{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "N6ZDpd9XzFeN" }, "source": [ "##### Copyright 2018 The TensorFlow Hub Authors.\n", "\n", "Licensed under the Apache License, Version 2.0 (the \"License\");" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "cellView": "both", "execution": { "iopub.execute_input": "2024-03-09T13:17:05.626293Z", "iopub.status.busy": "2024-03-09T13:17:05.625735Z", "iopub.status.idle": "2024-03-09T13:17:05.630003Z", "shell.execute_reply": "2024-03-09T13:17:05.629361Z" }, "id": "KUu4vOt5zI9d" }, "outputs": [], "source": [ "# Copyright 2018 The TensorFlow Hub Authors. All Rights Reserved.\n", "#\n", "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# http://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License.\n", "# ==============================================================================" ] }, { "cell_type": "markdown", "metadata": { "id": "CxmDMK4yupqg" }, "source": [ "# Generate Artificial Faces with CelebA Progressive GAN Model\n" ] }, { "cell_type": "markdown", "metadata": { "id": "MfBg1C5NB3X0" }, "source": [ "\n", " \n", " \n", " \n", " \n", " \n", "
\n", " View on TensorFlow.org\n", " \n", " Run in Google Colab\n", " \n", " View on GitHub\n", " \n", " Download notebook\n", " \n", " See TF Hub model\n", "
" ] }, { "cell_type": "markdown", "metadata": { "id": "Sy553YSVmYiK" }, "source": [ "This Colab demonstrates use of a TF Hub module based on a generative adversarial network (GAN). The module maps from N-dimensional vectors, called latent space, to RGB images.\n", "\n", "Two examples are provided:\n", "* **Mapping** from latent space to images, and\n", "* Given a target image, **using gradient descent to find** a latent vector that generates an image similar to the target image." ] }, { "cell_type": "markdown", "metadata": { "id": "v4XGxDrCkeip" }, "source": [ "## Optional prerequisites\n", "\n", "* Familiarity with [low level Tensorflow concepts](https://www.tensorflow.org/guide/eager).\n", "* [Generative Adversarial Network](https://en.wikipedia.org/wiki/Generative_adversarial_network) on Wikipedia.\n", "* Paper on Progressive GANs: [Progressive Growing of GANs for Improved Quality, Stability, and Variation](https://arxiv.org/abs/1710.10196)." ] }, { "cell_type": "markdown", "metadata": { "id": "HK3Q2vIaVw56" }, "source": [ "### More models\n", "[Here](https://tfhub.dev/s?module-type=image-generator) you can find all models currently hosted on [tfhub.dev](https://tfhub.dev/) that can generate images." ] }, { "cell_type": "markdown", "metadata": { "id": "Q4DN769E2O_R" }, "source": [ "## Setup" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2024-03-09T13:17:05.634064Z", "iopub.status.busy": "2024-03-09T13:17:05.633594Z", "iopub.status.idle": "2024-03-09T13:17:15.590382Z", "shell.execute_reply": "2024-03-09T13:17:15.589341Z" }, "id": "KNM3kA0arrUu" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Collecting git+https://github.com/tensorflow/docs\r\n", " Cloning https://github.com/tensorflow/docs to /tmpfs/tmp/pip-req-build-dh9pthnf\r\n", " Running command git clone --filter=blob:none --quiet https://github.com/tensorflow/docs /tmpfs/tmp/pip-req-build-dh9pthnf\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Resolved https://github.com/tensorflow/docs to commit 3688f3cff2685cfeab307c13435f77d2c96cf434\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Preparing metadata (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[?25hCollecting astor (from tensorflow-docs==2024.2.5.73858)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading astor-0.8.1-py2.py3-none-any.whl.metadata (4.2 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: absl-py in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-docs==2024.2.5.73858) (1.4.0)\r\n", "Requirement already satisfied: jinja2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-docs==2024.2.5.73858) (3.1.3)\r\n", "Requirement already satisfied: nbformat in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-docs==2024.2.5.73858) (5.9.2)\r\n", "Requirement already satisfied: protobuf>=3.12 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-docs==2024.2.5.73858) (3.20.3)\r\n", "Requirement already satisfied: pyyaml in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-docs==2024.2.5.73858) (6.0.1)\r\n", "Requirement already satisfied: MarkupSafe>=2.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jinja2->tensorflow-docs==2024.2.5.73858) (2.1.5)\r\n", "Requirement already satisfied: fastjsonschema in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from nbformat->tensorflow-docs==2024.2.5.73858) (2.19.1)\r\n", "Requirement already satisfied: jsonschema>=2.6 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from nbformat->tensorflow-docs==2024.2.5.73858) (4.21.1)\r\n", "Requirement already satisfied: jupyter-core in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from nbformat->tensorflow-docs==2024.2.5.73858) (5.7.1)\r\n", "Requirement already satisfied: traitlets>=5.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from nbformat->tensorflow-docs==2024.2.5.73858) (5.14.1)\r\n", "Requirement already satisfied: attrs>=22.2.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jsonschema>=2.6->nbformat->tensorflow-docs==2024.2.5.73858) (23.2.0)\r\n", "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jsonschema>=2.6->nbformat->tensorflow-docs==2024.2.5.73858) (2023.12.1)\r\n", "Requirement already satisfied: referencing>=0.28.4 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jsonschema>=2.6->nbformat->tensorflow-docs==2024.2.5.73858) (0.33.0)\r\n", "Requirement already satisfied: rpds-py>=0.7.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jsonschema>=2.6->nbformat->tensorflow-docs==2024.2.5.73858) (0.18.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: platformdirs>=2.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyter-core->nbformat->tensorflow-docs==2024.2.5.73858) (4.2.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading astor-0.8.1-py2.py3-none-any.whl (27 kB)\r\n", "Building wheels for collected packages: tensorflow-docs\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Building wheel for tensorflow-docs (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \b\\" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n", "\u001b[?25h Created wheel for tensorflow-docs: filename=tensorflow_docs-2024.2.5.73858-py3-none-any.whl size=182442 sha256=1ace67ec59f68ef865cded10ad1516443952561593f4c98eda32c728de1bf272\r\n", " Stored in directory: /tmpfs/tmp/pip-ephem-wheel-cache-b29db_ut/wheels/fc/f8/3b/5d21409a59cb1be9b1ade11f682039ced75b84de9dd6a0c8de\r\n", "Successfully built tensorflow-docs\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Installing collected packages: astor, tensorflow-docs\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Successfully installed astor-0.8.1 tensorflow-docs-2024.2.5.73858\r\n" ] } ], "source": [ "# Install imageio for creating animations. \n", "!pip -q install imageio\n", "!pip -q install scikit-image\n", "!pip install git+https://github.com/tensorflow/docs" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "cellView": "both", "execution": { "iopub.execute_input": "2024-03-09T13:17:15.595079Z", "iopub.status.busy": "2024-03-09T13:17:15.594452Z", "iopub.status.idle": "2024-03-09T13:17:18.759802Z", "shell.execute_reply": "2024-03-09T13:17:18.758944Z" }, "id": "6cPY9Ou4sWs_" }, "outputs": [], "source": [ "#@title Imports and function definitions\n", "from absl import logging\n", "\n", "import imageio\n", "import PIL.Image\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "import tensorflow as tf\n", "tf.random.set_seed(0)\n", "\n", "import tensorflow_hub as hub\n", "from tensorflow_docs.vis import embed\n", "import time\n", "\n", "try:\n", " from google.colab import files\n", "except ImportError:\n", " pass\n", "\n", "from IPython import display\n", "from skimage import transform\n", "\n", "# We could retrieve this value from module.get_input_shapes() if we didn't know\n", "# beforehand which module we will be using.\n", "latent_dim = 512\n", "\n", "\n", "# Interpolates between two vectors that are non-zero and don't both lie on a\n", "# line going through origin. First normalizes v2 to have the same norm as v1. \n", "# Then interpolates between the two vectors on the hypersphere.\n", "def interpolate_hypersphere(v1, v2, num_steps):\n", " v1_norm = tf.norm(v1)\n", " v2_norm = tf.norm(v2)\n", " v2_normalized = v2 * (v1_norm / v2_norm)\n", "\n", " vectors = []\n", " for step in range(num_steps):\n", " interpolated = v1 + (v2_normalized - v1) * step / (num_steps - 1)\n", " interpolated_norm = tf.norm(interpolated)\n", " interpolated_normalized = interpolated * (v1_norm / interpolated_norm)\n", " vectors.append(interpolated_normalized)\n", " return tf.stack(vectors)\n", "\n", "# Simple way to display an image.\n", "def display_image(image):\n", " image = tf.constant(image)\n", " image = tf.image.convert_image_dtype(image, tf.uint8)\n", " return PIL.Image.fromarray(image.numpy())\n", "\n", "# Given a set of images, show an animation.\n", "def animate(images):\n", " images = np.array(images)\n", " converted_images = np.clip(images * 255, 0, 255).astype(np.uint8)\n", " imageio.mimsave('./animation.gif', converted_images)\n", " return embed.embed_file('./animation.gif')\n", "\n", "logging.set_verbosity(logging.ERROR)" ] }, { "cell_type": "markdown", "metadata": { "id": "f5EESfBvukYI" }, "source": [ "## Latent space interpolation" ] }, { "cell_type": "markdown", "metadata": { "id": "nJb9gFmRvynZ" }, "source": [ "### Random vectors\n", "\n", "Latent space interpolation between two randomly initialized vectors. We will use a TF Hub module [progan-128](https://tfhub.dev/google/progan-128/1) that contains a pre-trained Progressive GAN." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2024-03-09T13:17:18.764534Z", "iopub.status.busy": "2024-03-09T13:17:18.763787Z", "iopub.status.idle": "2024-03-09T13:17:20.967532Z", "shell.execute_reply": "2024-03-09T13:17:20.966564Z" }, "id": "8StEe9x9wGma" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2024-03-09 13:17:20.450855: E external/local_xla/xla/stream_executor/cuda/cuda_driver.cc:282] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected\n" ] } ], "source": [ "progan = hub.load(\"https://tfhub.dev/google/progan-128/1\").signatures['default']" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2024-03-09T13:17:20.972302Z", "iopub.status.busy": "2024-03-09T13:17:20.971597Z", "iopub.status.idle": "2024-03-09T13:17:26.083518Z", "shell.execute_reply": "2024-03-09T13:17:26.082687Z" }, "id": "fZ0O5_5Jhwio" }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def interpolate_between_vectors():\n", " v1 = tf.random.normal([latent_dim])\n", " v2 = tf.random.normal([latent_dim])\n", " \n", " # Creates a tensor with 25 steps of interpolation between v1 and v2.\n", " vectors = interpolate_hypersphere(v1, v2, 50)\n", "\n", " # Uses module to generate images from the latent space.\n", " interpolated_images = progan(vectors)['default']\n", "\n", " return interpolated_images\n", "\n", "interpolated_images = interpolate_between_vectors()\n", "animate(interpolated_images)" ] }, { "cell_type": "markdown", "metadata": { "id": "L9-uXoTHuXQC" }, "source": [ "## Finding closest vector in latent space\n", "Fix a target image. As an example use an image generated from the module or upload your own." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "cellView": "both", "execution": { "iopub.execute_input": "2024-03-09T13:17:26.096593Z", "iopub.status.busy": "2024-03-09T13:17:26.095984Z", "iopub.status.idle": "2024-03-09T13:17:26.191542Z", "shell.execute_reply": "2024-03-09T13:17:26.190795Z" }, "id": "phT4W66pMmko" }, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACAAIADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDv9WgW20i4bZgCLn2wM189GdPE3iCC1WXy7VEO+U8eUnWRvfgYH1r6I8cOYvBOsyLwyWcpU+h2GvmTwxctb2N+tusXnzIUklk58uPuR9e/XpXwvDUOahUrPdOyPoKdZz5aUtm238rHSQR6beeZfTI1roNnILe2RRl5n64x/E5HUngZFXbjxX4Ytt6JoGZc7WQ3BO3B7kD8eK5mxsL3xJfWunWCn7Lb7UMoHyxhj88rfU+vYAVs6raW0V0+jabEy2hJgtVUL5lxMD99ie27uSBjpXvVKcOZKT+V9v63O2k24txVkamjaM3iZjeaPp8UYjkAYtuUQH03sTg9xtGfpW1cfDzV7q4jO+G9+yxgNaJD5a7T/FGd3LD1IBPvXTwTx2VrYWi29rYGSLzjDGTHGz45H+02QR1J4rqbGdbq0WOF7eVvuq4XDqhBzk+vavPeJXPyxJrc0Y81jk9U8IQajpaiO0lfauFkldUkByM9O/HU4/rXVaF4Qt7HS408jARcpFuGM8nacE5GSa2xawQwiK3UI8XJULgYPNXbQx7Cq/jyev41pTppytI8+tjqjhaOn5nGReEFtmleGCKHeS2UAC8jnPseawpPBelRXsrpaqQBtBI4P+B9xXq0ioUwwB5zyKwri1jkuWJ4A5wvc/5xWdahybPc0w+ZVW3zM82vPCi+fJ9oxNbtAQqntyOCe/PIrznWvCyJBcusR3QPtDf3h64/MfhX0HeQhojHtHI7CuM1XTR5d/23ICMDvn/69c8K86ElZ6HtYfExxMXCsrnz/JZRwS7sFl6MgHfH16HpVa6s3S3iZgQVj5J/Aj9CK7G68P3H2pIlhz5igjPAzjPWo/EmliK23IpLeXgA8EYKjGOnf9K+gp4yLlFX3PPxeWxjGTSOGjIikO9STjGPT/P6fhWjbWwvbCRIVw0XzDJ5LEZ/HhT+fen39rALrzoAGhYSfdOMfe2nB6cAGrWgXEVuJIGbDSMG3DqoQMSfT7pPvkD8eydS8OaO54cKPLPklsfUPjld3gnWk9bKb/0A18m6MX+27I2ZTIpQ7e4PWvq/x/J5Xg3VznBFnMf/ABw18m6VMIbxWzg5GK+Z4ZhbCVUu50RaVSk33f6Hqnh37NofhLU7hRnz32P74GAn68/WtLw54XeVRqOoonnSorqVBxDGf4QOgyO5ya52xla+TTtPVysPmvJhB1brk+temW9nvmmdQhAQJjptyR8wPXPr7VOInOMn3lv6dj6i0VBNaG5Dqccl2R5Kpboqsse3ONuAAB2PP6muojv8QMsaqrJyoAwMZGOPxrldJQG5ZTGwz/C3Uc/yrp49NiBLR4APB59DSoc7bkjwsaqSkk0WAPOnXedwHUZ4PXmrUIQM2IyhB5561FHp4j5RmDg9TzmpxC/nFg3WvQpwl1R5U5ReiZHdF2QquSpPbrVFkdWJbBPOR+FaX2Y4xxgUhs1decg+o6050KkugQqRirHPzOrDHlkEcCsXUolEUx25DxlRj1rrrjTPl3LKwIHfmsLV7UiykVM4Vc5P1ry8RRnG90ephK8XJWZw99pqNb2zrGDIoB6d64Txe0KJG7yLJvlClB0Bzk59ulerwx+cAvRkH5ivJvifpS2d9BLEn7qbIIUnl+xIrXARvUjc9avWbpSXVHIPLb3lvJI+1ASVYAfN16+38VYNukpmIjJEmDj14611nh9ba3nmF5FG8F1BmGY/dRyehP5iorTT1j1G3maJ2Tzir7cZw4HP4qSRX0MJqF4nz9Wm6tpdT374lXOPCeqLzzZSjj/cNfKikq2QcGvpb4hSGTw5qIDZ/wBEl/8AQDXzRXk8Mw5cPP1FmEPZqmvL9T0nwjJsRZWUsyn5SD04r1bQbpbidsZLGMrtA715b4Eh+1WOduSHH6c16Zpdxb2UzSSviQNll/u56Vz4qP8AtDPo4S5sOvNHdW9lGshmdvvgEjj+dbsMfyDA2nriuHufFsb/ALrTYZLuZSAY0jbI9M//AFs59qzDq3jieQS/8I/dm3JyoE0cZC+uwtuJ/wB7mrg1f3Vc8WphalSznJR9T1detL93tXD6b4wvQwh1CDZIeu9ChH1rskldrfzWAUbc4r1sPi6c01FO6PNxGEqUGufqPluIoFLSOqgDJJNY9x4t0m3DF7gKF654rNvDc3riOSdYlVeTjJPvj2B/WqEPhvRXuVlu4Jb9jwGmkJBPoqdCePSuaWPrVHaGiOqlhKMY3qtt+Rot4us7uINbsro2NrU1dUtrotGzgswxtPUj0rmE+IfgPT9Zk0dY5IrqGY25DWZ4cHaVHUjn2rrbWbS9XVlg2NglWGQcMOo9j7HFclWFW95vU25aUVeMHbuc0YXttZhbB2sCjA8cf5xXP/EHRV1DQLh8ZeEhoyOvBB/lmu7vrNhfoYU424w3J49M1FPp63OlSRy4IKFTxxXPSXJL5nb9YjJRb6qx8nyXUkVh9lduGk8xcnqMkdfzroJJCthbX8Rw7IpJOSrBcjg44xx/kVD428J3nh+9dZjm05aBwnYnhSevT6/4Y2j3CyXdtayRu5b92oVscknH6kdfSvoGlUp88TzYydOt7OfyPdvFBe68Pakn3i1pKoHvsNfONfTsPlysySAFSOa+d/EujPoHiG805gdkT5iY/wAUZ5U/kR+NeTw7VXLOl13OrO6VlCS6aHffDGQLbPyAQw69K9G0HS4zqE95cM0rk/KT0PrxXAfDK1Bti+Bg9c16vbo6K6K4SM4BOcY9xU4mS9vL1PQhph4p72RmeKNV8Rw+H7680BxE9iRjbEJGkXIyQCCMD6HoemKk+D3iTXvFUmuS67eTTQxshtGkVEKglgx+UDA4XjpkH3roLGRbTZuABAHXjgdfrWgJ4EhEdjAIolJKqifID3PYH9a3w1ZQjrqedioc7tFW8xuvQ2c9sl0hWQq20yKMKf8AOf0rbs7xI9ItzIwDCNQ2fXGD/I1zWsectqHnyu85Cnjv+GKvQfLpcLMzBsdAPf8A+vWXtnGrKUNLoyqUlKjFN31KM9zsvS7D5Vb04xzx7da2LO/Cs01vbxOGOAfM5C8YHt2rJsY0uZ5xklN2cEg4/wDrVbtbQwTBfLDLnuO3asaNScGpI0rxg1yvdGB/wq3RH8aS+JXibz5p/tPkMcKsvBJznkE89Oua3k0dLfUWvIFzMSd2O/19q6JLWCJTsXGeeDQ8KfdOefc124ik5q739Thji5LRbbFJF3MQ3zZGScdP85/SqrktHMhTByOvGfxrZ8mNR9xcnvjrWJqEiRTOMfe6egrjrUnRs2FGXPKyOU8ZaPa6v4fnV41kG05GPuj1/Dr+FfLd9YS6dqstlMRHJFJsLHOB719Y3twrxyQkrhuf8/X868f1jwHN4n8S3D/vrVYozJPcLB5gKhQFIAPJJGMEg8kjODXTl2LUZuEnozvxOFlUocy3i/wZ2j+KdM02Nmmikcf9M0ya4L4o3lhr+n2eo2kLRzW7eW3mKFdo2wRkAnof5mugtonvrpLfyFZGwDn0qr4u8DzjSXuIHV5UYB4y2Cw7cdODXn4HkoVIvbzPocwwdF03BfE1oir8MJQbeaLaCVwc167ZRs7qQoI61438PopdP1nyZMoJUKuDxhhnj65Fe26RueNQoGB3rqqpOvKx5lZuFFJ9C7JbkbS43E9AOtadhYFlE1wOT91MYA+oqeCIOELANwDV/GFrroUE3zM8GtiJNcqOS10LPq9vbniMEbvqf8/rXSy2qGwaFFGAvAxXE+KtUi0zUZb2a3uJLe3UeZ5KbmGOc49ORXSWfinSL3Q4dTgvojayxeYHdguB3Bz0IIII7EVOGcOao5m+Ip1PZUuVGPb28trfuoXjBOOla+lXBeYxyr83XJ6muKtvF+o3upH+y9G+1WrMStyZ9m9QeSF2njsOecZ6V1dnKJ7mCZFZGJ5Q9q46bUZKx0YqjNR/eK2h020GgoDSI2QaXPfNfQr2bjex4WpHISARjPHauf1ZdwB4J25z1zzgY962y5MuCeOmKzbxE2BXTJQYAGcjOM4rwMfJT2OzDPlmmcLfuVLjO4E4Uk88DOe3bJ/Cq3w+1iNPiD4gs70x77mGHyzxlim/Ix3yCTnvt+mbeqLG0hhZ3EvXZjOF9TjGT8qgcgHJGRzXL6RDBbeOxcySgOyKu1SMxMQMLyM5IBIOOVD9q4sBP2dZu39XR9NUpxrYZw6lHRNQeTWIVRRsJANbWuXNwgkQHJEyvtP93cMj8q6vR/Ddpp1vGEhUOOp6kmrWqeGYL9TJLlSRjK9RXm/XKdSfurRHTWzPDSxCdrJaHlVwv2DxVa3yxmOK6iFwfRXGQV+pCg/ia9P0OdZIg8ZDKMY54NcXrXh+O20u4hMhlkD+crkc/KOB9MZH4mtLwpeObOLex2qMdBx0P+fxr06VaMkpLpoZYiCqU247HqlmwKLj0q07/KfQVmWM6vbrJkdOTXLeNPHll4ehCeev2koZI4w+C2P88DvXoxxLUeWPU+WWHlUq8qDxf4jsvDnnaldSwi3aPb5RYbpX6DC459KyfCV54f8AGVvM+oadbwmxXzztBCEEk7wv1B49a8K1/WtQ8R6rLe3YBaQkRo2NsYYnAGenT+ZrsNC1bVNG0yKPT78MstsbiZkI+8MAR8jnBZc49SecVrGiqaUp/NHrxp/u3CG+mp6Td+K9P04+faXKljOI1dIiAmVLYII6YHbvgcV0XhvWbLVLYPbzRvMcksO4Hr6envXg13qWrz2IsWkeaBSrxyIm794I224OO7bgQeyj1pmm3l/4bvJrEut1LlomiVyAWywCKw43AAN6cgdTWThL4ov5FSp05xcJXT7n1BDNgqpycrxjnP8AkVYJ+XII+tfPmk/FW5SYLBKgAfJjnOd6k4IJyAPbk/0r2Twt4ptPFOki7tsh1OJYieYz2BrWFaSThNWPJxODdNc8XdG0uTzgD/Gql2DKsiRkjK8uueD26c/lU9zN5EWSwA9Tz+nU1RuGURsu/wDeYwfmySPw+tcVdr4DKlF3ucjrKzRpcCJIkVFLFkjBOT24A/hLe52n055ZIAdQhCwSRxxkxT7SqhItwUMpPUh/KGRnIZsYyQO11BoYrd2lV8bA2zPBHPPB68L/AN9Hpzji9IvkGsOZsJcl41lYDgIdvygEDrtJJxuwzKcgDPHSppSv0Po6M5ezskeoy2hkU7JWRs5BAFRY1IRFGSFzjqMgH9a0BwaQsa+ajywjZnhqo9rXOF8TWkzWVx8hjdoyAcfd9f61hadDA0CMrBip3LtypH5Y7e1eh63bfaLY4HzYrhdLiRGKyqVdBsI3YzjNephJ+5Y+gwVbnoPyOnt7wxacVL7lK9M4zXz/AOJru81TxHJZSrHLJ5gijlJx94jGfYcf98mvdcx+SQg2sVJzjoM/4/nWVpvw/sbqS4vbiC3keYYVTCCoGSTgH3P6V7eFqqErtXdjBqEE23a7PNbHQ49I1YPPMdUPl/PbQJu2sw4yeg+XIz78A846SIoeJXS1T5VVI4CzIORkep568feOBzXZNpMOjgW9paw29sBuKRJtXPTJwPenI2g25Et8gQBsNuIwT6e1azmqkrSZ30cRTpwvGLd+2v5mDElsLaXFxdXA/hDW21cgcEgk81k2MOp/a7thp1vL54QrI8pDx4VRhRjGQ27nIGfoK9Oj1fRJIhHbW9uVYnoOR/8Aq4zVixgsHcBI1ZunIxx7CqtTWkWctTH6Nzpv52/Sx4B4r8EarYxJfwM7MDs8st9yLBwCRgYC8HpXe/AiWU2t8j7xhUYlj94/NwPwwfxFekatYW9zb+V5Y2sQrAjt9Poa4T4P6fLpeq+IdMumd2sph5UhJO9WLZ/Hjn61cqrnDkfSx5tWpCpSlNK11/kelX/7yeKJuQTwM4z079qqSpEYbrzS8jMQg5HTHBH9anuHD6pgBmEUZLY/hz0qhqF95FqYVCgryR6nHGa4pP3nKRzUYyfLFGNquqLDB5aL5bSKcbU3dMZ7A45Yn3UcHofPtTNlaRWenzSTPfajcBJpkYZRASHI65Kn5VB4B+cfMGFbOuahLPOyxRgW9v8A612cLvHbkgnJbB7++M8cro9nda349eNI2NvD+4Q8nYpye/TPvzgAHoc1QjzXb2PYcFTgktL7nvz+ceIwv1akijnUfvZFb6LjFWMAUuMivnvYXVmfP8+liIoHBDDNefeKIG0m9+0oCqSkA44GRgV6Ns5rm/HNssnhm6kZQxiXzAMen/1s1vRpODszuy6v7Ouk9nocjBrIlXcHOCOecccZz9OR+Vdtp+oN/Z8LqihCoAVQcr+BA/lXh9rqMsBlTIPl4jyT947s8Ht1X8vxr0vQ9TlubVArFzkbgYyB/wCOnrn869aKdNnp4ulGpGy6HT3tmuoEbSp3gqwXrnuP5VxOt+EIVimDN5hcOdsjE4ypCj0GNxII9K7WxkeLbGVdT1AYc+v4j64/lTdSma6d4UQM7kBQQT1PH0Hc1q7Nc3U4qFWpTnyL4Tzfw9pl1Z+Jmt5pXWGeMMyr8y7V+Vm9RnfGenc8/LXq1rZJZQB9xLFFI5yM/wD681zlnpkf2+W6Z2jYKGCHhTn5Dn1JJA4/nXVPMr2u1ACQcAdse/tg4575rSkr6tCx1VyajF6dSjeXccPzSH5dynPPByfx7Vg+B4tuv+IbxGMkE9ycPt7pkYB79Saj1vU4kuIvtLeVbxvsdlbbsZhlMnoFPI5zgkVTtJ00PSk8gRx3M7Sy7YxlUUOzcgZDNjjkjIwCayvaVwVFeycerOgm1iQ6hfrCV8uFlVW255I/TofyNcpf6us9xPHLJsRQDK4OOOcDPuR1A5Ix2rnG1ucpdSxxXCRtt+Y5LYXIGM/UnHTPerOj6TLqAlup42jRTtjRmBJYnGc45IUD/wCtXPNN/EehQpU6eq8infXUjCRolRZS4ZR/F0wQB1JAH/Ac9RgmvR/AXhm00+yEvlf6Q/zyuQBukPU+3bH0/E1dK8JiCSGZn3yPyu/nb2zjGAcV3en2y2sAVSBGowMfqa7cFFzklY4MyxUOXlpvU//Z", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIAAAACACAIAAABMXPacAACF8klEQVR4AY29B5yrZ3ng+6iPysxImt57Ob33Y5/jggsY24CBsJCEAJuFJCQbsveSttlsbkJ2k11IyIWQAAESwKHYGGzjflxP7+dM771rpBl1aSTd//OO7RzYZX/3+8myjubT973v0/tnKfyLSJFIjci6iFOksU6enJVJGRuWm4vSebtcGJbvPi3TInfukms9MpeT7T45tl+qqwIzU+Gxa7KRF1dBuusltyEet4RD/MlSFgiE1lcTSQmticUi5bXSPyYDa1IqUmmTz/z+yW9985W23cWtTQ05S/LsufEL12QpJyfb5Vce2ldIRm25jN1aeOnlSa7mEPF45eqEHGqVj3/27o1LF+zd26SuVnqHxekeOnP+xWdk/3bp6BSrSOm+bbJrpzz99I0frhdsMrggaZGGcomlpCogJUXStVP0aAoM/TRsWZeOXfLFZ2SDVYmMCvuWlMg5Ea9IVnTXbpG4+ZKLN4jY+anIKXON28okHZP1tAyYf976ZhEp3PLvLotMFSRpvnmwu2Z0ZL6XW7JavWCFuXlOJGAQkFuUdsnNSqQgVS0yGxKv07ImhWKR1bRkc4qj9zxcv6W18tSLV753Vte0u0K2dYjTwg5LViPRGn+hPOgvKXanslJXaS+Pbswvy+KslDrlnVukttlZX1P75S+90rFdfvkjD146d+bZn4zfHJdd7dLd7pwYzCxOju3ZusXptKRzG03NkyeOBF98fjW5JB85LukM23LZK2qkvV1uDEugSu68r3Pb/tbGH+Wji85jB2RyVlZWJLwmBw7snH1Jiiw1C4Vr1yVQKiffb5VkfmVApgalolLcJZG6chlZEfHJJ07KheuSAEMOqV+XNQOXG6KAaTfQhzLHzAf+OSyK0TKRkEgsJE1BucG/3zrehvut0P+Vg23/fGGUU6pEL17idkGpmwf/tEu5Af2qKP0A5pT+0ZaTbFbCSVldkefPFBwix263PP5awSXyBx8s29bR4sxkXzwjh4uls1YkLzabvOsde92t9bKyLHaH+P2STux275FSv4glOzTS0zPs8voLFvtPnhm4emXive/1bxTZv/wP37HEJJZWpNZWyI5tnS5HT3YjEoott7W3u9PpA0d2eYscXfOrS+Ny4Hj7eiQkiYgcPyLlVbIcloPHpKJKxsftd90lF18Sp0O2tsvstKzPiM0qnX6paq2MRO/pWBBrSvIbsr+r/Ihd+scL04mJ64WgT5zs3SueHR23lQ2/cEqSBTl0QEYWpCgt1TH5UUIOiyREwDsvyHxOpE5kSeSTdzT8xcvTV0X2BotaV1N9hnQBTuxNwP7b/6Dx1y6M7vOrJJgoyMFi8Zd54yL3NJY8PwVmQYBdqUD5DawVGfzmJQ8CcuJ1Se+AvJKVd9TKzFghKvLnH67+wAMPP/fDH//rY/N7PdJYIa3N7mwm+eC7jtpO7pJQRMKrEihRWGQshfnZsQvnl5ZXkunCG2clkVwprxGfWxqaZHom8vobki9IwC+D8zIEXZwFkT3HT3TveMddkrVIOongKrO3y9DNu452rzbMuoMBd2u7FCzir5Dyevnlg+Ksk9PPysKcNFaJwytFXiktlepamR2RWEwefkTWUjI6I9zVmZNiq2QyspGT8kqLP++cnAoty5Y2keYG8fhs/tKDO9aGJyQbQThJjV1mIc5ZuZ6SEk7xylpcZdFFkXuLpMYqV88inGQPiImnmu3StyEdIr3/BvZ/+3TH3ronrsyWxhT6nzre/eIbA5cu9Db7pam6XqZAHODPQaNG5sEBoIZ/wqwFCcXEUSTWrIBY9nhB5P018uDtd8jEwoXn5/1IpISUzkvjcd/OE7dLYv3lP/z76WGpr5ESj4RTshaVaEjXYfNIS6Mc6ZKcV2qagjMzqxcvSCYnx0/I8aP7mvcfl8XVsf7e51+4EhqXxebxHRBEJ9txyJNPLQz3+WwbawszPr6MR+T9H9S1blhloyDORsmFJR6Xumrx2qW9RWqrxecTl1PScQlsSF2TFBbFvSyJhPhKpbRY4jEJrYgvIOVlte+xy6UxJb4ih7g8YrUHt5e0JtdvXhZWNDInrR6J5JUmEQjFNjnklUKReBDICIODvr95JcbWAhAt10aKb+iZwCTCtz97AP09FRJblt12+eobA9uDkt2QZEYmJvsOlcj5dZbgNEB3qCRRTkvqP6NJmVmU+UlZWlZRCLqDIv/+w3uK8rYffe+JG1FdVo3II++t3nLX0WsvPfvc04lYRGI52b3dNTWVfuO6INK4HqwFw7YOyW/+Vlk0Lk/+OFTRIne9y3/bvfdK+xbpHZ146ilL2tP6yLs+2dz68ktPJeKpsSefb901vTQ6XOrwVt99N8LE13Nppe/mxmrEfu6cdG6Rhjap2KHcujwoVeVS3CjheWnvlFxcousqVrq2i9ejGmNjQ+FrBb4wdVaKYXAIOi9uj9x2XDw2uTYszU0yH5NiN3zglPUEBoVNOqokviGBvIpscBRTUaFwQv48C1O9EkOwQJdNxSpYSj1SDZ1hvhhsKWZ+9ri6bP4NyLhUUuJJ+XfvaBvrH21qbD5/ccKu6h84Zc2vuTAckFMO6JmWcSPU0DH8/b6gNFfUXn7imZev6YWmRP7DAyVbPvzwa1/9yn/+kRyHLo7KzX75uyfTs+avrBuc8VsWfUZk8f8N7W+W3/jtE+5DO6Vti0zPy3RY3NXNO+6U1WUJReX+++945D3J7/yDw2FdHO6r+uRvi6dEVmKyGpat9vKj90hbg1TVioXNQixNqg6rW1WERcJSXSOFjL5ia2IrSJAv1ySeVplT7FVtZrcoIFMJ8RSJ2yU2sGKVqirpjIvXK660uB1gCCY5vENcFnHtr3denqmA6tck75ZQEmkkhbje9Sisb8yhBZGt1dITlbISKU1ImVdm46oDwHCLVa7nFUo/d4CzkaSaLal4vMQmdeXB/f4Jq8LJYzbFvsAyL7t7KqIS7bwxy6ACKGBXm6RXwucvhBJGYnWAkk/++9lXX/rKj5T7KqtleU1eD8tTomirN4YVvBQX2eFWAtkAYZ+82/3hX5dgs5zvkVBKioulqUoqbOKKSnWR7qO82v07X7J3t1fd+U7kkswsicutp1ntyreRpJo3hRVDFecMt9rFVam3dznE6xOrUyobJVgngxMSjkPN4nCodC0vlboKRQ/CEfL2sNuC8kdtvdpDybjixu8TB2aclO+VlTDcVeDCaIfqSlWHqbdIGzLvNCTFPbdCYU4JFEmJS0HosOpCOPYWy3Rev+HOmweX3zwC5n9WKDyV5VLh6fmOeqdRwvwB7GwiAH6xl4wtJm8aiRYxqqZCpKutIb0WwrgAAFGR3zrhmTn98v/934f7Rcl/YkFeXpA+kXeLfGybtDV5RybjL/cKe/EVS1dWjh8UObJbNrIyPC+hBXHnVdZ56mRnUCw+SS3IY9+QwyckupJ/8ZQVEfGe90k+IfG8qtND+yWd0g8LC+p0VLJQyGha2TazLgGv2HzKbJ4KSEuWQ5J3KuYqnAoSO9rCIusRKSB60xIolxw8bpEij7IFeoJ3NO9KUqorZGlG0gWXF6kPLgMVK+GcVSaWlIw2IcT1NmkVSg9gI7ikyqOaBZhyH7eh3o20mjIhRfKbR5tVBg1DLBivAlnT1NTatxgqKXL4SuvfQg8Y4cXBxfz+6wOLEfMv3m6K/O1hS+vOnZa56cWkiqhalxw+efjr3zr1gsgJQ4o3RBHzMZHP/8cDyUj4wuWRkmIlgRqRh99X3fLu9xnDcUW+/c+yjphOSlu1TExJc4m0H5P2VhkckdtOSnFA/u5H1jtul5YmKUFbFWRlXWqqJbKotJxJic0uiahMDkoTOABOGXECepfEF8TLrQpqCDXUiXtAAi5Zi2B4iT0n4SXJFcTnFYdd6dnpEY9D3F7JZaWsTH8VTUiwRIpc4vOgSIrroUWLVPptg2G7XYo9Up5QfZs2VjzIKDf76m5WtinzydKcajvIo7RInCkJliqXOgsy8RYAvWBmE4fGFeB7d7HD6cQIjKaieeD91gFowU6gTBIZBMDbR5PI7Udus6cyL79wY8Ys5eBuuXDz4vcmpNsI+hk4QOTTZfK5T+8vsjif/unIhZsyMK6o+ikC8VO/I+07ZQ0WLRG3T4mrrlLKUHqINjy065Jclq7D4rbImVfVw9qxR2wYHF6p2yUw6Mq0RFelKK9ipKFK6qqkqcVoquBbEtOlYFV88HJCi2L3iK1EgtV6EWxeKMvqEE+p4BkWl+kG/QGx8qVdpZYFGehWPi0qkvJy8aIeAGdUPE57UDnWZVf5XmQXt01qXNJsU6ukvggnT5ZnxG+Tdti4XvZ2q7O9AawOdXvscqzRCh9sHg2N/rc+Kqo4Ojo6S33OZCY+PwNc3j7gAF2/SyK4eG8eu0Q+2iJDly7/3f944eqgeiWcVVdX8a3Ho2y6Gu1q7N/jIp/9zEPBjp0vPn16eklvU18rn/5oLfz11Mf/QJ77qYTmJb4sG6uyEZbCuoz1yYHdcv2C/O1/l9dOydDL8uxPZbRftnRJNiFuu/j2q+DF5gEoU+OykZG1VcWHrtciBeQXDAYfIDrRExAye4fM+CauXkh8XfDasHywQXEocE2KfdLWJcFKyebNKyvJpBQKql3QyQWr+o/wGeQK5JBX/lKp8GayYrHqXorcGoOZSEtlrSphRDE809kqbquU+1UKpVIqgiCquekptH6Fv6TjLRhW+AMNb33eVq/ew7e/8a2u7q6+/szObcFbEMBJCETMg4380ls/gCWsOekfiC8nVBWzRY8Ts2UF0Q9wS03YJCXyl7/cJUdvk4npqWUVWTEYqbLI7rEADxwCiS3K7A1ZnpDpIUmEZXpERsdkZU4OHJaduxQudc0STUlpGW6t8nD1NlX/GzFlhYZ2aW5TzYgAYZcYcaFFsXDzCkMM0EPBIAMcsBz+lZL1qOpk2ILNIUQAJQYPlB6ApM3pVsubf4VUOIcrgx7Q5i/RUBhUWF0uAZ+UeNtaxFrQABcYbC9Rg/HctLQWqdCq8ktrbX0VTmFZUS6j2p1rs9+De3cDNLFkwIfPgHFmbBze7DCfF1fUtPV6fcMTE61NMHwrO7nlwDflVbBxrc1jHpTGJegQp95J7uoIpjPJHzyXhBX24qAZq+vDmMAP3SlzE68++wJG436v7Nwu8yupbz43W6wrQVHcphb61bOSXpWubulqkokBFfEYLWWt4gqouYlv1dqilFZgSWmZm5WSUiXGtTVpalfyLyoVi1OKgbJdomEpnjI+C9uslI1Jsc8YyTwnliKpblJS8QBTu8xP643AET5aJKr+PSjBZAHMqZyksxpBtFnEYdPv3UWyuq5iBdZBmUoWF6I8oLZrZUAvA2zcG0oPMOT6GnQ54y6223zeInuqqszhHc1y3emJySqXVJT7K4oSjSk1TGYXlXaDBqADKXnPlppkNnL6ZvJgvbz6+qWfQwB7z4iD4OabRxh7e1UONUtrtdeSir/y2urYmlqoW4wuYqMfb5X9eyuVbwZG+sYkWCx3Plz+41MrX51Vi+25vz0WGR+UyAQiaOLFG+tJ2XnYKn63xKNyYUGiFpUJuXmpapDde6StVZZWVJSml2RlSVZDUlZh7HSkInZ9SiyYNBh95WrLq/CrN3rRLJZAiaVOtYXNKZ4aic4q5yJkgLifWGhC4yoIfcgUWOOXoWZTBQUk0sYETsz3uAsEx9AQxm9AGBIUqpCqra6R3vQykgynIiddzRany5NYTybSXMeez2WRCmWBYp9j9WBWnnl5NliE6xvqbJLsvPSty/5t/sd7IxGRO6rtpxc2hsfmCWuOiPz2we7LVwd+FgEsEWloYYH/dlwtSPWyNFZayssCT18NnxdBQCBXrop85iHrlo88IItruddfmxyZbu2S8qD0Da88Piu7MEmr8Toz/rZy6b8hn/hY8/LM6OsTP/6vNw5sv1G7UyMtEj4tzR1idYvbLyVWJZWKMik9qL7ENCIorRrQ7VRPqjKolqgFq3Rd0m6N+RBvcMWNFJpXrasHnp1H8qx9RRJxDSiiS7kCkp2IBa8yBBFGZ0L/iutgt6p8QfdiXNny+iXQR2/HEPLIs2L1GyrSfm5S7GhvTtudYvPK8DiKo+D22Lwu/1J43eJ2rcXjWE9rq6tFNo099i+r4XThRhq66NhuDfTk11YjfiMfLy6AcA0+An0YIpHNPDeukvyWg/WhiywqBt8+lkUuxKR9NtZ1qKVBwgkTIIwZA3TLga1qehQ5XnvpZjotFq9MrmicuAo3Dd9tt9x4+WJDkzPwng/JQl6239H2Gy1tX/hLCQbV5J+OSHWj7LvdBH2JVkKzPiNFizTaw598RUrC4xMqGXKY8CUSDksGe5/VGetEPSR+kjTGA/stErtfV4d2ia6p1IBdklnFn8MlhZwCOpfU+EQqrbAmrocG4HtUcTKqV3YVGWXqVYYmeuon1BB2lWKtxaTc3ezKTc1ksGC5XjIdrwzUFKXTaU6UfDCg0ez1lAbBjnVoDB+TrXdZ1kP5euhiVX0WlBVA4+g3736SCufHDtWqDkJQvw1wwpBpxKLbnPT22wr+N5A9Nw7VAlwkc4D8TCtubpMsLknvzWZMvkpp7HQsRzWCeAyXfT+BA2uJXQKP/Jrc8aBcuirTyzIYlt//KymvkOYuedfvy773qe2Yn1Rf2xrUcBt2RPyqmiVECFDfy6uyuKyfkT+QlMUt7dtkLSGDw2rap8JmhRtm/SCDDab1MzuGDwj4JTJ6KYQSXIES5if4cZieXmJzQSnyqd+QykgKd4GYGIrOLqUlGkvHSifCXoKHaGi1zIFvid1TVq1cxInl5UG7x5mXXCyZyG7kkVhEPQDLiW48PDtcVFXj3F6nxtLde8tBN/cfewuaUApHS7k8syQjS8oB/JB3tgEuectzB7B+68GfV1MC+MHVjmKpiirVHd2JRZGEJyPDi+VV9mxu49tPZPsS8olyedcn66S+fvKp8766ImndIwmMPESwCQ4TTvDWa7SvZF4iy+pJecAmQbsJpT7+hDdLzBK7ZXFevMVqAwIsAgxq9kAoRMlzIrBlQWy1hhIQCmuSwdwkseCVxSndCDG4NMTO1gtq4eQQMlZV4ATD8ACQEcgla0bsRRLAf8Y3zMuGU8kYyx9XGXEDN5SUKIOtQaIeNatK0t50os6ajKYL2VTKbnNZXI5UPJ0mFIpCMTzpc7simayv2JpIZ7HgcPm9vjWPS7anpedWgIrMrCiwr20oB1jMxlx6QiGvUtIDyf3MAdJChsAOlKjz3WyTu8qlst0lN6+R5fMfbO6f3vj8d2U+IftFdm7FV64aee58Chv56BHVcqfPyNqs2DOaTpkcU7Mdcu67IEv4qEhFxEZEvPiRFnnth5IFLg790qGqTdeDGFGXA2pkFavGGK40WSkWj4T2CzBgF7jKa7B9RJw21RwbiDViFaAhozBdw1Znu9CSTQ0aLCJFBkK/RGwutStBK1yi+oBzIEijnImYcu2aWmWRYqJuAQeHBSc6v7y6mrfa7C6HzWULlheBr2AFnnt6MZwnphqLFeA3rOVoNIuFemirh7Xeegyaf/AlNwPahvz5Co+RlIVbpeytB3TAeXAKrAnlIY23diI2VFiJM7YRzkwOaST7nXbZe0Ryblm5cqX94eNCxMlWLFeuyuqcIiDMFslzVqp0xokkG9vbL5acXgQztLVRJhcNyGBmrzIBG3a7JZGWaEx8C5oCw2BHOkO8bkhi84WwJIoQljW8KjystJQScrAY/8t4vxtJccF8fGP8A6Q5KOemaGA2gz2KtkDTKNCtKq8c7IiNppQRN7nBw86LJG9TAWV3OpwuW9aSzmxYnG6/v3wtG8IRL1gckXgqggfpUCNufUWlXW2rOhA1NYHwWthVBIslbgXpHo8sJdQQ4ca8OHhHjWIzKCvAFLceIAoUsS6WlCFOVS42No5VXlEhU7N9vbI8J7cRbTsmdff5ZSkiNW3SNy7VbQrc4dekFe8mLyQECASdOCyzYzJi+ID4TGRFsQ5xA1CcUpZMRoUoDStAgGjgyKk7R/g512RlQWkZSQJzACy2pB4ZG7OrsMI54QprYdV3iGTO4YUNT4AajxYvDH0LCtMYl3FSWZozAAHkMfKcbGSUygKvSjOUKVslZ8alAqADK9YrdpviPlhWaosnUDAeb95uq6ut82by08trqMKepOzxG7VFsMAh1WXlXneikMtUVsjEaISFAsO3D8gAqG53Kdw3+YBbgQLkEhuDJ3/miJpYG4SFwEQkzC6JD7XUaLUlUjmbLC6qVdrul7rbcclaZX1IiiskQhytUSM5hM9WEPchVV6FrFoXvT2SAx9RqazTH2PvY99liFaiGEo0xB9P6GesfuQSDloQdstLiV/1E8YocgmPnesgRkpxo5A28CIQIQQECEmZoVQzxvu1yBppZNJONsUojIVww/QkyGonLePUiAXfo29BFdpCSd6IKQCN7AJh4A9Yc3dEEPYr36uwd3nshUg6tR6NJTYsG0XFwyOzeOgAAf0doqAE5zAnU1Mr8NXykpL05Jqma/iew7+ZOCtIfZnS3ib0naoG4OkNi6aCiEdD4Lcc4IQviFlh17GSBbwiNt5BaKVkeFT6R9Q0wo1VhYmJAq3x+3tPSnRBZshSVunOPX7VbBjXi6TIrVJTp+YWdjoLIFwDuAEu5iAHUQp2A4YQhsgfFAA5nsSSiSXUqH/LX/kV3gMxBkglGVPpD7bAjZI8zmulXp/N4egq1bF8LBy3JFN6L24CSPgn3hkRUJSzzySxQRuiCRfPX6b8xPfAHQTgMSh/YJsbKURSG4O/psJayI6OhAcHV0EE9lqRU42wvh6FL3dYz8vMjK6LgAhUV2wYSXdnIum89+UwrIKoBzgA2HIzlzHUIB+UXh5Mq6Hz1mEzv89gNDs0psCdKuohnLxEVgd7pdan6Zr2uyV3cc5mmZM638p3pzzlL3sOHxAP5IZzT1q8WPIpwZGob1QcYhSF1yWORGOBmHr8c1XW1tXyy6VkKWqo0qbJMiL4mP/VXUoiCElCacgTR1K81WpWIX9WVjWECSFDINAseMXEAo7Ifa4Mstkj0g+9hpuGfEPJW5BX4H5DZTYpMzwAlAcQVzOM+IdHMwewFCEx1YhclgthdJEqg4nJtgTAWYnbmY1rOm4+EuZu4YxaTNdy0g2mcO+MoeaLIbE0EF4SU+yzjxB75TwiL4C0tDQWCW9yAMs3gMjjKFIQYYERbz24P6oIVgzHlChrgrJtezOQfeX5tdCqYg/ehc1trZXSULZ6KVbeIp5PPiSrU6G+eV0OtJbcEFexuAMyPavYq2mWYr8yFDQIPQKUyKoS76bP5VALW8ILUkiL1ybJdSM/WUW1mu0oBlC1OqxGMP9k7QAIIZNPKwKgOmCEFsEMTcTUmsSKBYs+v+ZziFWxAPUqNhT3EZI8IbG4NC6EbHG4xVuiSyWKaHdLDmgAiM33golV8G7VqIZlg+DSjq3ODso2RuR0rxLysqER5FncWGzNxdLW7rnn3uMNLS1l5CcolHGpwYOVoHodTPj9ThdxbgUs0M8b1YtBmwY7mni85eAM6CmW0Uwf0gVvcCUUWluPLsyrfooTQlUeaVAxPTkF368tEZl0SFVjGaqytVtO90hdvZJSvCA7d2jtFKRH/UhNvfIB3haYAB8oAPQBZAg0ESPIa2gWssFRWpsWX7kkDTpJxCu1xsVSorYmNhkmDeBG4rIOxDAUTdCCHbmw/f3K3Mk1Def5g6o5+BPyCjghatDG0YgQp0ExIHagPwAOk/GOjEK7YOGDd0UyH4yQZFWcxquspqa0Nj80cvfdi19+sTAhcodfeiKCyt06rw7hSFS2e7yNTY32IjeCaHplfD4t22xwgL12cQOzNDK/7PIpAgCeXZ1MPhAIwmgryPwt0Ocjf6PMD6IBSxr3iEjfQBR2hPCJyhzo0mSQiuZkntRwTUdxmlhbz5Dgz+VJgnulpUZjAFhOKtNzaj6BKnex2uOkaPwIdJP1xSKsgFTbTB4YgRPUVbhIyIyrEenZUHCrgkU4G2MU8kTDE+YEoBwgACsTyHIQVd00hDYVgLteNRDESwYYKwh9w6WQ+HiCuK0h3BGKIIK6dwANByDcEJLsViNjZm1IJDXGEEFAnxwOYTkr9Oi2ebLxgs9I9upSOReRcQN9pMIgIMlsBMsrlyOxTJ4SMrfTmcI7iKY2mnzqAkaj6//uwx/hopzMi11BGqweuGou99aDdeXtSlioWMorlS9xUGD0Df0nQAsU8zuEAAotKBXVLhBy44oEq3R7b5ySrTtkHWCtS2mlpAnTQ5IbWqqJwQpVOks06lARVFkE7VO3g4eB4PLAhg7xEYklXEEU0yt+5EmJum8AfTWqJFxpQo4YjigosOgt160g0ECGym6cVNwhlosBWq+CwU3CMqqXZYvU9GDRbiSkqVlNWFiKBSDf2AVqgKomoI+SB1TwRDginmKlDCx8aAjPAH7N2YOlpVhkiJQFDMVlzUigU2oCMjujCzl/KXzsyCBeG7wZSaQXQoXGWmupz7eysA7fTo+uL89NbXKAoSCkP74iSpho1a3gN97nbEpDAcXYEaRmN2WOCWoR9F0JSaAOLYGIZ32o6ZhWVtVWyunTsnuvDOdloMfQFyC2qz4gNoAiRdQAJgW6YXzMG9V4GPgYWybipXISSIGJCrUkkCRUhsCpARPYqAuaCCNCuVIcWdXDysr8BFIF4py/rj8nXlQUUDdCk9Y+vZom0TjBLxb0bVQKMeUDNTBg0IwaXfAKFlQW4RYUK1xvUamF1gGkbBAcEGdVSmXL5Cd87S31LUMz51fUTOXSN+Pyawfriovmh0by4yJnrl6pq6hqbmheDK+uOsKhWP5wV/Dq9fW5OQ17zw7PgifWpFyt/+dmUGgcG/hnjjlTGRlm4caNB3qIbvBF7gCCKGGD2FPIflaPtCOJF6foo0OovqMGzA2BUz9WrjDhN5jb/AwRwQdEB2wHqfJPfgXdFZUoWIkOYdKoxkIQsbYqBRZAJNzKKgkfEVCz1pnoEBAHE/XmVWaMtXIDbn4OXdqkiNMqiY2YKCJo4ArcQhnWaEqAC/9WKaUjcNBY6iu4FNAVdVJSpoyPKmYxsNcm0SCjcMpYLWl4fKIiV311BbktrhhjQQRwgZzD5i31dVN2QxFJJDI9P59IJawbhS1tQTRaODR/+0FffVBqKi2R9RUQkHvTxsD05h7IuEyea/3cAU/EMQMBPa67sae5OzZeacAAjSpGOBdsxDjLRAIwKtCxcDR53fseUuhDVpurr65WrQuq8APANfdFeUJTqkW4c5XioKjCUDHA4p9+U4yTNksCmvwTKDfq1RSy4IADCIAJ/uQyOAMB+4hLmSASiIF4uA4L4LIgFVbgND6Xy0ZIFQM7QV2DA+IQGE4slRINDKcE6yZ6SmTbrWYSu0OmKaF49OZIXbezyGYl3MY9uD3WFu//8PyUuzR45EjT7h0l0/PpG6PLz792dmYmsnPr1ioUXzrf3bmdUjyHo6Syxg8CuAd7I/oBjBNahpqzxs2ebn1jQ2xiIqsVNJu0j/0DZVRUqzZSvYpFiGHHyjgoiqJor450I4K7UmzoNzJ7xfoDxDepj8U5VSmIGvLZaEsOaArvA1ZQGrIZUvUb+AIvDiiXfwI4gATs+MCZvG+YD3xjIKWClzOBRoP5Fd+DKpZUZzBUbXBTYippOJMNryoFrGOGbTpZpWp34abglrOGMmK6neLF+/fo5SnTnJpSLYXtQYAEuxAcFDlsllxdtX9Hia6MvzSXKYZHxyeSqVg1TqhVLQMqrvmFz+uGea70ZK/e7CmvDa6vrjnzGHAaRjMOERuPEs9CRODa//wBZc6Z6vglwwdIcqANuWAxI2YU+iqPcgoQXhqixZSsVs1JTbvG5Y2B2NqqZiWA5oV+JhrDS/1YlgEjIpQAFreyG7rmy5D5J7BOGMRwDuDrMOTPCgEA4ObwGSibj/q2ibPNf3IRTuN90eyUtfKZFz/xK/I8jWr8YHwTGsGXxk6D/KESSIGEQW2j2mkwvtYRYeORMY2pt6H+M0oroyZ5ub+lvmZ7t95maVGGWDKL5krxXGmwEs+PGBFH2iI3+m7wuwKL9vmmplcbqytXpxBBiB2+BOdgkI/YJzH0wM8fLDlqmICrcS6qGOg3NGuZk6PItgbJI7swpXnHjUSdkkxfJfTPuonIY1OjPdIyP6MbYzP4O6hftf2RNsRhCASlNDCnoK8xtwoYmcdCuo2WqjQSA+g3GP7YXJ7D/A+YgnOzy59f9dv/5hyXwTGnzZsY/5hJikYlNa0Q0CwXpY+rKhURMmgmktLYCLgjUDoHhOIvz2MOEUqBRQAkLiQ7Mi6Ix+XYsRVFoF4uxIL8GJinBDAyMjE9MmuEHUWPQV9uI9Xa3oAfvZErwPnZVHI1FjNGrnocmltTKlRRDrR//lg3X4ADcMQNrLiZKSIi6i2VBsqiy0tr8wul2KBKy4YVqefBOYJeGqj/JuZer1lZFt3YoqITGw5WABNsDxFUWqXb9gcltaLnaGcKN0wbfHC5YnNzBMgmoOESFoqY4uAbUPV/PmCpBSO7OJNrIkPDEllSH5ICJJqMyMRhU+MlYPkgM6Ee5IxeH6cX+oBH8RvYdM5aUVoYGrR071JDDrZGrOAkFru9Fleb299WPTYZk+pimYjqmtw+29zcQkWJlkENLOLaxyp3Bevq66wO68jE5GhMAitRds8KcA6NAcotoA80IZj/BYfDfA+m0MDADRwQ4JmYWOIHLmfBMz/vKK/Orq05Ak0KZZCBaiUotW2XlGChE3TEhSEZm1V5ihTCCkIrILg4iM/YiI75jDBZfosJuPCSkePgFVgDSjgYcuYDvyo10oZz/teD02YMteQlNakrISRFwgeTVyOABVlbUfVD3AlXDiuTz7iUkDmhLrV5jI2ggsBEgLkzgjTTTzY7MTHtXaKHBl6kugLXFUmGHVLwJTaqymQ9J8OsHfVMEVMst7aSg7ARiJwVihP1WC2amFheWbjn9kNX+8+TjyxWElObl1NIyMVVLYWyCWpAfsEB7UGfIECjOJTdU8Rl7CKasEp9rpX1aIXN6SCgxhWnx7UaEAHKS61m8EEmCS8mo0jzU9ZAvJfw/bJeiJy7BbG8w8AdWEMIsDK/4lbA13CVfvAb0BcZQmbR0DUk0XbLYuEbtAXvFEAZEEOq09MaZSI7BugxeBZmVP0Q88CZwu3A4SKqiCRZTgqVJ83taiCQ54AjETU4KzAKzAFKAHQq5a2uUhZBflq94qRDhOgvYeW0pNdba22hVC4In/Od8RcJm6LULwNVyvdLYHtvXXXlxNjCzatXPnLCPzwQYdfsCsLEB4FaFd+84lTW/4KDszmFd8K0yEnUEutEgJHds8fTWmWTXS4PlqYjoeKurVogBY3Tz8WG8XUROwAUrxWfXoNl8Dt4Q7g3GZBBZobilCyUYgzJA+vSn10Lf2J5oIR3PvMhYhATVqCnx8Xll3VaDFekr08mZ1RYcxbeExEI3FNLbnFmvKKizEpBPbFrmA8sg34IgruvrqoaraySqajKxvo6mRjUu6CrWH97lwz06RpZOcEAoEDzE5qjiAJ6n6wnayqqbKNzROqqE9JQaxlfLcxsyB5ICIuYyEVWFpbjrdXh1sbA0Hh4Oh6BGwfCXAY5krJJFByyBpzSgo8qnZ+PBulVOKA6qAuq2wwEYcoDW6gBuWIhQerI5fKFWCIZJGeGhCGniECnqrCqTi0H5W72vEG1hjoB23eKnXWHpSQsScJzneYOUAtLjpJfMKAHrJuSh+16zQmgh79WGP7gZFbUb0roSXkOaF1iZFLGRzED1XUi2w432y3ZS9Pw5cjY6NraxuIaqaTVqvp4ScBvJY5MDFVJCQMMPPm1CmZqVm3TJgKFC3LoiNLwyLj4KdVeUWQ0NemKtNAoqYmE0hqNHRCny0tVRUVLS/iHY0kabFIZDRBxXGWBIpfJvxEunZAH7mgoD2RDyxfdQWccYaAIILSEkiG+wb4SBQCcwx/+xQdo4s9ED4Ek5M87SQ53wBYsKy9sZIhM5GF2pAr0RbC0u0vrCbIwCFYzJYLYc0WqxKuqFfFEm9k8Aodg2fqgRizauyXYZvpCIEnug/zkBJtBw9tr2sRE0Iij60YlwIlTQitlY61cvKAWMDF4JB74httSid652fk+tbNQrmXVztLmNnfQb3U5iemWt3eobPGTf6aAxaLdxqw/THCCFtFF+cljsu+AuvRwyVCPlmqRkCF4xcXhAwQx21Eo5NlmRXlVsXsBIQtVUNwJ4wWM3bi5bsMJ8upr52Lh/NSqbGnMWLLSXQ0CsDtxuEEUzIX8xIw0napvb/fWD5zCiTFOjEtVKaFftEAe4i4pKXXaXVnMK0u+hBpbarMTOQmadCUF4phKDfVaeMui8Jm5Ix7m7LA0NquGOH9W+q6rGwH0X39N7i8VZ7XRvWgC6N1tPqN6uDmg5wNihwPmYFMeWaUgEq6Ah2wyNaJAJBiFOT85nlkPXbwyQbMbdPWO+zpq61ut1KzjucCwyMMyf/n27So9QcDctBrK2klgihUx/1kruWvCPvD4SL+2n6PbME9ALRWjRHOJuZMxVW+AAAwIcEhlWXtD9R3+xf5VSp+st+0tvnJ1LcyWzcFmxvFiamrGJijckr4pjZ9o4ENb64jxZsgEGN8wZ7X8YiuIqwB9KJhtshKf10uJTDqVdTrsrqKi8PJSNlcI1jSIw6O1J7jyIAfIQiMjo7pDrKDRITXdNE/il7OvZc+8bslY7HX0ONbL3KIGMr/xNeneKY0NqjzQk4gy5QOICQ6tMQQAmWx+ACVxGbwqHevqcGDPnHpe5V7Blh7omVlY8XmKj73jkPbGt22RykpFNvpKbRhSsfQq0VJZrpkfInHBWs3Ot3Rgu2hEiDIZVDGe/DIN5kHZvkdGBuTM66oVSN0QSCPDakNor4gF0BHa8lGQjl8W8Nl2tMhTV2kHz5PEGHkT+G/+D0Y+e312NCe3lUp7udT5nXNLGWQrMW6oCrciodItkc//YhEEya0bGwUVxS4KBNQKFq1bcLoteWuxL2DBz0KlQ+ZgEcaESbkmFSWwMHWjZ2gOzqugePSb+Xhidnwil8zU1bTlF5asS6FCNm3paKEWITfSayOE171VOtuV6+ljSWxogKycIp9VDURX7nhTVSRnVYhfPKeFvUMDquFL6mRmztW9u+2Odqmsf1Oy08XnLtOcBGIQta9VQ/QtkQsaV1seTxCDhwJhjFF8EWovHD41h4gw0p+DaRHJ6KyFxpa1558pRVgduUuiy7I6Le4GdRTokkF3IifzgfL66iN7uo9dHRiCxo1BjbKafAsN0Iunyu6PbiAJIcLSOou9Cg7gRSQkhtVlhK3NngXJv/jYRAAiiP6fjXze6aA8O5jNbESSa+CxLFCppROQPLiiIgB3rKVMobAwJpeH1Na+cnbu1Z/Ycu75uYjF7Vxbz/fMDbNlMEpHXMfSfNBf6sgVPATy5ukbntEmbDqBUZLU2VCXoXECBBFSqFSlBLKYAHw6LAsT2oxbWyW1teJv0J4cDGvEJXqSLucXT6mnuWePdhv4b1PDyUVUBw4ISB5nmLqNGem5qr03SRx1n1qrmDeYrcAEbJHJgDMKrlK6dyj4yCJg8b/KVPjQzYBViocMuxMCKC3t2N569/GxQn8mE9Iy8g+8s+mvf/o2CuSVkY2tfrm2qoZMuTNd4+cOhNZUUGzocsn+2OxeVOgvPgAsu+dcONhJIaRkPW6fw27LanWN06qJvVwulbBlEonYuodqFOw/7GhenZ3Rb/zD1Pg8dV+J5HpRoOQL31kH7rTEUoaL9g4sSE9v7LZDsQP7d6anply0HxKxGB/WHrHuLRLDSS6WmoPm/j6jDKhsSKkEoI+CMBn9C9Wd4sepBkMujTBD2tiRU6OKhtvu0Pjg68+I+6XEd/5peTmUyeaQ8M1NO6xdbXKMSRR5mZ9SRNIE09apJTPsEoMNR0EDiCCDVARNxYtSi43n1koy1L4mKhADEBwdZ35ZhiwsD7777tq2iR882+dfFKB/X4ecHlYByoE4uBFRAJaInJqQk8oBtKaglCi/QbSCjGTOxT//jwcnggaXC//Karc5rRa71WovKvFai9yzCzPpTIZouC1fsFoL+eh66tz5mfERr8sRDieb2mtdZWUZm3UmvLywtP75v3nAe+IeFQIsnRjL6pIM9oxfvzw6N0sHVhW2AWRYQ0iDSF9CbJWmFanVxNFYHzvHAjA1boTSUCowH9MtvDi9SfUD0PyrC1qV1UGfU1CWpuXMGZ1xcPHCb//NwFPm91tUrb/aKK/+9u5vdR3b5jx8ULa16AyOy6dkz1FlNYwodO8SacaYVJbKWFjuukvmZzVQStsPdyd6Qf9BCn8bxUaiiRIun6eh+FDOuryyZL++4g3L48MKTWwJNOjmAfQixhw5cGfAVGkT2IQDOJDp7iLjkm2e+b9/jxhzKZkowDnFGED+QKGQd5aU4AHMLi0n06kuf8lGPrOwuFhU5KVYoryptadnCPnhKq+qwsDwV3Y/+G4V5fVbJbGmNEX2uLJIVeW+/S33PyjzYblySRan05ODLrquiYtxp60HxNf4FvRZGAsOqxyHVBMrunLCmcTKg1T+EiFBZ2NQp2XrduIEMt4nr16Wj/y6NLxH3rH22O/5ocf7aHs38W6uVbe707l799n/+TW6TQ/81e+oGT03rsVFavlY8PK1GJIPSza5eVYOHRMqUhYiUo8VaVEjuaxc5ig+W9HCJwijxOOyWo+vhCm/eblnIRBXi+1t6L8NU8rZV7xVmKFwgEupCcZAc7rd+ZhBxtsn/i8fnMYugS5tNlc2R8rVpnHuQFlovi+V3QhHYhNjo+XBQH1Di8tb4g0ErPv21GvsgZQ6CTKPpCxaDNp4v8pxqgPaSNz9k2A7Ud2KrUlVMW2UGw7pgxVx1clTEl7doN5CJYyCloVyQFIVWq1+7WXZWNfA7PmLmhqdxW7ByzVVKgdv13RjP+ohJ38A0QMqjlJggZZ72rj0XOUQUcx775DujiMfDsvozdUv/V1wZ7vcflQzjras8gGaBnuM+okdOxTQlMmgRrs61GYjNYiFWuFT0EMBXiK7mlSn+KSqo/F2hz1XsM+EZ56AGMy9b307y05+MEBqLaXxGdI96FD+c9rd5Aj/j8fmPjjd6rRbbDYblmJlZWxpaXJuNpVJEz5ZXF4v8njL27cUHzxobWlTDl2JSjwnS2HtqG9r19IamZILf9n7n9h+vzb4Ed2+OSQzIc2j0bOH31/bLN07tP8A4w/KmBgz0I/fsjSIzSVbdinOqG3BJ6IwFFFDjJMcVVuH1v+cO60m5kN//Rb09dffONLaLPLLptHqsMhJKIHiMgwENO2e5mBnpfaIY4biSGs2mIDPuhoJRNqJwGCnYS3E1zTABz2BaeQbDgHtegCZCAFMQ+kPa2iqC9RXbW2sffB4yzGz6GLzfuvbEH66IoAkDDF++IT4H64tl/s/HiATOkT5b2xsWK1wG2GYlbGJsUQqWbBZS/2Opoa6GprQcYbBK8FFgks2GhzjtKK/8ugPv/eyXDRh/pDxrNb+59bvnvpyxR2fkroRNSUX8EIzWkfU0ilpCrkGtboMHa7eicP4IZsbSQljbjaimiMl54y25ISmNsECXFtUWY/yIHu856B0f+gWvtGNfei//fHgiY/tLJM/vx1Oc7VQV3P7fXKjR7tK1ufxpySDzWMq3AigqseOzCX+TgFiu6bPlhe1b5CqL3y6zTYeV0a9PxaALIFdoEjtwyHM7u5qqra7inu6xxcHtFAF8wYN+vaxrFwIv6DBASofsBf1c9JnNvr2eT/3IWnICRO/wH1y2XQqmYjHLVZLbXXVcmi5rbWzGfu9o0sLGbH6UaREuHBbCtbXvvlDnE3gXs2wg33yq5flAGsir9m83dyiXTxLWiYF/fJDsp0Ik9C09vgh4gDQI/DNuIlOZ8wCYdyoQgQrBSW5jlymG9mIfmpvnS1y7nH1cmde1qZtgmHERB0BZZrd2//0v76v/6Unaut32H/pPXL0dtOFCfGW0g6mOmOkVwguE+EZHpKGFg3S0RxDfCIbUxhhmzGEh+JGDCeUE1d2JjWPgqeCKsYa5APlU2Q7sinLSqil3LezuupZcgI/C/1NqJL/JLhq9C67A7SYQIlo0y8YP7T5G+gQ8gPNNqvd4bBvZLKlFcwRy6eyaawGG84OTUiY4UgAjeiSNpJCz/XLVwdv/433r75+/vsjUy+J/GGuekgWcFg6uWkJGDFH/VE1TzKTWiZOQJCIBQUQNCS1N2qIWOOF5WZpJPI4h8gMa6HChUA6lntUFUxbs8yNaKLe+bTEJmSeyuEGuXxaWzCwU4EdV0Yz/8H/teVPfl/6r2kOgOpi2KgBzYEkoKR3Xbo6hVkLtMpil6PM6xq1MZZZLRRiYv5TqLo4pIFo1CDxVJp50F5kOFBy6AkirwpDgu0W2bpFJidnrlw+1NZwx8DizYU3d3nr/1TzqpuDTIEJ4HJ0qquw59ZT/pfP8AkIgFJTIDxXIARKxD9Y4t9Ip0vc3hL0FaJsnvYcRCG5X4h19ezpwf2P3C93vjvYsqWKbmaaNK8tcDeO7Wx5ov+Wm1DJXCahGamoVdBTJNJCqakRrD0XzCpdGqwmIgZnMF4DBGDtwI0ECBELCDql+iktiEfzg49SOssapLvlzYAgkWQ6ua/c1BhwhmxXidS1ydG7zNwf6lOsGgVBwtDBoITsUwxhKGPmwgST02pu5emgqlQXDKzDcCODOhKPwB8IoEjNaZWFaUV2Ay2NC7Kzm5SY2xI7ua36IajlZ4+Pv7uVaCiLx5UwIoh3xrrkk1t/9ryf+xeY4oWUoy8MJnRovjeTTSedNqu/uMRD9EotJOBKTTCl0V5Zmt3SRZ95jYxMySd+a8/Xn1sZ1rQWyhxYfvw/7XPmVt+6xZqMXtMo6eqMxKmlcMpcSPM50zNSXafpe5ggMSkeMDRCcaXKBAolMcaRnMSWWclQv5qP2JFjExpI8DPIwK/yAXZZpPGYIklMGo+WcBbhpbeqLmXmVY5eD6fMTgglM9wCS582QrI0WqJCLn5ec0cER9vbtFSLEReUdBC3QAFAX8CdBGedW5pqVY2PTer1NZo0q2UsmVzTO++deua17U21B1sXfoweuOU4fXbMiCDAD1UDfVBEhtqR3ltnUta3nHrrR07kdMVBPpdIxTEEZHVjo5DzuFwuiAUeRHoCDoJLvI+PUFYWuONerZmvLZbwxq9+8wv1n/3ds+elPCvv+3jdlTcuv/MR9A+BtUGJh+S5x9UKaKyWxrulhvNn5eaSgl6T2dQuoBKi+gFgWRLa6gReIXwsQjJT9LdiREHjOM9UmgKg4QHZsl2LM5ASeCIEFVq26U4pOAyNaSyBxFyWYBYl0BQuOnQOAhW7YA7TgmQGlETGAns0C7HQs1esYELOEgEgAU8/GmPySAdCh3iRlNQRfSFTDxBosUKuMPhgSq24Qm69tXJrS9DHSI+BW0A5gL9o0vEA00DUTYSUwuONw3tqZHb+ljN/5uMmJyH98vkcOkBDoQ6Hx+mxqeahuRlGJhdHWQcJvyWVpATZUQnsOULuJSctzXd96StVX/piJp3Z+4777vrap3U42utf1VAMPY4PnFARwfbGXlU6Yv8a7KVlF5OBIFZMs2nsHJCgvuubNDlOSBkLBJ4jcmmjfNEq83MK07lJFYPztEP5JbWmctNXoXkxggqUcWzfLbUNGsGmQpSOJQQiphfJd6IL2G94iAuz6gT4fTK3oEKCxEaYWmCym3TIptQbAdZkHcMrpnuHqL5VbUimeABO1klMCZVAfHtqtKq22ua27+lo2Xb25q0IAKzkhMnWIkjw9IxEoFhKcqWtZQ6ZB+v/2wO5Ae8BFgqFgb7X68HdVaCzRHiTZva6GjWQw3MqH7lgXa3kMWycmuUgIAwod+za/rHfZuyKnkYEhq4YAoJTN+ToQa1nIcA52qe1/GTWMCooyMXHga5x/VGJMQBkslfTY1JrkoI0n8OSK2uE28WWUSuWhCjRfKwpQhH8nLg7O4Wuqc5hEAfRxlxIY23DfRrpg4EAOigcn9Tqe6CGVbbM51L9E2VxVN4HkMpQAFtXzleIExdeHZQU1St0+kU1AYfWxXNEZGGGsE3QA0wIckVWiprqYjdHW6sbt5ZpQ8LpW8AK3smamnT5pn+lKy5iNsevSf8/3nLerR+5eRCbjRE7TsRkARZQWUkhAB9QyxidlFkQpISQNemKMYrBj49O5NKvIwrpe0FoHtipbfdaj7Shw3fKSzRv8tJz0lyvwzKRJzoRBNFkYgwAEcmAtOX6VNgRcqG5jHJBCoPV3igo7+PxUUFFJBwuRHUT/kQmYFOQseMnKj3y0rFN8PODbmnbqTyEHsPDQm2iQqCA4la9HcqWAz2sCTuYg8KI/cb3B4toLlCdNPYYlcXFkp7TnjW6btk+22T6F7bA4qrMz+sYDLQR0y9QyKtRn88VWVtpq7U4Ggo3rqk3YMQO0MdfwIzhXxA8V+YyJfCy9XPvrdR1/O8OyADZzoIthRyjKpQwEfqwJL+F6NBXmAfMz+Ofu3erJYpvsjitzIh9Bq05EfcRzQIxHw8RzMnIX+ZsTA5oU186qtIDxicQPTeq6pHrgAzoGuiQt8GUJFdDbTq5BxQ+aTUK7hDEzC8BjripTPOAIBqbVIJr+QJROTru0dgUP6M5qdUIGjjWC/F4inztFTqCVMsXy03mB1RxL0ImsEWpMYhZMeQJAkrMB5JX7I64GTRIMoC2HJyyDY3ZDfbLckQlLT4HMcGJSd3+9ATbiYTmmSzpdzs6ywLN9LtrHEYPPAAMOLOeTd2KEmZYqCVa9sAhVvS/HizEDwJIxuHWEAxCXEL4xEYgUlwDPiD6cdJwL9gARMFgPNiT+RCIRTz4yKpG0OASdMPEqFw+r4TWUKtMQ702RR/4Plj0BLYwLpndAc4IAFAbwpU54Bhaqzfsmq5i/4hdgnoEQfnMNjSoRWLDrpXlaF3QgxCAVZESZDBg16lpIz6hdHAQNUBABnCw0KwhSvDNUaMiyw0+CMbVKjI09ASR8uJDuRTxJbaTyU/QgMbSaA4mEMSCkTxkdeiJo6UABQad7d5LGs7f2ZbIxJlbXF1c8kCTbK/BUHiy7+nPwTjklA2vc18uBIfRs+DFjix8p1lOTuhybj1URZiz+NLltHvgBaZM4S5p4IEmZbKDFNH7lS2AKXlHrBFKdLBVYBkmTiDu+JLPKwRBnbJ3uw7EQjeQ88N/RiY00+jKHEVAkNaxQppOwKJFtSAKytSwsyPTSSwnZGZeBd1qRB1gCBBPDfOD26mniq2CPYbbZVdTHae0yLARiTaFIJwO3AErehm6y5h/Fhs5EzCbnTcWoW7RIIk/rZgfgid+ktbzE6ta14XRdX1CQcJ9IZRAtXYejo3o7MBtO5g3rJMOiDIxmflmXywRPnuaU6L3HmxeA1tvDOdHewz+kbQsCT7j4gAYAyCaEb/zxGcfkE89ZRb0M28sGZGDkeZ02h2qBVgW7glykC5R6j4Zq8DO4S0K0MOa2CMWRFsLeT6gT8YK33h0WMsu6ZrDXWIUDQ7nnp2qZklL3OyTg7fpeAYMUAQ3uSrUMqYtQomwkkIANbMsy6TRKSZMK4HPU1gI8xkjhJY0XESUAZ5qEAsV6JdoCS2XQito1J1NLpmwNiIlplllimKQ4DrzBqxPqnblSC9qV6HKHM6BMPkM3EEDP8/pi6re9JBMjuiquAshORga9QYcKBPdsUVefV45oLFLi8+IFFUGduxFU84sLWV+/PjE51/6PIMNrpw5DR8Z/tuUP9wClMMEpE8XqVoInm2QI9P/Bn3+4jOUAK8jV+x2C+JdoUBODrsT7Qd1YwViC2mMbEVj6BiXVT4FHHndsVGdoEXwBMWIREL6bSPqWaONpeDGza3j8sgHtaQOIvBZZbJPVRQ/pMyDugpqHQj8AlArIdVOWZzUgCXFFiAeENyYknvfrVjknxjmdC6wNsxQavTII2IgkvemdzwZEXeTEUQThgkIYHBj1rdsdsb+sN+ua7kcikQTJ10q3JRjOAfo8OWCRsJTN1RvQcjEegEXQtW+oflhemkWR7W+CJOBgGB8Xr0TjwWA2KqD23I1SyuTn3/9z+X4HfLKqw/ccxfm81vX91M1jilJrp3bEQ8opvXn8P/z8Cc/+sRXzNJS5sQ3yYZ/aPwCJZyzosM3OQB1xJ4hfIgUq47CMXQjJUBcDXHJDHqaNfChEFNbmpXqESkYwQSoURv09SHcyS5hWiyQbEpLiswpnfL0lGGf0GtbLp6g1LZo49+OGjMCMKXzXoqDWn1FQLezW6sQUQ9gFMOaEAJhCUg+SFkYxfl+FfKqfssMCcMuiFlAHzAkz7oBLsTOO9Mw6I2BGIuMqlgzBfHsEWSUmHPQE7NShKDPqSHHyNkc1EY0lBrTVd0gJNhSq4F0NBlh9qFJ6WyRQzvk9Stnf7L48pjco0Jvt+yIBqqrUHEwL+qeFhHGBJTpVQAWkgj9DuAqg3//21sf+2If5OE3S4AVIQYELMaFg5QJ5KPYQiNzHUMmiAIUAKSHLsJXwvOCKrEUcUywkaALcINM39qlJhr6Q9tu1jV8T1J7+yFlW6xs6kczEc2uQMvoYXQ4hY4tO8WKj4qsoEclq/5US7OOX6Frfh3bAfgShkLcLaofizmPRkEh4QbThAToSbVj6uSWxdaspbvYxypw+bLUKGQ+Q4wQWFjVLOa8GsHci7/yJwAAAjlAUlBio9qljOLBG8IghnDJjjHFFkIBf5gMdCNDPd2dcvaCpgeY4skiO2uKaxZHeph1+8fabkExeRmj2IEaaQQyJAh1gIjPQq+hu0KFDRIZA3Hvjl82d2Y5HFGjs7AJwZKmbtCHAJSLIH8Ij2AFo5aRLQh6MsxcARGphpaR1/weuxulRP4I65MEIGqWn1CpCSGTkmT1dGbBCrSObspxwnAgmKqQEnRsrSHJRn23N2orGeJIsQ6O2fOkRpWBISqXhWHgEh6AFFBLLJa+VEI0/JlCeQUotFxuPsAQUP0mlHVPplaVq3AOnyF//jSrC9PTgIFfcQbLEqdSY9whgYCSOUKZCbTENpiEQZIR/iZtgOYjZke5EcfUhFy9kSLDz+f0q7pmynslCLWa1jA4HWlLc13K3Ak2z1NzkNNa4sqihw8oo8J46GnYEq0BeCGvDUgbs1XFq5n7oj5BVp1VkME3bJ53+gBgScQVlgl1fXAoOSNQfvOaDPSqr0Ql3d47pXq3+pyQHaYF98E7469EAjDhsfqr6jU3oJsH3BxckIsE1AAt8iuz0hKLkKElBBeM/D4QxywBB7yw/bF9lWT4ecQAlD0CXCALCMAKe4Kxq4x04htOazblpyCpncJOs29wcI3ua0OBxWqJEQScX1KyKGuQyQUZmJIVulS8cv8HxObX0pjmLTJCzJyBPTeN81G0cDbff0X0ePU1vaOjhl0AJoDIZTOaLwT6WHvz67JANWmj1GwRBoFeP9tS72wzOgjssVjWhbSA0VdDqykEOmhXHPA3nEPcLmzziGpCvAGyMbAI1AEZ4gHh/SNz8NSgRzymOsrf6qW8zkAB2GPOkuMukfgsA7f0HGIv/JYfMk7FAyygwaDZAW8BZRSFPkyAAMQEoEmW2lb6h4PqGIN+zDN6ciaHdXnKKHFGhRkU+s2l2A1oAPQAosLIH67PYTFb5EtQArHxk3Wze75PGhQSVlpW6wtK4kbIOia8NNbr7ZCKg+MKpPE5WaLfhhnlaC+naqmJ1epmveIZLK2Ll8ztCAWu8KwI6NRcmZztKyMyQYeAhAgCRt/AdljLYxPa87b8ARF+tGEWmEUcmkJ/3BwqElUE0dxDuwzBE/QexgZCHHcUwwbvCVsCg4Rz8FRhEcJzaXQyObyU1DPjo1M8WzalmgENVIliKJHec8pJmupKasiBAN+m8DULePON8CRJR0QzSTFYag0OwwNgtgQBTrQamsmhoVOsT0IXyGXSDG8akSADRMYME2xejG94/dwBeniFDbZWjQ7gnw49CV+XOQgIH2oGhgjnGY6np/xmv6ayiYQjCXbukfMLMj2lW+B3lU4ZUG/+AZf86IVn/uMfDUu6lJyEVXvvBjS9qiNvb8jGgPx4VF6blmsRjQhgzoijJJ3LH21R+cN1WCaUgOFDPJEyXguCFQnItoEvNilKD0qEZhEFiG/+CTT1SwLCVfoN3+MokJainAT1gMWpZOUy1+ad2oCEWtzoHjAH/kAnw1QpG1XhiWi+9aBLv07LNMl5uUvVzyD1yJUpZmYNNC3zTkIfec1ElUhES+dUl0Ly7ACwcsH/P0fAnATc65VXFntVH2DaaREqTXqwJuXfptoDxxCRS6SPXDHxR+zjLZ0yCn94VUu3d833yrYquZyW+44diH3xrxVioTU6QwyHRQxvlSkPHRXZz/wxIIYlWS5PPruK+c6AIGgGCBWMQ7IG2CAyqAxaQ/eyGqJs2HzAF4LFG0A9gCVCMQgiPquOSavlRCU2ZNvYLu1bpRu+Aq2AFcooNwxGMJl+jzXTUF+sOhzbCTNULV4oJf6zAGuUkiZ16JA5SBjMB1QfIkvpwKuOAv45vI8vQmpIrRrkCUCH1paMFuGf/z8Pv1EGG/rDqr0qmgi64cAjUaFJ/ETuC5+FwtK6VYZGjTz0muGNNpx0zSqv5WR2uaZDxzFP8Syaly5+52v/KpE5zBBqK4wq4ha1RhQfkO4qTZrzRJYi/H86u8PqZgFbI6QVBymz7DUSsUh/LAFccPaP50l0DEwgbcAS9At1YCog1hFT2K0ITaDJaiBS6BrTkNNUDXKUGIHgN+RpMsmgkxvAK0R74DW2inuhQuPWI6n/QARjbNATgLFEgRTpaFDOB7AOW9CljCELL1PnTCRKKwL8RpiAVF5vH7qUX3xkDeuwSL/xG4iNkxRC7QGSetm+VcaHNM1Afg2JRyqNSMzsgiaClsPVe9xysYcrJ/oWgDCL+nUY0NiQMnxeYpOUexjuLzZ7LzU4YMjAEWVTii0aTAzteo+GV7tNNQMAAwclNOnRc7MSz2HXA0gkLPEvIgTIfWx/CB/FQuAMwt/cGlQJAImS04aIoYmUgPa1d8xqdsUKN3HASaZWDI+MzUTW1XqBfwnpaBUm95q/BUx8uawymSQSmUJeyGXwjVf8VqhEYQHukaRoY4L1ykMLhuVhhbcP+A8y5MUBn8EiEfOZN/7EN9NmXgbDeUYUedEBcXSqpQtG01dU02zdogYbHhUp0mXy2CkN/tRXL/x0Qe6+Z3lMyYO5qoACT/kdFfLSVfn1z7xfrr4i8SkiiOZebJzleYyOAQ07kaoKk4BD3n2nbGvWv2wzf+dEfoGlA/Sm5hl4EtKlYHJoiQCdOlRJUgZB6iplMgROI7SwbRARSHyfeh9Q95toB5tFZudgCepmt0DB4A9fQQ1HKi/obG3Vv2BiqlUO0W3yAWdOKy2lKW4cYziUWso29k9ABpBlVD0Sj6JPlvgdC6PGnTyaYjFtELn0Foj5P4uMmFuHDUEUG0ZB6/AKGYjwk7isjsgc8qNIXRZWgglEhJH6LeKdlJWQ2GGQUbVfG/aiVM+F5ekfVneIPPOTirurLQHippJZ0DbunmU5UUG04qYOxRnv4eu3dAC0NW58jhUWQ5Gl9qMTdqVmsD4gFYz7MhBSgkNwMLGN5nzcQJrHMWShekxA4EspCrslT6K+slV5Aj7ggAM4GzgjHxBTbxpe/Am0swIwASt4zAdMVTNNkbozvkS+afKTCVUA2G8oEWABF5a7oSUkRFhnx6We4AyFOmnlMzL4BKOgEVBYETBlI3gYZGZIHQPKMqP2+TkHEOdgWVGDWt5tBuI+s0ve2dcl/VN6STmsFSIc0isU6Etg8QwU9GjGgscI8GAKNsLQ+xMn1XeB2971Pjm2VZ89tLQwdJFJVZ05egkCsqVW7nunLExOyv0PkfZBaxv0r5rFLBkiYz1+n9y+TXZslZYqHmazo1ufNMTX0AZgqMMCJjNqRryvQ1+sj/ADkATiBBKUcinZIphjkvIYYYhvJAM44B0DFOjoAbjB5ibc+YYPSUOedGARuB/RHXI1srsa4wto8E9vzsEdESPLigaS9ThZtc3DH/jr39n/j7++92/+ft9fPvfhbxf+42fk5hWlCawv5CHuHmzKAhDcStccsELELIDPfMliRg018H3CfFNqqAH/sULRwwYhLE4bu6q/tezREAjaGMOaFCyqlCaUwVEt2KI3vqRWBxld7pf3vjd6aQqcdv71v3v2z4fc2/273iWz5GSpZYWuh6fxJRG4hgK4OBsEIBB+Fe/QfJVEiMWXUxTl2hf9teaL3/nKnJsJqfyRRx149UFjxCzUv0ENYGuSAAL07JOADFtFJeIN4PpCvyAHhUwrIDgk2oHhpHeC1lwKCoO6WxQjAUXi6XMaTbPYFp58bvXx5yigvvOhfZbPf1NBgDmE1YskIcfCIkLp0Bf/4fRN+duPuPvPJLGKW27DEVuVF16V3WtCFxhkAZ4oVaKmXFeAC0MsAXywFZiZxYB79l9t9BBLYsHzhifARFKXF5/WQg1COpkhfSaTLn5cdt+upIBYYwwhBiUeJRXHMxGZW9WUAMlIEqtP/BRfRY7ePfOF7977bvql3amayM5j8v9+R77wV3VybUxKttFgYZQwO9pkvmZiIeWaDSe5gy1BdBsCwcxqavvQ8bnz1yWSlSvzwkMFcbnoUoLK0/GYiygetADQCSjhdhKiocAG8xF9gHZSJcFF2As6n0wmG4bkvQbngAAcsm3D0ZuwYNgnjZX4kPFkdUXFxNjiP43Jf/zC5Zu3fV3e8wc6wxr84/Eio5bXE997+sxF+eiHYQ5XfXey+F138MQnLenA/If28dFYFWugcBHQIyS5HfSho4dWDEt3mEfgQAdANmOQAQJYIXDhWNdzkCc8ggVBj6gp2WO+Z8309lKt1K4hRfLS4RmhM3VxRZo6VRiefl22bws9+TzU6BybKvX6GLU7+sJ89/6iqo3UI/slu5axr2QsoQiGs7m1ErLBQRmP+ijWp8wRnotQVwRdY28uEMFHBhxpVwEYPaVBdbrSuDoICK2s1BJNw9IgS4VmwDbFNVdVjLhnTRSGEqBHjpswrwoityEibgz0EZ28ImbzkBsvpoHxoKMi7X4ms/rJjx2ufjr87RunF+Q33/s3X3qhVpbhS1R9nNz2M0++NDogD9/nkr2HWH0xJaHNpIi7pIWawFENpjYWKwmTUaDvBbsN6wjjoYj652Vt5dTULIivNOvpMWHnmIHvsmGIVcMTRqjiaiBI6YVKXpSSuyV+Xbz7pDgtM/2KVIoK0HkzA3LikPRckCqX7Oi8/D+e33dYnyFAXLqYYu+F6e7feOcf3vvTWZFvfenAJ37z9Nf+kOuEiGIaCECe4IDPIJnEAhkGopWEe0jY8hjMHJPkp5RkWXObs2s089MrsnWX1uOoaEGzAS8LxFJQKYQtSDCAWCYeGU4Q1Idbi/FDcFS1AoQGV8HFvGB8aC1lPkNxwAIqWFMQUHRf7ZYjR3Rs+/vef3/3lvsnF3/80isyvrg2MzM3O3Hz4vnQLH18jk//yv069A09EVnT1H9Jg7S8SzK9ag7Q0gQRkF3w8wCWKhU70GYe98IvVr+hcUgeOcN9+VBt9ArUwMJY4aJRDBAEKQe/lkpCW4zddIGhy3oFNU/J0/nVy6sOKmpbGeJv1WYQ6mU2svt+pV7dWnz4g3syz5957InYhyyn/vQTGrRdfObiX3y6dmH4XHWg+C0EsACgwTuSBHDTcq6Zk4hk1zWowkhrFrlkHhzjse7aJU9eUX2GHuZIoWbRq5iegJur8JkwjqYLcsq2+EHQPvINTaUnsDdewH3zAOKbLA8aeAEOBsPU0tcrTz2pHn9Tq9LX3TwvtOihQyeJ55RaNxZWphsaa+482VJ+50mdT4enjhRG0D30flmdl4FT0n1cVl5VM3FiQmtMd+xSbl2id6NJGxyV1kiXMvwvZHiuyiwFxLP/WrMMj9EBGNZDmozD1ytrVgOMSC2xQl3nNqMnzMNnQBjZPbQ0U4uf+p48cLfUvkfT1LSktTfLf/t7AmdOn/f4yRiuqDORaisv+r/+W+qvQ39x5iO/5hjdTEkCR64JaoEMy6ugYIRFUmyzIutzQitrcYYERv9N2cJ9ia/u72h/6qY6AMUm6c30Jtxg9fgJUpvECEXbIIDMO1jEDEWdargUJABrMMkHbgatwXGgnS+jRtryJZ8jug7CcNUN8sJLsjeqzi1sjgAhh0MIuraxiyYhLaWi3dfYV1yQq2LdUmX97FOKxetnVYSiBt9xr6Yf6EDp79dgLbcjboioZCAES9J7lZv1gHhWAu2HzQefsUagG9iaOe4dBmdUSIAhVshr2Cwe8cY1KQMsUxRSfXSYZj+7fOkfzbAql9o5bW3Z81dXllZqaFQuWNJp+8p86vYtsvhnn63bWrIUCiMuDNOHjE6C7frgLUIQJPkME6D98bBAj016582ZPGIln73vbs34Aij8LZfLukG8grwKiUAUIwE+jeEhbRG+8LtXcQPpcwKheUUyG2C37JkXUID0OB8cbLIFDRH4+gQkSLFR/VKstUDDo+f+n8+ufvsr0ndJc+j043Xu1VdDhy5vaiIzN6FJ48tnNY7N41bB3ChPIyVFgyw1kzColSNPMj2gBQOESRCV0Oxij3ny6KwROBVmbQC03qAhJvmrsjauEkapklkqN1VzbPAZtBWZl1ucSDOGMoxqwTofiIPiPNIW2NzJtMa1589Lhscqr6hj0NTy8lOLrvvuqttXc+eHq7/wt0tNf/i5Le98r1W3D5q55qoBCHAAJhAychwwAS6wzpfIc6TmlCTP5GRswH/4QIj6K0hfU+uFGA4nIOVX+OUIJmwe/kZLCbSGgOJSCCysVYxWhJuunoOtctclgw9uwO3i5kX8h7LOJbl6JT8zKecvy5XTi9/9lj2R/u7XXu179Cty4Q2Vo0xFsbeJt0mHPXW2Ozu3ySgFCiQzZtd++K9y5wkNjezfI2dOychVzblai7WEi/0QmmatGryKac2a2ZaxQyAoYAEl8oJEJs1IAlOpiKUPjMAcW4DI1JXjnY0safm3p0m1fVWNtOxRgXnpppRUylp6+tvPl7bW0wdbXeFrbayIjI6dvC1w8yfPZawF7+7d18H5//yS1OwwCAD03JoLct+sIURuQ8KTylPiMA6DgxLt4CTwNw8FeEkpd1U5ZAH3EL61Whbp3gfWwJ2OKmDtL1WJjMWJ3CBKQbAeoYQHgEmOj6ao5p07ccuwoT5wDlbgtphWW5Kgx9V+5D3WT36cp7ZnL51/4UWoQB+eefn1mZGeS2ofq5Q0PEQFDi27jClFyoemvveN75d2NG2cOyvXLgglgBQ20/KHQTGG3eJV5waJROCMaCCVGVTvbl6EKk8ltBYzpYVboZngA9xp4npBzbURGnBVa6mWrcqsn7sDCCo5fBIbUV+Hsa08WXTPEbnjLi2imZls+OQHI4MMq+oKLcfcZd5YaPn6zfCO9saXXlgIv3bh4S7pRULOLtMBYiAOBIBl0EhmFoCdRwSR/hO8J0rP4FGGPZdpAo5CECaTWDKx7dvke9dkNzFg2oETmVh8zUf2PEHcmMl/Dbpoog5QCrFyXnQ9qirmHoAePAM7NrxJ8h5z12LFBORJERGCC6uOBaFnZuY+8mdDwGPrc7KXasQq+edv3PyzR5aknYTzUu7Rb71y4Y0mf+rUy2/s271/37FDr/dT8nsRyinOSvncTBlmD/ekWuK2Y2KpV22ZKUj3Nk23gTAsDp6fCK3UbjFJsZAhLr+hxwmzTrCAiKNRqUnsEP6CWTlXhG4AVkRi86pUtm0Rb6c+kBFrG9sP05Bgstvu31IsN6/XHNv90nev3fUXn+j7na+d+uHUkeOO0f7V//Dk5+a+/GUabwhXGZkDOULpXJm7Q4sIBEdaaks07mpTTEOvJW0a46khGL4LPdG7rVP+y4ccZ8+qjQBn9I+OLU5NKpRp2cFloAQaTbBJ+5uxOdQDfMDO9Yq8w8XcMmC8ISC8prhBMQJ9OlLXM9I38drn/ua/fv7s90Ve2pRNVHu0kMyR+MANtdCmp3uuXdlIJUf7eis8dOY4Z28uMH3m2oTM4wldp6ssMXH2fP7ZJ01JqEe75iEOpjjhiFBTDlHjqPMc7drbNBEfecOQNtwJ6Jt1kdp4YwLHnSd0LISSaqlZLRSDi9cnaxMKMUwPb5duhAqorXuUrsh54EK9fkY+899VDwXK9x8slxefPHnSfecHW90B/xzo6/hP5/tn0gsjpi6IG8FwW40NBod1U4XARJYiNZwzqzJKzMGIaxNp5naeQVl+YZgnVm1/eFfl85eu3dAn3unzZ7E4ISvcgmV9fJCGhVEd8CNagTA1W2LPeANEZhQHQJyDD/AyfSIM9MiqwY6HTW/JbOjJrzz2T6flCZH3adhTHzycwd32ld3+QL33tpM6wiGX3/XuX1r6/t917tjpr6go9lZY7QHLC1RVxgulMhEzgR8PiaPFLgblnX4DvBaiWcuD75fnfqC28u5tWlbOoBYuvzIh5c1m+hmaCb5cURzYxlUKwdaqrlgnRIqg4DPsS2rHqwX3bBZjbOySpmJctXLlvObvHHGtYqKQYKaXAbCp8YlSCsJsqWwy+/ozY5WdYqmVyb898p6v/ufkj87z5CwT/DlhumZ9hgMqce3Ib6Q1kpUJav2XRm80UMpsFxJWEzdkakFuf5/WBt11u/Wl1/MV/JX6D637oARsVT1nKiNZHEvER1N+JxmJmZRTR093ktQL6lFQQzA+qk2QsERrg2ZOpia+9WgvDu8lka+1qg05MCNjOBt5uXFm8p5feReJ1onXz1kz+brqkhv9fRvWuuK03eFOHHr/8WxRsGckTtECLiYTfQDVImqlMFMZXa/btfPm9fMNj30To6zk8H4597rOsCGCz3Ad7RHnuGgemQ09Bt+0yqAY4kjUtSkCgBTXo1IvpHvB4UDhIZrYARVjZGAIVpNroh+U3Dhhan9J8l8edd9+t2s9uTA2XlJk9R7Zv6Pkxp/86cK990rT73zt+v/9/l0f/JRdM5DQ/nEjeVB9qnsBE8DADSEs4ZTWKqlhE1ke61k8JgyIwfSkjlYf7RsL11YFPUUryBj6qKoCa7b+/tKODpUkVG0g8VlozKVEBMFipREqiOCXNhkjmi0hgiC3iE4rwGUlvPPCC1LuOnOl96VrKhr3gfQxJf9esrE06pJzDTKNbHZm/vGbPTeaGpsLhbUrN9aKg4X0/NrVK7MbvrIZBgdWy6Ve9UzZQyEsaafU2K3NVY3iqywqq/aWVUyOjebPnvPzsMexgfQLCdfdJ+XkCYn3qbjnOZAqf6CPOQ1RYCylRwzhQ1sLSmUba+Kpl9ykbpg6Yk+3FNPuQYzIp7um2hXXhzmp2MRTk256RytrLdFk9badiWcfX7t+9U8/u/yV6/85/MrV+T/93dVRmB7XeY+h/Vr4gBoj4u9An2oq0EAqiqQKI1h46AAdaBWyr16OVjDbjdElmtGi3tiZ9leU4B4hUema2kjFw6GQtk2RhUeS4CvBr/gLJEbQ6sw4x2gjzsM2sotGBKH01mWqVzU7fhNXCS3d+M5PvvA9RQsI2GqVHiMOILwNRGtK7t6/PRdOhQdH/fSIr4WyK8tB6i4s+Z6rs/S2PP7oo+vRyJauHaeXtHl7DOkGX5bL9fH873++Z2RyJmbz3JiYZr7LZDw8cPHM6RdvPPXjkW984mvpv/gTzXoSPtH7sLchU54FDsJGvtvMs+ydWoPO0xInzkvvNdmxTxN2nF+xhQffMqDLaMo0D8bQXhKCYP4yeeAhjAh9XMiVG1cuJUvbtuAay+R8ZmY0kI/tRYsmo1bUjypCEO+lvYImFpwLggqUd1MO7pG6Mn1k9PY22dIkHXVydLu876g80CmHG/T5MDyd2Znv6vBiqpm5cPmAttJhdJtyIwSOA8WOFYQ8Bh9x8VHTC8fiFlBLsiJpaH9CUhFtZnr1+euP/uDsM1d/9KzGgoMEVZHNeSX/OpvSMlp7925bZ0vH8uTUjatTsfW1O+84duH1NcLD2fjGjQk5tKf77GVogMhQy263bN0rxTb5yEeqJ1dkdElad8hnP3fh0Z8OLmczfdPT3/xJ9IlXc+WNsuuQtLQzR2V88A9+X34C5pe0NkTdYyKyayqWeMgloMXjXSfQVKa9saQeqaZB0nKs9Up2XA1QnGQCFSTFCIURGqEuJMf8xK1UiWXOn2P4Hy7EH37wtc/8zUM/+fuvlXs94dBkKY2I1phBQLWxvuAGnHVCzCRgEdT4sTgBtJwR9qTVVtOthLcIL/MQGa/Yk/pysYQsBdZY2JjCy0v5MN2BdmsBcwhXEw+AvhT8A4w/zEGWACQ1PWBC08R4mRKGeqD98+oFRBbq/V9fkJ5VTY7wCAdwB5sAiTBPxqGd2Cm/9u9/q6a2yscKrbKlvf765dcZFHRkf21TZU0LcYfrA/fvdfFYgSsXTrODPQe6Gttk39E7fjqjD4C87c6T7KNnggjTyh//WIFe3SoXGB8wrX3aNDVfuk4792UdhsL0xY0pmb9GPY7e33rI+G5YJUGZ7tckBxoRQxO/urZOGQ3TEz23Zbe6QbicTPMgSVXkjWCcrIzHl1adHd1D3/7+sePdf/bfjnzxT3+8f0fn9PSYv8z76qmfQGg8sNuoHDeWFQlYeI2QGSkkBDcVJRR9omH4bAbd4eUy6c8JbHhWKVKFJDiUuV7i9aCrEO9+LGBaQZsbecircgR5D4xF/GFAi4VDOgy1jItHLpseGOBO+zmq7Oy5H31z6FvfHcyXNfeaebdVNuloVZIHrNRBn6aY6VgJeHv26edfeeXVhupALi7v/Y0PhUOLVNeF5uYi85Mfel/1lT4pdWYGByHHUFVQPviBj912uPNv//ZRFGhFTdlnPv/KrgO1j5yoDGXloE9efUOHq7x8QeZS0rRPn+p3aUieOyvTTzwh106pyV/TotAPIwKX9GnWal2WaVch+yIC+vV/lNpunQqP3YGhqUCn649yNhjdIe98WC5f8u/ZI2+c9e7cS5VcLms/d2VgamSR5O63/3ko73AmcwV/Q430XCOZScbcKHk0KS9CZryT40WoU35Ngp+AF6YLapmCZAfaKaZPnWBYHQ4avTSUcddV44d6CdnBQmjfCwRkqlR9kXih3pSYNQUzJKSQI5A1NSaIWRKNA/2aMzh/9enHR/p75bs35b/880SzR47XaNKJnHYxVL9FnpyXd9pkcGCd9OJLz/dn18NVpd5qh0y+8rw/l64g9DAgtrW8fXXlw0fkV++77wP7SQG4PvLO3ctXbkQmhydG5A9PWBeGQpDZ+Pjc3r37sDxDeGMiT0b0uSr9E/L578vzp/UZaNTQfP1fV4afekLBnV1RtyCAHYAUhDz9UsAGcMqNS/LGS3LXSc28j/dryx8x51naDpkSgQ/UoFFIwq5EjLMRmZ2Cy7OJZMDnPXnsZFHOxsySGtrOHPaZ8Sm3pWi0v4fnW7v0+jA8chmxg6uiAWQ0O8E4YA3Eowp0Z0pfDKLmM6O73WgIq6pZUu3ZJIxBUzTQT4U2SmsqF146NfXqKzptFtuJ9gTogqkPVP4CfbiGAD2lakyK7Osbu3A1EpbzGTnmFhj+GhkdPC1y4FHZV0tI1IVI/qX37wP7u9ps9++pePfOLctnev/4vz5w86fXH9jadF9Xzacfqnvvoa3Hahs//OH3l7Y0v2/3nl3lAfv6wvLAlQ/cdhiFVbFhO7mr9S8+dXt3Q0lTjQ+c/cmnDz94l3UXz0lGyq3Ipz5UcY5Wl5A+HoWI6jrmw3yPil91d+GfMuMSk9nWln8N01LhoY+W9GqNE8ILViVsjuzFzXzlFe2UunBepkeUUege7N7uuONEdXMjgUW7zd7eVHl1EJu8ZOeBA8+/NNLX38+Db1xqV0KeRAdJYlAhSjDHndNmfs2kozPTZgVwAOspMhWfiH1+ghXkkfpKGZlBzBCFLK4tLWZURyzqdDl5lszg86fb2wK2VLPs3a1NvEQmqCKhkBbEUFc8s5TcWGHZZDMhz5YKne8ADmAq2sIgLCzpc3PpfzheWma1fPCunWWubBAvfKz3nl89mbt26YGdVH1ZV6/NVzJJDL2wGF5/6tmSpna3dWOnNk16U6urk31DCXbrzd555057dVVjY/nNwV5CwTMTQ6+dyS8Y8/u7CVl4dBkp0BfS+3ZU6sAhdX0wY2kG0Qng6MNGFURM4SMqh2Qm7Nw/rO4ugw8g+UuvyvHDgkK/dlkDR5FlDQI2t0j/uNz+q/LiN9TvKQ32nDsdDa08+ox88ezvrj712F99vv+Xf3P7n/4FHADhb1pf9PES+sdvGeex8fMyxbw6ygjc+lf0J0hCuiE9VC3guJoUDSEHkL+RRQwiAGcn1uLRtCXgD+7ZXbdrd9fx7bYtXWpQMXoBz5OSaVqlKMcA04Gy5fX83//9iMdfia26u10bGkq5sEu+ZjobFo0pvoZvGqjodvo6tjQEbUmp9OPWT379FRvD4Jq6U2+Me+JAZo1gJEVeJYQ6iB0RP4dmBidD13q62juSC3L/7XvtVNFWVrirGt3ZQjBg/dqTq8VJub9crf1mkVMowVr1y3nkPTNlKeCT9UVNnCn5+8z7qETntPwChyZODXlM3vXvdCoRY80unxIKG6BCfydPTtVaOTwACpPJU48TULk2/cbrPNp0YWCoYMk8d16++P13v/Q/vpDypj/1u9vOnu4ZIZEj9nLxsl9zMxbqoX8yIzeG5NVZ8c6qhUr7GQ+V0vgtz5DkIZkV2kJDGTovQvbRODNcuGNFpWUjZWNkjawywiEqxVTsEvXF+6XENy4bfkUhReTEJOCqqsqltYizXP7lh0tTceksl2GerdgiT4zLH3XKS0PSQSQmp5xhXV23VTO8oV68O8c+/wSeSS0AKiuWly6TKENRMCDVuow365TDe8RXpoH4cCh+5UYZi1yLf1XkY9lM+sp19/JKYm4yv7zy0IMPrs49ASGhBraHtCB/lRlajOEj3WeVbQ3qschwrz5nTjGJfFlTG5HceGWznPqu1JTp0CxiFXv2ycXLGoW97UPabyRvSNce8xCpnJZnofP27JXnX2h43wff+PxfbqvdMTm1fmIf10vc+fARC8NN7Z7Hfq/3pVd/A6pD8nF3mxF2xOtdUs6jsAhrXFMbBoeC6DwRSorcMZCgGbo+8bOALFKfAQSprEKfC+TtDsadUQzB0kmm0x+BkYOYwklBrpNkpngW1sbEWlyKLyyHEk5PuWughzy3jCGI2NO4vBsRlJQ/enh3TVXp+tjw0Lm5bfccJzo9/Y/fjk1qY5l0EhqJ6+TO1oBs3yUHDlr37Jer/bidsnWbFgJNLBKs9t7xwZkvf70+N3aXyGe/3dNPrbFcwaF85JFt46cut5QwOXzXWiS+pS784hsh8LjN+EJhHvG6Jmdm5eBvMVmwRkuYCkQdSjUCQfgis6RbY6AHyD51Sk7cKbWE8Ci7WxTbWS0PpQ2LPV47p6OOmVsTiwy98FLn7SeOf/DDa69dpffuji9+7tLf/Pn+z/4nGZ0PvOOrf3QQoGmkCSSzBngNhEMYFE5h8tu1yV0zKliQZLJ4cKyZ2GNd0ARLfl0b+DFyiBcW0hZ/SUPDutWaK6JYBSttdlRj7sRE8UTQS8SquKa/WDmAKhlG1ta1e1NFjTUb0dhkWBZLjK/bIPLPIo/dVrW1q7tlaytyc+jmufe9d9tP/vxxZ1ap9UGIrD4oKUikSN7/H+TsZaFxrSQiF57RwhDi2MPr5nG8VAEl6f/OQ9i/96u/O/zl4u7K+fhS+7F9kM71i72NbS2t//7XczeuVNR2NSbiv3LhlUFElxH2M2yfUNYykjAgvhrNHTHmiad04UXiVJJ0Aw0wJqrxyGFtg1nqUYNiB6NI4lLfKi+9qJY3ERoennP5kniD1ZjJ5y9f/v7j+w6caGpYKXzn0f0n7nzi9/7syIGj7AhWmzkzSTqL1g4SPR7jDfPuVo5Dy6vHZAo9UTsAmnZfLFRGZ5Bew3ChGTGU0QbdKF2y7uVXhwjntLfZPDVMCghqkziuA9YUMVGIAiGGZ6Aiy6tG0fJqZmZ5cS3ZOzT1jSeZaaSj6pEJaZF/+r17fCRbEmuhyaHCevKFH8+UA/ZSfXyov7xIIikdpkFSOs9IIsaZz0kpLgsWM6MX63RgA5ViSHGcRy0HoqYG9YboCEpnq8rDDA92qtEF0KlAJQ/ADS28+vKFuWjIUWr/k9MbJ1A5FVLZIL/ypY/LNjzpUpUkNDHglZMlnRlV1IYWNUi885gKZPKAWEF4mkfeJT3XKRHT/M/NiyoAyCy5HOtXb4wvLHY1bx0ZHNp+1/2ZmfH5bLRp14GGX/r+B+kP8sr733ePEUFq6vBC3SOIeOEJ8+IDQpwclsv8CZwxEKJI6zuI9sE22WWtW8cttDiwuLD1k7FcYnTePTfvpWWQSYZggkgmhg56jdQuyoAIHV1H1TXO+HpqZXV2JrynWhjkxQ0QvPsc+DQ3kr3Jzvrmb//LMPT414+0KrhBG+YhtVa7eGo7fT9QzoJy2E7skKAGfrHtKbqkO5V2j7TJRZOhy6OHaDgs0r71yApP75U1hqwGNDHHhGPamJcJt1Ts3Ndx3Lv9r/7l1X0iuw7K2E25fz8hwGl91g17d9cpZIi4ACL8UJhA3VKvmu10dFE6D6/QIzU1rN9QTIXt1NKlGRJCMsuLhXSmvKyiKBhsrG/gMt/90Y2P/s9PfP1Pv/b+Um1v3VZH+C4NAoBs1jgCfNgEBf/kgAOQM0gnPoAbMMT3vLA+yR3GNSRCytsHXVscVd7S5XhZAwqD6TMxL1q33K++BWHChrrkjSvug4f1CpAkpeTMJLYn5xeH8IuxqsOm+mkrhXsx+d4PF57XrMT1jzfJ73zkPh1fOwaHUD9J/xsqByjgfkdl9xbdJFUnMBZ2t7VeqbKZdyxdp0o8fEKCxmX4PLgnVIjycknXfu2bRL3h//Nce0KEuSDl38Q1927XuXBfPid/9Yg00pE5vSRbotpstAkHHOP4uJr/lPevZeTAdh3wTWIDLNIE2XGHpjQwTME3Ja3EfXU2EQP/+kvdntLm7v7Tb3i8wcFTLzz48LazT/zYVVb06Frqdw7aD+/fPb40BQK8xuRjIU5jYpqbqkgwIkhBzwe4gYMPoIHz8ZApcOPZHm7T+sOjyItWQ/Gag36ZmsHs1MYajDZgRIuL3ea+9x71h8nEMpSDGroL54DCwb3d4dBATdCei27s3ee47cGHsVPTywt/nHcWbWZu6QcmUJHA96mUUlSfX/EH8ngsJ4FC6qiYJ4GIIPHAlHQWRpMaapApQyTjaDJhlgEjGrGXqlqVD5iODNEwwgoPixAL5X4kTRlJGfdJwXPvw/ff8xvPREWfZeDNzO0j2kiTD+Oi6H/SXRNDtGjsE8uKmVCYgmgyAo6MHmJQpsYW4wza05b85kr57r/Iu96p2cAsjeMaCvPYnTmne3RmNmUfqWtp/90vLz/glR3dLePTM5UttSCg2ggA4Av5b9I7IOSuyGQ+cCAeOPgG0xh8gBtMzIzCAgOJ4UI4WbkMG9QmiJamSh6qTV6MYSrEMJiRhMdIcAphRSs2akDz8vSrhIs8xUe2BSfHVwkOHdnSoYAjCs4DBLeQXy3RgsalOZ3WQD7ZSWCc4iKqJUtlKcRjihW76HlGk2J004ULpgmEoQ9YP6pinXq0GV0sJcoIHwxHfEA6kzewI4p1IzjukDOCi7kwtEwsZ/LxKCWZdBTgqLiwlhhoQVcPSSS1Tdj4ut6RCA12kXrCnIqHROSZSVLLWjQFLzN2irEAw9dk/y7VlEwMX4uN9tygaJoHcFY4in/pj375m3/5L/NrZOLlQzvk5oXhd922I1VAiimgOfjAAXB5rRvTKGU4g31ETLKUd0iEd8IJJM1ZCgIBNBC7JiZeVl2h46zV7IEr4U2kM2P2KJKhZou1YonCLqS/h8Zl6/5saGXyysX1mdVyp+1TH2m179+nE+8QCwSggDgmDTqcFjjGk1ejPDDzmeDvkeoSuX2PbG2QbR2yc6uW6LYc0aXeOC/E53CdeIT9xJBWVrvJTtDimpcdXWrYdnerm4v8JN0E7CAOSneZnQ7Kqvws3nr8xEP3yTMir61hTtulu03KKsUSNBs3MCFOxC7YHVEyauVRJKglJC0ZbBQ+Q3fAaGhBR8BgMTJ4v9SfXoq0Hb7t6VNy/F13NtfVvPHt59754PH//JR8NCDXb0hHrbfY7aqqqYADADQv1gKlI4jABwIH2uedg3+iG2LmnW84jX+yJuKdqxqKwEerw49KUWWjwmd8RsmHWbfUYBGoJoxO+Rw6GqtDM8PEULlI1tFU1YTBEEvnY1nrPXepDIEzMGzAFoYv3gM/pMiH0c2MDgNYSzzkslSVPyoOj50OS0Qten/ujHryCJb1JR3jR2Mi7RJMesJepLtKGZgBsAjGPr17iqc2s2B8l6SaZ0TWiCrSgoCl5LE/fP/xe55+46bI4y+md/5dubEG2WaJccToQzaDGLggYURK+ylp4UUgEleUjnitzo9pxBcQYgJF1nufftpa5Fu+PLlzj/zgq6cqSmXHyeNf/ec3doq8ENYuJSR2eXmxr6UJBJQaSmetgAYRxLvCyLw22QLdUPQWSjh/80AV04Wb08YVHxHTqJfHXCwZDGIwQG7MwcByRW1SZEeVJPOrKN9ULUo50YRpuHBKV7mV+lkmPWknF7g3bdbQFEzA/BRUKBEnWIdVOAPK+NMUadOCAIdFVL1jjRDBICTA4zPCixrMbKpRBUD/Ii49PyesBvkj8Uh10UIMZSAbSUKAHmZLoNgpfuHuiHu3tShQ/OkPyb8+LpPLbBCKhPLggLChNkxY2JEZOWGdtxKKavUNsTnwQVcEbun8qFqrpFSZ51JSMfGNZ7a1N/aPLRKq2HGos6O65vrliz6vjcxTF88HTWlTd3WZb4O4Z2UZAHUbvQrugDt7ReTxGQTwgTtsYoVzQANf8icgxYtz0QRUtTAYJijtWL4FD4YHjE4/3/79Kvdx/iBkOAb5rvlhI46YWruY0cI37PeVSdmxVyfSclXirxwQGrmOND6HQ6sTNbXN+MQRdSbw+xDKvCA92iKpFqXRhIUgGcAB6Uw65ZbnCwODFqQhNjRP36CLn7mIyApe2JQwJflR6oUxi1EbuOgE13BriY5AvI11VdXFdYEoC9dC0v21JqGM2VapSbHBAc3AkI2hBI9GDCaQQHkAnS5BSrL4eRQBRSGhXcamGur9Q0NTTBL8pQ/dlXf5poeH3HVl3/jXV3cccr/8CsqZp4c7SVH42zoZXbdJ0RA+NL4J3E3Qs7NNfIADQLP5z83PHoMnLFQeXrtZicUqsXwqJEBsBY7y6gxuxAV7JjREygL3h0a7GzcN5zIGJatFalmbdoJQI4VkQJ7g7lGyiRRCWGFyUFsAJxGkJ7aBzYdSaW9PUayYc3goAsylBt44PzoZo6inqSFozecLzkKT19177cy2vTx1qlxHVRElJZEH2TATM1EmhRolAjIq1ExyfR1ogQwkzF6kdecwU8CXWIvSjIX7r4SHdsTEcrdKfkyJCetgdELuvFscjVJK7Z4WyEp1QM6/oMq5sVxu3NDRCSiJqSlbsNwZztZUBSNrIX9r8OpoP9i54527n33xWjojzTVy/333W5hiQFt5RR0kD3DhNcDKC3zwT5/JPyDuN4UPHza/ByX8ic98A4LI0tmkktomns5VrIn7zlqsO9MA5FTGhEjZqsbySFkgKOmOr9TqgeoqFQUYOUCfwmn2T6s/liJr4UDLUUqESoAnsO6p0PZ4M6nEyrmXN/Ib+VT6pSdej0RWbo7FViKCzF5JRoeXIpOzayPXrnXS/E29Bj4+9jjWFTIaN4VEdFOjeoWa6sAsRnkQkmIcPTN1GEhCq6kZU+pzUgHCkBZ8CR21RWQehJGfRlIR1GqqkzsP68STieviqVZbCHvhtWfVwUyG9ClCO/dp9IwITbaQyWz0D8fX4zFHkeOVp38SqKw4etfBV1+/BpcOrsuxIy3WZDbYwLQXipbga432AVPIHz4A9XzDP2H5gL4XADpo4HteLI2/8s0mTxDnQcfyFDGrVDHOoYTnXzhLjfDkYtRGYDJmkFs2mSCClFZBjCkNH1BfRw3Bwf3G16ehA/Inzcv4ZIZdupWgeLFDjChkNBIpn7duZINFgZn+ueHBaThqeHbGH5SH3rOXS65msiRSuMOXHsVJdmSfvyJR4pENMjajZitFCawBYwG4Uz5GfAWpjZ+Pnof8kf60MeHMI+ui6/hnwAMDQgWXZvQgB8IbpepUvviUVrQ310nzMZnoUxgwr4t3XI/+Hqlgchzl76U9Z28gPGOp5L5DtVt3br9447I34N6xu7On79qunR3Q4QcOyv4thwL1zbK1W3v5E2kAitiOvGViAmUEWVrnMBLE7x2UvnFZWNdnXvybFELKYB6AA76kGa9Ia+hQWQRHCZ3yeDfQBPQXF7Q5AlpbXlbJg84kggrRIpR4QgBalwuSjoLKCK9DhohyQkxjYwopSIOfAHoQjIyurLfXt1vLG9MJS1l5zbG77q1t6IDU/M21B45p3dTR40cZEDxFn2Mo0je+KNOrxPs0XUX7HJl0hSjzupJat4N6x5bnptjsFO7R4opyJqUBvhPaaKJl15DfwooKJe0jD+g5uCM04Tz5Y7W4Ln1Pa5VGbmhzMmnBkR7LriNQzOLZ84tLK1voqN6+kyBq3+BcLBrdu2e33W598fnTOHKvPDdMlcZv/cZHfZhM9K7S0Irn6MVeViUcUdLQebL0L2DYUiHLc3DCunlMZmxwDXwygAHCBo5KGOZdYWrYgqkEaV0NQhP5iwkUxdpBoJvkGsjwFSeGhjytrRZMo6qWTO9l57ZtOoEGPQWSqJxge2S7IElgQUYJ4UNx67nz6jdQ3obRiVtUXLkr79MqCr/bG7U3NpYghUk6QD+z05OBejnIqLfEWhD4MQUHrmLNNBbQVA2NU5nDNSmYRG+BVNBASoewWhtxG5wM4oboKnt5ldXry6udzACU6jYVgMTggvXSc1pujuRXlqyJS9LYqWE4OqjIlo9d0uweOZGFxdlEfu/7TiBpR3/0WNvO7YP5pfWVUCyZtaYLOCTrpEqy8ulPvl/3grTg0fLtTSoGA8QROQhxELmkDo5mNoKFIJwESNcWTYp3tasTr70SEDbg5oWS4MUPYRcWy4uiK6fikVKtjgaNN+CXxhPrU+nYUjhKUsHnDWEIrYSSJDunJi0Y4EODhZcpQbms4hWjTAtyJzXDHJnTziFkN5qcwCrhGgbFAx3MD1T31q1C8W2F3+127tjemUtSM8kNA08+NvvI/Q2rcTnyyLuU/1jtwaNmag6/5fGbuzTtgktI1IjUHsIQ8cJl4TPWw+KJkWAvNdU5ve67jsu+PYA4wch9tQL4FbZTWWVieBi4aCEiDgRRIEIAcDN5lGwyPzZe7Pbt3dUmPbQFzrU11PWeu1lV4ZkYmQZY6USCnRW7LbcfqklRNtrRLnaC8x4jvmgfT3IORi41IyYCyhABaI1hZ8QMcESpMUEZKqCRoxA+77w4+IYX3/BXXgYHRNlwajAMMDF91uwCk701Qzc7FWn2LwUD5ZFw1GK1JkJLydh6fVuLBfm7m9xpm4YNmhrk6iUtsEFL+4mgkZBgEizjL0tVNGGQQLYLq/pUCztYKbjoPlubta1lTuzvstQ0fcje48naKCv9yT98/eSuHWp9gQOiIG56N4q0AJ3JRyShBl7VBQFWf7lMEMpfFnux4l6DdwF0QO/VOO25sVi8mGARzEfwmWIbwgwbmcjKsoe5XHyD7YA7CSHiZhKYSzvnBpPrG7OtbXVFu/chnWav9VaWFuddRWFrgoX4fMUP3Vd8fXBlS3NdUaN5WObRA2og6JEXm49rudViwb5GGuK/kDlBSBHAwSikjFvNHq+pyS4xH0AYX3oMAriEWcomK2D1l6LrNmRLNzFhbGtwx4v42MT45PT8QiwaT6aSzPmrb2pMhNcvP8OjZK5I35D6AXSZUR6rnY5RbW0EhYSVWBIzWrAC8BjggK4uKffpMwMgiyVqvoOA0kJ42WavqqnKZAv/4b9/9AcvS8ldd8XPv6TtkpzAwuiGBIuYjAsDKlKgeiQkxgwX5PpUEly9qHXB507LxDyOFK8yqhEwqdH1SNGhXuXml0+VV9fFKRdADOAJEunkUaWUoGYsN84kXQFrR0fNBmXIM7NTl3qWlgrlwWBoYZkpxbWV5U3lgeefXKmkdJtKZ8ZrNVep0ITIVJYA2CAQhGkBKO9AFlqGrlGwUDofNmmcdwwhXpvCh3d+zGtT/oAGPvMlBiXjxZwq4HZ2Yw4BVRojUCtrq7kSXwlP2ljH0nAVTU1OzS/O7zvKEztr1MSemVaWBzq0Ezc3a2gF1X3lqnoAJNlRmAxdgjPQ1ZTz8+X5M4pjIoDkVfCkMK337Cmrrs6cvrSnjvRNtfeXHtGiI1QoLjerwvyF4Dbn7ZBbxSlDByByMZGxOmFEEo0zC+unzlI94wv4nIxw6NypFU1ET4njT4zlJmeJIi0RH7zjY+pAUJQImU4NxXp7d97e+NSpvKOt3eq0vPby5cUwPTLtl69P+v2egj333HM9zz01/NFfbqprqvV2NUpXrQZXALNWeiFC+BQAAcA6aQwbzJtNuKdN8Cf+lj+8iRU2ASY2Yc07PwbooIqTkaTmHAgen4CHnJ08wReAHuoh7kKtKc/5yedTPGIsm8amT1QSqiNv1zOg8+NYCUY65MYdsFAZgY0yoACi55oGMkmBUV1KTXVzkwb4cDgIw5HabNuqUWWcMspqRgbmRgZ5oOhnPr4//cxjGg3E6OLGiNPCCgSi7jTuRetBGaEAaEKzN7jWuK/kbVDC9PU3dPaOzswsy9hsTHr7ZXBIy5ZIJU0N51972tbZ4O1uuTzIs8e+ov4/JcbD11bGhiwV5d97curoHbahi1dePTuGsm9q88zOT7V2+xPZRGVF6cl7anneTC6f7L7vbu1To/CUsizITgFeZQJNgEyFzCaBwwfFhi/4AHcAYoyMTUpnE8CaF/8EYLALLxDAAfT5BuDxTpWRQ3xU+BIv8ze0qnUHOhCb4fX1uYW4x+10OFzF3pIZZjyQLOvapoktHgPZ06vhCuxkuIaGSxaKPAWniBEibr10gBBZo8dxQusEKD9mEkN9jQ6phH5ryuEbHyG2xeWN5aUY5g2WlZYoM72vjGoVtXwY1oPCj43Jnu2yY7dEqFWNy8GDcvXy0NUrnB8bHK3s3Nq+x/ruP/rtsVdeVzswsiaIsq0PXh8a7zt35ifffJ0ZxMQHEz2969Pj68tzw1MyMLrC0z3d/sD14TiN6Lt31adzCbszPzMXYSDe2np4aGDuwL6Ksk/9qs4lJ0NXT0UFFdGLkp410huwqxAPmHoI3nkB9E1RAw5KzT85YZPw+QD0gTvnAGswxDmbf+I6m9xgLkgagM0f2cdUJ+wFbDYEe31T7fUhrl1YXJyfX15xeTzzff3RK6fllRd0KpeCjwHf1UJvAaqIRxn++Acqu4cm9J81TYoeRAq2GW7EzKyqWWRX53Y18/EbrPmSloa51WiuyFtGGosnX7S2SPcufcAJPI3OpNv50HGdg4m+CVEsnJW+Hlnn4bUVndsOYK3yFMy2u46Oz2DOFbceuV9DOv6SAk3u//xf9mzds3VrN2W4hKYIEc6tLVNQc20giqmIMCMGevPGCkVPe7fWw+AOuyMR20BSkikIlLj3HGxx7D4m1yel76rsY7UAzaGOBVaP0jrwRJVriA2YAllADBx5B768+Lz5Dlg3z+FkKH3zHTzBEJsHZ/JzTjZI8pqO7aay5dnC5sRsTMGl8AoZ2YLD9dSry1s6YZv0zMpaSaqo201hcVb6r+ajG1aSNtjMe/dqpJ6W0uEJhRdzbwkODPdIJ4lJirjQEx06cxQgYr1cviz0uiD37LnSreWuD/ySjA3K7v16ftthreMkTYjEL21UUYk1dea6im/io9v2yCvPv/DE8+/4zd8k2eI5eWL92vlmwgqnnnff+QENzebTKJ3eG+dbm+ttuWR5mX9gJPLsNx/bu605tBjFR9x7ZNsPHu09uK+IxusDW8Xb1uolw0MyAAFFDc7O/XSqapE6zxtisAZ1HvgsRF7nh3SWZd1BE3CFfAmVqJyJG0kCTJEnAJFjU7AgBYAy5/EnQM+xiaRN3ABxvoQwgD7cwDtn0hPgEm8a0RFs0uHbrIEA72Iog8s8Mhnbd8w5OpyZCqXecW93LYF13A7S9wf3Wa9cKyzMWBAsvdelqclMlU0qgfE8BIIcmM9UpV+5rDE7qhOo0qA1lSzVplWOZSkZ7923qwvCaYRASM3PX9WsWdEjsvYtTZbhYRByIJdCXRPdevr4yZbq9prkeJ9751EZGY7MLTRUFbnvOKlbXFmdePzRiYWJkx/+4Mylq29cGsdP3dXqdxV5bvRPsPm2jrpnn+ql0GJoMMXpnYwoxl1gdDoBIuwcwkfEBQL4Q3gSPG23Sp9QRpSlcouMUb/1bkPcAaNoN81QxQF74AW4gSlw5OBz2nzYVMLciBefiw24S4zy4LNhK2ULv5FaoApbiN6/jK2jtHdE7Rf8njNnNU6Bq5vPZjHkKNV97ZWBpamZy9SxogYh5IoKy/6jGr5m+mQkLj98TJ1wAvqtTcbkGBN6b4jZscNM9M15US++LO95WMtMKbY4eic5DnnsCX02CdGb3YfUdUdGnPt9qWqSCTw+HvLVpHERPHP0PxMBI+vNrc1f/9rLNGJEwivLiUgRCcs9+/QBwj1XKxvqTv7BH7344x/fHOnHp8YWe+b5yNWrczV1ZfDeY/86y90QrXR6NzZSYrdDX1QpYDWQh4BcDhyQPTQS+aU2KMUMc9kj1XtkA9nYbeCWMO9oX2qw3iRtoJ80VlDGEDVoAPq889oEPe9AefMdkQUd8E+gDw4AOsfmX2EF/ko5kEuCRDG1wqihUktDKRkBpb6SInqBUEXeKrk21R+oK50NTcyFpxeGrmgvNYFMhgVxk3ferWUNlPSMXtOaZLwEPCaMGWZ/EsKktmV4OksDBQzeuVtcPBpnTdM1TGe3dWp4iJwMucnado3dE+tlhgT2D+LoxElNC5dXhxfmmDRcfOiu0hp54+v/4q8u2/eO2xoZZ8DKZ0ZePvfyaz0Xsn3XY6nUjdH8wJiWjXbstVW3+hdCa6SXUEak5nZhKDhplmmjYlVjOegwohrYr2TqUUWQMZ2UVKzi9ymICKqHzGicvVTAGHIHDWGgFjZ/5nQE0SaxA3T+CRz5K99swnoTynyGXfgrr83TkDx8A/nzJ3YLInngBc2FPMHIiYXNYD/K8MlW4kXhSPZdSpLU49l4uHpul389mgmW+Rr3HVS5TLsA5LSnQl0tniGMaFoY1++pQMYdo4KLzB7pYh7BTQ2Wu8RxJ82G9TKxrKnpfVvVoh2blKPDqZ8+V/TwO2nbkas3paZTel7Wds/OLt3N9StKQ4XMuq94cHZsV03T3e9/5HN/9MPe2R+8+/7d+Wwk8NMfMuItUOzy1dSmEvGyxpo217Ld4qwIloeWFwK1taRzcrY+qlvcpR6P3VobKHXsO6DVSiSFcOAZtaShda8GmsgA8g11TZjL0B757eJykcOGiKNGwGzIypn/DyIaNpICSgsUAAAAAElFTkSuQmCC", "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "image_from_module_space = True # @param { isTemplate:true, type:\"boolean\" }\n", "\n", "def get_module_space_image():\n", " vector = tf.random.normal([1, latent_dim])\n", " images = progan(vector)['default'][0]\n", " return images\n", "\n", "def upload_image():\n", " uploaded = files.upload()\n", " image = imageio.imread(uploaded[list(uploaded.keys())[0]])\n", " return transform.resize(image, [128, 128])\n", "\n", "if image_from_module_space:\n", " target_image = get_module_space_image()\n", "else:\n", " target_image = upload_image()\n", "\n", "display_image(target_image)" ] }, { "cell_type": "markdown", "metadata": { "id": "rBIt3Q4qvhuq" }, "source": [ "After defining a loss function between the target image and the image generated by a latent space variable, we can use gradient descent to find variable values that minimize the loss." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2024-03-09T13:17:26.195902Z", "iopub.status.busy": "2024-03-09T13:17:26.195337Z", "iopub.status.idle": "2024-03-09T13:17:26.204620Z", "shell.execute_reply": "2024-03-09T13:17:26.203926Z" }, "id": "cUGakLdbML2Q" }, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "initial_vector = tf.random.normal([1, latent_dim])" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2024-03-09T13:17:26.208027Z", "iopub.status.busy": "2024-03-09T13:17:26.207509Z", "iopub.status.idle": "2024-03-09T13:17:26.367014Z", "shell.execute_reply": "2024-03-09T13:17:26.366188Z" }, "id": "u7MGzDE5MU20" }, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACAAIADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDxmLTgZzFjaiH95IT6dQK1ZUjtxDb28LS3En+rhQHeR6/7IP51JoemXetXkVtp53Mih3lkA2wqOsj+vsv413MOk6b4etJPJLGU/wCvu5T+8kPfk/dB9K8yrVSfvfcelCk2vd27nIW+mnSm/tC4EcupDp8oMcBxgADozfp9eawr7WTDFJFBIz3MhzLNuz7n6n+Xan+JPEjalO0Nt8luvAI7j/PfvXOV1Uacmuaf3HHWcb2iGcnJ616h4J8DzSWtrePlLm8Y7OP9XFjl/wBQB9a83so1ku41YjG4da+qPB0a3Hh22vdoA8hYUHoAf6mscdUajyR6nVgIxTdSXTYt6Vo1tp1uIoVVcDGQOTV9ogoCgDrzxVmKP5RkVIUTGB1ryJQSWh3yrNyuymQCdoA5qvcpt6DkjpWhsxkhuain5G3+KsuVjhPU5rUVPkuMYJryTxvoyy2ssqZ3x8jvXs19GuGHU1wPia232r4HJGMevcVvh5unNM6q8VUpWZ4UCQeKmnR4JlbdyQHVhTblPJupUH8LkD86vXMRn0qK44Bh/dsPXnrX0V9mfMcu67H2h4N1Ua54N0jUt24z2qFiT1YDB/UGtyvJf2fNYF/4BlsGfMljcsuPRWGR/WvWqog+bJbzT/BOifYYolhVHzIxb5pZB3J6nPZenrXmPiDxNc61MQC0dv2XPLfWs7UtRuNVvpLiZ2YsxKhjnAqO1gE90kLOVVm5NcVHDKn+8qayO2tiHU9ymrRGR2s0sTyohKJ95uwqGui13UbSKzTStN/1EZzI394/WudrppycldqxzVIxi7Icj7JFfGcHOK+mfhLrcer+D47FWU3MBOVzyRnPA9q+ZK67wImo3OpmDTLtra4QGQOr7Tx6f571jiqXPG63Rph6nI7H1UsTR5B7etNbrz3rzy38b+KfDtrG/iPS01OxUnddWTfvFXPVh34rt9H8S6B4kg8/R9QhuMjJjDYdfqp5FePOjJbncp6lpU3A4qGSMg9OaugiJSCMHNQSSAnpU201NYyd9DGvELA461x+tw7oWGBkHP5V284ZhlehrmNVjG05HqKxbsz0qesbHzz4itzbazMMYVsMvuKktHSeykgwNxtznPqGOP0xWt4/thFqEDgfw7SfyxXKwTtC4Kn1/WvoqL56UWfOYhclaSPVPgD4iGk+NJtPmfbBqEWzk8BweP5mvqYnAr4X8PXn9meJrC6ViBHMpyPevty2u1udLguQciWNW/MV0rU5ZaI+EI43YEqDjoSKN7x5UZXPX1r1iPwlamxjjt0VNq555+bua4rX/C17p8zSxxiWLPQct+VcVPFwqS5T06uBnSpqSepzFFaDRWd0v+jwzwyjAKNIJNx74AUEc/WnR6U0ts0gypxlT1De31rodSK3OKNCU/hM2pIZJYpVaGRkkzwyttP501o2Q4IpRt2crz65q7mfK09Ttbfxd4o0gizvLgTAIpRZSHwvbBBrmb/WLu61ZtR3CC73b/Mg+Q59eO9UEkMZJXjNbHhvSxrfiGz07YXa4kCtjsvVj+ABrFxjC8mjoT9olCO52/h34469plutrqsSapCo2hnOyQD3bHNac/xtuLkFdP00RzN0eeUYX/GmfEXwNp2l+HPtOnWiQvBhmKjll6c/nXjwIBBxXPCjRrrmSN6k6uGkoyadz1K9+IHi6FPMGoWTsDuKJF09veqL/FDxJcIwmsbd9vLMIyDXCJclmX5nVx/FvPSo5LiVnP75z/wI1ccJDZpBLFzSvGX9fM1Nd1+TXW8yeJYpFbICng9qxaVg2ctnJ5570ldUIKCtE4ak5TleW5OCTKrp/AoPHtX2F4U1H7T4J0qQtybdc18gWWC0qYyXjKj619NfDi7+1fD3SpAclE8tvqDWtB+/ZkVF7lzB0y3Lx7cdSa1otCWc7XCsp7EU7S4F+zrLjtiti2l8p/mHGc18lKVpH2PM+XQ4XX/hPFeh7rT829z1ynGf8/5xXmmrW2oaJLLDfWThlbDyBPllHGC3oev/ANevqW1uI5PlIBqPUdEsb5CZYI3yMcgGu2liHa0tUePNQc9VyvyPj5minYtErBPRiOD9aqSqucAjP1r6dufgf4Y1UmcRSWrNyfIk2j8sEVl3HwC8OWo8yW+vyg7GZRn/AMcr0I4mCV9TmnHnfLdX+f8AkfObRMgBYYB6c1618JdAlspTrVxGVkmXZCpHIj7t+JwPwPrXT2fw88KWOposGkzXMqnKefMWXI7kcA12q2UNso2oqEfwjovtXPXxinC0Dsw2B9jNTqfJFPxTp66x4dvbXq00LIp9CRxXyzJaSxZDrtYMVIPUEdq+y305n09mCjO3d09K+ZfiRpL6L4tnZoiLa7/fRMBxk9fxzn8xTwc5KTj3IxEadWHM+mhw9FSuVb7q/lUeDnGOa9NM8iUbPQkuH3upxjCgCoq6DxH4bk8P2mnmfP2idN0oP8DYB2/hmsAgYXBycc+1TCSlG6LrRlGb5tySF/LDnODt4r6I+C9x9r8GyQcYjkzx2Of/AK1fPDpthjYfxLk/ma9y+BMzHQ9RgU/dnDY9jirptc6ZEk+Wx2OkDNigx0q+0IK55qlpGP7PTBB9c1s7dycrnpXyktT6hy5bDrSM7gMnIrUcHy8ZzVGAtvCxjLt+lX9pjZUZuB3PetoRujirO8jSgzHboMkDFZmpf6Q+wsSPrVh7hhkKcjtWZLNJvJxk9OlOT0sc9Gm+bmK0EMFlevPIANy8ZNQNrOkz6nFaxzJ5hOWGRkge1W5ohOfnXOOgqjdWkd7GYp41Kocr8pyh9j2NLZWWx3xtJ3k9TtPPtfsRVZBtC4rgNR0fTdenuNN1C2jubUDeNw5VueQe34VFfjUobcKt8yxA9fLGfzpdAcsWkZ8kjGT3q515SkraWIo4ZUoy1vc43UPgloVzck2d5dWanouQ4H58/rVrSfhNoHh+ZLy5nuNTu4juQSgLGp7HaOpz6nHtXos8R6jmsu/kCIc9hzSeMrWcWwpYenKSaR4x8Vn8yC1Y9VmK59eCTXmPUnA98CvRPibcK62kQ+80jP8AkB/jXnanDDOcd8V7GCv7FHmZg+bESZKZd0aLj7q4P5//AF69b+At+I9au9PLf65QwHqQRXkDAo5HpXcfCbUBY+OrJ87WyefUY6V0NWV0cqd3Zns2gXAl0yM574NdNAcoD+QrzfwtqQ2NbscMr16DYzAxqc88V8y9GfRy1gbFgqJkn7x7nrVDXpL2WFjYsiyryu/JU/WryMoGQ31qOV8RHAzxWsZWVjkhpU5jz2bxp4hsLhbaTRhI4zkrMMHAzxxW9D4m1g28Mt14dnQSruTaN+Rjrlam1PRxdW7sgO5j0FZsF9qemXIUSOY1Ty0ST7ir6VSae56aowqq8Er9ti4/ieXIZ0SID+FgQc/Wl/4SSGCPdJFku25mXvXUaf4g0jUI/JuUjSTChgyZBPsaztY8O+Fb+7aSSZbYRxks0Eu3nP8A+ut3hrq8ZHKq8Iy5KlJo5i88UW14jRFSoz6VV03WLddQWJJlO7AxmuS8S2FnaXMiabqd1N8u8EMuwc9Ccc1R8H6BPfat9pnuHbYAxYdM+1c8qXKm2zrkkrcsbHtn2sGMDI6Vy3iDUBFbsQRk8VrCHyLNpNxwBgZrgvE975No0jPhY1MjH6dq54Qc5pGS5aUXJHlXi7UTea6yhjthXy+fU8n+f6VgyKEdcDgqp/SiaVp5nlc5Z2LH6mmsc45JOOc19RThyRUUfMVJ88nJiscnJOeKsabfzaZqVvfW7bZYHDqarA8EUneqIvrc9XnabTr1LuMEgfKw9a73w/4gW7gT5iDnvXN+QLyzGQDxzWTbifS7jfDnaD0r5h6q59PHQ9mt7syd81aTJ75ArhvDviGO7AXGHHUZ5Brs7S4WRAc9aUX3JqQsroumMMPl6EZqCaJWADpkd/erMbBZB6VYkRcZ2k1vA5edxZyl3pluqkxnB6gHn+tcxewSIX8xwwJPAHWvQ7uyjkBIBHFc9eacuTxSnNo9fC4t23PPZNOe8uVUhkhHXjqa7TQrKO1tljiTAOBWZeRCGUfXpVmXXItOtNoIMgWolJyRNSd5XZra1qUcMBtEcbwMsT2rxLxzr4ffp0MhZ2P7w/3R6VqeI/GH2aCXY4a8kJ+X09M/SvMpZZJ5Wllcu7nLMepNejgcL/y8keJjcSrezgMooor1TyQp7ptSNh/EM/rTKnRN9nI3OY2GPoc0mNHuellWULgjPQHqamubAGTdtHPNV7cGB1Yrjn5R/eHtW4zRXFujDJ7AivkZNpWPrI2MMaZGXDxgJJ/C465q/b+I59JlW31BNv8AckB4P1qOVvs0ueNp6jPerjLDqVg8TqCCODjkGnCV3ZlyjZXR1mnazBfRq8bgk88GtyN90Oc14sLbUdImLW0px1AwSDWjB8Rr/TBsv9PZ0H8cb4z+BFbxvc46lJS20PUpZQARmsO/cbWO7AHeuJf4zaC3EkV0jdD8oP8AI1z2s/FyyuFZLGyuZGPALsFH9TWv1etN25WRCrSpK7krmtruqLGx2tnA+8e1ef6t4mZkkhs5d8zcPL/CB6D1rE1fxHfaoxR/3MfOY0J5+tUIXLbcgbVGBXo0sIoK8jjnjHUlyoru7SSMzsWYnknvTaX6+tJXonlsKfHGZGwAT9KZVzTG23qHGQeOnSlJ2VxxV3Yquhjcow5FXdI2NfrHL/q34YetaPivT0s7m2li+5NEOexI44rM00bbgy43eWM4Hele8R8tp2P/2Q==", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIAAAACACAIAAABMXPacAABnOklEQVR4Ab29d7Bd953Y97un3N7vfR0dBMAGdlIkpSXVV9omS7uyvZvI65Zk4jh2nD/icSbjmU2cSWY8k5lkdjITx5Ns7GRnx5l4tfKuJKutGkWKTSQBoj7gAa+/d3s/99R8vr+LBzwAD4VqP15enHfuKb/z7e33PTFTqZxSHf0dKpVUqpBVwUA5kSpn1f45ZRuqVleeq558NF7vu/zUt9Sgo97YUoyCUk8/lXnp059MZ6f/7y9/u+Y5sch76Pixgh0arlvfrJ85u1zrqCiQg+80ZpX6yH716ccWqkm7uXolG6onjs2UksnpZ5+R2RSLKgqVM5LTmW46qfI5NXRUva1sS+XTsnM0UjFDZbNyp5GjRp4yE8qwVRgob6zCUEVK+ZHyQ8VM3FA+YaQigz2D3nC10VprtDfbvcY4XG4M3ri8dbajtm+bblmpsd6ZSyVDyxgHw87wpoOef+ixr/75N0tHpm/ae9c/jH22zD+rVFypo/tULq0afdWOVLWgpkpKMc9AHd4Xe/ThRNd1319UXkk9+fLx8xr6XPnAYfWpT3/yyIFjf/GNH5y9fDnp+kdmZxuXFo1+WLuydenCcq15D+hzkZRS+/O52fz05pXlqVzmyceOnTj5+PSzz6mpaZWvKjutvFBlcwLfQkWFthr5Au5yXuUzyjCVlZRfcxCSoeJpZccFSdm4iofKCpQVKctQNoeZKh5XibjQlAmx+SoYKa8/dLtB5AYxn2NiphXZqWK+XAQct42BUg64Vqo9cobOOJmE/G4al7dWv/b9v7hp173+sHqeMmKqnFLFgirlM1ur3EXtn1bVIk8jU52eKloJc2mjMRyoJ55RbqT+j//9QlepjFKf+9TsQycetPzYH/3Rn1y4snls/lAun3R6vaMHHnAH/ffPrdXlYvcYL0yrXzk2fXJ+anX1rD8O9+2bPv7QMTVTVUlIOKYSmkAAHyScSKgUEI+r0FPjkYAV6ANufgtAiS3H8xMkwycGAmwVRUL+MaWCSMUA+mQEyoiE4gLfC5wgdDIZuxikfcP2IicbG1RSxlwueaEBtG8aE/LnvGwiYcXjm00Ex01ju9k8dfb9m3bd6w+rmFeptEw1bcbfOjNwlTo+pQ7MZ81weHB+Ngz95a3t0VjBa/sPm0EU+9oPfE+pqZj6G3/t+IP7Hzq3tHRu+fTWej2djBWLscDrzxamY57/5jvv3Q/0H0qpJw+XnzpxwNlaCUfOU48tPHj8iCrklGUpO6FipjJtoVzLV5YtexAdHrDjJ4jXh0GVnVRmTAWmABpM+GAiJqcYoAcSQmrZKgArofIDQQMMLxIplF9t04bqoyAKwkzScsPQjBci0wqMjpHOnm9c2dwLfIBoOB5nLLC6x7i0eNltDeOl9B6/7bXLKFZVOqvSdvz1KxC3OlIWAWsqr5jMeO74/MXtsa/2P1A48UT53LngT78v0D85rf7+33r6kX1HL1w8f3FplaOn54vlcnJ7ZSlvWNmk9d3vv75e3+tuN+9bUOqhsvqdl1548eQjzbWtJ04c/PCHnk8fPKQqMOCsSmVVdUpIPsn88sqKi0xPIK5iQvgTurZtoW6AjjIQPvBUBAIiETga+CqdFmSESBtfRCH6wBnKkTwqZwZgIgrDIAy8CCkUjPq9WjGfnJ/K5ePRwzN7AHGyi0tYhjGPDLxtrK9vnD5//rbdd9wB06p0LHHpsosaODqtKnlVSdv7y+V0PnX2UiNdUi9/8tmRG3zn3zfPbMlVHq6o3//Ch04ePvzmm29dXlquFJOpVOR5Q38w+tAjjzcb2//2K6/X+3e83/UfSkodyqjf/pWnXjxx3Gs3p3P2g0eOqqkZVQLoeRVaKoGQs5RhCZlbCRVPClsAR+Q7cgb6BbLQPmBFFvGTO9aCCImPXOJEfoquHQZPmMh9/eEnmAkEyCcG+E3TSmUz+Xw+lUxk0snQH8WNoJAy50rZxPXp7mwA+slImOZCdap42xFra6tXlq7uHHXvf42HjzzUrI2zGXV4zkzH1Wwph/mxtrlx+sx2eVo988ITr7z6xr/5Rn99LAbPX3su8Y//7mctP/zuX/4ojKy5uZlKNT/qdxJR7OBU9Z333n3rwhAOvZ8xr9RvvPjAicOziZR17sw7J08cr5w4ppgHgAbofGKAPqa8QCCFLGLbhZARI76AUiTMBKyIHVcNwDnHYeRwPHCfoA3+iKmxtoKunYLYQQknVVKTMj/FDMsWaRLARhiBCcs2okwqYUReMZ04zA+3DSiV4blOLAgP7cOCu2lsbq2eXzx70667/mEZPT90VSaJ/WMX42baMtv99kZdze5Tjz712Pd/+M633pULPFZVX/zMyYPT8363115rpJRVLmWS5cSPTp0KPCMTz546X7/UuOutdv2YVGqhgl370LGjB+urV+KW9dhTT6u5OQE3khqhhpGDvAZqCGs2IOpEUvlj5SICsW1iWkWHQukIRfajdVHXGMsgIJsUdS12jiGSCnMTNCC1UMKoOy6PPcoVxJSKxQC/bY9dPwxD27IMP3DHw3S6kk8nWoPRfNU8V+OEmwaqOYcpO/SGg3Yql6raqs6kdobjqvPnTyknVMmJENz54Q7/WlcuX9k/FYeLfX9s2/ZGrd1qqJPP5dLFwp9/+b2fbKmKUh972nzmkZMffuqJq5eWRn03n07PL2SH4ei9y4tpK93v9k6da6wxr/seByx1/OD0kYP78kcOLS6dO3wQbD8kUtvDxgP+hoAMQQHV8w0yoEQQAxCTSZE5GCIIeggHxMgGilrLAg7LFUR5cDAX4XT2FEtq5AombDjDVIOhcAxsBMekkiDMMkGB4UVeHFz4vmHGDCPKgsXNTrWYS9fa18XO5Pk4EwJislBHLpMpFbJOo9+H/XbGpcXFc+fOP/jEQzs77vavsV2Hmdx4OF6oFMeBe+mqOnRczR/Y/82vrgL9slJ/57cP/r0v/fVHD+67eOp0e6vhDdsnjs2Fqn95c90ZegMn/OF59YGgD/nMlLDgs2lM8v7I88Ojx46pXF7cIqgV2WJqg93EELLF4BF88LAwBEIfHGCeahHEAQBaBBS/agyJzogLx6BdBWEInIR4CTgHJkybUB5aGvuHS8FDqHQsVwOwJ+IwoWWaZiqVymYzY2cYt424ibkZX7D3AB+Ml7RwKhK5bMYX3/OmYzY3Ns5euF89bOHxDhyVS0aXllt4vI+cxO9J/V//55l1pT51SH3pdz95Yv9Br9tfWd/EZk4nrWwhu9Xc3O60sdnbg/FX3x/fdPN7/QH0q9jRSRs5G4sZ/nCAQa2OHNYWTkZMTBQsVC82zwTuMAT6QLskQvsJFXmiErA7J7JeY0AoWpwAFC+yC07SmgAPk+uM4U2NudAReYUE40gxkww19hBipm+jXTQeDdswkgl7q962M+UEYs9UJUyB9q1P1cPswhbnCkEsm812+m256c5Y31g/febU59Vf2dlxt38tXN8TD5SGw/7yVe+RY2p+/9SffxVEqN97xviP/+Z/cLg8++YPX0la8X2F8ka7litmYynzzXcvr9aaWy3/2xfudunbf8NURHjAuvFUPGZbzXY3cMOZ2VkxFlG5gYtZIuQ8sdOFxTH5sVi0J4UOADdxftUkD30iSaBoQI8JhMjig8NMsAECF/0B+FHdWiEb2vBHQ4AA7tXvy5XhEhCLl4BzGYE6wQuCBUGEOeQFXjJuGMNxGVOofSuR9bQUqjXaqUQ8YcYzKdXrq+uKYOiFF8+dlnlyuXsN4yAEGQuWV7zjh1S2bH/tqzXA9Ae///Tf/1t/e9bKrC1eziUTcTvqj+rlSqY+6Lxx+ly3711e/sDQZyZAP6VUPo8oDtzIWVxb8iM/f/y42CRQPfMFakAC+cD0AagoYS3NIViwIjCFeLmMJl48FMDNNtCLp1QyowolUbMIemQXtI9hM9bSP5USrHBN9iOa0BO5kphbIJsRiyF8GIaBVRqAgHw2NXYGU9WiEbg5EL/XYCpo6XEslkxn5qZnSzzYrnH16pW1Kxu7dtxx0/At9c7pbr6iHnxo9o0f46ioL33xyOd/9eXjM9XTb7y2vbxUSNnNXi1RSC5uXGkMRxuN7tVa57X7uvitd2WSPDXQsBP2wBmsba3lccTLJZHUSBJRjEAfvxdTHWRoCkK+ggN+hQ8wgTBynLEQPuhBHGXyKltQmaIyAdOO6SnOMwEM9AdOMnrCV92WhC5gpkxO9EGA04C8Qo5hwgaGRgDfMBFuAVPI57IiXFRQzKVQKXtjQKluqDr9fjyZmqpMz06jLm+MrY3182fP3/j7zlvGu5dFfJVmrW9/czNvqT/4hx/521/47awfvvPGG5VSIZEymu3tQj57aWU5kykMh+769uhr78ssP+iAqrkR+qYLtwZue9AZh26eqAP0DtlCoCLTJzIB0O+ggdM4D0rlAyYwNyESF/sH/Qk5EyX1lctO/AMOILopwlzYf3IAp6EwJGiBdkFDoHvRNOBS7+HaXBDYy81D04hZwgb84cdCP6Z8pBAy7wgy4bZBqJjhe56VSNp2vJBBV9wYS1dX333vnRt/33nLgOoWDqi33vA3ffWFzx/4rU+8vJDLnnrzh3kzKCZi43E/tGOOivl25s2zl157f/mrH1DuX781gBkphfRE8409Zu4lEnEL2TKR4JA/sGCg2XCjZCd/YMIDT80EopwhShQpUiUQ1SrfrrAF3xJq5jAN7gg5Zok+ByvDsdzPJH6H7Q8HFGQPhM+5IF7MF7kFUNcCT6MiDCwEi20aoY8ZaoduDl68bYBKQB6Ox6PBYDgcYkLtPsRV6v3TPxl0NU/v/uG2bQvV8Y0LYpn8j//go595+YXh+tZma2u2mjfDYGNrO53Nvr+80hn5wyjxytvOe/3bLvBBdiDfGE1HbTWCLFY+Tw/VEVoQCYPa5F8NGogdGkcBTASRcAfQZ6cj0R4Jauqgm2CC4zXCRHTg9HIWMgfQ8+QERDUrAG7EF1iB8Ik/AymxPsWVEobDkwgjIwgNAwcgAo62eHBhLp0aOX3IIxs3p0oxtckcbhq1nnpkoVBvdbc21/fNzsYTCVhiN3jeO/3Oe6dOv/DhJ2467bY/DHB1Mq6+9Nmpz33qxQMzxeXF00sXT2fT1lpzw02Y7165PLZTb51v/NvvrP+M0N99azARWHaz22922teIUcLOkKKO7YijhLiHNuAJbdUQu+eD54UNamo/FmzJn3iz+LpoY1xorZPFAyDuNsEQO0EYRwI+YSXNPa6K4Q3oW4hkE1U/sYKwSHGG5WOYCZxSJJKhMgmzkESZ3DqEmMzY3NSU64yIGceCaGbqJpdh6dLFn/zk7VtPu+1v40Mz6j/83Qf/6T/8h7FW97Wvfb2UzSzMTa9srHfH7unLK1aycObi8rcX1QXntlN/2h2IASNljtxoZZNAN4AGlhruSCEsUcwVsRqBEbCbBPGFJIWKhSEQMhqY7GGbD04R33FtiULOSDBEDR9YAeDiZGA1TfIw/MqRHMDgamwj6FA2AWGICD/MwAWOcY78DPPELRNXMZ9JxvzxtOy8ddRq7dmZKcjG9cfxeHxmamr3EfXB6NTpt8nU3X0Yzz+m/vqvf7b23jsXX30t7YyyiVjH6V9uNhp+rBcmvv7q0h+/Ge7mrLtf7n5+bXTUxlawdGXc6nkR4mLQk1AascwJiCUyRrgNNED+OrzMfogaK178Ay2s+J54vxJ0g0WA6Q56JNipY9E4CuwmowRGYRT4CW7gLiL9teLhZ04XPEm2JxIuEcTYJqIoMjGNwEXoZ9PJjKWKez1YZ6RymSwoGw4HYRSRVsCY2z3e/vGP3nzj3d17btnmCa1PPPHixR/8oBJLEPxrBd1XXn2vFYX9sRqNjfcvD7+5cssp8if8OOGHolaqXAXeg0rZuJ8BTZDh4XPCV2fOnjlQLatDBwT6ePdAx56AUjtW8AbQFMWgyV50rFbLcIHA0RLtwOAAUdpAnINxifVZCCV2coAwGMeDUUgeqxJTCicDPHFZrKk4uppwUMx1OS8GIAlQE5+wrbhtDvuDbCqdIDTO/Sf32vWEXXLpnUGvhyE0JpiXiCdJg6KGro/11avn3j/1/IuPQxV7DgSr8eCBKW9ro9epjZT7PUKbhVJgZZe2nf/3e3tDnwtNoJ8mkaDUYVPN65TyfUL/+jwgFkzSd85dPH36jMIWy5CtNeRBUXzphARqIF62tYzWLhjQ1z4Xpuc1s1JzA4CRfAsMxONoSSX44PS4oGQisDgRZIhoAk9ch29wwweEiclk2PFkPA70IX9oH2CzkU6xz3I9d2F+Ope6PvGbNtrd9iAE6G4YhUSTcmBg16jXmxfOvXfh/OqufTc2mS5AM0ph7OD0rFVInq1vVQ4cuLCy8f3X6n/yjlq7ceQeWzlNWMdn7cePlA9XxEL5oGOg1EZbnbqyeW5jW61sqGRc8l+k3fmIE6uDCiL8J4SHftbp30mekn0ihSZkiQcnD6KBrvM2EoBLSO6Mb9wxbFAuiNNAGkCCpkLocjUYSH7Vn7hYxLjBMCI/gwO0QSqVINIwGvWTtjU/bd5k5+88bb3VYI7DIUoEnWImQPCuAaVeOPf+u++8BaxvH0xaOCCVK5MwXRn1u2bqwmbnz78ffmvj9oNv2pOHxZV6dladODhXLRCoEAP/gw4md6mvVhrqvSvrf/GDH3nvvS+BhMPH1NwByYWRYc+UFKYdBgiPiDyBnNkJ5SJTgKaQMGJKm/wTmMq3FutIdtEQqGgNYv6UjxZQssFheogm0B9JiOOdm6hhhA8ySHsFGscRrGBk06npIh7jHmOjMaokxWZGDYyGo1Cc9pvG2vLVC2dPL16o3bRX/4GsgsysM2vbF+utn6yvnV72Xr+yRzEMBx+vqAsNOYmnBxoQ72cPWi89ezIIvcUry/X6Tfavvvh9fYG2Wkv98O2r7cFwcWX7c9udQx9/Sc3PS0oS+kX4IKRIcIj7SrROO1a4XcxAwkEAiK2JcAcpmPYQNeQsVo2cgmgSEQSRodLBFlyjVcjkAE7HfAFc6Hwi2OQhfBcM2Bg/JIh9x7bENyAyKnIolcim4pU9nAGJk86nU1vOqNlqlQulJImga6VDMkHG9tb61sbq2uryg9Q63DzEykZPfe3115dXty9uq2+s3VGLTqDP6TwNz/RsSZ18+HAun9je7mzVu2t7MtjNN7vTX62RyoRqfeCun7p4dm314e/+4FMfeuahj/2KwqRL25I8oWIAEwgpL+YNQCQQ5EpKAAhLKBQc6OC+ELjOH4ie0H4AlA7QATd4wuJERqADQOoYvmE6nMhA5oAesmOQI5YoBpMEJPRHYhJ4BnAD4iluRPvnzPfXbyVwLjEYycn9/gAHAi8ue7M71mi1alsbWxtr3f7TeX7bGcCMh8FHtBpO9M5Fda6/N/SvXw6S4zYlpV4+mnjuseO25XfatbWt7Uurqrlz0Z/i3x5kmbbPXekQed/seGcWz7yzePXwd777X/ydL+WOHRVsA5NiRjwAClIIf9opiQVN3CtxF3Q4AUCLhYM4mgCXh8PU0abqJNggCgNuEdUhGwghMDdR3WCRwTaexHiMTSlglNSk4YlTEJE2CgI3ETcLmAl7ydqGlr8YP91+P5NOEZqGnSY+Pxcekk1o1eu1rWajlc8Cv2sDTDIbhjWyyz/o1yZ/XPtx5x+m2tckX1QKCTRPFck+dezITCFvEsxpd4dX1/uLE0raOeWD/sv8vHGIUTNdnQpNP2EbZ9cbr74z+NoP/vvPfXL/rzz66Isfelo9/4xKpsR2bHWVj5RHAfDQULelRkN5DjF4tF7lGAEwdLyTnZ/8CTGLewxPIHSRUfAyTjIRJD4TWtQ61MT7EG7RQbsIwk8HiXQq7I68dCpOjJr7cfQtAxAxhli/TuC5fe4MpnYbo8N+t92sddpNdfAGApgoR4qp/PUfnN8T+sdz6kJPwvdlpda1oXmoqA7PJ/MlK2b5/c5oo9U+u3YjC3HLtO7/z7WN4NGT834weOzBR2uN7Uwy02ksEzD+n/6flW/tX3nwT7/2zMPHf/9v/K565hlVPaRq6zJx7BwJxgH6pNSM4kIDVv6G6kUBcPOd+ATABDdC7FA6OyeEz5/gAyTpDUCuzyEWShAUPwBzCJYTrRH6cdPI57Ndb2jFwowuot3z0dCLlitchMEl10Nc7IxBv0OevdmsU/cz2SfQhwa4P/RwDilw2wDoSz2F1uBSa/q7SGEgBXSJZDlfev/M2cXl4dUNtXzbiT/FjligNjfWP/Wpjz5+/PFRazNfKbRfaBepDKRY5dSbf/K6+srrF776yh/8d//13z3+zHMKOSrBO03RFJVA+6R8XVSodg6Q8lI2IeQsU+cbNQc1ggPArQGqxjAN5REYV/ANYAATYkhq3IhgkIg0u+T4EIwghcTpo2YiJhK4c+cn7CKi8Q4liYewuoGBRn27Wdusb28xTfJGDNhIPqg2EHD7BRfiquuqaQ33Fe3lFnUyq9NB4Thnz189d2l4busejsLtl73Tnm2lDqaSzz/x3APHjjVXs7g82eMHkpnSyeMPnnjk5NG33nj9B6f/zUX15t/6l1/6ra/8xkuffOa5x9X+GdHSna4UQqdyko1x+/I0gHtSmSIUxtA2EnsEoHzAh6d6HQkNYXeSEhC1TAoB95vyRT8c+cSA4tj/vusNRt547KMKTMOOUbfStGNROa2uIDTvMMAjtYXRmKtKeAtkTkan69Rr241GbTB0MKrYyYSIzGq03owAToPLaq56wFZ9TwgcMrI12rn6gbxqtZzLS877jZ9J8e5M7Ma/jYYDVzGX+alyd9DyB+O8Hdqp3OOPPnzo4MITjz9a+Nd/8p1L6g++sv2vv/LHv3ryjz/20Wc++ZEXS0+clOwKFEqaF7XMh4iFkdA1z/ABQgHyYuKahAExOoMhrpwholNcLtQJ/h3mDnq+r4YjIB6FPrgIiNBRtpLOKD/WHVMvaiYSdjGntapcZe+BPiCSgtbejQAw0e20mo1au91K5+YiNATZIy1/YFeY8MYAOyVL5Xx1ResyfmP6fCOLjs5LhVmnp87c4K0bJ/7sW08fSJWqhcceeXimUnzuiccLpRIasllbj/mjnjd0I9tO23/0v/6LP3vvGmFVlPpPP5b50uc/d/yJJ9XDj+pkr05YEn6kRmHQFsQgRhw8CeqodZ1LJit8QJE3tA9pgQZ+ndTNAWgetVYL+m2PktjxeOCMh1RkxsxxYDT7zk/OX2q55uvnN//91j2eFdDvL9v1lne9Ugh59MjxBz7zuS/+1d/90rETD8WSquNJMIUVDjDnTSJoIpgu6FsgrHhWiOQAqzAyamNdVHHvHnf/6X9+a3mklkc/fHvzkf2xK0vL89PV6WK2WkphnlqIYeK9dvKjH/+MlfzB6290VyKxyv7ZXw7+3V/+8W+//I3/7Et/vfzRFxX0iaOQBgIUUZsiagA9ZEw2GFjD+zAEeyCi3kDAjaRw3MFwhILIFcvicmeLZjxt+l7CHYed/jDshvCDEQtMymGSzsDpDwVeQOkugwvjjsVtIq/XjoKC+xhCreaIoCmahRQq5RyBaCuk0E0I2H11QgX7NcRbWLIDAb22d+9y65/DT9z0rZXorZU3udZLC+ojzz1RKmZI+9mG1eoNz1653PPCgw9YKxevAeFdpd79Xv3r3/vDL3zy3/zmJ148Tmn7kYOiqFMJ1fLVdk3cN4JL6LtavXHhYqPZWd3cXFnd6A3HqVQGedNotZPJRKlYLGbz05UyyUi8CcMyXS/qDYfoBEJJm9TPOP4oNBIpM9MLOnd9UJQPEBeXY2fw56DX7XY7o+GQoPfYjYkHqTNGWGc3IYDnn3B4ieI1pc7tXAI1oGXqzt+/+H+54/fX1I//9J1HqHxIq0Ih1mhErYHaDG+vklI/UurH39r+0etffvRB9dmPf/j5p5+UZTCu22z1kSTKrnlBsLy29eZb77zzrrvaVpsIZQmqiz6FrQFFSQ2m1dqCpXCjCMKSnSMUAvOgUBIZq+34Q4R1OhdRQqfPujsASHcjYSaDBwHErjuGBcCB77m+kcD65eJA/1YO4BzgDrGnd0Gfnb9k6E/uOG1QNy9l6rW26g6ibXymPWrUJo8pdPNnXfXt19U3Xn+lGn9lelotzNjFQoFE7+bW9tVVyFnVxyK4CkjkqtZtpnjW6YYoPAQ7n1Pc4DYhi8HLPSDo44lesZjMJ1UNOr3rYL2BuAKalgUBFIx50RB3oNPyvHEskUATwZPisRCK2H0pJsfduNma3pvV3HTblHaf8fPfPkzBkwZ0L5S64HSo4sCATKUmi+RONuKWGycmhKbUa/yA8F3lA9nUp/TVeCgutYAnP6UOHcrNzEwTkcCZb/YGqUZzuhUsb6uaZotbLsufQGMyLozVbM0p5FOiSO46JMM5MYNxYE2JJThUbjhIoKHnujErCgJWVMR8Cl9u8QPyunIN+cMHJuXDBncTGviljN+YTnzh1z8/DNWP33r1zOmr0A7ZKBAgInUkzM/j7DnGtwQhdw4CrAzsiIUZ0odmpVIpTM+0Ot1ur+sTO8b3tfOh2UKyTAeqHKkRXraoZ5UvqjbaGhtql/JDAPbb94A+txsMg9EO3pCfmPys/BoN+iAAA0sZ1CNT8mJFvhlGEl6/Np7C1pxSqzWhtQe4iqYdKKlMTHXnmF/ov8i91e3xV775zc/+lc8nrSR8QCAuNhRxTGwNh4ncE7P6KcbYUKtNleoE9e3tXsfPphJOPxxR5EIlihmPRXYpHybTaccls4gvF0vnS6VytdVts+iu1Wc16nWL5r4C76x7hCAYKVnzm+0M+/AD6wHdsTPG8I2NvNBGB8idCP1NnudjOfXUkUpnvQH7LmTFO9nsiBCDHERV/VIGN3qHz2rjy3/4Lyc3nMaiFAtQddtiEbPqNLcjpWEFLWPlQHlOLZo4as+xhRwLVcmTQEKqMShmYoN+r9sLMQRz+WE2k8vn0xCjHScNbG02ak2nhr3Y6nXIMJQzKfEI9rzuHXbuiB9JnpPXHIyx+EPWfXgggBCWMRbZE8ZQxSRALSTjw0X18MFc0Y7lisn9WeRX2Bv6ZGeTkUIowRCerilHELG9pdSsjpJCoTt8doeJ3PfumD6Si1+H6fVT8SlZ543nREATKCASOThO9KKottsqF1PHj9sPHjwwVZhqdftX6vU/e2uzd/3kXRuc29T09F5jPGqMuU5ae/hGV5ndXlb10CIIFyi3r6sOzndrPDXkCQneW+jsuhGb15+CcxO2Vcjl7Wab8iEJlkiIySfVEwTUoRI38q3PPqweOnYsb2TMXjdKx11n3Ov08NCyKdUdytPC9XwgvU2lTsTVZw4Wvn2xA+h3Q587FcT/ERjxzU9rN89pz784soqIy0vZOSUePDAnAgJuN9E6PHmblIn2VgizcEBGxxGBHZyxYKrnnpn6jZdePjA3bZvR9kbtzTPnL13YfHUHA8yqoqcNamc09ZSIU4wV4SZKXvCGQCQT5sMB3Lqm7842OJgMpjGZyc6O+/r3OiVRUwAAWQCSjeFlo3faxDkiCsPJARmx0CNyElpHFvKPHDyoem6z37TsMCAdjcdBOVg5Ng0wFv0JKIE+47yr5sbDb/0v/+TS0uLVq1fPXbj8vdP1rp4lMqGspQFUyY3nffXGvWY7ebxRVx6eD/Dlc/2ZeQx2djTQgRE/8TDsAWq5BGtXRD+/9PCJ5/bPZm3THXQruVQwVTw1bb3K8omdUbLF7weRG5qcG2NR4/Mj6cJQrsbNrkulMDfKaAkGvbN9Hfo71/jA/zLJyUDAD3oDg2QG6p1bDAcBLn2M0ms8YQpZSL1ZVhyLtNPJWxkrl5IYrmnmx+mh4468yOo409X2TF1O5vkn47vL3gv/4H9ge0qpFx9OH9+vhj211hbKdTSjxCN1uKoeTavcZfXWXeO3sCpioaVhygUBG1e4PngMYJHQJik/ATi2GSCAmnFCswtp9cghFo4QNRqlrFRqODpYKTx39NBfXlq8qI9kzmevz3sXauXXvqr0KVGXO5a12UO5IgjYdbi+xE/1dR3/xMiHvl9gNYS+crtZ73TbM4UKVReeRP1MCgCsfaUp0/Pjtp+v5IIoLg8y9sdjz42MZHaQLpeOOOrSVusrF9uNXbNBN2TTaq07hL82297xedWpC1Nzb6iVcMtcVT00p/wNcTWBMihkP/PYPXh+wDqZHGDl+XePCR2B18ngyCkEiCvVQxTG1ihpLavjh47IgkhO5v8oytnWoenpBXPx4i132rnI7n95HO6Y1t9SyELRqZZ+u4+5vg3Nhtf/uO+NASugeqNMIg2/dsaqTVqy2dh3mFiz4eh8A6aRlTWpSIrsmG9IKWAsTioohsdtIaAkFD5w0r6Zy6RYrnauUf/mxrVpAE3i1fERKSlvGFOvrkvC8oFZVUyrQUMNfHVpQ/qcVFMC+6R2KcABFA2JIZp5HkiPbz7X4X53oHEWUTOUTyaQaASnf+5jLxvVGdXvSocRz8FcpZz2wL65wwvqu8v3BSTuCAIopiJg0dX23nV87z5/n/5jdfeu+9iGRqEh4Dx2RzPV0tpaSxKT3Q46jdSnTvsQdaKSgFYJIQ5aFE/FCEthioVjTzQ05XmslYpiBWLBzsBLx1NW9UjVfHtp442+PH/BU4sNdXhGVfer547Mn3p1fWsoEH3++YX25tr6qgQS6DBgE4whAaUBDaXyhBNAI09ABh9mORHu1zl3z6fjea5wV02J/PvRmPr0Sx+TkC7ZlemqWr2Ku2zFrVwyPVXMqmVwfe/BrTchDh0TBgF3GgdtWQWyOmHJOx10234Oh2jE1iSeStwH+uu2RQ+zMFbKM8h7shGzxqzxUBamKR1wzBD/2GetAjjBGKXwO2PG0mkrlyjNFgu1YdCJrEohX766+O2VYEsLEHxUR3pgxJ/76APtzZX33x13+mufeHpqNqotL0vMD3CLhNCgZyOrNybg4U84AGZisAEy7jIGO79NNv6jv/qROE0NQvw08ly+xM8K+XgQGa0hTKDeu7hz+L3/Hd71kAIrlpJaht6dQG67CM+4jyAEJpxttdsdHjwWC1uthuOM7GQBBwBMcJKVSKWEIUwrnSLuglDyqIzHRSe7BPtQqcRPxGfLMXM6Mtsjr5Ax900/eWx249Ta2vdIEmzT3UB983tXnn2mOr9w4CFrg7DTK+dqTx+tzO1rrKxK1paSZPDEUwBingK4V/QGQgm4QyngYMIWtz3FjR1Q6IRR2PUAweonn1L1mqpmJPFL0BghQmTLNLOp5D5KHNUHQMCNe+y1xbVoCYWlIlP/IEM4gCwcybfAZw1lkVY7ySRxaUJCZo46lyRLcCT7T0xOu8UR2TjaNkSRz5onI2G6I3c0GrOInD1wBDihTruYydHCggwRibMDpdQzJ6I3LlwibjyLEX257nSHh/bPTh/Ovv7d914503jsSOr4Q/Hl5U5bF08Aa8YEAdhnWAh8mKWlOenuZDh58OsI+LsvPZiDqUcd5ZFQTEp1O9CnWsuPkuPukf37HlbqzOScn/k7qzP2TYjlgw8EZC6j2t1BPVR5hG8UjvqDfr+XnQ5Z/mFB2HjeLDAzZHUVdfGiGMAHPQsShp3N0JQIYSQcgBRjOTWcEU+lEU1zhcSBSnarN31mo1YOxh85mf7/vn7hfFN9uhq9+/blww8U5o4U1hY7r70/euQBd+5AsTLtra0PKOrpY4DDCDAmisFSaVekJKzKNx8Gk7zLmBgAJ5T6zIee7de2C+kpyQPbBelAA9WTjMyYmG5z3fEzFXWmcZcrfYCf4NpmT2zln2JwbiIZ6/SlYpTHHJF+GwxarVbVc9MZI5mMezgCwtlSDExgyggRpkZETXAsYLksJeJJI6JGLKA8EltJZmDhqNGFwkqW0uQLD86Vl/fPvnruwt/7wlPrbv+f//mFGZwa39xqNxcO5JYXe98/FRRj7UpRpUyBPhOKofFYBsBqIoCOwYWa0QI2ofng7gjg/qDvv/z1Jw/lc0RLxPLBv8f45SkGOPp6UVi/nzNjTz8y/6++v87xB3RJGc/P9TvyAB94tPVNBx/4PDlBKIZ4IpyrxW+PWIMXdjo91/OxvuLJJLFXqlbRyOTgiMtZjuukMCMyKSFJVq3Jggg7AcgpO5DF7DhaueuSmJNybvDIVHG2nL+wsvn+yvgffXj6z17Z/uZPmidL6sdLvR4dgRJSXHu2JV4bVjYfYrM9V4wiJkdHEUDDh6HRKwtR+JP7jPSMkVrMBNihACbjd2atTz79rNdpU6UmK5kotaHOh9J2qou4JMogCBK2+fgDRx75/voy/ad0EGJFiz7m4Ghbc3LHnUve418Ohm74/BSDh3LGUYe76kE5QIzlZK7viUqRPi1oXwu70/SheiroUbkUaMsx6A5wInUc1AFS9wqtEjhizbhs6HoCyBj5TbqhkGM58Qul/L5yeebSUjowVgaNL5/yANxB4Di+VrzFnwCxikLTbaHQ//xE6S04YC48Ht8AmlEgC0+1lS11iCAJZFzV+/n61Yz63U983Oi2cS0xFLRmRHhSNUV6aSwLwFnUy59x+8T+fc8kVA3lT6ixrIKm3B1WG+pUDdi9/8HBnPXTIYCz4E9On4wm4fRB1xn0pYxSD4N8AGubWI6D/AkwS0XOmwicOAXDzJ14PCutWOBAGRPIAEkku2Ea1B1DVj3opSZQdbGwv5zdP1PaVyq+dvrMx3/v0KnFc//u9aZx7dYKGnw2rxs9+GI4NbXlA9CRjHyDSj7wR4HvQKUcGjeZ2XSwPbyRinhOqd//tZdeOPnIaOOqYUVxpkSTI3jV7cmyd1IqrDUrliQO5WMrZz798X1nv7YK+KKBOmSqd4m+7bAXN0KUDXbmdvd/mV5cI6939+P2+lX07q4IB5xQ396MfI86atKWOm1mss47DvsWy8VBZzuXoXccsRxd2geg0cjAh3I6Cevpzg0gBpTwp6xugDmoKOYAU8JjyRnA9mQ2tb9SurTVefD5j770pPfG+2d+/OqldwIJYr8BEe6MWS1beDCAgiyBzZkr3yCGj2CjfkNOZJX6NK3lPvHy4/tm8lEQzyUyORYbQRz6VOwfuk+gvZgwQgkSGXs0fPnQE089+M3VyzhQY3F3eXjgDlHlNTlz3/sfzG3z/o/WR0KhnAXPgbbrVMgv3UE7S5GvSXcm1qrTb1L6agaVQhFsSNcikTli9shF0MvYp8CdWcvjAS7WtonGkG8+BC2gOzooAStAxjFUPhUz1YWpar2nuk67F3vqwOFf+1DzR6ff/dErp9b6ggaOheqZHB+2ryOAGwIgJBX7U/p6Oe21VQg5fPjw3/z870xn0kFzO2aMsJWlBIgJsMEqO9yxQkEIggwXlkK1pBpttEIll2Pp3+ZlkYFHNdx5Dj5clseDM9jmXkAK3NwFHzDKhoDjg41qXK25cmXuBWyuD3qAQMNkZwLPGw0jOn1g3SdhAmLQ2XzWShqSFEKSivjVlWV0A4OAxNnBxgDu7GcD8kf4IHyxAokL6x5JlNxFmJkFlYTkwIpRXG8W++589dDD81N/87O/+v7i+UtXVmqtJsuDO30HK4Y1wpPqfDiKQQZiejq9b2FhdmYG4VfNU6tTPLJwcPrQPhX0IXDbHDENI1kURGHJyoJ31IXO2VtpSV0SIMT1FDKyCunME088+PrlczAe9DurE6tVDXSegScEAWzwYeMuCJjA7mRSTc0l315y2pO/d77hTujp9oGA5KL8VNQqhFvwiEizbpdM6Kjf78SzFd8NcYMtGuO4If5MlC9krATLQkJZHw5kYW1wQBI5rVOcNKMQmoHKbPkWHOnyRg6jFRj8gThiIRsVX6QQCZhxNxLStBAe+7lwivrZjzzx8EdQSQyRbBQNsvZIAwDTBasAS4aLMHFYiiII8IOmJmcoRflDaXci6yMCVWIVH9jlOvAiz4Se02wKQcAE4BOTgYuQ78jlThx5aKzOgazzSn2ck6hD1KCHqOEAJshV+MCIgIs9dxrzyMCPHBs6/ttLS7cck8sk+gOuetMAK7mcUeiEHc3T3IgHhRUYEvtvNyJvbESB7wbkXxCl2JNYRLIyBL8Ln4tKNBZHSSExBihMTSSBK1CqAFzoakglNxQrcKd8CWCBFk1FmCUQPlErumFMLHyAY1L65UmTGBQGHzDEBRFrIt8o0aOTBlV6dPVh/TSTJPvVV92aatQVHY/5FUzBXkwDm1baGFObDp64O1emZdBAYtFYa4i+LE2I9HJ7pjQ7UEsrKp7ZN7dwkILirthR33DUhyxFqgaxAAK4MAPQ8Gw8AB8AxJ97ji/++mPPHDl8+uIFcHnLyNIy+TYEQOxUqOcNp6Pt7MmVQTMUxHBGA4xlUniTdbVWf9SfqpRQAO7YzSczYEa4RQxqCa2IZIfKKK+Er/MF+bNc0VXYkK22u4EFEkniSlA0wSO0wqQrJx4XYpqmPQYN0cQ+oStcEgkMtXEOg5VGWPGQIJNyBK/cpd5QTkttXyWlgKBs1rbSlp0u00y2qHKIflYoYP7CXmOVpK5qsv5LLwBG/qCE2Q+aad3T6qCEMun4F//KJ1//V99CGQL07/nqsAY9nMNdATpomGwA2Ql0bsdBBSX00Rfd9c18EEzrtKVMeGdAtDubN/7lIoSXmU6Zxf07yAZASU02xOAIH2Jnxgk00DKD7mHo41gqnivktYhH3FMBMtTWDoJex2sgW+gLX58eSf2ByApq6qFBBrzPsyCOOJILCvQ1UbMbPgAicAapNmwrFsKLzuPDrMABq7p0s5KJGIA5R301bgoTxOGdngqG6ZSRBnOHDksTTdgICePTrga7AV+OmYAGUBKXn/hwWbELaMCZV1c2VTwwM4UXH3/igPrW0g5wJhslJasf6noSwIWxG+6ACS65Pv7p7zy3YJlro8FcPltm7jfLmyvrtetHXt/g8egCaJoODwwxd/UP7JQRU612AwVsROMkjQKR+ZTojqFxnDISxXA0Dj1SHnpHFgNQmABpI14+0ISBaf0L5QIsTbzIcT5IatwqKheGIy4vHAPc0diYp6x5h7qEYDWeRN7ydHyG+gP94UNRtTRUa8tqaVHVN1W/KdTIzOw4dxX3ikJDWooii2AR7ksKlJppZyBniXjEN2R9JPojI4IIjx2aoP0y+LBVcb763/7nv/f05OF3vltaKzS0PXpAx1aP6BVwENTszRB+3lS/+fKLyfpmwSaNnMbCuGXsqTnIiuPGEhwRUaKN0clZPDYSZDTsusOhHQvpDpuKi8FAFIIuOSxVIHJKYD0t0pk88kRMcwGeB+WJwYd4AdagUtZB4CXoBVnch1geZAiw+IZIbV1xIFFWEMavKFJWrDMH6AxquI4JjChaRlDO35e1LoAVmIp6p58Pkt1uDhrlow+ohUNqZk4WAFPWDf+xAhEd6yJRsM4oKM/qxmU5ecfAtSIzKjHrggDqbBtUmeWeffnD/3My+8/+t3/xpxNSnABDfwO+5Z0/jyn1IS2ReOItvRNZ+Z/83guHE3EKCqcK2c1Ov1Sw1PZubtk5+eZ/8VBd1wOclMpTEsB1uDOXha8R1dRnkQALfJpdmrKmjFgnGRiGHII0B7LIExAjVhAmP/JKr+ARDhCKFHhJ2nLimumABLcHW6gEWh1xIuqUb4mUsaZXl7RxGoySoMoFYaWtW47n8nASOoAoHTp2MBDUcneEeGRTHROChmpFyJ8AFJwjkQamp1XUGPPMEWJncT3fEqGqaMlmyJxx5oA+ixq2t1RsoKL2Uy+c/MPqP/ndM+f+9N99+VvNaA+poRMIFzUcJ0IdgvqvXjr4hY9/Qm2vjAedfHmO1XrU/WsykuOKulpAn3HrF49oJxIBSkzL74nkhfwZBA3GoyF5MSPwWfUHjVr0