{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "TBFXQGKYUc4X" }, "source": [ "##### Copyright 2022 The TensorFlow Authors." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "cellView": "form", "execution": { "iopub.execute_input": "2023-11-07T18:08:34.221249Z", "iopub.status.busy": "2023-11-07T18:08:34.220649Z", "iopub.status.idle": "2023-11-07T18:08:34.224612Z", "shell.execute_reply": "2023-11-07T18:08:34.224012Z" }, "id": "1z4xy2gTUc4a" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "KwQtSOz0VrVX" }, "source": [ "\n", " \n", " \n", " \n", " \n", "
在 TensorFlow.org 上查看\n", " 在 Google Colab 中运行\n", " 在 GitHub 上查看源代码\n", " 下载笔记本\n", "
" ] }, { "cell_type": "markdown", "metadata": { "id": "L2MHy42s5wl6" }, "source": [ "# 使用 3D 卷积神经网络 (CNN) 进行视频分类\n", "\n", "本教程演示了如何使用 [UCF101](https://www.crcv.ucf.edu/data/UCF101.php) 动作识别数据集训练一个用于视频分类的 3D 卷积神经网络。3D CNN 使用三维过滤器来执行卷积。内核能够在三个维度上滑动,而在 2D CNN 中,它可以在两个维度上滑动。此模型基于 D. Tran 等人在 [A Closer Look at Spatiotemporal Convolutions for Action Recognition](https://arxiv.org/abs/1711.11248v3)(2017 年)中发表的工作。在本教程中,您将完成以下任务:\n", "\n", "- 构建输入流水线\n", "- 使用 Keras 函数式 API 构建具有残差连接的 3D 卷积神经网络模型\n", "- 训练模型\n", "- 评估和测试模型" ] }, { "cell_type": "markdown", "metadata": { "id": "_Ih_df2q0kw4" }, "source": [ "## 安装\n", "\n", "首先,安装和导入一些必要的库,包括:用于检查 ZIP 文件内容的 [remotezip](https://github.com/gtsystem/python-remotezip),用于使用进度条的 [tqdm](https://github.com/tqdm/tqdm),用于处理视频文件的 [OpenCV](https://opencv.org/),用于执行更复杂张量运算的 [einops](https://github.com/arogozhnikov/einops/tree/master/docs),以及用于在 Jupyter 笔记本中嵌入数据的 [`tensorflow_docs`](https://github.com/tensorflow/docs/tree/master/tools/tensorflow_docs)。" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2023-11-07T18:08:34.228156Z", "iopub.status.busy": "2023-11-07T18:08:34.227626Z", "iopub.status.idle": "2023-11-07T18:08:38.425675Z", "shell.execute_reply": "2023-11-07T18:08:38.424699Z" }, "id": "KEbL4Mwi01PV" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Collecting remotezip\r\n", " Using cached remotezip-0.12.1-py3-none-any.whl\r\n", "Requirement already satisfied: tqdm in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (4.66.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting opencv-python\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading opencv_python-4.8.1.78-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (19 kB)\r\n", "Collecting einops\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading einops-0.7.0-py3-none-any.whl.metadata (13 kB)\r\n", "Requirement already satisfied: requests in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from remotezip) (2.31.0)\r\n", "Collecting tabulate (from remotezip)\r\n", " Using cached tabulate-0.9.0-py3-none-any.whl (35 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: numpy>=1.17.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from opencv-python) (1.26.1)\r\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests->remotezip) (3.3.2)\r\n", "Requirement already satisfied: idna<4,>=2.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests->remotezip) (3.4)\r\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests->remotezip) (2.0.7)\r\n", "Requirement already satisfied: certifi>=2017.4.17 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests->remotezip) (2023.7.22)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading opencv_python-4.8.1.78-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (61.7 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading einops-0.7.0-py3-none-any.whl (44 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Installing collected packages: tabulate, opencv-python, einops, remotezip\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Successfully installed einops-0.7.0 opencv-python-4.8.1.78 remotezip-0.12.1 tabulate-0.9.0\r\n" ] } ], "source": [ "!pip install remotezip tqdm opencv-python einops" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2023-11-07T18:08:38.429893Z", "iopub.status.busy": "2023-11-07T18:08:38.429615Z", "iopub.status.idle": "2023-11-07T18:08:41.508050Z", "shell.execute_reply": "2023-11-07T18:08:41.507292Z" }, "id": "gg0otuqb0hIf" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2023-11-07 18:08:39.970660: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", "2023-11-07 18:08:39.970710: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", "2023-11-07 18:08:39.972243: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n" ] } ], "source": [ "import tqdm\n", "import random\n", "import pathlib\n", "import itertools\n", "import collections\n", "\n", "import cv2\n", "import einops\n", "import numpy as np\n", "import remotezip as rz\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "\n", "import tensorflow as tf\n", "import keras\n", "from keras import layers\n" ] }, { "cell_type": "markdown", "metadata": { "id": "Ctk9A57-6ABq" }, "source": [ "## 加载并预处理视频数据\n", "\n", "下面的隐藏单元定义了从 UCF-101 数据集下载数据切片并将其加载到 `tf.data.Dataset` 中的函数。可以在[加载视频数据教程](../load_data/video.ipynb)中详细了解特定的预处理步骤,此教程将更详细地介绍此代码。" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2023-11-07T18:08:41.512716Z", "iopub.status.busy": "2023-11-07T18:08:41.512166Z", "iopub.status.idle": "2023-11-07T18:08:41.531046Z", "shell.execute_reply": "2023-11-07T18:08:41.530492Z" }, "id": "nB2aOTU35r9_" }, "outputs": [], "source": [ "#@title\n", "\n", "def list_files_per_class(zip_url):\n", " \"\"\"\n", " List the files in each class of the dataset given the zip URL.\n", "\n", " Args:\n", " zip_url: URL from which the files can be unzipped. \n", "\n", " Return:\n", " files: List of files in each of the classes.\n", " \"\"\"\n", " files = []\n", " with rz.RemoteZip(URL) as zip:\n", " for zip_info in zip.infolist():\n", " files.append(zip_info.filename)\n", " return files\n", "\n", "def get_class(fname):\n", " \"\"\"\n", " Retrieve the name of the class given a filename.\n", "\n", " Args:\n", " fname: Name of the file in the UCF101 dataset.\n", "\n", " Return:\n", " Class that the file belongs to.\n", " \"\"\"\n", " return fname.split('_')[-3]\n", "\n", "def get_files_per_class(files):\n", " \"\"\"\n", " Retrieve the files that belong to each class. \n", "\n", " Args:\n", " files: List of files in the dataset.\n", "\n", " Return:\n", " Dictionary of class names (key) and files (values).\n", " \"\"\"\n", " files_for_class = collections.defaultdict(list)\n", " for fname in files:\n", " class_name = get_class(fname)\n", " files_for_class[class_name].append(fname)\n", " return files_for_class\n", "\n", "def download_from_zip(zip_url, to_dir, file_names):\n", " \"\"\"\n", " Download the contents of the zip file from the zip URL.\n", "\n", " Args:\n", " zip_url: Zip URL containing data.\n", " to_dir: Directory to download data to.\n", " file_names: Names of files to download.\n", " \"\"\"\n", " with rz.RemoteZip(zip_url) as zip:\n", " for fn in tqdm.tqdm(file_names):\n", " class_name = get_class(fn)\n", " zip.extract(fn, str(to_dir / class_name))\n", " unzipped_file = to_dir / class_name / fn\n", "\n", " fn = pathlib.Path(fn).parts[-1]\n", " output_file = to_dir / class_name / fn\n", " unzipped_file.rename(output_file,)\n", "\n", "def split_class_lists(files_for_class, count):\n", " \"\"\"\n", " Returns the list of files belonging to a subset of data as well as the remainder of\n", " files that need to be downloaded.\n", " \n", " Args:\n", " files_for_class: Files belonging to a particular class of data.\n", " count: Number of files to download.\n", "\n", " Return:\n", " split_files: Files belonging to the subset of data.\n", " remainder: Dictionary of the remainder of files that need to be downloaded.\n", " \"\"\"\n", " split_files = []\n", " remainder = {}\n", " for cls in files_for_class:\n", " split_files.extend(files_for_class[cls][:count])\n", " remainder[cls] = files_for_class[cls][count:]\n", " return split_files, remainder\n", "\n", "def download_ufc_101_subset(zip_url, num_classes, splits, download_dir):\n", " \"\"\"\n", " Download a subset of the UFC101 dataset and split them into various parts, such as\n", " training, validation, and test. \n", "\n", " Args:\n", " zip_url: Zip URL containing data.\n", " num_classes: Number of labels.\n", " splits: Dictionary specifying the training, validation, test, etc. (key) division of data \n", " (value is number of files per split).\n", " download_dir: Directory to download data to.\n", "\n", " Return:\n", " dir: Posix path of the resulting directories containing the splits of data.\n", " \"\"\"\n", " files = list_files_per_class(zip_url)\n", " for f in files:\n", " tokens = f.split('/')\n", " if len(tokens) <= 2:\n", " files.remove(f) # Remove that item from the list if it does not have a filename\n", " \n", " files_for_class = get_files_per_class(files)\n", "\n", " classes = list(files_for_class.keys())[:num_classes]\n", "\n", " for cls in classes:\n", " new_files_for_class = files_for_class[cls]\n", " random.shuffle(new_files_for_class)\n", " files_for_class[cls] = new_files_for_class\n", " \n", " # Only use the number of classes you want in the dictionary\n", " files_for_class = {x: files_for_class[x] for x in list(files_for_class)[:num_classes]}\n", "\n", " dirs = {}\n", " for split_name, split_count in splits.items():\n", " print(split_name, \":\")\n", " split_dir = download_dir / split_name\n", " split_files, files_for_class = split_class_lists(files_for_class, split_count)\n", " download_from_zip(zip_url, split_dir, split_files)\n", " dirs[split_name] = split_dir\n", "\n", " return dirs\n", "\n", "def format_frames(frame, output_size):\n", " \"\"\"\n", " Pad and resize an image from a video.\n", " \n", " Args:\n", " frame: Image that needs to resized and padded. \n", " output_size: Pixel size of the output frame image.\n", "\n", " Return:\n", " Formatted frame with padding of specified output size.\n", " \"\"\"\n", " frame = tf.image.convert_image_dtype(frame, tf.float32)\n", " frame = tf.image.resize_with_pad(frame, *output_size)\n", " return frame\n", "\n", "def frames_from_video_file(video_path, n_frames, output_size = (224,224), frame_step = 15):\n", " \"\"\"\n", " Creates frames from each video file present for each category.\n", "\n", " Args:\n", " video_path: File path to the video.\n", " n_frames: Number of frames to be created per video file.\n", " output_size: Pixel size of the output frame image.\n", "\n", " Return:\n", " An NumPy array of frames in the shape of (n_frames, height, width, channels).\n", " \"\"\"\n", " # Read each video frame by frame\n", " result = []\n", " src = cv2.VideoCapture(str(video_path)) \n", "\n", " video_length = src.get(cv2.CAP_PROP_FRAME_COUNT)\n", "\n", " need_length = 1 + (n_frames - 1) * frame_step\n", "\n", " if need_length > video_length:\n", " start = 0\n", " else:\n", " max_start = video_length - need_length\n", " start = random.randint(0, max_start + 1)\n", "\n", " src.set(cv2.CAP_PROP_POS_FRAMES, start)\n", " # ret is a boolean indicating whether read was successful, frame is the image itself\n", " ret, frame = src.read()\n", " result.append(format_frames(frame, output_size))\n", "\n", " for _ in range(n_frames - 1):\n", " for _ in range(frame_step):\n", " ret, frame = src.read()\n", " if ret:\n", " frame = format_frames(frame, output_size)\n", " result.append(frame)\n", " else:\n", " result.append(np.zeros_like(result[0]))\n", " src.release()\n", " result = np.array(result)[..., [2, 1, 0]]\n", "\n", " return result\n", "\n", "class FrameGenerator:\n", " def __init__(self, path, n_frames, training = False):\n", " \"\"\" Returns a set of frames with their associated label. \n", "\n", " Args:\n", " path: Video file paths.\n", " n_frames: Number of frames. \n", " training: Boolean to determine if training dataset is being created.\n", " \"\"\"\n", " self.path = path\n", " self.n_frames = n_frames\n", " self.training = training\n", " self.class_names = sorted(set(p.name for p in self.path.iterdir() if p.is_dir()))\n", " self.class_ids_for_name = dict((name, idx) for idx, name in enumerate(self.class_names))\n", "\n", " def get_files_and_class_names(self):\n", " video_paths = list(self.path.glob('*/*.avi'))\n", " classes = [p.parent.name for p in video_paths] \n", " return video_paths, classes\n", "\n", " def __call__(self):\n", " video_paths, classes = self.get_files_and_class_names()\n", "\n", " pairs = list(zip(video_paths, classes))\n", "\n", " if self.training:\n", " random.shuffle(pairs)\n", "\n", " for path, name in pairs:\n", " video_frames = frames_from_video_file(path, self.n_frames) \n", " label = self.class_ids_for_name[name] # Encode labels\n", " yield video_frames, label" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2023-11-07T18:08:41.534057Z", "iopub.status.busy": "2023-11-07T18:08:41.533827Z", "iopub.status.idle": "2023-11-07T18:09:41.649892Z", "shell.execute_reply": "2023-11-07T18:09:41.649220Z" }, "id": "OYY7PkdJFM4Z" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "train :\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\r", " 0%| | 0/300 [00:00 (b t) h w c')\n", " images = self.resizing_layer(images)\n", " videos = einops.rearrange(\n", " images, '(b t) h w c -> b t h w c',\n", " t = old_shape['t'])\n", " return videos" ] }, { "cell_type": "markdown", "metadata": { "id": "Z9IqzCq--Uu9" }, "source": [ "使用 [Keras 函数式 API](https://tensorflow.google.cn/guide/keras/functional) 构建残差网络。" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2023-11-07T18:09:44.008235Z", "iopub.status.busy": "2023-11-07T18:09:44.007670Z", "iopub.status.idle": "2023-11-07T18:09:46.027062Z", "shell.execute_reply": "2023-11-07T18:09:46.026158Z" }, "id": "_bROfh_K-Wxs" }, "outputs": [], "source": [ "input_shape = (None, 10, HEIGHT, WIDTH, 3)\n", "input = layers.Input(shape=(input_shape[1:]))\n", "x = input\n", "\n", "x = Conv2Plus1D(filters=16, kernel_size=(3, 7, 7), padding='same')(x)\n", "x = layers.BatchNormalization()(x)\n", "x = layers.ReLU()(x)\n", "x = ResizeVideo(HEIGHT // 2, WIDTH // 2)(x)\n", "\n", "# Block 1\n", "x = add_residual_block(x, 16, (3, 3, 3))\n", "x = ResizeVideo(HEIGHT // 4, WIDTH // 4)(x)\n", "\n", "# Block 2\n", "x = add_residual_block(x, 32, (3, 3, 3))\n", "x = ResizeVideo(HEIGHT // 8, WIDTH // 8)(x)\n", "\n", "# Block 3\n", "x = add_residual_block(x, 64, (3, 3, 3))\n", "x = ResizeVideo(HEIGHT // 16, WIDTH // 16)(x)\n", "\n", "# Block 4\n", "x = add_residual_block(x, 128, (3, 3, 3))\n", "\n", "x = layers.GlobalAveragePooling3D()(x)\n", "x = layers.Flatten()(x)\n", "x = layers.Dense(10)(x)\n", "\n", "model = keras.Model(input, x)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { "iopub.execute_input": "2023-11-07T18:09:46.030801Z", "iopub.status.busy": "2023-11-07T18:09:46.030556Z", "iopub.status.idle": "2023-11-07T18:09:47.478917Z", "shell.execute_reply": "2023-11-07T18:09:47.478193Z" }, "id": "TiO0WylG-ZHM" }, "outputs": [], "source": [ "frames, label = next(iter(train_ds))\n", "model.build(frames)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "execution": { "iopub.execute_input": "2023-11-07T18:09:47.483203Z", "iopub.status.busy": "2023-11-07T18:09:47.482562Z", "iopub.status.idle": "2023-11-07T18:09:47.679097Z", "shell.execute_reply": "2023-11-07T18:09:47.678280Z" }, "id": "GAsKrM8r-bKM" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAULCAYAAACd3Y4OAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeVQUV9o/8G8je7WgQtgdlZCICxKNyzsyIOAYEyGiEQR5xai4kDHuDKgBIRGDUcc4TBw1OriQY3AJI6MiSk40ghLjTOIKoqhxRFkEAdkEgef3h7+u1xbobpqlG30+53AOVbfq3uferm4eqqvqSoiIwBhjjDHGtM1DHU1HwBhjjDHGmseJGmOMMcaYltLVdADs5bRz506cOHFC02F0STU1NQAAIyMjDUfSccrKymBiYgIdHf5fkWnGP/7xD5iYmGg6DMaU4kSNdYhffvkFXl5eGDFihKZD6XK+/fZbAMC0adM0HEnHmTlzJlavXo1evXppOhT2Cpo1axaePHnCiRrrEjhRYx2mb9++GDRokKbD6HKsra0B4KUeO0EQ0L9/f1hYWGg6FPYKMjY21nQIjKmMv3dgjGkdQ0NDSCQSuLu7y63Pzc3F6tWrNRMU0yoFBQVYuXIlnjx5AgAoLi6GRCKBRCJBQECAhqNjrP1wosa03syZM5GcnNzh7Xh7e2P37t0qbVtWVoZ169ahX79+2LZtW8cGpkRnjQ/QujFqq+zsbJw+fVpcLi8vR1BQEBYvXoxt27ZBIpFAT08P6enp4jYFBQXiH2tDQ8NOibM5io6PmpoafPjhhxAEAXZ2dti1a5dKdRIREhIS4OjoCCMjI7z11ltISUlRuVzmypUrMDQ0xDfffKPV7QLAxYsXMWHCBBgZGeF3v/sd/vKXv4hlVlZWGDlyJBYtWgQAMDc3BxEhNjZW5foZ6wo4UWNab/fu3fDx8dF0GHLS0tLw3nvvwdbWVtOhaOX4dIS4uDiMGzcOZmZmCAkJQXp6OhoaGhAQEICioiIAz/54ExHGjx8vnmnRBEXHx6effopbt24hNzcXe/fuxcKFC3HlyhWldd69exdxcXE4ceIESkpKEBQUhA8++AB5eXkqlQNAbW0tYmNj0adPH5X7oql2AWDevHmIiIhAeXk59uzZg1WrVuGnn34SyydPnoyMjAxkZWW1ql7GuhJO1JhWW7JkCSQSCUJDQ+WWP/74Y/j4+EAqlcLX11f8gy3b1t3dHVKpFJMnT0ZZWRkAwNfXFxKJRDwj5O7uDolEgu+//x4BAQE4duwYZs2aBYlEovQsmZ+fH5ydnTu076pozfgAUDhGisZHtm9rxqi9fffddxg9erTcuvnz56OhoQGBgYFobGxsdr8bN27A09MTJiYmcHZ2RlpaGgDlY5WTkwN3d3cIggAnJydkZmaqHGtLx0djYyN27tyJyMhIWFtbw9PTEz4+PtixY4fSOvv27YsLFy6gT58+MDY2xvLly6Gnp4erV6+qVA4AMTExiIqKatUdxZpqFwB+/vlnjB49Gvr6+vDw8EC/fv3w3//+V24bFxcXHDx4sFX1MtaV8M0ETKtt3rwZhoaGqK+vl1s+ePAgDh8+jC1btmDEiBFIS0tDYmIipFIpDh8+jMOHD8PCwgJ+fn4ICwvD119/jUOHDsHb21us+/Tp03jrrbcAAImJiaisrISvry9mzpypia6qpTXj8+677yocI0XjA2h+jHJzc2FpaSm3ztbWFgcOHMDYsWMRFRWFNWvWyJXX1dVhwoQJmDZtGg4fPowTJ05g4sSJyM7OVjhWnp6e8PLywocffoijR4/in//8J/z8/HD79m3o6+ur3YfCwkKUlJTAyclJXDdkyBAxeWyNx48fg4gwbNgwlcrT0tLg5OSE/v37qxe8BtutqalBcnIyamtrMW7cOLkyKysr5Obmql03Y9qOz6ixLsnNzQ1OTk6ws7PDyJEjcfv2bbFs0qRJGDx4MCwsLLBs2TIkJiZqMFLNUDQ+QPuOUWhoKObNm9fWkBV6+vQpqqqqmr1bz83NDevXr8fatWuRmpoqV5aeno4HDx4gMjISJiYm8PPzw9ChQ7Fv3z65/V8cq/T0dBQWFmLVqlWQSqUICgqCVCrFyZMn29SP4uJiAJB7LISJiQkePnzY6rq++OILREdHt3jn7PPlJSUluHDhAqZOnape4BpsNzc3F8bGxli0aBH++te/omfPnnLlgiDg0aNHatfPmLbjRI11SWZmZuLvRkZGqKura7bM2toaFRUVqKqq6tT4NE3R+LxY3tYxamxsREdPGaynpwdBEFBdXd1s+dKlS+Hv74/p06fj3r174vq8vDyYm5vLnQWztbWVu36qubHKy8tDZWUldHV1xZsTcnJycOvWrTb1w9zcHMCzs04yjx8/xmuvvdaqeuLj41FaWip+5a2sPCYmBp988onYl0uXLiEoKAgSiaRV1/Jpol0HBwfU1dUhJSUFS5Yswd69e+XKq6qq+Hl87KXGiRp76RQWFoq/5+fno3v37hAEAQCgr68vPvkf+L8zHAAgkUg6L0gNa2mMFI0P0PwYbdq0SaVrrNrKwcFBLu4X7dy5E9bW1pg6dap4nVnv3r1RXFwsl6jev38fdnZ2Ctvq3bs3zMzMQERyP4sXL25THywtLWFmZiZ3/dbly5cxcOBAlevYs2cPzp8/jy1btqhc/uWXX8r1w9nZGQkJCSAile+O1VS7wLNEffjw4fDz88OhQ4fkygoKCuDg4KByXYx1NZyosZdOSkoKLl++jKKiImzatEnumUr29vZITU1FZWUl9u3bh4qKCrGsZ8+euHPnDn744YeXelYAoOUxUjQ+QPNj1BlffQLAlClTcO7cuRbLBUFAUlISsrOzUVpaCgBwdXWFjY0N1q5di4qKCiQlJeHXX39FYGCgwrZcXV3Ro0cPbN68GZWVlcjKysKoUaNw8eLFNvVBR0cHc+bMQUxMDAoKCnDq1CkkJydj7ty5Ku2fkJCAjIwM8fEkGRkZ2Lhxo8rl6tJEu8XFxXBycsKNGzfw9OlTXLt2DcnJyXB0dJTb7uzZs/Dz82tTW4xpNWKsA3z00Ud06tSpNtezePFiAkAAaPHixRQVFSUur1mzhhYsWCAu79ixg4KDg2nFihXk6elJgiCQj48PlZaWivXduXOHhg4dSlKplD7//HNydnYmAHT8+HE6deoUWVhYkJWVFZ05c0ZhXEeOHBHbBUCmpqZt7qvMV199RV999ZVK27Z2fIhI4RgpGh8ianaMli5dSnPmzGlVH8eMGUOFhYUtlhsYGFB2drbcurKyMho1ahQVFxfT1q1bxX75+/vLbZecnEwjRowQl69fv04eHh4klUrJycmJTpw4QUSkdKxycnLIw8ODBEGgvn37Unx8vFjnihUraMGCBS3Gr+j4qK6uphkzZpCxsTHZ2NjI1auo7ps3b5KOjo5cvQBow4YNKpUTEWVmZsqVubi4aG27RET79++n4cOHk5GREdnY2FBISAhVVVWJ5UlJSTR37ly5fWJjY5scEy9SdvwxpkWKOFFjHaK9ErXWCg4OptjY2E5vtz21JlFThzaMkSqJGgAaM2aM3PqbN29SZGRkB0ennIuLi5jwdaW6X6Z28/PzKTw8nGpqaoiI6OHDhy0m7y/iRI11IUX8eA7GmNZp6UJzBwcHfPbZZ50cjbyjR4/Cw8MD77zzTpeq+2Vr18rKCuvWrROXZTMTMPay4USNvTQCAgKwf/9+AEB9fT0iIiLaVF9LNxd05T8G7T1GryJvb2+55811lbq5Xca6Jk7U2EsjMTGxXZ+Z1pUTspa09xgxxhjrWHzXJ2OMMcaYluJEjTHGGGNMS/FXn6xD1NTUYPfu3Th9+rSmQ+lyLly4AABqTSvUVeTl5WHDhg3ig4gZ60wv83uLvXw4UWMdolu3brCzs2vVE9fZM7IpkF7msTMyMsKbb74JU1NTTYfCXkEGBgaaDoExlXGixjqEvr4+3N3d4e7urulQuhzZf/vtMYG2tvr73/8OHx+fFif2Zqwj/f3vf9d0CIypjK9RY4wxxhjTUpyoMca0jqGhISQSSZMzsrm5uVi9erVmgmJapaCgACtXrhQfjlxcXAyJRAKJRCI3vy9jXR0nakwjEhMTxQ9ViUSC4uLiDmvL29sbu3fv1kjb2ubFsdC2+p6XnZ0tdzNKeXk5goKCsHjxYnHybz09PaSnp4vbFBQUiK+roaFhh8SlirKyMqxbtw79+vXDtm3b5Mpqamrw4YcfQhAE2NnZYdeuXSrVSURISEiAo6MjjIyM8NZbbyElJUXlcpkrV67A0NAQ33zzjVa3CwAXL17EhAkTYGRkhN/97nf4y1/+IpZZWVlh5MiRWLRoEYD/m5kgNjZW5foZ6wo4UWMaERAQgMzMTBgYGICIYG5u/kq0zdQXFxeHcePGwczMDCEhIUhPT0dDQwMCAgJQVFQE4NkfbyLC+PHjW5yGqjOkpaXhvffeg62tbZOyTz/9FLdu3UJubi727t2LhQsX4sqVK0rrvHv3LuLi4nDixAmUlJQgKCgIH3zwAfLy8lQqB4Da2lrExsaiT58+KvdFU+0CwLx58xAREYHy8nLs2bMHq1atwk8//SSWT548GRkZGcjKympVvYx1JZyoMa2wZMkSSCQSfPzxx/Dx8YFUKoWvr6/4h1gikSA0NBTu7u6QSqWYPHkyysrKAAC+vr6QSCTimR13d3dIJBJ8//33CAgIwLFjxzBr1ixIJJImZzdakpKSgiFDhqBHjx7w9/dHeXk5njx5Ip6tGTx4MAAgJCRE7iu6nJwcuLu7QxAEODk5ITMzU+zbokWL4O/vDwMDA/zxj39s03jduHEDnp6eMDExgbOzM9LS0tQaC02Mrbq+++47jB49Wm7d/Pnz0dDQgMDAQDQ2Nja7X0tjpeiYA5p/LVXl5+cHZ2fnJusbGxuxc+dOREZGwtraGp6envDx8cGOHTuU1tm3b19cuHABffr0gbGxMZYvXw49PT1cvXpVpXIAiImJQVRUFIyMjFTui6baBYCff/4Zo0ePhr6+Pjw8PNCvXz/897//ldvGxcUFBw8ebFW9jHUlnKgxrbB582aEh4fj+PHjiImJwfXr13H27FmkpaUhMTERwcHBOHz4ML766ivcvn0bjx49QlhYGADg0KFD8PLyEus6ffq0+EcyMTERXl5e2LVrF4gIISEhKsWzZs0a7N+/H3fv3oUgCFizZg0MDQ1x/fp1GBsb49y5cwCAbdu2YcKECTh9+jTq6urg5eWFsWPHorCwEGFhYfDz88P69esRHh6Oo0ePYvny5bh06RL09PTUHqu6ujpMmDABLi4uyMvLQ0REBCZOnIjffvut1WOhibFVV25uLiwtLeXW2dra4sCBA/jxxx8RFRXVZB9FY6XomGvptayrq2tTHwoLC1FSUgInJydx3ZAhQ9Q6I/T48WMQEYYNG6ZSeVpaGpycnNC/f3/1gtdguzU1NUhMTERtbS3GjRsnV2ZlZYXc3Fy162ZM23GixrSKm5sbnJycYGdnh5EjR+L27dti2aRJkzB48GBYWFhg2bJlHTpnZWZmJgYMGABTU1PMnj0bZ86cAQD0798f/fv3x7fffgsAOHv2LN5++20AQHp6OgoLC7Fq1SpIpVIEBQVBKpXi5MmTAIA//OEPGDlyJBwdHXH8+HG1Y0tPT8eDBw8QGRkJExMT+Pn5YejQodi3b5/adbbn2IaGhmLevHlq79+cp0+foqqqCsbGxk3K3NzcsH79eqxduxapqalyZaqMVXPHnLLXUl2y6yFNTEzEdSYmJmo9gPWLL75AdHR0i484eb68pKQEFy5caJdHvnR2u7m5uTA2NsaiRYvw17/+FT179pQrFwQBjx49Urt+xrQdJ2pMq5iZmYm/GxkZyZ3BeL7M2toaFRUVqKqqavcYiAhhYWGwsrKCjo4OXF1dUVpaKpYHBgYiPj4eALBr1y787//+L4BnT9uvrKyErq6u+BVpTk4Obt26BQDt9sywvLw8mJubQ19fX1xna2srd01Qa7Xn2DY2Nrb7hPZ6enoQBAHV1dXNli9duhT+/v6YPn26+MBgQLWxau6YU/Zaqkt2PeTjx4/FdY8fP8Zrr73Wqnri4+NRWlqK0NBQlcpjYmLwySefiH25dOkSgoKCIJFIWnUtnybadXBwQF1dHVJSUrBkyRLs3btXrryqqgq9evVSuQ+MdTWcqLEuo7CwUPw9Pz8f3bt3F6cg0tfXR01NjVj+/J2cEomkVe0cO3YM8fHxOH36NBoaGpCZmSmXeEybNg3//ve/cf78edy5c0f8Sqd3794wMzMDEcn9LF68WK3+tqR3794oLi6WS2Lv378POzs7AOqNRXuO7aZNm1S65qq1HBwc5OJ80c6dO2FtbY2pU6eK15kpG6uWdNRraWlpCTMzM7nrty5fvtyqWSj27NmD8+fPY8uWLSqXf/nll3L9cHZ2RkJCAohI5btjNdUu8CxRHz58OPz8/HDo0CG5soKCAjg4OKhcF2NdDSdqrMtISUnB5cuXUVRUhE2bNsk9K8ne3h6pqamorKzEvn37UFFRIZb17NkTd+7cwQ8//IBp06a1WP+TJ08wadIkNDY2ij9PnjzBsWPH5LaztbWFq6srAgMDMXHiRHG9q6srevTogc2bN6OyshJZWVkYNWoULl682I6j8KwdGxsbrF27FhUVFUhKSsKvv/6KwMBAtceiPce2I776BIApU6aI1wY2RxAEJCUlITs7WzwDqmysWtJRr6WOjg7mzJmDmJgYFBQU4NSpU0hOTsbcuXNV2j8hIQEZGRni40kyMjKwceNGlcvVpYl2i4uL4eTkhBs3buDp06e4du0akpOT4ejoKLfd2bNn4efn16a2GNNqxFgH+Oijj+jUqVMtln/77bcEQPxZsGCB+PuaNWvklnfs2EHBwcG0YsUK8vT0JEEQyMfHh0pLS8X67ty5Q0OHDiWpVEqff/45OTs7EwA6fvw4nTp1iiwsLMjKyorOnDnTpO3nf3x8fKi+vp5mz55N3bt3pzfeeIMiIiIIADk7O4vtbd++nbp160b5+fly/crJySEPDw8SBIH69u1L8fHxFBUVJdb/9ttvKx27r776ir766iuF21y/fp08PDxIKpWSk5MTnThxQq2xIKJ2HVsioqVLl9KcOXMUxj9mzBgqLCxssdzAwICys7Pl1pWVldGoUaOouLiYtm7dKo6pv7+/3HbJyck0YsQIpWP1/OvS3DHX3Gsps2LFClqwYEGL8R85ckTuuDI1NRXLqquracaMGWRsbEw2NjZy9Sqq++bNm6Sjo9PkmN2wYYNK5UREmZmZcmUuLi5a2y4R0f79+2n48OFkZGRENjY2FBISQlVVVWJ5UlISzZ07V26f2NjYJsfEi5Qdf4xpkSJO1FiHUJaotVZwcDDFxsa2W31tlZ+fT+PHj++QulVJ1NqTJsZWlUQNAI0ZM0Zu/c2bNykyMrKDo1POxcVFLjnuKnW/TO3m5+dTeHg41dTUEBHRw4cPW0zeX8SJGutCinhSdsbUcObMGfEmAtb+WrrQ3MHBAZ999lknRyPv6NGj8PDwwDvvvNOl6n7Z2rWyssK6devEZdnMBIy9bDhRY1ovICAA+/fvBwDU19cjIiJCY7HMmTMHu3btwpgxY5o8CqIr0qax7Sq8vb3h7e3d5ermdhnrmjhRY1ovMTGxQ5+Z1ho7d+7Ezp07NR1Gu9GmsWWMMdYU3/XJGGOMMaal+Iwa6zCnT58WJ8tmqvvll18AAAcOHNBwJB3n4cOHSE5OhqmpqaZDYa8gdWaCYExTJMRXX7IOcOzYMVy4cEHTYXRJ9fX1AABd3Zf3/6ja2lro6+ur/DDi77//Hm+//XaT6YMYU9ef//xn8aHOjGmxh5yoMca03tSpUxEVFYVBgwZpOhTGGOtMD/kaNcYYY4wxLcWJGmOMMcaYluJEjTHGGGNMS3GixhhjjDGmpThRY4wxxhjTUpyoMcYYY4xpKU7UGGOMMca0FCdqjDHGGGNaihM1xhhjjDEtxYkaY4wxxpiW4kSNMcYYY0xLcaLGGGOMMaalOFFjjDHGGNNSnKgxxhhjjGkpTtQYY4wxxrQUJ2qMMcYYY1qKEzXGGGOMMS3FiRpjjDHGmJbiRI0xxhhjTEtxosYYY4wxpqUkRESaDoIxxl60cOFC7NmzB926dUN9fT26desGiUSCxsZGXL9+HdbW1poOkTHGOtpDPqPGGNNKkydPhp6eHsrKylBZWYny8nKUlZWhd+/enKQxxl4ZnKgxxrSSu7s7dHV15dYZGhoiJCREQxExxljn40SNMaaVdHR0MHHiREgkEnGdIAgICAjQYFSMMda5OFFjjGmtefPmwczMTFx2cHCAubm5BiNijLHOxYkaY0xrjRgxAvr6+gCenU1bsGCBhiNijLHOxYkaY0yrBQYGolu3bjA0NMTkyZM1HQ5jjHUqTtQYY1otODgYenp6GDZsGKRSqabDYYyxTqWrfBPGmnfw4EFcu3ZN02G8cp4+fQodHR1069ZN06F0mCdPnsDQ0FBcFgQBvXr1QnR0tOaCYq+MBQsW4LXXXtN0GIwB4ESNtcGBAwfw+9//HnZ2dpoO5ZVy8OBB2NnZ4fe//72mQ+kwy5Ytw6ZNm8RlX19fuLq6Qk9PT4NRsVfBl19+CT8/P07UmNbgRI21yfjx4zFo0CBNh/FKycrKwsCBAzF16lRNh9JhoqOj5frn5+cn95gOxjrKwYMHNR0CY3L4GjXGmNbjJI0x9qriRI2xFgQEBEAikWDdunWd1ubw4cMhkUhw9OjRTmvzZZGbm4vVq1drOgymBQoKCrBy5Uo8efJE06Ew1macqLGXAhEhISEBjo6OMDIywltvvYWUlJQ21ZmYmIjg4OA2x1ZWVoZ169ahX79+2LZtm8Jt//3vf2PUqFFtbvN5M2fORHJycrvW2RJvb2/s3r27U9p6Xnl5OYKCgrB48WJs27YNEokEenp6SE9PF7cpKCiARCKBRCKRu1Ghsyk7HmpqavDhhx9CEATY2dlh165dKtWr6D3QmvfHlStXYGhoiG+++Uar2wWAixcvYsKECTAyMsLvfvc7/OUvfwEAWFlZYeTIkVi0aJHKdTGmrThRYy+Fu3fvIi4uDidOnEBJSQmCgoLwwQcfIC8vT9OhIS0tDe+99x5sbW010v7u3bvh4+OjkbY7S1xcHMaNGwczMzOEhIQgPT0dDQ0NCAgIQFFREYBnf7yJCOPHj9fomRZlx8Onn36KW7duITc3F3v37sXChQtx5coVpfUqeg+o+v6ora1FbGws+vTpo3J/NNUu8GzmioiICJSXl2PPnj1YtWoVfvrpJwDA5MmTkZGRgaysrFbVyZi24USNdZgbN27A09MTJiYmGD58OI4dO9ZsmbOzM9LS0gAAS5YsgUQiwccffwwfHx9IpVL4+vqiqqpKPBsyePBgAEBISAgkEgnc3d3Rt29fXLhwAX369IGxsTGWL18OPT09XL16tcX4ZF9thoaGwt3dHVKpFJMnT0ZZWVmTbX19fSGRSMSzRe7u7pBIJPj+++/FbVauXAlzc3NYWFhg48aNaGhoAPDsQnhnZ+cW48jMzMTgwYNhYmLS7o+fkI1naGio3PKL4yuLVdGYKBuDgIAAHDt2DLNmzYJEIlF69rA9fffddxg9erTcuvnz56OhoQGBgYFobGxsdr/WHoeycQKAnJwcuLu7QxAEODk5ITMzU6VYFR0PjY2N2LlzJyIjI2FtbQ1PT0/4+Phgx44dSutV9B5Q9f0RExODqKgoGBkZqdQXTbYLAD///DNGjx4NfX19eHh4oF+/fvjvf/8rlru4uPDNAazL40SNdYi6ujpMmDABrq6uyM/PR0JCApYtWyZX5uLigry8PERERGDixIn47bffsHnzZoSHh+P48eOIiYnB9evXcfbsWaSnp+PmzZsQBAHnzp0DAGzbtg3vv/8+Tp8+3aT9x48fg4gwbNiwFmOUfbV5+PBhfPXVV7h9+zYePXqEsLCwJtseOnQIXl5e4vLp06fl/tj+/PPPOHz4MLKysnDz5k389NNP+PXXX5WOU01NDSZPnoxp06bh/v37sLW1RXZ2ttL9VCUbzxeXXxxfWYKiaEyUjUFiYiK8vLywa9cuEBFCQkLarR/K5ObmwtLSUm6dra0tDhw4gB9//BFRUVFN9lHnOJSNU11dHby8vDB27FgUFhYiLCwMfn5+qKura1M/CgsLUVJSAicnJ3HdkCFD1DorpOg90FxZWloanJyc0L9/f/WC12C7NTU1SExMRG1tLcaNGyeut7KyQm5urtr1MqYNOFFjHSI9PR0PHjxAREQEBEHAgAEDkJOTI1cWGRkJExMT+Pn5YejQodi3b5+4v5ubG5ycnGBnZ4eRI0fi9u3bcHBwwLBhw/Dtt98CAM6ePdvkLIrMF198gejoaFhYWCiNddKkSRg8eDAsLCywbNkyJCYmtrq/urq6KC4uxrlz52BkZIRDhw5h+PDhSvc7c+YMKioqEBYWhu7du2Pu3Lno0aNHq9tvrebG93ntMSYyoaGhmDdvXltDbtHTp09RVVUFY2PjJmVubm5Yv3491q5di9TUVLkydY9D2b6FhYVYtWoVpFIpgoKCIJVKcfLkyTb1pbi4GABgYmIirjMxMcHDhw9bXZei98CLZSUlJbhw4UK7PPKls9vNzc2FsbExFi1ahL/+9a/o2bOnWCYIAh49eqR23YxpA07UWIfIy8uDubl5sw8olZXJJtsGnp39eP66FTMzM/F3IyMj8UzF7NmzER8fDwBISEjAjBkzmtQfHx+P0tJS8es+ZZ5vy9raGhUVFaiqqlJpX5lhw4Zhw4YNCAsLg4WFBUJDQ1FbW6t0v/z8fJiZmcmNk5WVVavaVkdL49tcubpjItPY2AgiUi9QFejp6UEQBFRXVzdbvnTpUvj7+2P69Om4d++euL4tx2FeXh4qKyuhq6srfiWfk5ODW7dutakv5ubmAJ6deZJ5/Phxqx++qug90FxZTEwMPvnkE7Evly5dQlBQECQSSauu59NEuw4ODqirq0NKSgqWLFmCvXv3imVVVVXo1auXyvEzpo04UWMdonfv3iguLsbTp09bLHs+OWhtUTEAACAASURBVLh//75KMxz4+fkhOzsb58+fx+PHj2FjYyNXvmfPHpw/fx5btmxROdbCwkLx9/z8fHTv3h2CIDTZTl9fHzU1NeKy7OyHzMyZM3Hjxg2kpaUhNTVVpWu0rK2tUVJSIjdO6pw9aW8tjYmyMWjueWebNm1S6RqrtnBwcJCL+UU7d+6EtbU1pk6dKl5n1pbjsHfv3jAzMwMRyf0sXry4Tf2wtLSEmZmZ3DVcly9fxsCBA1WuQ9F7oKWyL7/8Uq4fzs7OSEhIABGpfIesptoFniXrw4cPh5+fHw4dOiSuLygogIODg8r1MKaNOFFjHcLV1RU2NjZYu3YtqqqqcPHiRfTv3x81NTVyZRUVFUhKSsKvv/6KwMBApfUKgoCpU6ciMDAQvr6+cmUJCQnIyMgQH8+QkZGBjRs3Kq0zJSUFly9fRlFRETZt2oSAgIBmt7O3t0dqaioqKyuxb98+VFRUiGWHDh3CkiVLUFlZCXt7e7kzMYq4ubmhe/fuWL9+PSorK7F7924UFBSotG9HamlMFI0BAPTs2RN37tzBDz/8gGnTpgHo+K8+AWDKlCnitYvNEQQBSUlJyM7ORmlpKQC06Th0dXVFjx49sHnzZlRWViIrKwujRo3CxYsX29QPHR0dzJkzBzExMSgoKMCpU6eQnJyMuXPnqrS/oveAuu8PbW23uLgYTk5OuHHjBp4+fYpr164hOTkZjo6O4jZnz56Fn59fm9tiTKOIMTX5+vrS1atXWyy/fv06eXh4kCAI5OjoSGlpaU3KpFIpOTk50YkTJ4iIKCoqigAQAFqzZg0tWLBAXN6xYwcREZ07d47Mzc2prq5OrO/mzZuko6Mjbiv72bBhg8I+BAcH04oVK8jT05MEQSAfHx8qLS0lIiJ/f3+5WO7cuUNDhw4lqVRKn3/+OTk7OxMAOn78OFVXV1NYWBjZ2NiQqakpTZ8+naqrq4mI6MiRI3IxmZqaysVw9uxZGjhwIAmCQH/+859p1KhRBIAOHjzYbMxRUVG0f/9+hf2SWbx4sdju4sWLVRpfRWOiaAyIiE6dOkUWFhZkZWVFZ86cISKipUuX0pw5c1SKV2bAgAGt2r6srIxGjRpFxcXFtHXrVrFP/v7+ctslJyfTiBEjxOW2HIc5OTni8d23b1+Kj48X612xYgUtWLCg2ViVHQ/V1dU0Y8YMMjY2JhsbG5XrVfQeUPX9kZmZKVfu4uKite0SEe3fv5+GDx9ORkZGZGNjQyEhIVRVVUVERElJSTR37twW922Jss81xjpZESdqTG0vwwdacHAwxcbGajqMVmlNoqYObRiT1iZqRM8ShsjIyA6IpvVcXFzEpK8r1PuytZufn0/h4eFUU1PT6n1fhs819lIp4knZGWMvBQcHB3z22WeaDgNHjx6Fh4cH3nnnnS5R78vYrpWVVadO/cZYR+JEjb30WprQ29/fH/v37wcA1NfXIyIiojPD0koBAQE8Jm3k7e0Nb2/vLlMvt8uYduNEjb30SMGjIdryfLCXUWJiIo8JY4xpEb7rkzHGGGNMS/EZNaa22tpapKam4tq1a5oO5ZWSnZ2N8vJyTYfRoSoqKnDgwAFNh8FeQdrwHEPGnseJGlNbfX09bt++3eRZWqxjFRcXo7GxUa35H7uKp0+fvtT9Y9pL3Rk4GOsonKgxtQmCgD/96U8YNGiQpkN5pURHR2PgwIHtMi+jtjpw4ACio6M1HQZ7BfE3BEzb8DVqjDHGGGNaihM1xp4TEBAAiUTCz2DqAnJzc7F69WpNh8G6gIKCAqxcubJVE8wzpi04UWMd6uTJk3B1dYWxsTGsrKzg7e2Nf/3rX2hsbOyQ9ogICQkJcHR0hJGREd566y2kpKSI5YmJiZBIJHI/tra2WLlyJRobG5GYmIjg4OB2iaWsrAzr1q1Dv3795CZofzEGAwMDvPnmm/jzn/+MsrKydmlbXd7e3ti9e7fW1idTXl6OoKAgcRJ02TySenp6SE9PF7crKCgQx7k1k3y3p5aOA5mamhp8+OGHEAQBdnZ22LVrl0r1KjrWlb0PnnflyhUYGhrim2++0ep2AeVjGRcXB3t7e5iammLmzJni+8nKygojR47EokWLVG6LMW3BiRrrMImJifD390dISAju37+P27dvIyIiAtHR0fj55587pM27d+8iLi4OJ06cQElJCYKCgvDBBx8gLy8PwLMzZpmZmTAwMAARob6+Hvv378eWLVvwj3/8o11jSUtLw3vvvQdbW1u59S/GUFBQgK1bt+L06dMYNWoUHj161K5xvIzi4uIwbtw4mJmZAQBCQkKQnp6OhoYGBAQEoKioCMCzP9BEhPHjx2vsbEpLx4HMp59+ilu3biE3Nxd79+7FwoULceXKFaX1KjrWlb0PZGpraxEbG4s+ffqo3B9NtQsoHsvt27fj66+/xuHDh5Gfnw8LCwu5JHDy5MnIyMjgm1RY16Ox2atYl6doTrza2lqysLCgzZs3K6xDNrF19+7daciQIXTy5Eki+r/JxBcsWEATJ04kQRBoypQpVF9fTzU1NeLkzYMGDSIiovnz5xMAGjNmTJM2pFKpOGk40bMJoA0MDOS2cXd3p/nz5xOR/FyXU6ZMIQC0a9cuIiIaM2YMARAnmF+xYgWZmZnRa6+9Rhs2bKD6+vom7bu4uNDWrVvl1jUXQ1lZGVlbW1NoaKjCMVNlrs/mxlVZX56fhB4Abd26VVy3fPlyGjNmDAmCQJMmTaLS0lK16lOVsrk+nZ2d5V5TIqL09HQKCQkhS0tLGjt2LDU0NIhl48ePVzg2RIqPOaJnE7iPGTOGjI2NafDgwXTu3DmV+0PU/HHQ0NBAZmZmlJqaKq4LDAykhQsXtqpumRePdWVlERERdP36dXJ2dqaEhAS12tREu82NZd++feno0aMK95szZw5FR0cr3Ibn+mRapojPqLEO8e9//xtFRUV4//33W9ymrq4OEyZMgIuLC/Ly8hAREYGJEyfit99+w+bNmxEeHo7jx48jJiYG169fx9mzZ5GWlgZDQ0PcvHkTgiDg3LlzAJ599fX+++/j9OnTcm08fvwYRIRhw4Y1G0NDQwPOnTuH//znP3j77beblB86dAheXl7i8unTp+Hs7AwA+Pnnn3H48GFkZWXh5s2b+Omnn/Drr7+2dqhEpqam8PX1bfGrIlW1NK4bN25ssS/AszOgXl5e2LVrF4gIISEh4lfBhw8fxldffYXbt2/j0aNHCAsLUzg2LdXXXnJzc2Fpadlkva2tLQ4cOIAff/wRUVFRTcrVPebq6urg5eWFsWPHorCwEGFhYfDz80NdXV2b+lFYWIiSkhI4OTmJ64YMGaLWWR9Fx3pzZWlpaXByckL//v3VC17D7T7vwYMH+O2333Dnzh3Y2tritddew0cffYSamhq57aysrJCbm9tu7TLWGThRYx1C9tDI5v6YyqSnp+PBgweIjIyEiYkJ/Pz8MHToUOzbt0/cxs3NDU5OTrCzs8PIkSNx+/ZtAM8m4B42bBi+/fZbAMDZs2cxevToJm188cUXiI6OhoWFhdz62tpaSCQS6OrqwtfXF3/6059afW2arq4uiouLce7cORgZGeHQoUMYPnx4q+p4Ue/evdv8wE1VxrW1Jk2ahMGDB8PCwgLLli1r0zRToaGhmDdvntr7P336FFVVVTA2Nm623M3NDevXr8fatWuRmpoqV6buMZeeno7CwkKsWrUKUqkUQUFBkEqlOHnypNr9AJ49Ew8ATExMxHUmJiZqHQMtHevNlZWUlODChQvt8ogXTbX7PNl4ff/997h06RLOnz+PM2fO4PPPP5fbThAEvrSAdTmcqLEOIftgLiwsbHGbvLw8mJubQ19fX1xna2srdz2L7BokADAyMpI7gzF79mzEx8cDABISEjBjxgy5+uPj41FaWorQ0NAmbcuuDyMiPHjwAOvWrYOOTuveDsOGDcOGDRsQFhYGCwsLhIaGora2tlV1vOi///1vs3/wWkOVcW2t518Ha2trVFRUqP1g0MbGRoXzryqjp6cHQRBQXV3d4jZLly6Fv78/pk+fjnv37onr1T3m8vLyUFlZCV1dXfHmhJycHNy6dUvtfgCAubk5gGdnnmQeP36M1157rVX1KDrWmyuLiYnBJ598Ivbl0qVLCAoKgkQiadW1fJpq90WmpqYAgIULF8Lc3Bz29vaYP38+jh8/LrddVVUVevXqpXY7jGkCJ2qsQ7z99tuwtLTEkSNHWtymd+/eKC4ulku+7t+/Dzs7O5Xa8PPzQ3Z2Ns6fP4/Hjx/DxsZGLNuzZw/Onz+PLVu2qN+J/09fX1/uKxTZWRAAmDlzJm7cuIG0tDSkpqY2eyeaqsrLy3Ho0CFMmDChTfEqGldFfQEAiUTSbJ3PJ9z5+fno3r07BEFQq75NmzZhx44drevUCxwcHBT+EwAAO3fuhLW1NaZOnYqGhgYA6h9zvXv3hpmZmZjcy35kd52qy9LSEmZmZrh69aq47vLlyxg4cKDKdSg61lsq+/LLL+X64ezsjISEBBCRynfHaqrd5tja2sLIyEh8nWW6desmt1xQUAAHBwe122FMEzhRYx1CX18fW7Zswaeffop9+/ahrKwMlZWVOHr0KHr37o3Lly/D1dUVNjY2WLt2LSoqKpCUlIRff/0VgYGBKrUhCAKmTp2KwMBA+Pr6iusTEhKQkZEhPrIhIyMDGzduVLsv9vb2SE1NRWVlJfbt2ydOmXXo0CEsWbIElZWVsLe3lzsT0xplZWX44Ycf8Mc//hEmJiZYsWKF2rECUDiuLfVFpmfPnrhz5w5++OEHTJs2TVyfkpKCy5cvo6ioCJs2bUJAQACAlsdGUX1t/eoTAKZMmSJen9gSQRCQlJSE7OxslJaWKh0bRVxdXdGjRw9s3rwZlZWVyMrKwqhRo3Dx4sU29UNHRwdz5sxBTEwMCgoKcOrUKSQnJ2Pu3Lkq7a/oWG/v94E2tNsSPT09zJw5Exs3bkRRURFu376N7du3w8fHR267s2fPws/Pr0NjYazddeatC+zlosrdUampqfT73/+eDA0NydTUlMaOHUvp6eli+fXr18nDw4OkUik5OTnRiRMniOjZnY34/3cLrlmzhhYsWCAu79ixQ9z/3LlzZG5uTnV1dUREdPPmTdLR0ZG72xAAbdiwgYiIvv32W7n1//znP+Xiff5OxTVr1hAR0Z07d2jo0KEklUrp888/J2dnZwJASUlJFBYWRjY2NmRqakrTp0+n6upqsa4jR47ItWVqatpsDPr6+vTGG29QaGgolZaWKh13Ve76bGlcW+qL7K68U6dOkYWFBVlZWdGZM2eI6NldsCtWrCBPT08SBIF8fHzEONWpb+nSpTRnzhyF8Su767OsrIxGjRpFxcXFRES0detWcTz9/f3ltk1OTqYRI0YoHRtlx5zsblFBEKhv374UHx8v1rlixQpasGBBs7G2dBzIVFdX04wZM8jY2JhsbGxUrlfRsa7sfSCTmZkpV+7i4qK17Soby/LycvL39ydjY2OytramsLAw8XOBiCgpKYnmzp3bYt0yfNcn0zJFnKgxtfEHmmaokqi1p+cfV9JZlCVqRM8ShsjIyE6IRjkXFxcx4esK9b5q7ebn51N4eDjV1NQo3ZY/15iWKeJJ2RljXZKDgwM+++wzTYeBo0ePwsPDA++8806XqPdVbNfKyoqnhWNdFidqjLEWBQQEYP/+/QCA+vp6REREaDgi7ePt7Q1vb+8uUy+3y1jXwokaY6xFiYmJbXpmGmOMsbbhuz4ZY4wxxrQUn1FjbdLWB36y1nv48CHu3buHa9euaTqUDlNbW/tS949pr+cfPsyYNpAQteER4eyVtmnTJmRmZmo6jFdOVVUVdHV1YWBgoOlQOkxpaSl69uwpLt+4cQN2dnYtThvFWHv68ssvVX7wNmMd7CEnaowxrTd16lRERUVh0KBBmg6FMcY600O+Ro0xxhhjTEtxosYYY4wxpqU4UWOMMcYY01KcqDHGGGOMaSlO1BhjjDHGtBQnaowxxhhjWooTNcYYY4wxLcWJGmOMMcaYluJEjTHGGGNMS3GixhhjjDGmpThRY4wxxhjTUpyoMcYYY4xpKU7UGGOMMca0FCdqjDHGGGNaihM1xhhjjDEtxYkaY4wxxpiW4kSNMcYYY0xLcaLGGGOMMaalOFFjjDHGGNNSnKgxxhhjjGkpCRGRpoNgjLEXxcbG4ttvvwUAlJWVQSqVQldXF0ZGRvjXv/4FS0tLDUfIGGMd7qGupiNgjLHm9O/fH7/99hsqKirk1vfp04eTNMbYK4O/+mSMaSUvLy/o6enJrdPT08Ps2bM1FBFjjHU+TtQYY1rJwMAA7u7ucutMTEwwY8YMzQTEGGMawIkaY0xrffTRR+jZs6e4bGlpib59+2ouIMYY62ScqDHGtJanpyd0dZ9dSmtgYIB58+ZpOCLGGOtcnKgxxrSWjo4O3n//fUgkEkilUkybNk3TITHGWKfiRI0xptXmzZsHY2Nj2Nvbw8LCQtPhMMZYp+LHc7xCMjMzce/ePU2HwVirEBH09PQwfPhwHDhwQNPhMNZq7777LkxMTDQdBuuiOFF7hWzatAkWFhZ47bXXNB0K0yLnzp2DmZkZ+vfvr+lQWjRs2DCYmpoiKytLrf3j4+P5sR5MIw4ePIhBgwZh0KBBmg6FdVGcqL1i/vSnP/EHBpMTHR2NgQMHYurUqZoOpUV1dXXQ19dXe/8DBw4gOjq6/QJiTEXXrl3TdAisi+Nr1BhjWq8tSRpjjHVlnKgxAEBAQAAkEgnWrVvXoe0sWbIEEokEoaGhHdpOZ+isMWOdIzc3F6tXr9Z0GKwLKCgowMqVK/HkyRNNh8JeAZyoMQBAYmIigoOD1d7f29sbu3fvVrrd5s2bER4ernY72qS5MZs5cyaSk5PbVG9zY9ke9baXzoxF1eOqrcrLyxEUFITFixcDALZt2waJRAI9PT2kp6eL2xUUFEAikUAikcDQ0LDD42pOWVkZ1q1bh379+mHbtm1NymtqavDhhx9CEATY2dlh165dKtVLREhISICjoyOMjIzw1ltvISUlRWnZi65cuQJDQ0N88803Wt0uoHws4+LiYG9vD1NTU8ycORNlZWUAACsrK4wcORKLFi1SuS3G1MWJGmPtaPfu3fDx8eky9apDm2JpL3FxcRg3bhzMzMwAACEhIUhPT0dDQwMCAgJQVFQE4NkfaCLC+PHjNXY2JS0tDe+99x5sbW2bLf/0009x69Yt5ObmYu/evVi4cCGuXLmitN67d+8iLi4OJ06cQElJCYKCgvDBBx8gLy9PYdnzamtrERsbiz59+qjcH021Cygey+3bt+Prr7/G4cOHkZ+fDwsLC7kkcPLkycjIyFD7BhfGVMWJGpNTXl6Od955B927d8fkyZPF/yABICUlBUOGDEGPHj3g7++P8vJyAM++Ajx27BhmzZoFiUQi/md648YNeHp6wsTEBMOHD8exY8fEup48eQIfHx9IpVL4+vqioaGhxZhkX5d+/PHHLe7zfFvOzs5IS0uT23fRokXw9/eHgYGBeEZk4cKFmDhxIqRSKZYtW4abN29i8ODBMDMzw549e5T2u6U4ZV/rHjp0SGxL9iNLcFozls19Xaysv4rGqi1ejEVZe7Kvh0NDQ+Hu7g6pVCoeV76+vpBIJOIZM3d3d0gkEnz//fctjkVH+e677zB69Ogm6+fPn4+GhgYEBgaisbGx2X3VfS1ycnLg7u4OQRDg5OSEzMxMlWL18/ODs7Nzs2WNjY3YuXMnIiMjYW1tDU9PT/j4+GDHjh1K6+3bty8uXLiAPn36wNjYGMuXL4eenh6uXr2qsOx5MTExiIqKgpGRkUp90WS7gOKxXLduHb744gsMGTIExsbGWL9+PT7++GO5bVxcXHDw4MFWtclYqxF7Zfj6+tLVq1dbLA8ODqY33niDLl68SIWFheTm5kZz584Vy//nf/6HsrKyqKysjGbNmkXLly8Xy7y8vGjXrl3icm1tLb3++uu0evVqqqyspKysLHrzzTeJiCg8PJzs7e3p8uXLdO/ePbKysqLjx48rjF3RPrK2IiIiqLy8nA4cOECGhoZ0584dcd9+/frR+fPnKTs7m959910KDw8nBwcHysrKohs3bpAgCDRr1iwqLi6mAwcOkLm5uUr9Dg4OptjYWLk4ZeUHDx6kI0eOEBFRcXExOTo6Um5ubqvH8sV6Velva8Y3KiqK9u/fr3D8W4pFlfaCg4Pp9ddfpytXrjQ5rl7sq7OzM6WlpSkcC3UMGDBAYbkgCPTLL7/IrUtPT6c1a9bQjz/+SLq6uhQRESGWjR8/nojUfy1k+3322WdUUVFBe/fuJVtbW6qtrVW5Ty4uLrR161a5dQ8ePCAAdP/+fXHdunXraOzYsSrXK1NeXk6CIFBhYaFKZSdPnhSPI2dnZ0pISGh1m5pq98WxvH//PgGgv/3tb2RjY0Pm5uYUEhJC1dXVcvtFRETQ9OnTFdat7HOXMSWK+IwakzNhwgQ4OzvDwsICy5YtQ2JioliWmZmJAQMGwNTUFLNnz8aZM2darCc9PR0PHjxAREQEBEHAgAEDkJOTI5a7ubnByckJdnZ2GDlyJG7fvq00tpb2kbUVGRkJExMT+Pn5YejQodi3b5+47x/+8AeMHDkSjo6OOH78OADA1dUVAwYMwBtvvIGBAwfiD3/4A8zMzODj44Pi4mI8fvy41f1+nq+vL7y9vQEAc+bMwcqVK/H666+3qU5V+6vO+LaFsvYmTZqEwYMHN3tctVZoaGi7zvn59OlTVFVVwdjYuNlyNzc3rF+/HmvXrkVqaqpcmbqvRXp6OgoLC7Fq1SpIpVIEBQVBKpXi5MmTbepLcXExAMg9XNXExAQPHz5sdV1ffPEFoqOjm50N4sWykpISXLhwoV0e8aKpdp8nG6/vv/8ely5dwvnz53HmzBl8/vnnctsJgoBHjx61a9uMvYgTNSbH0tJS/N3a2hoVFRWoqqoCESEsLAxWVlbQ0dGBq6srSktLW6wnLy8P5ubm0NPTa7Zcdi0QABgZGaGurk5pbC3tI2vr+Uc42Nrayl3H0tyHfq9evcTf9fX1xWVZPXV1da3ud3O2b98OAwMDzJgxAwDaXKcq/VVnfNtCWXvPlz9/XKmjsbERRKReoM3Q09ODIAiorq5ucZulS5fC398f06dPl5vdQ93XIi8vD5WVldDV1RW/Fs/JycGtW7fa1Bdzc3MAEP/JkP3e2odcx8fHo7S0tNm7s5sri4mJwSeffCL25dKlSwgKCoJEImnVtXyaavdFpqamAICFCxfC3Nwc9vb2mD9/vvhPnkxVVZXc5whjHYETNSanpKRE/D0/Px/du3eHIAg4duwY4uPjcfr0aTQ0NCAzM1Puj6VEIpGrp3fv3iguLsbTp087PGZZW88nB/fv34ednV2b61bWb2WuX7+OzZs3y11f1dqxfFFH9rejFBYWir8/f1zp6+ujpqZGLJOdEZJpbiw2bdqk0jVXreHg4CAXY3N27twJa2trTJ06VbzOTN3Xonfv3jAzMwMRyf3I7jpVl6WlJczMzOSu4bp8+TIGDhyoch179uzB+fPnsWXLFpXLvvzyS7l+ODs7IyEhAUSk8t2xmmq3Oba2tjAyMmpybWe3bt3klgsKCuDg4KB2O4ypghM1Jufw4cO4evUqioqKsGnTJgQEBAB4dhZD9vPkyRO5GwMAoGfPnrhz5w5++OEHTJs2Da6urrCxscHatWtRVVWFixcvon///nJ/lNvL821VVFQgKSkJv/76KwIDA9tct7J+K1JXV4fp06dj+/bt6NGjBwBg+vTprR7LF3VkfztKSkoKLl++3OS4sre3R2pqKiorK7Fv3z5UVFTI7dfcWLT3V58AMGXKFJw7d07hNoIgICkpCdnZ2eIZUHVfC1dXV/To0QObN29GZWUlsrKyMGrUKFy8eLFN/dDR0cGcOXMQExODgoICnDp1CsnJyZg7d65K+yckJCAjI0N8PElGRgY2btyotKytNNVuS/T09DBz5kxs3LgRRUVFuH37NrZv397kbuezZ8/Cz8+vQ2NhjG8meIUouqjV39+fANDy5ctpzJgxJAgC+fj4UGlpKRER1dfX0+zZs6l79+70xhtvUEREBAEgZ2dnIiI6deoUWVhYkJWVFZ05c4aIiK5fv04eHh4kCAI5OjpSWloaRUVFEQACQGvWrKEFCxaIyzt27Gg2NlX2kbUllUrJycmJTpw40WTft99+u9n6vLy8xOVTp06RqampuFxWVtZiv2VjJqtn8eLF4vLixYtp06ZN4rLsx9bWttVj+WK9qva3NeOr6s0EL8aiSnvBwcG0YsUK8vT0bHJc3blzh4YOHUpSqZQ+//xzcnZ2JgDizQjNHVdLly6lOXPmqBSvjLKbCcrKymjUqFFUXFxMRERbt24V++Hv7y+3bXJyMo0YMUJcVve1yMnJEd8fffv2pfj4eLHOFStW0IIFC5qN9ciRI3LHlKmpqVx5dXU1zZgxg4yNjcnGxkblem/evEk6OjpNjtkNGzYoLHteZmamXLmLi4vWtqtsLMvLy8nf35+MjY3J2tqawsLCqK6uTixPSkqSu9mqJXwzAWujIk7UXiH8gcGa09q7PlvrxTtjNUFZokb0LGGIjIzshGiUc3FxERO+rlDvq9Zufn4+hYeHU01NjdJt+XOXtVERT8rOGGN4dp3aZ599pukwcPToUXh4eOCdd97pEvW+iu1aWVnx1HGs03CixrRKSxfSUzve5cc6T0BAAPbv3w8AqK+vR0REhIYj0n7e3t7iY126Qr3cLmMdixM1plU4IXu5JCYmtumZaYwx9qrjuz4ZY4wxxrQUn1F7hTQ0NCA3N1fTYTAtU1xcjHv37uHatWuaDqXD1NXVvdT9Y9pL3Qc7MybDidorpKqqCn//+9/lppdh7MaNG/jPf/6Dn376SdOhdJjS0lJEFBrNrwAAIABJREFUR0drOgz2Crp7966mQ2BdHCdqrxATExNER0dj0KBBmg6FaZHo6GgMHDiw3edL1CYDBw7EwYMHNR0GewXxA3FZW/E1aowxxhhjWooTNaYRS5YsgUQiaXby5a4gICAAEomEn6X0EsnNzcXq1as1HQbrAgoKCrBy5co2TfzOmKo4UWOixMRESCQSuZ9evXph+vTpqK6uVqkOb29v7N69W+l2mzdvRnh4eIvlsnn99PT0kJ6eLq4vKCgQY2vLpMttlZiYiODgYLl1M2fORHJycpvqbW782qNeTVH1eNBUfTLl5eUICgoSJ0XX5uOvrKwM69atQ79+/bBt27Ym5TU1Nfjwww8hCALs7Oywa9culeolIiQkJMDR0RFGRkZ46623kJKSorTsRVeuXIGhoSG++eYbrW4XUD6WcXFxsLe3h6mpKWbOnImysjIAzx54O3LkSCxatEjlthhTFydqTBQQEIDMzEwYGBiAiPD06VOkpKTgyJEj2LJlS6fGEhISgvT0dDQ0NCAgIABFRUUAnn1AEhHGjx+vdf/N7t69u8mkzdpcL/s/cXFxGDduHMzMzABo9/GXlpaG9957D7a2ts2Wf/rpp7h16xZyc3Oxd+9eLFy4EFeuXFFa7927dxEXF4cTJ06gpKQEQUFB+OCDD5CXl6ew7Hm1tbWIjY1Fnz59VO6PptoFFI/l9u3b8fXXX+Pw4cPIz8+HhYWFXBI4efJkZGRkICsrq1VtMtZqGpu9inU6Veacy8zMJAMDA7l17u7uNG/ePHH52LFj5OTkRKampjR16lQqKysjIpKbpBwAbd26lYhInHy6e/fu9Pbbb9PRo0eJiCg8PJwWLFhAEydOJEEQaMqUKVRfXy+2k56eTiEhIWRpaUljx46lhoYGsWz8+PHi78/XP2TIEDp58qQ4efjChQtp6tSppK+vT2PHjhXXf/zxx/T++++TIAi0dOlSunHjBg0aNIh69epFu3fvVtpXIvk5LGX1Ll++nIiIDh482GQi6YkTJ7Z6/F6sV1l/FY1nS1SZ67O5NqdMmUIAaNeuXURENGbMGAJAaWlpLfZHtm758uU0ZswYEgSBJk2aRKWlpWrVpyplc306OzuLE8HLtOX4IyKlr8n169dpzJgxZGxsTIMHD6Zz586p3B+iZ/NYvjgGDQ0NZGZmRqmpqeK6wMBAWrhwYavqlpFKpU3GRVFZREQEXb9+nZydnSkhIUGtNjXRbnNj2bdvX/GzqiVz5syh6OhohdvwXJ+sjXhS9ldJaxO1p0+fUmZmJpmamtKhQ4fEbf7nf/6HsrKyqKysjGbNmiWXRHh5eYl/aImIamtr6fXXX6fVq1dTZWUlZWVl0ZtvvklEzxI1e3t7unz5Mt27d4+srKzkPoDT09NpzZo19OOPP5Kuri5FRESIZbI/lLL6IyIiqLy8nA4cOECGhoZ0584dCg8Pp379+tH58+cpOzub3n33XbFdBwcHysrKohs3bpAgCDRr1iwqLi6mAwcOkLm5uUp9fXGy8fDwcLlE7ciRI0REVFxcTI6OjpSbm9vq8XuxXmX9VTSeLVGWqClq88V4nZ2dxcSqpf4EBwfT66+/TleuXKHCwkJyc3OjuXPnNru9KvWpQlmiJggC/fLLL3Lr2nr8EbV8jMv2++yzz6iiooL27t1Ltra2VFtbq3KfmksuHjx4QADo/v374rp169bR2LFjVa5Xpry8nARBoMLCQpXKTp48KR5HbUnUNNHui2N5//59AkB/+9vfyMbGhszNzSkkJISqq6vl9ouIiKDp06crrJsTNdZGRfzVJ2uitrZWvD7HxcUFAQEBcnPmZWZmYsCAATA1NcXs2bNx5syZFutKT0/HgwcPEBERAUEQMGDAAOTk5Ijlbm5ucHJygp2dHUaOHInbt283qcPNzQ3r16/H2rVrkZqa2mz9kZGRMDExgZ+fH4YOHYp9+/YB+H/s3XlUVGe2P/zvQQuFKhksLAsKW0NIh9gC0U6kb1AWYExuAh00YdIWJQEHgooDjZpAMBEVlSYsLklEbSfShjjQ0g5osAMySIzp5XgVFMH8gjIIgoxaCs/7hy/nUgJVxXgK2J+1WIs6z6m993mq1O0ZgWnTpmHq1KmwsbFBWloa/77p06fjlVdewUsvvYSJEydi2rRpkEql8PDwQGVlJWpra7u8rW15enrycxYYGIh169bhxRdf7FFMbbZXm/nsKk05u2PWrFmYNGkSZDIZVq1a1aPHTIWGhmLRokXdfv+TJ0/Q0NAAQ0PDDsd78v1rff/zn0l2djbKy8vxySefQCKRwM/PDxKJBD/88EO3twN4dvNiACr3SjQyMsL9+/e7HGvLli1Yv349ZDKZxrGqqipcuHChV27xIlTetlrn68yZM7h8+TLOnz+PrKwsbNq0SWU9sViMBw8e9GpuQp5HjRppp/UctZaWFpSUlKC6uhpvv/02gGcn94aFhUEul0NPTw/Tp09HdXV1p7FKSkpgZmYGkUjU4XjrOUEAYGBgAKVS2eF6K1euhI+PD+bNm4fffvutXXx9fX1+mUKh4M9h6egvewAYPXo0/7u+vj7/ujWOUqns8rZ2JDExESNGjMD8+fMBdH3+nqdpe7Wdz67QlLM72tZpbm6Ourq6bt/BvaWlpUfPiBWJRBCLxWovmOnu9w/o+DMpKSlBfX09hg8fzl+cUFBQgNu3b3d7OwDAzMwMAPj/aLT+PmbMmC7F2b17N6qrqzu8KrujsaioKHz66af8tly+fBl+fn7gOK5L5/IJlfd5xsbGAIBly5bBzMwMVlZWWLx4scp/9oBnNxFv+3cJIX2BGjXSKY7jYG5ujvnz5+Ps2bOor6/HiRMnsHv3bmRmZqK5uRl5eXkq/0hyHKcSY9y4caisrMSTJ096XM+uXbtgbm4Ob29vNDc3q8Rv25DcvXsXlpaWPc6naVs1yc/PR1xcnMrVZF2dv+f15fZ2J6e+vj6ampr45a17dFp1tj3l5eX876WlpRg1ahTEYnG34sXGxmLnzp1d26jnWFtbq9TUkd78/o0bNw5SqRSMMZWf1qtOu2vs2LGQSqW4du0av+zKlSuYOHGi1jH27duH8+fPd3gBUWdjX375pcp22NvbIykpCYwxra+OFSpvRxQKBQwMDPjPudWwYcNUXpeVlcHa2rrbeQjRBjVqRK2ysjLs378fv/vd7yCRSNDS0sL/PHr0CCdOnFBZ39TUFMXFxfjxxx8xZ84cTJ8+HRYWFti4cSMaGhpw6dIlvPzyyyr/GGtLLBYjJSUFN27c4PdCtY1fV1eHlJQUXLx4EXPnzu3xtmvaVnWUSiXmzZuHxMREmJiYAADmzZvX5fl7Xl9ub2fU5bSyssKpU6dQX1+PAwcOoK6uTqvtOXnyJK5cuYKKigrExsbC19cXALoVr6eHPgHggw8+wLlz59Su05vfv+nTp8PExARxcXGor6/H9evX4eDggEuXLvVoO/T09BAYGIioqCiUlZUhIyMDqampWLhwoVbvT0pKQk5ODn97kpycHMTExGgc6ymh8nZGJBLB398fMTExqKioQFFRERITE9tdfZ2bm0tPHiB9r3/PiSNC0nRS63fffadyVR3HcWz06NHszTffZL/88gtjjLGnT5+yjz76iI0aNYq99NJLLDw8nAFg9vb2jDHGMjIymEwmY3K5nGVlZTHGnl3d5uLiwsRiMbOxsWHp6eksMjKSz7NhwwYWHBzMv965cyf75ptv+Nc+Pj4qdaamprLXX3+df90aXyKRMFtbW3b69GmV+H/84x/5dZ/P6+bmxr/OyMhgxsbG/OuamppOt7XtFYgbNmzgr/ADwEJCQlhsbGy7qz4VCkWX5+/5uNpsb0fzqY42V312lJMxxoqLi9nkyZOZRCJhmzZtYvb29gwAfxFDR9+HgIAAtnbtWubq6srEYjHz8PBg1dXV3Y63cuVKFhgYqLZ+TRcT1NTUMAcHB1ZZWckYYz3+/rXOq7rPpPVqUbFYzCZMmMB2797Nx1y7di0LDg7usNZjx46pfK+MjY1VxhsbG9n8+fOZoaEhs7Cw0DrurVu3mJ6eXrvv7bZt29SOtZWXl6cy7ujoqLN5Nc3lw4cPmY+PDzM0NGTm5uYsLCyMKZVKfjwlJYW/CEYdupiA9BBd9TmU0F8YpCPaNGq96fmrZfuDpkaNsWcNQ0RERD9Uo5mjoyPf8A2EuEMtb2lpKVuzZg1ramrSuC79vUt6qIIeyk4IIXh2ntoXX3whdBk4fvw4XFxc8NZbbw2IuEMxr1wup8fHkX5DjRohpN/4+vri+++/BwA8ffoU4eHhAleke9zd3VVuh6PrcSkvIX2LGjVCSL9JTk7u0T3TCCFkqKGrPgkhhBBCdBQ1aoQQQgghOooOfQ4h48aNo3v+kHaampowbNgwrF+/XuhSOlVXVwdDQ8N2NxzVVm1tbZdu+kpIb+rJzXcJ4RjrwbNXCCGkH3h7eyMyMhJ/+MMfhC6FEEL603069EkIIYQQoqOoUSOEEEII0VHUqBFCCCGE6Chq1AghhBBCdBQ1aoQQQgghOooaNUIIIYQQHUWNGiGEEEKIjqJGjRBCCCFER1GjRgghhBCio6hRI4QQQgjRUdSoEUIIIYToKGrUCCGEEEJ0FDVqhBBCCCE6iho1QgghhBAdRY0aIYQQQoiOokaNEEIIIURHUaNGCCGEEKKjqFEjhBBCCNFR1KgRQgghhOgoatQIIYQQQnQUxxhjQhdBCCHP2759O9LT0wEA+fn5+N3vfgdDQ0OMGDECsbGxkMvlAldICCF97v5woSsghJCO6Ovr48SJE3j8+DEA4Pr16wAAMzMzjB07VsjSCCGk39ChT0KITvL09IRYLFZZpqenh7/85S/gOE6gqgghpH9Ro0YI0UlGRkaws7NTWTZ69GgEBgYKVBEhhPQ/atQIITorODgYRkZG/GuxWIxJkyYJWBEhhPQvatQIITrL3d0dIpEIACASieDv7y9sQYQQ0s+oUSOE6KyRI0di2rRpAABjY2MsWLBA4IoIIaR/UaNGCNFpH3/8MSQSCczMzPDCCy8IXQ4hhPQruj0H0VkFBQV4+vSp0GUQgZmbm4MxBg8PD/zv//6v0OUQHWBhYQFTU1OhyyCkX9ANb4nOsrS0xH/9138JXUaX1dTU4P79+3jppZeELqXP3Lp1C2PGjIGJiUm/5Lt06RJsbGwwcuTIfslHdNft27cREBCA4OBgoUshpD/QDW+J7jIyMsKhQ4eELqPLMjMzcfDgQXz99ddCl9JnPv74Y3h7e8PZ2blf8tXU1PRbU0h021dffSV0CYT0KzpHjRCi86hJI4QMVdSoEQLA19cXHMchOjpa6FIGlcLCQnz22WdCl0F0XFlZGdatW4dHjx4JXQohOocaNUIAJCcnIyAgQLD8/v7+SE1N7fM87u7u2Lt3b5/nAYCHDx/Cz88PISEh2L59OziOg0gkQnZ2Nr9OWVkZOI4Dx3GCnn9WU1OD6OhovPDCC9i+fbvKWFNTExYsWACxWAxLS0vs2bNHq5iMMSQlJcHGxgYGBgZ49dVXcfLkSa3HW129ehUjR47Et99+q9N5AfXz2Co+Ph5WVlYwNjaGv78/ampqIJfLMXXqVCxfvlzrXIQMFdSoEaID9u7dCw8PD6HL6FXx8fGYOXMmpFIplixZguzsbDQ3N8PX1xcVFRUAALlcDsYY3n77bUH3pqSnp+Odd96BQqFoN/b555/j9u3bKCwsxP79+7Fs2TJcvXpVY8xff/0V8fHxOH36NKqqquDn54f3338fJSUlWo0DwOPHj7F582aMHz9e620RKi+gfh4BIDExETt27MDRo0dRWloKmUzGN4KzZ89GTk4Orl+/3qWchAx21KiRAW3FihXgOA7Lly+Hj48PRowYgTfffBMFBQVwdnaGWCyGra0t8vLyuhTX09MTHMfxe5+cnZ3BcRzOnDnTZ9sQGhrK/7506VJ4eHhAIpHA09MTzc3NAP7vEG1oaCicnZ0hkUgwe/Zs1NTUaKzZ19cXJ06cwIcffgiO4zrd49Fbjhw5gjfeeENl2eLFi9Hc3Iy5c+eipaWlw/fdvHkTrq6uMDIygr29PdLT0wFA49z05DP38vKCvb19u+UtLS3YtWsXIiIiYG5uDldXV3h4eGDnzp0aY06YMAEXLlzA+PHjYWhoiNWrV0MkEuHatWtajQNAVFQUIiMjYWBgoPW2CJUX6HweW0VHR2PLli2ws7ODoaEhtm7diqVLl/Ljjo6OA/ICIkL6EjVqZECLi4vDmjVrcPz4caxevRqXL18GYwxubm6YMWMGysvLERYWBi8vLyiVSq3jHj58GG5ubvzrzMxMtf8A9UTrNrT9PS0tDVFRUcjPz0dubi7frLQeoj169CgSEhJQVFSEBw8eICwsTGPNycnJcHNzw549e8AYw5IlS/pke1oVFhZi7NixKssUCgUOHjyIs2fPIjIyst17lEol3n33XTg6OqKkpATh4eF47733cOfOHbVzo1Qqe/yZd6S8vBxVVVWwtbXll9nZ2XVrr09tbS0YY5gyZYpW4+np6bC1tcXLL7/cveIFzvu8e/fu4c6dOyguLoZCocCYMWMQFBSEpqYmfh25XI7CwsJezUvIQEeNGhkUpk2bhqlTp8LGxgaffPIJysvL8cknn0AikcDPzw8SiQQ//PCD0GVqzcnJCba2trC0tMTUqVNRVFSkMj5r1ixMmjQJMpkMq1atQnJycrdzhYaGYtGiRT0tWcWTJ0/Q0NAAQ0PDdmNOTk7YunUrNm7ciFOnTqmMZWdn4969e4iIiICRkRG8vLwwefJkHDhwQOX9z89NdnZ2n3zmlZWVAKDyYHgjIyPcv3+/y7G2bNmC9evXQyaTaRyvqqrChQsX4O3t3b3CdSDv81rn7MyZM7h8+TLOnz+PrKwsbNq0iV9HLBbjwYMHvZ6bkIGMGjUyKLT9R6ikpAT19fUYPnw4f6J6QUEBbt++LWCFXSOVSvnfDQwM2u0Zajtubm6Ouro6NDQ0dCtXS0sLevu+1yKRCGKxGI2NjR2Or1y5Ej4+Ppg3bx5+++03fnlJSQnMzMygr6/PL1MoFCrnT3U0N331mZuZmQF4ttepVW1tLcaMGdOlOLt370Z1dTVCQ0O1Go+KisKnn37Kb8vly5fh5+cHjuO6dC6fUHk7YmxsDABYtmwZzMzMYGVlhcWLFyMtLY1fp6GhAaNHj+5RHkIGG2rUyKAzbtw4SKVSMMZUfkJCQroUR19fX+WwTOveFV1QXl7O/15aWopRo0ZBLBZrrJnjuHaxYmNjtTrnqqusra1V6nzerl27YG5uDm9vb/48s3HjxqGyslKlMb179y4sLS3V5uqtz/x5Y8eOhVQqVTl/68qVK5g4caLWMfbt24fz5893eqPWjsa//PJLle2wt7dHUlISGGNaXx0rVN7OKBQKGBgY8J91q2HDhvG/l5WVwdraukd5CBlsqFEjg8706dNhYmKCuLg41NfX4/r163BwcMClS5e6FMfKygqnTp1CfX09Dhw4gLq6uj6quOtOnjyJK1euoKKiArGxsfD19QWguWZTU1MUFxfjxx9/xJw5cwD0zaFPAPjggw9w7ty5TsfFYjFSUlJw48YNVFdXA3j22VlYWGDjxo2oq6tDSkoKLl68iLlz56rN1Vuf+fP09PQQGBiIqKgolJWVISMjA6mpqVi4cKFW709KSkJOTg5/e5KcnBzExMRoPd5dQuVVRyQSwd/fHzExMaioqEBRURESExNVrnbOzc2Fl5dXn9ZByIDDCNFRr7zyisZ1IiMjGQAGgP3xj3/klxcUFDAXFxcmFovZhAkT2O7du9XG8fHx4eNs2LCBMcZYcXExmzx5MpNIJGzTpk3M3t6eAWBpaWlqY2VkZLCgoCAttvCZkJAQPnfbnw0bNrDg4GD+9c6dOxljjAUEBLC1a9cyV1dXJhaLmYeHB6uurtaq5oyMDCaTyZhcLmdZWVmMMcZWrlzJAgMDta6XMcaCgoJYRkaG2nVqamqYg4MDq6ysZN988w2/HT4+Pirrpaamstdff51/nZ+fz1xcXJhEImG2trbs9OnTjDHVz7qjuVH3ma9du5YFBwd3WuuxY8dU5t7Y2Jgfa2xsZPPnz2eGhobMwsKi3Xeps9i3bt1ienp67T7Xbdu2aTXOGGN5eXkqY46OjjqbV9M8MsbYw4cPmY+PDzM0NGTm5uYsLCyMKZVKxhhjKSkpbOHChR3GbSshIYElJCRoXI+QQaKCGjWis7Rp1HRRVxu1rgoICGCbN2/us/ja0KZRY+xZUxAREdH3BWng6OjIN3wDKfZQyVtaWsrWrFnDmpqaNK5LjRoZYirooeyEkD5jbW2NL774QtAajh8/DhcXF7z11lsDKvZQyiuXy+nxbYR0gho1MqR0dDI9gF6/6rGv+Pr64vvvvwcAPH36FOHh4QJXpPvc3d3h7u4+4GJTXkIIQI0aGWIGSkPWmeTk5B7dM40QQsjAQld9EkIIIYToKGrUCCGEEEJ0FMcG+rEgMmiZm5vD1NRU6DK6rLGxEU+fPlV57NBgU1dXh2HDhnX4iChC+lJ1dTXCw8MRHBwsdCmE9If7dI4a0Vmmpqbdevi10DIzM3Hw4EF8/fXXQpfSZz7++GN4e3vD2dlZ6FLIENPZkxYIGazo0CchhBBCiI6iRo0Q0mcKCwvx2WefCV0G0XFlZWVYt25djx/8TshgRI0aGZCSk5PBcZzKj4mJCby8vPjnRnbl/W0fXh4XF8cvHz78/84O2Lt3L7986dKlfbJdmri7u2Pv3r06G6+thw8fws/PDyEhIfwzJUUiEbKzs/l1ysrK+Dnt6UO/e6KmpgbR0dF44YUXsH37dpWxpqYmLFiwAGKxGJaWltizZ49WMRljSEpKgo2NDQwMDPDqq6/i5MmTWo+3unr1KkaOHIlvv/1Wp/MC6uexVXx8PKysrGBsbAx/f3/U1NRALpdj6tSpWL58uda5CBkqqFEjA5Kvry/y8vIwYsQIMMbQ0tKCn376Cb/88gs+//zzLr/fzMyMH1uxYgX++c9/4sUXX8TTp0/55f7+/khPT8fmzZuRkJDQJ9s1mMTHx2PmzJmQSqVYsmQJsrOz0dzcDF9fX1RUVAB4dkd6xhjefvttQfempKen45133oFCoWg39vnnn+P27dsoLCzE/v37sWzZMly9elVjzF9//RXx8fE4ffo0qqqq4Ofnh/fffx8lJSVajQPA48ePsXnzZowfP17rbREqL6B+HgEgMTERO3bswNGjR1FaWgqZTMY3grNnz0ZOTs6APC+VkL5EjRoZFDiOg42NDVxcXHDjxg1+eUFBAZydnSEWi2Fra4u8vDwBq/w/N2/ehKurK4yMjGBvb4/09HQAgKenJziO4/dyOTs7g+M4nDlzBr6+vjhx4gQ+/PBDcByH7du3w9fXFxzHITQ0FM7OzpBIJJg9ezZqamq6Fa83HTlyBG+88YbKssWLF6O5uRlz585FS0tLl+ZmxYoV/N5MDw8PSCQSeHp6orm5GUDPPmsvLy/Y29u3W97S0oJdu3YhIiIC5ubmcHV1hYeHB3bu3Kkx5oQJE3DhwgWMHz8ehoaGWL16NUQiEa5du6bVOABERUUhMjISBgYGWm+LUHmBzuexVXR0NLZs2QI7OzsYGhpi69atKnunHR0dcejQoS7lJGSwo0aNDAqMMdy8eROZmZlwdXUFACiVSri5uWHGjBkoLy9HWFgYvLy8oFQqBa1VqVTi3XffhaOjI0pKShAeHo733nsPd+7cweHDh+Hm5savm5mZyf/Dl5ycDDc3N+zZsweMMSxZsgTJyckICAjA0aNHkZCQgKKiIjx48ABhYWEA0OV4vamwsBBjx45VWaZQKHDw4EGcPXsWkZGRXZqbuLg4rFmzBmlpaYiKikJ+fj5yc3ORnp7eZ591eXk5qqqqYGtryy+zs7Pr1l6f2tpaMMYwZcoUrcbT09Nha2uLl19+uXvFC5z3effu3cOdO3dQXFwMhUKBMWPGICgoCE1NTfw6crkchYWFvZqXkIGOGjUyoD1+/Bgcx0FPTw+2trYICwvDmjVrAADZ2dkoLy/HJ598AolEAj8/P0gkEvzwww+C1pydnY179+4hIiICRkZG8PLywuTJk3HgwIFux5w1axYmTZoEmUyGVatW9egxU6GhoVi0aFG33w8AT548QUNDQ4f3WXNycsLWrVuxceNGnDp1SmVMm7lxcnKCra0tLC0tMXXqVBQVFfXZZ9167mLbe+IZGRnh/v37XY61ZcsWrF+/HjKZTON4VVUVLly4AG9v7+4VrgN5n9c6Z2fOnMHly5dx/vx5ZGVlYdOmTfw6YrEYDx486PXchAxk1KiRAa31HLPq6moEBgZix44d/KGwkpIS1NfXY/jw4fwJ6wUFBbh9+7bGuMOGDcPjx4/bLX/06JHKBQbdUVJSAjMzM+jr6/PLFAqFyjlCXSWVSvnfzc3NUVdXh4aGhm7Famlp6fEzUUUiEcRiMRobGzscX7lyJXx8fDBv3jz89ttv/HJt5qbtthoYGECpVPbos1an9dzF2tpaflltbS3GjBnTpTi7d+9GdXU1QkNDtRqPiorCp59+ym/L5cuX4efnB47junQun1B5O2JsbAwAWLZsGczMzGBlZYXFixcjLS2NX6ehoQGjR4/uUR5CBhtq1MigYGJigr/97W8oKyvjzx8aN24cpFIpGGMqPyEhIRrjjR07FmVlZaivr1dZfuvWrU73TGhr3LhxqKysVDksd/fuXVhaWgIA9PX1VQ4Htb0ileO4DmOWl5fzv5eWlmLUqFEQi8XdihcbG6vVOViaWFtbq9T1vF27dsHc3Bze3t58c61pbjrTk89anbFjx0Iqlaqcv3XlyhVMnDhR6xj79u3D+fPnO71Ra0fjX375pcp22NvbIykpCYwxra+OFSpvZxQKBQwMDPjPutWwYcP438vKymBEnhovAAAgAElEQVRtbd2jPIQMNtSokUFj5MiRWLVqFSIjI1FbW4vp06fDxMQEcXFxqK+vx/Xr1+Hg4IBLly51GuPRo0eYNWsWJk+eDJlMhmXLlqGkpARNTU3Izc3F119/zZ8D113Tp0+HhYUFNm7ciLq6OqSkpODixYuYO3cuAMDKygqnTp1CfX09Dhw4gLq6Ov69pqamKC4uxo8//og5c+bwy0+ePIkrV66goqICsbGx8PX15ce6Gq83Dn0CwAcffIBz5851Oi4Wi5GSkoIbN27wt1TRNDed6c5nrQ09PT0EBgYiKioKZWVlyMjIQGpqKhYuXKjV+5OSkpCTk8PfniQnJwcxMTFaj3eXUHnVEYlE8Pf3R0xMDCoqKlBUVITExER4eHjw6+Tm5sLLy6tP6yBkwGGE6KhXXnml07HvvvuOAeB/Lly4wBhjrK6ujo0ePZoBYIcOHWIFBQXMxcWFicViNmHCBLZ79+4O39/2x8PDgzHG2IULF5iTkxMzMDBg+vr6zM7OjqWkpGisOyMjgwUFBaldJz8/n7m4uDCJRMJsbW3Z6dOn+bHi4mI2efJkJpFI2KZNm5i9vT0DwNLS0lhGRgaTyWRMLpezrKwsxhhjAQEBbO3atczV1ZWJxWLm4eHBqqurux1v5cqVLDAwUG39QUFBLCMjQ+06NTU1zMHBgVVWVrJvvvmGn18fHx+V9VJTU9nrr7+ucW4iIyP5GBs2bGDBwcH86507d3b6WTPG2Nq1a1lwcHCntR47dkzlO2BsbMyPNTY2svnz5zNDQ0NmYWGhEldd7Fu3bjE9Pb12369t27ZpNc4YY3l5eSpjjo6OOptX0zwyxtjDhw+Zj48PMzQ0ZObm5iwsLIwplUrGGGMpKSls4cKFHcZtKyEhgSUkJGhcj5BBooIaNaKz1DVqukybRq03BQQEsM2bN/dbPsa0a9QYe9YURERE9H1BGjg6Oqo0wwMl9lDJW1paytasWcOampo0rkuNGhliKuih7ISQPmNtbY0vvvhC0BqOHz8OFxcXvPXWWwMq9lDKK5fLER0d3asxCRksqFEjZADz9fXF999/DwB4+vQpwsPDBa5I97i7u8Pd3X3Axaa8hBCAGjVCBrTk5OQe3TONEEKIbqOrPgkhhBBCdBQ1aoQQQgghOopjrIe3ICekj5ibm8PU1FToMrpMqVTi0aNHKo8dGmxqa2sxcuRIlScI9KWmpiaMGDECenr0f8uhrrq6GuHh4QgODha6FEL6w31q1AghOs/b2xuRkZH4wx/+IHQphBDSn+7Tf08JIYQQQnQUNWqEEEIIITqKGjVCCCGEEB1FjRohhBBCiI6iRo0QQgghREdRo0YIIYQQoqOoUSOEEEII0VHUqBFCCCGE6Chq1AghhBBCdBQ1aoQQQgghOooaNUIIIYQQHUWNGiGEEEKIjqJGjRBCCCFER1GjRgghhBCio6hRI4QQQgjRUdSoEUIIIYToKGrUCCGEEEJ0FDVqhBBCCCE6iho1QgghhBAdRY0aIYQQQoiOGi50AYQQ0pH09HQUFxcDAO7fv49//vOfyM3NBQB4enpi9OjRQpZHCCH9gmOMMaGLIISQ523btg3r1q1Dc3OzynKJRILq6moMH07/zySEDHr36dAnIUQn+fn5wcTEpN1yDw8PatIIIUMGNWqEEJ0kl8sxbtw4lWVSqRRBQUECVUQIIf2PGjVCiM4KDg6GWCzmX4tEIrzxxhsCVkQIIf2LGjVCiM7y9vbGiBEjAAAcx+GDDz4Ax3ECV0UIIf2HGjVCiM4yMjLCpEmTADw77Llo0SKBKyKEkP5FjRohRKcFBwdDIpHAwMAAdnZ2QpdDCCH9iho1QohO+/Of/4wnT55g/vz5QpdCCCH9ju6jRnqNubk5TE1NhS5j0FEqlXj06BGMjIyELqXP1NbWYuTIkdDX1+9w/N69ezAzM+t0nJDuqq6uRnh4OIKDg4UuhZCO3KebEZFeY2pqiuvXrwtdxqCTmZmJgwcP4uuvvxa6lD7z8ccfw9vbG87Ozh2O//rrrxg/fnz/FkWGhK+++kroEghRiw59EkJ0HjVphJChiho1QnrBa6+9Bo7jcPz4caFLGdQKCwvx2WefCV0G0XFlZWVYt24dHj16JHQphPQYNWpkQPL390dqaqrO5Pzll1/g4ODQr/Wo01/z4+7ujr179/Z5HgB4+PAh/Pz8EBISgu3bt4PjOIhEImRnZ/PrlJWVgeM4cByHkSNH9ktdHampqUF0dDReeOEFbN++XWWsqakJCxYsgFgshqWlJfbs2aNVTMYYkpKSYGNjAwMDA7z66qs4efKk1uOtrl69ipEjR+Lbb7/V6byA+nlsFR8fDysrKxgbG8Pf3x81NTWQy+WYOnUqli9frnUuQnQVNWpkQNq7dy88PDwGfc7uGki1ais+Ph4zZ86EVCrFkiVLkJ2djebmZvj6+qKiogLAs8dOMcbw9ttvC7o3JT09He+88w4UCkW7sc8//xy3b99GYWEh9u/fj2XLluHq1asaY/7666+Ij4/H6dOnUVVVBT8/P7z//vsoKSnRahwAHj9+jM2bN3fpULJQeQH18wgAiYmJ2LFjB44ePYrS0lLIZDK+EZw9ezZycnLovFky4FGjRvrFihUrwHEcli9fDh8fH4wYMQJvvvkmAKCgoADOzs4Qi8WwtbVFXl4e/75169bBzMwMMpkMMTExaG5u5mOFhoYCAA4fPszvRWn9aW1S1MVu69GjR/x7W2+wumTJEnAcB2dn53Y5ASAvLw+TJk2CkZER1q9f3y5mZ7lv3rwJV1dXGBkZwd7eHunp6T2f4Dba1tr6+9KlS+Hh4QGJRAJPT080NzcDAHx9ffl1nZ2dIZFIMHv2bNTU1MDT0xMcx/F7zJydncFxHM6cOcO/98SJE/jwww/BcVynezx6y5EjR9o9Pmrx4sVobm7G3Llz0dLS0uH7OptvTXOj7XenI15eXrC3t2+3vKWlBbt27UJERATMzc3h6uoKDw8P7Ny5U2PMCRMm4MKFCxg/fjwMDQ2xevVqiEQiXLt2TatxAIiKikJkZCQMDAy03hah8gKdz2Or6OhobNmyBXZ2djA0NMTWrVuxdOlSftzR0RGHDh3qUk5CdA01aqRfxMXFYc2aNTh+/DhWr16Ny5cvQyQSQalUws3NDTNmzEB5eTnCwsLg5eUFpVKJn3/+GUePHsX169dx69Yt/PTTT7h48SIfq61jx46BMYbKykrY2NggNjZWbeznjRw5Erdu3YJYLMa5c+cAANu3b8ef//xnZGZmtsvZ1NSE2bNnY86cObh79y4UCgVu3LjBj3eWu76+Hu+++y4cHR1RUlKC8PBwvPfee7hz506vz3Xb39PS0hAVFYX8/Hzk5ubyzUpycjICAgJw9OhRJCQkoKioCA8ePEBYWBgOHz4MNzc3Pm5mZqbKP5rJyclwc3PDnj17wBjDkiVLem0bOlJYWIixY8eqLFMoFDh48CDOnj2LyMjIdu9RKpWdzre6uenKd6crysvLUVVVBVtbW36ZnZ1dt/b61NbWgjGGKVOmaDWenp4OW1tbvPzyy90rXuC8z7t37x7u3LmD4uJiKBQKjBkzBkFBQWhqauLXkcvlKCws7NW8hPQ3atRIv5o2bRqmTp0KGxsbpKWlITs7G+Xl5fjkk08gkUjg5+cHiUSCH374AcOHD0dlZSXOnTsHAwMDHD58GK+99lq7mJ6ennB3dwcABAYGYt26dXjxxRfVxu6ItbU1pkyZgu+++w4AkJub2+kDwLOyslBXV4ewsDCMGjUKCxcuhImJCT/eWe6IiAjcu3cPERERMDIygpeXFyZPnowDBw70dGrVcnJygq2tLSwtLTF16lQUFRWpjM+aNQuTJk2CTCbDqlWrkJyc3O1coaGhvf6opydPnqChoQGGhobtxpycnLB161Zs3LgRp06dUhnLzs7WON8dzU1XvzvaqqysBACVe+IZGRnh/v37XY61ZcsWrF+/HjKZTON4VVUVLly4AG9v7+4VrgN5n9c6Z2fOnMHly5dx/vx5ZGVlYdOmTfw6YrEYDx486PXchPQnatRIv3r+L/eSkhLU19dj+PDh/KHHgoIC3L59G1OmTMG2bdsQFhYGmUyG0NBQPH78uNPYiYmJGDFiBH8He3WxO/PRRx9h9+7dAICkpKRO74ZfWloKqVQKkUjEL5PL5Rq36+zZs+1u3KpQKFTO5+kLUqmU/93AwKDdnqG24+bm5qirq0NDQ0O3crW0tKC376MtEokgFovR2NjY4fjKlSvh4+ODefPm4bfffuOXl5SUaJzvjuamO98dbZiZmQF4ttepVW1tLcaMGdOlOLt370Z1dbXKoXh141FRUfj000/5bbl8+TL8/PzAcVyXzuUTKm9HjI2NAQDLli2DmZkZrKyssHjxYqSlpfHrNDQ0YPTo0T3KQ4jQqFEjgho3bhykUikYYyo/ISEhAJ5dvXjz5k2kp6fj1KlTnZ4HlZ+fj7i4OJVxTbE74uXlhRs3buD8+fOora2FhYVFh+uZm5ujqqoKT5484Ze13SvSWe6YmBhUVlaqNEp3796FpaWldhPWR8rLy/nfS0tLMWrUKIjFYujr66scSmrdI9SK47h2sWJjY7U656qrrK2tVep83q5du2Bubg5vb2/+PLNx48Z1a767893RxtixYyGVSlXO37py5QomTpyodYx9+/bh/Pnznd6otaPxL7/8UmU77O3tkZSUBMaY1lfHCpW3MwqFAgYGBvxn3WrYsGH872VlZbC2tu5RHkKERo0aEdT06dNhYmKCuLg41NfX4/r163BwcMClS5dw+PBhrFixAvX19bCyslLZ89GWUqnEvHnzkJiYyB9+nDdvntrYnRGLxfD29sbcuXPh6enZ6XpOTk4YNWoUtm7divr6euzduxdlZWUat2vUqFGwsLDAxo0bUVdXh5SUFFy8eBFz587t5gz2jpMnT+LKlSuoqKhAbGwsfH19AQBWVlY4deoU6uvrceDAAdTV1am8z9TUFMXFxfjxxx8xZ84cAH1z6BMAPvjgA/78wY6IxWKkpKTgxo0bqK6uBvDsc+jOfHfnu6MNPT09BAYGIioqCmVlZcjIyEBqaioWLlyo1fuTkpKQk5PD354kJycHMTExWo93l1B51RGJRPD390dMTAwqKipQVFSExMRElaudc3Nz4eXl1ad1ENLnGCG95JVXXul0LDIykgFgANgf//hHlbGCggLm4uLCxGIxmzBhAtu9ezdjjLHGxkYWFhbGLCwsmLGxMZs3bx5rbGxkISEhfKyQkBAWGxvLv279USgUamOrc+7cOWZmZsaUSiW/7PmcjDGWm5vLJk6cyMRiMfvrX//KHBwcGAB26NAhtbnz8/OZi4sLk0gkzNbWlp0+fVptPRkZGSwoKEhj3R3V2vZnw4YNLDg4mH+9c+dOxhhjAQEBbO3atczV1ZWJxWLm4eHBqqurGWOMFRcXs8mTJzOJRMI2bdrE7O3tGQCWlpbG1yaTyZhcLmdZWVmMMcZWrlzJAgMDta6XMcaCgoJYRkaG2nVqamqYg4MDq6ysZN988w2/HT4+Pirrpaamstdff51/3dl8t/1OdjQ36r47a9euZcHBwZ3WeuzYMZW5NzY25scaGxvZ/PnzmaGhIbOwsGj3news9q1bt5ienl67z3Xbtm1ajTPGWF5ensqYo6OjzubVNI+MMfbw4UPm4+PDDA0Nmbm5OQsLC+P/3KakpLCFCxd2GLethIQElpCQoHE9QgRSQY0a6TXqGjXSfV1t1LoqICCAbd68uc/ia0ObRo2xZ01BRERE3xekgaOjo8YGWxdjD5W8paWlbM2aNaypqUnjutSoER1XQQ9lJ4QMGNbW1vjiiy8EreH48eNwcXHBW2+9NaBiD6W8crkc0dHRvRqTEKFQo0aGpI5OggfQ61cr6jpfX198//33AICnT58iPDxc4Ip0n7u7O387mIEUm/ISMjBRo0aGpKHWkHUmOTm5R/dMI4QQ0rfoqk9CCCGEEB1FjRohhBBCiI7iGB0DIr3E3NwcpqamQpcx6DQ2NuLp06cqjx0abOrq6jBs2LAOHxFFSF+qrq5GeHg4goODhS6FkI7cp3PUSK8xNTXt1sOliXqZmZk4ePAgvv76a6FL6TMff/wxvL294ezsLHQpZIjp7EkLhOgKOvRJCCGEEKKjqFEjpIdee+01cByH48ePC13KoFdYWIjPPvtM6DKIjisrK8O6det6/OB3QnQBNWqk3yQnJ4PjOJUfExMTeHl58c9m7A5/f3+kpqZ267137txRqaftQ8f/+7//GxzHwcbGRm2OX375BQ4ODt3KLzR3d3fs3btXZ+O19fDhQ/j5+SEkJIR/pqRIJEJ2dja/TllZGf9Z9vSh3z1RU1OD6OhovPDCC9i+fbvKWFNTExYsWACxWAxLS0vs2bOnV+KqG2eMISkpCTY2NjAwMMCrr76KkydPDvi8ABAfHw8rKysYGxvD398fNTU1kMvlmDp1KpYvX651LkJ0FTVqpN/4+voiLy8PI0aMAGMMLS0t+Omnn/DLL7/g888/73bcvXv3qjyIuSsmTJiA+/fvQ19fHydPnoSZmRk/duzYMbzzzjvIz8/vUQ7SO+Lj4zFz5kxIpVIsWbIE2dnZaG5uhq+vLyoqKgA8uyM9Ywxvv/22oHtT0tPT8c4770ChULQb+/zzz3H79m0UFhZi//79WLZsGa5evdrjuOrGf/31V8THx+P06dOoqqqCn58f3n//fZSUlAzovImJidixYweOHj2K0tJSyGQyfPvttwCA2bNnIycnh86bJQMeNWpEMK17q1xcXHDjxg0AQEFBAZydnSEWi2Fra4u8vDx+/XXr1sHMzAwymQwxMTFobm7GihUrwHEcQkNDAQCHDx9ut9eutcHqLLaZmRnee+897Ny5U6W+Y8eO4c9//nO7HACQl5eHSZMmwcjICOvXr2+3beq24+bNm3B1dYWRkRHs7e2Rnp7e47nsLKanpyc4juP3cjk7O4PjOJw5cwa+vr44ceIEPvzwQ3Ach+3bt8PX15ffVmdnZ0gkEsyePRs1NTXditebjhw5gjfeeENl2eLFi9Hc3Iy5c+eipaWlS3PT+rkuXboUHh4ekEgk8PT0RHNzMwD1n6EmXl5esLe3b7e8paUFu3btQkREBMzNzeHq6goPD492372uxtU0PmHCBFy4cAHjx4+HoaEhVq9eDZFIhGvXrg3ovNHR0diyZQvs7OxgaGiIrVu3YunSpfy4o6MjDh06pFUuQnQVNWpEMIwx3Lx5E5mZmXB1dYVSqYSbmxtmzJiB8vJyhIWFwcvLC0qlEj///DOOHj2K69ev49atW/jpp59w8eJFxMXFYc2aNSpxjx07BsYYKisrYWNjg9jYWLWxASAgIADHjh1DeXk5H+fAgQOYO3duuxxNTU2YPXs25syZg7t370KhUPCNJgC1uZRKJd599104OjqipKQE4eHheO+993Dnzp1uz6O6mIcPH4abmxu/bmZmJv8PX3JyMtzc3LBnzx4wxrBkyRIkJycjICAAR48eRUJCAoqKivDgwQOEhYUBQJfj9abCwkKMHTtWZZlCocDBgwdx9uxZREZGdmluWj/XtLQ0REVFIT8/H7m5uUhPT9f4femu8vJyVFVVwdbWll9mZ2fX73t9amtrwRjDlClTBmzee/fu4c6dOyguLoZCocCYMWMQFBSEpqYmfh25XI7CwsIe5yJESNSokX73+PFjcBwHPT092NraIiwsDGvWrEF2djbKy8vxySefQCKRwM/PDxKJBD/88AOGDx+OyspKnDt3DgYGBjh8+DBee+21drE9PT35ZwcGBgZi3bp1ePHFF9XGBoC33noLFhYW/J6ikpISGBkZwdjYuF2OrKws1NXVISwsDKNGjcLChQthYmLCj6vLlZ2djXv37iEiIgJGRkbw8vLC5MmTceDAgW7PZ1/EnDVrFiZNmgSZTIZVq1b16DFToaGhWLRoUbffDwBPnjxBQ0NDh/dZc3JywtatW7Fx40acOnVKZUybuXFycoKtrS0sLS0xdepUFBUVafy+dFfrOZBt74lnZGSE+/fv9yhuV23ZsgXr16+HTCYbsHlb5+zMmTO4fPkyzp8/j6ysLGzatIlfRywW48GDBz3ORYiQqFEj/a71HLXq6moEBgZix44daG5uRklJCerr6zF8+HD+sGVBQQFu376NKVOmYNu2bQgLC4NMJkNoaCgeP37caY7ExESMGDEC8+fPBwC1sQFAT08P/v7++Pvf/w4A2L17Nz788MMOY5eWlkIqlUIkEvHL5HI5/7u6XCUlJTAzM4O+vj6/vkKh0PqcnY70RUypVMr/bm5ujrq6OjQ0NHQrVktLS4+frSoSiSAWi9HY2Njh+MqVK+Hj44N58+bht99+45drMzdtt9XAwABKpVLj96W7Ws+BrK2t5ZfV1tZizJgxPYrbFbt370Z1dbXKofyBmLf1P1HLli2DmZkZrKyssHjxYqSlpfHrNDQ0YPTo0b2SjxCh0A1viWBMTEzwt7/9DVZWVti5cyd+//vfQyqVqlx52Za/vz/8/f1x4cIFfPjhhxg3bhxCQkLarZefn4+4uDiVc4rGjRunNjYAfPTRR4iKikJGRgbOnTvX6W0gzM3NUVVVhSdPnvDNWts9Iupy/fjjj6isrIRSqeSbh7t372Ly5Mmd1qXJuHHj1MbU19dXORzUti6O4zqM2fYQcGlpKUaNGgWxWNyteLGxsd3ZrHasra1V6nrerl278Kc//Qne3t6QSCQANM9NZ7T5vnTH2LFjIZVKce3aNVhYWAAArly5gokTJ/Zqns7s27cP58+f7/XzB4XIq1AoYGBgwJ9T2GrYsGH872VlZbC2tu61nIQIgfaoEUGNHDkSq1atQmRkJOzt7WFiYoK4uDjU19fj+vXrcHBwwKVLl3D48GGsWLEC9fX1sLKyUtkL0pZSqcS8efOQmJjIH46cN28epk+f3mnsVuPHj8eMGTOwePFizJgxo9OanZycMGrUKGzduhX19fXYu3cvysrK+HF1uaZPnw4LCwts3LgRdXV1SElJwcWLFzF37txuz6GmmFZWVjh16hTq6+tx4MAB1NXV8e81NTVFcXExfvzxR8yZM4dffvLkSVy5cgUVFRWIjY2Fr68vP9bVeL1x6BMAPvjgA5w7d67TcbFYjJSUFNy4cYO/3Ut351ub70t36OnpITAwEFFRUSgrK0NGRgZSU1OxcOHCHsXVRlJSEnJycvhbm+Tk5CAmJmbA5hWJRPD390dMTAwqKipQVFSExMRElauzc3Nz4eXl1eNchAiKEdJLXnnlFbXj3333HQPA/1y4cIExxlhdXR0bPXo0A8A2btzIXFxcmFgsZhMmTGC7d+9mjDHW2NjIwsLCmIWFBTM2Nmbz5s1jjY2NLCQkhI8XEhLCYmNjVXIAYAqFgjHGWEFBQYex2/r++++ZSCRi5eXl/LLnczDGWG5uLps4cSITi8Xsr3/9K3NwcGAA2KFDhzTmys/PZy4uLkwikTBbW1t2+vRptfOWkZHBgoKC1K6jLmZxcTGbPHkyk0gkbNOmTcze3p4BYGlpaSwjI4PJZDIml8tZVlYWY4yxgIAAtnbtWubq6srEYjHz8PBg1dXV3Y63cuVKFhgYqLb+oKAglpGRoXadmpoa5uDgwCorK9k333zDfyY+Pj4q66WmprLXX39d49xERkbyMTZs2MCCg4P51zt37lT7Ga5du5YFBwd3WuuxY8dUvoPGxsb8WGNjI5s/fz4zNDRkFhYW7b6H6mKri6tu/NatW0xPT6/dn41t27YN6LwPHz5kPj4+zNDQkJmbm7OwsDCmVCoZY4ylpKSwhQsXdhi3rYSEBJaQkKBxPUIEUkGNGuk1mho10j3aNGq9KSAggG3evLnf8jGmXaPG2LN/+CMiIvq+IA0cHR01Nti6GHuo5C0tLWVr1qxhTU1NGtelRo3ouAo6R40QMmBYW1vjiy++ELSG48ePw8XFBW+99daAij2U8srlckRHR/dqTEKEQo0aIYTn6+uL77//HgDw9OlThIeHC1yR7nF3d+dvATOQYlNeQgYmatQIIbzk5OQe3TONEEJI76KrPgkhhBBCdBQ1aoQQQgghOopjrIe3DCfk/2dpaYn/+q//ErqMQaempgb379/HSy+9JHQpHXr48CHEYjGGD+/+mRS3bt3CmDFjVB7FNZDV1taqPCaK6K7bt28jICAAwcHBQpdCSEfu0zlqpNf8+9//xtOnT4Uug/Sj5ORkpKSk4Msvv4RCoRC6HJ1QX1+P4OBgjBkzBiEhIR0+n5ToltanRBCii2iPGiGky+rq6rBo0SKIRCJ88803/OOlyDOMMezcuRNffvklNm/ejFmzZgldEiFkYLpPjRohpEsuXryIBQsWYOnSpb3yaKjB7LfffkNQUBBMTU0RHx8PU1NToUsihAws9+liAkKI1vbv34+AgAD84x//oCZNC+PGjcPx48fx9ttvw8nJCZmZmUKXRAgZYGiPGiFEIzrU2XP/7//9PyxYsAB2dnbYtm0b9PX1hS6JEKL7aI8aIUS9ixcvwtHRES4uLti/fz81ad30u9/9DmfOnMGYMWPg5OSEmzdvCl0SIWQAoD1qhJBO7d+/H3Fxcdi3bx9sbW2FLmfQ+PnnnxEQEIANGzbQhQaEEHXoYgJCSHt0qLPvVVVV4S9/+QteffVVbNy4EcOGDRO6JEKI7qFDn4QQVXSos39IpVKcOHECI0eOxMyZM1FRUSF0SYQQHUR71AghPDrUKYwjR47giy++wKFDh/D73/9e6HIIIbqDDn0SQuhQpy64cuUK5s2bh6+++grTp08XuhxCiG6gQ5+EDHV0qFM32NnZ4V//+heWLVuGgwcPCl0OIURH0B41QoYwOtSpe6qqqjB79mx4e3tj6dKlQpdDCBEWPZSdkKGo7aHO7Oxs2oumQ6RSKa3eFgYAACAASURBVE6fPg1vb288fvwYq1evFrokQoiA6NAnIUMMHerUfQYGBjhy5AiysrKwefNmocshhAiIDn0SMoTQoc6BRalUwsvLC3/605+wbt06ocshhPQ/uuqTkKGAruocuB4/fowPPvgAM2fOREhIiNDlEEL6F131SchgR4c6B7YRI0bgyJEj+Ne//oVDhw4JXQ4hpJ/RxQSEDGKthzr/8Y9/0KHOAWzEiBFISUnBm2++CYVCgTfeeEPokggh/YQOfRIyCNGhzsGpuLgY7u7uSE1NhbW1tdDlEEL6Hh36JGSwoUOdg9cLL7yAv//97/D29kZ1dbXQ5RBC+gHtUSNkEKGrOoeG7777DgcPHkRKSgo4jhO6HEJI36E9aoQMNE+ePMF//vMflWV1dXWYM2cOzpw5g+zsbGrSBrk5c+bAzMwMX3/9tdClEEL6GDVqhAwwn376KWbMmIGysjIAdKhzqPqf//kf7Nu3D5cuXRK6FEJIH6JDn4QMIJcvX4arqyuqq6thb2+PkJAQxMfH06HOIeratWv4y1/+gpycHIwaNUrocgghvY9ueEvIQPHkyRNMnDgRhYWFAABDQ0PY2dnh3//+NwwNDQWujgglISEB+fn5SEhIELoUQkjvo3PUCBko1q5di9LSUv51Y2Mj8vPzkZ2dLWBVRGjBwcG4dOkSfv75Z6FLIYT0AdqjRsgA8J///AczZ87s8JYMRkZGKCgogFwuF6AyoguuXr2KRYsWITc3F3p69P9vQgYR2qNGiK57/PgxvLy8VJo0IyMjmJqaYsaMGUhMTIREIhGwQiI0W1tbvPbaa/j73/8udCmEkF5Ge9QI0XErV67EV199BUNDQwwfPhzTp0/HwoULMWPGDIwYMULo8oiOqK2txRtvvIHMzEyYmZkJXQ4hpHcMvosJpk2bhgcPHghdxpD19OlTKJXKQX1ye2NjI/T19TF8eN8/KrepqQl3796FWCyGsbHxoJ5Xop2IiAjMmTOnw7Fdu3YhPz8fMTEx/VwVIaSPDL5GbeLEibh+/brQZQxZmZmZOHjw4KC+EefHH38Mb29vODs793muyspK2jtCeF999RWAZxcQdOTJkyeYMmUK/v3vf0Mmk/VnaYSQvkHnqBGiy6hJI10hEokQEhJCe9QIGUSoUesjr732GjiOw/Hjx3sUx9fXFxzHITo6upcqI/2lsLAQn332mdBlEB1XVlaGdevW4dGjR70Sb8GCBUhLS0NFRUWvxCOECIsatR7w9/dHampqh2O//PILHBwcepwjOTkZAQEBPY6jLXXbNNBzuru7Y+/evX2eBwAePnwIPz8/hISEYPv27eA4DiKRSOWeZ2VlZeA4DhzHYeTIkf1SV0dqamoQHR2NF154Adu3b1cZa2pqwoIFCyAWi2FpaYk9e/b0Slx144wxJCUlwcbGBgYGBnj11Vdx8uTJAZ8XAOLj42FlZQVjY2P4+/ujpqYGcrkcU6dOxfLly7XOpY5IJMLy5csRGxvbK/EIIcKiRq0H9u7dCw8PD6HL6FVCbNNgnMf4+HjMnDkTUqkUS5YsQXZ2Npqbm+Hr68vv6ZDL5WCM4e233+61vSndkZ6ejnfeeQcKhaLd2Oeff47bt2+jsLAQ+/fvx7Jly3D16tUex1U3/uuvvyI+Ph6nT59GVVUV/Pz88P7776OkpGRA501MTMSOHTtw9OhRlJaWQiaT4dtvvwUAzJ49Gzk5Ob12fq2/vz+OHz+OmpqaXolHCBHOkGrUVqxYAY7jsHz5cvj4+GDEiBF48803AQAFBQVwdnaGWCyGra0t8vLy+PetW7cOZmZmkMlkiImJQXNzMx8rNDSUXy8vLw+TJk2CkZER1q9fzy/39PQEx3H83hxnZ2dwHIczZ87w65w8eRJ2dnYwMTGBj48PHj582OXtWrZsGd577z1IJBKsWrUKt27dwqRJkyCVSrFv3z6NuZ7fptbXS5cuhYeHByQSCTw9PdHc3Kz9pGtZe2hoqMZ8rYeBQ0ND4ezsDIlEgtmzZ6OmpkbjHPv6+uLEiRP48MMPwXFcp3s8esuRI0fwxhtvqCxbvHgxmpubMXfuXLS0tHT4vps3b8LV1RVGRkawt7dHeno6AM2fhbrvryZeXl6wt7dvt7ylpQW7du1CREQEzM3N4erqCg8PD+zcubNHcTWNT5gwARcuXMD48eNhaGiI1atXQyQS4dq1awM6b3R0NLZs2QI7OzsYGhpi69atWLp0KT/u6OiIQ4cOaZVLE5FIhDlz5uC7777rlXiEEOEMqUYtLi4Oa9aswfHjx7F69WpcvnwZIpEISqUSbm5umDFjBsrLyxEWFgYvLy8olUr8/PPPOHr0KK5fv45bt27hp59+wsWLF/lYrZqamjB79mzMmTMHd+/ehUKhwI0bNwAAhw8fhpubG79uZmZmu7/QN2zYgO+//x6//vorxGIxNmzY0OXtOnXqFLZs2YKLFy9ix44d2Lx5M86ePYvt27erNJSd5Xp+m1pfp6WlISoqCvn5+cjNzeWbh97QNqemfK2HgY8ePYqEhAQUFRXhwYMHCAsL0zjHycnJcHNzw549e8AYw5IlS3ptGzpSWFiIsWPHqixTKBQ4ePAgzp49i8jIyHbvUSqVePfdd+Ho6IiSkhKEh4fjvffew507d9TOjbrvb0+Ul5ejqqpK5WHvdnZ2/X5VdW1tLRhjmDJlyoDNe+/ePdy5cwfFxcVQKBQYM2YMgoKC0NTUxK8jl8v557j2hoCAAOzfv7/X4hFChDGkGrVW06ZNw9SpU2FjY4O0tDRkZ2ejvLwcn3zyCSQSCfz8/CCRSPDDDz9g+PDhqKysxLlz52BgYIDDhw/jtddeaxczKysLdXV1CAsLw6hRo7Bw4UKYmJhoXVNeXh5eeeUVGBsb46OPPkJWVlaXt2v69Ol45ZVX8NJLL2HixImYNm0apFIpPDw8UFlZidra2m7lcnJygq2tLSwtLTF16lQUFRV1ubau0JRv1qxZmDRpEmQyGVatWoXk5ORu5woNDcWiRYt6WrKKJ0+eoKGhocN7njk5OWHr1q3YuHEjTp06pTKWnZ2Ne/fuISIiAkZGRvDy8sLkyZNx4MABlfc/Pzfqvr89UVlZCeDZUxBaGRkZ4f79+z2K21VbtmzB+vXr+/12E72Zt3XOzpw5g8uXL+P8+fPIysrCpk2b+HXEYnGv3gNSLpfDzMwMFy9e7LWYhJD+NyQbtef/4i0pKUF9fT2GDx/On9xdUFCA27dvY8qUKdi2bRvCwsIgk8kQGhqKx48ft4tZWloKqVQKkUjEL9P22YuMMYSFhUEul0NPTw/Tp0/v8JmOmowePZr/XV9fn3+tr68P4Nkem+7kkkql/O8GBgY93lOjiaZ8bcfNzc1RV1eHhoaGbuVqaWn5/9i796go7mxf4N9GUaGbh/IQaFgxDDmjRiQYIzlyIYCJxuBISEDQgKKAj/GBGmw1I0Ej+ECG4XCcKIpIYsagEiKjPAweITwkjs4yMQZEEcwRpXkJQgPaCL/7h5e6tkDTPJpuYH/WYi2oX/Xeu6t+wraqugoDfStBTU1N8Pl8NDc3dzm+adMmeHl5wcfHB/fv3+eWl5eXw9DQkNtfwPOjcC9eI9XVtpE3f/uj49YgHQ1+x/dGRkb9itsb8fHxqKurkzkiPBTz6unpAQDWr18PQ0NDWFpaYtWqVUhPT+fWaWpqkvk3PBD8/f0RHx8/oDEJIYNrRDZqL7OwsICBgQEYYzJfQUFBAJ5fmHv79m1kZmYiIyOjy+ubTE1NUVtbi9bWVm7Zi0cexowZI3Oao+NoBQCkpqYiPj4e2dnZaGtrQ0FBwYA3D6rIpSyVlZXc9xUVFdDR0QGfz5e7jQGAx+N1ihUVFaXwNVe9YWVlJVPny+Li4mBqaopFixZx15lZWFigpqZGpjF98OABzM3N5ebqaf721cSJE2FgYCBzjdaNGzcwderUfsVV1FdffYUrV65wN3kdLMrIKxQKoaWl1en6zlGjRnHfi8ViWFlZDVhO4PknnS9evCjze4kQMrRQo4bnpwz19fURHR0NiUSCwsJC2NnZ4eeff0ZSUhI2btwIiUQCS0tLmSMaL3J0dISOjg4iIiIgkUiQkJAAsVjMjVtaWiIjIwMSiQQnT55EY2MjN9be3s59PXnyBKmpqUp7r4OZS1nS0tJw48YNVFVVISoqCt7e3gDkb2MAGD9+PMrKynDp0iXuETzKOPUJAB9//DEuX77c7Tifz0dycjKKioq4I5oODg4wMzNDeHg4GhsbkZycjOvXr2PJkiVyc8mbv/2hoaGBgIAAhIWFQSwWIysrCykpKQgMDOxXXEWcOHECeXl53K1N8vLyBuUmrsrKq6mpCT8/P0RGRqKqqgqlpaWIjY2V+bRzfn4+PD09+53rRaNHj8bs2bPlzkVCiJpjw8yUKVO6HQsNDWUAGAD25ptvyowVFxczZ2dnxufz2aRJk1h8fDxjjLHm5mYmEomYmZkZ09PTYz4+Pqy5uZkFBQVxsYKCghhjjOXn57OpU6cyPp/PtmzZwuzs7BgAdubMGVZWVsZsbW2ZQCBge/bsYTY2NgwAS09PZ8+ePWMrVqxgOjo67LXXXmM7duxgAJiNjQ3z8vLi8uzevbvH97V7927m6urK/ZyVlcX09PS4n+vr67vN9fJ7ejnu2rVruZ+PHj3aZS1ZWVlszZo1Cu+vF3O++NVdPn9/f7Zt2zbm4uLC+Hw+c3NzY3V1dYwxJncbd9RmbGzMTExMWE5ODmOMsU2bNrGAgACF62WMsTVr1rCsrCy569TX1zM7OztWU1PDDh06xL0PLy8vmfVSUlLYW2+9xf1869Yt5uzszAQCAbO2tmYXLlxgjHXexy9vm+7mL2OMbdu2ja1du7bbWs+dOyez7fX09Lix5uZmtnTpUqatrc3MzMxk4vYUW15ceeN37txhGhoanebEgQMHhnTex48fMy8vL6atrc1MTU2ZSCRiUqmUMcZYcnIyCwwM7DLuiw4ePMgOHjzY43ovOnPmDNu6dWuvXkMIURtVI6pRI8rX20att/z9/dnevXuVFl8RijRqjD3/wx8SEqL8gnpgb2/PNXxDKfZIyVtRUcG2bt3KWlpaely3L41adXU1s7e372t5hBDVqho9EEflCCGdWVlZ4YsvvlBpDefPn4ezszPmzp07pGKPpLwmJiZKfUScoaEh6uvr0draKvNhJ0LI0ECN2hDS1cXwAIbchwH6ytvbG6dOnQIAPHv2DDt27FBxRepvwYIFWLBgwZCLTXkH1pQpU3D79m28/vrrqi6FENJL9GGCIYS99Km+jq+RIjExkXvP1KQRorhXX30VZWVlqi6DENIH1KgRQsgwN2nSJPzv//6vqssghPQBNWqEEDLM6erq9ur5wYQQ9THsrlFraGgY8HsREcVVV1ejqqpqWO+DwsJCFBYWDuod+gkBgLt378Lf37/Xr+Pz+X1+egchRLWGXaPG5/Oxc+dOVZcxYl29ehUXLlwY1teQhYWFYd68eXjrrbdUXQoZYb799ts+vU4qldInPgkZooZdozZq1Cj6ZJMKVVdXY/z48cN6H4wfPx6TJk0a1u+RqCdTU9M+va6pqQkCgWCAqyGEDAa6Rm2QzJw5EzweD+fPn+9XHG9vb/B4PKXed4kMjJKSEnz++eeqLoOoObFYjO3bt+PJkydKzTFx4kSlxSeEKM+Ia9QSExPB4/FkvvT19eHp6ck9c7Gv/Pz8kJKS0uXYtWvXYGdn16/4wPP6O65R6XgeIY/HQ3x8fKd1m5qaYGRkBB6PBw8Pjx5jy6tfHSxYsAAJCQlqG+9Fjx8/hq+vL4KCgrj9pKmpidzcXG4dsVjM7b9x48YppQ5F1NfXY9++fXj11Vdx+PBhmbGWlhYsW7YMfD4f5ubmOH78+IDElTfOGMOJEycwefJkaGlp4Y033kBaWtqQzwsAMTExsLS0hJ6eHvz8/FBfXw8TExPMmjULGzZsUDhXb5WVleHVV19VWnxCiPKMuEbN29sbBQUFGDt2LBhjaG9vx08//YRr165h165d/YqdkJAg85BlZVu9ejUKCgowZswYhIeH49mzZzLjX375JRoaGvCXv/wFSUlJPcYb7PqHs5iYGLz33nswMDDA6tWrkZubi7a2Nnh7e6OqqgrA8zvSM8Ywb948pR5N6UlmZibmz58PoVDYaWzXrl24e/cuSkpK8PXXX2P9+vX49ddf+x1X3vjvv/+OmJgYXLhwAbW1tfD19cVHH32E8vLyIZ03NjYWR44cwdmzZ1FRUQFjY2N88803AAB3d3fk5eWhsLBQoVy9VVxcjNdee00psQkhyjXiGrWX8Xg8TJ48Gc7OzigqKuKWFxcXw8nJCXw+H9bW1igoKODGtm/fDkNDQxgbGyMyMhJtbW3YuHEjeDwegoODufUKCgowbdo06OrqynzAwcPDAzwejzua4+TkBB6Ph4sXL3LrpKWlYfr06dDX14eXl5fcj9YvXboUDx8+xD/+8Q9uWUtLC7777jvMmzdPZt3u4r5cf8fP69atg5ubGwQCATw8PNDW1taLrdu127dvw8XFBbq6urCxsUFmZmaP28Xb2xupqalYvnw5eDweDh8+zJ0GDg4OhpOTEwQCAdzd3VFfX9+neAPpu+++w+zZs2WWrVq1Cm1tbViyZAna29t7tW162h/y5mtPPD09YWNj02l5e3s74uLiEBISAlNTU7i4uMDNzQ1Hjx7tV9yexidNmoSrV6/ilVdegba2Nj799FNoamri5s2bQzrvvn37sH//fkyfPh3a2tqIiIjAunXruHF7e3ucOXNGoVy98ezZMzx69AjGxsYDHpsQonwjvlFjjOH27dvIzs6Gi4sLgOefkHJ1dcWcOXNQWVkJkUgET09PSKVS/Otf/8LZs2dRWFiIO3fu4KeffsL169cRHR2NrVu3cnFbWlrg7u6OxYsX48GDBxAKhVwjmJSUBFdXV27d7OzsTr/gd+/ejVOnTuH3338Hn8/H7t27u30PQqEQ69atQ3h4OPeH+/Dhw/jzn/+MMWPGKBT35fo7fk5PT0dYWBhu3bqF/Px8rnHoK6lUig8++AD29vYoLy/Hjh07sHDhQty7d0/udklMTISrqyuOHz8OxhhWr17NnQY+e/YsDh48iNLSUjx69AgikQiA/O3cVbyBVFJS0umaIKFQiNOnT+PHH39EaGhor7aNvP0hb772R2VlJWpra2Ftbc0tmz59utKO+nSnoaEBjDHMmDFjyOZ9+PAh7t27h7KyMgiFQhgZGWHNmjVoaWnh1jExMUFJSUm/c73sl19+oQ++EDKEjdhG7enTp+DxeNDQ0IC1tTVEIhHXqOTm5qKyshKfffYZBAIBfH19IRAI8MMPP2D06NGoqanB5cuXoaWlhaSkJMycObNT/JycHDQ2NkIkEkFHRweBgYHQ19dXuL6CggJMmTIFenp6WLFiBXJycuSuv23bNlRWVuLbb7/F06dPkZaWBh8fn37HdXR0hLW1NczNzTFr1iyUlpYq/B66kpubi4cPHyIkJAS6urrw9PSEra0tTp482eeYH374IaZNmwZjY2Ns3rwZiYmJfY4VHByMlStX9vn1ANDa2oqmpiZoa2t3GnN0dERERATCw8ORkZEhM6bItulqf8ibr/1RU1MD4PnNUjvo6uqiurq6X3F7a//+/di5c+egHxEayLwd2+zixYv45ZdfcOXKFeTk5GDPnj3cOnw+H48ePep3rpdduHBh0B9gTwgZOCO2Ueu4Rq2urg4BAQE4cuQIdzSqvLwcEokEo0eP5i72Li4uxt27dzFjxgwcOHAAIpEIxsbGCA4OxtOnTzvFr6iogIGBgcy9i0xMTBSqjTEGkUgEExMTaGhowMHBoccPOhgYGCA4OBjh4eGIjY3F2rVroaEhu3v7GreDlpZWv4/SlJeXw9DQUOZIn1AoVPg6oJ5qNDU1RWNjY59v7tne3t7v56dqamqCz+ejubm5y/FNmzbBy8sLPj4+uH//PrdckW3T1f6QN1/7w9DQEMDzI0sdGhoaBvVGv/Hx8airq5O5pGAo5tXT0wMArF+/HoaGhrC0tMSqVauQnp7OrdPU1IQJEyYMSL4XZWRk4P333x/wuISQwTFiG7UO+vr6+Otf/wqxWMxde2NhYQEDA4NODz8PCgoC8PzTkbdv30ZmZiYyMjK6vL7J1NQUtbW1aG1t5Za9eCRizJgxMqc9Oo5eAEBqairi4+ORnZ2NtrY2FBQUKNQ8bNq0CbW1tUhKSsKHH37YabyvcQeShYUFampqZBq+Bw8ewNzcHID87cLj8bqMWVlZyX1fUVEBHR0d8Pn8PsWLiopS+BoseaysrGTqellcXBxMTU2xaNEi7j8IPW2b7vQ0X/tq4sSJMDAwkLlG68aNG5g6dWq/4irqq6++wpUrV/D3v/99UPIpM69QKISWllanazxHjRrFfS8Wi2FlZTVgOQHg3r17XH5CyNA04hs1ABg3bhw2b96M0NBQNDQ0wMHBAfr6+oiOjoZEIkFhYSHs7Ozw888/IykpCRs3boREIoGlpaXMEY4XOTo6QkdHBxEREZBIJEhISIBYLObGLS0tkZGRAYlEgpMnT6KxsZEba29v576ePHmC1NRUhd6HQCBASkoKjhw50uV4X+MOJAcHB5iZmSE8PByNjY1ITk7G9evXsWTJEgDyt8v48eNRVlaGS5cuYfHixdzytLQ03LhxA1VVVYiKioK3tzc31tt4A3HqEwA+/vhjXL58udtxPp+P5ORkFBUVcUc1e9o23ZE3X/tDQ0MDAQEBCAsLg1gsRlZWFlJSUhAYGNivuIo4ceIE8vLyuFub5OXlITIycsjm1dTUhJ+fHyIjI1FVVYXS0lLExsbKfMo6Pz9/wB+9Fh8fj+XLlw9oTELIIGPDzJQpU+SOf/vttwwA93X16lXGGGONjY1swoQJDAA7c+YMKy4uZs7OzozP57NJkyax+Ph4xhhjzc3NTCQSMTMzM6anp8d8fHxYc3MzCwoK4mIGBQUxxhjLz89nU6dOZXw+n23ZsoXZ2dlx8cvKypitrS0TCARsz549zMbGhgFg6enp7NmzZ2zFihVMR0eHvfbaa2zHjh0MALOxsWFeXl5cntdff5373t/fv9N7ffPNN7nxZcuWyY37cv2hoaHcz7t372Zr167lfj569Gi32zcrK4utWbNG7j64desWc3Z2ZgKBgFlbW7MLFy5wY/K2S1ZWFjM2NmYmJiYsJyeHMcaYv78/27ZtG3NxcWF8Pp+5ubmxurq6PsfbtGkTCwgIkFv/mjVrWFZWltx16uvrmZ2dHaupqWGHDh3itp2Xl5fMeikpKeytt97qcdv0tD+6m6+MMbZt2za2du3abms9d+6czL8JPT09bqy5uZktXbqUaWtrMzMzM5m4PcWWF1fe+J07d5iGhobMGAB24MCBIZ338ePHzMvLi2lrazNTU1MmEomYVCpljDGWnJzMAgMDu4z7ooMHD7KDBw/2uB5jjLW1tbGpU6eyhoYGhdYnhKilqhHXqBHlUqRRG0j+/v5s7969g5aPMcUaNcae/+EPCQlRfkE9sLe3l2mGh0rskZK3oqKCbd26lbW0tPS4bm8atbS0NIWaP0KIWquiU5+EKImVlRW++OILldZw/vx5ODs7K+VTf8qMPZLympiYYN++fQP+dIq4uDjuKSaEkKFr2D2UnYwc3t7eOHXqFIDnN/XcsWOHiitSPwsWLMCCBQuGXGzK2z9FRUWorKwckMfWEUJUixo1MmQlJib2655phAxXYWFh9B8XQoYJOvVJCCHDyJ07d3D37t1Oj48jhAxN1KgRQsgw8sUXX+Dzzz/v9r6DhJChZdid+mxubpZ5ADoZXPfv30dxcfGw3gc3btzA06dPkZ2dPSj5JBIJBALBoOQi6u3q1av44IMPuh0vKSnB7du3MX/+/EGsihCiTDzGBvnW9Er2z3/+E0+ePFF1GYQMmGPHjkEqlWLFihUYO3asqsshKvbmm2/iD3/4Q5djixYtgp+fn9xmjhAypFQPu0aNkOHo66+/RnR0NL766itYW1uruhyihi5duoT9+/fjwoULqi6FEDJwqFEjZKi4fv06li1bhnXr1g3IY67I8PHs2TO8/fbb+Mc//oE//vGPqi6HEDJwqunDBIQMEba2tsjPz0dWVhaWLl2KpqYmVZdE1ERMTAzmzp1LTRohwxA1aoQMITo6Ovj222/x7rvvwsHBAb/++quqSyIqdufOHSQkJOAvf/mLqkshhCgBNWqEDEFLly7FsWPH8Mknn+DIkSOqLoeoyLNnz+Dn54eDBw+Cz+eruhxCiBLQNWqEDGGNjY1YuXIlNDU1cejQIfpjPcJ88cUXkEqlCAsLU3UphBDloGvUCBnK6FToyPXTTz8hNTUVn3/+uapLIYQoER1RI2SYoE+FjhyVlZV499138f3338PKykrV5RBClIduz0HIcEKnQoe/1tZWzJ07F1u2bKEb2xIy/NGpT0KGEzoVOvwFBQVh7ty51KQRMkLQETVChik6FTr8REZG4t///jdOnjxJD10nZGSgU5+EDGd0KnT4OHnyJI4dO4a0tDR65ishIwed+iRkOKNTocPD//zP/+Bvf/sbvvvuO2rSCBlh6IgaISMEnQodmrKzs7Fx40ZkZGTAxMRE1eUQQgYXnfokZCShU6FDS05ODjZu3Ih//vOfMDc3V3U5hJDBR6c+CRlJ6FTo0PHDDz9gw4YNOHfuHDVphIxgdESNkBGKToWqr++//x67d+9GamoqTE1NVV0OIUR16NQnISMZnQpVP8eOHcPx48fx/fffw8jISNXlEEJUi059EjKS0alQ9cEYw86dO3Hu3Dn88MMP1KQRQgDQqU9CyP9Dp0JVp6WlBf7+/tDX18d///d/Y9SoUaouiRCiHuiIGiHkOVtbW+Tn5yMrKwtLly5FU1OTqksaEcrLyzFnzhzY2Njg5cprbgAAIABJREFUyy+/pCaNECKDGjVCCEeRU6Hl5eUqqGzoe/LkSadlubm5eP/997F3715s3bpVBVURQtQdNWqEkE6WLl2KY8eO4ZNPPsGRI0e45UeOHMHbb7+NlpYWFVY39Pz73//GrFmz0NraCuD59WgRERHYsmULzp8/j3feeUfFFRJC1BVdo0YI6daLnwrdsGED5s2bh6amJvj6+uLo0aOqLm9IqKurw7Rp01BbW4sNGzZAJBJh2bJlMDAwQGxsLLS0tFRdIiFEfdHtOQghPYuOjkZYWBhqa2sBAOPHj8f3339PR4J6wBjDu+++i7y8PEilUkyYMAFGRkYIDw/Hxx9/rOryCCHqjz5MQAjpWU5OjsyHC+rq6vDJJ59AIpGosCr1FxYWhmvXrkEqlQIAHj16hNbWVixcuFDFlRFChgpq1Aghch09ehSZmZmdLoavrq7GunXrVFSV+isoKMDf/vY3NDQ0yCwXi8UIDQ1VUVWEkKGGGjVCiFyGhoZ4++23YWhoiPHjx3PLpVIp/vnPfyI7O1t1xamp6upqfPTRR6irq5NZLhAIoKWlhbNnz9LRSEKIQugaNUKIQp48eYKLFy8iPj4eeXl54PF4qK6uhpGREe7evQuBQKDqEtVCe3s7Zs+ejatXr0JLSwtaWloYO3Ys7O3t4enpCScnJxgaGqq6TELI0EAfJhhMBQUFiIqKUnUZMhoaGsDn84f1TTbr6upkjgSR/mOMoaamBr///jsePnwIc3NzzJgxQ9VlqYXCwkKUlZXB0NAQQqEQRkZGGDt2rKrLIiOUhYWF2v3dIb1SPVrVFYwk9+/fh7GxMf785z+ruhTO5s2bsWzZMlhZWam6FKVZuHAh/uu//kvVZQxrRUVFsLKygqampqpLUblHjx5hwoQJqi6DEACAp6cnNWpDHDVqg8zIyAivv/66qsvg6OrqwsrKSq1qGmhjx44d1u9PHdD2JYQQ5aAPEwxRM2fOBI/Hw/nz5/s0Tv6/cePGgcfjwcnJiVtWUlKCzz//XHVFkSFDLBZj+/btXT4iSh6aY0RRL8+xmpoa8Hg88Hg8eHt7q7g6omzUqA1R165dg52dXZ/H+8rPzw8pKSkDHvdlCxYsQEJCgtLzdCgqKuI+vfj48WP4+voiKCgIAHD48GHweDxoamoiNzeXe41YLOZ+WY4bN27Qan1ZfX099u3bh1dffRWHDx+WGWtpacGyZcvA5/Nhbm6O48ePD0hceeOMMZw4cQKTJ0+GlpYW3njjDaSlpQ35vAAQExMDS0tL6Onpwc/PD/X19TAxMcGsWbOwYcMGhXO9OMeG8vwClDfH5I0pc1+rKi/Q9fwC0GmOGRoagjGGvXv3KpybDF3UqJFeSUhIgJubm6rLUKqYmBi89957MDAwAACsXr0aubm5aGtrg7e3N6qqqgA8/+XJGMO8efN6fTRlIGVmZmL+/PkQCoWdxnbt2oW7d++ipKQEX3/9NdavX9/lg9Z7G1fe+O+//46YmBhcuHABtbW18PX1xUcffaTww9zVNW9sbCyOHDmCs2fPoqKiAsbGxvjmm28AAO7u7sjLy0NhYaFCuV6cY0N5fgHKm2PyxpS5r1WVV978Ano/x8jwQY2amklLS8P06dOhr68PLy8vPH78mBsrKCjAtGnToKuri507d3Z6bU/j/bVx40bweDwEBwfL/Lxu3Tq4ublBIBDAw8OD+4PTsa6TkxMEAgHc3d25/yF6eHiAx+NxR82cnJzA4/Fw8eJFeHt7IzU1FcuXLwePx+v26IayfPfdd5g9e3an5atWrUJbWxuWLFmC9vb2Ll97+/ZtuLi4QFdXFzY2NsjMzAQgf1sBQHFxMZycnMDn82FtbY2CggKF6/X09ISNjU2n5e3t7YiLi0NISAhMTU3h4uICNzc3hZ/R2V3cnsYnTZqEq1ev4pVXXoG2tjY+/fRTaGpq4ubNm0M67759+7B//35Mnz4d2traiIiIkLnhr729Pc6cOaNQrq7mmDLnF9D3OSZvuyhzjskbU+a+VlXenuYX0Ls5RoYPatTUzO7du3Hq1Cn8/vvv4PP52L17N4Dnpxfc3d2xePFiPHjwAEKhEEVFRdzrehofCNHR0di6dWunn9PT0xEWFoZbt24hPz8fmZmZSExMhL+/P86ePYuDBw+itLQUjx49gkgkAgAkJSXB1dWVi5Wdnc39AktMTISrqyuOHz8OxhhWr149oO+jJyUlJZg4cWKn5UKhEKdPn8aPP/7Y5Z3lpVIpPvjgA9jb26O8vBw7duzAwoULce/ePbnbSiqVwtXVFXPmzEFlZSVEIhE8PT25xw71VWVlJWpra2Ftbc0tmz59+qD/j7yhoQGMsUG/fcdA5n348CHu3buHsrIy7pYba9asQUtLC7eOiYkJSkpKFIrX1RxT1vzqeC3NMfXNq8j8Ano3x8jwQY2amikoKMCUKVOgp6eHFStWICcnB8DzZy02NjZCJBJBR0cHgYGB0NfX517X07gyOTo6wtraGubm5pg1axZKS0u5sQ8//BDTpk2DsbExNm/ejMTExD7nCQ4OxsqVKwei5G61traiqakJ2traXY47OjoiIiIC4eHhyMjIkBnLzc3Fw4cPERISAl1dXXh6esLW1hYnT56Uef3L2yo3NxeVlZX47LPPIBAI4OvrC4FAgB9++KFf76WmpgbA80/2dtDV1UV1dXW/4vbW/v37sXPnThgbGw/ZvB3b7OLFi/jll19w5coV5OTkYM+ePdw6fD4fjx496jGWvDmmjPnV8VqaY+qbV5H5BSg+x8jwQo2aGmGMQSQSwcTEBBoaGnBwcOAeQVNRUQEDAwOZ+1SZmJhw3/c0rkwd13IBgJaWlsz/0l8cMzU1RWNjo8zDvXujvb0dyr4/s6amJvh8Ppqbm7tdZ9OmTfDy8oKPjw/u37/PLS8vL4ehoSHGjBnDLRMKhTLXr3S1rcrLyyGRSDB69Gju4vHi4mLcvXu3X++l4+73Lz5rsqGhAUZGRv2K2xvx8fGoq6vjTpcP1bx6enoAgPXr18PQ0BCWlpZYtWoV0tPTuXWampoUun9aT3NsoOdXx2tpjqlvXkXmF6D4HCPDCzVqaiQ1NRXx8fHIzs5GW1sbCgoKuMbE1NQUtbW1aG1t5dZ/8X+tPY2rSmVlJfd9RUUFdHR0wOfzAQBjxoyRObTf8b9zAODxeJ1iRUVFKXztS39YWVnJ1N2VuLg4mJqaYtGiRdx1QBYWFqipqZFpVB88eABzc3O5sSwsLGBgYADGmMxXx6dO+2rixIkwMDCQuX7mxo0bmDp1ar/iKuqrr77ClStX8Pe//31Q8ikzr1AohJaWlsw1XwBknughFosVvnF0T3NsIOdXx2tpjqlvXkXmF9C7OUaGD2rU1Eh7ezv39eTJE6SmpnJjjo6O0NHRQUREBCQSCRISEiAWixUeV5W0tDTcuHEDVVVViIqKkrnnj6WlJTIyMiCRSHDy5Ek0NjZyY+PHj0dZWRkuXbqExYsXAxicU58A8PHHH+Py5cty1+Hz+UhOTkZRURF31NPBwQFmZmYIDw9HY2MjkpOTcf36dSxZskRuLAcHB+jr6yM6OhoSiQSFhYWws7PDzz//3K/3oaGhgYCAAISFhUEsFiMrKwspKSkIDAzsV1xFnDhxAnl5edytJ/Ly8hAZGTlk82pqasLPzw+RkZGoqqpCaWkpYmNjZT4BnZ+fD09PT4Xi9TTHBnJ+dbyW5pj65lVkfgG9m2NkGGFk0Jw6dYqFhoZ2O/7s2TO2YsUKpqOjw1577TW2Y8cOBoDZ2NgwxhjLz89nU6dOZXw+n23ZsoXZ2dkxAOzMmTMKjXfFw8OD3bx5U6H6g4KCGAAGgAUFBbHQ0FDu5927d7O1a9dyPx89epT5+/uzbdu2MRcXF8bn85mbmxurq6vj4pWVlTFbW1smEAjYnj17mI2NDQPA0tPTWVZWFjM2NmYmJiYsJyeHMcbYpk2bWEBAgEK1vmjKlClyx8eOHcuKioq4n+vr65mdnR2rqalhjDF26NAh7n15eXnJvDYlJYW99dZb3M+3bt1izs7OTCAQMGtra3bhwgXGGOtxWxUXFzNnZ2fG5/PZpEmTWHx8PBdz27ZtbO3atd3Wf+7cOS4WAKanp8eNNTc3s6VLlzJtbW1mZmYmE7en2PLiyhu/c+cO09DQkBkDwA4cODCk8z5+/Jh5eXkxbW1tZmpqykQiEZNKpYwxxpKTk1lgYKBCeRiTnWODMb8YY32eYz1tF3lzrD9zV95YT/t6KOaVN78Y6zzHGGNs7969nebMy3r6/UfUXhU1aoOop0ZNFXrTqPWWv78/27t3r1Ji94YijRoA9s4773DL7ty5w0JCQpRcmWLs7e25P8hDKfZIyVtRUcG2bt3KWlpaepVnJMyx4bSfVZn35TlWXV3dbXP/MmrUhrwqetYnGfG6upmolZUVvvjiCxVUI+v8+fNwdnbG3Llzh1TskZTXxMQE+/bt63We4T7Hhtt+VmXel+dYx5MJyMjAY7S3B83p06dRWFiolJvR9pWnpyd27tw54A/V9vb2xqlTpwA8vzfcjh07BjR+b0ydOpXu5k0IGZHo99+QV01H1IhSJCYm9uueaYQQQgihT30SQgghhKgtatQIIYQQQtQUnfocZJcvX1ara9SKi4vx5ZdfDuqdxAfbo0eP1GqbE0LIYHn5eaFk6KFGbZAZGBgM2l27FZGZmQlLS0tYWFiouhSl0dTUVKttTgghg+XlpxuQoYcatUH2xz/+EYsWLVJ1GZwzZ87g/fffH/BPfaqTnTt3qtU2J4SQwUJnE4Y+ukaNEEIIIURNUaM2hM2cORM8Hg/nz5/v1RghylBSUoLPP/9c1WUQNScWi7F9+/YubzRNCOmMGjU1FR8fD11dXTQ1NXW7zrVr12BnZ9frscGyYMECJCQkqG08MnAeP34MX19fBAUFcQ+r1tTURG5uLreOWCwGj8cDj8fDuHHjVFZrfX099u3bh1dffRWHDx+WGWtpacGyZcvA5/Nhbm6O48ePD0hceeOMMZw4cQKTJ0+GlpYW3njjDaSlpQ35vAAQExMDS0tL6Onpwc/PD/X19TAxMcGsWbOwYcMGhXMRMpJRo6am/vGPf6C9vR2nT59WdSmE9CgmJgbvvfceDAwMsHr1auTm5qKtrQ3e3t6oqqoC8PwxOIwxzJs3T6VHUzIzMzF//nwIhcJOY7t27cLdu3dRUlKCr7/+GuvXr8evv/7a77jyxn///XfExMTgwoULqK2tha+vLz766COUl5cP6byxsbE4cuQIzp49i4qKChgbG+Obb74BALi7uyMvL4/umE+IAqhRU0NFRUUwNDTEhx9+iLi4OJmxgoICTJs2Dbq6up0uEpU31le3b9+Gi4sLdHV1YWNjg8zMTACAh4cHeDwed4TLyckJPB4PFy9eBPD8EVKpqalYvnw5eDweDh8+DG9vb/B4PAQHB8PJyQkCgQDu7u6or6/vUzyiPr777jvMnj1bZtmqVavQ1taGJUuWoL29vcvXdTe/Nm7cCB6Ph3Xr1sHNzQ0CgQAeHh5oa2sD8Py2Mk5OTuDz+bC2tkZBQYHCtXp6esLGxqbT8vb2dsTFxSEkJASmpqZwcXGBm5sbjh492q+4PY1PmjQJV69exSuvvAJtbW18+umn0NTUxM2bN4d03n379mH//v2YPn06tLW1ERERgXXr1nHj9vb2OHPmjEK5CBnJqFFTQ3Fxcfjkk0/g4+ODy5cvo6ioCMDz0zLu7u5YvHgxHjx4AKFQqNBYX0mlUnzwwQewt7dHeXk5duzYgYULF+LevXtISkqCq6srt252drbML+3ExES4urri+PHjYIxh9erVSExMhL+/P86ePYuDBw+itLQUjx49gkgk6lM8oj5KSkowceJEmWVCoRCnT5/Gjz/+iNDQ0E6vkTe/oqOjsXXrVqSnpyMsLAy3bt1Cfn4+MjMzIZVK4erqijlz5qCyshIikQienp6QSqX9eg+VlZWora2FtbU1t2z69OmDftSnoaEBjDHMmDFjyOZ9+PAh7t27h7KyMgiFQhgZGWHNmjUy9/QyMTFBSUlJv3MRMtxRo6ZmWltbkZ6ejvnz5+O9996DsbExd1QtJycHjY2NEIlE0NHRQWBgIPT19Xsc66vc3Fw8fPgQISEh0NXVhaenJ2xtbXHy5Ml+xf3www8xbdo0GBsbY/Pmzf16JmhwcDBWrlzZr3pI/7S2tqKpqQna2tqdxhwdHREREYHw8HBkZGTIjCkyvxwdHWFtbQ1zc3PMmjULpaWlyM3NRWVlJT777DMIBAL4+vpCIBDghx9+6Nf7qKmpAQDo6upyy3R1dVFdXd2vuL21f/9+7Ny5E8bGxkM2b8c2u3jxIn755RdcuXIFOTk52LNnD7cOn8/Ho0eP+p2LkOGOGjU1k5KSAicnJ2hqamLUqFHw8vLC119/DalUioqKChgYGEBTU5Nb38TEBADkjvVVeXk5DA0NMWbMGG6ZUChU+BqW7hgYGHDfm5qaorGxUe6HJuRpb28HY6xf9ZD+0dTUBJ/PR3Nzc5fjmzZtgpeXF3x8fHD//n1uuSLz68W5oqWlBalUivLyckgkEowePZr7cEJxcTHu3r3br/dhaGgI4PmRpQ4NDQ2D+tSO+Ph41NXVITg4eNByKiOvnp4eAGD9+vUwNDSEpaUlVq1ahfT0dG6dpqYmTJgwYUDyETKc0Q1v1cyxY8eQkZGBQ4cOySxPSUmBqakpamtr0drayjVkHf9zlTfWVxYWFqipqYFUKuX+mD548AC2trYAgDFjxsicyug4ItGBx+N1GbeyspL7vqKiAjo6OuDz+X2KFxUV1ct3RZTByspKZr++LC4uDm+//TYWLVoEgUAAoOf51R0LCwsYGBh0mh/9NXHiRBgYGODmzZswMzMDANy4cWPQnmrx1Vdf4cqVK4N+/aUy8gqFQmhpaXHXFHZ48S75YrEYVlZWA5aTkOGKjqipkfLycjQ0NKC1tRWMMTDG0NraitmzZyMuLg6Ojo7Q0dFBREQEJBIJEhISIBaLAUDuWF85ODjAzMwM4eHhaGxsRHJyMq5fv44lS5YAACwtLZGRkQGJRIKTJ0+isbFR5vXjx49HWVkZLl26hMWLF3PL09LScOPGDVRVVSEqKgre3t59jkenPtXDxx9/jMuXL3c7zufzkZycjKKiItTV1QHoeX51x8HBAfr6+oiOjoZEIkFhYSHs7Ozw888/9+s9aGhoICAgAGFhYRCLxcjKykJKSgoCAwP7FVcRJ06cQF5eHndrk7y8PERGRg7ZvJqamvDz80NkZCSqqqpQWlqK2NhYuLm5cevk5+fD09Oz37kIGfYYGTSnTp1ioaGhXY5VV1czAAwAO3r0KLf86NGj3HI7OzuWn5/Ppk6dyvh8PtuyZQuzs7NjANiZM2fkjnXHw8OD3bx5s9vxW7duMWdnZyYQCJi1tTW7cOECN1ZWVsZsbW2ZQCBge/bsYTY2NgwAS09PZ4wxlpWVxYyNjZmJiQnLyclhjDHm7+/Ptm3bxlxcXBifz2dubm6srq6uz/E2bdrEAgIC5G73KVOmyB0n/VdfX8/s7OxYTU0NO3ToEDdnvby8ZNZLSUlhb731Fvdzd/MrNDSUi7F79262du1amX8fxcXFzNnZmfH5fDZp0iQWHx/Pxdy2bRtbu3Ztt7WeO3eOiwWA6enpcWPNzc1s6dKlTFtbm5mZmcnE7Sm2vLjyxu/cucM0NDRkxgCwAwcODOm8jx8/Zl5eXkxbW5uZmpoykUjEpFIpY4yx5ORkFhgY2GVcMrDo99+QV0WN2iCS16ipSk+N2kDz9/dne/fuHbR8jNEvqsFy584dFhISouoymL29vcx/KIZK7JGSt6Kigm3dupW1tLQMaFzSNfr9N+RV0TVqhJABYWVlhS+++EKlNZw/fx7Ozs6YO3fukIo9kvKamJhg3759AxqTkOGMGjUyaLy9vXHq1CkAwLNnz7Bjxw4VV0SGmwULFmDBggVDLjblJYR0hxo1MmgSExP7dc80QgghZKShT30SQgghhKgpOqI2yH777Te1etB6eXk5MjIy8Ntvv6m6FKVpaGhQq21OCCGEKIrHGN3WfbD89ttvavcQ4qdPn2LMmDHd3px2OHjy5AnGjRun6jJIP1y8eBFvvvkmxo8fr+pSCBlSjIyMsHbtWlWXQfqumho1QojaW7RoEUJDQ/H666+ruhRCCBlM1XSNGiGEEEKImqJGjRBCCCFETVGjRgghhBCipqhRI4QQQghRU9SoEUIIIYSoKWrUCCGEEELUFDVqhBBCCCFqiho1QgghhBA1RY0aIYQQQoiaokaNEEIIIURNUaNGCCGEEKKmqFEjhBBCCFFT1KgRQgghhKgpatQIIYQQQtQUNWqEEEIIIWqKGjVCCCGEEDVFjRohhBBCiJqiRo0QQgghRE1Ro0YIIYQQoqaoUSOEEEIIUVM8xhhTdRGEEPKy9evX46uvvsKoUaPw7NkzjBo1CjweD+3t7bh16xZMTU1VXSIhhChbNR1RI4SoJXd3d2hqaqK+vh4SiQSPHz9GfX09LCwsqEkjhIwY1KgRQtSSk5MTRo8eLbNs3LhxWL16tYoqIoSQwUeNGiFELWloaGDhwoXg8XjcMj6fD29vbxVWRQghg4saNUKI2lq5ciUMDAy4n62srGBoaKjCigghZHBRo0YIUVtvvfUWxowZA+D50bS1a9equCJCCBlc1KgRQtTakiVLMGrUKIwbNw7u7u6qLocQQgYVNWqEELXm7+8PTU1NzJgxAwKBQNXlEELIoBrd8yqE/H+pqam4evWqqssg/49UKsXo0aOhoTF8/8/15MkT8Pl8TJgwATt37lR1OWSE2bJlC/h8vqrLICMYNWqkV1JTU2FsbIypU6equhQC4NixY/jP//zPYb0/Nm/eDA8PDzg4OEBTU1PV5ZARZNeuXfjzn/9MjRpRKWrUSK85OTnByclJ1WUQANnZ2cN+f+zcuROHDh2SuU0HIYPhyy+/VHUJhNA1aoQQ9UdNGiFkpKJGjRAFzZw5EzweD+fPn1d1KeQlJSUl+Pzzz1VdBhkCxGIxtm/fjidPnqi6FEIUQo0aUVt+fn5ISUlRm7zXrl2DnZ2d0vLW19dj3759ePXVV3H48GGl5BjMbbpgwQIkJCQoPc/jx4/h6+uLoKAgAMDhw4fB4/GgqamJ3Nxcbj2xWAwejwcej4dx48Ypva6u9LSPW1pasGzZMvD5fJibm+P48eMDElveGGMMJ06cwOTJk6GlpYU33ngDaWlpQzovAMTExMDS0hJ6enrw8/NDfX09AMDExASzZs3Chg0bFM5FiCpRo0bUVkJCAtzc3EZM3szMTMyfPx9CoVBpOVT13pQpJiYG7733HvcEg9WrVyM3NxdtbW3w9vZGVVUVgOd/oBljmDdvnsqOpvS0j3ft2oW7d++ipKQEX3/9NdavX49ff/2137Hljf3++++IiYnBhQsXUFtbC19fX3z00UcoLy8fsnljY2Nx5MgRnD17FhUVFTA2NsY333zDjbu7uyMvLw+FhYUK5SJElahRIwNq48aN4PF42LBhA7y8vDB27Fi8++67KC4uhpOTE/h8PqytrVFQUMC9Zvv27TA0NISxsTEiIyPR1tbGxQkODgYAJCUlcUdDOr46Gg55sV/25MkT7vXTpk0D8PwPO4/Hg5OTU6e8BQUFmDZtGnR1dbu8NYS83Ldv34aLiwt0dXVhY2ODzMxMudvO09MTNjY2im3oPnj5vXX8vG7dOri5uUEgEMDDwwNtbW0AAG9vb259JycnCAQCuLu7o76+Hh4eHuDxeNwRMycnJ/B4PFy8eJF7bWpqKpYvXw4ej6e0I4QA8N1332H27Nmdlq9atQptbW1YsmQJ2tvbu3xtV/uop+0C9G7OvUjePm5vb0dcXBxCQkJgamoKFxcXuLm54ejRo/2OLW9s0qRJuHr1Kl555RVoa2vj008/haamJm7evDlk8+7btw/79+/H9OnToa2tjYiICKxbt05mHXt7e5w5c0ahXISoEjVqZEBFR0dj69atOH/+PD799FP88ssvYIzB1dUVc+bMQWVlJUQiETw9PSGVSvGvf/0LZ8+eRWFhIe7cuYOffvoJ169f5+K86Ny5c2CMoaamBpMnT0ZUVBSkUmm3sbsybtw43LlzB3w+H5cvXwbw/FTZn/70J2RnZ8vkbWlpgbu7OxYvXowHDx5AKBSiqKiIiyUvt1QqxQcffAB7e3uUl5djx44dWLhwIe7du6ecDa+Al7dpx8/p6ekICwvDrVu3kJ+fzzWUiYmJ8Pf3x9mzZ3Hw4EGUlpbi0aNHEIlESEpKgqurKxcrOztb5o9mYmIiXF1dcfz4cTDGsHr1aqW9r5KSEkycOLHTcqFQiNOnT+PHH39EaGhop/Hu9tHGjRvlbpfezjlFVVZWora2FtbW1tyy6dOnD/pRn4aGBjDGMGPGjCGZ9+HDh7h37x7KysogFAphZGSENWvWoKWlRWY9ExMTlJSU9CsXIYOBGjWiFP/n//wfzJo1C5MnT8Znn32GyspKfPbZZxAIBPD19YVAIMAPP/yA0aNHo6amBpcvX4aWlhaSkpIwc+bMTvE8PDywYMECAEBAQAC2b9+OP/zhD8jNze02dnesrKwwY8YMfPvttwCA/Pz8Lo/I5OTkoLGxESKRCDo6OggMDIS+vj43Li93bm4uHj58iJCQEOjq6sLT0xO2trY4efJkfzftgHN0dIS1tTXMzc0xa9YslJaWyox/+OGHmDZtGoyNjbF582YkJib2OVdwcDBWrlzZ35I5ra2taGpqgra2dpfjjo6OiIiIQHh4ODIyMmTGetpH3W2Xvsw5RdTU1AAAdHV1uWW6urqorq7uV9ze2r9/P3bu3AljY+Mhmbdje128eBG//PILrly5gpycHOzZs0dmPT6fj0ePHvUrFyGDgRo1ohQv/rItLy+rxU/eAAAgAElEQVSHRCLB6NGjudOOxcXFuHv3LmbMmIEDBw5AJBLB2NgYwcHBePr0abdxY2NjMXbsWCxdurTH2PKsWLEC8fHxAIATJ05w8V5UUVEBAwMDmZusmpiYKPS+ysvLYWhoyD1QHHh+hEfR628GU8e1XQCgpaXV6cjQi+OmpqZobGxEU1NTn3K1t7eDMda3QrugqakJPp+P5ubmbtfZtGkTvLy84OPjg/v373PLe9pH3W2Xvs65nhgaGgJ4fmSpQ0NDA4yMjPoVtzfi4+NRV1fHnR4finn19PQAAOvXr4ehoSEsLS2xatUqpKeny6zX1NSECRMm9DsfIcpGN7wlSmdhYQEDAwPuiMHL/Pz84Ofnh6tXr2L58uWwsLDgPsH3olu3biE6OlrmeqCeYnfH09MTGzZswJUrV9DQ0AAzM7NO65iamqK2thatra1cs/bi0Q15uS9duoSamhpIpVKuEXjw4AFsbW17Vac6qKys5L6vqKiAjo4O+Hw+xowZI3M66eXt0NW9z6Kioga8PisrK5kauxIXF4e3334bixYt4p4XamFh0e0+erFZellf51xPJk6cCAMDA9y8eZObjzdu3Bi0p0589dVXuHLlilKvJxyMvEKhEFpaWjLXFALAqFGjZH4Wi8WwsrIakJyEKBMdUSNK5+DgAH19fURHR0MikaCwsBB2dnb4+eefkZSUhI0bN0IikcDS0lLmKMaLpFIpfHx8EBsby51+9PHxkRtbHj6fj0WLFmHJkiXw8PDoch1HR0fo6OggIiICEokECQkJEIvFCr0vBwcHmJmZITw8HI2NjUhOTsb169exZMmSPm5F1UlLS8ONGzdQVVWFqKgoeHt7AwAsLS2RkZEBiUSCkydPorGxUeZ148ePR1lZGS5duoTFixcDGPhTnwDw8ccfc9cbdofP5yM5ORlFRUWoq6sDgD7vo77OuZ5oaGggICAAYWFhEIvFyMrKQkpKCgIDA/sVVxEnTpxAXl4ed2uTvLw8REZGDsm8mpqa8PPzQ2RkJKqqqlBaWorY2NhOn3bOz8+Hp6dnv3IRMigYIb2wZs0alpWV1e14aGgoA8AAsDfffJNbXlxczJydnRmfz2eTJk1i8fHxjDHGmpubmUgkYmZmZkxPT4/5+Piw5uZmFhQUxMUJCgpiUVFR3M8dX0KhUG7snly+fJkZGhoyqVTKLXs5b35+Pps6dSrj8/lsy5YtzM7OjgFgZ86c6TH3rVu3mLOzMxMIBMza2ppduHBBbj3nzp2TeX96eno9voee9seLXn5vL+6r3bt3s7Vr13I/Hz16lDHGmL+/P9u2bRtzcXFhfD6fubm5sbq6OsYYY2VlZczW1pYJBAK2Z88eZmNjwwCw9PR0xhhjWVlZzNjYmJmYmLCcnBzGGGObNm1iAQEBCtXbYcqUKXLH6+vrmZ2dHaupqWGMMXbo0CHufXh5ecmsm5KSwt566y3u5672kSLbRd5+37ZtG1u7dm2Xtfa0j5ubm9nSpUuZtrY2MzMzUzhuT7Hljd25c4dpaGh0+vd14MCBIZv38ePHzMvLi2lrazNTU1MmEolk/p0nJyezwMDAbmN3eOedd1hlZWWP6xGiRFXUqJFe6U1jQJRP2fvD39+f7d27V2nxFdFTo8bY8z/6ISEhg1BNz+zt7XtsytUp7kjLW1FRwbZu3cpaWlp6XJcaNaIGqugaNULIkGdlZYUvvvhC1WXg/PnzcHZ2xty5c4dE3JGY18TEBPv27RvwuIQoCzVqZNjq7kHebAA/ddgX6lrXy7y9vXHq1CkAwLNnz7Bjxw4VV6T+FixYwN1GZijEpbyEqD9q1MiwpW6NTwd1retliYmJ/bpnGiGEkP6jT30SQgghhKgpOqJGekUqlSI7O5t70DVRrbKysmG/PxobG3H69GlVl0FGIHn30yNksFCjRnqlra1Npc+rJLLq6+uH/f5obW0d9OddEgJA7lNSCBks1KiRXtHS0sKiRYvg5OSk6lIIgKqqqmG/P06fPo2dO3equgwyAmVnZ6u6BELoGjVCCCGEEHVFjRoh/TRz5kzweDycP39e1aWQbpSUlODzzz9XdRlkEIjFYmzfvh1PnjxRdSmEDAhq1MigSUxMBI/Hk/nS19eHp6cn9/zFvvDz80NKSkqfXnvv3j2Zel580Pb7778PHo+HyZMny81x7do12NnZ9Sm/OluwYAESEhLUNp6iHj9+DF9fXwQFBXHPlNTU1ERubi63jlgs5ubAuHHjBr3GDvX19di3bx9effXVTg8pb2lpwbJly8Dn82Fubo7jx48rHHf16tWd/u293MjExMTA0tISenp68PPzQ319/YDE7mtcedtCXmwTExPMmjULGzZsUCgPIeqOGjUyaLy9vVFQUICxY8eCMYb29nb89NNPuHbtGnbt2tXnuAkJCZ0euKyoSZMmobq6GmPGjEFaWhoMDQ25sXPnzmH+/Pm4detWv3IQ1YqJicF7770HAwMDrF69Grm5uWhra4O3tzf3aVkTExMwxjBv3jyVHonJzMzE/PnzIRQKO43t2rULd+/eRUlJCb7++musX78ev/76q8KxW1pawBjjvl5sSGNjY3HkyBGcPXsWFRUVMDY2xjfffNPv2P2JK29b9BTb3d0deXl59CEUMixQo0ZUpuNolbOzM4qKigAAxcXFcHJyAp/Ph7W1NQoKCrj1t2/fDkNDQxgbGyMyMhJtbW3YuHEjeDwegoODAQBJSUmd/nff0WB1F9vQ0BALFy7E0aNHZeo7d+4c/vSnP3XKAQAFBQWYNm0adHV1u7zQXd77uH37NlxcXKCrqwsbGxtkZmYOzAbtRlf5PDw8wOPxuCNcTk5O4PF4uHjxIoDnTXVqaiqWL18OHo+Hw4cPw9vbm9sOTk5OEAgEcHd3R319fZ/iDZbvvvsOs2fPllm2atUqtLW1YcmSJWhvb+/ydd3tp475sG7dOri5uUEgEMDDwwNtbW0A5O/7nnh6esLGxqbT8vb2dsTFxSEkJASmpqZwcXGBm5tbpznbV/v27cP+/fsxffp0aGtrIyIiAuvWrVNp3O62haKx7e3tcebMmX6/B0JUjRo1ojKMMdy+fRvZ2dlwcXGBVCqFq6sr5syZg8rKSohEInh6ekIqleJf//oXzp49i8LCQty5cwc//fQTrl+/jujoaGzdulUm7rlz58AYQ01NDSZPnoyoqCi5sQHA398f586dQ2VlJRfn5MmTWLJkSaccLS0tcHd3x+LFi/HgwQMIhUKu0QQgN5dUKsUHH3wAe3t7lJeXY8eOHVi4cKHSbrHRXb7IyEi4urpy62VnZ8v8UUxMTISrqyuOHz8OxhhWr16NxMRE+Pv74+zZszh48CBKS0vx6NEjiEQiJCUl9TreYCkpKcHEiRNllgmFQpw+fRo//vgjQkNDO71G3n7qmA/p6ekICwvDrVu3kJ+fj8zMzB7nWV9VVlaitrYW1tbW3LLp06f36ojRypUroaenBysrK/z973/nlj98+BD37t1DWVkZhEIhjIyMsGbNGrS0tPQr9kDE7Y4isU1MTFBSUtLvXISoGjVqZNA9ffoUPB4PGhoasLa2hkgkwtatW5Gbm4vKykp89tlnEAgE8PX1hUAgwA8//IDRo0ejpqYGly9fhpaWFpKSkjBz5sxOsT08PLhnBAYEBGD79u34wx/+IDc2AMydOxdmZmbcEaHy8nLo6upCT0+vU46cnBw0NjZCJBJBR0cHgYGB0NfX58bl5crNzcXDhw8REhICXV1deHp6wtbWFidPnlTCloZS8n344YeYNm0ajI2NsXnz5n49Zio4OBgrV67s8+t70traiqamJmhra3cac3R0REREBMLDw5GRkSEzpsh2c3R0hLW1NczNzTFr1iyUlpb2OM/6quPaSV1dXW6Zrq4uqqurFXq9hoYGHBwccP/+fRw7dgzbt2/nrrnsiHHx4kX88ssvuHLlCnJycrBnz55+xe5vXHkUic3n8/Ho0aN+5yJE1ahRI4Ou4xq1uro6BAQE4MiRI2hra0N5eTkkEglGjx7NnbYsLi7G3bt3MWPGDBw4cAAikQjGxsYIDg6WezPK2NhYjB07FkuXLgUAubGB539s/Pz8cOzYMQBAfHw8li9f3mXsiooKGBgYQFNTk1tmYmLCfS8vV3l5OQwNDTFmzBhufaFQiPLy8r5vUDmUkc/AwID73tTUFI2NjWhqaupTrPb2dqU++1RTUxN8Ph/Nzc1djm/atAleXl7w8fHB/fv3ueWKbLcXt4OWlhakUmmP86yvOq6dfPFO+Q0NDTAyMlLo9V9++SUCAwOhq6uLd955B15eXlyj1vGfkfXr18PQ0BCWlpZYtWoV0tPT+xW7v3HlUSR2U1MTJkyY0O9chKga3fCWqIy+vj7++te/wtLSEkePHsV//Md/wMDAQOaTly/y8/ODn58frl69iuXLl8PCwgJBQUGd1rt16xaio6Nlrg2ysLCQGxsAVqxYgbCwMGRlZeHy5cvd3s7B1NQUtbW1aG1t5Zq1F49syMt16dIl1NTUQCqVck3AgwcPYGtr221d/WFhYdFtPrFYLHOq6OV6eTxelzFfPD1cUVEBHR0d8Pl8jBkzptfxoqKiev+mesnKykqm5pfFxcXh7bffxqJFiyAQCADI327yKDLP+mLixIkwMDDAzZs3YWZmBgC4ceMGpk6d2qd4LzbHQqEQWlpa3DV2HUaNGtWv2AMd90WKxBaLxbCysup3LkJUjY6oEZUaN24cNm/ejNDQUNjY2EBfXx/R0dGQSCQoLCyEnZ0dfv75ZyQlJWHjxo2QSCSwtLSUOZrxIqlUCh8fH8TGxnKnI318fODg4NBt7A6vvPIK5syZg1WrVmHOnDnd1uzo6AgdHR1ERERAIpEgISEBYrGYG5eXy8HBAWZmZggPD0djYyOSk5Nx/fp1LFmyZIC2qCx5+SwtLZGRkQGJRIKTJ0+isbFR5rXjx49HWVkZLl26hMWLF3PL09LScOPGDVRVVSEqKgre3t4A0Kd4yj71CQAff/wxLl++3O04n89HcnIyioqKuNvE9HU/KTLP+kJDQwMBAQEICwuDWCxGVlYWUlJSEBgYqNDrLS0t8dtvv+Hp06f48ccfcebMGfzpT38C8Pyoo5+fHyIjI1FVVYXS/8venYc1da37A/+GAgphUEFk0B7LxVMckONQqVpFtLbXoQ61DHq05RRQFJE6NKLFaus81DpVxQGp9lpQjz85Iqi0RRmkdtLaqqiIWFEGUUAmGd/fH97sawRCyEASeD/Pw/OQvbLf/e69V1ZWkr3WzsxEeHi4wqOcG4utalx5FImdmpoKT09PlbfFmNYRY80we/ZsSkxMVGrdb7/9lgAIfz///DMREZWUlFCnTp0IAK1evZo8PDxILBZT9+7dKSIigoiIysvLSSKRkL29PVlaWtL06dOpvLycQkJChHghISG0efNmmW0AIAcHByIiunHjRoOxnxcdHU1GRkaUl5cnLHtxG0REqamp1KtXLxKLxfTxxx+Tm5sbAaCjR482ua309HTy8PAgMzMzcnFxoTNnzih1PIkUOx+Nbe/OnTvUr18/MjMzozVr1pCrqysBoPj4eCIiSkxMJBsbG7K1taWkpCQiIvLz86PQ0FAaOXIkicVimjhxIhUWFiodb/78+eTv7y83/549eyp9fIiIioqKyM3NjQoKCmjXrl3CufT29pZ5XkxMDL322mtNHrfly5cLMVauXElBQUHC471798o996GhoRQUFNRoridPnpSpu5aWlkJZeXk5vf/++2Rqakr29vb16q+82HFxcTR48GASi8XUo0cP2r59u0x5cXExeXt7k6mpKdnZ2ZFEIqGqqiqFcpYXW17cpmLLOxZNxT5+/DgFBAQ0mrOi3N3dZdoCxrQgnztqrFlU6agx9Wvp8+Hn50dr165tse0Rqd5RIyK6desWLVu2TA3ZqGbo0KEqdcy1EVvfcs7JyaHFixdTRUWFyrG4o8Z0QD5fo8YYa/WcnJzw+eefazWH2NhYeHh44K233tKb2PqYs62tLdatW6fWmIxpE3fUGGMK8fHxQXR0NACgpqYGYWFhWs5Iv4wfP16YOkZfYutjzoy1NtxRY4wpJCoqSqU50xhjjDUfj/pkjDHGGNNR/I0aa7asrCxcvXpV22kwAI8fP27156OysrJV7x/TXY1NlMxYSxIRaXBacNbq7Nu3D2fOnNF2Gux/lZaWol27djJ3SVBUTU0N7t69i7t378Ld3V0tE5FqQmFhITp27KjtNJpUUFCAq1ev4u9//ztsbW0bnTCY6Zf9+/fL3LqLsRb2kDtqjLUx+fn52LlzJ44cOQIvLy/MnTtXuEURU82tW7ewY8cOJCYmws/PDwEBAQ3eZ5QxxhTEHTXG2oqMjAxs376dOxEt4PnO8IQJEzBv3jzh1k+MMdYM3FFjrLVLSUnBtm3bkJeXh7lz5+Ldd9/V2Z85W5vKykpER0fjyy+/hIuLC0JDQ5W+PydjrE3ijhpjrVFdXR1OnTqFdevWoVOnTli6dCkGDx6s7bTaLOn52L59O4gI8+bNE+61yRhjcnBHjbHWpLS0FPv378fevXsxdOhQLFy4EH//+9+1nRZ7zm+//YYtW7bg+vXrCA4OxtSpU5UaDMIYaxO4o8ZYa5Cbm4vdu3cLAwTmzZuHTp06aTstJkdWVhZ2796N//znP/Dy8kJISIhejG5ljLUo7qgxps+uXLmCr776CmlpafDz88OsWbPQvn17bafFmqGkpAQRERHYs2cP3nzzTSxYsAB/+9vftJ0WY0w3cEeNMX2UkpKC9evXo6ioCBKJBOPHj+d5u/RcdXU1Tpw4gS+//BJWVlb45JNP8Prrr2s7LcaYdnFHjTF9IX0j37JlCxwcHLBo0SIMGjRI22kxDZB2xIuLixEcHMwjdRlru7ijxpiue/LkCQ4cOCD8NLZw4UK8/PLL2k6LtQCeQJexNu8h35SdMR2VlZWF0NBQvP766ygsLERKSgq2bt3KnbQ2pEePHti6dSu+++47FBYWYuDAgQgNDcWDBw+0nRpjrIXwN2qM6ZhLly7hyy+/5OkbWD0vTqC7ePFi9O7dW9tpMcY0h3/6ZEwXEBG+//57bN26lQcIsCbxBLqMtRncUWNMm6qqqhAVFYUtW7agT58+kEgk6NOnj7bTYnqEJ9BlrFXjjhpj2lBcXIzIyEiEh4dj9OjR+Pjjj9G1a1dtp8X0GE+gy1irxIMJGGtJmZmZCAkJwRtvvAEA+Pnnn7F161bupDGVde/eHevWrcPFixfRsWNHvPHGGwgJCcHdu3e1nRpjTAX8jRpjLeDXX3/F1q1bcePGDQQFBWHatGkwNDTUdlqsFeMJdBlrFfinT8Y0RXrB944dO2BsbIyQkBC8+eab2k6LtUE8gS5jeos7aoypm3QKhc2bN6Nv375YsmQJevbsqe20GOMJdBnTP9xRY0xd8vPzsXPnThw5cgQTJkxASEgI7OzstJ0WY/W8WFfnzZsHe3t7bafFGKuPO2qMqSojIwPbt2/HDz/8AH9/f/6WgukNnkCXMZ3HHTXGlJWSkoJt27bh7t27CAoKwj//+U++7ofpJZ5AlzGdxR01xppD+oa2fv16dOzYEUuWLMGQIUO0nRZjasMT6DKmU3geNcae98UXX6C8vLze8tLSUuzZswcDBw5EbGws9u/fj5MnT3InjbU6/fv3x8GDB3H06FFcu3YNrq6uWLFiBQoLC+s9t66uDhs3bgR/3mdMc7ijxhie3Wtzzpw5+OSTT7B3715heV5eHlasWIFBgwbhwYMHSEhIQHh4OF599VUtZsuY5ikyge5//vMffPrpp/D09ERtba0Ws2Ws9eKfPlmbR0Tw8/PDv//9bzx58gR2dnaIj4/Hzp07kZaWBj8/P8ycORMmJibaTpUxrWloAl1/f39cvXoVZmZmGDJkCGJjY/lnUsbUi69RY21bbW0tvLy8cPbsWZSWlgIALC0tMWDAACxatAj//d//DZFIpOUsGdMt33//PT799FNcvXoVxcXFAAATExP0798fCQkJ/KGGMfXha9RY21VVVYWxY8fKdNKAZzdMz83NxZgxY7iTxlgDRo0aBVNTU6GTBgAVFRX45ZdfMGTIEJSUlGgxO8ZaF+6osTapoqICo0aNQmpqqkwnTer+/ftIS0vTQmaM6b6srCz89NNP9ZZXVlbi2rVrGDx4MIqKirSQGWOtj9rvCv3bb78hIyND3WEZU5unT5/is88+w19//QUTExNYWFiAiEBEMDQ0hImJCczNzXH48GHcu3dP2+nqJRsbG4wYMaLZ61VWViImJkb9CTG1+u2332BrawtTU1NUVFSgtrYWIpEIBgYGqKurw40bN+Ds7IxVq1bBwsJC2+kyphOcnJzQv3//Zq+n9mvU5syZg/LycnTv3l2dYXVKREQEPvzwQ22noTH37t3DjRs3Wu0NxDMzM1FUVASxWAyxWAwzMzOIxWK+CFpNysrK8PPPP+PcuXPNXjc/Px+DBg2Cr6+v2vNimlNeXo4TJ05g3LhxKC0tRVlZGcrLy9G+fXs4OztrOz21uHTpEgCgX79+Ws6E6aOsrCyYmppi586dzV31odq/UQMAX19fpT5N64sjR45gxYoV2k5DY86dO9fq95FpTn5+Pry8vJRev3v37lz39Ex+fj5++uknfPnll9pORWO++uorAEBQUJCWM2H6SPq+qgy+Ro0xxhhjTEdxR40pLSMjA59++qm202AtIDc3F0uWLMHTp0+1nUqLGThwIEQiEWJjY5WO4ePjA5FIhHXr1qkxM6bLuF1sO1qqXWwVHbVZs2YhOjpapRjjx49HZGSkehJ6ga+vb4tcIK3JfXhRcXExZsyYgZCQEOzevRsikQhGRkZITk4WnpObmwuRSASRSIT27du3SF4NKSoqwrp16/DKK69g9+7dMmUVFRX44IMPIBaL0bVrVxw4cEDhuIGBgcL+Sf9efMFu27YNjo6OsLS0hK+vr8Ij4ZqKrWxcecdCXmxbW1sMGjQI8+bNU2g7+kLea/OXX36Bm5ubSvGjoqLg5+enUozmUkd7o0g9URW3i9wucruomFbRUQsPD4e3t7e202hUZGQkJk6cqO001Grbtm0YPXo0rKysEBgYiOTkZNTW1sLHxwf5+fkAAFtbWxAR3n77ba1+E5OQkIAxY8bAwcGhXtlnn32G27dvIyMjAwcPHkRwcDD++OMPhWNXVFQII0aJSKbhDQ8Px549e3DixAnk5OTAxsYG33zzjcqxVYkr71g0FXvy5MlISUnBtWvXFN4HXdcaX5vq2Kem6ok6tMZjz+3iM9wuqhmp2ezZsykxMbHRcm9vbwJACxcuJHd3dxKLxTRp0iQqLCykkJAQAkDBwcHk5eVFxsbGNGrUKCIiunHjBnl4eJC5uTn17duXzp49S0RECxcuFOJJpaenk7u7O5mamlKfPn3owoULQtnzcQYMGECxsbFCTtK/Xbt2yd3Hnj17Knw8pPskzU/6OCgoiCZMmEBisZimTJlCNTU1co8NEdGUKVMIAB04cICIiNzd3QkAJSQkNHsf5ElMTKTZs2fLfY6rqyvFx8cLj5OTkykwMJC6dOlCo0aNotraWqHs7bffFv5v7DzKOy5S8s6rIoYOHSpzXGpra8nKyopOnz4tLJs2bRoFBwcrFG/WrFlUUVHRaHn37t0pNja2WTkqEluVuFIvHgtFY/v7+9OKFSvkxs7LyyN3d3el8mpqXXlthLz6ERoaSlZWVtS5c2fauHEj1dTU1HttEhFduHCBevfuTebm5rR8+XJyc3OjkydPyn3tSZ06dYpcXFzI0tKSvLy8qKioiIiI/Pz8aO3atXL3W5rL3Llz6Z133iGxWEzz58+nmzdvUu/evalTp04UGRnZ5Laa094oorF68qLmnvPn82wqR3ntYlPnRZ3t4o4dO2jHjh1yn9PS7aKqbSIRt4vP02S7qMj7aiPyW/wbNelPASdOnMCOHTuQmZmJx48fQyKRYMuWLVi8eDFiY2OxcOFC/P777zAyMhJmkB86dCiys7MRFhaGCRMmICsrC5s2bcLixYuF+FVVVRg3bhxGjRqFvLw8SCQSeHp6oqqqSogzbNgw5OTk4NChQ1iwYAGioqIwbtw4HDhwAESEwMBAte2vdJ9efBwfH49Vq1YhPT0dqampSEhIkHtsAODYsWMYN26cEOvcuXNwdXUVjqum9qEhGRkZ6NKli8wyBwcHHDlyBOfPn8fy5cvrrSPvPMo7LtJ1GzuvysrLy8OjR4/g4uIiLOvbt2+zPhnNnDkTlpaWcHJyEkaFAcCDBw+QlZWFO3fuwMHBAZ07d8bs2bNRUVGhUmx1xG2MIrFtbW21Ok+ivDaisfrx008/4cSJE7h27Rpu3bqFH3/8EZcuXar32qyoqMDkyZMxdepU3L9/Hw4ODrh+/ToA+a89qZUrVyI6Ohp3796FWCzGypUrm71fp0+fxvr163Hp0iXs2bMHa9euxfnz57F7924sWrSoyW01p73RpufzbCpHee1iU+elNbeLmmgTAW4XX6QL7aLWfvqcNGkS+vTpAxsbG6GzJPXGG29g0KBBcHZ2Rnx8PJKTk/HgwQMsW7YMFhYW8PT0RL9+/XD48OF6cZOTk5GXl4elS5fCzMwMM2bMgJmZGc6ePSvECQsLg1gsRs+ePXHjxo2W3G3B8OHD4eLigq5du2LQoEHIzMwUyuQdm+ZatGgRZs6cqY6UBdXV1SgrK4OpqWm9suHDh2PDhg1YvXo1Tp8+LVOmyHls7LjIO6/KKigoAACZCTktLCzw8OFDhdY3MDDAsGHDcO/ePezfvx9LliwRrrmRxvjuu+/w+++/4+LFi0hKSsKaNWtUiq1qXHkUiS0Wi/H48WOVt6WqhtqIxuqHoaEhCgoKcOHCBZiYmODYsWMYOHBgvZhJSUkoKSmBRCKBubk5AgIC0KFDB4VzSktLQzeVkXwAACAASURBVM+ePWFpaYkPP/wQSUlJzd6vYcOGoWfPnujRowd69eqFN954A1ZWVpg4cSIKCgrw5MkTpbYlr73RFU3lyO2i7LHRRJsIcLv4Il1oF7XWUbOyshL+t7OzQ0lJCcrKygA8m9X8ednZ2bC2toaxsbGwzMHBAdnZ2fXiZmdno7S0FIaGhsLFhjdu3MDt27eFOLowsenz+29iYiLzKUjesWmuuro6kHrnNIaRkRHEYjHKy8sbLJ8/fz68vb0xffp0mZn9FTmPjR0XeedVWdbW1gAgvPlJ/+/cubNC