{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "Ic4_occAAiAT" }, "source": [ "##### Copyright 2019 The TensorFlow Authors." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "cellView": "form", "execution": { "iopub.execute_input": "2024-08-31T01:24:30.556078Z", "iopub.status.busy": "2024-08-31T01:24:30.555859Z", "iopub.status.idle": "2024-08-31T01:24:30.559635Z", "shell.execute_reply": "2024-08-31T01:24:30.559065Z" }, "id": "ioaprt5q5US7" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "cellView": "form", "execution": { "iopub.execute_input": "2024-08-31T01:24:30.562604Z", "iopub.status.busy": "2024-08-31T01:24:30.562396Z", "iopub.status.idle": "2024-08-31T01:24:30.565584Z", "shell.execute_reply": "2024-08-31T01:24:30.564996Z" }, "id": "yCl0eTNH5RS3" }, "outputs": [], "source": [ "#@title MIT License\n", "#\n", "# Copyright (c) 2017 François Chollet\n", "#\n", "# Permission is hereby granted, free of charge, to any person obtaining a\n", "# copy of this software and associated documentation files (the \"Software\"),\n", "# to deal in the Software without restriction, including without limitation\n", "# the rights to use, copy, modify, merge, publish, distribute, sublicense,\n", "# and/or sell copies of the Software, and to permit persons to whom the\n", "# Software is furnished to do so, subject to the following conditions:\n", "#\n", "# The above copyright notice and this permission notice shall be included in\n", "# all copies or substantial portions of the Software.\n", "#\n", "# THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n", "# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n", "# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL\n", "# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n", "# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING\n", "# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER\n", "# DEALINGS IN THE SOFTWARE." ] }, { "cell_type": "markdown", "metadata": { "id": "ItXfxkxvosLH" }, "source": [ "# Basic text classification" ] }, { "cell_type": "markdown", "metadata": { "id": "hKY4XMc9o8iB" }, "source": [ "
\n",
" ![]() | \n",
" \n",
" ![]() | \n",
" \n",
" ![]() | \n",
" \n",
" ![]() | \n",
"
Model: \"sequential\"\n",
"
\n"
],
"text/plain": [
"\u001b[1mModel: \"sequential\"\u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃ Layer (type) ┃ Output Shape ┃ Param # ┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "│ embedding (Embedding) │ ? │ 0 (unbuilt) │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dropout (Dropout) │ ? │ 0 (unbuilt) │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ global_average_pooling1d │ ? │ 0 (unbuilt) │\n", "│ (GlobalAveragePooling1D) │ │ │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dropout_1 (Dropout) │ ? │ 0 (unbuilt) │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dense (Dense) │ ? │ 0 (unbuilt) │\n", "└─────────────────────────────────┴────────────────────────┴───────────────┘\n", "\n" ], "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "│ embedding (\u001b[38;5;33mEmbedding\u001b[0m) │ ? │ \u001b[38;5;34m0\u001b[0m (unbuilt) │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dropout (\u001b[38;5;33mDropout\u001b[0m) │ ? │ \u001b[38;5;34m0\u001b[0m (unbuilt) │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ global_average_pooling1d │ ? │ \u001b[38;5;34m0\u001b[0m (unbuilt) │\n", "│ (\u001b[38;5;33mGlobalAveragePooling1D\u001b[0m) │ │ │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dropout_1 (\u001b[38;5;33mDropout\u001b[0m) │ ? │ \u001b[38;5;34m0\u001b[0m (unbuilt) │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dense (\u001b[38;5;33mDense\u001b[0m) │ ? │ \u001b[38;5;34m0\u001b[0m (unbuilt) │\n", "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Total params: 0 (0.00 B)\n", "\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Trainable params: 0 (0.00 B)\n", "\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Non-trainable params: 0 (0.00 B)\n", "\n" ], "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "model = tf.keras.Sequential([\n", " layers.Embedding(max_features, embedding_dim),\n", " layers.Dropout(0.2),\n", " layers.GlobalAveragePooling1D(),\n", " layers.Dropout(0.2),\n", " layers.Dense(1, activation='sigmoid')])\n", "\n", "model.summary()" ] }, { "cell_type": "markdown", "metadata": { "id": "6PbKQ6mucuKL" }, "source": [ "The layers are stacked sequentially to build the classifier:\n", "\n", "1. The first layer is an `Embedding` layer. This layer takes the integer-encoded reviews and looks up an embedding vector for each word-index. These vectors are learned as the model trains. The vectors add a dimension to the output array. The resulting dimensions are: `(batch, sequence, embedding)`. To learn more about embeddings, check out the [Word embeddings](https://www.tensorflow.org/text/guide/word_embeddings) tutorial.\n", "2. Next, a `GlobalAveragePooling1D` layer returns a fixed-length output vector for each example by averaging over the sequence dimension. This allows the model to handle input of variable length, in the simplest way possible.\n", "3. The last layer is densely connected with a single output node." ] }, { "cell_type": "markdown", "metadata": { "id": "L4EqVWg4-llM" }, "source": [ "### Loss function and optimizer\n", "\n", "A model needs a loss function and an optimizer for training. Since this is a binary classification problem and the model outputs a probability (a single-unit layer with a sigmoid activation), you'll use `losses.BinaryCrossentropy` loss function.\n", "\n", "Now, configure the model to use an optimizer and a loss function:" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "execution": { "iopub.execute_input": "2024-08-31T01:25:11.122531Z", "iopub.status.busy": "2024-08-31T01:25:11.122010Z", "iopub.status.idle": "2024-08-31T01:25:11.137729Z", "shell.execute_reply": "2024-08-31T01:25:11.137180Z" }, "id": "Mr0GP-cQ-llN" }, "outputs": [], "source": [ "model.compile(loss=losses.BinaryCrossentropy(),\n", " optimizer='adam',\n", " metrics=[tf.metrics.BinaryAccuracy(threshold=0.5)])" ] }, { "cell_type": "markdown", "metadata": { "id": "35jv_fzP-llU" }, "source": [ "### Train the model\n", "\n", "You will train the model by passing the `dataset` object to the fit method." ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "execution": { "iopub.execute_input": "2024-08-31T01:25:11.141052Z", "iopub.status.busy": "2024-08-31T01:25:11.140669Z", "iopub.status.idle": "2024-08-31T01:25:23.110128Z", "shell.execute_reply": "2024-08-31T01:25:23.109394Z" }, "id": "tXSGrjWZ-llW" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/10\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", "I0000 00:00:1725067511.995924 10397 service.cc:146] XLA service 0x7faa280080c0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:\n", "I0000 00:00:1725067511.995953 10397 service.cc:154] StreamExecutor device (0): Tesla T4, Compute Capability 7.5\n", "I0000 00:00:1725067511.995957 10397 service.cc:154] StreamExecutor device (1): Tesla T4, Compute Capability 7.5\n", "I0000 00:00:1725067511.995960 10397 service.cc:154] StreamExecutor device (2): Tesla T4, Compute Capability 7.5\n", "I0000 00:00:1725067511.995963 10397 service.cc:154] StreamExecutor device (3): Tesla T4, Compute Capability 7.5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/625\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m22:04\u001b[0m 2s/step - binary_accuracy: 0.5625 - loss: 0.6914" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 27/625\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - binary_accuracy: 0.5205 - loss: 0.6934 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 58/625\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - binary_accuracy: 0.5267 - loss: 0.6927" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 89/625\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.5286 - loss: 0.6921" ] }, { "name": "stderr", "output_type": "stream", "text": [ "I0000 00:00:1725067513.261163 10397 device_compiler.h:188] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m120/625\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.5302 - loss: 