DhfwS+xHdyYE0BCamKHgDrMSuQ8OAF9C1q0LSiAxFKyO1wBBQClog3t0OxnElwCXiiNAz7oUbRoxIynJ021wUdQwh6h33bgNxGACgQ1kCKTCKdgVnhcvVarzB6TBHi01WAUm2EVO4pHAdnChJ0ob46dU1jjIaoBA0OAQb6CiWJJIdIiSo9UNNeiqhWPzD878Win14YdPBGbsB2+99vpbr79xYfD2zeJ+Akiu9bmK+m/+8T868fILavGU321k0lbgOWNvjM+kJaccyPsV2m1tjU9O2/XNBOmFC6dANiwrE326cyMgSHkQTbYcPLI417MtssCYpNK6mrUzEvyhvRqiWeKgQv74WcDUM1S/J4BGvwEvpArbiClsD1ESkAVPDsQ19yDngDjf6G0k2wQlskiIJmWQv+YAuT7gktWHslAdnIEAPkBfeDEU2keyIdOnKmL5DGE7LhVX+bJINtQ1E0bcQf6lgoZ+XgtbjUtCAJAq/RjREIX46umz+zAEHn0qc+zJzPoGZY6/d+K3fu25x7udTq3Z2Ox2FxcXCRFv1Tuzc5UnHn/qN7/wO2p+QXW21MZlVVvz/EGqVFjdqlFWnqS5oI6VAG0qcRg89u2jLy3TfAzALSxwV2riYczMTvTJcZxGbcvp95PlKot/RNQQjGNFYOjaBut4eHgBCvkBrYEBCqASGEH4tIwk6ZEVWICAdE7QI2k33dKZnWIRwXVIKjoCiC0mkodL0X1WlIQeXP8a6LkwWzsoATFwFYvuhFdcglOqg6BH08jSLemLmMvK1QjpckCrJyiHQUtFlT6gKxa5uJaZYlMNZcLgG8WDtZcwPKdrA1DMYttVM7I+sriQLOa9Aw/kVaGs7F+TeAYvSsGCAiD0Z1rfVCPghinhp7Lp5sZGZ+gOwySFVNee4q6OG5zY7RHbFKFPgQjn8PBMS0OHFq89FgrQ3in0HOlS51MDQaifxnVcG5Kh5zcETkkJbC6woFUwpxJuxOcaCIjFcWUPZjjmZiDGEnwAwwE+RL+4bxJQErUJhUIhUD1nAWvwyrYASgMdGcUBTBM+gJw5l1twAGxEkxTe6IIK4zq9rtAE8sphzddQjOB+P1heNisFcQ62arJGNd/VwR4eEDqDOeqi8CicQ1cpybO6HoucIAuKEWkVB03AYVSgs2aPGBfGipgmysHDZ7lroOqGFDY1G+LoDRv+SFqktxsdu1whXH8dAXffwDQBQkx8qJXGRK8wPybUbPfp4EGzxWyBHggObSiALkAFJV4M6sZ85C4YJNCeBESxi7RXDB4QPnRJheQ5AtBwVbblI32sRYyAOYALEKEUxJf0LsGcxS7EqtGNI4lWinXEMWxgziOsQBLSD5MGgZaWBZwQCiuDJNmC5qCavi9IRaW368y9XmvIUw2GBxLpWKuvVtdEG+MhIg8JliDBhl3VrkmWuNuVbxpaDQfTEqbGVMW/QdUTRCKaizQGSPgiSF2W8LEiCbOCuaFdRsrpKr8nIZZsPPLsja0WMo1slYdeufMALpD8ZDT04i80BhAHnHzzE3TLNwn6Vrd14fy5jx08ZsXom0tVFssUMDAAPQfyLVkXroM+zIgByh6oCTBNcIp4lRzyDqB5MDQn3+wRYaUZH6KeAJqDEVPsBB8inYA03h/A1RobjAI+IhwcHzF/IQOteDQsuF2X1YEtkWlbG81mc4MF//0hzTQ31pyTD6x89KMfN2hCjAXFFaCDUVZ1mrJGtU859VhKhpo1r9dPJtJxJBu3mEwSUQl9EEUXZQ5UtNuI/Q3qeQL2w2TQxxzsRf+YvmeQLue5sL0p5AGGdxz7KmoJuaUHx/EpaLGDRNKML0DlJty83W4vr1ylXzfLdSAAjqRGMYjRdh+6RnBzIBMiyM5TATGoBrEAgWPOd3vi72CN4ARwMBoCGkcHgAMOE3rXmkBwARC1gcROIXlmpFUuIBbcwAEaBDCN8IHewzaySJpagSwkBvMCHB1ZcEqLhEceKUPI3F1Fzbff/snrb379G1/91Mc/bbMyErGJ4Q85Y/xAYDABeG13R5ubnhAH3MlJCDGtoqEn5oOTJo3uMSi0L8IDMk8mDG1BphgjzS2S6C7L7fTLZXhcuv3qFMoEwnt8M/3UzboB+cMePtwYHYAm4ANdUbFLkSKrxgysIKZDW7SIbJfYM1pDQrYEdZkJshvhiJSnuIJ8E7yJvyO2KUyFWtb2D7BjA4qmXBaFxpOgKkUPg2vtoPIrEOfhaSuAbhRloMmc67MxIXmOxPbl+dkp+6U0Q26B9EOqTKILiDI+vCElnSo/+sQnZhfOvvHmT06/81jkJffPC5cT3YYbkGxrqw5dH9tt7PZkoTARWWm4DdrigkTRmS3UwCmSa6KYBQNXQ59bI/qYPP4mBxCs90Kn2+PlYpzFer89oL5rV4POCbv+ZBM48cnLnWRweRDQd9SUFccWIkePQgIBkfQNh8CZopWSVxahG+mAwQwAHBQHZzB1et2wTgS9hz+MKQK84GigLMQbqU5LnnxCRChk5BWCVf7UrhyXAvpyfd3Vh+MhcFCClODKooeR6wRZk/pPmAVKhD8wxhKKtuQcIITP0NYqfjid9opTD33kI/1LF2u1LavVpKqMsqcO3ZG216lApgVfrlAq5rOjsWPHydKjzHgcrfBRpICbl27A+Uh8kSpIATagJNSkpg8QgH3BtKVyMLATqdhgCJB2IKnnctsX9D4fV+uQ+s0DHIBtxgQNMDhBn36nv7Ky9tigZ9GnkY51CQxQoCBdsHWhB9F5WlVJOEMnXQEH2Q9alWP8oaB4HphUPvrCSF7UHRiCmpg61hF6ffIkfIN3doqc0cIH4SY3giEwPHQtiQgleppoSx8KAEk8KtwAoEEJIlMMM/w1UOiN2z1mTwpb+DLwsrP7Mplcp9ertzp+u0UT55HrmrRNKhb8mDGgyi+RSqezrAQT+HIF5D7RQHAgqgu4Qz34EzRM4VkgcKhROyVMQBjXY6Ys46JkDWng+VGdSNddB25Spn5rthm2mMAJQQRxzZXpzGU7KJtYcn1zS7IAxE6FlnFqGMCL+cm0HJklkMI0Ej8AdqKCW3tDHHaNlumOTeuFQI6pVkXakg9g6lxB6IW+FUCQJ9HQRxaI9qavjJb1Mhkt8ThSRB9rGPosHtWRfUxYCJMALuYTk4FyQaS8pieBX8YM+ZXwAxvOkDxGsVQpzjiyPJp2b2PWIFJ347I0nSpXUEvVAQkPsZGwxHAOMDGwgoQmNKtJl3p0LBOGSzRrAnXwId8yL64FxlnnReig2xfyRozcRuUyWQYisKpd38mft3+D/80mqbDOvBumU7l+bygyDz9Y3AZMST485yTZTYoVqocVABPKEDbCDB/1VDgSowiFTGSY9/2AIeyKUkXlS1LDwkMBlwkdIXBR4wzgxfWRNnxANvgAO6CcQ+F9rsAeAC0agvMhtx3cCJ1q6gEScl0CzrCFDrKywdyZKmEfND8t5MmUWTEnogFr2AcBNJuJIe85CB4itkhDGq6h2YtrghIG7MV95dZavnMXeJ3Z8qFXgR8MRyPHo0jTlwVSUYxsBUOfKRu3j8b4hse5+1dmf310cdMwrYNg5crSuD8mKQDtiXgQGQ2tyeQIG2TlgSeqCXdMsq88MMFhbFCkh+43zIMhi1CSOAc8IXEmeammlvs4O9wTWRT2hFe4OmwBPmj3xjUBBKEFBAJ/MoQDtDSQahfAoRkCgCAisNnBHGCCbKE8idy15VJoIIlQ4XZgXGJugUwcxjBtGKPxCO8Gs9pKxFkMR4abZQ5C3WgmEaRMg4iLRgDxFZFyWHrIfW10wBPcjsMgf1hSi0xWsgxJHiqjNxytATyZ4h2HiHtPVWOqDjzvMHj6Gq+U6La9cX/Q64gOGI9ZwQph6mAAYKVaCiBJYl1PCOAicIEXoUcuDwSZN1OEnWUytBwmIFMREJCc48Y8YY+o/UCkCg6OwF07E4IJrbGBLLAGcNAv4hUAQXEkJjhZ3AiMK0hSEwWQEn2jS/O4GtFNIIWgJSzBKcREEe7IPViQc4Gj42ZZCtr2+gOanTjZdMZkGTBPhNBjPvATFgTcxqsFcIyZj0SwuQWPqxN8UJgIHewlYVmH9Yro3kS81Wj7yWK73VzSMKV4gOfbc0BB6DWKNHjT7t3HlbWr1D80NjctONVI2QCfRh5U64plwswYWHUgAp7F7mTSSBXmDb2PsPcxmUayE4OVxj6CGG2zYlLxkDgEcAPKAIigPIf8hivHU2rnBPyBJOmCwZOjFbVwIxhAN0lhMuIHJIF1SBWFASwQVShk2QlBRmGnS1Gr4r0/osAJB2nbAaiJ0ka7uFh0pLXp5p/JRalEmkKzkTMGzEnIRcQt2IUV4Bvt8EPkci4TYkPTPhwgH80EhgkCXCPRp3NW0lzeuEbWyNqNOyAATuTRy/IKN2B3t3G5pc5fXvzi089ZGKRUPfMqLQ+GRdrwzMwS8odIgaAIbqCpg8nQGnZOm5ZfOsMOdc/vv/bWNA6DnKFlRDyqAmsBpwHK5U++4QlSY9J/WdvgPC3KxkfagAYizNwF32cgCBDNoN03sA4CqEbBsULcSyUEpqFvQF2gnAmgogCZ0ApRbiQSVahjDjYBruulWP5AiyteT8tiN29ohiyEJ/CAbc3jgGZkmhb9GBrAmmvwARNsgxKmR5BmxEoTJzSsdm80iljcHpy/3J5AtN29BlkiDQQ0dg9OboPszj2gPznljXd//PxzL4hGoYlBnjdyGmk6pvGR93hATTw2yEBJ4oIhB9iDi0Bse0JrHCNxxKQ0cgQrgBj0iHmj7XpOXFvt93pZEevwNQHRomhLjCvADeYIIQCyDL9OauuSEv4DrOIcgAlLsjRbWyK4cQUwBDZrcmV8mIV9amFenAYcCwkfwRnIzJHEzrDc3TGVrXYYYhKZrLICs8TZfa/vDAvjNOJNIj8gALkPdpkYD4VMA+4Tq58/kbrCFvwX69LjzYuaXUjJbI3GZ5rXQE1GClKCBw6k1IWbWYH9HFXHTNHe77UT7vDP4qW1b33nGyxOcrGB6JEAK4aAlVkjRiA3og5IO8JBTJWdko8kv4i5Ah8gvml2rhWDgU6D4bDquCdv6CFyQCxFOe3hK9//EU0p5mZKB/YdTA8GFAVj0iVZihYGFEcmqRoCgpyGQAM3fMtd0Aq+CDGCCnghGIvFijAZuOE2zKpGVXpd7AXARKK/2RYq4UP0UKYhoiMVM6XMz6TGXoBLrx7COb1Bv4iJBb2Jh4jO1zKH42E77gjpYJgLGvgGYwPeUdcfjQaeBFED017eqm3vwHGgnVsgPzNVuLDc2dkt/yICeCAgcffBUQCVmNMb772Jf+EPsEliVboaIW4hAVlGLw+MI6pjzsKwut8X8BV7mQ/SGZ0JL2OB8K+Wp5g08iqGrsgf2PDooZP17e/+6PvvvbtVyJ8rFlPtzggzjjelI/whtepUPpvJpjLpufkZvFg7RmGGFY4dlohkuJ0oTHKTxOOIqRFuo7oCY7cg1FrfEm4D6FAAHIaUIwpCShkZSNdnz4WFiZ6NsSNZjut51JpRfNYb9OJxIx3qiPeE8EGYzF4PtC5+PsIWCYZVHsXavQHnD0a0TYz7kXl1df3akfofoMPAx9D/3viq03IFUwD8ik1ySwXFjcMmGBKfYL1FSpI3WTPGzAZWQADTMJCVAqIGcBThCVGb2kMBbeLNEmYg6IbHoPHINsTLH9AOz4NgIS6G6HDG80+c/L2jBy+dOfPuxcVzZ1tcCYrc3JRkLchfWu7OznWrcxUi0PhN2UwmbkZUSRZy2YDVytQhok9F3LGirCwt60QV4Uaw3LYt84HV5L54I6Oh6zoEE5OJMS/ES6SihB3F47yUwYtCl9ekMqm4TYdn2h6mS3lBPpQOiER/aKuMP/kwOdnwI88fSnSMtRS8R5zMobHa7r62dAN8bE0g6GAW3zZ61AprU5xFwncaoB3gcTIPRLIiGMdc1kpy04Sd9ClT5I1CiG2sIGyMCdDZwbyBL8jA8mNNBI4oTACg4XzIR74l3yySmlOQUWQEEdCWefSxR44ePLJ4cKnRJO3XGDjuiUcfa/XaMdv4+K9/vtcedtu1rUuXVpevxo1YoUjWCf3dxz9PJpMWygDV03FFVLAOO4ZoibnoxPF42HECCRVQfED/Hdofs/5Kup37ruN0Rz7Qj4XpQqE3GHSGg2QqiU/GQ0yTyWVZM6+bF5sH4TMWLIr6RTdggEI3BIOt4dhr9Z22E1K8OQiMxbXN9s2wnPyJvbWQUGuQ7q4B2Hl5FbIVGaUF0q7fdjavM04fM4KdEL4zctBW9KwG0FoDaQUFUcMHwEBsNYDM1DXyCI0J6HUcFGWAQOB5kGPi15jCxfCBuMGawYXyrblstpLIFRLpreFw9sAht7Gepg7suWdzUwdz7fbCu28+xWLrUlUtLbmbWwOSRp0W9iRTqdfqgTcE/6V81hv76QD5niZ15CQLrGWj+wt+jMPqWgLqUBPthcAFNU4pozemuXKv1WlDy6kUr3uMF3K5RqNV9t1YlBEiRnIiNhFiyFWoi9KmkdtG8+FVWBSNx/rDsWOlB4ij0d5SnTy9KJ7bBo9NYE4T7z30AdeVlQI43dLIxnFYMgYDysoZ5sSA07GC0F20zBbpr0tFmSsaQsQojhseE8DR/MvzILjBOvtBFaYOxVjiLonBl2HJxNApJatHI7NV34xtrblIbbofl+bpZ8i6tdKTT4ppFEbx4w/Hq7MsLBcLOJNbILyydLHfqju9dpcYc6/Hgn9/zPvfPXm5Szwt8TdRW3gxsXhkuqFJ7TfrOwcuizYH200HL5aaBgraeVk2fgHdoctADTWGzufpoB4GUe6ROxxJhMz3I4cX6dFhiNIRM9HqjVe35JDbBw8Kw9w+JvvQAVyaW8EKdxkW/jpGAW9BwWaQVdrkH+hnFgZCGIhFJLSYzNj4wgKyAYFD1MAdCcMgWyIcoHUDWhqjhUgvf1LVQrCIrkNpDE1OJz+E/DXtWjO2sTIfhnHY5bUfqo2Nlfd/EqVTpe6zYorwTPh6RNxmpkUsxCvyFEcvZI0g63SrZ855KysXT79zZXERAyUe+AirdCLF0k+Ymk6FlNg4dPMn3y063KRn8KUrinZVBVKcMdVsdXvVAW+HDDIQBaE9nUaFYqBDxwNn9M0NDROMdQZOo9MbBsbAiFbrjUs3C5nr0FzreFD6nQbGEmMvDrlxBkiSlfKIUfyV7qBPVFre4AEwQ7rK+TTxEFNEZAhErWWl7AEHsB4ySruUoETsd0fzgWZJspsILKCJzynVifxqympukq5Uq3diU+Vcv9vNlgve0vnGuz/u9Luzhx5Q3/uG4h32Jx+RTjLCSboYSWBDJYCppqos9lIHn7fHmw+/+Zrxja+yqoouhO16s9/uDFtj0pTDfoR6FvOSRE7WpXCip6mvyMqDjJS5FAslQtMkaXAdKE9jvYE8HS8kQHgG9I3GuiB4Zzp+0Hd8VEwvMoZGbLvZvQGwm7c62h69s66V2bOKjlDAdaF/8wUU/YssvAAq0iXsx2sRMRVsK8QFi1lIGhlidGovjE7LiB2UAZgAvlhBMAGPC7qwVcAKzj0DZYBbBJ5gC4wKbVyJMuciMFOGdJy4WlkEGgBIJbM1d3ZqTrKDV5bHp896r7+S/cxvqRefly4TQghdZVIaNK0Xy8jlVWJKHT764Esvq499TJy4zQ115vTqGz/aXl+mmLQJe7EM7+rq6fOXmroPDVES4hoED44cOTo3V65UK7yUl9UovDxPhKS8+xZ/EycmGlPJhgeHtOLVDRFH2H5otUbO+1evQULf/tavYkHMsTsNwY1+5WT/Dkd0CU7yE/K/Q61KnzcHJx0nZpsFbEDsUXELkUJSsAIstHzgTwxBeSPwxJ/ElSdCAHPoMCpPT2aGck+JKQ20h0mEFaiBLVvx9kiAgeJCwOJN4lcrM4viRWNzr3YbJ9bEFvjONy1i3fP7RCdPFbQ9ra2sa8/AlCbuSF6KUKZkXdS+Zz60r3bwCm9cD2oWXtjYK6Zsx/b2zfKiyoSZsvKlDK+b3b9vbqZaRFGIqYZXIXFcQlvYDgSu6GRFRwA4INYbub0R5UAlQstbl5Zqd4DdZLf0dBBC33vwQx+RsfePshf1YFGTiPoJ/R7eQG/Yz6XSsAKvb6Ktpu2aIk5QVpgKYj5TbMN6vqLcceKIsVO0ApgG9phFADsQ9EzMaoJCsLWkQbTfIL40iVbtT8ExMIQV9yiKGbgWKWjeGkiGtjIlVUa0bvzJBfHDP/kZdfiEGjZFkYhZASV1lNdXcxUtXUdCftiUpJI8/9zp07X1raSd6tWaBXKSC1F1errea/m+UyhO71uYm5ueEjYFf0BNUq0ZHUXHeIp7YQ9mNrTzEXS8DqtekrmxZdY7d6JdeVxGt3NH6E8OcPRE74Ql9luEQFmcSnSaZpp0UO4BNUWSksp1pJNv+ZoVxDqGJZA5SBW0q+YMgb7246EmiQ1gz4IhdBqqm+Ad5pA2XkU/I6ZAJEYUL0HIi0QqFCWI5LBg0w67OP5dO/LjhSmJNfHyjDOX1EZN9Add6/btF/575GF1aEG1tqU6iGMoymssySqaSxfCcxdDJ1xbWusvNtPxxMz0XC6ecfzBRnvT9elLYqZymWqlUCZJ6TmWEAQWBJFRsjQoA+SPlNcTBSBrRtB8DB7wUOLpyE62ev2LVwHg3QZm0z0HVKml9h6agLPJWyR4IS4KaXm5ASZmZmYwfwkNsWQS54YgkQE5Y/WTk8G05wyioRKqxLijAB+iZop431RQ6WQT00EhI6AAN5IHZLANxaFX2eCBaeaDy0PUg8pD4tsUDnaGmVRLOIkTQT+IJCqAhsd22iLbzNUweUOp0jl3XjBNcIzoUO6UWrqyfXml0eqRJm3We0U7E4sbw3qz5/baTnvgsb7D4oXRlenCvtm5JJQh8Qzc4p3JEFhFXeEMEC3ClfP8LmFnI9FzPDOZonH9ZrN15Q72z3Wg38UKun4MG+DgTkwgOoB3pIRek/Ti9vY2wOStoLx8aY4WG1SYAnQhZHGN5TKQM2oZBw0/nrQX5jOqEpUrugHBij2KdaSFLFoXiEtGE+KXSL2WVPylDST4o8DiloSij4So5Tl5nQJw327wkghuyOoM0cxj19/YxDRO0sW2UEJLJzBoHCJXmOhRn4LN/kBe+xUbg75yrtAPnF63MRz3WWfIordsNjszV61M0YY1z3xBuzwFVjXEhP8o2ovcizciI0sY2Ipjh3pBhFeBId8dOST6dwPxZ9yGCfaUVjAkg9xFsmc5W9thPNFFGGMLbTe2qsVihh5avhfCB0BFHC4SJgT9deAQyAqZU8/LBZBFEDtmkkYGxhLPRqYexHAAmJOPznGCQsiQhwcksAW3J+PGnh5RgUjNz4EqenxxfErCloaVR/yjZqQRHQkKYRq2/dD0gkIy50nQIeYYBv3NcWd4BxAuFDV2gRHQ8aJYzZVYA13Mch+aRQoKxKTmQeA8ronzBQdESFrH92hS2IcLIoNWGoPIXm00TvGmvzsPbZnsIVXudMadrFVZH8AbEEM7kUk5SJdud5jNjTCKTCPHa9+Hw97s9LQVswmys6ZS8cJWafQIaLS7y/MAWdalaktO4wABMroGVhgFdoHMQQNqg9nKFbTZihwQtYEW0XUPKR3vw6ajLBezZbQgsWg+SJvKnPAZIo63J3Ad6j5BrU61x4yIrkfuyGGpVTwZazs9zIixRV4jzuLF8ky5OFXCW+aFnHEb+nFBlXZisHRgRPhYMjykFlihhQ3aGXn1Dk41/JTquP5qrX3lrvKf57mTVLkTDsBZKa4aNzvPrA8gwIUpQfJOhE2jySRrlE3LW3VDn7JKcdMIKiKPkEhQOlE8vjBRJpqFXC5GJ8+DwOEHhBUXAsp8UCyAGC5hP/IKMcHgHgz5VcsoiBNuoGckPjNINVl9hx+FdKKdkM69asXg1pteu+OztEohFcm2w5VcVEqGWNeP9KIpGz3x3JhjphLT+yqpXDqumxWmeICESVhPTDjIhblBEJj/OCJcudeji1691cRYJJpqxlMDYJ9Qq63Ouat3I395hDuIlMlPe34jjkv5VIN8za4hb82la6I79GkU0U8P0XmbLOyhV4Pv9pL2/tn5Tqcrzhjp7QmKOBkgYhcBWICOVKWUnIEggrtxCMCBWMf8qTUwSWZsPlJRMAHHoxsYEs/gBKQZwkp71Pw17ghD4DmDUZY3AFcWnJJyycbjlWycQr5anYx04GI7xQkHEbgNTUwXjGheOd0PU0Eunc1g7pRzkJWdTpKVYekDBISZg/2JcBKORDDyINhpjQZvVeg6I6Q/9OAHdqSVVssJ3lu8crEn0/z5DrIIzBBdp2nw2rXphGXaNFKUOslUpeR4DcmNrW8xw+78bHpzu4ZTBkhmMaIleEVsMUa0TqwUrCMRL7qWBnJGXQNxqEyoG22sTRfAKj4zsh4bSRuvPCSAAPrYSCK4OAzap3iduDNyWRtXHAPHgDDonCV/SZ35ITdpFfAETEmtjcO4QfSQmFvHG9BpmVRkPEe6PmulZe1nMpPAmIwZUpbCKhROQMbFRAQRe9CRq8HQa7U36rU+d+RlwolMszGsEwIaR6eX119dZt4//wHFskiYt6/Wdgk3FslD/wHtyehYzGtV0skexA1ksLa7vSFrWbfqW/lMNtG3iXllslne50TyBK2HE4gCkWnyjQnEN1AGARKrQATphBpszgBPoIQM+MRUleieDr6T+QL6RAWAAtaAXEQ7FhEJdzEPBQdyWQQE2hLfAmPXD+IR1sowcobhaExDyBTLfMTkSiKyKPoj7SINXzR/onR8tJvoYMItQv7ckWty6ub2ytYmWpf3KaB+KXyrd93mOHz74tXvnO7InH8BA2B5oUcjOC0urt0A2qRNokHfxLiVtOJJljMAV7r2o/8aDci3B05QnSMiRZGbRk8aZrvTp99ZnHwJA1UGWeHUADKAPtEBYuTpspSJBsbcRgQIYgA3bgHiBaFPKe4EZzviC08YyYBal2QDWMHMHWq1CfTJ9aN7eOWsVJXQaJMeEgavOeV+LLESUyBGfAdrUmtYKTdG+ZKM5JayBhftgtiBccUk4xVMjQtXltZqtUyhgg02cIKNFpGT5EZv9O3Tnfs07X8KBCHV4EJZDCmW3A4C6BRH7SpvjzNJfobuzNTc+uYmrWGgP8RDu4WM3w7JGw/6szPzDu84UHSUpxCBrB+iS0twlAskB+0DaIAL9Bngg18RTQRBIXAaqaDAJ9BHWFGpKUEh5JVUU0k8dcL0BrpdL7jE7EHKidWEBSUrKSX/BXtYJm4BhrxJ10GeRFZWxQiicbr8j9CRPkgR/r2ISmQLKlj7f3Iv7ku6f9Bf29pqjpwBNScG3JFu9FpOLNkaxU5dXvvFQX8C70azi2V/EwLwaewYGTsIyrYlHWDMzcxu1zZpWAVxU5XDzAO/WSrxlgMnbg2QCYVUBnuCCDrrvElGGSAFHcJxEBwbkBgQQe6LT0ARHMwB8/GrYEkOgBLBjcwD75ecFEYUdK8RJtIJQxZQIpQQKVoiIT0ClyIH8kQEy5FKFP0AeQ6iJkA0px9QFA3EBe/8H5Pkdswbk+rHkZTFP7LKHFLAjW/WB4N6D2MnNNN5okLb9NN2o8bY++GpxR9d/kXDX20M1WwwTvGIE4QAAiqQsBUytvQGgIMxMHh7WblYVeF2CInrsiW4gWVZ6xvr5KgJq0QmUVwBJotGWAAEsXuNGiZHTGpYeFpS29rWFQGg/V6BuK55giHgDEEY1qeW05ibAAbtzTeQYlBlhAvm8CEsgftC0moS/UbQBPxie6bUtwQULcdcSYTh9BIC5QWEBE4C8mLScgfGIbvCmiL4hjoPJgLiur16mxSle2FlPbCT6VwGw7/NQrwo/tbFpW+e+0WJ/h1QX/uXyRyYK5zfuHY7i9e7paSueCIeSMgzVatg0bO42u02RgMKCwSeqWTAWz8I2VLwhHDIoq+DTCrM0F+LxKBNcE0yMFSDEG/RJpDQOJfVWacJc/CTkC/gpmwdwwpw69oTsIKMYj/MwQBVyHY2YSCYhqQ0M0AjYRiAWmccG4/i1hgysSg5oZYANWuaKXmfpywnkkpdeAKta9IG0gQl1FDC3WQ82t3uJm+VHTmbjU62im8Q74xghdjZ5c3vvlO/BUy/wD9J+qVYe85KTBkwueTAZI2YRJ3jBAapxeYheB8f7rwKepAmLi2RolQm7PPm7m6/W2hNV6bcvDs0h712Z3Z2IWmzMj8yc5pUgRSSBNiJTtbJAIEdBK6LebgNmhlscQyQAhlaamjkcRiZHGhBB/JCauJ0eaRE+rTfxHWYCq25uDidTYXy6ToCXsEVc8aSIOCNwpICp3RSbCHUA3Vxwh6B3+p0Nlvt9XY3kJLIbL3jtvrB5Vr7u29ttTUsfjlflPQRAJ2p5HoNQYEl6Wy4lKYFdJKLeI00bhkrVslQxDIpLHPWN/gUT2NPUgUDHCiuCtx+il7xYlOH6WRi1OtgSLFqJYW+g3jRmaw8llAXalZrBYGaUKX4n2AFKSR8gMmPiEI0o8mJYOtVAhwlrICAwk6AC7RbgC6CCogdoXFhHUwaNATaxcNhM23CVD79DKQhPIVE2KXcgpJ08M+T8VokXkaB5OT9RZ1uf6vVq/dHsVSmTc+00XCzPTizuLX5ywH8zl2Qznpu1wwheY89forUAEjYmJVowq8oY2K3ot/iNnFH6VIhucuIaDn7t7YxF2tHD4fTU7PAAdlL/0vKxCTgjh0JU7FGFygntPHHUiTwhnUETLkRYgT6JZ4MuYprDTShV6xhdAPbOHFUWrAHHgJJuuaOMl4+SCz2gxIO45t8DvIG0w1qQU+Ilc9ZXA87CATQGJswq9RH9IiaOhQ8kCWmUQx98gokaZtr9Vp3dGl9+F5jBzC/rH9J1gMbnCi0HxRI31CeC5OBGtGxSXDLJCWZEOwEqbETsdqBdio8J2kbLLeYHyLYkclUCF9daQyHvGB0cPzoUQKWEi0aDnIklXB9IXwEDhwwoXqIHdRxHZI5CHooGzTyJ3PgSEAFSFmCAUFP5D4Tg97lOKhen4ilRNYMjww0kNXhH8QMXIV7y0JP+BVhJm4O1EKAArxZHrbQ2KUisd6Qd0miE/AwRwH1WVaj0zm/1LmwdaMl7C8L+Dv3MQzKMtN1OqhBmZAatCSVr24qxRoTqWmF4nlENuEEz3W0lmBVEsklEEE3/DbmKUJp6eqg3hwQPq5UitUiei1FnxyWfNiIBIqQsXCIr1IXDaxFwujMDFwl1j15G22JYfOIohAzXqQT0oYDtHmpVQjbnMX6lknVBZIH05ZvrbS5ThA5LpFC4E5eV9KqY4whECrvxItGvEKz1601WiyYKVemI9vA4tis1c5cHr1Bd6IdaPzy/6VdBBZ8uYABLxUQAAoXnueWRn7IoDixnlgsYabRcKABnxMVQDA0mU2DCYosq+VqpWLwUgIOxmxd39zGLMS3rVYrpPVRkpRVUv8co+yAHnvwC+jlNnwYQA36RSgBWWERlAS8qP0DQYwWLNwUDMmR+jTAyQZoQD2AIfxnlIpwlT/ihcBjjxYCqCdKGUhjRfQAw/JB8IejLmvgKHr1IuLtzYGDCKLD2Pkl9TY1lb98qO+64/pmo1ygcLJIXMfCKI9S8gYH6ujTogB4VrqXocyAQsjCEkSLwRPgevEjtEn/DgIRiWS1WCaXibprG0avh7ylHJl6S6NASDKZIcBsxyAybVOCAJgA/YwOENMIsIJZ4Cs5EqkfE0Ektvs10uYA/oTY2c824AbuQvjaN2Zi8mF9uU8pFcvXHfgAZGC/ESrC5/b91nDMhDr9vknnpGyOcqu1euf9c833a2ppFyB+vpv6qXYFGe58dcqjEDN56pSSGatSSqbjacygVCqFtUPhEvKelXsY0ZaRHPadZMJikRpraCjVsnke8lC8EpQTKGLCH6WiltcBjkb9YX91bb3V61XKpX0zCyn8siEVUQhvuiZmNaUjmRHl2OWkyZDZOmyDnBflqWU9yGAbEmBIWFtbsUL+3AlU8rP2FTgFBpHiHvRVHOtTONflvVvBwA2QQWQTMXJ4fTKiqSARujhce2mp+eOavHvpFzGYnaYmVeKFbcz3XoODISwEfi5fgv1twro0pIU0C8WKkD8LC+UAwzaSgSftLClupWaLQAtCidU7LISG3jE3eCtmMpNhbRMkzkK//mDUaHfX1zfpUFLK8+LXTL0ZTJdHBeo7afOAUY+Nj2WLVzUhbVb3cVcwITgA7toiYnKQv/CfsKD4aHAAf8rvYmKKgJffyBcYVNOP6QePAcUrMgPe+Mw7EqgKJb+IIWfRBtiwE1v1+uLF9jn9wlquvTsMcC9A3e/vgAs4Mq10OlYaRK17nYfuJWSFqy6Ctdbq8fqtXCKbz2Qw+XmXfcbK4poJFxixbDYzxOgOvVwuI5WjRMCsZITDD2VHdL4k0kI+M7TixWQ2s11vdnoUxTrLKyutdGt6erqcL2xs1yLKQggZTFZbhmSjKPAZSnGKIJq5AFwIn22BrOADKLNTcIBQ0whABLGBjEFt8M0JCEXq16hG94E4VD9uD0Z8U1mOL0acLZ3K9geDpaUr5874TZhHShsFiYjFS/LXz3PwQGkd3jGCqFQwWx0h8bsMnpO5YLBQgiVWELDGfvOxONmCAQh6UZMir1MSt4Bm9rx4F08NHw2HknXLmHm87rXXRczyknScVSOfzefzdrVaXVld29zYXt/obm+P0dKlMv0asmgYgJLz/BSuLICWxiDMQVcZEcln+gJx8UeE9nEFgDvQFxWt0QNW5ADEu96P386EWY0gMTgPI58XvrcGTr076rmkyyiukFx0MB68897Wu3QR1w21pvi2FS+a3VMKoYZ+FrXME5SKVopqJIc2N+npUW/7XpcjbkIlXJIVnDRTtyKrmMti5hMURauRfZHIqMR7gZZE1h3kq1AV4nkiBKA8inksycyCHDw2FkoERiKd2k9ZA/Q9GDaafq3hdwZ1MMV7YQ/s21fJFYq5XClGiI/uninpcIz/hTuNxUv4SDSo2MJaUetsDOYTaIAhMJkwQ3HEQQB/UjtC8Qjrpx0atA9a/VFHamndMWih0ha32FcXL629uy5mflX3kyvosjrIske9iWD11nEvcN16/C1/Qyn4UcW8naomxqPx/rnS9tXW5BgtWG85XP6khp5yJDwTazzwibwRMpHYIS108YAC0kS4Y3EiEchm1s9EQ71oRmBN8iBETLU9Xu5dJNqO9qFCn0SJGDQjut4kTjxwrFQu09rq0uUrLL+Rol+iZEasnmlV84XqqDrlurlMhky5xNfwmQgw4NYyoGrsXuEItIKOFE1cORFKxIjwB7GdPF6ELUtiglifUiqfQkK/M/bxsEjtghheEbi6sf2VdbleUqnH82qlK1cExCQg8rQdDAQNDKQ2suznMgR/Wn8VS8V20CwWcgup1pr2c7S02eMmej8mjLKqxQRxLWLRI6ePWqhM84qfMfls1p+gn0XSBibvHKCgHEuFhA4Rlnw2JS9j6jaidJb3jmWzBdMkPc4k5P0t1CVMGRXiMnRZ2NjaHA3poRFu1JrpARAjTmYgN3jPtMim8dAkUEE9L+7YJO4GjzEpCF/IH/2sjSL+xASi2sWlfY+DqYOTRTO87thD5ozIyJOptlLd0eDqSu3shebbk8p8oJ+SlSV9Xd9LQhxFQPkL2JwMxM51BGic7wGm+99VKadZdEhUrVIqYinOVDNrKzKPO6EZsxwQEQWzEOKFXNFz3FKpAgvwhpNMuooOoCYF2YKpgyAKDFrAZHgLNTBOp1Jj18llM9hF3W6H/WSVCAoTnaECZ8zp2N6mVa1UcYbQGc1WC17DPx0O3JUR5X6NYr6Iy1YellgzVCkUsmRLiFuEGRE1QviIPWJ2UNTECdBCCfUAMwsDmr4RYWiSUekFEUVUGD99NxiMexcur33nLM2ybgwCSBQxIR+AdVYHO+CFHfjLzuHOsRgAoOdO1Lpz1N3+xSUq5TKIlUKhlMrmFubmz65chAf2vCZYIZQrVSaYQQk7U6t1eOSDU/Os/0E1A65RzE0lKZD2eLcnkqlQKA/7QzrL+YHXaTXzhSyVvGKomgYGOLYfDXB4DWKA+ReoATH8QgnljQkEXpkCtTfdwYBbEIkdUP/UqF1eruUzLPTLTVerU4xSaW5mmpoAAT2+Hi4bE4cDkFGUYYmviGTilXK0QQlGUZzm78PRsNHrXVrduLpRv7o2XKup03DszaNJ6Rs9z7SRXgQBrGveBREuiYzCKGLcSVLrH+/rS1YJTIv5QDPW6epUNpOeTl+8OhS83j5AQCKexoqjvysrpot0psMqZX2aLFIibdcf8GYHoumE6SBsSjbo2YJdivtlJwkIZRzXg8vwy4iGEaMwnTF0GbfDlGkTDiI4M+h0bfzhRKpULIMSomzgg7di4VuB317fITW7saUuXe6xgjpuL9ERrVJSU1OFXCYLIxbzpSQdpMT7xibiLK5gjhA4I2+71d1od1e2motr22cX5fWeWztAvP05MUWgQaibAWfAaVQhXRc7sDMImAy44afWwzJJPQdWI0tZA15SipfgJaeqhbXlDte/fsedu8k6FVofQZ297tAa0BuFvBX0S6PrQlEYwAuR3XOzU6g72vBQt8I6XvogAXFeepXLF6knw2Ow4gmfgJxhDEmYiGU4zKa9QoHQdVpSWbyIgwodOzldmc3lK43mNlWOGLgFi1qGTjbDwl6/1Yi6Temc1aZKqq4Wr3Ycr6OiNaQ9Ff+wCCSArMR/oP6NPMpmXa3X1VKoLkui8t4D6ENrOa0DJPUJXxGXwqDVp/I9uQgK4GcZcFICDc8rUuqdQwuzmWyRlV7Dfj/FyxhU53a8gq1MJkWDNWLkg27HYlnzTHm212nbSYvqvgLLrKVCx9+ub05XKyxaSSYLZN4paLESVPPIS9F5At4QgYgw4ijAPqELSZWz2xtzxSyVyATOsNzx1yis4qXdlLPj1imT6DVrECnpJK6GAJst+6VkQOkJodLWQK1uS2EcFaFUBbb1G/CgHbFeRIZcF923wqqgjcs9OR248EkjfCBSFJo+CGKfwB1ATDa49I7avvXi9/M3mM1oyYZ3LnZDQLJxkEpkkNtJtc7Fb5k6CKMGCE8y4j3BdsYivJmbn06zyx0GZnJlea1SLldL1a16DQEuaRIi63S8htRp/UUOjMpjYqbkjn1U7iAiR4vLJlpF3jpMxzBC2lJs51MvRegHzieEYVdyM/FYkpfXhPQJLMzAUS7dxlgJOB51Bh1ClW5clU0pkeaNCCtK3sN994H0mOEd22mpnTjXEITdPhA+Kf1hegQHyfBD7DIlPQDE9bF7+/rO+9+A1EmCFHjLje+urV6Znj3wwNFj283NXPo0S0xuH6yVNYOwkM3jZP3/hgIHfDql8r8AAAAASUVORK5CYII=", "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "display_image(progan(initial_vector)['default'][0])" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2024-03-09T13:17:26.371034Z", "iopub.status.busy": "2024-03-09T13:17:26.370455Z", "iopub.status.idle": "2024-03-09T13:18:25.377906Z", "shell.execute_reply": "2024-03-09T13:18:25.377015Z" }, "id": "q_4Z7tnyg-ZY" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] }, { "name": "stdout", "output_type": "stream", "text": [ "." ] } ], "source": [ "def find_closest_latent_vector(initial_vector, num_optimization_steps,\n", " steps_per_image):\n", " images = []\n", " losses = []\n", "\n", " vector = tf.Variable(initial_vector) \n", " optimizer = tf.optimizers.Adam(learning_rate=0.01)\n", " loss_fn = tf.losses.MeanAbsoluteError(reduction=\"sum\")\n", "\n", " for step in range(num_optimization_steps):\n", " if (step % 100)==0:\n", " print()\n", " print('.', end='')\n", " with tf.GradientTape() as tape:\n", " image = progan(vector.read_value())['default'][0]\n", " if (step % steps_per_image) == 0:\n", " images.append(image.numpy())\n", " target_image_difference = loss_fn(image, target_image[:,:,:3])\n", " # The latent vectors were sampled from a normal distribution. We can get\n", " # more realistic images if we regularize the length of the latent vector to \n", " # the average length of vector from this distribution.\n", " regularizer = tf.abs(tf.norm(vector) - np.sqrt(latent_dim))\n", " \n", " loss = target_image_difference + regularizer\n", " losses.append(loss.numpy())\n", " grads = tape.gradient(loss, [vector])\n", " optimizer.apply_gradients(zip(grads, [vector]))\n", " \n", " return images, losses\n", "\n", "\n", "num_optimization_steps=200\n", "steps_per_image=5\n", "images, loss = find_closest_latent_vector(initial_vector, num_optimization_steps, steps_per_image)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2024-03-09T13:18:25.382443Z", "iopub.status.busy": "2024-03-09T13:18:25.381835Z", "iopub.status.idle": "2024-03-09T13:18:25.594981Z", "shell.execute_reply": "2024-03-09T13:18:25.594229Z" }, "id": "pRbeF2oSAcOB" }, "outputs": [ { "data": { "text/plain": [ "(0.0, 6696.3041717529295)" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGdCAYAAAAMm0nCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJHElEQVR4nO3deVhU1/0/8PcMMMM6g2wzICAoiOIuRpxoNIlUNNhmMWk0JlrjUi3aqGlibROztI1Wf6k1baNt04a0jVnsN2ZxLaJoVNxwBRRRUVCYYXNm2Lc5vz+QiRM3wIHLwPv1PPNE7jkzfK5XuO+ce+65MiGEABEREZEDkUtdABEREVFrMcAQERGRw2GAISIiIofDAENEREQOhwGGiIiIHA4DDBERETkcBhgiIiJyOAwwRERE5HCcpS6gvVgsFhQUFMDLywsymUzqcoiIiKgFhBAoLy9HUFAQ5PI7j7N02QBTUFCAkJAQqcsgIiKiNsjPz0dwcPAd27tsgPHy8gLQ9BegUqkkroaIiIhawmw2IyQkxHoev5MuG2CaLxupVCoGGCIiIgdzr+kfnMRLREREDocBhoiIiBwOAwwRERE5HAYYIiIicjgMMERERORwGGCIiIjI4TDAEBERkcNhgCEiIiKHwwBDREREDocBhoiIiBwOA0wrXSmtxM5MPa5er5K6FCIiom6LAaaV3vw6Ez/9dzpSs4ulLoWIiKjbYoBppYgATwDAhaIKiSshIiLqvhhgWqmPf1OAuVjMAENERCQVBphWah6BucgRGCIiIskwwLRSc4ApMNWgsrZB4mqIiIi6JwaYVvJ2V8DPUwGAl5GIiIikwgDTBr39OZGXiIhISgwwbcA7kYiIiKTFANMGEbwTiYiISFIMMG3AERgiIiJpMcC0QXOAuVJahfpGi8TVEBERdT8MMG0QqHaFu8IJDRaBK6WVUpdDRETU7TDAtIFMJrOuyMvLSERERB2PAaaNrCvyFnMEhoiIqKMxwLQRJ/ISERFJhwGmjcJ8PQCAc2CIiIgkwADTRsE93AAA14zVEldCRETU/TDAtFHPGwHGYK5FbUOjxNUQERF1LwwwbeTroYCrS9NfX6GxRuJqiIiIuhcGmDaSyWTo6d00CnP1Oi8jERERdaRWB5hr167h+eefh6+vL9zc3DBo0CAcO3bM2i6EwIoVKxAYGAg3NzfExcUhJyfH5jPKysowffp0qFQqeHt7Y/bs2aiosL2b5/Tp03jooYfg6uqKkJAQrF69uo272H6Ce7gDAK4ZqySuhIiIqHtpVYC5fv06Ro8eDRcXF2zfvh1ZWVl499130aNHD2uf1atX47333sOGDRtw+PBheHh4ID4+HjU1311mmT59OjIzM5GcnIwtW7Zg3759mDdvnrXdbDZjwoQJ6NWrF9LT07FmzRq8+eab+Nvf/maHXbaf5nkwHIEhIiLqYKIVli1bJsaMGXPHdovFIrRarVizZo11m9FoFEqlUnzyySdCCCGysrIEAHH06FFrn+3btwuZTCauXbsmhBDi/fffFz169BC1tbU23zsqKqrFtZpMJgFAmEymFr+ntf6yJ0f0WrZFLPn0RLt9DyIiou6kpefvVo3AfP311xgxYgSeeeYZBAQEYNiwYfj73/9ubc/NzYVer0dcXJx1m1qtRmxsLNLS0gAAaWlp8Pb2xogRI6x94uLiIJfLcfjwYWufsWPHQqFQWPvEx8cjOzsb169fv21ttbW1MJvNNq/2xjkwRERE0mhVgLl06RLWr1+PyMhI7Ny5EwsWLMDPf/5zfPTRRwAAvV4PANBoNDbv02g01ja9Xo+AgACbdmdnZ/j4+Nj0ud1n3Pw9vm/lypVQq9XWV0hISGt2rU2+mwPDAENERNSRWhVgLBYLhg8fjnfeeQfDhg3DvHnzMHfuXGzYsKG96mux5cuXw2QyWV/5+fnt/j2bF7MrNFWjvtHS7t+PiIiImrQqwAQGBiI6OtpmW//+/ZGXlwcA0Gq1AACDwWDTx2AwWNu0Wi2Kiops2hsaGlBWVmbT53afcfP3+D6lUgmVSmXzam/+nkoonOSwCEBv4lowREREHaVVAWb06NHIzs622Xb+/Hn06tULABAeHg6tVouUlBRru9lsxuHDh6HT6QAAOp0ORqMR6enp1j67d++GxWJBbGystc++fftQX19v7ZOcnIyoqCibO56kJpfLEOTtCoDzYIiIiDpSqwLMkiVLcOjQIbzzzju4cOECNm7ciL/97W9ITEwE0LS42+LFi/Hb3/4WX3/9Nc6cOYMZM2YgKCgITzzxBICmEZuJEydi7ty5OHLkCA4cOICFCxdi6tSpCAoKAgA899xzUCgUmD17NjIzM/HZZ59h3bp1WLp0qX333g44D4aIiKjjObem8wMPPIDNmzdj+fLlePvttxEeHo4//vGPmD59urXPq6++isrKSsybNw9GoxFjxozBjh074Orqau3z8ccfY+HChRg/fjzkcjmmTJmC9957z9quVqvxv//9D4mJiYiJiYGfnx9WrFhhs1ZMZ/HdnUhczI6IiKijyIQQQuoi2oPZbIZarYbJZGrX+TB/SsnBu8nn8UxMMNY8M6Tdvg8REVF30NLzN5+FdJ+4Gi8REVHHY4C5T5wDQ0RE1PEYYO5T8whMgbEajZYueTWOiIio02GAuU8aLyWc5TI0WASKyrkWDBERUUdggLlPzk5yaNVcC4aIiKgjMcDYQfMjBa4xwBAREXUIBhg76OndNJGXa8EQERF1DAYYO7COwPBOJCIiog7BAGMHwVwLhoiIqEMxwNhBT86BISIi6lAMMHYQcmMxu6vGali4FgwREVG7Y4CxA63aFXIZUNdgQUllrdTlEBERdXkMMHbg4iSHVsW1YIiIiDoKA4ydcB4MERFRx2GAsZPmhzpyBIaIiKj9McDYSU/v5rVguJgdERFRe2OAsROuBUNERNRxGGDshHNgiIiIOg4DjJ3cPAdGCK4FQ0RE1J4YYOwkUN10G3V1fSOuV9VLXA0REVHXxgBjJ64uTgjwUgIA8ss4kZeIiKg9McDYUZifBwDgUkmFxJUQERF1bQwwdtRX4wkAOG9ggCEiImpPDDB2FBngBQDIYYAhIiJqVwwwdhQZ0DQCc6GoXOJKiIiIujYGGDuK1DSNwFwpq0JNfaPE1RAREXVdDDB25OepgLe7C4QALhbzMhIREVF7YYCxI5lMdtNlJAYYIiKi9sIAY2fNl5HOGzgPhoiIqL0wwNhZ8wgM70QiIiJqPwwwdtZ8KzUvIREREbUfBhg7a17M7nJpJe9EIiIiaicMMHbm76WEytUZFgHkllRKXQ4REVGXxABjZzKZDH1vTOTN4WUkIiKidsEA0w4ib1xGOldolrgSIiKirokBph0MDvYGAJzMN0paBxERUVfFANMOhoV6AwBO5RvRaBHSFkNERNQFMcC0g8gAL3gonFBZ14gcPtiRiIjI7hhg2oGTXPbdZaQ8o6S1EBERdUUMMO2k+TLSCQYYIiIiu2OAaSfDQnsAAE7kX5e4EiIioq6HAaadDA3xBtC0Fkx5Tb20xRAREXUxDDDtxN9LiRAfNwgBnL5qkrocIiKiLoUBph0NDblxGSmPl5GIiIjsqVUB5s0334RMJrN59evXz9peU1ODxMRE+Pr6wtPTE1OmTIHBYLD5jLy8PCQkJMDd3R0BAQF45ZVX0NDQYNMnNTUVw4cPh1KpREREBJKSktq+hxIaduMy0nFO5CUiIrKrVo/ADBgwAIWFhdbX/v37rW1LlizBN998g02bNmHv3r0oKCjAU089ZW1vbGxEQkIC6urqcPDgQXz00UdISkrCihUrrH1yc3ORkJCARx55BCdPnsTixYsxZ84c7Ny58z53teONDPcBABzJLUNDo0XiaoiIiLoO51a/wdkZWq32lu0mkwn/+Mc/sHHjRjz66KMAgA8//BD9+/fHoUOHMGrUKPzvf/9DVlYWdu3aBY1Gg6FDh+I3v/kNli1bhjfffBMKhQIbNmxAeHg43n33XQBA//79sX//fqxduxbx8fH3ubsdKzpQBW93Fxir6nHqqhExvXykLomIiKhLaPUITE5ODoKCgtC7d29Mnz4deXl5AID09HTU19cjLi7O2rdfv34IDQ1FWloaACAtLQ2DBg2CRqOx9omPj4fZbEZmZqa1z82f0dyn+TPupLa2Fmaz2eYlNblchtF9/AAA+3NKJa6GiIio62hVgImNjUVSUhJ27NiB9evXIzc3Fw899BDKy8uh1+uhUCjg7e1t8x6NRgO9Xg8A0Ov1NuGlub257W59zGYzqqur71jbypUroVarra+QkJDW7Fq7GR3RFGAOXCiRuBIiIqKuo1WXkCZNmmT98+DBgxEbG4tevXrh888/h5ubm92La43ly5dj6dKl1q/NZnOnCDFjbgSY43nXUVnbAA9lq6/aERER0ffc123U3t7e6Nu3Ly5cuACtVou6ujoYjUabPgaDwTpnRqvV3nJXUvPX9+qjUqnuGpKUSiVUKpXNqzMI9XVHiI8bGiwCh3N5GYmIiMge7ivAVFRU4OLFiwgMDERMTAxcXFyQkpJibc/OzkZeXh50Oh0AQKfT4cyZMygqKrL2SU5OhkqlQnR0tLXPzZ/R3Kf5MxxR8ygM58EQERHZR6sCzC9+8Qvs3bsXly9fxsGDB/Hkk0/CyckJ06ZNg1qtxuzZs7F06VLs2bMH6enpmDVrFnQ6HUaNGgUAmDBhAqKjo/HCCy/g1KlT2LlzJ1577TUkJiZCqVQCAObPn49Lly7h1Vdfxblz5/D+++/j888/x5IlS+y/9x1kTIQ/AM6DISIispdWTci4evUqpk2bhtLSUvj7+2PMmDE4dOgQ/P2bTtBr166FXC7HlClTUFtbi/j4eLz//vvW9zs5OWHLli1YsGABdDodPDw8MHPmTLz99tvWPuHh4di6dSuWLFmCdevWITg4GB988IHD3UJ9swf7+EImA7IN5bh6vQrBPdylLomIiMihyYQQQuoi2oPZbIZarYbJZOoU82F+/Nc0HMktw2sJ/THnod5Sl0NERNQptfT8zWchdZDHBjZNUt6eoZe4EiIiIsfHANNBJg4MBACkX7kOvalG4mqIiIgcGwNMB9GqXRHTq+np1DszOQpDRER0PxhgOtCkG5eRtp0plLgSIiIix8YA04Em3ggwRy6Xobi8VuJqiIiIHBcDTAcK7uGOIcFqCAFsOV0gdTlEREQOiwGmgz0xrCcA4P+OX5W4EiIiIsfFANPBfjQkCM5yGTKumZGtL5e6HCIiIofEANPBfD2VeKRfAADgC47CEBERtQkDjASmDA8GAGw+cQ0NjRaJqyEiInI8DDASeLRfAHq4u6CovBb7+YBHIiKiVmOAkYDCWY7HhzZN5v3kSJ7E1RARETkeBhiJPBcbCgBIzjLgmrFa4mqIiIgcCwOMRPpqvKDr7QuLAD4+dEXqcoiIiBwKA4yEZj7YCwDw6dF81NQ3SlwNERGR42CAkVBcfw2C1K4oq6zD1tN8PhIREVFLMcBIyNlJjumjmkZh/nkgF0IIiSsiIiJyDAwwEntuZCjcFU7ILDBj97kiqcshIiJyCAwwEuvhocALuqZRmHUpORyFISIiagEGmE5g7kO94ebihNNXTUjNLpa6HCIiok6PAaYT8PNU4vlRTevC/JGjMERERPfEANNJzBvbB64ucpzKN2Jnpl7qcoiIiDo1BphOwt9LibkP9QYArNx+DrUNXBeGiIjoThhgOpH54/rA30uJK6VV+NdBrs5LRER0JwwwnYiH0hmvTIgCALy3OwelFbUSV0RERNQ5McB0MlNighEdqEJ5TQN+u/Ws1OUQERF1SgwwnYyTXIbfPTkQchmw+cQ17D5nkLokIiKiTocBphMaFtoDs8eEAwB+9UUGzDX1EldERETUuTDAdFJLfxCFMF936M01WLmNl5KIiIhuxgDTSbkpnPD7KYMBAJ8cyceBCyUSV0RERNR5MMB0YrG9ffHCjadV//KL06iqa5C4IiIios6BAaaTWzapH3p6uyG/rBprdmZLXQ4REVGnwADTyXkqnfHOU4MAAEkHL+PY5TKJKyIiIpIeA4wDGNfXH0/HBEMI4NX/O42aej5mgIiIujcGGAfxekI0/L2UuFRciXUpOVKXQ0REJCkGGAehdnfB754YCAD4696LvJRERETdGgOMA5kwQIsnh/WERQAvfXoSxqo6qUsiIiKSBAOMg/nNEwMR5uuOa8ZqvPrf0xBCSF0SERFRh2OAcTCeSmf8adpwuDjJ8L8sA/596IrUJREREXU4BhgHNChYjeWT+gMAfrvlLDILTBJXRERE1LEYYBzUrNFhiOsfgLpGCxZtPIHKWq7SS0RE3QcDjIOSyWRY8/QQaFWuuFRSiRVfZUpdEhERUYdhgHFgPTwUeG/aMMhlwP8dv4rNJ65KXRIREVGHYIBxcCPDffDz8ZEAgNc2ZyC3pFLiioiIiNrffQWYVatWQSaTYfHixdZtNTU1SExMhK+vLzw9PTFlyhQYDAab9+Xl5SEhIQHu7u4ICAjAK6+8goYG2zkcqampGD58OJRKJSIiIpCUlHQ/pXZpix6NRGy4DyrrGrHok+OobeCjBoiIqGtrc4A5evQo/vrXv2Lw4ME225csWYJvvvkGmzZtwt69e1FQUICnnnrK2t7Y2IiEhATU1dXh4MGD+Oijj5CUlIQVK1ZY++Tm5iIhIQGPPPIITp48icWLF2POnDnYuXNnW8vt0pzkMvxx6lB4u7sg45oZq3fwqdVERNTFiTYoLy8XkZGRIjk5WYwbN0689NJLQgghjEajcHFxEZs2bbL2PXv2rAAg0tLShBBCbNu2TcjlcqHX66191q9fL1QqlaitrRVCCPHqq6+KAQMG2HzPZ599VsTHx7e4RpPJJAAIk8nUll10SMmZetFr2RbRa9kWkXJWf+83EBERdTItPX+3aQQmMTERCQkJiIuLs9menp6O+vp6m+39+vVDaGgo0tLSAABpaWkYNGgQNBqNtU98fDzMZjMyMzOtfb7/2fHx8dbPuJ3a2lqYzWabV3cTF63BTx4MAwD8YtNpFJlrpC2IiIionbQ6wHz66ac4fvw4Vq5ceUubXq+HQqGAt7e3zXaNRgO9Xm/tc3N4aW5vbrtbH7PZjOrq6tvWtXLlSqjVausrJCSktbvWJSx/rB+iA1Uoq6zD8i/O8FEDRETUJbUqwOTn5+Oll17Cxx9/DFdX1/aqqU2WL18Ok8lkfeXn50tdkiSUzk5Y++xQKJzkSDlXhE3HeGs1ERF1Pa0KMOnp6SgqKsLw4cPh7OwMZ2dn7N27F++99x6cnZ2h0WhQV1cHo9Fo8z6DwQCtVgsA0Gq1t9yV1Pz1vfqoVCq4ubndtjalUgmVSmXz6q6itF5YOqEvAODtLVm4er1K4oqIiIjsq1UBZvz48Thz5gxOnjxpfY0YMQLTp0+3/tnFxQUpKSnW92RnZyMvLw86nQ4AoNPpcObMGRQVFVn7JCcnQ6VSITo62trn5s9o7tP8GXRvcx/qjeGh3qiobcCr/z0Ni4WXkoiIqOtwbk1nLy8vDBw40Gabh4cHfH19rdtnz56NpUuXwsfHByqVCosWLYJOp8OoUaMAABMmTEB0dDReeOEFrF69Gnq9Hq+99hoSExOhVCoBAPPnz8ef//xnvPrqq3jxxRexe/dufP7559i6das99rlbcJLL8O6Ph2LSun04eLEU/z50BTNvTPAlIiJydHZfiXft2rWYPHkypkyZgrFjx0Kr1eKLL76wtjs5OWHLli1wcnKCTqfD888/jxkzZuDtt9+29gkPD8fWrVuRnJyMIUOG4N1338UHH3yA+Ph4e5fbpYX7eVifWr1y+1lcKq6QuCIiIiL7kIkuepuK2WyGWq2GyWTq1vNhLBaBF/55GAculCKmVw9s+qkOcrlM6rKIiIhuq6Xnbz4LqYuTy2VY/fQQeCickH7lOj4+kid1SURERPeNAaYb6Onthl/ERwEAfr/9HPQmLnBHRESOjQGmm5ihC8PQkKa7kl7/KoML3BERkUNjgOkmnOQyrJoyCM5yGZKzDNiRoZe6JCIiojZjgOlG+mlVmD+uDwBgxdeZMFXXS1wRERFR2zDAdDMLH41Abz8PFJfXYtX2c1KXQ0RE1CYMMN2Mq4sT3nlqEADgkyN5OJJbJnFFRERErccA0w2N6u2LqQ80Pa37V5vPoK7BInFFRERErcMA0039clI/+HoocKGoAn//9pLU5RAREbUKA0w35e2uwOuTmx6e+V5KDq6UVkpcERERUcsxwHRjjw8NwpgIP9Q2WPDal1wbhoiIHAcDTDcmk8nwmycGQuEsx7c5Jfj6VIHUJREREbUIA0w3F+7ngUWPRAAAfrPlLExVXBuGiIg6PwYYwrxxvdHH3wMlFbX43bYsqcshIiK6JwYYgtLZCe88OQgyGfD5sav4/Gi+1CURERHdFQMMAQBie/tiSVxfAMBrX2bgZL5R2oKIiIjuggGGrBY+EoEfRGtQ12jBT/99DHmlVVKXREREdFsMMGQll8vwhx8PQWSAJwzmWkz7+yHklzHEEBFR58MAQza8XF3w8ZxY9PbzwDVjNab9/RByS7jIHRERdS4MMHSLAJUrNs4dhTBfd1y9Xo0f/Xk/UrOLpC6LiIjIigGGbkurdsXn83WI6dUD5TUNmJV0FBv2XuRqvURE1CkwwNAdBXi5YuPcWEwbGQIhgFXbz+GlT0+iuq5R6tKIiKibY4Chu2peI+Y3TwyEs1yGr08V4OkNB3HNWC11aURE1I0xwNA9yWQyvDCqFz6eEwtfDwUyC8z40Z/24/ClUqlLIyKibooBhlostrcvvl40BgN7qlBaWYfnPjiMtcnn0dBokbo0IiLqZhhgqFV6erth008fxJPDeqLRIrAuJQdPb0jjrdZERNShGGCo1dwUTlj77FCsmzoUXq7OOJlvxGPrvsXGw3m8S4mIiDoEAwy12eNDe2Ln4rHQ9fZFdX0jfrX5DOZ8dAzF5bVSl0ZERF0cAwzdlyBvN3w8Jxa/fqw/FE5ypJwrwsQ/7kNylkHq0oiIqAtjgKH7JpfLMHdsb3y9aDT6BzZN8J37r2NYs/McGi28pERERPbHAEN200+rwpeJD+LF0eEAgL/suYgXk47CVF0vcWVERNTVMMCQXSmdnbDih9FYN3UoXF3k2Hu+GE+vP8inWhMRkV0xwFC7eHxoT/x3/oPQqJTIKarAk+8fwNHLZVKXRUREXQQDDLWbgT3V+DJxNKIDVSipqMPUvx3CB99e4q3WRER03xhgqF0Fqt2wab4OPxoShEaLwG+3nsXcf6WjpIK3WhMRUdsxwFC781A6Y93UoXj78QFwcZJh11kD4tfuw46MQo7GEBFRmzDAUIeQyWSYoQvDV4lj0E/rhdLKOsz/z3HMSjqKS8UVUpdHREQOhgGGOlR0kApfLRyNnz3cBy5OMqRmFyP+j/uwavs5VNY2SF0eERE5CJnoomP4ZrMZarUaJpMJKpVK6nLoNi4VV+Ctb7Kw93wxAECrckXiI33wdEwI3BROEldHRERSaOn5mwGGJCWEwK6zRfjNlizk3VgrxsdDgZm6MMzQ9UIPD4XEFRIRUUdigGGAcSg19Y347Gg+Pth/Cfll1QAANxcnPB0TjOdH9UKU1kviComIqCMwwDDAOKSGRgu2Z+ixYe9FZBaYrdtHhvngp+N649F+AZDJZBJWSERE7YkBhgHGoQkhcPBiKf6ddgXJZw3Wh0JGB6qw8NEITByghVzOIENE1NUwwDDAdBkGcw0+PHAZ/067jMq6RgBAH38PLI7ri8mDAzkiQ0TUhTDAMMB0OcaqOnx44DI+PJALc03TLdcjw3yw4ofRGNhTLXF1RERkDy09f7dqHZj169dj8ODBUKlUUKlU0Ol02L59u7W9pqYGiYmJ8PX1haenJ6ZMmQKDwWDzGXl5eUhISIC7uzsCAgLwyiuvoKHBdv2P1NRUDB8+HEqlEhEREUhKSmpNmdRFebsrsOQHfXHgl49iSVxfuLk44cjlMvzoz/uxcttZVN8YnSEioq6vVQEmODgYq1atQnp6Oo4dO4ZHH30Ujz/+ODIzMwEAS5YswTfffINNmzZh7969KCgowFNPPWV9f2NjIxISElBXV4eDBw/io48+QlJSElasWGHtk5ubi4SEBDzyyCM4efIkFi9ejDlz5mDnzp122mVydF6uLngpLhIpL4/D5MGBsAjgr/suYdK6fTied13q8oiIqAPc9yUkHx8frFmzBk8//TT8/f2xceNGPP300wCAc+fOoX///khLS8OoUaOwfft2TJ48GQUFBdBoNACADRs2YNmyZSguLoZCocCyZcuwdetWZGRkWL/H1KlTYTQasWPHjhbXxUtI3ceuLANe+zIDenMNnOUyLJ3QF/PH9uEkXyIiB9Qul5Bu1tjYiE8//RSVlZXQ6XRIT09HfX094uLirH369euH0NBQpKWlAQDS0tIwaNAga3gBgPj4eJjNZusoTlpams1nNPdp/ow7qa2thdlstnlR9xAXrcH/lo7F5MGBaLAIrN6RjXn/PoaqOj6agIioq2p1gDlz5gw8PT2hVCoxf/58bN68GdHR0dDr9VAoFPD29rbpr9FooNfrAQB6vd4mvDS3N7fdrY/ZbEZ1dfUd61q5ciXUarX1FRIS0tpdIwemcnXBn6YNw++nDILSWY5dZ4sw9W+HUFReI3VpRETUDlodYKKionDy5EkcPnwYCxYswMyZM5GVldUetbXK8uXLYTKZrK/8/HypS6IOJpPJ8OwDodg4dxR6uLvg9FUTntmQBoOZIYaIqKtpdYBRKBSIiIhATEwMVq5ciSFDhmDdunXQarWoq6uD0Wi06W8wGKDVagEAWq32lruSmr++Vx+VSgU3N7c71qVUKq13RzW/qHuK6dUDm382GiE+brhSWoXpHxxGaUWt1GUREZEdtXkOTDOLxYLa2lrExMTAxcUFKSkp1rbs7Gzk5eVBp9MBAHQ6Hc6cOYOioiJrn+TkZKhUKkRHR1v73PwZzX2aP4OoJcL8PLBxzigEql1xoagCz//jCK5X1kldFhER2UmrAszy5cuxb98+XL58GWfOnMHy5cuRmpqK6dOnQ61WY/bs2Vi6dCn27NmD9PR0zJo1CzqdDqNGjQIATJgwAdHR0XjhhRdw6tQp7Ny5E6+99hoSExOhVCoBAPPnz8elS5fw6quv4ty5c3j//ffx+eefY8mSJfbfe+rSQnzc8fGcWPh5KnG20IypfzuE4nKOxBARdQWtCjBFRUWYMWMGoqKiMH78eBw9ehQ7d+7ED37wAwDA2rVrMXnyZEyZMgVjx46FVqvFF198YX2/k5MTtmzZAicnJ+h0Ojz//POYMWMG3n77bWuf8PBwbN26FcnJyRgyZAjeffddfPDBB4iPj7fTLlN30tvfE5/Oi0WAlxLZhnI8+7c0FJruPBmciIgcAx8lQN3C5ZJKPPf3Qygw1SBI7YqkF0eir8ZL6rKIiOh72n0dGCJHEubngc/n69Db3wMFpho8vf4gDl4skbosIiJqIwYY6jaCe7jj/+Y/iOGh3jDXNOD5Dw7j/+3MRn2jRerSiIiolXgJibqd6rpGrPgqA5vSrwIA+vh74JkRIYjrHwA3hTOc5TI4yWVwlsugdnOBTMZHEhARdZSWnr8ZYKjb2nq6EMu/OA1zzZ0fOeDl6oyBQWro+vhi2shQ+HspO7BCIqLuhwGGAYZawFRdj21nCrH5+DVkFJjQYBFovPH6PoWTHE8O64mlE/pCo3KVoFoioq6PAYYBhu6DEAJ1jRZcLKrEqatGfH4sHyfyjAAAT6UzfjGhL17QhcGJT7wmIrIrBhgGGLKz9Ctl+M2WsziZbwQADAv1xv97Zgj6+HtKWxgRURfC26iJ7Cymlw/+b8GD+M0TA+GldMaJPCMeW/ctPvj20m0vORERUfthgCFqBSe5DC+M6oWdS8bioUg/1DZY8NutZ/HsX9NwqbhC6vKIiLoNBhiiNgjydsO/XhyJlU8NgqfSGceuXEf8H/fhV5vPIL+sSuryiIi6PM6BIbpPV69X4VebM7DvfDEAQC4DHgjzQfwALcb29UMff0+uJUNE1EKcxMsAQx3s6OUyvJeSg29zbB9R4OuhwMhwH4wM98Go3r7op/VioCEiugMGGAYYkkh+WRX+l2XAriwDjuddR22D7aMKtCpXPNLPHz8cEoRR4b6Q81ZsIiIrBhgGGOoEahsakXHNhMO5ZTh8qQxHcstQXd9obQ9Su+LJ4T3x1PBg3o5NRAQGGAYY6pRq6htxJLcM2zMKseV0IcpveozBsFBv/HhECCYPDoSXq4uEVRIRSYcBhgGGOrma+kaknC3CF8evIvV8sXUtGTcXJzw2KBA/HhGMB8J8eImJiLoVBhgGGHIgxeW12HziKj47mo+LxZXW7UFqVyQMDsTkwUEYHKzm5F8i6vIYYBhgyAEJIXA8z4jPj+Zjy+kCVNZ9N18m1Mcdk2+Emf6BvJOJiLomBhgGGHJwNfWNSM0uwjenC7H7bJHN5N/e/h6YPDgIPxwciEiNl4RVEhHZFwMMAwx1IVV1DUg5W4QtpwuwJ7sYdTfdmt1P62UdmQnz85CwSiKi+8cAwwBDXVR5TT2SswzYcroQ3+YUo77xux/hgT1VmDw4CAmDAhHi4y5hlUREbcMAwwBD3YCpqh47M/X45nQBDl4stXkq9tAQb0weHIjHBgUiyNtNwiqJiFqOAYYBhrqZ0opabM/QY+vpQhzKLcXNP9kDe6rwcN8APBzlj6Eh3nB24nNciahzYoBhgKFurKi8BtvP6LHldAGOXr5u06ZydcZDkf4YF+WPh/v6I0DlKlGVRES3YoBhgCEC0BRm9p0vQWp2Eb7NKYGput6mPTpQhYej/DGurz+G9+oBF47OEJGEGGAYYIhu0dBowamrRuzNLkbq+WKcvmqyafdSOmNMpN+NQBMArZqjM0TUsRhgGGCI7qmkohb7zhcjNbsY+3KKYayyHZ3pp/W6cakpACPCODpDRO2PAYYBhqhVGi0Cp68akWodnTHaTAT2VDpjdIQvxt2YDMw7m4ioPTDAMMAQ3ZfSilrsv1DSNDpzvhillXU27X01nng4KgAP9/XHiDAfKJw5OkNE948BhgGGyG4sFoEz10xIzS7G3vNFOJlvxE1LzsBD4YSH+wXgsYGBeDjKHx5KZ+mKJSKHxgDDAEPUbq5X1uHbC013Nu07X4ySiu9GZ5TOcjwc5Y/HBgXi0X4B8HJ1kbBSInI0DDAMMEQdwmIROH3NhO0Zhdh+Ro+8siprm8JJjoci/TBpUCB+0F8DtTvDDBHdHQMMAwxRhxNCIKvQjO1n9NiWUYhLxZXWNme5DKMj/DBpoBYTBmjh46GQsFIi6qwYYBhgiCQlhEBOUQW2nWkamck2lFvbnOQyjOrtg8cGNT1FW+3GkRkiasIAwwBD1KlcLK7Ajgw9tp0pRGaB2bpd4SxH/AAtnokJxugIPzjJZRJWSURSY4BhgCHqtPJKq7AtoxBfnriGc/rvRmYC1a6YMjwYT8cEI8zPQ8IKiUgqDDAMMESdnhACGdfM2JSej69OFtg8p2lkmA+ejgnGY4MD4cnbsom6DQYYBhgih1JT34hdZw3YdOwqvs0ptq4z465wwqSBgXhmRDBGhvlAzktMRF0aAwwDDJHD0ptq8MWJq/jvsau4VPLdnUyhPu6YMjwYU2J6IriHu4QVElF7YYBhgCFyeEIIHM+7jv+mX8U3pwpRUdsAAJDJgAf7+OLpmGBMHBAIN4WTxJUSkb0wwDDAEHUp1XWN2JFZiE3HruLgxVLrdk+lMyYPbrrENDy0B2QyXmIicmQMMAwwRF3W1etV+L/0a/jv8Xzkl1Vbt/f288CUmGBMGR4MrdpVwgqJqK0YYBhgiLo8i0XgyOUybDp2FdvOFKK6vhEAIJcBoyP88MPBQYgfoOUjDIgcCAMMAwxRt1JR24BtpwuxKT0fRy9ft253cZJhbKQ/fjgkCHHRGt6STdTJtfT8LW/Nh65cuRIPPPAAvLy8EBAQgCeeeALZ2dk2fWpqapCYmAhfX194enpiypQpMBgMNn3y8vKQkJAAd3d3BAQE4JVXXkFDQ4NNn9TUVAwfPhxKpRIRERFISkpqTalE1M14Kp3x4wdCsGn+g9j7ysN4JT4K/bReqG8USDlXhMWfnUTMb5Kx4D/p2HamEDU3RmuIyDG1agRm4sSJmDp1Kh544AE0NDTgV7/6FTIyMpCVlQUPj6ZVMxcsWICtW7ciKSkJarUaCxcuhFwux4EDBwAAjY2NGDp0KLRaLdasWYPCwkLMmDEDc+fOxTvvvAMAyM3NxcCBAzF//nzMmTMHKSkpWLx4MbZu3Yr4+PgW1coRGCICgPOGcmw5VYBvThci96Zbsj0UTni0vwbxAzR4OCqAIzNEnUSHXEIqLi5GQEAA9u7di7Fjx8JkMsHf3x8bN27E008/DQA4d+4c+vfvj7S0NIwaNQrbt2/H5MmTUVBQAI1GAwDYsGEDli1bhuLiYigUCixbtgxbt25FRkaG9XtNnToVRqMRO3bssOtfABF1D0IIZBaY8c3pAmw5VYhrxu8m/yqc5Bgd4Yv4AVqM76+Bv5dSwkqJureWnr/v6385TCYTAMDHxwcAkJ6ejvr6esTFxVn79OvXD6GhodYAk5aWhkGDBlnDCwDEx8djwYIFyMzMxLBhw5CWlmbzGc19Fi9efMdaamtrUVtba/3abDbfsS8RdT8ymQwDe6oxsKcav5zYDyfyjdiZqcf/Mg3ILanEnuxi7Mkuhkx2BiN69cD4/ho8EhWAvhpP3ppN1Am1OcBYLBYsXrwYo0ePxsCBAwEAer0eCoUC3t7eNn01Gg30er21z83hpbm9ue1ufcxmM6qrq+Hm5nZLPStXrsRbb73V1t0hom5EJpNheGgPDA/tgV9O7IcLRRX4X5YBOzP1OH3VhKOXr+Po5etYtf0cAtWueDgqAI9E+WN0hB88eKmJqFNo809iYmIiMjIysH//fnvW02bLly/H0qVLrV+bzWaEhIRIWBEROQKZTIZIjRciNV5IfCQCBcZq7DprQGp2MQ5eLEGhqQafHMnDJ0fy4OIkw8hwHzwSFYCHowLQx9+DozNEEmlTgFm4cCG2bNmCffv2ITg42Lpdq9Wirq4ORqPRZhTGYDBAq9Va+xw5csTm85rvUrq5z/fvXDIYDFCpVLcdfQEApVIJpZLXrYno/gR5u2GGLgwzdGGoqW/EoUulSM0uxp7sIlwprcKBC6U4cKEUv916FsE93G6EGX/o+vjCXcHRGaKO0qqfNiEEFi1ahM2bNyM1NRXh4eE27TExMXBxcUFKSgqmTJkCAMjOzkZeXh50Oh0AQKfT4Xe/+x2KiooQEBAAAEhOToZKpUJ0dLS1z7Zt22w+Ozk52foZREQdwdXFCQ/fGG15EwOa5sqcK8Ke7CIcvlSGq9er8e9DV/DvQ1egcJJjZLgPHo7yx7i+/ogI4NwZovbUqruQfvazn2Hjxo346quvEBUVZd2uVqutIyMLFizAtm3bkJSUBJVKhUWLFgEADh48COC726iDgoKwevVq6PV6vPDCC5gzZ84tt1EnJibixRdfxO7du/Hzn/+ct1ETUadRVdeAtIul2H2uCHvPF+Pq9Wqb9p7ebhjbtynMjI7whZcrVwMmaol2uY36Tv838eGHH+InP/kJgKaF7F5++WV88sknqK2tRXx8PN5//33r5SEAuHLlChYsWIDU1FR4eHhg5syZWLVqFZydvxsQSk1NxZIlS5CVlYXg4GC8/vrr1u/REgwwRNRRhBC4VFKJ1Oxi7D1fjEOXSlHXYLG2O8tliOnVA+NujM5EB6o4OkN0B3yUAAMMEUmkuq4Rh3JLsfdGoLl5AT0A8PNU4qFIP4yJ8MNDkX4IUPHBk0TNGGAYYIiok7hSWom954uxN7sYBy+WWh862ayf1qspzPT1x8gwH7gpnCSqlEh6DDAMMETUCdU2NOL4FSO+zSnG/gslOHPNhJt/Cyuc5RgZ5oMxkU2jM/21KsjlvNxE3QcDDAMMETmAsso6HLhQgm9zivFtTtO6Mzfz81TcuNTkj4f6+iHAi5ebqGtjgGGAISIHI4TAxeLKptGZnBKkXSpFVZ3t5aYBQSqM6+uPsX39EdOrB1yc5BJVS9Q+GGAYYIjIwdU1WHA87zq+zSnGvvNNl5tu5ql0xoN9fDEuyh9jI/0R4uMuUaVE9sMAwwBDRF1MSUUtvs1pmgy8L6cEZZV1Nu0RAZ4Y3z8AP+ivwbDQHnDi3BlyQAwwDDBE1IVZLAKZBWbsPd+0kN7xPCMaLd/9OvfxUOCRqAD8IDoAD0X68yGU5DAYYBhgiKgbMVXXY+/5YqScNWDPuSKYaxqsbQonOXR9fBEXrUFc/wAEqm//TDmizoABhgGGiLqp+kYLjl4uQ8rZIuw6a8CV0iqb9gFBKsT11yCuvwYDe3JVYOpcGGAYYIiIbtzZVIHkrKYwczzvus26M1qVKx69MW9G18cXri5cRI+kxQDDAENEdIuSilrsOVeElLNF2JdTbHObtpuLEx6K9ENctAaP9guAn6dSwkqpu2KAYYAhIrqrmvpGHLpUil1nDdiVVQS9+btF9GQyYFiINyYO1GLSwEDeok0dhgGGAYaIqMWEaLqraddZA1LOFt2y5syAIBUmDdRi4sBARAR4SlQldQcMMAwwRERtpjfVIDlLj+0Zehy6VIqb7tBGZIAnJg0KxOTBgeir8ZKuSOqSGGAYYIiI7KK0oha7zhqwPUOPAxdKUN/43Wmjr8YTCYOCMHlIIPr4c2SG7h8DDAMMEZHdmarrkXLWgG1nCrHvfAnqGi3Wtv6BKkweHIiEQYEI8/OQsEpyZAwwDDBERO3KVF2P5CwDtp4uwLc5JWi46TrTwJ4q/HBwEJ4c3pNP0KZWYYBhgCEi6jDGqjrszNRjy+lCHLxYan2sgZNchvH9AjB1ZAjGRvrDmU/PpntggGGAISKSRGlFLXZk6vHF8WtIv3Ldul2rcsXUkSF4LjaUozJ0RwwwDDBERJLLMZTj06P5+OL4VVyvqgcAuDjJkDAoED8ZHY6hId7SFkidDgMMAwwRUadR29CIHRl6/Cvtis2ozNAQb8wf1xsTorWQy/lMJmKAYYAhIuqkTl81IungZWw5VWi9i6mPvwfmj+uDJ4b1hAvnyXRrDDAMMEREnVpxeS2SDubiX2lXUF7TAAAIUrti7tjemPpAKNwUfLBkd8QAwwBDROQQymvq8Z9DefjH/lyUVNQCAHw8FJj1YBhmPBgGtZuLxBVSR2KAYYAhInIoNfWN+G/6Vfx130Xkl1UDALxcnTHrwTC8OCYc3u4KiSukjsAAwwBDROSQGhot2HqmEH/efQE5RRUAAA+FE2Y8GIY5Y8Lh66mUuEJqTwwwDDBERA7NYhHYkanHn3ZfwNlCMwDAzcUJ02NDMW9sbwSouJZMV8QAwwBDRNQlCCGw62wR/rQ7B6evmgAACmc5nhsZip+O641AtZvEFZI9McAwwBARdSlCCOw9X4z3UnJwPM8IAFA4yfH0iGAsGNcHIT7u0hZIdsEAwwBDRNQlCSFw8GIp3kvJweHcMgCAs1yGiQO1mPlgGEb06gGZjIviOSoGGAYYIqIu70huGf60Owff5pRYt4X7eWDy4EAkDA5ElMaLYcbBMMAwwBARdRtZBWb8+9BlbD5xDTX1Fuv2iABPTB4ciMmDgxAR4ClhhdRSDDAMMERE3U5FbQNSzhrwzalC7DtfbH1UAQD003phQrQG4/trMKinms9e6qQYYBhgiIi6NXNNPZIzDdhyugDf5pSgwfLd6c7fS4lHowIwLsofD4T5wN+La8t0FgwwDDBERHSDsaoOu84WIeWsAfvOF6OyrtGmvbefBx4I88ED4T4YGuKN3n4eHKGRCAMMAwwREd1GbUMjjuSWIeVsEQ5dKkW2oRzfPxN6KZ0xsKcaQ0K8MTzUG7G9fflMpg7CAMMAQ0RELWCqqsexK2U4evk6jl0uQ0aByWYiMADIZcCQEG+MifDD6Ag/DA/tAYWzXKKKuzYGGAYYIiJqg4ZGC3KKKnAq34hTV404nFuGS8WVNn3cXJwQ29sHo/s0BZp+Wi9ecrITBhgGGCIispNrxmocuFBifZVU1Nm0+3gooOvji9F9/DAmwg+hvlwVuK0YYBhgiIioHVgsAtmGcuzPKcGBiyU4kluGqu9NCg7u4YbRffzwYIQvdL19+eDJVmCAYYAhIqIOUNdgwcl8Iw5cKMHBiyU4kWe0uWUbAHp6u2F4rx4YHuqN4aE90D9QxTk0d8AAwwBDREQSqKxtwJHLZTh4oQQHLpTinN6M7+UZKJ3lGBysxqCe3ogOUmFAkAoRAZ5wcWKoYYBhgCEiok6gorYBp/KNOH7lOo7nXceJfCOMVfW39FM4yRGp8cSAIBWiA1WI0qoQpfWCj4dCgqqlwwDDAENERJ2QEAKXSipxIs+IzAITsgrMyCo0o7ym4bb9/TyViNJ6oq/GC1EaL/TVeiEywBNerl1zXZp2CzD79u3DmjVrkJ6ejsLCQmzevBlPPPGEtV0IgTfeeAN///vfYTQaMXr0aKxfvx6RkZHWPmVlZVi0aBG++eYbyOVyTJkyBevWrYOn53cP2jp9+jQSExNx9OhR+Pv7Y9GiRXj11Vft/hdAREQkNSEErl6vRuaNMJNVYMZ5Qznyyqru+J6e3m6I0nohUuPZFGw0XogI8ISri1MHVm5/LT1/O7f2gysrKzFkyBC8+OKLeOqpp25pX716Nd577z189NFHCA8Px+uvv474+HhkZWXB1bVpFvb06dNRWFiI5ORk1NfXY9asWZg3bx42btxoLX7ChAmIi4vDhg0bcObMGbz44ovw9vbGvHnzWlsyERFRpyaTyRDi444QH3dMHKi1bq+sbcCFogpkG8pxXl/e9F9DOQzmWlwzVuOasRq7zxVZ+8tlQJivB/reGKmJ0nghSuuJMF8POHex+TX3dQlJJpPZjMAIIRAUFISXX34Zv/jFLwAAJpMJGo0GSUlJmDp1Ks6ePYvo6GgcPXoUI0aMAADs2LEDjz32GK5evYqgoCCsX78ev/71r6HX66FQNF37++Uvf4kvv/wS586da1FtHIEhIqKuylhVh/MG22CTrS+HqfrWuTVA0/ya3v4eiNJ6WS9FRWm90NPbrdMtwNduIzB3k5ubC71ej7i4OOs2tVqN2NhYpKWlYerUqUhLS4O3t7c1vABAXFwc5HI5Dh8+jCeffBJpaWkYO3asNbwAQHx8PH7/+9/j+vXr6NGjxy3fu7a2FrW1tdavzWazPXeNiIio0/B2V2BkuA9GhvtYtwkhUFxeaw0z5w3lyDZUIMdQjqq6RpzTl+Ocvtzmc9wVTojUeCFKc2OOzY1RG38vJWSyzhVsvs+uAUav1wMANBqNzXaNRmNt0+v1CAgIsC3C2Rk+Pj42fcLDw2/5jOa22wWYlStX4q233rLPjhARETkYmUyGAJUrAlSueCjS37rdYhG4Zqy+EWiaR2wqcLGoAlV1jU2PTMg32nyW2s0F4X4e6O3ngXA/D4Td+G+4nwc8lHaNDm3WOaqwg+XLl2Pp0qXWr81mM0JCQiSsiIiISHpy+Xfza8b3/26AoaHRgsulVU3BxjpiU47LJZUwVdfjZL4RJ78XbABAo1IizNcDvf098HRMCGJ63Tqo0BHsGmC02qaJRwaDAYGBgdbtBoMBQ4cOtfYpKiqyeV9DQwPKysqs79dqtTAYDDZ9mr9u7vN9SqUSSqXSLvtBRETU1Tk7yRER4ImIAE88Nui7c3ZNfSMuFVficmklcktsX2WVdTCYa2Ew1+Jwbhl0ffy6RoAJDw+HVqtFSkqKNbCYzWYcPnwYCxYsAADodDoYjUakp6cjJiYGALB7925YLBbExsZa+/z6179GfX09XFya7nNPTk5GVFTUbS8fERERkX24ujghOkiF6KBbJ9CaquqRW1qJ3JIK5BZXYkiwWoIKm7Q6wFRUVODChQvWr3Nzc3Hy5En4+PggNDQUixcvxm9/+1tERkZab6MOCgqy3qnUv39/TJw4EXPnzsWGDRtQX1+PhQsXYurUqQgKCgIAPPfcc3jrrbcwe/ZsLFu2DBkZGVi3bh3Wrl1rn70mIiKiVlO7u2CouzeGhnhLXQogWmnPnj0CwC2vmTNnCiGEsFgs4vXXXxcajUYolUoxfvx4kZ2dbfMZpaWlYtq0acLT01OoVCoxa9YsUV5ebtPn1KlTYsyYMUKpVIqePXuKVatWtapOk8kkAAiTydTaXSQiIiKJtPT8zUcJEBERUafR0vN311qWj4iIiLoFBhgiIiJyOAwwRERE5HAYYIiIiMjhMMAQERGRw2GAISIiIofDAENEREQOhwGGiIiIHA4DDBERETkcBhgiIiJyOAwwRERE5HAYYIiIiMjhMMAQERGRw2GAISIiIofDAENEREQOhwGGiIiIHA4DDBERETkcBhgiIiJyOAwwRERE5HAYYIiIiMjhMMAQERGRw2GAISIiIofDAENEREQOhwGGiIiIHA4DDBERETkcBhgiIiJyOAwwRERE5HAYYIiIiMjhMMAQERGRw2GAISIiIofDAENEREQOhwGGiIiIHA4DDBERETkcBhgiIiJyOAwwRERE5HAYYIiIiMjhMMAQERGRw2GAISIiIofDAENEREQOhwGGiIiIHA4DDBERETkcBhgiIiJyOAwwRERE5HAYYIiIiMjhdOoA85e//AVhYWFwdXVFbGwsjhw5InVJRERE1Al02gDz2WefYenSpXjjjTdw/PhxDBkyBPHx8SgqKpK6NCIiIpJYpw0wf/jDHzB37lzMmjUL0dHR2LBhA9zd3fHPf/5T6tKIiIhIYs5SF3A7dXV1SE9Px/Lly63b5HI54uLikJaWdtv31NbWora21vq1yWQCAJjN5vYtloiIiOym+bwthLhrv04ZYEpKStDY2AiNRmOzXaPR4Ny5c7d9z8qVK/HWW2/dsj0kJKRdaiQiIqL2U15eDrVafcf2Thlg2mL58uVYunSp9WuLxYKysjL4+vpCJpPZ7fuYzWaEhIQgPz8fKpXKbp/bmXAfHV9X3z+A+9gVdPX9A7iPbSGEQHl5OYKCgu7ar1MGGD8/Pzg5OcFgMNhsNxgM0Gq1t32PUqmEUqm02ebt7d1eJUKlUnXZf4zNuI+Or6vvH8B97Aq6+v4B3MfWutvIS7NOOYlXoVAgJiYGKSkp1m0WiwUpKSnQ6XQSVkZERESdQaccgQGApUuXYubMmRgxYgRGjhyJP/7xj6isrMSsWbOkLo2IiIgk1mkDzLPPPovi4mKsWLECer0eQ4cOxY4dO26Z2NvRlEol3njjjVsuV3Ul3EfH19X3D+A+dgVdff8A7mN7kol73adERERE1Ml0yjkwRERERHfDAENEREQOhwGGiIiIHA4DDBERETkcBphW+stf/oKwsDC4uroiNjYWR44ckbqkNlm5ciUeeOABeHl5ISAgAE888QSys7Nt+jz88MOQyWQ2r/nz50tUceu9+eabt9Tfr18/a3tNTQ0SExPh6+sLT09PTJky5ZbFEzu7sLCwW/ZRJpMhMTERgOMdw3379uGHP/whgoKCIJPJ8OWXX9q0CyGwYsUKBAYGws3NDXFxccjJybHpU1ZWhunTp0OlUsHb2xuzZ89GRUVFB+7F3d1tH+vr67Fs2TIMGjQIHh4eCAoKwowZM1BQUGDzGbc77qtWrergPbmzex3Hn/zkJ7fUP3HiRJs+nfk43mv/bvczKZPJsGbNGmufznwMW3J+aMnvz7y8PCQkJMDd3R0BAQF45ZVX0NDQYLc6GWBa4bPPPsPSpUvxxhtv4Pjx4xgyZAji4+NRVFQkdWmttnfvXiQmJuLQoUNITk5GfX09JkyYgMrKSpt+c+fORWFhofW1evVqiSpumwEDBtjUv3//fmvbkiVL8M0332DTpk3Yu3cvCgoK8NRTT0lYbesdPXrUZv+Sk5MBAM8884y1jyMdw8rKSgwZMgR/+ctfbtu+evVqvPfee9iwYQMOHz4MDw8PxMfHo6amxtpn+vTpyMzMRHJyMrZs2YJ9+/Zh3rx5HbUL93S3fayqqsLx48fx+uuv4/jx4/jiiy+QnZ2NH/3oR7f0ffvtt22O66JFizqi/Ba513EEgIkTJ9rU/8knn9i0d+bjeK/9u3m/CgsL8c9//hMymQxTpkyx6ddZj2FLzg/3+v3Z2NiIhIQE1NXV4eDBg/joo4+QlJSEFStW2K9QQS02cuRIkZiYaP26sbFRBAUFiZUrV0pYlX0UFRUJAGLv3r3WbePGjRMvvfSSdEXdpzfeeEMMGTLktm1Go1G4uLiITZs2WbedPXtWABBpaWkdVKH9vfTSS6JPnz7CYrEIIRz7GAIQmzdvtn5tsViEVqsVa9assW4zGo1CqVSKTz75RAghRFZWlgAgjh49au2zfft2IZPJxLVr1zqs9pb6/j7ezpEjRwQAceXKFeu2Xr16ibVr17ZvcXZyu32cOXOmePzxx+/4Hkc6ji05ho8//rh49NFHbbY50jH8/vmhJb8/t23bJuRyudDr9dY+69evFyqVStTW1tqlLo7AtFBdXR3S09MRFxdn3SaXyxEXF4e0tDQJK7MPk8kEAPDx8bHZ/vHHH8PPzw8DBw7E8uXLUVVVJUV5bZaTk4OgoCD07t0b06dPR15eHgAgPT0d9fX1NsezX79+CA0NddjjWVdXh//85z948cUXbR5g6ujHsFlubi70er3NMVOr1YiNjbUes7S0NHh7e2PEiBHWPnFxcZDL5Th8+HCH12wPJpMJMpnslme7rVq1Cr6+vhg2bBjWrFlj16H5jpCamoqAgABERUVhwYIFKC0ttbZ1peNoMBiwdetWzJ49+5Y2RzmG3z8/tOT3Z1paGgYNGmSz+Gx8fDzMZjMyMzPtUlenXYm3sykpKUFjY+MtKwFrNBqcO3dOoqrsw2KxYPHixRg9ejQGDhxo3f7cc8+hV69eCAoKwunTp7Fs2TJkZ2fjiy++kLDalouNjUVSUhKioqJQWFiIt956Cw899BAyMjKg1+uhUChuOSloNBro9XppCr5PX375JYxGI37yk59Ytzn6MbxZ83G53c9gc5ter0dAQIBNu7OzM3x8fBzyuNbU1GDZsmWYNm2azUPyfv7zn2P48OHw8fHBwYMHsXz5chQWFuIPf/iDhNW23MSJE/HUU08hPDwcFy9exK9+9StMmjQJaWlpcHJy6lLH8aOPPoKXl9ctl6cd5Rje7vzQkt+fer3+tj+rzW32wABDSExMREZGhs38EAA215sHDRqEwMBAjB8/HhcvXkSfPn06usxWmzRpkvXPgwcPRmxsLHr16oXPP/8cbm5uElbWPv7xj39g0qRJNo+gd/Rj2J3V19fjxz/+MYQQWL9+vU3b0qVLrX8ePHgwFAoFfvrTn2LlypUOsWT91KlTrX8eNGgQBg8ejD59+iA1NRXjx4+XsDL7++c//4np06fD1dXVZrujHMM7nR86A15CaiE/Pz84OTndMsvaYDBAq9VKVNX9W7hwIbZs2YI9e/YgODj4rn1jY2MBABcuXOiI0uzO29sbffv2xYULF6DValFXVwej0WjTx1GP55UrV7Br1y7MmTPnrv0c+Rg2H5e7/QxqtdpbJtU3NDSgrKzMoY5rc3i5cuUKkpOTbUZfbic2NhYNDQ24fPlyxxRoZ71794afn5/132VXOY7ffvstsrOz7/lzCXTOY3in80NLfn9qtdrb/qw2t9kDA0wLKRQKxMTEICUlxbrNYrEgJSUFOp1OwsraRgiBhQsXYvPmzdi9ezfCw8Pv+Z6TJ08CAAIDA9u5uvZRUVGBixcvIjAwEDExMXBxcbE5ntnZ2cjLy3PI4/nhhx8iICAACQkJd+3nyMcwPDwcWq3W5piZzWYcPnzYesx0Oh2MRiPS09OtfXbv3g2LxWINb51dc3jJycnBrl274Ovre8/3nDx5EnK5/JbLLo7i6tWrKC0ttf677ArHEWgaFY2JicGQIUPu2bczHcN7nR9a8vtTp9PhzJkzNkG0OYxHR0fbrVBqoU8//VQolUqRlJQksrKyxLx584S3t7fNLGtHsWDBAqFWq0VqaqooLCy0vqqqqoQQQly4cEG8/fbb4tixYyI3N1d89dVXonfv3mLs2LESV95yL7/8skhNTRW5ubniwIEDIi4uTvj5+YmioiIhhBDz588XoaGhYvfu3eLYsWNCp9MJnU4ncdWt19jYKEJDQ8WyZctstjviMSwvLxcnTpwQJ06cEADEH/7wB3HixAnrHTirVq0S3t7e4quvvhKnT58Wjz/+uAgPDxfV1dXWz5g4caIYNmyYOHz4sNi/f7+IjIwU06ZNk2qXbnG3fayrqxM/+tGPRHBwsDh58qTNz2bznRsHDx4Ua9euFSdPnhQXL14U//nPf4S/v7+YMWOGxHv2nbvtY3l5ufjFL34h0tLSRG5urti1a5cYPny4iIyMFDU1NdbP6MzH8V7/ToUQwmQyCXd3d7F+/fpb3t/Zj+G9zg9C3Pv3Z0NDgxg4cKCYMGGCOHnypNixY4fw9/cXy5cvt1udDDCt9Kc//UmEhoYKhUIhRo4cKQ4dOiR1SW0C4LavDz/8UAghRF5enhg7dqzw8fERSqVSREREiFdeeUWYTCZpC2+FZ599VgQGBgqFQiF69uwpnn32WXHhwgVre3V1tfjZz34mevToIdzd3cWTTz4pCgsLJay4bXbu3CkAiOzsbJvtjngM9+zZc9t/lzNnzhRCNN1K/frrrwuNRiOUSqUYP378LftdWloqpk2bJjw9PYVKpRKzZs0S5eXlEuzN7d1tH3Nzc+/4s7lnzx4hhBDp6ekiNjZWqNVq4erqKvr37y/eeecdm5O/1O62j1VVVWLChAnC399fuLi4iF69eom5c+fe8j+Cnfk43uvfqRBC/PWvfxVubm7CaDTe8v7OfgzvdX4QomW/Py9fviwmTZok3NzchJ+fn3j55ZdFfX293eqU3SiWiIiIyGFwDgwRERE5HAYYIiIicjgMMERERORwGGCIiIjI4TDAEBERkcNhgCEiIiKHwwBDREREDocBhoiIiBwOAwwRERE5HAYYIiIicjgMMERERORwGGCIiIjI4fx/9XnLcfGoCNoAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(loss)\n", "plt.ylim([0,max(plt.ylim())])" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { "iopub.execute_input": "2024-03-09T13:18:25.598959Z", "iopub.status.busy": "2024-03-09T13:18:25.598365Z", "iopub.status.idle": "2024-03-09T13:18:26.370149Z", "shell.execute_reply": "2024-03-09T13:18:26.369384Z" }, "id": "KnZkDy2FEsTt" }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "animate(np.stack(images))" ] }, { "cell_type": "markdown", "metadata": { "id": "GGKfuCdfPQKH" }, "source": [ "Compare the result to the target:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "execution": { "iopub.execute_input": "2024-03-09T13:18:26.382769Z", "iopub.status.busy": "2024-03-09T13:18:26.382058Z", "iopub.status.idle": "2024-03-09T13:18:26.395809Z", "shell.execute_reply": "2024-03-09T13:18:26.395107Z" }, "id": "TK1P5z3bNuIl" }, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACAAQADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD0u7tYbS3ZUVUBHOB1rwLxpr8OteKNOtYpP3FqxOQeF7sf/HRXuXjS8/s/wxqF3nmK3dh9cV8q6TIXvJpWG+R0ZVzzyR1r4LhnDc8J4iW60XzPejWfLGHWT/I6Ke6tVja8vnVIy5WC3hiA3EY5/kM1hXt9JqEwdbaO3zyQuTu+pJq6LCfW7zEMZNvbBUJHSMHqf++ia66bQ4rVEhgtkljt/wB3tdRvYswGR6nLZ/CvpHVp0Gk9ZfkdcaFSu272j+ZD4W8AatqRhmeGK2VTlFuXw2PXABIr0SD4f3nmxKwgdYsZjEZRMexycn3wK2tPha0uxEXaaVPlEvcjjrXZWcmYtjMoPAyf8a8qpiHWl7wq9V4dL2aujidU8GPd2wFzBFlQAAkm4EA+pAxWjY+BLKTRkhlt1UKmAinnrwufQV2DYaPCkMfXHWpLRURCiY6849aIU481nscU8xrcllozg7XwIluGVIY4gQVJ2/KVNYY+HOnWV1I8COsbfLweT78jAP0r16QDZnIGOc+lZxt0eYsTu28DAwOhp1KPs9E9yqeaVm25HkV94Pmtrh3iKm1kBMiMu7nnHPXjj864XXPDEQsGurW3bbnHlFeQeNw/LnP+FfRN5AjRMmBgjFcRfaaqRXcRO0lAVwOjAn/EVgq86E1JPQ9ehio4qDhVR4XbWZl1SAMGdZSUO4/Mzfe/Uj3zn1rP1C0+wXbIy7vlypJwD25/Ae1ega74dksb6G6gjCLIFkBUH92wwQff/wCsKzvGGmJJcrdRISsqNuA6jncMfXFexRxilOPZo58Tg4qDcTziUESHcMH0xWpYvJd6dNZBgCSMLnG4nofwIx/wL2q5qenRGWSSHDRqzr8vGcISOv8Au9Ky9Pd7LUQXQHb95XyA2OccEHnFepzqpC63PAdN0qtnsz6w1aBbbSLhtmAIufbAzXz0Z08TeIILVZfLtUQ75Tx5SdZG9+BgfWvojxw5i8E6zIvDJZylT6HYa+ZPDFy1vY3626xefMhSSWTny4+5H179elfG8NQ5qFSs907I9OnWc+WlLZtt/Kx0kEem3nmX0yNa6DZyC3tkUZeZ+uMfxOR1J4GRV248V+GLbeiaBmXO1kNwTtwe5A/HiuZsbC98SX1rp1gp+y2+1DKB8sYY/PK31Pr2AFbOq2ltFdPo2mxMtoSYLVVC+ZcTA/fYntu7kgY6V71SnDmSk/lfb+tztpNuLcVZGpo2jN4mY3mj6fFGI5AGLblEB9N7E4PcbRn6VtXHw81e6uIzvhvfssYDWiQ+Wu0/xRndyw9SAT7108E8dla2Fotva2Bki84wxkxxs+OR/tNkEdSeK6mxnW6tFjhe3lb7quFw6oQc5Pr2rz3iVz8sSa3NGPNY5PVPCEGo6WojtJX2rhZJXVJAcjPTvx1OP611WheELex0uNPIwEXKRbhjPJ2nBORkmtsWsEMIit1CPFyVC4GDzV20Mewqv48nr+NaU6acrSPPrY6o4Wjp+ZxkXhBbZpXhgih3ktlAAvI5z7HmsKTwXpUV7K6WqkAbQSOD/gfcV6tIqFMMAec8isK4tY5LlieAOcL3P+cVnWocmz3NMPmVVt8zPNrzwovnyfaMTW7QEKp7cjgnvzyK851rwsiQXLrEd0D7Q394euPzH4V9B3kIaIx7RyOwrjNV00eXf9tyAjA75/8Ar1zwrzoSVnoe1h8THExcKyufP8llHBLuwWXoyAd8fXoelVrqzdLeJmBBWPkn8CP0Irsbrw/cfakiWHPmKCM8DOM9aj8SaWIrbcikt5eADwRgqMY6d/0r6CnjIuUVfc8/F5bGMZNI4aMiKQ71JOMY9P8AP6fhWjbWwvbCRIVw0XzDJ5LEZ/HhT+fen39rALrzoAGhYSfdOMfe2nB6cAGrWgXEVuJIGbDSMG3DqoQMSfT7pPvkD8eydS8OaO54cKPLPklsfRPxXkMfw+1Qg4/dAfmwFfL9hG0sp2lsr6V9NfF7n4fakAM/Ih/8fWvmexuPsu58kbxj6183wsv9glbfm/RG75faU3LbU9T8HWcUGjXd3JGFRy0jED5io6D8810Fjaus8Eky8vH5gGd2OfX8K5rSbzzPBzKBtzhAB9e9dfBC8n2WLO5obVVIPqDzXLieb2k5Pe/5H1dGS5ElsdLY/NM3+8Sc8f5710ttdquF8vIVc8ev/wCuuftbJ2lPBBbGDW1DpciJueUtjsRj+tTTUk7pHj4t05PVmmzkyYbC57Ke31qSCZVbayOB/vGq9pavuJIIIP8Adq6lm3nZ/WuuEZOzseVNwWlx8suYhsVse9VhvyRkKec5q59j4xk4pfsalcHIPciul0aknqjFTgtDHmyAA3J9qwtXhBZhj/WKcEV1z6coBIkYYFYmtWZ+yMy5Jj5yf1rgxFCSTuehhK8faKzOX1izWTTIX2AuqhsY9B0/mK8w8TXFvZSxBz5sDvh4uyduQeo56CvYABcRqmc7V5HqPWvGfihpwtdYQRqds4LqF6MR1/HmtMDBSqq+x6U6j9k49UYMzSXVvNcxyW+z+NWzuDdj/Pn3NchHkSbTwTwCe3NdT4Xuo7fXFguVSYTxbQzchMjJyf8AOKxtStoor+ZYzgBs4I7dsV9HR9xuJ4tde0tJdD6u8cru8E60nrZTf+gGvk3Ri/23ZGzKZFKHb3B619X+P5PK8G6uc4Is5j/44a+TdKmEN4rZwcjFfO8MwthKqXccWlUpN93+h6p4d+zaH4S1O4UZ899j++BgJ+vP1rS8OeF3lUajqKJ50qK6lQcQxn+EDoMjucmudsZWvk07T1crD5ryYQdW65PrXplvZ75pnUIQECY6bckfMD1z6+1TiJzjJ95b+nY+otFQTWhuQ6nHJdkeSqW6KrLHtzjbgAAdjz+prqI7/EDLGqqycqAMDGRjj8a5XSUBuWUxsM/wt1HP8q6ePTYgS0eADwefQ0qHO25I8LGqkpJNFgDzp13ncB1GeD15q1CEDNiMoQeeetRR6eI+UZg4PU85qcQv5xYN1r0KcJdUeVOUXomR3RdkKrkqT261RZHViWwTzkfhWl9mOMcYFIbNXXnIPqOtOdCpLoEKkYqxz8zqwx5ZBHArF1KJRFMduQ8ZUY9a6640z5dyysCB35rC1e1IspFTOFXOT9a8vEUZxvdHqYSvFyVmcPfaajW9s6xgyKAeneuE8XtCiRu8iyb5QpQdAc5OfbpXq8MfnAL0ZB+Yryb4n6UtnfQSxJ+6myCFJ5fsSK1wEb1I3PWr1m6Ul1RyDy295bySPtQElWAHzdevt/FWDbpKZiIyRJg49eOtdZ4fW2t55heRRvBdQZhmP3UcnoT+YqK009Y9Rt5midk84q+3GcOBz+KkkV9DCaheJ8/VpuraXU9x+KkvmeCtRUH/AJd8/XkGvmIn5VFfSvjZTdeGr1Mk7rZxjHfacV80kkgDPSvG4WXLhZR8/wBB5lT9nGHmn+Z6L4YuPM0aOEnO6ZTjNep6Ni4vGwD0wa8r8AWRmaNjyAwfH0r2HTGt7R2cnL5yR6Z7VljYx+sNI92hKX1dPq0dtYWkbHccYGBithIo8YwuDXIDVLy5O3T7GSc56ngVA2neL/N8+SO0Kg/cjnJbH0IA/Wqpu2sY3PFqYZyl+8mo+p3yKMdKcQB2rk9P8RXUU6wagm1j1+XBFdS0mIi/bGa9nDYqlUptRVmjzq+HnRlaXUSSWOBN0jADrWVc+J9LtlJkuAoHXIqnqNy94UiVjGMYdj/Sqkfh/SrmfZdJJc54+eRgM/QEVxzxtWbtSskdVLDUox5q1/kTv4sspgPJO4Hp9akTUre5Qq0q7iPut1PtisB/Fnw/0HVn0l2W1u4n8ple1kADccbiMdwc10sLWF42IBE3HbBz9DzXNUp1FrJrU2lGlFXjCSXdnLSRNaaxC+CEkBRgRjj/ADiuR+JuhfbtFe7UHzLVw6beuO/6V6Zeaa32lWjQbfdc4xVHUtNS80iWKTndGyk4rmpXpyudscRGaV+qsfKUl8sdg1m5kAZ/MV1wflxwuOO/Xmn6mqOYJVYMXiG5gxOQCQMd+n8qv+MvC114dvjFNkwHLQvjg5PT8qxrG4SQR2zr+8Y+Wr54APT9a+jhyyiqkDzZXhVdOZ9NfEq5x4T1ReebKUcf7hr5UUlWyDg19LfEKQyeHNRAbP8Aokv/AKAa+aK8fhmHLh5+o8wh7NU15fqek+EZNiLKylmU/KQenFeraDdLcTtjJYxldoHevLfAkP2qxztyQ4/TmvTNLuLeymaSV8SBssv93PSufFR/2hn0cJc2HXmjureyjWQzO33wCRx/Ot2GP5BgbT1xXD3Pi2N/3WmwyXcykAxpG2R6Z/8ArZz7VmHVvHE8gl/4R+7NuTlQJo4yF9dhbcT/AL3NXBq/uq54tTC1KlnOSj6nq69aX7vauH03xhehhDqEGyQ9d6FCPrXZJK7W/msAo25xXrYfF05pqKd0ebiMJUoNc/UfLcRQKWkdVAGSSax7jxbpNuGL3AUL1zxWbeG5vXEck6xKq8nGSffHsD+tUIfDeivcrLdwS37HgNNISCfRU6E8elc0sfWqO0NEdVLCUYxvVbb8jRbxdZ3cQa3ZXRsbWpq6pbXRaNnBZhjaepHpXMJ8Q/Aen6zJo6xyRXUMxtyGszw4O0qOpHPtXW2s2l6urLBsbBKsMg4YdR7H2OK5KsKt7zepty0oq8YO3c5owvbazC2DtYFGB44/ziuf+IOirqGgXD4y8JDRkdeCD/LNd3fWbC/QwpxtxhuTx6ZqKfT1udKkjlwQUKnjiuekuSXzO36xGSi31Vj5PkupIrD7K7cNJ5i5PUZI6/nXQSSFbC2v4jh2RSSclWC5HBxxjj/IqHxt4TvPD966zHNpy0DhOxPCk9en1/wxtHuFku7a1kjdy37tQrY5JOP1I6+lfQNKpT54nmxk6db2c/kfQepSCeykiOPuEV8zypsndB/CxH619LSR+ZC3PUV4B4l05tN8UXluy4Uyl0x/dbkfzrxOHJxi50/RnoZzSvRg10f5/wDDHoHwwQGCVjnK4XpXqGk6ZE2oyXUjsx4xnpXnvw/sWs7NXbjzgG5+nFeoWkcn2V0V9gOBWWImpYiTR1yvChGO2g3xHqXiGz8OXV1oTRiWBhhPL3sy9yAeP0NL8Ktb1vXE1m41qW5kgFwDZyXCKhKYIOFAGBwvGSM59609PvEt9uSCAMfNwCKurJHNhLONIVBPEUeFyfXtmu3D1eTXc8uvFODp8tvP+tSr4pEPnW1zblT820lTxXRPcBdMRmPLIM/XFcp4gwkltEOAAeD65rYnI/s+I7myFHFY+2kqlRxW6M6tNOlST8zLW4EUxeTlAcfrW7a30GTJbRI4PGS2G/KsOxjW4edCcqWqzZ2jQTYCbgOoI61jh6s6bTRdeEJJp7ozNS+Gmj6v4yHiS4RhOWR/Lzgb1Awf0HrWs+k+RqJuYZD5hPzDOc1uJBFGDglc9cGnmFcAHP513VqbqK/6nGsVOOl9LW2KqSF/kfoe4FRXKp5UmAOx6Vo+Si8gc1m3k0ce9cZz3rnq03S+Iim+aXunB+OdAttZ0KZHiDHBxxynv+FfMU9lJZ6o1pcHymSTazEfd96+udRZJopE9ecf0rxPUvBR8S+NjCRNFCqlriaJN5ChT8wXvyAD354Bwa3y/Fck3CT0Z6OIwzrUFNbx/I7bxQXuvD2pJ94taSqB77DXzjX07D5crMkgBUjmvnfxLoz6B4hvNOYHZE+YmP8AFGeVP5EfjWfDtVcs6XXcrO6VlCS6aHffDGQLbPyAQw69K9G0HS4zqE95cM0rk/KT0PrxXAfDK1Bti+Bg9c16vbo6K6K4SM4BOcY9xU4mS9vL1PQhph4p72RmeKNV8Rw+H7680BxE9iRjbEJGkXIyQCCMD6HoemKk+D3iTXvFUmuS67eTTQxshtGkVEKglgx+UDA4XjpkH3roLGRbTZuABAHXjgdfrWgJ4EhEdjAIolJKqifID3PYH9a3w1ZQjrqedioc7tFW8xuvQ2c9sl0hWQq20yKMKf8AOf0rbs7xI9ItzIwDCNQ2fXGD/I1zWsectqHnyu85Cnjv+GKvQfLpcLMzBsdAPf8A+vWXtnGrKUNLoyqUlKjFN31KM9zsvS7D5Vb04xzx7da2LO/Cs01vbxOGOAfM5C8YHt2rJsY0uZ5xklN2cEg4/wDrVbtbQwTBfLDLnuO3asaNScGpI0rxg1yvdGB/wq3RH8aS+JXibz5p/tPkMcKsvBJznkE89Oua3k0dLfUWvIFzMSd2O/19q6JLWCJTsXGeeDQ8KfdOefc124ik5q739Thji5LRbbFJF3MQ3zZGScdP85/SqrktHMhTByOvGfxrZ8mNR9xcnvjrWJqEiRTOMfe6egrjrUnRs2FGXPKyOU8ZaPa6v4fnV41kG05GPuj1/Dr+FfLd9YS6dqstlMRHJFJsLHOB719Y3twrxyQkrhuf8/X868f1jwHN4n8S3D/vrVYozJPcLB5gKhQFIAPJJGMEg8kjODXTl2LUZuEnozvxOFlUocy3i/wZ3sN0skYAXqK84+KWnKt1YXqoAzKUY+uOR/Wu70ucXM6IoPSqHxH0drvSbZgwVo5By3TB45/OvCwE/YYyL2/4J7mKpJ3o9yn4OukktrSLYCyxrg568V6fp6b2HQqP515J4Zt5LG5hV93C7RnjIyR/WvXNEk8yJCuAP611yUfbOxy4tNUk2aT6arYbYCewrZs7Xy4PnwPRQOBTrdQyg8GrR+7XqUKas5HzdavKS5WcTqv+leJooR91CAfr/nFdjJao1mYgo4HFefeINTi0PU7jU7qKZraGQbzEhYgf3seldna+INMvdIh1G3vI2tJoxIshOOPfPQ+1ThXBc7mtzrxkJ8lLk2t+JixxSQXsip6ZwK2tJnEu5HHzg85rhrXxRql/rUi6fo8VxYBiFufNKswHUgYwR1rq9Mk3XyOqspfqp+lc1CSjNWNcXQmoe/vY6LYCxp2yhTwaWvoYU4NXtueJdjH4FYeogszdOBmtpyTkVk3qrs5B4GAe9eLmElJ6HThtJHL3kmCwHXtz0P8AnNc38PrxB8XtUhmTMj6eRDID0AZCwI75+Xn/AGfeuh1EbEYbz+WMD/GuS0SGOw8atqMk5jlaHasaMBvBPQjqRkK3/Aa8/BVlSr8zPo3R9rhZRW5M/inTNNjZpopHH/TNMmuC+KN5Ya/p9nqNpC0c1u3lt5ihXaNsEZAJ6H+ZroLaJ766S38hWRsA59Kq+LvA840l7iB1eVGAeMtgsO3HTg1WB5KFSL28z0swwdF03BfE1oir8MJQbeaLaCVwc167ZRs7qQoI61438PopdP1nyZMoJUKuDxhhnj65Fe26RueNQoGB3rqqpOvKx5lZuFFJ9C7JbkbS43E9AOtadhYFlE1wOT91MYA+oqeCIOELANwDV/GFrroUE3zM8GtiJNcqOS10LPq9vbniMEbvqf8AP610stqhsGhRRgLwMVxPirVItM1GW9mt7iS3t1HmeSm5hjnOPTkV0ln4p0i90OHU4L6I2ssXmB3YLgdwc9CCCCOxFThnDmqOZviKdT2VLlRj29vLa37qF4wTjpWvpVwXmMcq/N1yeprirbxfqN7qR/svRvtVqzErcmfZvUHkhdp47DnnGeldXZyie5gmRWRieUPauOm1GSsdGKozUf3itodNtBoKA0iNkGlz3zX0K9m43seFqRyEgEYzx2rn9WXcAeCduc9c84GPetsuTLgnjpis28RNgV0yUGABnIzjOK8DHyU9jswz5ZpnC37lS4zuBOFJPPAznt2yfwqt8PtYjT4g+ILO9Me+5hh8s8ZYpvyMd8gk577fpm3qixtIYWdxL12YzhfU4xk/KoHIByRkc1y+kQwW3jsXMkoDsirtUjMTEDC8jOSASDjlQ/auLAT9nWbt/V0fTVKca2GcOovhyRlv4t3QrXU+JbWPUNIliK4dcMPwINUPD9pF9oiOzoK7aewSe38tl3KRyBXkVq373mXQvMcVGOJjLseV30TaZdedj90uIw4/hbqOv+ea7Hw5epNFC4I2so4FZPinThHp88XJVjwcZPb/AAql4UnaIR7jlAcjAGAOOPrXfRmnBT6l1LV6Wh7FbMNg29Kmkk2oW9Bms2yuVMCtnjFcj438eW2hIYFlxL1Cg9a9GNeVuWPU+XhhZVanKil4z8UWXhmaaa6ZXjulysIPJYfX8Kg8GXWj+LLWea6tIreO1AmAXIjGSf4enY14Vr1/qHiPWJry4LOXYBBngAnAA/HP612PhO9v9JtvsFlczSB42muBFyB8vTkY46Y+tdiw8aUFKTu+qPYjzOLpx0tbU9NufGmnaZOipLhmn8uNgmAMgnHSui8L6vZ6mgnhulZyMAelfP8Ae3OrtZxWkrzyOJjMJAm796F4AP1q3pV1qXhvUZbJQbh2Pluq5AdiWwAwOAQMHPI5xWXs38SY6lGnUi4Wafc+oI5MgZ64qTNeN6R47vEgBadVkADbJSAXGcdzjHoa9M0HXYdcsVnjVo27o3X61tRxd3yPRnjYnAzorn3Rrms2+B2yBfTdxV6RyBgdfpmsu4nVQ6lhvx1zWWLnF6GFCL5ro5bWT5cchwB3HGfwrkYwr6hbl0baGAYqMDaTx9fn2mus8Tzrb6bNIQS+F2qfcgdf1/OuPt2EN1EjnDh0LEjsew/KvG5Wp3R9XhXegZmiag8msQqijYSAa2tcubhBIgOSJlfaf7u4ZH5V1ej+G7TTreMJCocdT1JNWtU8MwX6mSXKkjGV6iuX65TqT91aI3rZnhpYhO1ktDyq4X7B4qtb5YzHFdRC4PorjIK/UhQfxNen6HOskQeMhlGMc8GuL1rw/HbaXcQmQyyB/OVyOflHA+mMj8TWl4UvHNnFvY7VGOg46H/P416dKtGSUl00MsRBVKbcdj1SzYFFx6Vad/lPoKzLGdXt1kyOnJrlvGnjyy8PQhPPX7SUMkcYfBbH+eB3r0Y4lqPLHqfLLDyqVeVB4v8AEdl4c87UrqWEW7R7fKLDdK/QYXHPpWT4SvPD/jK3mfUNOt4TYr552ghCCSd4X6g8eteFa/rWoeI9VlvbsAtISI0bG2MMTgDPTp/M12GhatqmjaZFHp9+GWW2NxMyEfeGAI+RzgsucepPOK1jRVNKU/mj140/3bhDfTU9Ju/Fen6cfPtLlSxnEaukRATKlsEEdMDt3wOK6Lw3rNlqlsHt5o3mOSWHcD19PT3rwa71LV57EWLSPNApV45ETd+8EbbcHHdtwIPZR60zTby/8N3k1iXW6ly0TRK5ALZYBFYcbgAG9OQOprJwl8UX8ipU6c4uErp9z6ghmwVU5OV4xzn/ACKsE/LkEfWvnzSfircpMFglQAPkxznO9ScEE5AHtyf6V7J4W8U2ninSRd22Q6nEsRPMZ7A1rCtJJwmrHk4nBumueLujaXJ5wB/jVS7BlWRIyRleXXPB7dOfyqe5m8iLJYAep5/Tqao3DKI2Xf8AvMYPzZJH4fWuKu18BlSi73OR1lZo0uBEkSKiliyRgnJ7cAfwlvc7T6c8skAOoQhYJI44yYp9pVQkW4KGUnqQ/lDIzkM2MZIHa6g0MVu7Sq+NgbZngjnng9eF/wC+j05xxekXyDWHM2EuS8aysBwEO35QCB12kk43YZlOQBnjpU0pX6H0dGcvZ2SO8tdDFuyspII4rVtPOGTJtwegA6Va24B4pM4GK+a52l72541SvKp8WpyvjKz3aY8ir0ZTwORz1rgdOiNvMZoXDbj1AOcfTPB/CvXdUs/tthJD/eXBye1eXQQeTcPDKCkyna3P3sV6WFqfu2j28rq89LlfQ7TTNRxbENnAGSOlfPPibUZ9W8YXURAJ84xxBu2TgZr2+2ZLaMzH7uOBj7xrl9M+GLPPLrGotuuJmaQIvRcnP517WX1owblLe2hFSlGMnZ2TZz1poS6Xfwz3UonHlZFtEmWYnIB9BwTz6nit+KPGGtoI7aMHIV12Y7EgdWOO+K6XTdHsNMjNvFF5Z4JdvmJ9OSatKunRkPLFnHZucmtJ1I1H7zO+nXp01aMbmJDZCS13ebI7p91RCSowOvJplrb6tDcz+XaWTpIBzPI4YcKBjCn+6T25Ndla6laKhQWsCq7ceufQetalqLecKBGp7ZxitV7K3uvU462OlFPmgeO6z4S1OKaO5jQC4DBhKz/KqYPyEkZ2AcEDAIJGBmuw+G1xdfaHgl3sYY1jLHPO0ngetdzqFtE8WNuAMdax/COnxafrGqxq5dQyumc5UHOR+Y7VjVleUYnFPExqUJu2tjpbmc7MEYI/Wsp3iNtIZCzOzBfw9auajJifaoJIXJx2rDvb7ZbiIcBST68msqkve1OTDUnJKxieJ9QQGKEkBmcFflzyMdvxz9QOvQ8dqd0ludPgLSefJcguynGBzwfUg4H5981d1y7e8vyscY8uMfNkgbh6Zx9D/M1l6fYzat4pijKZigAyeeSTktz64x+nalSgpe8z3OX2cFFHtstoZFOyVkbOQQBUWNSERRkhc46jIB/WtAcGkLGvlo8sI2Z86qj2tc4XxNaTNZXHyGN2jIBx931/rWFp0MDQIysGKncu3Kkfljt7V6Hrdt9otjgfNiuF0uJEYrKpV0GwjdjOM16mEn7lj6DBVueg/I6e3vDFpxUvuUr0zjNfP/ia7vNU8RyWUqxyyeYIo5ScfeIxn2HH/fJr3XMfkkINrFSc46DP+P51lab8P7G6kuL24gt5HmGFUwgqBkk4B9z+le3haqhK7V3YwahBNt2uzzWx0OPSNWDzzHVD5fz20CbtrMOMnoPlyM+/APOOkiKHiV0tU+VVSOAsyDkZHqeevH3jgc12TaTDo4FvaWsNvbAbikSbVz0ycD3pyNoNuRLfIEAbDbiME+ntWs5qpK0md9HEU6cLxi3ftr+ZgxJbC2lxcXVwP4Q1ttXIHBIJPNZNjDqf2u7Yadby+eEKyPKQ8eFUYUYxkNu5yBn6CvTo9X0SSIR21vblWJ6Dkf8A6uM1YsYLB3ASNWbpyMcewqrU1pFnLUx+jc6b+dv0seAeK/BGq2MSX8DOzA7PLLfciwcAkYGAvB6V3vwIllNrfI+8YVGJY/ePzcD8MH8RXpGrWFvc2/leWNrEKwI7fT6GuE+D+ny6XqviHTLpndrKYeVISTvVi2fx45+tXKq5w5H0sebVqQqUpTStdf5HpV/+8niibkE8DOM9O/aqkqRGG680vIzEIOR0xwR/Wp7hw+qYAZhFGS2P4c9KoahfeRamFQoK8kepxxmuKT95ykc1GMnyxRjarqiwweWi+W0inG1N3TGewOOWJ91HB6Hz7UzZWkVnp80kz32o3ASaZGGUQEhyOuSp+VQeAfnHzBhWzrmoSzzssUYFvb/612cLvHbkgnJbB7++M8cro9nda349eNI2NvD+4Q8nYpye/TPvzgAHoc1QjzXb2PYcFTgktL7n0FzmmhDnJqQrzSgV817C71PnrjcYrhPGNjHZX6XiAKsy89hkdf6V35Fc543tVl8NTzkDdbfvBn06H9OfwrshScdDswFb2dddnocnZXUTmMbsgruIJ49/5Gu4hmSazjKAYKjjHrXg8GuTWV68BV3OSigc5GQevTufyr1HQ9YNxahwWwOAGGM/lXoRpypPXZnqYqCrJOO6NmXSVu5R5TKQwI9xWfe+E1dCoZyW3YJPK8cVtWM4UqoByecY5q7Jeb2ZAmW9Rzito04SV2cP1mvTlaL0Ob0/w+j3k0dw+wKAcRt8pBHzHPY/d/X0rpLfS1tYVIY8KNozkGqCzxW08s0p2nH3c43Y7fr+laEWuW0+6GTCSYyAw+Vh6Z9exFb0401uZ4mpXnqtUUb278lT5+AmRjr1PvVPwlmS41K5TcYWkCgsuMlSc/Xg1meIL9bm5WByY4EPEiuAAewPqOlOtdUi0vTPkKpO5kcrjhQGIP1PAA9eK5m17S76HQ6L9hyreRd1PVmW9nEbKAhwOM9cj8OhrjtQ1TzGKNLtUdSDj6VkXGrS31xcSkyRoQu4kdhuHH51Np+nnUDJK6NjOcH6/wA6xmm3dnp4WnThHQpGZolnuTgZJ2gEgscdB3r0LwR4dW0tfNkQefN+8k4x82OPpVLTPCY82OW42kBgypj8s/z/AAr0LTbMWkHXgiuvCxlNrQ4MyxcIx5YPUhfzjxGF+rUkUc6j97IrfRcYqxgClxkV897C6szxufSxEUDghhmvPvFEDaTe/aUBVJSAccDIwK9G2c1zfjm2WTwzdSMoYxL5gGPT/wCtmt6NJwdmd2XV/Z10ns9DkYNZEq7g5wRzzjjjOfpyPyrttP1Bv7PhdUUIVACqDlfwIH8q8PtdRlgMqZB8vEeSfvHdng9uq/l+Nel6HqctzaoFYucjcDGQP/HT1z+detFOmz08XSjUjZdDp72zXUCNpU7wVYL1z3H8q4nW/CEKxTBm8wuHO2RicZUhR6DG4kEeldrYyPFtjKup6gMOfX8R9cfypupTNdO8KIGdyAoIJ6nj6Dua1dmubqcVCrUpz5F8J5v4e0y6s/EzW80rrDPGGZV+Zdq/KzeozvjPTueflr1a1sksoA+4liikc5Gf/wBea5yz0yP7fLdM7RsFDBDwpz8hz6kkgcfzrqnmV7XagBIOAO2Pf2wcc981pSV9WhY6q5NRi9OpRvLuOH5pD8u5Tnng5P49qwfA8W3X/EN4jGSCe5OH290yMA9+pNR63qcSXEX2lvKt432Oytt2MwymT0Cnkc5wSKp2k6aHpSeQI47mdpZdsYyqKHZuQMhmxxyRkYBNZXtK4KivZOPVnQTaxIdQv1hK+XCyqrbc8kfp0P5GuUv9XWe4njlk2IoBlcHHHOBn3I6gckY7Vzja3OUupY4rhI22/MclsLkDGfqTjpnvVnR9Jl1AS3U8bRop2xozAksTjOcckKB/9aueab+I9ChSp09V5FO+upGEjRKiylwyj+LpggDqSAP+A56jBNej+AvDNpp9kJfK/wBIf55XIA3SHqfbtj6fiauleExBJDMz75H5Xfzt7ZxjAOK7vT7ZbWAKpAjUYGP1NduCi5ySscGZYqHLy03qf//Z", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAACACAIAAABr1yBdAAEAAElEQVR4AXy9B7xl11nY+53e6+293ztdUzUaadRlW+5yg4ANoTjBEDAJLzzKS/J4CZAEEggQWnBiO8E2Nm5Ylq3epZE0ml7u3Lm9t9Pu6f28/7fOjBgJm/07c2bfffbea62vt7WWpfEHIimRbpE+kQGRgMhVkYq5uCMy0i62gU+/5/Q5kT1+2Tsqy/MS7ZDJ6/LII3LmtOwkpNoQr0dGRiQZl41NSeSlzy/zWXGKpEXeFOkS+USfrK/JCzXJizzI5wGZPC+9fTI+7PD5XVux7OaGRLxiq8hdt3d17tvHi65dmSzkK+tJmZ8Th12urshPPiyHj/adeX65r08CXuf0fHljRVY2JRKSlpAUKrJnt/SNRMTrO/PMyv94RTpFtmndJh2d0tUi7UEJWiXgka1l2dwWf0RO7Jf5JcntyPKGfC0trWbch1rkV+LyU375YlYAwBc+GP2lRxP/alD+ckE7/+NDsjgv4aAspiUk8rjISbvEqhIXGbVLraqPJEViInV529Er4hUJ2+TEkdFA0Jcu7PzxKwvc0fg/Im4DI4AFyPp75NFVWZS5abm0KeP3yBvT8uXHZFnkgdvk/GVZq8k+v9x1VDo7IitLybnzUq2LqyG7erV1EAEWOjssLZFIPJ3IFyS+IxaLtHbL5Jxc29E+t9vkV379vi9+4fmRg4Hhgb6apXDqtfk3zstWTe4blZ/88JFGIWOrle3WxjPPLfI2Bz33ybkFOT4sP/trD1XffMO+a6/0dMuVaXF6rr/6+tPfl6P7ZGxcrCKhI3vltgPy2GMXv55u2GRqQ0pQVqtki9IRkaBbJg4YsAxErn8vaUnL2G3yx9+XKr0SmRXGLUWR10R8BheM2iOSMxd5ORRqN0T6rHnH3S1Sykq6JNfMn7d+WQDsLX9PWGSpIQVz5UO7umZn1q/QJL3VFx4VaRPFrcs8xF0Q7Jppqt8ihbTMT2+KbIHgijis8v73+P2t4YP7N2bmqtsJ6WkXh0Xa28RmlbpPsl7x2mU9LfSgJtIhckgkIbK6LEGP3FcUt1v2TMj6rOwZlQfefdvy3HQumS2nJGiTfeORSqnYqFslnhJ/INoeScYTJwbDtVysWpQPHBY3ow+2HvmRbqk3Klcma5UyFL97XAI+CUfcxUIxxyhsHukaPnIo+yNbqUxerq9KuSaHh7XdgS6ZuiqNgpRqYnNLe4uOd+x4ODuTCobkp1dlJS1bFXktLv9hSH57Xn61S76wLn/7aOI4jJRXTCAlfE6JOCXklnhaUdUDFGvK54NIjKr4DUwB1zuon7tWRca4bciyvDrTnotux4GKolOBD/IBVsQwQG1TRqW2KqmGdAzJapwWLTvSCADGklRqyiMfeaR393D7s0+f/eoppYmDbbJ3TJwWKCyYSGW6wo3WaDgY8BQrYMfemqmub8vmqoSc8r7d0j3o7O3q/rM/fX5sn/zEpz705muvPv6d+Uvzctuo7Bp1LkyVNxfnDu3Z7XRaSrXqwODivSeiTz+ZKGzJp05KqQzEXPa2LhkdlYvTEumQBx4e33t0uP9b9cym865jsrgqsZgkd+TYsQOrz4jb0rXROH9BJdR9n7BKoR67JktT0tYunmCqp1VmYgLIPn2fvHFB8nCIQ3rTKkGgy4sGMKOG+gHvnDnhz2lRjgJ1cZFsXAaicpG/bx5QXZPub6X+n7x95H+/McstUCMvD3pcSIrmwZ92CULahuIZnluEb1BTM6xXtspW/ZvfSfkd0qhIsioNuxQtsnJt5eKbKgL7wmJrSKYgoZIcO9iXr5R3TdSXVreXXpNXDDYHDYnwMkZqK4jLruyRScjBfdLWE9zcXGwJeyqFfGtIwl7A5Gnv7LG1d6jIajTaax1+j1TL+f5+Gex2hAb7syvL0uKXXbtlfdNRqxy6zSNOr+xsyfqyBNxuj9fdqEouI7kNbhvZlWrrcN1brhbytYVpGe+Wcl4sLtnzyMSlv51q65FMSv7276SrO3Xf3WL3iDci/oTYNmUgLGfn5N/0yXPL8j6HJCpitcm1LdllJNNxq2Srcscez8p2odGQEQQVClBkUuT+fvH4PTMzhbayogHg3npwpS4ys9LYOxG+OJU4trfLu7EOw6reiRiYI+ICyDpFjq0mFQBekERMnny14RC56x7LN19suER+40db9o4NOcuVp1+VOwI6Lt5rs8n733XYM9wrsW2xOyQcllL+oOeQhMIilsr1mcuXp12+cMNi/873r507u/DRj4arbvuf/eWXLFnJlpSputtk/95xl+NypZqKZ7dHRkc9pdKxE7f53I6J9cTWvBw7OZpOxSWfkpMnpLVDtpNy+13S1iHz8/YHH5TTz4jToVINUZdeUXE4HpaO4fZU5t1jG2ItSr0qRydaT9hlcr6xnF+40Ij6xcnYfeLdP3Z3y/RTz0qhIcePycyGuEvSmZVv5eUOI5khST7XDJEicbZEPnN/3+88t3xO5HDUPZwoXjXEBnCyt0LcnIdEXnxj9khYNeFCQ24PSLjFlxN5d3/wySU4CwbgObtIVFRDFAGXeQ5c8bJqLb1am54XTI7SnERDgMmxPp998Q01kfr90uaXYIsc6uAVlpdfX15ckVJB5uty1nAQ9/AOBOcxtwScCgEIO+yWNq8UYjK3nV7fQNCrTRLxCMI70VjrwlKx1mlXodnZ5oXzYtt7pW73B6VW84/vlmhYXxSOyP4j0tIqTz4tqW3x+NDFEm4Vj0OqeZVA7S2D//IBWVr3zS9GUrHuYau0+MRSbbnnfjl9af8Bm7hsbz5eHu0Rp0sySYklZGhMOgcD6ZczDo8cHpAl8CjS2SqL63JyUDpScikuYczDSXnvEXFUC2NdkkxJtqxyAbB95q6+x15ZnpMC400ZEN76BQUDDaSQoyj9hbTPA/vFD9nlFagd4PvNz7CI28i3utRhgJr4XHLlmjxfkXd1y8pcIyPy25/s/JEPPPLE1//ub76xftgr/W0yPOiplAsfev+dtvtuU82ZTEgkqNArWxrrq3NvvL61HSuUGi+fknwh1tolyJS+AVleSb30MnpUImGZWpfryMVTMNLlk/fu2v+uB6ViAZEgq8U+KtcvPXjnrkTfqica8QyPSgMUtklrr/zE7eLskVcel4016e8Qh0/cPgmFpLNbVmckm5VHPi47RZldEVp11iRglXJZMdvabgnXnYtL8W3ZjfwY7BOv3xYO3b5/Z3pBKikZiEiXXVaRH6tyoajyedAnOzklpNMi73FLl1XOnVoGvIdgjFxxEPO4qtr1yq0Qv3l+/+Geb59dDWWV+n/+5K6nX7725htXBsMy0NkrSzAO4O8094IGG/gxmsZrxFJMduZgb0kkZaMmQL9YEIfLVcpXInbxQMftMo7eHBvLZXLffW7tc8vKmkPmZYOQjqGDFZEFPkVF/IDI0ZB40CFZJd19E46Pf2hE9uxTwbiyFJucrDfK5Y3V+JVL9Yp0tAXse/dLTz8yzO4LyBa6NS37Dqj4p6N1u4ztkWRWegbF65TYioR80tIumEqNmgQL0jMgbd2SrkufVUIRtdLgPN47vSF1h4ztwofYd/201S7JnATaJbBL0lclOCIPnQi8cCazp8fSFWpMnZJX1+WhAYSpIqYEzxsp3hH2ltN5VJHLKomcnE6q4H7ylWWAxwm39TIgA4e3vqB+DiicsX77ev2Te5xXr5Z7eqRl1YgKhI5P1ILOmT8xFhoSz4rDLdaKCiho7A38qC75EAy8sPHGk+thdEZeQuvSf9J/4N57JJ9+7jf/fHlaersk6JVkUXYykolrozavDPXLiQmp+aRrILqykjj9hpqFJ++Vk3ceGTx6UjYTc5NXnnzqbHxeNgfn90MJ42NKCo9+d2P6qt9W3dlY8XMxl5JP/KgKyKpV3T5nv9SSkstJT6f47DI6JN2d4gcoTinlJFJVFDQ2xbMt+bz4QxIKSC4r8Zj6Xq0t3R+xy5tzyvxuh7i8YrVH9wWHC+lLZ4QezazJsFdSdYUYIiJgk+M+abjFi0GIMrzd/9+ezzK0CCDl3XZpwzbBv/pBogfqP9Qm2W05aJe/evnavqhUqlIoy8Li1eNBeT1NF3iuedAU+EEd8vK0K79WmlnWrmxn1SADr7iSXpcnGcu6XeKwyd7dzmgw/PRL0y9fVAMADuFNHnMn+N7ENjVW71mD3AdE3nef3HnXPs/wgGJpbFhSO3LuvLqfpYZ0drZ+eFQsdhDe1dUlLW2ytSWJhCAqEeq1kvidkkpJtSQ29Hu7tMJoQSklpDUq2JIIioBbXQRLUKKtgskAca1vqs6y83KuMLaaKqAijOiTUpGf3LfPirXcgazCO8kV5helJZPp3eu5Z78rka0WErV9NhVY8VVZqsptHdJTlye2lbJXV/Khhgy0ycyiWnQhCNRYeooqXDSLrDVUpgNF/uRi4QZ89T/+5Bgf3VVOXKRTd3Q17X4jegB+2dyNuCmoc7++KFvb6iMg7qIi/+yTh9x127e++u2LGX0Pj378o527H7zz/DOPP/FYPos6qmFbupaWSi9fUDOW99ENpNLwdfkXv9iSycmjfxdvG5IH3x+++z3vkdHdcmV24bvftZS8wx9//2cGh5975rv5XHHu0SeHb1vemp0OOXydDz2EMeO//Gbs6qVqImV/7TVBCfeNSNt+1VbbU9LRKoF+Sa7L6LjUcpJJq1kzsU98XvUYqlWlbyv0jVKrKI5UoNfF45W7T4rXJuenZXBA1rNqBnjBcTqPQ2+TsQ7JVSVSVzPSDiTTCjQIs4eoA0rl+SwwRy4MBNSwCXlV2iK9+w14Afs7jnPb5oIBfbYAquXH3zUyNzk70D/4+ukF3m8Oh2kKXPGCilcy9kvXS9fm1NWZNrYXN4X9MjW5Xc6J3aYU1RXtfuyFhW8tybwh8Qkj4XgdcEeQMVavweZdIu/aJR/68H4/QkK1pF9sLonlpWyT/XfKzrak49KFMGxVrvJ7pW1A38H39pYUMmrY2PFYO9STKpdkiHboK4ONYb+L2ymFnNz9biV0fAtcXbS/m3ASzGAVONXdpsGRRlnyWVXBPr+ipIGRAAffJs66xJfUlCkU+jolnpTFK4WBn37I9ejTMAXmdWpZbFUZtckmAZkBeXdIPrcj9x/vW7mybLfIcI/Mb4p3W3sDAkAJiHkZ59XAEoghFH7gce3aNPEZj0sm4Mb23A0TCAzxfE0/aIDLywpYsFEydPxwVAbbus98+/vPnddXLon83AeCuz/5yIt/9Rf/9ltyErl4p1yalD95tLRqfgUR8AzPQjSvIo/+e/zooPzCZ+/1HD8gI7tleV2Wk+LpHNz/gCS2JZ6R9773/o9/pPClv3Q4rJvTVzs+81nxBiWWVQNgj731znfLSJ90dIsFYgP+4GhaOofVhEolpbNLIcwnu6NOIWYq0i1XUoAToMCbAVh0qJgXr1uHjRSzWqWjQ8Zz4vOJq6Rirl5BSdyxX1wWcR3tdZ5ZaUPq70jdI/GChhAaOW31TuMu9Rmhs6dTLmekJSihvFq4qzkFVxAzxCoXoMJ/cICgmYKGDYq5HEGXntbo0fBbDAAC6WLDwKyMXVzBF3n1gkxm5YJBJNCMumTumtIMIRSMnzevLHxzSS4bxEPrQAWi7zXWbNngcdP43f/mn3f396EuLTJFADUgniEJu6SaMy5Fu2wWJdeQvi5xBaQEpVZkdVJqdQmG1cyCdiHlYDv9kVpGRTVOhoumVox3FJRIu9hjStOYC76gOoOWuqyt6lOIH2DdqIsFHYIBmhNvQLuBj2hhmAUZGJadmAZQr19HokZHk9GKpJEW+Zi/y9thzcOq4ZCcnREX0a2CpJPaccD39S8t/7vPjj3z0jQxsbawOrG8DwwVDed/rF2mtzRGkTIICN88uRUdV6YLRC1R33ZUDJAF8nnzFuCPoLN7llKFKyKXDOkDVT63jUgplnz9jXjzxjGRhz/zz1Zf+M5ffEuR1t4p2zvyUlLOGD0MoUAAsF9BZL9HJguqMX7uMw/JJ39aEhvy+mUdUgD3Kyx4FoQNOt1KR/6o55f/VJ79o47dB7CL1GwNtUigqhyC3ZAqiHNHMH8tARMO4NsjrnZpJBUjNqeKmPZ+FY1TV8Sp0lwcDgUKIQ68mY1VNc5wbrxGOaAfunvVVUB+MXyEKyqsQ1r7JHZRWt0NXox3YHXJSkrfQf8hKhA/bvQhQ94DQRKRc0vQpSAEF1zkOBwQNCRXkoacucLreZwjYtjGCnEWK9B7cnl9rNfJrzcPfoFHOEqOxPbO/LJczKr452F+GeUkryZBzQRDu7tCL57duWzwRWM1w5cIwuN9YinJ1Ja+hqe6XNI/2ik9vTKDg0OIKyPlsODRohB5V8GiwTk/tG7X8VtsmOZSN5ZHPa9yApctW5f+PqXm2KaG2ADZ3n1iRa41KcGiMkYh41B/VptIEyoVPzRjUevT2lCZtAKTACoggP9gIiyY/wG/1OviaKi3UKlLKA0Ug1X8hMty25HQpWvuxM5en4bnplZltiD9NnXFjoucAwjSOLI3fP5yCufeb2JzxOaXsmr4rW7JhFem86q+s6gqNa/UA771ICa9z+Uo5iuVWlnxwwHkGQTUvw3GgnObBag/ZT6HTEBwYqSvtBMnuBIzlP2L93pXXnnu//7P05MkIvCyNuS5Dc3ffFDkZ/bKyIBvZjH33BUlAsIMExU5ebvIiYOio1uX+IZ46soc3h45EBWLX4ob8o3Pyx33SiZWf/pZKybKRz4moCBXV4AfP6pGIycbG5p0aKejfYYOK1JOS8QnNmBQEm8bolW241J3issjbU4lSTQzAdp0ShmjUJJIK8EMRQ1aGrWAn8A3DlasQMxDtoiiNOBNjZm0R9piSQTXwpYaFE0I8T6vgROAjeCju6TDq54FlEY7HgM/zGRwH79J/Tw4YpUpoxA2jIkOLgYGhq9uxoNuhz/U2wS/aYHXcBBYdAZmF7cuXlcVzIs4IPHdrdChc3mxHAwSSCJssvPyumpsfgJ3AJOTwzjp96DyStUnq9EWGRuT6aty4YWztz3gUeulPaqJLmAR90prREppyUDxiNmwgrVjTDF7fVJaoio/UIeQQ7GkNj3eXLqg1g7U3Noqhaz40kY4MixGDVj4gBW+zJtTK0romEC9Peq5Xzwn8DmMi2OwGReLU5WAz6YvR3JCzMSAop2yk0UySChRjlWdrahVb2V9B2hi5yCHOsry9LSc6BZnSnblyQDOvOu+ffMzqbRBDrK2t1uWr6vcPYiozkg2L8f98hzuU+FG0Fq7d/NIQS+NOnH6xLbBDNeRSHw4rIjD8IVrmynzF19wwh/dYRk+cMCytrxZUFnT7ZI77rvjf37x2adE7jWi8aIJNP+MyB/8y2OFVPKNMzPBgOqlLpFHPtY59MGPmcBlTP76f0saM70gI52ysCSDQRm9S0aHZWpG7r5PAhH5k29Z779HhgYkiLfY0MBDV6ekNlWWl4uqV/MZWZySAaANnZbFCem7NO7so6mGmrh9PeK5JhGX7KQIPIm9JsktqeEV+TSdifSBwLwODdyBkZYWfYp8TTSo9ioGcC0X6AWPpJbCtqmkHTEFSvMqvEsmsgy8W824dg2q2iAUsbWmYIc9Sc441bmTRkycDY2+NA8cyRs8ZEwSrnsCDkis3sgUM2Sd3jpgKwjJidArLa3Jel11KEDk4CasD6fDhdOPYTDQY3nloir9IQOGsBEIh8D9KKrXsbxSRdpGI4QHXF6Ak5b0pSvi9kh7l/T0STSqpJYvqQaAK0olNS+CQDOuiQ38JEQyMhsVidThKKWkRvgJYAWku13f6wsZjoPPIQbGjlAImm9OwEdFnSZVrBZJYItsqq6HbcKIOtAQEKdbvzGWQAmCv4rl3aZuhhWFE5KOEL/rG1rD/qilXJXBETvROmDdD6oNw+7tkmtTCJ5sd5u9q10Ojcgx+mlTFlRQdAZ48S7wFNHOAcAJ3qojeduxsVUjjPbZz/7o319lNEinSIvkyxggbx0DIvecuNteLD/31MUVQwq3H5Q3Lp3+6oK2EjXm4ILIL7XI7/7SUbfF+dj3Zt64JNfmFTrfA0c//8syekB2MBGC5ClUuJK8bMHpJNRBhuyCFLZl4g7xWOTVFzTDtf+Q2rjkfnvwkchyLxvnqi49bdJHKKBDBkA776ZlFBYfl5K18gMf/rSLHR+MaAQxE/iB7tsUtt6QwPGBFh0gUWxyKyhhq1PVPuoCjEA0oMmHewD8MwT37FHVWOSOsO8JcHhsalAM2jQq0EvIwyLbK5pZJ5Z9oFcO79JkM8i85/guIhN39VtBY/Po6w/fPFWMcIyNjYf8zkI5t74CXN46QGDdohZzMrNM6MMYGXAEB/hri5IRzsAjakFUGy+buOywkcCdlDbY5GcflmOHvSuLqVJFKW1qWpZXS6i1I/uCPow/S1njaHQgjAPqlGTyRl6AsEx6R4X63JQSK/yL/4SUIjSGRGyU9Cm82wqir6i2JgSlPxRN7zih/81vegoazJ9oFcobuCe/o1RJjofYHCKROgE+cLkVP8tJjk1vx7jiHC2E5iFMRFCVR2iU2OHgQI54Yqza0ReG9Hn09LJM7JHNmJQZY6XWEgr3d3V6nJr2ia/LQLuMdcrWRgZPD+eBxB88A7Z2j2Km3jh4t45A5GxG3pyR//hfv3rjB/5jHEo/LkkhCW4ct4n81JBcf/PMn/yXp85NqdnHXT09bV/8ZobRAvlNE/8+KfJrv/Lh6NiBp0lGbCma0Ui/9FPddpHv/uxvyBPf0/7ltqVK4UpSGmmZu0rmUi68IX/0n+XFZ+X6c/L492R2UnZPSIWkt138RwGNxnwgyqV5hRVFL/ADEGMEpNN1HIyGkXmUrJX2cuZKTuMQiL0UtlBFrVCgSmoCpIxMSLRdhY5+KgQeSHeqd4Gt27CqWkbPIK6hXOwlINjmUzijyAl2eLQGZAGd3a0BLgCOzhgfFo8VSaVWEHQEamHqteUl3t0WDo7dhGFbONJ383xvr2YP/vrzX5zYNXF1snxgb1QHdONQzODiOLKp3OyCFkM0D/ozgr2QUdMxapHVNVU3GUP6YeOftZOS2C17xgdbfBroGuzQegFSIi+/pMTm+tiHbcSVUaDYEziSCeBSVTbK4A+U1CJEYGq8jBKGbj3p3yWdI9o0GKY/2Fs4WIgQgqREFXCLc0lD6CGDA3BNv5vih7EABIeEWqV9VFpHpXdAiZunenvFblWpr161RUNA4IagE6SiToJVA3Ntbdox7gwASDxvD94bMVvoG8d6z4T14YdUwL9+SsaHNAPl9/lL1YrbZR8f8bT6VeHj6WHf3X50jMEREUED3NGnj8zPpBnJAP+MiIcoORjhxLCGmN92oLUIj1TrWzevohKsNZm8lqMWg7dAYnBoYjs2qaBRE/Q1Iwz+409MyJ13y8Ly0raaTLw10u62exFm6nZJdlNWL8r2glpp+aQsz8jsnMTW5NgdcuA2pUvSKRnj8pL3QQZ17tWqnGpWVUHfKEpQYkk1YKAyHBrkFLhQ1gaAfBoGBS2mO/yFRMtotA0ogBCMGEiZgA+SPoJIN7cjgJq/KvzBmPHHYBuEI6VQAJzIdYQkq29kSPGD6IGDRoNaMvLasgy71WjqCMtwd28HSbkWN54UEop3M97bDx8EaAhcSMFvwLgyNw99jJlzhNcO5OLzTy8sgNzRUVKkbx0Miu7ULbmChYAgr2setAqVLi2pEQaXBv2IdtNJY30eM3IIR3QnmVxd3eQRhjMyID/x8W4CPJhS0tdLWktDpxjxBAriW2RtdFgqFbALkRYICatQjoMX6+tQWVIva/RNS08sygZkm52ksCG6oLi4hzACKKY7yCHugWA5ARMwAxBgGIydb5IGLrX4sWMwtFA7cALYUq+LGCQchQcMwYEDAlsWwbnBPANPYa+aQLAZ3YjYaBmHLEIBg09GumSoT+9tCcvVq5O1RsVuqUaDnjDBPTLXLZLCTrZaSWf73CrKe9osMYQkUSi0qPcGPEEPLMv1EpVWxRsXb/xHbpZPg9DrjWMdkZaTkk2cbdKzS37mg9H77/c89RIBJGWhDWP8fQZX+8MPyNrCC48/BdiO+uQ9x2U9VvydP1ul76heufdu2bdHsuuaOelvlftPyv4RNfEJ2hy8R1xRDXeS2xoeUouFchdAt7asCUsSi0TaB0Y19+IOKTDBRUu3lpGoiQDYGRn5R05WDNgTYnFLJ8yOxvSr40EMgYbgEXJkqYzKe1iCkA1yBZFE1rIpkhBGiCrifkjvsBFPiEupkEJAjqBR2yNqhUYCMuaRsVG5bVzthslrKx6fPRzwYSB1tJCLVm5aXlikMqGtNdzmVg3MAVWmjari/FpRTuzuKlSqj53OYIa/8NKbtzAA9INZlinE4hXUzVsHiAPcGEeekJrTFTtVDCp7Ithbg/JTH5YDY2pTuN1Ov88CYyMj2tvF1RocCUpPFxGKGQ1HQgWVskaC6yV1jDBDUROQLIY+hA5o+CZVQ+QBFUEGAL2JV0QQEy8W/nO4NDaK0lhfVfsealcxx5DpKCcpEz2hp3HzJ77apipfDK2dHe200j198N4wKjHRlPR5CZiB+q1KkoTnWttVerUTqShqgURqXQL4bWSS+lDKLSHvnhE1nonlJtPEDL0Nuy1XzJVK2aFR6WiX7W1qB2CMKeoueTnWbD6H3S0P3ntk08iOoZswbTe0a6+qc/i2g7aAgwMX7saRJMSUUNIaHvWFPPL8i4kvPVE4h1llfME7RH6PCs2Pt6veuDZzdU779tGPtl5ZkX9zRq2jJ/7orvd9qFVSC7J1ZeHpixcvUy9qlTCRqYwWoJ2+KAsrcvGqUNV48JCMjCqcMaURUrEtWZiT7XUFlMutdukWamRR5qdkZ1Nj9fr6sFE/prNaqGFVYxUNgxEDh4A1jBwqOsjk4OYBYqgLgEPriD9eyzmWFdYOlhVCRa8TpLYryesJ9J+HE7GiR/a41AXFkvIJynZi0HJov6+91Uq/ELf1WgWt2BIJUDdzu8j3n1vl6ex2nLxNL9Cn/mBvOGfK6e7vBOQyPbf++rXCpMgdt+8iakU7Nw9+RBJXG1Dj+s1rLsNV2zBQRXqpJW4RMqYz5iLkhhm5f1dLaiWO5RYKeimUIjNL6EqjxtevIQjvfTCiFEYMGL+WGD/QJ6piw/fdgb2VV3xRHS2ymTAo+gVzEDIFpMCHZCBsgET0MHqAmzEyqaZQ40o1bvqOyAfidJ2P3xB0RHauyQ6FOzArITHSLlZ1ucoFfRVyCKlGwQzOdJPuaQjo463DFQWf6m6idfTHjSrwaXUNQOzukETa1te5pzZ/baoB3xWs1Bnle4YiIV9gfmMp3GpvzVUtuC1+HSXRUjRyOovo7Oya2Zi8eu2ERzp6fG5/LrFqVDA8JXJhUb26tx2QCNawBZX098c5ctnk2totrS2Rx84lXxfZayKh50R+5cPW3Z/6gGzu1F56cXFmeXhC4X91OvbNVbmNkGgnsC+HR1pl8qJ8+mcGt1dmX1r4u//v4rF9F7sPmMxF8hUZRHqRbg9rpTiisq1FQlDRvCxjApXUA0VUI5WJ4CGq0JnoxhLIDmm9gwu6QhStq9erB5k1otj0PQbra0EfvixvUCWf00+LKXOErPkVgYgGgBPwfQku2ep6EerHb84m9GWEAXEd20pKvAHH6GDJjq/lEyrTGo2Gx2vzucJbybTF49rJ5Yge7SQSYIzav8ltDRy9cZH6AhnbZ41cru8kUmFjn53egHS0+A8CjiLWK+Un5m9lACQiD1XqKQx17YIeQSNd6QN04l/WbAk0CaEheKM2lekYIaODGtRJbq5aqg1S2lgcBAGLLtk9BN/4JUH8OKZ1M+Se8A9QrJWcigcCpZhyaGFCE2Wg1lCXgNQMf+JHAx2UHJ4TdxZRK+TVzUWUCaJCPQojVLF5IGvilChTy5qxfEBJ3aR7KSXBvsdzqGppgXpajJ70ApYPQT1kD2Ut1RtKmRbJOfAqxYFfQqTPGCRswBAQ+EkToRP70IBzaSHSKWWXltMkU8l4JucPe9zB6JXpVWKw35iS3/nEyHp8tr3dMjXb6BzyQABry7muLstzV3FCZcIqO3Ut7j1gZFL/OxgA4CIFcFIM8JtfPPVGVkZXsxPHsb+SeaOQ0Xr3ogeO7VEt6Ha8+MwlrDyLTxZjmrzvIE1G7uygXHzudN+AM/KRH5ONuuy7f+QXhkb+8D+qpXfHvbKcks5+OXKPyfFQrbkqVhCLQHFrtQ8/kUtBhM8vmIwkIfygwgEcIW8JVzEwDUXwSME47wAXsy+svcO7yFCPGFGbllka8A+KBQSBCwJ6wJwANHAG/igNroMmUv68GZGuzqxPFZqWPFLqkHSFiFZlpdUz6KotrZSJoPK+QinXHulyl0olbpQ60gxTK41kK8pdY1pDTsjqitYY1Hvhy4TWkkAWAI1j0nyHRZ59fe54960MwBAQP6UqlepQfPMA3BA5rMEoJ2vSkZT9AQkRjxG5+4hMjEgukQEUEFU6XqXP2BFhwmJorhZ3ZxgrnIwgIR3GCXETXHPJ4qwM9aopT6YdwxkBAIw8+ANhlS6EBgkRUNqJ/Q17qctLvhRxmlSBTQO4CmhV7qFos2TiCfSvt1/5UpFXlfSy8gyONaAExACa7qPZIG6sC+QTESeIjBNsKiQC4h8VpNoAaeRQ656SGlQYJimSgOsEtrkHF5nar3qNWC4FcLt3RVY2d5I79USizO3V2CosDGP+6wf8a2ub/b3OQqne39/Y3Nh68OT49bm5eAZ+1aOZkeEE6UZi8XKaUyy0kgEz55RhEhhgbG87YuQZoezX5ldNRG7dDPWBYdK8A7K5JVfmBztluUCFuePF1yoURkHUdx6VSLc1m6pHPv7Tcs+75ctfVftzKiy//nvyzf8pgxNy4H7TLkbpoioBa1RyW+IbkNw5DVlSoYBfT1YxHpe9u2R9R/PoFo+M9ipYyPZR/FNJihsGYGjIiR1DYCCDEF9CbVckRJ40nwncIW5Qwhh8JHwIfRLIDgXV4iUUjq+FdaD8AEYaeh2vBdwRscDdhMWimFoO6aZAN9ZSjeE4Ib5aW6N2FzUJtWyhXKnWmzYEnbh3FxXvdm+x6o04LU56IA8dbn3tbKxuxE0TppA5x1CrfH9LDhCzbV7Vb0gIS79h1aqZm1ebnICU4RWc80bmVVUy6gPgoQejgfVrGcK0yI7allJmEveAumOSG6lioMundAZ/w+VAv5v8GarArR9QjK1JVRxOJzYJJAs1w6XYACTLUJcY+kAEqlUBj+vdolzIezHokSsA0U6n2gxjQ0TIJGgmJDUUd1XJukC7dBpw69QCVd8EoXkFmCiWNRGDPqFpXqWtQLxEP13mT5fk8ddd6g/098qFBSWC3mGpEo5uxa8ID/XFLi07rY7+3t58bolHaRDZQwthsQ70jlyeXqjb3dvxNC2nt3O+QMrnc8Z2qts3Qdr83x1UkET0DxAHFiAjemL67HQA3lsPfk4UBfKHVxBAHRmVR3ceQGAVsAlS05utHfZKrfrX365czcunW+X9n+khnLX43df9PW4ZPiR5gowAzRQnUyvu61WVGFzXSnIyWcyE4NhaULLjJ+xiajaJ22yuC3W4xCBDUYn2GGgDZ6q0oQJGg3btNp4gRsmOmWxBpMEnm0s6EEQJCh8jCvSpGgetGNAhdQbgBGwUqNgKe7glQv6Y3BxwJEaCYqfmpSaYOxAJYQn4C87ifkzTYMlXyvdYC5lSo1Is2m0uC9l0XDAKaKhyNDrJ73GlyhV/wJovVYhgEbf0+XeQuvtKWrNz60FtAMA+j0/+91ehGORow4KCYoi3Hh2mpgquCIMrcnmG7sKUIc9nwmFxtkNY9cqG9HepkGXWSqCVrKJVtSSCnBZgAA41wEjidUqVbAPhSCjaplrVoF7B1NkuiwsqA3B8UwkjtnEDgCdR3zYlNGgKmQElhwEMveBJ3t5u9BMnOxrKAMqbFLkigcqqVdFNxOwAK0aOs6zKlHkxmLwKMONY807aYOwoBNggh8PNLJikTiqg150hIfkB9Jmcgmqm2L1c7Gy1r61uecNRj9fnKeWQd2TvB0YcHn/4wvWp7Z2i1W53ey1bscZcXGJvbqH5M4j4tx9MXAkaQW4ED2NBpxaUG0GBF/H7toPexQ2LHyNDTaAcYRIh0uuSS+fJb4RvH3zj2YX/9bz29yjG1R51WmaeeB1nbODOE+plvvKq7KyqNU9qNrMtowNagXv1DRUiXTSN2UIQl3Lxkrz4dY39I7Y5gEZLRLIII+zDISMAM0rcN2AO8MEgUjEspTXtNnZpgWBtSqPM2lbWFLxQ8+JUmsb4DIFB0AQGG+qFwwxqcHrVVSNpQJgOkaT+APhCq+Ickz6zSbym8XEuBoLg1FGsOsrlWqW+nUjUrU67y2Gr16KtjkSpCI3E0iUq5whWgd46bh2Qz1Twx47v8V69mqfrbx1T5owB0KGbB38BQigHCnv7gaTtMvoSlqc4npycBvWoBKE0gUtuazVWf+OMVCdkeLc6RXCvErdW9TRU4gIdzBiu6MDM4PF1oNFYSjU+H+rYMPoRSMmYalhIE3olKoxVAUViPkGFRHVgJIAFmFIU/LRonZYVmx4UYsCYIgs6R5QTkjb6whSaG65G4TB1FM2OMkEsABhcAjIPBK0YM+hBS6hZRT6YTIhdDTOCHgAdIZQiD03s1YzfINLp9tVzO1a7u7WzNVHe8teLS1vF1y5UOvq2+0c6yjvF1FaVKWYE4clWkuKkv3Ho5O3HZk11lvZUX92UAfQa1cQPamXfesDu4AmgQiTwKtb4nnEsYwQVVJKtJsuL11Vpv88uh09IzSOxs2dHHzkpVHzZAnL2nCTWlAGSDJZS1Xa1zkmiMhv3yqRYTCCSMOhwvyxuKskiOKhoQAlAcAQbcO8Avn9Dp4AR4cY6R0B4YMnmh0FQxUC0zXAv2MEAIMKj+S+T/SVCCjaRMmqkZ1QA4VnRKOhmMMRD8RbwNAA1KAMpDkbEQNHYGEhGG0BpoANaIlhkdzqcLlvFUipXLU5PONy6U4ljcTcsjlSumIIyHWpYpGNqTHUPawKhqyuS3Em63KiY/K0gPeSVrbxWM9zCAIxIZaGVKMg7DkapPxqpu4Wh7hQcX3oFNHR+V6Vw4YoMUC3bh4naEtqIY0LX6hYbpAnTIRXQeryZc0wsrBecdrQq5qAGRsmt4BPz7pqszivrkOvD/tMpYPAGCgT/wbSNUUR0hCAL2hwzEaGF2aElJZBmVfUG1AxBEUJ10FH8LUxE9AxVoswQSet0GbgOZUlIG1cMKOMcg2xQjlcF6HkY+iMGBS0lkchM7Cgq5ngV4grm4f0IuY52J+W+8fM76aQn7BnfvbunYjn9168ulDSz+7HQNu4ckqu/ry0YDefyhUqlnC1U3Z4Eum3bjKP5hR0/iPvZyl9NFPANbxMzQRXoOG49ADMsAl1AEmXqxFp15rMKOjyTpdWrV2R7Te6m2u0u6Xk4LFsp6RqRq/OaTwQC0y9q5A0CwObGH7v3Dlmdk5k5jejhKaViOuoirZmkLCTDwKnSoQcYMFo45FQIYHxRChrbUGGBjkU5KMSgcn6CsOxqLIFoEL+DTQ8INZirH2L4mPjIVLJgyC9YCCFFBIniXPACAxD9w0zgurphIM6nKhpnlqEyZ4xXRWCHvPokyFB4L9oSsuXymPdeX91u6+nu8ZXry9s7uEKXC3IorBHdTQwWTcu0+jz5Rq3MhPWF2RQdBYZvHbAhUN0Hb751SSkJ+rDaCE6+44AjeB45hOxn3FApdbJqh0Mt9Wot1iCa3NElvj5mng9R/YoIsAEgxKraOdxj/BtkADYffjZl5UUcA7sKXepAkMSoCICF5kUhDg4beYAmYhI4koAZx4a4scshQW7AEyAeVydwgQMHNDNas08lOj4TpichDgCJ1KWwh/JPQI+VhRNMhI4ew4HYl6AcP1v5qukZ42bYVB0j/vkVOEE3+rOJn0IB9IHuwasggO9a3efzNOq1jY3lpYXZcxfOwEEEHwDR1HSdKmCmAc4vbjfq1YG+bqvdFosnAHebgSkSvHkEVINqSMwoKx4F1bAAQgIAk8B725ExiTOgisHsC6sLurKOJLUiVmtmrgI39ISl5x5SYsz/p+CnTWwh6erXgBvla7F1icXVvkJ8EEi4clntE8LK2K+ICRIvMDbiAEmMwqLEn5QlxAqcsYuwZ6KoGxKFYS1MJAhBnB41i2XFihG1hHYNdx6IgRpsRfKVxPGIpLHmB/MEACl2FxINSuDluHBv1aRgJsEMED2/Al7gDdHTBx4BzoSt6QP8gzhBdoIduIvrPOByeb2ecqmYSGzFttaKxdz0zCpECxAYUNz4u7ijS0uxdCo/fT2HjlncuZEUA6zhJmgb0kvIl6H8PaShVejA5sDqe8cB2gYp5aSylVgWKztAtKS6Iaog+LLFdnRoELaRFh5kdglEUp/ahjmOZ0DcIKvDa1oUJJmBEaoQNsIc4imQzkGVSIIERl62Ysob0AMsBJL4FSOKF4L8BEkrJuMYjkI7Iwb0z4qxX3EPTOEIoKTcCn8DmQTo6SgxHObAAVZmmWFZ8maAiG5BStEEvWI8DBwUQiKIN6o+6BbCj2g3uUl8R+COsoIgaBs2S6cjYTIzsj61ub6zlcHTdsiKmbrFchjtxMF8sr6CDp+f2JMp1eqY1sS3oHiw12KM/YUbYlNWVPQ2UdCkAItmP6iH5u23iCEe5AKyoum0b+xIb4fYxibEnZ5+Mz45o3FP0rjqsO7gWUe1juM9h3WewwqzJDtUdnpht4oG18EIiptgFpYncXpGirmCmkVIIbA4qJIACIACYwz7hxkUzLGBz6DpSJfWz0FrjJDQcxgBQaAzo5QKgaIwAb4XKmGsvArP1ExE0HEbg4e8N1qCX1TLmUJrgtoFpm0QNuHPHYUwVxD2qCA0PPfAAGh71Q+mgIVQBNFqrgcj1vmFWapxS9I70aDcA55lfvbVy0rftJBG5K6ov4nMhEDoEPqzefSZyP7VmvyTgejaZuIWBoAXEWU1B+LgHQf9hXXV6E+r1Eb3YlkQaAnxdKqwtKojJXs4QD4M0wKU1+hksTZ9nc5bR3kdkRkeJsUIVhE52Jo29cPoNbgB40j361c1j9jdpQoa9gDVvA1xhQAGHFhEHIgWvKVmwQwUjB2FAANzmJ6Am2lUgJKuUIkFHBEYSDVNKWAOGaVM8gWRA14BN3SPWoBySdeDeBQF2g8IwAZB5mXkJXtdw9XAEr3EDWqwIYGI1sG3NRsRCZLU+U0S07awOvCL81qYALf2YfojMKqyTHnr2djYbt/tJ45cvnCxNFfZU9Ea3U0DXG7ZMagytI0YwK6DCWFjBlJXSQeobh7wbIQRYAwiE9Iaz27rRUDUCRUw+aTbr9NlRh+S2uk1G8mQHn/sy0ve1ue8dxxTcgQa4S4lSnQmiQRCxgAEMxKzMAdSIBCkD38mzFQKIjZF2UKpIpVtOhWGCn5UaOeEsX/RycZHdBTE16miAfuHYnKS3oAOBoUT4CtCTMAf65E3q5WMK5rT7AFKGPtKRQn2ErwH6Tu0HEZVPeEKqwlDhXSqAFY4thYlUeoR8VpehDWB7AcXdU1i+oNBjxP1hsO4nkrSWrKsFsr5muyCU6AsE6jyZzXbhKEXZOINWYKk6gdWowCCEF0kFMqmkrcwAG4UDFApq7/69gNsodkxNPBMcHwxpyPt1ka9riE1nyRShqp5N/YDdwFSMhu5Ol31DoeV+6FvQADJ8n6mHiJisUZIb+EHAzKoJovHTPDea3wjfYd6GPi+xJEoMcORgspQDpAsZIo2IEcD6WOAapyHhBxN8icBBwzHpD4Cs9Ecfhh6QNUaY2MMhuQQQsgVHA+sf56CykGSahKrAh0sgmNn2ExDS5hsqLnOm8EoIgqehMCxyiqNsREW3Yk9f1pyBE6NXMEkZPEpGttLITC3VAkWj912+IilWisUzpeXdKwhQ82wJESOWFb6UEoxhIiFxlgqFjXBbjn4mTfzCMsAMOKuKJOCBqHs55/cIWkTNsoPUWIbRvXVEm/Edcr0Jz8sz74Wv7rZwlRIQIcswPbwRLSQq7vPuLlpQ6CEJegH1SgJtWHQeKg+7VlBozToaiZOsASS3sRVcLeo6kzzRawL1GqATPcpbSDih7wwsSCgisxiIJAC1IxLjY7F3F9dUHnH3G4Kb1U8mXp4dDWzArDyCdwQqyAcghsL4ggjIA64DV7lm77CkLyQ9yAciSL6/fv3pPyb5a8/o4ULABEXC9iCSZQorDkYYLE276FDh5dXV2MrayubpXGXLiKEl+4lQAUnhMObG7rW1M2DAdIAxvvbGaDFxLrwrGAsUtdwLGhK5OrU+JLaAkraPWNTKIXFE3xBUR5i7UT00aGAnhwpFjm+VMClMMIiRhKjSakcRBoh+UiyUD/ErAAKWwEfMh5rHo7nvTAG0prZM/hMJMXCBPsN2wBx+o5cgS5wIaBdvtWHblNpxEuwdfDCIWjsHHQ9OEZB40nzIKQMT7JIELFqIAtbqh5HdLgU04QPwQQB8mLM3Aw4cI0oEjGxVM7Bt/rorr5+z1a6PjaSeOy8EsiYIWjeiCh4KSd9OTkwQvu+fDHX0dURDHtTS3nuQVuhBHgpXeRmQ9iGgbXfmA3MlBCd+HjLwRDpsi7BklPrBtDG4vGddGZjXSknp44bXNWnZvriEjqPpZJwxKSjv4WxD++SVy7rpDxEKbNPD+zXbIzW7nVLV6/qAdxGBk4ikpAX/gBODmRKGgTVh8xGbKJUd5bFz1SkdSUCJsKrtM7pEgTkcIhJYUEBSdBEPzDD4VF0LCggAcprUW6FHa2mDkdVfPATcgQ6pc4Xb5iqIVgCwkJUQVjAEQHEN04a6AMpcH8TMrwQyNMrbuPT0tUV6q5fn3nooc0/e7qxIHJ/WC6nFP97qPpj+m9G9nl9/QP9drcHIlqOza+XZC8ejd/evVmlKCe1vu3y38oANGQagJbeOsLG943BLhUJ0jR/WmVlSxl7op/FHBRcjIVMUNSHnYQEwik2go2QIoSFNlT/BmMDM86l84yKKQ2b00NKsiBKCB3rAi4n7wgUUAK4QdiIKu/JmARUnMIPGknAUSNT41LoFyi1xVutCwX7ROu4Qs9BNqlHughTgYbtmFI57aI3QoPIf1XixaSyH741modbyQqjDXATMYHAOiSCQUW0jnoV3rCJTQIksctJGxmsa0OwB9o8IEWUe6FRqVMYtqtV1kifmxoHeKjfrOK0RJABei7nN5aWbTZrV0/PeGwaFl5MNQW/Rv4VucoLdNKjJ7ycoGHj72ux9HdjJLHMILEuhT91Lym5ei2DOQBL4qccm9DJUNpJrNLtna6xQImw1eXrQj6tTp2qT4a6NPBF5Ah5BOi0qDOsQyAej1WpprxxMfEW25hNOqJgB7yag4V6mRAzr0FML3YswRmC90DOBEORfICO8ir1jui+XW1XqIEDkd8MBKnegJEoRzdBTwQQsg8g8yqCoQS+Cc1hPaPycF0YO9DGK8C4giQYLQBBz9MQRKnBKEwgqJ/SUZ/WkiVzHpu3kmv4zZQscjavpWTeUD+4mQIk5Wq0tX07lSVP39bhcTqLjRrTwKoDfg3HZDLpH//kp27RAJAarr00bnWCW4zyo1/IVpY5QrPYM1oqMmz6hneKtQbh0UnSEBp9rTeU6gCC+qC1Wj5vgzTpfVNCMxK6jqRHMDNaPli7yH68YUCD+CcipsUO3MYN1OS0KCDgBNV6MBi1tYYN0Oa4ZeSzmJ/GwVMITiJoaFvuUzxhqBGC4BkQCSA5uumyuEFqRglODWkcawbUUAqAIXHCQAwGEoQIo8JsiBnsN0QOL2cOBNQPsjnnfbiJiOJUMRwI+DwpbCKMW+BQz2hh6l4mvSVUus/OI/Vme9o6w4FQsVxzemzE77wW6W4oO3K06het86E7iEYAB11rGPbWA/izEhKCFReX5TUBD32E/dVhYYEmiucDPIcZSQ+j0tbpgiEuntU1XCGvl5+VPfslDbHi1rfrupDquVZ1qU7UOlLZGdRJA8x4Qu4gBVi3B9cSSe8FFMySG5RhlD5qnAUoCf8FNZYAHBIEkVhvdUAq6xq4xEGBi3ytOhTkGsygtjtxBUJ2dBfTpVej+x4mTAJ/uCKpiwIARiJIA4MKdlQKHcAAYxTIV+bBQv0ITUgVncDKHZgJcCY0Bg9jIaOvavZoKIR4xD7cIBplipSxULoiLF2jHXn9zeRdJ6bImqGbUvnSRrzR320N+f2xjTR6a3k2vb22dAsDqAYmOolbeQP4YROsAAx9NFC84eTRd48JE2txTVXrZBEcsAd0q2ZcKQOLqi+ADHDZbfVNtViwXqBLnBEuqmGD7wsPIDmwOhD5yA+EPeZmRP1gYIH5AWNBEEECl7wLK9+u3rDaQqZ6Wdd3gCs69CcSSVYEOSeMBTmKlgTijIFvns2Z60bnNH9VZ4kxcScHj1CcuKO2LM2hFug9iISWMXDD9CeuES5Soaxih4hCLzMK9AyuHlGRjta+7s7z15dZPYkx4GbxuixCOijDFV2b4E2WFXoj/XOfGBkaHl6JJUul2hbvY3KoMWIR0xXtAz3naeiGghGkrJoB8OWtR4LazaIGUpEAyGJAqCKG2/BfmNIcl0gP1iAmPmDBTc7qylZMH33lFTl4WKbrcu2yka+QOIsPQHZUH1aM7jZpBygIUDEcdDehSRQFkUe0t/o1YBtOaNNIChqLlUnQVBFTWNETNSY3pnm7TljFD9aB8Aiimtdxf1ofR+W6I3TcBHKBPCOFnbkhLBb8XSzPrOoBdfBRUAhUVLGJUyPpALgVrYfrxQpBvA3D2vAAdaYqKYwBHGC1nd6h6yuvx1Rt8+pLOfnp23sC7vXrM/V5kVfPne1p6xjsG9xMJhKOZDxbv2Mieu5Cem1Nw7mr06ug7OZB3wBBtdxGh2N6ETLxGRNo20x/oNdBM7MJksawx1RR41nD4qqdWCm1mMi4kRzoc6QmOhRCwHRm0Qfix86sQh/9CLgR59St8s1QUQJcVOGJA0rdOdzCU0h3v3oOiCtcW5x8tJ4jII6SQgFwAGucJKW3kEES3YThDWtpx+kp9yTNd9jcwG2gBLOHT/NOXgWZcRuRO0IfiH/GzxsYDMoaYUYFc686fKh1gkUMmJisD6OWNabxoZnhiUNacQX8PT2tJV3VQNm8BdPJQqncwPOvLsIJNEkbC3ML/e3dxGyQ0Rgd81BgvklZuliioQkGAvvxhS+lpa+87dZjzfSbm9rNGxD8mO74U7AtZrYudkG6H9ufBgEjJh/d28VSj4sa/yVWvbIqfeNCKQA8pnILv7NVT9SnJ1IB6TN0I3cRvYDUS2wgY5BPL4BYq1j4E0XPn82J8Jx1GAUGXQYMhGGAspE43JMz3o3BgrvHRN7pIiQL5AE4H7oK/HkW4kZ/sdbFlkIYMkCH8xzmHTKeiB+xKchLIxNofsO0DIfACxoMnQwbuF29nW3DAyuBmIqefrcsAnGHzRfy7wqkiXTEUql6tR5w+KzVxu6R6OkriWR8/Z7b/Qsz2UibJZWOEeK4CWoaZgiNkupTc/AXVOY37ABK6DX3chG611S38WQQmtpDgt8t/kql3gANNvxo475wFR1H79GY2KoMSQcG9cPHVN4TH8AKItNhzHoCPsS0eJAQNULIG1V9Tda2c5+ExiUwZMidVBeWYkRc3eIApgj4NgNKn8FWi/mGTiAlunnEJFu9JvieNOPg/qDBFifc40KG3OAHmBBrAf7Hf8DUUbakJ51qSpHkx2wjvEvMix5yJ+keuq2xV+639Xa2Uwy1STMtMjwsWw154ulF5v0jDPeaBhz+wLkrV9dW1ge6OmgYtIdMp2k7qnAGqIAeQ9FEGFFB5Tq4fMcBWiEroEsvEDoKf+OZk8qhrk6LOLAcMA/UfjWVCGhjfFwsCmp7Hv6wIg825ieoB9cNmMMqxAbgNdpF4kBM6kXQMpQNsgAsz/Bq/gybWjDGy9Fu/mw1ng5s0G2kPtchGkYTNlAFBRAO8D9g5guCF+DPe+gArwUG0BTA57xV53Vojt+4y3V+NLWSdJUlKhCdefpA9WhEdS8jYnTYVBpZIh+qhI7KctuslLvRBs2jtvn+yyeXPKHoiRMDB/cHl9dLF2e3n3zx1MpK6sCePR04PqX6rvF91O07HMH2rjCFR4Y5dWyGby0WIiuMgMscjKNgAnzmLw1dlxkxoReQBeKs+K11SEK7HYhU8mkMKKfHYyeapnKUoC+Bc5PlJYXGb/jc8ADgJiGFwYeRBx1i2MD6yDCkEeatVtINmz5BQn2mC7REj/jeUBSqZgKIY6ZL9A5y4i3cYDX0ZjPnAzfxB9A5wBP3cM5LAD1g5bacxuKZXUkkDoLAYYAHYGv4m+7RTlufTNwmq+u6uB8Ze7xqBJLG0bFoCVLhu9MRu9Nm3TMmZ6aElZSYPAiNA7qjB937SkW/x4OcunhlieTeLhYvODQWPruZKstZijpvUD19ozM8YRwsfOQdB2EoevaOA0QkUSbkaSBsjwpx4j/IlrZO9QZN/ReYYSU8rz5I0JqpjD3DsjClQiRFQDmtEGgKI6aeULDg7FdTBz3GhAdAhwZgUNioinCA4zPABG48yMGfYQN5iBQA0gp3chud54RvPqZpvRM4gyAO7mw1KAOV3Mx32TBV3CALPBIzJoVLJgGFT5KLEJ8xL7ViF31KTSuKC3cZQkrpMpFwPxOU8f2b+AJHbofNUuvpDO8Ppk6l9ZfBFpmM430tdPW1dPZ2TK2lUeGJguxux3r1wP5nLyOnL7d2R9dXE846Aq9k+glhFM0o8nlmX4EQBsGY6CNw58fmARHRKKRPT9Av2XQ9lVZ3H4enwLqOtXrNWrfYbRYYmg/MCmcQSkP2q2oGVkwJ4AoC3q+mDi9ClHKg+KC/EHLXb2QJLQNHPpAYHQGIHDwPqrliEKbA3TEwZQBNcHMDlMM9kZtDAuhNrIBFbqb74I8bGCqPcG5mU+PGMU0ItqQzuJZwJud0GKXcP6b5CjIdCFeigbAocQ96i7OI+iITE3B3tIYO7PL1T+UuA7FZ2UBCMTN1vbhvvL2ns/Oxxy/OEXnCiI8zA/U85ZUdm9JDqANvy6wmZmiCctqaEh5ZZYykElU47zyyNw0Lhk1EDkue+YFAl4g5Zo4my8l1OExQn0e1RJhQZqc6g6ypTp+RUpj+g6zjmdBpXzQOt3M/MQbcfQdgp48YRYCLpqIG7PQibnRV2BAC/eMeznsMNdMMAAdHwJzHwctbRxMdzT+BNgffm+Y2+so5Hx7hNgi9X8os6lAy4DUZScQ/y4TCimTxu/t1FQZITYu+SPxh6GTV+CPwilmBBiMk3BoeKnTt25V67Q2tYFw07ZFLyOdqvQPtLuf0qYKuH8NEgotXL2oYj077/YuzGyPd7YmlGMEFQwkMtmpwkatqKMhQP99cZpTvONKIHwQWfiNYxBDCDMU+t7ncPmetUCYR7ATcWBGIc+wcnEgIiygQLAEz8IHdYQBGCG2jJZA9QERNUpAbuckArYZ2AwbEb7UP6N86dgwy+BPEhEzXPQZD9L6JDKj/rQM8cTAaPmkzVNDMnYYH6AD3IgvJsmJIICXgAYDLdXQqzgB+OYvUpJLFZMy9sKiLg6PfNJaqIe1apdQRDR8ZzK0tqIOAu3gJ+Uvtvjdmt3mvJ7W9KGUKvTZ7rRYIB3o3M8Q2timrM6NV05a3wWz0pcJosG7xA955ACPew8FouRexCPVTP44odLhtO+l8iAlGRN4UNyVx13QydMLkKWFd9H0G76GkFRrUiUBMPMwYUeWqpY3ihSMhr1C3KfyNmTn3s4YNIJ6MsXzoH7TedwtFgD8OCAjw0XXg/8MO7gG5DIvugzi+eSeUBRklFAIQN3oYww7yhHIgBrwCXETSEevr+lIIKdxaT6StupVQh9IcAojaYURqqeB1OfbvGR54Y67AOllmfb5r65K3pKze5ZlVbZhtDFqj/lq1ODzaF88tV2sNsF0pFjJV1KehASUG+kMPPXaY6tbDf+sfxh9IICsIz5iwtYZMYCJi69VaDRegTIVDw0qwuqlPCU3AAABI42JehTukzwcflxY1ygtmAR+BZ8rr2oywTxmrvcVIiCbhvr0H+hedhug5VswjvCRitAFXaK7JAOZ3/QLim+a7eT2vbLCzIWuLunIWU9mxfZErmB/AHV6FvjTEaD6Y2wgkegt51SruaEtljeQTxaQIIWJr4L1kC3oGejqP7Ve7DZFKqSYaoIMa9ON3WixWFjpmoLNwW5UCWUoGu8ZHLAvkqQ0JdNI7xARgBxSMiRM15XnvO4+0uQDVQGiQYaqgPACpEG4IRVpK5cYOcSpNnphnMQVYz4fkFOPC5gwHdW0O/DGiKP1DetI/qHEV4hhYVBghWkfIYkZkaWJazq5ruNAgfWxCDJBy0FmuQ7scdLR5MLgm5P8R6s+adRS3bgoggidJrV9lNXeq9JhxhmfVTLchUxCdeGKwgVIFwghvhAIKpolzqWZtCzWuT2nDaDPsCAQHuAh4fOHwSH8vq93R0U6CduZhj9+2trbRFlT74dqmzCwRzLD19PYcPzoQ39mc1Ym6mfQOpRC8Gf4smiEzrkbj1kww7wKdtx4pIyIwGZj6zUKDxNzUXmgwhHTA5fZ4vBVixtjQkA6pAfgD7wrUIm+QT6oNGAx6CBXhNXSMHnSZDyeMGfy20wmDhuit7b79HDSDoeZIoQoeaR68hJ8YDyebRpvz54YODzRj2/F+Kt01bkKZUE7NSnBJMg7DgMCIhYc2NEmkAgZOMLUVuGLkUaA1IlfVWjWddrD4LrEIWBrqQwmEI/5A28BWttU7VfHJMgt2s/RATR597GXoEAL59LsHpq8t4iFQHJhKptLJRouRNgySBtVcISVEABS6ZkBwI2/+IUdTNAFOPGCEDjxAgc/CwhYPuJwN7/q6o7WzsrPjiAyogwgzAPyVFV0Hm0QeeOIiwQaUFANHQuHw4BWgnDmoz7Hl1epQoxGwAFWgxIu3booYhpI1qAG8nPAUAwXO3PMPDwa3YrBJQGlRe0JJEus6EANEtYJfliVGCFN3hHlGWI9zwiSIeZQwXSJTgQmqitBUwNIyhlx5klLf/MKyb4s9ZIJKLYyIdsLEARr+fLWjRdI1mabvkBuLGGVrO7EatEYXuYspGRvxhHthYTu28e57jp+bfH1mqyksbaaftMW4aKlUI+v61gFGmn9xl4GT4kwbB/U8QUKAH4wT3LCQ5SmrGwCAs4VgG54E5rChSKJvwB3hii+P+OcZEKjkzsEJzBcyoAT0zX7QFR7k+x85kE87puvjN2/KG6Ma3KR0JFUimGlFM8YA8CA7g2mNpFmaU8MGQm+WvoAJ8jggBrcGHmAtLXQuSzjCtTxLhSNUrLkLltPur166aOMi0gjQ4wnYyN249W35ajgcYtGUZy9J3i57hsQ+L1eTOqp1kVNPLkIjnzzoi/qDNeYHYKGglMlEUp5F19EwcD0qFd8USMQr+RTj+sEHAHI1xYZxdzEq6R0dZ+n4kN8VS2fabE4H4pw3Ls/rHAZ0F58mkoC5ZpGwXJm+GVL9gLHL8vSIWBLeDNG/39A9YgK0I9FBELxG37nCwUnYkD7dB/h0esPYSCPm1+ZX2ngLfLMAlSFxRPXysoKayitIn4APGxviflBzgYgh7UCmRcMJVtkuyLZFBkdlc03nOQBkdKya2sSMcSkpPo3wp68TlUoQAj8NQy6pehujzsrUkfRwty1erEVzOmOOPBf5OtaJwOw4A1RZPp7wddDX09m+MLdx6dzZT90bnr6WYtRU6hmrAcJjmHxjMUJ7Nw9oHWBw8EvzSJkrWq9hFvUBAeRhoXBCn5lUsuZ0udx8SBmGldaBeFN/YWtiAcA3yBsVTgAXCNISYAWggB+s04MmcCF9Tvjphx10io5wv8+cYDtxXFcGaJh53CQOsW1IETUFCfYiE2WYsEwJXzplRdfDijwNzUEEWO4YCVRAEOfBZqDbmyvqsZCIYfcxCIUOJzO6icGVyzVIHymlEXi/ahJ0H5Wxflu0NdLd421ZzK8ZvgODrErACNsNTSFYrk7ndg83Ij4f2CfKoyUkhr6Uzig9yiOtDRgovGBl/R9yABHu4ptQAg45Zpr6YFQCF8SeK2FFNyrbrdFQKRUPsIYjC1Qh4yl3pUlyvaROIWi4nawNlg+8zYoLxJpvGDz0ESTz+kBTYhpxCBbg4luPhqF+YEcnOeckZRgDXo5JaV5cYUmzxV+MBZKEPbOaXicZXCog8Mgttc2V+ba2FishZkgCYgAKsB8MSetsiYIby14QS5RLWnRtY6JYSpFh7f/ohFy7qn2k59iNQIHNl7Di3NjP1KgXuto6bLNr1Mp0sk9pt2U+0VipyiFYmIgslRMV2djODXcmh/sj1+eTy7kUQu9aktdAeLwLXBUNQralHQjcPPgle/O8+T+0meZ2cnaUYZEgIoSgwWV3DVpHmTUamgXARIYzMNGweTCpMUPVnCCuYhKunJM+QBJCdpgQdhKTS5rYskLWjG/CtAC2Wk2HAPE/PDzGsWRwNBozyppnoct1BSKmMBOTIVOdAmsiDDCD3bE5PbOTyfgjIfd22ubxBCLhQqXkQDUlEk7oSMMOXrlwVeU9QR5CJahmVrhm5j5uJTJ2e9seCdjhJdrktSWSZaw3GlZmKFXtFuvI0FDP/JXH0xr+pyAR1kwY6m/2/nRObPP5EwdCKCSXGRi0pqIGO6YIUyHDGD1J2YafEo93VgPdgABYAvgYQkBURY/Oi1JpyCAsVpvdoW5YNl+I4oigqWBsesuqhh09CnC1LqA55vAbubDvgEKe5TaCSd2zzTNu2mgSAUJx2JB+0rABJAAhMCAOiINfkThQLjfTo0mzWxdTLq9pdWOKxbNmtQgE65fZ7mgzu6Xy5jJ6aWZudmenurkjI/2Jjt5cMBK2aorTpPwhHmW9sK7CQnk99uoAhXobcvyEyvAZSkpwi0E0O/MMqJ1CXAhbkUxrqEtz51AR64u3tQ0NJb8+V8DvKpa1QIjjHB0UOZPT3rM25Afu72uNVOLbpz1RZw5lqAzA6/LG3OAbKmI7Isx142nxZDezNCu6TvpbB/3kLlyXFtbwIrqjdan4JEG/y1UrFXSrRq+XSKgxQMnzEa6ClImWIHuIb2R0nCg1eAOLnH2wELqQMcoBEBADJuzVQ5dbblJO2MiYtxq/9YR7OC4aTgA9K1Le1sVDaIKMOjyGgc48QAdgitZTqY1tfrMxW35+cycctYTtrnyx7PUFfGw+AOkTT0HkIFRHx5RQKAZWvqvrLkWsqENROeNk9XoIS/FK6SJMq1lzFcXwQyVv9bj7OjoiviuArpZWqXTEL2dwrU0v+YLWUTZrW5uLrPCKZqD2EVeYsRJMwMegvgW6ymuRkDrLP/yATfiZ/As9gm35JnbiidiiLa2NapnKiDrGBpyMfKVYdNeEdpXhIO7QBlj/hE3oE9tdwXgUnDNk8EmxWnpKKyZGd0l0xGzXGzLt0GtusBk2eKtPDJEjamTjBUM6aKIlYSvJ/m45/YY6eBSMYHHBb2ibYv7K2ur6VVMqYpOWTmdocMQTDVtdTmpaWwE4tg2ikAJVRA+7DdN/dDU8wLyR73xDjhwTNrRDS1y/rIvJUElC8RIvRw8gZxmOQoECAn9ba0fAQxQaJ1sL6kFLxATxm/1mGBwvvPhaNllfSsju/jI1Brs6YQDY2G3oXRGpPEatWqcJXPBAAlVpnnzrS9nPyKFmWBznEDPPywIJbg87krowf2BZ4gxq80ALVIbgBJviFc5RAhANlWLEFnkv0GflYSTo+pYuG8ZSHAgAlp50kHB1GKMIouCE/qEN3nGgivjJq8uYqd7YUsChVVCOFNlQ3ox3tbaeTSS3EkkKiMKtHQ5rY3BoyOH2dXR3m0Kudm0RXmU2JwWJWJxEIZgrSDUYiw4z8RfiYpUyEMNKT2zzzVqOdWYY+3SpTiQwOMA0IhahlniJ2rhQozHY1XLSGX8dvmBuz6C4bmEAurtclN0e14CrQCWRzsHCIWRMxD0p1gLyDAIZRIrA7JT6jtE2/+QWbuQpbLeOEBWrtF1HuAeDIRZIIBDXsNSDOl3VTSWiLl3G1k4s94ksIArEwregGKeFFsmwrk5rLAgP4fVTcvWCYgHqf+lFeS+F6+B/ywg65L3HnKO0aBzS50RlgyEtEOyVxJzyQgYdYpOlGSVi1CNlp4vz5XT89NkFNjuDr9/18Fh377CVNdPJXKCwsMdawq3siK6zDiK6FCnxH91JADOuqnKQvjI1irIfdNzMpE6/xLchPABrkZckUEHNNzM2kb6qCmEAqipbRvs67w9vTrJ3XJv17sOBs+d2kgzZHEhtCCXY1TW3QEpGri7pbkaa0VFyRoACek64K8nisNTcAGc9Fg37N8/f+m4KITwTDDxqUdBjTrvNbiUkXm3grZPhAgdE3NDCHIADi5OkI6QGoVA6Rx0Ee1VQpcjg2VoZlKDCWLcXmQTbbCXVCiSQSiCPdZ4pktOu0kWQgSjigAD85oTBsYDKnCY7MX4QjFiQfHgbIU7isT3D/j6bn7dhrA8OdaFhCS1jtXMnhnvTzSAOjZ3QQ3kJ8Sy8W8Ir1JwwjzalZUiksZnVRiaSQWHwoMRgAKY/UsNIMpX+dGFnYwJSvxWGt7vafF3ReGND7crJhXfKjjWmLF0tjPdLHRVBcDKgERpdh4sa4zKV08amqFktPzwKBH4YPIiCzKAEv8/HEjmlYsXpsON3Jbe3KrVGtKtPy6h0zntYLR8oGxk5M6sUBsfOXtfQIQEJnLRTL1ZefclStth72OOxV9Y21bT9/Odk1wHdlQfnAV9OkYgeiBid3GUYEFppnsASOZk6J2PM1qBGMCPPPmlSIbbStcsrGzG/N3DXu47r3vAju7XmF2bDX9EYjqkGwNdytbK2lVbCRbs1185WtcySRvYxHxJXmEz2Nht8R2XfIZm5Jq++ZHY8qQmFbFieusBmTCyArqzBKzarqpYjftv+IfnuObbjrjOJYcZQyVtfUM+pC6uzNbk7pMsR9ISda1tlJvIos6kw5ZsPWS0f2xvcYIAb/731DnOCTIAYIVH0vwPeI1ALmGxWlICHzAUGA9YnWIQymrYQjiPmOCKWRWPwh2ZX5dHHq9mdQi5XQyfULcVi3m1ze/0eZw9LQsRkflKnZnd1CKvOeld0aokFoCPsdxmXa9MoBK6U9E8CC+FpjZ1h/CAnKKmAhUb3SrRX9z4COkhJEnWk2Ym3sP4ZBYYqxiA3Rk7yv8cMGzOAeoeY4hv7kvwotb7UWkPoCCFWQ+Al8zPqSRNZgsLI3qMu2GUMpYw5R+kP0G0J9fV1H9m3E8vvJB2yFNfurptYSRN+3EJ4dNjl7uu3xpbzuCpB/cEE1IhyUM1I1/L1+g83gehx2ogp+BQqasDMDYuak06PpW4N+CMWTS/ycSv8MQzUGcP4TaoJwbqhr76swhJD5StfqOfyq/MLJC57ukbqG1vWrXijUrKMDbEWQ23mio047649uhUcA6TIKV9VidZa0B0GKIRu32+gh6ZdVSP+9GsyMizXr6mHHeyRlTXXroMj949Ke6/KGuQOs+M9mJEFNcNwuwn+YLgDye15hR6hQmiDNUUIhhKfANpkpgkHgUpdRYrZaiw2300GY+fJ74cwlk48qKsbJZbF06eJAnaJwXcCAfVIa2/niUO77jp37Toy3lAM4nOxCX2jwrwd9nCmClUiBEI9FjsWgAKoyQMIWZSbD9qoj5jneRDGR9C94+AiW3uhxLmddTTCoUAdH9ti8QApPogN7DOGlKJY1K36lxwkhjXctbQcn5tT/FbrK6sbU/P5FHtMhXTlr/4emyWbHbPZnfyNEkRjEDe4eF4XpsWI6oR4aHbVSCMY0Mge4qRVpo0SCb+i8ELqYzuyiFJLp0odO7XB9M9sIkU5Q53JVPA1Js3QzahrzmiShDqrrGmcTij01azHvgfTVZ0qRU8wgShEdeNk9asCGWO5slad4cksJzVDqUslrUECjJn+mfbWyJFD47HSlVdn8+NmWswnTkS/eIom9KA7sOxirDiX0gL7o1EZ6eAyld42yRL1UyRCuBV6+8OPJgNgAiFSqiTdHTa/L1opV1OFHQDcwq6BrB6AyAensCtadAhvHi6ckzPXNdZ+9tTaC9+x1TzraymLx7mTrl9em1YGt6gfNLa1Hg2HHLWGl0K6dfYNXtFNsNkJGA+NdXYId2idAiQC5kMqOJBx