnR8XydFuSwUH9lxV1ISXIVwhqIayCsgRACJWX+m4TsWBWpOmF1exIAcqNAFYXKHZoN5IkcFspV0s/1oGuKvdIEPG2SULdDT5YhTnX0ZkNvN3RuoOt6+n6DcjCmM3GaUAFOzyvjc2R5qcQ4i5Wv7ig45rSQKvTG483A1mpeb1e+/+4L7777wN3DyuF+xZiAVg1PDNJilxuNDGEDKCMHqE4UIFUDVYsdQam3k/yqT1Fff+Db6y99uCi9Y2MfXfnGViuu//Ht/2ujqlW+KRQV0GKBcS0oWX2Nb0yFnCopCduoJFhGxWA0PYYVxxQVz0vgEsUkLxWNqRmjItpKwIdW4IwhHhOXKTGPmXrJ+OCwyfP5XzT/0xh4eamE6MBk0Cv6uv9Qri3M5LVNpRJqxBQopaNKH95MxhzD0LPb7TBGM04j0zQyzzPrut4u+nIV9WWZdjQOpSwlJpKOZCrZVpaciXMQRliudAt0RvQM737niUHx5XNiGhMlRaagSDgx5zPgraEzWYpEDNSYoFqy1XTGUoMmToXJZo4ZmCvbLWy3WthYvfhNaafQHrQX91rdmGQlV3KL6MTIXVrbDa6UFkWto1lQN90DFVUSuiqckkJgrKT1WSyqiHV6KVCVIsTadk76Zvx2dWs1RoqwsbLz0KoZDaokAk0SXYnsTOL1biZsfmZOHeN64Dy+5rJ8zxrfs8Q7lmCwaWDb/wanZ+owkbrAZmfobGU8jnx5njh9XlinzKaz7Pc9d4/3HF49YMyAUz3b/RZ72PPr796zronzZeTp6YXnlxeen595+nLh5TyTV4dRO4ztcV0v8KQaCSkSwsS4BJY4kUgoZ7FGXE2V0RLSZJpDaqmUkMghSfdvKspp+m3P2+/f8sPf/cCrt68ZhgGlxZFWIVbVoURCDLcdl2m2LdYavPctI/m6iP4vpwT4y4P8tpuoTeelTdMucHvNSinCNGq7NTHuzE3EKh/PRej0IazEKCmVMWTxBCtyoP0FKPO3KApruFBKQeuC87p5f2tiTtRi0NpjdS/xgjIcf61ON0rNN/tTZGF4pWptuoFdv+OwvWc/HOh8L1BQSFwuF3TOTBwJ5UzNkfkF8mSpC6zrCLXi/AFlvcBaNWPKQqdWvn+T+e0PK7/+4QtvXp9wXorBumTCXFDVNg+aNtoZWQxjlChRq6hrJebRtCU5zVSsjYtKnEzlQP8KEd06/FY1FHIA/PXz8bWIqL/83HXX8M0EkXNt4px6KzpSeL5ef94otp0hbDXLQbEuipwq41qIOXFZK1O0xHztFgs6g7ESU9pVjQ+SbRCDTEFDB91OkXXg+FKY5qsgu1JLpKCp1TfJvzwBtURKUcSsydrIVuWGmzXrBufZbrf0Q8dmu+Fy6fnw4QOXy4Wrv0utXxfOFXULJSpNSIj+6iKbVWHKEKeKpeIVKOO4vzf0RvG4LXSqMi6FS8iEKJh7iYbVyL872IwuBVUTJWYojlquk0NgvGQsBafq19esCLzjnIgaRRejyK5BS7oZm6mKUjIhKCMBMapNRNqCMiKyvPrma6Nk4mjLa926WnFnEN6MSUAubXIU+FFV1aiZRqaznIXw0IJ7cirI1qeiQxVvgmaPYXRicCODHtnqyr77zJ35mWn4iTm+5Ty94uV0h1F3qM0Da/9AthbVTfih4m3ieDI8Xwr/+J+f+PSnI4PWvH7Y8tv/y8Jvt7COZ+ajxiqDd5au87jOYV3m4bVne3/gzfeW83nP+biSgkPVLSlpwhoJ68yyKqZ5JE4BhcIbh9cDw35Ht9nQDQO+k+nFGNUU74HxdGE8j8zjQsmFYbfj/tUDb9695d0P7/CD/J18HcXr9bWTSUBbLVOEVZJ5oMWsUakrMeQv0Zor6+grclC/+fUbyKjWhih8DQ0qRQJ3SgsxKjlTShKX4uvni7gWxygJc6m5IcgZ25qDX1gWfnFROE8nRIxlscZLoI5q0AfXpKLWwVgEOrmuRWQH0qYedTsYS8PRUbDpt3z35jv2mzt6O1ByJayR8/lCoeL2CrZigpfnlThrdLFYpahaQl6qWjFGsesU3hRsfOb1/sK//l3k3/7rxH5fsLayjJXlUiipoopi4x1d5+W+rgXlCrrP4DLVZmKt4nVEC5b/lobWJh1xO716EvHNTkCsNIQlUDFkyZRtWQrS4bd9QPpLGIn2vKnWSVTkc6U9cgaNeDipq5XuFUZKGlUNzmj6Doah0M2BrpPDfVPE9VXXZrxmDElpApqrIfrWe7reiR1IStg+s9sF9JApPlE/GsbVUJNYhFNEFa5VxZosE00Ro8FUbAuwqc17CiiVGNPNl0bRs9ls5MK0n2UH0/Qg15vo6iyZSyITmxW0eBNdYdPa7NJLgVBgrcBThZg5bGDbB3rfsHhTWUogJs26aplmYyF3la2XTOaSyw0mQAlDJKss6WgOamMNpVKJWaGUEABM0aJvWIsc9O1AUPXrISNWEAooX4uArRhXJV3NysdMJ/sNbUU5XWuVRbRPKCuq15sHj5Wr0ioj+xBrpXjLFwekg0xRdPdFKSgGlQ2qCAlBg+wxlOzDsYWhO+H7iR2f2fR7bHnAljfU+neQHoiqoIul5ja51Y6Yt5xHz8vRQr+h3D2g1J6K5fPPF/7wvx8ZLyMxLfjesNl13D1uef3dgYfXO96/e8Nve482lpwkt/p8XPj88cj5ZJlny2Ua2Ewr0xKJueJ8x93jI/v7e3aHA5vtgPUOpRUxBOZx5MvnJ56fXhgvIyVVHh9e8/bNdwzbgW7wFPWV9XNb8jbtQNd1OO8YNgPaKjnlivht3SDOyg3e+bo//OsF8V8vi8vNvlsKQvoaxlXzjX1UrpNCKwpXll7Mwgq8vi8cFN1or/qv9rd/g6JQ2jak1EKMC+OykHJiTYG1ZZrODefTxiDPS8ZUOSCFMIvgY1er6za+OuPYDD2bfkPvO5x2kqFrRdiRcoCo0KlQq6auBmJFs+Kcwrk9YNFqz9DDw+Nn3r554VevL7x/PfP+1cJhk4hJCsJ0yUxjaaavirlkYgy3BY4JFVuuDaBYr9Fu+vXqLaKvUGAV47HCzY5CGCZfO/96FbRVJURdJTuHG3Z4XTw3cdvNOfUb+Ojadhil8M2T/zoWKJoNcBLMPxVhlzy/ZD4/ZT5+gk/PlfMI06KxxbK3ShKudKHrpKCfV5hjETsKpwg1EKfIy5h5mRx2VRwX1XKIK+dREYJh02vudpoQNS9nI7TJqMQeJIFSpq3HAqVEVFEo5UlJHEiXZWaaRrbbgc12Q86ZaVqIMd1MC6+WI9exHGPQSkPN5BRvz7Vui10a9bbqTK2ROUc+X0bWBGsqbDaFzVBRrsi1pnTz9KHlNhdZPHrDZtPhtCHlxLwGDofKcPBCeCiVmgs1FZKGQMVenVONBBMZg+wV2jSj22SJru30VRhjBb5sy+lcCjUUSpB9ibpU0FdKYaMx6Yp2tanEr1OXk5Qu1exFbMXY3AqGEwW/+ZqrINNtm1y8TDzXUCDx0FVcxV05Qo2ZykxP4t39yKEf6Y+alykQyoaiPa5octYs08xlvHCeXljrhcdfvea3/+49ZpP5/b888dMfz/z084WcQRnLmArHeeTzaeTPnz6zvx94eLXj7n7L/rCh816so53l9fuBN+/v0MqTi2JOkSVE1igF2XoviWtO/My0kW65VsPuzrO563n9/rGpnyuD3dC7gVwyS5jl8G3Yv7g2KHSz0Ljed+uyimhSt67/thNs7/O1KFy1BTc20Q1JqV9/XySHJZd0szy/pbA1h1TxUZNJ4VYQmk4h5SJ/59Yd3foYIT78wqrwyxfNpSUYpURYV9ZlIYSFRLw9YlmJaaWSW0ei2sgF1wVDUVlw+8bIkNAUTS2ZdV3QWRNUpGShI2qrKbrgrMK5jCqVPDlqkBg/Y0CZDkWHKR2DSTz2mV/fB/7+N4Hv3650OlBzYo2FMEOKmmu6WiqQr05yTRUr96uClv17vQxSqSSx4ZGf6VrlS71dEN8G5bT9kXTwrWMuSovsXX1zQOi//v2VlnbDn27QkVEap7Q8m6rc8PZcmndQhhBgnpE85lPl+SSZzNOqWNo04ozCeovy0Enlpga5mATkqVhi2xm1cJ4VzjMM1jBYTYwyKd7dOX7zw8DlUpjXSJoLuVQxBS0ystcapNNKiasjXCkiEColMU4jL0fDZrtBKcVlHMW3pjHWbsyjIj+30iL3v9ptyw0gh5oq11yD64sp01TSinOqrGPhlVbsNg5lKscaMTXhjRHmU5sMwyrWIbpTTUMQyCqDtRhnZJF8NepzCuORXUI76MUET27Ia0qHGKQKBIESTrpqzvM3L51ms17aYSL3eG2EjSvGKRebvsZEtrzg7LVQjFVtz1NpzD8lEELzZzJWdh/iAi0Fwtg2IrQL/it7THQsJcnuTwHeRGy30ruIUprBXxinB9Z0B6pjzIrYFp7dpvL43vL2t1te/d2ep0/P/Pn3LxxfFpLNbO62bLcbikrENBPSwmlZmJ8SlzVxmhL3U2a39fS9ZugHtoNj6DyD36ONI9UsmSJZMq+vQVmSoSI2JqWhEkZX7L5ju/HC4MtAEvPMEiQaNDWsXm4+WRprBB1RqjUOKVKvYxXX5+avoaOvO7Gr1uA6IcBfFgVKElO8b6Cjr0XhqlPIt8nh28/nXG602puI7rrnvJ5Ff2XF8X/29ouLwryYVhCks5vnCyFOIrE3icRKqoFQglS69g1o9dX9X2mD0S2/VTV4qRRSjYzThMpPeDWiqxUH0FpwnWOTNwwNJtLZky47yuLEXE5lUpEowJJkbGU0lJcN5x/PPIeVw0EYJTkhXYQxaG8lS7e5DwpPXpZ4ucjhepWf53axqSoYtapibikvObdu/ooXXjMUgOZ22GABrYRmeC0IGqyWhaExSuy9dbP1Rb7+Nf0N5PArwVAWI0vl/JVVECOsq0RwjmNmWTUFi+mg2xf6WghzgbkQ10RRjqHf47xDrRNpXnCrol8VZclom9g/OtzBEGviuEbWVVOLYbvpeHvveT4Fni8rd4eBX/1w4NOXhX/500zO4esk1UKJUgKFwSRPzYpUk9AxG0sjpkicI0sIKCVU1QKN0fw1oe52q+WIynIv6jY1XaG7XECriFGpeeFbrJfc4pATL8sZN1u+CztKzMzHM8siyX3OakzJqJxZ5kqcEovPbDfw+FjxGygk1pDoO9hvKrutkmXzoBm8sF0E6a/CFa9ZppECqUCqClW1XF/qqkkR9bixBqUrFclVuO4pFfJcuZbje4tiTeIMYJ3oYXVeW0cpUN7t6rlyAPT/j7Y/a5Iku/I8sd9ddTMzd48tIzOBTFQVlipU9fR0y4zMCF9Ifhx+0XkhpXs4pAy7uhpVhQSQGRmbL7ao6l35cK5aBJoPxIhkO8QlBR6+2KJ6zzn/819aUWmFWZuKcVmaNNrCtAlMrctSVMiibLe2PT55T0pKGI7c7mf6/kceecHx8oLk71jVHlXAm5Ff/NUrbJ948XpH0InTJXJ8TCijuH3tef5i4PZ2oqrMGi1r6FnXhFId3k3sph27aUffa6xLlFJFz3AJnM3csg7KNfhGfLY8xlqUNRQqIUTWGFgb5i4KeyVJe0ijVrXCesdgkO8NKykmSqpQUysKW85Hs5m42lvU1kA2WPmzC/bTuqA2NlX+r4qDXOi1pPa5FYEs18GmxN5oip/gA5rDFkpV0dg18z0+O//V9fMnnhQIZ3QtOB2xk+Vwd0fII/dP7znOZzKxMY5aF9ReCdsKgdy0CrZOWdBMvDMMnWe0I4PZoTOUlDHG0+uR3a7n+UtPv0tgzyyXwlGtrDmTg5zC1kr2QayFh6BZ3o38eNK8fF95/dzz7ZcXXtytaLtSdcK4jPUVW+qV0lmLaR5FGqOgmNKmGVFn21rRCJVQXcfBT2/49rHdc6oJU66Yt+JqPyxxjaJ92LJhSxZMUiyxRQ6nqgC6EuzTfKM2TyVVRMrb3nXdEsqS0dhqIWvSRRSzqcjh4Iym94oMrBGOxwulKGh2EGiPGSw5BUJNPKwJMhxnYTZVKtrByy8Vf/c3Hd/9HsI/F96/WfkPy0cuITOnSjXNFVYh6S+qUlYpqq4tx1PbXCgtMFq+hhN9Mu36rNmSAlKFsbR1xkDrnJpp2Gc/VZFDkSKTxtBrXrw2rGvl3Y+eGCo/PgS5SavG29oKtlwbqlRSAV208OGdwmmN14phqIz7irHC+Y8Bkq0ECjoXnBe6qHbgfMVL0k97LkooyVsSGOZqVVBbwE6uUhSrUi1mEsxGfiBD1aisKcmwkkkUTLXCJGodqW4NjXUV6wraCZRlnfgAlSrND01zgxLdSDWQN2ffaiDJAWZsoXcJbbMI2ZonV04Ql0zOK86fGaxjsfJa3d7docwBP47YbiUnQ5rP3N1Ypt9+IXuhkkgzPPzhzNPxzOPxRMgZjOXZy56vfvaM/f6GaT/gXAEVqCWKEA2J3NXGYdqBXZUiJFjTSq2zBNXUBp0oYQB6Y+XqKwJbgSGoZnhXxLraGo3perITCvlWVSUVT2wEhFHJFab5dBg30Sn8V/uDT9TSK7NwI6YgbMKcBa6j7SA3+3HpCiqbcZpicxLW6Osk8onf8sk1gD+L5PpLPv7iovBsP0jnowqm03S7niXNxD+euaTjVUSly2e8fcSy1lh75emWFh/ptMVazW7quNlPjPaGjoMsXsOKrj2dveFw43nxUmP7lSCnN2F05GShaMgFS8KoSnWKVDWPwXAMmktSzHEELoR4YX84M06reBJZUCVhTG7KYan0G35aq6EqSfeqYjt1hXjU52NYVdfnplvnuzm7ShH49Maq9mZJuMcnf5KSxUxvy4Mtm9K1habI92wwQmmjPZ+xckTFuiW5VqPAIn47ujSYoeKMIRmZTEqtzJfAGoTrb6zGOXlsUQmsFpM8hpikQKlaQGWMSVgvpnlGKR4eAm/vo1CNjWRVt3pG2mC2LDeCqrldB63Lah4d13ukfagNJYE/qw5KbdCL/A1Rlrf3oRrBxk1uN+lWGMQNdxgSRhWcFkbV07xiDfheYYsmRcEGnRFtgWqIYt9B3yl6p+i9Zj9pDof2erSuPOaKiTKqlFrxteJasdamCTeNari2dIzN40AmiLg1J82BN4u4zTglSWstDKq0ADeFar/PUoGQLCVKwFFOja5qFc4XXM7YnDAp4YrCuU9sOJkXVINFhEhBm2o+sWik+1zXTBS6EiUq4mqYZ8fjkyeWge7uFr07EJOnVsW46zBuwvaAqjy9DyxPC0ZpxsGQkyOujofjzNPbhQ8fztw/XUiAGxX7yeLtjqHf0/cebTO5anISi5CqFEmCr1Gqg6qvC9hSWnpZlobBWtsYk1I8hL2Tr3CknPPSnUPBGYvx9hP0047VlDI6RFLSlLJVevnYgqLk+9t7vE0D9fM8duT63RbRShoT0TPYRqyQ3BdppNv9UOWeUm0fuZ0/225yYwJuk8q1MMB/m6Lwy7/+tSw5SBQjheFpfuT++IHT8sQcCyFXshLsRLUHLJavwo3Wylwvtr7r2O8mnt0eeHF3x2B32DpSomQNK2WwrqOfFMM+U40iRHC94eZ2ZNd58qwpa6TER2DFeEBDCAWqZupuwTzjwymTauRVPfPczPRV4Wul1iO1PkE5AjPWZKypgKdmLxdgqeQqF1nVkWoSthUVa+TGM7qFhm/sj4bHbvsU1d4k6YRbEE5M5Nb9l9xuwKY7YGNlbQwVDdZJd1CzIoUtXcs2X//MslbWtbKGQkiBGKU4dT30A4QkNM4aIG3MkyzFT1egKMIqcv8QEqXCYRjox45aEnFdoURiiLz5YaasK6cnxRrUFbuuVYRzEitmW852y6KQ24ZUY+v8r1d1u+E+g4jUpn7nz6C5DasrSBhP2UY1pVDVU+nQOmDcItYq0PDhyhrgfIKwFuZ1hVww2jD0BtcpUjIcH3QzRyuiBPcVS6Hz0HeZ/QS3e8vdfuRu5yl6puqIM0a6b+SQMqVSgrDb6gJZF7Ku0FXoQfWgOoVzFeeSFP0IJUtUptzwSfYNRkJtwqLJQVOzQQOui/ReMZiBXB2nU+GSIBfLmh01d5A8ahXrg1Iu1DpjdcTbRN/J9OQ9OK9EuW8rVedmO7M1MAbrHDlbHpbI5ZKZZ1hmyzp3PD2NfP/mlqSe8/PffM3zb29JbiGaIs+FwtP9zHw5cbpfOd1H1nkhzgGrb7DqhjBLprjzHfu9pmqDG3p2ww5nO5RyUC0bg09EkvK+5lBkT6XlKitiTyywpHUY76/K4UyzaI+ZJUTCGhtbpyChOULfNcbinMBQG25fqxQhbURo+efU0kop+UoRzekznL/IhFs/O6jbZX/VHpTSSBnI36duKuVMrVau9ZL4nKkkH59YjduXPsk7ty9sOoi/bJ8A/0coqcdZOmaVwEoi03k+s66zsIMQa4Oq6mdUqE1JaMSB0jopFBh24467wy3PdgfuhltstdQkUZdF9dhO4yeF7jLFJmKp5NxhVIfvJko1rDmSUeA7jDY4L46bOQrk4qzFOFiM+PHHj7c8nhWdz/guoNUTsCeGJ1K4YI0Se23r6LzFdwXfJZS9YN1ZcnMtOLuFptOYOIL9yhu5KZQrJQsTiCZ4E8w7UXJk8/CpQqjBaNk7qOuEIPTSlAop1qvnSklQgjAslLznaK3oOilQ1oNeKiFVYq7Mc+VyVpxPinnWLKtuBUFiCnMG5y3eW1n8tmB4hQjYBueJXjPb3DIN4PxUeLMWtHa43mJ0IilJOVvmRt1D2ppS5JQXKnJtC9DPLqw2f2+TwlYrrhqW+tknrZioVnC38NeqmwJ6RemMMQpr5HsSlhg8KSmWJZKC8Hm9U4yjoeuglEQMEsSTE9ioJFFQVwZfuL2tPL+tPD/A7aEwdpHOgOo0yk8YM6HtINMlEAhkVpxaiSwYlTFkbFGY2GjMqVJMYTWSULbBi95kYdhombhSkVhX01WKlx2EDEoVgSlWTI5Mu0o/QsGSS2INgXm1LIthng3L2rGuHfOSWJdEKcLs6/vKtKvsD4rdTiGJa5J5QLaUbMjZEoNiXntOZ3g6wnz2xLBnTR2XYhieafapY2IkxMLpdOH9u/fcv4883V+YjwtpSaQlkeNKSYmxHxj71A7UKt2yduRaWZfI/f0T5rsfeDodGXeebnK4ToR3aN8yquVntO1bEpoQNbQCTb126ps2SBsjdtnKAYFlPXKZA8YYvKNBdI3cUGuL9QzNpVS3vYXFaHsNgtrCoExWlKwp3rLpajZa63agixOB7BVq3uwxBBbSxqCrahNHbuynisY2V2mulOxrv1Q2MsIGUeV2P7X/v70G8Fkx+YmKwrv397I0NAlsBls4hUdO5yMxrlTTvMnbna7QaGVla68M3joG12OUw2rHrt9x0x2YzJ6+DpAqKUR0tWjt6bxi2BeyTVyidAWqOAweq7x4lZREUVESnbwEvOhiSBhKaAyXWqnakHVhvWg+PIKxUawM3A3WjiyXHWG5YFWmt7CfKnc3lVub6LuKb86XtvngmCskUNFamFbbIV9K0xEkqFm3AtEq+gZttjfXtI2zgqtZ2uf2FzlDjooUKymqtlPYDu3PUpgauwSj0JUrTz/EyrLCvAgbaVmks49Z9gyyiFQYJzGJOQmunovcENa0YCGVm8Ct4oySwpAN/WDoB4XzSgRiCuIqBVE1Veamr7jOwG1J+flBfy0OG4Qk590Gq16/T7ULeztEJbNaLIeVyVSdUErAXGMU3lWiMqjqRIuhgpjzWY23mq7TaF1ZlkxYxWGzoqlFolWNqnROsd9l7m4rtzvNYVQMLuK0GJZp6zFdh/ETSfdkrExbNRHLgqoXTFmwdcbXjIsZEwtbFldpJAPXCayDK22yEh99U0TBboxMDdrJfqIIKkaOstQf+ja1Nv+Geamcz5Xz7PCdx80DZu5YsuZyNpxOmcuSMU7TT4bd0bPfeXJYuZxPpCWTgyZFRVxlksrFMC+a06kyL46cBkzn6F+CnxR5TCQnpnSPTzPf/es93//+xPleEReFqQXTzABVVaQ+EPtTg2hlShUleiaVSPrwwLKuDB97hqlj3PcMu4F+6ujHDuss2hq0ESsWa3TzzNKAEFVyiu2zQYNOXJtBoatFFQ1ZkUshVCkOxogfkrGWGBMxxlYUZHIqpVBMkSJ0hYEb1m8kt71xxq8FoWxxmjmTMqgsXY8un2i/JWtZgDerC3Vllsrz2aDnq/NqgaJaPnMVHOdqiQHSiP7ZjfQTL5qfjkfQFWULRUdCnTmFRy7LhVyzMGo0VwxMa8ksUMh/O9Ox6ya8GXCmo7cDvvSY6FCLpZaMigjV0Hi8h34XCRrqCVRUeCy6OFSyhJAIMVNMpt8b7E7LHmYuLKdCOBuU8ljv6bsBbTPn+IFzvicukVorh90t++kFmYmkTzj1QLKP+OEMNzPueWb3vDJ2CadTu+DMpzekNCxyE5/lzwJ0rgdeBp3ZllHWCK1UnEB1WyJDCpItHEMhrvkqUKtXKEmhtJafNzJNSNxgJSaBjZa1MC9wnuF0lshJtFguGK9QSfj0kjZVxRPGi1eO8WK7UHSl181b3qyNs5/IOWBMpTeKEB0xemLOmBLxCDXYanGBla5EqKdqE93VCuZTRGNJ5XqZbhP1dbK+LuC2e+3z6rFVjO2nRetitNywtVGMTQ/joGXPZGAYFLvBka2ljEXw2axIsbCuEt3pnDQz1liMshhVsCbTucLQKabRMI2aoSt0NqJUxiBxr26IFHcg6T1ruWXJO5akWWMmxyM1fsDmR3w+YuOKTRGnxHup8xqVLdVlgl5bJnJpjDSxV1aGZm8iyWCS56ywRpYMRmmMNuIQjMYOicFlbm+KsAJzYAmOjw/w/mPl40Ph4wOc48S57DhfJn48DcxPmePjwnJZCctMLbkppwVWKVURciapTLFPjLuew9eveP7tDe4msap7zmvg4eOZH//0ge+/e0LFPU5NaNeusSpZ48vxzP3jI9pqtLVY6zBWnEFzLsTjhdPxhHonC3c/OLqhY9wN7G529GOP7TzOOoxysqc0m6pYuvGcAikGOdhLkam46+iHQWCgXLHVElJgDUubBAzed6JYVgrvXbvyPuH3MYZGDmgtT6P86pbw9skQT4rUlZrfbDdKtY0nIp1iLZUUc8sT3+Cjz8Rt12u+HQefOSdv580mpK2N+VZbg1TbuVz/wsXCX1wUlBeXUO0UuQTOpzOn+Shjk9Wgtm28qOdE+dxhtcO7npv9HXfTgc6MGLz43xeNLg5DJxGOrhfKhu3ohoTrZLFUlRFrh1DRa4Eko5dzBj127O4s48HilCFdKmVZSItkudrO0I0OPVUWVykmEc6RHCr7rtIfNN5krF7p/RNT/4Hb/ZnntyuHodJ1cvTkXIlR9qLbwb/ZCdSr3UQTuZjGVW92BpXS9gQKlR01G0LzKYpR1KU5VnJqSudcr0XluqP4DHMvNJVw1oQIYYVlLSwhs4RKLIJY2QG6An2prKUQa8VUha0arw3WO1CaXDPny0JM8hhoFMQQI6mKvkPowZahc5zPEhuZqwhsTG52wVXee20r2olDbYjiHpurPP/auNyfY6OfnmN7gkKeB9TVlZLaEqoQaMDoTSsiN5Eqcmh2XmzD91PPNAwoKnlIKJXIayaGChlSUhwTVJVl12gUGoOQgYWGaYzGKuHnpyi8cmMQGqdF4MVeiqXKiaJWjD1i7BHX7bF5hNhzPhtOyx3xMlKWZ6gY0DkwqMxkMt4m7Dmg7driSxPOQecqva84V5sITa6tzX4Fo0SgJWOQHCxUtI5ol/Gd2Hmga8PGV25GxRd3klx3PCs+LvBuhdMlMl8WHo2RJiUrLosjZosqQqc26Ea6qGDFxG86dHzxs1d88fUd1p04PZ35+Hbh/ZsT58eFvCZ0KdSWba5soSYluQ+5CtW7VFSu+Kro0HKwGk2JhbiGFkZfm8hD4TvPuBvwvcc6izUWpy3OyBSglbqqgjcsXhh6Bt97+nFg2if6sZcDul2EqjbWXE1sQU+m7YvU1qErrjTp7cDeIgAEyimNSp6v33/dldEObm2xqD/La6ZWkomSF466/n0Qr6Ntt5Ga2V/5bHug2q5jEzB+znTarGHKf4udgu5owSEKFSshL6xxQXuF055cBHcTtabFao83PUM3Mo17nt8859nuFmckyCTMgbgEWTyj0dZhrUZZC9ZgvbyRpYjB27JUyinBsmCK/JsxBWeF9eiUonMO4wvGFZRZQCeqDWS1yEGqM8o6XJfpTOLZ7cqXXxzZDx8Z/TvG/h1Td8/gI6MXm+sahb5ZEqJ4LS3sRstBLdQ/ofWZLUd180mnaRYKwjROiryqzxKtEimKzQVVDrXrclpv8MinK6pSm71FactqRYwiIotZ/gZG6IhWixFcUpWAIlYJpklKE7EQLYWOlBXzemJZF0qz+tYbO2vN6AwxSXenmoHdsgIqXy++nIAirBCFxvvKsNPElDm2JLaNeFDLFjDURu7t2t9uzO1/SiwEq24FAbGPME2XII3HhsVlWrAWYw+3zzRed+gyYm3C9JEQIqdjlEjJqIlRE5J4CvlORGCUTYCUUCrLIWNUs1ypohalkKscJNYJJq+UeJaXPFOpePOOajoGO9HbAzbvKMueJ71nLs9YUiGGjC+FsWZUOZPqRwonQNG5yOjhMBVupsLUFzpXcHbT0rDt8uk6i/MGYwtlg9BMxDg5tLfrSeuMV5lpr3i5l84ipcpDyLxbF54uT1wujg8fPO+fO96/c7x9ZzkeDZfZEJNALLXthbx37HcjL794zqsv7ri9nTg9nXj4MPP+T2ce3lygxe7mYBo0mCkqSfpIVc2E0FIQXnhMGaUiDocz8jMlSVgMlZYTkFjMzPxwxlhRKRtjcMbirRQJoHXyAu1qaximgXE/yf1fFbEUVE4IJ1euPW2sYPml5YLnjLWyO5AJYIOLTGMZ6nbZGiGRVHEW2ERpn2P4olf6bIrQrQnZdgSq0YfNxkzUjZxSr8VAImuVCChVEZHlZ0vnrYjUTfy4hfOUTyr1n7QoHMNHtNV4bQllJtRVAs59h3WaGDQlZwmBURarO3o3cTPecnu44/n+lsNuj6EjJUVJJ9Z1Yc0LT6vGJo/WFjcYvDHYvBKXhdO6cnxcOD5kwqOirgqrFJqC1glzqVyOBt87OtdTMjx8OHI6noXyaMGcFLqTQHeo7MfEi9uVX7yM/PUXH5jsB7z6iKtnTIqoAFRDyJUoBkPiP2Oav7pWslzWMglIPusn7DAlKEnJwR1kH5BSs1AIkZridcGklbA/rpNdW1JTFSW3pfN1SS2JZDEJsyFveQpGYXSjfLZClrWwHqxXDIOmVot3Bms1IUsMZ1wXlrVyCZGYFcPQ03lPzpFao8jpk/ydnCvLHAkps7S9gdHCwKIoYhCaZyqV3hl2e8+yZs7nBWoWhpMIPK7XlN66obphpw2XRayx9fVAU1flu2kHY0kKqmboNcModNIYMuNY8b6yHC+cHyPDCDd3VQwEW/F1VlhXMRtKlp8zumCIGK1wpgr9tFFRvStYK8U9xMocM3ptJnVW0Q+KrtctK1nUpnWJeD0zmSfuxh1fdjc87A88nHe8u/d8eDBczgNPi+cyDxxPistsCEHj9Mquq3xx5/j564G