0.6917" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m151/625\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.5350 - loss: 0.6911" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m185/625\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.5403 - loss: 0.6905" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m218/625\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.5444 - loss: 0.6900" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m249/625\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.5480 - loss: 0.6895" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m281/625\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.5519 - loss: 0.6888" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m314/625\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.5558 - loss: 0.6881" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m346/625\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.5596 - loss: 0.6875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m378/625\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.5631 - loss: 0.6868" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m411/625\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.5668 - loss: 0.6860" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m444/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.5703 - loss: 0.6852" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m476/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.5736 - loss: 0.6843" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m507/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.5767 - loss: 0.6835" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m539/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.5798 - loss: 0.6826" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m571/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.5828 - loss: 0.6817" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m604/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.5859 - loss: 0.6807" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m625/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - binary_accuracy: 0.5878 - loss: 0.6801 - val_binary_accuracy: 0.7314 - val_loss: 0.6106\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 2/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/625\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m4s\u001b[0m 7ms/step - binary_accuracy: 0.8125 - loss: 0.5744" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 41/625\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.7451 - loss: 0.6071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 85/625\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.7439 - loss: 0.6047" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m130/625\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.7446 - loss: 0.6023" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m175/625\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.7457 - loss: 0.6000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m219/625\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.7465 - loss: 0.5979" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m263/625\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.7474 - loss: 0.5957" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m309/625\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.7487 - loss: 0.5934" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m356/625\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.7500 - loss: 0.5911" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m403/625\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.7514 - loss: 0.5888" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m450/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.7531 - loss: 0.5863" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m498/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.7547 - loss: 0.5838" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m546/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.7564 - loss: 0.5813" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m594/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.7581 - loss: 0.5789" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m625/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - binary_accuracy: 0.7592 - loss: 0.5773 - val_binary_accuracy: 0.8110 - val_loss: 0.4969\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 3/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/625\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 6ms/step - binary_accuracy: 0.8125 - loss: 0.4694" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 45/625\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8116 - loss: 0.4817" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 91/625\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8118 - loss: 0.4811" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m138/625\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8134 - loss: 0.4797" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m185/625\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8149 - loss: 0.4784" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m232/625\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8159 - loss: 0.4771" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m280/625\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8170 - loss: 0.4756" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m327/625\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8179 - loss: 0.4743" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m375/625\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8187 - loss: 0.4730" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m423/625\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8196 - loss: 0.4715" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m472/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8204 - loss: 0.4699" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m519/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8213 - loss: 0.4683" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m567/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8222 - loss: 0.4666" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m615/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8231 - loss: 0.4651" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m625/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - binary_accuracy: 0.8232 - loss: 0.4648 - val_binary_accuracy: 0.8266 - val_loss: 0.4301\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/625\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 6ms/step - binary_accuracy: 0.8438 - loss: 0.3778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 44/625\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8455 - loss: 0.3991" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 88/625\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8444 - loss: 0.4002" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m133/625\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8436 - loss: 0.4003" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m178/625\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8439 - loss: 0.4000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m224/625\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8443 - loss: 0.3997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m270/625\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8448 - loss: 0.3991" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m316/625\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8453 - loss: 0.3985" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m362/625\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8458 - loss: 0.3980" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m408/625\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8464 - loss: 0.3973" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m454/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8471 - loss: 0.3964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m500/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8478 - loss: 