6+/cuRMBAQGwsLCAu7s7vL29hQbJ0tISABAcHAxra2s4Ojpi1qxZiI+PVym2qnHlUSR2WVkZOnXqpPK2VNVQG9FY/ejfvz82btwIiUQCGxsbLFq0CJWVlfVi5uTkwMrKSqZ9sLW1VSgfIoJEIoGtra3wZlJYWNjs/Xr+2BobGwuPpa+ZqqoqpbYlr73RFU3lyO3iM9Jjo4k2EeB28UW60C5qraOWl5cn/J+TkwNzc3OIxeIGn9utWzcUFBTIvHDv37+Prl27NvhcKysrmYsNiQghISFCnOrq6nrr6dLNt+UdG2NjY5mvXKWffoCG92Hz5s3Yu3ev2nN0cnKSyfNF+/btg52dHby8vFBbWwugeefxRfLOq7K6dOkCKysr/Pnnn8KyK1euoFevXkrFe77hd3BwgImJibDvUi+99JJKsdUd93mKxM7NzYWTk5PK21K3puqHr68vbt68iYSEBJw+fbrBkV12dnZ49OiRTPvw/LcI8l57p06dQkREBM6dO4fa2lqkpaWpvSOgjW3pksbaRXnnBWi97aIm2kSA28UX6UK7qLWOWlxcHK5cuYL8/Hxs3rwZPj4+jT532LBhsLe3x+rVq1FSUoLjx4/j0qVLmDZtWoPP7dChA7Zs2YLS0lJcu3YNbm5uuHz5skycsrIyXL58Ga+++ioqKirQsWNH3LlzBz/88AOmTp2qyV1vkrxj4+joiNOnT6O0tBSHDx9GSUmJUNbQPmjiK34AmDJlCi5cuNBouVgsxvHjx3H9+nXh035zzuOL5J1XZRkYGMDf3x+rVq1Cbm4uEhMTERMTg4CAAIXWd3R0xNWrV1FZWYnz58/j6NGjeOeddwA8+3Tt6+uLTZs2IT8/H5mZmQgPD1d4lFtjsVWNK48isVNTU+Hp6anyttRNXv04duwYPvroI5SWlsLR0VHm24nnDR8+HObm5tiwYQNKS0sRGRmJ3NxcoVzea6+urk74e/r0KU6dOqWxfW3JbemSxtpFeecFaL3toibaRIDbxRfpRLuozBAEeZoa9Un0bBRUaGgojRw5ksRiMU2cOJEKCwtp+fLlwuicAQMGyKyTnp5OHh4eZGZmRi4uLnTmzBmhbPHixTIjt6QjaMRiMXXv3p0iIiLqxRGLxeTs7CyMDkpMTCQbGxuytbWlpKQkufkrM+oTAIWEhMjs48qVKykoKEh4vHfv3kaPjdSdO3eoX79+ZGZmRmvWrCFXV1cCQPHx8Q3uw/z588nf31/hfKXHoqnRKUVFReTm5kYFBQW0a9cuYR+8vb1lnhcTE0Ovvfaa8Lix89jUcSFq/LyGhoZSUFBQo7mePHlSZuSXpaWlUFZeXk7vv/8+mZqakr29vUxdaSp2XFwcDR48mMRiMfXo0YO2b98uU15cXEze3t5kampKdnZ2JJFIqKqqSqGc5cWWF7ep2PKORVOxjx8/TgEBAY3mLKXJUZ/y2ojG6kd5eTlJJBKyt7cnS0tLmj59OpWXl9d7bRIRpaamUq9evUgsFtPHH39Mbm5uBICOHj0q97VXU1NDH374IZmbm1OPHj0oLCxM5jhL67Ui+7Vy5UoaN26c8DgxMZEsLS2Fx0VFRQ1uy9XVtdntTWOaqifNPW8vej7PF49RQznKaxflnReihtt2ZdpFRUZ9tnS7KO+9jttF3WoXVRn1qbWOWlPD1ZvjxY6apjWno9Zc6j42ylC0Qt26dYuWLVvWAhnJN3ToUJmOuz7E1recc3JyaPHixXKH3UtpsqPGdJOmz5sutIuKdNSIuF3Uxbiait2cdlGVjppGbsrekurq6vDo0aN6FxczzXNycsLnn3+u1RxiY2Ph4eGBt956S29i62POtra2fBskxhTA7aJuxdVk7JZqF1u8o+bj4yPc7qmmpgZhYWFKxUlPT0fPnj1haGgIV1dXfPvtt+pMUyvUdWzakvHjx2P8+PF6FVsfc2bq0digJdLCYABdykUebhebTx/bGH3MuaW0eEctKipKpflvpJydnXWuQVGVuo4NY0w36VKbpUu5yMPtImvrWsW9PhljjDHGWiO1f6NWW1uLrKwsXL16Vd2hdUZVVVWr3r+srCwUFha26n1kmvP48eN6cw41R2VlJdc9PfP48WOUl5e36vOWk5MDAK16H5nmZGVlKd0uikjN33+///77+OuvvxSexVgf/fDDDxg5cqS209CYhw8fIj8/H71799Z2KkwPVVZWIjs7G7/99luz183Pz8eQIUPQr18/DWTGNKWyshK//fYbBg8erO1UNEY64/9//dd/aTkTpo8ePnyIl19+GQcPHmz2qmr/Rs3MzAwrVqzAiBEj1B1aZ/Tq1QtHjx7Vdhoac+7cORw5cgQ7d+7UdipMD+Xn58PLy0vp9bt27dqqX1+tkfSct+bzJr0BeFBQkJYzYfpI+r6qDL5GjTHGGGNMR3FHjSktIyMDn376qbbTYC0gNzcXS5YswdOnT7Wdis4ZOHAgRCIRYmNjVYrj4+MDkUjE89XpOW4X246WahdbtKMWFRUFkUgk8+fg4IAlS5agrq5O6bizZs0S5tlR1vjx4xEZGalSDHVQdx6a2q/i4mLMmDEDISEh2L17N0QiEYyMjJCcnCw8Jzc3VzjP7du3V3sOiioqKsK6devwyiuv1LsZd0VFBT744AOIxWJ07doVBw4cUDhuYGBgvfr84gt227ZtcHR0hKWlJXx9fVFUVKSW2MrGvXz5MsaOHQsTExO8/PLL+OKLL4QyIsKhQ4fg7OwMExMT/OMf/0BcXByAZxM7Dho0CPPmzVNoO9rSUBvToUMHeHp6CvdWVIavry9iYmIaLPvll1/g5uamdGypqKgo+Pn5CY+lryuRSISIiIh6zy8rK0Pnzp0hEonw3nvvNRlf3j7oMn1pEwFuFwFuFzWhRTtqPj4+SEtLQ7t27UBEqKmpQXR0NL766ivs379f6bjh4eHw9vZWY6asKdu2bcPo0aNhZWWFwMBAJCcno7a2Fj4+PsjPzwfwrBITEd5++22tfhOTkJCAMWPGwMHBoV7ZZ599htu3byMjIwMHDx5EcHAw/vjjD4VjV1RUgIiEv+cb3vDwcOzZswcnTpxATk4ObGxs8M0336gcW5W4M2fORFhYGIqLi/H1119j6dKl+PHHHwEAd+/exbZt23DmzBk8evQIM2bMwLvvvovs7GwAwOTJk5GSkoJr164pvA8t7cU2pq6uDj/++CN++eUXfPbZZ0rHjYyMVMsNnpsjMDAQaWlpMDY2xurVq1FTUyNTvnPnTjx58gSffPIJjh071mQ8bexDW8Pt4jPcLqqZMjeekqepe32mpaVRu3btZJaNGDGCZs2aRUT/d7Pe4OBg8vLyImNjYxo1apRw81lzc3Pq27cvnT17loiIFi5cSABk7vWZnp5O7u7uZGpqSn369KELFy4IZc/HGTBgAMXGxpK3t7fMDVl37doldx+butdnY7lOmTKFANCBAweIiMjd3Z0ACDeGbygP6bKFCxeSu7s7icVimjRpEhUWFioVTxGK3JPM1dVVuOkxEVFycjIFBgZSly5daNSoUVRbWyuUvf32200eG+l5DwoKogkTJpBYLKYpU6ZQTU2NsK6886qIoUOHyhyD2tpasrKyotOnTwvLpk2bRsHBwQrFmzVrltx7vHXv3p1iY2OblaMisVWJ+6JXX32VoqOjGy03MzOTOc/+/v60YsUKuTG1fa/PhtqYf/3rX/TWW28Rkfx6FBoaSlZWVtS5c2fauHEj1dTUCHXz+TbmwoUL1Lt3bzI3N6fly5eTm5sbnTx5koiafp2fOnWKXFxcyNLSkry8vKioqEiI++I9LdPS0sjf35/at29PkZGRwvLy8nJyc3Ojd955hz755BNheWOxn98HRV5rzaXIeVOmXWxum6hMPEUpcq/Plm4XVW0TibhdbIgm2kVV7vWp1WvUamtrceHCBfz6668YMGAAAGDLli1YvHgxYmNjsXDhQvz+++8gIowdOxZDhw5FdnY2wsLCMGHCBGRlZWHTpk1YvHixELOqqgrjxo3DqFGjkJeXB4lEAk9PT1RVVaGqqgpjx47FsGHDkJOTg0OHDmHBggWIiorCuHHjcODAARARAgMDld4n6TYayvXYsWMYN26c8Nxz587B1dVVeNxQHtKfQ06cOIEdO3YgMzMTjx8/hkQiUSqeumRkZKBLly4yyxwcHHDkyBGcP38ey5cvb9axkZ73+Ph4rFq1Cunp6UhNTUVCQoKwbmPnVVl5eXl49OgRXFxchGV9+/Zt1iejmTNnwtLSEk5OTsKoMAB48OABsrKycOfOHTg4OKBz586YPXs2KioqVIqtjrjAs0+lUVFRqKysxOjRoxt8zpMnT0BE6N+/v7DM1tYWGRkZzdqWNhERbt68iXPnzmHkyJFy69FPP/2EEydO4Nq1a7h16xZ+/PFHXLp0SaibUhUVFZg8eTKmTp2K+/fvw8HBAdevXxfKm3pdrly5EtHR0bh79y7EYjFWrlwpdx8cHBwwd+5crF69WpiHaffu3ZgzZw6MjY1lnttY7Of3oanXmiYo2y42t00E5B9/TbaJQMu2i5poEwFuF3WxXdRKR62yshIikQiGhoZ47733MGfOHJlrMwDgjTfewKBBg+Ds7IylS5fiwYMHWLZsGSwsLODp6Yl+/frh8OHD9WInJycjLy8PS5cuhZmZGWbMmAEzMzOcPXsWycnJePDgAcLCwiAWi9GzZ0/cuHFDrfsm3YYiuTbHpEmT0KdPH9jY2AidS2UtWrQIM2fOVHr96upqlJWVwdTUtF7Z8OHDsWHDBqxevRqnT5+WKVPk2AwfPhwuLi7o2rUrBg0ahMzMTGHdxs6rsgoKCgAAFhYWwjILCws8fPhQofUNDAwwbNgw3Lt3D/v378eSJUuEa4CkMb777jv8/vvvuHjxIpKSkrBmzRqVYqsaF3j2ZmJqaop58+Zh69at6NixY4PPW79+PVasWAEbGxthmVgsxuPHjxXelrZI2xgDAwO4uLhAIpFg8eLFcuuRoaEhCgoKcOHCBZiYmODYsWMYOHBgvdhJSUkoKSmBRCKBubk5AgIC0KFDB4VzS0tLQ8+ePWFpaYkPP/wQSUlJTa4TGhqKvLw8fPvtt6isrERcXBymT5+uUuzGXmuaoIl2UZfaRKDl20VNtIkAt4u62C5qpaMmvX6EiPDgwQOsW7cOBgayqTx/ELKzs2FtbS3z6dHBwUH4jfh52dnZKC0thaGhoXCx4Y0bN3D79m0hjpGRkcb2rTm5NoeVlZXwv52dHUpKSlBWVqZUrLq6OpXu82dkZASxWIzy8vIGy+fPnw9vb29Mnz4d9+7dE5Yrcmye308TExPh06G886osa2trAM8+IUk9efJE4cmad+7ciYCAAFhYWMDd3R3e3t5Cg2RpaQkACA4OhrW1NRwdHTFr1izEx8erFFvVuADg5OSEqqoqxMXF4aOPPmpwAsaIiAgUFhZi0aJFMsvLysrQqVMnhbelLdI2prCwEP7+/tizZw9qa2vl1qP+/ftj48aNkEgksLGxwaJFi1BZWVkvdk5ODqysrGTaEVtbW4XyIiJIJBLY2toKbzqKDHKwsrLCokWLsHr1aoSHhyMoKKhem9nc2I291jRBE+2iLrWJQMu3i5poEwFuF3WxXdSL6Tm6deuGgoICmYbk/v376Nq1a4PPtbKykrnYkIgQEhIixKmurq63nkgkapFcjY2NZb6OlX56aSqPvLw84f+cnByYm5tDLBYrFW/z5s3Yu3dvM/aqPicnJ5mcXrRv3z7Y2dnBy8tL+LmmOefxRfLOq7K6dOkCKysr/Pnnn8KyK1euoFevXkrFe76hd3BwgImJSb1bhrz00ksqxVZXXCMjIwwcOBCenp71LkT/+uuvcfHiRZmfLKRyc3Ph5OTUzOy1p0OHDvjiiy+Qm5uLvXv3NlmPfH19cfPmTSQkJOD06dP1RsMBzzoFjx49kmlHXvy2obHX5alTpxAREYFz586htrYWaWlpCncQ5s+fj0ePHuHYsWOYNGlSvXJVYmuaKu1ic9tEZeKpo00EWrZd1ESbCHC7qIvtol501IYNGwZ7e3usXr0aJSUlOH78OC5duoRp06Y1+NwOHTpgy5YtKC0txbVr1+Dm5obLly/LxCkrK8Ply5fx6quvoqKiAh07dsSdO3fwww8/YOrUqRrL1dHREadPn0ZpaSkOHz6MkpISmfUbyyMuLg5XrlxBfn4+Nm/eDB8fH6XjqeNr/ilTpuDChQuNlovFYhw/fhzXr18XPtU35zy+SN55VZaBgQH8/f2xatUq5ObmIjExETExMQgICFBofUdHR1y9ehWVlZU4f/48jh49infeeQfAsxe8r68vNm3ahPz8fGRmZiI8PFzhUXeNxVYlbkFBAVxcXHDz5k1UV1fj6tWriImJgbOzs/CcQ4cOISUlRZhaICUlBZs2bRLKU1NT4enpqdA+6Ir27dtjwYIFWL58OVxdXRutR8eOHcNHH32E0tJSODo6ynyL8bzhw4fD3NwcGzZsQGlpKSIjI5GbmyvznMZel3V1dcLf06dPcerUKYX3w8zMDDExMdizZ0+D5arE1jRV2sXmtonKxFNHmwi0bLuoiTYR4HZRJ9tFZYYgyCNv1Oe3334rM+Lm//2//1fvOcuXLxfKBwwYICxPT08nDw8PMjMzIxcXFzpz5oxQtnjxYpkRWdIRNGKxmLp3704RERH14ojFYnJ2dhZGYiUmJpKNjQ3Z2tpSUlKS3H1satSnvFzv3LlD/fr1IzMzM1qzZg25uroSAGEESUN5+Pn5UWhoKI0cOZLEYjFNnDhRGOGkTLz58+eTv79/o/krMjqlqKiI3NzcqKCggHbt2iWcM29vb5nnxcTE0GuvvdbksXn+vK9cuZKCgoKEx3v37iWixs9raGgoBQUFNZrryZMnZeqdpaWlUFZeXk7vv/8+mZqakr29vUxdaSp2XFwcDR48mMRiMfXo0YO2b98uU15cXEze3t5kampKdnZ2JJFIqKqqSqGc5cWWF7ep2NHR0TRw4EAyMTEhe3t7CgwMpLKyMiIiunXrFhkYGMgcKwC0ceNGIiI6fvw4BQQENJqzlDZHfb7Yxvz8889ERFRSUkKdOnUiALR69eoG61F5eTlJJBKyt7cnS0tLmj59OpWXlwsj7wBQSEgIERGlpqZSr169SCwW08cff0xubm4EgI4ePUpEjb8uY2Nj6cMPPyRzc3Pq0aMHhYWFEQBydXWVGZG4cuVKmX3x8/Ort68DBgwQyj/44AOqqalpNPbz+/D8X2OvteZS5Lwp2y42t01UJl5TbSKRYqM+W7pdlPdex+2ibrWLqoz6bPHpOTThxY6apjXVUVO3F4fsa5qiFerWrVu0bNmyFshIvqFDh8o0+voQW99yzsnJocWLF8sddi+l7ek5WMtr6fPW0m0ikWIdNSJuF3UxrqZiN6ddVKWjpvabsre0uro6PHr0SGbwAWsZTk5O+Pzzz7WaQ2xsLDw8PPDWW2/pTWx9zNnW1pZvbcSYArhd1K24mozdUu2i3nbU0tPT0bNnTxgaGsLV1RXffvuttlPSCB8fH+H2WDU1NQgLC9NyRrpl/PjxGD9+vF7F1secGdMV3CY2TR/bGH3MuaXobUfN2dlZZ0Y0aVJUVJRK8wMxxlhrwm0ia2v0YtQnY4wxxlhbxB01xhhjjDEdpfafPu3s7DBnzhx1h9UpT548UXryP31QU1ODqqqqVr2PDx8+hKGhITp06KC2yY7Z/xk0aJBS6xkaGiI/P79V173WiIhQWlqKXr16gYjw5MkTVFRUKHzHBn0gvUtFQxOeMqYIZedoFVFbuNCLsRc8fPgQEREROHz4MMaMGYN58+bB3t5e22kxprdKSkoQERGBPXv24M0338SCBQvwt7/9TdtpMabvHnJHjbVplZWViI6OxubNm9G3b1+EhobytzmMNUNWVhZ2796N//znP/Dy8kJISEijN7RmjDUbd9QYA57Nx3fq1Cns2LED7dq1w7x58/Dmm29qOy3GdNZvv/2GLVu24Pr16wgODsbUqVNlblTPGFML7qgx9qJff/0VW7duRXp6OubOnYtp06bB0FBvZ7JhTG2kH2i2b98OIsK8efOE+zgyxjSCO2qMNebOnTvYsmULvv/+e8yYMQOBgYGwtLTUdlqMtTjpJQJffvklXFxc+BIBxlrOQ56eg7FGvPLKK9i6dStSU1PRvn17DB48GCEhIcjOztZ2aoy1iPz8fKxYsQL9+vXDtWvXcOrUKRw8eJA7aYy1IP5GjTEFVVVVISoqClu2bEGfPn0gkUjQp08fbafFmNrdunULO3bsQGJiIvz8/BAQEABTU1Ntp8VYW8Q/fTLWXESE77//Hlu3bkVRUREkEgnGjx/P87ExvZeSkoL169ejuLgYwcHBePfdd/HSSy9pOy3G2jLuqDGmisuXL2Pz5s088o3prerqapw4cQJffvklrKys8Mknn+D111/XdlqMsWe4o8aYOuTk5CA8PBxHjhzhuaSYXuAJahnTCzyYgDF1sLOzw4oVK3Dx4kV07NgRb7zxBkJCQvDXX39pOzXGZGRlZSE0NBRubm4oLCxESkoKtm7dyp00xnQUf6PGmAZIf07avHkzrK2tERYWBjc3N22nxdownqCWMb3EP30ypmnSC7R54AFraTxBLWN6jztqjLWUP/74Azt27EBaWhr8/Pwwc+ZMmJiYaDst1grxBLWMtRrcUWOspeXl5WHXrl3CwIPg4GBYWVlpOy3WCuTn52Pnzp04cuQIJkyYgHnz5sHe3l7baTHGlMcdNca0pbS0FIcPH8bu3bvx2muvYcGCBXj11Ve1nRbTQzxBLWOtFnfUGNM26XVE69evR8eOHbF06VIMHjxY22kxPcAT1DLW6nFHjTFdkpKSgm3btiEvLw9z587lN15WD09Qy1ibwh01xnRRRkYGtm/fjh9++AH+/v78UxbjCWoZa5t4wlvGdJGTkxO2bt2K77//HoWFhRg4cCBCQ0ORk5Oj7dRYC+MJahlr2/gbNcb0gHS6hc2bN6Nv375YsmQJevbsqe20mAbxBLWMMfBPn4zpF+nAg40bN8LS0hIhISF48803tZ0WUxOeoJYx9gLuqDGmr3799Vds3boVN27cQFBQEKZNmwZDQ0Ntp8WUwBPUMsYawdeoMaavBgwYgIMHD+Lbb7/Fr7/+in79+mHr1q0oKytr8PlxcXGoqalp4SxZfn4+fvnll0bLVqxYgX79+uHatWs4deoUDh48yJ00xpiAv1FjrJUoLi5GZGQkwsPDMXr0aEgkEjg4OAhl3bp1w2uvvYa4uDi0a9dOy9m2Dffv38eQIUNgbW2NX3/9VVjOE9QyxhTEP30y1tpUVVUhKioKW7ZsQZ8+fSCRSHD8+HGsXbsWIpEIvXv3RmJiIszMzLSdaquWlZWFYcOG4f79++jUqRMSEhJQVlbGE9QyxpqDO2qMtVZ1dXWIi4vDpk2b8Mcff+Dx48cAgHbt2uHVV19FcnIyLCwstJxl65Seng4PDw/k5eVB2sR269YNb7zxBhYuXIgBAwZoOUPGmJ7gjhpjrV1kZCRCQkLw5MkTYZmRkREcHR2RmprKN4RXs0uXLmHMmDHIy8uTWW5lZYVLly6hW7duWsqMMaaHeDABY63dypUrZTppwLPbEN2+fRuDBg3iSXTV6KeffsLo0aPrddIAoKioCGvXrtVCVowxfcZj+XVMTk6O8BMVY6rKzMzE06dP0alTJ9TV1UEkEkEkEqGmpgaVlZW4c+cOXF1dER0dDRsbG22nq9fS0tIwZ84cVFdXw8TEBMbGxjAwePZZmIhgYGCApKQkXLlyha9LY2rj7OzM9amV458+dcycOXNw7do1dO7cWdupKO3BgwcAAHt7ey1nojm///47evXqpVczxRMRKisrUVVVhadPnwp/ZWVlaN++PZydnSESibSdpl56+vQp0tPTYWBgAFNTU7Rv3x7t27eHsbEx2rVrx6NsmUacP38ef/75J3/Iat0e8jdqOmjFihUYMWKEttNQ2ldffQUACAoK0nImmjNixAjs2bOHG0jGmNbo8/sEUxxfo8YYY4wxpqO4o9ZKDRw4ECKRCLGxsUqVM9W0b98eIpGo3ifejIwMfPrpp9pJirWo3NxcLFmyBE+fPm3WelxH2pYX60lBQYFwLamPj4+Ws2O6gDtqrdQvv/wCNzc3pculioqKsG7dOrzyyivYvXu3OlMU+Pr6IiYmRiOxXzR+/HhERka2yLauX7+Oc+fOCY+Li4sxY8YMhISEYPfu3RCJRDAyMkJycrLwnNzcXKGRbt++fYvk2RB5572iogIffPABxGIxunbtigMHDigcNzAwUNg/6d+LHZlt27bB0dERlpaW8PX1RVFRkVpiKxv38uXLGDt2LExMTPDyyy/jiy++EMqICIcOHYKzszNMTEzwj3/8A3FxcQAAW1tbDBo0CPPmzVNoO4BsHQGg0/WkqbZBk/VEU3VEldiN1RN5dQSoX0+sra1BRDxCmAm4o8bkSkhIwJgxY4RbEWlCZGQkJk6cqLH4umLbtm0YPXo0rKysEBgYiOTkZNTW1sLHxwf5+fkAnjXaRIS333672d/EqJO88/7ZZ5/h9u3byMjIwMGDBxEcHIw//vhD4dgVFRUgIuHv+Y5GeHg49uzZgxMnNBlrxQAAIABJREFUTiAnJwc2Njb45ptvVI6tStyZM2ciLCwMxcXF+Prrr7F06VL8+OOPAIC7d+9i27ZtOHPmDB49eoQZM2bg3XffRXZ2NgBg8uTJSElJwbVr1xTa1vN1BIBO15Om2gZN1RNN1RFVYzdWT5qqI0Dz6wlrY4jplNmzZ1NiYmKj5adOnSIXFxeytLQkLy8vKioqEsouXLhAvXv3JnNzc1q+fDm5ubnRyZMnFS6XZ+jQobRr1y6Fnrtjxw7asWOHQs8NCQkhALRw4UKZx0FBQTRhwgQSi8U0ZcoUqqmpISIib29v4fnu7u4kFotp0qRJVFhYSFOmTCEAdODAASIicnd3JwCUkJAgs670T9H9aYi7uzvl5eU1Wt6uXTu6fv26zDJXV1eKj48XHicnJ1NgYCB16dKFRo0aRbW1tULZ22+/Lfx/48YN8vDwIHNzc+rbty+dPXtWoWOVnp5O7u7uZGpqSn369KELFy40ez9fPO+1tbVkZWVFp0+fFpZNmzaNgoODFYo3a9YsqqioaLS8e/fuFBsb2+w8m4qtStwXvfrqqxQdHd1ouZmZmcx59vf3pxUrVigU+8U6QqRaPWmqjhCpXk8aahs0WU80VUdUjf0iefXkxTpCVL+erF27lry9veVuo6l2iLUK+fyNmp5ZuXIloqOjcffuXYjFYqxcuRLAs0+JkydPxtSpU3H//n04ODjg+vXrwnpNlWvLli1bsHjx4nqP4+PjsWrVKqSnpyM1NRUJCQkAgKioKPj5+eHEiRPYsWMHMjMz8fjxY0gkEhw7dgzjxo0TYp07dw6urq7C46ioKIwbNw4HDhwAESEwMLDldhTPrj3q0qWLzDIHBwccOXIE58+fx/Lly+utU1VVhbFjx2Lo0KHIzs5GWFgYJkyYgKysLLnHqqqqCuPGjcOoUaOQl5cHiUQCT09PVFVVqbQPeXl5ePToEVxcXIRlffv2bdY3ATNnzoSlpSWcnJyEEcLAs2ldsrKycOfOHTg4OKBz586YPXs2KioqVIqtjrjAs9dQVFQUKisrMXr06Aaf8+TJExAR+vfvLyyztbVFRkaGQttoqI4AyteTjz76SO7rSd/qiabqiLpiA03Xk4bqCNC8esLaFu6o6Zm0tDT07NkTlpaW+PDDD5GUlAQASEpKQklJCSQSCczNzREQEIAOHToI6zVVrmuGDx8OFxcXdO3aFYMGDUJmZqZM+aRJk9CnTx/Y2NhgwYIFiIqKUnpbixYtwsyZM1VNWa7q6mqUlZXB1NS0Xtnw4cOxYcMGrF69GqdPn5YpS05OxoMHD7Bs2TJYWFjA09MT/fr1w+HDh2XWf/FYJScnIy8vD0uXLoWZmRlmzJgBMzMznD17VqX9KCgoAACZe4RaWFjg4cOHCq1vYGCAYcOG4d69e9i/fz+WLFkiXJ8ojfHdd9/h999/x8WLF5GUlIQ1a9aoFFvVuMCzDpSpqSnmzZuHrVu3omPHjg0+b/369VixYoXMtC1isVihSazl1RFAtXrS2OtJ3+qJpuoIoHr9AxSrJw3VEUDxesLaHu6o6REigkQiga2trdDgFBYWAnh2RwMrKyuZCVhtbW2F/5sq1zXP33/SxMSk3if858vt7OxQUlKCsrIypbZVV1cn3DhbU4yMjCAWi1FeXt5g+fz58+Ht7Y3p06fj3r17wvLs7GxYW1vD2NhYWObg4CBzfUtDxyo7OxulpaUwNDQULpq+ceMGbt++rdJ+WFtbA4DMLamePHmi8ATNO3fuREBAACwsLODu7g5vb2/hjdLS0hIAEBwcDGtrazg6OmLWrFmIj49XKbaqcQHAyckJVVVViIuLw0cffYSDBw/We05ERAQKCwuxaNEimeVlZWXo1KlTk9toqo4AyteTxl5P+lZPNFVHANXrH9B0PWmsjgCK1xPW9nBHTY+cOnUKEREROHfuHGpra5GWliZ0MOzs7PDo0SNUV1cLz3/+02tT5frm+Xsp5uTkwNzcHGKxGMbGxjI/VUg/2Us1NPP+5s2bsXfvXs0l+7+cnJwavAek1L59+2BnZwcvLy/U1tYCALp164aCggKZjur9+/fRtWtXudvq1q0brKysZC6aJiJhNKGyunTpAisrK/z555/CsitXrqBXr15KxXu+g+zg4AATExNh36WUvT2ONLa64hoZGWHgwIHw9PTEsWPHZMq+/vprXLx4UeanNKnc3Fw4OTkptI2m6gjQtuuJpuqIOmM3Vk/k1RGgefWEtS3cUdMjdXV1wt/Tp09x6tQpoWz48OEwNzfHhg0bUFpaisjISOTm5ipcrm/i4uJw5coV5OfnY/PmzcJ8Q46Ojjh9+jRKS0tx+PBhlJSUyKzXsWNH3LlzBz/88AOmTp0KoGV++gSAKVOm4MKFC42Wi8ViHD9+HNevXxe+KR02bBjs7e2xevVqlJSU4Pjx47h06RKmTZsmd1vDhg1Dhw4dsGXLFpSWluLatWtwc3PD5cuXVdoHAwMD+Pv7Y9WqVcjNzUViYiJiYmIQEBCg0PqOjo64evUqKisrcf78eRw9ehTvvPMOgGdvcL6+vti0aRPy8/ORmZmJ8PBwhUcENxZblbgFBQVwcXHBzZs3UV1djatXryImJgbOzs7Ccw4dOoSUlBRhKo2UlBRs2rRJKE9NTYWnp6dC+9BUHQHadj3RVB0BVKt/TdWTpuoI0Lx6wtqYlh6+wOSTN+qzpqaGPvzwQzI3N6cePXpQWFgYASBXV1ciIkpNTaVevXqRWCymjz/+mNzc3AgAHT16VKHyhpw8eVJmpKSlpWWT+6DMqE8AFBISQsuXLxcer1y5koKCgoTHe/fuJSIiPz8/Cg0NpZEjR5JYLKaJEydSYWEhERHduXOH+vXrR2ZmZrRmzRpydXUlAMIIq8TERLKxsSFbW1tKSkoiIqL58+eTv7+/QvlKKTPqs6ioiNzc3KigoIB27dol7NeLI7tiYmLotddeEx6np6eTh4cHmZmZkYuLC505c4aIqMljJR0FKBaLqXv37hQRESHEDA0NpaCgoEbzl3fey8vL6f333ydTU1Oyt7eXidtU7Li4OBo8eDCJxWLq0aMHbd++Xaa8uLiYvL29ydTUlOzs7EgikVBVVZVCOcuLLS9uU7Gjo6Np4MCBZGJiQvb29hQYGEhlZWVERHTr1i0yMDCQOVYAaOPGjUREdPz4cQoICFD4+DxfR4hI5XqiyOtJ2XrSVNsgr55o61xqsv41Vk+aqiNEDdcTHvXJ/lc+d9R0TFPTc+iD5nTUlOHn50dr167VWHxFKNJRA0Du7u4yy2/dukXLli3TcHZNGzp0qNDh05fY+pZzTk4OLV68uN50EE1tS1fqCBGfy5aI+2I9efjwYaOd8xdxR61NyOebsjOmAY1NQurk5ITPP/+8hbORFRsbCw8PD7z11lt6E1sfc7a1tcW6deuavS1dqCMAn8uWiAvUryfSOxMwJiUirhE6Zc6cOfDy8qp3j0hNaugCewBKNxbSi2WDgoKUzqkxPj4+iI6OBvBsTrmwsDC1b0MRI0aMwJEjR+oNsWeMsZbC7VCb8JC/UWN69ektKipKpTnTGGOMMX3Coz4ZY4wxxnQUd9QYY4wxxnQUX6OmY6ZPn46UlJRGbyOjD6RzOzV2m53W4OHDh+jYsSMMDfnqAcaYdpSUlODXX3/la9RaN75GTddYWFggMjKyRQcTqJsmBxPoCr6IlzGmbfr8PsEUxz99MsYYY4zpKO6otVEDBw6ESCRCbGxss8oYU6eMjAx8+umn2k6DtZDc3FwsWbKk0XkGGWP1cUetFYqIiICFhQXKysoafc4vv/wCNze3Zpdp2/jx4xEZGamz8ZjiiouLMWPGDOEG4NL7IBoZGSE5OVl4Xm5uLkQiEUQiEdq3b6+VXIuKirBu3Tq88sor2L17d73yiooKfPDBBxCLxejatSsOHDigcOzAwEBh/6R/z3dktm3bBkdHR1haWsLX1xdFRUVqiatK7MuXL2Ps2LEwMTHByy+/jC+++ALAs6l+Dh06BGdnZ5iYmOAf//gH4uLihPVsbW0xaNAgzJs3T6HtMMa4o9Yq/c///A/q6upw5MgRbafCWKO2bduG0aNHw8rKCsCzjkVycjJqa2vh4+OD/Px8AM/e3IkIb7/9tta+iUlISMCYMWPg4ODQYPlnn32G27dvIyMjAwcPHkRwcDD++OMPheNXVFSAiIQ/aYc0PDwce/bswYkTJ5CTkwMbGxt88803KsdVNfbMmTMRFhaG4uJifP3111i6dCl+/PFH3L17F9u2bcOZM2fw6NEjzJgxA++++y6ys7OFdSdPnoyUlBRcu3ZN4f1grC3jjlorc/36dVhbW2PSpEnYt2+fTFlaWhr69OkDCwsLrFixQuEyTbh58yZGjhwJCwsLuLq6IiEhAQDw3nvvQSQSCd9yjRgxAiKRCN999x18fHxw6tQp/Otf/4JIJMLu3bvh4+MDkUiERYsWYcSIETAzM8PkyZOFbwaaG4+1nH//+98YMmRIveWzZs1CbW0tpk2bhrq6ugbXbaz+fPTRRxCJRJg7dy4mTpwIMzMzvPfee6itrQUA3LhxAyNGjIBYLIaLiwvS0tIUytXT0xOurq4NltXV1WHfvn1YtmwZ7OzsMHLkSEycOBF79+5VKLY869atw/r169G3b1+Ymppiw4YNmDt3rspxVY39008/YciQITA2NoaHhwdeeeUV/PXXX+jevTt+/vln/O1vf4OpqSkWLlwIIyMj/PnnnzLrDx06FEePHlXLfjDW2nFHrZXZt28f/vnPf2L69Om4cOECrl+/DuDZJ+vJkydj6tSpuH//PhwcHBQq04SqqiqMHTsWQ4cORXZ2NsLCwjBhwgRkZWXh2LFjGDdunPDcc+fOCW+QUVFRGDduHA4cOAAiQmBgIKKiouDn54cTJ05gx44dyMzMxOPHjyGRSACg2fFYy8nIyECXLl3qLXdwcMCRI0dw/vx5LF++vF65vPqzZcsWLF68GPHx8Vi1ahXS09ORmpqKhIQEVFVVYdy4cRg1ahTy8vIgkUjg6emJqqoqlfYjLy8Pjx49gouLi7Csb9++zfrGaObMmbC0tISTk5MwavrBgwfIysrCnTt34ODggM6dO2P27NmoqKhQKa66YgPP2o6oqChUVlZi9OjR9cqfPHkCIkL//v1lltva2iIjI6NZ22KsreKOWitSXV2N+Ph4jBkzBqNHj4aNjY3wrVpSUhJKSkogkUhgbm6OgIAAdOjQockyTUhOTsaDBw+wbNkyWFhYwNPTE/369cPhw4eVjjlp0iT06dMHNjY2WLBggUq3mVq0aBFmzpyp9PqsadXV1SgrK2t0vsDhw4djw4YNWL16NU6fPi1Tpkj9GT58OFxcXNC1a1cMGjQImZmZSE5ORl5eHpYuXQozMzPMmDEDZmZmOHv2rEr7UlBQAODZ1DpSFhYWePjwoULrGxgYYNiwYbh37x7279+PJUuWICYmRlj/u+++w++//46LFy8iKSkJa9asUSkuAJVjA8862qamppg3bx62bt3a4LyJ69evx4oVK+pNYyMWi/H48WOFt8VYW8YdtVYkJiYGI0aMgJGREV566SV4e3vj4MGDqKqqQk5ODqysrGBkZCQ839bWFgDklmlCdnY2rK2tYWxsLCxzcHCQuY6luaTXOQGAnZ0dSkpK5A6mkKeurk6v7n+qj4yMjCAWi1FeXt7oc+bPnw9vb29Mnz4d9+7dE5YrUn+erw8mJiaoqqpCdnY2SktLYWhoKFxcf+PGDdy+fVulfbG2tgbw7NsjqSdPnqBz584Krb9z504EBATAwsIC7u7u8Pb2RkxMDCwtLQEAwcHBsLa2hqOjI2bNmoX4+HiV4gJQOTYAODk5oaqqCnFxcfjoo49w8OBBmfKIiAgUFhZi0aJF9dYtKytDp06dFN4WY20ZT3jbiuzfvx+nT5/Grl27ZJbHxMTAzs4Ojx49QnV1tdAhk36qllemCd26dUNBQQGqqqqEN9v79++jX79+AABjY2OZn2Ck31gAgEgkajBmXl6e8H9OTg7Mzc0hFouVird582Zldos1k5OTk8x5a8i+ffvw+uuvw8vLC2ZmZgCarj+N6datG6ysrGTOvzp06dIFVlZW+PPPP2Fvbw8AuHLlCnr16qVUPOmHBAcHB5iYmAjX10m99NJLKsVVZ2wjIyMMHDgQnp6eOHbsGN5//30AwNdff42LFy82et1nbm4unJycmrkHjLVN/I1aK5GdnY0nT56gurpaGOFVXV2NIUOGYN++fRg+fDjMzc2xYcMGlJaWIjIyErm5uQAgt0wThg0bBnt7e6xevRolJSU4fvw4Ll26hGnTpgEAHB0dcfr0aZSWluLw4cMoKSkR1u3YsSPu3LmDH374AVOnThWWx8XF4cqVK8jPz8fmzZvh4+MjlDU3Hv/02TKmTJmCCxcuyH2OWCzG8ePHcf36deHWZE3Vn8YMGzYMHTp0wJYtW1BaWopr167Bzc0Nly9fVmk/DAwM4O/vj1WrViE3NxeJiYmIiYlBQECAQus7Ojri6tWrqKysxPnz53H06FG88847MDIygq+vLzZt2oT8/HxkZmYiPDwcEydOVCkuAJViFxQUwMXFBTdv3kR1dTWuXr2KmJgYODs7AwAOHTqElJQUYbqVlJQUbNq0SSZGamoqPD09FdoPxto8Yjpl9uzZlJiY2Kx1Hj58SAAIAO3du1dYvnfvXmG5m5sbpaamUq9evUgsFtPHH39Mbm5uBICOHj0qt6y5duzYQTt27JD7nPT0dPLw8CAzMzNycXGhM2fOCGV37tyhfv36kZmZGa1Zs4ZcXV0JAMXHx1NiYiLZ2NiQra0tJSUlERGRn58fhYaG0siRI0ksFtPEiROpsLBQ6Xjz588nf39/ufm7u7tTXl5es48N+z9FRUXk5uZGBQUFRES0a9cuob56e3vLPDcmJoZee+014XFj9Wf58uVCjJUrV1JQUJDMa+PGjRvk4eFBYrGYunfvThEREULM0NBQCgoKajDXkydPCnEAkKWlpUx5eXk5vf/++2Rqakr29vYKxyUiiouLo8GDB5NYLKYePXrQ9u3bhbLi4mLy9vYmU1NTsrOzI4lEQlVVVQrFlhe3qdhN5RwdHU0DBw4kExMTsre3p8DAQCorK6Nbt26RgYGBzLECQBs3bhTWPX78OAUEBDQamymO26E2IZ87ajpGmY6arlGko6ZOfn5+tHbt2hbbHhE3kOpy69YtWrZsmbbTICKioUOHynxg0PW4moytqbg5OTm0ePFiqqioUHvstojboTYhn69RY4xpjZOTEz7//HNtp4HY2Fh4eHjgrbfe0ou4moytyZxtbW2xbt06tcdlrDXjjhrTaz4+PoiOjgYA1NTUICwsTMsZMX00fvx4jB8/Xm/iajK2JnNmjDUfd9SYXouKilJpzjTGGGNMl/GoT8YYY4wxHcUdNcYYY4wxHcU/feogX1/fRm+tow+ks80/f2/B1ubx48cYPnw4DAz4s05LqKioQLt27fh4M/acu3fvajsF1gJERHyvHMaYbvPy8sLy5cvRu3dvbafCGGMt6SF/PGWMMcYY01HcUWOMMcYY01HcUWOMMcYY01HcUWOMMcYY01HcUWOMMcYY01HcUWOMMcYY01HcUWOMMcYY01HcUWOMMcYY01HcUWOMMcYY+//s3XdUVOfWP/DvEEFghqIgUjQqklc0IjESyQ32kmI3CiILjAqouahYCJaL0URNbDFiNLbEmldRiZGrgoZEjTSNubFEERRFb5AmSu9l//7gN+d1hBkGZoYZcH/WYi3mlH32aZuHM+ecR0dxQ40xxhhjTEdxQ40xxhhjTEdxQ40xxhhjTEdxQ40xxhhjTEdxQ40xxhhjTEdxQ40xxhhjTEdxQ40xxhhjTEdxQ40xxhhjTEdxQ40xxhhjTEdxQ40xxhhjTEdxQ40xxhhjTEe10XYCjDFWn+joaKSmpgIAnjx5gp9++glxcXEAgMmTJ6N9+/baTI8xxpqFiIhI20kwxtiLNm7ciGXLlqG6ulpmuEQiQW5uLtq04f8zGWOt3hP+6pMxppN8fHxgbm5eZ/j48eO5kcYYe2lwQ40xppOsra3RuXNnmWEWFhb4+OOPtZQRY4w1P26oMcZ0VkBAAMRisfBZX18f77zzjhYzYoyx5sUNNcaYzvLw8EDbtm0BACKRCJMmTYJIJNJyVowx1ny4ocYY01mmpqbo3bs3gNqvPWfNmqXljBhjrHlxQ40xptMCAgIgkUhgZGSEPn36aDsdxhhrVtxQY4zptLFjx6KyshLTpk3TdiqMMdbs+D1qTG2ys7PRrVs3dOnSRdupMAA1NTXIy8trFS+GTU9Ph6WlJQwMDGSGl5SUAACMjY21kRZr4UpKSjBq1Ch8++232k6FMXme8MuImFq99dZbuHjxorbTYKhtOHt4eLSK/fHo0aN6/wHYvn07gNqvRxlrrIsXL+LYsWPaToMxhfirT8aYzuOrtIyxlxU31BhTExcXF4hEIpw+fVrbqbAXpKSk4NNPP9V2GqwZZGZmYtmyZSgrK9N2KoypBTfUWIs1ffp0RERE6Mwy//jjD7i6umpkuUSEQ4cOwdHREUZGRnjjjTcQGRmp9uU01zYdM2YM9u/fr/HlAEB+fj58fHwQGBiInTt3QiQSQV9fHzExMcI0mZmZEIlEEIlEMDQ0bJa86pOXl4d169ahW7du2Llzp8y40tJSfPTRRxCLxejUqRP27dundNw5c+YI6yf9ebEhs3XrVtjb28PMzAzTp09HXl6eWmI3Ne7169cxatQoGBkZ4dVXX8VXX30ljFN0PlhbW6N///6YP3++UsthTNdxQ421WPv378f48eNb/TKB2nu0tm7dinPnzuHp06fw8fHBhx9+iLS0NLUuR1vrp0lbt27FyJEjYWFhgTlz5iAmJgbV1dXw9PREdnY2gNo/7kSE9957T6tXYqKjo/HBBx/Azs6uzrjPPvsM9+/fR0pKCg4ePIh58+bhr7/+Ujp2aWkpiEj4eb5BumvXLuzevRsnT55ERkYGrKys8MMPP6gcW5W4s2bNQkhICPLz83HgwAEsX74cly9fBtDw+TBx4kTExsYiMTFR6XVgTFdxQ401mwULFkAkEmH+/PmYMmUK2rZtixEjRgAAkpOTMWTIEIjFYjg5OSEhIQEAsGzZMlhaWsLKygqbNm1CdXW1TKygoCCEh4fX+Y/++caGvNgvKisrE+aXvmRVerVgyJAhMsuUSkhIQO/evWFqaopVq1bJxFO03Lt372LYsGEwNTWFs7MzoqOjFW67rl274urVq+jSpQuMjY2xePFi6Ovr49atW0pu/Ya9uH7Sz3PnzsX48eMhkUgwefJkoZEjnXbIkCGQSCSYOHGicLVk8uTJEIlEwlWzIUOGQCQS4ZdffoGnpyfOnDmDGTNmQCQS1blypG4//vhjnW6nZs+ejerqanh5eaGmpqbe+eTtI0XbBVD+eKuPu7s7nJ2d6wyvqanBd999hxUrVsDGxgbDhg3D+PHjsWfPHqVjK7Ju3TqsX78effr0gbGxMTZs2IC5c+dqNe7vv/+Od955BwYGBhg6dCi6deuG//73vwCUOx/c3Nxw/PhxldeBMW3jhhprNlu2bMGSJUtw+vRpLF68GDdu3IC+vj4qKiowevRoDB8+HFlZWQgODoa7uztiY2Nx8uRJJCYm4t69e7h8+TKuXbsmE0vq1KlTICLk5OTA0dERmzdvBgC5sSsqKurkZ2hoiHv37kEsFiM+Ph4AsHPnTowdOxYXL16ss8zS0lJMnDgRU6dOxePHj2FnZ4c7d+40uNyKigqMGjUKbm5uSEtLQ0hICMaNG4eHDx8qvS0LCgpARHjzzTcbvR/keXH9pJ+joqKwZs0aJCUlIS4uDtHR0QgLC4Ovry9OnjyJbdu24cGDB3j27BmCg4MBAOHh4Rg9erQQ6+LFi0IDJCwsDKNHj8a+fftARJgzZ47a1qE+KSkp6Nixo8wwOzs7HDt2DL/99htWrlxZZx5F+0jRdmnM8dYYWVlZePr0KZycnIRhffr0adQVo1mzZsHMzAwODg7C07JA7atPHj58iNTUVNjZ2aFDhw74+OOPUVpaqlJsdcQFas+zsLAwlJeXY+TIkfVOU9/5YG1tjZSUlEYtizFdxA011uwGDBiA/v37w9HREVFRUYiJiUFWVhaWL18OiUQCHx8fSCQSnD9/Hjk5OYiPj4eRkRHCw8Ph4uJSJ97kyZMxZswYAICfnx+WLVuG7t27A4Dc2D///HO9uTk4OODNN9/EkSNHAABxcXFyOwG/dOkSCgsLERwcDBMTE/j7+8Pc3LzB5cbExCA9PR0rVqyAqakp3N3d0bdvXxw+fFjpbbh+/XqsWrUKVlZWSs/TVIMGDYKTkxM6deqE/v3748GDB8K4CRMmoHfv3rCyssKiRYsQFhbW5OUEBQWpvYuoyspKFBcX1/uetUGDBmHDhg1Yu3Ytzp49KzNOmX1U33Zp7PGmrJycHAC1XWpJmZqa4smTJ0rNr6enh4EDB+Lvv//G999/j2XLlgn3Ikpj/PLLL7hx4wauXLmCS5cu4YsvvlAptqpxgdpGtrGxMebPn4/Q0FC0a9eu3unqOx/EYjGePXum9LIY01XcUGPN7sXGRVpaGoqKitCmTRvhq8fk5GSYmZlh48aNCA4OhpWVFYKCglBeXi437q5du9C2bVuZN9jLi33//n25cWbOnIm9e/cCAA4dOiT3jfgZGRmwsLCAvr6+MMza2rrB5aalpdV5eaudnZ3S95vt3bsXubm5Ml/BapKFhYXwu5GRkczVoefH2djYoLCwEMXFxU1aTk1NDdT9/m19fX2IxWLhxbgvWrhwIaZMmQJvb2/8/fffwnBl9lF926Upx5syLC0tAdReOZIqKChAhw4dlJr/22+/hb+/P0xNTTF48GBMmTJFaKiZmZkBAObNmwdLS0uUTbZYAAAgAElEQVTY29tj9uzZiIqKUim2qnGB2n+cKioqEBkZiQULFuDgwYN1ppF3PhQXF7eKlz0zxi+8ZVrXuXNnWFhYCFcNXjR9+nRcvXoVM2bMQOfOnREYGFhnmqSkJGzZsqXO/UANxa6Pu7s75s+fjytXrqCgoAC2trb1TmdjY4OnT5+isrJSaKxJryIoWq70SmFFRYXQEHj8+DH69u3bYG4HDhzAlStXNH5fl7KysrKE3zMyMmBiYgKxWAwAMDAwkPma6/ltIRKJ6sSSfl2tbg4ODjJ5vui7777D22+/DQ8PD0gkEgC1+68p+6gpx5syOnbsCAsLC9y6dUs4Hm/evIlevXo1Kd7zDWI7OzsYGRkJ99hJvfLKKyrFVldcfX19uLi4wN3dHeHh4TL/OCk6HzIzM+Hg4NCENWBMt/AVNaZ1AwcOhLm5ObZs2YKioiIkJibC1dUVISEhWLBgAYqKimBvby9zBeN5FRUV8Pb2xq5du4SvHr29vRXGvn79utx8xGIxPDw84OXlhcmTJ8udbtCgQTAxMcGGDRtQVFSE/fv3IzMzs8HlDhw4ELa2tli7di0KCwtx4sQJXLt2DV5eXgq306FDhxAbGyu8YiI2NhabNm1SOI+mRUZG4ubNm8jOzsbmzZvh6ekpjLO3t8fZs2dRVFSEw4cPo7CwUBjXrl07pKam4vz585g6dSoAzXz1CQCTJk0S7jmsj1gsxokTJ3Dnzh3k5uYCQJP3UVOON2Xo6enBz88Pa9asQWZmJi5cuICIiAj4+/srNb+9vT1u376N8vJy/Pbbbzh+/DjGjh0LoLYhNH36dGzatAnZ2dl48OABdu3apfTTv/JiqxI3JycHTk5OuHv3LiorK3H79m1ERETA0dFRmKah8yEuLg7u7u5KrQNjOo0YU5OsrCwaPHiw3PErV64kAASA+vXrJzMuOTmZhg4dSmKxmLp27Up79+6lkpISCg4OJltbWzIzMyNvb28qKSkhIqLAwEAhVn0/dnZ2CmM3JD4+niwtLamiokIY9vwyAwMDiYgoLi6OevXqRWKxmD755BNydXUlAHT8+HGFy01KSqKhQ4eSRCIhJycnOnfunMJ87t27R3p6enXWc+PGjXLnaWh/vOjF9Xt+f61evZoCAgKEz3v27CFfX19aunQpDRs2jMRiMY0fP55yc3OFeKmpqdS3b1+SSCT0xRdfkLOzMwGgqKgounDhAllZWZG1tTVdunSJiIgWLlxIfn5+SudLRLRt2zbatm2bwmny8vLI1dWVcnJyaMeOHcI6TJkyRWa6iIgIeuutt4TP8vZRQ9tF0X5funQpBQQEyM311KlTMvvXzMxMGFdSUkLTpk0jY2NjsrW1rXMcK4odGRlJ//jHP0gsFtNrr71G33zzjcz4/Px8mjJlChkbG5ONjQ0FBwcLx35DOSuKrShuQ7GPHj1KLi4uZGRkRLa2tjRnzhwqLi4moobPhxMnTpC/v7/cnKUuXLhAH3/8cYPTMaZF2dxQY2rT2IYB0yxN7w9fX1/68ssvNRZfGco01Ihq/7CvWLGiGTJSzM3NrcFGua7Fbmk5Z2Rk0JIlS6i0tLTBabmhxlqAbL5HjTHW6jk4OODzzz/Xag6nT5/G0KFD8e6777aY2C0xZ2tra6xbt06tMRnTJm6osZdWfTe0A1D7k4eNoYs51cfT0xNHjx4FAFRVVSEkJETLGem+MWPGCK+RaSmxW2LOjLU23FBjLy1da/wAuplTfcLCwlR6ZxpjjDHl8FOfjDHGGGM6ihtqjDHGGGM6SkQt5bsWpvOys7PRr18/mJiYaDsVhtp7x3Jzc5V+e31LJH3vmbyuhRhTpKSkBAMGDMAPP/yg7VQYk+cJ36PG1Kp79+64ePGittNgqG04e3h4tOr9Ie0APCAgQMuZsJbo4sWLOHbsmLbTYEwh/uqTMcYYY0xHcUONMQ1zcXGBSCTC6dOntZ3KSyslJQWffvqpttNgzSAzMxPLli1DWVmZtlNhTC24ocZ0QlhYGEQikcyPubk53N3dhfuQmmr69OmIiIho0rwPHz6Uyen5zrbff/99iEQiODo6KlzGH3/8AVdX1yYtX1eNGTMG+/fv19l4z8vPz4ePjw8CAwOFfiH19fURExMjTJOZmSnsY0NDQ43koYy8vDysW7cO3bp1q9PReGlpKT766COIxWJ06tQJ+/btUyomEeHQoUNwdHSEkZER3njjDURGRspM8+jRI3zwwQcwMTGBjY2N0u/Fayh2U+MCwPXr1zFq1CgYGRnh1VdfxVdffaXUcq2trdG/f3/Mnz9f6WUxpsu4ocZ0gqenJxISEtC2bVsQEWpqanD58mX88ccf+Oyzz1SKvX//fqU7mH5R165d8eTJExgYGCAyMhKWlpbCuFOnTuGDDz5AUlKSSstgmrV161aMHDkSFhYWmDNnDmJiYlBdXQ1PT09kZ2cDqP3jTkR47733tHolJjo6Gh988AHs7OzqjPvss89w//59pKSk4ODBg5g3bx7++uuvBmM+evQIW7duxblz5/D06VP4+Pjgww8/RFpamjDN3LlzIRaLkZaWhnPnzmHnzp04fvy4yrGbGhcAZs2ahZCQEOTn5+PAgQNYvnw5Ll++rNRyJ06ciNjYWCQmJiq1LMZ0GTfUmE6SXqkaOnQo7ty5IwxPTk7GkCFDIBaL4eTkhISEBGHcsmXLYGlpCSsrK2zatAnV1dVYsGABRCIRgoKCAADh4eF1rtxJG1jyYltaWmLcuHHYs2ePTI6nTp3C2LFj6ywDABISEtC7d2+Ymppi1apVMvMpWoe7d+9i2LBhMDU1hbOzM6Kjo9WzQeWQt7zJkydDJBIJV7mGDBkCkUiEX375BZ6enjhz5gxmzJgBkUiEnTt3wtPTU9gGQ4YMgUQiwcSJE5GXl9ekeOr0448/4p133pEZNnv2bFRXV8PLyws1NTWN2jbS/T137lyMHz8eEokEkydPRnV1NQDF+7ch7u7ucHZ2rjO8pqYG3333HVasWAEbGxsMGzYM48ePr3NM1qdr1664evUqunTpAmNjYyxevBj6+vq4deuWME1iYiK8vLxgZmaGPn364J133sHt27dVjt3UuADw+++/45133oGBgQGGDh2Kbt264b///a/S6+Tm5qZ0o5AxXcYNNaaTiAh3797FxYsXMWzYMABARUUFRo8ejeHDhyMrKwvBwcFwd3dHRUUFfv/9d5w8eRKJiYm4d+8eLl++jGvXrmHLli1YsmSJTOxTp06BiJCTkwNHR0ds3rxZYWwA8PX1xalTp5CVlSXEOXz4MLy8vOoso7S0FBMnTsTUqVPx+PFj2NnZCY1NRcupqKjAqFGj4ObmhrS0NISEhGDcuHF4+PChRraxouWFh4dj9OjRwrQXL14UGhBhYWEYPXo09u3bByLCnDlzEBYWBl9fX5w8eRLbtm3DgwcP8OzZMwQHBwNAo+OpU0pKCjp27CgzzM7ODseOHcNvv/2GlStXNmrbSPd3VFQU1qxZg6SkJMTFxSE6OrrB46ipsrKy8PTpUzg5OQnD+vTp06QrRgUFBSAivPnmm8Kw999/H2FhYcjPz8etW7dw9epVjBw5UuXY6ohbWlqKsLAwlJeXy523vnWytrZGSkpKo9eBMV3DDTWmU8rLyyESiaCnpwcnJycEBwcLjaCYmBhkZWVh+fLlkEgk8PHxgUQiwc8//4w2bdogJycH8fHxMDIyQnh4OFxcXOrEnzx5stC/oJ+fH5YtW4bu3bsrjA0A7777LmxtbYUrQmlpaTA1NYWZmVmdZVy6dAmFhYUIDg6GiYkJ/P39YW5u3uA6xMTEID09HStWrICpqSnc3d3Rt29fHD58WBObWiPLmzBhAnr37g0rKyssWrRIpW6mgoKCMGvWrCbPDwCVlZUoLi6GsbFxnXGDBg3Chg0bsHbtWpw9e1ZmnDLbZtCgQXByckKnTp3Qv39/PHjwoMHjqKmk90aampoKw0xNTfHkyZNGx1q/fj1WrVoFKysrYdiXX36JnJwcmJubo1+/fli8eDHc3NxUjq1q3JSUFBgbG2P+/PkIDQ2V+768+tZJLBbj2bNnjV4HxnQNN9SYTpHeo5abmws/Pz/s3r1b+EopLS0NRUVFaNOmjfC1ZXJyMu7fv48333wTGzduRHBwMKysrBAUFITy8nK5y9m1axfatm2LadOmNRgbAPT09DB9+nR8//33AIC9e/dixowZ9cbOyMiAhYUF9PX1hWHW1tYNLictLQ2WlpYwMDAQ5rOzs5O5l0idNLE8CwsL4XcbGxsUFhaiuLi4SbFqampU7vtUX18fYrEYJSUl9Y5fuHAhpkyZAm9vb/z999/CcGW2zfPramRkhIqKigaPo6aS3htZUFAgDCsoKGj0y4z37t2L3Nxcma/pq6qqMHjwYAwYMACFhYVITk7G8ePHZW7eb0psdcR1cHBARUUFIiMjsWDBAhw8eFCpdQKA4uJitG/fvlHrwJgu4oYa00nm5ub46quvkJmZKdyH07lzZ1hYWICIZH4CAwMB1D7deffuXURHR+Ps2bNy73VKSkrCli1bZMY3FBsAZs6cifv37+PChQuIj4/HwIED641vY2ODp0+forKyUhgmvfKhaDmdO3dGTk6OzNdkjx8/RqdOnZq4FRVraHkGBgYoLS0Vxj3/xKtIJKo35vNfDWdkZMDExARisbhJ8TZv3qzUPVgNcXBwkMnrRd999x1sbGzg4eEh/FPQ1H2hzHHUFB07doSFhYXMPVg3b95Er169lI5x4MABXLlyRXhJsFRKSgquX7+OgIAASCQSdO3aFe7u7ggPD1cptjriArWNbRcXl3rnlbdOQO2TvA4ODo1aFmO6iBtqTGcZGhpi0aJFWLlyJQoKCjBw4ECYm5tjy5YtKCoqQmJiIlxdXXH9+nWEh4djwYIFKCoqgr29vczVjudVVFTA29sbu3btEr6O9Pb2VhhbqkuXLhg+fDhmz56N4cOHy8170KBBMDExwYYNG1BUVIT9+/cjMzMTABQuZ+DAgbC1tcXatWtRWFiIEydO4Nq1a/Dy8lLjVv0/DS3P3t4eZ8+eRVFREQ4fPozCwkJh3nbt2iE1NRXnz5/H1KlTheGRkZG4efMmsrOzsXnzZnh6egrjGhtPHV99AsCkSZMQHx8vd7xYLMaJEydw584d4VUwTd0XyhxHTaGnpwc/Pz+sWbMGmZmZuHDhAiIiIuDv76/U/IcOHUJsbKzwepLY2Fhs2rQJQG3jUiKRYPv27SgqKsKjR49w/Phx9OzZU6XYqsTNycmBk5MT7t69i8rKSty+fRsRERFwdHRUap0AIC4uDu7u7kqtA2M6jRhTk6ysLBo8eHCT5j1y5AgBEH6uXr1KRESFhYXUvn17AkDHjx+n5ORkGjp0KInFYuratSvt3buXiIhKSkooODiYbG1tyczMjLy9vamkpIQCAwOFmIGBgbR582aZ5QAgOzs7IiK5sZ939OhR0tfXp6ysLGHYi8sgIoqLi6NevXqRWCymTz75hFxdXRtcByKipKQkGjp0KEkkEnJycqJz5841aXsSKbc/FC0vNTWV+vbtSxKJhL744gtydnYmABQVFUUXLlwgKysrsra2pkuXLhERka+vLy1dupSGDRtGYrGYxo8fT7m5uU2Ot3DhQvLz81OY/7Zt22jbtm0Kp8nLyyNXV1fKycmhHTt2CPtqypQpMtNFRETQW2+91eC2WblypRBj9erVFBAQIHzes2ePwv27dOlSCggIkJvrqVOnZI5NMzMzYVxJSQlNmzaNjI2NydbWts7xKS/2vXv3SE9Pr85xv3HjRmGa6OhocnFxIWNjY7K0tCRPT0/KyclpMOeGYiuK21Dso0ePkouLCxkZGZGtrS3NmTOHiouLlVruiRMnyN/fX+52lrpw4QJ9/PHHDU7HmBZlc0ONqY0qDTWmfs29P3x9fenLL79stuURKddQI6r9w75ixYpmyEgxNzc3lRrf2ojd0nLOyMigJUuWUGlpaYPTckONtQDZ3Ck7Y6zVc3BwwOeff67VHE6fPo2hQ4fi3XffbTGxW2LO1tbWWLdunVpjMqZN3FBjjKnM09MTR48eBVD7tF9jugp6WYwZM0Z4NUxLid0Sc2asteGGGmNMZWFhYSq9M40xxlj9+KlPxhhjjDEdxQ01xhhjjDEdxV99MrVKTEzkdxfpiMrKSqSnp8vdH0SE9PR02NjYQE+vZf7Plp6eDqC271BdUFhYiMrKSn4jfgvx5MmTRr00mDFtEBGp2EcLY/9fdXU1kpKStJ0Ga0BRURHCw8Px008/wdXVFfPmzYOJiYm202oV7t27h61btyI3Nxfe3t4YOXIkXnnlFW2nxRRo3749bGxstJ0GY/I84YYaYy+J1NRU7Nq1C//+97/h4eGB+fPn85UfDXnw4AF2797N25oxpipuqDHW2v3nP/9BaGgokpKSMHfuXEydOlWmw3imOQUFBdi3bx/27NkDNzc3LFiwQOmumRhjDNxQY6x1qq6uRmRkJNavX4927dohMDAQI0aM0HZaL62amhqcOXMG27ZtQ01NDebPn48xY8bI7dyeMcb+P26oMdaaSK/g7N69GwMGDMCiRYvQo0cPbafFniO9wnnnzh34+/vDx8cHRkZG2k6LMaabuKHGWGtw//59bN26Fb/++it8fHwwa9YstGvXTttpMQUyMjKwa9cuHDt2DOPGjcO8efNgZ2en7bQYY7qFG2qMtWSxsbHYunUrHj16hICAAHh5eaFNG37rTktSVlaGY8eO4euvv4aTkxOCgoLQp08fbafFGNMN3FBjrKWpqKhAREQEvv76a1hYWGDp0qVwc3PTdlpMRTU1NTh//jxCQ0ORl5eH+fPn48MPP+TXezD2cuOGGmMtRX5+Pvbv34/du3djxIgRWLRoEbp06aLttJgGJCcn49tvv8WFCxfg6+sLPz8/iMVibafFGGt+T1rm68gZe4ncu3cPgYGBGDBgAMrKyhAXF4fQ0FBupLViPXr0QGhoKH755ReUlZXhrbfeQmBgIP773/9qOzXGWDPjK2qM6ajY2FisX78emZmZmDdvHt9/9hKTft29efNmWFpa8tfdjL08+KtPxnRJRUUFwsLCEBoaiu7du2PRokV4++23tZ0W0yH8AAljLxVuqDGmC7Kzs7Fv3z4cOHAAI0eORFBQEDp37qzttJgOk76SJSoqCl5eXtxNFWOtE9+jxpg23b17F4GBgRg+fDgMDQ1x9epVhIaGciONNah79+4IDQ3FH3/8gXbt2mHQoEGYPXs27ty5o+3UGGNqxFfUGGtmRIRff/2VX8PA1EraTdXGjRvRtm1b7qaKsdaBv/pkrLmUl5fj6NGj2LJlCxwcHBAUFIT+/ftrOy3WCnE3VYy1GtxQY0zTsrKysGPHDqGroLlz56JTp07aTou9BF7spmr+/PmwtbXVdlqMMeVxQ40xTbl+/Tp27NiBhIQE+Pr6wt/fH8bGxtpOi72EioqKcPjwYezYsQNOTk745JNP4OTkpO20GGMN44YaY+r0YjdAwcHBfJ8Q0xncTRVjLQ431BhThxc71uYrFkzX3bhxA99++61wxZe7qWJMJ3FDjTFVZGZmYufOnXwPEGuxXnyH3+LFi/Hqq69qOy3GWC1uqDHWFNeuXcPXX3+NP//8E/7+/pg1axY/VcdaNGmvGF9//TU6deqEZcuW4Z133tF2Woy97LihxpiypO+p+uabb0BE/J4q1mpxN1WM6QxuqDEG1D4VJ5FI5I47fPgwtm/fDmdnZyxZsgSvv/56M2fIWPNrTDdVxcXFfI8bY+rHXUgx9v3338PNza3O8IyMDKxatQr9+/dHeno6fv31Vxw8eJAbaeylIa+bqqSkpDrTTpgwAevXr9dCloy1bnxFjb3UNm/ejDVr1oCIcPr0abi5udV5q/u0adNgaGio7VQZ0zrp1/8bNmyAubk5AgMDMWLECNy/fx/9+/dHdXU1Zs2ahQ0bNmg7VcZaC/7qk728Vq1aJbxPCgDefPNNGBoaokOHDli4cCEGDx6s5QwZ013x8fHYsmULHj58iPbt2+OXX35BdXU1zMzMMGHCBOzduxd6evylDWMq4oYae/kQEebOnYvDhw8LjTQAMDc3x48//ohhw4ZpMTvGWpbbt2/Dzc0N+fn5wjATExMMHToUP/74Iz+EwJhq+B419nKprq6Gl5cXfvjhB5lGGgAUFBTgf//3f7WUGWMtU0REBMrLy2WGFRYW4vz58xgxYgTKysq0lBljrQNfUWMvjcrKSowbNw4xMTEoLi6WGaevrw9DQ0NUVlYiKysLpqamWsqSsZajuroatra2KCkpQVlZGaqqqmTGGxoawsnJCefPn5f7VDVjTCHlv/q8f/8+xo4dq+mEWpyCgoJW/Ue9oqIC1dXVLf5lrkSE9PR0lJSUQE9PD6+88gpeeeUVtGnTBvr6+tDX1xeGtW3blu+tUaP3338fmzdvbtK806dPx++//67mjJi6EBHKyspQXV2NqqoqVFVVobKyEmVlZRCJRKiurkZNTQ3atm0LOzu7VtOnKBGhqKgIJiYm2k6FtVDt27dHbGysMpM+UfrmgbKyMrz++us4fvx40zNrhXr16oXExERtp6Exx44dQ2JiIlatWqXtVFgLdPv2bZWOnYcPH+LixYuwsrJSX1JM44YMGYJjx4612v2WnZ0NDw8PXLx4UdupsBaqV69eSk/Llw0YY4wxxnQUN9SYWqSkpODTTz/VdhqsGWRmZmLZsmUv1U3iLi4uEIlEOH36tEpxPD09IRKJsG7dOjVlxnQZ18WXi6Zqo0431GbPno2jR4+qFGPMmDHYv39/g9Pl5eVh3bp16NatG3bu3KnSMhWZPn06IiIiNBZfStn1Vof8/Hz4+PggMDAQO3fuhEgkgr6+PmJiYoRpMjMzIRKJIBKJtPryWEX7ubS0FB999BHEYjE6deqEffv2KRWTiHDo0CE4OjrCyMgIb7zxBiIjI2WmefToET744AOYmJjAxsYGISEhaond1LgAcP36dYwaNQpGRkZ49dVX8dVXXym1XGtra/Tv3x/z589XelktgaJz848//oCrq6vKywgLC4Ovr6/KcZSlar1R5thWB66LulsXAc3VRk3VRVViA/JrY0PL1VhtJCXdunWLJk+erOzkOmP06NG0b9++Bqc7duwYXb9+ndzc3GjHjh1Kx+/Zs6cK2WmOsuvdkKNHj9LKlSsVTvP555/TihUrhM8xMTEkEonI1taWsrKyZKZ97733VM5JFYr285IlS8jNzY3S09Pp119/JbFYTDdv3mwwZmpqKrm4uNDDhw+puLiYNm3aRG3btqW///5bmGbMmDE0adIkysvLoxs3bpCFhQUdO3ZM5dhNjUtE9NZbb1FcXByVl5fT+fPnycDAgBISEpRep549e9Lt27cVLkPVujF48OA6x5C2uLq60qlTp1SO4+vrS19++aUaMtI8ZY6D+ujSfnueuupiVlYWDR48WOE0raUuEmmuNmqqLqoSm0h+bVT2fFCmNjai7ZCttobalClTCAAtXryYBg8eTGKxmCZMmEC5ubkUGBhIAGjevHnk4eFBBgYGNHz4cCIiSk5OpqFDh5KJiQn16dOHfv75ZyIiWrx4sRBPKikpiQYPHkzGxsbUu3dvio+PF8Y9H6dfv350+vRpISfpjzINME021KTbQbpO0s8BAQE0btw4EovFNGnSJKqqqlK4PYmIJk2aRACEojN48GACQNHR0U1ab3mUaag5OztTVFSU8DkmJobmzJlDHTt2pOHDh1N1dbUw7vmCJG/fK9ouRIqPA2W9uJ+rq6vJwsKCzp49Kwzz8vKiefPmNTo2EZFEIpHZJvb29vTjjz8Kn8eOHdvgdlUmtjrj9ujRg44eParUcomI/Pz8aNWqVQpjarKhpqiuKDpGli5dShYWFtShQwfauHEjVVVV1Tk3iYji4+Pp9ddfJxMTE1q5cqXQUFN07kmdOXOGnJycyMzMjDw8PCgvL08Y11BDTZrL3LlzaezYsSQWi2nhwoV09+5dev3116l9+/a0f//+BpfVmHrTGC8eB/VpTEOtJdZFZRpqzV0XiVSvjfX9/dNkbdRUXVR3bEW1sb7zQZnaqJWGGlFtAerevTv99ddflJWVRYMGDSJ/f38iqm2Rd+vWja5cuUJ37tyh999/n8rLy6l79+4UEhJC+fn5dOzYMTI0NKTU1FRhHunJK532888/p8LCQjp48CDZ2dlReXm5MO7TTz+loqIiSkxMpP/5n/8hosb/B6XpK2rPr5P0s729Pd28eZP+/vtvsra2Fna6ou1JVHfdnJ2dhT8WzXlFTSwW059//il8jomJodWrV9Nvv/1Gbdq0oZCQEGGctCAps+/r2y6KjoPGeHE/p6enEwB6/PixMGzdunXCH/7GyM/PJ7FYLPOH6p///Ce5u7tTXl4e/fXXX2RtbU2xsbEqx1ZH3JKSEjpy5Ah17dqVnj17pvQ6hYSEkLe3t8LYmr6ipqiu1HeMXLlyhRwdHSkrK4vy8vJo0qRJdPXqVSGW9NwsKSmhjh070po1a6igoIB2795NpqamwhU1ReceEdHbb79NiYmJlJeXRzNmzJA555W5orZkyRJycHCgxMREunv3LonFYpoxYwbl5OTQsWPHyNLSUqllNabeKKO+46A+jb2i1tLqojINteasi8/Pq0ptrO/vnyZro6bqorpiN1Qb5Z0PytTGxjTU1H6P2oQJE9C7d29YWVlh0aJFCAsLE8YNGDAA/fv3h6OjI6KiohATE4P09HSsWLECpqamcHd3R9++fXH48OE6cWNiYpCVlYXly5dDIpHAx8cHEokEP//8sxAnJCQEYrEYPXv2RHJysrpXTWMGDRoEJycndOrUCf3798eDBw+EcYq2Z2MFBQVh1qxZ6khZUFlZieLiYhgbG9cZN2jQIGzYsAFr167F2bNnZcYps+/r2y6KjrDcIuQAACAASURBVANV5OTkAIDMO/FMTU3x5MmTRsdav349Vq1aJfNqgi+//BI5OTkwNzdHv379sHjxYri5uakcW9W4KSkpMDY2xvz58xEaGop27dopvU5isRjPnj1r9DqoW311Rd4x0qZNG+Tk5CA+Ph5GRkYIDw+Hi4tLnZiXLl1CYWEhgoODYWJiAn9/f5ibmyudU0JCAnr27AkzMzPMnDkTly5davR6DRw4ED179sRrr72GXr16YcCAAbCwsMD48eORk5ODgoKCJi1LUb1pSH3HgaZwXVS+LkrnbWm1UVN1UR2xlamN8s4HdddGtTfULCwshN9tbGxQWFgovAX+xZVJS0uDpaUlDAwMhGF2dnZIS0urEzctLQ1FRUVo06aNcPNlcnIy7t+/L8TR19dX9+o0i+e3mZGRESoqKuod9+L2bKyamhqQmjui0NfXh1gsRklJSb3jFy5ciClTpsDb2xt///23MFyZfV/fdlF0HKjC0tISAIQ/ftLfO3To0Kg4e/fuRW5uLoKCgoRhVVVVGDx4MAYMGIDCwkIkJyfj+PHjMjfvNyW2OuI6ODigoqICkZGRWLBgAQ4ePKjUOgFAcXEx2rdv36h10IT66oq8Y+TNN9/Exo0bERwcDCsrKwQFBdXp/ggAMjIyYGFhIVNTrK2tlcqHiBAcHAxra2vo6elh4MCByM3NbfR6Pb9tDQwMhM/Sc6aioqJJy1JUbxSRdxxoCtfFWsrURem8Lak2aqouqit2Q7VR0fmg7tqo9oZaVlaW8HtGRgZMTEwgFovrnbZz587IycmROQEfP36MTp061TuthYUFiEjmJzAwUIhTWVlZZz6RSKSGtdIeRdvTwMAApaWlwnjpfz5A/eu9efNm7NmzR+05Ojg4yOT5ou+++w42Njbw8PBAdXU1gMbt++cpOg5U0bFjR1hYWODWrVvCsJs3bzbqpYQHDhzAlStXsH37dpnhKSkpuH79OgICAiCRSNC1a1e4u7sjPDxcpdjqiAvU/lFxcXGpd1556wTUPrHm4ODQqGU1h4aOkenTp+Pu3buIjo7G2bNn633KzcbGBk+fPpWpKc9fQVB07p05cwZ79+7FxYsXUV1djYSEBLU3BJp7WYqOA23gulhXS6uNmqqL6ooNyK+NDZ0P6q6Nam+oRUZG4ubNm8jOzsbmzZvh6ekpd9qBAwfC1tYWa9euRWFhIU6cOIFr167By8ur3mnNzc2xZcsWFBUVITExEa6urrh+/bpMnOLiYly/fh09evRAaWkp2rVrh9TUVJw/fx5Tp05V9+pqnKLtaW9vj7Nnz6KoqAiHDx9GYWGhMK6+9dbEJX4AmDRpEuLj4+WOF4vFOHHiBO7cuSP8t9+Yff88RceBKvT09ODn54c1a9YgMzMTFy5cQEREBPz9/ZWa/9ChQ4iNjRUew4+NjcWmTZsA1BZQiUSC7du3o6ioCI8ePcLx48fRs2dPlWKrEjcnJwdOTk64e/cuKisrcfv2bURERMDR0VGpdQKAuLg4uLu7K7UOzUnRMRIeHo4FCxagqKgI9vb2Mlcnnjdo0CCYmJhgw4YNKCoqwv79+5GZmSmMV3Tu1dTUCD9lZWU4c+aMxta1OZbV0HGgDVwX62pptVFTdRFQreY2VBuVOR/UXhuVvZtN2YcJli5dSsOGDSOxWEzjx4+n3NxcWrlypfCkTb9+/WTmSUpKoqFDh5JEIiEnJyc6d+6cMO7FG0ylT8OIxWLq2rUr7d27t04csVhMjo6Ows2jFy5cICsrK7K2tqZLly7Jzf3UqVMyTwSZmZkptV2a8tQnAAoMDJTZLqtXr6aAgADh8549e+RuT6nU1FTq27cvSSQS+uKLL8jZ2ZkAUFRUVL3rvXDhQvLz81M6XyLlHibIy8sjV1dXysnJoR07dgjrMGXKFJnpIiIi6K233hI+y9v3DW0XRcfB0qVLKSAgQG6uivZzSUkJTZs2jYyNjcnW1lYmrqLY9+7dIz09PZm4AGjjxo3CNNHR0eTi4kLGxsZkaWlJnp6elJOT02DODcVWFLeh2EePHiUXFxcyMjIiW1tbmjNnDhUXFyu13BMnTsjcwC2PJh8mUFRX5B0jJSUlFBwcTLa2tmRmZkbe3t5UUlJS59wkIoqLi6NevXqRWCymTz75hFxdXQkAHT9+XOG5V1VVRTNnziQTExN67bXXKCQkhACQs7OzzJOHq1evbnC9Vq9eTaNHjxY+X7hwgczMzITPeXl5cpfV2HpTH2WO7cbutxe1xLqozMMEzV0XiRT/jVRUCxr6+6eoNmqjfmmy5hLJr43KLFfZ2qjVpz7V+X6gFxtqukiT71HThfctKdNQI6o9cZ5/Z5C2uLm5yTT2W0LslpZzRkYGLVmyhEpLSxuctjW9R40pT5P7TRfqojINNSLdqYtEXL+aI25jamNjGmpKd8re3GpqavD06dNW26lva+Pg4IDPP/9cqzmcPn0aQ4cOxbvvvttiYrfEnK2trbkLJMaUoAt1EeD61RxxAc3VRrU11Dw9PYXunqqqqhrVXcPzkpKS0LNnT7Rp0wbOzs44cuSIulIEIP/hAtLQzb5Npa7t+TIZM2YMxowZ06Jit8ScmXroUi3SpVwU4brYNFy/NB9Xk9TWUAsLC1PpXTZSjo6OGi0OulZ45FHX9mSM6SZdqkW6lIsiXBfZy0inO2VnjDHGGHuZcUONMcYYY0xHNeqrz8TERJ18b5I2ZWVlteptkpaWhtLSUty+fVvbqbAW6Pm3mTd1fj8/P7Rt21ZNGbHmkJKS0qr3W3l5OVJSUlp17Wea1Zja2KiGWpcuXbBq1arG5tOq/fnnn616m5w9exapqan4+OOPtZ0Ka4FSUlJw4MCBJs8vFovxySef6ERXVUx5M2bMaNX77dmzZ1i8eHGrrv1Msz788EOlp21UQ00sFuP1119vdEKtWdu2bVv1Nrl9+zYKCwtb9ToyzXrllVdUmrdHjx78mp4WxtjYuFXvt+zsbBgbG3NdZE3WmLrI96gxtUhJScGnn36q7TRYM8jMzMSyZctQVlam7VR0jouLC0QiEU6fPq1SHE9PT4hEIn5fXQvHdfHloqnaqPGGWlhYGEQikcyPnZ0dli1bhpqamibHnT17tvA+naYaM2YM9u/fr1IMTVF3bppc1/z8fPj4+CAwMFDo/0xfXx8xMTHCNJmZmcL+NzQ01EgeysjLy8O6devQrVu3Op1xl5aW4qOPPoJYLEanTp2wb98+pWISEQ4dOgRHR0cYGRnhjTfeQGRkpMw0jx49wgcffAATExPY2Ngo/f6nhmI3Na7U1q1bYW9vDzMzM0yfPh15eXl1pvnrr79gaGiIH374AUDtSx379++P+fPnN2pZza2+2mNubg53d3ehb8Wmmj59OiIiIuoM/+OPP+Dq6qpSbKA2d19fX+Gz9LwSiUTYu3dvnemLi4vRoUMHiEQiTJ48ucH48vJvCVpKbWwtdRHQXG3UVF1UJbZUQ7XxxboIaK42aryh5unpiYSEBLRt2xZEhKqqKhw9ehTbt2/H999/3+S4u3btwpQpU9SYKWuqrVu3YuTIkbCwsMCcOXMQExOD6upqeHp6Ijs7G0DtAUxEeO+997R6JSY6OhoffPAB7Ozs6oz77LPPcP/+faSkpODgwYOYN28e/vrrrwZjPnr0CFu3bsW5c+fw9OlT+Pj44MMPP0RaWpowzdy5cyEWi5GWloZz585h586dOH78uMqxmxoXqD2Hdu/ejZMnTyIjIwNWVlYyRQeovWn6yy+/RJcuXWSGT5w4EbGxsUhMTFRqWdrwYu2pqanB5cuX8ccff+Czzz5TKfb+/fsxfvx4NWXasDlz5iAhIQEGBgZYu3YtqqqqZMZ/++23KCgowL/+9S+Eh4c3GK+5838ZtZa6CGiuNmqqLqoSG2i4Nsqri4CGaqOynU2p0mdfQkICtW3bVmbYkCFDaPbs2UKHvPPmzSMPDw8yMDCg4cOHE9H/dTBrYmJCffr0oZ9//pmIiBYvXkwAZPoBTUpKosGDB5OxsTH17t2b4uPj68To168fnT59mohIpnNkALRjx44mrVtD/XXJW4dJkyYRANq3bx8R1faNB4Cio6PrzU06bPHixTR48GASi8U0YcIEoTPixsZTljJ9fTo7O1NUVJTwOSYmhubMmUMdO3ak4cOHU3V1tTDuvffea3DbSI+JgIAAGjduHInFYpo0aRJVVVURkfx93Rhubm4y26G6uposLCzo7NmzwjAvLy+aN29eo2MTEUkkEpltYm9vTz/++KPweezYsUr1odpQbFXidu3aVTgf5AkJCaGkpCRydnamQ4cOyYzz8/OjVatWKZxf23191ld7ZsyYQe+++67wWd7xtHTpUrKwsKAOHTrQxo0bheNPenxK6098fDy9/vrrZGJiQitXriRXV1c6deoUESk+L4mIzpw5Q05OTmRmZkYeHh6Ul5cn5PVin5YJCQnk5+dHhoaGtH//fmF4SUkJubq60tixY+lf//qXMFxe7Bfzb+h8a4qG9ltT6iJR/XVbUW1sSjxlKNPXZ3PXRSLVa+OLdZFIs7VRU3VR1dgN1UZFdZFIudrYmL4+m/0eterqasTHx+M///kP+vXrhy1btmDJkiU4ffo0Fi9ejBs3bkBfXx8VFRUYNWoU3NzckJaWhpCQEIwbNw4PHz7Epk2bsGTJEiFmRUUFRo8ejeHDhyMrKwvBwcFwd3dHUVERRo0ahYEDByIjIwOHDh3CokWLANR+tTB69Gjs27cPRIQ5c+aofV0VrUN4eDhGjx4tTHvx4kU4OzvLzU36VcjJkyexbds2PHjwAM+ePUNwcDAANDqeOqWkpKBjx44yw+zs7HDs2DH89ttvWLlyZaO2jfSYiIqKwpo1a5CUlIS4uDhER0fL3dcVFRUqrUNWVhaePn0KJycnYVifPn2a9F9RQUEBiAhvvvmmMOz9999HWFgY8vPzcevWLVy9ehUjR45UOXZT46anp+Phw4dITU2FnZ0dOnTogI8//hilpaXCNNHR0XByckKPHj3qjWFtbY2UlJRGr4O2EBHu3r2LixcvYtiwYQDk147Y2FicPHkSiYmJuHfvHi5fvoxr164BgHB8ArVfCU2cOBFTp07F48ePYWdnhzt37gjLVHReAsDq1atx9OhRPHr0CGKxGKtXr1a4DnZ2dpg7dy7Wrl2L6upqALVfi/7zn/+EgYGBzLTyYj+f//Of6zvfNKGpdRFofG1sSjx1ac66KJ23pdVGTdVFVWI3VBsbqouA+mtjszXUysvLIRKJ0KZNG0yePBn//Oc/Ze7BGDBgAPr37w9HR0dERUUhJiYG6enpWLFiBUxNTeHu7o6+ffvi8OHDdWLHxMQgKysLy5cvh0QigY+PDyQSCVasWIH09HSEhIRALBajZ8+eSE5Obq5VbtQ6KGvChAno3bs3rKyssGjRIpW6UwkKCsKsWbOaPD8AVFZWori4GMbGxnXGDRo0CBs2bMDatWtx9uxZmXHKbJtBgwbByckJnTp1Qv/+/fHgwQO5+/rnn39WaT1ycnIAAKampsIwU1NTPHnypNGx1q9fj1WrVsk88fbll18iJycH5ubm6NevHxYvXgw3NzeVYzc1rnS9fvnlF9y4cQNXrlzBpUuX8MUXXwAAnj59iqtXr8LDw0NuDLFYjGfPnjV6HZqbtPbo6enByckJwcHBQkNF3vF0/vx55OTkID4+HkZGRggPD4eLi0ud2JcuXUJhYSGCg4NhYmICf39/mJubK51bQkICevbsCTMzM8ycOROXLl1qcJ6lS5ciKysLR44cQXl5OSIjI+Ht7a1y7PrON03QRF0EdKs2NnddlM7b0mqjpuqiKrEV1UZl6iKg/trYbA016X0iRIT09HSsW7cOenr/t/gXH+NOS0uDpaWlzH+JdnZ2Mt9BPz9tUVER2rRpI9yYmZycjN9++w2WlpbQ19fX3Iop0Jh1UJaFhYXwu42NDQoLC1FcXNykWDU1NSr38aevrw+xWIySkpJ6xy9cuBBTpkyBt7c3/v77b2G4Mtvm+XU1MjJCRUWF3H19//59ldbD0tISgOxLCAsKCtChQ4dGxdm7dy9yc3MRFBQkDKuqqsLgwYMxYMAAFBYWIjk5GcePH8dXX32lUmxV4pqZmQEA5s2bB0tLS9jb22P27NmIiooCAKxZswb/+te/hG1848YN+Pj4QCQSCffSFBcXt4j3ZElrT25uLvz8/LB7927hapS848nMzAwbN25EcHAwrKysEBQUhPLy8jqxMzIyYGFhIVNjrK2tlcqLiBAcHAxra2vo6elh4MCBSj3kYGFhgaCgIKxduxa7du1CQECATC1tauz6zjdN0ERdBHSrNjZ3XZTO25Jqo6bqoqqxFdVGZeoioP7aqLOv5+jcuTNycnJkisXjx4/RqVOneqe1sLAQGoLSn02bNiEnJweVlZX1LkMkEmksf2leitbBwMBA5qsm6X8uinLLysoSfs/IyICJiQnEYnGT4m3evBl79uxp7GrV4eDgIJPXi7777jvY2NjAw8ND+APZmP37PHn7OjAwUKV16NixIywsLHDr1i1h2M2bN9GrVy+lYxw4cABXrlzB9u3bZYanpKTg+vXrCAgIgEQiQdeuXeHu7q7UTd+KYqsS187ODkZGRsL+kJK+2+frr7+W2b7Ozs44dOgQiEh4Oi0zMxMODg5Kr4O2mZub46uvvkJmZqZw3Cs6nqZPn467d+8iOjoaZ8+erfdpOBsbGzx9+lSmxrx4pUHeeXnmzBns3bsXFy9eRHV1NRISEpRuHCxcuBBPnz5FeHg4JkyYUGe8KrE1TZW6CDS+NjYlnjpqY3PWRem8Lak2aqouqhpbUW1Upi4C6q+NOttQGzhwIGxtbbF27VoUFhbixIkTuHbtGry8vOqd1tzcHFu2bEFRURESExPh6uoKExMTIUZxcTGuX7+OHj16CCdtu3btkJqaivPnz2Pq1KnNvg729vY4e/YsioqKcPjwYRQWFgrzysstMjISN2/eRHZ2NjZv3gxPT09hXGPjqeOrTwCYNGkS4uPj5Y4Xi8U4ceIE7ty5I/xX35j9+zx5+/r69esqrYOenh78/PywZs0aZGZm4sKFC4iIiIC/v79S8x86dAixsbHCY/ixsbHYtGkTgNoCKpFIsH37dhQVFeHRo0c4fvw4evbsqVJsVeLq6+tj+vTp2LRpE7Kzs/HgwQPs2rWrUU8CxsXFtbgudAwNDbFo0SKsXLkSBQUFco+nkJAQLFiwAEVFRbC3t5e5ivG8QYMGwcTEBBs2bEBRURH279+PzMxMmWnknZc1NTXCT1lZGc6cOaP0ekgkEkRERGD37t31jlcltqapUheBxtfGpsRTR21szroonbcl1UZN1UVAtZqrk7VR2ccOmvr01pEjR2Seqvnpp59kxq9cuVIY169fP5lxSUlJNHToUJJIJOTk5ETnzp0Txi1ZskTmqU/pkzJisZi6du1Ke/fulYkhFovJ0dFReNqHiOjChQtkZWVF1tbWdOnSpUavG1HDT24oWofU1FTq27cvSSQS+uKLL8jZ2ZkAUFRUVL25+fr60tKlS2nYsGEkFotp/PjxwlOfTYm3cOFC8vPzU5i/Mk995uXlkaurK+Xk5NCOHTuE/TllyhSZ6SIiIuitt95qcNs8f0ysXr2aAgIChM979uyRu6+Jap/UCwgIkJvrqVOnZI5HMzMzYVxJSQlNmzaNjI2NydbWViauotj37t0jPT09mbgAaOPGjcI00dHR5OLiQsbGxmRpaUmenp6Uk5PTYM4NxVYUt6HY+fn5NGXKFDI2NiYbGxsKDg6miooKmWkSEhJkluvm5kZERCdOnCB/f3+521lKm099vlh7rl69SkREhYWF1L59ewJAx48fr/d4KikpoeDgYLK1tSUzMzPy9vamkpISIvq/p+8AUGBgIMXFxVGvXr1ILBbTJ598Qq6urkJsIvnn5enTp2nmzJlkYmJCr732GoWEhBAAcnZ2lnkacfXq1TLr4uvrW2dd+/XrJ4z/6KOPqKqqSm7sF/Nv6HzTxH5ral0kqr9uK6qNTYnXUG1U5qnP5q6LRPL/DhIprgWK6iKR4tqojfqlyZpL1HBtlFcXiZSvjY156rNZXs+hCS821LSlERtbZS8+rt8clGmoEdWeOCtWrNB8Qg1wc3OTKfotIXZLyzkjI4OWLFlCpaWlDU6r7ddzMO1o7v3W3LVRmYYake7URSKuX80RtzG1sTENtUb19akrampq8PTp01bbj1xL5ODggM8//1yrOZw+fRpDhw7Fu+++22Jit8Scra2tuWsjxpSgC3UR4PrVHHEBzdXGFtVQS0pKQs+ePdGmTRs4OzvjyJEj2k6p2Xh6egpdZlVVVTW6O4yXwZgxYzBmzJgWFbsl5syYLuHa2DCuX5qPq0ktqqHm6OioM08uNbewsDCV3gvEGGOtEddG1trp7FOfjDHGGGMvO26oMcYYY4zpqEZ99ZmYmIhVq1ZpKJWWqaioqFVvk+TkZDx9+rRVrCMRIScnp9Fv1GZN15RuZl60ceNG4aXOrGXIzMzEpk2bYGxsjNzcXJiYmKBNmxZ1p41CJSUlyMzMbBV1kWmHvF4r6iMiJW/6KigoqNMvGWMtSWFhIbZs2QI9PT2MHj0azs7OGu+dgtW+fPIf//hHk+a9ePEisrOz1ZwRaw6JiYmIjIxEfn4+5s6dW6eDcsZeZoaGhhg3bpwykz5RuqHGWGtx48YNfPvtt0hISICvry/8/f3r7TyZMdY4FRUViIiIwJYtW9C+fXsEBgZixIgR2k6LsZaMG2rs5ZWdnY19+/bhwIEDGDlyJD755BOl+tRjjMl68uQJ9u7di4MHD2LEiBFYtGgRunTpou20GGsNuKHGWHl5OY4ePYrQ0FB0794dixcvhqurq7bTYkzn3bt3D9u2bcP58+fh7e2N2bNnw9zcXNtpMdaacEONsefFxsZi/fr1yM/Px7x58/Dhhx/ilVde0XZajOkUPk8YazbcUGOsPs9fKfDz84Ofnx8/echeatIrz1u2bIGDgwNfeWaseXBDjTFFpPfeSO9jW7x4MV599VVtp8VYs8nMzMTOnTtx7NgxjBs3DnPnzuV7ORlrPtxQY0wZFRUVCAsLw9dff41OnTph+fLlTX7lBGMtwbVr17Bz505cvnwZM2fO5KejGdMObqgx1lixsbHYunUrHj16hICAAHh5ebWql3myl1dNTQ3OnDmDb775BkSE+fPnY8yYMfy+Qca0hxtqjDVVSkoKvvnmG37ijbV4hYWFOHLkCLZv3w5nZ2csWbIEr7/+urbTYowBT7ivT8aayMHBAaGhoYiNjYWhoSHc3NwQGBiIhw8fajs1xpSSmpqKpUuXwtXVFenp6Th//jwOHjzIjTTGdAhfUWNMTfit7Kyl+M9//oPQ0FAkJycjICAAU6dOhb6+vrbTYozVxV99MqYJfB8b0zX8jwRjLRI31BjTpAcPHmD37t3497//DQ8PD8yfPx/t27fXdlrsJZKfn4/9+/dj9+7dGDFiBBYuXIiuXbtqOy3GmHL4HjXGNMne3h7r1q3D5cuX0a5dOwwaNAizZ89GUlKStlNjrdy9e/cQGBiIAQMGoKysDHFxcQgNDeVGGmMtDF9RY6wZSV9/sGHDBpibm/PXT0ztXuzeaeLEify1O2MtF3/1yZi2SG/oTkpKwty5c/mGbtZk0u6dQkND0b17dyxatAhvv/22ttNijKmOG2qMaVtqaip27dol3Mc2b948WFhYaDst1gJkZWVhx44d3L0TY60XN9QY0xUvvnR06dKl6NWrl7bTYjpI2r1TQkICfH19uXsnxlovbqgxpmuk97Ft27YNNTU13I0PA/B/x8XWrVtRVlaG4OBgPi4Ya/24ocaYLvvzzz+xZcsW3LlzB/7+/vDx8YGRkZG202LNSHql9dtvv0WfPn24eyfGXi7cUGOsJcjIyMCuXbtw7NgxeHh4YO7cubC0tNR2WkyDXrx3kfc5Yy8lbqgx1pIUFRXh8OHDwtWV4OBg9O7dW9tpMTV6/mlgPz8/TJs2DYaGhtpOizGmHdxQY6wlauz9SkTE9zJpmaJ9UFlZiZMnTyI0NBTt2rXj9+sxxqS4ocZYSyd9AvDy5cuYOXNmvU8ATpgwAUFBQRgwYICWsny5bdq0CVVVVVi6dKnM8Oe7dxowYAAWLVqEHj16aClLxpgO4oYaY61FZmYmdu7cKbxTa968ebCzs0NiYiLeeecd6Onp4YcffsCoUaO0nepLZfny5dixYwcMDQ2RlpaGV155BSkpKfjmm29w/vx5eHt7Y9asWWjXrp22U2WM6R5uqDHW2pSUlODAgQPYuXMnXFxckJmZiaioKBARzM3NsX37dnh5eWk7zVaP6P+xd+9hNeX7H8DfO0q1dxdKqp2RTucMjjQM+j0aFGMMORJSGplG5TJJLk0uw8SI3MbQySiMojkmMh4dlyI/mS7iNL9xT5HoTLopuqdNfX9/OHsdW7X3rl3tXX1ez9Pz2Ou79uf7WWt9Wz6tK4OPjw9+/vlnlJWVQVdXFytWrMD169dRW1sLPz8/ODo6Qk2NXrlMCGkWFWqEdFUNDQ34+eef8eWXX6KiooKbrq+vjy1btuDLL79UYnZdW319PT777DPExcVJrHszMzPExsZixIgRSsyOENKJPKM/5QjpotTU1HDv3j28fPlSYnpZWRnWrVuHzZs3Kymzrk0kEsHBwQHnzp2TKNIAoLa2Fq9evVJSZoSQzoiOqBHSRYlEIvTt27dRsSCmp6cHb29v7Ny5s4Mz67qqq6vx8ccf4/bt26ipqWlynk8++QQXLlzo4MwIIZ0UnfpUNYcOHer0O/Ha2loA6NJP0Bdfc6TK1xeJRCLk5+ejtrYWNTU1ePnyJerq6lBXV4f6+no0NDRAJBLB0tISH3zwgbLT7fREIhFSUlLw4sULaGhogMfjoWfPntDQ0ECvXr2ga30lwQAAIABJREFUpaUFbW1taGtr47333lN2uqSL+PHHH6Grq6vsNEj7edZT2RkQSb///jscHBwwatQoZafSaj///DMAYO7cuUrOpP14eHjgm2++QZ8+fZSdikJEIhHKysrQu3dvqKurKzudTq2qqgoikQj6+voqXcCTruOLL77Ay5cvqVDr4qhQU0Hm5uad+l1+JiYmANCpl0EWPp+P999/H0ZGRspOhRDSTb37vETSNdGffV3UyJEjwePxcPbs2Va1E8VoamqCx+PBzs5OYnp2dja++eYb5SRFOlRhYSHWrl3b6GYOWWiMdC/vjpOSkhLweDzweDy4uroqOTuiCqhQ66J+++032NjYtLodePMcqKioKAwaNAhaWlr44IMPcP78+bZOFR4eHoiNjW3zuE2ZNm0aIiMjO6Sv+/fv48qVK9zn8vJyuLu7w8/PD2FhYeDxeFBXV0dycjI3T2FhIbeTVub7HcvKyrBt2zYMHDgQYWFhEm21tbX4/PPPwefzYWZmhoiICLliyjOecnNzMWXKFOjo6MDExATr169vk9itjSsWEhICCwsL6OnpwcPDA2VlZY3muXPnDjQ1NfHTTz8BAIyNjTF69GgsW7ZM7n7eHiMAVHqcSBsjQPuNk/YaI4rEFpM1Tt4dI0DjcWJoaAjGGIKDg1vUN+m6qFAjzcrNzUVISAguXLiA0tJSuLu7Y+bMmcjLy2vTfiIjI+Ho6NimMVVRSEgIJk2aBAMDAyxevBjJycmor6+Hq6sriouLAbzZaTPGMHny5BYfiWlLCQkJmDJlCoRCYaO2TZs24dGjR8jOzsbRo0fh6+uLO3fuyIwpz3haunQp+Hw+8vLycOHCBYSFhSEmJkbh2K2NCwDh4eE4cOAATp8+jYKCAhgZGUn8RwsAdXV1CA4OxoABAySmOzk5ISUlBRkZGXL19fYYAaDS40TaGAHab5y01xhRJDYge5w0N0aAlo8T0s0wolKWLFnCEhMTm20/d+4cs7KyYnp6emzOnDmsrKyMa7t69Sr761//ynR0dFhgYCCzsbFhZ86ckbtdHgKBgMXFxUmdJzQ0lIWGhsoVz8/PjwFgq1atkvjs4+PDpk+fzvh8Pps1axZ7/fo1Y4wxFxcXbv7x48czPp/PZsyYwV68eMFmzZrFALCIiAjGGGPjx49nAFhCQoLEd8U/+/fvb9Gyv238+PGsqKio2fZevXqx+/fvS0yztraWWHfJycls8eLFrF+/fmzixImsvr6ea5s8eTL376ysLGZvb890dHTYsGHD2MWLF+VaV5mZmWz8+PFMW1ubDR06lF29erXFy2lrayuxnurr65mBgQGLj4/nprm5uTFfX98Wx2as8XiysLBgv/zyC/f5b3/7GwsMDFQ4tiJxzc3N2dmzZ6XOs379epaZmcmsra1ZVFSURJuXlxfbuHGjXH29O0YYU2ycyBojjCk+Tt4dI4y17zhprzGiaGxZ40TaGGGs8TgJDg5mLi4uUvuUtR8iXUIxHVHrZDZv3ozjx48jNzcXfD6fe2hpbW0tnJycMHfuXDx9+hRCoRD379/nvierXR4VFRVgjLXpU9X37NmD1atXN/ocFxeHoKAgZGZmIjU1FQkJCQCA6OhoeHp64vTp0wgNDUVOTg6eP3+OgIAAnDx5Eg4ODlysK1euwNramvscHR0NBwcHREREgDGGxYsXt9lyyCM7Oxv9+vWTmCYUCnHixAn8+uuvCAwMbPQdkUiEqVOnwtbWFnl5eVi/fj2mT5+OJ0+eSF1X4oeuTpw4EUVFRQgICICzszNEIpFCy1BUVITS0lJYWVlx04YNG9aqIwFNjadPP/0U0dHRKC8vx927d5Geno5JkyYpHLu1cfPz8/HkyRM8fvwYQqEQffv2xZIlS7hH0ABvjixZWVk1+zJ1Y2NjZGdny5V3U2MEaP04Wb58udTfp844TtprjCgSW9Y4kTVGgJaNE9K9UKHWyaSlpWHw4MHQ09PDggULkJSUBABISkpCZWUlAgICoKOjA29vb+jr63Pfk9Uuj+3bt2Pjxo0dcqfjuHHjYGVlBTMzM4wePRo5OTkS7TNmzMDQoUNhZGSElStXIjo6utV9+fv7Y+HChYqmLNWrV69QXV3d5F1a48aNw44dO7BlyxbEx8dLtCUnJyM/Px8bNmyArq4unJ2dMXz4cBw7dkzi+++uq+TkZBQVFWHdunUQCARwd3eHQCDAxYsXFVqOkpISAJB4HICuri6ePXvW4lhNjafg4GCUlJRAX18fH374IVatWgVbW1uFY7c2rni5Ll26hFu3buH69etISkrC1q1bAQClpaVIT0/HnDlzmo3B5/Px/PlzmX1JGyOAYuOkud+nzjhO2muMKBJb2jiRZ4wA8o8T0v1QodaJMMYQEBAAY2NjqKmpYezYsXjx4gUAoKCgAAYGBhLPwjI2Nub+LatdlsOHD+PFixfw9/dvgyWRTXyNDvDmwbnv/oX/druJiQkqKytRXV3dqr4aGhrA2vm5z+rq6uDz+c0+rX7FihVwcXHBvHnz8Mcff3DT8/LyYGhoCA0NDW6aUCiUuK6mqXWVl5eHqqoq9OzZk7voPCsrC48ePVJoOQwNDQFA4m0HFRUV6Nu3b4viNDWeXr9+jfHjx+Ojjz5CZWUlsrKyEBMTg++++06h2IrE1dPTAwD4+vrC0NAQFhYWWLRoEeLi4gAAQUFB+Prrr7l1fOvWLbi7u4PH43HXjlVXV8v1vD1ZYwRo/Thp7veps42T9hojisaWNk7kGSOA/OOEdD9UqHUi586dw+HDh3HlyhXU19cjLS2NKzBMTExQWloq8R7Bt/96ldUuzZEjR3D9+nXs27evjZZEcUVFRdy/CwoKoKOjAz6fDw0NDYnTUuK/7MV4PF6jWLt378bBgwfbL9n/sLS0lMj7XYcOHYKJiQnmzJmD+vp6AED//v1RUlIiUag+ffoUZmZmUvvq378/DAwMwBiT+BHfTdha/fr1g4GBAe7evctNu337NoYMGSJ3jObGU3Z2Nm7evAkfHx8IBAKYm5vD2dkZJ0+eVCi2InGFQiG0tLS47SHWo0cPAMD3338vsX6tra0RFRUFxhh3N2ZhYSEsLS3lyl/WGAG69zhprzGiaGxp40SeMQK0bJyQ7oUKtU6koaGB+3n58iXOnTvHtY0bNw46OjrYsWMHqqqqEBkZicLCQrnbmxMVFYWUlBTuMQEpKSnYtWtXuyxfS5w/fx63b99GcXExdu/ezT1vyMLCAvHx8aiqqsKxY8dQWVkp8b3evXvj8ePHuHz5MvfmhI449QkAs2bNwtWrV5tt5/P5OHXqFO7fv88dKR07dixMTU2xZcsWVFZW4tSpU7hx4wbc3Nyk9jV27Fjo6+tjz549qKqqQkZGBmxsbHDz5k2FlkFNTQ1eXl4ICgpCYWEhEhMTERsbC29vb7m+L2089e/fHwKBAPv27UNVVRVyc3MRExODwYMHKxRbkbjq6urw8PDArl27UFxcjJycHISHh7foLuXU1FQ4OzvLNa+sMQJ073HSXmMEUGz8dfQ4Id1Mh923QOQi7a7P169fswULFjAdHR325z//ma1fv54BYNbW1owxxlJTU9mQIUMYn89nX331FbOxsWEAWExMjFzt73r48CFTU1OTuFMSANu5c6fUZWjNXZ8AmJ+fHwsMDOQ+b968mfn4+HCfDx48yBhjzNPTk61Zs4ZNmDCB8fl85ujoyF68eMEYY+zx48ds+PDhTCAQsK1btzJra2sGgLuzKzExkRkZGTFjY2OWlJTEGGNsxYoVzMvLS658xVpz12dZWRmzsbFhJSUlbP/+/dxyvXtnV2xsLBs1ahT3OTMzk9nb2zOBQMCsrKzYhQsXGGNM5roS3wXI5/OZubk5O3z4MBdzzZo1zMfHp9n8z5w5I7HN9fT0uLaamho2f/58pq2tzUxNTSXiSostz3hKSEhgI0eOZNra2szQ0JC5urqykpISmTnLii0trqzY5eXlzMXFhWlrazMTExMWEBDARCKRxDxpaWkS/dra2jLGGDt16hTz9vaWa/0wJjlGGGMKjxN5fp9aO06kjRHGpI8TZWzL9hx/jMkeJ82NEcaaHid01yf5j2Iq1FSMrMdzdAYtKdRaw9PTkwUHB7dbfHnIU6gBYOPHj5eY/vDhQ7Zhw4Z2zk42W1tbruDrLLE7W84FBQVs9erVrLa2tkV9qcoYYYy2ZUfEfXecPHv2rNni/F1UqHULxfSuT0LaQXMPIbW0tMS3337bwdlIOnv2LOzt7fHJJ590mtidMWdjY2Ns27atxX2pwhgBaFt2RFyg8TgRv5mAEDEeoxGhUr788kvMmTOn0Tsi21NTF9gDaPXOQnyRro+PT6tzao6rqyuOHz8O4M0z5Vr6ipe2YmdnhxMnTtBL2QkhSkP7oW7hGR1RI53qr7fo6GiFnplGCCGEdCZ01ychhBBCiIqiQo0QQgghREXRqU8VU1tbi8jISFy5ckXZqbRaeno6APkfqNsZ5eXlYefOneDz+cpOhRDSTXXlfSz5LyrUVEyPHj1gZmbWoid4qxrxq2068zLIoqWlhb/85S/cq2MIIaSj9erVS9kpkA5AhZqK0dDQgJ2dXYfe9dnWxH/lyXoJcWf2ww8/wNHRke62IoQozQ8//KDsFEgHoGvUCCGEEEJUFBVq3dTIkSPB4/Fw9uzZFrUR0pays7PxzTffKDsN0kEKCwuxdu3aZh8ITQhpjAq1Lujw4cPQ1dVFdXV1s/P89ttvsLGxaXGbsk2bNg2RkZEqG4/Ir7y8HO7u7vDz8wMA7kXZ6urqSE5O5uYrLCwEj8cDj8eDpqamUnItKyvDtm3bMHDgQISFhTVqr62txeeffw4+nw8zMzNERETIFZcxhqioKAwaNAhaWlr44IMPcP78ea49NzcXU6ZMgY6ODkxMTOR+wLOsuIrEFgsJCYGFhQX09PTg4eGBsrIyifY7d+5AU1MTP/30EzfN2NgYo0ePxrJly1rUFyHdGRVqXdA//vEPNDQ04MSJE8pOhZBmhYSEYNKkSTAwMAAALF68GMnJyaivr4erqyuKi4sBvPnPnTGGyZMnK+1ITEJCAqZMmQKhUNhk+6ZNm/Do0SNkZ2fj6NGj8PX1xZ07d2TGzc3NRUhICC5cuIDS0lK4u7tj5syZyMvLAwAsXboUfD4feXl5uHDhAsLCwhATE6NwXEViA0B4eDgOHDiA06dPo6CgAEZGRhIFWV1dHYKDgzFgwIBG33VyckJKSgoyMjLk6ouQ7o4KtS7m/v37MDQ0xIwZM3Do0CGJtrS0NAwdOhS6urrYuHGj3G3t4cGDB5gwYQJ0dXVhbW2NhIQEAMDs2bPB4/G4o1x2dnbg8Xi4dOkSXF1dce7cOXzxxRfg8XgICwuDq6sreDwe/P39YWdnB4FAACcnJ+6v+5bGIx3nl19+wZgxYxpNX7RoEerr6+Hm5oaGhoYmv9vc+Fm+fDl4PB6WLl0KR0dHCAQCzJ49G/X19QCArKws2NnZgc/nw8rKCmlpaXLl6uzsDGtr6ybbGhoacOjQIWzYsAEmJiaYMGECHB0dcfDgQZlxzc3NkZ6ejgEDBkBbWxurVq2Curo67t69CwDIyMiAm5sb9PT0MGzYMIwZMwb37t1TOK4isQFg27Zt2L59O4YNGwZtbW3s2LEDS5cu5dqDgoIQGBgILS2tJr9va2srd1FISHdHhVoXc+jQIXz22WeYN28erl69ivv37wN4c2rGyckJc+fOxdOnTyEUCuVqaw8ikQhTp06Fra0t8vLysH79ekyfPh1PnjzByZMn4eDgwM175coV7j/I6OhoODg4ICIiAowxLF68GNHR0fD09MTp06cRGhqKnJwcPH/+HAEBAQDQ4nik42RnZ6Nfv36NpguFQpw4cQK//vorAgMDG7VLGz979uzB6tWrERcXh6CgIGRmZiI1NRUJCQkQiURwcHDAxIkTUVRUhICAADg7O0MkEim0HEVFRSgtLYWVlRU3bdiwYa06YlRRUQHGGEaMGAEA+PTTTxEdHY3y8nLcvXsX6enpmDRpksJxFYmdn5+PJ0+e4PHjxxAKhejbty+WLFmC2tpaAG+OPlpZWeH9999vNoaxsTGys7NbvByEdEdUqHUhr169QlxcHKZMmYJJkybByMiIO6qWlJSEyspKBAQEQEdHB97e3tDX15fZ1h6Sk5ORn5+PDRs2QFdXF87Ozhg+fDiOHTvW6pgzZszA0KFDYWRkhJUrVyr0PlB/f38sXLiw1d8nsr169QrV1dXQ1tZusn3cuHHYsWMHtmzZgvj4eIk2ecbPuHHjYGVlBTMzM4wePRo5OTlITk5GUVER1q1bB4FAAHd3dwgEAly8eFGhZSkpKQEA6OrqctN0dXVb9TDS7du3Y+PGjdxjX4KDg1FSUgJ9fX18+OGHWLVqFWxtbRWOq0hs8XJdunQJt27dwvXr15GUlIStW7eitLQU6enpMh/Nw+fz8fz58xYvByHdERVqXUhsbCzs7Oygrq6OHj16wMXFBUePHoVIJEJBQQEMDAygrq7OzW9sbAwAUtvaQ15eHgwNDaGhocFNEwqFEtfPtJT4OicAMDExQWVlpdSbKaRpaGjoVC+q74zU1dXB5/NRU1PT7DwrVqyAi4sL5s2bxz1EGZBv/Lw9HrS0tCASiZCXl4eqqir07NmTuzkhKysLjx49UmhZDA0NAbw5aiVWUVGBvn37tijO4cOH8eLFC/j7+wMAXr9+jfHjx+Ojjz5CZWUlsrKyEBMTg++++06huIrGFj/k2dfXF4aGhrCwsMCiRYu4o5hff/01t35v3boFd3d38Hg8iesLq6ur0adPnxYtByHdFRVqXciPP/6I/fv3czvJv//97ygpKUFsbCxMTExQWlqKV69ecfOL/zKW1tYe+vfvj5KSEolTTk+fPoWZmRmANw/9FZ9GAf57xAIAeDxekzGLioq4fxcUFEBHR4d7vVNL4+3evVuu64uIYiwtLSW2W1MOHToEExMTzJkzh7vOTNb4aU7//v1hYGAAxpjEj/iu09bq168fDAwMJK7/un37dovezHHkyBFcv34d+/bt46ZlZ2fj5s2b8PHxgUAggLm5OZydnXHy5EmF4ioaWygUQktLi9seYj169MD3338vsW6tra0RFRUFxpjEHbuFhYWwtLSUezkI6c6oUOsi8vLyUFFRgVevXnE7yVevXmHMmDE4dOgQxo0bBx0dHezYsQNVVVWIjIxEYWEhAEhtaw9jx46FqakptmzZgsrKSpw6dQo3btyAm5sbAMDCwgLx8fGoqqrCsWPHUFlZyX23d+/eePz4MS5fvoy5c+dy08+fP4/bt2+juLgYu3fvhqurK9fW0nh06rNjzJo1C1evXpU6D5/Px6lTp3D//n28ePECgOzx05yxY8dCX18fe/bsQVVVFTIyMmBjY4ObN28qtBxqamrw8vJCUFAQCgsLkZiYiNjYWHh7e8v1/aioKKSkpHCPJ0lJScGuXbvQv39/CAQC7Nu3D1VVVcjNzUVMTAwGDx6sUFwACsVWV1eHh4cHdu3aheLiYuTk5CA8PByOjo5y5QUAqampcHZ2lnt+Qro1RlTKkiVLWGJiYou+8+zZMwaAAWAHDx7kph88eJCbbmNjw1JTU9mQIUMYn89nX331FbOxsWEAWExMjNS2lgoNDWWhoaFS58nMzGT29vZMIBAwKysrduHCBa7t8ePHbPjw4UwgELCtW7cya2trBoDFxcWxxMREZmRkxIyNjVlSUhJjjDFPT0+2Zs0aNmHCBMbn85mjoyN78eJFq+OtWLGCeXl5Sc1//PjxrKioqMXrhvxXWVkZs7GxYSUlJYwxxvbv38+NVxcXF4l5Y2Nj2ahRo7jPzY2fwMBALsbmzZuZj4+PxO9GVlYWs7e3Z3w+n5mbm7PDhw9zMdesWcN8fHyazPXMmTNcHABMT09Por2mpobNnz+faWtrM1NTU7njPnz4kKmpqUnEBsB27tzJGGMsISGBjRw5kmlrazNDQ0Pm6urKrS9psWXFlRVbWs6MMVZeXs5cXFyYtrY2MzExYQEBAUwkEnHtaWlpEv3a2tpybadOnWLe3t7Nxibyo/1Qt1BMhZqKaU2hpmrkKdTakqenJwsODu6w/hijHWRbefjwIduwYYOy02CMMWZrayvxB4Oqx23P2O0Vt6CggK1evZrV1ta2eezuiPZD3UIxvZSdEKI0lpaW+Pbbb5WdBs6ePQt7e3t88sknnSJue8Zuz5yNjY2xbdu2No9LSFdGhRrp1FxdXXH8+HEAb+5ka+lrcAgB3rxKbNq0aZ0mbnvGbs+cCSEtR4Ua6dSio6MVemYaIYQQosrork9CCCGEEBVFR9RU0JUrV7gXUndGv//+OwB06ZfCP3v2DLGxsdzDPwkhpKO15/MuiergMUaPYFcl586dQ3p6urLTUMjr168BAD17dt2/A+rq6qChodHsA3hJ27p06RI+/PBD9O7dW9mpEKJSvvrqK+7h3qRLekaFGiFE5c2ZMweBgYH461//quxUCCGkIz2ja9QIIYQQQlQUFWqEEEIIISqKCjVCCCGEEBVFhRohhBBCiIqiQo0QQgghREVRoUYIIYQQoqKoUCOEEEIIUVFUqBFCCCGEqCgq1AghhBBCVBQVaoQQQgghKooKNUIIIYQQFUWFGiGEEEKIiqJCjRBCCCFERVGhRgghhBCioqhQI4QQQghRUVSoEUIIIYSoKCrUCCGEEEJUFBVqhBBCCCEqigo1QgghhBAVRYUaIYQQQoiK4jHGmLKTIISQd/n6+uLIkSPo0aMHXr9+jR49eoDH46GhoQGZmZkwMTFRdoqEENLentERNUKISnJycoK6ujrKyspQVVWF8vJylJWVoX///lSkEUK6DSrUCCEqyc7ODj179pSYpqmpicWLFyspI0II6XhUqBFCVJKamhqmT58OHo/HTePz+XB1dVViVoQQ0rGoUCOEqKyFCxfCwMCA+2xpaQlDQ0MlZkQIIR2LCjVCiMoaNWoUNDQ0ALw5mubj46PkjAghpGNRoUYIUWlubm7o0aMHNDU14eTkpOx0CCGkQ1GhRghRaZ6enlBXV8eIESMgEAiUnQ4hhHSonrJnIUQ+1dXV2Llzp7LTIP/BGINIJEKvXr2UnYrC+Hw++vTpg40bN0pMf/36NQA0ujuUEHmNGjUKDg4Oyk6DkGbRA29JmykuLoa9vT0CAwOVnQoBUF5ejj179nSJ7XH58mWMHTsW6urqEtMvXLgAAJg8ebIy0iKdXEZGBoqLi/HDDz8oOxVCmvOM/gwlbapv376YM2eOstMgeFM4/+Mf/+gS28PZ2VniMR1iz549A4AusYyk4125cgUnTpxQdhqESEXXqBFCVF5TRRohhHQHVKgR0kZGjhwJHo+Hs2fPKjsV8o7s7Gx88803yk6DdIDCwkKsXbsWL1++VHYqhLQJKtRIp+Xh4YHY2FiV6fO3336DjY1Nu/V98+ZNTJ06FVpaWnjvvffw3XfftXkfHbVOp02bhsjIyHbvB3hzrZ67uzv8/PwQFhYGHo8HdXV1JCcnc/MUFhaCx+OBx+NBU1OzQ/JqSllZGbZt24aBAwciLCxMoq22thaff/45+Hw+zMzMEBERIVdMxhiioqIwaNAgaGlp4YMPPsD58+cl5snNzcWUKVOgo6MDExMTrF+/vk1itzauWEhICCwsLKCnpwcPDw+UlZU1mufOnTvQ1NTETz/9BAAwNjbG6NGjsWzZshb1RYiqokKNdFqRkZFwdHTs8n2KLVy4EOvXr0d5eTmOHDmCdevW4dq1a23ahzKXr72EhIRg0qRJMDAwwOLFi5GcnIz6+nq4urqiuLgYwJv/3BljmDx5slKPxCQkJGDKlCkQCoWN2jZt2oRHjx4hOzsbR48eha+vL+7cuSMzZm5uLkJCQnDhwgWUlpbC3d0dM2fORF5eHjfP0qVLwefzkZeXhwsXLiAsLAwxMTEKx25tXAAIDw/HgQMHcPr0aRQUFMDIyIgrxsTq6uoQHByMAQMGSEx3cnJCSkoKMjIy5OqLEFVGhRrpMMuXLwePx8OyZcvg4uKCXr164eOPPwYAZGVlwc7ODnw+H1ZWVkhLSwMArF27FoaGhjAyMsKuXbtQX18vEcvf3x8nT57kjoaIf94uNpqL/a6XL19y3x86dCgAYPHixeDxeLCzs5PoUywtLQ1Dhw6Frq5uo0dHSOv3wYMHmDBhAnR1dWFtbY2EhASZ6+9f//oXxowZAw0NDdjb22PgwIH497//Lceal8+7yyf+vHTpUjg6OkIgEGD27NlckSOe187ODgKBAE5OTtwRj9mzZ4PH43FHzezs7MDj8XDp0iW4urri3Llz+OKLL8Dj8RodOWprv/zyC8aMGSMxbdGiRaivr4ebmxsaGhqa/F5z20jaegHkH29NcXZ2hrW1daPpDQ0NOHToEDZs2AATExNMmDABjo6OOHjwoMyY5ubmSE9Px4ABA6CtrY1Vq1ZBXV0dd+/e5ebJyMiAm5sb9PT0MGzYMIwZMwb37t1TOHZr4wLAtm3bsH37dgwbNgza2trYsWMHli5dKjFPUFAQAgMDoaWl1ej7tra2cheFhKgyKtRIh9mzZw9Wr16Ns2fPYtWqVbh16xbU1dUhEong4OCAiRMnoqioCAEBAXB2dkZKSgpOnz6NjIwMPHz4ENeuXcONGzckYomdOXMGjDGUlJRg0KBB2L17NwA0G1skEjXKT1NTEw8fPgSfz8fVq1cBAGFhYfjb3/6GK1euNOqztrYWTk5OmDt3Lp4+fQqhUIj79+/L7FckEmHq1KmwtbVFXl4e1q9fj+nTp+PJkydyrcfa2lpER0ejrq4OkyZNatW2aMq7yyf+HBcXh6CgIGRmZiI1NRUJCQmIjo6Gp6cnTp8+jdDQUOTk5OD58+cICAgAAJw8eVLi2VRXrlzhCpDo6Gg4ODggIiICjDEsXry4zZaMbeLdAAAgAElEQVShKdnZ2ejXr5/ENKFQiBMnTuDXX39t8vEl0raRtPXSkvHWEkVFRSgtLYWVlRU3bdiwYa06YlRRUQHGGEaMGMFN+/TTTxEdHY3y8nLcvXsX6enprRpb78Zubdz8/Hw8efIEjx8/hlAoRN++fbFkyRLU1tZy8yQkJMDKygrvv/9+kzGMjY2RnZ3d4mUgRNVQoUY63EcffYTRo0dj0KBBiIuLQ3JyMoqKirBu3ToIBAK4u7tDIBDg8uXLKCkpwdWrV6GlpYWTJ09i5MiRjeLNnj0b06ZNAwB4eXlh7dq1+NOf/gQAzca+ePFik7lZWlpixIgR+PnnnwEAqampjY7GiCUlJaGyshIBAQHQ0dGBt7c39PX1ZfabnJyM/Px8bNiwAbq6unB2dsbw4cNx7NgxmesuOzsb2traWLZsGfbu3YvevXvLXuEKGjduHKysrGBmZobRo0cjJyeHa5sxYwaGDh0KIyMjrFy5EtHR0a3ux9/fHwsXLmyLlDmvXr1CdXU1tLW1G7WNGzcOO3bswJYtWxAfHy/RJs82amq9tHS8yaukpAQAoKury03T1dXlHk/SEtu3b8fGjRthZGTETQsODkZJSQn09fXx4YcfYtWqVbC1tVU4dmvjipfr0qVLuHXrFq5fv46kpCRs3boVAFBaWor09HSpj2Xh8/l4/vx5i5eBEFVDhRrpcG//BwEAeXl5qKqqQs+ePblTj1lZWdDT08POnTsREBAAIyMj+Pv7o66urtm44eHh6NWrF+bPny8z9qNHj5qNs2DBAhw+fBgAEBUVJRHvbQUFBTAwMJB4CKuxsbHMfvPy8mBoaMi9bBx4c4Tn7WuGmmNpaQmRSITz589j+fLlOHr0qMzvKMrAwID7t5aWlsTRobfbTExMUFlZierq6lb109DQgLZ+/ra6ujr4fD5qamqabF+xYgVcXFwwb948/PHHH9x0ebZRU+ulNeNNHoaGhgDeHLESq6ioQN++fVsU5/Dhw3jx4oXE6fvXr19j/Pjx+Oijj1BZWYmsrCzExMS0+GaVd2MrEldPTw8A4OvrC0NDQ1hYWGDRokWIi4sD8OaU59dff82t41u3bsHd3R08Ho+7xrC6uhp9+vRp0TIQooqoUCNK179/fxgYGIAxJvHj5+cHDw8PPHjwAAkJCYiPj2/2eqbMzEzs2bOnUbu02M1xdnbG/fv3cf36dVRUVMDU1LTJ+UxMTFBaWopXr15x08RHAqT1279/f5SUlEgUPE+fPoWZmZlc60tdXR0jR46Es7MzTp48Kdd32ktRURH374KCAujo6IDP5wMANDQ0JE5ViY8KAU0/F2337t1yXXPVUpaWlhJ5vuvQoUMwMTHBnDlzuOvMWruNWjPe5NGvXz8YGBhIXFd2+/ZtDBkyRO4YR44cwfXr17Fv3z6J6dnZ2bh58yZ8fHwgEAhgbm7e4rHVVGxF4gqFQmhpaXHbQ6xHjx4AgO+//15i/VpbWyMqKgqMMe6u3cLCQlhaWsq9DISoKirUiNKNHTsW+vr62LNnD6qqqpCRkQEbGxusX78ey5cvR1VVFSwsLCSOYLxNJBJh3rx5CA8P5049zps3T2rsmzdvNpsPn8/HnDlz4ObmhtmzZzc737hx46Cjo4MdO3agqqoKkZGRKCwslNnv2LFjYWpqii1btqCyshKnTp3CjRs34Obm1mxfJSUlsLKywoMHD/Dq1Svcu3cPsbGxGDRokMz1257Onz+P27dvo7i4GLt374arqyvXZmFhgfj4eFRVVeHYsWOorKzk2nr37o3Hjx/j8uXLmDt3LoD2OfUJALNmzeKuOWwKn8/HqVOncP/+fbx48QIAWrWNxN9r6XiTh5qaGry8vBAUFITCwkIkJiYiNjYW3t7ecn0/KioKKSkp3ONJUlJSsGvXLgBvikuBQIB9+/ahqqoKubm5iImJweDBgxWKrUhcdXV1eHh4YNeuXSguLkZOTg7Cw8NbdEdyamoqnJ2d5Z6fEJXFCGkjRUVFbPz48c22BwYGMgAMAPvwww8l2rKyspi9vT3j8/nM3NycHT58mNXU1LCAgABmamrK9PT02Lx581hNTQ1jjDE/Pz8uVlM/QqFQamxZrl69ygwNDZlIJOKmvd2nn58fY4yx1NRUNmTIEMbn89lXX33FbGxsGAAWExMjtd/MzExmb2/PBAIBs7KyYhcuXJCZ0/Hjx9nIkSOZlpYWMzU1ZYsXL2bV1dXNzi9re7zr3eV7e3tt3ryZ+fj4cJ8PHjzIPD092Zo1a9iECRMYn89njo6O7MWLF1y8x48fs+HDhzOBQMC2bt3KrK2tGQAWFxfHEhMTmZGRETM2NmZJSUmMMcZWrFjBvLy85M6XMcZCQ0NZaGio1HnKysqYjY0NKykpYfv37+eWwcXFRWK+2NhYNmrUKO5zc9tI1nqRtt3XrFnDfHx8ms31zJkzEuNYT0+Pa6upqWHz589n2trazNTUtNE4bi72w4cPmZqaWqPfkZ07d3LzJCQksJEjRzJtbW1maGjIXF1dWUlJicycZcWWFldW7PLycubi4sK0tbWZiYkJCwgIkPh9ZIyxtLQ0iX5tbW0ZY4ydOnWKeXt7N7uexRITE9mSJUtkzkeIEhVToUbaTEsLA9K+2nt7eHp6suDg4HaLLw95CjXG3hQUGzZs6ICMpLO1tZWrKFel2J0t54KCArZ69WpWW1src14q1EgnUEwvZSeEdHmWlpb49ttvlZrD2bNnYW9vj08++aTTxO6MORsbG2Pbtm1tGpMQZaJCjXRbzb3om7XxnYctoYo5NcXV1RXHjx8H8Obuvpa+Gqg7mjZtGvcYmc4SuzPmTEhXQ4Ua6bZUrfgBVDOnpkRHRyv0zDRCCCHyobs+CSGEEEJUFB1RI22qoqICJ06cUHYaBEB5eTlKSkq69Pb4/fffAaBLLyNpPxkZGQq/3ouQ9kaFGmlTdXV1rXr/IGl71dXVePnyZZfeHuLn1nXlZSTt58mTJ81eF0qIqqBCjbSpvn37YuPGjcpOgwAoLi5Genp6l94e4ifh+/j4KDkT0hlduXKFjsYSlUfXqBFCCCGEqCgq1AhpZyNHjgSPx8PZs2eVnUq3lZ2djW+++UbZaZAOUFhYiLVr13IvZyeks6NCjaiE6Oho8Hg8iR99fX04Oztz719sLQ8PD8TGxrbqu+JrWMQ/b79Y/NNPPwWPx8OgQYOk9vHbb7/BxsamVf2rqmnTpiEyMlJl472tvLwc7u7u8PPz495Hqa6ujuTkZG6ewsJCbhuLX+qtDGVlZdi2bRsGDhyIsLAwibba2lp8/vnn4PP5MDMzQ0RERJvEfdudO3egqamJn376qU1jtyYuAISEhMDCwgJ6enrw8PBAWVmZzNjGxsYYPXo0li1b1qK+CFFVVKgRleDq6oq0tDT06tULjDE0NDTg2rVr+O2337Bp0yaFYkdGRrboZc5vMzc3x7Nnz6ChoYHz58/D0NCQaztz5gymTJmCzMxMhfog7SskJASTJk2CgYEBFi9ejOTkZNTX18PV1RXFxcUA3vznzhjD5MmTlXokJiEhAVOmTIFQKGzUtmnTJjx69AjZ2dk4evQofH19cefOHYXjitXV1SE4OBgDBgxos5wViRseHo4DBw7g9OnTKCgogJGRUaNCr7nYTk5OSElJoZtMSJdAhRpRSeIjVfb29rh//z43PSsrC3Z2duDz+bCyskJaWhrXtnbtWhgaGsLIyAi7du1CfX09li9fDh6PB39/fwDAyZMnGx25ExdYzcU2NDTE9OnTcfDgQYkcz5w5g7/97W+N+gCAtLQ0DB06FLq6uo0u5pe2DA8ePMCECROgq6sLa2trJCQktM0KbUZz/c2ePRs8Ho87ymVnZwcej4dLly7B1dUV586dwxdffAEej4ewsDC4urpy68DOzg4CgQBOTk7cEZCWxmtLv/zyC8aMGSMxbdGiRaivr4ebmxsaGhpatG7E23vp0qVwdHSEQCDA7NmzUV9fD0D69pXF2dkZ1tbWjaY3NDTg0KFD2LBhA0xMTDBhwgQ4Ojo2GpMtjfu2oKAgBAYGQktLS+585Ynd2rjbtm3D9u3bMWzYMGhra2PHjh1YunSp3LFtbW0RExPToj4JUUVUqBGVxBjDgwcPcOXKFUyYMAEAIBKJ4ODggIkTJ6KoqAgBAQFwdnaGSCTCv/71L5w+fRoZGRl4+PAhrl27hhs3bmDPnj1YvXq1ROwzZ86AMYaSkhIMGjQIu3fvlhobADw9PXHmzBkUFRVxcY4dOwY3N7dGfdTW1sLJyQlz587F06dPIRQKuWJTWj8ikQhTp06Fra0t8vLysH79ekyfPh1Pnjxpl3Usrb+TJ0/CwcGBm/fKlSvcf8bR0dFwcHBAREQEGGNYvHgxoqOj4enpidOnTyM0NBQ5OTl4/vw5AgICAKDF8dpSdnY2+vXrJzFNKBTixIkT+PXXXxEYGNiidSPe3nFxcQgKCkJmZiZSU1ORkJAgcxy1VlFREUpLS2FlZcVNGzZsWJsdMUpISICVlRXef//9NomnaNz8/Hw8efIEjx8/hlAoRN++fbFkyRLU1tbKHdvY2BjZ2dkK5U+IKqBCjaiUuro68Hg8qKmpwcrKCgEBAVwRlJycjKKiIqxbtw4CgQDu7u4QCAS4ePEievbsiZKSEly9ehVaWlo4efIkRo4c2Sj+7NmzufcLenl5Ye3atfjTn/4kNTYAfPLJJzA1NeWOCOXl5UFXVxd6enqN+khKSkJlZSUCAgKgo6MDb29v6Ovry1yG5ORk5OfnY8OGDdDV1YWzszOGDx+OY8eOtceqbpf+ZsyYgaFDh8LIyAgrV65U6DVT/v7+WLhwYau/DwCvXr1CdXU1tLW1G7WNGzcOO3bswJYtWxAfHy/RJs+6GTduHKysrGBmZobRo0cjJydH5jhqLfG1kbq6utw0XV1dPHv2TKG4AFBaWor09HTMmTNH4VhtFVe8XJcuXcKtW7dw/fp1JCUlYevWrXLH5vP5eP78eeuSJ0SFUKFGVIr4GrUXL17Ay8sLBw4c4E4p5eXloaqqCj179uROW2ZlZeHRo0cYMWIEdu7ciYCAABgZGcHf3x91dXXN9hMeHo5evXph/vz5MmMDgJqaGjw8PPDjjz8CAA4fPowvvviiydgFBQUwMDCAuro6N83Y2FhmP3l5eTA0NISGhgb3PaFQiLy8PAXWaPPaoz8DAwPu3yYmJqisrER1dXWrYjU0NCj87lN1dXXw+XzU1NQ02b5ixQq4uLhg3rx5+OOPP7jp8qybt5dVS0sLIpFI5jhqLfG1kRUVFdy0iooK9O3bV6G4wJvTh19//TWX761bt+Du7g4ej6fQ9XqKxBX/AeTr6wtDQ0NYWFhg0aJFiIuLkzt2dXU1+vTp0+r8CVEVVKgRlaSvr4/vvvsOhYWF3HU4/fv3h4GBARhjEj9+fn4A3tzd+eDBAyQkJCA+Pr7Za50yMzOxZ88eiXZZsQFgwYIFePToERITE3H16lWMHTu2yfgmJiYoLS3Fq1evuGniIwTS+unfvz9KSkokTpM9ffoUZmZmrVyL0snqT0NDQ+JU09t3vDb3NPe3Tw0XFBRAR0cHfD6/VfF2794t9zVY0lhaWkrk9a5Dhw7BxMQEc+bM4f4oaO22kGcctUa/fv1gYGCAu3fvctNu376NIUOGKBQXAL7//nuJXK2trREVFQXGmEJ3wCoSVygUQktLi9seYj169JA7dmFhISwtLVudPyGqggo1orI0NTWxcuVKBAYGoqKiAmPHjoW+vj727NmDqqoqZGRkwMbGBjdv3sTJkyexfPlyVFVVwcLCQuJox9tEIhHmzZuH8PBw7nTkvHnzpMYWGzBgACZOnIhFixZh4sSJzeY9btw46OjoYMeOHaiqqkJkZCT3qiNp/YwdOxampqbYsmULKisrcerUKdy4cQNubm5tuFb/S1Z/FhYWiI+PR1VVFY4dO4bKykruu71798bjx49x+fJlzJ07l5t+/vx53L59G8XFxdi9ezdcXV25tpbGa4tTnwAwa9YsXL16tdl2Pp+PU6dO4f79+9yjYFq7LeQZR62hpqYGLy8vBAUFobCwEImJiYiNjYW3t7dCcVWVuro6PDw8sGvXLhQXFyMnJwfh4eEturM6NTUVzs7O7ZglIR2EEdJGioqK2Pjx41v13Z9//pkB4H7S09MZY4xVVlayPn36MAAsJiaGZWVlMXt7e8bn85m5uTk7fPgwY4yxmpoaFhAQwExNTZmenh6bN28eq6mpYX5+flxMPz8/tnv3bol+ADChUMgYY83Gftvx48eZuro6Kyoq4qa92wdjjKWmprIhQ4YwPp/PvvrqK2ZjYyNzGRhjLDMzk9nb2zOBQMCsrKzYhQsXWrU+GZNve0jr7/Hjx2z48OFMIBCwrVu3MmtrawaAxcXFscTERGZkZMSMjY1ZUlISY4wxT09PtmbNGjZhwgTG5/OZo6Mje/HiRavjrVixgnl5eUnNPzQ0lIWGhkqdp6ysjNnY2LCSkhK2f/9+blu5uLhIzBcbG8tGjRolc90EBgZyMTZv3sx8fHy4zwcPHpS6fdesWcN8fHyazfXMmTMSY1NPT49rq6mpYfPnz2fa2trM1NS00fiUFltaXLG0tDSJeWxtbRXOWVpcWbHLy8uZi4sL09bWZiYmJiwgIICJRCK5Yp86dYp5e3s3m7NYYmIiW7Jkicz5CFGiYirUSJtRpFAjba+jt4enpycLDg7usP4Yk69QY4yxhw8fsg0bNnRARtLZ2toqVHwrI3Zny7mgoICtXr2a1dbWypyXCjXSCRTTS9kJIV2epaUlvv32W6XmcPbsWdjb2+OTTz7pNLE7Y87GxsbYtm1bm8YkRJmoUCOEKMzV1RXHjx8HALx+/Rrr169XckaqZ9q0adyjYTpL7M6YMyFdDRVqhBCFRUdHK/TMNEIIIU2juz4JIYQQQlQUHVEjbaqmpgb37t1TdhoEwPPnz1FdXd2lt0dBQQEAdOllJO2nvV7PRkhb4jGm4KO/CfmPiooKeHp6KjsN8h8NDQ2oqKjgnhcnJhKJkJOTg/z8fNjb2zf78NrOQPwA3Za+8Ls95eTkoKioCJaWlm3y5gDSviZPngwvLy9lp0FIc55RoUZIN5GVlYUffvgBiYmJ+Oyzz7Bw4UL07t1b2Wl1Sf/3f/+HvXv34saNG/Dy8oK3t3eT7xslhBAZqFAjpCtraGjA5cuXsXfvXpSVlWHZsmWYOXMm9yoe0r4KCwtx5MgRHD16FB9//DFWrlyJAQMGKDstQkjnQYUaIV1RRUUFIiIiEBYWhlGjRiEgIABDhw5VdlrdlkgkQmxsLPbu3YvevXvDz88PH3/8sbLTIoSoPirUCOlKHj58iNDQUMTHx2Pu3Lnw9fVt9r2nRDnEp0UzMzPh5eWFefPm0WlRQkhzqFAjpLN7+/RmeXk5fH194eTkhJ496aZuVVZQUIDw8HCcOHEC06dPx5dffon33ntP2WkRQlQLFWqEdFaVlZX4+eefsX//flhZWcHf3x/Dhg1Tdlqkherq6nD8+HHs2bMHQqGQTosSQt5GhRohnU12djYOHTqEf/7zn5gzZw6WLl0KQ0NDZadF2kBKSgpCQkKQm5sLT09PuLu7q9SjRwghHY4KNUI6A8YY/vd//xcHDhxAbm4ufHx84ObmRqc3u6j8/HwcOHCAOy26dOlSmJmZKTstQkjHo0KNEFVWVVWFY8eOISwsDJaWlli5ciX+53/+R9lpkQ7y8uVLnDhxAnv37sWf/vQnLF++HGPGjFF2WoSQjkOFGiGqKCcnBwcOHMA///lPTJ8+HcuWLYOpqamy0yJK9PZpUR8fH8ydOxfq6urKTosQ0r6oUCNEldB/xkSWd4t4X19fCIVCZadFCGkfVKgRomx0eou0Bp0WJ6RboEKNEGWhC8ZJW2jqRhM6EktIl0GFGiEdjR7BQNoLPbqFkC6HCjVCOgI91JR0JHoYMiFdBhVqhLSnd18T5OPjg/79+ys7LdJN0OvFCOn0qFAjpD28++JtOr1JlO3hw4cIDQ1FfHw85s6dC19fXxgYGCg7LUKIdFSoEdJWRCIRYmNjsXfvXvTu3ZtObxKVVFFRgYiICISFhWHUqFEICAjA0KFDlZ0WIaRpVKgRoqjCwkIcOXIER48exccff4yVK1diwIAByk6LEKnePi1aVlaGZcuWYebMmejRo4eyUyOE/BcVaoS0lvj05o0bN+Dl5QVvb29oa2srOy1CWiwrKws//PADEhMT8dlnn8Hb2xt9+vRRdlqEECrUCGkZ8enNkJAQaGpqYtmyZZg2bRp4PJ6yUyNEYeXl5YiMjMTBgwdha2uLZcuW4a9//auy0yKkO6NCjRB5FBcXIyIigju9uXz5cgwcOFDZaRHSLhoaGnDu3Dn8/e9/B2MMCxcupNOihCgHFWqESPP7778jPDwc165dw4IFC+Dl5QU+n6/stAjpMDdv3sT+/fuRlpaGzz77DIsWLYK+vr6y0yKku6BCjXRPL1++xLlz5zBr1qxGbfX19Th//jxCQ0PR0NBApzcJAfDs2TMcPnwYUVFRsLW1xfLlyzF48OBG8xUWFuLevXuYOHGiErIkpMuhQo10PxUVFbC3t0d2djb++OMP6OrqApD/PyJCujNZf8isXr0aISEhiIiIgKurq5KzJaTTo0KNdC/Pnz/HRx99hEePHkFNTQ3ffvstJk2aRKd2CGmFdy8NmD9/Pt5//308e/YM+vr62LhxI/z8/JSdJiGdGRVqpPvIzc3F2LFjkZ+fj/r6egCAvr4+bGxs4Ofnh08//ZRObxLSCoWFhQgLC0NERASeP3+OqqoqAICenh4+//xz7N27V8kZEtJpUaFGuof79+9j4sSJKCoqQkNDAzddT08PP/30E6ZNm6bE7AjpGv785z8jOztbYpqenh6cnJzw448/Qk1NTUmZEdJpPaPfGtLlXb16FePHj0dBQYFEkQa8eW7Upk2blJQZIV1HWloanj9/3mh6eXk5fvnlF8ycOROvX79WQmaEdG7cEbW6ujrExsYqOx9C2tSNGzewc+dO9OzZExoaGtypzYaGBvB4PPTo0QN8Ph+bNm2Cjo6OkrPtmuzt7dG3b98Wf6+iogLx8fHtkBFpD6dOncLFixfR0NDA/UH09u9bbW0t/vKXv2DdunXQ0NBQZqqEqLw5c+aI//nfU5/FxcUYPXo0PDw8lJaYKjp8+DAWLFig7DTazR9//IGsrKwu+fLwV69e4datW9DQ0ICWllajH7oerf2dO3cOO3fuhJ2dXYu/e+/ePcyZMwfOzs5tnxhpN6WlpUhNTcWnn36K2tpa1NbW4uXLl6itrUVNTQ0MDAxgbm6u7DQVcvXqVRgYGOD9999XdiqkC9q3bx+ePXsm/vis59uN5ubm2LhxY4cnpcpOnDjRpdfJlStXuvwyEuUpLi5W6PtDhgyhsdnJ3Lt3D4WFhdi6dauyU2k3GzduxJAhQ94+6kFImzlx4oTEZ7pGjRBCCCFERVGhRlolOzsb33zzjbLTIB2gsLAQa9euxcuXL5WdilKMHDkSPB4PZ8+eVSiOq6sreDwetm3b1kaZkc6E9pndS1vuN5VaqC1atAjHjx9XKMa0adMQGRkpcz7GGKKiojBo0CBoaWnhgw8+wPnz5xXquykeHh4dclOGvMvdHsrLy+Hu7g4/Pz+EhYWBx+NBXV0dycnJ3DyFhYXg8Xjg8XjQ1NRUSp4AUFZWhm3btmHgwIEICwuTaKutrcXnn38OPp8PMzMzREREtEnct925cweampr46aef2jR2a+ICQEhICCwsLKCnpwcPDw+UlZXJjG1sbIzRo0dj2bJlLeqrs2nud/e3336DjY2NwvGjo6Ph6empcJyWaIv90c2bNzF16lRoaWnhvffew3fffddG2f1XV99vvr3PBKDS+01Z+5/23m+21z6ztbEB2fvNpuK25X5TqYVaeHg4XFxcOqSv3NxchISE4MKFCygtLYW7uztmzpyJvLy8Nu0nMjISjo6ObRpT1YSEhGDSpEkwMDDA4sWLkZycjPr6eri6unLXJBkbG4MxhsmTJyv1SExCQgKmTJkCoVDYqG3Tpk149OgRsrOzcfToUfj6+uLOnTsKxxWrq6tDcHAwBgwY0GY5KxI3PDwcBw4cwOnTp1FQUAAjI6NGO6zmYjs5OSElJQUZGRkt6rMz6Yq/u22xTAsXLsT69etRXl6OI0eOYN26dbh27VobZfhGV1z3b3t7nwlApfebsvY/7bnfbK99piKxZe03pcVtq/2m3IWa+LC9v78/7OzsIBAI4OTkxFWWy5cvB4/Hw7Jly+Di4oJevXrh448/xoMHDzBhwgTo6urC2toaCQkJAAB/f38unlhWVhbs7OzA5/NhZWWFtLQ0ru3tOCNHjsS5c+fg6uqKc+fO4YsvvgCPx5NaSZubmyM9PR0DBgyAtrY2Vq1aBXV1ddy9e7fFK6054nUgXibx56VLl8LR0RECgQCzZ8/mfjmlrc/Zs2eDx+Nxf/3Z2dmBx+Ph0qVLLVru9vDLL79gzJgxEtMWLVqE+vp6uLm5NXpWmVhzY0HaegKkjwtZnJ2dYW1t3Wh6Q0MDDh06hA0bNsDExAQTJkyAo6MjDh48qFDctwUFBSEwMBBaWlpy5ytP7NbG3bZtG7Zv345hw4ZBW1sbO3bswNKlS+WObWtri5iYmBb12Z6a2+cAzY+ZtWvXwtDQEEZGRti1axc3xt793U1LS8PQoUOhq6vb6GYGab+bAHD+/HkMGzYM+vr6cHFxQXl5eauWy9fXF9OnT4dAIMDKlSvx8OFDDB06FAYGBjhy5Ag3f3P9tWR/JM2//vUvjBkzBhoaGrC3t8fAgQPx73//u0XLJM/y+vv7y8xR2n5T1nZR5n6zqX0moJr7TWn7n/beb7bXPlOR2LL2m7LitsV+U+5CTXzY/vTp0wgNDUVOTg6eP3+OgM9w6sgAACAASURBVIAAAMCePXuwevVqnD17FqtWrcKtW7fAGMPUqVNha2uLvLw8rF+/HtOnT8eTJ0+wa9curF69mosvEong4ODAPT0+ICAAzs7OEIlEEIlEmDp1KsaOHYuCggJERUVh5cqViI6OhoODAyIiIsAYw+LFi+Ve8IqKCjDGMGLEiBasLunE6+Ddz3FxcQgKCkJmZiZSU1ORkJAgc32ePHkSDg4OXKwrV65wA1GR5W4L2dnZ6Nevn8Q0oVCIEydO4Ndff0VgYGCj74i3YVNjQdp6kjYuFFFUVITS0lJYWVlx04YNG9ZmR4wSEhJgZWXV5rfvtzZufn4+njx5gsePH0MoFKJv375YsmQJamtr5Y5tbGzc6KnzytTUPkddXb3ZMZOSkoLTp08jIyMDDx8+xLVr13Djxg2JWMCbUztOTk6YO3cunj59CqFQiPv373P9SvvdBIDNmzfj+PHjyM3NBZ/Px+bNm1u1XPHx8di+fTtu3LiBAwcOIDg4GL/++ivCwsIk/sBtrr+W7I/kUVtbi+joaNTV1WHSpEktWiZ5lleeHKXtN2VtF2XuN5vaZwK033xbe+0zFYkta78pT9y22G+2+NTnjBkzMHToUBgZGXHF0ts++ugjjB49GoMGDcK6deuQn5+PDRs2QFdXF87Ozhg+fDiOHTvWKG5ycjKKioqwbt06CAQCuLu7QyAQ4OLFi0hOTkZ+fj7Wr18PPp+PwYMHIysrq/VLDWD79u3YuHEjjIyMFIojj3HjxsHKygpmZmYYPXo0cnJyuDZZ67Ml/P39sXDhwrZIuVmvXr1CdXU1tLW1G7WNGzcOO3bswJYtWxo9qFS8DaWNhabWk7RxoYiSkhIAgK6uLjdNV1f37WfXtFppaSnS09Pb/NZ9ReKKl+vSpUu4desWrl+/jqSkJO4RCvLE5vP5TT55Xtne3ufExcU1O2YuX76MkpISXL16FVpaWjh58iRGjhzZKF5SUhIqKysREBAAHR0deHt7Q19fX+580tLSMHjwYOjp6WHBggVISkpq1XKNHTsWgwcPxp///GcMGTIEH330EQwMDODo6IiSkhJUVFS0qj9p+6PmZGdnQ1tbG8uWLcPevXvRu3fvVi2TvGTl2Jn2m9L2mQDtN4H222cqGlvaflPeuG2x32xxoSY+xw4AJiYmqKys/H/27j0sqnLtH/h3SFSY4aAQDge3h0075BXJRNkveADKykORxUm2mImYhooGoRaEJYapmbk1KdmIUgZi7NgpaLSFBMQ2deVZUNDYogw4yGkAOT6/P3xZPwaYYWBmmBm8P9fFdTHrWeuee6155pl71lqzFhoaGrhpXQufsrIymJubS12F2trautfzwsrKyiCRSDBs2DDuZMqioiKUlJRwcfT19fubbq/i4+NRXV0t9a1UnbpuMwMDA6lvNX1tz/7o6OiAum/dqq+vDz6fj8bGxl7bN2zYAF9fXyxZsgR37tzhpivSF3rbTvL6hTLMzc0BgPuw6/x/IFfQ7y46Ohrvv/8+l+/FixcREBAAHo+n1HknysQ1MTEBAKxduxbm5uaYOHEi3nrrLWRkZCgcu6GhAaNHjx5w/urS/cuWrD5jYmKCnTt3Ijw8HBYWFggLC0Nzc3OPeOXl5TAzM5Mab4RCoUK5MMYQHh4OoVAIPT09zJo1C9XV1QNar67bevjw4dzjzvdQS0vLgJ5P3ngki62tLVpaWpCeno7169fjyJEjA1klhfWVoy6Nm32NmQCNm+oaM5WNLW/cVDSuKsbNfhdqFRUV3P/l5eUwMjICn8/vdd6xY8dCLBZLvcnu3r0LGxubXuc1MzMDY0zqLyQkhIvT2traY7n+Xl3+8OHD+OWXX7B///5+Lacu8rbn8OHDpQ5NdX6bAXpf7927dyt8roAybG1tpfLuLi4uDpaWlvDx8eHOl+hPX+hKXr9QxpgxY2BmZiZ1juKlS5dgb2+vVFwA+Oyzz6RydXR0RGJiIhhjSv2SS5m41tbWMDAw6HE+0hNPPKFwbJFIBFtb2wHnP1jk9Zlly5bhxo0byMzMxKlTp3o9T8nS0hJVVVVS4033PQay3psnT55EfHw8srOz0d7ejvz8fLUWAYP5fPr6+nBycoK3tzeOHz+uludQlKxxU96YCWhu3OxrzAQe73FTXWOmsrHljZuKxlXFuNnvQi09PR2XLl1CZWUldu/eDT8/P5nzzpo1C1ZWVti2bRvq6+uRmpqK33//Hf7+/r3Oa2pqij179kAikeDatWtwdnbGhQsXpOI0NDTgwoULePrpp9HU1IRRo0bh9u3bOHPmDBYvXiw398TEROTm5nI/jc7NzcWuXbv6uwlUSt72nDhxIk6dOgWJRIKjR4+ivr6ea+ttvQfj0CcAvP766zh37pzMdj6fj9TUVFy/fp37dt+fvtCVvH6hDD09PaxYsQLR0dEQiUTIyspCWloagoKClIqrrfT19bFs2TLs2rULlZWVuHXrFr788st+/dIuLy9PJ27nJKvPREREYP369ZBIJJg4caLUnoiuZs+eDSMjI+zYsQMSiQQJCQkQiURS88h6b3be57KjowMPHz7EyZMn1bqu6n4+sVgMBwcH3LhxA62trbh69SrS0tJgZ2en0ufpL1njprwxE9DcuNnXmAnQuKmNtGbcZP+noqKCzZkzh8kTGBjINm3axDw8PBifz2eenp6surqaMcZYVFQUA8AAsGnTpnHLFBYWMnd3dyYQCJiDgwM7ffo017Zx40YWGhrKPS4qKmLu7u6Mz+ez8ePHs/j4+B5x+Hw+s7OzY5mZmYwxxrKyspiFhQUTCoXs7NmzMnO/efMm09PT43Ls/Nu5c6fcdZ40aZLc9q5CQkK4uCEhIVLbZOvWrSw4OJh7fPDgQbnbkzHGbt++zaZOncoEAgH7+OOPmaOjIwPAMjIyel3vDRs2sBUrViicL2OPtt/q1av7tUxNTQ1zdnZmYrGYHThwgFsnX19fqfnS0tLY9OnTucey+kJf20lev9i0aRMLDg6WmesPP/wg9XqbmJhwbY2NjWzp0qXM0NCQWVlZScXtK7a8uJ3y8/Ol5nF1dVU6Z3lx+4pdW1vLfH19maGhIbO0tGTh4eGspaVFodipqaksKChIZs6yrF69mmVlZfV7OcYYu3LlCvPy8pLZLmvMYaz3saSxsZGFh4czKysrZmJiwpYsWcIaGxsZYz3fu3l5ecze3p7x+Xz27rvvMmdnZwaApaSkMMZkvzdPnDjBli9fzoyMjNhTTz3FIiIiGADm6OjIfH19pfq5Iuu1detWtmDBAu5xVlYWMzEx4R7X1NTIfL7+jkeyJCcnMycnJ2ZgYMCsrKzYqlWrWENDw4Bft+665tn1T1aO8sZNeWMmY71/Xgxk3IyKimLJyckKz991zGSMafW42df4I2/c1NTYps7xuK9xU17OAx03u9Udlf0u1GJiYvr9pLJ0L9S0UX8Ktf5S9fYciIEUaow9KnwjIyPVkFH/uLq6ShX/uhBb13IuLy9nGzduZE1NTf1eVp2FGtFO6n7dtGHc7G+hxpj2jJmM0dg2GHGVGTe7F2pSN2UfTB0dHaiqqhqUX10S1bO1tcVHH32k0RxOnDgBd3d3vPDCCzoTWxdzFgqFdNsjQpSkDWMmQGPbYMQFVDtuKlyo+fn5cbd7amtrQ0RExICesLCwEJMmTcKwYcPg6OiIb7/9dkBxZJH14wKm5l9D9peqtufjbOHChVi4cKFOxdbFnIl6aNNYpU25yEPjpvJobFN/XFVTuFBLSkpS6lo1nezs7NT65te2gUUWVW1PQohu0qaxSptykYfGTfI40ui9PgkhhBBCiGxSe9Sam5tx9epVTeWilVpaWob0Nvnjjz9QXV09pNeRaE7XC2MORENDA/VNHVNcXIz6+voh/bqJxWLcuXNnSK8j0Zy2tjapx1KF2v3793vcgPhxV11dPaS3yf3791FZWTmk15Fozs2bN5VavrS0lPqmjqmrq0NJScmQft1u3LiB3377DefPn9d0KmQIkkgkUo+lCjUbGxul7/I+1Njb2w/pbZKdnY1jx47hiy++0HQqZAh6++23lVp+qL//hqKrV69iy5YtQ/p127JlC+zt7dVyb0pCut/pgc5RI4QQQgjRUlSoEYUUFxfjgw8+0HQaRAuIRCJs3rxZ6ZslD0VOTk7g8Xg4ceKEUnH8/PzA4/Ho+nU6jsZN0kmZcVPpQi0pKYm7e3znn7W1NTZv3oyOjo4Bx33rrbe46+UM1MKFC5GQkKBUDHVSdX7qWt/a2loEBAQgJCSEu0+qvr4+cnJyuHlEIhH3+it7E11l1NTUYPv27ZgwYUKPG243NTXhjTfeAJ/Ph42NDQ4dOqSSuF1dvnwZI0eOxNdff63S2KqOyxhDYmIi7OzsYGBggGeeeQbp6elce2lpKebNmwcjIyNYWlpKXa9KKBRixowZWLduncK5DLbexiVTU1N4e3tz91EcqGXLliEtLa3Xtl9//RXOzs5KxQce5R8YGMg97nzf8Xg8xMfH95i/oaEBTz75JHg8Hry8vOTGlpe/ttOVMROgcbOvuF3RuCmf0oWan58f8vPzMWLECDDG0NbWhuTkZOzfvx//+Mc/Bhz3yy+/hK+vr7LpERXYu3cv5s6dCzMzM6xatQo5OTlob2+Hn58fKisrATzqhIwxvPjiixrd05KZmYl58+bB2tq6R9uHH36IkpISFBcX48iRI1i7di0uX76sdNxOzc3NiImJwbhx41SWs7rilpaWYu/evTh9+jSqqqoQEBCA1157DWVlZQCANWvWgM/no6ysDKdPn0ZsbKzUOUeLFi1Cbm4url271q+cBkv3camjowPnz5/Hr7/+ig8//FCp2AkJCf26KbMqrFq1Cvn5+Rg+fDi2bdvW41dhX3zxBerq6vD+++/j+PHjcmNpIv/HEY2bNG6qatxU+aHPJ554AjNnzsS0adPw22+/Yf369eDxeFi3bh18fX0xYsQIPP/88wAe/XLGw8MDxsbGcHR0RGZmJgAgLCwMPB4PYWFhXNyioiK4ubmBz+fDwcEB+fn5XFvXOE5OTjh58iT8/Pxw8uRJvPnmm+DxeHKreWXIWgcvLy/weDzu25qbmxt4PB5++uknAOg1v87DHWFhYXBzc4NAIMCiRYtQU1MzoHiq8t1338HFxUVq2ltvvYX29nb4+/vL3HMqa9t09ok1a9bA09MTAoEAXl5eaG9v55aV93rL4+3tDUdHxx7TOzo6EBcXh8jISFhaWsLDwwOenp44ePCgUnG7io6ORlRUFAwMDBSKqWhsdcQdP348CgoKMG7cOBgaGiI0NBT6+vq4cuUKAODatWvw9/eHiYkJpkyZAhcXlx6XInB1ddWZE8Z5PB7s7Ozg7u6O69evc9Pl9bPNmzfD3NwcFhYW2LVrF9rb27m+23Vsys/Px+TJk2FsbNzjl459vW/T09MxZcoUmJqawtfXF7W1tXLXY+nSpbh37x6++eYbblpTUxO+++47vPjii1Lz9ha7e/6KvBfVYSDjZn/HzIHEU6XBHjcHOmYCNG4qGldT46bKC7X29nacO3cOv/32G6ZNm4Y9e/Zg48aNOHHiBEJDQ3Hx4kXo6+ujpaUF8+fPh6urK8rKyhAREYFXXnkFf/zxB3bt2oWNGzdyMVtaWrBgwQI899xzqKioQHh4OLy9vdHS0sLFmTVrFsrLy5GYmIh33nkHSUlJWLBgAQ4dOgTGGFatWqXqVZW7DsePH8eCBQu4ebOzs6Ve/N7y6zzc8f3332Pfvn24desWHjx4gPDw8AHFU5Xi4mKMGTNGapq1tTWOHTuGn3/+GVFRUf3aNp19IiMjA9HR0SgsLEReXh43IMl7vQeqoqICVVVVcHBw4KZNmTJFZXuEMjMz4eDggKefflol8dQdt7u6ujowxvDss88CAF566SUkJSWhtrYWV65cQUFBAebOnSu1jFAoRHFxsVrzUhXGGG7cuIHs7Gx4eHgAkN/P/vOf/+D777/HtWvXcPPmTZw/fx6///4713c7NTU1YdGiRVi8eDHu3r0La2trqUKwr/ft1q1bkZycjNLSUvD5fGzdulXuelhbW2PNmjXYtm0b9wEdGxuLt99+G8OHD5eat7fY3fPv672oDgMdN/s7ZgLyt7+6PyMGc9xUx5gJ0LjZl8EaN1VWqDU3N4PH42HYsGHw8vLC22+/LXWOxcyZMzFjxgzY2dkhIyMDOTk5uHfvHiIjI2FsbAxvb29MnToVR48e7RE7JycHFRUVeO+99yAQCBAQEACBQIAff/yRixMREQE+n49JkyahqKhIVaslV3/WoT9effVVTJ48GRYWFlzROVBhYWFYuXLlgJdvbW1FQ0MDDA0Ne7TNnj0bO3bswLZt23Dq1CmpNkW2zezZs+Hg4AAbGxvMmDEDt27d4paV9XoPlFgsBgAYGxtz04yNjXH//v0Bx+xUVVWFgoIClf9UX11xe/PJJ59gy5YtsLCwAADExMRALBbD1NQU06ZNQ2hoKFxdXaWW4fP5ePDggdpzU0bnuKSnpwcHBweEh4dzhYq8fjZs2DCIxWKcO3cOBgYGOH78OJycnHrEP3v2LOrr6xEeHg4jIyMEBQXB1NRU4fzy8/MxadIkmJiYYPny5Th79myfy2zatAkVFRX49ttv0dzcjPT0dCxZskSp2LLei+qgjnFTm8ZMYPDHTXWMmQCNm30ZrHFTZYVa57kgjDHcu3cP27dvh57e/w/fuSKdysrKYG5uLvUt0NramjvW231eiUSCYcOGcSdeFhUVoaSkhIujr6+vqlVRWH/WoT/MzMy4/y0tLVFfX4+GhoYBxero6FDqPn76+vrg8/lobGzstX3Dhg3w9fXFkiVLcOfOHW66Itum63oaGBhw3/7kvd4DZW5uDkD6Svl1dXV48sknBxyzU3R0NN5//30u14sXLyIgIAA8Hk+p807UFbe7+Ph4VFdXc4fD2traMGfOHMycORP19fUoKipCSkoKPv30U6nlGhoaMHr0aJXloQ6d41J1dTVWrFiBr776itsTJa+fPfvss9i5cyfCw8NhYWGBsLAwNDc394hfXl4OMzMzqfFHKBQqlBtjDOHh4RAKhdDT08OsWbMU+qGDmZkZwsLCsG3bNnz55ZcIDg6WGmsHElvWe1Ed1DFuatOYCQz+uKmOMROgcVOewRw3NXZ5jrFjx0IsFksNCHfv3oWNjU2v85qZmXGFYOdfSEgIF6e1tbXHcjweT6PrMHz4cDQ1NXFtnd9O+sqvoqKC+7+8vBxGRkbg8/kDird7926FzyeQxdbWViqn7uLi4mBpaQkfHx/uQ7A/r2938l7vgRozZgzMzMy4cwkA4NKlSz0uLDgQn332mVSejo6OSExMBGNMqV9yqStuV4cPH8Yvv/yC/fv3c9OKi4tx4cIFBAcHQyAQYPz48fD29u5xkrpIJIKtra1K8lA3U1NTfPrppxCJRNz7oa9+tmzZMty4cQOZmZk4depUr+cwWVpaoqqqSmr86b63Qdb79uTJk4iPj0d2djba29uRn5+vcIGwYcMGVFVV4fjx43j11Vd7tCsTW92UGTf7O2YOJJ4qxkxgcMdNdYyZAI2bsgz2uKmxQm3WrFmwsrLCtm3bUF9fj9TUVPz+++/w9/fvdV5TU1Ps2bMHEokE165dg7OzMy5cuCAVp6GhARcuXMDTTz+NpqYmjBo1Crdv38aZM2ewePHiQV+HiRMn4tSpU5BIJDh69Cjq6+ullpeVX3p6Oi5duoTKykrs3r0bfn5+A46nit34r7/+Os6dOyeznc/nIzU1FdevX+e+tffn9e1O3us9UHp6elixYgWio6MhEomQlZWFtLQ0BAUFDTimrktMTERubi536YDc3Fzs2rULY8eOhUAgwP79+yGRSFBaWoqUlBRMmjRJavm8vDx4e3trKPv+GzlyJN555x1ERUWhrq5Obj87fvw41q9fD4lEgokTJ0rtxehq9uzZMDIywo4dOyCRSJCQkACRSCQ1j6z3bUdHB/f38OFDnDx5UuF1EQgESEtLw1dffdVruzKx1U2ZcbO/Y+ZA4qlizAQGd9xUx5gJ0LjZG42Mm+z/VFRUsDlz5rD++vbbbxkA7u+f//ynVHtUVBTXNm3aNKm2wsJC5u7uzgQCAXNwcGCnT5/m2jZu3MhCQ0O5x0VFRczd3Z3x+Xw2fvx4Fh8f3yMOn89ndnZ2LDMzkzHGWFZWFrOwsGBCoZCdPXu23+vGGGOTJk2S2y5vHW7fvs2mTp3KBAIB+/jjj5mjoyMDwDIyMmTmFxgYyDZt2sQ8PDwYn89nnp6erLq6esDxNmzYwFasWCEz/6ysLLZ69Wq561hTU8OcnZ2ZWCxmBw4c4F5PX19fqfnS0tLY9OnT+9w2XfvE1q1bWXBwMPf44MGDjDHZr/emTZtYcHCwzFx/+OEHqf5oYmLCtTU2NrKlS5cyQ0NDZmVlJdWH+ootL26n/Px8qXlcXV2VzlleXGVyvnnzJtPT05NqB8B27tzJGGMsMzOTOTk5MUNDQ2Zubs78/PyYWCzmlk9NTWVBQUEy16nT6tWrWVZWVp/z9ebKlSvMy8trQMt2H5cKCgoYY4zV19ez0aNHMwAsJSVFZj9rbGxk4eHhzMrKipmYmLAlS5awxsZGFhISwsUMCQlhjDGWl5fH7O3tGZ/PZ++++y5zdnbm4jMm+3174sQJtnz5cmZkZMSeeuopFhERwQAwR0dH5uvrK/Ue6bo+gYGBPdZ32rRpXPsbb7zB2traeo3d9S8kJESh92J/KfK6DXTc7O+YOZB4fY2ZjD0aw5KTk+XOM9jjprzPSBo3dWvc7FZ3VCpdqKlL90JNU/oq1FQtMDCQxcTEDNrzKVKoMfaog0ZGRg5CRvK5urpKDeq6EFsXc5anvLycbdy4kTU1NfU5r6YKNaI5g/26DfaYyZhihRpjNG5qY1x1x5alP+Nm90JN6qbs2qKjowNVVVU9foBANMfW1hYfffSRRnM4ceIE3N3d8cILL+hMbF3MuS9CoZBubUSIAmjc1K646o4tjzLjplYVaoWFhZg0aRKGDRsGR0dHfPvtt5pOaVD5+flxt81qa2uTuv0EeXS7l4ULF+pUbF3MmRBdQWNm33RxDNLFnNVJqwo1Ozs7rfllkiYkJSUpdf0fQgh5nNCYSR4HGvvVJyGEEEIIkY8KNUIIIYQQLcVj/3es8cGDB5g5c6am89E6dXV1UrfPGGra2trQ0tLS661OhoK2tjZUVFRg1KhRQ3Ydtd3hw4cxffr0fi9XUlKCl19+WQ0ZEXVqb2/Hw4cPuQvOdk6rra1FR0cHd7V7XdbU1IQnnniix/1VCVGVLvdTvc8VaoQMVb/99hs+//xzFBYWYsWKFQgICICBgYGm0yJkyLt58yb27duHU6dOYfHixVi7dq3MiwcTQnpFhRp5fJSXl+PLL7/EsWPH8MorryA4OBhjx47VdFqEDCkdHR04c+YMPv/8c4hEIqxduxb+/v4YNkyrfrtGiK6gQo08fpqbm5GcnIy9e/di4sSJWLlyJZ5//nlNp0WITquvr8e3336LAwcOwMHBAaGhoXB0dNR0WoToOirUyOMtNzcXe/fuRWlpKQIDA7F06VKV3biXkMdBSUkJDh48iH/961/w8fHBmjVrhsR5aIRoCSrUCAGA27dv48svv8S//vUvvPLKK1izZg1sbGw0nRYhWqvrl5zg4GAsXrwY+vr6mk6LkKGGCjVCunr48CGOHTuGzz//HH/+85+xfv16uLi4aDotQrSCRCLB0aNHERsbC1tbW2zYsAH/+7//q+m0CBnKqFAjRBbaY0DII7du3cJXX33F7XFeu3YtrK2tNZ0WIY8DKtQI6Uv3c3CCg4Px5JNPajotQtSu88vKf//7XyxfvpzO4SRk8FGhRoiiOn/V1nnY55133sFf//pXTadFiEp1/1V0SEgIXF1dNZ0WIY8rKtQI6S/GGP7973/TdaLIkHLv3j189dVX3HUG6Qc1hGgFKtQIUUZxcTHi4uLo0gREZ3XeuaOoqAiBgYF05w5CtAsVaoSoQl1dHZKSkvDFF19gypQpCAsLw5QpUzSdFiG96jy8+fnnn8PKygohISF00WdCtBMVaoSoUtfb59TU1GDdunVYtGgRHRYlWkEkEiE2NhbffPMN5s+fj9DQUPzpT3/SdFqEENmoUCNEXW7cuIH9+/fjzJkzWLJkCYKCgjB69GhNp0UeQ52HNwsLC7FixQosWbIEhoaGmk6LENI3KtQIUbe6ujocOnQIsbGxmD59OsLDwzF58mRNp0WGuJaWFqSlpeHzzz/HqFGjEBISgueeew48Hk/TqRFCFEeFGiGDpaOjAydPnsTevXvx8OFDrFu3Dq+99hqeeOIJTadGhpCKigokJCTgyJEjeP7557FhwwaMHz9e02kRQgaGCjVCNKGoqAhffPEFsrKy8Le//Q0rV67EqFGjNJ0W0WG//fYbvvrqK5w/fx7Lly/HihUrwOfzNZ0WIUQ5VKgRokm1tbVISEjAwYMH4erqipCQENjb22s6LaIjOg9v/v3vf8eIESOwbt06LFy4kA5vEjJ0UKFGiDboPCy6b98+dHR00AcukauyshKHDh3CkSNHMHPmTGzYsAF2dnaaTosQonpUqBGibX7//XfExsbi/Pnz8Pf3x1tvvQVTU1NNp0W0QNe+sXz5cgQGBkIgEGg6LUKI+lChRoi26txrkpiYCFdXV9pr8piiva2EPNaoUCNE27W2tuL7779HXFwcfVA/RmpqanD48GE6f5GQxxsVaoToEvpl39BXWFiIAwcO0C+CCSEAFWqE6Kb+XCvr119/hZOT0+AmSHoQi8Wor6/HhAkTerTRNfYIITJQoUaILuvr6vN37tzBxIkT8cEHHyAyMlLD2T6+7ty5AxcXF8ycORPffvstN73z8ixxcXFwcXHB2rVr6a4VhJCuqFAjZKjovJ/j9evXERQU2HBikQAAIABJREFUhCVLlmDjxo2IjY2FoaEhvLy8EBcXR+e2DbLCwkK4u7ujoqICo0ePRlFREaqqqug+sIQQRVChRshQU1ZWhi+++AL//Oc/UV5ejtraWgCAkZERnnvuOaSkpGDYsGEazvLx8Ntvv2HBggWoqKgAAIwYMQJPPfUUxowZg7Vr1+Lll1+Gnp6ehrMkhGgxKtQIGar+/ve/Y/PmzWhoaOCmCQQCTJs2DRkZGTAwMNBgdkPfmTNn4OvrC7FYLDXdwsICd+/epWKZEKKI+/RVjpAhavfu3VJFGgBIJBKcP38eLi4u3J42onrfffcdvLy8ehRpANDc3Iy0tDQNZEUI0UX0lW6Qtbe3o7CwUNNpkCHu4sWLKC8vx6hRo8Dj8cAYQ3t7O1pbW9Hc3IxLly7BwcEB33zzDZ0bpWLffPMNdu7ciba2Nujr62PEiBEYNmwYd4izubkZn376KV28mKjd6NGjYWlpqek0iJLo0Ocgq6ysxOTJkzFnzhxNp6KUgoICTJ8+XdNpqE1NTQ3u37+Pp556StOpKKWtrQ0tLS09/h4+fIiHDx+Cz+fjL3/5C/3AQEVqa2tRUlKCYcOGYeTIkRgxYgSGDx/e44+2N1G3+/fvw97eHl988YWmUyHKuU971DTA3t4eKSkpmk5DKUNhHeTJzs7GsWPHaJAjhOikzjGM6D46R40QQgghREtRoabDnJycwOPxcOLEiX61EdUYOXIkeDwe3NzcuGnFxcX44IMPNJcU0RoikQibN2/Gw4cP+7Uc9SHSqbc+JBaLwePxwOPx4Ofnp8HsyGChQk2H/frrr3B2du53W1cXLlzA/PnzYWBggD/96U/49NNPVZ0mAGDZsmWD8ku3hQsXIiEhQe3P0+n69evIzs4G8Oj8pICAAISEhAAAYmNjwePxoK+vj5ycHG4ZkUjEDbQjR44ctFy7qqmpwfbt2zFhwgTExsb2aG9qasIbb7wBPp8PGxsbHDp0SGWxAeDy5csYOXIkvv76a5XGVXVsxhgSExNhZ2cHAwMDPPPMM0hPT5datrS0FPPmzYORkREsLS0REREBABAKhZgxYwbWrVuncB7UhxSLDTy+fcjc3ByMMcTExCicG9FtVKg95lauXImIiAjU1tbi8OHDeO+993D+/HmVP09CQgI8PT1VHleb7N27F3PnzoWZmRkAYNWqVcjJyUF7ezv8/PxQWVkJ4NHgyxjDiy++2O+9LaqSmZmJefPmwdrautf2Dz/8ECUlJSguLsaRI0ewdu1aXL58WSWxm5ubERMTg3Hjxqk0Z3XELi0txd69e3H69GlUVVUhICAAr732GsrKyrh51qxZAz6fj7KyMpw+fRqxsbHc+ZuLFi1Cbm4url27plAe1IcUi019iDxOqFDTQunp6ZgyZQpMTU3h6+srdb2r/Px8TJ48GcbGxtiyZYvUcvLaZPnPf/4DFxcXDB8+HO7u7pgwYQL++9//qnBtgPXr14PH4yEsLEzq8Zo1a+Dp6QmBQAAvLy/uw6hzXjc3NwgEAixatAg1NTUAAC8vL/B4PG6vmZubG3g8Hn766Sf4+fnh5MmTePPNN8Hj8eR+Y1aH7777Di4uLj2mv/XWW2hvb4e/vz86Ojp6XfbGjRvw8PCAsbExHB0dkZmZKXc7dSoqKoKbmxv4fD4cHByQn5+vUK7e3t5wdHTsta2jowNxcXGIjIyEpaUlPDw84OnpiYMHDyodGwCio6MRFRXV7wvu9hVXHbHHjx+PgoICjBs3DoaGhggNDYW+vj6uXLnCzXPt2jX4+/vDxMQEU6ZMgYuLC65evcq1u7q6KvzDG+pDfccGqA+RxwsValpo69atSE5ORmlpKfh8PrZu3Qrg0aGERYsWYfHixbh79y6sra1x/fr1PtsU0dTUhKSkJDQ3N2Pu3LkqXZ89e/Zg48aNPR5nZGQgOjoahYWFyMvLQ2ZmJpKSkhAYGIjvv/8e+/btw61bt/DgwQOEh4cDAI4fP44FCxZwsbKzs7nBMSkpCQsWLMChQ4fAGMOqVatUuh59KS4uxpgxY3pMt7a2xrFjx/Dzzz8jKiqqR3tLSwvmz58PV1dXlJWVISIiAq+88grWr18vczt1LrdgwQI899xzqKioQHh4OLy9vdHS0qLUelRUVKCqqgoODg7ctClTpqjkG31mZiYcHBzw9NNPKx1rMGN3qqurA2MMzz77LDftpZdeQlJSEmpra3HlyhUUFBRIvYeEQiGKi4sVik99qG/Uh8jjhgo1LZSfn49JkybBxMQEy5cvx9mzZwEAZ8+eRX19PcLDw2FkZISgoCCYmpr22daX4uJiGBoaYt26dfj8888xatQota1bV7Nnz4aDgwNsbGwwY8YM3Lp1i2t79dVXMXnyZFhYWOCdd95BUlLSgJ8nLCwMK1euVEXKMrW2tqKhoQGGhoa9ts+ePRs7duzAtm3bcOrUKam2nJwc3Lt3D5GRkTA2Noa3tzemTp2Ko0ePcsv2tp1ycnJQUVGB9957DwKBAAEBARAIBPjxxx+VWpfOq+kbGxtz04yNjXH//n2l4lZVVaGgoAA+Pj5KxRns2F198skn2LJlCywsLLhpMTExEIvFMDU1xbRp0xAaGgpXV1eunc/n48GDB33Gpj7UN+pD5HFEhZqWYYwhPDwcQqEQenp6mDVrFqqrqwEA5eXlMDMzg76+Pje/UCjss60vtra2aGlpQXp6OtavX48jR46ocI1k6zwPBwAMDAykvsV3bbO0tER9fX2P2yEpqqOjA+q+rrO+vj74fD4aGxtlzrNhwwb4+vpiyZIluHPnDje9rKwM5ubmGD58ODfN2tqaO4dF1nYqKyuDRCLBsGHDuBPLi4qKUFJSotS6mJubA3j0zb9TXV0dnnzySaXiRkdH4/333+dyvXjxIgICAsDj8ZQ+z0qdsTvFx8ejurqaO4QPPLqg8Jw5czBz5kzU19ejqKgIKSkpUj/KaWhoUOjuD9SH+kZ9iDyOqFDTMidPnkR8fDyys7PR3t6O/Px8rsiwtLREVVUVWltbufk7v6HKa1OEvr4+nJyc4O3tjePHj6tobQauoqKC+7+8vBxGRkbg8/kAgOHDh6OpqYlr73o/xd6u+L57926Fz41Rhq2trVTevYmLi4OlpSV8fHy484TGjh0LsVgsVajevXsXNjY2cmONHTsWZmZmYIxJ/XX+YnCgxowZAzMzM6lzaC5dugR7e3ul4n722WdSeTo6OiIxMRGMMaV/uajO2ABw+PBh/PLLL9i/f7/U9OLiYly4cAHBwcEQCAQYP358j/eQSCSCra2tQs9DfUg+6kPkcUSFmpbp6Ojg/h4+fIiTJ09ybbNnz4aRkRF27NgBiUSChIQEiESiPttkEYvFcHBwwI0bN9Da2oqrV68iLS1NK+5BmJ6ejkuXLqGyshK7d++Wul7QxIkTcerUKUgkEhw9ehT19fVc26hRo3D79m2cOXMGixcvBjA4hz4B4PXXX8e5c+fkzsPn85Gamorr169ze0pnzZoFKysrbNu2DfX19UhNTcXvv/8Of39/ubFmzZoFU1NT7NmzBxKJBNeuXYOzszMuXLig1Hro6elhxYoViI6OhkgkQlZWFtLS0hAUFKRUXF2VmJiI3Nxc7lIZubm52LVrF4BHhY5AIMD+/fshkUhQWlqKlJQUTJo0iVs+Ly8P3t7eCj0X9aGhaTD7EBmCGBlUFRUVbM6cOTLb29ra2PLly5mRkRF76qmnWEREBAPAHB0dGWOM5eXlMXt7e8bn89m7777LnJ2dGQCWkpIit02W5ORk5uTkxAwMDJiVlRVbtWoVa2ho6HM9Jk2apPA6h4SEMAAMAAsJCWFRUVHc461bt7Lg4GDu8cGDB1lgYCDbtGkT8/DwYHw+n3l6erLq6mou3u3bt9nUqVOZQCBgH3/8MXN0dGQAWEZGBsvKymIWFhZMKBSys2fPMsYY27BhA1uxYoXC+TLGWFZWFlu9erXceUaMGMGuX7/OPa6pqWHOzs5MLBYzxhg7cOAAt16+vr5Sy6alpbHp06dzjwsLC5m7uzsTCATMwcGBnT59us/txBhjRUVFzN3dnfH5fDZ+/HgWHx/Pxdy0aRMLDg7uNfcffviBiwWAmZiYSLU3NjaypUuXMkNDQ2ZlZaVwXEVi5+fnS7W7urqqJGd5sQea882bN5menp5UGwC2c+dObtnMzEzm5OTEDA0Nmbm5OfPz8+P6QGpqKgsKCpJ6Lnm5UB9SLPbj3ocYYywmJqZHn+hKkTGM6IRKKtQGWV+Fmq7oT6HWX4GBgSwmJkZt8RWhaKEGQOr1vHnzJouMjFRzdopxdXVlp0+f1pm46oytzpxlKS8vZxs3bmRNTU39yoX6kHbG1pY+dP/+fZnFe1dUqA0ZlXRTdkIGqLcTjG1tbfHRRx9pIBtpJ06cgLu7O1544QWdiKvO2OrMWR6hUIjt27f3OxfqQ9oXW5v6UOedCcjjg8foFR9UlZWV8PHx4W47NFh6O8kewIDf8Pb29mq5Urafnx+Sk5MBPLqeXOetVAZbdnY2jh07hi+++EIjz08IIcqgMWzIuE971B4TulKPJyUlKXXNNEIIIWQooV99EkIIIYRoKSrUCCGEEEK0FB361ICSkhKlL/yoaXfv3tX5dZCnsbERbW1tg34uISGEqEJjYyNmzpyp6TSIClChpgF//vOfdb4AUNePCbQFnYhLCNFlnWMY0X106JMQQgghREtRoTZEOTk5gcfj4cSJEwNqJ0RdiouL8cEHH2g6DaIFRCIRNm/erLKbnhMyFFGhpoPi4+NhbGyMhoYGmfP8+uuvcHZ2HnC7Ji1cuBAJCQlaG48MXG1tLQICAhASEsLd91BfXx85OTncPCKRCDweDzweTyU3wx6ompoabN++HRMmTEBsbKxUW1NTE9544w3w+XzY2Njg0KFDKonb1eXLlzFy5Eh8/fXXKo2t6riMMSQmJsLOzg4GBgZ45plnkJ6ezrWXlpZi3rx5MDIygqWlpdS1EYVCIWbMmIF169YpnAshjxsq1HTQN998g46ODjr/gOicvXv3Yu7cuTAzM8OqVauQk5OD9vZ2+Pn5obKyEsCjD2/GGF588UWN7mnJzMzEvHnzYG1t3aPtww8/RElJCYqLi3HkyBGsXbsWly9fVjpup+bmZsTExGDcuHEqy1ldcUtLS7F3716cPn0aVVVVCAgIwGuvvYaysjIAwJo1a8Dn81FWVobTp08jNjYWKSkp3PKLFi1Cbm7ukD7nlRBlUKGmY65fvw5zc3O8+uqriIuLk2rLz8/H5MmTYWxsjC1btvRYtq92Vbpx4wY8PDxgbGwMR0dHZGZmAgC8vLzA4/G4PVxubm7g8Xj46aefADy6M8HJkyfx5ptvgsfjITY2Fn5+fuDxeAgLC4ObmxsEAgEWLVqEmpqaAcUjmvPdd9/BxcVFatpbb72F9vZ2+Pv7o6Ojo9flZPWn9evXg8fjYc2aNfD09IRAIICXlxfa29sBAEVFRXBzcwOfz4eDgwPy8/MVztXb2xuOjo49pnd0dCAuLg6RkZGwtLSEh4cHPD09cfDgQaXidhUdHY2oqCgYGBgonK8isdURd/z48SgoKMC4ceNgaGiI0NBQ6Ovr48qVKwCAa9euwd/fHyYmJpgyZQpcXFxw9epVqRiurq5SxRsh5P+jQk3HxMXF4W9/+xuWLFmCc+fO4fr16wAeHYpZtGgRFi9ejLt378La2pprU6RdlVpaWjB//ny4urqirKwMEREReOWVV/DHH3/g+PHjWLBgATdvdna21AdAUlISFixYgEOHDoExhlWrViEpKQmBgYH4/vvvsW/fPty6dQsPHjxAeHj4gOIRzSkuLsaYMWOkpllbW+PYsWP4+eefERUV1WMZef1pz5492LhxIzIyMhAdHY3CwkLk5eUhMzMTLS0tWLBgAZ577jlUVFQgPDwc3t7eaGlpUWodKioqUFVVBQcHB27alClTVLZHKDMzEw4ODnj66adVEk/dcburq6sDYwzPPvssAOCll15CUlISamtrceXKFRQUFGDu3LlSywiFQhQXF6s1L0J0FRVqOqS1tRUZGRmYN28e5s6dCwsLC26v2tmzZ1FfX4/w8HAYGRkhKCgIpqam3LJ9tatSTk4O7t27h8jISBgbG8Pb2xtTp07F0aNHlYr76quvYvLkybCwsMA777yj1K2mwsLCsHLlSqXyIf3T2tqKhoYGGBoa9mibPXs2duzYgW3btuHUqVNSbYr0p9mzZ8PBwQE2NjaYMWMGbt26hZycHFRUVOC9996DQCBAQEAABAIBfvzxR6XWQywWAwCMjY25acbGxrh//75ScQGgqqoKBQUF8PHxUTrWYMTtzSeffIItW7bAwsICABATEwOxWAxTU1NMmzYNoaGhcHV1lVqGz+fjwYMHas+NEF1EhZoOSUtLg5ubG/T19fHEE0/A19cXR44cQUtLC8rLy2FmZgZ9fX1ufqFQyP3fV7sqlZWVwdzcHMOHD+emWVtbc+esDJSZmRn3v6WlJerr6+X+oEKejo4Onbn/6VChr68PPp+PxsbGXts3bNgAX19fLFmyBHfu3OGmK9KfuvYNAwMDtLS0oKysDBKJBMOGDeN+nFBUVISSkhKl1sPc3BzAoz1Hnerq6vDkk08qFRd4dGjy/fff5/K9ePEiAgICwOPxlDpfT11xu4uPj0d1dTXCwsIAAG1tbZgzZw5mzpyJ+vp6FBUVISUlBZ9++qnUcg0NDRg9erTK8iBkKKFCTYf84x//wIEDB7jB9u9//zvEYjHS0tJgaWmJqqoqtLa2cvN3/YbfV7sqjR07FmKxWOoQ0927d2FjYwMAGD58OJqamri2zj0UnXg8Xq9xKyoquP/Ly8thZGQEPp8/oHi7d+9W+Jwiojq2trZSr2N3cXFxsLS0hI+PD3eeWV/9SZaxY8fCzMwMjDGpv5CQEKXWYcyYMTAzM+POwQKAS5cuqeROHZ999plUro6OjkhMTARjTKlfwKorbleHDx/GL7/8gv3793PTiouLceHCBQQHB0MgEGD8+PHw9vbG8ePHpZYViUSwtbVVSR6EDDVUqOmIsrIy1NXVobW1lRtsW1tb4eLigri4OMyePRtGRkbYsWMHJBIJEhISIBKJuOX7alelWbNmwcrKCtu2bUN9fT1SU1Px+++/w9/fHwAwceJEnDp1ChKJBEePHkV9fb3U8qNGjcLt27dx5swZLF68mJuenp6OS5cuobKyErt374afn9+A49GhT814/fXXce7cOZntfD4fqampuH79OqqrqwH03Z9kmTVrFkxNTbFnzx5IJBJcu3YNzs7OuHDhglLroKenhxUrViA6OhoikQhZWVlIS0tDUFCQUnF1WWJiInJzc7lLruTm5mLXrl0YO3YsBAIB9u/fD4lEgtLSUqSkpGDSpElSy+fl5cHb21tD2ROi5RgZVBUVFWzOnDn9Wub+/fsMAAPADh48yE0/ePAgN93Z2Znl5eUxe3t7xufz2bvvvsucnZ0ZAJaSksIYY32298ekSZPkthcWFjJ3d3cmEAiYg4MDO336NNd2+/ZtNnXqVCYQCNjHH3/MHB0dGQCWkZHBGGMsKyuLWVhYMKFQyM6ePcsYYywwMJBt2rSJeXh4MD6fzzw9PVl1dfWA423YsIGtWLFCZv5ZWVls9erV/d4uRL6amhrm7OzMxGIxO3DgANd/fX19peZLS0tj06dP5x7L6k9RUVFcjK1bt7Lg4GCp90pRURFzd3dnfD6fjR8/nsXHx3MxN23axIKDg2Xm+sMPP3CxADATExOurbGxkS1dupQZGhoyKysrqbh9xZYXt1N+fr7UPK6urkrnLC+uMjnfvHmT6enpSbUDYDt37mSMMZaZmcmcnJyYoaEhMzc3Z35+fkwsFnPLp6amsqCgIJnrRAaGxrAho5IKtUE2kEJNG/VVqKlaYGAgi4mJGbTno0FOfW7evMkiIyM1nQZzdXWV+gKhC7F1MWd5ysvL2caNG1lTU9OgPu/jgMawIaOSbspOCBlUtra2+OijjzSaw4kTJ+Du7o4XXnhBZ2LrYs59EQqF2L59+6A+JyG6hgo1ovX8/PyQnJwM4NGvyLregoaQgVi4cCEWLlyoU7F1MWdCiPKoUCNaLykpSalrphFCCCG6in71SQghhBCipahQI4QQQgjRUnToUwMKCgpUcnFMTRKLxTq/DvK0tLTg4cOHyM7O1nQqBI/uVTtixAjo6dF3S0IU0djYiPnz52s6DaICPMboPjqEEO3m4+ODqKgo/M///I+mUyGEkMF0n76eEkIIIYRoKSrUCCGEEEK0FBVqhBBCCCFaigo1QgghhBAtRYUaIYQQQoiWokKNEEIIIURLUaFGCCGEEKKlqFAjhBBCCNFSVKgRQgghhGgpKtQIIYQQQrQUFWqEEEIIIVqKCjVCCCGEEC1FhRohhBBCiJaiQo0QQgghREtRoUYIIYQQoqWoUCOEEEII0VJUqBFCCCGEaCkq1AghhBBCtBQVaoQQQgghWooKNUIIIYQQLTVM0wkQQkhvMjMzcfv2bQDA/fv38c9//hN5eXkAAC8vL4wePVqT6RFCyKDgMcaYppMghJDudu7cic2bN6O9vV1qukAgQHV1NYYNo++ZhJAh7z4d+iSEaKWAgACYmpr2mO7p6UlFGiHksUGFGiFEKwmFQowdO1ZqmpmZGVavXq2hjAghZPBRoUYI0VrBwcHg8/ncY319fbi4uGgwI0IIGVxUqBFCtJaPjw9GjBgBAODxeHj99dfB4/E0nBUhhAweKtQIIVrL2NgYkydPBvDosOfKlSs1nBEhhAwuKtQIIVotODgYAoEABgYGmDJliqbTIYSQQUWFGiFEq7388stobW3F0qVLNZ0KIYQMOrqOmo56++23kZ6eDkNDQ02nQoiUjo4O1NTUqPSCtPfu3YO5uTmGDx+uspjKaGxsBAB6/xG1KC0txe3bt2FhYaHpVIjm3aeLEemwhIQEuLm5aToNQqRUVlbCx8cH2dnZKotZWlqKcePGqSyesvbv3w/g0WFZQlSNxnXSFR36JIRoPW0q0gghZDBRofYY8vPzA4/Hw/bt21U6ryqWI73Tlu3p5OQEHo+HEydOaDQPXVFcXIwPPvhA02kQLSASibB582Y8fPhQ06kQHUOF2mMoKSkJgYGBKp9XFcuR3nXfnsuWLUNaWppKYl+4cAHz58+HgYEB/vSnP+HTTz+VOe+vv/4KZ2dnlTxvV6pcH3kWLlyIhIQEtT8PANTW1iIgIAAhISGIjY0Fj8eDvr4+cnJyuHlEIhF4PB54PB5Gjhw5KHn1pqamBtu3b8eECRMQGxsr1dbU1IQ33ngDfD4fNjY2OHTokEridnX58mWMHDkSX3/9tUpjqzouYwyJiYmws7ODgYEBnnnmGaSnp3PtpaWlmDdvHoyMjGBpaYmIiAiuTSgUYsaMGVi3bp3CuRACUKFGiE5KSEiAp6enSmKtXLkSERERqK2txeHDh/Hee+/h/PnzKomtKFWuj7bYu3cv5s6dCzMzM6xatQo5OTlob2+Hn58fKisrATz68GaM4cUXX9TonpbMzEzMmzcP1tbWPdo+/PBDlJSUoLi4GEeOHMHatWtx+fJlpeN2am5uRkxMTL8Pb/cVWx1xS0tLsXfvXpw+fRpVVVUICAjAa6+9hrKyMgDAmjVrwOfzUVZWhtOnTyM2NhYpKSnc8osWLUJubi6uXbvWr5zI440KtSEqPz8fkydPhpGREcLDw/HXv/4VPB4Px48f73X+GzduwMPDA8bGxnB0dERmZqZUe21tLV544QUYGRlh0aJFqKmpAQCkp6djypQpMDU1ha+vL2pra/uVZ2/LP3z4kNvL0Hmx01WrVoHH43En2RYVFcHNzQ18Ph8ODg7Iz88HAKxfvx48Hg/r1q2Dr68vRowYgeeff15urn1tK1nP1ZvOQ5RhYWFwc3ODQCCQ2l59beu+Xoeu6xgWFib1eM2aNfD09IRAIICXlxfa29u5ZeSt43/+8x+4uLhg+PDhcHd3x4QJE/Df//63x7LGxsbYsmWLwq+tovqzPn1tXy8vL/B4PG6vmZubG3g8Hn766Sf4+fnh5MmTePPNN8Hj8eTu4VGF7777rsftrt566y20t7fD398fHR0dvS4nqw/09Tr3p5925+3tDUdHxx7TOzo6EBcXh8jISFhaWsLDwwOenp44ePCgUnG7io6ORlRUFAwMDBTOV5HY6og7fvx4FBQUYNy4cTA0NERoaCj09fVx5coVAMC1a9fg7+8PExMTTJkyBS4uLrh69apUDFdXV6nijZC+UKE2BDU1NWHRokVYvHgx7t27B3t7e1y6dAk//PADvLy8eszf0tKC+fPnw9XVFWVlZYiIiMArr7yCP/74g5vnu+++w86dO1FSUoIHDx4gPDwcALB161YkJyejtLQUfD4fW7du7VeuvS0/cuRI3Lx5E3w+H+fOnQMAxMbG4uWXX0Z2djZaWlqwYMECPPfcc6ioqEB4eDi8vb3R0tKCPXv2YOPGjThx4gRCQ0Nx8eJF6Ovry3yuvraVvOfqTechyu+//x779u3DrVu3pLaXvG2tyOsAgFvH7o8zMjIQHR2NwsJC5OXlcR/wivaHpqYmJCUlobm5GXPnzu2x7N27d2FtbY3r16/36zXuS3/Wp6/te/z4cSxYsICLlZ2dzX3oJiUlYcGCBTh06BAYY1i1apVK16O74uJijBkzRmqatbU1jh07hp9//hlRUVE9lpHXB+Rtl/72U0VVVFSgqqoKDg4O3LQpU6aobI9QZmYmHBwc8PTTT6sknrrjdldXVwfGGJ599lkAwEsvvYSkpCTU1tbiypUrKCgo4N5LnYRCIYqLi9WaFxlaqFAbgs6ePYv6+nqEh4fDyMgIy5Ytg1AolDl/Tk4O7t27h8jISBgbG8Pb2xtTp07F0aNHuXnmz58PR0dHWFhY4J133kFSUhKAR3uDepJUAAAgAElEQVRbJk2aBBMTEyxfvhxnz57tV66ylre1tcWzzz6Lb7/9FgCQl5fH7Z3IyclBRUUF3nvvPQgEAgQEBEAgEODHH3/k4s6cORMzZsyAnZ0dMjIyZD5XX9tKkefqzauvvorJkyf32F7ytrUir4M8s2fPhoODA2xsbDBjxgzcunULgGL9obi4GIaGhli3bh0+//xzjBo1qtdlg4KCYGpqqlA+ypK1PoDs7TsQYWFhKr81VWtrKxoaGnq9ztrs2bOxY8cObNu2DadOnZJqU6QP9LZdBtpP+yIWiwE8upVXJ2NjY9y/f1+puABQVVWFgoIC+Pj4KB1rMOL25pNPPsGWLVu4653FxMRALBbD1NQU06ZNQ2hoKFxdXaWW4fP5ePDggdpzI0MHFWpDUHl5OczMzLg9SQDw5JNPypy/rKysx8VEra2tufMuAEjtGbC0tER9fT0kEgnCw8MhFAqhp6eHWbNmobq6WuE8GWNyl1++fDni4+MBAImJidyV6cvKyiCRSDBs2DDuEGlRURFKSkq4ZbtfKFLWc/W1rRR5rt6YmZn12F4NDQ1yt7Uir4Oiz2lgYMDtTVGkP9ja2qKlpQXp6elYv349jhw5InNZeUW/Kslan+5tXbfvQHR0dEDV1/3W19cHn8/nLozb3YYNG+Dr64slS5bgzp073HRF+kBv22Wg/bQv5ubmAB7tOepUV1cndzxRVHR0NN5//30u34sXLyIgIAA8Hk+p8/XUFbe7+Ph4VFdXc4fs29raMGfOHMycORP19fUoKipCSkpKjx/nNDQ0qPRi0GToo0JtCLK0tERVVRVaW1u5aSKRSOb8Y8eOhVgslvogvHv3LmxsbLjHVVVV3P/l5eUwMjJCdnY24uPjkZ2djfb2duTn5/frA+/kyZNyl/f29sb169fxyy+/oK6uDlZWVly+ZmZmYIxJ/YWEhPT7ufraVgN5LuDRIaPu24vP58vd1oq8DgOhaH/Q19eHk5MTvL29ufPzeltWFXtTlCVr+wLA8OHD0dTUxLV37hUCAB6P1yPW7t27FT7nqj9sbW2l8uwuLi4OlpaW8PHx4c4zG2gfGGg/7cuYMWNgZmbGnYMFAJcuXYK9vb1ScQHgs88+k8rV0dERiYmJYIwp9QtYdcXt6vDhw/jll1+4Cx8Dj/ZKX7hwgbs37fjx46XeS51EIhFsbW1Vkgd5PFChNgTNnj0bRkZG2LFjB+rr63Hw4EGpk9m7mzVrFqysrLBt2zbU19cjNTUVv//+O/z9/bl5vv/+e1y5cgWVlZXYvXs3/Pz80NHRwf09fPgQJ0+e7FeefS3P5/Ph4+MDf39/qXOpZs2aBVNTU+zZswcSiQTXrl2Ds7MzLly40O/n6mtbDeS5gEc/XLh06ZLU9uqMJ2tbK/I6DIS8dRSLxXBwcMCNGzfQ2tqKq1evIi0tDXZ2dj2WlUgkSEhIkFv0DxZZ2xcAJk6ciFOnTkEikeDo0aOor6/n2kaNGoXbt2/jzJkzWLx4MQD1HPoEgNdff507x7I3fD4fqampuH79OrcneaB9YKD9tC96enpYsWIFoqOjIRKJkJWVhbS0NAQFBSkVV5clJiYiNzeXu+RKbm4udu3ahbFjx0IgEGD//v2QSCQoLS1FSkoKJk2aJLV8Xl4evL29NZQ90UmM6KTVq1ezrKwsme15eXnM3t6eCQQCFhkZyaZPn84yMjIYY4z5+voyAAwA27p1K2OMscLCQubu7s4EAgFzcHBgp0+flpo3NDSUzZkzh/H5fObp6cmqq6tZW1sbW758OTMyMmJPPfUUi4iIYACYo6Njr8/RnbzlO507d46Zm5uzlpYWqWWLioqYu7s74/P5bPz48Sw+Pp4xxlhUVBT3vNOmTVPoueRtK3nPJUtgYCDbtGkT8/DwkNpenWRta0Veh+5/ISEhUuu8detWFhwczD0+ePBgn/0hOTmZOTk5MQMDA2ZlZcVWrVrFGhoaevQlPp/P3n33Xebs7MwAsJSUlF7Xv6Kigs2ZM0fuNuoqJCSkX+vT1/a9ffs2mzp1KhMIBOzjjz9mjo6ODADLyMhgWVlZzMLCggmFQnb27FnGGGMbNmxgK1asUDhfxhjbt28f27dvn9x5ampqmLOzMxOLxezAgQPcOvj6+krNl5aWxqZPn849ltUH+tou8vrppk2bWHBwsMxcf/jhB6l+ZWJiwrU1NjaypUuXMkNDQ2ZlZdWj/8uLLS9up/z8fKl5XF1dlc5ZXlxlcr558ybT09Pr8T7cuXMnY4yxzMxM5uTkxAwNDZm5uTnz8/NjYrGYWz41NZUFBQXJXKdOc+bMYRUVFX3ORx4LlVSo6ai+CrXurKys2KVLl9SX0BCi7LYKDAxkMTExKsxI9dTZH/pbqPWXNmxfRQo1xh59sEdGRg5CRvK5urpKfSHQhdi6mLM85eXlbOPGjaypqanPealQI11U0qHPIeqFF17A5cuX0djYiL1794LP56vkvJKh6HHYVo/DOmojW1tbfPTRRxrN4cSJE3B3d8cLL7ygM7F1Mee+CIVCbN++XaN3oCC6aZimEyDq8dFHH2HlypW4cuUKJk+ejOPHj+OJJ57QWD69ncQNQOW/thuIgW4rWevUqa2tTeoWMpqkbf1hoPz8/JCcnAxAu7avNlu4cCEWLlyoU7F1MWdC1IUKtSHqr3/9a7+uTK5u2lCQyTLQbaXN69SdtvWHgUpKSlLqmmmEEKJr6NAnIYQQQoiWokKNEEIIIURL0aFPHVVXV4dly5b1eosaQjSpra0N1dXVQ/rHCp3XPet6wVNCVKXrtf8IoUJNRxkbGyMhIQFubm6aToUQKZWVlfDx8UF2dramU1GbzgItODhYw5mQoYjGddIVHfokhBBCCNFSVKgRAI8ue8Dj8bB9+3aVzKfqZR8ntJ2IKhUXF+ODDz7QdBoaIxKJsHnzZpXekJ2QwUSF2mPi3//+Nzw8PGBkZITRo0fDzc0NR44c4W7+nJSUhMDAwD7jKDpff5eNj4+HsbExGhoaBhRbE5KSksDj8aT+rK2tsXnzZnR0dCgVt+t2WrZsGdLS0lSRMi5cuID58+fDwMAAf/rTn/Dpp59KPW/XdRkxYgT+8pe/4N1335V7r9jBtHDhQiQkJGhtPG1TW1uLgIAA7ubsnfen1NfXR05ODjefSCTiXndNXpC1pqYG27dvx4QJExAbG8tNZ4whMTERdnZ2MDAwwDPPPIP09HSpZUtLSzFv3jwYGRnB0tKSu8aeUCjEjBkzsG7dukFdF0JUhQq1x0BycjK8vLywdOlSlJSUoLy8HPv27cM333yD1NRUTacHAPjmm2/Q0dGBY8eOaToVhfn5+SE/Px8jRowAYwxtbW1ITk7G/v378Y9//ENlz5OQkABPT0+VxFq5ciUiIiJQW1uLw4cP47333sP58+cB9FwfkUiEAwcOIDs7G87Oznjw4IFKciCDZ+/evZg7dy7MzMwAAKtWrUJOTg7a29vh5+eHyspK4P+1d+9BUZxr/sC/QwCFbi4KIVxkg2ayUSMSFMUSRSBRo7JBDZcJKzle0Kh4vMFBtFA5otGocYmrR2r1oNEqRUFWK8olWEoEJMZNZL2gGNQYUQFHAWdABeH5/eHPXkfuMDAjPp8q6jD9vv32875v43nS090vniczRITx48fr9MpTZmYmJkyYAAcHB43tt27dwtatW5GRkYEHDx4gJCQEU6dORXFxsVRnwYIFEAQBxcXFyMjIQHx8PJKSkgAAU6ZMQU5ODgoKCrq0P4xpAydq3VxNTQ0WLlyIv//975g+fTpsbGzQo0cPDBo0CBkZGVAoFE3ue+3aNfj4+MDc3BwuLi7IzMyUyiorKzFu3DiYmZlhypQpGldcUlNTMXjwYFhaWiIoKAiVlZXNxnjlyhVYW1tj8uTJ2LVrFwDgyZMn0n/hDxo0CMDz/5ORyWTSjbaFhYXw8vKCIAhwdnZGXl4eFi9eDJlMhoULFyIoKAg9evTAJ5980mJceXl5GDRoEMzMzBAZGYkRI0ZAJpMhOTm50eM05q233sKoUaMwdOhQ/Prrry2OYXNlL7zoT0REhMbnBQsWwM/PD6Iowt/fH3V1da3qyy+//IKRI0fC2NgY3t7e6Nu3L/78889G+9OrVy98/PHHOHHiBFQqFdavX9/sPLZFU3339/eHTCaTrnJ5eXlBJpPhxIkTUCgUOH78OGbMmAGZTIb4+Hjpa+KIiAh4eXlBFEWN87Gt7XU3hw8fxsiRIxts/+qrr1BXV4fg4OAmr/42NUctnYOt/XtpTEBAAFxcXBpsd3Jywrlz5/Duu+/C1NQU4eHhMDIywqVLl6Q6BQUFCA4OhoWFBQYPHoyRI0fi8uXLUrmHh4eUuDH2WtHhQqOsA1q7KHtubi4BoOvXr7dY9+XFrp8+fUrvvfceRUdHU2VlJR06dIh69uxJN2/epFmzZtH7779P+fn5VFpaSp6enjR79mypnREjRlBBQQFVVFTQjBkzKDw8vNFjvLB06VI6evQopaWlEQAqKCggoucLWguCQJWVlVLdf/u3f9OIb82aNaRSqWjv3r3k4OBAT58+pWXLllHfvn3p7NmzdOXKFfr000+bjau6upreeecdWrt2LT169Ih2795NJiYm9MMPPzR7HCKivLw86tGjBxERPXv2jHJzc8nMzIz+67/+q9kxbK7s1XFatmyZxhguW7aM+vXrRxcuXKDbt2+Tra0tpaWltdiXl1VXV9OBAwfIycmJHj58KG1/uT8v++tf/0oDBw5s5uz5Py0tyt5S3ydNmkS7d++W6ru4uFBmZmajZUTPx+q9996jixcvNno+trW91mjtouy6JggC/fbbbxrbsrOzKTY2ln766ScyNDSk6OhoqWz8+PFE1PIcNXUOtvT30loeHh60Y8eOJssrKytJEASNhcvnz59PAQEBVFFRQRcvXiRbW1vKycmRyqOjo2natGltikNXeFF29hJelL