7iSbqlJhRawrD5JkmQz8kuj4IPdgIhVq1ou58s9gwYiqotJbp2mopKiZzsIXBR/IukdXC4yvNx0fFuw89P7zZ8ePbnu9/UHz4qHk6Qawa1/fs7nZ889ev+OLrPdNhJa4nHt9/5O0fjjz8uBKeMjs3Md5Zjk+OeVFyPeVCKplEBdWjVQ+Id1lOkTlGsotU78WuOqxQwBiLVY7Nql5FqLkZ9JuM8gqqUGlzKczLTEoRNHRDz3BzYDjccHh2YLoVKKsaCFkOf9lMNXCyqSa37nzrxCVjwV9hRjm0G/un0eY+/9p2QIPsArcwsc9p6fqzacG1M0brP8d5lBJICwTG+3MzPdi6Kllkf1YISvmzz5+8KHw4vRGsLTpKTYS6gm0V0Bh6oT6gisZUg9c9g584jLfcTXfshpHeeXKWpUnVhawjqQbWECiN6bDLjoN3dKmg1sDlHDg/LZyPmXjR1KgwCgwt4WyuzE8RpQLGrOQCp8vMZZ6JOVBqxlhF12nubuD5s8LLQ+SrV4GvbxMvxoCvJ0y+YEpGFzlsSjXXgx9bm31BRW9jIXLAbba1Ugw+UUxzkkM9J0VJ6spBV8iy0LRAD9Vgkm2HUMomUKN11tubvfGgpcnWBpRpuCKgmlMHWTUsX+O0Ba8xWoRtSydwyWWWzjcsYh2sSsZqTe9bLsYKISY5RDVQxWEy5cKaIqXSWFgGq43QbKM8d2pptD35ulEaqwra1jaCC68+5ySccPVZj9MW7aoW6daR3YtV4C0SttLJQbeuVWww2mtXt5G+KGo2bScSQakG+dWNH0xOokUxFinCTQviu8rYVaYe+ewK+wkOh8puAmvl50qVncwaNWbRYDXKq6ZNUZiG6lqdGuafyX5lNCcOfmTnPLeD48PTyNvHiTlnzjHxeNFc5g6D4dKDtjt2++eUbKjhkbQ8Mi/3VBamnRSFqTMMnaUfIl2X6Xyi6zN9D8PQxGpOX/G2WJVYuBhhzDmr2Zl2wOnK4DP7sXC7L9weKs+fJfb7iT/+yfHH7xVz8ow3E6++vuGrv7nl9rmj5CPH9yc+/HDm/k1gPVZMcUxjL55OBSqJSBFqtxKmYo6RnFTTmkRKjtSa0PR0nUOperUQV22HVDfevWquxEoS+2gq49g8g2LKzYVAYRuhAiX7rdK671yLKOvbMnbzXtAtF5kri6e2GEy5V0VAuRUPrgf05xCNZKpLofivE9K25lGKw6cioTBg21mxNUvXxyCwk2vq/Q2yov3dazjXlSJb/n+KxE9eFC75UTDjRTA222u8HlBKo41l6iec7ihLoUboTM/U7bgZbtgPB8bO4azwwENMJCK1y8QciCkzL4r5rHjmOhydCJFCZblEzk8zl2MmL4aaGhtDKbwRvDMtgZQKRWkSsKTIGsUvX5fEYBSHfeHrr8788uuZl68Kr14W9tNCr9ZmkSwVWZmNdiZdcGfEe0ngnyhWGk1olBPkUEkR4nXZLIf5Vv1NYxlZo9CmYq2Wjm7r/FMrHJuALetN9yeHZZPEbwVBKfEt2pLsCu3iXCBGgahKkF1NZzq81fQUQh/xywpkwmrEpC9K5+YdVG0YvFDydJWFdKFQdcVoS+8dS4ykULC24JwsZo3WMjY3h0hjhDa5sbE0Cmc01hWck/SrXGFesiiGr5GENIgAcaQtInTTgFUKbzVjL6In5zVnF7nMmRQL4YmrdYAxjr53OK8wtzLJxZSbIluRmxivVjGK0yVTogjNJq+4meDZHdzuFYOHaazsd7Ko1kqwbmUQnL5q1mBgEWjSlYr34L3GWyX+Upo2dQVMd2Tyimc7Q/zC8O448IePE9NoqQWMFnZbSh1oRah3XOKXQMdyuuF8/MjHe8V5ecA4hXeane2ZnGIcF8Zx5fZm5eZQOewrh4Oi7zVdbzBeob1ChYr2EeULxlcGY3HaC5c+V7yKuDEydpmbw5lXLxKvXsKL5x3jaDguPbsXB5797JYXX3u0ibz97szb7x758fcLT+8ynekYu5791OG8JqaFmBN5WQkhCOSjDakEwrJKrkFOlJpQutJ3Du9FxKUWRUoN/mgNklZCutBGSx62Vs3HTPQEm21NwxapuRLXwHy+NFfTJOJO27yqbMPjEKJLi0hgs5aQv93YQyqTTRZPq0qbGPT18JaC0BbLeju89WeH8yd6rEBDsMXM1vopb/3PPpT8HqPb826fWwEQN+JWPLef+awA/NdQ1v+/j7+4KPzmH37ZuuGIUophGAHF08ORHCvPb17Q257jw5n1uNLZnt4NOOWxWIauZxgdqcyUi0wZ3jvp+nMmqkINsrtwU8V0RQ7bkFguK5fHlXxWhFmcWa3T7HcjCricLqQIutuBFbqqHSovDoWXN4FvXkS+fhb4+YuZ188i487ST1bWiRGKATrZ8G+mf3mVKm6NakvmQk31SnzZbEg+s1vHaPBWSxFw4iZqrOw+lJYudl00YTFtwVzIqTmsokT9auVCLrnhk0XedDEKEZNuo6wsaxFERiO2HNkWihfWRSqFShRVrJbD3tqMohBXWbYaLQdeLJqQYFnOLOczMWTJrq0FtMb3GuudWDrbjLZiQS6vVZQpodkKOyec7ePThbAqUX5mxIpBVYwXgt2qxavFeyP5A1ZuJLH+ruQgBUtVeZzeVjpXRXDV2SaOKyxzZc0V8TTMDIiddEmKNSri2pZzhasGBLN5xohY0dqmPs5gK9xOitcvNPudZhoV3me0lsmk1tKgGCW05j7iNOim7yitMOceVGeozlBNY36oitFVgmyI+DHy7DDz7XPD37y2vHnf8+b9ju9/MPz4pnB+SjyNibr36LFDmx0p7jmmwGVZicdIrxKdAqszzlbGzrHrDWOf2Y2ZuxvFs1t48Uxzd6OYpkTfZ5wraAeLjVxMFs8ja3Farq9OC4S221cmfWKyF252mnPSuP0zqissp8D7h5nf/+4DP/7xI48/ZvLF090cmPpnTN0gFuDqLTEGjk8Lp/NC3w8MQ4fOEUMgpUBaAgWhyOpa6Zzw2LTV1Jyaayls4TZUmohRQZuwQWAW3RrGjAjK0rIyH094qyWbfbMir7I81u0gl6l1g3ZAa3vt8jdhGtQGKTWbDGXankvjrf0z1ufnsZq6ies2huafTQ6IxUhJkDLXQ198u/T1sC/bziLLfbzBrRvwKrBra0hb3vmW9bIpm3/SovDq1RfklIjzQk0VZwbBtf1KVFEOpghlNZRVeN6YSiWCXZBsvkTpFoJfuISFtVzk32vBesfhtmN/6xh2mpwyT08L9x+eON4/sVwCuhrcCM4WvLf0vadExboGlImSqHYXGHeBwy5wOwZeTIGfvQi8vInshkDfiX9LoRCjJuUB5QPQgq7bYjsHiap0SlGSJgfpHNC1VW6JObS+2TWr0jKRqyyctwt3G+eSdAUpbbsNsS+mYdW0PUI7PZpZF2T1SdwkvxusruSkCNEQUxXYqgpt0Tmh4+W0iVeEklYMeFuFHTtVfILewKlXnBd4uhTWWURcKTZDQL3BIQWjIr2reNdyNJRQYFMUGKLr5VBXBmIuhFOR51qMiLWLImUIUSCjkhv2WmTyGUeH1ZplToSaxchMiTeUMVBUYQmFeknYUCXes4p2RA0CD2yCN1UUKVTWS5bpqeir66jWElFplCiXnVWMXtMZ6FRh7Cu9h6Gr7CfNfqewpoAqxCTdnPOq5QYrnJUCU4rsh2rZpj7xmFK1oJ3BeCONgqtUEqUErC6MJrHvNXc3htevEu/uC1889/zhoDmeDMZ8JMZE14uh33Rzw6or9TTDZaWWxJIjKSRYCt3S4U8WowLOBO5uLC/uHN8sA0v03MyRoVvobMS7iHIRXMB1leibL5dSzahRmDguV+460C8053wimkfuZ83jO8ePPy68++OJx7creW0U297RDWJbjcoyAQky0jI1xClWGQPeUKKINY119EPPNA0tA6LgnW07p7Y3Klkyra0Ru5YmBNugxGqdeEClTROQIHJdkNve0e96tO9QzTtIYCmB2KrimoKH1q2RKOgqnfnmvQWf8gk2IWBt96mUlm1ikLNC4NHClrK3wb7XwlDaNq1+KihbLsKnXPtPe7dPu4TGQqq1Td2mzUfyOmttrpkKf2lV+MsN8ZJFJ4WPhXzJhLkSs5jLVRU4PTySl4V4NLAayqCpvlD1QnaFaM5oY1i7wjpEHtZHPj59RJfIoBU3wx3Pv7jh7qVj2sPHDwvv3z/y/sdHzh9PVJXp7jw3zyWEw9uJvNywHBVaOZw68803M99+c+arL4+8upvpcqGvlclVrBX16EkVakqwBkgjKg/opFC+iT9KpWaFzqZ5jGhMBps11WdKV6QYGIN14hdknSy9tW684FxJoRJXxXqmdcyicK4NLvGueRAVsZuIK8S1KSKzEUWtUmgdZCHdio3YLFciMKfKvBTWmDBG6JjWC9yCFRhm4zxnRNDmOugm2AGTUzxY6aDnS7tRFW30VHgrUI3WCZUj1hmMNYSiWTPUJM/Ve0M/GnKtLGsmrJV1bZQ+K+rrkjUxK8oqTJIU5dJNZIpTeKVxxrDmQImZWgSWtF4sRMK6cloi9UmWdc6L4KvvHMNkr8lSThnqaslzJF4SFY21jqJFyJSKFEbVKJVdp5lGx66rTD6yHytjL6+hrRIc6m0VC4hOga4YK4tna20TM0VSLY2nrshKS0xqqtQ5y+McpetzXuA2IQ/IBNn3mWFfuHue+PrrmV9843j/K8/3PwT+9MeV0+kGpV5h9MDd/sDQd9ztAvMSyDEQw4Xz5SMhLFizQ+uREFcuMZDOnpUB1T8j2T0fzyten/DmjDdHRn9m6k+4PmO6jOlaoRV6EgbZf6FgUIVaLzzNbwn3Z55+tDz+UFk+BuriGLuO3TSyu7G4qVDMSikF6xW7XUdMA86BtR7fGSqWUj1dp4mrZRgGDoc9/TDguw6tFWWcSD5BVawhsMwVZTT90AGKEFZCzqjmFlyzJpOJYaOyio14mCNRZYabHftS8NaifQ9WUTVSoLS+BtlcbbBradbvoJXBaIs1svAW6LbFxKYkOd4IpKSNUL6NcWJdAbLHKCJOFFKh7DnYFseoTzuC63J4a86kwNSGs35Cgz6pmXXR4ofVoC1jJFhoc1P4Sz/+4qLwL//4R3F2nCM6WiwHjLXU3pK0Yb4E8lro6sA0dNzeTTx7NuFGMZgSOKRg0XTGoHMhXWZ0LZTOYZ1hOnj8YCm6gPH4YcfuoNGxo+pIf5MZDgrXQQwXHh+PzE+aHBzWG0rqWU6F9z+c0OvKt19Vbm8qrJW8AsFgS9suUqCsQEIng2IAG0AHqpbwFemYdGMYJRGBOYv1FeNFlCZLU0UMhjhbUpTDgJJlqdxVBi8wT06FNUZCUKwrEA1llUV0toZkdDPhyyQtkMWuK4wdGGXJyfHxw8CbNyMpB2x3wg+Zw07U1VvSWbU0iKRdNgV0AgI4wE3CdKhGkdHEYolZS6djCvMqqkvnLdZZCe9IiRgr8xxZskA2RhlG19N3mt5L3oTJCr3FFxphhZVUCRdRiermI6MQHDhGOB4Tcb2gtSIGUbY6r5oPVSQ3umKMoBFhWS1JJleQGMokAkrarkcB3kOMhRgCIBoKKhCVTGY2o1zB6kTfw2EPz28Mr5559qOm5MjlUnBO7KTRGfSWUVBQOoFq9tINUsyxve4tV0Eb0T2s60osisuicB6sNyijwIoKtSBY+dhV/DO42RVePo/87GdHHh4fuH84cn9/w4cPd8zrgLcOvx9xWFSphPiaVNa249Nt6U2DIBXWTVyWnstFEWMghpUYHNZO9H3PNJ4ZpxMvbhLPb6F3CtP2bBhNVpVEoerI5BdeT4U6Fbq9Rd0e+GgHjNH4vsP3Hdb5657IdR3Tbo9xPTdRaJ7WdWKUqS1hnYlhxTtH1/c4ayUJMGV24+7qPZRastimLs65EGMU+ClFYcQZ8Q6KMTUPIsHwsyrY3tN5h9UGZx2d96L5UJ+mf7Z4Uy0w1JZYVxtrrhSBVY3WMq3UBl01M8ZaBRIuVWjSuhR5TGqbatpuEK4CN/Sm3WnLxAoYhdL+z+ipqVFTt+yEbbdSae4EORJSkGtA6U/QczMCvPou/VRFIS9FxCTniMngBoszk2TkFoupovjdDwO3u4mbQ88wWrHiTYXLWRw5L0ER54JeE33VaGXoTc84dEy34m+ibKGQSFmolNb2KOXRwHIqHB8il9PM0/2JtBY67WFwfPhgyEvCVcW7XcfykDm9zuyGRGcrnYHJ6ytzR9mMMpGSO0rxhCjUWmXAOjFK833BdlVuYgSHqbVSlewEYmqq5txsb4u+LsWojc9QoZZKjoUyZ+oCIWti1iRBz7C2CZQ60T4oCqoUwqI4PxqOJ8PxrCVrORZ8l+lsZugq0yDdQAzik1PtJ68hqkIVWaOZIrbMtbl1jgWEsNTCf7QcyMZIUI9xFm0sJSdSrISUBRrKlVCgt+IP1LvKrlOUqgWTNhlUAqvwgyaHSlkT1sBudJQK9+fMEgraCKvHe4dpXU6pFe81xgnTp5IZBss4NGfcoq7Yvm4+UapqtBKWhoTYb1YYpY3RFu/EeyslMCS8KgwecT3dwW4qDAN0vuJdBdPgodZ5ObtlKCOFoOUd1A2jq7SpqIIqKEcb2aXry0EYYjlrXDbYDkwnnaAqsi/SRYvGZEgMfeT2rnCaFz7cL3y8P3H7LvD+/Q2PR8V88Xg1YUyHN55MQNuK9bJ38dYQlkRcM1Z3lGKJpbLWwjlojmdHrTLtj/PAbulZdCX1hqmCJ2N1wVUJSQpB/M+8TeRZo1eFbdTgipElfq5clgh6FhgHwd61cfKemnpVR1elW0fr0Z3QM8UltmHlzSq9VChZbCWcN6SW65KLmBqarhcXVc01J7kWsWEPMRJjZE2BoiHMC8fHJ3zv6HvP4Husd9TGXhJh0EYwRVLwECeCDS/aDPAEH1SbVJlCi95tVi4ZEbOVq/W2FBalN5y/AjKJlFo/aZPa2X2lZLeiZbdgMrW5p6prc6UqlM23v20ca0nEkMlZmrttP/GTFYWvX31BCoFLf0IlzX460Pc7Ej2xrIQuoYDD2LMfO1lEVhGnlahYlpWYLiyhsIQKKXDjesERu4Hd0DPtNKazpKpIceZyipyPC/WSqNWi1oHznPj4IXI+JUJMeLdy9+yMtfDmreFd0rBAz8B3/1h4/UXiV78J/PzbzKsXjnFvMS6hbHv2prKcMss5MM+VGAx9Z+g7i/MZN0X8oPG9IwfNelGEFeJixS4iJlBF2DUG8JmSIBRFDJo1aFJAnEfXgg1yXmZfyL6SuhbuQcJrJWKkzpHnxHKE3//e8C/fWX54D8el8OWXJ3776yee3xZGX8XHR8u0UWlWI4aG49N8kmSJ3SvIprJESLXSDbDTBWwCI2lTcRU2To1ioFSKWHDEWJpXklyYVoNSiVqK0F+NQRsJYamqsKRC0bWNvhVjElNn+OqLgZQrlzizpozvFDd7x/NnE85ZTsczIcTWASlCVFAUh0PPOHaEJRLXSFoVOdm2TJMJC+Q5x1Racp9AY95KlkTnLaoqss44pxgHxbNbzctnjsMEnStolVnXlc5qbg4SNVqqGLZZtPgLOd24/1tn12jMudEJq0wuiSr0YSskBNqgIoy1jMvglcLZFvrekv4kYCdjbcH20A+Z/c2Z119FLsvK+7cf+d1/tnz/+10jY+w4zzOhRLrR0xtDDW0xHoTiXGpTImuD7gZ0dWhGcg5UAtkdCP1rHr1HaUdfIy6dGVnYmxWTzoSzIiyFmDzHS8+HR8/7J8fHx8pxXbDOkFIhxszpdMG55vqJ2FaEEEgpS+eLaVNzumpQroeStXjv2xQu3XFqmgSFIsTIfJmpQNd1DL1j6K3cO9ZhtOwKUirM88zlMhNzZF1WHuJH5vkitjq1YtVzOuMFOqJe8yhqlYlAHBrMVcSWSyaEZsudMtqK51pVkgkCCmXsZ/D9RhltnlZqE7giUFHJpBRJOcnkcX0dZMKjboWipb8Z+Z5PKup2jbXHaaxAVSnJ4xPFuFD6NhjrJysKL+4O0jHedE24pLGm4PyI0nvpUmOm5kCpEZR0AwqhY8V1YV4VYZWOWVWFNw5nPJ3q0FRyvhCXxLIa1nNCZ/G5z6myrmfm/MR5ziynKoroODN0itdfPGc3Od5/f+TDhwvhnKhr5vsf4Ls/Ge5PI+8fev7617d8SU9WDyzxA48PicePhdOHQjxXvvhC8fOfK25fKO6+KFivKbVnPmc+fEhQNLaF7EghyFgrJPlaIQdJQIsrxEWmgNy0C6JhEBmB6aEbFPvBYHtx1zs/JS7HwrJ4ch34p3+N/Kd/Dnz/Q+XhEV6/0Pz1X8E331S++iYzeIVJlhrlNVVUnAe0LLwkmlPMMeQ8auMmYIvk8wxNHZtyZrGVw1jJN5US5eBa40opGW8Mehq4rIHzGiSoRGmxtECxrpWH+4xxUpWWBdZZsjdqregqtFSjFesSiG3JbLRry0yY54WwIv8ehVqqlCJHRS6asBQMiRQCMURSUOSom+lCkhjGUum8QVtLVaat+8QsjFKoKQhDZ6zc3MCz55abPYx9pu8qg5eFKDmT1kKJoHpF5wvKCD14XRWdVm2nIJ2vmCBWGWKKQA4yptRPLLUmJlRqEyJCvBjyoolO43uF7yquS6AzqRYKGqpMN04VbF/ZDws3Q+RurLz96okfP5z5/s3Ej/8I795p+v3EuB9aYUqYmjE1443DaEsskbUE2XsYK95XQ8/+xcTdF3uGvUb7zLyeeJgTXDJmrejVoMKeHA0xe06z4sNT4mkpLEm8i7z3WGvJORGXhF6TLEybGndZFkKMWOuwxl3N5rSWwKmNGOG9ZxiGRru8rlKv+7EQImsIV5qlswqjPb1zckBXCCGyLCvn41mKQootyErOmbffv+X0dOL7P3yP7zxd22NsuymhzWpco8f6rnkhNQNL0xbO3nV0fS/hPlEO95I/o7JuDpeNsioGdteGXp6XqiirSWRiSZ8Wy031f7W+QeAio4wc8J//EhSqZokW3qiqWtFZ1+6Dhq3+lEWhRsHAxsmjbAbE88VbjcYStSZQWJNUPqOFZgi2WTUM8tBrwJSEKhFdC77rGP2AM4qSF+bzyuOjYnlKdNWgXUf2FVcrKhZUB15B6CU3eHdwTMMOZzwpB9YcMX2Pm0Tt6veW1Q28X0Z4u+fHYDgvgYfHBz680Ty+BVcS+z5xeFYZbyrDTtTGOYtL5DrDfKkYJcIzzbaMasUgIcvVpRIW0RvUhIy/LX7T+gqdpmjhyp9D5emiqMUQk+XhrHg4F1LyXGbHf/zfC//Pf1TsdoXXLwu/+HXl3/1W8/JOpgmaxYXkPRTx5u9lJE2xootEe6K47hpKlCnCemE96SzduDMVb2A/iMuqLpXOCgywpkyqnlg8tQh8JROJQmuLVpZ1jZwuUYJ6Otnhx1U8grQFazTKGFKCDw+hed7oq7FfWAslzkAhx9ogBYEOcnOenU+RcJE9QsmZWoSVkmuRvIva2EVGYXJBFRnpjRYFvDeZzgcOO8Xdneb5M82zOxh7YdkYJbRUo8R51ShpXmKoONd2MJutRkvsw25cdBETCnwk6wqhT34yA7zqV/SmX4FaDDk6cqyyM8mZwVSMh6xEArcZJ+pGPbYKxinxbBf56qszf3x/YnrZkfQOOw58fFh589YQgjQj3mQ6WxlchzOOEANrCihn8FPPfpzYP594+bMDX379nMLC8fTAaU48PMF6dKSzQ0WDqR6KJWW4XCL3pxPzGqlaJtHmTEWuqtmyi0o5rIEYAusaiDlhjZjflSau0mzLUTn+c6mgdDv4PnXKmxgrRslB2OipwZm26PVUXUkpc3w6cTqeOB7PLGuQEVqJliHVwul4EUdRRFQ5jiPTtMN7j3PuetY6b3DeMU4j026i673ATbUQUxIfpmnEOHtdHotGQUtqnrbiV4Xcp6UkUmlZIFQxrGz0USGE1GaCaJoxozAxJX+lsdxMYxm1sClxYC3UpoBVIMXDyOtX+W9kc/Hx7Yp2BT8Ful3Cj6BsYAmRNFvWUyEtDcNWmqBEvShULUOtHmM0VTuKCo0mGHG6YxpH+q6g1Uq4rJzeR8IjuKTorEfvHGW8IapmsZEeWCMsUTDk02OSjrwYbl/e8uL5C169vuHla8XhTjxFSi48PkT+5b8cuf848/Ahky8Wly2/+qXi17+GX/9d4tVXBV0UH35QVDLaBozTHHYOTYYcCWthuUAMbcEcIMQWWVkFAzS2tLFYRHDeCbwSo+XhqPiXP0T+8H3hw0fNedaUTpMdrEFxPiXe/xgxNfBv/7bwP/0PlW9+Bnc34LOFSyfsppCoKqH7IuIkpyEJ7KMyuBb+g6rEVMSET1VcD6Yqyixjp1VCyTQenIahSzx/VlgjzKHw+BT4+BBZDfTiQofWRSy6m1nhkrNMfy0S0huDd6K4VRhCVKwpMwe5OXRb5JcqFhkZWhiJ4LqViCpJsFMgroW1CLZcqrymZnOm3K71CrUUYoiNvSUhMlOvGDvNNBSeP9e8fu242VW8TXROGEyqQFgCqlQ6Z/BWPJBiKAQHxsEwGaxXwn3PWexQELaObbGZSokAST4FTip1U6nSFn8IBGDlhk2lERBqJRaL65TExXYFYyLaVBk1smkwocG5wtQVvvoisruFb74Z+f5N4X/5Xx75j/8hsK4dIfRkJwe1+ARZqtWo6lonahlGz6vXPa9eWe5uCg/3Z84f3/P0fub8oEihA3qUsxQFJWViDSxEYpHs8pwrqgnGnBXopFbaIlggjFKFcqqNHDm10SWtc7RxQJpGJV5Gkl6WPxXVq11Dg5NSkutCKSk4s2Uxhq4qQkxczjPH04XzZSHE3JatmpgSISXp6EsRPzdjyEshnhLDMNAPPTEGlnUlZVE87w87bu5uGceBrvPMy8zD4wOoyjD0jNPEMI1SXHYjwzgwTiO+7zDKgEYMJJXQQ1P5FGZEywVx2uD1pqrWdLYTaq4tJJOIIZFiwrYcat1ijkOMLGWFImFBW+ORi5haCsWWn56SqvUtSiVynZnjmeXyBERYOsrsiGcoQaNoARSuom0S/5IYWQuEAnVN1BCpWS52O3meeYWyEkYTLpnjhwvhqeCyxStHbzzGajlMakKrJJBIGSjFo9WBad/zzV/D7UvL4a7j5q5jOnQoDe/enbi/Xzh9HLh89KSnFbOeuektz3aG3/4q83d/nzjsIvNDkfFMOWpBwu6XCioSciFECb0pAWpSqKwhK0zROFMas6Siu0pRsATNKVripWNZBk6ngQ/3lj/+sPLhsUK3w009a1lY1oUP58LxWPjlXyd++3PN3/1V5duvwPRFgoZixUTQtUqwelOmqopkxyY5mIwRRa1SLZLSVLRHfGRAGFK5IE7MmrEzqMG074dUEjHDHBQfR6FlWgW6WUYoXbnEyCWCtprBd8QMSwh4oznsB5wpaCIpx6ZLAOMM1hi6QUOtXE6JEDIGWaRZW9GGa3BIKWKiR2MsGa1Fv9G0GMZWjJWvidpVVn5WV7wpHHaWF3eGqVf0febupnB3yExDRddM5xRD12A1JbGhRol1izVWFoylSD5GAaWq0Cq3g69lUGjT9iem7XCqQjVbdUoj6CM/L4UggylUK6Zt1gsNMsZCjjJleV+pQ8V7EUOiIKlIansepTSDg2FS3AxnDuOC05XXrzX/9J8U//SPjlI60I5iFbmDmgeM7elHzc1zzS9+ccPf/vI52iaOD/e8+f4tf/rTB44PibT0mKoZraazFqsVWcOiIOiEsQHbFbzpMdZjjREY6JodYNr+QDBwaxVbtjZK/IyMFf+pkstVrXulWTZr6pSSBN2IAlGW9lkowKZh9jnL6+d9h3Udl8vKGoRFh06YxmjqGCg0zL1kQfm0wiqx+CdV1tNCTHJubQf3fFpR5Ym0JKZpIMVIXTIxBtanmZN7EthrHJh2E/3QCwvLC13aOIvtHL7vGKaBruuaIPTTNGTawnhdVtZl4WE5EpbAMi8s80KKSXYyzUnWOY/znnGamHbNSryX35dyEjirOayWvxA6+j9UFOY147RhGu7Qg+ccTlzOZ+LDQj5bdLDobFHKobXDdRZjNWGVdLYlw1qAWCEKD1dbxS5niiskFHGG42Pk8f2Z9Zhx1dC7ntjLVj3myBoXOfy0ZxxGxmnH7bNbbp4P3L6Cw4vKcMj4UUPtOZ8Vc7zwcKwsD4b04PDpwL6P/OyLlW9/FvjVt5EvbwLLpfDw0Dxw9oVSNGHuCCHKm19gqSKo8ga8VsIa8jLWGyuhH1lrlqK4JMPj4jgHzxpHzuuOp8sND2vHsV6gS9y+ODDseh6OF+r9E5ojr28e+T//+8r/5d8peqUoKxxXwxIUNRkJK7EZ7RqcZeWQCC1TeOgUTouzeimIEltXXC8wEovAgSVXVC30XtG1JDljW+iHWA4SombXFwaXmbrKvi8sQdTC+lLJJIxxFGupS2LJK2hH7zs0kvIVQhJrCa2x3mKcwRktLJPGA6clilkrMaIhil5EIio1aguib3nHNRVSFpGRt0aYHLW0ICDwpuAtPL/RvH5umEbwThhGUx8ZvBRNZ8DaiNaSqFez2CSoWrHWN6W1puRCDEJF9YPYfJTGOCu1ElIRaE6LeZrRjWqoYYuirg1funrSNBc23QRjbKl6SZGDIqyKOitKr+gmjfGVomLDpRtTSRmsrpRy5q6r/I//Xc/f/Xrgf/2ycjMmfvxx5P39SDYzQQWMH+m7G15+2fOLv/H8/MuBF7c9b9995I//+o7v/vTA23eB5VQgLgwa+k6YUoP34hQcK7YUnBFwvOs7nBsxDe4RuEMyS9is5eGq0t0sKrblbVgDIYQGuZgWaflpZ5BzIqZ4xcm3onL9aNRM06IyQdN1Hb4PdLmiTGpBPBKzaWzLXq4tPx15j0rKrMvKsi5t6nFXG2+qaB1MXXDK4K3hbndDSmLal3KizJE1FYiZ9XgBrZoYrqCdbZbdO27vbpn2O4ZJ4TuBjjQILBkS8+OR49MTT49PnI4nLqcz8+VCiuLrtKFA1nt813H37BkvXr5kd7tnvJ3wY4d3HtVshTIFVf9y++y/uCj87rv/jedfPOflL/+e29fPeHc/cwkX7o9HLu8iQ+3odIcxHdZmCp5Oe/q+YxwtSyqsSW70mpQwRDTYqaN2lTlFzmeh3j08LsRzxirLyVTMUtDao7HU3JOS5tkrx69+e8PX3068+mqkUvj9v97zx+8iL788cMOOiiXnwv62I6wLf3jzwMePCwfT8fL2Bd9++QO//c09nZ05fi+dDcVwCYXHY4Di0aWX0bZmjFdMncV3ir4vWFMwOmGMHKYxOI7nHe/fDfzpR8fT7Il+wEwdu+cdwxc7nH7OeBm4/91Hzm9OmGgI95o075mM47//zZF/+PY9L++EMjkHSU9LS4eNncQx2oA2GW2a+G0RzFqrJk4bK0aJ2jhH2VfpKmroEiWvOQWBMlwrBMZUKgFUabYYGmM9pRisCqia2I+VV88V7z5q3n3UYB1+sDxeMg/nCyVmvKqokjifL6gqkZ8pIXGLSia9GDLnJ4EaDYbBWRQiwLPGCn6cEykptOqxxhPzQowrqILXXMOGvFP4pirWTZE8DVK0nYbbKbPrYddX+q4yDjDYytRrhsGitSxCFQXruXLrS67kGMhFNa2BuMDWKkp0qxXWGqw3xJyIOZNXWeL7fltCtx1NLqjcxEhFumBdEfddLRTMdRUyQOcU1llU6cgRyRGOmVQSbqgoB9pDPxS0LsQ5s1yEomsM9KYwDoH/4d/OvH79wP/j/175j//B8/a0cD4v7G4n9i8U3/5m4rf/dk8NZ/75j9/x/R8e+eMfzzw+GMrlGXVeWc8nijrjxoJOCcpEKYrlkomrQiUnjsVViJFXa+laRSzTuPQCNwqmvxUD2xLQjNaiQwiSG0Cm6RIaNbSplz3+Wli26eFTQVA4ZzFGiwYjZc7zmWWZxQ+pqY0l21kmQSkOjcmDIgVhJ+mc0LnZQxhhHVlrZI8RRN+xnMHtdtze3tB5gb9kspYl8Ub/FIeEInBjKdQ1cw5PzfZbFvO+6/Bdh3OOHCNpWTmfTizLIhY2SjHaHj9YgpGMdKW1NJ+lkGPh7fdv+P4Pf6Ibe25e3PHlz77im198y9D1RNU6Re2u0+pPVhT++//5S3a3t3z1VzcMdwP28CXWg1kfeShnyjmgs/gZdd2AHzxd7/FGOopOVWIpjX0Exo1008T+tcLuEsenxMfHhXVVeL8nryuXJRDXlaiEerofHF99deDbX7zi5WvHeFipnPnd7x559+PMP//TA5c584tfPufLby74UfDFP/3hwo9/OvHw5iO1LLz+4gXf/NUdL7/MTNOCzpEcAKNRzgKJSkKrgNcVpwpelYZjJ6qGVOGyaD7MPUndYvovWfILHk873nzM/OsPHzmvM+ON5rZXHDpP3xseHk4c3154fCqczh16zQx65ecvj/zsy3u+/vI9X3+xknPhtCrCbIirxpZKb4J4B/UCHVAtYcmkOWKMZhwcxslNuObMmjIAXe/Q7cIvSUQ1tSAhREahtHTqmyuss8LP9z4Id6kKX31Z4DIrlNEkbbFnRbeIJqGUxOChKml/K60Q6CqvW20LOCuD7BrFSXbzIxK1qFATxfpZSW4GUeAVnbGIDQOqSHNRQRmhAo9DZRrF4XTsoDMKrxWjh15nBmu4nTq6TlhMKkuQjjVCCd0Y31oLJbJWWC5ZxvVmkS1+VpLuloLQcq0rdNbi8eQqpnwhCPxmnbqK8HStVzdZpZsBW4W6SFqd06ppHzJVS+FXTmGSQCVzLCxJMsKtV+IW6yGbQp0Utlhc0TKFx4XbLtN/U6n1HePNyn/8f438/g97/urbL/mHf/8z7l5mQviR92+O/OGfn/jwNvD4VLic5XmHuRCDAiOw74pYi2trUIPFmA7W1pTUSgkryzK3qUC1wlqaqrjRTDuPde4zEVa+HvLS4QuMsk0UKSVCFGGawD3lWiy2AqG1WNlbZ5riXg7jvu9IpWCT7D1SLpJ3HVZCinhnsXlLUWyZBTESS6I0rYJQukUHI7suSClyOgYUlaH31CJZGqmIBUcF9CpjTClSFMSC+5NrqUBdnyYn38lyO9cse4cYqbnQeS8dvxIzRmdFSV2bojnEyGWZWcJKTAlztpwvM8eHI2/+9Ibnr57z7OVz9ncH+rET25Gfsij8+//T12g34kZH0bAbJsL0jOWgqQfDkk/UkOg6Rz94fKNyWV0wujA6RdGK1VZS1Ew3t9y+usXdruj+kdMTlKDo7MjzuwMnM/Pw9IguGecN087w4tbw7S89v/37A8Oo+PjhxA9/fOJ3/+nCD39Y+PhxRhnFdJDuxo0Ll8vKP/3vkTd/CHR64fXzzFffrvzq35y56RMpGnR1oCoZQ6qaiCNUjUKyjEfr6OwA1RCDImTDJTse147354mZ16jxr4n6NXMY+JCeeCi/Y8nv0HmVZeWcOJeZ9/+68MN3hYeHkTA7bv3C/vbIr3/2hr//9VvcGClWcz7B6VIhKHTWWJcZ+hXtxQe7ZENeFapUsSq3hrEXQdAci4SiVPGwsc6hi1BPc2z0NiUhIVqp62FmtXjwO9+wfR1QSrHbg+sUpydQVG5uKslA95Q4nQpaZ5yFVAQiKihxEI2VZZVM55rF6lhbGWO9U4QIORbZyaDFb0dJ99x1gquXsgKrdKEtzlOhpIhnKQY3+8rdDdzdKvoWLtNbJcZnVAyVzsLQGTqvqDWjVaE2+p/vpMOVaUvhOyfohGpGiFJBZR8iKiZSqpDEHNB5J4ddicS2hI5BXFm12fK9m0eWpu1IDCVYShBXTjtkqpHlZ9WZYoVuZDogVeLymS17qOSzxnQKdVuxo8LisMmQl5WSAkaJs+vf/OLI7YsVo79mP+z5m797wd/+3QueLm/43T9/zw/fXXjze7icRFi3hsyyJlL8JA5LKJJSZC17Ke8dtTPklmGsqhgjLvOFEGILtDfUvFEjZaG8dcRlngkhtHQ0mSJ0M39TWglbTlVKzIS4Cra/RV/W2owqtyhTy+AdnRO79i2nebcbsM4S27J7WVeW0CI0Kagq6Y2iiN7YQM2pdnBNRbwF3oiflfiryqGdUmBdF0JYWJeFlJtz6kYzrVxTGa/eRm1Znq9To0ymdtP3GMQvrooeY+h7+i5/0l4YgzOGmJJMRE2YVytyjytNWgJvzz/yx+++49XrL/jlb36JQdTp+J+YkjqnHzBloiRNuHS8+/6eN9+95e2f3nK+P2GVwxtHioFVFSqOqixRy43UW09nOuzQU8eOwwvL7auI8YFM5c4OmF1PQJFHxXqYWNPEsLO8+Hri2QvP7R2EMPPjD9/z8CEwP2nCPLC3E/tfKNRvoL8x3H7V4Q+J+8cficuRcV/58mXPc/2Sv3rR8W9+8cRvfvWBywfF6e1L6UZKZCmJOcPxMvD4NDGfIc6F/bjj+c0Nq93xQE8xOzq/x3UTdpygsyRXwRq6SfPcDej0JcvTQM1Hwocz//o0E9OFpw+K43vN+nhmspHf/Pv3/MPfPfDVF2f6XaAURzr3xHMgrCtWJVyf8VPFT0DWhNmwzpV1DnivuXnhUaYS69ok8OCdZTcI9BXCyjwn4iyRokmJqllv0vdSQRW6AbpBIChtYFnkoOhHw7TXzKGwxMTYZcapcDPAw1CZ+spuFDZYqoLfWqdZg+JyNpxPmculSfOlQRYnTAU41dxmxYFSEtXAeaEfq43RIx7DTKOm702j+lb2Q+V2D4dRcxh0o39muqHQjTI1lQxWJxKFzlQOY8E40YygK8qIO6dTcpgpDKhKv1fYDMtFUsp0yQ2mkZ1ByYa4Qs3CD7c+0/vSYIOmr7hoCbzpwDqFH8XNNcUqzQgTsWZO8RFdVgZbMUpS8UqFpFa0zex20n2H3KzaWydvkoJBUxxUV9GuUntFKJBmg8Hyhe/4v/5Pmv/x3yWe8on7+4/86x9P/O6fCh/ewPGdeHVtjCFFkemvruQiyvuSBb51eKgFrzWH0VMQhfQlro0tVFCIviAh+Lc3rjGKmoCtMXqWdWGeZ6qSxMWu83jvyDmyzhdiCKQ1CIvMesa+ZxwGOuewRmONhAb1LSbWqiJUd6B3Gme80INLJaaOnMtnthGKkjPny4VlWVqMpqbvOmEg9T1918kSOyWOpxNPj4+kbNF6Rz+MTPs9l/nC8WkhxoRxri3KP9MONPfVnIuwntIGjQFaSAmplmt+urDnAjUXln5gHEd208Q0TVhtMVqswEOBznU4K9oJbfU1xS2lKEV3Xvkv/9v/hz/8539mGKRI8n/7CYvC+fKE1YlqLcvJ8vj+nsvDicnvOHxxR+87vN0MmMQsL5UsPNpqCEGJd39v6KeOfsrY7kIuK8slkGaHTj1WRbRb2d949nc7poNnvPEYk0nxwukxc3w0LOeRmjs66/HeYG1B9QvdTWZ/p6CrvP+QKBFevZhwhz1TvmHnHU8r/KfvAk/vJh7eTiwhEXJgToE5JpbVsq4dNNuG4A6UeEu2ExfXgx3JdsTqDoNFqwImCoasLOgk492aOT9dmC9n1pRZ10o4a5xKfPPzB37xzRP/8Nsnvv36gldZxFvtwC9F01nHbmeYJo0xkVIi61JYjiKQ0S5jPOJzZFr+QMNMjco4lyXtbS3EtdFlLdgqLJJasnSzVg7JblQMk8I60S/EnIW5pGhy/hau4yv9qNDVUoLFu8zt88jpAo+PYmK3v62sa+XxHs5es+wKVYmrbC4wz7LvMEbYRTEK19qYLYCopYc5WT7nLI9jnDTDYLAm42xm6uAwwNQppsZuzEXLAt5X2QcosWO2VSItO6fQrhLqprcQPYOxFZT45YCExRvrUCrL4yti0Y3e3DDbjiBVTK1gwJn6yUYFSaKrWZNWUT3XqkFltCtUtVK0FidVEiVXzrPsK/pO6K/GypSiqvDPR+dQXopAbtnZZSnMIRCtQvcZvKJWJ1oOVdEqcBgf6MbMj/+y8J//85/4l+8Kf/jDwvwUyJd0hXe80WRliNWwlnbQ1EKMgctlZj7PhHWBUvHWienb4FvehccqmlPnFkgkqX2lFEoSk7oQVtK6omth8A4/jPi+B8SaP2dhJ3qj2N3sGbuBYRgZ+4G+60QqkiQlr+89zhkx7WvK6dzYSAVAiTBO+y25TKDCnDOxFom5r+Jd1bgBaAVxXQjLfO3Gcyk4a5mmkWGaqMAaI8u6NoPjZpMh0gM299WtQEjSotCWRZEsuovcILYUJVMiJ6GdSq606Ht0W87bIOzAuRXTXJuDaqNmK7bgIYXV4gFVQibEmXwJbb/zExaF+ZRwdsEMj5JKZs70o6JTt3gzYZuBlEKqYp7ljVe5onJhKRFUYK8dfu+oppBr4HyZ+fjuwvLYk84aazJdn9ndGp6/dthOE3Lg4f7Cw8cnLudCTj3WeYxzmGpxVaFUlAxmArpqSqrEiyJfLAc/MI0TarHMUfHd25Efji9Z5xvmyw3LGlnCyhxEdg8ZY2AaDcPeY/Z72N/QjR2+N1QjdtCZSNRBaJ4FyCLUW5bM0+XC/dMjj+8/cjleSMFDtgw+8eLlwt/9m4/87d898PouMzhIZ8VyrqxrJoYozpK943AwTJNhneF0LCznQggR56GfJD2sVHF3VS3UxQg/k5wDsamqa1FXBg9WC+ZfJLTeOegGTT+K9QVoatE4W2lWq6Smmu4G6Lyi7xQX5/G2w48rdpcYjhqVHbar3DzLhLU0NhTkKjCKGwROOj4WweWN+LjEIHbdmxus1pJF4b1kNNQGVXcd+E4swp1TDA5GVxlcpbdyY4MiVaHiGqcFDqoFcsC3yUPRsH4r9gDSZDVzOy2vgUIM2/qx4nJlvoh1Rmkq26JkFyPLAYRh1dxVtWlsKdu+PxtSMLK4dqBdARtRiLix04V1VcyLeDM5CgbxBqu2NoNEmKymU5Y8QEqFNcRWUDNLUuilCtxoDE5blFopBHLKrOnC04cHPvyx4/5PE+e3O2qCTldGb5imHoCYE8FqVisHl7VyTKyNXn4+nckp451YXR/MRDd4xt4zdB6tGsOoaVhOpzOXeWaLF1Q5oWtm6mXRutsdGMaBdV25XI7MZBxyCA/9wNAPdL7HOS+agpQarCcWMVUrWeQ2aCa25DXxv9qgKVkqa3G4E4PHEBuzULj8JNWKlkAz67I0a46E77pG+xwZhoFllYXwvMxorcWZ+Kod/oQhbVNBbe6oEmEr04pQRSslR1IUC5DP7bJLE53FnJjX5SrwW9aFeVmumdnbh1hdaDEW7KRJ770TX6SSriywn64onAvFJ3ob6LqeL766YfTw7k8X3r19IMyxQQCb2ZMBZShV+MC5ZJRVJBUxU6JLHT4r7u9n/uVffiScDDpNfPXVDc9e7RmmwnH+QDgGTktgmTPrRfYRpSZUXaUgKIvWns5BP1j8YHGMLHMhH2eWeyHXrxypyxmVLMPOM948w/qRYecoZiapCz43gzZTJZ93gKHT9J2VeEBXycwUlanWokyzSqYSkrBqLJnLfOF0OfF4vvB0iixPkRoChynx61+t/PbvZ7759sLzm4zHUxZLnEX1aVzBj7HR56TYrevK+VFxvndAoZ8yXa/oBy287ZwbW0aEVEMvqurjQybM21KZlrUsnXlVCrQUv37UTHtNN2asFyihFFFJGwtphTXJBT0OzaCrFKzO9H3B9AJtWa3Evldnhj4TbcZWMderFWynGHaC3R938nttI/yvq1A8hbUjnZVWRWiyptEGFWidMbbiu4r3BafBqUpvJRTGGGG4LKGyBJlM+l5oxCUpdKPmaQVdL4VHqeZsWuUgd718bZ0FE/Ze43XTZ6yyhMylNP/65myrhVWUotQIWwWCs06UzTkLxTcnTVFy01tlcKajqkJUK65TYAxqNZQ5s8yS8sVQsHcV21cRs6ksoUYWxl6EbTFZYlKkUKhRrD2sixgjtOWiI0pnXt0UfvGyst57Lhq6aeLl84lpGvCdJ6bEvK6sIRDS2MKaaIlkEg6FccSY0UpjvJXscmsY+h6jW4h9bt16Cu0zyiHfeZJ3pNwLRNP3eCfOpYPpOXSWeNi1BXMipsw6z5yejqDNtUDlkoXyXiPWmCv1tZRKypl1DULfLKJD8N7L37GftBQ5SWeec2YN4c9U0grZL+UicOxlXlja71RGRHCXeSalJLnKShoXYeE2/6RrBKYwq1KSCT/GIGr8nJr7sIjpmmBBaLBaN4q7RRndTPbENr9FrkjRaMWw0qw3jCjOy7KSTMa1cPEUQzuff8Ki4MwgXfCcySZgtaYbFXaIZHXi/unE5RTQWuGslUWzsyJAqlUcJ53B9AU/iFXw+QynU+EyJ/rO8Pyl5ea5wvrM4/HIu49vKToz7HuMd3RWYXMllSAeOIswcIZuoGo4no+kY4Z3K2vwnN47yrxnLZmQA2l9JOdAt+4Y5zv2B820M6iYsVniIk0nh7HvwI8D/bTHDT3VS3ExlLaEFO8YjCxfTVaUvLIsZ07He06nI/NlJa3CLLl7sfDzry/8w28v/O3fLuzHjNeKNBfWJYkflK74XiilunWzcS1c1sJyVKSg6AYYdxrXaYxp3UYtEijWbBdK1qRYiUG6SdsWtLkxdnKzE9CdwnvFsFP0+4p1chgWMqkonAWrNDkoahIa6Dgp0iqLT2sjhxsoWrq2aVBMg8AFMQl+P3XSIOYssNOwlxvntq+kVWFMoRTxTypFoiytVShyU8eDUBO5dkqoiu/F60kDpkJnofcNejJS3LdPZ7NkXWw6hARohfcGfYWm6mfMFzH981Uee3MToJ801nO1kMgoShFGlLxuUliEVaVRCDyGFu1FKqJezrVSo2hHjMkifqsC+4mze0HnAkH+/vykeHzsqE5zt1cc9tANGd9ntJHJphRFzRq9AqnSmYq3RaZCK3nHvat88QrWpXI5Ze7fJ6zW7KeeYeixzuGsFXFhJ+ydkBJrEMptqWKkmFEkZA8U10wlsgbRCIirbrnaWq9rYL7MYgnhvUAmjZETU0KHSEkJy8ZcdHTKkrLlfL6wzDOnpkxWWuO7vgnRNCS4LAubad0WgFOqEATSJopTqinMKzYJnCSqa9n06rbokoQ+WcZ6L0wp1/5tXhaZCo5nvO+FYFXBOY/33dWgblsibxnJG62W7QC/6lQyMcr0IvsWmUq1Ee2GtZa+6+i8lwhY3R5fFCfjredXAO35aK3BKFLN5JAIOtFVRy2VGNYrE+wnKwpTP0pFvazMZcZbMdLZ3UBMntNJM8+1hRwWUlnRJQCCibnRM+wHbp6N7J8NoBTn00rOmv1hx/Pbga+/PFBz5fHpgXfvHnnz7olx77l5fst048k1EXIipExYFMloXNV0A5QQuP/xgQ8fzsS0p5QJqkNXS00iiJnLQigPnM8XjudACIUSxJZBVU8/WobJYzspDn460O/uqBYCK7YW8WMqwmnJRehvSkv8X2TlMj9yefrIcrqQloiplcMOfvXLyN/+euWvv4m82GeMqpRYWOeVMAue7fuK7xTOSUhLirCcNctZQU74PuFHhe0M2tCw00rKojNwXYUMy6wIiziGbvnHVdEmOIRypyq+M3Sjwo8F121qUSSbWakrA0NVmphH0XnNOVXmVHA+0fvMsmrmxdCPisOzSlgrjx8AI4trlEwu2sEwyeU8GmHRKFXIGZZFIK6+39LjZKLZvI+M3hbO0onZFigkynZaZjRX2KYqjba67UQk+9daOWSjAmU0Slm0qhSdBHtveHMpUlR8J95FKcny2HcS7KMXebwxC+0WJQtxWiGvVZPzltPbKOK2tGxu2a2VInkAiRVThfVSGmNFqYIZMsZrXLAsT45333ueQs/hruf2ueHubuFwuODcjLEROlAOvDN4DE5lDJWIIaGbU23lcKv5MsLHj5k3PwbOp5nLImp038kyX0ROLTUMSV9LKbOskXkNrDEQYpJphcqytCmxMXWoXD2KUpKmRSFsuNAO65wSdo14t2KV0HunaQA9yjTQHseyBpZlZVkDxjqMq80N1FFK5jKvkqVhHM6KIZ7WStxgEfqyQiad0iww2JTvzcLaOylWaHWdFJxzDa6Sx1JRAklVWJYVY8W/yTWoxmwW39sE8llR0M124pqe1qipKUXZIVxZWDJ1bRoOZxsrrhRijtfXlVYA3J/tCJrlizFiBVKh6nrNi0iqkj6Dmn6SoqBVs5ZFk3Mi1AVrFONNh/aeZR1RVnF8iKxLoiZ5IZWSoPexH9ndjuxueobJMq8rIc8MO8Nuf4fVkcvykft3F979MBNWjTa39HZAlY4UE2s5M8fAEirO7nnx5SsmN+Jy5PJwQumemjNkJ91pOVNzQmVp+aJWZDdANpAj83rGHi3j5OlGh95BnjJq6NHDDWq8QU83ZCI1VepaJDlMRwozxUQKzUbZAWEmXy7E44XwtKKWldtx5qtXF379yxO/+eWF20nhkmNdUzOCMzir6UfoJgm5yaWwXDLzsRIXEfuNE+wOwi7JtZJSOzgrskuwQscLqXI5Z0KQJZrWSvQCGUrVbaKoaKfoRkM/alwfUVbiQnMRSKdlw7RoTrn5hVqpsVb4/M6DG4RzEoKkyU2jwhuIZ1m2TZMWZlSWjtb34h/tSiE7uWlSEifXUqDvZRlMC03PLQPbWqEapijLW+PFj8g0t1arqwj6miDMO42rlpgKa0pgKrZHDjsv+oiY5DaxvlFFaxHlcaySu9xFYXUYyYpQulBVoTdin32eC3EupKIgatG5aOGUV6UkuyLKdKlVRtm279EGU7pmBxFR2WH0iNMVbRaSiqxJ7EjGTnN7q/nWK96fJ94ff8mbf76lzu8x+R2H4Z794cLNl4Xbl5ovnnv8aAiXE8fziaw11Wq6zuKtpleFu7HwzZeFyy8j/+VfT/zu94mUO7qWdlb5RKXc1MIpZ8K6EptttFLgnG34eSVByxdohRFFolK0uiqXpWCKX1lRUJQho0kpQokUDdVohmGQqUIbUhVNUEWjjcf7kXGcGIdBwphsz7ougseXSs0ZvUXaKlFIbxnFOReWWQJ9RPhomYaRoe/ZH3YYK8E+IcbrQVuKsJd8PzDJk7vmF1zT0NrewBkr0bfafLL8TrK3KEW69G0a1Vrwf+OaAR8VozercbkW1zkItNSstbdi0LuO3bhji/kszVbEGI33hkoRfY3WOOdY1tCK1PrTFwWtiuRJqEKuUrmct/TWcPPSkvBUpaj3EmUpTocF41STeE90o8e4gkoBZRe8VvTOcnpYePf+A/c/Rh7fg7Uj+5sesmc+FVJNFBsF32TA2R39OKGq5uHjPY9vHzk9JtYL5BrIJVIQu1LVksC08jjTo1UTQVEJ6YIHXGfQ+x53M2D6G7R/Br6jWgUpoXKgrAtpDhStSGUlKM0cBXc8q0C8XDg/PBGeZtS8MJmVn30x89e/uPDzr1Ze3GZMHsiLJa8rNUdcJwtT34tvTkqadSmcj5X53Lx5DjCOBdc3HDFVSosLNEZjtEVVzbpCmDcDMuE6S2iJUCpLadx3B75X9KOmGzXWK5SBEsSrxznxGAqzLIVRCuNk6tiCSIxTze9HAoJ8X3BeOi/TDmVjYBiaGC1JUdiWxtVtLA2BVmq7+ZyTqMtNoGTKNqbL4nJViZqysDgsWGtkxEfSrpQY84pZHnL46LYr0FZ2QNoZShRmRi4Viyy2t0yGWhQpKqwvGF2xThxLtxhtY0VvkRViQZ2EnpqSMLRw4DbMtypKQrr/KlODaR1h2RIJi4Ysnaut4ra5VmGGpaKxDp4/S6gx85B6Tve3HN8XlgdFb3fc3K584zSMGm0dxxMcH048fTyBs2gniWPeGTSBnALnBHrSMCiWCpc1oIMkPtUtOQ+BdIZxFJilubsWwV5QVfD2kHKzHKF5HBkpAqbtGzZriSIJfgUJe1KlNsfZLCKwEFCrQXuHMz3KOrR1uK5Hac8wTOz3NwzDiPdeMPmWsJZzJReJxMxFXVPJjJbYzIpQS5d1ZZlnOi/0Tm0N/dAzjj3OOeZloV5amhoKMWeUBkhpEWXKwb5NRlpEaohr8nXVrDafJ311zt0IDgL66FYcxOsJxdWKfisoYVlY11VgsJbgppsewVnX9CD6eq94qxm8WL5sJoQojS6K1cxgfmL4KK2b02NG6dw237BmiX/zu8ShKGrpsVYTLoYcNN5XhlGz2x+Y9hOu06AT2gasb3zcpfLx/RM//MuZePaovEdrTwqRyylTlZYozhtFN04M3QusHVmXyMf7J/7wj7/n4/ePxJMhrVBUlhB7L1J2bbIEwegBowZxqVSScKatovhK8Qp32LN7+RJlDgI/lYW4PFCWR/LlSJ1X4iKK05wql1i4f8yc54UUzpQQYdXUJdGzcHcz86u/Wvjl36y8uss4pUmrI60epStdX+l2CeslHWldLevFsJwle5YaGA+Vmzu5jFJQ5KKaE2sTvlhhG6yXKiZmSbz/nZK8gZwbG6xZbBsFthNYpx/lv9puVE4pCl2ncU4T52bJoCWFLsVMWJMwljo5AHOpaFsZpiRL6iQMHW00zovlA6qyhU9ZJwUgGjl8jRGankwFYnC3uY2qhtuqJrRTaEJW4kttZEIyTqaXnAs5KilAWgqRQjB3I5EVsjcwCucNWYspXa2QMigrrCalFOtiyFmRMugq4ksxh21ZtypjbGHYGWxvWE6O5WIkM6OJz5Qp1/eoVKhBCpwt8hpY23x8tKWUTM5HSjLYKHFs2orXzxoUmowaEt4eGfdv2T3ThLWy5D3H9IKkO16OI8tg+ZeHhdP9wvGhcH4Cbdz1INEKjAkovRDSwnFemE1iuMtksxKWmRSEGqmqvI6ordMXMadSFRX55AcWE5dVYCLdFsFd79HKN8ZPyypu4sCSheJaSpIJtL1GyhgqtWUSZNAa64XdpJSlFsXQ79jtDhhjhSW0SmbC2hhCuXw69IT9pMjtv5vWJaZErhmlHcY1bUTfNT8k0QhcLheUEq+kigGtsMpfMz500x7INLtBQRm5Mz5BRCLc0wIHKScWLlo1spow1toaH1Vkz0rdLMebRXyDszbPqC2fIjQIa/N76rxjcJbRic1IRKzYUy7YAp020g3+lEXh//2/fo/vNfs7y7Dr0NZRiDydLtRa6LuBm+cD3lv6QfHhzcLjh5nRT0z7PTd3O26e9QxjRpvUXhzD08OFx3dHLvcV4o7OTDg7gUrkcOGcMqcj+IfMdJPZP7Ps7qDoxOPlxOP7Rz6+WbjcV0zRdNrieoX2isZCxqpODgprUc10RmnLsB+YbiduXt6we7bD7jSqC6R4T1gfWU4PLE8/Ek8XyiXiqQxGgxab3YfTypu3Fy5zak6LGo9i7zNffb3y9ReRv/pm4YsXgc6J31AoM0WtdJ3B9R7jDIXMZSlcjoG0Gmq0DJNQTr2Xg9doje0MKldqanCOlq5uuWSWS2UNCSp4Y6+hMCLVN81GomB9pe+lIPk+47zg3Ck5FBnVQm9SFjV3QQ54qywxIn8D2WukWsg1Yz30Hdf9gFCWNa6r+EGyDlRsHjW9FLUYEJaOFT63UrIfkahLmv39hpkK/7o28Ztu3yNgfKGajGqmX1dxEhWlEtbIa1UVtGYOrEBGRtEyc2vrJtt4PjhK1ZS0sl4q/SAHuaZNOe3W7ztFPxgMGlU181yIQSauVMA5Wd6Lh5tkd8cMNSWqrQJNOWRyzpkaCzWU5sBbKEqhTRaPJDK2HJn4ZwYeiOmGxbzk5vVzXn55x+FLD33k7bsH3nx4wLs7htfPBF8uscFwCuhB9ZJBvqvcqorvMqfHE+enJ3KIbQqokt+grSiYayU6i3eWLkZCTIScGVNm3/LXU04oVYXp03IJrLOSuaybxbWpdKYj9ZZhGBiHQXI/KJQsyuK+67AKemc57HZczMq6JmJaeXz8SC5VYJkUCetKSvHP8gI22KgqjSpZbNm1EpZOUy5vHkza/Hl28eZ3VMonwaTaPJ30p+5eQoNElQ205bCjbgK9Zu8tsJHAu13XCaW2TQKbmlpsLyq9E5V2zpmUkxS7ZgWirRVTu1KIYYU1XOmoGwW1M0Ycotr3bQvpCnjf4X330xaFH/6w0o+GmAw3RdHvLNrLeFwBGs66Mw7rFDkHSlWMnaMfOnYHx+HOgA2EtLIumfmkOd7Dx7eJMmtscc3Cto3eMRFLIpVKXIGosSh6nykEHj5ceHi3MD9CmrVkF/iKa5zkVMTt01kv9gTizk1VCm0tu5cHXnz5nP3dDf3Us+YnLud74lKIF5ifnjg/fCRcAmWtjF7hRk2Nlcslcro/8/j2gXmtWL+j8wblIn4f+PLLlW9+tvLyWWLqGiOnVDBBlqSdx3hLrsISmi+Vea7oUnG20I+V/Q3t4pQCp5sgRancFmWWFGCdRVyl9ScGTW2eNLlWitIoI91/11V8V8TKwmWUUeTVkNMW8yeboxiFQZSLuvL2hWclnR1WwN7aIJFulCXuepEuSNu2u7ClaSiacMe3YuBlt2CM3JClCl5Lc0HdIgvrtjdpNFhtK7bKlSv6oCLJVQa5dpCsY6UyRm0UY5mwclUiYy5NR9BLkdi81XJWbckoeH6IlppVs8eWDAmtobbNslYKZeRQzQliroQkhoMhKXyp9EosQ6xuBSVJTGYOFe0VupdsaVNAU0SsJoC7pLX5LKKjrHC5cOCeA5GaLck85+5Lxeu/AtfNXC4Ly5rIVcYesxshruK8qls6XVXUarDV47Sj78DfJDqj6J2ipiSYfLOulgKB7F/aXk5gS0NvLXRcHT5TilTKtSBsWcSSECmZ1lVlrAOsZegd4+CvArmcDTknSWFcV6jQeydsplRYYmAOsxRy1aYy1TIRqv7UnV+v1CJNEW2PUXKzcU/X4qC2hXObKLz39H3PukbWEFG6iN6iZEpKV7+iGALrspKL7LFKNldK7CZ4+5zNtNmIG1Oue4J1FT1EzqIFKp2l822xXWtjFdWrqq6y0V23yVoKyhoDSxBGqKltEmlFslJx3n1SNP+URSGvB5ZS+VAL6xK5fWU4PLOM0wFtxQ0zpMTQW25GT9dPPHsxEM8dump2N4rDHRznlePjkfsPlY8/Kk4fOsJ5h4oRVWN7A8UETcgDRhZY0VHngXweWZ8KISce3yWO7yvhqKgrVB/IurLOBp0sxjus9zht0NoLddJUjDV0k+PZqz1f/fw5tVjCXDjfP/F4/5YcQKWOEjI2jIAj2yQHaSe4fZgV6xnymkkLAl3kwmAvDMOJV68Xvnid2Q0aXTUhRjKJcQ/dpFAqUEqQYnBRLLOlJplypqnSDQW1QR9VUtbCagQS0RWFgeJFlBRWFIVhFIilpErIsvyNCZROOGOa1a7GdwnnE8qIyjkmRYoG3xmMqSyz6EJiEGaTqgWUWBgY0wo2hdLwVm0EkkpBXZsE41PTdcgZp2xBWSXaDsQyWMv92kRGlU0Eqj6j1+b8SQCkjMJ1pYXTsJ1G1HZIOWdp9DeZisxGaTWkLAe1WIkXlKk4L+RvFYVGmpOocLUJWKfpVE/JHTnO5BzphiwLb2WBRgcuq1AlR41PhjUp1gBh1cJM0oVBVVme57avSFV8gUKF0JKHk2LwisO+MhhDiY7/L21/1iRZllxrYt8ez2Rm7h4ROdSAQgHdYA9saT7y//8B8oXCy+a9aABdqKocInwys3POnvmg2yyymhRpCCVvQhxZkhnpg7mdrbpV1/pW0VDGLI3BxeOz4pNJhKHwn63DKc+H7wIfPn3h+S9nXn/O6PrAp4fvKWokXJ2k7WVFbldyi2QKpULOIyVqTKnoErGqMA8GrCxRW6kSH5srJWVqzqQgbP9126mAHyecFZS7Nq3HYRrGccQYzbZvhLCRoiyuU0qUlLjlYtS9secgpqoqoxZlFLHJqNNahx9GvNFEo4l9nmisxo9jj5JN9/Q2wZuLa7pxG+H0jrnUr/iH3A9iusvYSrC90bofvFDrSoipH7CNfd9Z1xWUwjvXO/YouwCjyS2zbjs0dVcbuf7nboa0GCMgIU2yB6ldjNP9RshuYvQiD65NRpxCWi13eb8yIq4gKxpyuwopEpVBa9td5KV7MDJD9iRr8OpXVh9NTp7gtlUCjVVJs3hUDnsAZQJNVdFZW8304BhnQ92lA5o/gJ4UZTWk3RCviXzNtFD7cq0htJRCVUX4MtZAhZrkanm9nFnDxk+vnqpvQRkRZRLGZpyXQPbcLKVYVDPUqiT3NDeqaSivGYaJ0/zA7BdstVyuZ95fX7i8PRMvm4DmcsMoz2xOpBYIeaWEwlpF5660YTqMPJpH3C5Rg6ep8Idv4R+/t3x7gMUWWitkwM6VwWn8KHz2sDfCVtmuIuHUSuEXzTgX/JJpWlDj1niMdtIxtISxisF7UoDrNZOCdD3OK8ZZRlTbNUtsZnE4rbBOsNDWZpRtKCdJO63K4WY0KC+YjkYTgF8ArSyDN3IDyIGYRfkjIoyGccL0MVZTi6ZVcKqinMJ5jZ/ADLKIq1lGYB6NUYpi+5s8y5xeae5kX63E6yLI6kzN5TaqRVtBYuf6y32DAOeskwO/pI5LNjcZYCe0qm5uqlUKR5N9xGAkB3zfbhpz+m1CdhI1CTKhNCm6RveFcu23FyWegPmhoEZNsZ7w7omtoVPF6IjXIj3VVW5A1Uj3SlDkClFqBmUTKaKqGmMrNouJTw2RhkFvjuNy4u//+2/w6gNNF376IfD6Urlu8nMqnUShVndKTtScQGURgVSNKpKJUFNAl4LKkbCurJeVGrMsvRH9fuu3hBAjawjsuZD6WJYMIUbCeoaaWQ4zx8MBhzCk9li4XDZiCJRc7l2z73LPNWyU0vdcXfVUqhyEtTWWw5FHPzGMI9p6lDGigGyqgwn52mUDubuZc87iI6BLREsH/OWMdYZlmfn46RMfPzwxjROtNrYt3L8/EBids45tC2z7TrhKfgwoUj+wU0od2+1EQtv/819MPeV768v7Pe1yy+mHuyi8+vtaK6oycuB7i/NejHNJXn8JGZJttdaS5Cbvf92LirqrkdrtayI7tEbtv4P86xYFq3N/iAtlhV0VYexYI6Yd31C+kmtENcXgBobBYheNNxY/Q2qFEArbtbKdI9t7JG8VXeA+N1ACy2pG5GlSiiq5JmoOlKjIu8cMjvlgsLOirj2dywFOobEy01AS6ScnoOpWc8U4eE6HBYtiv2y8ffnC8/NPxG2n5QrZomo3PyGdvqpa1AuxooHBWlgge2hew/XK8VD43TeG339j+bAoJttoWtyu3sv4hqZJuyJeG2GDEkE38B6GUVyrylb5h0pkpGQD5J7fIDOwXErfIVRx3Pqbdb4SQiPF1uecCu801lW0rWJ2EmG8zJibyIaNlSVdvTlRi9jxjTZ356UggUTt0Fpj8Ao3yqy1JNWd0JJn7L0so7UHlUEZKXzOCPDO2kYu8oDfXmsUUEXSKalcmlIrqhbULxQdrVVqEgmtoqtBOm+ota8Oz6ZU91t8LQr69kA2UWUZI6wnpRomCTlT9Su4UnK4aCuyo4oc4BgRKdwtRB0fMnowUyOjKFjCqtj3SomVtEcmC6M1aCvJddxym5v8rnNVnHcxH6bdoqkMQ8b7xuALXoFVjmUe+P7DicKJ95cvfHlfiVFRiuujkEouURQoNVNrumteKEAGSp/h50zLiT0mkS4GyTQwSt47tTVh/MTEnjOZhvEOox3GOFIKhJRJcUc7hx8KY6PfjgvrFtm2jZxyp5taUIamZTmbUhYEuVZ9JNLVc4AfhCHmjJW8kpxZ141cKtTaERG1F5zSzXLdpHVDD7V2v4k6Z5iniePxwMePH3h8eEAjhSUEaeygBzc5zzxJwcgpyPeoBA2T0y3tLUPV/V2g+vuq3cc2rdX+vusFr/sRviqQOq+ohwtZa+/GvPtCun3Fektmd2dKiTZWPldXWtEX1TTZsRnNHe+h5Er+6xaFPW7cym+tinaFQiO1yrQpxqeGXyqtXaltRfsJbw+M44lpWCg0LpeVt9cLby8XXp+vvD4HSBbHIIEXtusldaH1h6TUKs+OruASzsDgNPPBc3ocyakRL5UtQ3IaO2qcG0TyV64yVnEeZz1RFdRgOD14Hj94St348vMrP/7wI19+fsZgGN3E6D2j99Ra2bazXPdakVlk2ZmsYRlGXNXsObMrgzOeaVJ8eIKPHxTHQ2MaK9k0mlbYpiFqQmzEIClerTTJRh4U3lfsIJJHipHufiikPRG2Kof7aChJcTkLUkPpgh81y2SpWbOvCNk1FapqWBvRTqGc5Ddbq7FOY53M1Gt/mIRZ1c1UsckVvWcxizKmdiOcFB8hsRb8aFgeLCk21nMh7JoQBibdWFzFehn12AZeg+/oZa3AFIUt6v4+/sVzIqgK/fUGUPvD08MXqY1euLp6hcZ9Vaz6gXtTeHRgmKZ7L5rsHBpSlHSuWCcSV++FnX8jXdYmcY3W3QqC7AOaavf4T+nQGnSkhdMN+wizg88/wU+v8LrK+O90Mnz84Jl0w1FQSCSnMopBGXJtbHvh9cXy+ceR9QpVVeaD4rtvLd88ar6dFPPYmJXD7I73L4Evz2eMnfBuxHuPxgsaujdBovyRAkABVTWaPmowQnR1N+mpB1Xl1W4NUorU2ISdg4zPhmEQJtE0C9GzRq7nr01Jf1mo/TCrpUjRNR093pVAWmuGwUP/Xm/paLrUjhGRBoAmc32tRDVYKNQqyGiNID1KiuQYejBS+RvZqLcGPxwYR8mDPy4HHo9HlmEQxVGCrGXnEEIgxsTxeMB5xzgPImW2Bm2N/PvOSrLeyzPTcen5hsS+ja2qFAXXw4SgYZQYzLSSHcNtR2GtoL+dFT+HFLv8NyykWwHR/dlsXXyhgBujjFbkHqfpoEeDsxbXg39+1aLwdj6jtREyorVUoF7FlBSj6KOdtWACyiRq2UkFQjbd/AJ7SoTOUW9VHmLp9LoBIxW5tpr+S3BWAkhqpVZD6zyeaRgZR884aVYKasjoBvOnE4ejBGWrWsnRomtjHgemYaY6hZ4tj98szEfDy8uF59dnPv/8heefzkxuQR8mvFI0Aykl1vVC6dIyOb26/rckAZl5zaQGmjFMh8Awr1ifEN08yD1Pk5OiZSkIMVYZTyiF0zIusBo0oqZRVvDFXdiAtoCSQywGYfIoVRmnKkldtrFu4m2Iu0hIjZalpTK1c44UdnT4UUsesKpCo1QNpcTnUHIjxv5Q69bNVU3myrnJvuvm3G3I78lIZ4qCWEbO4RHtM9afcS6QkZ/F9fxlrBRJlZR0zIUuH+2Nncym+hhEHMoCwLzdar7+Xel23z1BVwWpLmm9yS5kJ3xrGrl5F2SuLma1WivWapyXAJ2SK7UJmlvLJbOblZSUnia3FDG2aZkENyHSWqWYbWU6Zlpq7HthK4qXy4H1feTaZh6WwHFamdyO10UuuLWhk3CndIJaLT+9aP71TyNmWPgf/scH0h8HBhMZ3JH3Hc7XQCkWY2ZqcUg9LxSTRBffevqb1iJJpkihNQaNQTWFGgaUmsixkPdMTY2WETVRyqDBpoipFqcq2miGwTCMhnG0OKc5nY7Swfb4v3br4HsGguvz+tsCWnT7t2dfQc8uuZvBOodIoHUR7wcG7ziqBY3kgqCkQy9FAJL7vhF2S0oydkHJoWiNSLaneWKehbI6DiPj4LBalA1Gi8LIes/1emW9rlhru+Rb5LiSeRzRVuOrv+8eQti5rhstF/kZ+hu5NfX1FqtVN1+KRFdiPjtDvnf/N3d1rY2cC1DumA5Bh7s+OuqCDyW/o9sbXdGBk2a4I7TFMyQ4nLsc9tcsCmsIAp7qD6swTAw6q44nEFyrUZIN2nQj68jGmVQS1Thyk8feOo0bDM4Lp+QOalINP4yMh5FhGfHziLZiGCl5JUWPrpHRWCwaSsNSOT1qFjPy4bsPLMeZmiI1Jlr02KY5TCfGcUFPFjtbDqcRMyrKa2JPGzEJthij0c1CkWXtLdhD5tZOxltyrFARAufDPDFozRoVD6cLwyGgrKg8cta07m7NSWbTufTlrHYYZeUDjTyJSRQztpCrJifdzT8CItu3TInSBTsP8ygndAyVfWvsm4xvhlGYPnKSSQQhFtyocJMWo1qVbkL1uSTFkFMhhdZHJ1CbqI8Efdw7Yl07MkEO8xTFA4FRJHPk0v6OUW1Yl3A2yLK1tR6fiYDj+kGte6gI3TEtHU+PTuQ2ExXp6C2w5NZI3AJrZGVwKwxiwrNa9eUl3c/Qi2uV10Ju5q3/jDLHNg2ss7QCpcTu6dB39IGMiKQY1dYQH6BkkjeCHMYZVBNQn3eZx1MhUAhm4K3MbPsD29sDW97Z6hun4cLBrMwto6ssvH3QTNWxHAYYBn44D9TrzPf591z0gde24aLi81Xxul6pWJw/EmMVEFrL5I5mNiKVQjVZ7islOPbBur5MRgxmzsMsLKEq5mLCHlmvV2JO0gDeRyO13x4zKQWBLRqDHwZKKcL7b/RuXQ5VrSTScvC+yz1ldCSyyd4Fd3aR/G/phm5LWq0U0+CZxoHRD5331aMucyaGIGBEIyPe2qXJxkqX7J27ZyRY29lHTVLUtNL9BuzRVvKdtbrhJRrS3PX0tG6OHMTQ0sdElZgitZZ7eJXuh29r0vjZPhq6YTi8d2ht+m1X1Hn0hbiYGVv36PQAIufuyXT034WgQ7jLaW97uHHw2O5p+JshlVL35ulXKwrjItIxrRsV0d/qaqB50tZ4+XEnrIaPecDpCasayhViTuzlDTMsKDNhR8t0mNiWgh0CIYttfhhG5sPC07dPPH7zxPywMBxGjHM0Bfv1wtvLT+yvb7TrTt4z5MIwGP7hHz7gH0bsckJZT4qBlhpeLTg94ZzFeoMZDWYQDkwoCTV6locjH4Nm9gdGPTH7GYtI5Lz22IOwCbR1FFPJKmNLxKTAfDBMvzlQx4Frshz9C8vTFTuekeSpQul4kJq64sT2glAf0W2iqUSuoYPRuq64amq21OwE9GUhx8p6bVgNh8UIOM6INv78ntjXRuvuW9fDaXJFHMxeYQewoxAzc+fby0HHV9dz6oyiGy9JznP6ZlnSsJCltRm7Ke7SqBqqc5TxI2H/b8nuGa1/wDTp8quCZuWArrcDSssOQHUOE/rWzYuUsFForc/6dbtjhEWrI9JQo79+r3KzaH1kIEEkLQtkUOm+Y+CmOJGv1WuFmO2USFdVh+FRuky2amTpQb8RNQl5b1pyEppB9zxmOQ0hp0qrBesKH7/JMFvMqfHjD56ffjzxFk9slwfO25kjrxzVlaPZmXLG7o1BzyzLAx9+f+R3UaP8A7/97/+eh9+eCCXxFnfey4WtXilN5Mpoc58vV6p8j/2g0qqKCU8ZnPUMfqDmQso96rIWBj8xzQsGh6qGy2UlpEShscfAdd1IOaG1IsbCvkesWWkVQpJZubMG4yy1SYGyVg5jWcbL4dT6TN3o3n1HQUoo3V26VpyG1g04LwH0t8W0VvLeSUm69lqKxGvue0dwxPtB6pzr/50cwrZHWZbSKF0GWnuynDaGiiY3aYC0cXID2cMdrX1dL1zXFaUVQ1dX3Tr3YRAgXs65q476qKbdbitfi4Lv349SmpQE351zJqe+5/rFDcqYm0xc/U2RVLVII9VFFqrvFKwRIKBSGn3b/VUhtH4F9P2KReHT9wslV8IaKamIIqYJt0QWPJDibUnieDIj4+LI9Z3ERqsaaxzOG6ZDZTlpwgWMlSCch8cnPn7ziadvP3D69ICfB/Qg2NiKHHjt3VOaRVWHbrKwXMaBT9+eGJ5G1goJzbw84OyI00eMHqWvN4LbUBZqzpSomU8a72aO00b8EGihQYS4JcKaxSZvJb0ppUxujWwlSMdYGAbLMg0wDahkmb1jGC1+0Lgqoe21u2ZV11lm7SlqwfINlonKF4xe0S6jfKU0WTIKt0TRSmGPrb/mjXEwTIvMNMIO27Wxr9Jd+AG0qbKT6We5doZxtpJCZsRs1vd0ovZRotrIUTj+tcqbSUtd7MtlGRMpU7t6CbSHtldK0WQGgjkR3beU5ffUQVGrlqhQpalGkVSl9uXZ7bap+m1DDIXtPpbqE1NAbiUoobTKYk3e2F9vK9xvDEp1cUCfRZe+bLyvhNXXr6ONFMxWFKVAag1jslBWrYwfSleaOW8xplFVptJk9o0RtlFLMqfHysFnbqZJGdE523g8ZqyXWNGYI+/bA2v9SEyB0F7ZzRtRP/OoLzy6rTtxHePjkf/mfzri5we++90jwzyznRPvWZNIWF1EQqo01htZQJZbfkYPAJKXQH6PTVQ2cYukPbJvPdheN+bxwHF5YB6ODG7CWM00jcyHA/O2kWqlrKuoeEoihEwXFZNr7aMJ3z0ytaNFNNM4yiSgtTsR9DYC0cGC2js075bZptDG4rXBD5Kbom6/z6YoVYpZCDvbtrNer6IOirkD62ofl0HKBRMTZutZCn3parTqt4B+k9FG/nz9evCWnEX1EwIhBtkrVlFlpZjJfT5fquC5jblFgeo+erp18H1nYIzEbmrTzZVfF8mt35huIT1yC7ndAm4FQRbO4muQpvwG2dNaXMytdrwFPX7zVkhyuS+5f9Wi8If/5oFtjXz+oXF9TxhMJ3lKGLypBr3D+3OkKYsbFqbjAaxCmwGtFpRaJKQahSoHLEdJBKuGj58+8e333zGfFuzswcgiuylxVzZtid0R6rXH+YanscwLT4dv8ctIWd+ByvH4yLw8oLSnYghVslWVEl4LzaKtZzoZhpOmnDbSdWV9uXB5vhJDIeYMGGwzxBJY45VigclKuI/zOOWwWUNquFIYVGP0kgw2FYUuDVIR6aG2pDax5wdCecK1J7zWOPuMchF8AtcowZCDx48FazPbtbCvBWMax0UxjArrYV8bl3Nh37pEz4Ef5PjLOYve3mr8aJkOjmFslCYPTqtf55KtymI67pVSFDTZ3ZS+w8i1dbNf/3AKrNwObvyhvR24lN9xVb8jTZ/I/lVwHLWKOs1qUu2yuSYKIEzflWgZcWklhzT324n8LD04TcBkt5qiBM6n1Fe2/L2aKLmFNP31n9//7+Z90bdrNXKwZ0Mu4tYWUx9oK0W3FoVDi4wUUUEZZWVR2AqlZlTVtGrAmrsEsKiMoqJKY7KZ8bBSPr6Rq6E+z6zvJ/bdsJYDV31k1wPK/sRpClAre9bYaeIPf3hinE7MyhJD5jXuvKVEbR6vDdpmimky3mxyYMWWBc/d6h1fUlOmxEQOgbRHwrYTtk14QVqIBMt45HR85Hh4ZPATfvQ8mke0d8ynA6+vb1wvF+IWyak3F6UQqygGay3kFFANnDEcpolhGkXh1N8LQjEVSauylqYNIURizjQl+d5K676QtTQUMQtKRjAUojDa9o1tXbmcL2x7JFcZAzZklJJKw4SvhjZZ1krc5jCIsEWKhIyvcm7CcMpFHNK9OEjgTuwNoqHURtpj/7xSaFtreG+Z50HEMn1ncsN2i1RU3dVguYgK6Kujudy/9z5Eve/Aqvy/rq4SF3Ttnf9tSS1PCx1lU9C1gxfhHjyUS+t73F+xKPzu72fWi8cYxRe3c32TSuonhzUjQ5+bKWuoSfH+mlA+8PjdAw+Pv0U7D0pQ1toZFg+fHqFV6byHaWJaZqqSwJpW5EopH+DdyOGwYFJC7RkdIzltJF0oZUGXBxZv8Sph1ShLRC4C7zIzRjlaybRc0dWK+1XW9zLPtFrm77rIgeUMJUPMkct24by+gG8MyoE64dyMLR51lZZyNDApzejEEbkoh8kRtTdaUKx54H0/8b7+nj1+YBxX5umVk7tipkjTRWihujKMmdYy25rE+NNgHEW9Ultj2xPXa2Pd5HufFo/SldpSn//LoeZHzTgpnC8oIyOs2mT3IwoHJXuO2LrByPSFuurYAjElosVJrJwUmoaMmZxu6NGQ0wfO8R94L9+y0ogtklUVg1ttNO1RdkZRoWx9jNONCf3w1v0WUTWCo6A/dEoW2irDPeVM3XT0gsaunSBT+2hJQceD30pLXzze5qpa1g0yA+54goaMJJARnHWGVoUdlYtw7K0XFRh9tyHL/CL7p9zIWUPVqK7uAoUqRtTFqjDbdz4+Bt7jwJd15lxGwpq4WE1WR6ZD4NvpAnrApBFtLbUUtuvOdYU9Nt7ymbVmDDOq+j6TliB5qqLkIrLqIuPKGJIUgTWQ9kAKgRwTJWVKSrRWaGSubeNzfWEaP3NYjjw+feTjN98wH4785vHIN+UbztcL729nLm8X1utG3jPbuvH6/sy6bezbikZiOo/TjH984nQ83jk+ut8SUkc4pFLlIG7QlEa+7XL7FUtTkhvrHjDWoGi9YxYQXkxVEvaAVKu8t7sRzTu5tXyllYoEVxknplCMKPBSlPd6LwillLv5DRDfQ63UlKh7x0fUci82pkP3hsExzzOmK5RqTPdFe62glIg2fjnCuTuwxVZ9XzzTN2ztfrGVnYsQxdXdrXxDbtwKj5jd+gi29s+rxBCoby7pX7MoDFPtcLlHlkPm+eeV82sQCR+aaRgZvMwB3ThgZ4/RE94+MflHdGekq9olglajZy0H8g12Y2TpLNZxI/rk/kbS8wH96QNXr4jbJjb44vDDTHWa1Bo0IR8aZHSRuw28NUPfIKJKgaapTRNiosZISTslBbb3jfUaCVHmrKkWcs3s5UqoO8tgeXgcOY4Opy2tKeIlQWiUQbHZwOcX0XnXwTAwENPIlj0v4cDL/oGwPVHTgPM/gv0Jba8ilSwaQURX7JCEZ7SJg3heYJxkhBP3xvVa2UOjacFc+1EOrxRU5weJeWyaDH4AVLnzVe56/07vzPe4TujvSmoVd28u8tDprsIRY0pv50sj6xnUgZXvObffsJYDoQaiCyStyUrC2puWrk+12pVz3cH8dRPWxw8K1f/9TWSK6prtuxuzj4+MQjUtzttuZOs3cu7EF/31v5Cfm6+FqHz1OTgvWJAc+0FUJP3KOIPSjT01WqyYTmqtClqVPGylDMpWtCnkjPgqsnxF03T3uVSUyYwu8GAix/cvTEy87DPvr6JgUs2yqEd+0oZxmmjDdyg1EraNlHbCNhGS4to2Ig2njKTIZREwpJQ6MbQfcKnIrWFLxD2SQ+7O5ELNReIfU7ojpGuWOX3aM+tlZdt3Yok8fHzi8eMTfho4+olhsiyHke2ys6+R8/uF1CK5ZsK6SoA9umcyyGsfQmTfd256+tyzFrYQ2INwlH4ZaH9LPjM6se6xL/jvJ6m8A3r3nyugjCjVlMI6ySO4MY00sjsy5YYqEYWD0re5Y3fo3/wAvYi03mzczqPbXF4rjXP+7qlQ3UxmtOwMtFaEenOC90CcKrPN23L9l2MfrQVBo+iZ6F1yqJQi32S1Snevg6iU/vZOcdv9fV28i5BF3/cLfR57f3b+j/76DxeFGDeMHfjm+wMfPjkePsy8flk5v27kAJOfmacDx+OJaVlQ3qFHzzydMBzQfYF4m/vKASVyxQaUVimpyz2bwiiHwWAR1YixGn9amH3mvEOq4vS12hLVSkwbOVa0NiwGrLLkS2a7JvIWaFnIoaYrTnLNXM/i4ixFTEslFUq/oqUcyS2TVYKxMHrH07cz3//+xKJH1KUS9kDcA1UXyqi4lp2XLfP5oDgfBw7O08rINR/4MT/xFo9MxbKYC278GT/+iNENVW4dZRPdNZlaFDlq5kc4PsnBHGLlulbWVd4IbhSjGBpKaqQEKMXgJKpz6klhuWZq+0VUau+4UhAJa823N1frMYWanCVVrNGfKttEKaTpv0sI5Ym9/Z73+gcufGBvnpICpSSitkTjUEUMQVqJoab1ZfqtIEhzpKDjL3R3av7NTaGbz3qZuBuClBLj2y8arPvhcSsy3E2qir7thP65a+kjMNfjDKvsQkKUrz+O/RqeoBRNyY7aDZZKVZFSNoHaYQo1ZErMUIz8Pm8Nj5UC7m3lYBSP/syT/isv+UTZF5Ka2PzIi/mAbb/nyIx9GCl14/L6A5c1sKeZVDuaHkVtK63skCGHLCll+y6hLTkTQyLskRJFTqza7XcvGIsSRbxgB884LVRd0G0npJ11vRJy4BrPHK8nPsaPnJ4eORwPuNGzGI8fDcPVYRzkEoDKexPagXFW3MdNcp1f3995e32XQtFv/2jdnbqCs44h3rvmr93v7Xd1c/7e9km6Sy07otvannssKHWlkLEecmCLAkqc87ZL542VvV3tcvMbS0jVBqr+TSGorWPfrWXwA1M3tYUQoHfs3nvp4msv1LnelUS395uMbhva9gVyb3rVzdzWJfu/LI43r4ExX3Mh5PPd4j5/kebWf4avXCfZo9xfz/+g/Og/XBTeXwLOy9LUD57jB804Tzw8zsRV05LHqJFhmBnHGTcPuGVE+4FSK9t+pZRdPAPjQKmJEDZySZSaZXnnZVaLUuxb4f0lUVPtOIGEqjtZR4JJ6HHGLQ/kGnh5+2euby9sLxavDvzu7z4xDRP//s9nnv+6YkrFa4HzeWd7glvgfFm5XgNKDxg9YIxDay+V2Ca8Nyyjxc8P+GlgXCp+jsRt4xIDKlTJdbaa1jwpOWI5cs0W6oHFNtLuueSFH/U3JOv5w/hXTvOfeXh4Z54rOmtqNkyjYvCNEDLXSwM1cDp5DqfCOCe2a+VyKWx7VyZYg/cyAtpDEsWLoi9KJYzH9IAYisCClBafRc5VQHp7I+6IXh3uGumS+6K4qxusE6SF6pp9q+SNs+2fuIR/4qK+IWhAFwYlbKCAISnNaBVKJUq5dhlozzwwcjjdFsVyYMmoUPIv+iHfpZRKdVa9kp3CrQH65fv8tmzmbvT5Ghhz+1y3oiSgPd13GFH0996RsxJBRa0oHbCu4ryY7WIo5FgZl8YwKnR/IEtVlGplnGAazlQcsqWuTWbJmYYyA86MPE2e358K5TcDHH/DtQxoXah+4jI9UazBlcD+fuXzn6+8Pu+8bAnUyMfDwOws6xrY9twjM0U+GkKgUbsLV24LpkufW5VxoOna/dlPuOXIOHjGYSTlhNUd19BEYRjiiroW2nNiTe+MlxnvBgwW1aXbTRX84Ji7kU2jGJxjniaRgQ4D1nm0MZQs4fFymFtCkjm5jPH03fAlh+fXUHqjTd8B9M5a93GLFlWgNBJFqMBF9mYpJZRSzOPMMIwSIGQsNyREQ5awX++k9f73W3GxyohfomQG75nGiWEY8N5RculOYXp0pkej+wJYpOQC4ZOfrbQqwo1Gl8HKwlmMmDfz2y+ZTV9HTVrJbfJWFG57gttu4fYYaHNTI/WfrYoKrt6KifqVi8L59YwfLI3MtEwY67HDyNGO1IOn7JZWLc4CrtBMoZBIIZP3SoxXatkxzWO0p9TAnlZilGi/2ueKEoYOKUS2dRUjRxVZnTGFYfZMy5Hx4BgGxbZmLucLb89vlMtM1pq3z6+cOfPv//LMz/9+xqnG7K24GOeRWAJb2uQFbUBR1NIwtaKtKE0G5xhPjsOHCbd49GjJXEil80twNDSBiG0KXy0mOUrTvEdH3jY0mTVqIg5zPPB4chzHyNPhlcVnvJKXXwCglVQqqTQSMM8wH2SBHBOsK2xXiQGdFiMdTRLLfcqKWBVJNaFeHsFPPZayfh3HuK65j6kSd6F55tvtQSlqKaJTz4LTximUFSNf674Ao6FkT4wD5/jEe/lEMY9M2mGsprWMwlO2haIn6lQE/9yafM/tthPuZFMH9JEi3QuhldwhW/cD3LIYbiA88bH1LcIvIF+q3YrBbccsqXC1dnQFsotQAFrkwbWPclVrwm3SiqQrVVUBvbWGM/JF9z6eS/3ze2fkpgaAGApb1/HmJkvwUuiGN7Cl4VLj0Qfsx4TyO+0Mz/vAlhSYkTY5NhKXtzPnny58+Wvl7UvlfbvifOCBI9lbzj/tvL7tws1viRB2Us6izlKIJLc2nGko2+5GJu8so/cs8yQ7OiemppQSw+iY00jKkUqmmYJ2EvyjQqW0nd3GX1Tgni/hKsNSWaplHCbm4cBxOnJYFpxxPB4foMLb2xvXdb17DFJIpCQjmGEQfO5NQnkbtUihFdih/UVnLWN4jb2PF410yjl3ccHXPHKRMsvt8YZKUf1Nkvvc31iLb1XUSZ2dhAKTFLloya52pu++2n3XJeP7280iY7Rimgacs6JYLBWUviusch85ydK8mx5LFd5TV4z978c8pftCbmolKQYF+rPivGPwnmHwjH4QZ/a+35fRNyYSv/ZOYV9XcpK9QE5gXMEPMI4OPzsY6NeZTFU7qUpyUL7pZHOAltnNJm9aFUk1EGthT4XrGljXHZQQF2vL5NvoQRuMlcWmGx4Zlycmr6jhjfR+Ib4Y6vnAaGa8caxvG/s18Pb8wvlyQbXG1lHV2lvWEFjDzryMzNNIS7JIcqricDhj8NPIfJg4PCxkX9kIhBQJIWPzwGxPtKGxx3cqDV8NtipCNpyT5iUZ9tpYDfhJ8Q8HxfcePo2J4xBwCkx1koakZeG2FwnI8UfNcKz4ObGvEjS0XyytOPxomWdD3hPreyYmRcIRdSWZjB8qw7ExegXdiSy4hiZX6KLIoREDkjHdH2zVO96bmabS+TFWiRy4N2dOw+vq+fJ84EUNnJ3COMOkBoyC1RUqHrYT1R1Ic8TYiMKgkiAJuj5SPp/rRTF3AmRXB9FjOHNpqCL8KOO6WuiGa+d2zUaS/tpNTtv6rUj+SKWhWo+DRKZIwh+67ZccZNB086DXFCXSUlkSCjrAa0hFE7dKzOIXsdZidJFOH0lnK1V1I5l8SwLoUEIkrTuLbcwfGsW9cuUV1MBreyTpAaMz23rm9ccXXv9y4e2nxvquSGnDTIqSHUkPbOvG9W0jqUxRkhNwK3yN1lcqIi9rNeEGcQUv08QyTRwOB46HA1VDrBlbDEOyaA5i2utZGbUVipLxY8uZVBKpRYoq1JvuUYMeYFZg2sxpfOAwPuCURVXF6XBEo9