0.3955" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m546/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8485 - loss: 0.3945" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m593/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8492 - loss: 0.3935" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m625/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - binary_accuracy: 0.8496 - loss: 0.3929 - val_binary_accuracy: 0.8392 - val_loss: 0.3867\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 5/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/625\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 5ms/step - binary_accuracy: 0.9375 - loss: 0.3294" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 45/625\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8836 - loss: 0.3412" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 91/625\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8763 - loss: 0.3457" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m139/625\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8726 - loss: 0.3482" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m186/625\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8713 - loss: 0.3492" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m234/625\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8703 - loss: 0.3496" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m282/625\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8697 - loss: 0.3496" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m328/625\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8692 - loss: 0.3496" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m374/625\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8688 - loss: 0.3495" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m420/625\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8687 - loss: 0.3492" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m467/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8687 - loss: 0.3487" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m515/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8689 - loss: 0.3481" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m563/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8691 - loss: 0.3475" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m610/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8692 - loss: 0.3469" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m625/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - binary_accuracy: 0.8693 - loss: 0.3467 - val_binary_accuracy: 0.8446 - val_loss: 0.3628\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 6/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/625\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 6ms/step - binary_accuracy: 0.9375 - loss: 0.3056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 46/625\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8899 - loss: 0.3093" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 90/625\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8859 - loss: 0.3131" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m133/625\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8838 - loss: 0.3150" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m178/625\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8827 - loss: 0.3157" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m218/625\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8819 - loss: 0.3160" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m258/625\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8812 - loss: 0.3163" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m299/625\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8809 - loss: 0.3164" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m341/625\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8806 - loss: 0.3165" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m385/625\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8805 - loss: 0.3165" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m428/625\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8806 - loss: 0.3162" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m472/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8808 - loss: 0.3158" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m516/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8810 - loss: 0.3153" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m557/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8812 - loss: 0.3148" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m600/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8813 - loss: 0.3144" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m625/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - binary_accuracy: 0.8814 - loss: 0.3142 - val_binary_accuracy: 0.8536 - val_loss: 0.3428\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 7/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/625\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 6ms/step - binary_accuracy: 0.9375 - loss: 0.2658" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 44/625\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9072 - loss: 0.2827" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 85/625\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9016 - loss: 0.2863" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m128/625\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8981 - loss: 0.2890" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m171/625\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8963 - loss: 0.2897" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m214/625\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8951 - loss: 0.2900" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m258/625\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8941 - loss: 0.2902" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m301/625\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8936 - loss: 0.2903" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m344/625\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8932 - loss: 0.2905" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m388/625\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8929 - loss: 0.2905" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m431/625\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8928 - loss: 0.2903" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m474/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8928 - loss: 0.2900" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m518/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8928 - loss: 0.2897" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m560/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8929 - loss: 0.2893" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m603/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8930 - loss: 0.2890" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m625/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - binary_accuracy: 0.8930 - loss: 0.2889 - val_binary_accuracy: 0.8546 - val_loss: 0.3319\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 8/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/625\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 6ms/step - binary_accuracy: 0.8750 - loss: 0.2641" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 43/625\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9037 - loss: 0.2599" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 86/625\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9040 - loss: 0.2636" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m130/625\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9027 - loss: 0.2668" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m173/625\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9017 - loss: 0.2679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m217/625\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9007 - loss: 0.2685" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m261/625\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8999 - loss: 