27u3//PgDgnXfeadN+2dnZuHv3LlauXAlzc3MEBATA1dUV+/fvBwBMnDgRLi4usLGxwdKlSzWW9cnLy8OAAQNgYWGBmTNn4vTp000ep7a2FmlpaZgwYQLGjh0LGxsb6aqaXC7HkCFDcODAAQBAbm6udHUgOzsbpaWlWLFiBURRREhICERRxI8//ggAGDVqFIYPH47+/fsjLS2t2bhOnz4NlUqFyMhImJmZYfr06bC1tW3VcQDg6dOnkMlkMDQ0hL+/P+bPn49Zs2Y1O4YtjW9LPD094ezsjD59+mD48OG4ceNGi315oaioCKampli4cCG+++479OrVq8XjOTo6SudSR3W0742ZPHkyBg0a1Oj52FYRERGYM2dOu/fXF7W1taiqqmryXYuenp7YuHEj1q1bh/T0dI2y1sxRY+dga/5etOGbb75BTEwMbGxspG3r16+HUqmEpaUlhg4divDwcHh4eEjlgiDw1/fstcSJWjf39ttvAwDu3bsnbcvPz5e+Vpw2bVqj+xUXF8Pa2hrGxsbSNgcHB+mekJcTPzs7O6hUKlRVVYGIEBkZCVtbWxgYGGD06NHSy0Ebc/ToUXh5ecHIyAhvvfUWgoKCNB5ymDlzJhISEgAA+/btw5dffinFp1arYWhoKPWlsLAQ169fBwCNf8ABNBvXvXv3YGVlBSMjowbj1tJxAEj3dBER7t69iw0bNsDAwKDZMWxpfFvy4p4jADAxMZHGq7m+vCCXy1FTU4PU1FQsXrwYe/fubfF4f/75Z4Mxba+O9r0xL4/Hy+dje9TX179W67g2xcjICIIgoLq6usk6S5YsQVBQEKZNm4bbt29L21szR42dg635e+mohIQElJeXS7cDAM9fsjxmzBiMGjUKKpUKhYWFSEpK0nhYpqqqCr1799ZaHIx1FU7Uujk3Nze8/fbbOHLkiLTto48+AhEhPDy8yf0cHR2hVCqlBAAA7ty5gz59+gAAHjx4IG2/d+8ezMzMIAgCjh8/joSEBGRlZaGurg55eXnN/p/eP//5T+zYsUP6R/0///M/oVQqpaccAwICcOXKFZw9exaPHj2Cvb29FJ+VlZWUIL34efF026uai8vOzg4PHjxAbW2tVL+kpKRdx2ntGLY0vu3VXF9eZmRkBDc3NwQEBCA5ObnZNisrK5GcnIyJEyd2KLYXWuq7sbExHj9+LJUplUrpd5lM1mibpaWl0u8vn4/taW/Lli3YuXNnW7ull+RyucbYNGbXrl2ws7NDYGCgdJ9Ze8/Pjvy9tMb333+Ps2fPNlgRoqioCPn5+QgLC4MoinBycmpwbpeUlEAul2slDsa6Eidq3ZyxsTHi4uKwZs0a7Ny5E2VlZaiursbFixdx6dKlJh/FHz16NOzt7bFu3TqoVCqkpKTg/PnzCA4OBgAcOXIEly5dQllZGbZs2SI9lFBfXy/9PHnyBMePH28ytuLiYjx69Ai1tbXSP+i1tbUYOXKk9PWnIAgIDAxEcHAw/P39NeKztLREXFwc1Go1CgoK4O7ujvz8/EaP1Vxcnp6eMDMzw8aNG6FSqbBz507pZvS2Hqe1Y9jS+LZXc31RKpVwdnbGtWvXUFtbi8uXL+Po0aPo379/o21VVFTg5MmT+OSTT2Bubo6oqKgOxfZCS33v168f0tPToVarsX//fo3ldHr16oWbN2/i5MmT+OKLL6TtqampuHDhQoPzsT3tdZevPgHg888/x5kzZ5qtIwgCUlJScOXKFekqc3vPz478vbRk3759yMnJkV4xkpOTg82bNwN4niCKoojt27dDrVbj1q1bSEpKwoABA6T9c3NzERAQ0OE4GOtyXXlHHNOe1j5M8EJ6ejp5enqSqakp9ezZkz766CPasGEDVVdXExFRUFAQASAAFBsbS0REV69eJW9vbxJFkZydnSkjI0OqFx4eTmPGjCFBEMjPz4/Ky8uJ6PkN9TNnziQzMzN6//33KTo6mgCQi4uLxjEWLVok/b5z504pzp07d0rb3d3diYjozJkzZG1tTTU1NRp9KiwsJG9vbxIEgZycnCghIYFWr14t7T906FCpbnNxET1/6GLgwIEkiiKtXLmShg0bJt2g39hxiIgOHDggHQsA/fd//3eDcW9sDFsqe3mcXv5ZtGiRRv9iY2MpLCyswTg215eDBw+Sm5sbmZiYkL29Pc2dO5eqqqoa7Y+xsTG9//77FBERIc1va7T0MEFL43Lz5k1ydXUlURTp66+/JhcXFwJAaWlpdOrUKbKxsSFbW1s6ffo0ET1/mCAqKop8fHwanI/taW/JkiUUGhrabPyvy8MEFRUV5O7uTkqlkoiIduzYIc1vUFCQRt2jR4/SsGHDpM9NzVFL52BTfy9ERFFRURQWFtZkvD/88IPGOWhhYUFEzx8sMjAwaPA3sWnTJmnfzMxMcnNzI1NTU7K2tiaFQiH1OyUlReMBE33HDxOwl5TJiLrBzRhvoPnz5yMwMJDXhOskDg4OSE9Ph7Ozs65D6bCu7ktXr/UZGhoKuVyutSt+rfE6rfVZVFSEvXv3Ys2aNboOBaNGjcKqVaswbty4LjtmSUkJ4uLiEBMTo9OX+baFl5cXDh06pLX7Qtlr7T5/9ckYgHHjxuHixYuorq7G1q1bIQgCBg4cqOuw2qU79YV1nFwu14sk7dixY/D29u7SJA14/jLfDRs2vDZJGmOvMtR1AIzpgzVr1mDOnDm4dOkSBg0ahOTkZLz11lu6DqtdulNfWqJQKHDw4EEAz5/8e7FsENM/vr6+8PX11XUYjL12OFFjDMCIESPa9AZ1fdad+tKSxMTEDr0zjTHG9B1/9ckYY4wxpqc4UWOMMcYY01P81edrLCYmpsFb5xnTtdraWty9e1er76x68uQJjI2NYWCgH/9teffuXQDosidb2ZuloKBA1yEwPcKv53hN3bt3j9etY2+M8PBwzJs3j98sz94Y/fv377YPAbE2uc9X1F5TdnZ2sLOz03UYjHUJc3NzyOVyfPjhh7oOhTHGupR+fI/AGGOMMcYa4ESNMcYYY0xPcaLGGGOMMaanOFFjjDHGGNNTnKgxxhhjjOkpTtQYY4wxxvQUJ2qMMcYYY3qKEzXGGGOMMT3FiRpjjDHGmJ7iRI0xxhhjTE9xosYYY4wxpqc4UWOMMcYY01OcqDHGGGOM6SlO1BhjjDHG9BQnaowxxhhjeooTNcYYY4wxPcWJGmOMMcaYnuJEjTHGGGNMT3GixhhjjDGmpwx1HQBjjDXm/PnzePDgAQCgtLQUeXl5uHfvHgBg2LBhsLCw0GV4jDHWJThRY4zppcOHD+Pbb7+FsbExiAj5+fkgItTW1koJHGOMdXf81SdjTC/NmDEDoiji0aNHUKlU0v/6+PjA1NRU1+ExxliX4ESNMaaX3nvvPVhaWmpss7S0RFhYmI4iYoyxrseJGmNMb4WGhqJHjx7SZ0NDQ4wdO1aHETHGWNfiRI0xpre+/PJLmJmZSZ/Hjh0LIyMjHUbEGGNdixM1xpjesrOzg729PQCgd+/emDdvno4jYoyxrsWJGmNMr82fPx8mJiYwMjKCh4eHrsNhjLEuxYkaY0yvBQYG4tmzZ5g6dSoMDPifLMbYm0VGRKTrIBjTRwcOHEBsbKyuw+hUKpUKoihCJpPpOpRm/fnnn7CxsUHPnj3btB8RQa1Wa9znxjqmd+/eyMnJ0XUYjL0p7vMLbxlrwsOHDxEWFtatXwfh5eWFQ4cOwcbGRtehNOvXX3/F0KFD27xfWVkZAgMDkZWVpf2g3lADBw7UdQiMvVH4ewTGmN5rT5LGGGPdASdqjGkBESEqKgoODg4wMDCATCbD9OnTdR0Wa6WioiKsWrVK12HoTElJCZYvX44nT57oOhTG2Cs4UWNMCw4fPoxjx44hNzcXdXV12LRpU6v28/X1xZ49e1rcpi+mT5+Oo0ePdvpxunIMKisrERISgkWLFiE+Ph4ymQxGRkbIzs6W6pSUlEAmk0Emk7X5PjltqqiowIYNG9C3b1/Ex8drlBER9u3bh/79+8PExAQfffQRUlNTpfJbt25hwoQJMDMzg52dHaKjo6UyW1tbDB8+HAsXLuyyvjDGWocTNca04H//93/xySefwMnJSe9vzO+IPXv2wM/PT9dhaNXWrVsxduxYWFlZYe7cucjOzkZdXR0UCgXKysoAPE9kiAjjx4/X6VWnzMxMTJgwAQ4ODg3Kbt26ha1btyIjIwMPHjxASEgIpk6diuLiYgDAggULIAgCiouLkZGRgfj4eCQlJUn7T5kyBTk5OSgoKOiy/jDGWsaJGmMdtHjxYqxduxbfffcdZDIZTpw4oVGempqKwYMHw9LSEkFBQaisrAQAKBQKHD9+HDNmzIBMJkN8fHyj2wCgsLAQXl5eEAQBzs7OyMvLk44tk8mwYMEC+Pn5QRRF+Pv7o66urlP6KZPJEBER0eKxFQqFVNfLywuiKGLKlCmoqKgAAPj7+0Mmk0lXzby8vKSxa2oMOsvhw4cxcuRIjW1fffUV6urqEBwcjPr6+kb3u3btGnx8fGBubg4XFxdkZmYCaN2cNDWfLQkICICLi0ujZU5OTjh37hzeffddmJqaIjw8HEZGRrh06RIAoKCgAMHBwbCwsMDgwYMxcuRIXL58WaMNDw8PjeSNMaYHiDHWqG3bttG2bdtaVXfZsmUUHh4ufd60aRP95S9/ISKiESNGUEFBAVVUVNCMGTM06k2aNIl2796t0dar254+fUrvvfcerVmzhlQqFe3du5ccHBzo6dOn0rH79etHFy5coNu3b5OtrS2lpaW1Ku4xY8ZQaWlpq+o21s/mjj1r1ix677336OLFi1RaWkqenp40e/bsJvvp4uJCmZmZTY5Le5SWltKYMWOarSMIAv3222/S5+zsbIqNjaWffvqJDA0NKTo6WiobP348Ef3fnERHR1NlZSUdOnSIevbsSTdv3iSi5selpflsDQ8PD9qxY0ezdSorK0kQBGl+58+fTwEBAVRRUUEXL14kW1tbysnJ0dgnOjqapk2b1my7AwYMaHWcjLEOK+Mraox1sry8PAwYMAAWFhaYOXMmTp8+3ab9s7OzUVpaihUrVkAURYSEhEAURfz4449SHU9PTzg7O6NPnz4YPnw4bty4oe1uNKm5Y0+ePBmDBg2CjY0Nli5disTExHYfJyIiAnPmzNFGyJLa2lpUVVXB1NS0QZmnpyc2btyIdevWIT09XaMsOzsbd+/excqVK2Fubo6AgAC4urpi//79Gvs3Ni6tmU9t+OabbxATEyO9emX9+vVQKpWwtLTE0KFDER4e3mClB0EQ8PDhQ63GwRjrGE7UGOtERITIyEjY2trCwMAAo0ePRnl5eZvaKC4uhlqthqGhoXRDe2FhIa5fvy7VsbKykn43MTFBTU2N1vrQkuaO/XKZnZ0dVCoVqqqq2nWc+vp6kJbfz21kZARBEFBdXd1o+ZIlSxAUFIRp06bh9u3b0vbi4mJYW1vD2NhY2ubg4CDdDwY0PS6tmc+OSkhIQHl5ufQ19bNnzzBmzBiMGjUKKpUKhYWFSEpKwrfffquxX1VVFXr37q21OBhjHccvvGWsEx0/fhwJCQnIycnBBx98gLNnz2LatGlSeWMPHry6zdHREVZWVlAqlZ0er7aVlpZKv9+7dw9mZmYQBAEAYGxsjMePH0vlL/evsXHZsmVLp8Qol8s14nzVrl27MGLECAQGBkIURQDP50SpVKKmpkZK1u7cuQNXV9cWj9fZ8/n999/j7NmzGvf2FRUVIT8/H+np6RBFEaIoIiAgAMnJyQgPD5fqlZSUQC6Xd0pcjLH24StqjHWi+vp66efJkyc4fvy4RnmvXr1w8+ZNnDx5El988UWj20aPHg1LS0vExcVBrVajoKAA7u7uyM/P10WX2iQ1NRUXLlxAWVkZtmzZAoVCIZX169cP6enpUKvV2L9/P1QqlVTW2Lh0xlefAPD555/jzJkzTZYLgoCUlBRcuXJFuho6evRo2N3I5pkAACAASURBVNvbY926dVCpVEhJScH58+cRHBzc4vE6cz737duHnJwc6TUjOTk52Lx5MxwdHSGKIrZv3w61Wo1bt24hKSkJAwYM0Ng/NzcXAQEBHY6DMaZFur5LjjF91dqHCRYtWkQACAAtWrSIYmNjpc8KhYJmzpxJZmZm9P7771N0dDQBIBcXFyIiOnXqFNnY2JCtrS2dPn26yW2FhYXk7e1NgiCQk5MTJSQkEBHR6tWrpWPFxsZSWFiY9Hnnzp0txt6Whwle7WdLx541axZFRUWRj48PCYJAfn5+VF5eLrV38+ZNcnV1JVEU6euvvyYXFxcCQGlpaY2OwZIlSyg0NLRVsb7QmocJKioqyN3dnZRKJe3YsUPqQ1BQkEa9o0eP0rBhw6TPV69eJW9vbxJFkZydnSkjI4OIWjcnTc0nEVFUVBSFhYU1GusPP/wgtQWALCwspLLff/+dDAwMNMoB0KZNm4iIKDMzk9zc3MjU1JSsra1JoVCQUqmU9k9JSdF42KMp/DABY12qjBdlZ6wJ27dvBwBe67OdQkNDIZfLERUVpfW2W6u1a30WFRVh7969WLNmTdcE1oxRo0Zh1apVGDduXJcds6SkBHFxcYiJiWnxhb4DBw7kd60x1nV4UXbGGJPL5XqRpB07dgze3t5dmqQBz1/ou2HDhi49JmOsdThRY4xpnUKhwMGDBwE8f+Lw5eWKWNN8fX3h6+ur6zAYY3qEEzXGmNYlJiZ26J1pjDHGnuOnPhljjDHG9BQnaowxxhhjeoq/+mSsGf/85z9bfGLwdVZUVITQ0FD06NFD16F0iqdPn6KoqIjfDaZFjx490nUIjL1ROFFjrBkTJ06UXrjaHc2YMQN/+9vfuu2yQQ8fPkR4eDhiYmJ0HUq3MXXqVF2HwNgbhRM1xpphZ2eHDz/8UNdhdBpTU1N88MEHnfIeNX1QVlYGU1PTbj2HXe2tt97SdQiMvVH4HjXGOolCoYBMJuP3U70GioqKsGrVKl2HoTMlJSVYvnw5njx5outQGGOv4ESNsXZKTEyETCZr9GfQoEFITEzErFmzWtWWr68v9uzZ0+K214m24++s8aisrERISAgWLVokrZFpZGSE7OxsqU5JSYk0ty29ub8zVVRUYMOGDejbt6/GousAQETYt28f+vfvDxMTE3z00UdITU2Vym/duoUJEybAzMwMdnZ2Gu+2s7W1xfDhw7Fw4cIu6wtjrHU4UWOsnRQKBfLy8tCjRw8QkcZPnz59dB0ea6WtW7di7NixsLKywty5c5GdnY26ujooFAqUlZUBeJ7IEBHGjx+v06tOmZmZmDBhAhwcHBqU3bp1C1u3bkVGRgYePHiAkJAQTJ06FcXFxQCABQsWQBAEFBcXIyMjA/Hx8UhKSpL2nzJlCnJycnh5KMb0DCdqjHWC9PT0RrenpqZi8ODBsLS0RFBQECorK6FQKHD8+HHMmDEDMpkM8fHxjW4DgMLCQnh5eUEQBDg7OyMvLw8AsHjxYshkMixYsAB+fn4QRRH+/v6oq6vrUD+uXbsGHx8fmJubw8XFBZmZmQAAf39/yGQy6QqXl5cXZDIZTpw4AQBN9kkmkyEiIgJeXl4QRRFTpkxBRUVFu9rTlsOHD2PkyJEa27766ivU1dUhODgY9fX1bRqb1sxFU/PYkoCAALi4uDRa5uTkhHPnzuHdd9+FqakpwsPDYWRkhEuXLgEACgoKEBwcDAsLCwwePBgjR47E5cuXNdrw8PDQSN4YY7rHiRpjWqRWq+Hv799keWxsLA4ePIhbt25BEATExsYiMTERkyZNwu7du0FEmDt3bqPbampqMGnSJHz88ccoLS1FZGQkAgICUFNTg7i4OCxbtgxpaWlYu3Ytrl69itzcXCl5aI+amhpMnDgRHh4eKC4uRnR0ND777DP88ccfSE5OxqRJk6S6WVlZGglEU32aNWsWjhw5gm3btuHGjRt4+PAhIiMj29WethQVFeGdd97R2Obg4IBDhw7hp59+wurVq9s0Ni3NRXPzqE2PHj0CEWHIkCEAgE8//RSJiYmorKzEpUuXcO7cOYwdO1ZjH1tbWxQVFWk1DsZYx3CixlgHPX36VLp/yczMrNm6eXl5GDBgACwsLDBz5kycPn261cfJzs5GaWkpVqxYAVEUERISAlEU8eOPP0p1PD094ezsjD59+mD48OG4ceNGu/uVnZ2Nu3fvYuXKlTA3N0dAQABcXV2xf//+drcJAJMnT8agQYNgY2ODpUuXdmipqYiICMyZM6fd+9fW1qKqqgqmpqYNyjw9PbFx40asW7euwRXS1oxNU3PRmnnUhm+++QYxMTHSE73r16+HUqmEpaUlhg4divDwcHh4eGjsIwgCHj58qNU4GGMdw4kaYx308j1qKpWqyXpEhMjISNja2sLAwACjR49GeXl5q49TXFwMtVoNQ0NDKTEsLCzE9evXpTpWVlbS7yYmJh26SlNcXAxra2sYGxtL2xwcHKR7ntrr5Rjt7OygUqlQVVXVrrbq6+tBRO2OxcjICIIgoLq6utHyJUuWICgoCNOmTcPt27el7a0Zm6bmojXz2FEJCQkoLy9HREQEAODZs2cYM2YMRo0aBZVKhcLCQiQlJeHbb7/V2K+qqqrbvlOPsdcVv0eNMS0SRRHJycmNlh0/fhwJCQnIycnBBx98gLNnz2LatGkAAJlM1qD+q9scHR1hZWUFpVKp/cAb4ejoCKVSiZqaGikhuXPnDlxdXQEAxsbGePz4sVT/1bga6xMAlJaWSr/fu3cPZmZmEAShXe1t2bKljb1qSC6Xa8T0ql27dmHEiBEIDAyEKIoAWh6b5nT2PH7//fc4e/asxn18RUVFyM/PR3p6OkRRhCiKCAgIQHJyMsLDw6V6JSUlkMvlnRIXY6x9+IoaY12kvr5e+nny5AmOHz8ulfXq1Qs3b97EyZMnpZUQXt02evRoWFpaIi4uDmq1GgUFBXB3d0d+fn6nxDt69GjY29tj3bp1UKlUSElJwfnz5xEcHAwA6NevH9LT06FWq7F///4GVxMb6xPw/IGKCxcuoKysDFu2bIFCoWh3ex396hMAPv/8c5w5c6bJckEQkJKSgitXrkhXQFsam+Z05jzu27cPOTk50mtGcnJysHnzZjg6OkIURWzfvh1qtRq3bt1CUlISBgwYoLF/bm4uL7fFmL4hxlijtm3bRtu2bWuy/MCBAwRA+tm3b59GeVBQkFQWGxtLz549o5kzZ5KZmRm9//77FB0dTQDIxcWFTp06RTY2NmRra0unT58mImp0W2FhIXl7e5MgCOTk5EQJCQlERLR69WqNY4WFhUmfd+7c2WQfxowZQ6WlpU2WX716lby9vUkURXJ2dqaMjAyp7ObNm+Tq6kqiKNLXX39NLi4uBIDS0tKajH/WrFkUFRVFPj4+JAgC+fn5UXl5ebvbW7JkCYWGhjYZf2lpKY0ZM6bJciKiiooKcnd3J6VSSTt27JDGLSgoSKPe0aNHadiwYS2OTWvmoql5JCKKioqisLCwRmP94YcfNM45CwsLqez3338nAwMDjXIAtGnTJiIiyszMJDc3NzI1NSVra2tSKBSkVCql/VNSUmj27NnNjhUR0YABA1qswxjTmjIZUQdu8GCsG9u+fTsAICwsTMeRdB4vLy8cOnSoy5aQCg0NhVwuR1RUVJccr6ysDIGBgcjKymq2XlFREfbu3Ys1a9Z0SVzNGTVqFFatWoVx48Z12TFLSkoQFxeHmJiYFl/oO3DgQH7XGmNd5z7fo8YYe+PJ5XK9SNKOHTsGb2/vLk3SgOev5eClzhjTT5yoMca6hEKhwMGDBwE8fwrx5SWM2HO+vr7w9fXVdRiMMT3CiRpjrEskJiZ26J1pjDH2JuKnPhljjDHG9BQnaowxxhhjeoq/+mSsGampqbh//76uw+g0JSUl2Lx5c6NLKHUH1dXVKCkpQUxMjK5D6TaaWsWBMdY5+PUcjDXh+vXr+PXXX3UdBgPwH//xH/D394ejo6OuQ3nj9ezZE5999pmuw2DsTXGfEzXGmN4LDAzE6tWr8eGHH+o6FMYY60r3+R41xhhjjDE9xYkaY4wxxpie4kSNMcYYY0xPcaLGGGOMMaanOFFjjDHGGNNTnKgxxhhjjOkpTtQYY4wxxvQUJ2qMMcYYY3qKEzXGGGOMMT3FiRpjjDHGmJ7iRI0xxhhjTE9xosYYY4wxpqc4UWOMMcYY01OcqDHGGGOM6SlO1BhjjDHG9BQnaowxxhhjeooTNcYYY4wxPcWJGmOMMcaYnuJEjTHGGGNMTxnqOgDGGGuMSqXCs2fPAAA1NTV49OgRysvLAQBmZmYwNOR/vhhj3Z+MiEjXQTDG2KsWLVqEhIQECIKAuro6GBgYQCaT4eHDh7h37x6srKx0HSJjjHW2+/zVJ2NML3355Zfo2bMnSktLoVQqUVZWhtLSUri5uXGSxhh7Y3CixhjTS0OHDkWPHj00tomiiLCwMB1FxBhjXY8TNcaY3vr3f/93jXvRevToAT8/Px1GxBhjXYsTNcaY3po9ezYsLS2lz8OGDYMoijqMiDHGuhYnaowxvSWXy2FhYQEAsLCwwIIFC3QcEWOMdS1O1Bhjem3WrFkwNjaGkZERxo4dq+twGGOsS3GixhjTa19++SUAwMfHB8bGxjqOhjHGuha/MZKxV4SGhqKyslLXYXSp2tpaPH36VG/v/xJFEaWlpQgICGh3G2q1Gj169ICRkZEWI3uzhYaGYvz48boOg7FujRM1xl6RnZ2NlJQUXYfRpc6dO4f09HSsXLlS16E0ysfHB6NGjYKBQfu/BIiNjcWnn36KYcOGaTGyN9eBAwdQVFTEiRpjnYwTNcZe8dZbb+HDDz/UdRhd6v79++jdu7fe9lsbcfXu3RtOTk5628fXjZ2dna5DYOyNwPeoMdYBbm5ukMlkOHbsmK5DYVpSVFSEVatW6ToMnSgpKcHy5cvx5MkTXYfCGPv/OFFjrAP+53/+B+7u7roOo4H8/HxMnDgRJiYm+Jd/+Rd8++23Wj/G9OnTcfToUa23+ypfX1/s2bOn048DAJWVlQgJCcGiRYsQHx8PmUwGIyMjZGdnS3VKSkogk8kgk8nQs2fPLomrMRUVFdiwYQP69u2L+Ph4aTsRYd++fejfvz9MTEzw0UcfITU1VWPfW7duYcKECTAzM4OdnR2io6MBALa2thg+fDgWLlzYpX1hjDWNEzXGuqE5c+YgOjoalZWV+P7777FixQr8/PPPWj3Gnj17ut0qAVu3bsXYsWNhZWWFuXPnIjs7G3V1dVAoFCgrKwPwPJkhIowfP16nV54yMzMxYcIEODg4aGy/desWtm7dioyMDDx48AAhISGYOnUqiouLpToLFiyAIAgoLi5GRkYG4uPjkZSUBACYMmUKcnJyUFBQ0KX9YYw1jhM1xtooLy8PgwYNgrm5OWJiYhqUFxYWwsvLC4IgwNnZGXl5eQCAxYsXQyaTYcGCBfDz84MoivD390ddXR0AYPny5bC2toaNjQ02b94sbW+qveb88ssvGDlyJIyNjeHt7Y2+ffvizz//1NoYvOhLREREi/1SKBRSXS8vL4iiiClTpqCiogL+/v6QyWTSFTMvLy/IZDKcOHFC2vf48eOYMWMGZDKZxpWjznD48GGMHDlSY9tXX32Furo6BAcHo76+vtH9rl27Bh8fH5ibm8PFxQWZmZkAWp7z9sztCwEBAXBxcWmw3cnJCefOncO7774LU1NThIeHw8jICJcuXZLqFBQUIDg4GBYWFhg8eDBGjhyJy5cvS+UeHh5S4sYY0y1O1Bhrg8ePH2PKlCn44osvcOfOHTg4OODKlStSeU1NDSZNmoSPP/4YpaWliIyMREBAAGpqahAXF4dly5YhLS0Na9euxdWrV5Gbm4vMzEz88ssvOHLkCAoKCvD777/j559/xvnz55ttr7XxJiYm4unTp1p9WeyLvrz8e2P9AoDExETMmjULR44cwbZt23Djxg08fPgQkZGRSE5OxqRJk6R2s7KyNJKPxMRETJo0Cbt37wYRYe7cuVrrQ2OKiorwzjvvaGxzcHDAoUOH8NNPP2H16tUN9qmpqcHEiRPh4eGB4uJiREdH47PPPsMff/zR7Nh0dG5b69GjRyAiDBkyRNr26aefIjExEZWVlbh06RLOnTuncX7Y2tqiqKhIq3EwxtqHEzXG2uD06dNQqVSIjIyEmZlZg7Uos7OzUVpaihUrVkAURYSEhEAURfz4449SHU9PTzg7O6NPnz4YPnw4bty4AUNDQyiVSpw5cwYmJiZITk6Gm5tbq9prSlFREUxNTbFw4UJ899136NWrV6eMSXP9etnkyZMxaNAg2NjYYOnSpUhMTGz3sSIiIjBnzpyOhqyhtrYWVVVVMDU1bVDm6emJjRs3Yt26dUhPT9coy87Oxt27d7Fy5UqYm5sjICAArq6u2L9/v8b+r45NR+a2Lb755hvExMTAxsZG2rZ+/XoolUpYWlpi6NChCA8Ph4eHh1QuCAIePnyo1TgYY+3DiRpjbXDv3j1YWVlpvDTV1tZW+r24uBhqtRqGhobSDeeFhYW4fv26VMfKykr63cTEBDU1NRgyZAg2bdqEyMhI2NjYICIiAk+fPm1Ve02Ry+WoqalBamoqFi9ejL1792ppFBrXWL+aKrezs4NKpUJVVVW7jlVfXw8ial+gTTAyMoIgCKiurm60fMmSJQgKCsK0adNw+/ZtaXtxcTGsra01Vk1wcHDQuCessbHpyNy2VkJCAsrLyxERESFte/bsGcaMGYNRo0ZBpVKhsLAQSUlJGg+cVFVVoXfv3lqLgzHWfvweNcbawM7ODg8ePEBtba2UrN2/f18qd3R0hJWVFZRKZZvbnj59OqZPn45z585hxowZcHR0hLOzc7vbA54nH25ubggICEBycrK0HJMulJaWSr/fu3cPZmZmEAQBxsbGePz4sVT2al9lMlmDtrZs2dIpMcrlco04X7Vr1y6MGDECgYGB0ioOjo6OUCqVqKmpkZK1O3fuwNXVtdljdeRcaY3vv/8eZ8+ebXBfX1FREfLz85Geng5RFCGKonR+hIeHA3j+ZKtcLu+UuBhjbcNX1BhrA09PT5iZmWHjxo1Qq9XYs2cPSkpKpPLRo0fD0tIScXFxUKvVKCgogLu7O/Lz85ttNzk5GYsXL4ZarUa/fv2kKzDtaU+pVMLZ2RnXrl1DbW0tLl++jKNHj6J///7aGYR2Sk1NxYULF1BWVoYtW7ZAoVAAAPr164f09HSo1Wrs378fKpVKY79evXrh5s2bOHnyJL744gsAnfPVJwB8/vnnOHPmTJPlgiAgJSUFV65cQXl5OYDnc2Rvb49169ZBpVIhJSUF58+fR3BwcLPHau+50hr79u1DTk6O9IqRnJwcbN68GcDzBFEURWzfvh1qtRq3bt1CUlISBgwYIO2fm5vboeW6GGNaRIwxDQMGDGi2PDc3lwYOHEiCINDf/vY3cnd3JwCUlJRERESFhYXk7e1NgiCQk5MTJSQkEBHR6tWrCQABoNjYWAoLC5M+b926lSIjI8ne3p4sLCxo2rRpVF1d3Wx7zTl48CC5ubmRiYkJ2dvb09y5c6mqqqrJ+qdOnaJ58+a1doho0aJFUuwv/7zar507dxIR0axZsygqKop8fHxIEATy8/Oj8vJyIiK6efMmubq6kiiK9PXXX5OLiwsBoLS0NCk2GxsbsrW1pdOnTxMR0ZIlSyg0NLTV8RIRzZs3j06dOtVsnYqKCnJ3dyelUkk7duyQ+hEUFKRR7+jRozRs2DDp89WrV8nb25tEUSRnZ2fKyMggoubnfOfOnc3ObVRUFIWFhTUZ6w8//KAx9hYWFkRE9Pvvv5OBgUGDudm0aZO0b2ZmJrm5uZGpqSlZW1uTQqEgpVJJREQpKSk0e/bsFsdz27ZttG3bthbrMcY6pExGpOUbPRh7zQ0cOPCNe4dUVlYWDh06hH/84x+d0n5oaCjkcjmioqI6pf3WmD9/PgIDA+Hl5dVsvaKiIuzduxdr1qzpmsCaMGrUKKxatQrjxo3rsmOWlJQgLi4OMTExLb7Md/v27QCAsLCwrgiNsTfVfb5HjTHGXiKXy3WepB07dgze3t5dmqQBzx+M2bBhQ5cekzHWPE7UGHtNNXaTPQCtPw3ZUQqFAgcPHgTw/InDF8sVsab5+vrC19dX12EwxvQAJ2qMvab0LSFrSmJiYofemcYYY28yfuqTMcYYY0xPcaLGGGOMMaan+KtPxl5RXV3d6GLr3dkff/yBwsLCbt3v8+fPo7q6GllZWboOpVs4d+4cJk6cqOswGOv2OFFj7BVvvfUWBg4cqOswulxJSUm37vfZs2fh5OTUrfvYlV5eRosx1nk4UWPsFT169EBgYKCuw+hSWVlZKCsr69b9zsrKgpeXV4vvUWOt8/LSaYyxzsP3qDHGGGOM6SlO1BhjrAlFRUVYtWqVrsPoNCUlJVi+fDmePHmi61AYY03gRI0xLUhMTIRMJpN+evTogX/913/F3/72N1RUVOg6PJ3y9fXFnj179La9plRWViIkJASLFi0CAGmBcyMjI2RnZ0v1SkpKpHlvadmlzlJRUYENGzagb9++iI+Pb1D++PFj/OUvf4EgCOjTpw92794N4PlKBMOHD8fChQu7OmTGWCtxosaYFigUCuTl5aFHjx4gIpSUlGDHjh3IysqCu7s7Hj58qOsQWRtt3boVY8eOhZWVFQBg7ty5yM7ORl1dHRQKBcrKygA8T3aICOPHj9fZlanMzExMmDABDg4OjZb//e9/x/Xr16V1TP/617/i4sWLAIApU6YgJyfnjVvflrHXBSdqjHWCXr164eOPP8aJEyegUqmwfv16AEBhYSG8vLwgCAKcnZ2Rl5cHAFi8eDFkMhkWLFgAPz8/iKIIf39/1NXVAQCWL18Oa2tr2NjYYPPmzdL25trUtmvXrsHHxwfm5uZwcXFBZmYmAMDf3x8ymUy6yuXl5QWZTIYTJ05AoVDg+PHjmDFjBmQyGeLj46FQKCCTyRAREQEvLy+IoogpU6ZIVx7b2l5nOXz4MEaOHNlg+1dffYW6ujoEBwejvr6+0X0bG6uW5hho/1wGBATAxcWl0bL6+nrs2rULK1euhJ2dHXx8fODn54edO3dKdTw8PJCUlNSqYzHGuhYnaox1IgsLC/j7+yM1NRU1NTWYNGkSPv74Y5SWliIyMhIBAQGoqalBXFwcli1bhrS0NKxduxZXr15Fbm4uMjMz8csvv+DIkSMoKCjA77//jp9//hnnz58HgGbb1KaamhpMnDgRHh4eKC4uRnR0ND777DP88ccfSE5OxqRJk6S6WVlZUtKQmJiISZMmYffu3SAizJ07F4mJiZg1axaOHDmCbdu24caNG3j48CEiIyMBoM3tdZaioiK88847DbY7ODjg0KFD+Omnn7B69eoG5U2N1eLFi5uc4xf7dcZclpaW4sGDB3B2dpa2DR48WOMKmq2tLYqKijp0HMZY5+BEjbFO5ujoiPv37yM7OxulpaVYsWIFRFFESEgIRFHEjz/+KNX19PSEs7Mz+vTpg+HDh+PGjRswNDSEUqnEmTNnYGJiguTkZLi5uQFAq9rUhuzsbNy9excrV66Eubk5AgIC4Orqiv3797e7zcmTJ2PQoEGwsbHB0qVLO7QeaEREBObMmdPu/V9VW1uLqqoqmJqaNlru6emJjRs3Yt26dUhPT9coa2msGpvjF/t1xlwqlUoAgLm5ubTN3Nxc4/UagiDw1/OM6SlO1BjrZH/++SdsbGxQXFwMtVoNQ0ND6ebzwsJCXL9+Xar74n4oADAxMUFNTQ2GDBmCTZs2ITIyEjY2NoiIiMDTp08BoFVtakNxcTGsra1hbGwsbXNwcEBxcXG723y5r3Z2dlCpVKiqqmpXW/X19VpdpN7IyAiCIKC6urrJOkuWLEFQUBCmTZum8fLXlsaqsTl+sV9nzKW1tTUA4NGjR9K2R48e4e2335Y+V1VVoXfv3h06DmOsc/ALbxnrRJWVlUhOTkZISAgcHR1hZWUlXeFoi+nTp2P69Ok4d+4cZsyYAUdHRyxatKhDbbaFo6MjlEolampqpATkzp07cHV1BQAYGxvj8ePHUv2X45HJZI22WVpaKv1+7949mJmZQRCEdrW3ZcuW9nSrWXK5XCPGxuzatQsjRoxAYGAgRFEE0PxYvZwsvaqz5vKdd96BlZUVLl26BHt7ewDAhQsXNFZoKCkpgVwu1+pxGWPawVfUGOsEFRUVOHnyJD755BOYm5sjKioKo0ePhqWlJeLi4qBWq1FQUAB3d3fk5+c321ZycjIWL14MtVqNfv36aVyRaW+bbTV69GjY29tj3bp1UKlUSElJwfnz5xEcHAwA6NevH9LT06FWq7F//36oVCpp3169euHmzZs4efIkvvjiC2l7amoqLly4gLKyMmzZsgUKhUIqa2t72v7qEwA+//xznDlzptk6giAgJSUFV65cQXl5OYCWx6opnTWXBgYGCA0Nxdq1a1FSUoJTp07h6NGjmD17tlQnNzcXAQEBHToOY6yTEGNMw4ABA9q8z4EDBwiA9GNsbEzvv/8+RUREUHl5uVSvsLCQvL29SRAEcnJyooSEBCIiWr16tbRvbGwshYWFSZ+3bt1KkZGRZG9vTxYWFjRt2jSqrq5usc22OHXqFM2bN6/ZOlevXiVvb28SRZGcnZ0pIyNDKrt58ya5urqSKIr09ddfk4uLCwGgtLQ0OnXqFNnY2JCtrS2dPn2aiIhmzZpFUVFR5OPjQ4IgkJ+fn8Y4tbW9JUuWUGhoaLPxz5s3j06dOtXqMamoqCB3d3dSKpVERLRjxw5pToKCgjTqHj16lIYNG9bsWDU3xzt37iSi5ucyKiqKwsLCGo31hx9+0Dj/LCwsNMqrq6vpyy+/JFNTU7K3t9doNyUlhWbPnt3qcXlh27ZttG3btjbvxxhrPkv0hAAAAWFJREFUkzIZkRZv7GCsGxg4cOAb906prKwsHDp0CP/4xz+65HihoaGQy+WIiorqkuMBwPz58xEYGNimtT5fvHdszZo1nRdYK40aNQqrVq3CuHHjtNZmSUkJ4uLiEBMT0+aX9W7fvh0AEBYWprV4GGMN3Od71BhjrAlyuVwvkrRjx47B29tbq0ka8Py1HBs2bNBqm4wx7eJEjTHWpRQKBQ4ePAgAePbsGaKjo3Uckf7z9fWFr6+vrsNgjOkAJ2qMsS6VmJjYoXemMcbYm4Sf+mSMMcYY01N8RY2xVzx9+hSHDh3SdRhdqqCgANevX+/W/b5+/TqysrKkxdRZx/z2228YMmSIrsNgrNvjpz4Ze8WmTZva/Yb811V9fT2ePXum8Tb97qampgaGhoYwMOAvErRl0qRJGDZsmK7DYKw7u8+JGmOMMcaYfrrP/2nJGGOMMaanDAH8qusgGGOMMcZYA+X/D0WlKLGh9JNLAAAAAElFTkSuQmCC", "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Visualize the model\n", "keras.utils.plot_model(model, expand_nested=True, dpi=60, show_shapes=True)" ] }, { "cell_type": "markdown", "metadata": { "id": "1yvJJPnY-dMP" }, "source": [ "## 训练模型\n", "\n", "对于本教程,选择 `tf.keras.optimizers.Adam` 优化器和 `tf.keras.losses.SparseCategoricalCrossentropy` 损失函数。使用 `metrics` 参数查看每个步骤中模型性能的准确率。" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "execution": { "iopub.execute_input": "2023-11-07T18:09:47.684800Z", "iopub.status.busy": "2023-11-07T18:09:47.684504Z", "iopub.status.idle": "2023-11-07T18:09:47.710606Z", "shell.execute_reply": "2023-11-07T18:09:47.709924Z" }, "id": "ejrbyebDp2tA" }, "outputs": [], "source": [ "model.compile(loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True), \n", " optimizer = keras.optimizers.Adam(learning_rate = 0.0001), \n", " metrics = ['accuracy'])" ] }, { "cell_type": "markdown", "metadata": { "id": "nZT1Xlx9stP2" }, "source": [ "使用 Keras `Model.fit` 方法将模型训练 50 个周期。\n", "\n", "注:此示例模型在较少的数据点(300 个训练样本和 100 个验证样本)上进行训练,以保持本教程具有合理的训练时间。此外,此示例模型可能需要超过一个小时来训练。" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "execution": { "iopub.execute_input": "2023-11-07T18:09:47.714268Z", "iopub.status.busy": "2023-11-07T18:09:47.714014Z", "iopub.status.idle": "2023-11-07T18:58:08.285328Z", "shell.execute_reply": "2023-11-07T18:58:08.284665Z" }, "id": "VMrMUl2hOqMs" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/50\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", "I0000 00:00:1699380597.517956 67756 device_compiler.h:186] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/Unknown - 19s 19s/step - loss: 3.6965 - accuracy: 0.0000e+00" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/Unknown - 19s 456ms/step - loss: 3.1960 - accuracy: 0.0000e+00" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/Unknown - 21s 820ms/step - loss: 2.9339 - accuracy: 0.0417 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/Unknown - 22s 898ms/step - loss: 2.8138 - accuracy: 0.0938" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/Unknown - 23s 963ms/step - loss: 2.7002 - accuracy: 0.1250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/Unknown - 24s 1s/step - loss: 2.6427 - accuracy: 0.1250 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/Unknown - 25s 1s/step - loss: 2.6936 - accuracy: 0.1071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/Unknown - 27s 1s/step - loss: 2.6592 - accuracy: 0.1562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/Unknown - 28s 1s/step - loss: 2.7005 - accuracy: 0.1389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/Unknown - 29s 1s/step - loss: 2.6832 - accuracy: 0.1500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/Unknown - 30s 1s/step - loss: 2.6750 - accuracy: 0.1364" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/Unknown - 31s 1s/step - loss: 2.6706 - accuracy: 0.1354" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/Unknown - 33s 1s/step - loss: 2.6544 - accuracy: 0.1250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 14/Unknown - 34s 1s/step - loss: 2.6393 - accuracy: 0.1250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/Unknown - 35s 1s/step - loss: 2.6568 - accuracy: 0.1167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/Unknown - 36s 1s/step - loss: 2.6262 - accuracy: 0.1250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17/Unknown - 38s 1s/step - loss: 2.6230 - accuracy: 0.1176" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/Unknown - 39s 1s/step - loss: 2.6009 - accuracy: 0.1181" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/Unknown - 40s 1s/step - loss: 2.5962 - accuracy: 0.1118" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/Unknown - 41s 1s/step - loss: 2.5881 - accuracy: 0.1187" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/Unknown - 43s 1s/step - loss: 2.5722 - accuracy: 0.1190" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/Unknown - 44s 1s/step - loss: 2.5522 - accuracy: 0.1364" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 23/Unknown - 45s 1s/step - loss: 2.5302 - accuracy: 0.1304" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/Unknown - 46s 1s/step - loss: 2.5255 - accuracy: 0.1302" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/Unknown - 47s 1s/step - loss: 2.5168 - accuracy: 0.1350" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/Unknown - 48s 1s/step - loss: 2.5152 - accuracy: 0.1346" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/Unknown - 50s 1s/step - loss: 2.5238 - accuracy: 0.1296" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/Unknown - 51s 1s/step - loss: 2.5199 - accuracy: 0.1250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 29/Unknown - 52s 1s/step - loss: 2.5150 - accuracy: 0.1207" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/Unknown - 53s 1s/step - loss: 2.5185 - accuracy: 0.1167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/Unknown - 54s 1s/step - loss: 2.5100 - accuracy: 0.1169" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/Unknown - 56s 1s/step - loss: 2.5013 - accuracy: 0.1133" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/Unknown - 57s 1s/step - loss: 2.4901 - accuracy: 0.1174" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/Unknown - 58s 1s/step - loss: 2.4930 - accuracy: 0.1176" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/Unknown - 59s 1s/step - loss: 2.5000 - accuracy: 0.1143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/Unknown - 61s 1s/step - loss: 2.4871 - accuracy: 0.1181" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/Unknown - 62s 1s/step - loss: 2.4838 - accuracy: 0.1182" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/Unknown - 66s 1s/step - loss: 2.4852 - accuracy: 0.1167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 79s 2s/step - loss: 2.4852 - accuracy: 0.1167 - val_loss: 2.3667 - val_accuracy: 0.1200\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 2/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 46s - loss: 2.2112 - accuracy: 0.1250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 40s - loss: 2.2629 - accuracy: 0.1250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 40s - loss: 2.2185 - accuracy: 0.1667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 39s - loss: 2.2657 - accuracy: 0.1562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 38s - loss: 2.2363 - accuracy: 0.1750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 37s - loss: 2.3293 - accuracy: 0.1458" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 36s - loss: 2.3285 - accuracy: 0.1429" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 35s - loss: 2.2894 - accuracy: 0.1562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 34s - loss: 2.3113 - accuracy: 0.1389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 33s - loss: 2.3254 - accuracy: 0.1375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 2.3132 - accuracy: 0.1364" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 30s - loss: 2.2995 - accuracy: 0.1354" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 29s - loss: 2.3092 - accuracy: 0.1346" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 28s - loss: 2.2874 - accuracy: 0.1429" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 2.2903 - accuracy: 0.1333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 2.2841 - accuracy: 0.1328" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 2.2863 - accuracy: 0.1324" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 23s - loss: 2.3015 - accuracy: 0.1250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 22s - loss: 2.2820 - accuracy: 0.1250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 2.2733 - accuracy: 0.1312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 2.2772 - accuracy: 0.1310" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 2.2785 - accuracy: 0.1307" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 17s - loss: 2.2819 - accuracy: 0.1359" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 16s - loss: 2.2799 - accuracy: 0.1406" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 2.3034 - accuracy: 0.1350" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 2.2983 - accuracy: 0.1346" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 2.2991 - accuracy: 0.1389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 11s - loss: 2.2857 - accuracy: 0.1384" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 2.2893 - accuracy: 0.1379" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 2.2870 - accuracy: 0.1417 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 2.2957 - accuracy: 0.1452" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 2.2883 - accuracy: 0.1523" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 5s - loss: 2.2890 - accuracy: 0.1515" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 2.2831 - accuracy: 0.1544" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 2.2640 - accuracy: 0.1679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 2.2756 - accuracy: 0.1632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 2.2802 - accuracy: 0.1622" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 2.2703 - accuracy: 0.1700" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 57s 2s/step - loss: 2.2703 - accuracy: 0.1700 - val_loss: 2.2573 - val_accuracy: 0.1400\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 3/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 46s - loss: 2.0821 - accuracy: 0.1250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 42s - loss: 2.1717 - accuracy: 0.1875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 40s - loss: 2.1043 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 39s - loss: 2.0171 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 38s - loss: 2.0949 - accuracy: 0.2000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 38s - loss: 2.1174 - accuracy: 0.1875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 2.0758 - accuracy: 0.1964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 2.0900 - accuracy: 0.1875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 2.0997 - accuracy: 0.1944" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 2.1208 - accuracy: 0.1750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 2.1229 - accuracy: 0.1705" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 2.1223 - accuracy: 0.1562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 2.1258 - accuracy: 0.1538" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 2.1152 - accuracy: 0.1518" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 2.1141 - accuracy: 0.1667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 2.1095 - accuracy: 0.1719" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 2.1328 - accuracy: 0.1765" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 2.1432 - accuracy: 0.1736" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 2.1405 - accuracy: 0.1776" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 2.1291 - accuracy: 0.1813" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 2.1500 - accuracy: 0.1786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 2.1572 - accuracy: 0.1818" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 2.1578 - accuracy: 0.1739" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 2.1628 - accuracy: 0.1719" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 2.1692 - accuracy: 0.1650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 2.1665 - accuracy: 0.1635" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 2.1617 - accuracy: 0.1574" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 2.1642 - accuracy: 0.1562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 2.1685 - accuracy: 0.1509" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 2.1593 - accuracy: 0.1583 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 2.1613 - accuracy: 0.1613" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 2.1531 - accuracy: 0.1680" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 2.1542 - accuracy: 0.1705" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 2.1539 - accuracy: 0.1691" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 2.1539 - accuracy: 0.1679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 2.1582 - accuracy: 0.1667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 2.1510 - accuracy: 0.1723" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 2.1488 - accuracy: 0.1700" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 2.1488 - accuracy: 0.1700 - val_loss: 2.3543 - val_accuracy: 0.1600\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 49s - loss: 1.9970 - accuracy: 0.0000e+00" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 45s - loss: 2.0406 - accuracy: 0.0625 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 45s - loss: 2.1610 - accuracy: 0.0417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 43s - loss: 2.0614 - accuracy: 0.0938" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 42s - loss: 2.1145 - accuracy: 0.1000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 2.1093 - accuracy: 0.0833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 39s - loss: 2.1118 - accuracy: 0.1071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 38s - loss: 2.0823 - accuracy: 0.1094" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 2.0904 - accuracy: 0.0972" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 2.0858 - accuracy: 0.1125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 34s - loss: 2.0854 - accuracy: 0.1136" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 2.0963 - accuracy: 0.1146" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 2.0783 - accuracy: 0.1250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 2.0907 - accuracy: 0.1161" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 2.0730 - accuracy: 0.1250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 2.0733 - accuracy: 0.1250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 2.0545 - accuracy: 0.1324" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 2.0513 - accuracy: 0.1389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 2.0483 - accuracy: 0.1447" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 2.0707 - accuracy: 0.1437" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 2.0727 - accuracy: 0.1429" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 2.0806 - accuracy: 0.1420" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 2.0674 - accuracy: 0.1630" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 16s - loss: 2.0601 - accuracy: 0.1719" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 2.0455 - accuracy: 0.1850" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 2.0644 - accuracy: 0.1779" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 2.0515 - accuracy: 0.1852" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 2.0610 - accuracy: 0.1786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 2.0637 - accuracy: 0.1767" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 2.0747 - accuracy: 0.1708 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 2.0811 - accuracy: 0.1694" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 2.0594 - accuracy: 0.1758" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 2.0681 - accuracy: 0.1705" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 2.0599 - accuracy: 0.1801" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 2.0553 - accuracy: 0.1821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 2.0478 - accuracy: 0.1806" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 2.0427 - accuracy: 0.1757" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 2.0405 - accuracy: 0.1800" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 2.0405 - accuracy: 0.1800 - val_loss: 2.4043 - val_accuracy: 0.2100\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 5/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 46s - loss: 1.8657 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 39s - loss: 2.1058 - accuracy: 0.1875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 39s - loss: 1.9774 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 39s - loss: 2.0161 - accuracy: 0.2812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 37s - loss: 1.9998 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 37s - loss: 1.9847 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 35s - loss: 1.9784 - accuracy: 0.2679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 34s - loss: 1.9108 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 34s - loss: 1.9009 - accuracy: 0.3194" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 33s - loss: 1.9620 - accuracy: 0.2875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 1.9597 - accuracy: 0.2955" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 1.9858 - accuracy: 0.2708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 1.9621 - accuracy: 0.2596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 28s - loss: 1.9852 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 1.9917 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 1.9803 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.9719 - accuracy: 0.2426" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.9392 - accuracy: 0.2708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.9194 - accuracy: 0.2763" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 1.9220 - accuracy: 0.2750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 1.9177 - accuracy: 0.2679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.9190 - accuracy: 0.2614" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.9335 - accuracy: 0.2609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.9295 - accuracy: 0.2656" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.9217 - accuracy: 0.2650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.9118 - accuracy: 0.2644" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.9368 - accuracy: 0.2685" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.9285 - accuracy: 0.2768" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.9324 - accuracy: 0.2802" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.9277 - accuracy: 0.2792 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.9451 - accuracy: 0.2782" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.9385 - accuracy: 0.2852" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.9376 - accuracy: 0.2803" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.9240 - accuracy: 0.2868" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.9259 - accuracy: 0.2857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.9145 - accuracy: 0.2917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.9228 - accuracy: 0.2872" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.9244 - accuracy: 0.2867" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 57s 2s/step - loss: 1.9244 - accuracy: 0.2867 - val_loss: 2.0895 - val_accuracy: 0.2200\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 6/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 48s - loss: 1.9317 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 47s - loss: 1.8103 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 46s - loss: 1.8260 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 44s - loss: 1.6649 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 44s - loss: 1.7586 - accuracy: 0.2750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 42s - loss: 1.7151 - accuracy: 0.3333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 40s - loss: 1.7453 - accuracy: 0.3214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 38s - loss: 1.8098 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 1.7978 - accuracy: 0.3194" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 1.8420 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.8300 - accuracy: 0.3295" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 1.8260 - accuracy: 0.3229" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 1.8543 - accuracy: 0.3077" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 1.8622 - accuracy: 0.2946" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.8614 - accuracy: 0.3000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 1.8581 - accuracy: 0.3047" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.8405 - accuracy: 0.3088" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.8430 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.8230 - accuracy: 0.3092" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.8301 - accuracy: 0.3063" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 1.8481 - accuracy: 0.2976" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.8605 - accuracy: 0.3011" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.8453 - accuracy: 0.3098" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.8367 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.8452 - accuracy: 0.3100" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.8414 - accuracy: 0.3077" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.8512 - accuracy: 0.3009" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.8553 - accuracy: 0.3036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.8593 - accuracy: 0.2974" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.8588 - accuracy: 0.2958 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.8560 - accuracy: 0.2984" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.8536 - accuracy: 0.3008" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.8633 - accuracy: 0.3030" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.8606 - accuracy: 0.3051" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.8504 - accuracy: 0.3107" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.8445 - accuracy: 0.3160" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.8410 - accuracy: 0.3176" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.8480 - accuracy: 0.3167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 57s 2s/step - loss: 1.8480 - accuracy: 0.3167 - val_loss: 1.9638 - val_accuracy: 0.2800\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 7/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 51s - loss: 1.9740 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 41s - loss: 1.7450 - accuracy: 0.4375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 43s - loss: 1.7631 - accuracy: 0.4583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 1.7480 - accuracy: 0.4375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 1.7598 - accuracy: 0.4250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 38s - loss: 1.7668 - accuracy: 0.3958" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 1.7463 - accuracy: 0.4107" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 1.7377 - accuracy: 0.4062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 34s - loss: 1.7578 - accuracy: 0.4028" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 33s - loss: 1.7414 - accuracy: 0.4000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 1.7707 - accuracy: 0.3864" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 1.7718 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 1.7259 - accuracy: 0.3942" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 28s - loss: 1.7127 - accuracy: 0.3839" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 1.6880 - accuracy: 0.4167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 1.6908 - accuracy: 0.4141" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.7188 - accuracy: 0.3971" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.7222 - accuracy: 0.4028" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 22s - loss: 1.7335 - accuracy: 0.3882" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 1.7491 - accuracy: 0.3812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 1.7399 - accuracy: 0.3810" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.7242 - accuracy: 0.3864" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.7048 - accuracy: 0.3967" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 16s - loss: 1.7034 - accuracy: 0.3906" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 1.7141 - accuracy: 0.3800" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.6908 - accuracy: 0.3894" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.6875 - accuracy: 0.3889" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.7021 - accuracy: 0.3884" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 1.7190 - accuracy: 0.3793" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.7263 - accuracy: 0.3708 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.7355 - accuracy: 0.3669" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.7221 - accuracy: 0.3711" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.7181 - accuracy: 0.3788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.7222 - accuracy: 0.3713" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.7531 - accuracy: 0.3607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.7568 - accuracy: 0.3646" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.7640 - accuracy: 0.3581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.7556 - accuracy: 0.3633" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 1.7556 - accuracy: 0.3633 - val_loss: 2.1203 - val_accuracy: 0.2400\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 8/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 42s - loss: 2.1937 - accuracy: 0.1250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 41s - loss: 1.7839 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 41s - loss: 1.7687 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 1.6975 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 1.6966 - accuracy: 0.2750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 1.6601 - accuracy: 0.3125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 1.6183 - accuracy: 0.3571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 1.6209 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 1.6128 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 1.6478 - accuracy: 0.3875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.6585 - accuracy: 0.3864" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 1.6185 - accuracy: 0.4062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 1.6497 - accuracy: 0.4038" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 1.6790 - accuracy: 0.3839" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.6837 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 1.6961 - accuracy: 0.3594" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.6895 - accuracy: 0.3676" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.7012 - accuracy: 0.3681" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.7176 - accuracy: 0.3684" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.7067 - accuracy: 0.3688" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 1.6897 - accuracy: 0.3869" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.7038 - accuracy: 0.3807" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.6949 - accuracy: 0.3913" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.7057 - accuracy: 0.3906" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 1.7020 - accuracy: 0.3900" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.7030 - accuracy: 0.3894" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.7052 - accuracy: 0.3935" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.7020 - accuracy: 0.3929" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.6956 - accuracy: 0.3879" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.6908 - accuracy: 0.3875 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.6881 - accuracy: 0.3911" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.6753 - accuracy: 0.4023" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.6728 - accuracy: 0.4015" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.6827 - accuracy: 0.3971" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.6802 - accuracy: 0.3964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.6819 - accuracy: 0.3993" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.6900 - accuracy: 0.3953" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.6934 - accuracy: 0.3933" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 57s 2s/step - loss: 1.6934 - accuracy: 0.3933 - val_loss: 2.0532 - val_accuracy: 0.3300\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 9/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 42s - loss: 1.4094 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 40s - loss: 1.5304 - accuracy: 0.4375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 42s - loss: 1.7424 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 43s - loss: 1.7155 - accuracy: 0.4375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 41s - loss: 1.6682 - accuracy: 0.4500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 1.5834 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 1.6435 - accuracy: 0.4821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 1.6031 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 1.6350 - accuracy: 0.4583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 1.6449 - accuracy: 0.4500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.6197 - accuracy: 0.4432" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 1.5878 - accuracy: 0.4688" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 1.5565 - accuracy: 0.4712" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 1.5471 - accuracy: 0.4732" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.5866 - accuracy: 0.4583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 1.5844 - accuracy: 0.4531" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.5677 - accuracy: 0.4706" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.5726 - accuracy: 0.4653" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.5631 - accuracy: 0.4671" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 1.5865 - accuracy: 0.4500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 1.6529 - accuracy: 0.4345" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.6477 - accuracy: 0.4261" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.6504 - accuracy: 0.4185" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 16s - loss: 1.6229 - accuracy: 0.4323" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 1.6007 - accuracy: 0.4450" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.6205 - accuracy: 0.4471" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.6184 - accuracy: 0.4537" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.6236 - accuracy: 0.4464" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 1.6338 - accuracy: 0.4440" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.6213 - accuracy: 0.4542 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.6023 - accuracy: 0.4637" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.5963 - accuracy: 0.4688" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.5951 - accuracy: 0.4735" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.5890 - accuracy: 0.4743" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.5907 - accuracy: 0.4714" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.5942 - accuracy: 0.4722" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.6130 - accuracy: 0.4696" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.6195 - accuracy: 0.4633" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 1.6195 - accuracy: 0.4633 - val_loss: 1.8839 - val_accuracy: 0.3600\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 10/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 48s - loss: 1.4142 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 41s - loss: 1.6239 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 44s - loss: 1.5746 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 42s - loss: 1.6314 - accuracy: 0.4375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 41s - loss: 1.5993 - accuracy: 0.4500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 1.5159 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 1.4853 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 1.4700 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 1.4562 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 1.4818 - accuracy: 0.4875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.4607 - accuracy: 0.4659" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 1.4969 - accuracy: 0.4375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 1.5144 - accuracy: 0.4231" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 1.5239 - accuracy: 0.4107" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.5328 - accuracy: 0.4083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 1.5431 - accuracy: 0.4062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.5590 - accuracy: 0.4044" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.5612 - accuracy: 0.4097" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.5612 - accuracy: 0.4145" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.5773 - accuracy: 0.4125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 1.6072 - accuracy: 0.4048" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.5808 - accuracy: 0.4261" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.5747 - accuracy: 0.4293" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.5872 - accuracy: 0.4219" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 1.5649 - accuracy: 0.4300" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.5794 - accuracy: 0.4231" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.5955 - accuracy: 0.4120" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.6041 - accuracy: 0.4107" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 1.6117 - accuracy: 0.4009" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.5842 - accuracy: 0.4167 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.6107 - accuracy: 0.4113" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.5969 - accuracy: 0.4180" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.5908 - accuracy: 0.4242" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.5833 - accuracy: 0.4265" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.5715 - accuracy: 0.4321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.5681 - accuracy: 0.4375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.5746 - accuracy: 0.4358" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.5717 - accuracy: 0.4400" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 1.5717 - accuracy: 0.4400 - val_loss: 1.9027 - val_accuracy: 0.2900\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 11/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 47s - loss: 1.4802 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 44s - loss: 1.5340 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 43s - loss: 1.5327 - accuracy: 0.3333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 40s - loss: 1.4991 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 37s - loss: 1.4639 - accuracy: 0.4250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 36s - loss: 1.4813 - accuracy: 0.4583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 35s - loss: 1.5102 - accuracy: 0.4464" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 34s - loss: 1.4998 - accuracy: 0.4375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 33s - loss: 1.5838 - accuracy: 0.4028" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 32s - loss: 1.5916 - accuracy: 0.4000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 31s - loss: 1.5540 - accuracy: 0.4091" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 30s - loss: 1.5866 - accuracy: 0.4167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 1.5416 - accuracy: 0.4231" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 28s - loss: 1.5158 - accuracy: 0.4464" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 1.5524 - accuracy: 0.4417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 1.5328 - accuracy: 0.4609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.5458 - accuracy: 0.4632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.5175 - accuracy: 0.4722" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.5367 - accuracy: 0.4671" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 1.5451 - accuracy: 0.4688" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 1.5342 - accuracy: 0.4702" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.5376 - accuracy: 0.4773" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.5416 - accuracy: 0.4728" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 16s - loss: 1.5399 - accuracy: 0.4792" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 1.5230 - accuracy: 0.4800" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.5080 - accuracy: 0.4856" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.5126 - accuracy: 0.4815" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.5453 - accuracy: 0.4732" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 1.5404 - accuracy: 0.4655" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.5400 - accuracy: 0.4625 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.5396 - accuracy: 0.4597" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.5336 - accuracy: 0.4570" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.5455 - accuracy: 0.4545" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.5457 - accuracy: 0.4485" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.5470 - accuracy: 0.4464" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.5469 - accuracy: 0.4410" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.5347 - accuracy: 0.4493" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.5300 - accuracy: 0.4500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 1.5300 - accuracy: 0.4500 - val_loss: 1.7193 - val_accuracy: 0.3800\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 12/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 43s - loss: 1.3916 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 42s - loss: 1.5616 - accuracy: 0.4375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 43s - loss: 1.5988 - accuracy: 0.4167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 42s - loss: 1.4802 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 41s - loss: 1.3473 - accuracy: 0.5500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 1.5210 - accuracy: 0.4583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 1.5440 - accuracy: 0.4286" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 1.4466 - accuracy: 0.4844" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 1.4552 - accuracy: 0.4861" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 1.4717 - accuracy: 0.4625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.5032 - accuracy: 0.4432" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 1.5238 - accuracy: 0.4479" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 1.5139 - accuracy: 0.4615" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 1.5179 - accuracy: 0.4464" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 1.5307 - accuracy: 0.4583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 1.5365 - accuracy: 0.4453" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.4912 - accuracy: 0.4706" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.4837 - accuracy: 0.4653" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 22s - loss: 1.4766 - accuracy: 0.4539" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 1.5025 - accuracy: 0.4500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 1.5002 - accuracy: 0.4345" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.5347 - accuracy: 0.4205" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.5175 - accuracy: 0.4239" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.4993 - accuracy: 0.4219" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 1.5040 - accuracy: 0.4250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.5088 - accuracy: 0.4183" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.5235 - accuracy: 0.4074" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.5437 - accuracy: 0.4062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 1.5649 - accuracy: 0.3966" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.5535 - accuracy: 0.4000 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.5504 - accuracy: 0.4032" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.5464 - accuracy: 0.4023" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.5366 - accuracy: 0.4129" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.5226 - accuracy: 0.4265" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.5302 - accuracy: 0.4357" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.5366 - accuracy: 0.4271" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.5302 - accuracy: 0.4291" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.5294 - accuracy: 0.4333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 57s 2s/step - loss: 1.5294 - accuracy: 0.4333 - val_loss: 1.4846 - val_accuracy: 0.5000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 13/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 46s - loss: 1.4325 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 44s - loss: 1.4620 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 43s - loss: 1.4322 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 43s - loss: 1.2853 - accuracy: 0.5938" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 1.3504 - accuracy: 0.5500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 38s - loss: 1.3625 - accuracy: 0.5208" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 1.3119 - accuracy: 0.5536" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 1.2799 - accuracy: 0.5781" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 1.2756 - accuracy: 0.5694" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 1.3102 - accuracy: 0.5375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.3047 - accuracy: 0.5455" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 1.3014 - accuracy: 0.5521" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 1.3303 - accuracy: 0.5481" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 1.3598 - accuracy: 0.5268" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.3483 - accuracy: 0.5250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 1.3233 - accuracy: 0.5469" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.3388 - accuracy: 0.5441" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.3379 - accuracy: 0.5417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.3520 - accuracy: 0.5395" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.3486 - accuracy: 0.5437" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 1.3897 - accuracy: 0.5298" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.3795 - accuracy: 0.5284" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.4009 - accuracy: 0.5109" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.4108 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 1.4035 - accuracy: 0.5050" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.4085 - accuracy: 0.5096" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.4058 - accuracy: 0.5046" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.3927 - accuracy: 0.5045" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 1.4044 - accuracy: 0.5043" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.3975 - accuracy: 0.5083 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.3991 - accuracy: 0.5161" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.4217 - accuracy: 0.5078" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.4120 - accuracy: 0.5076" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.4168 - accuracy: 0.5037" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.4371 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.4451 - accuracy: 0.4965" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.4388 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.4340 - accuracy: 0.5033" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 1.4340 - accuracy: 0.5033 - val_loss: 1.4433 - val_accuracy: 0.4900\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 14/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 49s - loss: 1.7911 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 45s - loss: 1.6584 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 40s - loss: 1.5113 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 38s - loss: 1.5511 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 35s - loss: 1.5525 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 36s - loss: 1.4271 - accuracy: 0.4375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 35s - loss: 1.4522 - accuracy: 0.4286" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 35s - loss: 1.4690 - accuracy: 0.4219" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 33s - loss: 1.4325 - accuracy: 0.4306" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 33s - loss: 1.4249 - accuracy: 0.4375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 31s - loss: 1.4955 - accuracy: 0.4318" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 1.5103 - accuracy: 0.4375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 29s - loss: 1.4842 - accuracy: 0.4615" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 28s - loss: 1.4525 - accuracy: 0.4821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 1.4534 - accuracy: 0.4750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 1.4199 - accuracy: 0.4922" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.4126 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.4161 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 22s - loss: 1.3975 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 1.4309 - accuracy: 0.4938" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 1.4333 - accuracy: 0.4821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.4060 - accuracy: 0.4943" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.4094 - accuracy: 0.4783" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 16s - loss: 1.4091 - accuracy: 0.4844" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 1.4120 - accuracy: 0.4850" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.4138 - accuracy: 0.4856" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.4106 - accuracy: 0.4861" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.3945 - accuracy: 0.4911" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 1.4288 - accuracy: 0.4784" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.4256 - accuracy: 0.4833 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.4423 - accuracy: 0.4758" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.4521 - accuracy: 0.4766" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 5s - loss: 1.4581 - accuracy: 0.4697" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.4825 - accuracy: 0.4632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.4834 - accuracy: 0.4571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.4718 - accuracy: 0.4618" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.4568 - accuracy: 0.4730" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.4611 - accuracy: 0.4667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 57s 2s/step - loss: 1.4611 - accuracy: 0.4667 - val_loss: 1.6779 - val_accuracy: 0.3900\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 15/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 47s - loss: 1.2709 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 45s - loss: 1.5566 - accuracy: 0.3750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 42s - loss: 1.3816 - accuracy: 0.4583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 40s - loss: 1.5122 - accuracy: 0.4375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 39s - loss: 1.4100 - accuracy: 0.4750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 38s - loss: 1.3955 - accuracy: 0.4792" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 1.3556 - accuracy: 0.4821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 35s - loss: 1.3024 - accuracy: 0.5312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 34s - loss: 1.3242 - accuracy: 0.5139" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 33s - loss: 1.3054 - accuracy: 0.5250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 1.3251 - accuracy: 0.5114" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 30s - loss: 1.3350 - accuracy: 0.5104" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 29s - loss: 1.3185 - accuracy: 0.4904" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 28s - loss: 1.3188 - accuracy: 0.4911" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 1.3088 - accuracy: 0.4917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 1.3261 - accuracy: 0.4844" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.3300 - accuracy: 0.4926" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.3288 - accuracy: 0.4931" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 22s - loss: 1.3710 - accuracy: 0.4934" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 1.3472 - accuracy: 0.5063" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 1.3604 - accuracy: 0.4940" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.3712 - accuracy: 0.4886" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.3584 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.3384 - accuracy: 0.5104" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 1.3186 - accuracy: 0.5250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.3182 - accuracy: 0.5192" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.3226 - accuracy: 0.5185" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.3218 - accuracy: 0.5223" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 1.3252 - accuracy: 0.5259" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.3202 - accuracy: 0.5250 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.3298 - accuracy: 0.5202" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.3259 - accuracy: 0.5195" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.3356 - accuracy: 0.5152" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.3390 - accuracy: 0.5110" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.3385 - accuracy: 0.5071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.3586 - accuracy: 0.4931" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.3502 - accuracy: 0.4966" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.3541 - accuracy: 0.4967" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 57s 2s/step - loss: 1.3541 - accuracy: 0.4967 - val_loss: 1.3948 - val_accuracy: 0.5000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 16/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 52s - loss: 0.9822 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 43s - loss: 1.2492 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 44s - loss: 1.3901 - accuracy: 0.4167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 43s - loss: 1.4193 - accuracy: 0.4688" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 42s - loss: 1.4239 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 1.4042 - accuracy: 0.5208" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 39s - loss: 1.4492 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 1.4313 - accuracy: 0.5156" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 1.4500 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 1.4519 - accuracy: 0.4875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.3993 - accuracy: 0.5227" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 1.3458 - accuracy: 0.5521" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 1.2984 - accuracy: 0.5769" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 1.2840 - accuracy: 0.5804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 1.2643 - accuracy: 0.5833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 1.2809 - accuracy: 0.5781" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.2609 - accuracy: 0.5809" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.2572 - accuracy: 0.5903" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 22s - loss: 1.2593 - accuracy: 0.5921" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 1.2531 - accuracy: 0.6000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 1.2533 - accuracy: 0.6012" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.2388 - accuracy: 0.6080" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 17s - loss: 1.2484 - accuracy: 0.5978" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 16s - loss: 1.2312 - accuracy: 0.6042" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 1.2311 - accuracy: 0.6000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.2387 - accuracy: 0.5913" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.2517 - accuracy: 0.5833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.2653 - accuracy: 0.5759" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 1.2647 - accuracy: 0.5733" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.2574 - accuracy: 0.5792 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.2430 - accuracy: 0.5887" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.2445 - accuracy: 0.5859" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.2571 - accuracy: 0.5795" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.2493 - accuracy: 0.5809" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.2582 - accuracy: 0.5786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.2547 - accuracy: 0.5799" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.2577 - accuracy: 0.5777" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.2649 - accuracy: 0.5733" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 1.2649 - accuracy: 0.5733 - val_loss: 1.3639 - val_accuracy: 0.4700\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 17/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 49s - loss: 1.0141 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 45s - loss: 1.0987 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 45s - loss: 1.0804 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 1.0520 - accuracy: 0.6562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 39s - loss: 1.0866 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 38s - loss: 1.1286 - accuracy: 0.6042" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 1.2544 - accuracy: 0.5714" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 1.1784 - accuracy: 0.6094" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 34s - loss: 1.1613 - accuracy: 0.6111" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 33s - loss: 1.1844 - accuracy: 0.6000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 1.1489 - accuracy: 0.6136" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 1.1852 - accuracy: 0.5938" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 1.1909 - accuracy: 0.5962" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 1.1981 - accuracy: 0.5982" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.1921 - accuracy: 0.6000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 1.1534 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.1732 - accuracy: 0.6103" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.2009 - accuracy: 0.5972" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.1817 - accuracy: 0.6053" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.1882 - accuracy: 0.5938" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 1.1949 - accuracy: 0.5893" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.2060 - accuracy: 0.5795" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.1934 - accuracy: 0.5815" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.2379 - accuracy: 0.5625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 1.2467 - accuracy: 0.5500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.2502 - accuracy: 0.5481" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.2507 - accuracy: 0.5370" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.2385 - accuracy: 0.5402" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 1.2462 - accuracy: 0.5388" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.2398 - accuracy: 0.5417 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.2677 - accuracy: 0.5363" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.2767 - accuracy: 0.5312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.2716 - accuracy: 0.5341" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.2779 - accuracy: 0.5294" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.2756 - accuracy: 0.5321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.2811 - accuracy: 0.5278" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.2817 - accuracy: 0.5270" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.2876 - accuracy: 0.5267" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 57s 2s/step - loss: 1.2876 - accuracy: 0.5267 - val_loss: 1.5137 - val_accuracy: 0.4900\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 18/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 50s - loss: 0.9338 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 42s - loss: 1.0520 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 42s - loss: 1.1999 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 40s - loss: 1.0350 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 39s - loss: 1.0509 - accuracy: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 38s - loss: 1.0258 - accuracy: 0.7708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 1.0991 - accuracy: 0.7321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 1.0717 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 1.1094 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 1.1837 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.2312 - accuracy: 0.6591" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 1.2001 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 1.1997 - accuracy: 0.6538" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 1.1823 - accuracy: 0.6518" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 1.1688 - accuracy: 0.6500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 1.1801 - accuracy: 0.6406" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.2196 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.2413 - accuracy: 0.6111" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 22s - loss: 1.2272 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 1.2558 - accuracy: 0.6125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 1.2433 - accuracy: 0.6131" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.2426 - accuracy: 0.6136" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 17s - loss: 1.2490 - accuracy: 0.6087" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 16s - loss: 1.2409 - accuracy: 0.6094" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 1.2476 - accuracy: 0.6050" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.2510 - accuracy: 0.6058" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.2628 - accuracy: 0.5926" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.2603 - accuracy: 0.5893" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 1.2423 - accuracy: 0.5948" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.2389 - accuracy: 0.5917 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.2296 - accuracy: 0.5927" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.2414 - accuracy: 0.5898" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.2463 - accuracy: 0.5871" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.2473 - accuracy: 0.5846" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.2426 - accuracy: 0.5857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.2357 - accuracy: 0.5938" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.2313 - accuracy: 0.5946" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.2339 - accuracy: 0.5900" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 1.2339 - accuracy: 0.5900 - val_loss: 1.2411 - val_accuracy: 0.5100\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 19/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 48s - loss: 1.0784 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 43s - loss: 1.2061 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 41s - loss: 1.2601 - accuracy: 0.4583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 40s - loss: 1.1358 - accuracy: 0.5625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 39s - loss: 1.1327 - accuracy: 0.5500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 1.0352 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 1.0103 - accuracy: 0.6429" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 1.0471 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 1.0471 - accuracy: 0.6111" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 1.1156 - accuracy: 0.5875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.1679 - accuracy: 0.5795" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 1.1482 - accuracy: 0.5729" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 1.1211 - accuracy: 0.5865" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 30s - loss: 1.1155 - accuracy: 0.5893" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 29s - loss: 1.1305 - accuracy: 0.5917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 1.1349 - accuracy: 0.5859" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 1.1258 - accuracy: 0.5882" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 1.1142 - accuracy: 0.5903" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.1155 - accuracy: 0.5921" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 1.1163 - accuracy: 0.5938" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 1.1248 - accuracy: 0.6012" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 20s - loss: 1.1514 - accuracy: 0.5966" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.1394 - accuracy: 0.6033" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.1505 - accuracy: 0.6042" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.1543 - accuracy: 0.5950" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.1537 - accuracy: 0.5913" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.1477 - accuracy: 0.5880" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.1409 - accuracy: 0.5893" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.1512 - accuracy: 0.5819" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.1434 - accuracy: 0.5875 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.1319 - accuracy: 0.6008" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.1525 - accuracy: 0.5938" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.1460 - accuracy: 0.5947" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.1406 - accuracy: 0.6029" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.1387 - accuracy: 0.6000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.1508 - accuracy: 0.5903" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.1351 - accuracy: 0.6014" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.1422 - accuracy: 0.5933" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 1.1422 - accuracy: 0.5933 - val_loss: 1.2295 - val_accuracy: 0.4700\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 20/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 43s - loss: 0.5638 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 48s - loss: 0.6754 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 44s - loss: 0.8463 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 42s - loss: 0.9148 - accuracy: 0.6562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 0.8886 - accuracy: 0.6750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 0.9370 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.9677 - accuracy: 0.6786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 0.9803 - accuracy: 0.6719" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 1.0278 - accuracy: 0.6528" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 1.0069 - accuracy: 0.6500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 1.0554 - accuracy: 0.6477" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 1.0473 - accuracy: 0.6562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 1.0453 - accuracy: 0.6538" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 1.0291 - accuracy: 0.6607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.0497 - accuracy: 0.6333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 1.0515 - accuracy: 0.6328" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.0740 - accuracy: 0.6176" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.0742 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.0786 - accuracy: 0.6184" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 1.0730 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 1.0533 - accuracy: 0.6310" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.0503 - accuracy: 0.6307" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.0650 - accuracy: 0.6304" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.0689 - accuracy: 0.6302" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.0646 - accuracy: 0.6300" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.0554 - accuracy: 0.6346" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.0510 - accuracy: 0.6296" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.0372 - accuracy: 0.6384" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.0283 - accuracy: 0.6379" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.0458 - accuracy: 0.6333 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.0389 - accuracy: 0.6371" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.0424 - accuracy: 0.6367" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.0462 - accuracy: 0.6364" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.0426 - accuracy: 0.6324" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.0389 - accuracy: 0.6357" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.0437 - accuracy: 0.6319" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.0435 - accuracy: 0.6318" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.0417 - accuracy: 0.6333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 57s 2s/step - loss: 1.0417 - accuracy: 0.6333 - val_loss: 1.2528 - val_accuracy: 0.6000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 21/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 46s - loss: 1.0494 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 47s - loss: 1.0793 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 43s - loss: 1.4118 - accuracy: 0.5417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 42s - loss: 1.2516 - accuracy: 0.5938" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 1.1835 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 37s - loss: 1.0833 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 36s - loss: 1.0702 - accuracy: 0.6964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 35s - loss: 1.1265 - accuracy: 0.6562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 34s - loss: 1.1390 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 33s - loss: 1.1047 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 1.1074 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 1.1348 - accuracy: 0.6354" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 29s - loss: 1.1093 - accuracy: 0.6635" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 28s - loss: 1.0731 - accuracy: 0.6696" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 1.0762 - accuracy: 0.6750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 1.0537 - accuracy: 0.6797" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.0517 - accuracy: 0.6765" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 23s - loss: 1.0386 - accuracy: 0.6736" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 22s - loss: 1.0434 - accuracy: 0.6645" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 1.0415 - accuracy: 0.6687" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 1.0485 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.0525 - accuracy: 0.6648" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 17s - loss: 1.0501 - accuracy: 0.6685" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 16s - loss: 1.0533 - accuracy: 0.6615" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 1.0588 - accuracy: 0.6550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.0551 - accuracy: 0.6490" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.0482 - accuracy: 0.6481" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.0605 - accuracy: 0.6473" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 1.0679 - accuracy: 0.6379" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.0683 - accuracy: 0.6375 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.0678 - accuracy: 0.6371" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.0557 - accuracy: 0.6484" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.0622 - accuracy: 0.6439" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.0676 - accuracy: 0.6434" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.0738 - accuracy: 0.6357" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.0841 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.0785 - accuracy: 0.6318" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.0779 - accuracy: 0.6333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 57s 2s/step - loss: 1.0779 - accuracy: 0.6333 - val_loss: 1.2432 - val_accuracy: 0.5900\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 22/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 48s - loss: 0.8922 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 42s - loss: 0.9600 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 42s - loss: 0.9769 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 42s - loss: 0.9303 - accuracy: 0.6562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 0.8804 - accuracy: 0.6750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 0.8577 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.9135 - accuracy: 0.6607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 0.9776 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 0.9617 - accuracy: 0.6528" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.9811 - accuracy: 0.6625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.9788 - accuracy: 0.6705" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.9657 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.9619 - accuracy: 0.6731" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.9978 - accuracy: 0.6518" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 1.0023 - accuracy: 0.6500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 1.0407 - accuracy: 0.6328" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 1.0058 - accuracy: 0.6471" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 1.0107 - accuracy: 0.6458" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 1.0138 - accuracy: 0.6382" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 1.0212 - accuracy: 0.6375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 1.0260 - accuracy: 0.6310" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 1.0303 - accuracy: 0.6307" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.0284 - accuracy: 0.6304" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.0540 - accuracy: 0.6198" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 1.0532 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.0513 - accuracy: 0.6202" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.0530 - accuracy: 0.6204" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.0574 - accuracy: 0.6205" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 1.0678 - accuracy: 0.6164" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.0720 - accuracy: 0.6083 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.0673 - accuracy: 0.6129" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.0760 - accuracy: 0.6094" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.0613 - accuracy: 0.6174" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.0803 - accuracy: 0.6103" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.0802 - accuracy: 0.6036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.0866 - accuracy: 0.6007" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.0792 - accuracy: 0.6081" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.0722 - accuracy: 0.6100" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 57s 2s/step - loss: 1.0722 - accuracy: 0.6100 - val_loss: 1.1889 - val_accuracy: 0.5100\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 23/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 51s - loss: 1.0017 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 48s - loss: 0.9165 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 46s - loss: 1.0699 - accuracy: 0.5833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 43s - loss: 0.9778 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 41s - loss: 0.9746 - accuracy: 0.6500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 0.9437 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.9263 - accuracy: 0.6786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 0.9873 - accuracy: 0.6406" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 0.9870 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.9852 - accuracy: 0.6625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.9532 - accuracy: 0.6818" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.9559 - accuracy: 0.6771" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.9791 - accuracy: 0.6635" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.9608 - accuracy: 0.6696" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.9730 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.9651 - accuracy: 0.6641" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 0.9887 - accuracy: 0.6544" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 0.9899 - accuracy: 0.6528" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.9960 - accuracy: 0.6513" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.9871 - accuracy: 0.6625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.9761 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.9977 - accuracy: 0.6534" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 1.0287 - accuracy: 0.6359" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 1.0274 - accuracy: 0.6406" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 1.0250 - accuracy: 0.6350" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 1.0302 - accuracy: 0.6298" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 1.0193 - accuracy: 0.6389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 1.0345 - accuracy: 0.6295" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 1.0361 - accuracy: 0.6336" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 1.0426 - accuracy: 0.6333 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 1.0453 - accuracy: 0.6371" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 1.0521 - accuracy: 0.6367" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 1.0385 - accuracy: 0.6439" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 1.0496 - accuracy: 0.6360" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 1.0470 - accuracy: 0.6357" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 1.0311 - accuracy: 0.6458" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 1.0337 - accuracy: 0.6385" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 1.0276 - accuracy: 0.6400" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 1.0276 - accuracy: 0.6400 - val_loss: 1.1974 - val_accuracy: 0.5700\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 24/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 50s - loss: 0.6460 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 44s - loss: 1.0008 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 44s - loss: 1.0863 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 0.9599 - accuracy: 0.6562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 0.9258 - accuracy: 0.6500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 38s - loss: 0.9907 - accuracy: 0.6458" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 36s - loss: 0.9872 - accuracy: 0.6607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 35s - loss: 1.0175 - accuracy: 0.6406" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 34s - loss: 1.0280 - accuracy: 0.6528" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 33s - loss: 1.0040 - accuracy: 0.6500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 0.9760 - accuracy: 0.6591" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 0.9643 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 29s - loss: 1.0033 - accuracy: 0.6538" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 28s - loss: 0.9982 - accuracy: 0.6607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 0.9748 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 0.9946 - accuracy: 0.6484" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.9863 - accuracy: 0.6544" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 23s - loss: 0.9787 - accuracy: 0.6528" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 22s - loss: 0.9828 - accuracy: 0.6513" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 0.9635 - accuracy: 0.6625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.9464 - accuracy: 0.6726" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.9527 - accuracy: 0.6761" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.9427 - accuracy: 0.6739" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 16s - loss: 0.9546 - accuracy: 0.6719" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 0.9531 - accuracy: 0.6700" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.9639 - accuracy: 0.6587" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.9540 - accuracy: 0.6620" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.9656 - accuracy: 0.6652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 0.9659 - accuracy: 0.6638" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.9802 - accuracy: 0.6542 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.9732 - accuracy: 0.6573" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.9590 - accuracy: 0.6641" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.9672 - accuracy: 0.6591" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.9629 - accuracy: 0.6618" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.9618 - accuracy: 0.6607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.9572 - accuracy: 0.6562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.9505 - accuracy: 0.6588" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.9482 - accuracy: 0.6600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 57s 2s/step - loss: 0.9482 - accuracy: 0.6600 - val_loss: 1.1542 - val_accuracy: 0.6900\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 25/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 45s - loss: 0.9875 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 48s - loss: 0.8596 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 43s - loss: 0.7936 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 42s - loss: 0.7603 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 0.7909 - accuracy: 0.7250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 38s - loss: 0.7952 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.8278 - accuracy: 0.7143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 0.8885 - accuracy: 0.7031" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 0.8816 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.9054 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.8809 - accuracy: 0.7273" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.8775 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.8736 - accuracy: 0.7115" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.8877 - accuracy: 0.6964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.8737 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.8589 - accuracy: 0.7266" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 0.8470 - accuracy: 0.7279" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.8339 - accuracy: 0.7292" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.8392 - accuracy: 0.7303" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.8388 - accuracy: 0.7312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.8315 - accuracy: 0.7262" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.8406 - accuracy: 0.7159" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.8522 - accuracy: 0.7120" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.8496 - accuracy: 0.7135" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.8633 - accuracy: 0.7100" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.8658 - accuracy: 0.7115" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.8855 - accuracy: 0.6991" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.8844 - accuracy: 0.7009" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.8904 - accuracy: 0.6983" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.8867 - accuracy: 0.6958 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.9020 - accuracy: 0.6935" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.8941 - accuracy: 0.6953" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.8911 - accuracy: 0.6970" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.9006 - accuracy: 0.6949" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.9003 - accuracy: 0.6964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.9101 - accuracy: 0.6910" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.9099 - accuracy: 0.6858" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.9073 - accuracy: 0.6867" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 0.9073 - accuracy: 0.6867 - val_loss: 1.1290 - val_accuracy: 0.5400\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 26/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 46s - loss: 0.8096 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 42s - loss: 0.8660 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 42s - loss: 0.8528 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 43s - loss: 0.8402 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 41s - loss: 0.7992 - accuracy: 0.6750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 0.8704 - accuracy: 0.6458" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.8168 - accuracy: 0.6964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 0.8641 - accuracy: 0.6562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 0.8385 - accuracy: 0.6806" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 33s - loss: 0.8211 - accuracy: 0.6750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 0.8302 - accuracy: 0.6932" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 0.8436 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.8622 - accuracy: 0.6731" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.8581 - accuracy: 0.6786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 0.8719 - accuracy: 0.6750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 0.8738 - accuracy: 0.6719" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.8621 - accuracy: 0.6765" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.8464 - accuracy: 0.6806" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.8507 - accuracy: 0.6842" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.8585 - accuracy: 0.6812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.8794 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.8792 - accuracy: 0.6705" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.8821 - accuracy: 0.6685" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.8646 - accuracy: 0.6823" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.8693 - accuracy: 0.6750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.8705 - accuracy: 0.6779" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.8660 - accuracy: 0.6806" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.8747 - accuracy: 0.6741" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.8768 - accuracy: 0.6724" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.8919 - accuracy: 0.6667 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.8970 - accuracy: 0.6653" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.9014 - accuracy: 0.6680" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.8977 - accuracy: 0.6705" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.8907 - accuracy: 0.6765" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.8752 - accuracy: 0.6821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.8702 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.8716 - accuracy: 0.6858" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.8753 - accuracy: 0.6833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 0.8753 - accuracy: 0.6833 - val_loss: 0.9988 - val_accuracy: 0.6100\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 27/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 51s - loss: 0.6911 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 41s - loss: 0.9579 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 38s - loss: 0.8748 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 37s - loss: 0.8269 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 37s - loss: 0.8342 - accuracy: 0.6750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 36s - loss: 0.7637 - accuracy: 0.7292" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 35s - loss: 0.7842 - accuracy: 0.7143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 35s - loss: 0.8245 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 34s - loss: 0.8479 - accuracy: 0.6944" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 32s - loss: 0.8049 - accuracy: 0.7250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 0.8135 - accuracy: 0.7273" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 30s - loss: 0.8052 - accuracy: 0.7292" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 29s - loss: 0.8298 - accuracy: 0.7308" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 28s - loss: 0.8364 - accuracy: 0.7232" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 0.8532 - accuracy: 0.7167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 0.8681 - accuracy: 0.7031" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.8572 - accuracy: 0.7206" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.8490 - accuracy: 0.7222" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 22s - loss: 0.8345 - accuracy: 0.7368" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 0.8350 - accuracy: 0.7312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.8196 - accuracy: 0.7440" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.8195 - accuracy: 0.7386" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.8448 - accuracy: 0.7228" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 16s - loss: 0.8616 - accuracy: 0.7135" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 0.8571 - accuracy: 0.7150" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.8510 - accuracy: 0.7212" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.8582 - accuracy: 0.7222" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.8467 - accuracy: 0.7277" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 0.8598 - accuracy: 0.7198" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.8554 - accuracy: 0.7208 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.8670 - accuracy: 0.7097" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.8721 - accuracy: 0.7031" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.8646 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.8670 - accuracy: 0.7059" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.8707 - accuracy: 0.7036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.8659 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.8862 - accuracy: 0.7027" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.8845 - accuracy: 0.7033" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 0.8845 - accuracy: 0.7033 - val_loss: 1.1641 - val_accuracy: 0.5500\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 28/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 46s - loss: 1.2565 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 39s - loss: 1.0940 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 38s - loss: 0.8953 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 36s - loss: 0.9561 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 36s - loss: 0.9557 - accuracy: 0.7250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 36s - loss: 0.9616 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 36s - loss: 0.9224 - accuracy: 0.7321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 35s - loss: 0.9668 - accuracy: 0.7031" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 34s - loss: 1.0082 - accuracy: 0.6944" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 32s - loss: 1.0448 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 1.0176 - accuracy: 0.6932" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 30s - loss: 1.0148 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 29s - loss: 0.9801 - accuracy: 0.7019" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 28s - loss: 0.9661 - accuracy: 0.7054" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 0.9541 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 0.9527 - accuracy: 0.6953" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.9430 - accuracy: 0.6912" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.9210 - accuracy: 0.7014" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 22s - loss: 0.9597 - accuracy: 0.6711" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 0.9888 - accuracy: 0.6562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.9821 - accuracy: 0.6548" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.9607 - accuracy: 0.6648" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.9765 - accuracy: 0.6522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.9822 - accuracy: 0.6458" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 0.9802 - accuracy: 0.6450" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.9695 - accuracy: 0.6538" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.9590 - accuracy: 0.6574" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.9482 - accuracy: 0.6607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 0.9280 - accuracy: 0.6724" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.9143 - accuracy: 0.6792 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.9129 - accuracy: 0.6815" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.9075 - accuracy: 0.6836" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.9137 - accuracy: 0.6780" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.9110 - accuracy: 0.6801" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.9020 - accuracy: 0.6821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.9001 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.9015 - accuracy: 0.6892" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.9075 - accuracy: 0.6867" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 57s 2s/step - loss: 0.9075 - accuracy: 0.6867 - val_loss: 1.0183 - val_accuracy: 0.6600\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 29/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 52s - loss: 0.7224 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 47s - loss: 0.7564 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 45s - loss: 0.7279 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 42s - loss: 0.7666 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 39s - loss: 0.6804 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 0.7676 - accuracy: 0.7708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 0.7648 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 0.8801 - accuracy: 0.7344" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 0.8406 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 33s - loss: 0.8460 - accuracy: 0.7250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 0.8511 - accuracy: 0.7159" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 0.8667 - accuracy: 0.6979" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.8417 - accuracy: 0.7019" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.8349 - accuracy: 0.7054" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 0.8191 - accuracy: 0.7167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 0.8430 - accuracy: 0.6953" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.8330 - accuracy: 0.6985" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.8464 - accuracy: 0.7014" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.8236 - accuracy: 0.7171" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 0.8372 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.8310 - accuracy: 0.6964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.8189 - accuracy: 0.6932" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.8202 - accuracy: 0.6902" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.8281 - accuracy: 0.6823" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 0.8138 - accuracy: 0.6900" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.8117 - accuracy: 0.6923" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.8252 - accuracy: 0.6852" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.8485 - accuracy: 0.6741" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 0.8717 - accuracy: 0.6681" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.8661 - accuracy: 0.6708 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.8639 - accuracy: 0.6734" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.8716 - accuracy: 0.6680" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.8711 - accuracy: 0.6705" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.8674 - accuracy: 0.6728" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.8694 - accuracy: 0.6750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.8711 - accuracy: 0.6701" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.8727 - accuracy: 0.6689" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.8817 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 0.8817 - accuracy: 0.6667 - val_loss: 0.9545 - val_accuracy: 0.6600\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 30/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 56s - loss: 0.5804 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 42s - loss: 0.5510 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 40s - loss: 0.6367 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 39s - loss: 0.7404 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 0.6847 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 0.7298 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 0.7711 - accuracy: 0.6964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 35s - loss: 0.7959 - accuracy: 0.6719" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 0.8327 - accuracy: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 33s - loss: 0.8403 - accuracy: 0.6625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 0.8304 - accuracy: 0.6818" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 0.8339 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.8527 - accuracy: 0.6827" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 28s - loss: 0.8532 - accuracy: 0.6786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 0.8398 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 0.8578 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 24s - loss: 0.8355 - accuracy: 0.6985" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 23s - loss: 0.8433 - accuracy: 0.7014" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 22s - loss: 0.8263 - accuracy: 0.7105" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 0.8106 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.7991 - accuracy: 0.7202" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.8233 - accuracy: 0.7159" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.8345 - accuracy: 0.7120" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 16s - loss: 0.8517 - accuracy: 0.6979" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 0.8582 - accuracy: 0.6950" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.8648 - accuracy: 0.6923" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.8538 - accuracy: 0.6991" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.8453 - accuracy: 0.7054" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 0.8432 - accuracy: 0.7069" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.8569 - accuracy: 0.7000 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.8566 - accuracy: 0.7016" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.8657 - accuracy: 0.6953" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.8621 - accuracy: 0.6970" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.8500 - accuracy: 0.7022" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.8388 - accuracy: 0.7071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.8433 - accuracy: 0.7049" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.8355 - accuracy: 0.7095" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.8307 - accuracy: 0.7100" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 57s 2s/step - loss: 0.8307 - accuracy: 0.7100 - val_loss: 1.0712 - val_accuracy: 0.6000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 31/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 45s - loss: 0.8650 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 48s - loss: 0.8382 - accuracy: 0.5625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 44s - loss: 0.9394 - accuracy: 0.5417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 1.0044 - accuracy: 0.5312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 42s - loss: 1.0330 - accuracy: 0.4750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 41s - loss: 0.9756 - accuracy: 0.5208" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 40s - loss: 0.9708 - accuracy: 0.5357" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 38s - loss: 0.9304 - accuracy: 0.5625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 0.8652 - accuracy: 0.6111" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 0.8280 - accuracy: 0.6375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.8827 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.8863 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 0.8800 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.8579 - accuracy: 0.6429" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.8498 - accuracy: 0.6500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.8275 - accuracy: 0.6641" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 0.8327 - accuracy: 0.6618" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 25s - loss: 0.8139 - accuracy: 0.6736" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.8182 - accuracy: 0.6711" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.8056 - accuracy: 0.6750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.7978 - accuracy: 0.6845" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.7785 - accuracy: 0.6932" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.7728 - accuracy: 0.7011" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.7846 - accuracy: 0.7031" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.7943 - accuracy: 0.6950" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.7929 - accuracy: 0.6971" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.7780 - accuracy: 0.7037" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.7891 - accuracy: 0.7009" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.7783 - accuracy: 0.7069" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.7852 - accuracy: 0.7042 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.7824 - accuracy: 0.6976" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.7887 - accuracy: 0.6953" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.7851 - accuracy: 0.7008" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.7843 - accuracy: 0.6985" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.7859 - accuracy: 0.7000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.7949 - accuracy: 0.6979" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.8030 - accuracy: 0.6959" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.8055 - accuracy: 0.6933" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 57s 2s/step - loss: 0.8055 - accuracy: 0.6933 - val_loss: 0.8558 - val_accuracy: 0.6800\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 32/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 48s - loss: 0.3257 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 47s - loss: 0.5293 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 43s - loss: 0.5845 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 0.6284 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 0.6725 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 38s - loss: 0.7701 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 0.7596 - accuracy: 0.7679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 0.7808 - accuracy: 0.7656" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 34s - loss: 0.8249 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 33s - loss: 0.7874 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 0.7912 - accuracy: 0.7386" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 0.7754 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.7840 - accuracy: 0.7308" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 28s - loss: 0.7576 - accuracy: 0.7411" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 0.7605 - accuracy: 0.7417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 0.7523 - accuracy: 0.7422" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.7743 - accuracy: 0.7279" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.7804 - accuracy: 0.7153" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.7732 - accuracy: 0.7171" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.7703 - accuracy: 0.7125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.7572 - accuracy: 0.7202" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.7731 - accuracy: 0.7216" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.7860 - accuracy: 0.7120" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.7828 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 0.7748 - accuracy: 0.7150" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.7565 - accuracy: 0.7260" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.7518 - accuracy: 0.7315" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.7485 - accuracy: 0.7321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 0.7502 - accuracy: 0.7284" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.7446 - accuracy: 0.7292 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.7329 - accuracy: 0.7339" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.7412 - accuracy: 0.7305" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.7368 - accuracy: 0.7348" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.7401 - accuracy: 0.7353" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.7451 - accuracy: 0.7321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.7363 - accuracy: 0.7361" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.7360 - accuracy: 0.7365" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.7328 - accuracy: 0.7400" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 0.7328 - accuracy: 0.7400 - val_loss: 0.9174 - val_accuracy: 0.6900\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 33/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 46s - loss: 1.1981 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 44s - loss: 1.0715 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 41s - loss: 0.9880 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 0.8621 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 0.9328 - accuracy: 0.6500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 0.8861 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.8461 - accuracy: 0.7143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 0.8600 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 0.8354 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.7991 - accuracy: 0.7250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.8059 - accuracy: 0.7159" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 0.7679 - accuracy: 0.7396" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.7394 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.7744 - accuracy: 0.7232" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.7871 - accuracy: 0.7167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.7822 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.7589 - accuracy: 0.7353" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.7561 - accuracy: 0.7361" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.7454 - accuracy: 0.7368" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.7532 - accuracy: 0.7375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.7359 - accuracy: 0.7440" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.7296 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.7510 - accuracy: 0.7391" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.7529 - accuracy: 0.7344" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 0.7327 - accuracy: 0.7450" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.7296 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.7316 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.7581 - accuracy: 0.7366" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.7372 - accuracy: 0.7457" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.7289 - accuracy: 0.7500 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.7305 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.7240 - accuracy: 0.7578" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.7312 - accuracy: 0.7538" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.7226 - accuracy: 0.7537" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.7090 - accuracy: 0.7607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.7139 - accuracy: 0.7569" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.7269 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.7281 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 0.7281 - accuracy: 0.7500 - val_loss: 0.8336 - val_accuracy: 0.7100\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 34/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 48s - loss: 0.4184 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 46s - loss: 0.4862 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 44s - loss: 0.4652 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 43s - loss: 0.4458 - accuracy: 0.9375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 0.5050 - accuracy: 0.9250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 0.6053 - accuracy: 0.8958" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.5796 - accuracy: 0.9107" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 0.6223 - accuracy: 0.8594" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 0.7025 - accuracy: 0.8194" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.6896 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 0.7452 - accuracy: 0.7727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 0.7309 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.7420 - accuracy: 0.7596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.7351 - accuracy: 0.7589" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 0.7226 - accuracy: 0.7667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 0.7307 - accuracy: 0.7656" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.7498 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.7624 - accuracy: 0.7431" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.7421 - accuracy: 0.7566" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 0.7245 - accuracy: 0.7625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.7227 - accuracy: 0.7560" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.7171 - accuracy: 0.7614" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.7071 - accuracy: 0.7663" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.7067 - accuracy: 0.7604" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 0.7026 - accuracy: 0.7550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.7085 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.7264 - accuracy: 0.7361" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.7208 - accuracy: 0.7366" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 0.7388 - accuracy: 0.7284" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.7454 - accuracy: 0.7208 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.7402 - accuracy: 0.7258" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.7410 - accuracy: 0.7227" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.7585 - accuracy: 0.7197" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.7541 - accuracy: 0.7206" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.7445 - accuracy: 0.7250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.7562 - accuracy: 0.7222" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.7661 - accuracy: 0.7230" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.7645 - accuracy: 0.7233" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 0.7645 - accuracy: 0.7233 - val_loss: 0.8816 - val_accuracy: 0.7100\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 35/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 48s - loss: 0.5778 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 42s - loss: 0.6939 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 45s - loss: 0.6533 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 42s - loss: 0.6179 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 0.6460 - accuracy: 0.8250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 0.6350 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.6419 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 0.6566 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 0.6658 - accuracy: 0.7778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.6519 - accuracy: 0.7875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 0.6238 - accuracy: 0.8068" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 0.6188 - accuracy: 0.8021" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.6565 - accuracy: 0.7788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.6484 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.6611 - accuracy: 0.7833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 0.6431 - accuracy: 0.7969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.6317 - accuracy: 0.8015" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.6370 - accuracy: 0.7986" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.6557 - accuracy: 0.7961" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.6552 - accuracy: 0.7937" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.6610 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.6557 - accuracy: 0.7955" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.6656 - accuracy: 0.7880" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.6731 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 0.6840 - accuracy: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.6666 - accuracy: 0.7837" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.6708 - accuracy: 0.7870" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.6614 - accuracy: 0.7902" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 0.6738 - accuracy: 0.7759" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.6725 - accuracy: 0.7667 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.6990 - accuracy: 0.7540" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.6973 - accuracy: 0.7539" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.6981 - accuracy: 0.7576" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.6980 - accuracy: 0.7610" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.7112 - accuracy: 0.7607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.7225 - accuracy: 0.7535" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.7308 - accuracy: 0.7466" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.7383 - accuracy: 0.7433" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 0.7383 - accuracy: 0.7433 - val_loss: 0.8970 - val_accuracy: 0.6900\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 36/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 46s - loss: 0.4890 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 47s - loss: 0.4776 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 45s - loss: 0.4129 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 45s - loss: 0.5384 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 43s - loss: 0.5202 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 41s - loss: 0.5472 - accuracy: 0.8542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 39s - loss: 0.5355 - accuracy: 0.8571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 38s - loss: 0.6318 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 0.6858 - accuracy: 0.7778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 35s - loss: 0.6866 - accuracy: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.6648 - accuracy: 0.7841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.6732 - accuracy: 0.7708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.6888 - accuracy: 0.7596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.6715 - accuracy: 0.7679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.6554 - accuracy: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 0.6801 - accuracy: 0.7734" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.6953 - accuracy: 0.7647" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.6764 - accuracy: 0.7778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.7347 - accuracy: 0.7566" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 0.7514 - accuracy: 0.7437" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.7379 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.7645 - accuracy: 0.7443" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.7470 - accuracy: 0.7554" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 16s - loss: 0.7559 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 0.7527 - accuracy: 0.7550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.7482 - accuracy: 0.7548" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.7593 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.7665 - accuracy: 0.7411" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 0.7737 - accuracy: 0.7414" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.7932 - accuracy: 0.7417 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.7847 - accuracy: 0.7460" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.7854 - accuracy: 0.7422" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.7895 - accuracy: 0.7348" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.7850 - accuracy: 0.7390" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.7752 - accuracy: 0.7393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.7882 - accuracy: 0.7326" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.7922 - accuracy: 0.7264" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.7897 - accuracy: 0.7267" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 57s 2s/step - loss: 0.7897 - accuracy: 0.7267 - val_loss: 1.2212 - val_accuracy: 0.5500\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 37/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 48s - loss: 0.1324 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 47s - loss: 0.2869 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 42s - loss: 0.4146 - accuracy: 0.9167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 42s - loss: 0.5684 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 42s - loss: 0.5210 - accuracy: 0.8500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 0.6365 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.6479 - accuracy: 0.8036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 0.6631 - accuracy: 0.7969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 0.6525 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.6858 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.6848 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.6712 - accuracy: 0.7604" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 0.6831 - accuracy: 0.7596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.7016 - accuracy: 0.7589" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.6945 - accuracy: 0.7583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.6797 - accuracy: 0.7578" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 26s - loss: 0.6709 - accuracy: 0.7647" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.6822 - accuracy: 0.7639" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.7039 - accuracy: 0.7566" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.7266 - accuracy: 0.7437" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.7156 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.7056 - accuracy: 0.7557" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.7085 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.7094 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 0.6989 - accuracy: 0.7600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.6953 - accuracy: 0.7644" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.6898 - accuracy: 0.7639" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.7029 - accuracy: 0.7589" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.6994 - accuracy: 0.7586" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.7021 - accuracy: 0.7500 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.7039 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.7048 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.6958 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.6856 - accuracy: 0.7574" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.6933 - accuracy: 0.7571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.6927 - accuracy: 0.7604" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.6933 - accuracy: 0.7601" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.6962 - accuracy: 0.7600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 0.6962 - accuracy: 0.7600 - val_loss: 0.8390 - val_accuracy: 0.6200\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 38/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 45s - loss: 0.5621 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 45s - loss: 0.4346 - accuracy: 0.9375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 44s - loss: 0.4345 - accuracy: 0.9167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 43s - loss: 0.4804 - accuracy: 0.9062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 42s - loss: 0.5505 - accuracy: 0.8500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 0.5698 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.6036 - accuracy: 0.8214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 0.6224 - accuracy: 0.7969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 0.6265 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.6224 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.5936 - accuracy: 0.8068" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.6177 - accuracy: 0.8021" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.6274 - accuracy: 0.7981" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.6057 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.6533 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 0.6566 - accuracy: 0.7969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.6621 - accuracy: 0.7868" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.6447 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 22s - loss: 0.6388 - accuracy: 0.8026" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 0.6305 - accuracy: 0.8062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.6218 - accuracy: 0.8095" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.6154 - accuracy: 0.8068" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.6167 - accuracy: 0.8098" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 16s - loss: 0.6237 - accuracy: 0.8021" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 0.6231 - accuracy: 0.8050" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.6317 - accuracy: 0.7933" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.6430 - accuracy: 0.7870" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.6417 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 0.6470 - accuracy: 0.7845" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.6476 - accuracy: 0.7833 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.6477 - accuracy: 0.7823" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.6488 - accuracy: 0.7852" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.6522 - accuracy: 0.7803" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.6621 - accuracy: 0.7757" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.6719 - accuracy: 0.7679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.6715 - accuracy: 0.7708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.6669 - accuracy: 0.7736" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.6660 - accuracy: 0.7733" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 57s 2s/step - loss: 0.6660 - accuracy: 0.7733 - val_loss: 0.8266 - val_accuracy: 0.7400\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 39/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 49s - loss: 0.3936 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 43s - loss: 0.4497 - accuracy: 0.9375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 42s - loss: 0.5172 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 0.5912 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 39s - loss: 0.5145 - accuracy: 0.8500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 38s - loss: 0.4967 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 0.5584 - accuracy: 0.8571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 0.6524 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 34s - loss: 0.6442 - accuracy: 0.8056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 33s - loss: 0.6346 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 0.6895 - accuracy: 0.7727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 0.6760 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.6911 - accuracy: 0.7692" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.6877 - accuracy: 0.7589" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.6790 - accuracy: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 0.6633 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.6700 - accuracy: 0.7868" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.6738 - accuracy: 0.7847" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 22s - loss: 0.6796 - accuracy: 0.7763" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 0.6648 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.6669 - accuracy: 0.7798" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.6676 - accuracy: 0.7727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.6670 - accuracy: 0.7717" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 16s - loss: 0.6752 - accuracy: 0.7656" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 0.6794 - accuracy: 0.7600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.6976 - accuracy: 0.7452" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.6900 - accuracy: 0.7546" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 11s - loss: 0.6785 - accuracy: 0.7634" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 0.6698 - accuracy: 0.7716" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.6732 - accuracy: 0.7708 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.6904 - accuracy: 0.7581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.6825 - accuracy: 0.7617" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.6806 - accuracy: 0.7614" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.6918 - accuracy: 0.7537" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.6935 - accuracy: 0.7536" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.6901 - accuracy: 0.7569" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.6852 - accuracy: 0.7601" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.6839 - accuracy: 0.7600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 0.6839 - accuracy: 0.7600 - val_loss: 1.0613 - val_accuracy: 0.6500\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 40/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 42s - loss: 0.5258 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 44s - loss: 0.6197 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 41s - loss: 0.5749 - accuracy: 0.9167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 40s - loss: 0.6863 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 38s - loss: 0.6422 - accuracy: 0.8500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 37s - loss: 0.6266 - accuracy: 0.8542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 0.6282 - accuracy: 0.8393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 0.6151 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 34s - loss: 0.6526 - accuracy: 0.8194" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 33s - loss: 0.6794 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 0.6977 - accuracy: 0.7955" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 0.6912 - accuracy: 0.8021" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.6944 - accuracy: 0.7981" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.6686 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.6540 - accuracy: 0.8083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.6426 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.6942 - accuracy: 0.7794" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.6866 - accuracy: 0.7847" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.6683 - accuracy: 0.7895" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 0.6650 - accuracy: 0.7875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.6638 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.6554 - accuracy: 0.7898" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.6437 - accuracy: 0.7935" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.6285 - accuracy: 0.7969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 0.6397 - accuracy: 0.7850" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.6305 - accuracy: 0.7885" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.6393 - accuracy: 0.7870" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.6456 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.6457 - accuracy: 0.7845" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.6361 - accuracy: 0.7917 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.6428 - accuracy: 0.7903" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.6364 - accuracy: 0.7930" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.6387 - accuracy: 0.7955" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.6523 - accuracy: 0.7868" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.6535 - accuracy: 0.7821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.6536 - accuracy: 0.7847" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.6608 - accuracy: 0.7804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.6635 - accuracy: 0.7733" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 0.6635 - accuracy: 0.7733 - val_loss: 0.8927 - val_accuracy: 0.6700\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 41/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 51s - loss: 0.2338 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 39s - loss: 0.3550 - accuracy: 0.9375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 39s - loss: 0.4899 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 40s - loss: 0.5505 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 39s - loss: 0.5070 - accuracy: 0.8250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 37s - loss: 0.4767 - accuracy: 0.8542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 0.5098 - accuracy: 0.8214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 35s - loss: 0.5629 - accuracy: 0.7969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 34s - loss: 0.5350 - accuracy: 0.8056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 32s - loss: 0.5387 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 31s - loss: 0.5739 - accuracy: 0.7955" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 30s - loss: 0.5895 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 29s - loss: 0.6124 - accuracy: 0.7885" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 28s - loss: 0.6127 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 0.6050 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 0.5947 - accuracy: 0.7891" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.5937 - accuracy: 0.7941" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 23s - loss: 0.6047 - accuracy: 0.7778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 22s - loss: 0.6221 - accuracy: 0.7697" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 0.6076 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.6202 - accuracy: 0.7798" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.6188 - accuracy: 0.7841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 17s - loss: 0.6069 - accuracy: 0.7880" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 16s - loss: 0.5989 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 0.5951 - accuracy: 0.7950" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.5844 - accuracy: 0.8029" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.5868 - accuracy: 0.8009" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.5857 - accuracy: 0.8036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 0.5972 - accuracy: 0.8017" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.5996 - accuracy: 0.8000 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.6010 - accuracy: 0.8024" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.5944 - accuracy: 0.8047" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.5937 - accuracy: 0.7992" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.5872 - accuracy: 0.8015" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.5858 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.5843 - accuracy: 0.7986" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.5957 - accuracy: 0.7939" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.5997 - accuracy: 0.7933" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 57s 2s/step - loss: 0.5997 - accuracy: 0.7933 - val_loss: 0.8795 - val_accuracy: 0.7100\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 42/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 46s - loss: 0.2972 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 43s - loss: 0.6910 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 43s - loss: 0.5633 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 0.5158 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 0.4905 - accuracy: 0.9000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 0.4940 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.5067 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 0.4994 - accuracy: 0.8594" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 0.5012 - accuracy: 0.8611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.5243 - accuracy: 0.8375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 0.5641 - accuracy: 0.8182" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 0.5576 - accuracy: 0.8229" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.5656 - accuracy: 0.8173" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 28s - loss: 0.5567 - accuracy: 0.8304" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 0.5577 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 0.5697 - accuracy: 0.8203" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.5583 - accuracy: 0.8235" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.5850 - accuracy: 0.8056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 22s - loss: 0.5965 - accuracy: 0.7961" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 0.6055 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.5911 - accuracy: 0.8036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.6008 - accuracy: 0.8011" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 17s - loss: 0.5880 - accuracy: 0.8098" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 16s - loss: 0.5902 - accuracy: 0.8073" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 0.5850 - accuracy: 0.8100" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.5845 - accuracy: 0.8077" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.5809 - accuracy: 0.8102" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.5865 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 0.5836 - accuracy: 0.8190" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.5871 - accuracy: 0.8167 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.5992 - accuracy: 0.8145" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.6127 - accuracy: 0.8047" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.6167 - accuracy: 0.8068" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.6226 - accuracy: 0.8051" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.6177 - accuracy: 0.8071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.6150 - accuracy: 0.8056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.6066 - accuracy: 0.8108" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.6059 - accuracy: 0.8100" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 57s 2s/step - loss: 0.6059 - accuracy: 0.8100 - val_loss: 0.9292 - val_accuracy: 0.6600\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 43/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 46s - loss: 0.6453 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 47s - loss: 0.6627 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 44s - loss: 0.9156 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 42s - loss: 0.7892 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 39s - loss: 0.7592 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 38s - loss: 0.8444 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 0.7699 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 0.7442 - accuracy: 0.7656" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 0.7618 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.7351 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 0.7203 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 0.7008 - accuracy: 0.7604" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.6845 - accuracy: 0.7596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.6973 - accuracy: 0.7411" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 0.7089 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 0.7180 - accuracy: 0.7422" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.7003 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.6995 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.6842 - accuracy: 0.7566" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.6655 - accuracy: 0.7688" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.6719 - accuracy: 0.7619" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.6820 - accuracy: 0.7443" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.6865 - accuracy: 0.7391" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.6818 - accuracy: 0.7448" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.6666 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.6618 - accuracy: 0.7548" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.6582 - accuracy: 0.7593" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.6657 - accuracy: 0.7634" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.6632 - accuracy: 0.7672" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.6726 - accuracy: 0.7625 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.6642 - accuracy: 0.7661" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.6545 - accuracy: 0.7734" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.6561 - accuracy: 0.7727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.6617 - accuracy: 0.7684" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.6550 - accuracy: 0.7714" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.6485 - accuracy: 0.7743" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.6555 - accuracy: 0.7703" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.6559 - accuracy: 0.7667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 0.6559 - accuracy: 0.7667 - val_loss: 0.8097 - val_accuracy: 0.6900\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 44/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 50s - loss: 0.4305 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 50s - loss: 0.5865 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 42s - loss: 0.6580 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 0.6555 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 0.6444 - accuracy: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 0.6014 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 37s - loss: 0.5715 - accuracy: 0.8393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 0.5650 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 0.5538 - accuracy: 0.8472" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.5980 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 0.5906 - accuracy: 0.8068" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 0.5612 - accuracy: 0.8229" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.5639 - accuracy: 0.8173" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.6155 - accuracy: 0.7946" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 0.6317 - accuracy: 0.7833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 0.6107 - accuracy: 0.7969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.5920 - accuracy: 0.8015" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.5793 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.5945 - accuracy: 0.7895" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 0.5897 - accuracy: 0.7937" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.6018 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.6083 - accuracy: 0.7898" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.5956 - accuracy: 0.7989" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.5826 - accuracy: 0.8073" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 0.5841 - accuracy: 0.8050" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.5803 - accuracy: 0.8029" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.5732 - accuracy: 0.8056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.5783 - accuracy: 0.8036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 0.5887 - accuracy: 0.8017" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.5960 - accuracy: 0.8000 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.6051 - accuracy: 0.7944" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.6030 - accuracy: 0.7930" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.6024 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.6047 - accuracy: 0.7904" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.5994 - accuracy: 0.7929" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.5953 - accuracy: 0.7986" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.5956 - accuracy: 0.7973" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.5902 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 0.5902 - accuracy: 0.8000 - val_loss: 0.8116 - val_accuracy: 0.6800\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 45/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 49s - loss: 0.4502 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 45s - loss: 0.6006 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 41s - loss: 0.5909 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 40s - loss: 0.5703 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 39s - loss: 0.5515 - accuracy: 0.8000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 38s - loss: 0.5373 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 36s - loss: 0.5777 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 35s - loss: 0.5536 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 34s - loss: 0.5430 - accuracy: 0.8194" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 33s - loss: 0.5296 - accuracy: 0.8250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 0.5325 - accuracy: 0.8295" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 0.5400 - accuracy: 0.8229" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.5250 - accuracy: 0.8365" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 28s - loss: 0.5351 - accuracy: 0.8304" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 0.5243 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 0.5290 - accuracy: 0.8281" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.5341 - accuracy: 0.8162" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.5263 - accuracy: 0.8264" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 22s - loss: 0.5194 - accuracy: 0.8289" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 0.5083 - accuracy: 0.8313" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.5069 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.5396 - accuracy: 0.8182" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.5414 - accuracy: 0.8207" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 16s - loss: 0.5413 - accuracy: 0.8229" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 0.5343 - accuracy: 0.8300" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.5326 - accuracy: 0.8365" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.5369 - accuracy: 0.8380" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.5315 - accuracy: 0.8393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 0.5441 - accuracy: 0.8319" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.5397 - accuracy: 0.8333 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.5359 - accuracy: 0.8347" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.5321 - accuracy: 0.8359" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.5328 - accuracy: 0.8371" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.5362 - accuracy: 0.8382" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.5416 - accuracy: 0.8357" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.5469 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.5489 - accuracy: 0.8311" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.5465 - accuracy: 0.8300" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 0.5465 - accuracy: 0.8300 - val_loss: 0.8406 - val_accuracy: 0.6700\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 46/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 40s - loss: 0.2503 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 44s - loss: 0.4210 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 43s - loss: 0.3505 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 42s - loss: 0.3447 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 0.5107 - accuracy: 0.8250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 0.5316 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.5152 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 36s - loss: 0.5023 - accuracy: 0.7969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 0.5245 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.5127 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.5182 - accuracy: 0.8182" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 0.5087 - accuracy: 0.8229" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.5101 - accuracy: 0.8173" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.5063 - accuracy: 0.8304" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.5126 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 0.5052 - accuracy: 0.8359" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.5029 - accuracy: 0.8382" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.5241 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.5136 - accuracy: 0.8421" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.5150 - accuracy: 0.8375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.5151 - accuracy: 0.8393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.5326 - accuracy: 0.8295" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.5341 - accuracy: 0.8315" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.5461 - accuracy: 0.8177" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 0.5439 - accuracy: 0.8200" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.5580 - accuracy: 0.8077" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.5739 - accuracy: 0.8056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.5868 - accuracy: 0.7991" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.5898 - accuracy: 0.7974" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.5896 - accuracy: 0.7958 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.5898 - accuracy: 0.7903" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.5950 - accuracy: 0.7891" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.5990 - accuracy: 0.7841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.5941 - accuracy: 0.7868" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.5923 - accuracy: 0.7893" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.6016 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.6149 - accuracy: 0.7872" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.6235 - accuracy: 0.7833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 0.6235 - accuracy: 0.7833 - val_loss: 1.1075 - val_accuracy: 0.6000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 47/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 49s - loss: 0.5207 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 46s - loss: 0.4219 - accuracy: 0.9375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 45s - loss: 0.4518 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 45s - loss: 0.5614 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 42s - loss: 0.5807 - accuracy: 0.8250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 40s - loss: 0.6267 - accuracy: 0.8125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 39s - loss: 0.6193 - accuracy: 0.8036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 0.7407 - accuracy: 0.7656" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 0.6933 - accuracy: 0.7778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.6636 - accuracy: 0.7875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.6489 - accuracy: 0.7955" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.6363 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.6736 - accuracy: 0.7788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.6817 - accuracy: 0.7768" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.6680 - accuracy: 0.7833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.6804 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.6775 - accuracy: 0.7794" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.6706 - accuracy: 0.7778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.6640 - accuracy: 0.7829" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.6674 - accuracy: 0.7875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.6878 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.6919 - accuracy: 0.7955" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.6926 - accuracy: 0.7935" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.7002 - accuracy: 0.7917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.6956 - accuracy: 0.7900" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.7024 - accuracy: 0.7788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.7005 - accuracy: 0.7778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.6962 - accuracy: 0.7768" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.7079 - accuracy: 0.7716" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.6935 - accuracy: 0.7750 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.6897 - accuracy: 0.7782" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.6862 - accuracy: 0.7773" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.6919 - accuracy: 0.7765" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.6881 - accuracy: 0.7794" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.6765 - accuracy: 0.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.6682 - accuracy: 0.7882" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.6553 - accuracy: 0.7939" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.6543 - accuracy: 0.7933" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 0.6543 - accuracy: 0.7933 - val_loss: 0.8507 - val_accuracy: 0.6900\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 48/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 47s - loss: 0.1643 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 41s - loss: 0.3016 - accuracy: 0.9375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 38s - loss: 0.4172 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 39s - loss: 0.4665 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 38s - loss: 0.4725 - accuracy: 0.8500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 36s - loss: 0.4876 - accuracy: 0.8542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 35s - loss: 0.4996 - accuracy: 0.8571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 34s - loss: 0.5003 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 33s - loss: 0.5296 - accuracy: 0.8194" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 33s - loss: 0.5005 - accuracy: 0.8375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 32s - loss: 0.5237 - accuracy: 0.8182" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 30s - loss: 0.5274 - accuracy: 0.8229" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 29s - loss: 0.5103 - accuracy: 0.8365" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 28s - loss: 0.5060 - accuracy: 0.8393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 27s - loss: 0.5036 - accuracy: 0.8417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 26s - loss: 0.4952 - accuracy: 0.8516" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.4842 - accuracy: 0.8529" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 23s - loss: 0.4804 - accuracy: 0.8542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 22s - loss: 0.4798 - accuracy: 0.8487" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 21s - loss: 0.5040 - accuracy: 0.8375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.5086 - accuracy: 0.8393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.4985 - accuracy: 0.8409" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 17s - loss: 0.4933 - accuracy: 0.8478" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 16s - loss: 0.4886 - accuracy: 0.8542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 0.4960 - accuracy: 0.8450" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.5048 - accuracy: 0.8413" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.4933 - accuracy: 0.8472" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.5043 - accuracy: 0.8393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 0.5041 - accuracy: 0.8362" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.4931 - accuracy: 0.8417 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.4869 - accuracy: 0.8427" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.4967 - accuracy: 0.8398" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.4905 - accuracy: 0.8447" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.4916 - accuracy: 0.8456" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.4964 - accuracy: 0.8393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.4911 - accuracy: 0.8403" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.4838 - accuracy: 0.8446" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.4840 - accuracy: 0.8467" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 0.4840 - accuracy: 0.8467 - val_loss: 0.7414 - val_accuracy: 0.7600\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 49/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 50s - loss: 0.3153 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 45s - loss: 0.4354 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 42s - loss: 0.5467 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 43s - loss: 0.5126 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 0.4968 - accuracy: 0.8500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 0.5254 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.5586 - accuracy: 0.8214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 0.5515 - accuracy: 0.8281" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 36s - loss: 0.5360 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.5321 - accuracy: 0.8375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.5094 - accuracy: 0.8409" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 32s - loss: 0.5570 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 31s - loss: 0.5695 - accuracy: 0.8269" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.5571 - accuracy: 0.8304" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.5549 - accuracy: 0.8417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.5501 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.5486 - accuracy: 0.8309" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.5302 - accuracy: 0.8403" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.5283 - accuracy: 0.8421" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.5250 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 20s - loss: 0.5167 - accuracy: 0.8452" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.5223 - accuracy: 0.8409" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.5375 - accuracy: 0.8261" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.5244 - accuracy: 0.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 15s - loss: 0.5341 - accuracy: 0.8300" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.5282 - accuracy: 0.8317" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.5345 - accuracy: 0.8194" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.5427 - accuracy: 0.8214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 10s - loss: 0.5390 - accuracy: 0.8233" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.5591 - accuracy: 0.8167 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.5579 - accuracy: 0.8145" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.5507 - accuracy: 0.8164" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.5422 - accuracy: 0.8220" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.5378 - accuracy: 0.8235" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.5447 - accuracy: 0.8214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.5485 - accuracy: 0.8194" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.5523 - accuracy: 0.8176" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.5513 - accuracy: 0.8167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 0.5513 - accuracy: 0.8167 - val_loss: 0.8569 - val_accuracy: 0.7200\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 50/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/38 [..............................] - ETA: 46s - loss: 0.2555 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/38 [>.............................] - ETA: 41s - loss: 0.2321 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/38 [=>............................] - ETA: 43s - loss: 0.3472 - accuracy: 0.9167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/38 [==>...........................] - ETA: 41s - loss: 0.4150 - accuracy: 0.8438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/38 [==>...........................] - ETA: 40s - loss: 0.4572 - accuracy: 0.8500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/38 [===>..........................] - ETA: 39s - loss: 0.4355 - accuracy: 0.8542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/38 [====>.........................] - ETA: 38s - loss: 0.4563 - accuracy: 0.8571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/38 [=====>........................] - ETA: 37s - loss: 0.4582 - accuracy: 0.8594" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/38 [======>.......................] - ETA: 35s - loss: 0.4611 - accuracy: 0.8611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/38 [======>.......................] - ETA: 34s - loss: 0.4480 - accuracy: 0.8625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "11/38 [=======>......................] - ETA: 33s - loss: 0.4457 - accuracy: 0.8636" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "12/38 [========>.....................] - ETA: 31s - loss: 0.4358 - accuracy: 0.8646" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/38 [=========>....................] - ETA: 30s - loss: 0.4128 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "14/38 [==========>...................] - ETA: 29s - loss: 0.4113 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "15/38 [==========>...................] - ETA: 28s - loss: 0.3992 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/38 [===========>..................] - ETA: 27s - loss: 0.4001 - accuracy: 0.8672" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "17/38 [============>.................] - ETA: 25s - loss: 0.4089 - accuracy: 0.8676" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/38 [=============>................] - ETA: 24s - loss: 0.4008 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "19/38 [==============>...............] - ETA: 23s - loss: 0.4044 - accuracy: 0.8684" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/38 [==============>...............] - ETA: 22s - loss: 0.4101 - accuracy: 0.8687" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "21/38 [===============>..............] - ETA: 21s - loss: 0.3996 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/38 [================>.............] - ETA: 19s - loss: 0.4094 - accuracy: 0.8693" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "23/38 [=================>............] - ETA: 18s - loss: 0.4025 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/38 [=================>............] - ETA: 17s - loss: 0.4200 - accuracy: 0.8646" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "25/38 [==================>...........] - ETA: 16s - loss: 0.4363 - accuracy: 0.8550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/38 [===================>..........] - ETA: 14s - loss: 0.4381 - accuracy: 0.8558" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "27/38 [====================>.........] - ETA: 13s - loss: 0.4401 - accuracy: 0.8565" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/38 [=====================>........] - ETA: 12s - loss: 0.4331 - accuracy: 0.8571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "29/38 [=====================>........] - ETA: 11s - loss: 0.4467 - accuracy: 0.8491" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/38 [======================>.......] - ETA: 9s - loss: 0.4437 - accuracy: 0.8500 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "31/38 [=======================>......] - ETA: 8s - loss: 0.4457 - accuracy: 0.8468" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/38 [========================>.....] - ETA: 7s - loss: 0.4403 - accuracy: 0.8516" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "33/38 [=========================>....] - ETA: 6s - loss: 0.4421 - accuracy: 0.8523" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/38 [=========================>....] - ETA: 4s - loss: 0.4617 - accuracy: 0.8419" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "35/38 [==========================>...] - ETA: 3s - loss: 0.4683 - accuracy: 0.8357" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/38 [===========================>..] - ETA: 2s - loss: 0.4676 - accuracy: 0.8403" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "37/38 [============================>.] - ETA: 1s - loss: 0.4741 - accuracy: 0.8378" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - ETA: 0s - loss: 0.4742 - accuracy: 0.8367" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 58s 2s/step - loss: 0.4742 - accuracy: 0.8367 - val_loss: 0.7287 - val_accuracy: 0.7300\n" ] } ], "source": [ "history = model.fit(x = train_ds,\n", " epochs = 50, \n", " validation_data = val_ds)" ] }, { "cell_type": "markdown", "metadata": { "id": "KKUfMNVns2hu" }, "source": [ "### 呈现结果\n", "\n", "在训练集和验证集上创建损失和准确率的图表:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "execution": { "iopub.execute_input": "2023-11-07T18:58:08.289736Z", "iopub.status.busy": "2023-11-07T18:58:08.289142Z", "iopub.status.idle": "2023-11-07T18:58:08.698660Z", "shell.execute_reply": "2023-11-07T18:58:08.698027Z" }, "id": "Cd5tpNrtOrs7" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABeEAAAN+CAYAAACSPMAzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZfrG8e+k9wohgSSE3nsvUkQpglLshWZbC+66ruXHrrq6rn11XVfXDtiwoKIIIiAC0nvvLRAgjZLeZ+b3xxsCERhImGRS7s91zZXT5pxn0gj3eed5LXa73Y6IiIiIiIiIiIiIiDidm6sLEBERERERERERERGpqRTCi4iIiIiIiIiIiIhUEIXwIiIiIiIiIiIiIiIVRCG8iIiIiIiIiIiIiEgFUQgvIiIiIiIiIiIiIlJBFMKLiIiIiIiIiIiIiFQQhfAiIiIiIiIiIiIiIhVEIbyIiIiIiIiIiIiISAVRCC8iIiIiIiIiIiIiUkEUwouIiIiIiIiIiIiIVBCF8CIiIiIiNcy0adOwWCysW7fO1aWIiIiIiNR6CuFFRERERERERERERCqIQngRERERERERERERkQqiEF5EREREpBbauHEjw4YNIygoiICAAAYNGsSqVatKHVNYWMizzz5Ls2bN8PHxITw8nL59+7JgwYKSY5KSkpg4cSLR0dF4e3sTFRXFyJEjiY+Pr+RXJCIiIiJSNXm4ugAREREREalc27dv54orriAoKIjHH38cT09P3nvvPQYMGMCSJUvo0aMHAM888wwvvvgid999N927dycjI4N169axYcMGrr76agCuv/56tm/fzkMPPURcXBwpKSksWLCAw4cPExcX58JXKSIiIiJSNVjsdrvd1UWIiIiIiIjzTJs2jYkTJ7J27Vq6du16zv7Ro0fz008/sXPnTho3bgxAYmIiLVq0oFOnTixZsgSAjh07Eh0dzezZs897nbS0NEJDQ3n11Vd59NFHK+4FiYiIiIhUY2pHIyIiIiJSi1itVubPn8+oUaNKAniAqKgobrvtNpYtW0ZGRgYAISEhbN++nb179573XL6+vnh5ebF48WJOnTpVKfWLiIiIiFQ3CuFFRERERGqR1NRUcnJyaNGixTn7WrVqhc1mIyEhAYB//OMfpKWl0bx5c9q1a8djjz3Gli1bSo739vbm5ZdfZu7cudSrV49+/frxyiuvkJSUVGmvR0RERESkqlMILyIiIiIi59WvXz/279/PlClTaNu2LR9++CGdO3fmww8/LDnm4YcfZs+ePbz44ov4+Pjw1FNP0apVKzZu3OjCykVEREREqg6F8CIiIiIitUjdunXx8/Nj9+7d5+zbtWsXbm5uxMTElGwLCwtj4sSJfPHFFyQkJNC+fXueeeaZUs9r0qQJf/nLX5g/fz7btm2joKCA1157raJfioiIiIhItaAQXkRERESkFnF3d2fw4MH88MMPxMfHl2xPTk5m+vTp9O3bl6CgIABOnDhR6rkBAQE0bdqU/Px8AHJycsjLyyt1TJMmTQgMDCw5RkRERESktvNwdQEiIiIiIlIxpkyZws8//3zO9meeeYYFCxbQt29fHnjgATw8PHjvvffIz8/nlVdeKTmudevWDBgwgC5duhAWFsa6dev45ptvmDRpEgB79uxh0KBB3HTTTbRu3RoPDw9mzpxJcnIyt9xyS6W9ThERERGRqsxit9vtri5CREREREScZ9q0aUycOPGC+xMSEkhNTWXy5MksX74cm81Gjx49eP755+nVq1fJcc8//zyzZs1iz5495Ofn07BhQ8aOHctjjz2Gp6cnJ06c4O9//zsLFy4kISEBDw8PWrZsyV/+8hduvPHGynipIiIiIiJVnkJ4EREREREREREREZEKop7wIiIiIiIiIiIiIiIVRCG8iIiIiIiIiIiIiEgFUQgvIiIiIiIiIiIiIlJBXBrCv/POO7Rv356goCCCgoLo1asXc+fOdficGTNm0LJlS3x8fGjXrh0//fRTJVUrIiIiIiIiIiIiIlI2Lg3ho6Ojeemll1i/fj3r1q3jyiuvZOTIkWzfvv28x69YsYJbb72Vu+66i40bNzJq1ChGjRrFtm3bKrlyEREREREREREREZGLs9jtdrurizhbWFgYr776Knfdddc5+26++Ways7OZPXt2ybaePXvSsWNH3n333cosU0RERERERERERETkojxcXcBpVquVGTNmkJ2dTa9evc57zMqVK3nkkUdKbRsyZAjff//9Bc+bn59Pfn5+ybrNZuPkyZOEh4djsVicUruIiIiIiIiIiIiI1B52u53MzEzq16+Pm5vjhjMuD+G3bt1Kr169yMvLIyAggJkzZ9K6devzHpuUlES9evVKbatXrx5JSUkXPP+LL77Is88+69SaRUREREREREREREQSEhKIjo52eIzLQ/gWLVqwadMm0tPT+eabbxg/fjxLliy5YBBfVpMnTy41ej49PZ3Y2FgSEhIICgpyyjVEREREREREREREpPbIyMggJiaGwMDAix7r8hDey8uLpk2bAtClSxfWrl3Lf/7zH957771zjo2MjCQ5ObnUtuTkZCIjIy94fm9vb7y9vc/ZHhQUpBBeRERERERERERERMrtUlqeO25W4wI2m61UD/ez9erVi4ULF5batmDBggv2kBcRERERERERERERcSWXjoSfPHkyw4YNIzY2lszMTKZPn87ixYuZN28eAOPGjaNBgwa8+OKLAPzpT3+if//+vPbaawwfPpwvv/ySdevW8f7777vyZYiIiIiIiIiIiIiInJdLQ/iUlBTGjRtHYmIiwcHBtG/fnnnz5nH11VcDcPjw4VIzy/bu3Zvp06fz5JNP8te//pVmzZrx/fff07ZtW1e9BBERERERERERERGRC7LY7Xa7q4uoTBkZGQQHB5Oenq6e8CIiIiIiIiIiIuI0VquVwsJCV5chTuDp6Ym7u/sF95clZ3b5xKwiIiIiIiIiIiIi1ZndbicpKYm0tDRXlyJOFBISQmRk5CVNvuqIQngRERERERERERGRy3A6gI+IiMDPz++yQ1txLbvdTk5ODikpKQBERUVd1vkUwouIiIiIiIiIiIiUk9VqLQngw8PDXV2OOImvry9g5jWNiIhw2JrmYtwufoiIiIiIiIiIiIiInM/pHvB+fn4urkSc7fTX9HL7/CuEFxEREREREREREblMakFT8zjra6oQXkRERERERERERESkgiiEFxERERERERERERGniIuL44033nB1GVWKQngRERERERERERGRWsZisTh8PPPMM+U679q1a7n33nudW2w15+HqAkRERERERERERESkciUmJpYsf/XVVzz99NPs3r27ZFtAQEDJst1ux2q14uFx8Ti5bt26zi20BtBIeBEREREREREREZFaJjIysuQRHByMxWIpWd+1axeBgYHMnTuXLl264O3tzbJly9i/fz8jR46kXr16BAQE0K1bN3755ZdS5/19OxqLxcKHH37I6NGj8fPzo1mzZsyaNauSX61rKYQXERERERERERERcSK73U5OQZFLHna73Wmv4//+7/946aWX2LlzJ+3btycrK4trrrmGhQsXsnHjRoYOHcq1117L4cOHHZ7n2Wef5aabbmLLli1cc8013H777Zw8edJpdVZ1akcjIiIiIiIiIiIi4kS5hVZaPz3PJdfe8Y8h+Hk5J/b9xz/+wdVXX12yHhYWRocOHUrWn3vuOWbOnMmsWbOYNGnSBc8zYcIEbr31VgBeeOEF3nzzTdasWcPQoUOdUmdVp5HwIiIiIiIiIiIiInKOrl27llrPysri0UcfpVWrVoSEhBAQEMDOnTsvOhK+ffv2Jcv+/v4EBQWRkpJSITVXRRoJLyIiIiIiIiIiIuJEvp7u7PjHEJdd21n8/f1LrT/66KMsWLCAf/3rXzRt2hRfX19uuOEGCgoKHJ7H09Oz1LrFYsFmszmtzqpOIbyIiIiIiIiIiIiIE1ksFqe1hKlKli9fzoQJExg9ejRgRsbHx8e7tqhqQO1oREREREREREREROSimjVrxnfffcemTZvYvHkzt912W60a0V5eCuFFRERERERERERE5KJef/11QkND6d27N9deey1Dhgyhc+fOri6ryrPY7Xa7q4uoTBkZGQQHB5Oenk5QUJCryxEREREREREREZFqLC8vj4MHD9KoUSN8fHxcXY44kaOvbVlyZo2EFxERERERERERERGpIArhRUREREREREREREQqiEJ4EREREREREREREZEKohBeRERERERERERERKSCKIQXEREREREREREREakgCuFFRERERERERERERCqIQngRERERERERERERkQqiEF5EREREREREREREpIIohBcRERERERERERERqSAK4UVERERERERERESkzAYMGMDDDz9csh4XF8cbb7zh8DkWi4Xvv//+sq/trPNUBoXwIiIiIiIiIiIiIrXMtddey9ChQ8+7b+nSpVgsFrZs2VKmc65du5Z7773XGeWVeOaZZ+jYseM52xMTExk2bJhTr1VRFMKLiIiIiIiIiIiI1DJ33XUXCxYs4MiRI+fsmzp1Kl27dqV9+/ZlOmfdunXx8/NzVokORUZG4u3tXSnXulwK4UVERERERERERERqmREjRlC3bl2mTZtWantWVhYzZsxg1KhR3HrrrTRo0AA/Pz/atWvHF1984fCcv29Hs3fvXvr164ePjw+tW7dmwYIF5zzniSeeoHnz5vj5+dG4cWOeeuopCgsLAZg2bRrPPvssmzdvxmKxYLFYSur9fTuarVu3cuWVV+Lr60t4eDj33nsvWVlZJfsnTJjAqFGj+Ne//kVUVBTh4eE8+OCDJdeqSB4VfgURERERERERERGR2sRuh8Ic11zb0w8slose5uHhwbhx45g2bRp/+9vfsBQ/Z8aMGVitVu644w5mzJjBE088QVBQEHPmzGHs2LE0adKE7t27X/T8NpuNMWPGUK9ePVavXk16enqp/vGnBQYGMm3aNOrXr8/WrVu55557CAwM5PHHH+fmm29m27Zt/Pzzz/zyyy8ABAcHn3OO7OxshgwZQq9evVi7di0pKSncfffdTJo0qdRNhkWLFhEVFcWiRYvYt28fN998Mx07duSee+656Ou5HArhRURERERERERERJypMAdeqO+aa//1GHj5X9Khd955J6+++ipLlixhwIABgGlFc/3119OwYUMeffTRkmMfeugh5s2bx9dff31JIfwvv/zCrl27mDdvHvXrm8/FCy+8cE4f9yeffLJkOS4ujkcffZQvv/ySxx9/HF9fXwICAvDw8CAyMvKC15o+fTp5eXl88skn+Pub1/7WW29x7bXX8vLLL1OvXj0AQkNDeeutt3B3d6dly5YMHz6chQsXVngIr3Y0IiIiIiIiIiIiIrVQy5Yt6d27N1OmTAFg3759LF26lLvuugur1cpzzz1Hu3btCAsLIyAggHnz5nH48OFLOvfOnTuJiYkpCeABevXqdc5xX331FX369CEyMpKAgACefPLJS77G2dfq0KFDSQAP0KdPH2w2G7t37y7Z1qZNG9zd3UvWo6KiSElJKdO1ykMj4UVEREREREREREScydPPjEh31bXL4K677uKhhx7i7bffZurUqTRp0oT+/fvz8ssv85///Ic33niDdu3a4e/vz8MPP0xBQYHTSl25ciW33347zz77LEOGDCE4OJgvv/yS1157zWnXOJunp2epdYvFgs1mq5BrnU0hvIiIiIiIiIiIiIgzWSyX3BLG1W666Sb+9Kc/MX36dD755BPuv/9+LBYLy5cvZ+TIkdxxxx2A6fG+Z88eWrdufUnnbdWqFQkJCSQmJhIVFQXAqlWrSh2zYsUKGjZsyN/+9reSbYcOHSp1jJeXF1ar9aLXmjZtGtnZ2SWj4ZcvX46bmxstWrS4pHorktrRiIiIiIiIiIiIiNRSAQEB3HzzzUyePJnExEQmTJgAQLNmzViwYAErVqxg586d/OEPfyA5OfmSz3vVVVfRvHlzxo8fz+bNm1m6dGmpsP30NQ4fPsyXX37J/v37efPNN5k5c2apY+Li4jh48CCbNm3i+PHj5Ofnn3Ot22+/HR8fH8aPH8+2bdtYtGgRDz30EGPHji3pB+9KCuFFREREREREREREarG77rqLU6dOMWTIkJIe7k8++SSdO3dmyJAhDBgwgMjISEaNGnXJ53Rzc2PmzJnk5ubSvXt37r77bp5//vlSx1x33XX8+c9/ZtKkSXTs2JEVK1bw1FNPlTrm+uuvZ+jQoQwcOJC6devyxRdfnHMtPz8/5s2bx8mTJ+nWrRs33HADgwYN4q233ir7J6MCWOx2u93VRVSmjIwMgoODSU9PJygoyNXliIiIiIiIiIiISDWWl5fHwYMHadSoET4+Pq4uR5zI0de2LDmzRsKLiIiIiIiIiIiIiFQQhfAiIiIiIiIiIiIiIhVEIbyIiIiIiIiIiIiISAVRCC8iIiIiIiIiIiIiUkEUwouIiIiIiIiIiIhcJrvd7uoSxMmc9TVVCC8iIiIiIiIiIiJSTp6engDk5OS4uBJxttNf09Nf4/LycEYxIiIiIiIiIiIiIrWRu7s7ISEhpKSkAODn54fFYnFxVXI57HY7OTk5pKSkEBISgru7+2WdTyG8iIiIiIiIiIiIyGWIjIwEKAnipWYICQkp+dpeDoXwIiIiIiIiIiIiIpfBYrEQFRVFREQEhYWFri5HnMDT0/OyR8CfphBeRERERERERERExAnc3d2dFtxKzaGJWUVEREREREREREREKohLQ/gXX3yRbt26ERgYSEREBKNGjWL37t0OnzNt2jQsFkuph4+PTyVVLCIiIiIiIiIiIiJy6Vwawi9ZsoQHH3yQVatWsWDBAgoLCxk8eDDZ2dkOnxcUFERiYmLJ49ChQ5VUsYiIiIiIiIiIiIjIpXNpT/iff/651Pq0adOIiIhg/fr19OvX74LPs1gsTpmVVkRERERERERERESkIlWpnvDp6ekAhIWFOTwuKyuLhg0bEhMTw8iRI9m+ffsFj83PzycjI6PUQ0RERERERERERESkMlSZEN5ms/Hwww/Tp08f2rZte8HjWrRowZQpU/jhhx/47LPPsNls9O7dmyNHjpz3+BdffJHg4OCSR0xMTEW9hGolr9Dq6hJEREREREREREREajyL3W63u7oIgPvvv5+5c+eybNkyoqOjL/l5hYWFtGrViltvvZXnnnvunP35+fnk5+eXrGdkZBATE0N6ejpBQUFOqb26+W1PKo/O2MyH47vSPjrE1eWIiIiIiIiIiIiIVCsZGRkEBwdfUs5cJUbCT5o0idmzZ7No0aIyBfAAnp6edOrUiX379p13v7e3N0FBQaUetZndbuf93w6QkpnP7R+uZnNCmqtLEhEREREREREREamxXBrC2+12Jk2axMyZM/n1119p1KhRmc9htVrZunUrUVFRFVBhzWOxWHh3bBe6xYWSmVfEHR+uZuPhU64uS0RERERERERERKRGcmkI/+CDD/LZZ58xffp0AgMDSUpKIikpidzc3JJjxo0bx+TJk0vW//GPfzB//nwOHDjAhg0buOOOOzh06BB33323K15CtRTg7cG0id3p3iiMzPwixn60hvWHFMSLiIiIiIiIiIiIOJtLQ/h33nmH9PR0BgwYQFRUVMnjq6++Kjnm8OHDJCYmlqyfOnWKe+65h1atWnHNNdeQkZHBihUraN26tSteQrXl7+3BtInd6Nk4jKz8IsZ9tJp18SddXZaIiIiIiIiIiIhIjVJlJmatLGVpmF8b5BQUcde0daw8cAI/L/eSEfIiIiIiIiIiIiIicn7VbmJWcR0/Lw+mTOhG36Z1yCmwMmHqGlYfOOHqskRERERERERERERqBIXwgq+XOx+O78oVzU4H8WtZuV9BvIiIiIiIiIiIiMjlUggvAPh4uvPBuK70b16X3EIrE6etYcW+464uS0RERERERERERKRaUwgvJXw83XlvbBcGtqhLXqGNidPWsmyvgngRERERERERERGR8lIIL6X4eLrz7tguDGoZQX6Rjbs+Xstve1JdXZbrFeRA/DL47V/w+Y3w8bWQkejqqkRERERERERERKSKs9jtdruri6hMZZm1tjbLL7Ly4Ocb+WVnMl4ebrw/tgsDWkS4uqzKk5kMCavg8GrzMXEz2IpKH9NkENzxLVgsrqlRREREREREREREXKIsObNCeLmggiIbk6ZvYP6OZLzc3UyrmpY1MIi32SB1V+nQ/VT8uccFREJsD4hsD7+9CkV5MPw16HZ3pZcsIiIiIiIiIiIirqMQ3gGF8GVTaLXx0PSN/Lw9CS93N965ozODWtVzdVmXpyAHjq4/E7ofWQN56b87yAIRrU3oHtPTfAxpeGbU+6p34ecnwNMP7lsG4U0q/WWIiIiIiIiIiIiIayiEd0AhPKaX+aHl0GYMuF18WoBCq40/fbmRn7Ym4elu4e3bOjO4TWQlFOokmUlweBUkrDYfk7ac21rG0w8adIHYniZ0j+4KviEXPqfNBp+OgoNLILobTPwZ3D0q8lWIiIiIiIiIiIhIFaEQ3gGF8MBPj8Oa96BuS+j/BLQeddEwvtBq4+GvNjFnSyIebhbeuq0zQ9tWwSDeZoPUnaVD97RD5x4XGAUxPYpD9x4Q2Q7cPct2rfQj8L/ekJ8OVz4J/R5zzmsQERERERERERGRKk0hvAMK4YFlb8Cy18+0YIlobcL4Vtc5DOOLrDYe+XozszYfw8PNwn9v7cSwdlGVU7MjNhvs+RnWTzOhe/55WsvUa1M6dA+Jdc6Eqpu/hJl/ADcPuHsh1O94+ecUERERERERERGRKk0hvAMK4YvlpsHqd2Hl25CfYbbVa2vC+JYjLhjGF1ltPDpjM99vOoa7m4U3b+nE8PYuCuILsmHTdFj1Dpzcf2a7p79pJ3M6cI/uBj4V9LW22+HrcbBzlnlnwb1LwNOnYq4lIiIiIiIiIiIiVYJCeAcUwv9O7ilY+T8TZBdkmm2R7aD//0HL4ecdLW612Xlsxma+23gUdzcLb9zckWs71K+8mjOTYM37sG6KqR/AJxi6TIQ2o83NhMrsz559Av7XE7JToNckGPJ85V1bREREREREREREKp1CeAcUwl9AzkkzKn71u1CQZbZFtocBk6HFsHPCeKvNzhPfbuGb9Udws8C/b+7IyI4NKrbGpK3mhsHWGWArNNtC46Dng9DxNvAOqNjrO7JnHky/CbDA+B+h0RWuq0VEREREREREREQqlEJ4BxTCX0TOSVjxXzPS/HQYX7+TCeObDS4Vxttsdv7vuy18vc4E8a/d1IHRnaKdW4/NBvsXwsq34MDiM9tje0GvB6HFNeDm7txrltesP8KGjyE4Fu5fXnEtcERERERERERERMSlFMI7oBD+EmWfgBVvwpoPoDDbbGvQxYTxTa8qCeNtNjt/nbmVL9cmYLHAv27owPVdnBDEF+bBlq/M6Pzju802izu0HmlavkR3ufxrOFt+JrzTB9IOQcc7YNTbrq5IREREREREREREKoBCeAcUwpdR9nFY/h9Y+yEU5phtDbrCwMnQZBBYLNhsdp78YRvTVx/GYoFXrm/PjV1jyne9rFRzrbUfQs5xs80rELqMhx5/gJBY57yuinJoJUwdBtjhlummr76IiIiIiIiIiIjUKArhHVAIX05ZqbD8DVj7ERTlmm3R3U0Y33ggNjs8PWsbn60yQfzLY9pzU7cyBPEpu2DV27D5K7Dmm23BsdDzPug0tnq1dlnwtLlx4VcHHlgFAXVdXZGIiIiIiIiIiIg4kUJ4BxTCX6bMZBMwr/sIivLMtpieMHAy9rh+PPPjDj5eeQiAF8e049buDkau2+2mz/vKt2DfL2e2N+hiWs60ug7cPSrutVSUonx4fyCkbIcWw+GWz8+Z2FZERERERERERESqL4XwDiiEd5LMJFj2Bqybcmbkemxv7AP+j2e31WHaingAnh/dltt7NCz93KJ82Pat6feevK14owVajTDhe0yP6h9aJ201QbytEEa+DZ3ucHVFIiIiIiIiIiIi4iQK4R1QCO9kGYmw7N+wflpJGG9v2IdPfG7j75tDAXh6RGsm9onDknvKjKBf8wFkJZvne/qbgLrnfRDW2EUvooIs+zf88ozpaX//cghteNGniIiIiIiIiIiISNWnEN4BhfAVJOMYLH0dNnwM1gIA4gO78Njx4RwnmCdCfmVwwULcrMUtbALrm4lWu4wH31AXFl6BbFaYeg0krIKGfWH8j+Dm5uqqRERERERERERE5DIphHdAIXwFSz9SHMZ/Ylqx/E6CdzP8+v+J8B63gLunCwqsZCcPwDt9oTAbBj8PvSe5uiIRERERERERERG5TGXJmTUsV5wrOBpGvA5/3AhdJoKbCdq3B/bmloInuSL9GXr9VIcX5+8jI+/ckL7GCWsMQ18wywv/ASk7XVuPiIiIiIiIiIiIVCqNhJeKlX3CtKcJimL7sXSen7OTFftPABDm78XDVzXj1u6xeLrX4PtBdjtMvxn2zoPIdnD3r+Dh5eqqREREREREREREpJzUjsYBhfCuZbfb+XVXCi/8tJP9qdkANKnrz1+vacWVLSOwWCwurrCCZCbD/3pC7km44lEY9JSrKxIREREREREREZFyUgjvgEL4qqHQauPLNYf59y97OZltJnLt3SScvw1vRZv6wS6uroJs/x5mjAeLG9w5D2K6u7oiERERERERERERKQf1hJcqz9PdjbG94lj82ADu698EL3c3Vuw/wYj/LuOxGZtJzshzdYnO12YUtL8Z7DaY+QcoyHZ1RSIiIiIiIiIiIlLBFMKLSwX5ePJ/w1qy8C/9ubZDfex2mLH+CANeXcy/F+whp6DI1SU617BXIKgBnDwA89WSRkREREREREREpKZTCC9VQkyYH/+9tRPfPdCbzrEh5BZa+c/CvQx4dTFfr0vAaqshXZN8Q2DU/8zyuo9g3y8uLUdEREREREREREQqlkJ4qVI6x4by7f29efu2zsSE+ZKSmc/j32xhxH+XsXzfcVeX5xyNB0CP+8zy9w9CzkmXliMiIiIiIiIiIiIVRxOzSpWVX2TlkxWHePPXvWTmmbY0g1pGMPmaVjSNCHBxdZepIAfe6wcn9kKbMXDjVFdXJCIiIiIiIiIiIpdIE7NKjeDt4c49/Rqz5LGBTOgdh4ebhYW7Uhjyxm889f02TmTlu7rE8vPygzHvgcUdtn8HW79xdUUiIiIiIiIiIiJSARTCS5UX5u/FM9e1Yf6f+3F163pYbXY+XXWIAa8u5t0l+8krtLq6xPJp0AX6PWaW5zwCGcdcW4+IiIiIiIiIiIg4ndrRSLWzcv8Jnv9pB9uOZgDQIMSXJ4a15Nr2UVgsFhdXV0bWQvjoaji2EZpcCXd8B9XtNYiIiIiIiIiIiNQyakcjNVqvJuHMerAvr93YgcggH46m5fLHLzYy+n8rWHXghKvLKxt3Txj9Pnj4wP5fYe2Hrq5IREREREREREREnEgj4aVayy2w8sHSA7y7ZD85BaYtTY9GYTx8VXN6NQl3cXVlsOpd+PkJ8PCF+5ZBnaaurkhEREREREREREQuoCw5s0J4qRFSMvJ489e9fL32CAVWG1DNwnibDT4dBQeXQIOucOc8cPdwdVUiIiIiIiIiIiJyHgrhHVAIX7MdS8vlncX7+WptQkkY371RGA9f1YxejcOrds/49CPwv96Qnw4Dn4T+j7m6oopjt6v3vYiIiIiIiIiIVFsK4R1QCF87JKabMP7LNb8L4wc1o1eTKhzGb/4KZt4Lbh5w90Ko39HVFTnXkfUw6yFITzAT0bYcDs2uBt9QV1cmIiIiIiIiIiJyyRTCO6AQvnZJTM/l3cX7+eLsMD6ueGR8VQzj7Xb4ehzsnAV1W8K9S8DTx9VVXT6bDZa/AYueB1tR6X1uHtCwjwnkW1wDITEuKVFERERERERERORSKYR3QCF87VQSxq9NoKDIhPHd4kJ5+Krm9K5qYXz2CfhfT8hOgV6TYMjzrq7o8mQcg5l/gIO/mfU2o6H7vbDvF9j1E6TuLH18ZDtoMRxaXgOR7dW2RkREREREREREqhyF8A4ohK/dktLzeHfJfqavOVwSxndtaML4Pk2rUBi/Zx5MvwmwwPhZ0Kifqysqn11z4IdJkHsSPP3hmleg4+2lg/UT+2H3TyaQT1gFdtuZfcExZnR8y2vMaHl3z8p/DSIiIiIiIiIiIr+jEN4BhfACkJyRxzuLzw3j/3RVM/o2rVM1wvhZf4QNH4OnH/R9BHpPAk9fV1d1aQpzYf6TsPZDsx7VAa6fAnWaOn5e9nFzA2L3T7BvIRTlntnnEwzNhphAvulV4B1YcfWLiIiIiIiIiIg4oBDeAYXwcrbzhfFdGobycFUI4/Oz4ItbIH6pWQ+OhcHPQeuRVbtFS/J2+OauM21mej8EVz4NHl5lO09BDhxYDLvnwO6fIef4mX3uXubdAS2uMY+gKKeVLyIiIiIiIiIicjEK4R1QCC/nk5xR3KZm9WHyi8P4zrEhPHxVc65o5sIw3m6Hbd/Cgqch46jZFncFDH3R9E6vSux2WPOBGQFvzQf/CBj9LjQddPnntlnhyFrYNdu0rTm5v/T+Bl2K29YMNxPaVuWbFCIiIiIiIiIiUu0phHdAIbw4kpKRx7tLDvD56kOlwvg/XdWcfq4M4wuyYfl/zKMoDyxu0GUCDHwS/MNdU9PZsk/ADw/CnrlmvdkQGPk2BNR1/rXsdji+x/Sb3/2TCefPFtrIhPEth0NMD3Bzd34NIiIiIiIiIiJSqymEd0AhvFyKlIw83vvtAJ+tOhPGdyoeGe/SMD7tsBkVv32mWfcJhgGTodvdrpu0dP8imHkfZCWBu7dpmdP93sobjZ6ZBLvnmkD+wBIzCv80v3C44i/Q8wGNjhcREREREREREadRCO+AQngpi5TMPN5bUjqM7xgTwsNXNaN/87quC+Pjl8PPT0DSVrNepwUMfcFMWFpZigrg1+dgxZtnarhhCkS2rbwafi8/C/YvNKPk98yDvDSzvfVIMzJfk7mKiIiIiIiIiIgTKIR3QCG8lEdKZh7vLznAZ6sPkVdowvjucWE8MawlXRqGuqYomxU2fGKC8JwTZlvzYTDkeQhvUrHXPrEfvrkTEjeZ9a53wuDnwcuvYq9bFtZCWDcV5v0VbIVQpznc/BnUbeHqykREREREREREpJorS87sVkk1ndeLL75It27dCAwMJCIiglGjRrF79+6LPm/GjBm0bNkSHx8f2rVrx08//VQJ1UptFhHow5MjWrP08Su5u28jvDzcWBN/kuvfWcE9n6xjb3Jm5Rfl5g5dJ8JDG6Dng+DmYXqyv90D5j8FeRnOv6bdDhs/h3evMAG8b6gJtkf8u2oF8GDa8/S4FybOhcD6po/8+wNh23eurkxERERERERERGoRl46EHzp0KLfccgvdunWjqKiIv/71r2zbto0dO3bg7+9/3uesWLGCfv368eKLLzJixAimT5/Oyy+/zIYNG2jb9uJtMDQSXpwhMT2XNxbsZcb6BGx2cLPA9Z2j+fPVzakf4uuaolL3wLzJsO8Xs+4fAVf9HTrcBm5OuN+WmwZzHoFt35r1uCtg9HsQ3ODyz13RslLhm4kQv9Ss93wQrn7WdX30RURERERERESkWqu27WhSU1OJiIhgyZIl9OvX77zH3HzzzWRnZzN79uySbT179qRjx468++67F72GQnhxpn0pmbw6bzfzticD4OXhxvheDXlgQFNC/b0qvyC7HfbOh58nw8n9ZltURxj2CsT2KP95D6+Gb++G9MNgcYeBf4W+fzaj8asLa5Fp3bP8DbMe2xtunAaB9VxZlYiIiIiIiIiIVEPVph3N76WnpwMQFhZ2wWNWrlzJVVeVnnxyyJAhrFy5skJrEzmfphGBvDe2K9890JsejcIoKLLxwdKD9HtlEW8v2kdOQVHlFmSxQPMh8MAqGPxP8A4ybWOmDC4O0Y+W7Xw2Kyx+GaYOMwF8SEO4az70e7R6BfAA7h5m9PvNn4FXIBxeAe9dAYf0u0NERERERERERCpOlQnhbTYbDz/8MH369HHYViYpKYl69UqPXK1Xrx5JSUnnPT4/P5+MjIxSDxFn6xwbypf39mTqxG60igoiM7+IV+ftpv+ri/ls1SEKrbbKLcjDC3o/BA+th87jAAtsnQFvdYUlr0Bh7sXPkZYA00bA4hfAboV2N8F9yyC6a4WXX6FaXQv3Loa6rSArGT4eAaveMe8iEBERERERERERcbIqE8I/+OCDbNu2jS+//NKp533xxRcJDg4uecTExDj1/CKnWSwWBraIYM5DfXnj5o7EhPmSmpnPk99vY/C/f2P2lmPYbJUc9AZEwHX/NaFzbC8ozIFFz8Nb3WH79xcOnrd/D+/2MaPFvQJg9Ptw/QfgU0NaONVpCvcshLY3gK0Ifv4/+OZOyM9ydWUiIiIiIiIiIlLDVIkQftKkScyePZtFixYRHR3t8NjIyEiSk5NLbUtOTiYyMvK8x0+ePJn09PSSR0JCgtPqFjkfNzcLozo1YOEjA3j2ujbUCfDi4PFsJk3fyMi3l7Ns7/HKL6p+R5g4F67/CIIamNYyM8abke5JW88cV5ANsx4y+/LSoUEXuG8pdLi58muuaF7+cP2HMPRlcPOA7d/Bh4Pg+F5XVyYiIiIiIiIiIjWISydmtdvtPPTQQ8ycOZPFixfTrFmziz7n5ptvJicnhx9//LFkW+/evWnfvr0mZpUqKSu/iI+WHuT93/aTXWAFoG/TOjw+tAXto0Mqv6CCHFj+HzNBaVEeWNyg83hoMwrmPAon9gIWM/HqwL+Cu2fl11jZDq+Cr8dDVpLpFz/qbWg90tVViYiIiIiIiIhIFVWWnNmlIfwDDzzA9OnT+eGHH2jRokXJ9uDgYHx9fQEYN24cDRo04MUXXwRgxYoV9O/fn5deeonhw4fz5Zdf8sILL7BhwwaHveRPUwgvrnIiK5+3Fu0r7hFvfuyGt4vi0SEtaFTHv/ILSjsMC/5uRoCfLTAKRr8HjftXfk2ulJlsWtIcWmbWe/8RBv3dTOgqIiIiIiIiIiJylmoTwlsslvNunzp1KhMmTABgwIABxMXFMW3atJL9M2bM4MknnyQ+Pp5mzZrxyiuvcM0111zSNRXCi6slnMzh3wv2MHPTUex2cHezcHO3GB4e1IyIIJ/KL+jQCpj7uGlL02I4jHwL/MIqv46qwFoEC5+BFf8163FXwA1TTG99ERERERERERGRYtUmhHcFhfBSVexMzODVebv5dVcKAD6ebtzZpxF/6N+EYN9KbgFjs0J6AoQ0hAvcHKtVtn8PPzwIBVnmnQE3fQIx3V1dlYiIiIiIiIiIVBEK4R1QCC9VzZqDJ3lp7k42HE4DIMTPkwcGNGFcrzh8PN1dW1xtlrobvhoLx3eDmycMeQG636ObFCIiIiIiIiIiohDeEYXwUhXZ7XYW7Ejm1Xm72ZuSBUBUsA9/vqo5Yzo3wMPdzcUV1lL5mfDDJNjxvVlvdxNc+wZ4uaCHv4iIiIiIiIiIVBkK4R1QCC9VmdVm59sNR3hjwR6OpecBJoy/rkN9rutYn9ZRQRecS0EqiN0OK9+GBU+D3QoRreHmzyC8iasrExERERERERERF1EI74BCeKkO8gqtfLbqEG8v2sepnMKS7U0jAhhZHMg3DNdo7EoVvxxmTIDsFPAOgtHvQsvhrq5KRERERERERERcQCG8AwrhpTrJK7SyeHcKP2w6xsJdKRQU2Ur2dYwJYWTH+gxvH0VEoI8Lq6xFMhJNEJ+wyqz3fQSufBLcKrB3f2Ee5ByHrBTIPg65JyG6m0bii4iIiIiIiIi4kEJ4BxTCS3WVkVfIvG1JzNp8jOX7jmMr/sl1s0CfpnW4rkN9hrSNJMjH07WF1nTWQtOaZtX/zHqj/nDDFPCvc2nPt9kg9xRkpxY/isP1kvXfLednnHsODx8Y9Q60HeO81yUiIiIiIiIiIpdMIbwDCuGlJkjJzGPOlkR+2HSMTQlpJdu9PNwY1DKCkR3rM6BFBD6eFThCu7bb+g3M+iMUZkNQAxj5lmlTczpAz7pAuJ5zHOy2i5//bO5e4F/XBP3WIkjZbrYPfBL6PQqaJ0BEREREREREpFIphHdAIbzUNPHHs/lx8zG+33SU/anZJdsDvT0Y2jaSkR0b0KtJOO5uCmqdLmUnfHUHnNhX9uf6hhYH68Xhun/EWct1zzwC6ppw/3TQbrPC/Kdg1dtmvf3NcN1/wcPbea9LREREREREREQcUgjvgEJ4qansdjs7EjOYtekYszYfIzE9r2Rf3UBvRrSPYmTHBnSIDsaikdPOk5cBc/4Cu+eCb8hZIXrE7wL14uWACPALB/fLbBu0bgrMeRTsVojpCbd8fuktcURERERERERE5LIohHdAIbzUBjabnbXxJ/lh8zF+2ppIWk5hyb6G4X6M7FCf6zo2oGlEgAurlMu2fxF8PR7y0yGkIdz2NUS0dHVVIiIiIiIiIiI1nkJ4BxTCS21TUGRj6d5Ufth0jAU7kskttJbsa1M/iJEd63Nth/pEBfu6sEopt9Q9MP0mOHXQtK25cSo0vcrVVYmIiIiIiIiI1GgK4R1QCC+1WXZ+Eb/sTOaHTcf4bU8qRTbz42+xQPe4MG7rEcuwtlF4ebi5uFIpk+wTpjf94RVgcYdhL0P3e1xdlYiIiIiIiIhIjaUQ3gGF8CLGyewCftqayKxNx1gTf7Jke91Ab27rHsvtPWKJCPJxYYVSJkX58OPDsHm6We/+BxjyArh7uLQsEREREREREZGaSCG8AwrhRc51NC2XGesS+Hz1YVIz8wHwdLcwrG0U43vH0Tk2RJO5Vgd2Oyx/A355xqw3vQpumAI+wa6sSkRERERERESkxlEI74BCeJELKyiyMXdbIh+viGfD4bSS7e0aBDO+dxwj2kfh4+nuugLl0uyYBd/dC0W5ULcV3PYlhMa5uioRERERERERkRpDIbwDCuFFLs3WI+l8vDKeWZuPUVBkAyDM34tbu8dwR8+Gmsi1qju2Eb64FTITwa8O3DIdYnu4uioRERERERERkRpBIbwDCuFFyuZEVj5frk3gs1WHSEzPA8DdzcKQNvUY3yuO7o3C1Kqmqso4BtNvhqQt4O4NI9+G9je6uioRERERERERkWpPIbwDCuFFyqfIamPBjmSmrYhn9cEzE7m2jAxkQu84RnZsgK+XWtVUOQXZpjXNrtlmvf8TMGAy6MaJiIiIiIiIiEi5KYR3QCG8yOXbmZjBJyvjmbnxKHmFplVNsK8nt3QzrWpiwvxcXKGUYrPBwmdg+X/MepsxMOp/4KmWQiIiIiIiIiIi5aEQ3gGF8CLOk5ZTwNfrEvhk5SGOnMoFzADrq1rVY0LvOHo3CVermqpkw6cw+2GwFUGDrqZPfGA9V1clIiIiIiIiIlLtKIR3QCG8iPNZbXZ+3ZXCxyviWbbveMn2phEBjO/VkDGdo/H39nBhhVLi4FL4eizknoLgGLj1S4hs6+qqRERERERERESqFYXwDiiEF6lY+1Iy+WTlIb5df4TsAisAgd4e3NA1mvG94oir4+/iCoUT+2H6TXBiH3gFwA1ToPkQV1clIiIiIiIiIlJtKIR3QCG8SOXIyCvk2/VH+GTlIQ4ezy7ZPqBFXW7rHkvfZnXw89LoeJfJOQlfj4P4pWBxgyEvQI/7NGGriIiIiIiIiMglUAjvgEJ4kcpls9n5bW8qH6+IZ9Hu1JLtXh5u9GgUxoAWEQxoUZfGdfzVP76yWQthziOw4ROz3vVOGPYKuHu6ti4RERERERERkSpOIbwDCuFFXCf+eDafrTrEz9uTSiZyPS0mzJeBxYF8r8Z18PVyd1GVtYzdDivfhvlPAnZoPABu/Bh8Q1xcmIiIiIiIiIhI1aUQ3gGF8CKuZ7fb2Z+axeLdqSzencqagycpsNpK9p8eJX86lG+kUfIVb/dc+OYuKMyGOs3htq8grLGrqxIRERERERERqZIUwjugEF6k6snOL2Ll/hMs2p3C4t2pHE0rPUo+NsyPgS3qMqBFBD0bh2uUfEVJ2grTb4aMo+AbBjd/BnF9XF2ViIiIiIiIiEiVoxDeAYXwIlXb6VHyi3alsnhPCmsOnqTQeubXlLeHGz0ah5eE8o3q+Luw2hooMwm+uBWObQA3T7hxKrS61tVViYiIiIiIiIhUKQrhHVAIL1K9ZOUXsWLfcRbvSWXJeUbJNwz3Y2CLCPq3qEuvxuH4eGqU/GUryIHv74MdP4C7F9w+w/SKFxERERERERERQCG8QwrhRaovu93O3pQsFhe3rVkbf+4o+V5NwhnQ3IySj9Mo+fKzWWHGBNg5C7wCYPwsaNDF1VWJiIiIiIiIiFQJCuEdUAgvUnNk5RexfN9xFu9OZcnuFI6l55XaHxfux5A2kYxoX5+2DYI0uWtZFeXD5zfCwSWmR/ydP0PdFq6uSkRERERERETE5RTCO6AQXqRmstvt7EkuPUq+yHbm11tcuB8j2tdnRIcoWtQLVCB/qfIz4ePrTI/4wPpw1zwIiXV1VSIiIiIiIiIiLqUQ3gGF8CK1Q2ZeIUv3HmfOlkQW7komr9BWsq9pRAAj2kcxon19mkYEuLDKaiLnJEwZCsd3Q3hTmPgzBNR1dVVVl90Oy/8DB3+Da/8DITGurkhEREREREREnEwhvAMK4UVqn+z8IhbuSuHHzcdYsjuVAuuZQL5lZCDXdqjPiPZRNAxXD/kLSj8KU4ZAegJEdYDxs8FHv0PPa+lrsPAfZrl+Z9PGx8PbtTWJiIiIiIiIiFMphHdAIbxI7ZaRV8iC7cnM3nKMpXuPl2pZ0z46mBHtoxjevj4NQnxdWGUVdXyfCeJzjkPDvnDHN+Cpz1Mp66bA7D+bZQ8fKMqDbvfA8H+5ti4RERERERERcSqF8A4ohBeR09JyCpi3PYnZWxJZvu84Z+XxdI4NYUT7+gxvH0W9IB/XFVnVJG6GaSMgPwNaXAM3fQruHq6uqmrY9h18cydghyv+AjE9YfqNZt/1H0G7G1xanoiIiIiIiIg4j0J4BxTCi8j5HM/KZ+62JGZvPsaa+JOc/s1osUC3uDCu7VCfYW0jqROgtiLEL4fPxphR3h1uhZH/Azc3V1flWvt+gem3gK0QukyEEf823zwLn4Ol/wJPf7h3EdRt4epKRURERERERMQJFMI7oBBeRC4mOSOPn7YmMntLIusPnSrZ7maB3k3qMKJ9FEPbRhLi5+XCKl1s91z48nawW6HnAzDkBRM610YJa+CTkVCYA23GwPUfgpu72WezwqejzCStdVrAPb+CtyYDFhEREREREanuFMI7oBBeRMriaFouc7YcY/aWRLYcSS/Z7uFmoW+zOoxoX5/BbeoR5OPpwipdZPOXMPMPZvnKJ6HfY66txxWSd8DUYZCXBk0Gwa1fgsfvbs5kpcJ7V0BmIrS9wYT0tfWGhYiIiIiIiEgNoRDeAYXwIlJeh05kM3uLGSG/MzGjZLuXuxt9m9WhW1wYnWJDaB8djJ9XLemTvuod+Pn/zPLw16Db3a6tpzKdPAhThkJWEkR3h3Hfg5f/+Y89tBKmDTfvHKhtnycRERERERGRGkghvAMK4UXEGfalZDG7eIT8vpSsUvvc3Sy0jAykc2wonWJD6BwbSsNwPyw1dfTzr8/Db68AFjPKuzZMQJqZDFOGwKmDENEaJswBvzDHz1nxX5j/JLh7wZ0/Q4MulVOriIiIiIiIiDidQngHFMKLiDPZ7XZ2J2fy255UNh5OY8PhUyRn5J9zXKifJ51iQ+kcG0Kn2FA6xIQQ4F1DRsvb7fDTo7D2Q3DzgFu/gmZXubqqipObZka1J2+DkIZw13wIjLz48+x2+OoO2DUbgmPgD79dPLgXERERERERkSpJIbwDCuFFpKIdS8stCeQ3Hj7FtqMZFFhtpY6xWKBFvUA6nTVavnEdf9zcquloeZsNvrsbtn0LHr4w7geI7eHqqpyvIAc+HQ0JqyCgnhnRHtb40p+flw7v9Tcj6JsNNjcs3Nwqrl4RERERERERqRAVHsInJCRgsViIjo4GYM2aNUyfPp3WrVtz7733lq/qSqIQXkQqW36RlR3HMs4K5tM4mpZ7znFBPh50PGu0fMeYEIJ9q9GEr0UF8OWtsO8X8AmGCT9BZFtXV+U8RQXw5W2wb8Hlvb6krfDhVVCUV3sntBURERERERGp5io8hL/iiiu49957GTt2LElJSbRo0YI2bdqwd+9eHnroIZ5++ulyF1/RFMKLSFWQkpHHhsNpbEw4xcZDaWw5mkZeoe2c45pGBJSE8p1iQ2gWEYh7VR4tX5ADn46ChNXFI8XnQVgjV1d1+Ww2+O4e2PZN8Uj/7yG2Z/nPt/Ez+OFBsLjB2JnQeICzKhURERERERGRSlDhIXxoaCirVq2iRYsWvPnmm3z11VcsX76c+fPnc99993HgwIFyF1/RFMKLSFVUaLWxOymzZKT8hsOnOHQi55zjArw9aNsgiDb1g2lT33xsUtcfD/cq1NIk9xRMHQ4p2yE0zgTxl9Izvaqy2+Gnx2DtB87tef/DgyaM969r+sMH1b/8c4qIiIiIiIhIpajwED4gIIBt27YRFxfHddddR58+fXjiiSc4fPgwLVq0IDf33DYLVYVCeBGpLk5k5bMp4UwLm80JaWQXWM85ztvDjZZRQcWhvAnmW0YG4uPp7oKqi2UmwZQhcCoeItrAxDngG+q6ei7HohdgycuABa7/ENrd4JzzFubCh1dD8laI6QkTZoN7NWo/JCIiIiIiIlKLVXgI36NHDwYOHMjw4cMZPHgwq1atokOHDqxatYobbriBI0eOlLv4iqYQXkSqK6vNzp7kTLYdTWf7sQy2H0tnx7GM8wbz7m4WmtT1LzVivnX9oMrtMX/yoAnis5Ihpodpu+LlX3nXd4ZV78LPT5jl4a9Bt7ude/4T++H9AZCfAb0mwZDnnXt+EREREREREakQFR7CL168mNGjR5ORkcH48eOZMmUKAH/961/ZtWsX3333XfkqrwQK4UWkJrHZ7Bw6mcP2YyaY33bUBPMnsgvOe3xMmC9tokww37aB+RgR5FNxBSZvh6nDIC8dml4Ft3wBHl4Vdz1n2vwlzPyDWR74N+j/eMVcZ+eP8NUdZvmmT6H1dRVzHRERERERERFxmgoP4QGsVisZGRmEhp5pLxAfH4+fnx8RERHlOWWlUAgvIjWd3W4nOSO/JJjffiydbUczOJp2/lZhdQK8S7WyaVM/iNgwP9ycNQHs4dXwyUgoyoW218OYD8DNha1yLsXuufDl7WC3Qo/7YeiLYKnACXHn/Q1WvgXeQXDvYghvUnHXEhEREREREZHLVuEhfG5uLna7HT8/PwAOHTrEzJkzadWqFUOGDClf1ZVEIbyI1FZpOQXsOJZxJpg/lsGB1Cxs5/lXINDbg2b1AvD2cC/Jni0WsGAplUVbLBYsnL3fbIPTy2apTc4aHkp+Cg+KWBx0HV/U+SMWi5t5jgWiQ/24vUcsDcOrQLua+OXw2RgoyoP2t8Cod8Ctgie+tRbCx9fC4ZVQry3c/Qt4+lbsNUVERERERESk3Co8hB88eDBjxozhvvvuIy0tjZYtW+Lp6cnx48d5/fXXuf/++y/pPL/99huvvvoq69evJzExkZkzZzJq1KgLHr948WIGDhx4zvbExEQiIyMv6ZoK4UVEzsgtsLIzyQTzO4pHzu9KzKTAanP6ta51W8F/PN/GzWLnP0Wj+XfRjaX2WyxwVat63NW3ET0ahZWE+ZUqcTNMG2F6tDcfBjd/WnmTpWYkwntXQHYqdLoDRr5dOdcVERERERERkTIrS87sUZ4LbNiwgX//+98AfPPNN9SrV4+NGzfy7bff8vTTT19yCJ+dnU2HDh248847GTNmzCVff/fu3aVeWFVufyMiUpX5ernTOTaUzrFnWosVWm3sS8niQGo2RbYzYfzpW7Z27NjtZ6+bFjgld3Tt5pjTz7GXPLcd6w4F033H8/zJYya92zZjV8PbsdrsLN6TyuLdqSzYkcyCHcm0jgrizr6NuLZDFN4eldS65vg++HSMCeAb9oEbp1ZeAA8QFAXXfwifjoaNn0FMT+g8tvKuX1UUZMPS18y7Awb9HdzL9aeKiIiIiIiISJVRrv/Z5uTkEBgYCMD8+fMZM2YMbm5u9OzZk0OHDl3yeYYNG8awYcPKfP2IiAhCQkLK/DwREbk4T3c3WkUF0SqqAt4t1ONxWGKBRf+k265X6NayMXS8lQl9GrEvJYupyw/y7YYj7EjM4NEZm3lp7i7G9mzI7T1jqRPg7fx6Tks/Cp+OgpzjENkebv3CNe1gGg+AgX+FX/8JPz0KUR0gqn3l1+EqCWvgu3vh1MEz2wY/57p6RERERERERJygXE1umzZtyvfff09CQgLz5s1j8ODBAKSkpFRKi5eOHTsSFRXF1VdfzfLlyx0em5+fT0ZGRqmHiIi4UL9HoecDZvmHB2HXTwA0jQjg+dHtWDV5EI8PbUFkkA/Hs/L59y976P3Srzz+zWZ2JVXA7/DsE2b0eXoChDeFO74Dn2DnX+dS9f0LNBtsetJ/PQ7y0l1XS2UpKoCF/4ApQ0wA71/XbF/xJmz71rW1iYiIiIiIiFymcoXwTz/9NI8++ihxcXF0796dXr16AWZUfKdOnZxa4NmioqJ49913+fbbb/n222+JiYlhwIABbNiw4YLPefHFFwkODi55xMTEVFh9IiJyCSwWGPw8dLgN7FaYMQH2LyrpbxPi58UDA5qy9ImB/OeWjnSIDqagyMbX644w9I2l3P7hKhbuTMZ2vhllyyo/Ez6/AY7vhqAGMHYmBNS9/PNeDjc3GP0eBMeaQPr7B870/qmJknfAh1eaFjR2m5kMd9I66Ptns/+HSZC0zbU1ioiIiIiIiFyGck3MCpCUlERiYiIdOnTAzc1k+WvWrCEoKIiWLVuWvRCL5aITs55P//79iY2N5dNPPz3v/vz8fPLz80vWMzIyiImJ0cSsIiKuZi2Cr8fCbjMSHt9Q0womsp1pwxLZHsKbYndzZ8PhU0xZFs/cbYmczt4b1fFnYp84ru8cjb93ObqrFeXD5zfCwSXgGwZ3/gx1Wzjv9V2uo+thylCwFsDgf0Lvh1xdkXPZrLDybfj1OfMafcPg2jeg9cgz+z+/Afb/CqFxcM8i8AtzZcUiIiIiIiIiJcoyMWu5Q/jTjhw5AkB0dPTlnKbcIfxjjz3GsmXLWLly5SUdX5ZPjoiIVLDCXJj5B9g524yK/z0PH6jXpiScTwlowbR9/ny6PoXMvCIAgnw8uLV7LON6x9Eg5BL7uFuL4JsJsPNH8AqA8bOgQRfnvS5nWfshzPkLWNxhwhxo2MvVFTnHqXgzwv9QcUu55kPh2jchsF7p43JOwvsDIO0QNBkEt88At0qaqFdERERERETEgQoP4W02G//85z957bXXyMrKAiAwMJC//OUv/O1vfysZGV8W5Q3hr776agIDA/nuu+8u6XiF8CIiVVBhHqTuhKStkLgFkraYFiSF2ecea3HDFtaUeM+mzDtRl2XZ9dluiyPTLYihbSO5s08jujQMvfC17HaY9RBs/BTcvUyw23iAU16GzWYnNSufI6dyAOgcG4rFYin/Ce12+O4e2DoDAiLhvqUQEOGUWl3CboeNn8HP/wcFWeYGyJAXoPM406bofJK2wUdXQ2EO9H0Ervp75dYsIiIiIiIich5lyZnL8f59+Nvf/sZHH33ESy+9RJ8+fQBYtmwZzzzzDHl5eTz//POXdJ6srCz27dtXsn7w4EE2bdpEWFgYsbGxTJ48maNHj/LJJ58A8MYbb9CoUSPatGlDXl4eH374Ib/++ivz588vz8sQEZGqwtMH6ncyj9NsNjh5oDiQ33ImnM9Oxe3EHhqzh/uB+73M4cfsYWzfGceyHXHMD2tN154DGNC9M54evxs5/cvfTQBvcYMbppQpgD87ZD9yKrf4cWb56KlcCqy2kuNbRQXxxyubMqRNJG5u5QjjLRYY8YZ57cd3w7d3wdjvq+do8KwU+PFPZ9oPxfaCUe9AWCPHz4tsC9f917z2Za+bVkVtRlV4uSIiIiIiIiLOUq6R8PXr1+fdd9/luuuuK7X9hx9+4IEHHuDo0aOXdJ7FixczcODAc7aPHz+eadOmMWHCBOLj41m8eDEAr7zyCu+//z5Hjx7Fz8+P9u3b8/TTT5/3HBeikfAiItVcZlLxiPnNxQH9VhPWn0cG/mSGtCK8aVd8ojua4357xey87i3oPLbU8WUN2c/HzQJRwb6k5RSQXWBa7LSoF8hDg5oyrG0U7uUJ41N3w/sDzTsDrngUBj1V9nO40s4f4ceHIee4effBlU9Cr0llu5kw/0lY8V/w9Id7FkJEqworV0RERERERORiKrwdjY+PD1u2bKF58+altu/evZuOHTuSm5tb1lNWGoXwIiI1UF4GJG+DpK3kHt5IZvwGQrP340nReQ8/0vX/WB897rJC9uhQX6JD/Yo/nlmODPbB092NtJwCpiw7yNTl8WTmmzqaRgTw0JVNGdG+ftnD+K3fmNHgALd9Dc2HlO35rpCXDnP/DzZPN+v12sLo98zo9rKyFsFnY8xEumGNzUStviFOLVdERERERETkUlV4CN+jRw969OjBm2++WWr7Qw89xJo1a1i9enVZT1lpFMKLiNQO+fm5/LZ8GVvWLSMsYyet3Q7R2HKMz4qu5j/W6y/4PHc3C5FBPhcN2S9Vek4hU1ccZMqyg2QUTybbuI4/Dw5sysiO9fEow7mY8yis/QB8QuAPv0Fow0t/bmU7+JuZfDU9wbT+6fMnGDAZPLzLf87sE2ai1vTD0Gww3PoVlGMeGhEREREREZHLVeEh/JIlSxg+fDixsbH06tULgJUrV5KQkMBPP/3EFVdcUb7KK4FCeBGR2sVut7PqwEk+WnaQhbuScbM4Dtmjgn3KFoxfooy8Qj5ZEc+Hyw6SllMIQMNwPx4c2JTRnRpcWrBflA9Th8HR9aZ//p3zLi/UrgiFubDwOVj1tlkPjTOj32N7Ouf8iZvho8FQlAf9Hocr/+ac84qIiIiIiIiUQYWH8ADHjh3j7bffZteuXQC0atWKe++9l3/+85+8//775TllpVAILyJSe2XnF+Ht4VYhIfulysov4tOVh/hg6QFOZhcAEB3qy4MDm3J952i8PC5SW9pheK8f5J6CbnfD8NcqoepLdGwTzPwDpJq/DegyAQY/D94Bzr3O5q9g5r1m+ebPodUI555fRERERERE5CIqJYQ/n82bN9O5c2esVquzTul0CuFFRKQqyCko4rNVh3j/twMczzJhfP1gH+4f2JSbukbj7eFg0tK9C+DzG8zymA+h/Y2VULED1iJY9m9Y8hLYiiCgnpn4tvngirvm3P+D1e+AV6CZqLVui4q7loiIiIiIiMjvKIR3QCG8iIhUJbkFVqavOcy7S/aTmpkPQGSQD/cPaMLN3WLw8bxAGP/rP+G3V8HTDybMMe1pLGWc7NUZju8zo9KPrjfrrUfC8H+Df3jFXtdaCJ+MgkPLILyZCeJ9giv2miIiIiIiIiLFFMI7oBBeRESqorxCK1+tTeCdxftJysgDICLQmz/0b8Jt3WPx9fpdGG+zwqej4eASs+7pB2GNSz/Cm5iPgVHOD+jtdlj7Icx/CopywTsYhv8L2t1YeTcDslLh/f6QcRRaXGNa02iiVhEREREREakECuEdUAgvIiJVWX6Rla/XHeGdRfs4lm7C+DoBXtzbrzF39GyIn5fHmYOzUuHrcZCwCuy2C5/Uw7c4mG90JpgPawxhTUxAX9bgOuMYfP8AHFhk1hv1h1H/g+DoMr5aJzi6HqYMA2s+DPgrDHii8msQERERERGRWqfCQvgxY8Y43J+WlsaSJUsUwouIiFymgiIb3244wtuL9nHkVC4AYf5e3H1FI8b1iiPA+6wwvqjATNh68gCc3G8+nij+mHYY7A7+XfbwNeH86ZA+7KyQPqhB6YDebodt38KcRyAvHTx84Op/QLd7XDsCfePn8MMDZvnWr6DFUNfVIiIiIiIiIrVChYXwEydOvKTjpk6deqmnrHQK4UVEpDoptNqYufEoby/ax6ETOQCE+Hlyd99GjOsdR5CPp+MTWAvPCujPCudPHoC0Q2Yi1Qtx9z4rmG9kjt/5o9lXvzOMfg/qNnfSK71Mcx6FtR+AdxDcswjqNHV1RSIiIiIiIlKDuawdTXWgEF5ERKqjIquNHzYd461F+zh4PBuAIB8P7uzbiIm9GxHsd5Ew/nyshZCeUBzOHzgTzp/cD6fizx/QW9yh/xNwxV/A3ePc/a5SVACfXAeHV0KdFmaiVu9AV1clIiIiIiIiNZRCeAcUwouISHVmtdmZveUYby7cy/5UE8b7eLpxXYf6jO0ZR7voYCddqAgyjpw1cv4g5GdA1zuhQWfnXMPZMpPNRK2ZidByBNz0qSZqFRERERERkQqhEN4BhfAiIlITWG125m5L5K1f97ErKbNke4foYG7v2ZBr29fH18vdhRW6SMJamHYNWAvgyqeg36OurkhERERERERqIIXwDiiEFxGRmsRut7Pu0Ck+XXmIudsSKbSaf9aDfDy4oUsMt/eMpUndABdXWcnWfww//hGwwO0zoNnVrq5IREREREREahiF8A4ohBcRkZrqeFY+X69LYPrqwxw5lVuyvU/TcO7o0ZCrWtfD072WtGf58WFYPxV8gs1EreFNXF2RiIiIiIiI1CAK4R1QCC8iIjWd1Wbntz2pfLbqEL/uTuH0v/QRgd7c0j2WW7vHEBXs69oiK1pRPkwbAUfWQERruGsBeNeydwSIiIiIiIhIhVEI74BCeBERqU2OnMrhizWH+WptAsezCgBwd7NwVasI7ujZkD5N6uDmZnFxlRUkI9FM1JqVDK1HwY3TwFJDX6uIiIiIiIhUKoXwDiiEFxGR2qigyMbP25P4bNUh1hw8WbI9LtyP23s05IYu0YT6e7mwwgpyeJUZEW8rhKuehb4Pu7oiERERERERqQEUwjugEF5ERGq7PcmZfL7qEN9tOEpmfhEAXh5uXNu+Pnf0jKVjTAgWF44Yt9rMnybuzhqhv/ZDmPMXsLjB7d9A00HOOa+IiIiIiIjUWgrhHVAILyIiYmTnFzFr8zE+XXmIHYkZJdvb1A/ijp4NGdmxPn5eHk67nt1uJzO/iOT0PJIy8khKzyMlM5+k4vXk4kdqZj4+nu50aRhKj0Zh9GwcTvvoELw8yjmprN0OsybBxs/AJwTuXQxhjZz2ukRERERERKT2UQjvgEJ4ERGR0ux2OxsT0vhs1SFmb0mkoMgGQKC3B9d3ieb2HrE0qxfo8BwFRTZSMk8H6SZYT844O1w323ILreWq0cfTjc6xofRoFE7PxmF0iAnBx9P90k9QmAdTh8GxDVCvLdw1H7z8y1WLiIiIiIiIiEJ4BxTCi4iIXNip7AK+WX+Ez1cfIv5ETsn2Ho3CuL5LNDabvThYzzche3oeKZl5JZO+XopgX0/qBXlTL8iHyCAfIoN9iDi9HORDvSBvTuYUsPrASVYdOMGagyc5kV36/F4ebnSKCaFn43B6NA6jc2zoxUP59CPw/gDIToW2N8D1H2qiVhERERERESkXhfAOKIQXERG5OJvNzvL9x/l05SF+2ZmM7RL+WvBydyMiyNsE6cE+1Av0ITLYhO31SgJ2H3y9yjCCHTNSf19KFqsOmlB+9YGTHM/KP+faHWKCTSjfKJzODUPO30onfjl8ch3YimDw89B7UplqEREREREREQGF8A4phBcRESmbxPRcvliTwLK9qQT7ehIZ7HNOsB4Z7EOon2elTOhqt9s5cDy7JJBfffAEyRmlQ3kPNwvto4tD+cbhdG0Yir93cSi/+j2Y+zhY3GHsTGjcv8JrdjprIWQmQWYiZByFjOKPmYlm2W4DLz/TcsfT/9xlTz/wCihe9jf7zrfs7rw5AURERERERGoShfAOKIQXERGpWex2O4dO5JhQ/uBJVh84wbH0vFLHuLtZaNsgmJ6Nw+gZF0bf7U/hue0r8A2DEa+bj94B4B0E3oHm4ennmnY1BdkmSM88BhlnPUoC92OQlQJUwp9w7t6Og3qfYGjQFeL6Qmic2vuIiIiIiEitoRDeAYXwIiIiNZvdbufIqVxWnjVS/sip3FLH+FoK+NHvOZpa91/4RBY38Ao8E8p7B5y1HPi7fed5eJ0V6nt4gd0Ouad+F6ifPYL9mFnOS7+0F+rmCUFREFgfgs56BEaBmwcU5kBBFhTklGE52zzs5ZhANyjahPGnHwrlRURERESkBlMI74BCeBERkdrnyKmckkB+1YGTHD6ZQyQneMLzS2ItKdTxLKCuVz6+9lws+ZmmnYszuXuZUL8o7+LHggnwTwfqQQ2KA/bi5dPb/MLBzc25dYK5WVCUXzqUL8w2Qf3vl7OS4fBKOLIObIWlz6NQXkREREREajCF8A4ohBcREZHE9FxWHzjJot0pzN2aRIHVhO7h/l7c0i2aO7rUJcrHCvmZkJ9hPhZkFa+f51GQdea4/EzILz62MPvci/uFFwfsp0evNygO2M/a5lPN/kYpyIEjayB+mXkolBcRkfPZ+SMsfA6ufQMa9nZ1NSIiIpdFIbwDCuFFRETkbMez8vlyzWE+W3WYpAwzUt3dzcLg1vUY1yuOno3Dyj/hrM16Jry3FUFAJHj6OLH6KkqhvIiI/F76EfhfL3PTOrwZPLAS3D1dXZWIiEi5KYR3QCG8iIiInE+R1caCHcl8vDKeVQdOlmxvXi+Acb3iGN2pAf7eHi6ssBpTKC8iUrvZ7fDZ9bB/4ZltQ1+Gnve5riYREZHLpBDeAYXwIiIicjG7kzL5ZGU83204Sm6hmaQ00MeDG7vEMLZXQxrV8XdxhdVceUN5a6HpVV+Ye9bH4uWivAvvu+RteeY8oXFQvyNEdYSoDubhG1LpnyYRkRpj/cfw4x/B3Ru63wMr3wKfEPjjRvALc3V1IiIi5aIQ3gGF8CIiInKp0nML+Wb9ET5dGU/8iZyS7f2b12VC7zj6N6+Lm5tGa1+2SwnlLW7OnzC3LEIbnQnm63csDuZDXVePiEh1kZZg2tAUZMLgf0LPB+DdKyBlO/S4D4a97OoKRUREykUhvAMK4UVERKSsbDY7v+1N5ZOVh1i0O4XTfz3FhvkxrldDbuwSQ7Cf+to6zcVCeYsbePqDp2/xw++sjz7n2fa74zzO97zibW4ecHw3HNsEiZvg2GZIP3z+OkPjzoyWPx3Qa0SniMgZdjt8OhoOLIKYHjBxLri5w4HF8MlI8zv3gVVQp5mrKxURESkzhfAOKIQXERGRy3HoRDafrTrEV2sTyMgrAsDH043RnRowrlccraL094XTFeRAXvqZwNzds3L7xWefgKTNZwXzmyDt0PmPDYk9a7R88cM/vJIKFRGpYtZNhdkPg4cP3Lcc6jQ9s2/6LbBnLjQfCrd95bISRUREykshvAMK4UVERMQZcgusfL/pKB+viGdXUmbJ9u6NwhjfK47Bberh6e7mwgqlQuWchMTNxY9NJpg/dfD8xwbHnDVavpP56F+n8mqtaTIS4cc/QX4GDHsFotq7uiIROZ+0w8VtaLJgyAvQ68HS+4/vg//1AFsRjJ0JTa50TZ0iIiLlpBDeAYXwIiIi4kx2u5218af4eGU8P29Lwmozf1rVC/Lm9h4NubV7LHUDvV1cpVSK3LQzoXxi8cj5k/vPf2xQNES2NSPng6MhqIEJ64OjITDStGuQcx1YAt/eBdmpZt3NA/o9Dlc8Yt4hISJVg91u2s0cXAKxvWDCnPP/Xvt5Mqz6H0S0hj8sBXePyq9VRESknBTCO6AQXkRERCpKUnoe09ccZvrqwxzPygfA093C8HZRjOsdR+dYTeRZ6+SlQ+KWM6PlEzfDiX2Agz/BLe4QVN8E8mc/gs5a9gmu3JY8rmazwdJ/weIXzQS99dpBaEPYNdvsj2wPo9+Fem1cW6eIGGs/gjmPmDk47l8O4U3Of1zuKXizk/k4/HXodlfl1ikiInIZFMI7oBBeREREKlpBkY252xL5eEU8Gw6nlWzv2jCU+/o34cqWEbi51aIAVUrLy4CkrZC6E9KPQsZRSD8C6QmQccy0ZrgYr0AIbvC7oD6meER98ch6D6+Kfy2VIfsEfHcP7F9o1juPM21oPHxg27fw06MmwHPzhAFPQJ8/azStiCudiof/9YbCbBj6MvS8z/Hxq9+HuY+BXzj8caO5ySgiIlINKIR3QCG8iIiIVKatR9L5eGU8szYdo8BqA6BZRAD39mvMyI4N8PJQ33g5i80KWckmnE9PKA7nix8ZxR9zTlzCiSwQUK84nG8ATa+GjrdVvzY3CWtgxgRzo8LDF0a8bl7H2TKTzcSPu38y6/U7wah3IKJVZVcrIjYbfHIdxC+Fhn1g/Gxwu8i/c9ZCeKc3HN8DvR+Cwf+snFpFREQuk0J4BxTCi4iIiCukZOQxdUU8n608RGa+GekcGeTDnX3juLV7LIE+6mctl6gg56zR82c/Es5sL8o793lRHU27h+gulV5ymdntpk/0gqfNOwPCm8FNn0C91hc+fsvXZjRtXjq4e8HAv0KvhzQqXqQyrfnAvDvF08+0oQlrfGnP27sAPr/BvKPlwdUXbl8jIiJShSiEd0AhvIiIiLhSZl4hX6w5zEfLDpKcYfrGB/p4cEfPhkzsE0dEoI+LK5Rqz243o+VPj6RP3gEr34L8DMACncfCoGfAP9zVlZ5fbhr88OCZfu9tr4dr/wPegRd/bkYi/Pgn2DvPrDfoakbF121eYeWKSLGTB82I9sIcGPYq9Li3bM//dIxpO9VyBNzyecXUKCIi4kQK4R1QCC8iIiJVQX6RlR82HeO9JfvZn5oNgJe7G9d3acA9VzSmcd0AF1coNUpmMvzyd9j8hVn3CYFBT0OXCVWrRU3iZvh6nOkp7e4FQ16AbneXbRJaux02TYef/8/ceHD3hkFPQc8HqtZrFalJbDb4eAQcWg5xV8C4WRdvQ/N7KTvhnT5gt5o2No2uqJhaRaRqWzcVlr4GVz9rbsSLVGEK4R1QCC8iIiJVic1mZ+GuFN5dsp/1h04BJm8c0jqSP/RvTKfYUBdXKDXKoZWmVUTyNrMe1RGGvwbRXV1aFnY7rJ8Gc58Aaz6ExMKNH0ODzuU/Z/pR+PGPsO8Xsx7TA0b+D+o0dUrJInKW1e/B3MfB0x8eWAGhceU7z5y/wNoPIbId3LtEN85Eapt9C01rKrvN3IwfNwsa9nJ1VSIXpBDeAYXwIiIiUlWtiz/Ju0v288vOlJJtPRqFcV//JgxoURdLWUYDi1yItQjWfQS//rO4RQ3QeZzrWtQUZMPsR2DLl2a9+TAY/Q74OuEGlN0OGz+Fn/8KBZlmcter/g7d/1D2Uboicn4n9psR7EW55qZet7vLf67sE/BmJ8hPh+veMu2zRKR2OLEfPhho5nbxCzet9fzC4e6FENbI1dWJnJdCeAcUwouIiEhVtzc5k/d/O8D3m45SaDV/qrWoF8i9/RpzXcf6eLq7NjxMzy1kX0omCSdzcXOz4OXuhreHG57ubnh5FD/cf/fxrO2e7hbdUKgKslJgwd9h83Sz7ooWNam7TfuZ1F1gcTcBee8/lq39zKVIS4BZk+DAYrMe2xtGvX3pk0aKyPnZbDDtGji8Ehr1g7E/XP4NrhVvwfy/QUA9eGj9pc0HISLVW14GfHgVHN8N0d3gtq/h09GQuAnqtIC75oNviKurFDmHQngHFMKLiIhIdZGYnsvU5fFMX32YrPwiAOoH+3Bn30bc2j0Wf2+PCr3+6bB9T3IWe5Iz2ZdiPp6eUPZyeJ0nsPd0t+Dl4Y6Xhxvepba5USfAm3YNgmkfHULzegF4uPhGRI1yeBXMeRSSt5r1qA4w/PWKb1GzZYaZRLUwGwIi4cap0LB3xV3Pbof1U2H+U1CQBZ5+cNWzZtRubRoVn59l5gao28KEpiKXY+X/YN5k8AqA+1dAaMPLP2dRAfyvB5w8AFf8xdwcFJGay2aDr26H3T9BYBTcuxgCI81k6x9cCZnHoPFAuH0GuHu6ulqRUhTCO6AQXkRERKqb9NxCPl99iCnL4jmeZQLwYF9PxvZsyPjecdQN9L7s85c1bI8M8iGujh8AhVY7BUU287D+7mPxstXmvD85vT3caFM/iPbRIbSPNsF84zr+uLlpdH25WYtg3ZTiFjXpZlunsXDVM+Bfx7nXKswzod26KWa9UX+4/iMIqOvc61zIqUPww4MQv9Ssx10BI98qfw/r6qKoADZ8DEtehuxU886DMe9DuxtcXZlUV8f3wbt9TRuaEf+Grnc679y75sCXt5mJlR9aZ+aJEMhNMy07GnR2/juGRFzl13/Cb6+an/eJcyG6y5l9iZthylAozDG/Y4a/ru99qVIUwjugEF5ERESqq7xCKzM3HuX93w5w8Hg2AF4ebtzYJZp7rmhMXB1/h88vb9jerF4AzesF0iwigGb1AmlWL4Agn7KNRLLa7BRabeQXB/OFvwvr88/eVrz97OMTTuWw9Ug6W4+kk1n8roCzBXh70LbBmWC+Q3QI0aG+antTVlkp8MszsOlzs+4TAoOegi4TndOi5uRBmDHe/KcaC/R/HPo/UfmTL9pspi/+gqfNf+w9/WHwc+Y/+DXte8Zmg+3fwa/Pwal4s8072NxssbjB6Peh/Y0uLVGqIZsVpg6DhNXQeACM/d65Pzt2O3x8rblZ1maMeadMbZeRCFOGQNohaH8zjHgDvPxcXZXI5dk+E2ZMMMuj3oWOt557zK458OXtgB2Gvgw976vMCkUcUgjvgEJ4ERERqe6sNjsLdiTxzpIDbE5IA0z2MaxtJPf1b0LDcP+SsH1vchZ7UzIrLWyvaDabnfgT2Ww5ks7mI2lsPZLOtmPp5BXazjk21M+TdtEhtG8QXDJiPjLYxwVVV0OHV8NPf4Gks1rUXPMaxHQr/zl3zobvHzDhr184jPkAmg5yTr3ldfIA/DAJDi03640HwHX/rTmjbvf/avr+J20x6/4RMOAJ8y6Hnx6FDZ8UB/HvQfubXFurVC+n+7Z7BcIDKyEkxvnXSNoK714B2OHO+RDbw/nXqC5yTsK04ZCy48y2iDZw86cQ3sR1dYlcjqSt8NFgczO81yQY8vyFj13+Jix4yvybdeuX0HxI5dUp4oBCeAcUwouIiEhNYbfbWXPwJO8u2c+i3amX9JzqEraXRZHVxr7ULLYkFAfzR9PZmZhRMqnt2SICvUsC+XbFI+bD/L1cUHU1cN4WNXeYPuplaVFjLTSj61e+ZdZjesANUyG4gdNLLhebDda8b2osyjWh4pB/Qufx1XdU/NEN5vUcXGLWvQKhz5+g5/3gHWC22Www+2HTosbiBqPegQ63uKpiqU6O7y1uQ5MH174JXcZX3LVmPWRuFtXvDHcvrF3zN5xWkA2fjIIja8z8GYOfg3l/g+wU8A4yP7utRri6SpGyyT4B7w+A9MPQ5Eq4bQa4O5jryG43vw82fmrmoLhrPtRrU2nlilyIQngHFMKLiIhITbQrKYP3lxxg1uZjFNnsNTJsL4v8Iiu7kzLZfCSdrUfS2HIknT3JmZyvNX2DEF86xJhgvn2DYLrEheLtUcntUaqyrFT45e9ntagJhiufMq1bLtZGJuMYzJgICavMeq9Jps98VZxY7cR+M1L/dK1NBsF1b0JwtGvrKosT+03bme0zzbqbJ3S/x0xueb4bJzYbzHnETFiLBUb9DzreVqklSzVjs5qWKEfWmp+RO76t2JtVWSnwZmcoyDStkzrcXHHXqoqKCuCLm827WnxCTL/seq1Na5pvJsLhlea4Pg+b38uOQkyRqsJaCJ+ONu2mwhrDPb+Cb+jFn1dUAJ+NMc8LjjE35gLrVXy9Ig5UmxD+t99+49VXX2X9+vUkJiYyc+ZMRo0a5fA5ixcv5pFHHmH79u3ExMTw5JNPMmHChEu+pkJ4ERERqcky8gqx283ErVJaTkERO45llArmDxT31j9bkI8HIzrU5/rODegcG6q+8qeVtUXN/l/h27sh54TpQT7qbWh1beXVWx42K6x6xwTZRXlmlOnQF6Hj7VV7VHxmsplwdcPHYCsCLKZn9MC/QmhDx8+12UxrmnUfmeeNfMu840HkfJb/x8yl4B1k2tBUxk2qpa/DwmchsL6ZpNXL8fwnNYbNCt/eZW6qefrDuB9K/761Fpp2U6veNutxV8ANUyAgwjX1ilyqOY/C2g/MiPa7F0JEy0t/bs5J+OhqOLEPGnSFCbPB07fiahW5iGoTws+dO5fly5fTpUsXxowZc9EQ/uDBg7Rt25b77ruPu+++m4ULF/Lwww8zZ84chgy5tH5QCuFFRERE5LT03EK2H003wfzRNNbFnyIl80zv/Ibhfozu1IDRnRrQMLyWBD+O2KymRc3C5y7cosZmhSWvmFAYO0S2h5s+NqPdqovje+H7+81oX4DQRqb/bLPBENcXPLxdW99peRmw4k1Y+bbpqQumxkF/h8i2l34eux1+esyEIljMOwA6j6uQkqUaS91terRb8+G6t6Dz2Mq5bmEevN0N0g7DgMkw4P8q57quZLfD7D+bd6m4ecJtX114Do1t35m5LQqzITAKbvy4dvfPl6pt/TT48U+ABW6ZDi2vKfs5TuyHD66EvDQzcfP1H9XOVlVSJVSbEP5sFovloiH8E088wZw5c9i2bVvJtltuuYW0tDR+/vnnS7qOQngRERERuRCrzc6qAyf4dsMRft6WRE6BtWRf14ahjOkczfB2UQT71fJ3GmSlmp7jmz4z66db1LS6DmbeCwcWm+1dJsLQl8CzGk6Ia7OaPvaLXjS94k/z9IcmA03Y3WwwBEVVfm1F+eZmyG+vmncagBkRePWz5iZBedjtMPcJWPOeWb/2P9BlglPKlRrAWgRTBsPR9dD0arh9RuW+O2T7TJgxATx84aH1VWdOiYqy8B+w9DXAYka3tx3j+PjU3fDVHXB8D7h5wJAXoPu9VfsdPFL7HF4F00aArRCufBL6PVb+cx1cCp+OMu/+6v+EeeeXiAvU2BC+X79+dO7cmTfeeKNk29SpU3n44YdJT08/73Py8/PJzz8zmikjI4OYmBiF8CIiIiLiUE5BEfO2J/HdhqMs33e8pJ+8l7sbV7WOYEynaPq3qIuney0efZWwxvQUP92ixs3D/IfY0w9GvFEz+jfnZ5qbCnvmwd4FkJVUen9ke2g+1IyUr9+5Ykfj2aywdQYset6MCgYIbwaDnjatfi43cLPb4efJsPodsz7iDeg68fLOKTXDsn+bG2/ewfDgKgiqX7nXt9th6jDTA739LTDmvcq9fmVa8RbM/5tZLsvPYH6mmbjy9JwQbW8wN9NOT8Ys4krpR8xErNmp0HoU3Djt8v/N2vApzJpklsd8AO1vuswiRcquxobwzZs3Z+LEiUyePLlk208//cTw4cPJycnB1/fcPlDPPPMMzz777DnbFcKLiIiIyKVKSs/jh01H+W7DUXYnZ5ZsD/P34roO9RndqQHto4NrZ//40y1qfn0O8tKhTgu46ZOy9XitLmw2SNpSHMjPg6MbgLP+O+VXB5pdbUbIN7kSfEOcc1273dwAWPgsJBe/KzgwyrTl6HiHcydjtNth3t/O9Jke/jp0u8t555fqJ2UnvNcPrAUw6h3XTd57dAN8MNAs3/MrNOjimjoq0sbP4IcHzfKgp82kymVht5t5LRY8ZW6I1m0JN38GdZo5v1aRS1WQA1OHQuJmqNcW7prvvLkdFjxt5qpw94LxP0JsT+ecV+QSKYQ/i0bCi4iIiIiz2O12diRm8N2Go/yw6RjHs878ndmkrj9jOkczqlMDGoTUwknCso/Dwd9MAF1bRl5mpcK+BSaU3/8r5Gec2efmAbG9zOej+RCo07x8o/6OrDOTLx5aZta9g6Hvw9DjPvDyc8rLOIfdDvOfNO14AK75F3S/p2KuJVWbtQg+ugqObYRmQ0xvclfebJx5H2z+AmJ6wp0/16x2Kztnw9djwW6DXpNg8D/L//oOrTTte7KSwCvQTIzdeqRTyxW5JHY7fHePeReXXzjcs+jiE4aXhc1mfm52zTY3wu9ZCKFxzju/yEXU2BC+PO1ofk894UVERETEGYqsNpbuO87MDUeZtz2J/CIbYDKTno3CGd25AcPaRhLoU8v7x9cW1kLTKmPPPNg73/RmPltIw+LJXYeYvu0X65Ofugd+/Qfs/NGsu3tDj3uh7yPgF1Yxr+FsdrsZYbjiTbM+7FVzfaldfvuXeZeLTzA8sNo1cyCcLeMY/LeLmYj4hqkX75VeXRxcCp9dbya97XgHjHzr8m8wZCbDN3eeuYHXa5KZRNuZ75wRuZjl/zH/lrh5wLgfyj9viSMF2TBlqHmnWt2WZqS9T7DzryNyHjU2hH/iiSf46aef2Lp1a8m22267jZMnT2piVhERERFxmcy8QuZuTeLbDUdYffBkyXYfTzeGtIlkdKcG9G1aB4/a3D++tjl50ITxe36G+GWmlcdpnn7QeMCZyV3PnmQy4xgsfsm0pbBbweIGHW4zrWdCYir3Ndjtpg/48jfM+tCXoed9lVuDuE7ydnivv5lEcfR70OEWV1dkLH4ZFr8AwbEwaW31nPj5bMc2wrRroSATWo6AGz92XlBuLYKFz8CK/5r1hn3MzYvAes45v4gjexfA5zcC9op/R1XGMfjgSshMhCaD4LavdcNJKkW1CeGzsrLYt28fAJ06deL1119n4MCBhIWFERsby+TJkzl69CiffPIJAAcPHqRt27Y8+OCD3Hnnnfz666/88Y9/ZM6cOQwZMuSSrqkQXkREREQqUsLJnJL+8QeOZ5dsrxvozaiO9RndKZrW9fV3aK2SnwUHl5wZJZ+ZWHp/vXbQfLDp4bz6fSjKNdtbXGP6Qke0qvyaT7PbYeE/YNnrZn3IC9DrQdfVI5XDWggfDjI9nFtcA7dMrzqtXwpy4K2ukHG0fH3Tq5LUPaZXds4JaNQPbptRMTcVdsyC7x8wQX9APTMpZsPezr+OyGnH98IHgyA/HTqPN5MEV/TvkGObzATOhTnQ7R4Y/q+KvZ4I1SiEX7x4MQMHDjxn+/jx45k2bRoTJkwgPj6exYsXl3rOn//8Z3bs2EF0dDRPPfUUEyZMuORrKoQXERERkcpgt9vZfCSd7zYc4cfNxziVU1iyr2VkINd2qE+nmBBa1w8ixM/LhZVKpbLbIWnrmcldj6yj1OSuYPpdX/UMNOzligrPZbfDr/+EpcWBxuDnofck19YkFWvJq7Don+ATAg+uhsBIV1dU2pavTZ9prwB4aEP1HNmdlmBaaGQcgfqdzKSS3oEVd73je+GrsZC6EyzuMPg56PlA1bm5IjVHXroJ4E/sNf+ejf8RPCrp75ydP5rvc+xqoyaVotqE8K6gEF5EREREKltBkY3Fu1P4bsNRft2VQoHVVmp//WAfWtcPpnX9IFpHBdGmfhDRob5YFI7UfNnHYd8vJpTPSzOj91oMq3rBmN0Oi16A314x61c/B33+6NqapGIkbYP3B5g2NGM+hPY3urqic9lsZsLYo+uh01jTQ706yT5uAvgTeyG8Gdw5D/zDK/66Bdkw64+w7Ruz3mY0XPffig3/pXaxWeGLW81N5qAGcO9iCIio3BqWvQG//N20c7vta2h2deVeX2oVhfAOKIQXEREREVdKyylg9pZElu5NZWdiJodP5pz3uEAfD1pHBZUE863rB9EsIhAvD/WVFxda9CIsecksX/Us9H3YpeWIk1kL4YOB5t0aLUfAzZ9VvRtCpyWsgY+uBizwhyUQ1cHVFV2avAz4+FpI3ARB0XDXPAiOrrzr2+2w5gOYN9m0wKrT3Hyd67aovBpcJS8D3D3B09fVldRcvzwDy/4NHj5w58/mXR6VzW6HWZPM3CpegWai1nqtK78OqRUUwjugEF5EREREqpKMvEJ2JWay/Vg6O45lsCMxgz3JmRRaz/0z3dPdQtOIwJLR8q3rB9EqKohgX08XVC611uKXYPGLZnnQ3+GKR1xbjzjP6a+tb5hpQ1PZI1jL6ps7Ydu3EHeFaXlRVW8YnFaYB5/fAPFLwS/cjICv08w1tSSsga/HQ+Yx8PQ37yZoO8Y1tVQEux1OxUPCaji8yrzelB1mYuzeD5mHd4Crq6xZtn4D395llq//CNrd4Lpaigrg09FwaJmZxPmehVX/95lUSwrhHVAILyIiIiJVXUGRjf2pWew4lsH2YxnsSDQBfUZe0XmPjw71LRkt36a4rU39YB+1s5GKs+QVWPS8Wb7yKej3qGvqyM+Eg7/B/l/NerubIKZ71Q9jq6LELWYUvK3I9QHapUo7DG91g6I8uPlzaDXC1RVdmLUIZoyHXbPN6NwJP7pmlPDZslLhm4nmpgBAj/tNr3j3anhjtyjffA8nrCoO3ldDdsqFjw+oBwMmm3ZG7h6VV2dNdWyTabFUlAt9Hoarn3V1RZBz0kwwffIARHeD8bMrZuJjqdUUwjugEF5EREREqiO73c7RtNyS0fKnA/qjabnnPT7Y17MkmG9eL4BGdQJoVMefOgFeCucvwG63k5FXRHJGHonpeSSn55GalU+InycNQnzNI9QXPy8FNgD89i/49TmzPPBJ6P9YxV/TboeUnbBvAexdYEa42gpLH1OnuQnWOtyikY+XqqjABPDJ26DVdXDTJ9XnRsbC58ykwaGNzOh9D29XV3Quux1+mASbPgN3b7jjW2h0haurMqxFZhLeZf826zE94cZpEBTl0rIuKvuECdtPP45uAGt+6WPcPKF+R4jpUfzobn5n/PIMnDpojqnTAq7+BzQfUn2+56uarFQzj0TGEWh6Ndz2Fbi5u7oq4/heE8TnpUPbG+D6D/V1FqdSCO+AQngRERERqUnScwpNKF8czO9IzGBvciZFtvP/mR/o7UFcHX8a/e4RV8e/Rre1KbLaSM3KJyk9j+SMPJLS80jMMEF7UkYeyRlmX26h9aLnOh3K1z8dzBeH86fXa9WNjqWvw8LiEY8DJsOA/3P+NfLS4cASE7zvWwgZR0vvD21kJt7Lz4Id30Nh8TwLbh7QfKgJ5JtepdGuv2e3Q2Eu5J6E1e/BijdNi5QHVkNAXVdXd+nys+C/nSErGQb/07QZqUrsdpj/JKx8CyzucPOn0HK4q6s6187Z8P39kJ8B/hFw41SI6+vqqgybzUxie3qEe8IqOLHv3OP8ws+E7TE9zTsNzjfyuagA1k2BJS+b738wLY2u/gc06Fyxr6WmKSqAT66DwyvNJMN3/wK+Ia6uqrQDS+CzMeZdPhX175TUWgrhHVAILyIiIiI1XX6Rlb3JWSXB/P7ULOJPZHPkVC6O/vqvE+BFXHhxMF/Xn0bh5mNcuD8+nlVkVNt5ZOUXlQrXTah+ZjkpPY/jWflc4L7EOYJ9PYkM8qFesA91ArxIzynkaFouR9NyybxAS6CzeXm4FYf0PucN6yODffD2qLqfzzJb9gb88nez3P8JE3Jczk0Iu91MDLrvF/NIWG3Ck9M8fExg1uxqE66HNzmzLy/D9Ajf+CkcXX9me2AUdLgVOt1R+viawG43Nx5yTkLuqbMev19PO/eY348cvnEatBntildxeTZ+Bj88CN5B8MeN4F/H1RWdsfQ1WPgPszzqHeh4m2vrceTEfvhqLKRsNzcMWl1rPpc+weZz6xMMPsUfvYOL14u3efg4b4RxQQ4c22jC9sOr4cga8/36e3VaQOzpUe49zc92WWrITTPvAFj1zpmfhbY3wKCnIbShU15Kjffjw7B+qvn+uOdX181xcDHrP4Yf/2iWq0u7LakWFMI7oBBeRERERGqrvEIrCSdzOHg8u+Rx4Hg28cezScnMd/jcBiG+xNXxKx45H0Dj4tHz0aG+eLq7lbmWQquNnAIruQVWcgqKyC08vWweuYVFJftzC6zkFJ45NqfASlpOoQnb0/PIzL94MA7g4WYhItCbesE+JmQP8iGyeDnyrG2+XhcOyDPyCjmWlsuxtFyOnsrlaFoeR89aT87Mc3ijA0xGVDfA24TzoWcC+thwPzrFhBDi51WWT2XVsPxNWPCUWe73OAz8axnDsFOwf5EZ6b7vF8hKKr0/vKlpc9DsKmjYBzx9L37O5B0mnN3yJeScOLO9YV8TxrceCV5+l15jZbLZIHUXHN/9u+A87fwBu7Wg/Ndy8wDfUOgyAa580lmvoHLZbPB+f0jaAl3vghGvu7oiY90UmP1nszzkBej1oGvruRQFOabmLV+W7XnuXucG9aXC+/OtFy9jMTfNTreWSdxc+sYbgIcvNOhiRrnH9jQ9vv3CnPOa0xLg13/Clq8Au3kt3e81c134hjrnGjXR2o9gziOABW77GpoPdnVFjs1/Elb817SEmjDbfC+JXCaF8A4ohBcREREROVdWfhHxZ4XzpwP6g6lZF5wQFkywHRvmVxLIF1rt5BaH6mdCdmvxepEJ1QutFFqd+9+QQG+P34Xr3qWD9mAfwv29cXer2DYxhVYbSemlg/lj6bkcOVW8npZLXqHN4Tma1wuga1wY3eJC6dowjOhQ3+rR3mbFWzD/b2b5ikdNoHuhum02SNoMe4tHux9ZA/azPi+eftConxnp3vQqCGtU/rqKCmD3T2Z0/L6FQPH3nncQtL0eOo+F+p1d2yc45yQcWQdH1prPxdENpi1IWbh5mlDSN9Tx4/fHeAXUjB7J8ctg2nCwuMF9y6Fea9fWs+07+OZOwG5+HgY95dp6ysJuh/0LIWWX+T7MSzfvMslLN4/89DPb8jNK/+w6S2DUmV7usT0gsn3FTxibuBnmPwUHl5h1nxDo9xh0v6dqzjXgSvHLTRsaWxFc9Qz0/bOrK7o4mxW+usP8e+BfF+5eqHc8yGVTCO+AQngRERERkUtnt9s5lVPIweNZHEjNJv5EcUBfvHyxQPli3N0s+Hm64+vljp+XO75eHvh6uuHn5VGyzc/LHV9Pj+L97vh6upuWMcFnQvYA7+rR7/v059OMoj8TzB9Ly2V3ciYHUrPPeU5kkA9d40LpFhdGt7gwWkQGVvjNhHJb+T+YN9ks933EtHU4HfDmnIT9v5oJVfcvhOzU0s+t0+JMi5nYXufv5Xy50o/ApukmkE87fGZ7RBsTxre7CfzDnX/ds1mLIHUnJKwpDt7XnL+/tac/1GtjwiK/8wXqvw/T/WtGmH45vroDdv4IjQfC2Jmu+3zs+wWm32ImDe56Jwx/veZ+bex2KMg6E9CfDuvzzwrtz1n/3THWAvO9frqtTGwPCI5xzefMbjc36xY8BSk7zLaQWBj0d2gzBtzK/s6vGiftsJmINedE9ZvsND8Lpg41Lc8iWsOd88w7MkTKSSG8AwrhRUREREScw2azk5yZx8HUbA6eyOZYWi5e7u4lYblfcWBulj3Ou93L3a16jPKuJCey8ll36BTr4k+yNv4U246mnzPJbqC3B50bhpqR8nFhdIwJqVo9+1e9Cz8/YZa732smS9y7oLhH+1mvxSsAGvU3LWaaXmWCrspis0H8UhPG75h1ph+0uxe0uMYE8o0HgpsTPq/Zx80I94Q15uPRDVB47s0WwptCdHeI7mraJNRtpclky+rkAXi7hwl1b/samg+p/BoS1poRwoU5JrS9/kPnfB/VZDZb1Qu3bVZzw27R85CZaLbV7wyDn6s6E9a6QkE2TBliQuyoDjDx56rb1utC0o/CB1eatmdNr4Zbv6xZv2tzTpobJVEdqs/NkWpMIbwDCuFFRERERKS6yC2wsikhzYTyh06x4dApsn7XA9/T3ULbBsF0iwuja0MTzIf5u7iv/Or3Ye5j526PaANNB5kR7zE9waMK9L/PPQVbv4ENn5ie4qcFRUOn26Hj7ZfessBaCMnbzAj306H7qYPnHucVCNFdikP3biZ4d1Z/69pu/lOw4k0IbwYPrKz4FiZnS94BU4dBXho0GWTCvarwPS7lV5Bt3uGz/A0z4h+g+TC4+lmo28KlpVU6ux2+mQjbZ5p36NyzCEJiXF1V+RzdAFOvgaJcMx/G0Jcuba6Rqiw/03yvrvgvFGRCkyth2CtVd7LcGkIhvAMK4UVEREREpLqy2uzsSspgXfwp1safZG38SZIzzp1Ut0ldfxPKF/eWjw3zq/x3HKybCktfh/odz/R2D25QuTWUVeLm4slcvzJtMgCwQOP+0GkstBxRuk1OZrJpJ3NkrRkBfWyjCXV+r25LE7SfDt3rttDo6IqSlw5vdoac4zD4eehxX+WMcj0VDx8NMaNro7vDuO9NiyCpGbJSYPFLsH4a2K1gcYfO42DAZAis5+rqKpa1CDKOwoaPYelrZv6J8T9Cw16uruzy7JgFX481ywH1TF/7LhOqXxhflG/+vf3tVfN772xuntDzfuj/OHgHuqa+Gk4hvAMK4UVEREREpKaw2+0cOZVbHMibNjZ7U7LOOa5uoHfJRK/d4sJoHhmAt4dC4AsqzINds83o+NOTNIKZqLHNaNPLOmEtpB8+97k+wdCguKVMdDdo0AV8QyqrcgFYNwVmnzVRpKefCaC8g0z/59PLJevF287e5xN81nGBjnvuZyabFh2nDpo+0xPm6J0NNdXxvfDLM+b3A5i5G/r8CXpPqt43XfIyzI2kU/Hm+7hkOd60Nvl/9u47Oqo6///4aya9905IQu8gHQWkKVhQRGyrAnZd4WtZf7a1u4q77rqs3V1XWRUbKogVEWlK772TBNJ7rzP398cNAzEhtCSTwPNxTk5m7r1z73sm4Wpe93PfH/sxd2BdPlPqf4szqmx8276UFj5z9FzuGykNe1DqO6Vp5iVpTHabtHWO2TLpyBwnwe3MSdEje0sLHpf2LjCX+0ZKFz0n9bqWFjWNjBC+AYTwAAAAAM5meSWVWp+Up7VJuVqXmKcth/NVZav7Z1+Yn4eiA70UHeBpfg/0Ukygp6ICzMehvu7065fMEGrjbGnTbHM0aC0WM3Rtc0zoHtKx5fW3PtfYqqWPrpIOLmu8fVpc6g/yPf2l1E1Szl4pME667SfJL7LxjouWKWmF2fooZZ353DdSGvm4dN5NLfMuF7tNKkytP2TPPSiV5Tb8ehd38/e7783mRYezSXWleX5f/g+p4JC5zC+6JoyfLLl6OLe+3zMMac+P0qLnjk4e7BspjXjEvGPr2BZcexZIPz5qzpchmW3gLv2b2S8ejYIQvgGE8AAAAADOJeVVNm05XKC1iblal5irdUl5KiqvPuHr3F2tig44GsrHBHoq6ndhvY/HWTSZ3YnYbdKBxdLuH8zAI3aAOVGjJ39XtljVlWaf5IrCmq8ic8TvscvKT7SuyGw/ciK+EdKtP5ojUXFuMAyzP/qiZ80wWzInVL7oOXPei+a+iFlRJOUl1R+y5ydL9qqGX+8dKgUnSEHxx3zVPPeLOvsvLlZXmO3Ilv/j6AVX/xgzjD/v5pYRxietMO/EOLTafO4ZYLbRGXjX8SfIra6QVr4uLfu7OWG0LOadDKOe5I6dRkAI3wBCeAAAAADnMsMwlFdapdT8MqXklyk1v0xpBeVHH+eXK6OoXCfzl2KAl5sjlI8O9KoJ7D0VE+ilqEAvRfh5yNXlLA9ucHYzDDO4Ol5AX1FoTsjbY6IU2NbZ1cIZqiuktf+Vlv3NnOhZkuKHSbGDJMNe82Uzf5ccz+3mhb1jnxtGzXb242xn/G5/NY8ris2w/ff9wH/P6mZOMl1fyB4UR8/wI6orzFZky1+RilLNZf5tpOF/kvrc5JzJltO3miPf9/5kPnf1kgbfbd6V4BV0cvsoSJEWPmm24JHM1416Qup3S8u8e6OVIIRvACE8AAAAADSsymZXekG50grK64T1R56f1Gh6F6uGdgzVZT2jNKZbhAK83E74GgBolcryzVHUq9+RbHUnzG4W3iH1BOw1X/7RhK2noqrcDON/fUUqSjOXBcRKw/4k9bmxecL43APS4helrV9IMsy2WP2mSMMflvyjTm+fib9K3z8sZW43n0f2lC55ufVPtOskhPANIIQHAAAAgDNXVF5VZwT9kYA+raBcaQVltXrRu7lYNLxjmC7rZQby/p4E8ucim92Qi5W5BnAWy0+W1v9PqiyWLNbjf1ldah5bjlnuUs+2lmO2tdbd1s3T7NceFE97rKZQVS6tnyX9+k+pON1cFthWGvaQ1OcPtXuwN5aiDPPOivWzjk6K2+NqaeSfpZD2Z75/W7U5gfXiv0jlBeayntearZRON9w/RxHCN4AQHgAAAACant1uaH9Wsb7fmq7vtqZqT0axY527i1XDO4WagXzXCPkRyJ+VDMP8HVibmKe1B3O1NilXh/PKNKJTmG65IEHDOoYy+S+A1qGq7JgwPsNcFhgnDf9/Uu/rGyeMLy+QfntVWvVmTf92SR3GSKOfaprJVEuyzTY3Gz6QZEjuvub7GfxH57TdaYUI4RtACA8AAAAAzW9vRpG+25qmb7ekaV/mMYG8q1XDO4bp8l5RGt01nEC+Fauy2bU9tdAM3GsmAc4tqTzu9u3DfDT1/HhN7Nvm3JrkF0DrVVkqrX9f+nWmVJJpLguKN1vE9LpOcjmNc1lVmbTmP2brmyPzCrQZII1+WkoY1liVH1/KBun7/yelrDOfh3SQxv1V6jim6Y/dyhHCN4AQHgAAAACca09Gkb7dkqbvtqRqf1aJY7m7q1UjOpkta0Z3jZAvwWyLVlpZrY3J+VpTE7pvTM5XWZWt1jYerlad1zZQA+KDNSA+WOH+Hvps7SHNWXdYxRVmmwU/T1dd2z9WU4bEq22ItzPeCgCcmspSad1/zTD+yKS4QQnShQ+brV1OJoy3VUubZktLXjo6CWxYF3Pke+dLzVZEzcVulzZ/Iv38tFSSZS7rfKk09kUpOKH56mhlCOEbQAgPAAAAAC2DYRjak1Gs77ak6tutaTpwTCDv4WrViM5huqxXtEZ3CT+rR0qXV9m0L7NYezOLtCejWHszzO95JZWKDPBUTJCXYgK9jn6veRzu59ms/dVziiu0LinPMdJ9W2qhbPbakUKAl5sGxAdpQHyw+scHq2dMgNxdrXX2VVxRrS/XH9b/ViTqQLb5c7dYpNFdInTLBfE6v30IrWoAtHyVJdLad6Xf/iWV5pjLgtubYXyPSfWH8YYh7fha+uUvUs5ec1lArDTiMbO1jTMn0C0vkJb8VVrzjtmP3sVDuuD/pKEPSu5cJP09QvgGEMIDAAAAQMtjGIZ2ZxTpuy1p+m5LmiOYlcxAfmTncF3WK0qjWnEgX15l0/6sYu3NKNaemqB9b2aRknNLdTp/mbu5WMyQPtBLMYHeignyUptjwvqoQE95uJ5emGMYhg7nlWnNwVytS8rVmoO5te5aOCI6wFMDEsxR7gMTgtUhzFfWU7gwYLcbWro3S7N+S9TSPVmO5Z0ifDXl/HhddV6MvN1b588bwDmkovhoGF+Way4L6SBd+Ig5qeqRYP3AEunnZ6TUjeZz7xBzktf+t5qT7LYUmbukHx6WDi41n/u3kcb+Reo2oXlH6LdwhPANIIQHAAAAgJbNMAztTCvS91vT9O2WVCXmlDrWebpZNapLuC7taQbyLTGgLa+y6UBWifZmFjkC972ZxUrKKZH9OH+BB3m7qWOEnzpF+KpThJ86hvspzM9daQXlSskrU0p+mVLyynQ4v0yp+WVKKyivMwq9PuF+HooJ8lJ0YO2A/sj3Iz347XbzIsjaRDNwX5eYp/TC8jr76xThq/7xwRoYH6wBCcGKCfQ6o8/qWPuzivXBikTNWX9YpZVmW5sALzddPyBWNw2OU2wwozABtHAVxdKaf0srXj3a3z20kzTwTmnXt2YIL5mToA6ZJg25V/JsofmkYUg750sL/iwVHDKXJQyXLvmbFN7VubW1EITwDSCEBwAAAIDWwzAM7Ugr1Hdb0vT91rQ6gfzoLhG6tGeUBrULlrurVe4uVrlaLXKxWpq8nUlFtU0Hs0uOaSFjhu6JDYTtgd5u6hTupw4RvuoUXhO4R/gp1Nf9lOq12Q1lFJY7wvmU/DIddoT1pUrJL1N5lf2E+/H3dFV0oJdS8stUVF5da52r1aKebQI0sKa1TP+4IAX5uJ90jaersLxKc9aZrWqSc82ft9UiXdQtQlPPT9DgdsG0qgHQslUUSavfkVa8JpXnH13u4i71v00a9ifJN8xp5Z2SylLpt5lm/3tbhWRxkQbdJY14VPIMcHZ1TkUI3wBCeAAAAABonQzD0PbUQn231WxZcySgrY/FIrlZrXJzscjVxSo3F/Oxm4tVri4WM6yvee5mtcrN1SJX6wm2c7HKIikpp1R7MouUlFN63NHo/p6ujoDdMbo9wldhvh7NEiAbhqHckkql1IycP3zMaPqUfPMrv7Sq1mt83F3UNy7IMYlqn9hAebk7rzexzW5oye5Mvf9bon7dl+1Y3iXST7dcEK8r+8TI082JvZMB4ETKC83+6hs+kOKGmsF1UJyzqzo9eYnmqPhd35rPfcKkMc9Ivf8gWevO/XEuIIRvACE8AAAAALR+RwL5b2tGyDcUyDclvyNhe7hvrcA93K95wvYzUVxRrdSaQD7Ux0Ndo/zk6tIyg5S9GUWatSJRX21IUVmV2aom0NtNNwxsq5sHxym6EdviAAAasG+R9MMj5qSy7n7S/22QfMOdXZVTEMI3gBAeAAAAAM4+druhKrtd1TZDVTa7qmq+V9sMVdrstR5XH1lvt6uq2q5q++9fY1elzajZ7pjldkPVNkPRgZ7qFOGnThF+ivBv+WH72aSgtEqfrUvW/1YkKSW/TJLkYrVoXPdITb0gXv3jgvh5AEBTq640R/i7ekoD73B2NU5DCN8AQngAAAAAAFo3m93Qzzsz9P5vB7XqQK5jefdof009P17je0fTqgYA0KQI4RtACA8AAAAAwNljZ1qh/rciUXM3pqii2pyMNsTHXZf1ilL7MF/FhXgrLsRHbYK85NZC2+0AAFofQvgGEMIDAAAAAHD2ySup1KdrD+nDlYlKLSivs97FalFMoFdNKO+t+BAftQ32Vnyo+b2lj5wvraxWRZVdAV5uslppuQMAzkYI3wBCeAAAAAAAzl7VNrt+3pmh9Ul5SsopNb9yS1ReZW/wdZH+nkfD+ZrvRwJ7P0+3Rq3RMAwVV1Qrt6RSOSWVyi2uPPq4pKLme6VyHMsrHPW7WC0K9XVXmJ+Hwnw9zO81j8P9PWst9/FwbdS6AQBHEcI3gBAeAAAAAIBzi2EYyiyqUGJ2iSOUT8wpVVJOiZKyS1VUUd3g60N83B1tbeJqBfQ+CvI2A/rC8ppQvfhoiH40SP/dspJKVVY3fFGgMXi7u9Qb1jse13yF+HjI3ZVWPQBwKgjhG0AIDwAAAAAAjjAMQ3mlVUrMKVFyTqkSc8yg/sjznJLKBl/v4+6iSptdVbZTj1c83awK8fFQsI+7Qnzdze8+7gr28aj57q5gX3fHYw9XF+WUVCir6HdfxbUfZxZWqKzKdkq1BHm7KczPQ+F+5mj6rlF+GtUlXO3DfGWx0P4GAH6PEL4BhPAAAAAAAOBkFZZXKbmmrY0Z0Jc42tykF9buPe/j7qJg36MhekitEP2YYL0mdPd2b7p2MSUV1XUD+mOD+qJyZRVVKLu4Ujb78aOh2GAvjeocrlFdIzQoIbjF9853lmqbXTvSCrUuMU870wrVPtxXY7pGqH2YDxcxWhCb3VBqfpnj33NMkJdGdArjZ4TTQgjfAEJ4AAAAAADQGMoqbUotKJOXm4uCfdxbZUBttxvKK62sFdanFZRr9cFcrdqfo0rb0bY5Xm4uuqBDqEZ1CdeoLuGKDPB0YuXOVVhepQ1JeVqflKd1iXnadCi/3rsP4kO8NaZrhEZ3jdCA+CC5utD2p6lV2+xKzS93XDQ7mG22nkrMKdGh3LJav9OSdHXfNnrhqh6t8t8vnIsQvgGE8AAAAAAAACdWUlGt3/Zla/HuTP2yK1MZhRW11neL8teoLuEa2SVcfWID5WI9O0cTG4ahw3llWpeUq3WJZvC+O6NIv0/U/Dxd1S8uSN2j/bU1pbDORQx/T1eN7BKu0V0jdGGnMAV4Ne6Ev+eSaptdKfllOph9tH3UkTkfDuWVNtgeyt3FqthgL0UHeum3fdmyG+bv8js391NssHczvgu0doTwDSCEBwAAAAAAODWGYWh7aqEW78rUL7sztelQfq0QOtjHXSM6hWlkl3ANb+UBc5XNrh2phVqXlKf1NcF7ZlFFne3aBnurf1yQ+sUHqX9csDqG+8p6zIWI4opqLd+TpZ93ZuqXXRnKK61yrHO1WjQwIViju0ZoTNdwxYX4NMt7a02qbHYdziszR7Rnm5MpH5mz4VBuqaobaKPk7mpVXLA5eXJCqPk9PsRH8aHeigrwclwwWrEvW9M/2aickkoFeLlp5vV9NLJzeHO9RbRyhPANIIQHAAAAAAA4MznFFVqyO0u/7M7Usj1ZKiqvdqxzsVrULy5Io7qEa3SXcHUIb9mTuxaUVWlDcp7WJ+ZpXVKuNh8qqNNaxtVqUfeYAPWPCzKD97gghfuffDsem93QxuQ8/bwzUz/vzNC+zOJa6zuG+2p01whd1C1cfWKDztq7ChqSVVShb7ekaumeLB3MLtHhvLIG5yvwcLUqPsRHcSHeig+tCdlDvBUX6qMof89aF0Qakppfpntmb9DmQ/myWKT7R3fS9FEdTvr1OHcRwjeAEB4AAAAAAKDxVNnsWp+Up192mW1rfh8wtwnycrStGdIuxKm9tw3D0KHcmtYySWbwviezbmsZ/5rWMv3jg9UvLki92wTKy73x6k7MLtHPOzO0aGem1iTm1gqbg33cNapLuMZ0DdewjmHy8Wi6CXydrbiiWj9tT9e8Tan6bV92ndDd081aE677KC7U2/E4PtRbEX4nH7SfSEW1Tc9+s0Mfr06WJI3uEq5XruvTqu/oQNMjhG8AITwAAAAAAEDTOZRbql92ZWrRrkytOpCjyurfT+4aopE1k7tGBXg1uK9qm12VNrsqq82vipov87HNXG47uq7ymHUVv1uXmF2idUl5yqqntUxciLcZuscFq398kDqE+TbbSOiC0iot2ZOpRTsztWR3pgqPuavA3cWqIe1DNKar2Us+OrDhz6s1qKy2a9meLM3blKKfd2aovOro70fv2ECN7xWlHjEBSgj1UbifR7PeRfH5ukN6Yt42VVbbFRfirbdv6qeuUeSHqB8hfAMI4QEAAAAAAJpHaWW1ftuXo192ZWrxrkylF5bXWt8+zEfuri5HA/Vjw3SbvcF2JKfLzcWi7tE1rWXig9QvLlhhfh6NfpzTUWWza21irhbVtK1Jyimttb5blL/GdA3XmG4R6hEd0GpaptjthtYn52nexhR9tzVN+cf0x08I9dGVfaJ1ZZ8YJYQ6vzf+tpQC3fXheqXkl8nTzaqXJvbShPNinF0WWiBC+AYQwgMAAAAAADQ/wzC0I61mctddmdr4u8ldT8RqMSfc9HB1kburVe4uVnm4WmuWmd8d612OfW5+D/PzUL+2QeodG+jUljgnyzAM7c8q1sIdmVq0M0MbkvN07DWJcD8Pjegcpj6xQerVJkCdIvzk7mp1XsH12J1epHmbUjR/U6pS8sscy8P8PDS+V7QmnBetnjEBLW7OgLySSv3fpxu1fG+2JGnq+fF6/NKuLe7zhXMRwjeAEB4AAAAAAMD5cksqteVwvqwWS50Q3fHcxSoPN/O7q8u5HYDmFFdo8e4sLdqZoWV7slRSWXvyWHcXq7pE+alnTID5VRPMuzXz55aaX6b5m1M1b2OKdqUXOZb7erhqXI9IXdknWue3D23xk8/a7Ib+uXCPXl+8T5LUPy5Ib97Y95Qm5MXZjRC+AYTwAAAAAAAAaM0qqm1adSBXK/fnaFtKgbamFKigrKrOdu6uVnWN8levY4L5juG+jX5BI7+0Ut9vTde8TSlaczDXsdzNxaIRncM1oU+MRncNbxV3IPzewh0ZevCzTSqqqFaYn4fevLGvBsQHO7sstACE8A0ghAcAAAAAAMDZxDAMHcot09aUAm1Jyde2lAJtOVygomMmeT3Cw9WqbtH+jhHzvdoEqn2YzykH8+VVNi3amal5m1K0ZHemqmxHI8ZBCcGacF6MLukRqUBv9zN+f852MLtEd3+4XrsziuRqtejPl3XV1PPjW1wbHTQvQvgGEMIDAAAAAADgbGcYhpJySrW1ZqT81sMF2pZSoKKKusG8p5tV3aMDjgnmA9QuzLdOyxib3dCK/dmatzFVC7anq/iYfXWN8teVfaJ1Re9oRQd6Nfn7a26lldV65Mut+mZzqiTpyj7RmjGxp7zdXZ1cGZyFEL4BhPAAAAAAAAA4F9nthpJyS7XlcL62HjbD+W0pBXX6y0uSt7uLukf7q0dMgLpF+WtnWpG+2ZKqrKIKxzYxgV66sk+0JpwXo04Rfs35VpzCMAy9/1uiXvh+p2x2Q10i/fT2Tf0UH+rj1LrySyv1y65MLdyRoYzCco3qEq4r+8QoNtjbqXWd7QjhG0AIDwAAAAAAAJjsdkMHc0q09bDZwmZbSoG2pRaotJ5gXpICvd10Wc8oTTgvRv3aBsnawidYbQprDubqj7M3KLu4Qn6ervrntX00pltEs9ZwKLdUC3dkaOGODK1JzJXNXjfi7RcXpAl9onVZr2gF+7T+tkAtDSF8AwjhAQAAAAAAgOOz2Q0dzC7WlprR8jtSCxXh76kr+0RrWMcwubs27sSurVFGYbn+OHuD1iflSZKmj+qg+8d0qtPCp7EYhqHtqYX6qSZ435lWWGt9l0g/XdQtQlEBXvpua6pW7M/RkdTX1WrR8E5hurJPtC7qFkELnUbS6kL4N954Qy+//LLS09PVu3dvvfbaaxo4cGC9286aNUu33HJLrWUeHh4qLy8/qWMRwgMAAAAAAAA4U5XVdr3w3Q79b2WSJOnCTmH61/V9Gm0y2iqbXasP5GrhjnT9vDNTKflljnVWizQgPlgXdYvQxd0i1TakduuZjMJyfbM5VfM2pWhbytHA3tvdRWO7R+rKPtEa2iH0lCfkxVGtKoT/7LPPNHnyZL399tsaNGiQZs6cqTlz5mj37t0KDw+vs/2sWbN03333affu3Y5lFotFEREnd8sHITwAAAAAAACAxjJ342E99tVWlVfZ1SbIS2/f1E89YgJOa19F5VVauidLC3dkaPGuTBWWH5381svNRcM7heqibpEa1SX8pFvM7Mss1tebUvT1plQl55Y6lof6uuvyXtG6sk+0+sQGymI591oLnYlWFcIPGjRIAwYM0Ouvvy5Jstvtio2N1fTp0/Xoo4/W2X7WrFm6//77lZ+ff1rHI4QHAAAAAAAA0Jh2pBbq7o/WKzm3VB6uVr1wVU9N6tfmpF6bUVju6O++cn+OKm12x7oQH3eN6Rqhi7pFaGjHUHm6uZx2jYZhaENyvr7elKJvt6Qpt6TSsS4uxFtX9onRlX2i1T7M97SPcS5pNSF8ZWWlvL299cUXX2jChAmO5VOmTFF+fr6+/vrrOq+ZNWuWbr/9dsXExMhut6tv37568cUX1b1793qPUVFRoYqKo7M2FxYWKjY2lhAeAAAAAAAAQKMpKK3SA59v0i+7MiVJNw1uqycv7yYP19rBuWEY2pdZrJ92ZOinHRnafCi/1vqEUB9d3M0M3s9rG9QkfearbHb9ui9bX29M0YLtGSqrOjoRb8+YAF3ZJ1pX9I5WuL9nox/7bNFqQvjU1FTFxMRoxYoVGjJkiGP5ww8/rKVLl2r16tV1XrNy5Urt3btXvXr1UkFBgf7+979r2bJl2r59u9q0qXt16ZlnntGzzz5bZzkhPAAAAAAAAIDGZLcbeu2XfZq5aI8MQ+oTG6i3buqrcD9PbUjO00/b07VwR4YSc0prva5PbKAu7h6hi7tFqH2Yb7O2himtrNbCHRmatzFFy/Zmy2Y342KrRTq/faiu7BOtcT0i5efp1mw1tQZndQj/e1VVVeratatuuOEGPf/883XWMxIeAAAAAAAAQHNavCtT9326UYXl1QrydpPVYlHOMe1f3F2suqBDiC7qFqkxXcNbzIjznOIKfbc1TfM2pmhDcr5juYerVWO6RujKPtEa0Tlc7q5M6HoqIbxrM9VUr9DQULm4uCgjI6PW8oyMDEVGRp7UPtzc3HTeeedp37599a738PCQh4fHGdcKAAAAAAAAACdjZJdwfTt9mO76aL12phVKkvw9XTW6pr/78E5h8vVwajRbrxBfD00eEq/JQ+KVnFOqrzelaN6mFO3PKtF3W9P03dY0BXi56dKeUZrQJ1oD4oNlbYJ2OWebFjEx68CBA/Xaa69JMidmbdu2raZNm1bvxKy/Z7PZ1L17d1166aV65ZVXTrg9E7MCAAAAAAAAaA5llTbN3Zii+BBvDUgIlptL6xtBbhiGtqcWat7GFM3fnKrMIrPriKebVeueuKhFXkxoDq1mJLwkPfjgg5oyZYr69++vgQMHaubMmSopKdEtt9wiSZo8ebJiYmI0Y8YMSdJzzz2nwYMHq0OHDsrPz9fLL7+spKQk3X777c58GwAAAAAAAABQi5e7i/4wqK2zyzgjFotFPWIC1CMmQI9d2lWrD+Ro3qYUuVit52wAf6qc/ildd911ysrK0lNPPaX09HT16dNHP/74oyIiIiRJycnJslqPXiHKy8vTHXfcofT0dAUFBalfv35asWKFunXr5qy3AAAAAAAAAABnPRerRed3CNX5HUKdXUqr4vR2NM2NdjQAAAAAAAAAgDNxKjlz62tCBAAAAAAAAABAK0EIDwAAAAAAAABAEyGEBwAAAAAAAACgiRDCAwAAAAAAAADQRAjhAQAAAAAAAABoIoTwAAAAAAAAAAA0EUJ4AAAAAAAAAACaCCE8AAAAAAAAAABNhBAeAAAAAAAAAIAmQggPAAAAAAAAAEATIYQHAAAAAAAAAKCJEMIDAAAAAAAAANBECOEBAAAAAAAAAGgihPAAAAAAAAAAADQRQngAAAAAAAAAAJoIITwAAAAAAAAAAE2EEB4AAAAAAAAAgCZCCA8AAAAAAAAAQBMhhAcAAAAAAAAAoIkQwgMAAAAAAAAA0EQI4QEAAAAAAAAAaCKE8AAAAAAAAAAANBFCeAAAAAAAAAAAmgghPAAAAAAAAAAATYQQHgAAAAAAAACAJkIIDwAAAAAAAABAEyGEBwAAAAAAAACgiRDCAwAAAAAAAADQRAjhAQAAAAAAAABoIoTwAAAAAAAAAAA0EUJ4AAAAAAAAAACaCCE8AAAAAAAAAABNhBAeAAAAAAAAAIAmQggPAAAAAAAAAEATIYQHAAAAAAAAAKCJEMIDAAAAAAAAANBECOEBAAAAAAAAAGgihPAAAAAAAAAAADQRQngAAAAAAAAAAJoIITwAAAAAAAAAAE2EEB4AAAAAAAAAgCZCCA8AAAAAAAAAQBMhhAcAAAAAAAAAoIkQwgMAAAAAAAAA0EQI4QEAAAAAAAAAaCKE8AAAAAAAAAAANBFCeAAAAAAAAAAAmgghPAAAAAAAAAAATYQQHgAAAAAAAACAJkIIDwAAAAAAAABAE2kRIfwbb7yh+Ph4eXp6atCgQVqzZk2D28+ZM0ddunSRp6enevbsqe+//76ZKgUAAAAAAAAA4OQ5PYT/7LPP9OCDD+rpp5/Whg0b1Lt3b40dO1aZmZn1br9ixQrdcMMNuu2227Rx40ZNmDBBEyZM0LZt25q5cgAAAAAAAAAAGmYxDMNwZgGDBg3SgAED9Prrr0uS7Ha7YmNjNX36dD366KN1tr/uuutUUlKib7/91rFs8ODB6tOnj95+++0THq+wsFABAQEqKCiQv79/470RAAAAAAAAAMA54VRyZqeOhK+srNT69es1ZswYxzKr1aoxY8Zo5cqV9b5m5cqVtbaXpLFjxx53ewAAAAAAAAAAnMXVmQfPzs6WzWZTREREreURERHatWtXva9JT0+vd/v09PR6t6+oqFBFRYXjeUFBgSTzSgUAAAAAAAAAAKfqSL58Mo1mnBrCN4cZM2bo2WefrbM8NjbWCdUAAAAAAAAAAM4WRUVFCggIaHAbp4bwoaGhcnFxUUZGRq3lGRkZioyMrPc1kZGRp7T9Y489pgcffNDx3G63Kzc3VyEhIbJYLGf4DlqnwsJCxcbG6tChQ/TFB1AvzhMAToTzBIAT4TwB4EQ4TwA4kZZ8njAMQ0VFRYqOjj7htk4N4d3d3dWvXz8tWrRIEyZMkGSG5IsWLdK0adPqfc2QIUO0aNEi3X///Y5lCxcu1JAhQ+rd3sPDQx4eHrWWBQYGNkb5rZ6/v3+L++UF0LJwngBwIpwnAJwI5wkAJ8J5AsCJtNTzxIlGwB/h9HY0Dz74oKZMmaL+/ftr4MCBmjlzpkpKSnTLLbdIkiZPnqyYmBjNmDFDknTffffpwgsv1D/+8Q9ddtll+vTTT7Vu3Tr9+9//dubbAAAAAAAAAACgDqeH8Nddd52ysrL01FNPKT09XX369NGPP/7omHw1OTlZVqvVsf3555+vjz/+WE888YQef/xxdezYUfPmzVOPHj2c9RYAAAAAAAAAAKiX00N4SZo2bdpx288sWbKkzrJrrrlG11xzTRNXdfby8PDQ008/XadNDwAcwXkCwIlwngBwIpwnAJwI5wkAJ3K2nCcshmEYzi4CAAAAAAAAAICzkfXEmwAAAAAAAAAAgNNBCA8AAAAAAAAAQBMhhAcAAAAAAAAAoIkQwgMAAAAAAAAA0EQI4c9Bb7zxhuLj4+Xp6alBgwZpzZo1zi4JgJMsW7ZM48ePV3R0tCwWi+bNm1drvWEYeuqppxQVFSUvLy+NGTNGe/fudU6xAJxixowZGjBggPz8/BQeHq4JEyZo9+7dtbYpLy/Xvffeq5CQEPn6+urqq69WRkaGkyoG0Nzeeust9erVS/7+/vL399eQIUP0ww8/ONZzjgBwrJdeekkWi0X333+/YxnnCQDPPPOMLBZLra8uXbo41rf28wQh/Dnms88+04MPPqinn35aGzZsUO/evTV27FhlZmY6uzQATlBSUqLevXvrjTfeqHf93/72N7366qt6++23tXr1avn4+Gjs2LEqLy9v5koBOMvSpUt17733atWqVVq4cKGqqqp08cUXq6SkxLHNAw88oG+++UZz5szR0qVLlZqaqokTJzqxagDNqU2bNnrppZe0fv16rVu3TqNGjdKVV16p7du3S+IcAeCotWvX6p133lGvXr1qLec8AUCSunfvrrS0NMfXr7/+6ljX2s8TFsMwDGcXgeYzaNAgDRgwQK+//rokyW63KzY2VtOnT9ejjz7q5OoAOJPFYtHcuXM1YcIESeYo+OjoaP3pT3/SQw89JEkqKChQRESEZs2apeuvv96J1QJwlqysLIWHh2vp0qUaPny4CgoKFBYWpo8//liTJk2SJO3atUtdu3bVypUrNXjwYCdXDMAZgoOD9fLLL2vSpEmcIwBIkoqLi9W3b1+9+eab+stf/qI+ffpo5syZ/L8EAEnmSPh58+Zp06ZNddadDecJRsKfQyorK7V+/XqNGTPGscxqtWrMmDFauXKlEysD0BIdPHhQ6enptc4ZAQEBGjRoEOcM4BxWUFAgyQzYJGn9+vWqqqqqda7o0qWL2rZty7kCOAfZbDZ9+umnKikp0ZAhQzhHAHC49957ddlll9U6H0j8vwSAo/bu3avo6Gi1a9dON954o5KTkyWdHecJV2cXgOaTnZ0tm82miIiIWssjIiK0a9cuJ1UFoKVKT0+XpHrPGUfWATi32O123X///brgggvUo0cPSea5wt3dXYGBgbW25VwBnFu2bt2qIUOGqLy8XL6+vpo7d666deumTZs2cY4AoE8//VQbNmzQ2rVr66zj/yUASGb3jlmzZqlz585KS0vTs88+q2HDhmnbtm1nxXmCEB4AAAAn5d5779W2bdtq9WYEAEnq3LmzNm3apIKCAn3xxReaMmWKli5d6uyyALQAhw4d0n333aeFCxfK09PT2eUAaKEuueQSx+NevXpp0KBBiouL0+effy4vLy8nVtY4aEdzDgkNDZWLi0udmYMzMjIUGRnppKoAtFRHzgucMwBI0rRp0/Ttt99q8eLFatOmjWN5ZGSkKisrlZ+fX2t7zhXAucXd3V0dOnRQv379NGPGDPXu3Vv/+te/OEcA0Pr165WZmam+ffvK1dVVrq6uWrp0qV599VW5uroqIiKC8wSAOgIDA9WpUyft27fvrPj/CUL4c4i7u7v69eunRYsWOZbZ7XYtWrRIQ4YMcWJlAFqihIQERUZG1jpnFBYWavXq1ZwzgHOIYRiaNm2a5s6dq19++UUJCQm11vfr109ubm61zhW7d+9WcnIy5wrgHGa321VRUcE5AoBGjx6trVu3atOmTY6v/v3768Ybb3Q85jwB4PeKi4u1f/9+RUVFnRX/P0E7mnPMgw8+qClTpqh///4aOHCgZs6cqZKSEt1yyy3OLg2AExQXF2vfvn2O5wcPHtSmTZsUHBystm3b6v7779df/vIXdezYUQkJCXryyScVHR2tCRMmOK9oAM3q3nvv1ccff6yvv/5afn5+jp6LAQEB8vLyUkBAgG677TY9+OCDCg4Olr+/v6ZPn64hQ4Zo8ODBTq4eQHN47LHHdMkll6ht27YqKirSxx9/rCVLlmjBggWcIwDIz8/PMZfMET4+PgoJCXEs5zwB4KGHHtL48eMVFxen1NRUPf3003JxcdENN9xwVvz/BCH8Oea6665TVlaWnnrqKaWnp6tPnz768ccf60y8CODcsG7dOo0cOdLx/MEHH5QkTZkyRbNmzdLDDz+skpIS3XnnncrPz9fQoUP1448/0ssROIe89dZbkqQRI0bUWv7+++9r6tSpkqR//vOfslqtuvrqq1VRUaGxY8fqzTffbOZKAThLZmamJk+erLS0NAUEBKhXr15asGCBLrroIkmcIwCcGOcJAIcPH9YNN9ygnJwchYWFaejQoVq1apXCwsIktf7zhMUwDMPZRQAAAAAAAAAAcDaiJzwAAAAAAAAAAE2EEB4AAAAAAAAAgCZCCA8AAAAAAAAAQBMhhAcAAAAAAAAAoIkQwgMAAAAAAAAA0EQI4QEAAAAAAAAAaCKE8AAAAAAAAAAANBFCeAAAAACNwmKxaN68ec4uAwAAAGhRCOEBAACAs8DUqVNlsVjqfI0bN87ZpQEAAADnNFdnFwAAAACgcYwbN07vv/9+rWUeHh5OqgYAAACAxEh4AAAA4Kzh4eGhyMjIWl9BQUGSzFYxb731li655BJ5eXmpXbt2+uKLL2q9fuvWrRo1apS8vLwUEhKiO++8U8XFxbW2ee+999S9e3d5eHgoKipK06ZNq7U+OztbV111lby9vdWxY0fNnz+/ad80AAAA0MIRwgMAAADniCeffFJXX321Nm/erBtvvFHXX3+9du7cKUkqKSnR2LFjFRQUpLVr12rOnDn6+eefa4Xsb731lu69917deeed2rp1q+bPn68OHTrUOsazzz6ra6+9Vlu2bNGll16qG2+8Ubm5uc36PgEAAICWxGIYhuHsIgAAAACcmalTp+qjjz6Sp6dnreWPP/64Hn/8cVksFt1999166623HOsGDx6svn376s0339R//vMfPfLIIzp06JB8fHwkSd9//73Gjx+v1NRURUREKCYmRrfccov+8pe/1FuDxWLRE088oeeff16SGez7+vrqhx9+oDc9AAAAzln0hAcAAADOEiNHjqwVsktScHCw4/GQIUNqrRsyZIg2bdokSdq5c6d69+7tCOAl6YILLpDdbtfu3btlsViUmpqq0aNHN1hDr169HI99fHzk7++vzMzM031LAAAAQKtHCA8AAACcJXx8fOq0h2ksXl5eJ7Wdm5tbrecWi0V2u70pSgIAAABaBXrCAwAAAOeIVatW1XnetWtXSVLXrl21efNmlZSUONb/9ttvslqt6ty5s/z8/BQfH69FixY1a80AAABAa8dIeAAAAOAsUVFRofT09FrLXF1dFRoaKkmaM2eO+vfvr6FDh2r27Nlas2aN/vvf/0qSbrzxRj399NOaMmWKnnnmGWVlZWn69Om6+eabFRERIUl65plndPfddys8PFyXXHKJioqK9Ntvv2n69OnN+0YBAACAVoQQHgAAADhL/Pjjj4qKiqq1rHPnztq1a5ck6dlnn9Wnn36qP/7xj4qKitInn3yibt26SZK8vb21YMEC3XfffRowYIC8vb119dVX65VXXnHsa8qUKSovL9c///lPPfTQQwoNDdWkSZOa7w0CAAAArZDFMAzD2UUAAAAAaFoWi0Vz587VhAkTnF0KAAAAcE6hJzwAAAAAAAAAAE2EEB4AAAAAAAAAgCZCT3gAAADgHEAXSgAAAMA5GAkPAAAAAAAAAEATIYQHAAAAAAAAAKCJEMIDAAAAAAAAANBECOEBAAAAAAAAAGgihPAAAAAAAAAAADQRQngAAAAAAAAAAJoIITwAAAAAAAAAAE2EEB4AAAAAAAAAgCZCCA8AAAC0IG+++aYsFosGDRrk7FIAAAAANAKLYRiGs4sAAAAAYLrggguUmpqqxMRE7d27Vx06dHB2SQAAAADOACPhAQAAgBbi4MGDWrFihV555RWFhYVp9uzZzi6pXiUlJc4uAQAAAGg1COEBAACAFmL27NkKCgrSZZddpkmTJtUbwufn5+uBBx5QfHy8PDw81KZNG02ePFnZ2dmObcrLy/XMM8+oU6dO8vT0VFRUlCZOnKj9+/dLkpYsWSKLxaIlS5bU2ndiYqIsFotmzZrlWDZ16lT5+vpq//79uvTSS+Xn56cbb7xRkrR8+XJdc801atu2rTw8PBQbG6sHHnhAZWVlderetWuXrr32WoWFhcnLy0udO3fWn//8Z0nS4sWLZbFYNHfu3Dqv+/jjj2WxWLRy5cpT/jwBAACAlsDV2QUAAAAAMM2ePVsTJ06Uu7u7brjhBr311ltau3atBgwYIEkqLi7WsGHDtHPnTt16663q27evsrOzNX/+fB0+fFihoaGy2Wy6/PLLtWjRIl1//fW67777VFRUpIULF2rbtm1q3779KddVXV2tsWPHaujQofr73/8ub29vSdKcOXNUWlqqe+65RyEhIVqzZo1ee+01HT58WHPmzHG8fsuWLRo2bJjc3Nx05513Kj4+Xvv379c333yjF154QSNGjFBsbKxmz56tq666qs5n0r59ew0ZMuQMPlkAAADAeQjhAQAAgBZg/fr12rVrl1577TVJ0tChQ9WmTRvNnj3bEcK//PLL2rZtm7766qtaYfUTTzyhI1M9ffDBB1q0aJFeeeUVPfDAA45tHn30UZ3udFAVFRW65pprNGPGjFrL//rXv8rLy8vx/M4771SHDh30+OOPKzk5WW3btpUkTZ8+XYZhaMOGDY5lkvTSSy9JkiwWi2666Sa98sorKigoUEBAgCQpKytLP/30k2PEPAAAANAa0Y4GAAAAaAFmz56tiIgIjRw5UpIZTF933XX69NNPZbPZJElffvmlevfuXWe0+JHtj2wTGhqq6dOnH3eb03HPPffUWXZsAF9SUqLs7Gydf/75MgxDGzdulGQG6cuWLdOtt95aK4D/fT2TJ09WRUWFvvjiC8eyzz77TNXV1brppptOu24AAADA2QjhAQAAACez2Wz69NNPNXLkSB08eFD79u3Tvn37NGjQIGVkZGjRokWSpP3796tHjx4N7mv//v3q3LmzXF0b76ZXV1dXtWnTps7y5ORkTZ06VcHBwfL19VVYWJguvPBCSVJBQYEk6cCBA5J0wrq7dOmiAQMG1OqDP3v2bA0ePFgdOnRorLcCAAAANDva0QAAAABO9ssvvygtLU2ffvqpPv300zrrZ8+erYsvvrjRjne8EfFHRtz/noeHh6xWa51tL7roIuXm5uqRRx5Rly5d5OPjo5SUFE2dOlV2u/2U65o8ebLuu+8+HT58WBUVFVq1apVef/31U94PAAAA0JIQwgMAAABONnv2bIWHh+uNN96os+6rr77S3Llz9fbbb6t9+/batm1bg/tq3769Vq9eraqqKrm5udW7TVBQkCQpPz+/1vKkpKSTrnnr1q3as2eP/ve//2ny5MmO5QsXLqy1Xbt27STphHVL0vXXX68HH3xQn3zyicrKyuTm5qbrrrvupGsCAAAAWiLa0QAAAABOVFZWpq+++kqXX365Jk2aVOdr2rRpKioq0vz583X11Vdr8+bNmjt3bp39HJl09eqrr1Z2dna9I8iPbBMXFycXFxctW7as1vo333zzpOt2cXGptc8jj//1r3/V2i4sLEzDhw/Xe++9p+Tk5HrrOSI0NFSXXHKJPvroI82ePVvjxo1TaGjoSdcEAAAAtESMhAcAAACcaP78+SoqKtIVV1xR7/rBgwcrLCxMs2fP1scff6wvvvhC11xzjW699Vb169dPubm5mj9/vt5++2317t1bkydP1gcffKAHH3xQa9as0bBhw1RSUqKff/5Zf/zjH3XllVcqICBA11xzjV577TVZLBa1b99e3377rTIzM0+67i5duqh9+/Z66KGHlJKSIn9/f3355ZfKy8urs+2rr76qoUOHqm/fvrrzzjuVkJCgxMREfffdd9q0aVOtbSdPnqxJkyZJkp5//vmT/yABAACAFooQHgAAAHCi2bNny9PTUxdddFG9661Wqy677DLNnj1bFRUVWr58uZ5++mnNnTtX//vf/xQeHq7Ro0c7Jk51cXHR999/rxdeeEEff/yxvvzyS4WEhGjo0KHq2bOnY7+vvfaaqqqq9Pbbb8vDw0PXXnutXn755RNOoHqEm5ubvvnmG/3f//2fZsyYIU9PT1111VWaNm2aevfuXWvb3r17a9WqVXryySf11ltvqby8XHFxcbr22mvr7Hf8+PEKCgqS3W4/7oUJAAAAoDWxGL+/BxQAAAAAnKS6ulrR0dEaP368/vvf/zq7HAAAAOCM0RMeAAAAQIsxb948ZWVl1ZrsFQAAAGjNGAkPAAAAwOlWr16tLVu26Pnnn1doaKg2bNjg7JIAAACARsFIeAAAAABO99Zbb+mee+5ReHi4PvjgA2eXAwAAADQap4bwy5Yt0/jx4xUdHS2LxaJ58+ad8DVLlixR37595eHhoQ4dOmjWrFlNXicAAACApjVr1ixVV1dr3bp1Jz05LAAAANAaODWELykpUe/evfXGG2+c1PYHDx7UZZddppEjR2rTpk26//77dfvtt2vBggVNXCkAAAAAAAAAAKeuxfSEt1gsmjt3riZMmHDcbR555BF999132rZtm2PZ9ddfr/z8fP3444/NUCUAAAAAAAAAACfP1dkFnIqVK1dqzJgxtZaNHTtW999//3FfU1FRoYqKCsdzu92u3NxchYSEyGKxNFWpAAAAAAAAAICzlGEYKioqUnR0tKzWhhvOtKoQPj09XREREbWWRUREqLCwUGVlZfLy8qrzmhkzZujZZ59trhIBAAAAAAAAAOeIQ4cOqU2bNg1u06pC+NPx2GOP6cEHH3Q8LygoUNu2bXXo0CH5+/s7sTIAAAAAAAAAQGtUWFio2NhY+fn5nXDbVhXCR0ZGKiMjo9ayjIwM+fv71zsKXpI8PDzk4eFRZ7m/vz8hPAAAAAAAAADgtJ1My/OGm9W0MEOGDNGiRYtqLVu4cKGGDBnipIoAAAAAAAAAADg+p4bwxcXF2rRpkzZt2iRJOnjwoDZt2qTk5GRJZiuZyZMnO7a/++67deDAAT388MPatWuX3nzzTX3++ed64IEHnFE+AAAAAAAAAAANcmoIv27dOp133nk677zzJEkPPvigzjvvPD311FOSpLS0NEcgL0kJCQn67rvvtHDhQvXu3Vv/+Mc/9O6772rs2LFOqR8AAAAAAAAAgIZYDMMwnF1EcyosLFRAQIAKCgroCQ8AAAAAAACg0dhsNlVVVTm7DDQCNzc3ubi4HHf9qeTMrWpiVgAAAAAAAABoaQzDUHp6uvLz851dChpRYGCgIiMjT2ry1YYQwgMAAAAAAADAGTgSwIeHh8vb2/uMQ1s4l2EYKi0tVWZmpiQpKirqjPZHCA8AAAAAAAAAp8lmszkC+JCQEGeXg0bi5eUlScrMzFR4eHiDrWlOxKkTswIAAAAAAABAa3akB7y3t7eTK0FjO/IzPdM+/4TwAAAAAAAAAHCGaEFz9mmsnykhPAAAAAAAAAAATYQQHgAAAAAAAADQKOLj4zVz5kxnl9GiEMIDAAAAAAAAwDnGYrE0+PXMM8+c1n7Xrl2rO++8s3GLbeVcnV0AAAAAAAAAAKB5paWlOR5/9tlneuqpp7R7927HMl9fX8djwzBks9nk6nriODksLKxxCz0LMBIeAAAAAAAAAM4xkZGRjq+AgABZLBbH8127dsnPz08//PCD+vXrJw8PD/3666/av3+/rrzySkVERMjX11cDBgzQzz//XGu/v29HY7FY9O677+qqq66St7e3OnbsqPnz5zfzu3UuQngAAAAAAAAAaESGYai0stopX4ZhNNr7ePTRR/XSSy9p586d6tWrl4qLi3XppZdq0aJF2rhxo8aNG6fx48crOTm5wf08++yzuvbaa7VlyxZdeumluvHGG5Wbm9todbZ0tKMBAAAAAAAAgEZUVmVTt6cWOOXYO54bK2/3xol9n3vuOV100UWO58HBwerdu7fj+fPPP6+5c+dq/vz5mjZt2nH3M3XqVN1www2SpBdffFGvvvqq1qxZo3HjxjVKnS0dI+EBAAAAAAAAAHX079+/1vPi4mI99NBD6tq1qwIDA+Xr66udO3eecCR8r169HI99fHzk7++vzMzMJqm5JWIkPAAAAAAAAAA0Ii83F+14bqzTjt1YfHx8aj1/6KGHtHDhQv39739Xhw4d5OXlpUmTJqmysrLB/bi5udV6brFYZLfbG63Olo4QHgAAAAAAAAAakcViabSWMC3Jb7/9pqlTp+qqq66SZI6MT0xMdG5RrQDtaAAAAAAAAAAAJ9SxY0d99dVX2rRpkzZv3qw//OEP59SI9tNFCA8AAAAAAAAAOKFXXnlFQUFBOv/88zV+/HiNHTtWffv2dXZZLZ7FMAzD2UU0p8LCQgUEBKigoED+/v7OLgcAAAAAAABAK1ZeXq6DBw8qISFBnp6ezi4Hjaihn+2p5MyMhAcAAAAAAAAAoIkQwgMAAAAAAAAA0EQI4QEAAAAAAAAAaCKE8AAAAAAAAAAANBFCeAAAAAAAAAAAmgghPAAAAAAAAAAATYQQHgAAAAAAAACAJkIIDwAAAAAAAABAEyGEBwAAAAAAAACgiRDCAwAAAAAAAABO2YgRI3T//fc7nsfHx2vmzJkNvsZisWjevHlnfOzG2k9zIIQHAAAAAAAAgHPM+PHjNW7cuHrXLV++XBaLRVu2bDmlfa5du1Z33nlnY5Tn8Mwzz6hPnz51lqelpemSSy5p1GM1FUJ4AAAAAAAAADjH3HbbbVq4cKEOHz5cZ93777+v/v37q1evXqe0z7CwMHl7ezdWiQ2KjIyUh4dHsxzrTBHCAwAAAAAAAMA55vLLL1dYWJhmzZpVa3lxcbHmzJmjCRMm6IYbblBMTIy8vb3Vs2dPffLJJw3u8/ftaPbu3avhw4fL09NT3bp108KFC+u85pFHHlGnTp3k7e2tdu3a6cknn1RVVZUkadasWXr22We1efNmWSwWWSwWR72/b0ezdetWjRo1Sl5eXgoJCdGdd96p4uJix/qpU6dqwoQJ+vvf/66oqCiFhITo3nvvdRyrKbk2+REAAAAAAAAA4FxiGFJVqXOO7eYtWSwn3MzV1VWTJ0/WrFmz9Oc//1mWmtfMmTNHNptNN910k+bMmaNHHnlE/v7++u6773TzzTerffv2Gjhw4An3b7fbNXHiREVERGj16tUqKCio1T/+CD8/P82aNUvR0dHaunWr7rjjDvn5+enhhx/Wddddp23btunHH3/Uzz//LEkKCAios4+SkhKNHTtWQ4YM0dq1a5WZmanbb79d06ZNq3WRYfHixYqKitLixYu1b98+XXfdderTp4/uuOOOE76fM0EIDwAAAAAAAACNqapUejHaOcd+PFVy9zmpTW+99Va9/PLLWrp0qUaMGCHJbEVz9dVXKy4uTg899JBj2+nTp2vBggX6/PPPTyqE//nnn7Vr1y4tWLBA0dHmZ/Hiiy/W6eP+xBNPOB7Hx8froYce0qeffqqHH35YXl5e8vX1laurqyIjI497rI8//ljl5eX64IMP5ONjvvfXX39d48eP11//+ldFRERIkoKCgvT666/LxcVFXbp00WWXXaZFixY1eQhPOxoAAAAAAAAAOAd16dJF559/vt577z1J0r59+7R8+XLddtttstlsev7559WzZ08FBwfL19dXCxYsUHJy8knte+fOnYqNjXUE8JI0ZMiQOtt99tlnuuCCCxQZGSlfX1898cQTJ32MY4/Vu3dvRwAvSRdccIHsdrt2797tWNa9e3e5uLg4nkdFRSkzM/OUjnU6GAkPAAAAAAAAAI3Jzdscke6sY5+C2267TdOnT9cbb7yh999/X+3bt9eFF16ov/71r/rXv/6lmTNnqmfPnvLx8dH999+vysrKRit15cqVuvHGG/Xss89q7NixCggI0Keffqp//OMfjXaMY7m5udV6brFYZLfbm+RYxyKEBwAAAAAAAIDGZLGcdEsYZ7v22mt133336eOPP9YHH3yge+65RxaLRb/99puuvPJK3XTTTZLMHu979uxRt27dTmq/Xbt21aFDh5SWlqaoqChJ0qpVq2pts2LFCsXFxenPf/6zY1lSUlKtbdzd3WWz2U54rFmzZqmkpMQxGv63336T1WpV586dT6repkQ7GgAAAAAAAAA4R/n6+uq6667TY489prS0NE2dOlWS1LFjRy1cuFArVqzQzp07dddddykjI+Ok9ztmzBh16tRJU6ZM0ebNm7V8+fJaYfuRYyQnJ+vTTz/V/v379eqrr2ru3Lm1tomPj9fBgwe1adMmZWdnq6Kios6xbrzxRnl6emrKlCnatm2bFi9erOnTp+vmm2929IN3JkJ4AAAAAAAAADiH3XbbbcrLy9PYsWMdPdyfeOIJ9e3bV2PHjtWIESMUGRmpCRMmnPQ+rVar5s6dq7KyMg0cOFC33367XnjhhVrbXHHFFXrggQc0bdo09enTRytWrNCTTz5Za5urr75a48aN08iRIxUWFqZPPvmkzrG8vb21YMEC5ebmasCAAZo0aZJGjx6t119//dQ/jCZgMQzDcHYRzamwsFABAQEqKCiQv7+/s8sBAAAAAAAA0IqVl5fr4MGDSkhIkKenp7PLQSNq6Gd7KjkzI+EBAAAAAAAAAGgihPAAAAAAAAAAADQRQngAAAAAAAAAAJoIITwAAAAAAAAAAE2EEB4AAAAAAAAAzpBhGM4uAY2ssX6mhPAAAAAAAAAAcJrc3NwkSaWlpU6uBI3tyM/0yM/4dLk2RjEAAAAAAAAAcC5ycXFRYGCgMjMzJUne3t6yWCxOrgpnwjAMlZaWKjMzU4GBgXJxcTmj/RHCAwAAAAAAAMAZiIyMlCRHEI+zQ2BgoONneyYI4QEAAAAAAADgDFgsFkVFRSk8PFxVVVXOLgeNwM3N7YxHwB9BCA8AAAAAAAAAjcDFxaVWcFtWadPXm1LUNcpfvWMDnVcYnIoQHgAAAAAAAAAa2e70It378QbtyyyWJPVqE6CbBsdpfK9oebk3zghrtA4WwzAMZxfRnAoLCxUQEKCCggL5+/s7uxwAAAAAAAAAZxHDMPTJmkN69pvtqqi2K8jbTSUVNlXa7JKkAC83XdOvjW4cHKeEUB8nV4vTdSo5MyE8AAAAAAAAADSCwvIqPfblVn23NU2SNKJzmP5xTW9J0pz1h/XRqiQdzitzbD+8U5huHhynUV3C5WK1OKXm02UYhiyW1lVzYyKEbwAhPAAAAAAAAIDGtulQvqZ/skGHcsvkarXo4XGddfvQdrIeE67b7IaW7cnSBysTtWRPlo4kszGBXvrDoLa6tn+swvw8nPQOGma3G9qZXqhle7K1fG+WPN1c9N7UAc4uy2kI4RtACA8AAAAAAACgsdjtht799YD+9uNuVdsNxQZ76bUb+qrPCSZiTc4p1ew1Sfp87SHllVZJktxcLLqkR5RuHhKn/nFBTh9pnl1coeV7s2qC92xlF1c41rm7WLX56YvP2f72hPANIIQHAAAAAAAATo7dbmhNYq6iA7zUNsTb2eW0ODnFFfrTnM1asjtLknRZzyjNuLqn/D3dTnof5VU2fb81TR+uStLG5HzH8i6RfrppcJwmnBcjXw/Xxi69XpXVdq1LynWMdt+eWlhrvZebi4a0D9HwjqEa3ilMCaE+Tr9Q4CyE8A0ghAcAAAAAAAAalltSqTnrDumj1Uk6lFsmdxerpo3qoLsvbC93V6uzy2sRVuzP1v2fblJmUYU8XK16enx33TAw9oxC6W0pBfpoVZLmbUpReZU5kauvh6sm9o3RTYPj1CnCr7HKl2T2dT+YXaJle7K0fG+2Vh7IUWmlrdY23aP9NaxjmIZ3ClW/uCB5uJ6bI99/jxC+AYTwAAAAAAAAQF2GYWjToXx9uCpJ325JU2W1GQK7u1odj7tE+umlq3udsNXK2azaZterv+zTa7/slWFIHcJ99fofzlOXyMbLGgtKq/TlBnMi1wPZJY7lg9sF6+bB8bq4e4TcXE7vYkhheZVW7MvWsr3ZWrYnq9ZEsZIU6uvuCN2HdghrsT3qnY0QvgGE8AAAAAAAAMBRZZU2fbM5VR+uStLWlALH8h4x/po8OF7je0frpx3pevabHcotqZTVIt1yQYL+dHEnebs3T5uUliKtoEz3fbpJaw7mSpKu6x+rp6/o1mSfg2EYWrE/Rx+sTNTCHRmy1yS5YX4eumFgW90wMFZRAV4N7sNmN7TlcL6jxczGQ/my2Y9Gwm4uFvWPC9bwTmbw3jXSv9ZksqgfIXwDCOEBAAAAAAAA6UBWsWavTtacdYdUWF4tyRz1Pr5XtG4eEqfebQJqtVbJKa7Q89/u0LxNqZKk2GAvzbiql4Z2DHVK/c1t0c4MPTRns/JKq+Tj7qIXJ/bUlX1imu34aQVl+mR1sj5ec8gxQaqL1aKLukbo5iFxOr99iOPnlVZQpmV7srRsb7Z+25et/JqJX49oF+rjCN0HJYTIp5l6zp9NCOEbQAgPAAAAAACAc1W1za5FuzL10aokLd+b7VjeNthbNw1uq2v6xSrIx73BfSzelak/z92q1IJySdI1/droicu6KcD75CcjbU0qqm366w+79d5vByWZdwi8fkNfxYf6OKWeymq7ftqRrg9XJml1zYh8SWoX5qMh7UK05mCu9mYW13qNn6erLmhvTqY6rGOoYoOZZPdMEcI3gBAeAAAAAAAA55qsogp9tjZZH69OdoTnFos0qnO4bhoSpws7hp1SC5Liimr97cdd+nBVkgxDCvX10HNXdtclPSLPaGLSliYxu0TTP9noaNNz6wUJeuSSzi1mctI9GUX6cGWSvtpwWCXHTKhqtUi92gRqeKcwXdgpVL3bBMr1NHvIo36E8A0ghAcAAAAAAMC5wDAMrU3M04erkvTjtjRV2cwYMNjHXdcNiNUfBrY94xHR6xJz9ciXW7Q/y5w89OJuEXp+Qg9F+Huecf3O9vWmFP157jYVV1Qr0NtNf5/UW2O6RTi7rHoVV1Rr7sYUHcgqVr+4IA3tEKpA74bvaMCZaVUh/BtvvKGXX35Z6enp6t27t1577TUNHDjwuNvPnDlTb731lpKTkxUaGqpJkyZpxowZ8vQ8uX/YhPAAAAAAAABntyqbXTtSC7UuKU/rk3K1ISlf/l6u+n9ju2hM1/CzaqR2fY4Esh+tTNLujCLH8r5tAzV5SLwu6RnZqCO5y6tsemPxPr21ZL+q7Yb8PF31+KVddf2A2Fb5WZdWVuuZ+dv1+brDkqSB8cH61w19TjgBKs4trSaE/+yzzzR58mS9/fbbGjRokGbOnKk5c+Zo9+7dCg8Pr7P9xx9/rFtvvVXvvfeezj//fO3Zs0dTp07V9ddfr1deeeWkjkkIDwAAAAAAcHYpKKvShuQ8rU/M07qkXG0+VKCyKlu9247sHKZnruiuuBDn9PNuSnsyivTRqiR9tSFFxRXmRKtebi6acF60bhwUpx4xAU16/J1phXr0yy3afNhs3TK4XbBemtjLab3TT8eu9EJN+3ij9mUWy2KRpo/soP8b3ZFWLqij1YTwgwYN0oABA/T6669Lkux2u2JjYzV9+nQ9+uijdbafNm2adu7cqUWLFjmW/elPf9Lq1av166+/ntQxCeEBAAAAAABaL8MwdCi3TOuScs2R7ol52pNZpN8nXAFebuoXF6R+cUHq2zZIy/Zm6d3lB1RlM+TuatXdw9vpnhEd5OXeMnp7n66GJum8eXCcJvZtowCv5psw1WY39P5vB/X3n3arvMouD1erHriok24fmtCig2zDMPTxmmQ9980OVVTbFe7noZnX99H57UOdXRpaqFPJmV2bqaY6KisrtX79ej322GOOZVarVWPGjNHKlSvrfc3555+vjz76SGvWrNHAgQN14MABff/997r55pubq2wAAAAAAAA0o8pqu7anFmh9Up7WJ+VpXVKesooq6mwXH+KtfnHB6h8fpP5xQWof5ltrotEh7UM0qV8bPTN/u5bvzdarv+zTlxtS9NT4brq4W0Sra5uSUViu2auS9MnaQ47Pw8Vq0cXdInTz4DgNaR/ilPfkYrXo9mHtdHG3SD02d4t+25ejl37YpW+3pOqvV/dS9+imHY1/OgrKqvT4V1v13dY0SdKFncL0j2t7K9TXw8mV4WzhtBA+OztbNptNERG1JzOIiIjQrl276n3NH/7wB2VnZ2vo0KEyDEPV1dW6++679fjjjx/3OBUVFaqoOHpiLiwsbJw3AAAAAAAAgEZXUFql9cm5WpdoBu5bDuervMpeaxs3F4t6xASof1yQ+sUFq19ckML8ThyYtg/z1Qe3DtSP29L1/Lc7lJJfprs+XK8RncP0zPjuraJtyt6MIv172QHN25TimGg13M9DNwxsqxsGtlVkQMuYELVtiLc+um2Q5qw/rL98u0PbUgp1xeu/6a7h7fR/ozvK061l3IGw6VC+pn28QYfzyuRqtejhcZ11+9B2tS7gAGfKaSH86ViyZIlefPFFvfnmmxo0aJD27dun++67T88//7yefPLJel8zY8YMPfvss81cKQAAAAAAAE7EMAwl5ZQ6JlBdl5invZnFdbYL9HZTv7ZB6hcfpP5xwerVJuC0Q1yLxaJLekbpws5hev2XffrP8gNasjtLF+9bpjuHt9O9I1teixrDMLQuKU/vLN2vn3dmOpYPjA/WlPPjdXH3CLm1wFYvFotF1/aPNS9yzN+u77em680l+/XjtnTNmNhTg9qFOK02u93Qu78e0N9+3K1qu6E2QV567YbzdF7bIKfVhLOX03rCV1ZWytvbW1988YUmTJjgWD5lyhTl5+fr66+/rvOaYcOGafDgwXr55Zcdyz766CPdeeedKi4ultVa92RT30j42NhYesIDAAAAAAA4QWZhuZbtzdbyvVn6bV+OsovrtpZJCPVRvzizrUz/+CC1C/VtspHJB7KK9cw3O7RsT5YkKSbQS09e3k1juzu/RY3dbuinHRl6Z9l+bUzOlyRZLNK47pG6c3i7VhcY/7gtXU99vU2ZNe1zbhzUVo9e0kV+nk3Xs95uN5RWWK6knBIl55QqMadUybkl2pNRrH01F3wu6xmlFyf2bNbe+Wj9WkVPeHd3d/Xr10+LFi1yhPB2u12LFi3StGnT6n1NaWlpnaDdxcW8Mnm8awkeHh7y8KB/EwAAAAAAgDOUV9m0LjFPy/ZmadmeLO1KL6q13t3Fqp5tjrSWCVLfuKBm7cXdLsxX/7tlgBZsz3C0qLn7o/Ua3ilMz4zvpnZhvs1WyxHlVTbN3Zii/yw7oAPZJZIkd1erJvVrozuGtVNCK2ibU59xPSI1pH2IXvphpz5Zc0izVydr0c5M/WVCD43pFnHiHRxHZbVdh/NKlZRbqqTsEvN7TqmSckp0KK9MldX2el/n4WrVU+O76Q8D2zr9ggvObk4bCS9Jn332maZMmaJ33nlHAwcO1MyZM/X5559r165dioiI0OTJkxUTE6MZM2ZIkp555hm98sor+ve//+1oR3PPPfeoX79++uyzz07qmKdyhQIAAAAAAACnxjAM7c8q1tI95mj3VQdyavV0t1iknjEBGt4xTEM7hqpPbGCL6Q9eVmnTG4v36d/LDqjSZpe7i1V3DE/QvSM7yNu96ceyFpRW6aPVSXr/t0THHQL+nq6aPCReU86PP6m+963Fiv3ZevyrrUrMKZUkXd4rSs9c0f24F2BKKqqVVDOKPemYEe1JOaVKzS+TvYGE09VqUWywt9oGeys+xFttQ3wUF+ytXm0CFO7fMnroo/U5lZzZqSG8JL3++ut6+eWXlZ6erj59+ujVV1/VoEGDJEkjRoxQfHy8Zs2aJUmqrq7WCy+8oA8//FApKSkKCwvT+PHj9cILLygwMPCkjkcIDwAAAAAA0LgKSqv06z4zdF+2J0upBeW11of7eWh4pzAN6xiqYR3DFOzj7qRKT87B7BI9M3+7lta0qIkO8NSTl3fTuB6RTTJiOjW/TO/9elCfrElWSaXNcczbhrXTdQNi5evRqqZ1PGnlVTb98+c9enf5QdnshgK93fT/xnaWr4erErNLlZR7tIVMfW2LjuXl5qK4EO+aLx/ze7D5PSrAU64tsGc+WrdWFcI3N0J4AAAAAACAM1Nts2vz4XzHaPfNh/JrjUR2d7VqUEKwhnUM1fBOYeoc4dfq2n0YhtmP/blvzBY1kjSsY6ieuaK72jdSi5pd6YX699IDmr85VdU1H2CXSD/ddWE7Xd4rukVOttoUtqUU6OEvtmhHWmGD2wV6u5kB+7Ej2muC9zBfj1b3O4bWjRC+AYTwAAAAAAAAp+5wXqmW7TkyoWq2Csura63vGO6rYR3DNLxTqAYlhMjLvWW0mDlTZZU2vbVkn95edkCV1Xa5uVh0+7B2mj7q9FrUGIahVQdy9c6y/VqyO8ux/Pz2IbrrwvYa3jH0nAyTq2x2/Wf5Ac3bmKJAb3czaA/1qWkh46O2Id5MnIoWhRC+AYTwAAAAAAAAJ1ZaWa1VB3K0bE+2lu3N0oGsklrrA7zcNLRjqIbXtJiJDvRyUqXNIzG7RM9+s12La4LzqABPPXFZN13a8+Ra1NjshhZsT9c7S/dr8+ECSZLVIl3SM0p3DW+nXm0Cm7J8AI2MEL4BhPAAAAAAAOBM2O2GknJLtTOtUPszixXu76GuUf7qFOHXYiYYPVWGYSijsEI70wq1PbVAK/bnaF1iniptRydUdbFadF5soGO0e682gXKxnlsjtg3D0M87M/XsN9t1OM9sUTO0g9mipkN4/S1qyqts+mL9Yf1n+QEl1UxC6uFq1bX9Y3X7sATFhfg0W/0AGg8hfAMI4QEAAAAAwMkqqajWrvQi7Uwr1I60Qu1MK9Tu9CKV1kyeeSwXq0XtQn3UNcq/5stP3aL8FebXsnpVV1bbtS+zuNZ72plWqLzSqjrbtgny0vBOYRreMVRD2ofSDqRGeZVNby7Zr7eX7ne0qLl1aIL+b1RH+dRMoppfWqkPVyZp1opE5ZRUSjJ7mk8ZEq/JQ+IU4uvhzLcA4AwRwjeAEB4AAAAAAPyeYRhKLSjXztTawXRSbqnqS048XK3qHOmnDmG+Si8sP26ILUkhPu7qFn00mO8a5a/2Yb7NMulmTnGFdqYVOd7PjrRC7c8qVpWt7ps69iJC37aBGt4pTAmhPi3qAkJLk5RToue+2aFFuzIlSZH+nnrw4k7akVqoz9YeUlmVebGmTZCX7hjWTtf0b3NafeQBtDyE8A0ghAcAAAAA4NxWXmXTvsxi7Ugr1I5UM5zelV6kgrL6Q/RwP486o9sTQn3kekyIfmw7lx3HBN6J2SWy15O8uLtY1THCt85+A73dT+s92eyGDmYXa8cxgfvOtEJlFFbUu72fp6u61Rz7yPeOEb6ttp2Os/28I0PPfrtdh3LLai3vHu2vuy5sr0t7RNb6fQHQ+hHCN4AQHgAAAACAc0dWUUWdtiv7s0pkqycZd7Va1CHc95hQPEBdo/zOqG1IWaVNuzNqB+M704pUXFFd7/bRAZ7HBPNmHfEhPrIe03u9sLxKu34Xtu9KL1JFtb3efcaHeNfZZ0ygFyPcG1l5lU1vL92v/y4/qN6xgbr7wva6oEMInzNwliKEbwAhPAAAAAAAZ6+Csip9uiZZv+7L1s60ImUX1z8SPNDbTV0j/Wu1iekQ7isP16YfCW63GzqcV1brwsDO9MI6o6iP8HJzUZcoP4X4uGtXepFjQtDf83Z3UedIP0fY3i3KT50j/eXrQfuT5mQYBsE7jirJlla+LsUOkjqNk/jdOGsQwjeAEB4AAAAAgLNPan6Z3vv1oD5Zk6ySYyZNtVikhJo+592O6cke6e/Z4oLSUxnhfuyI+SMXEuKCvWuNmAfgZEXp0gdXSlm7zOdxQ6WLn5di+jq3LjQKQvgGEMIDAAAAAHD22J1epHeW7df8Tamqrmkx0yXST38Y1FY9YwLUOdKvVU+EafZ6L6mZ+LVSHcP91DXK77R7xwNoJgWHpf9dIeXul7xDpcpiqbrcXNfzGmnUk1JQnHNrxBkhhG8AITwAAAAAAK2bYRhafTBX7yzdr8W7sxzLh7QL0V0XttOFncJa3Ch3AOeQvETpf+Ol/GQpoK00Zb5kdZV++Yu05VNzGxcPadBd0rA/SV6BzqwWp4kQvgGE8AAAAACAhtjthjKLKpSYU6LknFIl5ZYoMadUyTmlSisoV682AZrYN0ZjukbI063p+4fjKJvd0E/b0/X2sgPafChfkmS1SJf0jNJdw9upV5tAp9YHAMrZbwbwhSlSUII05RspMPbo+tRN0sInpYPLzOdeQdKFj0j9b5NcucOlNSGEbwAhPAAAAACgymZXSl6ZknJLlZxjhuxJOaVKzi1RUk5pvT24f8/P01WX94rWpH4x6ts2iJHXTai8yqYv1h/Wu8sPKDGnVJLk4WrVtf1jdfuwBMWF+Di5QgCQlLlL+uAKqThDCu0kTZ4v+UfV3c4wpL0LzTD+SL/4oARpzDNStyuZvLWVIIRvACE8AAAAAJwbyiptSs4tVVKOGawn1QTsSTmlSskvk81+/D+HXawWtQnyUttgb8WH+CguxFttg70V4uuuxbuy9NWGw0otKHdsHxfirYnntdHEvjGKDfZujrd3xgzD0L7MYq08kCMvNxf1iwtSQqhPi7qYkF9aqQ9XJmnWikTllFRKkgK93TR5SLwmD4lTqK+HkysEgBrpW81JWEtzpPDu0uSvJd+whl9jq5Y2fSQtftEM7iWpzUDp4r9IbQc1fc04I4TwDSCEBwAAAICzS1pBmdYm5ik552jInpRboozCigZf5+lmVdtgb8WF+Cgu2FtxITWPQ7wVHeglNxfrcV9rtxtadTBHX65P0Q/b0lRaaXOsG5gQrKv7xuiSnlHy93RrtPfZGPJLK/Xbvhwt25OlZXuzlHbMhQRJCvFxV9+4IPWPC1L/+CD1iAmQh2vzt9w5nFeq//56UJ+tPeT4bGMCvXTHsARdOyC2ZU20mr5NCu0ouXJBADhnpWyQPrxKKs+XovpIN8+VvINP/vUVxdKK16QVr0pV5t0+6nqFOTI+pH0TFIzGQAjfAEJ4AAAAADg7VNns+s/yA5r5815VHqd9jL+nq+JDfWrC9qOBe3yoj8J8PWS1nvmo79LKai3Ynq6vNqTo133ZOvJXtoerVWO7R2pi3xgN7RAq1wZC/aZSbbNr06F8LdubrWV7srTlcL6OvQHA3dWqgfHBKq+yaUtKQZ3P0d3Vql4xAeoXH6T+ccHqFxekYJ+m61m8I7VQ/162X99sSXPcqdAtyl93XdhOl/WMcspn2KANH0jzp0txQ6XJ8ySXlnXRBUAzSF4tzZ4kVRRKbQZIN35x+hOtFqZJS16UNn4kGXZzMtcBt0vDH5Z8Qhq1bJw5QvgGEMIDAAAAQOu3LaVAD3+xRTvSCiWZQW3XKH/Fh3irbU3YHh/irUDv5p3kLq2gTPM2purLDYe1L7PYsTzMz0MT+kTr6n5t1CWyaf8WPZRbquU1oftv+7NVVF5da32nCF8N6xim4Z3CNCgh2DG5bEW1TdtSCrQuMU/rkvK0ISnP0QLmWO3CfMyR8nHB6hcfpHZn2MLGMAyt3J+jt5cd0LI9WY7lQzuE6q4L22loh9AW1SLHoSRHeq2vOfJVkgbeKV36slNLAtDMDi6XPr5OqiqR4i6Q/vCZ5OF35vvN2CEtfErat9B87hEgDXtQGnS35OZ55vtHoyCEbwAhPAAAAAC0XuVVNv3z5z16d/lB2eyGAr3d9ORl3TSxb0yLCmoNw9DWlAJ9tSFFX29KUV5plWNdtyh/Tewboyv7xCjM78xbmJRWVmvVgRwt22MG7weyS2qtD/By09COobqwY5iGdQpVVIDXSb+HxJxSrUvM1fokM5g/9sLCEcE+7urb1mxf0z/ObGFzJNhvSLXNrh+2peudZfu1LcW8mGK1SJf3itadw9upR0zASdXpNF9PkzZ+KPlFS0Wp5rIrXpf63uzcugA0j32LpE//IFWXS+1GSNd/Irk38pwg+xebk7embzWfB8RKo5+SekySrC3szqBzECF8AwjhAQAAAKB1Wrk/R499tUWJOWa/3Mt7Renp8d0bJchuSpXVdi3ZnamvNqRo0a4MVdnMP8NdrBZd2ClME/vGaEzXiJMKriWzH/3O9EJH6L4uKdexzyP7PS82UMM7maPde8YEyKUR2u5IUl5JpTYkm4H8+sQ8bT6cr4rft7BxsapnmwD1jwtSv5qvkGMmUC2rtGnO+kP6z/IDOpRbJsnsz3/9gLa6bWhC65jY9tBa6b9jzMe3LpAOLpMWvyC5uEu3/CC16e/c+gA0rd0/Sp/fLNkqpY4XS9d+2HQj1O12actn0i/PS4Up5rKoPtLFz0sJw5vmmPWxVUn5yVLuQSnvoJR7QLK6mJPInqMI4RtACA8AAAAArUtBWZVe+mGnPllzSJIU6e+p5yf00EXdIpxc2anLK6nUt1tS9eWGFG06lO9Y7ufpqst7RWtSvxj1bRtUZ1R/VlGFft2XpWV7srV8b7ayi2tPOtsmyMsM3TuG6fwOIc02IWxltV3bUgu0PjFP65LMEfPZxXVb2CSE+phhvI+7Pl93yHFnQLCPu6YMidfNQ+KatNd8o7LbpH+PkNK3SH1ulCa8aYZkn98s7fpW8ouS7lwi+UU6u1IATWHH19IXt0r2aqnL5dKk9yXXZjh/VZVJq96Ulv9Tqiwyl3UaJ130nBTWuXGOUVki5SWaAfuxYXvuQangsGTYam/vHSo9vL9xjt0KEcI3gBAeAAAAAFqPBdvT9eS8bcosMkPnGwe11SOXdGm2kLkp7c8q1lcbDmvuhhSlFpQ7lseFeGvieW3UOzZAqw7katmeLEfv+yO83V00pF2IY7R7fIh3i2jHYxiGknJKzZHySblal5invfW0sGkb7K07hiVoUr9Yebmf3B0ALcaa/0jfPyR5BkjT1ku+YebyiiLp3TFS1i6pzUBp6reSa8u+SwPAKdoyR5p7lxlG97hauuqd5p+QuThLWvpXad17Zh0WF6nvZGnk45Jv+IlfX5p7TMBeE7IfeVyc3vBrXb2k4AQpuJ0UFG8+7n+b1AL+++MMhPANIIQHAAAAgJYvs6hcz8zfru+3moFAQqiPZkzsqcHtQpxcWeOz2w2tOpijL9en6IdtaSqttNW7Xfdof8do975xgfJwbR3hdX5ppTYm52tdUq4O5Zbp4u4RGtc9Uq4urbCfcXGW9Fo/qaJAuvTv0sA7aq/P2S/9e6S5vt9Uafy/nFImgCaw4UNp/nRJhnkXzBWvme1YnCV7r/TzM+YdOJLk7itdcJ80+I9SRWHdgP3I4/KChvfrFSQFJRwTth/z2DfinA3c60MI3wBCeAAAAABouQzD0Jz1h/XCdztVUFYlF6tFdw5vp/tGdzzpnumtWWlltRZsT9eX61OUlFuiAXHBGt4pTBd0CG3xve/PCfP+KG2aLUX1lu5YXH8At3ehNPsaSYZ0+T+l/rc2e5kAGtnad6Xv/mQ+7neLdNkrLWdi1KQV0oI/S6kbahZYJJ0g7vWLqgnX20nB8cc8TjBDeJwUQvgGEMIDAAAAQMuUnFOqx+du1a/7siVJPWL89dLEXuoRE+DkygBJyauk98aaj29f1PDkq8tfkRY9K1ndzLY0bQc3T40AGt/KN6QFj5uPB90jjZvR8kaD2+3S9q/M805+stmiJrCtGaofG7AHJZhtZNxbwQTYrcCp5MyuzVQTAAAAAAD1stkNvf/bQf3jpz0qq7LJw9WqBy7qpNuHJrTOliU4+9iqj46C7Tu54QBekoY+IKVtlnbMkz67WbprqeQf3eRlAmhky/8hLXrOfDz0AWn00y0vgJfMUfk9J0ndJph93X0jmr9XPRpECA8AAAAA55DU/DLZ7IbaBHm1iIk8d6UX6pEvtmjzYbNH7eB2wZoxsZcSQn2cXFk9qiuljK1SVVnzHM/dV4rs6dyewzCt/Y+Usc1s0zD6mRNvb7FIE940ezZnbpc+u0ma+r3k5tnkpbYqtiope48U1rXltPYAJMkwpCUzzAlQJWnEY9KFj7TMAP5YLq5SQBtnV4F6EMIDAAAAwDkgp7hCf/txtz5bd0iSFOHvoX5xQeoXF6z+cUHqFu0vt2YcdV5RbdPrv+zTW0v2q9puyM/DVY9f1lXX9Y+V1dqCQo6c/dL+X8yvg8ukyuLmPb5noNRuhNR+lNRhNOGKMxSlS4tfNB+PflryOcnJgd19pOtnS/8ZKaWsl757ULryjZYf4jUHw5B2fSf9/LSUs0+KHyZNeEsKjHV2ZYD5+7nwKWnFq+bzMc+Yo+CBM0BPeAAAAAA4i9nshj5enaSXF+xWYXm1JMnValG1vfafgl5uLuodG6D+ccHqFx+kvm2DFODVNLeyr0/K1SNfbtW+TDPQvrhbhJ6f0EMR/i1glHB5oRm27/9F2r9Iykusvd4rWPIJbZ5aijKkioLay0I7Hw3k4y6gr29z+OpOactnUnRf6fafT/3OhP2LpY8mSoZduuRladCdTVNna3F4nfTTE1LyytrLPfylS/4m9b6eCxVwHsOQfnhEWvOO+XzcS9Lge5xbE1osJmZtACE8AAAA0Dol55Rq6d4s/bo3SxXVdp0XG6T+8UHqExsoHw9u8q3P+qQ8PfX1Nm1PLZQkdYvy1/MTuqtbVIA2H87X+qQ8rUvM1fqkPEdAf4TFInUK91O/+CD1jwtS/7hgxQafWQub4opqvfzjLn2wKkmGIYX6eui5K7vrkh6RzmuNY7dLaRvN0H3fL9LhNZL9mM/C6irFDpY6jJLaj5YiezVf2wxbtZS6Qdq3yLwgkLLeDHKPcPGQ4oaYdbUfJUV0J7xsbIm/SrMuk2SR7vhFiul7evtZ8br005/NyRInfy0lDGvUMluF3INmb+3tX5nPXb2k86dJXcdL3z1k/tuTzOeX/+vk7zgAGovdLn33gLR+lvn88n9K/W91aklo2QjhG0AIDwAAALQOxRXVWrk/R8v3ZmnZniwl5pTWu52L1aKuUX7mCO44M5iPCvBq5mpbluziCv31h12as/6wJMnf01UPje2sGwfFyaWeVi92u6F9WcVal5indUlmKJ9Uz+cd5ueh/nFBNZ9zsLqfQgubxbsz9eevtiq1oFySdE2/NvrzZV0V6O1+Bu/0NBWmHR3pvn+xVJZbe31wOzPY7jBaih8qefg1f431KcuTDiw16973i1R4uPZ638ijo+TbjWi+EftnK1uV9PYwKWunGcRd/s/T35dhmCPqt34ueYdIdy49d1qvlOaak1uufkeyV0mySH1ulEb9+ehktbZq6beZZg9ue7XkEy5d8ZrUeZwzK8e5xFYtzZ8mbf5EsljN1lF9/uDsqtDCEcI3gBAeAAAAaJnsdkPbUwu1rCZ035Ccpyrb0T9XXK0W9Y0L0vCOofLzdNP6pDytT8pTSn7dSTJjAr1q+p2bX12j/OsNn882Nruh2auT9PdjWs9c27+NHh7XRaG+Hqe0r6yiiprPOFfrkvK0LaWg1s9DkjzdrOrdJlD9482R8n3bBinAu3YLm9ySSj33zXbN25QqSYoN9tKMq3ppaMdmDIiryqXkFTUjyn+RMnfUXu/uJ7W70Ayw24+SghOar7bTZRjmpJ/7F5nvK/FXqfrYfwsWKaq3Gci3HyW1GSi5OuGCR2u24jWzbYp3iDRtneQdfGb7qyyV3hsrpW8x76i4dcHZ3U6oukJa8x9p2ctSeb65rP0o6aLnzAmH65O2WfrqLvPChyT1nSyNfbHlXAjD2clWJX11h7R9rnm3ysR/Sz0nObsqtAKE8A0ghAcAAABajszCci3fm61le7P0695s5ZRU1lrfNthbwzuFanjHMA1pHyI/z7o9ytMKyrQu0Qzk1yXlamdakWy/63fu4+6i89oGOUbKn9c2SL5nWQub9Um5enLedu1IM1vPdI/213NX9lC/uKBG2X95lU1bDheYI+UT87Q+OU/5pVV1tusY7qv+8eaEr3bD0Es/7FJuSaWsFunWCxL04MWd5O3exJ+9YUhZu48G1Em/SdXlx2xgkaLPOyagHiC5NE3/+2ZTVS4dWnX0QkPGttrr3X2lhOFHR8oHt3NOna1FYar0+gBzIt4rXpf63tw4+81Plv49QirNkXpea4Z9Z1sLIcMwW878/KyUn2QuC+8uXfyc1GHMiV9fVS798ry08g1JhhQUL01422y9BDS26gppzi3S7u8kq5t0zftmSyTgJBDCN4AQHgAAAHCeimqb1iXmadmeLC3dk6Vd6UW11vu4u2hI+1Bd2ClUwzuFKS7E55SPUVJRrU2H8h2tVTYm56u4ona/c6tF6hLpXxMWm61VYgJbZwubrKIKvfTDLn254Wjrmf83rov+MLBtk47+t9sNHcg+0sLGvAhyMLuk3m27RPrppat7qU9sYJPVo9Jc6cCSoy1mClNqr/eLqumdPlJqN/Ls7zddlG5+DvtrQvnSnNrrg+KPabkzTPLk7+NavrhV2valeQfBrQsadx6Ag8ulD66UDJs5ynvIvY23b2dLWmHePZCy3nzuFyWN/LPZ1uNUJ7RN/FWae49UkCzJIl1wnzTyccn11O7qAY6rqkz67GZp30Jzjo3rPpQ6jXV2VWhFCOEbQAgPAAAAp/vtX9Ku76Rr/if5Rzm7miZlGIb2Z5Vo2Z4sLdubpVUHclRedXRiSYtF6hEd4Bjt3jcu6KR7jJ8sm93Q7vQiR1uVdYn1t7CJCvA0A/maUL5LpJ9cG7mWxlRts+ujVUn6x8I9KqppPXNd/1g9PK6zQk6x9UxjyS6ucLQJWpeYq4zCCl03IFZ3X9he7q6N8FnaqsyRxHkHzUkecw/WPD5gjnzXMX/eunpKcecfnbQ0vOvZN+L4ZNntZguUI73kD62qO/nskGnSRc86r8aW5MASMyS3WKU7l5htfRrb6nekHx42j3HTV+bFodYse5/089PSrm/N524+0tD7zQsM7qd+MdWhvFD68VFp02zzeUQP8+6BiO5nXHKTKEiRNvxP2vG15OZttrYKbicFJRx97Btx7p6LWhJblfTxteZFSlcv6YZPWv+/QzQ7QvgGEMIDAADAqVI3Sf8ZKRl2acAd0mV/b5LD2O2G1ibm6tstaSosr5K3u6t83F3k7VHz3d3FXOZR+/uxy73cXGQ5jaCgoLRKv+3P1rI9WVq+N7tO4B3u56FhHcM0vFOohnYIdUpgnF5Q7mhfsz4pT9tTC+ttYdOnbaDOb29eIOge7S9rC+krvzYxV0/O2+a4k6BHjNl6pm/bxmk941SVpVJeohmsHwnYj4Tt+YfM0cPHE9a1psXMSCnuAsmtdd7d0OQqisxRxvsWmcF87gFz+e2LpDb9nVubs1VXSm9fIGXvkQbeKV36ctMcxzCkr+81w2WvIDPsD4pvmmM1pZJsaclL0vr3zQs7FqvUd4o04jHJL6LxjrPzW+mb+6TSbMnFXRr1hHnh6FRH1zcFw5AOLpXWvivt+r7hc5RkhvNB8TXhfHztoD4gVnI5u1qltVg/PCqtfsu8YHTjHCn+AmdXhFaIEL4BhPAAAABwGrtd+u9FUso687mLh3T/FskvstEOkZhdoq82HNZXG1N0OK/uaO9TYbFI3m4u8jo2rK8J8r3dXOTt4SIfd1fH98pqu1bsz9amQ/k6Ns92d7VqYHywOdq9U5g6R/idVrjflEorzRY262taq2xIznOMLj8i2MddQzuY72F4x1CF+3s2e52ZReV66ftd+mqj2WolwMtN/29sZ93QxK1nGl1pbj2j2WsC9+L0hl/r6nU0wApOOPo4vKvkH90c1Z995t4jbf7YbNMzeZ6zq3GuX/8p/fyM5BNmTsbqFdh0x6oql96/RErdYI7wvu2nMxs13pyqyqRVb0rL/ylV1rQV6zROGvOsFN6laY5ZnCV983/S7u/N523Pl656y3kXL8rypc2fSGv/K+XsPbo87gKp31TzIuCR89qRc1zBIfMi/PFYXaXAtrVHzh95HBTPhcXGsuljad495uPrZktdL3duPWi1COEbQAgPAAAAp9nwgTR/ujlBYlCClLFVOn+6dPFfzmi3BaVV+nZrqr7akKL1SXmO5b4errqsZ5Q6RviqtNKmkspqlVbYVFppU2lltUoqbSqtML+XHfO8tMqmM/0roUO4r4bXjHYflBAiL/cWMFrxFNjthvZkFmntwVwt25utlftz6vSV7xLpVxPIh6l/fJA83ZruPVbb7PpgZZL+uXCPiiqqZbFI1w+I1f8b20XBPu5NdtwzYhjS4bXmiOLfB1Hl+Q2/1jOgbguHoGNaOTRmf26Ydx681s8cyTz1Oyl+qLMrco6Cw+ZkrFWl5kSgfW5ohmOmmBO1lmRK3a+SJr3fsluV2O3Sls+kX/4iFZrzUCiqj/nfsYRhTX98w5A2fmS2qKksNv97Om6GdN7Nzfe5pW02R71v/cL8XZHMOnpfL/W/TYrodvzXVleaQXytc+KRu30SJVtFw8f2i645JybUPT825QWjs0nKeum9S8zP+sJHpZGPObsitGKE8A0ghAcAAIBTlOaaIVdZrnTxC1JYZ2n2JPM26Ae2Sd7Bp7S7Kptdy/Zk6asNKVq4M0OV1ebIOqtFGtYxTBP7xujibpGnFX7b7YbKq2vC+oqa8L6y2gzyK2oH+McG+jabob5xgRrWMUzRrXSS0+Opstm1MTnf0dt+a0pBrQsVnm5WDUoI0fBOYbqwU6jah/k22mj/1Qdy9PT87Y7WM73aBOi5K3s07SSnZ8pul766Q9r2xfG38Y2sp19yTbB0iv8e0Ai+fUBa957Udoh0yw8tOwhuKp9PNnt5N/dnkLxKmnW5ZK+SxjwjDX2geY57qg4sMSddTd9qPg+IlUY/JfWY1PwXxvISzTs4kleYzztdIl3xquQb3jTHqyo3fzfW/se8uHhEeDdpwG1Sr+skD78zO4bdLhWl1p7rwhHWJ0oVhQ2/3iv4mHC+Xe3HvuHn5r/p3yvOlN650PycO19qjoLnoi7OACF8AwjhAQAA4BTf3G/2zA3rKt293Lzl/N8XmiPqhj8sjfrzCXdhGIa2pxbqqw0pmr85RdnFlY51nSP8dHW/GE3oE+OUNinnmtySSv26z+x7v2xPljKLao9ejA7wrOl7H6YLOoQo0PvUR6tnFpbrxe93at6mVElSoLebHh7bRdcNiG3ZrWcMQ/rhEWnNO5LVzRxVXV9bhdbSduNcUZAivXqeOTr0pi+lDmOcXVHz2rdI+miiZHGR7lomRfZo3uOve8+8ECKLdOMXUscW9Pln7JAWPiXtW2g+9/CXhv1JGnS35ObE/97YbdLKN6RfnpdslZJ3iDT+X1LX8Y13jLxEad370sYPpdIcc5nVTep2hTTgdvOCTXOE24ZhXsw/9o6iY0fSl2Q1/Ho3n2Pad/3ufBwQ2zJ66ze16krpgyuk5JVSaCdzDgxPckGcGUL4BhDCAwAAoNmlrJf+M1qSIU39/ujkXzvmS5/fLHkESA9sNVtw1COzsFzzNqXoy/Up2p1R5Fge6uuuK3rH6Op+MeoW5d/i+qyfKwzD0O6MIi3fk61le7O0+mCu484Eybw7oVebQEcv+T6xgXJ1Of7IuyqbXf9bkaiZP+9VsaP1TFs9PLazglpq65ljLf+HtOg58/HV/5V6TnJuPTh5Pz4urXpDij5PumPxuTNytrpCenOIlLtfGvxHs72JM8z/P2nD/8z/FtyxWApp75w6jihKlxa/aAbQht28eDzgdvPCsU+Ic2s7VsZ26au7zBZvktT7D9IlLx33v6knZLeZF2XWvivt/UlSTWzmHyP1v0U6b3LjTjrbGCqKjk5oXWskfaLZ/kYNRH9WN7MP/e9HzwcnSIFxzr3Q0pi+fVBa91/zItIdv0ihHZ1dEc4ChPANIIQHAABAs7LbpHdHS6kbzdvVJ/77mHV26a0hUtYu85b+YX9yrCqrtOmnHen6akOKlu/Nckx06u5q1UXdInR13xgN6xgmtwbCXDhHWaVNaxJzHaPk92YW11rv5+mqC9qbE7wO6xiq2GBvx7pVB3L09NfbHRdbete0nundklvPHGvjR9LX95qPx70kDb7HufXg1BRnSf/qLVWVnFuTFS572exx7hthTsbqrNGx1RVmW5rDa8y7pm5feOYtTk6V3SalbpJ2fSOt/rf5uyBJXa8wW+U4+8LA8VRXSEtmSL/9y7xgEBArTXjr1PrUl+SYFxzWvSflJx1d3m6kNPAOqeNYycW18WtvatUVUn5y3bk5cg+Y79NW2cCLLebFhyPtwnpcLbUb0VyVN571s6Rv7pNkkf7wmdRprLMrwlmCEL4BhPAAAABoVkdaDHj4m+HO70fPbfnc7J3tHSL7/23R2tQKfbUhRd9tTas1EWj/uCBN7NtGl/WMUoC3WzO/CZyJ1Pwy/bo3W0v3ZunXvdkqKKuqtb5dqI+GdwpTbkml5m82W88EebvpkXFddG3/WFlbcuuZY+3+Qfr0RsmwSRfcL130rLMrwulY9Jx5N0N4N+nu387+fsl5SdIbg6TqMmniu1Kva5xbT1G62bO6OF3qcrl07YdN/zMoSJH2/yLtX2T2fS87OsG32gwwJ11tO7hpa2gsyaukuXeZo8Ilacg0adSTxx/NbRjm3Wpr35W2fXV0YlTPAKnPTVL/W6XQDs1SulPYbVJhaj2TxNYE9ZW1LyLLYpWufEPq8wfn1Hs6kldLsy4z51wY9YQ0/P85uyKcRQjhG0AIDwAAgGZTkiO91lcqz5fG/VUafHfdbWzVqvpXX7kVJulfbrfqn0VH+wC3CfLSxL5tNPG8GMWH0j/7bGCzG9pyOF/L95r95DceypfNfvRPMotF+sPAtnro4lbSeuaI5NVmr93qcrMVxIQ3z51WJmebsjxpZm+pouDcaCf06Y3Srm+l+GHSlG9axu/tobXSrEvNEcojn5AubOTQsKpMSvpN2veLGb5n7ay93iNAajdc6nmt2V+9JXwmp6KiWPrpz+boZ0kK62LehRbV++g2laXmxNFr3zXnZjkiqrc04A5zxLe7t85phiGVZB8N6Pf8KG2fa667fKbZmqelK0wz598pzjDv5rj2g9b3+4wWjRC+AYTwAAAAaDZfTzNvbY/oKd25pNZt7AWlVfp2a6q+2pCiDoe/0l/d/qN0I0iX6HVd3LOtJvaN0YD44NYzChqnpaCsSiv3Z2vpnmyVVFTr9mEJ6tUm0NllnZrMXdJ7Y82LTR3HStfPlly4W6NVW/o3afELUnB76d41rbMFx8nY85P08TVmr/O7f5XCuzq7oqM2fCjNnybJIt3widT5ktPfl2FImTvNke77FklJK46O+JbM0c0x/aT2o6T2o83HZ8PPfM8C87/DJZnmz3jEo2YQu36WtGm2VF5gbufiYYbuA26XYvoS0h6P3S79+Ii0pqat3vEGF7QU1RXmCPjDa807e25bKHn4OrsqnGUI4RtACA8AAIBmcWit9N+aUe23LpARO0gHsku0fE+Wlu3N1q/7sh2Td3pYqrXC+08KsWWpctwrch98mxMLh0PmLunL280Rwc3BL0q69OXaozVbuoLD0n8vlgpTzLYVk+czevRsUFEkzewlleWarSfOu8nZFTW+qnLpzUFm25Lzp5stV1qa7x6S1v7HbGd2+yIprNPJv7YkRzqwuKbNzC9SUVrt9f4xZujeYbSUcKHkHdy4tbcUJTnSt/dLO+fXXRcUL/W/zfz9Plvff2MzDGnhU9KKV83nY56Vht7v1JLqZRjS/OnmQAjPAHMgRHA7Z1eFsxAhfAMI4QEAANDk7Dbp3yOk9C06HHeV3gj4k5btyVJKflmtzTpH+OnqfjGa0CdG4Tv/J/3wsBTYVpq+gZHEzmarlt4dVbtNQXNw85auelvqdmXzHvd0lOZK719iTiwc2km6dQFB1tnkt1elhU9KAW2l6eskVw9nV9S4lrxkTuTpFy1NW9P8E6CeDFuV9MGVZuuYkI7SHYvMQPF42x5ea45037/InFxVx8Q9rl5S/AXmSPcOo81/s+fKiG/DkLZ8Jn3//8wLTJ3GmaPe2486++c8aAqGIS1+UVr2N/P5iMelCx9uWb9Pa9+VvvuTeZfHjXOkDmNO/BrgNBDCN4AQHgAAAE3FZje0+XC+Cpa8qZEH/qYCw0ejKv6uHJmhibuLVQMSgjSsY5hGdA5T5wg/WY780VpVJs3sKZVkSRPelvrc4MR3Ai1/RVr0rBl4XTdbcvNq2uMZdjMU3L/IfN4SQ41jVZZKH06QDq02Q8zbfpICY51dFRpTZan06nnmBKGX/l0aeIezK2o8uQfNyVhtFdKk96UeE51d0fEVZ5k9rQtTzPD4+k+OBse5B8xR7vt+kQ4ukyqLar82vLvUoabFTNshx5+c9FxRmmv22feLdHYlZ4dlf5d+ed58PPQBafTTLeO/WUkrpP+Nl+zV0kXPSRfc5+yKcBYjhG8AITwAAAAaU2p+mZbvzdKyPWaLGdeybC32+JP8LaV6ouoWrQyeoOGdwjS8Y5gGtQuWt3sDfXZ/nSn9/LQ54vHe1ZLVpdneB46RtVt6e6gZ1jTnBRFbtTnyeNWb5vPuE81WIC2tvYutWvrsRnOSPs8AcwR8S+qljcaz5j/S9w9JvpHSfZua/mJUc/n4OvP3t90I6eZ5LSM4bEjqRum9cebEx30nSy7u5oj3vIO1t/MOkdqNNEe6txsp+Uc5p16cO1a+IS143Hw86B5p3Azn/nsqOGzeiViSZfb5v/q/Lf/fN1o1QvgGEMIDAADgTJRV2rT6YI6W7cnWsr1Z2pdZXGv9vzzf0ZVaqlz/riqdslBtQk6hxUFFkfTPHuYEl9fMkrpf1ai14yTYbeYko4fX/n/27js8irJt4/Bv0wtJIAQSAiH03luCAkpRUEGRIiBNRLGADX1tn4qor9griIrYQLo0FVCaIErvvZNQUgiB9Lq73x9DMS8tgexOEq7zOHI4OzvlXoRJcs0z9wM1bjMeY3f2L/AbfzAeo7flQIUmxqSM/qHOreFy7HZjssjNk8HNywgww1ubXZU4Sm4WfN4cko4aPdNvesLsiq7fngUwrR+4uMPjqyGoptkV5c/WaTDnkbzrXNwgLOJCb/eQxmqvIs53rvULQIsH4c4Pzfl7mJNh3KyK2QLBDY0ntIraTWwpcQqSM5eA6a5FRERERBzHbrezNy6FlfuM0e7rjiSen1AVwMUCTcJK065WObr4H6HOghUABN43lsCCBPBg9CSOfMzoU7zyA6jXXSO4nG3NeCOA9/SHbp+a8+fffDCUrQHTBxhhwtftoe8UqNTc+bX8r2VvGgG8xcVo46EAvmRz84RbXjBuvKz6GJo/UDR7p+dXdjosfMFYvumJ4hPAAzTuC2eOws45xr+76h2hShvw0uBCMVnLh8DV05gIdcO3xs27uz937tN8djv8+ozxPdM7EPr+pABeihyNhBcRERER+R+JadnnW8z8tf8k8SlZed6vWNqbdrWCaFuzHDdXDyLAx91o0fH1LRC3w2gXcPfn13by9ESjN3x2KvSbBrXvKIRPJPly6iCMv8lo+dDtUyNwNNPpIzClL5zcbYw6v2ccNOxlXj1rvzImDwbo9plxs0BKPmsujGtp9B/v8Aq0+4/ZFV27ZW/ByvfBv5IxGauHr9kViZQc22bAnEfBboUGvYxJxp01yfya8bDoRbC4wsDZRqspESfQSHgRERERkQI6kpDGz5uO8efek+w4kcS/h6p4u7sSWS2QtjXL0a5WOaqX870woeo56ycYAbx3Gej4+rUX4hNojCr7+xNjNHytLhoN7ww2mzGKLzcTqt4CzYpAwFymivE4/eyHjf7VPw+F+N3Q/v+c/6j/jp8vjCDu8IoC+BuJq5sxUfDsh+Dvz43rk3cZs6squFMH4e9PjeUuYxTAixS2RvcZT8/MehB2zDImPu75Lbh5OPa8h1bA7/9nLN/+lgJ4KbI0El5EREREblhWm51le+KZtCaKlftO5nmvbgV/2tUMol2tcrSoUgZPtys8Vp0SC5+3gOwU6PoJtBhyfYWlxhuj4XMzjZ7b1dtf3/Hk6s5NQOnua/SJLhNudkUX2Kyw9A3jxgxAna5w71fgWco55z/0J0zuZfSob/kw3Pm+bgzdaGw2+PJmiN8FbZ+Djq+aXVHB2O0wuSccXAo1OkH/Wfo7LOIoexfCjEHG5OY1O8N9P4K7l2POdTrKmIg1IxEa9TVG3+vftjiRJma9AoXwIiIiUpJl59pIz851yrncXV3w9SyeD1YmpGYxff1RpqyN5viZDMD4ne2WWuXo1iiUtjWDKO9fgF8Yf34Yts+Ais1h6JLCGaW88AVY+yVUaQsP/Hr9x5PLOx0FX7SGnDS48wNo9bDZFV3a1mnGaH1rtjHpXL8pULqyY895Ygt839W4wVSvO/T61rl9fqXo2P2LMU+Buy88vQ18g8yuKP92zYcZA8HVAx5fA2Wrm12RSMl2YClMu98YTFDt7Lwmhd2jPTsdJt4OcduNScwfXATu3oV7DpGrUAh/BQrhRUREpCTKyLby7d+H+fLPg6RkOSeEB2hcKYAuDSrQpUEIVYOK9qP9drudjVGnmbQmigXbY8ixGj8Gl/Zxp0+LMO6PqEx42Wv4DEdWwfd3ARZ4eBlUbFY4BScdh08bG6OPH/wdKkcWznElL7sdJnU3RnuH3wyDf3V+q5eCOLoOpvWHtHjwLQd9foLKEY45V+IhI+BIOwlV2xmjh908HXMuKfrsdmPEacwWaD0COv/X7IryJzsNxraC5GPQ7nno8H9mVyRyYzj8F0zpY9zgDr8Z7p9eeBM72+1Gi7YdP4NPEDyyAgIqFc6xRQpAIfwVKIQXERGRksRqszNn83E+/GMvMUmZptZSJ8SPLg1C6NIghNrBfhf3TDdJWlYuc7ccZ9LqKPbEppxf3ySsNAMjw7mrUQW83K9xZK81B75sa0yc2eJB6PpxIVV91vwnYdMPUOM2GDCrcI8tho0/wC9Pgps3PPZ38Rghe+YoTOsHsduNkb1dP4Gm/Qv3HKnxMPE2Y3LYkIbwwALw0u9PhtuRJAAAdrhJREFUN7z9S+CnnsZEwU9uBv9Qsyu6uiWvw6qPjadGHl9b+KNxReTyotfCT70gKxkqtTRu5nqXvv7j/v0ZLH4VXNxg0HyocvP1H1PkGiiEvwKF8CIiIlJSrNqfwH8X7GZ3TDIAFUt781znWtzVMBQXJ+TfiWnZ/LErjt93xvLPwVNYbRd+rKwa5Evn+iHc0SCERpUCTAnkD8SnMGl1FD9vOk7q2acDvNxduKdxRQZEhtOwUsD1n+Sfz+GPV8CnLIzYYEyqWpgSD8HnzcFug2F/QmjTwj3+jS7pOHwRaYQDt/8XbhphdkX5l50Gcx4xWoQA3PQEdBpdOK1iMpONpztit0HpcBi6GPyCr/+4UvzZ7fBtFzi6BloMha4fmV3RlZ3cB+NvMp4o6jsV6txpdkUiN57jm2DSvZB5xmgbM3DO9f28dGCpEezbbUW7hZzcEBTCX4FCeBERESnu9sam8PaC3aw4O5Gon6cbwzvU4IGbqlz7iO7rdCY9myW741m0I4aV+xPIzrWdfy80wIvODULoUj+EFlUCcXXgHYIcq43Fu+KYtDqK1YdOnV9fNciXAZHh9GpWiQAf98I5WfIJGNsSslPh7rHQbGDhHPd/zR4G26ZD3W7QZ7JjznEjstthyn2w/w9jdN6Dvxe/Xuc2G/w5Bla+Z7yu2Rl6fnN9I9Zzs+Cn3nB4hfGI/9A/isfTAeI851pwubjDExugTBWzK7q0f7eaqtXFaIUhIuaI3Q4/3gPpp6B8fRg0D0qVK/hxEg/B1+2NQL/pAOPnryLy5KXcmBTCX4FCeBERESmu4pIz+eiPfczceBSbHdxcLAyIDOfJjjUJ9PUwu7zzUrNyWb4nnkU7Y1m+J570bOv594JKeXBbPWOEfOvqZXF3LZze27FJmUxdF83UddHEp2QB4GKBTnWDGdg6nJurB+FS2OH/zCGwczZUanU2wHVQH/H4PfDF2Z7fj6+B8nUdc54bzZapMPdRo53Lo6ugXG2zK7p2O36GuY8bE+CVqwP9pkFg1YIfx2YzeuzunA0epYwJgfX0hVzKj/cY4XaTAdB9nNnVXNqO2TBriNE65/E11/ZvQkQKT/we+PFuSI2DoFpGGxn/CvnfPyvVaJMWvwsqtoAHfgN3L8fVK5IPCuGvQCG8iIiIFDdpWbl8vfIQX688REaOEWjf0SCE57vUKfKToWbmWPlrfwILd8SwZFccyZkXJo3193KjU71gutQPoV2tcgUexW+321l98BST1kTxx6648+1wgkp50q9VGP1aVSa0tHehfp7zDv1phFAWFxi2Aio0csx5zpk+EHbPh4b3Qc8Jjj3XjSAlFsa1gswk6PgatH3W7Iqu3/FNMO1+SIkB70C470eo2jb/+9vtsPAFWPeVMcK5/wyo3sFx9UrxdmwDfNPRuAYOXwdBNc2uKK/4PfBDV2NS4VtfhltfMLsiEQE4dRB+6AbJxyGwmhHElw67+n52O8wYZPwsVCrYaNFXHOakkBJPIfwVKIQXERGR4iLXamPmxmN8tHgfJ8+O7m5auTSv3FWX5uGF3HvcCbJzbaw5dIqFO2JZvCuWhNTs8+/5eLjSvnZ5ujQIoX2d8pTydLvscZIzc5i98RiT1kRx8GTa+fWtqgYyMDKczvVD8HBz0Kh0gNxs+PJmSNgHrR6BO99z3LnOidkKX7UzAq8RG9Qe5HrY7TB9AOz51ehN+9BScL3837diJTnGCOJPbDImq7vzA2gxJH/7/vUhLH3DWO45ERr2clydUjJM6Qv7FkKDntDrW7OruSB2O/zYHdITILghPLREo2VFipLTR4wg/kw0BFSGwfOv/qTKyg9g2ZvGTeIHfoPKEU4pVeRqFMJfgUJ4ERERKersdjt/7j3J2wt2sz8+FYDwsj680KUOdzQIMWWS08JmtdnZcCSRRTtj+X1HLCeSMs+/5+HmQruaQXSuH8Jt9YIp7WO02tl1IplJa6KYu/n4+ScCfD1c6dGsEgMiw6kd4uec4ld9DEteB99yRiDuXdo55/2pt9G/vNkguPtz55yzJNrxM8x60PhFftifENLA7IoKV04GzBtufE4wbhR1fvvKNxo2Tzb2AejyDkQ+5vg6pfiL2QZfnX3a4tG/i8a/pcKeAFJEHCPpGPxwNyQeBL9QGPwLBNW49Lb7focpfQA7dPsUmj/gzEpFrkgh/BUohBcREZGibMfxJN5esJt/DhqTipb2cefJDjUZEBnu2NHdJrLb7Ww7lsTCHbEs2hHDkVPp599zdbHQulpZMnKsbIw6fX59reBSDIwMp3vTivh5FdJEq/lx5qjRxiQnHbp/CU36Oe/c0Wvh29uN8PipLRBQyXnnzo+UONj7G9TrXnRDr7QE4/9f+im49SW49UWzK3IMux3++gCWvWW8rtYeen8H3mUu3nbvImP0vN0KNz8Nt412aqlSzM18AHbOgdp3Qb8p5tZydB1M7glZycZcHf1nOu8mqYgUXEqs0drv5B7wLW+MiP/feW8S9sOEDsa/6xYPQtePzalV5DIKkjOb/pvcuHHjqFKlCl5eXkRERLBu3borbn/mzBmGDx9OhQoV8PT0pFatWixYsMBJ1YqIiIg4xvEzGYycvoVuY1fxz8FTeLi68Ei7aqz4T3sebFO1xAbwABaLhcZhpXnxjjosf+5WFj3dlqc71aROiB9Wm51VBxLYGHUaNxcLXRtVYPqwSH5/uh0DW1dxbgAP8PvLRgBfuTU07uvcc1eOgCptwZYDf3/m3HNfzekjMLET/PoMTGgP8bvNrujSFvzHCOCDG0CbkWZX4zgWC7T7D/SZDO4+cGg5fNMJEg7k3S56rRGi2q3Q+H7o9LoZ1UpxdutLRpusvb/B8Y3m1XFkldGCJisZwm+GgbMVwIsUdX4hRmuZ4IaQFg/f32U8YXNOZrJxkzgrGcIiocu75tUqUghMHQk/ffp0Bg0axJdffklERASffPIJM2fOZO/evZQvX/6i7bOzs7n55pspX748L7/8MhUrViQqKorSpUvTuHHjfJ1TI+FFRESkKEnOzGH8nweZuOow2bk2AO5pEspzt9cmLNDH5OrMdzghjcW7YrFg4Z6moZT3M7Gv74ElxihLiys8+hcE13d+DecmhHXzgqe3Q6mLf2Z2uoQDRm/XlBMX1nn4Qa+JUKuzeXX9r92/GL3gLa7w8FIIbWp2Rc4Rsw2m9oPkY+AVAL2/NyZcjd8D33Y22nbU7Ax9fwJXJ9/UkpJhzqOwdSpU72iE3852YClM6w+5GcZTH32ngIe+f4oUG+mJMLkHnNhsfJ8aMMf4Hj29P+xdYLSrGfYn+AWbXanIRYpNO5qIiAhatmzJ2LFjAbDZbISFhfHEE0/w4osXPxr65Zdf8v7777Nnzx7c3a/tB0SF8CIiIlIU5FhtTFkbzadL95OYZkxQGlE1kP+7qy6NKpU2tzi5WG4WfNHa6F0aORy6vG1OHXY7TLwNjq2Hm5+C294wp45z4ncbPV3T4iGottHyZMHzELUKsBj13fSEMTLbTOmJMC7CqLPNSOg0ytx6nC013rgBcXStcRPi1pdg43eQfBwqtYRB8xVayrVLPAxjW4AtF4YshPCbnHfuvYtgxkCwZhs3k+77UZOwihRHmUnG3DdH1xo38uvcCdumg6uncV2p1NzsCkUuqViE8NnZ2fj4+DBr1iy6d+9+fv3gwYM5c+YM8+bNu2ifO++8k8DAQHx8fJg3bx7lypXj/vvv54UXXsDV1fWS58nKyiIrK+v86+TkZMLCwhTCi4iIiCnsdju/74zj3UV7OJyQBkD1cr68dEddOtYtf32TrmanGSMSM05DYFUIrAZlzv43sCp4Omni0pJo5ftGf+1SITBiPXiZ+HPk3kUwtQ94lDJGw5vVfz1mG0zqfqG9y8C5UKoc5GbDgudg0w/Gdk36Gz1c3TzNqRMujNQNqg2PrLwxQ7rcLPjlKePP4ZygWvDg70W3h78UH788bdzYqXwTDFngnBtvu+YZkyzbcqFuN+j5Lbh5OP68IuIYWakwtS8c+evCunvGQdMB5tUkchUFCeHdnFTTRRISErBarQQH532cJDg4mD179lxyn0OHDrFs2TL69+/PggULOHDgAI8//jg5OTmMGnXp0Sxjxoxh9GhNLiQiIiLm2xx9mrcX7Gb9EWOC0aBSHjzdqRZ9W4bh5loIPd///gx2zzeW//0LzDk+QRcC+X+H84HVwKes+aOVi6rTUbDyQ2O583/NDeDBaPES3BDitsPar6D9S86v4fhGmHSvMXKtQhMYOOdCkOvmAd0+Ndr1LHoRtvwEpw5An5+MkN7Z9v1hBM8WF+OX+RsxgAfjJkj38VC+Hix+DfxDYcBsBfBSONr9B7ZMgeh/jDkIqndw7Pm2zYQ5jxjzGTToBfd+Ba6mxRsiUhg8S8H9M4wntw4uhYjHFMBLiWLaSPgTJ05QsWJF/vnnH1q3bn1+/fPPP8+KFStYu3btRfvUqlWLzMxMDh8+fH7k+0cffcT7779PTEzMJc+jkfAiIiLiDLlWG2nZVjKyraRl55KeZfz33OtFO2L5dZvx84qXuwsPt63GI7dUp5RnIYUGyTHweTNj0tA2zxiP7yYegtOHjVYB6QlX3t/DDwKrXDx6vkxV8K8ILiV3Ytirmnq/MelglbYw+JeicbNi5xxjQk2vAHh6h3NvDESvgcm9IDsFKrWCAbOMOi7lwFKYOQSykiAgDPpNhZCGzqs1MwnGRRr96luPMG6iiHFjybuM+TeUpGRZ9BKs+QJCm8HDyxx3rdw8GeaNAOzGkzZ3fw4ul34yXkSKIZvNaP9XtkbR+JlL5AqKxUj4oKAgXF1diYuLy7M+Li6OkJCQS+5ToUIF3N3d87SeqVu3LrGxsWRnZ+PhcfGjZ56ennh6mvjoq4iIiBRZJ1OyiE/JJD3bSlrWucDcSnp2LmlZxn/TL/E6LdtKeta/3su2np9U9UosFujVrBLP3l6bkIBCHo27/C0jgK/UCjqOuviXlszks4H8ISOUPxfOJx42+kJnp0DsduPrf7l6Qpnwi0fPl6sNpSsX7ucoavb9bgTwLm5w5wdF55fBuncbrUQS9sGGicaNF2c4/BdM6QM5aRDeBu6fduU2RzU6GpOgTulj/EI9sTP0+BrqdnVOvX+8agTwgdWg/f8555zFQZlwsyuQkqjNM7DxezixCfYuNHo6F7b138BvzxrLLR6EOz+8sW8Si5RELi4QVNPsKkQKnWkhvIeHB82bN2fp0qXne8LbbDaWLl3KiBEjLrnPzTffzJQpU7DZbLic/Ua7b98+KlSocMkAXkRERORS7HY7Y5cd4OMl+7AV8jOBbi4WfD3d8PVwxdvDFV9PN3w8XKkQ4M2wdtWoW8EBI09jd8Dmn4zlzv+9dFDs5Q8VGhtf/ysnE85EnQ3l/zV6PvEQnIkGa5YR9ibsu3jf9q/ALf8p3M9TVORkwMLnjeXIx6F8HXPr+TcXV2OC0bmPwj9jodUjjp9Y88ASmNYfcjOhWnvoOyV/5wyqaQTxMx+AQ3/C9P7Q4VVo+6xjb2ocXH6hL/094zTxqIijlSoPEY/Cqo9g+X+hVpfCDchXj4PfXzaWIx6DLmOKzo1RERGRqzC1adrIkSMZPHgwLVq0oFWrVnzyySekpaUxZMgQAAYNGkTFihUZM2YMAI899hhjx47lqaee4oknnmD//v28/fbbPPnkk2Z+DBERESlGcqw2Xp27g2nrjwJQzs8TXw9XfDzc8PW88F9v93+99nDF59/BuocbPp7Gf309XfE+t42HGx5uTh6RZ7fDH68Adqh/L4S1Kvgx3L2MUe3lal/8njUXko/9a/T8oQsj6ON3GiPwfcsaIxJLmr8/hdNHwC8UbnnB7Gou1rAX/DnGuIGy6UeIfNRx59qzAGYOBmu2Eaz1/qFgvdW9y0D/n40Abd1XsOxNiN8N94wFd+/CrzcrFeaf/R2h1TAIv6nwzyEiF7vpCWO0etwO2DUHGvQsnOP+9SEsfcNYbvPMpZ/4EhERKcJMDeH79OnDyZMnee2114iNjaVJkyYsWrTo/GSt0dHR50e8A4SFhfH777/zzDPP0KhRIypWrMhTTz3FCy8UwV+KREREpMhJzcrl8Z82sXLfSVwsMPru+gxsXcXssq7PgaXGJHiuHtDp9cI/vqsblKlifNE+73vL/gsr3zNaA/iWg7rdCv/8Zkk8BH99ZCx3eduYLKyocXU3wqhfnzZuGLQYYky+Wdh2zoWfh4It12iD03OiMflqQbm6wZ3vGU8ULPgP7Jhl3NjpOwX8Lt2O8poteR2Soo12SR1HFe6xReTyfAKN+Rf+fBuWj4G691zfhKl2u3GzccW7xutbX4ZbnlcALyIixY5pE7OapSAN80VERKTkiEvOZMh369kVk4y3uyuf92tKp3rBZpd1fay58GUbOLnbnEkn7Xb45Smj5YerJwycA1Vudm4NjmC3w5T7YP8fUO1WGDi36AY+uVnwaROj73nXT4wgvjBtmwFzHgG7DRr2hu5fXl+gds7hv2DGQMg4bTxp0G8KhDa9/uMCHPkbvj/bi3rQPOP/oYg4T2YyfNoYMhLhni+gaf9rO47dDktGGTcZwbjR7Kz5L0RERPKhIDmzZjARERGREm9vbAr3jvubXTHJBJXyYNqwyOIfwANsmWwE8N5loN1zzj+/xQJ3fQR1uhp946f2M/rTF3d7FxoBvIt70ZqM9VLcPOHms21XVn1s3JgpLJt+hNnDjAC+yQC496vCCeABqraFh5dBuTrGDYRv74Ads6//uNnpMP/s/FLNH1AAL2IGL39o87SxvOIdyM0u+DHsdlj04oUAvss7CuBFRKRYK3AIX6VKFd544w2io6MdUY+IiIgUUcX14bl/DiTQa/w/nEjKpFo5X+Y8fjONw0qbXdb1y0ox2sGA0a/cu4w5dbi6Qc9voPJNkJUEk3vC6ShzaikM2emw8Gyrw5ueMCYVLeqaDQafIKM3/I5ZhXPMdRNg/hOAHVoMhbs/NyaDLUyB1WDoYqh5O+RmwKwhsPxtsNmu/ZjL/2u0EvKvCLe9UXi1ikjBtHwYSgUbk3tvnlSwfW02o83W2i+N110/hsjHCr1EERERZypwCP/0008ze/ZsqlWrxm233ca0adPIyspyRG0iIiJSRIz/8yCNR//B2wt2k5FtNbucfJu96RiDv1tHSlYuLauUYfZjNxEW6GN2WYXj788gLd4IMlsMNbcWd2+jnUj5epAaC5N7QNopc2u6Vqs+MnqJB4SZ83TBtfDwgdbDjeW/Pry+EBvgn7Gw4OxnjxwOd30ILg56gNbLH/pNM9opgdH3eeZgyE4r+LGOrofV44zlbp+CV0Dh1SkiBePhA23PXkdWvg85Gfnbz5oL8x6Hjd+DxQW6jy+ZE3+LiMgN55pC+C1btrBu3Trq1q3LE088QYUKFRgxYgSbNm1yRI0iIiJiom9XHebdRXtIzszl65WH6PLpSv45kGB2WVdkt9v5fOl+Rs7YSo7VTtdGFZg0NILSPtcwmWRRlHQc/vncWO40+tomySxs3mVgwM9GeH3qAEzpDVmpZldVMMc3/av1wRjw8DW3noJo+ZAROifsg93zr/04K9+HP/7PWG77rDHPgKPb8bi4Gue5Z5zRAmj3fPi2MyQdy/8xcjKN4A47NL4fat7msHJFJJ+aDza+J6TEwIZvr769NQdmPwxbp4LFFXpMgCb3O75OERERJ7jmIS3NmjXjs88+48SJE4waNYpvvvmGli1b0qRJE7799tti+8i6iIiIXDBj/VHe+HUXAL2bV6JCgBdRp9K5/5u1vDBrG0kZOSZXeLEcq42XZm/nw8X7AHjklmp81rcpXu6F3ErDTMveMtp3VG4NdbuZXc0F/qEwYLYRyB/fCDMGGaFKcbBzDnx3J1izocZtRp/74sTLHyIeNZb/+sDop1wQdrvx92rZW8br9v8HHV9zbj/8pgPggV+N1jqx2+Hr9sbo9vxY8a5xA6JUsPMnKBaRS3PzhFueN5b/+ujKN2Zzs2DmA7BztnEz7r4foGEvp5QpIiLiDNccwufk5DBjxgzuvvtunn32WVq0aME333xDz549efnll+nf/xpnQBcREZEi4ddtJ3hx9jYAhrWrxnu9GvHHM+0YEFkZgOkbjtLpoxUs2hFjZpl5pGblMvSHDUxbfxQXC7x5T31euqMuLi5FeGLNgorZaowSBLjdCaOUC6pcLeg/C9x94OBSmDf8+tujOJLdDn++Y4Q/uRlQoxP0mlj0/lzzI+JRcPc1Auz9f+R/P7sdFr9qjIIHo5f6ueDM2SpHwrDlENzAaLf0/V2wddqV9zmx+cITDF0/Bp9Ax9cpIvnTuJ/RNi094UKP9/+VkwHT+sOeX8HVE/r+VLRuMIuIiBQCi72AQ9Y3bdrEd999x9SpU3FxcWHQoEE89NBD1KlT5/w2O3bsoGXLlmRk5LPvmxMlJycTEBBAUlIS/v7+ZpcjIiJSJC3fE8/DP24g12anX6vKvH1vAyz/CiXXHU7kxZ+3cSjB6Nt8R4MQRt9Tn/J+XmaVTFxyJkO+W8+umGS83V35vF9TOtULNq0eh7Db4ce74fBKaNDLCIuLqv2LYUofsFuNCU5vf8vsii6WnW60MNk5x3jdeoQRQBf2BKTO9Mer8M9nUKmlMenp1W4m2Gyw6AVY97Xx+o73IOIRx9d5NVmpMOcRI5QDuPlp6Djq4t70udnw9a0QvxMa9IRe+Wh5ISLOtW2G0WbGKwCe2gbepS+8l50GU/vB4RXg5g39pkL19qaVKiIiUhAFyZkLPBK+ZcuW7N+/n/Hjx3P8+HE++OCDPAE8QNWqVenbt29BDy0iIiJFwJpDp3h08kZybXbuaRLKW93zBvAAraoGsuCptgxvXx03FwsLd8TS6cMVzFh/1JSWdHtjU7h33N/sikkmqJQH04ZFlrwAHozRzYdXGiMFO75mdjVXVvM2o8c3GP3rz/WwLyqSjsN3XYwA3sUd7v