6PMSW0kv6Ga8IEvNyz7dk4bALuITD5Bdjp9+VpM/hw7pbgPhu1VsuQh7oAEIo7HmMfp2RS6f071nCqzUSzE84CWLl1GYwC3MZEAzNFwhdq/BIqhg4JH/alHjh90MkKEEJVF3lNCHQmP7hh86OdeYLJfjunX2j7xv4Pe/t/gWOJ+fqe4Jy/mECvxWZ6kLm+AGWoARYHcaHNTKEyKPmoegtXcwADjiIhYXHYNKMZUR/DXoBiyiBwGk0ropNcGxYz1NKviw/pcWQe3G1nbYH8prJNx56JGTh7Ci7rxXNRouARM4VleK7IRH1TFT41M8aOpgUzaZQtmVZGCPkdy33aRa+pdUWxjuYkOXN19V44pIJYIKFmLBlma2H5ZA8KDcdZdjDINutbKXH5PttOYEOAdVOOjgqkJVXEF35KZ4m0mr0AoWnk4VILDsVgQQnGGmUhajCKnt06nZS7Mq0jQQZteB4zyFfN1Ox7usjnBkOfHosqchf3MqAaG/eYMFVNpcIz5uVGiUNckBNCFkNVRYppfuaF7dhwv7ww/6CvVxL3zqdLOTR8Xr8TvstoquruO0YqfVa7Vi3lbO57NpLxXFyBHgzGd8PPP5v1yaX2fdrXwh7Y4E//BLun4jNRBMscZ7jmzI5SvZu49njx09UFpacjHnFcNvflr3CGN/ctQjrn3X7aZ9v8EFWpcMY1lXyWT/iNYW6RyXcIc04BDKukypBXFMoAQb3H2/1ue99H3xPJP/0v/a3o6XKzWU6+DAfitLzN51Umd6rC8pI7Ew1Mi4tPfoKAlY6ZQMv9pXxAlJ8LH9czcxLhaM71e3G7cePlSGZxOtsGzDlpYPffCh7pGFv338anhToP6Hx+SVaQ0xcAD/iykFYFDk2QW5TzUAtgAUDVI5+DbQ7YXzuPcfUD9XlCf5xvrHqqeA0uNkQUYX8p5+FAoVQktWpwMhgSFBeXSpYGXYZAwIe1arnWO78Y/dbT3q5ew7ZgpL2HB4Wy3bXSfxet3LCKrXdFl6pAIOPvYikRzsEMRw75DCVLtI+0BnXXuH+C8TWYL9qKXzq3xi2qynXZh44mGmAlX7RJSZwDamGonpp5DazNVX/59/9+XHa/MmmFc2Mbxf/fcPy/seVCOBvq7NSMavtcR499jafDNZjOAP0hRtxiRMrAtgvUamiTp14ipmgRYsImy/OmuK+HvH/G6bMxHfOjVZsifkBUP9yBba4oD6OcDHlMgDQyy9SDwePdxQNwxmKNSAprnlh35xI2zgcpFMYdkhp9Vit7JOXdBndXtWN1ZK5TLV8LZ6g1LdeiZdfO31lfkZn8uRTBYGRrtdLS1lm3Ulub2xlf6D//YB373vViOE4ZAZpDBk6vL8hTOza6usadeBb44Y7qKkgjgvpmC7Cl0Nj0L9HFAeHjjldMwPptqUhGC7LiDJlAkClOQBgBVbspJVBekAdmtZXn1Vy6hOv/HZ/3btu+b53WpwvNAvL3z24Bcn7trrvON22TukW8WdeVYO3amqhiASvu8W0xzZgzUk1BU++KDuEUGhKNve0DpgD7disxjHBtWdJxzk7Qscr1m3Y1v2CzFfUr45rd2FaAr6vx5AL4UQc8uxByKmGI6xINj5AHkYoCbjENii3vrWM/qHObiXu7iXG+mez+32uF1WoBAIlHYyGztJq8PdSV4+X8iyHbHXCx85Q2FXIOiCs/fs08wAoQC5V+S0qVYApgHDkBntJGT3wLtVYC9Ny+qMkgUKAaeWiSk40DZEI403TEeoWya+QG2mmRhC2IGDaDoF8lRhqGGNWCXFSzeJLbK5w6YuBhh8RA4/cudPzfzu45+/q1cmV3SAV9j69w8f/7jyUkm6o2yzpsvpYGLDVDg6vABfhz8JGSBveCGT32osyMVGINR6mLpXksEsz0AP2bCKpUu8jlaL7Y71zWxucoMCalMV0KR+0/MbX0DyOis2NfCtjQbgMja9x21SYrfe+M7zlIlZFPINhhggABSONBp1ZzBIBmB1a7tQKk6Eg9V6eWNz0+32sVhE68Dw5cvXsV9crR0diJ5w+64PfVBN+d49quKQqcwebnerq3rk6NB7PyTrSTn7pmwulxanXKh46tJoac8x8fffpH66BGKxG1kIqYedlbXnYIp5QbhesDQkhiGA4wHG3UwCuiovnJFP/XPp+4i8a+cb/1cYZD/Mtu+mTp139Rwcdx48eOq/fo7VpI793i9rGBf5gj7XyI8RbShTTrZscumUHL9L63A3UtJLFJPsKpYfk7JZ65diPur9oSavy2o9GaPOx/7c5Y1Ijo7+AEpmInvM12FqgTB+ICqe5ODELUNtt/gO5vJbX0hgH5gi8ksKiyIIu50MjEoRf9CSKZVrjWwmTklcJBiMRFutZEQxrFGguMU4Q5j/+KNsbNn6tFgPG2oOKjY3H5eOcWUAXWB+UYLM6GURoYQEUipCCEeiZ0m8uYArApT2OYgymUgrYR8olT6wQA2rEDNpH/MdjxbjBI8QM50o1eqG3PNTJsVmHvUeYKxfX1GHst0Egz7+cyfkn/6YzM3LS8/IN74hw226CK0TLAfUrkPt0DJxBcyeABk99o7GAya8iDPFIg5l5Wo8OabOYAawDgBLx4Q9e4a7CrVSqji3dk3LYv7hETOLUCm7EkuGz+A0RuHx1LPQ1j920C8+yGWbzVWp6TrDWuceaYmvXy1WqslUdmFutjUa6e0bcvmCvkjEeuRQr9Y+UNZB5bpXihbdE6n/vWrHszrCCBMH/5d69mZat8bH2L+n6pCrqCLCGMyTZIxV1ptQC0cBQUc5EKltGmw4/5xWnfQNyuundWrmKnGbTg034Rzffo9OdyQcRqTrN75rxCYPhhA6UNxjBv285Tg5hffczxS2E59MyuylxJ/+SfTAqNxzpy75wcIi6AE8DaxQFPj+/UroBdI5NpkY05gVU+OIfLQx4ypgpuxBEjqpGlu0Y6z/Hoe91rCvJFe+DTOaTt/6dYqR/O01A/emSOVHhubWD0UUP+xAAqsQBg6IWTwBwrTIYIzgfD7NUpjVSqGQT1Fb1mhYKdIYGdVoGoFnSucICGNIUKQAlRDKlTfla58588/7WMBCOo7IwrSxEboluE+6R3ULZTL5xEbYeBmPB20P8nRkTejTOJxgphYodVJMxqxqjF2SSkUV2DgVaEbcQUoemKl9z2/+PfXz6OF9P3m7bcCMdYzJKwz5xKjmvLY3ZLy/hrFLInljS30vJB8vRDPwTopP6ANXwAfchaehJGvKp/EuiF8hPGgXt4wAp9tuGRs8un/8+N7u9x60diq0bhxvDYC/0zAiZjR2I9OdFAvMoLB7sKn+0aOJHG5ndWRWYNXypPb27NbW4tpqkRUDi7K5nXZ7fa2juwO3324dGlELIZbRZYaJj7GjPEihYIBNvt74j1f+NeQ3qRvs4TJdYiW5uCph9syj7oBExq79uv8AJQlwJjsmKfUD9rcOes8+KLcpzxAwwGQlNIypwyaTzNEaGVNz8bVXNMT54d+/Sf367OdPDA+K/ITZ6OkOkfvgxG4omDX5snJoMDreriteEgYlkYx7xjsppMNZISQNFohT4a2zCyg5VtABxrGvSAiwDx1Ejl2O0mDpH/ow0BPp7djT3/2hk0N3mS4HzPetX9fJUytrQFeAk2/OgS7r97h1j50Lt95785y7lAyJfJiguaphuKFYLleypXLRxKe96GVWbbkxh5+XIqyACIOZOSdPfu+1Z09PL0ugrHvZbrIF4uZ9n/q7RRn8iFnUsWTMIYQL+7StqK9DLI/IKQVfVOm00jnDedqFuKZC1NphHiAhfAoD0ZLM74EBcOuYcunTB4nRBvcak5tn4Tpz9Bw4uWdXe/FKmHllR6PB8Q5N8frbdP/BuUnb7bdLgWXS4hIPKTRZZpuoKNaUZl+Zkg/EyH4TqiId5le9iU7UlBnmFmYSgWF8spwqJQeBK9/+sT5Wqj9zbQ5jNW4abw6g2ZEr/AEDMAmGDEMSqU7YgFQDHPmPHWCJ5zSpWK1arWh7ykFicwtz+WKhYbOGwo6Bvp4uJAgaEr4iQExxkc0sQry18vxXvv7V59T63KUQVGW681/3fPnZP2u7/+elZ0ZDmRtkYcu6jtDQuJRYSGtKfRtN+iD3GFLWmKx0D8hflyqhZ9b8YVV0atqguREhAskmYtj6OA8sbnDodtn1Y7foDR3Xj/2nfzN1788caJHfvgdN4xpiXZd7HpaLl3VXj/Q6+SydIgO5M78cMGrGGiuB+m/M3VEN1m1v6tQ7Upbk1Jrb2LjYYI5INAWXkBmQRwmwZABrB3omBjrtrsDlXfOb19TpggLyt4B2W4mdgYBCgAjtQVccrFnk0YKWH8gA0BEw0Awvy655bQEoDHQ4iUTbe3z+ze1tqz3Utnu3DA2pMmIYvBk9uHINEyV/6Y2zr8bPXpSCTR45anJNMemM9t2E6bCxw2gBcGNFTCvo0wEtGCBzSZHmIF1sYi2heWJWgkhhlJugrlbXmapaokCwHOFLpl8SICKrQo0KqpklAqwtxu8NgveBD31sgMlzEa8K+A89IOMPSXZLlha0criSlsWrCn1kz8YGRaAaCCLcBHNjzmGv1zBBMJAIDQE7aJclrA3vYXEhC4jGYDlQjsifxXxPi79Wst43Pj95sUHX33H08TcwJ4LBOzkBEXrOvA4F8g87CkZMEeJvgGfm4xQL+VzOYrV0d3Zsx7dHhscHid+PTag3gqmKI4uVSNqoYX3xC18n2Uo3OkV+8Yj80zNyDJpgXuXgPtMWWZctXaYKacWDzLbEmIkv6x57SBMI9OPojXmThCmbDqK4WPE8oVEanNQ0djm7ERvTnzX/nEPy2jc1y7vynHp9RAvQkzqT2yUH9/3W//exyWe+3d273/5PPiJ33qPFAXhZOFcBhAhpuyssM67AnL4ufUNa30Vom4AekTpgRGwKb5BkP4Ej5C9vdhZ0HgWo1/IEzDzSPky9ogKuaInFh1r9Bzo7HmdOwNupvwleowEqRvYDV9DAueH21h8EfhAUNdcJS2LVk4lEEemBboLUyuUOrGQwQ/qdTAeRAYxjqId1Zohytnd6f+4XTsqfX7oYu1SSiV/5pd/42J+cFfno9y8+ZN5hvpAxHHx7VH6jRqYvqHqFE0hkKo3QyxlNB2WXxUkOnFAPaWsYA6IA34buQQnESiwVG+nqKY0dzV7TabJMBkdZsy88VtkD98l+yn7icuiwDnv6kkpK1s4nH0lccGKXCnLcXJwWxA92sxYPo2oyigkLWGTCA+tNEgjHxPLqPTjHaADoCxiReMaBoTN93TI36yikjo/0vnJxOWk0kXbVHG0EoEaw+yiPNX4v1MXgCAHlMwPGNb954zv/BzpwHmLOZrU7HPZquRJqa+sCFpUSYQkb5lkrqQCnWiDEvvBScPQuXzhzbuqeX/hE4qXXvzaz9IzIb9Y6r8vGdZFxGg3CEebovVMpoLyoiywRZ0PusLoHm56P9muJsspI6OKKkojeQ2UOfSFxTnUrkXsCd14ZGdQwmhsZ8ZhkF2Qd+7ZPzryi+8Fh+kK7vBnP+Dd+dfe/+3WZPK/Qm5xRNcKamcC8TP4nLRPj6isy74K4MM40MohNO1lUXN1Cgq0TsnldC6GxLJDE1LPgvTDDAeWPnwDZKAzBl0X27JbFxZWzZ46P9N1/bfPSxjshyd9WJXo+kJaqVWMLgUJ8qh9wsyIa90vZhKgddgeY0Lo87G+TcIVGuYPqRApy+GAl4wlZmDvDriTD8tFPyJ7b2e+TWpshtrP81J/Qn13s5XbYIRVgeuuBgImr5Y1Rrgl8kxzRaD0kROfsygBAfn1BSimxwrJUP+GSG9OciU4kFJn1MnlBZk7rOsbkMtGqLPyEwEY/AlBOKJgbPSiDRyRB+IIarNulv187jMcMnphChx7Ea49EVA6hZNQAIHmZ0WxD3gCSfA3mPrNX1Toi0M49hiqxygibkElgYRLUSE9rOj7XG7LcNSr7bx2iMfUO3DahDZFmYnCAVRuheLZx6O13vuMvQFBEraYYB1O6GpSA4iNFg+FqqRT0+IKaiKzpQkaIbcLHXoR14tQrU0c//l554IPRod2M7XaRz57foDWOfZDcwuQtTRD+apH4iubRIX3MP5Q5SQcM68tvmF66FDtUpOnuqysKfGQQiMdEhCagB5X6S7qoCZ43/EA4YbRPdg3dQBCEARjPXtIa2DIamM10R+TOByXkFWr98amowsDCYQcDFeR+5RBCLAhTRM/isoab6jEVVQAfrkPhzEzJJhMfQQRrJ2F3WWVjWZHY16f1pAd2USHvsWTv29v5YWjm7cfPfnDYaADAWTCk31QFEDEG2Ntvbf7FRX4EWXoLoRcr8y+YmoDKAItwD485VQxAu1zHjEYKsn4/jwW7JZWXzLr82M89fPHii9/PX93UQFjBKe9/5H5pxMz7eeuqFvRXWbZgTfPDxDTRxSAYk45mqfd0Ite39Zz4HbEw6hrIEpCDo3UNh9i0UUxe2l1h4ktE18inXCcQNVKZbTI6tPJM3Sm/2l0hYtgFNQI0Rs+SUtRrEFunW0SQyDNxjlynQj+riEcboPV4MxVyRITIPlI1BD4QQlzE4Eb0QgFYXxj0IIOnWKyso2PixO3zF68fGAsuZ9Kvbv49WGfZx/f7U//hJP3Bbbgpfdhjvl7Y8/d3/YAzOIUPIGFfMIwAB6OulCulAutThANEnknNEiGCrtFRLA3tI7u3e4J91ruYFyif/sVD//OJ2LQOGIaFln/2Xx9x1hI3m9mR2fNaJZpYkVxUqWotrhGI5RXp7FFzESWQXxQvHDKj+yhjk7BQI/4Nlhuyg55cn9TwJXHMuQUtZMCY1ugf87K8OoGwhUUaCekgktrETZZ62NQLQ4RM5nTq6rloaZog0s82fihV6J5dUcgLAVWKQ0dHFOMs0Q6BAV4cAPgbUKe2pMcjA93qRs8t6vu1mmhVk7Dl2sD73rP0/Rf3DXTfPrzxd1M3B2r+f+XUnF1JH1FQMhfAffNjolxvu9f8ETC/Q4zADmq3OaxWWJYIoKZjWauJijHWgDCAQEwp0VDaitoK65L/7CNABWPD3/ZPP/ux4Ndefmauc7d79IOkn5j4zIoiCKpXdHLgy88rRcIzo72q5hFjBJjx93kziS2tscfsIbQbU+OqmFRrB/sESkXysQpLiBGh+lnlJqUhPHYioRjYxXSgdu21EgR1KUSL4XUeT2kxsQsFArlk9E4ATe6MWeTQNMPBxCQtT2yBhegIYamfTa0vY8TbxtYni4K/ATuREYMeS9pJHiSfxRLB0DQ1MGjtob7Q3NwBXzs7Nkxsqiv21rEA8HkDtwIu7kdEwVSO0uEeU/bx1n1vP+FGblceqNdYeRfdI4lqtVHzUouLAMIGQGtBjhQX8U0J0046cv97dM38bsIJ1X/6hT/s/bV/dep1aa3Ix3625+zLZ973cVAKPKYkF5cnvqleeH+n9D8kXdy/Kpe2lPQxbrWWEZcAdJSUWCnQYqsl+Aq2JyJJ0I9FMwkiAQqSx6hKCHT6muzeZxLnbWbrpLQM7dWRsuBhfE5rGcBdhZoCFoImYM0GVpuKVjhHEWoyPMxYIB4KukAiFjUPY+eRAWeZc0rL2MgZvY0cIItHoQrVH2ABIGACoFf7e2RJo1iNWnq4fc9Q1L9LstduASZZeWxGA04gCunTMz40ZpfByA/IA8NxHuOxQgbIZZKO7AVgVQFmQkJcJWwCIMJhkx8tyuqyWmMtvboWIm/GkYeMjt5FuvvkyPe3rk2Ku0MO3K1vnfyiPkiKgD2ZmVHx0Q/J3GXdrpl4DsoUQuQ9TCGtbWrYBKbH16HIFMsEaiMEhCB3FqVrSNe8R8ZQUkHgDDmhMF3SKgbyXFWolp3oYxrAATrUJ4ItPBYgkN3QYgBiyTju6HqoCwVHcAla5wa4hRaxdpBJ+GpIegKvqCbwx8G40EgKQOMG4BUhxaFjBCfsBIK3Nlwep6NqOTDYefjSBimE7Zs40BOKZHgbB18AlzxYsXrHIfZJWL951zv/b2pyVTz1Gj6AloI6HF6n16aeH5tLY0jYFP4IpsyWWtIU2eMSQHMp5r7UZGjwwT/9i44//eNyqXz4XQ8/+Llf0hDwS3+lpTjs8fiBe9VEgbzmXlA5Cv0xUios2LAISCFiATuUB5XA9swgxZikqhdEIESo3GSaKBCgehyaXltU+bU+pxKwuKN2G6E25oVR1IBLtu+gLtROBTXF88gppDChJ5Q/2UbUKRqe/dXBftgvaxtKYExsYF4eY0TrYsRCrtA6AXtEIdXRyB1dT6AqUZYvQEhSuuJXlwChuTTb0d1p89gPjQ3tPXXpVgYAsqYaVOX5TeoHnbwa6xzaSN7I3uvf5gBBXiOnNCymGaeKLgXET/yDsjmQvr6igp6/SJ1QCMWyXkz4gGvBNCRFX3liz32sOdVum1C/fPm8lgUrtmIS9bLhgezZo4PnWaQvRIxhB4WRdISmUbiUzUBVoAHhTSuUPYNUppVUjBVBwS2TMMnL8AZccySTZuk1MK+LVLpQQWxWQN2l0aTwA/MeeRUOBhyVQD9QQlfVMmz2GSD1S1tUWVFNhAcGoIl7gmnEIW6WnTd7VdJD+nACSWsogH1Lm0YUIEUQcsAzhZyvq3370lKH13ukV85TVKo/3DzgXloHwTziwseCvGuh4RaHrDOgH3hwF5IIsiQDAvUzy5J0rxK9TtMpada8p0t9kuSa2se8kBwFwVxWWaXID/hAyvtv2/czn9WidG6jAoddYbD3li7KnbfrFGo8t9mrulUm0WHAwoK4KGGGA6PiQWUhUKRgWKhbIdKgVWtmSjEaPtilyxMRFmNCJtX8RJOI5vE4kARVyHVW5+mkcoFIGtuHZGT6qlbaqd1oZNk8OVCPUi1RqW3OQ/oT9MPK7xGsQsDG0KFu1gQOqx+YmJLilhIi3VP9TNqOqCNwAZjGKgEmyLVUzD3Qk700O9zZv6eFqfHyyi1gNdWg/I1dDyI5IGWoiqlnrbqc2oK51vyicT5NHiCihX9CBl6nY5AFgywAJTqLJwm6QQRo4eUltY/JjxDKJTYPjrEpURyk7ighpG6nOqdTywi/QCUY1swjJPY/MaF1dhAu/eHNLNwCRMAE40QyeaIKAgbGmLkDoYss5wMzMAkBDJE7o3oHpxyFSG4FWYWtApIgVggd6c4WL8gG7CUIDtEFvOitvgprFXmPR062i23K2zW4yYFc0UlSxIjGFei07s7p/ZaEVp7wHkYK1OheDSJDPmh8XlcUJSjEeJFMVKGWqtGAF8OtOyRHqSdiCX+N4+KFcKAxzIQ4esGhFMPqAW0/LZP/w1z4h19hYnHEDDX7DOAaqABlcmDFCZoQ+GNJAmHABfxhSzqICK/gw4QVDuz7gtF87IBuO4+7Qg8p/WkN6ryVZ56QwV65QuC4RVPvzagIoIaIsUxQg+oyUbtBompTY8HMutZ4S0NtDzJuBKypsEEL4Toj70ABjhmoubE6DlNM9wp57qhHRg6oDgFQCDXcVkxlOFBXlqEIoFOHjB+sE9ZQDsSUj5rgC1xUNmRaMCY7JEeMcU33ckUIMnylYerBGrKZ0KA5m27hjbAoHw5xIuP3u1I7sZFui6OvQZExY4OTOCB2c0BtkD4fDoWXeFs1VrBgLjS/cBtBL2iiwxSeoZ1qtTKBCBcUQ7/hBELjygO8C88VWGARmfVx4W9UEooP8sV3gXyZgQUDkCEmU8PjbGyJVUccjfA5Oo48JYsTbTl0r2b6iazjnUAWzYhBgrBnDWRADD+CaexCQIyuQAxDhehfWBP60xwWSTS+jdxSm4elNUpGUwE7cAMRMWnBeXPkkDswYQo8o8SlC6mnixnDeiG6GgKA4lcAxDfyF89+SIPibHROnyksJWCHF8TokFsaiYIhI2qM8gT6inUji7lyvtHqdR0bLSUn5WmRX3+/z1OHV7c1hMVbGSWY9bEmNnEY6+9+tP1/fHPrFvD//Skjx7aHYJiCVAfODBAmVNyx0i2xB8Jc2CHon7ocPCiTU2rObS5rUB/FBS4YMQ4SKGRrA/x+mAT7mxkOVEBhbXaF1HrB8HB0yNqsUiHvgRngTLDMvBkiBDAfwTdwCrURV1D3jN1Jd1Rq4CszEIzy/gE1aPGmeIpAPgAhO0bs2N9hCoogEgxjBswkjbShGSgra1iOnu8orakZE9Z96bTHSncG8nm9GYOKNAu+HLEKjBwYkqQbkVAKJVgPD0sPCU1N3sKi+mnLCxQWpOJX8jV/2ONwB3yDkuR186YZ6njNawGqIbMbkVCI3SKPiHzt78GuXaBr9IJSka42LYR2MhMMmkMM8Q0LwgOIE0w6yJScHHOxoXVC77r6JBYzeZOstgK2eBcndBE1Pzig61QyBirJ6I1OMrSoZkDYQMqUKCNIkOJQtloLJl2CmqYuHEGKkYqkURMLv9ml1ovOcnNo0Jpx4RhhBSGGMeKhEvqGbdq/lzyYkeXoyqBBBjiGh+mQqUfQvSpa1DajOdV5rWbQAAIKYPT0uAksvA44LakCFaUPs0GS6CtCFpAnzUNVmHPAgZmHU7Punh7XwjbqDLai1d0i//HX/6BAKuOJX9Ku0jivhypwHqAtS6blA8d7vvno6i3wb57SJ8CEWkVQEP9xqVBAHNhUSOvzdTUmAQW+NfKV17a1K8+zeSbMSQUBsOI6WoKb8aam5uS2/ZqvwG1lvXAMRXJPGNkUlhFvYWUA0u3AENsVhuFAY7CzPLFOpmtRrwZBU1Snu4gjjLEJGTgTG5iP71fviypaQhSUh3A/mUToZGlZJgD+sKG9jIEzkOego3ygdegbIHdpvaYHyKOoEfxeI3oK5gawg3sDGNBv6G1id0nlWGQo8/LoMDKOfCX3UmYPyYH9g4flypXw+EjswlzQ4yJQ9oGB5HJZzp1/dPLNS+DJgN70QsUcrfNhsA75xAmtFXvrgPrzRhKyNiMDVJp32LBB9IxmcHf4Ay2JvAEfsCBaGLcSAxd5z3XcUAQMwQEwgf2HeccNo4PKoIgHam9QZKRdoAPSbKASAkK88YGjoBHSOoS3Ubha/kAoJqypR6bPUoPATAiirsh4bgO79IeeIIB1DUCvohybh5dovJz5Ry06InCso8WYLd2kaSDbIpboTZbgV8YG6PnAwPzZPEf8c4AANDgGXkCjIhqO2FbSR4mBZjqPMcp4NcTB+6nN8pJgLlbSk1fLswvyMz/S10Xhx+vnwKQJpBrRAvZ5K88S2PWVJdD40qA++o6DHnMjd3G4nHYvzAaFqQlkVhnBUyIIiKmDlYxtwLxH3DWW6KE/8CcBACUXahhtGifAtzm8T7dnJiH10nOqNqHvwWGNyxG/IkgAfeMmEYsDI4QUsYuaszsw/NDe7NUKbFk4lQQwxiRkh8YDv5Ad6kLjUUFd5JlKJxCBLYAa4UE1oiHPJjxBJaMpGxKE5sJm+itElzGogRDhKLAP/HmEB0EBByAl1YUJStijVwkA520Nuy6hHh1VKkRRpy/KIP5J3JRSY3q2SXY9m0+eeiVz9c3F9xwZ/MRD4/LydP3KZeMD0AHg2qQHzoEu5IEk3SMfOiWfM22CGsgBHghTxd+p+0QRA3C7nDXEKv0ARmrMeVXk8wNxQ5QjBbj8im4lgp4jsk7tIdYqqRmkBdOZqM3a0j1rEe2ASY0lOoMzarwFBCFcgU0FG6SQ92FVebAHYoKfeDC/raFV7kcYYncRbAXlWLpsh4hU4FVwDlFn2Ex1JeVxGMGMCyBiEW0p7xH3ZNIdZSfoUDjWAekDcQaf0/E38G6bxAboeZLrgIYPOAMBQILNJlJa8o7IUXOfTaeSqrUYF7YfB0kAdAi5T5QDd0ZCkWzurjtyw/HGG88uf/63P2yPOL71+f/xkU7zMhqhcd5NmwRAMmUJO+/9tQ/Iz3/XgP9tXyAHJcqg0cAO9QIACoEpAM5eBxRBsWBRUO1U7MNsUsdIYgSIMc8QZ4MZW+SGZ6eVyin0QCQRdsN+O3RA3Vxc+UtX5fa71R0iAIp5GVtRt5jQKkYR3hpNqZsBty+roIG9MYfWzSJi9AQNzJZkpOhwBkBfFPindRU98M6r0NUEFXSQW0bKINqzCm0WZcF80E2nu0wRclpHW9o0hkPQ3AM84QHAHjOPwzNMlqdE5boszmivaIWSuIVZ1cbAYXhA9u+WF55U/dw/oXlYKoXaI/sPIyZWtrbKf/fNhT945g8klj776itQvTnALwQOaPkGE3xAelR+xiOnC1oUxAVuhR9biG63anMUQkO6ZaifwDk6FzTzElgcDQAgNBlE/YmJGCLZNM6FWb+jpjxRZMJY1CMQZyCFz4LjWHLIKppWanaqcOIELXOdkDNSn6VaovogKhvu4oOZDjMwHxTI4mojgxk2hmYPBhixDjw/s6wVmGNtSPBB9I2D7g7cpuiH36rYAxnVTqgFuJSu4lE1yZqxMsWe2Uo4LYrwJojoHLTJudvgzy7pBeUHNlHEJ2FEiDd4niApKEYKUEcEyDDnCMajstqZQLNVKezYnISk5YGH7O1H9sjDP30HJvKlN7QRIA/0QDEg5gTZvMmqDdFTfXJi2SDIfPGL30hCbA14HAwAbKVCsnK0hfcJGBUrrIFHjVpMLRCCmx04QvBVlboMnTyEQYjXhDlKtGQvVZ9d6gnAGwzXkpOP/6guKQcTUlhOTRThBB5kmRHWlQARFB5D0FZKSsdlc1ELNllsAsaDBC8uyXs+qFzEnwgmNDB9wy5gjTrsVUiC+AR5yUJKPAMGjAAQoiew0YTzthkZ4yN+dUH9ItQahpCuEwXwgTxjADpc3NCaruJFs646BX8g0bj+9qrOD8YF2pzV5UUwOijIy61rdoJ9qZI7ts7o3lrXVmzxD176bTl5vzz/wgfe/SChA/Ny3g+bNT+IOVqkb0U5sU8mTuvarkHzI99gCoAjdChFLBQLNmxrkIA4AusMGCLgitrE+MRoZ5ZMCas8gEBRVer1Y80TL8IkqMmhY+qy8EaKZ3DFUAtEk7gZ9G5sauyIIXMz+poZJ5AjG1WQ02XvDFa6XIUEV9X4QfNqSoKkj1eDEsAav0fNdxJ1jI1S4SHVJMgwaqcYoW79gNdIo0ET/8FywMPjTsbMAZVjODJQBADgBgoFs7kDYwMuUDcf7mShtRbV3ixqgN1MnAQccBllQgQJ2xTth7lFQgCTgGgMEe5CoKUzeOnSNiGKL/1N9W++8rs01vWJX5Srv6cPAv8wk4/RGMRS+RM/mAkPlTv+wyOf+alv/4UhjaJp+IbY5A8gzchrNSvD1z9MTppuIvgR0kCShdNIEjEXlLfRpcKWbpYBr2Im7R5UqY9JA6AokEboIA5YAJgacgQBwCcSynoZKq0IrBGfwYZB6Uele0jXhtnfJblttfFm0KVRVdHUxozv0lUQSbbAUUgWPGNMf0R+tEezEJisQFSDeC0Kf8YMrNgJRWtu0ooshXbWfFNqTkAPYeA2pWc7Zi8IxpgyZMg9eU0TslUK/jGBrJagbvCj6xJQDZnQASIChrq1kBtPBtRfX5TxITm+X146e+o7m8/NybsVlQdlfybS2cEMDNMoCADuYJ9vPjRNJ/npIbn/tLxqNABoAvoEfwAI/MxCBDTkANA4STA9Q8CQ4IMrjODnikZ/ycgQF9PVazSgi1jSZ1xKrN0DGg/mo54usUVuM1YsQgv5rZINT4mkLGlXDBgW+e3QlRrYn1mZkRI0ptbGVeMT9ibMnwS6Zo42opegJ4KQeB8sRB0iCSD8NltEvAyp1ehQHINtXceG7hHn5ieFCKMFCgEjh2kCKNAHIMJ5yAAdHAADGuJKUlM2WH1wPiY75UZADIWj8Wwy05QSJBQUmBnU7hIxYJMiqMrndzm3GwGZ39DBmaNPlZjdxK+wmEG8RoRMu2hFCLc9+uef3fONP766bYzP1E13RMNL8AtTVhCfyi14xLyH/hPVNZk1RC+iAW1JkgSpDEZwhIgRIRdVyjBXa0JDhPgPSBymlVC+jzTZd9ysFRfWKsNySme3IMuJHeFDMz1j6IAwtUHncjBe6nA95NRkcU4jyGl8d0Do1jfjYeODEbxG3mF5Mn+aBc0hfSJ1zGWtEfUa1ElyxGcVvFwEvBlzDkagmaSiifC0yhra4lduAwBAniOrXJElPEWMDi+fBXU2VXAwO2x6UhkVxDEzhO2Q4d5d43LqDY19U3lPJ8e7Al2bM5dFTv4bfGQ1K1q6sCANouk9HyDPn5wY2tDmAvLe3boQHtdAMVzJzBaV+Op3cXid6CmN+5pEDJIbwc84+QYfzZ+4FXnftMuR98ygY6EvPBXYgLeCG2JB6F/+BOWoEYAI+EjZMHUGikU287h6UaATyouatSzB7pgKJK4QdqTbPJKiiAjTM2ti+UTazcolzZ4gBnRIPA5A25XQQYyVP2mLF0L6nPMW7uHOFjNcBs+g64bkADocwjkAAA1IIMiOIlDEKsYPzm5ZP8AOfNAHyA7VB5jIeLBQAu9Rsquz1wP4+f1p+T+/fkJh2zygWvwiIr/wEkBDajCDxwPIkQtM+yzK4f0/Ye6EHDgypiuoWLqrU2eQDhA0LwELjB0NjFuMbYOlh47lDZjI/Al8UNwcMC3pEYIThEpJdCxc00dYqRNBzpRIhoBmA6oatzB2PEVTMBirkgTbxNlt4N+v3/Z+FSuYQ8p18Bg0t6gwB4Qgi46hz4nCAX+EFJ1FXYBHfrb13hQrreYEaEMJTSrXMRn88haInvMd89OqoUtuAwZh5RlUFnEXDQaznSHhZmJ9Li24BPh4lWAE/YbowfOhZo7lhjiodT93sRhXG1JKL2ifmeEkUbJLhqmKBrkgkRNaaXIF3cCGPKQxO0iR9vnmQMRjcVgbwJIJ8MQx6JKpxmG0Gu3heR6Eesw3dKAcQ3eVaVQ2Y6OjGSmSwVQF9ywB1DIqDgCBA4BsJviD0WmnkFVXE8DuRHQRbMF11qglQAE0wKtF87VVTC+funfkaLFciUWAciJF5BYwyrUzZRUPdFcPEEDfeAOAZvBgjiv8ycg4gRMiRtUFDJPwJ610G4EEIEoGGTkDmop2lTcjDDCW3GENyHINhW5hCIhP9KFLlT5hKz4Ep6HsUGt6ubR6UTapcto1IbnzpkuwVV3denQg1jab2xUBPXIEqLLmQk3XUm53P3JMe8YYnIZBwQLkDZiriA+eVfMaibujfj8ZJZK1MANXQAffmqMAF4SemSfkUQuBDAlgv3Rerl0x6cIWOfyAdB5UFQ0qiejTDn4Rv6LuUWXoXvYLJI2gxAfQOHghL0GlF3S8SC62ZGW8bMlBfob59UCY/sADfAglEZ9RluXxlIEqYwTsgBcsAHm3kTIdRvRwhdsGb87cGGVhTzNueOC8qYTP6M32oNYEsKAgbNnSJ4sbcm1JYuyv4ZP3/ojYwro0y+BumVlUS5LKUwSux71xqj55VvR44UV9iaOLURBeNDYYr83epH5OmojmViByczYhg+ZAVOG7Urswcz0Xj6WyBDTxaCE4CLcpaRT0OMTQvQlHIiFgUyQupA99E9THwoGHNEJMmJK1Lhg5FAZkIURy13QDOjbajdZVgDHzkiLvsIEa1MkBBbeqE8wjMACFRmgDvlkSkFAD5dMIZigDHiD8Ag1BGfpeqJ+X0BYPNnnAcZOduA5KmpjgVz7t5uaG4YqSAU3RsAF94iJWL9PcoFHqwEgtEZYPqR2MOCC1Bx9ichB5wB6gD1hxOOLVKmEqHIC9lCL/+hfEB2uZA1IrI9jLOl8R6s9aZD0tGznxUce6W5a25cKpoV7niEGF33QxiF9iDI1EPFHEoEfsKQ/wGwk+UntWDU1iguKDYQ2iIpCOiGF6CLKwefBSkMdMLGQVeJJTrT2GChmXycCwKlpulQ1t9B5qb3iWBwGyF1oEQdEb3YYlURRK/SgBDDBccKpIGurwhKOaGIb98BTZk2ZxWrunigKqGjKIDptXMRpgDkIhxDaDF97PAWoYIhchDJidR9Jm9FwvGBairGhbo09wMg1hayFD+3u1OayyqXkF0vyabLFMctF4L071UhYSnYP6xleJNJ1+0zRHiVfMLnGDYhpCvOQNT0IhnPOtMFViGKeqoKynXANOhBw001LScenSbqAZrac9N7YR2keNIorG0BDMG3Qr0WucHuOeoj+MBLOPCteR2dQSKkx5Kz2AsMglUU3kkZkZVRQIToIdyH4mxGifABBE3Dx4Odk4luIghkMUyPi1dEObo5zBpNmBGLHIFt7J40CfEfA4V2mLV3ECVkAD18EE53SDD6M0w7nxDdC5UjStlowJhJ9TUuBgiZN8wVHB54Pn6XZTMjMVi/ArrWBj4FzySkqhuBK0EQ25g0m4G+QhT8nQh/Wdq8hpg1nm7D4/Q+49ziYeJMczL+PP79SJSdrrtvoxnUN9Y/AVOkEBFGxDIqxpAhEFxtPAGsTvJNgCq7G6ERYapqlqXVwgYgZGRRACLuET450XpXdERsfFu7tpVRkIhDTUiMd15TXVJLhniHCElE6QYERg6pYD7UcqEN3HDCRUyg4aJqhGLFwH/DHxEXypjMlUEnQiqA0WACPAB9S8ihfSXPPgCp93HCCFT9IgK2Egz58OvYmIM3FnjB8Kfq9TTmc0Hnt6X5rUqcxUYqMJDxyS1zc0SMgQeK7dKddQQ/IBl3zrqe//y/9nWkoh5iQYE4iXQ/olgwbOIQzohIPsid8ON1JVSt/pII1jkuDKInfUyMQRArKIfE2EASxjCjPyBi+hBBy6N+KfE4Ql/IqZS6dZxAKF0LTbVAPSKw6ogMcwTI3/hJbhhfpyfDtIn19pHFJiKG8dTD/HeKXEDRuJ2oyQJhwQRehi8gb4hZhDdAD7R9fPYoRp8wbeA30zWl6lHTUnvJ+Db2j9HQe3Na+7b3ICcw8Yslc5HE2FHQKm4W2MaYgMzaOcbyr/SExil3MzEzgwAks1nEleB+bTLz9vmqngjMk1s7fBJV3runpN/m5WXlyW8ynNb6ILxREs1ep3EsoyHQULysEUB2p8tWpBqQJJyI6maRfAIokBBaYI5jt/Qs16kZW8OvQK1wEs07JwxtCuyCAVqy7zbr7JhQMoUFs0ogSFjMYnzbRpJMU7gMMu9T0a5WPOF5UjGKKEHHgzPh59YMtrvplQz8BZsAMdyNJx6ssGzAiS5oXvAPUP/DNiroK1XlULm1cUa4S2tFgdJYxq8qs2RuaSmAPshFUwGaj/Iz67e1xm0Q8YyTam+a9fkb0dcqYkD991LPvHv68Qi+9QxYB8uikQITAaAsacgHRejTgHNmj4m34i0GJoBCfBAzZ2TtU9oh2ZlzdVKMb/wNqBtCAONACeAohBQCKkEUhcJP5InhiaYHF3xSaNIRXgBMQDuhJ3lrUKs3ozejOM9CLAyutomWPHfDe/oCVURF2b4MCrowmYjQ84RmghwJCIhIko9Mdk1yHx4Q0pA33ajZoPf9KBf+SgoW7DNkADimnV95DnB3CwqBri5B/86ntBZ7ArYo9hoh9ZjqVphGAYUKHutRKSpskYwGSpRp0awGwPw5h0gU+L6vA7WahC5H1QLJHMVpZRTRC+p1CQB6FQAFEyYwALLAihQggegxpgSDwr6BuBDfzpFVyC4kVZc64+BlqLwjhEkl/6R2V0j+w6ZnAPLgEOg0LsEeJgvw2WIMByC6gEQbKARPpZg1Pp861HvwQHNNIVxv6k2Nan1ILJpHzo00QBuRpsDw2L4Z03sQwdXTeJFBDxj8P81obC+E2me1vScVhNI4reWFcciw55QvCNdjF9KeAd3iPXZ4095tPcaN1GklpnFe/UZHW7a0zTP0sip585/aXP/Y2k1lDRFLgbnmSMdkMe4JquwhIakzZpdquW93MX0PeaXlFOzw1ofpALYDVOT6E/UEPAI+IwSVE1UCHaGQGMGUN8kxPomItaQkSlEDnjiBGoMBzki0iumOZ1YvGNx8kMQMfQFt4hWkzxDgJo+61jUykBpw03C5XHyoSa8IcBiKXQX17b5C+y0SnVA8T7VdMFzFXahZaaYwYrvPwfOYAI5M63GbkSMJKGVxFvbVXowGZY/BAfMhXzHHWH1Fe5S2F2n9Ilhhyzp5brhObpWTdNPfKQPP1nkrmqVMfow+Yq8D0muzp00np3p7ipPzD7x2E28g6aBzlgoWh6igdeBNREQghDQ39kXgm4wQnwJCNTCxODkHApdinlpU41mqFmqAEhjVzH9eI2bZsjaNRS2ACnqG8DQTQA/CmGRddAaqQXVHXdeoAUvJeUBlugCSxPdDvTkcEvJ3AdaiHcroFUdBnrPFOJpAZ32OAaSN6KSu3KDz+gjW3TybCx16nNNiJGmapX9u2R+es6zYD5ZYgeppKh/xE9TMTZTnYeIpV7mTfnr24Adzr1z0G/iaHJ9OuSXaT4zBAeHQChsGXZIBqw6DmuJPa9lf5DI83GiZ5rHoAAXV1fh1hRvdO0L5GyWEF4JIheLYwj8sBbKM5GCcBRgJU0LWEZopAtRtfQMX6AImmeO6EFTbCpB8llxDmCE8UCoKBvFRh8kgYN/Ak0+ZMyBJKg9M+pk5iwsngT/KB+HjODTIv46FSwIIC1M7AQ9MNLoMO2m1qY9/AT6OThuBHFdOytg+sZ8wgnoCEtOoEwrHESSmtAKnQGbYFmch0EoNTihBOInTNTCV8f45uA+qL0dsPRkGWXR9dimP6Nzyjk4/M6Ok4C5hMyMmZMOk8oYFjsoy+qGdsLl7W8d5dZzQHMuKAFZvuw508sV0ML0224kTIYKhTQxrBfM8SM7KADjIkDqcwoiSmTTCTQiZWCDFM9zsDD5o4mD3CTmVIXblViSqUNvpBcMBUwp611c3Pzi4vbajIwiYfKOT7Y5fCbrqd0o1TD2KIkawvqDSOeFP4bRuVBUG8d0Byo58OxZlREypzzxU9cWaawUZsuzijzZK6JY1yDigC/dFbl3Z7dGrAio8IUze1psRe1+Ke3c+N7G/LQu7fnlD297QonMsXvapNnzsk//5VPyLnnJbfE+A0hwUsM0PylYpFCWWrEGRK5/RB7vqj+BZL8QokAugUfoEnh+gjxH0gcoEMKSBquEBvR14IAU4YJOBg7OACOmArcpthwGszzzTnjTJsTYE2CBxFOwM4gDBsXSwx9TxWlIgCGi5s1FVOGLkk7EBMg+laVdtQuVRV4qIyEQKpZpkrln0ftBEhEY0E8zntAPOdu7aQezf7QRZgKQNCflLktb5iNftA9jlXDBhmNsrGnE2MhzwpEeARJT/0p7I03zPBZ1Ek3OKFWnn3HSIRRbFMmGEXwnTgnImW8U157gukm7SxDpOTMQZu07zViATY4gFWtIi/ikA8+IHsH9Ze95ndu5AkUDNS7tC5bqbiSAsIC0YPNg9BBJmE9wvYIGtCheMNGxUTB4sdTiqp0v8F2DBwgMEDuAWUMk3PDP+QKEFUY06yp0T+svxDivAEfg1y9c1nHVWJxxTlJLGmk1gb9UZCzpq/CPaUeCUrQ+rm6LhuOIFDUgALwuGWG3fyikynTdNKQYOAmijfNCRzGIzlJzMjaknaYlAU9QdgRQQHU1AtT8MfEGgrUOsO6YR5TzwtJeezrnWMsvvCdtoc6LRGIWcobcj0ul7fl3jaqJS7pUsfzl2F3Q9dAgINBgT+QSiYfw4Y6KmZvWS0syrvXKReN4oAZWE6PeWcKOiOH6pWqlbAD66BQGwj9UKRJDoVFFgA61gtlmMghhARyHemOBMJyVWynjdDjpNkqPYAumStkPqoE+Ml4lrg4etJiBDYQzJheAhTMXKwEApEN+eo32YZOBdtd90nArisLEJ/BwCMrh+6mJ1A/jp0WtTM8SIjHOSBxrznhtbQOYjyGMyEzsNK8smGokkabtAeAKE/C3uOddAx7j+V4jRMMwYUxM9y6JgI5IGCBn8PJ4qwEWXIrpbYr+z13yod/3Fkj24X7yBJa5h3Kj7TAQZuAp5NlGLVryJ+uiPSyQNGWJPJ6Lz8CeAJOiDyofXM71jVWVanPeowUnFEzSyiWkhCsFzQzOoEAmg/4oQGMGMI+0QkPjALEM1iAzFtbboKCP9l5xaekpl4T6Re3YgR1x2IeqisShluAHqAj/sa0rJjWkzK9BnlMkphyQ2bQU4ONHYUUaCNEwY2EpKkpAlOo5V4jv9ZNoBmK57UghcHTS76bXfKbUYIpIrynxNYtpS0Vx8N7jX5okcaCdokHmUKIZUupATVgSOWIX+69Tx7/nnqS7/+YyhfIY2Hp+lkZ/4nx2vb1lojmQvrfJRuLix2/8ptSQlMDBxribdAu46I/igYYgPALFjzwqspI8NBEev6S6vY9zCuGwk2NArEvHNp4fLtNc6LYNsSMEb0mfImGbhZCkiMjDIfNBMwBN8YJckXhDoXRKuDhHNpqfuMom+Jb3Ase4LUZvFgwz518OozkAPQcoIf5owDBIi+deep3p1dy1Cyt3Pknf33kdum4u0fuukMXlOZX0Em9GgoLCcQUZB0whE4fOGiUg9ahuyYyOAcKoIErHNzmMo9kzc1c3NGfoGK2ikDI8X7egf1D2IrMK8KVimimuiJ6w9RiUHgTl/VtObo/cynlpqJsRDeyzdZqbUdOyPlpqWDimAZpkxZgA4izBUrzyz0dWh9eYnER5/7y8qWLOtaA6U1PQOeZQFRa1wMywBz4xiRVWzSpK+cQeOE31h0BYZhkiAA0ISEyvmFadfxohg+IByswFM03WYKToJbEMVUXCuNtEBBTvSjWUjcmYkQ1LQIE7oR7qdXV3aCmf+T3//slhewhiv198u73/LXl535K+nZpVIBMCDDCdIYJkYDOTQNYhpq6iQUwS2dmDYNxnT+Bc8jclhBCxzAGA4SBuW3uVRm+QyyHZPHPJPKQ1BbV7GTgbAKysKC1qNeYS9mtAz8zKT/70cxnfzvQIeO//+OP/8iXH/5n4dtyqW+9LD7WMh3rE9YnHDtGxtjAHSyXDd5pjpECDqV+Yvk4T3WoMOyVA526SQJ9yzAEk2NBDqFsUb9q82FhIzMIexONxshhtChlzjX5BS/xKtLgRnMrq2kb5puHGS3QpHlznSgK5gqGAvIs2rL9jW9O/Z9n9u7pifzTT8rDdI62EoZuKbkrKYUlKvEXT2Nv7xtTo4OF0D27KY9zygKFymYl5xamzmSVkkG/HoCYhnIGi1zhQ+t0A7qDFJqHDskIOe7kSJufEoZz+DMqlTm1+Em9ZTYUMbi/eMOkjUi+4G1DOrib1KjoLBAWDOyW5a3ASAB/htWDjz9AiU2tLW+Ri2/KoQeVamjKDF07GTVszhIMRLFS1OK3siiV60jmpwdPf+kv1jxJJb0o2yuxURO1Ra36eg3GIWsQNBgtmEOoIIAPwFHLiDvkN2MEI+hnGgKnGITaEmAH6xxAAOrnIlf4UFDJtOU1rWaz2DYefSLxzSdYQPqBDx+x/MEXlAQJBxHPAGiMjk7ES/E//stXLskffcoz+WoBbA/dTSIsIU+9IAd3ZN8+pU74hIw4a5prD0hhUMtAnIChAHDapXXG32ncXLpEh9eNNoBzgA619Mu6UAUlPeXr0hoynZ+Xg/coEhFqVBPjgpLRY8XflZSsJTQxz2RIJnZ++3ta1njnQyt/+OX3fJCQpqfYlTpwl/z3L8kf/l6PnJ9j2UyiB6bFgOlGkywRzUQwsGgJaWkYviCuIqmAq8s6WQ+J09si3SO63QE6H7VGx/ROiBsFh5GHrEXoNo1OwxyKIX4FVygWBQEDhstpDDTwbTCkaAAK/ApE2PaNwgdFHlvPv3Qx95sXV+/5m9/77dNtcvQhjXZh86kbjmEdk68/NjlZPXmnE5R37R6SYbYnGdWALIzEy7ASCNEgoSnFwa7VFhkw8gYUpgzHM/K0ksENZHADB0/SH87pG3dyzlN0jN7SSX5h3mPSmLnYHtjBqAK6ZJ5D+vIIM+iJiqIH8ONRjASL0ZC+UMiXWE/IvgGnzJOfNsVCvNVjGqEdGhykFqZV50CTQyCWApsBK8J8AyM/dnLt9Qu6GOTZdZYX02FhICErSrmsiyo6bDyInkAcrhclOiywQ7ACfwBTSZ0EXsI4iHojiYE/PA/aGA4kyDdkB0Zoy9AiaysROKawLFfobGtbmNv8X3PyL//wzKW7/6d85DdkflX5j3Eh77bT+a8+9upp+alPRnhJ765C4P33CxtesKQFcGDg5MjoFX3AMOb9OCE0B39aaD1mVNrYzYm3YAchSAeAI9/AhSOt9+A9xyknIWCDRDtkrtNnJDGrFY1qSR9KILnCiju609zAuC7Y+MpLsm9v/NEnkQbOuaWQz1+1OGefWt911N1RLX78qFR2yvZY2RJPmQkxDBzo0+gNgNASMwxNioBJ9cRY+O5RUUJUlVUPCZASWMPGYXUFJoJjrutBbUaVur+IxuxV8uERmvwXHIMsh1hVWDVBbEhEm2xSPCdN8uJX6qip1yeK36owKpb8H/3wT+a/kvo2a9bI87/2H+77PfI+hBpx/yty4ezSq6/MTS8TiZYDRzXgyEI0WHms6goTMrUPR5A6FsBNjJI+gA8FMYQAA2yZ1kPG8miSQspQA10C9EVDH9zJ/XlzJ5hr9hP0cANrqGAFMcGN8EuL1LMa/cQGxXRhbQtwD+IAGiEs6BSjfGdD03N1iyvsn3k1u3K9HOl6bVd/u63Uq7RHL4ANNEkLLdR+Y3mbGHQKGwO5Trxzg1dhg7CINYoq86wW1bMrHNiFAeKxWDfVbERaMDbCQbWNCMSpK2xm7qGICP7ghsFLdBVoUBeprEbDUD+44MPYGWnBfNxa3Irpz+7TOHyf+Zk7Oh9L/vXFVzbkX3z0v/3pU92yjV7C1c4xt/z7jz4ze00eedglh4/T+wARucFBGZ6QIdYknNVi0v6AApwZBewOAcVoOATqaZf6ttat6GJ5MB74oz+XTdlzVmlJzZJO428E1TRFxIQJJODoU+p7WoIPSe6C+I5IoCQrk8pUBGyQNaw/e+9xXb6uwyX7x8/8lyeP3MEr91EXHWCx643lXb/wvt98z/dWRb74p8c+/S9e+dxv8p44do6RQFB/kwH4EzpEiuAqEegg/sh0dQiGELNfeRPWwNPLEKs0KXwkTgD/Q0mF+DclXFU1gpEx+L4wIslRlIkGJSkQYqi8gA8N0AztcYXvovkG+VwnjJhX+5V9dQDigXH2vOj5xId+Z+zKwvz21OK6PH+KvG9xe+XapXOp7bW+gd77fvYTOh2WrcHQOaltNQZYviHNHPCo2ChDoEITH5E1osMG39BBWedzKMXRaTpA65zwJ0fKUAP0zYefIBS+IczmPRBKztzMFfqfUZGAlGXgdMBB8CGhMag0cnFbpzjr2hYl1fWQJsZiMpXYLLH298hIlvlYe//Zx576vW+8q29KG+HFzS5wjpAjosXsAvJ61BVTcxFAtxBNWlKR7RYZcU7Mlr93VvbcpnpFTRtaAfKWtAIQWiEWiQeFgEBSoHKRvnj/BH9wUWAXYvM34M8Q4PYm/DlvDpmhARyoLi6dHjlxQndC+Ngn3rtr93sXN//umeeFbZZXVtZWFy6dfj2+yj56jl/6yffKwKDGwVI7OvU+2CdD75fyFXXH2VIJJqQOPGzWY1VQgBHSC2HdVFNbbMoXgMxJp6F7YEFnoIRNI6fgSaYchHWpRnjbg0sNh5zRN2h4lHlqYc2ydUaVtYY7NT7DZhys11KtHPnJXk0rksO+/VD5yVe/8e3sj1me/a1Pa9Hq5vdP/84vdW9Mv9bJzufaDQ76ADSALydqq1DP4zOWPeghAoD5XsMa4hqxfzaJyzGhlCmHIfXyy8WyDwsHd5gkCBqAsAAOGRYk70GN4GdD2xCYBuYZXnO0wB0JRJOMnB6Afxgjo+IWTUdpB74ay2OxpidAjEbsh/aPPtg3uhmvrMe21pbzqlith+48ETp+TA0elhCFY/GtyTMRNt+aVXM/lTIaH6ONchS7DAWMgMUbpgMcTegDaz4dRtUCa7rEr/zEhz+he765wvVWcw83QyLNboMM4v0UhCJf2a4PM4/F7GPqnxKaYIcBosUAhLnCQIr8YCwZHaUUKM/O89SqzX3tGweO4UyTPDYMABiab+VmyJ0t19XDTelS1QTNiEPQiy12NoAqrLfdJo+eVX9SsyP0EjcXJsQbUwuT2lJYMa22q4NoBI6ZSVCoeEGlcwO0xQf4Nw+GA+SbbMB480p24W729ZXvPqoVB+yEiXx96B7Juz98/D7qeULW6kZsua+/64H7hlofuE/Gx3SiGVY4ovHDn5DEulx7Vje8ir2gYUocU9YY3X+baiv2XwsN6AaPSg1M19wSf9xAuMN0BcYDCt0G7F5DDAR2r+tkNHJtLYOqEEh6UquneNlr/ASC7wwMQ5AsJJngRfnuV+UDD0n3R9RWwUZnxvl/+nOChE6/7+R91GIFnPniSKv7V/9T8ffjv/Pqp37aMfuKWR6dFzahD6KTrBdMVo85shg3JpqukQ22ccwgRqExsuyACzVLBBL7B/JeXcNWXO4d7VRfh6n4mNqgBA8YHECXgBsSwRZn1AprPlAVcOdFBmE6HpoH9Gn9FYMP+yfgb5y7aiGa2WHRSCLNsJS52+Ho7umh/BDtQ/gFm4Bh4/GksvqG7hYtgSR8ARyRedgD6FzqIPCfmMEJPRU2VK0hCD050xyjhaD5btI0/aMnEAdooD9Alu5BGVwP0fUbaLuhFviJw1CSnlJ0QLyYmeDkvwJy6ZLSLn4YbgBSnKpVUMjNxWyjVGB+CLuxsPbrgQEzfQR4QMe0zCB4H+TRhtNFayy2E5P0mpRJnpSZQDJ5SXaDd+p7j46NfveSJgCoqLLj4WNokS4k6kCRtJmYotqZWjQKT0hlMisFgUKiihHRGBjhhMYQRjAfI+VixgCfi5ybrpLK7OyTp56RwxllY8wMgMkcGkqgu/sn2KQIZw/OxMzT0AINIY6Zm9Epj39XYXvhlJYR4Ia+6z1KD/g/k5MaOKY55AKoYfNmpQ3aajX9Afv0BHQkzYnfRANIoUISyJQxA3y/rrqlPeQzbToPingnwa4WcKBFk3eclJJd/vR/6ExDCJg4z8hI5fVzsa1YF1mXhqVUssfWi/fsls1//2s9e4Jb8STq0hADNAAaeDMnhDWo6WU6lSrNouoBVHx7YPeYBnWY4AZVkAJidhFkxiPs54u2z1IFTiQYzsHrxwRCF2tWiDyUycYTMYWWwIeOk28GnzANM3JaZWDggKNpNzPPLWohkM8cHzZIMzuQbv+fz03/779KPP1djTpj2U8clO4JaetTA5epM6wpqU3zQdIkZTMpcfZEqWixbueQloxTOE6kEu0ElyruOWh02wiSeaNw+RNY8KFv9JAToL9jbuMK3eOKy/SWE252K8Iod8HaxudGIOP2UCeI9gN6nf0ag0plVGkiIeJxBWqmcJ2mWlvpCwXt4d2HdS1HXkYjceMTbprtaddIbvAeowTgXkQJXbbJlXVzpy7NW3n4IVU2ylMUrbmsVYr+YT8Aji5CG2N0AWfMfZwxDUiYWC03kCNXJgPgYAHI82FoNM/9DBAMcYBxag0oiCD+QRFYQNcCmp597T/8WuKv/0Kuvqlz2NkPb/ywfvrGtHtLC+W1BZ00fOaU1lET64VzZpeFld7YNopoLHu3sVYc4mD5mloK5MMhD4TX5mXdqEYzjIy8zfQNgu41bEB5yznZmVcLR9FUkO1L6jlUOU8Z4AN/PNWwomBjVhdM54Q6UIT02G4ZHGchwJ0nXyc9sr4a0/l5A0PPfXfT9fCDPUe6Hvhk5x/+0dbAb/7u7vd9lHJLw128DShXzJuJLXrNhBKCaNSgqAVPKtHJMi12OkP3plXU4vviW7JgNe4NwXr1MzuJvqER2MliRC1v5BDDYUUxzhFCCGx4SQHtNy15DQK4YoDOCFm5llAd4TzQhtNDkSMy+NSpWsMy9eY1dptjTbdcIu5ysCNWi4wdlg6MNF5OPYxPQ2DXpnTqMCt613bUFUMuUhKIotAiGWZvODQ9jqvK/F3fqtqmKgiRXlAA30ABhqS70IfH2PowCTf4zDkX6QzyKWduoOecQD0wGDWn2BiMlLJ7twpFZmkQeCWBOnNdtRm8yoOZ+Xqj4o6E/ZlUajkW7g5dm925EweaakrIj2b5bp7QLD1CkGsmxAQu4TVghj1Pe0tSXal59l4L33Es/pXTYUQ/xaaNRjabDaNneIrsDQAB4Jj7KhFMIpz3YIEAfLCDcaVLfTEiWoWSgD8nNEBzoB/Op/4nyRR+OXe2nkhaX3ezZNDml79qz5e//LkXHliY3XPkXXLYLj0TarXbYxKKs5+2kyDP7IyuhL6wuvPq86EPvVtHQXb21Wc1EgoLWQO6PhLiH+8Im4KeoLfRLWZYRsfGDAiAKgOFRRc1rRbEx9/Q1XOZuALnEE5ErSmr0E/olXK0tHgHZPJNOXII90glzpuXdMXSneLyXz/Zd7iXVac65+fbIp7U7Nx9d0cufeeJieFO38GDF+Txzf/6px3v/SSK27QIEQJ6Xgu4+ZDiwZciggFFAhaukMHtVw9T5/ihXswcXeaaXZmRpRV1eIj8aqgBERg2E4tgcVBIWoCgL3QAM2hFJ1BhbAySEwbAh2FvG3qCxrDH+Kmua611t+suFbGNixenXnn62hPPaJ6XbX6yqcr89QvaBNqJl2BrMbMMv9lt5QdWWDj11NNlFrucm5bLF2V6RqN1OIhoK9QuEpFyEVSzLolDBxgYTYN4DkYevingIW6HOecenwnVNanfa2iFUQAOrkM32GAYoBh7+KkUrCE4WFCN+ZBBLRzAHWJ1HTbQzRcahSLmayWZ6hluoYpx6drOAaYrnT6vk5ige0DHN8BgTHQKjCDLmfCKS42NS19oMKg7iFL4SFZNGz840eHQ9DD3OqyWTSxPBgjdE5xFF4WZAAXH4KDDDKCSAnWTnVTlTP9pj29aosmkkb6MlDGibbK62iZYw2v/+Eesn/lZGYhW3nwdoAKjFpJLL63MXH5T47OqDEEWC0STfOlXfMFj8aWvfv5robGB6mun5Pwbus85CzuzjhoO/RxxG58mN7CIKFyjGo8QGavnNl/CKp86yCGzZlYTHb2KFCbWsdMCATTqHVydulSWrcP0n9YBBPk1v2RnNBrBxI9yWg6dkPsf1DrWlcW+z/xoamqFZS/i21lPiy8b375wKbl/tP+ZpzaSL77xyASLZV2jRNREgWgRvqqr/6OiDTQgWal4ISKZ2lZmZbIfNbSsydAG0ArcrNtAjaIWfK0r2VhSYxGIntjaZusIa/2hPY0vSwiPAAVY4YS3c6LsazEYZrQgwBCxtg0CTJKYtIJeo6oC66t66dLi3Ib87RkFUgsZtjnpHJbrS+l9Vea4oP7j8twzmdOvVbNL1yav+NvbS4Xq0y9iiG3esXcnvlFsWd/0s8Ic/jTyHvu1s00CYI7JUJ0KMvUd+SmrQFRLlC4BAuiAzjQFDF2NGUIHLpAhv9IRSIdzvvkYeoLtqS8g2MIkQHJMmj0EMTwCprbVIMnm0EPYYuiencU4ZMDJ4aN9q4tMmyKWbOBBm9By9KZ1RpxRKxAdKoBYem1V2+xsUTuOhUgaS9TgZPftla+el4OkHNkOOF/O5nb8eEp56paRWUSEw9or+kwAmg+7PhIQozPabUDMQBhvznzoqtPw+aaKZxYRQgNruAITLi4ra5/699cBx54n5DAhiQ7535+/9O8/viWjTDjeqn3li8+/8fJAuPjscy8fOXj0yF3HX5pkyd3TcG6gIq1rKy0aCaRoaFnuvkssveqtUrKxa6/GDGAYPP7ZSeXV7t1GrscNc4eNPFgw/QQVmFhslDQg9hZTSEfPeWPSACvFcleqVfbuFt+4XH9ORTCxL8iRYlqPPbwbf+xC110Hn/ny+Qd/59NXf/lzz3596cRJx+xk4uce/d21P6MaN4kMM8PnG7BACZAl50gO1A2r4VGAAVCwggAKMgWQIuc60e8l6e+WtR32p7k+J/m4whagtXag4HwaEUPQImURPGrL8iQzFZvQh9xpiWZ4FxKIi8CaK3CLqQLCaSOfanXtXLv+6MvytR3V0/RoD3ZySoZZQIgX8BBbCpRKsZdfzWZitWKyWLd2RlqSO7FlSHgWA6pIGUjQUdlbutRH6ezIhPS16cptB4+pgU7pKBsLQOgQI9FurTDwGEEI9QdNf/jmBpqhZWgTooFW6DM44ITrdDim3zi7GNbEwtj9ijwtRZTwMMYbqx9Tn5MkUqbzA60eSz7VIJrns9o9tSpq0ur3xnOlPsKdWSN3eDeN82KwzwnQIK7aHZTpOZUPcCLl3iMSW9Cl0Cy3EQO8sndc/t/djj//SgXGYE2Qydm5/my2A+MTlGBtEn0i6k+qTA1RUxuHiMIzhvLsjBfIQ/cOU90A/PkTImdhFYNolvWOdMncxotf+J/Pnat+zdDFAN9W/Cn/uZVs7tpF35GTJKcunz9bLRZmr15t87IzjXP10sbomJxfkIF2uTglQ5H8UP71/uUFK3k7VnJcmJJAuyyuSvugrlmPUEdU45903K10n3pBt27QboDwERXzulwNmpCozL0G4BljKSFM+VCmcVUnxJCLhSB9hxRwrIDEIpxXr2nIJJVTm+FX/rP81R+yQ8rR21vl6Ufvu8/jbOkq5TNrye0jY//69cnffF/LDAXDBhQhA2XQDSWAA3wvwv/Ah1XgkKCYzin896QKQaJsIa8KOBUtVdxiQqaxlFbj83ut2rAh32AU7B8sH77hbyCrGU3+Rw8wLYNmQHXa0BaU5DOgx/Rn9h1NWtiRMz618oUvzz+xo2MdNuWwUEXMLzM7cvjEHTI4plZXrRbt7nEXnDPT64GBvr7dt3X0N556/UvMHfGPBDLzGUJzxWuykFy4G0OFpakYxYUpjZ/3pXX9AlZEo1cQgx50BqLnA7nRVf6EJgBN80+GTfugAvTwDc3CBiRJ0srVxLjQJEnWWmtT8QaD4RionN9RIwQbgBc6bNVaFe9mp1AlrkuzU5enOge7FCC0wFt7DYt3m5DsLuK5mL/MryfNnJBZ4kiGKkyls9pZU7L91PR2RvY9clv7k2+ev6hOB4tmVPBGEKtoXeLCFMNRlgw6ITL0DDqIlqA5pAzOura6YwbOybaOpQzyKhqwx+5lb5XV+KN/8Y3/9Yp8W+RjBv4HolIm3exvuecDvb6779O4R61+2wf/ydbX/mR8/4FwW1vA12a1RyxP+aiHaYRkIau2GFxWqGxOWB3WV15mufxGpmL50Cfkib9VKjq4V1Vhz5C+Hs5uHTR0D20AW4TLoNjmFTRQs4oh+omQ4I2c57XnqFwWH2Cw+F1zb+pUGFe3nH1d5685crqKERP5V64wYbA4vxBiQS5bsVKovPT9ufZxsXTL4h+d+Mhf/dvCt14nxGYkYETfqa0MGFwjv4ne8A2GYDKoNGAhAW7vYCE7kJEn+qaxxcXt9s5w52ZqaVF2j2oBEgYntXBaBlwOa0EOnj6PE3ghYYYoAvMajIO2OBgPpMaLyBxnNS4IgWBP5zPJqeuf/9Lm5JqWge82w+WVoOtyVrfMGzhY3/jm12ylQluwLbGTeu38K4tbW1QVBAZ3h3wtRAWmZlmkLDOTxuaWfhJTzP2YmSa06wwFpycXxlCpky6l/nKHONd0L0RKW5nIwp7M2jGrIfHWm4If0ueg/ayBDrjhhowiBoohO6POPbaKmTy1TWkkIXzi1swZ3dHsG24xa3F6vcX5BDqV2BjhIrKiOO0DXUOxHeoUghpi7RC51wzVb6RPO6lNItFmpnU5qvk1rd7RYAnLcJFeX7goS+z8/THCa44H77E+81K9zfTRC+PBn5gEZI737jf2J8l4t7E3/BpXJZlKok0hDxabByggrQPILqt0o5CEmStLC1/8yhUSvm+KfG5YY5jXVmQOg7EuF19dfPdPvp+JtgsvvWYt13s6gxcnr1atPYGS3eHJH//EyYo7enkmR4yLFCvr6kKqm7gVjZX2TLrntgOXLrze940vIPSDdxyV117SgnAq+IlN6x7dHKeR9kYeRA2QrcqxEA/ruilpAineB4XEdSwkHHB4MI0YAUsiMAOGClbm+rAfJlKZMulwsPB/vuK55yFXurAxNx90W30nju4PXvx3v7XxnvfIwC9/7sL//YnbfvTn7arVoX5eDmQQc2Gj6tggxEGjyCfkHLEdkqkOXTnendBFlMAcpGKzQtIWSx27ixXY8c/qPiyujbFhb4A0MJlI7GwNR+AE82poiAU3sVDJLfAnwpUG8GJxEiqysKx7NLDS7fp6JpZ88bXN08v6AOOG1vjA+GtmVtxwFxRVfOH7zzttZW8wXC+XHntmiy0vWKDgzOVJlyfKhtAQ83Mvaq/Bc7dXl5u/MC/9u5zOiUONmdXF61ej4WCA+alQE9x47k2zpgC7uE3ouiAaYeDgUdr3mZYZKu3TF/QDR8L8RBHehio3pKbO/gFoAZ2WwFOaEEDRoQdIHAJQL4SFMMEqxF0ktt7W3Voo1jPJzMZKqnd4t86A3MNSTU25Q4kYvi9kCjGSBqIswinDHdIFETF7OBeYk8KqOlnsgyo9HUwY6+6Iet0xbBzsu47Ijm1yMjQ2pkCmMgU4QyhZk6xBYBMlpFQhRV52wCh6SAoU5FS5UOyGm0TA4KmnpNX16tkrz5xXjj8C082pGLrCbFw0NHNuozI7v7qy/s1Lly8O9A82GjtnL+4Eoo3S+s65s6tVf8tKOoNIefOKUfagPCklp3TZrYMd/eJvd7d0+lraFudm66deC48PyNy10lN510P3yX33Su6qmvtRIDZo+BOEt6v/WZox8Ie3NxS8VSRLrxaBMmDW8fXukgCWMzEi6hSqutopoXZykcRklxY9LLzZ3m3JFDr3Hsg//s2dC+d+69e2/+LCv00+f279t/5VYhalh50DlmkUOwWA0ArfiB9CQMCObxgAfxSMwgy4sEzsp85kNaUblcW2LGjqXI3gWxj7Iq9GL2iy44XAAMRSIW76RGQagoePGQxWE4DWBfEKOksHusG1WE/qEkDcvBFLrm9fmVp/7bQmPUEAWHYagTBkSA9BuX+wvZ4vlHdSNo+1YyCUz2eQv4QWMMkq+fLps6ex/XaNyPcuy4RHI8z9FXnhjCqhp3/3yi/+TGJiZPzi+dN1l2V9drU/t8GrSpUqHQ4kxjXT3oXFgiToNSYQnUsaRuUKVBJXIdGIaeaFXCa1Pdj9FH3AbYwfRQyHYF5TZwFXsFEAJi/RAlLFyKyaCn54iieAYjVZLRRKiZ1CgJI1dMEhY+R1Q43kbsmfELQB8iS2mTtDphODk0QPk1TCOjOgs+S5sL0rZfrl1qRvuC24ZyLG/G9CjtViLlkohJCmePlYMmx3bkd1xpiMptU7DnI7WR0mHaokdME25WqN4muFAtp+cZ71sC4+ce4Pv6rKAPgftcplEwVkEMgAVot799F98WQxmZ4Ns0f3TrxYTkYhFkv9zNlV9nb55le+ks5UT96+/5sXLjGBZJtHajLWigCqf/nxy7/6a96szXtxYdnr9SzmkhunV+NLNSg2/TczP/7Tz7g+/XM6/VLbAf7PmrV4ZtWJ900o8BXy7MdDqUWbLLwuabZ/PKJVDQHWcN8teTTUvK72BSKYc0vknbqdcIvce6fuwdo1KC8+f/bNwslPHxsd3JbF9fLKbMTtO4wXVcgQxzBET7t8lPpRBThDEDI8gOynnp6ZwcytRqoVddoBef72kPRGVXxQheyxAW3cLWxQCF2nAYNIYvCaDKYIFqPTTIJC9qMvkEn6JzlaI/uxeUhR4K5x5/LyxZfPnzm/fmlKlnPK7CAAGqRHQB/GBG+37SU657DUyrVq+frMds1iK5FZhaeYBuy1pHe2Y+s6MXBgdHAcujqpkw8/9LGRx7Jy6E7Pxz7Y8ZWvrv+XP39xNV9YSibijeKllcVGwBNqj1id1sWzp+XJJ+WNVyR22RSmAwuaBTSAo6g8SN6bZCziubCtpe2UHsHSeDhkrKAq8s0skMicNUBHTTaDZQIUMQF643QmpxJTM7qVVmePz+Nxz6+kQpEWX8DjgUlgoQGjgWnHx/YWWHIE3ChqIKnMzihe6WmR0R7ZNyK7B2SsR+7cJx+7Uz4wLnf06aY7VZbgrU+M+fC0Kd+0W+oR3cqOZLCpvMLgAUcsxoqZoXtvUZVIeS9AZSo3a5nEdJNZtpplp0A2U3rhyQtf+dtT3z/3rce1FjlKCAPbnF1+0DQ25QegcPCgbXxobHtx6eK5pWx654H773rjpR3Kkyu56sUFOX5o16kz8CCVQUMHPbLnsARs8qlPdS7GZHZLhvfLr/3uG1/53tR2pXx1efkL38l8+4Vaa7/cdlyGRuXVV+enfuPX5TtflRyi76IJysWp2FS5V19VRCB3lPpbdG9WjBFWc8HS49i5IpV5DYCSJCbSzKQwpDalGayLQZ3C/9/Ue4A3dp75vR96JwpJgBXsZcgZckhOn5FGzWUkS5Zt2bLi7F3fzU32estNdvfmyU28z82m3JTdzWazSbzZtRV7ba/lJlmypZXVpmhmNEXDYRn2TpAECwgSBNFBAvm9B5KfiwcPBgMeHJzzfm/9v+Wr6mJKV+7ObXX6LCz2L55///f//LM//8tvVTjsu9FlNz20+gRu1scGH/HjYYZkdKKg77GYAKAYAT4E4qGnTouiICUy4KZYGvUCohEnF4OiJ54hZgOg39ra3KMPENmXohRtbBZvyAbwirfEzeAdEe8SsVHMhQaYm8zcHxoemp7bVGNw/5b8YFCkSfwyJ8ZXw4f73Ors+XMOpy2Ti8f391nyvZ2Npbmpk70MgrcVssVUIoPjVgZANbkkTkJ729FjKhTeQnIWV9LLoU0P/VK78rxyLYGCtXrcyUIhcZCdXlje3I7fu3x99m+/ra6/I2OhBIhIawLAPVpETbI1ufAA/jsFf/yXuJYcoqawgR25cwYoCNvhZ2sQLXdHZoTq3MrA+Lzku5gYgiCH1zNuj3U/lTSazfvpZBGNhQDwJ9QxhVxkQnCcIDU3D5ZKEoD4hLJPEkysKy18VsKGrKp2SI06Ty5NdsY8JOTG34xsFXZpfTbqi8RkxOUswea6mGbAR3Q8LAAncxx3gWij2pgahtVi+9Ghu7hM2OAfvqPGdkTdsLU5srOpceLuobQjHzWr//0f/k51TcDJFeoJ+epGBq+3NKmzJ2oa/NVN1D2MTF3qt9T61P27N7mDvpMdwRY1cO7Rv1uVTWQeeuwR7mNsiQqj7T98TZgeRPvulJpeER3Npsb3RthOe1A9uKV2p9RBSK0PS7KJ+ER/WjQmF4WKXQHa80hEBNBJXrmGNCKlk4cS5xw5Lv42Kok5fBQgWx2x4VG1vZjc2jG3dc58/8fnL3T+6/9w9i/+6LUTx9pXVhY85Y5rl3+OoMPrmpploSE6wmDlv1ols9ROsRjkw7XSINxYojpeIRwFfW4yFCwagLzwK72TvNJ8568qy8EEbBCN1/SRABDHEDOgIHHgKOBiPL/WM0mCNhZTK+HQ/aFbI+s3BmVKMVNjyZ1jOntqRQY8Ziln4gIZroxvEt2JLq3MDw3uArwe6W6rr/fzu0faA4VCjgp21DRWik1BibGa69TDZz9x8eHzb7+zP2ARR+AXI8pVqy49Tb+MjcrI2fn0+tbe4vpWQm9sOd7R2VtLbOrkphZmCPRUflWLztH6Sc0UcafYroxWUAQnAbNsyRQQipB5UDjJjgwkYtgzAu7CtWMo1dysJLNXltjhkPJBrqBwaCgW2FEEYDOTyR0k0jmd0ZQCQq3TEG0bRKSvErcQsnPFOO5YXQ2kJovHn1A3rIWOXC+8uaf8oAv0lyKV8TKHnVgR994DAk4va2NQBxyBRUDpgNICSIgvilkgKiK1RK4dcG1f+J4AnVDy1u2ffWfmb34wXShvHBczpwIG1dYs4g5bMwf6JsOkzpdxZ7984+2rV6/VV3nZ7Ozzv/XCbnST6XLRcDi2vvzCF6ruT6AVc9PTqONowKee/9JvPHSm/b/8l5eQtcrq8t//s6u9J2ueu+iP5tUpp7p2Q935UF25q8IZ1TCg2nrVvRn11i218uqraviyQP4UicD9u2NSA2iuFB1EtMquftwXDveLf61qOpXBJ4AbBRfC9Oy6xzgxDJ1JPfmsGrzn6etTN245evqZEneYN96+PxWa26zzqu9/d6ZgMqcPix52KRkbpupTpEv4Ht3PK9fLEvIP5WuIFPwK4YShkQ+AUZKLafkc6pMiMBV1ZbpKX5GkHuV3bE2954kf7akTjuccwhwxERtcWE7CMuAhAV9iWFhmgunZxcLM0sJCgez1UlhFDmX3NBRfvVUqyuC+Y91qe1uYqqU1ENnZvnZ12mGkQUqi/JZab20TPVMNO7FItblQc9QRrGpZC0dD4fWisXDsdGtkauogtk7jW51HZ7T4Hg1GTWZzc1Pr3dHZgVPV8NKd6+uJdPqJx2P3H+w0BJjaBuPZD/UFAzKAavEDKZZrnhcyYBIxx+dx+NQB8SJhR4PaXBRCMZ4b3Y+KIgeM9gUUIhNMDrilXU1NSX50ZBbAiZturAro3BXGSNRozepNxo3wvsl5kM1nHMBrtD5CLhQNrZsk+HhDaCHcj9NI5QLBNFKhlRgJMRIyu0qH97ivDqgyRD3U1/h32Nmaumlih727t9ynTwvmC+pEHIKZpYWIGJ0j0WjMOAFIWg/LfoTU7dwZeuOVuclxdQ0Ge7DUaJcqL8JIespdaP0j6q+H1ZMGNT0VpwHpvbcnL5yuClaXV5nU8tW3PbiFOjUzRd1JwWjc/spZ9ZlPfdp38GbRYfnU6SOR+6Ox5dmlOfUvLupnZqKI+eJi+IWnL71y7U34Amb6RUydYUjekvrR++rRdolT4K8Xf7j9lfyrbY++oEUpOIcDWrFQtdC/SHEEnenXRWgff0Q630HfqfOl5nltS5IbaF5GdKUWpeyUitn7g2otBLPlU2mv03Hk/NHw4hrkrHajSYyriyFbsGV+cswo3Qi4GogBmhZJgO4AKCw59KKuC3ODS4qmhWW4XRQMhRkkIAjU0JnM3JrcRcuw7uUeYWx2JTsA86IusMzoHDghtATZBAEpddCg4Tg3iCCI2spacXRsaiY0PiN2EH2Tx+amZS/nCmBJOhl0zHus+OXQ9j95svZgP6tPHLZ4pML32Sf6soeZ+cEPa4uZJr3OflCo7egWA1F0tFq8Kxbbdi4edDj2N9ZOVNdbOqMBW7XTW/+5pxuGxm67faYjQcu5Mw+9ceXdOyRMGMr2P3e+9V8vffe7b+p8YHEBQ8A+cvWDXup4MWfsJ2BBD8Ea6AayLTTokFemQTQhHE19EYXWxJq4LvhFYAO0Jm3uS1YSpkAk2J2BxoB0DpCquzeoUqZ0JIrad9izLp+nIpWdWUm1UZjgAX7JiIjhl+NoiYtCwAqyAUnQMlhjGAajykJoUQfBCYMP6FLy6lWKSgdkJo1hoBeInuN09MDf6d9473Iunw8+dF7iXS4PvciRTKQgACDtjdvJqLbwCh08C3eHYrvqTk6dZ6eOtBpOqc/VqjglLAk1UAO+ZdlS2S9/ceD9twabWgzNPt8jPUfefe3KH/6rz7z+N69/5mLDQS73qS69yeqOpzJln6FDpeILx/tmd9cL8Y3IVPZLD52pVbfKDgw1vY1/76m6m1PDDdXOSp362u+cGZ24W3ivcBezt62+9kLld16KNJVLARdhQxySro9JxayAELA+agia0NnMlvfTgrntwaIwpEPVe8WOgLhQto32Ici8elWdOKHu3lHNjWIoTM00xJiailVXb6iklSmGrQ3+F29tPfn5sp6m2v/2g7vUelO+qzna8AKE5ol7bKXdmnpjpA7ExiLgMcAOETDkQxsRSMHW+ZKuEowPe8AriDaeNw4wwxiNdWL/ccYlJnDUilYnSQYSh04iqKB8kmRVdC8UjjDNjppf6j6lBQoMxqZqK2Vx6cam0/L6W9sPV6onjvdPDg2dP9tmzMTLKSzR6cJDkz3BCkBiYypRRQogljycWjE4vcXMQb3F3NDcwnaztuUVa/5wd2Sv90KzGZexJdjX2Ri/d+XUsZ5v/tWPKdX5wlOew3Q+Hkk+9btvfuOfNL/2k4XO5sV27D/KGK8FeIroNrCjJWVQDxAEr5q7lZsV+qzPCfbElqYghQwAxCwIoxYkpkcZ7KKwMzish8V8TZNJ5/Yvzo2xp04imTz65MWRt69NzEmPyupayEfOkSM5J6gDcsWEUBxFG+NTK8VsSulOVuMAIg0WiJo2reIQ8eBiGP9Y51dzq7g5aHNXjdtl0BUT+2a2rjKp6bdvtrZ4DZlG1X9csYkvlREgSwyyZaQZFXurW+mDbdgGAAP13MQeBiFBGgjmKa2CC0DSb4ezf3XBXa7XPf94T7kl76Pud2H8k7/+yOHwvc/0MHVLvzO87gcRIS7Y3I2//suyhlab/qCnuRnNmNnZWZ6YSdHw48g/9liPsSoQDFY8mB6nFHl1aeb9DwobGvz7A3yHlyJYwYmo/G6bX22tgHxT+Uh9e5PmkWEtguII5XBy4uIZUvY8OSsj7tgCC5V/75q6cEYRUA8PSt49xgiCPtXYpCYX1cO/rt79tqhWt2/s9s396PZLb6q/uPV7O6+//Md/Nvlrv330j/6/MW0wFvfNs8YjKrGA9tfwSniZkGJ9W4WpryLu8YiJ4gHmgrkvJYDQ+U0ONqXGxgL8oMKPdKqOdlXP7PjK8hSKn4mcNK8wbJ7hAoQmeP8cJ6UyoEXmpXB6cEzUHwgJCBh+byyu3p7A47UQ8LBl24c5daxJv7swP1BdHqh0lZ87C39sXrnfWu830xO0CshsMADem20GOiFVjuBFj6lBQ88tOAGgnLZqmOTSk8JJrPqhrszg3lha8ZvUyRaPtWBMJJJjE5JnWN+IeZzAgKnpmUW5SZiZLT5x7OSPfBCSYIAPccQB+PH9KK8AeaBYfzckOWaq98C1pC/MIkX62GWMJxFwWdn4xI7vSO+DDwetTufwTOLohTOphXE2YcF3ZWRJgi2mBUUVXS/7+FL6T95ocU9Kn0P0WwKtMtQIEciIkODdcphcD9i01iJDTh3ld5DHDcYBXlvaS+5ndV6Pr+94be/xjgtHDUc6JF4nRMEppQ1HyneXRdK85ZF44S//cs7u8YP3HW+VDSXcnNiivrUmLZybGgiwh/Pprew0O9uO1PsMae1OK5ZfvGogB9LQmbmxaMc9ZNurtTV0Wxl4N7VDyDMyO70cHR7raG2jBePSw/1GfEJ/pS0QtOWLPq/+W7/YcaXVpQrBGRo1yNNXI4lOLA9hFN3gKg6IwqmhuFN7nVf7YRk/Af0BMYjpn/p7Uo7GNpWDl5XXKFrA066qqyXyJANADEaf8mJIxYdXblxX1S0bUzNFXe6tO+ovfvz0e3/6nzOO7Nd+r/vWzbG5BKTshutZVFicrROqxR3C38JvodCZyAlnndJntCJdZ3YsEcEATACmSWYAxUQcZtmNJfFaPUyj2VQrm6INCQai65vsunmwtmVk0VzcZlFSM5RQo+QF8GYcSxJTjPOGJoDLvFpcfSer/lEn3VRZEEKW4ygEOCyQVFMD/Sxz8Y2/Q70FgmUqdUjwJZljihZxal2ggfRtOqTKKl2QHjzOy5CspY08+cE//RODzR2wmOITr2bMxt72/vXld+xmW3tTR7QychAdfyyg/uSHO49pO5ZLthSyM4eNrjQAdUp6cKZZCQQe8xVZlRvH9wUIIoUC3g+0RLalskPwxPpmlSUMSqhyl9qMinq+/6DnVMsr3713vLssmzvwQNv9vWxR19V/bHzmAfUL9VhqolcH/KYtNoxir1axnBqdUdfWpGzbSygIlkpgwM+xwWZOBbgqfFHiMdxfCq2TlMOy4pV+3UHGUCARw/wgyiRIAhA2lO4HbPLAIyJEfIIBwaoE/Ft7MXOF+t5Pt0JJ1V6hZg8VkM6ri+rr7eq9GdVmEF+sDmd9J26oSkoFkqNn4c9eNQG9wKDc4HuDNIoRKAj2GyGba1Zn+pQTPwaAMpq8P1rORe4lv6nUb+Rz2fsjtsh2KrxciGx/9plndsKvIsh4lkejMhB+R6lvr4mj069X3fWSsVCz46qqRnhGXOM9wciIPKkguvwDVU0lfJOY5b4B9eGgRFkPvSD7HakbqqNPNpDeP5TxWIwp6OtXb79T/4Xnb/zZv++uObYcil8c4Hypx549qyvDYttf/oPx9679Fjs6gXVaJZJjsAeRDv3mKNdKm5QZUxR15IiQjOoxMFA8TfL8uKtg1bKLt0lWwmqh6/pYF1yhLxwWGmlgLHMk0ql0qkjsYHTohS8JxbgXeBQ7gEEjLVQw5ueXEdEpQi8t4YUFWtmRsp8aj6/eddgcrErUr6Y2kxef+xyBeOH11/WZlM7r07EnD4Zlfb04l2dAqqCHtOQ1tgo39B5XlUE1HVJNFN/OU21DtMT2cOGZ3I14ZPP6j9s5tkvdvTF54dETK5HN6eHBqrrq3U259UdqZatc8D0aZmibaW3HduWlyAdvDZsIWdBtXD/uH4YFRwU/B5iYIJjB1FLyAphIwYJecvvMAAxrwHAmszc64W5quvSpplSysLG02dfVnkofeiuD4fDqG5fVM58GWIIcdFWz+gbN2QUesKgKesYoaxkWDIeEDiEZFZpl/JzWvYTU0WYNZ+P1FyykHoX7OUHBaDIbbSRlYB2AB8oxAHlQVRRpYd2ougO2wrXAp93cSm5EoimzvcIyNZbdZcNWHCF4alE9jSlKq68/e7w64I4vzM7cDnd/8gLV0St//f0E1S7osXZKM5Iqb1XNXnW0V508pe87oYYmSbuqrm4h1NImxdKOR59f/caLdYcLjyv1z74/NsmsX3XfbVDPPde9eHmwqUwd7endiyWP1O6+eyOKHHVruRDcRq76gzV16neCUhhHEVqRqgfUhtbvltuSW2MGGcJ2+bK6+JjsskXi83BTGW7JeFDUK/c4fFt8b5oKE7GZd95rf/jihee/svf+EHuvPfoX/+7en//bE//s/1bz695PfPPrpyAaNgXgAO4hbQaPEluwqMS76BubUYETYZCw5pgCWAHHlDcmwhEwaXQ/k9MZH+AkXASTBQpH97Mx2V4x6XQJEEfWSKpzgcNB/akgx0ygXdPIG43SNKMRY4p7iybgQH4cP+OfD5iDFb46f3ldpWtPn3Q/fCL+7ltbM6n0jsiYyD1QzGaMWfi6J2tl8CquEgabZBgFlrMxNZFWC1r39Oah8tapk+drR+/U+itOMDu/LiB3KhkrwESjJ9W2cn/E4DCdGrCnDlJH+zumxqeRbrganpEannK/TIel3ArHBk4i/gEGlUQuq0Lk6pO8fQrnMKqO90pRCgUt05PixlGciddBJ6Td7Xa6thaWZ7dy3Z1tyUwWgNjlLLv83mB5gFyaxM87kXSzRHjwANIMDSAHiULIa5RN3nHtsT+ilfalMpeoSL8hEkgRHkliVgFbVMzqPGX19XG9/tBK0SUo4dq81NxTEyoTO8CRqKlmqgKVGjSPlUmpeW2rI2MNVh/sJ5bpnUP1bFP0qNR3lXr5oUBXR2dTF4ooP/Pg9hc+3/3zf/sK4Tdr9MxxUrQ+lUFEreqLv6luDSo2LiuLqbtvSvRP0D8b17YhJDeSVoN3CjtK/cGv/97sN1yd/vXkVuv5AQzmyIfjwZam5n/4jw5H71fWdARTyf/t7tVpXCfN2V/l9okWI9Dfq5zV0rtDzxAzuUg9EYjSdAbCjWHCVTl7Rsr1t8bE2h9rlxxfXbN6711BfqkQoR9y8B6QXRUw7Z3BwR+/MnDyYkP9dvFvXzpx8bFX/+Bfnz15jjvC1Kx+sIwTaVBZKvsRMqJbggEEQOPUDG/QNBhosjyQmypOFoalgkGACM0C3lGx6DRhV2dWATwKzCXpOFpR2N2J7Rao1SOpj7Mj8kp5MMgPC04EQ80GklE42EklKEzkOiA9D8gVRL8EAs1+T3mlo7C/6W5v2bn5wdLdfLVH9jBnNt5h6MDujwk4R14RcaKCaHpNix3pLaoQBWytks4sNiQ2s08JntKBDDCiHpMOFYFB8AFAWGlm57+Z+jYqDYuHBkN1pf3ABc8mhj5c25pRAQ8tgUkds1bQ7uwf6qAyByNGMhXWhBdAeHERNXQLH4kkwNCI6uqhbl4ZnHIZaytCQEKORC4U3l3aZmSTIxRara8LevxVd4Y+7Ohq/NnrS/TEiioH5JHwGjwRl1eTBABQqIQmYqWZ4MAP8d9DjwBxVC410FHPrH0Ej4JnqnQRyAPCgPRUfH2z0Ho4Y6/2izkAfV4jumDtqAmljovF0iJ4IlzGc0TWcqsRw0HWkM9VaRU2nZrH/4xSF0/1OlFVO1vR5RlfZeWP/ma8ArZ3y3RTId3UDuiCcMV//lsBtWfC6vqQoJAATS21aokJIPj1zHFnMEcgWOtU71yu6m6g7rC1/SHRHc693t88JRfgKTOcOA1zm6MbFwbKm/ejJrfx/715cJrC1IhqQdOhCtjIA3iHeyf64idAvklds+jRTZW0KT/lwBHRuKzFrVvq7FNqekTZqlW5WT34UK3H5AxzEzhYIz/9WXdz99gHHxx9/FJudXH9wfizz3+p/ss//ppfFaLgTAlqgSj8RPEfCo7ByoH0A9SQeeZzVkT+S04A1x/W56n/6BU+M2B9qFSx4ptRi0YIR+Awfn+7kuwESRurwWwlXYoEYDfIEGlxG34FABs6dpe+EHv+gF0tRZ44LxqRG9dlU/HdrfL2Gn12/72/uuYzqv4LKFSzVBYQfMMcwJ38zPAD6TrgqhA+xL0sIxaGgYQOv9QgkSwEnzEziApTphN3CHccSUZCoCOiiedNxzMmLp+oxyzostOj7zuq3VavavSrzgafjswrI787AtJMDEIcnZOOb2pRAJjhQr4rygInkAsgy2GVGnd0Bz+KKcQjYZHAzTa2EHnwJLZQqKusDtTWX73xQVvvkenpcSJgvqS5V9w6uQ+Wiye0hQw8yQTz5A1OPGsBE/AndAU91jT4k7OACOjoyEc4tc4E4gcOkU4cpubXbeF1B1sm4tYyigLbCNCDGScPgPklDGN8XVW1ORnPbO+sre72VakHGx9hHwMmckqj6fF0e13j9783iz7+k+eaNSVIJ1SZdLr2Vgp+mkBzboiF6QGH8UnhMfl+QAh2R2V1sOv8EB1qBeIQNvxjKOqcbFfaIm2KggrCEjQVYrEjYLuVPQNtFxxH//h71wYodTmlFh6oSycowVtRwSa5d1utUIaKD0iEY4IRkLQgji97TuPgkfjwSqtRaFY+AUkkQmvqkBEEqLnIZjGbqyivtPp8wbp6TvODn41+9T/9Hy/+0be+6Jb8TXctjJk1iv9ayiZwCLQm3sLPAe1mQDRAkAnWZ23J1LBUOCwiExrHkjg1yYwkZjI32BOLKawNR1FJzt9hUZe+qCPexflhJYh2AdHxJQQrlLgZ1NxtTxdzEe5vQ4PZ+TZZmHw8euNeNLu9PbeQqnSpvuefUDuMnvMJJgjpkRTiB3KZQG/IEhpOuN8rhCBFHSgX5gMNkfINxEMvLhx8RcQGfk8uqRx1yGwM7APBA26xRzaiI6ERnu5+6Pz86G1ip2Cg3JhB3hqVOyCYL78I+karMWVGQAXcGM6hZMpBgcWOiZ3pOKI2ImojJhJFqIC0g1fwJpOhzqCjwbURT07Pr7m8NSabc3YlVDRYFlcy4qSUE0NxfXB2XqMqb+B1FAL/5QGpWQIoxhsEgCP5nCfAFr2L5B/YlQiki1BYZwo43JFkeT0Bg1oPJRxEvRUeWSjKJOtr06P3bafOyBmwYEwpplzEmF7fnCEvDKq+q0GAXRjmhPrRTzfeJgxTI/+gQf3jv/9piqhoixGBpJ4CzweBN7N8++r4EWEysiV4uozF1lMmbNOKhXF8te4IcnIULTM2h0tFD9p4WlTHCRnwQXhD/YEf7A4XzuflIiPr/UdVbVB947b64+dUkB0pqYc5wojVxo/oQGI4uSh1mdB8L6dOHqVXVhobkCKq0doelZYGgFHkjZkg+CaU5bJ79uyk22Z3N3ZO3rxhd/imL7/zzLPdt159zVJufWkv849PGc+cOL64FUIAKCwpsbVVtBFkEtWDpwX9KXdmPfAjtSuRpeLBYfyf2mYc0EOBYrxOky7FvGQ27Nop3b4Nf6egI1oCPgE+o0xPWJOcPOi1TXzoQKD4YBm3olw7I8t+3qVOdUm1C+PVhu6nKOM59sxnhbndlIPD7jmJQbFLRJlSDsB5OY9BRhaDFiMJZOigLA1Z0IU2SGI1ojnqpVBRYOdmv4zxwE8lfMcHo7IAZ8CnTcksYiuIGvXB2NLQ+PzKUvThEzYn8kZiC94j+4E44agQjLJ4XDk6Br4Hu+TeUeMsv9QakJwC+I+LmE3Oy/a0Nkv67v3aGofeanPkigeHhfHJyY14orez99a1EYYFNzfoM7uFMmRb1EpaEwDkkuUoPVA6LArEZxl4U1oA3iAGDvkEVUJYwu1QTkKut8y6E01Wn/LQoI0zJ54YQgiPEuAbDbZPfVKOoROXSJ/yjbu3odWp/s7d6FS1z3i4f9A/YHromWfBSbORjT8smK2lzl160sm5ptYoY1ZuQk+PyA/CY6oT+lPARMczYAuNB/46uTACLegDhgBCwCYfESYjMR/ApQLNYgfIjSC0TNjEp2ApGXdH0ya2NEkxuf1Tz1765G+9ua/UnVvKkQsPUO3H+J0UZQQe7fap4SPbExfQBYoBheGT45BXVTAxUqhHkIAiW1kUC/6D76mnnhTcJc/G3VIKZTeaD822+dW1jHGutqn1974R+YxDHetsWlxZ9TcBAUkqOKMR2v4RZ0NuI7iNRn1kQBag9GRVSqqI9aDyhsZPdkbCSTWhMcM3pYCgrVXYQ/It2HCID2tjB4DGCeZkzAYJZmrgiMbyaythTtqmQUBVZeriGX29z49f1T9gMxHLk0yB+6kLkIa/mESBHiB27QqxRahWUvZE3xCRX11kDpxDBuJVk51logQufkItMK+iQmrrcZoBuLgbKSom6Dd9hGVxg8TxuG4p0n97Jr8/2DhPZaQXA13JTF8undvlFzE1OHtg/3AqMK5dTi6WDTedqDqhFfxRXEkXPH1QDG3tURNDFDbZ/P7Q2uTQzWSwEw8usJ/Jdx09mkxlZHY6+5jUFQJeWxl4jgAwXBwPfhHGgiqwMK/az8nnpb/ySVKjP6sAnXLCiwBEZOJIch3mYDABoJoa/LqwSCZAMkN7qqskYwpNQDJa2uT24RusSmTXaned7fYtL+6g4s4y8QbGpQqbDdfA/QiZgPbIhNBhKKqHzsMDyVMyeGIrqqjsR7owYbUNArozGQFJY9WppOL6K6wqzjy2VblYPyjNtgCX5OBQggfE8dwvWpWcN1XltAvTMspOj7lCcr8cpqNMLKEsoEU1QHJWrVfbqZEiLr9IAAAuhM2C8sg/LijBBqXpLspdsxg+of/ssDrRKyA1kwX3EvNjowyNpl6t0uT68td/7Tv//nvre3TCqxeOMT5h9qmHjmWKpNNEu8DWqJ/SG6jPSB+ML4TmfckcswY8+aS0QnzIGxaC3h7A0JRq9QcmtrhZWB2NKaEEyClSy38guuBZrC+fcBoCaCki2FhRLFljnepqU0fa6l047hyDBwllgaQY9M5NkhOWJvC0ClbKnRNP4z6D5NBkgYZGrxBaUdR1QE4qrhJhFZoW/wovH20HldOopRaVp5YGx13zpwklQQ85MxoIGBdD56Jk3ywbB6W8LaHpWzd2VjdCzXi0VDoIMrMvd4o085BYiFZUkEQNg+diMAIALFCCiiVewfBYCeIE2DqZXxqb2jtQ5UHE1ma12ZdWFt2V9ePTMxhOLsdqtPrd5XQSaj4gZ4c0PEo0j2umAAEokb30Buqgp3jVeAhXxMlNoZIJ0qiJL6+qTCY2lbOWgio83D2ZUAvBQYooOiSkxvlGE2FCmUzUdSL/wdVwaImpcxVmw9f+foPxxIDIElKN8YTjMZWiJti5dVGR5qT6iAiYMAwntjMo9Rp7mreJSDadFfxm9I5kQKEnRWlYY/QC3uDBvqzFsQ4ZktfTq5ZmhXFhKlgCRcbJSeYgMmAO0XL98f7PfvrGC2/IvgvPQW1aOkDh5E53tFvG7zILFgzBuQsMKAAdYQmeHp4wH46OSKDMABVSUWRp13GbPdnZ1ZYzD33nn17/N3/+WHZz/8b333rymQsP/dMbX/WqkVH11BkK0i3uKi9Ly33g28D9pdcSx6e1z1kVPqTKF6nlyQr96njeEDTjgNLabFYHdkRG4H5UdpV4yBJ+4W7iRnPD6FocD2IazocaJjMwPUe5VVergJtHTjFfqVFCQvwKcWas8kMZWIrNFcl1V8vXKdyNr0pkgjtOGYJUFtEdyOA3oMQdETgMP04ITirBALszQCZEhcsmsc7X6eCBffH+SaBSxAE+BaRDVC0uGUk9wiyydd7yS5f60z9KMgqJAnrm3XJC9ALix5Vw8YQxzHwWHQU8wEkoQCfg02Ji/C4OwBdC9dIal8qujU/vxIqcAHnJJNORjcXqxvq1pZXYeg4Yk0lKBRAY4BqxM7A1T97wcyZN8UM+GJ1XHnA/S5D4eHU4jP8iJ9R7cuP4b0VVSx4rA7ggzg9Dp1GfgkwnpFAajkcnESPD3OSwJa3JafOmhkAD0FAiW0jk9Z98XHwYLAPADtKCrYYmfJEgkDbRyLKQdIvxLW4hICEmNpMdJnG1ibvDH8iq4djEt0hEy8aMaMNgQKjN7k5cDzdFGXRoQn6djj86HLAGMAoxGI5lMSFFL0C3duOzly588o0bD5R65d1sz3+t0LxxbrNMS4RRYoj7AAKLlQtLmRBJep70l+NTUHuPyeL+iV0hISY6Fh9/4w291RkZXO7pUz/55mUs+rFHLnzzuzd6lHpnV3ZJwmOsqHA5mxrgY7emzmE6jAAPXhEJWBVJKAkDjMuJ+XEO5sFlcTD/5RVsC3fFpaLWytbF/ORHGjDQzmxhBEYngDrhEdcKQEsiFDwRysJD4dXjx1R9H6U3zbJ9J5OSuAFEGdVFoAPYj8mDUhhFsHYcFX6UcWWMvIS+AFASg5IJ0gowKdohwIAtCCiRflBzqlhYKtiUH4VrsSfoDwyR4PxITlooxbVxd6wTLIh2LEUIZovXX2Vi1hJOFASAyXCJ+CKqCyHB28bPQRhgEZiAIBtxwrixBqVib6o8MAJlntWb95wu62E6sxGloLXaYrHNL602BVtHx6/AYyR2u7q9hWzOi0IFrBD6o254wJpcFa/Co9pTLkJbEevHIlFaAj4kFGYX3kOJgpyUae0zKyy1pUkQdCAmoe0Oc4dGoGWHKZnBBrl4iWIZJ7QkShT+66jQ06LPZTCvgs9ZU7oioSdGAPyXEJaKI5JoXIWZZjbKvBhSnRNwFpiV8Bo0hgoKShJamhUJRYgMSksAwOQjUtp8HRSMSAxS0wFCrRiSiYJAl0H2OPY5JWkXfh1336a3el2/+4L64Sv0mXN3aAQk36fVw8FvlNZjjiKyCwbt7cz8w55TGwcPSjWAS63PC0IoFw8GWLn07Te7W4OTC5uUShw73d5WVT0y+KHTYWAxO2pVXUY21a4qdxKYMXwWgvIzPDgZdIf7IT3LADlQhADnHKD1DMAB8LSIGJ9wAE8IQ5261iMG1NNVVZPZWJ6TcMuzl+GuzTipKFrsFHUEJWUJ09C8nMzk0vn6ehd5ROWmLZpD4UKH6GOspyTVUFQ0EyMGa4oqTSAdsjm4H5yEA6COlKlSTrcpugRaown4IVgZF5Nl5jpTKF6tuAOkHPuA3YDomAKeYoi1OmHA3xLP4dIQLpPTiEZSqeReLF4JK9NbbaWTgdM6hRQ0XFPxD5VwWpCx1chH480oduI6uXKEloMJOlfX6mp9s8s7WIWuo369xcRgvoaO9vfev957pvPa9Sl+NhbbHTjWbcZB58IEeHBohOV6IGmJyKwCb0qLAqk5prQ00J+l4cmxeIAMHcJp9KlWO2kZO8BLSqvjoCIS2wgKjLpBNeDfcySCioLvYlx4Tga/4TNsL6tjDNjDHvH7/BwnBkxkIcg5gBCQc6S13Ck4JlEZRMN35Yk6AyNG10TjGpswGXJTbGPXEfCc4tS0jvlLYLibq+KXgk3jq/DEQmKU6M+k7RNYlrCBFDXerHiSpLfEjASqXLXefS5cBomeqNEaioGt/NIUNj0ljIGf3E6JfEKlNcmH6dmlj3Xh60xflPU1qoVQfZ1nZiZEmdWXX3i8YHGuzM7Yasu//cNrx07brlwlOFaVPjMtCh5K1luAcoXoPKF+6QGHQXceeCMQnc8BRrlETQDEgPIVnqVloPKJFCnjcaIy/HF8gzuFViEqq5gmaoKHLMXojq5cg2iA6sGPNykisJvRQPRuw69oaBYJxUxIBI3oA9ihBhiXxiJ7IvBX+IUEPnABHguMTu0INheTtLmZOzy0ErTx03HtDijBGxnaDK8G8EdB2Q4S4mui8/KEsGgLWJ9ggKIPQCRUO6O7KL7bFvsOZYkUibHWV8u9njQSTK+Cp07EDNUoGgEdDWrEhGfwH0K0KrVHUxtnIBsVkzlqYHwy1xFrYKBaiTvCOXf5zOlcyqzX+Sp9qysrjR31K6Hl9jbP1Gist7utAa2J4SaPIQ9YHB1fYu4S60PekjywFrBm6b+l93btbgnScAVLk7DgEpAfkCuwVyyKQ+qxsYHQk9IgXMHaatnobvSBXDOUBMyBsLiC7MRB9RSeCf4MBhNzjYXCWZLgjdxcUYr08WjBHLHMra0ZhiUemuw4pYeZqRt35pcTBHoN9T59oVA0FxsctvHhD7r7Two4QzUYUDXpFDhofVmlylWxWoSQjhYoz/kx5vwoEAJLj73FmHidqb39Y53iSAoDoiuBmGzNqrAgwsxCzy+px55QpqByM7tuR3yqKsqh35GFozR4dFSyUTgRoZDBV2HezVcHfLG9qKfZNzQ/iXQ8+uTxX747TD6wsVpd+vQlHUgMTXqVtbAy1Hdoy1xyLlkPSA9FsUEf63txrwkiObikirgtZIZj8HNo2aZUzq9CO6qv07U/hfaEqXBz5dsHeR3BE4WdNJriAsGFFH3zFabJ4Q5RUAAviuqBKYmdLSpJeAj3o6TJGdtEbWPN0RzwKMvDG/yf2E7ykCmDcSrCTIms3++P5zPpXDrQ0Lgf3+FVzjy/KCYFikNc2JQnSwvrSx0Bsyo0nsaGYJfBKwQVpZaSCr7oaihUTqaJXl4kB2eJKBw2IrZG8YNqUWrLsF7ib0QLJw0Xh+9i38gHc7NkA1xudkFKZzMMgPBW5spszmKhWM56OF0Ppqcja5n1aPpMv6WFKc90RIDbkkcT5vZ9rPhLqgcio9sAkVkanqikklbilT+VtI/WpVlG7GGRajHQKrZsaK/J3QqbLdpkVRwDlHQuJi4X2PwajrJDnEaCMVNACr3YufXcObl4lhEuRPdzCzwIn1hbRnpBKNxXqtXtjtz6evz2FSt99JnCe69eHzjd9GAhAacOc9aK/b29vPSJFIfb2XybeRWQFzw+0CeKmTRFzqIagAJAgVAfIINsHE/1jjYtEywbb4oN53xNSr/rNavhLaGu8lVL2h7HGLZB9VCK0kBTqUX69/EXGqm6g1cz6v1fSoJvd0V9OKdOPqR+/BNV2cR15AoHk7PJhlazt7Lq6hs/9/orj7U3vXf9LlZqOq6+8vkmfTrvlYplEpfYNQmweKA64EQ4Q9hW+wRCIwksiVYhKbEpcgLrswYfc78sD8ewCQ+gGPsX9ZsCeMai2QtUR++TKkBydBlCdbj/waj0qiIDuDFNTVLNJ04qNWcwKOZVG+ctNgH8TrPF8BxBNpEdfMyY3kK2sB0pMgzDYszmMh6v2+l1LVOqTRBi0h8UC5mZKRfmG3u6vn3AbDk6LAFJkdvYvpgdwmsEg5/GlBFw41CxwBxMynZ5SXNg6IPKOm2uA4JsOA9bj0Aiq0QC5ORnptVGWD4Ha+NDHGWZwc+p0jIEl2zr1kZyb3dlYiHPFNxCgW/4fN59zBpSA94+NRnEMPukbrqNqV4Er1AArAm9K/wLqSE7xITa3Dz/xTB65ZVch9BcWwUJlPkrn5RsAvkZYly2kwItsKnKMjVwwuz+WHFhmoAs4RM0/RIVRAzpYI58XOzAdlQGQJw6IfeFSsSJRYy5F9QniQUUKk9EpapWfHRIWijoD/I+q3d1Mjw7vYJFmV1b5V4++7l+TsnAI/ay4hf++0skiU35t+9r9Zj1UpQFbEqFCNcgmXjSi3iPWuKIPDfrgvrH+8cOwx74Wvtx8mPwIwG8OE5oW+jBjXMSknpMBad6pLFWNZ5XSxNCg81lecUDmRxTlXVqhPHr7rFbozhviUx64HRNV8/RD0cHHV7bsePtYxPDvT1tLPWXTqkTR0576xpls0dcoFQWgsLu+xqJUxpxud6sBjWwJBAFFwIXiKuxayofdcV1lSxAaTFYLZaHpCI9skI1b/1H7V9wi457iiet1NWAWxlNOsBpYGf0CnoIzwGVAPcT6QKK4aggDIgHCA80AIqBamho9DFfR/xSB3qjU+cLqqYuX22js8zr9vgQDUx/WW9/bTBIfV0OeKdooyDJeOFR1XdK6pmRAQrmuHXUIdwGH8BqUJ8iDgbB0qiAiaCDAYchCesW9CbdbimWYql4A4cxX41UGik2IjCcHKpVZtiwdkXFSEamJeMrzoMpEt5KHxYcLqPbU76XyJEDjMViFMMZDbr8Qb6mqmriwRwW6PyZ+loqWKhVpo4QWYL5xG2PaUvAK5TEkWXqVkKK+Men1cSi2oirDDT/lReEqmLJkAE+xEBxKnQ49GcDXacKcE7GiMSYhiCbU6DpuWA8H2JWKkjpIcQpEkvlkRPSsQAFyUcSKAOrU2K0sCCcKrmOlLA+t48b7K8z1rXqK4LZlK68ovr845+qqW+jGM/TWHPyvKiOcxfOhbaklnE+GptYpCZ+h3o7QZbZvg7iC0dTBAn2QFQJdKal6rl3CEvxLUtMSwPylpKNPhh0IpAHW7/hFIn20fZbIR2BYf/Fa2LD7/1IbPXcqGxOjH2eG9P1nkViN2/d2dzaPsKOykd7AN0npsOJ/f3+vuNGo/7dt2+SSLv61iztZr/zW1914nm21AvOTubOAV4rlEXxQ1N+r0RZBIv3AMNcLnQjf8Q6cVjpYF4hvXaAKCSeiIqmk2BlceLi5tweAAznwhpl81lnI7hBQowsfg7pYhgItmZhqHFDwcsEaWoeKZ0D9jEIOTbWJL2FcdzeEpYg8EdnUCmyT3ngvmRny5olO2a29oPDQEd40Wn3B7zmJ58WdpJh3BmJa9lgBq2GEsX+Io5offwZNDfBwAaZGsJEDAtBJBhUDIdVX+XbHJ6WfBeYIC4Q5IbjsQOUprDTDigQtptT5QBkqRZJKlrxJVw2bW9vAUs0NNXGNiKTE6tEp7gbdqvlMJ+laRA/n84bsmcnT9Y1U87d0ig8ypAgPHi4TSxqTG4/Q9EUVVJ0sjOhFtGiwpSx4CCAAFxUDZD8hs5QG+Lz4JX3rAXnYo4lyQXcRUrhK8Rp3AftwaHXmssQBqcrNTNjb27WAQ0FmnLjg+buboEWiBMREiZHwF50e6GSIT5uHraROOf2HcGsGe8G6IlWcvl7C9R+gwvZHPvGIF0ZhTyCDMHXVpYpvT0lDdJ7Pvi3tl4Em2tmIdjUmmVlMg/nZGAjcQtChRjQUgOGwcxWIEEYA1JbjRUBvcNZkDATDqlqEUUJ9OerU2M31YO5wvaWPnVPBdulLwKfk+3gF+5J0SEtABuba6lC/xcu4unN/+zllp6j04Wt+HY0kc7rs0USEnFaJfLqd//PL8q9YC0DLtXaIG6Ylzo+4WxNlwhPQ2JoirJnVdCabEgLdgmEX1L/fAi5ecUX4ls8SlKB/JREyCo4EyBMmdBf0BEpnQRRJvGhTQ8HN0CP4vjiWeL/UOyKJqGYiR+C0SWIxApSZOqS4jbgS0p90BDA2OyATfMbNeJexqTVi27gnJRFSJYAsT3IgEsQWp35jHAMEXZDm4gkAA5XTpcGEwSq2wVyIZxCr8NnGHd+i/UmTQOMAEEpzUmlGoMVXX1dwjowH8sPXyLKsPvSvLzHCsMKKEjiB+kuJ+Fn2l3bJESq9ZZlN/esepvXpSc1BwCzEc4c5vM2kyG+t70dSYAKMMbZQjMHfE+uCu8Ot1CuEuLhHGOU8Kx4A7zokgYUSoyoe+1o1bqtQcGhPEvDE5rzZOG4c5ZMWzW5Wu63oJgCQL0Dop5MxUPZxNbuPk0FTkcUIGg7msbkhpZ1AKAz08UrjEAZFPcaUBCPjk4xsOBYWHYuAmwgkqawFIXFXt9wJ/ALoXNXl2ptA9e32czHjrYfUqSe5we9v3h57blL9TtJdfa5p4RBgJtOnZMB6GV8t6gaegW6ICOETwtcBk/g3nBayMj1wHJkLcGLGmrNDtvjFxj0D4unFPuAwAl8i8Cv3J+anYUuMgiRBAKgC2k7rBl9FPl0YWHRZXP297aoMbblC7fU147ffhCotC/NrUCsbCrFnblsuodPV2cYG0qpgpHicLuQDfNSSHMM3A/78spioJB48GHpFb7nPWLO4RAdivPgGP6b/f9pIz7kTnhSYqlT7Y2MKeTi8Z5wttP72XoyJtxzjBCW+2HodJm4gxhiDiLeJd4H/IEjSSGhNoCAwKTxEzgfngkgJjfcSP0gpeFUNdL21azu3RAkDkmg/BMAx2m23r0lOPHiXak6RNgsftXapPxHVG5DnH4mQFmCKo8TT1BB2EoJGPYtI2VttMSiblnj9cjI9ZWOI5Um4g1kkjy1HicNuJoOGMwOpiYhTXc41sSU8BDpVSxkMiMAQRqxSrntLrz/Qq7IeCKE3+/R1VYFsGk6i2Fieuf4GWfnkWaxNsyR5Gwl6cIEwQHwlpR/apoCAcPfI2rHLSS0xBZpukFboJzmmkJtFoJnyQhwgCYDYMcklQBGgDid+vxGAZ3Lta2FYo2eLZ+3Ira7r9PrU9GtdCJe19Kkw/8+Tu9si8AADfUyIpLgB52CWML3rAIdCNBfil4pLjQqdihBRxgheNFCz/7emmEvd/FEh6664QXjmD1vYKzoz//qxUd6j4lmYaEBeW1sUW2VAeiM1acJa+qaXBCLjj+5RCl/REY5IHsoPkCe/fj4UJLiFaylC+0AfQAhpIZXMO7YdsSOOuMTCjRI58GWpPkojMuaw9Pp+MFac0ut9fgA3tHa8Ljf7SpYrLv6FBfidLo++2nXyPT2kcZaK0Up199X505qFW6QEWDQqZ1LtAcPOLv0RME7tadL435Yn094j3SXJIFPeM+TB2coPbEe/JXyhnrMInWT2DKDUYczvzG3RLSRQv3jwCDrOM1Mj6DlktsGWCD9Lh6/WViTrwEZ8Yr04JxIspA8g4bi0eNDG1QQFgyLhLAjNrgQSDDlUMw0dperRx9RV99V5TXiW0dnNN1qZiKubC2Ip0s5IUKI4JE3wB1i+SnfJRacn1Z378qcHwAaGrTxPokcMCzcHXPI8M14rJBebTxg5BuxNTW9FJxyLzpTMZZcXt7TGyz5fFGnN8biyej23u52ETtPQ2UFI0h97shm+MHoDj/oASHGOmEZWXIkEM+qZEwgPogNZhZbx7XRuYKTilRzd7KfKQtRIj4yyRv0ER+imErKqLR8vKdQxyTSxRRXUOBsgfAe2eEJIZcWl1fWNxL7yXQmbbJY6hqCqd344JtX1If31QQNEDXiyHHXAm3ty66EiBBlRVwS64IDKeX4HtXRoSqcKsZ+vTq1tSxAma6oI4doMAaqA7l88Tf/41d/ckWVPf548s57sl0kB3CRtJIjRUR3G1Pi0qD18dAAczgh56eTf+hDmct7+6ZaWsc28yynEhFIl1gbWs2Mi7K4crmiqjZJ/SJmEKVDpSdlFIwgzelGP0hbvPq2tuoDWpcYMXBvbGurWOHzRTciHpupxl/RUOF9+xfbfkZXA4GwymhSuFNsL5SEnj4oWGL6EmfzKczNez5E8Zf+BMV58p7POZ5HaRlKX4H6pWXAgKCTQIaDsmpEYrQbbRNXgnkWDw8LJOkSXD0WjZCLIBI64r6TrCNliKIVZIbyKZBBxtBMK0bV0KFILoahXyhpLgbFjAMN9kbD7pFeUVeUi1C3iK+PI2j3qjWKK46qnZB0moQ3xPWUDGutsItkA0gwg/xw7UxuJKPM2mhKzmHIguFEU7G5ta7uChfK6clPis6jsojbxECR3F1dwyMPY2Gqa9nrpcjxdvP2yhIK2V5meDCR9VT4mJi5FslxIYRzfAlZM1l1E5NjS4s5iiZZ6PoedgqqF1cY6WV+JV4yKh9GFz0CQ/MKkSFpyRRzbt7whLYaVYX+LE3pCf15cjBPHqVVs0u9IMg8Dm5PJ4IPV7MxBe7e3s5hmbOMNYiDtFisoeXQ+ub6wLke0Sb4hDiBuBxwJ/YQkFqGGOyo+0OSASDER3dgjbEMxMosAR/e+UBkjAo8UvhSl5VTfX3lVVW5m/f6IHZdlePLz6mpSfEPSTlza8RDkB1Z4pV6HhQBMQAuHy4rIASaiEbH1Y345VtMb3F6neZLn1XtPaIEqR6ljn9p4XB5La90W9TnPfobEsKx4qiJ0ExifLzn4eDrlwumlla9Wff+lUG2hus72zo4suzx2IvGw7feGnvr9dmv/lpDbUONoyOoOmqkuEN4uVLTILzzlhg6qVGZC+TBK9TPaNwDc0N31qb0eYn6CAZLwnu+X1qJkgBwTF5bEg9YhCTptKiM2XXErqncAWEw3UKCuFG9g7sJZEFxPxUQBP/iF4L9U6OmNXAQRRF08jl6AmeAbCu5RjohMMQoSzwf/G/BucnVazEDvhNuUoK8iVfcCU6C+qxo1y6PS2IMul+40lspZmdhWVx/WJKbAAC1eYp4qHmdzmxPF3RZDDSbEI2Pa2VhROd7iuQ21Sy6g9kFRiqESBUnM/uh6QlXhSe0FZ9ZOCSsWlzZgdtwaIlpIRkOOc8obFQg0WRiBMuZ022CZZGlhoeo2+TeUbeigSAd1EZQIQ00L/F9VsOmWRQuHrVSkgrWhSsu8TqvEJ8l4K8czHe1Y1D4VMiBpz1ykQ9gfbQnOC1eZCadKhQyu7FEHgg5lfJTJU58NTYl5SFcMTk+1C2/AEJKooPVYdTF2LAUcpKNYbpobJPNtqS2nPLmni5pqaNxC0cFU0nj1NxUeG7abLb9/j84kX3zZYlwWBd+GBPHUFsepJNJLzSfEsgYmkutIZA0865BP8lXlqn69vH5VdLrC2sJNT6ppmdERaJoQrOF998wtNc7OpsGp5V6439I/puc4+zw9sKMrrLiR78InXvUMPPh/Wu3FtB4DS32tfVQc6cnlU/5K92PfLKmqgM6pDs//YQy0oyF2+wWsReCB/CwoT8LAB1ZDF5LT0gJWWUdNSojAHA8/y3Rmg95A/X5IkeyEiVhKL3nTyzhGgMjgXCo0CG4RfLJ/67t7G5QkxLnrPbk9u4B/EpyEVia2k8GQzIbHUKgkmmdgZXobCAdAvfjLPE5lktOT7FHVFAIlBDAHxVv2+A5pM9MAqriTIOyobEolsLCUB3+kRhz/fBHtbhb9JjSwT0wIOqHL1L2vBGe+fHLodB6dmff3RCMHRRrPv95xcgeYgDSEfgqGAruZC8+ff8e4UMqFtvc2oxs0+JCEmwHJRVs0TMWhLwvVgrzTlqGlYWXXGUmIPVg0Lm7l6fSz3rxYWmHIPkPKoUfDPItmgXqQVun9p7/sgouTSp4g2xAZP7KMdw8D2jLk/9ya6gknqwFD+6OT2BeXlEQJuVkwi71ah6GVGCOEAd8xt14PLyRtNvMJpPF5ShbXd2UakUGitHYxS5mY+NSLgFYDPGZ4ASj4E/zs7gx2PFxduCgso0BxkvSp4/5YgdYtjtmkxH0N/O/GhudeHSbkYPIVgJ4B2SJY0hvAWPoiP0p4fRLwJ1YUH1H1bHjEg1SIHPqlBoanBm6z/GJ6Xl/e1drn/7pr/9fC1evi4Jj9AGuVNczIzOLE7c/+Pl3rgc7uGldamw8vrIYj4Rnmagwv32sDw3mHZlNMmTpeG9d9jBlNBdWwzF07l58d2YqfHKgsvxrvy54Ix1qdUyUaFdpdOuaxsDQXPgYQkN3ntAd+kJWXksPuJmlSmr/4U2J0KwND77ME7pzPItRes/ZeLCTQCsV+FhUHum81G6AZVM9sMtwmkR2eSu7gynERFIXNA+6QmOhRXBSIG18Srya4XGBl3HaKEkARqAsAtlAV4EN45RTT2JxS6OZeMlaaRpxKrWNjGzAmyLMIFbDmRaFysMtAilVtR6BwFlVLggMirl5S6uqubO6uqGps2WX9ejo2KMyAsySGf7YHEA6ZgZRXFkwFpnHm8gDyYIDbW1ndnaLpcpcvIZorEApdKXPYLcaKGyz2XRgesRvHE/8wuRDxLaLckvcVgKVUhCPoEqJDnwPzSEdl1quvfKGtYBqkJS14MpLigYVw/HQlleO50MWglXgmNKfuE2+gnjwwPE/FOY7O6DKdOgZMEMc+7qGmpEZzl3c3Fxfj2xb7Pb1icn9+zfV1XfYZEACEnIC9MpQn0IowsD6134ivvvMkvy3ukHEg/UCm4KGOIREl/hO7UcF5sfq6QtlTfXhnf1Dq6OcNi5Q7OYm1dkrU2RQQ8SsDFA6fUFNjUu8ESVAzKsJBkIloEl790nQUtqGWh4/t7hK9Y2r+ewlKenxlBXxAr77L/tA5bo6QcVxhynRC+9FGOgyPLUPVIYzhQPxYHSbPu3+rjoMnIlxq4kDrCydAt4yW9+pJtPx82pkWTo0BrhaiIYDsi1ughAfehJKl6gmygYKQmVeWYPSe+jLg2P4L68l/uYTyM0TFcFFsRi8+dVXSidUpgvHQj94gHygoJyVMgKSJAGVaYXlKE0Ee8xH2N22GIz6KE4DDY2EX1qyhjQZLiM92CwGTZ8kTWwegd4pLXDgBxJWWyRGhDtR//Aay0BxP1KK1Q6g4zVrTjULSCib2VMS00d+jWJJ/kCynkKXdXnPfbAS197BJ3EB7FQGmNum5kIBlpwG4t4zctMIXmQzOTEe3giXeVyNTY2ry0trayHiCNQ8AwVsNktyR+KWdhStzeo0m3V02JuM+XxmP5Fyuw35YtHb3FQOgEueEoITeBGdgz1DFCzjR3SDXPwNnoazuSyoyitXy5P3pVeupnQMB/Pl0muJ4HKl2pF8nYP5LkYA15Oh0+WRtSKXCnW5la3dbaL3osny+rXIkXbuLru6vVeWsXbaiLHyanKosH+gp/YJzLy/Xzb5YUvT2SWhEigFVYazY6qdxsi8sDuZ7AfDwsS4moOD6swJ8buMh+6uCsuXvqwWptXxE3J8yxk1ek+MOR6/OyiuGpHVByPivuPrdvepq2+/8+rbn/jt36aoxP7IxfjwnUb6pi6/bXvsS2LVC1mCjvHRO82NdYbDdEW5Z2ou9svvvNzf3Rjd3CdH13+2+ycvjZ8asLLx9cku5WhpdqD7aJzCQWIGTM8J2caFIen2cpWOKeZckLMAflyfkX6s2lMa68I5lGoI9fc0RoWP+YhPICUPiM57HnB5ieNhZkiMMCAtGq1FD8W0v7IeHIzF+FhUTvTufe8BJQ40r7FfNQaLTh36qil/Hh5TTbWquaWSMf+6VFpXTpjVKJuUgMJIVjImvUucZi8i6VtyqqhMYGOSBqh//ksKjFCSBAXHc8ME00D1vKHei9Q8w2qYxk/bB6zGDY8Pqu4vaTcIlAmAQIVGVlSRxOL7mxtrnsqCxVepd3qS4S0fJvtol2gVIM779zeXZgJHj+n291f2kpF1WqgQQGsyl3IVRbtsbqWJiskX4Qlb0fnAJcS1JoMJGBSm4j0jrcWg0QRol8ofLgaki81uEU7CI8msc5N8EWImNfpDwxKFoTlvWAVWhGNYFP4E6/OA7KW14K88+ZDVgfs5G68cqeUTHVlcF1+DWp4QHqDAeDOaw77OLScGzpvnZ3OhaOYTn+qsIZoi7YAtPTWgvz9c3FjV4diMswtVg9KzsuC/+J8xKbIAPgeTwGzilK5itLOyNSrVUCVUnsBJ5RxPPPzRcCWQYkpg1ofEv7U+p/b+RprFyDDg+IliistuefQw1TdVtVanFydsPecYph0Lb9QHrLZHH5Fb3N5ZeuWlpY2lR77y/Oq9oRv3FrG9vc0ei9U+OrnE/be01f7y9XG6oWamMxzeTg8qC8qenEwrA+eBMciLe8mHkEnIqZaAtLbjkgKLLzA/62mNhl4t0BIYlAXgbktU/pUMaNQWGYDEfMiT34XFeQOhWR7e8F++xdc1ussauLSl4kid8ukYlIT/TKEkhnid4AoUNMM0YrEG96bUO7dmJ5ZX17djuRCBKW43ldX0jmlV0KhwTCQcjIdDQXluX80Da7KnRkpOR6NqYlstTkqeGHWC3iJQxqgB18zNSf4Fs0B0Qak6NvK9G+qV/6hSS0JxrgsysagokFQ8trmeKRzMML8Y+bHaI6m9bYJUXH/635EQkz5w4cLM2OhyZG1kZBfMmso3ulw6uivcvrL8wQEGnKjXZdebDDj1DPQGYPVJqA3fg4Ode0gyWfgMLpc4DEDDlDkRfFfUKZNbMglCLqcWwpZkoMTQsDsng548eJ/V3kBqPmGlePIeIvPdMu3rvGftSkvj0bwmzgwWBH6VM7S52cUZ/AZI6oNbEniT6i3k2UlHgpb3r05thVYH796RKAtFXlmpO3FOfDMTWGdS/fRlAW1Jljc3aJCLVAoKuAuHsRzUcYBsvntFfe5ZGTOKSjr3mOwM8vKrFBhL9c7x05K6hv63/x8VaFBLZNwyMlKb9D+ZaeJvSmNi8cbmxhe/dYWNMGK725FUzAqJ+gbUflSNDfnrax/5519/97XXHsxNkhwiZHvz7djQULi6thzb8/IP1/g1XDtyKsEgI+aOyZMpAUTtuMGI68mTqu+IjIir8UnTX3+fqupjUCFOr0a3lPYK/ZnBJHzMGkBQ1qDE0/A3XF4iK5/8SkKgNU/+y584mEdJ90B0zsODdWJt+C8HmKxlZuYXUowIonC0U7pMMaqwZUOrqkFZW9TK7uFOLpuHP2DB0IJsm8x77hUgoqlB1AyN1RS+wvo4J3A5MR3jYujSQDYIOWF6lCvOEn4qsi4YiEvNj0kikwY8cNXxJXX24uqtm/E//lPZx1xmKPgktyCA9569zNvQddxXWbvJNR1mG0/0JrlsPIblmbGb15aWZ5Co1W12+ygSunDTlYzt1wAAA2hJREFUDvp22JUje7C8Hh+bzVO4AFiFd2Gy2u3kmEGlSjVk6Pgjx6SUgzJ9PgSH5/JwsolYhGYQvUXbFAlacd7cx6qdv6W1//JJRvuQvyIMPEusX1qpX61XaXVYDmQAgvNgpfgr9Gc1neK3+BxEUhizer9MMxLMjD+UWYnGCQW5neHQpLfWvRZdCu+ubMzcl72s8e2o7+A0Tz4hYx2Y7D4/LE2eZAmABDzIUETwBmarzK7k2cACB6P9uLKUKyAO2mXajyhDu8Rv9MQsMWW+VeI/al3LqgT/wR26+IgogoqqXSoLt1Ou048zjPPGi9/zVJUPfOKhIBX1XPnq3JXbV94fu5ufGElkMqPzhakFGRva1m+oavZsRPdo70Gx0JrWS6DODhLtLZLjlzx9lXjFQBOkhghFIDBpU+p8gbaFRBR1R7UO+H4msGgMnKLqFaol5VdlcaA4X4K/EQAeKBuefA6tecPnvHIAT96wMNCTI0t0RxJKp+INPxaTcvxgZfFgbZueFrpKCuLOHGqNqTA5FAYb8JZZbFavETqyqyCNrTg2pL5JaaGs8IXI9ZKQJwaglgFOQnMTmyap4NeS4ex9V0NPtFZRh04jLUJ6HLwjEpY1BwIELKLKJRKu+/RnUiN31b1bMugKPY0XtLVK0Jw3mLfpTnd7F0NL8xuh46ePGW1YqA+ToFL0bztdE0PDRqvVWpZpaC9a9ZbEfqq8osJutcWNMRIylX6DlfI+Alj2PwkEhSQ5RieQawOkYsci/gJCpcGiiByOIHWBiIGQEdJBakgHFLakvLsaxTiehShRmAP4L3wMSfmkxOslLuc9Z+CvPEuHlc7p0Q5LfLReIMgUIRvMIOyhdSphpOSKLBaJ1Il7aXAySlHJQNgsnvh+zlfuDA6cEr8clYE67asUrxLrKvNsFuVzilBIh+1uyKwA2oXptGYmmq3M9BibLdappYh0zQ90CUoBxHxuNvN3b1mffVJ6MIYeSAXK2BXBM9o75G5G7gtZirm40zW9ttBb3fDEF5/7d1//6fjaT56+dLyQj3n/7qfU1XpdFmd1TSaVLA9Wt1giRp250lcRjWx4a2pwqg8NEwzosLntdqO+xus2DZyUkTkA5SSwvYTGWuaBKBF7zieM8cJJhdT0N8s26Wc0NbH/Efduf/C/AERC0j/DWF3/AAAAAElFTkSuQmCC", "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "display_image(np.concatenate([images[-1], target_image], axis=1))" ] }, { "cell_type": "markdown", "metadata": { "id": "tDt15dLsJwMy" }, "source": [ "### Playing with the above example\n", "If image is from the module space, the descent is quick and converges to a reasonable sample. Try out descending to an image that is **not from the module space**. The descent will only converge if the image is reasonably close to the space of training images.\n", "\n", "How to make it descend faster and to a more realistic image? One can try:\n", "* using different loss on the image difference, e.g., quadratic,\n", "* using different regularizer on the latent vector,\n", "* initializing from a random vector in multiple runs,\n", "* etc.\n" ] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [ "N6ZDpd9XzFeN" ], "name": "tf_hub_generative_image_module.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.18" } }, "nbformat": 4, "nbformat_minor": 0 }