0.2691" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m304/625\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8995 - loss: 0.2695" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m347/625\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8991 - loss: 0.2697" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m390/625\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8989 - loss: 0.2698" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m434/625\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8988 - loss: 0.2697" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m479/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8987 - loss: 0.2696" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m524/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8986 - loss: 0.2693" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m566/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8987 - loss: 0.2691" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m607/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.8986 - loss: 0.2689" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m625/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - binary_accuracy: 0.8986 - loss: 0.2689 - val_binary_accuracy: 0.8568 - val_loss: 0.3250\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 9/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/625\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 6ms/step - binary_accuracy: 0.9688 - loss: 0.2232" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 44/625\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9208 - loss: 0.2402" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 88/625\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9168 - loss: 0.2453" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m130/625\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9135 - loss: 0.2491" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m173/625\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9116 - loss: 0.2505" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m216/625\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9104 - loss: 0.2511" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m255/625\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9097 - loss: 0.2516" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m296/625\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9091 - loss: 0.2520" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m339/625\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9086 - loss: 0.2524" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m383/625\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9082 - loss: 0.2525" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m426/625\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9080 - loss: 0.2524" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m469/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9079 - loss: 0.2522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m511/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9079 - loss: 0.2520" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m552/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9079 - loss: 0.2518" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m595/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9079 - loss: 0.2516" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m625/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - binary_accuracy: 0.9079 - loss: 0.2515 - val_binary_accuracy: 0.8570 - val_loss: 0.3201\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 10/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/625\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 6ms/step - binary_accuracy: 0.9062 - loss: 0.2121" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 42/625\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9166 - loss: 0.2286" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 85/625\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9154 - loss: 0.2328" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m129/625\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9138 - loss: 0.2366" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m173/625\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9130 - loss: 0.2377" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m217/625\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9126 - loss: 0.2379" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m261/625\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9123 - loss: 0.2384" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m306/625\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9121 - loss: 0.2387" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m350/625\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9119 - loss: 0.2389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m396/625\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9117 - loss: 0.2389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m440/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9117 - loss: 0.2388" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m485/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9117 - loss: 0.2385" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m528/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9118 - loss: 0.2382" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m573/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9118 - loss: 0.2380" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m617/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - binary_accuracy: 0.9118 - loss: 0.2379" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m625/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - binary_accuracy: 0.9118 - loss: 0.2379 - val_binary_accuracy: 0.8592 - val_loss: 0.3156\n" ] } ], "source": [ "epochs = 10\n", "history = model.fit(\n", " train_ds,\n", " validation_data=val_ds,\n", " epochs=epochs)" ] }, { "cell_type": "markdown", "metadata": { "id": "9EEGuDVuzb5r" }, "source": [ "### Evaluate the model\n", "\n", "Let's see how the model performs. Two values will be returned. Loss (a number which represents our error, lower values are better), and accuracy." ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "execution": { "iopub.execute_input": "2024-08-31T01:25:23.113709Z", "iopub.status.busy": "2024-08-31T01:25:23.113456Z", "iopub.status.idle": "2024-08-31T01:25:24.480177Z", "shell.execute_reply": "2024-08-31T01:25:24.479427Z" }, "id": "zOMKywn4zReN" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/782\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m53s\u001b[0m 68ms/step - binary_accuracy: 0.9375 - loss: 0.1896" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 30/782\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - binary_accuracy: 0.8708 - loss: 0.3455 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 59/782\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - binary_accuracy: 0.8619 - loss: 0.3496" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 89/782\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - binary_accuracy: 0.8580 - loss: 0.3502" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m121/782\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - binary_accuracy: 0.8569 - loss: 0.3472" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m154/782\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - binary_accuracy: 0.8561 - loss: 0.3452" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m186/782\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.8555 - loss: 0.3441" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m217/782\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.8554 - loss: 0.3431" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m245/782\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.8554 - loss: 0.3423" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m271/782\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.8554 - loss: 0.3416" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m301/782\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.8553 - loss: 