{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "zg02FZzDyEqd" }, "source": [ "##### Copyright 2019 The TensorFlow Authors.\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "cellView": "form", "execution": { "iopub.execute_input": "2024-09-05T01:20:38.029377Z", "iopub.status.busy": "2024-09-05T01:20:38.029101Z", "iopub.status.idle": "2024-09-05T01:20:38.032685Z", "shell.execute_reply": "2024-09-05T01:20:38.032150Z" }, "id": "2mapZ9afGJ69" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "sMYQvJuBi7MS" }, "source": [ "# Classify structured data using Keras preprocessing layers" ] }, { "cell_type": "markdown", "metadata": { "id": "8FaL4wnr22oy" }, "source": [ "\n", " \n", " \n", " \n", " \n", "
\n", " \n", " \n", " View on TensorFlow.org\n", " \n", " \n", " \n", " Run in Google Colab\n", " \n", " \n", " \n", " View source on GitHub\n", " \n", " Download notebook\n", "
" ] }, { "cell_type": "markdown", "metadata": { "id": "Nna1tOKxyEqe" }, "source": [ "This tutorial demonstrates how to classify structured data, such as tabular data, using a simplified version of the PetFinder dataset from a Kaggle competition stored in a CSV file.\n", "\n", "You will use [Keras](https://www.tensorflow.org/guide/keras) to define the model, and [Keras preprocessing layers](https://www.tensorflow.org/guide/keras/preprocessing_layers) as a bridge to map from columns in a CSV file to features used to train the model. The goal is to predict if a pet will be adopted.\n", "\n", "This tutorial contains complete code for:\n", "\n", "* Loading a CSV file into a DataFrame using pandas.\n", "* Building an input pipeline to batch and shuffle the rows using `tf.data`. (Visit [tf.data: Build TensorFlow input pipelines](../../guide/data.ipynb) for more details.)\n", "* Mapping from columns in the CSV file to features used to train the model with the Keras preprocessing layers.\n", "* Building, training, and evaluating a model using the Keras built-in methods." ] }, { "cell_type": "markdown", "metadata": { "id": "h5xkXCicjFQD" }, "source": [ "Note: This tutorial is similar to [Classify structured data with feature columns](../structured_data/feature_columns.ipynb). This version uses the [Keras preprocessing layers](https://www.tensorflow.org/guide/keras/preprocessing_layers) instead of the `tf.feature_column` API, as the former are more intuitive and can be easily included inside your model to simplify deployment." ] }, { "cell_type": "markdown", "metadata": { "id": "ZHxU1FMNpomc" }, "source": [ "## The PetFinder.my mini dataset\n", "\n", "There are several thousand rows in the PetFinder.my mini's CSV dataset file, where each row describes a pet (a dog or a cat) and each column describes an attribute, such as age, breed, color, and so on.\n", "\n", "In the dataset's summary below, notice there are mostly numerical and categorical columns. In this tutorial, you will only be dealing with those two feature types, dropping `Description` (a free text feature) and `AdoptionSpeed` (a classification feature) during data preprocessing.\n", "\n", "| Column | Pet description | Feature type | Data type |\n", "| --------------- | ----------------------------- | -------------- | --------- |\n", "| `Type` | Type of animal (`Dog`, `Cat`) | Categorical | String |\n", "| `Age` | Age | Numerical | Integer |\n", "| `Breed1` | Primary breed | Categorical | String |\n", "| `Color1` | Color 1 | Categorical | String |\n", "| `Color2` | Color 2 | Categorical | String |\n", "| `MaturitySize` | Size at maturity | Categorical | String |\n", "| `FurLength` | Fur length | Categorical | String |\n", "| `Vaccinated` | Pet has been vaccinated | Categorical | String |\n", "| `Sterilized` | Pet has been sterilized | Categorical | String |\n", "| `Health` | Health condition | Categorical | String |\n", "| `Fee` | Adoption fee | Numerical | Integer |\n", "| `Description` | Profile write-up | Text | String |\n", "| `PhotoAmt` | Total uploaded photos | Numerical | Integer |\n", "| `AdoptionSpeed` | Categorical speed of adoption | Classification | Integer |" ] }, { "cell_type": "markdown", "metadata": { "id": "vjFbdBldyEqf" }, "source": [ "## Import TensorFlow and other libraries\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:38.036099Z", "iopub.status.busy": "2024-09-05T01:20:38.035883Z", "iopub.status.idle": "2024-09-05T01:20:40.351739Z", "shell.execute_reply": "2024-09-05T01:20:40.351040Z" }, "id": "LklnLlt6yEqf" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2024-09-05 01:20:38.599507: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", "2024-09-05 01:20:38.620596: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", "2024-09-05 01:20:38.626833: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n" ] } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "import tensorflow as tf\n", "\n", "from tensorflow.keras import layers" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:40.355758Z", "iopub.status.busy": "2024-09-05T01:20:40.355179Z", "iopub.status.idle": "2024-09-05T01:20:40.361866Z", "shell.execute_reply": "2024-09-05T01:20:40.361319Z" }, "id": "TKU7RyoQGVKB" }, "outputs": [ { "data": { "text/plain": [ "'2.17.0'" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tf.__version__" ] }, { "cell_type": "markdown", "metadata": { "id": "UXvBvobayEqi" }, "source": [ "## Load the dataset and read it into a pandas DataFrame\n", "\n", "pandas is a Python library with many helpful utilities for loading and working with structured data. Use `tf.keras.utils.get_file` to download and extract the CSV file with the PetFinder.my mini dataset, and load it into a DataFrame with `pandas.read_csv`:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:40.365337Z", "iopub.status.busy": "2024-09-05T01:20:40.364830Z", "iopub.status.idle": "2024-09-05T01:20:40.558576Z", "shell.execute_reply": "2024-09-05T01:20:40.557946Z" }, "id": "qJ4Ajn-YyEqj" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloading data from http://storage.googleapis.com/download.tensorflow.org/data/petfinder-mini.zip\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 0/1668792\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 0s/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1668792/1668792\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0us/step\n" ] } ], "source": [ "dataset_url = 'http://storage.googleapis.com/download.tensorflow.org/data/petfinder-mini.zip'\n", "csv_file = 'datasets/petfinder-mini/petfinder-mini.csv'\n", "\n", "tf.keras.utils.get_file('petfinder_mini.zip', dataset_url,\n", " extract=True, cache_dir='.')\n", "dataframe = pd.read_csv(csv_file)" ] }, { "cell_type": "markdown", "metadata": { "id": "efa6910dfa5f" }, "source": [ "Inspect the dataset by checking the first five rows of the DataFrame:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:40.562090Z", "iopub.status.busy": "2024-09-05T01:20:40.561846Z", "iopub.status.idle": "2024-09-05T01:20:40.574178Z", "shell.execute_reply": "2024-09-05T01:20:40.573631Z" }, "id": "3uiq4hoIGyXI" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TypeAgeBreed1GenderColor1Color2MaturitySizeFurLengthVaccinatedSterilizedHealthFeeDescriptionPhotoAmtAdoptionSpeed
0Cat3TabbyMaleBlackWhiteSmallShortNoNoHealthy100Nibble is a 3+ month old ball of cuteness. He ...12
1Cat1Domestic Medium HairMaleBlackBrownMediumMediumNot SureNot SureHealthy0I just found it alone yesterday near my apartm...20
2Dog1Mixed BreedMaleBrownWhiteMediumMediumYesNoHealthy0Their pregnant mother was dumped by her irresp...73
3Dog4Mixed BreedFemaleBlackBrownMediumShortYesNoHealthy150Good guard dog, very alert, active, obedience ...82
4Dog1Mixed BreedMaleBlackNo ColorMediumShortNoNoHealthy0This handsome yet cute boy is up for adoption....32
\n", "
" ], "text/plain": [ " Type Age Breed1 Gender Color1 Color2 MaturitySize \\\n", "0 Cat 3 Tabby Male Black White Small \n", "1 Cat 1 Domestic Medium Hair Male Black Brown Medium \n", "2 Dog 1 Mixed Breed Male Brown White Medium \n", "3 Dog 4 Mixed Breed Female Black Brown Medium \n", "4 Dog 1 Mixed Breed Male Black No Color Medium \n", "\n", " FurLength Vaccinated Sterilized Health Fee \\\n", "0 Short No No Healthy 100 \n", "1 Medium Not Sure Not Sure Healthy 0 \n", "2 Medium Yes No Healthy 0 \n", "3 Short Yes No Healthy 150 \n", "4 Short No No Healthy 0 \n", "\n", " Description PhotoAmt AdoptionSpeed \n", "0 Nibble is a 3+ month old ball of cuteness. He ... 1 2 \n", "1 I just found it alone yesterday near my apartm... 2 0 \n", "2 Their pregnant mother was dumped by her irresp... 7 3 \n", "3 Good guard dog, very alert, active, obedience ... 8 2 \n", "4 This handsome yet cute boy is up for adoption.... 3 2 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataframe.head()" ] }, { "cell_type": "markdown", "metadata": { "id": "C3zDbrozyEqq" }, "source": [ "## Create a target variable\n", "\n", "The original task in Kaggle's PetFinder.my Adoption Prediction competition was to predict the speed at which a pet will be adopted (e.g. in the first week, the first month, the first three months, and so on).\n", "\n", "In this tutorial, you will simplify the task by transforming it into a binary classification problem, where you simply have to predict whether a pet was adopted or not.\n", "\n", "After modifying the `AdoptionSpeed` column, `0` will indicate the pet was not adopted, and `1` will indicate it was." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:40.576976Z", "iopub.status.busy": "2024-09-05T01:20:40.576748Z", "iopub.status.idle": "2024-09-05T01:20:40.582363Z", "shell.execute_reply": "2024-09-05T01:20:40.581808Z" }, "id": "wmMDc46-yEqq" }, "outputs": [], "source": [ "# In the original dataset, `'AdoptionSpeed'` of `4` indicates\n", "# a pet was not adopted.\n", "dataframe['target'] = np.where(dataframe['AdoptionSpeed']==4, 0, 1)\n", "\n", "# Drop unused features.\n", "dataframe = dataframe.drop(columns=['AdoptionSpeed', 'Description'])" ] }, { "cell_type": "markdown", "metadata": { "id": "sp0NCbswyEqs" }, "source": [ "## Split the DataFrame into training, validation, and test sets\n", "\n", "The dataset is in a single pandas DataFrame. Split it into training, validation, and test sets using a, for example, 80:10:10 ratio, respectively:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:40.585168Z", "iopub.status.busy": "2024-09-05T01:20:40.584956Z", "iopub.status.idle": "2024-09-05T01:20:40.593286Z", "shell.execute_reply": "2024-09-05T01:20:40.592678Z" }, "id": "XvSinthO8oMj" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/numpy/core/fromnumeric.py:59: FutureWarning: 'DataFrame.swapaxes' is deprecated and will be removed in a future version. Please use 'DataFrame.transpose' instead.\n", " return bound(*args, **kwds)\n" ] } ], "source": [ "train, val, test = np.split(dataframe.sample(frac=1), [int(0.8*len(dataframe)), int(0.9*len(dataframe))])" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:40.596189Z", "iopub.status.busy": "2024-09-05T01:20:40.595685Z", "iopub.status.idle": "2024-09-05T01:20:40.599401Z", "shell.execute_reply": "2024-09-05T01:20:40.598766Z" }, "id": "U02Q1moWoPwQ" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "9229 training examples\n", "1154 validation examples\n", "1154 test examples\n" ] } ], "source": [ "print(len(train), 'training examples')\n", "print(len(val), 'validation examples')\n", "print(len(test), 'test examples')" ] }, { "cell_type": "markdown", "metadata": { "id": "C_7uVu-xyEqv" }, "source": [ "## Create an input pipeline using tf.data\n", "\n", "Next, create a utility function that converts each training, validation, and test set DataFrame into a `tf.data.Dataset`, then shuffles and batches the data.\n", "\n", "Note: If you were working with a very large CSV file (so large that it does not fit into memory), you would use the `tf.data` API to read it from disk directly. That is not covered in this tutorial." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:40.602631Z", "iopub.status.busy": "2024-09-05T01:20:40.601997Z", "iopub.status.idle": "2024-09-05T01:20:40.606497Z", "shell.execute_reply": "2024-09-05T01:20:40.605969Z" }, "id": "7r4j-1lRyEqw" }, "outputs": [], "source": [ "def df_to_dataset(dataframe, shuffle=True, batch_size=32):\n", " df = dataframe.copy()\n", " labels = df.pop('target')\n", " df = {key: value.to_numpy()[:,tf.newaxis] for key, value in dataframe.items()}\n", " ds = tf.data.Dataset.from_tensor_slices((dict(df), labels))\n", " if shuffle:\n", " ds = ds.shuffle(buffer_size=len(dataframe))\n", " ds = ds.batch(batch_size)\n", " ds = ds.prefetch(batch_size)\n", " return ds" ] }, { "cell_type": "markdown", "metadata": { "id": "PYxIXH579uS9" }, "source": [ "Now, use the newly created function (`df_to_dataset`) to check the format of the data the input pipeline helper function returns by calling it on the training data, and use a small batch size to keep the output readable:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:40.609561Z", "iopub.status.busy": "2024-09-05T01:20:40.609306Z", "iopub.status.idle": "2024-09-05T01:20:42.885448Z", "shell.execute_reply": "2024-09-05T01:20:42.884779Z" }, "id": "tYiNH-QI96Jo" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", "I0000 00:00:1725499241.160728 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "I0000 00:00:1725499241.164528 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499241.168293 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499241.172081 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499241.183202 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499241.186712 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499241.190256 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499241.193740 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See mo" ] }, { "name": "stderr", "output_type": "stream", "text": [ "re at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499241.197250 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499241.200723 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499241.204294 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "I0000 00:00:1725499241.207818 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.457392 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.459472 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.461579 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.463650 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.465730 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.467675 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.469695 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.471876 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.473835 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.475755 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.477755 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.480239 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.522691 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.524681 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.526832 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.528865 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.530735 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.532710 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.534711 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.536716 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.538582 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.542138 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.544598 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1725499242.547054 9812 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n" ] } ], "source": [ "batch_size = 5\n", "train_ds = df_to_dataset(train, batch_size=batch_size)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:42.888432Z", "iopub.status.busy": "2024-09-05T01:20:42.888168Z", "iopub.status.idle": "2024-09-05T01:20:42.980345Z", "shell.execute_reply": "2024-09-05T01:20:42.979757Z" }, "id": "nFYir6S8HgIJ" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Every feature: ['Type', 'Age', 'Breed1', 'Gender', 'Color1', 'Color2', 'MaturitySize', 'FurLength', 'Vaccinated', 'Sterilized', 'Health', 'Fee', 'PhotoAmt', 'target']\n", "A batch of ages: tf.Tensor(\n", "[[5]\n", " [2]\n", " [2]\n", " [3]\n", " [3]], shape=(5, 1), dtype=int64)\n", "A batch of targets: tf.Tensor([1 1 1 1 1], shape=(5,), dtype=int64)\n" ] } ], "source": [ "[(train_features, label_batch)] = train_ds.take(1)\n", "print('Every feature:', list(train_features.keys()))\n", "print('A batch of ages:', train_features['Age'])\n", "print('A batch of targets:', label_batch )" ] }, { "cell_type": "markdown", "metadata": { "id": "geqHWW54Hmte" }, "source": [ "As the output demonstrates, the training set returns a dictionary of column names (from the DataFrame) that map to column values from rows." ] }, { "cell_type": "markdown", "metadata": { "id": "-v50jBIuj4gb" }, "source": [ "## Apply the Keras preprocessing layers\n", "\n", "The Keras preprocessing layers allow you to build Keras-native input processing pipelines, which can be used as independent preprocessing code in non-Keras workflows, combined directly with Keras models, and exported as part of a Keras SavedModel.\n", "\n", "In this tutorial, you will use the following four preprocessing layers to demonstrate how to perform preprocessing, structured data encoding, and feature engineering:\n", "\n", "- `tf.keras.layers.Normalization`: Performs feature-wise normalization of input features.\n", "- `tf.keras.layers.CategoryEncoding`: Turns integer categorical features into one-hot, multi-hot, or tf-idf\n", "dense representations.\n", "- `tf.keras.layers.StringLookup`: Turns string categorical values into integer indices.\n", "- `tf.keras.layers.IntegerLookup`: Turns integer categorical values into integer indices.\n", "\n", "You can learn more about the available layers in the [Working with preprocessing layers](https://www.tensorflow.org/guide/keras/preprocessing_layers) guide.\n", "\n", "- For _numerical features_ of the PetFinder.my mini dataset, you will use a `tf.keras.layers.Normalization` layer to standardize the distribution of the data.\n", "- For _categorical features_, such as pet `Type`s (`Dog` and `Cat` strings), you will transform them to multi-hot encoded tensors with `tf.keras.layers.CategoryEncoding`." ] }, { "cell_type": "markdown", "metadata": { "id": "twXBSxnT66o8" }, "source": [ "### Numerical columns\n", "\n", "For each numeric feature in the PetFinder.my mini dataset, you will use a `tf.keras.layers.Normalization` layer to standardize the distribution of the data.\n", "\n", "Define a new utility function that returns a layer which applies feature-wise normalization to numerical features using that Keras preprocessing layer:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:42.983811Z", "iopub.status.busy": "2024-09-05T01:20:42.983555Z", "iopub.status.idle": "2024-09-05T01:20:42.987512Z", "shell.execute_reply": "2024-09-05T01:20:42.986886Z" }, "id": "D6OuEKMMyEq1" }, "outputs": [], "source": [ "def get_normalization_layer(name, dataset):\n", " # Create a Normalization layer for the feature.\n", " normalizer = layers.Normalization(axis=None)\n", "\n", " # Prepare a Dataset that only yields the feature.\n", " feature_ds = dataset.map(lambda x, y: x[name])\n", "\n", " # Learn the statistics of the data.\n", " normalizer.adapt(feature_ds)\n", "\n", " return normalizer" ] }, { "cell_type": "markdown", "metadata": { "id": "lL4TRreQCPjV" }, "source": [ "Next, test the new function by calling it on the total uploaded pet photo features to normalize `'PhotoAmt'`:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:42.990631Z", "iopub.status.busy": "2024-09-05T01:20:42.990378Z", "iopub.status.idle": "2024-09-05T01:20:48.138193Z", "shell.execute_reply": "2024-09-05T01:20:48.137497Z" }, "id": "MpKgUDyk69bM" }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "photo_count_col = train_features['PhotoAmt']\n", "layer = get_normalization_layer('PhotoAmt', train_ds)\n", "layer(photo_count_col)" ] }, { "cell_type": "markdown", "metadata": { "id": "foWY00YBUx9N" }, "source": [ "Note: If you have many numeric features (hundreds, or more), it is more efficient to concatenate them first and use a single `tf.keras.layers.Normalization` layer." ] }, { "cell_type": "markdown", "metadata": { "id": "yVD--2WZ7vmh" }, "source": [ "### Categorical columns\n", "\n", "Pet `Type`s in the dataset are represented as strings—`Dog`s and `Cat`s—which need to be multi-hot encoded before being fed into the model. The `Age` feature\n", "\n", "Define another new utility function that returns a layer which maps values from a vocabulary to integer indices and multi-hot encodes the features using the `tf.keras.layers.StringLookup`, `tf.keras.layers.IntegerLookup`, and `tf.keras.CategoryEncoding` preprocessing layers:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:48.142057Z", "iopub.status.busy": "2024-09-05T01:20:48.141814Z", "iopub.status.idle": "2024-09-05T01:20:48.146389Z", "shell.execute_reply": "2024-09-05T01:20:48.145825Z" }, "id": "GmgaeRjlDoUO" }, "outputs": [], "source": [ "def get_category_encoding_layer(name, dataset, dtype, max_tokens=None):\n", " # Create a layer that turns strings into integer indices.\n", " if dtype == 'string':\n", " index = layers.StringLookup(max_tokens=max_tokens)\n", " # Otherwise, create a layer that turns integer values into integer indices.\n", " else:\n", " index = layers.IntegerLookup(max_tokens=max_tokens)\n", "\n", " # Prepare a `tf.data.Dataset` that only yields the feature.\n", " feature_ds = dataset.map(lambda x, y: x[name])\n", "\n", " # Learn the set of possible values and assign them a fixed integer index.\n", " index.adapt(feature_ds)\n", "\n", " # Encode the integer indices.\n", " encoder = layers.CategoryEncoding(num_tokens=index.vocabulary_size())\n", "\n", " # Apply multi-hot encoding to the indices. The lambda function captures the\n", " # layer, so you can use them, or include them in the Keras Functional model later.\n", " return lambda feature: encoder(index(feature))" ] }, { "cell_type": "markdown", "metadata": { "id": "7b3DwtTeCPjX" }, "source": [ "Test the `get_category_encoding_layer` function by calling it on pet `'Type'` features to turn them into multi-hot encoded tensors:" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:48.149194Z", "iopub.status.busy": "2024-09-05T01:20:48.148978Z", "iopub.status.idle": "2024-09-05T01:20:49.915962Z", "shell.execute_reply": "2024-09-05T01:20:49.915266Z" }, "id": "X2t2ff9K8PcT" }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "test_type_col = train_features['Type']\n", "test_type_layer = get_category_encoding_layer(name='Type',\n", " dataset=train_ds,\n", " dtype='string')\n", "test_type_layer(test_type_col)" ] }, { "cell_type": "markdown", "metadata": { "id": "j6eDongw8knz" }, "source": [ "Repeat the process on the pet `'Age'` features:" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:49.919611Z", "iopub.status.busy": "2024-09-05T01:20:49.919029Z", "iopub.status.idle": "2024-09-05T01:20:52.414247Z", "shell.execute_reply": "2024-09-05T01:20:52.413624Z" }, "id": "7FjBioQ38oNE" }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "test_age_col = train_features['Age']\n", "test_age_layer = get_category_encoding_layer(name='Age',\n", " dataset=train_ds,\n", " dtype='int64',\n", " max_tokens=5)\n", "test_age_layer(test_age_col)" ] }, { "cell_type": "markdown", "metadata": { "id": "SiE0glOPkMyh" }, "source": [ "## Preprocess selected features to train the model on\n", "\n", "You have learned how to use several types of Keras preprocessing layers. Next, you will:\n", "\n", "- Apply the preprocessing utility functions defined earlier on 13 numerical and categorical features from the PetFinder.my mini dataset.\n", "- Add all the feature inputs to a list.\n", "\n", "As mentioned in the beginning, to train the model, you will use the PetFinder.my mini dataset's numerical (`'PhotoAmt'`, `'Fee'`) and categorical (`'Age'`, `'Type'`, `'Color1'`, `'Color2'`, `'Gender'`, `'MaturitySize'`, `'FurLength'`, `'Vaccinated'`, `'Sterilized'`, `'Health'`, `'Breed1'`) features.\n", "\n", "Note: If your aim is to build an accurate model, try a larger dataset of your own, and think carefully about which features are the most meaningful to include, and how they should be represented." ] }, { "cell_type": "markdown", "metadata": { "id": "Uj1GoHSZ9R3H" }, "source": [ "Earlier, you used a small batch size to demonstrate the input pipeline. Let's now create a new input pipeline with a larger batch size of 256:" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:52.417928Z", "iopub.status.busy": "2024-09-05T01:20:52.417657Z", "iopub.status.idle": "2024-09-05T01:20:52.456066Z", "shell.execute_reply": "2024-09-05T01:20:52.455466Z" }, "id": "Rcv2kQTTo23h" }, "outputs": [], "source": [ "batch_size = 256\n", "train_ds = df_to_dataset(train, batch_size=batch_size)\n", "val_ds = df_to_dataset(val, shuffle=False, batch_size=batch_size)\n", "test_ds = df_to_dataset(test, shuffle=False, batch_size=batch_size)" ] }, { "cell_type": "markdown", "metadata": { "id": "5bIGNYN2V7iR" }, "source": [ "Normalize the numerical features (the number of pet photos and the adoption fee), and add them to one list of inputs called `encoded_features`:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:52.459703Z", "iopub.status.busy": "2024-09-05T01:20:52.459079Z", "iopub.status.idle": "2024-09-05T01:20:52.823425Z", "shell.execute_reply": "2024-09-05T01:20:52.822732Z" }, "id": "Q3RBa51VkaAn" }, "outputs": [], "source": [ "all_inputs = {}\n", "encoded_features = []\n", "\n", "# Numerical features.\n", "for header in ['PhotoAmt', 'Fee']:\n", " numeric_col = tf.keras.Input(shape=(1,), name=header)\n", " normalization_layer = get_normalization_layer(header, train_ds)\n", " encoded_numeric_col = normalization_layer(numeric_col)\n", " all_inputs[header] = numeric_col\n", " encoded_features.append(encoded_numeric_col)" ] }, { "cell_type": "markdown", "metadata": { "id": "qVcUAFd6bvlT" }, "source": [ "Turn the integer categorical values from the dataset (the pet age) into integer indices, perform multi-hot encoding, and add the resulting feature inputs to `encoded_features`:" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:52.827320Z", "iopub.status.busy": "2024-09-05T01:20:52.827080Z", "iopub.status.idle": "2024-09-05T01:20:52.982859Z", "shell.execute_reply": "2024-09-05T01:20:52.982213Z" }, "id": "1FOMGfZflhoA" }, "outputs": [], "source": [ "age_col = tf.keras.Input(shape=(1,), name='Age', dtype='int64')\n", "\n", "encoding_layer = get_category_encoding_layer(name='Age',\n", " dataset=train_ds,\n", " dtype='int64',\n", " max_tokens=5)\n", "encoded_age_col = encoding_layer(age_col)\n", "all_inputs['Age'] = age_col\n", "encoded_features.append(encoded_age_col)" ] }, { "cell_type": "markdown", "metadata": { "id": "QYzynk6wdqKe" }, "source": [ "Repeat the same step for the string categorical values:" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:52.986626Z", "iopub.status.busy": "2024-09-05T01:20:52.986351Z", "iopub.status.idle": "2024-09-05T01:20:54.493541Z", "shell.execute_reply": "2024-09-05T01:20:54.492803Z" }, "id": "K8C8xyiXm-Ie" }, "outputs": [], "source": [ "categorical_cols = ['Type', 'Color1', 'Color2', 'Gender', 'MaturitySize',\n", " 'FurLength', 'Vaccinated', 'Sterilized', 'Health', 'Breed1']\n", "\n", "for header in categorical_cols:\n", " categorical_col = tf.keras.Input(shape=(1,), name=header, dtype='string')\n", " encoding_layer = get_category_encoding_layer(name=header,\n", " dataset=train_ds,\n", " dtype='string',\n", " max_tokens=5)\n", " encoded_categorical_col = encoding_layer(categorical_col)\n", " all_inputs[header] = categorical_col\n", " encoded_features.append(encoded_categorical_col)" ] }, { "cell_type": "markdown", "metadata": { "id": "YHSnhz2fyEq3" }, "source": [ "## Create, compile, and train the model\n" ] }, { "cell_type": "markdown", "metadata": { "id": "IDGyN_wpo0XS" }, "source": [ "The next step is to create a model using the [Keras Functional API](https://www.tensorflow.org/guide/keras/functional). For the first layer in your model, merge the list of feature inputs—`encoded_features`—into one vector via concatenation with `tf.keras.layers.concatenate`." ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:54.497656Z", "iopub.status.busy": "2024-09-05T01:20:54.497386Z", "iopub.status.idle": "2024-09-05T01:20:54.501962Z", "shell.execute_reply": "2024-09-05T01:20:54.501392Z" }, "id": "EtkwHC-akvcv" }, "outputs": [ { "data": { "text/plain": [ "[,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ]" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "encoded_features" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:54.504872Z", "iopub.status.busy": "2024-09-05T01:20:54.504606Z", "iopub.status.idle": "2024-09-05T01:20:55.157278Z", "shell.execute_reply": "2024-09-05T01:20:55.156534Z" }, "id": "6Yrj-_pr6jyL" }, "outputs": [], "source": [ "all_features = tf.keras.layers.concatenate(encoded_features)\n", "x = tf.keras.layers.Dense(32, activation=\"relu\")(all_features)\n", "x = tf.keras.layers.Dropout(0.5)(x)\n", "output = tf.keras.layers.Dense(1)(x)\n", "\n", "model = tf.keras.Model(all_inputs, output)" ] }, { "cell_type": "markdown", "metadata": { "id": "NRLDRcYAefTA" }, "source": [ "Configure the model with Keras `Model.compile`:" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:55.161361Z", "iopub.status.busy": "2024-09-05T01:20:55.161062Z", "iopub.status.idle": "2024-09-05T01:20:55.169731Z", "shell.execute_reply": "2024-09-05T01:20:55.169106Z" }, "id": "GZDb_lJdelSg" }, "outputs": [], "source": [ "model.compile(optimizer='adam',\n", " loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),\n", " metrics=[\"accuracy\"],\n", " run_eagerly=True)" ] }, { "cell_type": "markdown", "metadata": { "id": "f6mNMfG6yEq5" }, "source": [ "Let's visualize the connectivity graph:\n" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:55.172923Z", "iopub.status.busy": "2024-09-05T01:20:55.172560Z", "iopub.status.idle": "2024-09-05T01:20:57.429894Z", "shell.execute_reply": "2024-09-05T01:20:57.429096Z" }, "id": "Y7Bkx4c7yEq5" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAKr4AAA5ICAYAAAB8s+OXAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeZAV5bk/8GfOjDPDwMAADs4FXCKIimBwwQUXBJGLCETReFFADMGoUdR49VaMaxK3BMsYcCEhKKIsLii4lXIBJe4RAxq3WwoSL0RBFlFkh3P/+P2cOMSZObP2AJ9PVVfR3e/b77fP6e5z3mdOFVnpdDodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHSPpJJOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGZSSQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCZVNIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEwq6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkJpV0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKTSjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmUklHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDMpJIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGZSSQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMzlJB0jK7bffHrfffnvSMQAAEvX+++9HYWFh0jHYyRx44IHx1VdfJR0DAAAAYIcxatSoOOuss5KOsUubMmVKXHnllUnHAAAAANhhFBYWxvvvv590DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgF1WTtIBkvLll1/G0qVLk44BAJCobdu2JR2BndDSpUvjq6++SjoGAAAAwA7j66+/TjrCLu/rr7/292MAAACAKigsLEw6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwC4tlXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMpNKOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZSSUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMykkg4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAZlJJBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJlU0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITCrpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGQmlXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMpNKOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZSSUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMykkg4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAZlJJBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJlU0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITCrpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGQmlXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMpNKOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZSSUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMykkg4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAZlJJBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJlU0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITCrpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGQmlXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMpNKOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZSSUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMykkg4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAZlJJBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJlU0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITCrpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGQmlXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMpNKOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZSSUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMykkg4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAZlJJBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzqaQDADunfffdN9avXx/pdDrS6XQMHTo06UhAHTn88MNj27Ztpfd7r169ko4EwC6mX79+pZ9D37WMGDEi6YiQOPdJ1XnN2BGov8Cu4dufPxs2bEg6zg5LDQsAgF3dF198UW6ta968eeX2Uydr2PbZZ584++yzY9SoUfH444/H3/72t/j0009j7dq1sWXLlli9enV8/PHH8eKLL8Ydd9wRgwYNioKCgqRjf6farHV17tw5/uu//iumTZsWb7/9dqxcuTI2btwYGzdujM8++yzef//9mD59elx11VXRvXv3SKX8jBLYOeTk5JT5nP7iiy8y6vfRRx+V6VdSUlLHSXcMaooAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0dKmkA0BlWrduHVu3bi39j+MrWtq3b590XP6/MWPGRH5+fkRELFiwIB588MEK20+fPr3Mezl16tT6iEkd8X7uWubNmxcPPfRQ6fqdd94Zubm5CSYCAACoWHZ2dhxxxBFx9dVXxwsvvBAbN26ssObUp0+fpCN/p6rUX8zVSZprkKSpYQEAADuDvLy86Nu3b/zhD3+IJUuWxMcffxyTJk2KK664Ik499dTo1KlTlJSUROPGjSM7OzuKiopin332iWOPPTYuvfTSmDJlSnz66adx5513RsuWLZM+nTKq+luj7WVnZ8fw4cPjnXfeibfffjt+85vfxMCBA6Nz587RokWLyM3Njdzc3Nhjjz3igAMOiB/84Adx8803xwsvvBCLFy+OX//611FSUlIXpwaJ2742V9Nl7NixSZ8S1As1RQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABq6VNIBoDJDhw6NVCqzS/Wcc86p4zRkYsCAAdG3b9/S9Z///OeRTqcTTERVrVixItLpdOlSVFSUdCQauKuvvjq2bNkSERH7779/XHrppQknAoAdw9ixY8t879p+KSkpSToiwE6jffv2ccEFF8S0adNixYoV8frrr8eNN94Y3bt3j9zc3KTjVdnOWn9RkwDqkhoWwK5NHQaAncGFF14YTz/9dPzkJz+JNm3aVOsYTZs2jYsuuijef//96NevXy0nrJ6a1roOP/zwmD9/fowfPz4OOuigKo+/5557xjXXXBMffvhh/OIXv4j8/PwqH6OuqJcBJEtNEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIYslXQAqMw555xTpbZZWVl1mIbKpFKpuOWWW0rX582bF88991yCiYD6sGjRopg6dWrp+lVXXRVFRUUJJgIAAPin/Pz8+PDDD+Oee+6JgQMH7vDzFfUXgOpRwwIAAPin4uLiePzxx2PgwIGJ5qhprevcc8+Nl19+OTp37lxm+9KlS2Ps2LFx6qmnRseOHaO4uDh22223aNGiRRxxxBFx6aWXxp///OcyfZo0aRI33XRTnHrqqTU7KQB2GmqKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANGSppANARbp27RodO3bMuP3ee+8d3bt3r8NEVGbo0KFl3rObb745wTRAfbrlllsinU5HRETz5s3jyiuvTDgRAADAzkn9BaD61LAAAAD+KScnJx588MHYZ599EstQk1rXeeedF/fee2/k5uaWblu9enX853/+Z+y7775x4YUXxowZM+L999+PFStWxJYtW2L16tXxxhtvxOjRo6N79+7RpUuXmDlzZq2eEzR0Dz30UGRlZVV7ueCCC5I+BahXaooAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0VKmkA0BFhg0bVi99qB2pVCquvvrq0vW///3vMWPGjAQTAfXpvffei9mzZ5eujxw5Mpo1a5ZgIgAAgJ2P+gtAzahhAQAAlNWoUaO47bbbEhm7JrWunj17xt133x1ZWVml2z7++OPo2rVr3H777bFp06aMjvPWW2/Fv//7v8eIESNi3bp1VTsBgJ1E+/btIysrq3T57LPPko7UoKgpAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FClkg4A5cnNzY1BgwZVud8ZZ5wRjRs3roNEVOYHP/hB7LfffqXr48aNi23btiWYCKhvf/zjH0v/XVhYGOedd16CaQDYVTz11FORlZVV7vKnP/0p6YgAUGvUXwBqTg0LAAAypwbf8L322mvxq1/9Knr06BF777135OfnR7NmzaJbt24xZsyY2Lx5c6XHGDBgQBQVFdVD2rKqW+tq1qxZ3H///ZGTk1O6bcmSJXHsscfGwoULq5Vl/Pjx0bNnz1ixYkW1+gOwc1NTBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoCFKJR0AytOvX79o2bJllfs1adIkBg4cWAeJqMxll11W+u90Oh0TJkxILgyQiOnTp8fKlStL1y+55JJIpXzdAAAAGpZt27bFvHnz4tZbb41evXrFHXfckXSkjKm/ANScGhYAALCjW7NmTdx2221xwAEHxNFHHx3XX399vPDCC/HJJ5/Exo0b48svv4xXX301LrnkkjjuuOPiyy+/rPB4u+22W5x00kn1lP6fqlvruuqqq6Jt27Zltp133nnxj3/8o0Z5Xn/99ejdu3d88cUXNToOADsfNUUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaopykA0B5hg0bVu6+devWxfr166Nly5bl9n3ggQdqLUv37t3jrLPOimOOOSbatGkTeXl58emnn8aiRYti2rRp8cgjj8SqVatqbbztlZSURK9eveK4446Lww47LHbfffdo0aJF5OXlxYoVK+Lzzz+PBQsWxKxZs+LZZ5+NFStW1FmW8uy7775x/PHHl66//PLLsXTp0nrPERFRXFwcgwYNitNOOy323nvvaN26dWzYsCGWLVsWL7/8cjzyyCPx7LPP1uqY+++/f5x99tnRu3fvaN26deyxxx6xZs2a+N///d+YOXNmTJo0Kd59991aHXNXl5+fHwceeGAcfPDBcfDBB8dBBx0UrVq1iqKioigqKorCwsL46quvYuXKlfE///M/8fzzz8djjz0WH3/8cdLRq6Vjx45xyimnxEknnRT77LNPtGrVKvLz82P58uXxySefxKxZs+Kxxx6Lt99+u9bGbNu2bZxxxhnRr1+/2GuvvaKkpCQKCwsjImL33XePlStX/kufzZs3x4wZM2L48OEREbHnnnvGiSeeGP/93/9da7kAIEkdO3aMwYMHR69evWLPPfeMli1bxurVq2Px4sUxc+bMuO+++xrk9436nlOYQ/1Tx44dY8SIEXHCCSdEu3btoqCgIJYvXx633nprjBkzps7GrQ977bVX6evcpUuXaNmyZbRo0SJycnJi9erVsWrVqvjwww/jxRdfjBdeeCHefPPNnWJs/unoo4+OwYMHR7du3aJ169ZRVFQUy5Yti4ULF8b06dPjoYceimXLliUdMyIi0ul0LFy4MGbNmhWzZs2K2bNnx+rVq0v3n3TSSQmmy9yuXn+pifqaVx9xxBFx1llnRY8ePaJNmzZRWFgYn332WSxZsiSeeeaZmDx5cixevLh2TupbdpS6QX1r2rRp9O/fP04++eQ45JBDori4OIqKimL16tWxfPnymDdvXjzzzDPx9NNPx7p163aYsXYFdV1vVcMCyEzjxo2jR48e0a1btzjqqKOidevW0aJFiygqKooNGzbEypUr429/+1u8+uqr8eijj8aHH36Y0XFbtGgRHTp0KLO0bds2iouLo0WLFpGfnx95eXmxZcuW+PLLL+Orr76KxYsXx1tvvRVvvPFGPPnkk7F27do6PvvqSaImkXQdpiHO0Xfmekx1NbR6WV3XWOvq+VWepO6Dnj17xqBBg0prM3l5efGPf/wjPvroo3j00Ufj0UcfjTVr1tTKWPWlrq+PpJ+ZteGrr76Km2++OW677bYy9a2KvP7663HRRRdV+luq733ve7URMWPVrXU1a9YsRo4cWWbbo48+Wmu1qPnz51faZkf/zcrOXitLqk6zI9TLklafdeX27dvHySefHCeeeGJ06NAhiouLo1mzZrF27dpYtWpVrFq1KhYtWhSvvvpqvPrqq7FgwYLYtGlTxsevz+usS5cupZ+P39xLy5YtiyVLlsSzzz4bkydPjkWLFtVojNpWX+91fT5n1BQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABokNK7qOuvvz4dEZYGuhQXF6c3bdpU7vs3ZcqU9NixY8vdv3Xr1vRee+1V4xzf+9730s8991yl19PatWvTV155ZTorKysdEekvvvii3Lbz5s3LePyDDjooPWHChApfi+19/fXX6VGjRqV33333en3PbrjhhjI5Lrvssir1nz59epn+U6dOrbD9t23YsCEdEens7Oz09ddfn96wYUOlr9Pzzz+f3mOPPaqU8bvGbNKkSXrixImVjrdt27b0mDFj0k2aNKnSmL169SpznOnTp1epf1FRUZn+S5YsKbftggULKj2P8hx++OE1ej+rs1T0DCjP5s2b0+PHj083b948ozGuueaaMv2feOKJauedOnVqmWPdeuutGfU74IAD0o899ljG5zhlypR027Zta3RdN2rUKH333Xent27dWu44FT1j+vTpU6btgw8+WOvvv6X2loo+s6C6CgsLE7+2LbvW0q9fvwqvyREjRtS4b0lJSUafyRs2bEhfd9115Y538cUXV+l+qkx+fn6Fr019zyl2hTlUptdMXl5eevTo0eV+p7rjjjt2mPtk++Xwww9PP/zww+ktW7Zk/Dqn0+n0X/7yl/QPf/jD0ve9Okt9jl3T1+yUU05Jb9y4scJj3Hfffens7Owy/e64444K+3Tq1KnCcbefB25vwoQJNT7nAw44IP3yyy9X2DadTqe//PLL9MiRI9OpVKper/fqLLfeemuF59KnT5/EM0bUrP5Snbn6t9Vl/aU2axLbL3U9r/5madWqVXrKlCmVHn/r1q3pe+65J92oUaN0Tk5OmX1ffPFFlcfdkeoG9VEv+mbJzs5Ojxw5Mv35559n9LosXbo0PXz48Gp9RtXHWN/1PmSyNGvWLD1nzpwy/deuXZvu27dvmXb1WYOs7Lzqut767UUNy9LQlnHjxlV67VO3xo0bl/h10FCWtm3bpn/729+mV61aVaXX8JVXXkkPGDCg0s+5mlq7dm16/PjxlX7XrM86TBJ/1026DtMQ5+iZ1mN69uxZ4fEuueSSjLPl5uZW+Jo++eSTid7PDaleVls11iSfX0neB99e2rdvn549e3al43xTm/mmX3Xv/x2pBl/ekvQzsyEs2dnZld4bt912W71mqm6t66c//em/ZD/hhBPqNXtd/2alruplO3utLKk6Tab1siR/h1Sftbnveo3q+nd921/nDz30UHrbtm2VjvVtP//5zxvMdfbNUlRUlB4/fnylY2zbti09duzYdH5+frXvpY8++qhMv5KSkgb9Xif1nFFT/NelsLCw0vcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAOvNwKqABOvvss2O33XYrd//kyZNj8uTJ5e5PpVIxdOjQGmU49NBD480334zevXtX2rZx48bx29/+Nh5++OEKc2cqKysrrrjiiliwYEEMGzasSscsKCiIK664It5999045phjapwlUwMHDiyzPnPmzHobOyIiLy8vZsyYETfccEPk5eVV2v6EE06Il156KXbfffdqj9m0adOYO3duRtdaVlZWXHzxxTFnzpxo2rRptcekZnJycmL48OHx6quvxr777ltp+3HjxsXmzZtL1/v27Rtt27at8rjFxcVx2mmnla6n0+kYN25cpf3OPPPMmD9/fpm+lRk0aFD85S9/ic6dO1c5Z0REYWFhPP/883HhhRdGKlX+14SsrKxy982dOzc2bdpUut6/f/9aeTYCQFK6du0ab731VkafyXl5efHLX/4yRo8eXQ/JypfEnMIc6p/y8vLiiSeeiJEjR5b7naqi71MNVXZ2dvzqV7+K119/PX74wx9GdnZ2lfp37do1Hn744ZgxY0Y0b958hxm7Ovr16xePPfZY5Obmlttm9OjRMXz48Ni6dWud56lNJ554YrzxxhvRrVu3StsWFhbG6NGjY+LEiRXOL8jcrlh/qYn6mle3adMmXnnllRg0aFClbVOpVFxwwQUxa9asKCgoyHiM77Kj1g3qWkFBQUyfPj1Gjx6d8bXXunXrGD9+fEycOLHK3yPqa6yq2nPPPeOll16KHj16lG5btmxZdO/ePZ555pk6G7cm6rveqoYF8N2GDBkS7733Xlx55ZVVnj8dffTRMWPGjGjXrl0dpft/GjduHMOHD4933303+vTpU6djVSapmkSSdZiGOkevSj1mzpw58c4775R7rPPOOy/jcfv06RPNmjUrd/99992X8bFqU0Orl9VHjbU+n19J3gdHHnlkvPnmm9GzZ89K235Tm5k0aVLk5ORUaZz6VNfXR5LPzIZk69at8cEHH1TY5ttzpPpQ3VrX9v0WLVoUc+fOrbVcdaWqv1mpbTt7rSypOk1V6mVJ/w4pKfVZVx48eHDMnz8/zjzzzDqpUdbndVZcXBwvvfRSDB8+vNK2WVlZcf7559fKvVQT9fVeJ/WciVBTBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoOFJJR0AvsuwYcPK3bd69ep47rnn4sUXX4wlS5aU2+6cc86p9vgHHHBAzJo1K5o3b16lfmeccUbce++91R43IiKVSsWUKVNi1KhRkZOTU+3jtGrVKubMmRNnnHFGjfJkok2bNtG5c+fS9WXLlsV7771X5+N+27hx4+KUU06JiIi33norRowYEe3bt4+CgoIoKiqKY489Nh544IEyfdq3bx9jxoyp9pgTJkyIQw89NCIiFi5cGBdffHG0a9cuGjVqFCUlJXHyySfHY489VqZP165d4+mnn47s7Oxqj0tZmzdvjueeey5+9rOfRY8ePaJt27bRpEmTyMvLi9atW0f//v3j/vvvj82bN5f22X///WP69OmRl5dX4bGXLVsWjz/+eOl6dnZ2jBgxosoZzz333MjNzS1dnzVrVixcuLDCPueff35MnTo18vPzS7d99tlncc0118Rhhx0WLVq0iPz8/GjXrl1cdNFF8fe//7203b/927/F3LlzY++9965y1gkTJsSRRx4ZERHvvPNOXHDBBbHffvtF48aNY4899ogTTjghJk2aFFlZWeUeY/369fHaa6+Vrjdt2jSOOeaYKmcBgIbgsMMOi9mzZ0erVq2q1G/kyJHRv3//OkpVsSTmFOZQZd11113Ru3fvGh+nIcnJyYknnngirr322kilalZO6t+/f/z1r3+NNm3aNPixq6Nfv34xbdq0MnOA7f3617+OSy+9NNLpdJWPX50+teXII4+MJ598Mpo0aVKlfoMHD45x48bVUapdx65af6mu+ppXN27cOGo5H6YAACAASURBVObMmRPt2rUr3ZZOp2PChAlxwgknRHFxcTRq1Cjat28fI0eOjEWLFkVERLdu3WLs2LEN/vy2Vxt1g7qUSqXiySefjH79+pXZ/s1nfNu2bSM/Pz/23HPPGDJkSLz++utl2g0ZMiSmTJnS4Maqqi5dusRrr70WnTp1Kt32wQcfxFFHHRVvvvlmnYxZG+q73qqGBfCvxowZEw888EAUFhYmHSUjLVu2jGnTpsVhhx2WyPhJ1SSSrMM05Dl6Vesxd955Z7n7OnXqFN26dcvoOGeeeWa5+1asWBFPPfVUxplqS0Orl9VHjbU+n19J3gedOnWKmTNnRtOmTas0ztlnnx1/+tOfqhOxztX19ZHkM7MhKigoqHD/4sWL6ydIVL/WlZubG8cdd1yZbXPnzk2sblqXv1mpTTt7rSzJOk1V6mVJ/g4pSfVVV/7Zz34WDz74YJnrfN26dTFmzJg46aSTom3btpGXlxdFRUVx4IEHxrBhw2Ly5Mmxfv36jI5fn9dZXl5ezJw5Mw466KAy2ydPnhwnnnhitGrVKgoKCqJDhw5x+eWXl/6O9phjjol77rknozHqQn2810k9Z76hpggAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBDk0o6AGyvU6dOccghh5S7f9q0abFp06ZIp9Px0EMPlduuQ4cOcfTRR1d5/Ozs7Lj//vujefPmVe4bETFkyJBo1qxZtfpGRIwaNSr+4z/+o9r9vy03Nzfuv//+OPjgg2vleOXp1atXmfXXXnutTsfbXl5eXgwdOjQiIm688cY49NBDY/z48bFw4cJYv359rFmzJl5++eU455xz4uKLLy7Td9CgQdGxY8dqjXnaaadFRMT06dPj+9//ftx1112xaNGi2LBhQyxbtiyeffbZOP3002PIkCGxdevW0r7HHntsXH755TU447rRpUuXyMrKiqysrFi5cmWZfc2bNy/d913LvHnz6j3v8uXL49prr42SkpLo06dP3HHHHfHCCy/E0qVL4+uvv45NmzbFp59+Gk899VSce+65ceSRR8Ynn3xS2r9z585x9dVXVzrO3XffXWb9xz/+cWRnZ2ecMysrK84777wy2/74xz9W2Kdr164xevToyMrKKt02ZcqUaNeuXdx0003x17/+NVavXh0bN26MRYsWxd133x0dO3aMp556qrR98+bNY+LEiZFKZf5Rn5eXFwMHDoyIiN///vdxyCGHxB/+8If46KOPYt26dbF8+fKYO3duDBkyJJYvX17hsV555ZUy67179844BwA0JBdccEEUFhZWq+9vfvObWk6TmfqeU5hDldW3b9/48Y9/XGm7b3/X2xHcdddd0bdv31o73j777BNPPPFEFBQUNOixq6p///4xbdq0yM3N/c796XQ6Lr/88rjuuuuqPUY6na5235oaMWJENGrUqFp9hw8fXjqPpnp25vpLbdck6nNeffPNN0eHDh1K19etWxcnnXRS/OhHP4q5c+fGihUrYsOGDbFw4cK488474/vf/37MmDEjIiLOOuusCo9dnp2hblBXrrrqqujZs2eZbZdffnmceOKJMW3atFi6dGls3LgxlixZEpMmTYpu3brFLbfcUqb96aefHueff36DGqsqevfuHX/+85+jdevWpdteeumlOOaYY2Lx4sW1OlZtSqreqoYF8E/XXXfdv3yP2xEUFBTE/fffn8g8O4maRNJ1mIY6R69OPeaBBx6I1atXl9t2+7/vfZf8/PwYMGBAufsnT54cmzZtqvQ4ta2h1cvqusZa38+vpO6DnJycmDhxYjRt2rRa4wwbNqxG939dqcvrI+lnZkPTuHHj2G+//Sps89JLL9VTmurXug466KB/qb++8cYbtZYrU3X9m5XarJft7LWyiOTqNNWplyXxO6Qk1dfv+nr27BmjRo0qs23OnDmx3377xSWXXBKzZs2KpUuXxqZNm2LNmjXxwQcfxMSJE2Pw4MFRUlISN9xwQ6xZs6bCMerzOrvuuuuiS5cupeubNm2KAQMGxODBg2POnDnx+eefx/r16+PDDz+M3/3ud9G5c+eYPXt2REScffbZlR6/LtTXe53Uc+bb1BQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoSFJJB4DtnXvuuRXunzx58nf++7sMGzasyuP/9Kc/jSOOOKLK/WrDySefHJdffnmFbaZMmRLHH398NGvWLBo1ahRdunSJsWPHRjqd/s72BQUF8cgjj0ROTk5dRI6I+JfX6+23366zsSry+9//Pq699trYtm1buW3uuuuumDlzZpltP/rRj6o95rx58+Kss86Kr7/+utw2kyZNiiuuuKLMtl/+8pdRXFxc7XGJuO666+LGG2+MVatWZdR+/vz50bdv39iwYUPptgsvvDDy8vIq7Dd37tx47733Stfbtm0bffv2zThnjx49Yr/99itdX7ZsWcyYMaPc9tnZ2fHggw9Gbm5u6bZHHnkkBg8eHOvWrSu337p16+L000+PBQsWlG47/vjj44wzzsg46zemTp0al112WWzZsqXKfb/x1ltvlVlP6rkKAEk68MAD46ijjqrXMZOYU5hDlXXaaadVq19DNnDgwPjJT35S68c99NBD46abbmqwY1fVgAED4tFHHy3zXf7btm7dGiNGjIjf/e53NRqnvGt3R3DPPfdEfn5+0jF2WLty/aUq6nNe3aFDh7j44ovLbBs6dGjMnj273D5r166NQYMGxfz58zM5nX+xs9QN6kLr1q3j+uuvL7PtxhtvrPC5u23btvjFL34R9957b5ntt912WzRr1qxBjFUVw4cPj6effjoK/4+9+46Ossr/OP6ZIZUASWiW0KSJq4ICghQLhA4CKtI1tCBgW3UtrK7K2lbFBixFQl0QBUEUlCoui6AggoUqVaogJZX0md8fHubHJJleniF5v87J2b3Pvc+93yQzN3M/POdYsaLt2ieffKKOHTu6naEZLdh5KxkWAPzpjjvu0Lhx44K+7rlz5zRv3jyNHj1at99+u2rWrKnY2FiFhYWpfPnyqlOnjrp166Zp06YpNzfX4TzXX3+9evfuHcTKjcskjMxhQvmM7k0ec+HChWKfzS7Vt29fl5/TunbtavfZq6hZs2Z5XJevQjEv84WrjDXY+5eR74NHH31UN998s9/Xvpy5en0YuWeGovvvv1/ly5d32L99+3a7ZyMCzdusq2HDhsWuGZGTBeuZFV+V9qxMCo2cxpO8LNjPIYWKQObKERERmjNnjsqVK2e79tVXX6lbt246ceKEy/vT09M1btw4TZkyxeGYYL7O6tSpo6efftru2siRI7Vs2TKH96Smpuruu+/Wnj17HI4JlkD+ro3aZ4oiUwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAoMRtdAHCpcuXKadCgQQ77T548qfXr19va27Zt06+//upwfL9+/RQVFeX2+mazWY899pjLcQsXLlSbNm1UsWJFVaxYUW3atNFHH33k9jolMZlMeuWVV5yOSU5O1sCBA7Vhwwalp6crJydHP/30k0aPHq3Ro0c7vK9hw4YaPHiwT/U506xZM7v2L7/8ErC1HDl58qSeffZZt8b++9//tmvffvvtXq/78MMPKycnx+W4CRMm6Oeff7a1o6OjNWzYMK/XhXd27typ6dOn29pVq1ZVjx49XN43depUu/bIkSPdXvPBBx+0a8+cOVP5+fkOx997771q2LChrX3mzBmNGDFCVqvV5Vp5eXnF9oJHH33U7VolKSsry6190JWi+0Dz5s19nhMAACNlZGTo6aefVt26dRUVFaWGDRtq8uTJLu9LTEwMQnV/MuJMwRnKua+//lp9+vTR1VdfrcjISNWpU0eJiYl6++23de7cOZ/nDwaz2ax//vOfLsctWLBAt99+u+Li4hQdHa0bbrhBr776qsvz0qhRo5SQkBBya3uqZ8+eWrRokSIiIkrsz8vLU//+/TVz5kyf17JYLD7P4avDhw9r6NChSkhIUGRkpBISEjR06FAdPnzY6X1XXHGFBgwYEJwiS6GynL94Ipjn6uTkZJnN/x+xr1y5UkuWLHG5Tk5Ojh555BGX40pSWnKDQBgzZozCw8Nt7f379+vll192694nn3xSZ86csbUrVKjgNLsL5lruGjdunGbMmKGwsDDbtXfffVd9+/Z1K78MFcHOW8mwAOBPb7zxhssxOTk5+uCDD9SlSxddeeWVioiIUFxcnP7yl79oxIgRWrZsmQoLC91ab9OmTerdu7eqV6+u+++/X1OnTtWGDRt07Ngxpaenq7CwUNnZ2frtt9+0YsUKjRo1Su3bt1deXp7DOfv27ev29+srozIJI3OYy+mM7kke8+9//9vhObt8+fIu86F+/fo57Pvxxx/1448/ev4N+CDU87JAZKzB3L+MzsncOUfOmTNHt956qypUqKCKFSuqZcuWmjVrlltnRqP5+/Vh5J4ZimrUqKHXXnvN6Rh3Xt/+5G3WVdL75HLJ2719ZsUXpT0rk4zPabzJy4L5HJIj/fr1k9Vq9eorNTXVo7UCnSsnJSWpRo0atnZqaqqSkpKUm5vrUZ3OBPN1lpycbJfxbdiwQXPmzHG5TkZGhuHZbaB/10btM0WRKQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCUmF0PAYKnc+fOuvLKKx32f/zxx7JYLHbXFixY4HB8XFycevbs6fb6iYmJqlevntMxL730kvr166dNmzYpMzNTmZmZ2rRpkwYMGKB//OMfbq9V0tpNmzZ12D937lylpKQ47J82bZrWrl3rsP+ZZ57xujZXGjRoYNc+cuRIwNZyZPr06crJyXFr7Ndffy2r1WprN27cWGaz59vht99+q82bN7s11mKxaMKECXbXhgwZ4vGa8N0nn3xi127VqpXLe+bMmaOsrCxbu2vXrqpZs6bL+6pXr67evXvb2lar1en7WJIeeeQRu/b777+v9PR0l2td9N133+mHH36wtdu0aeNWrRd9+umnOn36tNvjHSm6D8TGxqp69eo+zwsAgBFSU1PVpk0bvfXWWzp06JByc3O1b98+PfTQQ5o8ebLTe4t+xp80aZJMJpPta9q0aU7vv+qqq+zGF/269DOwEWcKzlCO/f3vf1f79u21ePFinTx5Unl5efrtt9+0bt06/e1vf9NLL73k0/zB0rlzZ11//fVOxzzxxBMaOHCgNmzYoLS0NOXk5Gjnzp16/vnn1alTJ+Xm5jq8NyoqSmPGjAm5tT3Rq1cvffLJJ4qIiCix/8KFC+rZs2exs4i3CgsL/TKPt3bs2KFmzZpp9uzZOnHihPLy8nTixAnNnj1bzZs3165du5zen5ycHKRKS5+ymr94Kpjn6sGDB9u1J02a5PY6Gzdu1Pbt290ef1FpyQ0CISkpya49YcIE5eXluXVvampqsc8NQ4cODYm1XAkPD9fs2bP1wgsv2K5ZLBb99a9/1RNPPGH3Pgx1RuStZFgAIN15551q2bKl0zG//vqrbr75Zj344INatWqVTp06pfz8fKWlpWn37t2aMWOGevbsqbp162r+/PnF/j23qDZt2uizzz7z6HyzadMmff755w77b7vttmLXApXDGJVJGJnDXC5ndE/zmEOHDmn58uUO53N2hi1fvrx69OjhsH/WrFke1++rUM7L/JmxXhTs/cvI90HHjh1Vp04dp2s//vjjGjJkiDZv3qysrCxlZmZqy5YtGjZsmB577DGn9xotEK8PI/fMUBMfH6/PPvtM8fHxDsd88sknWrp0aRCr8j7rqlSpUrFraWlpfqkpGLx5ZsUXpT0rk4zPabzJy4L5HFIoCHSuXPTv59SpU3X8+HHPC3XCyOzxvffec7NKafXq1S7/nSaQAv27NmqfKYpMEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKHE+X8lHAiypKQkp/0ffvihW9c8mfNS7dq1c9q/detWvfzyyw77X331VW3ZssXt9S7VrVs3p/1vv/22yznmz5/vsK9Ro0aqU6eOp2W5VKFCBVWuXNnu2vHjx/2+jitr1651e2xGRoZOnDhha0dFRSk2NtbjNT/55BOPxi9ZskQWi8XWbtSokapUqeLxuvDNzz//bNdu3ry5y3vS09Pt9ppy5cpp+PDhLu8bOnSoIiIibO01a9bo4MGDDsdXqFBBt956q921hQsXulynqNWrV9u1W7Vq5fa9y5cv93i9kmRkZCgjI8PuWiD2IAAAguGZZ57RL7/8UmLfxIkTnd5bo0aNQJRUIiPOFJyhHM/7+uuve3VvqOncubPT/q+//lrvvvuuw/4NGzborbfe8moNI9d2V+/evbVo0SKFh4eX2J+WlqZOnTpp1apVPq1zqUvPlUYYPny4zp07V2Lf2bNnNXLkSKf333LLLSpfvnwgSivVynL+4olgnqvr1q2rK6+80tbOzMwsdp8rixcv9mh8acoN/K127drFPnd5+rNZsGCBXfuGG24o8TUbzLVcqVSpkr788ku7DDwnJ0f33Xef3n//fY/nM5oReSsZFgBI3bt3d9qfmpqqLl26aM+ePS7nOnLkiAYPHuz030J8sW/fPod9CQkJxT4zB4pRmYSROczlcEb3No+ZMGGCw74mTZqoRYsWJfZ1795dMTExJfbl5+e7fI4hEEI5LwtExhrs/cvI94Gr9/+GDRv03nvvOeyfOHGi/vvf/zqdw0iBeH0YuWeGkqpVq2rNmjVq2rSpwzE7d+506/kHf/Il67r0GYyLsrKy/FJXMHjzzIq3SntWJoVGTuNNXhas55BCRSBz5SpVqqhJkyZ212bOnOl5kU4E83VWp04dJSQk2NrZ2dn68ssvPVpr0aJFHo33p0D+ro3aZ0pCpggAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBQYja6AOCiuLg49ezZ02H/gQMH9P333xe7/uuvv2rbtm0O7+vcubOuuuoqt2po1aqV0/4pU6bIYrE47LdarZo8ebJbaxWVmJjosO+PP/7Qzz//7HKOX3/91es1vHXFFVcUu3b27Fm/r+PKL7/84tH41NRUu3ZsbKzHa5b0enTm/PnzOnjwoN21Fi1aeLwufJOWlmb3PnZ3f5gyZYpde/jw4SpXrpzD8SaTSSNGjLC7Nm3aNKdrtGrVSmFhYbb2qVOnXL6vS/Ljjz/atZs3b+72vdu3b/d4PUfOnDlj1y5pvwAAINSdO3dOs2bNcti/d+9e5eXlOez35nOmt4w4U3CGKs5qter555/3+L5Q5epn4M7vb8qUKbJarQ77b775ZsXHx4fU2u7o0aOHFi5cqPDw8BL7//jjD7Vr104bN270an5HnH0/gbZt2zZt2bLF6ZiNGzdq586dDvvDwsJ0yy23+Lu0Uq8s5y+eCOa5uujreMeOHcrPz/doHWeZZklKW27gTy1btrRr//bbbzp16pRHc+zYsUNZWVm2tslkKjG7C+ZaziQkJGjDhg3q0KGD7drZs2eVmJioJUuWeDRXqDAqbyXDAlDWdezY0Wn/u+++q0OHDgVs/Ztvvlljx47V/Pnz9f333+vYsWM6f/688vLyZLVa7b7Gjh3rdK7KlSsHrM5LGZVJhGoOIxl/Rvclj/nqq6+0a9cuh/0jR44s8Xrfvn0d3rNs2bJinzGCIVTzskBlrMHev4x8H7h6/7v6d2h3xxghUK8PI/fMUFGnTh1t3LhRzZo1czjm6NGj6t69u9LT04NYmW9ZV0mvh5iYGJ9rChZvn1nxRmnPyqTQyGm8zcuC8RySMx9//LFMJpNXX3FxcR6tFchc+bbbbpPJZLK1T58+rX379nm0nivBfJ0VvfbLL78oJyfHo7U8zdj8KZC/a6P2GUfIFAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAqzEYXAFzUr18/RUVFOexfsGCBV33lypXToEGD3Kqhbt26Tvv/97//uZzDnTElqVevnsO+atWqyWq1uvzauHGj0zWuu+46r2pzJiYmpti1nJwcv6/jjMViUVpamkf3FK3R2WvPkT179nh8z+7du+3aNWvW9HgOFJeQkKCHH35Yc+fO1Q8//KATJ04oIyNDFoul2PvEYrHIbP7/P39xcXFurbF9+3Z99913tnaNGjXUrVs3h+MTExNVv359W/v333/X559/7nSNa6+91q69b98+t2or6syZM3btatWquX3v8ePHvVqzJNnZ2XbtkvYLAABC3dq1a5Wfn++w32q16vz58w77g/n3z4gzBWeo4r799lsdPnzY4/tC1TXXXOO0353f34kTJ3TgwAGH/WazWbVq1Qqptd3Rq1cvhYeHl9h39OhR3Xbbbdq+fbtXcztjtVr9Pqe7vvnmG7fGbdq0yWm/q98tiivL+YsngnmuLprp7N271+N1PM2WSltu4E81atSwa+/atcvjOSwWS7HfSdF5g72WIzfeeKO+++47NW7c2Hbt4MGDat26tcs9OJQZlbeSYQEo61yd7RctWuT3NcuVK6ehQ4fq4MGD2rZtm1577TUNHDhQzZs3V0JCguLi4hyet5yJj4/3e60lMSqTMDKHCfUzuq95zKRJkxz29e/fXxUrVrS7FhMTo+7duzu8Z9asWV7X4otQzcsClbEGe/8K5ZzM1e9Ncp3XGMWo10cg98xQ0KRJE23atEkNGzZ0OOb48eNq166dfvvttyBW9idfsq6MjIxi12JjY32uyRfBeGbFG6U9K5NCI6fxNi8LxnNIoSDQuXLt2rXt2j/99JNHa7kjmK+zop8D/JGXBUugf9dG7TOOkCkCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgVIQZXQBwUVJSktP+Dz/80GHfRx99pDfffFMmk8nh3OPHj3dZQ+XKlZ32Hzp0yOUchw8flsVikdlsdjn2osjIyKD8h++rVq3q9zkjIyPt2vn5+bJarX5fxxkj1pSk1NRUn++Jj4/3VzllUoMGDfTGG2+od+/eDt//rlSsWNHtsVOmTNGtt95qaz/44INatmxZiWMffPBBu/bMmTNVUFDgdP6ie1Dr1q2Vk5MjSbbvz2Qy2f1/Z/97kbuvs8LCQmVlZbk11h25ubl27ejoaL/NDQBAsOzYscPlmOzsbId93n5G8ZRRZwrOUMV9//33AajEGK5+ztnZ2Tp9+rRbcx0+fFj169d32F/0Z23k2r7at2+fOnTooCNHjvh13lDw22+/uTXu8OHDTvtd7R0oriznL54I5rk6Li7Oru1NTpSWlubR+NKWG/hT0e/h/PnzXs1T9L6SfjbBXKsk4eHh+uabb1SpUiXbta1bt6p79+5u/20MVUblrWRYAMqyyMhIp/9Okp+fr927d/t1zUqVKmnx4sXq0KGDX+eVin9uDgQjM4lQzWFC4Yzuax4zd+5cvfbaa8U+50tSTEyMBg4cqGnTptmu3XXXXQ4/M/z+++9auXKlT/V4I5TzskBkrMHev4x+Hzj7nGu1Wt3KoY4cOeLx+z8YApXBG7VnhoI777xTS5cuVWxsrMMxBw8eVKdOnXTgwIEgVvb/fMm6jh07VuyaUXljsJ9Z8VRpz8pKqiXYOY2veVmgn0MKBYHOlatUqWLXPnv2rN/XCObrzB/vJW/u8YdA/66N2mccIVMEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAqDAbXQAgSQ0aNFCrVq0c9v/000/avXu3w/5jx45pw4YNDvtvuOEGNW3a1GUdMTExDvtycnJUWFjocg6r1ars7GyX4y4VFxfn0XhvValSxe9z5ubm2rXDw8NlMpn8vk6oKSgoUH5+vsf3ZWVl2bUrVKjgr5LKnM6dO2v79u26++67fXrNmc3u/ylcuHChzp49a2t37dpVNWvWLDbuiiuuUK9evWxti8Wi6dOnu5y/6F5gNpsVGRmpyMhIRUREKCIiQuHh4QoLC1NYWJjKlSuncuXKyWw2y2w2y2QylfizcLa3XaqgoMCtce6Kioqya3u6NwIAEArOnTvncow3nwv9zagzBWeo4o4ePRqASozh6udc9Hzjy9jY2NiQWdtX2dnZyszM9OucnihXrlzA5nb3537hwgWn/RUrVvRHOWVKWc1fPBXMc3XRTMebM68ne5lU+nIDfyq6r7jahxwp+jspab8K5lolMZvNqlSpkt21KVOm6PTp017VESqMzFvJsACUZa7OXunp6X5fc9GiRerQoYPf5w0WIzOJUM1hQuGM7msek5WVpVmzZjnsHzlypF27X79+DsfOmzfPkM/OoZyXBSJjDfb+ZfT7wNn7Pzc3VxaLxa21Q/GzbqAyeKP2TKP16dNHK1eudLqf/vLLL2rbtq0OHDgQxMrs+ZJ17du3r9i1xo0b+6UuTxjxzIqnSntWJhmf0/j6Nz/QzyGVBUV/V4H495lgvs6Kvpe8Wcub99LlwKh9xhEyRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIQKs9EFAJKUlJTktL9JkyayWq1Ov26//Xaf1pCkzMxMh32RkZEym12/ZUwmk6Kjo12Ou1RqaqpH470VHh7u9zmzsrKKXYuKivL7OqEmLCxMYWFhHt8XExNj13b2moNjDRs21NKlS+1+nhcuXNDcuXM1bNgwtWzZUjVq1FDFihUVEREhk8lk91VYWOjVujk5OZo1a5atbTabNWLEiGLjhg4davd+W7NmjQ4fPuxy/uzsbK/qcsVkMgVkXleK7oUl7RcAAIS63Nxcl2MsFksQKnHOqDMFZ6jiKP3M2gAAIABJREFUMjIyAlCJMdLS0pz2Fz3f+DK26FpGru2rxo0ba82aNYqLi/PrvBe5OotWqlQpIOtK7v/cy5cv77S/NL1PgqWs5i+eCua5uujvxNO/ZZJne5lU+nIDfyq6r7jahxwp+jspab8K5lolyc/P1/r16+2uTZ8+XUOGDPGqjlBhZN5KhgWgLHN1vvb3+aJv377q1KmTX+cMNiMzCaNymMvhjO6Pc+akSZMc5nxNmzZVs2bNJEkVK1ZUly5dHM4ze/Zsn2vxRijnZYHIWIO9fxn9PnD2GdXd97/k3dk10AKVwRu1Zxrp4Ycf1scff6zIyEiHY9avX6/bbrtNJ0+eDGJlxfmSde3YsUN5eXl215o3b+6Xutxl1DMrnirtWZlkfE7jq0A/h1QWpKen27UrVKjg9zWC+Tor+vcrWO+ly4FR+4wjZIoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIFWajCwBMJpPuv//+gK8zcOBAhYeHOx1z/vx5h30mk0k1atRwuU7t2rVlNnv21srNzb1s/8P3v//+e7FrVatWNaCS4IuLi/P5HmevOX8oV65cQOc3yvjx4xUVFWVrb968WfXq1VNSUpJmzZqlLVu26Pjx48rMzFR+fr7dvVFRUT79XKZOnSqr1WprDx8+3G4+k8mk5ORku3umTZvm1txnzpyxa8+cOVMmk8nnrw4dOnj9/fqiSpUqdu1Tp04ZUgcAAGWBUWcKzlDFWSwWo0vwm5ycHKc/5+joaFWvXt2tuerUqeO0v+hnYSPX9oemTZtq1apVqlSpkt/njo6Odtp/7bXX+n3Ni2rXru2XcefOnfNHOWVKWc5fPBHMc3VqaqpdOzY21uN6Pb2ntOUG/lT0M0l8fLxX8xS9r6T9KphrlcRisahr165atWqV7ZrZbNbMmTM1evRor2rxlb8ySKPyVjIsAGVZbm6uMjIyHPaHh4erUaNGflvvgQcecNqfmpqqf/zjH7r55ptVqVIlmc1mu88tr776qt9q8ZaRmYRROczlcEb3Rx5z8OBBffnllw77L/77X69evez+nfJSW7Zs0c6dO32uxRuhnJcFQrD3L6PfB67e/7Vq1XK5bs2aNT1+/1/OjNozjfLKK69o4sSJTutdtGiROnfurLS0tCBWVjJfsq68vDx98803dtfuuOMOv9TlLiOfWfFEac/KJONzGn8I5HNIZUHR31XRnMcfgvk6K/pe8kdeVloYtc84QqYIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAUGE2ugCgXbt2qlWrVsDXqVq1qrp16+Z0zIEDB5z2t27d2uU6t99+u0d1XXTo0CGHfTt37pTJZPL5q0uXLl7V5kxWVpbOnj1rdy0hIcHv64Si6667zud7jh496nR8QUGBXTssLMyj9eLj4z0afzmIi4uzey3n5eXp3nvv1e+//+7W/dWrV/dp/QMHDmjNmjW2dkJCgrp3725rd+zYUXXr1rW1T548qWXLlrk1d9HXQ/369X2q1UgVK1ZUxYoV7a4dPnzYmGIAACgjjDhTcIYq/Zz9nCX3fn9XX3216tWr57DfYrHoyJEjIbW2O6ZOnar09HSH/S1atNCKFStUoUIFj+bNzc112l+5cmWn/YmJiR6t54m2bdu6Nc7Ve9/V7xbFleX8xRPBPFcXXevaa6/1eA5P7ylNuYG/HTt2zK7tTW5nNpvVqFEjp/MGey1HsrOz1atXL3322We2ayaTSZMnT9bf/vY3j+sJlQwyGHlrUWRYACAdPHjQaf99993nt7XuuOMOh325ublq27atXnnlFf3444/KyMiQ1Wq1GxMbG+u3WnxhVCYRqjmMu/MG8ozuLxMmTHDYN3DgQMXExKhv374Ox8yePTsAVbmvrOVlwdy/pNDOydq0aeNybXfGlCZG7pnBFBYWphkzZui5555zOm7ixInq37+/y+wxWHzNupYsWWLXrlevnu68805/lOaS0c+seKK0Z2VSaOQ0vgrkc0hlQdG/kY0bN/b7GsF8nRX9HOCPvKy0MGqfKQmZIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEKJ2egCgKSkpJBZ69tvv3XaP3z4cKf9JpNJY8aM8bguSVq7dq3Dvuuuu05XX321V/MGw6+//mrXrl27tkGVBNctt9zi0fj4+HjVrVvX7tqWLVuc3pOenm7XrlSpkkdr1q9f36Pxl4PGjRsrPDzc1l6/fr2OHz/u9v2e/t5KMnnyZLv2yJEjbf//wQcftOubOXOmCgoK3Jr3f//7n6xWq619yy23qHz58j5Uapyi+0BqaqpOnz5tUDUAAISuwsJCp/0RERFuz2XEmYIzVOn31VdfOe0fPXq0yzlGjx4tk8nksH/79u06f/58SK3tjh9++EE9evRQdna2wzGtW7fWF1984dHn+rS0NKf9N954o8O+uLi4gOYsTZs2dXmmat26tW644QaH/QUFBfr+++/9XVqZUFbzF08E81xd9HV844032uUV7mjatKlH40tTbuBv3333nV27Tp06ql69ukdzXH/99YqJibG1LRZLidldMNdyJjc3V3369NFHH31kd/2tt97SCy+84NFcoZJBBiNvLYoMCwCkNWvWOO1//PHH/fLZs0KFCqpQoYLD/nXr1mnnzp1O52jRooVPNfgrhzEqkzAyhwn1M7q/rFmzRrt37y6xr2LFiho1apQ6d+5cYn9OTo4WLFgQyPJcKmt5WbD2r4uMfB+4ev8nJye7XNudMaWJkXtmsJQvX16ffvqphg0b5nCM1WrV2LFj9eijj8pisQSxOtd8ybrmz5+vCxcu2F0L1u8rFJ5ZcVdpz8qk0MlpfBWo55DKgm+++cbudX7FFVeoQYMGfl0jmK+zotduvPFGRUVFebRWMPeZYDJqnykJmSIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCidnoAlC2xcTE6N577w3aej169FDVqlUd9q9bt87p/R06dFBycrLD/r///e9q2bKlV7WtWLHCYZ/ZbNbYsWO9mjcmJkZPP/20XnjhBa/ud8fWrVvt2jfeeGPA1golffr08Wj8PffcI7P5/7fdPXv26OzZs07vOXPmjF27fv36Hq3Zrl07j8ZfVFBQYNe+tG6jVa9e3a597Ngxj+7v1auXzzUsX75cR48etbW7du2qWrVq6corr9Rdd91lu26xWJSSkuL2vKdPn9ZPP/1ka0dHR/ulXiMU3QeK7hMAAOBPmZmZTvs9+fxnxJmCM1Tpt2rVKqf97du31+OPP+6wv23btnrqqae8WsPItd21YcMG3XvvvcrPz3c45vbbb9fnn3+uqKgot+b8/fffnfYnJycrMjKy2PWwsDDNmDFD1apVc2sdb82YMUPx8fEl9sXHx2vatGlO7//+++914cKFQJRW6pWV/MWXTCKY5+oDBw7o1KlTtnaFChXUsWNHj+bwNBctTbmBvx05csQuq5E8z+769+9v196xY4fS09MNXcuVgoICDRo0SLNmzbK7Pm7cOP3rX/9yex6jMsiigpG3FkWGBQDSF1984bQ/Pj5eK1euVMOGDV3OVb16daWkpKhu3brF+lydicLCwpz2t2nTRi1atHBZgzP+ymGMyiSMzGEuhzO6v0yaNMlh36uvvqqIiIgS+5YuXarU1NRAleWWspaXBWv/usjI98HXX3/t9L477rhDjzzyiMP+MWPGqH379k7nKG2M3DODoXLlylq7dq169OjhcEx+fr6SkpI8Oh8Gky9ZV2pqqiZOnGh37b777lOXLl38UttNN93kcC4jnlnxNi8r7VmZFFo5jS8C9RxSWXDu3Dlt377d7trQoUP9ukYwX2eHDx/W8ePHbe3o6Gh169bNo7Xuu+8+j8ZfLozaZ0pCpggAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBQYja6AJRtffr0UUxMTNDWCw8P14ABAxz2r1u3Tvv373c6x7Rp0/TBBx+oefPmiomJUUxMjFq1aqUPP/xQr7zyite1rVmzRj///LPD/oceekh//etf3Z7v2muv1auvvqpDhw7pjTfeUPXq1b2uzZUtW7bYtRs3bhywtUJJq1at1LJlS7fGms1mPfLII3bXZs+e7fK+I0eO6Pz587b2VVddpfr167u1ZnR0tIYOHerW2KIyMzOLzRUqcnJy7NqVK1d2+946deqoX79+PtdQWFio6dOn29pms1nDhw/XsGHDFB4ebru+atUqHT582KO5J02aZNd+8cUX7ea8XBTdB4ruEwAA4E/nzp1z2v/GG2+oRYsWKl++vMu5jDhTcIYq/VatWqWdO3c6HfPOO+9o/vz5atu2rSpWrKjIyEj95S9/0csvv6zVq1crMjLS4b25ubmaPHlyyK3tiRUrVmjQoEGyWCwOxyQmJmrp0qVO67lo27ZtTvsbN26sVatWqVWrVoqKilJ8fLx69Oihb775Rvfcc4/H9Xvqxhtv1A8//KCkpCRdddVVCg8P11VXXaUHHnhAW7du1Q033OD0/kvPUvBMWclffM0kgnmunjdvnl37oYcecvve1q1bq2nTph6vWVpyg0AomrU9+uijCgsLc+ve2NhYJScn212bOXNmSKzlisVi0fDhw/Xvf//b7vozzzyjiRMnymQyuZzDqAyyqGDkrUWRYQGA9N///tfl/teoUSP9+OOPmjx5sjp27Kjq1asrPDxclSpVUoMGDTRw4EDNnz9fR44c0fDhw2U2F38M4dy5cyooKHC4RqtWrVS7du0S++rWrasFCxZ49o2VwF85jFGZhJE5zOVyRveHuXPnKi0trcQ+Z9/DrFmzAlWS28paXhas/esiI98Ha9ascfnvzu+//75mzJihW265xfb+v+WWW5SSklLsLFkWGLlnBlqtWrW0ceNGtWrVyuGYzMxM3XXXXfrPf/4TxMo842vW9frrr+v48eN216ZPn66rr77ap7patGihNWvWKC4ursR+I55Z8SUvK+1ZmRRaOY23AvkcUllQ9HU+atQoXXXVVX5dI5ivs7lz59q1Pfn81qlTJ/3lL39xe/zlxqh9pigyRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIQSs9EFoGxLSkpy2j9q1CiZTCaPvvr27ev1mlarVe+9957T+00mk5KTk/X9998rMzNTmZmZ2rRpkwYMGOD0PlesVquee+45p+u+++67+vbbbzV8+HBdd911qlChgsLCwlStWjVdd9116tOnj8aPH6+tW7dqz549+vvf/65q1ar5VJc7vvrqK1mtVlu7VatWMplMAV83FEyaNEmRkZEuxz366KNq0qSJrZ2Tk6NZs2a5tcamTZvs2qNGjXLrvrfeesvr3//p06ft2rVr1/ZqnkA4ePCgXfvOO+9UbGysy/vCw8M1b948RURE+KWO6dOnKz8/39YePny4kpOT7cZ88MEHHs87Z84cu+/x2muv1bRp07wv1CBt2rSxa69Zs8agSgAACG07d+502t+8eXNt3rxZWVlZslqtdl+DBw+2G2vEmYIzVOlnsVj0wgsvuBw3cOBAbdiwQenp6crJydHOnTv1/PPPKzo62ul9U6ZM0fHjx0NubU8tWrRII0eOdDqmc+fO+uSTTxQeHu503I4dO3TmzBmnY+644w5t2rRJ2dnZOnfunJYtW6aWLVt6XLe3rrnmGs2ePVsnTpxQXl6eTpw4oTlz5qhu3bpO7zt16pQWLFgQpCqL27NnT7G99OLXM8884/TeFStWOLx36tSpQam/rOQvvmYSwTxXT58+XRaLxdbu1q2bevXq5fK+yMhITZgwwas1S0tuEAhTpkxRXl6erX3ttdfq2Wefdeve8ePH230GSE9Pd5rdBXMtd1itVj388MN688037a4//PDDmj59usxm1/8UZEQGWZJg5K2XIsMCgD+583csOjpao0eP1urVq3Xq1Cnl5eUpLS1Nv/76q+bPn6+BAwc63cMtFou2bNnisL9ChQpau3at+vfvr4SEBEVERKhevXp6+umntXXrVtWsWdOr7+1S/sphjMokjMxhLqczuq8yMzM1e/Zsj+45duyY1q5dG5iCPFAW87Jg7F8XGZ2TTZw40en9JpNJw4YN05YtW2zv/y1btmj48OGlMj9wxcg9M9BGjhypRo0aOR1ToUIFrVy50mGe5ehr69atQfoufM+60tLSlJSUpMLCQtu1GjVq6JtvvnGZUzoyZMgQff3116patarDMUY8s+JLXlbaszIp9HIabwXqOaSyYN68eTpy5IitHR8frzlz5vjtGTEpuK+z6dOnq6CgwNa+7bbbXD5nK/2597///vtu1XS5MmqfKYpMEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKHEbHQBKLtq1aqlO++802F/QUGBFi9e7PG8X3zxhbKyshz2N2vWTNdff73D/qlTp2rLli0er+sPy5cv14QJE5yOufXWW5WSkqJdu3YpIyND+fn5On36tHbt2qVFixbpySefVLNmzYJU8Z9Onjypn376ydauWrWqbrjhhqDWYJTmzZtrwYIFiomJcThm4MCBGj9+vN21l156SadPn3ZrjdmzZ9u1H330UbVv397heLPZrNdee00PPfSQW/OX5NLfpyR17tzZ67n8bdeuXTp8+LCtHRsbq2nTpiksLMzhPfHx8friiy/Upk0bv9Xx+++/a+nSpbZ2QkKC6tSpY2ufOHFCy5cv93jegoICDRo0SLm5ubZrQ4cO1ZIlS1SlShW356lWrZqeeuopr/ZRX0VHR6tly5a2dnp6ujZu3Bj0OgAAuBx89913Kigo8Nt8RpwpOEOVfkuWLNH06dP9Pu+2bdv03HPPhezanpoxY4aefPJJp2N69Oihjz/+2On5paCgQHPnzvVrbaFizJgxysnJMbqMy1ZZyV98zSSCea7eu3evJk2aZHdt/vz5ateuncN7ypcvrw8//NDrvz2lITcIlJMnT+rFF1+0u/bPf/5To0ePdniP2WzWyy+/rBEjRthdf/LJJ5Wenh4Sa3nimWee0UsvvWR3bfjw4Zo3b57Tvz2SMRlkSYKRt15EhgUA/+/rr7/WP//5z4Cv8+GHHzrtr1+/vhYsWKBjx44pNzdX+/fv1xtvvKH4+Hi/rO/PHMaoTMLIHOZyOqP7atKkSbJarW6Pnzt3riwWSwArcl9Zy8uCtX9dZOT7YMKECdq+fbvf1y7NjNwz4Zo/sq6vvvpKY8aMsduzr7nmGm3dulWPP/64IiIi3Jrn+uuv1xdffKFZs2apfPnyTsca8cyKL3lZac/KpNDNaTwVqOeQyoL8/Hw98MADKiwstF3r2LGjli9friuvvNLl/ZUqVdILL7zg9DUTzNfZoUOHimVfH3zwge666y6H98TFxenTTz9Vo0aNHI4pDYzaZy5FpggAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBQYza6AJRdDzzwgEwmk8P+devW6cyZMx7Pe+HCBS1fvtzpmKSkJId9hYWFSkpK0vnz5z1eW5LmzZuntLQ0r+6VpMcff1wLFy70+n6jLF682K7duXNngyoJjtzcXH366aeSpLvvvls//fSTRo8erWuuuUaRkZGqVq2aOnfurMWLF2v+/PkqV66c7d5vv/1Wb7/9tttrLV26VNu3b7e1w8PDtWLFCr311lu66aabFBMTo+joaNWvX18jR47Uzz//rLFjx0qSpk+f7tX3t2zZMrv2U089pSeeeEL16tVTZGSkV3P602uvvWbX7tevnzZv3qyBAwcqISFBYWFhiouLU7NmzfTSSy9p//796tixo6Q/36OFhYV+qWPKlCkO+2bMmKGCggKv5v3uu+80YsQIuzrvvvtu/fbbb5oyZYp69eqlmjVrqnz58goPD1eVKlV07bXX6u6779aLL76ojRs36vfff9ebb76pevXqeVWDL+644w5FRETY2suWLVN+fn7Q6wAA4HJw5swZl+cXTwX7TMEZqmwYM2aMVqxY4bf5Dh8+rJ49e+rChQshvban3nnnHb388stOx9x9993FzolFjR8/3uv31JtvvunVfe6YMWOGcnJyvLp35syZWrJkiZ8rKnvKQv7ij0wimOfq5557Tr/++qutHRMTo7Vr12rGjBm6/fbbVaVKFUVGRqpu3boaM2aMfv75Z91zzz2SpAULFrj7YzHs+7vcvPnmm1q7dq2tbTKZNHnyZK1atUq9e/fWVVddpYiICCUkJGjAgAHauHGjnn/+ebs5Fi5cqJSUlJBayxPjxo3TU089ZXdtwIABWrhwoV1eU5QRGeSlgpm3XkSGBQD2XnzxRU2bNi2ga0yfPl179+716t7z58/r448/9ml9f+cwRmQSRucwl9MZ3Rf79+/36PucPXt24IrxQlnLy4Kxf13KqPdBQUGBHnjgAaWnp3u1zvz58316/1+OjN4z4Zo/sq4PPvhAw4cPV15enu1afHy83nnnHR04cECTJ09Wz549de2116py5coKCwtTbGysmjVrpocfflhfffWVduzYoW7durm9ZrCfWfE1LyvtWZkUujmNpwL1HFJZsH79+mKZWMeOHbV//3699957SkxMtL0OKlWqpEaNGun+++/X/Pnz9fvvv2vcuHGKjY11ukYwX2fjxo3Tzz//bGtHRETo888/17x589SuXTtVqVJFUVFRql+/vh577DH98ssv6tChgyTpww8/dDn/5cyofeYiMkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACEGrPRBaDseuCBB5z2f/TRR17P/fHHHzvtHzx4sMqVK+ewf8+ePerQoYPOnz/v0bqLFi3SsGHDZDKZHI6xWCxO57BYLOrfv7+eeOIJ5eXlebS+kf7zn//IarXa2vfee6+B1QTHkCFDtG3bNklSvXr1NHnyZB08eFA5OTk6ffq0Vq5cqXvuucfunh9++EHdunVTQUGB2+sUFBTo/vvvt3s9RkRE6G9/+5u2b9+uzMxMXbhwQfv27dO0adN0/fXXS5Lmzp2rZ5991qvvbeXKlbbvTZKio6P19ttva//+/crJyZHVarX7at68udP5+vXrV+weT766dOliN19KSkqx93nTpk01f/58HTt2TPn5+Tp//ry2bt2qF198UZUrV5YkrV69WsnJyV79TEry9ddfa/fu3cWuWywWpaSk+DT3vHnz1KVLF509e9Z2LSYmRqNGjdLSpUt15MgRZWVlKS8vT2fOnNGePXu0ZMkSvfTSS2rdurXMZuP+xPfp08euPWfOHIMqAQDg8vD0008rMzPTb/MZcabgDFX6FRQU6K677tIrr7zi8nfiyvLly9WsWTMdP3485Nf2xgsvvKAJEyY4HdO3b1/NmTPH4ef2kydPatiwYR6dHS0Wi55++mm9/vrrHtXrie+++049e/b0eM+aP3++Ro4cGaCqypaykL/4K5MI1rk6MzNTiYmJOnjwoO2a2WzWsGHDtH79ep05c0Y5OTk6cOCA/v3vf6tevXqSpG+//VajR4+2mys/P9/tn9PlnBtc5O+8SPpzL+zZs6c+//xzu+udOnXSp59+qhMnTig3N1fHjh3Thx9+qFtvvdVu3Ny5czVo0CC36g/mWp4aP368xowZY7df3H333frss88UHR1d4j1GZJBFBStvvYgMCwCKGzVqlIYNG+bXnOJSeXl5uuuuu/THH394dN/58+fVpUsX7d+/3+ca/JnDGJVJGJnDXG5ndF+4Ottf9M0332jfvn0BrsYzZTEvC/T+dSkj3wc7duxQp06dlJ6e7tE6ixcv1tChQ70p8bJn5J4J1/yVdc2aNUtt27bVzp077a7XqFFDo0eP1meffaY9e/bo7Nmzys/PV2pqqrZu3aqJEyeqffv2dvekp6fr73//u5YuXepwvWA/s+KPvKy0Z2WhnNN4IpDPIRXlazbnTRYTaO+++66GDBli9/knJiZGjz32mNauXWt7HaSlpWn37t2aO3euBg4c6DAvKyqYr7OcnBx17Nix2Oth0KBBWrdunc6cOaPs7Gzt27dP7733nmrUqCFJ2rhxY7H3Umlj1D5zEZkiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQo3Z6AJQNrVu3VoNGjRw2J+Xl6dPP/3U6/lXrFihjIwMh/1XXXWVOnbs6HSObdu2qXnz5lqzZo3L9bKysvTUU0+pX79+KigoUIUKFRyOPX/+vMv5rFar3n33XTVu3FjTpk3ThQsXXN5TktTUVC1cuFADBgzQ2LFjvZrDXb/99pvWrVtna7ds2VI1a9YM6JpGS09P15133ql58+a5HGu1WjVlyhS1a9dOqampHq+1c+dOtW3bVjt27HA5NisrS08++aSSkpJksVg8XkuSLBaL7rnnHm3bts2r+wPNarVq8ODBeuONN1RYWOhyfF5enl599VV1795dOTk5fq1l6tSpxa6tXLlSR44c8XnutWvX6sYbb9SECROUnZ3t83zBEBYWpl69etnaR48e1VdffWVgRQAAhL59+/apU6dOfvn8cJERZwrOUKVfYWGh/vGPf6hly5b65JNPPD5vbN26VX379lXPnj117ty5y2Ztb/z1r3/V7NmznY4ZNGiQUlJSZDKZSuxfunSpevbsqRMnTrhcb//+/erUqZPeeustb8r1yJo1a9SiRQtt2bLF5diMjAw99thjeuCBB9w6u8G1spC/+DOTCNa5+tixY2rVqpU+/vinwvd0AAAgAElEQVRjl2OtVqtSUlKUmJgoq9Vq15eWlubRupdjbhAM2dnZuueee/TII4/ojz/+cOue48ePa9iwYRoyZIgKCgpCci1PTZkyRcOGDbPbf7t06aIvvvjC4WevYGeQRQUzbyXDAgDHZs2apeuvv17vvPOOx59PNm/erN69e+vAgQMOx+zbt0/NmjXThg0b3Jpz/fr1at68uVtnEHf4O4cxKpMwMoe53M7o3lq9erX27t3rcpyr879RymJeFuj961JGvg82b96s5s2b6+uvv3Y5Njs7W2PHjtV9992n/Px8j9YpTYzcM+GcP7Ou77//XjfddJOSk5O1a9cuj+8/fPiwxo0bpwYNGuj11193+mxJsJ9Z8VdeVtqzslDOaTwRyOeQyoI5c+aoefPmWrZsWUDmD+br7PTp02rbtq3mzJnjcqzVatUHH3ygjh07ev2573Ji1D5DpggAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBQFGZ0ASibkpKSnPavXr1aqampXs+fk5Ojzz77TIMHD3Y4ZsiQIVq5cqXTeQ4ePKhOnTrpzjvv1IABA9SmTRslJCQoMjJSJ0+e1IEDB7RkyRItWrRIZ8+elSRVr15dZrPZ4Zx//PGH29/H3r17NWrUKI0dO1aJiYlq3bq1WrRooSuvvFLx8fGqVKmS8vPzlZWVpfPnz+vQoUM6cOCAfvnlF23cuFE7duyQxWJxez1fvffee0pMTJQkmUwmDRkyRC+//HLQ1jdCRkaG7r//fr3yyisaNGiQOnbsqISEBFWvXl3p6ek6evSo1qxZo3nz5mnHjh0+rbVr1y41adJEffr0Ue/evdWyZUtVr15dYWFhOnHihA4ePKglS5bo448/1rlz53z+3n777Te1bNlS3bp10913360mTZqoZs2aqlixoiIjI32e31cFBQV69tlnNW3aNI0YMULt2rVTgwYNFBsbq8zMTJ06dUoHDx7U559/rk8//VSnT58OSB3z5s3Te++9J5PJZLs2bdo0v81/8uRJPfbYY3r55ZfVtWtXtW/fXjfffLOqVaumKlWqSJLS09NtX2fPntXu3bu1Y8cO21cw9erVS1WrVrW1J06cGNR9CACAy9W3336rBg0a6L777lO3bt3UtGlTXXHFFapYsaLCwrw/ugf7TMEZqmzYunWr7rvvPtWqVUsdO3bUbbfdpiZNmqhq1aqqXLmywsLCdP78eZ07d0779u3Thg0b9N///ldbt269rNf2hNVq1YgRI1SpUiXdc889DscNHTpU+fn5GjVqlKxWa7H+FStWqEGDBkpKSlL37t3VuHFjVa1aVQUFBTp27Jh+/PFHLViwQCtXrlR+fn4gvyU7u3fv1q233qq2bdtqwIABat26ta6++mrFxsbq1KlTOnDggJYuXaqPPvpIp06dClpdZUVZyF/8mUkE61x9+vRp9e/fX++8844GDRqkdu3aKSEhQTExMTp16pSOHTumVatWaf78+Tpw4IAkqVq1anZzeJOHXm65QbAUFhZq0qRJmjNnjnr27Klu3brppptuUvXq1RUbG6vU1FSdOnVKP/zwg7788kstW7ZM2dnZIb+Wp2bPnq3s7GzNmzfP9pmyXbt2Wr16tbp27aq0tLRi9wQ7gywqWHkrGRYAOHfkyBE9+eSTeuGFF2zn65YtWyohIUHx8fGKi4tTTk6Ozpw5ox07dmjTpk1avHixfv31V7fmP3r0qG6//XYlJiba8oOrr75aUVFR+uOPP3Ty5EmtX79eixYt0ubNm/3+/QUihzEikzA6h7lczujeslqtmjRpkiZOnOhwzIULF7Rw4cIgVuW5spaXBXr/Ksqo98G+ffvUvn17tW/fXgMGDFCrVq3s3v8HDx7U0qVLtXDhQo/e16WZ0XsmHPNn1lVQUKCUlBSlpKSoSZMm6tq1q1q0aKGGDRvachqr1arU1FSdPXtWe/fu1ebNm/XNN99o48aNJWa0ztYK5jMr/srLSntWFso5jbsC/RxSWfDLL7+oZ8+euuGGG9S9e3clJibqmmuuUbVq1VS+fHmlpaXp/PnzOn/+vPbv36/Nmzdr8+bN2r59u1vzB/N1du7cOQ0ZMkTvv/++Bg8erMTERNWoUUMVKlSwvZdWrlyp+fPn6+DBg5Lk078tX06M2GfIFAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCKTFar1Wp0EUZ46aWXNG7cOKPLQCnUrVs3ffHFFw7733jjDT377LNBrCh4TCaTdu3apUaNGkmSjhw5omuuuUYWi8Xgyvzj0u0yNzdXUVFRBlaDUNG9e3ctX77c1j5+/Lhq166twsJCA6syzurVq9WxY0dJUmZmpmrUqKG0tDSDq4Izqampio2NNboMlDKVKlVSRkaG0WUAuEyU5TMUEGp69OihZcuWOexPTk5WSkpKECtCSUp7/lKWdO3aVV9++aWtvXjxYvXp08fAioDgMjJvJcNCKJo+fbpGjBhhdBllWkpKipKTk40uAwgochjPVKxYUceOHVOlSpVK7J87d66SkpKCXBWAYGHPDA6yLlxEVvYnnkMCAsfXfYZMsWQVK1ZUenq60WUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUVYvMRlcAlDb9+/d32r9u3bogVRJ8VqtVr776qq1dq1Yt9e7d28CKgMBLTk62a8+YMUOFhYUGVWOs6667Th06dLC1J06cqLS0NAMrAgAAl4OyfIYCAG+Qv5Qed955p1178+bNxhQClDFkWACAsowcxjMZGRk6c+aMw/7Zs2cHrxgAQceeGRxkXbiIrOxPPIcEBI4v+wyZIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEKV2egCgNLk5ptvVr9+/Rz2Z2dn63//+18QKwq+Dz/8UDt27LC1x44da2A1QGAlJCSoR48etnZBQYFSUlIMrMhYzz77rEwmkyQpNTVVb775psEVAQCAUMcZCgC8Q/5y+YuKitLQoUPtrq1fv96gaoCyhQwLAFBWkcN4rlmzZqpbt26JfYcOHdJ///vf4BYEIGjYM4OLrAtkZX/iOSQgcHzdZ8gUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEKrMRhcAhKIqVapo3bp16tGjh8xm994mN998s5YuXaqIiAiHY1JSUpSTk+OvMkOSxWLR2LFjbe3mzZurc+fOBlYEBM5f//pXlStXztZevHixjh49amBFxrnmmms0cOBAW/v1119XamqqgRUBAIBg4gwFAMFF/nL5Gz9+vKpVq2Zr//jjj9qyZYuBFQFlAxkWAKA0IIcJnueff95h39SpU2W1WoNYDQBvsGdeHsi6QFb2J55DAgLHl32GTBEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAChzGx0AUAoMplMateunZYtW6aTJ0/qgw8+0AMPPKDGjRuratWqCgsLU0xMjGrXrq177rlH8+fP15YtW1SrVi2Hc2ZkZOjll18O4ndhnOXLl+uLL76wtf/1r3/JZDIZWBHgfw0bNtTDDz9sa1utVr3xxhsGVmSsV199VWFhYZKkvXv36r333jO4IgAAEEycoQAg+MhfQsfbb7+t5ORkRUREuBwbERGhd999Vw899JDd9bKcKQDBRIYFACgNyGECKzo6Wk2bNtXcuXPVu3fvEsdkZWUpJSUlyJUB8AZ75uWDrKv0ICvzDs8hAe4L9j5DpggAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBQFmZ0AUCoq169upKTk5WcnOz1HBaLRSNGjNAff/zhx8pC26OPPqrExERFRUXppptu0uDBg/Wf//zH6LIAn1155ZVq3769/vWvfykqKsp2fcGCBdq+fbuBlRmnWbNm6t+/v639yCOPKC8vz8CKAACAkThDAUDwkL+Ehtq1a+uJJ57Q66+/roULF2rdunXatm2bTp8+rdzcXMXHx6tBgwZq166dHnzwQdWoUcPu/gULFuijjz4yqHqg7CDDAgCURuQw/jF16lQ9+OCDbo8fP368zp07F8CKAAQCe2boI+sqHcjKPMNzSIDngrnPkCkCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg1IUZXQBQ2lmtVj366KNauHCh0aUE1cGDBxUdHW10GYBfvPLKK3ruuecc9p8+fVqPP/54ECsKLT/88IPMZrPRZQAAgFKirJ2hrFZrQOY1mUwBmRfwJ17/viN/CS1VqlTR6NGjNXr0aLfv+fTTT5WcnBzAqgBcRIYFAEBxZS2H8Ye9e/fqzTff9Pg+zsDA5c/Vnsn73HdkXaULWZljPIcE+Ecw9hkyRQAA/o+9+42t+iwbOH71R0dHcC2ZjOGolgiZSTuEjCXSIDEqRNDNiLWDdqOdG0R0aruY6ExY0mYvhmYhoXFGFGWCcQs20a2aEIcmM3WCceDM7IiyLcJS6ca/UYG1A/q8ePLM8PDv0PWc+7T9fJK+6K/tub+nnB6uc6VJAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBi569xQx4dOHAgFi9eHI899ljqFCBP3njjjfj0pz8dr7/+euoUAIBRz2soAMaL3t7eaGlpibq6ujh58mTqHAAAxiF7mKt37NixuPPOO+PUqVOpU4AC85wJ+WVX9l9+Dwnyw/MMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY1Vp6gAYi/bv3x8//OEPY9OmTXHixInUOcAI6+/vj3/84x/xm9/8Jjo6OuLIkSOpkwAARjWvoQAYze6999746U9/GgsWLIhbbrklKisro6KiIqZMmRLl5eXx9ttvx9GjR6Ovry927doVzz77bDz99NMxMDCQOh0AgHHIHmZ4enp6oqGhIf72t7+lTgEKyHMmXD27sqvn95Dg6nieAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgP8qGRoaGkodkUJbW1u0t7enzqCI3XTTTfHhD3845syZE3PmzIkPfvCDMWXKlKioqIjy8vKYPHlynDx5Mt588804duxYvPTSS/HnP/85/vSnP8WuXbtinP5oATDKHD9+PCoqKlJnMMaUl5dHf39/6gygwLyGGp583e+SkpK83C6MJI9/AID/+tGPfhSrV69OnTGubd68OdasWZM6A3JiDzOyfvCDH8SXvvSl866dPn06Xn/99Xj++eejs7MzOjs74+233x72GV4DQzqFes70cw4AjEfXXXddnDhxInUGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAePWL0tQFUKx6e3ujt7c3duzYkToFAACg6HkNNTwlJSWpEyAZj38AAIDhsYcZWWvXro21a9fm9QyvgSGdQj1n+jkHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDQstQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CZLHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBustQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CZLHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBustQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CZLHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBustQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CZLHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBustQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CZLHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBustQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CZLHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBustQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CZLHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBustQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CZLHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBustQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CZLHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBustQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CZLHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBustQBAABAfrz66qvR3NwcO3bsiDNnzqTOAQAAAIAreuaZZ6KlpSV2796dOgUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAilaWOgAAAMiPgYGB2Lp1ayxbtixuvPHGaGpqip07d8bQ0FDqNAAAAAC4qGPHjkVHR0csWLAgqqqqoqWlJfbs2ZM6CwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACKSpY6AAAAyL+jR4/Gtm3bYsmSJVFVVRUtLS3R3d2dOgsAAAAALunAgQPR0dER8+fPj5qammhra4uXX345dRYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJelDgAAAArr4MGD0dHREYsWLYqamppoa2uLf/7zn6mzAAAAAOCSenp6or29PWbPnh233XZbbNy4Mfr6+lJnAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEASWeoAAAAgnZ6enmhvb48PfehDUVtbGx0dHXHo0KHUWQAAAABwSc8//3y0trZGZWVlLFu2LLZu3Rr9/f2pswAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYLLUAQAAQHpDQ0Oxa9euaGlpiRkzZsRHP/rR2LhxYxw+fDh1GgAAAABc1JkzZ2LHjh3R3Nwc06ZNizvuuCO2bt0ap06dSp0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmVpQ4AAACKy7lz5+KPf/xjtLa2xvvf//74/Oc/H52dnXH69OnUaQAAAABwUW+99Vb8+te/jubm5pgxY0bcd999sXPnzjh79mzqNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYcVnqAAAAoHi99dZb8ctf/jLq6+tj+vTp0dzcHDt27IgzZ86kTgMAAACAizp+/Hj85Cc/iSVLlkRlZWW0trbG7t27U2cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIjJUgcAAACjw4kTJ2Lr1q2xbNmyuPHGG6OpqSl27twZQ0NDqdMAAAAA4KIOHToUGzdujAULFkRVVVW0tLTEnj17UmcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLuSpQ4AAABGn6NHj8a2bdtiyZIlUVVVFS0tLdHd3Z06CwAAAAAu6cCBA9HR0RHz58+PmpqaaGtri5dffjl1FgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABctSx1AAAAMLodPHgwOjo6YtGiRVFTUxMDAwOpkwAAAADgsnp6eqK9vT1mz54dt912W/zud79LnQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOSsZGhoaSh2RQltbW7S3t6fOAAAAAAAAAAAAAAAAyFltbW0899xzqTMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB0fpGlLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA3WeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcpOlDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA3WeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAclOaOgAAgHRaW1ujrKwsdQZ5cuTIkdi8eXPqDAAAAACuYOnSpTF37tzUGUVh37598dRTTxX83EmTJsXp06cLfi4AAADAaDVx4sR44IEHUmeMC9u2bYve3t7UGQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJEpTR0AAEA6bW1tUVFRkTqDPNm3b19s3ry5IGdlWRa1tbVRX18f69ati//85z8FORcAAABgLKirq4vVq1enzigK27dvj6eeeqogZ1177bWxePHiqK+vj/7+/vjqV79akHMBAAAAxoKysrJYv3596oxx4Q9/+EP09vamzgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIpMljoAAAAYvaqrq2P9+vXx2muvRXd3d7S0tERJSUnqLAAAAAC4qAkTJsTChQtj06ZN0dfXF11dXdHU1BRlZWWp0wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgZ6WpAwAAgNGluro6GhoaoqGhIWbNmpU6BwAAAAAuq6SkJGpra6OhoSHuvPPOmDZtWuokAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHhXSlMHAAAAxa+qqipWrlwZDQ0NMXfu3NQ5AAAAAHBFc+bMicbGxli5cmXMnDkzdQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjJjS1AEAAEBxuv766+Mzn/lMNDU1xSc/+ckoKSlJnQQAAAAAl/WBD3wgPve5z0Vzc3PceuutqXMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC9KUwcAAADFY9KkSXH77bfHqlWrYunSpXHNNdekTgIAAACAy3rve98bdXV1sWrVqli4cGGUlJSkTgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAvCpNHVCspk6dGvfff3/qDACAnDz22GNx+PDh1BmMUmVlZbFs2bJobGyM22+/PSZNmpTX8+6444649dZb83oGADD6Pf3007F3795LfnzWrFlx9913F7AIAGD4HnnkkRgcHEydMaZUVFTE8uXLo7GxMT7xiU/EhAkT8nrexIkT49vf/nZezwAARr+BgYFYv379ZT/nrrvuitmzZxeoCABg+Pbs2RNdXV2pMwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALiE0tQBxeqGG26Itra21BkAADnZvn17HD58OHUGo0iWZVFbWxv19fVx1113xdSpUwt29mc/+9lYvXp1wc4DAEangwcPxt69ey/58VmzZtnfAQCjxoYNG2JwcDB1xqh37bXXxuLFi6O+vj7q6upi8uTJBTu7rKzM/AkAXNGbb74Z69evv+zn3H333bF06dICFQEADN/mzZujq6srdQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXUJo6AAAAKJzq6upoamqKpqameN/73pc6BwAAAAAua8KECbFgwYJoamqKlStXRnl5eeokAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEiuNHUAAACQX9XV1VFfXx+NjY1x8803p84BAAAAgCuaP39+rFq1KlasWBHTp09PnQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARaU0dQAAAJAf06dPj7/+9a8xd+7c1CkAAAAAkJOPfOQj8eqrr8bMmTNTpwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA0SpNHQAAAOTHlClTYsqUKakzAAAAACBnVVVVqRMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoOhlqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITZY6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNxkqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITZY6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNxkqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITZY6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNxkqQMAAAAAAAAAAAAAAAAAANjj6XMAACAASURBVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITZY6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNxkqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITZY6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNxkqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITZY6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNxkqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITZY6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNxkqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITZY6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNxkqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITZY6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNxkqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITZY6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNxkqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITZY6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNxkqQOA0evRRx+NkpKSd96OHz+eOokCevbZZ8/79/+/tw0bNqROg2G75557LnhMT548OV577bXUaQAUiBl3fDPjMhaZcWF8M9uMb2YbxiKzDcClmf3GL3MfY5XZD8Yvc834ZrZhrDLbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkA9Z6gCG5+9//3t897vfjU996lNRXV0dU6dOjbKysrjpppti3rx5sWLFinj88cejr68vdSowBp09ezZaWlouuD59+vT48pe/nKAIRsZDDz0UpaWl5107depUfPOb30xUBAAUihmXscqMm479HZCS2YaxymwDAOcz9zGWmf3SsNMCUjLbMJaZbQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMiHLHUAV2fXrl2xaNGiuOWWW+Jb3/pW/Pa3v42XXnopjhw5EoODg/Hvf/87Xnjhhdi+fXt88YtfjBkzZsTatWvj0KFDqdOBMWTLli3xwgsvXHD9G9/4RkyaNOmSX/e9730vSkpKLvlWXl4eb7zxRk4NlZWVl7yd48ePD/u+UZwGBwejp6cnfvWrX8V3vvOduPfee2PhwoUxderUSz4OSktLr/qcWbNmRWNj4wXXn3jiidi9e/dI3BWgSLz44ovnPWd84QtfSJ0EJDbcGTfCnMvwmHHHLvs7oBjY31FoZhsoDDst4P+z0yIFs9/YZKcFFAOzDSnMnDnzso+dXN9+9rOfXfYcsw0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5kKUOIDdnz56N+++/P2pra6O7u/uqvm7Tpk0xe/bs6OzszGPh1Xv88cfP+6Pv+/fvT51UcL4HjEaDg4Px8MMPX3D9Pe95T6xZs+Zd3XZ/f/9Fbxu+/vWvR01NTSxfvjwefPDB2LJlSzz33HNx5MiRET/rgQceuOj1hx56aMTPAhiLzLiMRvmccSPMuVycGXfssb8bm3wPGI3s70jBbAOMBWY/Rhs7LVIx+40tY3GnFeH/9fF+/xmdzDaMB2YbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARlqWOoArO3XqVCxfvjy+//3vn3f95ptvjocffjj+8pe/RF9fXwwMDMTBgwfj97//fXzta1+L66+//p3PPXnyZKxYsSI2btxY6HxgjPnxj38cBw4cuOD6PffcExUVFe/69jdt2hSvvPLKu74dGK558+bFxz72sQuuP/PMM9Hd3Z2gCADIt3zPuBHmXNIy4+af/R1QTOzvGOvMNgDwv+y0GA/MfvllpwUUE7MN44HZBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJGWpQ7gytasWRNdXV3vvF9aWhqPPPJIvPjii7Fu3bqYP39+TJs2LSZOnBiVlZXx8Y9/PDo6OmLfvn2xcuXKd77u3Llz0draGp2dnSnuBjAGnDt3LjZs2HDRj913330jcsbg4GCsW7duRG4LhutSj+dHH320wCUAQL4VYsaNMOeSnhk3v+zvgGJhf8d4YbYBYLyz02I8Mfvlj50WUCzMNownZhsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGUpY6gMvbsmVL/PznP3/n/dLS0njyySfjwQcfjGuuueayX3vDDTfEE088EV/5ylfOu75mzZr417/+lZdeYGzr6uqK/fv3X3B93rx5MW/evBE758knn4y9e/eO2O3B1aqrq4vrrrvugutdXV3xyiuvJCgCAPKlUDNuhDmXtMy4+WN/BxQT+zvGC7MNAOOdnRbjidkvP+y0gGJitmE8MdsAAAAAAAAAAAD/w96dR0dd3osf/yRAWGQVEBQ3ipaC4oZtAS0qoiioRa1awdZeQdyqov6KVtraimvFrXqriIgXL+5bBRUKtIpbbRVx3wDpFQTZV4UkML8/PKbGZCYzYZLJ8nqdM+fkuz3fZybfMO/z/AMAAAAAAAAAAAAAAAAAAAAAAAAAAABkU36uJ0By69evj4suuqjUvmuuuSZOPPHEjMa5/fbbo1+/fiXba9asiUsuuSQrcwTql7vvvrvc/T/5yU+yep9EIhGXXnppVsekdmvcuHF069YtfvzjH8eoUaNiwoQJ8cILL8SyZctiu+22y/r9mjVrFgMHDiyzf+vWrTFx4sSs3w8AyJ3qatwInUtpGrdusH4H1DTW78gVbQMA1cuaFrmk/Wo/a1pATaNtqGkaNGgQiUQio9dpp52W1tjaBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGzKz/UESG78+PGxdu3aku39998/Lr744ozHycvLi3HjxkXjxo1L9j3xxBMxf/78rMyzJkkkEvHXv/41TjnllOjWrVs0b9482rRpE/vss0/86le/infffTfXU8y51atXx5///OcYPHhwdOnSJVq1ahWNGjWKtm3bxt577x2/+MUv4sEHH4xNmzZt033mzJkTZ511VvTo0SNatWoVLVq0iD333DOGDRsWL774YqXG/PTTT+Pmm2+OE044Ibp06RItWrSIJk2aRKdOnaJ3795x2WWXxZw5c7Zp3hFV+xwlEomYNm1anH/++bH//vvHjjvuGI0bN4527dpFjx494txzz42ZM2du83uoCsuXL49p06aVe2zw4MFZv9+MGTNi1qxZWR83mRdeeCGuuOKK6N+/f3Tp0iXatGkTjRo1inbt2sV3v/vdOPbYY+P666+Pt956q0ruv2zZsrjuuuuiV69e0aFDh2jSpEnsvPPOceyxx8bEiROjuLi4UuO++uqrcdVVV8WAAQNijz32iO233z4KCgqiffv20b179xg6dGjce++9pb5vaqJbb7013nvvvXjyySfj+uuvjzPOOCMOPvjgaN++fZXd8/jjjy93/+TJkyORSFTZfYHapyq655s0bsU0bsU0bvmqu3EjqrdzNa7G/TaNm33W7zKnbSqmbSqmbcpn/U7b5JK2gdrJulbuab/UdF/56vqaVoT2035lab/ssqaVOV1TMV1TMW1TvrreNrqmZndNrmgbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsiZRT11xxRWJiEj66tatW66nmNh9991LzWny5MnbNN6pp55aaryRI0cmPffHP/5xyXn77rtv2vd45JFHSt3j7bffLnPOdtttl/KzL+913333lRrjhhtuKHV89erViaVLlyYOPvjglOM0bNgwcemllyaKi4srfC81/TOojLvuuivRqlWrtO63/fbbJ26++eZEYWFh0vHK+z1s3LgxMWTIkArHHzZsWFq/h0QikZg+fXqif//+iby8vLTmfsIJJyRWrlxZ4bjV8Rx909///vfE/vvvn9Z7OOSQQxIff/xxRuNXtbvvvrvcuXbq1CntMW677baMnvuePXsmtm7dWu5YnTp1Snrd6tWr057TY489lthvv/0ymlf//v0TL730UlrjDxgwIOk4S5YsKflcmjVrlvKee+21V+KTTz5J+309/fTTiR/+8Idpv6fWrVsnrrzyysTmzZvTvkdNkezf1AYNGmzTuCtWrEj6785rr72WpdlnT7du3TL+bomIxJo1a3I9deqgFi1apHzuxo8fn+spJt5+++1SczrxxBNTnl8d3aNxK0fjVjx/jZtcNho3kah5natxv3pp3LJqW+OeccYZKX/HRx55ZK6naP3uGy/rd9pG2+Se9bv/vLRNzaJtvlIb1kvqu/Hjx6f8HbVo0SLXU8x4TSuRsK6l/WpH++m+zNTVNa1EQvt9/dJ+ZdWm9luzZk2Fv+Nnn302p3PM5ZpWIlGzv9d1TeXomornr22Sq6tto2u+etWGrtltt93KzHtb26UitaltasN6SX3Ru3fvMp9/7969cz0tAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgtx7OD2qkjz/+OBYuXFiy3bp16zjhhBO2aczhw4eX2p4xY8Y2jVeTrFu3Lg477LB48cUXU55XXFwc119/ffzsZz+LLVu2VNPsaoaxY8fGiBEjYu3atWmdv2rVqrjooovi+eefT/semzdvjqOOOiruv//+Cs+dMGFCnHPOORWet3Tp0hgwYEDMnDkzEolEWvN4/PHH46CDDorPP/88rfO/VpXP0R133BH9+/ePN954I63zn3/++ejTp0+89tprKc+7/fbbIy8vr+R19tlnpzV+ZTz77LPl7j/kkEOyMn5+ftmvpNdffz0eeuihrIz/bV9++WUMHz48TjzxxJg7d25G186cOTP69u0b11xzTdrPZTLnn39+nH/++fHFF1+kPO/dd9+Nvn37xpo1a1KeV1hYGBdccEEMGjQoXn311bTnsWbNmvjd734Xhx56aCxdujTt6+qytm3bxl577VXusWR/D0D9URXd820at2Iat2IaN7WqbtyI6u1cjVuaxi1L42aX9bvMaJuKaZuK1ba2qc6uibB+903apn7QNlA51rVqBu2XWm3rvghrWttK+5Wm/crSftljTSszuqZiuqZi2ia1utY2uqa02to1W7dujZ///Oex9957x/bbbx+NGjWKdu3axZ577hmDBw+OP/7xj/Hxxx9XenxtAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQLaU/d/cqRFeeOGFUtt9+vSJJk2abNOYBx10UDRq1Khk+7333otVq1Zt05g1xQUXXBDvv/9+5Ofnx4gRI+KVV16JtWvXxvr16+Nf//pXnH/++dGgQYOS8x944IG45pprcjjj6jV//vwYPXp0yXbjxo1j5MiRMXv27Fi+fHkUFRXF+vXrY968efHAAw/Ez3/+82jatGnG9xk5cmS88MILUVBQEBdccEG88sorsXr16vjyyy/jnXfeiYsvvrjU72H8+PExe/bstMfv3bt3jB07Nl588cVYunRpbN68OdatWxdvvfVW3HjjjbHrrruWnPvBBx/EmWeemdH8q+o5mjRpUpx77rmxZcuWiIho1KhRnH766TFt2rT4/PPPo7CwMFasWBHTpk2LwYMHl1y3fPnyGDx4cKxYsSKj91FVnnvuuXL3//CHP8zK+Keccko0bty4zP7f/OY3UVRUlJV7fG3r1q1x8sknx4QJEyo9xpYtW2L06NHx29/+ttJjXHnllXH77benff6nn34al156adLjiUQifvazn8Vtt91W6Tm98sorccghh8TatWsrPUZdkuz5/tvf/lbNMwFqmqrungiNWxGNmx6Nm1pVN25E9XWuxk1O45amcbPH+l1mtE1q2iY92iY163elaZv6QdtA5qxr5Z72q5juS60urWlFaL9UtF9p2i87rGllRtekpmvSo21Sq0tto2uSq21dk0gk4r777ot33303Vq9eHcXFxbFy5cqYN29e/OUvf4lLL700unbtGscdd1zMmzevUvfQNgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRDfq4nQPlee+21Utvf//73t3nMxo0bR48ePUq2E4lEvP7669s8bqY2bNgQiUQiJk6cWGr/xx9/HIlEotzXaaedlnLMv/zlL1FQUBBTpkyJcePGRa9evaJly5bRvHnzOPDAA+NPf/pTzJgxI5o2bVpyzVVXXRUffvhhlbzHilTFZ5DKAw88EIWFhRERkZ+fH9OmTYubb745fvSjH0W7du2iYcOG0bx58+jSpUv89Kc/jf/5n/+JxYsXx8iRI6OgoCDt+zz44IPRvn37ePnll+PWW2+NXr16RevWraNJkyax1157xY033hh33313qWtuu+22lGPm5eXF4MGD4913342XX345LrnkkjjooIOiQ4cOUVBQEC1atIgePXrExRdfHO+8804cffTRJddOmTIlnnvuubTnXxXP0UcffRTnnHNOyfaOO+4YL7/8ctx7770xYMCA2GGHHaJRo0bRtm3bGDBgQDzxxBNx9913R15eXkRELF68OH71q1+l/R6qyoIFC2LlypXlHvvmvyvbYtddd41zzz23zP758+fHXXfdlZV7fO03v/lNTJ06NStjXX311fHYY49V6to77rgj42smTZoUq1evLvfYVVddFQ8//HCl5vJNH330Ufz85z/f5nHqgmTP9+uvvx6JRKKaZwPUJFXRPd+mcVPTuOnRuMlVR+NGVF/natzUNO5/aNzssX5n/U7bfEXb1J+2sX6XHm1TvbQNZM66Vlna7z9qSvvpvuTq2ppWhPariPb7D+2XHXV5TSsi+9/ruiY1XZMebZNcXWsbXZNaXeuaRCIRU6ZMif33379Sn4+2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBvycz0Byrds2bJS29/5zneyMm7nzp1LbS9fvjwr49YE1113XQwcODDp8cMOOyxuueWWku3CwsJS23XZW2+9VfJznz594tBDD63wmjZt2sTNN98cffv2Tfs+eXl5cf/990fPnj2TnvOLX/wiDj744JLtKVOmRFFRUdLzO3ToEE888UR07969wvu3aNEiHnnkkejUqVPJvrvuuivN2X8l28/RmDFj4osvvoiIiEaNGsUzzzwTBx54YMo5DBs2LC6++OKS7cmTJ8eiRYvSfQtV4s0330x6rGvXrlm7z+jRo6NVq1Zl9l955ZWxYcOGrNzj008/jZtuuinp8Y4dO8b48ePjs88+i82bN8eCBQvi6quvjmbNmiW9ZtSoUVFcXFzpOY0YMSLefvvt2LRpUyxYsCDOOuuspOdu2rQpZsyYUWb/kiVL4tprr016Xffu3ePBBx+MpUuXRmFhYSxcuDCuueaaaNKkSbnnP/XUUzFr1qzM30wd061bt3L3r1u3LhYsWFDNswFqkqronvJo3OQ0bvo0bvmqq3Ejqr5zNa7GzYTGzR7rd5nTNslpm/Rpm/JZv9M29ZW2gcxZ18o97Zce3Ve+urSmFaH9tF9mtF92WNPKnK5JTtekT9uUry61ja6pv12zYcOGGDp0aEyfPj2j67QNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2ZCf6wlQvlWrVpXabtWqVVbGbd26dantlStXZmXcXNt1113j/PPPr/C84cOHR9euXUu2J0+eHJs3b67KqdUIGzZsKPm5efPmVXafI488Mvr371/heaeeemrJz5s3b473338/a3PYbrvt4txzzy3ZnjFjRtrXZvs5WrJkSTz44IMl2yNGjIj99tsvrblcfvnl0bhx44iIKCoqiieffDKt66rKJ598Uu7+hg0bRseOHbN2n7Zt28aoUaPK7F+2bFnceOONWbnHzTffnPTvvm3btvHyyy/H8OHDY8cdd4yCgoLo3LlzXH755fHUU09Ffn75X5sLFiyIhx56qFLzGTNmTIwbNy723nvvaNy4cXTu3DnuvPPOOOaYY5Je8/rrr5fZd9NNN8WXX35Z7vl77bVXvPrqq3HKKadEhw4dolGjRrHbbrvFr3/963jqqaciLy+v3OuuvvrqSr2nuqRTp05JjyX7uwDqh+roHo2bmsZNj8ZNrroaN6LqO1fjatxMaNzssX6XGW2TmrZJj7ZJzvqdtqmvtA1kzrpW7mm/ium+5OrSmlaE9tN+mdF+2WFNKzO6JjVdkx5tk1xdahtdU7+7pri4OIYMGRJr165N+xptAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDaU/7+lk3Pr168vtd28efOsjPvtcdatW5eVcXNtyJAh0bBhwwrPy8/Pj9NOO61ke/369fHGG29U5dRqhJ122qnk51deeSUWL15cJff56U9/mtZ5BxxwQKntTz75JKvzOPjgg0t+XrFiRfzf//1fWtdl+zmaOXNmFBcXl2z/7Gc/S2seERHbb7999OrVq2T7hRdeKPe8X/7yl5FIJEped955Z9r3yESyZ6Z9+/aRn5/dr5KRI0eWema/duONN8ayZcu2efynn3466bHf/va30blz53KPHX744TFkyJCk1z777LMZz6Vbt27x61//utxjqf6ePvvsszL7pk6dmvT8SZMmJf0eOeKII+Loo48u99js2bNj7dq1ScetDzp27Jj02KJFi6pxJkBNUx3do3FT07gad1tVZ+NGVG3natzSNG5qGjd7rN9lRtukpm3qZttUV9dEWL+L0Db1lbaBzFnXyj3tV3H71bbui7CmVVnarzTtl5r2yw5rWpnRNanpmrq5phWhbSpD15RWG7umefPmccopp8Tdd98db731VqxatSoKCwtj6dKlMXXq1Dj++ONTXr9q1aq44YYb0r6ftgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAbsv8/w5MV3/7P4Ddu3JiVcTds2FBqu2XLllkZN9cOOuigtM/t06dPqe1//etf2Z5OjXPUUUeV/Lx27dro169fPPHEE1FcXJzV+xx44IFpnbfDDjuU2l67dm1W5/Ht8RcuXJjWddl+jl544YWSnxs2bBj7779/2uNHRHTu3Lnk53nz5mV0bbatX7++3P3NmjXL+r2aNWsWV1xxRblzGDNmzDaN/dlnn8VHH32U9PiQIUNSXp/q+HPPPZfxfE4//fRo0KBBuce++fv/tm//zSxdujQ++OCDcs/t0qVLHHDAASnn8e3n+Wtbtmwp9RzXR6me8W9/pwL1S3V0j8ZNTeMuTOs6jZtcdTbu1+NWRedq3PJp3OQ0bvZYv8uMtklN2yxM6zptk5z1u4qPa5u6SdtA5qxr5Z72W1jhNbovubqyphWh/ZLRfslpv+ywppUZXZOarlmY1nXaJrm60ja6pny1pWv23nvvGD9+fCxbtiwefPDBGDZsWPTo0SPatGkTjRo1ig4dOsSgQYPi8ccfj8mTJyf9bCMiJk+enPZ9tQ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADZ0DDXE6B8bdu2LbW9Zs2arIz77XG23377rIyba9/97nfTPrdr166ltpcsWZLt6dQ4xx9/fPzgBz+If/7znxER8dFHH8UJJ5wQbdq0if79+0ffvn3jwAMPjJ49e0ajRo0qfZ/27dundV6zZs1KbX/55ZdpXffee+/F448/Hv/85z/jgw8+iJUrV8b69eujqKgo5XVr165Na/xsP0f//ve/S34uLi4u874TiUSFP39t5cqVac+tKmzevLnc/QUFBVVyv2HDhsVNN90UH374Yan948aNi4suuii+853vVGrcRYsWJT228847V/gMH3DAAUmPLVmyJLZs2RINGjRIez69e/dOeqxFixZJjxUWFpba/vTTT5OeO3/+/MjLy0t7Tt+2YMGCSl9bFzRu3DjpsXT/7QLqpqrungiNWxGNq3G3VXU3bkTVdK7GzZzG1bjZYv0uM9omNW2jbbaV9buvaJv6R9tA5qxr5Z72q7j9dF9ydWVNK0L7VYb2037ZYE0rM7omNV1jTWtb1ZW20TWZq0ldM3Xq1LTPHTJkSLzxxhsxduzYco8vXLgw5s+fH126dKlwLG0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABANuTnegKU79v/0f0nn3ySlXEXLlyY8j61VatWrdI+t3Xr1qW2V69ene3p1DgNGjSIqVOnRr9+/UrtX716dTzyyCNx/vnnR+/evaN169YxcODAmDRpUhQWFmZ8n8aNG1dqfolEIuXx+fPnx6BBg2KvvfaK3/72tzFlypT4+OOPY9WqVVFUVFTh+OvXr09rHtl+jlauXFlqe8uWLaVeW7duLXklEomSV3k2btyY9tyqQrLfbWWek3Q0aNAgrrnmmjL7i4qKYvTo0ZUed8WKFUmPpfPvYbt27ZIe27p1a6xatSqj+ey8885JjxUUFKQ9zvLlyzO6byZSfWb1waZNm5Iea9q0aTXOBKhpqqp7vknjpqZxNe62qu7GjaiaztW4mdO4GjdbrN9lRtukpm20zbayfvcVbVP/aBvInHWt3NN+w2xKYgAAIABJREFUFbef7kuurqxpRWi/ytB+2i8brGllRtekpmusaW2rutI2uiZztblrzj777JTH582bl9Y42gYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBsyM/1BChfz549S23/61//2uYxCwsL4+233y7ZzsvLK3Of2iovLy/tcxOJRBXOpOZq3759zJo1K6ZMmRLHHntsNG7cuMw5X3zxRTz77LNx+umnR5cuXeLpp5/OwUxLe/PNN6NXr17xzDPPVHqMrVu3pnVetp+joqKitMfLxv2qUvPmzcvdv3Hjxiq75wknnBC9evUqs/+hhx6KOXPmVNl9q1OzZs2SHmvQoEE1ziS59evX53oKOfXFF18kPZbs7wIgWzRuxTRuxTRucrlo3Ii637kat+bTuNlj/S4z2qZi2qZi2iY563dVQ9vUfNoGaibtVzHtl5ruS86aVtXRfjWf9ssOa1qZ0TUV0zUV0zbJaZuqoWuqVpcuXaJJkyZJjy9fvjytcbQNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2ZCf6wlQvr59+5bafvnll2Pz5s3bNOZLL70UhYWFJdvdu3ePtm3bbtOY37Zly5asjpeuNWvWpH3u2rVrS223adMmq3PJ1WeQrmOOOSaeeuqpWLNmTTz33HNx7bXXxjHHHBOtW7cudd6iRYvi2GOPjcceeyxHM40oLi6OoUOHxooVK0r27bXXXnHttdfGrFmzYt68ebF27drYvHlzJBKJktdHH31Uqftl+zn65t/XrrvuWmqOmb6++RnkQqdOncrdv2LFiti6dWuV3ff6668vsy+RSMRll11WqfHatWuX9Njy5csrvD7V7yEvLy+23377Ss1rW7Vv377Kxk4kElU2dm2wdOnSpMeS/V0AZIvGTZ/GTU7jJperxo3Ibudq3MxpXI2bLdbvMqNt0qdtktM2yVm/+4q2qX+0DdRM2i992q98ui+5urKmFaH9KkP7ab9sqK1rWhG5+V7XNenTNclpm+TqStvomszV966J0DYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkR36uJ0D5vvvd78auu+5asr169ep44okntmnMCRMmlNo+4ogjkp5bUFBQ8nNRUVHa91i1alXmE8uCjz76KO1zP/zww1LbHTt2LPe82vYZZKpJkyZxyCGHxGWXXRZTpkyJFStWxKxZs2LQoEEl5yQSiTjvvPNi06ZNOZnjjBkz4t133y3ZHjZsWLz55ptx2WWXRb9+/aJLly7RsmXLUr+riK/+Xioj28/RjjvuWPLzokWL4osvvqjUvGqCzp07l7u/uLg4li5dWmX37du3bwwcOLDM/hkzZsSSJUsyHm/nnXdOemzRokWxfPnylNfPmTMn6bEdd9wxGjRokPGcsiHV+zriiCMikUhU+nXLLbdU4zupeRYtWpT02O677159EwHqJY2bOY1blsZNLleNG5HdztW4GjdTGjd7rN9lRttkTtuUpW2Ss373FW1T/2gbqJm0X+a0X2m6L7m6sqYVof20X+a0X3bkek0ronZ9r+uazOmasrRNcnWlbXRN/eqaefPmpfz3q0OHDmmNo20AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIhvxcT4Dkzj///FLbY8eOjS1btlRqrAULFsRjjz1Wsp2fnx/nnXde0vNbtmxZ8vPKlSvTvs9bb71Vqfltq5deeintc1955ZVS29///vfLPa+2fQbbqkGDBtGvX7+YOnVqnHzyySX7P//884w+32x67rnnSn4uKCiIG2+8MRo0aFDhdZX9HWT7OfrRj35U8vPWrVtjxowZlZpXTbDPPvskPfbBBx9U6b2vu+66yM8v+3W1devWjMfaaaedYs8990x6/IEHHkh5/f3335/02KGHHprxfLJlxx13jK5du5Z77Pnnn4/FixdnNN6WLVvirrvuimuvvTYb06vVkj3fzZs3jy5dulTzbID6RuNuO42rcVPJZeNGZK9zNW56NO5/aNzssn6XPm2z7bSNtknF+t1XtE39o22gZtJ+266+t5/uS66urGlFaL90ab//0H7Zk8s1rYja9b2ua7Zdfe+aCG2TSl1pG12TnprYNccee2zGz9odd9yR8niyz+zbtA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADZUPZ/bKfGGDFiRLRs2bJk+/XXX49bb721UmOdffbZsWnTppLtwYMHxx577JH0/E6dOpX8/Pnnn8eyZcsqvEdRUVFMmTIl7TkVFBSU2t6yZUva137bAw88kNb1iUQi/vd//7dku0WLFnHAAQeUe25t+wyy6Ywzzii1vXDhwpzMY+nSpSU/d+rUKVq1apXWdQ8//HCl7pft52jAgAGRl5dXsn377bdXal41wR577BFt2rQp99g777xTpffu0aNHnHbaaVkbb9CgQUmPXXnllUmf91mzZsX999+f9NqBAwdu69S2yTHHHFPu/sLCwhg6dGisX7++wjG+/PLLmDhxYuy3335x1llnxeeff5703OLi4sjLyyv3tffee1f6fdQ0b7/9drn7DzjggMjPl1FA1dK42aVxU9O4pVV140Zkt3M1bnIatyyNm13W79KnbbJL26SmbUqzfvcVbaNtgOqj/bKrPraf7kuuLq1pRWi/VLRfWdove3K5phVRu77XdU121ceuidA2qdSlttE1ydXkrnn22Wdjn332ibPPPjs++OCDCs+///7745Zbbkl6vEePHrHrrrumdW9tAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDb4n7FrsJYtW8bYsWNL7bvsssviySefzGicCy+8MGbMmFGy3apVq7jxxhtTXtOzZ89S24888kiF97ntttti8eLFac+rRYsWpbZXrlyZ9rXf9u9//zv++7//u8Lz7rnnnlL/Of3QoUOjcePG5Z5b2z6DbMrLyyu13axZs5zMo2nTpiU/L1u2LDZt2lThNVOnTi31vGci289R586d4/jjjy/ZnjlzZkyaNKlSc6sJDj300HL3v/rqq1V+7zFjxiT9W83UxRdfnHSslStXRp8+fWLChAmxdOnSKCoqioULF8a1114bxx13XGzdurXc677zne/EySefnJX5VdZFF11U6m/mm55//vno3r173HDDDTF37txYv359bNmyJZYvXx7vvPNOTJw4MU4//fTYaaed4owzzoh33nmnmmdfc/3jH/8od/9hhx1WzTMB6iONm10aNzWNW1p1NG5E9jpX42rcTGjc7LJ+lz5tk13aJjVtU5r1O21Tl2kbqJm0X3bVx/bTfanVlTWtCO2n/TKj/bInl2taEbXre13XZFd97JoIbVORutI2uqb2dk1RUVGMGzcuunfvHocffnjcdNNNMWfOnFixYkUUFxfHsmXL4plnnokTTzwxhg4dmvT3FRFx5plnpn1fbQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEA25Od6AqR25plnximnnFKyXVRUFCeffHLccMMNUVxcnPLaFStWxGmnnRZ/+tOfSu0fP3587L777imvPeyww2K77bYr2R4zZkwsWrQo6fmPPvpo/PrXv0455rd16dKl1Parr76a0fXfNmrUqJg+fXrS488//3xccMEFJdsFBQVx4YUXJj2/Nn4GyQwaNCgmTZoUmzdvrvDcwsLCuOGGG0rtO+CAA6pkXhXZZ599Sn7euHFjXH311SnPnzFjRgwdOnSb7pnt52jMmDHRpEmTku0zzzwzxo0bl9ZcEolE/O1vf4ujjjoqPv/883LPuf322yMvL6/kdfbZZ6c1dmUcffTR5e6fPXt2ld3za7vuumucd955WRlrl112iYsuuijp8SVLlsTw4cNjxx13jIKCgujcuXNcfvnl8cUXXyS95vrrr49GjRplZX6V1alTp7j00kuTHl+0aFGMGjUq9t9//2jZsmU0bNgwdthhh+jRo0ecccYZMWnSpFizZk01zjgz337Wv/nauHFjudds2bIl6TVjx46t8J7Lly+P999/v9xjRx111Da9H4B0adzkNG76NG5yuWzciOx1rsbVuBo3t6zfpU/bJKdt0leb2qY6uybC+p22yS1tA3yb9ktO+6WnNnVfhDWtytJ+2k/75U6u1rQiat/3uq5JTtekT9skV1faRtfUzq75pq//Ni655JLo2bNntG/fPho1ahQdOnSIQYMGxeOPP57y+u7du8c555yT1r20DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANmSn+sJULEJEybE0UcfXbJdVFQUo0aNir333juuueaamDNnTixfvjwKCwtj8eLF8dxzz8XIkSOja9euMXny5JLr8vPz45ZbbomTTjqpwnu2aNEifvGLX5Rsf/7559GrV6+YMGFCfPbZZ1FUVBQrVqyI6dOnx8knnxwnn3xyFBYWxpAhQ9J+X127do22bduWbF9zzTXx4IMPxrJly2LLli1pjxMRcdxxx8XmzZtj4MCBcc4558Srr74a69evjw0bNsTrr78eF154YfTv3z+++OKLkmt+85vfxPe+97068xmk8uabb8bpp58eO+ywQ5x22mlxzz33xNy5c2PlypVRXFwcmzZtio8//jjuueee6NmzZ8ycObPk2iOOOCK6du2atblk4oQTTohmzZqVbF911VVx9NFHx/Tp02PRokVRVFQUy5cvj2eeeSZ++tOfxlFHHRXr1q2Lk08+uVL3q4rnqHv37jFhwoSS7cLCwjj77LOjZ8+ecccdd8Q777wTa9eujeLi4li9enV8+OGH8fDDD8fIkSNj9913j8MPPzymT58eiUSiUu8pm3784x9Hw4YNy+xftGhRvP/++1V+/9GjR0erVq2yMtbVV18dxxxzTFbGGj16dPzkJz/Jyljb6ne/+12ccsopuZ5GnTFz5sxy//Z22WWX+MEPfpCDGQH1jcZNTeOmR+OmluvGjche52pc0qFxq471u4ppm9S0TXq0TWq5bhvrdxXTNtmlbaDm0n6pab+K6b7Uct19EdovHdovu7Rf1cjFmlZE7fpe1zWp6Zr0aJvU6lLb6Jr6q2PHjvHkk0+W+yyXR9sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQLen9D9vk1HbbbRdPPfVUnHfeeXHXXXeV7P/www9j9OjRMXr06LTGmDhxYpx00klp3/fqq6+OqVOnxr///e+IiFi8eHEMHz486fmjR4+O/fbbL+6///60xm/QoEEMHz48rr/++oiIWLFiRZx66qnlnnvffffFaaedlnSsP/3pT/HRRx/FBx98EHfeeWfceeedKe996qmnxuWXX17hHGvTZ5COdevWxeTJk2Py5Mlpnd+5c+eYMGHCNt1zW3Ts2DGuvvrquOiii0r2TZs2LaZNm5b0miOPPDL+8Ic/xMMPP5zx/arqORoyZEgUFRXF2WefHZs2bYqIiDlz5sS5556b8RxzaYcddogBAwbE008/XebYk08+Gd26davS+2+//fZx6aWXpvWZVyQ/Pz8efvjhOO+882LixImVGqNBgwbxhz/8ISvzyZa8vLyYNGlS7LTTTnHLLbdEIpGo1DiNGjWKs846K63vl7rsiSeeKHf/0KFDIz8/v5pnA9RHGjc9Gjc1jZtarhs3Inudq3FT07hf0bhVx/qd9bsIbfM1bZM7uW4b63cV0zbZpW2g5tJ+6dF+yem+1HLdfRHaLx3aL7u0X9XI1ZpWRO35Xtc16dE1qWmb1OpS2+ia1Opq1/To0SMeeuih2HPPPdO+RtsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQLf537FqiYcOGMW7cuHjppZeiT58+aV/XoEGDGDFiRMybNy9OOumkjO7ZqlWreP7552PvvfdOeV5BQUGMHTs2rrrqqozGj4i44oorol+/fhlf922tWrWKv//973HQQQelPK9hw4YxatSouO+++6JBgwZpjVtbPoNsO+mkk+KVV16JXXbZJafzGDlyZIwdOzYaNWpU4bnDhw+Pp556Kho2bFipe1XVcxQRcfrpp8c//vGPOPLII9OeT35+fgwYMCD++te/RseOHdO+rioNHz683P2PPvpotdx/5MiRsdNOO2VlrKZNm8Y999wTjz76aOy7774ZXduvX7+YPXt2jB49OvLy8rIyn2wpKCiIm266KWbOnBmHHnpoRte2a9cuLrroovjwww/jtttui/bt21dqDun+XdRkGzdujGeffbbM/vz8/Bg2bFgOZgTURxo3+zRuchq3rOpq3Ijsda7GLUvj/ofGrXrW71LTNtmnbZLTNmVZv6s5tE12aBuo2bRf9tW39tN9Fct190Vov3Rov+zQflUrF2taEbXne13XZF9965oIbZOOutQ2uqasmtw1r7/+elx44YXRoUOHjK/t2LFjjBkzJl577bXo1q1b2tdpGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALKpYa4nQGb69OkTL730Urz99tvx9NNPx6xZs+LTTz+NZcuWxYYNG6Jt27axww47xPe+97046qijYuDAgZX6D9m/tttuu8XcuXPjvvvui8ceeyzmzJkTK1asiJYtW8Zuu+0WAwcOjBEjRsTOO+9cqfGbNm0aM2bMiCeffDIeffTRmDt3bixevDg2btwYW7ZsyWisjh07xgsvvBB//etfY8KECfHWW2/FokWLomHDhrHLLrvEkUceGWeccUbstddeGY1bmz6DZN5888144403Sl4LFiyIlStXxqpVq2Lt2rXRpEmTaNOmTXTr1i369OkTp5xySnTr1i0r986GSy65JI4//vgYN25czJo1K+bPnx8bN26Mdu3aRadOneLwww+P008/PStzrqrnKCJi3333jenTp8fcuXNjypQp8dxzz5X8LjZt2hQtW7aMnXbaKfbdd9846KCDYvDgwdGxY8dtfk/ZdNxxx0WXLl1i/vz5pfbPmTMn3nrrrdhnn32q9P5NmzaN3//+9zFixIisjXniiSfGiSeeGLNnz46ZM2fGiy++GAsXLoxVq1bFxo0bo2XLltGmTZvo2rVr/OhHP4qBAwdW+fvMhn79+kW/fv3i3XffjWnTpsXLL78c7733XqxatSrWrFkTjRo1inbt2sWuu+4avXv3jr59+8YRRxwRBQUFaY3/9ttvJz32y1/+MltvI2ceffTR2LBhQ5n9gwYNij322CMHMwLqK42bnMZNn8ZNLdeNG5H9ztW4Grc8Grf6WL9LTtskp23Sp21Sy3XbWL9Ln7bZNtoGaj7tl5z2S4/uSy3X3Reh/TKh/baN9qse1b2mFVF7vtd1TXK6Jn3aJrW62Da6pnZ0zb777hu33HJL3HzzzTF37tz429/+Fm+++WZ8+OGH8emnn8b69evjyy+/jO222y5at24du+22W3z/+9+Pvn37xsCBA6NRo0YZ31PbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkE15iUQiketJ5MLvf//7+MMf/pD0eLdu3eK9996rxhmRibFjx8avfvWrku3Vq1dH69atczgjaiPPUeX8+c9/jvPOO6/M/gsuuCBuvfXWHMyIXLjhhhti1KhRZfYffvjhMXPmzBzMKLsOOeSQmD17dpn9zz//fPTt2zcHM6pY9+7d4/3338/4ujVr1kSrVq2qYEbUZy1btoz169cnPT5+/PgYPnx4Nc6odtAmZIPnqHI0LhEatyYaNmxY3HPPPUmPH3nkkTF9+vRqnBGZ8J1ENniOKkfbEKFtaiLrJTXf3XffHWeeeWbS4y1atIh169ZV44xqD9/ZbCvPUOXoPr6m/WqWtWvXVvhv2LPPPhtHHXVUNc2ITPhOIhs8R5WjbYio+10TUfvaxnpJzdGnT5945ZVXSu3r3bt3vPzyyzmaEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUAM8kp/rGQBQuwwfPjx22WWXMvsnTpwY69aty8GMyIUZM2aU2bfddtvF+PHjczCb7Jo7d27Mnj27zP7+/ftH3759czAjAKCqaVwiNC4AdYe2IULbAEB9oPv4mvYDoC7QNkTU7a6J0DYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkX36uJwBA7VJQUBC/+93vyuxfv3593H333TmYEdVt8+bN8eKLL5bZf91110Xnzp1zMKPsuummm8rdP2bMmGqeCQBQXTQuGheAukTboG0AoH7QfURoPwDqDm1DXe+aCG0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA9uXnegIA1D7/9V//Ffvuu2+Z/WPHjo0vv/wyBzOiOr300ktlfs8/+tGP4rzzzsvRjLJn/vz58cADD5TZf+qpp0avXr1yMCMAoLpo3PpN4wJQ12ib+k3bAED9ofvQfgDUJdqmfqvLXROhbQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKga+bmeAAC1T4MGDeLWW28ts3/JkiVxxx135GBGVKeZM2eW2m7atGlMmDAh8vLycjSj7BkzZkwUFxeX2tesWbP44x//mKMZAQDVRePWbxoXgLpG29Rv2gYA6g/dh/YDoC7RNvVbXe6aCG0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA1WiY6wkAUDsdcsghkUgkcj0NcmDmzJmltq+88srYc889czSb7Lr33nvj3nvvzfU0AIAc0bj1l8YFoC7SNvWXtgGA+kX31W/aD4C6RtvUX3W5ayK0DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFWjYa4nAADULv/85z9zPQUAAMgqjQsA1CXaBgCg/tB+AEBdoWsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgc/m5ngAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADpyc/1BKAy/t//+3+RSCRKXq1bt871lKiFPEcAQE2iTcgGzxEANYXvJLLBcwQAtYPvbLaVZwiAmsJ3EtngOQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACguuTnegIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkJz/XEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA9+bmeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOnJz/UEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASE9+ricAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAevJzPQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADSk5/rCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCe/FxPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgPTk53oCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApCc/1xMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgPfm5ngAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADpyc/1BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEhPfq4nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQHrycz0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0pOf6wkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnvxcTwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID05Od6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQnP9cTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOD/s2O/OI2HQRyHfztpAgg4B0coHACO0muAqiLB4iEhWUfvwB8DAoNpgsCVCxTDaszukN3st4XnkfOaj5x3AAAAAAAAAAAAAAAAAAB6Kh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAT6UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Kl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2VDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCn0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0VDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2mi4WAAAgAElEQVQAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQM0oHrKrFYjEcHR2lMwAAWhaLRToB2q6uroaXl5d0BgCw4h4eHn77Pp/P3e8AgLWxXC7TCfyl5XJp/wQA/qiz952fnw+3t7f/oQYA4O/c39+nEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPiNUTpgVb2+vg7Hx8fpDAAA+HJms9kwm83SGQDAmpvP5+53AAD8N29vb/ZPAOCfuLi4SCcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAFVDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoGaUDUg4PD4ednZ10BgBA1NbWVjqBL2g6nQ7L5TKdAQAAALA2xuNxOuHbG4/Hw8nJSToDAAAAYG1sbGykEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL61H+/v7+/pCAAAAAAAAAAAAAAAAD7a398fbm5uPsz29vaG6+vrUBEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALACfla6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ5KBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBT6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6Kh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAT6UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Kl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2VDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCn0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0VDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQU+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgp9IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9FQ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ5KBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBT6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6Kh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAT6UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Kl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2VDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCn0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0VDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQU+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgp9IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9IzSAQAAAMDqeHp6Gs7OztIZAAB8wu7u7jCZTNIZAGvt7u5uuLy8TGcAAAAArI3Nzc1hOp2mMwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL6tUToAAAAAWB3Pz8/D6elpOgMAgE84ODgYJpNJOgNgrT0+PvoPAwAAAHzC9vb2MJ1O0xkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfVqUDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Kl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2VDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCn0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0VDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQU+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgp9IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC/2LvvKCvLMwHgz9wBZoahN5GirmCJvYAGdTEKFhBFkAg2ULFGNGWjK7YQQzQuukksWDBg3AhYUFCMilhYuxJLEBMLigoqBBg6Q5vZP/Z4k4szd+7UO8Dvd8494Xnr873zfXf4HnKOAAAAAAAAAGQmke0EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEwi2wkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQmUS2EwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAziWwnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGYS2U4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzCSynQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZSWQ7AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKTyHYCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCaR7QQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITCLbCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCZRLYTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDOJbCcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAZhLZTgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDMJLKdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJlJZDsBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMpPIdgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkJpHtBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhMItsJAAAAAGzN+vXrF6WlpeV+zjvvvGynCJRj1113jXXr1iWf17POOivbKQG1qFu3blFSUpJ85nv37p3tlAAAYJtTnVqZOlvdcM7UNjU3suWTTz5J+T5r3759rczh/zm7VGqPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDYksp0AAAAAQHWsXr06SktLK/1ZvXp1LFy4MObMmROTJk2K//iP/4j9998/25dDPdahQ4fYvHlzRvdX165ds50uGbjtttsiPz8/IiLefffd+NOf/pR2/NSpU1N+zpMnT66LNKlFfqbbl9mzZ8eDDz6YjG+//fZo1KhRFjMCAACA78rNzY1DDjkkrr766njxxRdj/fr1aWuRxx9/fLZTTlGZmtuWtZlvP5dcckmV9r733ntT1rnrrruqtA5AZak9AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANmQyHYCAAAAANlQWFgYHTp0iH322SeGDBkSN998c7z77rvx5ptvxuDBg7Od3lbjrrvuitLS0nI/7du3z3aKNeass86KRCKzctrQoUNrOZv6a2u5J0466aTo27dvMr7yyiujtLQ0ixlRWUuWLEm5t1q0aJHtlNgKXH311bFp06aIiNhjjz3ixz/+cZYzAgAASG9rqbVQPV27do2LLroopkyZEkuWLIk33ngjRo8eHUceeWQ0atQo2+llrKZqbtdee20UFhbWZGrAv1BbrR1qjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBdS2Q7AQAAAID6pHv37jF58uR4/PHHo23bttlOh3pk6NChlRqbk5NTi9lQHYlEIm688cZkPHv27HjmmWeymBFQVz799NOYPHlyMh45cmS0aNEiixkBAACwvcvPz4+PP/447rzzzhg4cOBW+55akzW3HXbYIX7605/WVGoAdULtEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhriWwnAAAAAFAfnXjiifHss89Gy5Yts50K9UD37t1jr732ynj8zjvvHEceeWQtZkR1nHXWWSk/zxtuuCGL2QB17cYbb4zS0tKIiGjZsmVcfvnlWc4IAAAAtn41XXO7/PLLo3Xr1tVNC6BOqT0CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdSmR7QQAAAAA6qv9998/HnzwwWynQT0wbNiwOplD7UskEnH11Vcn488//zymTZuWxYyAuvbBBx/Ec889l4wvvfTSaN68eRYzAgAAgK1bbdTcmjVrFiNHjqxuapBW165dIycnJ/n55ptvsp3SVsPZlU3tEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhLiWwnAAAAAFCfHXPMMdG/f/9sp0EWNWrUKIYMGVLpeYMGDYrCwsJayIjq6N+/f+y2227JeNy4cVFSUpLFjIBsuOeee5J/btq0aZx//vlZzAYAAIiImD59euTk5JT7uffee7Od4jbBOVMbaqrm9uGHH6bEl1xySXTq1Kna+QHUJbVHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoK4ksp0AAAAAQG0aMGBA5OTkpHwKCwtjv/32i1GjRsWaNWsqXONnP/tZHWRKfdWvX79o3bp1pec1adIkBg4cWAsZUR0/+clPkn8uLS2N++67L3vJAFkzderUWLp0aTK+7LLLIpHwTyYAAABkX0lJScyePTt+85vfRO/eveN3v/tdtlOqUE3V3KZOnRqzZ89Oxvn5+TFq1KhqZgdQt9QeAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLrSINsJAAAAANS1tWvXxpw5c2LOnDkxZcqUePnll6N58+bljj/ssMOiRYsWsXz58mrvvddee8UZZ5wRvXv3js6dO0fr1q2jqKgo5s+fHzNmzIgJEybEZ599Vu19dtppp+jdu3f8+7//exxwwAHRunXraNWqVTRo0CCKiopi2bJl8fHHH8dLL70UL774YvzlL3+p9p61KZvXM2zYsHL71q5dG+vWrYvWrVuXO/d//ud/aiyXsjRq1ChOO+20OPXUU+Oggw6KNm3axLp16+KTTz6JGTNmxN13313uPZVIJKJ///5x2mmnxSGHHBI77rhjrF+/PhYvXhyvv/56PPbYY/Hoo49GaWlprV5DXdl1112jZ8+eyfiVV16JhQsXZi2ftm3bxpAhQ2LAgAGx8847R4cOHaK4uDgWLVoUr7zySjz88MPx9NNP1+iee+yxR5x++ulx7LHHRocOHWKHHXaIFStWxJdffhkzZsyIBx54IObOnVuje27v8vPz43vf+17st99+sd9++8Xee+8d7dq1ixYtWkSLFi2iadOmsWrVqli6dGl8+OGH8cILL8Sjjz5aI78L6tpee+0VJ5xwQhxzzDGxyy67RLt27SI/Pz8WL14cX3zxRcycOTMeffTR+Otf/1pje3bq1CkGDRoU/fr1i5122inat28fTZs2jYiINm3axNKlS8uct3Hjxpg2bVqce+65ERHRuXPn6NWrVzz77LM1lhsAwNaiLmoV9bVOsddee8V5550XP/jBD6JLly7RuHHjWLx4cfzmN7+J2267rUpr1rf39FatWsXuu++e8unUqVO0bds2WrVqFfn5+ZGXlxebNm2KlStXxqpVq2L+/Pnx3nvvxVtvvRVPPPFErF69ukpnsS1ynt9VH5/vuqrB1pTS0tKYN29ezJw5M2bOnBnPPfdcFBUVJfuPOeaYLGZXsZquuY0cOTLl/fzss8+Om2++Of7+979XK8/KaNasWZx44onRp0+fOPDAA6Nt27bRokWLKCoqisWLF8fs2bPjz3/+czz55JOxdu3aGtu3qnWOf7XTTjvF6aefHieccEJ07tw52rdvHxs2bIh58+bFs88+G3feeWe5939OTk6ccMIJceqpp8YhhxwSnTp1igYNGsTixYvj3XffjYceeigmTpwYJSUlGV/T9lQbq67t8ayy9azVdm1e7REAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoKzmlpaWl2U4CAAAAqB+efvrp6NOnT7bTqJTVq1dHYWFhuf0DBgyIqVOnpl1j5MiRccMNN6Qd06tXr3j++ee/096vX7944oknyp13/vnnx7333hvt27ePsWPHxoABA9Lus379+rjhhhvi+uuvTzuuPN26dYsrrrgiBg4cGLm5uRnPe+utt2LMmDHxyCOPRLpy0YgRI+K2226rUm5lKSgoiOLi4nL7a/t6KtK2bdtYuHBhNGzYsMz+yZMnx4oVK+LCCy8ss7+kpCT+7d/+Lb744otK7TtkyJCYNGlSuf3f3lcHHHBATJo0Kfbcc89yx27cuDGuvPLK+O///u+U9gMPPDAmTJgQ+++/f9pcZs+eHUOGDIl58+aV2V/X90R1jBo1Kn7xi18k45/+9Kfxu9/9LuP5U6dOjf79+yfjBx98MIYMGZJ2zr/ef+vXr4/8/PzIzc2Na665JkaOHBl5eXlp57/44osxZMiQWLRoUcZ5lrVnkyZNYuzYsXHWWWdVOPeOO+6IkSNHxurVqzPar3fv3vHss88m42nTpsXJJ5+ccb4tWrSIoqKiZLxw4cLo1KlTmWPffffdCu/Z8nTv3j1mz56d0laVn2ll3XXXXeV+R5Rn06ZNcf/998fPf/7zlLMpyzXXXBO/+tWvkvETTzwRJ510UpVynTx5cgwePDgZ33TTTXHllVdWOG/PPfeMG264ocLfcf+6z+WXXx4LFizIaHxZ93RBQUHccsstceGFF0YikShzXtu2bWPJkiXlrnv88cfHU089lYwfeOCBOPPMMzPKqb459thj45lnnsl2GgBbtXvvvTfOP//8bKcBNaI+1Srq+r0+02vPy8uLMWPGxCWXXFLm3yd///vfx09+8pNkvDW9p2+puv+3oDVr1sSDDz4YV111VUbvppn+DGpy7pbvRTXhl7/8ZYwaNeo77XVxnrVda6nOz+hf1eXzXZ++17LhN7/5Tfznf/5nuf19+vSJp59+ug4zSlWdmtuWtZlvaxEzZ86MXr16JdsfffTROOWUUypc7957743hw4cn47vvvjsuuuiijHKJiMjNzY0f/ehHcd1110WbNm0qHP/VV1/FtddeGxMmTMj4fq6JOkdZa+Tl5cV//dd/xYgRI8pd49vxV199ddxyyy0p7fvvv3/cd999ccABB6TNf/bs2U8M0eAAACAASURBVDFw4MD48ssvK7zWiNqvjf2rTz75JLp06ZKMd9xxx/jmm29qZM7tt98el1xySca5pFNWnTKi9s+qpmurVTnvb2XrWavt2vy/2pZqj5BO06ZNY+XKldlOY7tw2GGHxWuvvZbS1qNHj3j11VezlBEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAPPJzIdgYAAAAA2fbkk09WOGaHHXao8vrdu3eP9957LwYMGFDh2Ly8vPjlL38Zt956a6X2yM3Njeuvvz7eeOON+OEPfxi5ubmVzvGhhx6KadOmRcuWLSs1tzbUl+s5/fTTo2HDhuX2T5w4MSZOnFhufyKRiLPOOqvK+6dz0kknxeuvvx577rln2nENGzaMW265JW677bZk24knnhivvPJK7L///hXu061bt3jppZeia9eu1c452wYOHJgSz5gxo85zyMvLi2nTpsWoUaMiLy+vwvE/+MEP4uWXX442bdpUec9mzZrFrFmzMroXc3JyYsSIEfH8889Hs2bNqrwn1dOgQYM499xz47XXXotdd9017dhx48bFxo0bk3Hfvn2jU6dOld6zbdu2Kb+nSktLY9y4cRXOO/XUU+Odd97J6Hfct4YMGRJvvvlm7LvvvpXOMyKiadOm8cILL8TFF18ciUT5/8yRk5OTdp1Zs2bFhg0bkvGJJ56Y9jsfAGBbUtu1ivryXl+WvLy8ePzxx+PSSy8t9++TFf1dsizb6nt6YWFhnHvuuTF37tw4/vjj62TPbdm2cJ719fmuixosZauNmtuVV175nT26d+9e7XXTady4cUydOjVuvfXWjGtxHTp0iD/84Q9x//33V7mmUBN1jsaNG8eMGTPisssuS7tGxP/f/zfffHNcffXVybbjjz8+Xn311TjggAMqzLdbt27xwgsvVKteWZHK1Ma2d1vjWWXrWavr2rzaIwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAXEtlOAAAAACDb/vGPf1Q4pmXLllVa++CDD47nnnsu2rVrV6l5l156aZx44okZjW3QoEE8/vjjce2110YiUb1yz4knnhhvv/12dOzYsVrrVEd9up5hw4aV21dUVBTPPPNMvPTSS7FgwYJyxw0dOrRKe6fTvXv3mDRpUuTl5WU8Z8SIETFw4MA47LDD4uGHH46CgoKM5+64444xYcKEyMnJqUq69ULHjh1j3333TcaLFi2KDz74oM7zGDduXJxwwgkREfHee+/FeeedF127do3GjRtHixYt4ogjjoj/+Z//SZnTtWvXuO2226q853333RcHHXRQRETMmzcvRowYEV26dImCgoJo37599OnTJx599NGUOd27d48nn3wycnNzq7wvqTZu3BjPPPNM/PSnP42jjjoqOnXqFE2aNIm8vLzo0KFDnHjiifHHP/4xNm7cmJyzxx57xNSpU9M+64sWLYrHHnssGefm5sZ5551X6fzOPvvsaNSoUTKeOXNmzJs3L+2cCy+8MCZPnhz5+fnJtm+++SauueaaOPjgg6NVq1aRn58fXbp0iUsuuSQ+//zz5Lgdd9wxZs2aFTvvvHOlc73vvvvi0EMPjYiI999/Py666KLYbbfdorCwMHbYYYf4wQ9+EA888ECF31nr1q2L119/PRk3a9YsDj/88ErnAwCwtantWkV9eq8vyx133BHHHntsja0XsX28p7du3TqmTJkSBx98cJ3tuS3bWs+zvj7fdVGDpWy1VXObPXt2TJkyJaXtN7/5TbXXLU8ikYgnnngi+vXrl9L+/PPPx6BBg6JTp06Rn58fnTt3jjPPPDPeeOONlHFnnnlmTJo0qUp710SdY/z48dGzZ8+IiHjxxRdj8ODB0bFjx8jLy4v27dvHGWecEZ988knKnOuvvz4OPvjgOOCAA+KRRx6Jxo0bx7p162LMmDHx/e9/P1q1ahUFBQWxzz77xJgxY1JqVl26dIlbbrmlUtdZW7WxbdG2fFbZfNbqujav9ggAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUhUS2EwAAAADItnbt2lU4pqioqEprX3TRRdG0adMqzb3pppsyGnfHHXdE3759q7RHWXbZZZd4/PHHo3HjxjW2ZmXUl+vZZ5994sADDyy3f8qUKbFhw4YoLS2NBx98sNxxu+++e/To0aNSe1fkggsuqNLP57bbbovJkydHXl5epececcQR0b9//0rPqy969+6dEr/++ut1nkNeXl6cddZZERExevToOOigg+IPf/hDzJs3L9atWxcrVqyIV155JYYOHRojRoxImTtkyJDYa6+9qrTngAEDIiJi6tSpsf/++8cdd9wRn376aRQXF8eiRYvi6aefjlNOOSXOPPPM2Lx5c3LuEUccET/72c+qccU174ADDoicnJzIycmJpUuXpvS1bNky2VfWZ/bs2VnJefHixXHttddG+/bt4/jjj4/f/e538eKLL8bChQtjzZo1sWHDhvj6669j+vTpcfbZZ8ehhx4aX3zxRXL+vvvuG1dffXXaPcaOHZsSDx8+PHJzczPOMScnJ84///yUtnvuuSftnO7du8ett94aOTk5ybZJkyZFly5d4te//nW8/fbbUVRUFOvXr49PP/00xo4dG3vttVdMnz49Ob5ly5Zx//33RyKR+T9V5OXlxcCBAyMi4ve//30ceOCBcffdd8cnn3wSa9eujcWLF8esWbPizDPPjMWLF1e43quvvpoSH3vssRnnAgCwtartWkV9ea8vS9++fWP48OEVjvvXv+dmYnt5T2/cuHH88Y9/rPT5ULat8Tzr6/NdFzVYylabNberr746pVZ19NFHxzHHHFNj6/+rkSNHxtFHH53S9rOf/Sx69eoVU6ZMiYULF8b69etjwYIF8cADD8Rhhx0WN954Y8r4U045JS688MJK7VsTdY68vLwYPHhwMuejjjoqHnroofjqq69iw4YNsWjRopg4cWJ07949Pvjgg+S8RCIRv/rVr+JPf/pTFBYWxqeffhr77rtvXHHFFfHGG29EUVFRFBcXx9y5c+OKK65I7vGtoUOHRteuXSu8xrqojdWFESNGpK09lvVJJBLf+beDkpKSWLlyZZl71PZZ1YfaajaftbquzUeoPQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC1L5HtBAAAAACyrV+/fhWOWbRoUR1kkup73/tefP/73087ZuDAgXHBBRfU+N4HHXRQ/PrXv67xdStSn67n7LPPTts/ceLEMv9clmHDhlVq79rSoUOH6Ny5c5XnDx8+vAazqVuHHHJISvzXv/41S5lE/P73v49rr702SkpKyh1zxx13xIwZM1LazjnnnCrvOXv27DjttNNizZo15Y554IEH4uc//3lK2y9/+cto27Ztlfcl4rrrrovRo0fHsmXLMhr/zjvvRN++faO4uDjZdvHFF0deXl65c2bNmhUffPBBMu7UqVP07ds34xyPOuqo2G233ZLxokWLYtq0aeWOz83NjT/96U/RqFGjZNvDDz8cZ5xxRqxdu7bceWvXro1TTjkl3n333WRbz549Y9CgQRnn+q3JkyfHT37yk9i0aVOl5/6r9957LyXe8rsCAIBUFdUq6tN7fVkGDBhQA9nUnLp8T1+2bFn86U9/iosvvjh69uwZnTt3jubNm0eDBg2icePGscsuu0Tfvn3j7rvvjvXr15e7zt577x0nn3xylXPeVmyP51nfn++qyqQGS/lqs+b24Ycfxn333ZfSduONN0ZOTk6N7RHx/9/Fv/jFL1LaRo8eHb/97W/LnVNSUhJXXXVVjB8/PqX95ptvjubNm1c6h5qoc9x4441pc16+fHmMGDEipa1Pnz6x9957x+rVq+OYY46JefPmlTv/sccei8ceeyylbejQoRXmVRe1sfpq9OjRMXjw4JS2K664Ij766KMyx2/rZ1UfnrW6rs2rPQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC1LZHtBAAAAACyaZ999onLL7887ZhNmzbF22+/Xa19Vq1aFVdccUXsuuuukZ+fH7vvvnuMHTu2wnm9evUqty+RSMT1119f4RqTJk2Knj17RosWLaKgoCD22Wef+PWvfx3FxcVp51100UXRsWPHCtevKfXpenJzc+OMM84ot//rr7+OWbNmJeO33347Pvroo3LHDx48OPLz8zPauzLmzJkTJ5xwQjRv3jyaNm0agwcPjuXLl2c0d/PmzXHTTTfFbrvtFnl5ebHnnnvG9OnT08456qijIpHYOkuKBx98cEo8Z86crOTx9ddfx5VXXpnR2DvuuCMl7tmzZ5X3HTFiRIXPSETErbfeGn/961+TcUFBQZx77rlV3peqmTt3bowbNy4Zt2nTJvr165d2zl133ZUSX3DBBRnvd+GFF6bE48ePj40bN5Y7/pRTTondd989GS9ZsiTOO++8KC0trXCvDRs2xMUXX5zSdtlll2Wca0TEmjVr4sc//nGl5pRny++Cbt261ci6AABbg5quVdSn9/pMvPDCCzFo0KDo0KFD5OXlxS677BK9evWKW265JZYtW1alNevje/qrr74aJ598crRr1y7OOuusuOuuu+Kll16KBQsWxMqVK2Pz5s2xbt26+Pzzz+Opp56Kiy66KI4++ujYsGFDuWueeuqpGV3T1mrt2rUxY8aMMvu21/PcWp7v2qjBkl5t19xGjRqVcv8cfPDBMWjQoBrd40c/+lE0bNgwGX/yySfxq1/9KqO5//Ef/xFLlixJxk2aNKl0La0m6hxffvlljBo1qsJxL7zwQsyfP/877TfccEN8+umnFc6fMGFCSnzkkUdmmmKlVKU2Vt+cffbZcdVVV6W03XPPPXHLLbfU6D5b01ll+1nLRm1e7REAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACobYlsJwAAAABQ1woKCmKfffaJX/ziF/Haa69F8+bN045/5ZVXYvny5VXeb/ny5XH44YfHmDFj4rPPPov169fHxx9/HJdcckmMHTs27dyDDjqo3L7jjjsu9t5777Tzf/azn8Xpp58eL730UqxYsSKKi4tj7ty5cc0118Sxxx4b69evL3dufn5+/OhHP0ppu/322yMnJyf5ufvuu9Puv+OOO6aM3/JTXFyc1espz3HHHRft27cvt//BBx+MkpKSlLZJkyaVO75FixZx0kknZbR3pubMmROHHXZY/PnPf46VK1fG6tWr46GHHoqrr746o/kXXHBBXHnllfHJJ5/Ehg0b4sMPP4xBgwbFggULyp1TWFgYe+yxR0pbbd4TNWm33XZLib/44ota2aci48aNy/gaX3jhhSgtLU3G++23XyQSlS/pvvbaa/HGG29kNLakpCRuvfXWlLazzz670ntSfY888khK3KNHj7Tj//jHP8aaNWuScZ8+faJz584V7tOuXbs4+eSTk3FpaWnce++9aedceumlKfHvf//7WLlyZYV7fev111+Pv/zlL8n48MMPzyjXbz322GOxePHijMens+V3QfPmzaNdu3Y1sjYAQH1WG7WK+vReX5Grrroqjj766JgyZUp8/fXXsWHDhvj888/j+eefj5///OcxatSoSq9ZX97Tt3T44YfHtGnTYvPmzRlfy6uvvhqPP/54uf3//u//nvFadWH06NFpaw3/+mnevHnad+S1a9dGv3794tVXXy2zvy7Osz7WWraG57u2arCkV9s1twULFsQdd9yR0jZ69Oho0KBBje0xbNiwlPjWW2+NDRs2ZDR3+fLl36mjnHPOOZXavybqHPfee2/GOb/22msp8aZNmyqsBX3r5ZdfTokPOOCAzBKsgsrWxuqTo446Ku65556UtmeffTYuueSSWtlvazmrbD9r2ajNqz0CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAta3y/yV2AAAAgK3IY489FqWlpSmftWvXxpw5c2LUqFHRpEmTCtf47W9/W60c/vM//zPmzJlTZt9tt92Wdm6nTp3K7TvuuOPSzn3hhRfS5v7SSy/FmDFj0q5R0R41qT5dz7Bhw9L2T5w4MaO2yqxZWZdeemmsXr36O+1PP/10hXNffvnlGD9+/Hfa169fH4899ljauenuyfqqSZMm0apVq5S2hQsXZiWXmTNnZjx21apV8dVXXyXj/Pz8aN68eaX3fOSRRyo1/tFHH42SkpJkvOeee0br1q0rvS/V89e//jUl7tatW9rxK1euTPkeys3NjeHDh1e4zznnnBONGjVKxs8++2x8+umn5Y5v0qRJfP/7309pe+ihhyrcZ0szZsxIiXv06JHx3OnTp1d6v/KsWrUqVq1aldK2yy671Nj6AAD1VW3UKurTe306DzzwQNx4443VXmdL29p7+scff1xuX8eOHb/znr01aNq0aTz99NNx6KGHltm/bt26OOmkk+KFF16o8b239vPcGp7v2qrBUr66qrndeOONsXLlymS8++67x7nnnlsja++8887f+flXts4xadKklHifffapVA2vJuoczz33XMZjP/nkk5R4zpw58Y9//COjuUVFRVFUVJSMmzVrFgUFBRnvXRmVrY3VF3vssUdMmTIlGjZsmGybO3du/PCHP4xNmzbVyp5bw1nVh2ctG7V5tUcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgtiWynQAAAABAfTZz5syYNm1alecvW7YsJkyYUG7/hx9+GBs2bCi3v3nz5uX29erVK+3eY8eOrTC/O++8M0pLS8vtP/DAA6Nly5YVrlMT6sv1tGjRIk466aRy++fNmxdvvfXWd9o/+uijePvtt8udd9xxx8WOO+6Ydu9MzZs3L2bNmlVm32effRabN29OO/8Pf/hDuX0ffPBB2rnp7sn6aocddvhO29KlS7OQScScOXMqNX758uUpcVXOv6z7NZ2ioqL49NNPU9oOOeSQSu9L9axYsSJKSkqScSbfH3feeWdKPHz48MjNzS13fE5OTpx33nkpbXfffXfaPXr06BENGjRIxosWLYqPPvqowty29O6776bE3bp1y3juO++8U+n90lmyZElKXNZ3BgDAtqS2ahX15b0+ndLS0rjmmmuqPL88W8t7+oEHHhgjR46MBx54IN56661YsGBBFBUVxYYNG6K0tDTlM3LkyLRrtWrVKuN964MmTZrEU089FT169Cizv7i4OE466aR47rnnMl5zezrP+v5812YNlvLVVc1t6dKlMWbMmJS26667LgoKCqq99qGHHpoSf/7557Fo0aJKrfH+++/HmjVrknFOTk6lamk1UeeYO3duxmNXrlxZ5bllza+t56cqtbFsa9OmTTz55JMp32WLFi2Kfv36xYoVK2pt363hrOrDs5aN2nyE2iMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQuxLZTgAAAACgvnr//fdj8ODB1Vpj5syZsXHjxnL7S0tLo6ioqNz+wsLCcvv+7d/+Le3e//u//1thfl999VXMmzev3P5EIhE77bRThevUhPpyPYMHD478/Pxy+ydNmlSlvtzc3DjjjDPS7p2pdGdRWloaS5cuTTt/1qxZ5fYtX7487dx092R9VVbOxcXFdZ5HSUlJrFixolJztswz3b1Znr///e+VnvO3v/0tJe7cuXOl1+C7OnbsGCNGjIj7778//vKXv8RXX30Vq1atipKSkigtLU35lJSURCLxzxJ+ixYtKlz/nXfeiddffz0Zd+rUKfr27Vvu+F69ekXXrl2T8TfffBOPP/542j322GOPlPjjjz+uMK+yLFmyJCVu27ZtxnMXLlxYpT3Ls27dupR4a/yeAwCojNqqVdSX9/p0XnvttZg/f36V55enPr+n5+bmxjnnnBOffvppvP3223HDDTfE6aefHt26dYuOHTtGixYtomHDhmnXKEvLli0rPSdbCgsL46mnnorDDz+8zP7i4uLo379/zJw5s8K1ttfzrO/Pd23WYClfXdbcfvvb38aiRYuScceOHePSSy+t9rqdOnVKiT/44INKr1FSUvKd+tuW66ZT3TpHZWuOW/6MKvo9U9H8ytQra7s2lk15eXkxderU6NKlS7Jt3bp10b9//yr93WNbO6tsP2vZqs1HqD0CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtatBthMAAAAAqI+eeuqpOPvss2PZsmXVWuf999+vcMy6devK7cvJySmzPS8vLwoLC9OuuXjx4ooTjIj58+dH165dy+1v06ZNRutUR326nmHDhqXtnzhxYrl9kydPjv/6r/8q9+c2bNiwuPnmm9Oun4mPP/44bf/69evT9s2fP7/c/tLS0rRrl3dt9VleXl5KvHHjxgqvszZka9/ly5dXe07Lli1rKp3t0m677RY33XRTnHzyyVV+hpo2bZrRuDvvvDO+//3vJ+MLL7wwnnjiiTLHXnjhhSnx+PHjY9OmTWnXb9WqVUp82GGHRXFxcUT88/shJycn5c/p/vdbmd5jmzdvjjVr1mQ0NlNbfmcWFBTU6PoAAPVNbdQq6tN7fTpvvfVWleemU1/f05s1axZTpkyJ3r17p12jKrZ8166vCgsL489//nMcccQRZfavX78+BgwYEDNmzKhwre31PLeG57u2arCkV5c1tzVr1sTo0aPjtttuS7ZdeeWVcc8991Sp9vWtLesRRUVFVVpny3l1Weeo7rmn+x1VU+qyNpYNOTk5MWHChDj88MOTbaWlpTF06NB44403KrXWtnpW2X7WslWbj1B7BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGpXItsJAAAAANQn77zzTpxxxhnRt2/fWLx4cbXXW7ZsWYVjNm7cWOl1W7RokbZ/zZo1Ga9V0djmzZtnvFZV1Zfr2W233aJHjx7l9r/33nvxt7/9rdz+BQsWxEsvvVRu/z777BMHHXRQ2vwysWLFirT9GzZsKLdv+fLlUVpaWm5/gwYNqpxXfbV+/fqUuGHDhpGTk5OlbOrWpk2bqvQds+Vz1KRJk5pKabtz3HHHxTvvvBMDBgyo1n2XSGRWzn/ooYdi6dKlybhPnz7RuXPn74zbYYcdon///sm4pKQkxo0bV+H6W35fJxKJyMvLi7y8vGjUqFE0atQoGjZsGA0aNIgGDRpEbm5u5ObmRiKRiEQiETk5OWWeQ2FhYUbXt2nTpozGVUZ+fn5KvG7duhrfAwCgPqmNWkV9ea+vyJdfflnluenU1/f0hx9+OHr37l3l+Vu7xo0bx/Tp06Nnz55l9m/YsCEGDhwYTz/9dEbrba/nuTU837VVgyW9uq653X333fHZZ58l45YtW8YVV1xRrTWbNm2aEq9du7ZK62x5b2+5bnlqo85R39R1bSwbrr/++jjttNNS2kaOHBmPPPJIpdbZls8q289aNqk9AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALWp/v0X7gEAAADqwNq1a+Prr7+ODz74IB566KG44oor4sADD4yDDjooJk6cWGP7rF+/vsIxJSUllV53xYoVafsLCwszXquisRXtVRPqy/UMGzYs7dz9998/SktL03569uyZdo2K9sjEhg0bqjy3uLg4bX9OTk6V166v1qxZ8522/Pz8LGRS9xo0aBANGjSo9Lwtn6PVq1fXVErbld133z2mTp2acp5r166N+++/P84999w49NBDo1OnTtG0adNo1KhR5OTkpHw2b95c6T2Li4tjwoQJyTiRSMR55533nXHnnHNONGzYMBk/++yzMX/+/ArXX7duXaVzykQ2v3sKCgpS4rK+MwAAtiW1UauoL+/1FVm1alWV56ZTH9/TTz311Dj22GOrNHdbUFBQEE888UT84Ac/KLN/w4YNccopp8Sf//znjNbbns9za3i+a6sGS3p1XXPbuHFjXHfddSltP/7xj2PHHXes8ppb/l5o3LhxldbZ8t6urd83W5ts1Mbq2tChQ+Oaa65JafvDH/4QN910U6XW2dbPant+1tQeAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNqUyHYCAAAAALVpwIABkZOT851PYWFhdOjQIfbee+8YPHhwjBkzJt59991sp5ux4uLiWLNmTbn9BQUF0a5du4zW2mWXXdL2L1mypDKpVUl9uJ6cnJw466yzMtqjOk4//fRo2LBhre/DP33zzTffaWvTpk0WMsmOFi1aVHtOUVFRTaXzHbm5ubW2drbdfPPNkZ+fn4zfeOON6NKlSwwbNiwmTJgQb775ZixcuDBWr14dGzduTJmbn59f5bO56667orS0NBkPHz48Za2cnJw4//zzU+bcfffdGa295Xfo+PHjy/w9W9lP7969q3StNaF169Yp8aJFi7KUCQDA1qs+vNdnoqSkpMpztzZDhw5N2798+fK49tpr48ADD4xmzZpFIpFI+Tv6r3/96zrKtOYVFBTEE088EUcffXSZ/Rs3bowf/vCHMX369IzX3J7Pc2t5vql72ai5TZw4MebMmZOMGzduHNddd12V19uy5tWyZcsqrbPlvGXLllU5p21JtmpjdeXII4+McePGpbQ999xzcfHFF1d6rW39rLbnZ03tEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhNiWwnAAAAAEDVfPbZZ2n7e/bsWeEaHTp0iC5dupTbX1JSEl988UWlc6uKbF/PUUcdFTvttFOFe1RXmzZtom/fvrW+D/+0Zs2aWLp0aUpbx44ds5RN3fve975X7TlffvlluWM3bdqUEjdo0KBSe7Vs2bJS47cWLVq0iOOPPz4Zb9iwIU455ZT45ptvMprfrl27Ku89b968ePbZZ5Nxx44d44QTTkjGxxxzTOy6667J+Ouvv44nnngio7W3vBe6du1a5Tzrg6ZNm0bTiFPGKgAAIABJREFUpk1T2ubPn5+dZAAAtnLZfq8n1ZFHHllu3/r16+OII46I0aNHx7vvvhurVq2K0tLSlDHNmzev7RRrRX5+fkybNi169epVZv/GjRvj1FNPjccff7xS626v5/ktzzdlyUbNraSkJK666qqUtuHDh6e9t9JZsGBBSlyVOloikYg999wz7brbo2zWxurC7rvvHo8++mg0atQo2fa3v/0tBg0aFBs3bqzUWtv6WUVsv8+a2iMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQ2xLZTgAAAACAqnnuuefS9l988cUVrnHxxRdHTk5Ouf3vvPNOFBUVldu/efPmtOs3atSowhy+le3rGTZsWIXr15S63Kuu1eQ9UZM++uijlHjnnXfOSh7Z0L1790qNb9myZey6664pbW+++Wa541euXJkSN2vWrFL7de3atVLjtxb77bdfNGzYMBnPmjUrFi5cmPH8yv7ctjR27NiU+IILLkj++cILL0zpGz9+fGzatCmjdf/3f/83SktLk3H37t2jcePG1cg0u7b8Lli+fHksXrw4S9kAAGzdsv1ezz81adIkmjRpUm7/888/H3Pnzk27xiGHHFLTadW6vLy8mDp1ahxzzDFl9m/atCmGDBkSU6dOrdS62T7P+lBr8XxTnmzU3KZPnx4vv/xyMm7YsGGMHj26Smu9/vrrKfEuu+wS7dq1q9Qae++9dxQWFibjkpKStLW07UW2a2O1qXXr1vHkk09Gq1atkm3/+Mc/4oQTTojly5dXer1t+ay+tb0+a2qPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQG1LZDsBAAAAAKrmmWeeSdt/9NFHx09/+tNy+4844oi4/PLLq7XH6tWr0/Z37do1bX9l9qrN6yksLIxTTjml4iRrSL9+/aJNmzZ1tl9dqsl7oibNnj07Jd53332zkkc2DBo0qFLjBw4cGInEP0vHf//732Pp0qXljl+yZElKXNmf8VFHHVWp8d/atGlTSvyvOdcH7dq1S4kXLFhQqfn9+/ev1v7Tp0+PL7/8Mhn36dMndtppp2jfvn2ceOKJyfaSkpK49957M1538eLF8d577yXjgoKCaueaTVt+F2z5XQEAQObqQ52C/5efn5+2v0GDBmn7Dz/88DjkkENqMqVal5eXF4899lgcd9xxZfZv2rQpTjvttHj00UcrvXa2z7M+1Fo835QnWzW3kSNHpsSDBw+OAw44oNLrfPHFFyn1k4jK19KGDBmSEr///vuxcuXKSueyrcl2bay25OXlxdSpU1O+e4uLi6N///7x2WefVWnNbJxVXddWt9dnTe0RAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqG21+1+rBwAAAKDWPPPMMzF37ty0Y/77v/87HnjggTjiiCOiadOmkZeXF3vttVf86le/ihkzZkReXl65c9evXx9jx45Nu/6yZcvS9t90001xyCGHROPGjdOOi8ju9QwaNCgKCwsrzLGmNGzYME477bQ6268u1eQ9UZPefPPNlHi//far0/2zqUePHnHooYdmNDaRSMSll16a0nbfffelnfPFF19EUVFRMt5xxx2ja9euGe1XUFAQ55xzTkZjt7R69ervrFWfFBcXp8StWrXKeO4uu+wSgwcPrtb+mzdvjnHjxiXjRCIRw4cPj3PPPTcaNmyYbH/mmWdi/vz5lVr79ttvT4l/8YtfpKy5Ndnyu2DL7woAADJXH+oU/L9ly5bFpk2byu3v0aNH7LzzzmX27brrrjFp0qTaSq1WNGrUKKZMmRJ9+vQps3/z5s1xxhlnxCOPPFKl9bN9nvWh1uL5pjzZqrm9/PLL8eSTTybjnJycuPHGG6u01pa1r8suuywaNGiQ0dzmzZvH+eefn9I2fvz4KuWxrcl2bay2jB8/Po444ohkXFpaGmeffXa89tprVV4zG2eVjdrq9visqT0CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtS2R7QQAAAAAqJqSkpK47rrrKhx3+umnx0svvRQrV66M4uLimDt3blxzzTVRUFCQdt6dd94ZCxcuTDtm7ty5afu7desWb7zxRqxZsyZKS0tTPmeeeWa9uZ5hw4alnXvRRRdFTk5OpT6nnnpq2jUr2nNrVZP3RE167rnnorS0NBn36NEjcnJyam2/+ub222+PvLy8Csdddtllsf/++yfj4uLimDBhQoXzXn311ZT4oosuyiivMWPGRNu2bf+PvXsPsrKuHzj+2cORi8SgghfawAyR1BovMIOJFl4QREEQURe5VeJk5aVMw8RAUUvTGcJGRHBGBUVSwAQClUzHyMugjg6hBqFyEQF1ceW67OX3R/Pb3Aw87J493wVer5n94/uc5/k+7/OwDzN+/IOczv1v69evr7U+/PDD67RPQ1mxYkWtdY8ePaJ169Zfet1+++0X06ZNi6ZNm9a7YfLkybFjx46a9Q9/+MMYOXJkrXPuu+++3d73wQcfrPX9OnfuHJMmTap7aELdu3evtX7mmWcSlQAA7Pkaw5yCf6uqqopXXnllp59/5StfiYULF8bFF18cxcXF0bRp0+jYsWNcd911sXjx4mjfvn0Ba+vv8ccfj3POOWennzdp0iRmzJjxhTnErn7Gjh1bc33q59kYZi3e74b39ttv7/T38Ze//OUur50/f/5Or7333nsbtDvlzO1Xv/pVVFVV1ax79+4dp5xyym7vM3HixCgvL69Zd+7cOUaNGpXTtXfeeWet2VZZWVlOs7R9QWOYjeXbTTfdFIMHD651bPTo0TFjxox67ZviWaWYre6L75rZIwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANDQMqkDAAAAAKi7WbNmxeTJk/O+72uvvRY33HDDl5730ksvRUVFRd7um+L7dOjQIXr06LHTaysqKmLmzJm7fc958+bF5s2bd/p5ly5d4thjj93tfRu7fP9O5MvatWvjjTfeqFm3bds2vvWtbyUsKqyuXbvG9OnTo2XLljs9Z/DgwXHnnXfWOjZ27NhYv379l+7/wAMP1FpfeeWVcfrpp+/0/EwmE7fddlv85Cc/+dK9d+bzf54REb169arzXg1h6dKl8d5779WsW7duHZMmTYpsNrvTaw488MCYN29edO/ePS8NH374YTzxxBM16+Li4vj6179es/7ggw9i7ty5u71vRUVFXHLJJbF9+/aaY9///vdj1qxZ0aZNm5z3Ofjgg+Paa6+t09+x+dCiRYvo1q1bzbqsrCwWLVqUpAUAYG+Rek7BfzzyyCO7/PzII4+M6dOnx+rVq2P79u2xfPnyuP322+PAAw8sUGF+ZLPZ6Nu3b4PfJ+XzbCyzFu83/0vKmdubb74Z06dPr3Wsc+fOu73P2rVrY8yYMbWO3XzzzXH55Zfv9JpMJhPjxo2LSy+9tNbxa665JsrKyna7YW/UGGZj+TRkyJD49a9/XevYAw88ELfddlu9907xrFLMVve1d83sEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiETOoAAAAAAOrnxz/+ccyfPz9v+7333nvRr1+/2LJly5ee+9FHH8XcuXPzdu+Iwn+fYcOGRVFR0U6vf/bZZ+Ojjz7a7ftu2bLlS5/N8OHDd3vfxq4hfifyZebMmbXWvXr1SlRSONu3b4/Zs2dHRMSAAQPijTfeiMsvvzyOOOKIaNasWRx88MHRq1evmDlzZjz88MPRpEmTmmtffPHFuOuuu3K6zxNPPBGvv/56zXq//faL+fPnx+9+97s4/vjjo2XLltGiRYs48sgj47LLLos333wzrr/++oiImDx5cp2+25w5c2qtr7322vj5z38eHTt2jGbNmtVpz3y77bbbaq0vuuiiePnll2Pw4MFRXFwc2Ww2DjjggOjSpUuMHTs2li9fHj179oyIiGnTpkVlZWW9GyZOnLjTz+6///6oqKio074vvfRSXHrppbUaBwwYEO+//35MnDgxzjvvvGjfvn3sv//+sd9++0WbNm2ic+fOMWDAgBgzZkwsWrQoPvzww7jjjjuiY8eOdWqor+9973vRtGnTmvWcOXNix44dSVoAAPYmKecU/MfkyZPjnXfeqdO1paWlMWPGjDwX7dlSPs/GNGvxfvO/pJy53XjjjXn5b/k77rgjFi5cWLMuKiqKe+65J5566qno379/tGvXLpo2bRrFxcVRUlISixYtitGjR9fa449//GNMmTKl3i17k8YwG8uHNm3axP3331/r2HPPPReXXXZZ3u5R6GeVara6L71rZo8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAIWRSBwAAAABQPxUVFdG3b9+45ZZboqqqql57zZ07N7p06RJr1qzJ+ZrrrrsuNm3aVK/7fl6hv8+wYcN2ucejjz5a5/vPmDFjl58PGTIkmjRpUuf9G6t8/07ky9SpU6O6urpmPXDgwIQ1hTNixIh47bXXIiKiY8eOcc8998SKFSti27ZtsX79+liwYEGcf/75ta559dVXo0+fPlFRUZHTPSoqKmLo0KFRWlpac6xp06bxi1/8Il5//fXYtGlTbNmyJZYtWxaTJk2KY489NiIiHnrooRg1alSdvteCBQtqvldERIsWLeKuu+6K5cuXx7Zt26K6urrWT9euXb90z4suuugL1+3OT+/evWvtN2XKlC/8PXDiiSfGww8/HKtXr44dO3ZEaWlpLF68OMaMGRMHHXRQREQ8/fTTMXLkyDo9l//217/+Nd56660vHK+qqoopU6bUa+9p06ZF79694+OPP6451rJly/jRj34UTzzxRKxcuTI2b94c5eXl8dFHH8Xbb78ds2bNirFjx8bJJ58cmUza/0VxwQUX1Fo/+OCDiUoAAPYuqecU/Ft5eXn07ds3NmzYsFvXlZaWRu/evWP58uUNVLZnSv08G8usxfvN/5Jy5vbuu+/GfffdV+99qqqqol+/fvHkk0/WOn7WWWfF7Nmz44MPPojt27fH6tWr45FHHomTTjqp1nkPPfRQXHLJJfXu2Ns0htlYPrRo0SKaNm1a61iPHj2ivLy8TjPE/zWnLPSzaojZai72pXfN7BEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAohEzqAAAAAADqr7KyMm688cbo1q1bPP7441FVVbVb1y9evDguvPDC6NevX3zyySe7de2yZcvirLPOipUrV+7WdbtSqO9z8sknR6dOnXb6eXl5ecyePXu37v158+fPj88++2ynn7dr1y569uxZ5/0bq4b4nciH999/P5599tmadbdu3aJ9+/YJiwqjrKwsevToEdOmTfvSc6urq2PixIlx2mmnxcaNG3frPv/4xz/ilFNOiSVLlnzpuZs3b45rrrkmhg8fvtvv9/+rqqqK888/P1577bU6XV8I1dXVMWTIkLj99tujsrLyS88vLy+PW2+9Nc4555zYtm1b3jruvffeLxxbsGBBXt7RhQsXxre//e2YMGFCbN26td77FUo2m43zzjuvZr1q1ar4y1/+krAIAGDvknJOwX8sW7YsunTpEi+88EJO5z///PPRtWvXeOWVVxq4bM+U8nk2plmL95v/lnrmNm7cuNi8eXO999m6dWucf/75ccUVV8SGDRtyumbNmjXxgx/8IEaMGBEVFRX1btjbNJbZ2J6g0M8q5Wx1X3jXzB4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAQsmmDgAAAAAgfxYvXhyDBg2KDh06RM+ePePUU0+N4447Ltq2bRsHHXRQZLPZKC0tjU8++SSWLVsWL7zwQjz33HOxePHiet33xRdfjE6dOsWgQYOiT58+ceKJJ8ahhx4arVq1imy27iOohv4+w4cP3+XnTz/9dGzcuLHO/du2bYs//elPMWTIkJ2eM2LEiFiwYEGd79FYNdTvRH2NHz8+zjjjjIiIKCoqihEjRsS4ceOS9RTKZ599FkOHDo1bbrklLrnkkujZs2cUFxfHIYccEmVlZbFq1ap45plnYtq0abFkyZI632fp0qVx3HHHxQUXXBD9+/ePbt26xSGHHBLZbDY++OCDWLFiRcyaNStmzJgRn3zySb2/1/vvvx/dunWLPn36xIABA+K4446L9u3bR6tWraJZs2b13j8fKioqYtSoUTFp0qS49NJL47TTTotOnTpF69atY9OmTbFu3bpYsWJFPPnkkzF79uxYv3593humTZsW48ePj6KioppjkyZNytv+a9eujauuuirGjRsXZ599dpx++ulxwgknxMEHHxxt2rSJiIiysrKan48//jjeeuutWLJkSc1PoZ133nnRtm3bmvXdd98dVVVVBe8AANjbpZpT8B+rVq2K7373u3HGGWdESUlJdO/ePb761a9G8+bNY8OGDbF27dp4/vnn47HHHouXX345dW6jl/J5NrZZi/ebz0s5c1u3bl2MHz8+brjhhnrvVVlZGX/4wx/iwQcfjH79+kWfPn3i+OOPj0MOOSRat24dGzdujHXr1sWrr74af/7zn2POnDmxdevWPHyLvVdjmI3tKQr9rFLOVvf2d83sEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiUourq6urUEQAAAEDjsGDBgjj77LNTZwA0mKKioli6dGl885vfjIiIlStXxhFHHBFVVVWJy/Ln8yPf7du3R/PmzRPW0Bicc845MXfu3Jr1mjVr4vDDD4/KysqEVWk9/fTT0bNnz4iI2LRpU3zta1+LTz/9NHFV3Z111lnx1FNPpc4A2KNNmTIlRo4cmToDAGCPtC/M3ABytbfNHmFXWrVqFWVlZakz9gknn3xyvPjii7WOfec734m///3viYoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBG4LFM6gIAAAAAgEKprq6OW2+9tWbdoUOH6N+/f8IiaHgjR46stb7//vujsrIyUU16Rx99dJx55pk167vvvjs+/fTThEUAAACwZzNzA/g3s0cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgkDKpAwAAAAAACumRRx6JJUuW1Kyvv/76hDXQsIqLi+Pcc8+tWVdUVMSUKVMSFqU3atSoKCoqioiIjRs3xh133JG4CAAAAPZ8Zm4AZo8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAYWVSBwAAAAAAFFJVVVVcf/31NeuuXbtGr169EhZBw7n66qujSZMmNeuZM2fGqlWrEhaldcQRR8TgwYNr1r/5zW9i48aNCYsAAABg72DmBuzrzB4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAQsukDgAAAAAAKLS5c+fGvHnzata//e1vo6ioKGER5N9RRx0VP/3pT2vW1dXVcfvttycsSu/WW2+NbDYbERHvvPNOjB8/PnERAAAA7D3M3IB9mdkjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUGiZ1AEAAAAAAClceeWVsW3btoiIOP7442PIkCGJiyA/DjvssBg8eHAsXLgwmjdvXnN8+vTp8frrrycsS6tLly5x8cUX16yvuOKKKC8vT1gEAAAAex8zN2BfZPYIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApJBNHQAAAAAAkMKKFSuiRYsWqTMgL2655Za44YYbdvr5+vXr42c/+1kBixqfV199NTKZTOoMAAAA9gDV1dUNsm9RUVGD7NuYmLkB+yKzRwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAF/8o6AAAAAADsxTZs2BB9+vSJ9evXp04BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD7KpAwAAAAAAgPz67LPP4p///GfMmzcvJkyYEB9//HHqJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPIkmzoAAAAAAID8KSoqSp1AAqNHj47Ro0enzgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAAsqkDAAAAAAAAAAAAoLEoKipKnQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALuUSR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAbjKpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhNJnUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAucmkDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA3mdQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CaTOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDcZFIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJtM6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAByk0kdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQG4yqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITSZ1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALnJpA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgN5nUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQmkzoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA3GRSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCbTOoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcpNJHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBuMqkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyE0mdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC5yaQOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDeZ1AEAAAAAAAAAEBFRWVkZjz76aGzZsiV1CgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0WpnUAQAAAAAAAAAQEVFZWRklJSXRtm3b6Nu3bzz22GNRXl6eOgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGpVM6gAAAAAAAAAA+LytW7fG3Llz48ILL4zDDjsshg0bFnPmzInKysrUaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQXCZ1AAAAAAAAAADsTGlpaUydOjX69esXhx9+eFx11VXxt7/9LXUWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSTSR0AAAAAAAAAALlYs2ZNTJgwIU499dQ4+uij4+abb45ly5alzgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgsqkDgAAAAAAAACA3fX222/HmDFj4qijjopjjz02xo4dG++++27qLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocJnUAQAAAAAAAABQH0uXLo2bbropjjzyyDjllFPi97//fWzYsCF1FgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0iEzqAAAAAAAAAADIh6qqqli0aFFcffXV0a5du+jZs2c89NBDsWnTptRpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJA3mdQBAAAAAAAAAJBvlZWVsXDhwhg+fHi0a9cuhgwZEvPmzYsdO3akTgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAesmkDgAAAAAAAACAhrRp06Z4+OGH49xzz41DDz00hg0bFnPmzInKysrUaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACw27KpAwAAAAAAAACgUEpLS2Pq1KkxderUKC4ujoEDB0aLFi1SZwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAzrKpAwAAAAAAAKi7N954Iy688MLUGQB5UVVVVdD7rVmzJiZMmFDQewIAAADsDaqrq82mG9CwYcPi3HPPTZ0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0YtnUAQAAAAAAANTdunXr4rHHHkudAQAAAADAPqS6utpsugGddNJJqRMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBGLpM6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNxkUgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQm0zqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHKTTR0AAAAAAABA3bVo0SIoN6ONAAAgAElEQVTatWuXOgMgL6qrq+Pdd99NnQEAAABADr7xjW+kTtjjVVRUxMqVK1NnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAe6Bs6gAAAAAAAADq7tRTT42nnnoqdQZAXpSXl0ezZs0Kes8uXbpEp06d4tFHHy3ofQEAAAD2ZJlMJv71r3+lztjjrV69Otq3b586AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2ANlUgcAAAAAAAAAQCEdc8wxMWbMmFi+fHksXrw4zjjjjNRJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCzbOoAAAAAAAAAAGhoHTt2jJKSkigpKYljjjkmdQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1Fk2dQAAAAAAAAAANIQ2bdrEwIEDY+jQodG9e/coKipKnQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9ZZNHQAAAAAAAAAA+XLAAQfEwIEDo6SkJHr06BFNmjRJnQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeZVNHQAAAAAAAAAA9dG8efM488wzY9CgQXHBBRfE/vvvnzoJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpMNnUAAAAAsGfp3LlzZDKZ1BkAAMls3Lgx1q5dmzoDYJ+XzWajZ8+eUVJSEv37949WrVo12L0ymUx07ty5wfYHAPYOVVVV8c477+zynA4dOkTLli0LVAQAUHdm4QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI1bNnUAAAAAsGd5+eWXo3Xr1qkzAACSmTJlSowcOTJ1BsA+q0uXLjF06NC4+OKL49BDDy3IPVu2bBlLly4tyL0AgD3Xp59+GgcccMAuz5k0aVL07t27QEUAAHVnFg4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANC4ZVMHAAAAAAAAAMCuHHPMMTFo0KAYOnRodOzYMXUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSVTR0AAAAAAAAAAP+tQ4cO0b9//xgxYkSccMIJqXMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoNHIpg4AAAAAAAAAgIiITCYTV111VZSUlES3bt1S5wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAo5RNHQAAAAAAAAAAERHZbDbGjx+fOgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrVM6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAByk0kdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQG4yqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITSZ1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALnJpA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgN5nUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQmkzoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA3GRSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCbTOoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcpNJHQAAAAAAAAAAAAAAAAAAAAAAAMD/sXfn0VXW18KAdwaCIJMMCiJUii1VnLH9FCsoDgzaFidU1GoVqEpRwCVa0d5bEa0VHLlVVMSLV1GL1YoDCPQyCaVOoDgLYg0yz4OQEPL90dVcY3KSk3CSA+F51jprnd+8X857kr1f/ggAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEByMtMdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnJTHcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCcz3QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnMx0BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEByMtMdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnJTHcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCcz3QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnMx0BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEByMtMdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnJTHcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCcz3QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnMx0BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEByMtMdAAAAAADsrUaMGBEZGRlFr/Xr16c7JKrRjBkzin3+/37dc8896Q4NKu3yyy8vcU/vu+++kZubm+7QAABqNPXl3kttSU2lvoS9l7xm7ya3oaaS2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAVMtMdAAAAAEA6fPDBB/HHP/4xunbtGocddlg0bdo0ateuHQceeGAcffTRccEFF8QTTzwRK1asSHeoQA1UUFAQ1113XYn+5s2bx9VXX52GiCA1br311sjOzi7Wt3Xr1hgyZEiaIgIAgJpLbUlNpr5MD8/NgXSS21CTyW0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoCpnpDgAAAACgOv3973+Pk046KQ4//PC48cYb4/XXX4+PPvoo1qxZE3l5ebFs2bJYsGBBPPfcc/GrX/0qWrZsGVdddVUsX7483aEDNcjYsWNjwYIFJfqvv/76qFOnTplrR40aFRkZGQlfDRo0iFWrViUVx0EHHZRwn/Xr11fq2tg95eXlxYcffhgvvvhi3HXXXXHFFVfEiSeeGE2bNk14D2RnZ1f4nLZt20bv3r1L9I8fPz7mzZuXiksBgL3WwoULi/2uPu+889IdEpBmakvSQX1ZM3luDuwO5Dakg9wGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPVlmugMAAAAAqA4FBQXRv3//OOGEE2L27NkVWjd69Og45JBDYsKECVUYYeU88cQTkZGRUfT6/PPP0x1Stdrbr589U15eXgwbNqxEf7169aJv3767vP+mTZtK3Z+927XXXhvt27ePs88+O2666aYYO3ZszJkzJ9asWZPyswYNGlRq/6233pryswAAUkV9yZ5GbUm6qC9rFs/Na6a9/frZM8ltSBe5DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHuyzHQHAAAAAFDVtm7dGmeffXb86U9/Ktb/wx/+MIYNGxZvvfVWrFixIrZv3x5fffVV/O1vf4sBAwZE48aNi+Zu2bIlLrjggrj//vurO3yghhkzZkz885//LNF/+eWXR8OGDVNyxujRo2Px4sUp2Qsq6uijj47OnTuX6J8yZUrMnj07DREBAEDNo7Zkb6C+rFqemwO7E7kNewO5DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKmWme4AAAAAAKpa3759Y+LEiUXt7OzsuPPOO2PhwoVxyy23RIcOHWL//fePnJycOOigg+KUU06JBx54ID7++OO48MILi9bt3LkzBg4cGBMmTEjHZQA1wM6dO+Oee+4pdezKK69M2Tl5eXlxyy23pGw/qKhE9/OIESOqORIAAKh51JbsTdSXVcdzc2B3IbdhbyK3AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJUy0x0AAAAAQFUaO3ZsPP3000Xt7OzseOaZZ+Kmm26KWrVqlbm2WbNmMX78+LjmmmuK9fft2ze+/PLLKokXqNkmTpwYn3/+eYn+o48+Oo4++uiUnvXMM8/Eu+++m9I9IVnnnntu1K9fv0T/xIkTY/HixWmICAAAag61JXsT9WXV8Nwc2J3IbdibyG0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIpcx0BwAAAABQVTZt2hSDBg0q1nfHHXfEueeeW6F9Ro0aFV26dClqr1+/Pq6//vqUxAjsXR577LFS+88777yUn1VYWBg33nhjyvdlz1S7du049NBD4xe/+EUMGTIkxowZE7NmzYqVK1fGvvvum/Lz6tatGz169CjRv3Pnzhg7dmzKzwMAgL2J2pJ0Ul/u+Tw3B3Y3chvSSW4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAniw73QEAAAAAVJVHH300NmzYUNQ+5phjYvDgwRXeJyMjI0aPHh2HH354bN++PSIiXnjhhVi0aFG0bds2ZfHuDgoLC2PKlCkxZsyYeO+99+Krr76KWrVqRatWraJr165x+eWXR/v27dMdZlqtW7cuxo8fH6+//nq8//77sXr16ti6dWs0aNAgWrRoEccdd1x069YtevbsGfvss0+lz3nnnXdi9OjRMWfOnPjnP/8ZO3fujObNm0enTp3iV7/6Vfz0pz+t8J5fffVVTJgwIWbNmhULFiyIlStXRn5+fjRp0iRat24dnTt3jl69esWxxx5b6bgjqvY+KiwsjMmTJ8crr7wSs2fPjuXLl8fatWujfv360aJFizjppJPinHPOidNOO22XrqEqrFq1KiZNmlTqWM+ePavkzClTpsS0adPi1FNPrZL9v23WrFkxderUeOONN+KLL76ItWvXxubNm6Nhw4bRuHHjaNeuXfz0pz+N7t27x5FHHpny81euXBmPP/54vPjii/HFF1/Ehg0bomnTpnHMMcfEOeecE5deemlkZ1f8kfi8efNiypQpMWvWrFi0aFGx62rWrFkcc8wxcfrpp8fZZ58dDRs2TPl1pcr9999f7WeeffbZ8eyzz5bof+qpp+K2226LjIyMao8JAPg/VVFzfJv6snzqy7KpLUtX02vLCPWl+rIk9WVqeW5ecfKa8slryie3KV1Nz23kNbt3XhMhtwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDPllFYWFiY7iAAAACA3cOkSZOie/fuZc5Zv359NGzYsJoi2jVt2rSJJUuWFLWfeuqp6N27d6X36927d4wfP76oPXDgwLj33nsTzu/Zs2f89a9/jYiIo446KubPn5/UORMmTIjzzz+/qP3+++/H4YcfXmxOvXr1YsuWLRUJP5588sm45JJLIiJixIgRccMNNxSNrVu3LrZv3x7nnXdezJ49O+Ee2dnZcf3118fw4cMjKyurzPN25+uvrEcffTRuuOGG2LBhQ7lzGzduHLfeemv0798/atWqVeqc0j6HnJyc6Nu3bzz99NNl7n/llVfG6NGjy/0cIiJef/31uPvuu2PatGmRzOPAc845Jx599NFo3LhxmfOq4z76tunTp8fgwYPj3XffLXdu586d47HHHotDDjkk6f2r2pgxY6JPnz4l+lu2bBm5ublJ7zNq1KgYMGBA0vM7dOgQb775ZmRkZJQYO+igg2Lp0qWlrlu3bl00atSo3P3/8pe/xLBhw5L+jkdEnHbaafH73/8+OnbsWO7cbt26xeTJk0sdW7ZsWTRv3jxGjRoVN954Y2zdujXhPu3bt4+XX345Dj744KRifPXVV+O2226LefPmJTW/UaNGMXjw4LjxxhsjJycnqTW7i0Q/U7OysmLHjh2V3nfNmjXRrFmzUn/uvPXWW9GhQ4dK751ujz32WPTt2zfdYRQ544wzEn5PAEhOeT/b69evHxs3bqzGiEpauHBhHHHEEUXtc889NyZMmFDmmuqoOdSXlaO+LDt2tWViNbW2jFBf/pv6sqQ9qb7csGFDuff8a6+9Ft26daumiEry3Lw4z83lNZ6bp1dNzW3kNf+yJ+c1EXKbiD3jeUlNkJubG61atSrRP3LkyBg8eHBERHTs2DHmzp1bbPyEE06IOXPmVEuMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAbunPmemOAAAAAKAqfPbZZ7FkyZKidqNGjeKcc87ZpT379OlTrD1lypRd2m93snHjxjjllFNi9uzZZc7bsWNH3HXXXXHppZdGQUFBNUW3exgxYkT069cvNmzYkNT8tWvXxqBBg2LGjBlJn7F9+/bo1q1bPP300+XOHTNmTFx99dXlzlu+fHl07do1pk6dGoWFhUnF8Ze//CVOPPHEWLFiRVLz/60q76OHHnooTjvttHj33XeTmj9jxozo2LFjvPXWW2XOGzVqVGRkZBS9rrrqqqT2r4zXXnut1P7OnTun7IzMzJKPfN9+++149tlnU3bGv33zzTfRp0+fOPfcc2P+/PkVWjt16tTo1KlT3HHHHUnfl4kMGDAgBgwYEFu3bi1z3gcffBCdOnWK9evXlzkvLy8vrr322jjzzDNj3rx5Scexfv36+N3vfhcnn3xyLF++POl1NVmTJk2iffv2pY4l+j4AAFWrKmqO71Jflk99WTa1ZdlqWm0Zob78LvVlSerL1PHcvGLkNeWT15RPblO2mpbbyGuKk9eUTm4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAqpT8a+4AAAAANcCsWbOKtTt27Bj77LPPLu154oknRq1atYraH374Yaxdu3aX9txdXHvttfHRRx9FZmZm9OvXL+bOnRsbNmyITZs2xZtvvhkDBgyIrKysovnjx4+PO+64I40RV69FixbF0KFDi9q1a9eOgQMHxsyZM2PVqlWRn58fmzZtis8//zzGjx8fv/zlL6NOnToVPmfgwIExa9asyMnJiWuvvTbmzp0b69ati2+++SYWLlwYgwcPLvY5PProozFz5syk9z/hhBNixIgRMXv27Fi+fHls3749Nm7cGO+9916MHDkyWrduXTT3448/jr59+1Yo/qq6j8aNGxfXXHNNFBQURERErVq14rLLLotJkybFihUrIi8vL1avXh2TJk2Knj17Fq1btWpV9OzZM1avXl2h66gq06dPL7X///2//5eyMy644IKoXbt2if5bbrkl8vPzU3bOzp07o1evXjFmzJhK71FQUBBDhw6NW2+9tdJ73HbbbTFq1Kik53/11Vdx4403JhwvLCyMSy+9NB588MFKxzR37tzo3LlzbNiwodJ71CSJ7u+//e1v1RwJABBR9TVHhPqyPOrL8qkty1aTassI9WVZ1JfFqS9Tw3PzipHXlE1ekxy5TdlqUm4jr0lMXlOS3AYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBUyEx3AAAAAABV4a233irW/vGPf7zLe9auXTuOOOKIonZhYWG8/fbbu7xvZWzevDkKCwtj7Nixxfo/++yzKCwsLPV1ySWXJNzvr3/9a+Tk5MTEiRNj9OjRcfzxx0eDBg2iXr16cdxxx8UDDzwQU6ZMiTp16hStuf322+OTTz6psmssS6qvvzzjx4+PvLy8iIjIzMyMSZMmxb333hsnnXRSNG3aNLKzs6NevXrRtm3buPDCC+O///u/Y+nSpTFw4MDIyclJ+pxnnnkmmjVrFnPmzIn7778/jj/++GjUqFHss88+0b59+xg5cmQ89thjxdY8+OCDZe6ZkZERPXv2jA8++CDmzJkT119/fZx44olxwAEHRE5OTtSvXz+OOOKIGDx4cCxcuDC6d+9etHbixIkxffr0pOOvivvo008/jauvvrqo3aJFi5gzZ0488cQT0bVr19h///2jVq1a0aRJk+jatWu88MIL8dhjj0VGRkZERCxdujRuuOGGpK+hqixevDjWrFlT6ti3f67sqtatW8c111xTon/RokXxyCOPpOycW265JV5++eWU7DV8+PB4/vnnK7X2oYceqvCacePGxbp160odu/322+O5556rVCzf9umnn8Yvf/nLXd6nJkh0f7/99ttRWFhYzdEAAFVRc3yX+rJs6svyqS0Tq2m1ZYT6sjzqy/+jvkwNz809N5fX/Ivn5nKbCM/Nv01eU/3kNgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKRCZroDAAAAAKgKK1euLNb+/ve/n5J927RpU6y9atWqlOy7O/jDH/4QPXr0SDh+yimnxH333VfUzsvLK9auyd57772i9x07doyTTz653DX77bdf3HvvvdGpU6ekz8nIyIinn346OnTokHDO5ZdfHj/96U+L2hMnToz8/PyE8w844IB44YUX4rDDDiv3/Pr168ef//znaNmyZVHfI488kmT0/5Lq+2jYsGGxdevWiIioVatWvPrqq3HccceVGcOVV14ZgwcPLmo/9dRTkZubm+wlVIkFCxYkHGvXrl1Kzxo6dGg0bNiwRP9tt90Wmzdv3uX9v/rqq7jnnnsSjjdv3jweffTR+Prrr2P79u2xePHiGD58eNStWzfhmiFDhsSOHTsqHVO/fv3i/fffj23btsXixYvj17/+dcK527ZtiylTppToX7ZsWdx5550J1x122GHxzDPPxPLlyyMvLy+WLFkSd9xxR+yzzz6lzn/ppZdi2rRpFb+YGubQQw8ttX/jxo2xePHiao4GAKiKmqM06svE1JfJUVuWribVlhHqS/VlxagvU8Nz84qT1yQmr0me3KZ0NSm3kdfIaypKbgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAqZKY7AAAAAICqsHbt2mLthg0bpmTfRo0aFWuvWbMmJfumW+vWrWPAgAHlzuvTp0+0a9euqP3UU0/F9u3bqzK03cLmzZuL3terV6/KzjnjjDPitNNOK3feRRddVPR++/bt8dFHH6Ushn333TeuueaaovaUKVOSXpvq+2jZsmXxzDPPFLX79esXRx99dFKx3HzzzVG7du2IiMjPz48XX3wxqXVV5Ysvvii1Pzs7O5o3b57Ss5o0aRJDhgwp0b9y5coYOXLkLu9/7733JvzeN2nSJObMmRN9+vSJFi1aRE5OTrRp0yZuvvnmeOmllyIzs/RH0osXL45nn322UvEMGzYsRo8eHYcffnjUrl072rRpEw8//HCcddZZCde8/fbbJfruueee+Oabb0qd3759+5g3b15ccMEFccABB0StWrXie9/7Xvz2t7+Nl156KTIyMkpdN3z48EpdU03SsmXLhGOJvhcAQNWpjppDfVk29WX51JaJ1aTaMkJ9qb6sGPVlanhuXjHymrLJa5Ijt0msJuU28hp5TUXJbQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEiF0v9aOgAAAMAebtOmTcXa9erVS8m+391n48aNKdk33Xr37h3Z2dnlzsvMzIxLLrmkqL1p06Z49913qzK03cKBBx5Y9H7u3LmxdOnSKjnnwgsvTGrescceW6z9xRdfpDSOn/70p0XvV69eHf/85z+TWpfq+2jq1KmxY8eOovall16aVBwREY0bN47jjz++qD1r1qxS5/3mN7+JwsLCotfDDz+c9BkVkeieadasWWRmpv4x7cCBA4vdt/82cuTIWLly5S7t/corryQcu/XWW6NNmzaljp166qnRu3fvhGtfe+21Csdy6KGHxm9/+9tSx8r6Pn399dcl+l5++eWE88eNG5fw98jpp58e3bt3L3Vs5syZsWHDhoT77g2aN2+ecCw3N7caIwEAIqqn5lBflk19WX59qbZMrCbVlhHqy+9SX5ZNfZkanptXjLymbPIaz813VU3KbeQ1xclryie3AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBVS/5fhAQAAAHYD9erVK9besmVLSvbdvHlzsXaDBg1Ssm+6nXjiiUnP7dixY7H2m2++mepwdjvdunUrer9hw4bo0qVLvPDCC7Fjx46UnnPcccclNW///fcv1t6wYUNK4/ju/kuWLElqXarvo1mzZhW9z87OjmOOOSbp/SMi2rRpU/T+888/r9DaVNu0aVOp/XXr1q2S8+rWrRv/8R//UWocw4YNq/S+X3/9dXz66acJx3v37l3m+rLGp0+fXuF4LrvsssjKyip17Nuf/3d99zuzfPny+Pjjj0ud27Zt2zj22GPLjOO79/O/FRQUFLuP90Zl3ePf/Z0KAFS96qg51JdlU18uKXeN2jKxmlJbRqgvE1FfJqa+TA3PzStGXlM2ec2SpNbJbRKrKbmNvKZ08pqyyW0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIhex0BwAAAABQFZo0aVKsvX79+pTs+919GjdunJJ90+2HP/xh0nPbtWtXrL1s2bJUh7PbOfvss+MnP/lJ/OMf/4iIiE8//TTOOeec2G+//eK0006LTp06xXHHHRcdOnSIWrVqVfqcZs2aJTWvbt26xdrffPNNUus+/PDD+Mtf/hL/+Mc/4uOPP441a9bEpk2bIlEhK0wAACAASURBVD8/v8x1GzZsSGr/VN9HX375ZdH7HTt2lLjuwsLCct//25o1a5KOrSps37691P6cnJwqO/PKK6+Me+65Jz755JNi/aNHj45BgwbF97///QrvmZubm3DsoIMOKvcePvbYYxOOLVu2LAoKCiIrKyvpeE444YSEY/Xr1084lpeXV6z91VdfJZy7aNGiyMjISDqm71q8eHGl19YEtWvXTjiW7M8uACB1qrrmiFBflkd9WX59qbZMrKbUlhHqy8pQX6ovU8Fz84qR15RNXuO5+a6qKbmNvKbi9va8JkJuAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGpkpjsAAAAAgKrQrFmzYu0vvvgiJfsuWbKkzHP2VA0bNkx6bqNGjYq1161bl+pwdjtZWVnx8ssvR5cuXYr1r1u3Lv785z/HgAED4oQTTohGjRpFjx49Yty4cZGXl1fhc2rXrl2p+AoLC8scX7RoUZx55pnRvn37uPXWW2PixInx2Wefxdq1ayM/P7/c/Tdt2pRUHKm+j9asWVOsXVBQUOy1c+fOoldhYWHRqzRbtmxJOraqkOizrcx9kqysrKy44447SvTn5+fH0KFDK7Xn6tWrE44l8/OwadOmCcd27twZa9eurVA8Bx10UMKxnJycpPdZtWpVhc6tiLL+zfYG27ZtSzhWp06daowEAIiouprj29SXZVNfll9fqi0Tqym1ZYT6sjLUl+rLVPDcvGLkNWWT13huvqtqSm4jr6m4vT2viZDbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkBqZ6Q4AAAAAoCp06NChWPvNN9/c5T3z8vLi/fffL2pnZGSUOGdPlZGRkfTcwsLCKoxk99WsWbOYNm1aTJw4MX72s59F7dq1S8zZunVrvPbaa3HZZZdF27Zt45VXXklDpMUtWLAgjj/++Hj11VcrvcfOnTuTmpfq+yg/Pz/p/VJxXlWqV69eqf1btmyp0nPPOeecOP7440v0P/vss/HOO+9U6dnVoW7dugnHsrKyqjGSxDZt2pTuENJq69atCccSfS8AgD2b+rJ86suyqS0TU1tWHfXl7k99mRqem1eMvKZ88pryyW0Sk9tUDXnNnkFuAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCpkpjsAAAAAgKrQqVOnYu05c+bE9u3bd2nPN954I/Ly8orahx12WDRp0mSX9ixNQUFByvcsz/r165Oeu2HDhmLt/fbbL6WxpOP6K+Kss86Kl156KdavXx/Tp0+PO++8M84666xo1KhRsXm5ubnxs5/9LJ5//vk0RRqxY8eOuPjii2P16tVFfe3bt48777wzpk2bFp9//nls2LAhtm/fHoWFhUWvTz/9tFLnpfo++vb3q3Xr1sVirOjr2/8G6dCyZctS+1evXh07d+6s0rPvuuuuEn2FhYVx0003VXivpk2bJhxbtWpVuevL+hwyMjKicePGFY4pFZo1a1ZlexcWFlbZ3nuC5cuXJxxL9L0AAPZs6svkqS9Lp7ZMrKbUlhHqy8pQX6ovU8Fz84qR1yRPXpOY3CaxmpLbyGsqbm/PayLkNgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKRGZroDAAAAAKgKP/zhD6N169ZF7XXr1sULL7ywS3uOGTOmWPv0008vc35OTk7R+/z8/KTPWbt2bcUCS4FPP/006bmffPJJsXbz5s1LnbcnXX9l7LPPPtG5c+e46aabYuLEibF69eqYNm1anHnmmUVzCgsLo3///rFt27a0xDhlypT44IMPitpXXnllLFiwIG666abo0qVLtG3bNho0aFDss4r41/elMlJ9H7Vo0aLofW5ubmzdurVSce0O2rRpU2r/jh07Yvny5VV6dqdOnaJHjx4l+qdMmRLLli2r0F4HHXRQwrHc3NxYtWpVmevfeeedhGMtWrSIrKysCsWTKmVd1+mnnx6FhYWVft13333VeCW7n9zc3IRjBx98cPUFAgBUG/Vlxakvi1NbJlZTassI9aX6suLUl6nhuXnFyGsqTl5TktwmsZqS28hr5DWVIbcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgFTLTHQAAAABAVRkwYECx9ogRI6KgoKBSey1evDief/75onZmZmb079+/zDUNGjQoer9mzZqkz3rvvfcqHuAueuONN5KeO3fu3GLtH//4x6XO25OuPxWysrKiS5cu8fLLL0evXr2K+lesWFGhf99Umj59etH7nJycGDlyZGRlZZW7rrKfQarvo5NOOqno/c6dO2PKlCmVimt3cOSRRyYc+/jjj6v8/D/84Q+RmVnycfDOnTsrtM+BBx4YP/jBDxKOjx8/vsz1Tz/9dMKxk08+uUKxpFKLFi2iXbt2pY7NmDEjli5dWqH9CgoK4pFHHok777wzFeHt0RLd3/Xq1Yu2bdtWczQAQHVQX+66vb2+VFsmVlNqywj1ZbLUl/9HfZk6npsnT16z6/b2vCZCblOWmpLbyGuSI68pTm4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAKpT8i+0AAAAANUS/fv2iQYMGRe2333477r///krtddVVV8W2bduK2j179oxDDjmkzDUtW7Yser9ixYpYuXJluefk5+fHxIkTk44rJyenWLugoCDptd82fvz4pNYWFhbG//zP/xS169evH8cee2ypc/ek60+1K664olh7yZIlaYlj+fLlRe9btmwZDRs2TGrdc889V6nzUn0fde3aNTIyMorao0aNqlRcu4NDDjkk9ttvv1LHFi5cWOXnH3HEEXHJJZekZK8zzzwz4dhtt92W8H6fNm1aPP300wnX9ujRY1dD2yVnnXVWqf15eXlx8cUXx6ZNm8rd45tvvomxY8fG0UcfHb/+9a9jxYoVCefu2LEjMjIySn0dfvjhlb6O3c37779fav+xxx4bmZn+iwIAaiL1ZWrtjfWl2jKxmlRbRqgvy6K+LEl9mTqemydPXpNae2NeEyG3KUtNym3kNYnJa0ontwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAV/GVsAAAAoMZq0KBBjBgxoljfTTfdFC+++GKF9rnuuutiypQpRe2GDRvGyJEjy13XoUOHYu0///nP5a558MEHY+nSpUnHVr9+/WLtNWvWJL3227788sv4r//6r3LnPf744/Hxxx8XtS+++OKoXbt2qXP3pOtPtYyMjGLtunXrpiWOOnXqFL1fuXJlbNu2rdw1L7/8crH7vSJSfR+1adMmzj777KL21KlTY9y4cZWKbXdw8sknl9o/b968ajl/2LBhCb+vFTF48OCE+6xZsyY6duwYY8aMieXLl0d+fn4sWbIk7rzzzvj5z38eO3fuLHXd97///ejVq9cux7YrBg0aVOw7820zZsyIww47LO6+++6YP39+bNq0KQoKCmLVqlWxcOHCGDt2bFx22WVx4IEHxhVXXBELFy6s5uh3X3//+99L7T/llFOqORIAoLqoL1Nrb6wv1ZZlqym1ZYT6Un1ZMerL1PHcPHnymtTaG/OaCLlNeWpKbiOvkddUlNwGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAVMhMdwAAAAAAValv375xwQUXFLXz8/OjV69ecffdd8eOHTvKXLt69eq45JJL4oEHHijW/+ijj8bBBx9c7tmnnHJK7LvvvkXtYcOGRW5ubsL5EyZMiN/+9rfl7vttbdu2LdaeN29ehdZ/25AhQ2Ly5MkJx2fMmBHXXnttUTsnJyeuu+66hPP3tOsvy5lnnhnjxo2L7du3lzs3Ly8v7r777mJ9xx57bJXEVZ4jjzyy6P2WLVti+PDhZc6fMmVKXHzxxbt0Zqrvo2HDhsU+++xT1O7bt2+MHj06qVgKCwvjb3/7W3Tr1i1WrFhR6pxRo0ZFRkZG0euqq65Kau/K6N69e6n9M2fOrLIzv61169bRv3//Xd6nVatWMWjQoITjy5Ytiz59+kSLFi0iJycn2rRpEzfffHNs3bo14Zq77roratWqtcux7YqWLVvGjTfemHA8Nzc3hgwZEsccc0w0aNAgsrOzY//9948jjjgirrjiihg3blysX7++GiOumO/e699+bdmypdQ1BQUFCdeMGDGi3DNXrVoVH330Ualj3bp126XrAQB2b+rLxNSXyVFbJlZTassI9aX6Un2ZTp6bJ09ek5i8Jnlym8RqSm4jr9kz85oIuQ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB7tsx0BwAAAABQ1caMGRPdu3cvaufn58eQIUPi8MMPjzvuuCPeeeedWLVqVeTl5cXSpUtj+vTpMXDgwGjXrl089dRTResyMzPjvvvui/PPPz+pc+vXrx+XX355UXvFihVx/PHHx5gxY+Lrr7+O/Pz8WL16dUyePDl69eoVvXr1iry8vOjdu3fS19auXbto0qRJUfuOO+6IZ555JlauXBkFBQVJ7/Pzn/88tm/fHj169Iirr7465s2bF5s2bYrNmzfH22+/Hdddd12cdtppsXXr1qI1t9xyS/zoRz+qEddfngULFsRll10W+++/f1xyySXx+OOPx/z582PNmjWxY8eO2LZtW3z22Wfx+OOPR4cOHWLq1KlFa08//fRo165dymKpiHPOOSfq1q1b1L799tuje/fuMXny5MjNzY38/PxYtWpVvPrqq3HhhRdGt27dYuPGjdGrV69KnVcV99Fhhx0WY8aMKWrn5eXFVVddFR06dIiHHnooFi5cGBs2bIgdO3bEunXr4pNPPonnnnsuBg4cGAcffHCceuqpMXny5CgsLKzUNaXSL37xi8jOzi7Rn5ubGx999FG1xDB06NBo2LDhLu8zfPjwOOuss1IQ0b9iOu+881Ky16763e9+FxdccEG6w6gxpk6dWup3r1WrVvGTn/wkDREBANVBfVk29WX51JZlq0m1ZYT6kuSoL6uG5+blk9eUTV6THLlN2WpSbiOvIVlyGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFKl5F+LBwAAAKhh9t1333jppZeif//+8cgjjxT1f/LJJzF06NAYOnRoUnuMHTs2zj///AqdPXz48Hj55Zfjyy+/jIiIpUuXRp8+fRLOHzp0aBx99NHx9NNPJ7V/VlZW9OnTJ+66666IiFi9enVcdNFFpc598skn45JLLil17IEHHohPP/00Pv7443j44Yfj4YcfLvPciy66KG6++eZy49tTrj9ZGzdujKeeeiqeeuqppOa3adMmxowZs0tn7ormzZvH8OHDY9CgQUV9kyZNikmTJiVcc8YZZ8Tvf//7eO655yp8XlXdR7179478/Py46qqrYtu2bRER8c4778Q111xT4RjTaf/994+uXbvGK6+8UmLsxRdfjEMPPbTKY2jcuHHceOONSf27lyUzMzOee+656N+/f4wdO7ZSe2RlZcXvf//7XY4llTIyMmLcuHFx4IEHxn333ReFhYWV2qdWrVrx61//OqnfLzXZCy+8UGr/xRdfHJmZmdUcDQBQXdSXyVFfJqa2LFtNqi0j1JflUV/+i/qyanhu/i+em8trIjw3T6ealNvIa8omr/k/chsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSxV/HBgAAAPYK2dnZMXr06HjjjTeiY8eOSa/LysqKfv36xeeffx7nn39+hc9t2LBhzJgxIw4//PAy5+Xk5MSIESPi9ttvr/AZ//Ef/xFdunSp8Lpva9iwYfzv//5vnHjiiWXOy87OjiFDhsSTTz4ZWVlZSe27J1x/VTj//PNj7ty50apVq7TGMXDgwBgxYkTUqlWr3Ll9+vSJl156KbKzsyt1VlXdRxERl112Wfz973+PM844I+l4MjMzo2vXrvH6669H8+bNk15Xlfr06VNq/4QJE6othoEDB8aBBx64y/vUqVMnHn/88ZgwYUIcddRRFVrbpUuXmDlzZgwdOjQyMjJ2OZZUysnJiXvuuSemTp0aJ598coXWNm3aNAYNGhSffPJJPPjgg9GsWbNKxZDs92J3tmXLlnjttddK9GdmZsaVV16ZhogAgOqivky9va2+VFuWrybVlhHqy9KoL/+P+rJqeW5eNnlN6u1teU2E3CYZNSm3kdeUJK8pTm4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAKmWnOwAAAACA6tSxY8d444034v33349XXnklpk2bFl999VWsXLkyNm/eHE2aNIn9998/fvSjH0W3bt2iR48eccABB+zSmd/73vdi/vz58eSTT8bzzz8f77zzTqxevToaNGgQ3/ve96JHjx7Rr1+/OOiggyq1f506dWLKlCnx4osvxoQJE2L+/PmxdOnS2LJlSxQUFCS9T/PmzWPWrFnx+uuvx5gxY+K9996L3NzcyM7OjlatWsUZZ5wRV1xxRbRv375C8e0p11+WBQsWxLvvvlv0Wrx4caxZsybWrl0bGzZsiH322Sf222+/OPTQQ6Njx45xwQUXxKGHHpqSs1Ph+uuvj7PPPjtGjx4d06ZNi0WLFsWWLVuiadOm0bJlyzj11FPjsssuS0nMVXUfRUQcddRRMXny5Jg/f35MnDgxpk+fXvRZbNu2LRo0aBAHHnhgHHXUUXHiiSdGz549o3nz5rt8Tan085//PNq2bRuLFi0q1v/OO+/Ee++9F0ceeWSVx1CnTp34z//8z+jXr19K9jv33HPj3HPPjZkzZ8bUqVNj9uzZsWTJkli7dm1s2bIlGjRoEPvtt1+0a9cuTjrppOjRo0e1XOeu6tKlS3Tp0iU++OCDmDRpUsyZMyc+/PDDWLt2baxfvz5q1aoVTZs2jdatW8cJJ5wQnTp1itNPPz1ycnKS2v/9999POPab3/wmVZeRNhMmTIjNmzeX6D/zzDPjkEMOSUNEAEB1Ul8mpr5MjtqybDWxtoxQX6ovS6e+rB6emycmr0lMXpM8uU3ZamJuI6+R1yQitwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCVMgoLCwvTHQQAAACwe5g0aVJ07969zDnr16+Phg0bVlNEVJURI0bEDTfcUNRet25dNGrUKI0RsSdyH1XOn/70p+jfv3+J/muvvTbuv//+NEREOtx9990xZMiQEv2nnnpqTJ06NQ0RpVbnzp1j5syZJfpnzJgRnTp1SkNEqfXYY49F37590x1GkTPOOCMmT56c7jAA9mjl/WyvX79+bNy4sRoj2nOoC9hV7qHKUVvyb+rL3cuGDRvK/Rn22muvRbdu3aopIirC7yRSwX1UOXIbImp+XhOx5+U2npdUj9zc3GjVqlWJ/pEjR8bgwYMjIqJjx44xd+7cYuMnnHBCzJkzp1piBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdkt/zkx3BAAAAAAAe5M+ffpEq1atSvSPHTs2Nm7cmIaISIcpU6aU6Nt3333j0UcfTUM0qTV//vyYOXNmif7TTjstOnXqlIaIAACg5lFb8m/qSwBqArkNETU7r4mQ2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJB6mekOAAAAAABgb5KTkxO/+93vSvRv2rQpHnvssTRERHXbvn17zJ49u0T/H/7wh2jTpk0aIkqte+65p9T+YcOGVXMkAABQc6ktiVBfAlBzyG2o6XlNhNwGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA1MtMdwAAAAAAAHubX/3qV3HUUUeV6B8xYkR88803aYiI6vTGG2+U+JxPOumk6N+/f5oiSp1FixbF+PHjS/RfdNFFcfzxx6chIgAAqLnUlqgvAahJ5DZ7t5qc10TIbQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKgamekOAAAAAABgb5OVlRX3339/if5ly5bFQw89lIaIqE5Tp04t1q5Tp06MGTMmMjIy0hRR6gwbNix27NhRrK9u3brxxz/+MU0RAQBAzaW2RH0JQE0it9m71eS8JkJuAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNXITncAAAAAAAB7o86dO0dhYWG6wyANpk6dWqx92223xQ9+8IM0RZNaTzzxRDzxxBPpDgMAAPYaasu9m/oSgJpGbrP3qsl5TYTcBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKqRne4AAAAAAABgb/KPf/wj3SEAAABQA6gvAYCaQl4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFZeZ7gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgP/Pjt2i5L6FYRz+c/M2FUwmHYBgFcVBOAtxAnYdk6MQu2CxGAw7ikZ1t5M2nGdzDt6+el2w2gq/8MD6AAAAAAAAAAAAAICZtAMAAAAA+HwXFxfLx8fHP2t7e7udxBoyRwAAgHcB/5UZAuCrcCbxfzBHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHyWtAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYSTsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAmbQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmEk7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJm0AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJhJOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICZtAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYSTsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAmbQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmEk7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJm0AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJhJOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICZtAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYSTsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAmbQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmEk7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJm0AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJhJOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICZtAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYSTsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAmbQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmEk7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJm0AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJhJOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICZtAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYSTsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAmbQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmEk7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJm0AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJhJOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICZtAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYSTsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAmbQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmFm1AwAAAID1cn9/v2xubrYzAABqnp6e2gkAfLL39/fl7u6unQEAfHEvLy//uufx8dG9AgBYC/7CAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvrZVOwAAAABYL8fHx+0EAAAA+FSvr6/LwcFBOwMA+AbOz8/bCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfANpBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADCTdgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxf7H6gAAIABJREFUAAAzaQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwk3YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM2kHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMLNqBwAAAABfx/b29nJ0dNTOAADgL+zv77cTANbezs6O9zAAAADAX9jY2GgnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/GirdgAAAADwdRwfHy83NzftDAAAAPhUp6eny+npaTsDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEbSDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAm7QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABm0g4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJu0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZtIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCbtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGbSDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAm7QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABm0g4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJu0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZtIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCbtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGbSDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAm7QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABm0g4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJu0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZtIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCbtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGbSDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAm7QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABm0g4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJu0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZtIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCbtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGbSDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAm7QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABm0g4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJu0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZtIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCbtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGbSDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAm7QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABm0g4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJu0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZtIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCbtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGbSDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAm7QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABm0g4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJu0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZtIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCbtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGbSDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAm7QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABm0g4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJu0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZtIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCbtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGZW7QAAAADg+3t7e1tub2/bGQAAVXt7e8vu7m47A4A/+PXr1/Lw8NDOAAAAAFgbq9VqOTw8bGcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8WKt2AAAAAPD9vby8LCcnJ+0MAICqy8vL5erqqp0BwB9cX18vZ2dn7QwAAACAtbG1tbU8Pz+3MwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH6stAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYSTsAAAAAgN/s3Xl0VeW1APCdC5hABMIoSFAqoNQRBUcsT0StIg6gVWrBWie0oG19aEG0oqVSi7xWERSlolaKM+BQLWKRhwM+aUUpVisgKqggGGYIU94fXd7lxQw3IckN8vutdZfs73zft/c9N+eQsy9rCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnkSmCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA9iUwXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQHoSmS4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA9CQyXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADpSWS6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANKTyHQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApCeR6QIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABITyLTBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCeRKYLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID2JTBcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAehKZLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID0JDJdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOlJZLoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0pPIdAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkJ5HpAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEhPItMFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJ5EpgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgPYlMFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEB6EpkuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgPQkMl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6UlkugAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADSk8h0AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQnkekCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASE8i0wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnkSmCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA9iUwXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQHoSmS4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA9CQyXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADpSWS6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANKTyHQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApCeR6QIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABITyLTBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCeRKYLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID2JTBcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAehKZLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID0JDJdAAAAAABQPvvtt19s3LgxioqKoqioKPr165fpkoAq1Llz59i+fXvymj/ppJMyXRIAAECxevbsmXx2Ke516aWXVsla0uc812xt2rSJCy64IEaOHBmTJ0+OefPmxWeffRbr1q2LrVu3RkFBQXz44Ycxa9as+MMf/hB9+vSJevXqZbrsFHqXZMqCBQtS7mctWrSokjX8h3OXSg8XAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyIREpgsAAAAAIPPWrVsXRUVFlf7q27dvpt/at9Lo0aMjJycnIiLmzp0bDz/8cKnzp0yZkvK5PPLII9VRJlXIZ7p7mTNnTjz66KPJ+K677oo99tgjgxUBAAAAlSE7Ozt69OgR48aNiyVLlsSHH34YEydOjEGDBsXZZ58dBx98cLRo0SJyc3OjVq1akZeXF23atInjjz8+fvazn8WkSZPis88+i7vuuiuaNGmS6bcTEeXrXe7Y4/rqNWDAgArlHj9+fMo+99xzT4X2ASgvPVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgExKZLgAAAAAASN+ZZ54ZPXr0SMaDBw+OoqKiDFZEea1YsSKKioqSr7y8vEyXxC5g6NChsXXr1oiIOOCAA+JnP/tZhisCAACgOtxzzz0pfYQdXy1atMh0ieyEK6+8Mp577rm4/PLLo1WrVhXao0GDBjFgwID417/+FT179qzkCsunsnqXN954Y+Tm5lZmacDX6FFXDT1cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoLolMl0AAAAAAJCeRCIRI0aMSMZz5syJv/71rxmsCKguixYtikceeSQZDxkyJPLy8jJYEQAAAFCTNGvWLCZPnhy9e/fOSP7K7F3utdde8Ytf/KKySgOoFnq4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQHVLZLoAAAAAACA9/fr1iwMPPDAZ33rrrRmsBqhuI0aMiKKiooiIaNSoUVx77bUZrggAAACoSWrXrh0PP/xwtGnTptpzV3bv8tprr40mTZrsbFkA1UoPFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhOiUwXAAAAAACULZFIxNChQ5PxRx99FFOnTs1gRUB1e/fdd+Oll15KxldddVU0bNgwgxUBAAAANU3dunXj9ttvr9acVdG7bNCgQQwZMmRnS4NStWvXLrKyspKvzz//PNMl7TKcu+Lp4QIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVKZHpAgAAAACAsp111lnRvn37ZHzffffF9u3bM1gRkAn33ntv8s/169ePyy67LIPVAAAAVJ5nn302srKySnyNHz8+0yV+KzjPNd/s2bPjlltuiW7dusW+++4bOTk50bBhwzjuuONi9OjRsWXLljL3OPPMMyMvL68aqv2Pyupdvv/++ynxgAEDIj8/f6frA6hOergAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAdUlkugAAAAAAar5evXpFVlZWuV8PP/xwpkv/1vj5z3+e/HNRUVE88MADmSsGyJgpU6bEypUrk/HVV18diYRWPwAAAOzKVq9eHbfffnt06NAhjj322Ljpppvi5Zdfjo8//jgKCwtjzZo18frrr8fVV18d3/ve92LNmjWl7lenTp04+eSTq6n6yutdTpkyJebMmZOMc3JyYtiwYTtZHUD10sMFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqkvtTBcAAAAAAF9p0aJFnHTSSfG9730vOnXqFE2bNo3GjRtHdnZ2rFixIr744ouYO3duTJ8+PV544YVYsWLFLpmzvPbbb7/o2rVrMn711Vdj6dKl1V7HV5o1axZ9+vSJXr16xb777ht77713bNq0KZYtWxavvvpqPP744/HCCy9Uas4DDjggLrjggjjllFNi7733jr322itWr14dn3zySUybNi0mTpwY8+fPr9Scu7ucnJz47ne/G4ceemgceuihcdBBB0Xz5s0jLy8v8vLyon79+rF27dpYuXJlvP/++zFjxox46qmn4sMPP8x06eV24IEHxumnnx4nn3xytGnTJpo3bx45OTmxfPny+Pjjj2P69Onx1FNPxTvvvFNpOfPz8+Pcc8+Nnj17xj777BMtWrSI+vXrR0RE06ZNY+XKlcWu27JlS0ydOjUuvvjiiIho3bp1dO/ePV588cVKqw0AgN3LgQceGD/60Y/ipJNOitatW0eTJk2ioKAgFi9eHNOmTYsJEybs9O/5++yzT/LZu2PHjtGkSZNo3Lhx1K5dOwoKCuLLL7+MDz74IGbNmhUvv/xy/P3vf6+kd1e6Aw88MC699NI44YQTom3btlGvXr1Yvnx5/Pa3v43Ro0dXaM899tgjfvjDH8Z5550XRxxxRDRt2jQ2btwYCxYsiGnTpsW4ceNKPJ+JRCLOOuus+OEPfxhHHXVUtGzZMgoLC2P58uUxe/bsmDx5cjz11FNRVFSUdj2NGzeO/fffP+WVn58fzZo1i8aNG0dOTk5kZ2fH1q1bY82aNbF27dpYvHhxvP322/Hmm2/GM888E+vWravQufg2cj6/qSZe39VxX6ssa9eujVtvvTVuv/32KCgoSGvNG2+8EQMGDIg//elPpc77zne+Uxkllqmye5dDhgxJ6XNcdNFFcfvtt8d77723U3WWR4MGDeKMM86I0047LQ4//PBo1qxZ5OXlRUFBQSxfvjzmzJkTf/nLX+K5556LDRs2VFreivaLvm6fffaJCy64IE4//fRo3bp1tGjRIjZv3hwLFy6MF198Me6+++4Sf/6zsrLi9NNPj/POOy+OOuqoyM/Pj9q1a8fy5ctj7ty58dhjj8Wf//zn2L59e9rvaXfqMe6s3fFcZepaq+rvOPRwAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOqSVVRUVJTpIgAAAIBvt9WrV0deXl6my6AU69ati9zc3BKP9+rVK6ZMmVJl+Q866KC49tpr44ILLog6deqktWbDhg0xduzYuO2222LFihW7RM6KGjZsWNx0003J+Be/+EX84Q9/SHv9lClT4qyzzkrGjz76aPTp06fUNV9vGxYWFkZOTk7UqlUrbrjhhhgyZEhkZ2eXuv7ll1+OPn36xLJly9Kus7ice+65Z4wdOzb69etX5toxY8bEkCFDYt26dWnlO+mkk+LFF19MxlOnTo2zzz477Xrz8vKioKAgGS9dujTy8/OLnTt37tw47LDD0t7764488siYM2dOylhFPtPyuueee6J///7lWrN169Z46KGHYtCgQSnnpjg33HBD/PrXv07GzzzzTJx55pkVqvWRRx6J888/PxnfdtttMXjw4DLXdejQIW699dbo1atX2nmuvfbaWLJkSVrzi/uZrlu3bowaNSr69+8fiUSi2HXNmjUr9R5z6qmnxvPPP5+MJ06cGH379k2rJjLrpptuimHDhmW6DACKMX78+LjssssyXQZUip49e8YzzzxT4vHLLrssxo8fHy1atIixY8eW+ftwYWFh3HrrrXHLLbeUu5bOnTvHddddF717945atWqlve7NN9+MkSNHxhNPPBHl+Wct6b737OzsGDlyZAwYMKDY38vvuOOO+PnPf56M+/TpE5MmTSpz344dO8akSZOiQ4cOJc7dsmVLDB48OP7nf/4nZfzwww+PCRMmlPnsOGfOnOjTp08sXLiw1Hlf2dl/FrR+/fp49NFH4/rrr0/rGT/dz6Ay1+74fFkZbr755mJ/d6+O8zlw4MAYPXr0TuX5urp168amTZuS8c58Rl9Xndd3Tbqv1RS1atWKL774Iho1alTinFGjRsWgQYOqvJad6V3u2OP6qqczffr06N69e3L8qaeeinPOOafM/caPHx+XXHJJMh43blxcccUVadUS8Z/z+tOf/jR+9atfRdOmTcuc/+mnn8aNN94YEyZMSPvnuTL6RcXtkZ2dHb/73e9i4MCBJe7x1fyhQ4fGqFGjUsYPO+yweOCBB6Jjx46l1j9nzpzo3bt3fPLJJ2W+14iq7zF+3YIFC6Jt27bJuGXLlvH5559Xypq77rorBgwYkHYtpSmu3xtR9eeqsnvUFTnfX8nUtVbV33F8nR4uu4v69evHmjVrMl3GLm/JkiXRunXrb4yPGjUqrrnmmoiIOO644+L1119POX7sscfGa6+9Vi01AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANdLjiUxXAAAAAMDuKysrKwYNGhRz586NH//4x1GnTp2019arVy8GDRoU8+fPjy5dutTonDurd+/eKfG0adOqLfdXsrOzY+rUqTFs2LDIzs4uc/4JJ5wQr7zySjRt2rTCORs0aBAzZ86Mfv36lTk3KysrBg4cGH/729+iQYMGFc7Jzqldu3ZcfPHF8frrr8d+++1X6tz77rsvtmzZkox79OgR+fn55c7ZrFmz6NWrVzIuKiqK++67r8x15513Xrz11lspa8vSp0+f+L//+7845JBDyl1nRET9+vVjxowZceWVV0YiUXJ7Pisrq9R9Zs6cGZs3b07GZ5xxRrnuZQAAcOSRR8bbb7+d1u/D2dnZcfPNN8edd96Z9v61atWKW265Jd544434wQ9+ELVq1Sp3fY899lhMnTo1GjVqVK61ZcnOzo6nn346rrrqqhJ/Ly/rd/LinHnmmTF79uzo0KFDqfPq1KkTo0aNitGjRyfHzjjjjHj11VfjsMMOKzNP586dY9asWdGuXbty11gRubm5cfHFF8f8+fPj1FNPrZac32bfhvNZU6/vqr6v1TTbtm2L9957r9Q5X+8dVKWq6F0OHjz4GzmOPPLInd63NPXq1YspU6bEnXfemXZPc++9944//vGP8dBDD1W4N1MOohkeAAAgAElEQVQZ/aJ69erFtGnT4uqrry51j4j//PzffvvtMXTo0OTYqaeeGq+99lp07NixzHo7d+4cM2bM2Km+b1nK02Pc3e2K5ypT11p1f8ehhwsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUh0SmCwAAAABg95RIJGLSpEkxcuTIqF27doX3ad68efztb3+Lc889t0bm3FmtWrWKQw45JBkvW7Ys3n333SrPu6P77rsvTj/99IiIePvtt+PSSy+Ndu3aRb169SIvLy+OP/74+NOf/pSypl27djF69OgK53zggQfiiCOOiIiIhQsXxsCBA6Nt27ZRt27daNGiRZx22mnx1FNPpaw58sgj47nnnotatWpVOC+ptmzZEn/961/jF7/4RXTr1i3y8/Njzz33jOzs7Nh7773jjDPOiAcffDC2bNmSXHPAAQfElClTIjs7u8R9ly1bFpMnT07GtWrViksvvbTc9V100UWxxx57JOPp06fHwoULS13Tv3//eOSRRyInJyc59vnnn8cNN9wQnTp1isaNG0dOTk60bds2BgwYEB999FFyXsuWLWPmzJmx7777lrvWBx54II4++uiIiPjnP/8ZV1xxRbRv3z5yc3Njr732ihNOOCEmTpwYWVlZpe6zcePGmD17djJu0KBBdOnSpdz1AACwe+rUqVO89NJL0bx583Ktu+qqq+KMM84oc17t2rXj6aefjhtvvDESiZ37ZylnnHFG/OMf/4hWrVrt1D5fN2bMmDjllFMqbb+I/zyLTpo0qdRnoB0NHDgwevfuHccdd1w8/vjjUbdu3bTXtmzZMiZMmFDms0NlatKkSTz55JPRqVOnasv5bbarns+aen1X9X2tpqpXr16pxxcvXlzlNVRV73LOnDnx5JNPpoz99re/3el9S5JIJOKZZ56Jnj17pox/1QPOz8+PnJycaN26dfTt2zfeeOONlHl9+/aNSZMmVSh3ZfSL7r///ujatWtERLz88stx/vnnR6tWrSI7OztatGgRP/rRj2LBggUpa2655Zbo1KlTdOzYMZ544omoV69ebNy4MUaOHBnHHHNMNG7cOOrWrRsHH3xwjBw5MqX317Zt2xg1alS53mdV9Ri/jb7N5yqT11p1f8ehhwsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUh0SmCwAAAABg9zRy5Mg4//zzK2WvPfbYIx588ME49NBDa1zOnXXSSSelxLNnz67SfMXJzs6Ofv36RUTE8OHD44gjjog//vGPsXDhwti4cWOsXr06Xn311bjwwgtj4MCBKWv79OkTBx54YIVy9urVKyIipkyZEocddliMGTMmFi1aFJs2bYply5bFCy+8EOecc0707ds3tm3bllx7/PHHxzXXXLMT77jydezYMbKysiIrKytWrlyZcqxRo0bJY8W95syZk5Galy9fHjfeeGO0aNEiTj311PjDH/4QL7/8cixdujTWr18fmzdvjs8++yyeffbZuOiii+Loo4+Ojz/+OLn+kEMOiaFDh5aaY+zYsSnxJZdcErVq1Uq7xqysrLjssstSxu69995S1xx55JFx5513RlZWVnJs0qRJ0bZt2/jNb34T//jHP6KgoCAKCwtj0aJFMXbs2DjwwAPj2WefTc5v1KhRPPTQQ5FIpN9iz87Ojt69e0dExB133BGHH354jBs3LhYsWBAbNmyI5cuXx8yZM6Nv376xfPnyMvd77bXXUuJTTjkl7VoAANi9XXHFFVG/fv0Krb3tttvKnDNmzJjo0aNHhfYvTps2beLpp5+OevXq7fRePXr0iEsuuaTMeV9/XkjH5ZdfXqH6Ro8eHY888khkZ2eXe+3xxx8fZ511VrnX7Yx69erFgw8+WO7zQ/F2xfNZU6/vqr6v1US5ubnRvn37Uue88sorVV5HVfYuhw4dmtLzO/HEE+Pkk0+utP2/bsiQIXHiiSemjF1zzTXRvXv3ePLJJ2Pp0qVRWFgYS5YsiYkTJ8Zxxx0XI0aMSJl/zjnnRP/+/cuVtzL6RdnZ2cme9zXXXBPdunWLxx57LD799NPYvHlzLFu2LP785z/HkUceGe+++25yXSKRiF//+tfx8MMPR25ubixatCgOOeSQuO666+KNN96IgoKC2LRpU8yfPz+uu+66b/TVL7zwwmjXrl2Z77E6eozVYeDAgaX2cIt7JRKJePTRR1P22b59e6xZs6bYHFV9rmpCjzqT11p1f8cRoYcLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVL1EpgsAAAAAoOabPHlyFBUVlev129/+tsT9TjvttLjmmmtKzTlp0qTo2rVrNGzYMOrWrRsdO3aMe+65J4qKioqdX69evXj88cejdu3aNSZnZTjqqKNS4nfeeafKcpXljjvuiBtvvDG2b99e4pwxY8bEtGnTUsZ+8pOfVDjnnDlz4oc//GGsX7++xDkTJ06MQYMGpYzdfPPN0axZswrnJeJXv/pVDB8+PL788su05r/11lvRo0eP2LRpU3LsyiuvjOzs7BLXzJw5M959991knJ+fHz169Ei7xm7dukX79u2T8bJly2Lq1Kklzq9Vq1Y8/PDDscceeyTHHn/88fjRj34UGzZsKHHdhg0b4pxzzom5c+cmx7p27Rrnnntu2rV+5ZFHHomf//znsXXr1nKv/bq33347Jd7xXgEAAFXhu9/9bhxzzDElHu/du3dcfvnllZ73iCOOiN/85jc7vU+vXr0qoZrKs/fee0fr1q0rvP6SSy5Je+6XX34ZDz/8cFx55ZXRtWvXaN26dTRs2DBq164d9erVizZt2kSPHj1i3LhxUVhYWOI+Bx10UJx99tkVrvnbYnc8nzX9+q6osu5rNVW/fv2iXr16JR5/6623UnouVaUqe5fvv/9+PPDAAyljI0aMiKysrErLEfGfe/FNN92UMjZ8+PD4/e9/X+Ka7du3x/XXXx/3339/yvjtt98eDRs2LHcNldEvGjFiRKk1r1q1KgYOHJgydtppp8VBBx0U69ati5NPPjkWLlxY4vrJkyfH5MmTU8YuvPDCMuuqjh5jTTV8+PA4//zzU8auu+66+Pe//13s/G/7uaoJ11p1f8ehhwsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUtUSmCwAAAABg95KVlRXDhw8vdc5ll10WF1xwQcyaNSvWrFkTmzZtirfffjuuvPLKuPLKK0tct//++0ffvn1rRM7K0qlTp5R43rx5VZarNJ999lkMHjw4rbljxoxJibt27VrhvAMHDoxNmzaVOe/OO++Md955JxnXrVs3Lr744grnpWLmz58f9913XzJu2rRp9OzZs9Q199xzT0p8+eWXp52vf//+KfH9998fW7ZsKXH+OeecE/vvv38yXrFiRVx66aVRVFRUZq7Nmzd/415w9dVXp11rRMT69evjZz/7WbnWlGTHe0Hnzp0rZV8AAHYfa9eujeuuuy7222+/yMnJif333z/Gjh1b5rru3bsXO55IJOKWW24pc/2kSZOia9eukZeXF3Xr1o2DDz44fvOb35T57HfFFVdEq1atytw/XTNmzIhzzz039t5778jOzo42bdpE9+7dY9SoUfHll19WaM958+bF6aefHg0bNoz69evH+eefH6tWrUpr7bZt2+K2226L9u3bR3Z2dnTo0CGeffbZUtd069YtEonS/+nPa6+9FmeffXY0b948+vXrF/fcc0/MmjUrlixZEmvWrIlt27bFxo0b46OPPornn38+rrjiijjxxBNj8+bNJe553nnnpfWedlUbNmyIadOmFXtsdz2fu8r1Xdn3tZoqPz8/br311lLnpPN5VYaq7l0OGzYs5eenU6dOce6551Zqjp/+9KdRp06dZLxgwYL49a9/ndba//7v/44VK1Yk4z333LPcPcnK6Bd98sknMWzYsDLnzZgxIxYvXvyN8VtvvTUWLVpU5voJEyakxP/1X/+VbonlUpEeY01z0UUXxfXXX58ydu+998aoUaMqNc+udK4yfa1l4jsOPVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgqiUyXQAAAAAAu5fu3bvHEUccUeLxhx56KMaPH1/i8XHjxsX06dNLPP7LX/6yRuSsLO3bt0+JP/744yrLVZr77rsvNm3alNbcGTNmRFFRUTI+9NBDI5Eofyvy9ddfjzfeeCOtudu3b48777wzZeyiiy4qd0523hNPPJESH3vssaXOf/DBB2P9+vXJ+LTTTovWrVuXmad58+Zx9tlnJ+OioqJSr+OIiKuuuiolvuOOO2LNmjVl5vrK7Nmz4+9//3sy7tKlS1q1fmXy5MmxfPnytOeXZsd7QcOGDaN58+aVsjcAAN9+q1atii5dusTIkSPjww8/jMLCwvjggw9iwIABMXbs2FLXlvR8/f3vfz8OOuigUtdec801ccEFF8SsWbNi9erVsWnTppg/f37ccMMNccopp0RhYWGJa3NycuKnP/1p2W8uDddff32ceOKJ8eSTT8Znn30Wmzdvjo8++ij+9re/xaBBg2LYsGHl3nPevHlx3HHHxV/+8pdYs2ZNrFu3Lh577LEYOnRoWusvv/zyGDx4cCxYsCA2b94c77//fpx77rmxZMmSEtfk5ubGAQccUOq+Xbp0ialTp8a2bdvSfi+vvfZaPP300yUe/973vpf2XtVh+PDhkZWVldarYcOGpfYaNmzYED179ozXXnut2OPVcT7vuuuulJrHjRtX6v4tW7Ys9T2n288pza5wfVfFfa0matSoUUydOjUaNWpU4pwnnngipkyZUi31VHXvcsmSJTFmzJiUseHDh0ft2rUrLcePf/zjlPjOO++MzZs3p7V21apV3+hH/eQnPylX/sroF40fPz7tml9//fWUeOvWrWX21L7yyiuvpMQdO3ZMr8AKKG+PsSbp1q1b3HvvvSljL774YgwYMKBK8u0q5yrT11omvuPQwwUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqWvn/T+wAAAAAsBN69OhR6vFRo0aVucfEiRNLPNahQ4do06ZNxnNWhj333DMaN26cMrZ06dJKz5OO6dOnpz137dq18emnnybjnJycaNiwYblzPvHEE+Wa/9RTT8X27duTcYcOHaJJkyblzsvOeeedd1Lizp07lzp/zZo18ec//zkZ16pVKy655JIy8/zkJz+JPfbYIxm/+OKLsWjRohLn77nnnnHMMcekjD322GNl5tnRtGnTUuJjjz027bXPPvtsufOVZO3atbF27dqUsaq4DwEA8O30y1/+MubNm1fssdGjR5e6Nj8/v9jx73//+6WumzFjRvz+978v8fisWbNi5MiRpe5RVo50TJw4MUaMGLHT++zoqquuinXr1n1j/IUXXihz7SuvvBL333//N8YLCwtj8uTJpa4t6fPYWR988EGJx1q1avWNfsWuoH79+vHCCy/E0UcfXezxjRs3xplnnhkzZsyo9Ny7+vncFa7vqriv1TRNmzaNF198MY444ogS58yfPz+tvkplqK7e5YgRI2LNmjXJeP/994+LL764Uvbed999v/H5l7dfNGnSpJT44IMPLlcvtDL6RS+99FLacxcsWJASz5s3L7744ou01hYUFERBQUEybtCgQdStWzft3OVR3h5jTXHAAQfEk08+GXXq1EmOzZ8/P37wgx/E1q1bqyTnrnCuasK1lonvOPRwAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKqWyHQBAAAAAOxeunfvXuKxL774It55550y9/j3v/9drhyZyFkZ9tprr2+MrVy5stLzpGPevHnlmr9q1aqUuGHDhuXO+eabb5ZrfkFBQSxatChl7Kijjip3XnbO6tWrY/v27cm4ZcuWZa65++67U+JLLrkkatWqVeL8rKysuPTSS1PGxo0bV2qOY489NmrXrp2Mly1bVuZ1XZy5c+emxJ07d0577VtvvVXufKVZsWJFSlzcPQMAAHb05ZdfxoQJE0o8/v7778fmzZtLPF7S811Zz8Vjx44ts7a77747ioqKSjx++OGHR6NGjcrcpyRFRUVxww03VHh9SRYuXBgzZ84s9tiHH34Y27ZtK3X9H//4xxKPvfvuu6WuLc/z9uGHHx5DhgyJiRMnxptvvhlLliyJgoKC2Lx5cxQVFaW8hgwZUupejRs3TjtvTbDnnnvG888/H8cee2yxxzdt2hRnnnlmvPTSS2nvuTudz5p+fVfVfa0madOmTbz66qvRqVOnEud88skncfrpp8eaNWuqpabq6l2uXLkyRo4cmTL2q1/9KurWrbvTex999NEp8UcffRTLli0r1x7//Oc/Y/369ck4KyurXD3JyugXzZ8/P+25O/58lGdtceur6vqpSI8x05o2bRrPPfdcyr1s2bJl0bNnz1i9enWV5d0VzlVNuNYy8R1HhB4uAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAULVqZ7oAAAAAAHYvbdu2LfFYs2bNoqioaKdzfPe73814zsqQm5v7jbFNmzZVep6ybN++PVavXl2uNTvWmZOTU+687733XrnX/Otf/4p27dol49atW5d7D76pVatW0atXrzjqqKPioIMOipYtW0b9+vUjNzc3srKySl2bl5dX5v5vvfVWzJ49O4455piIiMjPz48ePXrEM888U+z87t27p3zOn3/+eTz99NOl5jjggANS4g8++KDMuoqzYsWKlLhZs2Zpr126dGmFcpZk48aNKXFx9wwAANjR9OnTY8uWLSUeLyoqioKCgthrr72KPV7S753f+c53Ss37v//7v2XW9umnn8bChQtTft//ukQiEfvss08UFBSUuVdxXn/99Vi8eHGF1pamtPdWVFQUK1eujObNm5c4Z+bMmSUeW7VqVam5y3oOqFWrVlx44YVx4403lvkZlUejRo0qba+qlpubG88//3x06dKl2OObNm2Ks846K6ZPn17mXrvr+azp13dV3ddqisMOOyyef/75aNmyZYlzli5dGt26dYuPPvqo2uqqzt7l73//+xg4cGDyM2zVqlVcddVV8bvf/W6n9s3Pz0+J33333XLvsX379njvvfeiU6dOJe5bmp3tF5W3d7vjZ1TW3zNlrS9P37eqe4yZlJ2dHVOmTEn5LmLjxo1x1llnVeh3j2/bucr0tZap7zgi9HABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAqlU70wUAAAAAUPP16tUrpkyZstP7ZGdnR25ubiVUVLqmTZtmNGdlyc7OTom3bNkSRUVFlZ6nLJnKu2rVqp1e06hRo8oqZ7fUvn37uO222+Lss8+OrKysCu1Rv379tObdfffdccwxxyTj/v37xzPPPFPs3P79+6fE999/f2zdurXU/Rs3bpwSH3fccbFp06aIiOR7y8rKSvlzaf/9Sro/Y9u2bYv169enNTddhYWFKXHdunUrdX8AAL6d/vnPf5Y5Z+PGjSUeK+7ZoKxn740bN8by5cvTqm/x4sXRrl27Eo/vzPP3m2++WeG1pfnggw9KPb7j7+47Hlu8eHGJx8t6Hi/tWa1Bgwbx5JNPxkknnVTqHhWxY8+ipsrNzY2//OUvcfzxxxd7vLCwMHr16hXTpk0rc6/d9XzuCtd3VdzXaooTTjghpkyZEg0bNixxzqJFi+KUU06JhQsXVmNl1du7XL9+fQwfPjxGjx6dHBs8eHDce++9FeohfmXHvk5BQUGF9tlxXXX2i3b2vJf2d1Rlqc4eYyZkZWXFhAkTokuXLsmxoqKiuPDCC+ONN94o117f1nOV6WstU99xROjhAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFUrkekCAAAAANh95OXlVUueJk2aZDRnZSksLEyJ69SpE1lZWZWepybaunVrbNny/+zdeXBW9bkH8CcvLwlhERGlKuIGVbnWpcVKVdxFcEFcUBH3Ba7eVtyujggut6ItVq9WHS0FXFEHUeRKqKjY1iqiDupVAbUuKIsosgYi2XP/6DS3L5KQ/QTy+cxkps/5/c7z++aQ82qeOkNJre8rKCjIqNu3b99QkVqcfv36xXvvvRennHJKvX7uUqmajaGffvrpWLFiRWV93HHHRbdu3X6w70c/+lEMHDiwsi4vL49x48Ztsv+GnwWpVCpycnIiJycnsrOzIzs7O1q3bh3pdDrS6XS0atUqWrVqFalUKlKpVGRlZW30ObRr165G319paWmN9tVGmzZtMur169c3+BkAAGx5Vq5cuck9tf19bFO/e2/4u1p99nbs2LHGvTa0aNGiOt9bnTVr1lS7XlxcXOXa6tWro6Kiosr1dDpd51yTJ0+OY445ps73b+7atm0beXl5cdhhh210vbi4OE499dSYMWNGjfq11Oe5ObzfjfG51hwMGjQoZsyYUe1z+fDDD6NPnz7x+eefN2Gyf2jq2eXYsWNjwYIFlXWnTp3iuuuuq1fPDh06ZNTff/99nfps+LO9Yd+qNMa8qLlp6hljEn7961/HWWedlXFtxIgR8cwzz9Sqz5b8rJJ+15JkhgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0pub3N9wDAAAAsMVavXp1k5zTunXrRM9sKAUFBT+41qZNmwY/pzlKp9ORTqdrfV+7du0y6nXr1jVUpBZljz32iKlTp2Y8z++//z4ee+yxuOiii6J3796x0047RYcOHSI7OzuysrIyvsrKymp9ZmFhYTz88MOVdSqViksuueQH+y688MKM9+3ll1+OL7/8cpP9169fX+tMNZGVldUofWsiNzc3o97YZwYAAGyoqKhok3vKy8tr1XPNmjXVrm/4u1p99m7qrOqsXbu2zvdWp7i4uM73FhYWVrte1985zjjjjDj22GPrdO+WIDc3N6ZNmxZHHHHERteLi4vjtNNOiz/96U816teSn+fm8H43xuda0n71q1/FpEmTIicnp8o9r776ahx66KGxdOnSJkz2/5p6dllSUhI33XRTxrUrrrgidthhhzr33PCfC23btq1Tnw1/thvrnzebmyRmjE3tvPPOi1GjRmVcmzBhQowZM6ZWfbb0Z9WS3zUzXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAxpZIOAAAAAEDLUVRUFAUFBVv8mQ3lm2+++cG1bbfdNoEkydh6663rfc+qVasaKs4PtGrVqtF6J+3OO++MNm3aVNZvvfVWdO/ePc4///x4+OGH4+23344lS5bEunXroqSkJOPeNm3a1PnZ/OEPf4iKiorK+uKLL87olZWVFUOHDs24Z+zYsTXqvXz58oz6oYceiqysrHp/HXPMMXX6XhtC586dM+pvv/02oSQAALR0hYWF1f7unZubG126dKlRr1133bXa9Q3/3b42ysvL63zv5ua8886rdn316tVx4403xk9/+tPYaqutIpVKZfyuc9tttzVR0oaXm5sb06ZNi6OOOmqj6yUlJXH66adHXl5ejXu25Oe5ubzfW5LRo0fHfffdF6lU1f9p3+TJk6Nfv36xZs2aJkyWKYnZ5ZNPPhkffvhhZd22bdu46aab6txvw9lhp06d6tRnw/tWrlxZ50xbkqRmjE3l8MMPj3HjxmVce+WVV+Kyyy6rda8t/Vm15HfNDBcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoTKmkAwAAAADQsixYsKDKtXnz5kVWVla9v/r375/4mQ2hoKAgVqxYkXGta9euDX5Oc9WzZ89637No0aIq95aWlmbU6XS6Vmd16tSpVvs3F1tvvXXGz3NxcXGcdtpp8c0339To/i5dutT57M8//zxefvnlyrpr165xwgknVNZ9+/aN3XffvbJeunRpTJs2rUa9N/xZ6NGjR51zNgcdOnSIDh06ZFz78ssvkwkDAABR/e/eERGHHXbYJnvsuOOO0b179yrXy8vLY+HChbXO1hIdfvjhVa4VFRVFnz59YvTo0fG///u/sXbt2qioqMjY07Fjx8aO2CjatGkT//M//xNHH330RtdLSkrijDPOiOeff75WfVvq8/wn73fTSKfTMWHChBg5cmS1++67774YPHhwFBUVNVGyjUtidlleXh433HBDxrWLL7642p+t6ixevDijrss8MpVKxV577VVt35YoyRljU9hjjz1iypQpkZ2dXXnto48+ikGDBkVJSUmtem3pzyqi5b5rZrgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAY0slHQAAAACAlmXmzJlVrvXs2TN23HHHLeLMhvL3v/89o95ll10SStL0fv7zn9dqf6dOnWL33XfPuPb2229XuT8/Pz+j3mqrrWp1Xo8ePWq1f3Ox7777RuvWrSvrV199NZYsWVLj+2v757ahBx54IKMeNmxY5f/+93//94y1hx56KEpLS2vU929/+1tUVFRU1j//+c+jbdu29UiarA0/C1avXh3Lli1LKA0AAES88sor1a5fdtllm+xx2WWXRVZWVpXr7733XqxatarW2Vqa9u3bR/v27atc//Of/xzz5s2rtseBBx7Y0LEaXU5OTkydOjX69u270fXS0tIYPHhwTJ06tVZ9k36eZWVl1a5nZ2fXuXdNeb8bX9u2beO5556Liy66qMo9FRUVMWLEiBg+fHiUl5c3YbqqJTG7zMvLi9dff72ybt26dYwePbpOvd58882Metddd40uXbrUqsfee+8d7dq1q6zLy8urnUm2FEnPGBtT586dY/r06bHNNttUXvvuu+/ihBNOiNWrV9e635b8rP6ppb5rZrgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAY0slHQAAAACAluWFF16oci2VSsWIESPq1Lddu3Zx3XXXxW/zQbsAACAASURBVE033dQszmwoc+bMyaj32WefRjuruRk0aFCt9p966qmRSv3/yPPjjz+OFStWVLl/+fLlGXWPHj1qdd6RRx5Zq/3/VFpamlH/a+bmoEuXLhn14sWLa3X/wIED63V+Xl5eLFq0qLI+7rjjYuedd47tt98+BgwYUHm9vLw8xo8fX+O+y5Yti/fff7+yzs3NrXfWJG34WbDhZwUAADS1F198sdr1o446Kq666qoq1/v06RPXXnttvc7gH9q0aVPtejqdrnb9kEMOiQMPPLAhIzW6nJyceO6556Jfv34bXS8tLY2zzjorpkyZUuveST/PdevWVbte23lGXXi/G9c222wTM2fOjBNPPLHKPSUlJXH++efHb3/72yZMtmlJzS43nOeeeeaZsf/++9e6z8KFCzPmUBG1n0kOHjw4o547d27k5+fXOsuWJukZY2PJycmJqVOnZnz2FhYWxsCBA2PBggV16pnEs2rqGXVLfdfMcAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDG1rh/Wz0AAAAAbODll1+ODz74oMr1X/7yl3HllVfWuN+ee+4Zt912WyxYsCDGjBkTXbp0aRZnNpS33347o953330b7azm5qCDDorevXvXaG8qlYrLL78849ojjzxS7T0LFy6MVatWVdY77LBD9OjRo0bn5ebmxoUXXlijvRtat27dD3o1J4WFhRn1NttsU+N7d9111zjzzDPrdX5ZWVmMGzeusk6lUnHxxRfHRRddFK1bt668/uKLL8aXX35Zq973339/Rn3zzTdn9NycbPhZsOFnBQAANLUXX3wx5s2bV+2e//7v/44nnngi+vTpEx06dIicnJz4t3/7t7j11lvjpZdeipycnCrvLSoqigceeKChY2+RVq5cGaWlpVWuH3TQQbHLLrtsdG333XePp556qrGiNYrs7Ox49tln47jjjtvoellZWZx99tnxzDPP1Kl/0s9z5cqV1a6PGTMmDjzwwGjbtm29zqmO97vx7LzzzjFr1qw46KCDqtyzbt26GDBgQDz++ONNmKxmkppdvv766zF9+vTKOisrK37zm9/UqdeGM8Thw4dHOp2u0b0dO3aMoUOHZlx76KGH6pRjS5P0jLGxPPTQQ9GnT5/KuqKiIi644IKYPXt2nXsm8aySmFG3xHfNDBcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABobKmkAwAAAADQslRUVMTIkSOrXM/Kyoq77747Zs+eHRdffHH07Nkz2rdvH+l0Orbbbrvo2bNnDBo0KO68886YM2dOfPzxx3HDDTfEdttt16zObCivvPJKVFRUVNYHHXRQZGVlNfq5zcX9998fOTk5m9w3fPjw2G+//SrrwsLCePjhhzd53xtvvJFRX3rppTXK9bvf/a7Of/7Lli3LqHfZZZc69WksX3zxRUZ9xBFHRMeOHTd5X+vWrWPixImRnZ1d7wzjxo2LkpKSyvriiy+OoUOHZuz54x//WOu+jz76aMb3t+eee8bYsWPrHjRBhxxySEb98ssvJ5QEAAD+oby8PG666aZN7hsyZEi89tprkZ+fH4WFhTFv3rwYNWpU5ObmVnvfgw8+GEuWLGmouFu08vLyePvtt6tcb9++fcycOTMGDx4cXbt2jezs7OjevXtcd911MWfOnOjWrVsTpq2/Z555Jk444YQq11u1ahWTJk2KioqKGn/dcsstlfcn/TznzZtX7foBBxwQb731VhQUFPzg+zjnnHPqdfY/eb8bz7Bhw2Kvvfaqdk/79u1jxowZtfoZrqioiDlz5jR6/iRnlzfccEOUl5dX1v37948+ffrUus+DDz4YxcXFlfWee+4Z119/fY3uvfPOOzNmhPn5+TWaSbYEzWHG2ND+67/+K4YMGZJxbdSoUTFp0qR69U3iWSUxo26J75oZLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANDYUkkHAAAAAKDlycvLi3vvvbfaPb/4xS9i/PjxMX/+/Fi7dm2UlJTEsmXLYv78+TF58uS45pprolevXs36zIawdOnSeP/99yvrbbfdNn7yk580aYYkHXDAAfHUU09Fu3btqtwzZMiQuPPOOzOu3XLLLbFs2bJN9n/kkUcy6uHDh8dRRx1V5f5UKhW33357/PKXv9xk76r8659nRES/fv3q3KsxzJ8/P7788svKumPHjjF27NhIp9NV3tOpU6eYPn16HHLIIQ2S4ZtvvompU6dW1l27do1dd921sv76668jLy+v1n1LS0vj7LPPjqKiosprF154YUyZMiU6d+5c4z7bbbddXHvttfHss8/WOkNDyM3Njd69e1fW+fn5MWvWrESyAADAv5oyZUqMGzeuwfu+++67MXLkyAbvuyV78sknq13v0aNHPPXUU7F48eIoKiqKzz77LMaMGROdOnVqooQNI51Ox4ABAxr9nCSf55tvvhmlpaX17lNf3m82JsnZ5QcffBBPPfVUxrU999yz1n2WLl0aN998c8a1X//613HZZZdVeU8qlYpbb701Lrnkkozr11xzTeTn59c6w5aoOcwYG9I555wTN910U8a1Rx55JG6//fZ6907iWSUxo25p75oZLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAUUkkHAAAAAKBluuqqq+Lpp5/e4s9sCM8++2xG3a9fv4SSNJ2ioqJ47rnnIiLilFNOiffffz8uu+yy2G233SInJye222676NevXzz77LPxxBNPRKtWrSrvnT17dtx11101Omfq1Knx3nvvVdatW7eOF154IX73u9/F/vvvH+3atYvc3Nzo0aNHDBs2LD744IMYMWJERESMGzeuTt/btGnTMuprr702rr766ujevXvk5OTUqWdDu/322zPqM888M956660YMmRIdO3aNdLpdGy99dbRq1evuOWWW+Kzzz6Lvn37RkTExIkTo6ysrN4ZHnzwwSrXJkyYEKWlpXXq++abb8Yll1ySkfGUU06Jr776Kh588MEYOHBgdOvWLdq2bRutW7eOzp07x5577hmnnHJK3HzzzTFr1qz45ptv4o477oju3bvXKUN9HX744ZGdnV1ZT5s2LUpKShLJAgAAG/qP//iPeOGFFxqs35dffhknnXRSfP/99w3WsyUYN25cfPLJJ3W6d9WqVTFp0qQGTrR5S/J5Ll++PPLy8up8f0PyfrMxSc4ub7zxxgaZidxxxx0xc+bMyjorKyseeOCBePHFF+Pkk0+OHXbYIbKzs6Nr165x1llnxaxZs2LUqFEZPZ5++ukYP358vbNsSZrDjLEhdO7cOSZMmJBx7a9//WsMGzaswc5o6meV1Iy6Jb1rZrgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAU0glHQAAAACAlqm8vDwGDx4cV199dRQXF2+xZzaExx9/PCoqKirr0047LcE0TeeCCy6Id999NyIiunfvHg888EB88cUXUVhYGMuWLYsZM2bEqaeemnHPO++8E8cff3yUlpbW6IzS0tI499xzY9WqVZXXsrOz4z//8z/jvffei3Xr1sX3338fn376aYwdOzb23nvviIh47LHH4vrrr6/T9zVjxozK7ysiIjc3N+6666747LPPorCwMCoqKjK+DjjggE32PPPMM39wX22++vfvn9Fv/PjxMWnSpIxrP/vZz+KJJ56IxYsXR0lJSaxatSrmzJkTN998c2yzzTYREfHSSy/F0KFD6/RcNvSXv/wlPvroox9cLy8vj/Hjx9er98SJE6N///6xYsWKymvt2rWLSy+9NKZOnRoLFy6MgoKCKC4ujuXLl8fHH38cU6ZMiVtuuSUOPvjgSKWSHa0PGjQoo3700UcTSgIAAD9UWloaAwYMiNGjR0d5eXm9euXl5UWvXr1iyZIlDZSu5SguLo4BAwbEd999V6v7Vq1aFf3794/PPvuskZJtnpJ+ntddd12sW7euXj0agvebjUlydrlgwYL44x//WO8+5eXlcdJJJ8Xzzz+fcf3YY4+N5557Lr7++usoKiqKxYsXx5NPPhm/+MUvMvY99thjcfbZZ9c7x5amOcwYG0Jubm5kZ2dnXDviiCOiuLi4TrPYjc17m/pZNcaMuiZa0rtmhgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0hVTSAQAAAABouSoqKuLuu++OfffdN8aOHRvff/99nfqsXr06nn766TjrrLNixIgRze7M+vrqq6/iz3/+c2Xdu3fv6NatW6Oe2Rzk5+fHEUccERMnTtzk3oqKinjwwQfjyCOPjNWrV9fqnHnz5kWfPn1i7ty5m9xbUFAQ11xzTZx//vlRXl5eq3P+qby8PE499dR4991363R/U6ioqIhzzjknxowZE2VlZZvcX1xcHLfddluccMIJUVhY2GA5/vCHP/zg2owZM2LhwoX17j1z5szYZ5994t57743169fXu19TSafTMXDgwMp60aJF8corrySYCAAAfqisrCxuvPHG6N27dzzzzDO1/v1pzpw5ccYZZ8RJJ50UK1eubKSUW75PP/00evXqFa+99lqN9r/66qtxwAEHxNtvv93IyTZPST7PTz/9NI499tgG+X24vrzfbCjp2eWtt94aBQUF9e6zfv36OPXUU+Pyyy+P7777rkb3LFmyJC666KK44IILorS0tN4ZtjTNZca4OWjqZ5XkjLolvGtmuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBTSScdAAAAAAA++eSTuPTSS2PEiBFx9NFHx8EHHxwHHnhgbL/99tGpU6fYaqutoqSkJAoKCmLVqlWxYMGC+Pzzz+PDDz+MWbNmxdy5c6O8vLzZn1kf99xzTxx99NEREZGVlRUXXHBB3HrrrU12flLWrl0b5557bowePTrOPvvs6Nu3b3Tt2jW6dOkS+fn5sWjRonj55Zdj4sSJMXfu3DqfM3/+/Nhvv/1i0KBBcfLJJ0fv3r2jS5cukU6n4+uvv44vvvgipkyZEpMmTYqVK1fW+/v66quvonfv3nH88cfHKaecEvvtt19069YtOnToEDk5OfXu3xBKS0vj+uuvj7Fjx8Yll1wSRx55ZPz4xz+Ojh07xrp16+Lbb7+NL774Ip5//vl47rnnYtmyZQ2eYeLEiXHPPfdEVlZW5bWxY8c2WP+lS5fGFVdcEbfeemscd9xxcdRRR8VPf/rT2G677aJz584REZGfn1/5tWLFivjoo49i7ty5lV9NbeDAgbHttttW1vfdd1+TfhYBAEBtzJkzJ04//fTYeeedo2/fvnHooYfGfvvtF9tuu21ss802kU6nY9WqVbFy5cr49NNP47XXXou//vWvMWfOnKSjbzEWLVoUhx12WBx99NFx1llnxSGHHBI77rhjtGnTJr777rtYunRpvPrqqzF58uR46623ko7b7CX5PGfPnh0//vGP4/TTT4/jjz8+fvazn8WPfvSj6NChQ6TTTf+fgHm/+VdJzi6//fbbuOeee2LkyJH17lVWVhb3339/PProo3HSSSfF8ccfH/vvv3906dIlOnbsGKtXr45vv/023nnnnfjTn/4U06ZNi/Xr1zfAd7Hlag4zxs1FUz+rJGfUW/q7ZoYLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANJWsioqKiqRDAAAAAFu2NWvWxNZbb510DNisZWVlxfz582OvvfaKiIiFCxfGbrvtFuXl5Qknazj/OqosKiqKNm3aJJiG5uCEE06IvLy8ynrJkiWxyy67RFlZWYKpkvXSSy9F3759IyJi3bp1sdNOO8WaNWsSTkVN3XzzzXHLLbckHQOAjRg/fnwMHTo06RgAAJulljC7BKgpM1xakg4dOkR+fn7SMTZ7ixcvjm7duv3g+l133RVXX311REQcfPDBMXv27Iz1gw46KN54440myQgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRLk1NJJwAAAAAANq2ioiJuu+22ynrnnXeOk08+OcFE0PiGDh2aUU+YMCHKysoSSpO8nj17xjHHHFNZ33fffbFmzZoEEwEAAACYXQL8kxkuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0JRSSQcAAAAAAGrmySefjLlz51bWI0aMSDANNK6uXbvGiSeeWFmXlpbG+PHjE0yUvOuvvz6ysrIiImL16tVxxx13JJwIAAAA4B/MLgHMcAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICmlUo6AAAAAABQM+Xl5TFixIjK+oADDoh+/folmAgaz5VXXhmtWrWqrJ999tlYtGhRgomStdtuu8WQIUMq69/85jexevXqBBMBAAAA/D+zS6ClM8MFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmloq6QAAAAAAQM3l5eXF9OnTK+vf/va3kZWVlWAiaHh77LFH/OpXv6qsKyoqYsyYMQkmSt5tt90W6XQ6IiI++eSTuOeeexJOBAAAAJDJ7BJoycxwAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKaWSjoAAAAAAFA7w4cPj8LCwoiI2H///eOcc85JOBE0jO233z6GDBkSM2fOjDZt2lRef+qpp+K9995LMFmyevXqFYMHD66sL7/88iguLk4wEQAAAMDGmV0CLZEZLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCEdNIBAAAAAIDa+eKLLyI3NzfpGNAgRo8eHSNHjqxyfdmyZXHVVVc1YaLm55133olUKpV0DAAAAGgxKioqGqVvVlZWo/RtTswugZbIDBcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIgr9lHQAAAACAZum7776L448/PpYtW5Z0FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGg20kkHAAAAAACAf1q7dm38/e9/j+nTp8e9994bK1asSDoSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANCvppAMAAAAAAEREZGVlJR2BBIwaNSpGjRqVdAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYbKSTDgAAAAAAAAAAAADNRVZWVtIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgWqmkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDOppAMAAAAAAAAAQETE2rVrk44AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM1eKukAAAAAAAAAABARcf7558fee+8dY8aMiW+++SbpOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQLKWSDgAAAAAAAAAA/zR//vy4/vrro2vXrtGnT5/4/e9/H8uXL086FgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0G6mkAwAAAAAAAADAhsrLy2PWrFlx5ZVXxk477RQDBgyIxx57LAoKCpKOBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJSiUdAAAAAAAAAACqU1RUFHl5eXH++efHjjvuGBdccEG8+OKLUVZWlnQ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGhyqaQDAAAAAAAAAEBN5efnx6OPPhr9+/ePLl26xHnnnRczZ86MioqKpKMBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJNIJR0AAAAAAAAAAOpi5cqV8fjjj0ffvn1jl112iSuuuCJef/31pGMBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQKNKJR0AAAAAAAAAAOpr0aJFce+998ahhx4a++yzT9x+++2xYMGCpGMBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQINLJR0AAAAAAAAAABrS3LlzY+TIkdG9e/c4+OCD47777otvv/026VgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0CBSSQcAAAAAAAAAgMZQUVERs2fPjuHDh8eOO+4Yffr0id///vexfPnypKMBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ2lkg4AAAAAAAAAAI2tvLw8Zs2aFVdeeWXstNNOMWDAgHjssceioKAg6WgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUCvppAMAAAAAAAC0BPPnz4/JkycnHQOgWVuyZEmTnFNUVBR5eXmRl5cXl19+efzkJz9pknMBAAAAthSlpaVm3vVw4oknRm5ubtIxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzVg66QAAAAAAAAAtweTJk2Py5MlJxwBgA/n5+fHGG28kHQMAAABgs7J+/fo444wzko6x2Vq0aFHstNNOSccAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2Y6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAz6aQDAAAAAAAAtATDhg2LYcOGJR0DoFm79tpr4y9/+UuTnrn77rtHz549Y/r06U16LgAAAMDmrG3btvG3v/0t6RjN3hNPPBF333130jEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAtUDrpAAAAAAAAAC3BDjvsEL169Uo6BkCztvXWWzfJOZ07d47TTjstzj333DjkkENiwoQJMX369CY5GwAAAGBL0KpVKzPvGnj11VeTjgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGyh0kkHAAAAAAAAAIDG1rFjxzjppJPi9NNPj+OOOy7Saf93OQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACbp3TSAQAAAOD/2Lvz6CrrM3HgTy4hUWQTREGQEXHKFLSjYGcQFJfiCGgdQEVFrFbFugyKeMR9nBHFOoIrM5Yq4jCjuFYr1qWRHhSFUlcUd0WUIPsSA0gSQn5/zOn9GZOb3IQbbgifzzn3nPe7Py95b3ielz8AAAAAaAi77757nHjiiXHGGWfEkCFDIj8/P9shAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMB2y812AAAAAAAAAACQKbm5uTFw4MA444wzYtiwYdGqVatshwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGZWb7QAAAAAAAAAAYHv16dMnzjrrrDjttNOiY8eO2Q4HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpMbrYDAAAAAAAAAID66NmzZ5x66qkxBr1cGgAAIABJREFUatSoOPDAA7MdDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsELnZDgAAAAAgImLq1KnRv3//bIcBAFCrp556Km688cZshwGwyzrggAPijDPOiDPOOCN69eq1Q87cY489YsGCBTvkLABg57Vx48bo27dvjXO8CwcAdhbehQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRuudkOAAAAACAiomvXrtGrV69shwEAUKv58+dnOwSAXU779u3j5JNPjrPOOiv69+8fOTk5O/T8RCKhZgUAalVUVFTrHO/CAYCdhXfhAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjVtutgMAAAAAAAAAgB9q06ZNnHTSSXHqqafG4MGDIzfXP28DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEREbrYDAAAAAAAAAICIiPz8/DjxxBPj1FNPjVNOOSVatGiR7ZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoNHJzXYAAAAAAAAAABAR8fDDD0cikch2GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQqCWyHQAAAAAAAAAAREQkEv4JGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABqk8h2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQnke0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASE8i2wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnkS2AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA9iWwHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQHoS2Q4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA9CSyHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADpSWQ7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANKTyHYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApCeR7QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABITyLbAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCeRLYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID2JbAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAehLZDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID0JLIdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOlJZDsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0pPIdgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkJ5HtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEhPItsBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJ5EtgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgPYlsBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEB6EtkOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgPQksh0AAAAAAFC7SZMmRU5OTvKzYcOGbIfEDvTKK69U+vn/9XPHHXdkOzTYLuecc06V53qPPfaIwsLCbIcGALBTUTPuutSLNFXqRdh1yWt2bXIbmiq5DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0hke0AAAAAABq7Dz74IP7jP/4jjj/++OjZs2fstddekZ+fH/vuu28ccsghcdppp8VDDz0UK1euzHaoQBNUXl4el112WZX+jh07xkUXXZSFiCBzbrjhhsjNza3Ut3nz5hg/fnyWIgIAgJ2HepGmTL2YHd6FA9kkt6Epk9sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQEBLZDgAAAACgsfrzn/8cRx55ZBx00EFx1VVXxR//+Mf46KOPYu3atVFaWhrLly+PhQsXxuOPPx6//OUvo3PnznHhhRfGihUrsh060IRMnz49Fi5cWKX/iiuuiN13373GtVOmTImcnJyUn9atW8fq1avTiqNLly4p99mwYUO97o3Gq7S0ND788MN45pln4rbbbotzzz03+vfvH3vttVfK5yA3N7fO53Tv3j1GjhxZpX/mzJmxYMGCTNwKADQZixYtqvR37ymnnJLtkIAsUy+SDerFpsm7cKAxkNuQDXIbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdmaJbAcAAAAA0NiUl5fHJZdcEocffni89tprdVo3derUOPDAA+PJJ59swAjr56GHHoqcnJzk5/PPP892SDvUrn7/7JxKS0tjwoQJVfpbtmwZo0eP3u79i4uLq90fLr300ujVq1cMGzYsrr766pg+fXrMmzcv1q5dm/GzLr/88mr7b7jhhoyfBQCQipqRnY16kWxRLzYt3oU3Tbv6/bNzktuQLXIbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdmaJbAcAAAAA0Jhs3rw5hg0bFv/1X/9Vqf9HP/pRTJgwId58881YuXJllJSUxNKlS+NPf/pTjBkzJtq1a5ecu2nTpjjttNPi7rvv3tHhA03MtGnT4uuvv67Sf84550SbNm0ycsbUqVNj8eLFGdkL6uOQQw6Jo446qkp/QUFBvPbaa1mICAAAGj/1IrsC9WLD8i4caEzkNuwK5DYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkWiLbAQAAAAA0JqNHj45Zs2Yl27m5uXHrrbfGokWL4vrrr48+ffrE3nvvHXl5edGlS5c45phj4p577omPP/44Tj/99OS6bdu2xdixY+PJJ5/Mxm0ATcC2bdvijjvuqHbsvPPOy9g5paWlcf3112dsP6iPVM/0pEmTdnAkAADQ+KkX2ZWoFxuOd+FAYyG3YVcitwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCTEtkOAAAAAKCxmD59ejzyyCPJdm5ubjz66KNx9dVXR/PmzWtc26FDh5g5c2ZcfPHFlfpHjx4dX331VYPECzRts2bNis8//7xK/yGHHBKHHHJIRs969NFH45133snonlAXJ598crRq1apK/6xZs2Lx4sVZiAgAABov9SK7EvViw/AuHGhM5DbsSuQ2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZFIi2wEAAAAANAbFxcVx+eWXV+qbOHFinHzyyXXaZ8qUKXHssccm2xs2bIgrrrgiIzECu5YHHnig2v5TTjkl42dVVFTEVVddlfF92Xnl5+fHj3/84/jnf/7nGD9+fEybNi3mzp0bq1atij322CPj57Vo0SKGDBlSpX/btm0xffr0jJ8HAAA7M/Ui2aRe3Pl5Fw40NnIbskluAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwM4sN9sBAAAAADQG999/fxQVFSXbhx56aIwbN67O++Tk5MTUqVPjoIMOipKSkoiIePrpp+OLL76I7t27ZyzexqCioiIKCgpi2rRp8d5778XSpUujefPmsd9++8Xxxx8f55xzTvTq1SvbYWbV+vXrY+bMmfHHP/4x3n///VizZk1s3rw5WrduHZ06dYrDDjssBg0aFEOHDo3ddtut3ue8/fbbMXXq1Jg3b158/fXXsW3btujYsWMMGDAgfvnLX8YRRxxR5z2XLl0aTz75ZMydOzcWLlwYq1atirKysmjfvn107do1jjrqqBgxYkT07t273nFHNOxzVFFRES+99FL84Q9/iNdeey1WrFgR69ati1atWkWnTp3iyCOPjOHDh8fAgQO36x4awurVq+PFF1+sdmzo0KENcmZBQUHMnj07fvaznzXI/t83d+7cePnll+P111+PL7/8MtatWxcbN26MNm3aRLt27aJHjx5xxBFHxODBg+MnP/lJxs9ftWpVPPjgg/HMM8/El19+GUVFRbHXXnvFoYceGsOHD4+zzjorcnPr/vp8wYIFUVBQEHPnzo0vvvii0n116NAhDj300DjuuONi2LBh0aZNm4zfVybdfffdO/zMYcOGxWOPPVal/+GHH46bbropcnJydnhMANCUNUQd8X1qxtqpGWumXqxeU68XI9SMjb1mVC/u/LwLrzt5Te3kNbWT21Svqec28prGnddEyG0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYueVUVFRUZDsIAAAAoGkrKiqKtm3b1jjnhRdeiEGDBu2giKrq1q1bLFmyJNl++OGHY+TIkfXeb+TIkTFz5sxke+zYsXHnnXemnD906ND4/e9/HxERf//3fx/vvvtuWuc8+eSTceqppybb77//fhx00EGV5rRs2TI2bdpUl/Djf/7nf2LUqFERETFp0qS48sork2Pr16+PkpKSOOWUU+K1115LuUdubm5cccUVccstt0SzZs1qPK8x33993X///XHllVdGUVFRrXPbtWsXN9xwQ1xyySXRvHnzaudU93PIy8uL0aNHxyOPPFLj/uedd15MnTq11p9DRMQf//jHuP3222P27NmRzqvD4cOHx/333x/t2rWrcd6OeI6+b86cOTFu3Lh45513ap171FFHxQMPPBAHHnhg2vs3tGnTpsX5559fpb9z585RWFiY9j5TpkyJMWPGpD2/T58+8cYbb0ROTk6VsS5dusSyZcuqXbd+/fpaf89HRPzud7+LCRMmpP0dj4gYOHBg/Pu//3v069ev1rmDBg2Kl156qdqx5cuXR8eOHWPKlClx1VVXxebNm1Pu06tXr3juuedi//33TyvG559/Pm666aZYsGBBWvPbtm0b48aNi6uuuiry8vLSWtOYpPq92qxZs9i6dWu99127dm106NCh2t89b775ZvTp06fee2faAw88EKNHj67zuhtvvDH+7d/+LfMBAbDdavvd3qpVq/j22293YERVLVq0KA4++OBk++STT44nn3yyxjU7oo5QM9aPmrHm2NWLqTXVejFCzfhXO3PNqF70LjzCu3B5Tc2ael6TKn65TWpNNbeR1/yfnTmviZDbROwc70t2BnfccUdcccUVVfqXLl0aXbp0icLCwthvv/2qjE+ePDnGjRsXERH9+vWL+fPnVxo//PDDY968eQ0TNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsDN4IpHtCAAAAACy7bPPPoslS5Yk223bto3hw4dv157nn39+pXZBQcF27deYfPvtt3HMMcfEa6+9VuO8rVu3xm233RZnnXVWlJeX76DoGodJkybFBRdcEEVFRWnNX7duXVx++eXxyiuvpH1GSUlJDBo0KB555JFa506bNi0uuuiiWuetWLEijj/++Hj55ZejoqIirTh+97vfRf/+/WPlypVpzf+rhnyO7rvvvhg4cGC88847ac1/5ZVXol+/fvHmm2/WOG/KlCmRk5OT/Fx44YVp7V8fL7zwQrX9Rx11VMbOSCSqvh5+66234rHHHsvYGX/13Xffxfnnnx8nn3xyvPvuu3Va+/LLL8eAAQNi4sSJaT+XqYwZMybGjBkTmzdvrnHeBx98EAMGDIgNGzbUOK+0tDQuvfTSOOGEE2LBggVpx7Fhw4b413/91zj66KNjxYoVaa9r6tq3bx+9evWqdizVdwIAqJuGqCN+SM1YOzVjzdSLNWtq9WKEmvGH1IxVqRczx7vwupHX1E5eUzu5Tc2aWm4jr6lMXlM9uQ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZUvV/cwcAAADYxcydO7dSu1+/frHbbrtt1579+/eP5s2bJ9sffvhhrFu3brv2bCwuvfTS+OijjyKRSMQFF1wQ8+fPj6KioiguLo433ngjxowZE82aNUvOnzlzZkycODGLEe9YX3zxRVx33XXJdn5+fowdOzZeffXVWL16dZSVlUVxcXF8/vnnMXPmzPjFL34Ru+++e53PGTt2bMydOzfy8vLi0ksvjfnz58f69evju+++i0WLFsW4ceMq/Rzuv//+ePXVV9Pe//DDD49JkybFa6+9FitWrIiSkpL49ttv47333ovJkydH165dk3M//vjjGD16dJ3ib6jnaMaMGXHxxRdHeXl5REQ0b948zj777HjxxRdj5cqVUVpaGmvWrIkXX3wxhg4dmly3evXqGDp0aKxZs6ZO99FQ5syZU23/P/7jP2bsjNNOOy3y8/Or9F9//fVRVlaWsXO2bdsWI0aMiGnTptV7j/Ly8rjuuuvihhtuqPceN910U0yZMiXt+UuXLo2rrroq5XhFRUWcddZZce+999Y7pvnz58dRRx0VRUVF9d6jqUn1jP/pT3/awZEAQNPU0HVEhJqxNmrG2qkXa9aU6sUINWNN1IyVqRczw7vwupHX1Exekx65Tc2aUm4jr0lNXlOV3AYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBMSGQ7AAAAAIBse/PNNyu1f/rTn273nvn5+XHwwQcn2xUVFfHWW29t9771sXHjxqioqIjp06dX6v/ss8+ioqKi2s+oUaNS7vf73/8+8vLyYtasWTF16tTo27dvtG7dOlq2bBmHHXZY3HPPPVFQUBC77757cs3NN98cn3zySYPdY00yff+1mTlzZpSWlkZERCKRiBdffDHuvPPOOPLII2OvvfaK3NzcaNmyZXTv3j1OP/30+O///u9YtmxZjB07NvLy8tI+59FHH40OHTrEvHnz4u67746+fftG27ZtY7fddotevXrF5MmT44EHHqi05t57761xz5ycnBg6dGh88MEHMW/evLjiiiuif//+sc8++0ReXl60atUqDj744Bg3blwsWrQoBg8enFw7a9asmDNnTtrxN8Rz9Omnn8ZFF12UbHfq1CnmzZsXDz30UBx//PGx9957R/PmzaN9+/Zx/PHHx9NPPx0PPPBA5OTkRETEsmXL4sorr0z7HhrK4sWLY+3atdWOff/3yvbq2rVrXHzxxVX6v/jii/jtb3+bsXOuv/76eO655zKy1y233BJPPfVUvdbed999dV4zY8aMWL9+fbVjN998czz++OP1iuX7Pv300/jFL36x3fs0Fame8bfeeisqKip2cDQA0PQ0RB3xQ2rGmqkZa6deTK2p1YsRasbaqBn/P/ViZngX7l24vOb/eBcut4nwLvz75DU7ntwGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATEhkOwAAAACAbFu1alWl9gEHHJCRfbt161apvXr16ozs2xj8+te/jiFDhqQcP+aYY+Kuu+5KtktLSyu1m7L33nsved2vX784+uija12z5557xp133hkDBgxI+5ycnJx45JFHok+fPinnnHPOOXHEEUck27NmzYqysrKU8/fZZ594+umno2fPnrWe36pVq3jiiSeic+fOyb7f/va3aUb/fzL9HE2YMCE2b94cERHNmzeP559/Pg477LAaYzjvvPNi3LhxyfbDDz8chYWF6d5Cg1i4cGHKsR49emT0rOuuuy7atGlTpf+mm26KjRs3bvf+S5cujTvuuCPleMeOHeP++++Pb775JkpKSmLx4sVxyy23RIsWLVKuGT9+fGzdurXeMV1wwQXx/vvvx5YtW2Lx4sXxq1/9KuXcLVu2REFBQZX+5cuXx6233ppyXc+ePePRRx+NFStWRGlpaSxZsiQmTpwYu+22W7Xzn3322Zg9e3bdb6YJ+vGPf1xt/7fffhuLFy/ewdEAQNPTEHVEddSMqakZ06NerF5Tqhcj1IxqxrpRL2aGd+F1J69JTV6TPrlN9ZpSbiOvkdfUldwGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATEhkOwAAAACAbFu3bl2ldps2bTKyb9u2bSu1165dm5F9s61r164xZsyYWuedf/750aNHj2T74YcfjpKSkoYMrVHYuHFj8rply5YNds4//dM/xcCBA2udd8YZZySvS0pK4qOPPspYDHvssUdcfPHFyXZBQUHaazP9HC1fvjweffTRZPuCCy6IQw45JK1Yrr322sjPz4+IiLKysnjmmWfSWtdQvvzyy2r7c3Nzo2PHjhk9q3379jF+/Pgq/atWrYrJkydv9/533nlnyu99+/btY968eXH++edHp06dIi8vL7p16xbXXnttPPvss5FIVP/6evHixfHYY4/VK54JEybE1KlT46CDDor8/Pzo1q1b/OY3v4kTTzwx5Zq33nqrSt8dd9wR3333XbXze/XqFQsWLIjTTjst9tlnn2jevHn8zd/8TVxzzTXx7LPPRk5OTrXrbrnllnrdU1PTuXPnlGOpvhsAQPp2RB2hZqyZmrF26sXUmlK9GKFmVDPWjXoxM7wLrxt5Tc3kNemR26TWlHIbeY28pq7kNgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRC9f9bOgAAAMAupLi4uFK7ZcuWGdn3h/t8++23Gdk320aOHBm5ubm1zkskEjFq1Khku7i4ON55552GDK1R2HfffZPX8+fPj2XLljXIOaeffnpa83r37l2p/eWXX2Y0jiOOOCJ5vWbNmvj666/TWpfp5+jll1+OrVu3JttnnXVWWnFERLRr1y769u2bbM+dO7faef/yL/8SFRUVyc9vfvObtM+oi1TPTIcOHSKRyPwr3bFjx1Z6bv9q8uTJsWrVqu3a+w9/+EPKsRtuuCG6detW7djPfvazGDlyZMq1L7zwQp1j+fGPfxzXXHNNtWM1fZ+++eabKn3PPfdcyvkzZsxI+ffIcccdF4MHD6527NVXX42ioqKU++4qOnbsmHKssLBwB0YCAE3Tjqgj1Iw1UzPWXjOqF1NrSvVihJrxh9SMNVMvZoZ34XUjr6mZvMa78O3VlHIbeU1l8prayW0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIhMz/z/AAAAAAO5mWLVtWam/atCkj+27cuLFSu3Xr1hnZN9v69++f9tx+/fpVar/xxhuZDqfRGTRoUPK6qKgojj322Hj66adj69atGT3nsMMOS2ve3nvvXaldVFSU0Th+uP+SJUvSWpfp52ju3LnJ69zc3Dj00EPT3j8iolu3bsnrzz//vE5rM624uLja/hYtWjTIeS1atIgbb7yx2jgmTJhQ732/+eab+PTTT1OOjxw5ssb1NY3PmTOnzvGcffbZ0axZs2rHvv/z/6EffmdWrFgRH3/8cbVzu3fvHr17964xjh8+z39VXl5e6TneVdX0nP/w71UAoO52RB2hZqyZmnFJrWvUi6k1lXoxQs2YipoxNfViZngXXjfymprJa5aktU5uk1pTyW3kNdWT19RMbgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAm5GY7AAAAAIBsa9++faX2hg0bMrLvD/dp165dRvbNth/96Edpz+3Ro0el9vLlyzMdTqMzbNiw+Id/+If4y1/+EhERn376aQwfPjz23HPPGDhwYAwYMCAOO+yw6NOnTzRv3rze53To0CGteS1atKjU/u6779Ja9+GHH8bvfve7+Mtf/hIff/xxrF27NoqLi6OsrKzGdUVFRWntn+nn6Kuvvkpeb926tcp9V1RU1Hr9V2vXrk07toZQUlJSbX9eXl6DnXneeefFHXfcEZ988kml/qlTp8bll18eBxxwQJ33LCwsTDnWpUuXWp/h3r17pxxbvnx5lJeXR7NmzdKO5/DDD0851qpVq5RjpaWlldpLly5NOfeLL76InJyctGP6ocWLF9d7bVORn5+fcizd318AQGoNXUdEqBlro2asvWZUL6bWVOrFCDVjfezqNaN6MTO8C68beU3N5DXehW+vppLbyGvqblfPayLkNgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRGItsBAAAAAGRbhw4dKrW//PLLjOy7ZMmSGs/ZWbVp0ybtuW3btq3UXr9+fabDaXSaNWsWzz33XBx77LGV+tevXx9PPPFEjBkzJg4//PBo27ZtDBkyJGbMmBGlpaV1Pic/P79e8VVUVNQ4/sUXX8QJJ5wQvXr1ihtuuCFmzZoVn332Waxbty7Kyspq3b+4uDitODL9HK1du7ZSu7y8vNJn27ZtyU9FRUXyU51NmzalHVtDSPWzrc9zkq5mzZrFxIkTq/SXlZXFddddV68916xZk3Isnd+He+21V8qxbdu2xbp16+oUT5cuXVKO5eXlpb3P6tWr63RuXdT0Z7ar2LJlS8qx3XfffQdGAgBNU0PVEd+nZqyZmrH2mlG9mFpTqRcj1Iz1savXjOrFzPAuvG7kNTWT13gXvr2aSm4jr6m7XT2viZDbAAAAAAAAAAAAAAAAAABFK875AAAgAElEQVQAAAAAAAAAAAAAAAAAAAAAkBmJbAcAAAAAkG19+vSp1H7jjTe2e8/S0tJ4//33k+2cnJwq5+yscnJy0p5bUVHRgJE0Xh06dIjZs2fHrFmz4uc//3nk5+dXmbN58+Z44YUX4uyzz47u3bvHH/7whyxEWtnChQujb9++8fzzz9d7j23btqU1L9PPUVlZWdr7ZeK8htSyZctq+zdt2tSg5w4fPjz69u1bpf+xxx6Lt99+u0HP3hFatGiRcqxZs2Y7MJLUiouLsx1C1m3evDnlWKrvBgDQuKgZa6dmrJl6MTX1YsNRMzZ+6sXM8C68buQ1tZPX1E5uk5rcpmHIa3YOchsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyIZHtAAAAAACybcCAAZXa8+bNi5KSku3a8/XXX4/S0tJku2fPntG+ffvt2rM65eXlGd+zNhs2bEh7blFRUaX2nnvumdFYsnH/dXHiiSfGs88+Gxs2bIg5c+bErbfeGieeeGK0bdu20rzCwsL4+c9/Hk899VSWIo3YunVrnHnmmbFmzZpkX69eveLWW2+N2bNnx+effx5FRUVRUlISFRUVyc+nn35ar/My/Rx9//vVtWvXSjHW9fP9P4Ns6Ny5c7X9a9asiW3btjXo2bfddluVvoqKirj66qvrvNdee+2Vcmz16tW1rq/p55CTkxPt2rWrc0yZ0KFDhwbbu6KiosH23lmsWLEi5Viq7wYA0LioGdOnZqyeejG1plIvRqgZ62NXrxnVi5nhXXjdyGvSJ69JTW6TWlPJbeQ1dber5zURchsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyI5HtAAAAAACy7Uc/+lF07do12V6/fn08/fTT27XntGnTKrWPO+64Gufn5eUlr8vKytI+Z926dXULLAM+/fTTtOd+8sknldodO3asdt7OdP/1sdtuu8VRRx0VV199dcyaNSvWrFkTs2fPjhNOOCE5p6KiIi655JLYsmVLVmIsKCiIDz74INk+77zzYuHChXH11VfHscceG927d4/WrVtX+llF/N/3pT4y/Rx16tQpeV1YWBibN2+uV1yNQbdu3art37p1a6xYsaJBzx4wYEAMGTKkSn9BQUEsX768Tnt16dIl5VhhYWGsXr26xvVvv/12yrFOnTpFs2bN6hRPptR0X8cdd1xUVFTU+3PXXXftwDtpnAoLC1OO7b///jsuEACg3tSMdadmrEy9mFpTqRcj1IxqxrpTL2aGd+F1I6+pO3lNVXKb1JpKbiOvkdfUh9wGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATEhkOwAAAACAxmDMmDGV2pMmTYry8vJ67bV48eJ46qmnku1EIhGXXHJJjWtat26dvF67dm3aZ7333nt1D3A7vf7662nPnT9/fqX2T3/602rn7Uz3nwnNmjWLY489Np577rkYMWJEsn/lypV1+vPNpDlz5iSv8/LyYvLkydGsWbNa19X3Z5Dp5+jII49MXm/bti0KCgrqFVdj8JOf/CTl2Mcff9zg5//617+ORKLqq+Nt27bVaZ999903/vZv/zbl+MyZM2tc/8gjj6QcO/roo+sUSyZ16tQpevToUe3YK6+8EsuWLavTfuXl5fHb3/42br311kyEt9NL9Yy3bNkyunfvvoOjAQDqQ824/Xb1mlG9mFpTqRcj1IzpUjP+f+rFzPEuPH3ymu23q+c1EXKbmjSV3EZekx55TWVyGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKh6v/YDgAAALALuuCCC6J169bJ9ltvvRV33313vfa68MILY8uWLcn20KFD48ADD6xxTefOnZPXK1eujFWrVtV6TllZWcyaNSvtuPLy8iq1y8vL0177fTNnzkxrbUVFRfzv//5vst2qVavo3bt3tXN3pvvPtHPPPbdSe8mSJVmJY8WKFcnrzp07R5s2bdJa9/jjj9frvEw/R8cff3zk5OQk21OmTKlXXI3BgQceGHvuuWe1Y4sWLWrw8w8++OAYNWpURvY64YQTUo7ddNNNKZ/32bNnxyOPPJJy7ZAhQ7Y3tO1y4oknVttfWloaZ555ZhQXF9e6x3fffRfTp0+PQw45JH71q1/FypUrU87dunVr5OTkVPs56KCD6n0fjdH7779fbX/v3r0jkfBPGgCwM1AzZtauWDOqF1NrSvVihJqxJmrGqtSLmeNdePrkNZm1K+Y1EXKbmjSl3EZek5q8pnpyGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADLB/4wNAAAAEBGtW7eOSZMmVeq7+uqr45lnnqnTPpdddlkUFBQk223atInJkyfXuq5Pnz6V2k888USta+69995YtmxZ2rG1atWqUnvt2rVpr/2+r776Kv7zP/+z1nkPPvhgfPzxx8n2mWeeGfn5+dXO3ZnuP9NycnIqtVu0aJGVOHbffffk9apVq2LLli21rnnuuecqPe91kennqFu3bjFs2LBk++WXX44ZM2bUK7bG4Oijj662f8GCBTvk/AkTJqT8vtbFuHHjUu6zdu3a6NevX0ybNi1WrFgRZWVlsWTJkrj11lvjpJNOim3btlW77oADDogRI0Zsd2zb4/LLL6/0nfm+V155JXr27Bm33357vPvuu1FcXBzl5eWxevXqWLRoUUyfPj3OPvvs2HfffePcc8+NRYsW7eDoG7c///nP1fYfc8wxOzgSAKC+1IyZtSvWjOrFmjWVejFCzahmrBv1YuZ4F54+eU1m7Yp5TYTcpjZNJbeR18hr6kpuAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCYksh0AAAAAQGMxevToOO2005LtsrKyGDFiRNx+++2xdevWGteuWbMmRo0aFffcc0+l/vvvvz/233//Ws8+5phjYo899ki2J0yYEIWFhSnnP/nkk3HNNdfUuu/3de/evVJ7wYIFdVr/fePHj4+XXnop5fgrr7wSl156abKdl5cXl112Wcr5O9v91+SEE06IGTNmRElJSa1zS0tL4/bbb6/U17t37waJqzY/+clPktebNm2KW265pcb5BQUFceaZZ27XmZl+jiZMmBC77bZbsj169OiYOnVqWrFUVFTEn/70pxg0aFCsXLmy2jlTpkyJnJyc5OfCCy9Ma+/6GDx4cLX9r776aoOd+X1du3aNSy65ZLv32W+//eLyyy9POb58+fI4//zzo1OnTpGXlxfdunWLa6+9NjZv3pxyzW233RbNmzff7ti2R+fOneOqq65KOV5YWBjjx4+PQw89NFq3bh25ubmx9957x8EHHxznnntuzJgxIzZs2LADI667Hz7v3/9s2rSp2jXl5eUp10yaNKnWM1evXh0fffRRtWODBg3arvsBAHYsNWNqasb0qBdTayr1YoSacWetGdWLTYN34emT16Qmr0mf3Ca1ppLbyGt2zrwmQm4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzi2R7QAAAAAAGpNp06bF4MGDk+2ysrIYP358HHTQQTFx4sR4++23Y/Xq1VFaWhrLli2LOXPmxNixY6NHjx7x8MMPJ9clEom466674tRTT03r3FatWsU555yTbK9cuTL69u0b06ZNi2+++SbKyspizZo18dJLL8WIESNixIgRUVpaGiNHjkz73nr06BHt27dPtidOnBiPPvporFq1KsrLy9Pe56STToqSkpIYMmRIXHTRRbFgwYIoLi6OjRs3xltvvRWXXXZZDBw4MDZv3pxcc/3118ff/d3fNYn7r83ChQvj7LPPjr333jtGjRoVDz74YLz77ruxdu3a2Lp1a2zZsiU+++yzePDBB6NPnz7x8ssvJ9ced9xx0aNHj4zFUhfDhw+PFi1aJNs333xzDB48OF566aUoLCyMsrKyWL16dTz//PNx+umnx6BBg+Lbb7+NESNG1Ou8hniOevbsGdOmTUu2S0tL48ILL4w+ffrEfffdF4sWLYqioqLYunVrrF+/Pj755JN4/PHHY+zYsbH//2PvXkOzrvsHjn/225Rs5KHMxFzeUVFWZI+iFDW0VCw6YCKrIKqlkRGaZdDAQyZ0MMmC0tKMxALvRWKJp0llHqIHZkpHMsoDQZilOTIq938Qt/ffe3P+5q7t6669XuCDfXddv+t9tcv2+fye+K9/xfDhw2PNmjVRX19/Uu+pkG6++eYoKytrcL5nz5748ssv26Shuro6unXr1uLrzJ49O2688cYCFP3TdNtttxXkWi01bdq0GDduXOqMolJbW9vo37+Kioq46qqrEhQBACfDztg0O+OJ2RebVkz7YoSdkXzsi63DvfATM9c0zVyTj9mmacU025hryMtsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQKE0/NfiAQAAADqw8vLyWLFiRUycODFeeeWVo+dff/11VFdXR3V1da5rLF68OMaOHdus1549e3a899578cMPP0RExN69e6Oqquq4j6+uro4rr7wy3nzzzVzXLy0tjaqqqnj66acjImLfvn1RWVnZ6GOXLFkSd955Z6Pfe+GFF+Kbb76Jr776KubPnx/z589v8nUrKyvj8ccfP2Ffe3n/eR08eDCWLl0aS5cuzfX4888/PxYtWtSi12yJ3r17x+zZs2Py5MlHz1avXh2rV68+7nNGjBgRM2fOjGXLljX79Vrrc3T77bfHn3/+Gffff38cPnw4IiK2bt0aDzzwQLMbU+rVq1eMHDkyVq5c2eB7y5cvj/79+7d6w5lnnhmPPfZYrv/uTcmyLJYtWxYTJ06MxYsXn9Q1SktLY+bMmS1uKaSSkpJ44403ok+fPvH8889HfX39SV2nU6dOMWHChFy/X4rdO++80+j5HXfcEVmWtXENAHCy7Iz52BmPz77YtGLaFyPsjCdiZ/yHfbF1uBf+D/fCzTUR7oWnVEyzjbmmaeaa/zLbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUCj+dWwAAACA/1FWVhYLFiyITZs2xcCBA3M/r7S0NMaPHx/ffvttjB07ttmv261bt/jwww/j8ssvb/JxnTt3jjlz5sSTTz7Z7NeYPn16DBs2rNnP+/+6desW77//fgwaNKjJx5WVlcXUqVNjyZIlUVpamuu67eH9t4axY8fGli1boqKiImnHpEmTYs6cOdGpU6cTPraqqipWrFgRZWVlJ/VarfU5ioi466674uOPP44RI0bk7smyLEaOHBlr166N3r17535ea6qqqmr0vKamps0aJk2aFH369Gnxdbp06RKvvfZa1NTUxIABA5r13GHDhsWGDRuiuro6SkpKWtxSSJ07d465c+dGbW1tXHvttc16bs+ePWPy5Mnx9ddfx4svvhhnn332STXk/Xtxqqurq4tVq1Y1OM+yLO69994ERQDAybIzFl5H2xntiydWTPtihJ2xMXbG/7Ivti73wptmrim8jjbXRJht8iim2cZc05C55lhmGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqpLHUAAAAAwKlq4MCBsWnTptixY0esXLky1q9fH7t3746ffvopDh06FGeddVb06tUrLrnkkhg1alSMHj06zjnnnBa9Zr9+/WLbtm2xZMmSePvtt2Pr1q2xb9++6Nq1a/Tr1y9Gjx4d48ePj759+57U9bt06RLr1q2L5cuXR01NTWzbti327t0bdXV18ffff+e+Tu/eveOjjz6KtWvXxqJFi2L79u2xZ8+eKCsri4qKihgxYkTcc889cdlllzWrr728/6Z89tln8emnnx79891338XPP/8c+/fvjwMHDsRpp50WPXr0iP79+8fAgQNj3Lhx0b9//4K8diFMmTIlbr311liwYEGsX78+du7cGXV1ddGzZ88499xzY/jw4XHXXXcVpLm1PkcREQMGDIg1a9bEtm3b4t13340PPvjg6M/i8OHD0bVr1+jTp08MGDAgBg0aFLfcckv07t27xe+pkG666aa44IILYufOncecb926NbZv3x5XXHFFqzd06dIlZsyYEePHjy/I9caMGRNjxoyJDRs2RG1tbWzcuDG+//772L9/f9TV1UXXrl2jR48ecfHFF8fgwYNj9OjRbfI+W2rYsGExbNiw+Pzzz2P16tWxefPm+OKLL2L//v3x66+/RqdOnaJnz55x3nnnxTXXXBNDhgyJ66+/Pjp37pzr+jt27Dju9x588MFCvY2kampq4tChQw3Ob7jhhrjwwgsTFAEALWFnPD47Yz72xaYV474YYWe0MzbOvtg23As/PnPN8Zlr8jPbNK0YZxtzjbnmeMw2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFFJJfX19feoIAAAAoLgdOHAgunfv3uRjVq1aFaNGjWqjIppjzpw58eijjx79+pdffjnhzxP+l8/RyXnppZdi4sSJDc4feuihmDdvXoIiUnj22Wdj6tSpDc6HDx8etbW1CYoKb+jQobFhw4YG5x9++GEMGTIkQVHTFi5cGPfdd1+znzd9+vSYMWNG4YMAaLET/b/9jDPOiIMHD7ZhUfth1qelfIZOjn2R/yj2nbG97YvuhbdvfidRCD5HJ8dsQ0TxzzUR7W+2cb+kMObOnRtTpkxpcL579+7o27dv7NmzJyoqKhp8/7nnnouHH344IiIGDhwYW7ZsOeb711xzTWzevLl1ogEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgPbg31nqAgAAAAAAGldVVRUVFRUNzhcvXhwHDx5MUEQK69ata3BWXl4er776aoKawtu2bVts2LChwfl1110XQ4YMSVAEAACnPvsi/1HMO6N9EaDjMNsQUdxzTYTZBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMLLUgcAAAAAANC4zp07x7Rp0xqc//bbb7Fw4cIERbS1P/74IzZu3Njg/Kmnnorzzz8/QVHhzZ07t9HzWbNmtXEJAAC0H/ZFIop/Z7QvAnQcZhuKfa6JMNsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQeFnqAAAAAAAAju/uu++OAQMGNDifM2dO/P777wmKaEubNm1q8HMePHhwTJw4MVFRYe3cuTPeeuutBueVlZVx9dVXJygCAID2w75IMe+M9kWAjsds07EV81wTYbYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgdWSpAwAAAAAAOL7S0tKYN29eg/Mff/wxXn755QRFtKXa2tpjvu7SpUssWrQoSkpKEhUV1qxZs+Kvv/465uz000+PZ555JlERAAC0H/ZFinlntC8CdDxmm46tmOeaCLMNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAraMsdQAAAAAAAE0bOnRo1NfXp84ggdra2mO+fuKJJ+Kiiy5KVFN4r7/+erz++uupMwAAoN2yL3Zsxbwz2hcBOiazTcdVzHNNhNkGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA1lGWOgAAAAAAAGjcJ598kjoBAACAU5SdEQAoFuYaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaL4sdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5ZKkDAAAAADi1PfLII1FfX3/0T/fu3VMn0Q75HAEAQHEy69NSPkMAnCr8TqIQfI4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaCtZ6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkE+WOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB8stQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5JOlDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCfLHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+WSpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgnSx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAPlnqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPLJUgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQT5Y6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyy1AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkk6UOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8sdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5ZKkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyCdLHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEA+WeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8slSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBPljoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAfLLUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOSTpQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgnyx1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPlkqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIJ0sdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQD5Z6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkE+WOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB8stQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5JOlDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCfLHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+WSpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgnSx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAPlnqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPIpSx0AAAAAEBExYcKEKC8vT50BAHBCv/76a+oEANpYXV1dXHrppakzAIBT3JEjR074GPfCAYD2wr1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAU1tZ6gAAAACAiIhdu3alTgAAAIBGHTlyJL788svUGQBAEXAvHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAQshSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBPljoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAfLLUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOSTpQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgnyx1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPmUpQ4AAAAAil/Xrl1j165dqTMAAJLq1q1b6gQAjqOysjJGjhyZOgMAAACg3ciyLHUCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAh1aWOgAAAAAofiUlJVFRUZE6AwAAABpVXl4e5eXlqTMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJcsdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5ZKkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyCdLHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEA+WeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8slSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBPljoAAAAAAAAAAAAAAAAAAAAAAAAAAM5so+wAACAASURBVAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAfLLUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOSTpQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgnyx1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPlkqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIJ0sdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQD5Z6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkE+WOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB8stQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5JOlDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCfLHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+WSpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgnSx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAPlnqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPLJUgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQT5Y6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyy1AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkk6UOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8sdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5ZKkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyCdLHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEA+WeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8slSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBPljoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAfLLUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/B979x5cdXnnD/yTQ0jCJRCCAYTQiwQvIK5VUQS73FlU0NaqI1W3loWptqJ2W7t1dVd7x7p1HXCVWUSoF0ALbJDqKgWUVsQLVLAorQhaBSsaLgIq9/P7Y4f8jAo5JyTnG+D1mnlm+H7P93me93Pu55NnBgAAAAAAAAAAAAAAAIDMpJIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGZSSQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCZVNIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEwq6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkJpV0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKTSjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmUklHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDMpJIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGZSSQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCZVNIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEwq6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkJpV0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKTSjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmUklHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDMpJIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGbykw6QlNtvvz1uv/32pGMAACRq5cqVUVxcnHQMDjMnnHBCbN26NekYAAAAAIeM2267LUaMGJF0jCPatGnT4vrrr086BgAAAMAho7i4OFauXJl0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCNWftIBkrJly5ZYt25d0jEAABK1d+/epCNwGFq3bl1s3bo16RgAAAAAh4wPPvgg6QhHvA8++MDfjwEAAACyUFxcnHQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAI1oq6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkJpV0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKTSjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmUklHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDMpJIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGZSSQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCZVNIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEwq6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkJpV0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKTSjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmUklHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDMpJIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGZSSQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCZVNIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEwq6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkJpV0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKTSjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmUklHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDMpJIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGZSSQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCZVNIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEwq6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkJpV0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKTSjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmUklHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDMpJIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGZSSQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCZVNIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEwq6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkJpV0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKTSjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmUklHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDMpJIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGZSSQcAjmzHHHNMfPTRR5FOpyOdTsfll1+edCSggZx22mmxd+/e6tf7oEGDko4EADSAYcOGVX/ef1YbNWpU0hGPKB6P7LnPaKwOtobSqlWr+OY3vxkTJ06MpUuXxrp16+KDDz6InTt3xoYNG+LVV1+NOXPmxK233hrDhw+P4uLiBlpJ7rz22ms1Xr8dOnRIOhKHgY8/p7Zv3550nEOWOhEAAOTe5s2b91vzWrJkyX77qZc1bm3bto2vfe1r8R//8R/x6KOPxquvvhpVVVWxc+fO2L59e2zYsCHefPPNWLRoUdx7771x3XXXxXHHHZd07M9Un3uIevToET/4wQ9i5syZ8dJLL8WGDRtix44dsWPHjnjnnXdi5cqVUVlZGTfccEP07ds3UinbKIHDQ35+fo3P6c2bN2fUTz39s6ljAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0Nilkg7A4efZZ5+t/k/ec9WeffbZpJdNHY0fPz6KiooiImLZsmXxwAMPHPD6ysrKGo/99OnTcxGTBuLxPLIsWbIkHnrooerjO++8MwoKChJMBAAAHGmaNGkSp59+etx4443x1FNPxY4dOw5Ycxo6dGjSkatlW0PZp02bNnHXXXfF3/72t7j33ntj1KhRccopp0THjh2jefPm0bRp0ygtLY2uXbvGsGHD4gc/+EE88sgjsXHjxpg3b15cccUVUVxc3JBLI8fUY2gM1IkAAADqrqysLK6++upYvHhxvPfeezFjxoz43ve+F+ecc0507do12rZtG02bNo3CwsIoLS2Nzp07R+/eveOb3/xm/Od//mf8+c9/jhUrVsSIESMilWo82wfrWv/ap0mTJjFy5MhYsWJFvPTSS3HrrbfGBRdcED169IjS0tIoKCiIgoKCaN++fRx//PFx/vnnx89//vN46qmn4o033oif/OQn0aFDh4ZYGiTukzXBg20TJkxIekmQE+qYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHappAMAR67zzjsvzjnnnOrjH/7wh5FOpxNMRLaqqqoinU5Xt5KSkqQj0cjdeOONsXv37oiIOO644+Laa69NOBEAHBomTJhQ43vXJ1uHDh2SjgjQaFVUVMSVV14ZM2fOjKqqqnjuuefipz/9afTt2zcKCgqSjpeRutZQzjrrrFi5cmVcddVV0bx586zmzM/Pj4EDB8bkyZPj5ptvzqiPOgGQDXUiAHJNfQWAw8XEiRNj/Pjx0atXr8jLy6vTGN27d4+pU6fG7373u2jTpk09J8zewe4hOu200+LFF1+MSZMmRffu3bOev3PnznHTTTfFqlWr4l//9V+jqKgo6zEaipobQLLUMQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGjMUkkHAI5MqVQqfvGLX1QfL1myJJ544okEEwG5sGbNmpg+fXr18Q033BAlJSUJJgIAAA5nRUVFsWrVqrj77rvjggsuOCR/f9S1htKrV6/43//932jfvn2N80888USMHDkyTjrppGjTpk00bdo0ysrKokePHjF69OiYPn16bNu2rd7XAfBJ6kQAAADJGzBgQMyfPz8KCgoSy3Cwe4iuuOKKWLRoUfTo0aPG+XXr1sWECRPiK1/5SnTr1i3KysqiadOmUVpaGqeffnpce+218fvf/75Gn5YtW8bPfvaz+MpXvnJwiwLgsKGOCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGOWSjoAcGS6/PLLo1u3btXHP//5zxNMA+TSL37xi0in0xER0aZNm7j++usTTgQAANB41aWGUlRUFPfff3+0bNmy+ty7774b/fr1i6FDh8bkyZPjT3/6U2zevDl2794dVVVVsWLFirjnnntixIgR0bFjx/jOd74Tr732WoOsCWAfdSIAAIDkfelLX4obb7wxsfkPZg/R6NGj4957742CgoLqc5s2bYrvfe97ccwxx8RVV10Vs2fPjpUrV0ZVVVXs3r07Nm3aFC+88EKMGzcu+vbtGyeffHLMnTu3XtcEjd1DDz0UeXl5dW5XXnll0kuAnFLHBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoLFKJR0AOPKkUqm48cYbq4//+te/xuzZsxNMBOTSK6+8EvPnz68+HjNmTLRu3TrBRAAAAI1TXWso//RP/xQVFRXVx7t27YohQ4bEwoULM5p369atcdddd0W3bt3immuuiffeey/78I1ARUVF5OXlVbd33nkn6UjAJ6gTAQAANA6jR4+OVCr3WwkPZg/RgAED4q677oq8vLzqc6+//nr07Nkzbr/99ti5c2dG4yxfvjz+4R/+IUaNGhUffvhhdgsAOEyopx+YOiYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACNVSrpAMCR5/zzz4+uXbtWH0+cODH27t2bYCIg1/77v/+7+t/FxcUxevToBNMAAPXpt7/9beTl5e233XPPPUlHBDhk1LWGcuGFF9Y4fvDBB2P58uVZz79r164YP3583HrrrVn3BciUOhEAADRuar6NVzqdjueffz5+9KMfxXnnnRddunSJkpKSyM/Pj9atW8ff/d3fxbXXXhuvvvpqrWMdffTR0aNHjxykrqmu9a/WrVvHr3/968jPz68+t3bt2jjrrLNi9erVdcoyadKkGDBgQFRVVdWpPwCHN3VMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGqNU0gE4/PTq1Svy8vJqbV/84hdrHatr164ZjdWrV68crIz6ct1111X/O51Ox5QpU5ILAySisrIyNmzYUH18zTXXRCrlawkAANCw9u7dG0uWLImxY8fGoEGD4o477kg60gHVtYbSs2fPGsfz58+vz1gA9UqdCAAAIDtvv/123HzzzdGpU6c444wz4pZbbok5c+bEmjVr4v333489e/bEli1b4qWXXopx48bFSSedFJWVlbWOW15enoP0NdW1/nXDDTd8Ku/o0aPj7bffPqg8zz33XAwZMiQ2b958UOMAcPhRxwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAxyk86ABwJzjzzzLj00kujd+/e0bFjxygpKYn169fH6tWro7KyMh566KFYv379Qc3RoUOHGDRoUHz5y1+OU089NY466qgoLS2NwsLCqKqqivfeey+WLVsW8+bNi8cffzyqqqrqaXXZOeaYY+Lv//7vq48XLVoU69atSyRLWVlZXHLJJfHVr341Pv/5z0fHjh1j+/btsX79+li0aFH85je/iccff7xe5zzuuOPi61//egwZMiQ6duwY7du3j/fffz/eeuutmDt3bjz44IPx8ssv1+ucR7qioqI44YQT4qSTToqTTjopunfvHu3atYuSkpIoKSmJ4uLi2Lp1a2zYsCH+8pe/xJNPPhmzZs2K119/PenoWevWrVuce+65MXjw4PjCF74Q7dq1i6Kionj33XfjzTffjHnz5sWsWbPipZdeqrc5y8vL48ILL4xhw4bF5z73uejQoUMUFxdHRMRRRx0VGzZs+Mx+u3btitmzZ8fIkSMjIqJz584xcODA+N3vfldv2QAgV4qKimLw4MExePDg6NatW1RUVESrVq2iZcuWsWfPntiyZUts2bIl3n///di0aVO8+eab8frrr8df/vKXePnll2PVqlWxa9eupJdxQN26dYtRo0ZFv379okuXLtG8efN49913Y+zYsTF+/PhEc1166aUxaNCg6Ny5c7Rt2zY2bdoUb7zxRsydOzcmT558UN/r+vbtGyNGjIg+ffpEp06dorCwMP72t7/FmjVrYubMmfGb3/wmNm7cWI8rOjR87nOfq/79efLJJ0fbtm2jtLQ08vPzY9OmTbFx48ZYtWpV/OEPf4innnoqli5deljMzf+XizpHfUmn07F69eqYN29ezJs3L+bPnx+bNm2qvn3w4MEJpjuwutZQiouLo0WLFjXO7e+32aGmrr9B60Ou6kinn356jBgxIvr37x+dOnWK4uLieOedd2Lt2rXx2GOPxdSpU+ONN944+AXlWKtWrWL48OFx9tlnx5e+9KUoKyuLkpKS2LRpU7z77ruxZMmSeOyxx+LRRx+NDz/88JCb73DX0DVNdSKAxqtFixbRv3//6N27d/Tq1Ss6duwYpaWlUVJSEtu3b48NGzbEn/70p1i8eHHMmDEjVq1aldG4paWlceyxx9Zo5eXlUVZWFqWlpVFUVBSFhYWxe/fu2LJlS2zdujXeeOONWL58ebzwwgsxZ86c2LZtWwOvvm6S+Jtt0vWLxvhbvbHWspLUmPYTNHRNL6Lh3r/2J6nXwYABA+KSSy6prtEUFhbG22+/Ha+99lrMmDEjZsyYEe+//369zJUrar6Z+fa3v53V9Tt27Iirrroqzj///MjLy9vvdc2aNTvYaFmpa/2rdevWMWbMmBrnZsyYUW97fF588cVarznU96Lkan9JUrWupGpDSdYvDxW53K9XUVERZ599dgwcODCOPfbYKCsri9atW8e2bdti48aNsXHjxlizZk0sXrw4Fi9eHMuWLYudO3dmPH4un2cnn3xy9efjvtfS+vXrY+3atfH444/H1KlTY82aNQc1R307HGvq6pgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0Sukj1M0335yOCC3B9oUvfKHWx6miouIz+w4YMOCA/a655pqMcxQUFKQ3b96837HmzJnzqT7Dhg074PyjRo1KR0T6+OOPTy9atKjWdW7ZsiU9ZsyYdCqVyvp+7N69e3rKlCnpnTt31jrPPh988EH6tttuSx911FE5f9xvueWWGlmuu+66rPpXVlbW6D99+vQDXv9x27dvT0dEukmTJumbb745vX379lrvqyeffDLdvn37rDJ+1pwtW7ZM33fffbXOt3fv3vT48ePTLVu2zHi+QYMG1RijsrIyq7wlJSU1+q9du/aA1y9btqzWdezPaaeddlCPZ13ahAkTss65a9eu9KRJk9Jt2rSpdfybbrqpRt9HHnmkzlmnT59eY6yxY8dm1O/4449Pz5o1K+P1TZs2LV1eXn5Qz+lmzZql77rrrvSePXv2O09t7zFDhw6tcf0DDzxQ74+/Vns70Gcg1FVxcXHiz21Ny0UrKChI/8u//Et606ZNB/WaueWWWz419tVXX11Pr8j/U1RUVGP8TH/TFBYWpseNG7ffz/w77rjjU9kzHfuzWqZ9O3TokNH3n+3bt6f//d//PevH9otf/GL6iSeeqHX8bdu2pa+//vp0Xl5eOuLAn6tLlixJ5Hl6MI/HJ9tpp52Wfvjhh9O7d++u9b75uOeffz590UUXVd9PdWm5nPtg77Nzzz03vWPHjgOOMXny5HSTJk2q+9xxxx0HvP7EE0884Jyf/F33SVOmTKmXNeeizpHrNnbs2AOuZejQoYllq2sNpVWrVp9axz/+4z82WM76rBNE1O9v0Ndee63GNR06dDjgWj5r7oauI+1r7dq1S0+bbpva3AAAIABJREFUNq3WOfbs2ZO+++67082aNUvn5+fXuG3z5s0ZzZWLesy+1qRJk/SYMWPS7733Xq1rS6fT6XXr1qVHjhxZ58+MXMz3cfueJ5m01q1bpxcsWFCj/7Zt29LnnHNOjetyXes70Loasqb5yaZOpGmRnjhxYq2vNxrWxIkTE38eNJZWXl6e/uUvf5neuHFjVvfhM888kz7vvPNq/Ww9WNu2bUtPmjSp1u9eDV1f+XhL4m+2SdcvGuNv9UxrWUnvN8hly8Vzs7HU9HLx/pXk6+DjraKiIj1//vxa59lXo9nXr66vfzXfz5ZUzfdgWm1/z+jTp09O89S1/vXtb3/7U9n79euX0+wNvRelvmtu+1pD7y/Z13JZ6/p4S6o2lGn9Msk9RrmsCX7WfZSrOuu+5/lDDz2U3rt3b61zfdwPf/jDRvM829dKSkrSkyZNqnWOvXv3pidMmJAuKiqq82sp23p60o91Uu8z6pifbsXFxbU+DqTTv/rVrz7z/nvrrbfS6XQ6/dZbb33m7b/61a+qxzjzzDM/dfuZZ56Z1JIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDG4eFUwCFowYIFsWLFiv3ePnr06IzHGjp0aLRu3Xq/t0+ePDmrbPsMHDgwXnjhhejdu3et1xYXF8e4cePivvvui1Qqs5dlXl5efP/7349ly5bFN77xjWjatGnG2Zo3bx7f//734+WXX44+ffpk3K8+XHDBBTWO586dm9P5CwsLY/bs2XHLLbdEYWFhrdf369cvnn766TjqqKPqPGerVq1i4cKFcfnll9d6bV5eXlx99dWxYMGCaNWqVZ3n5ODk5+fHyJEjY/HixXHMMccc8NqJEyfGrl27qo/POeecKC8vz3rOsrKy+OpXv1p9nE6nY+LEibX2u/jii+PFF1+s0bc2l1xySTz//PPRo0ePrHNG/N971pNPPhlXXXXVAd+z8vLyDjjOwoULY+fOndXHw4cPz+q9DACSVFxcHI8//niMHTs2SkpKko7TIAoLC+ORRx6JMWPG7Pczv7bP+4bQs2fPWL58eUbffwoLC+NHP/pRjBs3LuPxTznllFi6dGkMGTKk1mtbtGgRv/zlL+Phhx8+rL/HNGnSJH784x/Hc889FxdddFE0adIkq/49e/aMhx9+OGbPnh1t2rQ5ZOaui2HDhsWsWbOioKBgv9eMGzcuRo4cGXv27GnwPPWpoescfFpdayhbtmyJDz/8sMa54cOH11uuXKuv36B1kas6UqdOneKZZ56JSy65pNZrU6lUXHnllTFv3rxo3rx5VvPkWvPmzaOysjLGjRuX8X3SsWPHmDRpUtx3331Zf7bmer5sdO7cOZ5++uno379/9bn169dH375947HHHmuweQ9Grmua6kQAjcdll10Wr7zySlx//fVZ/44688wzY/bs2dGlS5cGSvd/WrRoESNHjoyXX345hg4d2qBz1Sapv9kmWb9orL/Vs6llHQr7DQ5WY9tP0NA1vYjcvn8l+To444wzYunSpTFgwIBar91Xo3nwwQcjPz8/q3lySc03N44++ugDvl999NFH8cc//jGHiepe//pkvzVr1sTChQvrLVdDyWYvSkPI1f6SpGpdSdWGsqlfJr3HKCm53K936aWXxosvvhgXX3xxg9SMc/k8Kysri6effjpGjhxZ67V5eXnxrW99K/G68ZFQU1fHBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoLFJJR0A6urOO+/c720nnnhi9O7dO6NxLr744v3eVlVVFb/97W+zznbGGWfEnDlzomXLlln1u/TSS2PixIm1XpdKpWLatGlx2223RX5+ftb59mnXrl0sWLAgLrzwwjqPkY1OnTpFjx49qo/Xr18fr7zySk7m3mfixIlx7rnnRkTE8uXLY9SoUVFRURHNmzePkpKSOOuss+L++++v0aeioiLGjx9f5zmnTJkSp5xySkRErF69Oq6++uro0qVLNGvWLDp06BBnn312zJo1q0afnj17xqOPPhpNmjSp87zUtGvXrnjiiSfiu9/9bvTv3z/Ky8ujZcuWUVhYGB07dozhw4fHr3/969i1a1d1n+OOOy4qKyujsLBwv+OuX78+/ud//qf6uEmTJjFq1Kis811xxRVRUFBQfTxv3rxYvXr1Aft861vfiunTp0dRUVH1uXfeeSduuummOPXUU6O0tDSKioqiS5cu8Z3vfCf++te/Vl939NFHx8KFC+Pzn/981lmnTJkSZ5xxRkRErFixIq688sro2rVrtGjRItq3bx/9+vWLBx98MPLy8g44zkcffRTPPvts9XGrVq2iT58+WecBgCSMGzcu+vfvn3SMBvVf//VfMWTIkKRj1HDqqafG/Pnzo127dln1GzNmTAwfPrzW644//viYN29etGnTJqvxL7zwwrj33nuz6nOoyM/Pj0ceeST+7d/+LVKpgysjDR8+PP74xz9Gp06dGv3cdTFs2LCYOXNmje/1n/STn/wkrr322kin01mNne319a2h6xx82sHWUJ555pkax1/72tfioosuqrd8uVRfv0HrIhd1pBYtWsSCBQuiS5cu1efS6XRMmTIl+vXrF2VlZdGsWbOoqKiIMWPGxJo1ayIionfv3jFhwoR6WGXDSKVSMWfOnBg2bFiN8/tqkeXl5VFUVBSdO3eOyy67LJ577rka11122WUxbdq0RjtfNk4++eR49tln48QTT6w+9+c//zl69eoVS5cubZA560Oua5rqRACNw/jx4+P++++P4uLipKNkpG3btjFz5sw49dRTE5k/qb/ZJlm/aMy/1bOtZTXm/QYHq7HtJ2joml5Ebt+/knwdnHjiiTF37txo1apVVvN8/etfj3vuuacuERucmm9uFBQUxJ133nnA+sl9990XH330Uc4y1bX+VVBQEF/+8pdrnFu4cGFiNdSG2otS33K1vySpWleStaFs6pdJ7jFKUq726333u9+NBx54oMbz/MMPP4