{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "8vD3L4qeREvg" }, "source": [ "##### Copyright 2021 The TensorFlow Authors." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "cellView": "form", "execution": { "iopub.execute_input": "2023-11-07T21:50:12.959819Z", "iopub.status.busy": "2023-11-07T21:50:12.959526Z", "iopub.status.idle": "2023-11-07T21:50:12.964155Z", "shell.execute_reply": "2023-11-07T21:50:12.963414Z" }, "id": "qLCxmWRyRMZE" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "4k5PoHrgJQOU" }, "source": [ "# 用于 TFLite 的 Jax 模型转换\n", "\n", "## 概述\n", "\n", "注:此为新 API ,只有通过 pip 安装 tf-nighly 才能使用。它将在 TensorFlow 2.7 版中提供。另外,此 API 仍处于实验阶段,可能会发生变化。\n", "\n", "此 CodeLab 演示了如何使用 Jax 构建 MNIST 识别模型,以及如何将其转换为 TensorFlow Lite。此 CodeLab 还将演示如何使用训练后量化来优化 Jax 转换的 TFLite 模型。" ] }, { "cell_type": "markdown", "metadata": { "id": "i8cfOBcjSByO" }, "source": [ "
![]() | \n",
" ![]() | \n",
" ![]() | \n",
" ![]() | \n",
"