0.3411" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m333/782\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.8551 - loss: 0.3408" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m364/782\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.8550 - loss: 0.3405" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m395/782\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.8548 - loss: 0.3402" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m422/782\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.8546 - loss: 0.3400" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m452/782\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.8544 - loss: 0.3399" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m480/782\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.8542 - loss: 0.3397" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m511/782\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.8541 - loss: 0.3394" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m543/782\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.8540 - loss: 0.3392" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m574/782\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.8538 - loss: 0.3391" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m606/782\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.8537 - loss: 0.3389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m638/782\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.8536 - loss: 0.3388" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m670/782\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.8536 - loss: 0.3387" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m704/782\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.8535 - loss: 0.3385" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m736/782\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.8535 - loss: 0.3384" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m769/782\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - binary_accuracy: 0.8534 - loss: 0.3383" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m782/782\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - binary_accuracy: 0.8534 - loss: 0.3383\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loss: 0.33511972427368164\n", "Accuracy: 0.8527200222015381\n" ] } ], "source": [ "loss, accuracy = model.evaluate(test_ds)\n", "\n", "print(\"Loss: \", loss)\n", "print(\"Accuracy: \", accuracy)" ] }, { "cell_type": "markdown", "metadata": { "id": "z1iEXVTR0Z2t" }, "source": [ "This fairly naive approach achieves an accuracy of about 86%." ] }, { "cell_type": "markdown", "metadata": { "id": "ldbQqCw2Xc1W" }, "source": [ "### Create a plot of accuracy and loss over time\n", "\n", "`model.fit()` returns a `History` object that contains a dictionary with everything that happened during training:" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "execution": { "iopub.execute_input": "2024-08-31T01:25:24.483765Z", "iopub.status.busy": "2024-08-31T01:25:24.483252Z", "iopub.status.idle": "2024-08-31T01:25:24.487992Z", "shell.execute_reply": "2024-08-31T01:25:24.487221Z" }, "id": "-YcvZsdvWfDf" }, "outputs": [ { "data": { "text/plain": [ "dict_keys(['binary_accuracy', 'loss', 'val_binary_accuracy', 'val_loss'])" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "history_dict = history.history\n", "history_dict.keys()" ] }, { "cell_type": "markdown", "metadata": { "id": "1_CH32qJXruI" }, "source": [ "There are four entries: one for each monitored metric during training and validation. You can use these to plot the training and validation loss for comparison, as well as the training and validation accuracy:" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "execution": { "iopub.execute_input": "2024-08-31T01:25:24.491215Z", "iopub.status.busy": "2024-08-31T01:25:24.490968Z", "iopub.status.idle": "2024-08-31T01:25:24.694181Z", "shell.execute_reply": "2024-08-31T01:25:24.693581Z" }, "id": "2SEMeQ5YXs8z" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABULklEQVR4nO3dd3gU1f7H8fcmkEYaNYWEKtKL0oRcihINiHQ0KEpR8V5EiogXuChVREEUpIo/BUVFBEIR6QiKgMIVUVREUZpAQAQSQmczvz/mZmFJIX2S3c/reeZh9+zszHdJdD+cOXOOzTAMAxEREREX4WF1ASIiIiK5SeFGREREXIrCjYiIiLgUhRsRERFxKQo3IiIi4lIUbkRERMSlKNyIiIiIS1G4EREREZeicCMiIiIuReFGxAK9evWiQoUK2Xrv6NGjsdlsuVtQAXPw4EFsNhvz5s3L1/Nu3rwZm83G5s2bHW2Z/VnlVc0VKlSgV69euXrMzJg3bx42m42DBw/m+7lFckrhRuQGNpstU9uNX34iObVt2zZGjx7N2bNnrS5FxCUUsboAkYJk/vz5Ts/ff/991q9fn6q9evXqOTrP22+/TXJycrbe+8ILLzBs2LAcnV8yLyc/q8zatm0bY8aMoVevXgQHBzu9tm/fPjw89O9QkaxQuBG5waOPPur0/Ouvv2b9+vWp2m924cIF/Pz8Mn2eokWLZqs+gCJFilCkiP7TzS85+VnlBm9vb0vPL1IY6Z8DIlnUsmVLatWqxbfffkvz5s3x8/PjP//5DwDLly+nbdu2hIeH4+3tTeXKlRk3bhx2u93pGDeP40gZr/Haa68xZ84cKleujLe3Nw0bNmTnzp1O701rzI3NZuOZZ55h2bJl1KpVC29vb2rWrMmaNWtS1b9582YaNGiAj48PlStX5q233sr0OJ4tW7bw4IMPUq5cOby9vYmMjOTZZ5/l4sWLqT6fv78/R48epWPHjvj7+1O6dGmGDBmS6u/i7Nmz9OrVi6CgIIKDg+nZs2emLs/897//xWaz8d5776V6be3atdhsNlauXAnAoUOHePrpp6latSq+vr6ULFmSBx98MFPjSdIac5PZmn/44Qd69epFpUqV8PHxITQ0lMcff5y///7bsc/o0aN5/vnnAahYsaLj0mdKbWmNufnjjz948MEHKVGiBH5+ftx111189tlnTvukjB/65JNPGD9+PBEREfj4+NCqVSv2799/y8+dnpkzZ1KzZk28vb0JDw+nX79+qT77b7/9RpcuXQgNDcXHx4eIiAi6detGQkKCY5/169fzj3/8g+DgYPz9/alatarjvyORnNI//0Sy4e+//6ZNmzZ069aNRx99lJCQEMAchOnv78/gwYPx9/fn888/Z+TIkSQmJjJp0qRbHvejjz7i3Llz/POf/8RmszFx4kQ6d+7MH3/8ccsehK+++oq4uDiefvppAgICePPNN+nSpQuHDx+mZMmSAHz33Xe0bt2asLAwxowZg91uZ+zYsZQuXTpTn3vRokVcuHCBvn37UrJkSXbs2MG0adP4888/WbRokdO+drudmJgYGjduzGuvvcaGDRuYPHkylStXpm/fvgAYhkGHDh346quv+Ne//kX16tVZunQpPXv2vGUtDRo0oFKlSnzyySep9l+4cCHFixcnJiYGgJ07d7Jt2za6detGREQEBw8eZNasWbRs2ZKff/45S71uWal5/fr1/PHHH/Tu3ZvQ0FB++ukn5syZw08//cTXX3+NzWajc+fO/PrrryxYsIA33niDUqVKAaT7Mzlx4gRNmzblwoULDBgwgJIlS/Lee+/Rvn17Fi9eTKdOnZz2f+WVV/Dw8GDIkCEkJCQwceJEunfvzjfffJPpz5xi9OjRjBkzhujoaPr27cu+ffuYNWsWO3fuZOvWrRQtWpQrV64QExPD5cuX6d+/P6GhoRw9epSVK1dy9uxZgoKC+Omnn3jggQeoU6cOY8eOxdvbm/3797N169Ys1ySSJkNE0tWvXz/j5v9MWrRoYQDG7NmzU+1/4cKFVG3//Oc/DT8/P+PSpUuOtp49exrly5d3PD9w4IABGCVLljROnz7taF++fLkBGJ9++qmjbdSoUalqAgwvLy9j//79jrbvv//eAIxp06Y52tq1a2f4+fkZR48edbT99ttvRpEiRVIdMy1pfb4JEyYYNpvNOHTokNPnA4yxY8c67XvHHXcY9evXdzxftmyZARgTJ050tF27ds1o1qyZARhz587NsJ7hw4cbRYsWdfo7u3z5shEcHGw8/vjjGda9fft2AzDef/99R9umTZsMwNi0aZPTZ7nxZ5WVmtM674IFCwzA+PLLLx1tkyZNMgDjwIEDqfYvX7680bNnT8fzQYMGGYCxZcsWR9u5c+eMihUrGhUqVDDsdrvTZ6levbpx+fJlx75Tp041AGPPnj2pznWjuXPnOtV08uRJw8vLy7jvvvsc5zAMw5g+fboBGO+++65hGIbx3XffGYCxaNGidI/9xhtvGIDx119/ZViDSHbpspRINnh7e9O7d+9U7b6+vo7H586d49SpUzRr1owLFy7wyy+/3PK4sbGxFC9e3PG8WbNmgHkZ4laio6OpXLmy43mdOnUIDAx0vNdut7NhwwY6duxIeHi4Y7/bbruNNm3a3PL44Pz5zp8/z6lTp2jatCmGYfDdd9+l2v9f//qX0/NmzZo5fZZVq1ZRpEgRR08OgKenJ/37989UPbGxsVy9epW4uDhH27p16zh79iyxsbFp1n316lX+/vtvbrvtNoKDg9m1a1emzpWdmm8876VLlzh16hR33XUXQJbPe+P5GzVqxD/+8Q9Hm7+/P0899RQHDx7k559/dtq/d+/eeHl5OZ5n5XfqRhs2bODKlSsMGjTIaYBznz59CAwMdFwWCwoKAsxLgxcuXEjzWCmDppcvX57ng7XFPSnciGRD2bJlnb4wUvz000906tSJoKAgAgMDKV26tGMw8o3jDdJTrlw5p+cpQefMmTNZfm/K+1Pee/LkSS5evMhtt92War+02tJy+PBhevXqRYkSJRzjaFq0aAGk/nw+Pj6pLq3cWA+YY2HCwsLw9/d32q9q1aqZqqdu3bpUq1aNhQsXOtoWLlxIqVKluOeeexxtFy9eZOTIkURGRuLt7U2pUqUoXbo0Z8+ezdTP5UZZqfn06dMMHDiQkJAQfH19KV26NBUrVgQy9/uQ3vnTOlfKHXyHDh1yas/J79TN54XUn9PLy4tKlSo5Xq9YsSKDBw/m//7v/yhVqhQxMTHMmDHD6fPGxsYSFRXFk08+SUhICN26deOTTz5R0JFcozE3Itlw47/IU5w9e5YWLVoQGBjI2LFjqVy5Mj4+PuzatYuhQ4dm6n/cnp6eabYbhpGn780Mu93Ovffey+nTpxk6dCjVqlWjWLFiHD16lF69eqX6fOnVk9tiY2MZP348p06dIiAggBUrVvDwww873VHWv39/5s6dy6BBg2jSpAlBQUHYbDa6deuWp1+oDz30ENu2beP555+nXr16+Pv7k5ycTOvWrfPtizyvfy/SMnnyZHr16sXy5ctZt24dAwYMYMKECXz99ddERETg6+vLl19+yaZNm/jss89Ys2YNCxcu5J577mHdunX59rsjrkvhRiSXbN68mb///pu4uDiaN2/uaD9w4ICFVV1XpkwZfHx80rxTJjN3z+zZs4dff/2V9957jx49ejja169fn+2aypcvz8aNG0lKSnLqCdm3b1+mjxEbG8uYMWNYsmQJISEhJCYm0q1bN6d9Fi9eTM+ePZk8ebKj7dKlS9maNC+zNZ85c4aNGzcyZswYRo4c6Wj/7bffUh0zKzNOly9fPs2/n5TLnuXLl8/0sbIi5bj79u2jUqVKjvYrV65w4MABoqOjnfavXbs2tWvX5oUXXmDbtm1ERUUxe/ZsXnrpJQA8PDxo1aoVrVq14vXXX+fll19mxIgRbNq0KdWxRLJKl6VEcknKvzZv/BfxlStXmDlzplUlOfH09CQ6Opply5Zx7NgxR/v+/ftZvXp1pt4Pzp/PMAymTp2a7Zruv/9+rl27xqxZsxxtdrudadOmZfoY1atXp3bt2ixcuJCFCxcSFhbmFC5Tar+5p2LatGmpbkvPzZrT+vsCmDJlSqpjFitWDCBTYev+++9nx44dbN++3dF2/vx55syZQ4UKFahRo0ZmP0qWREdH4+XlxZtvvun0md555x0SEhJo27YtAImJiVy7ds3pvbVr18bDw4PLly8D5uW6m9WrVw/AsY9ITqjnRiSXNG3alOLFi9OzZ08GDBiAzWZj/vz5edr9n1WjR49m3bp1REVF0bdvX+x2O9OnT6dWrVrs3