zx48fH4MGDo7y8PAoLC6OkpCROOOGE+MY3vhFTp07N+L0vl8+zwsLCmDt3bnTv3r3G+alTp8bAgQOjXbt20bx58zj22GPjn//5n2Pt2rUREdGnT5+4++67M5qjIRwJNXV1TAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/x959B0V19m8Dv3alSAcLFjQaFUuMHcWeKFZU7F2jiBg1xhhNTDSJJWp8Eo29YYeAXWONXWPsiB0rFuxClCZlYZfd9493sj8PsL2cRa/PDDPPfe72Je4e9lx7zzxEREREREREREREREREREREZGukYhdAZKw//vgDycnJGvtDQ0N1rlG0aFEEBQVp7N+wYQNycnIMrm348OFwcnIyeB4ADBs2DN27d9c6Zs6cOejbt69R6+fl4OCA8PBw1K5d2yzradOmTRtB+9y5cxbf822Ojo4YPHgwAGDmzJmoX78+1qxZg/v37yMrKwupqak4ffo0PvvsM4wZM0Ywt1+/fvjoo4+M2vO/f8+dO3eiTp06WLp0KR48eACZTIaEhAQcOHAAPXv2xKBBg5Cbm6ue27x5c4wfP96E39gy6tatC4lEAolEgtevXwv6vLy81H0F/cTExFi93sTERPz0008oXbo0OnTogAULFuDvv//Gs2fPkJGRgZycHLx48QJ79+7F0KFD4e/vj8ePH6vn16pVCz/88IPWPZYtWyZoh4SEoEiRInrXKJFI8t2zVq5cqXVOw4YNsWjRIkgkEvW1jRs3onLlypg1axYuXbqE5ORkZGdn48GDB1i2bBk++ugj7N27Vz3ey8sLERERkEr1/zjg6OiIHj16AAAWLlyIevXqISwsDPfu3UNmZiYSExNx4sQJDBo0CImJiTrXO3PmjKDdrl07vWshIiISS/Xq1TF06FCxy7CowMBAhISE6Bz39mcRaxg5ciTc3NyMmvvrr79q7S9SpAjCw8Ph5eVl1PqDBg2Ch4eHUXNt2dKlSxEYGGi29SpWrIjdu3fD2dnZpvc2VJcuXbB9+3Y4ODgU2K9SqTB+/HhMmTLFqPVVKpUp5ZnM0jkH5WdqhvLHH38I2hKJBJs3b8Yff/yBhg0bmlzf2yyZE5j7GdQQ1sqRfvnlF1StWlXdzszMRNu2bREcHIwTJ07g1atXkMlkuH//PpYsWYI6depg165dAID+/fub6bc1v0mTJqF169aCa+PHj0dAQAC2b9+OZ8+eITs7G0+fPkVUVBSaNm2K2bNnC8b37NkTn3/+uU3up6927drhn3/+QdmyZdXXTp06hWbNmiE+Pt6se5mTWJkmcyIiInFNmTIl3+eawsDZ2Rnh4eFWzygAcb6zFTu/sNVndWOyLFs+b2AqWztPYMlMD7D+/Uus94GdnR0iIiLg7u5u1D5DhgyxyfySma9l2Nvbo3jx4vDz88P48eNx/fp1dcZSkEePHmHy5MlWrND4/KtmzZr5ctgLFy6YrS59WfosijkzN2ueLxEr6xIrGzImvxTjjJGYrJWztm7dGnPmzBFcO3bsGHx9fTF27FgcOXIEz549Q05ODlJTU3H79m1ERERg4MCBKF26NKZNm4bU1FSte1jzdTZlyhTUrVtX3c7JyUFQUBAGDhyIY8eO4d9//0VWVhbi4uIwf/581KpVC0ePHgUADBgwQOf6lvA+ZerMMYmIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMiWSMUugMhYmZmZWLt2rcb+Pn36wMPDQ+saHTt2hJubm8b+devWGV2fKZYvX46iRYsW2NexY0eMHz9e6/yNGzeiZcuW8PDwgJOTE+rWrYsVK1ZApVIVON7Z2Rlbt26FnZ2dybVr06hRI0H72rVrFt1Pk4ULF+Knn36CUqnUOGbp0qU4dOiQ4FpwcLDRe8bExKB///7IyMjQOCYqKgrffPON4Nr06dNRsmRJo/clYMqUKZg5cyaSkpL0Gn/58mUEBgZCJpOpr40aNQqOjo4a55w4cQI3b95Ut8uVK4fAwEC9a2zVqhV8fX3V7YSEBOzatUvj+CJFiiAyMhIODg7qa1u3bsXAgQORmZmpcV5mZiZ69uyJK1euqK+1bNkSvXr10rvW/2zatAnjxo2DQqEweO7brl69KmjnvU8QERHZom7dumnse/nyJUaNGoWqVavC2dkZdnZ2KFasGHx9fdGlSxdMmjQJ+/fv1/q50BZ0795d7BLMrkaNGmjcuLHG/tGjR/OzSB49evTAiBEjzL5u/fr1MWvWLJvd21BBQUHYtm2b4PP523JzczF8+HDMnz/f6D00Pc8XFtpyDiqYqRlKVFQULly4ILgmkUgwaNAgREdH4/Hjx4iIiMDo0aPh7+8PJycnk2u2JHM9gxrDkjlS1apVMWbMGMG1wYMH4+jRoxrnpKeno1+/frh8+bLO9cVStmxZTJ06VXBt5syZWu+DSqUSkydPzpf3zp07V2fGa+399DVs2DDs27dPkD9v27YNbdu21TunEpu1M03mRERE4vnkk08wffp0q++blJSEyMhIjBo1Ci1btkT58uXh4eEBOzs7ODs7o2LFiggMDERYWBiys7M1rlOzZk2teY0liPWdrZj5hS0/qxuTZb2r5w0K83mCgujK9Kx9/xLzfTB27FjUq1fP7HsXZsx8/8+CBQugUqnUPzk5OXj16hUuXLiA33//HVWrVtU498qVK/j000+t/qxqbP5V0O8ixvkja5xFMQdrni8RK+uyhWzIkPzS2meMbIUlc1YHBweEh4ejSJEi6mtHjx5FYGAgnj9/rnN+Wloapk+fjuXLl2scY83XWcWKFTFx4kTBtREjRmDPnj0a56SkpKB79+64ffu2xjHW8j5k6swxiYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyJZIxS6AyBRLly6FUqkssM/Z2RmDBg3SOr9v374a+65cuYIrV66YVF98fDyCg4Ph4+MDR0dH+Pj4IDg4GPHx8VrnlSpVCv379893XSKRYObMmVrnhoaGYsCAATh58iTS0tIgk8lw9epVjBo1CqNGjdI4r2rVqjr/e5mqQYMGgvb169ctul9BXrx4ge+//16vsUuXLhW0W7ZsafS+Y8aMgUwm0zlu0aJFuHbtmrrt5OSEYcOGGb0vGefGjRtYtWqVul2iRAl07txZ65wVK1YI2iNGjNB7v88//1zQXrt2LeRyucbxPXv2RNWqVdXtV69eYfjw4VCpVDr3ysnJyXcvGDt2rN61AkBGRga++uorg+Zokvc+4OfnZ5Z1iYiILKl69eoa+/r27YsVK1YgLi4OWVlZyM3NRXJyMu7du4e9e/fif//7HwIDA+Hl5YUOHTogKioK6enpVqzecMePH0evXr1QtmxZODo6omLFiggICMDvv/+OpKQkUWp68+YNJk6ciEqVKqFo0aKoWrUqli1bpnNeQEBAgdelUqlen2+2bNmCZs2awc3NDW5ubmjWrBk2bdpkcP2FgVQqxc8//6xz3MaNG9GyZUt4enrCyckJH3/8MWbNmqXz+WfkyJHw8fGxub0NFRQUhK1bt8LBwaHA/pycHPTr1w9r1641aR9N2Ye1mTvnIM1MzVByc3MRFBSEmzdvFthfvnx5DB48GEuXLsW5c+eQlpaGmJgYzJs3D+3bt0eRIkWMrt3czPkMaihL50ihoaGQSv8voj9w4AB27Nihc55MJsOXX36pV11iGD16NOzt7dXte/fuYcaMGXrNnTBhAl69eqVuu7q66szGrL2fPqZPn441a9bAzs5OfW3+/Pno06ePXhmhrbB2psmciIhIPL/++qvOMTKZDCtXrkSHDh1QunRpODg4wNPTEx999BGGDx+OPXv2IDc3V6/9zpw5g27dusHb2xuDBw/GihUrcPLkSTx9+hRpaWnIzc1FVlYWHj16hP3792PkyJFo3bo1cnJyNK7Zp08fvX9fU4n1na2Y+UVhelY3JMuy9fMGhrL18wTmzvQA696/xM7L9HkODA8PR+PGjeHq6go3Nzf4+/tj3bp1en2PLDZmvtZ39epVfP7552jUqJHOfM8SjM2/CnqfiPVdhaGMOYtiKmueLxEr6xI7GzImv7TmGSNN+vbtC5VKZdRPSkqKQXtZOmcdMmQIypUrp26npKRgyJAhyM7ONqhObaz5OgsNDRXkiidPnkR4eLjOfd68eSNalv6f9yVTZ45JREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREtkSqewiR7Xr48CH27t2rsT80NFRjn7OzMzp37qyxf926dSbVFhsbiwYNGmD9+vV4/vw5cnJy8Pz5c6xfvx5+fn64efOm1vkF1R4QEID69etrnBMREYHVq1dr7A8LC8ORI0c09n/33XdaazKVr6+voP348WOL7leQVatWQSaT6TX2+PHjUKlU6nbt2rUhlRp+2zx79izOnz+v11ilUolFixYJrg0dOtTgPcl027ZtE7SbNGmidXx4eDgyMjLU7Y4dO6J8+fI69/H29ka3bt3UbZVKpfV9DABffvmloL1w4UKkpaXp3Os/586dw8WLF9XtZs2a6VXrf/78808kJibqPV6bvPcBDw8PeHt7m2VtIiIiSylWrJjGvqdPn+q1hlwux8GDBzFo0CDMnTs3X/+SJUsgkUjUP2FhYVrXK1OmjGB83h99PwPnNXnyZLRu3Rrbt2/HixcvkJOTg0ePHuHYsWP45ptvMG3aNKPWNUVKSgqaNWuGOXPm4OHDh8jOzkZcXBy++OILLFu2TOtcTc9TAQEBqFy5sta506ZNQ9++fXHmzBmkp6cjPT0dZ86cQf/+/fHTTz8Z/fvYqvbt26NmzZpax4wfPx4DBgzAyZMnkZqaCplMhhs3buDHH39Eu3btkJ2drXFu0aJFMXr0aJvb2xBdu3bFtm3b4ODgUGB/ZmYmgoKC8j1bGCM3N9fkNUxliZyDNDNHhvLy5Us0atQIS5cuhVwu1zrWzs4ODRo0wNdff40DBw7gyZMn+Omnn+Di4mLwvuZmzmdQQ1k6Rxo0aJCgvWTJEr1rO336NC5fvqz3eGsaMmSIoL1o0SLk5OToNTclJSVfLhIcHGxT+2ljb2+P9evXY8qUKeprSqUS48aNw/jx4wWvEVsnRqbJnIiISByffvop/P39tY65e/cu6tWrh88//xwHDx5EQkIC5HI5UlNTcevWLaxZswZBQUGoVKkSoqKioFQqta7XrFkz7Nq1y6BnnTNnzmD37t0a+1u0aJHvmqXyFbG+sxUzvygsz+qGZlm2fN7AGLZ8nsASmZ61719ivg/atm2LihUrat3766+/xtChQ3H+/HlkZGQgPT0d0dHRGDZsGL766iutc8XGzNf6Xr16hSNHjuCff/7RmRtZirH5l7u7e75rqampZqnJGgw9i2Iqa54vESvrEjsbMia/tOYZI1tg6Zw179/PFStW4NmzZ4YXqoU1X2d591qwYIGeVQKHDh3S+X2NJb0vmTpzTCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIrIl2v9fwokKgUWLFmnsq1OnDho1alRgX6dOneDi4lJgn1wux4YNG0yqKyQkBElJSQX2vX79GiNGjNA6v2HDhnB2dhZcCwwM1Drn999/11lXVFSUxr7q1aujYsWKOtcwhqurK4oVKya49uzZM4vspc2RI0f0HvvmzRs8f/5c3S5atCg8PDwM3nPbtm0Gjd+xYweUSqW6Xb16dRQvXtzgfck0165dE7T9/Py0jk9LSxPcN4oUKYKQkBCd+wQHB8PBwUHdPnz4MB48eKBxvKurKxo3biy4tmXLFp375HXo0CFBu0mTJnrP3bt3r8H7afLmzRu8efNGcM1S9yEiIiJzyfu3623z5s1DqVKlrFiN5URFRWH27Nlil5HPd999h+vXrxfYt3jxYq1zy5UrV+D1Vq1aaZ0XExODGTNmaOyfNWsWoqOjta5R2LRv315r//HjxzF//nyN/SdPnsScOXOM2kPMvfXVrVs3bN26Ffb29gX2p6amol27djh48KBJ+/zn7WdEsVgi56CCmTNDycjIwJgxY+Dr64tffvkFDx8+1GtemTJl8PPPP+Pu3bto0aKFUXubizmfQQ1lyRypUqVKKF26tLqdnp6e71ldl+3btxs03hoqVKiQ7++tobnFxo0bBe2PP/5Y439La++njbu7O/766y8MGTJEfU0mk6F3795YuHChweuJTYxMkzkREZE4OnXqpLU/JSUFHTp0wO3bt3Wu9fjxYwwaNEjr9xymiIuL09jn4+OT73O0pYj1na2Y+UVheFY3Nsuy1fMGxrDl8wSWyPSsff8S832g6/1/8uRJLFiwQGP/4sWL8ffff2tdQ0zMfK2vRIkSmDBhAm7cuIHVq1fDzc3Nqvubkn+9fb7iPxkZGWapyxoMPYtiCmueLxEr67KFbMiY/NJaZ4xshSVz1uLFi6NOnTqCa2vXrjW8SC2s+TqrWLEifHx81O2srCz89ddfBu21detWg8ab0/uSqTPHJCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIlsiFbsAIlMdPXoUN2/e1Ng/YsSIAq/36dNH45w9e/bg1atXRtd06dIlREdHax1z+vRp3LhxQ2O/nZ0dGjZsKLgWEBCgcfy///6La9eu6azt7t27Wvu17WGKUqVK5bv2+vVri+ylzfXr1w0an5KSImh7eHgYvOeFCxcMGp+cnIwHDx4IrjVq1Mjgfck0qampUCqV6naZMmV0zlm+fLmgHRISgiJFimgcL5FIMHz4cMG1sLAwrXs0adIEdnZ26nZCQoLO93VBrly5Imj7+fnpPffy5csG76dN3vttQfcLIiIiW3Lv3j2NfV27dsXz589x9epVbNq0CTNmzMDAgQNRv359ODs7W7FK06hUKvz4449il5FPUlIS1q1bp7H/zp07yMnJ0div6fN8kyZNtO67fPlywWfDvFQqFZYtW6Z1jcJG17OhPr/v8uXLoVKpNPbXq1cPXl5eNrW3Pjp37owtW7bA3t6+wP5///0XrVq1wunTp41avyDafhdrsFTOQQWzRIby6NEj/PDDD6hUqRKqVauG0NBQrF69GhcvXkR2drbGeWXLlsXRo0cRFBRk0v6mMPczqCEsmSPlfT/ExsZCLpcbtN+lS5cMGm8N/v7+gvajR4+QkJBg0BqxsbHIyMhQtyUSicZszNr7aeLj44OTJ0+iTZs26muvX79GQEAAduzYYdBatkKsTJM5ERGR9bVt21Zr//z58/Hw4UOL7V+vXj1MmjQJUVFRuHDhAp4+fYrk5GTk5ORApVIJfiZNmqR1rWLFilmszreJ9Z2tmPmFrT+rm5Jl2eJ5A2PZ6nkCS2V61r5/ifk+0PX+1/Uds75jxMDMV1xSqRQhISE4ffo0ihcvbrV9Tcm/Cno9uLi4mFyTtRhzFsVY1jxfIlbWZQvZkLH5pTXOGGmzefNmSCQSo348PT0N2suSOWuLFi0gkUjU7cTERMTFxRm0ny7WfJ3lvXb9+nXIZDKD9jI01zOn9ylTZ45JREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREtkIqdgFE5rBkyRKNff369YObm5vgmouLCzp16qRxzrp160yq59SpU3qNO3PmjNb+Dz/8UNCuXLmyxrElS5aESqXS+XP69Gmte9aoUUOv2g3l4uKS75pMJrPIXpoolUqkpqYaNCfxt+VTAAAgAElEQVRvjUWLFjV439u3bxs859atW4J2+fLlDV6D8vPx8cGYMWMQERGBixcv4vnz53jz5g2USmW+94pSqYRU+n9/Jj09PXWuf/nyZZw7d07dLleuHAIDAzWODwgIQJUqVdTtly9fYvfu3Vr3qFatmqAdFxens66CvHr1StAuWbKk3nOfPXtm1J6aZGVlCdoF3S+IiIhsyf79+7X2S6VS1K5dG3379sWPP/6IyMhIXLx4Eenp6bhy5QoWLlyIVq1aQSKRWKliw509exbx8fFil5HPkSNHIJfLNfarVCokJydr7Nf0OaNSpUpa9/3nn3901qbPmMIk7/NoXvr8vs+fP8f9+/c19kulUnzwwQc2tbc+unbtCnt7+wL7njx5ghYtWuDy5ctGra2JSqUy63qGslTOQQWzdIZy9+5drF69GqGhofDz84ObmxuaN2+OWbNm4dGjR/nG29vbIzIyUmsuZUnmfgbVl6VzpLxZz507dwzaCzAuc7K0cuXKCdo3b940eA2lUpnvd8u7rlj7FaRWrVo4d+4cateurb724MEDNG3aVOd90ZaJlWkyJyIisj5dz8Rbt241+55FihRBcHAwHjx4gEuXLuGXX37BgAED4OfnBx8fH3h6emp87tLGy8vL7LUWRKzvbMXML2z9Wd3ULMvWzhsYy1bPE4iV6Zn7/mXLeZmufzdAd24jFma+tqFWrVrYtGmT1fYzJf968+ZNvmseHh4m12QKS59FMZY1z5eIlXXZQjZkbH5pjTNGtsDSOWuFChUE7atXrxq0lz6s+TrL+znAHBmdtbxvmTpzTCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIrIVUrELIDKHiIgIpKSkFNjn4uKCAQMGCK516dIFTk5OBY5/+fIlDhw4YFI9jx490mtcfHy81v5ixYqp/7ejoyNcXFxMKUsvJUqUsMi6jo6OgrZcLodKpbLIXpqIsScAja9NQ+Z4eXmZq5z3kq+vL3bs2IEnT55g8eLFGDx4MOrXr48yZcrA1dUVEolE5xpubm567bV8+XJB+/PPP9c4Nm/f2rVroVAotK7/9n0BAJo2bQqZTAaZTIbs7GxkZ2cjJycHcrkccrkcCoUCCoUCubm5yM3NhVKphFKpxNGjRwXr6Psay83NRUZGhl5j9ZWdnS1oa7o/ExER2Ypz587l+1uqD4lEgjp16mDs2LE4duwY4uLi0L17dwtUaLoLFy6IXUKBYmNjdY7JysrS2Kfpc1/ez1h5PXz4UOe+8fHxUCqVOscVBrqeP7OyspCYmKjXWrqee/M+g4q5t6ni4uLQvHlz3Llzx6zr2gJL5BykmbUzFLlcjtOnT+PHH39ElSpV8MUXX+S7l7q5uWHq1KkWq0ETSzyD6svS/909PT0FbWPyo9TUVHOVYzZ584Xk5GSj1sk7T1NuYe398rK3t8epU6dQrlw59bWYmBg0adIEd+/eNaoWWyFWpsmciIjIuhwdHbV+/yGXy3Hr1i2z7unu7o4DBw5g7dq1+PDDD826dt7P0pYg5ne2YuUXheFZ3dQsy9bOGxjDls8TWCLTs/b9S+z3gbbP1iqVCo8fP9a57+PHj20yv2Tmax7jxo2DRCJR/zg5OaFUqVLw9/fHuHHjcPbsWZ1rtGnTBl27drVCtablX0+fPs13Tazc0ZpnUYxhzfMlYmVdYmdDpuaXlj5jZAssnbMWL15c0H79+rXZ97Dm68wc7yVj5pjD+5apM8ckIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiWyEVuwAic8jIyMC6des09o8YMULQ7tu3r8axkZGRUCgUJtejj8zMTK39bm5u6v/t6elpUk36Kl68uEXWzc7OFrTt7e0hkUgsspctUSgUkMvlBs/L+xpydXU1V0nvnfbt2+Py5cvo3r27Sa85qVS/P5lbtmzB69ev1e2OHTuifPny+caVKlUKXbt2VbeVSiVWrVqlc/289wKpVApHR0c4OjrCwcEBDg4OsLe3h52dHezs7FCkSBEUKVIEUqkUUqkUEomkwP8OLi4uev1+pt4fC1K0aFFBOysry+x7EBERmdugQYMQFxdn0hqVK1fGjh07MGXKFDNVZT5PnjwRu4QCJSUl6RxjzOdvbZ+FZDIZcnNzda6hUqnemc8xup4/9X3m1Wesh4eHzextqqysLKSnp5t1TX0VKVLEoutbIucgzcTMUBQKBZYtW4Z27dohJydH0NevXz+9nx3NWc+7Km/WY8zfEEPuidaS932u676gSd7fTdP9w9r75SWVSuHu7i64tnz5ciQmJhpVh60QM9NkTkREZF26nsHS0tLMvufWrVvRpk0bs69rLWJ+ZytWflEYntVNzbJs7byBMWz5PIElMj1r37/Efh9oe/9nZ2dDqVTqtbctfr5m5msZMpkMiYmJiI6OxsKFC9G0aVMMHDhQ5/1p+PDhVqnPlPyroO9mateubZa6DGHtsyjGsOb5ErGyLrGzIVP/5lv6jNH7IO+/lSW+p7Hm6yzve8mYvWwxNzYHW8vUmWMSERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERGRrZCKXQCRuSxZsgRKpbLAvvr166NBgwYAADc3N3To0EHjOuvXrze5FhcXF73GOTs7a+1/8+aN+n+npKSYVJO+7O3tLbJuRkZGvmtFixa1yF62xM7ODnZ2dgbPy/saSk9PN1dJ75WqVati586dgv+emZmZiIiIwLBhw+Dv749y5crBzc0NDg4OkEgkgp/c3FyD95TJZFi3bp26LZVKMXz48HzjgoODBe+3w4cPIz4+Xuf6WVlZBtekD4lEYpF19eHk5CRoF3S/ICIisjUvX75EgwYNsHDhQpP/dk2fPh2NGzc2U2Xm8faziC3Jzs7WOUbTc6E22j5vOzo6QirVHZ9IJJJ8n2sKq9TUVK39+j7z6jM2715i7m2q2rVr4/Dhw/D09DTrugB0Ple6u7ubfc+3WSLnIM1sIUM5deoUVq5cKbhmb2+P5s2bW7WOd1nef2dj/oYYck+0lrzvc133BU3y/m6a7h/W3i8vuVyOEydOCK6tWrUKQ4cONaoOWyFmpsmciIjIunR9/2juZ40+ffqgXbt2Zl3T2sT8zlas/KIwPKub43nTls4bGMOWzxNYItOz9v1L7PeBts/F+r7/AeOePS2Nma/1bNiwAXPnztU6xlrZjyn5V2xsLHJycgTX/Pz8zFKXvsQ4i2IMa54vESvrEjsbMpWlzxi9D9LS0gRtV1dXs+9hzddZ3r9f70pubA62lqkzxyQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJbIRW7ACJzefDgAf766y+N/aGhoQCArl27omjRogWOiY6Oxo0bN0yupUKFCmYZl5SUpP7f2dnZyMjIMKkuMb18+TLftRIlSohQifV5enqaPCc5Odlc5eRTpEgRi60ttrlz5wre7+fPn0flypUxZMgQrFu3DtHR0Xj27BnS09Mhl8sFc4sWLWr0f5sVK1ZApVKp2yEhIYK1JBKJ+p70n7CwML3WfvXqlaC9du1aSCQSk3/atGlj1O9qDsWLFxe0ExISRKqEiIjIMG/evMG4ceNQtmxZBAcHY8OGDYiPjxd8DtDXhAkTLFCh8ZRKpdglWJW2z9sSiQTlypXTuUaFChUglb4bMYtMJtP6/Onk5ARvb2+91qpYsaLW/ryfb8Xc2xzq16+PgwcPwt3d3azrOjk5ae2vVq2aWffLyxI5B2lmKxnKli1b8l3T9b4i/aWkpAjaHh4eBq9hzBxLy/s31cvLy6h18s7TdP+w9n55KZVKdOzYEQcPHlRfk0qlWLt2LUaNGmVULaYyV9YnVqbJnIiIyLqys7Px5s0bjf329vaoXr262fb77LPPtPanpKTgp59+Qr169eDu7g6pVCr4LmPWrFlmq8VYYn5nK1Z+URie1c2RZdnSeQNjFPbzBIay9v1L7PeBrvf/Bx98oHPf8uXLvzP5pT6Y+RZs165dWvs9PT3h5uZm8TpMyb9ycnJw6tQpwbVPPvnELHXpS6yzKIay5vkSsbIusbMhc7DkGaP3Qd5/q7zZkjlY83WW971kjozuXWFrmTpzTCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIrIVUrELIDKnRYsWaewbMGAAXFxc0KdPH41j1q9fb5Y6mjdvrte4pk2bau1/+PCh1vbbbty4AYlEYvJPhw4d9KrdUBkZGXj9+rXgmo+Pj0X2sjU1atQwec6TJ080jlUoFIK2nZ2dQXt5eXkZNL6w8PT0FLyec3Jy0LNnT7x8+VKv+d7e3kbvff/+fRw+fFjd9vHxQadOndTttm3bolKlSur2ixcvsGfPHr3WzvtaqFKlitF12gI3Nze4ubkJrsXHx4tTDBERkZHS0tKwfv16DBw4EB9++CFcXV1Rv3599OrVCxMnTkRERARevHihdY3WrVtbqVoqyP3797X263p2A4CWLVuaqxyboO35E9Dv9y1btiwqV66ssV+pVOLx48c2tbc+VqxYgbS0NI39jRo1wv79++Hq6qr3mtnZ2Vr7ixUrprU/ICBA772MYamcgwpmKxnK3bt3813z8PCweh3vqrzP99WqVTN4DWPmWNrTp08FbWNyMalUiurVq2tdV6z9CpKVlYWuXbti165d6msSiQTLli3DN998Y3A9tpL1WTrTLAhzIiIicTx48EBrf+/evc221yeffKKxLzs7G82bN8fMmTNx5coVvHnzBiqVSjDGVj6PivWdrZj5ha0/q5uLrZw3MFZhPk9gDGvevwDbzsuaNWumc299xrxLmPkWLO/f1oI4OjpavA5T868dO3YI2pUrV8ann35qjtJ0EvMsiqGseb5ErKzLFrIhU1nyjNH7IO/fyNq1a5t9D2u+zvJ+DjBHRveusKVMnTkmERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERER2RKp2AUQmdPhw4dx69atAvvc3NwwcuRItG/fvsB+mUyGjRs3mqWO+vXro2HDhlrHNG3aFB9//LHGfoVCgQsXLgiuHTlyROP4GjVqoGzZsoYVamV3794VtCtUqCBSJdal67WQl5eXFypVqiS4Fh0drXF8WlqaoO3u7m7QflWqVDFofGFRu3Zt2Nvbq9snTpzAs2fP9J5v6L9bXsuWLRO0R4wYof7fn3/+uaBv7dq1UCgUeq37zz//QKVSqdsNGzaEs7OzCZWKK+99ICUlBYmJiSJVQ0REZB6ZmZm4fPkytm/fjjlz5mDIkCH44IMPsGnTJo1zihUrBhcXF439ubm5Wvd0cHAwul4Czp49q7U/JCREa79EIsHo0aPNWZLojh49qrV/1KhROtcYNWoUJBKJxv7Lly8jOTnZpvbWx8WLF9G5c2dkZWVpHNO0aVPs27dP78/qqampWvtr1aqlsc/T0xNDhgzRax9jWSrnIM1sNUMx9n1D+eV9P9SqVUuQY+ijfv365izJLM6dOydoV6xYEd7e3gatUbNmTcHnIqVSqTEbs/Z+mmRnZ6NXr175Pu/NmTMHU6ZMMWgtW8n6LJ1pFoQ5ERGROA4fPqy1/+uvvzbL51FXV1e4urpq7D927Bhu3LihdY1GjRqZVIO58hWxvrMVM7+w9Wd1c7GV8wbGKuznCQxlrfvXf8R8H+h6/4eGhurcW58x7xJmvgULCgrS2i+Xy/H69Wur1GJK/hUVFYXMzEzBNWv9e4l9FsUQ1jxfIlbWZSvZkKksdcbofXDq1CnB67xUqVLw9fU16x7WfJ3lvVarVi0ULVrUoL2seZ+xJlvK1JljEhERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERkS2Ril0AkbktWbJEY9+sWbPg4OBQYN/OnTuRkpJitjrWrFkDLy+vAvu8vLwQFhamdf6FCxeQmZkpuLZ//36N46VSKSZNmmR4oQBcXFwwceJETJkyxaj5+oqJiRG0a9WqZdH9bEWvXr0MGt+jRw9Ipf93e759+zZev36tcfyrV68E7SpVqhi0X6tWrQwa/zaFQiFov1232Ly9vQXtp0+fGjS/a9euJu2/d+9ePHnyRN3u2LEjPvjgA5QuXRpdunRRX1cqlVi9erXe6yYmJuLq1avqtpOTk8m1iinvfSDvfYKIiOhdoVAosHLlSq1jnJ2dNfalp6drnWvoZ0ASOnbsmNb+Nm3aIDQ0VGP/5MmT4e/vb+6yRHXw4EGt/a1bt8bXX3+tsb958+b49ttvjdpDzL31dfLkSfTs2RNyuVzjmJYtW2L37t0oWrSozvVevnyptT80NBSOjo75rtvZ2WHNmjUoWbKk7qJNZImcgzSzhQylcuXK+a7peq3ack5ga+7fv4+EhAR129XVFW3btjVojZ49e5q7LJM9fvxYkIcAhmdj/fr1E7RjY2ORlpZmE/tpo1AoMHDgQKxbt05wffr06fjf//6n9zpiZn1vs3SmWRDmRERE4ti3b5/Wfi8vLxw4cABVq1bVuZa3tzdWr16NSpUq5evT9WxkZ2entb9Zs2Zo1KiRzhq0MVe+ItZ3tmLmF4XhWd1cbOW8gTEK+3kCQ1nr/vUfMd8Hx48f1zrvk08+wZdffqmxf/To0WjdurXWNd4172rm6+HhgejoaIwePRrFixc3aG7fvn11vgbj4+OhUqlMKVFvpuRfKSkpWLx4seBa79690aFDB7PUVrduXY1riXEWxdjMzZrnS8TKumwpGzKFpc4YvQ+SkpJw+fJlwbXg4GCz7mHN11l8fDyePXumbjs5OSEwMNCgvXr37m3Q+MLCljJ15phERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERkS6RiF0BkbhEREUhNTS2wz9HRUeO8devWmbWOWrVq4eLFixgyZAjKlCkDe3t7lClTBp999hliYmLw8ccfa52/atWqfNcOHz6Ma9euaZzzxRdfYNy4cXrXWK1aNcyaNQsPHz7Er7/+Cm9vb73nGiM6OlrQrl27tkX3sxVNmjSBv7+/XmOlUim+/PJLwbX169drnfP48WMkJyer22XKlEGVKlX02s/JyQnBwcF6jS1Ienp6vvVshUwmE7SLFSum99yKFSuib9++Ju2fm5sreB9LpVKEhIRg2LBhsLe3V18/ePAg4uPjDVp7yZIlgvbUqVMFaxYmee8Dee8TREREtqh3797Ytm0bOnfuDAcHB73n1a9fX2OfQqHA69evNfYnJSVpXfvXX39Fo0aN4OzsrHc99H+OHTuGe/fuaR0TFhaGlStXws/PDy4uLnBxcUGTJk2wYcMGzJw500qVWs/Bgwdx48YNrWPmzZuHqKgoNG/eHG5ubnB0dMRHH32EGTNm4NChQ1qfwbOzs7Fs2TKb29sQ+/fvx8CBA6FUKjWOCQgIwM6dO7XWAwCXLl3S2l+7dm0cPHgQTZo0QdGiReHl5YXOnTvj1KlT6NGjh1H1G8oSOQdpZmqGsnHjRpQqVcqkGnr16iVoKxQKnDp1SuscW84JbFFkZKSg/cUXX+g9t2nTplo/W4gpb5Y1duxY2NnZ6TXXw8MDoaGhgmtr1661qf20USqVCAkJwdKlSwXXv/vuOyxevBgSiUTnGmJmfW+zdKZZEOZERETi+Pvvv3Xec6tXr44rV65g2bJlaNu2Lby9vWFvbw93d3f4+vpiwIABiIqKwuPHjxESEgKpNP8xhKSkJCgUCo17NGnSBBUqVCiwr1KlSti4caNhv1gBzJWviPWdrZj5RWF5VjcHWzlvYIzCfp7AUNa6f/1HzPfB4cOHdX6nvHDhQqxZswYNGzZUv/8bNmyI1atX5/t++X3wrma+EokEDRs2xNKlS5GYmIjz589j1qxZ6Nu3L2rVqgVvb284OjrCzs4Onp6eqFu3LkaOHIkTJ05g06ZNOs8V/Pnnn1b6TUzPv2bPno1nz54Jrq1atQply5Y1qa5GjRrh8OHD8PT0LLBfjLMopmRu1jxfIlbWZUvZkLEsecbofZD3dT5y5EiUKVPGrHtY83UWEREhaBvy+a1du3b46KOP9B5f2NhKps4ck4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiGyJVOwCiMwtPT0d69evN2jO06dPceTIEbPX8uGHH2L9+vV4/vw5cnJy8Pz5c4SHh6NSpUpa5yUkJGDjxo35rqtUKvzwww8a50kkEsyfPx9nz55FSEgIatSoAVdXV9jZ2aFkyZKoUaMGevXqhblz5yImJga3b9/G5MmTUbJkSZN/V30cPXoUKpVK3W7SpAkkEolV9hbbkiVL4OjoqHPc2LFjUadOHXVbJpNh3bp1OuedOXNG0B45cqRedc2ZM8ekf//ExERBu0KFCkavZW4PHjwQtD/99FN4eHjonGdvb4/IyEg4ODiYXMOqVasgl8vV7ZCQEISGhgrGrFy50uB1w8PDBb9ftWrVEBYWZnyhImrWrJmgffjwYZEqISIi0p+joyN69uyJPXv2IDk5GQcOHMAPP/yAHj16oGbNmvD29oaTkxOkUik8PDzQqFEjzJkzB7Nnz9a45vXr16FUKjX237hxQ2tNfn5+OH/+PDIyMqBSqQQ/gwYNMvp3fV+oVCosWLBA6xiJRILQ0FBcuHAB6enpSE9Px5kzZ9C/f38rVWldSqUSU6ZM0TluwIABOHnyJNLS0iCTyXDjxg38+OOPcHJy0jpv+fLlePbsmc3tbaitW7dixIgRWse0b98e27Ztg729vcYxsbGxePXqldZ1PvnkE5w5cwZZWVlISkrCnj174O/vb1TdxjJ3zmEtt2/fzndv/O/nu+++0zp3//79GueuWLHCYjWbmqF0794dN27cwODBg43KXurWrYsvvvhCcO3YsWNITk7WOs+WcwJbtGrVKsHf/8DAQHTt2lXnPEdHRyxatMiSpZlk+fLlyMnJUberVauG77//Xq+5c+fOFWRVaWlpOrMxa++ni0qlwpgxY/Dbb78Jro8ZMwarVq2CVKr7axmxsr68LJ1p5sWciIhIPPr87XRycsKoUaNw6NAhJCQkICcnB6mpqbh79y6ioqIwYMAArX83lEoloqOjNfa7urriyJEj6NevH3x8fODg4IDKlStj4sSJiImJQfny5Y363d5mrnxFrO9sxcwvCtOzuqls6byBoQr7eQJjWOP+9R+x87LFixdrnS+RSDBs2DBER0er3//R0dEICQl5b85lvO19yHylUikaNWqEyZMnY9OmTbh27RoSEhIgk8kgl8uRnJyMy5cvY/ny5WjZsqXO9RQKhcH3P1OYmn+lpqZiyJAhyM3NVV8rV64cTp06pTOv1GTo0KE4fvw4SpQooXGMGGdRTMncrHm+RKysy9ayIWNZ6ozR+yAyMhKPHz9Wt728vBAeHm6Ws1//sebrbNWqVVAoFOp2ixYtMGTIEJ37uLq6YuHChXrVVFjZSqbOHJOIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhsiVTsAogsYcmSJVCpVHqPj4iIgFKptGBFhhk9ejRkMlmBfXv37sWiRYu0zm/cuDFWr16Nmzdv4s2bN5DL5UhMTMTNmzexdetWTJgwAQ0aNLBE6Vq9ePECV69eVbdLlCiBjz/+2Op1iMHPzw8bN26Ei4uLxjEDBgzA3LlzBdemTZuGxMREneuvX79e0B47dixat26tcbxUKsUvv/yCL774Qufa2rz97wkA7du3N2k9c7p58ybi4+PVbQ8PD4SFhcHOzk7jHC8vL+zbtw/NmjUzSw0vX77Ezp071W0fHx9UrFhR3X7+/Dn27t1r8LoKhQIDBw5Edna2+lpwcDB27NiB4sWL671OyZIl8e2332L79u0G12AOTk5O8Pf3V7fT0tJw+vRpUWohIiIylrOzM9q3b4+ZM2di+/btiI2NRUJCAjIzM5Gbm4uUlBScP38e33zzDezt7TWuExUVpXWfc+fOQaFQmLt8esuKFSsQHR0tdhk2ZceOHVi1apXZ17106RJ++OEHm93bUGvWrMGECRO0juncuTM2b96s8XlEoVAgIiLCrHXZEm05BxXMHBlK8eLFERERgevXr6Nfv36QSvWLggMDA3H06FE4ODiorymVSkyaNEnnXFvOCWzRnTt3sGTJEsG1qKgotGrVSuMcZ2dnbNiwQZRsT18vXrzA1KlTBdd+/vlnjBo1SuMcqVSKGTNmYPjw4YLrEyZMQFpamk3tp6/vvvsO06ZNE1wLCQlBZGSk1nwKEC/ry8vSmebbmBMREYnr+PHj+Pnnny2+z4YNG7T2V6lSBRs3bsTTp0+RnZ2Ne/fu4ddff4WXl5dZ9jdnviLWd7Zi5heF6VndVIX5vEFhPk9gDGvdv/4j5vtg0aJFuHz5stn3fpcx8zXMjBkzcOvWLavtZ4786+jRoxg9erTgnv3hhx8iJiYGX3/9tSDf0qZmzZrYt28f1q1bB2dnZ61jxTiLYkrmZs3zJWJlXbaaDRnKUmeM3gdyuRyfffYZcnNz1dfatm2LvXv3onTp0jrnu7u7Y8qUKVpfM9Z8nT18+DBf3rZy5cIO/SkAACAASURBVEp06dJF4xxPT0/8+eefqF69usYx7wJbyNSZYxIREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREZGtkYpdAJEl3Lt3D/v379d7/Pr16826/5o1ayCTyYyau3btWuzYsUPrmK+//hpbtmwxan2xbd++XdBu3769SJVYR3Z2Nv78808AQPfu3XH16lWMGjUKH374IRwdHVGyZEm0b98e27dvR1RUFIoUKaKee/bsWfz+++967bNz505cvnxZ3ba3t8f+/fsxZ84c1K1bFy4uLnByckKVKlUwYsQIXLt2DZMmTQIArFq1yujfb8+ePYL2t99+i/Hjx6Ny5cpwdHQ0el1z+eWXXwTtvn374vz58xgwYAB8fHxgZ2cHT09PNGjQANOmTcO9e/fQtm1bAEBkZCRyc3NNrmH58uUa+9asWQOFQmHUuufOncPw4cMFNXbv3h2PHj3C8uXL0bVrV5QvXx7Ozs6wt7dH8eLFUa1aNXTv3h1Tp07F6dOn8fLlS/z222+oXLmyUTWY6pNPPoGDg4O6vWfPHsjlclFqISIiElNsbCyWLFmidcyrV6+wd+9eK1X0fsrNzcWQIUOQnJxs1PzIyEikpqaauSrxjR492qDna13i4+MRFBSEzMxMm97bUPPmzcOMGTO0junevXu+5763zZ071+jX32+//WbUPH1ZOueggpkrQ6lZsyY2btyIZ8+eYc2aNejRowdq1qyJYsWKwc7ODl5eXqhfvz5GjRqFf/75B/v27UOxYsUEa/z444+4dOmSzr1sPSewRT/88APu3r2rbru4uODIkSNYs2YNWrZsieLFi8PR0RGVKlXC6NGjce3aNfTo0QMAsHHjRrHK1um3337DkSNH1G2JRIJly5bh4MGD6NatG8qUKQMHBwf4+Pigf//+OH36NH788UfBGlu2bMHq1attcj99TZ8+Hd9++63gWv/+/bFlyxZBJpKXWFnff6yVab6NORERkfimTp2KsLAwi+6xatUq3Llzx6i5ycnJ2Lx5s0n7mztfEeM7W7Hzi8L0rG4Ksc8bmKownycwhjXuX28T632gUCjw2WefIS0tzah9oqKi3sn8Uhux75mFyfr16/Odr7AGc+RfK1euREhICHJyctTXvLy8MG/ePNy/fx/Lli1DUFAQqlWrps7DPDw80KBBA4wZMwZHjx5FbGwsAgMD9d7T2mdRTM3crHm+RKysy1azIUNZ6ozR++DEiRP5cri2bdvi3r17WLBgAQICAtSvA3d3d1SvXh2DBw9GVFQUXr58ienTp8PDw0PrHtZ8nU2fPh3Xrl1Ttx0cHLB7925ERkaiVatWKF68OIoWLYoqVargq6++wvXr19GmTRsAwIYNG3SuX5iJnakzxyQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJbIxW7ACJLWbRokV7jTp06hbi4OLPufe7cOQQFBSE9Pd2geVFRURgxYoTOcUqlEv369cP48eORk5NjbJmi+OOPP6BSqdTtnj17iliNdQwdOhSXLl0CAFSuXBnLli3DgwcPIJPJkJiYiAMHDqBHjx6CORcvXkRgYCAUCoVeeygUCgwePBjJycnqaw4ODvjmm29w+fJlpKenIzMzE3FxcQgLC0PNmjUBABEREfj++++N/t0OHDig/t0AwMnJCb///jvu3bsHmUwGlUol+PHz89O6Xt++ffPNMeSnQ4cOgvVWr16NzZs3C67Vr18fUVFRePr0KeRyOZKTkxETE4OpU6eiWLFiAIBDhw4hNDTU6P8ubzt+/Dhu3bqV77pSqcTq1atNWjsyMhIdOnTA69ev1ddcXFwwcuRI7Ny5E48fP0ZGRgZycnLw6tUr3L59Gzt27MC0adPQtGlTSKXifgzo1auXoB0eHi5SJUREROK5ceMGOnXqhOzsbJ1jJ06caPAzBhnm9u3baNOmjeBztT62bt2KYcOGQSKRaByjVCpNLU8UCoUCXbp0wcyZM03+Hfbu3YsGDRrg2bNnNr+3MaZMmaIzi+jTpw/Cw8ML/Cz+4sULDBs2TO/nQOD/v64mTpyI2bNnG1yvISydc1DBzJ2hlC5dGsOGDcP27dsRGxuL169fQy6XIykpCRcvXsSyZcvQokULwZycnBxMmDBB79eYuXOC90F6ejoCAgLw4MED9TWpVIphw4bhxIkTePXqFWQyGe7fv4+lS5eicuXKAICzZ89i1KhRgrXkcrlRNZg7jwH+//0pKCgIu3fvFlxv164d/vzzTzx//hzZ2dl4+vQpNmzYgMaNGwvGRUREYODAgXr/DtbezxBz587F6NGjBe/n7t27Y9euXXBycipwjlhZ39uskWm+jTkREZFtGDlyJIYNG2ax/CEnJwddunTBv//+a9C85ORkdOjQAffu3TO5BnPmK2J9ZytmflHYntVNIeZ5A1MV5vMExrL0/ettYr4PYmNj0a5dO6SlpRm0z/bt2xEcHGxMiYUeM1/t0tPT8e233yI4ONioZzlTmSv/WrduHZo3b44bN24IrpcrVw6jRo3Crl27cPv2bXUelpKSgpiYGCxevBitW7cWzElLS8PkyZOxc+dOjftZ+yyKOTI3a50vESvrsuVsyBCWPGOUl6mZoBj3DF3mz5+PoUOHCj7/uLi44KuvvsKRI0fUr4PU1FTcunULERERGDBggMaMLi9rvs5kMhnatm2b7/UwcOBAHDt2DK9evUJWVhbi4uKwYMEClCtXDgBw+vTpfO+ld43YmTpzTCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIrI1UrELILKUQ4cO4c6dOzrHrV+/3iL7Hz58GI0aNUJ0dLTOsW/evMFXX32Fzz77DLm5uXqtr1KpMH/+fNSuXRthYWHIzMw0qs6UlBRs2bIF/fv3x6RJk4xawxCPHj3CsWPH1G1/f3+UL1/e4vuKKS0tDZ9++ikiIyN1jlWpVFi+fDlatWqFlJQUg/a5ceMGmjdvjtjYWJ1jMzIyMGHCBAwZMgRKpdKgfd6mVCrRo0cPXLp0yeg1LEmlUmHQoEH49ddf9Xpv5eTkYNasWejUqRNkMpnZ6lixYkW+awcOHMDjx49NXvvIkSOoVasWFi1ahKysLJPXsxY7Ozt07dpV3X7y5AmOHj0qYkVERETWlZaWhmnTpqFx48Z6fyaIi4tDu3btzPIZgjS7dOkS/Pz8cPjwYZ1jMzIy8O2336Jv375QKBRwdXXVODY5OdmcZVpVbm4ufvrpJ/j7+2Pbtm0GP0PExMSgT58+CAoKQlJSUqHZ2xjjxo3TmTMMHDgQq1evhkQiyde3c+dOBAUF4fnz5zr3unfvHtq1a4c5c+YYW65BLJ1zUH6mZCi1a9fG5MmTceHCBaOe++VyOXbs2IFatWph3rx5es+z9ZzAVj19+hRNmjTB5s2bdY5VqVRYvXo1AgICoFKpBH2pqamWKtEoWVlZ6NGjB7788kv8+++/es159uwZhg0bhqFDh0KhUNj0foZYvnw5hg0bJrgndujQAfv27dP4+UGMrO9t1so0AeZERES2Zt26dahZsybmzZtn8OeL8+fPo1u3brh//77GMXFxcWjQoAFOnjyp15onTpyAn5+fXs8i+jB3viLWd7Zi5heF7VndWGKfNzBVYT1PYApL37/eJub74Pz58/Dz88Px48d1js3KysKkSZPQu3dvyOVyg/Z5l7xLmW9KSgoaNmyIhQsX6pUhavL8+XP8/vvvqFy5MubOnWvGCg1jzjNEFy5cQN26dREaGoqbN28aPD8+Ph7Tp0+Hr68vZs+erfXMiLXPopgrc7PW+RKxsi5bzoYMYckzRu+D8PBw+Pn5Yc+ePRZZ35qvs8TERDRv3hzh4eE6x6pUKqxcuRJt27Y1+nNfYSLWfYY5JhEREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREdkiO7ELILIUlUqFJUuWYPHixRrHZGZmYsuWLRar4datW2jcuDGaN2+O/v37o2nTpihbtiw8PDyQkJCA+/fvY+fOndi0aRMSEhKM2uPOnTsYOXIkJk2ahICAADRt2hSNGjVC6dKl4eXlBXd3d8jlcmRkZCA5ORkPHz7E/fv3cf36dZw+fRqxsbFQKpVm/s21W7BgAQICAgAAEokEQ4cOxYwZM6xag7W9efMGgwcPxsyZMzFw4EC0bdsWPj4+8Pb2RlpaGp48eYLDhw8jMjISsbGxRu9z8+ZN1KlTB7169UK3bt3g7+8Pb29v2NnZ4fnz53jw4AF27NiBzZs3IykpySy/26NHj+Dv74/AwEB0794dderUQfny5eHm5gZHR0ez7GEKhUKB77//HmFhYRg+fDhatWoFX19feHh4ID09HQkJCXjw4AF2796NP//8E4mJiWavITIyEgsWLIBEIlFfCwsLM9v6L168wFdffYUZM2agY8eOaN26NerVq4eSJUuiePHiAIC0tDT1z+vXr3Hr1i3Exsaqf6yta9euKFGihLq9ePFiq9+LiIiIjLVhwwacOnUKVapUga+vL3x9fVGlShV4e3vDzc1N/ePq6orc3FxkZGQgJSUFcXFxuHnzJo4ePYqjR49CJpMZvPfZs2fh6+uL3r17IzAwEPXr10epUqXg5uYGOzs+4pvLgwcP0K5dO3z66afo378/mjVrBh8fHzg6OuLFixe4f/8+duzYga1bt+L169cAAG9vb0ilUo1r/vvvv9Yq32JiYmLQu3dvfPDBB2jbti1atGiBOnXqoESJEihWrBjs7OyQnJyMpKQkxMXF4eTJk/j7778RExNTqPc2hEqlwvDhw+Hu7o4ePXpoHBccHAy5XI6RI0dCpVIJ+vbv3w9fX18MGTIEnTp1Qu3atVGiRAkoFAo8ffoUV65cwcaNG3HgwAHI5XJL/0oC1sg5SMjYDOXu3buYPXs2Zs+eDU9PTzRv3hyNGzdGjRo14Ovri1KlSsHd3R12dnZIT09XZxPXrl1DTEwMdu7caXRuYOs5ga1KTExEv379MG/ePAwcOBCtWrWCj48PXFxckJCQgKdPn+LgwYOIiorC/fv3AQAlS5YUrJGSkiJG6Vrl5uZiyZIlCA8PR1BQEAIDA1G3bl14e3vDw8MDKSkpSEhIwMWLF/HXX39hz549yMrKKjT7GWL9+vXIyspCZGSk+nNbq1atcOjQIXTs2BGpqan55oiR9b3NWpkmcyIi+n/s3WuMlOXd+PHfDFtYSgUsB2lZXVFLK4gUMZWttVEOqSgaKkUBYbcHNmq0LuobTUkDaQ1o1JZtTNRumxZibSjEw0JDWmsKQWSJgGnNKh4gAYqcT4sCiuz/hf9nfXzK4gA7c+3h83l3zz17398hsxfMb64EWp/NmzfHfffdFz//+c+bvn+84ooron///nH22WdHz54948iRI7F79+54/fXXY9WqVbF48eJ46623crr+li1b4rvf/W6MGjWq6XP3V7/61SguLo5du3bFe++9F8uXL4+//OUvUVdX1+KvLx/zlRTf2aaeX7SVz+qnqzXsN2gJbXE/wZnI9/r1f6X6PXj77bdj5MiRMXLkyJg8eXKUlZV95vd/48aN8dxzz8XChQvbxVyyJaReM1vSq6++Gq+++mrMmDEjLr744rj66qtj2LBhMXDgwBgwYEB079696fuJQ4cOxaFDh2L79u3xxhtvRH19faxYsSLWrFnzX3PJVFpyD9GxY8eipqYmampqYujQoTF27Nj41re+FQMHDmyaszQ2Nsb+/ftjz549sWHDhqirq4uVK1fGyy+/fEp/JoXei9JSM7dC7S9JNetqzbOhXOV7j1FH8O9//ztuvPHGuOSSS+L666+PUaNGxYABA6JPnz7xxS9+MQ4cOBD79u2Lffv2xTvvvBN1dXVRV1cX69evz+n6hXyf7d27N374wx/GvHnzYurUqTFq1KgoKSmJL33pS02/S8uWLYunn346Nm7cGBHRYb4zTrHOmGMCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQGmUaGxsbU0ekMGvWrJg9e3bqDPLsrLPOiq1bt0b37t1PeH7+/PlRUVFxytcdN25c1NbWNnu+srIyampqTvm6HUUmk4n6+vr4xje+ERERmzdvjgEDBsTx48cTl7WM/72sHj16NIqLixPW0Bpcf/31sWTJkqbj//znP1FaWhoff/xxwqq0/va3v8WYMWMiIuLQoUNRUlISBw4cSFzVMe3fvz969OiROoN2pnv37tHQ0JA6A6Cgrrvuuli6dGmz5x966KG4//77C1gEuTPnaL3a+wyFMzN27Nj461//2nS8ePHi+MEPfpCwiLYs5UzTnAg+8dvf/jamT5+eOqNDq6mpicrKytQZkFfmF6cmX/sNgLbBmlkY5l/8D7OuT9hjBPlzpuuMOeaJnXXWWXHw4MHUGa3eY489Fvfdd99/Pb5ly5YoKSmJrVu3xrnnnvtf5x999NG49957IyLi29/+drzyyiufOV9WVharVq3KTzQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAW/CWbugDyqaGhIXbv3t3s+T/84Q+Fi6FJY2NjPPjgg03H5513XowfPz5hEeRXZWXlZ45/97vfxccff5yoJr2LL744Ro8e3XT8m9/8Jg4cOJCwCADgzE2aNOmk51966aUClQDtiRkKJ3P11Vd/5riuri5NCJwBcyIAKCzzi1NjvwF0bNbMwjD/4n+YdX3CHiPInzNZZ8wxAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaK2yqQMgn4YPHx4XXHDBCc9t2rQp/vnPfxY2iCZ/+tOf4vXXX286fuCBBxLWQP70798/xo0b13R87NixqKmpSViU3v333x+ZTCYiIvbv3x8PP/xw4iIAgDMzbNiwuOWWW5o9f/jw4VixYkUBi4D2xAyFEykuLo4f/ehHn3ls+fLliWrg9JkTAUDhmF+cOvsNoOOyZhaW+RdmXZ+wxwjy50zXGXNMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWqts6gDIp5kzZzZ77oknnojGxsYC1vC/HT9+PB544IGm48svvzy+973vJSyC/JgxY0Z06tSp6Xjx4sWxZcuWhEVpDRgwIKZMmdJ0PGfOnNi/f3/CIgCAT/Xq1SteeumlGDduXGSzuY1Mhg0bFs8991x07ty52efU1NTEkSNHWioT6GDMUDiRRx55JPr06dN0/Nprr8WaNWsSFsGpMycCgNNjflE49htA22fNbBvMvzDr+oQ9RpA/Z7LOmGMCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQmmVTB0BL69q1a1x22WUxf/78GD9+/Amf8/7770dNTU2By/i/lixZEkuXLm06njt3bmQymYRF0LIGDhwYd911V9NxY2NjPPTQQwmL0nvwwQejqKgoIiI2bNgQv/71rxMXAQB8KpPJxDXXXBO1tbXx3nvvxVNPPRXl5eVx6aWXRu/evaOoqCi6desWpaWlcdNNN8XTTz8da9asifPOO6/ZazY0NMQvfvGLAr4KoD0yQ2nfHn300aisrIzOnTt/7nM7d+4cv/rVr+LOO+/8zOMdfd5A22ROBACnx/wiv+w3gPbFmtl2mH+1H2Zdp8ceI8hdodcZc0wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABas6LUAdASnnjiibjttttyfv4jjzwSe/fuzWMRubr77rtj1KhRUVxcHN/85jdj6tSpsWDBgtRZcEb69esXI0eOjLlz50ZxcXHT488880ysX78+YVlaw4cPj0mTJjUd//SnP40PP/wwYREAQPP69u0blZWVUVlZedrXOH78eEyfPj127drVgmVAR2WG0n6VlpbGvffeG3PmzImFCxfGSy+9FOvWrYudO3fG0aNH4+yzz46vfe1rcc0118Rtt90WJSUln/n5Z555Jv785z8nqofTY04EAC3D/KJl2G8AHYM1s/Uz/2ofzLpOjT1GcOoKuc6YYwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANDaFaUOgELbsGFDPPzww6kz+P82btwYXbt2TZ0BZ+yXv/xl/OxnP2v2/M6dO+Oee+4pYFHrs3bt2shms6kzAAAKorGxMe6+++5YuHBhs+fzIZPJ5OW60JK8/0+PGUr716tXr7jjjjvijjvuyPlnnn322aisrMxjFeSHOREAtA6fN7/gv53ufgOfhaHtM/PNP/Ov9sWsq3n2GEHLKMQ6Y44JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAa+d/46ZD2bdvX9x8883xwQcfpE4BOpBdu3bFddddFzt37kydAgBAAWzevDlGjx4djz/+eOoUANqpbdu2RVVVVUyYMCHef//91DkAALRB5henzn4D6LismZBfZl2fsscI8sM6AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQHtVlDoACqW+vj4mT54c//rXv1KnAB1AQ0NDvPXWW7F06dKorq6OPXv2pE4CACDP3nnnnXjqqafiySefjIMHD6bOAaCN+PGPfxx//OMfY8SIEXHJJZdESUlJ9OjRI3r27Bndu3ePjz76KPbu3Rs7duyI1atXx/Lly+OFF16Io0ePpk4HAKANMr84PfYbQMdkzYRTZ9Z16uwxglNjnQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBPFaUOgHw5fPhw7Ny5M9auXRuLFi2KRYsWxUcffdQi116yZElkMpkWuRbtj/dGxzRz5syYOXNm6gwAAM7A7t27o3///nHppZfGkCFDYsiQIXHBBRdEz549o0ePHtG9e/fo1q1bvP/++3HgwIHYt29fvPHGG7FmzZp45ZVXYvXq1dHY2Jj6ZcApM+eAtA4ePBi1tbVRW1ubOoUOzN8DANB2mF8URj73GwCFY82EwjPr+nz2GMGZsc4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAp4pSB0BLuP322+P2229PnQEAAEAbt23btti2bVssW7Ysr/fJZDJ5vT60Zt7/AAAAZ6ZQ84uOohD7DXwWhnTMfAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaK+yqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITTZ1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALnJpg4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgN9nUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQmmzoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA3GRTBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCbbOoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcpNNHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBusqkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyE02dQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC5yaYOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDfZ1AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkJps6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNxkUwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQm2zqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHKTTR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAbrKpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhNNnUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAucmmDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA32dQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CabOgAAAMiPTZs2RUVFRSxbtiyOHTuWOgcAAAAAPtff//73qKqqirq6utQpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBqZVMHAAAA+XH06NGYP39+jB07Ns4555woLy+PF198MRobG1OnAQAAAMAJ7du3L6qrq2PEiBFRWloaVVVVsW7dutRZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANCqZFMHAAAA+bd3795YsGBBjBkzJkpLS6OqqipWrlyZOgsAAAAAmrV58+aorq6O4cOHx+DBg2PWrFnx7rvvps4CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOSyqQMAAIDC2rJlS1RXV8dV9WLUAgAAIABJREFUV10VgwcPjlmzZsXbb7+dOgsAAAAAmlVfXx+zZ8+Oiy66KC6//PKYN29e7NixI3UWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSRTR0AAACkU19fH7Nnz46vf/3rUVZWFtXV1bF9+/bUWQAAAADQrLVr18aMGTOipKQkxo4dG/Pnz4+GhobUWQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMNnUAQAAQHqNjY2xevXqqKqqiv79+8d3vvOdmDdvXuzevTt1GgAAAACc0LFjx2LZsmVRUVERffv2jRtuuCHmz58fH3zwQeo0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMirbOoAAACgdTl+/Hi8/PLLMWPGjDj33HPjpptuikWLFsXhw4dTpwEAAADACR05ciSWLFkSFRUV0b9///jJT34SL774Ynz88cep0wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgxWVTBwAAAK3XkSNH4tlnn42JEydGv379oqKiIpYtWxbHjh1LnQYAAAAAJ7R///74/e9/H2PGjImSkpKYMWNG1NXVpc4CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBaTTR0AAAC0DQcPHoz58+fH2LFj45xzzony8vJ48cUXo7GxMXUaAAAAAJzQ9u3bY968eTFixIgoLS2NqqqqWLduXeosAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgj2dQBAABA27N3795YsGBBjBkzJkpLS6OqqipWrlyZOgsAAAAAmrV58+aorq6O4cOHx+DBg2PWrFnx7rvvps4CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgFOWTR0AAAC0bVu2bInq6uq46qqrYvDgwXH06NHUSQAAAABwUvX19TF79uy46KKL4vLLL49//OMfqZMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGdFqQMAAEinZ8+eqRNoZ+rr61MnAAAAALQ5lZWVUVlZmTqjw1q7dm2sXbs2dQYAAABAm9LQ0BCZTCZ1RqtUVlYWq1atSp0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0c9nUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQmmzoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA3GRTBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCbbOoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAclOUOgAAgHRmzJgRXbp0SZ1BnuzZsydqampSZwAAAADwOa699toYOnRo6oxW4c0334znn3++4Pft2rVrHD58uOD3BQAAAGirOnfuHPfcc0/qjOQWLFgQ27ZtS50BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0QEWpAwAASGfWrFnRo0eP1BnkyZtvvhk1NTUFuVc2m42ysrKYOHFizJw5Mw4dOlSQ+wIAAAC0BxMmTIjp06enzmgVFi5cGM8//3xB7lVcXByjR4+OiRMnRkNDQ9x1110FuS8AAABAe9ClS5eYO3du6ozkVqxYEdu2bUudAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdEDZ1AEAAEDbNWjQoJg7d25s3bo1Vq5cGVVVVZHJZFJnAQAAAMAJderUKa688sp48sknY8eOHVFbWxvl5eXRpUuX1GkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkLOi1AEAAEDbMmjQoJg8eXJMnjw5LrzwwtQ5AAAAAHBSmUwmysrKYvLkyXHzzTdH3759UycBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwBkpSh0AAAC0fqWlpTFp0qSYPHlyDB06NHUOAAAAAHyuIUOGxJQpU2LSpElx/vnnp84BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBZTlDoAAABonb785S/H9ddfH+Xl5TFq1KjIZDKpkwAAAADgpM4777wYP358VFRUxGWXXZY6BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyoih1AAAA0Hp07do1xo0bF9OmTYtrr702vvCFL6ROAgAAAICT6tWrV0yYMCGmTZsWV155ZWQymdRJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBXRakDWqvevXvHnXfemToDACAnjz/+eOzevTt1Bm1Uly5dYuzYsTFlypQYN25cdO3aNa/3u+GGG+Kyyy7L6z0AgLbvhRdeiPXr1zd7/sILL4ypU6cWsAgA4PTNmTMnPvzww9QZ7UqPHj3i+9//fkyZMiVGjhwZnTp1yuv9OnfuHA888EBe7wEAtH1Hjx6NuXPnnvQ5t956a1x00UUFKgIAOH3r1q2L2tra1BkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0oyh1QGvVp0+fmDVrVuoMAICcLFy4MHbv3p06gzYkm81GWVlZTJw4MW699dbo3bt3we594403xvTp0wt2PwCgbdqyZUusX7++2fMXXnih+R0A0GY89thj8eGHH6bOaPOKi4tj9OjRMXHixJgwYUJ069atYPfu0qWLf38CAJ/rwIEDMXfu3JM+Z+rUqXHttdcWqAgA4PTV1NREbW1t6gwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaUZQ6AAAAKJxBgwZFeXl5lJeXx1e+8pXUOQAAAABwUp06dYoRI0ZEeXl5TJo0Kbp37546CQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSK0odAAAA5NegQYNi4sSJMWXKlBg4cGDqHAAAAAD4XMOHD49p06bFLbfcEv369UudAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtSlHqAAAAID/69esXr732WgwdOjR1CgAAAADk5IorrohNmzbF+eefnzoFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqtotQBAABAfvTs2TN69uyZOgMAAAAAclZaWpo6AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABavWzqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHKTTR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAbrKpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhNNnUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAucmmDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA32dQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CabOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDcZFMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJts6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAByk00dAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQG6yqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITTZ1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALnJpg4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgN9nUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQmmzoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA3GRTBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCbbOoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcpNNHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/2PvzsOsrOvGj39mGAYBWRRQFMEQkwDNtRJUVFJRtAJNzaU0BTJ9VNAntNB6Epd8BMzlKVERoxRz5SeugSUuqLkrbqhIgbHvizAwc35/eDk1zpwz5wz3zJnl9bquc11zb9/7e87cw3lf338AAAAAAAAAAAAAAAAAAAAAAMhOYb4nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQHYK8z0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAslOY7wkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQncJ8TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDsFOZ7AkDDNXbs2CgoKCh/rVq1Kt9Tog7NnDmzwu//i9f48ePzPTWosTPPPLPSM926detYsGBBvqcGQB3RuE2bxqUx0rjQtGmbpk3b0BhpG4D0tF/TpftorLQfNF26pmnTNjRW2gYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDaUJjvCVAz77zzTvzv//5vDBw4MHr37h0dO3aMFi1axM477xz77LNPnHzyyXHnnXfG4sWL8z1VoBEqLS2NCy+8sNL+zp07x09/+tM8zAiScfnll0dRUVGFfRs2bIhRo0blaUYAQF3RuDRWGjd/rN8B+aRtaKy0DQBUpPtozLRffljTAvJJ25BP69ati6lTp8aIESNiwIAB0a1bt2jTpk0UFRVF27ZtY+edd45vfvOb8cMf/jBuvPHG+OSTT3IaX9sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQGwrzPQFy8+KLL8YhhxwSe+65Z1xyySXxl7/8Jd57771Yvnx5lJSUxMKFC+PNN9+Me++9N3784x9Hly5d4pxzzolFixble+pAIzJp0qR48803K+2/+OKLo2XLlmmvu/nmm6OgoCDtq23btrF06dKs5rDLLrukHWfVqlU1fm/UTyUlJfHuu+/G1KlT49prr42zzjorDjrooOjYsWPa56CoqCjn+/To0SNOPfXUSvunTJkSL730UhJvBagnZs+eXeHfjO9///v5nhKQZzVt3AidS81o3MbL+h1QH1i/o65pG6gb1rSAL7OmRT5ov8bJmhZQH2gb6loqlYrp06fHCSecEB06dIghQ4bEDTfcEH/7299i/vz5sW7duigtLY21a9fGwoUL4+WXX44//elPceGFF8Zuu+0WRx11VLzyyitZ3UvbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUBsK8z0BslNaWhrnnXde9O3bN5577rmcrpswYULsvvvucf/999fiDHN35513RkFBQfnro48+yveU6pzPgIaopKQkxowZU2n/tttuG8OGDduqsdeuXVvl2HDBBRdEnz59YsiQIXHppZfGpEmTYtasWbF8+fLE7zVy5Mgq919++eWJ3wugMdK4NES12bgROpeqadzGx/pd4+QzoCGyfkc+aBugMdB+NDTWtMgX7de4NMY1rQjf6039/dMwaRvy4Z133omjjjoqHnzwwSgpKcn5+unTp0ffvn3jjjvuyOp8bQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDSCvM9Aaq3YcOGGDJkSPzud7+rsH+PPfaIMWPGxCuvvBKLFy+OTZs2xfz58+Ovf/1rnH/++bH99tuXn7t+/fo4+eST44Ybbqjr6QONzMSJE+Of//xnpf1nnnlmtGvXbqvHnzBhQsydO3erx4Ga2meffeLQQw+ttH/69Onx3HPP5WFGAEBtq+3GjdC55JfGrX3W74D6xPodjZ22AYDPWdOiKdB+tcuaFlCfaBsaqi1btsSwYcPi2WefrfZcbQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDSCvM9Aao3bNiwmDZtWvl2UVFRXHPNNTF79uy47LLLYv/9948ddtghiouLY5dddonDDz88brzxxnj//ffjBz/4Qfl1ZWVlMWLEiLj//vvz8TaARqCsrCzGjx9f5bGzzz47kXuUlJTEZZddlshYUFPpnuexY8fW8UwAgNpWF40boXPJP41bu6zfAfWF9TuaCm0DQFNnTYumRPvVHmtaQH2hbWjoysrK4r//+7+zOlfbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkKTCfE+AzCZNmhR33313+XZRUVHcc889cemll0bz5s0zXtupU6eYMmVKnHvuuRX2Dxs2LP7xj3/UynyBxm3atGnx0UcfVdq/zz77xD777JPYfe655554/fXXExsPcnXCCSdEmzZtKu2fNm1azJ07Nw8zAgBqS101boTOJb80bu2xfgfUJ9bvaCq0DQBNnTUtmhLtVzusaQH1ibahPujdu3dcdtll8dhjj8U///nP2LBhQ2zcuDHmzZsXd999d3zzm9/MeP3f//73rL4HtQ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJKsz3BEhv7dq1MXLkyAr7rr766jjhhBNyGufmm2+OAQMGlG+vWrUqLr744kTmCDQtt99+e5X7v//97yd6n1QqFZdcckmiY9KwtWjRInr16hXf+973YtSoUTFx4sR49tlnY8mSJdG6devE79eqVasYNGhQpf1lZWUxadKkxO8HAORPXTVuhM6lIo3bOFi/A+ob63fki7YBgLplTYt80n4NnzUtoL7RNuRLYWFhHH/88fHyyy/HO++8E2PGjIljjjkmunbtGi1btowWLVrErrvuGqecckrMmjUrTjzxxIzjzZkzp9p7ahsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSVJjvCZDebbfdFqtXry7f3nfffeOiiy7KeZyCgoKYMGFCtGjRonzfQw89FB9//HEi86xPUqlU/OUvf4mTTz45evXqFdtuu21st9128fWvfz1+9rOfxTvvvJPvKebdypUr43e/+10MHjw4evToEe3atYvmzZtHhw4dYs8994wzzzwz7rnnnti4ceNW3ee1116Ln/zkJ7HXXntFu3btok2bNvHVr341zj777HjuuedqNOb8+fPj+uuvj+OPPz569OgRbdq0iW222Sa6dOkSffv2jUsvvTRee+21rZp3RO0+R6lUKp544ok4//zzY999942ddtopWrRoER07doy99torzj333JgxY8ZWv4fasHTp0njiiSeqPDZ48ODE7zd9+vR46qmnEh83nWeffTZ+9atfxRFHHBE9evSI7bbbLpo3bx4dO3aMPfbYI77zne/EtddeG2+99Vat3H/JkiXxm9/8Jg488MDYcccdY5tttolddtklvvOd78SkSZNiy5YtNRr3pZdeiiuvvDIGDhwYu+++e2y//fZRXFwcnTp1it69e8dpp50Wd955Z4Xvm/rohhtuiHfffTemTp0a1157bZx11llx8MEHR6dOnWrtnkOGDKly/1133RWpVKrW7gs0PLXRPf9J41ZP41ZP41atrhs3om47V+Nq3C/TuMmzfpc7bVM9bVM9bVM163faJp+0DTRM1rXyT/tlpvuq1tjXtCK0n/arTPsly5pW7nRN9XRN9bRN1Rp72+ia+t01vXv3jgceeCAOOOCAas9t1qxZXHvttRnPWblyZVb31TYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJtVE/epXv0pFRNpXr1698j3F1Fe+8pUKc7rrrru2arxTTjmlwngjRoxIe+73vve98vP23nvvrO9x3333VbjH22+/Xemc1q1bZ/zsq3r98Y9/rDDGddddV+H4ypUrU4sWLUodfPDBGccpKipKXXLJJaktW7ZU+17q+2dQE7feemuqXbt2Wd1v++23T11//fWpkpKStONV9XtYv3596tRTT612/LPPPjur30MqlUo9+eSTqSOOOCJVUFCQ1dyPP/741PLly6sdty6eo//0t7/9LbXvvvtm9R4OPfTQ1IcffpjT+LXt9ttvr3KuXbp0yXqMm266Kafnfv/990+VlZVVOVaXLl3SXrdy5cqs5/TAAw+k9tlnn5zmdcQRR6Sef/75rMYfOHBg2nEWLlxY/rm0atUq4z379OmT+uSTT7J+X48++mjqW9/6VtbvqX379qkrrrgitWnTpqzvUV+k+ze1WbNmWzXusmXL0v6788orryQ0++T06tUr5++WiEitWrUq31OnEWrTpk3G5+62227L9xRTb7/9doU5nXDCCRnPr4vu0bg1o3Grn7/GTS+Jxk2l6l/natzPXxq3sobWuGeddVbG3/FRRx2V7ylav/uPl/U7baNt8s/63b9f2qZ+0TafawjrJU3dbbfdlvF31KZNm3xPMec1rVTKupb2axjtp/ty01jXtFIp7ffFS/tV1pDab9WqVdX+jh9//PG8zjGfa1qpVP3+Xtc1NaNrqp+/tkmvsbaNrvn81ZC7piplZWWpwsLCtO93+vTpWY3TkNqmIayX1Ad9+/at9Nn07du3/Pi4ceOq/Pzmz5+fSqVSqfnz51d5fNy4cVnfAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJLuLQzqpQ8//DDmzZtXvt2+ffs4/vjjt2rMoUOHVtiePn36Vo1Xn6xZsyYOP/zweO655zKet2XLlrj22mvjhz/8YZSWltbR7OqHsWPHxvDhw2P16tVZnb9ixYoYOXJkzJw5M+t7bNq0KY4++ui4++67qz134sSJ8dOf/rTa8xYtWhQDBw6MGTNmRCqVymoeDz74YBx00EGxePHirM7/Qm0+R7///e/jiCOOiNdffz2r82fOnBn9+vWLV155JeN5N998cxQUFJS/zjnnnKzGr4nHH3+8yv2HHnpoIuMXFlb+Snr11Vfjz3/+cyLjf9lnn30WQ4cOjRNOOCHeeOONnK6dMWNG9O/fP66++uqsn8t0zj///Dj//PNjw4YNGc975513on///rFq1aqM55WUlMQFF1wQxx57bLz00ktZz2PVqlXxy1/+Mg477LBYtGhR1tc1Zh06dIg+ffpUeSzd3wPQdNRG93yZxq2exq2exs2sths3om47V+NWpHEr07jJsn6XG21TPW1TvYbWNnXZNRHW7/6TtmkatA3UjHWt+kH7ZdbQui/CmtbW0n4Vab/KtF9yrGnlRtdUT9dUT9tk1tjaRtdU1Ni65pNPPomysrIqjzVr1iz222+/rMbRNgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSl8v/mTr3w7LPPVtju169fbLPNNls15kEHHRTNmzcv33733XdjxYoVWzVmfXHBBRfEe++9F4WFhTF8+PB44YUXYvXq1bF27dp4+eWX4/zzz49mzZqVnz9lypS4+uqr8zjjuvXxxx/H6NGjy7dbtGgRI0aMiGeeeSaWLl0amzdvjrVr18ZHH30UU6ZMiR/96EfRsmXLnO8zYsSIePbZZ6O4uDguuOCCeOGFF2LlypXx2WefxezZs+Oiiy6q8Hu47bbb4plnnsl6/L59+8bYsWPjueeei0WLFsWmTZtizZo18dZbb8W4ceOiW7du5ee+//77MWzYsJzmX1vP0eTJk+Pcc8+N0tLSiIho3rx5nHHGGfHEE0/E4sWLo6SkJJYtWxZPPPFEDB48uPy6pUuXxuDBg2PZsmU5vY/a8vTTT1e5/1vf+lYi45988snRokWLSvsvu+yy2Lx5cyL3+EJZWVmcdNJJMXHixBqPUVpaGqNHj47LL7+8xmNcccUVcfPNN2d9/vz58+OSSy5JezyVSsUPf/jDuOmmm2o8pxdeeCEOPfTQWL16dY3HaEzSPd9//etf63gmQH1T290ToXGro3Gzo3Ezq+3Gjai7ztW46WncijRucqzf5UbbZKZtsqNtMrN+V5G2aRq0DeTOulb+ab/q6b7MGtOaVoT2y0T7VaT9kmFNKze6JjNdkx1tk1ljahtdk15j6JrS0tL4+c9/nvb4kCFDYvvtt896PG0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAEgrzPQGq9sorr1TY/sY3vrHVY7Zo0SL22muv8u1UKhWvvvrqVo+bq3Xr1kUqlYpJkyZV2P/hhx9GKpWq8nX66adnHPP//b//F8XFxTFt2rSYMGFCHHjggdG2bdvYdttt44ADDogbb7wxpk+fHi1btiy/5sorr4wPPvigVt5jdWrjM8hkypQpUVJSEhERhYWF8cQTT8T1118fhxxySHTs2DGKiopi2223jR49esQPfvCD+MMf/hCffvppjBgxIoqLi7O+zz333BOdOnWKWbNmxQ033BAHHnhgtG/fPrbZZpvo06dPjBs3Lm6//fYK19x0000ZxywoKIjBgwfHO++8E7NmzYqLL744DjrooNhEtLe+AAAgAElEQVRxxx2juLg42rRpE3vttVdcdNFFMXv27DjmmGPKr502bVo8/fTTWc+/Np6jOXPmxE9/+tPy7Z122ilmzZoVd955ZwwcODB22GGHaN68eXTo0CEGDhwYDz30UNx+++1RUFAQERGffvpp/OxnP8v6PdSWuXPnxvLly6s89p//rmyNbt26xbnnnltp/8cffxy33nprIvf4wmWXXRaPPPJIImNdddVV8cADD9To2t///vc5XzN58uRYuXJllceuvPLKuPfee2s0l/80Z86c+NGPfrTV4zQG6Z7vV199NVKpVB3PBqhPaqN7vkzjZqZxs6Nx06uLxo2ou87VuJlp3H/TuMmxfmf9Ttt8Tts0nbaxfpcdbVO3tA3kzrpWZdrv3+pL++m+9BrbmlaE9quO9vs37ZeMxrymFZH897quyUzXZEfbpNfY2kbXZNYQu2bDhg0xZ86c+MMf/hB9+/ZN+zl07tw5xo8fn9PY2gYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAkFOZ7AlRtyZIlFbZ32223RMbt3r17he2lS5cmMm598Jvf/CYGDRqU9vjhhx8ev/3tb8u3S0pKKmw3Zm+99Vb5z/369YvDDjus2mu22267uP7666N///5Z36egoCDuvvvu2H///dOec+aZZ8bBBx9cvj1t2rTYvHlz2vN33HHHeOihh6J3797V3r9NmzZx3333RZcuXcr33XrrrVnO/nNJP0djxoyJDRs2RERE8+bN47HHHosDDjgg4xzOPvvsuOiii8q377rrrliwYEG2b6FWvPnmm2mP9ezZM7H7jB49Otq1a1dp/xVXXBHr1q1L5B7z58+P8ePHpz3euXPnuO222+Jf//pXbNq0KebOnRtXXXVVtGrVKu01o0aNii1bttR4TsOHD4+33347Nm7cGHPnzo2f/OQnac/duHFjTJ8+vdL+hQsXxjXXXJP2ut69e8c999wTixYtipKSkpg3b15cffXVsc0221R5/sMPPxxPPfVU7m+mkenVq1eV+9esWRNz586t49kA9UltdE9VNG56Gjd7GrdqddW4EbXfuRpX4+ZC4ybH+l3utE162iZ72qZq1u+0TVOlbSB31rXyT/tlR/dVrTGtaUVoP+2XG+2XDGtaudM16ema7GmbqjWmttE1jaNrLrvssigoKCh/tW7dOnr27BlnnnlmvPzyy1Ves++++8bMmTOja9euOd1L2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCEwnxPgKqtWLGiwna7du0SGbd9+/YVtpcvX57IuPnWrVu3OP/886s9b+jQodGzZ8/y7bvuuis2bdpUm1OrF9atW1f+87bbbltr9znqqKPiiCOOqPa8U045pfznTZs2xXvvvZfYHFq3bh3nnntu+fb06dOzvjbp52jhwoVxzz33lG8PHz489tlnn6zm8otf/CJatGgRERGbN2+OqVOnZnVdbfnkk0+q3F9UVBSdO3dO7D4dOnSIUaNGVdq/ZMmSGDduXCL3uP7669P+3Xfo0CFmzZoVQ4cOjZ122imKi4uje/fu8Ytf/CIefvjhKCys+mtz7ty58ec//7lG8xkzZkxMmDAh9txzz2jRokV07949brnlljjuuOPSXvPqq69W2jd+/Pj47LPPqjy/T58+8dJLL8XJJ58cO+64YzRv3jx23XXX+PnPfx4PP/xwFBQUVHndVVddVaP31Jh06dIl7bF0fxdA01AX3aNxM9O42dG46dVV40bUfudqXI2bC42bHOt3udE2mWmb7Gib9KzfaZumSttA7qxr5Z/2q57uS68xrWlFaD/tlxvtlwxrWrnRNZnpmuxom/QaU9vomqbXNd/61rfigQceiFdeeSX22GOPnK/XNgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSh6v8tnbxbu3Zthe1tt902kXG/PM6aNWsSGTffTj311CgqKqr2vMLCwjj99NPLt9euXRuvv/56bU6tXth5553Lf37hhRfi008/rZX7/OAHP8jqvP3226/C9ieffJLoPA4++ODyn5ctWxb//Oc/s7ou6edoxowZsWXLlvLtH/7wh1nNIyJi++23jwMPPLB8+9lnn63yvP/6r/+KVCpV/rrllluyvkcu0j0znTp1isLCZL9KRowYUeGZ/cK4ceNiyZIlWz3+o48+mvbY5ZdfHt27d6/y2Le//e049dRT0177+OOP5zyXXr16xc9//vMqj2X6e/rXv/5Vad8jjzyS9vzJkyen/R458sgj45hjjqny2DPPPBOrV69OO25T0Llz57THFixYUIczAeqbuugejZuZxtW4W6suGzeidjtX41akcTPTuMmxfpcbbZOZtmmcbVNXXRNh/S5C2zRV2gZyZ10r/7Rf9e3X0LovwppWTWm/irRfZtovGda0cqNrMtM1jXNNK0Lb1ISuqagpdM1LL70U1113XUydOrVG12sbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkpD8/wxPIr78n8GvX78+kXHXrVtXYbtt27aJjJtvBx10UNbn9uvXr8L2yy+/nPR06p2jjz66/OfVq1fHgAED4qGHHootW7Ykep8DDjggq/N22GGHCturV69OdB5fHn/evHlZXZf0c/Tss8+W/1xUVBT77rtv1uNHRHTv3r38548++iina5O2du3aKve3atUq8Xu1atUqfvWrX1U5hzFjxmzV2P/6179izpw5aY+feuqpGa/PdPzpp5/OeT5nnHFGNGvWrMpj//n7/7Iv/80sWrQo3n///SrP7dGjR+y3334Z5/Hl5/kLpaWlFZ7jpijTM/7l71SgaamL7tG4mWnceVldp3HTq8vG/WLc2uhcjVs1jZuexk2O9bvcaJvMtM28rK7TNulZv6v+uLZpnLQN5M66Vv5pv3nVXqP70mssa1oR2i8d7Zee9kuGNa3c6JrMdM28rK7TNuk1lrbRNVVrCl3z4osvxgknnBDf//73Y+PGjTldq20AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIQlG+J0DVOnToUGF71apViYz75XG23377RMbNtz322CPrc3v27Flhe+HChUlPp94ZMmRIfPOb34y///3vERExZ86cOP7442O77baLI444Ivr37x8HHHBA7L///tG8efMa36dTp05ZndeqVasK25999llW17377rvx4IMPxt///vd4//33Y/ny5bF27drYvHlzxutWr16d1fhJP0f/+Mc/yn/esmVLpfedSqWq/fkLy5cvz3putWHTpk1V7i8uLq6V+5199tkxfvz4+OCDDyrsnzBhQowcOTJ22223Go27YMGCtMd22WWXap/h/fbbL+2xhQsXRmlpaTRr1izr+fTt2zftsTZt2qQ9VlJSUmF7/vz5ac/9+OOPo6CgIOs5fdncuXNrfG1j0KJFi7THsv23C2icart7IjRudTSuxt1add24EbXTuRo3dxpX4ybF+l1utE1m2kbbbC3rd5/TNk2PtoHcWdfKP+1XffvpvvQay5pWhParCe2n/ZJgTSs3uiYzXWNNa2s1lrbRNblrbF3zwAMPRFlZWTz44INZX6NtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASEJhvidA1b78H91/8skniYw7b968jPdpqNq1a5f1ue3bt6+wvXLlyqSnU+80a9YsHnnkkRgwYECF/StXroz77rsvzj///Ojbt2+0b98+Bg0aFJMnT46SkpKc79OiRYsazS+VSmU8/vHHH8exxx4bffr0icsvvzymTZsWH374YaxYsSI2b95c7fhr167Nah5JP0fLly+vsF1aWlrhVVZWVv5KpVLlr6qsX78+67nVhnS/25o8J9lo1qxZXH311ZX2b968OUaPHl3jcZctW5b2WDb/Hnbs2DHtsbKyslixYkVO89lll13SHisuLs56nKVLl+Z031xk+syago0bN6Y91rJlyzqcCVDf1Fb3/CeNm5nG1bhbq64bN6J2Olfj5k7jatykWL/LjbbJTNtom61l/e5z2qbp0TaQO+ta+af9qm8/3ZdeY1nTitB+NaH9tF8SrGnlRtdkpmusaW2txtI2uiZ39bVrrrzyyvK/mbKysli3bl18+OGH8eCDD8aPfvSjaN68edprH3rooZg6dWrW99I2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJKEw3xOgavvvv3+F7ZdffnmrxywpKYm33367fLugoKDSfRqqgoKCrM9NpVK1OJP6q1OnTvHUU0/FtGnT4jvf+U60aNGi0jkbNmyIxx9/PM4444zo0aNHPProo3mYaUVvvvlmHHjggfHYY4/VeIyysrKszkv6Odq8eXPW4yVxv9q07bbbVrl//fr1tXbP448/Pg488MBK+//85z/Ha6+9Vmv3rUutWrVKe6xZs2Z1OJP01q5dm+8p5NWGDRvSHkv3dwGQFI1bPY1bPY2bXj4aN6Lxd67Grf80bnKs3+VG21RP21RP26Rn/a52aJv6T9tA/aT9qqf9MtN96VnTqj3ar/7TfsmwppUbXVM9XVM9bZOetqkduiYZBQUF0bp169h9991jyJAh8Yc//CFmzZoVbdu2TXvN7bffnvX42gYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAkFOZ7AlStf//+FbZnzZoVmzZt2qoxn3/++SgpKSnf7t27d3To0GGrxvyy0tLSRMfL1qpVq7I+d/Xq1RW2t9tuu0Tnkq/PIFvHHXdcPPzww7Fq1ap4+umn45prronjjjsu2rdvX+G8BQsWxHe+85144IEH8jTTiC1btsRpp50Wy5YtK9/Xp0+fuOaaa+Kpp56Kjz76KFavXh2bNm2KVCpV/pozZ06N7pf0c/Sff1/dunWrMMdcX//5GeRDly5dqty/bNmyKCsrq7X7XnvttZX2pVKpuPTSS2s0XseOHdMeW7p0abXXZ/o9FBQUxPbbb1+jeW2tTp061drYqVSq1sZuCBYtWpT2WLq/C4CkaNzsadz0NG56+WrciGQ7V+PmTuNq3KRYv8uNtsmetklP26Rn/e5z2qbp0TZQP2m/7Gm/qum+9BrLmlaE9qsJ7af9ktBQ17Qi8vO9rmuyp2vS0zbpNZa20TW5a6hdc8ABB8RFF12U9viLL76Y9VjaBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCQU5nsCVG2PPfaIbt26lW+vXLkyHnrooa0ac+LEiRW2jzzyyLTnFhcXl/+8efPmrO+xYsWK3CeWgDlz5mR97gcffFBhu3PnzlWe19A+g1xts802ceihh8all14a06ZNi2XLlsVTTz0Vxx57bPk5qVQqzjvvvNi4cWNe5jh9+vR45513yrfPPvvsePPNN+PSSy+NAQMGRI8ePaJt27YVflcRn/+91ETSz9FOO+1U/vOCBQtiw4YNNZpXfdC9e/cq92/ZsiUWLVpUa/ft379/DBo0qNL+6dOnx8KFC3Meb5dddkl7bMGCBbF06dKM17/22mtpj+20007RrFmznOeUhEzv68gjj4xUKlXj129/+9s6fCf1z4IFC9Ie+8pXvlJ3EwGaJI2bO41bmcZNL1+NG5Fs52pcjZsrjZsc63e50Ta50zaVaZv0rN99Tts0PdoG6iftlzvtV5HuS6+xrGlFaD/tlzvtl4x8r2lFNKzvdV2TO11TmbZJr7G0ja5pWl3Tp0+ftMeWL18eZWVlWY2jbQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEhCYb4nQHrnn39+he2xY8dGaWlpjcaaO3duPPDAA+XbhYWFcd5556U9v23btuU/L1++POv7vPXWWzWa39Z6/vnnsz73hRdeqLD9jW98o8rzGtpnsLWaNWsWAwYMiEceeSROOumk8v2LFy/O6fNN0tNPP13+c3FxcYwbNy6aNWtW7XU1/R0k/Rwdcsgh5T+XlZXF9OnTazSv+uDrX/962mPvv/9+rd77N7/5TRQWVv66Kisry3msnXfeOb761a+mPT5lypSM1999991pjx122GE5zycpO+20U/Ts2bPKYzNnzoxPP/00p/FKS0vj1ltvjWuuuSaJ6TVo6Z7vbbfdNnr06FHHswGaGo279TSuxs0kn40bkVznatzsaNx/07jJsn6XPW2z9bSNtsnE+t3ntE3To22gftJ+W6+pt5/uS6+xrGlFaL9sab9/037JyeeaVkTD+l7XNVuvqXdNhLbJpLG0ja7JTmPpmvfeey/tsTZt2lT5TFVF2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCE7P53bfJi+PDh0bZt2/LtV199NW644YYajXXOOefExo0by7cHDx4cu+++e9rzu3TpUv7z4sWLY8mSJdXeY/PmzTFt2rSs51RcXFxhu7S0NOtrv2zKlClZXZ9KpeJPf/pT+XabNm1iv/32q/LchvYZJOmss86qsD1v3ry8zGPRokXlP3fp0iXatWuX1XX33ntvje6X9HM0cODAKCgoKN+++eabazSv+mD33XeP7bbbrspjs2fPrtV777XXXnH66acnNt6xxx6b9tgVV1yR9nl/6qmn4u6770577aBBg7Z2alvluOOOq3J/SUlJnHbaabF27dpqx/jss89i0qRJsc8++8RPfvKTWLx4cdpzt2zZEgUFBVW+9txzzxq/j/rm7bffrnL/fvvtF4WFMgqoXRo3WRo3M41bUW03bkSynatx09O4lWncZFm/y562SZa2yUzbVGT97nPaRtsAdUf7Jasptp/uS68xrWlFaL9MtF9l2i85+VzTimhY3+u6JllNsWsitE0mjaltdE169bVr7rrrrvjxj38cr7zyStbXvP766zF+/Pi0x3fdddesx9I2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJMH/jF2PtW3bNsaOHVth36WXXhpTp07NaZwLL7wwpk+fXr7drl27GDduXMZr9t9//wrb9913X7X3uemmm+LTTz/Nel5t2rSpsL18+fKsr/2yf/zjH/F///d/1Z53xx13xPvvv1++fdppp0WLFi2qPLehfQZJKigoqLDdqlWrvMyjZcuW5T8vWbIkNm7cWO01jzzySIXnPRdJP0fdu3ePIUOGlG/PmDEjJk+eXKO51QeHHXZYlftfeumlWr/3mDFj0v6t5uqiiy5KO9by5cujX79+MXHixFi0aFFs3rw55s2bF9dcc01897vfjbKysiqv22233eKkk05KZH41NXLkyAp/M/9p5syZ0bt377juuuvijTfeiLVr10ZpaWksXbo0Zs+eHZMmTYozzjgjdt555zjrrLNi9uzZdTz7+uvFF1+scv/hhx9exzMBmiKNmyyNm5nGraguGjciuc7VuBo3Fxo3WdbvsqdtkqVtMtM2FVm/0zaNmbaB+kn7Jasptp/uy6yxrGlFaD/tlxvtl5x8rmlFNKzvdV2TrKbYNRHapjqNpW10TcPrms8++yzuvPPO+MY3vhG77bZbjBgxIqZMmRLvvvtuLF++PLZs2RIbN26M+fPnx2OPPRbDhg2Lvn37xqpVq9KOOXjw4Kzvr20AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIQmG+J0Bmw4YNi5NPPrl8e/PmzXHSSSfFddddF1u2bMl47bJly+L000+PG2+8scL+2267Lb7yla9kvPbwww+P1q1bl2+PGTMmFixYkPb8+++/P37+859nHPPLevToUWH7pZdeyun6Lxs1alQ8+eSTaY/PnDkzLrjggvLt4uLiuPDCC9Oe3xA/g3SOPfbYmDx5cmzatKnac0tKSuK6666rsG+//farlXlV5+tf/3r5z+vXr4+rrroq4/nTp0+P0047bavumfRzNGbMmNhmm23Kt4cNGxYTJkzIai6pVCr++te/xtFHHx2LFy+u8pybb745CgoKyl/nnHNOVmPXxDHHHFPl/meeeabW7vmFbt26xXnnnZfIWF27do2RI0emPb5w4cIYOnRo7LTTTlFcXBzdu3ePX/ziF7Fhw4a011x77bXRvHnzROZXU126dIlLLrkk7fEFCxbEqFGjYt999422bdtGUVFR7LDDDrHXXnvFWWedFZMnT45Vq1bV4Yxz8+Vn/T9f69evr/Ka0tLStNeMHTu22nsuXbo03nvvvSqPHX300Vv1fgCypXHT07jZ07jp5bNxI5LrXI2rcTVuflm/y562SU/bZK8htU1ddk2E9Tttk1/aBvgy7Zee9stOQ+q+CGtaNaX9tJ/2y598rWlFNLzvdV2Tnq7JnrZJr7G0ja5pmF3zhU8++SRuuOGGOPXUU6NPnz7RsWPHaN68ebRs2TK6desWxx57bNx+++0Z/71r27ZtDB8+PKv7aRsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSUpjvCVC9iRMnxjHHHFO+vXnz5hg1alTsueeecfXVV8drr70WS5cujZKSkvj000/j6aefjhEjRkTPnj3jrrvuKr+usLAwfvvb38aJJ55Y7T3btGkTZ555Zvn24sWL48ADD4yJEyfGv/71r9i8eXMsW7YsnnzyyTjppJPipJNOipKSkjj11FOzfl89e/aMDh06lG9fffXVcc8998SSJUuitLQ063EiIr773e/Gpk2bYtCgQfHTn/40XnrppVi7dm2sW7cuXn311bjwwgvjiCOOiA0bNpRfc9lll8XXvva1RvMZZPLmm2/GGWecETvssEOcfvrpcccdd8Qbb7wRy5cvjy1btsTGjRvjww8/jDvuuCP233//mDFjRvm1Rx55ZPTs2TOxueTi+OOPj1atWpVvX3nllXHMMcfEk08+GQsWLIjNmzfH0qVL47HHHosf/OAHcfTRR8eaNWvipJNOqtH9auM56t27d0ycOLF8u6SkJM4555zYf//94/e//33Mnj07Vq9eHVu2bImVK1fGBx98EPfee2+MGDEivvKVr8S3v/3tePLJJyOVStXoPSXpe9/7XhQVFVXav2DBgnjvvfdq/f6jR4+Odu3aJTLWVVddFccdd1wiY40ePTq+//3vJzLW1vrlL38ZJ598cr6n0WjMmDGjyr+9rl27xje/+c08zAhoajRuZho3Oxo3s3w3bkRynatxyYbGrT3W76qnbTLTNtnRNpnlu22s31VP2yRL20D9pf0y037V032Z5bv7IrRfNrRfsrRf7cjHmlZEw/pe1zWZ6ZrsaJvMGlPb6Jqmq6CgIG655Zbo2rVrVudrGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJS+X+Lp95p3bp1PPzww3HeeefFrbfeWr7/gw8+iNGjR8fo0aOzGmPSpElx4oknZn3fq666Kh555JH4xz/+ERERn376aQwdOjTt+aNHj4599tkn7r777qzGb9asWQwdOjSuvfbaiIhYtmxZnHLKKVWe+8c//jFOP/30tGPdeOONMWfOnHj//ffjlltuiVtuuSXjvU855ZT4xS9+Ue0cG9JnkI01a9bEXXfdFXfddVdW53fv3j0mTpy4VffcGp07d46rrroqRo4cWb7viSeeiCeeeCLtNUcddVT8+te/jnvvvTfn+9XWc3TqqafG5s2b45xzzomNGzdGRMRrr70W5557bs5zzKcddtghBg4cGI8++milY1OnTo1evXrV6v233377uOSSS7L6zKtTWFgY9957b5x33nkxadKkGo3RrFmz+PWvf53IfJJSUFAQkydPjp133jl++9vfRiqVqtE4zZs3j5/85CdZfb80Zg899FCV+0877bQoLCys49kATZHGzY7GzUzjZpbvxo1IrnM1bmYa93Mat/ZYv7N+F6FtvqBt8iffbWP9rnraJlnaBuov7Zcd7Zee7sss390Xof2yof2Spf1qR77WtCIazve6rsmOrslM22TWmNpG12TWWLumTZs2MXny5Bg8eHDW12gbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkuJ/x24gioqKYsKECfH8889Hv379sr6uWbNmMXz48Pjoo4/ixBNPzOme7dq1i5kzZ8aee+6Z8bzi4uIYO3ZsXHnllTmNHxHxq1/9KgYMGJDzdV/Wrl27+Nvf/hYHHXRQxvOKiopi1KhR8cc//jGaNWuW1bgN5TNI2oknnhgvvPBCdO3aNa/zGDFiRIwdOzaaN29e7blDhw6Nhx9+OIqKimp0r9p6jiIizjjjjHjxxRfjqKOOyno+hYWFMXDgwPjLX/4SnTt3zvq62jR06NAq999///11cv8RI0bEzjvvnMhYLVu2jDvuuCPuv//+2HvvvXO6dsCAAfHMM8/E6NGjo6CgIJH5JKW4uDjGjx8fM2bMiMMOOyynazt27BgjR46MDz74IG666abo1KlTjeaQ7d9FfbZ+/fp4/PHHK+0vLCyMs88+Ow8zApoijZs8jZuexq2srho3IrnO1biVadx/07i1z/pdZtomedomPW1TmfW7+kPbJEPbQP2m/ZLX1NpP91Uv390Xof2yof2Sof1qVz7WtCIazve6rkleU+uaCG2TjcbUNrqmssbaNW3bto2RI0fGRx99FIMHD876Om0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAkoryPQFy069fv3j++efj7bffjkcffTSeeuqpmD9/fixZsiTWrVsXHTp0iB122CG+9rWvxdFHHx2DBg2KHXfcscb323XXXeONN96IP/7xj/HAAw/Ea6+9FsuWLYu2bdvGrrvuGoMGDYrhw4fHLrvsUqPxW7ZsGdOnT4+pU6fG/fffH2+88UZ8+umnsX79+igtLc1prM6dO8ezzz4bf/nLX2LixInx1ltvxYIFC6KoqCi6du0aRx11VJx11lnRp6h1yQQAACAASURBVE+fnMZtSJ9BOm+++Wa8/vrr5a+5c+fG8uXLY8WKFbF69erYZpttYrvttotevXpFv3794uSTT45evXolcu8kXHzxxTFkyJCYMGFCPPXUU/Hxxx/H+vXro2PHjtGlS5f49re/HWeccUYic66t5ygiYu+9944nn3wy3njjjZg2bVo8/fTT5b+LjRs3Rtu2bWPnnXeOvffeOw466KAYPHhwdO7ceavfU5K++93vRo8ePeLjjz+usP+1116Lt956K77+9a/X6v1btmwZ//M//xPDhw9PbMwTTjghTjjhhHjmmWdixowZ8dxzz8W8efNixYoVsX79+mjbtm1st9120bNnzzjkkENi0KBBtf4+kzBgwIAYMGBAvPPOO/HEE0/ErFmz4t13340VK1bEqlWronnz5tGxY8fo1q1b9O3bN/r37x9HHnlkFBcXZzX+22+/nfbYf/3XfyX1NvLm/vvvj3Xr1lXaf+yxx8buu++ehxkBTZXGTU/jZk/jZpbvxo1IvnM1rsatisatO9bv0tM26Wmb7GmbzPLdNtbvsqdtto62gfpP+6Wn/bKj+zLLd/dFaL9caL+to/3qRl2vaUU0nO91XZOersmetsmsMbaNrqn/XfPjH/84Dj744Jg9e3b5a8GCBbF69epYs2ZNrF69OjZu3BgtW7aM1q1bR8eOHWOPPfaIXr16xeGHHx6HHnpoNG/ePOf7ahsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSVJBKpVL5nkQ+/M///E/8+te/Tnu8V69e8e6779bhjMjF2LFj42c/+1n59sqVK6N9+/Z5nBENkeeoZn73u9/FeeedV2n/BRdcEDfccEMeZkQ+XHfddTFq1KhK+7/97W/HjBkz8jCjZB166KHxzDPPVNo/c+bM6N+/fx5mVL3evXvHe++9l/N1q1atinbt2tXCjGjK2rZtG2vXrk17/LbbbouhQ4fW4YwaBm1CEjxHNaNxidC49dHZZ58dd9xxR9rjRx11VDz55JN1OCNy4TuJJHiOakbbEKFt6iPrJfXf7bffHsOGDUt7vE2bNrFmzZo6nFHD4TubreUZqhndxxe0X/2yevXqav8Ne/zxx+Poo4+uoxmRC99JJMFzVDPahojG3zURDa9trJdkp1+/fvHCCy9U2Ne3b9+YNWtWRESMHz8+Lr744krXzZ8/P3bZZZdYsGBBdO3atdLxcePGxUUXXZTVPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCbpvsJ8zwCAhmXo0KHRtWvXSvsnTZoUa9asycOMyIfp06dX2te6deu47bbb8jCbZL3xxhvxzDPPVNp/xBFHRP/+/fMwIwCgtmlcIjQuAI2HtiFC2wBAU6D7+IL2A6Ax0DZENO6uidA2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJK8w3xMAoGEpLi6OX/7yl5X2r127Nm6//fY8zIi6tmnTpnjuuecq7f/Nb34T3bt3z8OMkjV+/Pgq948ZM6aOZwIA1BWNi8YFoDHRNmgbAGgadB8R2g+AxkPb0Ni7JkLbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkLzCfE8AgIbnxz/+cey9996V9o8dOzY+++yzPMyIuvT8889X+j0fcsghcd555+VpRsn5+OOPY8qUKZX2n3LKKXHggQfmYUYAQF3RuE2bxgWgsdE2TZu2AYCmQ/eh/QBoTLRN09aYuyZC2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFA7CvM9AQAanmbNmsUNN9xQaf/ChQvj97//fR5mRF2aMWNGhe2WLVvGxIkTo6CgIE8zSs6YMWNiy5YtFfa1atUq/vd//zdPMwIA6orGbdo0LgCNjbZp2rQNADQdug/tB0Bjom2atsbcNRHaBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNpRlO8JANAwHXrooZFKpfI9DfJgxowZFbavuOKK+OpXv5qn2STrzjvvjDvvvDPf0wAA8kTjNl0aF4DGSNs0XdoGAJoW3de0aT8AGhtt03Q15q6J0DYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUjqJ8TwAAaFj+/ve/53sKAACQKI0LADQm2gYAoOnQfgBAY6FrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIHeF+Z4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2SnM9wSgJv77v/87UqlU+at9+/b5nhINkOcIAKhPtAlJ8BwBUF/4TiIJniMAaBh8Z7O1PEMA1Be+k0iC5wgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAulKY7wkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQncJ8TwAA4P+zZ4c4jbZRGIa/nJBQBGyE+pYVsAX2wApwRVWRYNgBJGgwsALAgEDX4YrDUNTsYP4zmT/zUHpd9jW3fHJeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQU+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgp9IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9FQ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ5KBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBT6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6Kh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAT6UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Kl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2VDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCn0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0VDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQs5UO+K6Wy+Uwm83SGQAALcvlMp0AbTc3N8Pb21s6AwD45l5eXn77vlgs3O8AgLWxWq3SCfyl1WplfwIA/6mz+y4vL4fHx8d/UAMA8Heen5/TCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPzGVjrgu3p/fx9OT0/TGQAA8OPc3t4Ot7e36QwAYM0tFgv3OwAA/pmvry/7EwD4X1xdXaUTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4ASodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgp9IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9GylA1IODw+Hvb29dAYAQNTOzk46gR9oPp8Pq9UqnQEAAACwNqbTaTph402n0+Hs7CydAQAAALA2tre30wkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbbSsdkHJwcDAcHBykMwAA4Mc5Pj5OJwAAAADAHxmPx8N4PE5nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBLpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQU+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgp9IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9FQ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ5KBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBT6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6Kh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAT6UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Kl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2VDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCn0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0VDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQU+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgp9IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9FQ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ5KBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBT6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6Kh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAT6UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Kl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2VDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCn0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0VDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDPVjog5f7+fri7u0tnAABEzefzYTQapTP4YU5OTobPz890BgAAAMDaODo6GiaTSTpjoz09PQ3X19fpDAAAAIC1MRqNhvl8ns4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYWFvpgJSHh4fh/Pw8nQEAEDWbzYbRaJTO4Ie5uLgYPj4+0hkAAAAAa2N/f3+YTCbpjI32+vrq/xgAAADgD+zu7g7z+TydAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsLEqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAIBf7N17nNZz/j/+50yjmaamplZJh9VSsYVFksqiUptUjktRoi0KYVvr63zYxbLsri0lmygVoSiHFVvZ1plsOVsloah0ltR0uH5/fG7mZ2hmrjleE/f77fa+3Xq/36/D4z3X+7rmej3nfbsFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnPdUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASE56qgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnPRUBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA56akOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQHLSUx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5KSnOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJSU91AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJKTnuoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCc91QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABITnqqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCc9FQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDnpqQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABActJTHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDkpKc6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMlJT3UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkpOe6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJz3VAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEhOeqoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJz0VAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOempDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBy0lMdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOSkpzoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyUlPdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSk57qAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnPdUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASE56qgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnPRUBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA56akOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQHLSUx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5KSnOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJSU91AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJKTnuoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCc91QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWjoBRgAAIABJREFUAAAAAAAAAAAAAABITnqqA1C1paWlxWGHHRaXXnppPPjggzFv3rxYvnx5fPXVV7Ft27ZYv359fPrpp/Hqq6/GuHHjYtiwYbHvvvumOnZSevbsGYlEotBt0KBBqY5IOdl7773j66+/zn9t+/fvn+pIQAU59NBDY8eOHfnv92OOOSbVkQDgR8daq2rxepScn9kPV7NmzeL000+PW2+9NR599NF466234vPPP4+NGzfGtm3bYu3atfHRRx/Fc889F7fffnv06dMnsrOzUx07X1nrG7Vr146zzz47xo4dG6+//nosW7Ysvvrqq8jLy4vVq1fHBx98EI8//njccsst0atXr8jJyamgK6k8ixYtKvD+bdiwYaoj8QPw7Xtq8+bNqY6zy1LDAQCAyrdu3bpCa17z5s0rtJ96GZWlPJ/vOeCAA+LSSy+NadOmxZtvvhmrV6+OLVu2xJYtW2L58uXx3nvvxfTp0+Pyyy+Po446KtLTPUYJ/DBkZGQU+D29bt26pPqpp++cOiYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABVXUaqA1A1NWrUKM4///w4++yzY8899yy0Xe3ataN27drRpEmTaNu2bf7xDz74ICZPnhyjR4+OVatWVUZkKki1atWiTZs20bVr1+jatWu0b98+qlevXmj7Y489NmbOnFmJCYs3cuTIyMrKioiIBQsWxKRJk4psP3369Dj++OPz9x988MHo06dPhWak4ng9f1zmzZtX4DW+44474sADD4y8vLwUJwMAACpbZmZmdOnSJY4//vg47rjjonHjxkW2z83Njdzc3GjWrFkcccQRcdFFF8WGDRti4sSJce2118bq1asrKfnOlbS+8Y26devGjTfeGAMGDIjs7OydtqlXr17Uq1cvWrRoET179oxLL700tm3bFnPnzo1JkybFtGnT4ssvvyy3ayG11EqoCtRwAAAAKt4f//jHuOqqq4ptt9tuu8W2bdsqIVHRSlv/+ka1atViwIABMXz48GjdunWh7fbYY4/YY489Yr/99suvkXz66acxYcKEGDVqVCxfvrz0FwFV1HdrgmV11113xZAhQ8ptPKiq1DEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACo6tJTHYCqJTMzM2644YZYtGhRXHHFFbHnnnuWapyWLVvG9ddfH59++mn+f/jOrqN58+YxZMiQmDZtWqxatSpeeeWVuOGGG+Koo46K6tWrpzpeifTu3Tt69OiRv3/ZZZdFIpFIYSJKatWqVZFIJPK33NzcVEeiirvyyitj27ZtERGx7777xkUXXZTiRABQdmPGjCnwnei7W8OGDVMdEaDKGTp0aDz55JNxzjnnROPGjUs1Ru3ateP888+P9957L3r27FnOCZNX2vrGEUccEe+9914MHTo0srOzSzRnRkZGdOnSJe6999649tprk+pjDQ+UhBoOAJVNfQWAH5NDDz00LrvsslTHSFpZn+859NBDY/78+TFu3Lho3bp1iedv2rRpXHXVVbFw4cK44oorIisrq8RjVBQ1N4DUUscEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgKktPdQCqjpYtW8Z///vfuPLKK6NGjRrlMmZWVlY0b968XMaicmRlZcXChQvjzjvvjJNOOilyc3NTHanU0tPT409/+lP+/rx58+Lpp59OYSKgMixevDimTJmSv3/55Zfv0p9lAABA6tWvXz8effTROOmkkyp97tLWNw4//PB46qmnYo899ihw/Omnn46BAwfGgQceGHXr1o3ddtst6tevHwcccEAMHjw4pkyZEhs3biz36wD4LjUcAACAipGZmRkTJkyIjIyMVEdJSlmf7znrrLPihRdeiAMOOKDA8WXLlsWYMWPihBNOiFatWkX9+vVjt912i3r16sVhhx0WF110UfznP/8p0KdWrVpx4403xgknnFC2iwLgB0MdEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKosPdUBqBratWsXL7/8crRq1SrVUaDc9O/fv8A9fdNNN6UwDVCZ/vSnP0UikYiIiLp168bvf//7FCcCAAB2dRkZGTFp0qRo1qxZpc5bmvpGVlZWTJw4MWrVqpV/bOXKlXH00UdH9+7d495774233nor1q1bF9u2bYtVq1bF22+/HXfffXf07ds3GjVqFOeff34sWrSoQq4J4BtqOAAAAOXvhhtu2KWeASvL8z2DBw+Oe+65J6pXr55/bO3atfG73/0u9t577xg6dGjMmDEj3nvvvVi1alVs27Yt1q5dG6+99lqMGDEijjrqqDjooIPimWeeKddrgqruwQcfjLS0tFJvQ4YMSfUlQKVSxwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCqSk91AFKvdevW8dRTT0XdunVTHQXKTXp6elx55ZX5+x9//HHMmDEjhYmAyvTuu+/G7Nmz8/eHDRsWderUSWEiAADgh6BGjRpx2223Vdp8pa1v/OY3v4nmzZvn72/dujW6desWc+fOTWreL7/8MkaPHh2tWrWKCy+8ML744ouSh68CmjdvHmlpafnb8uXLUx0J+A41HAAAgPLVoUOHGD58eKpjJK0sz/d07tw5Ro8eHWlpafnHPvroo2jbtm389a9/jby8vKTGeeONN+JXv/pVDBo0KDZt2lSyCwD4gVBPL5o6JgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFVVeqoDkFq1atWKadOmRd26dYttu23btpgyZUqceeaZse+++0bdunUjMzMzGjVqFL/4xS9i0KBBMWHChFizZk0lJIeiHX/88dGiRYv8/bFjx8aOHTtSmAiobP/4xz/y/52TkxODBw9OYRoA+PF44oknIi0trdDt7rvvTnVE4Efs5Zdfjj/84Q/RqVOn2GuvvSIrKyvq1KkTHTp0iJEjR8bWrVuLHaN3796Rm5tbCWlLX9845ZRTCuxPnjw53njjjRLPv3Xr1hg5cmTccsstJe4LkCw1HAAAqNrUfHcd2dnZMX78+EhP33UeCSxt/atOnToxYcKEyMjIyD+2dOnSOOKII+LDDz8sVZZx48ZF586dY9WqVaXqD8APmzomAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVVF6qgOQWtdff33su+++xbb717/+Fa1atYq+ffvGxIkT44MPPoh169ZFXl5efP755/Hmm2/GuHHj4qyzzorGjRvHWWedFW+//XYlXAEVbceOHTFv3ry4+eab45hjjonbb7891ZGScvHFF+f/O5FIxPjx41MXBkiJ6dOnx+rVq/P3L7zwwkhP99UHAAB+bNavXx+33XZb7LffftG+ffu49tpr49///nd88sknsWXLltiwYUO89NJLceGFF8Yvf/nL2LBhQ5Hj7bbbbtG1a9dKyV7a+kbbtm0L7M+ePbs8YwGUKzUcAACA8nHLLbdEixYtvnc8Ly8vBWmSU9r61+WXXx5NmjQpcGzw4MHx2WeflSnPK6+8Et26dYt169aVaRwAfnjUMQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKiKMlIdgNTZa6+9YtiwYcW2GzduXAwZMiS2bduW1LibN2+OCRMmxKRJk2Lo0KGxY8eOEmf76U9/Gsccc0z88pe/jIMOOih+8pOfRL169SIjIyPWrl0ba9asiYULF8Zzzz0X//73v+P1118v8RwVoSrmbtWqVQwaNCiOPvro2GeffSI7OztWrlwZN998c4wcOfJ77ROJRHz44Ycxa9asmDVrVsyePTvWrl2bf75r164Vnrms9t577zjyyCPz91944YVYtmxZSrLUr18/+vTpEyeeeGLstdde0ahRo9i8eXOsWLEiXnjhhXj44Ydj5syZ5TrnvvvuG6effnp069YtGjVqFHvssUesX78+Pv3003jmmWdi8uTJ8c4775TrnD92WVlZ8fOf/zwOPPDAOPDAA6N169bRoEGDyM3Njdzc3MjJyYkvv/wyVq9eHf/73//i2WefjUceeSQ++uijVEcvsVatWsVxxx0XXbt2jWbNmkWDBg0iKysrVq5cGZ988knMmjUrHnnkkXjzzTfLbc4mTZrEKaecEj179oyf/vSn0bBhw8jJyYmIiN133z1Wr169035bt26NGTNmxMCBAyMiomnTptGlS5f417/+VW7ZACDi/74LdO3aNbp27RqtWrWK5s2bR+3ataNWrVqxffv22LBhQ2zYsCHWr18fa9eujU8++SQ++uij+N///hfvvPNOLFy4MLZu3ZrqyyhSSdcVlZnrjDPOiGOOOSaaNm0aP/nJT2Lt2rWxZMmSeOaZZ+Lee+8t03euo446Kvr27RsdO3aMxo0bR2ZmZnz++eexePHimDZtWjz88MOxZs2acryiXUMq175Vcd39Y9S+ffs444wzokOHDtGoUaPIzc2NFStWxIcffhjTp0+PBx98MFasWJHqmPHll1/GTTfdFLfddluB2kZRXnnllTj//PNj4sSJRbb72c9+Vh4Ri1Ta+kZOTk7UrFmzwLHC1k27mtKuD8tDZdV4DjvssOjbt2906tQpGjduHDk5ObF8+fJYunRp/POf/4z7778/lixZUvYLqmS1a9eOXr16xbHHHhsHH3xw1K9fP3Jzc2Pt2rWxcuXKmDdvXvzzn/+MJ598MjZt2rTLzfdDV9H1RjUcgKqrZs2a0alTp+jQoUMcfvjh0ahRo6hXr17k5ubG5s2bY/Xq1fHWW2/FSy+9FFOnTo2FCxcmNW69evWiZcuWBbYmTZpE/fr1o169epGVlRWZmZmxbdu22LBhQ3z55ZexZMmSeOONN+K1116Lxx9/PDZu3FjBV186DRs2zF+3tmnTJnbfffeoV69eZGZmxqpVq+KLL76IBQsWxKxZs2LmzJmxatWqMs+Z6vpFVVyrV9VaViql4t4sTEXX9CIq7vOrMKl6H3Tu3Dn69OmTX6PJzMyMzz77LBYtWhRTp06NqVOnxvr168tlrsqi5lt6nTp1ivPPP/97xx955JHYa6+9ok2bNilIVbTS1r/q1KnzvWfepk6dWm7P38yfP7/YNrv6cyKV9exHqmpdqaoNpbJ+uauozGfpmjdvHscee2x06dIlWrZsGfXr1486derExo0bY82aNbFmzZpYvHhxvPTSS/HSSy/FggULIi8vL+nxK/M+O+igg/J/P37zXlqxYkUsXbo0Zs6cGffff38sXry4THOUtx9iTV0dEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCop8SN17bXXJiLiR7395S9/Kfbn9J///CdRrVq1Sst06KGHJh566KHEtm3bSvR6vvrqq4lf//rXibS0tKTn6tmzZ5FjDho0aJfOnZmZmRgxYkRi+/btO213++23l+o1uvnmm4ucv3v37im/t6+77roCmS6++OIS9Z8+fXqB/lOmTCmy/bdt3rw5ERGJatWqJa699trE5s2bi/x5JRKJxLPPPpvYY489SpRxZ3PWqlUrcd999xU7344dOxIjR45M1KpVK+n5jjnmmAJjTJ8+vUR5c3NzC/RfunRpke0XLFhQ7HUU5tBDDy3T61mabcyYMSXOuXXr1sS4ceMSdevWLXb8q666qkDfxx57rNRZp0yZUmCsm2++Oal+++23X+KRRx5J+voeeOCBRJMmTcp0T9eoUSMxevToQj/HEolEYvfddy9y3O7duxdoP2nSpHJ//Xf1bd26dUm/rpCsnJyclN/bNltlbNWrV0/8v//3/xJr164t03vmuuuu+97YF1xwQTm9I/9PVlZWgfErcl1RlrVWsn0bNmyY1HeTzZs3J6655poSv7Y/+9nPEk8//XSx42/cuDHx+9//Pn9NV9Tv1Xnz5qXkPt1V176pnLusP7PjjjsusWXLliLHuPfeewvUW26//fYi2++///5FzvndNdd3jR8/vlyueb/99ku88MILRbZNJBKJDRs2JIYNG5ZIT09PyX1f1q1atWqJNWvWFHmNt912W4XnKG19o3bt2t/Le+aZZ1ZYzvJcw0eU7/pw0aJFBdo0bNiwyGvZ2dwVXeP5ZmvQoEHigQceKHaO7du3J+68885EjRo1EhkZGQXOrVu3Lqm5KqNW8u3307BhwxJffPFFsdeWSCQSy5YtSwwcOLDUvzMqY75v++Y+SWarU6dOYs6cOQX6b9y4MdGjR48C7Sq7DlfUdVVkvfG7mxqOzRaJsWPHFvt+o2KNHTs25fdBVdmaNGmS+POf/1zs9+LvevHFFxO9e/cu9ndrWW3cuDExbty4Yr97VXR95dtb69atE+PHj0/k5eUlPd5XX32VuPXWW4v9W0dhW6rrF1VxrZ5sLatz585FjnfhhRcmna169epF/kwff/zxlL6fK+PerCo1vcr4/Erl++DbW/PmzROzZ88udp5vajTf9Cvt+1/Nd+dSVfPd2ZaTk5NYsmTJ9zKuWLEiUb9+/cS8efOKvO6MjIyU5C5t/eu888773jUcffTRlZq9op8TKe+a2zdbRT/78c1WmbWub2+pqg0lW79M5fM/lVkT3NnPqLLqrN/c5w8++GBix44dxc71bZdddlmVuc++2XJzcxPjxo0rdo4dO3YkxowZk8jKyir1e6mk9fRUv9ap+pxRx/z+lpOTU+zr8GPQvn377/1s2rdvn3/+L3/5y05/fp9++mkikUgkPv30052e//az/sXNAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/Cg9lB78KKWnp0ffvn2LbLNt27Y488wzY/v27RWep1q1avGHP/whXnnllfj1r38d1apVK1H/tm3bxkMPPRQzZsyIunXrVlDK76uquTMzM+Oxxx6LYcOGRXr6zt/maWlp5TZfVXPSSScV2H/mmWcqdf7MzMyYMWNGXHfddZGZmVls+6OPPjqef/752H333Us9Z+3atWPu3LnRv3//YtumpaXFBRdcEHPmzInatWuXek7KJiMjIwYOHBgvvfRS7L333kW2HTt2bGzdujV/v0ePHtGkSZMSz1m/fv048cQT8/cTiUSMHTu22H6nnnpqzJ8/v0Df4vTp0ydeffXVOOCAA0qcMyIiJycnnn322Rg6dGihn2MRxX+WzZ07N/Ly8vL3e/XqFbvttlupMgHAt+Xk5MTMmTPj5ptvjtzc3FTHqRBVdV3Rtm3beOONN5L6bpKZmRnXX399jBgxIunxDznkkHj99dejW7duxbatWbNm/PnPf46HHnroB/0dI5Vr36q67i5Mz54945FHHonq1asX2mbEiBExcODASqm3lKcuXbrEa6+9Fh06dCi2bU5OTowYMSLuu+++Ir/PV1Xbt2+P999/v8g2315nVJTS1jc2bNgQmzZtKnCsV69e5ZarspXX+rA0KqvG07hx43jxxRejT58+xbZNT0+PIUOGxKxZsyI7O7tE81S27OzsmD59eowYMSLpn0mjRo1i3Lhxcd9995X4d2tlz1cSTZs2jeeffz46deqUf2zFihVx1FFHxT//+c8Km7csKrveqIYDUHX069cv3n333fj9739f4nVU+/btY8aMGbHPPvtUULr/U7NmzRg4cGC888470b179wqdqzhpaWlxySWXxIIFC2LAgAEl+v2VnZ0dl1xySbzzzjvRsWPHEs2byvpFVV2rl6SWNWfOnHj77bcLHWvw4MFJz9u9e/eoU6dOoefvvffepMcqT6m6NwtT0TW9iMr9/Erl+6Bdu3bx+uuvR+fOnYtt+02NZvLkyZGRkVGieSqTmm/Z/fWvf4299trre8fPPffc+OKLL1KQKDmlrX99t9/ixYtj7ty55ZaropTkOZGKUFnPfqSq1pWq2lBJ6pepfv4nVSrzWbozzjgj5s+fH6eeemqF1Iwr8z6rX79+PP/88zFw4MBi26alpcW5556b8rrxj6Gmro4JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAVZOe6gCkRps2bWLPPfcsss20adNiyZIlFZ4lIyMjHnvssbj66qsjPb1st2SvXr3iv//9bzRu3Lic0hWuKuceNWpUdOvWrVzG2tU0btw4DjjggPz9FStWxLvvvlupGcaOHRvHHXdcRES88cYbMWjQoGjevHlkZ2dHbm5uHHHEETFx4sQCfZo3bx4jR44s9Zzjx4+PQw45JCIiPvzww7jgggtin332iRo1akTDhg3j2GOPjUceeaRAn7Zt28aTTz4Z1apVK/W8FLR169Z4+umn47e//W106tQpmjRpErVq1YrMzMxo1KhR9OrVKyZMmBBbt27N77PvvvvG9OnTIzMzs9BxV6xYEY8++mj+frVq1WLQoEElznfWWWdF9erV8/dnzZoVH374YZF9zj333JgyZUpkZWXlH1u+fHlcddVV0aZNm6hXr15kZWXFPvvsE+eff358/PHH+e323HPPmDt3buy1114lzjp+/Pho165dRES8/fbbMWTIkGjRokXUrFkz9thjjzj66KNj8uTJkZaWVuQ4X3/9dbz88sv5+7Vr146OHTuWOA8AfNeIESOiU6dOqY5RoariuqJNmzYxe/bsaNCgQYn6DRs2LHr16lVsu/322y9mzZoVdevWLdH4p5xyStxzzz0l6rOrSOXatyqvu3emZ8+eMW3atALfub/rj3/8Y1x00UWRSCRKNHZJ25e3du3axeOPPx61atUqUb8zzjgjxo4dW0GpKlZ2dnaR5yu6ZlbW+saLL75YYP/kk0+OX//61+WWrzKV1/qwNCqjxlOzZs2YM2dO7LPPPvnHEolEjB8/Po4++uioX79+1KhRI5o3bx7Dhg2LxYsXR0REhw4dYsyYMeVwlRUjPT09Hn/88ejZs2eB43PmzIlTTjklmjRpEllZWdG0adPo169fvPLKKwXa9evXLx544IEqO19JHHTQQfHyyy/H/vvvn3/s/fffj8MPPzxef/31CpmzPFR2vVENB6BqGDlyZEycODFycnJSHSUpP/nJT2LatGnRpk2blMyfnp4eDzzwQNx6662RkZFR6nEaNGiQ/70lGamsX1TltXpJa1l33HFHoef233//6NChQ1LjnHrqqYWeW7VqVTzxxBNJZyovqbo3C1PRNb2Iyv38SuX7YP/9949nnnkmateuXaJ5Tj/99Lj77rtLE7HCqfmWXffu3Xf6/MCECRNi+vTpKUiUnNLWv6pXrx6//OUvCxybO3duymqoFfWcSHmrrGc/UlXrSmVtqCT1y1Q+/5NKlfUs3W9/+9uYNGlSgft806ZNMXLkyOjatWs0adIkMjMzIzc3N37+85/HgAED4v7774+vv/46qfEr8z7LzMyMZ555Jlq3bl3g+P333x9dunSJBg0aRHZ2drRs2TKGDx8eS5cujYiIjh07xp133pnUHBXhx1BTV8cEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgqklPdQBSo3379sW2mTRpUiUkiRg1alT06NGj3MZr1qxZPPbYY5GdnV1uY+5MVc3do0eP+M1vflNsu7S0tDLNU1Udc8wxBfZffvnlSp0/MzMz+vfvHxERN9xwQxxyyCExbty4+PDDD+Prr7+O9evXxwsvvBBnnnlmXHDBBQX69unTJ1q1alWqOU888cSIiJg+fXr84he/iFGjRsXixYtj8+bNsWLFipg5c2acfPLJ0a9fv9i+fXt+3yOOOCKGDx9ehiuuGAcddFCkpaVFWlparF69usC5unXr5p/b2TZv3rxKz7ty5cq4+uqro2HDhtG9e/e4/fbb49///ncsW7Ysvvrqq8jLy4vPP/88nnjiiTjrrLOiXbt28cknn+T3P+CAA+LKK68sco7Ro0cX2P/Nb34T1apVSzpjWlpaDB48uMCxf/zjH0X2adu2bYwYMaLA58UDDzwQ++yzT9x4443x3//+N9auXRtbtmyJxYsXx+jRo6NVq1bxxBNP5LevW7du3HfffZGenvxXjszMzDjppJMiIuLvf/97HHzwwXHXXXfFokWLYtOmTbFy5cqYO3du9OvXL1auXFnseC+++GKB/W7duiWdBQB2Zr/99ouzzjor1TEqVFVdVwwZMiRycnJK1feWW24p8ny1atViwoQJUbdu3VKN369fv6hTp06p+lZlqVz7VtV198706tUrpk2bFtWrV9/p+UQiEcOHD49rrrmmVOMnEomyxCuzQYMGRY0aNUrVd+DAgflr1l1FzZo1o0WLFkW2ef755ys0Q1nrGxMnTiywn5aWFg8++GBMnDgx2rZtW+Z831aRa/jyXh+WRGXVeG666aZo2bJl/v6mTZuia9eucfbZZ8fcuXNj1apVsXnz5vjwww/jjjvuiF/84hcxY8aMiIjo27dvOV1t+bv88sujc+fOBY4NHz48unTpEtOmTYtly5bFli1bYunSpTF58uTo0KFD/OlPfyrQ/uSTT45zzz23Ss6XrG7dusV//vOfaNSoUf6x559/Pjp27BhLliwp17nKU6rqjWo4AKl1zTXXfO97za4gOzs7JkyYkJK/fd56661x2mmnlctY1atXjwkTJsSBBx5YZLtU1y+q6lq9NLWsiRMnxtq1awtt+92/q+1MVlZW9O7du9Dz999/f+Tl5RU7TnlLxb1ZlIqs6UVU/udXqt4HGRkZcd9990Xt2rVLNc+AAQOqZP1SzbdscnNz4+677/7e8aVLl8ZFF12UgkTJK239q3Xr1t+rw7722mvllitZFf2cSHnW3Crz2Y9U1bpSVRsqTf0yFc//pFJl1Vk7d+4ct956a4Fjc+bMiRYtWsSFF14Ys2bNimXLlkVeXl6sX78+3n///bjvvvvijDPOiIYNG8Z1110X69evL3KOyrzPrrnmmjjooIPy9/Py8qJ3795xxhlnxJw5c+KLL76Ir7/+OhYuXBh/+9vP4MuaAAAgAElEQVTf4oADDojZs2dHRMTpp59e7PgV4cdUU1fHBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoCpJT3UAUqN169ZFnk8kEt/7z9krwkknnRTnnHNOuY97yCGHxI033lju436jKuc+8cQTyynNrumwww4rsP/mm2+mJMff//73uPrqq2PHjh2Fthk1alQ888wzBY6dffbZpZ5z3rx50bdv3/jqq68KbTN58uS45JJLChy7/vrro379+qWel4hrrrkmbrjhhlizZk1S7efPnx89evSIzZs35x8bOnRoZGZmFtpn7ty58e677+bvN2nSJHr06JF0xk6dOkWLFi3y91esWBEzZswotH21atVi0qRJUb169fxjDz/8cJxxxhmxadOmQvtt2rQpTj755FiwYEH+sSOPPDJOOeWUpLN+Y8qUKXHxxRfHtm3bStz32954440C+9/9nACAkjrhhBMKPbd8+fIYOnRotGzZMrKzsyMjIyPq1asXLVq0iF69esXll18eTz31VJHf2aqCH+K64uc//3kcfvjhhZ4/77zzfE/4jlSufavyuvu7evfuHVOnTi3w3fnbtm/fHoMGDYq//e1vpZ4jkUiUum9VcOedd0ZWVlaqYyStf//+kZ2dXej5+fPnF1ifVYSy1jcmT54cr732WoFjaWlp0a9fv3j11Vfjk08+ifvuuy/OO++8aNeuXdSoUaPMmStSea0PS6MiazwtW7aMCy64oMCx/v37x+zZswvts3HjxujTp0/Mnz+/2PFTpVGjRnHttdcWOHbDDTcU+Tm4Y8eOuOKKK+Kee+4pcPy2226LOnXqVKn5kjVw4MB48sknIycnJ//Y1KlTo2vXrknXkFKtsuuNajgAqXPUUUfF9ddfX+nzrlmzJiZNmhRDhw6NI488Mpo2bRp16tSJjIyMyM7OjmbNmkWPHj3irrvuii1bthQ6TuvWrYus11SEY489NoYPH15kmwceeCCOPPLIqFOnTtSoUSMOOuigGDNmTKFrvOzs7Hj44YcjIyOj0DFTWb+oymv10tSyNm3a9L3vg9926qmnFvvd8Nhjjy3wfe+77r333hLnKqtU3ZsVpbiaXmV/fqXyfXDhhRfGwQcfXO5z78rUfCNGjhwZjRs3LnAskUjEwIEDY/369SlKlZzS1r9atmz5vWOpeDaoMp4TKQ+V+exHqmpdVaE2VJL6ZWU//1NVVGSdtXr16jFhwoSoVq1a/rHZs2dHjx494rPPPiu2/4YNG+L666+PO++8s9A2lXmfNWvWLC699NICx84555x4/PHHC+2zbt26OPHEE+P9998vtE1l+THU1NUxAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqErSUx2A1PjpT39a5Plly5bFmjVrKjRDenp6/OEPfyi23QMPPBBHHnlk5ObmRo0aNWL//fePG2+8MTZv3lxkvyFDhkTjxo3LK26+XSn3s88+G6eccko0atQoMjMzo1mzZtGlS5f4y1/+UuGvb6q0adOmwP5bb71V6Rk+//zzuOyyy5JqO2rUqAL7Rx55ZKnnveCCC4q9vyIiRowYEW+++Wb+fo0aNWLgwIGlnpfSeeedd2Ls2LH5+7vvvnv07NmzyD5jxowpsH/OOeckPd+5555bYP+ee+6JrVu3Ftr+5JNPjpYtW+bvr1q1KgYNGhSJRKLYufLy8mLo0KEFjl144YVJZ42I+Oqrr+Kiiy4qUZ/CfPdz4NBDDy2XcQH48dpvv/0KPXfaaafFmDFjYuHChfH111/H9u3bY+3atbFo0aJ44okn4uabb44ePXpE3bp1o3v37jF58uTYuHFjJaYvuaq4rvjyyy/j0ksvjb333juysrKiZcuWMXr06GL7denSZafH09PTk/ru8dBDD0XHjh0jJycncnJyomPHjjFlypQS598VpHLtuyutu3v37h0PP/xwVK9efafn8/Lyok+fPnHPPfeUaZ4dO3aUqX95WbJkSZx99tnRuHHjyMzMjMaNG8fZZ58dS5YsKbLfHnvsEX379q2ckGXUpEmTuOmmm4psk8z9WVZlrW9s3749evfuHe++++5Ozzdt2jT69+8fo0aNipdffjk2bNgQ8+bNi7/+9a/xq1/9KqpVq1bq7OWtPNeHJVXRNZ7BgwdHevr/X6KfOXNmPPLII8X227x5cwwbNiypXKlw3nnnxW677Za/v2jRovjjH/+YVN/f/e53sWrVqvz9WrVqFVu3quz5knH99dfHuHHjIiMjI//Y3/72tzj11FOTqt9VFZVdb1TDAUidW265pdg2mzdvjn/84x/RvXv3aNiwYVSvXj1yc3OjVatWMWjQoHj88cdj+/btSc334osvxgknnBANGjSI/v37x5gxY+K5556LpUuXxoYNG2L79u3x9ddfx8cffxxPPfVUDBkyJDp37hx5eXmFjnnqqacmfb1llZaWFjfccEORbQYPHhynn356PPfcc7Fhw4bYvHlzvPHGGzF06NDv/Q3l21q2bBn9+vXb6blU1i92pbV6SWpZo0aNKnTNnZ2dXehr8Y3TTjut0HMLFiyIBQsWlPwCyiBV92ayyrumF1G5n1+prpclsw6cMGFCHH744VGrVq3IycmJdu3axb333pvU33hTTc235E444YSdvi9Hjx4d//rXv1KQqGRKW//a2ftkV3kGqjTPiZRVZT77kapaV6prQ6WpX1bm8z+FOe200yKRSJRqW7duXYnmqug664ABA6JJkyb5++vWrYsBAwbEli1bSpSzKJV5nw0ePLhAXfG5556LCRMmFDvPl19+mbJa+jd+LDV1dUwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqkvTim/BDVKdOnSLPr1mzpsIz/OpXv4rWrVsX2Wb48OFx+umnx3PPPRfr16+PzZs3xzvvvBNXXXVVdOvWLbZs2VJo36ysrDjvvPPKO/Yuk/uKK66Izp07x7Rp0+Lzzz+PvLy8+Pjjj2POnDlxySWXxHXXXVfmOaqiFi1aFNj/5JNPKj3D2LFjY/PmzUm1ffbZZyORSOTvH3jggZGeXvKP5pdeeileeeWVpNru2LEjRowYUeDYWWedVeI5KbupU6cW2G/fvn2R7SdMmBBfffVV/v6xxx4bTZs2LXaeBg0axAknnJC/n0gk4u677y6yz7Bhwwrs//3vf48NGzYUO9c3Xn755Xj99dfz9zt27JhU1m88+uijsXLlyqTbF+W7nwN16tSJBg0alMvYAPw41atXr9BzS5cuTWqMrVu3xtNPPx39+vWL22677Xvn77jjjkhLS8vf7rrrriLH23PPPQu0/+6W7PfT76qK64p169ZFx44d49Zbb42PPvootmzZEgsXLozzzz8/Ro8eXWTfQw45ZKfHu3TpEvvss0+Rfa+77ro47bTT4sUXX4yNGzfGxo0b48UXX4y+ffvG1VdfXerrqapSufbdVdbdxx9/fEydOjWqV6++0/ObNm2K3r17f+97f2ls3769zGOU1dtvvx1t2rSJ8ePHx2effRZ5eXnx2Wefxfjx4+PQQw+Nd999t8j+gwcPrqSkpVe3bt2YMWNG1K1bt9A2U6dOjenTp1d4lvKobyxfvjwOO+ywGDVqVGzdurXIthkZGdGmTZv47W9/GzNnzoxPP/00rr766qhZs2aJ5y1v5bk+LKmKrvH069evwP4dd9yRdLYXXngh5s+fn3T7yjRgwIAC+yNGjIi8vLyk+q5bt+57NYuzzz67Ss1XlN122y3Gjx8f11xzTf6xHTt2xMUXXxzDhw8vcI9UdamoN6rhAKTG0UcfHe3atSuyzQcffBAHH3xwnHvuuf8fe/cdHVW1t3H8mZACpBGaIgjSBK8CCgiCWOgKCIKoFJVmVOzlWlBflWvhYhe41CBFAgqCKKB0RSmCFIXQq3QQSCd95v3jLucySaaXM0m+n7Wylvvsffb+TThzZvaTs5ZatmyZzpw5o7y8PKWmpmr37t2aOnWqevbsqXr16ikxMVFms9nhfDfffLO+/fZbt/Y669ev13fffWe3/5ZbbilyzF/5SseOHe1mDJI0c+ZMh3+HmTRpklauXGm3/+WXXy72uJH5RUnZq7ubZR0+fFiLFy+2O5+jvWzFihXVo0cPu/3Tpk1zu35vGXVtusIfmV6g719Gvg86d+6sq666yuHazz33nAYPHqyNGzcqMzNTGRkZ2rRpk4YOHapnnnnG4blGI/N1X9WqVYv9XDtw4IBeeuklAypyn6f5V0xMTJFjqampPqkpENx9TsRbgXz2w6isy+hsyJP8MpDP/wQDf+eshT8/J06cqBMnTrhfqAOBvM4Kr/Xpp5+6WKW0fPlyp3+v8aeykqmTYwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCYOP6/hKPUioiIcNifnp7u9xq6du3qsP/HH3/UJ598Yrf/l19+0QcffODVGp4oCXUnJiZq1KhRXs1REkVFRaly5co2x06cOBHwOlauXOny2PT0dJ08edLaLl++vGJjY91e8+uvv3Zr/IIFC2Q2m63txo0bq0qVKm6vC+9s377dpt2yZUuH49PS0jR79mxru1y5cho2bJjTdYYMGaLw8HBre8WKFTp06JDd8VFRUbrppptsjs2dO9fpOoUtX77cpt2mTRuXz128eLHb69mTnp5e5HPtqquu8tn8AICyx9F+6eOPP9Zll10WwGr8J1j3FS+//LJ27NhRbN/YsWMdnlurVq1ij7dv397heZs3b9bbb79tt//dd9/Vpk2bHM5R0hi59y0J++67775b8+bNU1hYWLH9qamp6tKli5YtW+bVOn+7dP9mlGHDhunChQvF9p0/f16PPPKIw/NvvPFGVaxY0R+l+UTVqlW1YsUKNW/e3O6YnTt3urQH85Yv843MzEw9+eSTatiwod577z0dPnzYpfNq1Kihf/3rX9q3b59uueUWj9b2FV/uD93lz4ynXr16uvzyy63tjIyMIvtoZ+bPn+/W+ECoU6dOkc9bdzOFOXPm2LSvu+46u7/LQK/nSExMjL7//nsNGjTIeiw7O1v33nuvPvvsM7fnM5oReSMZDgAYo3v37g77U1JSdMcdd2jPnj1O5zp69KgeeOABh3+D8Mb+/fvt9tWsWbPI92h/6datm8P+jz76yOkciYmJdvsaN25c7GegkflFSdire5pljRkzxm5fs2bN1KpVq2L7unfvrsjIyGL78vLybP6mFyhGXZuu8EemF+j7l5HvA2fv/19++UWffvqp3f6xY8fqp59+cjiHkch83TdhwgRVr17d5lhBQYEeeughXbx40aCqXOdN/nXpsw9/y8zM9EldgeDucyLeCOSzH0ZlXcGQDXmSXwbq+Z9g4c+ctUqVKmrWrJnNsc8//9z9Ih0I5HV21VVXqWbNmtZ2VlaWvv/+e7fWmjdvnlvjfamsZOrkmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgmIUYXAGPk5uY67I+KivJ7DR07dnTYP378eKdzTJgwQRaLxW7/DTfcoLi4OLdrcyTY67ZYLHr99dc9Oreku+yyy4ocO3/+fMDr2LFjh1vjU1JSbNqxsbFur/nbb7+5NT45OVmHDh2yOdaqVSu314V3UlNTZTabre0aNWo4PWfChAk27WHDhqlcuXJ2x5tMJj388MM2xyZNmuRwjTZt2ig0NNTaPnPmjPbt2+e0tsJ+//13m3bLli1dPnfbtm1ur+fIuXPnbNrF3S8AAHDVgQMH7Pb16tVLJ0+e1B9//KEvv/xSb7/9tgYOHKjmzZurYsWKAazSO8G6r7hw4YKmTZtmt3/v3r0O97v2vmu3adPG4boTJkyw+d5WmMVicWkvWJIYufcN9n13jx49NHfuXIWFhRXb/9dff6l9+/Zat26dR/MXx9FrCYStW7dq06ZNDsesW7dOO3futNsfGhqqG2+80del+cRVV12ldevWqUWLFnbHHDt2TN27d1daWprf6/FHvvHnn3/qtddeU7169dSoUSPFx8crISFBW7ZsUU5Ojt3zrrjiCq1atUo9e/b0an1v+Hp/6A5/ZjyF3w9JSUnKy8tza72tW7e6NT4QWrdubdP+888/debMGbfmSEpKUmZmprVtMpns5laBXs+emjVr6pdfflGnTp2sx86fP6+OHTtqwYIFbs0VLIzKG8lwACDwOnfu7LD/k08+0eHDh/22/g033KARI0YoMTFRv/32m44fP67k5GTl5ubKYrHY/IwYMcLhXJUrV/ZbnZdytG/966+/tH37dqdzOPu7S3FrGJlfBPte3Zssa9WqVdq1a5fd/kceeaTY4/fdd5/dcxYtWlTke00gGHVtOuOvTC/Q9y8j3wfO3v/O/v7r6hgjkPm6r1+/furbt2+R4x988IE2bNhgQEXu8yb/Ku56iIyM9LqmQPHkORFPBfLZD6OyrmDIhjzNLwPx/I8jX331lUwmk0c/lSpVcmstf+ast9xyi0wmk7V99uxZ7d+/3631nAnkdVb42I4dO5Sdne3WWu7mer5UljJ1ckwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEixCjC4AxUlNTHfZXrlzZ7zXUrVvXYf/PP//sdI6TJ0/q4MGDdvtDQkJUu3Ztt2tzJNjr3rBhg44cOeLRuSVdZGRkkWPZ2dkBrcFsNjt9fxVWuMby5cu7ve6ePXvcPmf37t027SuvvNLtOVBUzZo19eSTT2rmzJnasmWLTp48qfT0dJnNZlksFpsfs9mskJD/fRRXqlTJ6fzbtm3Tr7/+am3XqlVL3bp1szu+Y8eOatCggbV9+vRpfffddw7XaNSokU17//79Tusqzrlz52za1apVc/ncEydOeLSmPVlZWTbt4u4XAAC46ocffnDYHxISoqZNm+r+++/X66+/rlmzZmnLli3KyMjQ77//rs8++0zt27eXyWQKUMXuC9Z9xcqVK5WXl2e332KxKDk52W6/ve8A9erVc7iuK/s8V8aUJEbufYN9392rVy+FhYUV23fs2DHdcsst2rZtm0dz22OxWHw6n7vWrl3r0rj169c77Hf2b2uEZs2aaf369br66qvtjjlx4oTat2+vP//8MyA1+Tvf2LdvnxISEhQfH6+WLVsqOjpa7dq107vvvlvsawwLC9OsWbNUv359n9XgDl/vD13l74yncA6zd+9et9aSPMuD/K1WrVo27V27drk9h9lsLvLaCs9r1HrFadKkiX799Vc1bdrUeuzQoUNq27at0/tiMDMqbyTDAYDAc7Ynnjdvns/XLFeunIYMGaJDhw5p69ateu+99zRgwAC1bNlSNWvWVKVKlezuuxyJi4vzea3FcfTduFq1akX+HlTcz7p16xyucc011xQ5ZmR+Eex7dW+zrHHjxtnt69evn6Kjo22ORUZGqnv37nbPmTZtmse1eMOoa9MZozI9X9+/gjkvc/bvJjnPbYxC5uueyy+/vNh71o4dO/Tmm28aUJFnvMm/0tPTixyLjY31uiZv+Ps5EU8F8tkPo7KuYMiGPM0vA/H8TzDwd85ap04dm/Yff/zh1lquCOR1Vvh7gC8yukApa5k6OSYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCRYjRBcAYf/75p8P+WrVqKS4uzm/rR0REOPwfvWdlZens2bMuzXXkyBGH/VWrVnWnNIdKQt2//fabR+eVBhERETbtvLw8WSyWgNZgxJqSlJKS4vU5/nzPlwUNGzbUggULdOzYMY0dO1YPPvigmjdvrho1aigqKkomk8npHNHR0S6tNWHCBJv2o48+ands4b7PP/9c+fn5DuevXLmyTbtt27bKzs5Wdna2cnJylJOTo9zcXOXl5SkvL0/5+fnKz89XQUGBCgoKZDabZTabtWrVKpt5XL3GCgoKlJmZ6dJYV+Xk5Ni0K1So4NP5AQBly6+//lrkc84VJpNJzZo109NPP63Vq1dr//796t27tx8q9F6w7iuSkpKcjsnKyrLbZ+87WeHvP4UdPnzY6bpHjhyR2Wx2Oq4kMHLvWxL23fbs379f7dq10969e306bzBwliP9zdnv3Nl7LdBuv/12rVmzRjVq1LA75tChQ7rtttt08ODBgNUV6HwjLy9P69at0+uvv64GDRroiSeeKHIvjY6O1ptvvum3Guzxx/7QVf7+vVeqVMmm7Um2k5qa6qtyfKbw3j85OdmjeQqfZy9TCPR6hYWFhWnt2rWqVauW9djmzZvVpk0b7du3z6NagoVReSMZDgAEVkREhMO/TeTl5Wn37t0+XTMmJkZLly7V559/rrp16/p07sLfpf3B2b7VV4rbsxqVX5SEvbq3WdbMmTPtfv+JjIzUgAEDbI7ddddddr+nnD59WkuXLvWqHk8YeW06449ML9D3L6PfB46+W1ssFh09etTpukePHg3K/JLM1z2TJ09WlSpVbI7l5eXpwQcfVG5urkFVuc+b/Ov48eNFjhmVOwbyORFPBPLZD6OyLqOzIW/zS38//xMM/J2zFr4nnj9/3udrBPI688V7yZNzfKGsZerkmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgWIUYXAGPs2rXLYb/JZFLbtm39tn7h/wl9YZmZmS7P5WxsbGysy3M5UxLqPnbsmEfnlQY5OTk27bCwMJlMJoOqCZz8/Hzl5eW5fV7hazAqKspXJZU5Xbt21bZt29S7d2+vrrmQENc+lufOnavz589b23feeaeuvPLKIuMuu+wy9erVy9o2m82aMmWK0/kL3+tCQkIUERGhiIgIhYeHKzw8XGFhYQoNDVVoaKjKlSuncuXKKSQkRCEhITKZTMX+HiIjI116ffn5+S6Nc0f58uVt2llZWT5fAwBQtjzwwAPav3+/V3PUr19fCxYs0BtvvOGjqnwnWPcVFy5ccDrGk+/Gjr6nZGdnq6CgwOkcFoul1HzHMHLvWxL23fZkZWUpIyPDp3O6qly5cn6d39Xf+8WLFx32R0dH+6Icn+jbt6+WLl3q8DrYsWOH2rVrp4MHDwawMmPzjfz8fI0fP15dunRRbm6uTV+/fv1c3tf5sp7SqnAO48lniDv3xEAp/D53dl+wp/Brs3f/CPR6hYWEhCgmJsbm2IQJE3T27FmP6ggWRuaNZDgAEFjO9mBpaWk+X3PevHnq1KmTz+cNFGe/M1+pUqVKkWNG5RclYa/ubZaVmZmpadOm2e1/5JFHbNr333+/3bGzZs0yZC9j5LXpjD8yvUDfv4x+Hzh6/+fk5MhsNru0djB+vybzdV1oaKjuuuuuIsdHjhypP/74w4CKPOdN/lXc32aaNm3qk7rcEejnRDwRyGc/jMq6jM6GvP3M9/fzP2VB4X8rf/ydJpDXWeH3kidrBWNu7AvBlqmTYwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBYhBhdAIyxYcMGp2MeeOABv62fmprqsD8yMtLluZyNdbaWO0pC3enp6R6dVxpkZmYWOVa+fHkDKgms0NBQhYaGun1e4WswIyPDVyWVKVdffbUWLlxo8/u8ePGiZs6cqaFDh6p169aqVauWoqOjFR4eLpPJZPNTUFDg9prZ2dmaNm2atR0SEqKHH364yLghQ4YoLCzM2l6xYoWOHDnidP6srCy3a3KFyWTyy7yuqFChgk27uPsFAADuOH36tFq0aKHPPvvM68+VkSNH6qabbvJRZb4RrPuKnJwcp2PMZrPb8zr6LhwREaGQEOfxiclkKvKdo6Qycu9bEvbd9jRt2lQrVqxQpUqVfDqvJKd7vpiYGJ+veSlXf+8VK1Z02B8s95Ynn3xSX331lSIiIuyOWbNmjW655RadOnUqgJX9VzDkG2vXrtXkyZNtjoWFhaldu3YBraM0K/zv7MlniDv3xEAp/D53dl+wp/Brs3f/CPR6heXl5WnNmjU2x6ZMmaLBgwd7VEewMDJvJMMBgMBKSUlx2O/rvcZ9992nLl26+HTOQHP2O/OVS/++8zej8ouSsFf3xX5z3LhxdnOl5s2bq0WLFpKk6Oho3XHHHXbnmT59ute1eMLIa9MZf2R6gb5/Gf0+cPS92NX3v+TZ3tPfyHy9984778hisTj8+fseZk9eXp7N+IkTJ/q1Zm/yr6SkJOXm5toca9mypU/qcpURz4l4IpDPfhiVdRmdDXnL38//lAVpaWk27aioKJ+vEcjrrPDnV2nJjX0h2DJ1ckwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEixCjC4AxNm/erNOnTzsc07dvX1111VV+WT87O9vh/+i9QoUKql69uktzOavx3Llz7pTmUEmo22w2e3ReaVDcNV21alUDKgm8SpUqeX1OcnKyr8opoly5cn6b22gffvihypcvb21v3LhR9evX16BBgzRt2jRt2rRJJ06cUEZGhvLy8mzOLV++vMe/m4kTJ8pisVjbw4YNs5nLZDIpPj7e5pxJkya5NHfh+8/nn38uk8nk9U+nTp08eq2+UKVKFZv2mTNnDKoEAFCapKen69lnn9UVV1yhIUOGaPbs2Tpy5IjNZ7SrXnjhBT9U6Lmytq9w9F3YZDKpVq1aTueoU6eOQkJKR8xi5N63JOy7HWnevLmWLVummJgYn85boUIFh/2NGjXy6XqF1alTxyfjLly44ItyvPLOO+9o7NixDt+v8+bNU9euXZWamhrAyv4nWPKNuXPnFjnmr6ywLEpJSbFpx8bGuj2HJ+f4W+HP1Li4OI/mKXyevftHoNcrzGw2684779SyZcusxwVl2tMAACAASURBVEJCQvT5559r+PDhHtXiLV/lcEbljWQ4ABBYOTk5Sk9Pt9sfFhamxo0b+2y9hx56yGF/SkqK/u///k833HCDYmJiFBISYvN3hnfffddntXgqJyfH4b7Vn4zKL0rCXt0XWdahQ4f0/fff2+3/++9uvXr1svnb4KU2bdqknTt3el2LJ4y8No0Q6PuX0e8DZ+//2rVrO133yiuvLDX5pSvIfIObN/lXbm6u1q5da3Pstttu80ldrjLqORF3BfLZD6OyLqOzIV/w5/M/ZUHhf6vC2ZIvBPI6K/xe8kVGV1oEW6ZOjgkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBgEWJ0ATCG2WzWnDlzHI4JDQ3VjBkzVK5cOb/UcPjwYYf9t956q9M5rrjiCtWvX99uv9ls1tGjR92uzZGSWndZkJmZqfPnz9scq1mzpkHVBNY111zj9TnHjh2zOzY/P9+mHRoa6tZacXFxbo0vKSpVqqQ77rjD2s7NzdU999yj06dPu3R+9erVPV774MGDWrFihbVds2ZNde/e3dru3Lmz6tWrZ22fOnVKixYtcmnuwtdCgwYNPK4zGERHRys6Otrm2JEjR4wpBgBQKqWlpWn69OkaOHCg6tatq6ioKDVv3lx9+/bVSy+9pJkzZ+rUqVMO5+jQoUOAqkVxDh486LC/bdu2TudwZS9Ykhi59w32fffEiROVlpZmt79Vq1b64YcfFBUV5fKcOTk5DvsrV67ssL9jx44ur+WJdu3auTTO2XvF2b+tP4WGhmrq1Kl67bXXHI4bO3as+vXr5/TfxJ+CJd/Yt29fkWOxsbEBr6O0Krz3btSokdtzeHKOvx0/ftym7UlmFRISosaNGzuc16j1ipOVlaVevXrp22+/tR4zmUwaP368/vnPf7pdT7DkcP7OG4tDhgMAxjh06JDD/nvvvddna9122212+3JyctSuXTu98847+v3335Weni6LxWIzJli+jzra2+zcuVMmk8nrn0v//vQ3I/OLYN+r+8qYMWPs9g0YMECRkZG677777I6ZPn26H6pynVHXplECef+Sgjsvu/nmm52u7cqY0oTMN7h5m38tWLDApl2/fn3dfvvtvijNKSOfE3FXIJ/9MCrrCoZsyFv+fP6nLCj8Gdm0aVOfrxHI66zw9wBfZHSlRTBl6uSYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCYhRhcA44wZM0b5+fkOx9x6662aNGmSypUr5/b85cqV0xNPPKHHH3+82P5Vq1Y5PH/48OFO1xg+fLhMJpPd/m3btik5OdnpPO4oqXWXFfv27bNp16lTx6BKAuvGG290a3xcXJzq1atnc2zTpk12x6elpdm0Y2Ji3FqvQYMGbo0vKZo2baqwsDBre82aNTpx4oTL57v771bY+PHjbdqPPPKI9b8fffRRm77PP//c6T3/bz///LMsFou1feONN6pixYpeVGqswveBlJQUnT171qBqAABlwcWLF7Vt2zbNnz9fH3zwgQYNGqTatWvryy+/tHtO5cqVFRkZabe/oKDA4Zrh4eEe1wtpw4YNDvuHDRvmsN9kMtnd+5ZURu59g33fvWXLFvXo0UNZWVl2x7Rt21ZLlixx+Xt0amqqw/4mTZrY7atUqZIGDRrk0jqeat68udP9S9u2bXXdddfZ7c/Pz9dvv/3m69JcUrFiRX3zzTcaOnSo3TEWi0UjRozQ008/LbPZHMDqihes+QZ5le8Ufj80adLEJmNwRfPmzX1Zkk/8+uuvNu2rrrpK1atXd2uOa6+91uZ7kdlstptbBXo9e3JyctS3b98i3/c++OADvfHGG27NFSw5nL/zxuKQ4QCAMVasWOGw/7nnnvPJ99GoqChFRUXZ7V+9erV27tzpcI5WrVp5VYOv8pWVK1fa7bvmmmt0xRVXuFWXq4zML4J9r+4rK1as0O7du4vti46O1mOPPaauXbsW25+dna05c+b4szynjLo2jRKo+9ffjHwfOHv/x8fHO13blTGlCZlv8PMm/0pMTNTFixdtjgXq38vo50TcEchnP4zKuoIlG/KWv57/KQvWrl1rc51fdtllatiwoU/XCOR1VvhYkyZNVL58ebfWCuR9JpCCKVMnxwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAwCTG6ABjnyJEjGjdunNNxw4YN0/fff68GDRq4NG9ERIQeeOABbdu2TePGjVPlypWLHbds2TKH83To0EHPPfec3f527drpxRdfdDiHszU8UVLrLis2b95s027SpIlBlQRW37593Rrfp08fhYT87yNgz549On/+vN3x586ds2m7ej/4W/v27d0af6n8/Hyb9qV1G6169eo27ePHj7t1fq9evbxaf/HixTp27Ji1feedd6p27dq6/PLLddddd1mPm81mJSQkuDzv2bNn9ccff1jbFSpU8LpWIxW+DxS+TwAAEAj5+fmaPHmywzEVK1a025eRkeHwXHe/n8HW6tWrHfZ36tRJ8fHxdvtfffVVtW7d2tdlGcrIvW9J2Hf/8ssvuueee5SXl2d3zK233qrvvvtO5cuXdzrf6dOnHfbHx8crIiKiyPHQ0FBNnTpV1apVc160l6ZOnaq4uLhi++Li4jRp0iSH5//222+6ePGiP0pzqHLlylq5cqV69Ohhd0xeXp4GDRqkf//73wGszLFgyDfq169f5JizazWY9/DB5uDBgzpz5oy1HRUVpc6dO7s1xz333OPrsrx29OhRm6xCcj+36tevn007KSlJaWlpQbGeI/n5+Ro4cKCmTZtmc3zkyJFu3V+MzOEu5e+8sThkOABgjCVLljjsj4uL09KlS3X11Vc7nat69epKSEhQvXr1ivQ52xuFhoY67L/55pvVqlUrpzU44qt85YcffrDbFxISohEjRrhV198iIyP10ksv6Y033ii238j8oiTs1X3F0TMU7777rsLDw4vtW7hwoVJSUvxVlkuMujaNEqj719+MfB/8+OOPDs+77bbb9NRTT9ntf/zxx9WhQweHc5Q2ZL7Bz5v8KyUlRWPHjrU5du+99+qOO+7wSW3XX3+93bmMeE7E08wtkM9+GJV1BVM25A1/Pf9TFly4cEHbtm2zOTZkyBCfrhHI6+zIkSM6ceKEtV2hQgV169bNrbXuvfdet8aXFMGUqZNjAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJiEGF0AjPXGG29o//79Tsd16dJFu3fv1uzZszVw4EA1bNhQsbGxCgsL02WXXaYmTZpo8ODBSkhI0LFjx/TFF18U+Z+7F7Zs2TLt3LnT4ZiPP/5YiYmJateunaKjoxUREaF//OMfevvtt7V8+XJFRETYPTcnJ0fjx493+trcVVLrLis2bdpk027atKlBlQRWmzZt1Lp1a5fGhoSE6KmnnrI5Nn36dIfnHD16VMnJydZ2jRo11KBBA5fWq1ChgoYMGeLS2OJkZGQUmS9YZGdn27QrV67s8rlXXXWV7r//fq/WLygo0JQpU6ztkJAQDRs2TEOHDlVYWJj1+LJly3TkyBG35h43bpxN+80337SZsyQpfB8ofJ8AAMBd9957r77++mv16NFD4eHhLp/XvHlzu335+fk6f/683f4LFy44nHv06NFq1aqVKlas6HI9+J/Vq1frwIEDDsdMmjRJkydPVsuWLRUZGanIyEi1adNGs2fP1jvvvBOgSgPHyL1vSdl3//DDDxo4cKDMZrPdMR07dtTChQsd1iNJW7duddjftGlTLVu2TG3atFH58uUVFxenHj16aO3aterTp49H9burSZMm2rJliwYNGqQaNWooLCxMNWrU0EMPPaTNmzfruuuuc3j+pXuXQKldu7bWrVunNm3a2B2TkZGhu+66S1988UUAK3PO23xjzpw5uuyyy7yqoW/fvjbt/Px8rV271uE5wbyHD0azZs2yaT/xxBMun9u2bVuH3y2MVDhnevrppxUaGurSubGxsYqPj7c59vnnnwfVeo6YzWYNGzZM//nPf2yOv/zyyxo7dqxMJpPTOYzM4S7l77yxOGQ4AGCMn376yek9t3Hjxvr99981fvx4de7cWdWrV1dYWJhiYmLUsGFDDRgwQImJiTp69KiGDRumkJCijyFcuHBB+fn5dtdo06aN6tSpU2xfvXr1NGfOHPdeWDF8la+sWLFC27dvt9v/xBNP6Nlnn3W5rkaNGundd9/V4cOHNXr0aFWvXr3YcUbmFyVlr+4LM2fOVGpqarF9jl7DtGnT/FWSy4y6No0SqPvX34x8H6xYscLp33s/++wzTZ06VTfeeKP1/X/jjTcqISGhyN9+ywIy3+Dnbf41atQonThxwubYlClTdMUVV3hVV6tWrbRixQpVqlSp2H4jnhPxJnML5LMfRmVdwZQNecqfz/+UBYWv88cee0w1atTw6RqBvM5mzpxp03bn+1uXLl30j3/8w+XxJU2wZOrkmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgmIUYXAGOlp6erb9++Sk1NdTo2NDRU/fv316xZs7Rv3z6lpKQoNzdXp0+f1vbt2zVt2jQNGzZM1apVc2lts9msN954w+m4AQMG6JdfflFaWpqys7O1c+dOvf7666pQoYLD8yZMmKATJ064VIs7Smrd7tizZ48sFkuxPy+//LLDc3/44Qe7506cONHvta9atUoWi8XabtOmjUwmk9/XDQbjxo1TRESE03FPP/20mjVrZm1nZ2dr2rRpTs9bv369Tfuxxx5zqa4PPvjA5ftCcc6ePWvTrlOnjsdz+dqhQ4ds2rfffrtiY2OdnhcWFqZZs2YpPDzc6xqmTJmivLw8a3vYsGGKj4+3GTN58mS3550xY4bN62vUqJEmTZrkeaEGuvnmm23aK1asMKgSAEBpERERoXvuuUeLFi1ScnKyli5dqtdee019+vTRtddeq+rVq6tChQoKCQlRbGysWrVqpQ8++ECjRo2yO+eOHTtkNpvt9u/cudNhTS1bttTGjRuVmZlZ5Hv4Aw884PFrLSssFos+/fRTh2NMJpPi4+P122+/KSMjQxkZGVq/fr369+8foCoDy8i9b0nad8+bN0+PPPKIwzFdu3bV119/rbCwMLtjkpKSdO7cOYfz3HbbbVq/fr2ysrJ04cIFLVq0SK1bt/aobk/VrVtX06dP18mTJ5Wbm6uTJ09qxowZqlevnsPzzpw5ozlz5gSoyv955JFH1LhxY4djoqKitHTpUrtZhr2fzZs3+7V2b/ON3r17a+fOnXrwwQc9ykWuv/56PfHEEzbHVq9ereTkZIfnBfMePhhNmTLF5vO/W7du6tWrl9PzIiIiNGbMGH+W5pUJEyYoNzfX2m7UqJFeeeUVl8798MMPbXKktLQ0p7lVoNdzxmKx6Mknn9T7779vc/zJJ5/UlClTFBLi/M8yRuVwhfk7byyMDAcAjOPKZ2eFChU0fPhwLV++XGfOnFFubq5SU1O1b98+JSYmasCAAQ4/N8xmszZt2mS3PyoqSitXrlS/fv1Us2ZNhYeHq379+nrppZe0efNmXXnllR69tkv5Kl+xWCx67bXX7M5jMpn0ySefaMOGDRo2bJiuueYaRUVFKTQ0VNWqVdM111yjvn376sMPP9TmzZu1Z88evfrqq04/x43ML0rSXt1bGRkZmj59ulvnHD9+XCtXrvRPQW4w6to0UiDuX38zOi8bO3asw/NNJpOGDh2qTZs2Wd//mzZt0rBhw8rMMxOXKo2Zb35+vkwmk0c/W7ZscTh3WFiYzXhX96He8Db/Sk1N1aBBg1RQUGA9VqtWLa1du9ZpXmnP4MGD9eOPP6pq1ap2xxjxnIg3mVsgn/0wKusKtmzIU/56/qcsmDVrlo4ePWptx8XFacaMGT55LutvgbzOpkyZovz8fGv7lltu0aBBg5yuExUVpc8++8ylmkqqYMnUyTEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQTEKMLgDG2759u7p166aUlJSAr71gwQJNmTLF5/Nu3bpVr732ms/n/VtJrbssOHXqlP744w9ru2rVqrruuusMrChwWrZsqTlz5igyMtLumAEDBujDDz+0OfbWW2/p7NmzTuefPn26Tfvpp59Whw4d7I4PCQnRe++9pyeeeMLp3I5c+u8pSV27dvVqPl/atWuXjhw5Ym3HxsZq0qRJCg0NtXtOXFyclixZoptvvtknNZw+fVoLFy60tmvWrKmrrrrK2j558qQWL17s9rz5+fkaOHCgcnJyrMeGDBmiBQsWqEqVKi7PU61aNb344ouaP3++2zX4QoUKFdS6dWtrOy0tTevWrTOkFgBA6VSxYkV17dpV77zzjubPn6+kpCSdOXNGFy9eVEFBgVJSUrRx40b985//VFhYmN15EhMTHa7z66+/Kj8/39fl4xITJ07Upk2bjC4jqBi59y1J++6pU6fqhRdecDimR48e+uqrr+zuFfLz8zVz5kyf1hVMHn/8cWVnZxtdRonii3yjSpUqmjlzpnbs2KF+/fopJMS1KLhbt25atWqVwsPDrcfMZrNGjBjh9Nxg3sMHo71792rcuHE2xxITE9W+fXu751SsWFGzZ89WixYt/F2ex06dOqU333zT5ti//vUvDR8+3O45ISEhevvtt/Xwww/bHH/hhReUlpYWVOu56uWXX9Zbb71lc2zYsGGaNWuWw+xIMi6HK8zfeeOlyHAAwFg//vij/vWvf/l9ndmzZzvsb9CggebMmaPjx48rJydHBw4c0OjRoxUXF+eT9X2ZryxevFhjxoxxOOamm25SQkKCdu3apfT0dOXl5ens2bPatWuX5s2bpxdeeMHt73VG5hclaa/urXHjxslisbg8fubMmTKbzX6syHVGXZtGCdT9629Gvg/GjBmjbdu2+Xzt0ozMN7j5Iv9atWqVHn/8cZt7dt26dbV582Y999xzNvmWI9dee62WLFmiadOmqWLFig7HGvGciDeZWyCf/TAq6wrWbMhd/nr+pyzIy8vTQw89pIKCAuuxzp07a/Hixbr88sudnh8TE6M33njD4TUTyOvs8OHDRfK2yZMn66677rJ7TqVKlfTNN9+ocePGdseUBsGQqZNjAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAINiEGF0AgsP69evVtm1b7dmzJ+BrP/744/rhhx98Nt+RI0fUs2dPXbx40WdzFqek1l0WzJ8/36bdtWtXgyoJjJycHH3zzTeSpN69e+uPP/7Q8OHDVbduXUVERKhatWrq2rWr5s+fr8TERJUrV8567oYNG/TRRx+5tM7ChQu1bds2azssLEw//PCDPvjgA11//fWKjIxUhQoV1KBBAz3yyCPavn27RowYIUmaMmWKx69v0aJFNu0XX3xRzz//vOrXr6+IiAiP5/WV9957z6Z9//33a+PGjRowYIBq1qyp0NBQVapUSS1atNBbb72lAwcOqHPnzpKkWbNmqaCgwOsaJkyYYLdv6tSpys/P92jeX3/9VQ8//LBNjb1799aff/6pCRMmqFevXrryyitVsWJFhYWFqUqVKmrUqJF69+6tN998U+vWrdPp06f1/vvvq379+h7V4K3bbrtN4eHh1vaiRYuUl5dnSC0AANiTlJSkcePGORxz7tw5LV68OEAVlU0FBQUaNGiQkpOTPTp/1qxZSk1N9XFVxjNy71uS9t0ff/yx3n77bYdjevfuXWRPdqkPP/zQ4+vv/fff9+g8V02dOlXZ2dkenfv5559rwYIFPq6obPBVvnHttddqzpw5OnHihKZOnao+ffro2muvVeXKlRUaGqq4uDg1b95cw4cP188//6wlS5aocuXKNnO8/vrr2rp1q9O1gn0PH4xee+017du3z9qOjIzUypUrNXXqVN16662qUqWKIiIiVK9ePT3++OPavn27+vTpI0maM2eOUWU79f7772vlypXWtslk0vjx47Vs2TLdfffdqlGjhsLDw1WzZk31799f69at0+uvv24zx9y5c5WQkBCU67lq5MiRevHFF22O9e/fX3PnzrXJKwozKof7W6DyxkuR4QCA8d58801NmjTJr2tMmTJFe/fu9ejc5ORkffXVV16t7+t85bnnntPcuXN9Np8rjM4vStJe3RsHDhxw63VOnz7df8V4wIhr00iBuH9dyqj3QX5+vh566CGlpaV5tE5iYmKpzC8dMfqeCed8kX9NnjxZw4YNU25urvVYXFycPv74Yx08eFDjx49Xz5491ahRI2seFhsbqxYtWujJJ5/UqlWrlJSUpG7durm8ZqCfE/E2cwvksx9GZV3Bmg25y1/P/5QFa9asKZLDde7cWQcOHNCnn36qjh07Wq+DmJgYNW7cWA8++KASExN1+vRpjRw5UrGxsQ7XCOR1NnLkSG3fvt3aDg8P13fffadZs2apffv2qlKlisqXL68GDRromWee0Y4dO9SpUydJ0uzZs53OX5IZnamTYwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDYhBhdAILH7t27dcMNN2j06NHKzs72yZzZ2dk6ePCgwzH5+fm666679M4778hsNnu13uLFi9WiRQudOHHCq3lcUVLrLgu++OILWSwWa/uee+4xsJrAGDx4sLZu3SpJql+/vsaPH69Dhw4pOztbZ8+e1dKlS9WnTx+bc7Zs2aJu3bopPz/fpTXy8/P14IMPKjk52XosPDxc//znP7Vt2zZlZGTo4sWL2r9/vyZNmqRrr71WkjRz5ky98sorHr+2pUuXWl+bJFWoUEEfffSRDhw4oOzsbFksFpufli1bOpzv/vvvL3KOOz933HGHzXwJCQn66quvbI41b95ciYmJOn78uPLy8pScnKzNmzfrzTffVOXKlSVJy5cvV3x8vMe/l0v9+OOP2r17d5HjZrNZCQkJXs09a9Ys3XHHHTp//rz1WGRkpB577DEtXLhQR48eVWZmpnJzc3Xu3Dnt2bNHCxYs0FtvvaW2bdsqJMTYrxp9+/a1ac+YMcOgSgAAKN7OnTvVvXt35eTkOB370ksvKSMjIwBVlV179uxRp06dbL7zumLevHkaOnSoTCaT3THe7huNYuTet6Ttu9944w2NGTPG4Zj77rtPM2bMKPZ78qlTpzR06FCX92jSf6+rl156SaNGjXK7Xnf8+uuv6tmzp9v3oMTERD3yyCN+qqr083W+cfnll2vo0KGaP3++kpKSdP78eeXl5enChQvasmWLxo8fr1tuucXmnNzcXL3wwgsuX2O+3sOXBRkZGerYsaMOHTpkPRYSEqKhQ4dqzZo1OnfunDVj/c9//qP69etLkjZs2KDhw4fbzJWXl+dRDb7OSqT/3p969uyp7777zuZ4ly5d9M033+jkyZPKycnR8ePHNXv2bN10000242bOnKmBAwe6/BoCvZ47PvzwQz3++OM27+fevXvr22+/VYUKFYo9x6gc7lKByBsvRYYDAMHhscce09ChQ/2WP+Tm5uquu+7SX3/95dZ5ycnJuuOOO3TgwAGva/BlvmI2m9WvXz89//zzys3N9cmcrjAyvyhpe3VvONvj/23t2rXav3+/n6txj1HXppH8ff+6lJHvg6SkJHXp0kVpaWlurTN//nwNGTLEkxJLPDLf4Oar/GvatGlq166ddu7caXO8Vq1aGj58uL799lvt2bPHmoelpKRo8+bNGjt2rDp06GBzTlpaml599VUtXLjQ7nqBfk7EF5lboJ79MCrrCuZsyB3+fP6nMG8zQU/yH3/75JNPNHjwYJvvP5GRkXrmmWe0cuVK63WQmpqq3bt3a+bMmRowYIDdjK6wQF5n2dnZ6ty5c5HrYeDAgVq9erXOnTunrKws7d+/X59++qlq1aolSVq3bl2R91JpY3SmTo4JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAYBNidAEILtnZ2XrllVfUsGFDjR49WqdPn/ZongMHDuitt95S7dq1NWfOHKfjCwoK9H//939q3bq1vv76a5nNZrfW27x5s+677z717NlTFy5c8KhmT5TUuku7P//8U6tXr7a2W7durSuvvNLAivwvLS1Nt99+u2bNmuV0rMVi0YQJE9S+fXulpKS4tc7OnTvVrl07JSUlOR2bmZmpF154QYMGDXL7vXEps9msPn36aOvWrR7P4U8Wi0UPPPCARo8erYKCAqfjc3Nz9e6776p79+7Kzs72WR0TJ04scmzp0qU6evSo13OvXLlSTZo00ZgxY5SVleX1fIESGhqqXr16WdvHjh3TqlWrDKwIAID/SUtL01tvvaWbbrrJ5c/r/fv3q0uXLj75fId9W7duVcuWLbVixQqnYzMzM/Xiiy/q/vvvV35+vqKiouyOTU5O9mWZAWXk3rek7bufffZZTZ8+3eGYgQMHKiEhQSaTqUjfwoUL1bNnT508edLpWgcOHFCXLl30wQcfeFquW1asWKFWrVpp06ZNTsemp6frmWee0UMPPeTSPgnF8ybfaNq0qV599VX99ttvHu3J8/LytGDBAjVp0kQff/yxy+cF+x4+WB0/flxt2rTRV1995XSsxWJRQkKCOnbsKIvFYtOXmprqrxI9kpWVpT59+uipp57SX3/95dI5J06c0NChQzV48GDl5+cH9XrumDBhgoYOHWpzT7zjjju0ZMkSu98fjMjhLhWovFEiwwGAYDNt2jRde+21+vjjj93+frFx40bdfffdOnjwoN0xyilsvQAAIABJREFU+/fvV4sWLfTLL7+4NOeaNWvUsmVLl/YirvB1vmKxWPTJJ5+oadOmmjRpki5evOjRPCkpKZo7d6769++vESNGOB1vZH5R0vbqnlq+fLn27t3rdJyzHMAoRl2bRvL3/etSRr4PNm7cqJYtW+rHH390OjYrK0sjRozQvffeq7y8PLfWKU3IfIOXL5/v+e2333T99dcrPj5eu3btcvv8I0eOaOTIkWrYsKFGjRrl8HmOQD8n4qvMLVDPfhiVdQVzNuQOfz7/UxbMmDFDLVu21KJFi/wyfyCvs7Nnz6pdu3aaMWOG07EWi0WTJ09W586dPf7eV5IYdZ8hxwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAwCjW6AASn48eP65VXXtGrr76q1q1b67bbblPz5s3VoEED1apVS9HR0QoPD9fFixeVlpamU6dOKSkpSX/88YeWL1+unTt3erTu5s2bde+996p27drq3LmzbrnlFjVr1kxVq1ZV5cqVFRoaquTkZF24cEH79+/XL7/8op9++kmbN2/28W+gbNRdmn366afq2LGjJMlkMmnw4MF6++23Da7Kv9LT0/Xggw/qnXfe0cCBA9W5c2fVrFlT1atXV1pamo4dO6YVK1Zo1qxZSkpK8nidXbt2qVmzZurbt6/uvvtutW7dWtWrV1doaKhOnjypQ4cOacGCBfrqq6904cIFn7y2P//8U61bt1a3bt3Uu3dvNWvWTFdeeaWio6MVERHhkzW8kZ+fr1deeUWTJk3Sww8/rPbt26thw4aKjY1VRkaGzpw5o0OHDum7777TN998o7Nnz/q8hlmzZunTTz+VyWSyHps0aZLP5j916pSeeeYZvf3227rzzjvVoUMH3XDDDapWrZqqVKkiSUpLS7P+nD9/Xrt371ZSUpL1J9B69eqlqlWrWttjx46V2WwOeB0AgNJn9uzZWrt2rRo0aKCGDRuqYcOGatCggapXr67o6GjrT1RUlAoKCpSZmamUlBTt379fu3bt0qpVq7Rq1SplZ2e7vfaGDRvUsGFD3XvvverWrZuaN2+uyy67TNHR0QoNZYvvK4cOHVKXLl10++23q3///rr55ptVs2ZNRURE6NSpUzp48KAWLFigefPm6fz585Kk6tWrKyQkxO6cf/31V6DK9xsj974lZd9tsVj08MMPKyYmRn369LE7bsiQIcrLy9Njjz0mi8Vi0/fDDz+oYcOGGjRokLp3766mTZuqatWqys/P1/Hjx/X7779rzpw5Wrp0qfLy8vz9kmzs3r1bN910k9q1a6f+/furbdu2uuKKKxQbG6szZ87o4MGDWrhwob788kudOXMmoLWVVp7mG/v27dOoUaM0atQoVapUSe3atdNNN92ka665Rg0bNtRll12mmJgYhYaGKiMjw5obbN++XZs3b9bChQs93tMH+x4+WJ09e1b9+vXTxx9/rIEDB6p9+/aqWbOmIiMjdebMGR0/flzLli1TYmKiDh48KEmqVq2azRwpKSlGlO5QQUGBxo0bpxkzZqhnz57q1q2brr/+elWvXl2xsbFKSUnRmTNntGXLFn3//fdatGiRsrKySsx67pg+fbqysrI0a9Ys6/e29u3ba/ny5brzzjuVmppa5BwjcrhLBSpvJMMBgOBz9OhRvfDCC3rjjTfUsWNHtW3bVq1bt1bNmjUVFxenSpUqKTs7W+fOnVNSUpLWr1+v+fPna9++fS7Nf+zYMd16663q2LGjdd99xRVXqHz58vrrr7906tQprVmzRvPmzdPGjRt9/vr8ka/s3btXjz32mEaMGGH9nbVq1UqXX3654uLiFBMTo7y8PGVmZio5OVmHDx/WwYMHtWPHDq1bt05JSUluf/4ZnV+UlL26pywWi8aNG6exY8faHXPx4kXNnTs3gFW5z4hr00j+vn8VZtT7YP/+/erQoYM6dOig/v37q02bNjbv/0OHDmnhwoWaO3duqcglfcHoeybs8+XzPfn5+UpISFBCQoKaNWumO++8U61atdLVV19tzVksFotSUlJ0/vx57d27Vxs3btTatWu1bt26Ilmts7UC+ZyIrzK3QD37YVTWFczZkKv8/fxPWbBjxw717NlT1113nbp3766OHTuqbt26qlatmipWrKjU1FQlJycrOTlZBw4c0MaNG7Vx40Zt27bNpfkDeZ1duHBBgwcP1meffaYHHnhAHTt2VK1atRQVFWV9Ly1dulSJiYk6dOiQJJWZvxkbcZ8hxwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAwMlksFovRRRjhrbfe0siRI40uA4CfmEwm7dq1S40bN5YkHT16VHXr1pXZbDa4Mt+49Nadk5Oj8uXLG1gNgkH37t21ePFia/vEiROqU6eOCgoKDKzKWMuXL1fnzp0lSRkZGapVq5ZSU1MNrir4pKSkKDY21ugyUMrExMQoPT3d6DIAIKC6deumJUuW2O0fPXq0XnnllQBWBLiuR48eWrRokd3++Ph4JSQkBLAi/K205xvwzp133qnvv//e2p4/f7769u1rYEUoyYzMG8lwgP+aMmWKHn74YaPLKNMSEhIUHx9vdBmAX5FfuCc6OlrHjx9XTExMsf0zZ87UoEGDAlwVgEDhnhkY5F/4G1nXf/H8D+A/3t5nyDGLFx0drbS0NKPLMFzbtm21YcMGm2Nt2rTR+vXrJUkff/yxXnjhhSLnHTt2TLVq1dLx48d15ZVXFun/6KOP9Pzzz7u0BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJPmhRhdAQD4g8Vi0bvvvmtt165dW3fffbeBFQH+FR8fb9OeOnWqCgoKDKrGeNdcc406depkbY8dO1apqakGVgQAAEq7fv36OexfvXp1gCoBUJqQb8CR22+/3aa9ceNGYwoBvECGAwBAYJFfuCc9PV3nzp2z2z99+vTAFQMg4LhnBgb5F/5G1vVfPP8D+I839xlyTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASrEKMLAAB/mT17tpKSkqztESNGGFgN4D81a9ZUjx49rO38/HwlJCQYWJHxXnnlFZlMJklSSkqK3n//fYMrAgAApdkNN9yg+++/325/VlaWfv755wBWBKA0Id9AccqXL68hQ4bYHFuzZo1B1QCeI8MBACBwyC/c16JFC9WrV6/YvsOHD+unn34KbEEAAoZ7ZmCRf4Gs6794/gfwH2/vM+SYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACFYhRhcAAP5iNps1YsQIa7tly5bq2rWrgRUB/vHss8+qXLly1vb8+fN17NgxAysyVt26dTVgwABre9SoUUpJSTGwIgAAUFJUqVJFq1evVo8ePRQS4lpkcsMNN2jhwoUKDw+3OyYhIUHZ2dm+KhNAGUO+geJ8+OGHqlatmrX9+++/a9OmTQZWBLiPDAcAAM+QXwTO66+/brdv4sSJslgsAawGgCe4Z5YM5F8g6/ovnv8B/Meb+ww5JgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJZiNEFAIA/LV68WEuWLLG2//3vf8tkMhlYEeBbV199tZ588klr22KxaPTo0QZWZLx3331XoaGhkqS9e/fq008/NbgiAABQUphMJrVv316LFi3SqVOnNHnyZD300ENq2rSpqlatqtDQUEVGRqpOnTrq06ePEhMTtWnTJtWuXdvunOnp6Xr77bcD+CoAlEbkG6XbRx99pPj4eIWHhzsdGx4erk8++URPPPGEzfGyngWgZCLDAQDAM+QX/lWhQgU1b95cM2fO1N13313smMzMTCUkJAS4MgCe4J5ZcpB/lR5kXZ7h+R/AdYG+z5BjAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJiFGl0AAPjb008/rY4dO6p8+fK6/vrr9cADD+iLL74wuizAK5dffrk6dOigf//73ypfvrz1+Jw5c7Rt2zYDKzNWixYt1K9fP2v7qaeeUm5uroEVAQCAkqp69eqKj49XfHy8x3OYzWY9/PDD+uuvv3xYGYCyinyj9KpTp46ef/55jRo1SnPnztXq1au1detWnT17Vjk5OYqLi1PDhg3Vvn17Pfroo6pVq5bN+XPmzNGXX35pUPWAZ8hwAADwDfIL35g4caIeffRRl8d/+OGHunDhgh8rAuAP3DODH/lX6UDW5R6e/wHcF8j7DDkmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgl2o0QUAgL8dOnRIFSpUMLoMwGvvvPOOXnvtNbv9Z8+e1XPPPRfAioLPli1bFBISYnQZAAAAslgsevrppzV37ly7/f5gMpn8Mi/gS1z/niHfKP2qVKmi4cOHa/jw4S6f88033yg+Pt6PVQH+QYYDAEBwcJZfoKi9e/fq/fffd/s89sJAyUfm63/kX6ULWZd9PP8D+EYg7jPkmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAh2/N+4AQAoBf766y9169ZNZ8+eNboUAACAMu/o0aPq1KmT/vOf/xhdCgCglDp58qSeeeYZ3XPPPcrMzDS6HAAAAJRA5BfuS05O1n333aeLFy8aXQqAAOOeCfgXWdf/8PwP4B/cZwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBahRpdAAAA8Ex6err27dunJUuWaMyYMTp//rzRJQEAAJRpBw4c0OTJkzVp0iSlpaUZXQ4AoIQYOnSoZsyYoZtuuknXXXedatWqpdjYWFWqVEkxMTHKy8vThQsXdObMGf36669as2aNvvvuO+Xk5BhdOgAAAEog8gvP7Nq1S/3799f27duNLgVAAHHPBNxH1uU+nv8B3MN9BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPh/9u42tuq7bOD41T+Hh9mV4h4AgVWkOqTArKJxC1adgeiMsCEPpUQKyoioUTaJW190ySbJTA1BR5YljduYm3FkkLikvFAkJotVp2EqZiuwjGWTMQRBishgZbT3izs3hhsKB9Zzfqft55OcF/23/f++p5y0Vy9IAAAAAAAAAAAAAAAAAAD4r1zqAAAuX1lZWeoEEmhubo7m5ubUGQAAA9bhw4dj/PjxcdNNN8X06dNj+vTpMWnSpBg1alRUVlbGyJEjo7y8PE6cOBHHjh2Lo0ePxq5du+JPf/pT/OEPf4jnn38+enp6Uj8NuGxbt271eyYk9O9//zva2tqira0tdQqDmJ8DANB/2F8Ux8mTJ+PQoUPxwgsvxJYtW2LLli1x+vTp1FnAZfI9E4rPruvS/PsfeHd8nwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/yqUOAAAAACgVb775Zrz55pvxy1/+sqDnlJWVFfT+UMq8/gEAAN6dYu0vBotVq1bFqlWrCnqG34UhHTtfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGqix1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPnJUgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnyx1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPnJUgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnyx1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPnJUgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnyx1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPnJUgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnyx1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPnJUgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnyx1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPnJUgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnyx1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPnJUgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnyx1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPnJUgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnyx1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPnJUgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnyx1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPnJUgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnyx1AAAAUBiHDx+OrVu3xunTp1OnAAAAAEBedu/eHe3t7dHT05M6BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABKVpY6AAAAKIzDhw/HnDlzYsyYMdHY2BhtbW3xzjvvpM4CAAAAgF797W9/i7q6uqiqqorVq1dHe3t76iQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDlZ6gAAAKCwjh49Gk899VTMnTs3Jk6cGKtXr4729vbo6elJnQYAAAAAF/TGG2/Ehg0boq6uLmpqauL++++Pl19+OXUWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSELHUAAABQPPv3748NGzZEXV1dTJo0KZqammLPnj2pswAAAACgV7t27YoHHnggJk+eHFOnTo2WlpY4cOBA6iwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASCZLHQAAAKTx2muvRUtLS3z4wx+OT3ziE7F+/frYv39/6iwAAAAA6FVHR0c0NTXFDTfcELNnz47HH388Ojs7U2cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQFFlqQMAAID0duzYEWvWrImqqqr41Kc+FQ899FAcOnQodRYAAAAAXNCZM2di+/btsWLFihg7dmzMmTMnnnzyyfjPf/6TOg0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACi5LHQAAAJSO7u7u+N3vfhd33XVXjBs3LmbPnh1PPvlkHD9+PHUaAAAAAFzQ22+/HVu3bo1ly5bF6NGjY9GiRdHW1hanT59OnQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABZGlDgAAAErTmTNnYvv27bFs2bIYM2ZMzJkzJzZv3hxdXV2p0wAAAADggk6ePBmbN2+OuXPnxtixY6OxsTG2b98ePT09qdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoM9kqQMAAIDSd/Lkydi6dWssWrQoxo0bF6tWrYrnnnsuuru7U6cBAAAAwAX961//iqeeeipmz54dH/jAB6KpqSl27tyZOgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3rUsdQAAANC/HDlyJFpbW+Ozn/1sVFVVxerVq6O9vT16enpSpwEAAADABb3++uvR0tIStbW1MXXq1Lj//vvj5ZdfTp0FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFckSx0AAAD0X/v3748NGzZEXV1dTJo0KZqamqK7uzt1FgAAAAD0qqOjIx544IGYPHlyTJ06NVpaWuLYsWOpswAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgb7nUAQAApLN8+fIYOnRo6gwK5Pjx40U977XXXouWlpaingkAAAAwELS2tsa2bdtSZ5SEffv2FfW8jo6OaGpqiizLinouAAAAQH938uTJWLRoUeqM5E6dOpU6AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGKRyqQMAAEjn2WefTZ0AAAAAAIPejh07YseOHakzBrXu7u7UCQAAAAD9yjvvvBObN29OnZHctGnTUicAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDVJY6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgPxkqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIT5Y6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgPzkUgcAAJDOxIkTI8uy1BkUyOnTp2Pfvn2pMwAAAAC4hOuvvz4qKipSZ5SEEydOxMGDB1NnAAAAAHAJWZbFxIkTU2cUjb0VAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQanKpAwAASOevf/1rVFZWps6gQHbv3h1Tpkwp2nlDhgyJm2++OV544YU4depU0c4FAAAA6O8efPDBuPPOO1NnlIRnnnkm6uvri3beiBEjYtasWTF+/PhobW0t2rkAAAAA/V15eXns3bs3dUbRbN68ORYtWpQ6AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4KwsdQAAANC/zZgxI3784x/H/v37o729PYYOHZo6CQAAAAB6NWTIkJg1a1b89Kc/jUOHDkVbW1t8/OMfT50FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHnLpQ4AAAD6n4985CPR0NAQixcvjve///2pcwAAAADgorIsi7q6umhoaIgFCxbEtddemzoJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK5YLnUAAADQP1RVVcUdd9wRy5Yti4997GOpcwAAAADgkmpqamLhwoXR2NgYkyZNSp0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH0ilzoAAAAoXWPHjo36+vpoaGiIT37yk6lzAAAAAOCSbrzxxmhoaIiGhoaYPHly6hwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6HO51AEAAEBpqaysjLlz58bChQvjtttui1zOrw0AAAAAlLZx48bFggULYuHChTFz5swoKytLnQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABZNLHVCqhg0bFtXV1akzAADysnfv3ujq6kqdQT921VVXxZe+9KVYsmRJ3HbbbTF8+PCCnfW+970vRo0aVbD7AwADw4EDB6Kzs7PX95eXl0dVVVURiwAArtyePXuiu7s7dcaAc80118T8+fNjyZIl8elPfzqyLCvYWVmWxeTJkwt2fwBgYOju7o49e/Zc9GOqqqqivLy8SEUAAFeus7MzDhw4kDoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAXuRSB5Sq6urq6OjoSJ0BAJCXmpqa2LVrV+oM+pkhQ4bEzTffHI2NjbF48eIYOXJkUc79/ve/H3feeWdRzgIA+q8VK1bE448/3uv7Z86cGb/61a+KWAQAcOVGjhwZx48fT50xIIwYMSJmzZoVjY2Ncfvtt8ewYcOKcm55ebm/PwYALunYsWMxatSoi35Ma2trfOELXyhSEQDAlXv00Udj5cqVqTMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoRS51AAAAUFwzZsyIpUuXxuLFi2PMmDGpcwAAAADgooYMGRK33nprLF26NObNmxcVFRWpkwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgqVzqAAAAoPBqampi4cKFsXTp0qiurk6dAwAAAAAXlWVZ3HLLLbFw4cJoaGiI0aNHp04CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJKRSx0AAAAURnl5eTQ3N0dDQ0PU1NSkzgEAAACASxo/fnysW7cu6uvrY8KECalzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAk5VIHAAAAhXHDDTfE2rVrU2cAAAAAQN5mzpwZM2fOTJ0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUtSx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAfrLUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQnSx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+8rANAAAgAElEQVRAfrLUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQnSx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAfrLUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQnSx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAfrLUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQnSx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAfrLUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQnSx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAfrLUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQnSx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAfrLUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQnSx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAfrLUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQnSx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAfrLUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQnSx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAfrLUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQnSx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAfrLUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQnSx0A9F/r1q2LsrKys4/Ozs7USRTRc889d86f//891q9fnzoNrtjy5cvPe02Xl5fHG2+8kToNgCIx4w5uZlwGIjMuDG5mm8HNbMNAZLYB6J3Zb/Ay9zFQmf1g8DLXDG5mGwYqsw0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACFkKUO4Mq89NJL8cMf/jA+//nPR01NTVx33XUxfPjwGDduXNTW1kZ9fX088cQTcfDgwdSpwAB05syZWL169XnXx44dG9/4xjcSFEHfuO+++yKXy51z7a233op77rknUREAUCxmXAYqM2469ndASmYbBiqzDQCcy9zHQGb2S8NOC0jJbMNAZrYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgELLUAVye559/Purq6mLatGlx7733xrZt22LXrl1x5MiR6OrqigMHDsTOnTvjmWeeia9+9asxfvz4WLVqVfzjH/9InQ4MIBs3boydO3eed33NmjVx1VVX9fp5Dz/8cJSVlfX6GDlyZPzzn//Mq2HChAm93qezs/OKnxulqaurKzo6OuLZZ5+NlpaW+NrXvhYzZ86M6667rtfXQS6Xu+xzqqurY8mSJeddf/rpp+OPf/xjXzwVoES8+OKL53zPWLBgQeokILErnXEjzLlcGTPuwGV/B5QC+zuKzWwDxWGnBfx/dlqkYPYbmOy0gFJgtiGFiRMnXvS1k+/jZz/72UXPMdsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQCFnqAPJz5syZ+Na3vhW33HJLtLe3X9bntba2xgc/+MHYsmVLAQsv3xNPPHHOf/r+yiuvpE4qOl8D+qOurq5Yu3btedevvvrqWLly5bu69/Hjxy94b/jOd74TU6dOjXnz5kVTU1Ns3Lgxfv/738eRI0f6/Ky77777gtfvu+++Pj8LYCAy49IfFXLGjTDncmFm3IHH/m5g8jWgP7K/IwWzDTAQmP3ob+y0SMXsN7AMxJ1WhJ/rg/350z+ZbRgMzDYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0tSx1AJf21ltvxbx58+KRRx455/qNN94Ya9eujR07dsTBgwfj7bffjn379sVvfvOb+Pa3vx3XXHPN2Y89ceJE1NfXx0MPPVTsfGCAeeyxx+Lvf//7edeXL18elZWV7/r+ra2t8eqrr77r+8CVqq2tjc985jPnXf/1r38d7e3tCYoAgEIr9IwbYc4lLTNu4dnfAaXE/o6BzmwDAP/LTovBwOxXWHZaQCkx2zAYmG0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoa1nqAC5t5cqV0dbWdvbtXC4XP/jBD+LFF1+M5ubmmDFjRowePTqGDRsWEyZMiFtvvTU2bNgQu3fvjsWLF5/9vO7u7rjrrrtiy5YtKZ4GMAB0d3fH+vXrL/i+FStW9MkZXV1d0dzc3Cf3givV2+t53bp1RS4BAAqtGDNuhDmX9My4hWV/B5QK+zsGC7MNAIOdnRaDidmvcOy0gFJhtmEwMdsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQl7LUAVzcxo0b4+c///nZt3O5XGzatCmamppi6NChF/3c66+/Pp5++un45je/ec71lStXxuuvv16QXmBga2tri1deeeW867W1tVFbW9tn52zatCn+8pe/9Nn94HLNnz8/Kioqzrve1tYWr776aoIiAKBQijXjRphzScuMWzj2d0Apsb9jsDDbADDY2WkxmJj9CsNOCyglZhsGE7MNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfSlLHUDvjh8/Hnffffc51x588MGYP3/+Zd3n4Ycfjs997nNn3+7s7Iw1a9b0SSMwuDz66KMXvL5gwYI+PaenpyfuvffePr0n/dvw4cNjypQpcfvtt8c999wTjz32WPz2t7+NQ4cORXl5eZ+f9573vCe++MUvnne9u7s7Nm7c2OfnAQDpFGvGjTDnci4z7sBgfweUGvs7UjHbAEBx2WmRktmv/7PTAkqN2YZSM2TIkOjp6bmsx1e+8pW87m22AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoC9lqQPo3U9+8pM4duzY2bc/+tGPxne/+93Lvk9ZWVm0trbG8OHDz177xS9+EXv37u2TzlLS09MT27Zti/r6+pgyZUpcffXV8d73vjduuumm+N73vhcvvfRS6sTkjh49Go888kjccccdUV1dHZWVlTF06NC49tprY9q0abF8+fLYtGlTnDp16l2d8+c//zm+/vWvx/Tp06OysjIqKiriQx/6UKxYsSLa29uv6J779u2LH/3oR/HlL385qquro6KiIkaM+B/27jw66vJe/PgnAcKibAKCoihFS0Fww7aAFhVRFNS6XLGCrb2K1KUq6q9qpa2tuFZwqd7rgqgXL+5bBRUKtIpbbRVx3wDpBQTZV4UkML8/PKbGZCYzySST5fU6Z87Jd3u+z0y+Yd7n+Ydm0blz5+jXr19cdtllMWfOnCrNO6J6n6NEIhHTpk2L8847L/bbb7/YaaedomnTptG+ffvo3bt3nHPOOTFz5swqv4fqsGLFipg2bVq5x4477ris32/GjBkxa9asrI+bzIsvvhhXXHFFDBo0KLp16xZt27aNJk2aRPv27eO73/1uHHPMMXH99dfH22+/XS33X758eVx33XXRt2/f6NixYzRr1ix22WWXOOaYY+Lee++N4uLiSo372muvxVVXXRWDBw+OPfbYI3bYYYcoKCiIDh06RM+ePWPEiBFx3333lfq+qY1uueWWeP/99+Opp56K66+/Pk4//fQ46KCDokOHDtV2z+OPP77c/ZMnT45EIlFt9wXqnuronm/SuBXTuBXTuOWr6caNqNnO1bga99s0bvZZv8uctqmYtqmYtimf9Tttk0vaBuom61q5p/1S033lq+9rWhHaT/uVpf2yy5pW5nRNxXRNxbRN+ep72+ia2t01uaJtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyJpEA3XFFVckIiLpq0ePHrmeYmL33XcvNafJkydXabxTTjml1HijR49Oeu6Pf/zjkvP22WeftO/x6KOPlrrHO++8U+ac7bbbLuVnX97r/vvvLzXGDTfcUOr4mjVrEsuWLUscdNBBKcdp3Lhx4tJLL00UFxdX+F5q+2dQGXfddVeidevWad1vhx12SNx0002JwsLCpOOV93vYtGlTYvjw4RWOf8YZZ6T1e0gkEonp06cnBg0alMjLy0tr7ieccEJi1apVFY5bE8/RN/3tb39L7Lfffmm9h4MPPjjxySefZDR+dbv77rvLnWvnzp3THuPWW2/N6Lnv06dPYtu2beWO1blz56TXrVmzJu05Pf7444l99903o3kNGjQo8fLLL6c1/uDBg5OOs3Tp0pLPpUWLFinvuddeeyU+/fTTtN/XM888k/jhD3+Y9ntq06ZN4sorr0xs2bIl7XvUFsn+TW3UqFGVxl25cmXSf3def/31LM0+e3r06JHxd0tEJNauXZvrqVMPtWzZMuVzN2HChFxPMfHOO++UmtOJJ56Y8vya6B6NWzkat+L5a9zkstG4iUTt61yN+9VL45ZV1xr39NNPT/k7PuKII3I9Ret333hZv9M22ib3rN/9+6Vtahdt85W6sF7S0E2YMCHl76hly5a5nmLGa1qJhHUt7Vc32k/3Zaa+rmklEtrv65f2K6sutd/atWsr/B0/99xzOZ1jLte0Eona/b2uaypH11Q8f22TXH1tG13z1asudM1uu+1WZt5VbZeK1KW2qQvrJTXpkUceKfdz6NWrV5l9/fr1K7lu/Pjx5V63aNGiRCKRSCxatKjc4+PHjy8Zo1+/finvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANEiP5Ae10ieffBILFy4s2W7Tpk2ccMIJVRpz5MiRpbZnzJhRpfFqk/Xr18ehhx4aL730UsrziouL4/rrr4+f/vSnsXXr1hqaXe0wbty4GDVqVKxbty6t81evXh0XXnhhvPDCC2nfY8uWLXHkkUfGAw88UOG5EydOjLPPPrvC85YtWxaDBw+OmTNnRiKRSGseTzzxRBx44IHx+eefp3X+16rzObr99ttj0KBB8eabb6Z1/gsvvBD9+/eP119/PeV5t912W+Tl5ZW8zjrrrLTGr4znnnuu3P0HH3xwVsbPzy/7lfTGG2/Eww8/nJXxv+3LL7+MkSNHxoknnhhz587N6NqZM2fGgAED4pprrkn7uUzmvPPOi/POOy+++OKLlOe99957MWDAgFi7dm3K8woLC+P888+PoUOHxmuvvZb2PNauXRu/+93v4pBDDolly5alfV191q5du9hrr73KPZbs7wFoOKqje75N41ZM41ZM46ZW3Y0bUbOdq3FL07hladzssn6XGW1TMW1TsbrWNjXZNRHW775J2zQM2gYqx7pW7aD9Uqtr3RdhTauqtF9p2q8s7Zc91rQyo2sqpmsqpm1Sq29to2tKq6tds23btvjZz34WvXr1ih122CGaNGkS7du3jz333DOOO+64+OMf/xiffPJJpcfXNgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRL2f/NnVrhxRdfLLXdv3//aNasWZXGPPDAA6NJkyYl2++//36sXr26SmPWFueff3588MEHkZ+fH6NGjYpXX3011q1bFxs2bIh//vOfcd5550WjRo1Kzn/wwQfjmmuuyeGMa9b8+fNjzJgxJdtNmzaN0aNHx+zZs2PFihVRVFQUGzZsiHnz5sWDDz4YP/vZz6J58+YZ32f06NHx4osvRkFBQZx//vnx6quvxpo1a+LLL7+Md999Ny666KJSv4cJEybE7Nmz0x6/X79+MW7cuHjppZdi2bJlsWXLlli/fn28/fbbMX78+OjSpUvJuR9++GGceeaZGc2/up6jSZMmxTnnnBNbt26NiIgmTZrEaaedFtOmTYvPP/88CgsLY+XKlTFt2rQ47rjjSq5bsWJFHHfccbFy5cqM3kd1ef7558vd/8Mf/jAr45988snRtGnTMvt/85vfRFFRUVbu8bVt27bFsGHDYuLEiZUeY+vWrTFmzJj47W9/W+kxrrzyyrjtttvSPn/RokVx6aWXJj2eSCTipz/9adx6662VntOrr74aBx98cKxbt67SY9QnyZ7vv/71rzU8E6C2qe7uidC4FdG46dG4qVV340bUXOdq3OQ0bmkaN3us32VG26SmbdKjbVKzfleatmkYtA1kzrpW7mm/ium+1OrTmlaE9ktF+5Wm/bLDmlZmdE1quiY92ia1+tQ2uia5utY1iUQi7r///njvvfdizZo1UVxcHKtWrYp58+bFn//857j00kuje/fuceyxx8a8efMqdQ9tAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDbk53oClO/1118vtf3973+/ymM2bdo0evfuXbKdSCTijTfeqPK4mdq4cWMkEom49957S+3/5JNPIpFIlPs69dRTU4755z//OQoKCmLKlClx5513Rt++faNVq1ax/fbbxwEHHBB/+tOfYsaMGdG8efOSa6666qr46KOPquU9VqQ6PoNUHnzwwSgsLIyIiPz8/Jg2bVrcdNNN8aMf/Sjat28fjRs3ju233z66desWP/nJT+J//ud/YsmSJTF69OgoKChI+z4PPfRQdOjQIV555ZW45ZZbom/fvtGmTZto1qxZ7LXXXjF+/Pi4++67S11z6623phwzLy8vjjvuuHjvvffilVdeiYsvvjgOPPDA6NixYxQUFETLli2jd+/ecdFFF8W7774bRx11VMm1U6ZMieeffz7t+VfHc/Txxx/H2WefXbK90047xSuvvBL33XdfDB48OHbcccdo0qRJtGvXLgYPHhxPPvlk3H333ZGXlxcREUuWLIlf/epXab+H6rJgwYJYtWpVuce++e9KVXTp0iXOOeecMvvnz58fd911V1bu8bXf/OY3MXXq1KyMdfXVV8fjjz9eqWtvv/32jK+ZNGlSrFmzptxjV111VTzyyCOVmss3ffzxx/Gzn/2syuPUB8me7zfeeCMSiUQNzwaoTaqje75N46amcdOjcZOricaNqLnO1bipadx/07jZY/3O+p22+Yq2aThtY/0uPdqmZmkbyJx1rbK037/VlvbTfcnVtzWtCO1XEe33b9ovO+rzmlZE9r/XdU1quiY92ia5+tY2uia1+tY1iUQipkyZEvvtt1+lPh9tAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDbk53oClG/58uWltr/zne9kZdyuXbuW2l6xYkVWxq0NrrvuuhgyZEjS44ceemjcfPPNJduFhYWltuuzt99+u+Tn/v37xyGHHFLhNW3bto2bbropBgwYkPZ98vLy4oEHHog+ffokPefnP/95HHTQQSXbU6ZMiaKioqTnd+zYMZ588sno2bNnhfdv2bJlPProo9G5c+eSfXfddVeas/9Ktp+jsWPHxhdffBEREU2aNIlnn302DjjggJRzOOOMM+Kiiy4q2Z48eXIsXrw43bdQLd56662kx7p37561+4wZMyZat25dZv+VV14ZGzduzMo9Fi1aFDfeeGPS4506dYoJEybEZ599Flu2bIkFCxbE1VdfHS1atEh6zSWXXBLFxcWVntOoUaPinXfeic2bN8eCBQviF7/4RdJzN2/eHDNmzCizf+nSpXHttdcmva5nz57x0EMPxbJly6KwsDAWLlwY11xzTTRr1qzc859++umYNWtW5m+mnunRo0e5+9evXx8LFiyo4dkAtUl1dE95NG5yGjd9Grd8NdW4EdXfuRpX42ZC42aP9bvMaZvktE36tE35rN9pm4ZK20DmrGvlnvZLj+4rX31a04rQftovM9ovO6xpZU7XJKdr0qdtylef2kbXNNyu2bhxY4wYMSKmT5+e0XXaBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGzIz/UEKN/q1atLbbdu3Tor47Zp06bU9qpVq7Iybq516dIlzjvvvArPGzlyZHTv3r1ke/LkybFly5bqnFqtsHHjxpKft99++2q7zxFHHBGDBg2q8LxTTjml5OctW7bEBx98kLU5bLfddnHOOeeUbM+YMSPta7P9HC1dujQeeuihku1Ro0bFvvvum9ZcLr/88mjatGlERBQVFcVTTz2V1nXV5dNPPy13f+PGjaNTp05Zu0+7du3ikksuKbN/+fLlMX78+Kzc46abbkr6d9+uXbt45ZVXYuTIkbHTTjtFQUFBdO3aNS6//PJ4+umnIz+//K/NBQsWxMMPP1yp+YwdOzbuvPPO6NWrVzRt2jS6du0ad9xxRxx99NFJr3njjTfK7Lvxxhvjyy+/LPf8vfbaK1577bU4+eSTo2PHjtGkSZPYbbfd4te//nU8/fTTkZeXV+51V199daXeU33SuXPnpMeS/V0ADUNNdI/GTU3jpkfjJldTjRtR/Z2rcTVuJjRu9li/y4y2SU3bpEfbJGf9Tts0VNoGMmddK/e0X8V0X3L1aU0rQvtpv8xov+ywppUZXZOarkmPtkmuPrWNrmnYXVNcXBzDhw+PdevWpX2NtgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAbyv/f0sm5DRs2lNrefvvtszLut8dZv359VsbNteHDh0fjxo0rPC8/Pz9OPfXUku0NGzbEm2++WZ1TqxV23nnnkp9fffXVWLJkSbXc5yc/+Ula5+2///6ltj/99NOszuOggw4q+XnlypXxf//3f2ldl+3naObMmVFcXFyy/dOf/jSteURE7LDDDtG3b9+S7RdffLHc8375y19GIpEoed1xxx1p3yMTyZ6ZDh06RH5+dr9KRo8eXeqZ/dr48eNj+fLlVR7/mWeeSXrst7/9bXTt2rXcY4cddlgMHz486bXPPfdcxnPp0aNH/PrXvy73WKq/p88++6zMvqlTpyY9f9KkSUm/Rw4//PA46qijyj02e/bsWLduXdJxG4JOnTolPbZ48eIanAlQ29RE92jc1DSuxq2qmmzciOrtXI1bmsZNTeNmj/W7zGib1LRN/WybmuqaCOt3EdqmodI2kDnrWrmn/Spuv7rWfRHWtCpL+5Wm/VLTftlhTSszuiY1XVM/17QitE1l6JrS6mLXbL/99nHyySfH3XffHW+//XasXr06CgsLY9myZTF16tQ4/vjjU16/evXquOGGG9K+n7YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgG7L/P8OTFd/+z+A3bdqUlXE3btxYartVq1ZZGTfXDjzwwLTP7d+/f6ntf/7zn9meTq1z5JFHlvy8bt26GDhwYDz55JNRXFyc1fsccMABaZ234447ltpet25dVufx7fEXLlyY1nXZfo5efPHFkp8bN24c++23X9rjR0R07dq15Od58+ZldG22bdiwodz9LVq0yPq9WrRoEVdccUW5cxg7dmyVxv7ss8/i448/Tnp8+PDhKa9Pdfz555/PeD6nnXZaNGrUqNxj3/z9f9u3/2aWLVsWH374YbnnduvWLfbff/+U8/j28/y1rVu3lnqOG6JUz/i3v1OBhqUmukfjpqZxF6Z1ncZNriYb9+txq6NzNW75NG5yGjd7rN9lRtukpm0WpnWdtknO+l3Fx7VN/aRtIHPWtXJP+y2s8Brdl1x9WdOK0H7JaL/ktF92WNPKjK5JTdcsTOs6bZNcfWkbXVO+utI1vXr1igkTJsTy5cvjoYceijPOOCN69+4dbdu2jSZNmkTHjh1j6NCh8cQTT8TkyZOTfrYREZMnT077vtoGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAbGic6wlQvnbt2pXaXrt2bVbG/fY4O+ywQ1bGzbXvfve7aZ/bvXv3UttLly7N9nRqneOPPz5+8IMfxD/+8Y+IiPj444/jhBNOiLZt28agQYNiwIABccABB0SfPn2iSZMmlb5Phw4d0jqvRYsWpba//PLLtK57//3344knnoh//OMf8eGHH8aqVatiw4YNUVRUlPK6devWpTV+tp+jf/3rXyU/FxcXl3nfiUSiwp+/tmrVqrTnVh22bNlS7v6CgoJqud8ZZ5wRN954Y3z00Uel9t95551x4YUXxne+851Kjbt48eKkx3bZZZcKn+H9998/6bGlS5fG1q1bo1GjRmnPp1+/fkmPtWzZMumxwsLCUtuLFi1Keu78+fMjLy8v7Tl924IFCyp9bX3QtGnTpMfS/bcLqJ+qu3siNG5FNK7GraqabtyI6ulcjZs5jatxs8X6XWa0TWraRttUlfW7r2ibhkfbQOasa+We9qu4/XRfcvVlTStC+1WG9tN+2WBNKzO6JjVdY02rqupL2+iazNWmrpk6dWra5w4fPjzefPPNGDduXLnHFy5cGPPnz49u3bpVOJa2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBvycz0Byvft/+j+008/zcq4CxcuTHmfuqp169Zpn9umTZtS22vWrMn2dGqdRo0axdSpU2PgwIGl9q9ZsyYeffTROO+886Jfv37Rpk2bGDJkSEyaNCkKCwszvk/Tpk0rNb9EIpHy+Pz582Po0KGx1157xW9/+9uYMmVKfPLJJ7F69Vj2k3oAACAASURBVOooKiqqcPwNGzakNY9sP0erVq0qtb1169ZSr23btpW8EolEyas8mzZtSntu1SHZ77Yyz0k6GjVqFNdcc02Z/UVFRTFmzJhKj7ty5cqkx9L597B9+/ZJj23bti1Wr16d0Xx22WWXpMcKCgrSHmfFihUZ3TcTqT6zhmDz5s1JjzVv3rwGZwLUNtXVPd+kcVPTuBq3qmq6cSOqp3M1buY0rsbNFut3mdE2qWkbbVNV1u++om0aHm0DmbOulXvar+L2033J1Zc1rQjtVxnaT/tlgzWtzOia1HSNNa2qqi9to2syV5e75qyzzkp5fN68eWmNo20AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIhvxcT4Dy9enTp9T2P//5zyqPWVhYGO+8807Jdl5eXpn71FV5eXlpn5tIJKpxJrVXhw4dYtasWTFlypQ45phjomnTpmXO+eKLL+K5556L0047Lbp16xbPPPNMDmZa2ltvvRV9+/aNZ599ttJjbNu2La3zsv0cFRUVpT1eNu5Xnbbffvty92/atKna7nnCCSdE3759y+x/+OGHY86cOdV235rUokWLpMcaNWpUgzNJbsOGDbmeQk598cUXSY8l+7sAyBaNWzGNWzGNm1wuGjei/neuxq39NG72WL/LjLapmLapmLZJzvpd9dA2tZ+2gdpJ+1VM+6Wm+5KzplV9tF/tp/2yw5pWZnRNxXRNxbRNctqmeuia6tWtW7do1qxZ0uMrVqxIaxxtAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDbk53oClG/AgAGltl955ZXYsmVLlcZ8+eWXo7CwsGS7Z8+e0a5duyqN+W1bt27N6njpWrt2bdrnrlu3rtR227ZtszqXXH0G6Tr66KPj6aefjrVr18bzzz8f1157bRx99NHRpk2bUuctXrw4jjnmmHj88cdzNNOI4uLiGDFiRKxcubJk31577RXXXnttzJo1K+bNmxfr1q2LLVu2RCKRKHl9/PHHlbpftp+jb/59denSpdQcM3198zPIhc6dO5e7f+XKlbFt27Zqu+/1119fZl8ikYjLLrusUuO1b98+6bEVK1ZUeH2q30NeXl7ssMMOlZpXVXXo0KHaxk4kEtU2dl2wbNmypMeS/V0AZIvGTZ/GTU7jJperxo3Ibudq3MxpXI2bLdbvMqNt0qdtktM2yVm/+4q2aXi0DdRO2i992q98ui+5+rKmFaH9KkP7ab9sqKtrWhG5+V7XNenTNclpm+TqS9vomsw19K6J0DYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkR36uJ0D5vvvd70aXLl1KttesWRNPPvlklcacOHFiqe3DDz886bkFBQUlPxcVFaV9j9WrV2c+sSz4+OOP0z73o48+KrXdqVOncs+ra59Bppo1axYHH3xwXHbZZTFlypRYuXJlzJo1K4YOHVpyTiKRiHPPPTc2b96ckznOmDEj3nvvvZLtM844I95666247LLLYuDAgdGtW7do1apVqd9VxFd/L5WR7edop512Kvl58eLF8cUXX1RqXrVB165dy91fXFwcy5Ytq7b7DhgwIIYMGVJm/4wZM2Lp0qUZj7fLLrskPbZ48eJYsWJFyuvnzJmT9NhOO+0UjRo1ynhO2ZDqfR1++OGRSCQq/br55ptr8J3UPosXL056bPfdd6+5iQANksbNnMYtS+Mml6vGjchu52pcjZspjZs91u8yo20yp23K0jbJWb/7irZpeLQN1E7aL3ParzTdl1x9WdOK0H7aL3PaLztyvaYVUbe+13VN5nRNWdomufrSNrqmYXXNvHnzUv771bFjx7TG0TYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkQ36uJ0By5513XqntcePGxdatWys11oIFC+Lxxx8v2c7Pz49zzz036fmtWrUq+XnVqlVp3+ftt9+u1Pyq6uWXX0773FdffbXU9ve///1yz6trn0FVNWrUKAYOHBhTp06NYcOGlez//PPPM/p8s+n5558v+bmgoCDGjx8fjRo1qvC6yv4Osv0c/ehHPyr5edu2bTFjxoxKzas22HvvvZMe+/DDD6v13tddd13k55f9utq2bVvGY+28886x5557Jj3+4IMPprz+gQceSHrskEMOyXg+2bLTTjtF9+7dyz32wgsvxJIlSzIab+vWrXHXXXfFtddem43p1WnJnu/tt98+unXrVsOzARoajVt1GlfjppLLxo3IXudq3PRo3H/TuNll/S592qbqtI22ScX63Ve0TcOjbaB20n5V19DbT/clV1/WtCK0X7q0379pv+zJ5ZpWRN36Xtc1VdfQuyZC26RSX9pG16SnNnbNMccck/Gzdvvtt6c8nuwz+zZtAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDaU/R/bqTVGjRoVrVq1Ktl+44034pZbbqnUWGeddVZs3ry5ZPu4446LPfbYI+n5nTt3Lvn5888/j+XLl1d4j6KiopgyZUracyooKCi1vXXr1rSv/bYHH3wwresTiUT87//+b8l2y5YtY//99y/33Lr2GWTT6aefXmp74cKFOZnHsmXLSn7u3LlztG7dOq3rHnnkkUrdL9vP0eDBgyMvL69k+7bbbqvUvGqDPfbYI9q2bVvusXfffbda7927d+849dRTszbe0KFDkx678sorkz7vs2bNigceeCDptUOGDKnq1Krk6KOPLnd/YWFhjBgxIjZs2FDhGF9++WXce++9se+++8YvfvGL+Pzzz5OeW1xcHHl5eeW+evXqVen3Udu888475e7ff//9Iz9fRgHVS+Nml8ZNTeOWVt2NG5HdztW4yWncsjRudlm/S5+2yS5tk5q2Kc363Ve0jbYBao72y66G2H66L7n6tKYVof1S0X5lab/syeWaVkTd+l7XNdnVELsmQtukUp/aRtckV5u75rnnnou99947zjrrrPjwww8rPP+BBx6Im2++Oenx3r17R5cuXdK6t7YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgG/zP2LVYq1atYty4caX2XXbZZfHUU09lNM4FF1wQM2bMKNlu3bp1jB8/PuU1ffr0KbX96KOPVnifW2+9NZYsWZL2vFq2bFlqe9WqVWlf+23/+te/4r/+678qPO+ee+4p9Z/TjxgxIpo2bVruuXXtM8imvLy8UtstWrTIyTyaN29e8vPy5ctj8+bNFV4zderUUs97JrL9HHXt2jWOP/74ku2ZM2fGpEmTKjW32uCQQw4pd/9rr71W7fceO3Zs0r/VTF100UVJx1q1alX0798/Jk6cGMuWLYuioqJYuHBhXHvttXHsscfGtm3byr3uO9/5TgwbNiwr86usCy+8sNTfzDe98MIL0bNnz7jhhhti7ty5sWHDhti6dWusWLEi3n333bj33nvjtNNOi5133jlOP/30ePfdd2t49rXX3//+93L3H3rooTU8E6Ah0rjZpXFT07il1UTjRmSvczWuxs2Exs0u63fp0zbZpW1S0zalWb/TNvWZtoHaSftlV0NsP92XWn1Z04rQftovM9ove3K5phVRt77XdU12NcSuidA2FakvbaNr6m7XFBUVxZ133hk9e/aMww47LG688caYM2dOrFy5MoqLi2P58uXx7LPPxoknnhgjRoxI+vuKiDjzzDPTvq+2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBvycz0BUjvzzDPj5JNPLtkuKiqKYcOGxQ033BDFxcUpr125cmWceuqp8ac//anU/gkTJsTuu++e8tpDDz00tttuu5LtsWPHxuLFi5Oe/9hjj8Wvf/3rlGN+W7du3Uptv/baaxld/22XXHJJTJ8+PenxF154Ic4///yS7YKCgrjggguSnl8XP4Nkhg4dGpMmTYotW7ZUeG5hYWHccMMNpfbtv//+1TKviuy9994lP2/atCmuvvrqlOfPmDEjRowYUaV7Zvs5Gjt2bDRr1qxk+8wzz4w777wzrbkkEon461//GkceeWR8/vnn5Z5z2223RV5eXsnrrLPOSmvsyjjqqKPK3T979uxqu+fXunTpEueee25Wxtp1113jwgsvTHp86dKlMXLkyNhpp52ioKAgunbtGpdffnl88cUXSa+5/vrro0mTJlmZX2V17tw5Lr300qTHFy9eHJdccknst99+0apVq2jcuHHsuOOO0bt37zj99NNj0qRJsXbt2hqccWa+/ax/87Vp06Zyr9m6dWvSa8aNG1fhPVesWBEffPBBuceOPPLIKr0fgHRp3OQ0bvo0bnK5bNyI7HWuxtW4Gje3rN+lT9skp23SV5fapia7JsL6nbbJLW0DfJv2S077pacudV+ENa3K0n7aT/vlTq7WtCLq3ve6rklO16RP2yRXX9pG19TNrvmmr/82Lr744ujTp0906NAhmjRpEh07doyhQ4fGE088kfL6nj17xtlnn53WvbQNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2ZKf6wlQsYkTJ8ZRRx1Vsl1UVBSXXHJJ9OrVK6655pqYM2dOrFixIgoLC2PJkiXx/PPPx+jRo6N79+4xefLkkuvy8/Pj5ptvjpNOOqnCe7Zs2TJ+/vOfl2x//vnn0bdv35g4cWJ89tlnUVRUFCtXrozp06fHsGHDYtiwYVFYWBjDhw9P+31179492rVrV7J9zTXXxEMPPRTLly+PrVu3pj1ORMSxxx4bW7ZsiSFDhsTZZ58dr732WmzYsCE2btwYb7zxRlxwwQUxaNCg+OKLL0qu+c1vfhPf+9736s1nkMpbb70Vp512Wuy4445x6qmnxj333BNz586NVatWRXFxcWzevDk++eSTuOeee6JPnz4xc+bMkmsPP/zw6N69e9bmkokTTjghWrRoUbJ91VVXxVFHHRXTp0+PxYsXR1FRUaxYsSKeffbZ+MlPfhJHHnlkrF+/PoYNG1ap+1XHc9SzZ8+YOHFiyXZhYWGcddZZ0adPn7j99tvj3XffjXXr1kVxcXGsWbMmPvroo3jkkUdi9OjRsfvuu8dhhx0W06dPj0QiUan3lE0//vGPo3HjxmX2L168OD744INqv/+YMWOidevWWRnr6quvjqOPPjorY40ZMyb+4z/+IytjVdXvfve7OPnkk3M9jXpj5syZ5f7t7brrrvGDH/wgBzMCGhqNm5rGTY/GTS3XjRuRvc7VuKRD41Yf63cV0zapaZv0aJvUct021u8qpm2yS9tA7aX9UtN+FdN9qeW6+yK0Xzq0X3Zpv+qRizWtiLr1va5rUtM16dE2qdWnttE1DVenTp3iqaeeKvdZLo+2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIFvS+x+2yantttsunn766Tj33HPjrrvuKtn/0UcfxZgxY2LMmDFpjXHvvffGSSedlPZ9r7766pg6dWr861//ioiIJUuWxMiRI5OeP2bMmNh3333jgQceSGv8Ro0axciRI+P666+PiIiVK1fGKaecUu65999/f5x66qlJx/rTn/4UH3/8cXz44Ydxxx13xB133JHy3qecckpcfvnlFc6xLn0G6Vi/fn1Mnjw5Jk+enNb5Xbt2jYkTJ1bpnlXRqVOnuPrqq+PCCy8s2Tdt2rSYNm1a0muOOOKI+MMf/hCPPPJIxverrudo+PDhUVRUFGeddVZs3rw5IiLmzJkT55xzTsZzzKUdd9wxBg8eHM8880yZY0899VT06NGjWu+/ww47xKWXXprWZ16R/Pz8eOSRR+Lcc8+Ne++9t1JjNGrUKP7whz9kZT7ZkpeXF5MmTYqdd945br755kgkEpUap0mTJvGLX/wire+X+uzJJ58sd/+IESMiPz+/hmcDNEQaNz0aNzWNm1quGzcie52rcVPTuF/RuNXH+p31uwht8zVtkzu5bhvrdxXTNtmlbaD20n7p0X7J6b7Uct19EdovHdovu7Rf9cjVmlZE3fle1zXp0TWpaZvU6lPb6JrU6mvX9O7dOx5++OHYc889075G2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAt/nfsOqJx48Zx5513xssvvxz9+/dP+7pGjRrFqFGjYt68eXHSSSdldM/WrVvHCy+8EL169Up5XkFBQYwbNy6uuuqqjMaPiLjiiiti4MCBGV/3ba1bt46//e1vceCBB6Y8r3HjxnHJJZfE/fffH40aNUpr3LryGWTbSSedFK+++mrsuuuuOZ3H6NGjY9y4cdGkSZMKzx05cmQ8/fTT0bhx40rdq7qeo4iI0047Lf7+97/HEUcckfZ88vPzY/DgwfGXv/wlOnXqlPZ11WnkyJHl7n/sscdq5P6jR4+OnXfeOStjNW/ePO6555547LHHYp999sno2oEDB8bs2bNjzJgxkZeXl5X5ZEtBQUHceOONMXPmzDjkkEMyurZ9+/Zx4YUXxkcffRS33nprdOjQoVJzSPfvojbbtGlTPPfcc2X25+fnxxlnnJGDGQENkcbNPo2bnMYtq6YaNyJ7natxy9K4/6Zxq5/1u9S0TfZpm+S0TVnW72oPbZMd2gZqN+2XfQ2t/XRfxXLdfRHaLx3aLzu0X/XKxZpWRN35Xtc12dfQuiZC26SjPrWNrimrNnfNG2+8ERdccEF07Ngx42s7deoUY8eOjddffz169OiR9nXaBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGxqnOsJkJn+/fvHyy+/HO+8804888wzMWvWrFi0aFEsX748Nm7cGO3atYsdd9wxvve978WRRx4ZQ4YMqdR/yP613XbbLebOnRv3339/PP744zFnzpxYuXJltGrVKnbbbbcYMmRIjBo1KnbZZZdKjd+8efOYMWNGPPXUU/HYY4/F3LlzY8mSJbFp06bYunVrRmN16tQpXnzxxfjLX/4SEydOjLfffjsWL14cjRs3jl133TWOOOKIOP3002OvvfbKaNy69Bkk89Zbb8Wbb75Z8lqwYEGsWrUqVq9eHevWrYtmzZpF27Zto0ePHtG/f/84+eSTo0ePHlm5dzZcfPHFcfzxx8edd94Zs2bNivnz58emTZuiffv20blz5zjssMPitNNOy8qcq+s5iojYZ599Yvr06TF37tyYMmVKPP/88yW/i82bN0erVq1i5513jn322ScOPPDAOO6446JTp05Vfk/ZdOyxx0a3bt1i/vz5pfbPmTMn3n777dh7772r9f7NmzeP3//+9zFq1KisjXniiSfGiSeeGLNnz46ZM2fGSy+9FAsXLozVq1fHpk2bolWrVtG2bdvo3r17/OhHP4ohQ4ZU+/vMhoEDB8bAgQPjvffei2nTpsUrr7wS77//fqxevTrWrl0bTZo0ifbt20eXLl2iX79+MWDAgDj88MOjoKAgrfHfeeedpMd++ctfZutt5Mxjjz0WGzduLLN/6NChsccee+RgRkBDpXGT07jp07ip5bpxI7LfuRpX45ZH49Yc63fJaZvktE36tE1quW4b63fp0zZVo22g9tN+yWm/9Oi+1HLdfRHaLxPar2q0X82o6TWtiLrzva5rktM16dM2qdXHttE1daNr9tlnn7j55pvjpptuirlz58Zf//rXeOutt+Kjjz6KRYsWxYYNG+LLL7+M7bbbLtq0aRO77bZbfP/7348BAwbEkCFDokmTJhnfU9sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQTXmJRCKR60nkwu9///v4wx/+kPR4jx494v3336/BGZGJcePGxa9+9auS7TVr1kSbNm1yOCPqIs9R5fz3f/93nHvuuWX2n3/++XHLLbfkYEbkwg033BCXXHJJmf2HHXZYzJw5Mwczyq6DDz44Zs+eXWb/Cy+8EAMGDMjBjCrWs2fP+OCDDzK+bu3atdG6detqmBENWatWrWLDhg1Jj0+YMCFGjhxZgzOqG7QJ2eA5qhyNS4TGrY3OOOOMuOeee5IeP+KII2L69Ok1OCMy4TuJbPAcVY62IULb1EbWS2q/u+++O84888ykx1u2bBnr16+vwRnVHb6zqSrPUOXoPr6m/WqXdevWVfhv2HPPPRdHHnlkDc2ITPhOIhs8R5WjbYio/10TUffaxnpJaY8++mgMGzaszP5evXrFu+++W2pfv3794pVXXomIiBtvvDEuvvjiMtctWrQodtlll1i8eHHsuuuuZY6PHz8+LrroooiI6N+/f7z66qtJ7wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRIj+bnegYA1C0jR46MXXfdtcz+e++9N9avX5+DGZELM2bMKLNvu+22iwkTJuRgNtk1d+7cmD17dpn9gwYNigEDBuRgRgBAddO4RGhcAOoPbUOEtgGAhkD38TXtB0B9oG2IqN9dE6FtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyL78XE8AgLqloKAgfve735XZv2HDhrj77rtzMCNq2pYtW+Kll14qs/+6666Lrl275mBG2XXjjTeWu3/s2LE1PBMAoKZoXDQuAPWJtkHbAEDDoPuI0H4A1B/ahvreNRHaBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOzLz/UEAKh7/vM//zP22WefMvvHjRsXX375ZQ5mRE16+eWXy/yef/SjH8W5556boxllz/z58+PBBx8ss/+UU06Jvn375mBGAEBN0bgNm8YFoL7RNg2btgGAhkP3of0AqE+0TcNWn7smQtsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQPfJzPQEA6p5GjRrFLbfcUmb/0qVL4/bbb8/BjKhJM2fOLLXdvHnzmDhxYuTl5eVoRtkzduzYKC4uLrWvRYsW8cc//jFHMwIAaorGbdg0LgD1jbZp2LQNADQcug/tB0B9om0atvrcNRHaBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOrRONcTAKBuOvjggyORSOR6GuTAzJkzS21feeWVseeee+ZoNtl13333xX333ZfraQAAOaJxGy6NC0B9pG0aLm0DAA2L7mvYtB8A9Y22abjqc9dEaBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqR+NcTwAAqFv+8Y9/5HoKAACQVRoXAKhPtA0AQMOh/QCA+kLXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQObycz0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0pOf6wlAZfy///f/IpFIlLzatGmT6ylRB3mOAIDaRJuQDZ4jAGoL30lkg+cIAOoG39lUlWcIgNrCdxLZ4DkCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKbk53oCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApCc/1xMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgPfm5ngAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADpyc/1BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEhPfq4nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQHrycz0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0pOf6wkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnvxcTwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID05Od6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQnP9cTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID35uZ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6cnP9QQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIT36uJwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEB68nM9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANKTn+sJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJ78XE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA9OTnegIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkJz/XEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA9+bmeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOnJz/UEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASE9+ricAAAAAAAAAAAAAAAAAAAAA/589u8VptQujMPzmoY4QXBUOiwUGgO8oShhGwzhgFHgkCo0EAaQC1QAVTUhzZnB4Tr6fdUqvy+4tbrmyNwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAG6ccbAAAIABJREFUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQU+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9o3TA32q1Wg0PDw/pDACAltVqlU6Atvl8bmsDAN9aLBa/PV8ulzYFALAx1ut1OoF/aL1e258AwLc+Pz+/vfP8/GxXAAAbYT6fpxMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4jVE64G/19PQ0HB0dpTMAAODHmc1mw2w2S2cAABvu7u7O+x0AAP+b5XJpfwIA/4qLi4t0AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ClAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgp9IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9FQ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ5ROiDl4OBgOD09TWcAAESNRls7B/kPHR8fD8vlMp0BAAAAsDHG43E6YeuNx2P/xwAAAAB/YHd3N50AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACw1UbpgJTpdDpMp9N0BgAA/Di3t7fpBAAAAAD4I5PJZJhMJukMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgp9IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9FQ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ5KBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBT6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6Kh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAT6UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Kl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2VDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCn0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0VDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQU+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgp9IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9FQ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ5KBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBT6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6Kh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAT6UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Kl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2VDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCn0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0VDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQU+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgZpQNSXl9fh5eXl3QGAEDUycnJsLOzk87gh7m/vx++vr7SGQAAAAAb4/DwcBiPx+mMrfb29jY8Pj6mMwAAAAA2xmg0Go6Pj9MZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAW2uUDki5vr4eLi8v0xkAAFGLxWLY399PZ/DDnJ2dDR8fH+kMAAAAgI1xdXU1TKfTdMZWu7m5Gc7Pz9MZAAAAABtjb29veH9/T2cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABsrUoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQU+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgp9IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9FQ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ5KBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBT6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6Kh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAT6UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Kl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2VDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCn0gEAAAAAAAAAAAAAAAAAAAAAwC/27jM6qnL9+/hvkpBGOp0ERbogoFQBUbpItdKRIggooHI8nmNFVCx/9Yh0Dr1JR4oFEVBEivSOUkJHwEAKLX2eF2cxDwOZmpnZg3w/a+21uPddrmsyeyb7vrLXAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5wQYnQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACcE2B0AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHBOgNEJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDkBRicAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5wQYnQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACcE2B0AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHBOgNEJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDkBRicAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5wQYnQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACcE2B0AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHBOgNEJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDkBRicAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5wQYnQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACcE2B0AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHBOgNEJwL+ZTCbVqVNHr732mubNm6etW7fq7NmzunLlirKzs5WamqqTJ09q8+bNmjx5sgYNGqSKFSsanbZT2rRpI7PZbPPo06eP0SkarnTp0urSpYs+/fRTff3119qzZ4/+/PNPXb58WdnZ2UpOTtbRo0e1bt06jRgxQp06dVJ4eLjRad+iTJkyunbtmuW97d69u9EpAfCSWrVqKTc31/J5b9asmdEpAQBwx2Gv5V94P1zHz+zvq1ChQnrqqaf02Wef6dtvv9XBgweVlJSkzMxMpaen68KFCzpx4oTWr1+vKVOm6OWXX/arOld+6xtRUVHq1auXJk6cqG3btun06dO6cuWKMjMzdeHCBR08eFDLly/XJ598orZt2yoyMtJLr8R3Dh8+bPX5LV68uNEp4W/gxmsqPT3d6HRuW9RwAAAAAN9LSUmxWfPaunWrzXnUy+Arnny+p2rVqnrttde0aNEi7d69WxcuXFBGRoYyMjJ09uxZHThwQEuWLNHrr7+uRx55RAEBPEYJ4O8hKCjI6vd0SkqKU/Oop+eNOiYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8XZDRCcA/lSxZUi+++KJ69eqlEiVK2BwXFRWlqKgoJSQkqHbt2pbzBw8e1OzZszV27FglJSX5ImV4QEhIiJo2bar27durdevWio+Ptzs+JiZGMTExKl26tB566CG99NJLSktL08yZMzV06FBduHDBR5nbN2rUKIWGhkqSdu7cqVmzZtkdv2TJErVv397Snjdvnjp16uTVHOE9vJ93lq1bt1q9x6NHj1a1atWUmZlpcGYAAAAAjFCkSBF17NhRXbt2Vd26dWUymWyODQkJUVxcnEqVKqX69etLkr744gvt27dPw4cP17x585Sbm+ur1G/han3jutjYWA0fPlw9evRQeHh4nmPi4uIUFxen8uXLq02bNnrttdeUnZ2ttWvXatasWVq0aJEuXbrksdcCY1ErgT+ghgMAAAAA7uvUqZPmzJnj0TXr1aunTZs2eXRNV7lb/7ouMDBQPXr00JAhQ1SlShWb44oVK6ZixYqpUqVKlhrJyZMnNX36dI0ZM0Znz551/0UAfurmmmB+TZgwQf379/fYeoC/oo4JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfxdgdALwLyEhIfrggw90+PBhvfHGGypRooRb61SoUEHDhg3TyZMnLf/hO/zfgAED9O233+r5559XfHy8W2tERUXpxRdf1IEDB9SmTRsPZ+i6du3aqVWrVpb2v//9b5nNZgMzgquSkpJkNpstR0xMjNEpwc+9+eabys7OliRVrFhRL730ksEZAQCQf+PHj7e6J7r5KF68uNEpAoBfmjhxokaNGqUHH3xQJpPJrTWqVKmir776Sj/++KNiY2M9nKFz3K1vPPTQQzpw4IAGDBig8PBwl2IGBQWpadOmmjp1qoYOHerUHPbwAFxBDQcA4GvUVwAA8F/5fb6nVq1a2rFjhyZPnqwqVaq4HL9UqVJ66623dOjQIb3xxhsKDQ11eQ1voeYGAMaijgkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/FmB0AvAfFSpU0Pbt2/Xmm28qLCzMI2uGhoaqXLlyHlkLt5ciRYro66+/1pNPPmlYDgEBAfroo48s7a1bt+qHH34wLB8AvpGYmKi5c+da2q+//rpiYmIMzAgAAADA30GTJk20evVqBQcH+zSuu/WNBx98UN9//72KFStmdf6HH35Q7969Va1aNcXGxqpAgQIqUqSIqlatqr59+2ru3Lm6fPmyx18HANyMGg4AAAAAQMr/8z09e/bU+vXrVbVqVavzp0+f1vjx4/X444+rcuXKKlKkiAoUKKC4uDjVqVNHL730kn755RerORERERo+fLgef/zx/L0oAMDfBnVMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+LMAoxOAf6hbt642bdqkypUrG50K/kaCgoI0a9YslS5d2pD43bt3t7qmP/zwQ0PyAOB7H330kcxmsyQpNjZW//znPw3OCAAAAMDfwQMPPKA333zTpzHdqW+EhoZq5syZioiIsJw7f/68GjVqpJYtW2rq1Knas2ePUlJSlJ2draSkJO3du1eTJk1S586dVbJkSb344os6fPiwV14TAFxHDQcAAAAAkJ/ne/r27aspU6YoODjYci45OVn/+Mc/VKZMGQ0YMEBLly7VgQMHlJSUpOzsbCUnJ2vLli0aOXKkHnnkEd1///1auXKlR18T4O/mzZsnk8nk9tG/f3+jXwLgU9QxAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4K8CjE4AxqtSpYq+//57xcbGGp0K/obCwsL02Wef+TxuQECA3nzzTUv7+PHjWrp0qc/zAGCM/fv3a/Xq1Zb2oEGDFB0dbWBGAAAAAP4u+vbtq4AA35RV3a1vPPfccypXrpylnZWVpRYtWmjt2rVOxb106ZLGjh2rypUra/Dgwfrrr79cT94PlCtXTiaTyXKcPXvW6JQA3IQaDgAAAADc2fLzfE+TJk00duxYmUwmy7mjR4+qdu3a+s9//qPMzEyn1tm1a5ceffRR9enTR1evXnXtBQDA3wT1dPuoYwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBfBRidAIwVERGhRYsWKTY21uHY7OxszZ07V88++6wqVqyo2NhYhYSEqGTJkqpevbr69Omj6dOn6+LFiz7IHL6yadMmvffee2rcuLHuvvtuhYaGKjo6WvXr19eoUaOUlZXlcI127dopJibGB9n+f+3bt1f58uUt7YkTJyo3N9enOQAw1n//+1/LvyMjI9W3b18DswEA4M7xzTffyGQy2TwmTZpkdIoA7kBms1mbN2/WsGHD1K5dO5UtW1YxMTEKCgpSdHS0qlevrpdeekkHDx50uFaJEiVUtWpVH2Ttfn3j6aeftmrPnj1bu3btcjl+VlaWRo0apU8++cTluQDgLGo4AAAAgH+j5gtvcrf+FR0drenTpysoKMhy7tSpU3rooYd05MgRt3KZPHmymjRpoqSkJLfmAwD+3qhjAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwB8FGJ0AjDVs2DBVrFjR4bgff/xRlStXVufOnTVz5kwdPHhQKSkpyszM1J9//qndu3dr8uTJ6tmzp+Lj49WzZ0/t3bvXB68A3pCamqrPPvtMlSpVUr169TR06FD9/PPPOnHihDIyMpSWlqaNGzdq8ODBatiwodLS0uyuV6BAATVv3txH2f+L412FAAAgAElEQVTPyy+/bPm32WzWtGnTfBofgPGWLFmiCxcuWNqDBw9WQAC3PgAAAMCd5MyZMxo6dKji4+NVt25dvfvuu1q+fLkSExOVmpqqnJwcpaWlaffu3Ro5cqSqVaumJUuWOFw3ISHBB9m7X9+oXbu2VXv16tWeTAsAPIoaDgAAAAB4TvPmzWUymVw+Nm3aZEi+7ta/Xn/99VtqdH379tWZM2fylc9vv/2mFi1aKCUlJV/rAAD+fqhjAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwB8FGZ0AjHP33Xdr0KBBDsdNnjxZ/fv3V3Z2tlPrpqena/r06Zo1a5YGDBig3Nxcl3O766671KxZMzVs2FD333+/ChUqpLi4OAUFBSk5OVkXL17UoUOHtG7dOv3888/atm2byzG8wR/zrly5svr06aNGjRqpbNmyCg8P1/nz5/Xxxx9r1KhRVmMvXbqkDz/8UJ999pmSk5OdWv+3337Tiy++qJkzZ9odd88997j9GlxVpkwZPfzww5b2+vXrdfr0aZ/Fv1GRIkXUqVMnPfHEE7r77rtVsmRJpaen69y5c1q/fr0WLFigFStWeDRmxYoV1aVLF7Vo0UIlS5ZUsWLFlJqaqpMnT2rlypWaPXu29u3b59GYd7rQ0FDde++9qlatmqpVq6YqVaqoaNGiiomJUUxMjCIjI3Xp0iVduHBBf/zxh3766SctXrxYR48eNTp1l1WuXFmtW7dW8+bNVbp0aRUtWlShoaE6f/68Tpw4oVWrVmnx4sXavXu3x2ImJCTo6aefVps2bXTXXXepePHiioyMlCQVLlxYFy5cyHNeVlaWli5dqt69e0uSSpUqpaZNm+rHH3/0WG4AAEj/uxdo3ry5mjdvrsqVK6tcuXKKiopSRESEcnJylJaWprS0NKWmpio5OVknTpzQ0aNH9ccff2jfvn06dOiQsrKyjH4Zdrmyr/B1Xl27dlWzZs1UqlQpFSpUSMnJyTp27JhWrlypqVOn5uue65FHHlHnzp3VoEEDxcfHKyQkRH/++acSExO1aNEiLViwQBcvXvTgK7o9GLn39cd9952oXr166tq1q+rXr6+SJUsqJiZG586d05EjR7RkyRLNmzdP586dMzpNSdILL7zg0viMjAwNGDBA7du3l8lksjkuLCwsv6k55G59IzIyUgULFrQ6Z2vfdLtxd3/oCb6q8dSpU0edO3dW48aNFR8fr8jISJ09e1anTp3Sd999p6+++krHjh3L/wvysaioKLVt21aPPfaYHnjgARUpUkQxMTFKTk7W+fPntXXrVn333Xf69ttvdfXq1dsu3t+dt+uN1HAAwH8VLFhQjRs3Vv369fXggw+qZMmSiouLU0xMjNLT03XhwgXt2bNHGzdu1MKFC3Xo0CGn1o2Li1OFChWsjoSEBBUpUkRxcXEKDQ1VSEiIsrOzlZaWpkuXLunYsWPatWuXtmzZouXLl+vy5ctefvXuKV68uGXfWrNmTRUuXFhxcXEKCQlRUlKS/vrrL+3cuVOrVq3SihUrlJSUlO+YRtcv/HGv7q+1LCMZcW3a4u2anuS97y9bjPocNGnSRJ06dbLUaEJCQnTmzBkdPnxYCxcu1MKFC5WamuqRWL5CzffO4m79Kzo6+pZn3hYuXOix52927NjhcMzt/pyIr579MKrWZVRtyMj65e3Cl8/SlStXTo899piaNm2qChUqqEiRIoqOjtbly5d18eJFXbx4UYmJidq4caM2btyonTt3KjMz0+n1fXmd3X///Zbfj9c/S+fOndOpU6e0YsUKffXVV0pMTMxXDE/7O9bUqWMCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAL5nvUEOHDjVLuqOPzz//3OHP6ZdffjEHBgb6LKdatWqZ58+fb87Oznbp/dy8ebP5mWeeMZtMJqdjtWnTxu6affr0ua3zDgkJMY8cOdKck5OT57gRI0Z47H0LDAw0X7x40W5en332mc+uo3fffdcq9ssvv+zS/CVLlljNnzt3rt3xN0pPT7f8TIYOHWpOT0+3+3Mxm83mn376yVysWDGXcswrZkREhHnGjBkO4+Xm5ppHjRpljoiIcDpes2bNrNZYsmSJS/nGxMRYzT916pTd8Tt37nT4OmypVatWvt5Pd47x48e7nGdWVpZ58uTJ5tjYWIfrv/XWW1Zzly1b5nauc+fOtVrr448/dmpepUqVzIsXL3b69c2ZM8eckJCQr2s6LCzMPHbsWJvfY2az2Vy4cGG767Zs2dJq/KxZszz+/t/uR0pKitPvK+CsyMhIw69tDg5fHMHBweZ//etf5uTk5Hx9Zt59991b1h44cKCHPpH/ExoaarW+N/cV+dlrOTu3ePHiTt2bpKenm9955x2X39t77rnH/MMPPzhc//Lly+Z//vOflj2dvd+rW7duNeQ6vV33vkbGzu/PrHXr1uaMjAy7a0ydOtWq3jJixAi74++77z67MW/ec91s2rRpHnnNlSpVMq9fv97uWLPZbE5LSzMPGjTIHBAQYMh174nD0Xd7gwYNvJ6Du/WNqKioW/J99tlnvZanJ/fwkmf3h4cPH7YaU7x4cbuvJa/Y3q7xXD+KFi1qnjNnjsMYOTk55nHjxpnDwsLMQUFBVn0pKSlOxfJFreT6ERgYaB40aJD5r7/+cvjazGaz+fTp0+bevXu7/TvDF/FudP06ceaIjo42r1mzxmr+5cuXza1atbIa5+s6nL3X5c16480HNRwODpknTpzo8PMG75o4caLh14G/HAkJCeb/+7//c/j3v5tt2LDB3K5dO4e/W/Pr8uXL5smTJzu89/J2feXGo0qVKuZp06aZMzMznV7vypUr5k8//dTh3zpsHUbXL/xxr+5sLatJkyZ21xs8eLDTuQUHB9v9mS5fvtzQz7Mvrk1/qen54vvLyM/BjUe5cuXMq1evdhjneo3m+jx3P//UfPNmVM1XkrlTp04282rWrJlhebl6uFv/euGFF2553Y0aNfJp7t5+TsTTNbfrh7ef/bh++LLWdeNhVG3I2fqlkc//+LImmNfPyFd11uvX+bx588y5ubkOY93o3//+t99cZ9ePmJgY8+TJkx3GyM3NNY8fP94cGhrq9mfJ1Xq60e+1Ud8z1DFvPSIjIx2+D38n8+fPz/PnkNffc+vVq2eZ9/nnn+c57+TJk2az2Ww+efJknv03Putfr149uzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAdaX6AcEcKCAhQ586d7Y7Jzs7Ws88+q5ycHK/nExgYqPfee0+//fabnnnmGQUGBro0v3bt2po/f76WLl2q2NhYL2V5K3/NOyQkRMuWLdOgQYMUEJD3x9xkMnksXk5Ojn7//Xe7YzIzMz0Wz5Enn3zSqr1y5UqfxZb+9/NfunSp3n33XYWEhDgc36hRI/36668qXLiw2zGjoqK0du1ade/e3eFYk8mkgQMHas2aNYqKinI7JvInKChIvXv31saNG1WmTBm7YydOnKisrCxLu1WrVkpISHA5ZpEiRfTEE09Y2mazWRMnTnQ4r0OHDtqxY4fVXEc6deqkzZs3q2rVqi7nKUmRkZH66aefNGDAAJvfY5Lj77K1a9daff+0bdtWBQoUcCsnAABuFBkZqRUrVujjjz9WTEyM0el4ha/3Fc6qXbu2du3a5dS9SUhIiIYNG6aRI0c6vX6NGjW0bds2tWjRwuHYggUL6v/+7/80f/78v/U9hpF7X3/dd9vSpk0bLV68WMHBwTbHjBw5Ur179/ZJvcWTmjZtqi1btqh+/foOx0ZGRmrkyJGaMWOG3ft5f1WiRAlFR0fb7L927Zq2b9/u9TzcrW+kpaXp6tWrVufatm3rsbx8zVP7Q3f4qsYTHx+vDRs2qFOnTg7HBgQEqH///lq1apXCw8NdiuNr4eHhWrJkiUaOHOn0z6RkyZKaPHmyZsyY4fLvVl/Hc0WpUqX066+/qnHjxpZz586d0yOPPKLvvvvOa3Hzw9f1Rmo4AOA/unXrpv379+uf//yny/uoevXqaenSpSpbtqyXsvufggULqnfv3tq3b59atmzp1ViOmEwmvfrqq9q5c6d69Ojh0u+v8PBwvfrqq9q3b58aNGjgUlwj6xf+uld3pZa1Zs0a7d271+Zaffv2dTpuy5Yt7e4hp06d6vRanmTUtWmLt2t6km+/v4z8HNStW1fbtm1TkyZNHI69XqOZPXu2goKCXIrjS9R871zu1r9unpeYmKi1a9d6LC9vceU5EW/w1bMfRtW6jKoNuVK/NPr5H6P48lm6rl27aseOHerQoYNXasa+vM6KFCmiX3/9Vb1793Y41mQyqV+/fobXje+Emjp1TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPibAKMTgDFq1qypEiVK2B2zaNEiHTt2zOu5BAUFadmyZXr77bcVEJC/S7Jt27bavn274uPjPZSdbf6c95gxY9SiRQuPrOWs8PBwu/2+uJYkKT4+XlWrVrW0z507p/379/sk9nUTJ05U69atJUm7du1Snz59VK5cOYWHhysmJkYPPfSQZs6caTWnXLlyGjVqlNsxp02bpho1akiSjhw5ooEDB6ps2bIKCwtT8eLF9dhjj2nx4sVWc2rXrq1vv/1WgYGBbseFtaysLP3www965ZVX1LhxYyUkJCgiIkIhISEqWbKk2rZtq+nTpysrK8syp2LFilqyZIlCQkJsrnvu3Dl9/fXXlnZgYKD69Onjcn49e/ZUcHCwpb1q1SodOXLE7px+/fpp7ty5Cg0NtZw7e/as3nrrLdWsWVNxcXEKDQ1V2bJl9eKLL+r48eOWcSVKlNDatWt19913u5zrtGnTVLduXUnS3r171b9/f5UvX14FCxZUsWLF1KhRI82ePVsmk8nuOteuXdOmTZss7aioKDVo0MDlfAAAuNnIkSPVuHFjo9PwKiP2FY7UrFlTq1evVtGiRV2aN2jQILVt29bhuEqVKmnVqlWKjY11af2nn35aU6ZMcWnO7cLIva8/77vz0qZNGy1atMjqnvtm77//vl566SWZzWaX1nZ1vKfVrVtXy5cvV0REhEvzunbtqokTJ3opK+8IDg7W6NGj7e41ZsyYoWvXrnk1j/zWNzZs2GDVfuqpp/TMM894LD9f8tT+0B2+qPEULFhQa9asUdmyZS3nzGazpk2bpkaNGqlIkSIKCwtTuXLlNGjQICUmJkqS6tevr/Hjx3vgVXpHQECAli9frjZt2lidX7NmjZ5++mklJCQoNDRUpUqVUrdu3fTbb79ZjevWrZvmzJnjt/Fccf/992vTpk267777LOd+//13Pfjgg9q2bZtXYnqCr+uN1HAAwD+MGjVKM2fOVGRkpNGpOKVQoUJatGiRatasaUj8gIAAzZkzR59++qmCgoLcXqdo0aKW+xZnGFm/8Oe9uqu1rNGjR9vsu++++1S/fn2n1unQoYPNvqSkJH3zzTdO5+QpRl2btni7pif59vvLyM/Bfffdp5UrVyoqKsqlOF26dNGkSZPcSdHrqPl63rPPPqtly5YpMTFRaWlpysjI0NmzZ3XgwAF9/fXXeu211wz73Xkjd+tfwcHBatiwodW5tWvXGlZD9dZzIp7mq2c/jKp1GVkbcqV+aeTzP0by1bN0r7zyimbNmmV1nV+9elWjRo1S8+bNlZCQoJCQEMXExOjee+9Vjx499NVXXzld7/fldRYSEqKVK1eqSpUqVue/+uorNW3aVEWLFlV4eLgqVKigIUOG6NSpU5KkBg0aaNy4cU7F8IY7oaZOHRMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+JsDoBGCMevXqORwza9YsH2QijRkzRq1atfLYeqVLl9ayZcsUHh7usTXz4q95t2rVSs8995zDcSaTKV9xblSwYEGVL1/e7phff/3VY/HsadasmVV706ZNPol7XUhIiLp37y5J+uCDD1SjRg1NnjxZR44c0bVr15Samqr169fr2Wef1cCBA63mdurUSZUrV3Yr5hNPPCFJWrJkiapXr64xY8YoMTFR6enpOnfunFasWKGnnnpK3bp1U05OjmXuQw89pCFDhuTjFXvH/fffL5PJJJPJpAsXLlj1xcbGWvryOrZu3erzfM+fP6+3335bxYsXV8uWLTVixAj9/PPPOn36tK5cuaLMzEz9+eef+uabb9SzZ0/VrVtXJ06csMyvWrWq3nzzTbsxxo4da9V+7rnnFBgY6HSOJpNJffv2tTr33//+1+6c2rVra+TIkVbfF3PmzFHZsmU1fPhwbd++XcnJycrIyFBiYqLGjh2rypUr65tvvrGMj42N1YwZMxQQ4PwtR0hIiJ588klJ0pdffqkHHnhAEyZM0OHDh3X16lWdP39ea9euVbdu3XT+/HmH623YsMGq3aJFC6dzAQAgL5UqVVLPnj2NTsOrjNhXOKN///6KjIx0a+4nn3xitz8wMFDTp09XbGysW+t369ZN0dHRbs31Z0buff11352Xtm3batGiRQoODs6z32w2a8iQIXrnnXfcWt9sNucnvXzr06ePwsLC3Jrbu3dvy57VHxUoUECFChVSrVq1NGTIEO3Zs8eyH8nL8ePH9cYbb3g9r/zWN2bOnGnVNplMmjdvnmbOnKnatWvnO78beXMP7+n9oSt8VeP58MMPVaFCBUv76tWrat68uXr16qW1a9cqKSlJ6enpOnLkiEaPHq3q1atr6dKlkqTOnTt76NV63uuvv64mTZpYnRsyZIiaNm2qRYsW6fTp08rIyNCpU6c0e/Zs1a9fXx999JHV+Keeekr9+vXzy3jOatGihX755ReVLFnScu7XX39VgwYNdOzYMY/G8iSj6o3UcADAWO+8884t9zW3g/DwcE2fPt3nNQpJ+vTTT9WxY0ePrBUcHKzp06erWrVqdscZXb/w1726O7WsmTNnKjk52ebYm/+ulpfQ0FC1a9fOZv9XX32lzMxMh+t4mhHXpj3erOlJvv/+MupzEBQUpBkzZigqKsqtOD169PDL+iU1X8/r3r272rZtq3vuuUeRkZEKDg5WsWLFVKlSJT3++OP65JNPtHXrVv3222+G1u3crX9VqVLlljrsli1bPJaXs7z9nIgna26+fPbDqFqXUbUhd+qXRjz/YyRf1VmbNGmiTz/91OrcmjVrVL58eQ0ePFirVq3S6dOnlZmZqdTUVP3++++aMWOGunbtquLFi+vdd99Vamqq3Ri+vM7eeecd3X///ZZ2Zmam2rVrp65du2rNmjX666+/dO3aNR06dEhffPGFqlatqtWrV0uSunTp4nB9b7iTaurUMQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBPAoxOAMaoUqWK3X6z2XzLf87uDU8++aSef/55j69bo0YNDR8+3OPrXufPeT/xxBMeysZ53bt3V3h4uM3+HTt2aP/+/T7JpU6dOlbt3bt3+yTuzb788ku9/fbbys3NtTlmzJgxWrlypdW5Xr16uR1z69at6ty5s65cuWJzzOzZs/Xqq69anRs2bJiKFCnidlxI77zzjj744ANdvHjRqfE7duxQq1atlJ6ebjk3YMAAhYSE2Jyzdu1aq89RQkKCWrVq5XSOjRs3Vvny5S3tc+fOaenSpTbHBwYGatasWQoODracW7Bggbp27aqrV6/anHf16lU99dRT2rlzp+Xcww8/rKefftrpXK+bO3euXn75ZWVnZ7s890a7du2yat/8PQEAgKsef/xxm31nz57VgAEDVKFCBYWHhysoKEhxcXEqX7682rZtq9dff13ff/+93Xs2f2DEvsLb7r33Xj344IM2+1944QXuE25i5N7Xn/fdN2vXrp0WLlxode98o5ycHPXp00dffPGF2zHMZrPbc/3BuHHjFBoaanQakqQRI0bIbDZbjszMTCUlJWnLli36/PPPVaFCBZtzd+7cqUaNGjm998uP/NY3Zs+erS1btlidM5lM6tatmzZv3qwTJ05oxowZeuGFF1S3bl2FhYXlO2dv8tT+0B3erPFUqFBBAwcOtDrXvXt3rV692uacy5cvq1OnTtqxY4fD9Y1SsmRJDR061OrcBx98YPd7MDc3V2+88YamTJlidf6zzz5TdHS0X8VzVu/evfXtt98qMjLScm7hwoVq3ry5T75HPMHX9UZqOABgnEceeUTDhg3zedyLFy9q1qxZGjBggB5++GGVKlVK0dHRCgoKUnh4uEqXLq1WrVppwoQJysjIsLlOlSpV7NZrvOGxxx7TkCFD7I6ZM2eOHn74YUVHRyssLEz333+/xo8fb3OPFx4ergULFigoKMjmmkbWL/x5r+5OLevq1au33A/eqEOHDg7vDR977DGr+72bTZ061eW88suoa9NbHNX0fP39ZeTnYPDgwXrggQc8Hvt2Rs03f+rUqaPFixdr1qxZioqKMiT+jZytf+VVvzPi2SBfPCfiCb589sOoWpc/1IZcqV/6+vkff+HNOmtwcLCmT5+uwMBAy7nVq1erVatWOnPmjMP5aWlpGjZsmMaNG2dzjC+vs9KlS+u1116zOvf8889r+fLlNuekpKToiSee0O+//25zjK/cCTV16pgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwJwFGJwBj3HXXXXb7T58+rYsXL3o1h4CAAL333nsOx82ZM0cPP/ywYmJiFBYWpvvuu0/Dhw9Xenq63Xn9+/dXfHy8p9K1uJ3y/umnn/T000+rZMmSCgkJUenSpdW0aVN9/vnnHnt/ExIS9OGHH9od48zPy1Nq1qxp1d6zZ4/PYl/3559/6t///rdTY8eMGWPVfvjhh92OO3DgQIfXlySNHDlSu3fvtrTDwsLUu3dvt+PCPfv27dPEiRMt7cKFC6tNmzZ254wfP96q/fzzzzsdr1+/flbtKVOmKCsry+b4p556ShUqVLC0k5KS1KdPH5nNZoexMjMzNWDAAKtzgwcPdjpXSbpy5Ypeeukll+bYcvP3QK1atTyyLgDgzlWpUiWbfR07dtT48eN16NAhXbt2TTk5OUpOTtbhw4f1zTff6OOPP1arVq0UGxurli1bavbs2bp8+bIPs3edL/YVrrp06ZJee+01lSlTRqGhoapQoYLGjh3rcF7Tpk3zPB8QEODUvcf8+fPVoEEDRUZGKjIyUg0aNNDcuXNdzv92YOTe93bad7dr104LFixQcHBwnv2ZmZnq1KmTpkyZkq84ubm5+ZrvKceOHVOvXr0UHx+vkJAQxcfHq1evXjp27JjdecWKFVPnzp19k6QX7Nq1S/369VOdOnUcvlZPyW99IycnR+3atdP+/fvz7C9VqpS6d++uMWPGaNOmTUpLS9PWrVv1n//8R48++qgCAwPdzt3TPLk/dJW3azx9+/ZVQMD/L9GvWLFCixcvdjgvPT1dgwYNciovI7zwwgsqUKCApX348GG9//77Ts39xz/+oaSkJEs7IiLCYd3K1/GcMWzYME2ePFlBQUGWc1988YU6dOjgVP3OX/i63kgNBwCM88knnzgck56erv/+979q2bKlihcvruDgYMXExKhy5crq06ePli9frpycHKfibdiwQY8//riKFi2q7t27a/z48Vq3bp1OnTqltLQ05eTk6Nq1azp+/Li+//579e/fX02aNFFmZqbNNTt06OD0680vk8mkDz74wO6Yvn37qkuXLlq3bp3S0tKUnp6uXbt2acCAAbf8DeVGFSpUULdu3fLsM7J+cTvt1V2pZY0ZM8bmnjs8PNzme3Fdx44dbfbt3LlTO3fudP0F5INR16azPF3Tk3z7/WV0vcyZfeD06dP14IMPKiIiQpGRkapbt66mTp3q1N94jUbN1zhdu3bV999/r7CwMJ/Gdbf+ldfnxKi/VbjKnedE8suXz34YVesyujbkTv3Sl8//2NKxY0eZzWa3jpSUFJdiebvO2qNHDyUkJFjaKSkp6tGjhzIyMlzK0x5fXmd9+/a1qiuuW7dO06dPdxjn0qVLhtXSr7tTaurUMQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBPAhwPwd9RdHS03f6LFy96PYdHH31UVapUsTtmyJAh6tKli9atW6fU1FSlp6dr3759euutt9SiRQtlZGTYnBsaGqoXXnjB02nfNnm/8cYbatKkiRYtWqQ///xTmZmZOn78uNasWaNXX31V7777br5jxMbGaunSpYqNjbU5ZuHChVqyZEm+YzmrfPnyVu0TJ074LPZ1EydOVHp6ulNjf/rpJ5nNZku7WrVqCghw/at548aN+u2335wam5ubq5EjR1qd69mzp8sxkX8LFy60aterV8/u+OnTp+vKlSuW9mOPPaZSpUo5jFO0aFE9/vjjlrbZbNakSZPszhk0aJBV+8svv1RaWprDWNdt2rRJ27Zts7QbNGjgVK7Xff311zp//rzT4+25+XsgOjpaRYsW9cjaAIA7U1xcnM2+U6dOObVGVlaWfvjhB3Xr1k2fffbZLf2jR4+WyWSyHBMmTLC7XokSJazG33w4e396M1/sK1yVkpKiBg0a6NNPP9XRo0eVkZGhQ4cO6cUXX9TYsWPtzq1Ro0ae55s2baqyZcvanfvuu++qY8eO2rBhgy5fvqzLly9rw4YN6ty5s95++223X4+/MnLve7vsu9u3b6+FCxcqODg4z/6rV6+qXbt2t9z3uyMnJyffa+TX3r17VbNmTU2bNk1nzpxRZmamzpw5o2nTpqlWrVrav3+/3fl9+0ixG1kAACAASURBVPb1UaaelZSUpFWrVumXX35RVlaWz+J6or5x9uxZ1alTR2PGjHGYe1BQkGrWrKlXXnlFK1as0MmTJ/X222+rYMGCLsf1NE/uD13l7RpPt27drNqjR492Orf169drx44dTo/3pR49eli1R44cqczMTKfmpqSk3FKz6NWrl1/Fs6dAgQKaNm2a3nnnHcu53NxcvfzyyxoyZIjVNeLvjKg3UsMBAGM0atRIdevWtTvm4MGDeuCBB9SvXz/98MMPOnfunLKyspSamqoDBw5o8uTJateuncqUKaPZs2crNzfX7noNGjTQ0qVLXdrrbNiwQcuWLbPZ37Bhw1vOeau+0rRpU5s1BkmaMWOG3b/DTJgwQatWrbLZ/69//SvP80bWL26XvbqrtayjR4/qm2++sbmevb1seHi42rRpY7N/6tSpLuefX0Zdm87wRk3P199fRn4OmjdvrtKlS9uN/corr6hnz5767bffdOXKFV2+fFmbN29W79699dJLL9mdazRqvsarX7++z7+33K1/RUVF3XIuNTXVIzn5gqvPieSXL5/9MKrWZXRtyJ36pS+f//EH3q6z3vz7c/z48Tp9+rTridrhy+vs5lgjRoxwMktp5cqVDv9e4013Sk2dOiYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8if3/JRx/WyEhIXb7L1265PUcHn30Ubv9P/30k7744gub/evWrdOnn36arxjuuB3ynj17tj766KN8reFI4cKF9eOPP6pGjRo2x+zbt0/PPfecV/O4UUREhOLi4qzOnT592mfxr1u1apXTYy9duqQzZ85Y2qGhoYqOjnY55sKFC10av3jxYuXm5lralSpVUqFChVyOi/zZvXu3VbtWrVp2x6elpemrr76ytAMDA536jPXq1UvBwcGW9o8//qjExESb4yMiIvTggw9anZs/f77DODdbuXKlVbtevXpOz/3mm29cjmfLpUuXbvm9Vrp0aY+tDwC489jbL/3nP/9RsWLFfJiN9/hiX+GOf/3rX9qzZ0+efaNGjbI7NyEhIc/zjRs3tjtv69atev/99232Dx8+XJs3b7a7xu3GyL3v7bDvfvzxx7VgwQIVKFAgz/7U1FS1aNFCP/zwQ77iXHfj/s0ozz33nC5evJhn34ULF/T888/bnV+7dm2Fh4d7IzWvKly4sP7xj39o3759mjRpkiIjI70e05P1jStXrmjgwIEqX768PvzwQx09etSpeSVKlNB7772ngwcPqmHDhm7F9hRP7g9d5c0aT5kyZVS8eHFL+/Lly7fsox1ZtGiRS+N94e67777l962rNYU5c+ZYte+77z6bP0tfx7MnKipK3333nXr06GE5l56ermeeeUZffvmly+sZzYh6IzUcADBG69at7fanpKSoZcuW+v333x2udeLECXXr1s3u3yDy49ChQzb74uPjb7mP9pZWrVrZ7f/8888drjF79mybfZUqVcrzd6CR9YvbYa/ubi1r5MiRNvuqV6+uOnXq5NnXunVrFSxYMM++rKwsq7/p+YpR16YzvFHT8/X3l5GfA0ef/3Xr1mnEiBE2+0eNGqWff/7Z7hpGoubrHzp27KhHHnnEJ7HyU/+68dmH665cueKRvHzB1edE8sOXz34YVevyh9qQO/VLXz3/4y+8WWctVKiQqlevbnVuypQpridphy+vs9KlSys+Pt7Svnbtmr777juXYi1YsMCl8Z50p9TUqWMCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAnwQYnQCMkZmZabc/IiLC6zk0bdrUbv/YsWMdrjFu3DiZzWab/Q888IBiY2Ndzs0ef8/bbDbrrbfecmuus0qXLq3169erZs2aNsecPHlSrVu3VlpamldzuVGxYsVuOXfhwgWfxb9uz549Lo1PSUmxakdHR7scc8uWLS6NT05OVmJiotW5OnXquBwX+ZOamqrc3FxLu0SJEg7njBs3zqr93HPPKTAw0OZ4k8mkPn36WJ2bMGGC3Rj16tVTUFCQpX3u3DkdPHjQYW4327lzp1W7Vq1aTs/dsWOHy/HsSUpKsmrn9X0BAICzDh8+bLOvffv2OnPmjHbt2qW5c+fq/fffV9euXVWjRg2Fh4f7MMv88cW+wh0XL17U1KlTbfb/8ccfdve7tu6169WrZzfuuHHjrO7bbmY2m53aC95OjNz7+vu+u02bNpo/f74KFCiQZ/9ff/2lxo0ba/369W6tnxd7r8UXtm/frs2bN9sds379eu3bt89mf1BQkGrXru3p1HwmICBAzz33nNavX69ChQp5NZY36hvHjx/Xm2++qTJlyqhixYrq27evJk2apG3btikjI8PmvJIlS2r16tVq165dvuLnh6f3h67wZo3n5s/D3r17lZWV5VK87du3uzTeF+rWrWvVPn78uM6dO+fSGnv37tWVK1csbZPJZLNu5et4tsTHx2vdunVq1qyZ5dyFCxfUtGlTLV682KW1/IVR9UZqOADge82bN7fb/8UXX+jo0aNei//AAw/o9ddf1+zZs7VlyxadOnVKycnJyszMlNlstjpef/11u2vFxcV5Lc8b2du3/vXXX9q9e7fDNRz93SWvGEbWL/x9r56fWtbq1au1f/9+m/3PP/98nuc7dOhgc87y5ctvua/xBaOuTUe8VdPz9feXkZ8DR59/R3//dXaMEaj55t/Fixc1Z84c9e/fX3Xr1lXx4sUVHBysiIgIVahQQc8++6x++uknp9YaOnSol7P9n/zUv/K6HgoWLJjvnHzFnedE3OXLZz+MqnX5Q23I3fqlL57/sWfevHkymUxuHTExMS7F8madtWHDhjKZTJb2+fPndejQIZfiOeLL6+zmc3v27FF6erpLsVyt63nSnVRTp44JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfxFgdAIwRmpqqt3+uLg4r+dwzz332O3/5ZdfHK5x5swZHTlyxGZ/QECA7rrrLpdzs8ff8964caOOHTvm1lxnVK9eXRs2bFCFChVsjjl9+rQaN26s48ePey2PvBQsWPCWc+np6T7NITc31+Hn62Y35xgaGupy3N9//93lOQcOHLBqlypVyuU1cKv4+HgNHDhQM2bM0LZt23TmzBldunRJubm5MpvNVkdubq4CAv7/r+KYmBiH6+/YsUObNm2ytBMSEtSqVSub45s2bapy5cpZ2mfPntWyZcvsxqhYsaJV+9ChQw7zyktSUpJVu0iRIk7PPX36tFsxbbl27ZpVO6/vCwAAnPX999/b7Q8ICFC1atXUsWNHvfXWW5o1a5a2bdumy5cva+fOnfryyy/VuHFjmUwmH2XsOm/vK9y1atUqZWVl2ew3m81KTk622W/rHqBMmTJ24zqzz3NmzO3EyL2vv++727dvrwIFCuTZd/LkSTVs2FA7duxwa21bzGazR9dz1a+//urUuA0bNtjtd/Te3g6qVq2quXPnejWGt+sbBw8e1KRJk9S3b1/VqlVLkZGReuihhzR8+PA8azkFChTQrFmzVLZsWY/l4ApP7w+d5e0az811mD/++MOlWJJ79SBvS0hIsGrv37/f5TVyc3NveW03r2tUvLxUrVpVmzZtUrVq1SznEhMTVb9+fYffi/7MqHojNRwA8D1He+IFCxZ4PGZgYKB69eqlxMREbd++XR9++KG6dOmiWrVqKT4+XjExMTb3XfbExsZ6PNe82Ls3LlKkyC1/D8rrWL9+vd0Y99577y3njKxf+PtePb+1rNGjR9vs69SpkyIjI63OFSxYUK1bt7Y5Z+rUqW7nkh9GXZuOGFXT8/T3lz/Xyxy9b5Ljuo1RqPm6JzMzU4sWLVLLli1VtGhRdenSRRMmTNDmzZt17tw5ZWVl6cqVKzp06JBmzpypJk2aqHv37nZ/1pLUsGFDRUdHez3//NS/Ll26dMs5X+Rsj7efE3GXL5/9MKrW5Q+1IXfrl754/scfeLvOevfdd1u1d+3a5VIsZ/jyOrv5PsATNTpfudNq6tQxAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4C8CjE4Axjh+/Ljd/oSEBMXGxnotfkhIiN3/6P3atWs6f/68U2sdO3bMbn/hwoVdSc2u2yHvLVu2uDXPGY0aNdLatWtVokQJm2MSExP1yCOP6MiRI17Lw5aQkBCrdlZWlsxms09zMCKmJKWkpOR7jjc/83eC8uXLa/HixTp58qRGjRql7t27q0aNGipRooQiIiJkMpkcrhEZGelUrHHjxlm1+/XrZ3PszX1TpkxRdna23fXj4uKs2vXr11d6errS09OVkZGhjIwMZWZmKisrS1lZWcrOzlZ2drZycnKUk5Oj3Nxc5ebmavXq1VbrOHuN5eTk6MqVK06NdVZGRoZVOywszKPrAwDuLJs2bbrl95wzTCaTqlevrsGDB2vNmjU6dOiQnnjiCS9kmH/e3Ffkx969ex2OuXbtms0+W/dkN9//3Ozo0aMO4x47dky5ubkOx90OjNz73g77blsOHTqkhx56SH/88YdH1/UHjupI1zn6mTv6rPnCyy+/LJPJZDnCwsJUrFgx1a1bVy+//LI2btzocI1mzZqpffv2XsvR1/WNrKwsrV+/Xm+99ZbKlSunF1988Zbv0sjISA0dOtRrOdjijf2hs7z9c4+JibFqu1PbSU1N9VQ6HnPz3j85OdmtdW6eZ6um4Ot4NytQoIB+/fVXJSQkWM5t3bpV9erV08GDB93KxV8YVW+khgMAvhUSEmL3bxNZWVk6cOCAR2NGRUVpxYoVmjJliu655x6Prn3zvbQ3ONq3ekpee1aj6he3w149v7WsGTNm2Lz/KViwoLp06WJ1rm3btjbvU86ePasVK1bkKx93GHltOuKNmp6vv7+M/hzYu7c2m806ceL/sXfnYTbX/R/HX+eY1ZgZQ6aFyBZuUSEiKfuSiJS1rNON9lQ35ae61S0lCRFGlgZFpFBkKaVkmlIaZE12E2YxzD7n98d9dW5nOOucc75nxvNxXXNdfb6fz/fzeZ/xPd9zPq/5XleHna57+PDhgMwvyXw9s2LFCvXq1Uvr1q1TQUGBS+ckJCTo+eefdzgmKChIrVq18kaJDhUn/zp69Oglx4zKHf35nIgn/Pnsh1FZl9HZUHHzS18//xMIfJ2zVqxY0aZ95swZr6/hz+vMG+8lT87xhistUyfHBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQKAwG10AjLFr1y6H/SaTSS1atPDZ+kX/J/RFnT9/3uW5nI2Njo52eS5nSkLdR44c8eg8Z3r16qW1a9c6rOu3335Ty5YtdeDAAZ/U4ExOTo5NOzg4WCaTyZBa/Ck/P195eXlun1f0GixXrpy3SrridOzYUdu3b1ePHj2Kdc2Zza59LC9dulRnzpyxtjt37qzrr7/+knFXX321unfvbm0XFhZqzpw5Tucveq8zm80KDQ1VaGioQkJCFBISouDgYAUFBSkoKEhlypRRmTJlZDabZTabZTKZLvt7iIiIcOn15efnuzTOHWFhYTbtrKwsr68BALiyDBgwQPv27SvWHDVr1tSKFSs0btw4L1XlPb7aVxTX2bNnnY7x5Luxo+8p2dnZKigocDqHxWIpNd8xjNz7loR9tz1ZWVnKzMz06pyuKlOmjE/nd/X3fuHCBYf9kZGR3ijHq7Kzs5WSkqLExES98847atGihfr37+90XzJs2DCf1WRkvpGfn68ZM2aoQ4cOys3Ntenr06ePy/s6b9ZTWhXNYTz5DHHnnugvRd/nzu4L9hR9bfbuH/5eryiz2ayoqCibYzNnzlRKSopHdQQKI/NGMhwA8C9ne7CMjAyvr7ls2TK1a9fO6/P6i7PfmbdUrFjxkmNG5RclYa9e3Czr/Pnzmjdvnt3+Rx55xKbdu3dvu2MTEhIM2csYeW0644tMz9/3L6PfB47e/zk5OSosLHRp7UD8fk3m618zZ87UuXPnHI6pWrWqz+soTv51ub/NNGzY0Ct1ucPfz4l4wp/PfhiVdRmdDRX3M9/Xz/9cCYr+W/ni7zT+vM6Kvpc8WSsQc2NvCLRMnRwTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgcJsdAEwxtatW52OGTBggM/WT09Pd9gfERHh8lzOxjpbyx0loe5z5855dJ4jjz32mD766COFhobaHbN582bdeeedOnHihNfXd9X58+cvORYWFmZAJf4VFBSkoKAgt88reg1mZmZ6q6Qryo033qiVK1fa/D4vXLighQsXasiQIWrWrJmqVKmiyMhIhYSEyGQy2fwUFBS4vWZ2drbmzZtnbZvNZg0bNuyScYMHD1ZwcLC1vX79eh06dMjp/FlZWW7X5AqTyeSTeV0RHh5u077c/QIAAHecPHlSjRs31jvvvFPsz5VXXnlFt99+u5cq8w5f7Cu8IScnx+mYwsJCt+d19F04NDRUZrPz+MRkMl3ynaOkMnLvWxL23fY0bNhQ69evV/ny5b06rySne76oqCivr3kxV3/vZcuWddgfqPeWohYvXqxJkyY5HNOyZUufrR8I+caWLVs0e/Zsm2PBwcE+fd1XmqL/zp58hrhzT/SXou9zZ/cFe4q+Nnv3D3+vV1ReXp42b95sc2zOnDkaNGiQR3UECiPzRjIcAPCvtLQ0h/3e3ms8+OCD6tChg1fn9DdnvzNvufjvO38zKr8oCXt1b+w3p0+fbjdXatSokRo3bixJioyMVKdOnezOM3/+/GLX4gkjr01nfJHp+fv+ZfT7wNH3Ylff/5Jne09fI/P1r5ycHO3evdvhmEqVKvm8juLkX8nJycrNzbU51qRJE6/U5SojnhPxhD+f/TAq6zI6GyouXz//cyXIyMiwaZcrV87ra/jzOiv6+VVacmNvCLRMnRwTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgcJsdAEwRlJSkk6ePOlwTK9evXTDDTf4ZP3s7GyH/6P38PBwxcbGujSXsxpPnz7tTmkOlYS6CwsLPTrPnldffVXTpk2T2Wz/drFs2TJ17NhR6enpXl3bXZe7pq+66ioDKvG/8uXLF/uc1NRUb5VziTJlyvhsbqNNmjRJYWFh1va2bdtUs2ZNDRw4UPPmzVNiYqKOHTumzMxM5eXl2ZwbFhbm8e/mvffek8VisbaHDh1qM5fJZFJcXJzNObNmzXJp7qL3n/fff18mk6nYP+3atfPotXpDxYoVbdqnTp0yqBIAQGly7tw5PfXUU7ruuus0ePBgLV68WIcOHbL5jHbVqFGjfFCh57y9rwh0jr4Lm0wmValSxekc1apVc7hvKkmM3PuWhH23I40aNdK6desUFRXl1XnDw8Md9tepU8er6xVVrVo1r4w7e/asN8rxi08//dRhf/ny5RUZGemTtQMl31i6dOklx3yVFV6J0tLSbNrR0dFuz+HJOb5W9DM1JibGo3mKnmfv/uHv9YoqLCxU586dtW7dOusxs9ms999/XyNGjPColuLyVg5nVN5IhgMA/pWTk6Nz587Z7Q8ODlbdunW9tt7DDz/ssD8tLU3/93//p1tvvVVRUVEym802f2d47bXXvFaLp3JychzuW33JqPyiJOzVvZFlHTx4UJ9//rnd/r//7ta9e3ebvw1eLDExUTt37ix2LZ4w8to0gr/vX0a/D5y9/6tWrep03euvv77U5JeuIPMNbMXJv3Jzc7VlyxabY3fddZdX6nKVUc+JuMufz34YlXUZnQ15gy+f/7kSFP23KpoteYM/r7Oi7yVvZHSlRaBl6uSYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBRmowuAMQoLC7VkyRKHY4KCgrRgwQKVKVPGJzX88ccfDvtbtWrldI7rrrtONWvWtNtfWFiow4cPu12bIyW1bncFBQVp7ty5evHFFx2OmzZtmvr06aOcnBw/VWbf+fPndebMGZtjlStXNqga/6pXr16xzzly5Ijdsfn5+TbtoKAgt9aKiYlxa3xJUb58eXXq1Mnazs3N1f3336+TJ0+6dH5sbKzHax84cEDr16+3titXrqx77rnH2m7fvr1q1KhhbZ84cUKrVq1yae6i10KtWrU8rjMQREZGKjIy0ubYoUOHjCkGAFAqZWRkaP78+erfv7+qV6+ucuXKqVGjRurVq5eef/55LVy4UCdOnHA4R5s2bfxULS7nwIEDDvtbtGjhdA5X9oIliZF730Dfd7/33nvKyMiw29+0aVN98cUXKleunMtzOttTV6hQwWF/27ZtXV7LEy1btnRpnLP3irN/20BisVicjgkNDfXJ2oGSb+zdu/eSY9HR0X6vo7QquveuU6eO23N4co6vHT161KbtSWZlNptVt25dh/Matd7lZGVlqXv37vr000+tx0wmk2bMmKFnn33W7XoCJYfzdd54OWQ4AGCMgwcPOux/4IEHvLbWXXfdZbcvJydHLVu21KuvvqpffvlF586du+R7eaB8H3W0t9m5c6dMJlOxfy7++9PfjMwvAn2v7i1Tp06129evXz9FRETowQcftDtm/vz5PqjKdUZdm0bx5/1LCuy87I477nC6titjShMy38sLCwtzut87deqUz+sobv61YsUKm3bNmjV19913e6M0p4x8TsRd/nz2w6isKxCyoeLy5fM/V4Kin5ENGzb0+hr+vM6Kfg/wRkZXWgRSpk6OCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEBiNroAGGfq1KnKz893OKZVq1aaNWuWypQp4/b8ZcqU0aOPPqqRI0detn/jxo0Ozx8xYoTTNUaMGCGTyWS3f/v27UpNTXU6jztKat3uKFu2rD755BMNGTLE7hiLxaIxY8boiSeeUGFhoR+rc2zv3r027WrVqhlUiX/ddtttbo2PiYlRjRo1bI4lJibaHZ+RkWHTjoqKcmu9WrVquTW+pGjYsKGCg4Ot7c2bN+vYsWMun+/uv1tRM2bMsGk/8sgj1v/+5z//adP3/vvvO73n/+2bb76RxWKxtm+77TaVLVu2GJUaq+h9IC0tTSkpKQZVAwC4Ely4cEHbt2/X8uXL9eabb2rgwIGqWrWqPvzwQ7vnVKhQQREREXb7CwoKHK4ZEhLicb2Qtm7d6rB/6NChDvtNJpPdvW9JZeTeN9D33T/99JO6du2qrKwsu2NatGihNWvWuPw9Oj093WF/gwYN7PaVL19eAwcOdGkdTzVq1Mjp/qVFixa66aab7Pbn5+frxx9/9HZpPtOtWzeH/Xl5eTpz5ozP1g/UfMPIvKq0Kfp+aNCggU3G4IpGjRp5sySv+OGHH2zaN9xwg2JjY92ao379+jbfiwoLC+3mVv5ez56cnBz16tXrku97b775psaNG+fWXIGSw/k6b7wcMhwAMMb69esd9j/99NNe+T5arlw5lStXzm7/pk2btHPnTodzNG3atFg1eCtf2bBhg92+evXq6brrrnOrLlcZmV8E+l7dW9avX6/du3dfti8yMlLDhw9Xx44dL9ufnZ2tJUuW+LI8p4y6No3ir/vX34x8Hzh7/8fFxTld25UxpUlpznzHjx+vxx9/XKGhoW6fO3LkSEVGRjocc+jQIQ8rc09x8q9FixbpwoULNsf89e9l9HMi7vDnsx9GZV2Bkg0Vl6+e/7kSbNmyxeY6v/rqq1W7dm2vruHP66zosQYNGigsLMyttfx5n/GnQMrUyTEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQSMxGFwDjHDp0SNOnT3c6bujQofr8889Vq1Ytl+YNDQ3VgAEDtH37dk2fPl0VKlS47Lh169Y5nKdNmzZ6+umn7fa3bNlSzz33nMM5nK3hiZJat6sqVKigDRs2qGvXrnbH5OXlaeDAgXr99df9WJlrkpKSbNoNGjQwqBL/6tWrl1vje/bsKbP5fx8Bv//+u86cOWN3/OnTp23art4P/ta6dWu3xl8sPz/fpn1x3UaLjY21aR89etSt87t3716s9VevXq0jR45Y2507d1bVqlV1zTXX6N5777UeLywsVHx8vMvzpqSk6Ndff7W2w8PDi12rkYreB4reJwAA8If8/HzNnj3b4ZiyZcva7cvMzHR4rrvfz2Br06ZNDvvbtWunuLg4u/0vvPCCmjVr5u2yDGXk3rck7Lu//fZb3X///crLy7M7plWrVvrss88UFhbmdL6TJ0867I+Li1NoaOglx4OCgjR37lxVqlTJedHFNHfuXMXExFy2LyYmRrNmzXJ4/o8//qgLFy74orTLio6OVmJiokaOHKmKFSu6dW7v3r2dXkOHDh2SxWIpTokOBUK+UbNmzUuOObtWA3kPH2gOHDigU6dOWdvlypVT+/bt3Zrj/vvv93ZZxXb48GGbrEJyP7fq06ePTTs5OVkZGRkBsZ4j+fn56t+/v+bNm2dz/JVXXnErRzUyh7uYr/PGyyHDAQBjrFmzxmF/TEyM1q5dqxtvvNHpXLGxsYqPj1eNGjUu6XO2NwoKCnLYf8cdd6hp06ZOa3DEW/nKF198YbfPbDZrzJgxbtX1t4iICD3//PMaN27cZfuNzC9Kwl7dWxw9Q/Haa68pJCTksn0rV65UWlqar8pyiVHXplH8df/6m5Hvg6+++srheXfddZcef/xxu/0jR45UmzZtHM5R2pTmzPfaa6/V1KlTtX//fo0ePVrXXnutS+cNGDDA6f40KytLX3/9tReqdK4467DXHgAAIABJREFU+VdaWpqmTZtmc+yBBx5Qp06dvFLbLbfcYncuI54T8TRz8+ezH0ZlXYGUDRWHr57/uRKcPXtW27dvtzk2ePBgr67hz+vs0KFDOnbsmLUdHh6uLl26uLXWAw884Nb4kiKQMnVyTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQSs9EFwFjjxo3Tvn37nI7r0KGDdu/ercWLF6t///6qXbu2oqOjFRwcrKuvvloNGjTQoEGDFB8fryNHjuiDDz645H/uXtS6deu0c+dOh2MmT56sRYsWqWXLloqMjFRoaKj+8Y9/aPz48fryyy8VGhpq99ycnBzNmDHD6WtzV0mt2xVVq1bVd999p+bNm9sdk5mZqXvvvVcffPCBHytzXWJiok27YcOGBlXiX82bN1ezZs1cGms2m/X444/bHJs/f77Dcw4fPqzU1FRr+9prr1WtWrVcWi88PFyDBw92aezlZGZmXjJfoMjOzrZpV6hQweVzb7jhBvXu3btY6xcUFGjOnDnWttls1tChQzVkyBAFBwdbj69bt06HDh1ya+7p06fbtF966SWbOUuSoveBovcJAADc9cADD+jjjz9W165dFRIS4vJ5jRo1stuXn5+vM2fO2O0/e/asw7knTpyopk2bqmzZsi7Xg//ZtGmT9u/f73DMrFmzNHv2bDVp0kQRERGKiIhQ8+bNtXjxYr366qt+qtR/jNz7lpR99xdffKH+/fursLDQ7pi2bdtq5cqVDuuRpJ9//tlhf8OGDbVu3To1b95cYWFhiomJUdeuXbVlyxb17NnTo/rd1aBBA/30008aOHCgrr32WgUHB+vaa6/Vww8/rKSkJN10000Oz7947+IPJpNJt912m959912lpKRo27Zteu2119S7d281aNBAsbGxCg0NVVBQkMqXL69bbrlFw4cP1+bNm/Xhhx863f988sknPq2/uPnGkiVLdPXVVxerhl69etm08/PztWXLFofnBPIePhAlJCTYtB999FGXz23RooXD7xZGKpozPfHEEwoKCnLp3OjoaMXFxdkce//99wNqPUcKCws1dOhQvfvuuzbH//Wvf2natGkymUxO5zAyh7uYr/PGyyHDAQBjfP31107vuXXr1tUvv/yiGTNmqH379oqNjVVwcLCioqJUu3Zt9evXT4sWLdLhw4c1dOhQmc2XPoZw9uxZ5efn212jefPmqlat2mX7atSooSVLlrj3wi7DW/nK+vXrtWPHDrv9jz76qJ566imX66pTp45ee+01/fHHH5o4caJiY2MvO87I/KKk7NW9YeHChUpPT79sn6PXMG/ePF+V5DKjrk2j+Ov+9Tcj3wfr1693+vfed955R3PnztVtt91mff/fdtttio+Pv+Rvv1eCKyHzrVKliiZMmKDDhw9r3bp1+te//qU77rhDVapUUUhIiMLDw1WzZk0NGDBAGzdu1AcffOA081qzZo2ysrL8Un9x868JEybo2LFjNsfmzJmj6667rlh1NW3aVOvXr1f58uUv22/EcyLFydz8+eyHUVlXIGVDnvLl8z9XgqLX+fDhw3Xttdd6dQ1/XmcLFy60abvz/a1Dhw76xz/+4fL4kiZQMnVyTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQSs9EFwFjnzp1Tr169lJ6e7nRsUFCQ+vbtq4SEBO3du1dpaWnKzc3VyZMntWPHDs2bN09Dhw5VpUqVXFq7sLBQ48aNczquX79++vbbb5WRkaHs7Gzt3LlTY8eOVXh4uMPzZs6cqWPHjrlUiztKat2ueOSRR1S3bl2HY8qVK6e1a9fKYrG49ZOUlOSX17Bx40ZZLBZru3nz5jKZTH5Z22jTp09XaGio03FPPPGEbr75Zms7Oztb8+bNc3re999/b9MePny4S3W9+eabLt8XLiclJcWmXa1aNY/n8raDBw/atO+++25FR0c7PS84OFgJCQkKCQkpdg1z5sxRXl6etT106FDFxcXZjJk9e7bb8y5YsMDm9dWpU0ezZs3yvFAD3XHHHTbt9evXG1QJAKC0CA0N1f33369Vq1YpNTVVa9eu1YsvvqiePXuqfv36io2NVXh4uMxms6Kjo9W0aVO9+eabmjBhgt05f/vtNxUWFtrt37lzp8OamjRpom3btun8+fOXfBcfMGCAx6/1SmGxWDRlyhSHY0wmk+Li4vTjjz8qMzNTmZmZ+v7779W3b18/VelfRu59S9K+e9myZXrkkUccjunYsaM+/vhjBQcH2x2TnJys06dPO5znrrvu0vfff6+srCydPXtWq1atUrNmzTyq21PVq1fX/Pnzdfz4ceXm5ur48eNasGCBatSo4fC8U6dOacmSJX6q8lJms1lNmzbVCy+8oA8//FA7duzQqVOnlJ2drby8PKWmpmr79u2aOXOmWrVq5XS+/Px8zZ8/36c1Fzff6NGjh3bu3KmHHnrIo1zklltu0aOPPmpzbNOmTUpNTXV4XiDv4QPRnDlzbD7/u3Tpou7duzs9LzQ0VFOnTvVlacUyc+ZM5ebmWtt16tTR6NGjXTp30qRJNjlSRkaG09zK3+s5Y7FY9Nhjj+mNN96wOf7YY49pzpw5Mpud/1nGqByuKF/njUWR4QCAcVz57AwPD9eIESP05Zdf6tSpU8rNzVV6err27t2rRYsWqV+/fg4/NwoLC5WYmGi3v1y5ctqwYYP69OmjypUrKyQkRDVr1tTzzz+vpKQkXX/99R69tot5K1+xWCx68cUX7c5jMpn09ttva+vWrRo6dKjq1auncuXKKSgoSJUqVVK9evXUq1cvTZo0SUlJSfr999/1wgsvOP0cNzK/KEl79eLKzMx0e8939OhRbdiwwTcFucGoa9NI/rh//c3ovGzatGkOzzeZTBoyZIgSExOt7//ExEQNHTr0inlm4mJXUuYbFBSkDh066PXXX9eWLVt05MgR5eTk6MKFC9q/f78++OADtWnTxuk8eXl5Gjt2rB8q/q/i5l/p6ekaOHCgCgoKrMeqVKmiLVu2OM0r7Rk0aJC++uorXXXVVXbHGPGcSHEyN38++2FU1hVo2ZCnfPX8z5UgISFBhw8ftrZjYmK0YMECrzyX9Td/Xmdz5sxRfn6+tX3nnXdq4MCBTtcpV66c3nnnHZdqKqkCJVMnxwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAgMRtdAIy3Y8cOdenSRWlpaX5fe8WKFZozZ47X5/3555/14osven3ev5XUuq8EJ06c0K+//mptX3XVVbrpppsMrMh/mjRpoiVLligiIsLumH79+mnSpEk2x15++WWlpKQ4nX/+/Pk27SeeeEJt2rSxO95sNus///mPHn30UadzO3Lxv6ckdezYsVjzedOuXbt06NAhazs6OlqzZs1SUFCQ3XNiYmK0Zs0a3XHHHV6p4eTJk1q5cqW1XblyZd1www3W9vHjx7V69Wq3583Pz1f//v2Vk5NjPTZ48GCtWLFCFStWdHmeSpUq6bnnntPy5cvdrsEbwsPD1axZM2s7IyND3333nSG1AABKp7Jly6pjx4569dVXtXz5ciUnJ+vUqVO6cOGCCgoKlJaWpm3btunZZ59VcHCw3XkWLVrkcJ0ffvhB+fn53i4fF3nvvfeUmJhodBkBxci9b0nad8+dO1ejRo1yOKZr16766KOP7O4V8vPztXDhQq/WFUhGjhyp7Oxso8vwmvHjx2v37t0+XcMb+UbFihW1cOFC/fbbb+rTp4/MZtei4C5dumjjxo0KCQmxHissLNSYMWOcnhvIe/hAtGfPHk2fPt3m2KJFi9S6dWu755QtW1aLFy9W48aNfV2ex06cOKGXXnrJ5ti///1vjRgxwu45ZrNZ48eP17Bhw2yOjxo1ShkZGQG1nqv+9a9/6eWXX7Y5NnToUCUkJDjMjiTjcriifJ03XowMBwCM9dVXX+nf//63z9dZvHixw/5atWppyZIlOnr0qHJycrR//35NnDhRMTExXlnfm/nK6tWrNXXqVIdjbr/9dsXHx2vXrl06d+6c8vLylJKSol27dmnZsmUaNWqU29/rjMwvStJevbimT58ui8Xi8viFCxeqsLDQhxW5zqhr0yj+un/9zcj3wdSpU7V9+3avr12akfm6Z/z48dqzZ4/f1vNG/rVx40aNHDnS5p5dvXp1JSUl6emnn7bJtxypX7++1qxZo3nz5qls2bIOxxrxnEhxMjd/PvthVNYVqNmQu3z1/M+VIC8vTw8//LAKCgqsx9q3b6/Vq1frmmuucXp+VFSUxo0b5/Ca8ed19scff1ySt82ePVv33nuv3XPKly+vTz75RHXr1rU7pjQIhEydHBMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBxmx0AQgM33//vVq0aKHff//d72uPHDlSX3zxhdfmO3TokLp166YLFy54bc7LKal1XwmWL19u0+7YsaNBlfhHTk6OPvnkE0lSjx499Ouvv2rEiBGqXr26QkNDValSJXXs2FHLly/XokWLVKZMGeu5W7du1VtvveXSOitXrtT27dut7eDgYH3xxRd68803dcsttygiIkLh4eGqVauWHnnkEe3YsUNjxoyRJM2ZM8fj17dq1Sqb9nPPPadnnnlGNWvWVGhoqMfzest//vMfm3bv3r21bds29evXT5UrV1ZQUJDKly+vxo0b6+WXX9b+/fvVvn17SVJCQoIKCgqKXcPMmTPt9s2dO1f5+fkezfvDDz9o2LBhNjX26NFDf/75p2bOnKnu3bvr+uuvV9myZRUcHKyKFSuqTp066tGjh1566SV99913OnnypN544w3VrFnToxqK66677lJISIi1vWrVKuXl5RlSCwAA9iQnJ2v69OkOx5w+fVqrV6/2U0VXpoKCAg0cOFCpqakenZ+QkKD09HQvV2U8I/e+JWnfPXnyZI0fP97hmB49elyyJ7vYpEmTPL7+3njjDY/Oc9XcuXOVnZ3t0bnvv/++VqxY4eWKjDN//vxL9oG+4q18o379+lqyZImOHTumuXPnqmfPnqpfv74qVKigoKAgxcTEqFGjRhoxYoS++eYbrVmzRhUqVLCZY+zYsfr555+drhXoe/hA9OKLL2rv3r3WdkREhDZs2KC5c+eqVatWqlixokJDQ1WjRg2NHDlSO3bsUM+ePSVJS5YsMapsp9544w1t2LDB2jaZTJoxY4bWrVun++67T9dee61CQkJUuXJl9e3bV999953Gjh1rM8fSpUsVHx8fkOu56pVXXtFzzz1nc6xv375aunSpTV5RlFE53N/8lTdejAwHAIz30ksvadasWT5dY86cOdqzZ49H56ampuqjjz4q1vrezleefvppLV261GvzucLo/KIk7dWLY//+/W69zvnz5/uuGA8YcW0ayR/3r4sZ9T7Iz8/Xww8/rIyMDI/WWbRoUanMLx0x+p5ZkkyZMsVpvukL3si/Zs+eraFDhyo3N9d6LCYmRpMnT9aBAwc0Y8YMdevWTXXq1LHmYdHR0WrcuLEee+wxbdy4UcnJyerSpYvLa/r7OZHiZm7+fPbDqKwrULMhd/nq+Z8rwebNmy/J4dq3b6/9+/drypQpatu2rfU6iIqKUt26dfXQQw9p0aJFOnnypF555RVFR0c7XMOf19krr7yiHTt2WNshISH67LPPlJCQoNatW6tixYoKCwtTrVq19OSTT+q3335Tu3btJEmLFy92On9JZnSmTo4JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAQGM2ugAEjt27d+vWW2/VxIkTlZ2d7ZU5s7OzdeDAAYdj8vPzde+99+rVV19VYWFhsdZbvXq1GjdurGPHjhVrHleU1LqvBB988IEsFou1ff/99xtYjX8MGjRIP//8sySpZs2amjFjhg4ePKjs7GylpKRo7dq16tmzp805P/30k7p06aL8/HyX1sjPz9dDDz2k1NRU67GQkBA9++yz2r59uzIzM3XhwgXt27dPs2bNUv369SVJCxcu1OjRoz1+bWvXrrW+NkkKDw/XW2+9pf379ys7O1sWi8Xmp0mTJg7n69279yXnuPPTqVMnm/ni4+P10Ucf2Rxr1KiRFi1apKNHjyovL0+pqalKSkrSSy+9pAoVKkiSvvzyS8XFxXn8e7nYV199pd27d19yvLCwUPHx8cWaOyEhQZ06ddKZM2esxyIiIjR8+HCtXLlShw8f1vnz55Wbm6vTp0/r999/14oVK/Tyyy+rRYsWMpuN/arRq1cvm/aCBQsMqgQAgMvbuXOn7rnnHuXk5Dgd+/zzzyszM9MPVV25fv/9d7Vr187mO68rli1bpiFDhshkMtkdU9x9o1GM3PuWtH33uHHjNHXqVIdjHnzwQS1YsOCy35NPnDihIUOGuLxHk/57XT3//POaMGGC2/W644cfflC3bt3cvgctWrRIjzzyiI+q8q/MzEw999xzGjx4sFv/RsXh7Xzjmmuu0ZAhQ7R8+XIlJyfrzJkzysvL09mzZ/XTTz9pxowZuvPOO23Oyc3N1ahRo1y+xry9h78SZGZmqm3btjp48KD1mNls1pAhQ7R582adPn3amrG+++67qlmzpiRp69atGjFihM1ceXl5HtXg7axE+u/9qVu3bvrss89sjnfo0EGffPKJjh8/rpycHB09elSLFy/W7bffbjNu4cKF6t+/v8uvwd/ruWPSpEkaOXKkzfu5R48e+vTTTxUeHn7Zc4zK4S7mj7zxYmQ4ABAYhg8friFDhvgsf8jNzdW9996rv/76y63zUlNT1alTJ+3fv7/YNXgzXyksLFSfPn30zDPPKDc31ytzusLI/KKk7dWLw9ke/29btmzRvn37fFyNe4y6No3k6/vXxYx8HyQnJ6tDhw7KyMhwa53ly5dr8ODBnpRY4pH5Onbu3DmNHDlSTz/9tCHreyv/mjdvnlq2bKmdO3faHK9SpYpGjBihTz/9VL///rs1D0tLS1NSUpKmTZumNm3a2JyTkZGhF154QStXrrS7nr+fE/FG5uavZz+MyroCORtyhy+f/ymquJmgv3Jyd7z99tsaNGiQzfefiIgIPfnkk9qwYYP1OkhPT9fu3bu1cOFC9evXz25GV5Q/r7Ps7Gy1b9/+kuuhf//+2rRpk06fPq2srCzt27dPU6ZMUZUqVSRJ33333SXvpdLG6EydHBMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBxmx0AQgs2dnZGj16tGrXrq2JEyfq5MmTHs2zf/9+vfzyy6pataqWLFnidHxBQYH+7//+T82aNdPHH3+swsJCt9ZLSkrSgw8+qG7duuns2bMe1eyJklp3affnn39q06ZN1nazZs10/fXXG1iR72VkZOjuu+9WQkKC07EWi0UzZ85U69atlZaW5tY6O3fuVMuWLZWcnOx07Pnz5zVq1CgNHDjQ7ffGxQoLC9WzZ0/9/PPPHs/hSxaLRQMGDNDEiRNVUFDgdHxubq5ee+013XPPPcrOzvZaHe+9994lx9auXavDhw8Xe+4NGzaoQYMGmjp1qrKysoo9n78EBQWpe/fu1vaRI0e0ceNGAysCAOB/MjIy9PLLL+v22293+fN637596tChg1c+32Hfzz//rCZNmmj9+vVOx54/f17PPfecevfurfz8fJUrV87u2NTUVG+W6VdG7n1L2r77qaee0vz58x2O6d+/v+Lj42UymS7pW7lypbp166bjx487XWv//v3q0KGD3nzzTU/Ldcv69evVtGlTJSYmOh177tw5Pfnkk3r44Ydd2if5Qlpamm677Ta98847Lv0+7Tl+/Ljeeust1axZU5MmTfJihc4VJ99o2LChXnjhBf34448e7cnz8vK0YsUKNWjQQJMnT3b5vEDfwweqo0ePqnnz5vroo4+cjrVYLIqPj1fbtm1lsVhs+tLT031VokeysrLUs2dPPf744/rrr79cOufYsWMaMmSIBg0apPz8/IBezx0zZ87UkCFDbO6JnTp10po1a+x+fzAih7uYv/JGiQwHAALNvHnzVL9+fU2ePNnt7xfbtm3TfffdpwMHDtgds2/fPjVu3FjffvutS3Nu3rxZTZo0cWkv4gpv5ysWi0Vvv/22GjZsqFmzZunChQsezZOWlqalS5eqb9++GjNmjNPxRuYXJW2v7qkvv/xSe/bscTrOWQ5gFKOuTSP5+v51MSPfB9u2bVOTJk301VdfOR2blZWlMWPG6IEHHlBeXp5b65QmpS3zffbZZzVo0CB9/vnnHj9zkJaWpnfffVf169fXzJkzvVyh67z5fM+PP/6oW265RXFxcdq1a5fb5x86dEivvPKKateurQkTJjj83fr7ORFvZW7+evbDqKwrkLMhd/jy+Z8rwYIFC9SkSROtWrXKJ/P78zpLSUlRy5YttWDBAqdjLRaLZs+erfbt23v8va8kMeo+Q44JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAQBRkdAEITEePHtXo0aP1wgsvqFmzZrrrrrvUqFEj1apVS1WqVFFkZKRCQkJ04cIFZWRk6MSJE0pOTtavv/6qL7/8Ujt37vRo3aSkJD3wwAOqWrWq2rdvrzvvvFM333yzrrrqKlWoUEFBQUFKTU3V2bNntW/fPn377bf6+uuvlZSU5OXfwJVRd2k2ZcoUtW3bVpJkMpk0aNAgjR8/3uCqfOvcuXN66KGH9Oqrr6p///5q3769KleurNjYWGVkZOjIkSNav369EhISlJyc7PE6u3bt0s0336xevXrpvvvuU7NmzRQbG6ugoCAdP35cBw8e1IoVK/TRRx/p7NmzXnltf/75p5o1a6YuXbqoR48euvnmm3X99dcrMjJSoaGhXlmjOPLz8zV69GjNmjVLw4YNU+vWrVW7dm1FR0crMzNTp06d0sGDB/XZZ5/pk08+UUpKitdrSEhI0JQpU2QymazHZs2a5bX5T5w4oSeffFLjx49X586d1aZNG916662qVKmSKlasKEnKyMiw/pw5c0a7d+9WcnKy9cffunfvrquuusranjZtmgoLC/1eBwCg9Fm8eLG2bNmiWrVqqXbt2qpdu7Zq1aql2NhYRUZGWn/KlSungoICnT9/Xmlpadq3b5927dqljRs3auPGjcrOznZ77a1bt6p27dp64IEH1KVLFzVq1EhXX321IiMjFRTEFt9bDh48qA4dOujuu+9W3759dccdd6hy5coKDQ3ViRMndODAAa1YsULLli3TmTNnJEmxsbEym8125/zrr7/8Vb7PGLn3LSn7bovFomHDhikqKko9e/a0O27w4MHKy8vT8OHDZbFYbPq++OIL1a5dWwMHDtQ999yjhg0b6qqrrlJ+fr6OHj2qX375RUuWLNHatWuVl5fn65dkY/fu3br99tvVsmVL9e3bVy1atNB1112n6OhonTp1SgcOHNDKlSv14Ycf6tSpU36t7XKSkpKUlJSkp556SvXq1dPdd9+tW2+9VTfeeKOqV6+uqKgo6706MzNTmZmZOnnypHbv3q1du3bpm2++UWJi4iX/Rv7kab6xd+9eTZgwQRMmTFD58uXVsmVL3X777apXr55q166tq6++WlFRUQoKClJmZqY1N9ixY4eSkpK0cuVKj/f0gb6HD1QpKSnq06ePJk+erP79+6t169aqXLmyIiIidOrUKR09elTr1q3TokWLdODAAUlSpUqVbOZIS0szonSHCgoKNH36dC1YsEDdunVTly5ddMsttyg2NlbR0dFKS0vTqVOn9NNPP+nzzz/XqlWrlJWVVWLWc8f8+fOVlZWlhIQE6/e21q1b68svv1Tnzp2Vnp5+yTlG5HAX81feSIYDAIHn8OHDGjVqlMaNG6e2bduqRYsWatasmSpXrqyYmBiVL19e2dnZOn36tJKTk/X9999r+fLl2rt3r0vzHzlyRK1atVLbtm2t++7rrrtOYWFh+uuvv3TixAlt3rxZy5Yt07Zt27z++nyRr+zZs0fDhw/XmDFjrL+zpk2b6pprrlFMTIyioqKUl5en8+fPKzU1VX/88YcOHDig3377Td99952Sk5Pd/vwzOr8oKXt1T1ksFk2fPl3Tpk2zO+bChQtaunSpH6tynxHXppF8ff8qyqj3wb59+9SmTRu1adNGffv2VfPmzW3e/wcPHtTKlSu1dOnSUpFLeoPR90xvSktL04IFC7RgwQKFhobqtttuU4sWLfSPf/xDNWrUUNWqVRUVFaWIiAiZTCalp6crLS1Nf/75p5KSkrRt2zatXbvWb/thZ7z5fE9+fr7i4+MVHx+vm2++WZ07d1bTpk114403WnMWi8WitLQ0nTlzRnv27NG2bdu0ZcsWfffdd27lgP5+TsRbmZu/nv0wKusK5GzIVb5+/udK8Ntvv6lbt2666aabdM8996ht27aqXr26KlWqpLJlyyo9PV2pqalKTU3V/v37tW3bNm3btk3bt293aX5/Xmdnz57VoEGD9M4772jAgAFq27atqlSponLlylnfS2vXrtWiRYt08OBBSbpi/mZsxH2GHBMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACByGSxWCxGF2GEl19+Wa+88orRZQDwEZPJpF27dqlu3bqSpMOHD6t69eoqLCw0uDLvuPjWnZOTo7CwMAOrQSC45557tHr1amv72LFjqlatmgoKCgysylhffvml2rdvL0nKzMxUlSpVlJ6ebnBVgSctLU3R0dFGl4FSJioqSufOnTO6DADwqy5dumjNmjV2+ydOnKjRo0dNClgZAAAgAElEQVT7sSLAdV27dtWqVavs9sfFxSk+Pt6PFeFvpT3fQPF07txZn3/+ubW9fPly9erVy8CKUJIZmTeS4QD/NWfOHA0bNszoMq5o8fHxiouLM7oMwKfIL9wTGRmpo0ePKioq6rL9Cxcu1MCBA/1cFQB/4Z7pH+Rf+BtZ13/x/A/gO8W9z5BjXl5kZKQyMjKMLsNvli1bpgcffPCS4zfddJOSk5NtjjVv3lzff/+9JGny5MkaNWrUJecdOXJEVapU0dGjR3X99ddf0v/WW2/pmWeekSS1aNFCW7dutbsGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4Ii0zG10BAPiCxWLRa6+9Zm1XrVpV9913n4EVAb4VFxdn0547d64KCgoMqsZ49erVU7t27aztadOmKT093cCKAABAadenTx+H/Zs2bfJTJQBKE/INOHL33XfbtLdt22ZMIUAxkOEAAOBf5BfuOXfunE6fPm23f/78+f4rBoDfcc/0D/Iv/I2s6794/gfwneLcZ8gxAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEKjMRhcAAL6yePFiJScnW9tjxowxsBrAdypXrqyuXbta2/n5+YqPjzewIuONHj1aJpNJkpSWlqY33njD4IoAAEBpduutt6p37952+7OysvTNN9/4sSIApQn5Bi4nLCxMgwcPtjm2efNmg6oBPEeGAwCA/5BfuK9x48aqUaPGZfv++OMPff311/4tCIDfcM/0L/IvkHX9F8//AL5T3PsMOSYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACldnoAgDAVwoLCzVmzBhru0mTJurYsaOBFQG+8dRTT6lMmTLW9vLly3XkyBEDKzJW9erV1a9fP2t7woQJSktLM7AiAABQUlSsWFGbNm1S165dZTa7FpnceuutWrlypUJCQuyOiY+PV3Z2trfKBHCFId/A5UyaNEmVKlWytn/55RclJiYaWBHgPjIcAAA8Q37hP2PHjrXb995778lisfixGgCe4J5ZMpB/gazrv3j+B/Cd4txnyDEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQyMxGFwAAvrR69WqtWbPG2n799ddlMpkMrAjwrhtvvFGPPfaYtW2xWDRx4kQDKzLea6+9pqCgIEnSnj17NGXKFIMrAgAAJYXJZFLr1q21atUqnThxQrNnz9bDDz+shg0b6qqrrlJQUJAiIiJUrVo19ezZU4sWLVJiYqKqVq1qd85z585p/PjxfnwVAEoj8o3S7a233lJcXJxCQkKcjg0JCdHbb7+tRx991Ob4lZ4FoGQiwwEAwDPkF74VHh6uRo0aaeHChbrvvvsuO+b8+fOKj4/3c2UAPME9s+Qg/yo9yLo8w/M/gOv8fZ8hxwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAgCzK6AADwtSeeeEJt27ZVWFiYbrnlFg0YMEAffPCB0WUBxXLNNdeoTZs2ev311xUWFmY9vmTJEm3fvt3AyozVuHFj9enTx9p+/PHHlZuba2BFAACgpIqNjVVcXJzi4uI8nqOwsFDDhg3TX3/95cXKAFypyDdKr2rVqumZZ57RhAkTtHTpUm3atEk///yzUlJSlJOTo5iYGNWuXVutW7fWP//5T1WpUsXm/CVLlujDDz80qHrAM2Q4AAB4B/mFd7z33nv65z//6fL4SZMm6ezZsz6sCIAvcM8MfORfpQNZl3t4/gdwnz/vM+SYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACHRBRhcAAL528OBBhYeHG10GUGyvvvqqXnzxRbv9KSkpevrpp/1YUeD56aefZDabjS4DAABAFotFTzzxhJYuXWq33xdMJpNP5gW8ievfM+QbpV/FihU1YsQIjRgxwuVzPvnkE8XFxfmwKsA3yHAAAAgMzvILXGrPnj1644033D6PvTBQ8pH5+h75V+lC1mUfz/8A3uGP+ww5JgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAId/zduAABKgb/++ktdunRRSkqK0aUAAABc8Q4fPqx27drp3XffNboUAEApdfz4cT355JO6//77df78eaPLAQAAQAlEfuG+1NRUPfjgg7pw4YLRpQDwM+6ZgG+Rdf0Pz/8AvsF9BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKVVkNEFAAAAz5w7d0579+7VmjVrNHXqVJ05c8bokgAAAK5o+/fv1+zZszVr1ixlZGQYXQ4AoIQYMmSIFixYoNtvv1033XSTqlSpoujoaJUvX15RUVHKy8vT2bNnderUKf3www/avHmzPvvsM+Xk5BhdOgAAAEog8gvP7Nq1S3379tWOHTuMLgWAH3HPBNxH1uU+nv8B3MN9BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPifIKMLAAC4z2QyGV0CDDB27FiNHTvW6DIAAABKrdOnT6ty5cpq2LChGjRooAYNGqhGjRoqX768oqOjFRUVpYiICJ0/f17p6elKTU3V7t27lZiYqK1bt+qHH36QxWIx+mUAblu9ejX7TMBAGRkZWrVqlVatWmV0KbiC8TkAAEDJQX7hH1lZWUpJSdFPP/2kjz/+WB9//LHy8vKMLguAm7hnAv5H1uUcz/8AxcN9BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPifIKMLAAAAAAAACBTHjx/X8ePHtXbtWp+uYzKZfDo/EMi4/gEAAACgePyVX1wphg8fruHDh/t0DfbCgHHIfAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBamY0uAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK4xG10AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXGM2ugAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4xmx0AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHCN2egCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4Bqz0QUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADANWajCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBrzEYXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANeYjS4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArjEbXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABcYza6AAAAAAAAAAAA8P/s3WmQVOX5N+CbdmCQ5c8iKAiKAqIsJhBNdAREDYQkBkFgwCGKREXUFIuaCClRo6ZMUNASKVOAFJZGwTUaYkmEGBEMUAFxA7VAQdESRDYREYTp90MqvJkwSw/MzJnluqrOhz59+nl+3X2c/nl/AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKTSjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmUklHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDMpJIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGZSSQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCZVNIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEwq6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkJpV0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKTSjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmUklHQAAACgfe/fujb179yYdAwAAAAAytnv37sjPz086BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUaqmkAwAAAOVj/fr10aJFixg+fHjMmzcv9u/fn3QkAAAAACjWCy+8ECeeeGKMHTs2lixZEul0OulIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFDppJIOAAAAlJ8dO3bEo48+GhdddFG0aNEiRo0aFUuWLIl0Op10NAAAAAAo1KeffhpTp06Nnj17Rtu2bWPChAnx/vvvJx0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqNVNIBAACAirF169aYMWNG9OzZM04++eQYO3ZsrFq1KulYAAAAAFCkDRs2xKRJk+K0006Lzp07x29/+9tYv3590rEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIFGppAMAAAAV76OPPoqpU6fG9773vejWrVvcc8898fHHHycdCwAAAACKtGbNmrj99tujffv2cf7558eMGTNi27ZtSccCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAqXSjoAAACQrDfeeCNuuummaNOmTZx55plx//33x+bNm5OOBQAAAACFys/Pj1deeSVGjRoVxx57bPTp0yceeeSR2LVrV9LRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBCpJIOAAAAVB4rV66McePGRatWraJHjx4xY8aM+PLLL5OOBQAAAACFOnDgQCxcuDAuv/zyOO6446Jfv37x1FNPxb59+5KOBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADlJpV0AAAAoPI5cOBAvPbaazFq1Kho0aJFXHLJJfH888/H3r17k44GAAAAAIXas2dP/PWvf40hQ4ZEy5YtY9SoUbFo0aLIz89POhoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlKlU0gEAAIDKbc+ePfHEE0/EgAEDomXLlnHVVVfFyy+/HAcOHEg6GgAAAAAUatu2bTFjxow477zzok2bNvGrX/0qVq5cmXQsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgTqaQDAAAAVcf27dtj1qxZ8cMf/jCOO+64GDVqVCxZsiTS6XTS0QAAAACgUJ988klMmTIlzjzzzDj55JNjwoQJ8f777ycdCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOWyrpAAAAQNW0devWmDFjRvTs2TNOPvnkGDt2bKxatSrpWAAAAABQpA0bNsSkSZPitNNOi86dO8dvf/vbWL9+fdKxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBUspIOAABAcp577rmoV69e0jEoJ59++mmF7fXRRx/F1KlTY+rUqZFKpSpsXwAAAIDqYMWKFdGoUaOkY1QKy5Ytq7C91qxZE7fffnvceeedccopp1TYvgAAAADVwf79++Opp55KOka5qlevXlx44YVJxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAChUVtIBAABIzogRI5KOQDWUn5+fdAQAAACAKmX69Okxffr0pGPUWPn5+fH+++8nHQMAAACgSvnmm29iyJAhSccoVyeccEJ8/PHHSccAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoVCrpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGQmlXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMpNKOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZSSUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMxkJR0AAIDkvPLKK9GgQYOkY1BONmzYEIMHD67QPevUqRP5+fmxf//+Ct0XAAAAoCqbOHFiDBgwIOkYlcKCBQviN7/5TYXu2bBhw+jcuXMsW7asQvcFAAAAqMrq1asXixYtSjpGmZkwYUIsXLgw6RgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZy0o6AAAAyenatWs0atQo6RiUk/r161fIPqlUKnJyciI3Nzfy8vKiffv2sWvXrgrZGwAAAKA6aNOmTZxxxhlJx6gUPvjggwrZJzs7O/r06RO5ubkxcODAmDt3bixbtqxC9gYAAACoDlKpVLWaaTVp0iTpCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKWSlXQAAACgaurUqVPk5ubG8OHDo23btknHAQAAAIBipVKpyMnJidzc3Bg2bFg0b9486UgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcFiykg4AAABUHR06dIi8vLzIy8uLU089Nek4AAAAAFCiH/zgB5GXlxdDhw6Nli1bJh0HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI5YVtIBAACAyq1Vq1YxdOjQyMvLizPPPDPpOAAAAABQoo4dO0ZeXl7k5eVF+/btk44DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUqK+kAAABA5dO4cePo169f5Obmxk9+8pPIyvK/DgAAAABUbq1bt46BAwdGbm5u9OjRI+k4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBuspIOAAAAVA5169aN3r17x/Dhw6N///5Rp06dpCMBAAAAQLGaNGkSP/vZz2L48OFxwQUXRCqVSjoSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJS7rKQDVFZt27aNv/zlL0nHAADIyEUXXRQffvhh0jGogmrXrh19+/aNvLy86N+/f9SvX7/c97z99ttj0KBB5b4PAFC13XrrrfHss88W+Xz37t1j+vTpFZgIAODwnXXWWbF79+6kY1QbDRo0iAEDBkReXl706dMnateuXe571q9fP5YvX17u+wAAVdtXX30VZ599drHXTJ8+Pbp3715BiQAADt8zzzwTt912W9IxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKEJW0gEqq+zs7OjcuXPSMQAAMpKdnZ10BKqQVCoVOTk5kZubG3l5eXHsscdW6P7HH3+8rg0AlKhx48bFPl+/fn2dAgCoMlKpVNIRqrzs7Ozo06dP5ObmxsCBA6NBgwYVun8qldI/AYAS7dy5s8RrTjzxRL0CAKgSli5dmnQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAipGVdAAAAKBidOrUKXJzc2P48OHRtm3bpOMAAAAAQLFSqVTk5OREbm5uDBs2LJo3b550JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoFLKSDgAAAJSfNm3axCWXXBIjRoyI0047Lek4AAAAAFCiTp06xfDhw+Oyyy6L448/Puk4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFDpZCUdAAAAKB8dOnSIDRs2JB0DAAAAADI2ePDgGDJkSNIxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBSSyUdAAAAKB+plLoPAAAAQNVipgUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJUslHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDMpJIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGZSSQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCZVNIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEwq6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkJpV0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKTSjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmUklHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDMpJIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGZSSQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCZVNIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEwq6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkJpV0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKTSjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmUklHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDMpJIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGZSSQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCZVNIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEwq6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkJpV0AKDqmjx5ctSqVevgsWPHjqQjUYEWLVpU4Pv/z3HvvfcmHQ0O24gRIw65p+vXrx+ffPJJ0tEAqCA6bs2m41Id6bhQs+k2NZtuQ3Wk2wAUTferufQ+qivdD2ouvaZm022ornQbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAykMq6QAcntWrV8fdd98dffv2jU6dOkWzZs0iOzs7jj/++OjatWsMHTo0Hn744di8eXPSUYFq6MCBAzF27NhDzrdo0SKuvfbaBBJB2bjlllsiKyurwLmvv/46brrppoQSAQAVRcelutJxk2N+ByRJt6G60m0AoCC9j+pM90uGmRaQJN2G6ky3AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoDykkg5A6Sxbtix69uwZXbp0ifHjx8dLL70U7777bmzdujX27dsXn332Wbz55pvx5JNPxi9+8Yto1apVXHPNNbFp06akowPVyOzZs+PNN9885PyNN94YRx99dJGvmzZtWtSqVavI4//+7/9iy5YtGWVo3bp1kevs2LHjsN8bldO+fftizZo18dxzz8WkSZPiiiuuiO7du0ezZs2KvA+ysrJKvU+7du1i2LBhh5yfM2dOLF++vCzeClBJvPPOOwX+ZgwePDjpSEDCDrfjRui5HB4dt/oyvwMqA/M7KppuAxXDTAv4X2ZaJEH3q57MtIDKQLchCSeddFKx906mx5/+9Kdi99FtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKA+ppAOQmQMHDsQvf/nLyMnJiSVLlpTqddOnT4/27dvH008/XY4JS+/hhx8u8I++r1u3LulIFc5nQFW0b9++uJCMy04AACAASURBVPPOOw8536BBgxg5cuQRrb1r165C14YxY8ZE586d4+KLL44JEybE7Nmz45///Gds3bq1zPe6/vrrCz1/yy23lPleANWRjktVVJ4dN0LPpXA6bvVjflc9+QyoiszvSIJuA1QHuh9VjZkWSdH9qpfqONOK8Lte098/VZNuQ02g2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFDWUkkHoGRff/11XHzxxfHggw8WON+hQ4e48847Y8WKFbF58+bYu3dvbNy4MV5++eUYPXp0NG3a9OC1u3fvjqFDh8b9999f0fGBambWrFnx8ccfH3J+xIgR0ahRoyNef/r06fHhhx8e8TpwuLp27Rq9evU65PyCBQtiyZIlCSQCAMpbeXfcCD2XZOm45c/8DqhMzO+o7nQbAPg3My1qAt2vfJlpAZWJbkNNoNsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQ1lJJB6BkI0eOjHnz5h18nJWVFb///e/jnXfeiYkTJ8YZZ5wRxx57bNSpUydat24d559/fkydOjXee++9uOSSSw6+Lj8/P8aNGxdPP/10Em8DqAby8/Pj3nvvLfS5K6+8skz22LdvX0ycOLFM1oLDVdT9PHny5ApOAgCUt4rouBF6LsnTccuX+R1QWZjfUVPoNgDUdGZa1CS6X/kx0wIqC92GmkS3AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoCylkg5A8WbPnh2PP/74wcdZWVkxd+7cmDBhQtSuXbvY1zZv3jzmzJkT1113XYHzI0eOjI8++qhc8gLV27x582LdunWHnO/atWt07dq1zPaZO3durFq1qszWg9IaNGhQNGzY8JDz8+bNiw8//DCBRABAeamojhuh55IsHbf8mN8BlYn5HTWFbgNATWemRU2i+5UPMy2gMtFtqEl0GwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMpSKukAFG3Xrl1x/fXXFzh31113xaBBg0q1zrRp0+KCCy44+HjHjh1x4403lklGoGZ56KGHCj0/ePDgMt0nnU7H+PHjy3RNqrbs7Ozo2LFj9O/fP2666aaYNWtWLF68OD7//POoX79+me9Xr169+OlPf3rI+fz8/Jg9e3aZ7wcAJKeiOm6EnktBOm71YH4HVDbmdyRFtwGAimWmRZJ0v6rPTAuobHQbKpujjjoq0ul0qY5LL700o7V1GwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMpSKukAFG3mzJmxc+fOg4+7desWN9xwQ6nXqVWrVkyfPj2ys7MPnvvzn/8cH3zwQZnkrEzS6XS89NJLMXTo0OjYsWM0aNAgmjRpEt/5znfi17/+daxevTrpiInbvn17PPjggzFgwIBo165dNGrUKGrXrh3HHHNMdOnSJUaMGBFz586Nb7755oj2ef3112PUqFFx+umnR6NGjaJhw4ZxyimnxJVXXhlLliw5rDU3btwY9913XwwcODDatWsXDRs2jLp160arVq0iJycnJkyYEK+//voR5Y4o3/sonU7H/PnzY/To0dGtW7do2bJlZGdnR7NmzeL000+P6667LhYuXHjE76E8bNmyJebPn1/ocwMGDCjz/RYsWBB///vfy3zdoixevDhuu+226N27d7Rr1y6aNGkStWvXjmbNmkWHDh2iX79+MWnSpHjrrbfKZf/PP/88/vCHP8TZZ58dxx13XNStWzdat24d/fr1i9mzZ8f+/fsPa93ly5fH7373u+jbt2+0b98+mjZtGnXq1InmzZtHp06d4uc//3k8/PDDBX5vKqP7778/1qxZE88991xMmjQprrjiiujRo0c0b9683Pa8+OKLCz3/2GOPRTqdLrd9gaqnPHrPf9NxS6bjlkzHLVxFd9yIiu25Oq6O+7903LJnfld6uk3JdJuS6TaFM7/TbZKk20DVZK6VPN2veHpf4ar7TCtC99P9DqX7lS0zrdLTa0qm15RMtylcde82ek3l7jVJ0W0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoM+ka6rbbbktHRJFHx44dk46YPumkkwpkeuyxx45ovby8vALrjRs3rshr+/fvf/C67373uxnv8dRTTxXY4+233z7kmvr16xf72Rd2PProowXWuOeeewo8v3379vSmTZvSPXr0KHadrKys9Pjx49P79+8v8b1U9s/gcMyYMSPdqFGjjPZr2rRp+r777kvv27evyPUK+x52796dHjZsWInrX3nllRl9D+l0Ov23v/0t3bt373StWrUyyj5w4MD01q1bS1y3Iu6j//aPf/wj3a1bt4zeQ69evdJr164t1frl7aGHHio0a6tWrTJe44EHHijVfX/GGWek8/PzC12rVatWRb5u+/btGWd65pln0l27di1Vrt69e6dfe+21jNbv27dvket89tlnBz+XevXqFbtn586d0+vXr8/4fb3wwgvps846K+P31Lhx4/Qdd9yR3rt3b8Z7VBZF/U096qijjmjdL774osi/OytWrCij9GWnY8eOpf5tiYj0jh07ko5ONdSwYcNi77uZM2cmHTH99ttvF8g0aNCgYq+viN6j4x4eHbfk/Dpu0cqi46bTla/n6rj/PnTcQ1W1jnvFFVcU+x3/6Ec/Sjqi+d1/HeZ3uo1ukzzzu/9/6DaVi27zb1VhXlLTzZw5s9jvqGHDhklHLPVMK50219L9qkb30/tKp7rOtNJp3e8/h+53qKrU/Xbs2FHid/ziiy8mmjHJmVY6Xbl/1/Waw6PXlJxftylade02es2/j6rQa9q0aXNI7iPtLiWpSt2mKsxLylJubu4h7/GEE044+PyTTz5Z6OfQpUuXQ87l5OQcfN2UKVMKfd3GjRvT6XQ6vXHjxkKfnzJlysE1cnJyit0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACokZ5MBZXS2rVrY8OGDQcfN27cOAYOHHhEa1511VUFHi9YsOCI1qtMvvzyyzj//PNjyZIlxV63f//+mDRpUlx22WVx4MCBCkpXOUyePDmuvvrq2LlzZ0bXb9u2La6//vpYtGhRxnvs3bs3fvzjH8fjjz9e4rWzZs2Ka6+9tsTrNm3aFH379o2FCxdGOp3OKMezzz4b3bt3j82bN2d0/X+U5330xz/+MXr37h2rVq3K6PpFixbFOeecEytWrCj2umnTpkWtWrUOHtdcc01G6x+OF198sdDzvXr1KpP1U6lDf5JWrlwZTzzxRJms/7/27NkTV111VQwaNCjeeOONUr124cKFce6558Zdd92V8X1ZlNGjR8fo0aPj66+/Lva61atXx7nnnhs7duwo9rp9+/bFmDFj4sILL4zly5dnnGPHjh1x6623xnnnnRebNm3K+HXV2THHHBOdO3cu9Lmi/nsAao7y6D3/S8ctmY5bMh23eOXdcSMqtufquAXpuIfSccuW+V3p6DYl021KVtW6TUX2mgjzu/+m29QMug0cHnOtykH3K15V630RZlpHSvcrSPc7lO5Xdsy0SkevKZleUzLdpnjVrdvoNQVV1V6Tn58fw4cPjy5dukTTpk2jdu3a0axZszjllFNiwIABcffdd8fatWsPe33dBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLJy6L/mTqWwePHiAo/POeecqFu37hGt2b1796hdu/bBx2vWrIlt27Yd0ZqVxZgxY+Ldd9+NVCoVV199dSxdujR27twZu3btin/9618xevToOOqoow5eP2fOnLjrrrsSTFyxPvjgg7j55psPPs7Ozo5x48bFq6++Glu2bIlvv/02du3aFevWrYs5c+bE8OHD4+ijjy71PuPGjYvFixdHnTp1YsyYMbF06dLYvn177NmzJ95555244YYbCnwPM2fOjFdffTXj9XNycmLy5MmxZMmS2LRpU+zduze+/PLLeOutt2LKlClx4oknHrz2vffei5EjR5Yqf3ndR4888khcd911ceDAgYiIqF27dlx++eUxf/782Lx5c+zbty+++OKLmD9/fgwYMODg67Zs2RIDBgyIL774olTvo7y88sorhZ4/66yzymT9oUOHRnZ29iHnJ06cGN9++22Z7PEf+fn5MWTIkJg1a9Zhr3HgwIG4+eab45ZbbjnsNe64446YNm1axtdv3Lgxxo8fX+Tz6XQ6LrvssnjggQcOO9PSpUujV69esXPnzsNeozop6v5++eWXKzgJUNmUd++J0HFLouNmRsctXnl33IiK67k6btF03IJ03LJjflc6uk3xdJvM6DbFM78rSLepGXQbKD1zreTpfiXT+4pXnWZaEbpfcXS/gnS/smGmVTp6TfH0mszoNsWrTt1GrylaVes16XQ6Hn300Vi9enVs37499u/fH1u3bo1169bF888/H+PHj49TTz01Lrrooli3bt1h7aHbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUBZSSQegcCtWrCjw+Pvf//4Rr5mdnR2nn376wcfpdDpWrlx5xOuW1ldffRXpdDpmz55d4PzatWsjnU4Xelx66aXFrvn8/2PvzqOrrO/Ej39yA1GQVURQBEvRUnCt2B7EShV3UEfbERWcsaNordS6TamVbopoOyJunVFU1KGDWvef4EKBjkvF2o4Ul6pQQVqDIJsioJAE8vvDY2pI7s1zw5PcLK/XOZyTZ/8kPOG+z/cf/t//i5KSkpgxY0ZMmTIlBg8eHJ06dYoOHTrEwQcfHDfffHPMnj072rVrV3XN1VdfHQsXLmyQ77EuDfEzyOW+++6LsrKyiIjIZDLx9NNPxw033BCHHXZY7LLLLtGmTZvo0KFD9OvXL04//fT47//+71i2bFlcfPHFUVJSkvg5999/f3Tv3j3mzZsXN910UwwePDi6dOkSO+64Y+yzzz5x/fXXx5133lntmltuuSXnPYuKiuLkk0+Ov/zlLzFv3ry47LLL4tBDD40ePXpESUlJdOzYMfbbb7+49NJL4/XXX4/jjz++6toZM2bEM888k3j+hniPFi1aFN/97nertnfbbbeYN29e3HPPPXHsscfGrrvuGm3bto1u3brFscceG48++mjceeedUVRUFBERy5Ytix/84AeJv4eGsmTJklizZk2txz7/78r26NOnT1xwwQU19i9evDhuv/32VJ7xmR//+Mcxc+bMVO41ceLEePjhh+t17a233pr3NdOmTYsPPvig1mNXX311PPDAA/Wa5fMWLVoU//qv/7rd92kJsr3fL7/8clRWVjbyNEBT0hDdsy2Nm5vGTUbjZtcYjRvReJ2rcXPTuP+gcdNj/c76nbb5lLZpPW1j/S4ZbdO4tA3kz7pWTdrvH5pK++m+7FramlaE9quL9vsH7ZeOlrymFZH+57quyU3XJKNtsmtpbaNrcmtpXVNZWRkzZsyIr3zlK/X6+WgbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0pAp9ADUbuXKldW2v/jFL6Zy3759+1bbXrVqVSr3bQp+8YtfxPDhw7MeP+KII+LGG2+s2i4rK6u23ZK9+uqrVV8PGTIkDj/88Dqv6dq1a9xwww0xdOjQxM8pKiqKe++9NwYNGpT1nG9/+9vx9a9/vWp7xowZUV5envX8Hj16xKOPPhoDBw6s8/kdO3aMBx98MHr16lW17/bbb084/afSfo8mTJgQH3/8cUREtG3bNp588sk4+OCDc85wzjnnxKWXXlq1PX369CgtLU36LTSIV155Jeux/v37p/ac8ePHR+fOnWvsv+qqq2LDhg2pPOPdd9+NyZMnZz3es2fPuOOOO+K9996LzZs3x5IlS2LixInRvn37rNeMGzcuKioq6j3TeeedF6+99lps2rQplixZEt/5zneynrtp06aYPXt2jf3Lly+Pa6+9Nut1AwcOjPvvvz9WrFgRZWVlsXTp0rjmmmtixx13rPX8xx9/PObOnZv/N9PCDBgwoNb9H330USxZsqSRpwGakobontpo3Ow0bnIat3aN1bgRDd+5Glfj5kPjpsf6Xf60TXbaJjltUzvrd9qmtdI2kD/rWoWn/ZLRfbVrSWtaEdpP++VH+6XDmlb+dE12uiY5bVO7ltQ2uqb1ds2GDRti9OjRMWvWrLyu0zYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkIVPoAajd2rVrq2137tw5lft26dKl2vaaNWtSuW+h9enTJy688MI6zxszZkz079+/anv69OmxefPmhhytSdiwYUPV1x06dGiw5xxzzDFx1FFH1XneGWecUfX15s2b480330xthp122ikuuOCCqu3Zs2cnvjbt92j58uVx//33V22fd955ceCBByaa5YorrogddtghIiLKy8vjscceS3RdQ3nnnXdq3d+mTZvo2bNnas/p1q1bjBs3rsb+lStXxvXXX5/KM2644Yasv/fdunWLefPmxZgxY2K33XaLkpKS6Nu3b1xxxRXx+OOPRyZT+8fmkiVL4je/+U295pkwYUJMmTIl9t1339hhhx2ib9++cdttt8UJJ5yQ9ZqXX365xr7JkyfHJ598Uuv5++yzT7z00ktx2mmnRY8ePaJt27ax5557xo9+9KN4/PHHo6ioqNbrJk6cWK/vqSXp1atX1mPZfi+A1qExukfj5qZxk9G42TVW40Y0fOdqXI2bD42bHut3+dE2uWmbZLRNdtbvtE1rpW0gf9a1Ck/71U33ZdeS1rQitJ/2y4/2S4c1rfzomtx0TTLaJruW1Da6pnV3TUVFRYwaNSrWrVuX+BptAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQBpq/9/SKbj169dX2+7QoUMq9932Ph999FEq9y20UaNGRZs2beo8L5PJxJlnnlm1vX79+vjzn//ckKM1CbvvvnvV1y+++GIsW7asQZ5z+umnJzrvoIMOqrb9zjvvpDrH17/+9aqvV69eHX//+98TXZf2ezRnzpyoqKio2v6Xf/mXRHNEROy8884xePDgqu3nn3++1vO+973vRWVlZdWf2267LfEz8pHtnenevXtkMul+lFx88cXV3tnPXH/99bFy5crtvv8TTzyR9dhPfvKT6Nu3b63HjjzyyBg1alTWa5966qm8ZxkwYED86Ec/qvVYrt+n9957r8a+mTNnZj1/2rRpWT9Hjj766Dj++ONrPfbcc8/FunXrst63NejZs2fWY6WlpY04CdDUNEb3aNzcNK7G3V6N2bgRDdu5Grc6jZubxk2P9bv8aJvctE3LbJvG6poI63cR2qa10jaQP+tahaf96m6/5tZ9Eda06kv7Vaf9ctN+6bCmlR9dk5uuaZlrWhHapj50TXXNsWs6dOgQp512Wtx5553x6quvxtq1a6OsrCxWrFgRM2fOjFNOOSXn9WvXro3rrrsu8fO0DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlI/3+GJxXb/mfwGzduTOW+GzZsqLbdqVOnVO5baIceemjic4cMGVJt+09/+lPa4zQ5xx13XNXX69ati2HDhsWjjz4aFRUVqT7n4IMPTnTerrvuWm173bp1qc6x7f2XLl2a6Lq036Pnn3++6us2bdrEV77ylcT3j4jo27dv1ddvv/12Xtembf369bXub9++ferPat++ffzsZz+rdYYJEyZs173fe++9WLRoUdbjo0aNynl9ruPPPPNM3vOcddZZUVxcXOuxz//9b2vb35kVK1bEW2+9Veu5/fr1i4MOOijnHNu+z5/ZsmVLtfe4Ncr1jm/7mQq0Lo3RPRo3N427NNF1Gje7xmzcz+7bEJ2rcWuncbPTuOmxfpcfbZObtlma6Dptk531u7qPa5uWSdtA/qxrFZ72W1rnNbovu5ayphWh/bLRftlpv3RY08qPrslN1yxNdJ22ya6ltI2uqV1z6Zp999037rjjjli5cmXcf//9cc4558R+++0XXbt2jbZt20aPHj1ixIgR8cgjj8T06dOz/mwjIqZPn574udoGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACANLQp9ADUrlu3btW2P/zww1Tuu+19dt5551TuW2hf+tKXEp/bv3//atvLly9Pe5wm55RTTomvfe1r8cc//jEiIhYtWhTf/OY3o2vXrnHUUUfF0KFD4+CDD45BgwZF27Zt6/2c7t27Jzqvffv21bY/+eSTRNe98cYb8cgjj8Qf//jHeOutt2LNmjWxfv36KC8vz3ndunXrEt0/7ffob3/7W9XXFRUVNb7vysrKOr/+zJo1axLP1hA2b95c6/6SkpIGed4555wTkydPjoULF1bbP2XKlLjkkkvii1/8Yr3uW1pamvXYHnvsUec7fNBBB2U9tnz58tiyZUsUFxcnnueQQw7Jeqxjx45Zj5WVlVXbfvfdd7Oeu3jx4igqKko807aWLFlS72tbgh122CHrsaT/dgEtU0N3T4TGrYvG1bjbq7EbN6JhOlfj5k/jaty0WL/Lj7bJTdtom+1l/e5T2qb10TaQP+tahaf96m4/3ZddS1nTitB+9aH9tF8arGnlR9fkpmusaW2vltI2uiZ/TalrZs6cmfjcUaNGxZ///OeYNGlSrceXLl0aixcvjn79+tV5L20DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAGjKFHoDabfsf3b/zzjup3Hfp0qU5n9Ncde7cOfG5Xbp0qbb9wQcfpD1Ok1NcXBwzZ86MYcOGVdv/wQcfxIMPPhgXXnhhHHLIIdGlS5cYPnx4TJs2LcrKyvJ+zg477FCv+SorK3MeX7x4cYwYMSL22Wef+MlPfhIzZsyIv/71r7F27dooLy+v8/7r169PNEfa79GaNWuqbW/ZsqXan61bt1b9qaysrPpTm40bNyaerSFk+7utz3uSRHFxcVxzzTU19peXl8f48ePrfd/Vq1dnPZbk38Nddtkl67GtW7fG2rVr85pnjz32yHqspKQk8X1WrVqV13Pzketn1hps2rQp67F27do14iRAU9NQ3fN5Gjc3jatxt1djN25Ew3Suxs2fxtW4abF+lx9tk5u20Tbby/rdp7RN66NtIH/WtQpP+9Xdfrovu5ayphWh/epD+2m/NFjTyo+uyU3XWNPaXi2lbXRN/ppz15x//vk5j7/99tuJ7qNtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASEOm0ANQu0GDBlXb/tOf/rTd9ywrK4vXXnutaruoqKjGc5qroqKixOdWVlY24CRNV/fu3WPu3LkxY8aMOPHEE2OHHXaocc7HH38cTz31VJx11lnRr1+/eOKJJwowaXWvvPJKDB48OJ588sl632Pr1q2Jzkv7PSovL098vzSe15A6dOhQ6/6NGzc22DO/+c1vxuDBg2vs/81vfhPz589vsOc2pvbt22c9Vlxc3IiTZLd+/fpCj1BQH3/8cdZj2X4vANKiceumceumcbMrRONGtPzO1bhNn8ZNj/W7/Gibummbummb7KzfNQxt0/RpG2iatF/dtF9uui87a1oNR/s1fdovHda08qNr6qZr6qZtstM2DUPXNKx+/frFjjvumPX4qlWrEt1H2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCGTKEHoHZDhw6ttj1v3rzYvHnzdt3zhRdeiLKysqrtgQMHRrdu3bbrntvasmVLqvdL6sMPP0x87rp166ptd+3aNdVZCvUzSOqEE06Ixx9/PD788MN45pln4tprr40TTjghunTpUu280tLSOPHEE+Phhx8u0KQRFRUVMXr06Fi9enXVvn322SeuvfbamDt3brz99tuxbt262Lx5c1RWVlb9WbRoUb2el/Z79Pnfrz59+lSbMd8/n/8ZFEKvXr1q3b969erYunVrgz33l7/8ZY19lZWVcfnll9frfrvsskvWY6tWrarz+lx/D0VFRbHzzjvXa67t1b179wa7d2VlZYPduzlYsWJF1mPZfi8A0qJxk9O42Wnc7ArVuBHpdq7GzZ/G1bhpsX6XH22TnLbJTttkZ/3uU9qm9dE20DRpv+S0X+10X3YtZU0rQvvVh/bTfmlormtaEYX5XNc1yema7LRNdi2lbXRN/lp710RoGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANKRKfQA1O5LX/pS9OnTp2r7gw8+iEcffXS77jl16tRq20cffXTWc0tKSqq+Li8vT/yMtWvX5j9YChYtWpT43IULF1bb7tmzZ63nNbefQb523HHH+MY3vhGXX355zJgxI1avXh1z586NESNGVJ1TWVkZY8eOjU2bNhVkxtmzZ8df/vKXqu1zzjknXnnllbj88stj2LBh0a9fv+jUqVO1v6uIT39f6iPt92i33Xar+rq0tDQ+/vjjes3VFPTt27fW/RUVFbFixYoGe+7QoUNj+PDhNfbPnj07li9fnvf99thjj6zHSktLY9WqVTmvnz9/ftZju+22WxQXF+c9UxpyfV9HH310VFZW1vvPjTfe2IjfSdNTWlqa9dgXvvCFxhsEaJU0bv40bk0aN7tCNW5Eup2rcTVuvjRueqzf5Ufb5E/b1KRtsrN+9ylt0/poG2iatF/+tF91ui+7lrKmFaH9tF/+tF86Cr2mFdG8Ptd1Tf50TU3aJruW0ja6pnV1zdtvv53z368ePXokuo+2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA2ZQg9AdhdeeGG17UmTJsWWLVvqda8lS5bEww8/XLWdyWRi7NixWc/v1KlT1ddr1qxJ/JxXX321XvNtrxdeeCHxuS+++GK17a9+9au1ntfcfgbbq7i4OIYNGxYzZ86MkSNHVu1///338/r5pumZZ56p623VFwAAIABJREFU+rqkpCSuv/76KC4urvO6+v4dpP0eHXbYYVVfb926NWbPnl2vuZqC/fffP+uxt956q0Gf/Ytf/CIymZofV1u3bs37XrvvvnvsvffeWY/fd999Oa+/9957sx47/PDD854nLbvttlv079+/1mPPPvtsLFu2LK/7bdmyJW6//fa49tpr0xivWcv2fnfo0CH69evXyNMArY3G3X4aV+PmUsjGjUivczVuMhr3HzRuuqzfJadttp+20Ta5WL/7lLZpfbQNNE3ab/u19vbTfdm1lDWtCO2XlPb7B+2XnkKuaUU0r891XbP9WnvXRGibXFpK2+iaZJpi15x44ol5v2u33nprzuPZfmbb0jYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkoeb/2E6Tcd5550WnTp2qtl9++eW46aab6nWv888/PzZt2lS1ffLJJ8dee+2V9fxevXpVff3+++/HypUr63xGeXl5zJgxI/FMJSUl1ba3bNmS+Npt3XfffYmur6ysjP/5n/+p2u7YsWMcdNBBtZ7b3H4GaTr77LOrbS9durQgc6xYsaLq6169ekXnzp0TXffAAw/U63lpv0fHHntsFBUVVW3/6le/qtdcTcFee+0VXbt2rfXY66+/3qDP3m+//eLMM89M7X4jRozIeuyqq67K+r7PnTs37r333qzXDh8+fHtH2y4nnHBCrfvLyspi9OjRsX79+jrv8cknn8Tdd98dBx54YHznO9+J999/P+u5FRUVUVRUVOuffffdt97fR1Pz2muv1br/oIMOikxGRgENS+OmS+PmpnGra+jGjUi3czVudhq3Jo2bLut3yWmbdGmb3LRNddbvPqVttA3QeLRfulpj++m+7FrSmlaE9stF+9Wk/dJTyDWtiOb1ua5r0tUauyZC2+TSktpG12TXlLvmqaeeiv333z/OP//8eOutt+o8/957740bb7wx6/H99tsv+vTpk+jZ2gYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA0+J+xm7BOnTrFpEmTqu27/PLL47HHHsvrPhdddFHMnj27artz585x/fXX57xm0KBB1bYffPDBOp9zyy23xLJlyxLP1bFjx2rba9asSXzttv72t7/Ff/7nf9Z53l133VXtP6cfPXp07LDDDrWe29x+BmkqKiqqtt2+ffuCzNGuXbuqr1euXBmbNm2q85qZM2dWe9/zkfZ71Ldv3zjllFOqtufMmRPTpk2r12xNweGHH17r/pdeeqnBnz1hwoSsv6v5uvTSS7Pea82aNTFkyJCYOnVqrFixIsrLy2Pp0qVx7bXXxkknnRRbt26t9bovfvGLMXLkyFTmq69LLrmk2u/M5z377LMxcODAuO6662LBggWxfv362LJlS6xatSpef/31uPvuu+Oss86K3XffPc4+++x4/fXXG3n6pusPf/hDrfuPOOKIRp4EaI00bro0bm4at7rGaNyI9DpX42rcfGjcdFm/S07bpEvb5KZtqrN+p21aMm0DTZP2S1drbD/dl1tLWdOK0H7aLz/aLz2FXNOKaF6f67omXa2xayK0TV1aStvomubbNeXl5TFlypQYOHBgHHnkkTF58uSYP39+rF69OioqKmLlypXx5JNPxre+9a0YPXp01r+viIhzzz038XO1DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGnIFHoAcjv33HPjtNNOq9ouLy+PkSNHxnXXXRcVFRU5r129enWceeaZcfPNN1fbf8cdd8QXvvCFnNceccQRsdNOO1VtT5gwIUpLS7Oe/9BDD8WPfvSjnPfcVr9+/aptv/TSS3ldv61x48bFrFmzsh5/9tln4/vf/37VdklJSVx00UVZz2+OP4NsRowYEdOmTYvNmzfXeW5ZWVlcd9111fYddNBBDTJXXfbff/+qrzdu3BgTJ07Mef7s2bNj9OjR2/XMtN+jCRMmxI477li1fe6558aUKVMSzVJZWRm/+93v4rjjjov333+/1nN+9atfRVFRUdWf888/P9G96+P444+vdf9zzz3XYM/8TJ8+fWLs2LGp3Kt3795xySWXZD2+fPnyGDNmTOy2225RUlISffv2jSuuuCI+/vjjrNf88pe/jLZt26YyX3316tUrfvjDH2Y9XlpaGuPGjYuvfOUr0alTp2jTpk3suuuusd9++8XZZ58d06ZNiw8//LARJ87Ptu/65/9s3Lix1mu2bNmS9ZpJkybV+cxVq1bFm2++Weux4447bru+H4CkNG52Gjc5jZtdIRs3Ir3O1bgaV+MWlvW75LRNdtomuebUNo3ZNRHW77RNYWkbYFvaLzvtl0xz6r4Ia1r1pf20n/YrnEKtaUU0v891XZOdrklO22TXUtpG1zTPrvm8z343Lrvsshg0aFB079492rZtGz169IgRI0bEI488kvP6gQMHxne/+91Ez9I2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApCVT6AGo29SpU+P444+v2i4vL49x48bFvvvuG9dcc03Mnz8/Vq1aFWVlZbFs2bJ45pln4uKLL47+/fvH9OnTq67LZDJx4403xqmnnlrnMzt27Bjf/va3q7bff//9GDx4cEydOjXee++9KC8vj9WrV8esWbNi5MiRMXLkyCgrK4tRo0Yl/r769+8f3bp1q9q+5ppr4v7774+VK1fGli1bEt8nIuKkk06KzZs3x/Dhw+O73/1uvPTSS7F+/frYsGFDvPzyy3HRRRfFUUcdFR9//HHVNT/+8Y/jy1/+cov5GeTyyiuvxFlnnRW77rprnHnmmXHXXXfFggULYs2aNVFRURGbNm2Kv/71r3HXXXfFoEGDYs6cOVXXHn300dG/f//UZsnHN7/5zWjfvn3V9tVXXx3HH398zJo1K0pLS6O8vDxWrVoVTz75ZJx++ulx3HHHxUcffRQjR46s1/Ma4j0aOHBgTJ06tWq7rKwszj///Bg0aFDceuut8frrr8e6deuioqIiPvjgg1i4cGE88MADcfHFF8cXvvCFOPLII2PWrFlRWVlZr+8pTf/0T/8Ubdq0qbG/tLQ03nzzzQZ//vjx46Nz586p3GvixIlxwgknpHKv8ePHxz//8z+ncq/t9dOf/jROO+20Qo/RYsyZM6fW373evXvH1772tQJMBLQ2Gjc3jZuMxs2t0I0bkV7nalyS0LgNx/pd3bRNbtomGW2TW6Hbxvpd3bRNurQNNF3aLzftVzfdl1uhuy9C+yWh/dKl/RpGIda0IprX57quyU3XJKNtcmtJbaNrWq+ePXvGY489Vuu7XBttAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQFqS/Q/bFNROO+0Ujz/+eIwdOzZuv/32qv0LFy6M8ePHx/jx4xPd4+67745TTz018XMnTpwYM2fOjL/97W8REbFs2bIYM2ZM1vPHjx8fBx54YNx7772J7l9cXBxjxoyJX/7ylxERsXr16jjjjDNqPffXv/51nHnmmVnvdfPNN8eiRYvirbfeittuuy1uu+22nM8+44wz4oorrqhzxub0M0jio48+iunTp8f06dMTnd+3b9+YOnXqdj1ze/Ts2TMmTpwYl1xySdW+p59+Op5++ums1xxzzDFx5ZVXxgMPPJD38xrqPRo1alSUl5fH+eefH5s2bYqIiPnz58cFF1yQ94yFtOuuu8axxx4bTzzxRI1jjz32WAwYMKBBn7/zzjvHD3/4w0Q/87pkMpl44IEHYuzYsXH33XfX6x7FxcVx5ZVXpjJPWoqKimLatGmx++67x4033hiVlZX1uk/btm3jO9/5TqLPl5bs0UcfrXX/6NGjI5PJNPI0QGukcZPRuLlp3NwK3bgR6XWuxs1N435K4zYc63fW7yK0zWe0TeEUum2s39VN26RL20DTpf2S0X7Z6b7cCt19EdovCe2XLu3XMAq1phXRfD7XdU0yuiY3bZNbS2obXZNbS+2a/fbbL37zm9/E3nvvnfgabQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBa/O/YzUSbNm1iypQp8cILL8SQIUMSX1dcXBznnXdevP3223Hqqafm9czOnTvHs88+G/vuu2/O80pKSmLSpElx9dVX53X/iIif/exnMWzYsLyv21bnzp3jf//3f+PQQw/NeV6bNm1i3Lhx8etf/zqKi4sT3be5/AzSduqpp8aLL74YvXv3LugcF198cUyaNCnatm1b57ljxoyJxx9/PNq0aVOvZzXUexQRcdZZZ8Uf/vCHOOaYYxLPk8lk4thjj43f/va30bNnz8TXNaQxY8bUuv+hhx5qlOdffPHFsfvuu6dyr3bt2sVdd90VDz30UBxwwAF5XTts2LB47rnnYvz48VFUVJTKPGkpKSmJyZMnx5w5c+Lwww/P69pddtklLrnkkli4cGHccsst0b1793rNkPT3oinbuHFjPPXUUzX2ZzKZOOeccwowEdAaadz0adzsNG5NjdW4Eel1rsatSeP+g8ZteNbvctM26dM22WmbmqzfNR3aJh3aBpo27Ze+1tZ+uq9uhe6+CO2XhPZLh/ZrWIVY04poPp/ruiZ9ra1rIrRNEi2pbXRNTU25a15++eW46KKLokePHnlf27Nnz5gwYUL83//9XwwYMCDxddoGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACANLUp9ADkZ8iQIfHCCy/Ea6+9Fk888UTMnTs33n333Vi5cmVs2LAhunXrFrvuumt8+ctfjuOOOy6GDx9er/+Q/TN77rlnLFiwIH7961/Hww8/HPPnz4/Vq1dHp06dYs8994zhw4fHeeedF3vssUe97t+uXbuYPXt2PPbYY/HQQw/FggULYtmyZbFx48bYsmVLXvfq2bNnPP/88/Hb3/42pk6dGq+++mqUlpZGmzZtonfv3nHMMcfE2WefHfvss09e921OP4NsXnnllfjzn/9c9WfJkiWxZs2aWLt2baxbty523HHH6Nq1awwYMCCGDBkSp512WgwYMCCVZ6fhsssui1NOOSWmTJkSc+fOjcWLF8fGjRtjl112iV69esWRRx4ZZ511ViozN9R7FBFxwAEHxKxZs2LBggUxY8aMeOaZZ6r+LjZt2hSdOnWK3XffPQ444IA49NBD4+STT46ePXtu9/eUppNOOin69esXixcvrrZ//vz58eqrr8b+++/foM9v165d/PznP4/zzjsvtXt+61vfim9961vx3HPPxZw5c+L3v/99LF26NNauXRsbN26MTp06RdeuXaN///5x2GGHxfDhwxv8+0zDsGHDYtiwYfGXv/wlnn766Zg3b1688cYbsXbt2vjwww+jbdu2scsuu0SfPn3ikEMOiaFDh8bRRx8dJSUlie7/2muvZT32ve99L61vo2Aeeuih2LBhQ439I0aMiL322qsAEwGtlcbNTuMmp3FzK3TjRqTfuRpX49ZG4zYe63fZaZvstE1y2ia3QreN9bvktM320TbQ9Gm/7LRfMrovt0J3X4T2y4f22z7ar3E09ppWRPP5XNc12ema5LRNbi2xbXRN8+iaAw44IG688ca44YYbYsGCBfG73/0uXnnllVi4cGG8++67sX79+vjkk09ip512ii5dusSee+4ZX/3qV2Po0KExfPjwaNu2bd7P1DYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkqaiysrKy0EMUws9//vO48sorsx4fMGBAvPHGG404EfmYNGlS/OAHP6ja/uCDD6JLly4FnIjmyHtUP//1X/8VY8eOrbH/+9//ftx0000FmIhCuO6662LcuHE19h955JExZ86cAkyUrm984xvx3HPP1dj/7LPPxtChQwswUd0GDhwYb775Zt7Xffjhh9G5c+cGmIjWrFOnTrF+/fqsx++4444YM2ZMI07UPGgT0uA9qh+NS4TGbYrOOeecuOuuu7IeP+aYY2LWrFmNOBH58JlEGrxH9aNtiNA2TZH1kqbvzjvvjHPPPTfr8Y4dO8ZHH33UiBM1Hz6z2V7eofrRfXxG+zUt69atq/PfsKeeeiqOO+64RpqIfPhMIg3eo/rRNkS0/K6JaH5t09rWS0aOHBkPPvhgtX29e/eOv//97xER8eCDD8bIkSNrXLfvvvvG66+/Xm3fIYccEvPmzYuIiMmTJ8dll11W47p333039thjjygtLY3evXvXOH799dfHpZdeGhERQ4YMiRdffDHrMwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgFbpwUyhJwCgeRkzZkz07t27xv677747PvroowJMRCHMnj27xr6ddtop7rjjjgJMk64FCxbEc889V2P/UUcdFUOHDi3ARABAQ9O4RGhcAFoObUOEtgGA1kD38RntB0BLoG2IaNldE6FtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASF+m0AMA0LyUlJTET3/60xr7169fH3feeWcBJqKxbd68OX7/+9/X2P+LX/wi+vbtW4CJ0jV58uRa90+YMKGRJwEAGovGReMC0JJoG7QNALQOuo8I7QdAy6FtaOldE6FtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASF+m0AMA0Pz827/9WxxwwAE19k+aNCk++eSTAkxEY3rhhRdq/D0fdthhMXbs2AJNlJ7FixfHfffdV2P/GWecEYMHDy7ARABAY9G4rZvGBaCl0Tatm7YBgNZD96H9AGhJtE3r1pK7JkLbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DAyhR4AgOanuLg4brrpphr7ly9fHrfeemsBJqIxzZkzp9p2u3btYurUqVFUVFSgidIzYcKEqKioqLavffv28R//8R8FmggAaCwat3XTuAC0NNqmddM2ANB66D60HwAtibZp3Vpy10RoGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpGm0IPAEDz9I1vfCMqKysLPQYFMGfOnGrbV111Vey9994FmiZd99xzT9xzzz2FHgMAKBCN23ppXABaIm3TemkbAGhddF/rpv0AaGm0TevVkrsmQtsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMNoUegAAoHn54x//WOgRAAAgVRoXAGhJtA0AQOuh/QCAlkLXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQP4yhR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAZDKFHgDq49///d+jsrKy6k+XLl0KPRLNkPcIAGhKtAlp8B4B0FT4TCIN3iMAaB58ZrO9vEMANBU+k0iD9wgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAxpIp9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkyn0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSTKfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJMp9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkyn0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSTKfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJMp9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkyn0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSTKfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJMp9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkyn0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSTKfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJMp9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkyn0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSTKfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJMp9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkyn0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSTKfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJMp9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkyn0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSTKfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJMp9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkyn0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSTKfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJMp9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkyn0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSTKfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJMp9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkyn0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSTKfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJMp9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkyn0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSTKfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8f/bunTXKLQrA8GYxghAmRZp4RS0N/gNJkyaNWNgNSiwsLIWgpaJ1IIi/QFDUXmysLGKVQruBQCwcQkwTJXFUEjKeInBunKM7nMuay/O0+yvecrM+WBsAAAAAAAAAAACgTiM7oF+trq6Wqamp7AwAgCqrq6vZCVDtzp07ZXFxMTsDAOhz6+vrPzx//fq1+R0AMDC63W52Av9Qt9t1/wQAfqrX6/30m+vXr5exsbH/oQYA4J/59OlTdgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/0MgO6Fc7Ozul3W5nZwAAwNBZX18v6+vr2RkAwIDrdrvmdwAA/G96vZ77JwDwr3j//n12AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQyCyAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKgT2QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUiewAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6kR2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHUiOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA6jeyALPPz8+XatWvZGQAAqcbHx7MTGELtdrv0er3sDAAAAICBMTExkZ0w8lqtVpmdnc3OAAAAABgYEZGdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMNIa2QFZxsfHy/j4eHYGAAAMnePHj2cnAAAAAMCBjI2NlbGxsewMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKgS2QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUiewAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6kR2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHUiOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA6kR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAncgOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoE5kBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAnsgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoE9kBAAAAAAAAAAAAAAAAAAAAAAAAAAA0Q10CAAAgAElEQVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1InsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpEdgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1IjsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAOpEdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ3IDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBOZAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQJ7IDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqBPZAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJ7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqRHYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdSI7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDqRHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECdyA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgTmQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUCeyAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKgT2QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUiewAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6kR2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHUiOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA6kR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAncgOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoE5kBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAnsgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoE9kBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1InsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpEdgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1IjsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAOpEdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ3IDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBOZAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQJ7IDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqBPZAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJ7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqRHYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdSI7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDqRHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECdyA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgTmQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUCeyAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKjTyA7Isri4WBYXF7MzAABStdvt0mw2szMYMmfPni3b29vZGQAAAAADY2FhobRareyMkfb06dNy69at7AwAAACAgdFsNku73c7OGHkzMzNlZWUlOwMAAAAAAAAAAAAAAAAAAIA/sWsyn12TAAAAAPze/Px8mZ+fz84Yaa9evSpXrlzJzgAAAACgT7RarbKwsJCdMdJWVlbKzMxMdgYAAAAAf+Mgb0g3/uOWvrW1tVXW1tayMwAAUvV6vewEhtDa2lrZ3t7OzgAAAAAYGN1uNzth5HW7Xf+PAQAAAA6g2WxmJ1BK+fDhg7kWAAAAAAAAAAAAAAAAAABAH7JrMp9dkwAAAAD83tbWVnbCyPv27ZuZHQAAAAC/2tzczE4Yebu7u2Z2AAAAAH3sIG9Ix3/YAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwL8osgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoE9kBAAAAAAAAAAAAAAAAw+Ddu3dlaWmpfP/+PTsFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYYo3sAAAAAAAAAAAAAAAAgGGwsbFRpqeny8mTJ8vp06ezcwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCHVyA4AAAAAAAAAAAAAAAAYJp1Op3Q6newMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgSEV2AAAAAAAAAAAAAAAAwKh4+PBh2djYyM4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGWGQHAAAAAAAAAAAAAAAAjIrbt2+XY8eOlUuXLmWnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyqyAwAAAAAAAAAAAAAAAEZJr9cry8vL2RkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCAiuwAAAAAAAAAAAAAAAAA9j179qy8fPmy7O3tZacAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB9qpEdAAAAAAAAAAAAAAAAwL7l5eUyOztbJiYmyqFDh7JzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPtTIDgAAAAAAAAAAAAAAAOCPNjc3sxMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA+FdkBAAAAAAAAAAAAAAAA1Hn79m25e/du2dnZyU4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSNLIDAAAAAAAAAAAAAAAAqPP169dy79697AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBRZAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQJ7IDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqBPZAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJ7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqRHYAAAAAAAAAAAAAAAAA9Q4fPlyazWZ2BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkCSyAwAAAAAAAAAAAAAAAPixiCjnz58v9+/fL51Op5w4cSI7CQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASNLIDgAAAAAAAAAAAAAAAOCvTU1Nlbm5uXL16tVy5MiR7BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAPNLIDAAAAAAAAAAAAAAAA+M25c+dKq9UqrVarnDlzJjsHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoM43sAAAAAAAAAAAAAAAAAPbdvHmzLCwsZGcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB9LLIDAAAAAAAAAAAAAAAA2Hf06NHsBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoM9FdgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1IjsAAAAAAAAAAAAAAACAfW/evClfvnzJzgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPpYZAcAAAAAAAAAAAAAAACw7/Hjx2VycrJcvny5vHjxouzu7mYnAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfSayAwAAAAAAAAAAAAAAAPjN58+fy5MnT8qFCxfK5ORkmZubK8+fPy97e3vZaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQB+I7AAAAAAAAAAAAAAAAAD+2sePH8ujR4/KxYsXy6lTp8qNGzfK0tJSdhYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAosgMAAAAAAAAAAAAAAAD4ubW1tfLgwYMyPT1dVldXs3MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAkkR0AAAAAAAAAAAAAAADAwezs7GQnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASSI7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDqRHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECdyA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgF/buOzyKcv3/+J3eCyAQSQJKbyKIFAFFpEuzgagoSlH8Koj1yE80oIh4bAgoKCooSBVE8Igg6EGqEKWDdJAiPaEnJGR+f5wrkd1smS0zz+zm/bquz6VbZuaZmd2wc++9MwAAAAAAAAAAAAAAAACgT6jqAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECfUNUDAAAAAAAAAAAAAAAAAAAAAAAAgH5hYWESFxenehgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECRUNUDAAAAAAAAAAAAAAAAAAAAAAAAgHu1a9eWUaNGycGDB6VixYqqhwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQJVz0AAAAAAAAAAAAAAAAAAAAAAAAAOFarVi3p0aOHPPjgg1K9enXVwwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYQqnoAUKt69ery5JNPysSJE2XFihWyb98+OXv2rFy+fFlyc3Pl1KlTsn//flm7dq1MnTpVXn31VencubMkJiaqHnqJkZ2dLZqmOUxmZqbq4QWFypUry6VLl4q268MPP6x6SAAMdPPNN0tBQUHRe75NmzaqhwQAQFDp3Lmz02MYTdOkX79+qodYorA/PMc2g1X5Wr9ITEyUxx57TCZOnCi///67HD58WC5cuCCXL1+WU6dOyc6dO2XBggXy9ttvS5cuXSQhIcGgNTHP7t27bd6/KSkpqoeEIHD1ayonJ0f1cAIW9RkAAADAfN72n1AvCzxNmzaVYcOGycKFC2XXrl1y5swZyc/Pl/Pnz8vhw4dlxYoVMn78eHnwwQelVKlSqodbxJ/9OzfccIO89NJLMmfOHNm0aZOcOnVKcnNzJTc3V44ePSrbt2+XefPmyZAhQ6Rly5YSGkobJYDgEB4ebvPvdHZ2tq7pqKc7Rh0TVlCxYkV56aWXZMOGDbJt2zYZNmyYVK9eXfWwAAAAAAAAAAAAAACwFHoQAVgN/WcAAAAAAAAAAAAAAADwFdcwhRm4jiuMQA8dAAAAAMAdal+Ad6jnoSSi3ggAAAAAalHLAzxHHQ9GoVYGANArXPUAYL7k5GTp37+/9O3bV2rUqOHyuaVLl5bSpUtLpUqVpFGjRkX3X7lyRdatWydz5syRr776So4fP270sAHDjB07VqKjo0VEZMOGDTJ16lSXz583b55069at6PbMmTOlZ8+eho4RxmKfliyZmZk2+3jcuHFSr149uXz5suKRAQAAAFDljTfekKFDh7p9XkREhOTn55swouI8rV8UKlWqlLz55pvSu3dviY2NdficwhpgtWrVpHPnzvLSSy9Jfn6+LFu2TKZOnSpz5syRc+fO+W1doBZ1EFgB9RkAAAAA8K+wsDDp06ePvPTSS1K1alWHz4mLi5O4uDipUKGCNG/eXAYMGCD5+fmycOFCGTt2rCxZskQ0TTN55P/wtv5VKCwsTHr37i3PPfec1KlTx+nzypcvL+XLl5eaNWsW1UgOHjwoX375pXz00Udy9OhR71cCsCj7mqCvPvnkExkwYIDf5gdYFXVMqHLNNddIjx495IEHHpDmzZtLSEiI6iEBAAAAAAAAAAAAAGBp9CACsBr6zwAAAAAAAAAAAAAAAAAEAk96MPWc066goEByc3Pl0qVLcvLkSTl69Kjs3r1btm7dKqtXr5bMzEzJy8vz6zrAeuihAwAAAAAAMAb1PJRE1BsBAAAAACiZwsLCpGHDhtK2bVtp27at3HLLLRIZGen0+R07dpQff/zRxBE65+m5EanlQS9qZQAAvUJVDwDmCQ8Pl5deekn27dsn//73v6VGjRpezyssLEyaNm0q77zzjhw6dEhef/11P44UME/Xrl3lzjvvLLr98ssvi6ZpCkcET508eVI0TStKcnKy6iEhALzyyiuSn58vIiI1atSQZ555RvGIAABwbcKECTafeeyTkpKieogAELBuvvlmefnll1UPwyVv6xctWrSQ7du3y5NPPimxsbEeLTM8PFxat24tkyZNkoyMDF3TcIwOwBPUZwAAZqO+AgAIVrVr15a1a9fKp59+KlWrVvVo2vDwcOnSpYssXrxYqlSpYtAI3fO1f+fmm2+W9evXy+effy516tTxePnp6ekydOhQ2bVrl/y///f/in7gYQXU3ABALeqYMEt0dLR0795d5s+fL0eOHJGPPvpIWrRoISEhIaqHBgAAAAAAAAAAACDI0FcdmNhvztGDCCPRx2ktgbY/6D8DAAAAAAAAAAAAAAAAYGVGXMc1NDRUYmJipHTp0lK9enW57bbbpE+fPvLee+/JqlWr5MSJE/LVV19JixYtfB0+LI4eOgAAAAAAECgC5Xfc1PMQqPzx+2DqjQAAAAAAlAxVq1aVAQMGyJw5c+TkyZPy22+/yYgRI6Rly5YSGRmpeni6GFHHE6GWh39QKwMA6BGqegAwx3XXXSdr1qyRt99+2+8n6Y2IiJB69er5dZ6AGUJDQ+Wtt94qup2ZmSmLFi1SOCIAZtm7d6/MmDGj6PaQIUMsfxJ7AAAAAP4XFRUlX375pYSHh6seilPe1i+aNm0qCxculPLly9vcv2jRIunTp4/Uq1dPSpUqJREREVK2bFm54YYbpH///jJjxgw5f/6839cDAOxRnwEAAAAA37Vv317WrFkjN910k+qheM3X/p1HH31UVq5cKTfccIPN/YcPH5YJEybIXXfdJbVr15ayZctKRESElC5dWho3bizPPPOM/PrrrzbTxMfHy5tvvil33XWXbysFAAga1DFhlsuXL8uRI0dk7969kp2drXo4AAAAAAAAAAAAAAAEBHoQAVgZ/WcAAAAAAAAAAAAAAAAArErVdVyTkpLk4YcfluXLl8vy5culQYMGhi8TatBDBwAAAAAA4D/U81DSUW8EAAAAACD4RUdHy65du2T8+PFyzz33BOSxv6o6ngi1vJKEWhkAQI9Q1QOA8W666SZZu3atNGzYUPVQAEt5+OGHpXbt2kW3R44cqXA0AMz21ltviaZpIiJSqlQpefHFFxWPCAAAAIDZRowYYVMbsCJv6hfR0dEyZcoUiY+PL7rv+PHjcvvtt0uHDh1k0qRJsnnzZsnOzpb8/Hw5efKkbNmyRT777DN54IEHpEKFCvLUU0/J7t27DVknAChEfQYAAAAAvNeyZUv57rvvJCEhQfVQfOJL/07//v3liy++kMjIyKL7srKy5Pnnn5fKlSvLk08+Kd99951s375dTp48Kfn5+ZKVlSXr1q2TMWPGSMuWLaV+/fqyePFiv64TYHUzZ86UkJAQrzNgwADVqwCYijomzFBQUCArV66UwYMHS3p6unTp0kW++uorOX/+vOqhAQAAAAAAAAAAAABgWfQgArA6+s8AAAAAAAAAAAAAAAAAWJE/ruPq7Jx2cXFxkpqaKnXq1JFu3brJqFGjZPny5UW9VIVatGgha9euleeff97n9YE10UMHAAAAAADgH9TzAOqNAAAAAADA+vxRxxOhlgf3qJUBANwJVT0AGKtmzZqyePFiKVu2rOqhAJYSGhoqr7zyStHtAwcOyHfffadwRADMtm3bNlm6dGnR7YEDB0pSUpLCEQEAAAAwU7NmzeS5555TPQyXvK1f9O3bV6pWrVp0Oy8vT9q1ayfLli3Ttdxz587Jxx9/LLVr15ZBgwbJiRMnPB+8BVStWtXmS/SjR4+qHhIAO9RnAAAAAMA7pUuXlq+//lqioqJUD8UnvvTv3HHHHfLxxx9LSEhI0X379u2TRo0ayfvvvy+XL1/WNZ+NGzdK+/btpV+/fnLx4kXPVgAAggT1dNeoY8Jsubm58v3330vv3r2lQoUK8vDDD8sPP/wgeXl5qocGAAAAAAAAAAAAAIBl0IMIIBDQfwYAAAAAAAAAAAAAAADAaoy+juvFixflyJEjsm3bNpk/f74MGTJEbrvtNqlTp45MnDhRCgoKip4bHh4u7777rrz99tt+Wz6sgx46AAAAAAAA31HPA/6HeiMAAAAAALAyo+t4ItTy8A9qZQAAd0JVDwDGiYuLk2+//VbKlCmj6/mrV6+WV155RVq0aCEVK1aUuLg4iYmJkbS0NLnxxhvl4YcflrFjx8rGjRsNHjlgvG7dukm1atWKbtsfKAEoGT799NOi/09ISJD+/fsrHA0AAMHh+++/l5CQEKf57LPPVA8RACQ2NlYmT54soaHWLo96W7+47777bG5//fXXXtX08vLyZOzYsXyRDMBQ1GcAAAAAa6Pma02ffvqppKamunzOX3/9Ja+++qrcdtttUr58eYmMjJSkpCSpVq2a3H///TJu3Dg5cuSISSN2zNv6V1JSknz55ZcSHh5edN+hQ4ekRYsWsmfPHq/G8vnnn8sdd9whJ0+e9Gp6AEBwo44JVc6dOydTp06VTp06Sfny5eWRRx6RJUuW0PMMAAAAAAAAAAAAACjx6EEEECjoPwMAAAAAAAAAAAAAAABgJaqu47p9+3Z5/PHHpV27dnLixAmbx1566SXp27ev4WOA+eihAwAAAAAA8A31POAf1BsBAAAAAIBVqarjiVDLK6molQEAXAlVPQAYZ/jw4VKzZk23z9u0aZO0atVKmjVrJiNHjpSVK1fKwYMH5eLFi5KTkyOHDx+WTZs2ydSpU2XQoEFSv359qVmzprz++uty+PBhE9YE8L/BgwcX/b+maTJ58mR1gwGgzLx58+TUqVNFtwcNGiShoXw8AgAAAILd22+/bfOFbaHLly8rGI1z3tYvGjVqZHN76dKl/hwWAPgV9RkAAAAA8Mxtt90m9957r9PHNU2TESNGSJUqVWTEiBGyfPlyOX78uOTl5cnZs2dl9+7dMmvWLBk4cKCkpaVJ+/btZdGiRab9oOFq3ta/hgwZImlpaTb39e/fX44cOeLTeH777Tdp166dZGdn+zQfAEDwoY4JK8jKypIpU6ZI27ZtpVKlSvLMM8/IihUrVA8LAAAAAAAAAAAAAAAl6EEEECjoPwMAAAAAAAAAAAAAAABgJaqv47p06VJp0aKFnDt3zub+MWPGSGpqqqljgfHooQMAAAAAAPAN9TzgH9QbAQAAAAAoOQoKCiQzM1NGjRolbdq0kdGjR6sekkuq63gi1PJKGmplAABXwlUPAMaoWLGiDBo0yO3z5s2bJ7169ZILFy54NP8dO3ZIRkaGjBw5Uvr16yc1atTwdqgiIpKSkiJt2rSRW2+9VRo2bCjXXHONlC5dWqKiouTkyZNy4sQJ2bBhgyxZskR+/PFHOXnypE/Lc6V27dry0EMPSZs2bSQ9PV3KlCkjWVlZsn//flm8eLFMmjRJ9u3b5/X877jjDunZs6c0a9ZMKlSoIFFRUXLkyBHZvXu3fPPNN/LNN9/ImTNn/LhGtqy0rUX+t7379esnt99+u1SpUkViY2Pl+PHjMmrUKBk7dqwhy6xcubLcdtttRbdXrlwphw8fNmRZ7pQtW1Z69uwpd999t1SqVEkqVKggOTk5cuzYMVm5cqXMnj1bfvzxR78vt0aNGvLggw9Ku3btpEKFClK+fLpOAP0AACAASURBVHk5c+aMHDx4UBYvXixff/21bN261e/LLcmio6OlVq1aUq9ePalXr57UqVNHypUrJ8nJyZKcnCwJCQly7tw5OXXqlOzYsUN++eUXmTt3rk9/b1SpXbu2dOrUSdq2bSvXXXedlCtXTqKjo+X48ePy119/yZIlS2Tu3LmyadMmvy0zLS1N7rvvPuncubNUrFhRUlJSJCEhQURErrnmGpuD4qvl5eXJd999J3369BERkfT0dGndurX89NNPfhsbACD4RUdHS9u2baVt27ZSu3ZtqVq1qiQmJkp8fLxcuXJFzp49K2fPnpUzZ85IVlaW/PXXX7Jv3z7ZsWOHbN26VXbt2iV5eXmqV8MlFZ/b9Y7LyOO3li1bygMPPCDNmzeX1NRUiYqKkr///lv27t0rc+bMkdmzZ8vp06f9uEaBoWLFikXHlfXr15cyZcpI6dKlJTw8XLKysuT06dOya9cuWb58ufz3v/+V33//PSiWjX/ccsst8tBDDxXVNpKTk+XYsWOyZ88emTdvnsycOVOOHTumephOtWrVSp566qli98+dO1cqVaokDRs2VDCq4rytXyQkJEhcXJzNfc6OiQKNt8d+/mBWDadx48bywAMPSKtWrSQ1NVUSEhLk6NGjcujQIfnhhx9k2rRpsn//ft9XyGSJiYnSpUsX6dixozRo0EDKli0rycnJkpWVJcePH5fMzEz54Ycf5D//+Y9cvHgx4JYX7IyuJVKfAQDriouLk1atWkmzZs2kadOmUqFCBSldurQkJydLTk6OnDp1SjZv3iyrV6+Wb775Rnbt2qVrvqVLl5bq1avbJC0tTcqWLSulS5eW6OhoiYqKkvz8fDl79qycO3dO9u/fLxs3bpR169bJggUL5Pz58wavvXdUfBerun5hxWN1q9ayVLJSn4DRNT0R4/5+OaPqfaC6/8QI1Hz1eeaZZ1w+/sILL8j777+va16apsnixYtl8eLF/hiaR7ytfyUlJcnAgQNt7vvmm2/81l+zfv16t88J9B4Qs/o6VNW6VNWGVNYvA4WZvXJVq1aVjh07SuvWraV69epStmxZSUpKkvPnz8vp06fl9OnTsnfvXlm9erWsXr1aNmzYIJcvX9Y9fzNfZ/Xr1y/697HwvXTs2DE5dOiQ/PjjjzJt2jTZu3evT8vwt2CsqVPHhNUcOnRIxowZI2PGjJGoqCjVwwEAAAAAAAAAAIBCZvbMWbVvNFD7EumrNvccV/58nbDvzNt3zgRyD6I9VT1vgdzPFeh9nCJqztFl1D5nf7hH/xkAAAAAAAAAAAAAAABE1J9D0mo9gkb1Aau6jpTVtq8zVrmO686dO+Xxxx+X6dOnF90XGxsrw4cPl379+nk8v2DqyyuUmJgo3bt3l9atW0v9+vWlfPnykpCQIJcvX5YzZ85Idna2nDlzRvbv3y9bt26VlStXyurVqyU3N9ej5dBDBwAAAADwB9W1L1f8cR0jK/7O3ozrCltxvUuaYK3nFfLmGh8qr1Vr9HVdC3E9XueoNwIAAACA71TX8qzUZ2XkuSzpY/OcpmmyZ88eWbJkiSxZskSWLl0qWVlZRY+3bdtW4ehcs0odT8S/tbxg7MsToTcPAFBCaCVURkaGJiJBm/fee8/tNli3bp0WFRWldJx16tTRJk+erF2+fFn3vrtw4YL2zjvvaNdcc42uZXTu3Nnl/Pr166eJiJaSkqLNnTvX7fJzcnK01157zeN1rVq1qrZ06VK38z979qw2cODAoumys7OdPjczM9NS29qT7R0VFaWNGTNGu3LlisPnjR492rDX3bBhw2yWNXjwYI+mnzdvns30M2bMcPn8q+Xk5GgiooWFhWkZGRlaTk6O2/3wyy+/aOXLl/d4PR0tNz4+Xvvqq6/cLrOgoEAbO3asFh8fr3t5bdq0sZnHvHnzPBpvcnKyzfSHDh1y+twNGza4XQdnbr75Zp/3qTeZMGGCx2PNy8vTPv/8c61UqVJu5z906FCbaefPn+/1WGfMmGEzr1GjRumarmbNmrr+jhaaPn26lpaW5tNrOiYmRvv444+d/i3RNM3t37AOHTrYPH/q1Kl+3/9Wjqt/ZwBvJSQkKH9tE2JGIiMjtX/9619aVlaWT++ZYcOGFZv3008/7ad35P9ER0fbzN/Iz+165+0oVjl+u/7667VFixa5nf/58+e1F198UQsJCdFE/Hf85s/4sj/sc/PNN2uzZs3S8vPz3W6bq61du1br3r170XbyJmYu29dt1qlTJy03N9flPCZNmqSFhYUVTTN69GiXz69bt67LZdofT9mbPHmyX9a5Zs2a2sqVK10+V9P+qW2EhoYqed27SkJCgrZ///5iYz527JhWtmxZLTMz0+W6hYeHmzZWb+sXiYmJxcb9yCOPGDZOfx+jX83XY7/du3fbPCclJcXlujhathk1HBHRypUrp02fPt3tMq5cuaKNHz9ei4mJ0cLDw20ey87O1rUsM+oghQkLC9MGDhyonThxwu26aZqmHT58WOvTp4/X/2aYsbyrFb5O9CQpKUn7+eefbaY/f/68duedd9o8z8wam7v1MrKWaJ+SXp8hRES0iRMnun2/wVgTJ05U/jqwStLS0rR///vf2unTpz3ahqtWrdK6du3q9t9WX50/f177/PPP3X72Mrq+cnXM+i726qiuX1jxWF1vLeuOO+5wOb9BgwbpHltkZKTLbbpgwQKl7+eS1JNhxt8vle+Dq2N2/wk1X8dU1XwrVqzo8jW3bNkyJePyJt7Wv/7v//6v2Hrffvvtpo7d6B4Qf9fcCmN0X0dhzKx1XR1VtSG99UuVvT1m1gQdbSOz6qyFr/OZM2dqBQUFbpd1tZdfftkyr7PCJCcna59//rnbZRQUFGgTJkzQoqOjvX4veVpPV72vVf2doY5ZPAkJCW73QyDp3r17sXVMT08venzWrFkOt4O773MJIYQQQgghhBBCCCGEEEIIMSJm9sxZsW80GPoSfVWS+6pVv058pWffmbnfzNx3/kog9yAWRlXPWzD0cwVqH2fhNjH7HF1G73P2h77Qf0YIIYQQQgghhBBCCCGEEFJyw7km1eNck4QQQlSHa5j+j9H9nUZeR8oK29df8eU6rkac02716tU287x06ZJH2yUY+/LCwsK0559/Xjt37pzu9So0dOhQy2y7q0MPHSGEEKslIyPD439n4V8LFy5U/joghBDin6iofRl5TW77WPF39mZcV9jM9VZxPWezf8ftS4Khnnc1X65RbNZ1IhyN16zruhq9jmZeK9fI3wdTbySEkOBMnz59vP63A/6xZcsW5a8DQgghxqYk9LGp7mEToY/NyIwaNcrl+nTo0EHZ2Hyp44lYp5ZXmGDsyytcBr15hBBCAjkeXEN6lu9n0A5QGRkZyneUUQkNDdWOHDnicv2vXLmiVa9eXdkYQ0JCtBdeeEHLy8vzeh8eO3ZMa968udtl6TkAbNSokXbs2DGPlj9mzBjd69ukSRPtzJkzHs3/66+/1sLDw30+2DZzW+vd3lFRUdqiRYtcPu/DDz807PW3adMmm2XVrl3bo+k9PTC7Wk5OjhYVFaV9//33HuwBTdu1a5fHB+X2y01MTNR+//13j5a7du1aLTExUdfyArnRwIiDbft4c3L2Qn/++adWuXJll/MvX768TbEnPz/fqwPIsmXLarm5uUXzKSgo0KpUqeJ2uh49emiXLl3yeN2OHDmi3XDDDV69phMSErQ1a9a4XUbZsmVdzjcmJsZmnc+cOaNFRET4/TVg1bj6dwbwVkJCgvLXNiFGJyEhQfv555/98p5x9EWP0Q3MRn5u1/slnKNY4fjtpptu8vgCdLNnz9YiIiL89mWpP+PL/ihMWFiY9vrrr7ts5tZj/vz5ui48pHrZvr6Gr/5s6ciHH35YrKFbxQ8lPF3n1q1be/zF2dSpU736kYqRcXaSv7vuuksTES0zM9PlOoWHh5s2Vl/qFxcuXLCZdvbs2YaN09/H6Ffz9dhv9+7dNs9JSUlxuS72yzarhpOamlpsrO6sXLlSS0xMtLkvOztb1/LMqIOIiBYbG6stWLDAo/UqNGXKFI+Pzc1a3tUKmxjcJT09Xdu8ebPNtEePHtUaNmxY7Llm1thcrZfRtUT7lPT6DCEinIzYCjgZ8f/Sq1cv7ezZsz5ty6pVq7pchr+cPHnSZTOoGT8QN/u72MKorF9Y9Vjd01qW/eezq23evFn3vujatavLZd5zzz1K3sslrSfDrL9fKt8HhVHRf0LN1zFVNd8nn3zS5djbtWunZFzexNv615IlS2ym27Nnj8cnCvE1RveAGHECDjP6OkTMr3UVRlVtyJP6pcreHrNqgo62kVl1VhHRHnroIa9e55qmaS+//LJlXmeF+3nLli0eLWPFihVev5c8raer3Neq/s6IUMd0FA9+tBAQunfvXmwd09PTix6fNWuWw+3g7vtcQgghhBBCCCGEEEIIIYQQQvwds3rmrNo3Gix9if5SEvuqVb9O/MXVvjPrgmmqeuJ9TSD3IIqo63kLln6uQOzjFFFzji4z9jn7Q1/oPyOEEEIIIYQQQgghhBBCCCm54VyT6nGuSUIIISrDNUz/YWR/p9HXkbLC9vVXfLkOihHntHvggQeKbRc911ISCc6+vLCwMG3atGker1OhoUOHWmbbXR166AghhFgtGRkZXv97C/9YuHCh8tcBIYQQ36Oq9mXkNbkLY9Xf2Rt9XWEV663ies5m/Y7bHwmGet7VvL1GsZnXibAfr1nXdTVjHc28Vq5Rvw8Wod5ICCHBmj59+nj9bwf8Y8uWLcpfB4QQQoxLSeljU32OQvrYjM2oUaNcroerc3IaHV/qeCLWqeWJBGdfngi9eYQQQoIjHlxDelaoIOg0bNhQrr32WpfPmTNnjuzcudOkEdkKDQ2V6dOnyzvvvCPh4eFez6dcuXLy888/y3333efTeBo2bChLly6VcuXKeTTdwIEDpUuXLm6fV7duXVm8eLEkJiZ6NP8HH3xQPvvsM4+msWe1bV3oo48+knbt2vllXp5KTU2VG264oej2sWPHZNu2baaOYeLEidKpUycREdm4caP069dPqlatKrGxsZKcnCwtWrSQKVOm2ExTtWpVGTt2rE/LnTx5stx0000iIrJnzx55+umnpUqVKhITEyMpKSnSsWNHmTt3rs00jRo1kv/85z8SFhbm07Lxj7y8PFm0aJE8++yz0qpVK0lLS5P4+HiJioqSChUqSJcuXeTLL7+UvLy8omlq1Kgh8+bNk6ioKKfzPXbsmHz77bdFt8PCwqRfv34ej+/RRx+VyMjIottLliyRPXv2uJzmiSeekBkzZkh0dHTRfUePHpWhQ4dKw4YNpXTp0hIdHS1VqlSRp556Sg4cOFD0vGuvvVaWLVsmlSpV8niskydPliZNmoiIyJYtW2TAgAFSrVo1iYuLk/Lly8vtt98uX3/9tYSEhLicz6VLl2TNmjVFtxMTE6V58+YejwcAULKMGTNGWrVqpXoYhlL5ud0Zo4/fatasKUuWLJFSpUp5NP/77rtPvvjiC4+mCRTh4eEyf/58efXVVyU01LcyUpcuXeSPP/6Q1NRUyy/bG507d5Y5c+bYfJ6298Ybb8gzzzwjmqZ5NG9Pn+9vTZo0kQULFkh8fLxH0z300EMyceJEg0bluQ4dOjg8Tvryyy9l3rx5CkbknK/1i1WrVtncvvfee6V79+5+G5+Z/HXs5w0zajhxcXHy888/S5UqVYru0zRNJk+eLLfffruULVtWYmJipGrVqjJw4EDZu3eviIg0a9ZMJkyY4Ie1NEZoaKgsWLBAOnfubHN/YY0xLS1NoqOjJT09XXr16iW//fabzfN69eol06dPt+zyPFG/fn1Zs2aN1K1bt+i+P//8U5o2bSq///67Icv0B7NridRnAMAaxo4dK1OmTJGEhATVQ9GlTJkyMmfOHGnYsKGS5av6LlZl/cLKx+qe1rLGjRvn9LG6detKs2bNdM2nR48eTh87efKkfP/997rH5C9W6xMwuqYnYu7fL5XvA5X9J0ah5us5V3+fsrKy5Oeff5bQ0FDp2rWrfP7557J9+3bJysqS3Nxc+fvvv2XDhg0yfvx4uffeeyUiIsLEkdvytv4VGRkpt956q819y5YtU1ZDNaoHxN/M6utQVetSWRvypH6psrdHJbN65Z599lmZOnWqzev84sWLMnbsWGnbtq2kpaVJVFSUJCcnS61ataR3794ybdo0uXTpkq75m/k6i4qKksWLF0udOnVs7p82bZq0bt1aypUrJ7GxsVK9enV57rnn5NChQyIi0rx5cxk/fryuZRihJNTUqWMCAAAAAAAAAAAAsAKzeuas2jcabH2J/lBS+6pdMeN14g/sO+8Eeg+iyp63YOnnKhQofZwi6s7RZeb57tgfrtF/BgAAAAAAAAAAAAAAUPJwDVNbRvZ3mn0dKStuXz2scB1Xe3PmzJHc3Fyb+zp06OB2umDtyxs8eLA88MADRbevXLkiU6ZMka5du0qlSpUkNjZWIiMjpVy5ctKwYUN54oknZO7cucW2oSv00AEAAAAA/MHq10/x5ZrcVv2dvdHXFbbqequ+nrNKwVTPu5qn1yhWfa1aM67rqnodAw31RgAAAADwDH1s/zD6HIX0sZVMVqzjiXhXywvWvjwRevMAACWQVkJlZGRoIhKUGTRokNv179q1q7Lxvffee37dlxcuXNDq1avndHmdO3f26/Kutm3bNpfrGh4erv3xxx+GLT8zM9NS21rP9p47d66uZY0ZM8aQ11/v3r1tljNv3jyP5zFv3jybecyYMcPl85154403tNDQUKfTPfXUU8WmqV27tu5xOvPtt99qcXFxTqd76KGHtPz8fJtpXnzxRbfLa9OmjU/bNjk52Wb6Q4cO6Zru5MmTNtMlJycbvk+9yeuvv64NHTpUK126tK7nN2jQQDtw4IDNuF5//XWX07Rs2dLm+QcPHtTCwsJ0jzEkJETbuXOnzTzuu+8+l9M0atRIy83NtZlm2rRpWmxsrNNpYmNjtQULFthMs2zZMpfvB1ev6dGjR2vh4eE+7Z+33nrLZp4jR470+2vAqsnOzna6bQFvJSQkKH9tE2Jkatas6df3zLBhw4ot4+mnn/brMqKjo23mb+Tndnfz7tevn9Ntq/L4LSwsTPvtt98MW7674zej4sv+EBHtk08+8fu2+P33311+XlS9bG+2WZcuXYp9Lr5aQUGB9uyzzzpd5ujRo10u092xoP3xlL3Jkyf7tM6+uvvuu5W8/u230aFDh4qN7eDBg1pSUlLR8zIzM12ui6/HHnrja/3ikUceKTb2goICbcqUKVqjRo0MG7c/jtGd8ebYb/fu3TbzSElJ8WrZRtZwPvzwQ5vpLly4oLVu3drp8+Pj44vVMQplZ2frWqYZdZBXXnml2Phc/R0MDQ3VRo4cWWyaJ554wnLLu1pOTo7L57Zr1047e/aszTTLly93WR9SVWNzxqhaoqOU5PoMISKiTZw40el7EeaYOHGi8teByrz22mt+25ZVq1Z1uSx/27JlixYSElJsOUbXV1R8F6u6fmHVY3VvalmxsbHa6dOnnT530qRJbt830dHRxT7vXe3DDz9U8n4uST0ZZv/9Uvk+UNl/Qs3XMVU13z179jgd0y+//KK1atVK+/PPP3Wtw4EDB9zWiI2Kt/WvBg0aFFuPJ5980vTxm9EDUhhfa25m9nWoqHWJqKsNXU1v/VJFb4+IOTVBd9vIyDrrHXfcUaxGtXTpUq1ChQpup01MTNQyMjLc/i0x83X25ptv2kyTm5urdenSxenzk5OTtSVLljjc7nrfS57W01Xta1V/Z64OdUzbJCQkOH0tBKLu3bsXW8f09PSix2fNmuVwO9StW1f5viCEEEIIIYQQQgghhBBCCCElI2b2zFm1b9QXVutL9LeS1Fet+nXib472ndH7TdW+80cCvQfRCj1vgd7PFUh9nCLWOEeXkfuc/aF/2fSfEUIIIYQQQgghhBBCCCGElMxwrkn1Svq5JgkhhKgJ1zD1L1f9nWZcR8oK29cf8fU6KEad02716tU28z1w4IDL5wdrX154eLh26tSpoufn5eVpbdu21bUNk5OTtYyMDO3pp5+2zLazDz10hBBCrJSMjAyn/87DHAsXLlT+OiCEEOJ9VNe+jLwmt0hw/s5e09xfV1jVequ4nrMZv+P2R4KlnueM3mt8mH1tXGeMvK6rWeuo6lq5/vh9sH2oNxJCSPClT58+Tv8dhjm2bNmi/HVACCHE/1FdyytJ19imj834jBo1yuX4O3TooGRcvtbxRKxRywvWvjwRevMIIYQETzy4hvQs/59BO0BkZGQo31FGxd2X+gUFBbpPDuzvdOzY0e2+mTZtmnbrrbdqiYmJWnR0tHbjjTdq48eP1woKCpxOs2PHDqdfKhvdZNG0aVOn6/vcc88ZumxXB9sqtrU/t7ezZh1f89FHH9ksR+/Jrq+OpwdmjowePVrXshYtWmQz3TvvvKN7nI6sW7dOV/PK4MGDbaa7ePGiVrZsWZfTBHKjgVEH276mTp062qVLl4rGdeLECS0qKsrlNFu3brVZly5duuhe3h133GEz7dGjR7WIiAinzw8LC9N27NhhM82sWbMcXgTFPpGRkdr69ettpu3Ro4fHr+np06f7ZVv37NnTZr5LlixRvv/NSnZ2tsNtC/giISFB+WubECPz8ssvO339//3339qAAQO0atWqaTExMVpYWJhWqlQprWrVqlrnzp21l19+Wfvhhx+08+fPF03j6IseoxuYjfzc7m7e/fr1c7ptVR6/DRw40NBlu/uy1Kj4sj/uuecew7bHBx984HLcKpft6Tbr2rVrsS9+rpafn6/16dPH5TLd/VCiVq1aLqf35ocSZr73jh49atgPKfRmypQpxcZVUFBQ7IvAzMxMl+ui50cN/oiv9YuwsDBt7dq1Ttfjr7/+0r766ivt//7v/7QmTZpoMTExfhm3P47RHfH22G/37t0280lJSfF42UbWcKpXr65duXLFZrp77rnH7XTR0dEOG3yys7N1jdXoOkiFChW0y5cv2yzjjTfe0DXt559/bjPduXPntKSkJEst72o5OTlOn9enTx8tLy/P5vmzZ892+/dQVY3NESNriY5SkuszhIhwMmIrKMknI27ZsqVft6XeC7SfOnVKmzJlijZgwADt1ltv1dLS0rTExEQtLCxMi4mJ0SpVqqR17NhRmzBhgpaTk+NymY5+GG9kfUXVd7Eq6xdWPlbXy76W9e677zp97oULF9x+Nrz77rtdLq9+/fqmv59LWk+G2X+/VL4PVPafUPN1TEXNNyYmxuWYjh8/7vK97MzMmTNdnhzDiHhb/7r//vuLjb958+am7wtv4k0PiIhvNTcz+zpU1bpU1oYKeVq/NLO3pzBm9kY5YmSdNTIyUjt48KDNdEuWLNH1/tIbM19n1113XbG6Yu/evd0uJyEhQdu+fXuxba/3veRpPV3Fvlb1d8Y+1DGLv/aCSffu3YutY3p6etHjs2bNcrgd6tatq3Q/6Pm3nRBCCCGEEEIIIYQQQgghhAR+zOyZC4a+UWes1JdYiL7q4sw6x5Uzrl4nZu07o883oGrf+SOB3INohZ63QO/n8jYq+jhFrHGOLjPOd8f+0Bf6zwghhBBCCCGEEEIIIYQQQkpmONekeiX5XJOEEELUhWuY+p+z/k4zriNlhe3rj/h6HRSjzmn34YcfFtse8fHxDp8bzH159v3sX3zxhV/3Pz10hBBCyD/JyMhw+O88zLNw4ULlrwNCCCHeR2XtS8TYa3IH8+/sXV1XWOV6q7ies9G/4/ZXgqGeJ+LbNT7M/m22s/EaeV1XM9dR1bVy/XGta/tQbySEkOBLnz59HP47DPNs2bJF+euAEEKI/1PS+thUnqOQPjbjM2rUKJfr26FDByXj8rWOJ6K+lhfMfXki9OYRQggJnnhwDelZjv/FLQEyMjKU7yijsnDhQpfrfvDgQSXjCgkJ0X7//XeXY+vXr5/T6Z944gmX0z766KMOp9N7AHj27FntxRdf1K6//notKipKq1atWrEP8Y688sorDpcbGhqq7du3z+30kydP1po0aaLFxcVp8fHxWuPGjbUvvvjC5QFZIWcH26q2tSfbW9M07eeff9buvfde7dprr9UiIyO1SpUqaXfccYf27rvvuj3Y9TZr1qyxGYOji9S7i6cHZvaOHDmiu4Gka9euNtP+9ttvusfpSJMmTXRNGxoaqm3cuNFm2n/9618upwnkRgOjDrb9kTFjxtiM7d5773X5/IEDB9o8f8GCBbqXNXPmTJtpR44c6fL5PXr0sHn+iRMntMTERN3La9q0qc30K1as8Og1ff78ea1cuXJ+2c516tSxmXd2drbyfW9WsrOzi21bwFcJCQnKX9uEGJnJkyc7ff3fdtttuuYRERGhtW/fXps6dar2wgsvFHvc6AZmIz+3u5u3q2MRlcdvu3fvdjv9zJkztWbNmmnx8fFafHy81qxZM2369Om6xuzuhw9Gxdv9ERoaqm3ZssXtehV+yZiUlKRFR0drderU0UaMGGFzkSFHLl26pKWmplpu2Z5us65du2q5ublOn5ubm6vdd999bveTux9K1KhRw+X03vxQwpv33r59+7RHH31Uq1ChghYZGalVqFBBe/TRR3XVPx577DEl7wER0e666y6HYxo3blyx52ZmZrpcD7O+IPdH/SIlJUXbunWrrn2bl5enZWZmau+//77Wvn17LSwszKtx++MY3Z4vx372f9tTUlI8WrbRNZx33nnHZhpPfkzdvHnzYuPVeyxrdB1kxIgRNvPftWuXFhkZqWva5ORk7cSJEzbTP/vss5Za3tVycnIcPmf48OHF9s/777+vqzFAVY3NESNriY5SkuszhIhwMmIrKMknI7b//OnIpUuXtE8++URr3769Vr58eS0iIkJLSkrSatWq5bPFYwAAIABJREFUpfXt21ebP3++lp+fr2ma+wu0r1y5UuvWrZtHnzubNWvm8vjL0Q+RjaqvqPouVmX9wurH6lfzpJZ1/fXXa1euXHE6r6eeesrl63LGjBlOp12/fr3p7+WS1pNh9t8v1fUyVf0nevYxNV/zkpqaqmts3li4cKHXNSFv4m39y9EPn9ydaMZK8bQHRMS3mpuZfR2qal0qa0Oa5l390szensLY1wR94W7f2DO6ztq/f3+babKyslx+tvQmZr7O3nzzTZvn/vrrr7rH2a5dO4/3V2E8raer2Neq/s7YhzqmbTz40UJAcPSZJD09vejxWbNmOdwOdevWNX3bh4aGas2bN9dGjx6tVatWTflrgRBCCCGEEEIIIYQQQgghhBgfs3rmAqVvNND7EkXoqzbjHFdGvE7M2ndGnm9A5b4z4u9hIPUgqu55C4Z+Ll9idh+niPpzdJl1vjv2h77Qf0YIIYQQQgghhBBCCCGEEFIyw7km1SvJ55okhBCiJlzD1DV/93eacR0pK2xff8TX66AYdZ2LF154odi2qFmzpsPnBnNf3qOPPmrz/AEDBvh1/9NDRwghhPyTjIyMYv/Ow1yenFeWEEKItaL6+ikixl3HKFB+Z+/v6wqrXm8V13M2+rrx/kow1PNEfLvGh9m/zXY0Xk0z9rquZq6jqmvl+uNa1/ah3kgIIcGXPn36OPx3GObZsmWL8tcBIYQQ/6Yk9rGpPEchfWzGZ9SoUS7H3aFDByXj8rWOJ6K+lhfMfXki9OYRQggJnnhwDelZjr/1KgEyMjKU7yijsmrVKpfrvnHjRrfzCA8P93ib7t+/3+U87b+EtPfll1+6HddPP/3kdPrt27c7nEbPAWBWVpZ2ww03OJze3UHgnDlzHE7Xvn17t8sdPHiw03UdOHCg2+mdHWyr2tZ6t7emadqQIUOUvD9OnTplMw69X/JfHU8PzOwNHz5c97ISEhJsCi+XLl3SQkNDdU1rb9WqVR6tZ9++fXXvd0evu0BqNDDqYNsfue2222zG9u6777p8fmJionb+/Pmi5+fn52vp6elul1OuXDmbi2MUFBRolStXdjnN8uXLbcY2dOhQj9cvMzPTZh6uxmpvypQpftvOjj486W1aCvRkZ2cXW3fAVwkJCcpf24QYmfnz5zt9/bv799PbTJgwweX7LiUlxaP5Gfm53d28XX0xper4rW3btm6X66qOMHToULfTu/vhg1Hxdn907NjR7Tq5akS+9dZbtZycHJfTv/nmm5ZbtifbrFu3btrly5edPu/ChQta+/btde0ndz+UcHdxQ29+KOHpe2/z5s1a6dKlHU5fpkwZbevWrS6n9/SY1F+55pprtGPHjhUbz65du7TY2Nhiz7c/RrEXHh5uyrj9Ub8QES0uLk4bN26cy9eqI0eOHNFeffVVLS4uzqPl+eMY3Z4vx367d++2mZe7fy/tGV3D+fvvv22W16lTJ4/W748//rCZXu+Xv0bXQQ4ePGgz/4EDB3o0/VtvvWUz/aZNmyy1vKvl5OTYPBYREVGsKejKlSvaM888o3s8qmps9oyuJTpKSa7PECLCyYitoKSejPj22293u2127Njh8ofBhalYsaI2depUw+ojs2fPdjpGPf/m+au+ouq7WJX1C6sfqxfyppb13XffOZ3fhg0bnE4XGxtr852cvUGDBpn+fi5pPRlm//1S+T5Q2X+iZx9T8zUvdevWdTsuX7z11lumrYu39a9hw4YVG3eFChVM3xfextMeEBHfam5m9nWoqnWprA1pmnf1SzN7ewpjXxP0hbt9Y8/oOuv69ettlmfE3zIzX2eHDh2yee4999zj0bLsv6/R+17ytJ6uYl+r+jvjaOz2SnId04MfLQQERz/2TE9PL3p81qxZDrdD3bp1TdvmtWvX1jIyMrQ9e/YUjatWrVrKXwuEEEIIIYQQQgghhBBCCCHE2JjZMxcIfaPB0JfoS0p6X7XK14nKfefP8w2o3Hf+SCD3IKrueQuGfi5fYnYfp4j6c3SZdb479of+bWyvJPefEUIIIYQQQgghhBBCCCGElJRwrkn1Suq5JgkhhKgL1zB1zoj+TjOvI1VSezALY9R1Lvr161dsWzRr1szhc4O5L+/JJ5+0Wda//vUvv+5/eugIIYSQf5KRkVHs3yWYa+HChcpfB4QQQryL6uuniBh3HaNA+J29EdcVVr3eqq/nLOL/68b7K8FQzxPx7RofZv8229F4jb6uq5nrqOpauf641rV9qDcSQkjwpU+fPsX+tsNcW7ZsUf46IIQQ4t+UxD42lecopI/N+IwaNcrlenfo0EHJuHyt44mor+UFc1+eCL15hBBCgiceXEN6Vqgg6ERFRbl8/Ny5cyaNxNadd97p8vH33nvP7Ty+/vprp4/VrFlTrrvuOk+HJSIi//rXv2Tz5s0OHxs7dqzLadPS0hze36pVK5fTLV++XEaPHu308bFjx8p///tfl/NwxsrbunDeb731ltfTeys+Pl5Kly5tc9/hw4dNH8eSJUt0P/fcuXNy5MiRotvR0dGSlJTk1XK/+eYbj54/d+5cKSgoKLpds2ZNKVOmjFfLhvc2bdpkc/vmm292+fyzZ8/KtGnTim6HhYVJ37593S7nsccek8jIyKLbP/30k+zdu9fp8+Pj46Vp06Y2982aNcvtcuwtXrzY5vYtt9yie9rvv//e4+U5c+7cuWL/Pvrydw4AENxcHVO9//77Ur58eRNHYxxVn9vdUXH8lpmZKW+88YbTx998801Zu3aty3kEmvbt27t8/JdffpEPPvjA6ePLly+Xd955x6tlqFy2XnfddZfMnj1bIiIiHD5+5swZadeunSxatMin5RS6+thMlb59+8rp06cdPnbq1Cl5/PHHXU7fqFEjiY2NNWJoLo0fP17KlStnc9+VK1fkkUcekYsXL5o+Hj38Wb+4cOGCPP3001KtWjUZOXKk7Nu3T9d01157rbz++uuyc+dOufXWW71atr/489jPU0bWcCpXriwpKSlFt8+fP1/sGNmdOXPmePR8M1SqVKnYv7ee1gumT59uc7tu3bpOt6XZy3MlMTFRfvjhB+ndu3fRfTk5OdK9e3f58MMPPZ6faipqidRnAECNTp06uXw8OztbOnToIH/++afbef3111/Sq1cvl98v+GLXrl1OH0tNTS32Odooqr6LVVm/CIRjdW9rWWPGjHH62I033iiNGzd2+FinTp0kLi7O4WN5eXk239eZxcp9AkbU9Mz++6XyfaCy/8QM1Hz1K1WqlKHzf/bZZ6VixYqGLkPEt/rX1X0NhS5cuOCXcZnB0x4QX5jZ16Gq1mWF2pA39Uuzenuswsg6a5kyZeTGG2+0ue+LL77wfJAumPk6u+666yQ1NbXo9qVLl+SHH37waFmzZ8/26Pn+VFJq6tQxoUK1atXktddek+3bt8vWrVtl2LBhUrlyZdXDAgAAAAAAAAAAgInM7JkLhL7RYOhL9EVJ76vWy4jXia/Yd74L5B5EK/S8BXo/l6/M7OMUscY5ulSd706Pkrg/6D8DAAAAAAAAAAAAAAAoGbiGqXNG9HeaeR0pq29fV6xyHVdHsrKyit0XExNT7D4r9IEZ2Zd39OhRm9t9+vSRhIQE3ctzxQrbjh46AAAAAAgOgXL9FG+uYxQIv7M34rrCVl9vK1zPWYVgqOc5o/caH1b4bbaIsdd1tco6BiLqjQAAAADgHn1sjhl1jkL62EomK9fxRPTV8qzQW2b0+fLozQMAlEShqgcA/7t8+bLLx+Pj400aia3WrVs7fezEiRPFTkDsyM6dO71ehjOnT5+WSZMmOX18x44dLrepsw+Z7j6offLJJ27Hpuc5jlh1W4uIaJomQ4cO9WpaXzk64D516pTp43BWbHAmOzvb5ra3X/SvW7fOo+dnZWUVu4BG48aNvVo2vHfmzBmb5pJrr73W7TTjx4+3ud23b18JCwtz+vyQkBDp16+fzX3u/v7ccsstEh4eXnT72LFjbv9uOLJhwwab256cfH79+vUeL8+VkydP2tz2Z5EOABBcdu/e7fSxbt26yZEjR2Tjxo0yY8YMeeONN+Shhx6Sm266qVhjtpWp/Nzuiqrjt/Hjx7tsVNc0TT7++GOX8wg07o759Kzv+PHjRdM0p483aNBASpUqZall69G5c2eZNWuWREREOHz8xIkT0qpVK1m5cqVX83fE1bqY4Y8//pC1a9e6fM7KlStl69atTh8PDw+XRo0a+XtoLvXs2VPuu+++Yve/8847snr1alPH4gkj6hcHDhyQV155RSpXriw1atSQ/v37y2effSa///675ObmOp2uQoUKsnTpUunatatPy/eFv4/9PGFkDcf+/bBlyxbJy8vzaHl//PGHR883Q5MmTWxuHzhwQI4dO+bRPLZs2WJzsciQkBCnNSmzl+dMamqqLF++XNq0aVN036lTp6R169Yyd+5cj+ZlFapqidRnAMB8bdu2dfn4Bx98IPv27TNs+Q0aNJAhQ4bI119/LevWrZNDhw5JVlaWXL58WTRNs8mQIUNczsusi3yr+i5WZf3C6sfqvtSyli5dKtu2bXP6uLMTMvTo0cPpNAsWLCj2ucYMVu0TMKqmZ/bfL5XvA5X9J0aj5usZT06o8sknn0j9+vUlJiZG4uPjpXnz5jJ//nyX00RFRckzzzzj6zDd8qX+5ej1EBcX5/OYzOJND4i3zOzrUFXrskJtyNv6pRm9Pa7MnDlTQkJCvEpycrJHyzKyznrrrbdKSEhI0e3jx4/Lrl27PFqeO2a+zuzv27x5s+Tk5Hi0LE/rev5Ukmrq1DFhhgoVKsigQYNk+fLlsmPHDhk+fLjUrFlT9bAAAAAAAAAAAACgiJk9c1bvGw2WvkR79FV7vgxXjHqdOMK+83wZvgjkHkQr9LwFej+Xr8zs4xSxxjm6VJ3vTo+SuD9E6D8DAAAAAAAAAAAAAAAoCbiGqWNG9XeaeR0pK29fd6xyHVdHQkOLX1bbUT+6FfrAjOzLW7lypU1fXfXq1eW3336Tu+++22a9vWGFbSdCDx0AAAAABINAuH6Kt9cxsvrv7I26rrDV11v19ZxVCYZ6njN6r/Fhhd9mixh7XVerrGOgot4IAAAAAK7Rx1ackecopI+tZLJyHU9EXy3PCr1lRp8vj948AEBJ5Nu/cLCkM2fOuHzcrJOb26tSpYrTx8qWLeuXL/1r1arl8TRLliyRvLw8p49rmiZZWVlOPzg5O3H59ddf73K5K1eudDu2VatWuX2OI1bd1iIiq1evlv379/u8fG842lc5OTmmjqGgoMDte9Se/Rijo6O9Wvaff/7p8TTbt2+XqlWrFt1OT0/3atmwlZqaKnfffbc0btxY6tSpI9dee60kJCRIXFyczcn7HUlOTnY7//Xr18uaNWukadOmIiKSlpYmd955pyxYsMDh81u3bm2zn48ePSrz5893uYwaNWrY3Pb2IgP2B6lly5bVPe3hw4e9WqYzly5dsrlt5oUpAACBZeHChfLaa685fTw0NFTq1asn9erVs7lf0zTZtGmTLFu2TObNmyf//e9/Ldv8rPJzuytGHb9VrlzZ5XJ//fVXt2PT85xA4u6YVs/6HjlyRPbs2WPzWfNqoaGhUrFiRcnKyrLMsvXo1q2b08cOHjwobdu2lR07dng8X1dU/61YsWKFruetWrVK6tSp4/Tx66+/XpYtW+avYbmUkpIi48aNK3b/5s2bJSMjw5QxeMvo+sXOnTtl586d8tlnn4mISEREhDRu3Fg6duwovXr1kkqVKtk8PyIiQqZOnSoNGjSQPXv2+G0cevn72E8vo2s49jUWb/5ueFPrMVpaWprN7W3btnk8j4KCAvnzzz+lYcOGTueranmO3HDDDfLDDz/YTLN3717p2LGjVw0BVqGqlkh9BgDM5+6YePbs2X5fZlhYmDzyyCPy6quvuj0G9IS3P073lKrvYlXWL6x+rO5rLWvcuHFOT5LQs2dPefbZZ+XcuXNF98XFxUmnTp2czs9VA7qRrNonoKqm5++/X1aulxnZf2I0ar6eOXv2rK7nDR8+XIYNG2Zz36pVq6Rbt24yffp06dmzp9Np77zzTnn++ed9GaZbvtS/rv57XCgpKUmOHDni87i8ZXQPiLfM7OtQVeuyQm3I2/qlGb09VmB0ndW+nr1x40aPlqWHma+zihUr2tz2tkanQkmrqVPHhFFKlSol9957rzz44IPSsmVLhz/4BAAAAAAAAAAAQMlkZs+c1ftGg6UvUYS+aj28PceVUa+TQuw797zdd+4Ecg+i6p63YOjncsSqfZwi6s/RpeJ8d+wP9+g/AwAAAAAAAAAAAAAACH5cw9Qxo/o7zbyOlJW3rztWuI6rM476x+x7rUTU94EZ3Zd3/PhxmTZtmvTq1avovlq1asncuXPl1KlT8p///Ed+/vlnWb58uezdu9ejcajedoXooQMAAACAwBcI10/x9jpGVv+dvVHXFbb6equ+nrMqwVDPc0bvNT5U/za7kJHXdbXKOgYq6o0AAAAA4Bp9bMUZeY5C+thKJivX8UT01fJU95aZcb48evMAACVRuOoBwP8OHDjg8vHU1FRJSkry+MOVL6Kiokz54HHNNdd4PM2WLVvcPsfVF93OTqTs6iTymqbJX3/95Xa5f/31lxQUFHh04XIrb2sRkXXr1vl5JPpFRUXZ3M7LyzO92UTFMgtlZ2f7PI1ZF0cIVtWqVZO3335b7rrrLrcnYXcmISFB1/PGjx8vTZs2Lbr9xBNPyIIFCxw+94knnrC5/cUXX0h+fr7L+ZcuXdrmdrNmzYoOwgvXLSQkxOb/Xf23kN7X2JUrV+TChQu6nqtXbm6uze2YmBi/zh8AEDzWrFkjS5culdatW3s0XUhIiNx4441y4403yqBBg2TPnj3y4osvyrfffmvQSL2n8nO7K0Ydv9l/trG3b98+t8vdv3+/x8dvVuXuuPLSpUty/PhxXfPav3+/0x8OiBQ/tlS5bF/t2rVL2rRpo+t4P9C4qzUVcvfjHHfvNX/69NNPpUyZMjb35eXlycMPPyyXL182bRzeMLt+kZeXJytXrpSVK1fKsGHD5PHHH5d3333X5pgoISFBMjIy5JFHHjFsHI4Yceynl9Hb3f4Lem/qNmbWd/WyP6735sdhjqZzVi8we3n2IiIiZMWKFZKYmFh0X2ZmpnTq1En3v1dWpaqWSH0GAMwVFRXl8nuHvLw82b59u1+XmZiYKHPmzJE2bdr4db4ixT9LG0Hld7Gq6heBcKzuay3rq6++kpEjRzpspI2Li5MHH3xQPvnkk6L7unTp4vRzytGjR+XHH3/0aTzesHKfgBE1PbP/fql+H6jqPzEDNV/P6KkFnDlzRkaNGuX08SFDhsj999/vdNvVrFlTSpUq5fUxth6+1L8OHTpU7D4z645XM7MHxBtm9nWoqnWprg35Wr80urfHCoyus9p/D3Dq1Cm/L8PM15k/3kveTOMPJa2mTh0T/hYRESG33HKLDB48WLp06SLh4fzEAwAAAAAAAAAAAP8ws2dOdb+cHsHQlyhCX7VeVnqdFGLf6ePv33EXCuQeRNU9b8HQz3U1q/dxiqg/R5eZ57tjf+hH/xkAAAAAAAAAAAAAAEDw4xqmjhnV32nWdaSsvn3dscJ1XJ1xdE5gR32IqvvAzNhmgwYNkgYNGkidOnVs7i9Tpow88sgjRdeMOXz4sCxbtkwWLFgg8+fPl4sXL7qcr+ptV4geOgAAAAAIfIFw/RRvrmMUCL+zN+K6woGw3iVVMNTzHPHkGh+qf5tdyMjrulplHQMV9UYAAAAAcI0+tuKMPEchfWwlk5XreCL6anmqe8vM2mb05gEAShpjvo2HUtu2bXP5eGhoqDRr1syk0fyPow+cRrA/8bUep0+fdvucvLw8j+fr6oAsNzdXCgoKdM3H1cGnI1be1iIiBw8e9PNI9LP/MBwREeH1CbIDTX5+vlevY/vGjfj4eH8NqcRp3769rF+/Xu6++26fXnd6i2+zZs2yObDv2LGjpKenF3te+fLlpVu3bkW3CwoKZOLEiW7nb/+3JjQ0VKKioiQqKkoiIyMlMjJSIiIiJDw8XMLDwyUsLEzCwsIkNDRUQkNDbQ6Ar6a3mJWfn6/reZ6Ijo62ue3p318AQMnSq1cv2bVrl0/zqFKlisydO1dee+01P43Kf1R+bndFxfFbTk6OXLlyxe08NE0Lms8P7o4r9TZ463luUlKSZZbtq0uXLsn58+f9Ok+9wsLCDJ2/3u3u7ssyoy82VSg8PFy6dOlS7P7hw4fLxo0bTRmDL1TWL/Lz8+Xjjz+Wdu3ayeXLl20e69mzpykNCPbjCVb2NRZv/g3x5G+iWezf5+7+Ljhjv27O/n6YvTx7oaGhkpiYaHPf+PHjdf/AzqpU1hKpzwCAudwdg509e9bvy5w9e7YhF/g2i8rvYlXVLwLhWN3XWtaFCxdk0qRJTh9//PHHbW7ff//9Tp87depUJccyVu4TMKKmZ/bfL9XvA1X9J2ag5usZPdtr1apVRQ3qjuzfv1/27Nnjch4pKSkej80TvtS/HH03U69ePb+MyxNm94B4w8y+DlW1LtW1IV//zTe6t6cksN9XRnxPY+brzP695M2yrFg39ger1dSpY8Lf8vLy5Ndff5V77rlHKlWqJM8995xXJ0cEAAAAAAAAAABAcDKzZ051v5wewdCXKEJftV7enuPKqP5EEfadXt7uO3cCuQdRdc+b0czo5yoUCH2cIurP0WUW9odn+4P+MwAAAAAAAAAAAAAAgODHNUwdM7K/04zrSFl9+7pj5eu4OjoH36FDh4rdZ5U+MCNlZWXJLbfcIp9++qnLc6empqbKgw8+KNOnT5e///5bRowY4XI9rLLt6KEDAAAAgMAXCNdP8eY6RoHwO3sjriscCOvtjtHXc1YlGOp5jnhyjQ8r/Dbb6Ou6WmEdAxn1RgAAAABwjT624ozsYROhj60ksnIdT0RfLc8qvWVGozcPAFDSGHuGVyixevVqt8954IEHXD6en59f9AHk6th/sNUrOzvbq+k8FRER4fE0etZJ74Hx1Vw1R0RFRek+wXJMTIxHy7XythYROXfunJ9Hop+jfWL/ATlYFR5oeMr+gMPIk8kHs+rVq8u8efNstufFixflq6++kj59+kiTJk0kLS1NEhISJDIystjfXlcHp87k5OTIpEmTim6HhoZKv379ij3vscces3k///TTT7J//3638zfqYFJlscT+760nDXEAgJLn6NGj0rBhQ/nwww99/jdj+PDh0rRpUz+NzD9Ufm53xajjN1efc/Uev4WEhHh8/GZVZ86ccfm4J19MuHuu/bJULttX9erVk59++smQL2ndHc8lJib6fZlX07vdY2NjXT6u+m/LiBEjRNM0l2nYsKHLeeTl5dk8f8KECX4fpxXqFytWrJBPP/3U5r6IiAhp0aKFqeMIZvb72Zt/Q6z2RbtI8fe5u78Lztivm7O/H2Yvz15eXp4sW7bM5r6JEyfKo48+6tU4rEJlLZH6DACYy933iv4+1ujRo4e0a9fOr/M0m8rvYlXVLwLhWN0fx5vjxo1zWle66aabio4XExISpEOHDk7nM3nyZJ/H4g0r9wkYUdMz+++X6veBqv4TM1Dz9cz58+dl7969Lp9z+PBht/Nx95xSpUp5NC5P+VL/2rJli1y+fNnmvptvvtkv49JLRQ+IN8zs61BV61JdG/KV0b09JcHZs2dtbjs7YY8vzHyd2f/7FSx1Y3+wWk2dOiaMdOTIEfnggw+kcePGUr16dcnIyJA///xT9bAAAAAAAAAAAACgkJk9c6r75fQIhr5E+qr18/YcV0b1J7Lv9PN237kTyD2Igd7z5o4Z/VwigdPHKRKc5+iyx/7wfH/QfwYAAAAAAAAAAAAAABD8uIapY0b1d4qYcx0pq29fd6xwHRRnmjRpYnN73759cvHixWLPs0ofmNHOnTsnTzzxhFSpUkUyMjJk3bp1LvvtEhMT5ZVXXpE//vhDKlWq5PA5Vtl29NABAAAAQOALhOunePO7y0D4nb0R1xUOhPVWfT1nVYKhnucrK/w22+jrulphHQMZ9UYAAAAAcI0+tuKM7GEToY+tJLJyHU9EXy3PKr1lZqA3DwBQkuj7tI+AkpmZKUePHnX5nJ49e0p6erpJI/rfQVZJ++CRlZXl9LGQkBCpWLGi23mkp6frPigvZPVt7cvBtK8cvS+uueYaBSNRIzk52edpXL2ufRUWFmbYvFV79913bYoAv/32m1SpUkV69+4tkyZNkrVr18rhw4fl/PnzkpeXZzNtdHS019tmwoQJomla0e2+ffvazCskJET69+9vM80nn3yia94nT560uf3FF18UO6m8N2nTpo1X6+oPZcqUsbl97NgxRSMBAASKc+fOyeDBg6VChQry2GOPybRp02T//v02//7q9fzzzxswQu+p/Nyugrvjt7S0NLfzqFSpksfHb1aVk5Pj8rgyJiZGypUrp2te1113ncvH7T9Xqly2P9x0002yaNEiv/9wwd0X8TVq1PDr8uw5+/LL0+edPn3aH8MJelapX8yaNavYfe7eV9DPvqEjKSnJ43l4M43R7P9NLVWqlFfzsZ/O2d8Ps5dnr6CgQDp27Cj/n707j5KiPBcH/DIOm+wqRMQlohhRQMUdV0SMolEvghHUEBcSiUnUJCaYnwmuV7lmcbuKiol6XXGJioqImqioEUFNghoFXFEjCgwg+1K/P3IgzN49093VM/M857znTHdtXy1d0/X2W/VNnjx5w3slJSXxhz/8IUaNGlWnttRXrnJsaeUS5WcACmvlypU13mDavHnz2HnnnXO2vO985zs1Di8rK4tf/epXsccee0T79u2jpKSk3G8Il19+ec7aUldp/habVv6iIVyr5yKX9d5778UTTzxR7fD1v6kdd9xx1Rb/Tps2Ld588816t6Uuir1OINcKff5qB9yhAAAgAElEQVRK+3OQVv1JQ9aYc77Tp0+vcXhdfqOoKN83otQn/7Vq1aqYOnVqufcOOeSQnLQrU2nVgGSrkHUdaeW60s4N5UI+a3uagor7qmJuKRcKeZxV/CzlIkfXWBRbTl0ek0KZNWtWXHLJJdGzZ8/Ydddd46KLLor33nsv7WYBAAAAAABQYIWsmUu7Xi4t6qqz19RqV9ez79LXkGsQG0PNW00KUc8V0XDqOCMa5zO6KrI/st8f6s8AAAAAAAAAABo/fZimI9/9SDX07Vss/aBU1LJly9htt93KvTdt2rQqxy2WOrBC+fDDD+OSSy6JffbZJzbbbLMYNGhQXHHFFTF16tRYu3ZtpfF32mmnmDhxYpW1ecWy7dTQAQAANHwNof+UuvRj1BDus89Hv8INYb3T7s85LY0hn1dfxXJvdj77dS2WdcxUIe8LzoR8IwAAQM3UsaVDHVvTUqx5vIjMc3nFUltWSGrzAGgK8veLPKlZt25d3HPPPTWO07x587j99tvzWpRR0fvvv1/tsDfffDMnX46OPPLIgq1PbWpa34iIAw44oNZ5ZDJOtstujNs6U0uXLo358+eXe69bt24ptabwevbsWe9pPv7442rHXbNmTbnXpaWlWS2rroUQxa5jx47lPi+rVq2KE044ocpEQVUyLciqypw5c2LKlCkbXnfr1i2OPvroDa8HDhwY3bt33/D6s88+i4kTJ2Y074rHwo477ljndhaDdu3aRbt27cq998EHH6TTGAAanMWLF8dtt90WJ598cmy//fbRtm3b6Nu3bwwZMiR+/vOfxx133BGfffZZjfM47LDDCtRaqjJnzpwah/fr16/WeRx88MG5ak5RqO2aNpP13WqrrWKHHXaodvi6devio48+KqplZ2LcuHGxePHiaofvs88+MWnSpGjbtm3G81y5cmWNwzfbbLMahw8YMCDjZdXFgQcemNF4tX1Watu3/Fux5C/efffdSu916NCh4O1orCpeV9flhqdivElq7ty55V7XJR9VUlJSqSPYivNNa3lVWb58eRx33HHxyCOPbHivWbNmccMNN8TPfvazrNtTLDm2fOcSqyI/A5CO9957r8bhQ4cOzdmyauoQeuXKlXHggQfGZZddFm+88UYsWbKkUjFtsXwfTeu32DTzF8V+rZ4r1157bbXDhg8fHm3atIkTTzyx2nFuu+22PLQqc02tTqCQ56+I4s6X5bP+pKFqzDnfV199tcbhW2+9da3zqC3XNG/evKzalK365r8eeuihcq932GGHOPTQQ3PRtFqlWQOSrULWdaSV6yqG3FB95bO2pymo+D+yT58+OV9GIY+zit8DcpGjayyKKacuj0la3nrrrbj44oujR48eceCBB8Y111zjpkAAAAAAAIAmpJA1c02lbrQiddXZa2q1qxH2XTHsu4Zcg9gYat5qUoh6roZUxxnR+J7RVZH9kT31ZwAAAAAAAAAATYM+TNOVz36kGvL2LZZ+UCoaMmRItGzZstx7kyZNqnLcYqgDS8vixYtj0qRJ8ctf/jIOOuig6Ny5c5x99tmVtknv3r2rfH5yMWw7NXQAAACNQ2PuP6XY77PPV7/Caa93sffnnJbGkM+rr2K5Nzuf/boWeh2Lpa/cXJBvBAAAqJ06tnSpY2saijWPF5F5Lq8YasvSpDYPgMaqJO0GkB/XXnttpR/9Kurfv3+MGzcu6x8D6+rpp5+udljPnj1jq622Kkg7CuXll1+ucfjIkSNrnUcm41SlqW3rbLz77rvlXm+33XYptaTw9t5776zG79SpU3Tv3r3ce9OmTat2/MWLF5d73b59+6yW11gvMvv06RPNmzff8Pq5556LTz75JOPps91vFd1www3lXn/ve9/b8Pf3v//9csP+8Ic/1Pq/Y73nn3++XOcae++9d2y66ab1aGm6Kp4LysrKYt68eSm1BoCGbtmyZfH666/Hgw8+GFdddVWMGDEitt1227j33nurnWazzTaLNm3aVDt87dq1NS6zRYsWdW4vtV+/nXHGGTUOb9asWfzgBz/IZZNS98wzz9Q4fNSoUbXOY9SoUdGsWbNqh7/++uuxcOHColp2JmbMmBHHHHNMLF++vNpx+vXrF48//njG35EXLVpU4/DevXtXO6xjx44xYsSIjJZTV3379q312qRfv37Rq1evaoevWbMmXn311Vw3rdEq1vxFXT83VFbx89C7d+9y+YNM9O3bN5dNyom//vWv5V5//etfz7rjuV133bXc96J169ZVm5Mq9PKqs3LlyhgyZEil73tXXXVV/PrXv85qXsWSY8t3LrEq8jMA6ZgyZUqNw88777ycfB9t27ZttG3bttrhzz77bLz55ps1zmOfffapVxtylV9J67fYNPMXxX6tnitTpkyJt99+u8ph7dq1i7POOiu++c1vVjl8xYoVcc899+SzebVqanUChTp/rZfm5yDN+pOGqjHnfB944IFyv9VX1K9fv2jVqlW1w7/+9a/X+MCXTz75JL788st6tTET9cl/3XXXXbFs2bJy7xVqf6VdA5KNQtZ1pJXrKpbcUH3lq7anKZg6dWq54/xrX/ta9OjRI6fLKORxVvG93r1713hOr0ohzzOFVEw5dXlM0rZu3bp48cUX49xzz41u3brFwIEDa/29GQAAAAAAgIavkDVzTaVutCJ11f9R7HXVaUl73+XyeQMNfd811BrExlLzVp1C1HM1pDrOiMb3jK6K7I/sqT8DAAAAAAAAAGga9GFaXHLZj1RD377F2A/Kj3/843Kvly1bFo8++miV4xZDHVixWLhwYdxwww2x2267xaxZs8oNO/LIIyuNXwzbTg0dAABA49CY+08p9vvs89WvcNrrXQz9ORdrv/ENPZ9XX8Vyb3Y++3Ut9DoWS1+5uSDfCAAAUDt1bMVFHVvjVYx5vIjMc3nFUFtWTNTmAdBYlKTdAPLjgw8+iOuvv77W8UaOHBmTJ0+OXXbZJe9tmjRpUrXDSkpK4oILLqjTfNu0aRM///nP49e//nVdm5YXf/7zn2scfsghh8SPfvSjaof/4Ac/iMMOO6xOy25q2zob06dPL/e6pmKTxmbIkCFZjT948OAoKfnPv4l//vOfMX/+/GrH//LLL8u9zrZwoH///lmNv96aNWvKvd64zcWgYnHH3Llzs5r+uOOOq9fyH3vssfj44483vD7qqKNi2223jS233DK+9a1vbXh/3bp1MX78+IznO2/evPjb3/624XXr1q3r3dY0VTwXVDxXAEB9rVmzJm6++eYax6kpYfzVV1/VOG0xFW02RM8++2yNww8//PAafwz95S9/Gfvuu2+um5WqyZMn1zj8sMMOi/POO6/a4QceeGCcf/75dVpGmsvO1AsvvBAnnHBCrF69utpxDj744Hj00UejVatWtc7vX//6V43DR44cGS1btqz0fmlpadx6663RuXPn2htdT7feemt06tSpymGdOnWKm266qcbpX3311UodwVG9Yshf7LDDDpXeq+1YLfZr9GIyZ86c+Pzzzze8btu2bQwcODCreZxwwgm5bla9ffTRR+XyEBHZ56ROOumkcq9nzpxZ6QaXtJZXkzVr1sTJJ58cf/zjH8u9f/HFF8eVV16Z8XzSyrFVlO9cYlXkZwDS8fjjj9c4vFOnTvHkk0/GTjvtVOu8unTpEuPHj69002xE1HptVFpaWuPwAw44oN4dtOcqv5LWb7Fp5i8awrV6rtRUZ3H55ZdX+yCBhx9+OMrKyvLVrIw0tTqBQp2/1kvzc5Bm/UlD1Zhzvh988EGND37p0KFDjB49utrhV1xxRY0PfKnpXJJL9cl/lZWVxXXXXVfuvaFDh1ZZwF8Xu+++e7XzSqMGpK45t0LWdaSV6yqm3FB95Ku2pylYsGBBvP766+XeO+2003K6jEIeZx988EF88sknG163bt06Bg0alNWyhg4dmtX4DUUx5dTlMSkma9eujaeffjo+/fTTtJsCAAAAAABAnhWyZq4p1Y1uTF31fxR7XXVa0t53uXzeQEPfdw21BrGx1LxVpxD1XA2pjjOi8T2jqyL7I3vqzwAAAAAAAAAAmgZ9mBa/uvYj1dC3bzH0g7KxYcOGVaqvvf3222PhwoVVjl8MdWDFZuHChXHNNdeUe2+bbbapNF4xbDs1dAAAAI1DY+4/pSHcZ5+PfoXTXu9i6M+5WPuNb+j5vPoqlnuz89mva6HXMa2+cvPR17V8IwAAQO3UsRW/plrH1tgUWx4vIrtcXjHUlhUjtXkANHT1/zWGovXrX/86Zs2aVet4hx12WPzjH/+IRx55JL7//e9H7969o3PnzlFaWhpt27aNbt26xUEHHRTnn39+rQ9Xr8mUKVPi73//e7XDzz777Dj33HMznt83vvGNuPzyy+P999+PsWPHVnoActqmTJkSH3zwQY3jXHPNNXHrrbfG3nvvHW3atIk2bdrE3nvvHePHj4/rr7++XstuSts6G9OmTSv3uk+fPim1pPD233//2HfffTMat6SkpFIy6Lbbbqtxmo8++qjcxWTXrl0zLjZo3bp1nR9SX7GYp3Xr1nWaT76sWLGi3OvNNtss42m//vWvx7e//e16LX/t2rVxyy23bHhdUlISZ5xxRpx++unRvHnzDe9Pnjy51nNWRRXPU2PGjCk3z4ak4rmg4rkCADY2dOjQeOCBB+KYY46JFi1aZDxd3759qx22Zs2aagtII/7dyU9Nxo4dG/vss0+VPxZRu2effTZmz55d4zg33XRT3HzzzbHXXnttuH7bf//94+67747LLrusQC0tnMmTJ8ebb75Z4zi/+93v4q677ooDDzww2rVrFy1btoxddtklLr300njqqaeqLOxfb+XKlXHDDTcU3bKzMWnSpDj55JNj3bp11Y4zYMCAePjhh2tsT0TEa6+9VuPwPn36xOTJk2P//fePVq1aRadOneKYY46JqVOnxuDBg+vU/mz17t07ZsyYESNGjIiuXbtG8+bNo2vXrvGd73wnpk+fHr169apx+o2vS6hdffMX99xzT3zta1+rVxsq3qywZs2amDp1ao3TFPs1erG58847y70+++yzM562X79+NX63SFPFHNKPf/zjjPPKHTp0iJEjR5Z77w9/+ENRLa8m69atizPOOCP+93//t9z7v/jFL+K6666LZs2a1TqPtHJsFeU7l1gV+RmAdPzlL3+p9Zy78847xxtvvBE33HBDDBw4MLp06RLNmzeP9u3bR48ePWL48OFx1113xUcffRRnnHFGlTeFLliwoNLNoxvbf//9Y7vttqtyWPfu3eOee+7JbsWqkKv8Slq/xaaZv2go1+q5cMcdd8SiRYuqHFbTOvzxj3/MV5My1tTqBAp1/lovzc9BmvUnDVVjz/nWtk/HjBkT48aNi9122y1atWoVbdq0iX79+sUjjzxS6YETFVXMV+RLffNfV1xxRXzyySfl3rvllltiq622qle79tlnn5gyZUp07NixyuFp1IDUJ+dWyLqOtHJdxZQbqqt81vY0BRWP87POOiu6du2a02UU8ji74447yr3O5vvbEUccEbvsskvG4zc0xZJTl8cEAAAAAAAA0lDImrmmVDe6MXXV/1HsddVpSXvf5fJ5Aw193zXUGsSIxlHzVpN813M1tDrOiMb1jK6K7I/sqT8DAAAAAAAAAGga9GFaWIXsR6qhb99i6sd1p512iptuuqnce0uWLIlLLrmkxunSrgMrRnPnzi33euXKlVWOl/a2U0MHAADQODTm/lMawn32+ehXOO31Lob+nIu13/jGkM+rr2K4Nzvf/boWch3T6is3H31dyzcCAADUTh1bYalja7qKKY8XUbdcXtq1ZcVKbR4ADVrSRI0ZMyaJiEYfffr0ScrKygqyTT/44INa23PMMcfUOp+XX345OeOMM5KePXsmbdu2TUpLS5POnTsnPXv2TIYMGZL85je/SaZPn15puuuvv75OyzzzzDNrbfc///nPaqefO3dutdP95Cc/qX3D1cP06dOLalvnanvnM7p27ZqsW7duQ3u++OKLpFmzZlnN4+GHHy63Tvfee2+N429sxYoVWbe54j7YeeedM5quKq+++mrSsmXLWqc999xzy023fPnypEuXLrVO99hjj5Wb7je/+U1Gbb3++usrtbWmz9bG8dJLL5Wbrl+/fllv42z3aTaxyy67lJt3WVlZ0qFDh1qna968eTJ16tRK26Uux9CWW26ZrFq1qty2ff/998vN9/jjj896vqWlpcmcOXPKzecPf/hDzrZdTcd0XbZDTfH888+Xm/+hhx6at/UotijU9wSalnbt2qV+bAuRzzjllFM2HO9Lly5NnnzyyeT//b//lwwePDjZddddky5duiStW7dOSkpKkg4dOiT77LNPctVVV5X7f1zRa6+9VuMyM/l+X51TTjkl6/nV53t7fead5vXb2WefXeOy66um67d8Rn226eDBg/O2PX7/+9/X2O40l53tNjvjjDNqXebEiROT5s2bV7vM0tLS5IsvvsjVKlZy22235e0ck4l//etfSatWrVL5DGQbVeVBNlZaWlqQdtQ3f7FixYrkyy+/TE499dSs8x4Rkey+++7JypUry6375MmTa50uF9foG6vvtd/s2bPLzW/LLbfM67KzzeF84xvfSNauXVtumuOOO67W5bRs2bLKY7WsrCyjduYzD7L++K14/Fx44YUZTXvLLbeUm27RokVJ+/bti2p5mR4nY8eOrbSPxo8fn5SUlNTarjRybFXJdy6xYjTl/IwQEZXPSRTeLbfckvpxkFb0798/p9tyxx13rHI5L774Yo3TzZo1KznppJOSbt26JS1atEh22GGH5Oc//3myYMGCjJZ74IEH1rieucyvpPVbbJr5i4Z0rV7fuPrqq7Nq/8cff5zR97xCRFOrySjU+asYPgfFXH8i55tOPPLIIzlfpyeeeKJg7c9F/c6AAQOSNWvWlFuH9957L+nevXud2vTd7343Wbp0aZIkSXLSSSdVOU4aNSD1ybkVsq4jrVxXseaGso181fasj3znBHO5jbLNszZv3jz58MMPy03z1FNPJS1atMjZOhXyONt+++2T1atXl5tmxIgRtS6nbdu2ydtvv51UlOlnKdt8ehr7Oq3zTMWQxywf7dq1q7RtG7KhQ4dWWsdtttlmw/AJEyZUuR169eqV+r4QQgghhBBCCCGEEEIIIYQQjT8KWTPX0OtGi70uUV11cTzjqi7HSZr7rtDPG0iS/Oy7XERDrUFc3/aGVPNWbPVcDa2OM6LhPaMrm31uf2Qf6s+EEEIIIYQQQgghhBBCCCGaZnjWZPqa8rMmhRBCpBfF/AzJJGlc9Z2F7keqKddg5uqZdgMGDEjmzZtXaf2rqnmtGI25Lq+u8atf/arcMq677rqi2HYVQw2dEEKIYooxY8ZU+i5CYU2aNCn140AIIUTdI83cV0R++zEq5vvs66umfoXTXO+0+3Ou77bPJKdV12gM+byI+uXYCn1vdsX2rpfPfl0LvY5p9JWbi76uK4Z8oxBCNL44/fTTq/w/TOHMnDkz9eNACCFE7qOp1bGl+SxLdWy5iZq2f32MGzcub23OxbMR087lqcurOtTmCSGEKLbIog/pCVX/6tUEjBkzJvUdVajo169fsnDhwrxv0w8++CCj9lxzzTV5WX4xXgCWlpYmr732Wq5XdYPaCmcKva1ztb3zHa+//nq5NvXu3Tur6bO9MNtYIS9sqvPQQw8lbdq0qXa64cOHV3oo/y9+8YuMljlkyJBy061atSo57LDDqh2/pKQk+e///u8q25lpocGNN95YbrqLL744622cq4vt6uL999+vNP/S0tJqx+/UqVPy1FNPVbld6nIMRUQyYcKEao+JTz75pMb21BT77bdfsmLFikrH2Oabb57xPDp37pycf/75yYMPPpjxMV3X7VBVtG7dulxBzqJFi5LmzZvn9Bgo5igrK6v22IC6ateuXerHthD5jI1/6MmVn/70pzUuc4sttkhWr15dp3nXpSOq+nxvr8+807x+22STTZJXXnmlxuXXR23Xb/mK+m7Tm2++OefbYsaMGcmmm25aa9vTWnZdtlkmP7Y/9NBDNX7v/u1vf5ur1aykthsl8n2DyuDBg1M5/usSVf0ovrG6XjvVJeqTv9j4Om3mzJnJSSedlJSUlGQ07aBBg5L58+eXW/batWuTvn371jptLq7RN1bfa7/Zs2eXm9+WW26Z12XXJYdTMX/31VdfJf379692/E033TR58MEHqzw+y8rKMmpnvvMgEZGMHj263DLWrVuXjBo1qtrxS0pKkksvvbTSOmX6naSQy8vmOKnqIQV33313reeSNHJs1clnLnHjaOr5GSEiPIy4GDT1hxFffPHFOduW1XXQfvbZZ+dsGVWprYP2XOdX0vgtNu38RUO6Vq9P7LjjjuWKfWtz+eWXp/4ZTvPYTDOnV6jzVzF8DtKsP5HzrVpaOd/10a1bt5zWg3355ZcZfQZyGfWt34mI5Hvf+16lc/aCBQuS8847L2nRokVG89h1112Txx9/vNw8TjrppGrHL3QNSH1zboWs60gj1xVRvLmhbCNftT0RhckJ5mob1SXPesghh1TKUT311FO15oQjImnfvn3y61//usZjptDH2RVXXFFumpUrVybf+ta3qh2/Y8eOyZQpU6o8djL9LGWbT09rX6d1nlkf8piVI4ubFhqEoUOHVlrHbbbZZsPwCRMmVLkdevXqlfq+EEIIIYQQQgghhBBCCCGEEE0jClkz15DrRou9LlFddWby/Yyruhwnae67XO+3tPZdrqKh1iBGNKyat2Ks52podZwRDesZXdnuc/uj5v2xcag/E0IIIYQQQgghhBBCCCGEaLrhWZPpa+rPmhRCCJFO6MO0snzVd6bRj1RTrcGs7zPtdt555+Smm26qVGeYJNnVgzXWurwrr7wy+e1vf5v07Nkz4/n37ds3WbRoUbllHHTQQUWx7TYONXRCCCGKLarqU4rCmjRpUurHgRBCiLpH2rmvfPdjVKz32ddXbf0Kp9l/dZr9OUfk5z7uXEVjyOdtrC45tkL3jVudfPbrWsh1TKOv3FzcH7xxyDcKIUTjjNNPP73a/8MUxsyZM1M/DoQQQuQ+0s7lNaU+ttWx5SZq2v71MW7cuLy2u77PRiyGXF5jrcuLUJsnhBCi8UQWfUhPqP5Xr0ZuzJgxqe+oQkbPnj2Tt99+O6/b9P3338+oLSUlJcl9992X8+UX4wVgxL87M6/4hTFTd955Z1JWVlbt8Noutgu9rXO1vfMdF154Ybk2/exnP8tq+mwvzDZWqIe/V7Xchx56aMPr2bNnJ6NGjUq23377pGXLlknnzp2Tb37zm8mDDz5YaZ+99NJLNT5IfOOoKsG0cuXK5Kqrrkp23333pE2bNknr1q2THXfcMfne976XzJw5c8N4FQuSMi00GDRoULnpli1blvzkJz9Jdthhh6Rly5Z52afZxsiRIytt1xkzZiTDhw9PunXrlpSWliYdO3ZM9txzz+Siiy5K5s+fv2G8//u//yt3EV+XYygikv79+1dqw3qXXHJJvdbvlFNOqZRo+Oqrr5Ibb7wxOe6445Jtttkm2XTTTZPmzZsnm2++efKNb3wj+a//+q9kzJgxyYsvvpisXbs2SZIkeeONN/L6WaoujjzyyHLzvvPOO3O6/4s9avo/A3XVrl271I9tIfIZuf6h5x//+EdG31v+9Kc/1Wn+VRUw5/N7e33mnfb1284775wsWLCgxjZU5//+7//qdf2Wr6jvNi0tLU2eeOKJOm2Tqrz//vtJt27dMmp7Wsuu6za75JJLam3Dfffdl2yyySZVTt+1a9c6H39jx46tcXhtN0rUts7jx49Pli9fXqe23Xrrrakc+3WNitfgFWV6fZyLqE/+ouKPkUmSJJ999lly6623JoMHD0523XXXZLPNNktKS0uTTp06JX379k1GjRqVPP/881Wu9wUXXJDRcnNxjb6x+l77zZ49u9z8ausUr77LrksOp23btsk777xTbrq1a9cmt956a3LwwQcnm2++edKyZcuke/fuyQ9+8INy63T33XeXm66srCyjduY7DxLx77zklClTKh1LkydPTo4//vika9euSYsWLZJu3bolw4YNS15++eVK4953331Fubxsj5Of/exnlZb10EMP1djxZRo5torrVYhc4sbR1PMzQkR4GHEx8DDiSMaNG5eTbVldB+0tWrSoc+HnggULknvvvbfGcWrroD0it/mVNH6LjUg3f9HQrtXrExU7H69Jjx49Uv/8pnlspp3TK8T5qxg+BxHp1Z/I+VYtrZzvxnHIIYcky5Ytq9P6bWz58uXJAQccUPD217d+Z32cdtpp5Yrk1/v444+TG264ITn22GOTb3zjGxvyYR06dEj23HPP5Ic//GHyzDPPVLlNTjrppGqXV+gakFzk3ApV15FGriuiuHND2UQ+a3sKkRPM1Taqa63ceeedV2m7ffXVV8nVV1+dDBgwYMNx0L59+2TnnXdOTj311OSuu+7acB4dPXp00RxnrVq1Sv72t79Vmv7OO+9M+vfvn2y++eZJq1atkh133DE555xzko8//njDOHfddVe5aTL9LGWbT09rX6d1nlkf8piVI4ubFhqEoUOHVlrHbbbZZsPwCRMmVLkdevXqlfq+EEIIIYQQQgghhBBCCCGEEE0nClUz15DrRou9LlFddWby/Yyruhwnae+7XO63tPZdrqKh1iCu3+4NpeatGOu5GmIdZ0TDeUZXtvvc/qh5f2wc6s+EEEIIIYQQQgghhBBCCCGabnjWZPo8a1IIIURaoQ/T8vJV35lGP1JNtQYz02fatW7dOunatWvSs2fP5Fvf+lby3//938nzzz+frFu3rtI6r1q1KvnRj36U9Xo0xrq88ePHbxjvnXfeSa6++urk5JNPTvr06ZN07tw5adGiRdKiRYuka9euyRFHHLTM7OMAACAASURBVJGMGzeuUt80999/f9Fsu41DDZ0QQohiizFjxlT6XkJhTZo0KfXjQAghRP0izdxXvvsxKtb77PPdr3Ca/fGk2Z/z+sj1fdy5isaQz9tYXXJshe4bt2J7C9GvayHXMY2+cnN1f/D6kG8UQojGGaeffnql/28U1syZM1M/DoQQQuQnmlIdW5rPslTHlpuo67MeazNu3Li8tru+z0YsllxeY6zLi1CbJ4QQovFEFn1IT4jax2mcxowZk/qOKnS0atUqufLKK+tcUFCdsrKy5Oqrr0522mmnjNvSrFmz5Lzzzqvygd91VYwXgOtj3333zfqC+4EHHkiaN29er4vtQm/rXG3vfMd2221X7uLo5Zdfzmr6TC/M1sfGCvnw94rLbd++fTJjxoys9vX06dOTjh07ZtXeXXfdNevinttvvz3ZbLPNyr2XaaFBSUlJVuu111571bpP6+vII4+s9DmsreOJqkyePDlp1apV1g9nry7eeuutSstYu3Ztsu2229b7c3X44YcnX375Zb22W76TBNXFxsmAJEmSgQMH5mzeDSFq+j8DddWuXbvUj20h8hm5/KFn5syZGf8v7tGjR7JkyZKsl1FVAXM+v7fXZ97FcP3Wt2/frL/PTpgwIWnevHmN133Tpk1L5XjNxTbdZJNNkksvvXTDjxN1NXHixGSzzTbLqv1pLLs+2+yaa66ptS133nlnUlJSUuX0xx9/fLJ69eqM12vt2rXJ+eefn3Ts2LHG8Wq7USKTdR44cGDW56A777wz2WSTTVI59usaFa/BK8q06D8XUZ/8RcUfMOtq5cqVyU9+8pOMl5uLa/SN1ffab/bs2eXmt+WWW9Y4fn2XXdccztZbb53MmTMnq33z0ksvJR06dCj33hdffJHR8vKdB1kfrVu3Th555JE6zfP222/P+vNWqOVtLNPjZNSoUZWKNSZNmpS0bt262mkKnWOruF6FyiWuj6aenxEiwsOIi4GHEf87TjvttDrlHzZWXQftEf/Ob8ybNy+r+S1YsCDZZ599kssuu6zG8TLpoD2X+ZWIwv8Wuz7SzF80tGv1usY3v/nNjNbjhRdeSP1zm/axWQw5vUKcv9L+HKyPNOpP5HyrllbOt6pj4uOPP85q/Tb27rvvJrvvvnsqba9v/c7Gsffee5d72EVdLVq0KLnggguSVq1aVbusQteA5CLnFlGYuo6Iwue61kcx54ayiXzV9uQ6J7hmzZq8baO65lkjIhkxYkSdv/+MHj26aI6ziEi6dOlS5fFQk6lTpybt27cv915ZWVlGy8s2n57mvk7rPBMhj1lVZHHTQoMwdOjQSuu4zTbbbBg+YcKEKrfDz372s+QXv/hFsv/++6eyHwr5G6YQQgghhBBCCCGEEEIIIYQojihUzVxDrRttCHWJ6qprl+9nXNX1OElz3+V6v6Wx73IVDbUGcX00lJq3Yqznaqh1nBEN4xld2e5z+yPzB4OrPxNCCCGEEEIIIYQQQgghhGi64VmT6fOsSSGEEGmGPkz/I1/1nWn1I9UUazBz/Uy7P//5z0mfPn3qvC6NrS6vYp1Ztp5++umM+w5UQyeEEKKpx5gxY+r1f5D6mzRpUurHgRBCiPpHWrmvQvRjVKz32ee7X+E0++NJqz/n9ZGP+7hzEY0hn7exuvbxUch+Iiq2t1D9uhZyHQvdV24u7w+OkG8UQojGGqeffnpW/5vIvZkzZ6Z+HAghhMhfNJU6tjSfUaiOLTdR0/avj3HjxuW13fV9NmKx5PIiGl9dXoTaPCGEEI0nsuhDekJJ0GSsWLEiRo8eHT169IixY8fGv/71rzrPq6ysLCZMmBAjRoyIbt26xbnnnhvvvvtuxtMnSRK///3vo0+fPnHTTTfFsmXL6tWOYcOGxQUXXFCneRTCK6+8EnvttVf8+c9/rnXc5cuXxwUXXBBDhw6N1atX13vZTW1bZ+LDDz+MZ599dsPrfffdN7bZZpsUW1QYixcvjkMPPTTuvPPOWsdNkiRuvPHG6N+/f5SVlWW1nDfffDMOPPDAmDlzZq3jLl26NH7605/GiBEjYt26dVktZ71169bF4MGD47XXXqvT9IWQJEmccsopMXbs2Fi7dm2t469atSouv/zyOProo2PFihU5a8e4ceMqvffkk0/GRx99VO95P/3009G7d++49tprY/ny5fWeX6GUlpbGcccdt+H1xx9/HM8880yKLQKgqVi8eHFcdNFFsd9++2X8v3jWrFlxxBFH5OR/N9V77bXXYq+99oopU6bUOu7SpUvj/PPPj29/+9uxZs2aaNu2bbXjLly4MJfNLKi1a9fGr371q9h3333jgQceyPq7+/Tp0+PEE0+MY489NhYsWNBgll0X5557btx22201jnPyySfH+PHjo1mzZpWGPfzww3HsscfGp59+WuuyZs+eHUcccURcddVVdW1uVqZMmRL77LNPTJs2rdZxlyxZEuecc0585zvfyegaiKrVJ3/Rp0+f+OUvfxmvvvpqna63V69eHQ899FD07t07fve732U8XUO4Ri9Gc+fOjf333z/uu+++WsdNkiTGjx8fAwYMiCRJyg1btGhRvppYJ8uXL4/BgwfHj370o/jiiy8ymuaTTz6J008/Pb773e/GmjVrinp52bjxxhvj9NNPL3dOPPLII+Pxxx+v9vtDoXNsFRUqlxghPwNQbP74xz/GrrvuGr/73e+y/n7xyiuvxPHHHx9z5sypdpxZs2bFnnvuGS+88EJG83zuuedir732yuhaJBO5zq+k9VtsmvmLhnatXldPPfVUvPPOO7WOV1seIC1NsU4g3+evjaX5OUiz/qShauw531deeSV69eoVV199dVa/1X/xxRdx0UUXRd++feONN97IYwurl8v6nVdffTV23333GDlyZLz11ltZT//BBx/ExRdfHD169IgrrriixlqNQteA5CrnVqi6jrRyXcWcG8pGPmt7moLbb7899tprr5g4cWJe5l/I42zevHlx4IEHxu23317ruEmSxM033xwDBw6s8/e+hiSt84w8JjUZPHhwXHnllbHbbrsVbJkdO3aMU089NR599NHYcccdC7ZcAAAAAAAAikOhauaaSt1oVdRVZ6cp1a6mue/y8byBhrrvGmoN4nqNpeatJvmq52qodZwRDfcZXTWxPzKj/gwAAAAAAAAAoOnSh2nDUJd+pBrq9k27H9eysrK4/fbbo1+/ftG/f//4+9//Xud5Nca6vLpYtGhRnH/++XHUUUfFkiVLMppGDR0AAAC50Jj7TynW++zz3a9wmuuddn/OxdpvfGPK59VHmvdmF6pf10KuY6H7ys3l/cHyjQAAAHWjjq1haEp1bI1N2nm8iNzl8tTl/YfaPAAastK0G0DhzZ07N0aPHh2//OUvY999941DDjkk+vbtGzvuuGNsvfXW0a5du2jRokUsX748Fi9eHIsXL45PPvkk3nrrrXjrrbfijTfeiGnTpmVcYFCTd955J84666y44IILYsCAAdGvX7/YZ599Ysstt4xOnTpF+/btY/Xq1bF06dJYuHBhvP/++zFnzpz4xz/+ES+++GLMnDmzzj9OFtqsWbPisMMOi8MOOyyGDRsW+++/f3Tr1i1atmwZn332Wbz33nvx8MMPx4QJEzL+ITgbTWlbZ+Lqq6+OAQMGREREs2bN4rvf/W5ceumlKbcq/5YsWRKnnnpqXHbZZXHyySfHwIEDo1u3btGlS5dYvHhxfPzxxzFlypS48847MyoUqM5bb70Vu+22WwwZMiSOP/742HfffaNLly5RWloan376abz33nvx0EMPxX333ZeTgqkPP/ww9t133xg0aFD813/9V+y2226xzTbbRLt27aJly5b1nn8urFmzJkaPHh033XRTnHnmmdG/f//o0aNHdOjQIb766qv4/PPP47333otHH300/vSnP8W8efNy3oY777wzrr766mjWrNmG92666aaczf+zzz6Lc845Jy699NI46qij4rDDDos99tgjOnfuHJtvvnlExIb/K4sXL4758+fH22+/HTNnztwQhXbcccfFFltsseH1dddd16jOdQDkx9133x1Tp06NHXfcMXr06BE9evSIHXfcMbp06RLt2rXbEG3bto21a9fG0qVLo6ysLGbNmhVvvfVWPPPMM/HMM8/UqROWl19+OXr06BFDhw6NQYMGRd++feNrX/tatGvXLkpLXeLnynvvvRdHHHFEHHrooTFs2LA44IADyl2/zZkzJx566KG4//77Y/78+RER0aVLlygpKal2nvm4ziu06dOnx9ChQ2PbbbeNgQMHxkEHHRS77bZbbLHFFrHZZptFaWlpLFy4MBYsWBCzZs2KF154If7yl7/E9OnTG/Sys5EkSZx55pnRvn37GDx4cLXjnXbaabF69eo466yzIkmScsMmTZoUPXr0iBEjRsTRRx8dffr0iS222CLWrFkTc+fOjTfeeCPuueeeePLJJwt+w83bb78d++23Xxx44IExbNiw6NevX2y11VbRoUOH+Pzzz2POnDnx8MMPx7333huff/55QdvWWNU1f/Huu+/GFVdcEVdccUV07NgxDjzwwNhvv/2iZ8+e0aNHj/ja174W7du3j9LS0vjqq6825AT+/ve/x/Tp0+Phhx+u8/V6Q7hGL0bz5s2Lk046KX73u9/FySefHP37949u3bpFmzZt4vPPP4+5c+fG5MmT46677trQ4Wnnzp3LzSPbG1MKYe3atXH99dfH7bffHscee2wMGjQodt999+jSpUt06NAhysrK4vPPP48ZM2bEE088ERMnTqzXj+eFXl42brvttli+fHnceeedG7639e/fP5566qk46qijquwAt9A5tooKlUuUnwEoPh999FH89Kc/jV//+tcbflfcd999o1u3btGpU6fo2LFjrFixIr788suYOXNmvPTSS/Hggw/Gu+++m9H8P/744zj44INjwIABG667t9pqq2jVqlV88cUX8dlnn8Vzzz0X999/f7zyyis5X7985FfS+C027fxFQ7lWr6skSeL666+P6667rtpxli1bFhMmTChgq7LX1OoE8n3+qiitz0Ha9ScNUdrnzHxbtGhRnHfeeXHxxRfHCSecEIcddlj06dMntt1222jTpk2sWLEi5s+fH//617/ir3/9azz33HMxadKkorgBIJf1O2vWrInx48fH+PHjY7fddoujjjoq9tlnn9hpp5025FmSJImysrKYP39+vPPOO/HKK6/E1KlT48UXX6yUq61tWYWsAclVzq1QdR1p5bqKOTeUqXzX9jQF//jHP+LYY4+NXr16xdFHHx0DBgyI7bffPjp37hybbrppLFq0KBYuXBgLFy6M2bNnxyuvvBKvvPJKvP766xnNv5DH2YIFC+K73/1uXHPNNXHKKafEgAEDYuutt462bdtu+Cw9+eSTcdddd8V7770XEdFkfjNO4zwjj0kxaNWqVRx++OExdOjQGDJkSGy66aYREfGLX/wi5ZYBAAAAAACQhkLWzDX2utHqqKvOXlOpXU1z3+XreQMNcd811BrE9RpDzVtt8lXP1VDrOCMa5jO6amN/1E79GQAAAAAAAABA05b2MyQbYo1gNtLsRyqiYW7ffPbjmiRJrFq1KpYvX76hrnb27Nnx5ptvxksvvRQzZszIaV87jaku74c//GFcf/310atXr9h1111j1113ja5du0bHjh2jY8eO0aFDh1i7dm0sXrw4Pvroo/jb3/4WU6ZMiYkTJ8ayZcuyXp4aOgAAAHIh7dxXvhXjffaF6Fc4rfVOuz/nYu03vjHl8+ojzXuzC9WvayHXsdB95ebq/mD5RgAAgLpLO5fXEOussqGOjXzm8SIKm8trTHV5EWrzAGiamiV1eVpyI3DRRRfFxRdfnHYzgJQ0a9Ys3nrrrdh5550j4t8dTWy//faN6ovyxqf3lStXRqtWrVJsDcXg6KOPjscee2zD608++SS22267WLt2bYqtStdTTz0VAwcOjIiIr776KrbeeutYtGhRyq0qrLKysujQoUPazaCRad++fSxZsiTtZgAU1KBBg+Lxxx+vdvjYsWNj9OjRBWwRZO6YY46JiRMnVjt85MiRMX78+AK2iPWaQv6CujvqqKPiiSee2PD6wQcfjCFDhqTYIhqyNHOJ8jPwb7fcckuceeaZaTejSRs/fnyMHDky7WZAXslfZKddu3Yxd+7caN++fZXD77jjjhgxYkSBWwUUinNmYch/sZ5c17+p7YH8qe95Rh6zau3atYvFixen3YycOfHEE+P+++8v994222wTH330UURE3H///XHiiSdWmu6ll16K/fffP0aNGhXjxo3LaZtKS0tj4MCBMXz48DjuuOOiXbt2lcbZZZdd4u23387pcgEAAAAAAACg2KlBBBoK9WcAAAAAAABNm2dNps+zJgEAylODSSGpoQOgGI0ZMyYuuuiitJvRpD355JNx1FFHpd0MACgq+hWmOvJ5hZVmv67UTr4RoPE6/fTT49Zbb027GU3am2++Gb169Uq7GQAADZY8HoUmVwbQ9GTRh/T9JfluDEAxSpIkLr/88g2vt9122zj++ONTbBHkX8WHKNx6662xdu3alFqTvp49e8bhhx++4fV1113nYhkAqLOTTjqpxuHPPvtsgVoCNCbyF9Tk0EMPLff6lVdeSachUA/yMwBQWPIX2VmyZEl8+eWX1Q6/7bbbCtcYoOCcMwtD/ov15Lr+TW0P5E99zjPymGSqWbNmOZvPQQcdFDfccEN89tln8cQTT8Qpp5wS7dq1y8n8AQAAAAAAAKAxUIMINATqzwAAAAAAAAAAgGKjBpNCUUMHAAAAUH/yefBv8o0AAABAMZPHo5DkygCoTUnaDQBIy9133x0zZ87c8PqCCy5IsTWQX926dYtjjjlmw+s1a9bE+PHjU2xR+kaPHh3NmjWLiIiysrL4n//5n5RbBAA0VHvssUd8+9vfrnb48uXL4/nnny9gi4DGRP6CqrRq1SpOO+20cu8999xzKbUG6k5+BgAKR/4ie3vuuWd07969ymHvv/9+/OUvfylsg4CCcc4sLPkv5Lr+TW0P5E99zzPymGQqSZJ6Tb/LLrvEmDFjYtasWfH888/HqFGjYosttshR6wAAAAAAAACg8VGDCBQ79WcAAAAAAAAAAEAxUoNJIaihAwAAAMgN+TyQbwQAAACKnzwehSJXBkBtStJuAEBa1q1bV+5ibK+99opvfvObKbYI8ufcc8+NTTbZZMPrBx98MD7++OMUW5Su7bffPoYPH77h9RVXXBFlZWUptggAKAabb755PPvss3HMMcdESUlmKZM99tgjHn744WjRokW144wfPz5WrFiRq2YCTYz8BVX5zW9+E507d97w+o033ohp06al2CLInvwMANSN/EXhXHjhhdUOGzduXCRJUsDWAHXhnNkwyH8h1/Vvansgf+pznpHHpFBKSkpiq622iu7du0eXLl3Sbg4AAAAAAAAANAhqEIFipv4MAAAAAAAAAAAoVmowyTc1dAAAAAC5I59HUyffCAAAADQE8ngUglwZAJkoSbsBAGl67LHH4vHHH9/w+sorr4xmzZql2CLIvZ122il++MMfbnidJEmMHTs2xRal7/LLL4/S0tKIiHjnnXfi6quvTrlFAEAxaNasWfTv3z8mTpwYn332Wdx8883xne98J/r06RNbbLFFlJaWRps2bWK77baLwYMHx1133RXTpk2Lbbfdttp5LlmyJC699NICrgXQGMlfNG6//e1vY+TIkdGiRYtax23RokX8/ve/j7PPPrvc+039Op+GSX4GAOpG/iK/WrduHX379o077rgjjj/++CrHWbp0aYwfP77ALQPqwjmz4ZD/ajzkuupGbQ9krtDnGXlMslGf7y/r1q2Lp59+OkaMGBFbbrllDBs2LB599NFYtWpVDlsIAAAAAAAAAI2PGkSgWKk/AwAAAAAAAAAAipkaTPJJDR0AAABAbsnn0ZTJNwIAAAANhTwe+SZXBkAmStJuAEDafvzjH8eKFSsiImL33XePU045JeUWQW5sueWWMXz48Hj66aejVatWG96/55574vXXX0+xZenac88946STTtrw+kc/+lGsWrUqxRYBAMWoS5cuMXLkyLj99tvjb3/7W3zxxRexevXq+Oqrr+KDDz6IBx98MIYPH74hCV+VdevWxZlnnhlffPFFAVsONFbyF43XdtttFzfffHN8+umnccMNN8SQIUOie/fu0bZt22jevHl06dIlDjjggLjwwgtjzpw5ce6555ab/p577ol77703pdZD3cjPAEBuyF/kxrhx4yJJkkiSJJYtWxYzZsyIU089tdrxf/Ob38SCBQsK2EIgF5wzi5/8V+Mg15UdtT2QvUKeZ+QxScuyZcvi3nvvjeOOOy66du0a3/ve9+LPf/5zrFu3Lu2mAQAAAAAAAEBRUoMIFBv1ZwAAAAAAAAAAQEOgBpN8UEMHAAAAkB/yeTRF8o0AAABAQyOPR77IlQGQqdK0GwCQtvfeey9at26ddjMgJy677LL4f//v/1U7fN68eXHeeecVsEXFZ8aMGVFSUpJ2MwCARi5Jkvjxj38cEyZMqHZ4PjRr1iwv84VccvzXjfxF47f55pvHqFGjYtSoURlP86c//SlGjhyZx1ZBfsjPAEBxqC1/QWXvvPNO/M///E/W07kWhoZPzjf/5L8aF7mu6qntgdwoxHlGHpNs5eM74YIFC+KWW26JW265JbbaaqsYMmRIDB06NA444IAm9V0RAAAAAAAAAGqiBhEoNurPAAAAAAAAAACAhkANJvmghg4AAAAgP+TzaIrkGwEAACA9+mquG3k88kWuDIBM+W8BAE3EF198EYMGDYp58+al3RQAgEbto48+isMPPzz+93//N+2mANBIffrpp3HOOefECSecEEuXLk27OQAANEDyF9lbuHBhnHjiibFs2bK0mwIUmHMm5Jdc13+o7YH8cJ6hsfj000/j2muvjYMOOii23377GD16dPzzn/9Mu1kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECKStNuAACQP0uWLIl33303Hn/88bj22mtj/vz5aTcJAKDRmj17dtx8881x0003xeLFi9NuDgANxOmnnx6333577LffftGrV6/Yeuuto0OHDtGxY8do3759rF69OhYsWBCff/55/PWvf43nnnsuHn300Vi5cmXaTQcAoAGSv6ibt956K4YNGxZ///vf024KUEDOmZA9ua7sqe2B7DjPUIyeffbZmDt3brRr165gy/zwww9j7NixMXbs2GjVqlXBlgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSX0rQbAEB+NGvWLO0mkIILL7wwLrzwwrSbAQDQIH355ZfRrVu36NOnT/Tu3Tt69+4d3bt3j44dO0aHDh2iffv20aZNm1i6dGksWrQoFi5cGG+//XZMmzYtXn755fjrX/8aSZKkvRqQtccee8w1JKRo8eLFMXHixJg4cWLaTaEJ838AABoO+YvCWL58ecybNy9mzJgRDzzwQDzwwAOxevXqtJsFZMk5EwpPrqt2anugfpxnKEZpn9dXrFiR6vIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAqBv9CkNx8DkEAAAAAACgoStNuwEAAAAAxeLTTz+NTz/9NJ588sm8LkcRMk2Z4x8AAKB+CpW/aCrOOuusOOuss/K6DNfCkB45XwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNrpqxkAoGEqSbsBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZKYk7QYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQmZK0GwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBmStNuAAAAAAAAAAAAAAAAQLE6/PDDY/r06dUOnzFjRnz/+98vYIsiWrRoES1btowlS5YUdLkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBxKE27AQAAAAAAAAAAAAAAAMWqU6dOseeee1Y7/IMPPihIO0pKSmL//fePoUOHxvDhw+OQQw6Jt99+uyDLBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiktp2g0AAAAAAAAAAAAAAACgarvssksMHTo0RowYEdtvv33azQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIpAadoNAAAAAAAAAAAAAAAA4D923nnnGDZsWAwbNix69OiRdnMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAiU5p2AwAAAAAAAAAAAAAAAJq6bbbZJr797W/H8OHDY4899ki7OQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQBErTbsBAAAAAAAAAAAAAAAATdGmm24aRx99dJx66qkxaNCg2GSTTdJuEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ACUpt0AAAAAAAAAAAAAAACApmjZsmXx6KOPxvLly2PhwoUxePDgaNu2bdrNAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAilxJ2g0AAAAAAAAAAAAAAABoqlauXBmPPfZYjBgxIrp06RInnnhiTJw4MVatWpV20wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCJVknYDAAAAAAAAAAAAAAAAiFi+fHncf//9ceyxx0a3bt3iBz/4Qbzwwguxbt26tJsGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUkZK0GwAAAAAAAAAAAAAAAEB5X375Zdx4441x8MEHx3bbbRfnnHNOTJ06Ne1mAQAAAAAAAAAAAAAAYraVCwAAIABJREFUAAAAAAAAAAAAAAAAAAAAAAAARaAk7QYAAAAAAAAAAAAAAABQvblz58a1114bBx10UOyyyy5x0UUXxapVq9JuFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJLStBsAAAAAAAAAAAAAAABQTObPnx8nnnhiRuOWlZXluTXlvf3223HxxRcXdJkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBxKU27AQAAAAAAAAAAAAAAAMVk2bJlcf/996fdDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCqVpN0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMlOSdgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITEnaDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzpWk3AAAAAAAAAAAAAAAAIC1dunSJ7t2713n6VatWxdy5c3PYIgAAAAAAAAAAAAAAAAD4/+zde3DV5Z0/8E8uAl4ARS4BRFBQxwQVARUWmJ0qXgBBECMEIfFSB6q1QbutuqMjrK3FTkdLamm1WCxgvdR6w3VZsbvTEV20FlYr6KqggqWCotyMgJD8/uhPKwK5QHK+5/J6zeQPTs75Pu9gPuadR7/nAQAAAAAAAAAAAAAAAAAAAIC65ScdAAAAaB7vvPNOVFRUxMKFC2Pnzp1JxwEAAACAei1atCgqKyvjxRdfTDoKAAAAADnkrrvuipUrV+73x8knn5zSvAUFBTFo0KDo3LlzStcFAAAAAAAAAAAAAAAAAACAxvrrX/8akyZNiqeffjo+//zzpOMAAAAAQM77v//7v7j88stj0aJFsWvXrqTjAAAAAAARMXHixJg3b15s2bIl6SgAAAAAZKD8pAMAAADNY/v27TF37twYNmxYdOrUKcrLy+PZZ5+N2trapKMBAAAAwF598sknUVVVFQMGDIju3btHZWVlLF26NOlYAAAAAFCnF154ISXr9OvXL37605/GX//611i8eHEcfvjhKVkXAAAAAAAAAAAAAAAAAAAA9tfnn38e8+fPjxEjRux2fkpNTU3S0QAAAAAgJ23bti3mzJkT55xzTnTq1CkmT54cixcvduYxAAAAACTomWeeifLy8ujYsWOMHDky5s6dG9XV1UnHAgAAACBD5CcdAAAAaH4ff/xxzJs3L84+++zo3r17VFZWxuLFi5OOBQAAAAD7tHr16qiqqop+/fpFSUlJTJs2LVauXJl0LAAAAABIqT59+sSPf/zjWL16dbz88stRWVkZnTp1SjoWAAAAAAAAAAAAAAAAAAAANNonn3zi/BQAAAAASCMbNmyIe+65J4YMGRI9evSIysrKWLp0adKxAAAAACBnbdu2LZ566qmoqKiILl26RHl5eSxYsCB27tyZdDQAAAAA0lh+0gEAAIDUWrNmTVRVVcWQIUOipKQkpk2bFm+99VbSsQAAAABgn1asWBHTp0+PXr16Rf/+/WPmzJmxbt26pGMBAAAAQLPo3r17fOc734mlS5fGsmXL4nvf+15069Yt6VgAAAAAAAAAAAAAAAAAAADQZN5///0vz08pLi6OadOmxZtvvpl0LAAAAADIWatXr46qqqro16/fl2cev/3220nHAgAAAICctWnTppg3b16MGjUqioqKYvLkybF48eKora1NOhoAAAAAaSY/6QAAAEByVqxYEdOnT48TTjghBg4cGFVVVfHBBx8kHQsAAAAA9unPf/5zTJ06NY466qgYNmxYzJ07N7Zs2ZJ0LAAAAAA4IF26dImpU6fGiy++GO+++27MnDkzTj311KRjAQAAAAAAAAAAAAAAAAAAQLN7/fXXvzw/5Ywzzoif/vSnsXbt2qRjAQAAAEDO+uLM4+OPPz4GDx4cP//5z2P9+vVJxwIAAACAnLVhw4a45557YsiQIXHcccfFzTffHCtWrEg6FgAAAABpIj/pAAAAQPJqa2tjyZIlUVlZGV27do3BgwfHzJkz46OPPko6GgAAAADs1c6dO2PhwoVRUVERHTt2jJEjR8bcuXOjuro66WgAAAAA0CAFBQVx8sknxz333BPvvfde3HnnnXH66acnHQsAAAAAAAAAAAAAAAAAAAAS89JLL8W1114b3bp1+/L8lA8//DDpWAAAAACQk2pra+P555+Pb3/729GlS5cYPHhw3HPPPbF58+akowEAAABAzlq5cmX84Ac/iJKSkigpKYlp06bFypUrk44FAAAAQILykw4AAACkl5qamnj++edj6tSp0a1bt7jwwgvjkUceic8++yzpaAAAAACwV9u2bYunnnoqKioqomvXrnHFFVfEs88+G7t27Uo6GgAAAADs065du+LVV1+NKVOmxJlnnhm/+MUv4qOPPko6FgAAAAAAAAAAAAAAAAAAACTu6+enjB49Oh566KGorq5OOhoAAAAA5KRdu3bF888/H5MnT46ioqIoLS2Nxx57LLZt25Z0NAAAAADIWStWrIjp06fHcccdF0OGDIlZs2Y5/wYAAAAgB+UnHQAAAEhf27Zti8ceeyxKS0ujqKgoKioqYuHChbFz586kowEAAADAXm3cuDF+/etfx9lnnx1HHXVUTJ06NV588cWkYwEAAADAPtXU1MRzzz0XV111VXTp0iVGjBgR8+fPj61btyYdDQAAAAAAAAAAAAAAAAAAABK3ffv2eOKJJ2L8+PHRqVOnmDRpUjz99NPx+eefJx0NAAAAAHLSZ599Fo888khceOGFUVRUFJdffnksWrQodu3alXQ0AAAAAMhJtbW1sXjx4rj66qujc+fOMXz48Jg3b15s2bIl6WgAAAAApEB+0gEAAIDMsHnz5pg7d24MGzYsOnXqFOXl5fHss89GbW1t0tEAAAAAYK8++OCDmDlzZgwYMCC6d+8elZWVsXTp0qRjAQAAAMA+ff755/H000/HpEmTokOHDjFy5MiYO3duVFdXJx0NAAAAAAAAAAAAAAAAAAAAErd169aYP39+jBgxYrfzU2pqapKOBgAAAAA5adOmTTFnzpw455xzolOnTjF58uRYvHixM48BAAAAICE7d+6M//iP/4jy8vLo2LGj828AAAAAckB+0gEAAIDM8/HHH8e8efPi7LPPju7du0dlZWUsXrw46VgAAAAAsE+rV6+Oqqqq6NevX5SUlMS0adNi5cqVSccCAAAAgH3atm1bPPXUU1FRURFdu3aN8vLyWLBgQezcuTPpaAAAAAAAAAAAAAAAAAAAAJC4Tz75xPkpAAAAAJBGNmzYEPfcc08MGTIkevToEZWVlbF06dKkYwEAAABAzvrq+TddunRx/g0AAABAlspPOgAAAJDZ1qxZE1VVVTFkyJAoKSmJ7du3Jx0JAAAAAOq0YsWKmD59evTq1Sv69+8ff/jDH5KOBAAAAEAGy8vLa/Y1Nm7cGPPmzYtRo0ZFUVFRTJ48Oaqrq5t9XQAAAAAAAAAAAAAAAAAAAMgE77///pfnpxQXF8eTTz6ZdCQAAAAAyGmrV6+Oqqqq6NevX5SUlMT8+fOTjgQAAAAAOW3Tpk27nX8zffr0pCMBAAAA0ETyamtra5MOkYRp06bZ6AIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABLXunXr2Lx5c0Oe+rv85g4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA08hPOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANk590AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomP+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANExh0gEAAEjO1KlTo2XLlknHoJls2LAhZs+enXQMAAAAAOpx3nnnxSmnnJJ0jLTwxhtvxBNPPJHydQ8++OD47LPPUr4uAAAAQKZq0aJFXHvttUnHSAs1NTVx1113pXx/KS8vLw4++OCorq5O6boAAAAAAAAAAAAAAAAAAADUz3tN/sOmTZvil7/8ZcrXLSwsjJ07d6Z8XQAAAADS06BBg2Lw4MFJx0gL69evjzlz5qR83RYtWsSOHTtSvi4AAAAA6enkk0+OYcOGJR0jbfzsZz9L+Tk0eXl5UVtbm9I1AQAAAGgeebU5utMzbdq0mD59etIxAAAStXHjxmjbtm3SMWgmb7zxRpx44okpWSs/Pz8GDhwYpaWlcdNNN8XWrVtTsi4AAABANvjVr34V3/zmN5OOkRYefvjhGDduXErWatWqVQwdOjRKS0tjy5Yt8e1vfzsl6wIAAABkg9atW8fmzZuTjpEW1qxZE927d0/Zm3AUFxdHaWlpTJo0KUaOHBmvv/56StYFAAAAAAAAAAAAAAAAAACg4bzX5D+8++67ccwxx6Rkra+en1JTUxPXXXddStYFAAAAIP3dcsstMW3atKRjpIVXXnkl+vTpk5K1vtizKy8vj/bt28fYsWNTsi4AAAAA6e/yyy+Pe++9N+kYaaNjx47x4YcfpmStL86/OeOMM2L48OEpWRMAAACAxmvEGdK/K2zuMAAAQPYqLi6O8vLyKC8vj86dO0dExM0335xwKgAAAADYu4KCghgwYECUl5fH+PHjo02bNhERMXv27ISTAQAAAJDJamtrm/X6Rx99dIwePTouvfTSOPXUU5t1LQAAAAAAAAAAAAAAAAAAAMg0xcXFUVpaGhUVFXHMMcdEhPeaBAAAAIAk9evXLyZNmhTjxo2LoqKiiIhYuHBhwqkAAAAAIHd9cf5NRUVF9O3bNyIili9fnnAqAAAAAJpKYdIBAACAzFJcXBxlZWVRVlYWPXv2TDoOAAAAANQpLy8vBg4cGGVlZXHxxRdHx44dk44EAAAAAPXq3LlzXHzxxVFWVhZnnHFG0nEAAAAAAAAAAAAAAAAAAAAgrZxwwglRVlYWEyZMiOOOOy7pOAAAAACQ80466aQvzzzu0aNH0nEAAAAAIOcVFRV9ef7NgAEDko4DAAAAQDMqTDoAAACQ/rp37x7jx4+PsrKyOOWUU5KOAwAAAAD1Oumkk2LChAkxfvx4b2YCAAAAQLPJy8trsmsdfvjhceGFF0ZZWVl84xvfiIKCgia7NgAAAAAAAAAAAAAAAAAAAGS6o4466svzU/r27Zt0HAAAAADIeT169IgJEyZEWVlZ9O7dO+k4AAAAAJDzDj/88BgzZkxMmDDB+TcAAAAAOaQw6QAAAEB6ateuXYwYMSLKy8vjrLPOiry8vKQjAQAAAECdjj766Bg9enRUVFR4A2IAAAAAUqK2tvaAXt+qVasYOnRolJaWxkUXXRSHHHJIEyUDAAAAAAAAAAAAAAAAAACAzHfEEUfE+eefH6WlpTF8+PAoKChIOhIAAAAA5LR27drFRRddFJMmTYpBgwY58xgAAAAAEub8GwAAAAAKkw4AAACkj4MPPjjOP//8mDRpUpx33nlx0EEHJR0JAAAAAOp05JFHxtixY72ZCQAAAAAZJy8vL/r06RNDhw6N4cOHe9MPAAAAAAAAAAAAAAAAAAAAiL+fn3LWWWdFeXl5XHDBBdGiRYukIwEAAABATmvbtm2MGjUqSktLnXkMAAAAAGmgoKAgBgwYEOXl5TF+/Pho06ZN0pEAAAAASFBh0gHSVfv27ePqq69OOgYAQIP8/Oc/j48++ijpGGSoli1bxrBhw2LChAlx/vnnx8EHH9ys640cOTL69u3brGsAAJnvySefjGXLlu3z8z179oyJEyemMBEAwP770Y9+FDt27Eg6RlZp27ZtjBkzJiZMmBBnnnlmFBQUNOt6LVq0iBtvvLFZ1wAAMt/27dtjxowZdT7nkksuiV69eqUoEQDA/lu6dGksWLAg6RgZIS8vb79fW1tbG0uWLIklS5bEDTfcEMOHD48JEybEiBEjolWrVk2Sr3Xr1nHdddc1ybUAAAAAAAAAAAAAAACA7DR9+vQ6P3/RRRdFSUlJitIAAGSO//zP/4wlS5YkHSNrtGjRIs4777woKyuLUaNGxSGHHNLs63mvSQAg3bz99ttx//331/mcG264IVq2bJmiRAAAmcP5zk2vVatWMWLEiCgrK2vS98qsi74LAKSbDz/8MGbNmlXnc6666qro0KFDihIBAGSO+fPnx8qVK5OOkVXy8vLin/7pn6KsrCwuvvjilPRQfRcASDfOkAYAsklTniFd2CRXyUIdOnSIadOmJR0DAKBBHn74YTdG0Cj5+fkxcODAKC0tjUsuuSTat2+fsrVHjRoV3/zmN1O2HgCQmdasWRPLli3b5+d79uxp/w4AyBh33HFH7NixI+kYGa9Vq1YxdOjQKC0tjbFjx8ahhx6asrVbtmypfwIA9dq0aVO9Ny1MnDgxzjvvvBQlAgDYf7Nnz26ymxZomG3btsWjjz4ajz76aLRp0ybGjBkTZWVlcdZZZ0Vh4f7f+tGmTRt7WwAAAAAAAAAAAAAAAECdpk+fXufnS0tL4+KLL05RGgCAzLFp06ZYsmRJ0jEy2lfPT5kwYUJ06NAhZWt7r0kAIB0tXLgw7r///jqfc8MNN0Tbtm1TlAgAIHM437lpfLFnV15eHuPGjUt599R3AYB0s3z58pg1a1adz7nqqquipKQkRYkAADLH//zP/8TKlSuTjpEViouLo7S0NCZOnBi9evVK6dr6LgCQbpwhDQBkk6Y8Q3r/Tz8GAAAyTnFxcZSXl0d5eXl07tw56TgAAAAAUKeCgoIYMGBAlJeXx/jx46NNmzZJRwIAAACA3dTW1jb5NTdv3hy/+c1v4je/+U20a9cuRowYEeXl5XHWWWdFXl5ek68HAAAAAAAAAAAAAAAAAAAAqVRcXBylpaVRUVERxxxzTNJxAAAAACDn9evXLyZNmhTjxo2LoqKipOMAAAAAQM47+uijY/To0VFRURF9+/ZNOg4AAAAAaa4w6QAAAEDz+uLNWiZMmBDHH3980nEAAAAAoF7ezAQAAAAA/u7jjz+OefPmxbx586Jbt24xZsyYKC0tjcGDBycdDQAAAAAAAAAAAAAAAAAAABqsR48eMW7cuLjsssvihBNOSDoOAAAAAOS8L848njhxYvTq1SvpOAAAAACQ84488sgYO3ZsTJo0KQYNGhR5eXlJRwIAAAAgQxQmHQAAAGgeRUVF8b//+79xyimnJB0FAAAAABrkjDPOiHfeeSd69OiRdBQAAAAAGunf//3fo7q6OukYKbdhw4aUrbVmzZqoqqqKqqqq6N27d3z00UcpWxsAAAAAAAAAAAAAAAAAAAD2x5FHHhl//vOfo2/fvklHAQAAAAAiolu3bvGXv/wlevfunXQUAAAAAOD/e/TRR2PgwIFRUFCQdBQAAAAAMlBh0gEAAIDmcfjhh8fhhx+edAwAAAAAaLDu3bsnHQEAAACA/fStb30r1qxZk3SMnPHaa68lHQEAAAAAAAAAAAAAAAAAAADq1bp16+jbt2/SMQAAAACA/69du3bRrl27pGMAAAAAAF8xePDgpCMAAAAAkMHykw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAw+QnHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGyU86AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2Tn3QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGqYw6QAAAAAAAAAAAAAAAED2GTp0aMyYMSPpGM1q3bp1MWLEiJSuWVhYGEOHDo1XX3011q5dm9K1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA9FCYdAAAAAAAAAAAAAAAACD7HHHEEdGvX7+kYzSrNWvWpGytfv36xaRJk2LcuHFRVFQUxcXFsXbt2pStDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApI/CpAMAAAAAAAAAAAAAAACwp+Li4igtLY2JEydGr169ko4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkicKkAwAAAAAAAAAAAAAAAPB3xx57bJSVlUVZWVmUlJQkHQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEhDhUkHAAAAAAAAAAAAAAAAyGVFRUVx8cUXR1lZWQwYMCDpOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJorTDoAAAAAAAAAAAAAAABArmnZsmUMHz48Lrvsshg2bFgUFrrFAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaBinIgMAAAAAAAAAAAAAAKTY9u3b44knnoj169fHqlWroqysLDp27Jh0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAPkJx0AAAAAAAAAAAAAAAAgF9XU1MTzzz8fU6dOjS5dusTZZ58dc+fOjS1btiQdDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASGP5SQcAAAAAAAAAAAAAAADIdbt27Ypnn302KioqoqioKMrKyuLJJ5+MHTt2JB0NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIM/lJBwAAAAAAAAAAAAAAAOAfqqur48EHH4wLLrggOnXqFOXl5bFgwYLYuXNn0tEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA0kJ90AAAAAAAAAAAAAAAAAPZu48aNMW/evBg1alR07949KisrY/HixUnHAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAElSYdAAAAAAAAAAAAAAAACC7zZ07N5566qmkYzS52trayMvLi9ra2pSst3bt2qiqqoqqqqpo0aJFStYEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADST2HSAQAAAAAAAAAAAAAAgOz2yiuvxO9+97ukY2SVHTt2JB0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABISH7SAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiY/KQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DD5SQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYQqTDgAAAAAAAAAAAAAAAOSmY489NukIB2zVqlVJRwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHJMYdIBAAAAAAAAAAAAAACA3LRy5cqkIxywgoKCqKmpSdl6xcXFUV5eHvfee2+89dZbKVsXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIH/lJBwAy109+8pPIy8v78mPjxo1JRyKF/vjHP+72z/+LjzvuuCPpaLDfLr300j2+pw899NB4//33k44GQIrouLlNxyUb6biQ23Sb3KbbkI10G4B90/1yl95HttL9IHfpNblNtyFb6TY0leLi4rjlllvizTffjOXLl8f1118fhYWFSceCA6L/5Y6JEyfutevt6+O1115r1PV1SbJVtnRJM0q2ypYZjTCnZCczCukvW+bUjJKtsmVGI8wp2cmMQvrLljk1o2SrbJnRCHNKdjKjkP6yZU7NKNkqW2Y0wpySncwopL+mmNP58+c36v+fnzFjRjN+RUAquVcqt+lHcOCy6XcmgKakZ+YuHRMOnI4JuU2Pym26FBwYPQqgbrpmbtM14cDompDb9KjcpkfBgdOlAPZN18xtuiYcGD0Tcpseldv0KLKVfhORn3QA9s/y5cvjxz/+cZx77rlRXFwc7du3j5YtW0aXLl2iT58+MW7cuLjvvvti3bp1SUcFstCuXbuisrJyj8eLioriW9/6VgKJoGncfPPNUVhYuNtj1dXV8f3vfz+hRABAqui4ZCsdNzn274Ak6TZkK90GAHan95HNdL9k2NMCkqTbkKStW7fG448/HlOnTo0zzzwzjj766GjdunUUFhZGmzZtokuXLnH66afHpEmToqqqKt55551GXV+34UD06NEjbrzxxnj11Vdj+fLlMW3atDjuuOOSjgWQVnRJslk2dEkzSjbLhhmNMKdkLzMKB87eaf3MKNksG2Y0wpySvcwoHDh9t35mlGyWDTMaYU7JXmYU0l82zKkZJZtlw4xGmFOylxmF9Jctc5qL3CsPJEk/Ipds2LAh7rvvvrj88stj4MCB0bVr12jTpk0UFhbGYYcdFkVFRdG3b9+YOHFi3HXXXbFmzZoGX1sXA4B/0DHJJTpmdrJfByRJlyIpzX2vyletW7cuHnroobjuuuti2LBh0atXrzjyyCOjRYsWcdhhh0XXrl3jtNNOiylTpsQDDzwQ27Zta9T19SgA2Dtdk6TomjQFe3ZAkvQokpLKHhWhSwFAEnRNkmLPjqZgzw5Ikh5FNtNvIvKTDkDjLFmyJIYMGRK9e/eO66+/Pp555pl4/fXXY8OGDbFjx47429/+Fq+88ko8/PDDcdlll0XXrl1jypQp8cEHHyQdHcgic+bMiVdeeWWPx7/73e/GwQcfvM/X3XXXXZGXl7fPjzZt2sSHH37YoAxHHXXUPq+zcePG/f7aSE87duyIFStWxOOPPx633357XH755TFo0KBo3779Pr8Pvl7yGqJnz54xYcKEPR5/4IEH4sUXX2yKLwVIE6+99tpu/8646KKLko4EJGx/O26APmw4AAAgAElEQVSEnsv+0XGzl/07IB3YvyPVdBtIDXtawNfZ0yIJul92sqcFpAPdhlSrra2NRYsWxdixY+PII4+MMWPGxMyZM+O///u/Y82aNbF169bYtWtXbNmyJf72t7/Fn/70p5g/f35UVlbGscceG+ecc068/PLLDVpLt6Gx2rVrF5MmTYpFixbFqlWr4rbbbouTTjop6VgHxN4W0Jx0SZJgn6zhzChJMKONY05JtR49etT5fdPQj/nz59e5jhk1o+wfe6eNY0ZJgp+ljWNOSTUz2jhmlFTTdxvHjJKOXnjhhSgsLKzz++upp56q9zrZMKMR5pT0Y0Z3Z0ZJR+b0H8wo6ciM7s6ckm7M6O7MKEno4b/DsA/ulQfSgX5EOmqq32O+sG7dupgyZUoUFRXFZZddFnPmzIklS5bE2rVrY8uWLbFr16749NNPY926dbFs2bK4//7745prromjjz46LrroonjrrbfqXUMXI5e5Hx/4Oh2TdKRj0hD264B0oEuRSqm8V+W9996LGTNmRJ8+faKoqCjGjx8fd955ZyxcuDBWrlwZH3/8cXz++efx6aefxtq1a+Pll1+Ou+++OyZMmBCdO3eOf/u3f4sdO3Y0aC09CuzZAXvnbEBSSdekqdizA9KBPTtSKZU9KkKXglSyZwfsjT07UsmeHU3Fnh2QDuzZkQRniqVOftIBaJhdu3bF1VdfHQMHDozFixc36nV333139OrVKx555JFmTNh49913325D/PbbbycdKeX8HZCJduzYEbfeeusejx922GFx5ZVXHtC1t2zZstdrw3e+850oKSmJMWPGxA033BBz5syJF154ITZs2NDka1177bV7ffzmm29u8rUAspGOSyZqzo4boeeydzpu9rF/l538HZCJ7N+RBN0GyAa6H5nGnhZJ0f2ySzbuaUX4uZ7rXz+ZSbchCcuXL49zzjknHn300QbfXPlVixYtioEDB8avf/3rBj1ft6E+bdq0iYqKili4cGGsX78+5s6dG0OHDo28vLyko5EBdEBymS5JUuyTNYwZJSlmtOHMKdnOjNbNjLI39k4bzoySCzJ5RiPMKdnPjNbNjLI3+m7DmVHS0ebNm2PixImxa9euJrleJs9ohDkl/ZjR3ZlR0pE5/QczSjoyo7szp6QbM7o7M0ouyPQ5zRXulc9Ouf71k5n0I9JRU/8e85e//CX69+8fd999d+zcubPRr//9738f/fv3j2effbbe5+piQHPQM8k0OibpSMekPtm4X6dD+DsgM+lSpFoq71U599xz48Ybb4xXXnml0ets3LgxbrnlljjttNNi3bp1DXqNHgU0J12TTORsQFJN1+RAZeOeXYQeketfP5nJnh2plur3l9GlgGyha5KJ7NmRavbsOFD27LJTrn/9ZCZ7diTFmWKpk590AOpXXV0dY8aMiVmzZu32+PHHHx+33nprvPzyy7Fu3brYvn17rFmzJv7rv/4rrrnmmmjXrt2Xz/30009j3LhxMXPmzFTHB7LMvffeG6tXr97j8UsvvTTatm17wNe/++67Y9WqVQd8Hdhfffr0iX/+53/e4/FFixY1apMGAMgczd1xI/RckqXjNj/7d0A6sX9HttNtAODv7GmRC3S/5mVPC0gnug2ZaufOnXHllVfGc889V+9zdRv2pbCwMAYNGhSzZ8+O2bNnx7nnnhsFBQVJxwJImZKSkqitrd3jo3fv3g16vS5JLsjkLmlGyQWZPKMR5pTsZ0brZ0ZpDrmyd2pGyQWZPKMR5pTsZ0brZ0ZpDvquGSU5V199dbzzzjtNdr1MntEIc0r6MaO7M6OkI3P6D2aUdGRGd2dOSTdmdHdmlFxwoHM6ceLEvf5/8jQd98oD6UQ/Ih015e8xW7ZsiQsuuCDef//9A7rO5s2bY+zYsXudl6/K9N+ZAKAp6JikIx2TutivA9KJLkUmasy9Kgfq1VdfjTPPPDO2bt1a73P1KADYnbMByUS6Zu6yZwekE3t2ZKJU9qgIXQoA9pc9OzKRPbvcZc8OSCf27MgFud5v8pMOQP2uvPLKWLBgwZd/LiwsjB/96Efx2muvxU033RT9+vWLjh07RosWLeKoo46Kb3zjG1FVVRVvvPFGjB8//svX1dTUxNSpU+ORRx5J4ssAskBNTU3ccccde/3cFVdc0SRr7NixI2666aYmuRbsr319P//kJz9JcRIAoLmlouNG6LkkT8dtXvbvgHRh/45codsAkOvsaZFLdL/mY08LSBe6DZmupqYm/uVf/qVBz9Vt2JudO3fG888/HxdffHF069YtKisrY8mSJUnHAsgIuiS5JBO7pBkll2TijEaYU3KHGa2bGaW5ZPveqRkll2TijEaYU3KHGa2bGaW56LtNw4zSGA899FDMnz+/ya+biTMaYU5JP2Z0d2aUdGRO/8GMko7M6O7MKenGjO7OjJJLMnVOc4V75YF0oR+Rjpr695hZs2bFO++80yTX2rx5c9x22231Pk8XAyCX6ZikIx2T+tivA9KFLkUma8y9KgdqxYoVceuttzbouXoUAPydswHJZLpmbrJnB6QLe3ZkslT2qAhdCgAay54dmcyeXW6yZwekC3t25JJc7jf5SQegbnPmzInf/va3X/65sLAwHnzwwbjhhhvioIMOqvO1HTp0iAceeCCuuuqq3R6/8sor47333muWvEB2W7BgQbz99tt7PN6nT5/o06dPk63z4IMPxrJly5rsetBYY8eOjdatW+/x+IIFC2LVqlUJJAIAmkuqOm6EnkuydNzmY/8OSCf278gVug0Auc6eFrlE92se9rSAdKLbkA6Ki4vjpptuiqeffjpWr14d1dXVsW3btnj33Xfjt7/9bZx++ul1vv6ll15q0M9B3Yb6fPDBB1FVVRUDBw6Mnj17xk033RTLly9POhZA2tIlySWZ2CXNKLkkE2c0wpySO8xo/cwo+2LvdN/MKLkkE2c0wpySO8xo/cwo+6Lv7psZJd2sXr06pkyZ0izXzsQZjTCnpBczuiczSroxp7szo6QbM7onc0o6MaN7MqPkkkyd01zgXnkgnehHpJvm+D3m0Ucf3efnDjvssJgxY0asXLkyPvvss3jvvffiF7/4RbRv336fr3nsscfqXVMXAyCX6ZikGx2T+tivA9KJLkXSUnWvyhdOO+20+OEPfxgvvfRSrF+/PrZv3x6rVq2KqqqqKCoqqvO1P/vZz6K6urreNfQoAPg7ZwOSNF2TxrBnB6QTe3YkLdU9KkKXAoBUsWdH0uzZ0Rj27IB0Ys+OXJLL/SY/6QDs25YtW+Laa6/d7bHbbrstxo4d26jr3HXXXXHmmWd++eeNGzfGd7/73SbJCOSW2bNn7/Xxiy66qEnXqa2tjeuvv75Jr0lma9myZZx44olxwQUXxPe///24995747nnnov169fHoYce2uTrHXLIITF8+PA9Hq+pqYk5c+Y0+XoAQHJS1XEj9Fx2p+NmB/t3QLqxf0dSdBsASC17WiRJ98t89rSAdKPbkJT8/Py48MIL409/+lMsX748br311hg2bFh069YtDj744GjZsmV07949ysrK4oUXXojS0tI6r/fmm2/Wu6ZuQ2OsWrUqfvjDH0bv3r2jpKQkpk2bFitXrkw6FkBa0SVJkn2y+plRkmRGG8ackk4KCgqitra2UR8TJ05s0LXNaP3MKF9l77RhzCjpxs/SPZlT0okZ3ZMZJSn6bsOYUdJJTU1NlJeXx8aNG3d7vGXLlk1y/Uyc0QhzSvowo3tnRkkn5nRPZpR0Ykb3zpySLszo3plR0o3/DpN73CsPpBv9iHTSXL/H1HV/8y9/+cu4/vrr49hjj41WrVrF0UcfHVOmTIkHH3xwn69Zv359fPrpp3WuqYsBkMt0TNKJjkl97NcB6UaXIglJ3KsyduzYWLJkSbz00kvxr//6r3HaaadFhw4dokWLFnHMMcfENddcE8uWLYuePXvu8xqfffZZ/OEPf6h3LT0KAP7O2YAkQddkf9izA9KNPTuSkESPitClACDV7NmRBHt27A97dkC6sWdHkpwpljr5SQdg3371q1/Fpk2bvvzzqaeeGtddd12jr5OXlxd33333bjf5PPbYY1l58HVtbW0888wzMW7cuDjxxBPjsMMOiyOOOCJOPvnk+N73vhfLly9POmLiPvnkk5g1a1aMHj06evbsGW3bto2DDjoojjzyyOjdu3dceuml8eCDD8a2bdsOaJ2lS5fG5MmT46STToq2bdtG69at47jjjosrrrgiFi9evF/XXLNmTdx5551x4YUXRs+ePaN169bRqlWr6Nq1awwcODBuuOGGWLp06QHljmje76Pa2tpYuHBhXHPNNXHqqadG586do2XLltG+ffs46aST4qqrropnn332gL+G5vDhhx/GwoUL9/q50aNHN/l6ixYtatAmRVN57rnn4pZbbomhQ4dGz54944gjjoiDDjoo2rdvH8cff3yMHDkybr/99nj11VebZf3169fHjBkzYsCAAdGpU6do1apVHHXUUTFy5MiYM2dO7Ny5c7+u++KLL8YPfvCDOPfcc6NXr17Rrl27aNGiRXTo0CGKi4vjkksuifvuu2+3nzfpaObMmbFixYp4/PHH4/bbb4/LL788Bg8eHB06dGi2NceMGbPXx++///6ora1ttnWBzNMcveerdNz66bj103H3LtUdNyK1PVfH1XG/TsdtevbvGk+3qZ9uUz/dZu/s3+k2SdJtIDPZ10qe7lc3vW/vsn1PK0L30/32pPs1LXtajafX1E+vqZ9us3fZ3m30mvTuNcXFxfH73/8++vfvX+9zCwoK4vbbb6/zOZ988kmD1tVt2B8rVqyI6dOnR69evaJ///4xc+bM+OCDD5KOlSh7W8lLRQfU//Z97Uztf01Jl9Qlk2afrG7ZPqMR5jTd59SM1i/b59SMpveMJsGM1s+MmtEv2DutX7bPaIQ5Tfc5TUImzWhE9s+pGTWjX2dG62dGzegX9N36ZfuMRpjTdJ/Tr5sxY0b88Y9/3O2x008/vUm/HzNpRiOyf07NqBn9OjNaPzNqRutiTneX7TMaYU4zbU7N6J6yfU7NqBn9OjNaPzNqRpOWaXOaC9wr33juk6qfe+Xr516pvdOP9KN001y/x+zr339fHNi8N2eddVYcccQRjb7mV+licGDcj///2Lvz6Crq+//j7yyEzbAIKIuAiBUD7tSqqGgRg+IGIlhAiwZF27pEvt+faLHGioIVRCu2Loi4oQJarKBRERUtoF9cEIKoLEUBg6xhXxLy+f2Rk8DNnfXeuXdmPvN8nDPncJeZ+dybeWVe+YTJ9R890xod05juHVOEnhm2nknHhB3m69yjR9mjR9mjSxnTvUvRo4Lbo9J5rcrpp58u8+bNk9dff13OOOMMy+20bNlSnnzyScvnfP/995aPV6NHAd5gzs5/dE17dE1jfDYgXdMvdE26ZiKYs3OPHmWPHmWPHmWMOTt6lF/S/fdl6FJAeDFn5z+6pj26pjHm7OiafmHOjp6ZCObs3KNH2aNH2aNHGWPOjh7lNz5TLI1URBUVFSkRMV3y8vL8HqI6+uijY8Y0ZcqUpLY3cODAmO0VFhaaPveKK66oed7JJ5/seB/Tp0+P2ceSJUvintOwYUPL995oeemll2K2MXbs2JjHt27dqtavX6/OOeccy+1kZ2erESNGqIqKCtvXEvT3IBHPPPOMaty4saP9HX744erRRx9V+/fvN92e0ddh165datCgQbbbHzp0qKOvg1JKvffee6pnz54qIyPD0divvPJKtXnzZtvtpuM4OtRHH32kTj31VEev4bzzzlPLly93tf1Ue/bZZw3H2qZNG8fbmDBhgqvjvmvXrqqystJwW23atDFdb+vWrY7H9MYbb6hTTjnF1bh69uyp5s2b52j7vXr1Mt1OaWlpzfvSoEEDy3126dJF/fe//3X8ut5++211xhlnOH5NTZo0Uffff7/at2+f430Ehdn31KysrKS2u2nTJtPvO1988YVHo/dOXl6e63OLiKiysjK/hw4N5ebmWh53EydO9HuIasmSJTFj6tevn+Xz09F76LiJoePaj5+Oa86LjqtU8HouHbdqoePGC1vHLSgosPwa5+fn+z1E5u8OWZi/o9vQbfzH/N3BhW4TLHSbKmGYL4m6iRMnWn6NcnNz/R6i6zktpZjXovuFo/vR+9zRdU5LKbpf9UL3ixem7ldWVmb7NS4uLvZ1jH7OaSkV7PM6vSYx9Br78dNtzOnabeg1VUuYe42RyspKlZmZafp6Z8+e7Wg7Yeo2icyXtG3bNu55/fv3r3l8+PDhhtvSQbdu3VzlPtklKytLnX322apVq1a2z3X7fTUVmNuqWo8OGI/+F53+N3jwYMNxdunSJaHt0SUPLnTJ4GGeTN+MKkVOdcgpGa2ia07JaDgy2r59e88zaIeMklEymjpRnDvVNaNKkdOw5JRzqT1dc0pGyagZMkpGyWjq0Hf1yahS5DSMOV24cKGqU6dOzPgPO+wwtWLFCtPfP4qImjlzpqv9hCmjSumbUzJKRs2QUTJKRhNHTuPpmlGlyGkYc0pGjemaUzJKRs2QUTJKRt3R4fcwZu//mDFjUjD6xNgdK1OnTvV1fFwrH7twrXywrpNSimulonStlFL0o0MX+pH/UvlzjNnnoGRmZqpdu3aZrtekSRPD9Q477DB14MAB2/2G7WemwsJC0/eZvzXpP/7WZOLdg56ZGHqm9djpmOZ07ZhK0TOrlzD1TDqm/4qLi22PKb8/f5DPazm48Hkt9Cjm6/yna5eiR1UtYepRdry6VsXpvpo2bWq6rzvvvNPRdsLWo5Sy/3znoqIiv4cYeWHou8zZVa1H1zRG16RrivDZgHbomulH10y9kpIS22OqpKTE1zHyf+xiF/6PHT2KHuUv5uwOLvSoYEtnj6reXxS7VH5+vuUxVVBQ4PcQIy8MfZc5u6r16JrG6Jp0TRHm7OzQNdOPObvU4zOkmbOzE+TXnyh6lP346VHmmLM7uNCjgofPFPP0OshpenxKdAKKioos38S8vDxfx/fDDz/EBXfPnj1JbXPOnDlx32zMBL0c1T6x//jjj7b/IfTQZeDAgbYn96C/B27Vfs+cLlY/kNbe5vr169W5557reNs33nij7bhLS0sTGvfxxx+v1q9f7+o9ScVxVO2f//ynysrKcvUaWrRooRYuXGi53dpl66abbnI0nkT069fPcJyDBg1yvA2rcmg2MfLqq68abivZcrh79241dOjQhI4vkari8eCDD5qW12p2BfGWW25xvM+2bdvavrZ9+/apW2+9NeHXddZZZ9UU17BIVTlUSqkTTjjBcNujRo3yYOTecvP969DF7/+IDz3l5uZaHndB+OM6bn+hnI7eQ8d1j45rP346rjUvOq5Swem5dFzjhY4bK0wdt6CgwPJrm5+f7+v4mL+LXZi/o9u4XaLQbdLZa5Ri/q72QrcJDrpNlTDMl0RdVP4YMfNadL9kvtap6n5h731KMadF9zNG94v9GiUrLN0v6Bct+D2npVSwz+v0GvfoNfbjp9tY063b0GuMlzD2GiMrV660/No5ubCpWli6TSLzJW3bto17Xv/+/WseHz58uOG2qs2fPz/hY43FfHF7MVgqMLdV9Xw6oP326H/mwt7/zD64yO7nSDN0ydiFLhkszJPpl1GlyKlOOSWjVXTLKRkNV0bbt28fN9aMjAx17bXXqi5duqimTZuq7Oxs1axZM3XssceqK664Qv3tb39TP/zwQ1L7JaNklIymRhTnTnXLqFLkNGw55VxqT7ecklEy6gQZJaNkNDXou+HPqFLkNKw53blzpzruuOPixj158mSllPnvH0VEzZw50/X+wpJRpfTLKRklo06QUTJKRt0jp8Z0y6hS5DSsOSWj5nTLKRklo06QUTJKRp3T4fcwZu/7mDFjkhqjl+yOkalTp/o2Nq6Vj1+4Vj5Y10kZbZNrpcyF/VoppehHtRf6kX9S/XOM2fXhIubfi99//33Tda666irHry1MPzMVFhaavmb+1qT/+FuTxgvX47v73uYUPdN67HRMa7p1TKXomWZL0HsmHTMYiouLbY8lPz9/0O/5uqB3CHqUe/Qo+/HTpazp1qXoUcZL0HuUE15eq+KE1feNoqIix9sJU49Syv7znd28dqRG0PuuUszZVT+frulsm3RNc3w2YJWg9Eyl6JpmC13TvSh2zZKSEttjqaSkxLfx+T1np1SwewQ9yj16lP34w9ajlGLOjjm7ePSo9PcopaLZpfLz8y2PpYKCAr+HGHlB77tKMWdX/Xy6prNt0jXN0TWNx3vowpyd/ULXdIY5u9TjM6SZs6NHOVvoUckdR9XoUQcFpUvRo4yXsPYoPlPM0+sgp2UKAunTTz+Nud2tWzepV69eUts8++yzpU6dOjW3v/32W9myZUtS2wyK2267TZYtWyaZmZkybNgwWbBggWzbtk127NghCxculFtvvVWysrJqnv/qq6/K6NGjfRxxeq1cuVJGjhxZc7tu3bpSWFgon3zyiWzcuFHKy8tlx44dsmLFCnn11Vfl97//vdSvX9/1fgoLC+XTTz+VnJwcue2222TBggWydetW2bNnj5SUlMjw4cNjvg4TJ06UTz75xPH2zzrrLBk3bpz85z//kfXr18u+fftk+/btsnjxYnnkkUekXbt2Nc/97rvv5MYbb3Q1/lQdRy+++KL88Y9/lAMHDoiISJ06dWTIkCHy7rvvyi+//CL79++XTZs2ybvvvit9+vSpWW/jxo3Sp08f2bRpk6vXkSoff/yx4f1nnHGGJ9u/+uqrpW7dunH333PPPVJeXu7JPqpVVlbKgAEDZNKkSQlv48CBAzJy5Ej5y1/+kvA27r//fnniiSccP3/NmjUyYsQI08eVUnLttdfKhAkTEh7TggUL5LzzzpNt27YlvA2dmB3fH374YZpHAiBoUt17ROi4dui4ztBxraW644qkr+fScc3RcWPRcb3D/J07dBtrdBtn6DbWmL+LRbeJBroN4B7zWv6j+9mj91nTaU5LhO5nhe4Xi+7nDea03KHXWKPXOEO3saZTt6HXmNOh1xw4cEDuvvtu08f79u0rhx9+uOPt0W2AxDC35b90dED6nzFd+p+X6JKx6JLREZYuqVNGRcipFXIaKywZFdErp2TUXJgyqpSSl156SZYuXSpbt26ViooK2bx5s6xYsUL+/e9/y4gRI6RTp05y+eWXy4oVKxLaBxmNRUatkVFnojp3qlNGRciplTDllHNpLJ1ySkbNkdFYZDQWGbVGRp2h78YKY0ZFyKmVoOe0sLBQfvjhh5j7+vfvL9ddd11K9heWjIrolVMyao6MxiKjscioNTJahZwa0ymjIuTUStBzSkbN6ZRTMmqOjMYio7HIqDUyGo/fw0QL18q7w3VS1rhW3hmulbJGP4pFP/JPqn+OGT58uDRp0sTwsT/84Q/y8MMPy6pVq2Tfvn2yZs0aefrpp2XQoEGGz8/JyXF1jNDFAHe4Ht9/9Ex7dExrOnVMEXqmlaD3TDomnGC+zh16lDV6lDN0KWs6dSl6lLmg9yg7Xl+r4kRpaanpY506dXK8HXoUkBjm7PxH13SGrmmNzwaMRdcMJromRJizc4seZY0e5Qw9yhpzdrHoUcHkR48SoUsBfmLOzn90TWfomtaYs4tF1wwm5uwgwpydW/Qoa/QoZ+hR1pizi0WPio5I9hsVUUVFRUpETJe8vDxfx/eHP/whZjxFRUWebPe0006L2e77779v+Lwrrrii5jknn3yy4+1Pnz49ZvtLliwxfe7kyZNjnrt8+XLH+xk7dmzc1ywnJ0e9/fbbput8+OGHqn79+jHP/+6770yfH/T3wI1Ro0bV7CMzM1N99NFHtuts2bJFFRYWqrlz55o+x+jr0KJFC/XFF1+YrlP7NV911VWW41i/fr3q06ePWrp0qe2Yt2/fri6++OKY7Vu91nQcR99//71q0KBBzfNbtWqlFi5caPk6nn32WZWRkVGzznXXXWf63AkTJsSM/6abbrLcdqJWrlxp+v3yww8/dLyd2uM9dBkxYoS64447DB974okn4rbVpk0b021t3brVchx333235TnA7fL666+b7qtXr16e7qtevXpqy5Ythvu6//77PdvP5Zdf7vjr6reGDRsavoasrKykt/3YY48ZbrtRo0aqsrLSg9F7Jy8vL6GvdVlZmd9Dh4Zyc3Mtj7uJEyf6PUS1ZMmSmDH169fP8vnp6D10XHfouM7HT8c15lXHNRrzoUu6ei4d136h41YJU8ctKCiw/Jrm5+f7Oj7m76zRbdyh2zgff5i6Tbp6jVLM39ktdBt/0W2qhGG+JOomTpxo+TXKzc31e4iu57SUYl6L7heO7hf23qcUc1p0v3h0v+h2v7KyMtuvaXFxsW/j83tOS6lgn9fpNe7Qa5yPn25jTLduQ6/Rq9copdSuXbvU999/r55//nl1+umnm76uli1bqp9++snVtsPSbRKZL2nbtm3c8/r371/z+PDhww23VW3+/PmeHt8sVUurVq3ScsxYYW6r6rl0wHj0v+j0v8GDBxt+j+rSpYvrbdElrRe6pP+iPk+mW0aVIqe65TTqGVVKv5yS0fBltH379km9nsMOO0xNnTrV9X7JKBklo96I+typbhlVipyGMaecS63pllMySkadIqNklIx6g76rV0aVIqdhzemMGTPixnnUUUfFvB9mv38UETVz5kzX+wxDRpXSL6dklIw6RUbJKBl1h5wa0y2jSpHTsOaUjJrTLadklIw6RUbJKBl1Toffw5iNbcyYMa7HlSp272Mi76FXuFbeGtdJucO18s7Hz7VSxuhH1gv9KH3S9XPMnDlzbP+eot2Sk5PjukuE5WcmpZQqLCw0fe38rUn/8bcmD+J6/KqFnhmPvzVJxxTh91mHLlHumXTM4CguLrZ9D/z8/EG/5+uC3iHoURLMsmkAACAASURBVO7Qo5yPny5lTLcuRY+yX4LYo8yk8loVO3PnzjXdX3Z2ttqwYYPjbYWpRyll//nOXnUXJC7ofVcp5uyqn0vXNEbX5LMBRfhsQBG6pt/omulXUlJiewyVlJT4Nj6/5+yUCnaPoEe5Q49yPv4w9SilmLNjzi4WPSr9PUqp6Hap/Px8y2OooKDA7yFGXtD7rlLM2VU/l65pjK5J1xRhzk6Eruk35uzSj8+QrlqYs6NHmaFHGaNHJdejjMZ86MKcHT0qUXymmKfXQU7LFATShg0bYm4fc8wxnmy3Q4cOMbc3btzoyXaD4KGHHpLevXubPv7b3/5WHnvssZrb+/fvj7mts8WLF9f8u1u3bnL++efbrtO0aVN59NFHpXv37o73k5GRIa+88op07drV9DnXXXednHPOOTW3Z86cKeXl5abPP/LII2XGjBnSuXNn2/3n5ubK9OnTpU2bNjX3PfPMMw5HX8Xr42jUqFGye/duERGpU6eOvPPOO/LrX//acgxDhw6V4cOH19yeMmWKrF271ulLSIlvvvnG9LFOnTp5tp+RI0dK48aN4+6///77ZefOnZ7sY82aNTJ+/HjTx1u2bCkTJ06Un3/+Wfbt2yerVq2SBx98UBo0aGC6zp133ikVFRUJj2nYsGGyZMkS2bt3r6xatUpuuukm0+fu3btXZs+eHXd/aWmpjBkzxnS9zp07y2uvvSbr16+X/fv3y+rVq2X06NFSr149w+e/9dZbMmfOHPcvRjN5eXmG92/fvl1WrVqV5tEACJJU9B4jdFxzdFzn6LjG0tVxRVLfc+m4dFw36LjeYf7OPbqNObqNc3QbY8zf0W2iim4DuMe8lv/ofs7Q+4zpNKclQvej+7lD9/MGc1ru0WvM0Wuco9sY06nb0Gv06DX33HOPZGRk1CwNGzaUTp06yXXXXScLFy40XOfUU0+VuXPnStu2bV3ti26DdMvM1OOyEea2/JeODkj/i6dL//MSXZIuGWVh6JI6ZVSEnJJTd8KQURG9ckpGo5nRnTt3yuDBg+W9995ztR4ZjUdGyagTzJ3G0imjIuRUl5y6xbnUO5xLyWgqkFHvkFEy6gR9N5ZOGRUhp2HNaWlpqdxwww0x92VmZspLL70kTZs2Tdl+w5BREb1ySkbJqBtkNB4ZJaNmyKk5nTIqQk7DmlMyak2nnJJRMuoGGY1HRsloquj+e5go4Fp597hOyhzXyjvHtVLG6Ef0oyBI588xPXr0kEWLFknfvn0lIyPD9foXXnihLFy4UAYMGOBqPboY4A7X4/uPnukMHdOYTh1ThJ4Z1p5Jx6RjusF8nXv0KHP0KOfoUsZ06lL0qHD2qEOl81oVK0opue+++0wf79+/v7Ro0cLx9uhRQGKYs/MfXdM5uqYxPhuQrhkkdE3YYc7OPXqUOXqUc/QoY8zZ0aOCJCg9SoQuBQQBc3b+o2s6R9c0xpwdXTNIgtI16ZnBxZyde/Qoc/Qo5+hRxpizo0dFWRT7jR6fYKyhLVu2xNw2+maZiCZNmsTc3rx5syfb9Vu7du3k1ltvtX3eDTfcEHMymzJliuzbty+VQwuEQ0+qhx12WMr2k5+fLz179rR93sCBA2v+vW/fPlm2bJlnY2jYsKH88Y9/rLltdCI14/VxVFpaKq+99lrN7WHDhskpp5ziaCx//vOfpW7duiIiUl5eLm+++aaj9VLlv//9r+H92dnZ0rJlS8/206xZM7nzzjvj7t+wYYM88sgjnuzj0UcfNc19s2bNZP78+XLDDTdIq1atJCcnRzp06CB//vOf5a233pLMTOPT5qpVq2Tq1KkJjWfUqFHy9NNPywknnCB169aVDh06yFNPPSWXXnqp6Tpffvll3H3jx4+XPXv2GD6/S5cu8vnnn8vVV18tRx55pNSpU0fat28vd999t7z11lumF20++OCDCb0mnRz6A2dtZrkAEA3p6D10XGt0XGfouObS1XFFUt9z6bh0XDfouN5h/s4duo01uo0zdBtzzN/RbaKKbgO4x7yW/+h+9uh95nSa0xKh+9H93KH7eYM5LXfoNdboNc7Qbczp1G3oNdHrNWeccYa88cYb8sUXX8hxxx3nen26DZAY5rb8l44OSP+LpVP/8xJdki4ZZWHokjplVIScklN3wpBREb1ySkajm9GKigoZNGiQbNu2zfE6ZDQeGSWjXovC3KlOGRUhp1HMaTXOpd7gXEpGU4WMeoOMklGv0XfDlVERchrGnCqlZMiQIXH/D/XOO+909IeVkxGGjIrolVMySkbdIKPxyCgZNUJOremUURFyGsacklF7OuWUjJJRN8hoPDJKRlNJ59/DRAHXyrvDdVLWuFbeGa6VMkc/oh/5zY+fY4455hiZPHmy3HvvvZKdne1onYyMDLnttttkypQpctJJJ7neJ10McIfr8f1Hz7RHxzSnU8cUoWeGsWfSMemYbjFf5w49yho9yhm6lDmduhQ9Knw9KhnJXqtiZcyYMfLRRx8ZPtaoUSMZM2aMq+3Ro4DEMGfnP7qmM3RNc3w2IF0zrOia0cScnTv0KGv0KGfoUeaYs6NHhVUqe5QIXQoIAubs/EfXdIauaY45O7pmWDFnF03M2blDj7JGj3KGHmWOOTt6VJRFsd8YH+nw3Y4dO2Jue3VSr72d7du3e7Jdvw0aNMjRBUeZmZlyzTXX1NzesWOHfP3116kcWiC0bt265t8LFiyQdevWpWQ/v/vd7xw977TTTou57fU32HPOOafm35s2bZKffvrJ0XpeH0cffPCBVFRU1Ny+9tprHY1DROTwww+XM888s+b2p59+avi8W265RZRSNctTTz3leB9umB0zLVq0MC1NiSosLIw5Zqs98sgjsmHDhqS3//bbb5s+9pe//EU6dOhg+NgFF1wggwYNMl23uLjY9Vjy8vLk7rvvNnzMKk8///xz3H2zZs0yff6LL75oeh658MIL5eKLLzZ87JNPPnH1B9h0ZPUD0Nq1a9M4EgBBk47eQ8e1Rsel4yYrnR1XJLU9l44bi45rjY7rHebv3KHbWKPb6Nlt0tVrRJi/E6HbRBXdBnCPeS3/0f3su1/Yep8Ic1qJovvFovtZo/t5gzktd+g11ug1es5pidBtEkGviRWFXvP555/L2LFjE774h27j3hVXXCEjRowI9HL22Wf78t44/dAOHTC35b90dED6Xyyd+p+X6JJ0ySgLQ5fUKaMi5LQ2cmotDBkV0SunZDRW2DJ62GGHydVXXy3PPvusLF68WLZs2SL79++X9evXy6xZs6Rv376W62/ZskXGjh3reH9k1BgZJaNeisLcqU4ZFSGntYUtp5xLjemUUzIai4xaI6PGyCgZ9RJ9N1wZFSGntYUhp48++mjcHxXu2rWr3H///SnfdxgyKqJXTsloLDJqjYwaI6NktDZyak2njIqQ09rCkFMyak+nnJLRWGTUGhk1RkbJqBV+DxNdXCvvDtdJWeNaea6VShb9iH7kt3T/HFNZWSnjxo2To48+Wv7617/GZNmKUkoef/xxOfroo+Xee++V8vJyV/uliwHucD2+/+iZ/K3JZOjUMUXombWFoWfSMemYbjFf5w49yho9ivm6ZOnUpehRscLQo5KR7LUqZiZMmCAjR440fCwjI0MmT54s7du3d7VNehSQGObs/EfX1LNr8tmAiaFrxqJrJoauGWzM2blDj7JGj9KzR4kwZ5cIelQselTi6FJAMDBn5z+6Jl0zWczZ0TXDijm7aGLOzh16lDV6FD0qWczZ0aOiLIr9xvtUwxO1g7xr1y5Ptrtz586Y240aNfJku35z80Hh3bp1i7m9cOFCr4cTOBdddFHNv7dt2yY9evSQGTNmOL5Iy6lf//rXjp53xBFHxNz2+gRUe/urV692tJ7Xx9GhpS47O1tOPfVUx9sXkZiismLFClfreq32D63VGjRo4Pm+GjRoIEVFRYZjGDVqVFLb/vnnn+WHH34wfdyqANo9/vHHH7sez5AhQyQrK8vwMbOiKhKfmfXr18t3331n+NyOHTvG/VBWW+3judqBAwdMfziJCqtjvPY5FUC0pKP30HGt0XFXO1qPjmsunR23erup6Ll0XGN0XHN0XO8wf+cO3cYa3Wa1o/XoNuaYv7N/nG6jJ7oN4B7zWv6j+622XYfeZ06XOS0Rup8Zup85up83mNNyh15jjV6z2tF6dBtzunQbeo2xKPSazz77TPr16ydXXXWV7N2719W6dBv3Bg8eLA899FCgl/Xr16ft/WjcuLFce+218tZbb8mxxx6btv36jbkt/6WjA9L/YunU/7xEl7R/nC6przB0SV0yKkJOzZBTc2HIqIg+OSWjxsKQ0RNOOEEmTpwoGzZskNdee02GDh0qJ554ojRt2lTq1KkjRx55pFxyySXyr3/9S6ZMmWL6voqITJkyxfF+yagxMkpGvab73KkuGRUhp2bCkFPOpdZ0ySkZNUZGzZFRY2SUjHqNvust+m4Vclpl8eLF8uc//znmvoYNG8orr7widerUSfn+w5BREX1ySkaNkVFzZNQYGSWjhyKn9nTJqAg5NRPknJJRZ3TJKRk1RkbNkVFjZJSMGuH3MOBaeXe4Tsoa18qvdrQe10qZox/ZP04/Sp10/xxTXl4uV111lfy///f/pKysLKFt7N69W0aNGiW9evWS3bt3O16PLga4w/X4/qNnrrZdh45pTpeOKULPNBPknknHrELHdIf5OnfoUdboUasdrUeXMqdLl6JHGQtyj/JCMteqGPnrX/8qt912m+nj48aNkyuvvNL1dulRQGKYs/MfXXO1o/Xomub4bED7x+mawUXXjB7m7NyhR1mjR612tB49yhxzdvaP06OCy+seJUKXAoKEOTv/0TVXO1qPrmmOOTv7x+mawcWcXfQwZ+cOPcoaPWq1o/XoUeaYs7N/nB6lryj2m0y/BwBjzZo1i7md6EU1tdXezuGHH+7Jdv123HHHOX5up06dYm6XlpZ6PZzA6du3r/zmN7+puf3DDz/IlVdeKUcccYQMGDBAnnjiCfnss8+kvLw8qf20aNHC0fNqf7Pds2ePo/W+/fZbeeCBB+Tyyy+X4447Tpo1ayY5OTmSkZERs+Tl5cWs57SAen0c/fjjjzX/rqiokAYNGkh2dnbNkpWVVbNkZmbWLNWv4/nnn69Zf/PmzY7Hlgr79u0zvD8nJycl+xs6dGjceywi8vTTT8uqVasS3u7atWtNHzvqqKNsj2GrolVaWioHDhxwNZ6zzjrL9LHc3FzTx/bv3x9ze82aNabPXblyZVxGai/33HOP6frJvN86qFu3ruljTr93AdBTqnuPCB3XDh2XjpusdHdckdT0XDouHdctOq53mL9zh25jjW5Dt0kW83dV6DbRQ7cB3GNey390P/vuR+8zp8uclgjdj+7nHt3PG8xpuUOvsUavYU4rWbp0G3oNveaNN96wvTilNroNElG3bl259NJL5YUXXpB169bJiy++KJdddplkZGT4PbS0YW7Lf+nogPS/WDr1Py/RJavQJaMpDF1Sl4yKkFNy6l4YMiqiT07JaHgzOmvWLLnhhhukfv36ts8dNGiQ3HHHHaaPr169WlauXOlov2TUHBklo6mg69ypLhkVIadhzinnUmu65JSMklERMuoVMkpGU4G+6x36LjkVEdm7d68MGjQo7hh89NFHXf0ONhlhyKiIPjklo2TULTJqjoySURFy6pQuGRUhp2HLKRl1TpecklEy6hYZNUdGyWht/B4GXCvvDtdJWeNaea6VShb9qAr9KP38+DmmqKhIZsyYYfhY69at5bnnnpN169ZJeXm5bNiwQaZNm2Z4rIqIfPTRR1JYWOh433QxwB2ux/cfPZO/NZkMXTqmCD0zbD2TjnkQHdMd5uvcoUdZo0cxX5csXboUPSpcPcpriVyrcqgDBw7IzTffLPfdd5/pc0aPHi3Dhw9PaPv0KCAxzNn5j65J10wWnw1Yha4ZbnTN6GDOzh16lDV6FD0qWczZVaFHhVuyPUqELgUEEXN2/qNr0jWTxZxdFbpmuDFnFx3M2blDj7JGj6JHJYs5uyr0qGiKYr/J9HsAMFb7m9R///tfT7a7evVqy/2EVePGjR0/t0mTJjG3t27d6vVwAicrK0tmzZolPXr0iLl/69atMn36dLn11lvlrLPOkiZNmkjv3r3lxRdfjDsBOWH1TdSKUsry8ZUrV8oll1wiXbp0kb/85S8yc+ZMWb58uWzZssVRqd2xY4ejcXh9HNUudQcOHIhZKisraxalVM1iZNeuXY7HlgpmX9tEjhMnsrKyZPTo0XH3l5eXy8iRIxPe7qZNm0wfc/L9sHnz5qaPVVZWypYtW1yN56ijjjJ9zE353rhxo6v9umH1nkXB3r17TR9z8gfuAOgrVb3nUHRca3RcOm6y0t1xRVLTc+m47tFx6bheYf7OHbqNNboN3SZZzN9VodtED90GcI95Lf/R/ey7H73PnC5zWiJ0v0TQ/eh+XmBOyx16jTV6DXNaydKl29Br3Atqr3nggQdqMlNZWSk7d+6U5cuXy7/+9S/5/e9/L3Xq1DFdd8aMGfLmm2863hfdBk5lZ2dLr1695Pnnn5cNGzbIzJkz5fe//700bNjQ76H5grkt/6WjA9L/YunU/7xEl6xCl4ymMHRJXTIqQk4TEfWchiGjIvrklIy6F9aM3nzzzZaPr1ixwtF2yKg5MkpGrTB3GkuXjIqQ00QENad2OJdWCVtOyah7ZJSMmiGjZNQKfTeWLhkVIaeJ8DOnn3/+uSxdujTmvj59+siNN96YtjGEIaMi+uSUjLpHRsmoGTJKRkXIqVO6ZFSEnCaCc2nwMyqiT07JqHtklIyaIaNkNFlR+z1MFHCtvDtcJ2WNa+W5VipZ9KMq9KP0S/fPMRs3bpTx48cbPta0aVNZsGCBXH/99dK6dWvJzs6WFi1aSP/+/WXBggXSrl07w/WeffZZWb58uaP908UAd7ge33/0TP7WZDJ06Zgi9MxERGmunI6pD+br3KFHWaNHMV+XLF26FD3KPb/n64yk81qVanv37pX+/fvL008/bfh4RkaGjB8/Xu6++27X2z50H2boUYA55uz8R9ekayaLzwasQtcMBrom7DBn5w49yho9ih6VLObsqtCjgsGPHiVClwKCijk7/9E16ZrJYs6uCl0zGJizgx3m7NyhR1mjR9GjksWcXRV6VDRFsd9k+j0AGOvatWvM7YULFya9zf3798uSJUtqbmdkZMTtJ6wyMjIcP9fNBJ5OWrRoIXPmzJGZM2fKZZddZnjC3717txQXF8uQIUOkY8eO8vbbb/sw0ljffPONnHnmmfLOO+8kvI3KykpHz/P6OHJSXr3cXyoddthhhvensrheeeWVcuaZZ8bdP3XqVPnqq69Stt90atCggeljWVlZaRyJOac/YOlq9+7dpo+Z5QIAvELHtUfHtUfHNedHxxXRv+fScYOPjusd5u/codvYo9vYo9uYY/4uNeg2wUe3AYKJ7meP7meN3meOOa3UofsFH93PG8xpuUOvsUevsUe3MUe3SQ16jTcyMjKkYcOGcuyxx0rfvn3lhRdekPnz50ujRo1M13n22Wcdb59uAysZGRnSrVs3mTBhgqxbt07effddGTJkiOXxB+/QAe2FsQPS/5zvLyzokqlBlwyHMHRJMpo65DT4wpBREXKaKmQ0dTp27Cj16tUzfdzpH+Ago9bIqP/CkFHmTsloKpHT1OFcWoWcJoeMpg4ZrUJGk0NGvUHfJaOpRE6tGf0u880335SMjAzTZcqUKabbu+yyy2Ke+9prr9mOIQwZFSGnqUJGrZFR58hoapBRe+TUGTKaOuTUGhl1jpymBhm1RkadI6OpQUZTK2q/h4kCrpV3h+uk7IXxOikRrpVys79Uoh+lBv3IXrp/jpk1a5bs27fPcN2hQ4dKu3btDB9r2rSp3Hbbbaav4V//+pfpmA5FFwOCh55pj55pjY5pjo6ZOvRMa3TMg+iY7jBf5w49yh49yh5dyhxdKjXoUclL9bUqIiJlZWWSn58vM2bMMHw8OztbnnvuObnjjjtcbbc2ehQQXHRNe3RNe3RNc3w2YGrQNZNH14QR5uzcoUfZo0fZo0eZY84uNehRyUtHjxKhSwFRR9e0R9e0R9c0x5xdatA1k8ecHYwwZ+cOPcoePcoePcocc3apQY8Khyj2m0y/BwBj3bt3j7k9f/5804tsnJo3b57s37+/5nbnzp2lWbNmSW2ztgMHDni6PafKysocP3fbtm0xt5s2berpWPx6D5y69NJL5a233pKysjL5+OOPZcyYMXLppZdKkyZNYp63du1aueyyy+SNN97waaQiFRUVMnjwYNm0aVPNfV26dJExY8bInDlzZMWKFbJt2zbZt2+fKKVqlh9++CGh/Xl9HB2ar3bt2sWM0e1y6HvghzZt2hjev2nTJscFPBF/+9vf4u5TSsldd92V0PaaN29u+piTPzJm9XXIyMiQww8/PKFxJatFixYp27bfP5z4bf369aaPmeUCALxCx3WOjmuOjmvOr44r4m3PpeO6R8el43qF+Tt36DbO0W3M0W3MMX9XhW4TPXQbIJjofs7R/YzR+8zpMqclQvdLBN2P7ueFsM5pifhzXqfXOEevMUe3MadLt6HXuBfWXvPrX/9ahg8fbvr4Z5995nhbdBsY6dy5sxQVFckPP/wg8+bNk1tuuUWOOOIIv4cVOXRA58LSAel/wel/XqJLVqFLRlMYuqQuGRUhp4mIek7DkFERfXJKRt0jo2TUDhm1R0bjRW3uVJeMipDTRIQ1p14JQ0ZF9MkpGXWPjJJRO2TUHhmNR9+tEraMipDTRIQ1p14JQ0ZF9MkpGXWPjJJRO2TUHhlNrTDkVJeMipDTREQ9p2HIqIg+OSWj7pFRMmqHjNojo6kVlpxGAdfKu8N1Us6F5TopEa6VCtK1UvSjKvQj/R36Qbi1nXbaaZbrnnrqqaaPLV682NH+6WJA8NAznaNnGqNjmtOlY4rQMxMRpZ5Jx9RHWOfr+LwWepSXmK+jS4kwX+cEPSqWl9eqrFu3Ts4991z59NNPDR9v0KCB/Pvf/5brrrvO7TDj0KOA4KJrOkfXNEfXNMdnA1aha4YDXRNhnbMT4f/Y0aO8Q4+iR4kwZ+cEPSqWlz1KhC4FgK7pBl3THF3THHN2Veia4cCcHZizc4ce5Rw9yhw9yhxzdlXoUdEUxX6T6fcAYOy4446Tdu3a1dzeunWrzJgxI6ltTpo0Keb2hRdeaPrcnJycmn+Xl5c73seWLVvcD8wDbgrB999/H3O7ZcuWhs8L23vgVr169eS8886Tu+66S2bOnCmbNm2SOXPmyCWXXFLzHKWU/OlPf5K9e/f6MsbZs2fL0qVLa24PHTpUvvnmG7nrrrukR48e0rFjR2nUqFHM10qkKi+J8Po4atWqVc2/165dK7t3705oXEHQoUMHw/srKiosT57J6t69u/Tu3Tvu/tmzZ0tpaanr7R111FGmj61du9a2JH711Vemj7Vq1UqysrJcj8kLVq/rwgsvTOqHk8ceeyyNryR41q5da/rY0Ucfnb6BAIgkOq57dNx4dFxzfnVcEW97Lh2XjusWHdc7zN+5Q7dxj24Tj25jjvm7KnSb6KHbAMFE93OP7heL3mdOlzktEbof3c89up83/J7TEgnXeZ1e4x69Jh7dxpwu3YZeE61e06VLF9PHNm/e7PiCG7oNamvVqpX07NlTrrjiCjn22GP9Hk6k0QHdC3oHpP/piS5ZhS4ZTWHokrpkVIScklP3wpBREX1ySkajk9EVK1ZY/jxx5JFHOtoOGbVHRu2RUWNRmjvVJaMi5DRKOeVcWiVsOSWjZLQaGfUOGbVHRo3Rd8OXURFyGrWceiEMGRXRJ6dklIy6RUbtkVF7ZDS1wpBTXTIqQk7JqXthyKiIPjklo2TULTJqj4zaI6PGovZ7mCjgWnl3uE7KvaBfJyXCtVJBQj+qQj/S344dOxJeNyMjI+nt0sWA4KFnukfPjEXHNKdLxxShZ9IzrdEx9eH3fF3YOgQ9yj16VDy6lDlduhQ9Kjo9yotrVb777jvp1q2blJSUGD7evHlz+fDDDw2Pz0TQo4Dgomu6R9eMR9c0x2cDVqFrhgddM9r8nrMTCVePoEe5R4+KR48yx5xdFXpUeHj192XoUgBE6JqJoGvGo2uaY86uCl0zPJizizbm7NyhR7lHj4pHjzLHnF0VelQ0RbHfZPo9AJi79dZbY26PGzdODhw4kNC2Vq1aJW+88UbN7czMTPnTn/5k+vxGjRrV/Hvz5s2O97N48eKExpesefPmOX7uggULYm6ffvrphs8L23uQrKysLOnRo4fMmjVLBgwYUHP/L7/84ur99dLHH39c8++cnBx55JFHHJ2AE/0aeH0cnXvuuTX/rqyslNmzZyc0riA46aSTTB/77rvvUrrvhx56SDIz409XTn8pd6jWrVvLr371K9PHX331Vcv1X3nlFdPHzj//fNfj8UqrVq2kU6dOho/NnTtX1q1b52p7Bw4ckGeeeUbGjBnjxfBCzez4Puyww6Rjx45pHg2AqKHjJo+OS8e14mfHFfGu59JxnaHjHkTH9Rbzd87RbZJHt6HbWGH+rgrdJnroNkAw0f2SF/XuR+8zp8uclgjdzym630F0P+/4OaclEq7zOr0meVHvNSJ0Gyu6dBt6jTO69Jply5aZPpabm2t4TBmh26C20tJSefzxx+W0006TU089VcaOHStr1qzxe1iRRAdMXtA6IP1PT3TJKnTJaApDl9QloyLk1ClyelAYMiqiT07JqDNBy+hll13m+jh78sknLR83e79qI6POkFFrumc0UVGaO9UloyLk1Kmg5ZRzqT1dckpGnSGjB5FRZ8ioNd0zmij6bpUwZVSEnDqlS069EIaMiuiTUzLqDBk9iIw6Q0atkdHUCkNOdcmoCDl1ipweFIaMiuiTjCa3gQAAIABJREFUUzLqDBk9iIw6Q0atRSGj/B4G1bhW3jmuk0pe0K6TEuFaqSChH1WhH+nv8MMPN31s0aJFlut+/fXXCW33UHQxIHjomcmLes+kY5rTpWOK0DOdimrPpGPqhc9rcY4elbyo9ygRupQVXboUPcoZHXpUsteqLFiwQM4++2z56aefDB/v0KGDzJs3T84444ykxnkoehQQXHTN5NE16ZpW+GzAKnTN8KBrgv9j5xw9Knn0KHqUFebsqtCjwsOLvy9DlwJQja6ZPLomXdMKc3ZV6JrhwZwdmLNzjh6VPHoUPcoKc3ZV6FHRFMV+4+wvZsMXw4YNiykpX375pfz9739PaFs333yz7N27t+Z2nz595NhjjzV9fps2bWr+/csvv8iGDRts91FeXi4zZ850PKacnJyY24mWX5Gqb+pO1ldKycsvv1xzOzc3V0477TTD54btPfBSQUFBzO3Vq1f7Mo7169fX/LtNmzbSuHFjR+tNmzYtof15fRz16tVLMjIyam4/8cQTCY0rCI499lhp2rSp4WMlJSUp3feJJ54o11xzjWfbu+SSS0wfu//++02P9zlz5lgWxN69eyc7tKRceumlhvfv379fBg8eLDt27LDdxp49e2Ty5MlyyimnyE033SS//PKL6XMrKiokIyPDcDnhhBMSfh1Bs2TJEsP7TzvtNMcfPAIAiaLjeouOa42OGyvVHVfE255LxzVHx41Hx/UW83fO0W28RbexRreJxfxdFboN3QZA+tD9vBXF7kfvM6fTnJYI3c8K3S8e3c87fs5piYTrvE6v8VYUe40I3caKTt2GXmMuqL1mypQpcv3118sXX3zheJ2vv/5axo8fb/p4+/btHW+LbgMrixYtkjvvvFOOPvpo6d69uzz55JOyadMmv4cVGXRAbwWhA9L/9ESXpEvWFpU5MpHEu2Q63yOdMipCTq2Q03jJ/LxHThNDRs0FNaPFxcVy0kknyc033+zoj5e88sor8thjj5k+fuKJJ0q7du0c7ZuMOkNG7emc0bDOnZLRxJFTc0HNKedSezrllIyaI6PxyKgzZNSezhml79rTKaMi5NRKUHPqJ86lznAutUdGU4OMOkNG7ZHR1KHv2qPvOkNOU4NzqTOcS+2R0dQgo86QUXu6ZzSsv4eB97hW3jmuk/JWEK6TEuFaqSChH9GPjOj4c4zV78WfffZZWbt2reFjW7dulccffzyh7R6KLgYEDz3TW1HsmXRMczp1TBF6ppUgz8OlAx1TL3xei3P0KG9FsUeJ0KWs6NSl6FHmgtij/LhWZdasWdKzZ0/ZsmWL4eOnnHKKzJ8/X4477jjHY3KCHgUEF13TW3RNa3TNWHw2YBW6Jl0zWXRNb/F/7JyjR3mLHmWNHhWLObsq9Ch9epQIXQpALLqmt+ia1uiasZizq0LX1Kdr0jP1wJydc/Qob9GjrNGjYjFnV4UeFf7rFcxEsd/o+ao00ahRIxk3blzMfXfddZe8+eabrrZz++23y+zZs2tuN27cWB555BHLdbp27Rpze/r06bb7mTBhgqxbt87xuHJzc2Nub9682fG6tf3444/yj3/8w/Z5zz33XMwfJBo8eLDUrVvX8Llhew+8dGipERFp0KCBL+OoX79+zb83bNgQ80OOmVmzZsUc7254fRx16NBB+vbtW3P7gw8+kBdffDGhsQXB+eefb3j/559/nvJ9jxo1yjSrbg0fPtx0W5s3b5Zu3brJpEmTZP369VJeXi6rV6+WMWPGyOWXXy6VlZWG6x1zzDEyYMAAT8aXqDvuuCMmM4eaO3eudO7cWcaOHSuLFi2SHTt2yIEDB2Tjxo1SUlIikydPliFDhkjr1q2loKAgLaU/LD777DPD+3/729+meSQAooiO6y06rjU6bqx0dFwR73ouHZeO6wYd11vM3zlHt/EW3cYa3SYW83d0G53RbYBgovt5K4rdj95nTZc5LRG6H93PHbqfd/yc0xIJ13mdXuOtKPYaEbqNHV26Db0mfL1mz5498vzzz8vpp58uxxxzjBQWFsqrr74q3377rWzevFkqKipk7969smbNGnnnnXfkxhtvlLPOOkvKyspMt9mnTx/H+6fbwInKykr59NNP5Y9//KO0bNlSzjnnHHnmmWccXTCExNEBvRWEDkj/0xddki4ZVWHpkrpkVIScklN3wpJREX1ySkbDmdHy8nJ5+umnpXPnznLBBRfI+PHj5auvvpJNmzZJRUWFbNiwQd555x3p16+fDB482PRrJSJy4403Ot4vGXWOjFrTOaPMnTqjS0ZFyGkYcyrCudQJXXJKRskoGU0NMmpN54zSd53RJaMi5DRMOT3//PNFKeVqGTx4sOn2Zs6cGfPc3/3ud7ZjCEtGRfTJKRklo2Q0NcioNR0zKkJO3dAloyLkNEw5JaPu6JJTMkpGyWhqkFFrOma0Nn4PAxGulXeD66S8FYTrpES4Vipo6Ef0Iz+k++eYiy++2HTdLVu2SLdu3eSFF16Q0tJSqaiokM2bN8vrr78uZ511lvz444+m61pt91B0MSB46JneimLPpGNa06VjitAzw9Qz6ZhV6JiJ4fNanKNHeSuKPUqELmVHly5FjwpPjxJJ/7UqkydPlr59+8ru3bsNH+/Ro4fMnTtXWrZsmfRrq40eBQQXXdNbdE1rdM1YfDYgXTOV6Jp0zUTxf+yco0d5ix5ljR4Vizk7elQq+fH3ZehSAGqja3qLrmmNrhmLOTu6ZioxZ0fPTBRzds7Ro7xFj7JGj4rFnB09SneR7DcqooqKipSImC55eXl+D7HG1VdfHTO2OnXqqIcffliVl5dbrrdx40Y1ePDguNc2bdo0231u375dNWzYsGadI488Uq1Zs8b0+dOnT1c5OTlx+1qyZInpOkuXLo157vjx423HVW3s2LFx+6pbt6569913Tdf5+OOPVYMGDWqen5OTo5YtW2b6/KC/B2707t1bvfDCC2rv3r22z923b5/q2bNnzLi+++47w+fW/jps3brV0XhKS0tj1nvyyScNn/ePf/wj5nn33HOP5Xbff/991ahRo7ivwUsvveRo/Kk4jpYuXarq1asX8/ynnnrK8nVUq6ysVHPmzFG9evVS69evN3zOhAkTYsZ/0003Odp2Ip555hnD75dHHXWU423UHu+hy4gRIyzXHT58uOX3bTfH4l133eV4W06W6dOnm+6rV69epuuVlpaarrd8+XLT9Xr16mW4zn333efp67r99ttNx1deXm66XpcuXSzf/0RYHTuJLGPHjrXd54YNG1RGRobh+gsWLPD8NSYrLy8vofeirKzM76FDQ7m5uZbH3cSJE/0eolqyZEnMmPr162f5/FT3HqN9iNBxrdBx6bhe8KLjKhWMnkvHdbbQccPVcQsKCixfc35+vt9DrMH8XTy6jTt0Gz27TTp7jVLM31ktdJvYhW7jjzDMl0TdxIkTLb9Gubm5fg/R9ZyWUsxr1R4X3S9eELpf2HufUsxpWS10P28Wul94ul9ZWZntay4uLvZ7mEopf+a0lAr2eZ1e4w69Rs85LaXoNlYLv69LfglKr7GbB3C7NGrUSP3000+O9h2mbpPIfEnbtm3jnte/f/+ax80yV23+/PmGjzvtGn7q2LGjp8eV2VKvXj116aWXqhdeeEHt2rXL0f8dbNOmjd9vD3NbdEAlYtwB6X/R6X9GP0uKJH6ep0uaL3RJb44xO2GbJ0v3e6RTRpUip2HMadgyqhQ5TSanZDRcGc3KyvLsNXXu3Nn29xrVyCgZJaPOhHXulIwmnlGlyGnYcsq51BmdckpGyagTZJSMklFn6LvO6JRRpchp2HLqhtnvH0VEzZw509W2OJf6l1MySkadIKNklIymRlBySkYTz6hS5FTnnAYlo0qR02RySkbJqBNklIySUefC+nuY2szGNGbMGNfbShW792/q1Kl+D1EpxbXyRrhOyh2uledaKS/Qj8yXKPYjpfT9Oeaiiy7y9H089dRTVWVlpe1+w3RdvlJKFRYWmr5m/tak//hbk7G4Hp+eWRt/a5KOeSh+n3VwCULPpGM6W3TtmMXFxbavPSifP8jntcSjR7lDj2K+zgs6dSl6lLMlCD0q3deqNGvWzNP9nXfeeY5eZ9h6lFL2n+9cVFTk9xAjLwx9lzk7uqYIXfNQQeqafDag+cKcnTcLXTP5RdeuWVJSYvvaS0pK/B6mUor/Y2eEHuUOPUrPHqUUc3ZWC3N2yS9R7FFK0aWcys/Pt3zdBQUFfg8x8sLQd5mzo2uK0DUPRdeM/z7FnB1ds/YS5q5Jz3SGz5C2F+QeQY9yhx5Fj/ICc3bmCz0qduFz//zh4XWQ0zIFgTdp0iS5+OKLa26Xl5fLnXfeKSeccIKMHj1avvrqK9m4caPs379f1q1bJx9//LEUFhZKp06dZMqUKTXrZWZmymOPPSb9+/e33Wdubq5cd911Nbd/+eUXOfPMM2XSpEny888/S3l5uWzatEnee+89GTBggAwYMED2798vgwYNcvy6OnXqJM2aNau5PXr0aHnttddkw4YNcuDAAcfbERG5/PLLZd++fdK7d2/5wx/+IJ9//rns2LFDdu7cKV9++aXcfvvt0rNnT9m9e3fNOvfcc48cf/zx2rwHVr755hsZMmSIHHHEEXLNNdfIc889J4sWLZLNmzdLRUWF7N27V5YvXy7PPfecdO3aVT744IOadS+88ELp1KmTZ2Nx48orr5QGDRrU3H7ggQfk4osvlvfee0/Wrl0r5eXlsnHjRnnnnXfkd7/7nVx00UWyfft2GTBgQEL7S8Vx1LlzZ5k0aVLN7f3798vNN98sXbt2lSeffFJKSkpk27ZtUlFRIVu3bpXvv/9epk2bJoWFhXL00UfLBRdcIO+9954opRJ6TV664oorJDs7O+7+tWvXyrJly1K+/5EjR0rjxo092daDDz4ol156qSfbGjlypFx11VWebCtZ9957r1x99dV+D0MbH3zwgWH22rZtK7/5zW98GBGAqKHjWqPjOkPHteZ3xxXxrufSceEEHTd1mL+zR7exRrdxhm5jze9uw/ydPbqNt+g2QHDR/azR/ezR+6z53ftE6H5O0P28RfdLDT/mtETCdV6n11ij1zhDt7GmU7eh10RXRkaGPPXUU9K2bVtHz6fbJO/tt9+W6dOnB27JyspKy+vfu3evzJo1S4YMGSJHHXWUlJaWpmW/UUEHtBbGDkj/C1b/8xJd0hhdUm9h6pI6ZVSEnMKZMGVURK+cktFoatmypbz55puGx7ERMuoeGbVGRu3pPHeqU0ZFyGlUcS5NPc6l1sioNTKaemTUGhm1R99NLfquPXLqrTBlVESvnJJROEFG3SOj1sio98KUU50yKkJO4UyYMiqiV07JKJwgo+6RUWtk1J7uv4eJEq6Vt8d1UtbCeJ2UCNdKBe1aKfqRMfqRfh5//HHJzc31ZFs5OTnyz3/+UzIyMmyfSxcDgomeaY2eaY+OaU2njilCz4Q5OqZ++LwWe/Qoa/QoZ+hS1nTqUvSoaHJ7rUo60aOAYKNrWqNrOkPXtOZ312TOzh5d0xpdM5r4P3b26FHW6FHO0KOs+d2jRJizs0OPshbkHiVClwKCjK5pja7pDF3Tmt9dkzk7e3RNa0HumvTM1GHOzh49yho9yhl6lDW/e5QIc3Z26FHei2y/URFVVFSkRMR0ycvL83uIMcrLy9WwYcMsx2y1NGzYUE2bNs3VPsvKylT79u0d72PkyJFq+vTpMfctWbLEch8jRoxwtO2XXnopZr2xY8fGPL569Wp1/PHHOx7rwIEDVUVFRajfAzfatGmT0HHToUMH9dNPP5lut/bXYevWrY7GU1paGrPek08+afrcRx991NWY8/Pz1bJlyxy9d+k6jpRS6vnnn1f16tVLOMOlpaWG250wYULM82666SZH40nUJZdcYji+0aNHO1q/9ngPXUaMGGG7/ujRox29X06Oxd27d6vrr78+4a9JVlaWeuCBB1RlZaXlfnr16uX666qUUsuXLzddr1evXqbr7du3T91xxx0qIyMj4ddWp04ddcstt6gNGzaY7qe8vNx0/S5duti+/25ZHTuJLGPHjrXdZ//+/Q3Xveuuuzx/fV7Iy8tL6L0oKyvze+jQUG5uruVxN3HiRL+HqJYsWRIzpn79+lk+Px29h47rDh2XjuuVZDuuUsHpuXRc84WOWyVsHbegoMDyNefn5/s9xBjM3zF/R7dxtkSp26S71yjF/N2hC92GbhM0YZgvibqJEydafo1yc3P9HqLrOS2lmNei+9kLQvcLe+9Tijktq4XuR/ezW3TrfmVlZbavubi42O9h1vBjTkup4J7X6TXu0Gv0nNNSim5jtfD7On16jd08gNMlNzdXzZgxw9W+w9RtEpkvadu2bdzz+vfvX/P48OHDDbdVbf78+YaPH9o5jPbBYr20adMmtQeLA8xt0QHNOiD9Lzr9b/DgwYbjSuY8T5c8uNAl0ztHplT45sn8eI90yqhS5DRsOQ1bRpUip8nmlIyGJ6NZWVlJZ/LEE09U3377rav9klEySkadCevcKRlNLqNKkdMw5ZRzqXM65ZSMklE7ZJSMklFn6LvO6ZRRpchpmHLqhtnvH0VEzZw509W2OJf6m1MySkbtkFEySkZTIyg5JaPJZVQpcqprToOSUaXIabI5JaNk1A4ZJaNk1Lmw/h6mNrOxjRkzJqHtpYLd+zh16lS/h1iDa+W5Vj5o10kpxbVSUbpWqhr96OAS9X6klN4/x3z22Wfq8MMPT/g9FBHVoEED9c477zged5iuy1dKqcLCQtPXzt+a9B9/azIW1+NbL/RMZwt/azJ1dOqYStEzrZYgzsM5RcdMj+LiYtv3IEifP8jntfB5LfQoZwvzdXQpp8cjPcp8CVKPSve1Ks2aNfNkf9XLeeed5+h1hq1HKWX/+c5FRUV+DzHywtB3mbOja9I1kz+OlOKzAasFpWcqRde0Wuiaye+vetG1a5aUlNi+9pKSEr+HWYP/Y8f/saNHOVui1KOUYs7OamHOjh516OLm78vQpZzJz8+3fN0FBQV+DzHywtB3mbOja9I1kz+OlKJrmo330IU5u1h0zSrM2QWzZ/IZ0s4EtUfQo9yhR9GjvMKc3cGFHsXn/gWNh9dBTssUhEJ2drY8/fTTMm/ePOnWrZvj9bKysmTYsGGyYsUK6d+/v6t9Nm7cWObOnSsnnHCC5fNycnJk3Lhx8sADD7javohIUVGR9OjRw/V6tTVu3Fg++ugjOfvssy2fl52dLXfeeae89NJLkpWV5Wi7YXkPvNa/f39ZsGCBtG3b1tdxFBYWyrhx46ROnTq2z73hhhvkrbfekuzs7IT2larjSERkyJAh8tlnn0l+fr7j8WRmZkqvXr3k/fffl5YtWzpeL5VuuOEGw/tff/31tOy/sLBQWrdu7cm26tevL88995y8/vrrcvLJJ7tat0ePHvLJJ5/IyJEjJSMjw5PxeCUnJ0fGjx8vH3zwgZx//vmu1m3evLnccccd8v3338uECROkRYsWCY3BaS6CbNeuXVJcXBx3f2ZmpgwdOtSHEQGIIjqu9+i45ui48dLVcUW867l03Hh03IPouKnH/J01uo336Dbm6DbxmL8LDrqNN+g2QLDR/bwXte5H77Pnd+8Tofs5QffzBt0vtfyY0xIJz3mdXuO9qPUaEbqNEzp1G3pNPF17TaNGjeSOO+6QFStWSJ8+fRyvR7cBgo8O6L0gdED6X7D6n5foklXoktaC1iUTlcoumar3SKeMipBTI+T0oFT/vEdO7ZHReEHN6Jdffim33367HHnkka7XbdmypYwaNUq++OILycvLc7weGU0cGbWmY0aTFcS5UzLqDDmNF9Scci51TqecktF4ZPQgMpo4MmpNx4wmi74bzoyKkFMjuuY0EZxLE8e51BoZ9QYZTRwZtUZGvUPfTQx91x459Qbn0sRxLrVGRr1BRhNHRq3pmlEdfw+D5HGtvDWuk/JeEK6TEuFaqaBdK0U/qkI/shf2n2POOOMMWbZsmRQUFEhOTo6rdbOysqRfv37y7bffysUXX+xoHboYEFz0TO9FrWfSMe3p1DFF6JlGgjwPl050TP3weS3W6FHei1qPEqFLOaFTl6JHxdOxRyV6rUo60aOA4KNreo+uaY6uGY/PBgwOumYsuiZE+D92duhR3qNHmaNHxWPOLjjoUbHC0KNE6FJA0NE1vUfXNEfXjMecXXDQNWOFoWvSM1OPOTtr9Cjv0aPM0aPiMWcXHPQo70S53yT2XRS+6datm8ybN0+WLFkib7/9tsyZM0fWrFkjGzZskJ07d0qzZs3kiCOOkOOPP14uuugi6d27d0J/hKda+/btZdGiRfLSSy/JG2+8IV999ZVs2rRJGjVqJO3bt5fevXvLsGHD5Kijjkpo+/Xr15fZs2fLm2++Ka+//rosWrRI1q1bJ7t27ZIDBw642lbLli3l008/lffff18mTZokixcvlrVr10p2dra0bdtW8vPzpaCgQLp06eJqu2F6D8x888038vXXX9csq1atks2bN8uWLVtk27ZtUq9ePWnatKnk5eVJt27d5Oqrr3b1x5dS7X/+53+kb9++8vTTT8ucOXNk5cqVsmvXLmnevLm0adNGLrjgAhkyZIgnY07VcSQicvLJJ8t7770nixYtkpkzZ8rHH39c87XYu3evNGrUSFq3bi0nn3yynH322dKnT5/AFMNql19+uXTs2FFWrlwZc/9XX30lixcvlpNOOiml+69fv77cd999MmzYMM+22a9fP+nXr5988skn8sEHH8h//vMfWb16tWzZskV27doljRo1kqZNm0qnTp3k3HPPld69e6f8dXqhR48e0qNHD1m6dKm8++67Mn/+fPn2229ly5YtUlZWJnXq1JHmzZtLu3bt5KyzzpLu3bvLhRde6PgCziVLlpg+dsstt3j1Mnzz+uuvy86dO+Puv+SSS+TYY4/1YUQAooqOa46O6xwd15rfHVfE+55Lx6XjGqHjpg/zd+boNuboNs7Rbaz53W2Yv3OObpMcug0QfHQ/c3Q/Z+h91vzufSJ0Pzfofsmh+6VHuue0RMJzXqfXmKPXOEe3saZjt6HXBL/XXH/99XLOOedISUlJzbJ27VrZtm2bbN++XbZt2yZ79+6V+vXrS8OGDaV58+Zy3HHHSV5envz2t7+V8847z9GFT7XRbYBwoAOaC3MHpP/piS5Jl6ym+xyZSPJd0o/3SMeMipBTcmrMi5/3yCnnUis6ZfTkk0+Wxx57TB599FFZtGiRfPjhh/LNN9/I999/L2vWrJEdO3bInj17pGHDhtKkSRNp3769nH766dK9e3fp3bu3b3MyZJSMWtEpo2GdOyWj9F07OuWUc6lzOuaUjJJRI2Q0cWTUGZ0ySt91TseMipDTMOTUD5xLE8e51Bkymhwymjgy6gwZTR59NzH0XefIaXI4lyaOc6kzZDQ5ZDRxZNQZ3TIa1t/DID24Vt4c10mZC/N1UiJcKxUk9CP60aF0/znmiCOOkEmTJskjjzwiM2bMkPnz58uSJUtq+tju3bulXr16kpubK61atZITTzxRfvOb38hVV13l+txLFwOCjZ5pjp7pDB3Tmo4dU4SeGZZ5uHSjY+qJz2sxR48yR49yji5lTccuRY8Kdo/y61qVdKJHAeFA1zRH13SOrmnN767JnJ1zdE26JuLxf+zM0aPM0aOco0dZ87tHiTBn5xQ9Kjw9SoQuBYQBXdMcXdM5uqY1v7smc3bO0TXD0zXpmenDnJ05epQ5epRz9ChrfvcoEebsnNKlR/kp0v1GRVRRUZESEdMlLy/P7yHCwtixY2O+Xlu3bvV7SAghjqPE/OMf/zD8vnnbbbf5PTSk0cMPP2x4HFxwwQV+D80T3bt3N3x9c+fO9XtopvLy8iy7jdlSVlbm99ChodzcXMvjbuLEiX4PMZDoJvACx1Fi6LhQio4bRAUFBZadIj8/3+8hwgLnJHiB4ygxdBsoRbcJIuZLgm/ixImWX6Pc3Fy/hxhYnLORLI6hxND7UI3uFyxlZWW2v6MtLi72e5gwwTkJXuA4SgzdBkrp32uUCl+3SWS+pG3btnHP69+/f83jw4cPN9xWtfnz5xs+Pm3aNMt9sFgvbdq0Se3BEmKcu5EsjiHnBg8ebPg9qkuXLkltly4JpeiSTvj1HpFRVNM9p178vEdO4Scyao+Mwk+6Z1Qp+i7CT/ecci5F2JFRe2QUftI9o0rRdxF+uueUcynCjozaI6Pwk+4ZVYq+i/DTPaecSxF2ZNQeGYWfdM+oUqm5FsxoeyKixowZ4+HIk2M2xupl6tSpfg8RJrjGBV7gOEoM/QjVotCR0iVs1+UrpVRhYaFph+JvTfqPvzWZOPoBksUxlBg6JqrRMb0Txo5ZXFxsO1/H5w8GF+dAeIHjKDF0KShFj/JSGHuUUvaf71xUVOT3ECOPvps4OgK8wHGUGLomlKJreimMXbOkpMS2w5SUlPg9TJjg/AcvcBwlhh4FpehRXgtjl8rPz7fsUQUFBX4PMfLou4mjI8ALHEeJoWtCKbqml8LYM/kM6XDj/AcvcBwlhh4FpaLRo8LWbzy8DnJapgAA4MINN9wgbdu2jbt/8uTJsn37dh9GBD/Mnj077r6GDRvKxIkTfRiNtxYtWiSffPJJ3P09e/aU7t27+zAiAACQanRciNBxAQD6oNtAhG4DAEAU0PtQje4HANAB3QYievcaEboNAABmli5dKhkZGXFLSUmJo/XpkhChSzrh13tERlFN55x69fMeOYWfyKg9Mgo/6ZxREfou9KBzTjmXQgdk1B4ZhZ90zqgIfRd60DmnnEuhAzJqj4zCTzpnVIS+Cz3onFPOpdABGbVHRuEnnTMqknxOX375ZcP/Jw8A0BP9CNV070jpwnX5AADQMXEQHdMbdEwAiBa6FEToUV6hRwEAEIuuCRG6plfomgAQLfQoiNBNwcHFAAAgAElEQVSjvESXAgDgILomROiaXqFnAkC00KMgon+Pinq/yfR7AACAcMnJyZF777037v4dO3bIs88+68OIkG779u2T//znP3H3P/TQQ9KhQwcfRuSt8ePHG94/atSoNI8EAACkCx0XdFwAgE7oNqDbAAAQDfQ+iND9AAD6oNtA914jQrdJtZ49e8oXX3zh69KxY8e0v+5OnTpJixYt0r5fAAgSuiTokvb8fI/IKET0z6kXP++RU/iJjNojo/CT7hkVoe8i/HTPKedShB0ZtUdG4SfdMypC30X46Z5TzqUIOzJqj4zCT7pnVIS+i/DTPaecSxF2ZNQeGYWfdM+oCNeCAQDcoR9BJBodKV3oYgAA0DFRhY7pHTomAEQLXQr0KO/QowAAiEXXBF3TO3RNAIgWehToUd6iSwEAcBBdE3RN79AzASBa6FGIQo+Ker/J9HsAAIDwuf766+Xkk0+Ou3/cuHGyZ88eH0aEdJo3b17c1/ncc8+VP/3pTz6NyDsrV66UV199Ne7+gQMHyplnnunDiAAAQLrQcaONjgsA0A3dJtroNgAARAe9D3Q/AIBO6DbRpnOvEaHbpEPTpk2la9euvi6rVq1Ky2tt06aN3HbbbfLpp5/KsmXLpHnz5mnZLwAEGV0y2uiS9vx+j8go/D4GU8mrn/f8fo/IabT5ffylEhmFDvw+/lKNvgsd+H0MphLnUujA7+MvlcgodOD38Zdq9F3owO9jMJU4l0IHfh9/qURGoQO/j79Uo+9CB34fg6nEuRQ68Pv4SyUyCh34ffylGteCAQASQT+C7h0pXehiAAAcRMcEHdMbdEwAiCa6VLTRo7xBjwIAwBhdM9romt6gawJANNGjoo0e5R26FAAA8eia0UbX9AY9EwCiiR4Vbbr3KPqNSKbfAwAAhE9WVpb8/e9/j7u/tLRUnnzySR9GhHT64IMPYm7Xr19fJk2aJBkZGT6NyDujRo2SioqKmPsaNGggDz/8sE8jAgAA6ULHjTY6LgBAN3SbaKPbAAAQHfQ+0P0AADqh20Sbzr1GhG6D5DVt2lSuvfZaeeutt2T16tXy97//Xc455xxtMgIAyaJLRhtd0p7f7xEZhd/HYCp59fOe3+8ROY02v4+/VCKj0IHfx1+q0XehA7+PwVTiXAod+H38pRIZhQ78Pv5Sjb4LHfh9DKYS51LowO/jL5XIKHTg9/GXavRd6MDvYzCVOJdCB34ff6lERqEDv4+/VONaMABAIuhH0L0jpQtdDACAg+iYoGN6g44JANFEl4o2epQ36FEAABija0YbXdMbdE0AiCZ6VLTRo7xDlwIAIB5dM9romt6gZwJANNGjok33HkW/Ecn2ewAAgHA677zzRCnl9zDgg9oF8f7775df/epXPo3GW88//7w8//zzfg8DAAD4hI4bXXRcAICO6DbRRbcBACBa6H3RRvcDAOiGbhNdOvcaEboNEtOwYUO54oorZODAgZKfny85OTl+DwkAkvLyyy/Lyy+/nLLt0yWjiy5pLwjvERmNtiAcg6ni1c97QXiPyGl0BeH4SxUyCh0E4fhLJfoudBCEYzBVOJdCB0E4/lKFjEIHQTj+Uom+Cx0E4RhMFc6l0EEQjr9UIaPQQRCOv1Si70IHQTgGU4VzKXQQhOMvVcgodBCE4y+VvMjpNddcI9dcc403AwIAhAb9KNp070jpwnX5AADEomNGGx3TG3RMAIguulR00aO8QY8CAMAcXTO66JreoGsCQHTRo6KLHuUduhQAAMbomtFF1/QGPRMAooseFV269yj6jUi23wMAAADh8n//939+DwEAAADwFB0XAADohG4DAAAQHXQ/AACgC3oNUCUnJ0d69eolAwcOlMsvv1waNmzo95AAAAg8uqQ93iP4jWPQHu8R/MTxZ4/3CH7i+LPHewS/cQza4z2Cnzj+7PEewU8cf/Z4j+A3jkF7vEfwE8efPd4j+Injzx7vEfzGMWiP9wh+4vizx3sEP3H8AQAAxKMjAQAAwGt0TAAAgMTQowAAAJAqdE0AAIDE0KMAAACQKnRNAACAxNCj9Jft9wAAAAAAAAAAAAAAAAAAAAAAAACiJiMjQ0477TS59tprZeDAgXLEEUf4PSQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABASmX4PAEjE//7v/4pSqmZp0qSJ30NCCHEcAQCAIKGbwAscRwCAoOCcBC9wHAEAEA6cs5EsjiEAQFBwToIXOI4AAG4ppeTrr7+W6dOny6uvviobNmzwe0iRwrkbyeIYAgAAAAAAAAAAAAAAAAAAAAAAgN+4xgVe4DgCAAC10Q+QLI4hAEBUcQ6EFziOAACAEToCvMBxBACIIs5/8ALHEQAAMEJHgBc4jgAAUcT5D17gOAIAY5l+DwAAAAAAAAAAAAAAAAAAAAAAACCKKisrZd68eVJYWCitW7eWCy+8UF588UXZsWOH30MDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/n717CY2DWgM4/uXM0EYXFa3SINgHKPiIRSlqQiJIrbizqE3JgJO6cdWFUBfVXbuxcSFCwULAXRUKzarpUnCjoAjqxlLRFApSkFoVBTXBRBf34X14r6d2Mt9M5vfbznC+//JwmDkHAAAAAAAAAAAAAACgh5XsAAAAAAAAAAAAAAAAgEG3srISb7/9dhw4cCBGRkai1WrFmTNnYnl5OTsNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoMSU7AAAAAAAAAAAAAAAAgN/9+OOPcerUqdi7d29s2bIlZmZmYmFhIX755ZfsNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAeU7AAAAAAAAAAAAAAAAAD+2HfffRcnT56MJ554IrZt2xbPP/98vPvuu9lZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAomZ2AAAAAAAAAAAAAAAAwF9x5cqV2L9/f3ZG11y6dCmOHz8ex48fjw0bNmTnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASZrZAQAAAAAAAAAAAAAAAH/FTz/9FKdPn87OSLG8vJydAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCnZAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANQp2QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUKdkBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1GlmBwAAAAAAAAAAAAAAAHTSrbfeGsPDw12ZdeHCha7MAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+IdmdgAAAAAAAAAAAAAAAEAnzc/Px/j4eFdmlVLi119/7cqsiIhdu3ZFu92O119/PT7//POuzQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHpHMzsAAAAAAAAAAAAAAACA/+3uu++OqampeOaZZ+L222+PiIi5ubnkKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIEszOwAAAAAAAAAAAAAAAIB/t2PHjmi1WtFqtWJ0dDQ7BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6CHN7AAAAAAAAAAAAAAAAAAibrrppti3b1+02+2YmJiIoaGh7CQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAHNbMDAAAAAAAAAAAAAAAABtUNN9wQTz75ZLRarXj00Uej0WhkJwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2umR0AAAAAAAAAAAAAAAAwaEopsXPnznjhhRdi//79sWHDhuwkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgT5TsAAAAAAAAAAAAAAAAgEGzuroan3zySbTb7RgZGYnnnnsu3nnnnVhdXc1OAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAelzJDgAAAAAAAAAAAAAAABhk3377bbzxxhuxe/fuuO222+LQoUPx4YcfZmcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9qmQHAAAAAAAAAAAAAAAA8DeXLl2K1157LR588MHYvn17vPjii3H+/PnsLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoIeU7AAAAAAAAAAAAAAAAAD+28WLF+OVV16Ju+66K+655544cuRIXLhwITsLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIVrIDAAAAAAAAAAAAAAAA+tVjjz3WlTnnzp2Lo0ePxh133BGTk5PxzTffdGUuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQe5rZAQAAAAAAAAAAAAAAAGtlaGgoO6GjVldX47333svOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEpXsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOqU7AAAAAAAAAAAAAAAAAA6b2VlJTsBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYAyU7AAAAAAAAAAAAAAAAgM5rNBrZCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwBoo2QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUaWYHAAAAAAAAAAAAAAAAdNMDDzwQu3fv7shan376aZw9e7Yja12NRqMRKysrXZ8LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADka2YHAAAAAAAAAAAAAAAAdNPDDz8cs7OzHVnr5MmTcfbs2Y6s9WeGh4djz549MTU1FS+//HJ89tlnXZkLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0lpIdAAAAAAAAAAAAAAAAwB9rNBoxMTERc3Nz8dVXX8XCwkLMzMxEKf4SAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg6qZHQAAAAAAAAAAAAAAAMDvhoaGYnJyMlqtVkxNTcXNN9+cnQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPSQZnYAAAAAAAAAAAAAAAAAEffdd1+0Wq2Ynp6OrVu3ZucAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9qpkdAAAAAAAAAAAAAAAAMKi2bdsWe/fujWeffTbuv//+7BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAPNLMDAAAAAAAAAAAAAAAABsnmzZvj6aefjna7HRMTEzE0NJSdBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9JFmdkCvunz5chw5ciQ7AwCgyuXLl7MToNqZM2fiyy+/zM4AAHrcxx9//H8/X1xcdH4HAPSNpaWl7ASu0dLSkv0nAPCnavZ9b775Zrz//vtdqAEAuDYfffRRdsK6dOONN8ZTTz0VrVYrHnnkkWg0Gms+8/vvv3e2BQAAAAAAAAAAAAAAAFyT06dPx7lz57IzAAB6jvuE+pu7JgGAXvTFF1/86XdmZ2dj48aNXagBAOgv3ndeH+x3AYBeU7PPPHHiRNxyyy1dqAEA6C+Li4vZCXSA/S4A0Gu8IQ0ArCedfEO62bGV1pmvv/46jh49mp0BAADrzsLCQiwsLGRnAAB9bnFx0fkdAABds7y8bP8JAHTEW2+9lZ0AAECXDQ8Px549e2Jqair27dsX119/fVfn//DDD862AAAAAAAAAAAAAAAAgGsyPz8f8/Pz2RkAANBR7poEAPrV7OxsdgIAAKwZ+10AoB+dOHEiOwEAANaM/S4A0I+8IQ0ADKJmdgAAAAAAAAAAAAAAAMB60Wg0YmxsLGZmZmJ6ejo2bdqUnQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKwzzewAAAAAAAAAAAAAAACAfrdr165ot9sxPT0dW7Zsyc4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADWsWZ2AAAAAAAAAAAAAAAAQL+anJyMixcvxtatW7NTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAdHMDgAAAAAAAAAAAAAAAOhXO3bsyE4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTMkOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoE4zOyDL448/Hps2bcrOAABIdd1112UnsA4dO3YslpaWsjMAAAAA+sbY2Fh2wsAbGxuLV199NTsDAAAAoG9s3LgxO4GIOHz4cFy5ciU7AwAAAAAAAAAAAAAAAAAAgP/grsl87poEAAAA4F+Nj49nJwy8O++805kdAAAAAP907733ZicMvJGREWd2AAAAAD3sat6Qbq5hR08bHx/3A0EAAFgDBw8ezE4AAAAAgKsyOjoao6Oj2RkAAAAAcFUOHDiQnQAAAAAAAAAAAAAAAAAAAAA9yV2TAAAAANBbtm/fHocOHcrOAAAAAAD+bvPmzc7sAAAAANaJkh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAnZIdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ2SHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECdkh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAnZIdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ2SHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECdkh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAnZIdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ2SHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECdkh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAnZIdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ2SHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECdkh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAnZIdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ2SHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECdkh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAnZIdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ2SHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECdkh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAnZIdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ2SHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECdkh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAnZIdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ2SHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECdkh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAnZIdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ2SHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECdkh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAnZIdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ2SHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECdkh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAnZIdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ2SHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECdkh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAnZIdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ2SHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECdkh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAnZIdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ2SHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECdkh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAnZIdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ2SHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECdkh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAnZIdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ2SHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECdkh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAnZIdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ2SHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECdZs2Xzp8/H3Nzc2vdAgAA12RkZCQOHz6cnTHwXnrppfj555+zMwAAAAD6xvT0dDz00EPZGQPtgw8+iFOnTmVnAAAAAPSN4eHhOHbsWHYGAAAAAAAAAAAAAAAAAPzG3p1HV1WeiwN+cxKTEAgEylSGagURQax1VqwDiCIF61wUqIqgoqCtVVtba7Vq1XpvtSBIRZwRnBDQKlJAqYoTFnBAe1WKXlFBZBKZ4fz+6M9cI4SchOTsqM+z1l6L79vf8O6dffY537v3WgAAAAAAAAAAAAAAAAAAAADAt1ZeJo0WLFgQN910U03HAgAA22W33XaLX/3qV0mH8a03fPjw+Oyzz5IOAwAAAOBro2PHjrH//vsnHca32muvveaZOAAAAEAlFBcXx7XXXpt0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN9aqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDOppAMAAAAAAAAAAIr8TjgAACAASURBVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzqaQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDOppAOA2q5nz56RTqfL3QYMGJB0iIlo3759XHTRRTF27Nh4/fXX48MPP4zPP/88NmzYECtXroyPP/44Xn311Xj88cdj5MiRcf7550eXLl2icePGlZrH+c+OnXfeOdasWVN6Xvv165d0SEAN2meffWLz5s2ln/kjjjgi6ZAA+AbxG7528feoPOeM2mp71+7169ePM844I0aNGhWvvPJKLFy4MD7//PNYv359fPrpp/E///M/8eijj8b1118fvXr1iuLi4ho6kux55513ynx+mzdvnnRIfAN8+Zpau3Zt0uF8bclNAABA9i1fvrzcnNesWbPK7SdfRrZU57srnTp1iksuuSQefvjhePXVV+PTTz+NdevWxbp16+Ljjz+ON998MyZMmBCXXnppHHrooZFKeY0S+GbIy8sr8z29fPnyjPrJp2+dPCYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC1XSrpAGrKqlWryvwn7OVtzz33XJXGLy4ujhUrVmQ0x+TJk6v56CA5Xbp0iWeffTbefPPNuOGGG6J3797RsWPH+O53vxtFRUWRl5cXxcXF0axZs+jUqVMcffTRcfbZZ8df/vKXmDZtWnzyySfx1ltvxahRo2K33XZL+nD4/4YNGxaFhYURETFnzpy49957t9l+woQJZe5z48aNy0aY1CB/02+XWbNmxf33319avvnmmyM/Pz/BiAAAoGb07t07o/xdZbYDDjggkWOp7Nr9Cw0bNowRI0bERx99FLfffnsMGDAg9tprr2jRokUUFRXFDjvsEI0aNYpddtklevbsGZdccklMmjQpli5dGlOnTo3TTz89iouLa/LQyDI5AGoDuQkAAIDKKykpqfZc11e3Vq1aJXZ8Vc1/fSE3Nzf69+8fr7/+erz66qtx/fXXx/HHHx+dOnWKRo0aRX5+fuTn50ezZs2iffv28ZOf/CT++Mc/xtNPPx0LFiyIq666Kpo3b14ThwaJ+2pOcHu3kSNHJn1IkBXymAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANR2qaQDSNpBBx0Ue+21V6X7nXbaaVG/fv0aiCh7Ro4cGel0utytefPmSYf4tfdNOse5ubkxYsSImDp1anTu3Hm7xtp1111jwIABsffee1dTdGyPY445Jnr06FFa/vWvfx3pdDrBiKisJUuWlLm3lJSUJB0SXwO//e1vY+PGjRHxn/vyBRdckHBEAGzLN2ltAUDlVXXtfvDBB8ebb74ZgwYNiqKiokrNmZeXF127do077rgjfv/732fUx/oUqAy5CQCyTX4FAGqv7X13ZZ999onZs2fH6NGjo2PHjpWev3Xr1nHZZZfF22+/Hb/5zW+isLCw0mPUFDk3gGTJYwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCbpZIOoDYYMmRIpdrn5OTE4MGDaygaqH1ycnLijjvuiEGDBkVOTk7S4VCNUqlUXHvttaXlWbNmxZNPPplgREC2zJ8/P8aNG1davvTSS6OkpCTBiAAAgK2p6tr9gAMOiCeeeCKaNWtWpv7JJ5+M/v37xx577BENGzaMHXbYIZo0aRKdOnWKgQMHxrhx42LVqlXVfhwAXyU3AQAAQMT2v7ty+umnx3PPPRedOnUqU79w4cIYOXJkHHvssdGhQ4do0qRJ7LDDDtGoUaPYb7/94oILLoh//OMfZfrUq1cvrrnmmjj22GO376AA+MaQxwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKA2SyUdQG3Qu3fvaNy4ccbtu3XrFrvuumsNRgS1y1lnnRX9+vVLOgxqQL9+/aJDhw6l5T/+8Y8JRgNk27XXXhvpdDoiIho2bBgXX3xxwhEBAABfVZW1e2FhYdxzzz1Rr1690rrFixfHYYcdFt27d4877rgjXnvttVi+fHls3LgxlixZEq+//nrcdtttccopp0SLFi3ivPPOi3feeadGjgngC3ITAAAAbM+7KwMHDozbb7898vPzS+uWLVsWv/zlL2PnnXeOQYMGxcSJE+PNN9+MJUuWxMaNG2PZsmXx8ssvx9ChQ+PQQw+NPffcM6ZMmVKtxwS13f333x85OTlV3s4555ykDwGySh4TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA2iqVdAC1QWFhYQwYMCDj9kOGDKnBaKB2KSoqij/84Q9Jh0ENSKVS8dvf/ra0/N5778XEiRMTjAjItnnz5sW0adNKy0OGDIkGDRokGBEAAPBlVV27n3nmmdG2bdvS8oYNG+LII4+MGTNmZDTvZ599FiNGjIgOHTrE+eefH5988knlg68F2rZtGzk5OaXbxx9/nHRIwFfITQAAANQu69aty+p82/PuSpcuXWLEiBGRk5NTWvfvf/879t133/jzn/8c69evz2icuXPnxlFHHRUDBgyI1atXV+4AAL4h5NO3TR4TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA2iqVdAC1xaBBgyI3N7fCdm3atIkePXpkISJqi8ceeyxycnLK3W677bakQ6xRRx11VDRt2rTc/Rs2bIhbb701evToETvuuGMUFRVFXl5elJSUxI477hiHHXZYDBo0KEaOHBnz5s2LdDpdqfm/7ee/Jv3kJz+JXXbZpbQ8atSo2Lx5c4IRAUm49dZbS/9dXFwcAwcOTDAaAL4J/IYHqD5VXbufeOKJZcpjxoyJuXPnVnr+DRs2xLBhw+L666+vdF+ATMlNAABA7Sbn++3x5JNPxieffJLVOaua/2rQoEHcddddkZeXV1r3wQcfxMEHHxzvvvtulWIZPXp0dOnSJZYsWVKl/gB8s8ljAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUBulkg6gtvje974XP/nJTypsd95550Uq5bTx7XHUUUeVu2/z5s3RvXv3OPvss+OJJ56I999/P9asWRObNm2KFStWxPvvvx8zZsyIkSNHxqBBg6Jjx47RrFmzGDBgQEyePDnWr1+fxSPhq37+85+X/judTsedd96ZXDBAYiZMmBCffvppafn888/3WwcAgG+Fbt26RU5OTqW3F154IWsxVnXtvu+++5YpT5s2rTrDAqhWchMAAACZWb58eZXyWTk5OZFKpWLevHnbHP+GG27I0pH8n6rmvy699NJo1apVmbqBAwfGhx9+uF3xvPjii3HkkUfG8uXLt2scAL555DEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACojfKSDqA2GTJkSIwfP77c/XXr1o0zzjijRuZu1KhRtGvXrszWqlWraNKkSTRq1CgKCwujoKAgNm7cGCtXrozPPvssFixYEHPnzo2XX345Hn300Vi1alWNxPZN1KFDhxgwYEAcdthh0aZNmygqKorFixfHddddF8OGDUs6vFpl5513LnffzJkzY/r06ZUa75NPPonRo0fH6NGjtze0Wqt58+ZxxBFHxI9+9KPYe++9o3HjxtGoUaMoKCiIJUuWxCeffBJz5syJqVOnxuTJk2PJkiVZj3HnnXeOQw45pLT83HPPxcKFC7MexxeaNGkSvXv3juOOOy523HHHaNGiRaxduzYWLVoUzz33XDz44IMxefLkap1z1113jVNPPTWOPPLIaNGiRTRr1ixWrFgR//u//xtTpkyJMWPGxBtvvFGtc37bFRYWxm677RZ77LFH7LHHHtGxY8do2rRplJSURElJSRQXF8dnn30Wn376afzrX/+Kp556KsaPHx///ve/kw690jp06BA//vGPo1u3brHTTjtF06ZNo7CwMBYvXhzvv/9+TJ06NcaPHx+vvvpqtc3ZqlWrOPHEE6Nnz57xve99L5o3bx7FxcUREdG4ceP49NNPt9pvw4YNMXHixOjfv39ERLRu3Tq6du0af//736stNoBvusLCwujWrVt069YtOnToEG3bto369etHvXr1YtOmTbFy5cpYuXJlrFixIpYtWxbvv/9+/Pvf/45//etf8cYbb8Tbb78dGzZsSPowtqm2rqE6dOgQffr0iSOOOCJat24d3/nOd2LZsmWxYMGCmDJlStxxxx3b9Vvi0EMPjVNOOSU6d+4cLVu2jIKCgvjoo49i/vz58fDDD8eDDz4YS5curcYj+nr43ve+V7rm2XPPPeM73/lONGrUKPLy8mLZsmWxdOnSePvtt+OZZ56Jp59+Ol555ZVvxNz8nwMPPDD69OkTBx10ULRo0SJKSkpi0aJF8e6778aECRPi/vvvj0WLFiUd5tdeVdfuxcXFUbdu3TJ15a0Hvm6quu6pDtnKXey3335xyimnxOGHHx4tW7aM4uLi+Pjjj+ODDz6Ixx9/PO67775YsGDB9h9QltWvXz969eoVRx99dPzwhz+MJk2aRElJSSxbtiwWL14cs2bNiscffzz+9re/xerVq792833T1XQeTW4CoPaqW7duHH744XHQQQfFAQccEC1atIhGjRpFSUlJrF27Nj799NN47bXX4vnnn4+HHnoo3n777YzG/SY/G0/iOWHS+YvauFavrbmsJNWmZ9g1ndOLqLn7V3mS+hx06dIlevfuXZqjKSgoiA8//DDeeeedeOihh+Khhx6KFStWVMtc2SLnW3N69OgRHTp0KHf/7NmzY9q0aVmMqOr5rwYNGsSQIUPK1D300EPV9l7J7NmzK2zzdX//IVvvNCSV60oqN5Rk/vLrIpvviLVt2zaOPvro6Nq1a7Rr1y6aNGkSDRo0iFWrVsXSpUtj6dKlMX/+/Hj++efj+eefjzlz5sT69eszHj+b19mee+5Z+v34xWdp0aJF8cEHH8TkyZPjvvvui/nz52/XHNXtm5hTl8cEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgVkpn4IknnkhHxNdqW7VqVbnHs27dunL37b777uWOec4552y1z9q1a7d5/iZPnlxhvNtr1apV6dGjR6ebNWtW7hyDBw/e7nm+rLCwsMz4N9100zbbb+vcRkS6pKRkm/3vvPPOcvv27Nlzm30HDBiQjoh0QUFBeujQoelNmzZttd1NN91U5bFr6hx36dJlm23OP//8jD8X+fn56eXLl5c71qOPPrpFn9mzZ5fbfsqUKTX+Wa7M+f9iu+yyy7Z9YqvgiiuuqDDWjh07pu+88870+vXrMx73888/T99www3pxo0bZ/UeecUVV5SJ4+c//3ml+k+YMKFM/3HjxlXqPrd27dp0RKRzc3PTv//97yu8j6bT6fRTTz21zXtcpnPWq1cvfffdd1c43+bNm9PDhg1L16tXL+P5jjjiiDJjTJgwoVLxfvU++MEHH5Tbds6cORUeQ3n22WefavmbVnYbOXJkpWPdsGFDevTo0emGDRtWOP5XP/uTJk2qcqzjxo0rM9Z1112XUb/27dunx48fn/HxjR07Nt2qVavtuqbr1KmTHjFiRLnfbel0usJ7TPfu3cu0v/fee6v975+tbbfddsv4/FNziouLE78WbLZsbPn5+elf/epX6WXLlm3XZ2ZrvzVrev1WW9ZQVe3bvHnzjL5z165dm7788ssr/bf9/ve/n37yyScrHH/VqlXpiy++OJ2Tk5OOiG2ut2bNmpXIdbo9f4+vbvvss0/6gQceSG/cuLHCc/NlL730Uvqkk04qPU9V2bI59/aesx//+MfbzD2l0+n0HXfckc7NzS3tk2ROpTLH3L59+/Rzzz23zbbpdDq9cuXK9JAhQ9KpVCqR6/7LW+/evcuN84gjjkg8vm1tVV27169ff4tj/dnPflZjcVb3+vTLtnfd884775Rp07x5820ey9bmruncxRdb06ZN02PHjq1wjk2bNqVvueWWdJ06ddJ5eXll9i1fvjyjubKRA/hiy83NTQ8ZMiT9ySefVHhs6XQ6vXDhwnT//v2r/J2Rjfm+7IvrJJOtQYMG6enTp5fpv2rVqnSPHj3KtMtmfqmi46rJPNpXt29SbsJmq+o2atSoCj9v1KxRo0Ylfh3Ulq1Vq1bpP/3pT+mlS5dW6hzOnDkzfcwxx1T43bq9Mnk2HlHz+ZUvb0k8J0w6f1Eb1+qZ5rKSfgafzS0b12Ztyell4/6V5Ofgy1vbtm3T06ZNq3CeL3I0X/Sr6udfznfrksr5VnV7+umnt3nsp5xyStZjqmr+69xzz90i/sMOOyyrsdf0+w/VnXP7Yqvpdxq+2LKZ6/ryllRuKNP8ZZLvtWQzJ7i1c5StPOsX1/n999+f3rx5c4Vzfdmvf/3rWnOdfbGVlJSkR48eXeEcmzdvTo8cOTJdWFhY5c9SZfPpSf+tk7rPyGNuuRUXF29x3lu3br1Fu5NOOql0/4UXXrjNa2rmzJlb3f/AAw9sc44DDzxwq/1mzpxZ2m9r+y+88MIKryUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBa6oFUfAt99NFH8cwzz2x13+DBg8vtV96++++/v1ri2h5169aN/v37xxtvvBHdu3dPOpxaqaCgICZNmhRDhgyJVGrrl35OTk6Wo6rY9OnT4/XXXy93/8CBAzMeq3v37tGgQYNy999xxx1b1G3atKnc9gceeGC0bds24/m/qXJycuKiiy6KOXPmxGmnnRY77LBDxn2LiorioosuijfeeCM6d+5cg1GWdfzxx5cpT5kyJWtzf6GgoCAmTpwYV1xxRRQUFFTY/rDDDotnn302GjduXOU569evHzNmzIh+/fpV2DYnJycGDx4c06dPj/r161d5TrZPXl5e9O/fP55//vnYeeedt9l21KhRsWHDhtJyjx49olWrVpWes0mTJnHccceVltPpdIwaNarCfieffHLMnj27TN+K9O7dO1566aXo1KlTpeOMiCguLo6nnnoqBg0aVO53W0TF328zZsyI9evXl5Z79epVqXsZwLdRcXFxTJ48Oa677rooKSlJOpwaUVvXUPvuu2/MnTs3o+/cgoKCuPLKK2Po0KEZj7/XXnvFK6+8EkceeWSFbevWrRt/+tOf4oEHHvhGf3fm5ubGH/7wh3jxxRfjpJNOitzc3Er133fffeOBBx6IiRMnRsOGDb82c1dFz549Y/z48ZGfn19um6FDh0b//v23ud6ujbp27Rovv/xyHHTQQRW2LS4ujqFDh8bdd9+9zd+pbFtV1+4rV66M1atXl6nr1atXtcWVbdW17qmKbOUuWrZsGTNnzozevXtX2DaVSsU555wTU6dOjaKiokrNk21FRUUxYcKEGDp0aMbnpEWLFjF69Oi4++67K/3dmu35KqN169bx7LPPxuGHH15at2jRojj00EPj8ccfr7F5t0e282hyEwC1R9++fWPevHlx8cUXV3oddeCBB8bEiROjTZs2NRTdf9SmZ+NJPSdMMn9RW9fqlcllJf0MPhtq2zPsms7pRWT3/pXk52D//fePV155Jbp06VJh2y9yNGPGjIm8vLxKzZNNcr41b5999olDDz203P3vvfdePPjgg1mM6D+qmv/6ar/58+fHjBkzqi2umlKZ9x9qQrbeaUgq15VUbqgy+cuk32tJSjbfEevTp0/Mnj07Tj755BrJGWfzOmvSpEk8++yz0b9//wrb5uTkxNlnn5143vjbkFOXxwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKC2SSUdQFKGDRu21fq+fftGSUnJFvVdu3aNjh07blG/efPmGDFiRLXHV1Xf+c534uGHH46999476VC2kE6nE51/+PDhceSRRyYaQ1XdfPPN5e7bfffd46CDDsponJNPPrncfUuWLInHHntsi/rFixeX26devXrxj3/8I84777xo3LhxRjF806RSqRg7dmzccMMNkZeXV+VxmjZtGtOnT48TTzyxGqPbupYtW0anTp1Ky4sWLYp58+bV+LxfNWrUqPjxj38cERFz586NAQMGRNu2baOoqChKSkri4IMPjnvuuadMn7Zt25Z7/87EnXfeGXvttVdERLz77rsxePDgaNOmTdSpUyeaN28eRx99dIwfP75Mn3333Tf+9re/RW5ubpXnpawNGzbEk08+Gb/4xS/i8MMPj1atWkW9evWioKAgWrRoEb169Yq77rorNmzYUNpn1113jQkTJkRBQUG54y5atCgeeeSR0nJubm4MGDCg0vGdfvrpkZ+fX1qeOnVqvPvuu9vsc/bZZ8e4ceOisLCwtO7jjz+Oyy67LPbee+9o1KhRFBYWRps2beK8886L9957r7Tdd7/73ZgxY0bsuOOOlY71zjvvjP333z8iIl5//fU455xzYpdddom6detGs2bN4rDDDosxY8ZETk7ONsdZs2ZNvPDCC6Xl+vXrR+fOnSsdD8C3ydChQ+Pwww9POowaVRvXUHvvvXdMmzYtmjZtWql+Q4YMiV69elXYrn379jF16tRo2LBhpcY/8cQT4/bbb69Un6+LvLy8mDRpUvzud7+LVGr70ki9evWKf/7zn9GyZctaP3dV9OzZMx5++OEyvyW/6qqrrooLLrig0jmSpHMq+++/fzz66KNRr169SvXr06dPjBo1qoai2n4/+9nPYtKkSTF//vxYuXJlrFu3Lj7++ON4880345FHHolLLrkksRzb9q7dZ86cWaZ8wgknxEknnVRt8WVTda17qiIbuYu6devG9OnTo02bNqV16XQ67rzzzjjssMOiSZMmUadOnWjbtm0MGTIk5s+fHxERBx10UIwcObIajrJmpFKpePTRR6Nnz55l6r/If7Vq1SoKCwujdevW0bdv33jxxRfLtOvbt2+MHTu21s5XGXvuuWe88MILsfvuu5fWvfXWW3HAAQfEK6+8UiNzVods59HkJgBqh2HDhsU999wTxcXFSYeSkaSfjSf1nDDJ/EVtXqtXNpeV5DP4mlbbnmHXdE4vIrv3ryQ/B7vvvntMmTIl6tevX6l5Tj311LjtttuqEmKNk/PNjosvvnib+2+88cbYuHFjlqL5j6rmv/Lz8+NHP/pRmboZM2YklkOtqfcfqlu23mlIKteVZG6oMvnLJN9rSVK23hH7xS9+Effee2+Z63z16tUxbNiw6NatW7Rq1SoKCgqipKQkdttttzjttNPivvvuizVr1mQ0fjavs4KCgpgyZcoW7yzfd9990bVr12jatGkUFRVFu3bt4sILL4wPPvggIiI6d+4ct9xyS0Zz1IRvQ05dHhMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDaJpV0AEl55JFHYuHChVvU161bN84444wt6ocMGbLVcSZNmhTvvfdetce3PYqKiuKuu+6KnJycpEMpI51OJzZ3jx494swzz6ywXW07Z1+45557YtmyZeXuHzhwYIVjFBYWxjHHHFPu/vvuuy/Wr1+/Rf1LL720zXG/+93vxs033xyLFi2KuXPnxl//+tc488wzY489kChkQgAAIABJREFU9ojc3NwK4/q6u+GGG+KnP/1ptYyVn58fd911V+yxxx7VMl55jjjiiDLlF154oUbn25qCgoLo169fRERcffXVsddee8Xo0aPj3XffjTVr1sSKFSviueeei5/97GcxePDgMn179+4dHTp0qNKcxx13XERETJgwIX7wgx/E8OHDY/78+bF27dpYtGhRTJ48OU444YTo27dvbNq0qbTvwQcfHBdeeOF2HHH123PPPSMnJydycnLi008/LbOvYcOGpfu2ts2aNSuRmBcvXhy/+93vonnz5tG9e/e46aab4umnn46FCxfG559/HuvXr4+PPvooHnvssTj99NNj//33j/fff7+0f6dOneK3v/3tNucYMWJEmfKZZ55ZqXtRTk7OFvfUW2+9dZt99t133xg6dGiZ75CxY8dGmzZt4pprrol//vOfsWzZsli3bl3Mnz8/RowYER06dIjHHnustH3Dhg3j7rvvjlQq859mBQUFcfzxx0dExF/+8pf44Q9/GH/961/jnXfeidWrV8fixYtjxowZ0bdv31i8eHGF482cObNM+cgjj8w4FoBvm/bt28fpp5+edBg1qrauoc4555woLi6uUt/rr79+m/tzc3PjrrvuioYNG1Zp/L59+0aDBg2q1Lc2Gz58ePTo0aPaxttpp51i0qRJUVRUVKvnrqxevXrFww8/HPn5+Vvdn06n48ILL4zLL7+8SuMnmVOJiBgwYEDUqVOnSn379+9fuharbfr16xe9evWK73//+1FcXBz5+fnRrFmzaN++fRx77LFx/fXXx6xZs+LFF1/M+jFs79r9nnvuKVPOycmJ+++/P+65557Yd999tzu+L6vJ9Wl1r3sqI1u5iz/+8Y/Rrl270vLq1aujW7duccYZZ8SMGTNiyZIlsXbt2nj33Xfj5ptvjh/84AcxceLEiIg45ZRTquloq9+ll14aXbp0KVN34YUXRteuXePhhx+OhQsXxrp16+KDDz6IMWPGxEEHHRTXXnttmfYnnHBCnH322bVyvkwdeeSR8Y9//CNatGhRWvfss89G586dY8GCBdU6V3VKKo8mNwGQrMsvv3yL3zVfB0k+G0/iOWHS+YvaulavSi4ryWfwNa22PcOuyZxeRPbvX0l9DvLy8uLuu++O+vXrV2me0047rVbmL+V8a973v//9OOGEE8rdv2zZshg9enQWI/qPqua/OnbsuEUe9uWXX662uDJV0+8/VGfOLZvvNCSV60oqN1SV/GUS77UkKVt51i5dusQNN9xQpm769Omxyy67xPnnnx9Tp06NhQsXxvr162PFihXx1ltvxd133x19+vSJ5s2bxxVXXBErVqzY5hzZvM4uv/zy2HPPPUvL69evj2OOOSb69OkT06dPj08++STWrFkTb7/9dtx4443RqVOnmDZtWkREnHrqqRWOXxO+TTl1eUwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABqk1TSASRl48aNccstt2x133nnnRep1P+dmh133DF69eq11bbDhg2r1riWLl0a9957bwwaNCgOOeSQaN26dTRo0CDy8vKiqKgodtppp+jRo0f89a9/jXXr1pU7TseOHePYY4+t1ti2VzqdTmzu4447LrG5q8Pq1avj9ttvL3f/ySefHA0aNNjmGEcffXQUFxeXu/+OO+7Yav0jjzySUYypVCr22GOPOOuss+K2226LuXPnxsqVK+Pvf/97XHbZZfHDH/4wo3G+To4++ui48MILt9lm7Nixccghh0SDBg2iTp06seeee8bIkSPL/TwUFRXFgw8+GHl5eTURckRE7LfffmXKr776ao3NVZG//OUv8bvf/S42b95cbpvhw4fHlClTytSdccYZVZ5z1qxZccopp8Tnn39ebpsxY8bERRddVKbuyiuvjCZNmlR5XiIuv/zyuPrqq2Pp0qUZtZ89e3b06NEj1q5dW1o3aNCgKCgoKLfPjBkzYt68eaXlVq1aRY8ePTKO8fDDD49ddtmltLxo0aKYOHFiue1zc3Pj3nvvjfz8/NK6Bx98MPr06ROrV68ut9/q1avjhBNOiDlz5pTWHXLIIXHiiSdmHOsXxo0bFz//+c9j48aNle77ZXPnzi1T/uq9AoD/s6211scffxyDBg2Kdu3aRVFRUeTl5UWjRo1il112iV69esWll14aTzzxxDZ/i9QGX/c11NbstttuccABB5S7/9xzz/X99xXHH398nHXWWdU+7l577RXXXHNNrZ27so455ph46KGHyvwm/LJNmzbFgAED4sYbb6zyHEnmVKrDLbfcEoWFhUmHUWX77bdfjB8/Pu69996oX79+1ub8ssqu3ceMGRMvv/xymbqcnJzo27dvvPTSS/H+++/H3XffHeeee27sv//+UadOne2OuSZV17qnKmoyd9GuXbsYPHhwmbp+/frFtGnTyu2zatWq6N27d8yePbvC8ZPSokWL+P3vf1+m7uqrr97mfXDz5s3xm9/8Zosc6H/9139VmPfM9nyZ6t+/f/ztb38rk5N96KGHolu3bhnnRpKW7Tya3ARAcg499NC48sorsz7v1/nZeFLPCZPMX9TmtXpVcllJPoOvSV/XZ9jlqSinl+37V5Kfg/PPP/8b+d7F9pDzzcwvfvGLyM3NLXf/LbfcEqtWrcpiRP9R1fxXu3bttqhL4r2XbLz/UB2y+U5DUrmu2pAbqkz+MtvvtdQWNZlnzc/Pj7vuuqvMvW7atGnRo0eP+PDDDyvsv3LlyrjyyivLfZ84IrvX2U477RSXXHJJmbqzzjorHn300XL7LF++PI477rh46623ym2TLd+GnLo8JgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALVJKukAknTrrbfGunXrtqhv06ZNHH300aXl8847L1KpLU/VvHnzYvr06dUSy8yZM+PYY4+Npk2bRr9+/WLkyJHxzDPPxAcffBArV66MTZs2xZo1a+K9996LJ554Is4555zo0qVLrF+/vtwxTz755GqJrbps6z+yz6annnoqTjzxxGjRokUUFBTETjvtFF27do3//u//jqVLlyYdXrmGDx9e7jksKiqKvn37brP/T3/603L3zZkzJ+bMmbPVfXPnzo1JkyZlHuhX4jriiCPiqquuin/+858xb968GDJkSOTn51dpvKSsXr06pkyZUqYuJycnrr766m32GzhwYJx66qnxzDPPxMqVK2Pt2rUxd+7cGDRoUAwaNKjcfu3atavw77k99t577zLl1157rcbm2paPPvoofv3rX2fUdvjw4WXKhxxySJXnHTx4cKxdu7bCdkOHDo1XX321tFynTp3o379/leelat54440YNWpUablx48bRs2fPbfYZOXJkmfJZZ52V8Xxnn312mfLtt98eGzZsKLf9CSecEO3atSstL1myJAYMGBDpdLrCudavX7/FveD888/PONaIiM8//zwuuOCCSvUpz1fvBfvss0+1jAvwTdS+ffty9/30pz+NkSNHxttvvx1r1qyJTZs2xbJly+Kdd96Jxx57LK677rro0aNHNGzYMLp37x5jxoyJVatWZTH6yquNa6jPPvssLrnkkth5552jsLAw2rVrFyNGjKiwX9euXbdan0qlMvpOfeCBB6Jz585RXFwcxcXF0blz5xg3blyl4/86SKVS8Yc//KHCdmPHjo1DDjkkSkpKok6dOrH77rvHNddcU+Fv7nPOOSdatmxZ6+aurGOOOSYefPDBcte569evj969e8ftt9++XfPUlpzKggUL4owzzoiWLVtGQUFBtGzZMs4444xYsGDBNvs1a9YsTjnllOwEWYP69OkTTzzxRNSpU6fG59retfumTZvimGOOiXnz5m11f+vWraNfv34xfPjweOGFF2LlypUxa9as+POf/xxHHXVU5ObmVjn26lad657KquncxcCBA8vknSdPnhzjx4+vsN/atWtjyJAhGcWVhHPPPTd22GGH0vI777wTV111VUZ9f/nLX8aSJUtKy/Xq1aswH5Pt+TJx5ZVXxujRoyMvL6+07sYbb4yTTz45o7xUbZHtPJrcBEByrr/++grbrF27Nm699dbo3r17NG/ePPLz86OkpCQ6dOgQAwYMiEcffTQ2bdqU0Xxf92fjST0nTDJ/8XVaq1cml5XUM/iaUtufYVd3Ti8iu/evpPNlmawD77rrrjjggAOiXr16UVxcHPvvv3/c8f/Yu/PomM7/D+DvGVllkyBoYg1FFS0qYmuJnUZttVYQ8bV0Q7XVKvpV9WupIpaGkEQTaku1thBL1RqCtmINQayJJbtkMpOZ3x895muSzH5n7kTer3NyTp/7PPf5fGbMvTPP57nnNDLSoL1LsbHmaxleXl4612cymQxhYWFWzOh/TK1/lXWd2PLzXs8z5fkHc1nzmQaxal1i14ZMqV9a87kWbYYOHQqVSmXSX1ZWllGxLF1nDQ4Ohq+vr7qdlZWF4ODgMp8NNpU1P2ehoaEadcUjR44gOjpab5zc3FzRaunPVJSaOuuYREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREZEuk+oe8uB4+fIhNmzaV2ffsf3Lu7OyMkJCQMseEhYUJlkuHDh3w22+/obi42OBzjh8/jt9//11rf6dOnTTay5cvh0QiUf+Fh4frnL9WrVoa40v+FRYWGpwrAKNem6V88cUX6Nq1K7Zt24b79++jqKgIt27dwsGDB/HJJ59g7ty5Zs1vyff4xo0b2Llzp9a5QkNDtfZVrlwZ/fr109ofGRmpM8/Q0FDcvn1b5xhDNG3aFMuWLUNKSgo6d+5s9nzafPPNNzrf1+f/PDw8kJiYqHWup0+fol+/fjh+/LjG8cDAQLRq1UrreevXr0dERITW/vDwcOzfv19r/2effabjFZqnUaNGGu20tDSLxdJlzZo1Bt9HDh06BJVKpW63aNECUqnxX2EnTpzQ+e/9PKVSiWXLlmkcGzNmjNExyXxbt27VaAcEBOgcHx0djfz8fHW7d+/eqF27tt443t7eeOedd9RtlUql8zoG/vd74ZmlS5ciJydHb6xnTp48iTNnzqjbHTp0MCjXZ3799VdkZGQYPF6XkvcCDw8PeHt7CzI3EdGLxsvLS2vfnTt3DJpDLpdj7969GDVqFBYtWlSqX+z12zOWXkOZIisrCx06dMDChQtx48YNyGQypKSkYMqUKVi5cqXOc7X9hg8MDISfn5/Oc+fOnYuhQ4fi+PHjyMvLQ15eHo4fP47hw4fjq6++Mvn12KqePXuiWbNmOsdMmzYNI0aMwJEjR5CdnY3CwkJcuHABs2bNQo8ePSCTybSe6+TkhMmTJ9tcbGP0798fW7duhYODQ5n9T58+RVBQUKnfs6awhZpKcnIyWrdujaioKNy7dw9FRUW4d+8eoqKi0KZNG1y8eFHn+brqFuVJ+/bt9dZRhCDE2v3Bgwdo27YtVqxYAblcrnOsnZ0dWrdujalTpyI+Ph63b9/GV199BRcXF6PjCk3IdY+xLF27GDVqlEZ7+fLlBud27NgxnDt3zuDx1hQcHKzRXrZsGYqKigw6Nysrq9RafOzYsTYVTxd7e3tERUVh9uzZ6mNKpRIff/wxpk2bpvEZsXVi1NFYmyAiEsdbb70Ff39/nWOuXr2K119/Hf/5z3+wd+9epKenQy6XIzs7G5cuXcLatWsRFBSEBg0aIDY2FkqlUud81tgbByxXXxFrn1DM+kV5WasbW8sScw/eEmx5D9sSNT1r37/EvA66d++OevXq6Yw9depUjBkzBomJicjPz0deXh5OnTqFcePG4aOPPtJ5rthY87WcSZMm6azv/Pzzz3jw4IEVM/ofU+tf7u7upY5lZ2cLkpM1GPv8g7ms+UyDWLUusWtDptQvrflciy2wdJ215PfnTz/9hLt37xqfqA7W/JyVjLVkyRIDswT27dund7/GkipKTZ11TCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIrIluv8v4RVAWFhYmcd79OiBl19+GSNHjoSXl1ep/uzsbPz888+WTk+vlJQUrX0+Pj5l5i4WpVIpavzY2FgsWLBA1BzMtWzZMq19LVu2RNu2bcvs69u3L1xcXMrsk8vl2LBhg864GRkZ6NSpE/7++2/Dk9WhTp06OHDgAIYNGybIfKZyc3NDfHw8/P39y+wvKChAUFAQDh06VKqvT58+Ouf+4Ycf9MaPjY3V2tekSRPUq1dP7xzGcnV1LXVfuHv3ruBxDLF//36Dx+bm5uLevXvqtpOTEzw8PIyOuXXrVqPGx8XFady7mjRpgqpVqxodl8zzzz//aLTbtGmjc3xOTo7Gfa1SpUoICQnRG2fs2LFwcHBQtxMSEpCamqp1vKurK9q1a6dxbPPmzXrjlLRv3z6NdkBAgMHn7ty50+h42uTm5iI3N1fjmCXuQ0REL4KS98vnLV68GDVq1LBiNpZjq2uozz77DOfPny+zT9sa/xlfX98yj3fp0kXneUlJSZg3b57W/vnz5+PUqVM65yhvevbsqbP/0KFD+PHHH7X2HzlyBAsXLjQphpixDfXOO+9gy5YtsLe3L7M/OzsbPXr0wN69e82K84zYNRUACAkJwZMnT8rse/z4MSZMmKDz/DfeeAOVK1e2RGpWN3ToULz55psWm1/ItXt+fj7ef/99NGrUCN9++y1u3Lhh0Hm1atXCf//7X1y9ehWdOnUyKbZQhFz3GMuStYsGDRqgZs2a6nZeXl6p9aE+27ZtM2q8NdStW7fU962xa+WNGzdqtF999VWt76W14+ni7u6O3bt3Izg4WH2ssLAQQ4YMwdKlS42eT2xi1NFYmyAiEkffvn119mdlZaFXr164fPmy3rnS0tIwatQonbV1c9jK3rhY+4Ri1i/Kw1rd1FqWWHvwlmDLe9iWqOlZ+/4l5nWg7/o/cuQIlixZorU/LCwMf/zxh845xMSar2U4Ojrigw8+0NqvUqkMui9Ygjn1r+f39J/Jz88XJC9rMPb5B3NY85kGsWpdtlAbMqV+aa3nWmyFJeusVatWRcuWLTWOrVu3zvgkdbDm56xevXrw8fFRtwsKCrB7926jYm3ZssWo8UKqKDV11jGJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIlkjFTkBsSUlJOHnyZKnjEokEU6ZMwQcffFDmeevWrUN+fr5Fcnr99dcxc+ZMxMbG4vTp07hz5w4yMzNRVFQElUql8Tdz5kydc3l5eVkkR1OoVCpRY8+aNUu0+EI5cOAALl68qLV/woQJZR5/9913tZ6zY8cOPHr0SG/sW7duwd/fHzNmzMCTJ0/0J6uHnZ0dIiMj0axZM7PnMoWrqyv27NmDgICAMvsLCwsRFBSEAwcOlNkfGBiode6HDx/in3/+0ZvD1atXdfbrimGqGjVqlDr2+PFjweMY4vz580aNz8rK0mh7eHgYHfP06dNGjc/MzERqaqrGsbZt2xodl8yTnZ0NpVKpbteqVUvvOatWrdJoh4SEoFKlSlrHSyQSjB8/XuNYeHi4zhgBAQGws7NTt9PT0/Ve12X566+/NNpt2rQx+Nxz584ZHU+Xkt8HZd0ziIgIuHbtmta+/v374969e/j777/xyy+/YN68eRg5ciRatWqFypUrWzFL89jqGurJkyeIjIzU2n/lyhUUFRVp7df2G1LbuuCZVatWafweKUmlUmHlypU65yhv9K1HDHm9q1at0lkLeP311+Hp6WlTsQ3Rr18/bN68Gfb29mX2P3z4EF26dMGxY8dMmr8sYtZUAODs2bM4deqUzjHHjh3DhQsXtPbb2dnhjTfeEDo1ozx58gQbN27ExIkT4e/vj5o1a8LBwQGurq54+eWXMXr0aBw6dMiguebMmWOxPC2xdr916xa+/PJLNGjQAI0bN0ZoaCgiIiJw5swZyGQyree99NJLOHDgAIKCgsyKbw6h1z3GsGTtouT1kJycDLlcblS8s2fPGjXeGvz9/TXat27dQnp6ulFzJCcna9TeJRKJ1nqMteNp4+PjgyNHjqBbt27qY48fP0ZgYCDi4uKMmstWiFVHY22CiMj6unfvrrP/xx9/xI0bNywWvzzujYu1Tyhm/cLW1+rm1LLE3IMXmq3uYVuqpmft+5eY14G+61/fvqahY8TAmq/ljB49WueaaseOHbh8+bIVM/ofc+pfZX0eXFxczM7JWkx5/sFU1nymQaxaly3UhkytX1rjuRZdNm3aBIlEYtJflSpVjIplyTprp06dIJFI1O2MjAykpKQYFU8fa37OSh47f/48CgsLjYplbF1PSBWpps46JhEREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREdkKqdgJ2IKwsLAyj0+aNAktWrQodVylUmHFihWC5lCpUiWMHTsWqampOHv2LL799luMGDECbdq0gY+PD6pUqQJ7e3uj5/X09BQ0T3OoVCrRYp84cQI3b94ULb6Qli9frrVv2LBhcHNz0zjm4uKCvn37aj0nMjLS4NgymQyLFi2Cj48PRo4ciR07diA3N9fg80tycnLC119/bfL5pnJxccGePXvQoUOHMvsLCwvRv39/7N+/X+scfn5+WvuqV68OlUql9+/YsWM682zatKlhL8gILi4upY4VFhYKHkcfpVKJ7Oxso84pmaeTk5PRcS9fvmz0OZcuXdJo165d2+g5qDQfHx+8//77WL9+Pc6cOYN79+4hNzcXSqWy1LWiVCohlf7vJ0uVKlX0zn/u3DmcPHlS3fb19UWfPn20jg8MDETDhg3V7QcPHuD333/XGaNx48Ya7ZSUFL15leXRo0ca7erVqxt87t27d02KqU1BQYFGu6x7BhERAXv27NHZL5VK0aJFCwwdOhSzZs1CTEwMzpw5g7y8PPz1119YunQpunTpAolEYqWMjWera6j9+/dDLpdr7VepVMjMzNTar+27rUGDBjrj/vnnn3pzM2RMeVK/fn2d/Ya83nv37uH69eta+6VSKerUqWNTsQ3Rv39/rTWa27dvo1OnTjh37pxJc2sjZk0FAI4ePWrQuOPHj+vs1/dvawlFRUXYtm0bevXqBW9vb4wYMQLh4eE4deoU0tPTIZfLkZ+fj5SUFPz888/o2rUr3nvvPZ33GgDo1KkTPDw8LJKzpdfuV69eRUREBEJDQ9GmTRu4ubmhY8eOmD9/Pm7dulVqvL29PWJiYnTWQixJ6HWPoSxduyhZX7hy5YpRsQDT6hyW5uvrq9G+ePGi0XMolcpSr63kvGLFK0vz5s1x8uRJjb2E1NRUtG/fXu990ZaJVUdjbYKIyPr0rYm3bNkieMzyvjcu1j6hmPULW1+rm1vLEnMPXki2uoctVk1P6PuXLdfL9P27AfrrNmJhzdcyJBIJpk2bpnPMwoULrZRNaebUv8p6TslSdTpDWfr5B1NZ85kGsWpdtlAbMrV+aY3nWmyBpeusdevW1Wj//fffRsUyhDU/ZyV/BwhRo7OWilZTZx2TiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIbIVU7ARswZYtW/DgwYNSx+3t7cscv3v3bly/fl2w+O7u7oiPj8e6detQv359weYFAEdHR0HnK69Onz4tdgqCWb9+PbKyssrsc3FxwYgRIzSOvf3223B2di5z/IMHDxAfH290DoWFhdiwYQOCgoLg5eWFdu3aYfr06di2bRvu3btn1Fz9+/eHm5ub0TmYysXFBbt370bHjh3L7JfJZBgwYAD27dundQ5HR0e4uLhYKkW1atWqCT5nyXuCXC6HSqUSPI4+YsXVdu0Yc46np6dQ6VRIjRo1QlxcHG7fvo2wsDC89957aNWqFWrVqgVXV1dIJBK9cxh6z1i1apVG+z//+Y/WsSX71q1bB4VCoXN+Ly8vjXb79u1RWFiIwsJCyGQyyGQyFBUVQS6XQy6XQ6FQQKFQoLi4GMXFxVAqlVAqlThw4IDGPIZ+xoqLi5Gfn2/QWEPJZDKNtrbvDyKiiu7kyZOl7t+GkEgkaNmyJT788EMcPHgQKSkpGDBggAUyNJ+trqGSk5P1jikoKNDap+23Rsnv9ZJu3LihN+7NmzehVCr1jisP9K15CgoKkJGRYdBcN2/e1Nlfct0jZmxzpaSkoGPHjrhy5Yqg89qCW7duGTRO33uu71qzhLi4OAwePBh79+5FcXGxQefExMTg008/1TnGzs4OnTt3FiLFUqy9dpfL5Th27BhmzZqFhg0bYsqUKaXupW5ubpgzZ47FctDGEuseQ1n6fa9SpYpG25SaRXZ2tlDpCKbkmjYzM9OkeUqep22tbO14Jdnb2+Po0aPw9fVVH0tKSkJAQACuXr1qUi62Qqw6GmsTRETW5ejoqLPmLpfLcenSJUFjlve9cTH3CcWqX5SHtbq5tSxb2IM3ly3vYVuipmft+5fY14Gu39YqlQppaWl646alpdlk/ZI1X8t4++230aRJE639J0+exNGjR62YkSZz6l937twpdUyMuiNg3ecfTGHNZxrEqnWJXRsyt35p6edabIGl66xVq1bVaD9+/FjwGNb8nAlxLZlyjhAqWk2ddUwiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKyFVKxE7AFcrkc4eHhBo8PCwsTNP6WLVvQrVs3QecsjypVqmSxuW/fvm2xua0tPz8fkZGRWvsnTJig0R46dKjWsTExMVAoFGaFxkU3AAAgAElEQVTlo1AokJiYiMWLF2Pw4MHw8fGBn58f3n//fSQmJuo9387ODu3btzcrB0NVrlwZO3fuROfOncvsLyoqwsCBAxEfH69znipVqlgivVKqVq0q+JwymUyjbW9vD4lEIngcW6RQKCCXy40+Lz8/X6Pt6uoqVEoVTs+ePXHu3DkMGDDArM+dVGrYz5fNmzfj8ePH6nbv3r1Ru3btUuNq1KiB/v37q9tKpRJr1qzRO3/Je4FUKoWjoyMcHR3h4OAABwcH2Nvbw87ODnZ2dqhUqRIqVaoEqVQKqVQKiURS5vvg4uJi0Osz9/5dFicnJ412QUGB4DGIiF4Uo0aNQkpKillz+Pn5IS4uDrNnzxYoK+HY6hrqyZMneseY8ptP1/dvYWEhiouL9c6hUqlemO9OfWuekr+RzRnr4eFhM7HNVVBQgLy8PEHnNJQlayqA4e/706dPdfa7ubkJkY5VrFq1Crm5uTrH1KlTxyKxxVy7KxQKrFy5Ej169EBRUZFG37BhwwxerwiZz4uqZH3BlO8QY+6J1lLyOtd3X9Cm5GvTdv+wdrySpFIp3N3dNY6tWrUKGRkZJuVhK8Sso7E2QURkXfrWYDk5OYLHLO9742LuE4pVvygPa3Vza1m2tgdvClvew7ZETc/a9y+xrwNd179MJoNSqTQoti3+vmbN1zJmzJihs3/hwoVWyqRs5tS/ytqbadGihSB5GcPazz+YwprPNIhV6xK7NmTud76ln2upCEr+W1lin8aan7OS15IpsWyxbiwEW6ups45JREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREtkIqdgK2Ijw8HHK5XO+4q1evYt++fYLFfffdd9GjRw/B5rNldnZ2Ovvd3d0tFjs3N9dic4th+fLlUCqVZfa1atUKrVu3BgC4ubmhV69eWueJioqyRHpITU3FihUr0K5dO0yZMkXveF9fX4vk8TxnZ2fs2LEDb731Vpn9RUVFGDRoEHbv3q13rqysLIGzK5u9vb3gc+bn55c65uTkJHgcW2RnZ6f3PlQWFxcXjXZeXp5QKVUoL7/8MrZv367xfj59+hTr16/HuHHj4O/vD19fX7i5ucHBwQESiUTjr7i42OiYhYWFiIyMVLelUinGjx9fatzYsWM1rreEhATcvHlT7/wFBQVG52QIiURikXkN4ezsrNEu655BRET/evDgAVq3bo2lS5eafb/8+uuv0a5dO4EyE4atrqFkMpneMdrWSrro+o3n6OgIqVR/+UQikZT6Li2vsrOzdfaX/I1sztiSscSMba4WLVogISEBVapUEXReQNyaCmD4+165cmWd/bZ6bymLTCbDpUuXdI6pXr26RWLbwtr96NGjWL16tcYxe3t7dOzY0ap5vMhK/jub8h1izD3RWkpe5/ruC9qUfG3a7h/WjleSXC7H4cOHNY6tWbMGY8aMMSkPWyFmHY21CSIi69K35yX0WuNF2BsXc59QrPpFeVirC7HetPU9eH1seQ/bEjU9a9+/xL4OdP0uNvT6B0xbe1oaa77C8/f311nDuXbtGrZv327FjEozp/6VnJyMoqIijWNt2rQRJC9DifH8gyms+UyDWLUusWtD5rL0cy0VQU5Ojkbb1dVV8BjW/JyV/P56UerGQrC1mjrrmERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERGQrpGInYCvu37+PrVu36h23fPlyqFQqweKOHj1aZ39WVha++uorvP7663B3d4dUKoVEIlH/zZ8/X7BcLE3f/2i+cePGFoutVCotNrcYUlNTsXv3bq39oaGhAID+/fvDycmpzDGnTp3ChQsXLJLf81auXImDBw/qHOPh4WHRHJydnbFjxw507dq1zH65XI4hQ4Zg586dBs0nk8mQn58vZIpW8+DBg1LHqlWrJkIm4qhSpYrZ52RmZgqVTimVKlWy2NxiW7Rokcb9KDExEX5+fggODkZkZCROnTqFu3fvIi8vD3K5XONcJycnk9+bn376SeN7OyQkRGMuiUSivmc+Ex4ebtDcjx490mivW7dO4zva1L9u3bqZ9FqFULVqVY12enq6SJkQEZUPubm5+Pjjj/HSSy9h7Nix2LBhA27evGnSmnH69OkWyNB0L9oaSh9dv/EkEgl8fX31zlG3bl1IpS9GmaWwsFDnmsfZ2Rne3t4GzVWvXj2d/SV/U4kZWwitWrXC3r174e7uLui8YtZUgH8/30KMe/LkiRDpvPBsZe2+efPmUsf0XVdkuKysLI22KfUxS9fUTFHyO9XT09OkeUqep+3+Ye14JSmVSvTu3Rt79+5VH5NKpVi3bh0mTZpkUi7mEqq+JFYdjbUJIiLrkslkyM3N1dpvb2+PJk2aCBbvRdgbF3OfUKz6RXlYqwtRyypPe/BlKc972Kaw9v1L7OtA3/Vfp04dvXFr1679wtQvDVGRa74zZszQ2f/DDz+IvgdgTv2rqKgIR48e1Tj25ptvCpKXocR6/sFY1nymQaxal9i1ISFY8rmWiqDkv1XJ2pIQrPk5K3ktCVGje1HYWk2ddUwiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKyFVKxE7AlYWFhOvtzc3MRHR0taMw333xTa59MJkPHjh3xzTff4K+//kJubi5UKpXGGCH/R+zmkslkOvu9vLx09gcGBgqZzgtv2bJlWvtGjBgBFxcXvPvuu1rHREVFWSCrsp09e1Znf3Z2tsViOzk54bffftP6+ZLL5Xj33Xfx+++/GzXvjRs3tPZduHABEonE7L9evXoZlZMh8vPz8fjxY41jPj4+gsexVU2bNjX7nNu3b2sdq1AoNNp2dnZGxfL09DRqfHlRpUoVjc9zUVERBg0ahAcPHhh0vre3t8mxr1+/joSEBHXbx8cHffv2Vbe7d++OBg0aqNv379/Hjh07DJq75GehYcOGJudpC9zc3ODm5qZx7ObNm+IkQ0RUzuTk5CAqKgojR45E/fr14erqilatWmHw4MH49NNPsX79ety/f1/nHF27drVStlSW69ev6+xv37693jk6d+4sVDo2QdeaBzDs9b700kvw8/PT2q9UKpGWlmZTsQ3x008/IScnR2t/27ZtsWfPHri6uho8p63XVDp27GjQOH3Xir5/W1vi5OSkdw2Znp5ukdi2sna/evVqqWO2VIss70quKRs3bmz0HKacY2l37tzRaJtSi5FKpWjSpInOecWKV5aCggL0798fv/32m/qYRCLBypUr8cknnxidj63UlyxdRysLaxNEROJITU3V2T9kyBDBYr0oe+Ni7ROKWb+w9bW6UMrTHnxZyusetqmsef8CbLte1qFDB72xDRnzIqmoNV8/Pz8MGDBAa//Dhw8Ff/bNFObWv+Li4jTafn5+eOutt4RITS8xn38wljWfaRCr1mULtSFzWfK5loqg5HdkixYtBI9hzc9Zyd8BQtToXhS2VFNnHZOIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhsiVTsBGzJiRMncObMGa390dHRyMnJESyeq6srXF1dtfYfPHgQFy5c0DlH27ZtTY5fXFyss9/BwcGo+bKzs3X2N2/eXGtflSpVEBwcbFS88kDo9/h5CQkJuHTpUpl9bm5umDhxInr27Flmf2FhITZu3GhQnNmzZ+P7779H3bp1Tc61du3aOvsfPXpk8ty6ODo6Yvv27ejevXuZ/QqFAsOGDcP27duNnnv//v1a+5o2bYqXXnrJ6Dmt5erVqxptc/5ty5s33njDqPGenp5o0KCBxrFTp05pHV/yO8Ld3d2oeA0bNjRqfHnRokUL2Nvbq9uHDx/G3bt3DT7f2H+3klauXKnRnjBhgvq///Of/2j0rVu3DgqFwqB5//zzT6hUKnX7jTfeQOXKlc3IVFwl7wVZWVnIyMgQKRsiovLt6dOnOHfuHLZt24aFCxciODgYderUwS+//KL1HC8vL7i4uGjtt+Tagv6tB+gSEhKis18ikWDy5MlCpiS6AwcO6OyfNGmS3jkmTZoEiUSitf/cuXPIzMy0qdiGOHPmDPr164eCggKtY9q3b49du3YZ/PvQ1msqrVq10vu7vH379nj11Ve19isUCpw+fVro1HSaN28ePvjgAzg6Ohp97uTJk+Hm5qZzzM2bN03MTD9bXbubet1QaSWvh+bNm2usnQ3RqlUrIVMSxMmTJzXa9erVg7e3t1FzNGvWTON3kVKp1FqPsXY8bWQyGQYPHlzq997ChQsxe/Zso+aylfqSpetoZWFtgohIHAkJCTr7p06dKsjvUbH3xgHh6iti7ROKWb+w9bW6UKy1B28p5XkP2xTWun89I+Z1oO/6Dw0N1RvbkDEvkopa8502bRqkUu2PAy5fvlxnXdOazKl/xcbG4unTpxrHrPXvJfbzD8aw5jMNYtW6bKU2ZC5LPddSERw9elTjc16jRg00atRI0BjW/JyVPNa8eXM4OTkZFcua9xlrsqWaOuuYREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREZEukYidga8LCwso8rlKpsGLFCkFj6fsf0tvZ2ens79ChA9q2bWty/Ly8PJ39DRs2NGq+Bw8e6OwPDQ2Fo6NjqeN2dnZYu3YtqlevblS88kDo97ik5cuXa+2bP38+HBwcyuzbvn07srKyDIrh5eWFGTNm4Pr16/jtt98wcuRIeHh4GJxj165dMXDgQJ1jzp8/b/B8hnJ0dMSvv/6Knj17ltmvUCgwfPhwxMXFmTT/nj17tPZJpVLMnDnTpHldXFzw6aefYvbs2Sadb4ikpCSNdvPmzS0Wy9YMHjzYqPEDBw6EVPq/r8rLly/j8ePHWsc/evRIo23sNd6lSxejxj+jUCg02s/nbAu8vb012nfu3DHq/P79+5sVf+fOnbh9+7a63bt3b9SpUwc1a9bE22+/rT6uVCoRERFh8LwZGRn4+++/1W1nZ2ezcxVTyXtByXsFERGZR6FQYPXq1TrHVK5cWWufpdcWFd3Bgwd19nfr1g2hoaFa+7/44gv4+/sLnZao9u7dq7O/a9eumDp1qtb+jh07YsaMGSbFEDO2oY4cOYJBgwZBLpdrHdO5c2f8/vvveus/QPmoqaxduxaenp5l9nl6eiI8PFzn+adPn8bTp08tkZpWtWrVwrJly3Dt2jV8/vnnqFWrlkHnjRo1Cv/3f/+nc0xBQQH++OMPAbIsmy2s3f38/Eod0/dZtfX1qS25fv060tPT1W1XV1d0797dqDkGDRokdFpmS0tL01iDA8bXY4YNG6bRTk5ORk5Ojk3E00WhUGDkyJGIjIzUOP7111/rvac8T6z6UkmWrqOVhbUJIiJx7Nq1S2e/p6cn4uPj8fLLL+udy9vbGxEREWjQoEGpPrH3xgHh6iti7ROKWb8oD2t1oVhjD95SyvMetimsdf96Rszr4NChQzrPe/PNN/HBBx9o7Z88eTK6du2qc44XTUWs+VatWhVjxozR2v/06VPBn30zhzn1r6ysrFLP+A0ZMgS9evUSJLfXXntN61xiPP9gas3Nms80iFXrsqXakDks9VxLRfDkyROcO3dO49jYsWMFjWHNz9nNmzdx9+5dddvZ2Rl9+vQxKtaQIUOMGl9e2FJNnXVMIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIisiVSsROwNb/88gsePnxY6vj+/ftx+fJlQWM9efIECoVCa39AQADq1q1bZl+DBg2wceNGs+Pr8t1336Ft27aoXLmyQfOdPXtWZ3+LFi2wd+9eBAQEwMnJCZ6enujXrx+OHj2KgQMHGpx3eSL0e1zS+vXrkZ2dXWafo6Oj1vMiIyONjlWpUiUEBQUhJiYGGRkZSEhIwLfffotBgwbhlVdeQc2aNeHo6AgHBwfUqlULPXv2REREBPbu3Qt7e3ut8167dg2pqalG56OLg4MDtm3bht69e5fZX1xcjJEjR2Lr1q0mx0hISMA///yjtX/KlCn4+OOPDZ6vcePGmD9/Pm7cuIHvvvsO3t7eJuemz6lTpzTaLVq0sFgsWxMQEAB/f3+DxkqlUnzwwQcax6KionSek5aWhszMTHW7Vq1aaNiwoUHxnJ2dMXbsWIPGlpSXl1dqLltSWFio0fby8jL43Hr16mHo0KFmxS8uLsaaNWvUbalUipCQEIwbN07j/rR3717cvHnTqLmXL1+u0Z4zZ47Oe54tK3kvKHmvICKi/xkyZAi2bt2Kfv36wcHBweDzWrVqpbVPoVDg8ePHWvstvbao6A4ePIhr167pHBMeHo7Vq1ejTZs2cHFxgYuLCwICArBhwwZ88803VsrUevbu3YsLFy7oHLN48WLExsaiY8eOcHNzg6OjI1555RXMmzcP+/bt07kulclkWLlypc3FNsaePXswcuRIKJVKrWMCAwOxfft2nfkA5aOm0rx5c5w5cwbBwcGoVasW7O3tUatWLYwePRpJSUl49dVXdZ7//G9ya/P19cWCBQuQlpaGvXv34rPPPkOHDh3g6+sLBwcHODs7w8/PD6NGjcKBAwfw888/6/1dv2vXLhQUFFgsZ3PX7hs3bkSNGjXMymHw4MEabYVCgaNHj+o8x9bXp7YmJiZGoz1lyhSDz23fvr3O3xZiKlk/+fDDD2FnZ2fQuR4eHggNDdU4tm7dOpuKp4tSqURISAhWrFihcfyzzz5DWFgYJBKJ3jnEqi+VZOk6WllYmyAiEscff/yh957bpEkT/PXXX1i5ciW6d+8Ob29v2Nvbw93dHY0aNcKIESMQGxuLtLQ0hISEQCot/RiC2Hvjz3LQxdD6ilj7hGLWL8rLWl0I1tyDF1p53sM2hbXuX8+IeR0kJCTo3cdcunQp1q5dizfeeEN9/b/xxhuIiIgotadZEVTEmu+UKVN0fodFRkbq3IewNnPrXwsWLMDdu3c1jq1ZswYvvfSSWXm1bdsWCQkJqFKlSpn9Yjz/YE7NzZrPNIhV67Kl2pCpLPlcS0VQ8nM+ceJE1KpVS9AY1vycrV+/XqNtzO+3Hj164JVXXjF4fHljKzV11jGJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIlkjFTsDWyGQyeHt7QyKRaPz16NFD8FhKpVLn//Dc1dUV+/fvx7Bhw+Dj4wMHBwf4+fnh008/RVJSEmrXrm1W/AsXLujsb9OmDRITE5Gfnw+VSqXxN2rUqFLjk5OT8ejRI51zvvnmmzh+/DgKCgrw5MkT7NixA/7+/ma9Dlsm9HtcUl5eHqKioozK6c6dO9i/f79R55Tk4OCAbt26YebMmdi6dSsuXLiA+/fvo7CwEDKZDPfu3UN8fDxCQkJgZ2enc67o6GizcinL1q1b0bdvX639lSpVwqZNm0q957r+5s6dqzGHSqXCl19+qTWGRCLBjz/+iBMnTiAkJARNmzaFq6sr7OzsUL16dTRt2hSDBw/GokWLkJSUhMuXL+OLL75A9erVhXobtDpw4ABUKpW6HRAQAIlEYvG4tmL58uVwdHTUO+7DDz9Ey5Yt1e3CwkJERkbqPe/48eMa7YkTJxqU18KFC03+98/IyNBo161b16R5LCU1NVWj/dZbb8HDw0Pvefb29oiJiYGDg4PZOaxZswZyuVzdDgkJQWhoqMaY1atXGz1vdHS0xutr3LgxwsPDTU9URB06dNBoJyQkiJQJEZHtc3R0xKBBg7Bjxw5kZmYiPj4eX375JQYOHIhmzZrB29sbzs7OkEql8PDwQNu2bbFw4UIsWLBA65znz5+HUqnU2m/ptUVFp1KpsGTJEp1jJBIJQkNDcfr0aeTl5SEvLw/Hjx/H8OHDrZSldSmVSsyePVvvuBEjRuDIkSPIyclBYWEhLly4gFmzZsHZ2VnneatWrcLdu3dtLraxtmzZggkTJugc07NnT2zduhX29vZax5SXmkr9+vURFRWFe/fuoaioCPfu3UN0dDQaNGig87z09HRs3LjRSllqZ2dnhx49euD//u//cPToUdy+fRsymQxPnz7FtWvX8PPPP6Nr165655HL5Zg1a5ZFczV37T5gwABcuHAB7733nklr/tdeew1TpkzROHbw4EFkZmbqPM/W16e2Zs2aNRrf/3369EH//v31nufo6Ihly5ZZMjWzrFq1CkVFRep248aN8fnnnxt07qJFizTqIzk5OXrrMdaOp49KpcL777+P77//XuP4+++/jzVr1kAq1b8tI0Z9qSyWrqOVxNoEEZF4DPnudHZ2xqRJk7Bv3z6kp6ejqKgI2dnZuHr1KmJjYzFixAid3xti740DwtVXxNonFLN+UZ7W6uYSaw9eCOV5D9tU1rh/PSN2vSwsLEzn+RKJBOPGjcOpU6fU1/+pU6cQEhJSoZ4HeKai1XydnJzw/vvva+0vLi7G4sWLrZiRfubWv7KzsxEcHIzi4mL1MV9fXxw9elRvvVKbMWPG4NChQ6hWrZrWMWI8/2BOzc2azzSIVeuytdqQqSz1XEtFEBMTg7S0NHXb09MT0dHRgjxv9Iw1P2dr1qyBQqFQtzt16oTg4GC9cVxdXbF06VKDciqvbKWmzjomERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERER2RKp2AlUdBs2bNDZ37BhQ2zcuBF37tyBTCbDtWvX8N1338HT09Ps2CdPnoRCoTB7nmcUCgXWr18v2HwvAqHf47IsX74cKpXK4PHr16+HUqm0YEaGu3//PhYvXizonHZ2dnj77bcFnVObnTt3YtmyZTrHtGvXDhEREbh48SJyc3Mhl8uRkZGBixcvYsuWLZg+fTpat25tlXyfuX//Pv7++291u1q1anj11VetmoOY2rRpg40bN8LFxUXrmBEjRmDRokUax+bOnYuMjAy980dFRWm0P/zwQ3Tt2lXreKlUim+//RZTpkzRO7c2z/97AkDPnj1NnssSLl68iJs3b6rbHh4eCA8Ph52dndZzPD09sWvXLnTo0EGQHB48eIDt27er2z4+PqhXr566fe/ePezcudPoeRUKBUaOHAmZTKY+NnbsWMTFxaFq1aoGz1O9enXMmDED27ZtMzoHITg7O8Pf31/dzsnJwbFjx0TJhYiovKlcuTJ69uyJb775Btu2bUNycjLS09Px9OlTFBcXIysrC4mJifjkk09gb2+vdZ7Y2FidcayxtqjofvrpJ5w6dUrsNGxKXFwc1qxZI/i8Z8+exZdffmmzsY21du1aTJ8+XeeYfv36YdOmTVp/A7/oNZXJkyejsLBQ7DQEM2/ePFy5csWiMYRYu1etWhXr16/H+fPnMWzYMEilhpWC+/TpgwMHDsDBwUF9TKlUYubMmXrPtfX1qa25cuUKli9frnEsNjYWXbp00XpO5cqVsWHDBqvXk4xx//59zJkzR+PYf//7X0yaNEnrOVKpFPPmzcP48eM1jk+fPh05OTk2Fc9Qn332GebOnatxLCQkBDExMTprIoA49aWyWLqO9jzWJoiIxHXo0CH897//tXgcMffGAWHrK2LtE4pZvyhPa3Vzlec9+PK6h20qa92/nhHzOli2bBnOnTsneOwXWUWq+QYHB6N69epa++Pi4pCammrFjPQTov514MABTJ48WeOeXb9+fSQlJWHq1Kka9S1dmjVrhl27diEyMhKVK1fWOVaM5x/MqblZ85kGsWpdtlobMpalnmupCORyOUaPHo3i4mL1se7du2Pnzp2oWbOm3vPd3d0xe/ZsnZ8Za37Obty4Uaretnr1ap3PRFapUgW//vormjRponXMi8AWauqsYxIREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREZGtkYqdQEW3Zs0aXLlyxaRzMzMzsWnTJpNjP3r0CDt37jT5/LIsWrQImZmZJp37/fffC5qLLbDEe1zStWvXsGfPHoPHR0VFWS4ZI+Tn52PQoEF4+vSp2KmYZerUqdi8ebPYaRht27ZtGu2ePXuKlIn1yGQy/PrrrwCAAQMG4O+//8akSZNQv359ODo6onr16ujZsye2bduG2NhYVKpUSX3uiRMn8MMPPxgUZ/v27Th37py6bW9vjz179mDhwoV47bXX4OLiAmdnZzRs2BATJkzAP//8g5kzZwL49zvBFDt27NBoz5gxA9OmTYOfnx8cHR1NmlNo3377rUZ76NChSExMxIgRI+Dj4wM7OztUqVIFrVu3xty5c3Ht2jV0794dABATE4Pi4mKzc1i1apXWvrVr10KhUJg078mTJzF+/HiNHAcMGIBbt25h1apV6N+/P2rXro3KlSvD3t4eVatWRePGjTFgwADMmTMHx44dw4MHD/D999/Dz8/PpBzM9eabb8LBwUHd3rFjB+RyuSi5EBFVRMnJyVi+fLnOMdZYW1R0xcXFCA4ONnlNGxMTg+zsbIGzEt/kyZONWnPqc/PmTQQFBRm0FhQztrEWL16MefPm6RwzYMCAUmuN59lyTWXt2rUoLCw06dx169YhLi5O4IzEs2TJEr3/1kIRau3erFkzbNy4EXfv3sXatWsxcOBANGvWDF5eXrCzs4OnpydatWqFSZMm4c8//8SuXbvg5eWlMcesWbNw9uxZvbHKw/rU1nz55Ze4enXP+8wAACAASURBVPWquu3i4oL9+/dj7dq16Ny5M6pWrQpHR0c0aNAAkydPxj///IOBAwcCADZu3ChW2np9//332L9/v7otkUiwcuVK7N27F++88w5q1aoFBwcH+Pj4YPjw4Th27BhmzZqlMcfmzZsRERFhk/EM9fXXX2PGjBkax4YPH47NmzdrrMNLEqO+9Dxr1dGex9oEEZH45syZg/DwcIvGEHNvHBC+viLGPqHY9YvytFY3R3ndg3+mvO5hm8oa96/niXUdKBQKjB49Gjk5OSbFiY2NfSHrl7qIfc+0FqlUimnTpukcs3DhQitlYxwh6l+rV69GSEgIioqK1Mc8PT2xePFiXL9+HStXrkRQUBAaN26srod5eHigdevWeP/993HgwAEkJyejT58+Bse09vMP5tbcrPlMg1i1LlutDRnLUs+1VASHDx8uVYfr3r07rl27hiVLliAwMFD9OXB3d0eTJk3w3nvvITY2Fg8ePMDXX38NDw8PnTGs+Tn7+uuv8c8//6jbDg4O+P333xETE4MuXbqgatWqcHJyQsOGDfHRRx/h/Pnz6NatGwBgw4YNeucvz8SuqbOOSURERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERLZGKnYCFV1RURHefvttPHz40KjzMjMz0atXL1y7ds2s+J9++iny8vLMmuN59+/fx7hx46BQKAw+R6lU4tNPP8WCBQsEy8OWCP0el2XZsmUGjTt69ChSUlKMmjstLQ1yudyUtLS6ffs2+vbtixMnTgg6rxiUSiWGDRuGadOmoaioSOx0DPbzzz9DpVKp24MGDRIxG+sZM2YMzp49CwDw8/PDypUrkZqaisLCQmRkZCA+Ph4DBw7UOOfMmTPo06ePwfc1hUKB9957D5mZmepjDg4O+OSTT3Du3Dnk5eXh6dOnSElJQXh4OJo1awYAWL9+PT7//HOTXld8fLz6dQGAs7MzfvjhB1y7dg2FhYVQqVQaf23atNE759ChQ0udZ8xfr169NOaLiIjApk2bNI61atUKsbGxuHPnDuRyOTIzM5GUlIQ5c+bAy8sLALBv3z6Ehoaa9L6UdOjQIVy6dKnUcaVSiYiICLPmjomJQa9evfD48WP1MRcXF0ycOBHbt29HWloa8vPzUVRUhEePHuHy5cuIi4vD3Llz0b59e0il4v4kGzx4sEY7OjpapEyIiCqeCxcuoG/fvpDJZHrHWmNtUdFdvnwZ3bp10/gtZ4gtW7Zg3LhxkEgkWscolUpz0xOFQqHA22+/jW+++cbs17Bz5060bt0ad+/etfnYppg9e7be9fm7776L6OjoMn//2XJN5eTJkwgKCjL6HhQbG4sJEyZYKCvrys3NxeTJkzF16lSrxRR67V6zZk2MGzcO27ZtQ3JyMh4/fgy5XI4nT57gzJkzWLlyJTp16qRxTlFREaZPn27wZ8wS69MXXV5eHgIDA5Gamqo+JpVKMW7cOBw+fBiPHj1CYWEhrl+/jhUrVsDPzw8AcOLECUyaNEljLlNreELXAIB/709BQUH4/fffNY736NEDv/76K+7duweZTIY7d+5gw4YNaNeunca49evXY+TIkQa/BmvHM8aiRYswefJkjet5wIAB+O233+Ds7FzmOWLUl0qyRh3teaxNEBHZhokTJ2LcuHEWqz+IvTcOCFtfEWufUMz6RXlbq5vDknvwllZe97DNYen71/PEvA6Sk5PRo0cP5OTkGBVn27ZtGDt2rCkplnsVoebbv39/vPzyy1r7Dx8+jNOnT1sxI8MJVf+KjIxEx44dceHCBY3jvr6+mDRpEn777TdcvnxZXQ/LyspCUlISwsLC0LVrV41zcnJy8MUXX2D79u1a41n7+Qcham7WeqZBrFqXLdeGjGHJ51pKMrcmaEr9x9J+/PFHjBkzRuP3j4uLCz766CPs379f/TnIzs7GpUuXsH79eowYMUJrja4ka37OCgsL0b1791Kfh5EjR+LgwYN49OgRCgoKkJKSgiVLlsDX1xcAcOzYsVLX0otG7Jo665hERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERka6RiJ0BASkoKWrdujSNHjhg0/vDhw2jTpg1OnTolSOwePXogLS3N7Lme2b59O4KCgnDv3j29Y69du4YePXpg4cKFgsW3NZZ4j0vat28frly5ondcVFSU0XMvXrwYNWrUwNixY/Hbb78hMzPThAz/lZGRge+++w6vvPIKDh8+bPI8tkalUuHHH39EixYtEB4ejqdPn5o0T1ZWFjZv3ozhw4dj5syZAmep6datWzh48KC67e/vj9q1a1s0pi3IycnBW2+9hZiYGL1jVSoVVq1ahS5duiArK8uoOBcuXEDHjh2RnJysd2x+fj6mT5+O4OBgKJVKo+I8o1QqMXDgQJw9e9ak861BpVJh1KhR+O6771BcXKx3fFFREebPn4++ffuisLBQsDx++umnUsfi4+MFuUfv378fzZs3x7Jly1BQUGD2fNZiZ2eH/v37q9u3b9/GgQMHRMyIiKhiyMnJwdy5c9GuXTuDv4essbYg4OzZs2jTpg0SEhL0js3Pz8eMGTMwdOhQKBQKuLq6ah1rzlpKbMXFxfjqq6/g7++PrVu3Gv27NSkpCe+++y6CgoLw5MmTchPbFB9//LHetffIkSMREREBiURSqs+WayoJCQlo27atQfWo3NxcfPTRRxg9erRBv/8t5ZNPPsGYMWOwe/duk9cVWVlZWLFiBZo1a4ZVq1YJnKFu5qzdW7RogS+++AKnT582aa0pl8sRFxeH5s2bY/HixQafVx7Wp7bozp07CAgIwKZNm/SOValUiIiIQGBgIFQqlUZfdna2pVI0SUFBAQYOHIgPPvgADx8+NOicu3fvYty4cRgzZgwUCoVNxzPGqlWrMG7cOI17Yq9evbBr1y6tvx+sXV8qyVp1NIC1CSIiWxMZGYlmzZph8eLFRv++SExMxDvvvIPr169rHSPm3viz+ELWV8TaJxSzflHe1uqmsuQevDWUxz1sc1n6/vU8Ma+DxMREtGnTBocOHdI7tqCgADNnzsSQIUMgl8uNivMiedFrvp988onOflt+JkvIZ1dOnz6N1157DaGhobh48aLR59+8eRNff/01GjVqhAULFuisJ1r7+Qeham7WeqZBrFqXLdeGjGHJ51oqgujoaLRp0wY7duywyPzW/JxlZGSgY8eOiI6O1jtWpVJh9erV6N69u8m/+8oTse4zrGMSERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERGRLbITOwH61+3bt9G5c2cEBgZi+PDh6NChA1566SU4OTnh4cOHuH//Pg4fPowtW7YgMTFR0NgnTpxAo0aNMGTIEPTp0wetWrVCjRo14ObmBjs70z4ie/bsQaNGjRAcHIy+ffuiRYsWqFatGhQKBe7cuYO//voLGzduRHx8PORyuaCvxxZZ4j1+nkqlwvLlyxEWFqZ1zNOnT7F582aT5s/MzERUVBSioqIgkUjQrFkzBAQEoGnTpmjYsCEaNGgALy8vuLq6onLlypDJZMjNzUVWVhZSUlLw119/4fjx40hISIBCoTD1Zdq8K1euYOLEiZg5cyYCAwPRvn17tG3bFjVr1oSnpyfc3d0hl8uRn5+PzMxM3LhxA9evX8f58+dx7NgxJCcnQ6lUWi3fJUuWIDAwEAAgkUgwZswYzJs3z2rxxZKbm4v33nsP33zzDUaOHInu3bvDx8cH3t7eyMnJwe3bt5GQkICYmBgkJyebHOfixYto2bIlBg8ejHfeeQf+/v7w9vaGnZ0d7t27h9TUVMTFxWHTpk148uSJ2a/r1q1b8Pf3R58+fTBgwAC0bNkStWvXhpubGxwdHc2eXwgKhQKff/45wsPDMX78eHTp0gWNGjWCh4cH8vLykJ6ejtTUVPz+++/49ddfkZGRIXgOMTExWLJkCSQSifpYeHi4YPPfv38fH330EebNm4fevXuja9eueP3111G9enVUrVoVAJCTk6P+e/z4MS5duoTk5GT1n7X1798f1apVU7fDwsKsei8iIiqPNmzYgKNHj6Jhw4Zo1KgRGjVqhIYNG8Lb2xtubm7qP1dXVxQXFyM/P1/92/jixYs4cOAADhw4gMLCQqNjW3ptQf9KTU1Fjx498NZbb6nX6D4+PnB0dMT9+/dx/fp1xMXFYcuWLXj8+DEAwNvbG1KpVOucDx8+tFb6FpOUlIQhQ4agTp066N69Ozp16oSWLVuiWrVq8PLygp2dHTIzM/HkyROkpKTgyJEj+OOPP5CUlFSuYxtDpVJh/PjxcHd3x8CBA7WOGzt2LORyOSZOnAiVSqXRZ8s1lUuXLqFdu3bo2LEjhg8fjvbt2+Oll16Ch4cH0tPTcf36dWzfvh2//PIL0tPTrZpbWbKyshAdHY3o6Gg4OjrijTfeQPv27fHKK6+gQYMGqFOnDtzd3eHi4gKJRILs7GxkZWXh1q1bSEpKQmJiIuLj41FQUCDaazB17X716lUsWLAACxYsQJUqVdCxY0e0a9cOTZs2RaNGjVCjRg24u7vDzs4OeXl56vXwP//8g6SkJGzfvt3ktWp5WJ/aooyMDAwbNgyLFy/GyJEj0aVLF/j4+MDFxQXp6em4c+cO9u7di9jYWFy/fh0AUL16dY05srKyxEhdp+LiYixfvhzR0dEICgpCnz598Nprr8Hb2xseHh7IyspCeno6zpw5g927d2PHjh1mXXPWjmeMqKgoFBQUICYmRv27rUuXLti3bx969+6N7OzsUudYu75UkrXqaKxNEBHZnrS0NEyfPh2zZ89W73n5+/vDx8cHnp6eqFKlCgoLC/Ho0SMkJyfj+PHj2LZtG65evWrQ/GLujQOWqa+IsU8odv2ivKzVTWXpPXhrKW972Oay9P2rJLGug5SUFHTt2hVdu3bF8OHDERAQoHH9p6amYvv27di8efMLUZcUgtj3TEsJCAhA+/bttfZfvHgRu3fvtmJGxhPy2RWFQoGIiAhERESgZcuW6N27N9q2bYuXX35ZXWdRqVTIysrC48ePceXKFSQmJuLo0aM4duxYqVqtvljWfP5BqJqbtZ5pEKvWZcu1IUNZ+rmWiuD8+fMICgrCq6++ir59+yIwMBD169dH9erVUblyZWRnZyMzMxOZmZm4du0aEhMTkZiYiHPnzhk0vzU/Z0+ePMGYMWOwdOlSjBo1CoGBgfD19YWrq6v6WoqPj0dsbCxSU1MBoMLsGYtxn2Edk4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiGyRRKVSqfQNio+PR+/eva2RDxGZyM3NDXfu3IG7u3uZ/evXr0dwcLCVsyJbJpFIcPHiRTRp0gQAkJaWhvr160OpVIqcmXCe/4qTyWRwcnISMRuyBX379sXOnTvV7bt376Ju3booLi4WMStx7du3D927dwcA5OXlwdfXF9nZ2SJnZbqmTZvi4sWLYqdR4bm7uyM3N1fsNIiIrKpPnz7YtWuX1v7vvvsOn3/+uRUzIjJcv379sGPHDq39oaGhiIiIsGJG9ExFWLuT6Xr37o3du3er29u2bcPgwYNFzIjKMzHraC9abYLIVGvWrMH48ePFTqNCi4iIQGhoqNhpEFkU6xfG4R48UcXGe6Z1sP5Fz7DW9S8+10JkOebeZ1jHLJubmxtycnI0jtWpUwe3b9/WODZkyBBs3rwZADB9+nQsXry41FzP6tQnTpxA+/btS/Vv3rwZQ4YM0RojICAAJ06cKHXe8ePHERAQAODf3x4lTZs2DT/88IPW10hERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERGTDtkjFzoCIhJGbm4tHjx5p7Y+KirJeMlQuqFQqzJ8/X92uU6cO3nnnHREzIrK80NBQjfbatWtRXFwsUjbia9q0Kbp166Zuh4WFITs7W8SMiIiIyq9hw4bp7D948KCVMiGiFwnX7qTLW2+9pdFOTEwUJxEiM7A2QUREZF2sXxiHe/BEFRvvmdbB+hc9w1rXv/hcC5HlmHOfYR2TiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIbJVU7ASISBitW7dGgwYNyuy7ceMG/vjjD+smROXChg0bkJycrG7PnDlTxGyILMvHxwf9+vVTtxUKBSIiIkTMSHyff/45JBIJACArKwvff/+9yBkRERGVT6+//jqGDh2qtb+goAB//vmnFTMiohcJ1+5UFicnJ4wdO1bj2OHDh0XKhsh0rE0QERFZD+sXxuMePFHFxXumdbH+Rax1/YvPtRBZjrn3GdYxiYiIiIiIiIiI/p+9u4+t6q4fOP7p4aZCmgHyJK4VZNM2gW2i7g+X2iU45oyZjzzZRpkymkGmw4dEWcQEfBpdmJpFk3Uhm9tiMGzGxbJE51yyBJWRTQfRVpgz2ZhUirAC6xCQ9vfHL6viVjjteu/39vb1SvrHfTrnfbObs+/5nJMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSrLHUAMDo2bNgw5Gt33XVXDAwMlLCGsaK/vz9uvfXWwcdXXnllXHfddQmLoHi++MUvxoQJEwYf/+xnP4sDBw4kLEpr3rx50dLSMvj4tttui97e3oRFAJDe9OnT4/HHH4/rr78+sizfyOTd7353PPzww1FdXT3ke7Zu3Rr/+te/RisTGGecu/N6tmzZEjNnzhx8/Mwzz8Tu3bsTFsHwmU0AwMiYX5SOa/Aw9jlmjg3mX5h1/T/3tUDxvJHjjDkmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5SxLHQCM3KRJk+I973lP3H///fHxj3/8dd/T19cXW7duLXEZY8mOHTvikUceGXy8efPmqKqqSlgEo6++vj4+//nPDz4eGBiItra2hEXpfec734lCoRAREfv27Ysf/OAHiYsAIL2qqqpYtGhRdHR0RHd3d9x9992xcuXKuOKKK2LGjBlRKBSipqYm5s6dG5/85CfjJz/5SezevTvmzJkz5DZPnDgR3/rWt0r4LYBK5Ny9st1xxx3R2toa1dXVF3xvdXV1fP/734+bb775nOfH+zkuY5PZBACMjPlFcbkGD5XFMXPsMP+qHGZdI+O+Fsiv1McZc0wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKWSF1ADA8d911V9x00025379ly5Y4evRoEYuoBLfccktcc801MXHixFi4cGF8+tOfjgceeCB1Frxhs2fPjg984AOxefPmmDhx4uDz27Ztiz/+8Y8Jy9J673vfG5/61KcGH3/hC1+I06dPJywCgPIza9asaG1tjdbW1hFvo7+/P1avXh2HDx8exTJgvHLuXrnmzp0bX/7yl+O2226L7du3x+OPPx5/+MMfoqenJ06dOhVvfvOb453vfGcsWrQobrrppqirqzvn89u2bYuf/vSniephZMwmAGB0mF+MDtfgYXxwzCx/5l+VwaxreNzXAsNXyuOMOSYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADlrpA6ACieffv2xe233546gzHgb3/7W0yaNCl1BoyKb3/72/H1r399yNd7enriS1/6UgmLys/TTz8dWZalzgCAijYwMBC33HJLbN++fcjXi6Gqqqoo24XR5Pc/Ms7dK9/06dNj7dq1sXbt2tyf+fnPfx6tra1FrILiMJsAgPJwofkFrzXSa/DOhWHsM/MtPvOvymLWNTT3tcDoKMVxxhwTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAcudf44YK9dJLL8Xy5cvjlVdeSZ0CUDYOHz4cH/7wh6Onpyd1CgBQwV544YVYvHhx/OhHP0qdAkCFOnjwYKxbty6WLFkSfX19qXMAABiDzC+GzzV4GL8cM6G4zLr+w30tUByOMwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSqQuoAYPR1dnZGc3Nz7N27N3UKQHInTpyI/fv3xyOPPBJ33nlnHDlyJHUSAFCh/vrXv8bdd98d7e3tcfz48dQ5AIwRq1ativvuuy/e9773xWWXXRZ1dXUxZcqUmDp1akyePDnOnDkTR48ejUOHDsWuXbviiSeeiF/84hdx6tSp1OkAAIxB5hcj4xo8jE+OmTB8Zl3D574WGB7HGQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPiPQuoA4I07efJk9PT0xNNPPx0PPfRQPPTQQ3HmzJnUWZBcVVVV6gQS2LBhQ2zYsCF1BgAwBv3zn/+M2trauOKKK+Lyyy+Pyy+/PC655JKYOnVqTJkyJSZPnhw1NTXR19cXx44di5deeim6urpi9+7d8fvf/z527doVAwMDqb8GDNuOHTucP0FCx48fj46Ojujo6Eidwjjm/wMAMHaYX5SGa/BQGRwzofTMui7MfS3wxjjOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwH8UUgcAw7NmzZpYs2ZN6gwAAICKdPDgwTh48GD88pe/LOp+qqqqirp9KGd+/wAAAG9MqeYX40UprsE7F4Z0zHwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhUWeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8slSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBPljoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAfLLUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOSTpQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgnyx1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPlkqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIJ0sdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQD5Z6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkE+WOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB8stQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5JOlDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCfLHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+WSpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgnSx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAPlnqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPLJUgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQT5Y6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyy1AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkk6UOAAAAiqOrqyt++9vfxsDAQOoUAAAAAMjlL3/5S+zcudNMCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOI0sdAAAAFMczzzwT73//+2Pu3Lmxbt262LlzZ+okAAAAADivvXv3RlNTU8yZM8dMCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGkKUOAAAAiuvAgQNx5513RlNTUyxYsCA2btwYzz77bOosAAAAABjSiy++ODjTmj9/fmzcuDH279+fOgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAykKWOgAAACidzs7O2LRpU9TX18eCBQuira0turu7U2cBAAAAwJC6urpi06ZN0dDQYKYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRpQ4AAADS6OzsjPXr18fb3va2+OAHPxj33ntvHDt2LHUWAAAAAAzpv2da1157bdxzzz3R29ubOgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASipLHQAAAKR19uzZ+PWvfx2rVq2Kt7zlLfGRj3wk7r///ujr60udBgAAAACv6+zZs/HYY4/FjTfeGLNnzx6cab388sup0wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg6LLUAQAAQPk4depU7NixI2644YaYOXNmLF++PDo6OuLMmTOp0wAAAADgdf33TGvWrFlmWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUvCx1AAAAUJ5OnjwZDz74QZsGsQAAIABJREFUYHz0ox+N2bNnx8qVK+Oxxx6LgYGB1GkAAAAA8LrMtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYD7LUAQAAQPk7evRoPPDAA3HttdfGvHnz4tZbb429e/emzgIAAACAIf3vTGv9+vWxZ8+e1FkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8IZlqQMAAICx5fnnn4/NmzfHu971rliwYEFs3Lgxnn322dRZAAAAADCk559/Ptra2mLhwoWDM639+/enzgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEclSBwAAAGNXZ2dnbNq0Kerr62PBggXR1tYWAwMDqbMAAAAAYEivzrQaGhoGZ1rHjh1LnQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuRVSBwAAwGj5+9//HsuXL0+dUTZeeOGFku6vs7Mz1q9fX9J9AgAAAFSC9vb2ePTRR1NnlIUDBw6UdH+vzrSyLCvpfgEAAADGupMnT77mXq0jR44kqgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABh/CqkDAABgtBw/fjwefPDB1BkAAAAAMCxPPfVUPPXUU6kzxrX+/v7UCQAAAABjyr///W/3agEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSUpQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgnyx1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPlkqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIp5A6AAAARkt1dXXU1dWlzigbL7/8cvT09KTOAAAAAOACZs6cGRdddFHqjLLQ19cXhw4dSp0BAAAAwAVkWRZvf/vbL/i+WbNmFT8GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgHCqkDgAAgNFy6aWXRmdnZ+qMsrFt27ZoaWkp2f4mTpwYixcvjt/85jdx8uTJku0XAAAAYKz77ne/G6tXr06dURa2b98eK1asKNn+Xp1p1dbWRnt7e8n2CwAAADDW1dTUxHPPPZc6AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYNzKUgcAAABj14QJE2Lx4sVx3333RU9PT3R0dEShUEidBQAAAABDer2Z1pVXXpk6CwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAByK6QOAAAAxpYsy+Lqq6+O5ubmWLp0aUybNi11EgAAAACcV5Zl0dTUNDjTmj59euokAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABixQuoAAABgbJg/f34sW7Ysbrjhhpg3b17qHAAAAAC4oFdnWitXroxLLrkkdQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjIpC6gAAAKB81dfXR0tLSzQ3N0d9fX3qHAAAAAC4oPr6+mhubo7m5uZoaGhInQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo66QOgAAACgvtbW1sWTJkli2bFk0NjZGVVVV6iQAAAAAOK+LL744li5daqYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLhQGK0NNTQ0RJZlo7U5AACG4bnnnovTp0+nzmAMmzZtWixdujRaWlqiqampqGv7t771rTF16tSibR8AqAzd3d3R29s75Os1NTUxZ86cEhYBAIzcvn37or+/P3VGxZk2bVosWbIkWlpa4uqrry7qTCvLsmhoaCja9gGAytDf3x/79u0773vmzJkTNTU1JSoCABi53t7e6O7uTp0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAEAqjtaEnn3wypkyZMlqbAwBgGObPnx9dXV2pMxhjJk2aFNdcc02sXLkyPvaxj0V1dXVJ9vvNb34zVq9eXZJ9AQBj14033hj33HPPkK83NjbGr371qxIWAQCM3OTJk+PEiROpMyrCxIkTY/HixSWfadXU1ERnZ2dJ9gUAjF3Hjh2LqVOnnvc97e3t8aEPfahERQAAI7d169ZobW1NnQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAQCqkDAACA0pkwYUIsWrQoPvOZz8QnPvGJuOiii1InAQAAAMB5mWkBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLkKqQMAAIDiyrIsrrrqqli2bFk0NzfHrFmzUicBAAAAwHmZaQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA0AqpAwAAgOKoq6uLO+64I1asWBG1tbWpcwAAAADggmpra2PLli2xYsWKqKurS50DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGWpkDoAAAAojqampmhqakqdAQAAAAC5NTY2RmNjY+oMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAChrWeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8slSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBPljoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAfLLUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOSTpQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgnyx1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPlkqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIJ0sdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQD5Z6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkE+WOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB8stQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5JOlDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCfLHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+WSpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgnSx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAPlnqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPLJUgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQT5Y6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyy1AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkk6UOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8sdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5ZKkDgNG1ZcuWqKqqGvzr7e1NnUQJPfHEE+f893/173vf+17qNHhDPvvZz77md11TUxMvvvhi6jQAKoz19PhmPU0lspaG8c3aZnyztqESWdsADM3ab/yy7qNSWfvB+GVdM75Z21CprG0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAohix1QKX585//HLfffntcd911MX/+/JgxY0a86U1viosvvjgWLlwYK1asiB//+Mdx6NCh1KlAhTl79mysW7fuNc/Pnj071q5dm6AIRs83vvGNKBQK5zz3yiuvxFe/+tVERQBApbGeplJZS6djTgikZG1DpbK2AYBzWfdRyaz90jDTAlKytqGSWdsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQDFnqgEqxa9euaGpqissuuyy+9rWvxaOPPhpdXV1x5MiROH36dHR3d8eePXti+/bt8bnPfS5qa2tjzZo18Y9//CN1OlAh7r333tizZ89rnv/KV74SkyZNOu9nf/jDH0ZVVdWQf5MnT47Dhw/n6qirqxtyO729vSP6bpSv06dPR2dnZzz88MPR1tYWq1atisbGxpgxY8aQv4NCoTDs/Vx66aXR0tLymue3bdsWTz755Gh8FWCc+dOf/nTOsWnp0qWpk4DErKcpNWvpymVOCJSDka5trGsYKWsbKA0zLeB/mWmRgrVfZTLTAsqBtQ3l6He/+10UCoXz/r527Nhxwe1Y2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAMWeqAse7s2bNx8803x1VXXRU7d+4c1ufa29vjHe94x/+xd+fRUdb34sc/CRAEWUUURa0UK8Vdsb2Cioooitqi1hVbvbJotVjQX9GKbW/F9Yq7t4qKeLHuWr2iFQu0igq1Ku67IFaUfReFBJjfHz2mhmQmM8kzmSS8XufMOXm27/Md8iTzPt/ak3jkkUfyOMPc3X333RX+IPvHH39c6CnVqU39/dMwlZaWxujRoyvtb9WqVQwZMqTW469atarK8eG8886LXXfdNY499ti46KKLYvz48TF9+vRYsmRJ4vcaMWJElft/85vfJH4vAGpOT9MQ6WkKQUs3PtYJGyf/BjRE+WwbXUM62gZoDLQfDY01LQpF+zUujXFNK8Ln+qb+/mmYtA310cqVK+O0006L9evXJzKetgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBpxYWeQEP21VdfxbHHHht/+MMfKuzfeeedY/To0fHKK6/EggULYu3atfHZZ5/FX//61xg2bFhsscUW5eeuXr06TjrppLjxxhvrevpAIzJu3Lj45z//WWn/GWecEW3btk3kHmPHjo3Zs2cnMhbUxF577RUHHXRQpf2TJ0+OF154oQAzAgAaCz1NY6el8886IVCf5LttdA2Fpm0A4F+sabEp0H75ZU0LqE+0DfXRueeeG5988kli42kbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAklZc6Ak0ZEOGDImJEyeWbzdt2jSuvPLKePvtt+OSSy6JHj16xFZbbRUlJSWx3XbbxSGHHBI33XRTvP/++3HyySeXX7dhw4YYPnx4PPLII4V4G0ADt2HDhrjuuuuqPDZo0KDE7lNaWhqXXHJJYuNBTaR7pseMGVPHMwEAGgs9zaZCS+eXdUKgvqiLttE11AfaBoBNnTUtNiXaL3+saQH1hbahPnrwwQfjj3/8Y+LjahsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSVFzoCTRU48ePj/vuu698u2nTpvHAAw/ERRddFM2aNct4bceOHeP++++Pc845p8L+IUOGxKeffpqX+QKN18SJE+Pjjz+utH+vvfaKvfbaK9F7PfDAA/Haa68lOibk4vjjj4/WrVtX2j9x4sSYPXt2AWYEADR0eppNhZbOH+uEQH1SV22jayg0bQPAps6aFpsS7Zcf1rSA+kTbUN/885//jLPPPjsvY2sbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAklRc6Ak0RKtWrYoRI0ZU2HfFFVfE8ccfn9M4t9xyS/Tp06d8e/ny5XHBBRckMkdg03HnnXdWuf8nP/lJ4vdKpVJx4YUXJj4uDVfz5s2je/fu8eMf/zhGjhwZ48aNi+effz4WLlwYm2++eeL3a9myZfTv37/S/g0bNsT48eMTvx8A0PjpaQpFSzcO1gmB+qau2kbXsDFtAwB1y5oWhaT9Gj5rWkB9o22oTzZs2BA/+9nPYvny5RX2N2/ePJHxtQ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJKi70BBqiO+64I1asWFG+vffee8f555+f8zhFRUUxduzYCn8M/bHHHotZs2YlMs/6IpVKxV/+8pc46aSTonv37tGqVato37597LHHHvGrX/0q3nnnnUJPsV5YtmxZ/OEPf4gBAwZE165do23bttGsWbPo0KFD7LbbbnHGGWfEAw88EGvWrKnxPWbOnBlnnXVW7L777tG2bdto3bp1fO9734tBgwbFCy+8UKMxP/vss7j++uvjuOOOi65du0br1q1js802i86dO0fPnj3joosuipkzZ9Z4zt/I53OUSqVi0qRJMWzYsNh7771jm222iebNm8eWW24Zu+++e5xzzjkxZcqUWr+HfFi0aFFMmjSpymMDBgzIyz0nT54cU6dOzcvYG3v++efjd7/7XfTt2ze6du0a7du3j2bNmsWWW24ZO++8cxxzzDFx9dVXx5tvvpmX+y9cuDCuuuqq2G+//WLrrbeOzTbbLLbbbrs45phjYvz48bFu3boaj/3SSy/FZZddFv369YuddtoptthiiygpKYmOHTvGLrvsEgMHDoy77767wudNfXTjjTfGu+++G48//nhcffXVceaZZ8YBBxwQHTt2zNs9jz322Cr333vvvZFKpfJ2X4B08tFY36anq1cXLR2hpzONraezp6dr39Nauua0dPKsE+ZO21RP21RP21StrtumLrsmQttom8q0DdSeda3C036Z6b6qNfY1rQjtp/0q037JsqaVO11TPV1TPW1TtcbeNrqmfndNVa666qp47rnnKuz74Q9/mOjzqG0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABITCoLTz/9dCoiMr6WL1+ezVCNwo477ljhvd977721Gu+UU06pMN7w4cPTnvvjH/+4/Lw999wz63s8/PDDFe7x1ltvVTpn8803r/b7vPHrnnvuKb/+mmuuqXBs2bJlqfnz56cOOOCAjGM0bdo0deGFF6bWrVtX7fuoz++/Nm6//fZU27Zts7rnFltskbr++utTpaWlVY5V1fdh9erVqVNPPbXasQcNGpTV9yGVSqWeeeaZVN++fVNFRUVZzfu4445LLVmypNpx6+I5+ra//e1vqb333jur93DQQQelPvroo5zGz7c777yzyrl27tw5p3FuvvnmnJ79Hj16pDZs2FDlWJ07d0573bJly7Kaz6OPPpraa6+9cppT3759Uy+++GJW4/fr1y/tOPPmzSv/N2nZsmXGe+66666pTz75JKt7fuOpp55K/cd//EfW76tdu3apSy+9NLV27dqc7lMfpPu92qRJk1qNu3jx4rS/e1555ZWEZt/wdO/ePefPscb46t69e6G/FaRSqdatW2f8Pt1xxx2FnmLqrbfeqjCn448/PuP5ddFYerpmkmzpVEpP6+l/vfR0ZoXqaS296bX0mWeemfF7fPjhhxd6itYJv/Xa+HNd29SMtql+/tomvSTapr51TSqlbb55aZvKGlrbNIT1kk3dHXfckfF71Lp160JPMec1rVTKupb2axjtp/ty01jXtFIp7ffNS/tV1pDab/ny5dV+j59++umCzrGQa1qpVP3+XNc1NaNrqp+/tkmvsbaNrvnXq6F1zcsvv5xq1qxZhffQqlWr1Mcff5waOHBg2vc5ceLEnO7TkNomH+sl559/fpVjfWP69OlVHn/ooYfKz9l+++0rHe/Zs2eV102fPr38uqqOn3/++bX7RwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACich4qDnHz00UcxZ86c8u127drFcccdV6sxBw8eXGF78uTJtRqvvli5cmUccsgh8cILL2Q8b926dXH11VfHT3/601i/fn0dza7+GDNmTAwdOjRWrFiR1flLly6NESNGxHPPPZfV+WvXro0jjjgi7rvvvmrPHTduXPz85z+v9rz58+dHv379YsqUKZFKpbKax5/+9KfYf//9Y8GCBVmd/418Pke33npr9O3bN1577bWszn/uueeiV69e8corr2Q875ZbbomioqLy19lnn53V+DXx9NNPV7n/oIMOSuwexcWVPypeffXVePDBBxO7xze+/vrrGDx4cBx//PHx+uuv53TtlClTonfv3nHFFVdk/VymM2zYsBg2bFh89dVXGc975513onfv3rF8+fJqxywtLY3zzjsvjjrqqHjppZeynsvy5cvjt7/9bRx88MExf/78rK9rzDp06BC77rprlcfS/UwAJC0fjbUxPV29fLd0hJ7ORE9nR0+nl21Pa+nkaOlkWSfMjbapnrapXkNrm7rsmoj8t01ddk2EttmYtqlM20DNWNeqH7RfZg2t+yKsadWW9qtI+1Wm/ZJjTSs3uqZ6uqZ62iazxtY2uqaihtQ1q1evjoEDB0ZZWVmF/TfffHN07do10XtpGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJS+a+5k9Hzzz9fYbtXr16x2Wab1WrM/fffP5o1a1a+/e6778bSpUtrNWZ9cN5558V7770XxcXFMXTo0JgxY0asWLEiVq1aFS+//HIMGzYsmjRpUn7+/fffH1dccUUBZ1z3Zs2aFaNGjSrfbt68eQwfPjymTZsWixYtirKysli1alV8/PHHcf/998fPfvazaNGiRU73GD58eDz//PNRUlIS5513XsyYMSOWLVsWX3/9dbz99ttx/vnnV/g+3HHHHTFt2rSsx+/Zs2eMGTMmXnjhhZg/f36sXbs2Vq5cGW+++WZce+21scMOO5Sf+/7778eQIUNymn++nqMJEybEOeecE+vXr4+IiGbNmsXpp58ekyZNigULFkRpaWksXrw4Jk2aFAMGDCi/btGiRTFgwIBYvHhxTu8jX5599tkq9//Hf/xHYvc46aSTonnz5pX2X3LJJVFWVpbYfTZs2BAnnnhijBs3rsZjrF+/PkaNGhW/+c1vajzGpZdeGrfcckvW53/22Wdx4YUXZjwnlUrFT3/607j55ptrPK8ZM2bEQQcdFCtWrKjxGI1Jumf8r3/9ax3PBNhU5buxIvR0deqipSP0dDp6Ont6OrPqelpLJ09LJ8c6YW60TWbaJjvaJrN8t01ddU2EtslE21SkbSB31rUKT/tVT/dl1pjWtCK0XybaryLtlwxrWrnRNZnpmuxom8waU9vomvQaQtcMHz48Pvzwwwr7TjjhhDjjjDPycj9tAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQBKKCz2BhuaVV16psP2DH/yg1mM2b948dt999/LtVCoVr776aq3HzdWXX34ZqVQqxo8fX2H/Rx99FKlUqsrXaaedlna8//u//4uSkpKYOHFijB07Nvbbb79o06ZNtGrVKvbdd9+46aabYvLkydGiRYvyay677LL44IMP8vYeM0n6/Wfj/vvvj9LS0oiIKC4ujkmTJsX1118fBx54YGy55ZbRtGnTaNWqVXTt2jVOPvnk+N///d/4/PPPY/jw4VFSUpLVPR544IHo2LFjTJ8+PW688cbYb7/9ol27drHZZpvFrrvuGtdee23ceeedFa65+eabM45ZVFQUAwYMiHfeeSemT58eF1xwQey///6x9dZbR0lJSbRu3Tp23333OP/88+Ptt9+OI488svzaiRMnxrPPPpv1v1E+nqMPP/wwfv7zn5dvb7PNNjF9+vS4++67o1+/frHVVltFs2bNokOHDtGvX7947LHH4s4774yioqKIiPj888/jV7/6VdbvIV9mz54dS5YsqfLYt3+n1NYOO+wQ55xzTqX9s2bNittvvz2x+1xyySXx5JNPJjLW5ZdfHo8++miNrr311ltzvmbChAmxbNmytMcvu+yyeOihh2o0n2/78MMP42c/+1mtx2kM0j3jr776aqRSqTqeDbApykdjbUxPZ1YXLR2hp6uip3Ojp6uXqae1dPK0dHKsE+b2ua5tMtM22dE26dVF29RV10Rom+pom3/TNpA761qVab9/qy/tp/vSa2xrWhHarzra79+0XzIa85pWhP/+Tdf8W33pmghtk0ljaxtdk1l97prHH3+80u+R7bbbLsaOHZu3e2obAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAklBc6Ak0NAsXLqyw/d3vfjeRcbt06VJhe9GiRYmMW2hXXXVV9O/fP+3xQw45JG644Yby7dLS0grbjd2bb75Z/nWvXr3i4IMPrvaa9u3bx/XXXx+9e/fO6h5FRUVx3333RY8ePdKec8YZZ8QBBxxQvj1x4sQoKytLe/7WW28djz32WOyyyy7V3r9169bx8MMPR+fOncv33X777VnN/RtJP0ejR4+Or776KiIimjVrFn/+859j3333zTiHQYMGxfnnn1++fe+998bcuXOzfQt58cYbb6Q91q1bt0TvNWrUqGjbtm2l/Zdeeml8+eWXtR7/s88+i+uuuy7t8U6dOsUdd9wRX3zxRaxduzZmz54dl19+ebRs2TLtNSNHjox169bVeE5Dhw6Nt956K9asWROzZ8+Os846K+25a9asicmTJ1d5bN68eXHllVemvXaXXXaJZEmgAAAgAElEQVSJBx54IObPnx+lpaUxZ86cuOKKK2KzzTar8vwnnngipk6dmtubaYS6d+9e5f6VK1fG7Nmz63g2wKYoH41VFT2dXl20dISeroqezp2erllPa+n80NLJsU6YO22TnrbJnrapWl21Tb67JkLbaJvcaBvInXWtwtN+2dF9VWtMa1oR2k/75Ub7JcOaVu50TXq6JnvapmqNqW10TcPtmnnz5sXgwYMr7CsuLo577rkn2rdvn7f7ahsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSUFzoCTQ0S5curbDdtm3bRMZt165dhe0lS5YkMm4h7bDDDjFs2LBqzxs8eHB069atfPvee++NtWvX5nNq9caXX35Z/nWrVq3yco/DDz88+vbtW+15p5xySvnXa9eujffeey+xOWy++eZxzjnnlG9Pnjw562uTfo7mzZsXDzzwQPn20KFDY6+99spqLhdffHE0b948IiLKysri8ccfz+q6fPnkk0+q3N+0adPo1KlTovfq0KFDjBw5stL+hQsXxrXXXlvr8a+//vq0P/cdOnSI6dOnx+DBg2ObbbaJkpKS6NKlS1x88cXxxBNPRHFx1R9ls2fPjgcffLBG8xk9enSMHTs2dtttt2jevHl06dIlbrvttjj66KPTXvPqq69Wuf+6666Lr7/+uspju+66a7z00ktx0kknxdZbbx3NmjWL73znO/HrX/86nnjiiSgqKqryussvvzz3N9XIdO7cOe2xdD8bAEmqi8bS05nVRUtH6OmN6ema0dM162ktnR9aOjnWCXOjbTLTNtnRNunVVdvku2sitI22yY22gdxZ1yo87Vc93ZdeY1rTitB+2i832i8Z1rRyo2sy0zXZ0TbpNaa20TUNs2tSqVScfvrplT63Ro4cGQcffHBe761tAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASELVfy2dtFatWlVhu1WrVomMu/E4K1euTGTcQjr11FOjadOm1Z5XXFwcp512Wvn2qlWr4rXXXsvn1OqNbbfdtvzrGTNmxOeff574PU4++eSszttnn30qbH/yySeJzuOAAw4o/3rx4sXxz3/+M6vrkn6OpkyZEuvWrSvf/ulPf5rVPCIitthii9hvv/3Kt59//vkqz/vFL34RqVSq/HXbbbdlfY9cpHteOnbsGMXFyf96Hz58eIVn9hvXXnttLFy4sFZjP/XUU2mP/eY3v4kuXbpUeezQQw+NU089Ne21Tz/9dM5z6d69e/z617+u8limn6cvvviiyv1PPvlk2msmTJiQ9nPksMMOiyOPPLLKY9OmTYsVK1akHXdT0KlTp7TH5s6dW4czATZVddFYejqzumjpCD29MT1dc3o6957W0vmhpZNjnTA32iYzbdM426auuiaibtsmn10ToW02pm0y0zaQO+tahaf9qm+/htZ9Eda0akr7VaT9MtN+ybCmlRtdk5muaZxrWhHapiZ0TUUNpWuuv/76mDx5coV9PXr0iEsvvTTv99Y2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCH5vwzfyG38R9pXr16dyLhffvllhe02bdokMm4h7b///lmf26tXrwrbL7/8ctLTqZeOOOKI8q9XrFgRffr0icceeyzWrVuX2D323XffrM7baqutKmyvWLEisTlUNf6cOXOyui7p5+j5558v/7pp06ax9957Zz1+RESXLl3Kv/74449zujZpq1atqnJ/y5Yt83K/li1bxu9+97sq5zF69Ogaj/vFF1/Ehx9+mPb4qaeemvH6TMefffbZnOdz+umnR5MmTao89u3v/8aq+pmZP39+vP/++1We37Vr19hnn30yzmXjZ/ob69evr/Asb4oyPecbf6YC5ENdNJaezqwuWjpCT29MT9ecns6tp7V0/mjp5FgnzI22yUzbzMnqOm2TXl22Tb66JkLbpKNt0tM2kDvrWoWn/eZUe43uS6+xrGlFaL90tF962i8Z1rRyo2sy0zVzsrpO26TXWNpG11StvnfNm2++GRdffHGFfZtvvnncd9990axZs7zfX9sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQhKaFnkBD06FDhwrby5cvT2TcjcfZYostEhm3kHbeeeesz+3WrVuF7Xnz5iU9nXrp2GOPjR/+8Ifxj3/8IyIiPvzwwzjuuOOiffv20bdv3+jdu3fsu+++0aNHj2jWrFmN7tGxY8eszmvZsmWF7a+//jqr6959993405/+FP/4xz/i/fffjyVLlsSqVauirKws43UrVqzIavykn6NPP/20/Ot169ZVet+pVKrar7+xZMmSrOeWD2vXrq1yf0lJSd7uOWjQoLjuuuvigw8+qLB/7NixMWLEiPjud7+b85hz585Ne2y77bar9hneZ5990h6bN29erF+/Ppo0aZL1fHr27Jn2WOvWrdMeKy0trbTvs88+S3v+rFmzoqioKOt5bWz27Nk1vrYxaN68edpj2f7+AqiNfDdWhJ6uTl20dISe3pierh09nX1Pa+n80dLJsU6YG22TmbbRNrVV122Tj66J0DY1oW20DeTKulbhab/q20/3pddY1rQitF9NaD/tlwRrWrnRNZnpGmtatdVY2kbX5K7QXbNmzZo49dRTKz2D119/fU4/s7WhbQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEhCcaEn0NBs/AfoP/nkk0TGnTNnTsb7NERt27bN+tx27dpV2F62bFnS06mXmjRpEk8++WT06dOnwv5ly5bFww8/HMOGDYuePXtGu3bton///jFhwoQoLS3N6R7Nmzev0dxSqVTG47NmzYqjjjoqdt111/jNb34TEydOjI8++iiWLl0aZWVl1Y6/atWqrOaR9HO0ZMmSCtvr16+v8NqwYUP5K5VKlb+qsnr16qznlg/pvre5PiO5aNKkSVxxxRWV9peVlcWoUaNqNObixYvTHsvmd+GWW26Z9tiGDRti6dKlOc1nu+22S3uspKQkp7EWLVqU0/m5yPTvtilYs2ZN2mMtWrSow5kAm6p8Nda36enM6qKlI/T0xvR07ejp7HtaS+ePlk6OdcLcaJvMtI22qa26bpt8dE2EtqkJbaNtIFfWtQpP+1XffrovvcayphWh/WpC+2m/JFjTyo2uyUzXWNOqrcbSNromd4XumpdeeineeeedCvsGDBgQQ4YMqbM5aBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSUFzoCTQ0PXr0qLD98ssv13rM0tLSeOutt8q3i4qKKt2nISoqKsr63FQqlceZ1G8dO3aMqVOnxsSJE+OYY46J5s2bVzrnq6++iqeffjpOP/306Nq1azz11FMFmOm/vfHGG7HffvvFn//85xqPsWHDhqzOS/o5Kisry3q8JO6XT61atapy/+rVq/N63+OOOy7222+/SvsffPDBmDlzZl7vXRdatmyZ9liTJk3qcCaZrVq1qtBTKKivvvoq7bF0PxsADY2erl5DbOkIPZ3L/fJJT+dHQ+hpLa2lk2KdMDfapnrapnraJr1CtE1j75oIbdMQaBuon7Rf9bRfZrovPWta+aP96j/tlwxrWrnRNdXTNdXTNulpm/zQNdWr6tl//PHHo6ioKO3r3nvvTTveMcccU+HcBx54oNo5aBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSUFzoCTQ0vXv3rrA9ffr0WLt2ba3GfPHFF6O0tLR8e5dddokOHTrUasyNrV+/PtHxsrF8+fKsz12xYkWF7fbt2yc6l0K8/1wdffTR8cQTT8Ty5cvj2WefjSuvvDKOPvroaNeuXYXz5s6dG8ccc0w8+uijBZnnunXrYuDAgbF48eLyfbvuumtceeWVMXXq1Pj4449jxYoVsXbt2kilUuWvDz/8sEb3S/o5+vbP1g477FBhjrm+vv1vUAidO3eucv/ixYtjw4YNeb331VdfXWlfKpWKiy66KOexttxyy7THFi1aVO31mb4PRUVFscUWW+Q8p6R07Ngxb2OnUqm8jd0QzJ8/P+2xdD8bAA2Nns5eQ2npCD2tp/9FT1dPS+ePlk6OdcLcaJvsaZv0tE16hWqbJLsmQtvUhLbRNlAfab/sab+q6b70GsuaVoT2qwntp/2S0FDXtCL892+6JjnWtLRNhP+9Lhu6Jr+0DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkoLvQEGpqdd945dthhh/LtZcuWxWOPPVarMceNG1dh+7DDDkt7bklJSfnXZWVlWd9j6dKluU+slj788MOsz/3ggw8qbHfq1KnK8xrS+6+pzTbbLA466KC46KKLYuLEibF48eKYOnVqHHXUUeXnpFKpOPfcc2PNmjV1Pr/JkyfHO++8U749aNCgeOONN+Kiiy6KPn36RNeuXaNNmzYVvlcR//pZqYmkn6Ntttmm/Ou5c+fGV199VaN51QddunSpcv+6deti/vz5eb137969o3///pX2T548OebNm5fTWNttt13aY3Pnzo1FixZlvH7mzJlpj22zzTbRpEmTnOaTpEzv7bDDDotUKlXj1w033FCH76T+mTt3btpjO+64Y91NBCCP9HTu6ntLR+jp+kRP/0t97WktnT9aOjnWCXOjbXKnbSrTNukVqm2S7JoIbaNtcqdtoH7SfrnTfhXpvvQay5pWhPbTfrnTfsko9JpWRMP6XNc1udM1lWmb9BpL2+gaXVMT2gYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAkFBd6Ag3RsGHDKmyPGTMm1q9fX6OxZs+eHY8++mj5dnFxcZx77rlpz2/Tpk3510uWLMn6Pm+++WaN5lcbL774Ytbnzpgxo8L2D37wgyrPa0jvPylNmjSJPn36xJNPPhknnnhi+f4FCxbk9G+clGeffbb865KSkrj22mujSZMm1V5X0+9B0s/RgQceWP71hg0bYvLkyTWaV32wxx57pD32/vvv5/3+V111VRQXV/4Y2bBhQ07jbLvttvG9730v7fH7778/4/X33Xdf2mMHH3xwTnNJ2jbbbBPdunWr8thzzz0Xn3/+eU7jrV+/Pm6//fa48sork5heg5buGW/VqlV07dq1jmcDkB96uvbqW0tH6On6RE//S33taS2dP1o6WdYJs6dtak/baJtMCtk2SXVNhLbJlrb5N20D9ZP2q71Nvf10X3qNZU0rQvtlS/v9m/ZLTiHXtCIa1ue6rqm9Tb1rIrRNJo2lbXRNdnRNRdoGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAJFT+i+1Ua+jQodGmTZvy7VdffTVuvPHGGo119tlnx5o1a8q3BwwYEDvttFPa8zt37lz+9YIFC2LhwoXV3qOsrCwmTpyY9ZxKSkoqbK9fvz7ra7/t/vvvz+raVCoVf/zjH8u3W7duHfvss0+V5zak958PZ555ZoXtOXPm1Pkc5s+fX/51586do23btlld99BDD9Xofkk/R/369YuioqLy7VtuuaVG86oPdtppp2jfvn2Vx95+++2833/33XeP0047LZGxjjrqqLTHLr300rTP+tSpU+O+++5Le23//v1rO7VaO/roo6vcX1paGgMHDoxVq1ZVO8bXX38d48ePj7322ivOOuusWLBgQdpz161bF0VFRVW+dttttxq/j/rmrbfeqnL/PvvsE8XF8gZoHPR0supDS0fo6fpET9f/ntbS+aGlk2WdMHvaJlnaJjNtU1G+2ybJronQNplom8q0DdRP2i9Zm2L76b70GtOaVoT2y0T7Vab9klPINa2IhvW5rmuStSl2TYS2yaQxtY2uSU/XVE3bAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkAR/GbsG2rRpE2PGjKmw76KLLorHH388p3F++ctfxuTJk8u327ZtG9dee23Ga3r06FFh++GHH672PjfffHN8/vnnWc+rdevWFbaXLFmS9bXf9umnn8b//M//VHveXXfdFe+//3759sCBA6N58+ZVntuQ3n8+FBUVVdhu2bJlnc+hRYsW5V8vXLgw1qxZU+01Tz75ZIVnPRdJP0ddunSJY489tnx7ypQpMWHChBrNrT44+OCDq9z/0ksv1cn9R48enfbnNRfnn39+2nGWLFkSvXr1inHjxsX8+fOjrKws5syZE1deeWX86Ec/ig0bNlR53Xe/+9048cQTaz232hoxYkSFn5tve+6552KXXXaJa665Jl5//fVYtWpVrF+/PhYtWhRvv/12jB8/Pk4//fTYdttt48wzz4y33367jmdff/3973+vcv8hhxxSxzMByB89naz60NIRerq+0dP1u6e1dH5o6WRZJ8yetkmWtslM21RUF22TVNdEaBttkxttA/WT9kvWpth+ui+zxrKmFaH9tF9utF9yCrmmFdGwPtd1TbI2xa6J0DbVaSxto2saVtccfPDBkUqlcnoNHDgw7XgTJ06scO7JJ59c7Ry0DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkoLvQEGqohQ4bESSedVL5dVlYWJ554YlxzzTWxbt26jNcuXrw4TjvttLjpppsq7L/jjjtixx13zHjtIYccEptvvnn59ujRo2Pu3Llpz3/kkUfi17/+dcYxN9a1a9cK2y+99FJO13/byJEj45lnnkl7/LnnnovzzjuvfLukpCR++ctfpj2/ob3/6hx11FExYcKEWLt2bbXnlpaWxjXXXFNh3z777JOvqaW1xx57lH+9evXquPzyyzOeP3ny5Bg4cGCt7pn0czR69OjYbLPNyreHDBkSY8eOzWouqVQq/vrXv8YRRxwRCxYsqPKcW265JYqKispfZ599dlZj18SRRx5Z5f5p06bl7Z7ftsMOO8S5555b63G23377GDFiRNrj8+bNi8GDB8c222wTJSUl0aVLl7j44ovjq6++SnvN1VdfHc2aNav13Gqrc+fOceGFF6Y9Pnfu3Bg5cmTsvffe0aZNm2jatGlstdVWsfvuu8eZZ54ZEyZMiOXLl9fhjHOz8fP+7dfq1aurvGb9+vVprxkzZky191y0aFG89957VR474ogjavV+AOobPZ1eQ2zpCD2tpyvS05lp6cq0dP1knTB72iY9bZO9htQ2ddk1EYVtm6S6JkLbaBttA42F9ktP+2WnIXVfhDWtmtJ+2k/7FU6h1rQiGt7nuq5JT9dkT9uk11jaRtc0zK4pFG0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAUooLPYGGbNy4cXHkkUeWb5eVlcXIkSNjt912iyuuuCJmzpwZixYtitLS0vj888/j2WefjeHDh0e3bt3i3nvvLb+uuLg4brjhhjjhhBOqvWfr1q3jjDPOKN9esGBB7LfffjFu3Lj44osvoqysLBYvXhzPPPNMnHjiiXHiiSdGaWlpnHrqqVm/r27dukWHDh3Kt6+44op44IEHYuHChbF+/fqsx/nRj34Ua9eujf79+8fPf/7zeOmll2LVqlXx5Zdfxquvvhq//OUvo2/fvvHVV1+VX3PJJZfE97///Ubx/rPxxhtvxOmnnx5bbbVVnHbaaXHXXXfF66+/HkuWLIl169bFmjVr4qOPPoq77rorevToEVOmTCm/9rDDDotu3bolOp9sHHfccdGyZcvy7csuuyyOPPLIeOaZZ2Lu3LlRVlYWixYtij//+c9x8sknxxFHHBErV66ME088sUb3y8dztMsuu8S4cePKt0tLS+Pss8+OHj16xK233hpvv/12rFixItatWxfLli2LDz74IB566KEYPnx47LjjjnHooYfGM888E6lUqkbvKUk//vGPo2nTppX2z507N9577706mcOoUaOibdu2tR7n8ssvj6OPPjqBGf1rTj/5yU8SGSsJv/3tb+Okk04q9DQajSlTplT587f99tvHD3/4wwLMCCA/9HRmDbGlI/S0nq5MT2empZOlpfPHOmH1tE1m2iY72iazQrdNUl0ToW3IjraB+kv7Zab9qqf7Mit090Vov2xov2Rpv/woxJpWRMP6XNc1mema7GibzBpT2+gasqVtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASErlvxZP1jbffPN44okn4txzz43bb7+9fP8HH3wQo0aNilGjRmU1xvjx4+OEE07I+r6XX355PPnkk/Hpp59GRMTnn38egwcPTnv+qFGjYq+99or77rsvq/GbNGkSgwcPjquvvjoiIhYvXhynnHJKlefec889cdppp1V57KabbooPP/ww3n///bjtttvitttuy3jfU045JS6++OJq59dQ3n8uVq5cGffee2/ce++9WZ3fpUuXGDduXK3vWxOdOnWKyy+/PEaMGFG+b9KkSTFp0qS01xx++OHx+9//Ph566KGc75ev5+jUU0+NsrKyOPvss2PNmjURETFz5sw455xzcp5jIW211VbRr1+/eOqppyode/zxx6N79+55n8MWW2wRF154YVb/7pkUFxfHQw89FOeee26MHz++RmM0adIkfv/739d6LkkrKiqKCRMmxLbbbhs33HBDpFKpGo3TrFmzOOuss7L6fGnMHnvssSr3Dxw4MIqLi+t4NgD5o6ez05BaOkJP1zd6uqL62NNaOllaOn+sE1b/ua5tsqNtMtM2mRW6bZLqmghtUx1t8y/aBuov7Zcd7Zee7sus0N0Xof2yof2Spf3yo1BrWhEN53Nd12RH12SmbTJrTG2jazLTNf+mbQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEiKv45dS02bNo2xY8fGiy++GL169cr6uiZNmsTQoUPj448/jhNOOCGne7Zt2zaee+652G233TKeV1JSEmPGjInLLrssp/EjIn73u99Fnz59cr7u29q2bRt/+9vfYv/99894XtOmTWPkyJFxzz33RJMmTbIatyG8/3w54YQTYsaMGbH99tsXbA7Dhw+PMWPGRLNmzao9d/DgwfHEE09E06ZNa3SvfD1HERGnn356/P3vf4/DDz886/kUFxdHv3794i9/+Ut06tQp6+vyafDgwVXuf+SRR+psDsOHD49tt9221uO0aNEi7rrrrnjkkUdizz33zOnaPn36xLRp02LUqFFRVFRU67kkraSkJK677rqYMmVKHHzwwTldu+WWW8aIESPigw8+iJtvvjk6duxYozlk+7NRn61evTqefvrpSvuLi4tj0KBBBZgRQP7o6eTVh5aO0NN6ujI9nZmWToaWzj/rhJlpm+Rpm/S0TWV11TZJdU2EtqmKtvk3bQP1m/ZL3qbWfrqveoXuvgjtlw3tlwztl1+FWNOKaDif67omeZta10Rom2w0prbRNZXpmoq0DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAElqWugJNBa9evWKF198Md5666146qmnYurUqfHZZ5/FwoUL48svv4wOHTrEVlttFd///vfjiCOOiP79+8fWW29d4/t95zvfiddffz3uueeeePTRR2PmzJmxePHiaNOmTXznO9+J/v37x9ChQ2O77bar0fgtWrSIyZMnx+OPPx6PPPJIvP766/H555/H6tWrY/369VmP06lTp3j++efjL3/5S4wbNy7efPPNmDt3bjRt2jS23377OPzww+PMM8+MXXfdNaf5NZT3X5033ngjXnvttfLX7NmzY8mSJbF06dJYsWJFbLbZZtG+ffvo3r179OrVK0466aTo3r17YvevjQsuuCCOPfbYGDt2bEydOjVmzZoVq1evji233DI6d+4chx56aJx++umJzDdfz1FExJ577hnPPPNMvP766zFx4sR49tlny78Pa9asiTZt2sS2224be+65Z+y///4xYMCA6NSpU63fU5J+9KMfRdeuXWPWrFkV9s+cOTPefPPN2GOPPfI+hxYtWsR//dd/xdChQxMZ7/jjj4/jjz8+pk2bFlOmTIkXXngh5syZE0uXLo3Vq1dHmzZton379tGtW7c48MADo3///nXyPpPQp0+f6NOnT7zzzjsxadKkmD59erz77ruxdOnSWL58eTRr1iy23HLL2GGHHaJnz57Ru3fvOOyww6KkpCSr8d966620x37xi18k9TYK5pFHHokvv/yy0v6jjjoqdtpppwLMCCC/9HR6DbmlI/R0faKnG05Pa+na0dJ1xzphetomPW2TPW2TWaHbJumuidA22qZq2gbqP+2XnvbLju7LrNDdF6H9cqH9akf71Y26XtOKaDif67omPV2TPW2TWWNsG12ja9LRNgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSpKJVKpao7adKkSXHkkUdmPGf58uXRtm3bxCZGwzNmzJj41a9+Vb69bNmyaNeuXQFnREPkOaqZP/zhD3HuuedW2n/eeefFjTfeWIAZUSjXXHNNjBw5stL+Qw89NKZMmVKAGSXroIMOimnTplXa/9xzz0Xv3r0LMKP6Y5dddon33nuv0NMouO7du8e7775b6Gls8tq0aROrVq1Ke/yOO+6IwYMH1+GMGgYdRBI8RzWjp4nQ0vXRoEGD4q677kp7/PDDD49nnnmmDmdELnwmkQTPUc1oGyK0TX1kvaT+u/POO2PIkCFpj7du3TpWrlxZhzNqOHxmU1ueoZrRfXxD+9UvK1asqPZ32NNPPx1HHHFEHc2IXPhMIgmeo5rRNkQ0/q6JaHhtk4/1kgsuuCCuu+66Svu/+b80zJgxI3r16lXp+EMPPRQnnHBCRETssMMO8dlnn1U43rNnz5gxY0al66ZPnx49e/aMiIiioqJKx88///y49tprc3oPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9cTDxYWeAQC1N3jw4Nh+++0r7Sdc5GkAACAASURBVB8/fnysXLmyADOiUCZPnlxp3+abbx533HFHAWaTrNdffz2mTZtWaX/fvn2jd+/eBZgRANBY6GkitDQAjYe2IULbAMCmQPfxDe0HQGOgbYho3F0ToW0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIXnGhJwBA7ZWUlMRvf/vbSvtXrVoVd955ZwFmRCGsXbs2XnjhhUr7r7rqqujSpUsBZpSs6667rsr9o0ePruOZAACNjZ5GSwPQmGgbtA0AbBp0HxHaD4DGQ9vQ2LsmQtsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQvOJCTwCAZPznf/5n7LnnnpX2jxkzJr7++usCzIi69uKLL1b6Xh944IFx7rnnFmhGyZk1a1bcf//9lfafcsopsd9++xVgRgBAY6OnN21aGoDGRtts2rQNAGw6dB/aD4DGRNts2hpz10RoGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPKjuNATACAZTZo0iRtvvLHS/nnz5sWtt95agBlR16ZMmVJhu0WLFjFu3LgoKioq0IySM3r06Fi3bl2FfS1btoz//u//LtCMAIDGRk9v2rQ0AI2Nttm0aRsA2HToPrQfAI2Jttm0NeauidA2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5EfTQk8AgOQcdNBBkUqlCj0NCmTKlCkVti+99NL43ve+V6DZJOvuu++Ou+++u9DTAAAaOT296dLSADRG2mbTpW0AYNOi+zZt2g+AxkbbbLoac9dEaBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyo2mhJwAAJOMf//hHoacAAAANkpYGABoTbQMAsOnQfgBAY6FrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIHfFhZ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2Sku9ARoPP7f//t/kUqlyl/t2rUr9JRogDxHAMCmSgeRBM8RAPWFzySS4DkCgIbBZza15RkCoL7wmUQSPEcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1JXiQk8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA7BQXegIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkp7jQEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA7xYWeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANkpLvQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyE5xoScAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAdooLPQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyU1zoCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCd4kJPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOwUF3oCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZKe40BMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgO8WFngAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADZKS70BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPj/7NkxSqRrEIbRn7IzFY06F1NTx87NXYXiMsR16CrMDQXBWDAxUTEwErUDQeRuYJgpmZ55b9vnpF9RPGHBBwAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQU+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgp9IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9FQ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ5KBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBT6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6Kh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAT6UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Kl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2jWS26ubkZVlZWZrUOAIAveH9/TydA2+Pj43B9fZ3OAAD+556fn3/5Pp1O3RQAwNz4/PxMJ/CHPj8/3Z8AwG+9vb39dubu7s5dAQDMhcfHx3QCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvzCa1aLJZDKrVQAAwDd2dHQ0HB0dpTMAgDl3cXExbG1tpTMAAFgQ0+nU/QkAzMTh4WE6AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAb6DSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQU+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM+oM7S+vj7s7Oz87RYAAPgjGxsb6QSGYdje3h6m02k6AwAAAGBujMfjdMLCG4/H/sQBAAAAvmB5eTmdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsNBGnaHJZDJcXl7+7RYAAOAbOD8/TycAAAAAwJfs7e0Ne3t76QwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaKl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2VDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCn0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0VDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQU+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgp9IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9FQ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ5KBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBT6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6Kh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAT6UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Kl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2VDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCn0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0VDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQU+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgp9IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9FQ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ5KBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBT6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6Kh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAT6UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6BmlA37m4eFhuL+/T2cAADADP378GJaWltIZ/ENXV1fDx8dHOgMAAABgbmxubg7j8TidsdCenp6G29vbdAYAAADA3BiNRsP29nY6AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGGN0gE/c3p6OhwfH6czAACYgefn52FtbS2dwT+0u7s7vL6+pjMAAAAA5sbJycmwv7+fzlhoZ2dnw8HBQToDAAAAYG6srq4OLy8v6QwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICFVekAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgp9IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9FQ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ5KBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBT6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6Kh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAT6UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Kl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2VDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCn0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0VDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOA/9u47Sqr6fBz/s8u6S1uaUqQYPzQJdhAbVlBEBMQSK0ZFsEU0+jEaE3tJNOYTDSigiBTFigbQqBBACYINA3YjiCWggPRehPn98f25cZHdndkys8rrdc49h/d9l+e5szN37n3mngMAAAAAycnOdAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJzvTCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCc7EwnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQHKyM50AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAycnOdAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJzvTCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCc7EwnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQHKyM50AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAycnOdAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJzvTCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCc7EwnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQHKyM50AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAycnOdAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJzvTCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCc7EwnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQHKyM50AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAycnOdAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJzvTCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCc7EwnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQHKyM50AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAycnOdAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJzvTCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCc7EwnAFBW3bt3j0QiUeTWt2/fTKdYKs2bN4/169cXHMc555yT6ZSACnLAAQfE1q1bCz7vxxxzTKZTAoBS+6len/9Y+Xukzmu2Yzn44IPj5ptvjhdffDHmzJkTK1eujG+//TbWrFkTCxYsiFdffTUGDx4cZ511VtStWzejuZa1TlCrVq04//zzY+jQofH222/HggULYu3atbFp06ZYunRpfPLJJ/Hcc8/FXXfdFT169Ij8/PwKOpL0mTt3bqHPb6NGjTKdEj8B339PbdiwIdPp/GiphQAAQPqtWLGiyJrXzJkzi5ynXlb55eXlxfHHHx9/+tOf4rnnnot///vfsXjx4li3bl18++23sXLlyliwYEHMnDkzHn300bjmmmuibdu2mU77B8rzOZm99947rrnmmnjmmWfi3XffjaVLl8bGjRtj48aNsXDhwvjoo49i7Nixcd1118WRRx4Z2dkeowR+GnJycgp9T69YsSKpeerp26eOCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGWXnekEfirWrFlT6D99L6+td+/emT60tCvptezVq1emU4S0GDhwYFStWjUiImbPnh2PPvpokWPHjh1b6HPyxBNPpCtNKoi/6Y5l5syZ8eSTTxa077vvvsjNzc1gRgAA8NNVpUqV6NevX8yZMydee+21uOmmm6Jr167RsmXLqFWrVlSpUiVq1KgRjRs3jo4dO8bFF18co0ePjsWLF8f48ePj2GOPjaysrLTnnUqd4Pvq1q0bgwYNiq+//joefvjh6Nu3b7Rr1y4aN24c1atXj5122inq1asXrVq1iu7du8c111wT48ePj2XLlsWkSZPivPPOi/z8/Io8NNJMzYHKQC0EAACg7OrWrRt33nlnfPPNN/HCCy/Eb37zm+jevXu0bt066tevH9WqVYsqVapErVq1onHjxtG+ffs4++yz46677ooPPvgg3nvvvTj11FMzUuvantLWv75TpUqV6NOnT7z//vvx7rvvxl133RUnn3xy7L333lGvXr3Izc2N3NzcaNiwYbRp0yZOPPHE+MMf/hCvvPJKfP7553HbbbdFo0aNKuLQIOO2rQmWdRsyZEimDwnSQh0TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAyi470wkAO54hQ4ZEIpEocmvUqFGmU8y4nj17Rrdu3Qrav/3tbyORSGQwI1KxZMmSQu/pOnXqZDolfgR+//vfx7fffhsREXvssUdcccUVUi2hxQAAIABJREFUGc4IgMrENTRA+Wjbtm28+eab8eCDD0bLli1TmpuTkxM9evSIiRMnRosWLSoow+0rbZ3gsMMOi48++iguueSSqF69ekoxc3JyonPnzjF8+PC46aabkprjfhhIhVoIAOmmvgLAT8nBBx8cH330UVx77bWRn59fqjX22muvePrpp2Ps2LFRo0aNcs4wNWV9TuaAAw6IWbNmxbBhw2LPPfdMOX6zZs3i+uuvjzlz5sTvfve7qFq1asprVBQ1N4DMUscEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgMsvOdAIAFJadnR1//OMfC9ozZ86MCRMmZDAjIB3mzZsXTzzxREH7uuuuizp16mQwIwAA+Gk57rjj4vXXX4927dplOpWUlLZOcPDBB8eLL74YDRs2LLR/woQJ0adPn9hnn32ibt26sdNOO0X9+vVj7733jn79+sUTTzwRa9asKffjANiWWggAAEDp7LXXXjFlypQf1H1Kq2fPnjFu3LjIysoql/VSVdbnZM4777yYPn167L333oX2L1iwIIYMGRK9evWKtm3bRv369WOnnXaKevXqxYEHHhhXXHFF/POf/yw0p2bNmnHHHXdEr169ynZQAPxkqGMCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQmWVnOgEACjvnnHOibdu2Be0//OEPGcwGSKc//vGPkUgkIiKibt268Zvf/CbDGQEAwE/DkUceGePGjYv8/PxMp5Ky0tQJqlatGo888kjUrFmzYN/ixYvjqKOOiq5du8bw4cPjvffeixUrVsS3334bS5Ysiffffz8eeuihOPPMM6Nx48bxq1/9KubOnVshxwTwHbUQAACA1I0cOTKqVatWrmt27tw5+vXrV65rJqssz8n069cvHn744cjNzS3Yt3z58vjf//3faN68eVxyySUxbty4+Oijj2LJkiXx7bffxvLly+Ott96KAQMGxJFHHhn77bdfTJw4sVyPCSq7J598MrKyskq9XXzxxZk+BEgrdUwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqq+xMJwDAf2VnZ8fvf//7gvYXX3wR48aNy2BGQDp9+OGHMXny5IJ2//79o3bt2hnMCAAAfvzq1asXo0ePjry8vEynkrLS1gkuuOCCaNmyZUF78+bN0aVLl5g6dWpScVevXh2DBg2Ktm3bxuWXXx7ffPNN6slXAi1btoysrKyCbeHChZlOCdiGWggAAEBqOnToEO3atauQtS+88MIKWbc4ZXlOplOnTjFo0KDIysoq2PfZZ59Fhw4d4i9/+Uts2rQpqXXeeeedOO6446Jv376xbt261A4A4CdCPb146pgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUVtmZTgCA/zrxxBOjVatWBe2hQ4fG1q1bM5gRkG4PPvhgwb/z8/OjX79+GcwGAFL3/PPPR1ZWVpHbQw89lOkUgR3Mgw8+GE2aNCl2zJdffhk33HBDHHHEEdGwYcPIzc2N2rVrR6tWreL000+P++67L7766qs0Zfxfpa0TnHrqqYXao0ePjnfeeSfl+Js3b46BAwfGXXfdlfJcgGSphQAAQOWm5lu5HH300SWOef7556Nz586x6667RrVq1aJly5Zx6aWXxvz584ud1759+8jPzy+vVJNS2vpX7dq1Y+TIkZGTk1Owb/78+XHYYYfFp59+Wqpchg0bFp06dYolS5aUaj4AP23qmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFRG2ZlOYEdx0kknRVZWVsrbo48+munUgTT69a9/XfDvRCIRI0aMyFwyQEaMHTs2li5dWtC+/PLLIzvbJRsAAJTGEUccEaecckqR/YlEIm6//fZo0aJF3H777TFt2rRYvHhxbN68OVatWhVz586Np556Kvr37x9NmzaN4447LiZMmBBbt25NS/6lrRN06NChUHvy5MnlmRZAuVILAQAASF7jxo2L7X/88cejR48eMWXKlFi4cGFs2LAhPv300xg8eHAceuihsXbt2mLnN2nSpDzTLVFp61/XXXddNG3atNC+fv36xVdffVWmfN54443o0qVLrFixokzrAPDTo44JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAZZST6QT46Wvbtm307ds3jjrqqGjRokVUr149Fi9eHHfeeWcMHDgw0+kVqVGjRnHMMcfE4YcfHu3bt49ddtkl6tWrF3l5ebFkyZL45ptvYvbs2TFp0qR46aWXYsmSJRWWS9u2bePss8+OY445Jpo1axY777xzLF++PD7//POYOHFiDB8+PD777LMyxTjyyCPjzDPPjI4dO0aTJk0iLy8vvv7665g3b14888wz8fTTT8eyZcvK6YgyKx2vZ2k0b948jjjiiIL29OnTY8GCBWnPIyKifv36ccYZZ8RJJ50UP/vZz6Jx48axYcOGWLRoUUyfPj2efvrpeOmll8o15h577BFnnXVWdOnSJRo3bhwNGzaMlStXxn/+85+YOHFijB49Oj744INyjbmjq1q1avz85z+PffbZJ/bZZ5/Yc889o0GDBlGnTp2oU6dO5Ofnx+rVq2Pp0qXx73//O15++eV49tlnM/L5KKu2bdvGCSecEMcee2zsvvvu0aBBg6hatWosXrw4vvzyy5g0aVI8++yz8e6775ZbzKZNm8app54a3bt3j9122y0aNWoU+fn5ERGxyy67xNKlS7c7b/PmzTFu3Ljo06dPREQ0a9YsOnfuHP/4xz/KLTcAylfVqlXj2GOPjWOPPTbatm0bLVu2jFq1akXNmjVjy5YtsWrVqli1alWsXLkyli9fHl9++WV89tln8e9//zs++OCDmDNnTmzevDnTh1GsynpfV9HX9jvSfVIqdtttt4L75f322y923nnnqFevXuTk5MTy5ctj2bJlMWfOnJg2bVq88sor8fbbb/8kYvNfhxxySJx99tlx6KGHRuPGjaNOnTqxaNGi+PTTT2Ps2LHx5JNPxqJFizKdZkREXHHFFcX2X3311fGXv/wlqbUSiURMnDgxJk6cWB6plai0dYL8/PyoUaNGoX1F3X/82JT2Pqs8pKtWcuCBB8aZZ54ZRx99dDRp0iTy8/Nj4cKFMX/+/HjhhRfisccei88//7zsB5RmtWrVih49esTxxx8f+++/f9SvXz/q1KkTy5cvj8WLF8fMmTPjhRdeiL///e+xbt26H128n7qKrtuphQBUXjVq1Iijjz46Dj300Dj44IOjcePGUa9evahTp05s2LAhli5dGu+991689tprMWbMmJgzZ05S69arVy9at25daGvatGnUr18/6tWrF1WrVo28vLz49ttvY9WqVbF69er4/PPP45133om33nornnvuuVizZk0FH33pZOI35kzXLyrjvXplrWVl0o72/ENFnb+KkqnPQadOneKMM84oqNHk5eXFV199FXPnzo0xY8bEmDFjYuXKleUSK13UfEuWnZ1dbP/IkSOL7PvPf/4TL7/8cnTv3r280yqV0ta/ateuHf379y+0b8yYMeX2HMusWbNKHPNjf94iXc9QZKrWlanaUCbrlz8W6XwmrWXLlnH88cdH586do3Xr1lG/fv2oXbt2rFmzJpYtWxbLli2LefPmxWuvvRavvfZazJ49OzZt2pT0+ul8n+23334F34/ffZYWLVoU8+fPj5deeikee+yxmDdvXplilLefYk1dHRMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBKKVEJ3XTTTYmI+FFta9asKfaYevXqVa7x7r333mLj7bXXXsXOr1OnTrHzR4wYUeTc7t27Fzu3b9++iYhI5OXlJQYMGJDYsmXLdsfde++9leK13Hbbc889EyNGjEhs2rSp2Dy+b+3atYm77747scsuuyQVI9nXsFGjRolnn322xPgbNmxI3HjjjaU63v/5n/9JTJgwocQYa9asSfzmN79JZGVlJSIisWLFiiLHzpw5s1CMyy67rMT1U1G1atVK+3qWZbv55psL5fHrX/866bljx44tNPeJJ54occ62xxwRiSpVqiRuuummxIYNG0p8nV5++eVEw4YNUzrG7cWsWbNmYtSoUSXG27p1a2LgwIGJmjVrJh3vmGOOKbTG2LFjU8p323Pl/Pnzixw7e/bsEo+hKAcccEC5/E1T3YYMGZJyrps3b04MGzYsUbdu3RLXv/766wvNHT9+fKlzfeKJJwqtdeeddyY1r02bNkl97r/z+OOPJ5o2bVqm93S1atUSgwYNKvL7L5FIlPh90bVr10LjH3300XL/+6dzK+47g5+m/Pz8jL/vbLZ0bLm5uYlrr702sXz58jJ9Zm6++eYfrF1ZrqFLc1+X7Nrb2yrLtX067pPStZXl77HtdsABBySeeuqpxLffflvia/N9b775ZuIXv/hFwetUmi2dscv6mp1wwgmJjRs3FrvG8OHDE1WqVCmYk8k6TyrH3KZNm8T06dOLHZtIJBKrVq1K9O/fP5GdnZ2R9/1322677Vbse2bq1KkZza+krbR1glq1av3gWH/5y19WWJ7lfT/8fWW9z5o7d26hMY0aNSr2WLYXu6JrJd9tDRo0SDz++OMlxtiyZUti8ODBiWrVqiVycnIK9a1YsSKpWOmoOXy3ValSJdG/f//EN998U+KxJRKJxIIFCxJ9+vQp9XdGOuJ933fvk2S22rVrJ6ZMmVJo/po1axLdunUrNC6d9aySjqsi63bbbj+1WojNVppt6NChJX7eqFhDhw7N+PugsmxNmzZN/OlPf0osW7YspddwxowZiZ49e5b43VpWa9asSQwbNqzEa6+Krq98f0vHb8zbbpmuX1TGe/Vka1mdOnUqdr3LL7886dxyc3OLfU2fe+65jH6ed7TnHyr6/JXJz8H3t5YtWyYmT55cYpzvajTfzSvt51/Nd/syVfO94oorij2G4447rtj5zz//fJFzN2/enKhRo0bajqW09a9LL730B7kfddRRaf07VPTzFuVdc/tuq+hnKL7b0lnr+v6WqdpQsvXLTD5Hk86a4PZeo3TVWb97nz/55JOJrVu3lhjr+377299WmvfZd1udOnUSw4YNKzHG1q1bE0OGDElUrVq11J+lVOvpmf5bZ+o8o475wy0/P7/Ev8O2rrrqqmLfUzNmzNhu/1NPPVUwplmzZj/oP+SQQ7Y7b8aMGQXzttd/1VVXpXwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlcRT2QEVIC8vL8aPHx/9+/eP7Oztv82ysrLSnFXxsrKy4uqrr47Zs2fHueeeGzvttFPSc6tXrx5XX311fPDBB9GxY8dyyadDhw7xzjvvxEknnVTi2Ly8vLjllltiwIABKcVo165dvP3229GlS5cSx9aoUSP+9Kc/xVNPPZXSa1NZpOP1LKuTTz65UHvixIlpjZ+Xlxfjxo2Lm2++OfLy8kocf9RRR8Wrr74au+yyS6lj1qpVK6ZOnRrnnHNOiWOzsrLisssuiylTpkStWrVKHZOyycnJiT59+sRrr70WzZs3L3bs0KFDY/PmzQXtbt26RdOmTVOOWb9+/UKf3UQiEUOHDi1x3mmnnRazZs1K6nP/nTPOOCPefPPN2HvvvVPOMyIiPz8/Xn755bjkkkuK/P6LKPk7cOrUqbFp06aCdo8ePX6U516An7L8/Px46aWX4s4774w6depkOp0KUVnv6yr62n5Huk9KVpUqVeLWW2+NN954I37xi19ElSpVUprfoUOHeOqpp2LcuHFRt27dH03s0ujevXs8++yzkZubW+SYAQMGRJ8+fWLLli0Vnk956ty5c7z11ltx6KGHljg2Pz8/BgwYEKNGjSr2uriinXDCCcW+Z+644440ZpO60tYJVq1aFevWrSu0r0ePHuWWV7qV131WaaSrVtKkSZOYMWNGnHHGGSWOzc7OjosvvjgmTZoU1atXTylOulWvXj3Gjh0bAwYMSPo1ady4cQwbNixGjRqV8ndruuOlolmzZvHqq6/G0UcfXbBv0aJFceSRR8YLL7xQYXHLIt11O7UQgMqjd+/e8eGHH8ZvfvOblO+jDjnkkBg3bly0aNGigrL7f2rUqBF9+vSJDz74ILp27VqhsUqSqd+YM1m/qKz36qnUsqZMmRLvv/9+kWv169cv6bhdu3aN2rVrF9k/fPjwpNcqTzvi8w/pPH9l8nNw0EEHxdtvvx2dOnUqcex3NZrRo0dHTk5OSnHSSc03NS+++GIkEoki+88999wi+3bbbbc46qijiux/5ZVXYu3atWVJLyWlrX9tO2/evHkxderUcsuroqTyvEVFSNczFJmqdWWqNpRK/TLTz9FkSjqfSTv77LNj1qxZcdppp1VIzTid77P69evHq6++Gn369ClxbFZWVlx00UUZrxvvCDV1dUwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqm+xMJ0DFSCQSGY1///33R5cuXTKaQyqys7Pj8ccfj7vvvjtycnJKvU6DBg1iypQpceqpp5Ypn/bt28fkyZOjQYMGKc3r379/9OjRI6mxbdq0iUmTJkXdunVTinHqqafGww8/nNKcTEvH61lWTZo0ib333rugvWjRovjwww/TEvs7Q4cOjRNOOCEiIt55553o27dvtGzZMqpXrx516tSJww47LB555JFCc1q2bBkDBw4sdcwRI0ZEu3btIiLi008/jcsuuyxatGgR1apVi0aNGsXxxx8fzz77bKE5HTp0iL///e9RpUqVUselsM2bN8eECRPiyiuvjKOPPjqaNm0aNWvWjLy8vGjcuHH06NEjRo4cGZs3by6Ys8cee8TYsWMjLy+vyHUXLVoUf/vb3wraVapUib59+6ac33nnnRe5ubkF7UmTJsWnn35a7JyLLroonnjiiahatWrBvoULF8b1118f7du3j3r16kXVqlWjRYsW8atf/Sq++OKLgnG77rprTJ06NX72s5+lnOuIESPioIMOioiI999/Py6++OJo1apV1KhRIxo2bBhHHXVUjB49OrKysopdZ/369fH6668XtGvVqhUdO3ZMOR8AKs6AAQPi6KOPznQaFaoy3tdV9LX9jnSflKycnJwYP3583HDDDZGdXbYyUo8ePeJf//pXNGnSpNLHLo3u3bvHM888U+jadVu33XZbXHHFFSnXbTJd5znooIPiueeei5o1a6Y07+yzz46hQ4dWUFYlO/TQQ4vsW758eUyZMiWys7OjZ8+eMWzYsPjoo49i+fLlsXHjxvj6669j9uzZMXjw4DjllFNip512SmPmZa8TzJgxo1D7lFNOiV/84hflll86ldd9Vmmko1ZSo0aNmDJlSrRo0aJgXyKRiBEjRsRRRx0V9evXj2rVqkXLli2jf//+MW/evIj4f+/vIUOGlMNRVozs7Ox47rnnonv37oX2f1c7bdq0aVStWjWaNWsWvXv3jjfeeKPQuN69e8fjjz9eaeOlYr/99ovXX3899tprr4J9H3/8cRx88MHx9ttvV0jM8pDuup1aCEDlMHDgwHjkkUciPz8/06kkZeedd45nnnkm2rdvn5H4mfqNOZP1i8p8r55qLeu+++4rsm+vvfYq9p7y+0477bQi+5YsWRLPP/980jmVlx3x+Yd0nr8y+TnYa6+9YuLEiVGrVq2U4px11lnx0EMPlSbFCqfmm7pPPvkknnzyySL7zzzzzBg/fnx06tQpGjZsGHl5edG8efO45JJLYvr06VGjRo3tztu6dWvceuutFZX2D5S2/pWbmxuHH354oX1Tp07NWA21op63KG/peoYiU7WuTNaGUqlfZvI5mkxK1zNpV155ZTz66KOF3ufr1q2LgQMHxrHHHhtNmzaNvLy8qFOnTvz85z+Pc889Nx577LFYv359Uuun832Wl5cXEydOjD333LPQ/sceeyw6d+4cDRo0iOrVq0fr1q3jqquuivnz50dERMeOHWPw4MFJxagIO0JNXR0TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAyiY70wlQMRKJRMZid+vWLS644IISx2VlZaUhm+Tcfffdcfrpp5fLWrm5uTFy5MjYZ599Sr3GxRdfHPn5+aWae9ddd5U4pkqVKjFy5MioW7duqWL07t07ateuXaq5mVDRr2d5OOaYYwq1X3/99bTE/U5eXl6cc845ERFx++23R7t27WLYsGHx6aefxvr162PlypUxffr0+OUvfxmXXXZZoblnnHFGtG3btlQxTzrppIiIGDt2bOy7775x//33x7x582LDhg2xaNGieOmll+KUU06J3r17x5YtWwrmHnbYYXHVVVeV4YjL33777RdZWVmRlZUVS5cuLdRXt27dgr7tbTNnzsxIzosXL44bbrghGjVqFF27do177703XnnllViwYEGsXbs2Nm3aFF9//XU8//zzcd5558VBBx0UX375ZcH8vffeO37/+98XG2PQoEGF2hdccEFUqVIl6RyzsrKiX79+hfY9+OCDxc7p0KFDDBgwoND3zOOPPx4tWrSIO+64I/71r3/F8uXLY+PGjTFv3rwYNGhQtG3bNp5//vmC8XXr1o1Ro0ZFdnbyl0p5eXlx8sknR0TEX//619h///3jgQceiLlz58a6deti8eLFMXXq1Ojdu3csXry4xPVmzJhRqN2lS5ekcwGgYrVp0ybOO++8TKdRoSrrfV1FXtvvaPdJybr//vujW7du5bbe7rvvHuPHj4/q1atX6tip6tGjRzzzzDORm5u73f5EIhFXXXVV3HjjjaVaP5N1noiIvn37RrVq1Uo1t0+fPgX3ful26KGHFtn3zjvvxOGHHx4ffvhhjBs3Lvr06RNt2rSJOnXqRG5ubjRq1Cj23XffuPjii2PMmDExd+7c6Nu3b9pyL2ud4JFHHinUzsrKiieffDIeeeSR6NChQ5nz+76KvB8u7/usVKSrVvKHP/whWrduXdBet25dHHvssXH++efH1KlTY8mSJbFhw4b49NNP47777ot99903xo0bFxERZ555Zjkdbfm77rrrolOnToX2XXXVVdG5c+d45plnYsGCBbFx48aYP39+jB49Og499ND44x//WGj8KaecEhdddFGljJesLl26xD//+c9o3Lhxwb5XX301OnbsGJ9//nm5xipPmarbqYUAZNaNN974g+uaH4Pq1avHyJEjM/LbcyZ+Y850/aKy3quXppb1yCOPxPLly4scu+3vU9tTtWrV6NmzZ5H9jz32WGzatKnEdcrbjvb8Q7rPX5n6HOTk5MSoUaOiVq1apYpz7rnnVsr6pZpv6Vx66aUxe/bsIvt79OgRkydPjoULFxbUFQYNGhRNmzYtcs61114b06ZNq4h0t6u09a8999zzB3XYt956q9zySlZFP29RnjW3dD5DkalaV6ZqQ6WpX2biOZpMSledtVOnTnH33XcX2jdlypRo1apVXH755TFp0qRYsGBBbNq0KVauXBkff/xxjBo1Ks4+++xo1KhR3HzzzbFy5cpiY6TzfXbjjTfGfvvtV9DetGlT9OzZM84+++yYMmVKfPPNN7F+/fqYM2dO3HPPPbH33nvH5MmTIyLirLPOKnH9irAj1dTVMQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhMsjOdwI7ib3/7WyQSiZS2O++8s9TxEolEOWafmpNOOiljsUvj+OOPj6uuuqrYMY8//ngcccQRUbt27ahWrVrst99+MWTIkCJf5+rVq8fTTz8dOTk5FZFysX7+85/HwQcfXOyYSy+9NA488MA0ZfTjlszrWR62/Xu8++67FR5ze/7617/GDTfcEFu3bi1yzP333x8TJ04stO/8888vdcyZM2fGmWeeGWvXri1yzOjRo+Pqq68utO+WW26J+vXrlzouETfeeGPcfvvtsWzZsqTGz5o1K7p16xYbNmwo2HfJJZdEXl5ekXOmTp0aH374YUG7adOm0a1bt6RzPProo6NVq1YF7UWLFsW4ceOKHF+lSpV49NFHIzc3t2Df008/HWeffXasW7euyHnr1q2LU045JWbPnl2w74gjjohTTz016Vy/88QTT8Svf/3r+Pbbb1Oe+33vvPNOobbzNkDl0atXryL7Fi5cGJdcckm0bt06qlevHjk5OVGvXr1o1apV9OjRI6677rp48cUXi732qQx+bPd1ySjp2t590g+dfPLJceGFF5b7uu3atYs77rij0sZOVc+ePWPMmDGFrkG/b8uWLdG3b9+45557Sh0jk3We8jB48OCoWrVqWmNWq1YtmjdvXmT/nnvuGZMnT4499tgjqfV22223GDp0aDz55JNRo0aN8kqzSGWtE4wePTreeuutQvuysrKid+/e8eabb8aXX34Zo0aNiksvvTQOOuigqFatWplzrkjldZ9VGhVZK2ndunVcdtllhfadc845MXny5CLnrFmzJs4444yYNWtWietnSuPGjeOmm24qtO/2228v9jy4devW+N3vfhcPP/xwof1//vOfo3bt2pUqXrL69OkTf//73yM/P79g35gxY+LYY49NuhaTaemu26mFAGTOkUceGbfcckva4y5btiweffTRuOSSS+KII46IZs2aRe3atSMnJyeqV68eu+++e3Tr1i0eeOCB2LhxY5Hr7LnnnsXWaypCpn5jzmT9ojLfq5emlrVu3bofXA9+32mnnVbiteHxxx9f6HpvW8OHD085r7La0Z5/SPf5K5Ofg8svvzz233//co/9Y7Yj13yXL18eRx55ZAwfPrzMtcPFixfHaaedFn/+85/LKbvklLb+1bp16x/sy8QzNul43qI8pPMZikzVuipDbSiV+mW6n6OpLCqyzpqbmxsjR46MKlWqFOybPHlydOvWLb766qsS569atSpuueWWGDx4cJHSXWBNAAAgAElEQVRj0vk+23333eOaa64ptO/CCy+M5557rsg5K1asiJNOOik+/vjjIseky45QU1fHBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoDLJznQCVIzi/tP4dHr55Zfj1FNPjcaNG0deXl7svvvu0blz5/i///u/WLZsWabTi6ysrLj99tuLHdOvX78466yzYtq0abFq1arYsGFDvPPOO3HJJZfEJZdcUuS81q1bR+/evcuU3+rVq+Oaa66J5s2bR9WqVaN169YxaNCgEud17ty5yL7s7Oy44oorSlzjqaeeio4dO0Z+fn7k5+dHx44d44knnkgp/8qmIl7P8tK+fftC7ffee6/CY27r66+/jt/+9rdJjb3//vsLtY844ohSx73ssstiw4YNJY4bMGBAvPvuuwXtatWqRZ8+fUodl9L54IMPYujQoQXtXXbZJbp3717snCFDhhRqX3jhhUnHu+iiiwq1H3744di8eXOR40855ZRo3bp1QXvJkiXRt2/fSCQSJcbatGnTD87rl19+edK5RkSsXbs2qXNsMrY9DxxwwAHlsi4AZdemTZsi+04//fQYMmRIzJkzJ9avXx9btmyJ5cuXx9y5c+P555+PO++8M7p16xZ169aNrl27xujRo2PNmjVpzD51lfG+rryv7Xfk+6SiZGdnx6233lriuMcffzyOOOKIqFOnTlSrVi322muvuOOOO0q8xr/44oujSZMmlS52qnr27BlPP/105Obmbrd/06ZNccYZZ8TDDz9cpjiVpc7z+eefx/nnnx9NmjSJvLy8aNKkSZx//vnx+eefFzuvYcOGceaZZ6Ynyf9fvXr1iu2vX79+ZGVlpbzuaaedFmPGjIkqVaqUNrWklLVOsGXLlujZs2d8+OGH2+1v1qxZnHPOOXH//ffH66+/HqtWrYqZM2fGX/7ylzjuuOMq/PhSUZ73Wamq6FpJv379Ijv7vyX6l156KZ599tkS523YsCH69++fVF6ZcOmll8ZOO+1U0J47d27cdtttSc393//931iyZElBu2bNmiXWf9IdLxm33HJLDBs2LHJycgr23XPPPXHaaaclVQerLNJdt1MLAcicu+66q8QxGzZsiAcffDC6du0ajRo1itzc3KhTp060bds2+vbtG88991xs2bIlqXgzZsyIXr16RYMGDeKcc86JIUOGxLRp02L+/PmxatWq2LJlS6xfvz6++OKLePHFF+Piiy+OTp06xaZNm4pc87TTTkv6eMsqU78xZ7J+8WO6V0+llnX//fcXec9dvXr1En/vP/3004vsmz17dsyePTv1AyiDHfH5h3SevzJdL0vmPnDkyJFx8MEHR82aNSM/Pz8OOuigGD58eFK/lWaamm/qVq1aFX369Im999477rvvvti4cWNK8z/66KO47LLL4n/+53/i6aefrqAsi1ba+tf2PieV4Rm0ZJTmeYuySuczFJmqdWW6NlSa+mU6n6Mpyumnnx6JRKJU24oVK1KKVdF11nPPPTeaNm1a0F6xYkWce+65KZ8Xi5PO91m/fv0K1RWnTZsWI0eOLDHO6tWrM1ZL/86OUlNXxwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAyyS55CD9GW7ZsyXQK8bvf/S46deoUzzzzTHz99dexadOm+OKLL2LKlClx9dVXx80335zpFKNz587Rrl27IvtHjRoVDz30UJH9DzzwQEyaNKnI/muvvbbUua1YsSI6duwYd999d3z22WexcePGmDNnTvzqV7+KQYMGFTu3uGPq3LlztGjRotj5N998c5x++ukxY8aMWLNmTaxZsyZmzJgRZ555Ztxwww0pH8t9990XWVlZBdsDDzxQ7Phdd9210Phttw0bNqScQ0W9nuWlVatWhdpffvllhcfc1tChQ5N+bV9++eVIJBIF7X322Seys1P/SnnttdfijTfeSGrs1q1bY8CAAYX2nXfeeSnHpOzGjBlTqH3IIYcUO37kyJGxdu3agvbxxx8fzZo1KzFOgwYNolevXgXtRCJR7Dk5IqJ///6F2n/9619j1apVJcb6zuuvvx5vv/12Qbtjx45J5fqdv/3tb7F48eKkxxdn2/NA7dq1o0GDBuWyNgBlU69evSL75s+fn9QamzdvjgkTJkTv3r3jz3/+8w/6K8M1dETlvK+riGv7TNwnVXbHHXdc7LnnnsWOueqqq+Kss86KadOmxcqVK2PDhg3xwQcfxPXXXx9dunSJjRs3Fjm3atWqcemll1a62Kk48cQTY8yYMZGbm7vd/nXr1kXPnj1/cP1cGpWhzvP+++9H+/btY8SIEfHVV1/Fpk2b4quvvooRI0bEAQccEB9++GGx8/v165emTP+funXrVtjaXbt2jdtvv73C1o8onzrBwoUL48ADD4z7778/Nm/eXOzYnJycaN++fVx55ZXx0ksvxX/+85+44YYbokaNGinHLW/leZ+VqoqulfTu3btQ+7777ks6t+nTp8esWbOSHp9O5557bqH2gAEDYtOmTUnNXbFixQ/u/c8///xKFa84O+20U4wYMSJuvPHGgn1bt26NX//613HVVVcVeo9Udpmo26mFAGTGUUcdFQcddFCxYz755JPYf//946KLLooJEybEokWLYvPmzbFy5cr46KOPYtiwYdGzZ89o3rx5jB49OrZu3Vrseh07doxx48aldK8zY8aMGD9+fJH9hx9++A/2VVR9JVO/MWeyfvFjuVdPtZb12WefxfPPP1/kesXdy1avXj26d+9eZP/w4cNTzr+sdrTnH9J9/srk5+DYY4+N3XffvdjYV155ZZx33nnxxhtvxNq1a2PNmjXx5ptvRp8+feKKK64odm6mqfmWXq1ateLkk0+OHj16RF5eXkpz99hjj+jVq1ccdthhFZRd8Upb/6pVq9YP9q1cubJcckqHVJ+3KKt0PkORqVpXpmtDpalfpvM5msqgouus235/DhkyJBYsWJB6osVI5/ts21j33ntvkllGTJw4scTfayrSjlJTV8cEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgMin+fwnnR2vr1q0ZjT969Oj44x//mNEcktGtW7di+//v//6vxDVGjx5dZF+bNm1i9913TzWtiIi49tpr47333ttu38CBA4ud27Rp0yL7jj766GLnzpw5M2677bYi+++444548803i12jMqqo17M81KxZM+rVq1do34IFCyo05vZMmjQp6bGrV6+Or776qqBdtWrVqF27dsoxx4wZk9L4Z599ttD5rU2bNrHzzjunHJeyeffddwu1DzjggGLHr1q1Kh577LGCdpUqVeKCCy4oMc75558fubm5Be1//OMfMW/evCLH16xZMw4++OBC+5566qkS42xr4sSJhdqHHHJI0nOff/75lOMVZfXq1bF69epC+0r7nQJA+dr2/Px9f/nLX6Jhw4ZpzKbiVNb7uoq4tt9R75OKc9xxxxXb//LLL8c999xTZP+0adPi7rvvLlWMTMZOVq9eveLpp5+OnXbaabv9K1eujC5dusSECRPKFOc7ma7zRERccMEFsWzZsu32LV26NC688MJi53fo0CGqV69eEaltV926dSt0/SuvvDJ22223Clm7POsEa9eujcsuuyxatWoVf/jDH+Kzzz5Lat6uu+4at956a3zyySdx+OGHlyp2eSnP+6xUVWStpHnz5tGoUaOC9po1a35wP1qSZ555JqXx6fCzn/3sB9+3qd6bP/7444Xae+21V5GvZbrjFadWrVrxwgsvxLnnnluwb8OGDfGLX/wi/vrXv6a8XqZlom6nFgKQGSeccEKx/StWrIiuXbvGxx9/XOJaX375ZfTu3bvYWn5ZzJkzp8i+Jk2a/OA6uqJk6jfmTNYvfgz36qWtZQ0YMKDIvn333TcOPPDA7fadcMIJUaNGje32bd68udBvY+myoz3/kO7zVyY/ByV9/qdNmxb33ntvkf0DBw6MV155pdg1MknNt3S6dOkSn3zySdx6663xs5/9LOX52dnZccwxx8SECRNi7NixFV5P+76y1L++/wzBd9auXVsueaVDqs9blEU6n6HIVK2rMtSGSlO/TNdzNJVFRdZZd95559h3330L7Xv44YdTT7IY6Xyf7b777tGkSZOC9vr16+OFF15IKdbTTz+d0vjytKPU1NUxAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqEyyM50AFSORSGQ09vXXX5+x+Kno3LlzkX3ffPNNvPvuuyWu8cknn5Q6RlGWLVsWw4cPL7L/3//+d2zatKnI/tq1axfZd8ghhxQbe/DgwbF169Yi+xOJRAwaNKjYNSqbinw9y0PDhg1/sG/p0qUVGnN73nvvvZTGr1ixolC7NK/TW2+9ldL45cuXx7x58wrtO/DAA1OOS9msXLmy0Hli1113LXHO4MGDC7UvuOCCqFKlSpHjs7Kyom/fvoX2PfDAA8XGOOSQQyInJ6egvWjRohLP0dsze/bsQu0DDjgg6bmzZs1KOV5xlixZUqi9vfMFAOk3d+7cIvtOPPHE+Oqrr+Kdd96JJ554Im677bY4++yzo127dlG9evU0Zlk2lfW+rqKu7XfE+6SSlHQvm8zxDh48uNj6xP777x9169atVLGT0b1793jqqadip5122m7/N998E0cffXRMnz69VOtvTybrPBER//rXv+LNN98sdsz06dPjgw8+KLI/JycnOnToUN6pFam4z+y2Hnjggdhvv/2iWrVqUbNmzejYsWOMHz++2Dl5eXlxxRVXlDXN7aqIOsEXX3wRv//976N58+axxx57RL9+/eKhhx6Kt99+OzZu3FjkvMaNG8fkyZOjZ8+eZYpfFuV9n5WKiqyVbPt5eP/992Pz5s0pxfvXv/6V0vh0OOiggwq1v/jii1i0aFFKa7z//vuxdu3agnZWVlaR9Z90xytKkyZNYtq0aXHMMccU7Fu6dGl07tw5nn322ZTWqiwyVbdTCwFIv2OPPbbY/nvuuSc+++yzCou///77x3XXXRejR4+Ot956K+bPnx/Lly+PTZs2RSKRKLRdd911xa5Vr169Csvz+zL1G3Mm6xeV/V69LLWsyZMnx4cfflhk/4UXXrjd/aeddlqRc5577rkfXNekw472/EO6z1+Z/ByU9Pkv6XfUZMdkgppv6Zx88snxwgsvlNs904knnhiTJ0+u8OdjvlOW+tf23g81atQoc07pUprnLUornc9QZKrWVRlqQ6WtX6bjOZriPPnkk5GVlVWqrU6dOinFqsg66+GHHx5ZWVkF7cWLF8ecOXNSileSdL7Ptt333nvvxYYNG1KKlWpdrzztSDV1dUwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqi+xMJ0DFSCQSGYv92muvxeeff56x+Klo0aJFkX3169ePRCJR4jZ9+vRiY/z85z9POa9JkybF5s2bi+xPJBKxfPnyIvtr1KhRZF/z5s2Ljf3Pf/6zxPySGVOZVOTrWR62t/6GDRsqNOa2tm7dGitXrkxpzrY5Vq1aNeW4H3/8ccpzPvroo0LtZs2apbwGP9SkSZO47LLLYtSoUfH222/HV199FatXr46tW7f+4Ly3devWyM7+7yVEnTp1Slx/1qxZ8frrrxe0mzZtGt26dStyfOfOnaNly5YF7YULF8b48eOLjbHHHnsUas+ZM6fEvLZnyZIlhdr169dPeu6CBQtKFbMo69evL9Su6PMRAMl58cUXi+3Pzs6OffbZJ04//fS4/vrr49H/j737jo6yyv84/pkhhZBOs4AgzbIKKCAIYqErKgiCUlSaUbArqwvKqqyyWFBRWBAIUpaiKIgCC0hxUXq1BJQWEUILJYWEtMnM74895ucEppdnkrxf5+Qc73Pbd8Lz3Dz3O/cc58zRjh07lJOTox9++EEffvih2rVrJ5PJFKSIPReq+7pAvdtXxH2SK/Xq1XNa787nPXbsmA4ePOiw3mw2q06dOiE1tzu6d++u8PDwi9YdOXJEt956q3bt2uXV2I4YmeeRpPXr17vVbuPGjU7rXf3b+lN2drZb7UaPHq2hQ4fqxx9/VH5+vnJzc7Vx40Z1795dn376qdO+zvY0vgh0nmDfvn1KTk5WUlKSWrRoodjYWLVt21ZjxozR77//fkH78PBwzZkzx2keLZD8vc9yV6BzJaXzGXv37vVoLsm7vEqg1a5d2668Z88ej8ewWq0XfLbS4xo138U0btxYmzdvVpMmTUqupaamqk2bNi7XxVBmVN6OXAgABJ+rPfHnn3/u9zkrVaqkQYMGKTU1VTt37tQ///lP9evXTy1atFCtWrWUkJDgcN/lTGJiot9jvRijvmM2Mn8R6nt1X3NZEydOdFjXp08fxcbG2l2Ljo7W3Xff7bDPjBkzvI7FFxXt/EOw169Qzpe5+neTXOdtjELO13N169bVrFmzVKlSJYdtFixYoDvuuEMJCQmKiIjQFVdcoYEDBzq9/2688Uan66E/+ZL/Onfu3AXX4uPjfY7JF4E+b+GtYJ6hMCrXFQq5IW/zl8E4RxMKAp1nrVu3rl35xx9/9GgudwTzPiv9HuCPHF2wVLScOnlMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhAqz0QFUFD169JDJZPLoZ8SIEUaH7ZVt27YZHYJbIiMjg/I/m69evbrHfVJSUly2ycvLc1hnMpkc1lWtWtXpuL/99pvLuQ8dOiSr1eqyXagI5O/THyIjI+3KRUVFstlsAZ2zNCPmlKTMzEyf+yQmJvornAqpUaNGWrRokY4cOaIJEybo4YcfVrNmzXTZZZcpJibGrfs/NjbWrbkmT55sV3788ccdti1d98knn8hisTgdv/T61qZNG+Xn5ys/P18FBQUqKChQYWGhioqKVFRUJIvFIovFouLiYhUXF8tqtcpqtWrNmjV247h7jxUXFys3N9ettu4qKCiwK0dFRfl1fACAdzZv3nzB3wt3mEwmNW3aVM8884zWrl2r/fv3q0ePHgGI0Hehuq8L1Lt9RdwnOeNqv5yXl6f09HS3xjp06JDT+tJ7ZiPn9tX+/fvVtm1b7d2716/jhoLff//drXaufueunjV/ysrKcqvNW2+95bB+5MiRTvfK11xzTUD2pMHOExQVFWnDhg0aNWqUGjZsqCeffPKCtTQ2NlavvfZawGJwJBD7LHcF+veekJBgV/YmR+LOfR5spZ+JjIwMr8Yp3c/Rsxbs+UoLDw/X+vXrVbt27ZJr27dvV+vWrbVv3z6vYgkVRuXtyIUAQHBFRkY6zfEXFRXpl19+8euccXFxWrFihT755BPVq1fPr2OXfpcOBCO/YzYqf1EW9uq+5rJmz57t8P0nOjpa/fr1s7t27733OnxPOXHihFasWOFTPN6oaOcfgr1+Gf0cOHu3ttlsOnz4sMt5Dx8+HJL5S3K+nhs1apRiYmIc1v/973/Xgw8+qHXr1ikrK0tFRUVKS0vTrFmz1Lx5c6fPxkMPPaTrr78+EGHb8SX/lZaWdsG1YOYd/yyY5y28EcwzFEbluozODfmavwz0OZpQEOg8a7Vq1ezKZ86c8fscwbzP/PEsedPHHypaTp08JgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEKF2egAYIxKlSoFbOwjR44EbGx/SkhICMo81apV87jP2bNnXbYpKiryJhxFR0c7rMvPz1dxcbHLMWw2m/Ly8rya3wiB/H36Q0FBgV05PDxcJpPJoGiCx2KxePV7z83NtSvHxMT4K6QKp0uXLtq1a5d69Ojh0z1nNrv3OrFgwQKdOXOmpHzXXXfpiiuuuKDdJZdcou7du5eUrVarpk2b5nL80uu62WxWZGSkIiMjFRERoYiICIWHhyssLExhYWGqVKmSKlWqJLPZLLPZLJPJdNHfg7N1888sFotb7TxRuXJlu3JZWnsBoLx76KGHtH//fp/GaNCggRYtWqRXX33VT1H5T6ju6wL1bl8R90nOuNovl34n96VtfHx8yMztq7y8POXk5Ph1THcFMs8juf97P3/+vNP62NhYf4TjFnfWi40bNyo/P99h/aFDh3Tw4EGnY1x66aUex+aKkXkCi8WiSZMmqXPnziosLLSr69Onj9v7I3/GU16Vzmd48zfEkzUxWEo/567WBUdKfzZH60ew5yvNbDYrLi7O7trkyZOVnp7uVRyhwsi8HbkQAAguV3uw7Oxsv8/5+eefq2PHjn4fN1iM/I7ZqPxFWdir+5rLys3N1YwZMxzWP/bYY3blBx980GHbOXPmGLKXqWjnH4K9fhn9HDh7/gsKCmS1Wt2aOxTfr8n5eqZSpUpO16DU1FSNHTvWYX1WVpZGjBjhdI6HHnrI6/jc5Uv+62LfzTRp0sQvcXki2OctvBHMMxRG5bqMzg35+jc/0OdoKoLS/1aB+J4mmPdZ6WfJm7lCMW/sD6GWUyePCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgFBhNjoABEZYWJjT+ri4uIDNfe7cuYCN7U+ZmZlBmSc8PNzjPgUFBS7bWK1Wb8JRTk6Ow7rIyEiZza6XBZPJpKioKK/mN0Igf5/+kJube8G1ypUrGxBJcIWFhblcqy4mOjraruzsnoZjV111lRYvXmz3+zx//rxmz56twYMHq1WrVqpdu7ZiY2MVEREhk8lk91NcXOzxnPn5+ZoxY0ZJ2Ww269FHH72g3aBBg+zWzlWrVunQoUMux8/Ly/M4JneYTKaAjOuO0mvtxdYLAIAxTpw4oebNm+vDDz/0eX0ePXq0br75Zj9F5h+huq8L1Lt9RdwnOZOVleW0vvQ7uS9tS89l5Ny+atKkiVatWqWEhAS/jisZm+eR3P+9V6lSxWl9MNeWnJwcpaamOm1z9OhRl+O4apOYmOhRXO4IhTzB+vXrNXXqVLtr4eHhatu2bVDjKM9K/zt78zfEkzUxWEo/567WBUdKfzZH60ew5yutqKhI69ats7s2bdo0DRw40Ks4QoWReTtyIQAQXK6+L/X3XuOBBx5Q586d/TpmsBn5HbNR+YuysFf3x35z4sSJDvNKzZo1U/PmzSVJsbGxuvPOOx2OM3PmTJ9j8UZFO/8Q7PXL6OfA2Xuxu8+/5N3eM9DI+XrmL3/5i2JjYx3Wr1692uV3+atXr3ZaH4zvK3zJf6WkpKiwsNDuWosWLfwSl7uMOG/hjWCeoTAq12V0bshXgT5HUxFkZ2fblWNiYvw+RzDvs9J/v8pL3tgfQi2nTh4TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAocJsdAAIDFf/U/err746YHNbrdaAje1PBQUFFfJ/Np+RkeGwzmQyqXbt2i7HqFu3rsxmlg9/OXHixAXXqlevbkAkwZeQkOBzH2f3tK8qVaoUsLGNNm7cOFWuXLmkvGXLFjVo0EADBgzQjBkztHXrVh09elQ5OTkqKiqy61u5cmWvfzcff/yxbDZbSXnIkCF2Y5lMJiUlJdn1mTJliltjnz592q78ySefyGQy+fzTsWNHrz6rP1SrVs2ufPLkSYMiAQBczLlz5/Tcc8/p8ssv16BBgzRv3jwdOnTI7m+du4YPHx6ACL1XVvZ1/sI+yV5+fr7T/XJUVJRq1qzp1lhXXnml0/rS73BGzu0PzZo108qVKxUXF+fXcY3M80j/u7/90e7s2bP+CMdt27dvd1rvzXpdWmZmps9jlBYqeYIFCxZccM3VcwX3lb534uPjPR7Dmz6BVvpvamJiolfjlO7naP0I9nylWa1W3XXXXVq5cmXJNbPZrE8++UTDhg3zKhZf+SufZVTejlwIAARXQUGBzp0757A+PDxc11xzjd/me+SRR5zWZ2Zm6u9//7tuvPFGxcXFyWw22+Xrx4wZ47dYvGXkd8xG5S/Kwl7dH7ms1NRU/ec//3FY/8f3V927d7f7ju3Ptm7dqt27d/scizcq2vmHYK9fRj8Hrp7/OnXquJz3iiuuKDf5S3eU15zvZZdd5rT+1KlTLsc4f/68zp8/7/Uc/uBL/quwsFDr16+3u3b77bf7JS53GXXewlPBPENhVK7L6NyQPwTyHE1FUPrfqnRuyR+CeZ+Vfpb8kaMrL0Itp04eEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKHCbHQA8E5BQYHT+qpVqzqt79Chgz/DKbN+++03h3W7d++WyWTy+efOO+8M4idy7eDBg07r27Rp43KM2267zV/hQFJubq7OnDljd61WrVoGRRNc1157rc99jhw54rCtxWKxK4eFhXk0V2Jiokfty4qEhAS7tamwsFD333+/Tpw44Vb/mjVrej33wYMHtWrVqpJyrVq1dPfdd5eUO3XqpPr165eUjx8/riVLlrg1dul7oWHDhl7HGQpiY2MVGxtrd+3QoUPGBAMAcCo7O1szZ85U//79Va9ePcXExKhZs2bq1auXXnrpJc2ePVvHjx93Okb79u2DFC0uhn3ShZztlyX3Pu/ll1+uBg0aOKy3Wq06fPhwSM3tjo8//ljZ2dkO61u2bKnly5crJibG7TFDPc/Ttm1bt9q5elZc/dv627Zt25zW165d2+UYrvbn6enpHsXkjlDJE+zbt++Ca/Hx8UGPo7wqvYe9+uqrPR7Dmz6BlpaWZlf2JvdjNpt1zTXXOB3XqPkuJi8vT927d9dXX31Vcs1kMmnSpEn661//6nE8oZLPCnTe7mLIhQCAMVJTU53W9+7d229z3X777Q7rCgoK1LZtW7355pv64YcfdO7cOdlsNrs2ofI+atR3zEbmL0J9r+4vH330kcO6fv36KTo6Wr+BGrIAACAASURBVA888IDDNjNnzgxAVO6raOcfgrl+SaGdL7vllltczu1Om/KkvOZ8TSaT0/pq1aq5HCMqKkpRUVFez+EPvua/Fi1aZFdu0KCB7rjjDn+E5pKR5y08FcwzFEblukIhN+SrQJ6jqQhK/41s0qSJ3+cI5n1W+j3AHzm68iKUcurkMQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBKzEYHAO9kZWU5rW/cuLHDuoSEBA0YMMDfIZVJq1evdlh37bXX6vLLLw9iNMGxadMmp/VDhgxxWm8ymfTEE0/4FENxcbHT+oiICJ/GL4v27dtnV65bt65BkQTXTTfd5FH7xMRE1a9f3+7a1q1bHbbPzs62K8fFxXk0X8OGDT1qX1Y0adJE4eHhJeV169bp6NGjbvf39N+ttEmTJtmVH3vssZL/fvzxx+3qPvnkE1ksFrfG/e6772Sz2UrKN910k6pUqeJDpMYqvQ5kZmYqPT3doGgAAJ44f/68du3apYULF+rdd9/VgAEDVKdOHX366acO+1StWlXR0dEO63mHDqxQ2CeFmjVr1jitHzZsmMsxhg0bJpPJ5LB+165dysjICKm53bFjxw7dc889ysvLc9imTZs2WrZsmdvvo6Ge52nWrJnLfUCbNm10/fXXO6y3WCzatm2bv0Nz6osvvrDbI5TWpk0bVa5c2WH9lVdeqQYNGjisP3r0qE6fPu1TjI6Eap7A2+cGFyr9PDRu3Nhur+6OZs2a+TMkv9i8ebNd+corr1TNmjU9GuO6666zey+yWq0O8z/Bns+RgoIC9erV64L3vXfffVevvvqqR2OFSj4r0Hm7iyEXAgDGWLVqldP6559/3i/vozExMYqJiXFYv3btWu3evdvpGC1btvQpBn/lV4z6jtnI/EWo79X9ZdWqVfrll18uWhcbG6uhQ4eqS5cuF63Pz8/X/PnzAxmeSxXt/EOw1q8/GPkcuHr+k5KSXM7tTpvypLzmfE+dOuW0vmPHjjKbnR8H7Nixo9P70NUc/uJL/mvu3Lk6f/683bVg/XsZfd7CE8E8Q2FUritUckO+CtQ5mopg/fr1dvf5JZdcokaNGvl1jmDeZ6WvNW7c2On3GBcTzHUmmEIpp04eEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKHEbHQA8M6JEyec1iclJSkyMvKC62FhYZo+fbpq1KgRqNDKlOXLlzusM5vNGjlypFfjRkdH66WXXtKrr77qbWgBs3btWqf1HTt2VFJSksP6l19+Wa1atfIphpycHKf1DRs29Gn8smj79u125caNGxsUSXD16tXLo/Y9e/aU2fz/f7p+/fVXnTlzxmH706dP25U9vbfatWvnUfs/WCwWu/KfYw4FNWvWtCunpaV51L979+4+zb906VIdOXKkpHzXXXepTp06uvTSS3XvvfeWXLdarUpOTnZ73PT0dP34448l5aioKJ9jNVLpdaD0OgEAKFssFoumTp3qtE2VKlUc1vEOHVihsE8KNStXrnRa3759ez3//PMO69u2basXX3zRqzmMnNtd33//ve6//34VFRU5bHPbbbfp66+/VuXKlV2OVxbyPNOnT1diYuJF6xITEzVlyhSn/bdt26bz588HIjSHDh06pDVr1jisj4+P14gRIxzWjx07ViaTyWG9s7ySr0IhT9CgQYMLrrm6V0N9PxxKDh48qJMnT5aUY2Ji1KlTJ4/GuP/++/0dls8OHz5st+eXPM//9OnTx66ckpKi7OzskJjPGYvFov79+2vGjBl210ePHq233nrL7XGMymeVFui83cWQCwEAYyxbtsxpfWJiolasWKGrrrrK5Vg1a9ZUcnKy6tevf0Gdq71RWFiY0/pbbrlFLVu2dBmDM/7Krxj1HbOR+YuysFf3l4kTJzqsGzNmjCIiIi5at3jxYmVmZgYqLLdUtPMPwVq//mDkc/Dtt9867Xf77bfr6aefdlj/xBNPqH379k7HKG/Ka873999/l81mc1jfsGFDvfTSSw7r4+PjXe5RDx065G14HvEl/5WZmakJEybYXevdu7fuvPNOv8R2ww03OBzLiPMW3ubcgnmGwqhcVyjlhnwRqHM0FcHZs2e1a9cuu2uDBg3y6xzBvM8OHTqko0ePlpSjoqLUtWtXj+bq3bu3R+3LilDKqZPHBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCgxGx0AvLNz506n9U2aNNHKlSvVunVrVa5cWYmJibrnnnu0fv169ezZM0hRhr5Vq1bpp59+clj/5JNP6rnnnnN7vKuvvlpjxozRb7/9prfffls1a9b0R5h+tXbtWh04cMBpmylTpmjq1Klq0aKFoqOjFR0drdatW2vevHl68803fY7h7NmzTuvffvtttWzZUlWqVPF5rrJi69atduUmTZoYFElwtW7dWq1atXKrrdls1tNPP213bebMmU77HD58WBkZGSXlyy67TA0bNnRrvqioKA0aNMittqXl5ORcMFYoyc/PtytXrVrV7b5XXnmlHnzwQZ/mLy4u1rRp00rKZrNZQ4YM0eDBgxUeHl5yfeXKlTp06JBHY0+cONGu/Nprr9mNWZaUXgdKrxMAAOP07t1bX3zxhe655x5FRES43a9Zs2YO6ywWi86cOeOwnnfowAqFfVKoWblypXbv3u20zfvvv6+5c+eqbdu2io2NVWRkpP7yl7/ojTfe0DfffKPIyEiHfQsKCjRp0qSQm9sTy5cvV//+/WW1Wh226dChgxYvXuw0Hqls5HkaN26sHTt2aMCAAbrssssUHh6uyy67TI888oi2b9+u66+/3mn/P+8Bgqn0HqG01157TR9//LGaNm2qypUrKzo6Wm3atNFXX32lPn36OO07Z84cf4Zqx9c8wfz583XJJZf4FEOvXr3syhaLRevXr3faJ9T3w6Gm9D305JNPut23TZs2Tt8tjFQ6X/PMM88oLCzMrb7x8fFKSkqyu/bJJ5+E1HzOWK1WDRkyRP/617/srv/tb3/ThAkTZDKZXI5hVD6rtEDn7S6GXAgAGOO///2vyzX3mmuu0Q8//KBJkyapU6dOqlmzpsLDwxUXF6dGjRqpX79+mjt3rg4fPqwhQ4bIbL7wGMLZs2dlsVgcztG6dWvVrVv3onX169fX/PnzPftgF+Gv/IpR3zEbmb8oK3t1f5g9e7aysrIuWufsM8yYMSNQIbmtop1/CNb69Qcjn4NVq1a5/N70ww8/1PTp03XTTTeVPP833XSTkpOTXeZHyqPymvM9c+aMtm3b5rTN2LFjNW/ePN12222Ki4tTWFiYatWqpQEDBmjHjh36y1/+4rT/ihUr/BmyQ77mv8aOHaujR4/aXZs2bZouv/xyn+Jq2bKlVq1apYSEhIvWG3HewpecWzDPUBiV6wql3JC3AnmOpiIofZ8PHTpUl112mV/nCOZ9Nnv2bLuyJ+9vnTt3drnOl2WhklMnjwkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBQYjY6AHgnJSVFp0+fdtrm9ttv18aNG5WXl6ezZ89qyZIlatWqVZAiDJwvv/xSNpvN45+UlJQLxrLZbHrllVcczmUymfTBBx9o06ZNGjJkiK699lrFxMQoLCxMNWrU0LXXXqtevXpp3Lhx2r59u3799Ve9/PLLqlGjRiB/BT6x2WwaP3680zYmk0lJSUnatm2bcnJylJOTo40bN6pv375+iWH37t1O61u0aKEtW7YoNzf3gn/Hhx56yC8xhJo1a9bIZrOVlFu3bi2TyWRgRMEzceJERUZGumz3zDPPqGnTpiXl/Px8zZgxw2W/jRs32pWHDh3qVlzvvvuu189yenq6Xblu3bpejRMoqampduU77rhD8fHxLvuFh4drzpw5ioiI8DmGadOmqaioqKQ8ZMgQJSUl2bWZOnWqx+POmjXL7vNdffXVmjJliveBGuiWW26xK69atcqgSAAApUVGRur+++/XkiVLlJGRoRUrVuiVV15Rz549dd1116lmzZqKioqS2WxWfHy8WrZsqXfffVdjx451OObPP/8sq9XqsJ536MAKhX1SqLFarXr11VddtuvXr5++//57ZWdnKz8/X7t379aoUaMUFRXltN/kyZN19OjRkJvbU59//rkee+wxp226dOmiL774QuHh4Q7blJU8T7169TRz5kwdO3ZMhYWFOnbsmGbNmqX69es77Xfy5EnNnz8/SFHa++qrr/T11187bfP444/rhx9+UF5ennJycrRhwwZ169bNaZ/ly5dr3bp1/gzVjq95gh49emj37t16+OGHvcov3HDDDXryySftrq1du1YZGRlO+4X6fjjUTJs2ze7vf9euXdW9e3eX/SIjI/XRRx8FMjSfTJ48WYWFhSXlq6++WiNGjHCr77hx4+zyMdnZ2S7zP8GezxWbzaannnpK77zzjt31p556StOmTZPZ7PprGSPyWRcT6LxdaeRCAMA47vztjIqK0rBhw/TNN9/o5MmTKiwsVFZWlvbt26e5c+eqX79+Tv9uWK1Wbd261WF9TEyMVq9erT59+qhWrVqKiIhQgwYN9NJLL2n79u264oorvPpsf+av/IpR3zEbmb8oS3t1X+Xk5GjmzJke9UlLS9Pq1asDE5AHKuL5h2CsX38wOl82YcIEp/1NJpMGDx6srVu3ljz/W7du1ZAhQyrM2YM/K88533nz5rls07dvX61bt05ZWVkqKipSWlqaZs6cqQYNGjjtd+7cOS1btsxfoTrla/4rKytLAwYMUHFxccm12rVra/369S7zlY4MHDhQ3377rapXr+6wjRHnLXzJuQXzDIVRua5Qyw15K1DnaCqCOXPm6PDhwyXlxMREzZo1yy/nm/4QzPts2rRpslgsJeVbb71VAwYMcDlPTEyMPvzwQ7diKqtCJadOHhMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAChxGx0APCOxWLR7NmzjQ6jXFi6dKnL/6n9zTffrOTkZO3Zs0fnzp1TUVGR0tPTtWfPHn3++ecaPny4mjdvHqSIfffxxx9r69aths2/efNmWSwWw+YPRcePH9ePP/5YUq5evbquv/56AyMKnhYtWmj+/PmKjo522KZfv34aN26c3bXXX39d6enpLsefOXOmXfmZZ55R+/btHbY3m8365z//qSeffNLl2I78+d9Skrp06eL1WIGwZ88eHTp0qKQcHx+vKVOmKCwszGGfxMRELVu2TLfccotfYjhx4oQWL15cUq5Vq5auvPLKkvKxY8e0dOlSj8e1WCzq37+/CgoKSq4NGjRIixYtUrVq1dwep0aNGnrxxRe1cOFCj2Pwh6ioKLVq1aqknJ2drQ0bNhgSCwDAuSpVqqhLly568803tXDhQqWkpOjkyZM6f/68iouLlZmZqS1btuivf/2rwsPDHY4zd+5cp/PwDh14Ru+TQtGiRYs0bdo0v4+7c+dOvfLKKyE7t6emT5+u4cOHO21zzz336LPPPnP4zl3e8zxPPPGE8vPzDZ0/MzPTb+OdOXNGzzzzjN/Guxh/5AmqVaum2bNn6+eff1afPn1kNruXCu7atavWrFmjiIiIkmtWq1UjR4502TfU98OhZu/evZo4caLdtblz56pdu3YO+1SpUkXz5s0L6Vzk8ePH9dprr9ld+8c//qFhw4Y57GM2m/XGG2/o0Ucftbs+fPhwZWdnh9R87vrb3/6m119/3e7akCFDNGfOHKc5GMmYfNbFBDpv92fkQgDAWN9++63+8Y9/BHyeefPmOa1v2LCh5s+fr7S0NBUUFOjAgQN6++23lZiY6Jf5/ZlfMeo7ZiPzF2Vpr+6riRMnymazud1+9uzZslqtAYzIfRXt/EOw1q8/GPkcfPTRR9q1a5ff5y7PymvOd/Lkydq3b19Axv7HP/6hs2fPBmTs0vyR/1qzZo2eeOIJuzW7Xr162r59u55//nm7/JYz1113nZYtW6YZM2aoSpUqTtsacd7Cl5xbMM9QGJXrCtXckKcCdY6mIigqKtIjjzyi4uLikmudOnXS0qVLdemll7rsHxcXp1dffdXpPRPM++y33367IN82depU3XvvvQ77JCQk6Msvv9Q111zjsE15EAo5dfKYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDVmowOA98aNG6eMjAyv+r7zzjt+jqZse/7557VgwQKjwwia4uJiDRgwwOv7Z86cOcrKyvJ6/tOnT2vp0qVe9y+vFi5caFfu0qWLQZEER0FBgb788ktJUo8ePfTjjz9q2LBhqlevniIjI1WjRg116dJFCxcu1Ny5c1WpUqWSvps2bdJ7773n1jyLFy/Wrl27Ssrh4eFavny53n33Xd1www2Kjo5WVFSUGjZsqMcee0w//fSTRo4cKUmaNm2aV59tyZIlduUXX3xRL7zwgho0aKDIyEivxvS3f/7zn3blBx98UFu2bFG/fv1Uq1YthYWFKSEhQc2bN9frr7+uAwcOqFOnTpL+twYUFxf7HMPkyZMd1k2fPl0Wi8WrcTdv3qxHH33ULsYePXro999/1+TJk9W9e3ddccUVqlKlisLDw1WtWjVdffXV6tGjh1577TVt2LBBJ06c0DvvvKMGDRp4FYOvbr/9dkVERJSUlyxZoqKiIkNiAQAEXkpKiiZOnOi0De/QgWf0PilUPfHEE1q+fLnfxjt06JC6deum8+fPh/Tcnnr//ff1xhtvOG3To0ePC/Y2fxbKeZ7p06crPz/fq76ffPKJFi1a5OeIPHP06FHdd999ysvL83ms/Px8de/eXQcOHPBDZM75K09w3XXXaf78+Tp69KimT5+unj176rrrrlPVqlUVFhamxMRENWvWTMOGDdN3332nZcuWqWrVqnZjjBo1Sjt37nQ5V1nYD4eaV155Rfv27SspR0dHa/Xq1Zo+fbpuu+02VatWTZGRkapfv76eeOIJ/fTTT+rZs6ckaf78+UaF7dI777yj1atXl5RNJpMmTZqklStX6r777tNll12miIgI1apVS3379tWGDRs0atQouzEWLFig5OTkkJzPXaNHj9aLL75od61v375asGCB3b6/NCPyWX8WrLzdn5ELAQDjvfbaa5oyZUpA55g2bZr27t3rVd+MjAx99tlnPs3v7/yKEd8xG52/KEt7dV8cOHDAo885c+bMwAXjhYp2/iEY69efGfUcWCwWPfLII8rOzvZqnrlz55bL/KUzRq+ZgVJYWKg+ffp4/bkc+eqrrzR+/Hi/jumKP/JfU6dO1ZAhQ1RYWFhyLTExUe+//74OHjyoSZMmqVu3brr66qtL8mHx8fFq3ry5nnrqKa1Zs0YpKSnq2rWr23MG+7yFrzm3YJ6hMCrXFaq5IU8F6hxNRbBu3boL8nCdOnXSgQMHNH78eHXo0KHkPoiLi9M111yjhx9+WHPnztWJEyc0evRoxcfHO50jmPfZ6NGj9dNPP5WUIyIi9PXXX2vOnDlq166dqlWrpsqVK6thw4Z69tln9fPPP6tjx46SpHnz5rkcvywzOqdOHhMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAChxmx0APDe8ePHNXjwYFksFrf7WK1WvfTSSxo7dmwAIyt7rFar+vTpoxdeeEGFhYVGhxMUv/76qzp27KiMjAyP+n3++ecaPHiwTCaTwzZWq9XlOC+99JJycnI8mru8+/e//y2bzVZSvv/++w2MJjgGDhyonTt3SpIaNGigSZMmKTU1Vfn5+UpPT9eKFSvUs2dPuz47duxQ165d3V77LBaLHn74Ybt7PSIiQn/961+1a9cu5eTk6Pz589q/f7+mTJmi6667TpI0e/ZsjRgxwqvPtWLFipLPJUlRUVF67733dODAAeXn58tms9n9tGjRwuWYDz744AX9PPm588477cZLTk7WZ599ZnetWbNmmjt3rtLS0lRUVKSMjAxt375dr732mqpWrSpJ+uabb5SUlOTV76W0b7/9Vr/88ssF161Wq5KTk30ae86cObrzzjt15syZkmvR0dEaOnSoFi9erMOHDys3N1eFhYU6ffq0fv31Vy1atEivv/662rRpI7PZ2FekXr162ZVnzZplUCQAgEDbvXu37r77bhUUFLhsyzt04Bm9TwpFFotF9957r958802fP8PSpUvVvHlzHT16NOTn9sarr76qjz76yGmbBx54QLNmzbro+2Yo53k2b96sbt26ebwGzZ07V4899liAovLMunXr1K5dO6WlpXk9xv79+9W6dWtt2LDBj5E55u88waWXXqrBgwdr4cKFSklJ0ZkzZ1RUVKSzZ89qx44dmjRpkm699Va7PoWFhRo+fLjb91gg9sPlXU5Ojjp06KDU1NSSa2azWYMHD9a6det0+vRp5efn6+DBg/rXv/6lBg0aSJI2bdqkYcOG2Y1VVFTkVQz+zjlI/1ufunXrpq+//trueufOnfXll1/q2LFjKigoUFpamubNm6ebb77Zrt3s2bPVv39/tz9DsOfzxLhx4/TEE0/YPc89evTQV199paioqIv2MSKfVVow8nZ/Ri4EAELD0KFDNXjw4IDlHwoLC3Xvvffq1KlTHvXLyMjQnXfeqQMHDvgcgz/zK0Z9x2xk/qKs7dV94WqP/4f169dr//79AY7GMxXx/EOg168/M/I5SElJUefOnZWdne3RPAsXLtSgQYO8CbHMK6853127dqlDhw5+W39mzJih3r17e7Wf84W/8l8zZsxQ27ZttXv3brvrtWvX1rBhw/TVV1/p119/LcmHZWZmavv27ZowYYLat29v1yc7O1svv/yyFi9e7HC+YJ+38EfOLVhnKIzKdYVybsgTgTxHU5qvOcFgrxfu+OCDDzRw4EC795/o6Gg9++yzWr16dcl9kJWVpV9++UWzZ89Wv379HOboSgvmfZafn69OnTpdcD/0799fa9eu1enTp5WXl6f9+/dr/Pjxql27tiRpw4YNFzxL5Y3ROXXymAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg1ZqMDgG8WL16sbt266dixYy7bHjhwQJ07d9a7774bhMjKHpvNpg8++EBNmjTRlClTdP78ea/GyczM1IIFC9S3b1+NHDnSz1H6186dO9WiRQutWrXKZdvc3Fy9+OKLevDBB2WxWBQTE+OwbUZGhsvx9u/fr86dO+vw4cMexVye/f7771q7dm1JuVWrVrriiisMjCjwsrOzdccdd2jOnDku29psNk2ePFnt2rVTZmamR/Ps3r1bbdu2VUpKisu2ubm5Gj58uAYMGCCr1erRPH+wWq3q2bOndu7c6VX/YLDZbHrooYf09ttvq7i42GX7wsJCjRkzRnfffbfy8/P9FsfHH398wbUVK1b4ZW1YvXq1GjdurI8++kh5eXk+jxcsYWFh6t69e0n5yJEjWrNmjYERAQACITs7W6+//rpuvvlmt//u8Q4dHEbuk0JVcXGx/v73v6tVq1b64osvPH5P3r59ux544AF169ZNZ8+eLTNze+O5557TzJkznbbp37+/kpOTZTKZLqgL5TzPqlWr1LJlS23dutVl23PnzunZZ5/VI4884tZ+I1i2bNmi66+/XuPHj/doj3Dq1Cm9/vrratasmX744YcARmjPlzxBkyZN9PLLL2vbtm1e7W2Lioq0aNEiNW7cWO+//77b/crCfjgUpaWlqXXr1vrss89ctrXZbEpOTlaHDh1ks9ns6rKysgIVolfy8vLUs2dPPf300zp16pRbfY4eParBgwdr4MCBslgsIT2fJyZPnqzBgwfbrYl33nmnli1b5vD9Idj5rNKClbeTyIUAQKiZMWOGrrvuOr3//vsev19s2bJF9913nw4ePOiwzf79+9W8eXN9//33bo25bt06tWjRwq29iDv8nV8x6jtmI/MXZW2v7q1vvvlGe/fuddnOVR7AKBXx/EOg168/M/I52LJli1q0aKFvv/3WZdu8vDyNHDlSvXv3VlFRkUfzlCflNee7a9cuNW7cWKNGjVJaWprH/W02m7777ju1a9dOgwcPNuQe8ec5mW3btumGG25QUlKS9uzZ43H/Q4cOafTo0WrUqJHGjh3r9FxEsM9b+CvnFqwzFEblukI5N+SJQJ6jqQhmzZqlFi1aaMmSJQEZP5j3WXp6utq2batZs2a5bGuz2TR16lR16tTJ6/e+ssSodYY8JgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEJRmNEBwHfLly9Xo0aNNGDAAN19991q0qSJqlevLovForS0NP3www+aP3++VqxYoaKiIqPDDXl79+7V0KFDNXLkSHXo0EFt2rRRy5YtdemllyoxMVFxcXEqKipSbm6uMjIy9Ntvv+ngwYP6+eeftWHDBqWkpMhqtRr9MdyWmpqqzp0764477lDfvn11yy23qFatWoqMjNTx48d18OBBLVq0SJ9//rnOnDkjSapZs6bMZrPDMU+dOuXW3Js2bVKjRo3Uu3dvde3aVc2aNdMll1yi2NhYhYVVzOVp/Pjx6tChgyTJZDJp4MCBeuONNwyOKrDOnTunhx9+WG+++ab69++vTp06qVatWqpZs6ays7N15MgRrVq1SnPmzFFKSorX8+zZs0dNmzZVr169dN9996lVq1aqWbOmwsLCdOzYMaWmpmrRokX67LPPdPbsWZ8/1++//65WrVqpa9eu6tGjh5o2baorrrhCsbGxioyM9Hl8f7BYLBoxYoSmTJmiRx99PvJoWQAAIABJREFUVO3atVOjRo0UHx+vnJwcnTx5Uqmpqfr666/15ZdfKj093e8xzJkzR+PHj5fJZCq5NmXKFL+Nf/z4cT377LN64403dNddd6l9+/a68cYbVaNGDVWrVk2SlJ2dXfJz5swZ/fLLL0pJSSn5Cbbu3burevXqJeUJEyaUqb8rAFARzJs3T+vXr1fDhg3VqFEjNWrUSA0bNlTNmjUVGxtb8hMTE6Pi4mLl5uYqMzNT+/fv1549e7RmzRqtWbNG+fn5Hs/NO3RwGLlPCmXbt29X7969VadOHXXq1Em33nqrmjZtqurVq6tq1aoKCwtTRkaGzp49q/379+v777/Xf//7X23fvr1Mz+0Jm82mRx99VHFxcerZs6fDdoMGDVJRUZGGDh0qm81mVxfKeZ5ffvlFN998s9q2bau+ffuqTZs2uvzyyxUfH6+TJ0/q4MGDWrx4sT799FOdPHkyqLG5KysrS88//7xGjx6t+++/X+3bt1eTJk1Up04dRUdHKz8/X2fOnNGJEye0efNmrVu3TsuXL1deXp4h8XqbJ9i3b5/Gjh2rsWPHKiEhQW3bttXNN9+sa6+9Vo0aNdIll1yiuLg4hYWFKScnp2T//dNPP2n79u1avHix13vjsrAfDkXp6enq06eP3n//ffXv31/t2rVTrVq1FB0drZMnTyotLU0rV67U3LlzdfDgQUlSjRo17MbIzMw0InSniouLNXHiRM2aNUvdunVT165ddcMNN6hmzZqKj49XZmamTp48qR07dug///mPlixZ4tPzFuz5PDFz5kzl5eVpzpw5Je9t7dq10zfffKO77rpLWVlZF/QJdj6rtGDl7ciFAEDoOXz4sIYPH65XX3215PvSVq1aqVatWkpMTFRCQoLy8/N1+vRppaSkaOPGjVq4cKH27dvn1vhHjhzRbbfdpg4dOpTsuy+//HJVrlxZp06d0vHjx7Vu3Tp9/vnn2rJli98/XyDyK0Z8x2x0/qKs7NW9ZbPZNHHiRE2YMMFhm/Pnz2vBggVBjMpzFe38Q6DXr9KMeg7279+v9u3bq3379urbt69at25t9/ynpqZq8eLFWrBgQbnIS/qD0WtmoBQUFGjMmDEaO3asbr/9dt12221q2rSprr32WiUkJCguLk6RkZHKycnRuXPndOLECf3000/atWuXlixZot9//93oj+DXczIWi0XJyclKTk5W06ZNddddd6lly5a66qqrSvIsNptNmZmZOnPmjPbu3astW7Zo/fr12rBhwwW5WldzBfO8hb9ybsE6Q2FUriuUc0PuCvQ5morg559/Vrdu3XT99dfr7rvvVocOHVSvXj3VqFFDVapUUVZWljIyMpSRkaEDBw5oy5Yt2rJli3bt2uXW+MG8z86ePauBAwfqww8/1EMPPaQOHTqodu3aiomJKXmWVqxYoblz5yo1NVWSKsx3xkasM+QxAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEIpMNpvNZnQQpb3++usaPXq00WEAcKBr165atmyZw/q3335bI0aMCGJE5YfJZNKePXt0zTXXSJIOHz6sevXqyWq1GhyZf/z5T05BQYEqV65sYDQIBXfffbeWLl1aUj569Kjq1q2r4uJiA6My1jfffKNOnTpJknJyclS7dm1lZWUZHJVvMjMzFR8fb3QYCKK4uDidO3fO6DAAIKjYJ6Esu+eee7RkyRKH9UlJSUpOTg5iRPhDec8TwDd33XWX/vOf/5SUFy5cqF69ehkYEcoyI/N25TEXAnhj2rRpevTRR40Oo0JLTk5WUlKS0WEAAUX+wjOxsbFKS0tTXFzcRetnz56tAQMGBDkqAMHCmhkc5L/wB3Jd/8M5GiBwfF1nyGNeXGxsrLKzsz3qM3z4cL3//vsXXP8jT71p0ya1adPmgvoFCxaod+/ekqQ6deroyJEjdvWtW7fWpk2bLui3ceNGtW7dWtL/3j1Ke+GFF/Tee+959BkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCxOdmoyMAUPb06dPHaf3atWuDFEn5Y7PZNGbMmJJynTp1dN999xkYERBYSUlJduXp06eruLjYoGiMd+2116pjx44l5QkTJigrK8vAiAAAgLvYJwEIBPIEcOaOO+6wK2/ZssWYQAAfkAsBACC4yF945ty5czp9+rTD+pkzZwYvGABBx5oZHOS/8AdyXf/DORogcHxZZ8hjAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIFSZjQ4AQNly44036sEHH3RYn5eXp++++y6IEZU/8+bNU0pKSkl55MiRBkYDBE6tWrV0zz33lJQtFouSk5MNjMh4I0aMkMlkkiRlZmbqnXfeMTgiAADgDvZJAAKJPAEupnLlyho0aJDdtXXr1hkUDeA9ciEAAAQP+QvPNW/eXPXr179o3W+//ab//ve/wQ0IQNCwZgYX+S+Q6/ofztEAgePrOkMeEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKHKbHQAAIxRrVo1rV27Vvfcc4/MZveWghtvvFGLFy9WRESEwzbJycnKz8/3V5gVktVq1ciRI0vKLVq0UJcuXQyMCAiM5557TpUqVSopL1y4UEeOHDEwImPVq1dP/fr1KymPHTtWmZmZBkYEAEDFwz4JQCgiT4CLGTdunGrUqFFS/uGHH7R161YDIwI8Ry4EAADvkL8InlGjRjms+/jjj2Wz2YIYDQBvsGaWDeS/QK7rfzhHAwSOL+sMeUwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACEMrPRAQAwhslkUrt27bRkyRIdP35cU6dO1SOPPKImTZqoevXqCgsLU3R0tOrWrauePXtq7ty52rp1q+rUqeNwzHPnzumNN94I4qcov5YuXaply5aVlN966y2ZTCYDIwL866qrrtJTTz1VUrbZbHr77bcNjMh4Y8aMUVhYmCRp7969Gj9+vMERAQBQ8bBPAhCqyBOUb++9956SkpIUERHhsm1ERIQ++OADPfnkk3bXK/qeGmUTuRAAALxD/iKwoqKi1KxZM82ePVv33XffRdvk5uYqOTk5yJEB8AZrZtlB/qv8INflHc7RAO4L9jpDHhMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAChLMzoAAAYr2bNmkpKSlJSUpLXY1itVj366KM6deqUHyOr2J555hl16NBBlStX1g033KCHHnpI//73v40OC/DJpZdeqvbt2+utt95S5cqVS67Pnz9fu3btMjAyYzVv3lx9+vQpKT/99NMqLCw0MCIAAMA+CUCoIU9QftWtW1cvvPCCxo4dqwULFmjt2rXauXOn0tPTVVBQoMTERDVq1Ejt2rXT448/rtq1a9v1nz9/vj799FODoge8Qy4EAAD/IH/hHx9//LEef/xxt9uPGzdOZ8+eDWBEAAKBNTP0kf8qH8h1eYZzNIDngrnOkMcEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAqAszOgAAZZ/NZtMzzzyjBQsWGB1KuZKamqqoqCijwwB89uabb+qVV15xWJ+enq7nn38+iBGFnh07dshsNhsdBgAA8CNX+ySbzRaQeU0mU0DGBfyJ+9875AnKv2rVqmnYsGEaNmyY232+/PJLJSUlBTAqIDDIhQAAEBr4ntdze/fu1TvvvONxP/bCQNlHzjfwyH+VL+S6HOMcDeAfwVhnyGMCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg1PF/4wbgk8OHD6tjx47617/+ZXQoAMqgU6dOqWvXrkpPTzc6FAAAAL9hnwQACLRjx47p2Wef1f3336/c3FyjwwEAAEAZRP7CcxkZGXrggQd0/vx5o0MBEGSsmUBgkev6f5yjAQKDdQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADlVZjRAQAomw4cOKCpU6dqypQpys7ONjocAGXIuXPntG/fPi1btkwfffSRzpw5Y3RIAAAAfsE+CQDgjcGDB2vWrFm6+eabdf3116t27dqKj49XQkKC4uLiVFRUpLNnz+rkyZPavHmz1q1bp6+//loFBQVGhw4AAIAyiPyFd/bs2aO+ffvqp59+MjoUAEHEmgl4jlyX5zhHA3iGdQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4f2FGBwDAGKdPn1atWrXUpEkTNW7cWI0bN1b9+vWVkJCg+Ph4xcXFKTo6Wrm5ucrKylJGRoZ++eUXbd26VZs2bdLmzZtls9mM/hgoY0wmk9EhwACjRo3SqFGjjA4DAADAJfZJqKiWLl3Kfg0wUHZ2tpYsWaIlS5YYHQoqMP4OAABQdpC/CI68vDylp6drx44d+uKLL/TFF1+oqKjI6LAAeIg1Ewg+cl2ucY4G8A3rDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPD/wowOAIBxjh07pmPHjmnFihVGhwIAAAAAISFY+ySTyRTQ8YFQxv0PAAAAAL7he17/Gjp0qIYOHRrQOdgLA8Yh5wsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDyymx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHCP2egAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4B6z0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAPWajAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB7zEYHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPeYjQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7jEbHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADcYzY6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/o+9Ow+uqj77AP5wTAiyFFSQstQNcAS0xcFREXAbEG1FEIg0WJGKiMuwqK3SqWt9x0qLOi5jB9Di2Cq41ik4WqGtSEQYUeuGWlHcOoIUCFC2SHLfPzrlfVNIcgNJzk3y+cycP+655/6e78m95n75jTMBAAAAAAAAAAAAAAAAAAAAAAAAAAAAALKTpB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA7CRpBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA7SdoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyE6SdgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyk6QdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOwkaQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgO0naAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhOknYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAspOkHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDsJGkHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDtJ2gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITpJ2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALKTpB0AAACoG1u2bEk7AgAAAADUyNatW6O8vDztGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQ05K0AwAAAHVj9OjRccIJJ8Q999wTa9euTTsOAAAAAFTrueeei8MOOyymTJkSxcXFkclk0o4EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADknSTsAAABQd15//fWYOnVqdOnSJQYMGBCzZs2KzZs3px0LAAAAACr1j3/8I+69994YOHBgHHXUUTFt2rT48MMP044FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkjSTsAAABQ98rKyuKVV16JiRMnRseOHWPo0KHxyCOPxLZt29KOBgAAAACV+vTTT2P69OlxzDHHRO/eveOWW26J1atXpx0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFKVpB0AAACoXzt27IgFCxbExRdfHF26dInx48fHokWLoqysLO1oAAAAAFCplStXxq233hrdu3ePM844I2bNmhUbNmxIOxYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1Lsk7QAAAEB6SkpK4re//W0MHjw4OnbsGBMnTozi4uLIZDJpRwMAAACAvSovL4+XXnopJk6cGIceemgMHjw4HnnkkdiyZUva0QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgXiRpBwAAAHLD+vXrY9asWTFw4MA44ogjYsqUKfHGG2+kHQsAAAAAKlVWVhaLFi2Kiy++ODp27BhDhw6NJ598MkpLS9OOBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1Jkk7AAAAkHs+//zzuPfee6Nv377Rp0+fmD59enz22WdpxwIAAACASm3fvj0WLFgQF1xwQXTq1CkmTpwYixcvjvLy8rSjAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECtStIOAAAA5La33norpk2bFkceeWQMHDgwHnjggVi3bl3asQAAAACgUhs2bIhZs2bF6aefHocffnj85Cc/iddffz3tWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQK5K0AwAAAA1DJpOJ4uLiuOqqq6JTp04xYMCAmDVrVmzevDntaAAAAABQqS+//DLuvPPOOOGEE+LII4+MadOmxYcffph2LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYZ0naAQAAgIanrKwsXnnllZg4cWJ07Ngxhg4dGo888khs27Yt7WgAAAAAUKlPP/00pk+fHsccc0z07t07brnllli9enXasQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgRvLSDgAAQOP27LPPRsuWLdOO0SStWbOmXubs2LEjFixYEAsWLIgpU6bEjh076mUuAAAAQGOxYsWKaNu2bdoxcsKyZcvqbdbKlSvj1ltvjdtuuy169OhRb3MBAAAAGoNdu3bFk08+WaPX/P3vf6+jNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1PXtoBAABo3MaNG5d2BOpRSUlJ2hEAAAAAGpyZM2fGzJkz047RZJWXl8eHH36YdgwAAACABmX79u1xwQUXpB0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgyUrSDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEB2krQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJ0k7QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkJ0k7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANnJSzsAAACN20svvRStW7dOO0aTNHny5Fi6dGm9zuzRo0d89tlnUVpaWq9zAQAAABqyG264IYYPH552jJywcOHC+NnPflavM9u0aRO9e/eOZcuW1etcAAAAgIasZcuW8fLLL6cdAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoMnKSzsAAACNW58+faJt27Zpx2iS6uvn3rlz5xg1alQUFhZG//79o23btlFaWlovswEAAAAag8MPPzz69u2bdoyc8PHHH9fLnIKCghg8eHAUFhbGiBEjYt68ebFs2bJ6mQ0AAADQGBxwwAH2tAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFKUl3YAAACg4WnXrl0MHTo0CgsL45xzzom8PP+0AAAAACC3JUkS/fr1i8LCwhgzZkx06NAh7UgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsE/y0g4AAAA0DC1btozzzjsvioqK4uyzz47mzZunHQkAAAAAqnXiiSdGUVFRjB49Ojp16pR2HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYb3lpBwAAAHJXfn5+nHXWWVFUVBTDhg2L1q1bpx0JAAAAAKrVs2fPKCoqiqKioujevXvacQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgVuWlHQAAAMgtSZJEv379orCwMIqKiuLQQw9NOxIAAAAAVKtr164xYsSIKCwsjAEDBqQdBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqTF7aAQAAgNzQq1evKCwsjLFjx8ZRRx2VdhwAAAAAqNZBBx0U5557bowdOzbOPPPMSJIk7UgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUOfy0g6wL4466qj44x//mHYMAICccd5558Unn3ySdgwaoB49ekRRUVEUFRXFMcccUy8zb7311hg5cmS9zAIAGq6bbropnnnmmUqf79+/f8ycObMeEwEA7LuTTjoptm7dmnaMRqN169YxfPjwKCoqisGDB0d+fn6dz2zVqlUsX768zucAAA3bv/71rzj55JOrvGbmzJnRv3//ekoEALDvnn766bj55pvTjgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAl8tIOsC8KCgqid+/eaccAAMgZBQUFaUegAencuXOMGjUqCgsLo3///tGsWbN6n6/PAwDVadeuXZXPt2rVSqcAABqMJEnSjtDgFRQUxODBg6OwsDBGjBgRrVu3rtf5SZLonwBAtTZt2lTtNYcddpheAQA0CK+++mraEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhCXtoBAACAuteuXbsYOnRoFBYWxjnnnBN5ef4pAAAAAEBuS5Ik+vXrF4WFhTFmzJjo0KFD2pEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICfkpR0AAACoGy1atIhzzz03xo4dG8OGDYvmzZunHQkAAAAAqtWrV68YO3ZsXHTRRdG5c+e04wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAzslLOwAAAFA3nnrqqUiSJO0YAAAAAJC1UaNGxQUXXJB2DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIaUnaAQAAgLqRJOo+AAAAAA2LPS0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqF6SdgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyk6QdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOwkaQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgO0naAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhOknYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAspOkHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDsJGkHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDtJ2gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITpJ2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALKTpB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACG9YVvAAAgAElEQVQAAAAAAACA7CRpBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA7SdoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyE6SdgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyk6QdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOwkaQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgO0naAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhOknYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAspOkHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDsJGkHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDtJ2gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITpJ2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALKTpB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA7CRpBwByw4wZM6JZs2a7j5KSkrQjUY8WL15c4f3/z3HXXXelHQ32y7hx4/b4XLdq1Sq+/PLLtKMBkKP04qZNL6Yx0omhadNtmjbdhsZItwGonO7XdOl9NFa6HzRdek3TptvQWOk2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1IUk7QBEvPfee/GrX/0qhgwZEr169Yr27dtHQUFBdO7cOfr06ROjR4+Ohx9+ONauXZt2VKARKisriylTpuxx/tvf/nZcccUVKSSC2nPjjTdGXl5ehXPbtm2L6667LqVEAECu0otprHTi9NjzA9Kk29BY6TYAUJHeR2Om+6XDnhaQJt2Gxky3AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoC4kaQdoypYtWxYDBw6MY489Nq6//vp48cUX4/3334/169dHaWlpfPXVV/HWW2/FE088ET/+8Y+jS5cucfnll8eaNWvSjg40InPmzIm33nprj/PXXnttHHjggVW+9v77749mzZpVenzrW9+KdevWZZWja9eula5TUlKyT/dG7iotLY2VK1fGs88+G9OnT49LLrkk+vfvH+3bt6/0c5CXl1fjOd26dYsxY8bscX7u3LmxfPny2rgVoIF69913K/yOGTVqVNqRgJTpxdQ3nbjxsucH5IJ97TZ6DftKt4H6YU8L+G/2tEiD7tc42dMCcoFuQy5aunRp5OXlVfn5WrBgQbXr6DYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUhSTtAE1RWVlZXHXVVdGvX78oLi6u0etmzpwZ3bt3j6eeeqoOE+6bhx9+uMIfcl+1alXakepVU79/GqbS0tK47bbb9jjfunXrmDBhwn6vv2XLlr2uD5MnT47evXvH+eefH9OmTYs5c+bE0qVLY/369bU+6+qrr97r+RtvvLHWZwGgF9Mw6cWkQSdufBrjnp/vdT8DGqa67DZ6DZXRbYDGQPejobGnRVp0v8alMe5pRfheb+r3T8Ok25CLNm/eHD/60Y+irKysVtbTbQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhtSdoBmppt27bF+eefHw888ECF80cffXTcdtttsWLFili7dm3s3Lkzvvjii/jLX/4SkyZNioMPPnj3tVu3bo3Ro0fHPffcU9/xgUbmoYceis8//3yP8+PGjYu2bdvWyoyZM2fGJ598Uitrwb7o06dPnHbaaXucX7hwYRQXF6eQCADINXoxjZ1OXPfs+QG5pK67jV5D2nQbAPg3e1o0Bbpf3bKnBeQS3YZcdNVVV8Xq1atrbT3dBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNqWpB2gqZkwYULMnz9/9+O8vLz45S9/Ge+++27ccMMN0bdv3zj00EOjefPm0bVr1zjjjDPi3nvvjQ8++CB++MMf7n5deXl5TJ06NZ566qk0bgNoBMrLy+Ouu+7a63Pjx4+vtTmlpaVxww031Np6sC8q+0zPmDGjnpMAALlGL6ap0Inrlj0/IFfUR7fRa8gFug0ATZ09LZoS3a/u2NMCcoVuQy56/PHH4/e//32tr6vbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUJuStAM0JXPmzInHHnts9+O8vLyYN29eTJs2LfLz86t8bYcOHWLu3Llx5ZVXVjg/YcKE+Oyzz+okL9C4zZ8/P1atWrXH+T59+kSfPn1qdda8efPizTffrNU1oSZGjhwZbdq02eP8/Pnz45NPPkkhEQCQK/RimgqduO7Y8wNySX11G72GtOk2ADR19rRoSnS/umFPC8glug255vPPP4/LL7+8TtbWbQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhNSdoBmootW7bE1VdfXeHc7bffHiNHjqzROvfff3+ceeaZux+XlJTEtddeWysZgablwQcf3Ov5UaNG1fqsTCYT119/fa2vS8NVUFAQPXv2jGHDhsV1110XDz30UCxZsiS+/vrraNWqVa3Pa9myZXz/+9/f43x5eXnMmTOn1ucBAA2HXkxadOLGwZ4fkGvqq9voNfw33QYA6pc9LdKk+zV89rSAXKPbkEvKy8tj7NixUVJSUuF8QUFBrayv2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCbkrQDNBWzZ8+OTZs27X58/PHHxzXXXFPjdZo1axYzZ86s8AfU//CHP8THH39cKzlzSSaTiRdffDFGjx4dPXv2jNatW8dBBx0U3/3ud+OnP/1pvPfee2lHTN3GjRvjgQceiOHDh0e3bt2ibdu2kZ+fH4ccckgce+yxMW7cuJg3b17s2LFjv+a88cYbMXHixDjuuOOibdu20aZNm+jRo0eMHz8+iouL92nNL774Iu6+++4YMWJEdOvWLdq0aRMtWrSILl26RL9+/WLatGnxxhtv7FfuiLr9HGUymXjhhRdi0qRJcfzxx0enTp2ioKAg2rdvH8cdd1xceeWVsWjRov2+h7qwbt26eOGFF/b63PDhw+tk5sKFC+PPf/5znaz935YsWRI333xzDBo0KLp16xYHHXRQ5OfnR/v27ePoo4+OoUOHxvTp0+Ptt9+uk/lff/113HHHHXHyySdHx44do0WLFtG1a9cYOnRozJkzJ3bt2rVP6y5fvjz+53/+J4YMGRLdu3ePgw8+OJo3bx4dOnSIXr16xYUXXhgPP/xwhe+bXHXPPffEypUr49lnn43p06fHJZdcEgMGDIgOHTrU2czzzz9/r+cfffTRyGQydTYXaPzqoiv9f3px9fTi6unFe6cX68Vp0okbB3t+NafbVE+3qZ5us3f13W3qs9dE6Da6zZ50G9h/9rXSp/tVTe/bu8a+pxWh++l+e9L9apc9rZrTa6qn11RPt9m7xt5t9Jrc7jV7c8cdd8TixYsrnDvxxBNr9fOo2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBrMjno5ptvzkREpUfPnj3TjlhjRxxxRIV7ePTRR/drvaKiogrrTZ06tcrrhw0btvva733ve1nPefLJJyvMeeedd/a4plWrVlW+X3s7fve73+1+/a9//esKz23cuDGzZs2azIABA6pcIy8vL3P99ddndu3aVe195PL976tZs2Zl2rZtm9W8gw8+OHP33XdnSktLK11vb+/D1q1bM2PGjKl2/fHjx2f1PmQymcyf/vSnzKBBgzLNmjXLKvuIESMy69evr3bd+vgc/X9//etfM8cff3xW93DaaadlPvrooxqtX9cefPDBvWbt0qVLjda57777avTZ79u3b6a8vHyva3Xp0qXS123cuDGrPE8//XSmT58+Nco0aNCgzCuvvJLV+kOGDKl0na+++mr3z6Rly5ZVzuzdu3dm9erVWc3MZDKZ5557LnPSSSdlfU/t2rXL/OIXv8js3Lkz6xm5pLLfqwcccMB+rfvPf/6z0t89K1asqKX06enZs2eNv4/q6ygpKUn7x0M9a9OmTZWfidmzZ6cdMfPOO+9UyDRy5Mgqr6+PrqQX7xu9uPr8enHl9OL/O/Ti3KIT/9sll1xS5Xt81llnpR0x1T2/XP9e1232jW5TfX7dpnK10W1yrddkMrrNfw7dZk8Nrds0hP2Spm727NlVvkdt2rRJO2KN97QyGftaul/D6H56X8001j2tTEb3+8+h++2pIXW/kpKSat/j559/PtWM/j+2yr/X9Zp9o9dUn1+3qVxj7TZ6zb+PhtZrXnvttUx+fn6Fe2jdunVm1apVmQsvvLDS+5w/f36N5jSkbpPGfsnSpUv3OuuJJ57Yfc13vvOdPZ7v16/fXl+3dOnS3a/b2/PXXHNNrd8DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAPXkiCercRx99FJ9++unux+3atYsRI0bs15qXXnpphccLFy7cr/VyyebNm+OMM86I4uLiKq/btWtXTJ8+PS666KIoKyurp3S5YcaMGXHZZZfFpk2bsrp+w4YNcfXVV8fixYuznrFz5844++yz47HHHqv22oceeiiuuOKKaq9bs2ZNDBkyJBYtWhSZTCarHM8880z0798/1q5dm9X1/1GXn6Pf/OY3MWjQoHjzzTezun7x4sVxyimnxIoVK6q87v77749mzZrtPi6//PKs1t8Xzz///F7Pn3baabU2I0n2/Ip5/fXX4/HHH6+1Gf+xffv2uPTSS2PkyJHxt7/9rUavXbRoUZx66qlx++23Z/25rMykSZNi0qRJsW3btiqve++99+LUU0+NkpKSKq8rLS2NyZMnxw9+8INYvnx51jlKSkripptuitNPPz3WrFmT9esau0MOOSR69+691+cq+28CoDJ10ZX+m15cPb24enpx1fTi/6MXNw06ce2y51czuk31dJvqNbRuU5+9JqLuu0199poI3ea/6TZ70m1g39jXyg26X9UaWu+LsKe1v3S/inS/Pel+tceeVs3oNdXTa6qn21StsXUbvaaihtRrtm7dGhdeeGF88803Fc7fd9990a1bt1qdpdsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQW/b8a+7UuiVLllR4fMopp0SLFi32a83+/ftHfn7+7scrV66MDRs27NeauWLy5Mnx/vvvR5Ikcdlll8Wrr74amzZtii1btsRrr70WkyZNigMOOGD39XPnzo3bb789xcT16+OPP46f//znux8XFBTE1KlT4+WXX45169bFN998E1u2bIlVq1bF3LlzY+zYsXHggQfWeM7UqVNjyZIl0bx585g8eXK8+uqrsXHjxti+fXu8++67cc0111R4H2bPnh0vv/xy1uv369cvZsyYEcXFxbFmzZrYuXNnbN68Od5+++24884747DDDtt97QcffBATJkz4X/buPLrKwkz8+JMbCIKyiQuKoogtdW/FdhArKu64jNoR1w6O4lKpFe2v1Eo3RVxG3J1RVNTBcanL6IhrgQ5qxdqO1n2hFXEEUTZFQCEh3N8fnqbG5N68N3mTN8vnc07Oue/+XPOG+z2vOSclzd9c99HUqVPjzDPPjOrq6oiI6Ny5c4waNSqeeOKJ+Oijj6KysjKWLFkSTzzxRBxxxBE1xy1evDiOOOKIWLJkSUnvo7nMmjWr3vX/8A//kNo1jjnmmOjSpUud9T//+c+jqqoqteusW7cuRo4cGVOmTGn0Oaqrq2P8+PHxi1/8otHnuPDCC+P6669PvP/7778fP/3pTwtuz+fz8f3vfz+uu+66Rs/03HPPxV577RXLly9v9Dnam0L3+O9+97sWngRo65q7lSJ0cUN0cTK6uDhdXJsu7hg0cXo88yuNtilO2ySjbYpr7rZpqa6J0DbFaJvatA2UznOt7Gm/hum+4trTM60I7VeM9qtN+6XDM63S6JridE0y2qa49tQ2uqawttA1Y8eOjTlz5tRad/TRR8dJJ53ULNfTNgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQhl/UAHcH//u//1lr+9re/3eRzdunSJXbaaaea5Xw+Hy+88EKTz9sYK1eujHw+H7fddlut9X/5y18in8/X+3XiiScWPN9///d/R0VFRUybNi0mT54cQ4YMiR49esQGG2wQu+22W1x77bUxffr06Nq1a80xF110Ubz99tvN9h6LSfv9N+Tuu++OysrKiIjI5XLxxBNPxFVXXRV77rlnbLTRRtGpU6fYYIMNYuDAgXHsscfGf/zHf8SCBQti7NixUVFRkfg699xzT2y88cYxe/bsuOaaa2LIkCHRq1evWG+99WKHHXaIK664Im655ZZax1x33XVFz1lWVhZHHHFEvP766zF79uz48Y9/HHvssUdsuummUVFREd27d4+ddtopzj333Hjttdfi4IMPrjl22rRpMWvWrMTzN8d9NGfOnPjBD35Qs7zZZpvF7Nmz4/bbb48DDzwwNtlkk+jcuXP06dMnDjzwwHjwwQfjlltuibKysoiIWLBgQfzkJz9J/B6ay9y5c2Pp0qX1bvvyvytN1b9//zjzzDPrrH/nnXfipptuSu06P//5z+ORRx5J5VwTJ06MBx54oFHH3nDDDSUfM3Xq1Pj444/r3XbRRRfFvffe26hZvmzOnDnxz//8z00+T3tR6B5/4YUXIp/Pt/A0QFvWHK30Vbq4OF2cjC4uTBcXpovbN02cnvb8zK85Pte1TXHaJhltU1hLtE1LdU2EtmmItvk7bQOl81yrLu33d62l/XRfYe3tmVaE9muI9vs77ZeO9vxMK8Lvsemav2stXROhbYppb22ja4przV3z0EMP1fl3ZIsttojJkyc32zW1DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGnIZT1AR7Bo0aJay9tss00q5x0wYECt5cWLF6dy3tbg0ksvjREjRhTcvs8++8TVV19ds1xZWVlruT175ZVXal4PHTo09t577waP6d27d1x11VUxbNiwxNcpKyuLu+66KwYPHlxwn5NOOim++93v1ixPmzYtqqqqCu6/6aabxoMPPhjbb799g9fv3r173HfffdGvX7+adTfddFPC6b+Q9n00YcKE+OyzzyIionPnzvHYY4/FbrvtVnSGU045Jc4999ya5TvvvDPmz5+f9C00i5dffrngtkGDBqV6rfHjx0fPnj3rrL/wwgtj5cqVTT7/+++/H1deeWXB7X379o2bb745Pvjgg1izZk3MnTs3Jk6cGN26dSt4zLhx42Lt2rWNnum0006LV199NVavXh1z586N008/veC+q1evjunTp9dZv3DhwrjkkksKHrf99tvHPffcEx9++GFUVlbGvHnz4uKLL4711luv3v0ffvjhmDlzZulvph3abrvt6l3/6aefxty5c1t4GqAta45Wqo8uLkwXJ6eL66eLdXFHpYnT45lf6bRNYdomOW1Tv5Zqm+bumghto21Ko22gdJ5rZU/7JaP76teenmlFaD/tVxrtlw7PtEqnawrTNclpm/q1p7bRNW23axYuXBijR4+utS6Xy8Udd9