7caGNSnAN4MG4kuHrCsfXG35Ursdng16fOBvAW6PpJ0QjgATxLwX2TjL70AH9/AtPuh6yUvNut+sgI4H2C4I73nV6miORDg55Qri5kJl2YPBkgMxkm9zICeI9SxrwiCuBFRKSEKvBI+KioKMLDwx1Vj8NpJLyIiMjlbTl6hv4T1pCWbaVT3fKMH9Acd9cr37PfdSKZF37exvbjSQDcXKMsY+5tROWyPs4omX8OJPDIpI2kZOVSrZwvPwxpRVigc87tVNZcGH8TJOyFm58yRmwXB39/CovP3jC492to3MfcegCObTAC3dQ48CkLfSZD+E1mV1V4FvzHCNartoPBv1x6G2uu0Spo2zSwuMA9X0CTfs6tM7+2zTRqtWZB+XrGSNkyVSB2B3x9C9hyodd30KCH2ZWKyOXsmg8zBhph+1NbwcUNJveE4xvAM8AI4MNaml2liIhIgTh0JHx8fDxr1669aP3atWvZsGFDQQ8nIiIiRcSe2GQGf7uOtGwrN1Uvy9j7m101gAeoF+rPnMdv4uU76+Dl7sLfB05x+ycrmLDyELlWx/YCn73pGIO/W0dKVi4tq5Rh9mM3lcwAHmDTD0YA7x0IbUaaXU3+3fQkRA43luc9DvuXmFvPthnGBKypcUag+/DykhXAg/Fn7uJmjIQ/uu7i96058PPQswG8K/T8pugG8ACNesOQhcakq/G7YEIH47PNe9wI4Ot2g/r3ml2liFxJ3W5QoTFkp8KS1+GHbkYA710GBs9TAC8iIiVegUP44cOHc/To0YvWHz9+nOHDhxdKUSIiIuJcRxLSGPDNOpIycmhauTQTBrXAyz3/bTncXF0Y1q46vz/djpuqlyUzx8Z/F+ymx/h/2HUiudDrtdvtfL50PyNnbCXHaqdrowpMGhpBaR+PQj9XkZCZDMvfNpZvfSlvP92izmIx+sE37G0EpjMGwbGNzq/DZoMlo42+xNYsqH0nDP0DyhTfJzwvq3SYMRkiwMoP8r6XmwUzBsOuuUYbnvt+NFpFFHWVmhs3TCo0gfRTRoAXs9UI8O78sHhOpCtyI7FYoMOrxvLmSRC7zWgjNfhXCG1qbm0iIiJOUOAQfteuXTRr1uyi9U2bNmXXrl2FUpSIiIg4z4kzGfT/Zi0JqVnUCfHj+wda4evpdk3HCi/ry08PRfBuz4b4ebmx7VgSd49dxfu/7yEzx1oo9eZYbbw0ezsfLt4HwCO3VOOzvk0LdNOg2Pn7E0hPgLI1oMUQs6spOJez7U6qd4CcNJjSGxL2O+/8WakwfYDRPxygzTPQ5yfw9HNeDc7W5hmjzcz+342wGiAnw2jDs/c3o298v6lQt6u5dRZEQEVjRHy97hfWdXkX/Erg/A8iJVGNThAWYSyXCoEhCyCkgbk1iYiIOEmBQ3hPT0/i4uIuWh8TE4Ob27X9wi4iIiLmSEjNYsA3azl+JoNqQb5MGhpBgI/7dR3TYrHQp2Vllo68hS71Q8i12Rm3/CB3fvYX648kXtexU7NyGfrDBqatP4qLBd68pz4v3VEXF5cSPAo26diFiexuewNcr+//j2ncPIyJNkObGiOZJ/WA5BjHn/dMNHzb+ULwfO/X0Ol148ZASVa2+oUR7n99CNlpMOU+OLAE3H2g/wxj8tzixsMHen8P3T6DOz+ARveZXZGI5JfFAj0nQtvn4MFFUK622RWJiIg4TYEnZu3Xrx8xMTHMmzePgIAAAM6cOUP37t0pX748M2bMcEihhUUTs4qIiBiS0nPoO2ENu2OSqVjam5mPtia0tHehn2fRjhhenbeTkylZAAyMDOf5LrXx8ypYmByXnMmQ79azKyYZb3dXPu/XlE71boARsLMfMXp3h7eBB34t/m03Uk8aoXjiQQhuAA/85rj2OlGrjRHw6QngWx76Trmx+g7H7YLxrQELhDQ02j94+BkBfEnrgy8iIiIi4mQFyZkLHMIfP36cdu3acerUKZo2NXq3bdmyheDgYBYvXkxYWNi1V+4ECuFFREQgLSuXARPXsjn6DEGlPJn5aGuqBvk67HxJ6Tm8vWA30zcY88pUCPDiv/c2oEOd/IXoe2NTGPLdOk4kZRJUyoOJg1vSOKy0w+otMk5shq9vNZYfXg4VL24JWCydPgITbzcmRw2/GQbMBnevwj3H5snwy9Ngy4GQRkbrlYBKhXuO4mBaf9jzq7HsFWD8WVdqYW5NIiIiIiIlgENDeIC0tDR++ukntm7dire3N40aNaJfv364uxf9x6MVwouIyI0uM8fK0B/W8/eBUwR4uzP9kUjqhDjne+I/BxJ4cfZ2ohPTAbi7cSijutWjbCnPK+7zyKSNpGTlUq2cLz8MaUVYoI9T6jWV3W5MPnnkL2jUB3p8bXZFhSt2O3x3J2QlQ91u0PsHcCmEvv42Kyx+DVaPNV7XvRvu/RI8HHeTqUg7sQUmdDAC+IFzILSJ2RWJiIiIiJQIDg/hizOF8CIiciPLsdp4bPImluyOw9fDlZ8ejqSJk0eUZ2Rb+XjJPr756xA2O5Txcee1bvXo3qQilv9ptTJ70zFe+HkbOVY7LauUYcKgFpT28XBqvabZswCm9QM3LxixAUoX7acNr8nhv2ByD7BmQ/Mh0PXj62u3k5kEs4bCgcXG61tehFteKPn9368mdgf4ltMEpiIiIiIihcgpIfyuXbuIjo4mOzs7z/q77777Wg7nNArhRUTkRmWz2XlmxhbmbTmBp5sL3w9pRevqZU2rZ9uxMzw/axt7YlMAuLV2Od7q3oBKZXyw2+2MXXaADxfvA+CuRhX4sHdjvNwLYaR0cWDNgS9aw6n90GYkdBpldkWOs2sezBgM2OHWl+DWF6/tOImHYEpfSNgLbt7Q/Qto0KNQSxURERERETnHoSH8oUOHuPfee9m+fTsWi4Vzu58buWa1Wq+xbOdQCC8iIjciu93O/83dwZS10bi5WPh6UPN892N3pByrja9XHuLTpfvJzrXh4+HK851rsyc2hWnrjf7xj7Srxgtd6uDiUswnJC2IdRNgwXPgEwRPbgavEv4zy/pv4LdnjeW7PoKWQwu2/+GVMGMQZJwGv1DoNwVCmxZ+nSIiIiIiImcVJGcu8LO5Tz31FFWrViU+Ph4fHx927tzJypUradGiBX/++ee11iwiIiIOYrfbGbNwD1PWRmOxwMd9mhSJAB7A3dWF4e1rsPCptrSsUob0bCuv/7KLaeuP4mKBN++pz0t31r2xAvjMJPhzjLHc/qWSH8ADtHzIaBsDxs2HXfPzv++Gb2HSvUYAH9oMhi1XAC8iIiIiIkVKgUP41atX88YbbxAUFISLiwsuLi60adOGMWPG8OSTTzqiRhEREbkOY5cd4OuVhwB4p0dDujUONbmii1UvV4rpw1rzZvcGlPJ0w9vdla8GtmBg6ypml+Z8f30E6acgqBY0e8Dsapzn1peg+QNgt8HPD8GRVVfe3poLC/4Dvz4Dtlxo2BuGLAC/EKeUKyIiIiIikl9uBd3BarXi5+cHQFBQECdOnKB27dqEh4ezd+/eQi9QRERErt23qw6f76v+atd69GlZ2eSKLs/FxcLAyHDubhyK1WYn0PcGmYD1305HwZrxxvJtb4JrgX9UK74sFqMVTVoC7PkVpt5vhOohDS7eNuM0zHwADv1pvO74mtE7/3omdRUREREREXGQAo+Eb9CgAVu3bgUgIiKC9957j7///ps33niDatWqFXqBIiIicm1mbDjKG7/uAuDpTjUZ2qaqyRXlT4C3+40ZwAMsexOsWVClLdTqbHY1zufiCj2/gco3QVYSTO5p3Jj4t4T9MKGjEcC7+0Kfn6DtswrgRURERESkyCpwCP/KK69gs9kAeOONNzh8+DBt27ZlwYIFfPbZZ4VeoIiIiBTcb9tiePHnbQA81KYqT3WsaXJFclXHNsL2mYAFOv/3xg2V3b2h31QoXw9SY2FyD2N0PMCBpUYAn3gQAsJg6O9Qt6u59YqIiIiIiFyFxW6326/3IImJiZQpUwZLMfhlsSCz1oqIiBRHy/fGM+zHDeRY7fRtGcaYHg2LxffoG5rdDt/dCdH/QOP74d7xZldkvuQTMPF2SDoKFZtDve6wZJTRMz4sEvpMhlLlzK5SRERERERuUAXJmQs0Ej4nJwc3Nzd27NiRZ31gYKB+uRcRESkC1hw6xaOTNpJjtdO1UQX+e68C+IvYbBCz1ZgAdcYgWPs15GabW9OeX40A3s0bOrxibi1FhX8oDJgN3oFwfCMsftUI4Jv0h8HzFcCLiIiIiEixUaDZvtzd3alcuTJWq9VR9YiIiMg12nr0DA/9sIGsXBsd65Tn4z5NcHVRAA9AajwcXGa0Mzm0HNJOXnhv1zxYOx46jYa63ZzfBiY3Gxa/ZizfNAICKjr3/EVZuVrQfyb80A1yMuD2N6H1iBu3VY+IiIiIiBRLBW5HM3HiRGbPns2kSZMIDAx0VF0Oo3Y0IiI3JrvdzvbjSVQJ8sXfy93scgrd3tgU+ny9mjPpObSuVpbvhrTEy93V7LLMk5sF0Wvg4FI4sAzitud9390XqraD4Pqw6YcLoXxYJNz+FoS1dF6ta76ERS+Ab3l4chN4+jnv3MXF6SjIzYRytc2uREREREREBChYzlzgEL5p06YcOHCAnJwcwsPD8fX1zfP+pk2bCl6xEymEFxEpYux2sOaAm4fDTmGz2Xl13g5+WhuNv5cbD7etxgM3V8GvJITxNhtHTqXT++s1nEzJoklYaSY/FEEpzwI97Fb82e1w6oAx0v3gUjiyCnLS825ToTFU7wg1OkKlVhf+zmWlwN+fwT+fQ26Gsa5ed+g0CgKrObbujDPwWRPIOA1dP4EWQxx7PhERERERESkUBcmZC/wbevfu3a+1LhERkbxyMmHibRC7HQIqQZkqEFjVCD7LVDWWy1QFr2u/aWq12Xnh523M2ngMgOTMXD5cvI+Jfx/m4bbVGHxTleIbWCcexvrN7Xim2+md04GN5bvy1ZCWxffzFFTGGTi84mzwvhySovO+XyoYqncwgvdqt16+h7inH3T4PyMAX/5f2PwT7JoLe36DVg9Du/+Aj4Oe/vvrAyOAL1cHmg50zDlERERERETEVAUeCV/caSS8iEgRsuJ9WP7W1bfzCTKC+XOh/L+XfYMu2x86x2rj2Rlbmb/1BK4uFj7o3QhXFxc+WbKPQyfTAAj09WBYu2oMah2Oj0fxCa8zs3NI/upOyp9ad36d3cUdS/3u0PIhCIsoeX2zbVY4vskY6X5wGRzbAPZ/zVPj6gGVWxsj3at3gOAG1/ZnELvD6NF+cKnx2isA2j4HrYaBu1fhfBaA00dgbEuwZkP/WVDztsI7toiIiIiIiDiUQ9vRFHcK4UVEiojTR2BchNHnudunUL4eJB6CxMNw+vCF5fSEKx/Hww8Cq+QdPR9YjWz/cJ76LZ6Fu+Jxd7XwWd+m3NGwAmCMjp+/9TifLtnPkVNGy5KgUh48ekt1+keE4+1RdHupR51K46e10djWT+QV+wTS7Z585TaA4UGb8IjbfGHD4IbQcig07A2epcwr+HolHTs70n0ZHPoTMs/kfT+oljHSvXoHqHIzePhe6ijX5sBSI4yP22G8Ll0ZOo6C+j3AxeX6jz9zCOycbYzSHzi35N00ERERERERKcEcGsK7uLhgucIviVar9bLvFQUK4UVEioip/WDvAmNyzEHzLx9AZiafDeX/J5xPPAzJx4HLfxvLsrtxjPIEhNYiqHIdKFsDGt1njGwGcq025m45wWdL9xOdaITx5fw8eeyW6twfUbnITGxqtdlZvieeSWuiWLHvJKEk8Ifn85SyZLKqxrPUv/dFyvh6GKPEN0yE7bOMmxsAnv7QuJ8RyBeHSS2z0yHqbyN0P7AUEvbmfd8rwAitz7WZKR3m2HpsVtg6DZa9CSkxxrrQpsbkrVXaXPtxj66HiZ0ACzz6F4Q0LJRyRURERERExDkcGsLPmzcvz+ucnBw2b97MDz/8wOjRoxk6dGjBK3YihfAiIkXA3kUwtQ+4uMNjf197OJyTCWeijWD+bFBvPXWQ+Kg9lM2JwcNyiRvDIQ3hoaXg5nnhMFYbczYd57Nl+zl22piYM9jfk+Hta9CnZRiebuaE8QmpWUxff5Qpa6M5fsaoy2KxMz/gIxpmbsQeFollyMKLR2WnJ8LWqbD+G+PP5pwqbY1WNXXuAtciMimt3Q5xO43Q/eBSiFoN1qwL71tcoGILI3Sv0RFCm4GrCW2DstNh9Tj4+xPITjXW1b4TOo2GcrUKdiy7Hb7tDEfXQpMB0H1coZcrIiIiIiIijmVKO5opU6Ywffr0i0L6okYhvIiIyXIyjDY0Z6Lg5qfhttGFdujUrFwe/H496w4nUsrDwqReFWla6vTZkfOHYPNkyEiEyOHQ5e2L9s/OtTFr4zHGLtvPiSRjJHmFAC+Gt6/BfS3C8HArhBYkV2G329kYdZpJa6JYsD2GHKvxbbq0jzt9WoTxsN8/BC0dCW5e8OgqCKp5+YPZbHBoOayfCPsWgt1mrC8VAs0fgOaDwT/U4Z/pImkJRmuZc21mUmPzvu9fCWqcm1D1FvAu4/waLyc1Hv4cAxt/MPrRW1yNP8tbX7r8xK//a9c8mDEI3H3giY3m/D8QERERERGR62JKCH/o0CEaNWpEampqYRzOYRTCi4iYbPnbsOJd8K8Iw9cVWr/y5MwcHvh2HZuiz+Dn6cb3D7akeXhg3o32LoSpfY3lK0yEmZVrZcaGY4xbdoDYZCOMr1jamyc61KBn80q4uxZ+GJ+Wlcu8LSeYtCaK3THJ59c3CSvNwMhw7mpUAa+MOBgXCVlJcNsbcPNT+T/BmaOw8XvY9AOknTTWWVyNUfGtHjZGyTuqJ3luNhxbd6HFTMxW8rQRcvcxWrucazETVLPo90c/uRcWjzJuboAxN0Gbp4wbPB4+l98vNxvGtTKe3LjlBWj/snPqFRERERERkULl9BA+IyODl156iYULF7J3796r72AihfAiIiY6dRC+aG20G+n9A9TvXiiHPZ2WzaBv17H9eBIB3u5MGtqKRpVKX3rjBf+BdV+DTxA89g/4BV/2uJk5Vqati+aLPw8Sn2K0SAkL9OaJDjXp0bQiboUQxh+IT2Hymmh+3niMlKxcADzdXLinSSgDI6vQsJLRvx673biBsG+R0ZJl6OJra8uSmw275xuj46P/ubA+qJbRqqZx3/M986/LqYNnW8wsg8MrL7RwOSe4IVRvb7SYqdw6T3ugYuXwX/DHKxCzxXjtFwodXjH+HF0u0cZo9Rfw+0tQKhie2FS8J80VERERERG5gTk0hC9TpkyeiVntdjspKSn4+PgwefJk7r777mur2kkUwouImMRuh596w4HFxojnAbMLZbRzQmoWA75Zy57YFMr6ejBpaAT1Qq9wfc/JhAkdIH6nUUf/ny/uqf4/MnOs/LQ2mvF/HiQh1Qjjq5T14cmONbm7cWiBw/gcq43Fu+KYtDqK1YdOnV9fpawPAyLD6dW8EqV9PPLutG0mzH7I6KP/yEoIrlegc15S3E4jjN82/UJI7u5jTF7b8qGCTRaamWyE7ed6u58+kvd9n6CzI907GOG7X8j1119U2Gyw42dYOhqSjhrrghvC7W8Yn/ec9ET4rClknoG7P4dmg0wpV0RERERERK6fQ0P477//Pk8I7+LiQrly5YiIiKBMmSLUs/UyFMKLiJhk968wvT+4esBjqyGoxnUfMi45k/7frOVAfCrl/Tz56aEIagb7XX3H+D3w9a2QmwG3vwU3PZGv82VkW5m8JoovVxzkVFo2ANWCfHmqU026NgrF1eXKNxXikjOZui6aqeuiiUs2wnwXC3SqG8zA1uHcXD0Il0sdIzXeaGGScRravwK3/Cdf9eZbZrIRxK//Bk7uubA+LMII4+vdc/FIdZsNYjafbTGzzGg3Y8u98L6LO1SONAL36h0hpNFVb3YUezmZsO4rWPmh0TIIjM9++5sQXB8WvQxrxkH5+vDoX5ceKS8iIiIiIiLFgik94YsLhfAiIibITjdC5KSj0PY56PjqdR/y+JkM+k9Yw5FT6VQI8GLKw5FUDfLN/wE2fAu/PmOExQ8thtCm+d41LSuXH1dH8dXKg5xJzwGgRvlSPNWxJnc1rJAnSLfb7aw+dIrJa6L4fWccVpvxbTeolCf9WoXRr1VlQkt7X/mEMwYZk3mGNISHl4Ore/4/Z0HY7RD1txHG7/7lQqjuEwTNBkL9eyF2hzHS/eByY5LbfwusbrSXqd7B6PHumY8bIiVReiKseA/WTzD+DC0u0KAX7JwDthzjKZAaHc2uUkRERERERK6DQ0P47777jlKlStG7d+8862fOnEl6ejqDBw8ueMVOpBBeRMQES9+Avz6EgDBjMtYrTVyZD0cT0+k3YQ3HTmcQFujNlIciCQss4DHtdpgx0AibA6sbLV4K2J87NSuXH/45wtcrD5GUYYTxtYP9eLpTTW6qEcScTceYtCaKgyfTzu/TqmogAyPD6Vw/BA+3fIwM3zkXZg4GFzcjgK/QqEA1XrOUWNj0I2z4DlJOXHobT3+o2u5C8F6minNqKy5OHTRa1Oyad2Fd9Y4wcLZ5NYmIiIiIiEihcGgIX6tWLb766ivat2+fZ/2KFSsYNmyYJmYVEZG8Eg7AF5HGCOA+P0Hdrtd1uEMnU7l/wlpikzOpGuTLlIcjqBBwlZHkl5OeCF+2geTj0KQ/dP/img6TnJnD938fYcJfh0jJNEaPu1jg7KB3fD1cubdZRQZEhlMnpADfe9JOwRcRkHYS2v3HmPDT2ay5sG+hMTr+yN/GTYDqZ0P3Si0cNyq/JIleC0tGQeJhGDQPytcxuyIRERERERG5Tg4N4b28vNizZw9VqlTJs/7IkSPUrVuXjIyMAhfsTArhRaSw/XMwgVX7E2hXqxwtqwRetS/4DcVuh0n3wqHlUPN2uH/GdU3Gui8uhfsnrCUhNYua5Uvx00MRlPf3ur4aj6yCH7qB3QY9J0LDXtd8qKSMHCauOsx3qw6TkpVLreBSDIwMp3vTivh5XUNY/fNDsH0mlKsLj6y4uC+7iIiIiIiIiJiiIDmzW0EPXr58ebZt23ZRCL9161bKli1b0MOJiBRrC7bH8OTUzeTa7Hzx50HK+npwe/1gujSoQOtqZfPXbqQk2zXPCOBdPeGOd68rgN95IomBE9eRmJZN3Qr+TB7airKlCiGUrtLG6FO/8j2jR3ylFtfcViXA252Rt9XiobZVOZmSRbUg3zyTmRfIngVGAG9xge7jFMCLiIiIiIiIFFMFDuH79evHk08+iZ+fH+3atQOMVjRPPfUUffv2LfQCRUSKqrmbjzNyxhZsdmhcKYAjp9I5lZbN1HVHmbruKP5ebnSqG0znBiHcUqscXu6uZpfsXFmp8PvLxnKbZyCw2jUfauvRMwycuJbkzFwaVwrghwdbUdrHo5AKBW55AQ6vgKNrjdHnQxZeV5sVfy93/K9l5Ps5GaeNGwIANz0BFZtf+7FERERERERExFQFbkeTnZ3NwIEDmTlzJm5uRoZvs9kYNGgQX375JR4ehRiKOIDa0YhIYZix/igvzN6G3Q73tajEmB6NsNntrD2UyMIdMfy+M46E1Kzz23u7u9K+Tjm6NKhA+9rlrq01SXGz+DX4+1MoHQ7D14L7tfVt33AkkQe+W09qVi7Nw8vw3ZCW1xdwX87pKPiyLWQlQdtnoeNrhX+O/Jo7HLZMhrI14NFV1/xnJyIiIiIiIiKO4dCe8Ofs37+fLVu24O3tTcOGDQkPD7+mYp1NIbyIXK9Jq4/w6rydAAyIrMwbdzfA5X/6wFttdjZFn2bRjlgW7Yjl+JkL82V4uLrQtmYQnRuEcFvdYMr4Fu2bl9fk5F4YfxPYcqHfdKjd5ZoO88/BBB76YQPp2VYiqwUycXBLfD0L/BBX/u2YDbOGABYYPB+qtnPcuS7nwBKY3NOo4cFFUDnS+TWIiIiIiIiIyBU5JYQvrhTCi8j1+OavQ7z1224AHmpTlf+7q+5Ve37b7XZ2HE9m4Y4YFu2I5VBC2vn3XF0sRFYLpEuDCnSuF3z9k4xeo8wcK8dOp3MkIZ2oxHSiT6WRkJZNnWA/mlcpQ5Ow0vh45DP8ttuNiU6P/AW174R+U6+pphX7TjLsxw1k5dpoWzOIrwe2wNvDCS195g2HzZPBLxQe+xt8Ah1/znMyk+GL1pB8DCIegzvecd65RURERERERCTfHBrC9+zZk1atWvHCCy/kWf/ee++xfv16Zs6cWfCKnUghvIhcq7HL9vPBH/sAGN6+Os/dXrvAk27a7Xb2x6eyaEcsC3fEsjsm+fx7Fgs0r1yGLg1C6Fw/hLBAn0KtPzkzh+hT6USdSufIqTRjOTGNqFPpxCZncqXvBm4uFuqF+tM8vAwtwgNpUaUMwZe7YbB9Fvw8FNy8jDY01zDJ6eJdcQz/aRPZVhud6pZn7P3NnNdTPzsNvroFTu2H2ndB35+ua0LZAvn1GdjwrfFn9tg/4OHrnPOKiIiIiIiISIE4NIQvV64cy5Yto2HDhnnWb9++nU6dOhEXF1fwip1IIbyIFJTdbuejxfv4fNkBAJ69rRZPdKxZKMeOOpVmtKzZGcvm6DN53mtQ0Z87GlSgS4MQqpcrla86E1KziU5MyzOi/cipdKIT00lMy77i/qU83Qgv60N4WR8qB/pS2sed7ceT2HjkNLHJmRdtX6mMNy3Cy9C8SiAtwstQK9gP1+wUGNsSUmOh/Stwy38K9OcB8Nu2GJ6atplcm507GoTwad+meLi5FPg41yVmK3zTCazZcOcH0Ophx5/z0Ar48W5jefAv5rTCEREREREREZF8cWgI7+3tzZYtW6hdu3ae9Xv27KFp06ZkZGRcZs+iQSG8iBSE3W5nzMI9fL3yEAAv31mHYe2qO+RcMUkZ/LEzjoU7Ylh3OBHbv67ONcuXokuDELo0CMHfy53oRGNEe9QpYyT7ucA9Ldt6xXMElfKgcqAP4WV9zwfu4WV9CQ/0IdDX45Ij++12O8fPZLAx6jQbjpxmQ9Rp9sYm56kPwM/Tjff8p3NHys9k+IVjf+wffHyufvPg3+ZsPsazM7Zis0P3JqF80Lsxbq5ODuDPWT0Ofn/ZGNH/8HIIrue4c2WnGW1ozkRBiweh68eOO5eIiIiIiIiIXDeHhvCtWrWia9euvPbaa3nWv/766/zyyy9s3Lix4BU7kUJ4Eckvm83O6F928sPqKABG312fwTdVccq5T6VmsXhXHIt2xvL3gQRyrPm7VFssEBrgTeVAH6oEGSPaq5T1ofLZsL1UIU1qmpKZw5ajZ9hw5DQbo06zOfo0FXOOsMDjJdwsNgZnv8AqmlCvwtkWNlWMNjYhAZfveT99fTQvzt6O3Q59WoTxdo+GuLo4qQ3MpdhsMKW3MVFqubowbDm4ezvmXAtfgLVfQkAYPL4aPP0ccx4RERERERERKRQODeF/+eUXevTowf3330+HDh0AWLp0KVOmTGHWrFl07979mgt3BoXwIpIfVpud/5uznWnrj2KxwNv3NqRfq8qm1JKUkcPyPfEs3BHDin0nsdrshAX6EP4/I9orB/oSFuiNp5uTeqf/S26ulaxv7sA3di1bSrXj8ZynOZF0cQubiqW9z4fyzcPLUCfEH1cXCz+uPsJr83YCMDAynNF318fFzAD+nNR4GH8zpMVDi6HQ9aPCP0fUavjuDsAOA36GGp0K/xwiIiIiIiIiUqgcGsID/Pbbb7z99tts2bIFb29vGjduzKhRowgMDKRBgwbXXLgzKIQXkavJtdp4ftY2Zm8+josFPujdmB7NKpldFgA5VhsuFou5I8QvZet0mDMM3H1g+DooHcaJMxlsiDrNxiOJbIg6ze6Yi1vYlPJ0o3aIHxujTgPwUJuq/N9ddQs84a1DHVgKk3sYy31+grpdC+/YORnwZRs4dQCaDoB7xhXesUVERERERETEYRwewv/vyaZOncrEiRPZuHEjVuuV+xGbTSG8iFxJjtXG09O28Nv2GFxdLHzatwldG4WaXVbRlnHGmIw1LR46joK2Iy+5WWpWLluiz7AhKvFsC5szpGblnn9/RPsaPHt7raIVwJ/z+//B6rHgXQYe/RsCKhbOcf94Ff75DPwqwONrwLt04RxXRERERERERByqIDnzNTcHXrlyJRMnTuTnn38mNDSUHj16MG6cRvCJSPGVlWtlxJTNLN4Vh7urhbH3N6Nz/RCzyyr6/hxjBPBla0LrEZfdrJSnG21qBtGmZhBgtPzZG5vCxujTlPZ2p1vjInyzo+MoOLIKYrbAnEdg0Dxwuc62P8c2GsE+QNdPFMCLiIiIiIiIlFAFCuFjY2P5/vvvmThxIsnJydx3331kZWUxd+5c6tWr56gaRUQcLjPHyiOTNrJi30k83Vz4cmBz2tcub3ZZRV/MNlj3tbF85/vg5pHvXV1dLNQL9adeaDF4KsnNA3p9C1+2hSN/waqPoN1/rv14uVkw73Gw26DhfVC7S+HVKiIiIiIiIiJFikt+N+zWrRu1a9dm27ZtfPLJJ5w4cYLPP//ckbWJiDhFenYuQ75bz4p9J/F2d+XbB1oqgM8Pmw0WPGcEyfXvhertza7IscpWN240ACwfA0fXXfuxVr4PJ/eAbzm4493CqU9EREREREREiqR8h/ALFy5k6NChjB49mrvuugtX1+t8DF9EpAhIycxh0MR1rD50ilKebvzwYCturhFkdlnFw9apcHQtuPvC7f81uxrnaHI/NOgFdiv8PBQykwp+jJit8NdHxvJdH4JPYOHWKCIiIiIiIiJFSr5D+FWrVpGSkkLz5s2JiIhg7NixJCQkOLI2ERGHSkrPYcDEdWyIOo2/lxuThraiVVUFovmScRoWv2Ys3/pC4U1UWtRZLND1IyhdGc5Ew6/PQEHmN7fmwNzhRohf7x7jS0RERERERERKtHyH8JGRkUyYMIGYmBgeeeQRpk2bRmhoKDabjcWLF5OSkuLIOkVECtWp1Cz6TVjD1qNnKOPjzpSHI2lauYzZZRUfy96C9AQoVwciHze7GufyCoCe34LFFXb8DFum5H/fVR9D3HbwDoQ7P3BcjSIiIiIiIiJSZOQ7hD/H19eXBx98kFWrVrF9+3aeffZZ3nnnHcqXL8/dd9/tiBpFRApVfEom/SasYVdMMkGlPJg2rDUNKgaYXVbxcWIzrJ9oLN/5Abi6m1uPGcJaQvuXjOUF/4GEA1ffJ24XrHjPWL7jPSileQdEREREREREbgQFDuH/rXbt2rz33nscO3aMqVOnXvNxxo0bR5UqVfDy8iIiIoJ16/I32d20adOwWCx07979ms8tIjeWmKQM+n61hn1xqQT7ezJtWGtqh/iZXVbxYbPBb88CdmjYG6q2Nbsi87QZCVXaQk4a/Pwg5GZdfltrLsx7HGw5UPtOaNjLeXWKiIiIiIiIiKmuK4Q/x9XVle7duzN//vwC7zt9+nRGjhzJqFGj2LRpE40bN6Zz587Ex8dfcb8jR47w3HPP0bbtDRwAiUiBHE1M576vVnMoIY2Kpb2Z8UhrapQvZXZZxcvmH+H4RvDwg9veNLsac7m4Qo+vwbuMMdnq0jcuv+3qscYTBF4BcNdHRm95EREREREREbkhFEoIfz0++ugjHn74YYYMGUK9evX48ssv8fHx4dtvv73sPlarlf79+zN69GiqVavmxGpFpLg6nJBGn69WczQxg/CyPkx/JJLwsr5ml1W8pCfCkteN5fYvgX8FU8spEvxD4Z5xxvLqsXBgycXbJOyH5W8by53H6M9NRERERERE5AZjagifnZ3Nxo0b6dSp0/l1Li4udOrUidWrV192vzfeeIPy5cszdOhQZ5QpIsXcgfgU+ny1mhNJmVQv58v0Ya2pVMbH7LKKn6WjIeM0lK8PrR4xu5qio85d0PIhY3nOY5D6rye5bFaYNxysWVC9IzS535waRURERERERMQ0pobwCQkJWK1WgoOD86wPDg4mNjb2kvusWrWKiRMnMmHChHydIysri+Tk5DxfInLj2B2TTJ+v1hCfkkXtYD+mDWtNSICX2WUVP8c2wsYfjOW7PgBXN3PrKWpufwvK14O0eJj7mNE7H2Dd13B0rdG+p9unakMjIiIiIiIicgMyvR1NQaSkpDBw4EAmTJhAUFBQvvYZM2YMAQEB57/CwsIcXKWIFBXbjyXRb8IaTqVlUz/Un6nDIinn52l2WcWPzQq/jQTs0LgfhN9kdkVFj7s39JwIbl5GS5q14yHxECwZbbx/+xtQWt9/RERERERERG5Epg5lDAoKwtXVlbi4uDzr4+LiCAkJuWj7gwcPcuTIEbp163Z+ne3saEM3Nzf27t1L9erV8+zz0ksvMXLkyPOvk5OTFcSLlHDxKZnMWH+Ur1YcIiUrlyZhpfnhwVYEeLubXVrxtPE7iNkCnv5w2xUmH73RBdczRsQveA4Wj4ItUyE3A6q0hWYPmF2diIiIiIiIiJjE1BDew8OD5s2bs3TpUrp37w4YofrSpUsZMWLERdvXqVOH7du351n3yiuvkJKSwqeffnrJcN3T0xNPT418FSnp7HY764+cZtKaKBbtiCHHagegVZVAvh3SklKeap9yTdISYOnZ4L3DK1CqvLn1FHUtH4KDy2HvbxC3Hdx94O7PwaVYPXgmIiIiIiIiIoXI9FRq5MiRDB48mBYtWtCqVSs++eQT0tLSGDJkCACDBg2iYsWKjBkzBi8vLxo0aJBn/9KlSwNctF5EbgypWbnM2Xycyauj2BuXcn59s8qlGdg6nLsahuLhpgD0mi0eBZlJENIQWmgy7KuyWOCesTB+M6ScgI6jILCq2VWJiIiIiIiIiIlMD+H79OnDyZMnee2114iNjaVJkyYsWrTo/GSt0dHRuGgEoYj8j72xKUxeE8XsTcdIy7YC4O3uSvemofSPCKdBxQCTKywBotfClsnG8l0faTLW/PIJhCELIHY71O129e1FREREREREpESz2O12u9lFOFNycjIBAQEkJSXh7+9vdjkiUgDZuTb+2BXLj6ujWHc48fz6auV8GRgZTo9mldT3vbBYc+HrW42WKk0HwD3jzK5IRERERERERKTIKEjOrGGNIlLkxSRlMHVtNFPXH+VkShYAri4WbqsbzKDW4bSuXhaLxWJylSXMmi+MAN4rADqNNrsaEREREREREZFiSyG8iBRJdrudvw+cYtKaIyzZHY/VZjy0U87Pk36tKtOvVRgVArxNrrKEOrwSlrxuLHcaDb5BppYjIiIiIiIiIlKcKYQXkSIlKSOHWRuP8dOaKA4lpJ1fH1ktkIGRVbi9fjDurponwmFOR8GMwWC3QqM+0PwBsysSERERERERESnWFMKLSJGw43gSk9dEMXfLcTJzbACU8nSjZ7OK9I8Mp1awn8kV3gCy02F6f8hIhAqNodunoDY/IiIiIiIiIiLXRSG8iJgmM8fKgu0xTFoTxeboM+fX1wnxY0BkON2bVqSUpy5TTmG3w/wnIHY7+ARBn5/AXe1+RERERERERESul9ItEXG6o4npTF4bxYz1RzmdngOAu6uFOxpUYGDrcFqEl9FEq872z+ewYxa4uMF9P0DpMLMrEhEREREREREpERTCi4jTxCRl8Oavu1i4Ixa7Mc8qoQFe3B9RmftahlHez8vcAm9UB5fBklHGcucxUKWNufWIiIiIiIiIiJQgCuFFxOFsNjtT10fzzoI9pGTlAtC2ZhADI8PpUKc8bsV5otXsNNg+C5KOws1PgWcx612feBhmDgG7DZoMgFYPm12RiIiIiIiIiEiJohBeRBzq0MlUXpy9nXWHEwFoElaaMT0aUreCv8mVXaeT+2DDRNgyBbKSjXWHVsCAWeAVYG5t+ZWVCtP6Q+YZqNgc7vpQE7GKiIiIiIiIiBQyhfAi4hA5VhsT/jrEJ0v2k51rw9vdlec61+aBm6rg6lJMg15rDuxdAOu/gcMrL6wPrAbpiXBsHfx4DwyYDT6B5tWZH3Y7zHsc4neCb3noMxnc1Q5IRERERERERKSwKYQXkUK343gSz8/axq4YY4R425pBvH1vQ8ICfUyu7Bolx8CmH2Dj95ASY6yzuECtO6DVQ1D1VojbAZO6w4nN8EM3GDQPfIPMq/lqVn0Eu+aBizv0mQT+oWZXJCIiIiIiIiJSIimEF5FCk5lj5eMl+/jmr8NYbXYCvN15tWs9ejariKW4tTmx2+HIX8ao992/gt1qrPctB80GQ/MHoHTYhe0rNIIHfjNGwsftgO/uhMHzwS/ElPKvaN8fsPRNY/nO96FypLn1iIiIiIiIiIiUYArhRaRQrD54ipdmb+PIqXQAujaqwKhu9Snn52lyZQWUmQRbpxvhe8LeC+sr3wQth0Ldu8HN49L7lq8LDyyAH+829v3uDhj8CwRUck7t+XHqIPz8EGCH5kOgxRCzKxIRERERERERKdEUwovIdUnKyOGdhbuZuu4oACH+XrzZvQG31Qs2ubICit0O6yfCthmQk2as8ygFjfoY4Xtw/fwdJ6gGDFlgtKRJPHQhiC9TxWGl51tWCkztB1lJEBYJd7xndkUiIiIiIiIiIiWeQngRuWa/74zl1bk7iE/JAqB/RGVeuKMO/l7uJleWT7lZsGu+Mer96JoL68vVgZYPGQG8l3/Bj1umCgxZ+K8g/k4YNN8I6M1is8GcR40R+n4V4L4fLz+iX0RERERERERECo1CeBEpsPiUTF6fv5MF22MBqBrky5geDYmsVtbkyvLpTDRs+A42/QjpCcY6Fzeo280I38NvhuvtYR9Q6WwQf7Y1zfdng/jyda6//mux8n3Y8yu4ekCfyeBXzJ5UEBEREREREREpphTCi0i+2e12Zm08xlu/7SYpIwdXFwvD2lXjqY418XJ3Nbu8K7PZ4OAyY9T7/t/BbjPW+4UafdGbDSr8SVT9QozJWid1NyZr/f5OGDjXmMTVmfYsgD/fNpa7fgyVWjj3/CIiIiIiIiIiNzCF8CKSL0cT03l5znb+2m+MHG9Q0Z93ejSiQcUAkyu7ivRE2PKT0e/99OEL66veYox6r30nuDrwUliqnNETftK9ELPFaFEzcDZUbO64c/7byb0we5ix3GoYNB3gnPOKiIiIiIiIiAigEF5ErsJqs/Pd34f58I99ZORY8XRz4ZnbavFQm6q4ubqYXd7lZZyBP/4Pts+C3ExjnWcANLkfWjwI5Wo5rxafQBg8Hyb3gmPr4Mfu0H8mVI507HkzzhgTsWanGC12Or/t2POJiIiIiIiIiMhFFMKLyGXtiU3mhZ+3s/XoGQAiqwUypkcjqgb5mlvY1VhzYeYDcGi58TqkIbR8GBr2Ag+TavcKMEbAT+kLUatgUg+4fzpUbeuY89lsxgj4xIPgXwl6/wCuxWTCXBERERERERGREkQhvIhcJCvXyrhlB/jiz4Pk2uz4ebnx8p116dMiDBeX65yw1BmWjjYCeHcf6DcNqra7/olWC4OnnzECftr9Rn0/9YK+P0GNToV/rj/fNnrfu3lB38lGWxwREREREREREXG6ItxLQkTMsDEqkbs+W8Vnyw6Qa7Nze71gloy8hX6tKhePAH77LPjnM2P5nnFQ7ZaiEcCf43H2xkCtLkabnKn9YO/Cwj3Hrnmw8n1judtnENq0cI8vIiIiIiIiIiL5phBeRABIzcpl1Lwd9PpyNQfiUwkq5ckX/Zvx1cDmBPt7mV1e/sRshXkjjOU2z0CDHubWcznuXnDfJKh7N1izYfoA2Dm3cI4dtwvmPGYstx4BjfsUznFFREREREREROSaqB2NyA0uI9vK/K3H+WzpAY6fyQCgd/NK/N9ddSnt42FydQWQdgqmDYDcDKO9S4dXza7oytw8oNd3MPdR2D4TZg0xAvlG9137MdMTYVo/yEmDqrdAp9GFV6+IiIiIiIiIiFwThfAiN6hDJ1OZvCaamRuPkpKZC0BYoDdj7m1Em5pBJldXQNZcmDkYkqKhTFXo+Q24uJpd1dW5usG9X4GrJ2yZbEykmpsFzQYW/Fg2K/w8FE4fgdKVoff3xvFFRERERERERMRUSmhEbiC5VhtLdsczeU0Uqw4knF8fXtaH/hGVGRAZjo9HMbwsLH4VjvwF7r7Qbyp4lzG7ovxzcYW7Pwc3T9gwEeaPMHrFt3q4YMdZOhoOLgM3b+g7BXwCHVOviIiIiIiIiIgUSDFM20SkoOKTM5m2/ihT1kYTm5wJGHOVdqxTnoGtq9C2RlDxmHT1UrZMhTVfGMv3fgnl65pbz7VwcYG7PgQ3L1gzDhY8Z4yIv2lE/vbfPgv+/tRY7j4OQho6rlYRERERERERESkQhfAiJZTdbmft4UQmrYni9x2x5NrsAJT19aBPyzD6tapMWKCPyVVep+Ob4JenjOV2z0O9u82t53pYLND5v8aI+FUfwR//Z4yIb/fclfeL2XZhMtqbn4YGPR1eqoiIiIiIiIiI5J9CeJESJiUzh7mbjzNpTRT74lLPr28RXoaBrcPp0iAET7di0C/9alLjYfoAsGZBrS5w60tmV3T9LBbo+Bq4e8Py/8KyN40R8e1fNt77X2mnYHp/YzLa6h2NfUVEREREREREpEhRCC9SQuyJTWbymijmbDpOWrYVAB8PV7o3rciAiHDqhfqbXGEhys2GGYMg+TiUrQk9vjZaupQEFgvc8rwxIn7xa7DyPSNkv+3NvEG8NRdmPQBnzk5G22ti8ZiMVkRERERERETkBqMQXqQYy861sWhnLJNXR7HuSOL59TXKl2JgZDj3NquIv5e7iRU6yO8vQfRq8PQ3JmL1CjC7osJ381NGj/iFz8M/nxsj4ru8e+Fmw+LX4PDK4jkZrYiIiIiIiIjIDUQhvEgxdPxMBlPXRjNtfTQJqdkAuLpY6Fw/mAGR4bSuVhbLpdqXlASbfoT13wAW6DEBgmqaXZHjRDwCrh7w6zOw7mujR3zXT2H7DGMCVyi+k9GKiIiIiIiIiNwgFMKLFBM2m52/Dybw4+oolu6O4+w8qwT7e9KvVWX6tqxMSICXuUU62tH18NuzxnL7/4PaXcytxxlaDDFGxM973LgBkRoPh/403ivuk9GKiIiIiIiIiNwAFMKLFHFJ6TnM3HiUn9ZGczgh7fz6m6qXZWBkOJ3qBePuWkL6oV9JSuzZiVizoU5XaPus2RU5T5N+4OYBPz8M+xYZ60rKZLQiIiIiIiIiIiWcQniRIirHauOtX3cxfcNRMnNsAPh5utGzeSUGRFamRnk/kyt0otwsmD4QUmOhXB2jBUtJmYg1vxr0BFdP+HkoBFYrWZPRioiIiIiIiIiUYArhRYqoccsP8MPqKADqhPgxqHUV7mkSiq/nDfbP1m6HBc/BsXXGBKx9p4DnDXQD4t/qdoVn94KHL7iWwAl3RURERERERERKoBsszRMpHrYfS2LssgMAvNezEb1bVHLsRKs2GyQegrLVoahN6LrhW6MXOhbo+a1R443Mu7TZFYiIiIiIiIiISAGol4FIEZOVa+XZmVvItdm5q1EF7msZ5tgAPuM0TL4XxjaHbzpC1D+OO1dBRf0DC583ljuNgpqdzK1HRERERERERESkgBTCixQxHy/ez764VIJKefDmPQ0ce7KT+2BCRzj0p/H6+Eb47g6Y1h8SDjj23FeTdBxmDAJbLtS/F25+2tx6REREREREREREroFCeJEiZGNUIl+vPAjAmB6NCPT1cNzJDiyBbzpB4kEICIOBc6H5ELC4wJ5f4YsI+O05SEtwXA2Xk5MJ0wdA2kkIbgD3jCt6bXJERERERERERETyQSG8SBGRkW3luZnbsNmhZ7NK3FYv2DEnstthzXj4qTdkJUFYJDy8HKq3h26fwGOroVYXYwT6+gnwaRP460PIyXBMPZeq79dn4MQm8C4DfX8yJiIVEREREREREREphhTCixQR7y7aw+GENCoEePFat3qOOUluNvzyJCx6Eew2aDIABs+HUuUubFO+Dtw/HQb/AhUaQ3YKLH0DPm8OW6Yak7g60rqvYesUY0R+7++hTBXHnk9ERERERERERMSBFMKLFAH/HEzg+3+OAPBuz0YEeLsX/knSTsGk7rDpRyPgvv2/cM9YcPO89PZV28HDf0KPCUa7muTjMPdR+LrdhR7yhe3wX7DoJWP5tjeh2q2OOY+IiIiIiIiIiIiTKIQXMVlKZg7/mbkNgP4RlWlXq9xV9rgGcbtgQnuI+hs8/KDfdLhpxNX7rLu4QKP7YMQG6DQaPP0hdjv8eA9M7mUct7CciYaZg8FuhYb3QevhhXdsERERERERERERkyiEFzHZf3/bzfEzGYQFevPynXUL/wR7F8HE2+BMlNHa5aElUOv2gh3D3QvaPA1PboGIR8HFDQ4shi9vhvlPQErs9dWYnQ7T+kP6KaMFzt2faSJWEREREREREREpERTCi5ho+d54pq0/isUCH/RqjK+nW+Ed3G6Hvz+FqX0hOxWqtDUmYC1f59qP6VsW7ngXhq+DuncbfeU3/QifNYXlYyAr9drq/OVJiN0GPkHQ5ydw9772GkVERERERERERIoQhfAiJjmTns0Ls4w2NA/eXJWIamUL7+C5WTD3MVj8GmCH5kNg4BzwCSyc45etDn0mwYO/Q6WWkJMOK96Bz5vBxu/Bmpv/Y60eC9tngsUV7vsBSocVTo0iIiIiIiIiIiJFgEJ4EZO8Pn8n8SlZVCvny3861y68A6fGw/ddYetUI9i+433o+jG4OmCy18qRMHQx9P7BaHWTGge/PAVftoF9fxij3K/k4PKzNwqALu9AlTaFX6OIiIiIiIiIiIiJFMKLmGDRjhjmbjmBiwU+uq8JXu6uhXPgmG3wdXs4tg68AmDALIgY5tj+6hYL1O8Ow9cbQbp3GTi5G6b0NiZwjdl66f0SD8OsIUZLmyYDoNXDjqtRRERERERERETEJArhRZwsITWL/5uzA4DHbq1Ok7DShXPgXfPh286QfAzK1oCHlkH1DoVz7Pxw84DIx+DJzXDTk+DqAYdXwFe3wJxHIenYhW2z04yJWDNOQ8XmcNeHmohVRERERERERERKJIXwIk5kt9t5Zc4OTqVlUyfEjyc71iyMg8KK92HGQKM3e/UO8NASCKpx/ce+Ft5l4PY3YcQGaNgbsButcT5vDktGQ2YSzH0c4neCb3noMxncvcypVURERERERERExMEsdvvVmjaXLMnJyQQEBJCUlIS/v7/Z5cgNZu7m4zw9fQvurhbmDW9DvdDr/DuYkwHzhsOOn43XEY/C7f8FV7frL7awHN8Ef7wKUauM1+4+xs0CF3d44Fejr7yIiIiIiIiIiEgxUpCcWSPhRZwkLjmT1+YZbWie7FDz+gP45Bj47g4jgHdxg66fwB3vFq0AHqBiMyNs7zsVgmoZATzAne8pgBcRERERERERkRKviKV1IiWT3W7nhZ+3kZyZS+NKATx2a/XrO+DxjUZP9ZQYo/3LfZOgatvCKdYRLBaocyfUvB22zzReN+5rdlUiIiIiIiIiIiIOpxBexAmmrz/Kn3tP4uHmwof3NcbN9ToeQtk+y2hBk5sJ5epAv2kQWLXwinUkVzdo0s/sKkRERERERERERJxGIbyIgx1NTOfNX3cB8Hzn2tQo73dtB7LZ4M+3YeX7xuuanaHnN+CluQ1ERERERERERESKKoXwIg5ks9l5ftY20rKttKxShiE3X+OI9ew0mPMI7P7FeH3TE9BpNLi4Fl6xIiIiIiIiIiIiUugUwos40I+rj7D60Cm83V35oHdjXF0sBT/ImaMwrR/EbgdXD2MC1qb9C71WERERERERERERKXwK4UUc5NDJVN5ZtAeAl++qS3hZ34IdwJoL0ath1oOQFg++5aDPZKgc6YBqRURERERERERExBEUwos4gNVm57mZW8nMsdG2ZhADIipfesOcDDh9BBIPw+nDkHjowvKZaLDlGtsFN4R+U6D0ZY4jIiIiIiIiIiIiRZJCeBEHmPDXITZFn8HP04337grHErPFCNcTD50N248YyyknrnwgNy+odw/c9RF4lnJG6SIiIiIiIiIiIlKIFMKLXC+7HVLjzwfsCUf3UHH9euZ6xFHX4xSeX5658v6eARBYBQKrQZmqxn8DqxrLfhXAxcUZn0JEREREREREREQcQCG8SEGd2Aw7Zv+rdcwRyEk7/3YQ0O1cbp5z9r++5fOG6+eWA6uBdxmwXMOErSIiIiIiIiIiIlLkFYkQfty4cbz//vvExsbSuHFjPv/8c1q1anXJbSdMmMCPP/7Ijh07AGjevDlvv/32ZbcXKTS52bDiXVj1Edhted+zuIB/JaIJZtUpP+LcQ3mwWwcCQmsZobtayYiIiIiIiIiIiNyQTA/hp0+fzsiRI/nyyy+JiIjgk08+oXPnzuzdu5fy5ctftP2ff/5Jv379uOmmm/Dy8uLdd9/l9ttvZ+fOnVSsWNGETyA3hPg9MGcYxGw1XtfpClXbXRjVXroy22MzuPeLv8m12fm8d1MCGoeaW7OIiIiIiIiIiIiYzmK32+1mFhAREUHLli0ZO3YsADabjbCwMJ544glefPHFq+5vtVopU6YMY8eOZdCgQVfdPjk5mYCAAJKSkvD397/u+qWEs9lg7XhYMhqsWUbrmK4fQ/1782yWlWul2+er2BeXyl2NKjDu/mYmFSwiIiIiIiIiIiKOVpCc2dSR8NnZ2WzcuJGXXnrp/DoXFxc6derE6tWr83WM9PR0cnJyCAwMvOT7WVlZZGVlnX+dnJx8fUXLjeNMNMx9HI78ZbyucRvcMxb8Qi7a9OPF+9kXl0pQKU/evKeBkwsVERERERERERGRosrl6ps4TkJCAlarleDg4Dzrg4ODiY2NzdcxXnjhBUJDQ+nUqdMl3x8zZgwBAQHnv8LCwq67binh7HbYMgXG32wE8O4+xuj3/jMvGcBvjErk65UHARjToyGBvh7OrlhERERERERERESKKFND+Ov1zjvvMG3aNObMmYOXl9clt3nppZdISko6/3X06FEnVynFSloCTB8Acx+DrGSo1AoeXQUtHgSL5aLNM7KtPDdzGzY79GxWidvqBV/ioCIiIiIiIiIiInKjMrUdTVBQEK6ursTFxeVZHxcXR0jIxSOO/+2DDz7gnXfeYcmSJTRq1Oiy23l6euLp6Vko9UoJt3cRzH8C0uLBxR3avwQ3PQWul/9n8u6iPRxOSKNCgBevdavnxGJFRERERERERESkODB1JLyHhwfNmzdn6dKl59fZbDaWLl1K69atL7vfe++9x5tvvsmiRYto0aKFM0qVkiwrxQjfp/YxAvhydeHhZdD22SsG8P8cTOD7f44A8G7PRgR4uzupYBERERERERERESkuTB0JDzBy5EgGDx5MixYtaNWqFZ988glpaWkMGTIEgEGDBlGxYkXGjBkDwLvvvstrr73GlClTqFKlyvne8aVKlaJUqVKmfQ4ppqJWw5xH4EwUYIHWw6HDq+B+6fZG56Rk5vCfmdsA6B9RmXa1yjmhWBERERERERERESluTA/h+/Tpw8mTJ3nttdeIjY2lSZMmLFq06PxkrdHR0bi4XBiwP378eLKzs+nVq1ee44waNYrXX3/dmaVLcZabBcv/C39/BtghoDLcOx6qtMnX7v/9bTfHz2QQFujNy3fWdWytIiIiIiIiIiIiUmxZ7Ha73ewinCk5OZmAgACSkpLw9/c3uxwxQ+wOY/R73A7jdZMB0GUMeF3+74Pdbic+JYuoU+lsij7NOwv3YLHAtIcjiahW1kmFi4iIiIiIiIiISFFQkJzZ9JHwIk5js8I/nxsj4K3Z4BME3T6Ful0ByLXaOHEmkyOn0ohKTCf6VBpHTqUTfSqdqMQ0MnNseQ734M1VFcCLiIiIiIiIiIjIFSmElxtD4mGY+xhErwYgPrQjf1R/mb17vYhavY6oU2kcP51Bru3yD4a4WKBiGW+qlPWlWeUyPHZrdWdVLyIiIiIiIiIiIsWUQngpcZIycog+lc6RU2lEn0oj+MAM7or5HG97Bql2L0bnDmLmoVvgUNxF+3q6uVA50Ifwsj6El/UlvKwPlQN9qFLWl4plvHF3dbnEGUVEREREREREREQuTSG8OExqVi7vLdrDlqNnnHK+XKudmKQMTqfnABBEEmPcJ3Cb6yYA1trq8GzOoyR5htIwxJfKZX0IPxuwVy5rBO/Bfl64uFicUq+IiIiIiIiIiIiUfArhxSG2H0viiambOHIq3ZTz9/bdwiu2LwmwJ2O1uLO73lN4tnqcX4L8KO3jjsWioF1EREREREREREQcTyG8FCq73c63fx/hnYW7ybHaqVjam+e71Mbfy93xJ7dAqGc21Ta+ifv2aca64Ia49viKBsH1HX9+ERERERERERERkf+hEF4Kzem0bP4zaytLdscD0Ll+MO/2bERpHw/nFHB4Jcx5HJKOgsUFbn4abn0R3Dydc34RERERERERERGR/6EQXgrFusOJPDl1M7HJmXi4uvBK17oMjAx3bNuX7DQ4sgoOLoMDS+HUfmN9mSpw71dQOdJx5xYRERERERERERHJB4Xwcl2sNjvjlh/gkyX7sNmhWpAvn9/flPqhAYV/MrsdYrcbofvBpRC9BqzZF963uEKzQXD7W+BZqvDPLyIiIiIiIiIiIlJACuHlmsUlZ/L0tC2sPnQKgB7NKvLmPQ3w9SzEv1apJ8+G7me/0uLzvl+6MlTvCNU7QNV24F268M4tIiIiIiIiIiIicp0Uwss1Wb43nudmbOVUWjY+Hq68eU8DejavdP0Hzs2Go2sutJiJ3Zb3fXdfqNrWCN2rd4Sy1cGRLW9EREREREREREREroNCeCmQ7FwbH/yxl69XHgKgbgV/xt7flOrlrrH9i90Opw5eaDFz+C/IScu7TUgjI3Sv0RHCIjTRqoiIiIiIiIiIiBQbCuEl36JPpfPEtM1sPXoGgMGtw3npzrp4ubsW7ECZSXB4pTHS/eBSOBOd933fchdGuldvD6XKF84HEBEREREREREREXEyhfCSL79ti+HFn7eRkpWLv5cb7/VqTJcGIfnb2WaFE1uMwP3AUji2HuzWC++7uEPlSGOke/WOENwAXFwc8jlEREREREREREREnEkhvFxRZo6VN37dxZS1xmj15uFl+LRvEyqV8bnyjknHL7SYOfQnZJzO+37ZGkbgXqMjVGkDHr6O+QAiIiIiIiIiIiIiJlIIL5e1Py6FEVM2szcuBYsFHrulOs/cVgt310uMUs/JgKi/4cDZ4P3knrzvewZAtXZnW8x0gDLhzvkQIiIiIiIiIiIiIiZSCC8XsdvtzNxwjNfm7yAzx0ZQKU8+7tOYtjXL/XsjiN99ocVM1D9gzbrwvsUFQpudbTHTASq2AFf9dRMREREREREREZEbi1JRySMlM4f/m7OD+VtPANC2ZhAf3teY8n5ekHYKDi0/22ZmGaTE5N3Zv6IRuNfoCFVvAZ9AEz6BiIiIiIiIiIiISNGhEF7O234siRFTNxF1Kh1XFwv/6VSVYVUTcVn3vjHi/cQWwH5hBzdvqHLzhd7uQbXAYjGrfBEREREREREREZEiRyG8YLfb+fbvI7yzcDcVbLEML7WHh0MPUXrNGliZknfj8vWhRgcjeK/cGty9zClaREREREREREREpBhQCH+DO306kUlTJ1H6xF8sdt1GFfc4yAWiz27gUxaqtTdGuldrD/4VzCxXREREREREREREpFhRCH8jit0O+34neefv+MVt5Ems5/8m2F3csIRFXOjtHtIYXFzMrVdERERERERERESkmFIIfwOyr3gfy+55+J99fdwSgnfd2wlsdAeWqm3B08/U+kRERERERERERERKCoXwNxi73c43CfUItx5jpa0R3nVv4+nenfH11F8FERERERERERERkcKm5PUGY7FYCIwcwNPzmvBmjwb0bF7J7JJERERERERERERESiyF8Degns0r0bZmEOX9vcwuRURERERERERERKRE04ybNygF8CIiIiIiIiIiIiKOpxBeRERERERERERERMRBFMKLiIiIiIiIiIiIiDiIQngREREREREREREREQdRCC8iIiIiIiIiIiIi4iAK4UVEREREREREREREHEQhvIiIiIiIiIiIiIiIgyiEFxERERERERERERFxEIXwIiIiIiIiIiIiIiIOohBeRERERERERERERMRBFMKLiIiIiIiIiIiIiDiIQngREREREREREREREQdRCC8iIiIiIiIiIiIi4iAK4UVEREREREREREREHEQhvIiIiIiIiIiIiIiIgyiEFxERERERERERERFxEIXwIiIiIiIiIiIiIiIOohBeRERERERERERERMRBFMKLiIiIiIiIiIiIiDiIQngREREREREREREREQdRCC8iIiIiIiIiIiIi4iAK4UVEREREREREREREHEQhvIiIiIiIiIiIiIiIgyiEFxERERERERERERFxEIXwIiIiIiIiIiIiIiIOohBeRERERERERERERMRBFMKLiIiIiIiIiIiIiDiIQngREREREREREREREQdRCC8iIiIiIiIiIiIi4iAK4UVEREREREREREREHEQhvIiIiIiIiIiIiIiIgyiEFxERERERERERERFxEIXwIiIiIiIiIiIiIiIOohBeRERERERERERERMRBFMKLiIiIiIiIiIiIiDiIQngREREREREREREREQcpEiH8uHHjqFKlCl5eXkRERLBu3borbj9z5kzq1KmDl5cXDRs2ZMGCBU6qVEREREREREREREQk/0wP4adPn87IkSMZNWoUmzZtonHjxnTu3Jn4+PhLbv/PP//Qr18/hg4dyubNm+nevTvdu3dnx44dTq5cREREREREREREROTKLHa73W5mAREREbRs2ZKxY8cCYLPZCAsL44knnuDFF1+8aPs+ffqQlpbGr7/+en5dZGQkTZo04csvv7zq+ZKTkwkICCApKQl/f//C+yAiIiIiIiIiIiIickMoSM5s6kj47OxsNm7cSKdOnc6vc3FxoVOnTqxevfqS+6xevTrP9gCdO3e+7PYiIiIiIiIiIiIiImZxM/PkCQkJWK1WgoOD86wPDg5mz549l9wnNjb2ktvHxsZecvusrCyysrLOv05KSgKMOxUiIiIiIiIiIiIiIgV1Ll/OT6MZU0N4ZxgzZgyjR4++aH1YWJgJ1YiIiIiIiIiIiIhISZGSkkJAQMAVtzE1hA8KCsLV1ZW4uLg86+Pi4ggJCbnkPiEhIQXa/qWXXmLkyJHnX9tsNhITEylbtiwWi+U6P0HxlJycTFhYGEePHlVffBG5JF0nRORqdJ0QkavRdUJErkbXCRG5mqJ8nbDb7aSkpBAaGnrVbU0N4T08PGjevDlLly6le/fugBGSL126lBEjRlxyn9atW7N06VKefvrp8+sWL15M69atL7m9p6cnnp6eedaVLl26MMov9vz9/YvcX14RKVp0nRCRq9F1QkSuRtcJEbkaXSdE5GqK6nXiaiPgzzG9Hc3IkSMZPHgwLVq0oFWrVnzyySekpaUxZMgQAAYNGkTFihUZM2YMAE899RS33HILH374IXfddRfTpk1jw4YNfP3112Z+DBERERERERERERGRi5gewvfp04eTJ0/y2muvERsbS5MmTVi0aNH5yVejo6NxcXE5v/1NN93ElClTeOWVV3j55ZepWbMmc+fOpUGDBmZ9BBERERERERERERGRSzI9hAcYMWLEZdvP/Pnnnxet6927N71793ZwVSWXp6cno0aNuqhNj4jIObpOiMjV6DohIlej64SIXI2uEyJyNSXlOmGx2+12s4sQERERERERERERESmJXK6+iYiIiIiIiIiIiIiIXAuF8CIiIiIiIiIiIiIiDqIQXkRERERERERERETEQRTCi4iIiIiIiIiIiIg4iEL4G9C4ceOoUqUKXl5eREREsG7dOrNLEhGTrFy5km7duhEaGorFYmHu3Ll53rfb7bz22mtUqFABb29vOnXqxP79+80pVkRMMWbMGFq2bImfnx/ly5ene/fu7N27N882mZmZDB8+nLJly1KqVCl69uxJXFycSRWLiLONHz+eRo0a4e/vj7+/P61bt2bhwoXn39c1QkT+7Z133sFisfD000+fX6frhIi8/vrrWCyWPF916tQ5/35xv04ohL/BTJ8+nZEjRzJq1Cg2bdpE48aN6dy5M/Hx8WaXJiImSEtLo3HjxowbN+6S77/33nt89tlnfPnll6xduxZfX186d+5MZmamkysVEbOsWLGC4cOHs2bNGhYvXkxOTg633347aWlp57d55pln+OWXX5g5cyYrVqzgxIkT9OjRw8SqRcSZKlWqxDvvvMPGjRvZsGEDHTp04J577mHnzp2ArhEicsH69ev56quvaNSoUZ71uk6ICED9+vWJiYk5/7Vq1arz7xX364TFbrfbzS5CnCciIoKWLVsyduxYAGw2G2FhYTzxxBO8+OKLJlcnImayWCzMmTOH7t27A8Yo+NDQUJ599lmee+45AJKSkggODub777+nb9++JlYrImY5efIk5cuXZ8WKFbRr146kpCTKlSvHlClT6NWrFwB79uyhbt26rF69msjISJMrFhEzBAYG8v7779OrVy9dI0QEgNTUVJo1a8YXX3zBW2+9RZMmTfjkk0/0s4SIAMZI+Llz57Jly5aL3isJ1wmNhL+BZGdns3HjRjp16nR+nYuLC506dWL16tUmViYiRdHhw4eJjY3Nc80ICAggIiJC1wyRG1hSUhJgBGwAGzduJCcnJ8+1ok6dOlSuXFnXCpEbkNVqZdq0aaSlpdG6dWtdI0TkvOHDh3PXXXfluR6AfpYQkQv2799PaGgo1apVo3///kRHRwMl4zrhZnYB4jwJCQlYrVaCg4PzrA8ODmbPnj0mVSUiRVVsbCzAJa8Z594TkRuLzWbj6aef5uabb6ZBgwaAca3w8PCgdOnSebbVtULkxrJ9+3Zat25NZmYmpUqVYs6cOdSrV48tW7boGiEiTJs2jU2bNrF+/fqL3tPPEiICRveO77//ntq1axMTE8Po0aNp27YtO3bsKBHXCYXwIiIiIpIvw4cPZ8eOHXl6M4qIANSuXZstW7aQlJTErFmzGDx4MCtWrDC7LBEpAo4ePcpTTz3F4sWL8fLyMrscESmi7rjjjvPLjRo1IiIigvDwcGbMmIG3t7eJlRUOtaO5gQQFBeHq6nrRzMFxcXGEhISYVJWIFFXnrgu6ZogIwIgRI/j1119Zvnw5lSpVOr8+JCSE7Oxszpw5k2d7XStEbiweHh7UqFGD5s2bM2bMGBo3bsynn36qa4SIsHHjRuLj42nWrBlubm64ubmxYsUKPvvsM9zc3AgODtZ1QkQuUrp0aWrVqsWBAwdKxM8TCuFvIB4eHjRv3pylS5eeX2ez2Vi6dCmtW7c2sTIRKYqqVq1KSEhInmtGcnIya9eu1TVD5AZit9sZMWIEc+bMYdmyZVStWjXP+82bN8fd3T3PtWLv3r1ER0frWiFyA7PZbGRlZekaISJ07NiR7du3s2XLlvNfLVq0oH///ueXdZ0Qkf+VmprKwYMHqVChQon4eULtaG4wI0eOZPDgwbRo0YJWrVrxySefkJaWxpAhQ8wuTURMkJqayoEDB86/Pnz4MFu2bCEwMJDKlSvz9NNP89Zbb1GzZk2qVq3Kq6++SmhoKN27dzevaBFxquHDhzNlyhTmzZuHn5/f+Z6LAQEBeHt7ExAQwNChQxk5ciSBgYH4+/vzxBNP0Lp1ayIjI02uXkSc4aWXXuKOO+6gcuXKpKSkMGXKFP78809+//13XSNEBD8/v/NzyZzj6+tL2bJlz6/XdUJEnnvuObp160Z4eDgnTpxg1KhRuLq60q9fvxLx84RC+BtMnz59OHnyJK+99hqxsbE0adKERYsWXTTxoojcGDZs2ED79u3Pvx45ciQAgwcP5vvvv+f5558nLS2NYcOGcebMGdq0acOiRYvUy1HkBjJ+/HgAbr311jzrv/vuOx544AEAPv74Y1xcXOjZsydZWVl07tyZL774wsmViohZ4uPjGTRoEDExMQQEBNCoUSN+//13brvtNkDXCBG5Ol0nROTYsWP069ePU6dOUa5cOdq0acOaNWsoV64cUPyvExa73W43uwgRERERERERERERkZJIPeFFRERERERERERERBxEIbyIiIiIiIiIiIiIiIMohBcRERERERERERERcRCF8CIiIiIiIiIiIiIiDqIQXkRERERERERERETEQRTCi4iIiIiIiIiIiIg4iEJ4EREREREREREREREHUQgvIiIiIiKFwmKxMHfuXLPLEBEREREpUhTCi4iIiIiUAA888AAWi+Wiry5duphdmoiIiIjIDc3N7AJERERERKRwdOnShe+++y7POk9PT5OqERERERER0Eh4EREREZESw9PTk5CQkDxfZcqUAYxWMePHj+eOO+7A29ubatWqMWvWrDz7b9++nQ4dOuDt7U3ZsmUZNmwYqampebb59ttvqV+/Pp6enlSoUIERI0bkeT8hIYF7770XHx8fatasyfz58x37oUVEREREijiF8CIiIiIiN4hXX32Vnj17snXrVvr370/fvn3ZvXs3AGlpaXTu3JkyZcqwfv16Zs6cyZIlS/KE7OPHj2f48OEMGzaM7du3M3/+fGrUqJHnHKNHj+a+++5j27Zt3HnnnfTv35/ExESnfk4RERERkaLEYrfb7WYXISIiIiIi1+eBBx5g8uTJeHl55Vn/8ssv8/LLL2OxWHj00UcZP378+fciIyNp1qwZX3zxBRMmTOCFF17g6NGj+Pr6ArBgwQK6devGiRMnCA4OpmLFigwZMoS33nrrkjVYLBZeeeUV3vz/du7flfo+jAP4+9wxOH4MOtHZbKdjYGEQi0w2xSadVepksTu6d/4CoyiDEYPxlExM+AckRikWnuEppbuenp6eL+H1mj4/vn27rvXdp+v37yR/B/s9PT05PDw0mx4AgB/LTHgAAPgmpqen34XsSdLf3/+2npiYeHc3MTGR8/PzJMnl5WVGR0ffAvgkmZyczMvLS66vr1MqlXJzc5OZmZl/rGFkZORt3d3dnb6+vtzd3f3XlgAA4MsTwgMAwDfR3d39x3iY/0tXV9e/+q6zs/PdvlQq5eXlpYiSAADgSzATHgAAfojT09M/9vV6PUlSr9dzcXGRx8fHt/t2u51fv36lVqult7c3Q0NDOTk5+dCaAQDgq/MSHgAAvonn5+fc3t6+O+vo6EilUkmS7O/vZ2xsLFNTU9nZ2cnZ2Vm2t7eTJIuLi1lfX0+j0Uir1cr9/X2azWaWlpYyODiYJGm1WlleXs7AwEBmZ2fz8PCQdrudZrP5sY0CAMAXIoQHAIBv4ujoKNVq9d1ZrVbL1dVVkmRjYyN7e3tZWVlJtVrN7u5uhoeHkyTlcjnHx8dZXV3N+Ph4yuVy5ufns7m5+favRqORp6enbG1tZW1tLZVKJQsLCx/XIAAAfEGl19fX188uAgAAKFapVMrBwUHm5uY+uxQAAPhRzIQHAAAAAICCCOEBAAAAAKAgZsIDAMAPYAolAAB8Di/hAQAAAACgIEJ4AAAAAAAoiBAeAAAAAAAKIoQHAAAAAICCCOEBAAAAAKAgQngAAAAAACiIEB4AAAAAAAoihAcAAAAAgIII4QEAAAAAoCB/AXqk+LBnhgu3AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def plot_history(history):\n", " \"\"\"\n", " Plotting training and validation learning curves.\n", "\n", " Args:\n", " history: model history with all the metric measures\n", " \"\"\"\n", " fig, (ax1, ax2) = plt.subplots(2)\n", "\n", " fig.set_size_inches(18.5, 10.5)\n", "\n", " # Plot loss\n", " ax1.set_title('Loss')\n", " ax1.plot(history.history['loss'], label = 'train')\n", " ax1.plot(history.history['val_loss'], label = 'test')\n", " ax1.set_ylabel('Loss')\n", " \n", " # Determine upper bound of y-axis\n", " max_loss = max(history.history['loss'] + history.history['val_loss'])\n", "\n", " ax1.set_ylim([0, np.ceil(max_loss)])\n", " ax1.set_xlabel('Epoch')\n", " ax1.legend(['Train', 'Validation']) \n", "\n", " # Plot accuracy\n", " ax2.set_title('Accuracy')\n", " ax2.plot(history.history['accuracy'], label = 'train')\n", " ax2.plot(history.history['val_accuracy'], label = 'test')\n", " ax2.set_ylabel('Accuracy')\n", " ax2.set_ylim([0, 1])\n", " ax2.set_xlabel('Epoch')\n", " ax2.legend(['Train', 'Validation'])\n", "\n", " plt.show()\n", "\n", "plot_history(history)" ] }, { "cell_type": "markdown", "metadata": { "id": "EJrGF0Sss8E0" }, "source": [ "## 评估模型\n", "\n", "使用 Keras `Model.evaluate` 获取测试数据集的损失和准确率。\n", "\n", "注:本教程中的示例模型使用 UCF101 数据集的子集来保持合理的训练时间。通过进一步的超参数调优或更多的训练数据,可以改善准确率和损失。 " ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "execution": { "iopub.execute_input": "2023-11-07T18:58:08.702927Z", "iopub.status.busy": "2023-11-07T18:58:08.702421Z", "iopub.status.idle": "2023-11-07T18:58:20.180494Z", "shell.execute_reply": "2023-11-07T18:58:20.179734Z" }, "id": "Hev0hMCxOtfy" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/Unknown - 1s 839ms/step - loss: 0.6242 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/Unknown - 2s 955ms/step - loss: 1.2343 - accuracy: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/Unknown - 3s 881ms/step - loss: 1.1846 - accuracy: 0.7083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/Unknown - 3s 821ms/step - loss: 0.9936 - accuracy: 0.7188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/Unknown - 4s 882ms/step - loss: 1.0584 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/Unknown - 5s 876ms/step - loss: 1.1583 - accuracy: 0.5625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/Unknown - 6s 887ms/step - loss: 1.0799 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/Unknown - 7s 907ms/step - loss: 1.0903 - accuracy: 0.6250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/Unknown - 8s 909ms/step - loss: 1.0572 - accuracy: 0.6528" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/Unknown - 9s 885ms/step - loss: 1.0455 - accuracy: 0.6625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/Unknown - 10s 902ms/step - loss: 1.0156 - accuracy: 0.6591" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/Unknown - 11s 921ms/step - loss: 0.9863 - accuracy: 0.6771" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/Unknown - 11s 884ms/step - loss: 0.9717 - accuracy: 0.6800" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/13 [==============================] - 11s 885ms/step - loss: 0.9717 - accuracy: 0.6800\n" ] }, { "data": { "text/plain": [ "{'loss': 0.9717392921447754, 'accuracy': 0.6800000071525574}" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.evaluate(test_ds, return_dict = True)" ] }, { "cell_type": "markdown", "metadata": { "id": "-F73GxD1-yc8" }, "source": [ "要进一步呈现模型性能,请使用[混淆矩阵](https://tensorflow.google.cn/api_docs/python/tf/math/confusion_matrix)。混淆矩阵允许评估分类模型的性能,而不仅仅是准确率。为了构建此多类分类问题的混淆矩阵,需要获得测试集中的实际值和预测值。 " ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "execution": { "iopub.execute_input": "2023-11-07T18:58:20.183927Z", "iopub.status.busy": "2023-11-07T18:58:20.183613Z", "iopub.status.idle": "2023-11-07T18:58:20.188339Z", "shell.execute_reply": "2023-11-07T18:58:20.187653Z" }, "id": "Yw-6rG5V-0L-" }, "outputs": [], "source": [ "def get_actual_predicted_labels(dataset): \n", " \"\"\"\n", " Create a list of actual ground truth values and the predictions from the model.\n", "\n", " Args:\n", " dataset: An iterable data structure, such as a TensorFlow Dataset, with features and labels.\n", "\n", " Return:\n", " Ground truth and predicted values for a particular dataset.\n", " \"\"\"\n", " actual = [labels for _, labels in dataset.unbatch()]\n", " predicted = model.predict(dataset)\n", "\n", " actual = tf.stack(actual, axis=0)\n", " predicted = tf.concat(predicted, axis=0)\n", " predicted = tf.argmax(predicted, axis=1)\n", "\n", " return actual, predicted" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "execution": { "iopub.execute_input": "2023-11-07T18:58:20.191136Z", "iopub.status.busy": "2023-11-07T18:58:20.190922Z", "iopub.status.idle": "2023-11-07T18:58:20.195714Z", "shell.execute_reply": "2023-11-07T18:58:20.195108Z" }, "id": "aln6qWW_-2dk" }, "outputs": [], "source": [ "def plot_confusion_matrix(actual, predicted, labels, ds_type):\n", " cm = tf.math.confusion_matrix(actual, predicted)\n", " ax = sns.heatmap(cm, annot=True, fmt='g')\n", " sns.set(rc={'figure.figsize':(12, 12)})\n", " sns.set(font_scale=1.4)\n", " ax.set_title('Confusion matrix of action recognition for ' + ds_type)\n", " ax.set_xlabel('Predicted Action')\n", " ax.set_ylabel('Actual Action')\n", " plt.xticks(rotation=90)\n", " plt.yticks(rotation=0) \n", " ax.xaxis.set_ticklabels(labels)\n", " ax.yaxis.set_ticklabels(labels)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "execution": { "iopub.execute_input": "2023-11-07T18:58:20.198612Z", "iopub.status.busy": "2023-11-07T18:58:20.198398Z", "iopub.status.idle": "2023-11-07T18:58:20.201637Z", "shell.execute_reply": "2023-11-07T18:58:20.201070Z" }, "id": "tfQ3VAGd-4Az" }, "outputs": [], "source": [ "labels = ['ApplyEyeMakeup', 'ApplyLipstick', 'Archery', 'BabyCrawling', 'BalanceBeam',\n", " 'BandMarching', 'BaseballPitch', 'Basketball', 'BasketballDunk', 'BenchPress']" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "execution": { "iopub.execute_input": "2023-11-07T18:58:20.204310Z", "iopub.status.busy": "2023-11-07T18:58:20.204073Z", "iopub.status.idle": "2023-11-07T18:59:25.676416Z", "shell.execute_reply": "2023-11-07T18:59:25.675772Z" }, "id": "1ucGpbiA-5qi" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/Unknown - 2s 2s/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/Unknown - 3s 942ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/Unknown - 4s 925ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/Unknown - 5s 907ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/Unknown - 5s 904ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/Unknown - 6s 908ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/Unknown - 7s 922ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/Unknown - 8s 942ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/Unknown - 9s 932ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/Unknown - 10s 923ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/Unknown - 11s 921ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/Unknown - 12s 923ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/Unknown - 13s 923ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 14/Unknown - 14s 930ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/Unknown - 15s 921ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/Unknown - 16s 932ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17/Unknown - 17s 925ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/Unknown - 18s 925ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/Unknown - 18s 925ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/Unknown - 19s 922ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/Unknown - 20s 921ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/Unknown - 21s 923ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 23/Unknown - 22s 920ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/Unknown - 23s 921ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/Unknown - 24s 921ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/Unknown - 25s 922ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/Unknown - 26s 923ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/Unknown - 27s 920ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 29/Unknown - 28s 918ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/Unknown - 28s 919ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/Unknown - 29s 917ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/Unknown - 30s 916ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/Unknown - 31s 918ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/Unknown - 32s 923ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/Unknown - 33s 920ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/Unknown - 34s 921ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/Unknown - 35s 923ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/Unknown - 35s 910ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/38 [==============================] - 36s 912ms/step\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAI0CAYAAACj07nSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD9cUlEQVR4nOzdd1gU19fA8e/SO4iCYK+AGsFeYuwae4uJCVZiSdQYYxSjxorGEmPXVCWixhZNYowl+dnQaGLsFbti7woICgI77x+8bFzp7sIM8Xx89nlkdsrZO3Nnz947c0enKIqCEEIIIYQQL8hC7QCEEEIIIUT+JgmlEEIIIYQwiSSUQgghhBDCJJJQCiGEEEIIk0hCKYQQQgghTCIJpRBCCCGEMIkklEIIIYQQwiSSUAohhBBCCJNIQimEEEIIIUwiCWU+p9frmT17NpUrV8be3h6dTodOp1MlltRtR0ZGqrJ98a/8tC9OnTrFm2++iaenJ5aWluh0OiZMmKB2WC8kP5W7MM2ECRPQ6XQEBQW90PKNGjVCp9MRFhZm1rhyS1RUFB9++CGlSpXC2toanU5Ho0aN1A5LM0qVKoVOpyM8PNxs6wwLC8tX5WyldgBadOHCBRYtWsT27du5dOkSDx8+xMHBgVKlSvHqq68SGBhIgwYN1A4TgIkTJxISEoJOp6NSpUq4urqqHZJ4QalJ1JAhQ3Bzc1M1lrxy79496tevz/379ylYsCA1a9bEysqKEiVKqB2akcjISMLCwnBzc2PIkCFqhyM07r9Ylzt27MjOnTuxt7fH398fe3t7KleurHZYREVFMWfOHIB8+0P0v0ISymckJyczcuRI5syZQ1JSEgClS5emVKlSPHr0iLNnz3Ls2DG++eYbGjRowM6dO1WNV1EUvvzySwBWrVpFly5dVI3H19cXAGtra1XjyK9CQkIACAoKMvlLKL/si1WrVnH//n2qVavGnj17sLOzUzukdEVGRhISEkLJkiUzTSjzS7kL0xUqVAhfX1+8vb3TvJedulyiRAl8fX3zRSPAiRMnDMlkREQEpUqVUjskg6ioKEN5q5lQli1bFjs7OxwcHMy2TldXV3x9fTX3AzsjklD+P0VReOutt/jll1+wsbFh7NixDBw4EC8vL8M8jx8/ZvPmzUydOpVdu3apGG2Ku3fvcu/ePQDatm2rcjRw+vRptUMQ/y+/7IuIiAgAmjZtqtlkMifyS7kL0w0aNIhBgwa98PJLly41YzS5K7WevvLKK5pKJrVk27ZtZl9np06d6NSpk9nXm1skofx/M2fO5JdffsHa2prNmzfTpEmTNPM4ODjQuXNn3njjDSZPnqxClMaePHli+L85fxUJkVdSj2E5foXQLqmnIlsUocTGxiru7u4KoIwePfqF16PX65UVK1YozZo1U9zd3RVra2ulaNGiSmBgoHLw4MF0l1m8eLECKA0bNjT8XatWLcXR0VFxdnZWGjVqpPzvf/8zWubSpUsKkOFr/Pjx6a47PQ0bNlQAZfHixWne27Ztm9KxY0fF29tbsbKyUlxcXJQyZcooHTt2VEJDQ9PMn7r9S5cupbutzZs3K+3atVM8PT0Va2trpXDhwkqHDh2Ubdu2pTv/jh07FEApWbKkoiiK8uuvvyoNGzZUXF1dFQcHB6VWrVrKypUrM/xsmXk21n/++Udp166dUrBgQcXR0VGpU6eOsmHDBsO8N27cUD744AOlRIkSio2NjVK2bFnls88+U5KSktKsV6/XK5s2bVI++OADpUqVKkqhQoUUGxsbpUiRIkrnzp2VXbt2pVlm/Pjx2dqfiqIoJUuWVABlx44dyunTp5WePXsqRYsWVaysrJRevXql+/lSHTp0SLGxsVEA5eeff063XHr06KEAStWqVZX4+PgclWlERITy7rvvKiVLllRsbGwUNzc3pUGDBsrChQvTlFWvXr0y/czZkZCQoPz000/Ku+++q7zyyitKgQIFFFtbW6VkyZJKjx49lKNHj2a6/OPHj5W5c+cqDRo0UNzd3RUbGxulePHiSvPmzZWvv/7a8PlT60hGrx07dhjWmZ/rQOfOnZXChQsrFhYWRsecoijK9u3blTfffFMpUqSIYm1trbi7uyuvv/66sm7duky3cePGDWXEiBFKQECA4uzsrNjb2yvlypVT3n77bWX9+vXpLpPTMkq1ZcsWpVmzZoqLi4vi5OSk1KpVSwkLC1MUxbjePCu17vXq1UtJSkpSZs2apVSuXFmxt7dX3NzclDZt2igHDhxId3vPLvv8tOzU5czOvYqSs/qU6tl9euzYMaVLly6Kp6enYmNjo/j4+CghISFKQkJCpuX4rNTvkOwc+4pi+vG9YsUKpUGDBkqBAgXSXf/zsjqPPFu22TneX+T8nSqjY+xFvuMzWjaj7V2+fFnp3bu3UqRIEcXGxkYpWbKkMnToUCU6OjrDeM+dO6d07dpV8fT0VGxtbRUfHx9l3LhxypMnTwzl+vx5ICuSUCqK8uOPPyqAYmFhody+ffuF1pGYmKi8+eabhoO2WLFiSo0aNRRXV1cFUCwtLZVvv/02zXLPHjC9e/dWAKV48eJKtWrVFEdHR0Ncz564b968qdSrV0+pUaOGYXv16tUzvFKTPVMSyoULFxrW7ebmpgQEBCj+/v6Gil60aNE068rsy/Sjjz4yvO/p6anUrFlTKVSokGHamDFj0izz7MkmJCREAZTChQsr1atXV9zc3AzLzp8/P8PPl5Fnl7W2tlYKFCigVK9e3fD5LCwslB9//FE5d+6cUrRoUcXW1lapVq2aUqxYMcOyAwcOTLPeR48eKYCi0+kUDw8Pxd/fXwkICDCsV6fTKV9//bXRMqGhoUq9evUM661Ro0a6+1NR/j2JTJkyRXFwcFBsbW2VqlWrKq+88ory7rvvZrkv5syZowBKgQIFlMuXLxu9t2TJEgVQHB0dlTNnzuSoPFevXm1IVh0dHZXq1asrpUuXNsTRvHlz5fHjx4b5J0+erNSrV0/x9PQ0HPPPfubsOH78uGFfeXl5KVWrVlUqVaqkODk5KYBiY2OTYdJy4cIFxc/PzxBfiRIllJo1aypFihRRdDqdUdkNGjRIeeWVVxRAsbW1NYqzXr16yqFDhwzrzY91YMaMGYqVlZXi5OSkVK9eXfHx8VEmTJigKErKF+yHH35omLdAgQJK1apVlcKFCxumDRo0KN31b968WXFxcTHsowoVKijVqlUz/HhPTSJMLSNFUZQvv/zS6HyVui8BZdiwYVkmlN26dVNef/11BVDKlSunBAQEKLa2tgqg2NvbK/v27UuzzfQSypzU5cwSypzWp1Sp73/77beKnZ2dYZ+mlgWgdO7cOd0yTM+mTZuUevXqKeXLl1cAxcXFJcNj39Tje8iQIYbjO3X/ZZVQTp48OcPvwXr16imbNm1KUzaZHe8vcv5OlZ2EMrvf8ektm9H25s6dq7i5uRm+o0qVKmU4h9WpU0dJTExMs+zevXsVZ2dnw3myWrVqiq+vrwIodevWVQIDAyWhfFGDBw9WAKVy5covvI4JEyYogOLg4GDU+hMfH68MHTrUkFTu3bvXaLnUA8ba2lopWLCg0S+V2NhYpVOnTgqglCpVStHr9UbLPttSmZ4XTSiTkpKUggULKoAyb968NAfkqVOnlLlz56ZZV0ZfpmFhYYbP//XXXyvJycmG7cycOdNw8K9Zs8ZoudSTjbW1tWJvb68sX77c8F5iYqIycOBABVCcnJyUmJiYDD9jelJjtba2ViZNmmT4jImJicq7775rqPS1atVSOnbsqNy/f9+wbGqyrdPplLNnzxqtNyEhQfn222+V69evG01PSkpSVq9erTg4OCjW1tbKlStXsl1+z0o9iVhaWipdu3ZVHj58aHjv2S+YzNbVrl07w8k39XOfOXPGkIiltupk16lTpxQ7OzsFUPr27avExsYa3tuyZYvhR9UHH3yQZtkX/SWsKIpy69YtZdmyZUb7RlFS6tyCBQsUS0tLxd3dXYmLizN6//Hjx0qFChUMdf75Fqjbt28rn3/+uXLnzh3DtOdbUjKSH+uApaWlMmzYMOXJkyeG91KPpc8//1yBlB/Iv/32m9Hyv//+u+EHwdKlS43eO3nypOLg4KAAyptvvpmmPpw8eVKZNm2aWcro6NGjipWVlQIow4cPN2qBCwsLU6ysrBRra+tME0pra2ulVKlSRsfC3bt3lVdffVUBlAYNGqQpv/QSyufLNrO6nFFCaUp9eva89sknnxjt0+XLlxvKcPv27RnGlZ6svktMPb4tLS0VW1tb5YcffjB8z+n1+mz1kmT1PZgqO8e7KefvrBLKF/mOz05CaW1trfTo0UOJiooyvLd161ZD/fv++++Nlnv8+LFh2WbNmhmd5/bt26d4eXkZ6osklC/gjTfeUAClQ4cOL7R8bGys4Zf49OnT052nfv36CqC0bdvWaPqzXQrLli1Ls9zNmzcNO/f5LrzcSihv3rxp+KWfExmdRMuWLatA+i16iqIo3bt3VwDllVdeMZqeerIBlEmTJqVZ7smTJ4qHh4cCKL/++usLxdq6des0792/f99wQi9cuLDy6NGjNPOk/iqeM2dOjrY7evRoBUjzZfpsTNlJKCtWrJjuL8/srOvevXtK0aJFFUi5xCMhIUGpWrWqAiktNTmV+qv7lVdeSXNCVBRFWbRokeHEd+PGDaP3TEkos9KtWzcFUFatWmU0fd68eQqgFCpUKNs9EqYmlFquA6+//nq67z948EBxcnJSLC0tlf3796c7z08//aQASoUKFYymp55TGzZsaEgusvKiZdSzZ08FUJo2bZruciNGjDB81owSSiDd7syDBw8afjw++4X97LLmTihNqU+p282oLFJ/TH788ccZxpWerL5LzHF8T548OUcxpcppQpnR8Z4dmZ2/s0ooX+Q7PjsJpZ+fn/L06dM076f2LHTq1Mlo+vfff68ASsGCBY0aJFJt3rzZEG9Oz8sysDkQExMDgJOT0wst/+effxITE4OdnR0DBgxId57g4GAAtm7dytOnT9O87+rqSrdu3dJM9/LyonTp0gCcP3/+heLLKU9PT+zt7YmOjmbTpk0mrev06dNcuHABgKFDh6Y7z/Dhw4GUoSmuXLmS7jwDBw5MM83Ozo6qVasCL1427733Xppp7u7uhjsZAwMD0z0uatSokel29+3bx6hRo+jYsSONGjXitdde47XXXuPHH38E4PDhwy8Ub6pevXphZfVi99QVLFiQ5cuXY2lpydSpU2nfvj2HDx+mbNmyfP311zleX+oxMmTIkHQH1e/Zsyeenp4kJiayZcuWF4o5M9u2bWPYsGG0a9eOhg0bGso6dSSG58v6p59+AqBfv354enqaPZ7nab0O9OnTJ93pmzZtIjY2lho1ahiO9+e1a9cOa2trTp06xc2bNwGIj49n48aNAHz66adYWGT9NWNKGf3+++8A9O3bN93l0qvjz/P396d+/fpppletWhVbW1sURTHEl9vMUZ8++OCDdKfXrVsXMO93ibmO74z2n7lldLw/KzfO37n1Hf/ee++lO0xZRvs6tb68+eab6Q5p1bJlyxcepkju8gZcXFwAiI2NfaHlz5w5A6SMlJ9RUpo6AGx8fDyRkZH4+PgYvV++fPkMn3BTuHBhzp49y6NHj14ovpyysLAgODiYSZMm0aZNGypXrkzTpk2pW7cuDRo0MBpKKSupZWNvb0/ZsmXTnadixYpYWlqSnJzM6dOn0xzMhQoVwt3dPd1lCxcuDPDCZVOuXLl0p3t6enL69OlM34e0x0xSUhK9e/dm2bJlmW73/v37LxDtvypVqmTS8g0bNmTMmDGEhITwxx9/YG1tzapVq3B2ds7ReqKjo7l16xaQMqRIeqytrfHz8+POnTtmHVYnNjaWN954I8sk9fmyPn78OACvvvqq2WLJjNbrQEbH0tGjRwG4dOkSr732WobLp563rl69ire3N+fOnSMhIQHIfhm/aBlFRUVx584dAKpUqZLucmXKlMHFxcXQcJCe58/Hz342T09Prl69mifnX3PVp4w+j6nHSnrMdXznxY87yPzcmZvn79z6js/pvk7dXxnVl9T3Mkr8MyMtlECxYsUAuHjx4gstn7rDMku0nh38Nr2DxtHRMcNlU3/hK4ryQvG9iJCQEBYtWkRAQADHjx9nzpw5vP322xQpUoTmzZsbvmyykvpZUw/u9FhZWVGoUCGj+Z+Vm2WT0bpTK35W7z+/3RkzZrBs2TLs7OyYPXs2ERERxMbGotfrURSF0NBQABITE18o3qzizonmzZsb/l+9evUMW6Ey8+z+ys7xb84vsuDgYLZs2UKhQoVYtGgR58+f5/Hjxygpl/IwduxYIG1ZpyYWefUEk/xaBx4+fAjAnTt32LNnT4av1B6Xx48fA/+Wr6WlZbZ7fV60jJ79QZfZj6Gsfihp5fxrrvqU0efJjc+S28e3uWW2rdw8f+fWMZbTfZ1aZ0ypLxmRhBIMv75Pnjxp+LWbE6mFn/rLMj2p3UHPzp/bMkp6nhUXF5fhsn369OHIkSPcuXOHX375hSFDhuDl5cXWrVtp0qQJ169fzzKG1M96+/btDOdJSkoyDNCeV2WTW1KfyztjxgyGDBlChQoVcHR0NOwLU1smzSU6Opru3bsDKSeevXv3Mm/evByv59n9lZ3j31z7NykpieXLlwMpZd6nTx/Kli2Lvb29YZ6Myjq1RyIqKsossWQlv9aB1GSwZ8+ehiQ9s1fq84ZTyzc5OTnbvT4vWkbPJqyZ/VjJq94dU6lVn0yRX4/v9OSX87cpUutMbtQXSSiBVq1a4e7ujl6vf6EvVT8/PyDl8WwZnUBTu9ns7Ozy7EkDqb9cMqvo586dy3I9Hh4edOzYkdmzZ3PmzBlKly7NgwcPWLVqVZbLppbNkydPMrwGKSIiguTkZAAqVKiQ5Tq17NKlSwAZPut97969eRlOht577z0iIyOpVasWq1evBuCTTz7JdstzKldXV0NLyokTJ9KdJykpydA1Z679e/fuXUNdy2lZ+/v7A/DXX39le3sZdVVlR36tA6mX6Rw7dixHy/n4+BieepTdMn7RMnJzczN0lWZ07F66dCnT7m4tUas+mULt49uUuvm8/HL+NkXq42EzO9fn9HsglSSUpGTsI0aMAGD69Ols37490/kVRTF6Us5rr72Gi4sL8fHxGd7UMHPmTCClm9HGxsZMkWeufPnyQEolSS+pXL58OdHR0Tlap7Ozs+ELOTstlL6+vobrEGfNmpXuPKllU7lyZYoXL56jeLQm9UkSz7ZIpzp9+jS//fZblsumdh3mloULF/Ljjz/i4uLCypUrefPNN/nggw9ISEjgnXfeybDVOiNt2rQBYM6cOem2hi9btow7d+5gbW1t1M1uimef2JFeWW/fvp1Dhw6lu+ybb74JwKJFiwytJtnd3ovsm/xaB9q2bYu9vT1HjhzJ0c1Utra2hkfBTps2LVvdeKaUUcuWLQEM3ZHPW7hwYbZjNxdTjhc16pMp1D6+nz0XmHruNOX8nV+k1pe1a9em+/3/v//9j8uXL7/QuiWh/H/Dhw+nffv2JCYm0qpVK8aPH5+myyE+Pp5ff/2V2rVrM2bMGMN0R0dHw91tEyZMYN26dYb3nj59yieffMKuXbuwtLRk9OjRefJ5IKXylipViqdPn/LBBx8YVbZt27YxZMiQdO8Oi4iIoE+fPuzevRu9Xm/03pYtWwzPLK1Zs2a24kgtq2+//ZZvv/3WcJLU6/XMnTvXcAH0uHHjcv4hNaZhw4ZAyt2tz56Ujh49Srt27bC0tMxw2dST8tatW3MtvoiICIYMGQLAN998Q5kyZYCULh5/f39Onz7N4MGDc7TO4OBg7OzsOHHiBO+//75RQrp9+3aGDRsGwPvvv5+jG7oy4+rqSkBAAJByN+yz3dfh4eG88847GT4bvE+fPlSsWJG7d+/SrFmzNHds3rlzhy+++IK7d+8appUtWxadTsfdu3dz3GIH+bMOeHp6GuJ+6623WLp0KUlJSUbzPHjwgKVLlxru4k01ceJEHBwc2LFjB4GBgWm+oCMiIvj888+Npr1oGQ0bNgwrKyu2bNnCqFGjjK5vW7ZsGTNmzEj3PJebTKnLatQnU6l5fBcqVAhXV1fA9HOnKefv/OKdd96hZMmS3Lt3jy5duhj9qD548CDvvvvui9eXHA0y9B+XmJioDBkyRLG0tDSMPVamTBmlVq1aSoUKFQxjEwJKkyZN0izbuXNnw/vFixdXatasaRiE1sLCIssn5WQko/HKsjP+1i+//KJYWFgokDL4cbVq1ZQSJUoogNK7d+9013348GHDeh0cHBR/f3+jJ0/w/2N2Pj++XOp7WT0lJPVJCKnj50H6j7zMzth/L/yIqCzGicvqsWgZjUF37Ngxw9MPbG1tFX9/f8MTCIoXL65MmTIlw/09Y8YMQ1x+fn5KgwYNlIYNGxrFkNFYZ9n5fE+ePFEqV66sAEpQUFCaZU6ePKnY29srQI4f5/fskz2cnJyUGjVqKGXKlDHEkdGTPUwZh/KPP/4w1FVHR0elatWqhqeJVKlSRQkODs5wnMALFy4Y9kvqMVazZk2laNGiaZ6Uk6pt27YKpDxZomrVqkrDhg2Vhg0bKocPHzbM81+qA4qSMrj08OHDDfOmnkNq1aqllCxZ0lBW6R3PmzdvNjyNw8LCQqlYsaJSrVo1w0MTsnpSTnbLSFEUZcGCBYZ5ChQoYNiXgDJ06FBDvXl+rMnMxpJMlZ3HNj4vO3U5u0/KyUl9ymqfZuf75kWXy63jOzsGDRpkOM4qV65sqJubN282zJOd492U83d2H72YnoyOhew+ejE9mZXt33//baibqU/YSX1yWJ06dQxPypk4cWKGMadHWiifYWVlxezZszl9+jQjRoygRo0axMTEcOjQIa5fv46vry8DBgxg9+7dhla6Z5dds2YNy5cvp0mTJsTGxnLkyBEcHR0JDAxk37592RoPzdw6duzIH3/8Ybhg/vTp03h4eLBo0aIMu4h8fHwIDQ2la9eulChRgqtXr3L48GGePn1Ks2bNWLp0KT///HO2xpdLNWfOHDZt2kTbtm3R6/UcPnwYnU5Hhw4d2Lp1K5999pk5Pq7qKleuzN9//02HDh2wt7fnzJkzJCYmMnjwYA4fPmx0t//zPv74Y2bMmEFAQABXrlxh165d7Ny5k8jISLPENnToUI4fP46Pjw8LFixI837FihWZO3cuAP379zdcT5QdXbp04fDhwwQFBeHu7s6xY8e4f/8+9evXZ+HChWzevNnohhlzeP3119mxYwfNmjVDp9Nx+vRpbG1tGTNmDHv27Mn0rsoyZcpw6NAhZsyYQd26dYmKiuLYsWNYWlry+uuv891331GkSBGjZZYuXcqgQYMoVqwYJ0+eZOfOnezcuTPbN/fkxzqg0+mYPn06+/bt491336Vw4cJERERw+PBhEhMTadGiBfPnz+eHH35Is2zLli05deoUQ4cOxc/Pj8jISM6cOUOBAgXo2rUrX331VZplXrSMPvjgA/73v//RtGlTkpKSiIiIwNvbm9DQUGbOnGm43jb1hqHcZmpdVqM+mUrN4/uLL75g9OjR+Pj4cO7cOUPdzOzGpvSYcv7OT+rUqcPBgwfp2rUrLi4unDx5kqSkJD799FO2b99uGLkhp/VFpyh5OBaNEEIIkYfu3r2Lp6cnOp2Ohw8fGrpHhRDpq1SpEhEREfz666+0b98+28tJC6UQQoj/rEWLFgEpd/dLMilE5v7++28iIiKwsrIyPG0nuyShFEIIka+tWLGCzZs3G4amgZRxML/77jtCQkIA+PDDD9UKTwhN2b9/PwsXLkwz3uTOnTvp0qULkHLzjoeHR47WK13eQggh8rXg4GBmzpyJk5MT5cuXx9LSkrNnzxrGn+zatSs//PCDWccsFCK/2rBhA+3atcPKygpfX1+cnJy4evUqN27cAFKuJd2xYwcFCxbM0XqlhVIIIUS+1qVLF/r06UPRokW5dOkSR44cwcbGhtdff52VK1dKMik0Kzk5mbFjx1K6dGnD89AnTZqUq4/6rFq1KsOHD6dy5crcuXOHgwcPEhsbS61atfj888/5+++/c5xMgrRQCiGEEEKoYsqUKcyaNYslS5ZQqVIlDhw4wLvvvsvkyZNzPCaw2iShFEIIIYRQQdu2bSlcuLDRMH6dO3fG3t4+3eG4tEy6vIUQQgghzCghIYGYmBijV0JCQpr5Xn31VbZt28bZs2eBlKfy7N69m1atWuV1yCazUjsA8fKq6lVP7RAytNAqZ3e35bV+SXeznklF71uXVjuEDL1V5araIWRqzRFtPMs7I/ss49UOIUO1ktN/3KbIHi3XjYK/7cz1bSTeu2i2dU1dsNQwwkCq8ePHM2HCBKNpI0eOJCYmBj8/PywtLUlOTmby5Ml069bNbLHkFUkohRBCCCH0yVnPk02jRo1i6NChRtNsbW3TzPfjjz+yfPlyVqxYQaVKlThy5AhDhgyhSJEi9OrVy2zx5AVJKIUQQgghzMjW1jbdBPJ5w4cPZ+TIkbzzzjtAypA9ly9fZurUqZJQCiGEEELkO4o+zzf5+PFjLCyMb2extLREr8/7WEwlCaUQQgghhApJXLt27Zg8eTIlSpSgUqVKHD58mFmzZtG7d+88j8VUklAKIYQQQqhg/vz5jB07loEDB3Lnzh2KFCnC+++/z7hx49QOLcckoRRCCCHES09Rocvb2dmZOXPmMGfOnDzftrlJQimEEEIIkQ+vW9QSGdhcCCGEEEKYRFoohRBCCCFU6PL+L5GEUgghhBDCjAObv4wkoRRCCCGEkBZKk7wU11BOmDCBKlWqqB1GrgsPD0en0xEVFaV2KEIIIYR4iWiihfLvv//mtddeo2XLlmzcuFHtcAgPD6dx48bpvnfz5k28vLzMsp1GjRqxc+dOpk6dysiRI43ea9OmDZs2bUr3YfIiRbU6AfQc2JWK/n54eBXi46CRhP/+p9phpcvrgzcoNqontxf9xtUJoWqHA2i7/Cr2aEqlHk1xLuYBwIOz1zg45xeuhh9TObIU9oFBOHR912ha8rXLRA3oqVJE/9J62bUe2InqLWrjXbYoT+Ofcv7QGdZO+4FbF2+oHRqg7fLTcmyg7XqRLXKXt0k0kVCGhoby4YcfEhoayo0bNyhSpIjaIQFw5swZXFxcjKZ5enqadRvFixcnLCzMKKG8fv0627Ztw9vb26zb+q+xd7Dn7Mnz/LpyI7MWT1U7nAw5BJTDo1sLHkdcUjsUI1ouv7ibD/hn6mqiL90CnQ7ft+rTMnQoa1uN5uHZ62qHB0DS5YvEjBn27wSNXH+l9bLzrV2R7ct+59LR81haWfLG8K4MXTqWMc2H8PRJgtrhabr8tBxbKq3Wi+xQYxzK/xLVu7xjY2NZvXo1AwYMoE2bNoSFhRneS+3C3bhxI/7+/tjZ2VGnTh1OnDhhmCcsLAw3NzfWrVtH+fLlsbOzo0WLFly9ejXd7e3atQtra2tu3bplNH3IkCHUr1/faJqnpydeXl5GLwsLi2yvY/fu3dSvXx97e3uKFy/O4MGDiYuLM1qmbdu23Lt3jz179himLVmyhNdffz1N8rps2TJq1KiBs7MzXl5edO3alTt37mRYto8fP6ZVq1bUq1fP0A2+aNEiKlSogJ2dHX5+fnz11VeG+dPrMj9y5Ag6nY7IyEgg5+Wdm/Zs38tXny9kx+Zdeb7t7LJwsKPM/I+J/ORLkqPjsl4gD2m5/C5vPcyVHUeJjrxN9KVb7Ju+hsTH8RSuWk7t0P6VnIwS9eDfV0y02hEB2i+72b0ms2dtODfOXePqqct8H/wlhYp5UKpyGbVDA7RdflqOzUCj9ULkPtUTyh9//BE/Pz98fX3p3r0733//PYqiGM0zfPhwZs6cyf79+/Hw8KBdu3YkJiYa3n/8+DGTJ09m6dKl7Nmzh6ioKN555510t9egQQPKlCnDsmXLDNMSExNZvnx5tp+dmZ11XLhwgZYtW9K5c2eOHTvG6tWr2b17N4MGDTJal42NDd26dWPx4sWGaWFhYenGkpiYyKRJkzh69Cjr1q0jMjKSoKCgdGOMioqiefPm6PV6tmzZgpubG8uXL2fcuHFMnjyZU6dOMWXKFMaOHcuSJUuy9blT5aS8X3YlJr9H9LaDPNqtjS6p/EhnoaNs+zpY29ty+9A5tcMxsCxSjAJhP+G2cCVOw8Zg4WHe3gtz0GrZPcve2QGAuKhYlSNJS8vlp9XY8kO9yJBeb77XS0j1Lu/Q0FC6d+8OQMuWLYmOjmbnzp00atTIMM/48eNp3rw5kNJ6V6xYMX755Re6dOkCpCRaCxYsoHbt2oZ5KlSowL59+6hVq1aabfbp04fFixczfPhwAH777Tfi4+MN60tVrFgxo79LlizJyZMns7WOqVOn0q1bN4YMGQJA+fLlmTdvHg0bNuTrr7/Gzs7OsN7evXtTv3595s6dy8GDB4mOjqZt27Zprp18NsksU6YM8+bNo2bNmsTGxuLk5GR479atW7z99tuUL1+eFStWYGNjYyjHmTNn8sYbbwBQunRpIiIi+Pbbb+nVq1fanZOBnJY3QEJCAgkJxt1ZekWPhU713zS5pkD713CoXJZTbYLVDiVfcvcrRqd1E7C0tSYxLp4/+s3h4TltXGeXdPYUsXOmkXz9ChYFCmIfGITLtPlEDQqCJ0/UDk/TZfcsnU5H4Lh3Obf/FNfP5n0vR0a0XH5ajk3r9SJL0uVtElW/zc+cOcO+ffsIDAwEwMrKirfffpvQUOObFurWrWv4v7u7O76+vpw6dcowzcrKipo1axr+9vPzw83NzWieZwUFBXH+/Hn27t0LpLQIdunSBUdHR6P5/vzzT44cOWJ4bdq0KdvrOHr0KGFhYTg5ORleLVq0QK/Xc+mS8bV0AQEBlC9fnrVr1/L999/To0cPrKzS5voHDx6kXbt2lChRAmdnZxo2bAjAlStXjOZr3rw55cqVY/Xq1YZkMi4ujgsXLtCnTx+jmD777DMuXLiQbjllJKflDSkJtqurq9Hrdty1HG03P7H2LkSJkL5c+nAWSkJi1guINKIu3GRNy9H83H48J5dto/Hs9ylQXhvXVyce/Iene8JJjrxI4uH9PAoZgc7RCdvX0r+ZL69pueye1X1SX4r6FuebD2erHYoRLZeflmPTer0QuUvVFsrQ0FCSkpKMbsJRFAVbW1sWLFiQa9v19PSkXbt2LF68mNKlS7N582bCw8PTzFe6dGnc3NxeaB2xsbG8//77DB48OM2yJUqUSDOtd+/efPnll0RERLBv374078fFxdGiRQtatGjB8uXL8fDw4MqVK7Ro0YKnT58azdumTRt++uknIiIiqFy5siEegIULFxpaFlNZWloCYGGR8vvi2UsOnr20wBSjRo1i6NChRtPql29hlnVrkaN/Waw93Ki4eZZhms7KEqfaFfEMas3BMm+9tN0i2aVPTCYm8jYA945H4hlQhsq9W7Jr1PcqR5aWEheL/sY1LL2Lqh0KkD/KrltIHwKaVGdal3E8vPVA7XCMaLn8tBzb87RWL7KUj24g0iLVEsqkpCSWLl3KzJkzef31143e69ixIytXrsTPzw+AvXv3GpKwhw8fcvbsWSpUqGC0rgMHDhi6W8+cOUNUVJTRPM/r27cvgYGBFCtWjLJly1KvXr0cf4bM1lGtWjUiIiIoVy57F0t37dqV4OBgAgICqFixYpr3T58+zf3795k2bRrFixcH4MCBA+mua9q0aTg5OdG0aVPCw8OpWLEihQsXpkiRIly8eJFu3bqlu5yHR8pQFDdv3qRAgQJAyk05z3uR8ra1tcXW1tZo2n+5uztm91FONDX+MVF65ofEX7jOza9+lmTyBegsdFjaqn6VTvrs7LHwKoL+obYSo1RaK7tuIX2o1qIWn78znnvXMr6xUCu0Vn7P0nJsWq8XaUiXt0lUOwo3bNjAw4cP6dOnD66urkbvde7cmdDQUL744gsAJk6cSMGCBSlcuDCjR4+mUKFCdOzY0TC/tbU1H374IfPmzcPKyopBgwZRp06dDK/nA2jRogUuLi589tlnTJw4Md157ty5Q3x8vNG0ggULYm1tneU6RowYQZ06dRg0aBB9+/bF0dGRiIgItmzZkm7ra4ECBbh586Zh3c8rUaIENjY2zJ8/n/79+3PixAkmTZqU4eebMWMGycnJNGnShPDwcPz8/AgJCWHw4MG4urrSsmVLEhISOHDgAA8fPmTo0KGUK1eO4sWLM2HCBCZPnszZs2eZOXNmmnW/SHnnBnsHe4qX/vc616IliuBTqTwxUTHcun47T2N5nj4unvgzxpci6J8kkPTwUZrpatFy+dUa0YWr4UeJvX4fayc7ynV4lSJ1K7Cx+3RV40rl0HsAT/f9hf7ObSzcC2LftTfo9STs3Kp2aJovu+6T+lKnQ33m9fuc+Lh4XDzcAHgS85jEhKeZL5wHtFx+Wo4NtF0vRO5TLaEMDQ2lWbNmaZJJSEkop0+fzrFjKXfGTps2jY8++ohz585RpUoVfvvtN8O1gQAODg6MGDGCrl27cv36derXr5/mOsznWVhYEBQUxJQpU+jZM/1BV319fdNM+/vvv6lTp06W6/D392fnzp2MHj2a+vXroygKZcuW5e23384wpoy61yGl9TAsLIxPP/2UefPmUa1aNWbMmEH79u0zXGb27NlGSWXfvn1xcHDgiy++YPjw4Tg6OlK5cmXDjUPW1tasXLmSAQMG4O/vT82aNfnss8946623jNb7IuWdGypW8WPRz/8m58ETU1oE16/exPiPJud5PPmNlsvPvpALTWb3x8HTjaePHnP/1FU2dp/OtT9PZL1wHrAo6IFz8Dh0Li7oo6NIijhOdPAATQyRovWya9KjJQAjVxv/CA8NXsCeteEqRGRMy+Wn5dhA2/UiW6TnyCQ65fkxejQk9Yk1Dx8+zDDZCgsLY8iQIS/0uME+ffpw9+5d1q9f/8IxmmMd+Ykp5f28ql45v8wgryy08lA7hEz1S7qrdgiZet+6tNohZOitKtq5mzg9a44UVzuETO2zjM96JpXUSrbLeiaRIS3XjYK/7cz1bSSc2GK2ddm+0txs68ovNHrhRe6Kjo7m+PHjrFix4oUTQXOsQwghhBAaIS2UJnkpE8oOHTqwb98++vfvbxjfUo11CCGEEEL8F2i6y1v8t0mX94uTLu8Xp+VuPZAub1NIl7dptFw38qLLO/7opqxnyia7gNZmW1d+8VK2UAohhBBCGJFhg0zy3x0IUAghhBBC5AlpoRRCCCGEkJtyTCIJpRBCCCGEdHmbRLq8hRBCCCGESaSFUgghhBBCn6x2BPmaJJRCCCGEENLlbRLp8hZCCCGEECaRFkohhBBCCLnL2ySSUAohhBBCSJe3SSShFKqpauetdggZS0pSO4JMabrsADR8bXuz/dret1travfxdwD7jmv3saRafiwkwECNn1deetJCaRK5hlIIIYQQQphEWiiFEEIIIaSF0iSSUAohhBDipacoGr5WJx+QLm8hhBBCCGESSSiFEEIIIfR6872yqVSpUuh0ujSvDz74IBc/aO6QLm8hhBBCCBWGDdq/fz/Jyf92tZ84cYLmzZvz1ltv5XksppKEUgghhBBCBR4exsNwTZs2jbJly9KwYUOVInpxklAKIYQQQpjxLu+EhAQSEhKMptna2mJra5vhMk+fPuWHH35g6NCh6HQ6s8WSV+QaSiGEEEIIRW+219SpU3F1dTV6TZ06NdPNr1u3jqioKIKCgvLm85qZtFAKIYQQQpjRqFGjGDp0qNG0zFonAUJDQ2nVqhVFihTJzdByjSSUQgghhBBm7PLOqnv7eZcvX2br1q38/PPPZoshr0mXt5lNmDCBKlWqmG19QUFBdOzY0WzrS094eDg6nY6oqKhszd+oUSOGDBmSqzEJIYQQecqMXd45tXjxYjw9PWnTpk0ufLC88dK1UP7999+89tprtGzZko0bN6odDuHh4TRu3JiHDx/i5uaW5v25c+eiKIrZtteoUSOqVKnCnDlzDNNeffVVbt68iaurq9m2kxdaD+xE9Ra18S5blKfxTzl/6Axrp/3ArYs31A4tDa8P3qDYqJ7cXvQbVyeEqh2O5suuYo+mVOrRFOdiKXdAPjh7jYNzfuFq+DGVI0tRrU4APQd2paK/Hx5ehfg4aCThv/+pdlgA2AcG4dD1XaNpydcuEzWgp0oRGdP6saf1+J6ltfOK1o+9LKn06EW9Xs/ixYvp1asXVlb5Ny3Lv5G/oNDQUD788ENCQ0O5ceOG5q9VyIskz8bGBi8vr1zfjrn51q7I9mW/c+noeSytLHljeFeGLh3LmOZDePokIesV5BGHgHJ4dGvB44hLaodioPWyi7v5gH+mrib60i3Q6fB9qz4tQ4eyttVoHp69rnZ42DvYc/bkeX5duZFZizO/0F4NSZcvEjNm2L8T9Np5pJzWjz2tx5dKi+cV0Paxp1Vbt27lypUr9O7dW+1QTPJSdXnHxsayevVqBgwYQJs2bQgLCzO8l9rtu3HjRvz9/bGzs6NOnTqcOHHCME9YWBhubm6sW7eO8uXLY2dnR4sWLbh69Wq629u1axfW1tbcunXLaPqQIUOoX79+tmJ+vsu7UaNGDBo0iEGDBuHq6kqhQoUYO3asUSvmV199ZYivcOHCvPnmm4Z17dy5k7lz5xpG44+MjEy3y3vPnj00atQIBwcHChQoQIsWLXj48GG6MW7cuBFXV1eWL1+erc9kLrN7TWbP2nBunLvG1VOX+T74SwoV86BU5TJ5GkdmLBzsKDP/YyI/+ZLk6Di1wzHQetld3nqYKzuOEh15m+hLt9g3fQ2Jj+MpXLWc2qEBsGf7Xr76fCE7Nu9SO5T0JSejRD349xUTrXZEBlo/9rQeH2j3vAJo+tjLkgpPygF4/fXXURQFHx+fXPpgeeOlSih//PFH/Pz88PX1pXv37nz//fdpupOHDx/OzJkz2b9/Px4eHrRr147ExETD+48fP2by5MksXbqUPXv2EBUVxTvvvJPu9ho0aECZMmVYtmyZYVpiYiLLly836ZfIkiVLsLKyYt++fcydO5dZs2axaNEiAA4cOMDgwYOZOHEiZ86c4ffff6dBgwZASvd53bp16devHzdv3uTmzZsUL148zfqPHDlC06ZNqVixIn///Te7d++mXbt2RqP5p1qxYgWBgYEsX76cbt26vfBnMgd7ZwcA4qJiVY3jWSUmv0f0toM82q2NrtqMaLHsUuksdJRtXwdre1tuHzqndjj5gmWRYhQI+wm3hStxGjYGCw9PtUPKkJaPPdBmfFo+r+SnYy8NFa+h/C94qbq8Q0ND6d69OwAtW7YkOjqanTt30qhRI8M848ePp3nz5kBK4lasWDF++eUXunTpAqQkhAsWLKB27dqGeSpUqMC+ffuoVatWmm326dOHxYsXM3z4cAB+++034uPjDet7EcWLF2f27NnodDp8fX05fvw4s2fPpl+/fly5cgVHR0fatm2Ls7MzJUuWpGrVqkBK97mNjQ0ODg6ZdnFPnz6dGjVq8NVXXxmmVapUKc18X375JaNHj+a3337LclT/9AZ5TVaSsdRZ5uSjZ0in0xE47l3O7T/F9bPptxjntQLtX8OhcllOtQlWO5RMabHsANz9itFp3QQsba1JjIvnj35zeHhOe9exaU3S2VPEzplG8vUrWBQoiH1gEC7T5hM1KAiePFE7PCNaPfZSaTE+LZ9X8tOxJ8zvpWmhPHPmDPv27SMwMBAAKysr3n77bUJDjS9krlu3ruH/7u7u+Pr6curUKcM0Kysratasafjbz88PNzc3o3meFRQUxPnz59m7dy+Q0m3epUsXHB0dX/iz1KlTx2gU/bp163Lu3DmSk5Np3rw5JUuWpEyZMvTo0YPly5fz+PHjHK0/tYUyM2vXruXjjz9my5Yt2XpEVHqDvB6LPpOjuDLTfVJfivoW55sPZ5ttnaaw9i5EiZC+XPpwFkpCYtYLqEhrZZcq6sJN1rQczc/tx3Ny2TYaz36fAuW1fc2zFiQe/Iene8JJjrxI4uH9PAoZgc7RCdvXGqsdWhpaPfZSaS0+rZ9X8tOxly6Vurz/K16aFsrQ0FCSkpKMbsJRFAVbW1sWLFiQa9v19PSkXbt2LF68mNKlS7N582bCw8NzbXvOzs4cOnSI8PBw/ve//zFu3DgmTJjA/v37072LPD329vZZzlO1alUOHTrE999/T40aNbJ8TFR6g7x+WLlXtuLJSreQPgQ0qc60LuN4eOuBWdZpKkf/slh7uFFx8yzDNJ2VJU61K+IZ1JqDZd7SxElHi2WXSp+YTEzkbQDuHY/EM6AMlXu3ZNeo71WOLH9R4mLR37iGpXdRtUMxouVjD7QZX345r6TS6rGXoZe0q9pcXoqEMikpiaVLlzJz5kxef/11o/c6duzIypUr8fPzA2Dv3r2UKFECgIcPH3L27FkqVKhgtK4DBw4YurfPnDlDVFSU0TzP69u3L4GBgRQrVoyyZctSr149kz7PP//8Y/T33r17KV++PJaWKd3HVlZWNGvWjGbNmjF+/Hjc3NzYvn07b7zxBjY2NuleC/ksf39/tm3bRkhISIbzlC1blpkzZ9KoUSMsLS2zTMrTG+TVHN3d3UL6UK1FLT5/Zzz3rt0xeX3mErP7KCeaDjaaVnrmh8RfuM7Nr37WxElfq2WXEZ2FDkvbl+KUZV529lh4FUH/UBtJEWj/2NNqfPnhvGJEg8eeyD0vxdl5w4YNPHz4kD59+qQZhqdz586EhobyxRdfADBx4kQKFixI4cKFGT16NIUKFTK6y9ra2poPP/yQefPmYWVlxaBBg6hTp06610+matGiBS4uLnz22WdMnDgx3XmOHz+Os7Oz4W+dTkdAQEC68165coWhQ4fy/vvvc+jQIebPn8/MmTMNn/XixYs0aNCAAgUKsGnTJvR6Pb6+vgCUKlWKf/75h8jISJycnHB3d0+z/lGjRlG5cmUGDhxI//79sbGxYceOHbz11lsUKlTIMJ+Pjw87duygUaNGWFlZGY1tmRe6T+pLnQ71mdfvc+Lj4nHxcAPgScxjEhOe5mksz9PHxRN/5orxtCcJJD18lGa6GrRcdgC1RnThavhRYq/fx9rJjnIdXqVI3Qps7D5d7dCAlGGDipcuZvi7aIki+FQqT0xUDLeu31YxMnDoPYCn+/5Cf+c2Fu4Fse/aG/R6EnZuVTWuVFo/9rQcn9bPK1o/9rKktYQ8n3kpEsrQ0FCaNWuW7piOnTt3Zvr06Rw7lnK33LRp0/joo484d+4cVapU4bfffsPGxsYwv4ODAyNGjKBr165cv36d+vXrp7kO83kWFhYEBQUxZcoUevZMf4DX1DuxU1laWpKUlJTuvD179uTJkyfUqlULS0tLPvroI9577z0A3Nzc+Pnnn5kwYQLx8fGUL1+elStXGm6qCQ4OplevXlSsWJEnT55w6VLaMcx8fHz43//+x6effkqtWrWwt7endu3ahutPn+Xr68v27dsNLZWpiW1eaNKjJQAjVxsn6aHBC9izNjzP4siPtF529oVcaDK7Pw6ebjx99Jj7p66ysft0rv15IuuF80DFKn4s+vnfVvngiSmtRutXb2L8R5PVCgsAi4IeOAePQ+figj46iqSI40QHD9DM8C1aP/a0Hp+Waf3Yy5J0eZtEp5jzMSz5WFZPrIGUG2qGDBmS7UcUPqtPnz7cvXuX9evXmxRnek+6ya96l3pT7RAyNDCDZF4rvtL40xRqJdupHUKGvk3U1kDQz9taU9v7dvhxD7VDyLe0fl4pXTX9sYa1oOBvO3N9G09+nmK2ddm/8anZ1pVfaPvM9R8QHR3N8ePHWbFihcnJpBBCCCFyiXR5m0QSylzWoUMH9u3bR//+/Q3jWwohhBBCYyShNIkklP+vUaNGaZ6a87ygoCCCgoJytF5zDxGUm0MOCSGEEC8tuQLQJC/NwOZCCCGEECJ3SAulEEIIIYR0eZtEEkohhBBCCEkoTSJd3kIIIYQQwiTSQimEEEIIIQObm0QSSiGEEEII6fI2iXR5CyGEEEIIk0gLpRBCCCGEjENpEkkohRBCCCGky9sk0uUthBBCCCFMIi2UQjW1ku3UDiETsWoHkKlvD0xXO4RMHa0yVO0QMlTDykPtEDLVbP9dtUPI1PvW2q233yZeUjuETNV5EKl2CJnqebyu2iFk6Pu82Ii0UJpEEkohhBBCCBk2yCSSUAohhBDipafo5aYcU8g1lEIIIYQQwiTSQimEEEIIIddQmkQSSiGEEEIIuYbSJNLlLYQQQgghTCItlEIIIYQQclOOSSShFEIIIYSQayhNIl3eQgghhBDCJNJCKYQQQgghLZQmkYRSCCGEEEKRayhNIV3e/0GRkZHodDqOHDmidihCCCFE/qDXm+/1EpKEUiP+/vtvLC0tadOmjdqh5BsVezTlrf9NoXfEQnpHLKTjuvEUb+Svdljp8vrgDWpcW0fxCX3UDgWA5ORk5n+3lBZvBlG9cQdavvUu3yxegaLRX+haK79naTG2anUCmLP0c/535FcO39pDo5b11Q7JQOv1Vstll2pA/16cP7uX2JgL/LX7N2rWqKJ2SAC0HtiJsb9O46sTy5hzIJRB332CV5kiaocl8ogklBoRGhrKhx9+yK5du7hx40aG8ymKQlJSUh5G9q+nT5+qst2MxN18wD9TV/NT6zH81GYsN/6KoGXoUAr4FFU7NCMOAeXw6NaCxxGX1A7FIPSHNaxet5FPhw5k/YrvGDqwN98vX8vytevVDi0NLZZfKq3GZu9gz9mT55k6aqbaoaSh9Xqr5bIDeOut9sz4YjyTPptFzdotOXosgk0bl+PhUVDt0PCtXZHty37ns06jmNljIpZWlgxdOhYbe1u1Q8sevWK+Vw5cv36d7t27U7BgQezt7alcuTIHDhzIpQ+ZeySh1IDY2FhWr17NgAEDaNOmDWFhYYb3wsPD0el0bN68merVq2Nra8vu3bvR6/VMnz6dcuXKYWtrS4kSJZg8ebLRei9evEjjxo1xcHAgICCAv//+2+j93bt3U79+fezt7SlevDiDBw8mLi7O8H6pUqWYNGkSPXv2xMXFhffee48mTZowaNAgo/XcvXsXGxsbtm3bZv7CycTlrYe5suMo0ZG3ib50i33T15D4OJ7CVcvlaRyZsXCwo8z8j4n85EuSo+OyXiCPHDlxisb169Dw1VoU9S7M643r82qtahyPOKN2aEa0Wn6g7dj2bN/LV58vZMfmXWqHkobW662Wyw7g44/6sSh0BUuW/sipU+cY+MFIHj9+wrtB76gdGrN7TWbP2nBunLvG1VOX+T74SwoV86BU5TJqh5Y9it58r2x6+PAh9erVw9rams2bNxMREcHMmTMpUKBALn7Q3CEJpQb8+OOP+Pn54evrS/fu3fn+++/TdD2OHDmSadOmcerUKfz9/Rk1ahTTpk1j7NixREREsGLFCgoXLmy0zOjRowkODubIkSP4+PgQGBhoaN28cOECLVu2pHPnzhw7dozVq1eze/fuNMnijBkzCAgI4PDhw4wdO5a+ffuyYsUKEhISDPP88MMPFC1alCZNmuRSCWVNZ6GjbPs6WNvbcvvQOdXieF6Jye8Rve0gj3YfUzsUI1VeqcA/B44QeeUaAKfPXeTQsZPUr1ND5ciMabX8QNux5RdarbdaZW1tTbVq/mzb/qdhmqIobNu+mzp1qqsYWfrsnR0AiIuKVTkS7fr8888pXrw4ixcvplatWpQuXZrXX3+dsmXLqh1ajsld3hoQGhpK9+7dAWjZsiXR0dHs3LmTRo0aGeaZOHEizZs3B+DRo0fMnTuXBQsW0KtXLwDKli3La6+9ZrTe4OBgwzWZISEhVKpUifPnz+Pn58fUqVPp1q0bQ4YMAaB8+fLMmzePhg0b8vXXX2NnZwdAkyZNGDZsmGGdRYsWZdCgQfz666906dIFgLCwMIKCgtDpdBl+xoSEBKMkFCBRScZaZ5nT4jLi7leMTusmYGlrTWJcPH/0m8PDcxlfMpCXCrR/DYfKZTnVJljtUNLo26MLcY8f067re1haWJCs1zP4vV60baHej4Lnabn8tBxbfqDleqtlhQq5Y2VlxZ3b94ym37lzFz9fbSUgOp2OwHHvcm7/Ka6fvap2ONljxiflpPedZ2tri62tcff/+vXradGiBW+99RY7d+6kaNGiDBw4kH79+pktlrwiLZQqO3PmDPv27SMwMBAAKysr3n77bUJDQ43mq1Hj35ajU6dOkZCQQNOmTTNdt7//vxe6e3t7A3Dnzh0Ajh49SlhYGE5OToZXixYt0Ov1XLr07/Vgz24XwM7Ojh49evD9998DcOjQIU6cOEFQUFCmsUydOhVXV1ej1x8xJzNdJjuiLtxkTcvR/Nx+PCeXbaPx7PcpUF79i8CtvQtRIqQvlz6chZKQqHY4afy+fRcb/reDzyd8wo+L5zN5zDDCVv7Er5u2qB0aoO3y03Js+YVW660wn+6T+lLUtzjffDhb7VCyTdHrzfZK7ztv6tSpabZ58eJFvv76a8qXL88ff/zBgAEDGDx4MEuWLFGhBEwjLZQqCw0NJSkpiSJF/j2ZKoqCra0tCxYsMExzdHQ0/N/e3j5b67a2tjb8P7X1UP//wxnExsby/vvvM3jw4DTLlShRIt3tpurbty9VqlTh2rVrLF68mCZNmlCyZMlMYxk1ahRDhw41mrak4vvZ+hyZ0ScmExN5G4B7xyPxDChD5d4t2TXqe5PXbQpH/7JYe7hRcfMswzSdlSVOtSviGdSag2XeUnVoiZlfhtK3exdaN2sEgE/Z0ty8dYdFy36kQ+vmqsWVSsvlp+XY8gut1lutu3fvAUlJSXgWLmQ03dPTg1u376oUVVrdQvoQ0KQ607qM4+GtB2qHo4r0vvOeb52ElO/kGjVqMGXKFACqVq3KiRMn+Oabbww9kPmFJJQqSkpKYunSpcycOZPXX3/d6L2OHTuycuVK/Pz80ixXvnx57O3t2bZtG3379n2hbVerVo2IiAjKlcv5hfCVK1emRo0aLFy4kBUrVhglvhlJr6nf1O7u9OgsdFjaqn9Yx+w+yommxsl66ZkfEn/hOje/+ln1hCM+PgGdhfElChYWFug1MmyQlstPy7HlV1qpt1qXmJjIoUPHaNL4Ndav/wNIaSxo0vg1vvp6scrRpegW0odqLWrx+TvjuXftjtrh5IwZu7zT+85Lj7e3NxUrVjSaVqFCBX766SezxZJXpAaraMOGDTx8+JA+ffrg6upq9F7nzp0JDQ3liy++SLOcnZ0dI0aM4JNPPsHGxoZ69epx9+5dTp48SZ8+2RsLb8SIEdSpU4dBgwbRt29fHB0diYiIYMuWLdlKEPv27cugQYNwdHSkU6dO2fvAZlZrRBeuhh8l9vp9rJ3sKNfhVYrUrcDG7tNViedZ+rh44s9cMZ72JIGkh4/STFdDo3q1WbhkFd6FPSlXuiSnzp5n6eqf6dTm9awXzgNaLj8tx5bK3sGe4qWLGf4uWqIIPpXKExMVw63rt1WMTNv1FrRddgCz5y5kcehsDh46xv79hxn8YT8cHe0JW7Ja7dDoPqkvdTrUZ16/z4mPi8fFww2AJzGPSUzQ1rBz6crB3dnmUq9ePc6cMR5d4+zZs1n2+mmRJJQqCg0NpVmzZmmSSUhJKKdPn86xY+nfQTp27FisrKwYN24cN27cwNvbm/79+2d72/7+/uzcuZPRo0dTv359FEWhbNmyvP3229laPjAwkCFDhhAYGGi4gSev2Rdyocns/jh4uvH00WPun7rKxu7TufbnCVXiyU8+/XgA8xcu5bMZX/LgYRQehdx5q0NrBrzbVe3QhBlUrOLHop///WEYPDGlRXX96k2M/2hyRovlCa3XWy2XHcCaNevxKOTOhHHBeHl5cPToSdq07c6dO/eyXjiXNenREoCRqycaTQ8NXsCeteEqRKR9H3/8Ma+++ipTpkyhS5cu7Nu3j++++47vvvtO7dByTKdo9dEYQtMiIyMpW7Ys+/fvp1q1ai+0jm+KdzdzVOZTQ9H2MBcBR2ZlPZOKjlYZmvVMIl39krRzLVx63rcurXYIGfo2UVsDzD/v+INItUPIVM8iddUOIUPfR67N9W3ETexmtnU5jlue7Xk3bNjAqFGjOHfuHKVLl2bo0KH58i5vaaEUOZKYmMj9+/cZM2YMderUeeFkUgghhNAUla5/btu2LW3btlVl2+YkCaXIkT179tC4cWN8fHxYuzb3fzEKIYQQecKMN+W8jCShFDnSqFGjNE/xEUIIIcTLTRJKIYQQQggV7vL+L5GEUgghhBBCurxNIo9eFEIIIYQQJpEWSiGEEEK89BR5ypVJJKEUQgghhJAub5NIl7cQQgghhDCJtFAKIYQQQkgLpUkkoRRCCCGEkGGDTCJd3kIIIYQQwiTSQimEEEIIIV3eJpGEUqjm28RLaoeQMevSakeQqdLvvqt2CJnql5SkdggZel/j+xbuqh1ApvZZxqsdQob2DPJRO4RMPdmt7a/cNUfs1A5BVYoklCbR9tEthBBCCJEXJKE0iVxDKYQQQgghTCItlEIIIYQQ8qQck0hCKYQQQgghXd4mkS5vIYQQQghhEmmhFEIIIYSQFkqTSEIphBBCiJeeokhCaQrp8hZCCCGEECaRFkohhBBCCOnyNokklEIIIYQQklCaRLq8hRBCCCGESSShzMSECROoUqWK2mGYValSpZgzZ47hb51Ox7p161SLRwghhNACRa+Y7fUy+s92eQcFBbFkyRLD3+7u7tSsWZPp06fj7++fp7EoisLChQsJDQ3l5MmTWFlZUa5cObp37857772Hg4NDnsbzrJs3b1KgQAHVtm+KanUC6DmwKxX9/fDwKsTHQSMJ//1PtcMyqNijKZV6NMW5mAcAD85e4+CcX7gafkzlyMA+MAiHru8aTUu+dpmoAT1ViigtLe9fLe9b0HbZtR7YieotauNdtihP459y/tAZ1k77gVsXb6gdmoHOyQ3rRl2wLFMZrGxQou7wdFMo+luRqsal9Xqr9XqRpZc0ETSX/2xCCdCyZUsWL14MwK1btxgzZgxt27blypUreRpHjx49+PnnnxkzZgwLFizAw8ODo0ePMmfOHEqVKkXHjh3TLPP06VNsbGxyPTYvL69c30ZusXew5+zJ8/y6ciOzFk9VO5w04m4+4J+pq4m+dAt0Onzfqk/L0KGsbTWah2evqx0eSZcvEjNm2L8T9MnqBZMOLe9fre9bLZedb+2KbF/2O5eOnsfSypI3hndl6NKxjGk+hKdPEtQOD2wdsO0+Gv2VUySsmYXy+BG6AoVR4uPUjgzQdr3Ver3Ikjx50ST/6S5vW1tbvLy88PLyokqVKowcOZKrV69y9+5dAEaMGIGPjw8ODg6UKVOGsWPHkpiYmGY93377LcWLF8fBwYEuXboQHR0NwK5du7C2tubWrVtG8w8ZMoT69esD8OOPP7J8+XJWrlzJp59+Ss2aNSlVqhQdOnRg+/btNG7cGEhpUe3YsSOTJ0+mSJEi+Pr6ArBs2TJq1KiBs7MzXl5edO3alTt37hi2VaNGDWbMmGH4u2PHjlhbWxMbGwvAtWvX0Ol0nD9/Pt0yerbLOzIyEp1Ox88//0zjxo1xcHAgICCAv//+22iZhQsXGsqjU6dOzJo1Czc3t2ztE3Pas30vX32+kB2bd+X5trPj8tbDXNlxlOjI20RfusW+6WtIfBxP4arl1A4tRXIyStSDf18x0WpHZETL+1fr+1bLZTe712T2rA3nxrlrXD11me+Dv6RQMQ9KVS6jdmgAWNdpjRLzgKebvkd/8xJK9D30kSdRou6qHVoKDddbrdcLkbv+0wnls2JjY/nhhx8oV64cBQsWBMDZ2ZmwsDAiIiKYO3cuCxcuZPbs2UbLnT9/nh9//JHffvuN33//ncOHDzNw4EAAGjRoQJkyZVi2bJlh/sTERJYvX07v3r0BWL58Ob6+vnTo0CFNTDqdDldXV8Pf27Zt48yZM2zZsoUNGzYY1jdp0iSOHj3KunXriIyMJCgoyLBMw4YNCQ8PB1K61v/880/c3NzYvXs3ADt37qRo0aKUK5f9Cj169GiCg4M5cuQIPj4+BAYGkpSUBMCePXvo378/H330EUeOHKF58+ZMnjw52+t+WeksdJRtXwdre1tuHzqndjgAWBYpRoGwn3BbuBKnYWOw8PBUO6R8SYv7Nj+xd0655CcuKlblSFJYlquC/tYlbDoMxH7QXOyCJmAZ0EDtsAzyS73Nj/VCrqE0zX+6y3vDhg04OTkBEBcXh7e3Nxs2bMDCIiWPHjNmjGHeUqVKERwczKpVq/jkk08M0+Pj41m6dClFixYFYP78+bRp04aZM2fi5eVFnz59WLx4McOHDwfgt99+Iz4+ni5dugBw7tw5Q2tjVhwdHVm0aJFRV3dqYgpQpkwZ5s2bR82aNYmNjcXJyYlGjRoRGhpKcnIyJ06cwMbGhrfffpvw8HBatmxJeHg4DRs2zFG5BQcH06ZNGwBCQkKoVKkS58+fx8/Pj/nz59OqVSuCg4MB8PHx4a+//jIkwBlJSEggIcG4O0uv6LHQ/bd/07j7FaPTuglY2lqTGBfPH/3m8PCc+teKJZ09ReycaSRfv4JFgYLYBwbhMm0+UYOC4MkTtcPLF7S6b/MTnU5H4Lh3Obf/FNfPXlU7HAB0bp5YVW1C0v4/iP97AxbepbFp2o2nyckkn9ijamz5od7m63rxkiaC5vKf/jZv3LgxR44c4ciRI+zbt48WLVrQqlUrLl++DMDq1aupV68eXl5eODk5MWbMmDTXV5YoUcKQTALUrVsXvV7PmTNngJSu6vPnz7N3714AwsLC6NKlC46OjkDOHuVUuXLlNNdNHjx4kHbt2lGiRAmcnZ0NyWFqnPXr1+fRo0ccPnyYnTt30rBhQxo1amRotdy5cyeNGjXKdgyA0U1L3t7eAIZu9jNnzlCrVi2j+Z//Oz1Tp07F1dXV6HU77lqO4sqPoi7cZE3L0fzcfjwnl22j8ez3KVC+iNphkXjwH57uCSc58iKJh/fzKGQEOkcnbF9rrHZo+YZW921+0n1SX4r6FuebD2dnPXNe0enQ375M4q6fUO5cIfnoTpKO7sSqSiO1I8sX9VbqxcvrP51QOjo6Uq5cOcqVK0fNmjVZtGgRcXFxLFy4kL///ptu3brRunVrNmzYwOHDhxk9ejRPnz7N0TY8PT1p164dixcv5vbt22zevNmoVdHHx4fTp09nO95nxcXF0aJFC1xcXFi+fDn79+/nl19+ATDE6ebmRkBAAOHh4YbksUGDBhw+fJizZ89y7ty5HLdQWltbG/6v0+kA0OtNu1p51KhRREdHG70KOxYzaZ35gT4xmZjI29w7Hsm+z3/kfsQVKvduqXZYaShxsehvXMPSu2jWMwsg/+xbreoW0oeAJtWZ/s4EHt56oHY4BkpsFMo94xY15f5NdC4FVYooY1qst/m6XujN+HoJ/ae7vJ+n0+mwsLDgyZMn/PXXX5QsWZLRo0cb3k9tuXzWlStXuHHjBkWKpPzC2rt3LxYWFkbd2H379iUwMJBixYpRtmxZ6tWrZ3iva9euvPPOO/z6669prqNUFIWYmBij6yifdfr0ae7fv8+0adMoXrw4AAcOHEgzX8OGDdmxYwf79u1j8uTJuLu7U6FCBSZPnoy3tzc+Pj45KKXM+fr6sn//fqNpz/+dHltbW2xtbY2m/de7u9Ojs9BhaavBamdnj4VXEfQPtfPFnt9odt9qULeQPlRrUYvP3xnPvWt3sl4gD+mvn0fnbjz6hc69MErMfZUiykQ+qLf5qV68rNc+mst/+hs9ISGBW7ducevWLU6dOsWHH35IbGws7dq1o3z58ly5coVVq1Zx4cIF5s2bZ2j9e5adnR29evXi6NGj/PnnnwwePJguXboYDbeT2or42Wef8e67xmOEdenShbfffpvAwECmTJnCgQMHuHz5Mhs2bKBZs2bs2LEjw/hLlCiBjY0N8+fP5+LFi6xfv55Jkyalma9Ro0b88ccfWFlZ4efnZ5i2fPnyHLdOZuXDDz9k06ZNzJo1i3PnzvHtt9+yefNmQ0tmXrJ3sMenUnl8KpUHoGiJIvhUKo9X0cJ5Hkt6ao3ogndtX5yLFcLdrxi1RnShSN0KnPvlL7VDw6H3AKxeCcDC0wsrv0o4f/oZ6PUk7NyqdmgGWt6/Wt63oO2y6z6pL3U7NeDbj+YSHxePi4cbLh5uWNvm/jBp2ZG0/39YFCmDVZ026Nw8saxQB6uARiQd2qZ2aJqvt1qvFyJ35Y+fDS/o999/N1wD6OzsjJ+fH2vWrDFcU/jxxx8zaNAgEhISaNOmDWPHjmXChAlG6yhXrhxvvPEGrVu35sGDB7Rt25avvvrKaB4LCwuCgoKYMmUKPXsaDzCr0+lYsWIF3333Hd9//z2TJ0/GysqK8uXL07NnT1q0aJFh/B4eHoSFhfHpp58yb948qlWrxowZM2jfvr3RfPXr10ev1xslj40aNWLu3Lk5vn4yK/Xq1eObb74hJCSEMWPG0KJFCz7++GMWLFhg1u1kR8Uqfiz6+d/tBk8cDMD61ZsY/5H6d57bF3Khyez+OHi68fTRY+6fusrG7tO59ucJtUPDoqAHzsHj0Lm4oI+OIiniONHBAzQ1BImW96+W9y1ou+ya9Ejp/hy5eqLR9NDgBexZG65CRMb0ty6R8MsCbBq+iXW9DijRd3m6fQXJEXvVDk3z9Vbr9SJLL2lXtbnolJzcNSIy1KdPH+7evcv69evVDiXP9evXj9OnT/Pnnzl7EkdVr3pZz6SS961Lqx1Cpt6qoo07YjPSbH+S2iFkSOv79tvES2qHkKmqdt5qh5ChBQOc1Q4hU092X1Q7hEytOVJc7RAy1P/qD7m+jQedzNej5/7LzmzNN2HCBEJCQoym+fr6ZvveCy35T7dQ5oXo6GiOHz/OihUrXppkcsaMGTRv3hxHR0c2b97MkiVL0rTaCiGEECJrlSpVYuvWfy9bsLLKn6lZ/oxaQzp06MC+ffvo378/zZs3VzucPLFv3z6mT5/Oo0ePDGNj9u3bV+2whBBCiBenUpe3lZVVvn4McipJKE2UOt7jy+THH39UOwQhhBDCrBQzJpTpPcwjvdFOIOUBKEWKFMHOzo66desydepUSpQoYb5g8sh/+i5vIYQQQohsMeM4lOk9zGPq1KlpNlm7dm3CwsL4/fff+frrr7l06ZLhgSX5jbRQCiGEEEKY0ahRoxg6dKjRtPRaJ1u1amX4v7+/P7Vr16ZkyZL8+OOP9OnTJ9fjNCdJKIUQQgjx0jNnl3dG3dtZcXNzw8fHh/Pnz5svmDzyQgllVFQU+/bt486dO2keyff8OIxCCCGEEJqngXEoY2NjuXDhAj169FA7lBzLcUL522+/0a1bN2JjY3FxcTF6QopOp5OEUgghhBAiG4KDg2nXrh0lS5bkxo0bjB8/HktLSwIDA9UOLcdynFAOGzaM3r17M2XKFBwcHHIjJiGEEEKIPGXOLu/sunbtGoGBgdy/fx8PDw9ee+019u7di4eHR94HY6IcJ5TXr19n8ODBkkwKIYQQ4j9DjYRy1apVeb/RXJLjYYNatGjBgQMHciMWIYQQQgiRD+W4hbJNmzYMHz6ciIgIKleujLW1tdH77du3N1twQgghhBB5QY0Wyv+SHCeU/fr1A2DixIlp3tPpdCQnJ5selRBCCCFEXlJ0Wc8jMpTjhPL5YYKEeFHHH0SqHULGCpdWO4JMOQzppnYImeu2RO0IMrTPMl7tEDJV1dJb7RAy9UXlu2qHkKF6s2+qHUKmFlpp+0aLt6peVTsEkY/JwOZCCCGEeOlJl7dpXuhZ3jt37qRdu3aUK1eOcuXK0b59e/78809zxyaEEEIIkScUvc5sr5dRjhPKH374gWbNmuHg4MDgwYMZPHgw9vb2NG3alBUrVuRGjEIIIYQQuUrRm+/1Mspxl/fkyZOZPn06H3/8sWHa4MGDmTVrFpMmTaJr165mDVAIIYQQQmhbjlsoL168SLt27dJMb9++PZcuXTJLUEIIIYQQeUlRdGZ7vYxynFAWL16cbdu2pZm+detWihcvbpaghBBCCCHyknR5m+aFnuU9ePBgjhw5wquvvgrAnj17CAsLY+7cuWYPUAghhBBCaFuOE8oBAwbg5eXFzJkz+fHHHwGoUKECq1evpkOHDmYPUAghhBAit72sd2ebywuNQ9mpUyc6depk7liEEEIIIVShKGpHkL+90DiUQgghhBBCpMpWC6W7uztnz56lUKFCFChQAJ0u42bhBw8emC04IYQQQoi8IF3epslWQjl79mycnZ0N/88sofwvmTBhAuvWrePIkSNqhyKEEEKIXCQJpWmylVD26tXL8P+goKDcisWsgoKCWLJkieFvd3d3atasyfTp0/H391cxMtM9m9BbWlpSpEgR3nzzTaZOnYqtra2KkaljQP9eDBs6AC8vD44di+CjIWPZf+CI2mFRsUdTKvVoinMxDwAenL3GwTm/cDX8mMqRQasxC7n5ICbN9C4NAvj0nWYqRJRWtToB9BzYlYr+fnh4FeLjoJGE/66NR7y2HtiJ6i1q4122KE/jn3L+0BnWTvuBWxdvqB2apmMDsA8MwqHru0bTkq9dJmpAT5UiMqbl4+55Xh+8QbFRPbm96DeuTghVOxzN71uRu3J8U46lpSU3b97E09PTaPr9+/fx9PQkOTnZbMGZqmXLlixevBiAW7duMWbMGNq2bcuVK1dUjsx0ixcvpmXLliQmJnL06FHeffddHB0dmTRpktqh5am33mrPjC/GM/CDkezbf5jBH/Zl08blVHylAXfv3lc1tribD/hn6mqiL90CnQ7ft+rTMnQoa1uN5uHZ66rGtnxEN/T6f69AP3/zHv3nraV5NV8VozJm72DP2ZPn+XXlRmYtnqp2OEZ8a1dk+7LfuXT0PJZWlrwxvCtDl45lTPMhPH2SILFlIenyRWLGDPt3gl473xtaPu6e5RBQDo9uLXgcoa0Himh532ZFbsoxTY5vylEyKPGEhARsbGxMDsicbG1t8fLywsvLiypVqjBy5EiuXr3K3bt3ARgxYgQ+Pj44ODhQpkwZxo4dS2JiYobr279/P82bN6dQoUK4urrSsGFDDh06ZDSPTqdj0aJFdOrUCQcHB8qXL8/69euN5jl58iRt27bFxcUFZ2dn6tevz4ULFwzvL1q0iAoVKmBnZ4efnx9fffVVmljc3Nzw8vKiePHitG3blg4dOqSJ5ddff6VatWrY2dlRpkwZQkJCSEpKMrw/a9YsKleujKOjI8WLF2fgwIHExsYa3g8LC8PNzY0NGzbg6+uLg4MDb775Jo8fP2bJkiWUKlWKAgUKMHjwYNV+SHz8UT8Wha5gydIfOXXqHAM/GMnjx094N+gdVeJ51uWth7my4yjRkbeJvnSLfdPXkPg4nsJVy6kdGu7ODhRydTS8dh2/SHEPN2qUL6Z2aAZ7tu/lq88XsmPzLrVDSWN2r8nsWRvOjXPXuHrqMt8Hf0mhYh6UqlxG7dA0HZtBcjJK1IN/XzHRakdkoOXjLpWFgx1l5n9M5Cdfkhwdp3Y4xjS8b7Oi6HVme72Mst1COW/ePODfhMnJycnwXnJyMrt27cLPz8/8EZpJbGwsP/zwA+XKlaNgwYIAODs7ExYWRpEiRTh+/Dj9+vXD2dmZTz75JN11PHr0iF69ejF//nwURWHmzJm0bt2ac+fOGa4xBQgJCWH69Ol88cUXzJ8/n27dunH58mXc3d25fv06DRo0oFGjRmzfvh0XFxf27NljSPSWL1/OuHHjWLBgAVWrVuXw4cP069cPR0dHo0sPnnX27Fm2b99udDnCn3/+Sc+ePZk3b54hYX3vvfcAGD9+PAAWFhbMmzeP0qVLc/HiRQYOHMgnn3xilMA+fvyYefPmsWrVKh49esQbb7xBp06dcHNzY9OmTVy8eJHOnTtTr1493n777RffQS/A2tqaatX8mTZ9gWGaoihs276bOnWq52ksWdFZ6CjTtjbW9rbcPnRO7XCMJCYls2lfBN2b1nhpro82N3tnBwDiomKzmDPvaTE2yyLFKBD2E0riU5JOn+Tx0u/Q372jdlj5RonJ7xG97SCPdh+Dj7qoHY6R/LxvX9ZHJppLthPK2bNnAylf2N988w2WlpaG92xsbChVqhTffPON+SM0wYYNGwyJb1xcHN7e3mzYsAELi5SG2TFjxhjmLVWqFMHBwaxatSrDhLJJkyZGf3/33Xe4ubmxc+dO2rZta5geFBREYGAgAFOmTGHevHns27ePli1b8uWXX+Lq6sqqVauwtrYGwMfHx7Ds+PHjmTlzJm+88QYApUuXJiIigm+//dYooQwMDMTS0pKkpCQSEhJo27Yto0aNMrwfEhLCyJEjDcuUKVOGSZMm8cknnxgSyiFDhhh9/s8++4z+/fsbJZSJiYl8/fXXlC1bFoA333yTZcuWcfv2bZycnKhYsSKNGzdmx44dmSaUCQkJJCQYd7cpimJSAlOokDtWVlbcuX3PaPqdO3fx8y37wus1J3e/YnRaNwFLW2sS4+L5o98cHp7TxrVsqbYfPc+jJwm0r1NJ7VDyJZ1OR+C4dzm3/xTXz15VOxwjWowt6ewpYudMI/n6FSwKFMQ+MAiXafOJGhQET56oHZ7mFWj/Gg6Vy3KqTbDaoaQh+/bllu2E8tKllOs0GjduzM8//0yBAgVyLShzady4MV9//TUADx8+5KuvvqJVq1bs27ePkiVLsnr1aubNm8eFCxeIjY0lKSkJFxeXDNd3+/ZtxowZQ3h4OHfu3CE5OZnHjx+nuSbz2Zt+HB0dcXFx4c6dlF9oR44coX79+oZk8llxcXFcuHCBPn360K9fP8P0pKQkXF1djeadPXs2zZo1Izk5mfPnzzN06FB69OjBqlWrADh69Ch79uxh8uTJhmWSk5OJj4/n8ePHODg4sHXrVqZOncrp06eJiYkhKSnJ6H0ABwcHQzIJULhwYUqVKmXUQl24cGHD58vI1KlTCQkJMZqms3BCZ5lxef8XRF24yZqWo7FxtqdM61o0nv0+69/6TFNJ5bq/jlOvYmk83Zyynlmk0X1SX4r6Fmfqm2OynjmPaTG2xIP/GP6fHHmRpLOncAtdje1rjUnYsknFyLTP2rsQJUL6crbreJSEjC/PUkt+37cv6zO4zSXHN+Xs2LEjN+LIFY6OjpQr9+/1aosWLcLV1ZWFCxfSpk0bunXrRkhICC1atDC0Gs6cOTPD9fXq1Yv79+8zd+5cSpYsia2tLXXr1uXp06dG8z2fLOp0OvT6lCPV3t4+w/WnXr+4cOFCateubfTesy3CAF5eXobP5uvry6NHjwgMDOSzzz6jXLlyxMbGEhISYmjpfJadnR2RkZG0bduWAQMGMHnyZNzd3dm9ezd9+vTh6dOnhoQyvc+S2efLyKhRoxg6dKjRtAIFTbtE4t69ByQlJeFZuJDRdE9PD27dvmvSus1Fn5hMTORtAO4dj8QzoAyVe7dk16jvVY4sxY37Mfxz+goz32uvdij5UreQPgQ0qc60LuN4eEtbY/BqObZnKXGx6G9cw9K7qNqhaJ6jf1msPdyouHmWYZrOyhKn2hXxDGrNwTJvQRbn4ryU3/atXrq8TZLjhLJz587UqlWLESNGGE2fPn06+/fvZ82aNWYLztx0Oh0WFhY8efKEv/76i5IlSzJ69GjD+5cvX850+T179vDVV1/RunVrAK5evcq9e/cyXeZ5/v7+LFmyhMTExDSJWeHChSlSpAgXL16kW7duOVpvasL55P+7FapVq8aZM2eMEupnHTx4EL1ez8yZMw2XAKQ+mz032NraphnSyNTr9RITEzl06BhNGr/G+vV/GNbZpPFrfPX1YpPWnVt0FjosbV/oiae54te/T+Du7ED9VzR0w0Y+0S2kD9Va1OLzd8Zz75q2rhHTcmxp2Nlj4VUE/UPtJr1aEbP7KCeaDjaaVnrmh8RfuM7Nr37WVDIJyL59yeT4m23Xrl1MmDAhzfRWrVpl2rqnhoSEBG7dugWkdHkvWLCA2NhY2rVrR0xMDFeuXGHVqlXUrFmTjRs38ssvv2S6vvLly7Ns2TJq1KhBTEwMw4cPz7TFMT2DBg1i/vz5vPPOO4waNQpXV1f27t1LrVq18PX1JSQkhMGDB+Pq6krLli1JSEjgwIEDPHz40KiFLyoqilu3bqHX6zl37hwTJ07Ex8eHChUqADBu3Djatm1LiRIlePPNN7GwsODo0aOcOHHC0IqZmJjI/PnzadeuHXv27NHcNbDZMXvuQhaHzubgoWPs33+YwR/2w9HRnrAlq9UOjVojunA1/Cix1+9j7WRHuQ6vUqRuBTZ2n652aADo9Qrr956gXZ2KWFlq7yms9g72FC/9713nRUsUwadSeWKiYrh1/baKkaV0JdfpUJ95/T4nPi4eFw83AJ7EPCYx4WnmC7/EsQE49B7A031/ob9zGwv3gth37Q16PQk7t6odGqDt404fF0/8GeNLrPRPEkh6+CjNdDVofd9mRW7KMU2OE8rY2Nh0hweytrYmJibtQMlq+v333/H29gZS7uj28/NjzZo1NGrUCICPP/6YQYMGkZCQQJs2bRg7dmy6yXKq0NBQ3nvvPapVq0bx4sWZMmUKwcE5uzC6YMGCbN++neHDh9OwYUMsLS2pUqUK9erVA6Bv3744ODjwxRdfMHz4cBwdHalcubLRDTQA776bMnisTqfDy8uLBg0aMGXKFKysUnZpixYt2LBhAxMnTuTzzz/H2toaPz8/+vbtC0BAQACzZs3i888/Z9SoUTRo0ICpU6fSs2f+GoB2zZr1eBRyZ8K4YLy8PDh69CRt2nbnzp2ctRznBvtCLjSZ3R8HTzeePnrM/VNX2dh9Otf+PKF2aADsPX2Zmw8e0bHuK2qHkq6KVfxY9PO/d/AHT0xpmVm/ehPjP5qc0WJ5okmPlgCMXD3RaHpo8AL2rA1XIaJ/aTk2AIuCHjgHj0Pn4oI+OoqkiONEBw/QzPAyWj7utE7r+zYrL+twP+aiUzIaWDIDtWrVom3btowbN85o+oQJE/jtt984ePCgWQMU/11WNtq9rmZB4cZqh5CpXmEN1A4hU692W5L1TCqpauetdgj52heVtXF9cnqa7U/KeiYVLbTyUDuETJWu+lDtEDJU8Ledub6N0z6tzbYuv7PavwnJ3HLcQjl27FjeeOMNLly4YBhGZ9u2baxcuVLT108KIYQQQmREnpRjmhwnlO3atWPdunVMmTKFtWvXYm9vj7+/P1u3bqVhw4a5EaMQQgghRK6SLm/TvNDtpm3atKFNmzZppp84cYJXXtHm9VhCCCGEECJ3mHxr56NHj/juu++oVasWAQEB5ohJCCGEECJP6RWd2V4voxdOKHft2kXPnj3x9vZmxowZNGnShL1795ozNiGEEEKIPKEoOrO9XkY56vK+desWYWFhhIaGEhMTQ5cuXUhISGDdunVUrFgxt2IUQgghhMhVclOOabLdQtmuXTt8fX05duwYc+bM4caNG8yfPz83YxNCCCGEEPlAtlsoN2/ezODBgxkwYADly5fPzZiEEEIIIfLUy3rto7lku4Vy9+7dPHr0iOrVq1O7dm0WLFiQ4+dYCyGEEEJokVxDaZpsJ5R16tRh4cKF3Lx5k/fff59Vq1ZRpEgR9Ho9W7Zs4dGjR7kZpxBCCCHEf9q0adPQ6XRpHrecH+T4Lm9HR0d69+7N7t27OX78OMOGDWPatGl4enrSvn373IhRCCGEECJXKYr5Xi9i//79fPvtt/j7+5v3g+URk8ah9PX1Zfr06Vy7do2VK1eaKyYhhBBCiDyl5jiUsbGxdOvWjYULF1KgQIFc+HS5z+SBzQEsLS3p2LEj69evN8fqhBBCCCHyrYSEBGJiYoxeCQkJGc7/wQcf0KZNG5o1a5aHUZrXCz16UQhzWFC4sdohZOitKlfVDiFTyoG/1Q5B5JIvKt9VO4RMNdufpHYIGapq5612CJk6kGyndgiZ+uq4dlOC7/NgG+a8mWbq1KmEhIQYTRs/fjwTJkxIM++qVas4dOgQ+/fvN9v21aDdo0cIIYQQIo+Yc9igUaNGMXToUKNptra2aea7evUqH330EVu2bMHOTts/OLIiCaUQQgghhBnZ2tqmm0A+7+DBg9y5c4dq1aoZpiUnJ7Nr1y4WLFhAQkIClpaWuRmq2UhCKYQQQoiXnhpPXmzatCnHjx83mvbuu+/i5+fHiBEj8k0yCdlMKHNys40MHSSEEEKI/EaNJ+U4OzvzyiuvGE1zdHSkYMGCaaZrXbYSyo4dO2ZrZTqdjuTkZFPiEUIIIYTIcy/rE27MJVsJpV6vz+04hBBCCCFeeuHh4WqH8ELkGkohhBBCvPSk6cw0L5RQxsXFsXPnTq5cucLTp0+N3hs8eLBZAhNCCCGEyCsK0uVtihwnlIcPH6Z169Y8fvyYuLg43N3duXfvHg4ODnh6ekpCKYQQQgjxksnxoxc//vhj2rVrx8OHD7G3t2fv3r1cvnyZ6tWrM2PGjNyIUQghhBAiV+kV871eRjlOKI8cOcKwYcOwsLDA0tKShIQEihcvzvTp0/n0009zI0YhhBBCiFylR2e218soxwmltbU1FhYpi3l6enLlyhUAXF1duXpV288/zi2NGjViyJAhaodhJDIyEp1Ox5EjRzKcJywsDDc3tzyLSQghhBD/TTm+hrJq1ars37+f8uXL07BhQ8aNG8e9e/dYtmyZqoNwBgUFsWTJEsPf7u7u1KxZk+nTp+Pv75+nsTRq1IidO3cydepURo4cafRemzZt2LRpU4YPic9Lb7/9Nq1bt1Y1BlNU7NGUSj2a4lzMA4AHZ69xcM4vXA0/pnJkKewDg3Do+q7RtORrl4ka0FOliIzpnNywbtQFyzKVwcoGJeoOTzeFor8VqXZoAFSrE0DPgV2p6O+Hh1chPg4aSfjvf6odFgCtB3aieovaeJctytP4p5w/dIa1037g1sUbaoem+eMOZN++KK2f87RcdtkhN+WYJscJ5ZQpU3j06BEAkydPpmfPngwYMIDy5cvz/fffmz3AnGjZsiWLFy8G4NatW4wZM4a2bdsaWlHzUvHixQkLCzNKKK9fv862bdvw9vY2ad2KopCcnIyVlWmjPtnb22Nvb2/SOtQUd/MB/0xdTfSlW6DT4ftWfVqGDmVtq9E8PHtd7fAASLp8kZgxw/6doNfIwP+2Dth2H43+yikS1sxCefwIXYHCKPFxakdmYO9gz9mT5/l15UZmLZ6qdjhGfGtXZPuy37l09DyWVpa8MbwrQ5eOZUzzITx9kqB2eNo97v6f7NsXo/VznpbLLjtk2CDT5LjLu0aNGjRu3BhI6fL+/fffiYmJ4eDBgwQEBJg9wJywtbXFy8sLLy8vqlSpwsiRI7l69Sp3794FYMSIEfj4+ODg4ECZMmUYO3YsiYmJhuUnTJhAlSpVWLZsGaVKlcLV1ZV33nnHkEBDypBJPXv2xMnJCW9vb2bOnJluLG3btuXevXvs2bPHMG3JkiW8/vrreHp6Gs27bNkyatSogbOzM15eXnTt2pU7d+4Y3g8PD0en07F582aqV6+Ora0tu3fvRq/XM336dMqVK4etrS0lSpRg8uTJRuu+ePEijRs3xsHBgYCAAP7++2/De893eWfn8z969Ihu3brh6OiIt7c3s2fPVq3L//LWw1zZcZToyNtEX7rFvulrSHwcT+Gq5fI8lgwlJ6NEPfj3FROtdkQAWNdpjRLzgKebvkd/8xJK9D30kSdRou6qHZrBnu17+erzhezYvEvtUNKY3Wsye9aGc+PcNa6eusz3wV9SqJgHpSqXUTu0FBo97lLJvn0xWj/nabnsRO7LcUKZX8TGxvLDDz9Qrlw5ChYsCKQ8MzMsLIyIiAjmzp3LwoULmT17ttFyFy5cYN26dWzYsIENGzawc+dOpk2bZnh/+PDh7Ny5k19//ZX//e9/hIeHc+jQoTTbt7GxoVu3boYWU0hJ4Hr37p1m3sTERCZNmsTRo0dZt24dkZGRBAUFpZlv5MiRTJs2jVOnTuHv78+oUaOYNm0aY8eOJSIighUrVlC4cGGjZUaPHk1wcDBHjhzBx8eHwMBAkpKSMiy3rD7/0KFD2bNnD+vXr2fLli38+eef6X7+vKaz0FG2fR2s7W25feic2uEYWBYpRoGwn3BbuBKnYWOw8PDMeqE8YFmuCvpbl7DpMBD7QXOxC5qAZUADtcPKt+ydHQCIi4pVOZIUWj3u8iOt7dtUWj3nPUurZZcRBZ3ZXi+jHPeZli5dGp0u48K6ePGiSQGZYsOGDTg5OQEpLYne3t5s2LDBcBPRmDFjDPOWKlWK4OBgVq1axSeffGKYrtfrCQsLw9nZGYAePXqwbds2Jk+eTGxsLKGhofzwww80bdoUSGl1LFasWLrx9O7dm/r16zN37lwOHjxIdHQ0bdu2TXPt5LNJZpkyZZg3bx41a9YkNjbW8HkAJk6cSPPmzYGUlsK5c+eyYMECevXqBUDZsmV57bXXjNYdHBxMmzZtAAgJCaFSpUqcP38ePz+/dGPO7PM/evSIJUuWsGLFCsPnX7x4MUWKFEl3Xc9KSEggIcG4yyNRScZaZ5nlsplx9ytGp3UTsLS1JjEunj/6zeHhOW1cr5N09hSxc6aRfP0KFgUKYh8YhMu0+UQNCoInT1SNTefmiVXVJiTt/4P4vzdg4V0am6bdeJqcTPKJPVmvQBjodDoCx73Luf2nuH5W/RsTtXzc5Tda27eg7XPes7RYdlmRLm/T5DihfL5rMzExkcOHD/P7778zfPhwc8X1Qho3bszXX38NwMOHD/nqq69o1aoV+/bto2TJkqxevZp58+Zx4cIFYmNjSUpKwsXFxWgdpUqVMiRTAN7e3obu5wsXLvD06VNq165teN/d3R1fX9904wkICKB8+fKsXbuWHTt20KNHj3Svezx48CATJkzg6NGjPHz40PDs9CtXrlCxYkXDfDVq1DD8/9SpUyQkJBgSu4w8e0NS6rWbd+7cyTChzOzzX7x4kcTERGrVqmV439XVNcPP/6ypU6cSEhJiNK2Nc2Xaupp2w1TUhZusaTkaG2d7yrSuRePZ77P+rc80cYJNPPiP4f/JkRdJOnsKt9DV2L7WmIQtm1SMDNDp0N+KJHHXTynx3blCUqGiWFVpJAllDnWf1JeivsWZ+uaYrGfOA5o+7vIZre1b0PY571laLLusSEJpmhwnlB999FG607/88ksOHDhgckCmcHR0pFy5f68lWbRoEa6urixcuJA2bdrQrVs3QkJCaNGiBa6urqxatSrNNZDW1tZGf+t0OkOC9yJ69+7Nl19+SUREBPv27UvzflxcHC1atKBFixYsX74cDw8Prly5QosWLdI81tLR0dHw/+zeTPPs50ltWc7s85j786caNWoUQ4cONZq2pOL7Jq9Xn5hMTORtAO4dj8QzoAyVe7dk1yh1bxBLjxIXi/7GNSy9i6odCkpsFMo94y8g5f5NdL41MlhCpKdbSB8CmlRnWpdxPLz1QO1w0qWl4y4/0eq+zQ/nPK2WnchdZruGslWrVvz000/mWp1Z6HQ6LCwsePLkCX/99RclS5Zk9OjR1KhRg/Lly3P58uUcra9s2bJYW1vzzz//tgA8fPiQs2fPZrhM165dOX78OK+88opRa2Oq06dPc//+faZNm0b9+vXx8/MzuiEnI+XLl8fe3p5t27bl6DOYokyZMlhbW7N//37DtOjo6Ew/fypbW1tcXFyMXqZ2d6dHZ6HD0ta0u99zjZ09Fl5F0D9U/wSrv34enbuX0TSde2GUmPsqRZT/dAvpQ7UWtZjedQL3rmVdZ1WjoeMuv8g3+xbtnfPyU9k9T66hNI3ZjsK1a9fi7u5urtW9kISEBG7dugWkJHoLFiwgNjaWdu3aERMTw5UrV1i1ahU1a9Zk48aN/PLLLzlav5OTE3369GH48OEULFgQT09PRo8ebbhGMz0FChTg5s2baVr+UpUoUQIbGxvmz59P//79OXHiBJMmTcoyFjs7O0aMGMEnn3yCjY0N9erV4+7du5w8eZI+ffrk6HNll7OzM7169WL48OG4u7vj6enJ+PHjsbCwyPS62txSa0QXroYfJfb6fayd7CjX4VWK1K3Axu7T8zyW9Dj0HsDTfX+hv3MbC/eC2HftDXo9CTu3qh0aSfv/h233T7Gq04bk0/ux8C6DVUAjnv4RpnZoBvYO9hQv/e/1yUVLFMGnUnliomK4df22ipGldOfV6VCfef0+Jz4uHhcPNwCexDwmMeFp5gvnMi0fd6lk374YrZ/ztFx22aF/OfNAs3mhgc2fTR4UReHWrVvcvXuXr776yqzB5dTvv/9uuE7Q2dkZPz8/1qxZQ6NGjYCU55APGjSIhIQE2rRpw9ixY3M8uPgXX3xhSFKdnZ0ZNmwY0dGZD8mR2dNoPDw8CAsL49NPP2XevHlUq1aNGTNm0L59+yxjGTt2LFZWVowbN44bN27g7e1N//79c/R5cmrWrFn079+ftm3b4uLiwieffMLVq1exs7PL1e2mx76QC01m98fB042njx5z/9RVNnafzrU/T+R5LOmxKOiBc/A4dC4u6KOjSIo4TnTwAE0M4aK/dYmEXxZg0/BNrOt1QIm+y9PtK0iO2Kt2aAYVq/ix6OcFhr+DJw4GYP3qTYz/aHJGi+WJJj1aAjBy9USj6aHBC9izNlyFiP6l5eMulezbF6P1c56Wy07kPp2iKDl6jPmECROMEkoLCws8PDxo1KhRhjd6iP+uuLg4ihYtysyZM3PcMvpN8e65FJXp3qqi7bsS7V/T9rhu9WZnfRmEWqramfZggdz2RWXtjAWanmb7Mx52TG1a37e1kvP+h3dO7LOMVzuEDH0fuTbXt/GrV1ezravDrRVmW1d+keMWSrUfFyjUdfjwYU6fPk2tWrWIjo5m4sSUX6IdOnRQOTIhhBDixeWodU2kkeObciwtLdO9aeT+/ftYWpr/JguhPTNmzCAgIIBmzZoRFxfHn3/+SaFChdQOSwghhBAqyXELZUY95AkJCdjY2JgckNC2qlWrcvDgQbXDEEIIIcxKxqE0TbYTynnz5gEpQ/EsWrTI6AkuycnJ7Nq1S66hFEIIIUS+pFdhtJL/kmwnlKnPvFYUhW+++caoe9vGxoZSpUrxzTffmD9CIYQQQgihadlOKC9dugSkPN7w559/pkCBArkWlBBCCCFEXpKbckyT42sod+zYkRtxCCGEEEKoRq6hNE2O7/Lu3Lkzn3/+eZrp06dP56233jJLUEIIIYQQeUmvM9/rZZTjhHLXrl20bt06zfRWrVqxa9cuswQlhBBCCCHyjxx3ecfGxqY7PJC1tTUxMTFmCUoIIYQQIi/peUmbFs0kxy2UlStXZvXq1Wmmr1q1iooVK5olKCGEEEKIvKSY8fUyynEL5dixY3njjTe4cOECTZo0AWDbtm2sXLmSNWvWmD1AIYQQQgihbTlOKNu1a8e6deuYMmUKa9euxd7eHn9/f7Zu3UrDhg1zI0YhhBBCiFz1st5MYy45TigB2rRpQ5s2bdJMP3HiBK+88orJQQmhtkuHtT3Oamkuqh2CyCVrjhRXO4RMvW+tdgQZ20e82iFk6q0qV9UOIVP7jnuoHYKqZNgg0+T4GsrnPXr0iO+++45atWoREBBgjpiEEEIIIUQ+8sIJ5a5du+jZsyfe3t7MmDGDJk2asHfvXnPGJoQQQgiRJ+SmHNPkqMv71q1bhIWFERoaSkxMDF26dCEhIYF169bJHd5CCCGEyLfkGkrTZLuFsl27dvj6+nLs2DHmzJnDjRs3mD9/fm7GJoQQQggh8oFsJ5SbN2+mT58+hISE0KZNGywtLXMzLiGEEEKIPKM34yu7vv76a/z9/XFxccHFxYW6deuyefNmM32ivJXthHL37t08evSI6tWrU7t2bRYsWMC9e/dyMzYhhBBCiDyhRkJZrFgxpk2bxsGDBzlw4ABNmjShQ4cOnDx50kyfKu9kO6GsU6cOCxcu5ObNm7z//vusWrWKIkWKoNfr2bJlC48ePcrNOIUQQgghco2iM98ru9q1a0fr1q0pX748Pj4+TJ48GScnp3x5k3OO7/J2dHSkd+/e7N69m+PHjzNs2DCmTZuGp6cn7du3z40YhRBCCCHyjYSEBGJiYoxeCQkJmS6TnJzMqlWriIuLo27dunkUqfmYNA6lr68v06dP59q1a6xcudJcMQkhhBBC5ClzdnlPnToVV1dXo9fUqVPT3e7x48dxcnLC1taW/v3788svv+TLkXNe6Ek5z7O0tKRjx4507NjRHKsTQgghhMhT5nxSzqhRoxg6dKjRNFtb23Tn9fX15ciRI0RHR7N27Vp69erFzp07811SaZaEUgghhBBCpLC1tc0wgXyejY0N5cqVA6B69ers37+fuXPn8u233+ZmiGZn8qMXRfaUKlWKOXPmmLSOsLAw3NzcDH9PmDCBKlWqZHv5nM6fW+sQQgghtEYrT8rR6/VZXm+pRS9FC2VQUBBLliwx/O3u7k7NmjWZPn06/v7+KkZmXhMmTCAkJARIuQyhWLFidOrUiUmTJuHk5ERwcDAffvihYf6goCCioqJYt26dShGbpmKPplTq0RTnYh4APDh7jYNzfuFq+DGVI0vL64M3KDaqJ7cX/cbVCaFqh4N9YBAOXd81mpZ87TJRA3qqFFFa1eoE0HNgVyr6++HhVYiPg0YS/vufaocFQOuBnajeojbeZYvyNP4p5w+dYe20H7h18YbaoWm+Xmg9Pi3vW63XWy2XXXao8aScUaNG0apVK0qUKMGjR49YsWIF4eHh/PHHH3kfjIleioQSoGXLlixevBhIeYTkmDFjaNu2LVeuXFE5MvOqVKkSW7duJSkpiT179tC7d28eP37Mt99+i5OTE05OTmqHaDZxNx/wz9TVRF+6BTodvm/Vp2XoUNa2Gs3Ds9fVDs/AIaAcHt1a8DjiktqhGEm6fJGYMcP+naBPVi+YdNg72HP25Hl+XbmRWYvTv5hdLb61K7J92e9cOnoeSytL3hjelaFLxzKm+RCePlG3ZUHr9ULr8Wl534K2663Wy06L7ty5Q8+ePbl58yaurq74+/vzxx9/0Lx5c7VDy7GXpsvb1tYWLy8vvLy8qFKlCiNHjuTq1avcvXsXgBEjRuDj44ODgwNlypRh7NixJCYmGpY/evQojRs3xtnZGRcXF6pXr86BAwcM7+/evZv69etjb29P8eLFGTx4MHFxcUYxPHr0iMDAQBwdHSlatChffvml0fuzZs2icuXKODo6Urx4cQYOHEhsbGyOPqeVlRVeXl4UK1aMt99+m27durF+/XrAuLt6woQJLFmyhF9//RWdTodOpyM8PByAa9euERgYiLu7O46OjtSoUYN//vnHaDvLli2jVKlSuLq68s4776gyDunlrYe5suMo0ZG3ib50i33T15D4OJ7CVcvleSwZsXCwo8z8j4n85EuSo+OyXiAvJSejRD349xUTrXZERvZs38tXny9kx+ZdaoeSxuxek9mzNpwb565x9dRlvg/+kkLFPChVuYzaoWm+Xmg9Pi3vW0DT9VbzZZcFNQY2Dw0NJTIykoSEBO7cucPWrVvzZTIJL1FC+azY2Fh++OEHypUrR8GCBQFwdnYmLCyMiIgI5s6dy8KFC5k9e7ZhmW7dulGsWDH279/PwYMHGTlyJNbW1gBcuHCBli1b0rlzZ44dO8bq1avZvXs3gwYNMtruF198QUBAAIcPH2bkyJF89NFHbNmyxfC+hYUF8+bN4+TJkyxZsoTt27fzySefmPRZ7e3tefr0aZrpwcHBdOnShZYtW3Lz5k1u3rzJq6++SmxsLA0bNuT69eusX7+eo0eP8sknn6DX/1tFLly4wLp169iwYQMbNmxg586dTJs2zaQ4TaWz0FG2fR2s7W25feicqrE8q8Tk94jedpBHu7XRnfcsyyLFKBD2E24LV+I0bAwWHp5qh5Rv2Ts7ABAXlbMfgLlNq/UildbjA+3t2/xUb7VWdllRI6H8L3lpurw3bNhg6O6Ni4vD29ubDRs2YGGRklOPGTPGMG+pUqUIDg5m1apVhoTuypUrDB8+HD8/PwDKly9vmH/q1Kl069aNIUOGGN6bN28eDRs25Ouvv8bOzg6AevXqMXLkSAB8fHzYs2cPs2fPNvwaSV0+NYbPPvuM/v3789VXX73QZz548CArVqygSZMmad5zcnLC3t6ehIQEvLy8DNPDwsK4e/cu+/fvx93dHcBw91kqvV5PWFgYzs7OAPTo0YNt27YxefLkDGNJSEhIc5FxopKMtc60Z8K7+xWj07oJWNpakxgXzx/95vDwnDau1ynQ/jUcKpflVJtgtUNJI+nsKWLnTCP5+hUsChTEPjAIl2nziRoUBE+eqB1evqLT6Qgc9y7n9p/i+tmraocDaLtegPbjS6W1fZuf6q3Wyk7kvpemhbJx48YcOXKEI0eOsG/fPlq0aEGrVq24fPkyAKtXr6ZevXp4eXnh5OTEmDFjjK6vHDp0KH379qVZs2ZMmzaNCxcuGN47evQoYWFhhmsUnZycaNGiBXq9nkuX/r1u7vmR7+vWrcupU6cMf2/dupWmTZtStGhRnJ2d6dGjB/fv3+fx48fZ/pypA6Ta29tTq1Yt6taty4IFC7K9/JEjR6hataohmUxPqVKlDMkkgLe3N3fu3Ml0vekN8vpHjOnPKo26cJM1LUfzc/vxnFy2jcaz36dA+SImr9dU1t6FKBHSl0sfzkJJSMx6gTyWePAfnu4JJznyIomH9/MoZAQ6RydsX2usdmj5TvdJfSnqW5xvPpyd9cx5RKv1IpXW40ultX2bn+qt1souO7Ryl3d+9dIklI6OjpQrV45y5cpRs2ZNFi1aRFxcHAsXLuTvv/+mW7dutG7dmg0bNnD48GFGjx5t1FU8YcIETp48SZs2bdi+fTsVK1bkl19+AVK60N9//31DwnrkyBGOHj3KuXPnKFu2bLbii4yMpG3btvj7+/PTTz9x8OBBwzWW6XVZZyR1gNRTp07x5MkT1q9fT+HChbO9vL29fZbzpHb1p9LpdEZd4ukZNWoU0dHRRq8WLpWyHVdG9InJxETe5t7xSPZ9/iP3I65QuXdLk9drKkf/slh7uFFx8yyqR/5E9cifcK77Cp6921A98iew0FbVU+Ji0d+4hqV3UbVDyVe6hfQhoEl1pr8zgYe3HqgdjoFW60UqrccH2t23z9Jqvc0PZZcevc58r5fRS9Pl/TydToeFhQVPnjzhr7/+omTJkowePdrwfmrL5bN8fHzw8fHh448/JjAwkMWLF9OpUyeqVatGREREmq7h5z3/sPe9e/dSoUIFIKV7Wq/XM3PmTEM3/I8//pjjz/XsAKnZmTc52fgOQX9/fxYtWsSDBw8ybaXMqfQGeTW1uzs9OgsdlrbqH9Yxu49youlgo2mlZ35I/IXr3PzqZ8giAc9zdvZYeBVB/zD/nPzV1i2kD9Va1OLzd8Zz71rmLfRq00q9yIjW4ss3+1aD9TbflF06NHZWzne0U4NzWUJCArdu3QLg4cOHLFiwgNjYWNq1a0dMTAxXrlxh1apV1KxZk40bNxpaHwGePHnC8OHDefPNNyldujTXrl1j//79dO7cGUi5Q7xOnToMGjSIvn374ujoSEREBFu2bDHqbt6zZw/Tp0+nY8eObNmyhTVr1rBx40Yg5TrFxMRE5s+fT7t27dizZw/ffPNNrpZJqVKl+OOPPzhz5gwFCxbE1dWVwMBApkyZQseOHZk6dSre3t4cPnyYIkWKaO5h9bVGdOFq+FFir9/H2smOch1epUjdCmzsPl3t0NDHxRN/xnhIKv2TBJIePkozXQ0OvQfwdN9f6O/cxsK9IPZde4NeT8LOrWqHZmDvYE/x0sUMfxctUQSfSuWJiYrh1vXbKkaW0p1Xp0N95vX7nPi4eFw83AB4EvOYxITs9yjkBi3XC9B+fFret1qvt1ouO5H7XpqE8vfff8fb2xtIuaPbz8+PNWvW0KhRIwA+/vhjBg0aREJCAm3atGHs2LFMmDABSBkk/P79+/Ts2ZPbt29TqFAh3njjDcMg4v7+/uzcuZPRo0dTv359FEWhbNmyvP3220YxDBs2jAMHDhASEoKLiwuzZs2iRYsWAAQEBDBr1iw+//xzRo0aRYMGDZg6dSo9e+begLX9+vUjPDycGjVqEBsby44dO2jUqBH/+9//GDZsGK1btyYpKYmKFSumGeJIC+wLudBkdn8cPN14+ugx909dZWP36Vz784TaoWmeRUEPnIPHoXNxQR8dRVLEcaKDB2hqCJKKVfxY9PO/P8iCJ6a0+K5fvYnxH2V8A1heaNIjpXt25OqJRtNDgxewZ224ChH9S+v1QuvxaXnfar3earnssuNlvfbRXHSKokgZClV8U7y72iFkqIai7WEuSld9qHYImWq2P0ntEDJU1c5b7RAyVSvZTu0Q8q19lvFqh5CpLyrfVTuETA0/7qF2CBn6PnJtrm9jcsluZlvX6MvLzbau/EJbdwYIIYQQQoh856Xp8hZCCCGEyIjclGMaSSiFEEII8dKT6/9MI13eQgghhBDCJNJCKYQQQoiXnnR5m0YSSiGEEEK89F7WJ9yYi3R5CyGEEEIIk0gLpRBCCCFeenq5LcckklAKIYQQ4qUn6aRpJKEUQgghxEtPbsoxjVxDKYQQQgghTCItlEIIIYR46ck1lKaRhFIIIYQQLz1JJ00jCaVQzT7LeLVDyFiyk9oRZKrf/rtqh5Cpv5b3UjuEDJ3stUntEDJ1QONj4Wm53tZKtlM7hExdOlxA7RAydTjpptohiHxMEkohhBBCvPTkphzTSEIphBBCiJeeXENpGrnLWwghhBBCmERaKIUQQgjx0pP2SdNIQimEEEKIl55cQ2ka6fIWQgghhBAmkRZKIYQQQrz0FOn0NokklEIIIYR46UmXt2kkoRRCCCHES0+GDTKNXEMphBBCCCFMIi2UQgghhHjpSfukaaSFUqPCwsJwc3Mz+3obNWrEkCFDTFpHeHg4Op2OqKgoIPdiFUIIIfKKHsVsr5eRtFC+oKCgIJYsWWL4293dnZo1azJ9+nT8/f1VjCxFeHg4jRs35uHDh//ZZK/1wE5Ub1Eb77JFeRr/lPOHzrB22g/cunhD7dAAqNijKZV6NMW5mAcAD85e4+CcX7gafkzlyFJUqxNAz4Fdqejvh4dXIT4OGkn473+qHRYArcYs5OaDmDTTuzQI4NN3mqkQUca8PniDYqN6cnvRb1ydEKp2OJo/7qTemo/Wjj3Q9nlF5C5poTRBy5YtuXnzJjdv3mTbtm1YWVnRtm1btcN6afjWrsj2Zb/zWadRzOwxEUsrS4YuHYuNva3aoQEQd/MB/0xdzU+tx/BTm7Hc+CuClqFDKeBTVO3QALB3sOfsyfNMHTVT7VDSWD6iG1un9je8vhn8JgDNq/mqHJkxh4ByeHRrweOIS2qHYqD1407qrXlo8dgDbZ9XsqI34yu7pk6dSs2aNXF2dsbT05OOHTty5swZM32ivCUJpQlsbW3x8vLCy8uLKlWqMHLkSK5evcrdu3cBGDFiBD4+Pjg4OFCmTBnGjh1LYmKiYfmjR4/SuHFjnJ2dcXFxoXr16hw4cCDdbd29e5caNWrQqVMnEhIS0Ov1TJ06ldKlS2Nvb09AQABr164FIDIyksaNGwNQoEABdDodQUFBhnUlJSUxaNAgXF1dKVSoEGPHjkVR/m2iX7ZsGTVq1MDZ2RkvLy+6du3KnTt3zF18JpvdazJ71oZz49w1rp66zPfBX1KomAelKpdROzQALm89zJUdR4mOvE30pVvsm76GxMfxFK5aTu3QANizfS9ffb6QHZt3qR1KGu7ODhRydTS8dh2/SHEPN2qUL6Z2aAYWDnaUmf8xkZ98SXJ0nNrhGGj9uJN6azqtHnug7fNKVhQz/suunTt3/l97dx5Xc/b/Afx1W7XdioqiBZVEyL4ry8i+zTAJJYwxJomsY18bg6yDIUrWsVP4IrJkTSpLIqLQYqu0ajm/P/p1p+tWltT5XN7PedzHuJ/76d5Xd6l3Z8X48eNx9epVnD59Grm5ufjhhx+QkSGs1/VTUJf3V5Keno4dO3bA3Nwc1apVAwBoaWnB19cXRkZGuH37NsaMGQMtLS1MnToVAODk5ARbW1ts2LABioqKCA8Ph7Kyssx9x8fHo1u3bmjdujV8fHygqKiIxYsXY8eOHdi4cSMsLCxw4cIFDBs2DPr6+mjfvj0OHDiAQYMGITo6GmKxGGpqapL78/Pzw6hRo3D9+nWEhobil19+gYmJCcaMGQMAyM3NxcKFC1GvXj0kJydj0qRJcHFxwfHjxyvhmfxyalrqAICMlHTOSWSJFESo07sVlNVUkRT2kHccuZKbl4/j1+9hWJfmEIlEvONImCz+BalBN/HuUiTgPph3nBLJw/uOPrefTx7ee+TTnDx5Uuq6r68vDAwMcPPmTXTs2JFTqi9DBWU5BAQEQFNTEwCQkZEBQ0NDBAQEQEGhsOF31qxZknPNzMzg6emJPXv2SArKuLg4TJkyBVZWVgAACwsLmceIjo5Gt27dMGDAAKxatQoikQg5OTlYsmQJzpw5gzZt2gAA6tSpg0uXLmHTpk3o1KkTqlatCgAwMDCQGUNpbGwMb29viEQi1KtXD7dv34a3t7ekoHR1dZWcW6dOHaxZswYtWrRAenq65Pv9XDk5OcjJyZE6ls/yoShS/KL7+5BIJILjnJF4eCMKzx/Ef5X7/BqqWtXCgMPzoKiqjNyMbPxvzCq8fSiMsWLy4mxEDN5l5aBv6wa8o0jo9m0PdZu6iOrlyTtKieTlfUef288n9PeePPuaC5uX9DtPVVUVqqplD+1ITU0FAMnvcHlCXd7lYG9vj/DwcISHh+P69evo3r07evTogadPnwIA9u7di3bt2qFGjRrQ1NTErFmzEBcXJ/n6SZMmYfTo0ejatSu8vLzw6NEjqfvPyspChw4dMHDgQKxevVrSOhMTE4PMzEx069YNmpqaksv27dtl7qMkrVu3lmrpadOmDR4+fIj8/HwAwM2bN9GnTx+YmJhAS0sLnTp1AgCp7J9r6dKl0NbWlrpEpn69cSLDFo5GzXrG2Ojm/dXu82tIeZSAfQ5/4GDfubjrHwR777HQtTDiHUuuHL58G+2sa8NA58v+mPnalA31YDJ/NGLdVoLl5H78CziQl/cdfW4/jzy89+TZ1+zyLul33tKlS8t8/IKCAkycOBHt2rVDw4YNK+m7/nqooCwHDQ0NmJubw9zcHC1atMCWLVuQkZGBzZs348qVK3ByckLPnj0REBCAW7du4Y8//sD79+8lXz9v3jzcvXsXvXr1wtmzZ2FtbY1Dhw5JbldVVUXXrl0REBCA58+fS46npxd2DQUGBkoK2vDwcNy7d08yjvJLZWRkoHv37hCLxdi5cydu3LghyVQ8++eaMWMGUlNTpS6NtL/OBAun+aPQuHMzLPt5Ht4mvvkq9/m1FOTmI+1JEl7dfoLrf/6L1/fiYOPqwDuW3HjxOg3X7sdhQDsb3lEkNBrVhbK+DqxPrESzJwfQ7MkBaLVpCAPXXmj25ACgwP/Hqjy87+hz+/nk4b1HCpX0O2/GjBllfs348eNx584d7Nmzp5JSfl3U5f0ViUQiKCgoICsrC5cvX4apqSn++OMPye1FLZfFWVpawtLSEh4eHnB0dMS2bdswYMAAAICCggL8/f0xdOhQ2NvbIzg4GEZGRrC2toaqqiri4uIkrYcfUlFRAQBJq2Nx165dk7p+9epVWFhYQFFREffv38fr16/h5eUFY2NjACh1otDnKKmp/2t0dzvNH4Wm3Vviz5/n4tUz4U0c+pBIQQRFVfrYfaojV+6gqpY6OjQUxoQNAEi7FIE7XSZIHau9wg3Zj54j4e+DQIHwdgQW2vuOPrdfRh7fe/Lkaz57n9K9Xdzvv/+OgIAAXLhwAbVqCWfy4efg/wmRYzk5OUhMTAQAvH37FuvWrUN6ejr69OmDtLQ0xMXFYc+ePWjRogUCAwOlWh+zsrIwZcoU/Pjjj6hduzaePXuGGzduYNCgQVKPoaioiJ07d8LR0RGdO3dGcHAwatSoAU9PT3h4eKCgoADt27dHamoqQkJCIBaL4ezsDFNTU4hEIgQEBKBnz55QU1OTjH+Mi4vDpEmTMHbsWISFhWHt2rVYsaJwiQcTExOoqKhg7dq1+PXXX3Hnzh0sXLiwkp7RzzNs4Wi07tcBa8b8ieyMbIj1dQAAWWmZyM358tbUr6XltMGID45A+vPXUNasAvN+bWHUpj4Chy3jHQ1A4fIexrX/+8FV08QIlg0skJaShsTnSRyTFSooYDh69Q76tLaGkqJwWl4KMrKRHS09/KMgKwd5b9/JHOdB6O87+tx+OaG/9wDh/1wpSwGr/AXJGWNwc3PDoUOHEBwcjNq1a1d6hq+FCspyOHnyJAwNDQEUzui2srLCvn37YGdnBwDw8PDA77//jpycHPTq1QuzZ8/GvHnzABQWiq9fv8aIESOQlJQEPT09DBw4EPPnz5d5HCUlJezevRtDhgyRFJULFy6Evr4+li5disePH0NHRwdNmzbFzJkzAQA1a9bE/PnzMX36dIwcORIjRoyAr68vAGDEiBHIyspCy5YtoaioCHd3d/zyyy8AAH19ffj6+mLmzJlYs2YNmjZtiuXLl6Nv374V+2R+gc7DC7ugpu9dIHXcx3MdQvYHc0gkTU1PjM7ev0LdQAfv32XidVQ8Aoctw7OLd3hHAwBYN7HCloPrJNc9FxS2fBzdexxz3RfziiVx9f5TJLx5h/5t5G8sEU9Cf9/R5/bbJvSfK2Xhsb/N+PHjsWvXLhw5cgRaWlqSRiptbW2p1VnkgYgxDiU5IQBczX7kHaFULfOr8I5Qpk25wlrM+EOXdzrzjlCqu87CXv4qVCSMyUelua6YzTtCqYT+uW3OhLc0UnFj8l7yjlCqW4khFf4Yw0wHfrX72vH04CedV9pSaNu2bZNaP1oeUAslIYQQQr57PPbg/pba9KigJIQQQsh373N2uCGyhDPSnRBCCCGEyCVqoSSEEELId48WXSofKigJIYQQ8t3jMYbyW0Jd3oQQQgghpFyohZIQQggh3z2alFM+VFASQggh5LtHYyjLh7q8CSGEEEJIuVALJSGEEEK+e9/SIuM8UEFJCCGEkO8ezfIuHyooCSGEEPLdozGU5UNjKAkhhBBCSLlQCyUhJXD27cg7QtlceAcom5/LBd4RSnVdSdg/9n7LS+cdoUw/2bzlHaFUU27r845Qpk3ZL3lHIGWgZYPKR9g/WQkhhBBCKgGNoSwf6vImhBBCCCHlQi2UhBBCCPnu0bJB5UMFJSGEEEK+ezTLu3yoy5sQQgghhJQLtVASQggh5LtHs7zLhwpKQgghhHz3aJZ3+VCXNyGEEEIIKRdqoSSEEELId49meZcPFZSEEEII+e5Rl3f5UJf3//P19YWOjs5Xv187OztMnDixXPcRHBwMkUiElJQUABWX9UvzEEIIIfKOfcX/vkdy00Lp4uICPz8/yfWqVauiRYsWWLZsGRo1asQxWaHg4GDY29vj7du3lV7s+fr6YuTIkQAABQUFiMViWFpaolevXnB3d4e2tnal5qksPX8bgGbdW8Gwbk28z36PmLBo7PfagcTHL3hHAwD0mLUZCW/SZI4P7tgYM3/uyiHRf6yHd0GD4V2gVatw7+M3D57h5qpDiA+O5JqriNDzCf29V1yN8QNRa8YIJG05hvh5PrzjQM3RBepDR0ody3/2FCnjRnBKJE3or23T1o0x4rehsG5kBf0aevBwmY7gkxd5x5IQej5SceSmoAQABwcHbNu2DQCQmJiIWbNmoXfv3oiLi+OcjD+xWIzo6GgwxpCSkoLLly9j6dKl2LZtG0JCQmBkZMQ74ldXr5U1zvqfRGxEDBSVFDFwylBM2j4bs7pNxPusHN7xsHOaEwoK/vtLNSbhFX5dsx/dmtbjmKpQRsIbXFu6F6mxiYBIhHo/dYCDzyTs7/EH3j54zjue4PMJ/b1XRL2xOfSduiPzXizvKFLynj5G2qzJ/x0oyOcX5gNCf23V1NXw4G4MjuwOxMptS3nHkSH0fGUpoDGU5SJXXd6qqqqoUaMGatSogSZNmmD69OmIj4/Hy5cvAQDTpk2DpaUl1NXVUadOHcyePRu5ubmSr4+IiIC9vT20tLQgFovRrFkzhIaGlvhYL1++RPPmzTFgwADk5OSgoKAAS5cuRe3ataGmpobGjRtj//79AIAnT57A3t4eAKCrqwuRSAQXFxfJfeXl5eH333+HtrY29PT0MHv2bKnBv/7+/mjevDm0tLRQo0YNDB06FMnJyZ/13IhEItSoUQOGhoaoX78+Ro0ahcuXLyM9PR1Tp06VnGdmZoZVq1ZJfW2TJk0wb948qfvasmULBgwYAHV1dVhYWODo0aOlPnZmZiZ69OiBdu3aVWo3uLfzYoTsD8aLh88QH/UUWz3XQ6+WPsxs6lRahrJU1VKHnraG5HLh9mMY6+uguUUt3tHw9MwtxJ2LQOqTJKTGJuL6sn3IzcxGdVtz3tEACD+f0N97AKCgXgV11nrgydT1yE/N4B1HWn4+WMqb/y5pqbwTSQj9tQ05exV//7kZ505c4B2lRELPVxb2FS/fI7kqKItLT0/Hjh07YG5ujmrVqgEAtLS04Ovri3v37mH16tXYvHkzvL29JV/j5OSEWrVq4caNG7h58yamT58OZWVlmfuOj49Hhw4d0LBhQ+zfvx+qqqpYunQptm/fjo0bN+Lu3bvw8PDAsGHDcP78eRgbG+PAgQMAgOjoaCQkJGD16tWS+/Pz84OSkhKuX7+O1atXY+XKldiyZYvk9tzcXCxcuBARERE4fPgwnjx5IlWQfikDAwM4OTnh6NGjyM//vBaA+fPnY/DgwYiMjETPnj3h5OSEN2/eyJyXkpKCbt26oaCgAKdPn+Y6tlNNSx0AkJGSzi1DaXLz8nH8+j30a9MQIpGIdxwpIgUR6vZtDWU1VSSFPeQdR4bQ8wHCfO+ZLP4FqUE38e6SMIYJFKdoVAu6vgegs3k3NCfPgoK+Ae9IpRLia0uIEMlVl3dAQAA0NTUBABkZGTA0NERAQAAUFArr4lmzZknONTMzg6enJ/bs2SNpoYuLi8OUKVNgZWUFALCwsJB5jOjoaHTr1g0DBgzAqlWrIBKJkJOTgyVLluDMmTNo06YNAKBOnTq4dOkSNm3ahE6dOqFq1aoACou4D4sqY2NjeHt7QyQSoV69erh9+za8vb0xZswYAICrq6vk3Dp16mDNmjVo0aIF0tPTJd/vl7KyssK7d+/w+vVrGBh8+g9tFxcXODo6AgCWLFmCNWvW4Pr163BwcJCck5iYiCFDhsDCwgK7du2CiopKubKWh0gkguOckXh4IwrPH8Rzy1GasxExeJeVg76tG/COIlHVqhYGHJ4HRVVl5GZk439jVuHtQ2GMEwOEn6+IEN97un3bQ92mLqJ6efKOIiPvQRTSV3kh/3kcFHSrQc3RBWKvtUj53QXIyuIdT4oQX1tScWiWd/nIVUFpb2+PDRs2AADevn2Lv//+Gz169MD169dhamqKvXv3Ys2aNXj06BHS09ORl5cHsVgs+fpJkyZh9OjR8Pf3R9euXfHTTz+hbt26ktuzsrLQoUMHDB06VKpbOCYmBpmZmejWrZtUnvfv38PW1vajuVu3bi3VKtWmTRusWLEC+fn5UFRUxM2bNzFv3jxERETg7du3KCgo3KI+Li4O1tbWX/RcFSnqWv/cVrHiE500NDQgFotluuG7deuGli1bYu/evVBUVCzz/nJycpCTIz3+KJ/lQ1FU9td9qmELR6NmPWMs/XHWx0/m4PDl22hnXRsGOuX7A+FrSnmUgH0Of0BFSw11eraEvfdYHP1pkWCKNqHnKyK0956yoR5M5o/Gg6FzwXJyP/4FlSz35jXJv/OfPEbegyjo+OyFant75Jw+zjGZLKG9tqRiUUFZPnLV5a2hoQFzc3OYm5ujRYsW2LJlCzIyMrB582ZcuXIFTk5O6NmzJwICAnDr1i388ccfeP/+veTr582bh7t376JXr144e/YsrK2tcejQIcntqqqq6Nq1KwICAvD8+X8D/9PTC7s6AgMDER4eLrncu3dPMo7yS2VkZKB79+4Qi8XYuXMnbty4IclUPPuXioqKglgslgwLUFBQkFm8tfg40yIfDgUQiUSSQrdIr169cOHCBdy7d++jOZYuXQptbW2pS2Rq9Od+OyVymj8KjTs3w7Kf5+Ftomy3PG8vXqfh2v04DGhnwzuKlILcfKQ9ScKr209w/c9/8fpeHGxcHT7+hZVE6PkAYb73NBrVhbK+DqxPrESzJwfQ7MkBaLVpCAPXXmj25ACgIKwf+ywjHQUvnkHRsCbvKFKE+NoSImRy1UL5IZFIBAUFBWRlZeHy5cswNTXFH3/8Ibn96dOnMl9jaWkJS0tLeHh4wNHREdu2bcOAAQMAFBZb/v7+GDp0KOzt7REcHAwjIyNYW1tDVVUVcXFx6NSpU4lZirp7SxqreO3aNanrV69ehYWFBRQVFXH//n28fv0aXl5eMDY2BoBSJwp9ruTkZOzatQv9+/eXDAvQ19dHQkKC5Jy0tDTExn7ZDFAvLy9oamqiS5cuCA4OLrM1dcaMGZg0aZLUMTcb5y963OKc5o9C0+4t8efPc/Hq2edNZKosR67cQVUtdXRoKIxB/aURKYigqCrcHwlCyyfU917apQjc6TJB6ljtFW7IfvQcCX8fBD74w5C7KmpQqGGEgrfCKdqE+tqSikU75ZSPcH46f4KcnBwkJiYCKOzyXrduHdLT09GnTx+kpaUhLi4Oe/bsQYsWLRAYGCjV+piVlYUpU6bgxx9/RO3atfHs2TPcuHEDgwYNknoMRUVF7Ny5E46OjujcuTOCg4NRo0YNeHp6wsPDAwUFBWjfvj1SU1MREhICsVgMZ2dnmJqaQiQSISAgAD179oSamppk/GNcXBwmTZqEsWPHIiwsDGvXrsWKFSsAACYmJlBRUcHatWvx66+/4s6dO1i4cOFnPzeMMSQmJkqWDbpy5QqWLFkCbW1teHl5Sc7r3LkzfH190adPH+jo6GDOnDkf7a4uy/Lly5Gfny95rorGp35IVVUVqqqqUsfK2909bOFotO7XAWvG/InsjGyI9XUAAFlpmcjNKX/r7tdQUMBw9Ood9GltDSVF4bQMtZw2GPHBEUh//hrKmlVg3q8tjNrUR+CwZbyjARB+PiG/9woyspEdLb2UWkFWDvLevpM5zoO66zi8v34ZBclJUKhaDWpDXYGCAuScP8M7GgBhv7ZA4bI8xrX/WymipokRLBtYIC0lDYnPkzgmKyT0fGWhLu/ykauC8uTJkzA0NARQOKPbysoK+/btg52dHQDAw8MDv//+O3JyctCrVy/Mnj1bshyOoqIiXr9+jREjRiApKQl6enoYOHAg5s+fL/M4SkpK2L17N4YMGSIplBYuXAh9fX0sXboUjx8/ho6ODpo2bYqZM2cCAGrWrIn58+dj+vTpGDlyJEaMGAFfX18AwIgRI5CVlYWWLVtCUVER7u7u+OWXXwAUthj6+vpi5syZWLNmDZo2bYrly5ejb9++n/XcpKWlwdDQECKRCGKxGPXq1YOzszPc3d2lxpHOmDEDsbGx6N27N7S1tbFw4cIvbqEs4u3tLVVUWlpaluv+PlXn4YXdn9P3LpA67uO5DiH7gyslw8dcvf8UCW/eoX+bhryjSFHTE6Oz969QN9DB+3eZeB0Vj8Bhy/Ds4h3e0QAIP588vPeESqGaPrQ850AkFqMgNQV5924j1XOcYJYOEvpra93EClsOrpNc91xQ2Bp9dO9xzHVfzCuWhNDzleV73eHmaxExauMlnLia/cg7QqnW+/zAO0KZ/Fzkb403obiumM07Qpl+y8vjHaFMtW3f8o5Qqim39XlHKNOt7ISPn0RKdCsxpMIfo4VRx692XzdefH8/o4XTB0cIIYQQwglj7KtdPseFCxfQp08fGBkZQSQS4fDhwxXzDVYwKigJIYQQ8t0rAPtql8+RkZGBxo0bY/369RX0nVUOuRpDSQghhBDyLenRowd69OjBO0a5UUFJCCGEkO/e15xSUtJmHiWtdvItoS5vQgghhHz3vmaXd0mbeSxdupT3t1ihqIWSEEIIIeQrKmkzj2+5dRKggpIQQggh5KuuQ/mtd2+XhApKQgghhHz3CmhZ7nKhgpIQQgghhJP09HTExMRIrsfGxiI8PBxVq1aFiYkJx2SfhwpKQgghhHz3eG29GBoaCnt7e8n1orGXzs7Oki2c5QEVlIQQQgj57vHq8razs/uqSxbxQgUlIYQQQr57vFoovxW0DiUhhBBCCCkXaqEkhBBCyHePZnmXDxWUhJuW+VV4RyjVXefjvCOUTaTJO0GZNuXG8o5Qqs1Mn3cEuRZ7S5d3hFK1FAn3ZwoAoIoh7wSkDNTlXT7U5U0IIYQQQsqFWigJIYQQ8t2jLu/yoYKSEEIIId896vIuH+ryJoQQQggh5UItlIQQQgj57jFWwDuCXKOCkhBCCCHfvQLq8i4X6vImhBBCCCHlQi2UhBBCCPnufQv7afNEBSUhhBBCvnvU5V0+VFASQggh5LtHLZTlQ2MoBS44OBgikQgpKSm8oxBCCCGElIgKyjK4uLhAJBJJLtWqVYODgwMiIyN5R5Pi6+sryaigoIBatWph5MiRSE5O5h2tQlkP74KfTi2B673NcL23Gf0Pz4WxXSPesUpUY/xANH92GMbzRvGOAkA+nrumrRtj1fY/cSr8CG4lhsDOoQPvSCUS2mv7Icr3eYT82ej52wDMPuKFv+/4Y1WoD37/Zypq1DHiHUtC6Pk+poCxr3b5HlFB+REODg5ISEhAQkICgoKCoKSkhN69e/OOJUMsFiMhIQHPnj3D5s2bceLECQwfPrzEc/Pz81FQIP/rbWUkvMG1pXtxoOcsHOg1Gy8u34ODzyToWtbkHU2KemNz6Dt1R+a9WN5RJOThuVNTV8ODuzFYOmMF7yilEuJrWxzl+3xC/mzUa2WNs/4nsWjADKwYvgCKSoqYtH02VNRUeUcDIPx8H8O+4n/fIyooP0JVVRU1atRAjRo10KRJE0yfPh3x8fF4+fIlACA+Ph6DBw+Gjo4Oqlatin79+uHJkyeSr3dxcUH//v2xfPlyGBoaolq1ahg/fjxyc3Ml5+Tk5GDatGkwNjaGqqoqzM3N4ePjI5Xj5s2baN68OdTV1dG2bVtER0dL3S4SiVCjRg0YGRmhR48emDBhAs6cOYOsrCz4+vpCR0cHR48ehbW1NVRVVREXF4ecnBx4enqiZs2a0NDQQKtWrRAcHCy5z6dPn6JPnz7Q1dWFhoYGGjRogOPHjwMA3r59CycnJ+jr60NNTQ0WFhbYtm3bV372y/b0zC3EnYtA6pMkpMYm4vqyfcjNzEZ1W/NKzVEWBfUqqLPWA0+mrkd+agbvOBLy8NyFnL2Kv//cjHMnLvCOUiKhvrZFKN+XEfJnw9t5MUL2B+PFw2eIj3qKrZ7roVdLH2Y2dXhHAyD8fKRiUUH5GdLT07Fjxw6Ym5ujWrVqyM3NRffu3aGlpYWLFy8iJCQEmpqacHBwwPv37yVfd+7cOTx69Ajnzp2Dn58ffH194evrK7l9xIgR2L17N9asWYOoqChs2rQJmpqaUo/9xx9/YMWKFQgNDYWSkhJcXV3LzKqmpoaCggLk5eUBADIzM/Hnn39iy5YtuHv3LgwMDPD777/jypUr2LNnDyIjI/HTTz/BwcEBDx8+BACMHz8eOTk5uHDhAm7fvo0///xTkmv27Nm4d+8eTpw4gaioKGzYsAF6enpf42n+IiIFEer2bQ1lNVUkhT3kluNDJot/QWrQTby7JKxhEsUJ9bkTOqG/tpSv/IT+2VDTUgcAZKSkc05SMqHn+xBj7Ktdvkc0y/sjAgICJEVURkYGDA0NERAQAAUFBezatQsFBQXYsmULRCIRAGDbtm3Q0dFBcHAwfvjhBwCArq4u1q1bB0VFRVhZWaFXr14ICgrCmDFj8ODBA/z77784ffo0unbtCgCoU0f2r7nFixejU6dOAIDp06ejV69eyM7ORpUqVWTOffjwITZu3IjmzZtDS0sLAJCbm4u///4bjRs3BgDExcVh27ZtiIuLg5FR4RgXT09PnDx5Etu2bcOSJUsQFxeHQYMGwcbGRiZXXFwcbG1t0bx5cwCAmZlZ+Z7oL1TVqhYGHJ4HRVVl5GZk439jVuHtwxdcsnxIt297qNvURVQvT95RSiTk507ohP7aUr7ykYfPhkgkguOckXh4IwrPH8TzjiND6PlKQssGlQ8VlB9hb2+PDRs2ACjs5v3777/Ro0cPXL9+HREREYiJiZEUbUWys7Px6NEjyfUGDRpAUVFRct3Q0BC3b98GAISHh0NRUVFSLJamUaP/BoUbGhoCAJKTk2FiYgIASE1NhaamJgoKCpCdnY327dtjy5Ytkq9RUVGRuo/bt28jPz8flpaWUo+Tk5ODatWqAQAmTJiAcePG4dSpU+jatSsGDRokuY9x48Zh0KBBCAsLww8//ID+/fujbdu2pebPyclBTk6O1LFclg9lkWIpX/FpUh4lYJ/DH1DRUkOdni1h7z0WR39axP2Hv7KhHkzmj8aDoXPBcnI//gUcCPW5Ezqhv7aUr/zk4bMxbOFo1KxnjKU/zuIdpURCz0e+PiooP0JDQwPm5v+NndmyZQu0tbWxefNmpKeno1mzZti5c6fM1+nr60v+raysLHWbSCSSTIpRU1P7pBzF76OoNbT4xBotLS2EhYVBQUEBhoaGMverpqYm+TqgsPteUVERN2/elCp2AUhaZEePHo3u3bsjMDAQp06dwtKlS7FixQq4ubmhR48eePr0KY4fP47Tp0+jS5cuGD9+PJYvX15i/qVLl2L+/PlSx3pp2aC3dvlmTxbk5iPtSRIA4NXtJzBoXAc2rg64MGNrue63vDQa1YWyvg6sT6yUHBMpKUKzlTUMXHriZp2fAM4To4T63Amd0F9byld+Qv9sOM0fhcadm8Fr8By8TXzDO44MoecrzffaVf21UEH5mYqW5snKykLTpk2xd+9eGBgYQCwWf9H92djYoKCgAOfPn5d0eX8JBQUFqcL3Y2xtbZGfn4/k5GR06FD6cizGxsb49ddf8euvv2LGjBnYvHkz3NzcABQWzc7OznB2dkaHDh0wZcqUUgvKGTNmYNKkSVLH/KzHfnLeTyVSEEFRlf/bOu1SBO50mSB1rPYKN2Q/eo6Evw9y/4VZEqE8d0In9NeW8n19QvpsOM0fhabdW+LPn+fi1TPhLQ0n9Hxl+V6X+/lahPEJEbCcnBwkJiYCKOzyXrduHdLT09GnTx+0bNkSf/31F/r164cFCxagVq1aePr0KQ4ePIipU6eiVq1aH71/MzMzODs7w9XVFWvWrEHjxo3x9OlTJCcnY/DgwRX2fVlaWsLJyQkjRozAihUrYGtri5cvXyIoKAiNGjVCr169MHHiRPTo0QOWlpZ4+/Ytzp07h/r16wMA5syZg2bNmqFBgwbIyclBQECA5LaSqKqqQlVVeumI8nZ3t5w2GPHBEUh//hrKmlVg3q8tjNrUR+CwZeW636+hICMb2dFx0seycpD39p3McR6E/NwVUVNXg3Ht/z5DNU2MYNnAAmkpaUh8nsQtl9BfW8pXPkL+bAxbOBqt+3XAmjF/IjsjG2J9HQBAVlomcnPel/3FlUDo+UjFooLyI06ePCkZs6ilpQUrKyvs27cPdnZ2AIALFy5g2rRpGDhwIN69e4eaNWuiS5cun9ViuWHDBsycORO//fYbXr9+DRMTE8ycObMivh0p27Ztw6JFizB58mQ8f/4cenp6aN26tWSdzfz8fIwfPx7Pnj2DWCyGg4MDvL29ARSOyZwxYwaePHkCNTU1dOjQAXv27KnwzMWp6YnR2ftXqBvo4P27TLyOikfgsGV4dvFOpeaQR/Lw3Fk3scKWg+sk1z0XFLZqHd17HHPdF/OKRb5xQv5sdB7uAACYvneB1HEfz3UI2R/MIZE0oef7GOryLh8Ro2eQcLLReBjvCKVqzoS9zEWoSPPjJ3G0KVc4C1V/aLOS/sdPInJJ6J+L64rZvCPIra1P9lf4Y2hr1v1q95Wa/ujjJ31jqIWSEEIIId89al8rH1rYnBBCCCGElAu1UBJCCCHku0ezvMuHCkpCCCGEfPcY7ZRTLtTlTQghhBBCyoVaKAkhhBDy3aMu7/KhgpIQQggh3z2a5V0+1OVNCCGEEELKhVooCSGEEPLdo0k55UMtlIQQQgj57jHGvtrlc61fvx5mZmaoUqUKWrVqhevXr1fAd1ixqKAkhBBCCOFk7969mDRpEubOnYuwsDA0btwY3bt3R3JyMu9on4UKSkIIIYR893i1UK5cuRJjxozByJEjYW1tjY0bN0JdXR1bt26toO+0YlBBSQghhJDvHvuKl5ycHKSlpUldcnJyZB7z/fv3uHnzJrp27So5pqCggK5du+LKlSsV9r1WCEaInMvOzmZz585l2dnZvKOUiPJ9OSFnY4zylYeQszFG+cpDyNkqy9y5c2XqzLlz58qc9/z5cwaAXb58Wer4lClTWMuWLSsp7dchYowWXiLyLS0tDdra2khNTYVYLOYdRwbl+3JCzgZQvvIQcjaA8pWHkLNVlpycHJkWSVVVVaiqqkode/HiBWrWrInLly+jTZs2kuNTp07F+fPnce3atUrJ+zXQskGEEEIIIV9RScVjSfT09KCoqIikpCSp40lJSahRo0ZFxasQNIaSEEIIIYQDFRUVNGvWDEFBQZJjBQUFCAoKkmqxlAfUQkkIIYQQwsmkSZPg7OyM5s2bo2XLlli1ahUyMjIwcuRI3tE+CxWURO6pqqpi7ty5n9S9wAPl+3JCzgZQvvIQcjaA8pWHkLMJ0ZAhQ/Dy5UvMmTMHiYmJaNKkCU6ePInq1avzjvZZaFIOIYQQQggpFxpDSQghhBBCyoUKSkIIIYQQUi5UUBJCCCGEkHKhgpIQQgghhJQLFZSEEEIIIaRcqKAkhBBCCCHlQgUlkVuhoaHw9/eHv78/QkNDeceR2L17d6m3TZkypRKTlOzcuXO8IxBCvkBaWlqpt8XExFRiEkJkUUFJ5M6zZ8/QoUMHtGzZEu7u7nB3d0fLli3Rvn17PHv2jHc8jBs3DidOnJA57uHhgR07dnBIJM3BwQF169bFokWLEB8fzzsOIeQT9erVCzk5OTLHo6OjYWdnV/mBPuDn54fAwEDJ9alTp0JHRwdt27bF06dPOSYjlYEWNidyx8HBASkpKfDz80O9evUAFP5AHTlyJMRiMU6ePMk1X2BgIJycnBAQEID27dsDANzc3HDw4EEEBQXBysqKa75Xr17B398ffn5+uHv3Ljp37oxRo0ahf//+UFFR4ZqtiK6uLkQikcxxkUiEKlWqwNzcHC4uLly2JmOMYf/+/Th37hySk5NRUFAgdfvBgwcrPVNxkyZNKvF48eeuX79+qFq1aiUnK5SRkQEvLy8EBQWV+Pw9fvy40jOV9n4ryZs3byo4Tel69OgBkUiEo0ePQkmpcKO7qKgodO7cGYMHD8bq1au5ZQOAevXqYcOGDejcuTOuXLmCrl27wtvbGwEBAVBSUuL+2SAViwpKInfU1NRw+fJl2NraSh2/efMmOnTogMzMTE7J/rNr1y78/vvvOH36NHx8fHDkyBGcO3cOlpaWvKNJCQsLw7Zt2yTd9EOHDsWoUaPQuHFjrrm8vb2xePFi9OjRAy1btgQAXL9+HSdPnoSHhwdiY2Ph7++PtWvXYsyYMZWazd3dHZs2bYK9vT2qV68uU4hs27atUvN8yN7eHmFhYcjPz5f8wfXgwQMoKirCysoK0dHREIlEuHTpEqytrSs9n6OjI86fP4/hw4fD0NBQ5vlzd3ev9Ex+fn6ffK6zs3MFJilbVlYWunbtilq1amHPnj24e/cuunTpAicnJ6xcuZJbriLq6uq4f/8+TExMMG3aNCQkJGD79u24e/cu7Ozs8PLlS94RSUVihMgZCwsLdu3aNZnj165dY3Xr1uWQqGTr169nqqqqrFatWuzhw4e845Tq+fPnbO7cuUxVVZVpaGgwRUVF1r59e3bnzh1umQYOHMg2bNggc3zjxo1s4MCBjDHG1qxZwxo2bFjZ0Ziuri4LDAys9Mf9VN7e3mzgwIEsNTVVciwlJYX9+OOPbNWqVSwjI4P169eP/fDDD1zyaWtrs0uXLnF57G/B27dvWePGjdmPP/7IDAwMmKenJ+9IEvr6+iwsLIwxxliTJk3Y9u3bGWOMxcTEMA0NDZ7RSCWgFkoid44cOYIlS5Zg/fr1aN68OYDCCTpubm6YNm0a+vfvX+mZSutm3LdvH5o2bYq6detKjgmhJSE3NxdHjhzB1q1bcfr0aTRv3hyjRo2Co6MjXr58iVmzZiEsLAz37t3jkk9TUxPh4eEwNzeXOh4TE4MmTZogPT0djx49QqNGjZCRkVGp2WrXro0TJ05wH7pQmpo1a+L06dMyrY93797FDz/8gOfPnyMsLAw//PADXr16Ven5ateujePHj6N+/fqV/tilKWuyy4fEYnEFJpFVUraEhAR069YNvXv3hpeXl+R4ZWf7kJOTE+7fvw9bW1vs3r0bcXFxqFatGo4ePYqZM2fizp07XPORikUFJZE7urq6yMzMRF5enmQcUdG/NTQ0pM6trPFO9vb2n3SeSCTC2bNnKzhN2dzc3LB7924wxjB8+HCMHj0aDRs2lDonMTERRkZGMuPbKouJiQk8PDzg4eEhddzb2xve3t6Ii4tDZGQkfvjhByQmJlZqNj8/P5w8eRJbt26FmppapT72p9DU1ERAQIDMJI3g4GD06dMH7969w+PHj9GkSZPPKqS+lh07duDIkSPw8/ODurp6pT9+SRQUFD46hpIxBpFIhPz8/EpKVai0bEW/ukUiEbdsH0pJScGsWbMQHx+PcePGwcHBAQAwd+5cqKio4I8//uCaj1QsJd4BCPlcq1at4h1BhjwtxXPv3j2sXbsWAwcOhKqqaonn6Onpcf2eZs+ejXHjxuHcuXOSMZQ3btzA8ePHsXHjRgDA6dOn0alTp0rPNnjwYOzevRsGBgYwMzODsrKy1O1hYWGVnqm4fv36wdXVFStWrECLFi0AFD53np6ektb769evV+p4XltbW6miKCYmBtWrVxfM8yfkz6+Qs31IR0cH69atkzk+f/58DmlIZaMWSkK+stTUVOTn58vMon3z5g2UlJS4dkvl5uZi7NixmD17NmrXrs0tx6cICQnBunXrEB0dDaBwBqmbmxvatm3LNdfgwYNx7tw5/PjjjyVOypk7dy6nZIXS09Ph4eGB7du3Iy8vDwCgpKQEZ2dneHt7Q0NDA+Hh4QCAJk2aVEqmzykoeD9/5MudPHkSmpqaktUt1q9fj82bN8Pa2hrr16+Hrq4u54SkIlFBSeROXFxcmbebmJhUUpKS9ejRA3369MFvv/0mdXzjxo04evQojh8/zilZIW1tbYSHhwu+oBQqDQ0N/O9//5P80hSq9PR0yRI8derUgaamJudE8iUzMxNxcXF4//691PFGjRpxSlQoJSUF169fL3HJpREjRnBKVcjGxgZ//vknevbsidu3b6NFixaYNGkSzp07BysrK+4rIJCKRQUlkTsfG+/EexxR1apVERISIjPp4P79+2jXrh1ev37NKVkhZ2dnNGnSRGZ8otAUFBQgJiamxF+cHTt25JQKsLKywr///su9sJBXN27cQEFBAVq1aiV1/Nq1a1BUVJRMtOPl5cuXGDlyZImbEwB8f74cO3YMTk5OSE9Ph1gslvo5KBKJuK6RCRSO371z5w7MzMwwb9483LlzB/v370dYWBh69uxZ6eOdSeWiMZRE7ty6dUvqem5uLm7duoWVK1di8eLFnFL9JycnR9LVWFxubi6ysrI4JJJmYWGBBQsWICQkBM2aNZOZyDRhwgROyf5z9epVDB06FE+fPsWHf/PynnywYsUKTJ06FRs3boSZmRm3HKUR4sLhxY0fPx5Tp06VKSifP3+OP//8E9euXeOUrNDEiRORkpKCa9euwc7ODocOHUJSUhIWLVqEFStWcM02efJkuLq6YsmSJYKZ0FScioqKZB3gM2fOSFpMq1atymUCGKlc1EJJvhmBgYH466+/EBwczDWHvb09GjZsiLVr10odHz9+PCIjI3Hx4kVOyQqV1dUtEom4FxxA4dg+S0tLzJ8/v8TFr7W1tTklk15lQF1dXWZSCe9WIiEuHF6cpqYmIiMjUadOHanjsbGxaNSoEd69e8cpWSFDQ0McOXIELVu2hFgsRmhoKCwtLXH06FEsW7YMly5d4pZNQ0MDt2/flnnuhKJv3754//492rVrh4ULFyI2NhY1a9bEqVOn8Pvvv+PBgwe8I5IKRC2U5JtRr1493Lhxg3cMLFq0CF27dkVERAS6dOkCAAgKCsKNGzdw6tQpzukKf3EL3cOHD7F//36ZdSiFQIirDBR34sQJBAYGol27dryjlEhVVRVJSUkyRVFCQoJkGTCeMjIyYGBgAKDwj4eXL1/C0tISNjY23Gfwd+/eHaGhoYItKNetW4fffvsN+/fvx4YNG1CzZk0Ahe/JoiWEyLeL/6eXkM/0YdcJYwwJCQmYN28eLCwsOKX6T7t27XDlyhX89ddf+Pfff6GmpoZGjRrBx8dHEPmKvH//HrGxsahbt64gfpEX16pVK8TExAiyoOS59d6n0NXV5bZP96f44YcfMGPGDBw5ckTS0pySkoKZM2eiW7dunNMV/mEaHR0NMzMzNG7cGJs2bYKZmRk2btwIQ0NDrtl69eqFKVOm4N69e7CxsZFpHe/bty+nZIVMTEwQEBAgc9zb25tDGlLZqMubyJ2SJuUwxmBsbIw9e/agTZs2nJLJh8zMTLi5uUn2L37w4AHq1KkDNzc31KxZE9OnT+ecEDh06BBmzZqFKVOmlPiLUygTYrKzs2VmAfPerUSIC4cX9/z5c3Ts2BGvX7+Gra0tACA8PBzVq1fH6dOnYWxszDXfjh07kJeXBxcXF9y8eRMODg548+YNVFRU4OvriyFDhnDLpqCgUOptvMcWF3n06BG2bduGR48eYfXq1TAwMMCJEydgYmKCBg0a8I5HKhAVlETunD9/Xuq6goIC9PX1YW5uzq2lLS0tTVJIfGzwOe+Cw93dHSEhIVi1ahUcHBwk49mOHDmCefPmyUx64qGkX5xC2REkIyMD06ZNw7///lvijH3ev9RtbW3x6NEjMMYEs3D4hzIyMrBz505ERERIWvAdHR1lsgpBZmYm7t+/DxMTE+jp6fGOI2jnz59Hjx490K5dO1y4cAFRUVGoU6cOvLy8EBoaiv379/OOSCqQsPq5CPkEPHZH+RhdXV0kJCTAwMAAOjo6pW6VxrsYAoDDhw9j7969aN26tVTOBg0a4NGjRxyT/UfI4zynTp2Kc+fOYcOGDRg+fDjWr1+P58+fY9OmTVL7KvPCYy/7z3HhwgW0bdsWv/zyi9TxvLw8XLhwgeuSUB9ijEFNTQ1NmzblHUUuTJ8+HYsWLcKkSZOgpaUlOd65c+cSd9Ah3xYqKIlc8vf3x8aNGxEbG4srV67A1NQU3t7eqFOnDvr161fpec6ePSsZtyb0rdJevnwpmXRQXEZGxkf3M64spqamvCOU6tixY9i+fTvs7OwwcuRIdOjQAebm5jA1NcXOnTvh5OTENZ/Qd5qxt7eX/PFVXGpqKuzt7bn/wQUAPj4+8Pb2xsOHDwEULrU1ceJEjB49mmuuBQsWlHn7nDlzKilJyW7fvo1du3bJHDcwMMCrV684JCKViQpKInc2bNiAOXPmYOLEiVi8eLHkF5Curi5WrVrFpaAs3mpau3ZtGBsblzjOMz4+vrKjyWjevDkCAwPh5uYGAJKcW7Zs4Tr+9OjRo+jRoweUlZVx9OjRMs/lOfngzZs3klm2YrFYskxQ+/btMW7cOG655EVRS/2HXr9+LbMmKg9z5szBypUr4ebmJvk8XLlyBR4eHoiLi/toUVeRDh06JHU9NzcXsbGxUFJSQt26dbkXlDo6OkhISJBZmuzWrVuSGd/k20UFJZE7a9euxebNm9G/f3+pLsbmzZvD09OTY7JCtWvXLrEF5s2bN6hduzb3FpglS5agR48euHfvHvLy8rB69Wrcu3cPly9flhmfWpn69++PxMREGBgYlNlty3vYQJ06dRAbGwsTExPJrjktW7bEsWPHoKOjwyVT1apV8eDBA+jp6UFXV7fMlmZe62QOHDgQQOHr5+LiAlVVVclt+fn5iIyM5L5PO1D4B+vmzZvh6OgoOda3b180atQIbm5uXAvKksY3p6WlwcXFBQMGDOCQSNrPP/+MadOmYd++fRCJRCgoKEBISAg8PT25bwtJKh4VlETuxMbGSmaHFqeqqoqMjAwOiaSV1gKTnp6OKlWqcEgkrX379ggPD4eXlxdsbGxw6tQpNG3aFFeuXIGNjQ23XMV3dPlwdxchGTlyJCIiItCpUydMnz4dffr0wbp165Cbm4uVK1dyyeTt7S0ZsybUdTKLlghijEFLSwtqamqS21RUVNC6dWuMGTOGVzyJ3NzcErd/bNasWYk7YPEmFosxf/589OnTB8OHD+eaZcmSJRg/fjyMjY2Rn58Pa2tr5OfnY+jQoZg1axbXbKTi0SxvInesra2xdOlS9OvXD1paWoiIiECdOnWwdu1abNu2jdss1kmTJgEAVq9ejTFjxkgt2ZKfny/ZqzgkJIRLPlIxnj59ips3b8Lc3FwwyxkJ2fz58+Hp6SmI7u2SuLm5QVlZWeaPA09PT2RlZWH9+vWckpXu0qVL6NOnD96+fcstQ9GQHn19fbx69Qq3b99Geno6bG1tBbX+Lqk41EJJ5M6kSZMwfvx4ZGdngzGG69evY/fu3Vi6dCm2bNnCLVdRdxRjDLdv34aKiorkNhUVFTRu3FgQXfJAYQtgTExMiXs985plu2bNmk8+Vwj7jQOF61CampoKbhKREF/fIkKcNFT0xyBQ2CW/ZcsWnDp1Cq1btwYAXLt2DXFxcdy7bT/8jBRt6uDv748ePXpwSvVfFnNzc9y9excWFhbc1xMllY9aKIlc2rlzJ+bNmydZ5sbIyAjz58/HqFGjOCcr7BJdvXo19/UmS3P16lUMHToUT58+xYcff57jE8vaY7w43vuN5+fnY8mSJdi4cSOSkpIkC8PPnj0bZmZm3N+DQnx9mzZtiqCgIOjq6sLW1rbMMZ48ehjs7e0/6TyRSISzZ89WcJrSffgZKVqDt3PnzpgxY4bUUj08NGjQAD4+PpJCnHxfqKAkcqf4IuKZmZlIT0+XTIAR4nZ9aWlpOHv2LKysrGBlZcU7Dpo0aQJLS0vMnz8fhoaGMr/ci8a6kZItWLAAfn5+WLBgAcaMGYM7d+6gTp062Lt3L1atWoUrV65wzSfE13f+/PmYMmUK1NXVMW/evDILSiG2YJJPc+zYMSxbtgwbNmxAw4YNecchlYwKSiJ3OnTogDNnzkjNEgWA6OhodOnSBc+ePeOUrNDgwYPRsWNH/P7778jKykLjxo3x5MkTMMawZ88eDBo0iGs+DQ0NRERECK7wLu7x48eSpXmExtzcHJs2bUKXLl2kxvDev38fbdq04TqODZCP11fIXF1dsXr1apnWvoyMDLi5uWHr1q2ckhVijOH169cQiUSoVq0a1ywf0tXVRWZmJvLy8qCioiI18Qrgt8IAqRylbwxKiEBpampiwIABUjMuo6KiYGdnx71YAwp3AunQoQOAwnXjGGNISUnBmjVrsGjRIs7pgFatWiEmJoZ3jDKZm5vDxMQEw4cPh4+Pj6DyPn/+vMRiraCgALm5uRwSSRPq65uRkYFx48ahZs2a0NfXx88//4yXL1/yjiXDz88PWVlZMsezsrKwfft2DokKJSYmYsSIEdDV1UX16tVhYGAAXV1duLq6IikpiVuu4ry9vfHPP/9g69at2LhxI7y9vaUu5NtGk3KI3Dl48CC6du0KJycn7NmzB3fv3kWXLl3g5OTEbdmW4lJTUyW75pw8eRKDBg2Curo6evXqhSlTpnDJFBkZKfm3m5sbJk+ejMTERNjY2MjsnyyEmcrx8fEIDg7G+fPnsWzZMowZMwZGRkbo1KkT7O3tue5YYm1tjYsXL8pMxNm/f3+Jy1lVBnl4fWfPng1/f384OTmhSpUq2L17N3755ReZxbp5SUtLA2MMjDG8e/dOaomv/Px8HD9+vMQdpiorW9u2bZGeno6RI0fCysoKjDHcu3cPu3fvxqVLlxAWFgZNTU0u+Yo4OjoiLy9PsDP4SQVjhMiht2/fssaNG7Mff/yRGRgYME9PT96RJCwsLNjevXtZeno609fXZ0FBQYwxxsLDw1m1atW4ZBKJRExBQYGJRKISL0W3KSgocMn3MQ8ePGDOzs5MSUmJe8bDhw8zbW1t5uXlxdTV1dlff/3FRo8ezVRUVNipU6e4ZJKH19fMzIz9+++/kuuhoaFMSUmJ5ebmcstUXNHzU9pFUVGRLVq0iEu2BQsWMHNzc5acnCxzW1JSEjM3N2eLFy/mkKxQcnIyc3BwkHw+W7VqxR4+fMgtD+GDxlASuZCWliZzLCEhAd26dUPv3r2ldszhPbv677//hru7OzQ1NWFqaoqwsDAoKChg7dq1OHjwIJe9vp8+ffrJ5wphCZzMzExcunQJwcHBCA4Oxq1bt2BlZQU7OzvY2dlx2V6zuIsXL2LBggWIiIhAeno6mjZtijlz5uCHH37gkkceXl9lZWU8ffoURkZGkmPq6uq4f/8+TExMuGQq7vz582CMoXPnzjhw4ICklwEoXPbL1NRUKntlat26NcaOHYuRI0eWePvWrVuxefNmbhPCXF1dceLECUyYMAFVqlTBpk2bYGhoyOVnHeGHCkoiFxQUFEqcGVr09hWJRJIdanhvbQgAoaGhiI+PR7du3STdUIGBgdDR0UG7du04pxM+FRUV6OrqwsnJCXZ2dujQoQN0dXV5xyLloKioiMTEROjr60uOicViREREfPKSUZXh6dOnMDExKXMmemWrWrUqrly5gnr16pV4+/3799G2bVtuk16MjY2xZcsWdO/eHQDw8OFD1K9fHxkZGTKTJ8m3iwpKIhc+Z4/pTp06VWCSz1O84BWKpUuXonr16nB1dZU6vnXrVrx8+RLTpk3jlOw//fv3x6VLl6CioiJplbSzs4OlpSXvaDIeP36MrKws1K9fHwoK/Oc5CvX1VVBQQMOGDaGk9N/Q/cjISFhZWUltAsBrp6viLl68iE2bNuHx48fYt28fatasCX9/f9SuXRvt27ev9DxKSkp4/vw5qlevXuLtiYmJqFWrFretIRUVFfH8+XPUqFFDckxDQwN3796FmZkZl0yk8tGkHCIXhFQkfgofHx94e3vj4cOHAAALCwtMnDiR62SSIps2bcKuXbtkjjdo0AA///yzIArKw4cPAygsOM6fP49Tp05h9uzZUFJSgp2dHXbu3FnpmXJzc7Fo0SKEhYWhdevWmD59OoYNG4Z///0XAFCvXj0cP36c+y9Qob6+Ja0vyXvoQkkOHDiA4cOHw8nJCWFhYcjJyQFQONluyZIlOH78eKVnYoyV+cdKUQ8NT4qKijLXeWcilYtaKIncyszMRFxcHN6/fy91nPcs5Tlz5mDlypVwc3NDmzZtAABXrlzBunXr4OHhgQULFnDNV6VKFURFRcl0Mz5+/BjW1tbIzs7mlEwWYwy3bt3CuXPncO7cOfzvf/8DY4xLS8zkyZPh7++Pfv364ezZs2jYsCGio6Mxf/58KCgoYOHChbCxseFS7BYnT6+vENna2sLDwwMjRoyQWmf01q1b6NGjBxITEys9k4KCArS1tUvt6WCMIS0tjdtwn5LypaSkQCwWSxXCtA7lt41aKIncefnyJUaOHIkTJ06UeDvvMZQbNmzA5s2b4ejoKDnWt29fNGrUCG5ubtwLSmNjY4SEhMgUHCEhIdwmHXxo5cqVCA4OxqVLl/Du3Ts0btwYHTt2xC+//CJZ47Oy7d+/H76+vujZsycePHgAKysrBAYGSvZQNjAwgJOTE5dsxcnD6ytk0dHRJe53rq2tjZSUlMoPBGDbtm1cHvdTCT0fqRxUUBK5M3HiRKSkpODatWuws7PDoUOHkJSUhEWLFmHFihW84yE3NxfNmzeXOd6sWTNuY5yKGzNmDCZOnIjc3Fx07twZABAUFISpU6di8uTJnNMV2r17Nzp16iQpIIWwHeSLFy/QuHFjAIClpSVUVVWlFji3tLTk0nr1ISG+vh/bv7s43mMoa9SogZiYGJmhC5cuXeK2e5OzszOXx/1UQs9HKgcVlETunD17FkeOHEHz5s2hoKAAU1NTdOvWDWKxGEuXLkWvXr245hs+fDg2bNggs8j6P//8I4gWrClTpuD169f47bffJMMFqlSpgmnTpmHGjBmc0xW6ceMG7wgy8vPzpRYJV1JSkho3pqCgIIgxY0J8ffv378/lcb/EmDFj4O7ujq1bt0IkEuHFixe4cuUKPD09MXv2bN7x5ML79++RnJyMgoICqeNCWB6KVBwaQ0nkjlgsRmRkJMzMzGBqaopdu3ahXbt2iI2NRYMGDZCZmck1n5ubG7Zv3w5jY2O0bt0aAHDt2jXExcVhxIgRUkVJZe/sk5+fj5CQEMkOKlFRUVBTU4OFhYUgl/cQ0jhZBQUF+Pn5SVpLHR0dsWrVKsnM25SUFIwcOZLrkAt5e32FiDGGJUuWYOnSpZKfJaqqqvD09MTChQsrPY+uru4nt+7yHqP44MEDjBo1CpcvX5Y6LqQl3UjFoYKSyJ0WLVpg0aJF6N69O/r27QsdHR0sXboUa9aswf79+/Ho0SOu+ezt7T/pPJFIhLNnz1ZwGlmlTdoQkpcvX8LFxQUnT54s8XYev5g+ZUkgIfzSlIfXV8hyc3OhrKyM9+/fIyYmBunp6bC2toampiZevXoFPT29Ss3j5+f3yefy7npu164dlJSUMH36dBgaGsoUwkVDRsi3ibq8idxxd3dHQkICgMKlSBwcHLBz506oqKjA19eXbzhA8LtDNGzYEI8fPxZ0wTFx4kSkpqYKapzsh913QiXE11eeWtl+/vln7N+/HyoqKrC2tpYcT0pKQpcuXXDnzp1KzcO7SPwc4eHhuHnzJqysrHhHIRxQQUnkzrBhwyT/btasGZ4+fSrZvq2yWw/k0aJFiyTdd82aNYOGhobU7by3rgSEP05WyIT4+q5atarSH/NLxcXFYfTo0fDx8ZEcS0hIQOfOndGgQYNKz1PStrOl4f3Ztba2xqtXr7hmIPxQlzchX8HAgQPh6+sLsViMgQMHlnnuwYMHKylVyYp33RZvNRLSOCehj5P19/fHxo0bERsbiytXrsDU1BTe3t6oU6cO98W65eH1FbKXL1+iY8eO6NGjB1auXIkXL17A3t4ejRs3xp49eyp9N6TStp0tjudrW7zgDQ0NxaxZs7BkyRLJON7ieBe8pGJRCyWRG5+6fuOcOXMqOIms4ov6CmGJm7KU1SV/+/btSkxSunr16iE6OhpmZmZo3LgxNm3aBDMzM2zcuBGGhoZcs23YsAFz5szBxIkTsXjxYskvcV1dXaxatYp7QSn0IRfFZWdny0y44l106Ovr49SpU5ItFgMCAtC0aVPs3LmTy9aaQn89dXR0ZP5w6dKli9Q59MfM94FaKIncUFBQgJGREQwMDEpdnkUkEnFfx07evHv3Drt378aWLVtw8+ZNQfzQ37FjB/Ly8uDi4oKbN2/CwcEBb968kYyTHTJkCLds1tbWWLJkCfr37y+1k8qdO3dgZ2dHXX4fkZGRgWnTpuHff//F69evZW4XwvsPKJyx3KFDB3Tr1g3+/v6fPAb0e3P+/PlPPlfettAln4daKInc6NGjB86ePYvmzZvD1dUVvXv35tJi8KUiIyPRvHlzmRYZXi5cuAAfHx8cOHAARkZGGDhwINavX887FgBhj5ONjY2Fra2tzHFVVVVkZGRwSFQyIS25VNzUqVNx7tw5bNiwAcOHD8f69evx/PlzbNq0CV5eXlwylTZpKDMzE8eOHUO1atUkx3hPGgKE9dpSkUiKUEFJ5EZgYCBevHgBPz8/TJkyBWPHjsWIESPg6uqKevXq8Y73Ubz2oC4uMTERvr6+8PHxQVpaGgYPHoycnBwcPnxYakYrT7m5ubCyskJAQADq168PAFBXV0fTpk05JytUu3ZthIeHw9TUVOr4yZMnJXl5EvrWpMeOHcP27dthZ2eHkSNHokOHDjA3N4epqSl27tzJZfF/eZk0JPTXdtu2bdDU1MRPP/0kdXzfvn3IzMyUqxnr5AswQuTU+fPnmYuLC9PS0mJt27ZlmZmZvCOVKTw8nCkoKHB7/N69ezOxWMwcHR1ZQEAAy8vLY4wxpqSkxO7evcstV0mMjIzYvXv3eMco0ebNm1nNmjXZnj17mIaGBtu9ezdbtGiR5N+8DR06lLVr147duHGDaWhosFOnTjF/f39Wr149FhAQwDse09DQYE+fPmWMMVazZk127do1xhhjjx8/ZhoaGjyjCZ7QX1sLCwt29uxZmePBwcHM0tKSQyJSmaigJHIrMzOT+fn5sZYtWzI1NTWWmprKO1KZeBeUioqKzMPDgz148EDquBALysWLFzNnZ2eWm5vLO0qJduzYwczNzZlIJGIikYjVrFmTbdmyhXcsxhhjNWrUkBRpWlpaLDo6mjHG2JEjR1i7du14RmOMMWZjY8OCg4MZY4x16dKFTZ48mTHG2OrVq1nNmjV5RmOMMXbz5k0WGRkpuX748GHWr18/NmPGDJaTk8MxmfBfW1VVVRYbGytzPDY2llWpUqXyA5FKJT8D0Aj5f1euXMGYMWNQo0YNrF27Fs7Oznjx4gX32aFpaWllXt69e8c136VLl/Du3Ts0a9YMrVq1wrp16wQ7geTGjRs4ePAgTExM0L17dwwcOFDqwpuTkxMePnyI9PR0JCYm4tmzZxg1ahTvWAAKJ70YGBgAKBwb+PLlSwCAjY2NICasjRw5EhEREQCA6dOnY/369ahSpQo8PDwwZcoUzumAsWPH4sGDBwCAx48fY8iQIVBXV8e+ffswdepUrtmE/toaGBggMjJS5nhERITUOFTybaIxlERuLFu2DL6+vnj16hWcnJxw8eJF7hMMivtw+YwPsf9fOoOX1q1bo3Xr1li1ahX27t2LrVu3YtKkSSgoKMDp06dhbGwMLS0tbvmK09HRwaBBg3jHKFFsbCzy8vJgYWEBdXV1qKurAwAePnwIZWVlmJmZcc0n5CWXAMDDw0Py765duyIqKgphYWEwNzcXxOf5wYMHaNKkCYDCsX+dOnXCrl27EBISgp9//pnreEuhv7aOjo6YMGECtLS00LFjRwCFs8Dd3d3x888/c05HKhotG0TkhoKCAkxMTNC7d2+oqKiUet7KlSsrMdV/PnX5DCHNioyOjoaPjw/8/f2RkpKCbt264ejRo7xjCVqnTp3g6uoqM8Fgx44d2LJlC4KDg/kEK5ZDqEsuyQOxWIybN2/CwsIC3bp1Q+/eveHu7o64uDjUq1cPWVlZ3LIJ/bV9//49hg8fjn379kFJqbC9qqCgACNGjMDGjRvL/LlN5B8VlERu2NnZfbSFTyQS4ezZs5WU6NuRn5+PY8eOYevWrVwLyqysLJw+fRr29vYyraVpaWkIDg5G9+7doaqqyilhYcFR1KJWXExMDJo3b46UlBQ+wUqRmZkpmCWXigQFBcHb2xtRUVEAgPr162PixIno2rUr52RA586dYWxsjK5du2LUqFG4d+8ezM3Ncf78eTg7O+PJkye8I0oI8bUFClt5IyIioKamBhsbG5kVEci3iQpKQr6yTp06YdSoUfjpp5+gpqbGO45cWb16NY4ePYqgoKASb+/atSv69++P33//vZKT/UdbWxvBwcEya1HevHkTdnZ23MfKCt3ff/8Nd3d3/Pjjj2jTpg0A4OrVq9i/fz+8vb0xfvx4rvkiIyPh5OSEuLg4TJo0CXPnzgUAuLm54fXr19i1axfXfEWKfnXTgutEKKigJHLr/fv3iI2NRd26dSXdK0IwceJE7Nq1Czk5ORg8eDBGjRqF1q1b844lF1q2bInZs2ejT58+Jd4eEBCABQsW4Pr165Wc7D99+vSBmpoadu/eDUVFRQCFLbxDhgxBRkZGqWsEVjQhb01aXK1atTB9+nSZPwrWr1+PJUuW4Pnz55ySlS07OxuKiooy+1NXNh8fH3h7e+Phw4cAAAsLC0ycOBGjR4/mmgso/Bz4+voiKCgIycnJKCgokLqdeo++bVRQErmTmZkJNzc3+Pn5ASjsXqlTpw7c3NxQs2ZNTJ8+nXNCIC8vD0ePHoWfnx9OnDgBc3NzuLq6Yvjw4ahevTrveIKlq6uLiIgImJiYlHh7XFwcGjdujLdv31Zysv/cu3cPHTt2hI6ODjp06AAAuHjxItLS0nD27Fk0bNiQSy552ZpUU1MT4eHhMkMGHj58CFtbW6Snp3NKJnxz5szBypUr4ebmJmndvXLlCtatWwcPD49P/qOiovz+++/w9fVFr169YGhoKNN66u3tzSkZqRRcFisipBwmTJjAmjVrxi5evMg0NDTYo0ePGGOF68U1adKEczpZSUlJbOHChaxKlSpMWVmZ9evXjwUFBfGOJUiamposNDS01NtDQ0OZpqZmJSYq2fPnz9mMGTNYz5492aBBg9j8+fPZ69evuWbq2bMnq1KlCuvXrx87cuQIy8/P55qnNI6OjmzZsmUyx//66y82ZMgQDomk5eXlsb/++ou1aNGCVa9enenq6kpdeNLT02O7du2SOb5r1y5WrVo1DomkVatWjQUGBvKOQTgRTj8hIZ/o8OHD2Lt3L1q3bi31F3CDBg3w6NEjjslkXb9+Hdu2bcOePXtgYGAAFxcXPH/+HL1798Zvv/2G5cuX844oKA0aNMCZM2fQrFmzEm8/deoUGjRoUMmpZBkZGWHJkiW8Y0gR8taka9askfzb2toaixcvRnBwsNQYypCQEEyePJlXRIn58+djy5YtmDx5MmbNmoU//vgDT548weHDh7kPF8jNzUXz5s1ljjdr1oz7tq4AoKKiItPyTL4f1OVN5I66ujru3LmDOnXqQEtLCxEREahTpw4iIiLQsWNHpKamcs2XnJwMf39/bNu2DQ8fPkSfPn0wevRodO/eXVIAX7p0CQ4ODtS994F//vkHkyZNwp49e9C7d2+p244dOwZHR0esXLkSv/zyC6eEhVJSUnD9+vUSx4mNGDGCUyppFy5cwLZt23DgwAHY2NjgzJkz3CaJ1a5d+5POE4lEePz4cQWnKVvdunWxZs0a9OrVC1paWggPD5ccu3r1KtdJOW5ublBWVpZZGs3T0xNZWVlYv349p2SFVqxYgcePH2PdunU0Weg7RC2URO40b94cgYGBcHNzA/DfLMctW7ZIWjx4qlWrFurWrQtXV1e4uLhAX19f5pxGjRqhRYsWHNIJ2y+//IILFy6gb9++sLKykrSs3b9/Hw8ePMDgwYO5F5PHjh2Dk5MT0tPTIRaLpX5xikQiwRSULVq0wJMnT3Dv3j3cunULubm53ArK2NhYLo/7JRITE2FjYwOgcLxn0R+ovXv3xuzZsys9z6RJkyT/FolE2LJlC06dOiWZ6Hft2jXExcUJ4n136dIlnDt3DidOnECDBg1kJjAdPHiQUzJSGaigJHJnyZIl6NGjB+7du4e8vDysXr0a9+7dw+XLlz95cfGKFBQUJJmsURqxWIxz585VUiL5smPHDvTt2xe7du3CgwcPwBhDvXr1MH/+fAwePJh3PEyePBmurq5YsmSJZJccIbly5Qq2bt2Kf//9F5aWlhg5ciSGDh3KfWvSDwl1lYZatWohISEBJiYmqFu3Lk6dOoWmTZvixo0bXNY/vXXrltT1ouEgRcN79PT0oKenh7t371Z6tg/p6OhgwIABvGMQTqjLm8ilR48ewcvLCxEREUhPT0fTpk0xbdo0ScsCIRVFQ0MDt2/fRp06dXhHkfLh1qQjR44UxFaGHxL6Kg3Tp0+HWCzGzJkzsXfvXgwbNgxmZmaIi4uDh4cHvLy8uOYjRKiooCTkK7C1tf3kMUO8l22RB0JeHH7gwIH4+eefBdFaWpzQtyYt4u7ujpCQEKxatQoODg6IjIxEnTp1cOTIEcybN0+mRY63q1ev4vLly7CwsCh1fdTK4urqitWrV8vsIpWRkQE3Nzds3bqVU7L/5OXlITg4GI8ePcLQoUOhpaWFFy9eQCwWQ1NTk3c8UoGE089AyCcSYrHRv39/3hG+Kba2tvD09ISbm5vgFofv1asXpkyZgnv37sHGxkZmnFjfvn255OrYsSNEIlGZXZ9CmCgh9FUaXr9+jWrVqgEA4uPjcfz4cWRlZZU4u7qy+fn5wcvLS6agzMrKwvbt27kXlE+fPoWDgwPi4uKQk5ODbt26QUtLC3/++SdycnKwceNGrvlIBeO4ZBEhX8Td3Z3p6+szsVjMRo8eza5cucI7EqkAubm57MCBA6xv375MWVmZ1a9fn/31118sMTGRay6RSFTqRUFBgWs2eaCmpiZZO1ZTU1Py7/DwcCYWi7nlioyMZKampkxBQYHVq1eP3bp1i1WvXp1pamoysVjMFBUV2aFDh7hkS01NZSkpKUwkErGYmBiWmpoqubx584b5+fkxQ0NDLtmK69evHxs2bBjLycmRem3PnTvHzM3NOacjFU2Bd0FLyOdatWoVXrx4gW3btiE5ORkdO3aEtbU1li9fjqSkJN7xJEJDQ+Hv7w9/f3/cvHmTdxy5o6SkhIEDB+LIkSN49uwZhg4ditmzZ8PY2Bj9+/fnto1bQUFBqZf8/HwumeRJ0SoNRYSySsPUqVNhY2ODCxcuwM7ODr1790avXr2QmpqKt2/fYuzYsdzGT+ro6KBq1aoQiUSwtLSErq6u5KKnpwdXV1fue6ADhTtGzZo1S2bIhZmZmWC31CRfD42hJHIvOTkZ//zzDxYvXoz8/Hz07NkTEyZMQOfOnbnkefbsGRwdHRESEgIdHR0AhesWtm3bFnv27EGtWrW45JJXxReHF4vFksXhd+3aRYvD/7/iS8t8DO8xlJcuXUKPHj0wbNgw+Pr6YuzYsVKrNJS2qH1F09PTw9mzZ9GoUSPJklA3btyQ5Ll//z5at26NlJSUSs92/vx5MMbQuXNnHDhwAFWrVpXcpqKiAlNTUxgZGVV6rg/p6uoiJCQE1tbWUmsEX7p0CYMGDRLUH/zk66OCksg1IRYbDg4OSElJgZ+fn2QdxejoaIwcORJisRgnT56s9EzyRuiLw2dkZOD8+fOIi4vD+/fvpW6bMGFCpeext7eXuh4WFoa8vDzJ++/BgwdQVFREs2bNuLXsFifEVRoUFBSQmJgIAwMDAJAqiAAgKSkJRkZGXFuhnz59ChMTE0GMhS3JkCFDoK2tjX/++QdaWlqIjIyEvr4++vXrBxMTE2zbto13RFKRuHa4E/IFkpKS2PLly1mDBg2YiooKGzRoEDtx4gQrKCiQnFO0zzcPVapUYWFhYTLHQ0NDmZqaGodE8kdZWZlZWVmxZcuWseTk5BLPSU1NZXZ2dpWcjLGwsDBWo0YNybg6fX19JhKJmIaGBqtdu3al5/nQihUrWJ8+fdibN28kx968ecP69evHli9fzjGZsIlEIqn3mqamJnv8+LHkemJioiDGyF64cIE5OTmxNm3asGfPnjHGGNu+fTu7ePEi52SMxcfHM2tra1a/fn2mpKTEWrduzapVq8YsLS1ZUlIS73ikgtEsbyJ3hL4TjbGxMXJzc2WO5+fnC6JbSh4IeXF4Dw8P9OnTBxs3boS2tjauXr0KZWVlDBs2DO7u7pWe50MrVqzAqVOnoKurKzmmq6uLRYsW4YcffuC+X3ZYWBiUlZUlrZFHjhzBtm3bYG1tjXnz5pW55FFFc3FxkSxenp2djV9//RUaGhoAgJycHG65ihw4cADDhw+Hk5MTwsLCJJlSU1OxZMkSHD9+nGu+WrVqISIiAnv27EFkZCTS09MxatQoODk5CWZFDlJxaFIOkTtBQUGIiorClClTSiwmAb470fz1119wc3NDaGio5FhoaCjc3d1pvN8nKiomk5OTcfHiRVy8eBHJycmcUxUKDw/H5MmToaCgAEVFReTk5MDY2BjLli3DzJkzecdDWloaXr58KXP85cuXePfuHYdE0saOHYsHDx4AAB4/fowhQ4ZAXV0d+/btw9SpU7nlcnZ2hoGBAbS1taGtrY1hw4bByMhIct3AwID79oaLFi3Cxo0bsXnzZqnlqtq1ayeI9W1fv34NJSUlDBs2DG5ubtDT00N0dLTUz0LyDePdRErIp/pYl0lubi67du1aJaUpnY6ODlNRUWEKCgpMRUVF6t+6urpSF1KytLQ0NmzYMKakpCRZkkdJSYk5OTmxlJQUrtn09PTYgwcPGGOMWVhYsJMnTzLGGIuKimLq6uo8ozHGGBs+fDgzMzNjBw4cYPHx8Sw+Pp7t37+f1a5dm40YMYJ3PCYWi1lMTAxjjDEvLy/2ww8/MMYYu3TpEqtVqxbPaIKnpqbGYmNjGWPSSy49evSIqaqqcssl5CWXSOWhLm8iNwwNDZGQkCAZNG9jY4Pjx4/D2NgYQOFfx23atOG+dMuqVau4Pv63YPTo0bh16xYCAgIkS8lcuXIF7u7uGDt2LPbs2cMtm62tLW7cuAELCwt06tQJc+bMwatXr+Dv74+GDRtyy1Vk48aN8PT0xNChQyVDL5SUlDBq1Cj89ddfnNMBjDEUFBQAAM6cOYPevXsDKBwq8urVK57RBK9GjRqIiYmBmZmZ1PFLly5x3Qq0aMmlnTt3wt/fX7Lk0ubNmwEAbm5u8PLyog0gvnW8K1pCPpVIJJJqpSz+FzpjhYPmRSIRj2jkK1NXVy9xksGFCxe4twLeuHGDnT17ljFW2GrevXt3pqWlxZo2bcrCw8O5ZisuPT2dRUREsIiICJaens47joS9vT0bMWIE2759O1NWVmYPHz5kjDEWHBzMTE1N+YYTuCVLljBra2t29epVpqWlxS5evMh27NjB9PX12Zo1a7jlqlatGouIiGCMMfbu3TsmEolYaGio5PaoqCimra3NKR2pLNRCSb4pQllOIz8/H4cOHUJUVBQAwNraGv369YOSEn3kPkW1atWgra0tc1xbW1tqsgkPxbfgMzAwEOwyUBoaGmjUqBHvGDJWrVoFJycnHD58GH/88QfMzc0BAPv370fbtm05pxO26dOno6CgAF26dEFmZiY6duwIVVVVyTalvLx58wY1atQAAGhqakJDQ0NmUpgQxu+SikXrUBK5IQ/rxAHA3bt30bdvXyQmJkqtA6ivr49jx44JoltU6P755x/s27cP/v7+kl9UiYmJcHZ2xsCBAzF27FjOCYUrIyMDXl5eCAoKQnJysqR7ucjjx485JStbdnY2FBUVZfZGJ//Jzc2FsrIy3r9/j5iYGKSnp8Pa2hqampp49eoV9PT0uORSUFBAUlKSZJJk0RqUtWvXBiCcn82kYlFzCZEbIpEI7969Q5UqVcAYg0gkQnp6OtLS0gBA8n/eRo8ejQYNGiA0NFTyV/rbt2/h4uKCX375BZcvX+acUJhsbW2lWpgfPnwIExMTmJiYAADi4uKgqqqKly9fVnpB+WG2svCebTt69GicP38ew4cPh6GhoWBa7T+mSpUqvCMI3s8//4z9+/dDRUUF1tbWkuNJSUno0qUL7ty5wy2b0JdcIhWPCkoiNxhjsLS0lLpua2srdV0IvzzDw8OlikmgsMtn8eLF3NbGlAdCHrAv5GwfOnHiBAIDA9GuXTveUUqUn58Pb29v/PvvvyXuNPTmzRtOyYQvLi4Oo0ePho+Pj+RYQkICOnfujAYNGnDL5ezsLHV92LBhMufwXnKJVDwqKInc4LWu5OeytLREUlKSzA/45ORkyXgxImvu3Lm8I5RKyNk+pKurK7XXs9DMnz8fW7ZsweTJkzFr1iz88ccfePLkCQ4fPow5c+bwjidox48fR8eOHTFp0iSsXLkSL168gL29PRo3bsx15QPaUpEANIaSkK/u+PHjmDp1KubNm4fWrVsDAK5evYoFCxbAy8sL7du3l5wrFot5xSTfqB07duDIkSPw8/ODuro67zgy6tatizVr1qBXr17Q0tJCeHi45NjVq1exa9cu3hEFLT4+Hu3bt8egQYMQEBCApk2bYufOnVBUVOQdjXznqKAkcqdTp04YNWoUfvrpJ0Fu56Wg8N8GVEVd8EUfs+LXRSIRDVIvhZC7RYWcDSgc7/no0SMwxmBmZiYzyYX3GE8NDQ1ERUXBxMQEhoaGCAwMRNOmTfH48WPY2toiNTWVaz558ODBA3To0AHdunWDv7+/IIb6EEJd3kTu2NraSpbJGDx4MEaNGiVpCRSCsrrmIyMjBbmUi9AIuVtUyNkA4Y/3rFWrFhISEmBiYoK6devi1KlTaNq0KW7cuCGZ1EH+o6urW2LBmJmZiWPHjqFatWqSY7z/mCHfN2qhJHIpLy8PR48ehZ+fH06cOAFzc3O4urpi+PDhqF69Ou94Ut69e4fdu3djy5YtuHnzJrVKfgIhd4sKOZs8mD59OsRiMWbOnIm9e/di2LBhMDMzQ1xcHDw8PODl5cU7oqD4+fl98rkfTo4hpDJRQUnkXnJyMv755x8sXrwY+fn56NmzJyZMmIDOnTtzzXXhwgX4+PjgwIEDMDIywsCBAzFo0CCa6f0JhNwtKuRs8ujq1au4fPkyLCws0KdPH95xCCFfSOHjpxAiXNevX8fcuXOxYsUKGBgYYMaMGdDT00Pv3r3h6elZ6XkSExPh5eUFCwsL/PTTTxCLxcjJycHhw4fh5eVFxeQnKuoWBSDpFgUgiG5RIWcDCsd4Ll++HC1btkSNGjVQtWpVqQtvr1+/lvw7Pj4ex48fR0JCQok7IxFpYWFhuH37tuT6kSNH0L9/f8ycOVNmLC8hla7SN3skpJySkpLY8uXLWYMGDZiKigobNGgQO3HiBCsoKJCcc/HiRaahoVGpuXr37s3EYjFzdHRkAQEBLC8vjzHGmJKSErt7926lZpF306ZNY4sXL2aMMbZnzx6mpKTEzM3NmYqKCps2bRplK8Ps2bOZoaEhW758OatSpQpbuHAhGzVqFKtWrRpbvXo1t1yRkZHM1NSUKSgosHr16rFbt26x6tWrM01NTSYWi5mioiI7dOgQt3zyoHnz5mz//v2MMcYePXrEVFVVmaOjIzM3N2fu7u58w5HvHnV5E7mjoqKCunXrwtXVFS4uLpLtvopLS0tDv379KnXtSiUlJUyYMAHjxo2DhYWF5LiysjIiIiKkdrYgn0fI3aJCyybUMZ49evSAkpISpk+fDn9/fwQEBKB79+7YvHkzAMDNzQ03b97E1atXueSTB9ra2ggLC0PdunXx559/4uzZs/jf//6HkJAQ/Pzzz4iPj+cdkXzHqMubyJ2goCBERUVhypQpJRaTQOH6jpW9EPqlS5fw7t07NGvWDK1atcK6devw6tWrSs3wrRByt6iQswGFwy5sbGwAAJqampIxnb1790ZgYCC3XDdu3MDixYvRrl07LF++HC9evMBvv/0GBQUFKCgowM3NDffv3+eWTx4wxiR7s585cwY9e/YEABgbG9PPGsIdFZRE7nTo0IF3hBK1bt0amzdvRkJCAsaOHYs9e/bAyMgIBQUFOH36NN69e8c7ouDdvn0bZmZmMDAwgJWVFcLDw9GiRQt4e3vjn3/+QefOnXH48GHKVgahjvF88+YNatSoAaCw0NXQ0JDZnpQ+I2Vr3rw5Fi1aBH9/f5w/fx69evUCAMTGxgpudQvy/aEubyIXbG1tP3nxXt4LNxcXHR0NHx8f+Pv7IyUlBd26dcPRo0d5xxIsIXeLCjlbcUJdlkdBQQFJSUmSXgUtLS1ERkaidu3aAICkpCQYGRnRslpliIyMhJOTE+Li4jBp0iTJlqBubm54/fo1LVlFuKKCksiF+fPnf/K5Qtx3OT8/H8eOHcPWrVupoCyDnp4ezp49i0aNGiE9PR1isRg3btxAs2bNAAD3799H69atkZKSQtk+kVDGeCooKKBHjx6SVtJjx46hc+fO0NDQAADk5OTg5MmTVFB+gezsbCgqKsrsikRIZaKCkhAiGAoKCkhMTISBgQGAwlasiIgI1KlTBwDfViwhZyvu9evXkt1T4uPjsXnzZmRlZaFPnz7o2LEjt1wjR478pPO2bdtWwUkIIRWBtl4kcis0NBRRUVEAAGtra0lLEZFvHw5tENI+xULOdvv2bfTp0wfx8fGwsLDAnj174ODggIyMDCgoKMDb2xv79+/ntjUjFYrlJ/R95Mn3jQpKIneePXsGR0dHhISEQEdHBwCQkpKCtm3bYs+ePahVqxbfgKRcXFxcJN2i2dnZ+PXXX6W6RXkScrapU6fCxsYGO3fuhL+/P3r37o1evXpJjfH08vIS/F7fpHRC30eefN+oy5vIHQcHB6SkpMDPzw/16tUDUDj5ZeTIkRCLxTh58iTnhORLCblbVMjZAPkd40k+nVDXGCUEoIKSyCE1NTVcvnwZtra2Usdv3ryJDh06IDMzk1MyQviRlzGe5MvRPvJEyGgdSiJ3jI2NkZubK3M8Pz8fRkZGHBIRIgxCHuNJyk+oa4wSAtAYSiKH/vrrL7i5uWH9+vVo3rw5gMIJOu7u7li+fDnndITwI+QxnqT8BgwYgKCgILRq1Qpubm4YNmwYfHx8JGuMEsITdXkTuaOrq4vMzEzk5eVBSanwb6Kifxf98ixCsx7J90LoYzzJ1yeUNUYJAaiFksihVatW8Y5AiOBQofjt+3CN0ePHjyMrK0vSU0MIT9RCSQghhAjYx9YYzcjI4LrGKCEAFZRETuXn5+PQoUNSC5v369dP0gVOCCHfCnnZR55836igJHLn7t276Nu3LxITEyXrUD548AD6+vo4duwYGjZsyDkhIYR8PbTGKJEHtGwQkTujR49GgwYN8OzZM4SFhSEsLAzx8fFo1KgRfvnlF97xCCHkq3rz5g1q1KgBANDU1ISGhgZ0dXUlt+vq6uLdu3e84hECgCblEDkUHh6O0NBQmR+oixcvRosWLTgmI4SQikFrjBKho4KSyB1LS0skJSWhQYMGUseTk5Nhbm7OKRUhhFQcWmOUCB2NoSRy5/jx45g6dSrmzZuH1q1bAyhcj23BggXw8vJC+/btJeeKxWJeMQkh5KugNUaJPKCCksgdBYX/hv4WdfsUvY2LXxeJRLRvMSGEEFIJqMubyJ1z586VeltkZCQaNWpUiWkIIYQQQi2URO69e/cOu3fvxpYtW3Dz5k1qlSSEEEIqGS0bROTWhQsX4OzsDENDQyxfvhydO3emhX0JIYQQDqjLm8iVxMRE+Pr6wsfHB2lpaRg8eDBycnJw+PBhWFtb845HCCGEfJeohZLIjT59+qBevXqIjIzEqlWr8OLFC6xdu5Z3LEIIIeS7Ry2URG6cOHECEyZMwLhx42BhYcE7DiGEEEL+H7VQErlx6dIlvHv3Ds2aNUOrVq2wbt06vHr1incsQggh5LtHs7yJ3MnIyMDevXuxdetWXL9+Hfn5+Vi5ciVcXV2hpaXFOx4hhBDy3aGCksi16Oho+Pj4wN/fHykpKejWrRuOHj3KOxYhhBDyXaGCknwT8vPzcezYMWzdupUKSkIIIaSSUUFJCCGEEELKhSblEEIIIYSQcqGCkhBCCCGElAsVlIQQQgghpFyooCSEkFK4uLigf//+kut2dnaYOHFipecIDg6GSCRCSkpKpT/2h88BIYSUhApKQohccXFxgUgkgkgkgoqKCszNzbFgwQLk5eVV+GMfPHgQCxcu/KRzeRWBS5cuhaKiIv7666/P+ronT55AJBIhPDxc6vjq1avh6+v79QISQr5JVFASQuSOg4MDEhIS8PDhQ0yePBnz5s0rtYB6//79V3vcqlWrCn7x/K1bt2Lq1KnYunXrV7k/bW1t6OjofJX7IoR8u6igJITIHVVVVdSoUQOmpqYYN24cunbtKll/tKiLdvHixTAyMkK9evUAAPHx8Rg8eDB0dHRQtWpV9OvXD0+ePJHcZ35+PiZNmgQdHR1Uq1YNU6dOxYerqn3Y5Z2Tk4Np06bB2NgYqqqqMDc3h4+PD548eQJ7e3sAgK6uLkQiEVxcXAAABQUFWLp0KWrXrg01NTU0btwY+/fvl3qc48ePw9LSEmpqarC3t5fKWZbz588jKysLCxYsQFpaGi5fvix1e0FBAZYtWwZzc3OoqqrCxMQEixcvBgDUrl0bAGBrawuRSAQ7Ozup57P49zxhwgQYGBigSpUqaN++PW7cuCG5vahlNigoCM2bN4e6ujratm2L6OjoT/oeCCHyiQpKQojcU1NTk2qJDAoKQnR0NE6fPo2AgADk5uaie/fu0NLSwsWLFxESEgJNTU04ODhIvm7FihXw9fXF1q1bcenSJbx58waHDh0q83FHjBiB3bt3Y82aNYiKisKmTZugqakJY2NjHDhwAEDhbk4JCQlYvXo1gMIu6e3bt2Pjxo24e/cuPDw8MGzYMJw/fx5AYeE7cOBA9OnTB+Hh4Rg9ejSmT5/+Sc+Dj48PHB0doaysDEdHR/j4+EjdPmPGDHh5eWH27Nm4d+8edu3aherVqwMArl+/DgA4c+YMEhIScPDgwRIfY+rUqThw4AD8/PwQFhYGc3NzdO/eHW/evJE6748//sCKFSsQGhoKJSUluLq6ftL3QAiRU4wQQuSIs7Mz69evH2OMsYKCAnb69GmmqqrKPD09JbdXr16d5eTkSL7G39+f1atXjxUUFEiO5eTkMDU1Nfa///2PMcaYoaEhW7ZsmeT23NxcVqtWLcljMcZYp06dmLu7O2OMsejoaAaAnT59usSc586dYwDY27dvJceys7OZuro6u3z5stS5o0aNYo6OjowxxmbMmMGsra2lbp82bZrMfX0oNTWVqampsfDwcMYYY7du3WKamprs3bt3jDHG0tLSmKqqKtu8eXOJXx8bG8sAsFu3bkkdL/58p6enM2VlZbZz507J7e/fv2dGRkaS567o+z5z5ozknMDAQAaAZWVllZqfECLflHgWs4QQ8iUCAgKgqamJ3NxcFBQUYOjQoZg3b57kdhsbG6ioqEiuR0REICYmRmb8Y3Z2Nh49eoTU1FQkJCSgVatWktuUlJTQvHlzmW7vIuHh4VBUVESnTp0+OXdMTAwyMzPRrVs3qePv37+Hra0tACAqKkoqBwC0adPmo/e9e/du1K1bF40bNwYANGnSBKampti7dy9GjRqFqKgo5OTkoEuXLp+c90OPHj1Cbm4u2rVrJzmmrKyMli1bIioqSurcRo0aSf5taGgIAEhOToaJickXPz4hRLiooCSEyB17e3ts2LABKioqMDIygpKS9I8yDQ0Nqevp6elo1qwZdu7cKXNf+vr6X5RBTU3ts78mPT0dABAYGIiaNWtK3aaqqvpFOYr4+Pjg7t27Us9FQUEBtm7dilGjRn1R3vJQVlaW/FskEknyEEK+TVRQEkLkjoaGBszNzT/5/KZNm2Lv3r0wMDCAWCwu8RxDQ0Ncu3YNHTt2BADk5eXh5s2baNq0aYnn29jYoKCgAOfPn0fXrl1lbi9qIc3Pz5ccs7a2hqqqKuLi4kpt2axfv75kglGRq1evlvn93b59G6GhoQgODkbVqlUlx9+8eQM7Ozvcv38fFhYWUFNTQ1BQEEaPHv1JeT9Ut25dqKioICQkBKampgCA3Nxc3Lhxg8v6nIQQ4aBJOYSQb56TkxP09PTQr18/XLx4EbGxsQgODsaECRPw7NkzAIC7uzu8vLxw+PBh3L9/H7/99luZa0iamZnB2dkZrq6uOHz4sOQ+//33XwCAqakpRCIRAgIC8PLlS6Snp0NLSwuenp7w8PCAn58fHj16hLCwMKxduxZ+fn4AgF9//RUPHz7ElClTEB0djV27dn10HUgfHx+0bNkSHTt2RMOGDSWXjh07okWLFvDx8UGVKlUwbdo0TJ06Fdu3b8ejR49w9epVycQdAwMDqKmp4eTJk0hKSkJqaqrM42hoaGDcuHGYMmUKTp48iXv37mHMmDHIzMzEqFGjvuCVIYR8K6igJIR889TV1XHhwgWYmJhg4MCBqF+/PkaNGoXs7GxJi+XkyZMxfPhwODs7o02bNtDS0sKAAQPKvN8NGzbgxx9/xG+//QYrKyuMGTMGGRkZAICaNWti/vz5mD59OqpXr47ff/8dALBw4ULMnj0bS5cuRf369eHg4IDAwEDJsj0mJiY4cOAADh8+jMaNG2Pjxo1YsmRJqRnev3+PHTt2YNCgQSXePmjQIGzfvh25ubmYPXs2Jk+ejDlz5qB+/foYMmQIkpOTARSOGV2zZg02bdoEIyMj9OvXr8T78/LywqBBgzB8+HA0bdoUMTEx+N///gddXd0ynytCyLdNxEobcU4IIYQQQsgnoBZKQgghhBBSLlRQEkIIIYSQcqGCkhBCCCGElAsVlIQQQgghpFyooCSEEEIIIeVCBSUhhBBCCCkXKigJIYQQQki5UEFJCCGEEELKhQpKQgghhBBSLlRQEkIIIYSQcqGCkhBCCCGElAsVlIQQQgghpFz+D9BodtFDHHxRAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "actual, predicted = get_actual_predicted_labels(train_ds)\n", "plot_confusion_matrix(actual, predicted, labels, 'training')" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "execution": { "iopub.execute_input": "2023-11-07T18:59:25.680328Z", "iopub.status.busy": "2023-11-07T18:59:25.680075Z", "iopub.status.idle": "2023-11-07T18:59:47.638412Z", "shell.execute_reply": "2023-11-07T18:59:47.637768Z" }, "id": "Mfr7AT5T-7ZD" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/Unknown - 1s 961ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/Unknown - 2s 980ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/Unknown - 3s 894ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/Unknown - 3s 830ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/Unknown - 5s 900ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/Unknown - 5s 885ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/Unknown - 6s 894ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/Unknown - 7s 914ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/Unknown - 8s 919ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/Unknown - 9s 894ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/Unknown - 10s 909ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/Unknown - 11s 931ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/Unknown - 12s 892ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/13 [==============================] - 12s 893ms/step\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGEAAASrCAYAAAAy46XgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3yN9/vH8XdkSGJG7NgjQWLvvYqWojYtWlpKVVu6UKXftlaHtqgqWi21iU2pvamialRsSWxZRGSe3x/5nVOR4Q5xTsbr+Xjk8eBe5zpX7jucK5/P9bEzmUwmAQAAAAAA4KnKZusAAAAAAAAAsgKKMAAAAAAAAFZAEQYAAAAAAMAKKMIAAAAAAABYAUUYAAAAAAAAK6AIAwAAAAAAYAUUYQAAAAAAAKyAIgwAAAAAAIAVUIQBAAAAAACwAoowAJBFxcXF6ZdfflH79u1VpUoVeXl5ycvLyyaxmF87ICDAJq+P/2Sk78W5c+f01ltvqX79+qpYsaK8vLw0depUW4f1WDJS3vFkpk6dKi8vL40YMeKxzu/Tp4+8vLzk6+ubxpE9HWFhYfrss8/UokULeXt7y8vLS3369LF1WABgMw62DgAAMpPLly9r6dKl2r9/vwICAhQWFiZnZ2d5eHioevXqev7551W7dm1bhylJ+v777zVt2jTZ2dmpfPnyypkzp61DwmMyFx5efvll5c6d28bRWEdQUJBefPFFhYSEKG/evKpcubLs7e1VpEgRW4eWQEBAgFasWKFcuXLplVdesXU4SOcy47M8ZMgQHTx4UM7OzvLy8lL27Nnl6elp67AUFhamX3/9VZI0dOhQG0cjnTp1Sps3b5aHh4c6d+5s63AAPEUUYQAgDcTGxuqrr77S3LlzFRMTI0kqVqyYPDw8FB4erosXL+r06dNatGiRateurd9++82m8ZpMJs2fP1+SNHnyZLVt29am8ZQuXVqS5OjoaNM4Mqpp06ZJkjp16vTEH9wyyvdi/fr1CgkJkbe3txYuXKjs2bPbOqQkBQYGatq0afLw8EixCJNR8o4n5+bmptKlS6tAgQKJ9hl5losUKaLSpUsrV65cTzXOtODn52cpwKxbt07FihWzdUgWYWFhlnynlyLMtGnTVKdOHYowQCZHEQYAnpDJZNLbb7+tP/74Q46OjnrjjTf04osvJvgPdkREhHbu3Kkff/xRf/75pw2jjRcUFKTg4GBJUvPmzW0cjfT777/bOgT8v4zyvTh79qwkqV69eum2AJMaGSXveHK9e/dW7969H/v8L774Ig2jebrMz2n58uXTVQEGAGyJIgwAPKGff/7ZUoCZNWuW6tevn+gYFxcXtWnTRq1bt9YPP/xggygTun//vuXPLi4uNowEeDyRkZGSuH+B9IznFAASszOZTCZbBwEAGdW9e/fUvHlzhYSEaNCgQRo2bNhjXcdkMmndunVavny5Tp48qfDwcOXLl0+1a9dW//795e3tnegcX19fjRw5UnXq1NG8efPk6+urhQsX6uzZs7Kzs5O3t7cGDRqkhg0bWs4JCAhQy5Ytk43jzTff1NChQxNdOyl9+vTRwYMHNWHChERDp/ft26fffvtNf//9t4KDg+Xs7Cw3Nzd5eXmpefPm6tq1a4LjzQ2Bt2zZkuRvS3fu3KkFCxbo2LFjCgsLU548eVS1alX16dMnyaLXgQMH1LdvX3l4eGjr1q3asmWLfvnlF506dUoxMTEqX768XnnlFbVr1y7ZXCTnwViDgoI0ffp0HTlyRFFRUfL09NTgwYPVrFkzSdKNGzc0Y8YMbdu2TTdv3lSRIkXUuXNnDRw4UPb29gmuazKZtHPnTu3YsUOHDx/WtWvXdPfuXbm5ual69erq27evatWqleCcqVOnWobTJ8X8/ZSkFi1aKDAwUHPnzlWBAgX0448/at++fbp9+7bat2+viRMnJnp/5u/FyZMn1b17d0VHR2vatGlq1apVotf64IMPtGrVKlWqVEmLFy+Wk5OT4ZyeO3dOs2fP1oEDB3Tjxg25uLjIy8tLHTt2VOfOnRPkasSIEVqxYkWy1zp9+vQjXy8qKkrbt2/Xtm3bdPz4cV2/fl0REREqUKCAatWqpf79+6tChQrJnn///n0tWbJEmzZt0pkzZxQeHq78+fOrTJkyatWqlbp06SInJyfLM5KcuXPnqm7dupIy9jMwe/Zs/fXXXwoKCtIbb7yRYGrH/v37tWDBAh05ckTBwcHKkSOHfHx81KtXLz3zzDPJvsaNGzc0d+5c7dq1S/7+/oqNjVWhQoXk7e2t9u3bq0WLFk+cI7O9e/dq1qxZOnbsmOLi4lSuXDm9+OKL6tSpU4Lnxvy9kv579jp16qRx48Zp3rx5Wr58uS5fviwnJyfVqFFDQ4cOlY+PT6LXe/Bc83OXmmc5pZ+9UuqeJ7MHv6fh4eH64YcfdPDgQYWFhcnDw0Pt27fXwIEDDT/X5n9DkvNwPp/0/l67dq0WLVokPz8/hYaGJrr+wx71c+Th3MbGxmrlypVavXq1/v33X4WHh8vNzU116tTRgAEDkvx5ERcXp+XLl2vVqlXy8/NTeHi4cubMKXd3d1WtWlUdO3ZUvXr1JP338zk5yf1cAJAxMRIGAJ7Ajh07FBISomzZsqlv376PdY2YmBgNHz5cGzdulCQVLlxYxYoV06VLl7R27Vpt2LBBY8eOVY8ePZK9xqhRo7R8+XJLr4ALFy7o4MGDOnTokKZOnWr5sJM9e3bVqFFDUVFROn78uCSpRo0aluukRVPTpUuXavTo0ZKk3Llzq1y5cjKZTLp27Zo2b96sf/75J1ERJiXjxo3T3LlzJUnu7u6qUKGCAgICtGXLFm3ZskWDBw/WO++8k+z506ZN09SpU5U/f36VKFFC/v7+OnbsmIYPH67g4ODHnhawfft2TZw4Ua6uripWrJgCAgJ09OhRDR48WJMnT1alSpXUp08fBQcHq3z58oqLi9Ply5f17bff6saNGxo7dmyC6927d08DBw6UnZ2d3NzcVLBgQRUqVEhXr17Vxo0btWnTJo0dO1a9evWynFOkSBHVqFFDhw8fliT5+Pgk+JCU1Pfz6NGj+uGHHxQbG6ty5copT548srOzS/G9VqpUSe+//77Gjx+vjz76SN7e3ipatKhl/8qVK7Vq1Sq5urpq8uTJqSrArF+/Xh988IGio6Pl6uoqT09PhYaG6s8//9Sff/6pDRs2aPr06XJ2dpYklSpVSjVq1NClS5d0+/ZtFSlSJNX37cWLFzV06FBly5ZN7u7u8vDwUHR0tAIDA7Vq1SqtX79eU6ZMSfKDvr+/vwYOHKjz589LkooWLarixYvr+vXr2rt3r/bs2aPGjRurWLFi8vT0VEhIiPz8/OTk5JToA7nRnh7p9RnYtGmTvv76azk5Oal06dLKmTOn5V4ymUyW4oQk5cmTR+XLl9eNGze0e/du7d69W71799bHH3+c6Lo7d+7UsGHDdPfuXWXLlk2lS5eWs7OzAgMDtX79ev3999+JvjePm6P58+fr008/lRT/86p06dK6du2aRowYIT8/v0fmICYmRgMHDtTu3btVsmRJlSpVSufPn9f27du1f/9+zZs3T1WqVHnkdR7nWU5Kap+nh+3Zs0fjxo2Tvb29SpcuLXt7e128eFFTp06Vn5+fpkyZYigOd3d31ahRQ0FBQbp48aJy5syZoBnvg/f+k97f48eP16+//mq5v69fv/7I+EqVKiUfH58k/x00x2EWGhqqN954Q4cOHZIkFSxYUEWLFrX8G71x40ZNmjQpUUHzww8/1OrVqy3nFC9eXHfv3tXVq1d17tw5RUdHW4owPj4+cnR0TDJXkjLFlEsADzABAB7bZ599ZvL09DQ9//zzj32NqVOnmjw9PU1Vq1Y1bdq0ybI9MjLSNGHCBJOnp6epYsWKpqNHjyY4b/ny5SZPT0+Tt7e3qU6dOqbdu3db9oWHh5uGDBli8vT0NDVv3twUFxeX4Fx/f3+Tp6enydPTM8mYzNfu3bt3snH37t3b5OnpaVq+fLllW0xMjKlOnTomT09P09y5c03R0dEJzjl79qzp119/TXQtcyz+/v4Jtvv6+lre/4IFC0yxsbGW1/n5559NXl5eJk9PT9OGDRsSnLd//35LbqpUqWJavXq1ZV90dLTpk08+MXl6epqqVatmunPnTrLvMSnmWL29vU3ff/+95T1GR0ebRowYYfL09DQ1bdrU1LVrV9Mbb7xhCg4Otpy7ZMkSk6enp8nLy8t04cKFBNeNjIw0LVq0yHTt2rUE22NiYkzr1q0zVa1a1eTt7W26cuWK4fw9qHnz5pZcDh8+3BQaGmrZFxERYehar7/+usnT09PUs2dPy/s+f/68qVq1aiZPT0+Tr69v8olLwtmzZ02VK1c2eXp6mj766CNTeHi4Zd+ePXtMNWvWNHl6epr+97//JTr3ww8/NHl6epqmTJmSqtc0mUymmzdvmlauXJnge2MyxX8PfvvtN1PFihVNderUMd27dy/B/oiICNNzzz1neeb/+eefBPtv3bplmjlzpun27duWbeZ7sXnz5inGlBGfgYoVK5omTpxoun//foIcmUwm08yZM02enp6mJk2amLZu3Zrg/J07d5rq169v8vT0NK1YsSLBvjNnzpiqVq1q8vT0NA0dOjTR83DmzBnTjz/+mCY5OnXqlKlSpUomT09P06RJk0yRkZEJrlmpUiWTt7e3ydPT07R///4E506ZMsWS3+bNmye4F27fvm3q0aOHydPT0/TSSy8lyp/53A8//DDZ3Kb0LCf1s9dkerLn6cGfa1988UWC7+nq1astOdy3b1+ycSXlUf+WPOn9XbFiRZOPj49p1apVln/n4uLiEnwvk/OofwfNXnvtNZOnp6epV69eptOnT1u2x8bGmubMmWOqUKGCqXLlyqbz589b9p08edLk6elpqlGjRqJ7Jy4uznTw4EHTunXrEmw38u8ugMwhm62LQACQkZl/41a8ePHHOv/evXuaM2eOpPjh5g9O83ByctKIESNUq1YtxcbGJttLJjo6WqNGjUow7cjV1VVjx46Vo6OjAgMDDU3RSAtBQUEKCQlR7ty51adPHzk4JBxwWbZs2VSNGJo+fbokqUePHurVq5eyZYv/Z8ve3l79+vVT+/btJcUvt52U6Ohovf7665bjJMnBwUEjRoxQvnz5dO/ePR04cCBV79GsQYMGeuONNyzv0cHBQR9++KGyZ8+uq1ev6sqVK/riiy+UN29eyzndunWTj4+PTCaTduzYkeB6Tk5O6tGjhwoVKpRgu729vdq2bauXX35Z0dHRWrNmzWPFa1a6dGlNmjQpwcoryf1W/GETJkxQoUKFdPjwYU2dOlVRUVEaPny47t27p/bt26tTp06piuWnn35SZGSkPD099dlnn8nV1dWyr0GDBvrwww8lSUuWLNGNGzdSde2U5M+fXx07dkzwvZHivwcvvfSS2rZtq5CQEG3bti3B/qVLl+rcuXNyc3PTL7/8kmhki7u7uwYMGKB8+fKlWazp+RmoX7++5Z43c3Z2VmhoqKZPny57e3tNmzYtUfPvxo0b65NPPpEkzZw5M8G+7777ThEREapTp46+/fbbRM9DuXLlNHDgwATbHjdHc+bMUUxMjOrXr68PPvggwciTTp06qV+/foqOjk4xB9HR0friiy8S3Av58uWzjPA5dOiQ7ty5k+I10kpaPE+1atXS+++/n+B72r59e8sUy4efiSf1pPd3bGyshgwZog4dOlhGYdnZ2aVqNF5K9u7dq507d6po0aKaMWNGghEq2bJl0yuvvKKXXnpJkZGRluWuJVlGytWrVy/RtCg7OzvVrl3b5qsSArAdijAA8ATu3r0rSQn+s5sahw4d0t27d5U9e/YE00we1L9/f0nx/xmMiopKtD9Xrlzq0KFDou0FChSQh4eHJOny5cuPFV9qubu7y9nZWXfu3ElUZEitc+fOWeLu169fkse8+uqrkuKXQb1y5UqSx7z44ouJtmXPnl2VKlWS9Pi56d69e6JtefPmteS8Xbt2ypEjR6JjzB/WknvdY8eO6euvv9Ybb7yhPn36qFevXurVq5dl9ZxTp049VrxmL7zwQqLimFFubm766quvZG9vr5kzZ2rw4ME6efKkSpQoYflQnRo7d+6UJPXt2zfJKVEvvPCC3N3dFR0drb179z5WzCnZt2+fJk6cqEGDBql3796WXJunHZw8eTLB8Zs2bZIU/71/cLrC05Len4EuXbokuX3Hjh26d++efHx8VLly5SSPad68uRwdHXXu3DlLQSAyMlLbt2+XJL3++uuWD+QpeZIc7dq1S1J8cTQpKU0BNfPy8krUq0mKn8Ln5OQkk8lktZ+/afE8vfTSS0lur169uiTp0qVLaRRt2t3fyX3/0sL69eslxf88T27J8NatW0uK/3liZp6u+ffff8vf3/+pxQcgY6InDAA8gZw5c0qKH9HyOC5cuCBJ8vDwSPIDuyTLb94iIyMVGBio0qVLJ9hfsmTJZHt65M+fXxcvXlR4ePhjxZda2bJlU//+/TV9+nQNHDhQnp6eql+/vqpVq6batWsnWLb7Ucy5cXZ2VokSJZI8ply5crK3t1dsbKzOnz+foE+JFF80eHi0g5n5Q/Tj5qZkyZLJXvf8+fMp7pcS3zMxMTEaNWqUVq1aleLrhoSEpD7YB5QvX/6Jzq9Tp44GDx6sadOmaffu3XJ0dNTkyZMtz4JRd+7c0c2bNyUpUf8DM0dHR5UpU0a3b9+2/GY5LYSHh2vo0KHas2dPisc9nGtzjxDzB9KnLb0/A8ndS//++6+k+EbgyRWXH3Tt2jUVLFhQFy9etBSajeb4cXMUFham27dvS1KyTZiLFy+unDlzWortSSlVqlSS2+3s7OTu7q6rV69a5edvWj1Pyb2fJ71XkpJW9/fTLIia7+U//vhDf/31V5LHmFeAunbtmmVbtWrVVKdOHR08eFBt2rRRzZo1Vbt2bVWrVk01a9ZM9t97AFkDRRgAeALmofKP+5su839o8+fPn+wxBQsWTHT8g1IahWP+TbLJigvhvfXWWypatKh+++03/fvvv/Lz89Ovv/4qOzs7y/SFlFaeMTO/15T+g+3g4CA3NzfdunXL6rlJbslVc0HsUfsfft2ff/5Zq1atUvbs2TV8+HA1btxYRYoUkYuLi+zs7LRs2TJ99NFHiomJeax4HxV3ajRo0MCykou3t3eyox1S8uD3K6X731y4S8sPf5MmTdKePXvk5uamd999V3Xr1lXBggUt07K+++47TZ8+PVGuzR/GjTbUfVIZ9RkICwuTJN2+fdtS6EhJRESEpP/ya29vb/hD6uPm6MEiaEoFxBw5cqRYhEkvP3/T6nlK7ntqZFRSaj3t+zstmO/lixcv6uLFiykee//+fcuf7ezsNGPGDM2cOVMrV67UwYMHLSulOTs7q127dnrvvffSdOoigIyDIgwAPIGaNWtq3rx5Onv2rG7fvp3q38iZP2jcunUr2WMenLtvrd+eJVcoeFByo3/s7OzUrVs3devWTUFBQTp8+LAOHjyo9evXa+/evXr55Ze1evXqRL0eHmZ+ryl9iIuJiVFwcHCC4zMqX19fSfEraiQ1JeBJR8CklTt37uj999+XFP/B7OjRo5o7d26qVwd78Pt169YtyzSuh5l/u59W39+YmBhLX52JEydael08KLlc58yZUyEhIVbr8ZFRnwHzB+MXXnhBkyZNMnyeuRgSGxur8PBwQ+/ncXP04If3u3fvJvvzyFqjCJ+UrZ6nJ5ER7m/zfTJ+/Phkp98lJ0eOHBo2bJiGDRumS5cu6fDhw9q7d6/++OMPLV++XOfPn9f8+fOTXDIcQOZGTxgAeAJNmjRR3rx5FRcXZ1liMzXKlCkjSQoMDEz2P/vmKRDZs2dP9j/Wac3829CUikNGegPky5dPzzzzjEaNGqXff/9dxYoVU0hIiNatW/fIc825uX//frI9Fc6ePavY2FhJ8U1/M7KAgABJSrK/hBTfWyA9+PjjjxUYGKgqVarom2++kSR9+eWXlmH7RuXKlcvyW/nklgKOiYmxTJsw3w9PKigoyFJATG2uzdM8jhw5Yvj1HrX8d0oy6jNgzlNqG4KXLl3a0hDWaI4fN0e5c+e2FM2Ti9Pf3z/FUTDpia2epydh6/vbyLP5uPfyw0qWLKlOnTrpyy+/1OLFi2VnZ6cjR44k6PH1JD8rAGQsFGEA4AnkyJFDr732mqT4lSkebMyXFJPJlGCVo5o1aypnzpyKjIzUwoULkzzHvHpSgwYN0mzFh0cx9wUICAhIshCzevXqVI8GyJkzp7y8vCT9t6pUSsqUKWPpq2LOwcPM2z09PVWkSJFUxZPemAtf5t9UP+jcuXMprkpiPvfB4fBPw5IlS7RhwwblzJlTkydP1rPPPquXXnpJUVFRGjZsWKp7IzVt2lSSNHfu3CRHXa1atUq3b9+Wo6NjgtW/nsSD0y2SyvW+fft04sSJJM999tlnJcWvkhQUFGTo9cxTnMxTblIjoz4DzZs3l7Ozs06dOvXIvjsPcnJysoxMmjlzpqFpPE+So8aNG0uSli1bluR5S5cuNRx7WnmSZ9kWz9OTsPX9/eDPguSez+eee05SfO5S+qVEanh5eVmmND74b+GT/KwAkLFQhAGAJ/Taa6+pRYsWio6O1oABAzRlypREH+4iIyO1efNmdevWTd9++61lu6urq2VViGnTpmnz5s2WfVFRUfriiy/0559/yt7eXoMHD7bK+5Hi/8Pr4eGh6Ohoffrppwn+U7hv3z6NHz9ejo6Oic47e/asRo0apUOHDikuLi7Bvj179liKVEZ7iJjf8+LFi7Vo0SLLB4u4uDj9+uuvlia2Q4YMSf2bTGdq164tSZo8eXKCKWj//vuvBg8enGJPBnNTy6exgpDZ2bNnNX78eEnS//73P8uy7B9++KG8vLx0/vx5ff7556m6Zv/+/ZU9e3b5+flpzJgxCYo4+/bts0xl6dGjR6qaOqckV65clp5E48ePt/R8kKQDBw5o+PDhCZbnfVDXrl1Vrlw5BQUFqV+/folWT7p9+7Zmz56doEBTokQJ2dnZKSgoKNWjhaSM+Qy4u7tb4n777be1cuXKRP11QkJCtHLlykTTld5++225uLhYvhcPL6V89uzZRMtaP26O+vXrJwcHB+3Zs0dff/11guWoV65cqZ9//jnJn3NP05M8y7Z4np6ULe9vNzc3SzEkuXw3b95cjRo1UkhIiPr27WtZOe1B/v7+mjVrVoKi3apVq/Tdd9/p3LlzCY6Njo7W7NmzFRYWJnt7e8sKZdJ/zd7Pnj2bZIEYQOZBTxgAeEJ2dnaaOnWqvvjiC/3222/6/vvvNX36dBUrVkxubm4KDw9XQECAZQWFevXqJTh/0KBB8vPz08aNGzVkyBAVKVLEsqrRnTt3lC1bNo0dO1ZVq1a12nvKli2bRo0apaFDh2rjxo3atWuXSpcureDgYF25ckVdunSRv7+/pdGgWXR0tJYvX67ly5fLxcVFJUqUkJOTk65fv275MNWyZUu1bdvWUBydOnXSyZMnNXfuXI0dO1ZTp05VkSJFFBgYaPmgO2jQIMsIhYzs7bfftozCaNmypUqXLq2oqChduHBBRYoU0ZAhQzR58uQkzzX33hg3bpwWLlwod3d32dnZqVOnTurcufMTxxYZGalhw4YpIiJCnTt31vPPP2/Zlz17dk2ePFldunTR8uXL1bBhQ7Vr187QdcuWLauJEyfqgw8+0JIlS7R27VqVKVNGoaGhlmbXDRs2tPSgSSvvv/++Bg4cqJ07d6pp06YqVaqUwsLCFBAQoIoVK6p+/fr6+eefE52XPXt2zZgxQwMGDNC///6rTp06ycPDQ/ny5dONGzd048YNmUwmPfvss5aGm3nz5lWzZs20bds2de3aVeXLl7f0Phk1apQqVqyYYqwZ9Rl4/fXXFRYWpp9++kkffvih/ve//6l06dKyt7fX7du3deXKFZlMJtWpUyfBeWXLltWUKVP0zjvvaP369fr9999VpkwZZc+eXYGBgQoJCZGHh4cGDhxoOedxc1ShQgWNGjVKn376qWbOnKnFixerRIkSunHjhq5fv65+/fpp06ZNCgwMtFrfjid5lm31PD0JW97fdnZ26tixo3777Te9+eabKleunGUlsQEDBqhJkyaSpG+++UZvv/229u7dq5deeknu7u4qWrSo4uLidPXqVUucb775puXawcHBmj59uqZPn668efPKw8NDJpNJAQEBlsLve++9l2B0T8WKFeXp6Sk/Pz+1atVKZcuWtfSkmTx5cropnAF4chRhACANODg4aNSoUXrppZe0dOlS7d+/XwEBAbp69aqcnZ1VunRpVa9eXe3bt1fNmjUTnfvdd99p7dq1WrZsmU6dOqV///1Xbm5uatq0qfr16ycfHx+rv6dnnnlGP/30k3744QcdP35c58+fV5kyZfTGG2+oW7du6tOnT6JzSpUqpXHjxmnfvn06efKkrl27pvDwcOXKlUsNGjRQx44d1aFDh1SttPHRRx+pUaNGWrhwof7++2+dOnVKefLkUcuWLdWnTx/Vr18/Ld+2zXh5eWnRokX67rvv9Oeff+rChQsqVKiQ+vTpoyFDhqQ4HemVV16RFP/b10uXLln6Pjz8AfdxTZgwQX5+fipVqpQ+/vjjRPvLlSunjz76SB9//LHGjh2rKlWqWEbKPErbtm3l6empn376Sfv379fp06fl7OysWrVq6YUXXlDnzp3T/ANwo0aNNHfuXH3//fc6evSoZenbwYMH6/XXX9fs2bOTPbd48eJasWKFFi5cqE2bNll+a50/f341bNhQbdq0SbCimRS/GtOUKVO0Y8cOnTlzxjLi4sFROCnJiM+AnZ2dPvjgAz377LNauHChDh06pLNnzyouLk5ubm5q1KiRmjVrpmeeeSbRuU2aNNGGDRs0Z84c7dq1S4GBgbKzs1OBAgXUqFEjdejQIdE5j5ujl156SaVKldKsWbN07NgxnTt3TmXKlNFbb72lrl27asWKFZJSXkEpLT3ps2yL5+lJ2fL+/uCDD5QzZ05t2rRJly5dsvTT6dSpk+WY3Llz66efftKmTZu0evVqHTt2TP/++6/s7e1VsGBBNWjQQC1atLBMB5OkNm3aKC4uTgcOHNDZs2d14cIFRUdHK3/+/GrUqJFeeumlRD2p7OzsNGvWLH377beW7535Z4X5lzgAMgc7kzXXLQUAAAAygKCgINWvX192dnb6888/rbY0OQDg6Thx4oT27t2rf/75R8ePH1dgYKAkacuWLSpWrFiy512+fFlTp07Vvn37FBoaqsKFC6tNmzYaPHjwY63cxkgYAAAA4CHmHh8PNlIFAGRc33//vbZs2ZKqc06cOKE+ffooPDxc3t7eqlWrlo4dO6ZZs2Zpx44dWrBgQar/jaAIAwAAgCxpzZo1yp07txo1amSZphMbG6tly5Zp2rRpkqTevXvbMkQAQBqpVq2aPD095ePjo8qVK6tz584prnwWGxur4cOHKzw8XO+++66lH1lUVJTeeustbdu2TV9++aU+/fTTVMXBdCQAAABkSZMmTdLPP/8sV1dXlSpVStmyZdPFixd19+5dSdLzzz+vr776SnZ2djaOFACQ1ho2bKhbt24lOx1p06ZNGjp0qDw9PbV69eoE/xbcuHFDzZs3lyTt3r1bbm5uhl+XkTAAAADIkp577jmFhYXpr7/+UkBAgO7du6dcuXKpUaNG6ty5s9q2bUsBBgCyKPOiCG3atEn0b0HBggVVs2ZNHThwQDt27NALL7xg+LoUYQAAAJAlValSRVWqVLF1GACAdOjUqVOSlOwqpd7e3jpw4ID+/fffVF3X+BqhAAAAAAAAWcCVK1ckSYULF05yf6FChRIcZxQjYQAAAAAAQLrWsmXLFPenduWjR7l3754kycXFJcn95uWpw8PDU3VdijBABtG+xPO2DiFDWDK2gq1DyDByDV5o6xAAAAAyrJioQFuH8Fiib523dQhZGkUYAAAAAACQrqX1SJdHcXV1VWhoqCIiIpLcbx4BYx4RYxQ9YQAAAAAAAB5QtGhRSdK1a9eS3H/9+vUExxlFEQYAAAAAAOABFStWlCQdP348yf0nTpyQJFWokLp2CBRhAAAAAADIKuJiM+aXlTVv3lyStHHjRplMpgT7bty4ob/++ksODg5q0qRJqq5LEQYAAAAAAOABLVq0UKlSpeTn56dZs2ZZtkdFRWnMmDGKiYlRly5dlC9fvlRdl8a8AAAAAAAgU9u+fbumT59u+XtoaKgk6c0335STk5MkqWnTphoyZIgkycHBQV9//bX69Omjr7/+Wr///rtKliypv//+W4GBgfL09NT777+f6jgowgAAAAAAkFWY4mwdgU0EBQXp77//TrT91KlTlj+XKVMmwT4fHx+tXLlSU6dO1b59++Tn56fChQvrtdde0xtvvJHqlZEkyc708OQmAOlS+xLP2zqEDGHJ2NQ1xsrKcg1eaOsQAAAAMqyYqEBbh/BYoq+ftnUIj8WxkJetQ0gT9IQBAAAAAACwAoowAAAAAAAAVkBPGAAAAAAAsoq4rNkTJr1gJAwAAAAAAIAVUIQBAAAAAACwAoowAAAAAAAAVkBPGAAAAAAAsgiTiZ4wtsRIGAAAAAAAACugCAMAAAAAAGAFTEcCAAAAACCrYIlqm2IkDAAAAAAAgBVQhAEAAAAAALACijAAAAAAAABWQE8YAAAAAACyCpaotilGwgAAAAAAAFgBRRgAAAAAAAAroAgDAAAAAABgBfSEAQAAAAAgq4iLtXUEWRojYQAAAAAAAKyAIgwAAAAAAIAVMB0JAAAAAICsgiWqbYqRMAAAAAAAAFZAEQYAAAAAAMAKKMIAAAAAAABYAT1hAAAAAADIKuLoCWNLjIQBAAAAAACwAoowAAAAAAAAVkARBoAhJb1KqvvQHvr0t0/166G58j27QouOL9bkNZPV8+2eypEnh61DTFciY2I1789z6vvbbjX6boNqfbVWTaf8rlcX7tWyo5cUG2eydYjpRr26NbVk8UwF+h/V3bBzOnN6n6ZOGa+iRQvbOrR0hTwZR66MIU/GkCfjyJUx5Mk4cvV0mExxGfIrs7AzmUwZ6pPArVu31LRpU8XExOiZZ57R999/b+uQFBAQoJYtW6pOnTqaN2/eE11r6tSpmjZt2iOPmzBhgjp37vxEr5Vavr6+GjlypCQpX7582rVrlxwckm4rNH/+fH366aeSJA8PD23duvWJX79FixYKDAzU6dOnn/haGVH7Es/b7LULlyysWbtmW/5++9ptBV2/LbeC+ZS/SP74bddva2zvMbp0+pKtwpQkLRlbwaavL0khEVEauGif/G6GSZIK5XKWu2t2Xb97X7fDIyVJNYu76/uudeXsaG+zOHMNXmiz1zbr36+Xfpg+Sfb29rp587YuXQ5Q+XKllSdPbgUFBeuZ1t117NhJW4dpc+TJOHJlDHkyhjwZR66MIU/GZYRcxUQF2vT1H1fkuf22DuGxZC9bz9YhpIkMNxJmzZo1iomJkSTt2LFDQUFBNo7o6ShRooQ6deqU7FeJEiVsGl9QUJB27tyZ7P4VK1ZYMRo8bXayU8itEM2fPF+vNXpVr9R5WcPbD1e/uq/og87v67r/dbkXctdHs0fLwYl+39/tOCW/m2HK7eyo2T3ra+PgVlrwchNtGdJak1+oJSf7bPrL/7Z+OXjW1qHalI9PBU3/fqLs7e31xZfTVLxkDdWr31bFSlTX/AXLlS+fm5YtmS0nJydbh2pT5Mk4cmUMeTKGPBlHrowhT8aRK2RmGa4IY/5wX7BgQUVHR2vdunU2jujpqFmzpiZOnJjsV61atWwWm7e3tyRp5cqVSe4/d+6c/vnnH8txyPhuXbul1xq+qkXfLtT1y9cT7Dt16JS+fvsrSVKRkkVUo2kNW4SYrmw/e02SNKB+edUqkT/BvhaeRdSrZmlJ0s6z1xOdm5V8PHq4HBwctGfPQY36aIKlwB4RcV8DBr6n8+cvqUyZknrl5R42jtS2yJNx5MoY8mQMeTKOXBlDnowjV8jMMlQR5tSpUzp9+rTc3d01evRoSYy4sIWSJUuqWrVq2rZtm8LCwhLtNxdnXnjhBesGhqcmOjJakRGRye4/deiU7obelSQVL1fcWmGlW/ejYyVJJd1yJrm/hFt8/5yYLNwXxtXVRW2fayFJ+nFW4mmcUVFRmjtviSSpR/cOVo0tPSFPxpErY8iTMeTJOHJlDHkyjlxZQVxcxvzKJDJUEcZccGnXrp1atGghNzc3nThxQn5+fomO9fX1lZeXl6ZOnSp/f38NHz5c9evXV+XKldWhQwctXLhQSbXD6dOnj7y8vBQQEKD169ere/fuql69umrVqqVBgwbp5Elj8w7Xr18vLy8vDRkyJNlj5s+fLy8vL40YMcJgBhL7+++/5eXllWLBY/v27fLy8lKfPn0S7duwYYP69eunOnXqyMfHR61atdKkSZMUGhqa4ut27NhRUVFRWr9+fYLtcXFxWrNmjQoWLKgGDRoke/62bdv00UcfqV27dqpVq5aqVKmiNm3aaOLEiameYhYWFqbevXvLy8tLI0eOtFTKJemff/7RsGHD1LhxY/n4+KhRo0Z69913de7cuUTXefCeScrUqVPl5eUlX1/fBNtHjBghLy8vHThwQPv27VPfvn1Vs2ZNVa9eXX369NG+fftS9X4yomz22eTgGD8N6f695Is1WUXFQnkkSYcDbie5/7B//PbKRfNaK6R0p3o1H7m4uEiSdu1Kel7yzp3x2+vUqS47OzurxZaekCfjyJUx5MkY8mQcuTKGPBlHrpDZZZgiTExMjNauXSspfoSFo6Oj2rVrJynl0TD+/v7q0qWLDh06pLp166pOnTo6f/68PvnkE40ZMybZ83799VcNGzZMdnZ2at68uYoUKaJt27apR48ehj5Ut2rVSgUKFND27dt1/XrSUw4WLVokSerZs+cjr5ecqlWrytvbW6dOndKxY8cMv47JZNKHH36od955R4cPH5anp6datIivOP/888/q3r27bt9O+gOkFF8Ic3R0TDQl6cCBA7p69arat2+f4g/EESNGaP369cqRI4caNGigBg0aKDIyUnPmzFHXrl0NF2KuX7+ul156SX/++adef/11TZgwwdIsePHixerRo4fWr1+vAgUKqGXLlipcuLDWrl2rrl276tChQ4Zew6g//vhD/fv3V2hoqJo1a6by5cvr4MGD6tevn1atWpWmr5Xe1GtTX86uzpKk4/v/sXE0tvdm4wpyss+meX+e16x9froSek+RMbG6HByuydtOaN3JQBXO5ayBDTxtHarNlC9fRpIUGRkpf/8rSR5z7nx8k2cXFxeVLFnMarGlJ+TJOHJlDHkyhjwZR66MIU/GkStkdhmmCLNz507dvn1bnp6ell4j5tEfa9asUWxsbJLnrVq1Sg0aNNDmzZv17bff6qeffpKvr6/c3Ny0ZMkSbdmyJcnzfvvtN02ZMkWLFy/W5MmTtWbNGr377ruKiorSBx98oPv376cYr6Ojo7p27aqYmBgtW7Ys0f4jR47Iz89PFStWVLVq1YwnIgm9evWS9F+x5UHXrl3Tzp075e7urlatWlm2//LLL1q5cqWqVKmiDRs2WN7vxo0bNWjQIF28eFHjxo1L9jXz5Mmj5s2b68iRI7p8+bJlu7kg9qipSJ999pn27NmjJUuWaMqUKZoxY4Y2b96swYMHKzAwUN9+++0j3/e5c+fUs2dPnTlzRqNHj9bw4cMt+44dO6b//e9/ypUrlxYsWCBfX1999913WrZsmWbMmKGoqCi9//77io6OfuTrGDVv3jx9+OGHWrVqlb7++mstWbJEX3/9tSTpk08+SbYYl9HlyJ1Dr45+VZJ04I8DNl8dKT2oUdxdP73YQPVKF9D0XafV9sctqjt5vTrM2qoFf13QSzVLa37fJiqUy8XWodpMvnx5JUnBwcmPugsKCrb82S1vnqcdUrpEnowjV8aQJ2PIk3HkyhjyZBy5QmaXYYow5hEXHTt2tGyrXLmyypUrp5s3b2r37t1Jnufi4qIxY8Yk6Jzt6empgQMHSpLmzp2b5HmtW7dWmzZtEmwbMGCAPD09dePGDf3++++PjLlnz56yt7fXsmXLFPfQHLbFixdLknr0SLqZ1IoVK+Tl5ZXs14Oef/555c6dW+vXr9edO3cS7Fu6dKliY2PVuXNnSw5iYmI0c+ZMOTo66rvvvlPRokUtx2fLlk1vv/22KlSooN9//13BwcFKjvl7Yf7ehIeH648//lClSpXk6Znyb/hbt24tV1fXBNscHBz0zjvvqGDBgtq0aVOK5x89elQvvviibt68qcmTJyeaajVz5kzFxsbq448/Vs2aNRPsa968uXr16qUrV65ox44dKb5OalSpUkWvvPJKgm3PP/+8mjVrpnv37iVZjMvostln0/vTPlDBYgUVcitE00fZfsn49OJKaIRu370vk6R8rk6qWCiP8rk6KSbOpE2nr1qa92ZV5mHGUVHJF0Lv3/9vapura9YsWJEn48iVMeTJGPJkHLkyhjwZR66swBSXMb8yiQxRhAkJCdHWrVtlb2+v9u3bJ9hnLgQkNyWpYcOGypcvX6LtHTrEN3E6cuRIgh4iZg+/jiTZ2dlZthuZylK4cGE1b9480Yf9sLAwbdiwQa6urkm+jvToJaof5OLiok6dOikiIiLBtJfY2FgtW7ZMdnZ2CYo9J0+eVFBQkLy9vRMUYMyyZcummjVrKjY2VsePH0/2/TVt2lRubm5avXq1TCaTNm3apHv37hluyBsYGKj58+dr3LhxGjVqlEaMGKERI0YoNjZWwcHByfal2b59u1555RVFR0dr1qxZatu2bYL9cXFx2rNnjxwcHCxTrB5mXl3q77//NhSrEc8//3yS2833WlpPf7I1Ozs7DZs8XDWb1dS9O/f0Wf9PFXQ9cy4Zn1rz/jynD1f/pet37mtqlzra+mYbLXy5iba+2UZTOtdRVEysPtt4TAv/umDrUG0mIiJCkuTk5JjsMc7O2S1/vncv4qnHlB6RJ+PIlTHkyRjyZBy5MoY8GUeukNk52DoAI9atW6fo6Gg1atRIhQoVSrCvQ4cO+uabb7R161aFhYUpd+7cCfZ7eHgkec38+fPL2dlZ9+/fV0hIiPLnT7iMbLFiSc8tNG+/ds3Yb7FffPFFbd68WYsXL1bz5s0lxY8cuX//vnr06KGcOZNePcW8RLVRvXr10ty5c7V48WL17t1bUnyx4tq1a2rUqJGKF/9vxZqAgABJ8aNJHh5V87CURsI4Ojrq+eef17x58/TXX39p5cqVcnBwSLaw9KBvvvlGs2bNSnYamSTdvXtXefIkHl44ZMgQxcTEaM6cOapfv36SMd+7d0+SVL169RTjSOn9pVZy95p5u9F7JqN468u31KxTM0WER+h//f4nv6OJG2RnRUH3IvX97tOSpPdaeKtx2YQ/s5qUK6T3Wnjr4/VHNX33aXWpWkJODva2CNWmzEOM3dySH0KcL5/bf8eHpNwsPLMiT8aRK2PIkzHkyThyZQx5Mo5cIbPLEEUY83SX8+fPW/qfPMjBwUGRkZFav379EzW5fRoaNGigUqVKaefOnbp69aqKFCmiJUvil1RL6r08rtKlS6t+/frau3evDh8+rBo1alimPD38OuZVoTw8PFSnTp0Ur5vUSJkHdezYUfPmzdOMGTN08OBBNW3aNMmRRw/6/fffNWPGDBUsWFAjR45U9erV5e7ubpku1bNnTx05ciTJ1auk+FFKK1as0Jdffqk5c+Yob968Cfabp345OTlZmjcnp2rVqinuT+q6kN6cNFTPdG+l+/fu69N+n+rkwRO2DindOHktxLJEdf3SBZI8pmHpgpKkO5HRuhwcrnIFcid5XGbm5xe/Qln27NlVooSHLl8OTHRM2TIlJcX/RuzSpQCrxpdekCfjyJUx5MkY8mQcuTKGPBlHrqwgLvlfhOPpS/dFmHPnzllW/bly5YquXEm6Q7YUPyXp4SJMcsffunVL9+/fl5OTU6IP8VL8VJkKFSok2m4eRfLwiJzk2NnZqVevXpowYYKWLFmiRo0a6cyZM6pSpYoqVqxo6BpGvfjii9q7d68WLVqkwoULa9euXSpYsKCaNWuW4LjChQtLii/CpGa0TVLMfXl27dolKWHPnuRs3LhRkvTpp59aRgc96NKllBu7jh8/XnZ2dvL19dXLL7+sX375RW5u/1XD3dzclD17dsXFxemzzz6To2PyQxkfZD4uPDw8yf1Xr15N8fzk7rXAwPh/OIzeM+nd4M8Hq02vNoqMuK/PXv2M1ZAeEh6ZeHpjSiJjsmZx78jR44qIiJCLi4saN66n+fOXJzqmSZN6kqQ//zyabFE2syNPxpErY8iTMeTJOHJlDHkyjlwhs0v3PWEebMh7+vTpJL+OHj0qV1dXHT16VBcuJOyxsGfPniSnnJiXu65evbplSeOk9j9s3bp1kqTatWsbfg+dO3eWs7Ozli1bpgULFkh6smWpk9OiRQsVLlxYv//+u2bPnq24uDh169Yt0furXLmy8uTJo7///ls3b9584tft1q2b8ubNKw8PD7Vs2fKRx5t7vRQpUiTRvj179jxyeeps2bJp/Pjx6t69u/7991+9/PLLCc5xcHBQvXr1FB0dnarGuwULxo9OePgekqSoqCgdPHgwxfPN98bD1qxZI+m/PjQZ2cD/DVTbvu0UeT9Sn7/2uY7tSbueOplFyXz/TTHcdyHp52v3hRuSJHs7OxV3y2GVuNKbe/citOH3rZKkga/1TrTfyclJfft0lyQtWbrGqrGlJ+TJOHJlDHkyhjwZR66MIU/GkStkdum6CBMXF6fVq1dLSrpRrpmLi4ueeeYZSf8Vbczu3bunzz//XFFRUZZtZ8+e1Y8//ihJiVbVMdu4caM2b96cYNtPP/2kf//9VwUKFEi0clJKcufOrXbt2unGjRtau3at5e9pzd7eXt27d1dkZKTmz59v+fvDnJycNHDgQEVGRmrIkCE6d+5comOCgoIs05ke5ZVXXtGBAwe0devWBKtQJadMmTKSpPnz5yeY4nP58mWNHTvW0Gva2dnp008/Vc+ePXX69OlEhZg33nhD9vb2Gjt2rHbu3Jno/MjISG3YsCFBn5bKlSvL1dVVu3bt0l9//WXZHhUVpc8++8wyoiU5R48e1bx58xJsW79+vbZt2yYXFxd17drV0HtLr14Z1U/t+3VQ5P1IjXv1cx3dddTWIaVLXgVzy7Ng/PSir7ae0K5zCZcm33n2ur7eGj99q3n5wsrtbGykVmb0+bhvFRMTo4YN62j8uJGWgrGLi7Nm/viVypQpqYsX/fXznIU2jtS2yJNx5MoY8mQMeTKOXBlDnowjV8jM7EzpePzWnj171L9/f+XPn187d+6UvX3yzSt37typAQMGqEiRItq6datWrlypkSNHqmPHjtq+fbtcXFxUo0YNhYWF6cCBA4qOjlaXLl00fvz4BNfp06ePDh48qD59+mjevHmqXr26PDw8dObMGZ0+fVpOTk6aMWOGGjZsaDknICBALVu2VJ06dRJ9CDc7fvy4unTpYnmN0aNHJ3nc1KlTNW3aNJUoUSLR0soPatiwYZKFqZs3b6p58+aKjo5WixYt9MMPPyR5vslk0scff6ylS5fKwcFBFSpUUPHixRUXF6fLly/Lz89Prq6uCVb08fX11ciRI9W2bVt98803ycZmdu7cObVt21YeHh7aunWrZfulS5fUuXNn3b17V6VKlVKlSpUUGhqqgwcPqlq1aoqJidGRI0e0ZcuWBA2SW7RoocDAQJ0+fTrB+/jss880f/58lS9fXr/++qvc3d0lScuWLdMnn3yi6OholSlTRqVLl5azs7OuXr2qU6dOKSIiQitXrkwwLeyHH37Qt99+K0dHR9WqVUsuLi46fvy44uLi1KRJE/n6+mrChAnq3Lmz5ZwRI0ZoxYoV6t27t+bPn68KFSqobNmyCggI0NGjR2VnZ6cJEyYkWtUqtdqXSHr1JWvwqlFBX638SpIUfDNYVy8mPy3w0NZDWvr9UmuFlsiSsYmnEVrbuVt39PrifboVHr98Yj5XJxXK5aLrdyIUdC++IFzGPadm9Wwg9xzZU7rUU5VrsO3/4zLgtd6aNnW87O3tdfPmbV26HKDy5UorT57cCg4OUas23XX0KD2HyJNx5MoY8mQMeTKOXBlDnozLCLmKiUr5l7TpVeSpbbYO4bFkr5i4lUVGlK5HwpiXnX7uuedSLMBI8Q1w3d3ddfXqVe3fv9+yvXjx4lq6dKmqVaumffv26eDBgypdurTGjBmjzz//PNnrvfLKK/r6668VExOjLVu2KDAwUE2bNtXChQsTFGCM8vb2tvSeMdKQ9/Lly1qxYkWyX+Y+OQ8rUKCAypUrJynlKU92dnb6/PPPNXPmTDVt2lTXr1/X5s2bLVNuXnzxxWQLOE+qZMmS8vX1VZs2bXTv3j1t2bJFV65c0euvv66ff/7ZcA8X8/sYM2aM+vTpozNnzqhPnz6WKVZdu3bVihUr1K1bN0VHR2vXrl3asWOHQkJC1LJlS3333XcqW7ZsgusNHjxYY8aMUYkSJXTo0CEdPXpU9erV0/Llyx/ZpLh169aaPXu2cuXKpW3btsnPz0916tTRTz/99MQFGFtzfGCJQLcCbqpU2zvZL48ySa8SlZWUzZ9Ly/o30+sNPFWpUB5FxcTJ70aYomNNqubhpnebV9KCvk1sWoBJL2bN/k3NmnfWylUbZDKZVNmngkJCwjTjx7mqVuMZm//nKr0gT8aRK2PIkzHkyThyZQx5Mo5cIbNK1yNhnoR51Mabb76poUOHGj7PPBLm4VEYT2r37t169dVXVbt2bf32229pdt2HnT9/Xs8995w8PDy0efNmZcuWrutsmYJ5JMzcuXNVt27dp/Y6thwJk5Gkh5EwGUV6GAkDAACQUTESxroyy0iYdL86UmYQFxdnGVXSt2/fp/pa06dPlxRfTKIAAwAAAABIIC5rrs6ZXlCEeYq2bNmizZs369SpUzp16pSqVq2qVq1apfnrHD58WMuWLdOFCxd0+PBheXh4PJXVlwAAAAAAwOOjCPMUnTx5Ur6+vsqVK5dat26t0aNHy87OLs1f5+LFi1q+fLlcXV3VoEEDjR49Wi4uLmn+OgAAAAAA4PFl2p4wQGZDTxhj6AljHD1hAAAAHl+G7QlzYoutQ3gs2b1b2jqENMFIGAAAAAAAsgoTPWFsic6tAAAAAAAAVkARBgAAAAAAwAoowgAAAAAAAFgBPWEAAAAAAMgq4ugJY0uMhAEAAAAAALACijAAAAAAAABWwHQkAAAAAACyCJMp1tYhZGmMhAEAAAAAALACijAAAAAAAABWQBEGAAAAAADACugJAwAAAABAVmFiiWpbYiQMAAAAAACAFVCEAQAAAAAAsAKmIwEAAAAAkFXEMR3JlhgJAwAAAAAAYAUUYQAAAAAAAKyAIgwAAAAAAIAV0BMGAAAAAICsgiWqbYqRMAAAAAAAAFZAEQYAAAAAAMAKKMIAAAAAAABYAT1hAAAAAADIKuJibR1BlsZIGAAAAAAAACugCAMAAAAAAGAFTEcCAAAAACCrYIlqm2IkDAAAAAAAgBVQhAEAAAAAALACijAAAAAAAABWQE8YAAAAAACyijh6wtgSI2EAAAAAAACsgCIMAAAAAACAFTAdCQAAAACArIIlqm2KkTAAAAAAAABWQBEGAAAAAADACpiOBGQQG64dsXUIGYJDxym2DiHjGLzQ1hEAAAAAWQpFGAAAAAAAsgqWqLYppiMBAAAAAABYAUUYAAAAAAAAK6AIAwAAAAAAYAX0hAEAAAAAIKugJ4xNMRIGAAAAAADACijCAAAAAAAAWAHTkQAAAAAAyCJMplhbh5ClMRIGAAAAAADACijCAAAAAAAAWAFFGAAAAAAAACugJwwAAAAAAFkFS1TbFCNhAAAAAAAArIAiDAAAAAAAgBVQhAEAAAAAALACesIAAAAAAJBVmOgJY0uMhAEAAAAAALACijAAAAAAAABWwHQkAAAAAACyCpaotilGwgAAAAAAAFgBRRgAAAAAAAAroAgDAAAAAABgBfSEAQAAAAAgq2CJaptiJAwAAAAAAIAVUIQBAAAAAACwAqYjAQAAAACQVbBEtU0xEgYAAAAAAMAKKMIAAAAAAABYAUUYAAAAAAAAK6AnDAAAAAAAWQVLVNsUI2EAAAAAAACsgCIMAAAAAACAFVCEAQAAAAAAsAJ6wgAAAAAAkFXE0RPGlhgJAyBV6tWtqSWLZyrQ/6juhp3TmdP7NHXKeBUtWtjWoVnNrdtBWrNxqyZ+O0N9Br+r2i1fkE/D59S6y8uGzt+170+9Pny0GrXtoZrNO+r5nq9p8vSfFHbn7lOOPH3injKGPBlHrowhT8aQJ+PIlTHkyThyhcyIIsxTcOvWLXl7e8vLy0tDhgyxdTiSpICAAHl5ealPnz5PfK2pU6fKy8tLI0aMMHR8nz595OXlpYCAgCd+7bSWFrGlZW7Tu/79emnH9hXq3KmdsmXLpuMnTitfvrwaPOhlHT28WVWqVLJ1iFaxYfMOjfz0S/22dJWOHDupiPuRhs+dNnueBr83RnsO/CUnR0eVLV1C127c0s/zl6nLy0N07cbNpxh5+sM9ZQx5Mo5cGUOejCFPxpErY8iTceQKmRVFmKdgzZo1iomJkSTt2LFDQUFBNo4oa8pKxRFr8PGpoOnfT5S9vb2++HKaipesoXr126pYieqav2C58uVz07Ils+Xk5GTrUJ+6HDlcVa9WNb3au5smfz5K7w8dYOi8nXsPasacBZKkUcMGa8vKeVry81RtWTlP9WpV09XrN/TemIlPM/R0hXvKGPJkHLkyhjwZQ56MI1fGkCfjyNVTFheXMb8yCYowT8GKFSskSQULFlR0dLTWrVtn44hsa9KkSVq/fr0KFSpk61ASSc+xpTcfjx4uBwcH7dlzUKM+mmApNEZE3NeAge/p/PlLKlOmpF55uYeNI336Oj/fRrO/m6Bhg/urdfPGKpA/n6Hzps3+TZLUrlUzvdi1g+zs7CRJeXLn0pf/G6Ecri46+s9J7d5/6KnFnp5wTxlDnowjV8aQJ2PIk3HkyhjyZBy5QmZGESaNnTp1SqdPn5a7u7tGjx4t6b+iTFZVtGhRlS1bVo6OjrYOJZH0HFt64urqorbPtZAk/ThrXqL9UVFRmjtviSSpR/cOVo0to/APvKqTp89Iknp0apdov1vePGrVvJGk+OlOmR33lDHkyThyZQx5MoY8GUeujCFPxpErZHYUYdKYueDSrl07tWjRQm5ubjpx4oT8/PwSHevr6ysvLy9NnTpV/v7+Gj58uOrXr6/KlSurQ4cOWrhwoUwmU6LzHuxjsn79enXv3l3Vq1dXrVq1NGjQIJ08edJQrOvXr39k35r58+enqv9LUpLru9KiRQt5eXnJZDJpwYIF6tChg6pWrap69epp+PDhunz5cpLX27NnjwYOHKhmzZrJx8dH9evXV6dOnTRhwgTdunVLUnzfmpYtW0qSDh48KC8vL8vXg9OTUuoJExYWpmnTpumFF15Q9erVVb16dbVp00ZjxoxJ8vuZlNOnT6tJkyaqVKmSlixZYuic9Kh6NR+5uLhIknbt2p/kMTt3xm+vU6e6ZYQH/nP0+ClJkqOjgyp7V0jymNrVKic4NjPjnjKGPBlHrowhT8aQJ+PIlTHkyThyhcyOIkwaiomJ0dq1ayVJL7zwghwdHdWuXfxvvFMaDePv768uXbro0KFDqlu3rurUqaPz58/rk08+0ZgxY5I979dff9WwYcNkZ2en5s2bq0iRItq2bZt69Oihffv2PTLeVq1aqUCBAtq+fbuuX7+e5DGLFi2SJPXs2fOR13tc48eP1+eff668efOqZcuWypUrl9atW6euXbsmKnYsWrRI/fv3165du1S0aFG1bt1aPj4+unfvnn755RddvHhRklSxYkW1adNGkpQ/f3516tTJ8tW4ceNHxnTx4kW98MILmjp1qq5evaq6deuqcePGypEjh5YtW6aNGzc+8hp//vmnevfurZCQEE2ZMkXdu3dPfXLSifLly0iSIiMj5e9/Jcljzp2/JElycXFRyZLFrBZbRnHpcnyhr2jhQnJ0cEjymOIeRSRJAVeuKiYm1mqx2QL3lDHkyThyZQx5MoY8GUeujCFPxpErKzDFZcyvTCLpTwJ4LDt37tTt27fl6ekpb29vSfHFmN9++01r1qzRe++9J3t7+0TnrVq1Ss8995y++OILS3MpPz8/9e3bV0uWLFGzZs0sozoe9Ntvv2nKlCmWYoMkzZw5U19//bU++OAD/fHHH3J2dk42XkdHR3Xt2lU//PCDli1blmhEzJEjR+Tn56eKFSuqWrVqj5MSQ5YtW6Z58+apZs2akqTY2FiNGzdO8+fP14cffpiggDVz5kzZ2dlp8eLFqlKlSoLr+Pn5KV+++N4czzzzjCpUqKCNGzeqTJkymjjReLPT2NhYvfnmmwoMDFTnzp01ZswYSzVekq5du2YZcZOcP/74Q++++66yZ8+un3/+WbVq1TL8+ulRvnx5JUnBwaHJHhMUFGz5s1vePLoo/6cdVoYSGha//HSeXDmTPSZP7lySpNjYOIXfu2f5e2bEPWUMeTKOXBlDnowhT8aRK2PIk3HkCpkdI2HS0MqVKyVJHTt2tGyrXLmyypUrp5s3b2r37t1Jnufi4qIxY8Yk6O7t6empgQMHSpLmzp2b5HmtW7dOUICRpAEDBsjT01M3btzQ77///siYe/bsKXt7ey1btkxxD3WcXrx4sSSpR4+n2/CqV69elgKMJNnb2+uDDz6Qu7u7Tp48qUOH/mtSGhQUpFy5ciUqwEjxOcufP/8Tx/PHH3/ozJkzKl++vD777LMEBRhJKly4sHx8fJI9f+HChXrrrbeUN29ezZ8/P8MXYCRZchAVFZ3sMfcfWKbZ1dUl2eOyqvtR8flJqf/Qgz8DIu7ff+ox2RL3lDHkyThyZQx5MoY8GUeujCFPxpErZHYUYdJISEiItm7dKnt7e7Vv3z7BPnNRJrkpSQ0bNrSM4HhQhw7xjaaOHDli6Qj+oIdfR5Ls7Ows2x8sXiSncOHCat68ua5cuaIdO/5rBhoWFqYNGzbI1dU1yddJS+b3+SBnZ2e1atVKUvy0HjNvb2+FhYVp5MiROn369FOJZ+/evZLiv28OyUwbSc6UKVP0ySefqFSpUlq0aJE8PT2fRohWFxERIUlyckq+gODsnN3y53v3Ip56TBmNs1N8fqKjk/8PRVRUlOXPLimMYssMuKeMIU/GkStjyJMx5Mk4cmUMeTKOXFmBrZeaZolqpIV169YpOjpa9evXT7TccYcOHZQtWzZt3bpVYWFhic718PBI8pr58+eXs7OzIiMjFRISkmh/sWJJz380b7927Zqh2F988UVJ/418keJH9dy/f1/t27dXzpzJT59IC8m9f/P2B9/H2LFjVbJkSfn6+qpDhw6qW7euBg0apIULF+revXtpEs+VK/FzT0uXLp2q8w4fPqzvv/9eefLk0fz581W0aNE0iSc9MA8HdXPLk+wx+fK5/Xd8SPLDR7Oq3P8/DSkk7E6yx4T+/z57+2zK4epqlbhshXvKGPJkHLkyhjwZQ56MI1fGkCfjyBUyO4owacQ8Fen8+fPq1atXgq9hw4bJwcFBkZGRWr9+vW0DTUKDBg1UqlQp7dy5U1evXpUky0o+vXr1smVoiXh6emrt2rX68ccf1bt3bxUuXFjbt2/XJ598omeffVb+/rabD1q2bFlVrFhRoaGh+vLLLxNN78rI/PzOSZKyZ8+uEiWSLpqVLVNSUvxvLy5dSrzaVFZX6v+bxl29fkPRSYxsk+KXsZakYkWLyMEhcf+ozIR7yhjyZBy5MoY8GUOejCNXxpAn48gVMjuKMGng3LlzOnbsmKT4URSHDx9O9GWeZpDUlCTzyIuH3bp1S/fv35eTk5Py5s2baH9gYGCS55mXW354RE5y7Ozs1KtXL8XGxmrJkiX666+/dObMGVWpUkUVK1Y0dI0nkdz7MG9/+H04OTmpWbNm+vjjj7Vq1Spt375dzZo10/Xr1zV58uQnjsc8guXChQupOi9Pnjz65Zdf5O3tLV9fX40cOTLTFGKOHD1uGRrauHG9JI9p0iR++59/Hk1yafWsrur/L0sdHR2jY8f/TfKYP4/+k+DYzIx7yhjyZBy5MoY8GUOejCNXxpAn48gVMjuKMGngwYa8p0+fTvLr6NGjcnV11dGjRxN9uN+zZ4+Cg4MTXde83HX16tWT7E1i3v+wdevWSZJq165t+D107txZzs7OWrZsmRYsWCDp6S5L/aCk3kdkZKQ2b94s6dHvo3DhwpaVnR5c0trcADWpfjopadCggSRp9erVio1N3TLBefPm1Zw5c+Tj46OVK1fqww8/TPU10qN79yK04fetkqSBr/VOtN/JyUl9+8Qvwb1k6RqrxpZRlChWVJW8ykmSlqxcl2h/cEio/tgW37z72ZZNrBqbLXBPGUOejCNXxpAnY8iTceTKGPJkHLmyAlsvNZ3Fl6imCPOE4uLitHr1aklJN8o1c3Fx0TPPPCPpv6KN2b179/T5558naMp59uxZ/fjjj5KkPn36JHnNjRs3WgoVZj/99JP+/fdfFShQINHKSSnJnTu32rVrpxs3bmjt2rWWv1vD/PnzdeTIEcvf4+Li9OWXX+rWrVuqUKGCZXWhiIgI/frrr0n2xzE3FS5SpIhlW758+eTo6KjLly+nqhDzzDPPqFy5cvLz89OYMWN0/6FVaq5du6bjx48ne755REyVKlW0evVqffDBB5miEPP5uG8VExOjhg3raPy4kZbCoIuLs2b++JXKlCmpixf99fOchTaONP1649X4/0is+2O7FixbbfnNTWjYHb0/dqLC70WoqncFNWlQx5ZhWg33lDHkyThyZQx5MoY8GUeujCFPxpErZGZ2JsZvPZE9e/aof//+yp8/v3bu3Cl7++T7OOzcuVMDBgxQkSJFtHXrVq1cuVIjR45Ux44dtX37drm4uKhGjRoKCwvTgQMHFB0drS5dumj8+PEJrtOnTx8dPHhQffr00bx581S9enV5eHjozJkzOn36tJycnDRjxgw1bNjQck5AQIBatmypOnXqaN68eUnGd/z4cXXp0sXyGqNHj07yuKlTp2ratGlyc3NTiRIlkn2/X3zxhUqVKmWJd8uWLQmaCbdo0UKBgYHq06ePFixYoNq1a8vd3V3Hjx/XpUuXlDt3bs2bN08VKsRPzQgLC1Pt2rXl4OCgChUqqESJEoqLi9OZM2d07tw5ubq66pdfflHVqlUtr/HGG29oy5YtKlu2rLy9veXk5KTSpUvrtddeS5DLh2M7f/68+vfvr6tXrypv3ryqUaOGnJyc5O/vr3///VeDBw/W0KFDU8zt3bt39dprr+nIkSNq166dvvzyyxTvj0dxcEp6Tqw1DXitt6ZNHS97e3vdvHlbly4HqHy50sqTJ7eCg0PUqk13HT16wqYxRlzZ9dRf4+r1m+rW703L36OjoxV+L0LZsmWzNOCVpOqVK2nqpLEJzv3ux180a258E+yC+d2V391N5y/6635kpAoXKqB5079SkcIFn/p7kCSXoo2t8jopyQj3VHpAnowjV8aQJ2PIk3HkyhjyZFxGyFVMVNJtFdK7iFVf2DqEx+LS8QNbh5AmGAnzhMw9Xp577rlHfsBu0KCB3N3ddfXqVe3fv9+yvXjx4lq6dKmqVaumffv26eDBgypdurTGjBmjzz//PNnrvfLKK/r6668VExOjLVu2KDAwUE2bNtXChQsTFGCM8vb2tvSeMdKQNzg4WH///XeyX+a5nI/y0UcfadSoUQoKCtLmzZsVGhqqtm3batmyZZYCjCS5urpq7NixeuaZZ3T37l1t375dO3fulCT17t1bq1evTlCAkaTPP/9cnTt31p07d7Ru3TotW7YswVLcySlTpoxWrlypQYMGqUCBAtq7d6927typiIgIdevWTc8+++wjr5EzZ07Nnj1bNWrU0Lp16/Tuu++mempUejNr9m9q1ryzVq7aIJPJpMo+FRQSEqYZP85VtRrP2PwfQmuJi4tTSGiY5Sv8/5dGfHj7nfDwROe+/for+v7L/6l+7eqKjIrS2QuXVLCAu17p1UXLf/neagWY9IJ7yhjyZBy5MoY8GUOejCNXxpAn48gVMitGwtiQuXnrm2++aRlVYURyozee1O7du/Xqq6+qdu3a+u2339Lsuskxj4Q5ffr0U3+tzCA9jITJCKwxEiazSA8jYQAAADKqDDsSZsVEW4fwWFw6jbB1CGmCkTCQFP8b/B9++EGS1LdvXxtHAwAAAABA5pN4yR1kKVu2bNHmzZt16tQpnTp1SlWrVlWrVq1sHRYAAAAAAJkORZgs7uTJk/L19VWuXLnUunVrjR49WnZ2drYOCwAAAADwNGSi5Z4zInrCABkEPWGMoSeMcfSEAQAAeHwZtieM7/hHH5QOuXQeZesQ0gQ9YQAAAAAAAKyAIgwAAAAAAIAV0BMGAAAAAICsIo6eMLbESBgAAAAAAAAroAgDAAAAAABgBUxHAgAAAAAgq2A6kk0xEgYAAAAAAMAKKMIAAAAAAABYAUUYAAAAAAAAK6AnDAAAAAAAWYXJZOsIsjRGwgAAAAAAAFgBRRgAAAAAAAAroAgDAAAAAABgBfSEAQAAAAAgq4iLs3UEWRojYQAAAAAAAKyAIgwAAAAAAIAVMB0JAAAAAICsgulINsVIGAAAAAAAACugCAMAAAAAAGAFFGEAAAAAAACsgJ4wAAAAAABkFSZ6wtgSI2EAAAAAAACsgCIMAAAAAACAFVCEAQAAAAAAsAJ6wgAAAAAAkFXE0RPGlhgJAwAAAAAAYAUUYQAAAAAAAKyA6UgAAAAAAGQVJpOtI7CZ8+fPa9asWTpw4IBu3LghBwcHlShRQq1bt1a/fv2UI0eOpx4DI2EAAAAAAECmdujQIXXq1Em+vr5ydHRUixYtVLt2bQUGBmrq1Knq1q2bQkNDn3ocjIQBAAAAAACZ2ieffKL79+/rjTfe0FtvvSU7OztJUkhIiPr3768TJ05o9uzZevfdd59qHIyEAQAAAAAAmVZwcLDOnDkjR0dHDR482FKAkaS8efOqf//+kqS///77qcfCSBgAAAAAALKKLLhEtaOjo6Hj3NzcnnIkjIQBAAAAAACZWM6cOVW9enVFR0frhx9+kOmB5sQhISH6+eefJUndunV76rEwEgYAAAAAAGRq48aN02uvvabp06dr/fr18vLy0v379/XXX3/JxcVFX3zxhRo1avTU46AIAwAAAABAVpFBpyO1bNkyxf1btmxJcX/ZsmW1cOFCvf322zp69KguXrxo2degQQOVK1cuLcJ8JIowADIVl6KNbR1ChnHnh162DiFDyDV4oa1DyBDK5Cli6xAyjPOhV20dAjIZnj9jePaArG3//v166623lD9/fs2ePVtVq1ZVRESEtm/fri+//FI7duzQ9OnTn/poGIowAAAAAAAgXXvUSJeUhISE6O2331ZUVJRmzZolDw8PSVLu3LnVo0cP5cqVS8OGDdPYsWO1adMm2dvbp1XYidCYFwAAAAAAZFrbt29XSEiIqlWrZinAPKh169ZydHRUQECA/P39n2osjIQBAAAAACCrMGXMnjBP4vr165KkXLlyJbnfwcFBrq6uCg0NVWho6FONhZEwAAAAAAAg0ypQoIAk6cSJE4qJiUm0/+LFi5biS1IjZdISRRgAAAAAAJBpNWnSRM7OzgoMDNRXX32VoBATFBSk0aNHS5Lq1Kmj/PnzP9VYmI4EAAAAAAAyrfz582v06NEaM2aM5syZo40bN6pSpUq6f/++/v77b925c0f58+fXp59++tRjoQgDAAAAAEAWYYoz2ToEm+jWrZs8PT3166+/6vDhw9qxY4fs7e1VrFgxdevWTa+99prc3d2fehwUYQAAAAAAQKZXtWpVTZ482aYx0BMGAAAAAADAChgJAwAAAABAVhGX9ZaoTk8YCQMAAAAAAGAFFGEAAAAAAACsgCIMAAAAAACAFdATBgAAAACArMJETxhbYiQMAAAAAACAFVCEAQAAAAAAsAKmIwEAAAAAkFXEmWwdQZbGSBgAAAAAAAAroAgDAAAAAABgBRRhAAAAAAAArICeMAAAAAAAZBVxLFFtS4yEAQAAAAAAsAKKMAAAAAAAAFZAEQYAAAAAAMAK6AkDAAAAAEBWQU8Ym2IkDAAAAAAAgBVQhAEAAAAAALACpiMBAAAAAJBVmEy2jiBLYyQMAAAAAACAFVCEAQAAAAAAsAKKMAAAAAAAAFZATxgAAAAAALIKlqi2KUbCAAAAAAAAWAFFGAAAAAAAACtgOhIAAAAAAFlFHEtU2xIjYfBEbt26JW9vb3l5eWnIkCFWe90DBw7Iy8tLI0aMsNprIl69ujW1ZPFMBfof1d2wczpzep+mThmvokUL2zq0dIU8GRMZE6t5f55T3992q9F3G1Trq7VqOuV3vbpwr5YdvaRY/pNgwT31aPkLuqtD1+c06vPhWrh2to5e3CW/m4e09a/Vtg4tXeKeMoY8PRrPXupwTxlHrpAZUYTBE1mzZo1iYmIkSTt27FBQUJCNI8LT1L9fL+3YvkKdO7VTtmzZdPzEaeXLl1eDB72so4c3q0qVSrYOMV0gT8aERESpz7zd+nrbSR27EqwcTg7yLJBbDvbZ9Jf/bX2+6ZgGLt6n+9Gxtg7V5rinjGnXqbW++uEzvfL6i6pZt5pcc7jYOqR0i3vKGPJkDM+ecdxTxpErZFYUYfBEVqxYIUkqWLCgoqOjtW7dOhtHhKfFx6eCpn8/Ufb29vriy2kqXrKG6tVvq2Ilqmv+guXKl89Ny5bMlpOTk61DtSnyZNx3O07J72aYcjs7anbP+to4uJUWvNxEW4a01uQXasnp/4sxvxw8a+tQbYp7yri7d8K1d8cBzZzyi4b2/1ATPv7G1iGlS9xTxpAn43j2jOGeMo5cITOjCIPHdurUKZ0+fVru7u4aPXq0pP+KMsh8Ph49XA4ODtqz56BGfTTBMgIqIuK+Bgx8T+fPX1KZMiX1yss9bBypbZEn47afvSZJGlC/vGqVyJ9gXwvPIupVs7QkaefZ61aPLT3hnjJu+YLVeqXrEH312TRtXLNFN67dtHVI6RL3lDHkyTiePWO4p4wjV0+ZKS5jfmUSFGHw2MwFl3bt2qlFixZyc3PTiRMn5Ofnl+hYX19feXl5aerUqbp8+bLee+89NWrUSBUrVtQvv/xiOe7GjRuaNGmS2rVrp2rVqqlGjRp6/vnnNWHCBAUGBiYZx507d/T555+radOm8vHxUcuWLTVlyhTLD+uHxcbGasmSJerVq5dq1aqlKlWqqF27dpo+fbru37+f6PgRI0bIy8tLBw4c0N69e9W/f3/VqVNHXl5eOnXqlNq2bSsvLy/9+++/Sb5eTEyMGjVqpAoVKsjf3/9RaU2XXF1d1Pa5FpKkH2fNS7Q/KipKc+ctkST16N7BqrGlJ+QpdczTjEq65Uxyfwm3HJKkmCzcF4Z7CmmNe8oY8oS0xj1lHLlCZkcRBo8lJiZGa9eulSS98MILcnR0VLt27SSlPBrm4sWL6tKliw4dOqRatWqpSZMmcnGJnzd89OhRtW/fXj///LNCQ0PVqFEjNWjQQHZ2dvrll1904MCBRNcLCwtTjx49tG7dOlWpUkX169dXUFCQvv/+e40ZMybR8ZGRkRowYIA+/vhjnTlzRj4+PmrcuLHu3r2r7777Tq+88kqShRhJWrdunfr376+goCA1btxYNWvWlJ2dnXr16iVJWrRoUZLnbd26VTdv3lTDhg1VvHjxFLKaflWv5mP5Pu3atT/JY3bujN9ep0512dnZWS229IQ8pU7FQnkkSYcDbie5/7B//PbKRfNaK6R0h3sKaY17yhjyhLTGPWUcuUJmxxLVeCw7d+7U7du35enpKW9vb0nxxZjffvtNa9as0XvvvSd7e/tE561du1bdunXT2LFj5ejoaNl+584dDRkyRCEhIRo0aJDefPPNBPvPnz8vkynxb8O3bNmi5s2ba/ny5ZYf1hcuXFCXLl3k6+urN954Q8WKFbMc/+WXX2rPnj1q3ry5JkyYIDc3N0nxFfWxY8fK19dX33//vd59991Er7V48WJNmDBBnTt3TrC9WLFimjx5stasWaMPPvhArq6uic6TZCnWZETly5eRFF/E8ve/kuQx585fkiS5uLioZMliungxY476eRLkKXXebFxBg5bs17w/zytHdge1q1RM7jmy6/qd+1p29KLWnQxU4VzOGtjA09ah2gz3FNIa95Qx5AlpjXvKOHKFzI6RMHgsK1eulCR17NjRsq1y5coqV66cbt68qd27dyd5Xt68eTVy5MgEBRZJWrJkiW7duqVGjRpp2LBhifaXKVNGZcuWTXQ9V1dXjRs3zlKAkaTSpUurY8eOMplM+vPPPy3bg4KCtGjRIuXLl09ffvmlpQAjSU5OThozZozy58+vJUuWKC4u8ZzDRo0aJSrASFLOnDnVvn173b171zI6yMzf31979uxRoUKF1Lx58yRzkhHky5dXkhQcHJrsMUFBwZY/u+XN87RDSpfIU+rUKO6un15soHqlC2j6rtNq++MW1Z28Xh1mbdWCvy7opZqlNb9vExXKlXVX2eCeQlrjnjKGPCGtcU8ZR66sIM6UMb8yCYowSLWQkBBt3bpV9vb2at++fYJ95qJMclOSGjRooBw5ciTavnfvXklSly5dUhWLj4+P3N3dE20vUya+gn7jxg3LtgMHDig6Olr169dXrly5Ep3j4uIiHx8fhYSE6OLFi4n2P/PMM8nG8eKLL0pKPCVpyZIlMplM6tatW5IjgzIKc5ErKio62WPu34+0/NnVNWt+aCZPqXclNEK3796XSVI+VydVLJRH+VydFBNn0qbTVy3Ne7Mq7imkNe4pY8gT0hr3lHHkCpkd05GQauvWrVN0dLQaNWqkQoUKJdjXoUMHffPNN9q6davCwsKUO3fuBPuLFi2a5DWvXIkfali6dOlUxVKkSJEkt5sLPVFRUZZtAQEBlvgftZR2cHBwom3JxS5JFSpUUPXq1XXkyBEdP35cPj4+io6Olq+vr+zt7dW9e/dHvpf0LCIiQpLk5OSY7DHOztktf753L+Kpx5QekafUmffnOX297aTcXJw0tUsdNS7738+TnWev6+P1R/TZxmOKiomzrJSU1XBPIa1xTxlDnpDWuKeMI1fI7CjCINXMU5HOnz+fZJ8TBwcHRUZGav369erZs2eCfc7OzmkaS7ZsxgdzmXvKlC9fXj4+Pikemzdv3kTbHhX7iy++qCNHjmjx4sXy8fHR5s2bdevWLbVs2TJRsSqjMQ8HdXNLfrhnvnz/Te8KDkl++GhmRp6MC7oXqe93n5YkvdfCO0EBRpKalCuk91p46+P1RzV992l1qVpCTg4ZdzTZ4+KeQlrjnjKGPCGtcU8ZR66ePlMSrRdgPRRhkCrnzp3TsWPHJMWPXjGPYEnKihUrEhVhklO0aFGdP39eFy5cUMWKFdMk1ocVLlxYUnzvmgkTJqT59Z999llNmDBBa9eu1YcffqglS/5/6bwePdL8tazNz++cJCl79uwqUcJDly8nXi68bJmSkuJ/e3HpUoBV40svyJNxJ6+FWJaorl+6QJLHNCxdUJJ0JzJal4PDVa5A7iSPy8y4p5DWuKeMIU9Ia9xTxpErZHb0hEGqPNiQ9/Tp00l+HT16VK6urjp69KguXLhg6LoNGjSQlPLy1k+qXr16cnBw0K5du5JdhvpJODk5qWvXrrp3756mTZumffv2qVixYmrcuHGav5a1HTl63DI0tHHjekke06RJ/PY//zya5EpWWQF5Mi48MiZVx0fGZM3f2HBPIa1xTxlDnpDWuKeMI1fI7CjCwLC4uDitXr1akhI15H2Qi4uLpYmtuWjzKN26dZO7u7t27typ7777TjExCT+gXbhwQefOnXu8wP9fwYIF1b17d928eVNvv/22rl1L3PDz2rVrhmNOSs+ePZUtWzbNmTNHJpNJ3bt3T9WUqfTq3r0Ibfh9qyRp4Gu9E+13cnJS3z7xfW+WLF1j1djSE/JkXMl8OS1/3nfhZpLH7L4Q31jb3s5Oxd0SN/TOCrinkNa4p4whT0hr3FPGkStkdhn/0yGsZt++fbp27Zry589vGbmSHHORZtWqVUku9/yw3Llza+rUqcqTJ4+mT5+u5s2b66233tLQoUPVvn17Pfvss/r777+f+D2MHDlSzZo10/bt29W6dWv17NlTw4cP15tvvqm2bduqadOmmjNnzmNf38PDQ02bNpUkOTo6qmvXrk8cc3rx+bhvFRMTo4YN62j8uJFycIifzeji4qyZP36lMmVK6uJFf/08Z6GNI7Ut8mSMV8Hc8iwYP73oq60ntOvc9QT7d569rq+3npAkNS9fWLmdk2/Ol9lxTyGtcU8ZQ56Q1rinjCNXT5mtl5rO4ktU0xMGhpmnCj333HOPXG65QYMGcnd319WrV7V//35D169Zs6ZWr16t2bNna+fOndq2bZuyZ8+uIkWKqH///qpXL+nhiKnh5OSkGTNmaN26dVqxYoVOnDih48ePK2/evCpUqJAGDhyo55577oleo379+tq2bZueeeaZJJfPzqiOHTupoW99pGlTx+uD999Uv1d66dLlAJUvV1p58uRWcHCIunZ/NcGKVFkReTLGzs5OE56vodcX79Ot8EgNXX5Q+VydVCiXi67fiVDQvfj8lHHPqZGtKts4WtvinjKucNFCWrV1vuXvjk7x/80p4lFIB/7dbNn+18G/9Ubfd60eX3rBPWUMeTKOZ88Y7injyBUyMzsTk+iANNWzZ08dOXJEv/76a5oUjswcnDzS7FpPon69Wnr33UFqUL+28uTJpWvXbmrD71s1YeIUBQZetXV46UZGyNOdHxKvbmZtIRFRWvjXBe06d12Xg8MVER0rVycHlc2fUy09i6hbtVJydrTtqki5BqeP37Kl93uqTJ4itg5BHsWLaNvhRw9NP7DnL/V54XUrRJS086G2/35J6f+eSi8yQp5s/fzx7KVORrin0ov0nquYqMRNgzOC8HF9bR3CY8nx0Vxbh5AmKMIAaWjv3r3q16+fPD09tWZN2s5RTS9FGGQe6aEIkxGklyJMemfrD4EZSXr5IIjMg+fPGJ49pLUMW4T5PHGvnYwgx+jfbB1CmmA6EpAGPvroI929e1c7duyQJL333ns2jggAAAAAkN5QhAHSwLJly2Rvb6/ixYtrwIABlua8AAAAAACYUYQB0sDp06dtHQIAAAAAIJ2jCAMAAAAAQFaRiZZ7zoiy2ToAAAAAAACArIAiDAAAAAAAgBVQhAEAAAAAALACesIAAAAAAJBVxMXZOoIsjZEwAAAAAAAAVkARBgAAAAAAwAqYjgQAAAAAQFbBEtU2xUgYAAAAAAAAK6AIAwAAAAAAYAUUYQAAAAAAAKyAnjAAAAAAAGQVJpaotiVGwgAAAAAAAFgBRRgAAAAAAAAroAgDAAAAAABgBfSEAQAAAAAgq4gz2TqCLI2RMAAAAAAAAFZAEQYAAAAAAMAKmI4EAAAAAEAWYYpjiWpbYiQMAAAAAACAFVCEAQAAAAAAsAKKMAAAAAAAAFZATxgAAAAAALIKlqi2KUbCAAAAAAAAWAFFGAAAAAAAACtgOhIAAAAAAFkF05FsipEwAAAAAAAAVkARBgAAAAAAwAoowgAAAAAAAFgBPWEAAAAAAMgqTHG2jiBLYyQMAAAAAACAFVCEAQAAAAAAsAKKMAAAAAAAAFZATxgAAAAAALKKOJOtI8jSGAkDAAAAAABgBYyEATKI5wpXt3UIGcKGa0dsHUKGkWvwQluHkCHsL1jb1iFkCC9GBtg6BABAGiiTp4itQwAyNYowAAAAAABkESamI9kU05EAAAAAAACsgCIMAAAAAACAFVCEAQAAAAAAsAJ6wgAAAAAAkFXQE8amGAkDAAAAAABgBRRhAAAAAAAArIDpSAAAAAAAZBVxcbaOIEtjJAwAAAAAAIAVUIQBAAAAAACwAoowAAAAAAAAVkBPGAAAAAAAsgqWqLYpRsIAAAAAAABYAUUYAAAAAAAAK6AIAwAAAAAAYAX0hAEAAAAAIKugJ4xNMRIGAAAAAADACijCAAAAAAAAWAHTkQAAAAAAyCJMJqYj2RIjYQAAAAAAAKyAIgwAAAAAAIAVUIQBAAAAAACwAnrCAAAAAACQVbBEtU0xEgYAAAAAAMAKKMIAAAAAAABYAdORAAAAAADIKpiOZFOMhAEAAAAAALACijAAAAAAAABWQBEGAAAAAADACugJAwAAAABAFmGiJ4xNMRIGAAAAAADACijCAAAAAAAAWAFFGAAAAAAAACugJwwAAAAAAFkFPWFsipEwAAAAAAAAVsBIGACGlPQqqbqt68mnrrdKViilXHlzKep+lK5cCNTBzQe15pc1Cg8Nt3WY6Ua9ujU1fPjratigjvLkyaWrV2/o943bNGHiFF25cs3W4aUr5OrRig7vqaLDe6Z4zNXvlytwwjwrRZQ+5S/orgZN6sinWkVVrlZJFX285JrDRQGXr6hFzQ62Di/d4dkzhjw9Gs9e6nBPPRr3FDIzijCp1KJFCwUGBibYZmdnpzx58sjLy0vdu3fX888//8SvExAQoJYtW6pOnTqaN896/6nevn271qxZo6NHj+r27duKi4tT/vz5VblyZT377LNq3bq17O3trRbPk/D19dXIkSP15ptvaujQoZbtU6dO1bRp0zRhwgR17tzZhhFmHIVLFta0P763/P32tdu6eOqC3ArmU/mqnipf1VPP9n5OY3uP0aXTl2wYafrQv18v/TB9kuzt7XXz5m0dP3Fa5cuV1uBBL6tH9w56pnV3HTt20tZhpgvkKnWib4bo/oUrSe6L8r9h5WjSn3adWuujz9+1dRgZAs+eMeTJGJ4947injOGeesribB1A1kYR5jE1atRIBQoUkCRFRUXp8uXLOnDggA4cOKC//vpLY8eOtXGEqRMcHKxhw4Zp3759kqRy5cqpUaNGcnBwUEBAgDZt2qTff/9d3t7e8vX1tXG0sDY72SnkVojWzV2nbb5bdf3ydcu+irUq6t3v3lOh4oX00ezReqPlYMVExdgwWtvy8amg6d9PlL29vb74cprGjP1SMTExcnFx1owfvtBLL3bRsiWz5VOlmaKiomwdrk2Rq9QL3XZYF4dPsXUY6dbdO+Hau+OAjv99Sv8cPaWiHoU18rNhtg4r3eHZM4Y8GcezZwz3lHHcU8jMKMI8poEDB6pu3boJtm3btk2DBw/WggUL1K1bN1WqVMlG0aVORESE+vbtKz8/P3l7e2vcuHGqWLFigmNu3rypH3/8UWvWrLFRlGnnpZdeUtu2bVWwYEFbh5Jh3Lp2S681fFWREZGJ9p06dEpfv/2VvvD9UkVKFlGNpjV08I+DNogyffh49HA5ODhoz56DGvXRBMv2iIj7GjDwPdWvV0tlypTUKy/30MxZWXvqCLlCWlu+YLWWL1ht+Xu7F1rbMJr0i2fPGPJkHM+eMdxTxnFPITOjMW8aat68uWrWrClJOngw43wI/fbbb+Xn56cyZcpo3rx5iQowklSgQAGNHj1a33//fRJXyFjy5cunsmXLKleuXLYOJcOIjoxOsgBjdurQKd0NvStJKl6uuLXCSndcXV3U9rkWkqQfk/jPU1RUlObOWyJJ6tE9a89nJleAbfDsGUOekNa4pwCYUYRJY+7u7pKk2NhYy7b79+9r6dKlevPNN9WqVStVrVpV1atXV5cuXfTLL78oJiblqRv37t3TpEmT1KJFC1WuXFktWrTQF198obt37yY4buzYsfLy8tKvv/6a7LXeeusteXl5WaYUhYWFafHixZKkESNGKEeOHCnGUqtWrQR/b9Gihby8vGQymbRgwQJ17txZ1atXT3Dctm3b9NFHH6ldu3aqVauWqlSpojZt2mjixIkKCgpK9BrPPfecKlSooJCQkATblyxZIi8vL3l5eSkgICDBvg0bNsjLy0ufffZZivFL8T1hHsyB2YgRI+Tl5aUDBw7oyJEjevXVV1WrVi1VrVpVPXv21J49e5K95rZt29SrVy9Vq1ZNderU0euvv64TJ07I19dXXl5emjp16iPjysiy2WeTg2P8wLr795Iv1mR21av5yMXFRZK0a9f+JI/ZuTN+e5061WVnZ2e12NIbcvV4XCuVUumpw+S5+FOV+3mUPEb0lqtPGVuHhQyEZ88Y8oS0xj2F9MQUZ8qQX5kFRZg0FBMTo1OnTkmSypYta9l++fJljR49WkeOHFGhQoXUokULVa9eXRcvXtSECRP05ptvymRK+qaKjo7Wyy+/rEWLFsnLy0vNmjXT3bt39dNPP6lPnz4KD/9vNZoXX3xRUnyxIim3bt3S1q1blSdPHrVt21aStH//fkVERChv3rxq3LjxY7/3//3vfxo3bpxy5syp5s2bq1y5cpZ9I0aM0Pr165UjRw41aNBADRo0UGRkpObMmaOuXbsmKsTUrVtXJpMp0WiiAwcOWP68f//+JPc9PEXscWzfvl29e/fW7du31aRJE5UrV05HjhzRgAEDEr2uJC1atEiDBg3S4cOHVbFiRTVq1Ej+/v7q2bOnjh079sTxZAT12tSXs6uzJOn4/n9sHI3tlC8f/2E4MjJS/v5JN089dz6+cbGLi4tKlixmtdjSG3L1eFx9ysi9U1PlblhFeVvXUZE3u6rS75NV6uuhssvuaOvwkAHw7BlDnpDWuKcAmNETJg1ERUXJ399fP/zwgy5fvqxKlSolKGjkz59fP//8s+rXr69s2f6re4WFhWn48OHatm2b1q9fr3bt2iW69pEjR1SmTBlt3LjR0sMkLCxMAwYM0NGjRzVlyhSNHDlSkuTl5aWaNWvqr7/+0qFDhxKNWlm+fLmio6PVsWNHOTvHf2A+eTK++3rFihUTxJZa69ev19KlS5Psg/PZZ5+pUaNGcnV1tWyLiYnRtGnT9MMPP+jbb7/Vp59+atlXt25dLVy4UPv371fr1v/N/zxw4IDKli2rixcvav/+/eratatl3/79+2VnZ6fatWs/9nswmzNnjiZOnKgXXnjBsm3mzJn6+uuv9f3336tevXqW7YGBgRo/fryyZcumadOmqWXLlpIkk8mkb7/9VjNmzHjieNK7HLlz6NXRr0qSDvxxIEuvjpQvX15JUnBwaLLHBAUFW/7sljePLsr/aYeVLpGr1Im6HqTArxcqbMcRRV66rtiwcGUvUUju3Vuo8OsvKH+PlrJztNeFt761dahI53j2jCFPSGvcUwDMGAnzmPr27WuZGlO5cmW1bdtWa9eu1UsvvaS5c+cmWMY5X758atiwYaIiR+7cuTV69GhJ0saNG5N9rREjRiRoIps7d259/PHHkuJHvdy/f9+yzzwaZuHChQmuYTKZLCNkevbsadkeHBxsifFJvPbaa8k2Im7dunWCAowkOTg46J133lHBggW1adOmBPvq1q0rOzu7BKNOzp07p5s3b6pFixby9vZOMCrmxo0bunDhgry8vOTm5vZE70OS2rRpk6AAI0mvvPKKcufOrSNHjig6OtqyfdmyZYqMjFSrVq0sBRgpftnyoUOHqmjRok8cT3qWzT6b3p/2gQoWK6iQWyGaPirj9wx6EuZhxlFR0ckec//+f9O1XF1dnnpM6RW5Sp1b8zfp6jeLFX7YTzG3Q2WKjtH9c4EKnDBP59/6RpLk3rmZctTwsnGkSO949owhT0hr3FNIV+JMGfMrk2AkzGN6cIlqk8mkmzdv6p9//rEUOkaMGCEnJ6cE5xw7dkwHDhzQlStXdP/+fZlMJss0pIsXLyb5Onny5FHTpk0Tbffx8VGZMmV0/vx5nThxwtIQuHXr1sqfP782bdqk4OBgS1Fi9+7dCggIUJ06dRJMlUorDxYgkhIYGKjt27fr4sWLCg8PV1xc/OL0sbGxCg4OVmhoqPLkySMpviBUvnx5+fn56ebNmypQoIClIGMehTJr1iydO3dOZcuWTdOpSJKSzLeTk5OKFy+uEydOKDg42FIU++uvvyTJMr3rQQ4ODmrTpo3mzJmTJnGlN3Z2dho2ebhqNqupe3fu6bP+nyroeuIeP1lJRESEJMnJKflpIc7O2S1/vncv4qnHlF6Rq7QTvHq37g7ooJzVPeXWroHCD5+2dUhIx3j2jCFPSGvcUwDMKMI8pqSWqL57967eeecdzZ8/X3Fxcfrkk08kSeHh4Ro+fLi2b9+e7PUebrJrltJICg8PD50/f17Xr1+3bHNyclLXrl01Y8YMrVixQv3795ckS/PdB0fBSLIUaZJqkJsaHh4eye775ptvNGvWrATNih929+5dSxFGii+o+Pn56cCBA3r++ed14MABOTo6WopNs2bNskxPMhdo0qoIU6RIkSS3m5sWR0VFWbbduHFDUvLfp+SulRm89eVbatapmSLCI/S/fv+T31E/W4dkc+Yhxm5ueZI9Jl++/0ZrBYckPyQ5syNXaevun6eUs7qnnEtn3p85SBs8e8aQJ6Q17ikAZkxHSkM5c+bUBx98ICl+mlBYWJgk6euvv9b27dtVo0YNzZkzR/v27dPx48d1+vRp/fNP2jcx7dGjh+zt7S2Flxs3bmjbtm3Kly+fWrVqleBY8xSiU6dOWUanPA5zj5mH/f7775oxY4bc3d31zTffaPv27frnn390+vRpnT59WtWrV5ekRI2JzQWV/fv3W5r0Vq1aVS4uLqpZs6YcHR0txZcDBw4oW7ZsadIPRtIT9cbJKt6cNFTPdG+l+/fu69N+n+rkwRO2Dild8PM7J0nKnj27SpRIujBZtkxJSfG/Ebt0KSDJY7ICcpW2TNHxq+zZOdo/4khkdTx7xpAnpDXuKQBmfNpMY8WLF5cUP83m0qX4BqUbN26Uvb29fvzxRzVo0ED58uWTo2P8UMTLly+neL0rV5Luni7FT/GRlKBfjBQ/KqNp06a6ePGi9u3bp+XLlysmJkadO3dONEWqXr16cnFxUUhIiHbt2pW6N2uAudfNp59+qrZt26pIkSIJYjDn6GG1a9e29IU5ffq0goODLVORXFxcVKVKFR08eFABAQHy9/dXxYoVlTt37jSP/1HMuU/u+3T16lVrhmMVgz8frDa92igy4r4+e/WzLL0a0sOOHD1uGW7cuHG9JI9p0iR++59/Hk12VbSsgFylLZcK8f9xj7py28aRIL3j2TOGPCGtcU8hXYnLoF+ZBEWYNPZgUcXcjDY0NFQ5cuRIskiwZs2aFK8XGhqqnTt3Jtp+8uRJnT9/Xq6urvL29k60/8EGvUuXLpWdnV2iqUhSfJPf7t27S5ImTZqUYMnrpJh7oBgVGho/lDKpaTl79uxJdhpU3rx5VaFCBfn7+8vX11eSEqxKVLduXQUHB2vu3LmWv9uCeXrU77//nmhfTExMoqbDGd3A/w1U277tFHk/Up+/9rmO7fnb1iGlK/fuRWjD71slSQNf651ov5OTk/r2iX/elixN+dnP7MhV2nGpVFp5msaPKgzdccTG0SC949kzhjwhrXFPATCjCJOG7t69qy+++EKSVLJkSZUpU0aSVLp0aYWFhWnVqlUJjt+5c6ehpq2TJk3SzZs3LX+/c+eOZUnnLl26WLqtP6hRo0YqWbKkNm7cqMDAQDVs2NAySudhw4YNk6enp86dO6e+ffvq1KlTiY4JCgrSxIkT9cYbbzwy3geZc2Duk2N2+fJljR07NsVzzYWVRYsWycXFRVWrVrXsMxdkFi1alODv1ta1a1dlz55dmzZtStDzx2Qyadq0aZbRSpnBK6P6qX2/Doq8H6lxr36uo7uO2jqkdOnzcd8qJiZGDRvW0fhxI+XgEN96y8XFWTN//EplypTUxYv++nnOwkdcKfMjV8Y4exZXyUlvyMW7dKJ9eVrUVPl5H8vOwV7hx84pZMP+JK4AJMSzZwx5QlrjngIg0Zj3sc2cOVMrVqyQFP+B+9atW/rnn38so14mTpwoOzs7SdLgwYM1bNgwffDBB1qwYIGKFSumy5cv69ixYxo4cKBmzpyZ7OtUq1ZNsbGxatOmjerVqycHBwcdOHBAISEhqlChgt55550kzzOPfJk0aZKkxA15H+Ti4qK5c+fqnXfe0f79+/XCCy+ofPnyKlOmjOzt7RUYGKjjx48rNjY2QSHEiD59+mjFihVasmSJDh48qEqVKik0NFQHDx5UtWrVlD9/fh05kvRvbuvWratffvlFkZGRatiwYYJpTNWrV1f27NkVGRkpBwcHy4gUa/Pw8NCoUaM0duxYDRo0SDVq1FCRIkX077//6vLly+rRo4cWL15smX6WUXnVqKAug7pIku7duaee7/RUz3eSvqcObT2kpd8vtWZ46cqxYyc19K2PNG3qeH3w/pvq90ovXbocoPLlSitPntwKDg5R1+6vJmjwnFWRK2PsHBxU4KXWKvBSa8WE3FWk/3WZYmKVvXhBOebPK0m6d/KCzr46Xsriw9cLFy2kVVvnW/7u6BT/35wiHoV04N/Nlu1/Hfxbb/R91+rxpRc8e8aQJ+N49ozhnjKOewqZGUWYx7R79+4Ef3dxcZGHh4c6duyo/v37J5h+07ZtW7m5uWnatGny8/OTn5+fypcvr0mTJumFF15IsQjj5OSkGTNmaMqUKdq0aZNu3ryp/Pnzq3PnzhoyZIhy5syZ7LkNGjSQFN+3pHnz5im+Hzc3N/3666/atm2b1q5dqyNHjmjHjh2Ki4tTgQIF1Lp1a7Vr1+6RS1E/rGTJkvL19dXXX3+tI0eOaMuWLSpatKhef/11vf7663r11VeTPbd27dqyt7dXbGxsopEuTk5Oql69uvbv3y9vb+8U8/C09ezZU4UKFdKPP/6oEydO6MyZM6pataomTpxo6bOTN29em8WXFhwfWE7RrYCb3Aq4JXvs1YuZrw9Oas2a/ZuOH/9X7747SA3q11Zlnwq6du2mFi5aqQkTpygwkByZkatHiwq4ocBJvylHDS85ly+m7CULK5uzk2LDwhW286iC1u3V7aVbZYqKsXWoNmdvn01u7nmT2G6fYHuu3Lb7NyO94NkzhjwZw7NnHPeUMdxTT5cpLmv/0sbW7Ex0fcq0Jk+erB9//FFDhgzRW2+9ZetwsqT+/ftrz549Wrp0qapUqfJE12pf4vk0iipz23CNnhhIW/sLps3Ka5ndi5Gs5GHU+VA+ZCFtlcnD8vRG8OwZw/1knN/NQ7YO4bEEd2tm6xAei9vS7bYOIU3QEyaTun37thYtWiQnJ6cUpyLhyfn7+yskJCTBttjYWM2ePVt79uxR6dKlVblyZdsEBwAAAABIN5iOlMnMnj1bfn5+2r9/v0JDQ/Xqq68mWsIaaWvLli366quvVKlSJRUuXFiRkZHy8/PTlStX5OrqqvHjx1v6AwEAAACATWWi5Z4zIoowmcyOHTt08OBBFShQQP3799ewYcNsHVKmV6dOHT377LM6cuSIzpw5o+joaBUsWFCdO3fWgAEDLCtEAQAAAACyNoowmcy8efNsHUKWU6lSJX311Ve2DgMAAAAAkM7REwYAAAAAAMAKGAkDAAAAAEAWwRLVtsVIGAAAAAAAACugCAMAAAAAAGAFFGEAAAAAAACsgJ4wAAAAAABkFXG2DiBrYyQMAAAAAACAFVCEAQAAAAAAsAKmIwEAAAAAkEWYmI5kU4yEAQAAAAAAsAKKMAAAAAAAAFZAEQYAAAAAAMAK6AkDAAAAAEBWQU8Ym2IkDAAAAAAAgBVQhAEAAAAAALACpiMBAAAAAJBFsES1bTESBgAAAAAAwAoowgAAAAAAAFgBRRgAAAAAAAAroCcMAAAAAABZBT1hbIqRMAAAAAAAAFZAEQYAAAAAAMAKKMIAAAAAAABYAT1hAAAAAADIIkz0hLEpRsIAAAAAAABYAUUYAAAAAAAAK2A6EgAAAAAAWQTTkWyLIgwAAAAAAMgS7ty5o59//lmbN29WQECAJKlQoUKqWbOm3nrrLRUqVOipvj7TkQAAAAAAQKZ39uxZtW3bVtOnT1dkZKQaN26sevXqyd7eXsuWLZO/v/9Tj4GRMAAAAAAAIFMLCwtT//79FRISoq+++krt27dPsP/y5cvKmTPnU4+DIgwAAAAAAFlEVu0JM23aNF2/fl0jR45MVICRpBIlSlglDqYjAQAAAACATCsyMlK+vr5ycXFRjx49bBoLI2EAAAAAAECmdfz4cd25c0c1a9aUi4uL9u3bp127dunu3bsqVqyYnnnmGZUpU8YqsVCEAQAAAAAgqzDZ2ToCqzt79qwkyd3dXW+99ZY2btyYYP8333yjQYMG6e23337qsVCEAQAAAAAA6VrLli1T3L9ly5Zk94WGhkqStm3bJkl6//331b59e9nb22vDhg364osvNH36dBUtWlTdunVLu6CTQBEGyCA2XDti6xCALKnejT9tHUKGENigvK1DyDAanyhi6xAyhPOhV20dQobh5VLY1iEgE+HZQ2YUFxffjTg6OlpDhw7Va6+9ZtnXp08fxcTEaOLEiZo+fTpFGAAAAAAAkLWlNNLlUVxdXS1/TqrI0r17d02cOFFXrlyRv7+/ihcv/tiv9SisjgQAAAAAQBZhisuYX0/Cw8NDkuTk5KRChQol2p8jRw7ly5dPknTz5s0ne7FHoAgDAAAAAAAyrUqVKkmSoqKiFB4enmh/bGys7ty5IynhqJmngSIMAAAAAADItIoUKSJvb29J0oEDBxLtP3TokKKjo+Xi4vLUl6qmCAMAAAAAADK1gQMHSpK++OILBQQEWLZfv35d48aNkyR17dpVTk5OTzUOGvMCAAAAAJBFmOLsbB2CTTz77LPq1auXFi5cqPbt26tGjRrKli2bjhw5ojt37qhatWp69913n3ocFGEAAAAAAECm98knn6hmzZqaP3++jhw5opiYGJUqVUrPP/+8Xn75ZWXPnv2px0ARBgAAAAAAZAnt27dX+/btbfb6FGEAAAAAAMginnS5ZzwZGvMCAAAAAABYAUUYAAAAAAAAK6AIAwAAAAAAYAX0hAEAAAAAIIswmbLmEtXpBSNhAAAAAAAArIAiDAAAAAAAgBUwHQkAAAAAgCyCJaptK82KMGFhYQoPD5fJZEr2mKJFi6bVywEAAAAAAGQoT1SEuXr1qqZMmaKtW7cqLCwsxWPt7Ox08uTJJ3k5AAD+j737jquy7v84/j4sBRQUcaLiSHGAuXJrzixNk4Za3ZK7LG3gL28t00pLy+q2XGXeZpqa5rZluTUN90qT2wVucYEoQ+D8/iBOEqCXCOfiwOvZg8dDrut7ru/nfLquI374DgAAAMBhZbsIExERoZ49e+rq1au3Hf2SxkgbAAAAAACA/CrbRZiJEyfqypUrqly5skJDQ1W3bl35+vrKYmG7KwAAAAAA8iJrCv9mN1O2izC///67XFxcNGPGDPn5+eVkTAAAAAAAAPlOtreovn79uipXrkwBBgAAAAAAwIBsF2HKlSvHOi8AAAAAAAAGZbsI06lTJx07dkwnT57MyXgAAAAAAEAusVod8yu/yHYR5vnnn1f16tX12muv6dSpUzkZEwAAAAAAQL6T7YV5v/zySzVp0kTffPONOnfurBYtWqhSpUpyd3fP8jWDBw/ObncAAAAAAAAOLdtFmMmTJ8tischqtSopKUlr1qzJcntqq9Uqi8VCEQYAAAAAABOxRbW5sl2E6datW5ZFFwAAAAAAAKSX7SLM+PHjczIOAAAAAACAfC3bC/MCAAAAAADAuGyPhAEAAAAAAI6FNWHMdc9FmNjYWC1atEjr16/XsWPHdP36dXl6eqpq1apq3bq1nnjiCRUpUiQnYgUAAAAAAHBY91SE2bdvn15++WWdP39eVqvVdvz69eu6cOGCfv/9d82aNUufffaZgoKC7jlYAAAAAAAAR5XtIkxUVJQGDhyoq1evqkiRInryySdVvXp1lSxZUlFRUQoPD9fixYt19uxZDRw4UCtWrFDJkiVzMnYAAAAAAACHke0izH//+19dvXpVTZs21aeffiovL68MbV566SW98sor2rp1q2bOnKl///vf9xQsAAAAAADIvlsmscAE2S7CbNiwQa6urvr4448zLcBIUtGiRTVhwgQ9+OCDWr9+fb4pwrRt21anT59Od8xiscjb21sBAQHq3r27Hn300Xvu59SpU2rXrp0aNWqkOXPm3PP18qrhw4dr6dKlGY57eHiocuXK6tixo5577jkVLlzYhOjwT00aN1Bo6PNq3qyRvL2L6uzZC/p51TqNG/+Zzpw5Z3Z4eQZ5Mo5cGUOe7o5r3bry6NJFrkFBcipWTNa4OCWfP6/Efft0Y948pVy+bHaIpvEtVULNWjVSYN2aCqpbSzUDA+Th6a5TkWfUtkFXs8PLc3j27sw/wF+NH2qiwMa15V+jkooWK6rE+ESdOX5a21Zv08pZK3U9+rrZYZqOZ+/u8fwhP8p2Eebs2bOqVq2afHx8btuuRIkSql69uo4dO5bdrvKsFi1a2KZYJSYmKjIyUmFhYQoLC9POnTs1evRokyN0LDVq1FDNmjUlSSkpKTp//rx27typP/74Q7/88ovmzp1LIcZkffs8rWlTP5Czs7Oioi7pwB+HVe2+yhr0wnPq0b2r2j/UXfv2HTQ7TNORJ+PIlTHk6S5YLCr62mvy6Jr6D5rkixeVdPSoLJ6ecqlYUa7Vqythw4YCXYTpHPyQ3hw71OwwHALP3p2V8S+jyb9OsX1/6dwlnTh0XMVL+aja/dVV7f7qevhfj2j0v0Yp4nCEiZGaj2fv7vD8Ib/KdhHG2dlZiYmJhtomJibK2dk5u13lWQMHDlTjxo3THVu3bp0GDRqkefPm6amnnlKtWrVMis7xtG/fXkOGDEl37OTJk+rRo4cOHDigb7/9Vr179zYnOCgwsIamThkvZ2dnfThhskaNnqCkpCS5uxfW59M+1LPPPKFFC2cosE5rw58N+RF5Mo5cGUOe7k7RIUPk0bWrbh45opiPP1bSoUN/n3R2lmtQkJLPnDEvwDwg9tp1bdkQpgN7D2n/nkMq51dGI8a8ZnZYeQ7PnjEWWXT14lX9MPsHrVuyVucjz9vO1WxYU0M//T+VrlBab84YqRfbDVJSYpKJ0ZqLZ884nr/cxRbV5nLK7gsrVaqkY8eO6ejRo7dtd+TIER09elSVKlXKblcOpU2bNmrQoIEkadu2bSZH4/gqVKigHj16SCKfZntrZKhcXFz022/b9Mab45SUlPpDVFxcvAYM/D8dOxahKlX81fu5HiZHai7yZBy5MoY8Gedap448Hn9cyRcu6Mqrr6YvwEhScrJu7tmjlEuXzAkwj1g8b4V6P/mSPhozWatWrtGFc1Fmh5Qn8ewZc/HcRfVv3k/fTpyfrgAjSYd2HNLHr3wkSSrrX1b1H6xvRoh5Bs+ecTx/yM+yXYTp2LGjUlJSNHjwYP3xxx+Ztjlw4IBeeuklW/uCokSJEpKk5ORk27H4+Hh99913Gjx4sDp06KD7779f9erV0xNPPKFZs2bZPliMyM61Tp06pYCAAPXq1UuJiYn67LPP1KFDBwUGBqpVq1YaO3asYmNjs+zz119/1YABA9S0aVPba/r3768VK1ZkGt+MGTP0+OOPq169eqpbt64ef/xxffPNN+lyYlRm+bzV+fPn9d5776ljx44KCgrSAw88oD59+mjjxo2Ztl+3bp3efPNNde7cWQ0bNlSdOnXUsWNHjR8/XpezGJ7etm1bBQQESJK+++47devWTffff79atGihsWPH6vr11HnOV69e1dixY9W6dWsFBQWpU6dOWrJkyV2/57zGw8NdnR5pK0n64suM6xMlJiZq9pyFkqQe3QvunGbyZBy5MoY83R2P7t0lSdcXLJD1Nn+nAXfCs2fczYSbSohLyPL8oR2HFBud+jxWuK+CvcKCA+P5Q36X7elIvXr10vLly3X06FE9+eSTatCggapVqyZfX19dvHhR//vf/7Rz505ZrVZVq1ZNISEhORl3npWUlKRDf/3mrWrVqrbjkZGRGjlypHx9fVW5cmUFBgYqOjpae/fu1bhx4/T7779r2rRpsljuPDTsXq518+ZN9evXTwcPHtQDDzyg++67T7t27dKcOXN05MgRffXVV+lel5KSon//+99asWKFnJ2ddf/996tcuXK6cOGC9u/fr2PHjqlr178//C5fvmy7vo+Pj+rXry9XV1ft2bNHY8aMUVhYmD777DND7zPNgQMHJElVqlTJcG7fvn0aMGCArl69qooVK+rBBx9UdHS0du7cqS1btmjEiBEZpjANHz5ciYmJqlatmpo1a6bExET9+eef+uqrr/TLL79o0aJFWa519MEHH2jOnDlq1KiRKlSooN27d2vOnDk6evSoPvnkE/Xs2VPXr19X/fr1FRMTo+3bt2vEiBFycnJSt27dDL/nvKZe3UC5u7tLkjZt+j3TNhs3ph5v1KieLBaLrAVw2XXyZBy5MoY83QVXVxVq1EiSlLhjh5z9/OT+6KNyqVpVSklRUkSE4n/9VUlHjpgcKBwBz17OcXJ2kotr6j854m9kXawB0vD8Ib/LdhHG3d1dX331lYYOHart27drx44d2rlzp+182oPQqFEjffTRR/l+QdXExESdPHlS06ZNU2RkpGrVqqWWLVvazvv6+mrmzJlq2rSpnJz+HoAUExOj0NBQrVu3Tj/++KM6d+58x77u5Vq7d+9WnTp1tHr1ahUvXlySFBUVpR49emjr1q3avn27Gv31Q6wkzZgxQytWrFD58uX1+eefq1q1aune89atW9Nd/4033tDBgwf15JNP6s0335SHh4ck6dq1a3r11Vf1yy+/aMGCBerZs+dt32NKSoouXLigFStWaPny5fLy8tIzzzyTrk1sbKxeeuklRUdH65133lGPHj1sxZ1jx46pf//++vDDD9W8efN0cY8ZM0YtWrSwxSalFs8mT56sadOmaeLEiXr33XczjSstnrQCW3R0tHr06KEtW7aoV69eCggI0IQJE1SoUCFJ0vr16/X8889r0qRJDl2EqVYttQCWkJCgkyczX0vh6LHUxfbc3d3l719eJ06ctFt8eQV5Mo5cGUOejHO57z5Z3NwkSa61asnr1Vdl+euzWJIKNWkij6ee0vW5c3X9v/81K0w4CJ69nNOkY1MV9kj9d8CB3/ebHA0cAc9f7rNaWRPGTNmejiRJpUqV0pw5c/TNN99owIABateunZo0aaJ27dpp4MCBmjt3rmbPnq1SpUrlVLx5SkhIiAICAhQQEGCbevL999/r2Wef1ezZs9MtRuzj46PmzZunK5pIkpeXl0aOHClJWrVqlaF+7+VaFotF7733nq0AI0klS5a0FThuXXclMTFRM2bMkCR9/PHH6QoZkuTm5qYHH3zQ9v2ff/6pdevWqVq1anrnnXfSFTmKFi2qcePGydXVVfPnz880tsmTJ9vyWbNmTT344IP6+OOP1aRJEy1YsEAVKqQfwrpkyRJduHBB3bt3V8+ePdONrqlSpYqGDx+u5ORkLVy4MN3rHnrooXSxSZKLi4teffVVlSpVSr/88kum8UnSyy+/nG6Ek7e3t62gdObMGb399tu2AowktW7dWgEBATp16lSGbc0diY9PMUnSlSvRWba5fPmK7c/Fi3nndkh5EnkyjlwZQ56Mc/5r6qokeYWGKunECV1+8UWd79BBUT166MayZbI4OalIr15yN/ALDxRsPHs5w9PLU/1G9pMkhf0aVuB3R4IxPH/I77I9EuZWDRs2VMOGDXPiUg7l1i2qrVaroqKitH//fts/+ocPHy63v34rl2bfvn0KCwvTmTNnFB8fL6vVahs1dOLEibvqPzvXKleunKpXr57heNpUnwsXLtiO/fHHH4qOjlbVqlVVt27dO8azefNmSamLE7u4ZLy1SpUqpUqVKik8PFzx8fEZRkfdukW1lLq+Snh4uLZs2aIxY8boww8/tOX71v46dOiQaTxp9+S+ffsynDt9+rTWr1+vEydO6Pr160pJSZGUuu7MlStXFB0dLW/vjB/ot45uSuPv7y9JCgwMzHQaU6VKlXT48GFduHBBfn5+mcaa16UNCU1MvJllm/j4v4cYe3i453pMeRF5Mo5cGUOejLO4//3erTdv6sqwYbJGp/4An3L+vK5NnCjn0qVVqGlTefburbiffpL++uwH/oln7945OTvp9cnDVKp8KV29eFVT35hy5xcB4vlD/pcjRZiCKrMtqmNjY/Xqq69q7ty5SklJ0dtvvy1Jun79ukJDQ7V+/fosr3e7hXFvdS/XKlu2bKbHPT09JSndFm9nz56VJMM7W506dUqSNH36dE2fPv22baOjozMUYTLbojo5OVmTJk3StGnT1LdvXy1btsw2wiitv/79+9+2rytXrqT7/j//+Y++/PLL2y4SHBsbm2kRpkyZMhmOpY2qyezcrecdefu8uLg4SZKbm2uWbQoX/nsE0I0bcbkeU15EnowjV8aQJ+OsCX//QB6/apWtAHOr699+q0JNm8q5ZEm53HefksLD7RkiHAjP3r2xWCx67ZNQNWjdQDeu3dCYvu/q8vnMNz8A/onnL/dZ+R2EqSjC5LAiRYpo2LBh2rRpkxYuXKjQ0FB5eXnp448/1vr161W/fn0NGTJENWrUUNGiReXq6qrExEQFBQUZ7uNervXPKUw5KW00yf3335/pIrq3cnXN+kP1Vs7Oznr55Ze1YMEChYeHa+PGjWrTpk26/tq1aycvL68sr3Hr1Kuff/5Zn3/+uUqVKqURI0aoXr16KlGihG3EUs+ePbV79+4sF/e6Xf5yM7dmSxsOWrx41sM9fXz+zvOVq1kPH83PyJNx5MoY8mRcSkyM7c9JkZGZtkm6ZZSoc9myFGGQJZ69e/PyhJfVOri14q7H6Z0+7yh8D88ajOP5Q35nqAiTtrORn5+fxo0bl+6YURaLRV9//fVdhueY0tYuSU5OVkREhIKCgrRq1So5Ozvriy++yFAwiMzih8Ws5OS1bidt1IzRaVJp7Vu1aqXBgwfnWBxOTk7y8/PT5cuXdezYMVsRpmzZsjp+/Lh69+6dbjHh20lbK+fdd9+1XedWERHMVc5MePhRSVKhQoVUsaKfIiMzrm9TtUrqtKy4uDhFRJyya3x5BXkyjlwZQ56MS77177+sRh7evGVoez4unOPe8exl3+APhqh99w6KvxGvd/u8q4Pb/jA7JDgYnj/kd4Z+Atm2bZu2bdumvXv3Zjh2N18Fxa2FkLSpKNHR0fL09Mx0xMbKlSvv6vo5ea3bqV27try9vXX06NFM11X5p+bNm0uS1qxZk6PbxKWkpNimHrnfMuc/rb9ff/3V8LWi/xqentm0rN9++02XLzNUNjO79xywDQ1t2bJJpm1atUo9vn37ngK7TSB5Mo5cGUOejEu5fFlJfy2A7lyuXKZtbj2eEhVll7jgmHj2smfQ2EHq+HRHJcTFa0y/MeyGhGzh+UN+Z6gIM27cOI0bN06hoaEZjhn9ev/993PtTeQlsbGx+vDDDyWlLtiaNi2ncuXKiomJ0fLly9O137hxo7766qu76iMnr3U7bm5u6tcvdUX70NBQHT16NN35xMREbdy40fZ9nTp19OCDD+rgwYN64403dPXq1QzXPH78uH7++WfDMSQnJ+vTTz/VlStX5OLikm5h3J49e6pkyZKaO3euvv76ayUlJaV7rdVqzbB1etr/j7Q1e9JERkZq9OjRhuMqaG7ciNNPP6+VJA3s/68M593c3BTSq7skaeF3OVcIdDTkyThyZQx5ujvxa1NzVbh9eymTaa9puyKlXLumm4cP2zU2OBaevbs38J2B6hTSWQnxCRrbf6z2/bb3zi8CMsHzl/tSrBaH/MovDE1HCg4ONnSsoJk+fbqWLl0qKfUf/BcvXtT+/fttI1XGjx9v2zZ50KBBeu211zRs2DDNmzdP5cuXV2RkpPbt26eBAwfecSHbW+Xkte5kwIABOnz4sH744Qd16dJF9erVU5kyZRQVFaXDhw/L09NTa//6oVeSPvzwQw0YMEBLlizRqlWrVLNmTZUpU0Y3btzQ//73P508eVLt2rXTww8/nKGv1atXp9vGOW13pNOnT8tisejf//53um2qixQpomnTpumFF17Q+++/rxkzZqh69eoqVqyYrl69qoMHD+ry5csaMWKEGjRoIEnq1auXli5dqoULF2rbtm2qVauWoqOjtW3bNtWtW1e+vr7avXt3juUvPxn73kR17dJRzZs30vvvjdCo0ROUlJQkd/fCmjb1Q1Wp4q8TJ05q5leZb0FeUJAn48iVMeTJuBsLF8qja1c5ly4tr9BQxUycKP21YG/hdu3k/uijklIX6E03NQnIBM+ecb3f6KMufboqIT5B7/Ubqz2b9pgdEhwczx/yM4uV8Vt3rW3btumKBWnc3d3l5+enZs2aqW/fvhmmvGzdulWTJ09WeHi4kpKSVK1aNT3zzDPq1q2bAgIC5Ofnl66gcerUKbVr106NGjXSnDlzcu1akhQWFqaQkBAFBwdr/Pjx6c5ZrVb99NNP+u677/THH3/oxo0bKlGihAICAtS1a1c9+tcPtWkSExO1ePFi/fDDDzp8+LDi4uLk4+OjcuXKqWXLlurUqZMqV65saz98+HBbMetWrq6uKlWqlOrVq6devXpluU325cuXNXv2bK1bt06RkZFKSUmRr6+vKleurLZt2+rhhx9Ot3V0RESEPv74Y+3evVvR0dEqV66cOnfurOeff179+vXTtm3btGbNGpUvX972mrT/54cz+c3p7XJ36/ubPXt2ht207oaLm/nbWw/o/y9NnvS+nJ2dFRV1SRGRp1Ttvsry9vbSlStX1aFjd+3Zw9xv8mQcuTLGEfJ0ulk1U/tP4xoUpGIffCAnDw+lXL+u5MhIORUvLue/drCLX7NG0WPHSib++NPyD2O7IeaWMuVKa/naubbvXd1cVKRoESUnJyvm6jXb8Z3b9urFkKFmhChJOhZ91rS+0zjCsydJj5SpZ1rfAfVr6KNlH0mSrkRd0dkTZ7Jsu2PtDn035Tt7hZbB4bhzpvUt8ezdLUd4/pISM/6b0BGE18z4C3FHUP2Q8RkVeVm2izDt2rVTnTp19J///OeObUNDQ7Vv3z6tXr06O10BUN4owkhS0yYNNXToC2rW9AF5exfVuXNR+unntRo3/jOdPp03/tLOC8iTceTKmLyep7xShJEkp1Kl5PnssyrUqJGcSpSQNSFBSf/7n+K+/942ZclMZhdh/CqU1bpddx7CH/bbTvXq9rwdIspcXvmHYF5/9iRzizCBTYI0buE4Q23XfLdaE4dOzN2AbsPsIgzP3t3L688fRRj7KvBFmBo1aqhBgwaaO3fuHdv26tVLO3bs0KFDh7LTFQDlnSIMAGQmLxVh8jqzizCOIi/9QzCvM7MI40jMLsI4Cp494xy1CHO4xiNmh5AtAX/+ZHYIOcIu+zMmJSXJia0gAQAAAABAAZbrlZGbN28qIiJC3t7eud0VAAAAAABAnmVodyRJ2r59u8LCwtIdO3v2rCZPnpzla+Lj47Vjxw5duXJFrVq1yn6UAAAAAADgnllT8s92z47IcBEmLCxMkydPtm25LKUWYaZMmXLb11mtVrm7u+uFF17IfpQAAAAAAAAOznARpkaNGgoODrZ9v3TpUpUoUUItW7bM8jXu7u6qWLGiHn74YZX5a2tIAAAAAACAgshwEaZ9+/Zq37697fulS5fK399f48YZ25IOAAAAAACgIDNchPmnNWvWqFChQjkZCwAAAAAAyEVWq9kRFGzZLsL4+fnlZBwAAAAAAAD5Wra3qN6xY4dCQkI0f/7827abN2+eQkJCtGvXrux2BQAAAAAA4PCyXYRZunSptm/frtq1a9+2XWBgoLZt26Zly5ZltysAAAAAAJADrCkWh/zKL7JdhNm1a5eKFCmiOnXq3LZdnTp1VLRoUUbCAAAAAACAAi3bRZjz58+rfPnyhtr6+fnp/Pnz2e0KAAAAAADA4WW7CGO1WpWSkmK47c2bN7PbFQAAAAAAgMPL9u5IZcuW1dGjR3Xt2jUVLVo0y3bXrl3T0aNH2U0JAAAAAACTpVjzz/oqjijbI2GaNm2q5ORkffrpp7dt99lnnyk5OVlNmzbNblcAAAAAAAAOL9tFmOeee04uLi6aO3euRowYoYiIiHTnIyIi9MYbb2jOnDlycXFR79697zVWAAAAAAAAh5Xt6UgVK1bUO++8o5EjR2rZsmVatmyZihUrJi8vL8XExOjq1auSJCcnJ7377ruqVKlSDoUMAAAAAADgeLJdhJGkxx9/XGXLltWECRN08OBBXblyRVeuXLGdDwwM1Ouvv67GjRvfc6AAAAAAAODeWFkTxlT3VISRUteGWbJkiU6fPq3w8HDFxsaqSJEiCggIULly5XIiRgAAAAAAAId3z0WYNH5+flnugJSYmKhffvlFjz76aE51BwAAAAAA4FByrAiTmQMHDmjx4sX68ccfde3aNYowAAAAAACYyGo1O4KCLceLMFevXtXy5cu1ZMkShYeHS5KsVqsKFSqU010BAAAAAAA4jBwpwlitVm3cuFGLFy/WunXrlJSUJOtf5bVatWrpiSeeUJcuXXKiKwAAAAAAAId0T0WYiIgILV68WMuWLVNUVJSt8CJJRYsW1TfffKOAgIB7DhIAAAAAAMDR3XURJi4uTj/99JMWL16sXbt2SUodCePi4qLWrVurW7duGjx4sAoVKkQBBgAAAACAPCSFLapNZbgIs2vXLi1evFg///yzbty4kW66UXBwsB599FEVL1481wIFAAAAAABwZIaLMM8884wsFousVqt8fX3VpUsXBQcHq3r16rkZHwAAAAAAQL5w19ORvL299fLLL6tz587y9PTMjZgAAAAAAEAusDIdyVRORhs2bNhQkhQdHa3Ro0erRYsWGjZsmLZs2ZJrwQEAAAAAAOQXhkfCfPPNNzp58qQWLVqk5cuX69y5c1qxYoVWrlyp0qVL67HHHlO3bt1UuXLl3IwXAAAAAADAIRkeCSNJFSpU0GuvvaZ169Zp+vTpeuihh+Ti4qJz585p+vTp6tSpk5566qncihUAAAAAAMBh3fWaMJJksVjUqlUrtWrVSlevXtXy5cu1dOlS/fnnn9q/f78sFouuXLmiwYMHKzg4WG3atJGT013VewAAAAAAQA77a6NjmOSeKyPFihXTc889p2XLlmnJkiV65pln5OXlpeTkZK1Zs0aDBw9Wq1atNGHChJyIFwAAAAAAwCHl6PCUWrVqadSoUdq0aZM+/vhjNW3aVBaLRRcvXtTMmTNzsisAAAAAAACHkq3pSHfi5uamzp07q3Pnzjp79qwWL16sZcuW5UZXAAAAAAAADiFXijC3Klu2rAYPHqzBgwfndlcAAAAAAOA2UqwWs0Mo0FgtFwAAAAAAwA4owgAAAAAAANhBrk9HAgAA+V/LP2LNDsFh7OpVzuwQHEKxyWfNDsFhHI47Z3YIAByIlelIpmIkDAAAAAAAgB1QhAEAAAAAALADijAAAAAAAAB2wJowAAAAAAAUEGxRbS5GwgAAAAAAANiBoZEwZ86cyZHOypVjNwAAAAAAAFAwGSrCtGvX7p47slgsOnjw4D1fBwAAAAAAZI/V7AAKOENFGKv13v835cQ1AAAAAAAAHJWhIsyff/6Z23EAAAAAAADkayzMCwAAAAAAYAdsUQ0AAAAAQAHBFtXmYiQMAAAAAACAHdzzSJiEhAStXbtWhw4d0tWrV3Xz5s1M21ksFr3//vv32h0AAAAAAIBDuqcizPr16zV8+HBFR0fbjqXtgmSxWNIdowgDAAAAAAAKsmwXYQ4fPqwhQ4YoJSVFjz76qHbs2KFz587pxRdf1NWrV7Vnzx4dPHhQhQsX1jPPPCMPD4+cjBsAAAAAANwlK2vCmCrbRZiZM2cqKSlJb731lp555hk988wzOnfunF5++WVbm61bt2ro0KH6/fffNX/+/BwJGAAAAAAAwBFle2He7du3y8PDQ0899VSWbZo2bar//Oc/OnjwoKZPn57drgAAAAAAABxetoswFy9eVLly5eTq6ipJcnZ2liQlJiama9e4cWOVL19eP//88z2ECQAAAAAA7lWKg37lF9kuwri7u9sKMJLk6ekpSTp//nyGtl5eXjpz5kx2uwIAAAAAAHB42S7ClCpVSlFRUbbvK1euLCl1mtKtrl27puPHj8vJKdtdAQAAAAAAOLxsV0YCAwN1+fJlxcTESJJatWolq9Wqjz76SBs3btSNGzcUERGh//u//1N8fLzq1q2bUzEDAAAAAAA4nGzvjtSmTRstXbpUGzZsUJcuXdS0aVM1a9ZMW7Zs0fPPP29rZ7Va5eLiohdffDFHAgYAAAAAANljFVtUmynbI2HatGmjlStXqlmzZrZjkydPVvfu3eXu7i6r1Sqr1aoaNWroiy++UIMGDXIkYAAAAAAAAEeU7ZEwrq6uqlatWrpjHh4eevfddzV69GhdvnxZ7u7uKlKkyD0HCQAAAAAA4OiyXYS5HWdnZ5UsWTI3Lg0AAAAAAOCQcqUIAwAAAAAA8p4Uq9kRFGzZLsIsW7bsrl/TrVu37HYHAAAAAADg0LJdhBk+fLgslrtbVZkiDAAAAAAAKKiyXYR54IEHsjwXFxeniIgIXbt2Ta6urqpbt252uwEAAAAAADkkhS2qTZXtIsycOXPu2GbFihUaN26c/P39NXbs2Ox2BQAAAAAA4PBydWHerl27qmTJkurbt6/q16+vxx9/PDe7AwAAAAAAyLOccruDpk2bqmzZspo3b15udwUAAAAAAJBn2WWL6mLFiuno0aP26AoAAAAAAGTBypowpsr1kTDx8fE6ceKEnJxyvSsAAAAAAIA8K1crI5cvX9a///1v3bhxQ4GBgbnZFQAAAAAAQJ6W7elIISEhWZ6zWq26dOmSTp06pZs3b8rZ2VkvvPBCdrsCkIc0adxAoaHPq3mzRvL2LqqzZy/o51XrNG78Zzpz5pzZ4eUZ5Mk4cmUMeboz31Il1KxVIwXWramgurVUMzBAHp7uOhV5Rm0bdDU7vDzBUryUPN+aYahtyqXzuvHegFyOKO/j2bsznj1jyNPd4/nLHSlmB1DAWaxWqzU7L6xRo4ahdn5+fhoxYoTat2+fnW5M07ZtW50+fTrdMYvFIm9vbwUEBKh79+569NFHTYruztLiP3z4cKbHJemNN97Qc889l+nrk5OT9eCDDyoqKkqSNG7cuDy3u1VYWJhCQkIUHBys8ePHG37d8OHDtXTpUs2ePVuNGzfOxQhzloubn9khqG+fpzVt6gdydnZWVNQlRUSeUrX7Ksvb20uXL19R+4e6a9++g2aHaTryZBy5MsYR8lTFu6yp/UvSc88/rTfHDs1wPK/9A2dXr3Km9W0pWkyFnxt+2zZOlQJkcXLWzR3rlDDvP3aKLKNik3ea1ncaR3j2JPOfP0d59szmKHk6Fn3W7BAkOcbzl5R4+s6N8qBfS/cwO4Rs6XB+gdkh5Ihsj4QZN25clucsFovc3d3l7++vgIAAWSyOu/BPixYtVLJkSUlSYmKiIiMjFRYWprCwMO3cuVOjR482OcLsW758eZZFmM2bN9sKMIAkBQbW0NQp4+Xs7KwPJ0zWqNETlJSUJHf3wvp82od69pkntGjhDAXWaa3ExESzwzUNeTKOXBlDnoyLvXZdWzaE6cDeQ9q/55DK+ZXRiDGvmR1WnmK9dlVxk7Muwjj5VZHH0ImSpKRtq+0UVd7Es2ccz54x5Mk4nj/kZ9kuwgQHB+dkHHnWwIEDM4yWWLdunQYNGqR58+bpqaeeUq1atUyKLvtq166tP/74Q//73/9UrVq1DOeXLVuWrl1+EhoaqgEDBqhcOfN+E+mI3hoZKhcXF/322za98ebfRdi4uHgNGPh/atqkoapU8Vfv53po+pdzTIzUXOTJOHJlDHkybvG8FVo8b4Xt+87dHjIxGsfk0ih15HLKxbNKPrLf5GjMxbNnHM+eMeTJOJ4/5GfZXpj3zJkzunTpkqG2ly5d0pkzZ7LbVZ7Tpk0bNWjQQJK0bds2k6PJnscee0zS38WWW127dk1r1qxRvXr15O/vb+fIcl+pUqVUtWpVubu7mx2Kw/DwcFenR9pKkr7I5C+6xMREzZ6zUJLUo3veGU5rb+TJOHJlDHmCXTm7yLV+K0nSzQI+CoZnDzAPz1/us8rikF/5RbaLMG3bttUrr7xiqO2rr77qcGvC3EmJEiUkpa6dkiY+Pl7fffedBg8erA4dOuj+++9XvXr19MQTT2jWrFlKSkrKcJ1Tp04pICBAvXr1UmJioj777DN16NBBgYGBatWqlcaOHavY2NhMY7h27ZrGjRunBx98UEFBQXrooYc0ZcoU3bx5847xN2vWTCVLltTKlSuVkpJ+aaaffvpJCQkJtkJNZs6fP68vv/xSISEhat26tQIDA9W4cWP16dNHa9euzfQ1S5YsUUBAgCZNmqTIyEj93//9n1q0aKGaNWtq1qxZtnYXLlzQBx98oM6dO6tu3bqqX7++Hn30UY0bNy7DOj235mLs2LF68MEHFRgYqHbt2umzzz7LNOfDhw9XQECAwsLC0h3v1auXAgICdOrUKW3YsEHPPPOM6tWrp/r166tfv37avz/r3wguXbpUjz/+uOrUqaMmTZrotdde08mTJzVp0iQFBARoyZIlWb7WEdSrG2grWm3a9HumbTZuTD3eqFE9h56CeC/Ik3HkyhjyBHtyCWoii6eXrCnJStqe+d/lBQXPHmAenj/kd/e0RfXdrOmbzfV/86SkpCQdOnRIklS1alXb8cjISI0cOVK7d+9W6dKl1bZtW9WrV08nTpzQuHHjNHjw4CzzcPPmTfXr109ff/21qlatqpYtWyohIUFz5szJ9HWxsbF69tlnNWvWLCUkJKhNmzaqVKmSvvjiC0PFMScnJ3Xp0kXnz5/X1q1b051btmyZ3Nzc1KlTpyxf/+uvv+qjjz7SuXPnVKVKFXXo0EFVq1ZVWFiYBg0apBkzst554cSJE3riiSe0Y8cONWzYUK1atbJ90O7Zs0ddunTRzJkzFR0drRYtWqhZs2ayWCyaNWtWhsKJJMXExKhHjx764YcfVKdOHTVt2lSXL1/WlClTNGrUqDvm4p8WLFig559/XikpKWrdurXKli2rzZs3q1evXjp69GiG9p988omGDx+uP//8U/Xr11fTpk21d+9ePfnkkzp16tRd958XVatWRZKUkJCgkyczH9V29FiEJP21HlR5u8WWl5An48iVMeQJ9pQ2FSn58G5Zo42Nds6vePYA8/D8Ib/L9powdyMuLk4uLnbpKlclJibq5MmTmjZtmiIjI1WrVi21bNnSdt7X11czZ85U06ZN5eT0d30rJiZGoaGhWrdunX788Ud17tw5w7V3796tOnXqaPXq1SpevLgkKSoqSj169NDWrVu1fft2NWrUyNZ+4sSJOnz4sBo0aKDp06erSJEikqTjx4+rV69ehhbV7datm2bOnKlly5apefPmkqSTJ09q586d6tixo7y9vbN8bcOGDbV8+fIMu2SdOHFCvXv31n/+8x917txZZctmXK3/+++/11NPPaXRo0fL1dXVdvzatWt66aWXdPXqVb3wwgsaPHhwuvPHjh3LtIi1Zs0atWnTRosXL7YVc44fP64nnnhCS5Ys0Ysvvqjy5Y1/OM+aNUtfffWVmjZtKim1gPj222/r22+/1YwZM9ItSr1nzx5Nnz5dHh4emjVrlu6//35JqUW1N998M9PpXo7Ix6eYJOnKlegs21y+fMX25+LFvHVCJ3M7rDyHPBlHrowhT7AXSzFfOVf/6++wsII9FUni2QPMxPOH/O6eRsIYcfHiRR09etS2w5CjCQkJUUBAgAICAhQUFKROnTrp+++/17PPPqvZs2fL2dnZ1tbHx0fNmzdPV4CRJC8vL40cOVKStGrVqkz7sVgseu+992wFGEkqWbKknnnmGUnp156Ji4vT4sWLJUlvvfWWrQAjSZUrV9agQYMMvbeAgADVrFlTq1ev1vXr1yX9vUbM7aYiSalblGe2TXmlSpX04osvKikpKctpScWKFdOIESPSFVgkaeHChbp48aJatGih1157LcP5KlWqpBt5lMbDw0PvvfdeujVeKleurMcee0xWq1Xbt2+/7Xv5p169etkKMFLq/5u00UX/HIkzb948Wa1W9ezZ01aAkSRXV1e98cYb8vDwuKu+86q03CYmZj3VLT4+wfZnD4+Cud4OeTKOXBlDnmAvLo3ayeLkLGtstJL/cMz17nISzx5gHp6/3JfioF/5heHhKUuXLtXSpUvTHQsPD1dISEiWr4mPj9f//vc/xcfHZ9hhyFHcukW11WpVVFSU9u/fr4ULUxeDGj58uNzc3NK9Zt++fQoLC9OZM2cUHx8vq9VqG8Fx4sSJTPspV66cqlevnuF4lSqpw/EuXLhgO/bHH3/oxo0bqlq1qmrWrJnhNV27dtW7775r6P1169ZN48aN0y+//KJu3bpp+fLl8vHxUatWre742ps3b2rLli3au3evLl68qJs3b9pyJKWORslMs2bN5OnpmeH4li1bJElPPPGEodjTBAYG2tbouVVmuTPiwQcfzHDMx8dHxYoVy3CtnTt3SlKmU7eKFSumFi1a6Jdffrmr/vOiuLg4SZKbm2uWbQoXLmT7840bcbkeU15EnowjV8aQJ9iL6wPtJEk3d66XkjOup1bQ8OwB5uH5Q35nuAhz+vTpdKMxLBaLrl27Zmh3oOrVq+vVV1/NVoBmy2yL6tjYWL366quaO3euUlJS9Pbbb0uSrl+/rtDQUK1fvz7L62W1yG5m03Yk2YoViYmJtmPnz5+XpCy3WC5atKi8vLwUExOTZRxpunTpogkTJmjZsmWqUKGCTp48qV69emUYhfJPR48e1YsvvphlUUmSbXTNP2UVd9oOWpUrV75j3Le6m9wZkVV8np6eunr1arpjaUWZrF6TVWyOJm04aPHiWU9R8/H5exTXlatZDx/Nz8iTceTKGPIEe3C+r46cSpSRJCWF/WpyNHkDzx5gHp4/5HeGizDt27eXn5+fpNQRIW+88YYqVaqk559/PtP2FotFhQsXlr+/f6ajNRxZkSJFNGzYMG3atEkLFy5UaGiovLy89PHHH2v9+vWqX7++hgwZoho1aqho0aJydXVVYmKigoKCsrzmP6cwGZETK4GXKFFCLVq00MaNG/X5559LSh0dcyevvPKKTpw4oSeffFJPP/20/P395enpKScnJ23evFn9+vXLchHiwoUL33Pct8pO7m6HFdYzCg9PXZC4UKFCqljRT5GRGXepqloldTvzuLg4RUTkjwWJ7xZ5Mo5cGUOeYA8ujf9akDfisFLORZocTd7AsweYh+cv9+WnqT2OyHAR5p9rgEyePFk1atRQcHBwrgSW11WoUEFS6hbVERERCgoK0qpVq+Ts7KwvvvhCXl5e6dpHRubcDzWlS5eW9PfIkX+6du2aoVEwaR577DGtX79emzZtUrVq1RQYGHjb9kePHtX//vc/1a5dW++9916G8xEREYb7vlW5cuV07NgxHT9+3GEKd6VKldKpU6d05syZTKdEnT171oSoct7uPQcUFxcnd3d3tWzZRHPnLs7QplWrJpKk7dv35Kvd0O4GeTKOXBlDnpDrCnvIJSh1HbSb21iQNw3PHmAenj/kd9keQrB27VpNnDgxB0NxLLcWVdIWX42Ojpanp2eGAowkrVy5Msf6rl27ttzd3XXkyBH9+eef99xXu3bt5Ofnp2LFiunJJ5+8Y/vo6NQhf1lNtfn+++/vqv80zZo1k6QMaw/lZQ0aNJAk/fzzzxnORUdHa/PmzfYOKVfcuBGnn35OXWh5YP9/ZTjv5uamkF7dJUkLv8u5e93RkCfjyJUx5Am5zaX+g7K4FZI1IV5JuzaaHU6ewbMHmIfnD/ldru+OlB/Fxsbqww8/lCT5+/vbFoCtXLmyYmJitHz58nTtN27cqK+++irH+nd3d7eNQBo7dmy6dWZOnDihqVOn3tX1ChUqpLVr1yosLEy9e/e+Y/tKlSrJyclJW7du1ZEjR2zHU1JSNHnyZO3ateuu+k/z1FNPqUSJEtq4caM+/fRTJSWlXxjw+PHjOnr0aLaunVueeeYZWSwWzZs3T/v27bMdT0pK0vjx43Xjxg0To8tZY9+bqKSkJDVv3kjvvzfCtu28u3thTf/iI1Wp4q8TJ05q5lfzTY7UXOTJOHJlDHlCbnJtlDoVKWnfFimBxS1vxbMHmIfnD/mZ4elI/7Rs2TKNGDFCL774ooYMGZJlu0mTJmnq1Kn66KOP1Llz5+x2Z5rp06fbRmZYrVZdvHhR+/fvt416GT9+vG0NkUGDBum1117TsGHDNG/ePJUvX16RkZHat2+fBg4cqOnTp+dYXKGhodqxY4e2b9+uDh06qFGjRoqPj9fWrVvVokUL/fnnnzp9OuP8yZzg4+Ojnj17at68eerWrZsaN24sLy8v7d+/X2fOnFHfvn01c+bMu76ul5eXJk2apEGDBmnq1KlatGiR6tWrJ6vVqhMnTig8PFzjxo3LdJtqs9StW1cDBgzQ9OnT9fTTT6tRo0YqXry49uzZo9jYWD322GNavnz5HRc6dgT79h3UkJff1ORJ72vY64PVp/fTiog8pWr3VZa3t5euXLmqJ7v3u+uFkPMb8mQcuTKGPBlXplxpLV871/a9q1vqjzll/Uor7M+/p9rs3LZXL4YMtXt8eY1TmYpyrlhNknRzGwvy/hPPnnE8e8aQJ+N4/nKXVayBaaZsj4RJ23b3TtNXHn/8cVmt1kynaziCzZs327bnXrZsmXbu3KmSJUsqJCREP/zwg+rXr29r26lTJ82aNUsNGzbUsWPHtHbtWlksFn3wwQcaOjRnP0iLFi2quXPnKiQkRK6urlqzZo2OHTumAQMG6NNPP83RvjLz1ltvadSoUapSpYp27typLVu2qGrVqpo7d65at26d7es2aNBAK1asUK9eveTu7q5169Zp69atkqS+ffuqSZMmOfQOcs7QoUM1btw4VatWTTt27NBvv/2mwMBAfffdd7biS7FixcwNMod8OeMbtW7zuJYt/0lWq1VBgTV09WqMPv9iturWb689e/4wO8Q8gTwZR66MIU/GODs7qXiJYravIkWL/HXcOd3xol5FTI40b3Bp3EGSlHLxrFKOcg9lhmfPGJ49Y8jT3eH5Q35lsWZzJaN27dopISHB0JoXLVq0kLu7u379ld+yoOBITk5Wly5ddOzYMW3evFm+vr73dD0XN78cigwAcl4V78zXCUNGu3qVMzsEh1Bs8k6zQ3AYPH/IScei88fGEvaQlJg7Mw9y2w+lnzY7hGzpfD5/TD/L9kiYqKioLBdm/acyZcooKioqu10BedqxY8d0/fr1dMcSEhI0fvx4HT16VM2bN7/nAgwAAAAA5IQUi2N+5RfZXhOmcOHChrdBvnbtmpydnbPbFZCnzZ8/XwsXLlStWrVUpkwZxcTE6M8//9TFixdVokQJvfXWW2aHCAAAAADIA7JdhKlUqZL279+vkydPqkKFClm2i4yMVEREhGrVqpXdroA8rV27djp37pz279+vgwcPymq1qkyZMnrkkUc0YMAAlS5d2uwQAQAAAAB5QLaLMK1bt9a+ffv01ltvafr06XJzc8vQJjExUaNGjZLFYlHbtm3vKVAgr2rSpEmeXDAYAAAAAJC3ZLsI06tXL82bN09hYWEKDg5W7969Va9ePRUtWlTXrl3T7t27NWvWLB09etS2mxAAAAAAADBPCltUmyrbRZiiRYvq888/1/PPP6+jR49q1KhRGdpYrVb5+vpq2rRp8vLyuqdAAQAAAAAAHFm2d0eSpMDAQK1YsUK9e/dW2bJlZbVabV/lypVT3759tWLFCgUGBuZUvAAAAAAAAA4p2yNh0pQoUULDhw/X8OHDdf36dcXGxqpIkSLy9PTMifgAAAAAAADyhXsaCfNPnp6eKl26dIYCzN69ezOdrgQAAAAAAOzH6qBf+cU9j4TJyuXLl7Vs2TItWbJER48elSS9++67udUdAAAAAABAnpajRZiUlBStX79eixcv1oYNG5ScnCyrNbVmVadOnZzsCgAAAAAAwKHkSBHm6NGjWrJkiZYvX65Lly5JSt0ZqUSJEurataueeOIJ3XfffTnRFQAAAAAAyKYUswMo4LJdhLl+/bp+/PFHLV68WHv37pWUWnhxcXFRUlKSfHx8tHHjRjk7O+dYsAAAAAAAAI7qrosw27dv1+LFi7Vq1SrFx8fbphvVrFlTwcHBevTRR9WsWTM5OTlRgAEAAAAAAPiL4SLM559/rqVLlyoyMtJWeClRooS6dOmi4OBgBQQE5FqQAAAAAAAAjs5wEWbixImyWCxydXVVmzZt1K1bN7Vq1YrRLgAAAAAAOIgUi8XsEAo0p7t9gbOzswoXLqzChQtTgAEAAAAAADDIcBHmxRdfVNmyZRUXF6cVK1aob9++atOmjSZOnKgTJ07kYogAAAAAAACOz3AR5uWXX9aaNWs0c+ZMPfLII3Jzc9PZs2f1xRdf6JFHHlHPnj21YMECXbt2LTfjBQAAAAAA2WR10K/84q52R7JYLGrWrJmaNWummJgYrVy5UosXL9bBgwe1Z88e7d27V++9954kKSUlRSkpKXJyuusZTwAAAAAAAPlOtiskXl5eevbZZ7VkyRItX75cvXr1UrFixZSYmChJunLlilq0aKHx48crPDw8xwIGAAAAAABwRDkyTCUgIEBvvvmmNm7cqE8//VStWrWSk5OTLl++rK+//lqPPfaYnnrqqZzoCgAAAAAAwCHd1XSkO3F1dVXHjh3VsWNHnT9/XkuXLtXSpUsVERGhAwcO5GRXAAAAAADgLqWYHUABl6NFmFuVLl1aL7zwgl544QVt375dS5Ysya2uAAAAAAAA8rxcK8Lc6oEHHtADDzxgj64AAAAAAADyJLYuAgAAAAAAsAO7jIQBAAAAAADmS7GYHUHBxkgYAAAAAAAAO6AIAwAAAAAAYAdMRwIAAAAAoIBIEfORzMRIGAAAAAAAADugCAMAAAAAAAoUq9WqkJAQBQQEKCAgQEePHrVLvxRhAAAAAABAgbJgwQKFhYXJYrHv9CyKMAAAAAAAFBBWB/3KSefOndOECRPUsmVLlStXLoevfnsUYQAAAAAAQIExatQopaSk6J133rF73xRhAAAAAABAgbBs2TJt2LBBr7zyivz8/OzeP1tUAwAAAABQQKQU4B2qL168qHHjxikoKEghISGmxMBIGAAAAAAAkO+9++67io2N1dixY+XkZE45hJEwAAAAAAAgT2vXrt1tz69Zs+a251etWqVVq1Zp4MCBqlGjRk6GdlcowgBAAfVImXpmh+AQfjq32+wQHMKx6LNmh+Awik0mV0Zcm/a02SE4jKKD5psdAgDkaVevXtW7774rf39/DR482NRYKMIAAAAAAFBApJgdQDbdaaTL7YwbN04XL17URx99pEKFCuVgVHePIgwAAAAAAMi31qxZo0KFCmnq1KmaOnVqunNRUVGSpH//+99yd3fXs88+q4cffjjXYqEIAwAAAAAA8rWEhARt27Yty/P79++XdOe1Z+4VRRgAAAAAAJBv7dixI8tzbdu21enTp/Xjjz+qatWquR4LRRgAAAAAAAoIq9kBFHDmbIwNAAAAAABQwFCEAQAAAAAAsAOmIwEAAAAAUECkWMyOIG9Zu3atXftjJAwAAAAAAIAdUIQBAAAAAACwA4owAAAAAAAAdsCaMAAAAAAAFBApZgdQwDESBgAAAAAAwA4owgAAAAAAANgBRRgAAAAAAAA7YE0YAAAAAAAKCNaEMRcjYQAAAAAAAOyAIgwAAAAAAIAdMB0JAAAAAIACwmoxO4KCjZEwAAAAAAAAdkARBgAAAAAAwA4owgAAAAAAANgBa8IAAAAAAFBAsEW1uRgJAwAAAAAAYAcUYQAAAAAAAOyA6UgAAAAAABQQTEcyFyNhAAAAAAAA7IAiDAAAAAAAgB1QhAEAAAAAALAD1oQBAAAAAKCAsJodQAHHSBgAAAAAAAA7oAgDAAAAAABgBxRhAAAAAAAA7IA1YQAAAAAAKCBSLGZHULAxEgbAXWnSuIEWLpiu0yf3KDbmqP53eKsmffa+ypUrY3ZoeQp5ujP/AH91H9JD737zrr7eMVtLjizVtwcW6JOVn6jnKz3l6e1pdoh5CveUceTKGPJkTEJSsuZsP6qQbzarxac/qeFH3+vBz35Wv/lbtGhPhJJTWOIyDfeUMeTJOHKF/MhitVr5m+MetW3bVqdPn053zGKxyNvbWwEBAerevbseffRRk6K7OwEBAfLz89PatWtztZ+wsDCFhIQoODhY48ePtx1fsmSJRowYocGDB2vIkCEZjt/KyclJ3t7eqlmzpp566il16tTJlPdir35c3Pxy9fpG9O3ztKZN/UDOzs6KirqkiMhTqnZfZXl7e+ny5Stq/1B37dt30OwwTecoeXqkTD3T+i7jX0Zfbpph+/7SuUu6fP6SipfykW9Z39Rj5y9p9L9GKeJwhFlhSpJ+Orfb1P4lx7mn8gJyZYwj5OnatKdN7V+SrsYlauC3WxUeFSNJKl20sEp4FNL52Hhdup4gSWpQoYSmPNlYhV2dTYuz6KD5pvWdxhHuqbyAPBnnCLlKSjx950Z50KcV/2V2CNnySuQ3ZoeQIxgJk4NatGih4OBgBQcHq1OnTqpQoYLCwsI0dOhQvfPOO2aHly/4+vracvzII4+oZMmS2rJli1577TWNHDnyjq8/deqUAgIC1KtXLztEm78EBtbQ1Cnj5ezsrA8nTFYF//pq0rSTylesp7nzFsvHp7gWLZwhNzc3s0M1FXkyxiKLrl68qrmfzFX/Fv3Uu9FzCu0Sqj6Ne2vY46/r/MnzKlG6hN6cMVIubgV75iz3lHHkyhjyZNynGw4pPCpGXoVdNaNnU60a1EHznmulNS89pE+6NZSbs5N2nrykWduOmB2qqbinjCFPxpGr3JXioF/5BUWYHDRw4ECNHz9e48eP1yeffKJFixbp888/l8Vi0bx583TwIFXte1WlSpV0OV65cqXGjBkjSfruu++0adMmW9sff/xRs2bNMinS/OetkaFycXHRb79t0xtvjlNSUpIkKS4uXgMG/p+OHYtQlSr+6v1cD5MjNRd5MubiuYvq37yfvp04X+cjz6c7d2jHIX38ykeSpLL+ZVX/wfpmhJhncE8ZR66MIU/GrT9yTpI0oGk1Nazom+5c2+pl9XSDypKkjUfOZ3htQcI9ZQx5Mo5cIT+jCJPL2rRpowYNGkiStm3bZnI0+VP37t3VqFEjSdIvv/xiO161alVVrFjRrLDyFQ8Pd3V6pK0k6Ysv52Q4n5iYqNlzFkqSenTvatfY8hLyZNzNhJtKiEvI8vyhHYcUGx0rSapwXwV7hZXncE8ZR66MIU93J/5msiTJv3iRTM9XLJ66dlVSAV4XhnvKGPJkHLlCflewx3jbSYkSJSRJycnJtmPx8fFauXKlNmzYoMOHD+vChQtycnJSlSpV1KVLF/3rX/+Si0vG/z379u3Tf//7Xx04cEAXLlyQh4eHSpUqpfr166tPnz6qVKlSuvbnz5/XjBkztHHjRp05c0aFCxdWYGCg+vTpo1atWmUZc1JSkmbMmKGlS5fqzJkz8vb2Vtu2bfXKK6/Y3k+a6OhorVy5UuvXr9exY8cUFRWlQoUKqVq1anrqqaf0+OOP30P2jKldu7a2bdumM2fO2I79c62WSZMmafLkyZJSC2IBAQG2to0aNdKcOX9/yCckJGj+/Pn66aefdPToUSUmJqpUqVKqV6+eevbsaSus3SolJUWzZ8/Wd999p8jISBUtWlStWrXS//3f/8nX1zdDe0dSr26g3N3dJUmbNv2eaZuNG1OPN2pUTxaLRQVxuSnylHOcnJ3k4pr6GRh/I+tiTX7HPWUcuTKGPN2dmqW9tevUZe06dUmt7iud4fyuk5ckSUHlitk5sryDe8oY8mQcuUJ+RxEmlyUlJenQoUOSUkdmpImMjNTIkSPl6+urypUrKzAwUNHR0dq7d6/GjRun33//XdOmTZPF8vf+YRs2bNCgQYOUnJyswMBA1alTR3FxcTp9+rS+/fZb1a9fP10RZt++fRowYICuXr2qihUr6sEHH1R0dLR27typLVu2aMSIEerdu3eGmK1Wq1555RVt3LhRjRs3Vs2aNbVjxw4tWLBAmzdv1vz581W69N8/iOzatUtjxoxR2bJl5e/vr7p16+rixYvavXu3du3apf3792v06NE5n9xbxMam/sbc1dU1yzY1a9ZUx44dtWrVKvn6+qply5a2c1WqVLH9+dKlS+rXr58OHTokDw8PNWjQQEWLFtWZM2f0888/y9nZOdMizOuvv65ff/1VDzzwgKpUqaLdu3dr6dKl2r9/v5YuXerQc1arVUvNT0JCgk6ePJNpm6PHUhdPdXd3l79/eZ04cdJu8eUV5CnnNOnYVIU9CkuSDvy+3+RozMM9ZRy5MoY83Z3BLWvohYW/a872Y/Is5KLOtcqrhGchnb8Wr0V7TuiHg6dVpmhhDWxW3exQTcM9ZQx5Mo5c5b78tL6KI6IIk0sSExN18uRJTZs2TZGRkapVq1a6f/T7+vpq5syZatq0qZyc/p4VFhMTo9DQUK1bt04//vijOnfubDs3Y8YMJScna+LEiXrkkUfS9XfyZPoPntjYWL300kuKjo7WO++8ox49etgKOseOHVP//v314Ycfqnnz5qpWrVq61545c0aJiYlatmyZrXCUkJCg0NBQrV69WmPGjLGNKJFSi0vz589X/frp122IiorSgAEDNG/ePD322GOqW7duNjJ5Z/Hx8dqyZYuk1EJLVtq3b68aNWpo1apVtrVlMjNs2DAdOnRILVq00Mcff6xixYrZzl2+fFnHjh3L8JrTp0/L2dlZP/30k/z8Uncxio2NVe/evbV//3798MMPCg4Ovod3aS4fn2KSpCtXorNsc/nyFdufixfz1gkVvL8MyVPO8PTyVL+R/SRJYb+Gmb47kpm4p4wjV8aQp7tTv0IJ/feZZvr8t3BN3XRYUzYdtp1zcbLo2QaV1bdJNZXwLGRilObinjKGPBlHrpDfsSZMDgoJCVFAQIACAgIUFBSkTp066fvvv9ezzz6r2bNny9n5760LfXx81Lx583QFGEny8vKy7fKzatWqdOcuX74sSWrevHmGvitUqKAKFf5eN2HJkiW6cOGCunfvrp49e6YbUVOlShUNHz5cycnJWrhwYabv5cUXX0w3cqdQoUIaNWqU3NzctHr16nRbclesWDFDAUaSSpYsqddffz3T95ITEhMTdejQIb300ks6ffq0ChcurCeffPKerrl//35t3rxZPj4++vTTT9MVYKTU/28NGzbM9LUjR460FWAkqUiRIurXL/Ufko6+HlDakNDExJtZtomP/3vKiIeHe67HlBeRp3vn5Oyk1ycPU6nypXT14lVNfWOK2SGZinvKOHJlDHm6e2ei43QpNl5WST4ebqpZ2ls+Hm5KSrHql8NnbYv3FlTcU8aQJ+PIFfI7RsLkoBYtWqhkyZKSUqf0REVFaf/+/bZCx/DhwzNMSdm3b5/CwsJ05swZxcfHy2q12uY0njhxIl3b2rVr68iRIxo2bJgGDRqkoKCgDEWcNJs3b5YkdejQIdPzaYWEffv2ZXq+a9eMi1yVLl1ajRs31qZNm7Rz5850BQer1art27drx44dunDhghISEmS1WnX9+vVM30t2/XMtlzTFihXThAkT0sWUHWkjajp27KgiRTJfhC8zLi4umRbH0qY5Xbhw4Z7iMltcXJwkyc0t6+lehQv//VvAGzficj2mvIg83RuLxaLXPglVg9YNdOPaDY3p+64un79sdlim4p4yjlwZQ57uzpztR/XxuoMq7u6mSU80Usuqf0/H3njkvN76cbfGrNqnxKQU205JBQ33lDHkyThylftYQcdcFGFy0MCBA9W4ceN0x2JjY/Xqq69q7ty5SklJ0dtvvy1Jun79ukJDQ7V+/fosr5e2zkmaoUOH6siRI1q3bp3WrVsnT09P1a1bVy1atFBwcLCKFy9ua3vq1ClJUv/+/W8b85UrVzIc8/LyUtGiRTNtn1bkOHfu79/6REVF6aWXXtLevXsNv5fsunUtFycnJ3l5ealmzZpq167dXRVNspK2sO8/Fzi+k5IlS2a6kLKnZ+quCYmJifccm5nShoMWL+6dZRsfn7/vvytXsx4+mp+Rp3vz8oSX1Tq4teKux+mdPu8ofE+42SGZjnvKOHJlDHky7vKNBE3ZnDr96P/a1k5XgJGkVveV1v+1ra23ftyjqZsP64n7K8rNxTmzS+Vr3FPGkCfjyBXyO4owuaxIkSIaNmyYNm3apIULFyo0NFReXl76+OOPtX79etWvX19DhgxRjRo1VLRoUbm6uioxMVFBQUEZrlW6dGktWrRI27Zt04YNG7Rz5079/vvv+u233zRt2jT997//VZ06dSSl7tQjSe3atZOXl1eW8d1auMmukSNHau/evWrbtq369++vqlWrqmjRonJ2dtbx48f18MMP33MfaW63louZshqRlF+Ehx+VlDotrWJFP0VGns7QpmoVf0mpv72IiDhl1/jyCvKUfYM/GKL23Tso/ka83u3zrg5u+8PskPIE7injyJUx5Mm4g+eu2raoblq5ZKZtmlcuJUm6lnBTkVeu676SWf/MlV9xTxlDnowjV8jvKMLYQdpaLcnJyYqIiFBQUJBWrVolZ2dnffHFFxmKJJGRkVley8nJSU2aNFGTJk0kpY5k+eijj7Ro0SKNHTvWNvWpbNmyOn78uHr37q1GjRrdVbwxMTGKjY3NdGRJ2lowabsj3bhxQxs3blSJEiU0efLkdOve3Om95EXlypWTlHPTp/KL3XsOKC4uTu7u7mrZsonmzl2coU2rVqn35PbtewrsNoHkKXsGjR2kjk93VEJcvMb0G1Ogd0P6J+4p48iVMeTJuOsJSXfVPiGpYO43wj1lDHkyjlwhv8vfv77PI24tRHh4eEiSoqOj5enpmekolZUrVxq+dvHixRUaGipJCg//e+h+2vokv/76a7ZiziyGqKgohYWFyWKx2LZovnbtmlJSUlSqVKkMBRhJWrFiRbb6zy1pW1gnJWX+g1WzZs0kSb/88ottPRukzrX96ee1kqSB/f+V4bybm5tCenWXJC38zvj9m9+Qp7s38J2B6hTSWQnxCRrbf6z2/Zb1tMaCiHvKOHJlDHkyzt/n719GbT0elWmbzcdT13xztlhUobinXeLKa7injCFPxpGr3Jdiccyv/IIiTC6LjY3Vhx9+KEny9/e3LdRauXJlxcTEaPny5enab9y4UV999VWm1/rqq690/vz5DMfT1pUpW7as7VjPnj1VsmRJzZ07V19//XWGooPVatWOHTu0c+fOTPuaMmWKjh8/bvs+ISFBY8aMUWJiotq0aaPy5ctLSl2jxcvLS+Hh4QoLC0t3jcWLF+uHH37I9Ppm8fHxkaurqyIjIzMtxAQFBalFixa6dOmSXnvtNUVHp59jevnyZe3YscNe4eYpY9+bqKSkJDVv3kjvvzfCtgaOu3thTf/iI1Wp4q8TJ05q5lfzTY7UXOTJuN5v9FGXPl2VEJ+g9/qN1Z5Ne8wOKU/injKOXBlDnowJKOWl6qVSf1n20do/tOlo+p/BNh45r4/Xpk6dbFOtjLwKZ72IaH7HPWUMeTKOXCE/s1gZv3XP2rZtq9OnT2fYHenixYvav3+/bdTLjBkzbFs5//jjj3rttdckSXXr1lX58uUVGRmpffv2aeDAgZo+fbr8/Py0du1aWz8NGzZUbGysqlWrpsqVK8vZ2VkRERH6448/5OLiok8//VTt27e3td+/f79eeOEFXbx4UaVKlVL16tVVrFgxXb16VQcPHtTly5c1YsQI9e7d2/aagIAAlStXTjVr1tSmTZvUpEkTeXp6aufOnbpw4YLKlSun+fPnq0yZMrbXzJgxQxMmTJCTk5MeeOABlSxZUuHh4QoPD7e9l0aNGmnOnDm214SFhSkkJETBwcHp1nhZsmSJRowYocGDB2vIkCEZjv/zOrcTEBCQIYdS6vbba9asUdWqVVW7dm25ubmpcuXKtkWML168qD59+ig8PFyenp5q0KCBihQpojNnzujgwYPq3Llzupiz6kdKXSC5Xbt2dxV3Vlzc7m3np5wwoP+/NHnS+3J2dlZU1CVFRJ5Stfsqy9vbS1euXFWHjt21Zw9reThKnh4pU8+0vgPq19BHyz6SJF2JuqKzJ85k2XbH2h36bsp39gotg5/O7Tat7zSOck/lBeTKGEfI07VpT5vavyQdvXhNzy/YqovXU7fD9fFwU+mi7jp/LU6Xb6Quul+lRBF92bOZSngWut2lclXRQeb/Q9QR7qm8gDwZ5wi5SkrMuF6NI/jQP+MII0cwLOIbs0PIEYyEyUGbN2/W0qVLtXTpUi1btkw7d+5UyZIlFRISoh9++MFWgJGkTp06adasWWrYsKGOHTumtWvXymKx6IMPPtDQoUMzvf5bb72lrl27Kjk5WVu2bNHatWt1/fp1BQcHa/HixekKMFLqqI6VK1dq0KBB8vHx0a5du7R69WqdOHFCtWvX1ujRozPditpisejTTz/V888/r8jISK1evVpWq1Xdu3fXwoUL0xVgpNQdmP7zn/+odu3aOnDggDZs2KBixYpp+vTp6tGjRw5kNmeNHTtWjz/+uK5du6YffvhBixYt0oYNG2znfX19tXDhQv3f//2fKlWqpB07dmjt2rW6fPmyOnXqpJ49e5oYvbm+nPGNWrd5XMuW/ySr1aqgwBq6ejVGn38xW3Xrtzf9L8K8gjzdmest204WL1lctR6oneWXXxXzC5Bm454yjlwZQ56MqepbVIv6ttbzzaqrVmlvJSalKPxCjG4mW1XXr7iGtqmleSGtTC3A5BXcU8aQJ+PIFfIrRsIADiIvjIRB/mLmSBhHkhdGwgAFUV4YCeMo8sJIGKAgctSRMOMddCTMcEbCAAAAAAAAwCiKMAAAAAAAAHbgYnYAAAAAAADAPliPxFyMhAEAAAAAALADijAAAAAAAAB2QBEGAAAAAADADlgTBgAAAACAAiKFVWFMxUgYAAAAAAAAO6AIAwAAAAAAYAdMRwIAAAAAoIBIMTuAAo6RMAAAAAAAAHZAEQYAAAAAAMAOKMIAAAAAAADYAWvCAAAAAABQQLBBtbkYCQMAAAAAAGAHFGEAAAAAAADsgCIMAAAAAACAHbAmDAAAAAAABUSK2QEUcIyEAQAAAAAAsAOKMAAAAAAAAHbAdCQAAAAAAAqIFIvZERRsjIQBAAAAAACwA4owAAAAAAAAdkARBgAAAAAAwA5YEwYAAAAAgAIiRVazQyjQGAkDAAAAAABgBxRhAAAAAAAA7IAiDAAAAAAAgB2wJgwAAAAAAAUEK8KYi5EwAAAAAAAAdkARBgAAAAAAwA6YjgQAAAAAQAGRYnYABRwjYQAAAAAAAOyAIgwAAAAAAIAdUIQBAAAAAACwA9aEAQAAAACggEhhk2pTMRIGAAAAAADADijCAAAAAAAA2AHTkQAAAAAAKCCYjGQuijAAAOCeVfEua3YIyGe6v/On2SE4jJkl25gdgkPoG7XO7BAAgOlIAAAAAAAA9kARBgAAAAAAwA6YjgQAAAAAQAGRYnYABRwjYQAAAAAAAOyAIgwAAAAAAIAdUIQBAAAAAACwA9aEAQAAAACggEiR1ewQCjRGwgAAAAAAANgBRRgAAAAAAAA7YDoSAAAAAAAFBJORzMVIGAAAAAAAADugCAMAAAAAAGAHFGEAAAAAAADsgDVhAAAAAAAoIFLMDqCAYyQMAAAAAACAHVCEAQAAAAAAsAOmIwEAAAAAUEBY2aTaVIyEAQAAAAAAsAOKMAAAAAAAAHZAEQYAAAAAAMAOWBMGAAAAAIACgi2qzcVIGAAAAAAAADugCAMAAAAAAGAHFGEAAAAAAADsgDVhAAAAAAAoIFJkNTuEAo2RMAAAAAAAAHZAEQYAAAAAAMAOmI4EAAAAAEABwWQkczESBgAAAAAAwA4owgAAAAAAANgBRRgAAAAAAAA7YE0YAAAAAAAKCLaoNhcjYQAAAAAAAOyAIgwAAAAAAIAdMB0JAAAAAIACIsXsAAo4ijD5QNu2bXX69Ol0xywWi7y9vRUQEKDu3bvr0UcftXtcAQEB8vPz09q1a+3et71jCAsLU0hIiIKDgzV+/Hjb8SVLlmjEiBEaPHiwhgwZkqsx2EuTxg0UGvq8mjdrJG/vojp79oJ+XrVO48Z/pjNnzpkdXp5Bnu7MP8BfjR9qosDGteVfo5KKFiuqxPhEnTl+WttWb9PKWSt1Pfq62WHmGdxTd+ZbqoSatWqkwLo1FVS3lmoGBsjD012nIs+obYOuZoeXZ5An4/icyh6Pcj7quvYDuRV1lyQtbvyqrp+6aHJUeQef58aRK+RHTEfKR1q0aKHg4GAFBwerU6dOqlChgsLCwjR06FC98847ZoeX45YsWaKAgABNmjTJ7FAKjL59ntaG9Uv1eHBnOTk56cAfh+XjU0yDXnhOe3atVp06tcwOMU8gT3dWxr+MJv86Rb1e76V6rerLmmLViUPHFXc9TtXur65nh/5LU1ZPlX+Av9mh5gncU8Z0Dn5IH00bo97PP6MGjevKw9Pd7JDyJPJkDJ9T2df0w/62AgzS4/PcOHKF/IoiTD4ycOBAjR8/XuPHj9cnn3yiRYsW6fPPP5fFYtG8efN08OBBs0OEAwsMrKGpU8bL2dlZH06YrAr+9dWkaSeVr1hPc+ctlo9PcS1aOENubm5mh2oq8mSMRRZdvXhVcz+Zq/4t+ql3o+cU2iVUfRr31rDHX9f5k+dVonQJvTljpFzcCvagTe4p42KvXdeWDWGa/tksDen7b4176z9mh5QnkSdj+JzKnqrdW8mvTR1F/Ljd7FDyHD7PjSNXyM8owuRzbdq0UYMGDSRJ27ZtMzkaOLK3RobKxcVFv/22TW+8OU5JSUmSpLi4eA0Y+H86dixCVar4q/dzPUyO1FzkyZiL5y6qf/N++nbifJ2PPJ/u3KEdh/TxKx9Jksr6l1X9B+ubEWKewT1l3OJ5K9T7yZf00ZjJWrVyjS6cizI7pDyJPBnD59Tdcy9VTA1HP6trkRe0Z8Iis8PJc/g8N45c5S6rg/6XX1CEKQBKlCghSUpOTrYdi4+P13fffafBgwerQ4cOuv/++1WvXj098cQTmjVrlu2D7p/27dunV155Re3atVNQUJAaN26sLl26aPTo0Tpx4oSheM6dO6fOnTsrICBAn376abpzW7Zs0QsvvKCmTZsqMDBQrVu31qhRo3T+fPoffnr16qURI0ZIkiZPnqyAgADbV2bTk5KSkvT555+rY8eOCgoKUosWLTRq1ChdunQpQ9vo6Gh988036t+/v9q2baugoCA1bNhQTz/9tJYsWWLoPeY3Hh7u6vRIW0nSF1/OyXA+MTFRs+cslCT16F5w1xMgT8bdTLiphLiELM8f2nFIsdGxkqQK91WwV1h5DvcUYB4+p+5e43G9VaiYp37/90wl3cg6dwURn+fGkSvkd4ydzOeSkpJ06NAhSVLVqlVtxyMjIzVy5Ej5+vqqcuXKCgwMVHR0tPbu3atx48bp999/17Rp02SxWGyv2bBhgwYNGqTk5GQFBgaqTp06iouL0+nTp/Xtt9+qfv36qlSp0m3jOXLkiPr166cLFy5o9OjReuaZZ2znJk6cqGnTpsnFxUVBQUEqVaqUjh8/rgULFmjNmjWaM2eOqlSpIklq2bKlkpKStGvXLtWoUUM1a9a0XefWP0uS1WrVK6+8oo0bN6px48aqWbOmduzYoQULFmjz5s2aP3++SpcubWu/a9cujRkzRmXLlpW/v7/q1q2rixcvavfu3dq1a5f279+v0aNH3/3/DAdWr26g3N1T53Zv2vR7pm02bkw93qhRPVksFlmt+adabRR5yjlOzk5ycU39Kyq+AP8gzz0F5F18TqVX6bGmqvhwQx1dvFlnNx6QZ3lfs0PKU/g8N45cIb+jCJNPJSYm6uTJk5o2bZoiIyNVq1YttWzZ0nbe19dXM2fOVNOmTeXk9PeAqJiYGIWGhmrdunX68ccf1blzZ9u5GTNmKDk5WRMnTtQjjzySrr+TJ0/eMaadO3dq0KBBiouL08SJE9WxY0fbuV9++UXTpk2Tv7+/Jk+erOrVq9vOffvttxo9erRGjBihBQsWSEpd/8bX11e7du1S+/btb7vz0JkzZ5SYmKhly5bZClEJCQkKDQ3V6tWrNWbMGE2ePNnWvmrVqpo/f77q108/tDgqKkoDBgzQvHnz9Nhjj6lu3bp3fM/5RbVqqcWvhIQEnTx5JtM2R49FSJLc3d3l719eJ07c+Z7Ib8hTzmnSsakKexSWJB34fb/J0ZiHewrIu/ic+lshn6JqNKaX4i/FaMfob8wOJ0/i89w4coX8julI+UhISIhtSk5QUJA6deqk77//Xs8++6xmz54tZ2dnW1sfHx81b948XQFGkry8vDRy5EhJ0qpVq9Kdu3z5siSpefPmGfquUKGCKlTIeiju6tWr1bdvX6WkpOi///1vugKMJE2bNk2S9MEHH6QrwEhSz5491aZNG+3Zs8c2quduvfjii+lGAhUqVEijRo2Sm5ubVq9enW6L74oVK2YowEhSyZIl9frrr0vKmJv8zsenmCTpypXoLNtcvnzF9ufixbxzO6Q8iTzlDE8vT/Ub2U+SFPZrmCIOR5gckXm4p4C8ic+p9Bq/95wKl/DS9tHfKOFKrNnh5El8nhtHrnJfioN+5ReMhMlHWrRooZIlS0pKnYITFRWl/fv3a+HC1DmTw4cPz7CC+L59+xQWFqYzZ84oPj5eVqvVNpzvn2u81K5dW0eOHNGwYcM0aNAgBQUFZSjiZGbhwoV6++235ePjoxkzZqhGjRrpzl+6dEkHDx5UyZIlVa9evUyv8cADD2jdunXau3dvhulGRnTtmnG+aOnSpdW4cWNt2rRJO3fulJ+fn+2c1WrV9u3btWPHDl24cEEJCQmyWq26fv26pIy5ye/ShoQmJt7Msk18/N9DsT08Cua2lOTp3jk5O+n1ycNUqnwpXb14VVPfmGJ2SKbingLyHj6n0qvQsYEqdW2i02v36vjSLWaHk2fxeW4cuUJ+RxEmHxk4cKAaN26c7lhsbKxeffVVzZ07VykpKXr77bclSdevX1doaKjWr1+f5fViY9P/JmPo0KE6cuSI1q1bp3Xr1snT01N169ZVixYtFBwcrOLFi2e4xrlz5/TWW2/JxcVFX3/9dbrRKGnSRqFERUUpICDgtu/xypUrtz2fGS8vLxUtWjTTc2mFl3PnztmORUVF6aWXXtLevXuzvOY/c5PfxcXFSZLc3FyzbFO4cCHbn2/ciMv1mPIi8nRvLBaLXvskVA1aN9CNazc0pu+7unz+stlhmYp7Cshb+JxKz83bQ43H9dHN6/H6ffhMs8PJ0/g8N45cIb+jCJPPFSlSRMOGDdOmTZu0cOFChYaGysvLSx9//LHWr1+v+vXra8iQIapRo4aKFi0qV1dXJSYmKigoKMO1SpcurUWLFmnbtm3asGGDdu7cqd9//12//fabpk2bpv/+97+qU6dOutf4+PioevXq+u233/T+++9r6tSpKlSoULo2KSmpg8uKFSumNm3a3Pb9VKtW7R4zcmcjR47U3r171bZtW/Xv319Vq1ZV0aJF5ezsrOPHj+vhhx/O9RjymrThoMWLZz3c08fn7yLclatZDx/Nz8jTvXl5wstqHdxacdfj9E6fdxS+J9zskEzHPQXkLXxOpddg5DPyKF1M20fP0fXTGXecxN/4PDeOXOW+/LTdsyOiCFMApK3VkpycrIiICAUFBWnVqlVydnbWF198IS8vr3TtIyMjs7yWk5OTmjRpoiZNmkhKHZny0UcfadGiRRo7dqxt6lMaNzc3TZs2TS+99JI2bdqkQYMGaerUqSpcuLCtTdmyZSVJnp6eGj9+fI6851vFxMQoNjZWRYoUyXAubRRO2u5IN27c0MaNG1WiRAlNnjw53To60u1zk5+Fhx+VlLqWTsWKfoqMPJ2hTdUq/pJSf3sREXHKrvHlFeQp+wZ/METtu3dQ/I14vdvnXR3c9ofZIeUJ3FNA3sHnVEYl7q8sSQoc0lWBL3VJd87i/PeU9c4/vitrcopOrAjT9tEZtxwuCPg8N45cIb9jYd4C4NbCgYeHhyQpOjpanp6eGQowkrRy5UrD1y5evLhCQ0MlSeHhmf82qFChQpo6daoefPBB/fbbb3rhhRcUHx9vO1+6dGndd999On369F0tvOvqmjpEMSkp6Y5tM3tPUVFRCgsLk8ViUYMGDSRJ165dU0pKikqVKpWhACNJK1asMBxffrJ7zwHb0NCWLZtk2qZVq9Tj27fvKbDbBJKn7Bk0dpA6Pt1RCXHxGtNvTIHfZeRW3FNA3sDn1O25+3rLvVSxdF+FS/z9M2bhEl5yL1VMrl4Fd+0OPs+NI1fI7yjC5HOxsbH68MMPJUn+/v6qUiV1y7fKlSsrJiZGy5cvT9d+48aN+uqrrzK91ldffaXz589nOJ62rkzaiJbMuLm5afLkyWrTpo22bt2qgQMH2j5cJWnw4MGSpFdffTXTtVhiY2P13XffpSvelCpVSpJ07NixLPtNM2XKFB0/ftz2fUJCgsaMGaPExES1adNG5cuXl5S6dbeXl5fCw8MVFhaW7hqLFy/WDz/8cMe+8qMbN+L0089rJUkD+/8rw3k3NzeF9OouSVr4nfEiXn5Dnu7ewHcGqlNIZyXEJ2hs/7Ha91vWazEVRNxTgPn4nMra9w+9qdl+/8r0a3HjV23tFjd+VbP9/qUtr003L1iT8XluHLlCfsd0pHxk+vTpWrp0qaTU3X0uXryo/fv320a9jB8/XhaLRZI0aNAgvfbaaxo2bJjmzZun8uXLKzIyUvv27dPAgQM1fXrGvySnTJmiDz74QNWqVVPlypXl7OysiIgI/fHHH3JxcdHQoUNvG5+bm5smTZqkV199VatXr9bAgQP1xRdfyMPDQ4888oiOHTumSZMmqXv37qpRo4b8/f3l5ORkGyFz8+ZNdezY0TaVqV69evL19dUvv/yiZ599VhUrVpSTk5Patm2rdu3a2fotV66catasqa5du6pJkyby9PTUzp07deHCBZUrV06jR4+2tXV2dtbzzz+vCRMmqHfv3nrggQdUsmRJhYeHKzw8PMvcFARj35uorl06qnnzRnr/vREaNXqCkpKS5O5eWNOmfqgqVfx14sRJzfxqvtmhmoo8Gdf7jT7q0qerEuIT9F6/sdqzaY/ZIeVJ3FOAeficQk7i89w4cpW78tN2z47IYmX8lsNr27atbW2TW7m7u8vPz0/NmjVT3759M4xU2bp1qyZPnqzw8HAlJSWpWrVqeuaZZ9StWzcFBATIz89Pa9eutbVfvny5fvvtNx04cEAXLlzQzZs3VaZMGdWrV0+9e/fOsPV0ZteQpJs3byo0NFS//PKLGjZsqOnTp8vT01OStHv3bn3zzTfasWOHLl26JA8PD5UuXVp16tTRQw89pFatWtkKSZJ08OBBffLJJ9q3b59iYmJktVo1ePBgDRkyJF0Mq1at0hdffKGVK1fq9OnTtkWAX375Zdu23rf68ccfNXPmTB07dkxOTk6qWbOmbZHedu3aqVGjRpoz5+85zWFhYQoJCVFwcHC6dW2WLFmiESNGpIspu1zc/O7cKJcN6P8vTZ70vpydnRUVdUkRkadU7b7K8vb20pUrV9WhY3ft2cMceUfJ0yNlMt8S3h4C6tfQR8s+kiRdibqisyfOZNl2x9od+m7Kd/YKLYOfzu02re80jnBPVfHOejSkvZQpV1rL1861fe/q5qIiRYsoOTlZMVev2Y7v3LZXL4bc/hcH+Zmj5CnAvYxpfUuO9Tn1VHIx0/rOimd5Xz0RNlFS6kiY66cumhuQpL5R68wOwSE+z/MKR8hVUmLGf4M5gucqPWF2CNny9YnFZoeQIyjCAA4iLxRhJKlpk4YaOvQFNWv6gLy9i+rcuSj99PNajRv/mU6fPmt2eHmGI+TJzCJMYJMgjVs4zlDbNd+t1sShE3M3oNvIC0UYKe/fU3mhCONXoazW7brz0PSw33aqV7fn7RBR3uQoeTK7CONIn1MUYYzJC0UYKe9/nucleT1XFGHsiyIMALvKK0UY5B9mFmEcSV4pwuR1eaEIg/zF7CKMI8mLRZi8KK8UYZB/OGoRppf/42aHkC1zIpaYHUKOYGFeAAAAAAAAO6AIAwAAAAAAYAcUYQAAAAAAAOyALaoBAAAAACggWBTWXIyEAQAAAAAAsAOKMAAAAAAAAHZAEQYAAAAAAMAOWBMGAAAAAIACIoVVYUzFSBgAAAAAAAA7oAgDAAAAAABgB0xHAgAAAACggLAyHclUjIQBAAAAAACwA4owAAAAAAAAdkARBgAAAAAAwA5YEwYAAAAAgAIixewACjhGwgAAAAAAANgBRRgAAAAAAAA7oAgDAAAAAABgB6wJAwAAAABAAZEiq9khFGiMhAEAAAAAALADijAAAAAAAAB2wHQkAAAAAAAKCCvTkUzFSBgAAAAAAAA7oAgDAAAAAABgBxRhAAAAAAAA7IA1YQAAAAAAKCBSzA6ggGMkDAAAAAAAgB1QhAEAAAAAALADpiMBAAAAAFBAWK1sUW0mRsIAAAAAAADYAUUYAAAAAAAAO2A6EgAAAAAAyLdu3rypsLAwrV+/XmFhYTp58qSSk5NVpkwZtWjRQv3795efn59dYqEIAwAAAABAAZGigrcmzPbt29WvXz9JUtmyZdW8eXNJ0r59+zRv3jytWLFCM2bMUL169XI9FoowAAAAAAAg37JYLOrYsaP69OmTrtCSkJCgt99+W0uWLNHQoUO1atUqubq65mosrAkDAAAAAADyraZNm+qzzz7LMNKlUKFCGj16tIoWLarTp09r9+7duR4LRRgAAAAAAFAgFS5cWJUqVZIkXbhwIdf7YzoSAAAAAAAFRIrZAeQxycnJOn36tCTJ19c31/ujCAMAAAAAAPK0du3a3fb8mjVrsnXd5cuX6/Lly/Lx8VH9+vWzdY27QREGAAqon87l/pxXFBzHos+aHQLyGe4p434yOwAHEXdmk9khOAT3ci3NDgGwm1OnTumDDz6QJL322mtyc3PL9T4pwgAAAAAAUEBYHXSL6uyOdMlKbGysXnzxRV29elUPP/ywunfvnqPXzwoL8wIAAAAAgAIjISFBgwYN0uHDh9W0aVNNmDDBbn1ThAEAAAAAAAXCzZs3NWTIEG3btk1169bV1KlT7TINKQ1FGAAAAAAAkO+lpKTo9ddf14YNG1SjRg1Nnz5dHh4edo2BNWEAAAAAACggUhx0TZh7ZbVaNXLkSP3000+qXLmyZs6cKW9vb7vHwUgYAAAAAACQr40fP16LFy9W+fLl9fXXX6tEiRKmxMFIGAAAAAAAkG+tXr1as2bNkiT5+fnpP//5T6bt2rdvr/bt2+dqLBRhAAAAAAAoIKzWgjcdKSYmxvbnsLCwLNv5+flRhAEAAAAAAMiuxx9/XI8//rjZYUhiTRgAAAAAAAC7oAgDAAAAAABgB0xHAgAAAACggEgxO4ACjpEwAAAAAAAAdkARBgAAAAAAwA4owgAAAAAAANgBa8IAAAAAAFBAWGU1O4QCjZEwAAAAAAAAdkARBgAAAAAAwA6YjgQAAAAAQAGRwnQkUzESBgAAAAAAwA4owgAAAAAAANgBRRgAAAAAAAA7YE0YAAAAAAAKCKuVNWHMxEgYAAAAAAAAO6AIAwAAAAAAYAdMRwIAAAAAoIBgi2pzMRIGAAAAAADADijCAAAAAAAA2AFFGAAAAAAAADtgTRgAAAAAAAoIK2vCmIqRMAAAAAAAAHZAEQYAAAAAAMAOKMIAAAAAAADYAWvCAAAAAABQQKRYWRPGTIyEAQAAAAAAsAOKMADuSpPGDbRwwXSdPrlHsTFH9b/DWzXps/dVrlwZs0PLU8iTceTKGPJkHLkyhjwZQ56MI1fSxUuXtXLVWo2f+Ll6DRqqB9p1U2DzR/TQE88Zev2mrdv1fOhItejUQw3aPKZHe/bXJ1P/q5hrsbkced7EPYX8yGK15v+xSG3bttXp06fTHbNYLPL29lZAQIC6d++uRx991O5xBQQEyM/PT2vXrrV73/aOISwsTCEhIQoODtb48eNtx5csWaIRI0Zo8ODBGjJkSIbjtypUqJCKFCmismXLqnbt2urYsaOaNWsmi8WSq7Eb0atXL23btk1r1qxR+fLlc6UPFze/XLnu3ejb52lNm/qBnJ2dFRV1SRGRp1Ttvsry9vbS5ctX1P6h7tq376DZYZqOPBlHrowhT8aRK2PIkzHkyThHyFXcmU253secBUv1wWfTMxwvV6aUfln89W1fO3nGHH3+1TxJUinfEvItUVzHTpxUfEKCypYupTmff6QypUrmSty3ci/XMtf7MMIR7qmkxNN3bpQHtfRrZ3YI2bLp9BqzQ8gRBWokTIsWLRQcHKzg4GB16tRJFSpUUFhYmIYOHap33nnH7PBy3JIlSxQQEKBJkyaZHUq2+fr62v6fPfTQQwoMDNTly5e1YMEC9e3bV926ddPhw4fNDrNACAysoalTxsvZ2VkfTpisCv711aRpJ5WvWE9z5y2Wj09xLVo4Q25ubmaHairyZBy5MoY8GUeujCFPxpAn48jV3zw9PdSkYV31+9dT+mTsG3p9yABDr9u4ZZutAPPGa4O0ZtkcLZw5SWuWzVGThnV19vwF/d+o8Xe4Sv7BPYX8rEAVYQYOHKjx48dr/Pjx+uSTT7Ro0SJ9/vnnslgsmjdvng4e5DcZeU2VKlVs/88++ugjTZ8+XevWrdOSJUvUqFEj/fnnn3r22Wd19OhRs0PN994aGSoXFxf99ts2vfHmOCUlJUmS4uLiNWDg/+nYsQhVqeKv3s/1MDlSc5En48iVMeTJOHJlDHkyhjwZR67+9vijHTXj03F6bVBfPdSmpUr6+hh63eQZ30iSOndorWee7Gob6e3tVVQT3hkuTw937dl/UJt/35Frsecl3FPIzwpUESYzbdq0UYMGDSRJ27ZtMzkaGFW7dm3NmjVLzZo107Vr1/TGG2+YHVK+5uHhrk6PtJUkffHlnAznExMTNXvOQklSj+5d7RpbXkKejCNXxpAn48iVMeTJGPJkHLm6dydPn9XBw/+TJPUI7pzhfPFi3urQpoUk6afVG+wamxm4p5DfFfgijCSVKFFCkpScnGw7Fh8fr++++06DBw9Whw4ddP/996tevXp64oknNGvWLFs19p/27dunV155Re3atVNQUJAaN26sLl26aPTo0Tpx4oSheM6dO6fOnTsrICBAn376abpzW7Zs0QsvvKCmTZsqMDBQrVu31qhRo3T+/Pl07Xr16mVbU2Xy5MkKCAiwfWU2PSkpKUmff/65OnbsqKCgILVo0UKjRo3SpUuXMrSNjo7WN998o/79+6tt27YKCgpSw4YN9fTTT2vJkiWG3mNOcHZ21qhRo2SxWLRnzx7t2bPHdu7UqVMKCAhQr169Mn1tWFiYAgICNHz48HTHb53Cdf78eY0YMULNmzdXUFCQHnnkEc2ePfuuYkxMTNQrr7yigIAA9e/fXzdu3Ljr95kX1KsbKHd3d0nSpk2/Z9pm48bU440a1csT6/SYgTwZR66MIU/GkStjyJMx5Mk4cnXv9hw4JElydXVRUO0ambZ5oG5Qurb5GfdU7kuR1SG/8osCX4RJSkrSoUOpH2ZVq1a1HY+MjNTIkSO1e/dulS5dWm3btlW9evV04sQJjRs3ToMHD9Y/1zTesGGDevbsqZ9//lnFihVT+/btVa9ePUnSt99+q717994xniNHjqhHjx46duyYRo8erVdeecV2buLEierTp482bdokf39/tW3bVkWLFtWCBQv0+OOP69ixY7a2LVu2VP369SVJNWrUsK2rEhwcrJo1a6br02q16pVXXtGUKVNUoUIFtWuXulDTggUL9NRTT2Uo8OzatUtjxozRkSNHVKFCBXXo0EG1atXSgQMHNGLECLuur1O5cmXVrl1bkrR169Ycu+6ZM2f0xBNPaOvWrXrggQdUv359nTx5Uu+9956mTJli6BqxsbHq37+/fv75Zz322GP6/PPP5eHhkWMx2lO1alUkSQkJCTp58kymbY4ei5Akubu7y98/dxYnzuvIk3HkyhjyZBy5MoY8GUOejCNX9y4i8pQkqVyZ0nJ1ccm0TQW/spKkU2fOKikpOdM2+QX3FPK7zJ/yAiAxMVEnT57UtGnTFBkZqVq1aqlly79XAvf19dXMmTPVtGlTOTn9XauKiYlRaGio1q1bpx9//FGdO/89ZHDGjBlKTk7WxIkT9cgjj6Tr7+TJk3eMaefOnRo0aJDi4uI0ceJEdezY0Xbul19+0bRp0+Tv76/JkyerevXqtnPffvutRo8erREjRmjBggWSUte/8fX11a5du9S+fft0Ow/905kzZ5SYmKhly5bZClEJCQkKDQ3V6tWrNWbMGE2ePNnWvmrVqpo/f76tyJMmKipKAwYM0Lx58/TYY4+pbt26d3zPOaFmzZo6cOCAjhw5kmPXXLJkiXr27Km33npLLn/9Zbhz507961//0owZM9SnT5/bFlQuXLigAQMG6M8//1Tfvn01bNgwh67S+/gUkyRduRKdZZvLl6/Y/ly8mLdO6M73fH5DnowjV8aQJ+PIlTHkyRjyZBy5unfRManbT3sXLZJlG2+vopKk5OQUXb9xw/Z9fsQ9hfyuQI2ECQkJsU3JCQoKUqdOnfT999/r2Wef1ezZs+Xs7Gxr6+Pjo+bNm6crwEiSl5eXRo4cKUlatWpVunOXL1+WJDVv3jxD3xUqVFCFChWyjG316tXq27evUlJS9N///jddAUaSpk2bJkn64IMP0hVgJKlnz55q06aN9uzZYxvVc7defPHFdCOBChUqpFGjRsnNzU2rV69Ot8V3xYoVMxRgJKlkyZJ6/fXXJWXMTW4qXry4pNRpUjmlXLlyeuONN2wFGElq0KCBWrZsqRs3bujAgQNZvvb48ePq2bOnDh8+rOHDh+vf//63QxdgJNmGhCYm3syyTXx8gu3PHh7uuR5TXkSejCNXxpAn48iVMeTJGPJkHLm6d/GJqflxdXXNss2tuwDFxcfnekxm4p7KfWZPKyro05EK1EiYFi1aqGTJkpJSp+BERUVp//79WrgwdWGn4cOHZ9jmbN++fQoLC9OZM2cUHx8vq9Vqm4b0zzVeateurSNHjmjYsGEaNGiQgoKCMhRxMrNw4UK9/fbb8vHx0YwZM1SjRvq5oJcuXdLBgwdVsmRJ2/Smf3rggQe0bt067d27N8N0IyO6ds24qFXp0qXVuHFjbdq0STt37pSfn5/tnNVq1fbt27Vjxw5duHBBCQkJslqtun79uqSMuclNaf8/crLQ0bhxYxUqVCjD8SpVqmjDhg26cOFCpq/bt2+f3n33XcXGxurDDz/MNK+OKC4uTpLk5pb1DweFC/+drxs34nI9pryIPBlHrowhT8aRK2PIkzHkyThyde8Ku6Xm5+bNrIsOiYmJtj+7Fy6c6zGZiXsK+V2BKsIMHDhQjRs3TncsNjZWr776qubOnauUlBS9/fbbkqTr168rNDRU69evz/J6sbGx6b4fOnSojhw5onXr1mndunXy9PRU3bp11aJFCwUHB9tGbNzq3LlztikvX3/9dbrRKGnSRqFERUUpICDgtu/xypUrtz2fGS8vLxUtmvmQxrTCy7lz52zHoqKi9NJLL912jZt/5iY3pb1nb2/vHLtm2bJlMz3u6ekpKf1fhLd6/fXXlZSUpLFjx+abAoz093DQ4sWzzrGPz9/395WrOTcqyZGQJ+PIlTHkyThyZQx5MoY8GUeu7p3XX9OQrsZcy7JN9F/nnJ2d5OmgawwaxT2F/K5ATUfKTJEiRTRs2DBJqSNSYmJiJEkff/yx1q9fr/r16+urr77S1q1bdeDAAR0+fFj79+/P9FqlS5fWokWL9PXXX6tv376677779Pvvv+uDDz7QQw89pH379mV4Tdq0p6SkJL3//vtKSEjI0CYlJUWSVKxYsXQL7Gb2Va1atZxKTZZGjhypvXv3qm3btpo3b57CwsJ08OBBHT58WD///HOu9/9PaVOw/jlN63bScpoVIyOYMtOlSxdJqdPHjKwD5CjCw49KSp2mVrGiX6Ztqlbxl5T624uIiFN2iy0vIU/GkStjyJNx5MoY8mQMeTKOXN27Sn8tLHv2/AXdzGIH1pOnz0qSypcrKxcX50zb5BfcU8jvCnwRRpJtrZbk5GRFRKSutL1q1So5Ozvriy++ULNmzeTj42ObpxkZGZnltZycnNSkSRP9+9//1sKFC/Xbb7/pySefVExMjMaOHZuhvZubm6ZNm6aWLVtq8+bNGjRokOL/Mc8zbVSGp6enxo8ff9uv9u3b3/X7j4mJyXLkStoonNKlS0uSbty4oY0bN6pEiRKaPHmyGjRooGLFitnW07ldbnLDsWPHdPDgQUlSkyZNbMfT/l+lTY/6p7Nnz+ZKPIMHD9bgwYN1+vRphYSE5JtCzO49B2xDQ1u2bJJpm1atUo9v374nw85hBQV5Mo5cGUOejCNXxpAnY8iTceTq3t3/17bUN28mad+BPzNts33P/nRt8zPuqdyXtsSGo33lFxRhlL5wkLbjTXR0tDw9PeXl5ZWh/cqVKw1fu3jx4goNDZUkhYeHZ9qmUKFCmjp1qh588EH99ttveuGFF9IVYkqXLq377rtPp0+fvquFd9MKEUlZVNRvldl7ioqKUlhYmCwWixo0aCBJunbtmlJSUlSqVKl0CxmnWbFiheH47lVycrLeffddWa1WNWjQQHXq1LGdK168uFxdXXXy5MlM59du3rw51+IaMmSIXn75ZZ05c0a9evWye2EqN9y4Eaeffl4rSRrY/18Zzru5uSmkV3dJ0sLvjD8f+Q15Mo5cGUOejCNXxpAnY8iTceTq3lUsX061Au6TJC1c9kOG81euRuvXdak/uz7crpVdYzMD9xTyuwJfhElbQFWS/P39VaVK6r70lStXVkxMjJYvX56u/caNG/XVV19leq2vvvpK58+fz3A8bV2ZrNYZkVI/TCZPnqw2bdpo69atGjhwoK0CLKWOsJCkV199NdO1WGJjY/Xdd9+lK96UKlVKUupokTuZMmWKjh8/bvs+ISFBY8aMUWJiotq0aaPy5VOHSfr6+srLy0vh4eEKCwtLd43Fixfrhx8y/sWRG/744w/17t1bW7dulbe3t9577710593c3FSvXj3FxMRk+P+1aNEi/fjjj7ka30svvaTQ0FCdPXtWvXr1so2wcmRj35uopKQkNW/eSO+/N8K2c5S7e2FN/+IjVanirxMnTmrmV/NNjtRc5Mk4cmUMeTKOXBlDnowhT8aRq3v3O7nyFgAApcBJREFUYr/UYsMPv67XvEUrbL/1j465ptdHj9f1G3G6v3YNtWrWyMww7YZ7CvmZxZqfxvVkoW3btjp9+nSG3ZEuXryo/fv320a9zJgxw7b18o8//qjXXntNklS3bl2VL19ekZGR2rdvnwYOHKjp06fLz89Pa9eutfXTsGFDxcbGqlq1aqpcubKcnZ0VERGhP/74Qy4uLvr000/TTRcKCAjIcI2bN2/q1Vdf1erVq9WoUSN98cUXttE5U6ZM0aRJk2S1WlWjRg35+/vLycnJNkLm5s2b2r59u230TloB5eLFi2rYsKEqVqwoJycntW3bVu3atbPFUK5cOdWsWVObNm1SkyZN5OnpqZ07d+rChQsqV66c5s+frzJlythinDFjhiZMmCAnJyc98MADKlmypMLDwxUeHm7LTaNGjTRnzhzba8LCwhQSEqLg4GCNHz/ednzJkiUaMWKEBg8erCFDhmQ47uvrq5YtW0pKHfly7do1hYeH26ZJ1apVSx9++GGma+Fs27ZNffr0UVJSkgIDA+Xn56cjR44oIiJCISEhmjlzpuF40kyaNEmTJ0/WuHHj9Pjjj9uO9+rVS9u2bdOaNWtsBStJ+vLLL/XRRx+pVKlSmj17tipXrpzhmka5uGU+J9aeBvT/lyZPel/Ozs6KirqkiMhTqnZfZXl7e+nKlavq0LG79uz5w+wwTUeejCNXxpAn48iVMeTJGPJknCPkKu7Mplzv4+z5KD3VZ7Dt+5s3b+r6jTg5OTnZFuCVpHpBtTTpg9HpXvvpF7P05ewFkqRSviXkW6K4jp04qfiEBJUpXVJzpn6ksmVK5fp7cC/XMtf7MMIR7qmkxNOm9p9dTcq1NjuEbPn9zHqzQ8gRBWokzObNm7V06VItXbpUy5Yt086dO1WyZEmFhITohx9+sBVgJKlTp06aNWuWGjZsqGPHjmnt2rWyWCz64IMPNHTo0Eyv/9Zbb6lr165KTk7Wli1btHbtWl2/fl3BwcFavHixofVaXF1dNXHiRD300EPatm2bBgwYYFvX5KWXXtL8+fP16KOP6urVq1q7dq22bNmi+Ph4PfbYY5o+fXq6XY7c3Nz05ZdfqmXLlvrf//6npUuXatGiRbY1VNJYLBZ9+umnev755xUZGanVq1fLarWqe/fuWrhwYboCjCT1799f//nPf1S7dm0dOHBAGzZsULFixTR9+nT16NHD8P8PIy5evGj7f/bzzz9r7969Kl68uHr27KmZM2dqyZIlWS5G3KhRI82YMUMNGjTQ0aNHtXnzZlsxpHXr1jkaZ1YGDBig4cOH68KFC+rVq5ehUUl52ZczvlHrNo9r2fKfZLVaFRRYQ1evxujzL2arbv32pv9FmFeQJ+PIlTHkyThyZQx5MoY8GUeuUqWkpOhqdIzt6/pf2yf/8/i1TNYtfOX53poy4R01faCeEhITdeR4hEqVLKHeTz+hxbOm2KUAk5dwT+WeFFkd8iu/KBAjYYD8IC+MhAEAAHBU9hgJkx/klZEwjsBRR8I0Kveg2SFky7YzG8wOIUcUqJEwAAAAAAAAZnExOwAAAAAAAGAf1nw0tccRMRIGAAAAAADADijCAAAAAAAA2AFFGAAAAAAAADtgTRgAAAAAAAoINkg2FyNhAAAAAAAA7IAiDAAAAAAAgB1QhAEAAAAAALAD1oQBAAAAAKCASBFrwpiJkTAAAAAAAAB2QBEGAAAAAADADpiOBAAAAABAAcEW1eZiJAwAAAAAAIAdUIQBAAAAAACwA4owAAAAAAAAdsCaMAAAAAAAFBBsUW0uRsIAAAAAAADYAUUYAAAAAAAAO2A6EgAAAAAABYSV6UimYiQMAAAAAACAHVCEAQAAAAAAsAOKMAAAAAAAAHbAmjAAAAAAABQQKVbWhDETI2EAAAAAAADsgCIMAAAAAACAHVCEAQAAAAAAsAPWhAEAAAAAoICwijVhzMRIGAAAAAAAADugCAMAAAAAAGAHTEcCAAAAAKCAYItqczESBgAAAAAAwA4owgAAAAAAANgBRRgAAAAAAAA7YE0YAAAAAAAKCLaoNhcjYQAAAAAAAOyAIgwAAAAAAIAdMB0JAAAAAIACgi2qzcVIGAAAAAAAADtgJAwAAIAdVfEua3YIDuFY9FmzQ0A+416updkh/D97dx5Wc9r/Afx9WpWIImRPUsk2oZSKxIy9kMiImSxjG9uY0Rj7YBhj38cWk0moRJYsIVmKZM+eKEqkRFpO5/dHv86jaTuR8z0579d1PdfjfL/3GW/3deScz7nvz10hpJ9eKnQEoi8aV8IQEREREREREckBV8IQERERERERKQkeUS0sroQhIiIiIiIiIpIDFmGIiIiIiIiIiOSARRgiIiIiIiIiIjlgTxgiIiIiIiIiJZErYU8YIXElDBERERERERGRHLAIQ0REREREREQkB9yORERERERERKQkeES1sLgShoiIiIiIiIhIDliEISIiIiIiIiKSAxZhiIiIiIiIiIjkgD1hiIiIiIiIiJSERJIrdASlxpUwRERERERERERywCIMEREREREREZEccDsSERERERERkZLI5RHVguJKGCIiIiIiIiIiOWARhoiIiIiIiIhIDliEISIiIiIiIiKSA/aEISIiIiIiIlISEgl7wgiJK2GIiIiIiIiIiOSARRgiIiIiIiIiIjlgEYaIiIiIiIiISA7YE4aIiIiIiIhISeSCPWGExJUwRERERERERERywCIMEREREREREZEccDsSERERERERkZLgEdXC4koYIiIiIiIiIiI5YBGGiIiIiIiIiEgOWIQhIiIiIiIiIpID9oQhIiIiIiIiUhK57AkjKK6EISIiIiIiIiKSAxZhiIiIiIiIiIjkgEUYIiIiIiIiIiI5YE8YIiIiIiIiIiUhAXvCCIlFGAXk6OiI+Pj4AtdEIhF0dXXRrFkzDBw4EL169RIoXdnl/3nu3Lkj83OePn2KLl26FLpeuXJlGBkZoVu3bhg2bBg0NTXLMyrJwNrKElOmjIatTXvo6lbBs2dJOHI0FIv+WIWEhOdCx1MYnCfZca5kw3mSHeeqZDUM9GFj3x4Wrc3QorU5zCyaQbuyFp7GJcDRso/Q8RQOX0+y41zJhvMkm8ysbOwJvYQjF2/g0bNkZOeIUVtfF51aN4Nnr47Q1dEWOiLRRxFJJGyNrGjyixYdO3ZEzZo1AQBZWVmIi4vD9evXAQDu7u6YPXu2kDFl9qlFGBcXFwBAbm4unj59iujoaIjFYjRv3hw7duyAjo7OZ8mtaNQ06godAd9/Nxjr1y2GqqoqXrx4icdxT9HUuDF0davi1asUOHUbiGvXbgkdU3CcJ9lxrmTDeZJdRZgrI906gv7+w0YPxozfpxa6rmhFmIepz4SOUCFeT4qCcyWbijBP6aeXCvr7A8Dr9HcY/ecOxDzOK0o1qKWHKtqV8CA+Ce+zclCzmg62TP8ODWvrC5qzUofBgv7+H6t2NTOhI3yU569vCx2hXLAnjAIbNWoU/vjjD/zxxx9YtmwZ9u7diw0bNkAkEmHXrl24dUs5/iHLn4MlS5Zg165d8PPzg46ODm7evImNGzcKHU9pWFiYYt3aP6Cqqoolf65B/YZfwbpDD9Rr0AY+u/ZBT6869vpthoaGhtBRBcV5kh3nSjacJ9lxrmST/uYtzp2+iE2rtmPC979g0czlQkdSSHw9yY5zJRvOk+x++zsAMY+fQ69qZez8zRMHFv+IXbNH4cTKn/CNlQVevE7HpFX/IkcsFjpqhSSRSCrk/74ULMJUMJ07d4alpSUAICIiQuA0wrCwsMB3330HAAgJCRE4jfKY+dsUqKmpITw8Ar/OWIScnBwAQEbGe4wc9RMePnwMI6OGGD7MTeCkwuI8yY5zJRvOk+w4V7LZtysIwweMw9L5a3D0wAkkPX8hdCSFxNeT7DhXsuE8yeZ+fBLCrt4DAPw06Gu0NK4vvaejVQlzvu+DWnpV8TAhGQfCrwoVk+ijsQhTAenr5y27ExdR+b1+/TomT54MOzs7WFhYoGPHjpg6dSoePHhQaOzFixfRrFkzTJ8+HW/evMHvv/8OBwcHWFhYoEuXLli1apX0H4f/EovF2LdvHzw8PNC+fXu0aNECjo6OGD9+PE6dOlVs9sDAQPTr1w+tWrVC+/btMWHCBDx+/LjMc2Bubg4ABXrnTJ8+Hc2aNcPFixdx7tw5fP/992jfvj2aNWuG27f/t3StLHMEAOHh4Rg1ahQ6deoECwsLdOjQAS4uLli0aBGSk5MLjL127RomTpyILl26oEWLFrCyskLv3r0xe/ZsxMbGlvnPqSi0tbXQo7sjAGDj3zsL3c/KysKOnX4AALeBirOUXd44T7LjXMmG8yQ7zhWVJ76eZMe5kg3nSXZRd/I+G6iIROjazrzQfS1NDTi0NgEAHL5wXa7ZiMoDG/NWMDk5OdKCQpMmTQrc2717N+bOnSvtl/LVV18hPj4eBw8exMmTJ/H333+jbdu2hf6baWlpcHNzQ0pKCtq2bYv379/j0qVLWLt2LZ4/f46FCxcWGP/+/XuMGTMG586dg4aGBr766ivo6+vj2bNnCA8PR2pqKjp16lTo91m2bBm2bNkCS0tLdOrUCTdu3EBISAiioqJw4MAB6OnpyTwP6enpAFDkcs3g4GD4+fnB1NQUdnZ2ePbsGUQi0UfNka+vL2bPng0VFRW0adMGX331Fd68eYO4uDhs374dXbt2RY0aNQAAp0+fxpgxYyAWi2FhYYGWLVsiIyMD8fHx8PX1xVdffYVGjRrJ/GdUJG1aW0BLSwsAEBZ2ocgxZ87kXW/fvg1EItEXtWRQVpwn2XGuZMN5kh3nisoTX0+y41zJhvMku9T0DABAtSra0FAv+uNqbT1dAMDV+0+Rm5sLFRWuLaCKg0WYCiIrKwtPnjzB+vXrERcXB3Nzc9jZ2UnvX7t2DXPnzkWVKlWwbt066ZYlAAgNDcX48eMxbdo0hISEQF1dvcB/+8SJE+jcuTP27dsn/cfh0aNH6N+/P/z9/TF27FjUq1dPOn7hwoU4d+4cmjdvjrVr16JOnf81GExPT5c2D/6v3bt3Y9++fTA1NZX+mX788UeEhoZi165dGD9+vMzzcfLkSQCAmVnhplK7d+/GokWL0K9fvwLXP2aONm3aBJFIhN27d6Nly5YF/nt3794tUDjavHkzxGIxVqxYge7duxcY++TJE5n/bIqoaVMjAEBmZiaePEkocsyDh3nfWmhpaaFhw3qIja3Yf+aPwXmSHedKNpwn2XGuqDzx9SQ7zpVsOE+yq6JdCQDw+s07ZGXnFFmIef4qFQDwPisbCS9TUa9mdblmrOhyeUS1oFgyVGAeHh5o1qwZmjVrhhYtWqBHjx44ePAghgwZgh07dkBVVVU6dtOmTRCLxZg5c2aB4gKQ10dm8ODBSEhIwOnTpwv9Ptra2liwYIG0AAMAjRs3Rt++fSGRSBAZGSm9npSUhH379kFdXR1r1qwpUIABAB0dHXTo0KHIP8+PP/4oLcAAeatYxo4dCyBva1RpcnNz8eTJEyxevBiHDx8GAAwZMqTQuI4dOxYqwAAfN0evXr1ClSpVChVgAMDExES6CiZ/LADY2toWGlu/fn3Ur1+/0PWKQk+vGgAgJSW12DGvXqVIf129mu7njqSQOE+y41zJhvMkO84VlSe+nmTHuZIN50l2LZrknQiaK5HgxOXCp+G8z8rGmei70sdv3mbILRtReWARRoF17NgRLi4ucHFxgbOzM2xtbVGlShX4+flh+fLlyMrKApBXnAgPD4eamhocHR2L/G/lb7G5erVw8yoLCwtpn5kPGRnlVeyTkpKk1yIiIpCTk4MOHTrA0NCwTH8eBwcHmX6P/8ovRJmZmcHJyQlbt26FqqoqJk+ejB49ehQa7+TkVOjax85R8+bNkZaWBi8vr1KP2G7evDkA4Oeff8bVq1eRm5tb4viKJL9Al5WVXeyY9+8zpb/W1tYqdtyXjPMkO86VbDhPsuNcUXni60l2nCvZcJ5k17xxXbQyzluF/+euI4i4/Uh6L+1tBn7d6I/nr9Kk1zJKmFMiRcTtSAps1KhRsLKyKnAtPT0dkyZNgo+PD3JzczFnzhykpKTg3bt3AIA2bdqU+N9MSUkpdO2/q1nyVa5cGQCkxR4ASEjIWz75Mb1Niira6OjoAACys4v/4eni4gIAEIlE0NbWRuPGjdGlS5dicxf1+3zsHM2ePRvjx4+Hv78//P39Ua1aNbRp0wYODg7o27cvtLW1pWOnTp2K+/fvIzQ0FKGhoahcuTJat24tLaZVr15xl0lmZOR9w6ChoV7smEqVNKW/fvdOOb+R4DzJjnMlG86T7DhXVJ74epId50o2nKeyWTi6P0b+sR0JL1MxcrE3alarAl0dLTx+/hLZOWIM6GSJvacuAwB0tDRL+a/RfylrvyFFwSJMBaOjo4Off/4ZYWFh8PPzw5QpU6QrLjQ0NNCzZ88Sn9+qVatC1+TVyOpjf58//vijTOMrVapU6NrHzpGJiQkOHjyIc+fOISwsDJcuXcKpU6cQGhqK9evXw8fHR7rNqFatWti7dy8iIiJw+vRpXL58GRcuXEB4eDjWr1+PLVu2FLmtqSLIXzpbvXrxS2P19P5XZEp5XfxS2y8Z50l2nCvZcJ5kx7mi8sTXk+w4V7LhPJVNvZrV4Tt3NHYcOY+TUTGIf5GCd+8z0aZpAwzvYYsqWprSIkwN3SoCpyUqGxZhKqD8D/1isRiPHz+GmZkZNDU1kZubi/nz5xdqvFue8leZVLTjlqtXr/7Rc6ShoYFOnTpJT3x6/vw5Zs+ejVOnTmHZsmVYvny5dKyKigqsra1hbW0NIG9VzdKlS7F37178/vvv8PPzK9c/l7zcvZt3fLempiYaNKiLuLj4QmOaGDUEkPdNz+PHT+WaT1FwnmTHuZIN50l2nCsqT3w9yY5zJRvOU9np6mhjwoAumDCgS6F7/qfzCjCG+rrQq1pZ3tGIPgl7wlRAcXFx0l9ra2tDTU0N1tbWyM7OLrLxbnmysrKCmpoazp8/j2fPnn3W36s8lecc1a5dG+PGjQOQd0JSSapXr44pU6bINFaRXYm+IV1Ga2dnXeQYe/u865GR0Uq7xJHzJDvOlWw4T7LjXFF54utJdpwr2XCeytfJqBgAQOevTEsZSaR4WISpYNLT07FkyRIAQMOGDaWNbceOHQtVVVXMnj0bZ86cKfS8zMxMHD58GM+fP/+k379mzZro378/srOzMX78eCQmJha4//btW5w/f/6Tfo/PpaxzlJGRAW9vb7x+/brQ2PxCzod9abZt21ZoPgDg1KlThcZWNO/eZeDwkbxjwUeN+LbQfQ0NDXgMHQgA8NtzQK7ZFAnnSXacK9lwnmTHuaLyxNeT7DhXsuE8lZ/I249w9to9qKupYpBTe6HjVEi5EkmF/N+XgtuRFNimTZsQEBAAIK95UnJyMq5fv47U1FRUrlwZf/zxB0QiEQCgdevWmDdvHubMmYORI0fCyMgIjRs3RqVKlfDs2TPcvn0bGRkZCAwMRO3atT8pl5eXFx49eoSIiAg4OTnB0tIS+vr60t/HwsKi2GOqhVTWOcrOzsbChQuxZMkSmJqaokGDBsjNzcW9e/fw4MEDaGtrY8KECdL//tq1a7F48WI0bdoUjRs3hqqqKh4/foybN29CTU0NU6dOFfBP/+l+X7ACfXp/DVvb9li4wAuzZv+JnJwcaGlVwvp1S2Bk1BCxsU+wddu/QkcVFOdJdpwr2XCeZMe5ovLE15PsOFey4TzJ7sbDeCSnvoFti6ZQV1MFAIhzcxEScRMLvA9CIgHG9euMBrUKn/BKpOhEEq51UziOjo6Ijy+8T1RLSwt169aFjY0Nvv/++yJXVty7dw/e3t64cOECEhMToaGhAQMDA5ibm6Nr165wdHSEhoYGAODixYvw8PCAi4tLkc1v/f394eXlhfHjxxcoNgBATk4O9u7di/379+POnTvIzs5GzZo1YWFhgQEDBsDe3r7Qn6e4I56bNWuGunXr4uTJk9JrT58+RZcuefs/SzsaOt/06dMREBCAHTt2FDpV6mPmKCcnB35+frh48SJiYmKkx2jXqVMHHTp0wPDhw6X9eQBg//79CA8Px40bN5CUlITs7GzUrl0bbdq0wfDhw2Fq+mnLJdU06n7S88vDyBHfYs3qhVBVVcWLFy/xOO4pmho3hq5uVaSkvEbXrwciOvqm0DEFx3mSHedKNpwn2VWEuTLSFXZlZG3DWth/0kf6WF1DDTpVdCAWi5H2+o30+uWIqxjrIdwXCA9Thd/2XBFeT4qCcyWbijBP6aeXCvr7A8D+sCuYtWU/NNXVUEdfF5W1NPEk6RXS3r6HikiEkX3sMdals9AxUanDYKEjfBS9Kk2FjvBRXr25J3SEcsEiDFEFoQhFGADoYN0WU6f+AJsO7aCrWwXPn7/A4SMnseiPVYiPF/4Ns6LgPMmOcyUbzpPsFH2uhC7C1K1fB6FRpW93uBh+GUOdR8shUdEUoQgDKP7rSZFwrmSj6POkCEWYRwkvsDPkAqLvxSHpVRoys3NQQ1cHbc0aY7BTe5g3MhQ6IgAWYeSNRRgikitFKcIQEdGnEboIU1EoShGGSNkoQhGmoqioRZjqOsZCR/goKen3hY5QLtiYl4iIiIiIiIhIDliEISIiIiIiIiKSA56ORERERERERKQkcsGOJELiShgiIiIiIiIiIjlgEYaIiIiIiIiISA5YhCEiIiIiIiIikgP2hCEiIiIiIiJSEhIJe8IIiSthiIiIiIiIiIjkgEUYIiIiIiIiIiI54HYkIiIiIiIiIiWRy+1IguJKGCIiIiIiIiIiOWARhoiIiIiIiIhIDliEISIiIiIiIiKSA/aEISIiIiIiIlISErAnjJC4EoaIiIiIiIiISA5YhCEiIiIiIiIikgMWYYiIiIiIiIiI5IA9YYiIiIiIiIiURK6EPWGExJUwRERERERERERywCIMEREREREREZEccDsSERERERERkZKQcDuSoLgShoiIiIiIiIhIDliEISIiIiIiIiKSAxZhiIiIiIiIiIjkgD1hiIiIiIiIiJSEBOwJIySuhCEiIiIiIiIikgMWYYiIiIiIiIiI5IDbkYiIiIiIiIiUBI+oFhZXwhARERERERERyQGLMEREREREREREcsDtSERERERERET0xcvKysK2bdsQFBSEJ0+eQFtbG23btsWYMWPQvHlzuWRgEYaIiIiIiIhISShrT5isrCx4enoiIiIC+vr66Ny5M168eIFjx47h1KlTWL9+Pezs7D57DhZhiIiIiIiIiOiL9vfffyMiIgItWrTA9u3boaOjAwA4ePAgpk6dimnTpuH48ePS658Le8IQERERERER0RcrJycHO3bsAADMnj27QKGlV69ecHBwQEpKCvbt2/fZs7AIQ0RERERERERfrKioKLx+/Rr16tVDixYtCt3v0aMHAODEiROfPQu3IxEREREREREpCWXsCHP79m0AKLb5rrm5OQDgzp07nz0LV8IQERERERER0RcrISEBAFC7du0i7+dff/36Nd6+fftZs3AlDBEREREREREptC5dupR4v6StRO/evQMAaGlpFXlfW1tb+uu3b9+icuXKH5FQNizCEFUQOVnxQkcgIiIiIqIKrqJ+riitCFNRsAhDRERERERERArtU5rm5q90ycjIKPJ+/koZAJ91FQzAnjBERERERERE9AUzNDQEADx//rzI+/nXq1WrxiIMEREREREREdHHMjMzAwDcvHmzyPu3bt0CADRr1uyzZ2ERhoiIiIiIiIi+WF999RWqVauGp0+f4vr164XuHzp0CIB8+s6wCENEREREREREXyw1NTV4eHgAAObOnYv09HTpvYMHD+L06dOoXr06+vfv/9mziCQSieSz/y5ERERERERERALJysqCp6cnIiIioK+vj3bt2iE5ORmXLl2Curo61q1bB3t7+8+eg0UYIiIiIiIiIvriZWVlYevWrQgKCsKTJ0+gra0NS0tLjBs3Ds2bN5dLBhZhiIiIiIiIiIjkgD1hiIiIiIiIiIjkgEUYIiIiIiIiIiI5YBGGiIiIiIiIiEgOWIQhIiIiIiIiIpIDFmGIiIiIiIiIiOSARRgiIiIiIiIiIjlgEYaISAC5ublCRxBMfHy80BGIiIiIiATBIgwRUTnZs2ePTONyc3Px008/feY0iqtr164YNWoUTp48CYlEInQcIiIiIiK5EUn4DpiIZPDixQvs3bsXly5dwvPnzwEAtWrVQrt27dCvXz/UqlVL4ITCs7CwwOrVq9G5c+dix0gkEvz00084dOgQbt++Lcd0iqNjx45ITk6GSCRCrVq14OrqCldXVxgYGAgdjYiI6LN5//49KlWqJNPY2NhYNGrU6PMGIiJBsAhDRKU6cOAAZs+ejYyMjEIrF0QiESpVqoQ5c+agb9++AiVUDPb29khLS8O2bdvQpk2bQvdzc3Pxyy+/4MCBA7C0tISPj48AKYUnFotx4sQJ7N69G+fOnQMAqKqqonPnznBzc0PHjh0FTkhERFT+Ro0ahQ0bNkBFpeTNCLGxsfDw8MCZM2fklIyI5IlFGCIq0YULF/Ddd98BABwcHNCnTx/Uq1cPAPD06VMcOHAAp06dgkgkwpYtW9ChQwch4wrqzp07+Pbbb6GiooJdu3ahSZMm0nsSiQTTp0/H/v370aZNG2zZsgXa2toCplUMT548gZ+fHwICAqSrY+rVq4eBAweif//+0NPTEzqi4NasWSPTOA0NDVSrVg1mZmZo0aLFZ06l+J49e4akpCRkZWUVO6Zdu3ZyTKQ4AgMDZRqnrq4ufU0p69/F7OxsBAcHIyIiosTXk0gkgre3t5zTCUfWn0tFEYlEGDduXDmmqThMTU3h4uKCRYsWFTvmyZMnGDJkCF68eKG0K2YBIC4uDlevXkWbNm2k7zsB4Pr161iwYAHu3LmDunXrYsqUKXB0dBQwKVHZsQhDRCXy8PBAZGQk/vrrL/To0aPIMYcOHcKUKVNgZWWlVG9CixIZGYkRI0ZAT08Pvr6+qFWrFiQSCX799VcEBASgVatW2Lp1KypXrix0VIWSk5ODY8eOwc/PDxcuXAAAqKmpoVu3bhg0aJDSflgG8t60i0SiAtfy/+n+8LpEIpE+NjIywsKFC9GqVSv5BVUQ+/fvx5o1a/D06dNSxyrrB5yiXlMlEYlEsLW1xcyZM9GgQYPPmEyxvHz5EsOHD8f9+/dL7V8lEomU6vWU/xr6mI8RyjZXH5o4cSJCQkLg6elZZG+4J0+eYOjQoXj+/DmmT5+O4cOHyz+kgpgzZw52796N48ePo27dugCA169fo1u3bkhLS5OOU1NTg7+/P0xMTISKSlRmLMIQUYm++uormJiYwNfXt8RxgwYNwt27dxEVFSWnZIrr2LFjmDhxIoyMjLBz5078+eef8Pf3R4sWLbBt2zbo6OgIHVFhvX37FmvWrMG2bduk10QiEZo1a4apU6fCzs5OwHTCCAgIwLVr1/Dvv//C0NAQX3/9NerUqQMgb7XH0aNHkZCQgEGDBqFWrVqIjIzEuXPnULlyZezbt0+pegoEBATg119/hUQiQbNmzdCwYcMSC54lfRv9JVu9ejXi4+MRGBgIbW1tdOzYscBr6uzZs3j37h2cnZ2hpqaGK1eu4MGDB6hRowb8/f2Vpn+Tl5cXAgIC0KJFC3h6esLIyKjE11P+B0VlEBAQ8EnPd3FxKackFUtWVhZGjBiByMhITJ8+HcOGDZPee/LkCTw8PPDs2TNMmzYNnp6eAiYVXu/evaGiooL9+/dLr23btg2LFy+Gq6srJk+ejNDQUMyYMQP9+vXDwoULBUxLVDYswhBRidq2bYtOnTph6dKlJY6bOnUqTp8+jUuXLskpmWL7999/MXfuXOjq6iI1NRXm5ubYvn07qlatKnQ0hXTr1i34+voiODgY7969g0gkgr29PWxsbHDo0CFER0dDJBJh4cKFSvfm/datWxg8eDC+++47TJgwAaqqqgXui8VirF69Gtu2bcOuXbvQvHlzbN68GUuXLkX//v2xYMECgZLLX8+ePfH48WOsXbsWDg4OQsdRWE+ePMGAAQPQuXNneHl5QVdXt8D9tLQ0LFq0CCdPnsTevXtRt25dLFq0CDt37oSHhwd+/fVXgZLLl62tLVRVVXH48GGuXqRyk56ejiFDhuDevXv4888/0bNnTzx9+hQeHh5ISEjAlClTMGrUKKFjCs7a2hpt2rTB+vXrpdc8PT1x8eJFhIeHS39u9evXD+/evcORI0eEikpUZjyimohKZG5ujgcPHpQ67uHDhzA3N5dDooph8ODBGDduHAswJXj//j327NmDAQMGoH///vDz84OmpiZGjhyJ48ePY8OGDfDw8ICvry+2bt2KSpUqYdOmTULHlrtVq1ahfv36mDRpUqECDJDX1HjSpEmoX78+Vq1aBQD4/vvvYWhoKN3apSyePHmC9u3bswBTiuXLl0NHRwcLFiwoVIABgKpVq+L333+Hjo4Oli1bBhUVFUybNg01atTA6dOnBUgsjDdv3qB169YswFC50tHRwd9//43atWtj+vTp2LdvH4YNG4aEhARMnDiRBZj/9+7duwK98yQSCaKjo2FhYVHg51ajRo2QmJgoRESij6YmdAAiUmxjxoyBp6cndu7ciaFDhxY55p9//kFMTAy2bNki53TC8vDwKHWMmpoacnNzMX78+ALXla2J44fu3LmD3bt348CBA0hPT4dEIkGbNm3g7u6Ob775Burq6oWeY2NjAwcHBxw/flyAxMK6cuWKTCdGNWvWDGfPngUAqKiowMTERHr6lLLQ19dnsVMG58+fh42NTZFFvXyqqqpo3bq19DWkoaGBZs2a4fLly/KKKbgGDRogIyND6Bj0BTIwMMCWLVswePBg/Pbbb5BIJBg/fjzGjBkjdDSFYWBggLi4OOnj69ev4+3bt7C0tCwwTiwWF/m+gUiRsQhDRCVSU1ODu7s7Fi5ciODgYPTs2VO67z0hIQEHDx7E1atXMWTIEKirqyMyMrLA87/khqoREREyjYuJiSl0rSxNMb80+UeZa2lpwdXVFe7u7jA1NS31eZUrV0ZOTs7njqdwsrKy8Pz581LHPX/+vMDJLZqamkr3xrRLly44evQosrKyoKGhIXQchfXu3TukpKSUOi4lJQXv3r2TPtbV1VWqn10DBgzAihUr8Pz5c9SuXVvoOArFy8vro5+bv7VUGSQkJBR7T1NTE7Nnz8a0adPQu3dv9OvXr9B4Q0PDzx1RYTVv3hwhISEICQmBjY0N1q1bB5FIVGil46NHj5SmTxV9OdgThohK9N8TEGQ5peVDX/IJCPHx8Z/0fGVq4vihHj16wN3dHc7OzmxSLIPBgwcjOjoa69evR6dOnYocc/r0afzwww9o06YNdu3aBQBwc3PDq1evcOzYMTmmFVZqaioGDhwIc3NzzJ49G9WqVRM6kkLq168f7t69i3///bfY48yvX7+OwYMHw8TEBP7+/gAAd3d3PH/+HCdPnpRnXMFIJBJMmzYN169fx2+//QZbW1uoqHAnPwCZCufFUabTkWQ5iezDk+0+JBKJcOvWrc8VTeFdu3YNgwcPRm5uLoC8ebKwsMDevXulY5KSkuDg4IC+ffvijz/+ECoqUZlxJQwRlcjZ2VmpvvksC2Utonyq/B4TLMDIZtSoURgzZgzGjRuHbt26oXv37gVOsjly5AhCQkIAAKNHjwaQV4y4efNmscfKf6l0dXWxe/duDB06FE5OTrCwsEDt2rWL/YCjLN/G/9fQoUPh5eWFYcOGwd3dvcjX1K5duyAWi6XbLt+9e4dbt27B3t5eyOifVZcuXYq8npCQgFGjRkFVVRUGBgbFvp6Uabvkjh07hI5QIXzJq4E/t5YtW2LdunXYvHkzUlJS0Lx5c0yZMqXAmEOHDkFHRwe2trYCpST6OFwJQ0REcmVmZoa2bdti586dQkepMHx9fbFo0SJkZmYWuRpNU1MTv/76K9zc3AAAT58+xYkTJ9C+fXuYmZkJEVkQ7969w4QJE3Du3DmU9vZGmb6NL8qyZcvw999/lzhm5MiR0g89jx49wr///gsnJye0b99eHhHl7lNWdwBFbz0lIiL6LxZhiIjKyb1793D06FE4OjoWe1LUzZs3ERoaiu7du6NJkyZyTqgYrKysYGdnV+qx51RQQkIC9uzZg6ioKCQlJQHIa1xoaWmJAQMGKHXvgHy///47/vnnHzRu3BiDBg1Cw4YNC5yu8V9fajFBVlevXoWPj0+Rryl3d3e0atVK4IRERERfHhZhiIjKyaxZs+Dv748TJ06gVq1aRY5JTEyEo6Mj3NzcMGvWLDknVAzff/89Xr9+Le0zQVRe7OzsAOQtUa9SpYrAaYiI6GO9evUKsbGxaNSoEfT09KTX4+PjsWzZMty9exeGhoYYN24cWrZsKWBSorJjTxgiKlFgYGCZxjs7O3+WHBVBREQETE1Niy3AAECtWrVgamqKixcvyjGZYhkxYgQ8PT0RGBio1K8XKn9v3ryBvb09CzBEArl27RqOHj2K2NhYpKenF7ktUCQSwdvbW4B0iuP9+/e4ceMGkpKSCpxq91/K/G/kpk2b4O3tjQMHDkiLMBkZGXB3d0dSUhIkEgnu3buHS5cuYf/+/ahXr57AiYlkxyIMEZVo+vTpMjXmze/ur8xvGBITE2XqKVC/fn2EhYXJIZFiUldXx8CBA+Hl5YVDhw6hS5cuMDQ0RKVKlYocz8aG/yMWi5GSklLim3Zl3pbUuHFjvH37VugY9IWIiorCnj174Orqiq+++qrIMZcvX8bevXsxePBgpf82fv78+di1a1eBUxM/LMLkP1b2Zv/r16/H5s2bCxz//l98T5X3xVajRo1gbGwsvbZ//34kJiaiU6dOGDt2LE6fPo21a9fC29sbM2bMEDAtUdmwCENEJRo3blyRb5hyc3Px7NkzXLx4EQkJCejfv7/0dA1lJRKJSvxwnC8rK0t65KIyGjp0qPTN+JkzZ0otSClz89R8ERERWLt2La5cuYLs7Oxixyn7kabu7u6YP38+Hj16hMaNGwsdR6E9evQIf//9NyIiIpCUlFTs60qZX1O+vr44evQofvnll2LHGBkZITg4GACUuggTEBAAHx8fmJmZYdq0afD19cWxY8dw5MgRPH78GEFBQTh06BBGjx6NgQMHCh1XMDt37sTKlSuhoqICe3t7GBkZoXLlykLHUkjPnz9HixYtClw7ffo0VFRUMHfuXNSqVQstW7bEkSNHcP78eYFSEn0cFmGIqEQTJkwo8X5WVhbmz5+P0NBQ7Nu3T06pFFPDhg0RFRWFzMxMaGpqFjkmMzMTUVFRSr1slseel825c+cwatQo5OTkoGrVqjA2Nuab9mK4urri4cOHGDp0KCZOnAg7OzvUrl1b6FgK58aNGxg6dCjev38PiUQCXV1d1KhRQ+hYCufKlSswMzNDtWrVih1TvXp1mJubIyoqSn7BFNCePXugqamJzZs3Q19fHwcOHAAANGrUCI0aNYKDgwNsbGzw22+/oW3btqhbt67AiYXx77//Ql1dHTt27ECbNm2EjqPQ3rx5Ax0dnQLXrly5gmbNmhXY9t20aVOlXl1MFROLMET0STQ0NDBz5kycPn0ay5cvxx9//CF0JMF06dIFa9aswbx58zB//nyoqKgUuC+RSDB//nykpqZi8ODBAqUUnjK/Rj7G6tWrIRaLMWXKFHz33XdQV1cXOpLCyj+OWyKRlNr4WplXeCxfvhwZGRkYNGgQfvzxxwJNL+l/kpKSZFrdYmhoiDt37sghkeK6d+8e2rRpA319/QLXP9x+1L9/f2zfvh2bN2+WNtFWNk+fPkXbtm1ZgJFBjRo1kJiYKH189+5dvH79Gr169Sow7r/vtYgqAhZhiOiTaWhowMLCQum/iRg2bBj8/f3h7++P69evo2/fvmjUqBEAIDY2FkFBQbh79y7q1KmD7777TtiwVGHcvn0bFhYWGDVqlNBRFJ6yb4mUVXR0NJo2bYo5c+YIHUWhaWho4M2bN6WOS09PV/rVfZmZmQUKMPk9vt68eYOqVatKr5uYmCj1e4WqVauievXqQseoEJo2bYrw8HDcuHEDFhYW2LZtG0QiUaECXlxcHGrWrClQSqKPwyIMEZWLjIwMmd6sfsmqVKmCrVu3Yvz48bh79y6WLl1a4L5EIoGxsTFWr15d4E2psouNjUVKSgqqVavGPh5FUFdXR4MGDYSOUSGcPHlS6AgVgkQigYmJidAxFF6TJk1w+fJlvHnzptgTt9LS0nD58mWl/9lVs2ZNvHr1SvrYwMAAAPDw4UO0bt1aej05OVmpe6LZ2dnh4sWLyM3N5QqOUgwbNgxnzpzBwIEDUaVKFaSlpaFBgwawtbWVjklNTUVMTAy6du0qYFKisuPffiL6ZFFRUYiMjOQHReTtfw8KCsLKlSvh6uqKjh07omPHjnB1dcXKlSuxf/9+pX+zDuT1Elq+fDmsra3RvXt3uLu7Y9OmTdL7gYGBcHFxQUxMjIApFUPLli3x6NEjoWPQF8TMzAwJCQlCx1B433zzDd6+fYupU6cWeZJNRkYGpk2bhnfv3qFHjx4CJFQcRkZGePz4sfRx27ZtIZFIsHnzZukJSREREYiMjISRkZFQMQU3efJkZGVl4ffff5epkb8ys7W1xZw5c1C7dm1kZWXB0tISa9asgZra/9YQ7N+/Hzk5ObCyshIwKVHZiSQfnh1HRPQfa9asKfbe27dv8ejRI5w9exZisRgzZ86Eu7u7HNNRRZSZmYnhw4cjOjoa+vr6sLCwwKlTp+Di4oJFixYByDvu28HBAaNHj8bkyZMFTiysK1euYOjQoVi0aBF69+4tdBz6Apw+fRo//PADtm/fzg8vJcjKysLAgQMRExMDfX19fP311wW2mIaEhCA5ORnNmjWDn59fsQ3ZlcE///yD33//Hb6+vtKVLwMHDsT169ehr68PAwMD3L17F2KxGMuWLUP37t2FDSyQNWvWICEhAQEBAahTpw6srKxgaGhY5HY2kUiEcePGCZCy4nj//j2ys7Ohra0NVVVVoeMQyYxFGCIqkampqfQ44eJoaWlh9OjR+OGHH+SYjCqq9evXY+XKlXBxccHs2bNRqVIlmJqaFijCAEDPnj2hra2NPXv2CJhWeJGRkQgNDcX27dvxzTffwN7eHnXq1Cl2KXu7du3knFBxvXnzBunp6cX+/DI0NJRzIsWQkJAAX19feHt7w8PDo9TXlLLOEwC8evUK06ZNQ3h4OABIPyznv6ZsbW2xZMmSQg1plU1aWhqioqLQpEkT1K9fH0De1qMZM2YgLCwMubm5qFq1KkaPHg1PT0+B0wpHlvdU+UQiEW7fvi2HVEQkbyzCEFGJAgICir2nrq4OAwMDtGjRAlpaWnJMpRjyl/PXqlULqqqqZV7er6wfbHr16oW3b98iJCREetJPUUWYCRMmIDo6WqmbOAKF37SX1gBU2d+0p6SkYOXKlQgJCUFKSkqx45T5dKQPX1OlvZ6UeZ4+dOPGDZw7d076c97Q0BA2NjawsLAQOJniy+8ZV6NGDaXvg1LSe6qiuLi4fKYkFYdYLMapU6dw7do1pKSkoGXLlhgwYACAvFWzKSkpMDY2LrBNiUjR8dVKRCXiG4DiOTo6QkVFBcHBwWjcuDEcHR1lPiFDmT/YPHnyBPb29qUetayhoYHXr1/LJ5QCc3Z2VvqTV2SVkpICV1dXxMfHo2bNmtDT08PLly/RunVrxMXF4dWrVxCJRGjdurVSv2Hnaqmys7CwYMHlI2lpaSnlFzVF4XuqsomKisJPP/2EZ8+eSYvG2dnZ0iLMlStXMHnyZKxatYrNealCUd53IEREnyj/g0z+m0t+sJGNhoYG3r59W+q4+Pj4Yk8kUSZ//PGH0BEqjE2bNuHp06cYO3YsfvzxR3h5eSEwMBC+vr4AgPDwcMyZMwdqamrYunWrwGmFs3PnTqEjVAgeHh6ws7PDyJEjSxy3ZcsWnD59Gjt27JBTMsX27NkzXL58Gc+fPweQt1rU0tJSaVd/0sd5+PAhRowYgaysLAwZMgRt27bFpEmTCoxxdHREpUqVEBISwiIMVSgswhCRTLgctLD/fpDhBxvZGBsb48aNG0hNTYWurm6RYxITE3H79m0WtqhMQkNDYWhoiPHjxxd539bWFlu2bEHPnj2xadMmNr2kEkVERKBu3bqljnv06BEiIyPlkEixvXjxAvPnz8fx48cL9TwRiURwdHTEzJkzUatWLYESUkWybt06ZGRkYMOGDXBwcChyjIaGBszMzJR2ZTFVXMrzaYmIPhqXg1J5cnFxwaxZs+Dl5YU///wTlStXLnA/KysLs2fPRlZWFvr16ydQSqqInj17BltbW2nfifz/z87Olm5/a9CgAdq3b4/g4GAWYahcZGVlKf3JLK9evcKgQYMQHx8PDQ0NWFlZSQtY8fHxuHjxIo4fP47bt2/Dz89PaRsZe3l5yTxWJBJh4cKFnzGNYrtw4QJatGhRbAEmX506dXDv3j05pSIqHyzCEFGJuBxUdly6LpsBAwbgyJEjOHnyJL7++mvpEbk3btzAr7/+irCwMLx48QKdOnVCjx49BE4rf4GBgQAAJycn6OjoSB/LytnZudwzVRQaGhrQ0NCQPs4v8L169arAt++6urq4fPmy3PMJJX+VRsuWLaGpqVnmVRtckVa83Nxc3Lx5U2mLCvlWrFiB+Ph4ODk5YdasWTAwMChwPzk5GfPmzUNISAhWrVqFuXPnCpRUWKU15v3w9C1lL8K8fv1app8979+/R1ZWlhwSEZUfFmGIqERcDio7Ll2XjYqKCjZs2IAlS5Zg9+7dCA4OBgDcu3cP9+7dg5qaGtzd3TF9+nSBkwpj+vTpEIlEaNWqFXR0dKSPS5P/pl2ZizC1atWS9qEAgEaNGgHIW633zTffAMibp5s3bxa7Fe5LNHToUIhEIhw6dAiNGzeWPpaVMp245eHhUeBxWFhYoWv5xGIxHj9+jJcvXyp9w9XQ0FAYGBhg2bJlBQqh+WrUqIGlS5fCyckJJ0+eVNoiTHFfvuTm5uLZs2cICwvD4cOH4enpWeoKkC+dnp4enjx5Uuq4R48ecYsbVTgswhBRibgctPxx6Xpe4e63337D2LFjERERgadPnyI3Nxd16tSBtbU1atasKXREwYwbNw4ikQjVq1cv8JhK16pVKxw+fBjv379HpUqV0KlTJyxYsACLFi2ClpYWateuDR8fH8TFxeHrr78WOq7c5J+wld/omiduFS8iIkL6a5FIhOTkZCQnJxc7Xk1NDY6Ojpg2bZo84ims1NRUODk5FVmAyaehoQFLS0ucOHFCjskUS/v27Uu87+LiAhsbG8yZM0epVxYDgKWlJY4cOYLo6Gi0bt26yDFhYWF4+PAhBg4cKN9wRJ+IRRgiKhGXg5YvLl0vSE9PT7pCgfJMmDChxMdUPCcnJ5w4cQJnz56Fk5MTDA0NMWLECGzcuBE//PADgLyVMDo6Opg6darAaeXnvyds8cSt4uUXCCQSCZycnPD111/j559/LnKsuro69PT0lKohfXEMDQ2Rnp5e6ri3b9/ylKRSDBgwANu2bcPq1auxZcsWoeMIxtPTEyEhIRgzZgxmzpwJR0dH6b38wyJmz54NdXV1DBs2TMCkRGXHfzWIqERcDloyLl0nUhydO3fGhQsXClybPHkyzMzMEBISgtTUVDRu3BgeHh6oX7++QClJkX24pXT8+PEwMzOTaZupsnN2dsb69esRGxsr3Qb4X7Gxsbhw4YK0IErFMzY2Rnh4uNAxBGVhYYFZs2Zh3rx5mDp1KlRVVaXbKoODg5GdnQ0VFRXMnz8fTZo0ETouUZmwCENEJeJy0JJx6frHS0hIQEREBJKSkopdRSUSiXiCDX2yb775hiuuqMyKO+qcChs5ciRu3LiBb7/9FuPHj0evXr2go6MDIG/1y8GDB7F27VrY29tj9OjRAqdVfPHx8RCLxULHEJybmxvMzMywadMmnDt3Du/evUNmZiY0NTVhb2+PsWPHolWrVkLHJCozkUQikQgdgogU140bN+Dm5oaqVatKl4O2bt0aLi4u+P3336XLQVNTUxEYGKh030bEx8cD4NL1shCLxZg9ezb8/f0hkUhQ0j9DIpFIqZqCAsCaNWs++rksWlFZsBBKH6tLly6FrkkkEiQkJEj7DVWtWhUAkJaWJh1Tp04dqKio4Pjx4/IJWsGIxWJs3boVf/31F9q2bYt//vlH6EiCiYmJgYqKCkxMTADkvb5SUlKQm5uL6tWrK31vParYWIQholLt3r0b8+bNQ25uLlRVVSEWi6GhoQGJRFJgOWi/fv2EjiqoNWvWwNTUFE5OTkJHUWirV6/G2rVrUblyZfTt2xdGRkbSo4SLomxbt0xNTSESiUosThVHGYtWRXnw4AH8/Pxw9epVpKSkoEuXLtLiaFRUFG7cuIE+ffqgWrVqwgYVCAuhRevSpQtEIhG2bduG+vXrF1loKI5IJFKqwoKpqeknPT8mJqacklQsxW1XBvJWDD19+hRpaWlQVVXF5s2bYW1tLcd0isXU1FTpC1H05VLur2OJSCZcDiobLl2Xzf79+6GtrQ1/f380bNhQ6DgKZ9GiRUJHqNB27NiBJUuWICcnB0Deh+OUlBTpfYlEgkWLFkFTUxNubm5CxRTUunXrsHfvXpkLocoif2Vj/msn/zEVpqxFlE/14RbmoqipqaFdu3aYMGGCTIcifMl0dXVRu3ZtoWMQfRYswhBRiXJzc6GiooKWLVtizZo1JS4HffnypVKf+vPq1StpU0I9PT3p9fj4eCxbtgx3796FoaEhxo8fjxYtWgiYVFiJiYmwsbFhAaYYyrbypzyFhYVh4cKFMDQ0hJeXFywtLWFjY1NgjKWlJapXr44TJ04obRGGhdCi/bewwEIDlbeSjudWV1dH9erVoa6uLsdEiqt58+Z4+PCh0DGIPgsVoQMQkWKbOXNmgccikQh6enqoUaNGgQLMq1evlP6IwE2bNmHIkCF49eqV9FpGRgbc3d1x6NAh3Lt3D6dPn8bw4cPx9OlTAZMKS19fH5qamkLHoC/Qtm3bUKlSJWzduhVdu3YtUAz9kJmZGR49eiTndIojMTER7dq1YwGGys2aNWtKLDDkO3ny5Cf1varo6tatW+z/DAwMWID5wIgRI3D79m0EBgYKHYWo3HElDBGVaN++fahZsyYmTZpU7JiUlBQMGzYMDx48kF8wBRQREYFGjRrB2NhYem3//v1ITExEp06dMHbsWJw+fRpr166Ft7c3ZsyYIWBa4Tg5OeHw4cPSLW1Ust9//x3W1tZo164ddHV1hY6j0G7cuIFWrVoVe0RuvurVqyMqKko+oRQQC6ElCw8Px9GjR5GQkAANDQ2YmZlhwIABqFOnjtDRFNaaNWvg4uJSah+dkydPYt++fdy+S6VSV1fHwIED4eXlhUOHDqFLly4wNDREpUqVihyv7Nu3qGJhEYaIStS2bVts3LgRNWvWxJAhQwrdzy/A3Lt3r8SGc8rg+fPnhbYZnT59GioqKpg7dy5q1aqFli1b4siRIzh//rxAKYU3adIknD9/HlOmTMH8+fOLXa1Aef755x/4+PhAJBKhWbNmsLKygpWVFdq1ayc9ApbyvH//XqZCVUpKivQEF2XEQmjxZs2ahT179gCAtGFxaGgotm7dijVr1sDW1lbIeBWeWCxW6r97165dw/nz53H//n2kpqZCJBJBV1cXTZs2RYcOHWBhYSF0RIUxdOhQaZP6M2fOICwsrMTxytJAnL4MLMIQUYnWr18Pd3d3LFiwAPr6+vjmm2+k916/fo3vvvsOd+/exbfffotff/1VwKTCe/PmTaEPxVeuXEGzZs1Qq1Yt6bWmTZuW+mbiS+Ll5VXoWqNGjXDixAlcuHABzZs3h6GhYZFvzEUiERYuXCiPmApr+fLliIiIwIULF3D79m3cvn0b3t7eUFFRgZmZmbQo07ZtW2hrawsdV1B16tTBnTt3ShwjFotx7949pd6Kw0Jo0Q4dOgQ/Pz8AQPv27dG8eXOkp6cjPDwcCQkJ+Omnn3DixAml/3v2KZ48eYIqVaoIHUPuHj58iF9//RVXr14FgEInkuX/+9e2bVssWLAADRo0kHtGRePs7KzUBTv6srEIQ0QlqlKlCrZs2QI3Nzf8/PPPqF69OqysrJCamorvvvsOMTExGDx4MH777TehowquRo0aSExMlD6+e/cuXr9+jV69ehUYp6KiXO24AgICir339u3bEk+LYBEG6N69O7p37w4AePHiBS5evIjz58/j4sWLuHHjBm7cuIGtW7dCVVUVFhYW8PX1FTixcOzt7fHPP/9gz549cHV1LXKMj48PXrx4gQEDBsg5nXBYCJXN3r17IRKJMG/evAKvn8zMTIwdOxbnzp3DiRMn0Lt3bwFTKo7/9naJiYkptt+LWCzGgwcPcPnyZdjZ2ckjnsLI/6IqLS0NIpEIzZs3h5mZGapXry497ODWrVu4ffs2IiMjMXDgQPj4+KBJkyZCRxfUH3/8IXQEos9GJPlvKZaIqAgPHjyAu7s7cnNzsWrVKvz555+4desWBg4ciHnz5gkdTyGMGjUK4eHh2L17NywsLODl5YXAwEBs2LABDg4O0nEDBgxAeno6jhw5ImBa+SntSM7StG/fvpySfHni4+OxY8cO+Pr6IjMzEyKRSKmXZCclJaF379548+YNBg4ciK5du8LT0xNOTk4YPnw4jh07Bh8fH1SrVg0HDhxA9erVhY4sF6amph/9XGV6TXXo0AEGBgbYv39/oXu3b9+Gi4sLvvvuO/zyyy8CpFM8pqam0u0i+f9fmho1amDz5s2f9JqsaJydnRETEwMbGxvMmjWr2J5VDx8+xLx586SF0X379sk3KBHJDYswRCSz6OhoDB8+HJmZmZBIJOjXr5/SfEMqi/DwcHh6ekJFRQVVqlRBWloaGjRogODgYKip5S08TE1Nha2tLbp27Yrly5cLnJgqokePHuHixYu4cOECIiIikJKSAolEAk1NTbRp0wbbt28XOqKgrl27hnHjxuHFixeFVnZIJBLUrFkT69evV6reCyyEysbc3Bzdu3fHX3/9VehednY2WrRogQEDBuD3338XIJ3iyV/lKJFI8Ouvv8LS0rLYFWbq6uowMDBA69atoaGhIc+Ygjp37hy+//57tG/fHt7e3qVur8nNzcWwYcNw6dIlbN26FR06dJBTUsXw7t07bNy4sVBj7G+//RZff/210PGIyg23IxGRzFq3bo2VK1di3Lhx6N27Nwsw/2Fra4s5c+Zg06ZNSElJgaWlJWbPni0twAB5pyXl5OTAyspKwKRUkSQkJODChQu4cOECLl68iKSkJEgkEqipqaFVq1YYNGgQrK2tle7DTXHym1/v27cP4eHhePr0KXJzc1GnTh3Y2trCzc1N6RoaK0sR5VPl5uYW+3co/+hgsVgsz0gKzcXFRfrrgIAA2NvbF7hGwNGjRyESieDl5SVTfxMVFRVMnz4d/fv3R0hIiFIVYbKysjB06FDcunVLuqoqKysLkZGRuHTpEiZPnoxRo0YJnJKofHAlDBEVYGZm9tHPFYlEuHXrVjmm+fK8f/8e2dnZ0NbWhqqqqtBxBPHs2TNcvHgRrVq1QuPGjYsc8/DhQ1y7dg3W1taoXbu2nBMqlvy/k6qqqjA3N4eVlRWsra1haWlZ7FGdRFR2pqamcHFxwaJFiz7qPtF/DRgwAK9evcLJkyfL9DxHR0fo6+tLT+pSBn///Tf++usv6OjoYPjw4dLG2CdOnMCRI0egpqaGEydOFDjogKii4koYIiqgTp06Qkf4olWqVEnpPzh7e3vD29sbhw8fLnZM/reBnp6emDZtmhzTKZ7870oaNWoEa2traQGGRwvTx2IhtHhhYWHw8PAo832RSARvb+/PGa3CiImJwbVr15CSkgJjY2N06dIFQN6qhqysLKVaifbs2TO0aNGizM8zMTHB9evXP0MixRUSEgI1NTXs2LED5ubm0uu9e/fG4sWLsX37dhw/fhxDhgwRMCVR+WARhogKKOu3NVS0y5cv49KlS3j+/DkAoFatWmjbti3atm0rcDLhhYeHw8TEpNjmhEBewcHExARnz55V+iLM/PnzpVuRNm3ahL///hvq6upo1aqVdFVM69atC2x7o/+RSCQ4c+YMHj58CC0tLdjZ2aFu3bpCxxIUC6HFS05ORnJycpnv8yhdIDY2FtOnT5cewwzkNaXNL8IEBQVh5syZ2LRpk9KckJSeno6qVauW+XlVq1ZFenr6Z0ikuB4+fIjWrVsXKMDkGzJkCLZt24ZHjx4JkIyo/PEdGxFRObp//z5+/vln6Wki+asY8t+gm5mZYfHixWjatKlgGYWWkJAAW1vbUsc1atQIFy5ckEMixebq6io9LvfBgwfSgkxkZCQiIyOxdu1aVKpUCV999RU6dOiAESNGCJxYvrKysvDvv/8iMjISOTk5MDY2xuDBg1G3bl0kJyfD09MTd+/elY5XVVWFl5eXUn+bykJo0bjN6OMlJibi22+/RXJyMjp37ox27dphyZIlBcZ0794dc+fOxbFjx5SmCJOZmflRW49VVVWRlZX1GRIprrdv36JevXpF3ssvnL97906ekYg+GxZhiIjKyZMnTzBkyBCkpqZCX18fXbt2lb5xiI+Px/Hjx3Hr1i18++232Lt3L+rXry9wYmHk5ubKPDYzM/MzJql4mjRpgiZNmkgLCDExMQgICICvry/Cw8Nx/vx5pSrCZGZm4ttvv8WNGzekBc9Tp05hz5492L17N+bNm4c7d+5AT08PdevWxdOnT5GSkoIFCxagRYsWaNmypcB/AmGwEFo0NpX9eOvWrUNycjLmzp0LNzc3AChUhKlcuTLMzMwQHR0tQEKqCIpbUZZ/na1M6UvBIgwRlcmbN2+Qnp5e7D+EhoaGck6kOFasWIHU1FR8++23mDZtWqGeHb/++iuWLFmCf/75BytWrCjyGFRlULduXURHR0MsFhf7DaFYLEZ0dLRS9aKQ1cuXL6VHVF+4cAFPnjwptOJKWXh7e+P69evQ19eHm5sb9PX1cf36dQQFBWH+/Pk4f/48xo4diwkTJkAkEkEikWDFihXYuHEj/vnnn0IfEpUFC6FU3s6cOQMTExNpAaY4devWxblz5+SUSjGU1meoKA8fPvxMaYhIEbAIQ0SlSklJwcqVKxESEoKUlJRixyn76Ujnzp1Dw4YNMWPGjCI/DGtoaGDGjBkICwtTujehH7Kzs8P27duxZs0aTJw4scgxa9euxYsXLzB06FA5p1M8aWlpiIiIkBZdHjx4ACDvG0GRSARTU1NYWVnBysoK7dq1EzitfB05cgQaGhrw8/Mr0OfFyMgIy5YtQ926daUFGCDvZ9TEiRNx4MABXL58WajYgmMhlMrbixcv0KpVq1LHicViZGRkyCGR4iitz1BxlK2oDgCBgYEIDAws8p5IJCr2vrK//6SKh0UYIipRSkoKXF1dER8fj5o1a0JPTw8vX75E69atERcXh1evXkEkErExKICMjAzY2NiU+MZJJBLBwsICJ06ckGMyxfL999/D398fGzZswM2bN9GvXz9pb4rY2FgEBATgzJkzqFq1Kjw9PYUNqwCsrKwA/K/oYmxsLG3I265dO+jq6gqcUDixsbGwtLQs1Gi3b9++WLZsGUxMTAr9fVRRUUGzZs0QHh4uz6gKhYXQoq1Zs+ajnysSiTBu3LhyTFOxVK1aFYmJiaWOi4uLg76+vhwSKQb2GSqbj91uxG1KVNEo9ycmIirVpk2b8PTpU4wdOxY//vgjvLy8EBgYCF9fXwB5DR7nzJkDNTU1bN26VeC0wmrYsCFevnxZ6riXL1+iQYMGckikmGrWrImNGzdi3LhxOHPmDMLCwgrcl0gk0NfXx+rVq1GrVi2BUiqO/KOprays0L59e+jp6QkdSWG8e/euyNeIgYEBAKBatWpFPq9atWrIzs7+nNEUGguhRVuzZo1021pZKXsRpmXLljh79iwePHiAJk2aFDnm2rVriImJQa9eveScTjjsMyQ7Zf5yipQPizBEVKLQ0FAYGhpi/PjxRd63tbXFli1b0LNnT2zatEmp34S6ublhwYIFiI6ORuvWrYscEx0djcjISPz666/yDadgWrdujaNHj2L37t04d+4cnj17BgCoU6cObG1t4erqiipVqgicUjGUdIwwFb1kXxmX8ZcFC6FF46qFj+fh4YFTp05h3LhxWLJkSaGm1zExMfj555+hoqKiVKurSHb/XdFI9CVjEYaISvTs2TPY2tpCRUUFAKT/n52dDXV1dQBAgwYN0L59ewQHByt1Ecbd3R2xsbH4/vvvMWTIEPTq1Uv6piIhIQEHDx6Ej48PhgwZotTH4+7YsQNaWlpwdXWFp6enUn3TTqQoWAgtjKsWPp6NjQ1++OEHbNiwAW5ubqhZsyZEIhFOnToFJycnxMfHQyKRYOLEiTL1jiEi+pKxCENEJdLQ0ICGhob0ceXKlQEAr169KvANqa6urlI3ugQAMzMzAHnfIm/evBmbN28uNEYikWDnzp3YuXNngevK1FTujz/+gL29PVxdXYWOUiHxhLKCYmJiiu3lUdy927dvf+5YCo2FUPocJk2aBHNzc6xfv176dywlJQUpKSkwNjbG+PHj8c033wicUr7YZ4iIisIiDBGVqFatWnj+/Ln0cX7fgCtXrkjfTEkkEty8eVOpG4QCed8gU+n09PSgra0tdIwKhSeUFS8mJgYxMTFF3rt9+3aR9/KbHCsrFkLpc+nWrRu6deuGV69e4enTp5BIJKhdu3aBL20yMjKgpaUlYEr5YZ+hT/P69Wv4+PggIiICSUlJyMrKKnKcSCTC8ePH5ZyO6OOxCENEJWrVqhUOHz6M9+/fo1KlSujUqRMWLFiARYsWQUtLC7Vr14aPjw/i4uLw9ddfCx1XUCdPnhQ6QoVgbW2NqKioEo/Hpf/hCWXF4/aRj8NCaNG8vLw++rkikQgLFy4sxzQVy+rVqzFhwgTpYz09vSKbiGdkZGDUqFGFVoN+qdhn6OPFxcXB3d0dL1++5OlH9MURSfiqJqIShIaGwsvLC7///jucnJwAAMuXL8fGjRul3yRLJBLo6OggICAA9evXFzIuVQBPnjxB//798c0338DLy0tpvhH9WIsXL8a2bdsKnVCWv9w//4Sy2rVrY+vWrdJeTUTF+emnnxAVFYVjx46xEPoBU1PTj36uSCRS6m1upqammDt3Ltzc3Iodk5mZiREjRuDSpUtKPVckmx9//BEhISHo3Lkzxo4dCyMjI+mWeKKKjkUYIvooR44cQUhICFJTU9G4cWN4eHgo9bHLJLs1a9bg0aNHOHToEKpVqwYbGxsYGhpCU1Oz0Fguxwa++eYbZGVl4fjx41BRUSlUhAHyvjHs2bMnfvjhB6WfLyodC6FFi4iI+KTnt2/fvpySVDw9e/ZEbGwsVq5cKf3C5kOZmZkYPXo0Lly4gG7dumHVqlUCpKSKxMrKClWrVsXhw4eVbpUnfflYhCEi+kgJCQkA8vrmqKqqSh/LStkaqOYzNTWVeY+8sn+7DORtCbS1tcW6desAADNmzIC/vz+uXbtWYNWLp6cnnj17hkOHDgkVVeFkZWXh9evX0NDQQLVq1YSOozBYCKXy9vz5c7i5ueH169fYsmUL2rZtK72XmZmJMWPG4Ny5c+jatStWrFjBFVhUqtatW6Nz585Yvny50FGIyh3LikREH8nR0REqKioIDg5G48aN4ejoKHOzT2VsoJqPe+TLhieUlZ2fnx/+/fdf3L17F7m5uXB2dpa+7o4ePYoDBw5g2rRpaNiwocBJhfFhs9CUlBQEBwcXO5ZFGJJF7dq1sWXLFri7u2PcuHHYuXMnTExMkJWVhbFjx+LcuXNwdHRUugIM+wx9vCZNmpTYiJ6oImMRhojoI7Vr1w4ApEv58x9TycrSTPX8+fOfMUnFwBPKZJebm4tJkybh2LFjUFNTg5GREe7du1dgTLNmzTBx4kRYWFjghx9+ECipsFgIpc/B2NgY69evh6enJ0aOHInt27djwYIFCA8PR6dOnbBq1SqlKsAAQEBAwEc/V9mLMEOHDsVvv/2Gu3fvwsTEROg4ROWK25GIqIAuXbp89HN5RCCVh8ePHyMgIABBQUF4/vy50q4YyjdjxgwcPnwY586dQ6VKlZCQkICuXbuiRo0amDdvnvSEsj179uDrr7/GihUrhI4sGB8fH8yfPx8dO3bEokWLULNmTZiamsLFxaVA4aFr166oWbMmdu3aJWBaqiiuXbuGo0ePIjY2Funp6UVupRSJRPD29hYgneI5fvw4Jk6cCJFIhJycHNjZ2WHt2rUFVvQpC/YZ+jTLly+Hn58fJk6cCHt7e6Xdxk1fHq6EIaIC4uPjZe7X8V+ybsVRdnFxcXj37t0nncTxpUlPT8ehQ4fg7++Pq1evAshb3aGvry9wMuE5OTnhxIkTOHv2LJycnGBoaIgRI0Zg48aN0pUc+SeUTZ06VeC0wtq3bx/09PSwYsUK6OjoFDuuadOmSl/cI9nMnz8fu3btkv6b+N9/H/Mf89+//3FycsKcOXMwc+ZM2NraKm0BBmARpSzMzMyKvC6RSDB37twSn6vMW7ypYmIRhoiKZGFhAWdnZ3To0IFvLsvZtGnTcP36daV/wyCRSBAWFobAwECcPHkSmZmZkEgk0NbWhpOTE3r37g0bGxuhYwquc+fOuHDhQoFrkydPhpmZWaETypT9iPhHjx7B2tq6xAIMAGhra+Ply5dySkUVVUBAAHx8fGBmZoZp06bB19cXx44dw5EjR/D48WMEBQXh0KFDGD16NAYOHCh0XLmSZdWsmpoa7t27h+7duxe4zlWzVJQ6deoIHYFIbliEIaICZs6cicDAQFy/fh03b96EgYEB+vTpg759+8LY2FjoeF8MZd4Jev/+fQQEBODAgQN48eIFJBIJVFRUoK6ujuzsbJw/f77IU1qooG+++UbaE4by5G9/KM3z58+hra0th0SKLTExESdOnCh1m42y9qXYs2cPNDU1sXnzZujr6+PAgQMA8voyNWrUCA4ODrCxscFvv/2Gtm3bom7dugInlp/4+HiZxiUlJX3mJPSlOHnypNARiOSGRRgiKmDIkCEYMmQIHj58iICAABw8eBB///03Nm/eDHNzc7i4uKBnz56oXr260FGpAnn9+jWCg4Ph7+8vXQEkkUhgbGwsLfJNnjwZV65cYQHmP9q3b4+mTZvCx8dH6CgKr3Hjxrh16xbev3+PSpUqFTkmNTUVt2/fhrm5uZzTKZatW7di2bJlEIvF0msfbrnJf6zMRZh79+6hTZs2hbZFfrj9qH///ti+fTs2b94MOzs7IWIKIiYmRugIFRr7DBEpNxZhiKhIRkZGmDp1KqZMmYILFy4gICAAx44dw++//44//vgD9vb26Nu3LxwdHaGuri50XFJgEyZMwKlTp5CTkwOJRILq1aujZ8+ecHZ2hoWFhdDxFF52djZq164tdIwKoXv37li6dCkWLlyIOXPmQEVFpdCYxYsX4927d+jVq5cACRVDaGgolixZgjp16mDs2LE4cuQIzp07hy1btiA2NhYHDx7ElStX4OnpCQcHB6HjCiYzM7NAASa/sPfmzRtUrVpVet3ExARhYWFyz0cVE/sMEVHhdydERB8QiUTo0KEDlixZgvDwcCxatAiWlpY4deoUJk2ahB49eggdkRTcsWPHkJOTAwMDA6xevRphYWH47bffWICRUePGjdm/REZDhw6FmZkZ9uzZA2dnZyxfvhxAXq+YtWvXol+/fvD390fLli3Rv39/gdMKZ+fOnVBTU4O3tzdcXV1hYGAAALC1tcWQIUPw77//Yvz48fD29i52RZEyqFmzJl69eiV9nD9PDx8+LDAuOTkZubm5cs1GFVN+nyFTU1Ns3boV3bp1AwAcOXIEGzduRM+ePQEAo0ePVvq+OadPn4aHh0ehnmgfOn/+PDw8PHD27Fk5JiP6dCzCEJHMtLW14eLiggkTJsDW1hYSiQTp6elCxyIFp6qqColEgqSkJMydOxdLly7lUvYyGDBgAC5dusQ5k4Gmpia2bt0KBwcH3L17Fxs3bgQAREdHY/Xq1bh16xYcHBywadMmqKkp72LgmzdvonXr1mjQoEGxY8aNG4c6depg/fr1ckymWIyMjPD48WPp47Zt20IikWDz5s3SlQsRERGIjIyEkZGRUDEVQlxcHA4cOICnT58WuH79+nUMGjQIbdq0Qa9evZS+78eHfYZsbGxQuXJlAJD2GPrrr7/w+++/Y9OmTYWKfcpm7969uHnzJlq2bFnsmFatWuHGjRvYt2+fHJMRfTrlfQdCRGXy5MkT7N+/H0FBQXjy5Im0n8eAAQOEjkYK7syZMwgKCkJgYCDu3LmD7du3w9vbG02bNoWLiwt69eqFmjVrCh1TYbm7u+PevXsYNmwYRo4ciS5duqBu3bpKe+RraapXr44NGzYgJiYG4eHhePr0KXJzc1GnTh3Y2tqiRYsWQkcU3Lt371CrVi3p4/zXUnp6uvRkKZFIhBYtWuD8+fOCZFQEDg4OCAsLQ3R0NFq3bo127dqhZcuWOHHiBOzs7GBgYIC7d+9CIpHgu+++EzquoLZu3Yrdu3cXWL3x+vVreHp6Ii0tDUBeU/Yff/wR/v7+MDExESqqoNhnSHY3b96EqalpiU3UtbW1YWZmhmvXrskxGdGnYxGGiIqVnp6OQ4cOITAwEFeuXJH28xgyZAj7eQDw8vL6qOfFxcWVcxLFpq+vj++++w7fffcdYmJi4O/vj+DgYNy9exdLlizBX3/9BWtrazx//lzoqArJzMwMQN6b9L/++gt//fVXsWNFIpHSH32ez9TUFKampkLHUEg1atTA69evCzwG8n42fdiwOC0tDe/fv5d3PIXRp08f1KtXr8AH5nXr1mHGjBkICwtDcnIyqlatitGjRxc6hlnZXL58GSYmJgVOiAoICEBaWhpcXV0xefJkhIaGYsaMGdi+fbvSNntmnyHZJScno02bNqWOq127Nm7cuCGHRETlh0UYIiogNzcXZ86cQWBgIEJDQ5GZmQl1dXV07doVffv2hYODg1Iv4/9QQEBAoYZ6slLWhnumpqb49ddf8csvv+DMmTMICAhAaGiodD+3SCSCl5cXevXqBRsbG6Wdpw/VqVNH6Aj0hWnQoEGBbSOtWrWCRCKBr68v5s2bBwB48OABLl68iCZNmggVU3BVq1ZFp06dClyrUaMGNm7ciIyMDLx58wY1atQosgG0snnx4kWhD8xnz56FmpoafvrpJ+jq6qJ///7w8fFBVFSUQCmFV1KfodatW0uvs88QoKWlVWCuivPq1SseEEEVDj9JEVEBdnZ20n/0WrVqBWdnZ/To0aPANzSUZ/z48UJHqLBUVVXRuXNndO7cGampqTh48CD279+Pa9euISAgAIGBgdDX10fPnj0/esXRl0LZeyiUxYEDB7BixQrMmTOn2GX8YWFhmDNnDqZOnaq0jcU7duyIv/76C3fv3oWJiQlsbGzQsGFD7NmzB7du3UKdOnVw/vx55OTkwM3NTei4CklLSwtaWlpCx1AY7969K7BtRCKRIDo6GhYWFtDV1ZVeb9SoEUJDQ4WIqBCMjIzw4MED6eMP+wytXr0aIpFI2mdI2VcbN2vWDFFRUUhMTCywffJDiYmJuHz5MreZUoXDIgwRFfDy5UuIRCKYm5ujbt26iIyMRGRkpMzPL2mrxJeGRZjyoauriyFDhmDIkCF4+PAhAgICcODAATx//hw7duxQ+iIMyS4oKAhv376FtbV1sWOsrKyQnp6OoKAgpS3C9OnTB9ra2tJVfGpqali3bh0mTpyIGzdu4MaNG1BRUcHgwYMxePBggdMqhmfPnuHy5cvSbZO1atWCpaUlDA0NBU6mGAwMDApstb1+/Trevn0LS0vLAuPEYrFSr1pgnyHZ9e3bFxERERg3bhzWrl1bqBCTmJiIcePGITs7G3379hUoJdHHEUk+Zh09EX2xPqWHgkgkwu3bt8sxDSkriUSCc+fOITAwEH/++afQcaiCcHBwQKNGjeDt7V3iuGHDhiEuLk6pv5EvzsOHD5GamoqGDRtCT09P6DiCe/HiBebPn4/jx48X2noqEong6OiImTNnFvtNvbKYOHEiQkJCsHLlStjY2OCnn37C6dOn4e3tjfbt20vH9enTB7m5uTh48KCAaYWTlpaGqKgoNGnSBPXr1weQt/Uov89Qbm6utM+Qp6enwGmFlZubC09PT5w/fx4aGhro0KEDGjVqBACIjY3F+fPnkZWVBSsrK2zbto3bAqlCYRGGiAoICAj4pOe7uLiUU5KKx8vLC4MHDy7xOEWi0uTm5sLV1RXx8fFYt24dvvrqqxLHR0VFYezYsWjUqBF8fX3llFIxtWjRAl9//TWWLl1a4ripU6fi2LFjPFGDSvTq1Svp30UNDQ1YWVlJG8/Gx8fj4sWLyMrKQt26deHn51foxBtlcu3aNQwePFjax0QikcDCwgJ79+6VjklKSoKDgwP69u2LP/74Q6ioCot9hgrLzMzEggUL4O/vj5ycnAL31NTU0K9fP/z666/SBsdEFQW3IxFRAcpcRPlU+b1MzMzMMGjQIPTq1avEoxWJihISEoKbN2/Cw8Oj1AIMAHz11VdwdnaGt7c3Tpw4gS5dusghpWKqUqUKnj17Vuq4xMRE9vOgUq1YsQLx8fFwcnLCrFmzpE1U8yUnJ2PevHkICQnBqlWrMHfuXIGSCq9ly5ZYt24dNm/ejJSUFDRv3hxTpkwpMObQoUPQ0dGBra2tQCkVG/sMFaapqYl58+ZhwoQJiIiIQEJCAgDA0NAQVlZW0pPdiCoaroQhIionPj4+8PX1xb179yASiaCtrY0+ffrAzc2NR+WSzCZNmoRjx47hzJkzMn+z/urVK9jZ2eGbb75Rqr5M/zVy5EicP38e+/fvL/ZUnwcPHqBPnz6wtrbGli1b5JxQGIGBgZ/0fGdn53LJUdHY2dlBJBLh+PHj0NDQKHJMVlYWnJycIJFIlP5IYSob9hkiUl4swhCRzFJTU3Hjxg2kpKTA0NBQpm/plVF0dDR8fX1x5MgRvH//HiKRCK1atcKgQYPQo0ePYt/MEwFAly5doK+vDz8/vzI9z83NDS9fvsTx48c/UzLFd+zYMUyYMAENGjTA0qVLC20NvH79OqZOnYonT55g2bJl6N69u0BJ5cvU1PSTjntX1l5fLVu2hJOTE5YtW1biuMmTJ+PEiRPc3kYyYZ8hIuJ2JCIq1atXr7BgwQIcPXoUYrEYQN43o/lFGD8/PyxduhTr1q1D27ZthYyqEFq3bo3WrVtjxowZCAgIgJ+fH6Kjo3H16lUsWrQIzs7OcHNzg5GRkdBRSQElJyejVatWZX5e3bp1ERMT8xkSVRxdu3ZF7969ceDAAbi5uaFJkyYFGjk+ePAAEokEPXv2VJoCzIeaN2+OBg0aCB2jwjA0NER6enqp496+fcvVCySTV69eYdCgQSX2GTp+/Dhu376t9H2G8iUkJCAiIgJJSUnIysoqcoxIJMK4cePknIzo47EIQ0QlSktLg7u7O2JjY2FqagpLS0v4+PgUGOPk5IS5c+fi2LFjLMJ8oEqVKvDw8ICHhweioqLg4+OD4OBg7NixAzt27EC7du3g4eEBJycnoaOSAlFRUSnUgFAWOTk5bOYIYMmSJWjatCm2bNmC+/fv4/79+9J7urq68PT0xMiRIwVMKH81atRAcnIybt68CXV1dTg7O6NHjx6oUqWK0NEUmrOzM9avX4/Y2FhpMe+/YmNjceHCBfzwww/yDaegDh06hJCQEMTGxiI9Pb3QSg8A0i1eyoh9hmQnFosxe/Zs+Pv7QyKRFPlaysciDFU03I5ERCVasmQJtm7ditGjR2PSpEkQiUQwNTWFi4sLFi1aJB3n4uICkUgEf39/AdMqpsTERPj5+WHv3r1ITEwEkPdhMDU1VbpVafXq1ahZs6bASUkRODk5QUtLCwcOHCjT83r37o2MjAyl/XDzX9nZ2bh582aBRo7NmzeHurq6wMnkLzc3F2FhYQgMDMTJkyeRlZUFDQ0NdO7cGc7OzrCzs4OqqqrQMRWOWCzGxIkTER0djfHjx6NXr17Q0dEBkLf65eDBg1i7di1atmyJlStXKvUcisVijB8/HqdOnSr2w7JIJJLeU9ZVe+wzJLvVq1dj7dq1qFy5Mvr27QsjIyNUrly52PE8WIIqEq6EIaISHT9+HA0bNsTkyZNLHNegQQNERkbKKVXFcPr0afj6+iIsLAw5OTmoVKkS+vfvD3d3dzRv3hxnz57F+vXrcfnyZfz+++9YuXKl0JFJAbRq1QqHDh3CnTt30KxZM5meExMTg3v37qFXr16fOV3Foa6uLt0aqOxUVFTg4OAABwcHpKen49ChQwgMDMSRI0dw9OhR6OnpoVevXujbty/Mzc2FjiuYok4Wk0gkSE5Oxty5czF37lxUrVoVQN4q0Xy3bt3C119/rdQF0J07dyI0NBT29vaYMWMG1q1bh6CgIFy7dg1xcXEICgrC9u3bMXz48FLfT3zJUlNT4eTkVGJvOA0NDVhaWuLEiRNyTKZ49u/fD21tbfj7+6Nhw4ZCxyEqVyzCEFGJnj17BkdHx1LHqaio4M2bN3JIpNhevHiBvXv3Ys+ePXj27BkkEgkaNWqEQYMGoX///gWW/3fs2BG2trbo168fzp8/L2BqUiS9e/dGcHAwfvvtN+zYsaPUI0szMjLw22+/QSQSoXfv3nJKSRWVjo4OBg4ciIEDB+LJkycIDAzE/v374e3tjR07dsDY2Biurq7w8PAQOqrcxcfHF3svfwVHampqoXv5q62U2cGDB1GlShUsW7YMOjo60q2R6urqaNKkCSZPngxLS0uMHj0axsbGSvuzin2GZJeYmAgbGxsWYOiLxCIMEZVIW1sbr169KnXckydPUK1atc8fSIFNmDABoaGhEIvFUFFRQZcuXeDu7g4bG5tin5O/vUtZl2ZTYZ06dYK1tTUuXLgAV1dXTJ8+HR07dixybFhYGBYvXowHDx7A2toaDg4Ock6rmC5duoSLFy+W2shx4cKFck6mWOrXr48JEyZgwoQJuHTpEjZu3IiwsDCsX79eKYsw/Dn88R4+fIg2bdpIt2vlE4vF0m1a9vb2aNGiBXx8fJS2CMM+Q7LT19eHpqam0DGIPgsWYYioRObm5oiOjkZiYmKxxyU+fPgQMTEx6NSpk3zDKZhjx46hRo0acHV1xaBBg2Q+XrJr167S0xGIgLzmjUOHDsW9e/cwcuRI6OrqwtzcHNWrVwcApKSk4Pbt23j9+jUkEglMTEywYsUKYUMrgLdv32LChAk4f/58iU0cARZh8mVkZODo0aPYv38/IiIiAKDEvgtERcnNzS3wRUz+Cr60tDTpzy0gr/B36tQpOadTHCNHjsSNGzfw7bfflthnyN7eHqNHjxY4rbCcnJxw+PBhZGZmshhDXxwWYYioRAMHDsT58+cxceJErFy5slBh4eXLl/Dy8oJYLIabm5tAKRXDsmXL0K1bN6iple1Hq6Ojo0xbvkh5VKtWDXv27MHy5cvh5+eH169f49y5c4XGaWlpYeDAgZg8eTIqVaokQFLFsmLFCpw7dw5169aFu7t7qY0cldn58+cRGBiIY8eOISMjA6qqqrCzs0Pfvn2L7I1CVBIDAwMkJSVJH+dvpblz5w6sra2l1+Pj48v8b2RFxj5DH2/SpEk4f/48pkyZgvnz50NPT0/oSETlhqcjEVGpfvnlF+zfvx/q6upo3rw5oqOjUbduXdSrVw9Xr17F+/fvMXDgQMybN0/oqERfnDdv3uDChQu4desWUlJSAADVq1eHubk5rK2teczwBxwcHJCZmYng4GDo6+sLHUfhPHjwAIGBgThw4AASExMhkUhgZmYGZ2dn9O7dmx9yivHgwQP4+fnh6tWrSElJQZcuXfDzzz8DAKKionDjxg306dNHqbfkTpgwAVeuXMHZs2cBANevX4erqyvatm2LDRs2QEdHB0FBQfj555/Rrl077Ny5U+DE8mFqavpJz1fmLXJeXl548+YNjh8/jsqVK6N58+YwNDSESCQqNJYrG6miYRGGiGSybds2bNq0SfohMJ+uri5GjRoFT09PgZIREeVp0aIF7O3tsXbtWqGjKJSdO3ciMDAQt27dgkQiQc2aNdG7d284OzvDxMRE6HgKbceOHViyZAlycnIA5H3Yc3Z2xqJFiwAAly9fxrfffos5c+Yo9WrQPXv2YObMmdi2bRs6dOgAABg9ejROnz4NNTU1VK5cWbrSY9u2bQVWxxAVpSwFLJFIhNu3b3/GNETli0UYIpKZWCzGrVu38PTpU0gkEtSuXRstWrSAurq60NEE8SmNK0UiEby9vcsxDX2pAgMD0aNHjxKPNKU83bp1g7GxMdatWyd0FIViamoKkUgEc3NzODs7w8bGRnp6jSwaN278GdMprrCwMIwcORKGhobw8vKCpaUlbGxs4OLiIi3CAICNjQ0sLCywadMmAdMKKzMzE3FxcdDX15euqHr37h2WLl2KkJAQvH79GkZGRhgzZgy6d+8ucFqqCPJ7VMmqffv2nykJUfljEYaI6CN9yjJjfmtDsjI1NUW1atXg7OwMNzc3pf1ALItVq1Zh586dOHHihLTPAv2vCPMxRCIRbt26Vc6JKobvv/8eUVFRCAwMlJ5kY2pqWqgI4+npibi4OBw7dkygpFRRrFmzBmZmZqX2XTp58iRu3bqF8ePHyykZEcmT8nTGIqKP4uHhgcGDB6Nr165K1UxPFidOnBA6AimBbt264eTJk9i+fTu8vb3Rvn17DBo0iH8ni/DDDz8gMjISo0aNwoIFC9CkSROhIymE/CapVDY3btxAq1atij1KOF/16tURFRUln1AVTHp6Oh4/fgwtLS0YGRkJHUdwa9asgYuLi0xFmH379rEIQ/SF4rs3IipRREQEIiMjoa+vj/79+2PgwIE8Tvn/cR5IHlatWoWXL19i79698PPzw8WLFxEREQE9PT3p38l69eoJHVMhjBgxAjk5OYiOjkbv3r1Rp06dEhs5KsuWwJMnTwodoUJ6//49dHV1Sx2XkpLy0SuNKrqYmBhERERALBbDyMgI9vb2EIlEyM7OxqJFi+Dn5wexWAwAaNiwIRYvXoxWrVoJnFrxicVipX1N/ZdYLMapU6dw7do1pKSkoGXLlhgwYAAAIDExESkpKTA2NuaXElSh8NVKRCXasGEDfH19ERYWho0bN+Lvv/9Gx44dMWjQIHTq1KlMfQWI6OPo6+tj9OjRGD16NMLCwrB7926cOnUKmzZtwubNm2Fra4tBgwahc+fOSv138sMeArm5uYiPj0d8fHyRY/kBh0pTp04d3Llzp8QxYrEY9+7dQ8OGDeWUSnHMnz8fu3btKnDN3Nwc3t7eWL58eaF7sbGxGDFiBA4ePIhatWrJM2qF8+TJE558h7zTx3766Sc8e/YMEolEWuDLL8JcuXIFkydPxqpVq9C1a1eB0xLJjkUYIipRp06d0KlTJyQmJsLPzw/79u3DmTNnEBYWBgMDA7i6usLV1ZVvqD6QlZWFI0eO4NKlS3j+/DkAoFatWmjbti2++eYbaGpqCpyQKjI7OzvY2dnhxYsX2Lt3L/bs2YOzZ8/i7Nmz0r+TgwYNQo0aNYSOKnfcIkjlyd7eHv/88w/27NkDV1fXIsf4+PjgxYsX0g+FyiI4OBg+Pj4QiUSwtLSEnp4ebt++jVu3bmHFihXYvXs37Ozs8PPPP6N+/fqIi4vD4sWLER4ejm3btmH69OlC/xHkZs2aNQUex8TEFLqWTywW48GDB7h8+TLs7OzkEU9hPXz4ECNGjEBWVhaGDBmCtm3bYtKkSQXGODo6olKlSggJCWERhioUNuYlojLJzc1FaGgodu/ejbNnzyI3Nxdqamro1KkTBg0ahI4dOwodUVAXL17Ezz//jKSkJPz3x6tIJELNmjWxePFi6RGeRJ/i4sWL2LVrF44ePVrguqamJjw8PDBp0iSoqqoKlI6oYktKSkLv3r3x5s0bDBw4EF27doWnpyecnJwwfPhwHDt2DD4+PqhWrRoOHDiA6tWrCx1ZboYNG4aIiAhs2LABDg4OAPIKCL/88guCg4NRtWpVnDx5EpUrV5Y+Jz09HV26dIGBgQEOHDggVHS5y2+Mnb+SQ5aPXjVq1MDmzZs/6QCAiu6nn35CcHBwgddYUY2x3d3dkZqaiuDgYKGiEpUZizBE9NGePXuGzZs3S78NA4B69erh22+/xaBBg5Ruxcft27fh5uaGrKwsmJiYoHfv3tK+MfHx8Th48CDu3LkDTU1N+Pr6wszMTODEVBGlpqYiICAAu3fvRmxsLCQSCRo2bIhBgwahQ4cOOHToEHbv3o20tDR8//33mDZtmtCRSWCf8rNGmU9HAoBr165h3LhxePHiRaEtbBKJBDVr1sT69ethYWEhUEJhWFlZoWHDhvDz8ytw/cGDB+jZsydsbW2xZcuWQs/z9PREVFQUrly5Iq+oggsICACQ93r59ddfYWlpWezKKXV1dRgYGKB169bQ0NCQZ0yF07FjRxgaGhZ4jRVVhJk6dSrOnDmDyMhIIWISfRRuRyKijxIdHQ1fX18cOXIEAKCqqoqmTZvi9u3b+OOPP/DPP/9g48aNSnUawsqVK5GVlYWffvoJI0aMKHR/5MiR2LJlC/7880+sXLkSGzZsECAlVVSXL1+Gr68vQkJCkJWVBRUVFXTu3Bnu7u4FVqCZmppi2LBh6NevH4KCgliEIdSpU6fI6wkJCdJf5x/pnZaWJr3GU5WAli1b4siRI9i3bx/Cw8Px9OlT5Obmok6dOrC1tYWbmxt0dHSEjil3aWlpqF+/fqHrDRo0AAAYGBgU+byaNWvi/fv3nzWbonFxcZH+OiAgAPb29gWuUdFev36Ndu3alTru/fv3yMrKkkMiovLDIgwRySw9PR379+/H7t27ce/ePUgkEtSuXRsDBw7EwIEDUaNGDTx69Ahr167FwYMHsWDBgiK/CftSXb58Gc2aNSuyAJPP09MTQUFBuHz5shyTUUW2c+dO+Pn54f79+5BIJKhRowb69++PQYMGFfvhWl9fH9bW1ggKCpJzWsVw6NAhhISEIDY2Funp6UUu/xeJRDh+/LgA6eTvv6cj5eTkYOLEicjKysKYMWPQt29faSEhPT0dQUFBWL9+PczNzbFy5UohIiuUypUrw8PDAx4eHkJHURgSiaTIlRrq6uolPk/ZG2Lv3LlT6AgVhp6eHp48eVLquEePHrEvIVU4LMIQUamuX7+O3bt3Izg4WPoNVocOHeDu7g5HR8cCp7E0btwYS5cuRUJCglItNwbyPtgYGxuXOs7Y2BhxcXFySERfggULFgAALC0t4e7ujm7dupX6QQcATExM0LZt288dT6GIxWKMHz8ep06dKrbvgqw9Gb5kmzZtQnh4OPbv31/oVB8dHR24u7vDxsYGffv2xYYNGzBu3DiBkhJ9uWJiYqTHLhsbG6NLly4A8pr7Z2VlKeUKqw9ZWlriyJEjiI6ORuvWrYscExYWhocPH2LgwIHyDUf0iViEIaIS9evXD7dv34ZEIkHVqlUxcOBADB48GI0aNSrxeY0aNVK6IoyJiUmxx+F+KCEhAU2bNpVDIvoSDBo0CO7u7jAxMSnT8zw9PeHp6fmZUimmnTt3IjQ0FPb29pgxYwbWrVuHoKAgXLt2DXFxcQgKCsL27dsxfPhwTJ48Wei4gtm/fz+sra1LPFa5UaNG6NChA4KCgpS2CBMXF4erV6+iTZs2qFevnvT69evXsWDBAty5cwd169bFlClT4OjoKGBSYSQnJxfbh6O4ey9evPjcsRRebGwspk+fjqtXr0qvOTs7S4swQUFBmDlzJjZt2qTUJyR5enoiJCQEY8aMwcyZMwv8HROLxTh16hRmz54NdXV1DBs2TMCkRGXHIgwRlejWrVswNzeHu7s7evXqhUqVKsn0PFdXV5n28n5Jhg0bhilTpuD48eNwcnIqcszx48dx5coVLFu2TM7pqKKaM2eO0BEqjIMHD6JKlSpYtmwZdHR0pKv01NXV0aRJE0yePBmWlpYYPXo0jI2N0bt3b4ETC+PZs2cyNeutVKkSnj17JodEimnr1q3YvXt3gW1rr1+/hqenp7R3zv379/Hjjz/C39+/zIXSiu7s2bM4e/ZsoesikajYe8ouMTER3377LZKTk9G5c2e0a9cOS5YsKTCme/fumDt3Lo4dO6bURRgLCwvMmjUL8+bNw9SpU6GqqgqRSIRDhw4hODgY2dnZUFFRwfz589GkSROh4xKVCYswRFQiPz8/tGzZsszPa9OmDdq0afMZEimu1q1bw8PDAxMnTsTXX3+NXr16SU9HSkhIwMGDB3H06FF4eHigdevWBZpiAmyCSaXLysrCzZs38fz5cwBArVq10Lx5c6U7iaw4Dx8+RJs2bQot4xeLxdKjuu3t7dGiRQv4+PgobRFGT08PERERePv2bYEjhD/09u1bREREQE9PT87pFMfly5dhYmIi/TkO5DVWTUtLg6urKyZPnozQ0FDMmDED27dvx8KFCwVMK1/89+rjrFu3DsnJyZg7dy7c3NwAoFARpnLlyjAzM0N0dLQACRWLm5sbzMzMsGnTJpw7dw7v3r1DZmYmNDU1YW9vj7Fjx6JVq1ZCxyQqMxZhiKhEH1OAUVaOjo7SfhOHDx/G4cOHC42RSCTYuXNnoeZ8yn4MLJUsIyMDq1atgp+fH969e1fgnpaWFlxdXTFx4kRoa2sLlFAx5Obmolq1atLHWlpaAPJOcqlevbr0ev369XHq1Ck5p1McX3/9Nby9vfHDDz/gt99+Q7NmzQrcv3v3LubPn4+UlBSlbkb74sWLQl8mnD17Fmpqavjpp5+gq6uL/v37w8fHB1FRUQKlFMZ/mz2TbM6cOQMTExNpAaY4devWxblz5+SUSrG1bNkSa9asgUQiQUpKCnJzc1G9enVpYZ2oImIRhogKCAwMRIMGDfDVV1+V6XkHDx7E9evX4eXl9ZmSKT5l235F8vH27VsMHTpU2pvJyMhI+s18fHw8Hj58iB07diAyMhI7d+4sdmWDMjAwMEBSUpL0cf639Xfu3IG1tbX0enx8PNTUlPct0IQJE3D+/HlERkbC2dkZTZo0gaGhIUQiERISEqQncZmYmGDChAlCxxXMu3fvChQ2JRIJoqOjYWFhAV1dXen1Ro0aITQ0VIiIVMG8ePFCppUbYrEYGRkZckhUcYhEIujp6SE9PR0xMTHQ0tKCkZGR0LGIPoryvgMhoiJNnz4dLi4uRRZhzMzM4OLiUuSS6/DwcAQGBip1EYZHT9LnsG7dOty6dQutW7fGzJkz0bx58wL3b926hXnz5uHq1atYt24dpk2bJlBS4TVr1qxAQ3ArKytIJBKsWbMGFhYW0NHRQVBQEKKjo5W6aKqjo4Ndu3ZhxYoV2LdvH+7fv4/79+9L72tpacHFxQVTpkxR6hNaDAwMCpxkd/36dbx9+xaWlpYFxonFYplOLCOqWrUqEhMTSx0XFxcHfX19OSRSPDExMYiIiIBYLIaRkRHs7e0hEomQnZ2NRYsWwc/PD2KxGADQsGFDLF68mFuSqMJhEYaIZCaRSJT+aFcieTt8+DB0dXWxefPmIj8Qm5ub4++//4aTkxMOHz6s1EUYe3t7HDt2DOfPn0eHDh3QokULODg44PTp07C2tkblypWRlpYGkUiktCf+5NPR0cFvv/2Gn376CTdu3JCuIDIwMICFhYXMTdi/ZM2bN0dISAhCQkJgY2ODdevWQSQSwcHBocC4R48ewcDAQKCUVJG0bNkSZ8+exYMHD4ptJnvt2jXExMSgV69eck4nvPnz52PXrl0Frpmbm8Pb2xvLly8vdC82NhYjRozAwYMHUatWLXlGJfokKkIHICL6UuXm5uLVq1d49eoVcnNzhY5DFVRycjKsrKxKXJFQpUoVWFlZITk5WY7JFE+fPn1w4MCBAj1Oli9fDnd3d1SrVg1v375F06ZNsWzZsgLbk5RZpUqV0LZtW/To0QM9evRA27ZtWYD5f56enlBRUcHEiRPRrl07nDp1Cs2bN0f79u2lY5KSknDv3j1YWFgImJQqCg8PD+Tk5GDcuHG4du1aofsxMTH4+eefoaKigqFDhwqQUDjBwcHw8fEBAFhaWqJr166oV68ebt26hRUrVmD37t2ws7PDgQMHEB0djaCgINja2uLNmzfYtm2bwOmJyoYrYYiIylloaCh27NiBK1euIDMzEwCgoaGBr776Ct9++y26dOkicEKqSGrWrCldel0SsViMGjVqyCGR4tLU1ETTpk0LXNPW1sasWbMwa9YsgVJRRdWyZUusW7cOmzdvRkpKCpo3b44pU6YUGHPo0CHo6OjA1tZWoJRUkdjY2OCHH37Ahg0b4Obmhpo1a0IkEuHUqVNwcnJCfHw8JBIJJk6cqHRbbPz8/CASibBhwwbpajOxWIxffvkFPj4+qFq1KlasWCHte2ZiYoKVK1eiS5cuCA8PFzI6UZmxCENEVI5mzZqFPXv2SLdt5X+j/P79e5w/fx4XLlzAgAEDMH/+fCFjUgXSrVs3+Pn54eXLl8X2CEhOTsaFCxcwcOBAOaejiuzSpUu4ePEikpKSkJWVVeQYkUikVEcv/5eDg0Oh7UcfGj58OIYPHy6/QFThTZo0Cebm5li/fj1u374NAEhJSUFKSgqMjY0xfvx4fPPNNwKnlL+YmBjpFtJ8qqqqGDNmDA4ePAgLC4tCjed1dHRgYWGhdKeTUcXHIgwRUTnx9fWFn58fqlevjlGjRqFPnz7SD80vX77EgQMHsGnTJuzduxfm5uYYPHiwwImpIvjxxx9x+fJleHh4YPr06bCzsytw/+zZs1i8eDGaNGmCH3/8UaCUVJG8fftWekJSaX2+lL0IQ/Q5dOvWDd26dcOrV6/w9OlTSCQS1K5du0Bfk4yMDGhpaQmYUr7S0tJQv379QtcbNGgAAMX2XapZsybev3//WbMRlTcWYYiIysm///4LDQ0N7Ny5E8bGxgXu6evrY/jw4ejYsSNcXFywe/duFmGoSB4eHoWuqaqq4sGDBxg1ahSqVq1a4IjqtLQ0AECrVq3www8/wNvbW655hVTUXMlKJBIp1Vx9aMWKFTh37hzq1q0Ld3d3GBkZKfXR5kTysnr16gLHvuvp6UFPT6/QuIyMDIwaNUqpTl2USCTQ0NAodL20k8dEItHnikT02bAIQ0SFREVFFXvUdHH3Ll++/LljKbxHjx6hffv2hQowHzI2NoaVlRUiIyPlmIwqkoiIiGLvSSQSpKamIjU1tdC96OhopXszWtJclUbZ5upDISEhqFatGvz8/JT2GNyyOHToEEJCQhAbG4v09PQiVw+JRCIcP35cgHRUkaxduxYGBgZwc3MrdkxmZiZGjRqFS5cuyTEZEckTizBEVMjjx4/x+PHjMt9T5g81QN7e5KpVq5Y6rmrVqvzWmYp14sQJoSNUGJyrj/Pq1SvY29uzAFMKsViM8ePH49SpU8Vu2xKJRKVu6SLK16RJE8ybNw/6+vpwcnIqdD8zMxOjR49GZGQkunXrJkBCYSUnJxf7JVVx9168ePG5YxGVOxZhiKiA8ePHCx2hwrK2tkZUVBSys7OLXT6bnZ2NqKgoWFlZyTkdVRT5W42odJyrj1OnTh0WDmSwc+dOhIaGwt7eHjNmzMC6desQFBSEa9euIS4uDkFBQdi+fTuGDx+OyZMnCx2XKoAtW7bAzc0NU6dOxZYtW9C2bVvpvczMTIwZMwYXLlxA165dsXz5cgGTCuPs2bM4e/ZsoesikajYe0QVkUjCf4WJiMrFkydPMGDAAHTs2BEzZ85EtWrVCtxPTU3FvHnzcPbsWezdu7fIBnRERJ/bqlWrsHPnTpw4cUKm1XvKasCAAXj8+DFCQ0Oho6MDLy8vBAYGSk+0AYAzZ85g9OjRWLJkCXr37i1gWqoo7t+/D3d3d4hEIuzcuRMmJibIysrCmDFjEB4eDkdHR6xevRqqqqpCR5UrR0fHT3r+yZMnyykJ0efHIgwRUTlZs2YNnjx5gv3790NLSwsdO3aUflOfkJCAs2fPIiMjA3379kW9evUKPFckEmHcuHFCxCYiJZOVlQVPT09kZ2djwYIFaNKkidCRFNJXX32FNm3aYMuWLQAgLcLcuHGjwAfkgQMHQkVFBb6+vkJFpQrm8uXL8PT0hK6uLrZv344FCxbg7Nmz6NSpE9asWQM1NW5WIPqS8W84EZXIy8sLgwcPRsuWLYWOovDWrFkj7YuTkZGBY8eOFTkuMDCw0DUWYag0bA4qO85VyUaMGIGcnBxER0ejd+/eqFOnDgwNDYvs66XMp0jl5uYWWNGYf1xwWloaqlevLr1ev359nDp1Ss7pqCKztLTE0qVLMXHiRPTu3Rs5OTmws7PDqlWrWIAhUgL8W05EJQoICEBgYCDMzMwwaNAg9OrVC9ra2kLHUkiLFi0SOgJ9gdgcVHacK9l8eKpUbm4u4uPjER8fX+RYZW64bmBggKSkJOljQ0NDAMCdO3dgbW0tvR4fH88PzlRmTk5OmDNnDmbOnAlbW1usXbu2yCOaiejLw38xiKhEM2fOhK+vL27duoXZs2dj8eLF6NOnD9zc3GBqaip0PIXi4uIi89jz58+jQ4cOnzENfSnYHFR2nCvZ8FQp2TRr1gxXrlyRPraysoJEIsGaNWtgYWEBHR0dBAUFITo6Gu3atRMwKSmqLl26lDpGTU0N9+7dQ/fu3QtcV+bVekRfOhZhiKhEQ4YMwZAhQxAdHQ1fX18cOXIE//77L3x9fdGqVSsMGjQIPXr04Lc3Mnj8+DECAgIQFBSE58+f49atW0JHogrg4MGDqFKlCpYtWwYdHR2oqKgAANTV1dGkSRNMnjwZlpaWGD16NIyNjZW6OSjnSjY8VUo29vb2OHbsmLRo3qJFCzg4OOD06dOwtrZG5cqVkZaWxu2kVKziVpj914crrojoy8fGvERUJm/evEFAQAD8/Pxw//59iEQiVK1aFc7OznBzc4ORkZHQERVKeno6Dh06BH9/f1y9ehUAIJFIoK+vj/DwcIHTUUXA5qCy41xRecrMzERcXBz09fWhp6cHAHj37h2WLl2KkJAQvH79GkZGRhgzZkyhVQxERETF4UoYIiqTKlWqwMPDAx4eHoiKioKPjw+Cg4OxY8cO7NixA+3atYOHhwecnJyEjioYiUSCsLAwBAYG4uTJk8jMzIREIoG2tjacnJzQu3dv2NjYCB2TKgg2B5Ud54rKk6amJpo2bVrgmra2NmbNmoVZs2YJlIqIiCo6FmGI6KMkJiYiPDwcly5dApBXeNDV1UVERAQiIyPRqlUrrF69GjVr1hQ4qfzcv38fAQEBOHDgAF68eAGJRAIVFRWoq6sjOzsb58+fh6amptAxqYJhc1DZca7KhqdIfZz09HQ8fvwYWlpaXP1JRERlxncgRFQmp0+fhq+vL8LCwpCTk4NKlSqhf//+cHd3R/PmzXH27FmsX78ely9fxu+//46VK1cKHfmzev36NYKDg+Hv7y/t8SKRSGBsbIw+ffqgb9++mDx5Mq5cucICDH0UNgeVHedKNjxFqmQxMTGIiIiAWCyGkZER7O3tIRKJkJ2djUWLFsHPzw9isRgA0LBhQyxevBitWrUSODVVBHFxcbh69SratGmDevXqSa9fv34dCxYswJ07d1C3bl1MmTIFjo6OAiYlos+JRRgiKtWLFy+wd+9e7NmzB8+ePYNEIkGjRo0waNAg9O/fH1WqVJGO7dixI2xtbdGvXz+cP39ewNSf34QJE3Dq1Cnk5ORAIpGgevXq6NmzJ5ydnWFhYSF0PPpCsDmo7DhXsuEpUsWbP38+du3aVeCaubk5vL29sXz58kL3YmNjMWLECBw8eBC1atWSZ1SqgLZu3Yrdu3cXWF32+vVreHp6Ii0tDUDeqtoff/wR/v7+MDExESoqEX1GKkIHICLFNmHCBHTu3BmrVq1CYmIiunTpgq1bt+LIkSMYPnx4gQJMPpFIBFNTU7x580aAxPJz7Ngx5OTkwMDAAKtXr0ZYWBh+++03FmCoXPXp0wcHDhxAs2bNpNeWL18Od3d3VKtWDW/fvkXTpk2xbNmyAltulBHnSjYfniLVsGHDIk+RWr16NTZt2oQDBw4InFZ+goOD4ePjAwCwtLRE165dUa9ePdy6dQsrVqzA7t27YWdnhwMHDiA6OhpBQUGwtbXFmzdvsG3bNoHTU0Vw+fJlmJiYFDihLCAgAGlpaXB1dcW5c+ewYMEC5OTkYPv27cIFJaLPiqcjEVGJTE1NUaNGDbi6umLQoEEyf9N38uRJ3Lp1C+PHj//MCYXTvHlziMViiEQi6Ovro1evXnB2doapqWmBce7u7rhy5Qpu374tUFIiov/hKVJFGzZsGCIiIrBhwwY4ODgAyNu69csvvyA4OBhVq1bFyZMnUblyZelz0tPT0aVLFxgYGChVwYo+jrW1Ndq0aYP169dLr3l6euLixYsIDw+Hrq4uAKBfv3549+4djhw5IlRUIvqMuBKGiEq0bNkynDp1ChMnTizTUmtHR8cvugADAGfOnMEvv/wCExMTJCcnY/v27XBxcUGfPn2wbds2vHjxQuiI9AVLT0/HzZs38fDhQ6GjKDzOVUElnSL1ofr16+PevXvyjCaomJgY6Ra2fKqqqhgzZgwkEgksLCwKFGAAQEdHBxYWFnj69Km841IF9O7dO2hra0sfSyQSREdHw8LCQlqAAYBGjRohMTFRiIhEJAfsCUNEJerRo4fQERSWvr4+vvvuO3z33XeIiYmBv78/goODcffuXSxZsgR//fUXrK2t8fz5c6GjUgXE5qCy41yVDU+RKlpaWhrq169f6HqDBg0A5M1bUWrWrIn3799/1mz0ZTAwMEBcXJz08fXr1/H27VtYWloWGCcWi6Guri7veEQkJ8rzLysR0WdkamqKX3/9Fb/88gvOnDmDgIAAhIaG4uzZswDy+uR4eXmhV69esLGxgUgkEjgxKTI2B5Ud56rseIpU0SQSCTQ0NApdL+3DMH+ek6yaN2+OkJAQhISEwMbGBuvWrYNIJCqw+goAHj16VGzRj4gqPhZhiKgADw+Pj36uSCSCt7d3OaapeFRVVdG5c2d07twZqampOHjwIPbv349r164hICAAgYGB0NfXR8+ePeHl5SV0XFJA+c1BRSIRLC0toaenh9u3bxdqDvrzzz+jfv36iIuLw+LFixEeHo5t27Zh+vTpQv8R5IZz9XF4ihSRMDw9PXH8+HFMnDgRAKTb3Nq3by8dk5SUhHv37qFv375CxSSiz4yNeYmogP82lS0LkUjE5rPFePjwIQICAnDgwAE8f/6cc0XFYnNQ2XGuPk5mZibi4uKgr68PPT09AHm9KpYuXYqQkBC8fv0aRkZGGDNmDLp37y5wWvkxNTWFnZ0dRo0aVeje0KFDi723ceNGhIeH82c6yeT06dPYvHkzUlJS0Lx5c0yZMqXAqrzt27dj7dq1mDVrFnr37i1gUiL6XFiEIaIC4uPjP+n5Hx67SIVJJBKcO3cOgYGB+PPPP4WOQwrIysoKDRs2hJ+fX4HrDx48QM+ePWFrays91eZDnp6eiIqKKrDN5EvHuaLyZGpq+klbi1iEISIiWXA7EhEVwCLK5yUSiWBrawtbW1uho5CCYnNQ2XGuyld6ejoeP34MLS0tGBkZCR1H7vIbFBMREX1OLMIQEREpEDYHlR3nqmx4ilTJTp48KXQEIiJSAizCEJFMsrKycOTIEVy6dEl65HKtWrXQtm1bfPPNN9DU1BQ4IRERFYenSBEpjkOHDiEkJASxsbFIT09HUd0hRCIRjh8/LkA6IvrcWIQholJdvHgRP//8M5KSkgq9Udi7dy/++usvLF68GB06dBAoIdGXJTk5GZGRkWW69+LFi88dSyFxrkrHU6SIFINYLMb48eNx6tSpIgsvQF7xhS07ib5sbMxLRCW6ffs23NzckJWVBRMTE/Tu3VvaNyY+Ph4HDx7EnTt3oKmpCV9fX5iZmQmcmKhiY3NQ2XGuZMNTpIgUw/bt2/HHH3/A3t4eM2bMwLp16xAUFIRr164hLi4OQUFB2L59O4YPH47JkycLHZeIPhOuhCGiEq1cuRJZWVn46aefMGLEiEL3R44ciS1btuDPP//EypUrsWHDBgFSEn052BxUdpwr2cTExKBFixbSAgwAqKqqYsyYMTh48CAsLCwKFGAAQEdHBxYWFoiKipJ3XKIv1sGDB1GlShUsW7YMOjo6UFFRAZDXx6pJkyaYPHkyLC0tMXr0aBgbG/OIaqIvFIswRFSiy5cvo1mzZkUWYPJ5enoiKCgIly9flmMyoi8Tm4PKjnMlG54iRaQYHj58iDZt2kBHR6fAdbFYDFVVVQCAvb09WrRoAR8fHxZhiL5QKkIHICLFlpOTA2Nj41LHGRsbIycnRw6JiIioLHiKFJFiyM3NRbVq1aSPtbS0AOQVSj9Uv3593Lt3T57RiEiOWIQhohKZmJggPj6+1HEJCQlo2rSpHBIRERERVTwGBgZISkqSPs7fUnnnzp0C4+Lj46Gmxg0LRF8q/u0mohINGzYMU6ZMwfHjx+Hk5FTkmOPHj+PKlStYtmyZnNMREZEseIoUkfCaNWuGK1euSB9bWVlBIpFgzZo1sLCwgI6ODoKCghAdHY127doJmJSIPieejkREJUpISMD27dvh4+ODr7/+Gr169ZKejpSQkICDBw/i6NGjcHd3x/Dhwws9n40ziYiExVOkiBTDnj17MHPmTGzbtg0dOnQAAIz+v/buPKiq+/7/+PMCKlH2rRXEhYAYi8koiXuigkscl2gkiyUkMo0aXJtMU01aW1urjlGbVE3ijFYRG3EFFIgRBZcoUWOiIYkQVAQBcUFEVMQg3t8f/rjxlkVQ5GK/r8eMM3g+5/O573O4w3DfvM/7M3Eie/fuxcbGhlatWpkeTVq9ejU9e/a0ZLgi8pAoCSMitar85d1oNNb4S3xNYwaDgePHjz/sEEVEpBZBQUEPNF8NkEUaxs2bNzlz5gyurq64uLgAUFpayqJFi0hKSqK4uBgfHx8iIiIYOnSohaMVkYdFSRgRqVVYWNgDzV+7dm0DRSIiIiIiIvJoUxJGRERERETEQq5du0ZOTg6PPfYYPj4+lg5HRB4yNeYVERERERF5SDIyMjh8+DAVFRX4+Pjw3HPPYTAYKC8vZ/78+WzcuJGKigoA2rVrx4IFC3jqqacsHLWIPCyqhBGRerl9+zbFxcUAODk5YWWlne5FREREqjNnzhzWrVtndqxz586sWbOGDz/8kM8++6zKHHt7exISEvjVr37VWGGKSCPSpycRqZPdu3cTHh5Ot27d6NOnD3369KFr166Eh4eTnJxs6fBEREREmpTExERTkiUwMJBBgwbRpk0bjh8/zkcffcSGDRt49tlniY+P59ixY2zbto0+ffpw9epVVq9ebeHoReRhUSWMiNzTX/7yFzZt2kTljwtbW1sAysrKgDu7IIWEhDBnzhyLxSgiIiLSlLzxxhscPnyY5cuX069fPwAqKiqYMWMGiYmJODg4kJKSQqtWrUxzrl27RnBwMB4eHsTHx1sqdBF5iFQJIyK1Wr9+PRs3bsTJyYkZM2Zw4MABjh07xrFjxzhw4AAzZ87E2dmZzZs3Ex0dbelwRURERJqEjIwMunTpYkrAAFhbWxMREYHRaCQgIMAsAQNgZ2dHQEAAeXl5jR2uiDQSJWFEpFbR0dE0b96ctWvXEh4ejqurq2nM1dWVcePGERUVhY2NDRs2bLBgpCIiIiJNR0lJCd7e3lWOt23bFgAPD49q57m7u5uqjUXkf4+SMCJSq9OnT9O9e3d8fX1rPMfX15cePXpw+vTpRoxMREREpOkyGo00b968yvFmzZrVOs9gMDyskESkCVASRkRqZWdnh4ODwz3Pc3BwqFJSKyIiIiIiIr+wsXQAItK09ezZk2+//Zby8vIa/3JTXl7Ot99+S48ePRo5OhEREZGmq7CwkK+//rpeYxcvXnzYYYmIBWl3JBGpVW5uLiEhIfTt25dZs2bh5ORkNn7lyhX+/ve/s3//fjZv3lzts88iIiIi/9d06tTpgR4tSk9Pb8BoRKSpUBJGRGq1bNkycnNz2bp1K4899hh9+/bFy8sLgLNnz7J//35u3LjBCy+8QJs2bczmGgwGJk+ebImwRURERCwqKCjogeanpKQ0UCQi0pQoCSMitar8K879/KgwGAz6K46IiIiIiMj/p54wIlKr+fPnWzoEERERERGR/wmqhBGRBvPVV1/Rq1cvS4chIiIiIiLSJKkSRkQeSE5ODrGxsWzbto1z585x/PhxS4ckIiIiIiLSJCkJIyL1du3aNT7//HNiYmL47rvvADAajbi6ulo4MhERERERkaZLSRgRqROj0ciXX35JXFwcKSkp3Lx5E6PRSMuWLRk4cCAjRoygd+/elg5TRERERESkyVJPGBGp1cmTJ4mNjSU+Pp6LFy9iNBqxsrLCxsaG8vJyjh07RosWLSwdpoiIiIiISJOnShgRqaK4uJjExERiYmJMPV6MRiO+vr6MHDmSF154gbfffpujR48qASMiIiIiIlJHSsKIiJmpU6eyZ88ebt26hdFoxNnZmWHDhjFq1CgCAgIsHZ6IiIiIiMgjS0kYETGzc+dODAYDHh4e/PnPf2bAgAHY2OhHhYiIiIiIyIOysnQAItK0WFtbYzQauXDhAn/7299YtGgRGRkZlg5LRERERETkkackjIiY2bdvHzNmzKBjx44UFhYSGRnJ6NGjGTlyJKtXr+bixYuWDlFEREREROSRpN2RRKRGGRkZxMTEkJiYyKVLlzAYDFhbW9OzZ0+ysrIoKCggPT3d0mGKiIiIiIg8EpSEEZF7qqioYN++fcTGxrJ7927Ky8sBMBgMjBo1iuHDh9O7d28MBoOFIxUREREREWm6lIQRkXq5cuUKCQkJbN26lbS0NOBOMsbV1ZVhw4bx3nvvWThCERERERGRpklJGBG5b1lZWcTGxhIfH8+5c+cwGAx6PElERERERKQGSsKIyAMzGo2kpqYSFxfHwoULLR2OiIiIiIhIk6QkjIiIiIiIiIhII9AW1SIiIiIiIiIijUBJGBERERERERGRRqAkjIiIiIiIiIhII1ASRkRERB4phw4dwt/fn6CgoCpjYWFh+Pv7ExMTY4HIGtbSpUvx9/dn5syZlg6lQfj7++Pv709eXp6lQxEREbEYG0sHICIiIpYTFhbG4cOHzY5ZWVlhb2+Pj48PwcHBhIaG0rJlSwtFaDnp6ens2rULLy8vXnzxRUuHc9+2bNnC+++/D0BISAhz585t0PXz8vKIjY3F3t6ecePGNejaIiIi/2tUCSMiIiK0bt2abt260a1bNwICArCysuLo0aMsWrSI0aNHc/78eUuHWCetW7emQ4cO2NvbP/Ba6enpLFu2jNjY2AaIzHK2bNli+nr79u2UlpY26Pr5+fksW7aMqKioWs/r0KEDHTp0oFmzZg36+iIiIo8SVcKIiIgIY8aMYerUqWbHduzYwcyZM8nOzmb27Nl8+umnFoqu7j744ANLh9CkZGdn88033wDg4OBASUkJX3zxhUUqe7744otGf00REZGmRpUwIiIiUq0hQ4YQEREBwJ49e7hy5YqFI5L6qqyCCQwMJCQkxOyYiIiIND5VwoiIiEiNevXqBcDt27fJycnhySef5NChQ7z++ut4eXmRkpJCQkIC69evJzMzkytXrhAVFUWPHj0AqKioIC4ujm3btpGRkcH169dxdname/fujB8/nk6dOlX7uuXl5URGRhIXF8eZM2ewt7fn6aefZvLkybXGW9njZv78+dVWe5SUlPCf//yH3bt3k52dTVlZGe7u7vj7+zNkyBBGjRoFQFBQEPn5+QAcPnwYf39/s3WSk5Np06aN2bpRUVGkpKSQk5PDzz//jKenJ0FBQbz55pu4urpWG29RURFLly4lJSWFoqIi3N3dGTBgQJWqpPtRee8BRo8ezZNPPsmqVas4cuQIOTk5tGvXrsa5ZWVlbNy4kaSkJE6cOMH169dxc3PDx8eHQYMGMWbMGJo3b27WUyg/P7/Kfbr7vVA59t/3rtK+fftYt24daWlplJSU4OjoyFNPPUVYWJjpfXi3/34fJicnExkZSXp6Ordu3cLPz49x48YxbNiw+7p/IiIiD4OSMCIiIlIjo9FY6/i8efNYs2YNbm5utG3b1qx3zJUrV5g0aRJHjhwBwMPDA09PT3JyckhISGDHjh0sWLCgyofkn3/+mYkTJ5KamgpAmzZtcHR0ZM+ePezdu/eeiZia/PDDD7z11ltcvHgRgHbt2mFvb09BQQEpKSmkpKSYkjABAQE0a9aM7Oxs7Ozs6Nixo9laLVq0MH2dkZHBhAkTOH/+PDY2Nnh6emJra8vp06dZtWoV8fHxrFq1qsoaeXl5vPbaaxQUFGBlZYWvry9Go5HPPvuMvXv30r9///u6zkpffvklFy5cwNbWlqFDh2JnZ8dvfvMbfvzxR7Zs2cI777xT7bzc3FwmTJhAVlYWAJ6ennh7e3P+/HlSU1M5cOAAzz77LG3atKFjx44UFxeTmZlJ8+bNCQgIMFurrr155s6da+op4+rqSqdOncjLyyM5OZnk5GQiIiL4/e9/X+P8ZcuWsXTpUtP7MDc3l7S0NN555x0uX77Ma6+9Vqc4REREHjYlYURERKRGBw8eBO7smPTflRPnzp0jOjqahQsXMmLECAwGA0ajkfLycgD+8Ic/cOTIEQIDA5k9e7YpCXH79m2ioqJYsGAB7733Hp07d6ZDhw6mdT/55BNSU1Np1aoVS5YsoW/fvsCdpM6MGTNYsmRJva+jsLCQiRMnUlhYSPfu3ZkzZw7t27c3jefn57N582bT/5csWUJMTIwpvrVr11a7bnFxMRMnTuT8+fO8/PLLvP3227i4uABw9epV/vGPfxAXF8e0adNISEjAxuaXX73++Mc/UlBQgJ+fHx9//LHp/p46dYqIiAjWr19f7+u8W+VjRwMHDsTOzg6AUaNG8eOPPxIXF8f06dOxtrY2m1NWVsbEiRPJysqiY8eOzJ8/3yyxcunSJWJiYky7Zc2aNctUkeLu7k50dHS944yNjSUqKgpra2tmzZrFK6+8gpWVFRUVFab3yaeffkqnTp14/vnnq8y/cOECK1asYNGiRYwYMQKAW7duMXfuXNatW8fixYsZNWqU6R6IiIhYknrCiIiISLV27Nhhasbbv39/HB0dzcYrKiqYPHkyI0eOxGAwAGAwGGjevDmpqans27cPT09Pli9fblYFYmVlxbhx4wgNDeXmzZusWbPGNFZaWmpKeEyfPt2UgAFwdHRk8eLF97Vd9sqVKyksLKRDhw6sWLHCLAED4OXlxfTp0+u97urVqzl37hzBwcHMmTPHlICBO1Ug8+bNo3Pnzpw+fZqkpCTT2JEjR0wNcxcuXGiW4Hr88ceZP3++KZl1P4qKiti9ezeAqboHYPjw4TRr1ozz58+zf//+KvM2bdrEqVOncHZ2JjIyskpli6urK+PHjze7zgf1ySefAPDKK68wduxYrKzu/HpqbW1NeHi4KbHy8ccfVzu/vLyciRMnms4DsLGxYebMmbi4uFBaWsqhQ4caLF4REZEHoSSMiIiIsGXLFsaOHcvYsWN56aWX6NmzJ9OmTaO0tJT27dsze/bsaue99NJL1R7//PPPARg2bBgODg7VnjN48GAAvvrqK9Oxb775hmvXrmFra1vt2q1atTI1mK2PygRIeHg4tra29Z5fk+3btwPw6quvVjtubW1NcHAw8EtVEcDevXsBeOaZZ3jiiSeqzAsMDKRLly73Hde2bdsoLy/Hw8OD3r17m467uLjQr18/oPoGvZX36eWXX66xj01DOnXqFGfOnAHufG+q87vf/Q6AzMxMzp49W+05v/3tb6sca9GiBZ07dwYwvYaIiIil6XEkERERoaCggIKCAuBOpYqdnR1du3YlODiY0NDQaqtPnJ2da/ygnpGRAcDOnTtNFR//7ebNm8Cdx5oqVfYh8fLyqrHixc/Pr45Xdce1a9dMTXa7du1ar7m1KS0tJScnB4B//etfNW7hfenSJQDT/YVfrtPX17fG9f38/Pj+++/vK7aYmBgARo4cWeWRo9GjR7Nr1y5SUlK4fPkyzs7OprHMzEygYe9TbU6fPg2Ara0tbdu2rfYcX19frK2tqaioICsrC09PT7NxZ2dnnJycqp1b+f68fv16wwUtIiLyAJSEEREREaZMmVLvHXlqeyyopKQEgOzsbLKzs2tdp6yszPR15Yfl2qow6luhcfcH8Jqqcu7H1atXTV//8MMP9zy/uut0c3Or8fz7rUT5/vvv+emnnwDzR5Eq9evXDxcXF4qKiti2bRtvvPGGaezatWtA3RvqPqi6fL9tbGxwdnamsLCw2mRKbe/Dykeb7tVgWkREpLEoCSMiIiINrvKD8bx58xgzZkyd57Vq1Qr4pXqkOrWN1bYm3EkO/frXv67X/Jrc/eF/165deHt71zumwsLCGs+p73VWuvsxo+HDh9d6bkxMjFkSxs7OjuLiYrME08NUl+/3rVu3uHz5stn5IiIijyr1hBEREZEGV9mIt7Iio658fHyAO7sV3bhxo9pzTpw4Ua817ezs8PLyAuDo0aN1nlfZbLgm9vb2tG7dGrj/6zx16lSN59T3OuHOI16JiYnAnUbGbm5uNf6DO4+N3V3FU/l9a8j7VJvK+1BWVlZj35aTJ09SUVEB3GlaLCIi8ihTEkZEREQa3NChQwHYunVrrdUe/y0wMJBWrVpRVlZmtmV0pevXr1fbUPZehgwZAkBkZKSpF829VDbwrSkZBL9cZ2RkpClRUBfPPfccAIcPHzb1z7nb0aNH76sfTFJSEiUlJdjY2LB9+3YOHDhQ47/KprV338/KLaA3bdpEUVFRnV6zLvepJj4+PqadoVavXl3tOZXHO3bsaEp6iYiIPKqUhBEREZEGN2DAAPr27UtxcTGvv/46R44cqXJObm4uK1asYNOmTaZjLVu2JCwsDLjT7DY1NdU0VlJSwrvvvntfTVbffPNN3NzcyMrKYsKECaaGupXy8/NZsmSJ2bHK5MDJkye5ePFiteuOHz8eDw8Pvv76a6ZOnUpubq7ZuNFoJC0tjblz55KWlmY6/swzz5ia37777rtm87Kyspg5cybNmjWr93VWJlT69et3z54yL774IgCJiYmmxFRISAi+vr4UFRURHh7O8ePHzeZcunSJlStXmiVo2rZti8FgoKioqNqE0r1EREQAsGHDBtavX2/q33L79m3WrFnD1q1bAZg8eXK91xYREWlq1BNGREREHooPP/yQ6dOnk5qaSmhoKK6urnh6enL79m0KCgpMH+SnTJliNm/SpEkcPXqUQ4cOER4ejre3N46Ojpw8eRKAadOmsXjx4nrF4urqyvLly4mIiODgwYMMHjyY9u3bY2dnx7lz50zVOtOmTTPNeeKJJ+jYsSOZmZkMGjSIxx9/3NQH5p///Cfu7u64uLiwcuVKJk2aRHJyMsnJyXh7e+Pi4sKNGzfIy8ujtLQUgIEDB5rFtHDhQkJDQ8nMzGTw4MH4+flhNBo5ceIEbdq04dVXX2Xt2rV1vsb8/HzTNth16cMzYsQIPvjgA65cucLOnTsZPnw4LVq0YPny5YwfP56MjAxGjx6Nl5cXLi4uXLhwgQsXLmA0Gnn++edxcXEBwMnJif79+7N7925CQkLw8/PDzs4OgPfff7/aLbjvNnr0aI4fP05UVBR//etfWbp0Ka1btyY/P9/0HnnrrbdMVToiIiKPMiVhRERE5KFwcHDg3//+N0lJSWzbto20tDQyMjKwtrbGw8OD3r17ExQURL9+/czmtWjRgpUrVxIZGUlsbCx5eXlcv36d5557jilTplBcXHxf8XTp0oWEhATWrl1LSkoK2dnZFBQU4O7uzsCBA02PLFUyGAysWLGCjz76iIMHD/LTTz9RXl4OYPZIk7+/P/Hx8WzcuJFdu3Zx4sQJzp49i62tLd7e3jz99NMMHDiQwMBAs/W9vb2JiYlh2bJlpKSkkJWVhbu7O6GhoUydOrVeCRiA2NhYjEYjbm5uVe5pdZycnAgODmb79u1s2bLF1MTX29ub2NhYoqOjSUpKMlUCubm50adPH4YMGYKHh4fZWgsWLGDJkiXs3buXEydOmO5T5S5Z9/KnP/2Jvn37Eh0dzXfffUd6ejqOjo4EBwcTFhZGr1696nUvREREmiqDUXv2iYiIiIiIiIg8dOoJIyIiIiIiIiLSCJSEERERERERERFpBErCiIiIiIiIiIg0AiVhREREREREREQagZIwIiIiIiIiIiKNQEkYEREREREREZFGoCSMiIiIiIiIiEgjUBJGRERERERERKQRKAkjIiIiIiIiItIIlIQREREREREREWkESsKIiIiIiIiIiDQCJWFERERERERERBqBkjAiIiIiIiIiIo1ASRgRERERERERkUbw/wA16l8j8V12oAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "actual, predicted = get_actual_predicted_labels(test_ds)\n", "plot_confusion_matrix(actual, predicted, labels, 'test')" ] }, { "cell_type": "markdown", "metadata": { "id": "FefzeIZz-9aI" }, "source": [ "另外,还可以使用混淆矩阵计算每个类的准确率和召回率值。 " ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "execution": { "iopub.execute_input": "2023-11-07T18:59:47.643229Z", "iopub.status.busy": "2023-11-07T18:59:47.642934Z", "iopub.status.idle": "2023-11-07T18:59:47.648485Z", "shell.execute_reply": "2023-11-07T18:59:47.647892Z" }, "id": "dq95-56Z-_E2" }, "outputs": [], "source": [ "def calculate_classification_metrics(y_actual, y_pred, labels):\n", " \"\"\"\n", " Calculate the precision and recall of a classification model using the ground truth and\n", " predicted values. \n", "\n", " Args:\n", " y_actual: Ground truth labels.\n", " y_pred: Predicted labels.\n", " labels: List of classification labels.\n", "\n", " Return:\n", " Precision and recall measures.\n", " \"\"\"\n", " cm = tf.math.confusion_matrix(y_actual, y_pred)\n", " tp = np.diag(cm) # Diagonal represents true positives\n", " precision = dict()\n", " recall = dict()\n", " for i in range(len(labels)):\n", " col = cm[:, i]\n", " fp = np.sum(col) - tp[i] # Sum of column minus true positive is false negative\n", " \n", " row = cm[i, :]\n", " fn = np.sum(row) - tp[i] # Sum of row minus true positive, is false negative\n", " \n", " precision[labels[i]] = tp[i] / (tp[i] + fp) # Precision \n", " \n", " recall[labels[i]] = tp[i] / (tp[i] + fn) # Recall\n", " \n", " return precision, recall" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "execution": { "iopub.execute_input": "2023-11-07T18:59:47.651464Z", "iopub.status.busy": "2023-11-07T18:59:47.651187Z", "iopub.status.idle": "2023-11-07T18:59:47.667407Z", "shell.execute_reply": "2023-11-07T18:59:47.666833Z" }, "id": "4jSEonYQ_BZt" }, "outputs": [], "source": [ "precision, recall = calculate_classification_metrics(actual, predicted, labels) # Test dataset" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "execution": { "iopub.execute_input": "2023-11-07T18:59:47.670416Z", "iopub.status.busy": "2023-11-07T18:59:47.669896Z", "iopub.status.idle": "2023-11-07T18:59:47.674372Z", "shell.execute_reply": "2023-11-07T18:59:47.673831Z" }, "id": "hXvTW1Df_DV8" }, "outputs": [ { "data": { "text/plain": [ "{'ApplyEyeMakeup': 0.5,\n", " 'ApplyLipstick': 0.5555555555555556,\n", " 'Archery': 0.6666666666666666,\n", " 'BabyCrawling': 1.0,\n", " 'BalanceBeam': 0.6,\n", " 'BandMarching': 0.7,\n", " 'BaseballPitch': 0.8,\n", " 'Basketball': 0.4444444444444444,\n", " 'BasketballDunk': 0.8333333333333334,\n", " 'BenchPress': 0.9}" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "precision" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "execution": { "iopub.execute_input": "2023-11-07T18:59:47.677427Z", "iopub.status.busy": "2023-11-07T18:59:47.676954Z", "iopub.status.idle": "2023-11-07T18:59:47.680972Z", "shell.execute_reply": "2023-11-07T18:59:47.680397Z" }, "id": "be1yrQl5_EYF" }, "outputs": [ { "data": { "text/plain": [ "{'ApplyEyeMakeup': 0.2,\n", " 'ApplyLipstick': 1.0,\n", " 'Archery': 0.8,\n", " 'BabyCrawling': 0.5,\n", " 'BalanceBeam': 0.6,\n", " 'BandMarching': 0.7,\n", " 'BaseballPitch': 0.8,\n", " 'Basketball': 0.4,\n", " 'BasketballDunk': 1.0,\n", " 'BenchPress': 0.9}" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "recall" ] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [], "name": "video_classification.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.18" } }, "nbformat": 4, "nbformat_minor": 0 }