r07w/dWq1aNypUrM2TIEI4ePUpgYCBLlizJ8tiNG7Vr146oqCiGDRvGwYMHqVGjBnFxcVkejxIbG8vIkSPx8fHhiSeeSDWj7wMPPMD8+fMJCgqiRo0abN++nQ0bNjhukc+LmgMDA2nevDkTJ07k6tWrlC1blnXr1qXZk1e/fn0ARowYQbdu3ShatCjt2rVzhJ4bDRs2jAULFtCmTRsGDBhAiRIleO+99zhw4ABLlizJs9mMS5cuzfDhwxkzZgytW7emffv27Nu3j5kzZ9KwYUPH2LLPP/+cZ555hgcffJDbb7+da9euMX/+fDw9PenSpQsAY8eO5csvv6Rt27aUL1+ekydPMnPmTCIiIpwGSotkl8KNSC4pWbIkK1eu5LnnnuOFF16gePHiPProo7Rq1cox34rV6tevz+rVqxkyZAgvvvgikZGRjB07lr17997ybq6iRYvy6aefOsZP+Pj40KlTJ5555hnq1q2brXo8PDxYsWIFgwYN4oMPPsBms9G+fXsmT57MHXfckenjxMbG8sILL3DhwgWnu6RSTJ06FU9PTz788EMuXbpEVFQUGzZsyNbPJSs1f/TRR/Tv358ZM2ZgGAb33Xcfq1evdrpbDaBhw4aMGzeO2bNns2bNGpKTkzlw4ECa4SYkJIRt27YxdOhQpk2bxqVLl6hTpw6ffvqpo/ckr4wePZrSpUszffp0nn32WUqUKMFTTz3Fyy+/7JiHqW7dusTExPDpp59y9OhR/Pz8qFu3LqtXr3bcKda+fXsOHjzIu+++y6lTpyhVqhQtWrRgzJgxjrutRHLCZhSkf1aKiCU6duzITz/9lOZ4EBGRwkZjbkTczM1LJfz222+sWrWKli1bWlOQiEguU8+NiJsJCwtzrHd06NAhZs2axeXLl/nuu++oUqWK1eWJiOSYxtyIuJnWrVuzYMEC4uPj8fb2pkmTJrz88ssKNiLiMtRzIyIiIi5FY25ERETEpSjciIiIiEtxuzE3ycnJHDt2jICAgCxNeS4iIiLWMQyDc+fOER4efsvJKt0u3Bw7dozIyEiryxAREZFsOHLkCBERERnu43bhJiAgADD/cgIDAy2uRkRERDIjMTGRyMhIx/d4Rtwu3KRcigoMDFS4ERERKWQyM6REA4pFRETEpSjciIiIiEtRuBERERGX4nZjbkREJHfZ7XauXr1qdRniAry8vG55m3dmKNyIiEi2GIZBfHw8Z8+etboUcREeHh5UrFgRLy+vHB1H4UZERLIlJdiUKVMGPz8/TYwqOZIyye7x48cpV65cjn6fFG5ERCTL7Ha7I9iULFnS6nLERZQuXZpjx45x7do1ihYtmu3jaECxiIhkWcoYGz8/P4srEVeScjnKbrfn6DgKNyIikm26FCW5Kbd+n3RZKpfY7bBlCxw/DmFh0KwZeHpaXZWIiIj7Uc9NLoiLgwoV4O674ZFHzD8rVDDbRUTE9VWoUIEpU6Zkev/Nmzdjs9ny/E6zefPmERwcnKfnKIgUbnIoLg66doU//3RuP3rUbFfAERHJmN0OmzfDggXmnzkcbpEhm82W4TZ69OhsHXfnzp089dRTmd6/adOmHD9+nKCgoGydTzKmy1I5YLfDwIFgGKlfMwyw2WDQIOjQQZeoRETSEhdn/n/0xn8gRkTA1KnQuXPun+/48eOOxwsXLmTkyJHs27fP0ebv7+94bBgGdrudIkVu/VVZunTpLNXh5eVFaGholt4jmaeemxzYsiV1j82NDAOOHDH3ExERZ1b0fIeGhjq2oKAgbDab4/kvv/xCQEAAq1evpn79+nh7e/PVV1/x+++/06FDB0JCQvD396dhw4Zs2LDB6bg3X5ay2Wz83//9H506dcLPz48qVaqwYsUKx+s3X5ZKuXy0du1aqlevjr+/P61bt3YKY9euXWPAgAEEBwdTsmRJhg4dSs+ePenYsWOW/g5mzZpF5cqV8fLyomrVqsyfP9/xmmEYjB49mnLlyuHt7U14eDgDBgxwvD5z5kyqVKmCj48PISEhdO3aNUvnzi8KNzlww+9cruwnIuIubtXzDWbPd15eokrPsGHDeOWVV9i7dy916tQhKSmJ+++/n40bN/Ldd9/RunVr2rVrx+HDhzM8zpgxY3jooYf44YcfuP/+++nevTunT59Od/8LFy7w2muvMX/+fL788ksOHz7MkCFDHK+/+uqrfPjhh8ydO5etW7eSmJjIsmXLsvTZli5dysCBA3nuuef48ccf+ec//0nv3r3ZtGkTAEuWLOGNN97grbfe4rfffmPZsmXUrl0bgP/+978MGDCAsWPHsm/fPtasWUPz5s2zdP58Y7iZhIQEAzASEhJyfKxNmwzD/M8w423TphyfSkSkQLl48aLx888/GxcvXszW+wvC/z/nzp1rBAUF3VDTJgMwli1bdsv31qxZ05g2bZrjefny5Y033njD8RwwXnjhBcfzpKQkAzBWr17tdK4zZ844agGM/fv3O94zY8YMIyQkxPE8JCTEmDRpkuP5tWvXjHLlyhkdOnTI9Gds2rSp0adPH6d9HnzwQeP+++83DMMwJk+ebNx+++3GlStXUh1ryZIlRmBgoJGYmJju+XIqo9+rrHx/q+cmB5o1M68Np3dbvs0GkZHmfiIicl1B7vlu0KCB0/OkpCSGDBlC9erVCQ4Oxt/fn717996y56ZOnTqOx8WKFSMwMJCTJ0+mu7+fnx+VK1d2PA8LC3Psn5CQwIkTJ2jUqJHjdU9PT+rXr5+lz7Z3716ioqKc2qKioti7dy8ADz74IBcvXqRSpUr06dOHpUuXcu3aNQDuvfdeypcvT6VKlXjsscf48MMPuXDhQpbOn18UbnLA09Mc9AapA07K8ylTNJhYRORmYWG5u19uKlasmNPzIUOGsHTpUl5++WW2bNnC7t27qV27NleuXMnwODcvH2Cz2UhOTs7S/kZa1+3yUGRkJPv27WPmzJn4+vry9NNP07x5c65evUpAQAC7du1iwYIFhIWFMXLkSOrWrVsgF05VuMmhzp1h8WIoW9a5PSLCbM+L0f4iIoVdYer53rp1K7169aJTp07Url2b0NBQDh48mK81BAUFERISws6dOx1tdrudXbt2Zek41atXZ+vWrU5tW7dupUaNGo7nvr6+tGvXjjfffJPNmzezfft29uzZA0CRIkWIjo5m4sSJ/PDDDxw8eJDPP/88B58sb+hW8FzQubN5u7dmKBYRyZyUnu+uXc0gc2MHRUHr+a5SpQpxcXG0a9cOm83Giy++mGEPTF7p378/EyZM4LbbbqNatWpMmzaNM2fOZGnJgueff56HHnqIO+64g+joaD799FPi4uIcd3/NmzcPu91O48aN8fPz44MPPsDX15fy5cuzcuVK/vjjD5o3b07x4sVZtWoVycnJVK1aNa8+crYp3OQST09o2dLqKkRECo+Unu+05rmZMqXg9Hy//vrrPP744zRt2pRSpUoxdOhQEhMT872OoUOHEh8fT48ePfD09OSpp54iJiYGzywkwI4dOzJ16lRee+01Bg4cSMWKFZk7dy4t//cFFhwczCuvvMLgwYOx2+3Url2bTz/9lJIlSxIcHExcXByjR4/m0qVLVKlShQULFlCzZs08+sTZZzPy+4KexRITEwkKCiIhIYHAwECryxERKZQuXbrEgQMHqFixIj4+Pjk6ltbmy57k5GSqV6/OQw89xLhx46wuJ1dk9HuVle9v9dyIiIil1POdOYcOHWLdunW0aNGCy5cvM336dA4cOMAjjzxidWkFjgYUi4iIFAIeHh7MmzePhg0bEhUVxZ49e9iwYQPVq1e3urQCRz03IiIihUBkZGSqO50kbeq5EREREZeicCMiIiIuReFGREREXIrCjYiIiLgUhRsRERFxKQo3IiIi4lIUbkRERLKoZcuWDBo0yPG8QoUKTJkyJcP32Gw2li1bluNz59ZxMjJ69Gjq1auXp+fISwo3IiLiNtq1a0fr1q3TfG3Lli3YbDZ++OGHLB93586dPPXUUzktz0l6AeP48eO0adMmV8/lahRuRETEbTzxxBOsX7+eP29cqfN/5s6dS4MGDahTp06Wj1u6dGn8/Pxyo8RbCg0NxdvbO1/OVVgp3IiIiNt44IEHKF26NPPmzXNqT0pKYtGiRTzxxBP8/fffPPzww5QtWxY/Pz9q167NggULMjzuzZelfvvtN5o3b46Pjw81atRg/fr1qd4zdOhQbr/9dvz8/KhUqRIvvvgiV69eBWDevHmMGTOG77//HpvNhs1mc9R882WpPXv2cM899+Dr60vJkiV56qmnSEpKcrzeq1cvOnbsyGuvvUZYWBglS5akX79+jnNlRnJyMmPHjiUiIgJvb2/q1avHmjVrHK9fuXKFZ555hrCwMHx8fChfvjwTJkwAwDAMRo8eTbly5fD29iY8PJwBAwZk+tzZoeUXREQkVxgGXLhgzbn9/MBmu/V+RYoUoUePHsybN48RI0Zg+9+bFi1ahN1u5+GHHyYpKYn69eszdOhQAgMD+eyzz3jssceoXLkyjRo1uuU5kpOT6dy5MyEhIXzzzTckJCQ4jc9JERAQwLx58wgPD2fPnj306dOHgIAA/v3vfxMbG8uPP/7ImjVr2LBhAwBBQUGpjnH+/HliYmJo0qQJO3fu5OTJkzz55JM888wzTgFu06ZNhIWFsWnTJvbv309sbCz16tWjT58+t/5LA6ZOncrkyZN56623uOOOO3j33Xdp3749P/30E1WqVOHNN99kxYoVfPLJJ5QrV44jR45w5MgRAJYsWcIbb7zBxx9/TM2aNYmPj+f777/P1HmzzXAzCQkJBmAkJCRYXYqISKF18eJF4+effzYuXrzoaEtKMgwz4uT/lpSU+dr37t1rAMamTZscbc2aNTMeffTRdN/Ttm1b47nnnnM8b9GihTFw4EDH8/LlyxtvvPGGYRiGsXbtWqNIkSLG0aNHHa+vXr3aAIylS5eme45JkyYZ9evXdzwfNWqUUbdu3VT73XicOXPmGMWLFzeSbvgL+OyzzwwPDw8jPj7eMAzD6Nmzp1G+fHnj2rVrjn0efPBBIzY2Nt1abj53eHi4MX78eKd9GjZsaDz99NOGYRhG//79jXvuucdITk5OdazJkycbt99+u3HlypV0z5cird+rFFn5/tZlKRERcSvVqlWjadOmvPvuuwDs37+fLVu28MQTTwBgt9sZN24ctWvXpkSJEvj7+7N27VoOHz6cqePv3buXyMhIwsPDHW1NmjRJtd/ChQuJiooiNDQUf39/XnjhhUyf48Zz1a1bl2LFijnaoqKiSE5OZt++fY62mjVr4unp6XgeFhbGyZMnM3WOxMREjh07RlRUlFN7VFQUe/fuBcxLX7t376Zq1aoMGDCAdevWOfZ78MEHuXjxIpUqVaJPnz4sXbqUa9euZelzZpXCjYiI5Ao/P0hKsmbL6ljeJ554giVLlnDu3Dnmzp1L5cqVadGiBQCTJk1i6tSpDB06lE2bNrF7925iYmK4cuVKrv1dbd++ne7du3P//fezcuVKvvvuO0aMGJGr57hR0aJFnZ7bbDaSk5Nz7fh33nknBw4cYNy4cVy8eJGHHnqIrl27AuZq5vv27WPmzJn4+vry9NNP07x58yyN+ckqjbkREZFcYbPBDR0IBdpDDz3EwIED+eijj3j//ffp27evY/zN1q1b6dChA48++ihgjqH59ddfqVGjRqaOXb16dY4cOcLx48cJCwsD4Ouvv3baZ9u2bZQvX54RI0Y42g4dOuS0j5eXF3a7/ZbnmjdvHufPn3f03mzduhUPDw+qVq2aqXpvJTAwkPDwcLZu3eoIgCnnuXEMUmBgILGxscTGxtK1a1dat27N6dOnKVGiBL6+vrRr14527drRr18/qlWrxp49e7jzzjtzpcabKdyIiIjb8ff3JzY2luHDh5OYmEivXr0cr1WpUoXFixezbds2ihcvzuuvv86JEycyHW6io6O5/fbb6dmzJ5MmTSIxMdEpxKSc4/Dhw3z88cc0bNiQzz77jKVLlzrtU6FCBQ4cOMDu3buJiIggICAg1S3g3bt3Z9SoUfTs2ZPRo0fz119/0b9/fx577DFCQkKy95eThueff55Ro0ZRuXJl6tWrx9y5c9m9ezcffvghAK+//jphYWHccccdeHh4sGjRIkJDQwkODmbevHnY7XYaN26Mn58fH3zwAb6+vpQvXz7X6ruZLkuJiIhbeuKJJzhz5gwxMTFO42NeeOEF7rzzTmJiYmjZsiWhoaF07Ngx08f18PBg6dKlXLx4kUaNGvHkk08yfvx4p33at2/Ps88+yzPPPEO9evXYtm0bL774otM+Xbp0oXXr1tx9992ULl06zdvR/fz8WLt2LadPn6Zhw4Z07dqVVq1aMX369Kz9ZdzCgAEDGDx4MM899xy1a9dmzZo1rFixgipVqgDmnV8TJ06kQYMGNGzYkIMHD7Jq1So8PDwIDg7m7bffJioqijp16rBhwwY+/fRTSpYsmas13shmGIaRZ0cvgBITEwkKCiIhIYHAwECryxERKZQuXbrEgQMHqFixIj4+PlaXIy4io9+rrHx/q+dGREREXIrCjYiIiLgUhRsRERFxKQo3IiIi4lIUbkREJNvc7J4UyWO59fukcCMiIlmWMuPtBatWyhSXlDJD841LRWSHJvETEZEs8/T0JDg42LE+kZ+fn2OGX5HsSE5O5q+//sLPz48iRXIWTxRuREQkW0JDQwEyvQCjyK14eHhQrly5HAdlhRsREckWm81GWFgYZcqUydNFEMV9eHl54eGR8xEzCje56PBhOH8eqle3uhIRkfzj6emZ4zESIrlJA4pzSVwcVK0KTz4JunlARETEOgo3uaRxY/DwgG3bzKAjIiIi1lC4ySVly8KQIebjoUPhf3eziYiISD5TuMlFzz8PoaHw++8wc6bV1YiIiLgnhZtc5O8P48aZj8eOhTNnrK1HRETEHVkebmbMmEGFChXw8fGhcePG7NixI8P9z549S79+/QgLC8Pb25vbb7+dVatW5VO1t9a7N9SqZQab8eOtrkZERMT9WBpuFi5cyODBgxk1ahS7du2ibt26xMTEpDsh1JUrV7j33ns5ePAgixcvZt++fbz99tuULVs2nytPn6cnvPaa+XjaNPjjD2vrERERcTc2w8JVzxo3bkzDhg2ZPn06YE69HBkZSf/+/Rk2bFiq/WfPns2kSZP45ZdfHOuaZFViYiJBQUEkJCQQGBiYo/ozEhMD69bBQw/BwoV5dhoRERG3kJXvb8t6bq5cucK3335LdHT09WI8PIiOjmb79u1pvmfFihU0adKEfv36ERISQq1atXj55Zex2+3pnufy5cskJiY6bflh0iSw2eCTTyCdjyMiIiJ5wLJwc+rUKex2OyEhIU7tISEhxMfHp/meP/74g8WLF2O321m1ahUvvvgikydP5qWXXkr3PBMmTCAoKMixRUZG5urnSE+dOub4GzBvEdfEfiIiIvnD8gHFWZGcnEyZMmWYM2cO9evXJzY2lhEjRjB79ux03zN8+HASEhIc25EjR/Kt3nHjwM/PnNhvyZJ8O62IiIhbsyzclCpVCk9PT06cOOHUfuLECcdKszcLCwvj9ttvd1rDpHr16sTHx3MlnVnzvL29CQwMdNryS3i4OfcNaGI/ERGR/GJZuPHy8qJ+/fps3LjR0ZacnMzGjRtp0qRJmu+Jiopi//79JCcnO9p+/fVXwsLC8PLyyvOas2PIEHNivz/+0MR+IiIi+cHSy1KDBw/m7bff5r333mPv3r307duX8+fP0/t/g1V69OjB8OHDHfv37duX06dPM3DgQH799Vc+++wzXn75Zfr162fVR7glTewnIiKSv4pYefLY2Fj++usvRo4cSXx8PPXq1WPNmjWOQcaHDx/Gw+N6/oqMjGTt2rU8++yz1KlTh7JlyzJw4ECGDh1q1UfIlN69YepU+PFHeOklmDzZ6opERERcl6Xz3Fghv+a5udnatdC6NRQtCr/8ApUq5dupRURECr1CMc+Nu4mJgfvug6tX4YYrbSIiIpLLFG7ykSb2ExERyXsKN/moTh14/HHz8XPPaWI/ERGRvKBwk8/GjjUn9tu+XRP7iYiI5AWFm3ymif1ERETylsKNBW6c2G/GDKurERERcS0KNxbw9zfnuwFzgr/Tp62tR0RExJUo3FikVy+oVcucsXj8eKurERERcR0KNxbx9ITXXjMfT5tmXqISERGRnFO4sVBMjLldvQrDhlldjYiIiGtQuLHYpEng4QGLFmliPxERkdygcGOx2rXNhTVBE/uJiIjkBoWbAkAT+4mIiOQehZsCIDwc/v1v8/HQoXD5srX1iIiIFGYKNwXEkCEQFmbeNTVzptXViIiIFF4KNwVEsWLmhH6gif1ERERyQuGmAOnVyxxgrIn9REREsk/hpgC5eWK/33+3th4REZHCSOGmgLnvvusT+w0fbnU1IiIihY/CTQGkif1ERESyT+GmANLEfiIiItmncFNAjRt3fWK/xYutrkZERKTwULgpoMLCrk/sN2yYJvYTERHJLIWbAkwT+4mIiGSdwk0Bpon9REREsk7hpoC7cWK/l16yuhoREZGCT+GmgLtxYr/p0zWxn4iIyK0o3BQCmthPREQk8xRuConXXrs+sd+2bVZXIyIiUnAp3BQStWrB44+bjzWxn4iISPoUbgqRsWPNif2+/loT+4mIiKRH4aYQyY+J/ex22LwZFiww/7Tbc/8cIiIieUnhppC5cWK/GTNy99hxcVChAtx9NzzyiPlnhQpmu4iISGGhcFPIFCt2fb6b3JzYLy4OunaFP/90bj961GxXwBERkcJC4aYQ6tnTnNjv7NncmdjPboeBA9MepJzSNmiQLlGJiEjhoHBTCOX2xH5btqTusbmRYcCRI+Z+IiIiBZ3CTSF1333QurU5sd+wYTk71vHjubufiIiIlRRuCrFJk8yJ/RYvztnEfmFhubufiIiIlRRuCrHcmtivWTOIiACbLe3XbTaIjDT3ExERKegUbgq5sWPNO6hyMrGfpydMnWo+vjngpDyfMsXcT0REpKBTuCnkbpzYb+jQ7E/s17mzGY7KlnVuj4gw2zt3zlmdIiIi+cVmGO61SlFiYiJBQUEkJCQQGBhodTm54vx5qFLFHPA7eTIMHpz9Y9nt5l1Rx4+bwalZM/XYiIiI9bLy/a1w4yLefReeeAKCg81bw0uUsLoiERGR3JOV729dlnIRPXtCnTq5N7GfiIhIYaVw4yJunthv/35r6xEREbGKwo0Luffe6xP7DR9udTUiIiLWULhxMbk1sZ+IiEhhpXDjYmrVMgcWQ84m9hMRESmsFG5c0Jgx1yf2W7TI6mpERETyl8KNC7pxYr9hw7I/sZ+IiEhhpHDjop57DsLD4cABmDHD6mpERETyj8KNiypW7Pp8N+PGwd9/W1uPiIhIflG4cWE9emhiPxERcT8KNy7sxon9ZszQxH4iIuIeFG5cnCb2ExERd6Nw4wZunNhv61arqxEREclbCjduQBP7iYiIO1G4cRMpE/t9840m9hMREdemcOMmNLGfiIi4C4UbN3LjxH7Tp1tdjYiISN5QuHEjN07s99JLmthPRERck8KNm9HEfiIi4uoUbtyMJvYTERFXp3Djhu69F9q0MSf2GzbM6mpERERyl8KNm5o40ZzYb8kSTewnIiKuReHGTWliPxERcVUKN25s7FhN7CciIq5H4caNhYbC0KHmY03sJyIirqJAhJsZM2ZQoUIFfHx8aNy4MTt27Eh333nz5mGz2Zw2Hx+ffKzWtQwerIn9RETEtVgebhYuXMjgwYMZNWoUu3btom7dusTExHDy5Ml03xMYGMjx48cd26FDh/KxYteiif1ERMTVWB5uXn/9dfr06UPv3r2pUaMGs2fPxs/Pj3fffTfd99hsNkJDQx1bSEhIPlbsenr0gLp1NbGfiIi4BkvDzZUrV/j222+Jjo52tHl4eBAdHc327dvTfV9SUhLly5cnMjKSDh068NNPP+VHuS5LE/uJiIgrsTTcnDp1CrvdnqrnJSQkhPj4+DTfU7VqVd59912WL1/OBx98QHJyMk2bNuXPP/9Mc//Lly+TmJjotElq0dGa2E9ERFyD5ZelsqpJkyb06NGDevXq0aJFC+Li4ihdujRvvfVWmvtPmDCBoKAgxxYZGZnPFRcekyZpYj8RESn8LA03pUqVwtPTkxMnTji1nzhxgtDQ0Ewdo2jRotxxxx3sT+dayvDhw0lISHBsR44cyXHdrqpmTXjySfPxgAFw4YK19YiIiGSHpeHGy8uL+vXrs3HjRkdbcnIyGzdupEmTJpk6ht1uZ8+ePYSFhaX5ure3N4GBgU6bpG/MGAgOhl27oHNnzX0jIiKFj+WXpQYPHszbb7/Ne++9x969e+nbty/nz5+nd+/eAPTo0YPhw4c79h87dizr1q3jjz/+YNeuXTz66KMcOnSIJ1O6HCRHQkPhs8/Azw/WroVHHoFr16yuSkREJPOKWF1AbGwsf/31FyNHjiQ+Pp569eqxZs0axyDjw4cP4+FxPYOdOXOGPn36EB8fT/Hixalfvz7btm2jRo0aVn0El9O0KSxfDm3bQlwcPP44zJtnjscREREp6GyG4V5LJiYmJhIUFERCQoIuUd3CihXmpSm7HZ5+2pzB2GazuioREXFHWfn+1r/FJV3t28P8+WagmTkThg/X6uEiIlLwKdxIhh5+GFLusn/1VZgwwdp6REREbkXhRm6pTx+YPNl8PGIETJtmbT0iIiIZUbiRTBk8GEaNMh8PGABz51pbj4iISHoUbiTTRo0yQw6Yk/0tWmRtPSIiImlRuJFMs9nMBTb79IHkZHMOnFWrrK5KRETEmcKNZInNBrNmmQONr12DLl1g82arqxIREblO4UayzNMT3nvPvFX80iVo1w6++cbqqkREREwKN5ItRYvCwoXQqhUkJUGbNvDDD1ZXJSIionAjOeDjA8uWQZMmcOYM3Hsv/Pqr1VWJiIi7U7iRHPH3NwcV16sHJ09CdDQcOmR1VSIi4s4UbiTHgoNh3TqoVg2OHDEDTny81VWJiIi7UriRXFG6NKxfDxUqwP795iWqv/+2uioREXFHCjeSayIiYONGCAuDH380BxknJlpdlYiIuBuFG8lVlSrBhg1QqhTs3GneJn7hgtVViYiIO1G4kVxXowasXQuBgfDll+ZEf1euWF2ViIi4C4UbyRN33mneReXnB2vWmEs1XLtmdVUiIuIOFG4kz0RFmfPgeHnBkiXmYpvJyVZXJSIirk7hRvLUvfeaMxmnLNkwcCAYhtVViYiIK1O4kTzXsaMZbGw2mD4dRoywuiIREXFlCjeSL7p3N1cTB5gwwdxERETygsKN5Jt//hMmTTIf/+c/Zi+OiIhIbstWuDly5Ah//vmn4/mOHTsYNGgQc+bMybXCxDUNGQIjR5qP+/c3L1eJiIjkpmyFm0ceeYRNmzYBEB8fz7333suOHTsYMWIEY8eOzdUCxfWMHg2DBpmPH38cFi+2shoREXE12Qo3P/74I40aNQLgk08+oVatWmzbto0PP/yQefPm5WZ94oJsNnj9dXjiCfPW8EcegdWrra5KRERcRbbCzdWrV/H29gZgw4YNtG/fHoBq1apx/Pjx3KtOXJbNBm+9BbGxcPUqdO4MX3xhdVUiIuIKshVuatasyezZs9myZQvr16+ndevWABw7doySJUvmaoHiujw9Yf58eOABuHTJ/HPHDqurEhGRwi5b4ebVV1/lrbfeomXLljz88MPUrVsXgBUrVjguV4lkRtGisGgR3HMPJCVB69awZ4/VVYmISGFmM4zszRdrt9tJTEykePHijraDBw/i5+dHmTJlcq3A3JaYmEhQUBAJCQkEBgZaXY78T1KSOZvx119DSAhs2QJVqlhdlYiIFBRZ+f7OVs/NxYsXuXz5siPYHDp0iClTprBv374CHWyk4PL3NxfarFsXTpyA6Gg4fNjqqkREpDDKVrjp0KED77//PgBnz56lcePGTJ48mY4dOzIrZRpakSwqXhzWrYOqVc1gEx0N8fFWVyUiIoVNtsLNrl27aNasGQCLFy8mJCSEQ4cO8f777/Pmm2/maoHiXsqUgfXroXx5+O03uO8+OH3a6qpERKQwyVa4uXDhAgEBAQCsW7eOzp074+HhwV133cWhQ4dytUBxP5GRsHEjhIWZg4vbtIFz57J2DLsdNm+GBQvMP+32vKhUREQKomyFm9tuu41ly5Zx5MgR1q5dy3333QfAyZMnNUhXckXlymYPTsmS5u3h7drBxYuZe29cHFSoAHffbU4QePfd5vO4uLysWERECopshZuRI0cyZMgQKlSoQKNGjWjSpAlg9uLccccduVqguK+aNWHtWggIMCf469IFrlzJ+D1xcdC1K9yw9BkAR4+a7Qo4IiKuL9u3gsfHx3P8+HHq1q2Lh4eZkXbs2EFgYCDVqlXL1SJzk24FL3y2bIGYGLPnpmtX81JTkSKp97PbzR6am4NNCpsNIiLgwAFzAkERESk88vxWcIDQ0FDuuOMOjh075lghvFGjRgU62Ejh1KwZLFsGXl7mIpt9+phrUt1sy5b0gw2AYcCRI+Z+IiLiurIVbpKTkxk7dixBQUGUL1+e8uXLExwczLhx40hO61tHJIfuuw8+/tjscZk3z1xV/OY+x8wua6blz0REXFsanfu3NmLECN555x1eeeUVoqKiAPjqq68YPXo0ly5dYvz48blapAhAp04wdy706AHTpkFgILz00vXXw8Iyd5zM7iciIoVTtsbchIeHM3v2bMdq4CmWL1/O008/zdGjR3OtwNymMTeF36xZ8PTT5uNXXoGhQ83HKWNujh5N3asDGnMjIlKY5fmYm9OnT6c5tqZatWqc1oxrksf69oVXXzUfDxsGM2eajz09YepU87HN5vyelOdTpijYiIi4umyFm7p16zJ9+vRU7dOnT6dOnTo5LkrkVv79b3jhBfNxv37wv9VA6NzZHHRctqzz/hERZnvnzvlbp4iI5L9sXZb64osvaNu2LeXKlXPMcbN9+3aOHDnCqlWrHEszFES6LOU6DMMcWPzmm+DhAZ98Ys6FA+Ylqi1bzMHDYWHmHVfqsRERKbzy/LJUixYt+PXXX+nUqRNnz57l7NmzdO7cmZ9++on58+dnq2iRrLLZ4I034PHHzVvDH37YnPQPzCDTsqXZ1rKlgo2IiDvJ9iR+afn++++58847sRfghXzUc+N67HYzxCxaBL6+sGYNNG9udVUiIpKb8mUSP5GCwtMTPvgA2rY1ZzF+4AH473+trkpERKyicCMuwcvL7Llp2dJcQTwmBn780eqqRETECgo34jJ8fWHFCmjcGE6fhnvvhf37ra5KRETyW5ZmKO58i/toz549m5NaRHIsIABWrYK774YffoAWLczbxFu1sroyERHJL1kKN0FBQbd8vUePHjkqSCSnSpSAdevMgLN3L0RHw4ABMGEC+PlZXZ2IiOS1XL1bqjDQ3VLuIykJnn8eZs82n1etavbiNGpkbV0iIpJ1ultKBPD3N9ehWr0awsNh3z5o2hRGjoSrV62uTkRE8orCjbi81q1hzx5zLhy7HcaNg7vugp9+sroyERHJCwo34hZKlICPPoKPPzYf79oF9evD5Mlm4BEREdehcCNuJTbW7MVp0wYuX4YhQ+Cee+DAAasrExGR3KJwI24nPBw++wzmzIFixeDLL6FOHXjnHXMxThERKdwUbsQt2WzQp485F84//mHeWfXkk9C+PcTHW12diIjkhMKNuLVKlWDzZpg0yVzCYeVKqFULFi+2ujIREckuhRtxe56e5tibb7+FevXg77/hwQfh0UfhzBmrqxMRkaxSuBH5n1q14JtvYMQI8PCADz+E2rXN2Y5FRKTwULgRuYGXF7z0EmzdClWqwNGj5grj/frB+fNWVyciIpmhcCOShrvugu++g2eeMZ/PnGlestq+3dKyREQkExRuRNJRrBhMm2ZelipbFvbvN++s+s9/4MoVq6sTEZH0KNyI3MK998KPP8Jjj0Fysrm6eKNG5mSAIiJS8CjciGRCcLC5ovjixVCyJHz/PTRoABMnavkGEZGCRuFGJAu6dDF7cdq1My9NDR0KLVrA779bXZmIiKRQuBHJotBQWL7cXK4hIMC8s6puXXjrLS3fICJSECjciGSDzQaPP24u39CihXmb+L/+BfffD8eOWV2diIh7U7gRyYEKFeDzz+H118HbG9asMScD/PhjqysTEXFfBSLczJgxgwoVKuDj40Pjxo3ZsWNHpt738ccfY7PZ6NixY94WKJIBDw949lnYtQvq1zeXbHj4YejWzVzKQURE8pfl4WbhwoUMHjyYUaNGsWvXLurWrUtMTAwnT57M8H0HDx5kyJAhNGvWLJ8qFclYjRrmJH+jRpnrVS1caC7fsHq11ZWJiLgXy8PN66+/Tp8+fejduzc1atRg9uzZ+Pn58e6776b7HrvdTvfu3RkzZgyVKlXKx2pFMla0KIwebYacqlXh+HFzHM6//gVJSVZXJyLiHiwNN1euXOHbb78lOjra0ebh4UF0dDTbM5jnfuzYsZQpU4Ynnnjilue4fPkyiYmJTptIXmvY0Fy+YeBA8/lbb5l3VH31lbV1iYi4A0vDzalTp7Db7YSEhDi1h4SEEB8fn+Z7vvrqK9555x3efvvtTJ1jwoQJBAUFObbIyMgc1y2SGb6+MGUKbNwI5crBH39A8+bm3DiXL1tdnYiI67L8slRWnDt3jscee4y3336bUqVKZeo9w4cPJyEhwbEdOXIkj6sUcXbPPeYt4716mfPgTJxozm68e7fVlYmIuKYiVp68VKlSeHp6cuLECaf2EydOEBoammr/33//nYMHD9KuXTtHW3JyMgBFihRh3759VK5c2ek93t7eeHt750H1IpkXFARz50LHjtCnjznLcaNG5vicf/8bilj6X6KIiGuxtOfGy8uL+vXrs3HjRkdbcnIyGzdupEmTJqn2r1atGnv27GH37t2OrX379tx9993s3r1bl5ykwOvQwQw2nTrB1aswYgQ0awa//WZ1ZSIirsPyfy8OHjyYnj170qBBAxo1asSUKVM4f/48vXv3BqBHjx6ULVuWCRMm4OPjQ61atZzeHxwcDJCqXaSgKlMGliyB+fOhf3/4+muoVw8mTYK+fc3Zj0VEJPssH3MTGxvLa6+9xsiRI6lXrx67d+9mzZo1jkHGhw8f5vjx4xZXKZK7bDbo0QP27DHH5Fy4AP36QUwM/Pmn1dWJiBRuNsNwr6X+EhMTCQoKIiEhgcDAQKvLESE5GWbMMMfeXLpkjs+ZMQMeeUS9OCIiKbLy/W15z42Iu/PwMC9PffedOT9OQgI8+ig8+CCcOmV1dSIihY/CjUgBUa0abNsGY8ead08tWWIuwvnpp1ZXJiJSuCjciBQgRYrAiy/CN9+Ya1WdOAHt25t3VL31Fly7ZnWFIiIFn8KNSAF0551myPH3N59/9ZW5PpWfH/TuDbdYV1ZExK0p3IgUQHFx5oDimxfbvHoV5s2D8HBzQsDly802ERG5TuFGpICx280FNzO6j9FuN4NNx45QtiwMHmzeVi4iIgo3IgXOli2Zm+smNhZCQuCvv+CNN6BOHXPNqhkz4PTpvK9TRKSgUrgRKWAyO2dlhw5mCPr0U+jcGYoWhW+/hWeegbAweOghWL3a7OUREXEnCjciBUxYWOb3K1IEHnjAvG382DGYMgXq1oUrV2DRIrj/fihXDoYPh3378rRsEZECQzMUixQwdjtUqABHj6Y97sZmg4gIOHAAPD3TPsbu3eYq5B9+CH//fb29SRPzbqvYWNCvv4gUJpqhWKQQ8/SEqVPNxzcvv5DyfMqU9IMNmAtxTp1qBqTFi6FtW3P/7dvhqacgNBQeeww+/9xc/kFExJUo3IgUQJ07m6GkbFnn9ogIs71z58wdx9sbunSBlSvhyBGYOBGqV4eLF+GDD6BVK6hUCUaNMnuCRERcgS5LiRRgdrt599Tx4+YYm2bNMu6xyQzDgB07zMtWH39srmWVomVL6NULunaFYsVydh4RkdyUle9vhRsRN3bxIixbZgadDRuuj/Hx9zfvturdG6KitDq5iFhP4SYDCjciaTt8GN5/35wB+fffr7ffdpvZm9OjB0RGWlWdiLg7hZsMKNyIZMwwzLWs5s6FTz6B8+fNdpsN7r3X7M3p2BF8fCwtU0TcjMJNBhRuRDIvKckcwDxvHnzxxfX24GDo1s0MOg0b6rKViOQ9hZsMKNyIZM/vv8N775nb4cPX22vUMEPOo4+at5iLiOQFhZsMKNyI5ExyMmzaZF62WrIELl0y2z09oU0bM+g88AB4eVlbp4i4FoWbDCjciOSehARYuNC8bLV9+/X2kiWhe3cz6NSrZ1V1IuJKFG4yoHAjkjd++cUMOe