jXldcYqCGAkajUWirjJIQCbWR2KLLT3Be/GdNHQNYakXTeDrjbRwW6YUsbhW4KW7mrr3KpKJ1RpTu8zS9Ca2qWhskI6yvnLJkHVWSf1kg4kdJKbiFN4mNrkZ1lu0PqFMsooT2LdZRSWXcxxjY0MWVSEZWWVg1aJaV4x2t/HZHRvRO6m/m+ymRvxaA1+Ty2x28uy8DxeJRoUT+RYuJ8PlNqwVknU9TyX8GnQJ0oWbFeCiHuGBcZJtG+TmPBmhFrb1IvuTbJwliWugVJXso5sW1FEEfOdq15IZfAup2pLaON2MK9F9PKMIwClPMwuIG8Zb48f+H553fW90jaNJaFwSmcycStkfbKNHoeHxa2NdEwNGNoXlOrpiZNVZaqnByAgHUD8zjgB4sbNZB5f//Cta6c81mMKlakqMOkKa4QbUPVitaZEhLh8sZ1zaxxoPgD8zcjjx9HPnwonJ7e8cc3mFdK6wlmWqMblCSgu3nULA8yt04xcjlXzu8NbxWnDwalKjlH1pS56Mq1DYQ0Y71mnBoHnxjVjqmFlIrEHhpRL+SkKKGRUo/ZzAZKR0Bn2atUBVlXqqYb3kQ6ajV429C18Pnnnf/n/wJX/0o9fmFcGvMy00ZHGxXNGoo6ktuMKc+oIsapW1P/y7fmreuTg6z2Lo6+C2j3P6yV7sFB9Wsoerstlen7CfW3n/2+Z/jba3NTgrAYdaN2bHhVgkVXpuFaxRSNDo7aFNF3suykUIOiboocKqtJNFPESGg1TolwovWbRlUiaRWhg5Buq6pYn7GuMKqNeX9jzkdC/kgJhu194/nzmZ///MrrD1f2Z0XeMrVuGCzpqhnayOIVnByBSNaSYWBM9w3lJNr32rBG1GbOibP3sCwc5oXBexk1lZtzsXS34y+W+kUOpJgTsQRSC2SVKDqjvcZPIh0Pee8+mZnJTgzDiLWWvBdySKQQCXEnRNkdyHuyorRlGEaW5cgyLzQaqWOtlclok8R13I1tWsstr9Wb+1cWwQ1Bp0DvpEsRNVaX72itGEcviXCd01JKln3LL7rzeruxp8S+y/cr/70Y1LzzgCLHTEySh+C957AceDgeeHo8MHoPSlD5uZau4Csd1y1yUkFeWLl5Wy2KsVrE03AvgF1kY8zXXV8fj5UqMlbrxKS3LDPH48LgB6yRHIuxjB3fYvto+L9CUcj5AFXQtCoXtJXKV2om553RT3g/MagFYwrWeiyO3CRgpuZMa1GkZLmik8yoQ45sYSOViLIV0+SaO7iJeZTrp8agkiC0ryXyllau58Dr542aDcv0gHeOklaR310l7EUrzTyPWDNC02inSa2nNClNiIVSAjUlVM0Y05itws2K4QB73Xhb37iWja1G5umAdxODmfpSskjwes40A4bGNBiyHXDqETWemD898PSh8e3jj3xYfmB2F6wSZy2V+3LdKoUbFIfZskyOy7lxeY+UaBicZRg0dsykULheE+/R8l4XNg7EeuTRVB6WwOPUGHGd3Z+lwzeGVpXsELZK3BU1K0zV6GrEtJagtkLWlWIa/RxDOXAdV532xvVN8de/Gv7tT57dBfTxC4cPldPHAyZ7VDFcXOTFOkngqgqL5M+Kf0Bmm7cZp/oFrqLdlsQ36Wjreu/auilSQ/2FUqr98s/fDn71tVDIv+zEyV920fI1rbHk6olpRJmKHRPGFUxQtGxozVKqEh1+526hGs2KzHCPok4bR8c0WbwTV7SxXeBkENPdbfGh5OZQrUIZjR8TT8c3cj4QLh94Owe+fHnlx5+eef35zPVlI62VHCO5rBQ9ssbKchhYHgzLaSC1KiOyvniszd9NTjJXl33NndRZCzFHSs339yDdb1BKucsmJcA+ilEsB1KJ5CaZIM1UjDdMy4hyiqACTTeKs1hbwCnM0KcKrRL2zDVuXIN81KZQxuLcgDOGnNI9sCZ2oN0N5VD7OKyazprSpvO2OsbCOQnV6rP2nCSNbdtWcu458n3HsSwTrQn48RKukgvxC+1+rVVyE7b13sU7JxnTNxaUQsl/UztuRalOLpZikVAYa+/01hgC2x7YQ5B8BsQgqrVkmWtlsFoDVoq3la8npjrZWdT7yMjIR5OEN2M0xmqcMbQixazk1lVR3EdHQJea/9pFoS6SEGUa2iQqGyFF6noh5ZU4jAx+JPmNYVyYphN+OFCipB3F1LnqFXEmtkpuiVA2YlnRpjIuDmccTnsGOzO6mZJgu+yENRD3SIobpa6UDDWNeDswe4PWlfN7YL2sxF1J6A0aowzzNAp9UTXivpFCIYdCrIVaN6gRozLObUx1Z7Qz4zRS00qMV5qDcZhZ5hPzdMQWR7pW9i2zv2VsTuQRpnnm08fveJoPxOVE9Ue0PnFwGx+HP/HBfGEsAR+s6JZrIwZxYY4PitPR4DzUpHqIj2KcHNPD0G9YgfXauKyOczrx1j6R2wzO4eZ3jod3DkPANmH/39U2SjDZIRTCpsjRoErf1amGwtKUIRNlFNGNakrLoXEbo76+Gv78b54ffnrisn8k7APEK8o6/MGidCKHRLOhR3QaPioYrOpRlppiuvS0H9bNaLRp9+JwP+tVN6w1MSXJbUdC2EttaNpdlaR+IVm8GdXkU3z9OveK07qJDXHeVzVRygGjCtZGvGu0KGz7PMjCIdPpqa2KOswIEjxHRVpVH5sW6tTwg3gUlBFHddaq86JyV8iq7jxVOF34eLhS9hee64/kd8PrX955/7ySgwTHGFsoTXJGompkDW1QjINlcA5VLTEUXl9fWcMmChlnoJb7AZG7DFIruUms2ypSRxRGaUzTd+dr7DjrELs0u+TuA5H9TVWFRkHbQtwaZtSoI+hRE0rGlUS1CrcMDLPBTYlYE2qzqMFiRtf3PlYiJq0i18i+J9kzlHyf/xtnGLzDeJGZDuPAMI79755pmlgOByY34Jumxsx6vXC9XHh/fxdkd4wopZimkcE7aoXYErUK7jvdxjdV4HrrJqY4Y7TM6oeBcRhorZFilH9uhS/knbihJevlQljPjINnXhbxE20767pzXa/sIQDifC5Z91uxqK2s7fsS/fVWZ62hdtPaTVFW+7hMDvxu3qyVsG/s29bH7A5Qd+Cg1uX/66b8qxWFcfnIMDkeP8zYoXC+/sx1/UJKF+IaSKkwuEjwgSkFmUGqHgFYMzFKXOC6FkJEZoDO0Eyh6op2DecUyzSyDEcGc8AyE66JkCvxkji/SAawHzzOafQw4AeDH6XDiVFxuRhxSRfJGTBega0oXQQCFiFfE/tlhx5x6bxm8APeW7RVxBp42wJ7SyTT0IPHLTPTMDPbkRQqr+8rl7eV9VKY0Jyc5aAGBreg5xPl4Uj1C7WMHEzgNGYOfsOUiC6JXFqnr1a8V0yHgWEeBF3xLjrp06MRW0AVZ/PbO6z7zDV95FJ+y1b/gBsih+VnjqfENG5YHalJ0pe0k8e5ZIibgPNSavcDMkXxbpRiyE1JkppWWCOdijNNUMWxcgmav/504J//9MiPLye2cpQHOF/xq2PbJ2pp7HknObCHgW/TANpgVKHkKHpt07XT3UOgurDgRjy9XRLo53ipDVVknyAGHJnb36WnSv1Cqnc/93+hy/76736pVmqqCneqGfb6hCmaw27QvKPVRhkyCcSJHSy6aJROsl+ooJvGakszhpK6l2Gv1KEwzuBHcE7MnKJvqV1d0+S208Cwiy/FSzypcwujNRynBTWdhK5pZFe3x4LSltNyYDKGp9njreLtdWU/XwnrSo4B5TyqOTQioSxZ/ArWGpTVxJjYQ+DGH7rN5VNMxJRIpVJaQ1uLn0fBXgyD4GaahEZBxTnLPE+42cGxwSB7HW8nHk8fWZYHdNOUVDHTwPzxgY+//5513W6/eG4BMdaA0Tfn8Y1dJEEzfhATGkqiModx7LA6SRy8Xq5czs+kayReOwMpRFLuyO7+hkgx3MGbORdaFVlxLd0nkUS1lHNCaSRC+HDgsMxM0yipbjmitcF738+b2OF16s52+mqEqf29+HUfIJ6rr7uOG7TQ328jpcMGVd8D3Ix3+e6dgC7JNZKroJDlde5inZvk976X6Hhu3SW7/5G//sNF4cN33zPOAx8+HbGuYN88+s1yXT1hO8sMbguMQyVneQhy2wUtrBRKF4wWNnrNgmu22n0F1bmEsUWwBnQlSdOoamhZU6IibgAeOx5xrtL0TlUrezbEAJc1c12hFqGyWKAqCZVRGuquyKsib1WiNi04q5m8YxwdVLheGlvO6B3MLPA+PRn0aBmMY1QD2jaGpVBx+PHE1BTToPHeYpXCVHBMKDug/MZiXxnMO6psfUFlSC3RdGGYFeOs0YMhN0OqiZQDfgA/aPa9sW2Fy+pYtyPX9B2X+ke2+j2lfuQ4/IWPT//Gw/KOM7vY4ZvsBpqRPUFaIVwhBxm9qJ73mouiRHGRFgXNdT6NUlilGbsT8vm98eefLP/y10f+9fN3XMJIto6YXijhDX1R6POIGT0NRdYDa53Y2kKuRua2WZLDmjWg1Z3y2M8HbtC5++inP1e1ybLZ3XDZ6uvBDty13Le/mqwm6JvWr5//7l5v3LwKtNzTAi0hHfjr55FlPPDp+GeG8U3IqcVSi+76fmHMmFJRVZbfVUuKWc7SiKTY2HeL9Q7nJ9wwoUxCqR1rdpyOwrtvikxCqczBKz6eLJcPlf39kUXPtOaxxuO8BSwhG0ppNFGQsQAAfO5JREFUQMC2im8KmxvhunJ+e2VbN5E0li5FVPIaC1Y6YKzF2o6i6CwiUCJbdhrlNXoYmZ3DDJ5pnllOD0zzzDjN6A6wa6UICdY5lnnGTZY6VWrP4jbKMk8LgxtlR1Uq/jRzKh/gLinuKrIqIyJtar8tym3GdkS/N04Wpd1DRFevpRBZL1dezleuP33m809fOL9f2K77/eA3N/kqX98wt65ctP+KaRzkhlQrtSosksronGVZFpbDwjyOeC8HdkoeY6Qo5FzYVtUx161PJURqmu7O6JvZTfYH9z3BHWctTCTnhJqaSiVVadRuiHYxcKrupZACXpuoy1SffJXa+kqo3ve4whW8wSPV34D1/o/++o8D8X77rWjenSYrxTA/8KA143Rivbzx8vlHwnbpWvNK5UrIO8Ms175pnljGhWXW7EFTEdyFm2FYKqVdCelM3gOv54hTgdFk0t7YQxAzigWtRox7BDa29JkSrqhtIOyG10tlT5rBzkIqtAltG370WDVwuWSua6BWwzB5/ADDoJgmqdTbFnh9i+Le/HhkORz48Hig+kCoZxwaqwYOTzOffvsdSjlasqg9o9aVen0l7a+kYDDR4ybHPP3A7P6NFn5i3a5UHM0c0MMVOwbcQeEGsf7nWLAuc/pQSNGwbpbLplh3w14+kO33JP6RkP+JqgzOnDmML3w8/MjRv6JSJtVG1Fngnq2RIoQLxCs0OjXUQMVQtacoTWyRQsb2zlSTUbVg9UDD8/Jq+F//t5F/f154ZobB4SYxH4Xtwr5Z7PWBg585nU4M44TyhtB+5hotBwdOiWSzYqQTbRXV5GGC9lVm2m75D3Koi1BJitiNTX9vHFS7a1TF7NbNQrrxC8YeN3po6//gjtwGvElMwzuXMPL//vk3ePvE/+Xvr/x+2hiRnIs0RcF9rIaWLE5JwFFqwhm6IcCzauxVc7141v2A0k9Yd2IcA8v0yoflwtNyxaomfBphF/KIpiyN9lCoD5nPMbFvmhgbJUYyhtw8RTVQO5HC5ZrQwL5v93FPyumuti9VFG2X9cq6bdI9GtPNTD37msbkJx4+HHn8+MTD4xOHh0fm4wE3dhhdv9m11vpCVCq1UQpnLNooiqmSMNhkqXtfNOcs3oSiRFZutOQIdDDhDexWjaKairMyPjYooc22SiuRGgp1z6xvVy5vZ/bzle2ycXk78/z5C+fzmTUFQkpfjV93q9bXBbRSmnEcGCfxG4zThDYG66yQAPptZJoGnBfCqu4CCPEfNIxROCeBP8UbSeC76aQx5FzZwqV39xLXOS/L1xl/D/4xRjISTEd0lyL7v4YSlm8ThMZtUdygIzv6R8ncrswKg3YGK9K3PjI1XS7bI05v8QS/ZlGoqlCrOCGVaigG5slznD+Rl51Rn3h/+cx1feX99YobKn6CMTnGnDh4zeQcyzyyLJMwSKxBu4pyiZgzqgWSExppiYnz+kpYK+sus+7pwTC4kWlciKURLiKYmKaJw3hkXmZUHXHWMDrDMlmsUcQtsV4CDO+UcSelHa0y3337Db/9zTc8nGamyQE3NLTDzxPDPODngaqlm9ZN0AWqj760cthhptpMrImwN9a8UmrGhy+obDH6zwzmL9j2hs6BpmT5N5rE6BoTGl+VHMSmdcndSKiFa668bN/ydvmePf0jsf4DgW8J5oDzP3MwP/E4/cjJnhnItGooIGlaTfJ+00WRVk2NFeVljlnqDZ4FRSmRFilF6fqd5aiZBkMI8HY2nOMnmL7n4XcfcH//hG0WVzXsJ1r4LWo+Yk7fYscZ5zypVLa0cwmG923h6GZOfsdoqEYkhe0eskzvhG4dPXKAaPEblCKa/1wqtsjo4uZD+OWVQZoo8RV0YdJ9XKS6Zr1XkG5+E227U5WDvvKsrvxUG+v1Ef3v/2fW6zd89+HfeTh+ZlCFqmU8mYtBKXGvWgRJnWsmt4obFIyGokYCR97XD5wv31KVwbjGYYk8HAMtbaRtx0SHTRPXtfHTW+DLK3x5VlzOO2EP5CwQw2Y0evA0rcgxohusfsIbR6ygvcUkS1YCMiwlse0S/rLHQExZ5uPO8PDhgaenJ5ZlYZpn/GHEnwamw8y0LFjv0c5yY5LfNf0gqPw+/lLd/1KAVjWtKpqS0dOtQJVuDtPGYH2HXNF6d557F9vwxmGN3AyMNmyXlZfnV/brTtwi+2Vjv2ys71fW8yr7xZDIMZFjV9hpy+EwdKWiF77XrZgVcfqWIl2zFIKu0mlId5+EVQSNGJPE3YZwT6yTxXNhmkZOpxO2Y61Lz6mmadkDIM/WzSltjWAspAiWO4tJKw2DkpuQvLo0TPdYyMOg+s2itUbraYflRlTthaPdyae/WCj3nYK85WtHbfxXUB/JLJFuNNI4O2K1gR7AYjliVYQSKCGiVaOYxk6j5IgaV9oA82QZpwHnFcZZUIWiCk0ZqnYYr6lWEXTlmhKxRta0I5nADgZPdTuFRMWBnnHTgcP8yOw/MvkD3olaRhAAhZYuaJ0wQ8OfKqNyLOPM3/3xE3/8w2+YJ4tzdEwzwj5Qt5znAWUGtB5QKtLaKlnTNdOaITf5Je1aPlIDSqTmz7TYUPFnlHpDsaNtxmgZWw3GMeDQuV8LjXS4KThinnnbBl62kZf1j7yFv2ctfyTwW6r2aBsYhwvH8UcO4ysDGVMVEUkVQ0HNiniRolAi3TAmHXdJkPoSssgKUWaRpmG8wkyWYg1/+bHxp79kPr9r3tIAB8fhQWOKxUaLHY/Y5lHjCXV4wvoJYxxrjKStkJk470+s45WDzziT5QZQvyqFVL8VaHMb/fQ9wC+Wx6VISloy5auXAfmZ+lRI5vZNiLr3R+Rvdg3dIXofH2loBkPDuiveb2Sred0f+F+/PBK3E2uJ/KGtfFp2DqawDeLUzkVTmow6HJKOpUthMAozKKoxFGO55IH1cmDLD5Rw5Dk3hpBYzy+8fXmmvhvMZWG9Jj6fX7l0XbuEzMsYSOmMcg2TxY0d9oypljzBabb4ceR0GJkeF1KRtL9cK27fsNvIsb9GfpDb+sePH/n46ROPD48cH05ob6hOicNca3LriV81d2ahFgdzl6qq29kusphejMXrUis0JYtx6IcRCuc9VvXOvR9ipnWHbmvotdFyJNRIyYXXlzd+/vEn1nUjhcT1feX8fmZdd8KexBSWhY82+IFh8AxOscwDy7IwDqNIT5v6isK+zed7joI4t0FrK6oyNI3UlVvxLpG+ZX7nFO/4aWNuwD3Jdgh7oGFwrUuSlRBg9e1mqgT5nWuS/ISUUChyrhLD23MQSu6uc/qujS6uKCKBTUnUm0pJel5VPeGuijSXzhjj9iyoGyOM++3jVy0K0zD2pk4kV4MbCFvkr3/+Mz/99UfOL6/kuDOPlof5W/yksL4S8kq8rLytV1a78fCQRafXZlSTZDWjFaYZTBN3pTI3vIIsP5/P76zbxnmrOPfGOH9Ba4fxA94sGDN02mbBusbpNFFj4p//y7/x+YcXDpMspJ2Bh9PMH/7uG/7xH77jsGhGX7lcvvDz85kvXy7iEs0WZSYOp0ceP37ATwPWGg5ecfK9s1CO0Dq3vTaSKWhnGfwjQ024dmGIO5x3cqokV/Fz5TAoRuuo9YkYZ7JOVB2oOlJaYdtHrpcHzuf/gfP6PxL9I2mYWE3lWr+gqEwt4cxPHOcXZr+jm5LEX92XTUVDMLTV0naFIoPp+IMCaZeiUIlUOkRPaQ4Hz3R0bMXy5WfF//2/7Pyn/7zy8/u/sqYfmZYTx4cnTF1QcSKtb6RwZnp84uH73/Ptd7/lt9//jofTyHjUjOoTW35ljRe0PqN1pJRI7jLVm3tdoTC9UNQiP8ttAd1auVMstW5fC/ddTdT/1vjf3RB+sYBWtz2DdIK3olKzEvPgErAlc1IfuNRv2NQr/7ZbfvzX3/HXz5b/69//wD98ujBNHrwirStx3zBGIhClc1NUVdGqYGzED4Fx2Jl9YBgaenBiclOBuK2kz898/vPKy18qISiK0T0iFFrRPUrTYfxMyYnreibWjdoS0zDA8YHxOPPw8cjhYWE+LFjnSKWIbFxrTF/WOi+pgTKCkANVKahafBOCpoVWSzfBNZyWzvc2l78B12giLxY4oAWEkSUjiiDpih0lUlLpYLiMxuC0w1vPPEyMg1CLU9j58tefef7LF95e3rhcLqzbTggB5zzTPFFj7RGhTVSLVLLugM7Z4aeByRkGa2kV1nW/F46aO9eqm9VqR2mU1gF8vUGwbsDYgRRjjwxOlNpw1uNGe88rAEkbTEFQ3rmrtVrLhFgw1uEHL2ylvru6ZSWU/j6OSRRPOVdizAxeMuX3EEgp4pzsLWznHaUY2LcrqSPIx1GiRVtPsIsxEqo07bo3PbUVUaINkhJXskjxf9WisF/W+/+OIfL+9s7l7SJXuS3QonB80lqosRI3hR0UTRvQE1lfaSWyr2esLsR4EZ2yH3F+RBnN6GeayhQyVNFfD4vh4eMB6x1xyyiVUe6KMg5bF6xxGDtBs8R84fnlzA//XknXQguN07ywTAY/VI5HUCah8xf+/Z8vvL9ceX2+cr7srHsiVkWzlul45OHTCEfHMizgPTsV3QxDcZJB0Bqxc2cKRYIFrCeVQFkTKlaWqDgNBxaXcP4LRU98vv4dMf2WUB/J6kAbZpq3FJ3ILRFDY8+GrL8h+2/I2slBbgJKX1El02JAT68M7g3rAk05aiukfoCq1GADkpySEg8qmc8piyO9dPUTWsJ5/NywThGy46/PR/7008Sfz5XnlnhvV7a0El/fiW8FVTdamSl5pdUrUVv08ZWHeELpxDB6nPVsb4Z/+zFh9sIfPhoOg0XHJhTRouSg7i3/LRr0hvzVHZl+cybf4F/cdOE3F+i9MvwCS3wbRfXTX/U70i9HSqgmgURGpLdNQW5Qi2FiwKiFdxL/fK20f5n58fnMP/72M4+nN8oUqF5m5bUavBqZmseagCoJ1E41LxwHzXYwhAbFeFIx7LlR/QPTN57vjvDNP3mUddjBAY4SHSUkSljRquEGibeNqpBVBFa81TwMv+EwPmGHSlOR8/XCNewcHx44HZ/kUO6jG1kSizu4WYX2N1SExmmPN6OMMxTdd9SR2lkIBXcwXBGoIlpTEF9ABXHFg6AxEMkqiGHRD57RzVjlREn4trOGd/IeiPtK2FbWa2Bdg2C5z2dKzl1QkDBBMY0jT6fv2baV17cXKRx7xtrK46hZZi+dO4KTSFES3UoRVpsE3aivt4dGDwsqPTXPQtMdAGk7rqR2w5fcKJUWJ3TrTCEUHcpXscaDltjMm+EMOqW5fr2l3JDc1vk7bdWZni9RGzlGwr7SisMAevQ4rShaQJ5NySV7sJppcGK0U0DV1Cx8pdpkr6IA5wcOx7nnYv9XGB99/vJXbo/Xet34+cef2a47x+XINI3owdFyJoadlAMlNHRVWG9kYYUoPUIowBVjN6y1+GFmnI6M88zoRikiTVFbxpjMOFmePswMfmA/V2oNaLfJ4rCKD2FwDmsscGVfL3z+eSNfFL/95js+nI5oAkqt9Oxrru9XfvjyzJ//9MZf/3wmVYuyA4cPj5y+fWI8PbF8/MD89AF3eJSc6FYpzRBuGG6ijM5iEkjcNIDNJLNRciOtiZzh49OBVh257aT8kefrf8fr+kcCE8VMqPyETgvNikSylkRVCYYGrvUgjkoloXWRVjIFdN3w9orWgVw6xbNaaiywNeou8kGl++KxKGLU5Ci46bu/y4jRyIyevR64XB/5+f0jz+sDbTAcPxXU8Mx+fkatYDZLTb5/PTpgLtHaRkxvXC4/kRiornJ+e+H1GR6cqGcaCquaKGO45R+0bqDVfbglH9o0bO2dflPiWSi3AHRxzN9dza2PuhFzmBQFwVzLmEjdxKny+Vv3LmhxUOtqUcWS+5LPNItjYPMT7w3+X18eeH2/oFTgj+2KPVj81CR3OzcGbxkYezdZQCeqrizTyKltXHNkLZVQPaEZ1DxzHCxuHBmPM37yWG9ROGpw5D2QtldoCescxnqUG1GmgbpCLahwoATDHl+5rGdeLi/ElPHHmdPoiCkLxbPIkl0OuIoyPTvkF7GNRhmZwffDXmnJMbilfEkm8le0dVGd3Z9zT0WUubnpe6Bb7IVA7TI1RXIt7G8X3p/fubydub69k2MglwTG0YwBC3a06NI1Q62RS8S5mQ8fTuyrpaSVmnbICqsVi1HMRhayFcG0cHc7C9ocbXpWuiBfColUIikmdBbW2a1glFuuQpXskdY0Dd1vok3GadbcIXWtNZrraXx9TyFQv0TpOPLSvQatyteRrGaL0ZLQVrvxLMZIiOFOfPXGMg4DNCkYVFEn1dpz7ZW6q5ickVF+qqULKuQ1tMaIk9v8rWz7VykK//rD/wOFwequg54UT6cHnh6eWOaJVhOlRFL0pBD6DEwSwFJTmDZCNuw1EmLG2IQdEr5UcWWqJkA8a0EPGOUYfcbogCHhmmZqI7Uc0EauYznJfG+ZhRjasORhYhkcNWkOo8PbLFevsKE2jS4PtGpYlsY33z3gx5Xp9MDx6SOffvdbnn7zLXYewEo4hRwuikFLxF1oDasUXgMU8l4ozWDriHKG8hgpeWX/4TPltfHjj78h1G/h+Afy4LjUA1c7i38jQ7tc0XrrGALTDSyO1gqFIjETVlGyIUWHyQ1dNb4VRrOh6pX1ClSL0QNtb+xvmZILOOHT5ABpV8TdUHJnzJuG9o02eqJ54Fq+4bJ/z3v4DRf1AXM88puD4ruSCOc39tc36qVRzo24R8K+87wm3uMbWq8o9cL5beef3/9MNju7veDsBw727ykO3rZn5ovACX2DgKJ0b4JuGqHTKSgR1UqnvfYOqRgkCkbhnBaF2235BiILVYrUtFyfbUNri1GDxFOWAreAeAy1SCdnTMGg0dljy4Q1M/iBWNbupF3QjCST+Zws/7c//YG/vB34h7//wm++e8WYFWsiVkesAlWzQNgQeeNsF4r/Bhu+R+2/oSlHU4XqJD8BKxjsEAsxVYTRraWwOAMVYgHdMl5FyQlRjrgXXj7/mS9fnnk9fyGkjWGYOB5OaGvkQA+ZsMkIwQ9ORBPeCVW13LTvkpS25SBZ4MbcVVqlVGLuByOm8+7pwUlFXh9n+5hOdPHeWByizMl74O3LM+fnV65v7+zrKkE1pYiKqTXmeeHxeCA3ISUMs+M0WWKMbNsu2vzaSCWxx501BraYyBW0HVDGkKqS2E2bcb3gNavZSiVGCfZRQNYRyBQCuWxsaSdsWejOeKbJ4wdDjFGczoiCZzAyhms5k2NksJZpmEAh4xwFyvZbVsm01O6Jbet6JabQ5/uy4PbWCmZb6+4Nifc0uXW/kkviYBfGaWRZFo7LQWitMRM6Zjy3nVhhHAaccyjj0LpIxEA3fDbVSLFwXTeqAj95jDP/vw/3/3+Lwvn8Ga2sMI702BevcF5fyW1jmkWmaEbPUI24KbN0qCVBPF9I6xXIKKsoTuZ6uWRyCaQaiXlnHJeezWrxxkpernXoAYY60IrwS0opbHXHOc2H08A0DZR0IMdC8jshXIjxR2KqLNNv8fPfkWMhh9xnpIpp+cin7wvHDx84fvjA+HjCHRaUszQjdvgiwcWoKl1mE/oaVhkwitGLv0DhZD7rPcVpQkvEWHm7NsrkQR8obSIpQ9YSmKF0o/XQk1IrKRlqz3mVHYnBWoXtbyijNVZZplrwxmJaFUhZUqSOemmpY4F1755vCIsk6WAVUL7RvKWaA1k9EdNv2cvvWeu3hPaJ5gZ8N6/pGllLQ6+Z4hJlKHgL06xZvv0j2fyO3bwQ9BfWsLJlTWqBYDY+PD1y+viBYba8XT8yqcCH6Yq1ma8o077bFxKyHOK1iblMC5ZVRtc3A1jv9pW8PtDNQFVBMTIXFz6xdImq3Mcaqm+mW6XD/iS+sKQkY8AcaHmnlRVYZcelNEp5CprPq2LLI9l51uz4cHjmaXkDX8EGlO/3n6ooSQQDIRzZw4EYB2rTaNekIDQnBa0jNOQHoQfbdzSFsRijaLWwXs/91hjZrleen7/w9vrCljfQskiWzlUot856Tgd/36ncDp5SRSF0W8fLZauSW5VAePWLX4o1Ahrs1zFZx4rh82Y0vPkKVGmEa+B63UhrYD9fub69s10uxG2lxChKntpn/SAgvGmUYtNn4q3BpjdaLmxZYnFLyvd5fIiZVJoAubQlVUhFGg0RG5S+1M2klCmpoDqXahg08zSijcNYA21njZUUIlB6lkYkhEjTGm0sMXXDWZZALqMaNE/pSIzcmvDqm7orfG4S09RjPVVXcrVa+20gyv/uRVLdnncjtzplu2JJ9deliXvfWoMfHMZajBUzYYqys8k5dnECEhBl5dlYr1dSSUxtwrmb0ulXKgrkIjOtmkhaoaikGFm3M+M08Ek/Yt2CdQajHBorc/69sK+JVDdKoJto+pstB0rLbGUjZ7Gd57QzlYNoiPGChjUD2ilq89RsqFUohbrTK1VtEmpSBkyVuRp5Yz3/RE2N49M/cVr+jmw2gjnfkbbLcebkPPPjieF4IGvNddsgGYzvL2CttJ5mZZSQFI2uVFPRTYkNv1kSwheq2lK0JaEpJXMOgbKuNKv7wyfGMmecXB+bRjUx6OV+mGsNxskyT2aUclU1RhrIuTq8ttSkhGyaNCE09hTRaEZrUc1QYqPERotNdvutUY0iDZbqFkr7Lbn+npj/jsDvyPaIsiOmZZQqeKNRWXICQp8B17CDAeUNp4+fGB4eeN7+hR9eP1NrxtkB2wbAMtmZZbJofeC8/Z5ZNU7+37HuIuN+pe5iIGtEvph0Rw4gC+dmFMqDRHT2uWiV7rV1Q0/rAc4qG3Gs24ZVDaMLTWfQWdRzVeSTqgo2u2kZgyQisQZaSegc0Tlg2FHN0rRDtYGmPFlXLgX+9KK5pJHfPQ60J8cyROYxMk4B6yutWWq1xOA5X0bO0XHNimwr1WWZcRV9P5i/Ml/b/UYjaVtAK8S0835+Y71eCD2beL1eiCkweIcfB+ZxEmhcX7BbKxkGOWfJW1iv7GEXm5URHIK1rqfpqc4frNyUu7exEk3dpY8yPhEXrkI4SmQpJmkPvH9+5fXLC+e3d7bz9W50c8bgvCcnRY6FWISCmkqhKSXNH07m6jkT0ZCFdZZCooxVbofKgDLSUCkZdYVUUDphvaVhei6BUF1zTYSUaVmxDCOTnRjnET9ocmyErYIOpJohiOQ+9VuU6ruYGHdqSYI4aZVSNSFFcsms+0YuTcZTCEL7vrjqxjPdZaVAHxElYgyC1+gFYRpH8UVU20N+uDOqXDaUllFa8lGcN1hrcN5QUibGeE/UE5e0wRqLHzyVwh53KgVtldyYf82i4LUTmFQuKJ3xg8MN8gOPs2ecBpGaWi+LwGJIoXF+O/P80wusCVsM87AwT56mE6mtpLIS00pNVYw68cK+RcZxZJokIGMaJ/zkKc5wvQTez2/EuKF0IWyaz/9LQJU35tky+ExTn4nhnfOLJa0T+e2FL8M/471BqcJ1W1n3nYcPH3j4OLCXSgqB5gzVKHKO5PUqD5fSUCo1Sfyi1YrBSm6NMzLvbUaTqsxWtR9gGMnGstWN/P6KKxWddsrFcr28k2Jgno/M00EwAn7G2RFnB5RymN4hGtOn4O0mq8s4HbF2RxFJl0bJmrJZKGAoMjZpIy0rVIjUPZP3TMyapD0bI5ewEMtHtP5HUL+n8C1ZPQlWQtfupSiM4xFTZs76TAyKdd3Zzy/yZ5zmVe2Y+ExUXyiqYrzH6hkyqJRoe+H69sy7OuGX/47TtFD0O8puPZCkCfe/FZqRA6l1JQ/90FdWoV2jBNV5V43Sl8Kp3nYEoKqGYogrkiZ3rKhjxNqCc1VkuIkeHysKN5XEbd+UQtuJaTgx+xOuXrB1l8WiQbpUpcBAVgPv7cC+fs8l/h0/vLzz5L/wYfrM94+f+XB8xwyaUXtcG4GZ3CY2JnKT9DnVBJuhVcP0hLj7YrNkueVo2LaN5y+fuV4uxLiRS0Y16YaNU8x+5LAcmJeFeToyTQvzfMA5R4iB7bzL+6ZJTsQwTb34SDEqff5cdOuGJy3Zzq3SqhZmExrd1M1vBhVULuSU2NaN9Xzm8uWZ9e1M2CNhD4Q9kGJfeCqFsxatlRz4KQozrVX2lNhTlMVyl+CmlHk/n3l7eeW6CZtonA7QDM6NTNOB2rRIQVNiD1ec1TJ2mUfhEfW89aYypUZZLGdFCFDfVhqF95cz768b2wYldZItSiSrpeKdZBTknNjDzuAd4zRgrCZmyYCJKQuGpXf56p7sJ6+v7jsxrcVroHTtdFihHd9VWrWhu+nMGt1VTVF8N1YJlbl59rQT494l0Qlq7TeRhvWiBtPGY63wokrTMoK24pw2v3D+/ypFAUw3Y1iMEwbJOE+M08g8zxwfjkzjhG6Kmhv7lrm+7ZxfrlzfVoaiBHbHgGcB1TBqxhAweiO3nRp39lwI207wmTAm5iWjqsaNRnhJA+jxJivU7FvmLz88k/bGN98OPD6CMYEUNZf3geuL47n9jDVfGL3HWcMeA6kV8A5/PBCDkRVjMTSj5Ypdcj+alIx4UkZrsFaTrBLol3FoW8jKslVoqmIt2GFgPB7lwdl33mOk7FeSUWzrmZojy3ximU/s8840HpjGhWFY8H6g+gGLoaLR3aErgUByvbyFt6RNgltUkmQ558REVGMRfEWu5NLYi2JvlsDCykfO9Xek8h2G71D6A1WNNDKQaWRKTRJ0I+429lC5XAOX605YdwmmR7NvkcoLym+S9qYtWkuBsrWisqLGTEyerX7D2jJ7PTGUV1AFI4HNXe4o5NFSFTTpUo02FFPFlFUVJVmyrVgj3oq7ohDZu9Asz8/w5Uvhw7eN71RmmcFpI8vLArUqMhpVwCdFUZacPLkuKD1j/AHLA7pWqg59jCUPrDHy98ZIaCMhLjxvB57VwrM5sW8PrOsryzGgJ01MjlYLqlV0FdVUaxaFIFpaX4hqJTJPkA4xpUKKu7iV405tqctfnfD9jRRDYwyjnxj8iPcT1nlKlaZnD0LmvDlorbYyXuIm321fl/W3bX3/l6o2tAIr/bno3FMmblGezX1nXzeulyvr+cL6/EK4rN0TILr5chuJKUXQoq2vtUj2eZZAmvfLBfPlM05piaJVMs66bleu+0rMGYE51m6IEz5RTPn+8237jnOGwVum0eP8gPeIAS3nPqLJlBwJe2HbIynvXC87+5bJxdGwIgcucnO8GWSkOAqw0jnLcjwweAH6XdedPWXinqg5oYzGDiIhvVXeKldeCrJDybmrAztu4xYYZJ3FWINVkgA5jQPTMDKOg0hKAeMkG7xq+f6MlVFpzaW/Nw1GWZnSGCmMIQVSThhrmeaZYRx+3aLQzIC1jnFe8OOIMYZhGjmdjhwOB5Z5lrzkNbJfVl5+fuP5xze2S6SFG8RJoaqmJYNqBq1GvKlYnYn5wp7PpHgh142wBcKWiCHTcmU8ZMyygFcsHyZ8cOxbo15XIu/EthMZKWrG6geUsux74OVtI+UziohTopVWVmNHzxo2rnHD2ArNUqOYv4TBgrhxisycS5ScB+M1k5XiYZRkM8QGa20oZ1nmAasUp8cTphbCjz9zeX/j/PqFvQmLxBpFS5UcImHbGIeZaVoYp0XiTKdZrpODk2ARq7tu39Dw5DoRsid0IJY2snBXxhNyZVsjMRUKEJpmVSNXdeTKR3Z+T1L/J6r6hozw4VuLoDYJwCn1Ls2LFFqqXK8b79eNdY3kWJmcZXCeqDdy29AtY1BotCS9pUbdGlUpym7J2RPUyNoOnOMHvH5jMGec7tZ+xdeHssp7w3VEctOVQiUXS86akhPZSqSn6UlnTYH1CjNqXv83zX/6T4bfnivWgfmgsaOWsUc36mUatoFvlZAN+3Vh3RZyc5It7h9QtZHSGzlvEsqjm6QK6i4NRBGrJZaJtziS4jeU8+95LyvH8sIYryQWYm6olhlbprSe5aEixUSJmk0KlEE7B024+yHsxBhprTDPI8sy0ujJdwbhU3XDU6ua1oS5k2shbJEYMw0FWhyz1skIMHcCKR0siLod+uIArLVKQajyWinVxEsQM9tl5f3tzPvLG5f3M9frtWdAJ1RMkEuXvcrNpNz0xqrLkVSn4jZhWaVceHl95bpeGQYrCq5hwFrL1gKxJTCKwXvQUij2PXC5nLmuK1sInagqzYh02VZGMdaiGjgjwUprEE8JtVCqmMdowvlSTtO0kRuYEhSH69nPrd4opgY/euZlZp5F4mnezlzXnW2LxJgEOGe8jOO68kpMZfVr+mEvlFppGbP336O1kqHgrcY7I0VhHFnmA0Nfals/YIeB5XS8q4tu2RlKdR9GlWZH9TS6tjXUtmK0lsnLPP26ReHp0+9w3jEfDmKSyUkKw3DAuxmqJcXK+hZ4/fnMj3/6mZ///BlVNVY5luPE4CzOyuImxMg1BDKJojLYhLIyOmhKkWoh73LN1NoQa0OlhJ+c0E+NwSrHYdb88Y+RsGtqTuzXjBsfMeWIsz/gxysqaRSO0XoG6/uNw1J14xpXWtspm8DzmkLyj62TvU9t5ChBIVVXCIrdGop1mCqW+DUm3mKiaM00eE6j5+MoBWIeNO81sj6/8rpuTMvCOM203MgpkeLG7ge2ODCEiXGaGdMidv0w4tyItV40zZ1FE4wnaMdmDMpOWL2Q4wPb9ZF9i6zbF2LeSEBsB0L9jrV8x7k8Ecsj2p3QDZSOncnS2XHZoLTDKsEOWCMgMG0bxjWUU5Aco594nGeuWovrtoJXFYOBpLm+Rl7/fcOaVx5+HtjjiD3NJO3Yyt+zxYa1/xnvLpih0TSEhOwFcKJyUxVLprSMbU1GGNXKKA2JyuSmu1YKPRTUkNiq5a8/e0pTDEPDlcbxt5XBJyQrulJqA4t0lNvI+9VzXh1KF9yQUK3SqsXomaY1dZccYacdzhqMH7B+wA0Lzs20nKGIkmlDEVVAxdAbb0NTI83KLso2KMWhi6fkSM47oe6s67XLPyWjpNWCsZphkPCc1rOD9S8yeEu9HTiK0pfwpfUxZtfLK6MptLtO/RYEr3p1U01umjUVWofOtaZYt8D1fOV6vnJ+O7Nvu+Q+3wxhDZz2uMGDTpSUaTlRUiSnQMylF54OWbQiezUdxlhqYd8D63bl+GHBnA6YoVJVJppMsgWrHW52aC947ZQDtUVQBWcV3g/4cWAaBpZBxBGqVbzRfPfpA5+envjm48YWdhJJ0PBEUt25XDa2NRJ2SAFyklvrMi0cD0cZwWjD5XpmXYVl9H4+i2TUOrZ1J+eEMcJTukHnGvXOiNIICts4K695ny5JYZaAHeMEiDc4zzLIz2KtFCVlhKWUO8RQipa7N1LOOez9kwoaKK+B0sdzuVTmeaYB72/vvL+ff92isByeJNTC9vQiY3DWiPGlWvY1sJ1X3n5+5fWnVy7PZ/KWmPzEMo4s48Q8DfhBo0ymlJ1YL8QayAgWw1pQtsgiq1paEbfwdd0JpWJjIkdPmyzeTkx2ZDyMHIaFFBRxK5Q44OpEbQOPxxPeNGLaoFXmYWYcJorqASjeEHOPDNXilmxUnLU071FVwoFuYK+sKtVAMv3wbI2SEmsInPedLWVaVTwuE/7bJ2ajGJxi8gqdd/L1QkB+o3IAREp1uLIRisFFzxBHxrgwjvIxuBnnZsZhFnuE9Wgzcm2PeP09UWUMH9jTRy7bE2HfyfVHQruw1USoC7l8R2if2DhQ8LhcsG3tcLlbD2361Vbm+PSDQ6na37xSOXIrtKaxDLiacS1h0Ay6EvbG++ed958T5y8VTWDfXhkOCx9//8B6cLzkR/TwATN4rJZITiW0E3lSmmQXtFyoOssBJB59UB0F3sccus+PZJZbqTqT1UBsC59fDf7f4DhGvv8UGKeMc5VKoVTFMIBfIG2Nn7/Az9dCPq7Y4YpugVYT1NKzjsFgGf2RaR5QvmKcZvSGwWkqmtIapYyU4sltEcWTyqAKck+5Mf6aOLhvhwPCzM85drOVbFTkYPgl2fI20pBOtFYZhaG0uNJzlahSNMrKqFdp09O6apeNqvuOoNPXIFbqHlnPVy7ni4wjUIQ9cHm7cH5/5/XljRCSxENqgeoZY7trV3JLqjFicNOSedFU94r0kaJSujO3SkfGa4ZxQFvP6eOJ07cnkWpWMINw0QyGeZjw2qOVIRfLOHpRZDURrQzjyOA9o3VMg+/kUc08DmhlGf1ESJG97ISykVUgFiffm9UYV4m+kqKGqpjmifk44618zRAlVS7GBGzse5ARYpNDeRwnvJWi0FSllEQMUV5zZNzuvb8nx0GTPOZWQUtOyI2UOjiPt47WEIx3TCLXraKoUh2BLY+JQluDtlaUVjlBzmjaHf2itMIoK5DEekMl/opFYbATtVVxFZMlDcx4XDbUmHn54QvPPz3z+vML1/crFsvH0yOn44mH45FlkvQwbKWoiGbFtDO6btAC1UJxutMJPQovqp+Yue4JHTLjUKghkS+K46Hy8XHEDpZttVR1ZDo9QBl5/VLYS+Q3337A6I+EeKa2xDge8MNCorKXyNt24X2/iiFEVSrSfZaWJWO6Jzi1HhNZDGTdSEqjsAyqm7FqopWd6/XK29uVs/dMLfLNaRLsxtFxmCxv75BCIFcYipcEJZUpctpCUPjgGcPENB2Z4pFpODL4SM2SGVG0oeiJ5n5DTf8zynqK+ZY9PrKFidZ2tHsmmnfew8pWGjkPwomyGa0yquMKrHEoxDTVqph9GpHmRWVSrUM1dY8IVKqKfDhm4q7BOpwe8MbiTeP1/cK//pc3whkGJqwyrO8rl+d3ti/vvLsjjAN5OmAOI9pY2lBxqlILsuTshrC9FZSqhNCIWd0TvwpFDuvWVXzdP1JyIe6Vog6YZeLtdWD9V8W8XPnt7xPuAPOkmJzGas04wDDB9qPi3/5c+MvrzvF3r4xH2S+1HMlxI2ehxQ7jzPH4gfkwk/WFzEqqZ8p2RhtZ9rW2oNSIBC5k0JIVUpqDMvbRTMWYjLYZVKaVJItCazBGdRRBu0tJZb/VlUm38tAd39KcOWiKPQVSkgJureAnSusGtJwZh0EUSVXRsijqSiqk6054vfDzDz/y419/kLSxrpYpubLtgfP5IpgRY7uXoUssO41T0M+SYZyrhPJorST3xHpq1ZRS2cJOTAFjG8OoeXx64OnTkeN3DywfZEGuqiZugf28UWNBFQUZWuk3DqN6IH0fv1iL7xOA0Tm8VTij5XlBlGoaIz4MZbqPpKBsw4wKrzV60PisoVqcdSIO67erlAohSEpdvSmxWmEaJ54eHng8PXBcjpiOFg8xsG0bJed7UbgnqRkRFIQYiCX1SF75fTd66lzIxFKIRc6gVKURagiKRt+l3MKOM9ayxcC6bQzO8LQs+L6HiCmxh4jSmnmZ+/viVywKLovuWysn19jcyNvKT399YbuuXN4uxC3gquGbhw8clwOnw1HCMqzFebAWio5AEuOQyZhaMK2ivcMOA86MWONFsurB+ood+sPTIjEE4qbJ+5m4JcbRScc2zDg/oNvMfEoom6DtNOSBK1lzWTfi64VmFdUoYktibEmRmKPM9bxFl0pKeycjJsFBdG9Dc8IK2nOVBZ6XK/EtLQmtCKXwvl2ZfONpkdHZ49OR85Z43RJbCthRg3ZoJ+z9pio3JbgwcDIxBqha/BUpk1LAmR1vFqJThPQ7ivUEu9C0wwwFAxgGSjmR69T9HwIqdBiMcVjrMapb66sACb8ifcUIo3QVt7FSjH7k4XhCl8ziPJM74MYFbXI/ABshKvZoyMVgvOZ4GBitwzR4mCxLgUWPnD48MEyWNf8JrmfWdGHQOyY3SMLNL1URtCajiVU4TblVmsq4VtEZmtM0Ix24qpWywV4a2zmyhitfLpDjgPmXihkj//Re+Kf/1vL4UbGMGudkybuujreXiZcfNTm/Mh0SziqUroQWMaPj8PHE8XRAu0osG1lFmi6YrukvVVAIDU9rHqUKpsk8XjfJ5i0p0LU+KCvqp9IXoLXUO45DG3Fr55JAyU5AaTlUW++wteou7dod20oxuBFrBEDXumNbK4W2nqYMXhlMhhozaU/s153r+4WXn575/JcfeXt55Xw+M3jHcVnkgFYK3SpWi4pWIfysctPid3VRtr4vTSutJUoWuig1k5UVx32VfY7SDTdaxqPDLobmK6kEtlXDODG6kWUYWfRA3CLbeWdLG/u6E4LM740VyeXQF8uDH5jsyGAtVjdSCHx5eeF62QihSHCQLhSTaS5RXaKagh41ftS4qiV+NVl0EzJjCDtpL5TSGMdFinXHv2tlei6DkgRA0Uv3yMzbWFPGZKkTVmvHb+cqEuGbTFTZr07ja2y0onGDx4wOw9CVSJmUu/KsL5drKeJXcBZtLKf5IMolBanvLhoKYyQdTivDDSb+qxUFm7oCQwkwq6RM3jbW9wthC9iqGPzM6EdBWR9n5mWmVtEMowqZQsw7oV2JdaeZgvUWYz12mHHDglIOqvgYNP0eVCW4vOYLKSTirrmGQihnhmg4HSaqNjS9Y7VFTeCsIkbxF9AMRSniWlj3nUyl6EY1gplutaMWapWxBZJ6VLPMku/AM0Qho6rCZ011Fu0ttrueVXdg5Vo4byuzbxyXE37yLKcDxzVxya/UtNOaVHOtLcb4jotoqE5orVVGArEGqimIcj9TTCTbjdIGCgO5OQIK5yqT6m/SotFV8MHWQDWRVjJK7LGUamlWd6+AfBgUSnX1kFJdeRFRDYwuDE6TvAcvqgg3O5ZlwkyFrBV7cVQSVn9AV8UyOkZtGJri0+PCdwfLyYF2jqQXSv2GPb7gzpWxJKaa8Q2UqhQsgYGgPElDpgIbWu3YKiOV0hRVyRjGVUPaKvEK4SzI40uyXHZF/HNm3Srnd4234hJ++lhxS6XoSg6atA3k1cMqSWRRFZqtMBrccWRaDkzHSXQHt4zvPgiqShzW8p4F1TJNBRo7tUoWci1abkKi55T87B4WcVP/3EZJcpjcsMcih0XRgX5KODcdT9FQMt5S9HQtdcei02mzuvXxTsyEFFjfrlzfL8Q1Eq47r5+fef7y0m/E7c76d91PdGt2YhbcSsqZmpLsOHoTQ5NUQ62qLMOdAScJfloZYmp9j2Owo2U6OpYHj500ZpQlvm6NlgqlRGgSF1tCJq67YLPX/09779YkSZJla316NzO/REReqqq7p6fnDBwEBIT//0d4RBAYpi9VlZcIdzczvfOw1T174IE+QvECqSUh1Z2VEpHpbq6qe++1vrUOpHXDB8mibohzV1qKYgaLLbHfVr6+vrHedkpBEPFGgoCUymCKuN6dEjOYcZRdU1agaHrupJzY1kgtHWMcNEF9KK1xTmOdRdHJObJeJfgmVTHblZwH0kKP91BmRaXdvzLoMaNSFmVHJy8XSmeYdQXvbbUE+dgkYpcaR2ZEbdSaaLngQsBMQVRiI7rWWUfVY37GXW32D+71//ChkO5MEVHj5CR5vCZ3jnbmdDwyz2My7yzGiRM1lUIuGzlHUols6cpe18dJHcLCfDrj5hPWHalVSUxkB6MUSjUUGaU8KEvcE7e3zr4m9ryS90TpsKZGCIVpuuHDglkC3Rpa1oKX1RU9W1yeiNvK5baCVdJX9AY/WZnm71E+jYNJIi5F6ZHmVIg10bohqEAf/PeupKxsvYOWwJzXdcXbxsu7A36emc8Lxz3hr1fY7knCd/eo4RHpp83oOIsZrlMFLVAZt8VIaVeamsEtoA6iJ+8BmxymaXTWWBpBLrA4p8ilUTd5aLvraO8Jk5O0OOswxmO0x2gnMMLSKGbH9EIuF1K6CMBsj0zLxPysef/TmfOHMwXPnoMMZ7ui5kbeM64pZmU4u8bZZ5qPvN4ulD3hOaPjD7SvG37beFZwNA0fFN06VvXMqs4Ua2m2YvkZp8rYGNVgwFSsMmgMddPcfu3sr5qSlCDXe+X1l8Rf/01z+2pZnCevlT/+08aHj43juUMBXRWBwMme8Sbwtl5pTnN8OXN+esIvJ5QLqFrFKImhNh6iCNs0toFuCdU3GldKv5FaJzULzGgcjorrHZMKOmeKRtAoVuIlWxe1ikI21NYaKWZkP7UjOOU+cxCFSR0ETjXyA+gKCTiUQbQoyir75cb6duXLz7/y+ukrBs3kArp3DoeFZZkwRose33u8k6H6Hfscs+AfbuuK2hqlMQxe8vqL07lhDFgTCM4yTwvWOGIWGSpuHApnz/zkqDpRdWZygckEeoW479JCjI24RtbLxnrb2Lddnn8F2Wj2lGhakXtnz4W1rSJ/3m/kGKmpojDMy4J2nkwm60wPmeYS1WSwHbc4QpiJWi6EKIm57GoA7YoM3u+KH2NGfOagoO7bxi29Sj6JktlSK3UYCEUGTJcZgLxeHdNFMRgmR5i9ZE1ohbaZLVa6l1a1CWL68x16bqR1I7Yh3+7STahJsmhKilhvcXPA+5l5WR6pe60KZvwRRfhbHQq6mFG6dFJsrGul5I4zHuMspXdSTSgnzsPWCjVntvJF8Ml1JdZIHUYP6z0mzLjpSAhPorO2gWo6dqQRiXxa0QdYb1pmDqfIPK1cvzaunxV5F5QtW6bPF3reaOWGnxacPeLdRO2KHBXrVqRayZm4ZVFEeC2qKGMAGejkIoYauWxpdNeoqlBVhqCZyqYLvpcR0iEPS3CaKRj2bthb5VoNSU90PxMOO4cDeKtk48ailaMrI5JKO4auPaNrxSqFU6JlNkbTemZLCYXGav+41VllMGgwnUSlKYV1htaF+dMKlAy5IMNQCi1vmF4wZhqAOYNzMliTXrbwa0CTS+ZyWfn10xfSllAoppPjw49Hjh8L7iliesTETI8d9kpWje4a2niUD2SjuKlCa4a8dbpVlFlTrOeqTuiayG2jmMTJdLSZie4HNvs7ilqGp2XCqg76RtNJhmato4PIHW8F/vpF8/nNs+8TFIVvjYoiKc3Pt4n/6X99JjbH66Xxr/vGP/2nK61ZTI/U9MaXrwvNOa75jfAc+PD0E08f3tFtJ+Y08CNaLkY1SixiH7nRKFF0dTnua7cjj1lu0p2NhlQ9XYOy4iK+yxVrbY9rwnjxReQ75JJ3fEUbUDVjZMhburTWdGdcJeRK0VqDVKgxkbeNX//6Nz798itp3aE2QpiZnMUbxeQU2mg5CO4bHkBro09esbqxBIPVgWXSkgFu5BAqWdpJyliUGb4I5wgj2+A4LpOxSA6KN6Lu695RjSZvif2yY7XDuwkXAjqIxDqXjk4Z9vGaDGRE7Z1YheOkSoVchLy6bbRScdriraVrqc6M6mOwPKGmQLOVZsRHkLcC3UpC4+QwTQ65Xhv7bSdHee/lAqXxTuGtwo/KrDSZwTkrVXazdyy3GjQCJ67nLl6NnHfomakpltZZNFhveOsKo7vEcu4yl0jWShuwi6TWBxnqdw85dXJuIgVuBdU8Vjk5xONOyeKhoN/bXJ1/ZP3Dh8K6bvKwN+nR5a6oWLGeAy3vZCLVdLzqlJ6JbSO2z+ztExuRpBrWTXh/wPoDYTriwoLSQa60NIladDx6o7UoSgHhAAn50lCgaOIFagSa3E6TSgLKqxulRqYZghcbvfGd6CqYLDdrhdxwukMNbbySVBGqKtLe6gqNtLNa6YOBJMCp2DKxOqpSOK3x1jJ7x+7KoB4aGp6KAKvmyfF0tBy9JSiDyp0SC3UWxYk8QBJSr3vDqkns/8aCgtwrpUQM8mutVKE86izhRh2ybjRjacYJf6d0SS6r0vcuStRDrWZBUjhN815MekPVoJSkv2klPe+4CyqgaZhPM6fjwvufDpzeG8ycKD0St8j+lim3TL0VqYWdQXnD1g12sO5d7/h2wnbAapJyXMxJZhrNo0jo1nEc2dUP7PzEnhZRcthXJvdZDGV6kz5ukz53VXDNhl+umtfNk/OCQ3F2lflkKEeLP524tZ/469cJSkObG/bwytslU4si543t8oU2OVgKh6eJ6dkznRxbukloe5fNsrZEr3mYvcbmjswEHp+77hkwDrlltvRQ5RQUysiBcCde1lqHkkowHHfRkbnzjMaw+R47em851dHb1w+jmbQWSJm2RbbXK5cvr3z568+8fvqM1Zo5zDijsVqBMVgtlw/nHO6OZehdBtxdKlhnNM4aQrCCkRi9iFIqWx0B9tqgrBUKrrE0Y1HWEYyGVqi3jZwiNUMtgpKx1rPlK+t1ZZkOzGHBeovG4msnHCZSzKQtAaKoks+EkbbRYEf1LHLYVDKUTjeKTqa2isnCGTNOchMcXpRCSKux9CQ5CPOMw2GaIu+JMHuRd9aOUQ2rq7yftVJ6gWpoRXr+xtiR9qYoXbwarQ3vg5UM5tZF4dS75GVYpZi05hw88+zQWtzqX9+uxG2jdmlJW+vw3g1Xtac3Q6sFlYCsUFXIqT4EloNEodZW5HLb5PNYquyvv+mh8Mv1bxJaHQI6+GEBlyFtaQVPA2UwLVMzrHHlFt8o+o2qN6rTKBswRmiUwR+YwgltHIJpr2MQxdBj66HV7VRVJYBmrVgtASE4jZ7lBNVdhiilC08lxU6sG/uumUJhWWassVifmY6VjsHahd4cHQdocobSNa1ZOlaS4MZNqZUqbahe0dRh+ZcN3GvD5BwgVMbNFKrpOBSTcZAqLRYW59GHE0+HG5/9zi1GbrVgvMaFUQ1ohVEKba3o4KdFwKFdovi6smjjcC5grJXN4m5174KhljAP+dAKXE1kp0Vr+kP+WGi6jwdmSNUG4EwMUh3VG+t+GWwrzR//9BPP5yPv3z9hwo5yF9K2k98iv/5y4+e/bOS9YTEcZsPppKnxyq3fUEExHyfOofDOHzDeUa2htYlCIPeFtVkCndAMoR5J8ZnYZl4vjX1b6YeKPRrMUeONwoEkr0XYO2y7JhZPY8K6hYMZaXo2o13hfH7m44ePzNqwxpW//gJ2cnz5mrmslaw0zRamk+XdH9/x4Q/vmI+a1leU2kBFcpa+rHCJzLecn+HKvgerf1sy7O0g2IX7RjFYQo9KuDf6SGEXFv49YfgeEiSHiO73g3v87NbQDVxTBGNxyggqZkukbWe/3Pjyyye+/vKZfdvxevD+0dTc2LcongeBq6N2EVs4K7/PDL2w83qEIonCpu2Cx8+5kFJh3RKlyjNvh5u2KvEWmSIJhao3idAtjZ4qai94JwNb0x2OCadFUlpzYtsvtCJhP8E5optkZmGMSG6NpulG68K10kpat85Y6d8nwWM/BL2qY4PlQGMaIMqqK7lnugbnRSzSU2Ufzu0cE7SO1ZZWCnuOcoHj2/usuhpVQqA1+YzltAuvSAn7yNYORuYhkvyWcRa6nzHHGXcSjI/vEXtbaTGyX64UgScRpgmNYvIB6yZar7QS5YJgFFYHrHcs88xpOaA6Q5qe6LsgcmKF3H/j9lHxV+w8c35/ZpqPpIhwiL5KiTI/PXGYZ0qGbS/ctsp1rRTVaUajgsYGjbIepyeMntA4dBfOfmsI57+JmsVqi1N6xFRKmdeKphtxf/pp4vjuiF8KtVha6ZSiqDmRcyanSDFQU4WSCMFjrebpxXA8BEq0pGSJyRBzJpZMrYJZaFVcorVJWHlJgunWSnhEemxI8v8t1jk8leALUxDnqqTjaW63lTdTmN955mXh+XTk+bgRP1+4bZG4bthJoj+7MuKuNIqmx9/1HlysRHPsrcPbSTaGYaVvvY/yUHqf98jBe06rkD6H4ak3tJHsWK3l140enCWlUarTWqaVRExXSt04PgXOxyeeTkfOp5k1Zt5uK9fXG9evO3/+9yv//u8bvWmOh5n2jCCup0ZTjZwi69uVPBXCcQJ/BNVp2lHRxKa51IBuBtcWlnqm9CdqDKxfrry93vAvlUVZDpPDKIdXojrK0XLbPOu6UDkzHd7x/uMLWmm86Wid0brgpxmjhE7b7cwtOv7yt8bX18jbvtIdnD8uPP/uxMc/vuP84YS2nT2toBJaFxpFVD/dDQ/HaGn0OyXirlKTXxDA3Zg33UOBWv8/HSJj0xoto/su9hg9jwtI79/aJ0qPHnfveMY8KndaS+R1J15XttuN2+uV2+uVuO30IqoZugwuW0vkXIcT1zxiK62thNDxzuO9qFbkwnBnIylqTaSMKHuyQOKUFqWTdUGiKK2ldkWqEnZvjUW7CdfbUFMJPVkb0N3htcJ2R8+i/NtuNzQap2dxFHvxJ2hj6QaKKig6WjdpiwzGkLbijE85jZngeB9Up6qOywWTC51GM6IEM2YA/kqSOcbXG9vbxnpd6WkAMXOmlCzlneqP91SpYVDTlXXPw82cpeK2Gt3ag4uWqzgFrNd47yVa2DturRH3neseiSnSWkVr4a4pY+Smnwr7llBKZpap7KRWqKphg0NbD17ktWqYPV2xhBaopQ0/0m+sPnKnwnxSvP/DiXk58/nTlWvKVCPOzXCYmeYzXz+vXK+R662xboqKoxmPq9KuMbPHqQlVNTkWse1baZF0JB6wj1L6btTQBnFfVjNuWBbnJ568oeRK3IQdXounREdad/Iuk/lUVlTO1GAJxyDRfbPHMhOjJe6a10