+/77z4Z716Zsh55BEoVcqq6kSksFO4yYDCjUjeunYN1q0zg87y5eYinmCuWv7AA+aMyW3bmoOSRUQyS+EmAwo3Ivnn779hwQJzfM6uXdfbixaFu++GTp2gQ4fMr4QuIu5L4SYDCjci1vjhB3N8ztKlsHfv9XabDe66y1wvq1MnqFzZuhpFpOBSuMmAwo2I9fbtM0PO0qXmOlc3ql3bDDmdOkHduppDR0RMCjcZULgRKVj+/NMcm7N0KWzebC4WmqJChetBp2nTnC8aKiKFl8JNBhRuRAqu06dh5Uoz6Kxday7smaJ0aXN8TqdO0KoVeHtbV6eI5D+Fmwwo3IgUDhcumAFn6VL49FM4e/b6awEBcP/9ZtBp0wb0n7KI61O4yYDCjUjhc/WqubbV0qWwbBkcO3b9NS8viI42g0779lCmjGVlikgeUrjJgMKNSOGWnAw7d14fkPzrr9df8/CAqKjr43QqVLCsTBHJZQo3GVC4EXEdhmHeVp4SdL791vn1evWuB51atXTnlUhhpnCTAYUbEdd1+LB52WrpUvjyS7OXJ0XlyteDzl13mb08IlJ4KNxkQOFGxD2cOmUORF661FwO4vLl66+Fhl6/8+ruu7WCuUhhoHCTAYUbEfeTlARr1phBZ+VKSEy8/lpQkLnWVadO0Lo1+PtbV6eIpE/hJgMKNyLu7coV2LTJDDrLl0N8/PXXfHzg3nvNoNOunVYxFylIFG4yoHAjkv/sdtiyBY4fNxfJbNasYMw2nJwMX399fUDy779ff83DA5o3N4NOx45QrpxlZYoICjcZUrgRyV9xcTBwoLnMQoqICJg61Vwss6AwDPjxx+tBZ/du59fr178+ILl6dd15JZLfFG4yoHAjkn/i4qBrVzM43CglGCxeXLACzo0OHLh+59VXXzl/hsqV4c47zdvLU7bKlQtGb5SIq1K4yYDCjUj+sNvNSfRu7LG5kc1m9uAcOFDwQ8HJk7BihRl0Nmwwx+3czMfH7NG5MfDUrGlezlIvj0jOKdxkQOFGJH9s3mzeZn0rmzZBy5Z5XU3uSUyEbdvMS1gp288/Oy/yeaOAADPk3Bh6atUyl4lQ6BHJvKx8fxfJp5pExM0cP567+xUUgYHmLeOtW19vs9vNHqiffnIOPb/8AufOmYOWv/7a+TilSqUOPDVrQnBwvn4cEZekcCMieSIsLHf3K8g8PeG228ytQ4fr7VeuwG+/OQeeH38078o6dcrs3dq82flYZcumDj3Vq0OxYvn5iUQKN12WEpE8kTLm5ujR1AOKoXCNucltFy6Ya2L9+KNzb8+RI2nvb7NBpUqpQ8/tt2t2ZXEfGnOTAYUbkfyTcrcUOAecwnC3lBUSElJf2tqzx+zlSUuRIlC1auoxPZUquV9gFNencJMBhRuR/JXWPDeRkTBlioJNZp08eT3s3Bh+blxG4kY+PlCjRuqenogIDWKWwkvhJgMKNyL5r6DOUFyYGYYZGG8ez/Pzz3DpUtrvCQx07uWpUQPKlzdDj69v/tYvklUKNxlQuBERV2a3wx9/OAeen36Cffvg2rX031eypBlybt4iI68/1qBmsZLCTQYUbkTEHV25Ar/+6hx69u41e38uXMjcMYKDMw4/ERFm75BIXtA8NyIi4sTL6/rlqBsZBpw9a4acm7cjR67/mZRk7nf2rBmM0hMQkH7wSdmCgzX2R/KWwo2IiBuz2aB4cXOrXTv9/RIT0w8/KdvZs+akhXv3mlt6/PwyDj8REeZlMgUgyS5dlhIRkVyRlGTOa5RRAPr778wdy8cn/eCTspUuDR4eefuZpODQZSkREcl3/v7mvDtVq6a/z8WLtw5AJ0+ad3zt329u6fHyMmd0LlvWXKurVKn0t5IlzUtm6g1yDwo3IiKSb3x9ry9VkZ7Ll+HYsfTDz59/Qny8OUj6wAFzy4yiRTMOQGltfn6587klfynciIhIgeLtDRUrmlt6rl41501KCTunTqW//f23eUdYynuyslirr2/6PUHpBSJv75z/HUjOKNyIiEihU7QolCtnbplx4YIZcjIKQTdvV66Yl9GOHEl/3a+0+PtnrXeoRAnz80juUbgRERGX5+dnbpGRmdvfMMwB0rfqEbq5zW4335eUBAcPZr6+oKDrPUIlSqTe0moPDjbXF5PU9NciIiJyE5vNHIAcEJDx5bEbJSebt8xnpXfo9GkzSCUkmNvvv2etzqCg9MNPesGoeHHX7ylSuBEREckFHh5mb0pwcMYDpm9kt8OZM2Yv0F9/mWEnve3vv68/Tlk0NSUUZXZQdYqAgIx7hdIKR8WLF57xRAo3IiIiFvH0vD72JqNb6G929ao5aWJ64Se9YHT2rPn+c+fM7dChrNVbrFjmLpmVLQuNGmXt2LlJ4UZEJJO0urkUFEWLmpMYli6dtffZ7alD0a2C0enTZu9ScjKcP29utxpg3aAB7NyZ7Y+XYwo3IiKZEBcHAweatx2niIiAqVOhc2fr6hLJCk9Ps6elZMmsvS852bz8ldnLZjVq5E39maXlF0REbiEuDrp2NQd+3ihlttvFixVwRPJaVr6/tSqHiEgG7HazxyatfwamtA0aZO4nIgWDwo2ISAa2bHG+FHUzwzDHH2zZkn81iUjGFG5ERDKQ2an6szKlv4jkLYUbEZEMhIXl7n4ikvcUbkREMtCsmXlXVMrg4ZvZbOaU/s2a5W9dIpI+hRsRkQx4epq3e0PqgJPyfMoUzXcjUpAUiHAzY8YMKlSogI+PD40bN2bHjh3p7hsXF0eDBg0IDg6mWLFi1KtXj/nz5+djtSLibjp3Nm/3LlvWuT0iQreBixRElk/it3DhQgYPHszs2bNp3LgxU6ZMISYmhn379lGmTJlU+5coUYIRI0ZQrVo1vLy8WLlyJb1796ZMmTLExMRY8AlExB107gwdOmiGYpHCwPJJ/Bo3bkzDhg2ZPn06AMnJyURGRtK/f3+GDRuWqWPceeedtG3blnHjxt1yX03iJyIiUvgUmkn8rly5wrfffkt0dLSjzcPDg+joaLZv337L9xuGwcaNG9m3bx/NmzdPc5/Lly+TmJjotImIiIjrsjTcnDp1CrvdTkhIiFN7SEgI8fHx6b4vISEBf39/vLy8aNu2LdOmTePee+9Nc98JEyYQFBTk2CIjI3P1M4iIiEjBUiAGFGdVQEAAu3fvZufOnYwfP57BgwezefPmNPcdPnw4CQkJju3IrZYyFRERkULN0gHFpUqVwtPTkxMnTji1nzhxgtDQ0HTf5+HhwW233QZAvXr12Lt3LxMmTKBly5ap9vX29sbb2ztX6xYREZGCy9KeGy8vL+rXr8/GjRsdbcnJyWzcuJEmTZpk+jjJyclcvnw5L0oUERGRQsbyW8EHDx5Mz549adCgAY0aNWLKlCmcP3+e3r17A9CjRw/Kli3LhAkTAHMMTYMGDahcuTKXL19m1apVzJ8/n1mzZln5MURERKSAsDzcxMbG8tdffzFy5Eji4+OpV68ea9ascQwyPnz4MB4e1zuYzp8/z9NPP82ff/6Jr68v1apV44MPPiA2NtaqjyAiIiIFiOXz3OQ3zXMjIu7ObtdkhFL4ZOX72/KeGxERyT9xcTBwIPz55/W2iAhz/SwtIyGuolDeCi4iIlkXFwdduzoHG4CjR832uDhr6hLJbQo3IiJuwG43e2zSGoiQ0jZokLmfSGGncCMi4ga2bEndY3Mjw4AjR8z9RAo7hRsRETdw/Hju7idSkCnciIi4gbCw3N1PpCBTuBERcQPNmpl3Rdlsab9us0FkpLmfSGGncCMi4gY8Pc3bvSF1wEl5PmWK5rsR16BwIyLiJjp3hsWLoWxZ5/aICLNd89yIq9AkfiIibqRzZ+jQQTMUi2tTuBERcTOentCypdVViOQdXZYSERERl6JwIyIiIi5F4UZERERcisbciIhIoWW3a3C0pKZwIyIihVJcnLkY6I1rZkVEmPP56LZ296bLUiIiUujExUHXrqkXAz161GyPi7OmLikYFG5ERKRQsdvNHhvDSP1aStugQeZ+4p4UbkREpFDZsiV1j82NDAOOHDH3E/ekcCMiIoXK8eO5u5+4HoUbEREpVMLCcnc/cT0KNyIiUqg0a2beFXXz6uYpbDaIjDT3E/ekcCMiIoWKp6d5uzekDjgpz6dM0Xw37kzhRkRECp3OnWHxYihb1rk9IsJs1zw37k2T+ImISKHUuTN06KAZiiU1hRsRESm0PD2hZUurq5CCRpelRERExKUo3IiIiIhL0WUpERERi2l189ylcCMiImIhrW6e+3RZSkRExCJa3TxvKNyIiIhYQKub5x2FGxEREQtodfO8o3AjIiJiAa1unncUbkRERCyg1c3zjsKNiIiIBbS6ed5RuBEREbGAVjfPOwo3IiIiFtHq5nlDk/iJiIhYyJVWNy8oMy0r3IiIiFjMFVY3L0gzLeuylIiIiORIQZtpWeFGREREsq0gzrSscCMiIiLZVhBnWla4ERERkWwriDMtK9yIiIhIthXEmZYVbkRERCTbCuJMywo3IiIikm0FcaZlhRsRERHJkYI207Im8RMREZEcK0gzLSvciIiISK4oKDMt67KUiIiIuBSFGxEREXEpCjciIiLiUhRuRERExKUo3IiIiIhLUbgRERERl6JwIyIiIi5F4UZERERcisKNiIiIuBS3m6HYMAwAEhMTLa5EREREMivlezvlezwjbhduzp07B0BkZKTFlYiIiEhWnTt3jqCgoAz3sRmZiUAuJDk5mWPHjhEQEIDt5rXZBTDTcWRkJEeOHCEwMNDqctyefh4Fi34eBY9+JgVLXv08DMPg3LlzhIeH4+GR8agat+u58fDwICIiwuoyCoXAwED9j6IA0c+jYNHPo+DRz6RgyYufx616bFJoQLGIiIi4FIUbERERcSkKN5KKt7c3o0aNwtvb2+pSBP08Chr9PAoe/UwKloLw83C7AcUiIiLi2tRzIyIiIi5F4UZERERcisKNiIiIuBSFGxEREXEpCjfiMGHCBBo2bEhAQABlypShY8eO7Nu3z+qyBHjllVew2WwMGjTI6lLc2tGjR3n00UcpWbIkvr6+1K5dm//+979Wl+WW7HY7L774IhUrVsTX15fKlSszbty4TK07JDn35Zdf0q5dO8LDw7HZbCxbtszpdcMwGDlyJGFhYfj6+hIdHc1vv/2Wb/Up3IjDF198Qb9+/fj6669Zv349V69e5b777uP8+fNWl+bWdu7cyVtvvUWdOnWsLsWtnTlzhqioKIoWLcrq1av5+eefmTx5MsWLF7e6NLf06quvMmvWLKZPn87evXt59dVXmThxItOmTbO6NLdw/vx56taty4wZM9J8feLEibz55pvMnj2bb775hmLFihETE8OlS5fypT7dCi7p+uuvvyhTpgxffPEFzZs3t7oct5SUlMSdd97JzJkzeemll6hXrx5Tpkyxuiy3NGzYMLZu3cqWLVusLkWABx54gJCQEN555x1HW5cuXfD19eWDDz6wsDL3Y7PZWLp0KR07dgTMXpvw8HCee+45hgwZAkBCQgIhISHMmzePbt265XlN6rmRdCUkJABQokQJiytxX/369aNt27ZER0dbXYrbW7FiBQ0aNODBBx+kTJky3HHHHbz99ttWl+W2mjZtysaNG/n1118B+P777/nqq69o06aNxZXJgQMHiI+Pd/r/VlBQEI0bN2b79u35UoPbLZwpmZOcnMygQYOIioqiVq1aVpfjlj7++GN27drFzp07rS5FgD/++INZs2YxePBg/vOf/7Bz504GDBiAl5cXPXv2tLo8tzNs2DASExOpVq0anp6e2O12xo8fT/fu3a0uze3Fx8cDEBIS4tQeEhLieC2vKdxImvr168ePP/7IV199ZXUpbunIkSMMHDiQ9evX4+PjY3U5ghn4GzRowMsvvwzAHXfcwY8//sjs2bMVbizwySef8OGHH/LRRx9Rs2ZNdu/ezaBBgwgPD9fPQ3RZSlJ75plnWLlyJZs2bSIiIsLqctzSt99+y8mTJ7nzzjspUqQIRYoU4YsvvuDNN9+kSJEi2O12q0t0O2FhYdSoUcOprXr16hw+fNiiitzb888/z7Bhw+jWrRu1a9fmscce49lnn2XChAlWl+b2QkNDAThx4oRT+4kTJxyv5TWFG3EwDINnnnmGpUuX8vnnn1OxYkWrS3JbrVq1Ys+ePezevduxNWjQgO7du7N79248PT2tLtHtREVFpZoa4ddff6V8+fIWVeTeLly4gIeH81eYp6cnycnJFlUkKSpWrEhoaCgbN250tCUmJvLNN9/QpEmTfKlBl6XEoV+/fnz00UcsX76cgIAAx7XRoKAgfH19La7OvQQEBKQa61SsWDFKliypMVAWefbZZ2natCkvv/wyDz30EDt27GDOnDnMmTPH6tLcUrt27Rg/fjzlypWjZs2afPfdd7z++us8/vjjVpfmFpKSkti/f7/j+YEDB9i9ezclSpSgXLlyDBo0iJdeeokqVapQsWJFXnzxRcLDwx13VOU5Q+R/gDS3uXPnWl2aGIbRokULY+DAgVaX4dY+/fRTo1atWoa3t7dRrVo1Y86cOVaX5LYSExONgQMHGuXKlTN8fHyMSpUqGSNGjDAuX75sdWluYdOmTWl+X/Ts2dMwDMNITk42XnzxRSMkJMTw9vY2WrVqZezbty/f6tM8NyIiIuJSNOZGREREXIrCjYiIiLgUhRsRERFxKQo3IiIi4lIUbkRERMSlKNyIiIiIS1G4EREREZeicCMibslms7Fs2TKryxCRPKBwIyL5rlevXthstlRb69atrS5NRFyA1pYSEUu0bt2auXPnOrV5e3tbVI2IuBL13IiIJby9vQkNDXXaihcvDpiXjGbNmkWbNm3w9fWlUqVKLF682On9e/bs4Z577sHX15eSJUvy1FNPkZSU5LTPu+++S82aNfH29iYsLIxnnnnG6fVTp07RqVMn/Pz8qFKlCitWrHC8dubMGbp3707p0qXx9fWlSpUqqcKYiBRMCjciUiC9+OKLdOnShe+//57u3bvTrVs39u7dC8D58+eJiYmhePHi7Ny5k0WLFrFhwwan8DJr1iz69evHU089xZ49e1ixYgW33Xab0znGjBnDQw89xA8//MD9999P9+7dOX36tOP8P//8M6tXr2bv3r3MmjWLUqVK5d9fgIhkX74t0Ski8j89e/Y0PD09jWLFijlt48ePNwzDXKH+X//6l9N7GjdubPTt29cwDMOYM2eOUbx4cSMpKcnx+meffWZ4eHgY8fHxhmEYRnh4uDFixIh0awCMF154wfE8KSnJAIzVq1cbhmEY7dq1M3r37p07H1hE8pXG3IiIJe6++25mzZrl1FaiRAnH4yZNmji91qRJE3bv3g3A3r17qVu3LsWKFXO8HhUVRXJyMvv27cNms3Hs2DFatWqVYQ116tRxPC5WrBiBgYGcPHkSgL59+9KlSxd27drFfffdR8eOHWnatGm2PquI5C+FGxGxRLFixVJdJsotvr6+mdqvaNGiTs9tNhvJyckAtGnThkOHDrFq1SrWr19Pq1at6NevH6+99lqu1ysiuUtjbkSkQPr6669TPa9evToA1atX5/vvv+f8+fOO17du3YqHhwdVq1YlICCAChUqsHHjxhzVULp0aXr27MkHH3zAlClTmDNnTo6OJyL5Qz03ImKJy5cvEx8f79RWpEgRx6DdRYsW0aBBA/7xj3/w4YcfsmPHDt555x0AunfvzqhRo+jZsyejR4/mr7/+on///jz22GOEhIQAMHr0aP71r39RpkwZ2rRpw7lz59i6dSv9+/fPVH0jR46kfv361KxZk8uXL7Ny5UpHuBKRgk3hRkQssWbNGsLCwpzaqlatyi+//AKYdzJ9/PHHPP3004SFhbFgwQJq1KgBgJ+fH2vXrmXgwIE0bNgQPz8/unTpwuuvv+44Vs+ePbl06RJvvPEGQ4YMoVSpUnTt2jXT9Xl5eTF8+HAOHjyIr68vzZo14+OPP86FTy4iec1mGIZhdREiIjey2WwsXbqUjh07Wl2KiBRCGnMjIiIiLkXhRkRERFyKxtyISIGjq+UikhPquRERERGXonAjIiIiLkXhRkRERFyKwo2IiIi4FIUbERERcSkKNyIiIuJSFG5ERETEpSjciIiIiEtRuBERERGX8v//brJZImhMSwAAAABJRU5ErkJggg==", "text/plain": [ "