un3TKxjszT0qUKKk3koEUGr8ZolLFoNQxC1qKcQzmHVg3bK1OHZjI5N1otfL1c6M3w/PyR5bjw9Hzk/cvGZdvZLnKglpSwQRAaDYkVKF0CM+49XqsdmIYzFme8kERre8iH1D30gzF8HOrmh7lr6NY7/eE7EITGoLCqezRmH1GEEVTBB3h6mfn44YllclgL11vm9nnn5z+/8ennK3/768aXT4kQJo5hpndN6eCMZwqaXhXX/ZVL+con9e8U+8xyPI6ISEmwK0VRlcOWI80+YfsBsiVdCpfPK57K5CxPpwB9lnZXa6w3z8+fFr68PpHyO6w/c3o5SvayKkKgrY1WFJfXG955DvPEVmf2r43LTVFcZX5x/PSv73n/+zPL84INnpQ7LQvPSiNtlK664ASwY4No3zb2MZC8b/7t7//d27hc9kcx0Qdl7pv+/K6D//a5eyCJ+Fb16RGtSQPXFSrLwHPfNrbrje1yZbvJpha3jZLq47zJWUJz7hca4xzGeUoV4qb3no64b60zA63CqCjUkFR2YmzssY4oV5FGOjdhXRB6rRqQyFqlJWMsbp5RTtNUpddGjR1FRRWNU45eGvttI6aVbbtilKV7QFn85ACL0pZKlQqBJm1EuaEJZr0JxFAp+e99XJRar1C7fKZLfRjHnLVYZ6RFG+Uwury+sb3txGukpQYFMa+WAqqLUY1xGdNK5qS9UWuUTXUw0ryyGFWFjAzk2sBotJ/pxlCU5lY6t8tGLZF9jexbpOiGPwSM8Wjtxp+5sW0bKUlnJtckHCQLmE4phpQ1W5JuQ1UVO1kO9ihdjf6PHQj/ZYdC8DjvMVbaPZfLldfXV3IpGCzX6068wevnncvXIR8r0LRB2YCdpMSdrMdrQ46JNd1wPjAfD1jM0OyOD0EbUtGRqjSUqULJ7B3rDd4bnO+YWkW2aBpdB5qbyCGxrTspZnIShvuad+yqOcyJw1zRZmKaPXkYbnJrpNTouZJjeUToKcA7PSIbK8povPOoEGjWUq2lqYrqHofMMFoslK2y7bt4F1CoaWI6TZxfJp62iaIberZ4N1Qfg/2itaX3Stw3jLbYEIZpqEobzLmRCdAwVtjwd34KSI+xKtmAWq9yyijGzVYJk6UJM8ZaJ7K5kkV3re58HYd3B7SeOB481kHThVQKly+RT/9b4ue/bPzy+cZ2y0xG8e7s+P3HheXFoxeNnS12toR6wquJXFde1y8UG3FPglswqgCZvXVqNyxN4brhJNuuaN1j4nprfL5o3m8zMSsUEyVVPr05/vzzxK+vC6+Xib10Ul+hF1GttY5qipIbpXRBEvRGmSzVNOoCz4cTx/cHfvqXHzg8T8Sa2VJGq2lEf2Zp81S5gRk9YVSg9kRr6VuP/14B1Pao1NrASzyiEJUa57gaczO+3cIZ7SOlHu8VfczXmhz81jrUgMT11iTk6ZZ4/fKVt9c3Lm+vrNebpIcV8bfUUuTQQZzKKQqqYZoFvaFVeWCdUZoQkHjJ0UZq48/f6JTWyaWRsgQDtd7wxjzk47VURHwut3NrDd5prNNC69SelHdyyuOgUsPN3sUTFBMxbmz7htaCeXBuxs2TfAa0prRGLSL6qFUUW3rMd2SzHkquv1P4CXVMWrG1NazS489msd4KcHF4Ce5BQCUXmfulOio8eUu07oNkq+V9MwNEOTKc298ZxlHSQhz3M1qVC+y2yq1/j4VWEzlv7GWjtMQ0z0zTIk5pLGnPbGscFYu0z70x4nNwSNZ5zaSt8pr34ep2I+M6DBDj/wuHwv5mMdXwNimshe2iyZsmR4g1ktdP6GYlFD42aslD554xtnNaFl6eF+Z5RgMxRfbrjRoSWkPzHu0sxg3WO8JY10hWbxmOP1rFKUtNiNOwVnqqOGU4TgvGw+36yqoSOgScdlyuhW2rqNKwpdLrSisN7wT1HcK4JRuLszPOKoxWwiqveZSpwhDNHZx1hGnC+YDSdjxw0pDXWgZyNC2b8y5mvzZyIv3iOL2f+VCfcMcZOx/whwPhMEk6knVopdluiX3NqF6wSvAI4qcYm8sA8hlr5KEYmw2I+kMQ1LJakw+HMZZmGr2KvvzRux7fUisJorcjt1YQBRVjGqmOQWlrrLfM26fC7Wsj3joWxXzQPJ00xyMcTgH3tGCnGWMdOW+47rhuv/I1/g21VUp8EX9Kb1gae2/kXkitkXsft8ACVTarfKlkBe/OM6dlwpjCthf+7ZfK//KXztu1sO6Z3KEqiSLtfbQR447qHW8s9IXVGRYfsCfFfF6YjmcOT0fCaRYZcxPQmiAc1EhDs+Ll0Aqr/PDTlFEZyAZ9nxfc5zz/YbpwZ9SMdW81aTPeB/VtHKGUGlGNo+Tviq7Fb2BGbGRujZYbLRbSbePt81c+f/4sev4Y/8Ps4tuoQ8pu7TzWe9w0ParLrqQVWXsbN9FxG+3mAXarrbFuO9se2UdYDL1jXadrRUkR1Qq5VyoNZRS9WXYH2lSR0dJIJZLiLpcP5QSbriTMChRVCd5G9QqmYG3HH8zjRt+6JbQD6675+popqWC6+IdqkypZWS0okaa+HQ0WqSiGr8MMH4HgXSTS0luHd45kvs0jUIzQJpn/FNrwpNz5UePAUe0/XAxEhdYErscI7eqQSyNuie22D6R4praMChkzdyYzCwrbSItU247zWrJFOsMM7NAOwbmTSC0JWr41unEop7Hm/jk3D+HCP7L+4UMhfvX0TaHSjjaN9daFgBl3ckpsaYeqMMqPbNyMUgnnYJot756OvH/3JBz1PVJzpJVEobMbQy1VkNzzjDUO0x26iuzu7o/IWRzInomeM9fLTt13TG2c55mX85ngDPHrK2XdmY9nwhS47htx29Hj7tBKIW1fCZNmmgzez4RpwhhLCDPzLC2GFDMlJwntoZJqI5aONoHZBby2UgYnMbtRK6Z1gjJM3rIoQ2gVbxu2GVpu+Mlwfj9TjOYQFcvxhflwQjmDcnogAzS//vyZvH/FqobTUgTXXlFNy0OvhN2izX2zaaOdIbLIb/x72RHUCAo3ytDroCpqmUtoLfwV6+RAcE7jrELbjlJFlDl7xFiZp+QKtRtUtzgs3inOR8Ny0NgAYfEcz8+4sEA3ZDNhlaH0CNtfyPtOuu0YByo3+UBL40wOno7IOJuYmfaU2PfC2y6HwjJ5lIPrnvm3L1f+7dONbc3UvNF7oStHG0lt276z3b4yOc278wGlA52CCYHDe8/phyOn53dYP1OGvBKlMVb8MYLUEFqRfcx4zPCvyGvee30A6uqocO9zoIcDmW9toPvGcWftq1ExyP6jB5bBPlyoD518v8uiG20IGPSA2d0uF16/fhVVkNLcDXB9VAhdSkXsNBG0PGfei7S5VBmKoqF2CXexSTYlrSTuso50wH1PbPtGSpFSChpE6VMVPUNvAjG8c/yrKqTUUDrhu7iAc93IdWdC8pGbkupCY9At4GjoPA5cZyAozEHhx+VNK0GzmDfD5W2llfQw0HUkoEobMyDH96qtgmFkLdxR00ZMqq3KvKKLND14z253lBlhV0YzeqsDNFceM6LW+ziIBiJ7oHKoCnqlNUHAoxSldUqVL2nlyvteizCylhfDKXic0sMQK9h242DShl7lAAohMM0Tyiq6qaypy9yogWMcUhVKauieabo/roC/6aHwdDiSS+fXv/7KHrPI8sg415mDw04B1TRxKwMe1XDOPPgm5ycxx+y3K7fbjVYr8zzJ4K+ICqAUUMqjx2y11Q6qUZFWTkfLzd4fqSmS45V4bZASoQUme+IwefLeubzt+OMLfjniFotJwvcpNZPyytoSdpcQFuGWTxh7QOuFwxI4zCeRDNYqPfYSWbfCulVakZK3b4nUblSraGRQDac0zjqmcMDMmjrNaFU4dEPfCnbSzMfAsRl8sry8vGc5PJOH09EHj7GGNdwI1ghOd7TVapMQIB4qIT1us3cFjDyQ0nobucRjQ3PGD8iXElnvw7mqCUEks0o31Ehdr41RUQjfP6WCznJb8oeJH/70Xlo0ZReNu7fYaUYvJ9ATJXZ0r1irxn87E3lDf9XkuHO73Ki2EddKTRrdRoj8eKj7MOnk2thz4y12+m745XPgsByYz46soLkFFd7osZF3qDnR20630lvWRrEcjhwmx/lp4fnlzMv7J55+OrH8uBDOB2yY6FhKkQrFBYVWjZI2JC55werwuFlKelal9Ujr+dFakX6zGJVGv46Hgui+upbBLQwg4d8dCl3JjbQbdNfSHsn14U+QSlFMlSklVO0s1hOCF2hbzljrCCHIEdvGwdDvxseOcx7vxE2fiwQ3lZrIJQ1MA+QciRpR9CBRnuURGSuSZq2kH2+UwnvH5AXXglW4psm9yMxEyVC71IZToJ1FN/F0dFMpJMT5N9hG+NG/dGK+Mx0dDEVlrBkOZMQ3ZIzBa0/SmTbUPqKcsg+MS7rnIGdR2Skj75EE3lsq4jhOKdHSTtoLrQiltiN9eec8ZhjR7u9lTpl93cmxDBhhAzUGxNpilVQierQC23hG2vhHVGZyYMt5rAjdMDfH0h0H7bCTE5VV68Jg2jP7XuijKrjnMWTdKaaPz7WkXvYKuWZqqjJDNO5b1sNvdSj86V9eWNfIX//2RqkRWsR4eHpemEIgbYq4VnqGViQAxE4GHQKYQMydfEvcbpF1z4MzFGR4VTqtiemtZEhRBr7KdOT2WIdKJqCVIxdFKYpmPM1N4nBVnjU7jA1o/8x0iGAXmvYs55nm+shsTfS2QT+i2NAqIrF1DVVWtMoYc2cwObwz0C29aZwuuF6JeyPnDqmS6j4CUDohOKYwMU8LSzhitYG2oFpGEdEtyZB6qH+6UtiusU3RigDIUEVKcq2YJ48PDuuNGOS6FpyHlYGb1gY1bpNmsG5kc5HDQQ+Y3Z2vcidv3umo1orRLXiDNiKV672KbFEL8uEe+pLyqE6Mwkye048aamXx0h7qruCXA3Y+0m0g5U7vkVojzjj87JnyJOHxBW7bxq4q8ZZJeyGlSrAV3UR1oY2l2U630EyjdpENf3nTHD4rfggz4eQJi8MfNOu2kuqKoeEduGnMNOyC0xZnNVOwHF9OPP/hhdPHE/40oYMXmmiXw7L1Sq+JpgqKu1JLzD+lRmqtwmJqndbvm9G3mY28B/Lhu7dthnjxcUDo8XvvsZvcq7quUF1L37lIP7tEIcVK1Sftg1YlClcDHOzYVmSoK4WOmMesdyPXWVRTSslhm5MQWUuWtkUdBxt3tVSrjy+5dIhc2SgZOOmgacNLpJWYuIwdrUyjJIwKKBS67iNtTG69zTS6Ffji3hItdSbncd6CkoAr5TUTQW74NLqq7ClJrkZr6Fapu2K/ZFqSwCeMkHx9cOL+RiCJisbA7spFSSm6km1PKS2twK5Zbyu3txs5FXLMlJrRVjEtnvlwwHnJRnZOvn9cI29fLtwuK3FN6Ca546IaMgMxI52ORiff86nJNC3tLe9F/qu6eI2D1ZhiISlUUSxhZjpOlDrwPK2S10yMBV0zgYDX8vx6P40qUsKx2j3LoTaMNgQfMOY3BuL97g8L62rRtjEfFak57KT58PEF7z2ffl758mnDdUMzHusVPli6N2ytkraGioWcOqUZFJamnITLK1DaobSnd0vJw5GpQGl5IGVD8/Ru2PZKqY3uPUZ38J5mF77snYzCLB85ag8eqrJMpyPu5ElRBmoG8RvQJKQ9pSsp38h5pdYVxSp0Q+vxdsLpMNyWDmaHobFTqLU/Hi5nNYd54Xw6sUwLVnkp2aqhNzOGVA3IgiWojV4U+RaJZRuNk0bteRAWFfM8E+YJG7yYnbqhK02795tHz1sNg5FW0pa9D+npSDNihIYIrVFjrLDcvRdDIBR6zzCqHfGKyE29lDJK3jG3QNDadtE8/fDCcTqwrW9s+U3QItpSUDIMrAVLRbVKQCJGtTV0o9hbpNfCHqsEKeWK6RbVGlZrnPfQO2YyKA8mC77ithW+fI08vTtyevIsc+dwzqy3jDIif5y94XByzAfLMi9M4YDWmqbg8O7I9MMZ93QQpDMynFQKrDG0ZmhVpKtWS7Ss6oIVj2kTuCBmtGjuzlWRH9+Hw/eWD3cl0X3DV+rxvum7RLAPqXCRPrRqMkxMWybvmRKLqIy0e9x+W5VZQled6iTr1yiZN6RSiMgg1DszDvUsLVltRhtWDoVaivwddBt5AEYS4EbiWO8iw9Za41B0LRnlkj+pvnksuqBYSm3oLtA7o2X+0oxCO4P2mm6a4CYoJCVZzTFmzMExh4lWJce4N8QZbeR5K7XKYDtVtluhZ0XbGmVtpFum94aaFNopaR1pBFnTM00lMEXS7zpoK/kh4tnpImIB8W3cBI2dk6BFTDCEg2c5T7jg0NZIhoMNOOcoWQgPqilascJwGtWfMRZrHGgEfV3Gs2CQyAHvOBwWpuCFX1UabeuUBNtaMD5yfHcmhAndCrGJnyK3oWzcxf9ijCgIJyNBTLVIm7l3KLWQY3rMp2zr/9eN/f/JoZDLFeMMP/zuhY+//4hyHb9Yzk8LKMXh9MZyvvL2urOuUVoRloHbVbSsaEWDmcXo0Ru3XRKilLJ443BuEUv4gH0pNfrdTkoy3cWPkFsR/4OTTGQ9zXQ1cWlK8nnNglk03eYRTO7ROmDCxNwVQmtRUDOt7KT4SkpvbPsn9v0rKd1Y96tgo1VgcguTO+DsiflwxE8GnwbSuHesUUyT4XRceD6fsdoS1yTckftw3IkSQxqTiOmuQlojJIOfAlMI1C4SWO8CygbcLLb/ppq4N8ecoLU2xtvC4qHLZlRKJ8VMrfIQ6rvVfoTcK60JQQxJxgpb6v69rJfDQzTrkt6Wcx1uVSsHTpYBqWoCPVNHjfcJlSOFxra+oWrATjOT1VgnG0deN+K6EksmUugm03pl7ZJ1q3IhKIuiSptgcmir8IvBLxC6bEqpbLxed7bLRDtPzE7x7kOgZE/cHCp1bDdSJbVGMJWnQyMsE3Y5Yl6O6MNCsQ7VQLdCV5mOCAGkBA8IUrzTayfGcTi2IlWrlsuKBtGRj3VXGD28BahHRTD8xg/5sHrI7LpUBlEGpq008l6IW6LEiqpyINjJ4I0D+gimL/RaqUmqFe8sh2VBxyi5IK1RUobWMVrjnCCma6kDhy7oc23HRjrUaiUnckqkKC55Y/RoQeohnVUCTUQPeoCkqOWSaDWjVBNV4CS0XDfygnGK3Ku4k0sSJI5WWOXQ3jMtJ0FmVzGN9VrFZezDoHzCvmfiutFiQyXosUkAkm5gFN1J7GquEONOrRmjNWGyBCVwPmPt48acc36ol2pu9AIlFvZ9wziHn4NEbAYFTmYfqcYh3x3VhILgPNiOGTQAZ90DM17p9LrLvNJ6Juc5PR85HmV2qeiiHPt8o3VHy5bb65XXvMLB0SdDU5U17sScJC88j+dEGbIScoA2MqPqWp4vab/f8eFVwKS/dfvo188rxkj/0k8OFzzzPBHCAkpzOFlSCRi/M+1R+lmtoIzYqrKSmYDckgZmthT5gGiLsh4GelokekpUNUbaLV1p2kiWql0YjQovEkprUMoRlQzKlDKgAkq7oTaQMf391mOUldOzT6h+wM8HannBbUfM7UC//EpMv1JLQrWNUjIpbUwhEkLC2oX5OGOUxxiBh02zY5490+QoJRG3N/a+ge4yDHZCJhVvqEVPglVu60pcK2kXtZSZPebgRXpqDJhOR5zHUGm9k9u3geRo2wr/JO/sW+R22ci5gJIgkHmZORwPTM7KnMJZrBXYHjS5wWuBdYEM0lLO5FwotYnRqI9JpBIiaOsGZQvKdtwy41rner3x+npBl8jBKUozxNxE+uoAVcdtHhl4dyWYgJyxTUr82hNVZXSAsDjO72c+Xk/MV8W2dlrZcKZRTCf2gpkD7+eTgMq8pUWFLpYpiB/leHKcz5Zw8NjF06dAcVraCUqIuL3KTUoymKViE29Dp+RKHiFLUlGocZNu34xmY0orfXy4VwtKCelXKT0ymKWqq7WNEJVC3suYG1RaKtRU6EUiMSclUZpay2A7ZVHElJZZ443aMvaosbNh+f3C8/GEe7XEW8V12QgJUskY54YLfrSG+v3GL4dBLnIY1CJO91IZOnwxsEkovMaisEYaVq0PX0+u5JjZ807rRVou2uO1lUtZlk9roYxZA3jnWeaJw7LgtWO7bmy3ldvlShsDbNWRg6sJ5K/umdvrlbpXbDNQoKWKduC7xWIHhqZ9k5M7adGZkW2tdKerSqkjha+KB6DkhrZBCKxKo0yXSqcJbK5kBmBQZnQlVkmf9JZ5XjAKoGCUVJgKGXSnVjBa44PBhYA9aE7vZubDhNeWmgomarhqWtJkBVva6TXjvjj6pJjmGfBoNWNVofadViUNcuud5MwwITK6lNLOLK2JJ0QJBj4Lqve3OxQ+f61onfD+hgsVHwLzBjEGjNPsu6UTcMHQTUClSExppGIpqkto5KbblVQQ3oWHcUcbQx9UL6UZN5IxpGljPqdHdlATtIWuRt6k0etEyWkuygCFakPS2s23D3OvdCM/xxgrLkzlsCx07egEavXkZMjqQisrtSViu1JaZMsX5unM6fAOF07Mg1syTQHjNehM6RvZrZSwjx6tZisJXWAOHecNzA1lxRxTbpl120jdMb9/5hhmXNfoAjltFFZppYlIk9RFgeG0g6JpKRHXzH6LrNeN2+U2QlEU82HG8MRp8QSrmYMRMyCiyVY0jJcPTa2ZXMpjOFfa4Oa3JkZz47DaUhEUiBx4RWY93aJyI9U3bE7outOS5lYLrTncJJrqOXh6nzFaQmdMzZgm93KloPRC6plmO2F2nN4d+BhfOG2GfVPksgMZcw4kb5gnzyFINXU8L7TqoHuCO0tU7AxhymiXUTbRAd3vyVeFjod2kI3bRpRO1JKpvZILY/icwTTBTGDovYqy5K7wUULKbV09qoO/bw8psZ5LVdAgxcK+J9bLxu1tpZcmGdeto0rDaUtwkww4x8D1tq+UXnHOUFvhWi+0Xjn4I/4psDxPtO2A+tngfq0s1XPoAWWaEAHkJB4XgSoYl24puZD2SMmSGlZrGS55hv5fj8uUwgzpKlVwNHc3/d1xWWsn9ZHzXDttL9Ta8K2jgwYr5FA0WKd5OT7xcj5zua58/vKJ7SaEU+EzTegGpCIpc6lQ406JOzV3lHKorqlq9MyNZRrZAaUpTLej/dkfRjNDE57roMvmVthiJMaCqQHrAsFYzBTIeSflnbgJZVRMrUWGti6MnnfHz5bj8YB4KSO6KywTvUhlo3rHOoWZLPpscCeFO3VwWS5ypaO8IywHodv2hkkCTtzyzmW9oczEMs0SD0xESYOW3tpoJxVqFgWf7lX2U2voWoGRmcZeI/xjZ8J/gU+hG2iKPRVM3dGxElJnywofJmGBV2kzWGfEDNLUQ7etlJH5AN+GbI+vkSJlzD3qT38rsQExBsFo3qKHD0DDQ5t/782iv5lGYGBwh0RQw+N7Nng4VGuRwPRaZZh9Wt4xaUdcv7JdP4vUsWZKa6RaaekmrmMS2hVUi9Qs2cZ6VATL8zNqS7x+ufL58ys//+UTJe786Q/P/PjTTJsimARGDE7bBtctsXXD2gQg1nIi9Sulb+Ia1UEMReGbXDHvRZyQayIOiqn3nvngmebA+enEy4dnnl7OzAfRNvcuD3nvVXj0D/NQkU0iF2kbdbkFK3WfPZihmugDKIg4Jauhd41RE8t0kgAl1Wg5kuMuKOu4onRlNi+4eZEQeROFG+Uq1AxdKpDaDVU7uvXYeWF5PrM8z3Q8pe7UlgTo5izaO4x3TN4RjgtaBbSZsGbBmgltK8ZG0EaabR1UlV57bR2jHT7MoDq1reSSKLlSC9QmYgBxyEp1Q1fUAqXCeAVEltgRPpEBaxRGA7VSUyGnSomVmjslQ0zSS7+8XXn9+lVw7bURlGXxE7ObSFbMTaUO7wAN4w2ncMRNhpmJrhruYDCzwnXH1CfqpLFzZaoe3xyxrsQWpZ2BJcdE2qPkLiDmsBwlzrEUyEVTm6XddfgIVgZlKU1EJK3Xh2BBmZEHbS0Gj0WAdbUr2chLH0BEz3IIEBRrXNn3jf26c8Nwu46MhxjFAR0Czlg0arSyCnsUfI04/DVOy4C41y4igskRvAVj6LWK0a2WoZqqBC8zwclPOO8otRJTplRNKUlk9E3UXqlmQd/EzB7z8JDIoT5PM84bbLB4RB4aZoum05LIXKcwUWonqYQqjSk4Cc1ZOtbLIFp1JdLU1nHeMp8Vy9Tp58ZWTuQ2E5YFFySAK+aN6/rK17fPlJTovfL87sTzy5GqMut+pcSC2jsWT7ABjGS7pJyJe6TU37hSaNPMXe8sKa6iklAx47t+2PPNKEnVKDlbLSNjd2iyFcOUczf0qG/Vgr4PRe2jSpD3Quzq0tcUmSH6m5GrD6vhndwoB5D8XmnbDhuXksNGiPTSJqntMZ0VsJV2WDMLTO2uoe6B3gtK7TQV6RqazlQ2YtO0uNMjGOslzD0sOL8QZo/fGsZtlF6JJaKdYV5mWkhiEDKdqAo5d9a1svYVkztUifisRGHuNDduHQXvR1VU65BHShrVFCYOxwOnpyPLYSIsgeU4czwfmOYwbg2ZWkQSZ4waw+k2qIpZ+pW1PRQ0uktwkFJGRE0jLEaThx9iZDl3jdeN01yo7UbLK3u8cL1e6F1LzvS0cDi94ExmK58xKhK8RU0Tvcjr3pUnN8OWO5RONR57OGLdjDae2h21J3S1mG7RBrptoooyBmsC1k5SofVdlC92YB6aHQNfLbJBLEpZtKq0nil5J5UoyI2q5VBEpIZiXRQzUEXRlP3WIhpWETX+R8tyq6xJSvw6VEQ53VlBUjiUulHYiW2j7InYNTkGNj38JF3QCMoo3ORZ3AEdFNMxoII8m2bq1L6T1sh+SaRrpuyd1IvEStpOt0YOT+24bYm3t0wqglnvXdGqknS0KgdhQ9qu2pjRGxdDZWt3BpL4JmoTSWuueVAB5LJ1N9apJuDFlAo2Vcwsz1NJje22Q67kNZJLo+cuiHqlCDYw+5nWKuu+sW47e8qAJixhtGDlkkqTwXFTShzWpZGKzMIeSAsl8k9rGt0jHhDn0NqTUiNHac2VtMsFsY6NNNWh7DOPSyvaieCjS6WgdEfbhukiMjBaif/Gw4TBNItySg4DL89Kj43S20NubLXBHAzKZ3qu6GLJzaKM5GfUFqEXmtrBJkpK0tJkQXtRfTWjaVaBEWLztDi60qQCrWeSamIG/C0PBTMfePRKud/sLVhPU3dS90hY6v2hq5ayS26kdwnef7DxP4oB9fjA3t+Ax63+792h46EUCFkdP+sbYVIUBTJg7eNU+MaakdGs6owQkgp0vLV47+haieMwFtLeSZuibp6WlagXrMZa8FZzXGbZ0JAs55gKXRmc3wlzZFka1nnO54ng3jGHRs2Jf/nDD3z8cGDHsG6Ky9fIpqWdUXITg1dVWNsH3niStkqz1GTIe6OqKL3OVtBWlDofP37gd3/8PefnE2F2GG9k0D+URuihkK4CPlNdYa0Y5WoTemMpQpnto2Vwl1H2fq+45PyUh6txxzVo5YRTYzrVRvZ4ZVvfeHv7lde3VxSBZTKoemQyC8YXqK9oBMmsJo9uGmclEKUAt5goNlHQ6DDTtKbqOmiiGt0nTJ9A3RUmsol1o+i6kfNGShvOaYKWTa03PVRBCmvE81JbZdsvpLpT+02Ssaql1jveoY4ktTSeUYtWk7Qv6KAFPaK1kbS83LhdNrbLKjfymMalo4vip5WR4+FYjgb8wrQY4m0n3xLbunGLt0G4lTaAn4JcloLCzRp/dJJS1jvdFGLKvH1+4+3XlfQlU28drWXud/xx5vjxiLfSalyvldoSpaSRNSA8rz48IW2IEe7ySzPCexQKe9f3W0PrhbhvEo8bC7lUEpWi2pBCK/EloNi2SOmVvWbMbNniRoqZngp1zTjnsVaknvROcDNTmNn3fbQyM6VVrDO4ycvBnO98L3l5a6zSTqlyKKSSx0C+ocYFqpXyAP9N8zwuERqlRFm23la0shjtHnuFt57gwoMcq7Xwo0qRGZ+10AljjikX0NoT2miWg6X2gcbR4LWDBuu+scdIrjJfCdOEc5Y978S8k3InV2gUtJGqYJ49YdE8vTuA6sSvmXWPvF1WwqLk/Vo02jes0ZggCBKVKqZJOqFy/9he/49XCqMvf5dbGTOwt1q0uH2YY+63hztVsAyHY6uycX+rBO6UTtl49JBNyoDV/gdAmBJ31uNA0HdOTJPNXST13zjz/B1LBtnWHlpxxbceaUOYJqUImE44OR2URatAijc+f94pMYmhyii6mzmePQcO6EVhXKaVK2l9o7RE8p68z5T9JMFBZsIoxw/PZ7xzPJ0P+GCx9gnnNPV4YZs3/JTxfgy3TMcaUTG0LOyVkhsliylNq4wy4Hzg5f0zH376wPsf3/H0/oyb3SDL9jF4knK/1vooga0ZGUy9CJ+qf5vDwNDqt2+vl6TB6dE/Fr+C0ZrWyrixdDSjBTcyaG/rldt6Y1s3eu2kbaWmI6Z35pPFHw4YL7JgRUV3w+QnjqeF43EZMYkGq2dctcScRU7sDNZ5NB7VJRgJlKRaGQfKUFuXfnB6A4ThpExAayd9fisk2C2uxCxkylIznTTYOJnWpYqQwlehuLfsLHQDXVNTHZnS8aHp772xXm+s15vA3bZdTJjwuNj4eSIAdrGcn460MpNuif1tZ3tdub3eBJJWm4gJDMzPLxzez5iDorlMV/LsKqskKGbtxLdG3zWqiQwy28gyHwkfDlAK6ZooSjwfvevxvidai9RWUaqIxFvdaRD3WFa5vOn7Ja4qOSzJKFOxQaEnP9o3ilKzDItbfQzIS890pwhWYdRIfWuSiVFTpaVvirriPK1I8FDO4xnrkqTWVHtUKl138XAojepOjHc1scckeew5ARVtYPKaWjQx3lhXx/PLC4fDgRAU5/OMEAEYnDThgB0W8SpZbYj7TtwjzhlOx1kUfNYTnMOqQSfW7eFV0CDKsJrl4qoVqUre+7olUqlYbXDW4qtFNUW+KtYblDZmUyMyN8edWlZBle8iI55mEbnUbIjr8MXURM0FrSvONbqWz0Ktkl/R22+MzlaNhztPI2/sHYJ1v1HdNdGlZNkgxpvZhm6WLr3Wh3FHm8fBoO8l2jBl3Qd1XUnjqPVOv99MtRYTj+p0zUMvLd6GewUydOIMCSVDzdDkoWdw8TFKpH2tSjjJwAQo52nasleIscGQeHY0pnpqWOhKQ0tQE23vlBZpNdLqSskXrAk4e8C7A4s/YZ0l58i2F9xicObAPCuOZ8t6iaSY2Lsi6S7DYCWlfY1dlCpVbPTaSITiy4cXfvzDD/z4hx9YnhZsENR4VcNuD4/XoA9YmaLjrcFoKK2OIXITRVeVr97uBqyhR6/3xqFggr+pVqSEzjlS8kpv4neIJXJdV9Y9Ubsh+APH5R3H43vm5YkwdZTfaG1HmQQ608bNSJkqcwAjUl+lPNoGtIqYkkfL616xiutUqWGWtH4EHIlRySiwA+HhrQShS57ETkort3gjpiTzjS7+jA6PClI05xbNJBkKWGiwR5FGpq2QtiyocQrGglKNbb2x3q7s607ak4gelAElPhN8xyBqqfkkbKwcgiR3gZBI20jgC47leeL4/sDyEmimsLciqh6NIEDedq5fI+trxhYtub+u070mm8LaV2qOxH1jHZTNe3aJPPsZkIGoPDJC85L3U3hCdOEFqXp3OkvF0XqTcDljhFvmJddB9Y6uDWql5CTzD2sl8xkxBMokv46BvBqznMTuNvZ5Jpf8wFTUVjFdLjrWGyyOUgr7ttNSEy/J36sTRwehtoKuTVD897Z075hBMlUNajV45wh+QpHRqmKDXMqskdmd6oW4J1pRlARWeQyOGjNRSyV02zecsSKDNZaegSIO9KoaPXUKjZiGMspoCfRJgvhON0ibHkIc8Wnormi5UKK4ykuWYfc8SfWbYqHe+pCpJnqJEoY0i6CkdgliaqWO2epveCgEBP6kq4CqWut0LQRR1L11U8k5DnNMGbr6YaIaaAUh+JmH6UINqd79cLi7QrUeQSYwEokG6ApBw8qe1EfQSR8fPDF03AdD7X4oPExeotmtdbDVgxewlHf0VoUguRf5O1mDPUwsLye60cR1p+wSnl1SoFVLK56CJddMKyepVkySNky5AFe0umH0xMW8MvmFcAgsp4nDcWHyHuePPL+bqXmlqxtvMQqSvDVpY7QubYmWKG2TzOUwcfrhiT/95z/x8uGZcBCjXlYjUP1eHWSR/AbnJWinys0Nex/yD5lrk95rzo1au1SC+h7iIwPoVjtTCEzTTM6FGAvWaULwXOuFy/aKVh0fFKllXm8bOUEIT/z047/yn/70P/Ly9APWBvbylZ/fXllXMTClmmlJ+DrWuiGh9DgfCPbEbBeYzrTeB7IgUvpKY1QZSqiRkwtseSdtEWc1y+HEFDxTmPF2xqqJbbtxvV24bG9sNZNHGBFqIBaUGka+jpCJLU4vGBXQTZNi4vbrz3z59Jl0i9RURG44GfCAqmzXK7fLRWTBXWFtwPmJrg0FcPNEWCb87DB+3GOaJSeL9hq/BJ69xVrLfJw4Ph15/nDGBsNlvVJT5Xg6o7vh118+8cv//oWvf16Jr5XZeA7TTDgu+HNgzxuXv36mp0xfK/uqyOXucJfK9A5aMFoLFK8KmE51RSmNGCVZ7SHrVI2OYFlqE5NY1R2VJL3s6SzZG5NxmA77vpFLxh8CbnLkkoi7OJzRXSI4refGlWva2bed6+Uihs6xj9Umh7YPnulwwFpHjJGUowTiJAn3Kk1kz4fjxFQtcd9oLeOdZZomns4nnp7PnJ/OWO/5/OULt2tku2Zq6gQ7cV7ccBsP+bZRbCfP+WhHFXglrR1rHJubmMJMrInX7RXvPeWl8HR84jAtWANxv5JKRHsJU1Kl0ouQEfaWBnARUmuAwSjJiBA1mhrsJIsxDafufLBO3CO32439VthvBdMbi4f5MLNMFtUsqVS2kdtSym89Uxg3bAWoJqPae7O+3/9pbci3Rgtp3LgkiEJyAZx1g+Uv5g4lTqCHMebuvr1XDvIT+wNDzL2ddP8aLBlpM7XH0PnRSuLxLeTP0u/FhLS8SsqPgXRtEgxunMZPBtRC40Tlxtv6il3g5ePMu+fA8d1EyY0//+ULr5evbHElHBwffnphmjWlr5S6i0OzRjQVozfcVTO/TTw/vXA6nAjGyw83DT/D+/OBl+DZYud2a9zaLlGoKmOmyvnDCz/+8Y98+PEjzx+f8bMD2+mm3XtCtCYRnwqFap2cMkYZlnnBqI5SkVaT9INLRdJ99civkFutaIzGayavqAzWVEebO254Je0rXTUOp4laMjHt1K6Yl2c+fjzz049/5N3LHzgsH1E20FQHbVhOz1S1SaU5hoFGWVrP4iwvuwATW0Jn98B4uILkGahKUZIcppWj5cyWbrRa8EbmTWkXE1TPkHRFtZ3b7cqXr19JraDmgHNmzKWUlNhdsod90BznBVUNX37Z+fLzJz7//IUcI0+nA0uYaXVjv72hqkV1hzUT1luCm0m+0VsegL2AsTPGO2ZvmI8zy2kWma5qpH3n7fOV108XXj+9oRocj0emZcIGQ+2F18tX2lvjer2RS+W6rBgc62vGNM/5ycNBs9jAMk2E84R/cuRlI4eAbqASrKpyU2XkFmzQIdh5sKaqXPweM0MHvbA3uTg8MO1epK0977QKhop1MJ8PzIcD1lpSiVxfv1L2XZA1WjG1CV8CZbSXda2o2kh7ojZxT0/LRAheHM1K45Wj6EpWdSjECintohIrRfwpQVN6olT5tdbBOo+zWlqAWI7LwnFZsM6x743b7Qs5V27bzrYnahGvyHbbeaPy/HTm/bsnrFYYBfPksOrM8/FAL334azqX15XPP78+PgMhzLSuuMVMrDt0kSAbpTnZIMq02klKobyjdM3rdeO6bmjbsK7jgsF7+5jfWjth3Dzy48VsiS4cZk87dbZr4hYSqilm65jnmXlZQGtMGXNHpwS891seCjnnMVMYmwfDcAAPdrgAu76No0Wd8c2IppUoBfSYC9ix+St9Vwt9ayndB9J9/ABp7erRAxoHlQwbHu2R+2Hwd8fBt9ND3DbjkBIOeu9iTrofaiKdFdWRMgXtMi5kwlyYj4VlNrz/aHh5UpwOAnObtk5Eo+eJ6eA4PJ3xi2LLUAfDqdQMvaJLI1dFLQ2NDLCD9+gOe46gC/NpYX73zG3vuEuhb4p6K+gwYQ6OH/7pA//8X/+Rw/komm8DXY8/t+Ibw799g+O1XtGmY73DajWMPZFaEq20MXu4z3g0HVFXqN4eB4O8320cNkILbcLDeAT2pKiIuTBNT/z408LL83t+/PGfmcITtYpMUamKMoowHSn1zLZesXYfMZFSGZaSKSlTcsboAroIME3J82V6Jbedxg1jPMYKKqCWSK2JWnZy3shlxxlH9BlnJjSet7crv/ztK3tJ6Clwfjnz4Yd3aOV4/SKuUbocsr2Kwezty1d++etnfv7zz9Scsb/7ken5JLrUUqCKms4OA11onlTEAFaqTFz6mEOopkUhsydy6TQyt+uNzz9/4e3LhevrOpg5lk7HZIWNGhctrXVu15UcK+mt4nRAF0cwC+EknzXTNcZq5qPn+LRQJ0sJTlRkCXi9splIbaJa0/3boLnWb5V1RxzkrfWB077PmbqokazwldRAdFuvOJ4PhGUhp0pcd67XN+JtEyFH8ORU6GMe0JqgHcjlMRSe5pl5CjhvUQP8aLTBNOmt19bIJY+UN4MCQnAYOkk1WkvELG5+VUEpC0pAcZKRrFhvOzFmrteNbctDuq8HhLMR95UYd+gidQ3OSqtJa6wy+OCxk5AV0p65ve5s6461munpyOwXlHaU1tn2nVYrvVYWZ3HaM1lD0/KMlS7zvKobzcO8GI4HwzLLYHu/JeJe5OA1Wua3waG0AZ0Flmks+yFxmzZKFrqBsRY8KNOxQWOWwNLdN8XNb3UovF6vQiV0TvDORjbWu3X/vnVoZXB28MpbHajbu49AKghBLog81RgBtWlj5XC4HwajddEH0uFuU/jmb7gLl761lu4oh28xlOrvi4ShVegDSDas4DA8CjJkMwZajezxxnb9wnb7lWXJ/Ff/+sxy0hyfDMucmcMrwU/85//hB+AHYknseWPLO9f1QrtcqGrHq4ZxGtUMqllUl9SuuCVq+iqoCTp176jmCCNLdvEGHTps4IoVyN+L493vPvDy4RltDTknuRUpPfIWKqo3zBj4CwhNhtYAMd5IFFrd6E2Gac5ZGkN+2aQu0CM8RNSnbcxrBDHcW6WWRskwzZ4wB/a4c73e6F1cqvP7wPnpiHOB3s3gJgn7yJjRosgehUdhUcrj7ITBikAhK2IsEm86iTgBtdOJQ5hQiOsra/zKNJ3xyxGjFM001ttXvr7+jZQFXuftzOQTx+WZZfasa+bf/u0Tf/v5Z/a88d/+9//Kf/ff/DOn85n/ef8z221nX2/cLpGrFd369ZYwNvPj72aogd4vfPp8oSeFNUfC5FkWT5gdOihULeASuCytAhQpSapWrSP8RYlTvRKlDXDZ2NdEjhI+c3m94SdLmA3H48z7d+9w1sGmYFM0Dc0ovJHbezGR2De224ZqCnv8PR/DiayVOH9rJ++NL5+/8Oe//IV4qyicmD97fNyf1D08RkmgVS5F8lJaou4NpwwHP4l7f3ZoPdHy/XIgEsoyugTGWpbDgeN8ZJomuoGqRsuqd3LbSLvgLNzs8UHkm12PBEbuxjP5nr0IndR7L2YurSm5kLXFKUsvmn1vxLgTcxnqRERyXDpXbqzrxm0cCKl0jHNYP2YNyHwsp8Svn76yjgPNGcMyzRzmBau1YGaKiAy2bUOrKp6SDLVowuRoCnJcyTmhO1Qd5L0XDTW1Rr5e31hbElf+jyfev19493Ig2EDN8Of/7W98+vRJMp19YjkuLKcFNXqOc/DMPjC5RNCa275xixs7N1IXFZVznjCLf8ja3xiIF1vFKlBdZGO6NlT7u6Hx+Lc1FpR9bCL3DbwNwJbsM4KjzgN811rH2I42/dE6kjmDHDha68fgaIiQpLDSMjFuddQDQ4bae0cL+Ed+3sPr0Km0UeHceebSLhHrQ4Za6C2iWuS0GF6OLxxmzfHgCbPFeo3SDVrFGHCuiJknRWrb2LaVGjfqXmg7tKioabBtchqRB4rJGUFiOymtbZ3x2pGLJFs1o1AetNe4yfH0/okPf3xPOAWZ4TRhBMnJVsdAvd0lWdIQsveDdwSK510OAwpaCQCuI5t2q/c5jJjaUH1kBoz2nzWDANpQ3ANKOr0qNI5gTwRrsM4RZs88eZRS5NLp/Z4PO8KItMG7mSkc8G4mqY2cRA5stfgMjJlAu0Ewgy7JGwNTUOhKWDvbupO3V3JOxHiltAu1X0QppTRKTyLJVZIL8HbZ+fnnC2mHn374kd//8J7FV1R7peTPbLefebt8ZU83nK0sy8THH3/k+C/vMQC1izImQtmsBE31naR29hKprbClRG4SE9SBmjupRHIU34IMtotQQ4xUjnWHtkPe5TbcqDivWI5+ILIXelAQNWqHPFRPBIWdNOVwI7sIU5cBaI/cLp/JRPYe2bbCdiu8fX0b6hqHVbMIH7YruUTKiH8Nk8d6CbzSoRFcxypN17A8Bd7/8MTz+yPLaaKVxuvf3livCZQMpbU2OBfAyoXCWi8igMGuMEYc9LYbnHIo1wRrEsRgppS4qVMR9LM2msPhILTRnLhe2gC9aXprxK1wfY1cLzt7TMQkA2uFJoTAPDm8n3BGkXPC2C54dK+E9+WtPPu1CSmhORqGmKAWyBpySqzXih1tTNUbqonEeFoEqZOxbKlS103YbzXhaBitaDXz5fWVV6VFYtsrOMvsDHrSGFu43C5s+41gD6jm+PqW2CMiutCVpjIVSWCrtWJVwFtHyYLUTrHSqhFsEBaqoQzqbYn72Fd/w0OhocTsMlo6YoJtqD5gWqP3dm//9Ed7YXRulJKZAML9F4mkVAOtdcw4GHoHa9U3yeoYgtURb/gogUbV0Mfv6PcJs0IGyuOQ6kr66tLi6o9NjTtvA6lulFX0KpAx1SpGd86HiXdPJ55OfkRSiuRRBmUXStkou+jh1yhl5L5m0q1Q1k7ZFDUq8l7Zbpl9T+QqapnT4pknjarifwg4nFbUCinLptwUdAT3uxyPvPvwA91W1v0NpcB7KQlrkQGzYAS/beRuoIzRA6KG4Hu1HvTLcShIbMJoFLV7Yts9aH4gszXfoHoKjFYiN4wykwhuwdiA8wFj5dBqMDTud6qmnFl6xJlWPw3UiSUlCUlxc8C7GWMntHHS5huvQ1cJrQUvrrTcBFLM3OKF2+2Ny/VXpqVyPIN1YlTzweInjzaGXCvblrhcE4d55j/96U/88+9/xOpM3FZy/Ercv/L29ivrfsG5gg/v+PDDv/BPv/tR2mlVNt2eHdur4vK58OntVz5dN/YUiS2SSqNUhI7btLiG90LaIjlu1JrovaCtxboJusF0hW7DBZ6q4KybwllN9gLIM83Rs4KiKauQZckIet1vdJ/xy0wwE10VrpdXSk/Elni7JK5XgTQKDXXCMFNLIZfIul+JMRJmD3ZB+Wls5nd4nmBKnj4c+OmPL7z/4YnDeSJumbJm4lbEN9FFqKCdoWpRZdF5mCGVUjKTshYbtED+XEGFxjR5Jh/GcxUpLdObZKP7ORBzFkR6jKy3G5Kbrdluhc+/bNyueVwCu8iXjZHcaOuZp4UpGGlN1oQNYraz3qOt5CCnVEb7VaFHHjTK0tHEWNnKjlUM9V7HKGnb+uDp2tOUsL5q37CmYYeCTitFq4XLVVqGBTDOcHyeCUdLU4nUdj5/vrFumdmd8XohrolS5eCy3qBMk9lJbuRUcWYmWMW+d263JHh77WT20y29im8mbQLEe0TC/t8s1f/R3/l9fV/f1/f1ff1/fv1jbobv6/v6vr6v7+v/F+v7ofB9fV/f1/f1fT3W90Ph+/q+vq/v6/t6rO+Hwvf1fX1f39f39VjfD4Xv6/v6vr6v7+uxvh8K39f39X19X9/XY30/FL6v7+v7+r6+r8f6fih8X9/X9/V9fV+P9f1Q+L6+r+/r+/q+Huv/AFpCJYQubJRzAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "1/1 [==============================] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1/1 [==============================] - 5s 5s/step\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "True label: sunflowers\n", "Predicted label: sunflowers\n" ] } ], "source": [ "x, y = next(iter(val_ds))\n", "image = x[0, :, :, :]\n", "true_index = np.argmax(y[0])\n", "plt.imshow(image)\n", "plt.axis('off')\n", "plt.show()\n", "\n", "# Expand the validation image to (1, 224, 224, 3) before predicting the label\n", "prediction_scores = model.predict(np.expand_dims(image, axis=0))\n", "predicted_index = np.argmax(prediction_scores)\n", "print(\"True label: \" + class_names[true_index])\n", "print(\"Predicted label: \" + class_names[predicted_index])" ] }, { "cell_type": "markdown", "metadata": { "id": "YCsAsQM1IRvA" }, "source": [ "最后,您可以保存训练的模型,以便部署到 TF Serving 或 TF Lite(在移动设备上),如下所示。" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T21:29:40.508897Z", "iopub.status.busy": "2022-12-14T21:29:40.508254Z", "iopub.status.idle": "2022-12-14T21:30:28.400097Z", "shell.execute_reply": "2022-12-14T21:30:28.399240Z" }, "id": "LGvTi69oIc2d" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING:absl:Found untraced functions such as restored_function_body, restored_function_body, restored_function_body, restored_function_body, restored_function_body while saving (showing 5 of 1594). These functions will not be directly callable after loading.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:Assets written to: /tmp/saved_flowers_model_efficientnetv2-xl-21k/assets\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:tensorflow:Assets written to: /tmp/saved_flowers_model_efficientnetv2-xl-21k/assets\n" ] } ], "source": [ "saved_model_path = f\"/tmp/saved_flowers_model_{model_name}\"\n", "tf.saved_model.save(model, saved_model_path)" ] }, { "cell_type": "markdown", "metadata": { "id": "QzW4oNRjILaq" }, "source": [ "## 可选:部署到 TensorFlow Lite\n", "\n", "[TensorFlow Lite](https://tensorflow.google.cn/lite) 可让您将 TensorFlow 模型部署到移动和 IoT 设备上。下面的代码演示了如何将训练的模型转化为 TF Lite 以及应用 [TensorFlow Model Optimization Toolkit](https://tensorflow.google.cn/model_optimization) 中的训练后工具。最后,它会在 TF Lite Interpreter 中运行模型,以检查结果质量。\n", "\n", "- 未使用优化的转换结果与之前相同(由舍入误差决定)。\n", "- 进行了优化但未使用任何数据的转换会将模型权重量化为 8 位,但是,神经网络激活的推理仍使用浮点计算。这会将模型大小减小为约四分之一,同时可以改善移动设备上的 CPU 延迟。\n", "- 最重要的是,如果提供一个小参考数据集来校准量化范围,神经网络激活的计算也可以量化为 8 位整数。在移动设备上,这会进一步加快推断速度,并使其可以在 EdgeTPU 之类的加速器上运行。" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T21:30:28.407493Z", "iopub.status.busy": "2022-12-14T21:30:28.406861Z", "iopub.status.idle": "2022-12-14T21:31:32.090834Z", "shell.execute_reply": "2022-12-14T21:31:32.090000Z" }, "id": "Va1Vo92fSyV6" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2022-12-14 21:31:01.185665: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:362] Ignored output_format.\n", "2022-12-14 21:31:01.185713: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:365] Ignored drop_control_dependency.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Wrote TFLite model of 826217852 bytes.\n" ] } ], "source": [ "#@title Optimization settings\n", "optimize_lite_model = False #@param {type:\"boolean\"}\n", "#@markdown Setting a value greater than zero enables quantization of neural network activations. A few dozen is already a useful amount.\n", "num_calibration_examples = 60 #@param {type:\"slider\", min:0, max:1000, step:1}\n", "representative_dataset = None\n", "if optimize_lite_model and num_calibration_examples:\n", " # Use a bounded number of training examples without labels for calibration.\n", " # TFLiteConverter expects a list of input tensors, each with batch size 1.\n", " representative_dataset = lambda: itertools.islice(\n", " ([image[None, ...]] for batch, _ in train_ds for image in batch),\n", " num_calibration_examples)\n", "\n", "converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_path)\n", "if optimize_lite_model:\n", " converter.optimizations = [tf.lite.Optimize.DEFAULT]\n", " if representative_dataset: # This is optional, see above.\n", " converter.representative_dataset = representative_dataset\n", "lite_model_content = converter.convert()\n", "\n", "with open(f\"/tmp/lite_flowers_model_{model_name}.tflite\", \"wb\") as f:\n", " f.write(lite_model_content)\n", "print(\"Wrote %sTFLite model of %d bytes.\" %\n", " (\"optimized \" if optimize_lite_model else \"\", len(lite_model_content)))" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T21:31:32.094381Z", "iopub.status.busy": "2022-12-14T21:31:32.094120Z", "iopub.status.idle": "2022-12-14T21:31:32.100272Z", "shell.execute_reply": "2022-12-14T21:31:32.099607Z" }, "id": "_wqEmD0xIqeG" }, "outputs": [], "source": [ "interpreter = tf.lite.Interpreter(model_content=lite_model_content)\n", "# This little helper wraps the TFLite Interpreter as a numpy-to-numpy function.\n", "def lite_model(images):\n", " interpreter.allocate_tensors()\n", " interpreter.set_tensor(interpreter.get_input_details()[0]['index'], images)\n", " interpreter.invoke()\n", " return interpreter.get_tensor(interpreter.get_output_details()[0]['index'])" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "execution": { "iopub.execute_input": "2022-12-14T21:31:32.103404Z", "iopub.status.busy": "2022-12-14T21:31:32.102849Z", "iopub.status.idle": "2022-12-14T21:35:38.958115Z", "shell.execute_reply": "2022-12-14T21:35:38.957217Z" }, "id": "JMMK-fZrKrk8" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "INFO: Created TensorFlow Lite XNNPACK delegate for CPU.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "TFLite model agrees with original model on 50 of 50 examples (100%).\n", "TFLite model is accurate on 50 of 50 examples (100%).\n" ] } ], "source": [ "#@markdown For rapid experimentation, start with a moderate number of examples.\n", "num_eval_examples = 50 #@param {type:\"slider\", min:0, max:700}\n", "eval_dataset = ((image, label) # TFLite expects batch size 1.\n", " for batch in train_ds\n", " for (image, label) in zip(*batch))\n", "count = 0\n", "count_lite_tf_agree = 0\n", "count_lite_correct = 0\n", "for image, label in eval_dataset:\n", " probs_lite = lite_model(image[None, ...])[0]\n", " probs_tf = model(image[None, ...]).numpy()[0]\n", " y_lite = np.argmax(probs_lite)\n", " y_tf = np.argmax(probs_tf)\n", " y_true = np.argmax(label)\n", " count +=1\n", " if y_lite == y_tf: count_lite_tf_agree += 1\n", " if y_lite == y_true: count_lite_correct += 1\n", " if count >= num_eval_examples: break\n", "print(\"TFLite model agrees with original model on %d of %d examples (%g%%).\" %\n", " (count_lite_tf_agree, count, 100.0 * count_lite_tf_agree / count))\n", "print(\"TFLite model is accurate on %d of %d examples (%g%%).\" %\n", " (count_lite_correct, count, 100.0 * count_lite_correct / count))" ] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [ "ScitaPqhKtuW" ], "name": "tf2_image_retraining.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" } }, "nbformat": 4, "nbformat_minor": 0 }