wRvXv3brbrahsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADSkMt6gI5g2bJltZZ79uyZynl79epVa3np0qWpnDdr/fv3j7POOqvB/UaPHh2DBg2qWb7zzjtjzZo1zTlaq7By5cqa1xtssEGzXeeAAw6I/fbbr8H9jjvuuJrXa9asiTfffDO1GdZff/0488wza5anT5+e+Ni076OFCxfGPffcU7N82mmnxTe/+c1Es5x//vnRpUuXiIioqqqKhx56KNFxzeXdd9+td32nTp2ib9++qV6rT58+MW7cuDrrFy1aFFdccUWTz3/VVVcV/Lnv06dPzJ49O0aPHh2bbbZZVFRUxIABA+L888+Phx9+OHK5+j8C586dG7/5zW8aNc+ECRNi8uTJseOOO0aXLl1iwIABceONN8ahhx5a8JgXXnihzrorr7wyPv/883r332GHHeL555+PY445JjbddNPo3LlzbLXVVvGzn/0sHn744SgrK6v3uIkTJzbqPbU3/fr1K7it0M8GQH1aopV0cXG6OBldXJgu1sUdlSZOj2d+pdE2xWmbZLRNYS3VNs3dNRHaRtuURttA6TzXyp72a5juK6w9PdOK0H7arzTaLx2eaZVG1xSna5LRNoW1p7bRNW2za/L5fIwaNarO59a4ceNi7733btZraxsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADSUP9fSydVK1asqLW8wQYbpHLer57n008/TeW8WTv++OOjU6dODe6Xy+XixBNPrFlesWJF/PnPf27O0VqFzTffvOb1c889FwsWLGiW6xx77LGJ9tt1111rLb/77rupzvHd73635vWSJUvi//7v/xIdl/Z9NGPGjFi7dm3N8ve///1Ec0REbLjhhjFkyJCa5Weeeabe/X74wx9GPp+v+brxxhsTX6MUhe6ZjTfeOHK59D8Wxo4dW+u+/ZsrrrgiFi1a1KRzP/roowW3/eIXv4gBAwbUu23fffeN448/vuCxjz/+eMmzbLfddvGzn/2s3m3Ffp4++OCDOuseeeSRgvtPnTq14OfI/vvvHwcffHC9255++ulYvnx5wfN2FH379i24bf78+S04CdDWtUQr6eLidLEubipdrIs7Kk2cHs/8SqNtitM27bNtWqprIlq2bZqzayK0zVdpm+K0DZTOc63sab+G26+tdV+EZ1qNpf1q037Fab90eKZVGl1TnK5pn8+0IrRNY+ia2tpK11x11VUxffr0WusGDx4cF154YbNfW9sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQhvT/Mjx1fPUPu69atSqV865cubLWco8ePVI5b9b22GOPxPsOHTq01vKf/vSntMdpdQ466KCa18uXL4/hw4fHgw8+GGvXrk31Orvttlui/TbZZJNay8uXL091jq+ef968eYmOS/s+euaZZ2ped+rUKb71rW8lPn9ExIABA2pe//Wvfy3p2LStWLGi3vXdunVrlut169YtfvWrX9U7x4QJExp93g8++CDmzJlTcPvxxx9f9Phi22fNmlXyPKNGjYry8vJ6t335+/9VX/2Z+fDDD+Ott96qd9+BAwfGrrvuWnSOr97Pf1NdXV3rPu6oit3nX/1cBSimJVpJFxeni+clOk4XF6aLG96ui9snTZwez/xKo22K0zbzEh2nbQprybZprq6J0DaFaJvCtA2UznOt7Gm/eQ0eo/sKay/PtCK0XyHarzDtlw7PtEqja4rTNfMSHadtCmsvbaNr6tfau+aVV16J888/v9a69ddfP+66667o3Llzs19f2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCGTlkP0BH06dOn1vInn3ySynm/ep4NN9wwlfNm7etf/3rifQcNGlRreeHChWmP0+oceeSR8Z3vfCf++Mc/RkTEnDlz4qijjorevXvHfvvtF8OGDYvddtstBg8eHJ07d270dTbeeONE+3Xr1q3W8ueff57ouDfeeCP+67/+K/74xz/GW2+9FUuXLo0VK1ZEVVVV0eOWL1+e6Pxp30fvvfdezeu1a9fWed/5fL7B13+zdOnSxLM1hzVr1tS7vqKiotmuecopp8SVV14Zb7/9dq31kydPjnPOOSe22Wabks85f/78gtu22GKLBu/hXXfdteC2hQsXRnV1dZSXlyeeZ/fddy+4rXv37gW3VVZW1lp+//33C+77zjvvRFlZWeKZvmru3LmNPra96NKlS8FtSf/9Aoho/laK0MUN0cW6uKl08Rd0ccejidPjmV9ptE1x2kbbNFVLt01zdE2EtmkMbaNtoFSea2VP+zXcfrqvsPbyTCtC+zWG9tN+afBMqzS6pjhd45lWU7WXttE1pcu6a1avXh3HH398nXvwqquuKulntim0DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGnIZT1AR/DVP1r/7rvvpnLeefPmFb1OW9WzZ8/E+/bq1avW8scff5z2OK1OeXl5PPLIIzF8+PBa6z/++OO477774qyzzordd989evXqFSNGjIipU6dGZWVlydfp0qVLo+bL5/NFt7/zzjtxyCGHxA477BC/+MUvYtq0afGXv/wlli1bFlVVVQ2ef8WKFYnmSPs+Wrp0aa3l6urqWl/r1q2r+crn8zVf9Vm1alXi2ZpDoe9tY+6TpMrLy+Piiy+us76qqirGjx/fqHMuWbKk4LYk/x5utNFGBbetW7culi1bVtI8W2yxRcFtFRUVic+zePHikq5bimL/zTqK1atXF9zWtWvXFpwEaOuaq5W+TBcXp4t1cVPp4i/o4o5HE6fHM7/SaJvitI22aaqWbpvm6JoIbdMY2kbbQKk818qe9mu4/XRfYe3lmVaE9msM7af90uCZVml0TXG6xjOtpmovbaNrSpd11zz//PPx+uuv11p3xBFHxKmnntpiM2gbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0pDLeoCOYPDgwbWW//SnPzX5nJWVlfHqq6/WLJeVldW5TltVVlaWeN98Pt+Mk7ReG2+8ccycOTOmTZsWhx12WNaV+r4AACAASURBVHTp0qXOPp999lk8/vjjMWrUqBg4cGA8+uijGUxa28svvxxDhgyJxx57rNHnWLduXaL90r6PqqqqEp8vjes1pw022KDe9atWrWrW6x511FExZMiQOut/85vfxIsvvtis124J3bp1K7itvLy8BScpbMWKFVmPkLnPPvus4LZCPxsAWdHFDdPFDdPFheni5qGLWz9NnB7P/EqjbRqmbRqmbQrLom3ae9dEaJu2QNtA66T9Gqb9itN9hXmm1Xy0X+un/dLhmVZpdE3DdE3DtE1h2qZ56JqG1XfvP/TQQ1FWVlbw68477yx4vsMOO6zWvvfcc0+DM2gbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0pDLeoCOYNiwYbWWZ8+eHWvWrGnSOZ999tmorKysWd5+++2jT58+TTpnfaqrq1M/Z0M++eSTxPsuX7681nLv3r1TnSWL91+KQw89NB5++OH45JNPYtasWXHJJZfEoYceGr169aq13/z58+Owww6LBx54IKNJI9auXRsnnHBCLFmypGbdDjvsEJdccknMnDkz/vrXv8by5ctjzZo1kc/na77mzJnTqOulfR99+eerf//+tWYs9evL/w2y0K9fv3rXL1myJNatW9es177sssvqrMvn83HeeeeVfK6NNtqo4LbFixc3eHyx70NZWVlsuOGGJc+Uho033rjZzp3P55vt3G3Fhx9+WHBboZ8NgKzo4uR0cWG6uDBd/AVd3PFo4vS01Wd+WX2ua5vktE1h2qawrNomza6J0DaNoW20DbRG2i857Vc/3VdYe3mmFaH9GkP7ab80tNVnWhF+j03XpMczLW0T4f/XJaFrmpe2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA25rAfoCL7+9a9H//79a5Y//vjjePDBB5t0zilTptRa3n///YvuX1FRUfO6qqoq8XWWLVtW2mApmDNnTuJ933777VrLffv2rXe/tvT+G2O99daLvfbaK84777yYNm1aLFmyJGbOnBmHHHJIzT75fD7GjBkTq1evzmTG6dOnx+uvv16zfMopp8TLL78c5513XgwfPjwGDhwYPXr0qPW9ivji56Ux0r6PNttss5rX8+fPj88++6xRc7UGAwYMqHf92rVr48MPP2zWaw8bNixGjBhRZ/306dNj4cKFJZ1riy22KLht/vz5sXjx4qLHv/jiiwW3bbbZZlFeXl7SPGkp9r7233//yOfzjf66+uqrW/CdtE7z588vuG3rrbduuUEAEtDFpdPFdeniwnTxF3Rxx6OJ05P1M7+29rmubUqnberSNoVl1TZpdk2EttE2pdM20Dppv9Jpv9p0X2Ht5ZlWhPbTfqXTfunI+plWRNv6XNc1pdM1dWmbwtpL2+gaXdMY2gYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA05LIeoKM466yzai1PmjQpqqurG3WuuXPnxgMPPFCznMvlYsyYMUWP6dGjR83rpUuXJr7WK6+8UvqATfTss88m3ve5556rtfztb3+73v3a0vtPQ3l5eQwfPjweeeSRGDlyZM36jz76qKT/vmmaNWtWzeuKioq44oorory8vMHjGvs9SPs+2nPPPWter1u3LqZPn96ouVqDnXfeueC2t956q9mvf+mll0YuV/fjZ926dSWdZ/PNN4+vfe1rBbfffffdRY+/6667Cm7be++9S5olTZtttlkMGjSo3m1PPfVULFiwoKTzVVdXx0033RSXXHJJGuO1eYXu8Q022CAGDhzYwtMAFKeLm04X6+JidPEXdHHHo4nTleUzv7b2ua5tmk7baJtismybtLomQtskpW3+TttA66T9mq6jt5/uK6y9PNOK0H5Jab+/037p8XtsyemapuvoXROhbYppL22ja5LRNbVpGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANJQ9y+20yxOO+206NGjR83yCy+8ENdcc02jznXGGWfE6tWra5aPOOKI2HbbbYse069fv5rXH330USxatKjB61RVVcW0adMSz1VRUVFrubq6OvGxX3b33XcnOjafz8d//ud/1ix37949dt1113r3bUvvP20nn3xyreV58+ZlMseHH35Y87pfv37Rs2fPRMfde++9jbpe2vfRgQceGGVlZTXL119/faPmag223Xbb6N27d73bXnvttWa//k477RQnnnhiKuc65JBDCm678MILC97vM2fOjLvuuqvgsSNGjGjqaE1y6KGH1ru+srIyTjjhhFixYkWD5/j888/jtttui29+85tx+umnx0cffVR0/7Vr10ZZWVm9XzvuuGOj3kdr9Oqrr9a7ftddd41cThYBrYsuTpcuLk4X16aLv9DRulgTa+LGyPKZX1v7XNc26dI2xWmb2pq7bdLsmghtU4y2qUvbQOuk/dLVEdtP9xXWnp5pRWi/YrRfXdovPX6PLTldk66O2DUR2qaY9tQ2uqYwXVM/bQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAa/GXsFtKjR4+YNGlSrXXnnXdePPTQQyWd5+yzz47p06fXLPfs2TOuuOKKBo8bPHhwreX77ruvwWOuu+66WLBgQeLZunfvXmt56dKliY/9svfeey/+7d/+rcH9br311njrrbdqlk844YTo0qVLvfu2pfeftrKyslrL3bp1y2SOrl271rxetGhRrF69usFjHnnkkVr3eynSvo8GDBgQRx55ZM3yjBkzYurUqY2arTXYe++9613//PPPt8j1J0yYUPDntRTnnntuwfMsXbo0hg4dGlOmTIkPP/wwqqqqYt68eXHJJZfE4YcfHuvWrav3uG222SZGjhzZ5Nma4pxzzqn1M/NlTz31VGy//fZx+eWXx0svvRQrVqyI6urqWLx4cbz22mtx2223xahRo2LzzTePk08+OV577bUWnr51+8Mf/lDv+n322aeFJwFomC5Oly4uThfXpot1cXumidOV5TO/tva5rm3SpW2K0za1tUTbpNU1EdpG25RG20DrpP3S1RHbT/cV116eaUVoP+1XGu2XHr/HlpyuSVdH7JoIbdOQ9tI2uqZtdc3ee+8d+Xy+pK8TTjih4PmmTZtWa99jjz22wRm0DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGnIZT1AR3LqqafGMcccU7NcVVUVI0eOjMsvvzzWrl1b9NglS5bEiSeeGNdee22t9TfffHNsvfXWDV57n332ifXXX79mecKECTF//vyC+99///3xs5/9rMHzftnAgQNrLT///PMlHf9l48aNiyeffLLg9qeeeip+9KMf1SxXVFTE2WefXXD/tvb+iznkkENi6tSpsWbNmgb3raysjMsvv7zWul133bVZ5mrIzjvvXPN61apVMXHixKL7T58+PU444YQmXTPt+2jChAmx3nrr1SyfeuqpMXny5ESz5PP5+N3vfhcHHXRQfPTRR/Xuc/3110dZWVnN1xlnnJHo3I1x8MEH17v+6aefbrZrfln//v1jzJgxTT7PlltuGeecc07B7QsXLozRo0fHZpttFhUVFTFgwIA4//zz47PPPit4zGWXXRadO3du8mxN0a9fv/jpT39acPv8+fNj3Lhx8a1vfSt69OgRnTp1ik022SR22mmnOPnkk2Pq1KnxySeftODEpfvq/f7lr1WrVtV7THV1dcFjJk2a1OA1Fy9eHG+++Wa92w466KAmvR+A5qKLC9PFyeniwnSxLs6SJm4/snrm1xY/17VNYdomubbUNi3ZNRHZtk1aXROhbbSNtoH2QvsVpv2SaUvdF+GZVmNpP+2n/bLj99iS0zWF6ZrktE1h7aVtdE3b7JqsaBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADSkst6gI5mypQpcfDBB9csV1VVxbhx42LHHXeMiy++OF588cVYvHhxVFZWxoIFC2LWrFkxduzYGDRoUNx55501x+Vyubj66qvj6KOPTnTd7t27x0knnVSz/NFHH8WQIUNiypQp8cEHH0RVVVUsWbIknnzyyRg5cmSMHDkyKisr4/jjj0/83gYNGhR9+vSpWb744ovjnnvuiUWLFkV1dXXi8xx++OGxZs2aGDFiRPzgBz+I559/PlasWBErV66MF154Ic4+++zYb7/94rPPPqs55uc//3l84xvfaBfvvyEvv/xyjBo1KjbZZJM48cQT49Zbb42XXnopli5dGmvXro3Vq1fHX/7yl7j11ltj8ODBMWPGjJpj999//xg0aFBqs5TiqKOOim7dutUsX3TRRXHwwQfHk08+GfPnz4+qqqpYvHhxPPbYY3HsscfGQQcdFJ9++mmMHDmyUddrjvto++23jylTptQsV1ZWxhlnnBGDBw+OG264IV577bVYvnx5rF27Nj7++ON4++234957742xY8fG1ltvHfvuu288+eSTkc/nG/We0vSP//iP0alTpzrr58+fH2+++WaLzDB+/Pjo2bNnk88zceLEOPTQQ1OY6IuZ/umf/imVczXVL3/5yzjmmGOyHqNdmTFjRr0/f1tuuWV85zvfyWAigOJ0cXG6OBldXJwurp8ubr80cfPJ4plfW/tc1zbFaZtktE1xWbdNWl0ToW1IRttA66X9itN+DdN9xWXdfRHaLwntly7t1zz8HlvDdE1xuiYZbVNce2obXUNS2gYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC01P1r8TSr9ddfPx5++OEYM2ZM3HTTTTXr33777Rg/fnyMHz8+0Tluu+22OProo0u69sSJE+ORRx6J9957LyIiFixYEKNHjy64//jx4+Ob3/xm3HXXXYnOX15eHqNHj47LLrssIiKWLFkSxx13XL373nHHHXHiiSfWu+3aa6+NOXPmxFtvvRU33nhj3HjjjUWve9xxx8X555/f4Hxt5f0n9emnn8add94Zd955Z6L9BwwYEFOmTGnSNZuib9++MXHixDjnnHNq1j3xxBPxxBNPFDzmgAMOiAsuuCDuvffekq/XXPfR8ccfH1VVVXHGGWfE6tWrIyLixRdfjDPPPLPkGbO0ySabxIEHHhiPPvponW0PPfRQbLfdds0+w4Ybbhg//elPE/13LyaXy8W9994bY8aMidtuu61R5ygvL48LLrigybOkqaysLKZOnRqbb755XH311ZHP5xt1ns6dO8fpp5+e6POlvXvwwQfrXX/CCSdELpdr4WkAGqaLk9HFxeni4nRxbbq4/dPEzSerZ35t6XNd2ySjbYrTNsVl3TZpdU2EtmmItvmCtoHWS/slo/0K033FZd19EdovCe2XLu3XPPwe2xf8HpuuifBMK0vtqW10TXG65u+0DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGnx17Ez0KlTp5g8eXI8++yzMXTo0MTHlZeXx2mnnRZ//etf4+ijjy75uj179oynnnoqdtxxx6L7VVRUxKRJk+Kiiy4q+Rq/+tWvYvjw4SUf92U9e/aM//mf/4k99tij6H6dOnWKcePGxR133BHl5eWJztsW3n9zOProo+O5556LLbfcMtM5xo4dG5MmTYrOnTs3uO/o0aPj4Ycfjk6dOjXqWs11H0VEjBo1Kv7whz/EAQcckHieXC4XBx54YPz2t7+Nvn37Jj6uOY0ePbre9ffff3+LzTB27NjYfPPNm3yerl27xq233hr3339/7LLLLiUdO3z48Hj66adj/PjxUVZW1uRZ0lRRURFXXnllzJgxI/bee++Sjt1oo43inHPOibfffjuuu+662HjjjRs9R9KfjdZs1apV8fjjj9dZn8vl4pRTTslgIoCG6eL06eLCdHFdurj1aA1drIlJIotnfm3pc13bpE/bFKZt6mqptkmrayK0TX20zd9pG2jdtF/6Olr76b6GZd19EdovCe2XDu3XvPweW3G6Jn0drWsitE0S7altdE1duqY2bQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECaOmU9QEc2dOjQePbZZ+PVV1+NRx99NGbOnBnvv/9+LFq0KFauXBl9+vSJTTbZJL7xjW/EQQcdFCNGjIhNN920Sdfcaqut4qWXXoo77rgjHnjggXjxxRdjyZIl0aNHj9hqq61ixIgRcdppp8UWW2zRqPN37do1pk+fHg899FDcf//98dJLL8WCBQti1apVUV1dnfg8ffv2jWeeeSZ++9vfxpQpU+KVV16J+fPnR6dOnWLLLbeMAw44IE4++eTYYYcdSpqvrbz/Yl5++eX485//XPM1d+7cWLp0aSxbtiyWL18e6623XvTu3Tu22267GDp0aBxzzDGx3XbbpXLtNPz4xz+OI488MiZPnhwzZ86Md955J1atWhUbbbRR9OvXL/bdd98YNWpUKjM3130UEbHLLrvEk08+GS+99FJMmzYtZs2aVfO9WL16dfTo0SM233zz2GWXXWKPPfaII444Ivr27dvk95Smww8/PAYOHBjvvPNOrfUvvvhivPLKK7Hzzjs3+wxdu3aNX//613Haaaelcr7vfe978b3vfS+efvrpmDFjRvz+97+PefPmxbJly2LVqlXRo0eP6N27dwwaNCj23HPPGDFiRIu8z6YaPnx4DB8+PF5//fV44oknYvbs2fHGG2/EsmXL4pNPPonOnTvHRhttFP3794/dd989hg0bFvvvv39UVFQkvsarr75acNsPf/jDNN5Gpu6///5YuXJlnfWHHHJIbLvtthlMBJCMLi5MFyeni4vTxbr4bzQxaWnpZ35t6XNd2xSmbZLTNsVl3TZpd02EttE29dM20Pppv8K0XzK6r7isuy9C+5VC+zWN9msZfo+tMF1TmK5JTtsU1x7bRtfomkK0DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGkqy+fz+ayH+Kpf//rXccEFFxTcvt1228Ubb7zRghPRnCZNmhQ/+clPapY//vjj6NWrV4YT0Ra5jxrn3//932PMmDF11v/oRz+Ka665JoOJyMrll18e48aNq7N+3333jRkzZmQwUbr22muvePrpp+usf+qpp2LYsGEZTJS+7bffPt58882sx6jXJ598Ej179sx6DFpQjx49YsWKFQW333zzzTF69OgWnKht0DOkwX3UOLqYCE3cGp1yyilx6623Ftx+wAEHxJNPPtmCE1EKn0mkwX3UONqGCG3TGnle0vrdcsstceqppxbc3r179/j0009bcKK2w2c2TeUeahzdx99ov9Zl+fLlDf4b9vjjj8dBBx3UQhNRCp9JpMF91Djahoj23zURba9tsnhe8txzz8XQoUPrrL/33nvj6KOPjoiI/v37x/vvv19r++677x7PPfdcneNmz54du+++e0RElJWV1dl+7rnnxhVXXJHG6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3tvlzWEwCQndGjR8eWW25ZZ/1tt90Wn376aQYTkZXp06fXWbf++uvHzTffnME06XrppZfi6aefrrN+v/32i2HDhmUwEQDQ2uhiIjQxAO2HtiFC2wBAR6D7+BvtB0B7oG2IaN9dE6FtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASF8u6wEAyE5FRUX88pe/rLN+xYoVccstt2QwEVlYs2ZN/P73v6+z/tJLL40BAwZkMFG6rrzyynrXT5gwoYUnAQBaK12MJgagPdE2aBsA6Bh0HxHaD4D2Q9vQ3rsmQtsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQvlzWAwCQrX/5l3+JXXbZpc76SZMmxeeff57BRLS0Z599ts73es8994wxY8ZkNFF63nnnnbj77rvrrD/uuONiyJAhGUwEALRWurhj08QAtDfapmPTNgDQceg+tB8A7Ym26djac9dEaBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaRy7rAQDIVnl5eVxzzTV11i9cuDBuuOGGDCaipc2YMaPWcteuXWPKlClRVlaW0UTpmTBhQqxdu7bWum7dusW//uu/ZjQRANBa6eKOTRMD0N5om45N2wBAx6H70H4AtCfapmNrz10ToW0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoHp2yHgCA7O21116Rz+ezHoOMzJgxo9byhRdeGF/72tcymiZdt99+e9x+++1ZjwEAtBG6uOPSxAC0R9qm49I2ANCx6L6OTfsB0N5om46rPXdNhLYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeXTKegAAIFt//OMfsx4BAAAypYkBgPZE2wAAdBzaDwBoL3QNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlC6X9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkk8t6APh//+//RT6fr/nq1atX1iPRBrmPAIC2Ts+QBvcRAK2FzyTS4D4CgLbBZzZN5R4CoLXwmUQa3EcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtJRc1gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQTC7rAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgml/UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJPLegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSyWU9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnksh4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAZHJZDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAyuawHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJlc1gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQTC7rAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgml/UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJPLegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSyWU9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnksh4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAZHJZDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAyuawHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJlc1gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQTC7rAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgml/UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJPLegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSyWU9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnksh4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAZHJZDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAyuawHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJlc1gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQTC7rAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgml/UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJPLegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSyWU9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnksh4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAZHJZDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAyuawHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJlc1gMAAAAAAAAAAAAAAAAA8P/Zs2OUxqIojsOPQ7qQFLauQDfiGlJb2Au2grXgBlyAK3ENr0ojhrRCeI1FmA3IzBlnxr+ZfF97L5xfebgXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBnlg74jPV6PZyfn6czAAC+jfV6nU6Attvb2+Hh4SGdAQB8c9vt9qfnz8/P3ggBgIMxTVM6gT80TZP9EwD4pf1+/8s7V1dXw3w+/4IaAIA/8/b2lk4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgJ2bpgM94f38fxnFMZwAAAJ+w3W6Hl9UODAAAIABJREFU7XabzgAADtw0Td4IAQD4Mvv93v4JAPwVLy8v6QQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP4DlQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgp9IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9FQ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ5KBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBT6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6ZumAj1xfXw+Xl5fpDAAA/oLlcplO4IuN4zjs9/t0BgAAAMDBODk5SSccvdVqNVxcXKQzAAAAAA5GVaUTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjtosHfCR5XI5LJfLdAYAAPAJp6en6QQAAAAA+C3z+XyYz+fpDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQU+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgp9IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9FQ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ5KBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBT6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6Kh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAT6UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Kl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2VDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCn0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0VDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQU+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgp9IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9FQ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ5KBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBT6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6Kh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAT6UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Kl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2VDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCn0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0VDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADomaUGPz4+Dnd3d6nxAAB8A6+vr+kE/oGzs7Nht9ulMwAAAAAOxv39/bBardIZR+3p6Wm4ublJZwAAAAAcjMViMYzjmM4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4WrPU4N1uN2w2m9R4AADgH9lsNsNut0tnAAAAAByMaZrSCUdvmib/1wAAAAC/YbFYpBMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOWqUDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Kl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2VDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCn0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0VDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQU+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgp9IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9FQ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ5KBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBT6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6Kh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAT6UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Kl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2VDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCn0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0VDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAOAHe/cdHVWZ/3H8M5NKSCNUSVCkC4JIEQUUqQJSRJAapAgqChbWsq6KuvZlXRWkKFKC9LYURUBAkaqAgAIWOtJbQkgghWR+f+xhfk7I9HIn8H6dM+fw3Kd9b+bOnXm+9zkHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA15iNDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACuMRsdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFxjNjoAwAgdOnSQxWKx+xo0aJDRISIIpaWl2b1mtmzZEvB4KlWqpEuXLllj6Nu3b8BjABAYDRo0UH5+vvXz3qpVK6NDAgDALtZbwYX3w338zRCsvM0DxMbGasCAAZowYYK2bt2qo0ePKjMzUzk5OTp79qz++OMPLVmyRO+//746duyomJgYP51J4Ozdu9fm81uuXDmjQ8I14K/XVFZWltHhFFnkOgAAAIDA83TPA/myouGWW27RM888o//+97/avXu3Tp48qdzcXF28eFGHDx/WqlWr9NZbb6lBgwZGh2qXL/fB1K5dWy+88ILmz5+vn3/+WWfPnlV2drays7N14sQJ/frrr1q4cKFeeuklNWvWTGYz2ygBXBtCQ0NtvqfT0tJc6kc+vXDkMQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDszEYHEOw+/fRTm//MveDrq6++8nqOmTNnOpxj5syZPjgTANea0aNHKzIyUpK0fft2TZs2zWH7hQsX2txbZs2aFYgw4Se8n9eXLVu2aPbs2dbyJ598ovDwcAMjAgAAAIJbfHy8w3ybL15JSUkBPSd38wBXlChRQmPHjtXx48c1adIkDRo0SPXq1VP58uUVFRWlsLAwJSQkqGrVqurQoYNeeOEFLV68WOfOndPKlSvVv39/xcTE+PPUEGDkFBAMyHUAAAAAgG80btxYS5cu1e7du/Xhhx/qgQce0C233KIyZcooNDRUxYoVU4UKFdSiRQu9/PLL2rx5s7Zs2aKWLVsaHfpVPM1/XRESEqKBAwdq586d+vnnn/X+++/rwQcfVO3atZWQkKDw8HCFh4erbNmyqlGjhjp37qx33nlH3333nQ4ePKg333xT5cqV88epAYYrmBP09jV+/HijTwkICPKYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACHZmowMIdikpKQ7r27RpozJlyng8fnR0tDp16uRVDIC/jR8/XhaLxe6rXLlyRod43enUqZPat29vLf/973+XxWIxMCK468yZMzafo/j4eKNDQpB7+eWXdfnyZUlS9erV9fTTTxscEQAgkPhNDgDXN0/zAE2bNtWvv/6qIUOGKCoqyq05Q0ND1bJlS02ePFmvvfaaS31Y6wJwB7kOAECgkV8BAFxLzGaz3njjDa1du1bt2rVzq2/9+vW1cuVKjR49WqGhoX6K0D3e7oNp0KCBtm3bpokTJ6pWrVpuz1+hQgW98sor2rNnj/7xj38oMjLS7TH8hZwbABiLPCYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCmdnoAILdhg0btGfPHrv1oaGh6tmzp8fjd+3aVVFRUXbrjx8/rm+++cbj8QFce8xms959911recuWLVq+fLmBEQEIhP3792vWrFnW8ksvvaT4+HgDIwIAAAAQCJ7mAe688059/fXXKlu2rM3x5cuXa+DAgapTp45KlCihsLAwlS5dWrVr19bgwYM1a9YsZWRk+Pw8AKAgch0AAAAA4BmTyaQZM2ZoxIgRMps93/43dOhQzZs3T6GhoT6Mzn3e7oPp37+/1q9fr9q1a9scP3r0qMaPH68HHnhANWvWVOnSpRUWFqaEhATdcccdevrpp/X999/b9ImOjtbbb7+tBx54wLuTAgBcM8hjAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJiZjQ6gKJg6darD+uTkZI/HdtZ32rRpysvL83h8ANeevn37qmbNmtbyO++8Y2A0AALp3XfflcVikSSVKFFCzz//vMERAQAAAPA3T/IAkZGR+uKLLxQdHW09durUKd17771q27atJk+erF9++UVpaWm6fPmyzpw5o507d+rzzz9Xr169VL58eT355JPau3evX84JAK4g1wEAAAAA7nv33XfVo0cPn4zVuXNnvfvuuz4Zy1Pe7IMZPHiwJk2apPDwcOux1NRU/e1vf1OlSpU0ZMgQLVq0SL/++qvOnDmjy5cvKzU1VZs3b9aoUaPUrFkz1a1bVytWrPDpOQHBbvbs2TKZTB6/Hn/8caNPAQgo8pgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIVmajAygKpk6dav0PywvTsGFDVatWze1xb7jhBrVo0cJhm5SUFLfHBXDtMpvNevnll63lQ4cOadGiRQZGBCCQdu/erVWrVlnLw4YNU1xcnIERAQAAANev7Oxsv8/haR7gkUceUZUqVazl3NxctWnTRmvWrHFp3gsXLmjs2LGqWbOmnnrqKZ0+fdr94INAlSpVZDKZrK8TJ04YHRKAAsh1AAAAAIB76tatqxdeeMGnYz777LNq2LChT8d0lTf7YFq0aKGxY8fKZDJZjx04cEANGzbUf/7zH+Xk5Lg0zo4dO3Tfffdp0KBBunjxonsnAADXCPLpjpHHBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQLAyGx1AUXD48GF99913DtskJye7PW7v3r1lNtt/C7Zu3apdu3a5PS6c+/LLL2Uymey+Pv/8c6NDBArVuXNnVa1a1VqeMGGC8vPzDYwIQKB99tln1n/HxMRo8ODBBkYDAMDVWG8BuB4sX75cp0+f9vs8nuYBunXrZlOePn26duzY4fb8ubm5Gj16tN5//323+wKAq8h1AAAAAMGNnG9weeedd2QymezWp6en69lnn1XFihUVHh6usmXLqlevXtq/f7/dPiEhIZowYYI/wnXK0/xXXFycUlJSFBoaaj125MgRNW3aVPv27fMolokTJ6pFixY6c+aMR/0BANc28pgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIRmajAygqUlJSHNb36dPH7TGTk5O9mhPA9eeZZ56x/ttisWjKlCnGBQPAEAsXLtTZs2et5aeeekpmMz/pAAAAgL9KS0uTyWTy6GU2m7V7926H448cOTIg5+FpHqBhw4Y25VWrVvkyLADwKXIdAAAAAOCaMmXKqG3btnbrL1++rDZt2uijjz7SoUOHlJubq1OnTmnWrFm68847dezYMbt9b7vtNt1zzz3+CNshT/NfL730kpKSkmyODR482OE5uuKHH35QmzZtlJaW5tU4AIBrD3lMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABKNQowMoKubNm6cxY8aoePHihdZXqlRJjRs31oYNG1war2bNmqpbt67d+tzcXM2cOdPmWEJCgqpVq2bzSkpKUunSpZWQkKDIyEhFRETo8uXLSk9P14ULF3Tw4EHt2LFDmzdv1pIlS5SRkeH6STtQvHhxNW/eXI0bN9add96p8uXLKyEhQfHx8crKytLZs2f1yy+/aOPGjZo3b5727NlTJObytZo1a6pPnz5q1aqVKlSooJIlSyo1NVUHDx7UihUrNHnyZB04cMCtMYPpOvC1cuXKqVWrVrr77rtVv359lSpVSgkJCYqIiNCZM2d0+vRpbd++XStXrtSyZct05swZr+Zr0aKFevbsqcaNG6t8+fKKiIjQsWPHtHfvXs2bN0/z5s3T+fPnfXR23qtUqZLuuecea3n9+vU6evSoIbGULl1aPXv2VJcuXXTTTTepfPnyysrK0smTJ7V+/XrNnTtXy5Yt8+mc1atXV+/evdWmTRuVL19eZcuW1fnz5/Xnn39qxYoVmj59unbt2uXTOa93kZGRuuWWW1SnTh3VqVNHtWrVUpkyZRQfH6/4+HjFxMTowoULOnv2rH7//Xd9++23WrBggdv3tWBRs2ZN3X///WrdurUqVqyoMmXKKDIyUqdOndLhw4e1cuVKLViwQD///LPP5kxKSlK3bt3UoUMH3XjjjSpXrpxiYmIkSaVKldLZs2ev6pObm6tFixZp4MCBkqQKFSqoZcuW+uabb3wWFwDAPZGRkWrdurVat26tmjVrqkqVKoqNjVV0dLTy8vKUnp6u9PR0nT9/XqmpqTp8+LAOHDig33//Xbt27dKePXuUm5tr9Gk4VLNmTQ0aNEj33nuvKleurKioKJ06dUrvvfeeRo8ebWhcvl5z/VWzZs3Uq1cvNWnSRImJiYqIiNDx48e1f/9+zZ8/X3PnztW5c+d8eEZFw4033mhdu9WtW1clS5ZUQkKCQkNDlZqaqnPnzmnPnj1au3atvvvuO23duvWamBv/76677lKfPn2s6+n4+HidPHlS+/bt08KFCzV79mydPHnS6DA91r59e9WsWdNu/bZt27Rq1Sq/x+FpHiAmJuaqHGZha4uiyJM1lK8EKhdyxx13qFevXmrevLkSExMVExOjEydO6MiRI1q6dKlmzJihgwcPen9CARYbG6uOHTuqXbt2uv3221W6dGnFx8crNTVVp06d0pYtW7R06VJ99dVXunjxYpGb71rn77wcuQ4ACF7+ek7L807fPe+UjM9fBONaPVhzWUYy4tq0x985PSnw+0yM+hwUtT0PriDn69h9990nk8lkt37evHn64YcfCq07ffq0Ro4cqQ8//NBu/0GDBun7778P4WibAAAgAElEQVT3Ok5XeZr/iouL07Bhw2yOzZs3z2f7VLZt2+a0TVHfTxGo/RFG5bqMyg0Zmb8sKgK556xKlSpq166dWrZsqWrVqql06dKKi4tTRkaGzp07p3Pnzmn//v3auHGjNm7cqO3btysnJ8fl8QN5ndWtW9f6/Xjls3Ty5EkdOXJEy5Yt04wZM7R//36v5vC1azGnTh4TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQclikA8++MAiqUi9UlJSHJ7T2LFjXR7r3XffdTjWggULrurjrYyMDMvEiRMtZcuW9fhvkJSUZPnXv/5lOXfunFtzb9iwwdKpUyeLyWQKirk6dOjgcIxBgwZ51a9cuXKWBQsWOI01KyvLMmLECLfeA2+5ch0MHTrU63n+KjIy0uE51apVyzJlyhRLTk6Oy2NmZmZaRo4caSlVqpTb13GVKlUsq1atcjpHenq6ZdiwYdZ+aWlpdttu2bLF7/eg119/3WbOZ555xq3+CxcutOk/a9Ysl6+1rKwsiyRLSEiI5bXXXrNkZWU5/ft9++23bt9vCpszOjraMnXqVKfz5efnW0aPHm2Jjo52a85WrVrZjLNw4UK3+sfHx9v0P3LkiN2227dvd3oe9jRo0MCr99OT1/jx492OMzc31zJx4kRLiRIlnI7/yiuv2PRdvHixx7HOmjXLZqz33nvP5b41atRw6Z59xcyZMy1JSUleXdfFihWzjB071pKXl2d3Hkf3t7Zt29q0nTZtms/f/0C9cG2KiYkx/NrixSsQr/DwcMuLL75oSU1N9eoz8/rrr181tr9/k7u6tomIiLCMGjXK7nfWRx99dFXsnq633OnrzzWXJMvNN99sWb58udPxMzIyLM8//7x1/Wn0msGbv6krrwYNGljmzJljuXz5stO/zV/9+OOPloceesitnICRc3v7N7v//vst2dnZDseYPHmyJSQkxNrno48+ctj+1ltvdThnwXVJQVOmTPHJOdeoUcOyfv16h20tlv9fT5vNZkOue29f3333ncPz69WrV0Di8DQPEBsbe1XMDz/8sN/i9OVaV/LtGmrv3r02bcqVK+fwXAqb29+5kCuvMmXKWGbOnOl0jry8PMu4ceMsxYoVs4SGhtrUpaWluTRXIHIKV14hISGWYcOGWU6fPu303CwWi+Xo0aOWgQMHevydEYj5/urKdeLKKy4uzrJ69Wqb/hkZGZb27dvbtAtkrsrZefk7L/fX17WU6+DFy9PXhAkTnH7e4F8TJkww/DoIlpe/nwl7y9Xn3oF85hno552S8fmLYFyru5rLatGihcPxnnrqKZdjCw8Pd/g3XbJkiaGf50Bcm8GS0wvE/cvIz8FfX4He80DOt3BG5Hw/+OADh/EPHDjQ6T3BkczMTEtoaGjAzsfT/NcTTzxxVez33ntvQN8Lf++n8HXO7crL3/sjrrwCmev668uo3JCr+Usj98kEMidY2N8oUHnWK9f57NmzLfn5+U7n+qu///3vQXOdXXnFx8dbJk6c6HSO/Px8y/jx4y2RkZEef5bczacb/V4bdZ8hj3n1KyYmxun74K4NGzYUOtecOXOsbSpUqHBV/V133VVovw0bNlj7FVY/fPhwn58DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAgMwxCy5LSUlxWN+9e3eFhYU5HcdkMql3795ezeWJ4sWLa+DAgdq1a5fatm3rdv/k5GTt3r1bzz//vEqUKOFW37vuukuLFi1S5cqVg24uX2vYsKF27NihLl26OG0bERGhN954Q6NGjQpAZP/j7XXgSyaTSc8995y2b9+ufv36ufT5uSIqKkrPPfecdu3apSZNmrjcr1GjRtq6datatGjhtG1MTIxGjRql6dOnKzQ01OU5/OXBBx+0Ka9YsSKg80dERGjRokV6/fXXFRER4bT9vffeq3Xr1qlUqVIezxkbG6s1a9aob9++TtuaTCYNHTpUq1evVmxsrMdzwjuhoaEaOHCgNm7cqEqVKjlsO2HCBOXm5lrL7du3V1JSkttzli5d2uaea7FYNGHCBJf6du/eXdu2bXPpnn1Fz5499eOPP6p27dpuxyr9797y7bffasiQITKb7f8UM5lMduvWrFmjnJwca7ljx45u3UMBAN6LiYnRsmXL9N577yk+Pt7ocPwiIiJCixcv1rBhw+x+Zzn6vvIXf6+56tWrp61bt6pNmzZO2xYvXlz/+te/NGfOnGv6uzgkJET//Oc/9cMPP+ihhx5SSEiIW/0bNmyoOXPmaNGiRW6v8Y2c2xMdOnTQggULFB4ebrfNqFGjNHDgQOXl5fk9Hl9q2bKlNm/erMaNGztte2U9PXXqVIe/eYNRgwYN1KxZM7v1hw4d0ty5cwMSi6d5gPT0dF28eNHmWMeOHX0WV6D5Yg3lqUDlQhITE7Vhwwb17NnTaVuz2azHH39cK1euVFRUlFvzBFpUVJQWLlyoUaNGufw3KV++vCZOnKipU6e6/d0a6PncUaFCBa1bt07Nmze3Hjt58qSaNWumpUuX+m1ebwQ6L0euAwCCR1F4Tnu9P++UjM1fBOta3Z1c1urVq7Vz5067Yw0ePNjledu2bau4uDi79ZMnT3Z5LF8y6tq0JxD7KAJ5/zLyc1CU9zzYQ87XdWXKlHFYf/ToUa/qo6KiVKtWLbfj8pSn+a+C/fbv3681a9b4LC5/cWc/hT8Ean+EUbkuo3JD7uQvg2GfjBECueesT58+2rZtm7p37+6XnHEgr7PSpUtr3bp1GjhwoNO2JpNJjz32mOF54+shp04eEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMHGbHQARcm3336rw4cP260vWbKk2rdv73ScZs2a6cYbb7Rbf+bMGS1dutSjGF1RsmRJzZ8/X/Xr13e5z+jRo/XFF18oJibGb3EZMZev1a9fX6tWrVKZMmXc6jds2DB17NjRT1EVzpPrwJfMZrNmzpypkSNHKjQ01ONxypQpo9WrV6tbt25O2956661asWKFYmNj3Zqjd+/e+vzzzz0N0ScSExNVu3Zta/nkyZPavXt3QGOYMGGC7r//fknSjh07NGjQIFWpUkVRUVGKj49X06ZN9cUXX9j0qVKlikaPHu3xnFOmTFG9evUkSfv27dPQoUNVuXJlFStWTOXKlVO7du20YMECmz4NGzbUV199pZCQEI/nha3c3FwtX75czz77rJo3b66kpCRFR0crIiJC5cuXV8eOHZWSkqLc3Fxrn+rVq2vhwoWKiIiwO+7Jkyf13//+11oOCQnRoEGD3I6vf//+Cg8Pt5ZXrlypffv2Oe332GOPadasWYqMjLQeO3HihF555RXVr19fCQkJioyMVOXKlfXkk0/q0KFD1nY33HCD1qxZo5tuusnteKdMmaJGjRpJknbu3KnHH39cVatWVfHixVW2bFnde++9mj59ukwmk90xLl26pE2bNlnLsbGxatKkiduxAAA8N2rUKDVv3tzoMPxqzJgxatOmjdFh2PD3mqtGjRpauXKlSpQo4db43bp106RJk9zqU1SEhoZq8eLFevXVV2U2e5dG6tixo3766SclJiYG/dye6NChg+bPn2/z27SgN998U08//bQsFotbY7vb3tcaNWqkJUuWKDo62q1+ffr00YQJE/wUlX88//zzDus//PBDXb582e9xeJsH2LBhg025a9eueuihh3wWXyD5Yg3lqUDkQooXL67Vq1ercuXK1mMWi0VTpkzRvffeq9KlS6tYsWKqUqWKhg0bpv3790uSGjdurPHjx/vgLP3DbDZryZIl6tChg83xK3m8pKQkRUZGqkKFCkpOTtYPP/xg0y45OVkzZ84M2vncUbduXW3atEm33nqr9dhvv/2mO++8U1u3bvXLnL4Q6LwcuQ4ACA5F7Tnt9fi8UzI2fxHMa3V3c1mffPKJ3bpbb71VjRs3dmmc7t272607c+aMvvzyS5dj8hWjrk17ArGPIpD3LyM/B0V5z4M95HzdEx8f77DeF3nEBg0aeD2GKzzNf4WHh+vuu++2ObZmzRrDcqj+2k/ha4HaH2FUrsvI3JA7+Uuj98kYJVB7zp599llNmzbN5jq/ePGiRo8erdatWyspKUkRERGKj4/XLbfcon79+mnGjBm6dOmSS+MH8jqLiIjQihUrVKtWLZvjM2bMUMuWLVWmTBlFRUWpWrVqGj58uI4cOSJJatKkicaNG+fSHP5wPeTUyWMCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg2JiNDqAosVgsV/2n6wUlJyc7HcdZmxkzZig3N9et2NwVFRWllJQUmUwmp21HjBihoUOH+jUeI+byh8cff1wxMTEe9X3//fd9HI1z7lwHvjZy5Ej16NHDJ2OFh4crJSVFderUsdsmNDRUU6dOVWxsrEdz9OvXT3FxcZ6G6LVWrVrZlDdt2hTQ+SMiItS3b19J0ltvvaV69epp4sSJ2rdvny5duqTz589r/fr1evjhh6/6DPfs2VM1a9b0aM4uXbpIkhYuXKjbbrtNY8aM0f79+5WVlaWTJ09q2bJl6tq1q5KTk5WXl2ft27RpUw0fPtyLM/aPunXrymQyyWQy6ezZszZ1JUqUsNYV9tqyZUvA4z116pReffVVlStXTm3bttVHH32k7777TkePHlVmZqZycnJ0/Phxffnll+rfv78aNWqkw4cPW/vXrl1bL7/8ssM5xo4da1N+5JFHFBIS4nKMJpNJgwcPtjn22WefOe3XsGFDjRo1yub+N3PmTFWuXFlvv/22fvrpJ6Wmpio7O1v79+/X2LFjVbNmTX355ZfW9iVKlNDUqVNlNrv+cyoiIkIPPvigJOnjjz/W7bffrk8//VR79+7VxYsXderUKa1Zs0bJyck6deqUw7E2bNhgU27Tpo3LcQAAvFOjRg3179/f6DD8qn379nrkkUectgv0WsKfa66QkBClpKSoRIkSHo2fnJxs6JrBX8aMGaP27dv7bLyKFStq8eLFioqKCuq53dWxY0fNnz9f4eHhhdZbLBYNHz5cI0aM8Gh8i8XiTXheGzRokIoVK+ZR34EDB1rXdsHu5ptvVteuXe3Wp6amauLEiQGJxds8QMEcpslk0uzZs/XFF1+oYcOGXsf3V/5c6/pyDeWuQOVC3nnnHVWrVs1avnjxolq3bq0BAwZozZo1OnPmjLKysrRv3z598sknuu2227Ro0SJJUq9evXx0tr730ksvqUWLFjbHhg8frpYtW2r+/Pk6evSosrOzdeTIEU2fPl2NGzfWu+++a9O+a9eueuyxx4JyPle1adNG33//vcqXL289tm7dOjVp0kQHDx706Vy+ZFRejlwHABirqD6nvZ6ed0rG5y+Cda3uSS7riy++UGpqqt22BZ8/FSYyMlKdOnWyWz9jxgzl5OQ4HcfXjLg2HfH3PopA37+M+hwU9T0P9pDzdU9aWprD+qSkJIf1iYmJTufw5vPuDk/zX7Vq1boqD7t582afxeUqf++n8GXOLZD7I4zKdRmVG/Ikf2nUPhmjBCrP2qJFC40cOdLm2OrVq1W1alU99dRTWrlypY4ePaqcnBydP39ev/32m6ZOnao+ffqoXLlyev3113X+/HmHcwTyOhsxYoTq1q1rLefk5KhTp07q06ePVq9erdOnT+vSpUvas2ePPvzwQ9WuXVurVq2SJPXu3dvp+P5wPeXUyWMCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgmJiNDqCoSUlJcVjfoUMHxcXF2a2PiIhQ165dvZrj3LlzmjZtmoYMGaJ77rlHFSpUUFxcnEJDQxUVFaWKFSuqffv2+vTTT5WdnW13nFq1aumBBx5wOFezZs30xhtvOGzjK4GcKxjdcsstuvPOO11uH8jrwNfatWun4cOHO2wzc+ZM3XPPPYqLi1OxYsVUt25djR8/XhaLpdD2UVFRmjt3rkJDQwutf+qpp3T77bd7HbtR7rjjDpvyzz//bEgcH3/8sV599VXl5+fbbTNmzBitWLHC5tiAAQM8nnPLli3q1auXMjMz7baZPn26nnvuOZtjb7zxhkqXLu3xvJBGjBiht956S+fOnXOp/bZt29S+fXtlZWVZjw0ZMkQRERF2+6xZs0a7d++2lpOSktS+fXuXY2zevLmqVq1qLZ88eVKLFi1y2CckJETTpk1TeHi49djcuXPVp08fXbx40W6/ixcvqmvXrtq+fbv12D333KNu3bq5HO8Vs2bN0jPPPKPLly+73feKHTt22JQL3icAAP7j6PfziRMnNGTIEFWrVk1RUVEKDQ1VQkKCqlatqo4dO+qll17S119/7fC3TTDo0qWL0SH4nLM11xNPPMH3aQEPPvigHn30UZ+PW69ePb399ttBO7e7OnXqpHnz5tn8vvyrvLw8DRo0SB9++KHHc9hbCxcV48aNU2RkpNFhOPXss88qJCTEbv24ceOUkZERkFi8zQNMnz5dmzdvtjlmMpmUnJysH3/8UYcPH9bUqVP1xBNPqFGjRipWrJjXMfuTL9ZQnvJnLqRatWoaOnSozbG+fftq1apVdvtkZGSoZ8+e2rZtm9PxjVK+fHm99tprNsfeeusth/fB/Px8/eMf/9CkSZNsjv/73/92mG83Yj5XDRw4UF999ZViYmKsx+bNm6fWrVu7nGsxWqDzcuQ6AMA4Rj2n5XmnLWfPOyVj8xfBvFb3JJd18eLFq34P/lX37t2d/jZs166dze+9giZPnux2XN4y6tr0F2c5vUDfv4z8HBT1PQ/+cD3mfE+cOOGwvlWrVl7VS1LJkiXdislTnua/qlWrdtUxI/bQBGI/hS8Ecn+EUbmuYMgNuZO/NGKfTDDwZ541PDxcKSkpNvn9VatWqX379jp27JjT/unp6XrjjTc0btw4u20CeZ1VrFhRL7zwgs2xRx99VEuWLLHbJy0tTV26dNFvv/1mt02gXA85dfKYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCZmowMoavbs2aONGzfarY+MjFS3bt3s1nfs2FHx8fF263fu3Kmffvqp0LoNGzbogQceUJkyZdS3b1+NHz9ea9eu1ZEjR5Senq68vDxdunRJhw4d0tdff63HH39cLVq0UE5Ojt35unfvbrdOkt5//32H9ZKUlZWlzz77TG3btlW5cuUUHh6u+Ph41axZU4MGDdKSJUuUl5fndJxAzuVvFy5c0AsvvKBKlSopMjJS1apV09ixY532a9mypdM2RlwHvmQymfTWW285bDN48GD17t1ba9euVXp6urKysrRjxw4NGTJEQ4YMsduvWrVqSk5Ovuq42WzWsGHDnMaWkpKiO++8U9HR0YqJiVGjRo00efJkWSwW5yfmZ/Xr17cp//LLLwGP4fjx4/r73//uUtsxY8bYlO+55x6P5x06dKiysrKcths1apR+/vlna7lYsWIaOHCgx/PCM7t27dKECROs5VKlSqlDhw4O+4wfP96m/Oijj7o832OPPWZTnjRpknJzcx326dq1q6pVq2YtnzlzRoMGDXLps56Tk3PVfeipp55yOV5JyszM1NNPP+1Wn8IUvA80aNDA6zEBAK6pUaOG3boePXpo/Pjx2rNnjy5duqS8vDylpqZq7969+vLLL/Xee++pffv2KlGihNq2bavp06crIyMjgNG779tvv1W3bt1Uvnx5RUREqGLFimrZsqU++OADnTt3zpCYfL3mMpvNLn0/z5kzR02aNFFMTIxiYmLUpEkTzZo1y+34iwKz2ax//vOfTtvNnDlT99xzj+Lj41WsWDHdeuutevvtt53+hn/88ceVmJgYdHO7q1OnTpo7d67Cw8MLrc/JyVHPnj01adIkr+bJz8/3qr+vHDx4UAMGDFBiYqIiIiKUmJioAQMG6ODBgw77lS1bVr169QpMkB5KSEhwuIbMzs7W6NGjAxaPt3mAvLw8derUSbt37y60vkKFCurbt6/GjBmjTZs2KT09XVu2bNF//vMf3XfffQoJCfE4dl/z1RrKE/7OhQwePFhm8/+n6JctW6YFCxY47ZeVleVSrssoTzzxhMLCwqzlvXv36s0333Sp79/+9jedOXPGWo6Ojnaa3wn0fK544403NHHiRIWGhlqPffjhh+revbtLea5gEei8HLkOADBOoJ/T8rzT/eedkrH5i6K0VncnlzVmzBi7a+6oqCi778UVPXr0sFu3fft2bd++3f0T8IJR16ar/LGPIpD3L6PzZUV9z4Mz5Hxd42jPmiR169bN7lqqVKlSev75553OERcX51Fs7vI0/1XY58SoZxXu8mQ/hbcCuT/CqFyX0bkhT/KXgd4nU5gePXrIYrF49EpLS3NrLn/nWfv166ekpCRrOS0tTf369VN2drZbcToSyOts8ODBNnnFtWvXKiUlxek8Fy5cMCyXfsX1klMnjwkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBgYnbeBAU5+0/kk5OTPapzNnaTJk20aNEi5eXlOQ7wLzZs2KDFixfbrb/77rvt1t17771q1KiRw/H/+OMP3X777Xrssce0fPlynTx5Urm5uTp//rx+/fVXTZw4UZ06dVKlSpU0ffp05efnGz6Xv6WlpalJkyYaOXKkDhw4oOzsbO3Zs0dPPvmkxo4d67BvvXr1nI4fiOvgk08+kclksr4+/fRTh+PfcMMNNu0LvrKysqxtW7Zs6fA8p06dqs8//9xu/aeffqqVK1farX/xxRevOta6dWtVrFjR4Tk8++yz6t+/v3744QdlZmYqIyNDP/74owYOHKinn37aYd9AqFq1qk358OHDAY9hwoQJNu+lI99++60sFou1XKdOHZnN7n/lbNy4UT/88INLbfPz8zVq1CibY/3793d7Tnhv3rx5NuW77rrLYfuUlBRlZmZay+3atVOFChWczlOmTBk98MAD1rLFYnF4/7hi2LBhNuWPP/5Y6enpTvtdsWnTJm3dutVabtKkiUvxXvHf//5Xp06dcrm9PQXvA3FxcSpTpozX4wIAnEtISLBbd+TIEZfGyM3N1fLly5WcnKx///vfV9X78ze5O/7xj3+oRYsWmj9/vo4fP66cnBwdOnRIq1ev1nPPPafXX3/do3G94Y81V8uWLVW5cmWHfV9//XX16NFDGzZsUEZGhjIyMrRhwwb16tVLr776qsfnE6zuu+8+1apVy2Gb4cOHq3fv3lq7dq3Onz+vrKws7dq1S6+88oratGmj7Oxsu30jIyP1xBNPBN3c7ujcubPmzZun8PDwQusvXryoTp06XfX72BPu5AD8ZefOnapfv76mTJmiY8eOKScnR8eOHdOUKVPUoEED7d6922H/wYMHByhSzwwZMkTFixe3W//FF1/oxIkTAYvHF3mAEydO6I477tCYMWOUm5vrsG1oaKjq16+vZ599VsuWLdOff/6pV1991eHfJFB8tYbyhL9zIQVzxZ988onLsa1fv17btm1zuX0g9evXz6Y8atQo5eTkuNQ3LS3tqrX9gAEDgmo+R8LCwjRlyhSNGDHCeiw/P1/PPPOMhg8fbnONBDsj8nLkOgDAGEY8pw3Uc29/5VeMeN55ZV6j8hdFZa3ubi7rwIED+vLLL+2O52gtGxUVpQ4dOtitnzx5stvxe8uoa9MV/sjpBfr+ZeTn4FrY8+AIOV/XrVy50uGaNywsTN98842eeuopVahQQaGhoSpVqpS6d++ujRs3KjEx0ekccXFxvgzZLk/zX7GxsVcdO3/+vE9iCgR391N4K5D7I4zKdRmdG/IkfxnofTJG83eeteD35/jx43X06FH3A3UgkNdZwbk++ugjF6OUVqxY4fR5jT9dLzl18pgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJo7/l3AUavbs2Q7/c/ZmzZqpQoUKVx1PSEhQu3bt7PbLy8vT9OnTfRLjX+3Zs8duXWJiohISEgqtu//++x2Om5aWprZt2+q3335zGsPhw4eVnJys/fv3Gz6Xv7344ov65ZdfCq0bPXq0w75JSUn+CEmS59eBr7Vv395h/QcffOB0DEefkxo1aqhixYo2x5o3b+5wvLVr1+qjjz6yWz969Gh99913TuPyl+jo6Kven6NHjwY8jpUrV7rc9sKFCzp27Ji1HBkZqbi4OLfnnDdvnlvtFyxYoPz8fGu5Ro0aKlmypNvzwjs///yzTblBgwYO26enp2vGjBnWckhIiB555BGn8wwYMEDh4eHW8jfffOP03h8dHa0777zT5ticOXOczlXQihUrbMp33XWXy32//PJLt+crzIULF3ThwgWbYwXvfwAA/yh4//2r//znPypbtmwAo/Gf6dOn69133zU6jKv4Y83lbM2wZcsWvfnmm3br3377bf34448Oxyhq7rvvPof13377rT788EO79WvXrtXIkSM9msPIuV31wAMPaO7cuQoLCyu0/vz582rTpo2WL1/u1TxX/HWdY5RHHnlE586dK7Tu7NmzevTRRx32b9iwoaKiovwRmtciIiI0bNgwu/UWi8WlfIWv+DIPkJmZqaFDh6pq1ap65513dODAAZf63XDDDfrnP/+pP/74Q3fffbdHc/uKr9ZQnvBnLqRSpUoqV66ctZyRkXHVWtOZ+fPnu9U+EG666aarvm/dXXfPnDnTpnzrrbfa/VsGej5HYmNjtXTpUvXr1896LCsrSw899JA+/vhjt8czmhF5OXIdAGCMovSc9np+3ikZm78oCmt1T3NZo0aNslt322236Y477q4gY4EAACAASURBVCi07v7771fx4sULrcvNzbV59hUoRl2brvBHTi/Q9y8jPwdFfc+DM+R8XZeenq4JEyY4bBMfH6+PP/5Yhw8fVm5urk6fPq3Zs2erSpUqLs1hNvt/O6E3+a+/7hG4IjMz0ydxBYK7+ym8Ecj9EUbluoIhN+RJ/jKQ+2SCgT/zrCVLltRtt91mc2zSpEnuB+lAIK+zihUrKjEx0Vq+dOmSli5d6tZcc+fOdau9L10vOXXymAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgmZqMDKIrS0tK0ePFiu/Umk0m9e/e+6nj37t0VHh5ut9/y5ct1/Phxl2K4/fbb9dJLL2n69OnavHmzjhw5otTUVOXk5Mhisdi8XnrpJYdjJSQkFHq8devWDvt9+OGHOnDggEvxOhPIufzp3Llzmjx5st3633//XTk5OXbr4+Li3JovENeBr7Vs2dJu3enTp/Xzzz87HeOPP/5wa4677rrLYftPP/3U6ZyutPGXsmXLXnXs7NmzAY/jl19+cat9WlqaTdnd61uSNm/e7Fb71NRU7d+/3+bYHXfc4fa88M758+eVn59vLd9www1O+4wbN86m/MgjjygkJMRue5PJpEGDBtkcc+Vzetdddyk0NNRaPnnypNN7SmG2b99uU27QoIHLfbdt2+b2fPacOXPGplzY/QIA4Ht79+61W9e5c2cdO3ZMO3bs0KxZs/Tmm2+qT58+qlevnqKiogIYpXcsFoteeeUVo8O4ir/WXM7WDOPGjbP5fVOQxWLR2LFjHY5R1Dhau0ly6XzHjRsni8Vit/72229XiRIlgmpuV3To0EFz5sxRWFhYofWnT59W8+bNtX79eo/GL4yjcwmEn376ST/++KPDNuvXr9euXbvs1oeGhqphw4a+Ds0nHn74YYe/pZcsWaLffvstYPH4Iw9w6NAhvfzyy6pUqZKqV6+uwYMH6/PPP9fWrVuVnZ1tt1/58uW1atUqderUyav5veHLNZS7/JkLKfh52Llzp3Jzc92a76effnKrfSA0atTIpnzo0CGdPHnSrTF27typzMxMa9lkMtnN7wR6PnsSExO1du1atWrVynrs7NmzatmypRYsWODWWMHCqLwcuQ4ACDyjn9PyvNP1OYzMXwT7Wt2bXNaqVau0e/duu/WPPvpooce7d+9ut8+SJUuu+l0TCEZdm874K6cX6PuXkZ+Dor7nwRFyvu576623/Lpn5Ny5c34b+wpv8l+FXQ/Fixf3OqZA8WQ/hacCuT/CqFxXMOSGPM1fBmqfjD2zZ8+WyWTy6BUfH+/WXP7Ms959990ymUzW8qlTp7Rnzx635nMmkNdZwWO//PKLsrKy3JrL3byeL11POXXymAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgWZqMDKKpSUlIc1icnJ7t0zJ0xQ0JCNGDAAO3fv18//fST3nnnHfXu3VsNGjRQYmKi4uPjFRYW5jz4AkqUKFHo8UqVKjnsN3fuXLfnsieQc/nTypUrlZuba7feYrEoNTXVbn3x4sWdzhHo68DXKleubLeudOnSslgsTl/r1693OMctt9xiU7755psdtnc2niRt2LDBaRt/Key6yMrKCmgM+fn5On/+vFt9CsYYGRnp9ry//fab231+/fVXm3KFChXcHgNXS0xM1NChQzV16lRt3bpVx44d04ULF5Sfn3/VZzQ/P19m8///xIiPj3c6/rZt27Rp0yZrOSkpSe3bt7fbvmXLlqpSpYq1fOLECS1evNjpPNWrV7cp79mzx2mfwpw5c8amXLp0aZf7Hj161KM5C3Pp0iWbsivfIwAA73399dcO681ms+rUqaMePXrolVde0bRp07R161ZlZGRo+/bt+vjjj9W8eXOZTKYARey+jRs36uDBg0aHcRV/rbmcrUm///57p7G50qYocbaOcuV8jx07pn379tmtN5vNuvHGG4Nqbld07tzZ7rr7zz//1N13361t27Z5NLY9FovFp+O5a926dS61c7Z2dvbeGsFkMmn48OEO24wcOTJA0fyPv/MAf/zxhz7//HMNHjxYDRo0UExMjJo2baq3335bhw4duqp9WFiYpk2b5jCn40++XEO5w9+5kIL5it9//92tuSTP8ib+lpSUZFPevXu322Pk5+dfdW4FxzVqvsLUrl1bmzZtUp06dazH9u/fr8aNGxuaU/SWUXk5ch0AEHhGPKfleaf7zzslY/MXwb5W9zaX9cknn9it69mzp2JiYmyOFS9eXPfff7/dPpMnT/Y4Fm8YdW06Y1ROz9f3r2DOlwX7ngdHyPm678SJE3rwwQeVk5Pjl/Ed/b19xZv814ULF646FhcX53VM3vD3fgpPBXJ/hFG5rmDIDXmavwzUPhmj+TvPetNNN9mUd+zY4dZcrgjkdVbwd4AvcnSBcr3l1MljAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIFiYjQ6gqFq+fLlOnDhht/7WW2/VbbfdZi3ffPPNaty4sd32aWlpWrx4sd362NhYLVu2TJMmTdLNN9/sWdB2REREFHosJibGbp/c3Fz9+uuvPps/UHP5286dO522Kfgf3v+VyWRy2DfQ14GvRUREqHjx4n6fp1SpUjblEiVK2G1rsVh0+PBhp2MePnxY+fn5XsfmiYLvTW5uriwWS0BjMGJO6X/3Rm/7OHr/4VzVqlW1YMEC/fnnnxo9erT69u2revXq6YYbblB0dLTT+5Ykh/f4vxo3bpxN+bHHHrPbtmDdpEmTdPnyZadzJCQk2JQbN26srKwsZWVlKTs7W9nZ2crJyVFubq5yc3N1+fJlXb58WXl5ecrLy1N+fr7y8/O1atUqm3Fcvc7y8vKUmZnpUltXZGdn25SLFSvms7EBAPZt2rTpqu8CV5hMJt1222166qmntHr1au3Zs0ddunTxQ4Te27x5s9EhFMpfa66CvxEKOnDggNN5Dx48aNiawdecrd0uXbqkU6dOuTTWwYMHHdYXXL8ZObe39uzZo6ZNm+r333/36bjB4NChQy61c/Y3d/ZZM0LHjh1Vo0YNu/WbNm3SunXrAhhR4PMAubm5Wr9+vV555RVVqVJFTz755FX30piYGL322mt+i8EeX6+h3OHvv3t8fLxN2ZMcyPnz530Vjs8UXB+npqZ6NE7BfvbW3YGer6CwsDCtW7dOSUlJ1mNbtmzRXXfdpT/++MOjWIKFUXk5ch0AEFhGPKfleadrCluzGpW/KAprdW9zWVOnTrX7+6d48eLq3bu3zbGOHTva/Z1y4sQJLVu2zKt4PGHktemMP3J6gb5/Gf05KOp7Hhwh5+uZ77//Xh07dtTZs2fd7nvs2DGH9efOnfM0LJd5k/86cuTIVceMyjsGcj+FJwK5P8KoXJfRuSFv85eB2CdjNH/nWUuWLGlT9uS+6EwgrzNffJY86eML11tOnTwmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgoXZ6ACKqry8PE2fPt1hm759+1r/nZycLJPJZLft7NmzlZWVZbd+7ty5atWqlfuBeqjgfxJfUHp6epGcy9/OnTvntE1ubq7H4wf6OvA1Z++1r5QsWdKmXLx4cbtts7OzlZ+f79K4ly5d8iouT2VnZ9uUw8LCHN5PrhWXL1/26POSmZlpU46OjvZVSNed++67T9u2bVOXLl28uubMZtd+bsyZM0dnz561ltu1a6cKFSpc1a5s2bLq3LmztZyfn68JEya4NEfB+5DZbFZERIQiIiIUHh6u8PBwhYWFKTQ0VKGhoQoJCVFISIjMZrPMZrNMJlOhfwtH95m/unz5skvtXBUZGWlTNuo+BQDXo+TkZO3Zs8erMSpXrqwFCxZoxIgRPorKd/7880+jQyiUv9Zcjr7Ls7KylJeX53QMi8VyzXwXO1u7FfzN7U3buLi4oJnbW5cuXVJGRoZPx3RVSEiIX8d39e9+8eJFh/UxMTG+CMennn/+eYf1I0eODFAk/8/IPMDly5c1duxYtWnTRjk5OTZ1PXv2dHnt48t4rlUF8xWefIe4c08MlIKfc2f3BXsKnpu9+0eg5yvIbDYrNjbW5ti4ceN06tQpj+IIFkbm5ch1AEBgGfGcluedrin4vFMyLn9RFNbq3uayMjMzNXnyZLv1jz76qE25R48edttOmzbNkLWMkdemM/7I6QX6/mX056Co73lwhJyv51asWKH69etr9uzZLl0Dubm5GjNmjB5++GGH7Xbu3OmrEO3yJv9V2LOZOnXq+CQudwR6P4UnArk/wqhcl9G5IW+/8wOxT+ZaV/C98sdzmkBeZwU/S57MFYx5Y18Itpw6eUwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEC7PRARRlKSkpDut79eols/l/f+I+ffp4PFb37t3Vpk0b9wP0QlpamsP62NjYIjmXv2VnZzttk5+f79HYRlwHvubsvfaVsLAwm3JmZqbdthEREdbPqTPFihXzKi5PFRZ/ZGSkAZEEVmhoqEJDQ93uV7x4cZtyRkaGr0K6rlSrVk0LFy60+XtevHhRU6dO1cCBA9WoUSMlJSUpJiZG4eHhMplMNq+8vDy358zKytLkyZOtZbPZrEGDBl3VbsCAATaf82+++UYHDx50aY5Lly65HZcrTCaTX8Z1puB9ydH9DgDgWydOnFD9+vX18ccfe33/feONN3TnnXf6KDLfuHDhgtEhFMpfay5HvxldXTOYTCbD1gy+dv78eYf1BX9ze9O24FxGzu2tOnXq6JtvvlF8fLxPx5XkdG3k79yJq3/3qKgoh/XBdm9p1KiRmjZtard+7969WrhwYQAj+p9gyAOsW7dOn332mc2xsLAwh38vuKfg++zJd4g798RAKfg5d3ZfsKfgudm7fwR6voJyc3O1Zs0am2MTJkxQ//79PYojWBiZlyPXAQCBFejntDzvdF3B552ScfmLorBW98V685NPPrGbV6pXr57q168vSYqJiVHbtm3tjjNlyhSvY/GEkdemM/7I6QX6/mX056Co73lwhJyvdw4dOqSePXuqevXqevHFF7V8+XIdOHBAFy5cUE5Ojk6cOKHvvvtOI0aMUKVKlTR06FDVqFHD4ZgbNmzwe9ze5L927typnJwcm2MNGjTwSVyuMmI/hScCuT/CqFyX0bkhbwVin8y1Lj093aYcHR3t8zkCeZ0V/P66VvLGvhBsOXXymAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgWZqMDKMp++eUXbdu2zW59+fLl1aJFCzVs2FDVq1e3227Pnj3auHGj3fqHH37YYRxpaWl69dVXdfvttys2NlZms1kmk8n6evvtt52fTAHZ2dm6cOGC3fqwsDDVqFHD7XGNnqsoM+I68LXs7GxlZmYGfN7U1FS7dSaTSTfeeKPTMSpUqCCz2Zhb5okTJ646VqpUKQMiCbz4+Hiv+zh6/30hJCTEr+Mb5d///rciIyOt5R9++EGVK1dWv379NHnyZP344486evSoMjIylJuba9M3MjLS47/L+PHjZbFYrOVHHnnEZiyTyaTBgwfb9Pn0009dHv/MmTM25UmTJtncKz19tWrVyqPz9VbJkiVtyidPnjQkDgC4Xl24cEHPPPOMypcvrwEDBmjGjBk6ePCgzXeZq/72t7/5IULP5efnGx1CQDlbMyQlJTkd46abbjJszeBrWVlZDtduxYoVU5kyZVwaq2LFig7rC/4+M3JuX6hXr56WL1+u2NhYn45brFgxh/WO8k6+cNNNN/mk3blz53wRjs88//zzDus/+OADQ+6HwZIHmDNnzlXHnH2u4Lq0tDSbclxcnNtjeNLH3wp+p5YoUcKjcQr2s3f/CPR8BeXn56tdu3Zavny59ZjZbNakSZM0ZMgQj2Lxlq9yVUbl5ch1AEBgBfo5Lc87vWNU/qIorNV9sXbbv3+/li5darf+yvOpzp072zxD+6sff/xRu3bt8joWTxh5bRoh0Pcvoz8HRX3PgxGut5zv3r179a9//Utt27ZVpUqVFBsbq4iICN1www1q3ry53nzzTR05ckSS1K1bN7vjpKam6rfffvN7vN7kv3JycrRu3TqbY82aNfNJXK4yaj+FuwK5P8KoXJfRuSFf8Pc+mWtdwfeqYG7JFwJ5nRX8LPkiR3etCLacOnlMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAuz0QEUdSkpKQ7rk5OTlZyc7NUYzZo1s1uXnZ2tpk2b6q233tL27dt14cIFWSwWmzae/mft+/fvd1j/0EMPeTSu0XMVVUZdB7524MABu3W7du2SyWTy+tW2bVuX55SkJk2aOI3blTb+kpmZqbNnz9ocS0xMNCiawLrlllu87vPnn386bH/58mWbcmhoqFvzlShRwq32RUF8fLzN5ygnJ0ddu3bViRMnXOpfpkwZj+fet2+fvvnmG2s5MTFR999/v7XcunVrVapUyVo+fvy4lixZ4vL4Ba+HKlWqeByr0WJiYhQTE2Nz7ODBg8YEAwDXufT0dE2ZMkV9+vTRzTffrOjoaNWrV0/dunXTCy+8oKlTp+r48eMOx2jRokWAokVh9u3b57C+cePGTse45557fBVOUHC2jnLlfMuXL6/KlSvbrc/Pz9fhw4eDam5XjB8/Xunp6Xbr77jjDn399deKjo52eczs7GyH9QkJCQ7rW7Zs6fJcnmjatKlL7Zx9Vpy9t4FUuXJldenSxW796dOnnebs/CVY8gB//PHHVceCJb90LSi4Pq1evbrbY3jSx9+OHDliU/Ykt2M2m1WjRg2H4xo1X2EuXbqkzp07a9GiRdZjJpNJY8eO1XPPPed2PMGSqwpEXq4gch0AYIxAPqfleafnzzslY/MXwb5W95VRo0bZrevdu7eKFy+u7t27220zZcoUP0TlOqOuTaMEep9JMOfLgn3PgxHI+RauSZMmuvfee+3WL1my5KrvX3/wNv+1YMECm3LlypUdnpcvGbmfwl2B3B9hVK4rGHJD3vL3PplrXcHvyDp16vh8jkBeZwV/B/giR3etCKacOnlMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD/sXffUVZV5/+A35kMTboIFiwRQWPBihQ1iYhYUFGxayIKomDv0ejPElusUSQqLQqhKAoSgYiiGGJBECQqYgNUBBQEBobODDO/P7KcrwNMn7lnIM+zFmtln73P3p8bzj3c8569lgAAAAAAVUl60gG2dsOGDYvs7OxC+7t06RLnnntuof15eXnx97//vdD+OnXqRJ06dQrtnzhxYnz66adFZmzdunWR/YWZMGFCkf3XXXdd7LHHHmWaO8m1tkZJXgcRERs3biyyv3r16iWe64033ii0b999941ddtmlxHOV1OTJk4vs79GjR7FzlGRMZfryyy8LtP9Xvg+HH354qcY3bNgwmjVrVuDY1KlTizwnKyurQLtevXqlWrN58+alGr81OPDAA6NatWr57UmTJsWCBQtKfH5p/9429dRTTxVoX3rppfn/+7LLLivQ97e//S1ycnJKPPe///3vyMvLy28ffvjhsd1225UxabI2vQ8sX748Fi9enFAaAH5uzZo1MWPGjBg5cmQ8/PDD0bVr19h9993j+eefL/Sc7bffPmrXrl1of0X+JmdzxT0zdO/evcj+tLS0uPzyyysyUuLefPPNIvt79epV7By9evWKtLS0QvtnzJgRmZmZVWrtkpg+fXqcfPLJsXbt2kLHHHHEETFu3LgS/9ZcsWJFkf0tW7YstK9BgwbRtWvXEq1TVoceemixv/OPOOKIOOCAAwrtz8nJiQ8++KCio5XZ9ddfH+nphZdG+/TpU+TfcWWrqnWAsn5v2Nym34eWLVsWeBYviUMPPbQiI1WI999/v0D7l7/8ZTRp0qRUc+y///4Ffhfl5uYWWt9J9XqFWb9+fZx55pmb/d57+OGH44477ijVXFWlVpWKutym1DoAkpGq97RJv++MqLj6ShLvOyOSrV9U9Wf1ijJhwoT47LPPtthXt27d6NmzZxx//PFb7F+3bl0MHz68MuMVK6lrMymp3meS5PdgW9jzkGpqvpvbfvvtY+DAgUWO6d27d4rSlK/+NXTo0FizZk2BY6n6+0p6P0VppHJ/RFK1rqpSGyqvytwns6175513ClznO+64Y7Ro0aJC10jldbbpsZYtW0bNmjVLtVYq7zOpVJVq6uqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVCXpSQfY2v3444/x6quvFtpft27dIv8j9xMnTox58+YV2l/cf7Q+IyOjyP4jjzwyWrduXeSYwowbN67I/oYNG8b48eNj7733LnauJk2axIABA6JZs2aJr7U1SvI6iIhYtWpVkf3Nmzcv8VxFfV/S09Pj1ltvLfFcP1e7du24+eab44477tis76233iry3N/+9rdx1VVXFdp/+eWXxzHHHFOmXBVl2rRpBdotW7ZMKElqnXnmmaUa36VLl0hP/79/2j7//PNYunRpkecsWbKkQLs013NERPv27Us1/ic5OTkF2j/PnbRN/92aP39+qc4/9dRTy7X+2LFj47vvvstvn3jiibH77rvHTjvtFKecckr+8dzc3BgwYECp5l68eHF89NFH+e1atWqVO29SNr0PbHqfAKBqycnJiX79+hU5Zrvttiu0ryJ/k7O5iRMnFtl/7LHHRo8ePQrt/+Mf/xht2rSp6FiJeu2114rsP+aYY+K6664rtP+oo46Km266qUxrJLl2Sb399ttxxhlnRHZ2dqFjfvOb38Qrr7xS7DN9RMQPP/xQZH+PHj2iRo0amx3PyMiIgQMHRuPGjYsPXU4DBw6Mhg0bbrGvYcOG0bdv3yLP/+CDD2LNmjWVEa3UGjVqFBdddFGh/WvWrIm//vWvqQu0BVWhDrDXXnttdqy4a7UqP+tWNXPmzIlFixblt+vUqRMdO3Ys1RxnnHFGRccqt3nz5hV4po8ofX3n3HPPLdCeOXNmZGVlVYn1ipKTkxMXXHBBPPvsswWO33333fHnP/+5xPMkVavaVCrqcptS6wBIRqre0yb9vjOi4uorSbzvjEi2frE1PKtXlD59+hTad99990X16tW32Dd69OhYvnx5ZcUqkaSuzaSkep9Jkt+DbWHPQ6pt6zXfe+65J+66664i96T93H777Rf/+te/Yp999il0zDvvvBPTp0+vqIjFKk/9a/ny5fHkk08WOHbWWWfFCSecUCHZDj744ELnSmI/RVlrbqncH5FUrasq1YbKozL3yWzrli1bFjNmzChw7OKLL67QNVJ5nX3zzTexYMGC/HatWrWiU6dOpVrrrLPOKtX4rUVVqqmrYwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCVpCcdYFswaNCgSjt32bJlkZOTU2h/u3btYo899thiX7NmzWL48OFlzvavf/0rpk6dWuSYX/3qV/Gf//wnnnrqqejYsWM0adIkqlWrFvXq1YsWLVrE+eefH0OHDo158+ZF9+7dIz19y5dcKtfaGiV5Hfy0flEefPDBaN26dWy33XbFzjVhwoT4+OOPC+2/4oor4tprry1xtn322Sfuu++++Prrr+PBBx+MJk2abHHNb775psh5nnjiiRg4cGAcfvjhUbt27ahdu3YcfvjhMWDAgOjTp0+J81SWTb8fBx54YEJJUqtdu3bRpk2bEo1NT0+Pq666qsCx5557rtjz5s2bF5mZmfntnXfeOZo3b16iNWvVqhUXX3xxicZuatWqVZvNVVWsW7euQHv77bcv8bm//OUv45xzzinX+hs3boz+/fvnt9PT06N79+7RrVu3qFatWv7x1157rdjv9pZs+p2+8847C8y7tdj0PlDcv6MAVJyzzjorXnrppTj55JOjevXqJT7v0EMPLbQvJycnli5dWmh/Rf4mZ3MTJ06M2bNnFzmmb9++0a9fv2jVqlX+M0O7du1i2LBhce+996Yoaeq89tpr8emnnxY55rHHHouhQ4fGUUcdFXXr1o0aNWrEfvvtF/fcc0+8/vrrUaNGjULPXb9+fTz11FNVbu3SePXVV+OCCy6I3NzcQsd06NAhRo8eXWSeiIgPP/ywyP4DDzwwXnvttWjXrl3UrFkzGjZsGCeffHK888470aVLlzLlL62WLVvG9OnTo2vXrrHzzjtHtWrVYuedd44LL7wwpk2bFgcccECR5//8N37SrrjiiiLvl88++2yR9+RUKG8dYPjw4bHjjjuWK8OZZ55ZoJ2TkxPvvPNOkedU5WfdqmjIkCEF2ldccUWJzz3iiCOK/G2RpE3rMVdffXVkZGSU6Nz69etHjx49Chz729/+VqXWK0pubm507949/vrXvxY4/oc//CGefPLJSEtLK3aOpGpVm0pFXW5Tah0AyUjVe9qk33f+lKEoJa2vJPG+MyLZ+sXW8qxeEQYPHhwrVqzYYl9Rn+HZZ5+trEglltS1mZRU7zNJ8nuwLex5SLVtvebbuHHjuPPOO2PBggXx2muvxdVXXx1t27bNv8br1KkTzZo1i3POOSdeeOGF+Oijj6Jly5aFzpeTkxM33nhjCj9B+etfDzzwQCxYsKDAsf79+8cuu+xSrlytW7eOCRMmRIMGDbbYn8R+ivLU3FK5PyKpWldVqg2VVWXvk9nWbXqd9+zZM3beeecKXSOV19ngwYMLtEvz++24446L/fbbr8TjtzZVpaaujgkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY8SccQAAIABJREFUAEBVkp50gG3B2LFjY+nSpaU+b9WqVTFq1Kgix+Tm5hb5H0WvU6dOvPHGG3HuuedG06ZNo3r16rHXXnvFzTffHNOmTYvddtut1Ll+7pZbbil2TK1ataJXr17x+uuvx6JFi2LDhg2xYsWK+PLLL2Po0KFx/vnnR40aNarUWlubpK+DTz/9tMj+Vq1axZQpU2L16tWRl5dX4M/vfve7AmPz8vLitttuK3SutLS0+Mtf/hKTJ0+O7t27x7777ht16tSJjIyMaNy4cey7775x5plnxiOPPBLTpk2Lzz//PP74xz9G48aNC50zNzc3nnzyySI/Q1paWnTr1i2mTp0aq1atilWrVsXUqVOje/fukZaWVuS5qfDmm29GXl5efrtdu3ZVIlcq9OnTp0Tf66uvvjoOOuig/Pa6devi2WefLdEa7733XoF2z549S3Teww8/XOS1V5TFixcXaO+xxx5lmqcyzJ07t0D76KOPjvr16xd7XrVq1WLIkCFRvXr1cmfo379/ZGdn57e7d+8ePXr0KDCmX79+ZZp70KBBBT7jPvvsE3379i1b0AQdeeSRBdoTJkxIKAnA/54aNWrEGWecEWPGjInMzMwYP3583HbbbdGlS5fYf//9o0mTJlGrVq1IT0+P+vXrR+vWrePhhx+OBx54oNA5P/nkk8jNzS20vyJ/k7O5vLy8ePzxx4sck5aWFj169IgPPvgg/5nhvffei/POOy9FKVMrNzc37rjjjmLHnX/++fH2229HVlZWrFu3Lj799NO4/fbbo1atWkWe9/TTT8eCBQuq3Nql9eKLL8all15a5Jjjjz8+XnrppahWrVqhY2bOnBlLliwpcp7f/va38d5778XatWtj2bJlMWbMmGjTpk2ZcpfVnnvuGc8991wsXLgwNmzYEAsXLoxBgwZFs2bNijxv0aJFMXz48BSlLFrNmjXjyiuvLLR/48aN8dhjj6Uw0ZaVtw5w+umnx6effhq///3vy1Q/OPjgg+OKK64ocGzixImRmZlZ5HlV+Vm3Kurfv3+Bf/87deoUp556arHn1ahRI3r37l2Z0crl6aefjg0bNuS399lnnxLVfiMiHnnkkQK1lqysrGLrO6lerzh5eXlx5ZVXxkMPPVTg+JVXXhn9+/eP9PTiX8skUavaklTU5X5OrQMgOal4T5v0+86IiquvJPG+86d1k6pfbE3P6uW1atWqeO6550p1zvz58+ONN96onEClkNS1maRU7jNJul62te95SLX/lZpvRkZGHHfccfHEE0/E5MmT86/xlStXxpw5c+L555+Ps88+OzIyMoqc509/+lNMmTIlRan/q7z1rxUrVkTXrl1j48aN+cd23XXXeOedd4qtVxbmoosuirfeeit22GGHQscksZ+iPDW3VO6PSKrWVdVqQ2VVmftktnVDhgyJefPm5bcbNmwYgwYNqpD9Sz9J5XXWv3//yMnJyW//+te/jq5duxa7Tp06deKJJ54oUaatVVWpqatjAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUJWkJx1gW7Bhw4Z4/vnnS33eSy+9FKtXry523LBhw4rsb968eQwfPjzmz58f69evj9mzZ8eDDz4YDRs2LHWmTb311lvxpz/9qdzzVLW1tkZJXgfvv/9+5OTklHuen4wdOzZ69+5d5Ji2bdvGgAEDYtasWbFy5crIzs6OxYsXx6xZs+LFF1+MG264IQ477LASr9m7d++YMWNGeaMn5vvvv4+PPvoov73DDjvEAQcckGCi1GnVqlUMHz48ateuXeiY888/Px555JECx+66665YvHhxidZ47rnnCrSvvvrqOOaYYwodn56eHvfff39cccUVJZp/S37+9xkRcfzxx5d5roo2a9as+Oabb/Lb9evXj759+0ZGRkah5zRs2DDGjRsXRx55ZIVk+OGHH2L06NH57aZNm8Yvf/nL/PbChQtj7NixZZo7JycnLrjggli/fn3+sYsvvjhGjRoVjRo1KvE8jRs3jptuuilGjhxZphzlUatWrWjTpk1+OysrK959992U5wAgYrvttovjjz8+7r333hg5cmTMnDkzFi1aFGvWrImNGzfG8uXLY8qUKXHjjTdGtWrVCp1n6NChRa5T0b/J2dwzzzwTU6dOTTpGlTJq1Kjo379/hc/74Ycfxm233VZl1y6tgQMHxg033FDkmJNPPjleeOGFQn9T5+TkxODBgys0V1Vy+eWXx7p165KOERERXbt2jcaNGxfaP2rUqJg7d24KE21ZRdQBGjVqFIMHD45PPvkkzj333EhPL1kpuFOnTvHmm29G9erV84/l5ubGrbfeWuy5VflZtyr64osvok+fPgWODR06NNq3b1/oOdttt10MGzasVHWxVPv+++/jzjvvLHDsT3/6U/Tq1avQc9LT0+Oee+6JSy65pMDxG264IbKysqrUeiX1hz/8Ie66664Cx7p37x5DhgwpssYSkUytaktSUZf7iVoHQLJS9Z42yfedERVbX0nifWdEsvWLrelZvbz69OkTeXl5JR4/ePDgyM3NrcREJZfUtZmUVO8zSfJ7sLXveUiCmm/JvPHGG3H//fenfN2KqH+9+eabcfnllxe4Z++5554xbdq0uO666wrUt4qy//77x7hx4+LZZ5+N7bbbrsixSeynKE/NLZX7I5KqdVXV2lBpVeY+mW1ddnZ2XHjhhbFx48b8Yx07doyxY8fGTjvtVOz59erVizvuuKPIayaV19nXX3+9Wb2tX79+ccoppxR6ToMGDeLll1+OX/3qV4WO2RZUhZq6OiYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABVTXrSAbYVgwYNqrRz+vfvH1988UWp54+IyMzMjBdeeKFM5/7kzjvvjL59+5Zrjqq41tYmyetgyZIlMXbs2DKfvyXXXXddjBgxokLnLEpOTk5ceOGFkZWVVabzhw4dGitWrKjgVKUzcuTIAu3jjz8+oSSpsX79+nj55ZcjIuL000+Pjz76KHr16hV77rln1KhRIxo3bhzHH398jBw5MoYOHRq/+MUv8s+dPHlyPProoyVea/To0TFjxoz8drVq1eLVV1+Nhx9+OA4++OCoXbt21KpVK5o3bx6XXnppfPzxx3HrrbdGxH+/m2UxZsyYAu2bbroprr/++thrr72iRo0aZZqzIt1///0F2uecc05MmTIlzj///GjatGlkZGREgwYN4rDDDou77rorZs+eHR07doyIiCFDhsTGjRvLneHpp58utG/gwIGRk5NT5rnff//9uOSSSwrkPP300+Pbb7+Np59+Ok499dTYbbfdYrvttotq1apFo0aNYp999onTTz897rzzznj33Xfjhx9+iIceeij22muvMucoq9/+9rdRvXr1/PaYMWMiOzs75TkAqBgzZ86MPn36FDmmMn6TU9DGjRuja9eukZmZWabzhwwZkvgzQ2W4/PLL49VXX62w+b755pvo3LlzrFmzpkqvXVqPPfZY3HPPPUWOOf300zd7dvm5Rx55pMzX30MPPVSm80pq4MCBsW7dujKd+7e//S1GjRpVwYnKJj09Pa6//voixzz88MMpSlO8iqoD7L///jF8+PBYsGBBDBw4MLp06RL7779/bL/99pGRkRENGzaMQw89NHr16hX//ve/Y9y4cbH99tsXmOP222+PDz/8sNi1qvqzblV02223xZdffpnfrl27drzxxhsxcODA+M1vfhONGjWKGjVqRLNmzeLyyy+Pjz/+OLp06RIREcOHD08qdrEeeuiheOONN/LbaWlp8dRTT8Vrr70Wp512Wuy8885RvXr1aNq0aZx33nnx7rvvxu23315gjhEjRsSAAQOq5Holdffdd8dNN91U4Nh5550XI0aMKPBcv6kkalU/l8q63E/UOgCSl4r3tEm/967o+kqq33dGJF+/2Jqe1ctj9uzZpfqczz33XOWFKYMkrs0kpXqfSVLfg21hz0OqJX3P3Bq89tprceqpp1bI+/2yqIj6V79+/aJ79+6xYcOG/GMNGzaMxx57LObMmRNPPfVUdO7cOfbZZ5/8elj9+vXjsMMOiyuvvDLefPPNmDlzZnTq1KnEa6Z6P0V5a26p3B+RVK2rqtaGSqsy98ls6yZNmrRZHa5jx44xe/bsePzxx6NDhw7510G9evXiV7/6Vfz+97+PoUOHxg8//BB333131K9fv8g1Unmd3X333fHxxx/nt6tXrx6vvPJKDBkyJNq3bx+NGjWKmjVrRvPmzeOaa66JTz75JI499tiIiBg2bFix82/Nkq6pq2MCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQ1aQnHWBb8cEHH8SsWbNKPP7bb7+NSZMmlWjshg0b4pRTTokff/yxVJkyMzPjhBNOiNmzZ5fqvC3p2bNndOvWLVatWlXuuarSWluTpK+Dm2++uUL/TnJzc+Pcc8+N66+/PjZs2FBh8xZl5syZcdxxx0VWVlapzhs5cmRcfPHFlZSq5P7+979HXl5efvuMM85IME1qXHTRRfHhhx9GRMRee+0VTz31VMydOzfWrVsXixcvjvHjx0eXLl0KnDN9+vTo1KlT5OTklHidnJyc+P3vfx+ZmZn5x6pXrx433nhjzJgxI1atWhVr1qyJr776Kvr27Rv7779/REQMHjw4brnlljJ9tvHjx+d/toiIWrVqxaOPPhqzZ8+OdevWRV5eXoE/rVq1KnK+c845Z7NzSvPnhBNOKDDfgAED4oUXXihw7NBDD42hQ4fG/PnzIzs7OzIzM2PatGlx5513xvbbbx8REa+//nr06NGjTP+fbOqtt96Kzz77bLPjubm5MWDAgHLPP2TIkDjhhBNi6dKl+cdq164dPXv2jNGjR8e8efNi9erVsWHDhliyZEl8/vnnMWrUqLjrrrviiCOOiPT05H5GnXnmmQXagwYNSigJAOX16aefxkknnRTr168vdmxF/yZnc59//nkce+yxBX4XlsSLL74Y3bp1i7S0tELH5ObmljdeInJycuKUU06Je++9t9yfYezYsXHYYYfFggULqvzaZXHHHXdE7969ixxz9tlnx6BBg7b4W/L777+Pbt26lepZJjc3N26++eZ44IEHSp23NN5///3o3Llzqe9BQ4cOjUsvvbSSUpXeqaeeGnvvvXeh/ZMmTYoPPvgghYmKVtF1gJ122im6desWI0eOjJkzZ8bSpUsjOzs7li1bFtOnT4+nnnoqfv3rXxc4Z8OGDXHDDTeU+Bqr6Gfd/wWrVq2KDh06xNy5c/OPpaenR7du3WLSpEmxZMmSWLduXcyZMyf++te/xl577RUREZMnT45evXoVmCs7O7tMGSq6phDx3/tT586d45VXXilw/LjjjouXX345Fi5cGOvXr4/58+fHsGHDom3btgXGDR48OC644IISf4ZUr1cajzzySFx++eUFvs+nn356/OMf/4hatWpt8ZwkalWbSlVd7idqHQBVQ2W/p036fWdExdZXknjfGZFs/WJre1Yvj+Ke8X/yzjvvxFdffVXJaUonqWszSancZ5Lk92Br3/OQBDXfLcvOzo577rknTjrppFizZk1iOSqq/vXss8/GUUcdFZ9++mmB47vuumv06tUr/vGPf8Tnn3+eXw9bvnx5TJs2LZ588sk45phjCpyTlZUVf/zjH2P06NGFrpfq/RQVUXNL1f6IpGpdVbk2VBqVvU/m58pbEyxL/aey/eUvf4mLLrqowO+f2rVrxzXXXBNvvPFG/nWwYsWK+Oyzz2Lw4MFx/vnnF1qj21Qqr7N169ZFx44dN7seLrjggpg4cWIsWbIk1q5dG1999VU8/vjjseuuu0ZExLvvvrvZd2lbk3RNXR0TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAqiY96QDbksGDB5dqbF5eXonHf/XVV3HYYYfF22+/XaLxkyZNilatWsXUqVNLvEZxnn322dh///3jscceixUrVpTq3ClTpsRpp50Wc+bMqXJrbU2SvA6++uqrOO6442LevHnlnusneXl58Ze//CUOPPDA6Nu3b6xZs6ZM8yxfvjxGjBgR5513Xtx6661Fjp0yZUq0atUq3nrrrWLnXbt2bdx6661x1llnRXZ2dpmyVaRvv/02Jk6cmN9u06ZN7LbbbgkmqnxZWVlx9NFHx5AhQ4odm5eXF08//XS0b98+li9fXuq1Pv300zjqqKNi5syZxY5dvXp13HDDDdG1a9fIzc0t9VoREbm5udGlS5f48MMPy3R+ZcvLy4vf/e538eCDD8bGjRuLHb9hw4a477774qSTTop169ZVWI5nnnlms2Pjx4+vsHvRG2+8ES1btozevXvH2rVrK2TOypaRkRGnnnpqfvu7776LN998M8FEAJRFVlZW3HXXXdG2bdsS/7tWGb/J2dyHH34YrVq1igkTJhQ7dvXq1XHTTTfFOeecEzk5OVGnTp1Cx2ZmZlZkzJTauHFj/L//9/+iTZs28dJLL5X6N/C0adPi7LPPjs6dO8eyZcu2mrXL4tprr43nnnuuyDEXXHBBDBgwINLS0jbrGz16dHTu3DkWLlxY7FqzZ8+O4447Lh5++OGyxi2VCRMmROvWrUtUY1i5cmVcc801ceGFF5boeSJVbrzxxiL7U/X/ZUmVpw5w4IEHxh//+Mf44IMPyvTcmp2dHaNGjYqWLVvGY489VuLzqvqzblU1f/78aNeuXbzwwgvFjs3Ly4sBAwZEhw4dNqsvl7aOWtnWrl0bXbp0iauuuip+/PHHEp2zYMGC6NatW1x00UWRk5NTpdcrjaeffjq6detW4J54wgknxLhx4wr9/ZDqWtWmUlmXU+sAqFoq+z1t0u+9K7q+ksT7zohk6xdb27N6Wb3++uvxxRdfFDuuuDpAUpK6NpOUyn0mSX4PtuY9D0nZFmu+t99+e9x+++0xf/78Up2XnZ0dw4YNi4MOOijuuOOOxGt3FbkP5oMPPoiDDz44evToEbNmzSr1+d98803cfffd0aJFi3jggQeK3PeQ6v0UFVVzS9X+iKRqXVW5NlQalb1PZls3aNCgaNWqVYwZM6ZS5k/ldbZ48eI46qijYtCgQcWOzcvLi379+kXHjh3L/Ltva5LUfUYdEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKooI+kA25IhQ4bE/fffH+np6cWOHTx4cKnn/+677+I3v/lNdOjQIc4777w48sgjY5dddomaNWvGjz/+GN9//31MmjQpXnzxxZgyZUpZPkKx5s2bFzfccEPccccd0aFDhzjiiCOiTZs20bRp02jYsGE0aNAg1q1bF0uWLImZM2fGe++9FyNHjowvv/yySq+1NUnyOpg8eXK0aNEizjrrrOjUqVMceuihseOOO0bdunUjI6Pst5MvvvgievbsGbfeemv+33Xr1q1jp512ioYNG0a9evUiOzs7Vq9eHZmZmfH111/HnDlz4pNPPol33303Zs6cGbm5uSVe76uvvopjjjkmjjnmmDjvvPOiXbt20bRp06hRo0Z8//33MXfu3Bg9enSMGDEifvzxxzJ/rsrw+OOPR4cOHSIiIi0tLS666KK45557Ek5VuVauXBm///3v4957740LLrggOnbsGE2bNo0mTZpEVlZWfPfddzFhwoQYMmRIzJw5s1xrzZo1Kw466KA488wz47TTTos2bdpEkyZNIiMjIxYuXBhz586NUaNGxQsvvBDLli0r92f79ttvo02bNtGpU6c4/fTT46CDDorddtst6tatGzVq1Cj3/OWVk5MTt9xyS/Tt2zcuueSSaN++fbRo0SLq168fq1atikWLFsXcuXPjlVdeiZdffjkWL15c4RmGDBkSjz/+eKSlpeUf69u3b4Wu8f3338c111wT99xzT5x44olxzDHHxCGHHBKNGzeORo0aRUREVlZW/p+lS5fGZ599FjNnzsz/k0qnnnpq7LDDDvntJ598slT3QADKb9iwYfHOO+9E8+bNo0WLFtGiRYto3rx5NGnSJOrWrZv/p06dOrFx48ZYvXp1LF++PL766quYNWtWvPnmm/Hmm2/GunXrSr12Zf0mp6C5c+fGcccdF0cffXT+c9fPnxnmzJkTo0aNihdffDGWLl0aERFNmjQpsh5Q1Z4tymLatGlx1llnxe677x4dO3aMX//613HQQQfFDjvsENtvv31kZGREZmZmLFu2LL766qt4++2341//+ldMmzZtq167NPLy8uKSSy6JevXqRZcuXQodd/HFF0d2dnb07Nkz8vLyCvS9+uqr0aJFi+jatWucdNJJceCBB8YOO+wQOTk5MX/+/PjPf/4Tw4cPj/Hjx0d2dnZlf6QCPvvss2jbtm0cddRRcd5558URRxwRu+yyS9SvXz8WLVoUc+bMidGjR8fzzz8fixYtSmm24rRr1y6OOOKIQvtnzZoV//znP1OYqGTKWgf48ssv44EHHogHHnggGjRoEEcddVS0bds29t1332jRokXsuOOOUa9evcjIyIhVq1blP19//PHHMW3atBg9enSZn3ur+rNuVbV48eI499xz47HHHosLLrgg2rdvH02bNo3atWvHokWLYv78+fHaa6/F0KFDY86cORER0bhx4wJzLF++PInoRdq4cWP06dMnBg0aFJ07d45OnTrFwQcfHE2aNIn69evH8uXLY9GiRTF9+vT45z//GWPGjIm1a9duNeuVxnPPPRdr166NIUOG5P9ua9++fbz++utx4oknxooVKzY7J9W1qk2lqi6n1gFQ9VT2e9qk33tXRn0l1e87I5KvX2wtz+pllZeXF3369Iknn3yy0DFr1qyJESNGpDBV6SVxbSYp1ftMkvoebM17HpKS9D2zoi1ZsiTuu+++uP/++6N169ZxwgknxCGHHBL77bdf7LDDDlG3bt3YuHFjZGVlxbx58+KTTz6Jf//73/HKK6/kf76qoiL3weTk5MSAAQNiwIABcdBBB8WJJ54YrVu3jr333ju/zpKXlxfLly+PpUuXxhdffBFTpkyJd955J959993NarXFrZXK/RQVVXNL1f6IpGpdVbk2VFKp2Cezrfvkk0+ic+fOccABB8RJJ50UHTp0iD333DMaN24c2223XaxYsSIyMzMjMzMzZs+eHVOmTIkpU6bEjBkzSjR/Kq+zZcuWxUUXXRRPPPFE/O53v4sOHTrErrvuGnXq1Mn/Lo0fPz6GDh0ac+fOjYj4n3lnnMR9Rh0TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAqigtLy8vL4mFH3vssbjhhhuSWBpgq5WWlhazZs2KX/3qVxERMW/evNhzzz0jNzc34WQV4+f/JK1fvz5q1qyZYBqqgpNOOinGjh2b316wYEHssccesXHjxgRTJev111+Pjh07RkTEqlWrYtddd40VK1YknKrsEvopSiWrV69erFy5MukYACnVqVOnGDduXKH9Dz74YNxyyy0pTAQld/LJJ8eYMWMK7e/Ro0cMGDAghYn4ybZeB6B8TjzxxPjnP/+Z3x45cmSceeaZCSZia5ZkXW5bq3VAWfXv3z8uueSSpGP8TxswYED06NEj6RhQqdQvSqdu3boxf/78qFev3hb7Bw8eHF27dk1xKiBV3DNTQ/2Ln6h1/Zd9MlB5ynufUcfcsrp160ZWVlaFzjl58uQ44ogjNjs+YsSIOOussyIiYvfdd4/vvvuuQH+7du1i8uTJm5333nvvRbt27SLiv789NnX99dfHo48+WhHRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUu3F9KQTAFByeXl5cd999+W3d9999zjttNMSTASVq0ePHgXaAwcOjI0bNyaUJnn77rtvHHvssfntJ598MlasWJFgIgDgJ+eee26R/RMnTkxREmBbog5AUY4++ugC7SlTpiQTBMpBrQMAUkv9onRWrlwZS5YsKbT/ueeeS10YIOXcM1ND/YufqHX9l30yUHnKc59RxwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCqSk86AAClM2zYsJg5c2Z++9Zbb00wDVSepk2bxsknn5zfzsnJiQEDBiSYKHm33HJLpKWlRUTE8uXL46GHHko4EQAQEXHIIYfEOeecU2j/2rVr49///ncKEwHbEnUAtqRmzZpx8cUXFzg2adKkhNJA2al1AEDqqF+U3mGHHRbNmjXbYt/XX38d//rXv1IbCEgZ98zUUv9Creu/7JOBylPe+4w6JgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFVVetIBACid3NzcuPXWW/PbrVq1iuOPPz7BRFA5rr322vjFL36R3x45cmR89913CSZK1p577hnnn39+fvuBBx6I5cuXJ5gIALY9jRo1iokTJ8bJJ58c6eklK5kccsghMXr06KhevXqhYwYMGBDr1q2rqJjA/xh1ALbkkUceicaNG+e3//Of/8TUqVMTTASlp9YBAGWjfpE6t99+e6F9zzzzTOTl5aUwDVAW7plbB/Uv1Lr+yz4ZqDzluc+oYwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCVpScdAIDSGzt2bIwbNy6//ec//znS0tISTAQVa++9944rr7wyv52XlxcPPvhggomSd99990VGRkZERHzxxRfx+OOPJ5wIALY9aWlp0b59+xgzZkx8//330a9fv7jwwgvjwAMPjB122CEyMjKidu3asccee0SXLl1i6NChMXXq1Nh9990LnXPlypVxzz33pPBTANsidYBt26OPPho9evSI6tWrFzu2evXq8Ze//CWuuOKKAsf/15+Z2TqpdQBA2ahfVK5atWrFoYceGoMHD47TTjtti2NWr14dAwYMSHEyoCzcM7ce6l/bDrWusrFPBkou1fcZdUwAAAAAAADu4oW0AAAgAElEQVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqsoykAwBQNldffXV06NAhatasGQcffHD87ne/i7///e9Jx4Jy2WmnneKYY46JP//5z1GzZs3848OHD48ZM2YkmCxZhx12WJx77rn57auuuio2bNiQYCIA2PY1adIkevToET169CjzHLm5uXHJJZfEjz/+WIHJgP9V6gDbrj322COuv/76eOCBB2LEiBExceLE+PDDD2Px4sWxfv36aNiwYbRo0SLat28fl112Wey6664Fzh8+fHg8//zzCaWHslHrAICKoX5RMZ555pm47LLLSjz+kUceiWXLllViIqAyuGdWfepf2wa1rtKxTwZKL5X3GXVMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqrqMpAMAUDZz586NWrVqJR0Dyu3ee++N2267rdD+xYsXx3XXXZfCRFXP9OnTIz09PekYAEAp5OXlxdVXXx0jRowotL8ypKWlVcq8UJFc/2WjDrDta9SoUfTq1St69epV4nNefvnl6NGjRyWmgsqh1gEAVUNx9Qs298UXX8RDDz1U6vM8C8PWT8238ql/bVvUugpnnwxUjFTcZ9QxAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqOr817gBgCrrxx9/jE6dOsXixYuTjgIAUGLz5s2LY489Nv76178mHQWAbdTChQvjmmuuiTPOOCNWr16ddBwAALZC6hell5mZGWeffXasWbMm6ShAirlnQuVS6/o/9slA5XCfAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFuVkXQAAICfW7lyZXz55Zcxbty46N27dyxdujTpSAAAJTJ79uzo169f9O3bN7KyspKOA8BWolu3bjFo0KBo27ZtHHDAAbHrrrtG/fr1o0GDBlGvXr3Izs6OZcuWxaJFi+L999+PSZMmxSuvvBLr169POjoAAFsh9YuymTVrVpx33nnx8ccfJx0FSCH3TCg9ta7Ss08GSsd9BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP5PRtIBAOAnaWlpSUcgAbfffnvcfvvtSccAAIglS5ZE06ZN48ADD4yWLVtGy5Yto1mzZtGgQYOoX79+1KtXL2rXrh2rV6+OFStWRGZmZnz22WcxderUmDx5crz//vuRl5eX9MeAUhs7dqznMUhQVlZWjBkzJsaMGZN0FP6H+XcAALYe6hepsXbt2li8eHFMnz49XnrppXjppZciOzs76VhAKblnQuqpdRXPPhkoH/cZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+D8ZSQcAAAAAqCoWLlwYCxcujPHjx1fqOmlpaZU6P1Rlrn8AAIDySVX94n9Fz549o2fPnpW6hmdhSI6aLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA26r0pAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMulJBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBk0pMOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMmkJx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAkklPOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlk550AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEomPekAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlEx60gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomfSkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAy6UkHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGTSkw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAyaQnHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICSSU86AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWTnnQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASiY96QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUTHrSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiZ9KQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDLpSQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZNKTDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDJpCcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJJJTzoAAABQOa6//vp46qmn4scff0w6CgAAAACUyIQJE+Kaa66JKVOmJB0FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKqs9KQDAAAAlWPq1KlxxRVXxM477xxHHXVU9OvXL7KyspKOBQAAAACFyszMjN69e0fbtm1jjz32iGuuuSY+/PDDpGMBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJWSnnQAAACgcm3cuDHefffduOyyy2LHHXeMU045JQYPHhxr1qxJOhoAAAAAFGrevHnRu3fvOOyww2L//fePu+66K+bMmZN0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIXHrSAQAAgNRZt25djB07Nrp27Rq77LJLXHjhhTFmzJjIyclJOhoAAAAAFGrWrFlx9913R/PmzaNVq1bxxBNPxKJFi5KOBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJSE86AAAAkIwVK1bE3//+9+jcuXPsvvvuce2118aUKVOSjgUAAAAARZo+fXpce+21seuuu8aJJ54YgwcPjpUrVyYdCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSJj3pAAAAQPK+//77eOKJJ6Jt27axxx57xDXXXBMzZsxIOhYAAAAAFConJyfGjx8fXbt2jSZNmsQpp5wSgwcPjjVr1iQdDQAAAAAAAAD4/+zdeXSV9Z0/8E9CFnZQQFEY1OLoKFoRnApi3YYWl7FFqWVRwBFwLRb11N1fO644IzAuY4vi4OioqG1doKNTtKNCcaii425VwAIKCsgSFwjL/f3RY6Yhucm94d48yc3rdc49J8/3eZ7v932TJ8n7fE/OCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkFfFSQcAAACalmXLlsVtt90W/fr1i759+8bNN98cy5YtSzoWAAAAAKS1adOmmDNnTowdOzZ69OgR48aNi2eeeSa2bduWdDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyLnipAMAAABN12uvvRaXX3557L333vHtb3877rzzzli9enXSsQAAAAAgrfXr18e//du/xXe+853o2bNnTJo0KRYuXJh0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADImeKkAwAAAE1fKpWK+fPnxwUXXBB77LFHHHnkkXHXXXfFxo0bk44GAAAAAGmtWrUqbr311hgwYEDstdde8eMf/zheeeWVpGMBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwE4pTjoAAADQvGzbti1+//vfxznnnBO77757nHzyyXHffffFl19+mXQ0AAAAAEhr2bJlcdttt0X//v2jT58+8bOf/SwWL16cdCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyFpx0gEAAIDma9OmTTFnzpwYO3Zs7LnnnjFmzJjYunVr0rEAAAAAoE5vv/12/OM//mPsu+++cdhhh8Wzzz6bdCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyFhJ0gEAAGi5ioqKko5ADm3YsCHuv//+pGMAAAAANDsTJkyICRMmJB2jxVq0aFEsWrQo6RgAAAAAzUpFRYW//wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEhQcdIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyExx0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITHHSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhMcdIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyExJ0gEAAGi5LrvssqQjFLQHHnggVqxY0ejrFhcXx/bt2xt9XQAAAIDm6vjjj49DDjkk6RhNwrvvvhtPPPFEo6/bpk2b+Oqrrxp9XQAAAIDmqqysLC666KJGWetv/uZvGmUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5qQk6QAAALRckydPTjpCQZs/f36sWLGiUdbq1atXDB06NMaOHRvHHHNMVFRUNMq6AAAAAIVg2LBhMX78+KRjNAmPPPJIPPHEE42yVuvWrWPw4MFx2mmnRUVFRfzoRz9qlHUBAAAACkF5ebm//wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEhQSdIBAACA5qlLly4xbNiwGD16dAwaNCiKioqSjgQAAAAAdWrVqlUMGDAgxowZEyNGjIiOHTtGRMSMGTMSTgYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmStJOgAAANB8dOrUKU499dQYOXJkHHfccdGqVaukIwEAAABAnYqKimLgwIExcuTI+OEPfxi77bZb0pEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYKeUJB0AAABo2tq0aRMnnXRSjBo1Kk444YRo3bp10pEAAAAAoF4HH3xwjBo1KkaMGBF777130nEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGdKkg4AAAA0Pa1atYoBAwbEmDFjYsSIEdGxY8ekIwEAAABAvXr16hVDhw6NsWPHRr9+/ZKOAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5UZJ0AAAAoOno379/jB49OoYPHx7du3dPOg4AAAAA1KtLly4xbNiwGD16dAwaNCiKioqSjgQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeVWSdID6nH766bHvvvsmHQMAoEn713/911izZk3SMWimvvnNb8bIkSNj5MiRsddee+V9vZNPPjn69euX93UAgObtySefjFdffTXt+d69e8cZZ5zRiIkAABrupptuisrKyqRjFJROnTrFKaecEqNGjYrjjjsuWrVqldf1ysrK4oorrsjrGgBA87d58+aYPHlyndf4ezgAoLl45ZVXYvbs2UnHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAII2SpAPU54wzzojjjz8+6RgAAE3aI488EmvWrEk6Bs1Ir169YujQoTF27Njo169fo679ve99L8aPH9+oawIAzc/y5cvj1VdfTXu+d+/e8bOf/azxAgEA7ISpU6dGZWVl0jGavdatW8fgwYPjtNNOi2HDhkW7du0abe3y8nL9EwCo14YNG2Ly5Ml1XuPv4QCA5mLGjBkxe/bspGMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQRknSAQAAgMbRpUuXGDZsWIwePToGDRoURUVFSUcCAAAAgDq1atUqBgwYEGPGjIkRI0ZEx44dk44EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIkrSToAAACQP506dYrvfe97cdppp8Xxxx8fpaWlSUcCAAAAgHr1798/Ro8eHcOHD4/u3bsnHQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmpSSpAMAAAD5MWXKlDjkkEOidevWSUcBAAAAgIwcfvjhsXTp0th7772TjgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATVZJ0gEAAID8OPzww5OOAAAAAABZ2WuvvZKOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABNXnHSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhMcdIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyExx0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITHHSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhMcdIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyExx0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITHHSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhMcdIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyExx0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITHHSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhMcdIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyExx0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITHHSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhMcdIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyExx0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITHHSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhMcdIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyExx0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITHHSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhMcdIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyExx0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITHHSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhMcdIBgOTccsstUVRUVPVav3590pFoRM8//3y1r//Xr6lTpyYdDXbKmWeeWeO5bteuXaxYsSLpaAA0Azpyy6YjU4j0Y2jZdJuWTbehEOk2AOnpfi2X3keh0v2g5dJrWjbdhkKl2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAPxUkHaMneeuut+Kd/+qcYMmRIHHjggdG1a9coLy+PPffcM/r27RvDhw+Pe++9Nz755JOkowIFZtu2bfHjH/+4xnj37t3jvPPOSyAR5M4111wTJSUl1ca+/PLLuPTSSxNKBAA0BzoyhUo/To69PyBJug2FSrcBgOr0PgqZ7pcMe1pAknQbCpluAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQD4UJx2gJfqf//mf+Pa3vx0HHXRQXHbZZfHb3/423nnnnVi7dm1UVlbGypUr47XXXotHHnkk/uEf/iF69OgR5557bqxatSrp6ECBmDlzZrz22ms1xi+55JJo06ZNnffecccdUVRUlPbVsWPHWL16dUY5evbsmXae9evXN+i90XRVVlbG22+/HY8//njcfPPNcdZZZ8WgQYOia9euaZ+DkpKSrNfp3bt3jBo1qsb4Qw89FAsXLszFWwEKwJtvvlnt580PfvCDpCMBCdORaWz6ceGy9wc0BQ3tNnoNDaXbQOOwpwXsyJ4WSdD9CpM9LaAp0G1oihYsWBAlJSV1Pl9z5sypdx7dBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHwoTjpAS7Jt27a44IILYuDAgTF//vys7ps+fXrsu+++8ctf/jKPCbN37733Vvvn7R988EHSkRqdzwHNTWVlZVx33XU1xtu3bx8TJkzY6fkrKipqnR8uvPDC6NOnT5xyyilx+eWXx8yZM2PBggWxdu3anK910UUX1Tp+zTXX5HwtAKrTj2mOdGSSoB8XHnt/hcnngOYon91GryEd3QYoBLofzY09LZKi+xWWQtzTivB7vaW/f5on3YamaOPGjXHGGWfEtm3bcjKfbgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECuFScdoKX48ssv45RTTok777yz2vh+++0X1113Xbz88svxySefxObNm2P58uXxu9/9LiZOnBi77rpr1bVffPFFDB8+PG699dbGjg8UkHvuuSeWLVtWY/zMM8+MTp065WSN6dOnx5IlS3IyFzRE37594+ijj64xPnfu3Jg/f34CiQCApkxHptDpx/ln7w9oSvLdbfQakqbbAMCf2dOiJdD98sueFtCU6DY0RRdccEEsXbo0Z/PpNgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAORacdIBWooJEybE7Nmzq45LSkripptuijfffDOuvvrq6N+/f+y2225RVlYWPXv2jGOPPTZuu+22ePfdd2PEiBFV923fvj0mTZoUv/zlL5N4G0Azt3379pg6dWqt58aNG5ezdSorK+Pqq6/O2XzQEOme6VtuuaWRkwAATZmOTEuhH+eXvT+gqWiMbqPX0BToNgC0dPa0aEl0v/yxpwU0FboNTdHDDz8c//Ef/5HzeXUbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcqk46QAtwcyZM+PBBx+sOi4pKYlZs2bF5ZdfHqWlpXXe261bt3jooYfi/PPPrzY+YcKE+NOf/pSXvEDhmj17dnzwwQc1xvv27Rt9+/bN6VqzZs2KV199NadzQjaGDRsWHTp0qDE+e/bsWLJkSQKJAICmSEempdCP88feH9CUNFa30WtImm4DQEtnT4uWRPfLD3taQFOi29DULFu2LM4999y8zK3bAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEvFSQcodBUVFXHRRRdVG7vxxhtj2LBhWc1zxx13xHHHHVd1vH79+rjkkktykhFoOWbMmFHr+A9+8IOcr5VKpeKyyy7L+bw0X+Xl5XHAAQfE97///bj00kvjnnvuiXnz5sWnn34a7dq1y/l6bdu2jRNPPLHG+Pbt22PmzJk5Xw8AaJ50ZJKiHxcGe39AU9NY3UavYUe6DQA0LntaJEn3a/7saQFNjW5DU7J9+/YYM2ZMrF+/vtp4eXl5TubXbQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMil4qQDFLq77747NmzYUHV86KGHxsUXX5z1PEVFRTF9+vRq/zj9sccei8WLF+ckZ1OSSqXit7/9bQwfPjwOOOCAaN++feyyyy7xzW9+M37yk5/EW2+9lXTExK1bty7uvPPOGDp0aPTu3Ts6deoUpaWl0aVLlzjooIPizDPPjFmzZsWmTZsavMYrr7wS55xzThx88MHRqVOn6NChQ/z1X/91jBs3LubPn9+gOZcvXx7Tpk2LU089NXr37h0dOnSI1q1bR48ePWLgwIFx+eWXxyuvvNLgzF/L5zOUSqXi6aefjokTJ8ahhx4ae+yxR5SXl0fXrl3j4IMPjvPPPz+eeeaZnX4P+bB69ep4+umnaz03dOjQvKw5d+7cePbZZ/My947mzZsXP/3pT2Pw4MHRu3fv2GWXXaK0tDS6du0a++23X5x88slx8803x+uvv563DJ9++mlMnjw5BgwYELvvvnu0bt06evbsGSeffHLMnDkztm7d2qB5Fy5cGNdff30MGTIk9t1339h1112jrKwsunXrFgceeGCcfvrpce+991b7fdMU3XrrrfH222/H448/HjfffHOcddZZceSRR0a3bt3ytuYpp5xS6/gDDzwQqVQqb+sCLUs+etNf0o/r1xj9OEJHrmtuHTlzLakj68d1048Lg72/7Ok29dNt6qfb1K6xu01j9poI3Ua3qbIdymwAACAASURBVEm3gZ1nXyt5ul/d9L7aFfqeVoTup/vVpPvllj2t7Ok19dNr6qfb1K7Qu41e07R7TW0mT54czz//fLWxb33rWzl9HnUbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAciaVkClTpqQiot7XU089lVTEnNh7772rvZ8HHnhgp+YbOXJktfkmTZqU9trvf//7VdcdcsghGa/x6KOPVlvjjTfeqHFNu3btMvr6/eXr/vvvrzbHP//zP1c7v27dutSqVatSRx55ZJ3zlJSUpC677LLU1q1b630vTf1z0BB33XVXqlOnThmtt+uuu6amTZuWqqysrHWu2r4GX3zxRWrUqFH1zj1u3LiMvgapVCr1X//1X6nBgwenioqKMsp96qmnptauXVvvvI3xDP2l//7v/04deuihGb2Ho48+OvX+++9nNX++zZgxo9asPXr0yGqe22+/Pavnvn///qnt27fXOlePHj3S3rdu3bqM8vzqV79K9e3bN6tMgwcPTv3+97/P+D0PGTIk7VwrV66s+ry0bdu2znX79OmTWrp0acbr/uY3v0kdfvjhGb+vzp07p6699trU5s2bM16jqUj3M7VVq1Y7Ne+aNWvS/ux5+eWXc5S+aTjggAOy/r3UFF4Upg4dOtT5db/77ruTjph64403qmUaNmxYndc3Rm/Sjxsml/04ldKRdeQ/v3TkuunH+acf/9lZZ51V59f4u9/9btIR7f39xcven26j2yQvF92mqfWaVEq3+fql29TU3LpNc9gvaenuvvvuOr9GHTp0SDpi1ntaqZR9Ld2veXQ/vS87hbqnlUrpfl+/dL+amlP3W79+fb1f46T/Hi7JPa1Uqmn/XtdrGkavqT+/bpNeoXYbvebPr+bWa1566aVUaWlptffQvn371AcffJA6/fTT077P2bNnZ7VOc+o2TXW/5K/+6q9qZBk4cGCtGRcsWFB1X23nL7744kTeAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQA48Uhzkzfvvvx8ffvhh1XHnzp3j1FNP3ak5x48fX+147ty5OzVfU7Jx48Y49thjY/78+XVet3Xr1rj55ptj9OjRsW3btkZK1zTccsstcfbZZ8eGDRsyuv6zzz6Liy66KJ5//vmMrt+8eXMcf/zx8eCDD9Z77T333BPnnXdevdetWrUqhgwZEs8880ykUqmMcvz617+OQYMGxSeffJLR9V/L5zP085//PAYPHhyvvvpqRtc///zzccQRR8TLL79c53V33HFHFBUVVb3OPffcjOZviKeeeqrW8aOPPjpnaxQX1/y1smjRonj44YdztsbXvvrqqxg/fnwMGzYs/vd//zere5955pk46qij4sYbb8z4uazLxIkTY+LEifHll1/Wed1bb70VRx11VKxfv77O6yorK+PCCy+Mk046KRYuXJhxjvXr18f/+3//L4455phYtWpVxvcVsi5dukSfPn1qPZfuewIgE/noTTvSj+uX734coSPXRUfOTEvsyPpx06Uf55a9v+zoNvXTberX3LpNY/aaiPx3m8bsNRG6zY50m5p0G2gY+1pNg+5Xt+bW+yLsae0s3a863a8m3S937GllR6+pn15TP92mboXWbfSa6ppTr/niiy/i9NNPjy1btlQbv/3226N37945XUu3AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIFdq/jd3cmbevHnVjo844oho3br1Ts05aNCgKC0trTp+++2347PPPtupOZuKCy+8MN55550oLi6Os88+O1588cXYsGFDVFRUxEsvvRQTJ06MVq1aVV3/0EMPxY033phg4sa1ePHiuOqqq6qOy8vLY9KkSfHCCy/E6tWrY8uWLVFRUREffPBBPPTQQzFmzJho06ZNVmtMmjQp5s2bF2VlZXHhhRfGiy++GOvWrYuvvvoq3nzzzbj44ourfQ3uvvvueOGFFzKef+DAgXHLLbfE/PnzY9WqVbF58+bYuHFjvP766zFlypTo1atX1bXvvvtuTJgwIav8+XqG7rvvvjj//PNj27ZtERFRWloaY8eOjaeffjo++eSTqKysjDVr1sTTTz8dQ4cOrbpv9erVMXTo0FizZk1W7yNfnnvuuVrHDz/88JytMXz48CgvL68xfvXVV8eWLVtyts727dvjhz/8Ydxzzz0NnmPbtm1x1VVXxTXXXLNTWa699tq44447Mr5++fLlcdlll6U9n0qlYvTo0XH77bc3ONOLL74YRx99dGzYsKHBcxSSdM/47373u0ZOAhSSfPemCP24Po3RjyN05HR05My1tI6sHzd9+nHu2PvLjm5TN90mM7pN3fLdbRqr10ToNnXRbarTbSB79rWSp/vVT++rWyHtaUXofnXR/arT/XLDnlZ29Jq66TWZ0W3qVkjdRq9Jrzn0mkmTJsV7771Xbey0006LM888My/r6TYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkQnHSAQrZyy+/XO34b//2b3d6zvLy8jj44IOrjlOpVCxatGin583W559/HqlUKmbOnFlt/P33349UKlXr64wzzqhzzieeeCLKyspi9uzZMX369BgwYEB07Ngx2rdvH4cddljcdtttMXfu3GjTpk3VPddff3388Y9/zMt7rE8+Pgd1eeihh6KysjIiIoqLi+Ppp5+OadOmxbe//e3o2rVrlJSURPv27aN3794xYsSI+Pd///f46KOPYtKkSVFWVpbRGrNmzYpu3brFggUL4tZbb40BAwZE586do3Xr1tGnT5+YMmVKzJgxo9o9t99+e51zFhUVxdChQ+Ott96KBQsWxCWXXBKDBg2K3XffPcrKyqJDhw5x8MEHx8UXXxxvvvlmnHDCCVX3zp49O5577rmMP0f5eIbee++9OO+886qO99hjj1iwYEHce++9MWTIkNhtt92itLQ0unTpEkOGDInHHnssZsyYEUVFRRER8dFHH8VPfvKTjN9DvixZsiTWrl1b67m//Jmys3r16hXnn39+jfHFixfHXXfdlbN1rr766pgzZ05O5rrhhhviV7/6VYPv//nPf571Pffdd1+sW7eu1nPXX399PPLIIw3O87X33nsvxowZs9PzFIJ0z/iiRYsilUo1chqgUOSjN+1IP65bY/TjCB25NjpydlpaR9aPmz79OHfs/dn7023+TLdpOd2msXpNhG5TH93m/+g2kD37WjXpfv+nqXQ/vS+9QtvTitD96qP7/R/dLzcKeU8rIve/1/Wauuk1mdFt0iu0bqPX1K0p95rHH3+8xs+Rnj17xvTp0/O2pm4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABALhQnHaCQffrpp9WOv/GNb+Rk3n322afa8erVq3Myb1MwefLkOPHEE9OeP/bYY+Nf/uVfqo4rKyurHRey119/verjI444Io455ph679lll11i2rRpcdRRR2W0RlFRUTz44IPRv3//tNeceeaZceSRR1Ydz549O7Zs2ZL2+t133z0ee+yxOPDAA+tdv0OHDvHoo49Gjx49qsbuuuuujLJ/LdfP0HXXXRdffvllRESUlpbGf/7nf8Zhhx1WZ4Zx48bFxRdfXHX8wAMPxIoVKzJ9C3nx2muvpT23//7753Stq666Kjp16lRj/Nprr43PP/98p+dfvnx5TJ06Ne357t27x9133x0ff/xxbN68OZYsWRI33HBDtG3bNu09l156aWzdunWncp199tnxxhtvxKZNm2LJkiVxzjnnpL1206ZNMXfu3BrjK1eujJtuuintfQceeGDMmjUrVq1aFZWVlfHhhx/GjTfeGK1bt671+ieffDKeffbZ7N9MgTnggANqHd+4cWMsWbKkkdMAhSIfvak2+nF6jdGPI3Tk2ujI2WuJHVk/brr049yx95c93SY93SZzuk3tGqvb5LvXROg2uk12dBvInn2t5Ol+mdH7aldIe1oRup/ulx3dLzfsaWVPr0lPr8mcblO7Quo2ek3z7TUrV66M8ePHVxsrLi6O+++/P3bZZZe8ravbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkAvFSQcoZJ999lm1406dOuVk3s6dO1c7Xrt2bU7mTVqvXr1i4sSJ9V43fvz42H///auOH3jggdi8eXM+ozUJn3/+edXH7du3z8sa3/3ud2Pw4MH1Xjdy5Miqjzdv3hzvvPNOzjK0a9cuzj///KrjuXPnZnxvrp+hlStXxqxZs6qOzz777Ojbt29GWa688sooLy+PiIgtW7bE448/ntF9+bJ06dJax0tKSqJ79+45XatLly5x6aWX1hj/9NNPY8qUKTs9/7Rp09J+z3fp0iUWLFgQ48ePjz322CPKyspin332iSuvvDKefPLJKC6u/dfekiVL4uGHH25wpuuuuy6mT58eBx10UJSXl8c+++wTv/jFL+Lv//7v096zaNGiGmNTp06Nr776qtbr+/TpEwsXLozhw4fH7rvvHqWlpbHXXnvFFVdcEU8++WQUFRXVet8NN9zQsDdVQHr06JH2XLrvDYD6NEZv0o/r1hj9OEJH3pGO3DAtrSPrx02bfpw79v6yo9vUTbfJjG6TXmN1m3z3mgjdRrfJjm4D2bOvlTzdr356X3qFtKcVofvpftnR/XLDnlZ29Jq66TWZ0W3SK6Ruo9c0z16TSqVi7NixNX5vXXrppXHMMcfkdW3dBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgFyo/b+lkxMVFRXVjtu3b5+TeXecZ+PGjTmZN2mjRo2KkpKSeq8rLi6OM844o+q4oqIiXn311XxGaxL23HPPqo9ffPHF+Oijj3K+xogRIzK6rl+/ftWOly5dmtMcRx55ZNXHa9asiWXLlmV0X66foWeeeSa2bt1adTx69OiMckRE7LrrrjFgwICq43nz5tV63Y9+9KNIpVJVr1/84hcZr5GNdM9Lt27dorg4978KJk2aVO2Z/dqUKVPi008/3am5f/Ob36Q9d80118Q+++xT67m/+7u/i1GjRqW996mnnmpQngMOOCCuuOKKWs/V9T318ccf1xibM2dO2uvvu+++tL9HvvOd78QJJ5xQ67kXXnghNmzYkHbelqB79+5pz61YsaIRkwCFpDF6k35ct8boxxE68o505IZrKR1ZP2769OPcsfeXHd2mbrpNYXabxuo1EY3bbfLZayJ0mx3pNnXTbSB79rWSp/vV3/2aW++LsKfVULpfdbpf3XS/3LCnlR29pm56TWHuaUXoNg2h11TXXHrNtGnTYu7cudXG+vfvH9dee23e19ZtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyIXc/2d4quz4D92/+OKLnMz7+eefVzvu2LFjTuZN2qBBgzK+9ogjjqh2/NJLL+U6TpNz/PHHV328YcOGOO644+Kxxx6LrVu35myNww47LKPrdtttt2rHGzZsyFmG2ub/8MMPM7ov18/QvHnzqj4uKSmJQw89NOP5IyL22Wefqo8/+OCDrO7NtYqKilrH27Ztm5f12rZtGz/96U9rzXHdddc1eN6PP/443nvvvbTnR40aVef9dZ1/7rnnGpRp7Nix0apVq1rP/eUzsKMdv29WrVoV7777bq3X9u7dO/r161dnjh2f6a9t27at2rPcEtX1nO/4OxUgU43Rm/TjujVGP47QkXekIzdcS+nI+nHTpx/njr2/7Og2ddNtPszoPt0mvcbsNvnqNRG6TTq6TXq6DWTPvlbydL8P671H70uvUPa0InS/dHS/9HS/3LCnlR29pm56zYcZ3afbpFco3UavqV1T7zWvv/56XHnlldXG2rVrFw8++GCUlpbmfX3dBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgFwoSTpAIevSpUu14/Xr1+dk3h3n2XXXXXMyb9L222+/jK/df//9qx2vXLky13GanFNOOSW+9a1vxR/+8IeIiHjvvffi1FNPjV122SUGDx4cRx11VBx22GHRv3//KC0tbdAa3bp1y+i6tm3bVjv+6quvMrrv7bffjl//+tfxhz/8Id59991Yu3ZtVFRUxJYtW+q8b8OGDRnNn+tn6E9/+lPVx1u3bq3xvlOpVL0ff23t2rUZZ8uHzZs31zpeVlaWtzXHjRsXU6dOjT/+8Y/VxqdPnx4XXXRRfOMb38h6zhUrVqQ917Nnz3qf4X79+qU9t3Llyti2bVu0atUqq0wDBw5Me65Dhw5pz1VWVlY7Xr58edprFy9eHEVFRVnl+ktLlixp8L2FoLy8PO25TH9+Aewo370pQj+uT2P04wgdeUc68s5pCR1ZP2769OPcsfeXHd2mbrqNbrOzGrvb5KPXROg2DaHb6DaQLftaydP96u9+el96hbKnFaH7NYTup/vlgj2t7Og1ddNr7GntrELpNnpN9pLuNZs2bYpRo0bVeAanTZuW1ffsztBtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyIXipAMUsh3/Wf3SpUtzMu+HH35Y5zrNVadOnTK+tnPnztWO161bl+s4TU6rVq1izpw5cdxxx1UbX7duXTz66KMxceLEGDhwYHTu3DlOPPHEuO+++6KysjKrNcrLyxuULZVK1Xl+8eLFcdJJJ0WfPn3immuuidmzZ8f7778fn332WWzZsqXe+SsqKjLKketnaO3atdWOt23bVu21ffv2qlcqlap61eaLL77IOFs+pPvaZvuMZKNVq1Zx44031hjfsmVLXHXVVQ2ac82aNWnPZfKzsGvXrmnPbd++PT777LOsM/Xs2TPtubKysoznWb16ddZrZ6quz1tLsGnTprTn2rRp04hJgEKSr970l/TjujVGP47QkXekI++cltCR9eOmTz/OHXt/2dFt6qbb6DY7q7G7TT56TYRu0xC6jW4D2bKvlTzdr/7up/elVyh7WhG6X0PofrpfLtjTyo5eUze9xp7WziqUbqPXZC/pXrNw4cJ46623qo0NHTo0JkyY0GgZdBsAAAAAAAAAAAAAAAAAAP4/e3ceXFVhNnD4zU2M4hLciyAoRYsLLsVpB3VEihsiWpeKC87QKi4trWuLVjpWRUQrOm6tK+CgqLU4MuCGQCtUXNoRcatLxdExVBFQEUEgQL4/nC9tTG5ybnKSc5M8z8ydydnfeznx/ubIDAAAAAAAAAAAAAAAAAAAAABpyGU9QHt2wAEH1Fr+5z//2exzrlu3Ll5//fWa5ZKSkjrXaatKSkoS71tdXd2CkxSvHXbYIebMmRMzZsyIY489NjbddNM6+6xevTqeeuqpGD58ePTq1SueeOKJDCb9r1dffTX69esXTz75ZJPPsXHjxkT7pX0PVVVVJT5fGtdrSVtuuWW961etWtWi1z3xxBOjX79+ddb/+c9/jgULFrTotVvL5ptvnndbaWlpK06S38qVK7MeIVOrV6/Ouy3f7wZAMdDHjWuLfRyhkQu5XkvSyC1DHxc/fZwez/4Ko20ap20ap23yy6Jt2nvXRGibtkDbQHHSfo3Tfg3Tffl5ptVytF/x037p8EyrMLqmcbqmcdomP23TMnRN4+q796dNmxYlJSV5X1OmTMl7vmOPPbbWvg8//HCjM2gbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0pDLeoD2rH///rWWn3/++Vi7dm2zzjl//vxYt25dzfJee+0V2223XbPO+W0bNmxI9XxJffHFF4n3XbFiRa3lbbbZJtVZsvoMkhoyZEhMnz49vvjii3j22Wdj3LhxMWTIkNh6661r7VdZWRnHHntsPProo5nMuX79+hg2bFgsW7asZt3ee+8d48aNizlz5sR7770XK1asiLVr10Z1dXXN6913323S9dK+h/73d6tHjx61Ziz09b+fQRa6detW7/ply5bFxo0bW/Ta119/fZ111dXVcdlllxV8ru233z7vtqVLlzZ6fEN/DiUlJbHtttsWPFNadthhhxY7d3V1dYuduy345JNP8m7L97sBUAz0cXJtpY8jNLJG/oZGbpw+bjn6OD2e/RVG2ySnbfLTNvll1TZpdk2EtmkKbaNtoBhpv+S0X/10X37t5ZlWhPZrCu2n/dLQVp9pRWTzva5rktM1+Wmb/NpL2+iawnX0ronQNgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQjl/UA7dn3vve96NGjR83y559/Ho899lizzjlhwoRay0cccUTefcvLy2t+rqqqSnyNzz77rPDBUvDuu+8m3vedd96ptdylS5d692trn0GhNttsszj00EPjsssuixkzZsSyZctizpw5ccwxx9TsU11dHSNHjow1a9a0+nyzZs2KN998s2b5rLPOildffTUuu+yyGDhwYPTq1SsqKipq/TlFfPO70hRp30M77bRTzc+VlZWxevXqJs1VDHr27Fnv+vXr18cnn3zSotfu379/DB48uM76WbNmxccff1zQuXbeeee82yorK2Pp0qUNHr9gwYK823baaacoLS0taJ40NfTejjjiiKiurm7y6+abb27Fd1J8Kisr827bddddW28QgALp48IVex9HaORiopG/UayNrI9bjj5Oj2d/hdE2hdM2dWmb/LJqmzS7JkLbaJvCaRsoTtqvcNqvNt2XX3t5phWh/bRf4bRfOrJ+phXRtr7XdU3hdE1d2ia/9tI2ukbXNIW2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA25rAdo7371q1/VWh4/fnxs2LChSed6//3349FHH61ZzuVyMXLkyLz7V1RU1Py8fPnyxNd57bXXmjRfc82fPz/xvi+88EKt5R/84Af17tfWPoPmKi0tjYEDB8bjjz8eQ4cOrVm/ZMmSgj7ftDz77LM1P5eXl8eNN94YpaWljR7X1M8/7XvokEMOqfl548aNMWvWrCbNVQz23XffvNvefvvtFr/+ddddF7lc3a+cjRs3FnSerl27xu677553+0MPPdTg8Q8++GDebQMGDCholrTttNNO0bt373q3zZ07NxYvXlzQ+TZs2BB33313jBs3Lo3x2rR89/iWW24ZvXr1auVpAJLTx81XbH0coZGLiUb+RrE2sj5uOfo4XZ79Jadtmk/baJuGZNk2aXVNhLZJStv8l7aB4qT9mq+jt5/uy6+9PNOK0H5Jab//0n7pyfKZVkTb+l7XNc3X0bsmQts0pL20ja5JRtfUpm0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIQ91/sZ1UnXPOOVFRUVGz/PLLL8ctt9zSpHOdd955sWbNmprl448/Pnbbbbe8+3fr1q3m5yVLlsSnn37a6DWqqqpixowZiWcqLy+vtbxhw4bEx37bQw89lOj46urqeOCBB2qWt9pqq+jbt2+9+7a1zyBNZ555Zq3lDz74oNVn+OSTT2p+7tatW3Tu3DnRcY888kiTrpf2PXTUUUdFSUlJzfLtt9/epLmKwW677RbbbLNNvdveeOONFr/+PvvsE2eccUYq5zrmmGPybrv66qvz3utz5syJBx98MO+xgwcPbu5ozTZkyJB6169bty6GDRsWK1eubPQcX3/9dUyaNCn233//OPfcc2PJkiV5912/fn2UlJTU++rTp0+T30exef311+td37dv38jlpBBQvPRxuoqhjyM0cjHRyMXfyPq4ZejjdHn2l5y2SZe2aZi2qa2l2ybNronQNg3RNnVpGyhO2i9dHbH9dF9+7emZVoT2a4j2q0v7pSfLZ1oRbet7XdekqyN2TYS2aUh7ahtdk5+uqZ+2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA3+ZewWVlFREePHj6+17rLLLotp06YVdJ4LLrggZs2aVbPcuXPnuPHGGxs85oADDqi1/Je//KXR69x2222xePHixHNttdVWtZaXL1+e+Nhv+/DDD+OPf/xjo/tNnDgx3n777ZrlYcOGxaabblrvvm3tM0hTSUlJreXNN9+81Wfo1KlTzc+ffvpprFmzptFjHn/88Vr3eiHSvod69uwZJ5xwQs3y7NmzY/LkyU2arRgMGDCg3vUvvfRSq1x/zJgxeX9XC3HxxRfnPc/y5cvjoIMOigkTJsQnn3wSVVVV8cEHH8S4cePiuOOOi40bN9Z73He/+90YOnRos2drrosuuqjW783/mjt3buy1115xww03xMKFC2PlypWxYcOGWLp0abzxxhsxadKkGD58eHTt2jXOPPPMeOONN1p5+uL14osv1rv+Rz/6UStPAlAYfZyuYujjCI1cbDRycTeyPm4Z+jhdnv0lp23SpW0apm1qa422SatrIrSNtimMtoHipP3S1RHbT/c1rL0804rQftqvMNovPVk+04poW9/ruiZdHbFrIrRNY9pL2+iattU1AwYMiOrq6oJew4YNy3u+GTNm1Nr31FNPbXQGbQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAaclkP0BGcffbZccopp9QsV1VVxdChQ+OGG26I9evXN3jssmXL4owzzohbb7211vp77rkndt111waP/dGPfhRbbLFFzfKYMWOisrIy7/5Tp06N3/72tw2e89t69epVa/mll14q6PhvGzVqVMycOTPv9rlz58b5559fs1xeXh4XXHBB3v3b4meQzzHHHBOTJ0+OtWvXNrrvunXr4oYbbqi1rm/fvi0yV0P23Xffmp9XrVoVY8eObXD/WbNmxbBhw5p1zbTvoTFjxsRmm21Ws3z22WfHXXfdlWiW6urq+Otf/xqDBg2KJUuW1LvP7bffHiUlJTWv8847L9G5m+Loo4+ud/28efNa7Jr/q0ePHjFy5Mhmn6d79+5x0UUX5d3+8ccfx4gRI2KnnXaK8vLy6NmzZ1x++eWxEBksswAAIABJREFUevXqvMdcf/31sckmmzR7tubq1q1bXHrppXm3V1ZWxqhRo+L73/9+VFRURFlZWey4446xzz77xJlnnhmTJ0+OL774ohUnLsy37/f/fa1atareYzZs2JD3mPHjxzd6zaVLl8Zbb71V77ZBgwY16/0AtAZ9nF9b7OMIjayRa9PIDdPHdenj4uTZX3LaJj9tk1xbapvW7JqIbNsmra6J0DbaRttAe6H98tN+ybSl7ovwTKuptJ/2037ZyeqZVkTb+17XNfnpmuS0TX7tpW10TdvsmqxoGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANKSy3qAjmLChAlx9NFH1yxXVVXFqFGjok+fPnHttdfGggULYunSpbFu3bpYvHhxPPvss3HhhRdG7969Y8qUKTXH5XK5uPnmm+Pkk09u9JpbbbVV/PSnP61ZXrJkSfTr1y8mTJgQ//nPf6KqqiqWLVsWM2fOjKFDh8bQoUNj3bp1cfrppyd+X717947tttuuZvnaa6+Nhx9+OD799NPYsGFD4vNERBx33HGxdu3aGDx4cPz85z+Pl156KVauXBlfffVVvPzyy3HBBRfE4YcfHqtXr6455ne/+13sscce7eYzaMirr74aw4cPjx133DHOOOOMmDhxYixcuDCWL18e69evjzVr1sS///3vmDhxYhxwwAExe/bsmmOPOOKI6N27d2qzJHXiiSfG5ptvXrN8zTXXxNFHHx0zZ86MysrKqKqqiqVLl8aTTz4Zp556agwaNCi+/PLLGDp0aJOu1xL30F577RUTJkyoWV63bl2cd955ccABB8Qdd9wRb7zxRqxYsSLWr18fn3/+ebzzzjvxyCOPxIUXXhi77rprHHbYYTFz5syorq5u0ntK049//OMoKyurs76ysjLeeuutVplh9OjR0blz52afZ+zYsTFkyJAUJvpmpp/85CepnCsNV1xxRZxyyilZj9FuzJ49u97fv+7du8cPf/jDDCYCSE4fN6wt9nGERtbIdWnkhunjdOnjluPZX+O0TcO0TTLapmFZt01aXROhbUhG20Dx0n4N036N030Ny7r7IrRfEtovXdqvZWTxTCuibX2v65qG6ZpktE3D2lPb6BqS0jYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkpe6/Fk+L2GKLLWL69OkxcuTIuPvuu2vWv/POOzF69OgYPXp0onNMmjQpTj755MTXHTt2bDz++OPx4YcfRkTE4sWLY8SIEXn3Hz16dOy///7x4IMPJjp/aWlpjBgxIq6//vqIiFi2bFmcdtpp9e57//33xxlnnJH3XLfeemu8++678fbbb8edd94Zd955Z4PXPu200+Lyyy9vdMa29Bkk8eWXX8aUKVNiypQpifbv2bNnTJgwoVnXbKouXbrE2LFj46KLLqpZ9/TTT8fTTz+d95gjjzwyrrrqqnjkkUcKvl5L3UOnn356VFVVxXnnnRdr1qyJiIgFCxbEL37xi4JnzNKOO+4YRx11VDzxxBN1tk2bNi323HPPFp9h2223jUsvvTTR596QXC4XjzzySIwcOTImTZrUpHOUlpbGVVdd1exZ0lZSUhKTJ0+Orl27xs033xzV1dVNOs8mm2wS5557bqLvl/bsscceq3f9sGHDIpfLtfI0AIXRx8m0pT6O0MjFRiPXVoyNrI/TpY9bjmd/nv1FaJv/p22yk3XbpNU1EdqmMdrmG9oGipf2S0b75af7GpZ190VovyS0X7q0X8vI6plWRNv5Xtc1yeiahmmbhrWnttE1DdM1/6VtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASIt/HbsVlZWVxV133RXz58+Pgw46KPFxpaWlcc4558R7770XJ598ckHX7Ny5c8ydOzf69OnT4H7l5eUxfvz4uOaaawo6f0TE73//+xg4cGDBx31b586d429/+1scfPDBDe5XVlYWo0aNivvvvz9KS0sTnbetfAZpO/nkk+OFF16I7t27ZzbDhRdeGOPHj49NNtmk0X1HjBgR06dPj7KysiZdq6XuoYiI4cOHx4svvhhHHnlk4nlyuVwcddRR8cwzz0SXLl0SH9eSRowYUe/6qVOnttoMF154YXTt2rXZ5+nUqVNMnDgxpk6dGvvtt19Bxw4cODDmzZsXo0ePjpKSkmbPkrby8vK46aabYvbs2TFgwICCjt1+++3joosuinfeeSduu+222GGHHZo0Q9LfjWK2atWqeOqpp+qsz+VycdZZZ2UwEUBh9HH6iqGPIzSyRq5LIzdMH6dDH7c8z/4apm3Sp23y0zZ1tVbbpNU1EdqmPtrmv7QNFDftl76O1n66r3FZd1+E9ktC+6VD+7WsLJ5pRbSd73Vdk76O1jUR2iaJ9tQ2uqYuXVObtgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBNZVkP0BEddNBBMX/+/Hj99dfjiSeeiDlz5sRHH30Un376aXz11Vex3XbbxY477hh77LFHDBo0KAYPHhzf+c53mny9XXbZJRYuXBj3339/PProo7FgwYJYtmxZVFRUxC677BKDBw+Oc845J3beeecmnb9Tp04xa9asmDZtWkydOjUWLlwYixcvjlWrVsWGDRsKOleXLl3i73//ezzzzDMxYcKEeO2116KysjLKysqie/fuceSRR8aZZ54Ze++9d0HnbUufQT6vvvpqvPLKKzWv999/P5YvXx6fffZZrFixIjbbbLPYZpttYs8994yDDjooTjnllNhzzz1TuXZzXXLJJXHCCSfEXXfdFXPmzIlFixbFqlWrYvvtt49u3brFYYcdFsOHD09l3pa6hyIi9ttvv5g5c2YsXLgwZsyYEc8++2zNn8OaNWuioqIiunbtGvvtt18cfPDBcfzxx0eXLl2a/Z7SdNxxx0WvXr1i0aJFtdYvWLAgXnvttdh3331bfIZOnTrFlVdeGeecc04q5zvppJPipJNOinnz5sXs2bPjueeeiw8++CA+++yzWLVqVVRUVMQ222wTvXv3jkMOOSQGDx7cKu8zDQMHDoyBAwfGm2++GU8//XQ8//zz8a9//Ss+++yz+OKLL2KTTTaJ7bffPnr06BEHHnhg9O/fP4444ogoLy9PdP7XX38977Zf/vKXab2NzEydOjW++uqrOuuPOeaY2G233TKYCKBw+ji/ttzHERq5mGjkttPI+rh59HHr8ewvP22Tn7ZJTts0LOu2SbtrIrSNtqmftoHip/3y037J6L6GZd19EdqvENqvebRf62jtZ1oRbed7Xdfkp2uS0zYNa49to2t0TT7aBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDSVVFdXV2dx4ZtuuikuueSSRvd76qmnYtCgQa0wEa1t/Pjx8Zvf/KZm+fPPP4+tt946w4loa9xDTfOnP/0pRo4cWWf9+eefH7fccksGE5GVG264IUaNGlVn/WGHHRazZ8/OYKJ0HXrooTFv3rw66+fOnRv9+/fPYKKWtddee8Vbb72V9RgFyyhFaWEVFRWxcuXKvNvvueeeGDFiRCtO1DZoG9LgPmoajUyEPi5GZ511VkycODHv9iOPPDJmzpzZihNRCN9JpMF91DTahghtU4w8Lyl+9957b5x99tl5t2+11Vbx5ZdftuJEbYfvbJrLPdQ0uo//p/2Ky4oVKxr9b5i/D1e8fCeRBvdR02gbItp/10S0vbYp1uclPXr0iI8++qjWugMPPDBeeOGFOvs+//zzceCBB0ZERElJSZ3tF198cdx4440tMygAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDL+ksu6wkAaF0jRoyI7t2711k/adKk+PLLLzOYiKzMmjWrzrotttgi7rnnngymSdfChQtj3rx5ddYffvjh0b9//wwmAgCKmUYmQh8D0H5oGyK0DQB0BLqP/6f9AGgPtA0R7btrIrQNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6ctlPQAArau8vDyuuOKKOutXrlwZ9957bwYTkYW1a9fGc889V2f9ddddFz179sxgonTddNNN9a4fM2ZMK08CALQFGhl9DEB7om3QNgDQMeg+IrQfAO2HtqG9d02EtgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACB9uawHAKD1/exnP4v99tuvzvrx48fH119/ncFEtLb58+fX+bM+5JBDYuTIkRlNlJ5FixbFQw89VGf9aaedFv369ctgIgCgLdDIHZs+BqC90TYdm7YBgI5D96H9AGhPtE3H1p67JkLbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DJyWQ8AQOsrLS2NW265pc76jz/+OO64444MJqK1zZ49u9Zyp06dYsKECVFSUpLRROkZM2ZMrF+/vta6zTffPP7whz9kNBEA0BZo5I5NHwPQ3mibjk3bAEDHofvQfgC0J9qmY2vPXROhbQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGgZZVkPAEA2Dj300Kiurs56DDIye/bsWstXX3117L777hlNk6777rsv7rvvvqzHAADaII3cceljANojbdNxaRsA6Fh0X8em/QBob7RNx9WeuyZC2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAyyrIeAABoff/4xz+yHgEAAIqGPgYA2hNtAwDQcWg/AKC90DUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQuFzWAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBMLusB6Lh+/etfR3V1dc1r6623znok2hj3EADQnmgb0uA+AqBY+E4iDe4jAGgbfGfTXO4hAIqF7yTS4D4CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoLXksh4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAZHJZDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAyuawHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJlc1gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQTC7rAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgml/UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJPLegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSyWU9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnksh4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAZHJZDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAyuawHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJlc1gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQTC7rAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgml/UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJPLegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSyWU9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnksh4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAZHJZDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAyuawHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJlc1gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQTC7rAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgml/UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJPLegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSyWU9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnksh4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAZHJZDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAyuawHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJlc1gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQTC7rAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgml/UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJPLegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSyWU9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnksh4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAZMqyHqAxDzzwQLz44otZjwEAUNSWLl2a9QiQ2PTp06OysjLrMQCAIvfKK680uH3RokVx5ZVXts4wAADNtHbt2qxHoJnWrl2rPwGARiXpPn8fDgBoKxYsWJD1CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADSgLOsBGjNlypSsRwAAAFI0Y8aMmDFjRtZjAABt3KJFi+Kqq67KegwAADqIdevW6U8AIBX+PhwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGnIZT0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyeSyHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBkclkPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDK5rAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgmVzWAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBMWVYXHjBgQNx4441ZXR4AAGgh48aNi7Vr12Y9BgAAAECb0a9fv6xH6PD69evn/18DAAAAFGDTTTfNegQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAOrSyrC/ft2zf69u2b1eUBAIAWMnLkyKxHAAAAAICC9OnTJ/r06ZP1GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQSC7rAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgml/UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJPLegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSyWU9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnksh4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAZHJZDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAyuawHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJlc1gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQTC7rAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgml/UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJPLegAAAAAAAAAAAP6PXXsP7ar+Hzj+2tm0tZw3qpkQQRiJtpCsNAw0zTTJC9UfhYhdnLkudrfMIJJs2B8SXWxpfk0yNMqYJFlRgkV/SEZZ4rAracaoiZZZpsv9/vjSftm32dn1be7xgA/sfD7nvM/zbG7u89oBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyCdLHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEA+WeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8slSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBPljoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAfLLUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOSTpQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgnyx1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPlkqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIJ0sdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQD5Z6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkE+WOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB8stQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5JOlDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCfLHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+WSpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgnSx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAPlnqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPLJUgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQT5Y6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyy1AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkk6UOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8sdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5ZKkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyCdLHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEA+WeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8slSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBPljoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAfLLUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOSTpQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgnyx1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPlkqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIJ0sdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQD5Z6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkE+WOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB8stQBAAAAAAAAAAAAAAAAAAAAAAAgJbmOAAAgAElEQVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5FOUOqCtNm3aFKtXr06dAQDQZRQXF0dVVVXqDI5hc+fOjQMHDqTOAAAAAPjXuOaaa2LYsGGpM7o0f3cGAAAAaBn3kQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKRVlDqgrT799NN4/PHHU2cAAHQZpaWlUVVVlTqDY9jTTz8d+/btS50BAAAA8K8xePDgGDZsWOqMLs3fnQEAAABaxn1kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaWWpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgnSx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAPlnqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPLJUgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQT5Y6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyy1AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkk6UOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8sdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5ZKkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyCdLHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEA+WeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8slSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBPljoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAfLLUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOSTpQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgnyx1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPlkqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIJ0sdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQD5Z6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkE+WOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB8stQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5JOlDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCfLHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+WSpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgnSx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAPlnqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPLJUgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQT5Y6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyy1AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkk6UOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8sdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5ZKkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyCdLHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEA+WeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8slSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBPljoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAfLLUAfzXwIED45577olVq1bF1q1b47vvvov9+/fHoUOH4qeffoq6urr45JNP4vXXX4/q6uqYPXt2jB49Ok4++eTU6ceVK664IhobG5t9zJgxo92Pbcs5ad7evXub/Zxu3rw5WdeZZ54Zv/76a1PLtGnTkrUAHev888+Pw4cPN32/X3rppamTAKBTeI9zbPH1aDmfs+PbCSecEJdffnk89thj8dprr8X27dvj+++/j19++SUaGhrixx9/jF27dsXmzZtj5cqVMWfOnBg0aFDq7Iho+0yhZ8+ecf3118fSpUvjww8/jF27dsX+/fvj4MGDsXv37vjss8/itddei4ULF8bEiROjtLS0g66k83zxxRdHfP/269cvdRLHgT//mzpw4EDqnH8tcxMAAGid1t4LYeZFHsOGDYsFCxbEhg0bYufOnUfMzGpra+OVV16JW2+99ZicsbT3/Tjl5eUxZ86cWLNmTXzyySexe/fu+O233+K3336Lurq6qK2tjZqampg7d26MHDkyssxtmMC/X1FR0RG/H+zduzfXcWbxf88MFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM5QlDqgqxs9enTMnz8/RowY0ew+paWlUVpaGmVlZVFeXv4/r2/fvj3ee++9WLRoUdTW1nZkLtBGTz75ZBQXF0dExMcffxwrV65sdt+ampqYPHly0/ZLL70U11xzTYc30nF8TbuWzZs3H/E1fuqpp+Lcc8+NgwcPJi4DAICup0+fPnHffffFzTffHKWlpc3u17Nnz+jZs2f0798/hg4dGlOnTo2FCxfG1q1b4+GHH441a9ZEY2NjJ5b/v5bMFP6sT58+sWDBgpg+fXqUlJT87T59+/aNvn37xllnnRVXXHFFzJkzJxoaGmLjxo2xcuXKWLNmTezbt6/droW0zCc4FpibAAAAHKmwsDCGDh0aY8eOjbFjx8ZFF10U3bt3b3b/yy+/PN544412Off48eOjqqoqhgwZ8rev/zEzGzhwYFx11VXx+OOPx8qVK2PevHmxa9eudmloq9bOzv6ssLAwpk+fHnfddVcMHjy42f3KysqirKwsBg4c2DRj2blzZ6xYsSKefvrpqKura91FwDHqr/PEtnr22Wdj1qxZ7bYeHKvMQAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgMWeqArqqwsDAWL14cb7/9dowYMaJNa5199tkxY8aMGDp06D/uW11dHY2Njc0++vXr16YWoHmTJk2KCRMmNG3ff//90djYmLCIlqivrz/i52Xv3r1TJ/EvMG/evGhoaIiI//5/ffvttycuAuDfyns5gNYbPnx41NbWxn333RelpaWtWuOcc86Jl19+OWpqauKkk05q58J/1tqZwsUXXxy1tbVRWVkZJSUlLTpnUVFRjBkzJpYvXx4PPfRQrmO8dwZawtwEgJYyHwHgeDNgwICYNWtWrFmzJurr62PTpk3xyCOPxMiRI6N79+4dfv5u3brFs88+G+vXr48hQ4bkPq6wsDCmT58eW7dujUmTJnVgYT7tcT/O+eefHx999FEsW7YsBg8e3OKG008/PR588MH4/PPP44EHHoji4uIWr9ERzOsA0jIDBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKNlqQO6ooKCgli+fHlUVlZGQUFB6hygE2RZFlVVVU3bmzdvjjfffDNhEdAZvvrqq1i9enXT9ty5c6N3794JiwAAoGs555xzYsOGDVFWVtYu602aNCnWrl3bqTO91s4Uhg8fHuvXr/+fa3/zzTfjhhtuiHPPPTf69OkT3bp1i1NOOSXKy8ujoqIiVq9eHT///HO7XwfAX5mbAAAAXVlxcXF8/vnn8cwzz8SVV17Z6e+HioqKoqamJmbOnNnqNXr37h2vvvpqTJ06tR3LWqY97se57rrr4v3334/y8vIjnt+1a1dUV1fHlClTYtCgQXHKKadEt27dom/fvnHhhRfG7bffHu++++4Rx/To0SMWLFgQU6ZMaf1FAXDcMAMFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgo2WpA7qimTNnxrRp01JnAJ1o2rRpMWjQoKbtRx99NGEN0JmqqqqisbExIiL69OkT9957b+IiAADoOlasWBEnnnhiu645ZsyYqKioaNc1j6Y1M4Xi4uJ44YUXokePHk3Pff/99zFq1KgYP358LF++PD799NPYu3dvNDQ0RH19fWzdujWee+65uPbaa6N///5xyy23xBdffNEh1wTwB3MTAACANBYtWhQTJkxo8zqFhYWxfPnyGDZsWDtUtVxb78epqKiI//znP9G9e/em5/bs2RN33313nHnmmVFZWRlr166N2traqK+vj4aGhtizZ0988MEH8cQTT8TIkSNjyJAh8dZbb7XbNcGx7qWXXoqCgoJWP2bNmpX6EqBTmYECAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQkbLUAV1NSUlJzJ8/P3UG0ImyLIt58+Y1bX/zzTexdu3ahEVAZ9q2bVu88847Tdu33XZb9OrVK2ERAAB0DRdccEGcd955HbL2zJkzO2Tdv2rtTOHGG2+MAQMGNG0fOnQoLrvssti4cWOu8+7bty8WL14cgwYNitmzZ8cPP/zQ8vhjwIABA6KgoKDpUVdXlzoJ+AtzEwAAgM530UUXxS233NJu63Xr1i2WLl0aRUVF7bZmHm29H2f06NGxePHiKCgoaHru66+/jgsuuCAWLVoUBw8ezLXOli1bYty4cTFjxoz45Zdf8l8AwHHCLP7ozEABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoSFnqgK5m3Lhxceqppzb7+qFDh2LJkiUxYcKEOOOMM6KkpCSKioqid+/eccYZZ8SoUaOisrIyqqurY9u2bdHY2NiJ9ce/devWRUFBQbOP55577rg4J51r8uTJcdZZZzVtL126NA4fPpywCOhsS5Ysafq4tLQ0KioqEtYAQMfyHgc4VlxyySX/uM+6detizJgxcdppp8WJJ54YAwYMiJtvvjm+/fbbox43dOjQKC0tba/UZrV2pnD11Vcfsf3iiy/Gli1bWnz+Q4cOxZNPPhkLFy5s8bEAeZmbAABAxzO35Q9ZlsWSJUsiy5q/bfCHH36IioqK6N+/f5SUlER5eXksXrz4qOuWl5fHnXfe2d65R9WW+3F69eoVK1asiKKioqbnvv3227j44ovjyy+/bFXPsmXLYvTo0VFfX9+q4wE4fpmBAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FGy1AFdzbhx45p97fDhwzF+/Pi46aabYv369bFjx4749ddf4/fff48ff/wxduzYERs3bozq6uqorKyMwYMHR1lZWcyYMSPeeOONOHjwYCdeCZDXHXfc0fRxY2NjPP/88+ligCRqampi9+7dTduzZ8+OLPNrGAAAdKT+/fsf9fVVq1bFxIkTY8OGDVFXVxcH/o+9+46OomzbAH7tpmx6AwIkoQihF+ktiJTQm/QWRRKCVAuvXUBRURQ/Cx0pgUhRmjQhQAIivQYUUCkhdBIgjfSy+/3xHvZlk8xsm51ZwvU7Z8/hmafdm52Znefe5xxyc3H16lUsWrQI7dq1Q1ZWlmj/wMBAKcMtlaU5hZYtWxqU4+LipAyLiEhSzJsQERERERH9d9/YqVOnMHv2bISGhuL777+3yTyhoaFo2LChYH1mZiZCQkKwbNky3L17Fzk5OTh//jwmTZqE999/X3Rsuddz1uzH+eCDDxAUFGRwLDIyEnfu3LEqpuPHj6Nbt25IS0uzahwiIipbmAMlIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiW3FUOoBnTY0aNQTrjhw5gn379pk13v3797F8+XIsX77c2tAkValSJYSGhuKFF15A8+bNUb58efj5+UGj0eDBgwe4f/8+zp49i9jYWMTExODBgwc2i6V+/foYO3YsOnbsiJo1a8LNzQ3JycmYPXs25s2bZ7N5yzq5P+POnTtj+PDhaNeuHQICAqDRaHDnzh1cuXIFGzduxMaNG5Geni7Ru5NOjRo10KFDB3358OHDuH37tiKxVKhQAcOHD8eAAQNQrVo1BAQEIDc3F0lJSTh8+DA2bNiAmJgYSeesU6cORo4ciW7duiEgIAAVK1ZEeno6bt68iT179mDNmjW4cOGCpHM+61xcXFCvXj00btwYjRs3RoMGDeDv7w8fHx/4+PjA09MTjx49wsOHD/Hvv/9i//792Lx5M65du6Z06GarX78+evfuja5du6J69erw9/eHi4sLkpOTcePGDcTGxmLz5s34888/JZszKCgIgwcPRp8+fVC1alVUqlQJnp6eAIDy5cvj4cOHpfYrKCjA1q1bER4eDgCoUqUKunTpgr1790oWGxERKcfFxQVdu3ZF165dUb9+fQQHB8PLywseHh4oKipCRkYGMjIykJ6ejtTUVNy4cQPXrl3Dv//+iwsXLuDy5csoKChQ+m2Istd1Vf369TFq1CiEhoaiSpUqKFeuHFJTU5GYmIg9e/YgKirKquecF198ESNGjEBISAgCAwOh0Whw9+5dJCQkYNOmTdiwYQNSUlIkfEdPh6pVq+rXg02aNEG5cuXg5+cHR0dHpKamIiUlBZcvX8bBgwfx+++/4/Tp02Vibvqftm3bYtSoUfo1uo+PD5KSknD16lVs2bIFv/zyC5KSkpQOE2q1WrR+1apVgnU3b97E/v370adPH6nDMpmlOQVPT0+4u7sbHBNaqzxtLF2TSUGuvEqrVq0wYsQIdOrUCYGBgfD09MS9e/dw69Yt7Ny5E2vXrkViYqL1b0hmXl5e6Nu3L3r27ImmTZuiQoUK8PHxQWpqKpKTk3Hq1Cns3LkTv/32G7Kzs5+6+co6W+f4mDchIrItd3d3dOrUCe3atUObNm0QEBAAPz8/+Pj4IDc3Fw8fPsRff/2Fo0ePYuPGjbh8+bJJ4/r5+aF27doGr6CgIFSoUAF+fn5wcXGBRqNBYWEhMjIy8OjRIyQmJuLcuXM4efIktm/fjszMTBu/e8vI/TuoPeQf7HG9ba/5KCXZ2z4MW+blANvdv0qj5DXwtO6FECLHuWEP900p6HQ6XL16FbGxsYiNjUVcXBxSU1P19V27drXJvI/XXkJmz54teD3NmTMH4eHhqF27dqn1QUFB6Nq1K3bv3m11nMZYsx/H29sbU6ZMMTi2ceNGyfbMxMfHi9aXhX0dcu3XUCJXplReScnc59NCzr1vwcHB6NmzJ7p06YLatWujQoUK8Pb2RmZmJlJSUpCSkoKEhAQcPXoUR48exdmzZ5Gfn2/y+HKeZ02aNNF/Nz++jpKSknDr1i3ExMRg7dq1SEhIsGoOqZXFfDxzoERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERGQzuqfc0qVLdQCemld8fLzge9mzZ4/k802ePFnSv7eLi4vofA0aNNCtXLlSl5+fb/KYWVlZujlz5ujKly9v0nvq06eP6Hhjx47VAdBpNBrd3LlzdUVFRaW2+/777y0e25q4pOo3bdo00X6W+OSTT4z+/eX4jJ98BQcH6+Li4ozOkZGRoZsyZYq+X1pammDbU6dOyXbNf/LJJwZzv/nmmyb33bJli0Hfn3/+2WifJ+Xm5uoA6BwcHHQff/yxLjc31+jfcf/+/bqKFSua9R5Lm9PDw0MXHR1tdD6tVqubN2+ezsPDw+T5QkNDDcbYsmWLWfH6+PgY9L9165Zg27Nnzxp9D0JatGghyWdq7mvx4sVmx1pQUKBbvny5ztfX1+j4xe8927ZtszjWn3/+2WCs2bNnm9Svbt26us2bN5v8/tatW6cLCgqy6px2dXXVLVy4UPA7RafTGb3H9ejRw6D96tWrJf/85Xp5enqa/PenZ5Onp6fi5ylffMnxcnZ21r333nu61NRUq66Z0p7Dbb2We9rXVZUqVTLpeSA3N1c3Y8YMsz/b5557Trd7926j42dmZureeecdnUql0gH2sw6R6vMo/mrRooVu/fr1usLCQqN/myedOHFCN2TIEP3fyZKXnHNb+zfr3bu3Li8vT3SMqKgonYODg77P999/L9q+YcOGonMWX+cUt3LlSknec926dXWHDx8WbavT/W+NrlarFTnvH7/eeOMN0Ti7d+8u2n/Hjh2CfQsKCnTu7u42jd/SnIKXl1eJeF955RWbxSn12vlJ1q7Jrly5YtCmUqVKou+ltLltnVd5/PL399etW7fO6BxFRUW6RYsW6VxdXXWOjo4GdWlpaSbNJUd+4vHLwcFBN2XKFN39+/eNvjedTqe7ffu2Ljw83OLvDDnme9Lj88SUl7e3t27fvn0G/TMzM3W9evUyaCdn7svY+7Jljq/4qyzlTfjiy9LX0qVLjV5vZFtP2+/Oxl5BQUG6r7/+WpeSkmLW3+HIkSO6fv36Gf1+tFZmZqZu+fLlos9PZfG37idf9pB/sMf1tqn5qM6dO4uO9/rrr5scm7Ozs+jfdfv27Ypez/a0D8PWeTk57l9KXQPFX3LvhbD1nhY5zg17uG/K+Zo9e7bo++zRo4fZY7q5uRnNcRj7bX369Omi/aOjo2X5+1izH2fixIkl4u7YsaNsn62t93VIna978mXr/RqPX3Lmyh6/lMormZP7VGrPjpz5xNL+RnLlaB+f47/88otOq9UanetJ77//vt2cZ49fPj4+uuXLlxudQ6vV6hYvXqxzcXGx+DoyNxev9GetxD0GKLs5UKX2kVWpUqVELG3bti01xiNHjuj7lVY/depURd4DERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERGRBNarQbIqKioSrGvbti2Cg4NljEY6KpUKb7/9Ns6ePYvRo0fDycnJ5L5ubm54++23ceHCBYSEhEgSj0ajwbZt2zBlyhSo1aWf5iqVSpK5nhVKfMatW7fG6dOn0blzZ6NtPT09MXfuXKxZswaOjo4mz2FrAwcONCjv2bNH1vk1Gg22bt2KTz75BBqNxmj7jh074tChQyhfvrzFc3p5eeHAgQN4+eWXjbZVqVSYPHky9u3bBy8vL4vnJOs4OjoiPDwcR48eRY0aNUTbLl26FAUFBfpyr169EBQUZPacFSpUwIABA/RlnU6HpUuXGu03dOhQxMfHG/Q1Zvjw4Thx4gQaNWpkdpzAf+8v+/fvx4QJEwS/UwDj3ysHDhxAfn6+vty3b1+z7qVERGRfPD09ERMTg9mzZ8PHx0fpcGzCXtdVLVu2xLlz50x6HtBoNJg5cybmzp1r8vjNmjXD6dOn0a1bN6Nt3d3d8fXXX2P9+vVl+nvdwcEBn376KY4fP44hQ4bAwcHBrP4tW7bE+vXrsXXrVvj6+j41c1uiT58+2Lx5M5ydnQXbzJ07F+Hh4aI5InvUpUsXnDx5Eu3atTPa9vEaPTo6WvQZ2tZ27doFnU4nWD969GjBuqpVq6Jjx46C9b///juysrKsCc8oS3MKGRkZyM7ONjjWt29fyeKSm1RrMkvIlVcJDAzEkSNHMHz4cKNt1Wo1xo8fj9jYWLi5uZk1j9zc3NywZcsWzJ071+S/SUBAAJYvX47o6Gizv1vlns8cVapUwaFDh9CpUyf9saSkJLz44ovYuXOnzea1htw5PuZNiIikFRYWhosXL+Kdd94xey3Utm1bbN26FTVr1rRRdP/l7u6O8PBwXLhwAT169LDpXMYo8Tuo0vkHe11vm5OP2rdvH86fPy84VmRkpMnz9ujRA97e3oL1UVFRJo8lJXvbh2HrvBwg3/1L6WugLOyFeJIc54bS982yomnTpqI5joSEBNy6dUt0jEOHDonWt2nTxqLYzGXNfpzifRMSEnDgwAFJ4rIVc/Z12Ipc+zWUyJUplVcyN/ep9J4dJci5923UqFGIj4/H0KFDbZJvlvM8q1ChAg4dOoTw8HCjbVUqFV577TXFc87PQj6eOVAiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKyBbXSATxrkpOTBes8PDzwxx9/YNKkSWb/Z+xKUqvVWLduHebMmQNHR0eLx/H398e+ffswePBgq2NasGABunXrZvU49F9KfMYNGzbEnj174OXlZdYcI0eOxLJlyywNUVKBgYFo1KiRvuW+rskAACAASURBVJyUlISLFy/KGsPSpUvRu3dvAMC5c+cwduxYBAcHw83NDT4+Pmjfvj1++ukngz7BwcGYN2+exXOuXLkSzZo1AwBcvXoVkydPRs2aNeHq6opKlSqhZ8+e2Lx5s0Gfli1b4rfffoODg4PF85KhgoIC7N69G2+99RY6deqEoKAgeHh4QKPRICAgAH379sWqVatQUFCg71OnTh1s2bIFGo1GcNykpCT8+uuv+rKDgwPGjh1rdnyvvvoqnJ2d9eXY2FhcvXpVtM9rr72Gn3/+GS4uLvpj9+7dw7Rp09C8eXP4+fnBxcUFNWvWxKRJk3D9+nV9u8qVK+PAgQOoVq2a2bGuXLkSrVu3BgCcP38e48ePR61ateDu7o6KFSuiY8eOWLNmDVQqleg4OTk5OHbsmL7s5eWFkJAQs+MhIiL7MHfuXHTq1EnpMGzKHtdVzZs3R1xcHPz9/c3qN2XKFPTt29dou7p16yI2Nha+vr5mjT948GCsWLHCrD5PC0dHR2zbtg3Tp0+HWm1dGqlv3744c+YMAgMD7X5uS/Tp0webNm0yeM4t7rPPPsMbb7wBnU5n1tjmtpda69atsX37dnh4eJjVb9SoUVi6dKmNojLu0qVL+OWXXwTrR4wYgW3btqFz586oWLEiNBoNatSogQkTJuDw4cNwd3cvtZ9Wq8Wnn35qq7ABWJ9TOHLkiEF50KBBGDJkiGTxyUmqNZkl5MiruLu7Y9++fahZs6b+mE6nw8qVK9GxY0dUqFABrq6uCA4OxpQpU5CQkAAAaNeuHRYvXizBu7QNtVqN7du3o0+fPgbHH+cGg4KC4OLigipVqiAsLAzHjx83aBcWFoZ169bZ7XzmaNKkCY4dO4aGDRvqj/3zzz9o06YNTp8+bZM5pSB3jo95EyIi6cybNw8//fQTPD09lQ7FJOXKlcOmTZvQvHlzReZX4ndQpfMP9rzeNjcfNX/+fMG6hg0bol27diaNM3ToUMG6Bw8eYMeOHSbHJBV724dh67wcIN/9S+lroCzshXiSHOeG0vfNsuTxOk/I2bNnjY5hrE1wcLDNr2NrcmfOzs544YUXDI4dOHBAkRysrfZ12IJc+zWUyJUpmVcyN/ep5J4dpci19+2tt97C6tWrDc7x7OxszJs3D127dkVQUBA0Gg18fHxQr149jB49GmvXrkVOTo5J48t5nmk0GuzZswcNGjQwOL527Vp06dIF/v7+cHNzQ+3atTF16lTcunULABASEoJFixaZNIctPAv5eOZAiYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyBbUSgfwrDlx4oRofeXKlTF//nwkJSXh3LlzWLJkCSIiItC4cWM4ODjIFKV55syZg2HDhkkylrOzM1atWoXGjRtbPEavXr0QERFhtJ1KpbJ4jmeN3J+xo6MjoqOj4eXlZdEco0ePhre3t6UhSiY0NNSgfOzYMVnn12g0ePnllwEAn3/+OZo1a4bly5fj6tWryMnJQXp6Og4fPoxXXnkFkydPNug7fPhw1K9f36I5BwwYAADYsmULnn/+eSxYsAAJCQnIzc1FUlISYmJiMGjQIISFhaGoqEjft3379pg6daoV71h6TZo0gUqlgkqlwsOHDw3qfH199XWlvU6dOqVIzMnJyZg+fToqVaqEHj164Pvvv8fvv/+O27dvIysrC/n5+bh79y527NiBV199Fa1bt8aNGzf0/Rs1aoSPPvpIdI6FCxcalCMiIsz6jlKpVIiMjDQ49uOPP4r2admyJebOnWtw7163bh1q1qyJWbNm4cyZM0hNTUVeXh4SEhKwcOFC1K9fHzt27NC39/X1RXR0NNRq0x9/NBoNBg4cCAD44Ycf0LRpUyxZsgRXrlxBdnY2kpOTceDAAYSFhSE5OdnoeEeOHDEod+vWzeRYiIjIftStWxevvvqq0mHYlL2uq8aPHw9PT0+L+n711Vei9Q4ODli1ahV8fX0tGj8sLMwu1iFSW7BgAXr16iXZeNWrV8e2bdvg5uZm13Obq2/fvti0aROcnZ1LrdfpdJg6dSpmzJhh0fg6nc6a8Kw2duxYuLq6WtQ3PDxcv05UwsSJE3H27FnB+r59+yIuLg737t1Dbm4url69ioULFyIoKEiwz3vvvYeDBw/aIlw9a3MKP/30k0FZpVLhl19+wU8//YSWLVtaHd+TbLl2lnpNZg658ipffPEFateurS9nZ2eja9euGDNmDA4cOIAHDx7oz8358+fj+eefx9atWwEAI0aMkOjdSu+DDz5A586dDY5NnToVXbp0waZNm3D79m3k5eXh1q1bWLNmDdq1a4cvv/zSoP2gQYPw2muv2eV8purWrRv++OMPBAQE6I8dOnQIISEhSExMlHQuKSmV42PehIjIejNmzCjxbPI0cHNzw6pVqxT5/Vbu30HtIf9gr+ttS/JRP/30E1JTUwXbFv89qjQuLi7o16+fYP3atWuRn59vdByp2ds+DFvm5QB5719KXgNlZS/Ek2x9btjDfbMsadq0qWj9rVu3jI6RmpqK7OxswXqVSoUmTZqYHZs5rMmdNWjQoEQe9+TJk5LEZSpb7+uQOl8n534NJXJlSuWVLM19KrFnRyly5Wg7d+6MOXPmGBzbt28fatWqhddffx2xsbG4ffs28vPzkZ6ejn/++QfR0dEYNWoUKlWqhE8++QTp6emic8h5ns2YMcPgPpyfn49+/fph1KhR2LdvH+7fv4+cnBxcvnwZ3333HRo1aoS4uDgAwMiRI42ObwvPUj6eOVAiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKSmlrpAJ41v/76q0nt1Go1GjdujHHjxmHZsmU4d+4cMjIysHfvXkybNg1Nmza1caSm6dmzJ6ZOnSraZt26dejQoQO8vb3h6uqKJk2aYPHixdDpdKW2d3Nzw4YNG+Do6GhRTAMGDLCoH5VOic/49ddft5tz3BqtWrUyKP/555+KxPHDDz9g+vTp0Gq1gm0WLFiAPXv2GBwbM2aMxXOeOnUKI0aMQFZWlmCbNWvW4O233zY4NnPmTFSoUMHieQmYMWMGPv/8c6SkpJjUPj4+Hr169UJubq7+2IQJE6DRaAT7HDhwABcvXtSXg4KC0KtXL5Nj7NSpE2rVqqUvJyUlYevWrYLtHRwcsHr1ajg7O+uPbdiwAaNGjUJ2drZgv+zsbAwaNAhnz57VH+vQoQMGDx5scqyP/fzzz3jzzTdRWFhodt8nnTt3zqBc/D5BRERPh5deekmw7t69e5gwYQJq164NNzc3ODo6ws/PD7Vq1ULfvn3xwQcfYNeuXaLPSfagLK6r6tWrhzZt2gjWT5w4kd/NxQwcOBDjxo2TfNxmzZph1qxZdju3ufr164eNGzcaPK8+qaioCGPHjsV3331n8RxC6+unxaJFi+Di4qLI3KmpqXjxxRcRFRVl9d8xOTkZQ4cOxTfffCNRdMKszSmsWbMGJ0+eNDimUqkQFhaGEydO4MaNG4iOjsbEiRPRunVruLq6Wh2zLUm1JrOELfMqtWvXxuTJkw2Ovfzyy4iLixPsk5mZieHDhyM+Pt7o+EoJCAjAxx9/bHDs888/F70ParVafPjhh1ixYoXB8W+++Qbe3t52NZ+pwsPD8dtvv8HT01N/bOPGjejatavJeRulyZ3jY96EiMg6L774ImbOnCn7vCkpKVi9ejUmTJiADh06oEqVKvD29oajoyPc3NxQvXp19OrVC0uWLEFeXp7gOA0aNBDNudiCEr+DKp1/sOf1tiX5qOzs7BLPdE8aOnSo0ee7nj17GjyzFRcVFWV2XNayx30Y1jCWl5Pz/qX0NVBW9kJIxdi5ASh/3yxrAgICROvv3btn0jjG2hmbx1rW5M5q165d4pjc+3nk2NchFTn3ayiRK7OHvJK5uU+59+zYA1vmaJ2dnbFq1So4ODjoj8XFxaFXr164c+eO0f4ZGRmYOXMmFi1aJNhGzvOsevXqePfddw2OjRs3Dtu3bxfsk5aWhgEDBuCff/4RbCOXZyEfzxwoERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERSU2tdADPmnPnzmHbtm0W9XVzc0NoaCg+++wznDlzBhcvXsSUKVPg7OwscZSmUalU+Pzzz0XbREZGYuTIkTh48CAyMjKQm5uLc+fOYcKECZgwYYJgv9q1ayMsLMzqGPfv34/BgwcjICAAGo0G1atXR5cuXfB///d/SElJsXr8siQ7Oxt79uwxOKbEZ6xWqzFlyhSj8a5atQpt2rSBh4cHPD090bp1a0RFRUGn0xntK5fmzZsblP/66y/ZY7h79y7ef/99k9ouWLDAoNyhQweL5508eTJyc3ONtps7dy7+/PNPfdnV1RXh4eEWz0uWuXDhApYuXaovly9fHn369BHts3jxYoPyuHHjTJ7vtddeMyivWLECBQUFgu0HDRqE2rVr68sPHjzA2LFjTbre8/PzS9yLXn/9dZNjBYCsrCy88cYbZvURUvw+0KJFC0nGJSIiedWtW1ewbtiwYVi8eDEuX76MnJwcFBUVITU1FVeuXMGOHTswe/Zs9OrVC76+vujRowfWrFmDzMxMGaM3nz2uqx49eoR3330XNWrUgIuLC2rXro2FCxca7delS5dSj6vVapO+79evX4+QkBB4enrC09MTISEh+Pnnn82O/2mgVqvx6aefGm23bt06dOjQAT4+PnB1dUXDhg0xa9Yso+uB8ePHIzAw0O7mNle/fv2wYcMGwdxMfn4+hg8fjhUrVlg1j1artaq/VBITEzFmzBgEBgZCo9EgMDAQY8aMQWJiomi/ihUrYsSIEfIEWYqMjAyEh4ejUaNGmD9/PvLy8szq//fff2Py5Ml47rnnsGHDBhtFacjanEJRURH69euHixcvllpfpUoVvPzyy1iwYAGOHTuGjIwMnDp1Ct9++y26d+8OBwcHi2OXmpRrMnPZOq8SGRkJtfp/KfqYmBhs3rzZaL/c3FyT8mdKmThxIpycnPTlK1eu4LPPPjOp73/+8x88ePBAX/bw8DCaK5J7PlPMnDkTy5cvh6Ojo/7Yd999h6FDh5qUM7MXcuf4mDchIrLOV199ZbRNbm4ufvzxR/To0QOVKlWCs7MzfHx8UL9+fYwdOxbbt29HUVGRSfMdOXIEL730Evz9/fHyyy9j8eLFOHjwIG7duoWMjAwUFRUhJycH169fx65duzB+/Hh07twZ+fn5gmMOHTrU5PdrLaV+B1Uy//A0rbfNyUctWLBAcN3s5uZmdN/BsGHDBOvOnj2Ls2fPmv8GrGDv+zCkzssB8t2/lL4GytJeiNLY4txQ+r5ZFnl5eYnWP3r0yKRxjP2uYWwea1mTOyvtOn0a9pBZsq9DCnLu11AiV6Z0XsnS3Kece3ZKM2zYMOh0OoteaWlpZs1l6xzt6NGjERQUpC+npaVh9OjRZv+OIEbO8ywyMtIgJ3nw4EGsWrXK6DyPHj1SLA//2LOSj2cOlIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKSmNt6EpBYZGYmbN29aPU69evUwd+5cXL58WfA/bp8/fz5UKpX+tWTJEtExK1eubNC++Cs3N1fftkuXLmjWrJngWNHR0Vi2bJlg/ZIlSxAbGytY/95774nGasyHH36Izp07Y9OmTbh79y7y8/Nx/fp17Nu3D2+//TY++eQTq8ZX2ueffy76WT358vb2xvHjxwXHys7ORp8+fXDkyBGD40p8xl27dkX16tUF+wDAW2+9hVdffRXHjx9HVlYWMjMzceLECYSHh+ONN94Q7SunWrVqGZRv3LghewxLly41uG7F7N+/HzqdTl9u3Lgx1GrzvyaOHj0qer49SavVYu7cuQbHXn31VbPnJOtt3LjRoNy2bVvR9qtWrUJWVpa+3LNnT1SpUsXoPP7+/njppZf0ZZ1OJ3ofAYApU6YYlH/44QdkZGQYneuxY8eO4fTp0/pySEiISbE+9uuvvyI5Odnk9mKK3we8vb3h7+8vydhERCQfPz8/wbpbt26ZNEZBQQF2796NsLAwfPPNNyXqbbmWM4c9rqvS0tIQEhKCOXPm4Nq1a8jLy8Ply5cxadIkLFy4ULSv0PqmS5cuqFmzpmjfTz75BMOGDcORI0eQmZmJzMxMHDlyBCNGjMD06dMtfj/2qnv37mjQoIFom6lTp2LkyJE4ePAg0tPTkZubiwsXLmDatGno1q0b8vLyBPu6uLhg4sSJdje3Ofr374+NGzfC2dm51Prs7Gz069evxLO2JYqKiqwew1rnz59H8+bNsXLlSty5cwf5+fm4c+cOVq5ciRYtWuDixYui/SMjI2WKtHReXl4YOHAg+vbtC41GY1bfOnXq4KWXXkL79u1tFF1JUuQU7t27h1atWmHBggUoKCgQbevo6IjmzZvjrbfeQkxMDG7evInp06fD3d3d7HmlJuWazFy2zquEhYUZlOfPn29ybIcPH0Z8fLzJ7eU0evRog/LcuXORn59vUt+0tLQSeYIxY8bY1XxinJycsHLlSsyYMUN/TKvV4s0338TUqVMNzhF7p0SOj3kTIiLLdezYEa1btxZtc+nSJTRt2hSvvfYadu/ejaSkJBQUFCA9PR1///03li9fjn79+qFGjRpYs2YNtFqt6HghISHYunWrWeuVI0eOYNu2bYL1L7zwgkG5rP3WrXT+4WlZb5ubj7p27Rp27NghOJ7YetTNzQ19+vQRrI+KijI7fmvZ8z4MW+Tl5Lx/KX0NlKW9EMXZ4twAlL9vlkXe3t6i9WLnuDntjM1jLWtyZ15eXiWOpaenWx2THMzd1yEFOfdrKJErUzqvZGnuU849O0qzdY62+Hf34sWLcfv2bfMDFSHneVZ8ru+//97EKIE9e/YY/a3Hlp6VfDxzoERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERCQ18f/pm2wiOTkZL7zwAs6dOyfJeFWrVkVcXByGDx8uyXim6tWrl2j9//3f/xkdY82aNYJ1devWRfXq1c0NSz/ul19+aVHfssbT0xMxMTFo3bp1qfU5OTno168f9u/fX6JOic+4U6dOouMdPHgQ33//vWD9vHnz8PvvvxuNy9Y8PDzg5+dncOz27duyxxEbG2ty20ePHuHOnTv6souLC7y9vc2ec+PGjWa137x5M7Rarb5ct25dlCtXzux5yTp//vmnQblFixai7TMyMrB27Vp92cHBAREREUbnGTNmDJydnfXlvXv3IiEhQbC9h4cH2rRpY3Bs/fr1Rucpbs+ePQbltm3bmtx3x44dZs8n5NGjR3j06JHBMUu/64iISDnF7+VP+vbbb1GxYkUZo7Ede11Xvffee/jrr79KrZs3b55o36CgoFKPG1uHnDp1Cp999plg/axZs3DixAnRMZ423bt3F63fv38/vvvuO8H6gwcPYs6cORbNoeTcpnrppZewYcMGODk5lVqfnp6Obt26Yffu3VbN89iTayalREREICUlpdS6hw8fYty4caL9W7ZsCTc3N1uEZlS3bt1w6dIlfPrpp6hWrZrZ/dVqNUJDQ7F7925s2bIFvr6+Nojyf6TMKWRlZWHy5MmoVasWvvjiC1y7ds2kfpUrV8ann36KS5cu4YUXXrBobqlIuSYzly3zKjVq1EClSpX05czMzBJrV2M2bdpkVns5VKtWrcT3rbnr+HXr1hmUGzZsKPi3lHs+MV5eXti5cydGjx6tP5abm4shQ4bghx9+MHs8pSmR42PehIjIcr179xatT0tLQ48ePfDPP/8YHevGjRsICwsTzd1b4/Lly4J1gYGBJZ6FbcUefwe1df7haVhvW5qPmjt3rmDd888/j1atWpVa17t3b7i7u5daV1BQYPBbmFzseR+GLfJyct6/lL4GyspeiNLY4twAlL9vlkVC97zHCgsLTRqnoKBAtN7Dw8PkmMxlbe7syf0Kj2VlZVkdlxzM3ddhLTn3ayiRK7OHvJKluU+59uzYA1vmaMuVK4fnn3/e4NiKFSvMD1KEnOdZ9erVERgYqC/n5ORg586dZs21YcMGs9pL6VnJxzMHSkRERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERFJTKx3As+r69eto3bo13nnnHaSkpFg9nqOjI6KiotCgQQMJojNNly5dBOvu37+PP//80+gYly5dsngOITqdDtOmTTO7X1nk4eGBXbt2oW3btqXW5+bmol+/foiLiyu1XonPWCjWx5YsWWJ0TlPa2FrFihVLHHv48KHscfz1119mtU9LSzMoe3t7mz3nyZMnzWqfmpqKhIQEg2OtWrUye16yTnp6OrRarb5cuXJlo30WLVpkUI6IiICDg4Nge5VKhbFjxxocM3a9tm3bFo6OjvpyUlKS0ftKac6ePWtQbtGihcl94+PjzZ5PzIMHDwzKpd0viIjIvl25ckWwrn///rhz5w7OnTuHn3/+GZ999hlGjRqFZs2awc3NTcYorWOv66qUlBRERUUJ1v/777/Iz88XrBd6vjW2Dlm0aJHBs1JxOp0OCxcuFB3jaWNsPW7K+120aBF0Op1gfdOmTeHr62tXc5uiT58+WL9+PZycnEqtv3//Pjp16oTDhw9bNH5pxN6LHM6cOYMTJ06Itjl8+DAuXLggWO/o6IiWLVtKHZpRAwcOxM6dOyV77u7fvz/i4uIsWi+byhY5hevXr+Ojjz5CjRo1UKdOHURGRmLZsmU4ffo08vLyBPsFBAQgLi4O/fr1s2p+a0i9JjOHLfMqxa+H8+fPo6CgwKz5zpw5Y1Z7ObRu3dqgfP36dSQlJZk1xvnz55GVlaUvq1QqwVyR3PMJCQwMxMGDBxEaGqo/9vDhQ3Tp0gWbN282ayx7oVSOj3kTIiLLdO3aVbT+u+++w7Vr12w2f9OmTfHBBx9gzZo1OHnyJG7duoXU1FTk5+dDp9MZvD744APRsfz8/GwW55Ps8XdQW+cf7H29bU0+Ki4uDhcvXhSsHzduXKnHhw4dKthn+/btJZ5N5GCv+zBslZeT8/6l9DVQVvZCFGercwNQ/r5ZFmVnZ4vWC+U8i9NoNKL1T66zpWZt7qy089Hd3d2qmORiyb4Oa8i5X0OJXJk95JWsyX3KsWdHyC+//AKVSmXRy8fHx6y5bJmjfeGFF6BSqfTl5ORkXL582az5jJHzPCt+7K+//kJubq5Zc5mbE5TSs5SPZw6UiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIpKRWOoBnWV5eHr755hsEBgZi1KhR2L59Ox49emTxeC4uLpg5c6aEEYqrWbOmYF2FChWg0+mMvg4fPiw6R7169cyO6+jRo0hMTDS7X1nj7u6OXbt2ISQkpNT63Nxc9O/fH7GxsYJjKPEZP/fcc6LtjY0HAEeOHDHaxtbc3d1LHMvNzZU1Bq1Wi/T0dLP6FI/RxcXF7Hn/+ecfs/v8/fffBuUqVaqYPQaVFBgYiMmTJyM6OhqnT5/GnTt38OjRI2i12hLXqlarhVr9v8cCHx8fo+PHx8fj2LFj+nJQUBB69eol2L5Lly4IDg7Wl+/du4dt27aJzlGnTh2D8uXLl43GVZoHDx4YlCtUqGBy39u3b1s0p5CcnByDcmn3CyIism+7du0SrVer1WjcuDGGDRuGadOmYfXq1Th9+jQyMzNx9uxZ/PDDD+jUqRNUKpVMEZvPXtdVsbGxKCgoEKzX6XRITU0VrBf63q1Ro4bovH/88YfR2Exp8zQxtjYz5f3euXMHV69eFaxXq9WoWrWqXc1tiv79+8PJyanUups3b+KFF15AfHy8RWML0el0ko5nrkOHDpnUzth63NhnK7Vq1aph1apVcHBwEGyzfv16dOzYET4+PnB2dkaVKlXw6quvip4/TZs2xfz5820RMgDb5xQuXbqEZcuWITIyEi1atICnpyfat2+PWbNm4fr16yXaOzk5YfXq1aJ5IluSek1mKlvnVYrnPv7991+z5gIsy8HYWlBQkEH54sWLZo+h1WpLvLfi4yo1X2kaNWqEY8eOoXHjxvpjCQkJaNeunV3kKS2lVI6PeRMiIssYW9du2LBB8jkdHBwwZswYJCQk4MyZM/jiiy8wcuRItGjRAoGBgfDx8RFcO4nx9fWVPNbSKPE7qNL5B3tfb1ubjxJbpw0fPhyenp4Gx9zd3dG7d2/BPlFRURbHYg173YehVF5OyvuX0tdAWdkLUZytzg1A+ftmWWQs16HRaEwax1g7c3Mq5rA2d1ba3jxvb2+rYrKGrfd1WEPO/RpK5MrsIa9kTe5Tjj07SrN1jrZatWoG5XPnzpk1lynkPM+KP4NIkd+Ty7OWj2cOlIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKSkVjoA+u9/wL527Vr069cPfn5+aNOmDf7zn/9g06ZNuHPnjllj9e/fH56enjaK9H80Go0s/9l6+fLlze5z8uRJG0TydHF3d8fOnTvRvn37Uuvz8vIwYMAA7NmzR3AMpT5jX19fwbY6nQ43btwwOuaNGzeg1Wqtjs0aGo3GoFxQUACdTidrDErMCQBpaWlW9xE7D8i4WrVqYfPmzbh58ybmzZuHl19+Gc2aNUPlypXh4eEBlUplnhoI3gAAIABJREFUdAxTv0sWLVpkUH7ttdcE2xavW7FiBQoLC0XH9/PzMyi3a9cOubm5yM3NRV5eHvLy8pCfn4+CggIUFBSgsLAQhYWFKCoqQlFREbRaLbRaLeLi4gzGMfUcKyoqQlZWlkltTZWXl2dQdnV1lXR8IiKyvWPHjpX4bjGFSqXC888/j9dffx379u3D5cuXMWDAABtEaD17XVedP3/eaJucnBzBOqHnoOLPHMVdu3bN6LyJiYmKr0OkYmw9mJOTg+TkZJPGSkxMFK0vviZUcm5rXb58Ge3bt8e///4r6bj24Pr16ya1M/Y3N3atSW3atGnw8PAQrJ8+fTqGDRuGAwcOID09HQUFBbh16xZWrVqF5s2b4++//xbsGxYWhoYNG9oibNlzCgUFBTh8+DCmTZuG4OBgTJo0qcS91NPTEx9//LHNYhBiizWZqWz9d/fx8TEoW5JPSU9PlyocyRRfb6emplo0TvF+Qut4uecrzsnJCYcOHUJQUJD+2KlTp9C2bVtcunTJoljshVI5PuZNiIjMp9FoRHP6BQUFos+2lvDy8kJMTAxWrFiB5557TtKxiz8P24JSv4MqmX94Gtbb1uajoqOjBZ9h3N3dMXLkSINjffv2FXzWuHfvHmJiYqyKxxL2vA/DFnk5Oe9f9nANlJW9EMXZKmcLMG9rC8ZyCV5eXiaNY2w/gS1zFtbmzm7dulXimNx5S0DefR2WknO/hhK5MqXzSlLkPm29Z0dpts7RlitXzqD88OFDyeeQ8zyT4jqypI8UnrV8PHOgREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREJCW10gGQocLCQhw/fhzffvstBg8ejMDAQNSsWROTJ0/G8ePHjfZ3dHREu3btbB5n8f8I3lbKlStndp+bN2/aIJKnh5ubG3bs2IEOHTqUWp+fn4+BAwciJiZGdBylPmN3d3fBtnl5edBqtSaNm5OTY1Vc1srLyzMoOzk5QaVSKRSNfAoLC1FQUGB2v6ysLIOyh4eHVCE9c7p37474+HgMGDDAqnNOrTbtEWH9+vV4+PChvtyzZ09UqVKlRLuKFSuif//++rJWq8XSpUuNjl/8XqRWq6HRaKDRaODs7AxnZ2c4OTnB0dERjo6OcHBwgIODA9RqNdRqNVQqVal/B7F7zZMKCwtNamcOFxcXg7LS9ysiIrJMWFgYLl++bNUYNWvWxObNmzFjxgyJopKOva6rUlJSjLax5HlU7NkgNzcXRUVFRsfQ6XRl5nvd2Hqw+PO7NW29vb3tZm5r5eTkIDMzU9IxTeXg4GDT8U39u2dnZ4vWe3p6ShGOSRwcHDBs2DDB+oSEBHz55ZeC9enp6Xj//fdF5wgLC7M4PjFK5hQKCwuxcOFCdOvWDfn5+QZ1w4cPN3ktJWU8ZVXx3Icl3yHm3BPlUvw6N3ZfEFL8vQndP+Serzi1Wg0vLy+DY4sWLUJycrJFcdgLJXN8zJsQEZnP2DoqIyND8jk3bNiA0NBQyceViz3+Dmrr/MPTsN62Nh+VlZWFqKgowfpx48YZlMXWjKtXr1ZkPWLP+zBskZeT8/5lD9dAWdkLUZytcrYA87a2cPfuXdH6SpUqmTROxYoVrZrHGtbmzkr7badx48ZWx2UOufd1WErO/RpK5MqUzitJ8axh6z07ZV3xz8oWv/HIeZ4Vv44smcsec85SsLd8PHOgREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREJCW10gGQcQkJCViwYAHatGmDSZMmGW0fFBRk85jS0tJsPgcAODk5md3n0aNHNojk6eDq6ort27ejY8eOpdbn5+dj0KBB2Llzp9GxlPqMs7KyBNtqNBqo1abdtlxdXa2Ky1qlvQ8XFxcFIpGXo6MjHB0dze7n7u5uUM7MzJQqpGdK7dq1sWXLFoO/Z3Z2NqKjoxEeHo7WrVsjKCgInp6ecHZ2hkqlMngVFRWZPWdubi6ioqL0ZbVajbFjx5ZoN2bMGIPrfe/evUhMTDQ6fk5OjtkxmUKlUtlkXFMUvz+J3feIiMh+3bt3D82bN8cPP/xg9b185syZaNOmjUSRScNe11V5eXlG22i1WrPHFXv+NHUdolKpFF+HSCU9PV20vvjzuzVti8+l5NzWaty4Mfbu3QsfHx9JxwVgdJ3l5eUl+ZxPMvXv7ubmJlov572lfv368PT0FKyPjY01ugaKjY0VrbfVvdsecgqHDh3Cjz/+aHDMyckJ7du3lzWOsqz452zJd4g590S5FL/Ojd0XhBR/b0L3D7nnK66goAAHDhwwOLZ06VK8+uqrFsVhL5TM8TFvQkRkPmO/6Um9Xhg6dCi6desm6ZhyU+p3UCXzD0/DeluKNeP8+fMFc0PNmjVD8+bNAQCenp7o0aOH4DgrV660OhZL2PM+DFvk5eS8f9nDNVBW9kIUZ6ucLcC8rS3Ex8eL1lepUsXoGOXLlxfNVel0Opw9e9bs2Exlbe7s/PnzyM/PNzjWokULq+MylRL7Oiwl534NJXJlSueVpGDrPTtlXUZGhkHZw8ND8jnkPM+Kf2+WlZyzFOwtH88cKBEREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREUlJrXQAZJ6FCxdi3759om28vb1tHkdeXp7d/mfrWq1W6RAU4erqiu3bt6Nz586l1hcUFGDIkCHYsWOHSeMp9RmnpqYK1qlUKlStWtXoGFWqVIFarezt7d69eyWOlS9fXoFI5Ofj42N1H7HzwFoODg42G1tp33zzDVxcXPTl48ePo2bNmhg9ejSioqJw4sQJ3L59G5mZmSgoKDDo6+LiYvHfZvHixdDpdPpyRESEwVgqlQqRkZEGfZYsWWLS2A8ePDAor1ixAiqVyupXaGioRe9VCuXKlTMoJyUlKRQJERFZ69GjR3jzzTcREBCAMWPGYO3atUhMTDT4XjTVf/7zHxtEaLlnbV1lbB0SFBRkdIxq1aopvg6RSm5uruh60NXVFf7+/iaNVb16ddH64s97Ss4thWbNmmH37t3w8vKSdFxXV1fR+jp16kg6X3HVqlWTpF1KSooU4ZikcuXKovX37983OkZ2djays7MtnsNS9pJTWL9+fYljxq4rMl1aWppB2ZKcrhx5YHMV/0719fW1aJzi/YTuH3LPV5xWq0XPnj2xe/du/TG1Wo0VK1ZgwoQJFsViLalyX0rl+Jg3ISIyX15eHh49eiRY7+TkhLp160o23yuvvCJan5aWhunTp6Np06bw8vKCWq02yM/PmjVLslgsZa+/g9oy//A0rLelyEclJCRg586dgvWPf6/q37+/wW9qTzpx4gQuXLhgdSyWsOd9GLYg5/3LHq6BsrIXQk7M20rvzJkzovVNmjQxOkbTpk1F669evYqMjAyz4jKHtbmz/Px8HDp0yODYiy++aHVcplJqX4cl5NyvoUSuTOm8klRsuWenrCv+WRXPS0lBzvOs+HUkRX6vrLC3fDxzoERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERCQltdIBkPnOnDkjWp+eni5LHNeuXROsu3DhAlQqldWvHj16yPJennYuLi7YunUrunTpUmp9QUEBhg4dim3btpk1rhKfsdicABASEmI0blPa2FpWVhYePnxocCwwMFChaORVr149q/vcvHlTsG1hYaFB2dHR0ay5fH19zWr/tPDx8TG4nvLz8zFo0CDcu3fPpP7+/v4Wz3316lXs3btXXw4MDETv3r315a5du6JGjRr68t27d7F9+3aTxi5+LgQHB1scpz3w9PSEp6enwbHExERlgiEiIslkZGRg5cqVGDVqFJ577jl4eHigWbNmGDx4MN59911ER0fj7t27omN07txZpmipNFevXhWtb9eundExOnToIFU4dsHY2syU9xsQEICaNWsK1mu1Wty4ccOu5jbF4sWLkZGRIVjfqlUr7Nq1Cx4eHiaPmZeXJ1rv5+cnWi+UD5BK+/btTWpn7Fox9tlKSaVSidaXK1fO6Biurq5wdXW1eA5L2UtO4dKlSyWOeXt7yx5HWVV8vVunTh2zx7Ckj63dunXLoGxJnkitVqNu3bqi4yo1X2lycnLQv39/bN26VX9MpVJh4cKFePvtt82Ox15yX7bO8ZWGeRMiIsslJCSI1g8ZMkSyuV588UXBury8PLRv3x6ff/45zp49i0ePHkGn0xm0sZdnSiV+B1U6/2Dv622pzJ07V7Bu5MiRcHd3x9ChQwXbrFy50gZRme5Z24ch5/1L6WugrOyFkJPS982yKD4+XjQXWa1aNVSrVk10DGN/02PHjlkUm6mkyJ1t3rzZoFyzZk107NjR2tCMUnJfhyXk3K+hRK7MHvJKUrDlnp2yrvh3c+PGjSWfQ87zrPgziBT5vbLCnvLxzIESERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERGR1NRKB/CsmTFjBr7++mtUq1bN4jGqVKkiWv/gwQPBuqKiItG+zs7OJscRGxsrWFevXj0EBASYPBZZTqPRYMuWLejatWup9YWFhRg+fDi2bNli9thKfMZHjx4VrY+MjDQ6hilt5HDp0iWDsjXX/dOkZcuWZrX39fVFjRo1DI6dOHFCsH1GRoZB2cvLy6z5goODzWr/tGjcuDGcnJz05QMHDuD27dsm9zf3cytu4cKFBuVx48bp//3aa68Z1K1YsQKFhYUmjfvHH39Ap9Ppyy1btoSbm5sVkSqr+H0gLS0NycnJCkVDRES2kp2djfj4eGzatAlz5szB6NGjUbVqVfz888+Cffz8/ODu7i5YL+Vajkoytg6JiIgQrVepVJg4caKUISkuLi5OtH7ChAlGx5gwYQJUKpVgfXx8PFJTU+1qblOcPn0affr0QU5OjmCbdu3a4bfffjP52TU9PV20vlGjRoJ1Pj4+GD16tEnzWKpZs2ZG1wzt2rVDw4YNBesLCwtx8uRJqUMTdP/+fdH60NBQqNXiqdHQ0FDR88jYHNaw15yCpdcNlVT8emjUqJHBut4UzZo1kzIkSRw7dsygXL16dfj7+5s1RoMGDQyei7RarWCuSO75hOTl5WHw4MElnvfmzJmDGTNmmDWWveS+bJ3jKw3zJkREltu7d69o/VtvvSXJM6WHhwc8PDwE6/ft24cLFy6IjtGqVSuL53/af+tWOv9g7+ttqezduxd///13qXWenp4YP348unfvXmp9bm4u1q1bZ8vwjHrW9mHIdf8ClL8GytJeCLkofd8si7KysrB161bRNq+88opgnaOjI0aOHCnaf82aNRbFZg5rc2dr1qxBdna2wTE5zhWl93WYS879GkrkyuwlryQFW+3ZKesOHTpkcI5XrFgRtWrVknQOOc+z4scaNWoEFxcXs+aS+z4jF3vKxzMHSkRERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERFJTKx3As8bPzw/vvPMOrl69iq1bt2LUqFHw9vY2uX/nzp0xcOBA0TZ//fWXYF1mZqZo3+DgYJNj2bVrl2CdWq3GBx98YPJYT3J3d8e7776LGTNmWNT/WaLRaPDrr7+ie/fupdYXFhZixIgR2Lx5s0XjK/EZ79+/X7Tviy++iClTpgjWT5w4EZ07d7YoLqmdOnXKoNyoUSOFIpHX4MGDzWo/cOBAqNX/+zr6559/8PDhQ8H2Dx48MCibc98CgE6dOpnV/rHCwkKD8pMx2wN/f3+D8q1bt8zq379/f6vm37FjB27evKkv9+zZE1WrVkWlSpXQt29f/XGtVotly5aZPG5ycjLOnTunL7u6ulodq5KK3weK3yeIiKjsKiwsxI8//ijaxs3NTbBOyrUclbRv3z7R+tDQUERGRgrWf/jhh2jdurXUYSlq9+7dovWdO3fGW2+9JVjfvn17vPPOOxbNoeTcpjp48CAGDRqEgoICwTYdOnTAtm3b4OLiYnS8e/fuidZHRkZCo9GUOO7o6Ijly5ejQoUKxoO20vLly+Hr61tqna+vL5YsWSLa/+TJk8jOzrZFaKW6fv06dDqdYH1wcDDeffddwXpvb2/Mnj1bdI7ExERLwzPKHnIKNWvWLHHM2Llq72tne3L16lUkJSXpyx4eHujatatZYwwaNEjqsKx248YNg/wAYH6uaPjw4Qbl8+fPIyMjwy7mE1NYWIhRo0YhKirK4PjMmTON3k+epFTuqzhb5/hKw7wJEZHlfvvtN9F6X19fxMTEoHbt2kbH8vf3x7Jly1CjRo0SdcbWN46OjqL1ISEhaNWqldEYhDztv3UrnX94GtbbUpk/f75g3axZs+Ds7Fxq3ZYtW5CWlmarsEzyrO3DkOv+BSh/DZSlvRByUfq+WVYVX7cW9+677wpecx9++KHgNQYAt2/fxt69e62KzxTW5s7S0tIwb948g2NDhgxBjx49rI4NAJo0aVLqWErs67AmXyfnfg0lcmX2lFeylq327JR1KSkpiI+PNzg2ZswYSeeQ8zxLTEzE7du39WVXV1f06tXLrLmGDBliVvunhT3l45kDJSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqmplQ7gWeXg4IB+/fph9erVSE5Oxt69e/HFF19g0KBBqF+/PipVqgSNRgNnZ2dUrlwZ3bt3x7Jly7B79244OTkJjnvlyhUkJCQI1qekpIjG9dVXX6FVq1Zwc3Mz+h727t2LP//8U7B+0qRJePPNN42O81idOnUwa9YsXLt2DV999RX8/f1N7vsscnZ2xqZNm9CzZ89S64uKijBq1Chs3LjR4jmU+Iz37t2LxMRE0XF++OEHLF++HC1btoS7uzvc3d3RsmVLLFu2DPPnzzc5Hls7ceKEQblx48YKRSKvtm3bonXr1ia1VavVmDJlisGxlStXiva5ceMGUlNT9eXKlSsjODjYpPlcXV0xZswYk9oWl5mZWWIse5Kbm2tQ9vPzM7lv9erVMWzYMKvmLyoqwtKlS/VltVqNiIgIhIeHG3xv7d692+g1Xlzx6/rjjz8W/S60Z8XvA8XvE0RE9HQYMmQINm7ciD59+sDZ2dnkfs2aNROsKywsxMOHDwXrpVzLUUn79u3DlStXRNssWbIEP/74I1q0aKFfh7Rt2xZr167F559/LlOk8tm9ezcuXLgg2ubbb7/FmjVr0L59e3h6ekKj0aB+/fr47LPPsGfPHmg0GsG+eXl5WLhwod3NbY5du3Zh1KhR0Gq1gm26dOmCLVu2iMYDAGfOnBGtb9y4MXbv3o22bdvCxcUFvr6+6NOnDw4dOoSBAwdaFL+5GjVqhNOnT2P06NGoXLkynJycULlyZbzyyis4deoUGjZsKNr/yfWCHB4+fIiTJ0+Ktvnyyy+xdu1adOjQAV5eXnB0dERgYCBGjx6N06dPo379+qL9Y2JipAzZgLU5hXXr1qFixYpWxTB48GCDcmFhIQ4dOiTax97XzvZm9erVBuVJkyaZ3Lddu3aizxZKKp7bef311+Ho6GhSX29vb0RGRhocW7FihV3NJ0ar1SIiIgILFiwwOP7ee+9h3rx5UKlURsdQKvdVnK1zfKVh3oSIyHK///670ftm3bp1cfbsWSxcuBBdu3aFv78/nJyc4OXlhVq1amHkyJFYs2YNbty4gYiICKjVJbcSpKSkoLCwUHCOtm3bolq1aqXW1ahRA+vWrTPvjZUyvxh7/61b6fzD07LelkJ0dDTS09NLrRN7D1FRUbYKyWTP2j4Mue5fgPLXQFnaCyEXpe+bZdWePXtw8eJFwXoPDw8cOnQIY8eORaVKleDi4oKGDRtiyZIlmDlzpujY8+fPR1FRkdQhlyDFfpwvv/wSt2/fNji2dOlSBAQEWBVbq1atsHfvXvj4+JSoU2Jfh7X5Ojn3ayiRK7OnvJI1bLlnp6wrfo6PHz8elStXlnQOOc+z6Ohog7I5z43dunUz+rvI08xe8vHMgRIREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREZHU1EoHQICzszNCQ0PxwQcfYOPGjbhw4QLu3r2L3Nxc5OXl4c6dO4iJiUFERITR//B+1apVovUXLlwQrW/RogWOHz+OrKws6HQ6g1dYWJhBW51Oh48++khwLJVKhe+++w5Hjx5FREQE6tWrBw8PDzg6OqJChQqoV68eBg8ejG+++QanTp3CP//8gw8//BAVKlQQjZH+a+PGjejdu7dgvYODA3755ZcSn6PY65NPPjEYQ4nPWKvVYt68eaLvXaVSITw8HCdOnEBmZiYyMzNx4sQJREREQKVSifaVU1xcHHQ6nb7ctm1bu4rPlubPnw+NRmO03euvv47nn39eX87NzUVUVJTRfkeOHDEojx8/3qS45syZY/E9Jjk52aBcrVo1i8axlYSEBINyx44d4e3tbbSfk5MTVq9eDWdnZ6tjWLp0KQoKCvTliIgIREZGGrT58ccfzR531apVBu+vTp06WLJkieWBKigkJMSgvHfvXoUiISIia2g0GgwaNAjbt29HamoqYmJi8NFHH2HgwIFo0KAB/P394erqCrVaDW9vb7Rq1Qpz5szBl19+KTjmX3/9P3t3HmV1Xf8P/DUTsoiyiKAFaAhkhlvCESmsEHEBRcEN3FCCFLNwyYLyq5AaYUqIJiKQgCwJgiigpqhRoKIoiQiypoAg68CwM8PM74+O83PSgZlh5n6G4fE4hz/en/tenpe59zP3/brvc+bDyMnJKfDxktzL8VW5ubkxcODAffZJS0uL7t27x7vvvpu3D3nzzTejc+fOKUqZWjk5OXHPPffst9/VV18d//rXvyIzMzN27doVH330Udx9991RpUqVfY4bPHhwfPbZZ2Vu7aKaMGFC/OxnP9tnn/PPPz+effbZOOywwwrsM3/+/NiwYcM+5/nxj38cb775ZuzcuTM2bdoUU6ZMiebNmxcrd3E1aNAgRowYEatXr449e/bE6tWrY+TIkXHCCSfsc9zatWtj3LhxKUr5/40dO3a/fTp37hwzZsyILVu2RFZWVqxatSpGjBgRDRs23Oe4rVu3xrRp00oq6lccaE2hQ4cO8dFHH8V1111XrFrE6aefHj//+c/zXXv99dcjIyNjn+PK+t65rBk6dGi+3/9t27aNSy65ZL/jKlWqFIMGDSrNaAdk8ODBsWfPnrz2iSeeGL169SrU2Iceeihf7SYzM3O/taJUr7c/ubm5ceutt8aDDz6Y7/qtt94aQ4cOjfT0/X8tk0Tt6+uUdo3vf6mbAByYwvz+q1KlSvTo0SNeeeWVWLt2bezZsye2bNkSixcvjjFjxsTVV1+9z3t/Tk5OvPPOOwU+fsQRR8T06dOjU6dOUbdu3ahYsWI0bNgwfv3rX8ecOXOifv36xXpuXzjYv+tOuv5wMO23D9S2bdtixIgRRRqzatWqmD59eukEKoJD8RxGKu5fEcm/B8rTWYhUSfq+mQoff/xxgWd4fvOb3+xz7EsvvVTg2CeeeKLAcTk5OXHTTTflqz39r9q1a8fQoUNjzZo1sXPnzvjwww/3WwedP39+PPzww/t+wiWkJM7jbNmyJbp06RJ79+7Nu1avXr2YOXPmfuudBbnhhhvijTfeiKOPPvprH0/iXMeB1utSeV4jiVpZWasrHYjSOrNT3o0ePTpWrFiR165Zs2aMHDmyRM5RfSGVr7OhQ4dGdnZ2Xvvss8+OLl267HedI444Ih555JFCZTpYlZV6vBooAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJS096QCUnDVr1sSAAQP22eftt9/O94ftD9TUqVP3+0fdzzrrrBg2bFgsWLAgtm7dGllZWbFu3bpYsGBBTJgwIe68885o2rRpiWU6FFSoUCEuvvjilKyVxM940KBBMXfu3AONnrg1a9bEBx98kNc++uij4+STT04wUeo0a9Ysxo0bF1WrVi2wz9VXXx0PPfRQvmt9+vSJdevW7Xf+ESNG5Gv/8pe/jHPOOafA/unp6fGHP/whfv7zn+937oJ8+WcZEXH++ecXe67SsGDBgvjkk0/y2tWrV48hQ4ZEhQoVChxTs2bNmDZtWvzwhz8skQyff/55TJ48Oa9dt27d+Pa3v53XXr16dUydOrXI82ZnZ8c111wTu3fvzrt24403xqRJk6JWrVqFnqd27dpx1113xcSJE4ucoSRUqVIlmjdvntfOzMyMWbNmJZIFgJJz+OGHx/nnnx/3339/TJw4MebPnx9r166NHTt2xN69e2Pz5s0xe/bs+NWvfhWHHXZYgfOMGTNmn+uU9F6Or3riiSfinXfeSTpGmTJp0qQYOnRoic/7/vvvx+9+97syu3ZRDR8+PO6888599rnooovimWeeKfDzeXZ2dowaNapEc5Ult9xyS+zatSvl6w4ePDgWL15cKnP//ve/j02bNpXK3BElU1OoVatWjBo1Kj788MPo1KlTpKcXrhTctm3beO2116JixYp513JycqJ37977HVvW985lzaJFi+Kxxx7Ld23MmDHRqlWrAsccfvjhMXbs2DJdT12zZk3ce++9+a79/ve/jx49ehQ4Jj09Pe67777o1q1bvut33nlnZGZmlqn1Cus3v/lN9OnTJ9+1n/70pzF69Oh91msikql9fZ3SrvF9mboJwIF744034ve//32przN27NirJBZjAAAgAElEQVR9Pt6oUaMYN25crFq1Knbv3h1Lly6N/v37R82aNQ947fLwXXfS9YeDab99oB577LHIzc0tdP9Ro0ZFTk5OKSYqvEPtHEaq7l8Ryb8HystZiFRK+r5ZXs2cOTMGDx5cYvNlZ2dH9+7dIysrq8Tm3JeSOo/z2muvxS233JLv90WDBg1izpw5cfvtt+erj+1LkyZNYtq0afHUU0/F4YcfXmC/JM51HGi9LpXnNZKolZXVulJxlNaZnfIuKysrrr/++ti7d2/etTZt2sTUqVPj2GOP3e/4atWqxT333LPP10wqX2f/+c9/vlKre/LJJ/d51rRGjRrx3HPPxXe/+90C+5QHZaEerwYKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAaUhPOgAlY/v27XHZZZfFjh079tlvw4YNMXXq1BJd+/bbb4/x48eX6JyULan+GWdnZ8f1118fmZmZxRo/ZsyY2LJlSwmnKp6JEyfma59//vkJJUmN3bt3x3PPPRcRER06dIgPPvggevToEQ0aNIhKlSpF7dq14/zzz4+JEyfGmDFj4hvf+Ebe2LfeeisefvjhQq0zefLkmDt3bl77sMMOi5deein+9Kc/xemnnx5Vq1aNKlWqRKNGjeJnP/tZzJs3L3r37h0REUOHDi3Wc5syZUq+9l133RV33HFHNGzYMCpVqlSsOUvaH/7wh3ztq666KmbPnh1XX3111K1bNypUqBA1atSIpk2bRp8+fWLp0qXRpk2biIgYPXp07N2794AzDB48uMDHhg8fHtnZ2cWa9+23345u3brly9ihQ4f49NNPY/DgwXHJJZdE/fr14/DDD4/DDjssatWqFSeeeGJ06NAh7r333pg1a1Z8/vnn8eCDD0bDhg2LleFA/fjHP46KFSvmtadMmRJZWVmJZAGgbJk/f3489thj++xTGns58tu7d2906dIlMjIyijV+9OjRZWYfUpJuueWWeOmll0psvk8++STat2+/3/pF0msX1YABA+K+++7bZ58OHTp8ZR/0ZQ899FCxX38PPvhgscYV1vDhw2PXrl3FGvvXv/41Jk2aVMKJCmfPnj3RqVOnYv+/FuT555+PgQMHluicX6ekagpNmjSJcePGxWeffRbDhw+Pjh07RpMmTeKoo46KChUqRM2aNeOMM86IHj16xD//+c+YNm1aHHXUUfnmuPvuu+P999/f71oHw965rPnd734XixcvzmtXrVo1pk+fHsOHD48f/ehHUatWrahUqVKccMIJccstt8S8efOiY8eOERExbty4pGLv14MPPhjTp0/Pa6elpcXjjz8ef//73+PSSy+Nb37zm1GxYsWoW7dudO7cOWbNmhV33313vjnGjx8fw4YNK5PrFVbfvn3jrrvuynetc+fOMX78+Hw1gv+VRO3ry1JV4/sydROAknHvvffGkCFDSnWNoUOHxqJFi4o1NiMjI5555plir10evusuC/WHg2m/fSCWLl1apOc5YsSI0gtTDIfaOYxU3L++kOR7oDydhUiVsnDfLK9uu+22+Pvf/37A8+Tk5ES3bt3i7bffLoFUhVdStbMnn3wyfvrTn8aePXvyrtWsWTMGDBgQy5Yti8cffzzat28fJ554Yl49rXr16tG0adO49dZb47XXXov58+dH27ZtC7Veqs91lES9LpXnNZKolZXVulJxlNaZnfJuxowZX6nhtWnTJpYuXRoDBw6M1q1b570OqlWrFt/97nfjuuuuizFjxsTnn38effv2jerVq+9zjVS+zvr27Rvz5s3La1esWDFeeOGFGD16dLRq1Spq1aoVlStXjkaNGkXPnj3jww8/jHPPPTciIsaOHbvf+Q9mSdfj1UABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoDelJBzjUrFixosT/UPnKlSujXbt28dZbbxWq/69//evYtm1bia2fk5MTnTp1ijvuuCP27NlTYvNSdiTxM54/f36cd955kZmZWaRxEydOjBtvvLGUUhXd008/Hbm5uXntyy67LME0qXHDDTfE+++/HxERDRs2jMcffzyWL18eu3btinXr1sXLL78cHTt2zDfmvffei7Zt20Z2dnah1sjOzo7rrrsuMjIy8q5VrFgxfvWrX8XcuXNj27ZtsWPHjliyZEkMGTIkmjRpEhERo0aNil69ehXreb388st5zysiokqVKvHwww/H0qVLY9euXZGbm5vvX7NmzfY751VXXfWVcUX5d8EFF+Sbb9iwYfHMM8/ku3bGGWfEmDFjYtWqVZGVlRUZGRkxZ86cuPfee+Ooo46KiIhXXnklunfvXqz/l//1xhtvxMKFC79yPScnJ4YNG3ZAc48ePTouuOCC2LhxY961qlWrxs033xyTJ0+OFStWxPbt22PPnj2xYcOG+Pjjj2PSpEnRp0+f+MEPfhDp6cl+7Ln88svztUeOHJlQEgDKko8++ijatWsXu3fv3m/fkt7L8VUff/xxnHvuufk+ZxbGhAkTomvXrpGWllZgn5ycnAONl4js7Oy4+OKL4/777z/g5zB16tRo2rRpfPbZZ2V+7eK45557YtCgQfvsc+WVV8bIkSO/9rPpmjVromvXroXeF0X893X161//Ovr161fkvEXx9ttvR/v27Yt8DxozZkz87Gc/K6VUhTN37txo3bp1LFmypETme+qpp+KKK64o0s+puEq6pnDsscdG165dY+LEiTF//vzYuHFjZGVlxaZNm+K9996Lxx9/PM4+++x8Y/bs2RN33nlnoV9jpbF3Lu+2bdsWrVu3juXLl+ddS09Pj65du8aMGTNiw4YNsWvXrli2bFn85S9/iYYNG0ZExFtvvRU9evTIN1dx684lXZ+I+O/9qX379vHCCy/ku37eeefFc889F6tXr47du3fHqlWrYuzYsXHWWWfl6zdq1Ki45pprCv0cUr1eUTz00ENxyy235Hs/d+jQIZ5//vmoUqXK145Jovb1v1JR4/sydROAknPzzTdH165dS62GsGfPnrj44otj/fr1RRqXkZERF1xwQSxduvSA1i8P33UnXX842PbbB2J/+/QvzJw5s8T2jSXlUDyHUdr3ry8k/R4oL2chUinp+2Z5lZWVFe3bt4/hw4cXe44tW7bE5ZdfnsgeriRrZ0899VS0bNkyPvroo3zX69WrFz169Ijnn38+Pv7447x62ubNm2POnDnx6KOPxjnnnJNvTGZmZvz2t7+NyZMnf+1aqT7XUVL1ulSd10iiVlaW60pFVZpndr7sQOuJqaivF9Wf//znuOGGG/J97qpatWr07Nkzpk+fnvc62LJlSyxcuDBGjRoVV199dYH1vf+VytfZrl27ok2bNl95LVxzzTXx+uuvx4YNG2Lnzp2xZMmSGDhwYNSrVy8iImbNmvWV91F5k3Q9Xg0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0pCedIBDzYABA+KYY46JG2+8MZ5//vnIyMgo9lzr1q2L/v37x/e+972YMWNGocctWbIkzjvvvFixYkWx1/5fubm58ec//zlOPfXUGDJkSOzYsaNY82zevDnGjx8fnTt3jt69e5dYPg5cEj/j2bNnR7NmzeKNN97Y77w7d+6M3r17xxVXXBFZWVnFylYaPv3003j99dfz2s2bN4/69esnmKj0ZWZmxk9+8pMYPXr0fvvm5ubG4MGDo1WrVrF58+YirfPRRx9Fy5YtY/78+fvtu3379rjzzjujS5cukZOTU6R1vpCTkxMdO3aM999/v1jjUyE3Nzeuvfba6N+/f+zdu3e//ffs2RMPPPBAtGvXLnbt2lViOZ544omvXHv55ZdL5PfO9OnT45RTTolBgwbFzp07D3i+VKlQoUJccsklee2VK1fGa6+9lmAiAJKWmZkZffr0ibPOOqvQvyNLYy/HV73//vvRrFmzePXVV/fbd/v27XHXXXfFVVddFdnZ2XHEEUcU2PdA9v9J27t3b/zf//1fNG/ePJ599tkif6aeM2dOXHnlldG+ffvYtGnTQbN2cdx2220xYsSIffa55pprYtiwYZGWlvaVxyZPnhzt27eP1atX73etpUuXxnnnnRd/+tOfihu3SF599dU488wz45133tlv361bt0bPnj3j+uuvL9TepLTNnTs3TjnllLj77rtj1apVRR6fm5sb//znP6NVq1bRtWvXlNUdDqSmcOqpp8Zvf/vbePfdd4u1D87KyopJkybFKaecEgMGDCj0uINh71wWrVq1Klq0aBHPPPPMfvvm5ubGsGHDonXr1pGbm5vvsS1btpRWxGLZuXNndOzYMX7xi1/E+vXrCzXms88+i65du8YNN9wQ2dnZZXq9ohg8eHB07do13z3xggsuiGnTphX4+SHVta//laoaX4S6CUBpeOqpp6JJkyYxYMCAIn9GmD17dlx66aWxbNmyAvssWbIkmjZtGv/6178KNeeMGTOiWbNmhdpP7E95+a476frDwbbfLq5XXnklFi1atN9++9vLJ+VQPIdR2vevLyT9HigPZyFSLen7Znm1Z8+e6NatW7Rr1y4++OCDQo/bu3dvPP3003HyySfHc889V4oJC1bS53HefffdOP3006N79+6xYMGCIo//5JNPom/fvtG4cePo169fgWcwUn2uoyTrdak6r5FEraws15WKqjTP7JR3I0eOjGbNmsWUKVNKZf5Uvs7WrVsXLVu2jJEjR+63b25ubjz55JPRpk2bYn/ePJgkVY9XAwUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKC0VEg6wKEoIyMjRowYESNGjIi0tLRo0qRJtGjRIk466aRo1KhRnHDCCXHUUUfFEUccEYcffnjs3r07tm7dGps3b44lS5bEv//973jzzTfj1VdfLdIfs/+yt956Kxo3bhxXXHFFtG3bNs4444w45phj4sgjj4wKFYr/sli0aFHcfPPN0bt372jdunX84Ac/iDPPPDOOPfbYqFmzZlSrVi2ysrJi+/btkZGREf/5z39i2bJl8eGHH8asWbNi/vz5kZOTU+z1KX2p/hkvWbIkzjnnnDjnnHOic+fO0aJFi6hbt25UqlQp1qxZE8uXL4/JkyfH+PHjY/369aX4zItv4MCB0bp164iISEtLixtuuCHuu+++hFOVrq1bt8Z1110X999/f1xzzTXRpk2bqFu3btSpUycyMzNj5cqV8eqrr8bo0aNj/vz5xV5nwYIFcdppp8Xll18el156aTRv3jzq1KkTFSpUiNWrV8fy5ctj0qRJ8cwzz8SmTZsO+Hl9+umn0bx582jbtm106NAhTjvttKhfv34ceeSRUalSpQOevyRkZ2dHr169YsiQIdGtW7do1apVNG7cOKpXrx7btm2LtWvXxvLly+OFF16I5557LtatW1fiGUaPHh0DBw6MtLS0vGtDhgwpsfnXrFkTPXv2jPvuuy8uvPDCOOecc+L73/9+1K5dO2rVqhUREZmZmXn/Nm7cGAsXLoz58+fn/Uu1Sy65JI4++ui89qOPPur3HcBBbOzYsTFz5sxo1KhRNG7cOBo3bhyNGjWKOnXqxJFHHpn374gjjoi9e/fG9u3b8/ZzCxYsiNdeey1ee+212LVrV5HXLq29HPktX748zjvvvPjJT34SnTt3jh/+8If59iHLli2LSZMmxYQJE2Ljxo0REVGnTp1IT08vcM6yul8pijlz5sQVV1wRxx13XLRp0ybOPvvsOO200+Loo4+Oo446KipUqBAZGRmxadOmWLJkSfzrX/+Kf/zjHzFnzpyDeu2iyM3NjW7dukW1atWiY8eOBfa78cYbIysrK26++ebIzc3N99hLL70UjRs3ji5dukS7du3i1FNPjaOPPjqys7Nj1apV8e9//zvGjRsXL7/8cmRlZZX2U8pn4cKFcdZZZ0XLli2jc+fO8YMf/CC+9a1vRfXq1WPt2rWxbNmymDx5cvztb3+LtWvXpjTb/uzevTseeOCB6NevX/z4xz+OH/3oR3HaaafFSSedFDVq1Ihq1apFpUqVYtu2bbF169b4/PPPY968eTF37tyYMmVKfPrpp4nkLm5NYfHixdGvX7/o169f1KhRI1q2bBlnnXVWnHTSSdG4ceM45phjolq1alGhQoXYtm1b3l593rx5MWfOnJg8eXKx99EHw965LFq3bl106tQpBgwYENdcc020atUq6tatG1WrVo21a9fGqlWr4u9//3uMGTMmli1bFhERtWvXzjfH5s2bk4i+T3v37o3HHnssRo4cGe3bt4+2bdvG6aefHnXq1Inq1avH5s2bY+3atfHee+/Fiy++GFOmTImdO3ceNOsVxYgRI2Lnzp0xevTovM9trVq1ildeeSUuvPDC2LJly1fGpLr29b9SVeNTNwEoHStWrIg777wz7rnnnrzv9Jo3bx5169aNmjVrRo0aNWLXrl2xYcOGmD9/frz55psxceLEWLx4caHmX7lyZfzoRz+K1q1b5+2dv/Wtb0XlypVj/fr1sWbNmpgxY0ZMmDAhZs+eXaLPrbx8110W6g8Hy367uHJzc+Oxxx6LRx99tMA+O3bsiPHjx6cwVdEdaucwSvv+9WVJvgfKw1mIVCsL983y6sUXX4wXX3wxWrRoEe3bt48WLVpEo0aNolatWlGxYsXYsWNHrF69Oj766KP4xz/+ERMmTIg1a9YkHbvEz+NkZ2fHsGHDYtiwYXHaaafFhRdeGGeeeWZ85zvfyavT5ObmxubNm2Pjxo2xaNGimD17dsycOTNmzZr1lVrvvtZJ5bmOkqzXpeq8RhK1srJcVyqK0j6zU959+OGH0b59+zj55JOjXbt20bp162jQoEHUrl07Dj/88NiyZUtkZGRERkZGLF26NGbPnh2zZ8+OuXPnFmr+VL7ONm3aFDfccEM88sgjce2110br1q2jXr16ccQRR+S9j15++eUYM2ZMLF++PCLikPm+OYl7jBooAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApSUtNzc3N+kQB2LYsGHRvXv3pGMAFCgtLS0WLFgQ3/3udyMiYsWKFdGgQYPIyclJOFnJ+PKvkd27d0flypUTTENZ0K5du5g6dWpe+7PPPovjjz8+9u7dm2CqZL3yyivRpk2biIjYtm1b1KtXL7Zs2ZJwquI78sgjIzMzM+kYlGHVqlWLrVu3Jh0DIKXatm0b06ZNK/Dx/v37R69evVKYCArvoosuiilTphT4ePfu3WPYsGEpTMQXyntNgQNz4YUXxosvvpjXnjhxYlx++eUJJuJglmSNr7zVTaC4hg4dGt26dUs6xiHN984cDNQfiu7II4+MVatWRbVq1b728VGjRkWXLl1SnApIFffN8k3tjC9TK/svZ3agdBzoPaY810CTOkd23HHHxcqVK/Nda9GiRbz11ltf6fvmm29GixYtIuK/nx/+1x133BEPP/xw6QQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoXRPSk04AUN7l5ubGAw88kNc+7rjj4tJLL00wEZSu7t2752sPHz489u7dm1Ca5J100klx7rnn5rUfffTR2LJlS4KJAIDS0KlTp30+/vrrr6coCVCeqCmwLz/5yU/ytWfPnp1MEDgA6iYAUDTqD0W3devW2LBhQ4GPjxgxInVhgJRz3yzf1M74MrWy/3JmB0rHgdxj1EABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoTelJBwA4FIwdOzbmz5+f1+7du3eCaaD01K1bNy666KK8dnZ2dgwbNizBRMnr1atXpKWlRUTE5s2b48EHH0w4EQBQ0r7//e/HVVddVeDjO3fujH/+858pTASUJ2oKfJ3KlSvHjTfemO/ajBkzEkoDxaduAgCFp/5QPE2bNo0TTjjhax/7z3/+E//4xz9SGwhIGffNQ4PaGRFqZV9wZgdKx4HeY9RAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKE3pSQcAOBTk5ORE796989rNmjWL888/P8FEUDpuu+22+MY3vpHXnjhxYqxcuTLBRMlq0KBBXH311Xntfv36xebNmxNMBADsS61ateL111+Piy66KNLTC1cy+f73vx+TJ0+OihUrFthn2LBhsWvXrpKKCRxi1BT4Og899FDUrl07r/3vf/873nnnnQQTQdGpmwBwqFJ/SK277767wMeeeOKJyM3NTWEaoDjcN9kXtTMi1Mq+4MwOlI4DuceogQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFDa0pMOAHComDp1akybNi2v/cc//jHS0tISTAQl6zvf+U7ceuutee3c3Nzo379/gomS98ADD0SFChUiImLRokUxcODAhBMBAPuSlpYWrVq1iilTpsSaNWviySefjOuvvz5OPfXUOProo6NChQpRtWrVOP7446Njx44xZsyYeOedd+K4444rcM6tW7fGfffdl8JnAZRHagrl28MPPxzdu3ePihUr7rdvxYoV489//nP8/Oc/z3f9UN9/c3BSNwHgUKX+UPqqVKkSZ5xxRowaNSouvfTSr+2zffv2GDZsWIqTAcXhvsn+qJ2VL2plxePMDhROqu8xaqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUtgpJBwA4lPzyl7+M1q1bR+XKleP000+Pa6+9Np5++umkY8EBOfbYY+Occ86JP/7xj1G5cuW86+PGjYu5c+cmmCxZTZs2jU6dOuW1f/GLX8SePXsSTAQAFEWdOnWie/fu0b1792LPkZOTE926dYv169eXYDLgUKWmUH4df/zxcccdd0S/fv1i/Pjx8frrr8f7778f69ati927d0fNmjWjcePG0apVq7jpppuiXr16+caPGzcu/va3vyWUHopH3QQA/kv9oeQ88cQTcdNNNxW6/0MPPRSbNm0qxURAaXDfpCBqZ+WHWlnROLMDRZPKe4waKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKlQIekAAIeS5cuXR5UqVZKOAQfs/vvvj9/97ncFPr5u3bq4/fbbU5io7HnvvfciPT096RgAQEJyc3Pjl7/8ZYwfP77Ax0tDWlpaqcwLJcnrv3jUFMq/WrVqRY8ePaJHjx6FHvPcc89F9+7dSzEVlA51EwAoGfurP/D1Fi1aFA8++GCRx9nPwsFP3bb8Ujsrf9TKCubMDhy4VNxj1EABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIBX9RGwAoUevXr4+2bdvGunXrko4CAJCIFStWxLnnnht/+ctfko4CQDm1evXq6NmzZ1x22WWxffv2pOMAAJAA9YfiycjIiCuvvDJ27NiRdBQgxdw3ofxSK/v/nNmBkuceAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQFlWIekAAMDBb+vWrbF48eKYNm1aDBo0KDZu3Jh0JACAlFu6dGk8+eSTMWTIkMjMzEw6DgAHia5du8bIkSPjrLPOipNPPjnq1asX1atXjxo1akS1atUiKysrNm3aFGvXro233347ZsyYES+88ELs3r076egAACRA/aH4FixYEJ07d4558+YlHQVIIfdNOLiolRWdMztQeO4xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlDcVkg4AwMEtLS0t6Qgk4O67746777476RgAACVqw4YNUbdu3Tj11FPjlFNOiVNOOSVOOOGEqFGjRlSvXj2qVasWVatWje3bt8eWLVsiIyMjFi5cGO+880689dZb8fbbb0dubm7STwOKbOrUqfZ2kKDMzMyYMmVKTJkyJekoHML8HgCA1FF/SJ2dO3fGunXr4r333otnn302nn322cjKyko6FlBE7ptwaFEr2z9ndqD43GMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAobyokHQAAAACgrFi9enWsXr06Xn755VJdJy0trVTnh7LM6x8AADjUpar+cCi5+eab4+abby7VNexnITnqtgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8FXpSQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgcNKTDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDhpCcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMJJTzoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhZOedAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJz3pAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABROetIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJz0pAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQOOlJBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBw0pMOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQOGkJx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAwklPOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACFk550AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAonPekAAAAAAAAAAAAAAAAAAAAAAAAAAM/KLHUAACAASURBVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFE560gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAonPSkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFA46UkHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHDSkw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA4aQnHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDCSU86AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIWTnnQAAACgdLzxxhuxdOnSpGMAAAAAQKF9/PHHMXPmzMjNzU06CgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUWelJBwAAAErH3/72t2jcuHE0adIk+vTpE5988knSkQAAAABgn+bNmxdnn312HHfccdGzZ8+YOXNm0pEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoMxJTzoAAABQuhYsWBB9+/aNhg0bRsuWLeORRx6J9evXJx0LAAAAAAq0atWqGDRoUJx99tnxve99L/r06ROLFy9OOhYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlAnpSQcAAABSIycnJ2bNmhW33XZbfPOb34w2bdrEqFGjYtu2bUlHAwAAAIACLVy4MPr27RsnnnhiNGnSJPr37x9r1qxJOhYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCY96QAAAEDq7d27N6ZPnx5dunSJb37zm3HttdfGiy++GFlZWUlHAwAAAIACLViwIHr16hX169ePNm3axF//+tfYvHlz0rEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIKXSkw4AAAAka9u2bTFmzJho165dHHPMMXH99dfH9OnTIycnJ+loAAAAAPC19u7dG9OnT4+f/vSnceyxx8bFF18co0aNim3btiUdDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABKXXrSAQAAgLIjIyMjnn766WjTpk0cf/zx0bNnz5g5c2bSsQAAAACgQLt3746pU6dGly5dok6dOnHllVfGlClTIisrK+loAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAq0pMOAAAAlE2rVq2KQYMGxdlnnx3f+973ok+fPrF48eKkYwEAAABAgXbu3BkTJkyI9u3bx7HHHhvXX399TJ8+PXJzc5OOBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlJj3pAAAAQNm3cOHC6Nu3b5x44olx5plnxsCBA2P16tVJxwIAAACAAm3atCmefvrpaNOmTTRo0CB69eoVH3zwQdKxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCApScdAAAAOLi8++67cfvtt0f9+vWjZcuW8cgjj8T69euTjgUAAAAABfr000+jf//+cfrpp0eTJk2iT58+sXjx4qRjAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECxpCcdAAAAODjl5OTErFmz4rbbbov69evHxRdfHKNGjYrc3NykowEAAABAgRYsWBB9+/aNE088MZo0aRL9+/ePLVu2JB0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqtQtIBAAA4uGRnZ8eVV16ZdAwK4b333kvZWrt3746pU6fG1KlTIy0tLWXrAgAAAJQHQ4YMiVdeeSXpGGXCypUrU7reggULolevXpGenp7SdQEAAAAOdjt37kzkHNnGjRtTviYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBZVCHpAAAAHFxycnJiwoQJScegDMvNzU06AgAAAMBBZc6cOTFnzpykYxzScnJyko4AAAAAcFDJzs52jgwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBB6UkHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHDSkw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA4aQnHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDCqZB0AAAADi5paWlxwgknJB2DQtiwYUNkZmYmHQMAAACA/ahdu3YceeSRSccoE7Zv3x5r165NOgYAAAAA+5Genh7f/va3k44RERHVqlVLOgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDKVUg6AAAAB5fDDjssli1blnQMCuGmm26KJ598MmXr1apVKy677LIYPXp07NixI2XrAgAAABzs/vCHP0S3bt2SjlEmjB8/Pq666qqUrVe5cuU499z/x969R1ld1vsD/8yegUHuVxVh8QsxXYJ2UKxQFC+HwrwUXkgBUY+omR4MbaWUelpLy8sJJdNT4SXMUlAzPY6lhXY0DTMvpeINFSkx7gKOIgzM7N8fLie3M3vP3jN7z3cur9dae639PN/n+zyfPfMd5t3H1poJMWTIkJg3b16rnQsAAADQ3vXo0aPN/P/I7rrrrvjd736XdBkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtKpV0AQAAQPvVt2/fmD59etx3332xatWqmDdvXpSXlyddFgAAAABkVV5eHhMmTIif//znsWbNmqiqqor99tsv6bIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIG8VSRcAAAC0LzvssEN8+ctfjilTpsThhx8elZWVSZcEAAAAADmlUqk46KCDYsqUKXH88cfHgAEDki4JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqtIukCAACAtq+8vDzGjh0bJ598ckyZMiV69eqVdEkAAAAA0KSRI0fG5MmT4+STT45dd9016XIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoCgqki4AAABom1KpVIwbNy6mTJkSkydPjoEDByZdEgAAAAA0affdd48pU6bElClTYo899ki6HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAouoqkCwAAANqWkSNHxuTJk2P69OkxYsSIpMsBAAAAgCbtsssucfzxx8fkyZNj3LhxUVZWlnRJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAyFUkXUGqpVCr22GOPpMsAACipN954I2pqapIug3Zst912iylTpsSUKVNizz33LOlZgwcPjr59+5b0DACg/Vu5cmVs3Lgx6/UePXrEsGHDWrEiAIDme/XVV6Ouri7pMjqc/v37x3HHHRdTp06N8ePHRyqVKtlZ/rszAJCPurq6ePXVV3OuGTZsWPTo0aOVKgIAaL6NGzfGypUrky4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACALCqSLqDUevToES+99FLSZQAAlNTIkSPj5ZdfTroM2pkBAwbEcccdF9OnT49x48ZFWVlZq5x76aWXxumnn94qZwEA7deMGTPiZz/7Wdbr48aNi9/97netWBEAQPP17t07qqurky6jQ+jWrVtMmDAhTj755PjKV74SXbt2bZVz/XdnACAfmzZtir59++ZcM2/evDj88MNbqSIAgOa76aab4owzzki6DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALKoSLoAAACg9fTt2zeOPvromDx5cnzpS1+Kigr/kwAAAACAtq28vDwOPfTQmD59ehxzzDHRq1evpEsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgERVJF0AAABQWt26dYsJEybE5MmT4/jjj4/u3bsnXRIAAAAA5JRKpWL//fePyZMnx5QpU2LHHXdMuiQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaDMqki4AAAAojc9//vNx0EEHxaRJk6Jnz55JlwMAAAAATRoyZEjMmTMnTjjhhBg6dGjS5QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAm1SRdAEAAEBpnHbaaUmXAAAAAAAFGTduXIwbNy7pMgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgTUslXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5SSVdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPlJJV0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+UklXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5SSVdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPlJJV0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+UklXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5SSVdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPlJJV0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+UklXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5SSVdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPlJJV0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+UklXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5SSVdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPlJJV0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+UklXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5SSVdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPlJJV0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+UklXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5SSVdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPlJJV0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+UklXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5SSVdANC2zZkzJ8rKyupfGzduTLokWtGjjz6a8f3/6HXNNdckXRo026mnntrgme7Ro0esWLEi6dIAaAPk385N/qUjkn+hc5NtOjfZho5ItgHITvbrvOQ+OirZDzovuaZzk23oqGQbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASiGVdAFk9+KLL8Z///d/x8SJE2PkyJExcODAqKysjF122SVGjx4dJ5xwQtxyyy2xevXqpEsFOqDa2tr4xje+0WB+5513jq9//esJVATFcckll0RFRUXG3ObNm+OCCy5IqCIAoC2Qf+mo5N/k6O0BSZJt6KhkGwDIJPfRkcl+ydDTApIk29CRyTYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUQirpAmjoz3/+cxx00EGx1157xYUXXhi///3v4+WXX47169dHTU1NrFy5Mp577rm488474z/+4z9iyJAhcdZZZ8WqVauSLh3oQObPnx/PPfdcg/lvfvObscMOO2S97/rrr4+ysrKsr969e8fatWvzqmHo0KFZ99m4cWOzPxttU01NTbz00ktx7733xlVXXRWnnXZajBs3LgYOHJj1OaioqCj4nBEjRsTUqVMbzC9YsCCefPLJYnwUoB1YsmRJxr8nxx9/fNIlAQlrbv6NkIFpHvm349LbA9oCvT1am2wDrUNPC/gkPS2SIPt1THpaQFsg29AWLV68OCoqKnI+X/fff3+T+8g2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlEIq6QL4l9ra2jjnnHNi//33j8cff7yg++bNmxe77bZb/OpXvyphhYW75ZZbMv64++uvv550Sa3O14D2qKamJi677LIG8z179owzzjijRXtXV1c3ujece+65MWrUqDjmmGNi9uzZMX/+/Fi8eHGsX7++6Gedd955jc5fcsklRT8LoLORf2mPSpl/I2RgGif/djx6ex2TrwHtkd4eSZBtgI5A9qO90dMiKbJfx9IRe1oRfq939s9P+yTb0Ba9++67cdJJJ0VtbW1R9pNtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKLZU0gXwoc2bN8cxxxwTP/7xjzPmd99997jsssvi6aefjtWrV8fWrVvjrbfeij/84Q8xc+bM6N+/f/3a999/P0444YS49tprW7t8oIO5+eab4x//+EeD+VNPPTX69OnT4v3nzZsXy5Yta/E+0FyjR4+Ogw8+uMH8okWL4vHHH0+gIgAgSaXOvxEyMMmSf0tPbw9oS/T26OhkGwD4kJ4WnYHsV1p6WkBbItvQFp1zzjnx5ptvFm0/2QYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBiSyVdAB8644wzoqqqqn5cUVERV1xxRSxZsiQuvvjiGDNmTOy4447RtWvXGDp0aBx66KHxox/9KF555ZU48cQT6++rq6uLWbNmxa9+9askPgbQAdTV1cU111zT6LUZM2YU5Yyampq4+OKLi7IXNFe253nOnDmtXAkAkKTWyL8RMjDJk39LS28PaCv09ugsZBsAOjs9LToT2a909LSAtkK2oS2644474pe//GXR95VtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKKZU0gUQMX/+/Lj99tvrxxUVFbFw4cKYPXt2dOnSJee9gwYNigULFsTZZ5+dMX/GGWfE3//+95LUC3RsVVVV8frrrzeYHz16dIwePbpo5yxcuDD++te/Fm0/KNRxxx0XvXr1ajBfVVUVy5YtS6AiACAJrZV/I2RgkiX/lo7eHtCW6O3RWcg2AHR2elp0JrJfaehpAW2JbENb849//CPOOuuskuwt2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBMqaQL6Oyqq6vjvPPOy5i7/PLL47jjjiton+uvvz4OO+yw+vHGjRvjm9/8ZlFqBDqXm266qdH5448/vqjnpNPpuPDCC4u6J+1bZWVl7LnnnvGVr3wlLrjggrj55pvjscceizVr1kSPHj2Kfl737t3jiCOOaDBfV1cX8+fPL/p5AEDb1Fr5N0IGJpP82zHo7QFtjd4eSZFtAKB16WmRJNmv/dPTAtoa2Ya2pK6uLk4++eTYuHFjxnxlZWVR9pdtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKKZU0gV0djfeeGNs2rSpfrzPPvvE+eefX/A+ZWVlMW/evIw/rH7PPffEG2+8UZQ625J0Oh2///3v44QTTog999wzevbsGf369YvPfOYz8a1vfStefPHFpEtM3IYNG+LHP/5xTJo0KUaMGBF9+vSJLl26xIABA2KvvfaKU089NRYuXBhbtmxp0TnPPvtsfO1rX4u99947+vTpE7169YpPf/rTMWPGjHj88cebtedbb70Vc+fOjWOPPTZGjBgRvXr1im7dusWQIUNi//33j9mzZ8ezzz7borojSvscpdPpePDBB2PmzJmxzz77xODBg6OysjIGDhwYe++9d5x99tnx0EMPtfgzlMLatWvjwQcfbPTapEmTin7eokWL4uGHHy76vtk89thj8d3vfjcmTJgQI0aMiH79+kWXLl1i4MCBsfvuu8fRRx8dV111VTz//PMlOX/NmjVx5ZVXxtixY2OnnXaKbt26xdChQ+Poo4+O+fPnx/bt25u175NPPhnf+973YuLEibHbbrtF//79o2vXrjFo0KAYOXJkTJs2LW655ZaM3zdt0bXXXhsvvfRS3HvvvXHVVVfFaaedFgceeGAMGjSoZGcec8wxjc7fdtttkU6nS3Yu0LGUIhN9nPzbNPm3afJv41o7/0a0bgaWf+XfT5J/i09vr3CyTdNkm6bJNo3T25NtkiTbQPukr5U82S83ua9xHb2nFSH7yX4NyX7FpadVOLmmaXJN02SbxnX0bCPXtO1c05grr7wyHn300Yy5z33uc0V9HmUbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiibdzt14443piMj66tWrV9Il5vSpT30qo97bbrutRftNmTIlY79Zs2ZlXfuVr3ylft2//du/5X3GXXfdlXHGCy+80GBNjx49cn5fGnv94he/yNjjBz/4Qcb1DRs2pFetWpU+8MADc+5TUVGRvvDCC9Pbt29v8rO09a9Bc9xwww3pPn365HVe//7903Pnzk3X1NRk3a+x78P777+fnjp1apP7z5gxI6/vQzqdTv/ud79LT5gwIV1WVpZX7ccee2x6/fr1Te7bGs/Rx/3f//1fep999snrMxx88MHp1157raD9S+2mm25qtNYhQ4bkvcd1111X0HM/ZsyYdF1dXaN7DRkyJOt9GzZsyLumu+++Oz169OiC6powYUL6T3/6U177T5w4Mes+K1eurP+6dO/ePeeZo0aNSr/55pt5f67f/OY36c9//vN5f6a+ffumL7300vTWrVvzPqOtyPZvanl5eYv2XbduXdZ/d55++ukiVd869txzz4J/7zT31dbzFcnr1atXzmfoxhtvTLrE9AsvvJBR03HHHZdzfWtkIvm3eeTfpuuXf7MrRv5Np9teBpZ/P3zJvw21t/x72mmn5fwef/GLX0y6RL29j7309mQb2SZ5env/esk2bYts86H20C/p7NrDf3cutKeVTutryX7tI/vJfYXpqD2tdFr2++gl+zXUnrLfxo0bm/weP/DAA4nWmGRPK51u27/X5ZrmkWuarl+2ya6jZhu55sNXe8s1Tz31VLpLly4Zn6Fnz57p119/PT1t2rSsn7Oqqqqgc9pTtmkP/ZKP3HnnnY3WuHjx4vo1jV0///zzE6waAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgRe5MBYl57bXXYvny5fXjvn37xrHHHtuiPU8//fSM8aJFi1q0X1vy7rvvxqGHHhqPP/54znXbt2+Pq666KqZPnx61tbWtVF3bMGfOnDjzzDNj06ZNea1/55134rzzzotHH3007zO2bt0ahx9+eNx+++1Nrr355pvj61//epPrVq1aFRMnToyHHnoo0ul0XnX8+te/jnHjxsXq1avzWv+RUj5HP/nJT2LChAnx17/+Na/1jz76aBxwwAHx9NNP51x3/fXXR1lZWf3rrLPOymv/5njggQcanT/44IOLsn8q1fDXzjPPPBN33HFHUfb/pA8++CBOP/30OO644+Jvf/tbQfc+9NBDMX78+Lj88svzfi6zmTlzZsycOTM2b96cc92LL74Y48ePj40bN+ZcV1NTE+eee24ceeSR8eSTT+Zdx8aNG+O//uu/4pBDDolVq1blfV9HNmDAgBg1alSj17L9PABElCYTfZL82zT5t2nyb26lzr8RrZuB5d9M8m9D8m9x6e0VRrZpmmzTtPaWbVoz10To7X2cbNM5yDbQPPpabYPsl1t7y30RelotJftlkv0akv2KR0+rMHJN0+Sapsk2uXW0bCPXZGpPueb999+PadOmxbZt2zLmr7vuuhgxYkRRz5JtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJaGf82dVvPYY49ljA844IDo1q1bi/YcN25cdOnSpX780ksvxTvvvNOiPduKc889N15++eVIpVJx5plnxhNPPBGbNm2K6urqeOqpp2LmzJlRXl5ev37BggVx+eWXJ1hx63rjjTfioosuqh9XVlbGrFmz4o9//GOsXbs2tm3bFtXV1fH666/HggUL4uSTT44ddtih4HNmzZoVjz32WHTt2jXOPffceOKJJ2LDhg3xwQcfxJIlS+L888/P+D7ceOON8cc//jHv/ffff/+YM2dOPP7447Fq1arYunVrvPvuu/H888/H1VdfHcOGDatf+8orr8QZZ5xRUP2leo5uvfXWOPvss6O2tjYiIrp06RKnnHJKPPjgg7F69eqoqamJdevWxYMPPhiTJk2qv2/t2rUxadKkWLduXUGfo1QeeeSRRuc///nPF2X/E044ISorKxvMX3zxxbFt27ainPGRurq6+OpXvxo333xzs/eora2Niy66KC655JJm73HppZfG9ddfR4ufYAAAIABJREFUn/f6t956Ky688MKs19PpdEyfPj2uu+66Ztf0xBNPxMEHHxybNm1q9h4dSbbn+w9/+EMrVwK0J6XORBHyb1Pk3/zIv7mVOv9GtF4Gln+zk38zyb/Fo7dXGNkmN9kmP7JNbnp7mWSbzkG2gcLpayVP9mua3JdbR+ppRch+uch+mWS/4tDTKoxck5tckx/ZJreOlG3kmuzaQ66ZNWtWLF26NGNu8uTJceqpp5bkPNkGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAYkglXUBn9vTTT2eMP/vZz7Z4z8rKyth7773rx+l0Op555pkW71uo9957L9LpdMyfPz9j/rXXXot0Ot3o66STTsq55//+7/9G165do6qqKubNmxdjx46N3r17R8+ePWO//faLH/3oR7Fo0aLYYYcd6u/53ve+F6+++mpJPmNTSvE1yGXBggVRU1MTERGpVCoefPDBmDt3bhx00EExcODAqKioiJ49e8aIESPixBNPjJ///Ofx9ttvx6xZs6Jr1655n7Nw4cIYNGhQLF68OK699toYO3Zs9O3bN7p16xajRo2Kq6++Om666aaMe6677rqce5aVlcWkSZPixRdfjMWLF8c3v/nNGDduXOy0007RtWvX6NWrV+y9995x/vnnx5IlS+JLX/pS/b1VVVXxyCOP5F1/KZ6jpUuXxte//vX68eDBg2Px4sVxyy23xMSJE2PHHXeMLl26xIABA2LixIlxzz33xE033RRlZWUREfH222/Ht771rbw/Q6ksW7Ys1q9f3+i1j/+70hLDhg2Ls88+u8H8G2+8ETfccENRzvjIxRdfHPfff39R9vr+978fd999d7Pu/clPflLwPbfeemts2LCh0Wvf+9734s4772xWLR+3dOnSOPnkk1u8T0eQ7fl+5plnIp1Ot3I1QHtRikz0SfJvbvJvfuTf7Foj/0a0XgaWf3OTf/9F/i0evT29PdnmQ7JN58k2env5kW1al2wDhdPXakj2+5e2kv3kvuw6Wk8rQvZriuz3L7JfcXTknlZE8X+vyzW5yTX5kW2y62jZRq7JrS3nmnvvvbfBvyNDhw6NefPmlexM2QYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBiSCVdQGe2Zs2ajPGuu+5alH2HDx+eMV67dm1R9m0LrrzyyjjiiCOyXj/00EPjhz/8Yf24pqYmY9yRPf/88/XvDzjggDjkkEOavKdfv34xd+7cGD9+fN7nlJWVxe233x5jxozJuubUU0+NAw88sH5cVVUV27Zty7p+p512invuuSdGjhzZ5Pm9evWKu+66K4YMGVI/d8MNN+RZ/YeK/RxddtllsXnz5oiI6NKlS/z2t7+N/fbbL2cNM2bMiPPPP79+fNttt8WKFSvy/Qgl8dxzz2W9tsceexTtnIsuuij69OnTYP7SSy+N9957ryhnvPXWW3HNNddkvb7zzjvHjTfeGP/85z9j69atsWzZsvj+978f3bt3z3rPBRdcENu3b292TWeeeWa88MILsWXLlli2bFl87Wtfy7p2y5YtsWjRogbzK1eujCuuuCLrfSNHjoyFCxfGqlWroqamJpYvXx6XX355dOvWrdH19913Xzz88MOFf5gOZs8992x0/t13341ly5a1cjVAe1GKTNQY+Tc7+Td/8m/jWiv/RpQ+A8u/8m8h5N/i0dsrnGyTnWyTP9mmcXp7sk1nJdtA4fS1kif75Ufua1xH6mlFyH6yX2Fkv+LQ0yqcXJOdXJM/2aZxHSnbyDXtN9esXLkyTj/99Iy5VCoVv/jFL6Jfv34lO1e2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoBhSSRfQmb3zzjsZ4z59+hRl3759+2aM169fX5R9kzZs2LCYOXNmk+tOP/302GOPPerHt912W2zdurWUpbUJ7733Xv37nj17luycL37xizFhwoQm102ZMqX+/datW+Pll18uWg09evSIs88+u368aNGivO8t9nO0cuXKWLhwYf34zDPPjNGjR+dVy3e+852orKyMiIht27bFvffem9d9pfLmm282Ol9RURE777xz0c4ZMGBAXHDBBQ3m16xZE1dffXVRzpg7d27Wn/sBAwbE4sWL4/TTT4/BgwdH165dY/jw4fGd73wn7rvvvkilGv/VuGzZsrjjjjuaVc9ll10W8+bNi7322isqKytj+PDh8dOf/jSOOuqorPc888wzDeauueaa+OCDDxpdP2rUqHjyySfjhBNOiJ122im6dOkS/+///b/49re/Hffdd1+UlZU1et/3v//9Zn2mjmTIkCFZr2X7uQBojUwk/+Ym/+ZH/s2utfJvROkzsPwr/xZC/i0evb3CyDa5yTb5kW2y09uTbTor2QYKp6+VPNmvaXJfdh2ppxUh+8l+hZH9ikNPqzByTW5yTX5km+w6UraRa9pnrkmn03HKKac0+L11wQUXxCGHHFLSs2UbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiqHxv5ZOq6iurs4Y9+zZsyj7fnKfd999tyj7Jm3q1KlRUVHR5LpUKhUnnXRS/bi6ujr++te/lrK0NmGXXXapf//EE0/E22+/XZJzTjzxxLzW7bvvvhnjN998s6h1HHjggfXv161bF//4xz/yuq/Yz9FDDz0U27dvrx9Pnz49rzoiIvr37x9jx46tHz/22GONrvvP//zPSKfT9a+f/vSneZ9RiGzPzKBBgyKVKu6vi1mzZmU8sx+5+uqrY82aNS3e/ze/+U3Wa5dcckkMHz680Wv//u//HlOnTs167wMPPFBwLXvuuWd8+9vfbvRarp+nf/7znw3m7r///qzrb7311qy/R77whS/El770pUav/fGPf4xNmzZl3bcz2HnnnbNeW7FiRStWArQnrZGJ5N/c5F/5t6VaM/9GlDYDy7+Z5N/c5N/i0dsrjGyTm2zTMbNNa+WaCL29CNmms5JtoHD6WsmT/ZrOfu0t90XoaTWX7JdJ9stN9isOPa3CyDW5yTUds6cVIds0h1yTqb3kmrlz58aiRYsy5saMGROXXnppyc+WbQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiG4v9lePL2yT/4/v777xdl3/feey9j3Lt376Lsm7Rx48blvfaAAw7IGD/11FPFLqfNOfzww+vfb9q0KQ477LC45557Yvv27UU9Z7/99str3Y477pgx3rRpU1Hr+OT+y5cvz+u+Yj9Hjz32WP37ioqK2GefffLePyJi+PDh9e9ff/31gu4tturq6kbnu3fvXvSzunfvHt/97ncbreGyyy5r0d7//Oc/Y+nSpVmvT506Nef9ua4/8sgjBddzyimnRHl5eaPXPv79/6RP/sysWrUqXnnllUbXjhgxIvbdd9+cdXzyef5IbW1txnPcGeV6xj/5OxXgI62RieTf3OTf5XndJ/9m15r596N9S5GB5d/Gyb/Zyb/Fo7dXGNkmN9lmeV73yTbZ6e01fV226ZhkGyicvlbyZL/lTd4j92XXUXpaEbJfNrJfdrJfcehpFUauyU2uWZ7XfbJNdh0l28g1jWvrueb555+P73znOxlzPXr0iNtvvz26dOlS8vNlGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIqhIukCOrMBAwZkjDdu3FiUfT+5T//+/Yuyb9J23333vNfuscceGeOVK1cWu5w255hjjonPfe5z8Ze//CUiIpYuXRrHHnts9OvXLyZMmBDjx4+P/fbbL8aMGRNdunRp9jmDBg3Ka1337t0zxh988EFe97300kvx61//Ov7yl7/EK6+8EuvXr4/q6urYtm1bzvs2bdqU1/7Ffo7+/ve/17/fvn17g8+dTqebfP+R9evX511bKWzdurXR+a5du5bkvBkzZsQ111wTr776asb8vHnz4rzzzotdd921WfuuWLEi67WhQ4c2+Qzvu+++Wa+tXLkyamtro7y8PO969t9//6zXevXqlfVaTU1Nxvitt97KuvaNN96IsrKyvGv6pGXLljX73o6gsrIy67V8/+0COp9SZ6II+bcp8q/821KtnX8jSpOB5d/Cyb/yb7Ho7RVGtslNtpFtWkpv70OyTecj20Dh9LWSJ/s1nf3kvuw6Sk8rQvZrDtlP9isGPa3CyDW5yTV6Wi3VUbKNXFO4pHPNli1bYurUqQ2ewblz5xb0M9sSsg0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADFkEq6gM7sk3/M/s033yzKvsuXL895TnvVp0+fvNf27ds3Y7xhw4Zil9PmlJeXx/333x+HHXZYxvyGDRvirrvuipkzZ8b+++8fffv2jSOOOCJuvfXWqKmpKficysrKZtWXTqdzXn/jjTfiyCOPjFGjRsUll1wSVVVV8dprr8U777wT27Zta3L/6urqvOoo9nO0fv36jHFtbW3Gq66urv6VTqfrX415//33866tFLJ9b5vznOSjvLw8Lr/88gbz27Zti4suuqjZ+65bty7rtXz+PRw4cGDWa3V1dfHOO+8UVM/QoUOzXuvatWve+6xdu7agcwuR62vWGWzZsiXrtR122KEVKwHak1Jloo+Tf3OTf+Xflmrt/BtRmgws/xZO/pV/i0VvrzCyTW6yjWzTUnp7H5JtOh/ZBgqnr5U82a/p7Cf3ZddReloRsl9zyH6yXzHoaRVGrslNrtHTaqmOkm3kmsIlnWuefPLJePHFFzPmJk2aFGeccUar1SDbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUAyppAvozMaMGZMxfuqpp1q8Z01NTbzwwgv147KysgbntFdlZWV5r02n0yWspO0aNGhQPPzww1FVVRVHH310VFZWNlizefPmeOCBB+KUU06JESNGxG9+85sEKs303HPPxdixY+O3v/1ts/eoq6vLa12xn6Nt27blvV8xziulnj17Njr//vvvl+zMY489NsaOHdtg/o477ohnn322ZOe2pu7du2e9Vl5e3oqVZFddXZ10CYnavHlz1mvZfi4AWoP82zT5t2nyb3ZJ5N+Ijp+B5d+2T/4tHr29wsg2TZNtmibbZKe3VxqyTdsn20DbJPs1TfbLTe7LTk+rdGS/tk/2Kw49rcLINU2Ta5om22Qn25SGXNO0xp79e++9N8rKyrK+brvttqz7HX300RlrFy5c2GQNsg0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADFkEq6gM5s/PjxGePFixfH1q1bW7Tnn/70p6ipqakfjxw5MgYMGNCiPT+ptra2qPvla+PGjXmv3bRpU8a4X79+Ra0lqa9Bvo466qi47777YuPGjfHII4/EFVdcEUcddVT07ds3Y92KFSvi6KOPjrvvvjuhSiO2b98e06ZNi3Xr1tXPjRo1Kq644op4+OGH4/XXX49NmzbF1q1bI51O17+WLl3arPOK/Rx9/Odr2LBhGTUW+vr41yAJQ4YMaXR+3bp1UVdXV7Jzr7rqqgZz6XQ6Zs+e3az9Bg4cmPXa2rVrm7w/1/ehrKws+vfv36y6WmrQoEEl2zudTpds7/Zg1apVWa9l+7kAaA3yb/7k3+zk3+ySyr8Rxc3A8m/h5F/5t1j09goj2+RPtslOtslOb+9Dsk3nI9tA2yT75U/2a5zcl11H6WlFyH7NIfvJfsXQXntaEcn8Xpdr8ifXZCfbZNdRso1cU7jOnmsiZBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACKI5V0AZ3Z7rvvHsOGDasfb9iwIe65554W7XnzzTdnjL/whS9kXdu1a9f699u2bcv7jHfeeafwwopg6dKlea999dVXM8Y777xzo+va29egUN26dYuDDz44Zs+eHVVVVbFu3bp4+OGH48gjj6xfk06n45xzzoktW7YkUuOiRYvixRdfrB/PmDEjnnvuuZg9e3YcdthhMWLEiOjdu3fG9yriw5+X5ij2czR48OD69ytWrIjNmzc3q662YPjw4Y3Ob9++PVatWlWyc8ePHx9HHHFEg/lFixbFypUrC95v6NChWa+tWLEi1q5dm/P+Z599Nuu1wYMHR3l5ecE1FUOuz/WFL3wh0ul0s18//OEPW/GTtD0rVqzIeu1Tn/pU6xUC8Anyb+Hk34bk3+ySyr8Rxc3A8q/8Wyj5t3j09goj2xROtmlItslOb+9Dsk3nI9tA2yT7FU72yyT3ZddReloRsp/sVzjZrziS7mlFtK/f63JN4eSahmSb7DpKtpFr5JrmkG0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAohlTSBXR2M2fOzBjPmTMnamtrm7XXsmXL4u67764fp1KpOOecc7Ku7927d/379evX533O888/36z6WupPf/pT3mufeOKJjPFnP/vZRte1t69BS5WXl8dhhx0W999/f3z1q1+tn1+9enVBX99ieuSRR+rfd+3aNa6++uooLy9v8r7mfg+K/RwddNBB9e/r6upi0aJFzaqrLfjMZz6T9dorr7xS0rOvvPLKSKUa/kqqq6sreK9ddtklPv3pT2e9vmDBgpz333777VmvHXLIIQXXUyyDBw+OPfbYo9Frjz76aLz99tsF7VdbWxs33HBDXHHFFcUor13L9nz37NkzRowY0crVAPyL/Nty8q/8m0uS+TeieBlY/s2P/Psv8m9x6e3lT7ZpOdlGtslFb+9Dsk3nI9tA2yT7tVxnz35yX3YdpacVIfvlS/b7F9mveJLsaUW0r9/rck3LdfZcEyHb5NJRso1ckx+5JpNsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDE0/IvttKozzzwzevfuXT9+5pln4tprr23WXmeddVZs2bKlfjxp0qTYbbfdsq4fMmRI/fvVq1fHmjVrmjxj27ZtUVVVlXdNXbt2zRjX1tbmfe8nLViwIK/70+l0/PKXv6wf9+rVK/bdd99G17a3r0ExnXbaaRnj5cuXJ1LHqlWr6t8PGTIk+vTpk9d9d955Z7POK/ZzNHHixCgrK6sfX3/99c2qqy3Ybbfdol+/fo1eW7JkSUnP3nvvveOkk04q2n5HHnlk1muXXnpp1uf94Ycfjttvvz3rvUcccURLS2uRo446qtH5mpqamDZtWlRXVze5xwcffBDz58+P0aNHx9e+9rVYvXp11rXbt2+PsrKyRl977bVXsz9HW/PCCy80Or/vvvtGKiUqAcmRf4tL/s1N/s1U6vwbUdwMLP9mJ/82JP8Wl95e/mSb4pJtcpNtMuntfUi2kW2A1iP7FVdnzH5yX3YdqacVIfvlIvs1JPsVT5I9rYj29XtdrimuzphrImSbXDpStpFrspNrGifbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUAz+MnbCevfuHXPmzMmYmz17dtx7770F7fONb3wjFi1aVD/u06dPXH311TnvGTNmTMb4rrvuavKc6667Lt5+++286+rVq1fGeP369Xnf+0l///vf43/+53+aXPezn/0sXnnllfrxtGnTorKystG17e1rUExlZWUZ4+7duydSxw477FD/fs2aNbFly5Ym77n//vsznvdCFPs5Gj58eBxzzDH144ceeihuvfXWZtXWFhxyyCGNzj/55JMlP/uyyy7L+rNaqPPPPz/rXuvXr48DDjggbr755li1alVs27Ytli9fHldccUV8+ctfjrq6ukbv23XXXeOrX/1qUeprrvPOOy/jZ+bjHn300Rg5cmT84Ac/iL/97W9RXV0dtbW1sXbt2liyZEnMnz8/TjnllNhll13itNNOiyVLlrRy9W3Xn//850bnDz300FauBCCT/Ftc8m9u8m+m1si/EcXLwPKv/FsI+be49PbyJ9sUl2yTm2yTSW9PtunIZBtom2S/4uqM2U/uy62j9LQiZD/ZrzCyX/Ek2dOKaF+/1+Wa4uqMuSZCtmlKR8k2ck37yjWHHHJIpNPpgl7Tpk3Lul9VVVXG2hNPPLHJGmQbAAAAAAAAAAAAAAAAAAAAAP4/e3cfq3Vd/3H8fb4czkQmaNKJMFRmDTGSylWKEwsUARvdGBDKRukBKZpCN7g8TTLEZZBTaynhAQejGp6Ws0yOHEpOYtkWoWZEResGcAoid8e49fz+KE8/PFznfM/hOudzbh6P7Wxe3+u6vtfrHC+8nvseNwAAAAAAAAAAAAAAAAAAiiFLPYCIGTNmxJQpUxpvHzlyJCZPnhyLFi2Ko0ePNvvcXbt2xbRp0+K+++477vjSpUvj3HPPbfa5H/nIR6Jv376NtxcsWBDbtm0r+Pjq6ur46le/2uw53+y888477vYzzzzTque/2bx586Kmpqbg/evXr4+bbrqp8XZZWVncfPPNBR/fFX8GhVx99dWxYsWKOHToUIuPPXz4cCxatOi4Y+9///vbZVdLLrzwwsZ/rq+vj4ULFzb7+LVr18Z11113Uq9Z7PfRggUL4pRTTmm8PWPGjFiyZEmuLQ0NDfGLX/wixo0bFy+99NIJH/Pd7343SkpKGr9mzZqV69xtMX78+BMer6ura7fXfMPZZ58ds2fPLsq5Bg8eHHPnzi14/4svvhgVFRXx9re/PcrKymLIkCFx6623xmuvvVbwOXfddVf07t27KPva6qyzzopbbrml4P3btm2LefPmxfve977o169flJaWRnl5ebznPe+J66+/PlasWBF79uzpwMWt8+b3+v//qq+vP+Fzjh07VvA5ixcvbvE1d+7cGZs3bz7hfePGjTup7wegGPRvYfo3P/1bWMr+jSheA+tf/at/03JtLz9tU5i2ya8rtU1Hdk2Ea3vaJi1tA7yZ9itM++XTlbovwjWtttJ+2k/7pZPqmlZE1/tc1zWF6Zr8tE1h3aVtdE3X7JpUtA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADFkqUewH9UVVXF+PHjG28fOXIk5s2bF8OHD48777wzNm7cGDt37ozDhw/H9u3b48knn4w5c+bE0KFDY9WqVY3Py7Is7rnnnpg0aVKLr3naaafFZz7zmcbbL730Ulx88cVRVVUVO3bsiCNHjsSuXbuipqYmJk+eHJMnT47Dhw/Htddem/v7Gjp0aJx55pmNt++888740Y9+FC+//HIcO3Ys93kiIiZOnBiHDh2KCRMmxOc+97l45plnYv/+/XHgwIH43e9+FzfffHNcccUV8dprrzU+52tf+1qcf/753eZn0Jxnn302pk+fHuXl5TFt2rRYtmxZbNq0KV555ZU4evRoHDx4MP7yl7/EsmXL4qKLLora2trG51555ZUxdOjQom1pjU9+8pNx6qmnNt6+4447Yvz48VFTUxPbtm2LI0eOxM6dO+PnP/95fPrTn45x48bFvn37YvLkyW16vfZ4H11wwQVRVVXVePvw4cMxa9asuOiii+L++++PP/zhD7F37944evRovPrqq7Fly5ZYvXp1zJkzJ84999wYM2ZM1NTURENDQ5u+p2L62Mc+FqWlpU2Ob9u2LTZv3tzur19ZWRn9+/cvyrkWLlwYH/3oR4tyrsrKyvjUpz5VlHOdrNtuuy2mTJmSeka3UVtbe8I/e4MHD44PfvCDCRYB/I/+bZ7+zUf/Ni91/0YUr4H1L3no3/bj2l7LtE3ztE0+2qZ5qdvGtb2WaZvi0jbQeWm/5mm/lum+5qXuvgjtl4f2Ky7t1z5SXNOK6Fqf67qmebomH23TvO7UNrqGvLQNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxdL0b4snib59+8ajjz4as2fPju9///uNx7ds2RKVlZVRWVmZ6xzLly+PSZMm5X7dhQsXxs9+9rP4xz/+ERER27dvj4qKioKPr6ysjPe+973xgx/8INf5e/XqFRUVFXHXXXdFRMSuXbti6tSpJ3zsypUrY9q0aQXPdd9998Wf//zn+NOf/hQPPPBAPPDAA82+9tSpU+PWW29tcWNX+hnksW/fvli1alWsWrUq1+OHDBkSVVVVJ/WaJ2PgwIGxcOHCmDt3buOxNWvWxJo1awo+Z+zYsXH77bfH6tWrW/167fU+uvbaa+PIkSMxa9asOHjwYEREbNy4MT7/+c+3emNK5eXlcdVVV8Vjjz3W5L5HHnkkhg0b1q6v/5a3vCVuueWWXD/zlmRZFqtXr47Zs2fH8uXL23SOXr16xe23316UPcVSUlISK1asiEGDBsU999wTDQ0NbTpP796948Ybb8z1+dKd/eQnPznh8euuuy6yLOvgNQDH07/56N/m6d/mpe7fiOI1sP5tnv79D/3bflzbc20vQtu8Qdukk7ptXNtrmbYpLm0DnZf2y0f7Fab7mpe6+yK0Xx7ar7i0X/tIdU0rout8ruuafHRN87RN87pT2+ia5uma/9E2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFIu/HbsTKS0tjSVLlsSGDRti5MiRuZ/Xq1evmDlzZvz1r3+NSZMmteo1+/fvH+vXr4/hw4c3+7iysrJYvHhx3HHHHa06f0TE/PnzY/To0a1+3pv1798/fvnLX8all17a7ONKS0tj3rx5sXLlyujVq1eu83aVn0GxTZo0KX7961/H4MGDk+6YM2dOLF68OHr37t3iYysqKuLRRx+N0tLSNr1We72PIiKmT58ev/nNb2Ls2LG592RZFldddVU88cQTMXDgwNzPa08VFRUnPF5dXd0hrz9nzpwYNGhQUc7Vp0+fWLZsWVRXV8eIESNa9dzRo0dHXV1dVFZWRklJSVH2FEtZWVncfffdUVtbGx/+8Idb9dwBAwbE3LlzY8uWLfGd73wn3vrWt7ZpQ94/F51ZfX19PP74402OZ1kWN9xwQ4JFAMfTv8WnfwvTv011VP+2R4hqAAAgAElEQVRGFK+B9W9T+vd/9G/7c22vedqm+LRNYdqmKdf2Og9tUxzaBjo37Vd8Pa39dF/LUndfhPbLQ/sVh/ZrXymuaUV0nc91XVN8Pa1rIrRNHt2pbXRNU7rmeNoGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAYipNPYCmRo4cGRs2bIjnn38+HnvssVi3bl3861//ipdffjkOHDgQZ555ZpSXl8f5558f48aNiwkTJsTb3va2Nr/eOeecE5s2bYqVK1fGj3/849i4cWPs2rUr+vXrF+ecc05MmDAhZs6cGe94xzvadP4+ffrE2rVr45FHHonq6urYtGlTbN++Perr6+PYsWOtOtfAgQPjV7/6VTzxxBNRVVUVzz33XGzbti1KS0tj8ODBMXbs2Lj++uvj3e9+d6vO25V+BoU8++yz8fvf/77x629/+1u88sorsXv37ti7d2+ccsopccYZZ8SwYcNi5MiRMWXKlBg2bFhRXrsYvvSlL8UnPvGJWLJkSaxbty62bt0a9fX1MWDAgDjrrLNizJgxMX369KJsbq/3UUTEiBEjoqamJjZt2hQ//elP48knn2z8d3Hw4MHo169fDBo0KEaMGBGXXnppfPzjH4+BAwee9PdUTBMnTozzzjsvtm7detzxjRs3xnPPPRcXXnhhu75+nz594utf/3rMnDmzaOe85ppr4pprrom6urqora2Np556Kv7+97/H7t27o76+Pvr16xdnnHFGDB06NC677LKYMGFCu3+fxTB69OgYPXp0vPDCC7FmzZp4+umn449//GPs3r079uzZE717944BAwbE2WefHZdcckmMGjUqrrzyyigrK8t1/ueff77gfV/4wheK9W0kU11dHQcOHGhy/Oqrr453vvOdCRYBNKV/C9O/+enf5qXu34jiN7D+1b8non87jmt7hWmbwrRNftqmeanbxrW9/LTNydE20Plpv8K0Xz66r3mpuy9C+7WG9js52q9jdPQ1rYiu87muawrTNflpm+Z1x7bRNbqmEG0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAMZU0NDQ0pB5xMh588MGYMWNGwftPO+202LdvXwcuolgWL14cX/nKVxpvv/rqq3H66acnXERX5H3UNt/73vdi9uzZTY7fdNNNce+99yZYRAqLFi2KefPmNTk+ZsyYqK2tTbCouC6//PKoq6trcnz9+vUxatSoBItOzgUXXBCbN2/ukNfSV7SkX79+sX///oL3L126NCoqKjpwUdegWygG76O20b9E6N/O6IYbbohly5YVvH/s2LFRU1PTgYtoDZ9JFIP3UdtoGyK0TWfkeknn5/fObeczm5PlPdQ2uo83aL/OZe/evS3+N+zxxx+PcePGddAiWsNnEsXgfdQ22oaI7t81EV2vbbrS9ZKHH344Jk+e3OT4008/HZdccklERJSUlDS5/4tf/GJ8+9vfbvd9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7eDhLPUCADqfioqKGDx4cJPjy5cvj3379iVYRApr165tcqxv376xdOnSBGuKa9OmTVFXV9fk+BVXXBGjRo1KsAgASEn/EqF/Aeg+tA0R2gYAegLdxxu0HwDdgbYhont3TYS2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoPiy1AMA6HzKysritttua3J8//798eCDDyZYREc7dOhQPPXUU02Of/Ob34whQ4YkWFRcd9999wmPL1iwoIOXAACdgf5F/wLQnWgbtA0A9Ay6jwjtB0D3oW3o7l0ToW0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoviz1AAA6p89+9rMxYsSIJscXL14c//73vxMsoiNt2LChyb/nyy67LGbPnp1oUfFs3bo1fvjDHzY5PnXq1Lj44osTLAIAOgP927PpXwC6G23Ts2kbAOg5dB/aD4DuRNv0bN25ayK0DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO0jSz0AgM6pV69ece+99zY5/uKLL8b999+fYBEdqba29rjbffr0iaqqqigpKUm0qHgWLFgQR48ePe7YqaeeGt/61rcSLQIAOgP927PpXwC6G23Ts2kbAOg5dB/aD4DuRNv0bN25ayK0DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO2jNPUAADqvyy+/PBoaGlLPIIHa2trjbn/jG9+Id73rXYnWFNdDDz0UDz30UOoZAEAnpH97Lv0LQHekbXoubQMAPYvu69m0HwDdjbbpubpz10RoGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANpHaeoBAEDn89vf/jb1BAAA6DD6FwDoTrQNAEDPof0AgO5C1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDrZakHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkE+WegAU8uUvfzkaGhoav04//fTUk+iCvI8AgK5Ct1AM3kcAdBY+kygG7yMA6Bp8ZnOyvIcA6Cx8JlEM3kcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdJQs9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8s9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8s9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8s9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8s9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8s9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8s9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8s9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8s9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8s9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8s9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8s9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8s9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8s9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8s9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8s9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8s9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyKU09oL29/vrr8cILL6SeAQDQrg4dOpR6AuS2Y8cOjQ4AtGjPnj3N3l9fX68pAIAu4/XXX089gZPk984AQB4HDhxo8TH//Oc/dQUA0CXs2LEj9QQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaUZp6QHurr6+P4cOHp54BAAD81/z582P+/PmpZwAAXdyGDRtc9wMAoMP4vTMAUCw33nhj6gkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHQDWeoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5JOlHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEA+WeoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5JOlHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEA+WeoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5FOaesDJKi8vjw996EOpZwAA9Bh9+/ZNPYFO7gMf+EDU19enngEAAADQZZSXl6ee0OP5vTMAAABA6/j/yAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANIqTT3gZE2cODEmTpyYegYAAPBf69atSz0BAAAAAFrF750BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Eqy1AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIJ0s9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyy1AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIJ0s9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyy1AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIJ0s9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyy1AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIJ0s9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyy1AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIJ0s9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyy1AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIJ0s9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyy1AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIJ0s9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyy1AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIJ0s9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyy1AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIJ0s9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyy1AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIJ0s9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyy1AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIJ0s9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyy1AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIJ0s9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyy1AMAAAAAAAAAAAAAAAAAAACA/2PvzoOkqs7/Ab/TM86MwMCAbIVgDOIGwRAF4paAbKKCoqUJxJgYAlWaiEuiRoPlkhhBrUQKUkgFEWNcAJEAJgQJqKiICJSggmVYRAUVZBPQsPfvj28xP4fITM/Wl+V5qk4Vt/uecz63+97uvu+cKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQmVTSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhMKukAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCaVdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyk0o6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJlJJR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzKSSDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBmUkkHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQmVTSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhMKukAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCaVdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyk0o6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJlJJR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzKSSDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBmUkkHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQmVTSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhMKukAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCaVdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyk0o6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJlJJR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzKSSDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBm8pIOkJTVq1fHRx99lHQMAIBEdezYMXJzc5OOwWFm/vz5sXv37qRjAAAAABwyTjjhhGjcuHHSMY5o69atixUrViQdAwAAAOCQkZeXFx06dEg6BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwBErL+kASXnkkUfinnvuSToGAECiNm/eHPXq1Us6BoeZrl27xtatW5OOAQAAAHDIGD16dAwYMCDpGEe0qVOnxsCBA5OOAQAAAHDIKCoqii1btiQdAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4IiVSjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmUklHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDMpJIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGZSSQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCZVNIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEwq6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkJpV0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKTSjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmUklHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDMpJIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGZSSQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCZVNIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEwq6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkJpV0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKTSjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmUklHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDMpJIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGZSSQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCZVNIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEwq6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkJpV0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKTSjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmUklHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDMpJIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGZSSQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCZVNIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEwq6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkJpV0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKTSjoAAAAAAJbJ7yMAACAASURBVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmUklHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDMpJIOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGZSSQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM6mkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCZVNIB4EjWq1evSKfTB2wDBgw4IrNUl5YtW8Z///vfkmO46qqrko4E1KD27dvH3r17S675bt26JR0JAI5Ih+O9xaHM+1FxXrPD36mnnho33nhj/P3vf4+lS5fG2rVrY9euXfHll1/Ghx9+GLNmzYp777032rdvn3TUUqpa56hbt2787Gc/i9GjR8fChQtjzZo18cUXX8TOnTtjw4YN8Z///Ceee+65uP/++6N3795RVFRUQ0eSPcuXLy91/TZt2jTpSBwGvnpObd++Pek4hyx1HAAAqJzNmzcfsG61YMGCA/ZT8+JwV91rhNq2bRu33nprPPvss/HWW2/Fhg0bYseOHbFjx4749NNP4913343JkyfH7bffHp06dYpUyjJM4NCXl5dX6vfB5s2bM+qnFv/11EABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIhlTSAUjetm3bSv2n8/u3Pn36VGi8O+64o8zxXn/99Ro6EihtxIgRUVhYGBERixYtiieeeKLM/SdPnlzqXB03blw2YlKDvKdHlgULFsT48eNLtv/85z9Hfn5+gokAAICDydlnnx3Tpk2LpUuXxkMPPRR9+vSJU089NRo3bhx5eXlx9NFHR4sWLaJLly4xePDgmD9/fixYsCC6du2adPSIqHidY5/69evHyJEj45NPPolHH300BgwYEKeffno0a9YsatWqFUcddVQ0aNAgTjzxxOjVq1fceuutMXXq1Ni4cWPMnDkzrr766igqKqrJQyPL1Es4GKjjAAAAlJabmxsdO3aMwYMHx0svvRQ7duwoc/1Vz549D4u5q0tla2dflZubG/3794933nkn3nrrrbj//vvjsssui7Zt20aDBg0iPz8/8vPzo0mTJnHKKafEJZdcEvfdd1+89NJLsWrVqvj9738fTZs2re5Dg8TtX0+sahs1alTShwRZoQYKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABANqSSDgBUzqhRoyKdTh+wNW3aNOmIibr44ovjwgsvLNm+7bbbIp1OJ5iIilq/fn2pc7q4uDjpSBwCBg8eHLt3746IiJNPPjluuOGGhBMBQPXw+x+g8lKpVNxzzz3xyiuvxAUXXFChvmeccUbMnDkzRowYEXl5eTWUsHyVrXOce+658e6778a1114btWrVqtCceXl50bVr1xg7dmzcddddGfVxLw9UhDoOABWlPgLA4aZVq1ZxzTXXxLPPPhvr16+PefPmxb333hudOnWK/Pz8w3bu6lYda4Tat28fb775ZowZMybatGlT4QwtWrSIO+64I5YtWxa//e1vo7CwsMJj1AT1OoBkqYECAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQ01JJBwCobqlUKoYMGVKyvWDBgnj++ecTTARky8qVK2PcuHEl27fffnsUFxcnmAgAAEhSTk5OPPXUU3HnnXdGKlX5Uuh1110XEydOjLy8vGpMl5nK1jnOPPPM+Ne//hVNmjQp9fjzzz8f/fv3j9NOOy3q168fRx11VDRq1Cjatm0bAwcOjHHjxsW2bduq/TgA9qeOAwAAHMkKCwtj2bJl8fDDD8dll12W1fuhJOeubtWxRujqq6+OOXPmRNu2bUs9vmbNmhg1alT06dMnWrduHY0aNYqjjjoqGjRoEB07dowbbrghXn755VJ96tSpE3/4wx+iT58+lT8oAA4baqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUtFTSAQCq21VXXRWtW7cu2b7vvvsSTANk25AhQyKdTkdERP369eOWW25JOBEAAJCUIUOGxA9/+MNqGeuSSy6JIUOGVMtYFVGZOkdhYWH87W9/izp16pQ8tm7duujcuXP07Nkzxo4dG2+//XZs3rw5du/eHevXr4933nknHnnkkejXr180a9YsfvnLX8by5ctr5JgA9lHHAQAAoCqqukZo4MCB8eijj0Z+fn7JY5s2bYpf//rX0bJly7j22mtjypQp8e6778b69etj9+7dsWnTppg/f34MHz48OnXqFO3atYsZM2ZU2zHBwW78+PGRk5NT6XbNNdckfQiQVWqgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1KRU0gEAqlMqlYrBgweXbH/wwQcxZcqUBBMB2bZ06dKYNWtWyfagQYOiXr16CSYCAACS0K5du7j11lurdcybbropOnToUK1jlqWydY6f//zn0apVq5LtXbt2RY8ePWL27NkZzbt169YYOXJktG7dOq6//vr47LPPKh7+INCqVavIyckpaZ9++mnSkYD9qOMAAABQWVVdI9SlS5cYOXJk5OTklDz2/vvvR4cOHeJPf/pT7Ny5M6NxFi9eHOeff34MGDAgvvzyy8wPAOAwoRZfNjVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAalIq6QAA1emSSy6JE088sWR79OjRsXfv3gQTAUn4y1/+UvLvoqKiGDhwYIJpAODI8o9//CNycnIO2B555JGkIwJHiPvuuy9ycnIO+PyWLVvipptuiuOPPz7y8/OjSZMm0a9fv1i5cuUB++Tm5sbo0aNrIu7Xqmyd4/LLLy+1/eSTT8bixYsrPP+uXbtixIgRcf/991e4L0Cm1HEAAKDmqdtyOKrKGqF69erFX//618jLyyt5bPXq1XHuuefGihUrKpVnzJgx0aVLl1i/fn2l+gNw+FIDBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKakkg4AUJ1uvPHGkn+n0+l47LHHkgsDJGby5MmxYcOGku3rr78+Uik/ewAA4EjRuHHj6Nmz5wGf3717d/To0SOGDRsWH3zwQezatSvWrVsX48aNizPPPDM+/vjjA/b99re/Hd///vdrIvb/qGydo0OHDqW2Z82aVZ2xAKqVOg4AAEDE3r17Y8GCBTF06NDo1q1bDBs27IiYuyqqskbo9ttvj+bNm5d6bODAgWXWBTMxb9686NGjR2zevLlK4wBweFEDBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKbkJR0AMtW0adPo1q1bfO9734szzjgjGjZsGA0aNIiCgoJYv359fPbZZ7Fo0aKYOXNmTJ8+PdavX1/hORo0aBAnnXRSqda8efNo1KhRNGjQIAoLC6OgoCB2794dW7Zsia1bt8aqVati8eLFMX/+/Hjuuedi27ZtNXD0B5/WrVvHlVdeGd26dYsWLVrEMcccE5s2bYpVq1bFjBkzYuzYsfH+++9nNVPLli3j+9//fsn2nDlzYs2aNVnN8FWNGjWKvn37xqWXXhrf+MY3olmzZrF9+/ZYu3ZtzJkzJ5555pmYPn16tc558sknx49+9KPo0aNHNGvWLJo0aRKff/55fPTRRzFjxox48sknY8mSJdU655GusLAwTj311DjttNPitNNOizZt2kTjxo2juLg4iouLo6ioKLZu3RobNmyI9957L1588cWYNGlS1q+P6tC6deu46KKLonv37nH88cdH48aNo7CwMNatWxcffvhhzJw5MyZNmhRvvfVWtc3ZvHnzuPzyy6NXr15x3HHHRdOmTaOoqCgiIho2bBgbNmz42n67du2KKVOmRP/+/SMiokWLFtG1a9f497//XW3ZAGCfwsLC6N69e3Tv3j1at24drVq1irp160adOnViz549sWXLltiyZUt8/vnnsWnTpvjwww/j/fffj/feey+WLFkSy5Yti127diV9GGVq3bp1DBgwIDp37hwnnHBC1KpVK9atWxdDhw6NESNGJJqrJu9LOnXqFP369Ytzzjknjj322CgoKIhPPvkkVq5cGc8++2w888wzsXHjxmo8okPDcccdV3J/3q5duzjmmGOiQYMGkZeXF5s2bYqNGzfGsmXL4pVXXomXXnopFi5ceFjMzf931llnxZVXXhlnn312NGvWLIqLi2Pt2rWxYsWKmDx5cowfPz7Wrl2baMbzzz8/cnJyDvj8xIkTY968eV/73GeffRYPPvhgPPTQQwfsP2DAgHj55ZernLMsla1zFBUVRe3atUs9dqB7p0NNZe8Rq0O26jwdO3aMfv36xXnnnRfHHntsFBUVxaeffhqrV6+OadOmxVNPPRWrVq2q+gFlWd26daN3795xwQUXxHe+851o1KhRFBcXx6ZNm2LdunWxYMGCmDZtWvzzn/+ML7/88pCb73BX0zVHdRyAmlW7du0477zz4uyzz44zzzwzmjVrFg0aNIji4uLYvn17bNiwId5+++2YO3duTJw4MZYtW5bRuIfz31Wz8XfprzoY6g8H4/32wVqPSlK2z82yZGO9QE19fn2dJK+BLl26RN++fUvqLAUFBfHxxx/H8uXLY+LEiTFx4sT4/PPPq22+mpaNc+Ng+NysDul0OlasWBEzZ86MmTNnxqxZs2LTpk0lz3fv3v2wnLu6VGWNUL169WLQoEGlHps4cWK1reF58803y3z+cFhnkq31I0nUypKqKyVZ+zxUZHMtXqtWreKCCy6Irl27xkknnRSNGjWKevXqxbZt22Ljxo2xcePGWLlyZcydOzfmzp0bixYtip07d2Y8fjbPs3bt2pV8N++7jtauXRurV6+O6dOnx1NPPRUrV66s0hzV7XCsx6uBAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUGPSR6i77rorHRFaRHrbtm1lvlZ9+vSp0Hh33HFHmeO9/vrrFRqvTZs26cceeyy9c+fOjN/fL774Iv3ggw+mGzZsWKG5qmrbtm3pMWPGpJs0aZLRfL169SpzvAEDBpTse91111U531cVFhZWKkvTpk3TkyZNKnf87du3p++8886snst33313qQw33nhjhfpPnjy5VP9x48ZV6JzZvn17OiLSubm56bvuuiu9ffv2cl+nF198MePzpaw569Spk3788cfLnW/v3r3pESNGpOvUqZPxfN26dSs1xuTJkyuUt7i4uFT/1atXH3DfRYsWlXsMB9K+fftqeU8r2kaNGlXhrLt27UqPGTMmXb9+/XLH3/8zderUqZXOOm7cuFJjDR06NKN+p5xySkbX/T5PP/10unnz5lU6p48++uj0yJEj03v27DngPOV9xvfs2bPU/k888US1v/+HQ9u8eXPG7y1kqqioKPFzW9Oy0fLz89O/+c1v0ps2barSNXP33Xf/z9gHy+//goKC9PDhww/4nTxs2LD/yV6R+5zK9q3p+5JvfvOb6eeff77c8bdt25a+5ZZb0jk5OemIsr9XFyxYkMh5WpX3Y//Wvn379IQJE9K7d+8u97X5qjfeeCN9xRVXlLxOlWnZnLuqr9lFF12U3rFjR5ljjB07Np2bm1vSZ9iwYWXu/61vfavMOfe/79rfY489Vi3HfMopp6TnzJlT5r7pdDq9ZcuW9KBBg9KpVCqR8z4i0n/84x/LzNi/f/8y+7dp06bM/l988UU6Ly+vRo+hsnWOunXr/k/en/zkJzWWs7rv5b+qqveIy5cvL7VP06ZNyzyWr5u7pus8+1rjxo3TTz/9dLlz7NmzJ/3www+njz766HReXl6p5zZv3pzRXNmol+xrubm56UGDBqU/++yzco8tnU6n16xZk+7fv3+lvzOyMd9X7TtPMmn16tVLv/DCC6X6b9u2LX3hhReW2i+btbjyjqsma477N3UcTYv06NGjy73eqFmjR49O/Dyozta8efP0Aw88kN64cWOFXofXXnstffHFF5f7/VhVmfxdtabrI/u3bP5dOuLgqD8cjPfbmdajunTpUuZ4119/fcbZ8vPzy3xdn3vuuUSv52ycmwdLXS4bn19JXQP7t1atWqVnzZpV7lz76iz7+lX2M6CyNa+D6dw4GD43s9mGDh1a5nH27NnzsJw701aVNUK/+MUv/ueYOnfunLXsNb3OpLrrdV9tNb1+ZF/LZq1sX0uqrlSR2mdSa4iyWU/8utcoWzXafef4+PHj03v37i13rq+67bbbDprzbF8rLi5Ojxkzptw59u7dmx41alS6sLCw0tdRRWvxSb/XSXzGRBy+NdCioqJyX8tsmTBhwtdmfO2110r2+brnf/WrXyWYGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoEompAIOUjk5OXHzzTfHokWL4qc//WkcddRRGfetVatW3HzzzbFkyZI455xzajBlabVr147+/fvHkiVLomfPnlmbN1s6dOgQixcvjksvvbTcfQsKCuKee+6J4cOHZyHZ/7nssstKbc+YMSNrc+9TUFAQU6ZMibvvvjsKCgrK3b9z587x6quvRsOGDSs9Z926dWP27Nlx1VVXlbtvTk5OXHfddfHCCy9E3bp1Kz0nVZOXlxf9+/ePuXPnRsuWLcvcd/To0bFr166S7QsvvDCaN29e4TkbNWpU6tpNp9MxevTocvv94Ac/iDfffDOj636fvn37xhtvvBFt27atcM6IiKKionjxxRfj2muvjVTqwD9VcnJyyhxn9uzZsXPnzpLt3r17V+i7BADKUlRUFNOnT4+hQ4dGcXFx0nFqREFBQUydOjUGDRp0wO/k8r6Pa0JN35ecfvrpsXDhwujRo0e5+9auXTseeOCBmDBhwmH9OyM3Nzd+97vfxbx58+KKK66I3NzcCvXv0KFDTJgwIaZMmRL169c/ZOaujF69esWkSZMiPz//gPsMHz48+vfvH3v27KnxPNWpa9euMX/+/Dj77LPL3beoqCiGDx8ejz/+eJm/6WtS48aNy3x+zZo1VXq+Vq1a0aZNmwrnqojK1jm2bNkSX375ZanHevfuXW25sq267hErI1t1nmOPPTZee+216Nu3b7n7plKpuOaaa2LmzJlRq1atCs2TbbVq1YrJkyfH8OHDM35NmjVrFmPGjInHH3+8wt+t2Z6vIlq0aBGvvvpqnHfeeSWPrV27Njp16hTTpk2rsXmrIts1R3UcgOr14x//OJYuXRq33HJLhe+FzjrrrJgyZUqccMIJNZTu/xxMf1dN4u/SSdcfDtb77YrUo1544YV45513DjjWwIEDM563Z8+eUa9evQM+P3bs2IzHqk4H25qJbKwXyNbnV9LXwHe/+91YuHBhdOnSpdx999VZnnzyycjLy6vwXNmQjXMj6c9NDj5VWSO0f9+VK1fG7NmzqyVXTanIOpOakq31I/+PvfuOjqJs+wf+3U3vCR0SBAlVqvSuEHoJUqTXhNBBAcUHpQroqyBIDRBKiAlIFSkPLYBI7y0g0ksCASG9b7L7++P9uS+TZPvszALfzzk5x3vucl0bZicz19znKEetTK66kqm1T7n3EMlByr14AwYMwOXLl9G7d2+r1JulPM+KFy+OEydOICgoyOBYhUKBkSNHyl5zfhfq8ayBEhERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERkTUo5U6AqDBKpRKbNm3C/PnzYW9vb/Y6JUqUwJEjR9CrVy8RszOsaNGi2L59O+rVqydpXGuqV68eDh8+jBIlSpg0b/z48ejatauVsvo/vr6+qFmzprb9/Plz3Lx50+px8wsLC0Pnzp0BAFevXsXw4cNRsWJFuLq6wtvbG82bN8cvv/wimFOxYkUsXbrU7Jjh4eGoW7cuAODevXsYN24c/P394eLiglKlSqFjx47YsWOHYE6DBg2wd+9e2NnZmR2XhFQqFQ4cOICJEyeiVatW8PPzg7u7O5ycnFCmTBl07doVGzZsgEql0s6pUqUKdu7cCScnJ53rPn/+HL/99pu2bWdnh+HDh5uc39ChQ+Ho6KhtR0dH4969e3rnjBw5Er/++iucnZ21x+Lj4zFt2jTUq1cPRYoUgbOzM/z9/TF27Fg8evRIO6506dI4duwYypUrZ3Ku4eHhaNSoEQAgJiYGo0aNQqVKleDm5oaSJUvi448/RlRUFBQKhd51MjMzcebMGW3b09MTzZo1MzkfIiKiwixZsgStWrWSOw2rWr58Odq1ayd3GgLWfi6pWrUqoqOj4ePjY9L6vXr1wrp160ya86awt7fHrl27MH36dCiVlpWRunbtikuXLsHX19fmY5ujS5cu2L59u+C+O785c+bgs88+g0ajMWltU8eLrVGjRti9ezfc3d1NmjdgwACEhYVZKSv9vL299faL8TutX7++xWvoYmmd49SpU4J2z5498emnn4qWn5TEekY0hxR1Hjc3Nxw5cgT+/v7aYxqNBuHh4fj4449RvHhxuLi4oGLFihg/fjzu378PAGjatClWrlwpwqe0DqVSid27d6NLly6C4//Wav38/ODs7IyyZcti4MCBOHv2rGDcwIEDsWnTJpuNZ4o6dergzJkzqFGjhvbYrVu30LhxY1y8eNEqMcUgdc2RdRwiIvEsXboUv/zyCzw8POROxShyv1eV47203PUHW37eNrUetWzZMp19NWrUQNOmTY1ap3fv3jr7Xr58iT179hidk1hsbc+EFPsFpLp+yf0dqFGjBg4ePAhPT0+TYvXv3x9r1qwxNUWrk+LckPu6SbbHktqZo6MjWrRoITh27NgxWWqw1tpnYg1S7R+Ro1YmZ13J1NqnnHuI5CLVXryJEyciMjJScI5nZGRg6dKlaNu2Lfz8/ODk5ARvb29Uq1YNQ4YMwcaNG5GZmWnU+lKeZ05OTjh48CCqV68uOL5x40YEBASgRIkScHV1ReXKlTFp0iTExsYCAJo1a4bQ0FCjYljDu1CPZw2UiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIrEEpdwJEhZk/fz769OkjylqOjo7YsGEDatWqJcp6xnJ1dcWGDRugUCgkjWsto0aNgoeHh1lzf/jhB5GzKahNmzaC9pkzZ6weMz8nJycMGjQIADB37lzUrVsXa9euxb1795CZmYnk5GScPHkSgwcPxrhx4wRz+/btiw8++MCsmN27dwcA7Ny5E7Vr18by5ctx//59ZGVl4fnz59i/fz969uyJgQMHIi8vTzu3efPmmDRpkgWfWHx16tSBQqGAQqHAq1evBH0+Pj7avsJ+Lly4IEvOL168wPTp01GqVCl06NABP//8M/744w/ExcUhPT0dOTk5ePbsGfbs2YOhQ4eiUaNGePz4sXZ+zZo18c033+iNsWLFCkE7ODgYdnZ2RueoUCgQEhIiOLZ69Wq9cxo0aIAlS5YIrmGbNm2Cv78/5s2bh0uXLiExMRHZ2dm4f/8+VqxYgQ8++AB79uzRjvfx8UFERASUSuNvN5ycnNCjRw8AwOLFi/Hhhx9i1apVuHv3LjIyMvDixQscO3YMAwcOxIsXLwyud+rUKUG7Xbt2RudCRESkS9WqVTF06FC507CqTp06ITg42OA4qZ93rPlcYmdnhw0bNsDHx8es9QcOHAgvLy+z5tqy5cuXo1OnTqKtV758eezatQuurq42HdtUXbt2xfbt2+Ho6Fhov0ajwaRJkzBjxgyz1tdoNJakZ7Hhw4fDxcXFrLlBQUHa51YpJSUl6e338/PT2+/r62swhjVrTZbWOX755RdBW6FQYPPmzfjll1/QoEEDi/N7nTWf5cV+RjSFVHWe7777DpUrV9a2MzIy0LZtWwwbNgzHjh3Dy5cvkZWVhXv37mHZsmWoXbs2fv/9dwBAv379RPq04ps6dSpat24tODZp0iQEBARg+/btiIuLQ3Z2NmJjYxEVFYWmTZvi+++/F4zv2bMnRo4caZPxjNWuXTv8+eefKFOmjPbYiRMn0KxZMzx8+FDUWGKSq+bIOg4RkeVmzJhR4N7kTSDne1Wp30vbQv3BVp+3zalH/fLLL0hMTNQ5Nv/7scI4OzsjMDBQZ//GjRuRk5NjcB2x2dqeCWvvF5Dy+iXnd8De3h4RERHw9PQ0K9aQIUNsrgZp7XPDFq6bZHssqZ1Vr169QB33/PnzouRlLGvvMxG7Xifl/hE5amVy1ZXMrX3KsYdILlLVaFu3bo358+cLjh05cgSVKlXChAkTEB0djbi4OOTk5CA5ORm3bt1CREQEBgwYgFKlSmHWrFlITk7WG0PK82zGjBmoU6eOtp2Tk4PAwEAMGDAAR44cwT///IPMzEzcuXMHixYtQs2aNXH48GEAQP/+/Q2ubw3vUj2eNVAiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiISm1LuBMj2/fbbb9BoNEb/zJkzx6J4HTt2xKRJk/SO2bRpE1q2bAkvLy+4uLigTp06WLlyJTQaTaHjXV1dsXXrVtjb2xuVQ0JCAiIjIzF69Gi0bNkSZcuWhZeXF+zt7eHq6ory5cujU6dOWLVqFbKzs3WuU716dXzyySdGxXybVatWDY0bN7ZqjIYNGwra165ds2o8fRYvXozp06dDrVbrHLN8+XIcPHhQcGzYsGFmx7xw4QL69euH9PR0nWOioqLwxRdfCI7Nnj0bxYsXNzsuATNmzMDcuXORkJBg1PjLly+jU6dOyMrK0h4bPXo0nJycdM45duwYbt68qW37+fmhIzAJpwAAIABJREFUU6dORufYqlUrVKpUSdt+/vw5fv/9d53j7ezsEBkZCUdHR+2xrVu3YsCAAcjIyNA5LyMjAz179sSVK1e0x1q2bIlevXoZneu/fv31V3z++efIzc01ee7rrl69Kmjnv1YQERGZQ989fnx8PEaPHo3KlSvD1dUV9vb2KFKkCCpVqoSuXbti6tSp2Ldvn977NlvQvXt3uVMQnaHnkjFjxvBeIZ8ePXpgxIgRoq9bt25dzJs3z2ZjmyowMBDbtm0T3D+/Li8vD8OHD8eiRYvMjqGr3vGmCA0NhbOzs6Qx4+Pj9fa3adPGon4AKFq0qEk5mcLSOkdUVBTOnz8vOKZQKDBw4ECcO3cOjx8/RkREBMaMGYNGjRrBxcXF4pytSaxnRHNYs85TuXJljBs3TnBs0KBBOHz4sM45aWlp6Nu3Ly5fvmxwfbmUKVMGM2fOFBybO3eu3uugWq3G119/jXXr1gmOL1iwAF5eXjYVz1hBQUHYu3cvPDw8tMe2bduGtm3bGl1HkpvUNUfWcYiILPPRRx9h9uzZksd9k9+ryvFeWu76gy0/b5tTj8rIyChwT/e63r17G7y/69ixo+CeLb/169ebnJelbGHPhJgM1eWkvH7J/R2YMGECPvzwQ9Hjv6mM2Usi93WTbJMltbPKlSsXOCb1HiMp9pmIRcr9I3LUymyhrmRq7VPqPUS2wJo1WkdHR2zYsAF2dnbaY4cPH0anTp3w9OlTg/NTUlIwe/ZshIaG6hwj5XlWvnx5TJkyRXBsxIgR2L17t845SUlJ6N69O27duqVzjFTehXo8a6BEREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREQkNqXcCRC9TqFQYO7cuXrHhISEoH///jh+/DhSUlKQlZWFq1evYvTo0Rg9erTOeZUrV8bAgQP1rn3q1Cl88sknKFGiBAYNGoSVK1fi+PHjiI2NRUpKCvLy8pCZmYlHjx5h3759GDVqFFq3bo2cnByda/bu3Vv/h37DpKamYsqUKahQoQKcnZ1RuXJlrFixwuC8gIAAq+ZVr149Qfv69etWjafLs2fP8J///MeoscuXLxe0W7ZsaXbccePGISsry+C4JUuW4Nq1a9q2i4sLgoKCzI5L5rlx4wbCwsK07WLFiqFLly5656xcuVLQHjFihNHxRo4cKWivW7cOKpVK5/iePXuicuXK2vbLly8xfPhwaDQag7FycnIKXIsnTJhgdK4AkJ6ejs8++8ykObrkvxbUr19flHWJiOjdVrVqVZ19ffr0wcqVK3Hnzh1kZmYiLy8PiYmJuHv3Lvbs2YP/+Z//QadOneDj44MOHTogKioKaWlpEmZvuqNHj6JXr14oU6YMnJycUL58eQQEBOCnn35CQkKCLDmJ/VyiVCqNuv/YsmULmjVrBg8PD3h4eKBZs2b49ddfTc7/TaBUKvHtt98aHLdp0ya0bNkS3t7ecHFxQY0aNTBv3jyDzyejRo2Cr6+vzcU2VWBgILZu3QpHR8dC+3NyctC3b1+sW7fOojhqtdqi+WJ5+PAhhg0bBl9fXzg5OcHX1xfDhg3Dw4cP9c4rWbIk+vXrJ02S/9/p06f19vfq1Uvn80GxYsXw5ZdfGozh5eVlVm7GsLTOkZeXh8DAQNy8ebPQ/rJly2LQoEFYvnw5zpw5g5SUFFy4cAELFy5E+/btYWdnZ3buYhPzGdFU1q7zhISEQKn8vxL9/v37sWPHDoPzsrKyMH78eKPyksOYMWPg4OCgbd+9exdz5swxau7kyZPx8uVLbdvd3d1g7UrqeMaYPXs21q5dC3t7e+2xRYsWoXfv3kbV8GyF1DVH1nGIiCzzww8/GByTlZWF1atXo0OHDihVqhQcHR3h7e2NDz74AMOHD8fu3buRl5dnVLw3/b2qHO+l5a4/vEnP26bUo5YvX67zudnV1dXgHoE+ffro7Lty5QquXLli+gewgNx7Jgyxxn4Bqa5fcn8HlEqlUc9yGzZsQOPGjeHu7g4PDw80atQI69evN+pdrZyscW7Ifd0k22VJ7ayw76lc7zpMYc4+EzFIuX9EjlqZ3HUlc2ufUu4hKkyfPn2g0WjM+klKSjIplrVrtEOGDIGfn5+2nZSUhCFDhiA7O9ukPPWR8jwLCQkR1CSPHz+ODRs2GIyTmpoqWx3+X+9KPZ41UCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhKb0vAQIukEBASgbt26OvsjIiKwZs0anf2rVq1CdHS0zv6vvvpKb/xmzZrh999/R15enuFk/79Tp05h165dOvtbtGhh9Fr6LFu2DAqFQvuzatUqveNLly4tGJ//Jysry+QckpKS0KxZM8yfPx8PHjxAdnY27ty5g7Fjx2LFihV65+r7dxVDpUqVBO3Hjx9bNZ4uYWFhRv9ujx49Co1Go23XqlULSqXpl+XTp0/j7NmzRo1Vq9VYsmSJ4NjQoUNNjkmW27Ztm6DdpEkTveM3bNiA9PR0bbtjx44oW7aswTglSpTAJ598om1rNBq911EAGD9+vKC9ePFipKSkGIz1rzNnzuDixYvadrNmzYzK9V+//fYbXrx4YfR4ffJfC7y8vFCiRAlR1iYiondXkSJFdPbFxsYatYZKpcKBAwcwcOBALFiwoEC/Ldz/A8DXX3+N1q1bY/v27Xj27BlycnLw6NEjHDlyBF988QVmzZpl1rqWsMZzSUBAAPz9/fXOnTVrFvr06YNTp04hLS0NaWlpOHXqFPr164fp06eb/XlsVfv27VG9enW9YyZNmoT+/fvj+PHjSE5ORlZWFm7cuIFp06ahXbt2yM7O1jnX2dkZY8aMsbnYpujWrRu2bdsGR0fHQvszMjIQGBhY4N7fHKbUKawlJiYG9erVQ3h4OJ4+fYqcnBw8ffoU4eHhqF+/Pm7evKl3fkhIiESZ/q/o6Gjk5OTo7HdwcMChQ4cwYcIElC1bFvb29ihWrBh69+6N06dPw9fX12AMLy8vMVMWEKPOER8fj4YNG2L58uVQqVR6x9rb26NevXqYOHEi9u/fjydPnmD69Olwc3MzOa7YxHxGNJW16zwDBw4UtJctW2Z0bidPnsTly5eNHi+lIUOGCNpLlizR+318XVJSUoG6xbBhw2wqnj4ODg4IDw/HjBkztMfUajU+//xzTJo0SXCO2Do5ao6s4xARme/jjz9Go0aN9I65ffs2PvzwQ4wcORIHDhzA8+fPoVKpkJycjL/++gtr165FYGAgKlSogKioKKjVar3rSfFe1Zr1ETneS8tdf3hTnrdNrUc9ePAAe/bs0bmevudRV1dXdOnSRWf/+vXrTc7fUnLvmdDHGnU5Ka9fcn8H2rZti/Lly+uNP3HiRAwdOhRnz55Feno60tLScO7cOQQFBeGzzz7TO1dO1tpLIvd1k2yXJbUzT0/PAseSk5MtzkkKpu4zEYOU+0fkqJXJXVcyt/Yp5R4iuVm7Rpv/b/fKlSsRFxdneqJ6SHme5Y/1888/G5klcPDgQYPveqzpXanHswZKREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREYtP/f/omklinTp309v/0008G14iKitLZV7VqVZQvX97UtAy6c+eOzj5fX18UKVJE9Jhy+Oqrr3D9+vVC+5YuXap3rp+fnzVSAgC4u7sX+B3HxcVZLZ4+0dHRRo9NTU3F06dPtW1nZ2d4eXmZHHPbtm0mjd+xYwfUarW2XbVqVRQtWtTkuGSZa9euCdr169fXOz4lJQUbN27Utu3s7BAcHGwwzrBhw+Do6KhtHzp0CPfv39c53t3dHY0bNxYc27Jli8E4+R08eFDQbtKkidFz9+zZY3I8XVJTU5Gamio4Zo2/A0RE9G7J/7fldQsXLkTJkiUlzMZ6oqKi8P3338udRgHWeC5p1aqV3nkXLlzAnDlzdPbPmzcP586d07vGm6Z9+/Z6+48ePYpFixbp7D9+/Djmz59vVgw5Yxvrk08+wdatW+Hg4FBof3JyMtq1a4cDBw5YFOdfrz/DySU4OBgJCQmF9r169QojRozQO79BgwZwdXW1RmqFSklJQVhYmN4x3t7eWLx4MR4/fgyVSoV//vkHmzdvRsWKFY2KoVRap7QqZp0jPT0d48aNQ6VKlfDdd9/hwYMHRs0rXbo0vv32W9y+fRstWrQwK7ZYxHxGNJU16zwVKlRAqVKltO20tLQCz9KGbN++3aTxUihXrlyBv7em1hU2bdokaNeoUUPn71LqePp4enriv//9L4YMGaI9lpWVhU8//RSLFy82eT25yVFzZB2HiMh8nTt31tuflJSEDh064NatWwbXevz4MQYOHKj3XYIlbOW9qhzvpeWuP7wJz9vm1qOWLFmis6927dpo2LBhoX2dO3eGm5tboX0qlUrwbk4qtrxnwhp1OSmvX3J/BwxdA44fP46ff/5ZZ//SpUvxxx9/6F1DLtbaSyL3dZNsk6W1s9f3T/wrPT3d4rykYOo+E0tJuX9EjlqZLdSVzK19SrWHyBZYs0ZbtGhR1K5dW3Bs3bp1pieph5TnWfny5eHr66ttZ2Zm4r///a9JsbZu3WrSeDG9K/V41kCJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhIbEq5EyB6XUBAgM6+f/75B9euXTO4xu3bt82O8boPP/wQU6dORVRUFM6fP4/Y2FgkJiYiJycHGo1G8DN16lS9axUpUsSomLYsISEB69ev19n/999/IycnR2e/l5eXNdICAJQsWbLAsVevXlktnj7Xr183aXxSUpKgbc7v6fz58yaNT0xMxP379wXHGjZsaHJcskxycjLUarW2Xbp0aYNzQkNDBe3g4GDY2dnpHK9QKDB8+HDBsVWrVumN0aRJE9jb22vbz58/N3hdLcyVK1cE7fr16xs99/LlyybH0+fly5eCdmHXDCIiIlPcvXtXZ1+3bt3w9OlTXL16Fb/++ivmzJmDAQMGoG7dunB1dZUwS8toNBpMmzZN7jQKsNZzSZMmTfTGDQ0NFdy75afRaLBixQq9a7xpDD07G/N5Q0NDodFodPZ/+OGH8PHxsanYxujSpQu2bNkCBweHQvv/+ecftGrVCidPnjRr/cLo+yxSuHTpEs6dO6d3zMmTJ3Hjxg2d/fb29mjQoIHYqek1d+5cq9YHEhISrLKuNeocjx49wjfffIMKFSqgSpUqCAkJwZo1a3Dx4kVkZ2frnFemTBkcPnwYgYGBFsW3hNjPiKawZp0n//chJiYGKpXKpHiXLl0yabwUGjVqJGg/evQIz58/N2mNmJgYpKena9sKhUJn7UrqeLr4+vri+PHjaNOmjfbYq1evEBAQgB07dpi0lq2Qq+bIOg4RkXnatm2rt3/RokV48OCB1eK/ie9V5XgvLXf9wdafty2pRx0+fBg3b97U2T9ixIhCj/fu3VvnnN27dxe4N5GCLe2ZeJ216nJSXr/k/g4YugYYeo9r7BipWXMvidzXTbJNltbOCjsf3dzcLMpJKubsM7GElPtH5KiV2UJdyZLapxR7iHTZvHkzFAqFWT/e3t4mxbJmjbZFixZQKBTa9osXL3Dnzh2T4hki5XmW/9j169eRlZVlUixTa4Jiepfq8ayBEhERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERkZiUcidA9Dp/f3+dfcWLF4dGozH4c/LkSb0xqlWrprPPzs4Ow4YNw/3793Hp0iV899136N+/P+rXrw9fX194e3vDwcHB5M/l4+Nj8hxbEx0dDZVKpbNfo9EgMTFRZ7+bm5s10tK5dlZWltXi6aJWq5GcnGzSnPx5Ojs7mxz31q1bJs/566+/BO2yZcuavAYV5Ovri3HjxiEiIgIXL17E06dPkZqaCrVaXeBapVaroVT+359hb29vg+tfvnwZZ86c0bb9/PzQqVMnneMDAgJQsWJFbTs+Ph67du3SG6NKlSqC9p07dwzmVZiXL18K2sWLFzd6blxcnFkxdcnMzBS0rXk9IiKid8O+ffv09iuVStSqVQt9+vTBtGnTEBkZiYsXLyItLQ1XrlzB4sWL0apVKygUCokyNt3p06fx8OFDudMowFrPJRUqVNAb988//zSYmzFj3iTvv/++3n5jPu/Tp09x7949nf1KpRLvvfeeTcU2Rrdu3XTWBp48eYIWLVrg8uXLZq2ti0ajEXU9U504ccKocadOndLbb+jfVmzx8fHo0aMHcnJyrLK+vuuNJaxd57h9+zbWrFmDkJAQ1K9fHx4eHmjevDnmzZuHR48eFRjv4OCAyMhIvXU7axL7GdFY1q7z5K/F/P333ybFAsyrCVmbn5+foH3z5k2T11Cr1QU+W/515YpXmJo1a+LMmTOoVauW9tj9+/fRtGlTg9dFWyZXzZF1HCIi8xh6rt26davoMd/096pyvJeWu/5g68/bltajli1bprOvb9++8PDwEBxzc3ND586ddc5Zv3692blYQu49E7rIVZcT8/ol93fAUHxD/26A4dqLHKy5l0Tu6ybZJktrZ6mpqQWOeXl5WZSTJay9z8QSUu4fkaNWZgt1JUtqn1LsIZKbtWu05cqVE7SvXr1qUixjSHme5b8HEaO+J5V3rR7PGigRERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERGJSSl3AmT7unfvDoVCYfTP9OnTzYrj5OQkyf/AvVixYoUe9/T0xP79+7Fu3Tq8//77osZ0cnISdT05xMTEGByTmZmps0+hUIiZjkD+369KpYJGo7FaPF3kipuUlGTxHB8fH7HSeSdVqlQJO3bswJMnT7B06VIMGjQIdevWRenSpeHu7m7U+e/h4WFUrNDQUEF75MiROsfm71u3bh1yc3P1rl+kSBFBu2nTpsjKykJWVhays7ORnZ2NnJwcqFQqqFQq5ObmIjc3F3l5ecjLy4NarYZarcbhw4cF6xh7juXl5SE9Pd2oscbKzs4WtF1cXERdn4iI3j1nzpwp8LfOGAqFArVr18aECRNw5MgR3LlzB927d7dChpY7f/683CkUylrPJfnvgfJ78OCBwbgPHz6EWq02OO5NYOj5PDMzEy9evDBqrYcPH+rtz/+MLmdsS925cwfNmzfH33//Leq6tuDRo0dGjTP0Ozf0XbOGP//8E127dsWrV69Mnvv06VO9/QkJCeampZfUdQ6VSoWTJ09i2rRpqFixIsaOHVvgWurh4YGZM2daLQddrPGMaCxr/969vb0FbXPqO8nJyWKlI5r8z/+JiYlmrZN/nq66gtTx8nNwcMCJEyfg5+enPXbhwgU0adIEt2/fNisXWyFXzZF1HCIi0zk5Oel9x6BSqfDXX3+JGvNNf68q13tpOesPb8LztqX1qIiICJ33MG5ubujfv7/gWNeuXXXea8THx2P//v0W5WMOufdM6GONupyU1y9b+A7ouz/WaDR4/PixwdiPHz+2uRqkNfeSsG5LhbG0dhYbG1vgmBx1Syn3mZhLyv0jctTK5K4riVH7tPYeIrlZu0ZbtGhRQduc9wiGSHmeifE9MmeOGN61ejxroERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERCQmpdwJEP0r//9c3lqKFi1a6PGtW7eiTZs2kuTwJkpISDA4RqVSSZBJQdnZ2YK2g4MDFAqFLLlILTc316zfe3p6uqDt7u4uVkrvnPbt2+Py5cvo3r27ReedUmncn+QtW7bg1atX2nbHjh1RtmzZAuNKliyJbt26adtqtRphYWEG189/LVYqlXBycoKTkxMcHR3h6OgIBwcH2Nvbw97eHnZ2drCzs4NSqYRSqYRCoSj09+Dm5mbU58vNzTVqnCmcnZ0F7czMTNFjEBHRu2fgwIG4c+eORWv4+/tjx44dmDFjhkhZiefJkydyp1Aoaz2X6LtXycrKQl5ensE1NBrNW3OfYej5PP/zhCVjvby8bCa2pTIzM5GWlibqmsays7Oz6vrG/t4zMjL09nt4eIiRjskOHjyIevXqYfPmzVCr1QbHq1QqLF++HIMHD9Y7LiYmRqwUBeSsc+Tm5mLFihVo164dcnJyBH19+/Y1+tlOzHzeVvlrMeb8DTHlmiiV/N9zQ9cFXfJ/Nl3XD6nj5adUKuHp6Sk4FhoaihcvXpiVh62Qs+bIOg4RkekMPUelpKSIHvNNf68q13tpOesPb8LztqX1qPT0dKxfv15n/4gRIwTtPn366BwbGRkpy/OI3Hsm9LFGXU7K65ctfAf0XQOys7ONqlkAtnePbM29JKzbUmEsrZ0V9m6nVq1aFudlCqn3mZhLyv0jctTK5K4riXGvYe09RG+7/P9W1njHI+V5lv97ZE4sW6w5i8HW6vGsgRIREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREZGYlHInQPSvpKQkSeI4ODgUONa7d2+0a9dOkvhvquzsbINj1Gq1BJkUlJ6eXuCYs7OzDJlIz97eHvb29ibPc3NzE7TT0tLESumdUrlyZezcuVPw+8zIyEBERASCgoLQqFEj+Pn5wcPDA46OjlAoFIKfvLw8k2NmZWVh/fr12rZSqcTw4cMLjBs2bJjgenfo0CE8fPjQ4PqZmZkm52QMhUJhlXWN4eLiImgXds0gIiIyVXx8POrVq4fFixdb/Ldl9uzZaNy4sUiZiSM1NVXuFAplrecSfffDTk5OUCoNl08UCkWB+443VXJyst7+/M8TlozNH0vO2JaqVasWDh06BG9vb1HXBWDwuc/T01P0mK8z9vfu6uqqt1/Oa8ujR4/Qt29fVKlSBV999RUOHDiABw8eIDU1FTk5OYiPj8cff/yBGTNmoEKFChg3bhyqVq2qd81Tp05ZJVdbqHOcOHECq1evFhxzcHBA8+bNJc3jbZb/39mcvyGmXBOlkv97bui6oEv+z6br+iF1vPxUKhWOHTsmOBYWFoahQ4ealYetkLPmyDoOEZHpDL1jFft54W14ryrXe2k56w9vwvO2GM+My5Yt01kbqlu3LurVqwcA8PDwQIcOHXSuEx4ebnEu5pBzz4Qh1qjLSXn9soXvgL57W2OvAYB5z4/WZM29JKzbUmEsrZ3FxMQgJydHcKx+/foW52UsOfaZmEvK/SNy1MrkriuJwdp7iN52KSkpgra7u7voMaQ8z/L/3Xxbas5isLV6PGugREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREJCal3AkQ/Ss7O1u2/4H74MGD9fYnJSVh+vTp+PDDD+Hp6QmlUgmFQqH9mTdvnkSZUmHi4+MLHCtWrJgMmcjD29vb4jmJiYlipVOAnZ2d1daW24IFC+Ds7Kxtnz17Fv7+/hgyZAjWr1+Pc+fOIS4uDmlpaVCpVIK5zs7OZv9uVq5cCY1Go20HBwcL1lIoFAgJCRHMWbVqlVFrv3z5UtBet26d4Hpn7k+bNm3M+qxiKFq0qKD9/PlzmTIhIqK3TWpqKj7//HOUKVMGw4YNw8aNG/Hw4UPB32ljTZ482QoZmk+tVsudgqT03Q8rFAr4+fkZXKNcuXJQKt+OMktWVpbe53MXFxeUKFHCqLXKly+vtz///aecscVQt25dHDhwAJ6enqKu6+Liore/SpUqosbLr1y5cqKMS0hIECMdi9y9exc//vgjOnTogAoVKsDT0xNOTk4oXbo0WrVqhTlz5iA2NhYA0KtXL53rJCYm4tatW1bJ0VbqHFu2bClwzND3ioyXlJQkaHt5eZm8hjlzrC3/31QfHx+z1sk/T9f1Q+p4+anVanTs2BEHDhzQHlMqlVi3bh1Gjx5tVi6WEqsWJ1fNkXUcIiLTZWdnIzU1VWe/g4MDqlatKlq8t+G9qlzvpeWsP7wJz9ti1KPu37+P//73vzr7/31/1q1bN8E7vtedO3cON27csDgXc8i5Z0IOUl6/bOE7YOga8N577xmMXbZs2bemBmkM1m2pMJbWznJycnDixAnBsY8++sjivIwl1z4Tc0i5f0SOWpncdSWxWHMP0dsu/79V/rqUGKQ8z/J/j8So770tbK0ezxooERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERiUkpdwJEr3vw4IHOvhs3bkChUFj806FDhwJrf/TRRzrjZmdno3nz5pg7dy6uXLmC1NRUaDQawRgx/6f2ZLr09HS8evVKcMzX11embKRXrVo1i+c8efJE59jc3FxB297e3qRYPj4+Jo1/U3h7ewuuJzk5OejZsyfi4+ONml+iRAmzY9+7dw+HDh3Stn19fdG5c2dtu23btqhQoYK2/ezZM+zevduotfOfCxUrVjQ7T1vg4eEBDw8PwbGHDx/KkwwREb21UlJSEB4ejgEDBuD999+Hu7s76tati169emHKlCmIiIjAs2fP9K7RunVribKlwty7d09vf9OmTQ2u0bJlS7HSsQn6ns8B4z5vmTJl4O/vr7NfrVbj8ePHNhXbGCtXrkRKSorO/oYNG2Lfvn1wd3c3es3s7Gy9/UWKFNHbHxAQYHQsczRv3tyocYa+K4b+bW1Js2bN8PHHH+vs3717d4H6kFhspc5kXINZAAAgAElEQVRx+/btAsdYAxNP/ufvKlWqmLyGOXOsLTY2VtA2p26lVCpRtWpVvevKFa8wmZmZ6NatG37//XftMYVCgRUrVuCLL74wOR9bqcVZu+ZYGNZxiIjMd//+fb39n376qWix3pb3qnK8l5a7/mDrz9tiWbJkic6+/v37w83NDb1799Y5Jjw83ApZGU+uPRNykfL6Jfd3wFD8Zs2aGYxvzJi3idzXTbJNYtTOduzYIWj7+/vrrQWKRc59JuaQcv+IHLUyW6gricGae4jedvn/NteqVUv0GFKeZ/nvQcSo770tbKkezxooERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERiU0pdwJEr4uOjtbZV61aNZQpU0b0mO7u7nB3d9fZf+TIEdy4cUPvGg0bNhQ7LYPy8vL09js6OkqUiW24ffu2oF2uXDmZMpFegwYNTBrv4+ODChUqCI6dO3dO5/iUlBRB29PT06R4FStWNGn8m6JWrVpwcHDQto8dO4a4uDij55v675bfihUrBO0RI0Zo/3vkyJGCvnXr1iE3N9eodf/8809oNBptu0GDBnB1dbUgU3nlvxYkJSXhxYsXMmVDRETvioyMDFy+fBnbt2/H/PnzMWTIELz33nv49ddfdc4pUqQI3NzcdPbz/t+6Tp8+rbc/ODhYb79CocCYMWPETEl2hw8f1ts/evRog2uMHj0aCoVCZ//ly5eRmJhoU7GNcfHiRXTp0gWZmZk6xzRt2hR79+41+l46OTlZb3/NmjV19nl7e2PIkCFGxTFX3bp1DT7DNG3aFDVq1NDZn5ubi/Pnz4udmlUUKVIEa9eu1TtmyZIlVs3BVusc5n5vqKD834eaNWsK6gzGqFu3rpgpieLMmTOCdvny5VGiRAmT1qhevbrgvkitVuusXUkdT5fs7Gz06tWrwP3e/PnzMWPGDJPWspVanLVrjoVhHYeIyHyHDh3S2z9x4kRR7inlfq8qZn1EjvfSctcfbP15WyyHDh3CX3/9VWifh4cHRo0ahfbt2xfan5WVhU2bNlkzPYPkODflJNX1C5D/O2DoGhASEmIwvjFj3iZyXzfJdllaO4uKikJGRobgmBTnitz7TEwl5f4ROWpltlJXEoO19hC97U6cOCE4x0uWLIlKlSqJGkPK8yz/sZo1a8LZ2dmkWFJfZ6RiS/V41kCJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhIbEq5EyB63b59+3T2KZVKTJ061ax13dzcMGXKFMyYMaNAn7Ozs9659vb2evubNWuGhg0bmpWXJdLS0vT2V6xYUaJMbMOFCxcE7Zo1a8qUifR69epl0vgePXpAqfy/y/+tW7fw6tUrneNfvnwpaJt6brVq1cqk8f/Kzc0VtF/P2RaUKFFC0I6NjTVpfrdu3SyKv2fPHjx58kTb7tixI9577z2UKlUKXbt21R5Xq9VYs2aN0eu+ePECV69e1bZdXFwszlVO+a8F+a8VREREUsnNzcXq1av1jnF1ddXZx/t/6zpy5Ije/jZt2iAkJERn/9dff41GjRqJnZasDhw4oLe/devWmDhxos7+5s2b48svvzQrhpyxjXX8+HH07NkTKpVK55iWLVti165dBusOABAfH6+3PyQkBE5OTgWO29vbY+3atShevLjhpC20du1a+Pj4FNrn4+ODVatW6Z1//vx5ZGRkWCM1vebMmYNZs2YVeIbT5YMPPsAff/yBKlWq6Bxz4sQJXLx4UawUC2ULdQ5/f/8Cxwydq7b+LG9L7t27h+fPn2vb7u7uaNu2rUlr9OzZU+y0LPb48WNBvQIwvXbVt29fQTsmJgYpKSk2EU+f3NxcDBgwAOvXrxccnz17Nv7nf/7H6HXkqsXlZ+2aY2FYxyEiMt/evXv19vv4+GD//v2oXLmywbVKlCiBNWvWoEKFCgX65H6vKmZ9RI730nLXH96E522xLFu2TGffvHnz4OjoWGjfzp07kZSUZK20jCLHuSknqa5fgPzfgaNHj+qd+9FHH2H8+PE6+8eMGYPWrVvrXeNtI/d1k2yXpbWzpKQkLF26VHDs008/RYcOHSzODQDq1KlT6Fpy7DOxpF4n5f4ROWpltlRXspS19hC97RISEnD58mXBsWHDhokaQ8rz7OHDh4iLi9O2XVxc0KlTJ5NiffrppyaNf1PYUj2eNVAiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiISm1LuBIhed+jQIVy7dk1n/9ixY/H5558bvV6VKlUwb948PHjwAD/88ANKlChRYExCQgJyc3N1rtGkSROUK1eu0L4KFSpg06ZNRucjpoSEBL39P/zwAxo2bAhXV1eJMpLXuXPnBO1atWrJlIn0mjRpgkaNGhk1VqlUYvz48YJj4eHheuc8fvwYiYmJ2nbp0qVRsWJFo+K5uLhg2LBhRo3NLy0trcBatiQrK0vQLlKkiNFzy5cvjz59+lgUPy8vD2FhYdq2UqlEcHAwgoKC4ODgoD1+4MABPHz40KS1ly1bJmjPnDlTsOabJP+1IP+1goiIyByffvoptm3bhi5dusDR0dHoeXXr1tXZl5ubi1evXuns5/2/dR05cgR3797VO2bVqlVYvXo16tevDzc3N7i5uaFJkybYuHEj5s6dK1Gm0jlw4ABu3Lihd8zChQsRFRWF5s2bw8PDA05OTvjggw8wZ84cHDx4EE5OTjrnZmdnY8WKFTYX2xT79u3DgAEDoFardY4JCAjAzp079eYDAJcuXdLbX6tWLRw4cABNmjSBs7MzfHx80KVLF5w4cQI9evQwK39T1axZExcvXsSQIUNQunRpODg4oHTp0hg8eDAuXLiAGjVq6J3/+vOLlIoXL46ZM2ciLi4OBw4cwIQJE9C4cWOUKFECDg4OcHd3R4UKFdCnTx9s3rwZV69eRc2aNXWul5ubiy+++MLqeVta59i0aRNKlixpUQ69evUStHNzc3HixAm9c2z9Wd7WREZGCtpjx441em7Tpk313lvIKX+tacKECbC3tzdqrpeXF0JCQgTH1q1bZ1Px9FGr1QgODsby5csFx7/66issXboUCoXC4Bpy1eLys3bNsTCs4xARme+PP/4weN2sWrUqrly5ghUrVqBt27bae2JPT09UqlQJ/fv3R1RUFB4/fozg4GAolQW3Esj9XlXM+ogc76Xlrj+8Kc/bYoiIiEBycnKhffo+w/r1662VktHkODflJNX1C5D/O3Do0CGD720XL16MtWvXokGDBtprQIMGDbBmzZoC73DfBXJfN8l2ibFH6Pvvv0dcXJzgWFhYGMqUKWNRbg0bNsShQ4fg7e1doE+OfSaW1uuk3D8iR63MlupKlrDmHqK3Xf5zfNSoUShdurSoMaQ8zyIiIgRtU+4b27Vrhw8++MDo8W8aW6nHswZKREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREYlPKnQDR6zQaDb755hud/QqFAosWLcLp06cRHByMatWqwd3dHfb29ihevDiqVauGXr16YcGCBbhw4QJu3bqFr7/+GsWLF9e5plqt1vs/j3d3d0d0dDT69u0LX19fODo6wt/fH1OmTMGFCxdQtmxZiz6zuW7cuKG3v379+jh79izS09Oh0WgEPwMHDpQoS+kcPnwYGo1G227SpAkUCoWMGUlr2bJlcHJyMjhuwoQJqF27tradlZWF9evXG5x36tQpQXvUqFFG5TV//ny93z99Xrx4IWiXK1fOrHWs5f79+4L2xx9/DC8vL4PzHBwcEBkZCUdHR4tzCAsLg0ql0raDg4MREhIiGLN69WqT192wYYPg81WpUgWrVq0yP1EZNWvWTNA+dOiQTJkQEdHbxMnJCT179sTu3buRmJiI/fv345tvvkGPHj1QvXp1lChRAi4uLlAqlfDy8kLDhg0xf/58fP/99zrXvH79OtRqtc5+3v9bl0ajwc8//6x3jEKhQEhICM6fP4+0tDSkpaXh1KlT6Nevn0RZSkutVmPGjBkGx/Xv3x/Hjx9HSkoKsrKycOPGDUybNg0uLi5654WGhiIuLs7mYptq69atGDFihN4x7du3x7Zt2+Dg4KBzTExMDF6+fKl3nY8++ginTp1CZmYmEhISsHv3bjRq1MisvM31/vvvIzw8HE+fPkVOTg6ePn2KDRs2oEKFCnrnPX/+HJs2bZIoy8LZ29ujXbt2WLx4MU6fPo3nz58jJycHqampuHfvHn799Vf07t0b9vb2etf59ttvcfbsWavna2mdo3v37rhx4wYGDRpkVn2kTp06GDt2rODYkSNHkJiYqHeerT/L25qwsDDB3/9OnTqhW7duBuc5OTlhyZIl1kzNIqGhocjJydG2q1Spgv/85z9GzV2wYIGglpSSkmKwdiV1PEM0Gg3GjRuHH3/8UXB83LhxCAsLg1Jp+LWMHLW4wli75pgf6zhERJYx5u+fi4sLRo8ejYMHD2rviZOTk3H79m1ERUWhf//+eq/9cr9XFbM+Isd7abnrD2/S87al0tLSEB4ebtKc2NhYREdHWychE8hxbspNiusXIP93QK1WY+nSpXrXUCgUCAoKwrlz57TXgHPnziE4OPid2v/wL7mvm1K4detWgb9Z//589dVXeufu27dP59yVK1fadGxLibFHKDk5GUOGDEFeXp72mJ+fH06cOGGw3qnL0KFDcfToURQrVqzQfjn2mVhar5Ny/4gctTJbqytZwlp7iN52kZGRePz4sbbt4+ODDRs2iLKv619SnmdhYWHIzc3Vtlu0aIEhQ4YYjOPu7o7FixcbldObylbq8ayBEhERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERkdiUcidAlN+ePXsM/o/iGzdujDVr1uDmzZtITU2FSqXCixcvcPPmTWzduhWTJ09GvXr1jI65ceNGvf0VK1bEpk2bEBsbi+zsbNy9exc//PADfHx8jI4htjNnziA3N1e2+Lbm2bNnuHr1qrZdrFgx1KhRQ8aMpFW/fn1s2rQJbm5uOsf0798fCxYsEBybNWsWXrx4YXD98PBwQXvChAlo3bq1zvFKpRLfffcdxo4da3BtXV7/9wSA9u3bm72WNdy8eRMPHz7Utr28vLBq1SrY29vrnOPj44O9e/eiWbNmouQQHx+PnTt3atu+vr4oX768tv306VPs2bPH5HVzc3MxYMAAZGdna48NGzYMO3bsQNGiRY1ep3jx4vjyyy+xfft2k3MQg4uLCxo1aqRtp6Sk4OTJk7LkQkREby9XV1e0b98ec+fOxfbt2xETE4Pnz58jIyMDeXl5SEpKwtmzZ/HFF1/AwcFB5zpRUVF64/D+3/pWrlyJc+fOyZ2GTdmxYwfCwsJEX/fSpUv45ptvbDa2qdauXYvJkyfrHdOlSxds3rxZ5/NCbm4uIiIiRM3LlowZMwZZWVlyp2Gx6OhofPfdd5LEEqPOUbRoUUREROD69evo27cvlErjSsGdOnXC4cOH4ejoqD2mVqsxdepUg3Nt/Vne1vz9999YtmyZ4FhUVBRatWqlc46rqys2btxoUu1Tas+ePcPMmTMFx7799luMHj1a5xylUok5c+Zg+PDhguOTJ09GSkqKTcUz1ldffYVZs2YJjgUHByMyMlJv/QiQpxZXGGvXHF/HOg4RkeWOHj2Kb7/91upx5HyvKnZ9RI730nLXH96k521LLVu2DBqNxujxERERUKvVVszIeHKcm3KS6voFyP8dWLJkCS5fvix6/LeZ3NdNsk1i7RE6fPgwxowZI/h78f777+PChQuYOHGioD6mT/Xq1bF3716sX78erq6uOsfJsc/E0nqdlPtH5KiV2WpdyRzW2kP0tlOpVBg8eDDy8vK0x9q2bYs9e/agVKlSBud7enpixowZes8ZKc+zBw8eFKjVrV69Gl27dtU5x9vbG7/99huqVq2qc8zbwBbq8ayBEhERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERkTUo5U6AqDATJ07Eli1bJIsXFhaGv//+26y5iYmJ2Lx5s8gZGfby5Uvs2bNH8ri2bPv27YJ2+/btZcpEOtnZ2fjtt98AAN27d8fVq1cxevRovP/++3ByckLx4sXRvn17bN++HVFRUbCzs9POPX36NH766Sej4uzcuROXL1/Wth0cHLBv3z7Mnz8fderUgZubG1xcXFCxYkWMGDEC165dw9SpUwH87/fLHLt37xa0v/zyS0yaNAn+/v5wcnIya02xfffdd4J2nz59cPbsWfTv3x++vr6wt7eHt7c36tWrh1mzZuHu3bto27YtACAyMhJ5eXkW5xAaGqqzb+3atcjNzTVr3TNnzmD48OGCHLt3745Hjx4hNDQU3bp1Q9myZeHq6goHBwcULVoUVapUQffu3TFz5kycPHkS8fHx+PHHH+Hv729WDpb66KOP4OjoqG3v3r0bKpVKllyIiIj0iYmJwbJly/SO4f2/9eXl5WHIkCFITEw0a35kZCSSk5NFzkp+Y8aMwb59+0Rb7+HDhwgMDERGRoZNxzbVwoULMWfOHL1junfvXuC57HULFiww+/z78ccfzZpnrLVr1yIrK8usuevWrcOOHTtEzkh6Bw4cQLdu3UR5jjOWWHWO6tWrY9OmTYiLi8PatWvRo0cPVK9eHUWKFIG9vT18fHxQt25djB49Gn/++Sf27t2LIkWKCNaYNm0aLl26ZDDWm/Asb2u++eYb3L59W9t2c3NDdHQ01q5di5YtW6Jo0aJwcnJChQoVMGbMGFy7dg09evQAAGzatEmutA368ccfER0drW0rFAqsWLECBw4cwCeffILSpUvD0dERvr6+6NevH06ePIlp06YJ1tiyZQvWrFljk/GMNXv2bHz55ZeCY/369cOWLVsENYv85KjFvU6qmuPrWMchIhLHzJkzsWrVKqvGkPO9qjXqI1K/l7aF+sOb9Lxtibt375r0OcPDw62XjBmkPjflJsX1619yfgdyc3MxePBgpKSkmBUrKirqraxB6mML102yTWLVzlavXo3g4GDk5ORoj/n4+GDhwoW4d+8eVqxYgcDAQFSpUkVbT/Py8kK9evUwbtw4HD58GDExMejUqZNR8aTeZyJGvU7K/SNy1Mpsta5kDmvtIXrbHTt2rEANr23btrh79y5+/vlnBAQEaM8DT09PVK1aFYMGDUJUVBTi4+Mxe/ZseHl56Y0h5Xk2e/ZsXLt2Tdt2dHTErl27EBkZiVatWqFo0aJwdnZGxYoV8dlnn+H69eto06YNAGDjxo0G13+TyV2PZw2UiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIrEEpdwJEhVGr1ejbty8mTZqEnJwcq8fLyclB165d8c8//5g0LzExER06dMDdu3etlJl+U6ZMQVpamiyxbdEvv/wCjUajbffs2VPGbKQzdOhQXLp0CQDg7++PFStW4P79+8jKysKLFy+wf/9+9OjRQzDn4sWL6NSpE3Jzc42KkZubi0GDBiExMVF7zNHREV988QUuX76MtLQ0ZGRk4M6dO1i1ahWqV68OAIiIiMB//vMfsz7X/v37tZ8LAFxcXPDTTz/h7t27yMrKgkajEfzUr1/f4Jp9+vQpMM+Unw4dOgjWW7NmDTZv3iw4VrduXURFRSE2NhYqlQqJiYm4cOECZs6ciSJFigAADh48iJCQELN+L/kdPXoUf/31V4HjarUaa9assWjtyMhIdOjQAa9evdIec3Nzw6hRo7Bz5048fvwY6enpyMnJwcuXL3Hr1i3s2LEDs2bNQtOmTaFUynub0atXL0F7w4YNMmVCRESk240bN9C5c2dkZ2cbHMv7f+u7desW2rRpI7jvNcbWrVsRFBQEhUKhc4xarbY0PVnk5uaia9eumDt3rsWfYc+ePahXrx7i4uJsPrY5ZsyYgSVLlugd07t3b2zYsKHQe+Vnz54hKCjI6Oc04H/PqylTpuD77783OV9TnDlzBoGBgSZfg6KiojBixAgrZSUNlUqFOXPmoHPnzsjIyJA0tth1jlKlSiEoKAjbt29HTEwMXr16BZVKhYSEBFy8eBErVqxAixYtBHNycnIwefJko88xazzLv+3S0tIQEBCA+/fva48plUoEBQXh2LFjePnyJbKysnDv3j0sX74c/v7+AIDTp09j9OjRgrVUKpVZOYhdLwH+9/oUGBiIXbt2CY63a9cOv/32G54+fYrs7GzExsZi48aNaNy4sWBcREQEBgwYYPRnkDqeKRYsWIAxY8YIvs/du3fH77//DhcXl0LnyFGLy0+KmuPrWMchIhLPqFGjEBQUZLUagtzvVcWuj0j9XhqQv/7wpj1vW8LQc/q/Tpw4gTt37lg5G9PIcW7KzdrXr3/J/R2IiYlBu3btkJKSYlKs7du3Y9iwYaam+FaQ+7pJtknM2tn69evRvHlz3LhxQ3Dcz88Po0ePxu+//45bt25p62lJSUm4cOECli5ditatWwvmpKSk4Ouvv8bOnTsLjSX1PhOx6nVS7R+Ro1Zmy3UlU1lzD9HrLK0nmlM7srZFixZh6NChgvsuNzc3fPbZZ4iOjtaeB8nJyfjrr78QERGB/v3766zv5SfleZaVlYW2bdsWOBcGDBiAI0eO4OXLl8jMzMSdO3fw888/w8/PDwBw8uTJAt+jt43c9XjWQImIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMgalHInQKSLRqPBokWLUKtWLaxatQoZGRlmrZOUlIQtW7agX79+mDp1qs5xd+7cQb169XD8+HGj1j127Bjq16+Pc+fOmZWXGO7cuYN27drh8ePHsuVgSx49eoQjR45o240aNULZsmVlzEgaKSkp+PjjjxEZGWlwrEajQWhoKFq1aoWkpCST4ty4cQPNmzdHTEyMwbHp6emYPHkyhgwZArVabVKcf6nVavTo0QOXLl0ya74UNBoNBg4ciB9++AF5eXkGx+fk5GDevHno3LkzsrKyRMtj5cqVBY7t379flGtDdHQ0atasiSVLliAzM9Pi9aRib2+Pbt26adtPnjzB4cOHZcyIiIhIKCUlBbNmzULjxo2N/pvN+39pXLp0CfXr18ehQ4cMjk1PT8eXX36JPn36IDc3F+7u7jrHJiYmipmmpPLy8jB9+nQ0atQI27ZtM/ke/8KFC+jduzcCAwORkJDwxsQ2x+eff47w8HC9YwYMGIA1a9ZAoVAU6Nu5cycCAwPx9OlTg7Hu3r2Ldu3aYf78+eama5JDhw6hYcOGRtVBUlNT8dlnn2Hw4MFGPStZ07Rp0zBt2jTExsaaNE+lUmHjxo2oXbs2ZsyYIcvnsKTOUatWLXz99dc4f/68Wc/lKpUKO3bsQM2aNbFw4UKj570Jz/K2KDY2Fk2aNMHmzZsNjtVoNFizZg0CAgKg0WgEfcnJydZK0SyZmZno0aMHxo8fj3/++ceoOXFxcQgKCsLQoUORm5tr0/FMERoaiqCgIMG1pEOHDti7d6/O+wepa3H5SVVzBFjHISKyhvXr16N69epYuHChyfcIZ8+exSeffIJ79+7pHCPne9X/x969xkhZ3g8f/+24AsrRCohAIRCWoqiAEg6KjYDUgooUWWQ9IDYQMG3F2qaBlFiJWsRqq2gToZiIZ0GUAlqrlYJFBQvVKMGsykFECeeziMDu86LpPvVfDgMyc+0un0+yL+69Z+/ru8nsxcxv7oRczEfy/bl0RPr5Q1V7v32sXn311SgtLT3i4470Xj6VFM/N1HK9f/1H6r+BxYsXR+fOnePvf//7ER+7Z8+eGDt2bBQXF8e+ffuOeq3qIvW+SeVzvO8R+uc//xkdO3aMESNGxPLly4/651evXh3jx4+PoqKimDBhwiHvCcn3fSbHc16Xr/tHUszKKvNc6Wjl8h6i6m7atGnRuXPnmDNnTk6un8/n2YYNG6JHjx4xbdq0Iz62vLw8pkyZEn369Dnm15tVSap5vBkoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuVKYOgCOpLS0NEaNGhVjx46N3r17x4UXXhhdunSJJk2axGmnnRb16tWLffv2xe7du2Pr1q2xatWqWLFiRXzwwQfx5ptvxrJly6KsrCyrtT777LP4/ve/H717946SkpK46KKLomnTplGrVq3YuHFjrFu3LhYsWBAzZsyIxYsX5/g3z87bb78dRUVFUVxcHP369Yvzzz8/zjjjjKhbt24UFp54f+IPPPBA9O7dOyIiCgoKYtiwYXHnnXcmrsq9nTt3xg033BB33XVXXHfdddGnT59o1qxZNG7cOHbs2BGfffZZvPbaa/Hkk0/GsmXLjnmd5cuXR4cOHWLQoEExYMCA6Nq1azRu3DgKCwvjiy++iJUrV8YLL7wQzz33XGzZsuVb/16ffvppdO3aNfr16xc/+tGPokOHDvHd73436tatGzVr1vzW1z8e9u/fH2PGjInJkyfH8OHDo2fPnlFUVBT169ePXbt2xfr162PlypUxe/bsePHFF2PDhg3HveHJJ5+MBx54IAoKCiq+N3ny5ON2/XXr1sXo0aPjzjvvjL59+0avXr2iU6dO0ahRozj99NMjImLHjh0VX5s3b44PP/wwli1bVvGVb1dddVU0bNiw4vihhx7K+rUmUykAACAASURBVN8CADiSp59+OhYuXBht2rSJoqKiKCoqijZt2kTjxo2jbt26FV916tSJAwcOxO7du2Pbtm3x8ccfx/Lly+P111+P119/Pb766qujXtvr//xYuXJl/OAHP4hLLrmk4r1hs2bNombNmrFu3bpYsWJFvPDCCzFjxozYvHlzREQ0btw4MpnMIa+5cePGfOXnzJIlS6K4uDhatGgRffr0iYsvvjg6dOgQDRs2jO985ztRWFgYW7dujS1btsTHH38c//jHP2L+/PmxZMmSKr320SgvL4/hw4dHvXr1YuDAgYd83E033RT79u2LUaNGRXl5+TfO/eUvf4mioqK48cYb4/LLL4/zzjsvGjZsGPv374+1a9fGe++9F88880y88sorsW/fvlz/St/w4YcfRrdu3aJHjx5RUlISF154YTRt2jTq168f69evjxUrVsSsWbPi2WefjfXr1+e17VA2bdoUd999d/z2t7+NLl26xA9/+MPo1KlTnH322dGwYcOoW7duHDhwIHbs2BFr1qyJDz74IN54442YPXt2xd93Ssc65/joo49iwoQJMWHChGjQoEH06NEjunXrFmeddVYUFRXFGWecEfXq1YvCwsLYtWtXxezg/fffjyVLlsSsWbOO+X19VXgvXxlt2LAhhgwZEr///e/juuuui549e0azZs2idu3asX79+li7dm389a9/jaeeeipWrFgRERGNGjX6xjW2bduWIv2wDhw4EA8//HBMmzYt+vfvH/369YuOHTtG48aNo379+rFt27ZYv359LF26NF5++eWYM2dO7Nmzp8qsdzQee+yx2LNnTzz55JMVr9t69uwZr776avTt2ze2b9/+Pz+T71nc/5WvmaM5DkBurFmzJn7xi1/E7bffXvEZa9euXaNZs2Zx2mmnRYMGDeKrr76KTZs2xbJly+Ktt96KmTNnxkcffZTV9VN+rpqr+Ug+P5eOqBzzh6ryfvtYlZeXx8MPPxwPPfTQIR/z5ZdfxvTp0/NYdfTy/dxMLdf7139L+Tfw8ccfR69evaJXr15RUlIS3bt3/8YesHLlypg1a1ZMnz69WswWj4fKsG9SuRzve4T2798fU6dOjalTp0aHDh2ib9++0aVLl2jbtm3FnKa8vDy2bdsWmzdvjtLS0li8eHEsXLgw3nzzzf+Z9R5unXzeZ3I853X5un8kxaysMs+Vjkau7yGq7j744IPo379/nHPOOXH55ZdH7969o1WrVtGoUaM49dRTY/v27bF169bYunVrfPLJJ7F48eJYvHhxvPvuu1ldP5/Psy1btsSwYcPiwQcfjOuvvz569+4dzZs3jzp16lT8Hb3yyivx1FNPxcqVKyMiTpjPm1PsMWagAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5EpBeXl5eeqIFO64444YP3586gzgOCsoKIjly5dHu3btIiJizZo10apVqygrK0tcdvz897a9d+/eqFWrVsIaKoPLL7885s6dW3H8+eefR8uWLePAgQMJq9J69dVXo0+fPhERsWvXrmjevHls3749cVXltG3btqhfv37qDKqZevXqxc6dO1NnAORVv3794qWXXjrk+YkTJ8aYMWPyWATZu+KKK2LOnDmHPD9ixIiYOnVqHov4jxNhzsGx69u3b7z88ssVxzNnzoxBgwYlLKIqSzlzNMeBf/vTn/4Uw4cPT51xQps6dWqMGDEidQYclvnD0atbt26sXbs26tWrd9Dzjz/+eNx44415rgLyxb5ZvZmd8d/Myv7NPUSQG992j6nOM9C6devGjh07UmdERMSMGTNi8ODB//P9t956K7p37x4R/3798H/ddtttcf/99+e8DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAdmZFIXABxP5eXlcffdd1cct2jRIgYMGJCwCHJvxIgR3zh+9NFH48CBA4lq0jvrrLPi0ksvrTh+6KGHYvv27QmLAIATwZAhQw57ft68eXkqAaoTcw4O55JLLvnG8eLFi9OEwLdgjgMAR8f84ejt3LkzNm3adMjzjz32WP5igLyzb1ZvZmf8N7Oyf3MPEeTGt9ljzEABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIpUzqAIDj7emnn45ly5ZVHI8dOzZhDeRWs2bN4oorrqg43r9/f0ydOjVhUXpjxoyJgoKCiIjYtm1b3HvvvYmLAIDqrlOnTnHNNdcc8vyePXvijTfeyGMRUJ2Yc3AwtWrViptuuukb31uwYEGiGjh25jgAkD3zh2NzwQUXROvWrQ96btWqVTF//vz8BgF5Y988MZidEWFW9h/uIYLc+LZ7jBkoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuZRJHQBwvJWVlcXYsWMrjjt37hyXXXZZwiLInVtvvTVOOumkiuOZM2fGZ599lrAorVatWsW1115bcTxhwoTYtm1bwiIAoCo5/fTTY968eXHFFVdEJpPdyKRTp04xa9asqFGjxiEfM3Xq1Pjqq6+OVyZwgjHn4GDuu+++aNSoUcXxe++9F++8807CIjh65jgAnKjMH/Jr3Lhxhzz3yCOPRHl5eR5rgGNh3+RwzM6IMCv7D/cQQW58mz3GDBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBcy6QOAMiFuXPnxksvvVRxfM8990RBQUHCIjj+2rZtGz/96U8rjsvLy2PixIkJi9K7++67o7CwMCIiSktL44EHHkhcBABUJQUFBdGzZ8+YM2dOrFu3LqZMmRJDhw6N8847Lxo2bBiFhYVRu3btaNmyZQwcODCeeuqpeOedd6JFixaHvObOnTvjzjvvzONvAVRH5hzV2/333x8jRoyIGjVqHPGxNWrUiD/84Q/xk5/85BvfP9HnAVRN5jgAnKjMH3LvlFNOifPPPz8ef/zxGDBgwEEfs3v37pg6dWqey4BjYd/kSMzOqhezsmPjHiLITr73GDNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcq0wdQBArtxyyy3Ru3fvqFWrVnTs2DGuv/76eOKJJ1JnwbfWpEmT6NWrV9xzzz1Rq1atiu8/88wz8e677yYsS+uCCy6IIUOGVBz/7Gc/i6+//jphEQBQlTVu3DhGjBgRI0aMOOZrlJWVxfDhw2Pjxo3HsQw4UZlzVF8tW7aM2267LSZMmBDTp0+PefPmxb/+9a/YsGFD7N27N0477bQoKiqKnj17xsiRI6N58+bf+Plnnnkmnn322UT1cGzMcQDg38wfjp9HHnkkRo4cmfXj77vvvtiyZUsOi4BcsG9yKGZn1YdZ2dFxDxEcnXzuMWagAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ENh6gCAXFm5cmWccsopqTPguLjrrrvi17/+9SHPb9iwIX7+85/nsajyWbp0aWQymdQZAAAREVFeXh633HJLTJ8+/ZDnc6GgoCAn14XjyfP/2JhzVH+nn3563HzzzXHzzTdn/TMvvvhijBgxIodVkBvmOABwfBxp/sDBlZaWxr333nvUP+f9LFR95rbVl9lZ9WNWdmjuIYJvLx97jBkoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+eB/1AaAKm7jxo3Rr1+/2LBhQ+oUAAAiYs2aNXHppZfGH//4x9QpAFRTX3zxRYwePTquvvrq2L17d+ocAAASMH84Nlu3bo3BgwfHl19+mToFyDP7JlRfZmX/n3uI4PizxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCZFaYOAACO3s6dO+Ojjz6Kl156KSZNmhSbN29OnQQAcML75JNPYsqUKTF58uTYsWNH6hwAqogf//jHMW3atOjWrVucc8450bx586hfv340aNAg6tWrF/v27YstW7bE+vXrY9GiRbFgwYKYPXt27N27N3U6AAAJmD8cu+XLl0dJSUm8//77qVOAPLJvQtViVnb03EME2bPHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUN0Upg4A4OgUFBSkTiCBcePGxbhx41JnAABUa5s2bYpmzZrFeeedF+eee26ce+650bp162jQoEHUr18/6tWrF7Vr147du3fH9u3bY+vWrfHhhx/GO++8E2+//XYsWrQoysvLU/8acNTmzp3rvSYktGPHjpgzZ07MmTMndQonMP8OAED+mD/kz549e2LDhg2xdOnSeP755+P555+Pffv2pc4CjpJ9E04sZmVH5h4iOHb2GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKqbwtQBAAAAAJXFF198EV988UW88sorOV2noKAgp9eHyszzHwAAONHla/5wIhk1alSMGjUqp2t4PwvpmNsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD/yqQOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDuZ1AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkJ5M6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOxkUgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnUzqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALKTSR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAdjKpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhOJnUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2cmkDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA7mdQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCeTOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDsZFIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJ1M6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyk0kdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQHYyqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITiZ1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANnJpA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgO5nUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGQnkzoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA7GRSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCdTOoAAAAgN/bu3Rt79+5NnQEAAAAAWdu9e3eUlZWlzgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACASi2TOgAAAMiNVatWRZMmTWLo0KExZ86c2L9/f+okAAAAADisl156KVq0aBGjR4+OhQsXRnl5eeokAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKh0MqkDAACA3Nm2bVs88cQT0b9//2jSpEmMHDkyFi5cGOXl5anTAAAAAOCgPv/885g0aVJcfPHF0bp16xgzZkyUlpamzgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACASiOTOgAAAMiPzZs3x5QpU+Liiy+OVq1axejRo+Pdd99NnQUAAAAAh7R69eqYOHFitGvXLtq3bx933HFHrFq1KnUWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSVSR0AAADk36effhqTJk2K888/Pzp16hS/+93vYs2aNamzAAAAAOCQli9fHuPHj482bdpEz549Y8qUKbFly5bUWQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQd5nUAQAAQFrvvfde/OpXv4qWLVtG586d48EHH4z169enzgIAAACAgyorK4v58+fHyJEjo3HjxtGnT594/PHHY+fOnanTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAvMqkDAACAymPp0qVx6623RrNmzaJHjx4xZcqU2LFjR+osAAAAADioAwcOxN/+9re48cYb44wzzogrr7wyZsyYEV9//XXqNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADImUzqAAAAoPI5cOBAvPnmmzFy5Mho0qRJDBkyJP785z/H3r17U6cBAAAAwEHt2bMn5s6dG4MHD44zzzwzRo4cGQsWLIiysrLUaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwXGVSBwAAAJXbnj174rnnnosBAwbEmWeeGcOHD4958+bFgQMHUqcBAAAAwEFt2bIlpkyZEpdcckm0bNkyfvnLX8bSpUtTZwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAcZFJHQAAAFQdW7dujUcffTR69+4dZ5xxRowcOTIWLlwY5eXlqdMAAAAA4KDWrl0b999/f3Tu3DlatWoVY8aMidLS0tRZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHDMMqkDAACAqmnz5s0xZcqUuPjii6NVq1YxevToePfdd1NnAQAAAMAhrV69OiZOnBjt2rWL9u3bxx133BGrVq1KnQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR6UwdQAAAOnMmjUrTj311NQZ5Mjnn3+et7U+/fTTmDRpUkyaNCkymUze1gUAAACoDpYsWRL169dPnVEpLFq0KG9rLV++PMaPHx933nlnFBUV5W1dAAAAgOpg//79MWPGjNQZEZHfmRIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBlUZg6AACAdIYNG5Y6gWqorKwsdQIAAABAlTJ58uSYPHly6owTVllZWZSWlqbOAAAAAKhS9uzZE4MHD06dAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcMLKpA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgO5nUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGQnkzoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA7GRSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCdwtQBAACkM3/+/KhTp07qDHJk9erVMWjQoLyuWaNGjSgrK4v9+/fndV0AAACAqmzcuHExYMCA1BmVwmuvvRZjx47N65p169aN9u3bx6JFi/K6LgAAAEBVduqpp8Ybb7yROuOw2rVrlzoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgZwpTBwAAkE7Hjh2jfv36qTPIkdq1a+dlnUwmE927d4/i4uIoKSmJNm3axM6dO/OyNgAAAEB10LJly7jgggtSZ1QKK1asyMs6NWvWjD59+kRxcXEMHDgwnn322Vi0aFFe1gYAAACoDk466SQzLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIQKUwcAAABV09lnnx3FxcUxdOjQaN26deocAAAAADisTCYT3bt3j+Li4rj22mujUaNGqZMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4JgUpg4AAACqjrZt20ZJSUmUlJTE9773vdQ5AAAAAHBEXbp0iZKSkrjmmmvizDPPTJ0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN9aYeoAAACgcmvWrFlcc801UVJSEp07d06dAwAAAABHdNZZZ0VJSUmUlJREmzZtUucAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHFVmDoAAACofBo0aBBXXnllFBcXR9++faOw0FsHAAAAACq35s2bx8CBA6O4uDh69OiROgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcqYwdQAAAFA51KpVKy699NIYOnRoXHXVVVGjRo3USQAAAABwWKeddlpcccUVMXTo0OjVq1dkMpnUSQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQc4WpAyqr1q1bx+zZs1NnAABkpX///rFy5crUGVRBJ598clx22WVRUlISV111VdSuXTvna44fPz6uvvrqnK8DAFRtt99+e7zwwguHPH/RRRfF5MmT81gEAHDsunbtGrt3706dUW3UqVMnBgwYECUlJdGnT584+eSTc75m7dq1Y/HixTlfBwCo2nbt2hXdunU77GMmT54cF110UZ6KAACO3cyZM+M3v/lN6gwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOoTB1QGVVs2bNaN++feoMAICs1KxZM3UCVUgmk4nu3btHcXFxlJSUROPGjfO6ftOmTb3WBgCOqEGDBoc9X7t2ba8pAIAqI5PJpE6o8mrWrBl9+vSJ4uLiGDhwYNSpUyev62cyGa8/AYAj2r59+xEf06JFC68rAIAq4e23306dAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGEUpg4AAADy4+yzz47i4uIYOnRotG7dOnUOAAAAABxWJpOJ7t27R3FxcVx77bXRqFGj1EkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUCkUpg4AAAByp2XLljFkyJAYNmxYtGvXLnUOAAAAABzR2WefHUOHDo0bbrghmjZtmjoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqdwtQBAABAbrRt2zZWr16dOgMAAAAAsjZo0KAYPHhw6gwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqNQyqQMAAIDcyGS83AcAAACgajHTAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAjy6QOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDuZ1AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkJ5M6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOxkUgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnUzqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALKTSR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAdjKpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhOJnUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2cmkDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA7mdQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+PvfuOkrK8Gz/83WVZBKkCiqJGgtFgV0xeKyoWFDVBjRUTjWIlKuoJGtEUsUbsvlFUxFeD3ehPNBYwEWuMvXfEiNK7IOyyzO8PjxvH3Zmd2X1mZ8t1nTPn7NPu557ZZ5nPuf8BAAAAAAAAAAAAAIDclBZ7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOSmtNgTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDelxZ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuSkt9gQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADITWmxJwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBuSos9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHJTWuwJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJvSYk8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA3JQWewIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkprTYEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA3pcWee0W5RwAAIABJREFUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALkpLfYEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyE1psScANF9jxoyJkpKS6tfChQuLPSUa0ZQpU9J+/9++rrjiimJPDert6KOPrvFMr7766jF9+vRiTw2ARqJxWzeNS0ukcaF10zatm7ahJdI2AJlpv9ZL99FSaT9ovXRN66ZtaKm0DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIVQWuwJUD/vvPNO/PnPf45BgwbFJptsEj169Ih27drFOuusE1tttVUceuihceutt8asWbOKPVWgBaqqqorTTjutxv5evXrFSSedVIQZQTLOO++8KCsrS9u3bNmyGDlyZJFmBAA0Fo1LS6Vxi8f6HVBM2oaWStsAQDrdR0um/YrDmhZQTNqGlkzbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUAilxZ4A+fnXv/4VO++8c2y22WZx1llnxRNPPBHvvfdezJs3LyoqKmLGjBnxxhtvxD333BO//vWvo3fv3nHiiSfGzJkziz11oAUZP358vPHGGzX2n3nmmdG+ffuM11133XVRUlKS8dW5c+eYM2dOTnNYd911M46zcOHCer83mqaKiop4991348EHH4xLL700jjnmmNhxxx2jR48eGZ+DsrKyvO/Tt2/fOOKII2rsv/POO+PFF19M4q0ATcTbb7+d9m/GL37xi2JPCSiy+jZuhM6lfjRuy2X9DmgKrN/R2LQNNA5rWsD3WdOiGLRfy2RNC2gKtA1N0fPPPx9lZWVZn6+HH364znG0DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIVQWuwJkJuqqqoYPnx4bL/99vHss8/mdd3YsWNjww03jPvuu6+AM8zfrbfemvYfv3/88cfFnlKj8xnQHFVUVMTo0aNr7O/YsWMcd9xxDRp7yZIltY4Np556amy66aZxwAEHxNlnnx3jx4+P559/PubNm5f4vU4//fRa95933nmJ3wugJdK4NEeFbNwInUvtNG7LY/2uZfIZ0BxZv6MYtA3QEmg/mhtrWhSL9mtZWuKaVoTv9db+/mmetA1N0eLFi+PII4+MqqqqRMbTNgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSttNgToG7Lli2LAw44IP7yl7+k7d9oo41i9OjR8fLLL8esWbNixYoV8fnnn8c//vGPOOWUU2KNNdaoPnfp0qVx6KGHxtVXX93Y0wdamHHjxsV//vOfGvuPPvro6NKlS4PHHzt2bEydOrXB40B9bbXVVrHLLrvU2D9p0qR49tlnizAjAKDQCt24ETqX4tK4hWf9DmhKrN/R0mkbAPiGNS1aA+1XWNa0gKZE29AUDR8+PD799NPExtM2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJK202BOgbscdd1xMnDixerusrCwuvvjiePvtt+Pcc8+N/v37x5prrhnl5eWx7rrrxm677RbXXHNNvP/++3HYYYdVX7dq1aoYMWJE3HfffcV4G0ALsGrVqrjiiitqPXbssccmco+Kioo499xzExkL6ivT8zxmzJhGngkAUGiN0bgROpfi07iFZf0OaCqs39FaaBsAWjtrWrQm2q9wrGkBTYW2oSm6++67469//Wvi42obAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAklRa7AmQ3fjx4+OOO+6o3i4rK4u77rorzj777Gjbtm3Wa3v27Bl33nlnnHzyyWn7jzvuuPjss88KMl+gZZs4cWJ8/PHHNfZvtdVWsdVWWyV2n7vuuitee+21xMaDfB100EHRqVOnGvsnTpwYU6dOLcKMAIBCaazGjdC5FJfGLRzrd0BTYv2O1kLbANDaWdOiNdF+hWFNC2hKtA1NzX/+85848cQTCzK2tgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBJpcWeAJktWbIkTj/99LR9F110URx00EF5jXPdddfFwIEDq7cXLlwYZ555ZiJzBFqXm2++udb9v/jFLxK9TyqVirPOOivRMWne2rVrF/369Yuf//znMXLkyBg3blw888wzMXv27Fh99dUTv1+HDh1i8ODBNfavWrUqxo8fn/j9AIDiaazGjdC5pNO4LYP1O6CpsX5HsWgbAGhc1rQoJu3X/FnTApoabUNTsmrVqvjVr34VCxcuTNvfrl27RMbXNgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSptNgTILObbropFi1aVL299dZbxxlnnJH3OCUlJTF27Ni0/3T9gQceiE8++SSReTYlqVQqnnjiiTj00EOjX79+0bFjx+jWrVtsscUW8dvf/jbeeeedYk+x6BYsWBB/+ctfYsiQIdG3b9/o0qVLtG3bNrp37x6bbbZZHH300XHXXXfF8uXLG3SfV199NU444YTYfPPNo0uXLtGpU6f40Y9+FMcee2w8++yz9Rrz888/jyuvvDIOPPDA6Nu3b3Tq1ClWW2216N27d2y//fZx9tlnx6uvvtqgeUcU9jlKpVLx2GOPxSmnnBJbb711rL322tGuXbvo0aNHbL755nHyySfH5MmTG/weCmHOnDnx2GOP1XpsyJAhid9v0qRJ8eSTTyY+bibPPPNM/OEPf4g99tgj+vbtG926dYu2bdtGjx49YqONNor9998/Lr300njzzTcLcv/Zs2fHJZdcEtttt12stdZasdpqq8W6664b+++/f4wfPz5WrlxZr3FffPHFuOCCC2LQoEGx4YYbxhprrBHl5eXRs2fP2GSTTWLo0KFx6623pn3fNEVXX311vPvuu/Hggw/GpZdeGsccc0zstNNO0bNnz4Ld84ADDqh1/4QJEyKVShXsvkDzU4ju+S6NWzeNWzeNW7vGbtyIxu1cjatxv0/jJs/6Xf60Td20Td20Te2s32mbYtI20DxZ1yo+7Zed7qtdS1/TitB+2q8m7Zcsa1r50zV10zV10za1a+lto2uadtfU5pJLLokpU6ak7fvpT3+a6POobQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEhMqpX6wx/+kIqIjK9+/foVe4qpDTbYIG1OEyZMaNB4hx9+eNp4I0aMyHjuz3/+8+rzttxyy5zvce+996bd46233qpxzuqrr571s6/tdfvtt6eNcdlll6UdX7BgQWrmzJmpnXbaKes4ZWVlqbPOOiu1cuXKOt9LU/8M6uPGG29MdenSJaf7rbHGGqkrr7wyVVFRkXG82n4PS5cuTR1xxBF1jn/sscfm9HtIpVKpxx9/PLXHHnukSkpKcpr7gQcemJo3b16d4zbGc/Rd//znP1Nbb711Tu9hl112SX300Ud5jV9oN998c61z7d27d85jXHvttXk99/3790+tWrWq1rF69+6d8boFCxbkPKf7778/tdVWW+U1rz322CP13HPP5TT+oEGDMo4zY8aM6s+lQ4cOWe+56aabpj799NOc39cjjzyS+p//+Z+c31PXrl1T559/fmrFihU536OpyPRvaps2bRo07ty5czP+u/Pyyy8nNPvk9OvXL+/vlohILVy4sNhTpwXq1KlT1ufupptuKvYUU2+99VbanA466KCs5zdG92jc+tG4dc9f42aWROOmUk2vczXuNy+NW1Nza9xjjjkm6+94r732KvYUrd9952X9Tttom+Kzfvffl7ZpWrTNN5rDeklrd9NNN2X9HXXq1KnYU8x7TSuVsq6l/ZpH++m+/LTUNa1USvt9+9J+NTWn9lu4cGGdv+NHH320qHMs5ppWKtW0v9d1Tf3omrrnr20ya6lto2u+eTW3rnnppZdSbdu2TXsPHTt2TH388cepoUOHZnyfEydOzOs+zaltmsN6ST5qew9nnHFGsacFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQX/eUBk3SRx99FNOmTave7tq1axx44IENGnPYsGFp25MmTWrQeE3J4sWLY7fddotnn30263krV66MSy+9NH75y19GVVVVI82uaRgzZkwcf/zxsWjRopzOnz9/fpx++ukxZcqUnO+xYsWK2HvvveOOO+6o89xx48bFSSedVOd5M2fOjEGDBsXkyZMjlUrlNI+//e1vseOOO8asWbNyOv9bhXyOrr/++thjjz3itddey+n8KVOmxA477BAvv/xy1vOuu+66KCkpqX6deOKJOY1fH48++mit+3fZZZdExi8trfmV9Morr8Tdd9+dyPjf9/XXX8ewYcPioIMOitdffz2vaydPnhwDBgyIiy66KOfnMpNTTjklTjnllFi2bFnW8955550YMGBALFy4MOt5FRUVceqpp8a+++4bL774Ys7zWLhwYfz+97+PXXfdNWbOnJnzdS1Z9+7dY9NNN631WKa/B6D1KET3fJ/GrZvGrZvGza7QjRvRuJ2rcdNp3Jo0brKs3+VH29RN29StubVNY3ZNhPW779I2rYO2gfqxrtU0aL/smlv3RVjTaijtl0771aT9kmNNKz+6pm66pm7aJruW1ja6Jl1z6pqlS5fG0KFDo7KyMm3/tddeG3379k30XtoGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACApNT839xpEp555pm07R122CFWW221Bo254447Rtu2bau333333Zg/f36DxmwqTj311HjvvfeitLQ0jj/++HjhhRdi0aJFsWTJknjppZfilFNOiTZt2lSff+edd8ZFF11UxBk3rk8++SRGjRpVvd2uXbsYMWJEPP300zFnzpyorKyMJUuWxMcffxx33nln/OpXv4r27dvnfZ8RI0bEM888E+Xl5XHqqafGCy+8EAsWLIivv/463n777TjjjDPSfg833XRTPP300zmPv/3228eYMWPi2WefjZkzZ8aKFSti8eLF8eabb8bll18e66+/fvW577//fhx33HF5zb9Qz9Ftt90WJ598clRVVUVERNu2beOoo46Kxx57LGbNmhUVFRUxd+7ceOyxx2LIkCHV182ZMyeGDBkSc+fOzet9FMpTTz1V6/7/+Z//SWT8Qw89NNq1a1dj/7nnnhuVlZWJ3ONbq1atikMOOSTGjRtX7zGqqqpi1KhRcd5559V7jPPPPz+uu+66nM///PPP46yzzsp4PJVKxS9/+cu49tpr6z2nF154IXbZZZdYtGhRvcdoSTI93//4xz8aeSZAU1Po7onQuHXRuLnRuNkVunEjGq9zNW5mGjedxk2O9bv8aJvstE1utE121u/SaZvWQdtA/qxrFZ/2q5vuy64lrWlFaL9stF867ZcMa1r50TXZ6ZrcaJvsWlLb6JrMmkPXjBgxIj788MO0fQcffHAcffTRBbmftgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAJpcWeALV7+eWX07Z/8pOfNHjMdu3axeabb169nUql4pVXXmnwuPn66quvIpVKxfjx49P2f/TRR5FKpWp9HXnkkVnH/H//7/9FeXl5TJw4McaOHRvbbbdddO7cOTp27BjbbrttXHPNNTFp0qRo37599TUXXHBBfPDBBwV5j3UpxGeQzZ133hkVFRUREVFaWhqPPfZYXHnllbHzzjtHjx49oqysLDp27Bh9+/aNww47LP7v//4vvvjiixgxYkSUl5fnfJ+77rorevbsGc8//3xcffXVsd1220XXrl1jtdVWi0033TQuv/zyuPnmm9Ouufbaa7OOWVJSEkOGDIl33nknnn/++TjzzDNjxx13jLXWWivKy8ujU6dOsfnmm8cZZ5wRb7/9duyzzz7V106cODGeeuqpnOdfiOfoww8/jJNOOql6e+21147nn38+br311hg0aFCsueaa0bZt2+jevXsMGjQoHnjggbj55pujpKQkIiK++OKL+O1vf5vzeyiUqVOnxrx582o99t1/Vxpi/fXXj5NPPrnG/k8++SRuvPHGRO7xrXPPPTcefvjhRMa68MIL4/7776/Xtddff33e19x2222xYMGCWo9dcMEFcc8999RrLt/14Ycfxq9+9asGj9MSZHq+X3nllUilUo08G6ApKUT3fJ/GzU7j5kbjZtYYjRvReJ2rcbPTuP+lcZNj/c76nbb5hrZpPW1j/S432qZxaRvIn3WtmrTffzWV9tN9mbW0Na0I7VcX7fdf2i8ZLXlNKyL573Vdk52uyY22yayltY2uya4pd82DDz5Y49+RddddN8aOHVuwe2obAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAklBa7AlQu9mzZ6dt//CHP0xk3D59+qRtz5kzJ5Fxm4JLLrkkBg8enPH4brvtFldddVX1dkVFRdp2S/bmm29W/7zDDjvErrvuWuc13bp1iyuvvDIGDBiQ831KSkrijjvuiP79+2c85+ijj46ddtqpenvixIlRWVmZ8fy11lorHnjggdhkk03qvH+nTp3i3nvvjd69e1fvu/HGG3Oc/TeSfo5Gjx4dy5Yti4iItm3bxt///vfYdttts87h2GOPjTPOOKN6e8KECTF9+vRc30JBvPHGGxmPbbzxxondZ9SoUdGlS5ca+88///z46quvErnH559/HldccUXG47169Yqbbropvvzyy1ixYkVMnTo1LrzwwujQoUPGa0aOHBkrV66s95yOP/74eOutt2L58uUxderUOOGEEzKeu3z58pg0aVKN/TNmzIiLL74443WbbLJJ3HXXXTFz5syoqKiIadOmxUUXXRSrrbZarec/9NBD8eSTT+b/ZlqYfv361bp/8eLFMXXq1EaeDdCUFKJ7aqNxM9O4udO4tWusxo0ofOdqXI2bD42bHOt3+dM2mWmb3Gmb2lm/0zatlbaB/FnXKj7tlxvdV7uWtKYVof20X360XzKsaeVP12Sma3KnbWrXktpG1zTfrpkxY0YMGzYsbV9paWncfvvt0a1bt4LdV9sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQhNJiT4DazZ8/P227S5cuiYzbtWvXtO158+YlMm6xrb/++nHKKafUed6wYcNi4403rt6eMGFCrFixopBTaxK++uqr6p87duxYsPvstddesccee9R53uGHH17984oVK+K9995LbA6rr756nHzyydXbkyZNyvnapJ+jGTNmxF133VW9ffzxx8dWW22V01zOOeecaNeuXUREVFZWxoMPPpjTdYXy6aef1rq/rKwsevXqldh9unfvHiNHjqyxf/bs2XH55Zcnco8rr7wy49999+7d4/nnn49hw4bF2muvHeXl5dGnT58455xz4qGHHorS0tq/NqdOnRp33313veYzevToGDt2bGy22WbRrl276NOnT9xwww2x3377ZbzmlVdeqbHviiuuiK+//rrW8zfddNN48cUX49BDD4211lor2rZtGz/4wQ/id7/7XTz00ENRUlJS63UXXnhhvd5TS9K7d++MxzL9XQCtQ2N0j8bNTuPmRuNm1liNG1H4ztW4GjcfGjc51u/yo22y0za50TaZWb/TNq2VtoH8WdcqPu1XN92XWUta04rQftovP9ovGda08qNrstM1udE2mbWkttE1zbNrUqlUHHXUUTW+t0aOHBm77rprQe+tbQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEhC7f9bOkW3ZMmStO2OHTsmMu73x1m8eHEi4xbbEUccEWVlZXWeV1paGkceeWT19pIlS+K1114r5NSahHXWWaf65xdeeCG++OKLgtznsMMOy+m8bbbZJm37008/TXQeO+20U/XPc+fOjf/85z85XZf0czR58uRYuXJl9fYvf/nLnOYREbHGGmvEdtttV739zDPP1Hreb37zm0ilUtWvG264Ied75CPTM9OzZ88oLU32q2TEiBFpz+y3Lr/88pg9e3aDx3/kkUcyHjvvvPOiT58+tR7bfffd44gjjsh47aOPPpr3XPr16xe/+93vaj2W7e/pyy+/rLHv4Ycfznj+bbfdlvF7ZM8994x99tmn1mNPP/10LFq0KOO4rUGvXr0yHps+fXojzgRoahqjezRudhpX4zZUYzZuRGE7V+Om07jZadzkWL/Lj7bJTtu0zLZprK6JsH4XoW1aK20D+bOuVXzar+72a27dF2FNq760Xzrtl532S4Y1rfzomux0Tctc04rQNvWha9I1l6658sorY9KkSWn7+vfvH+eff37B761tAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASELy/zM8ifj+fwa/dOnSRMb96quv0rY7d+6cyLjFtuOOO+Z87g477JC2/dJLLyU9nSZn7733rv550aJFMXDgwHjggQdi5cqVid5n2223zem8NddcM2170aJFic7j++NPmzYtp+uSfo6eeeaZ6p/Lyspi6623znn8iIg+ffpU//zxxx/ndW3SlixZUuv+Dh06JH6vDh06xB/+8Ida5zB69OgGjf3ll1/Ghx9+mPH4EUcckfX6bMefeuqpvOdz1FFHRZs2bWo99t3f//d9/29m5syZ8f7779d6bt++fWObbbbJOo/vP8/fqqqqSnuOW6Nsz/j3v1OB1qUxukfjZqdxp+V0ncbNrDEb99txC9G5Grd2GjczjZsc63f50TbZaZtpOV2nbTKzflf3cW3TMmkbyJ91reLTftPqvEb3ZdZS1rQitF8m2i8z7ZcMa1r50TXZ6ZppOV2nbTJrKW2ja2rX1LvmzTffjHPOOSdt3+qrrx533HFHtG3btuD31zYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkoazYE6B23bt3T9teuHBhIuN+f5w11lgjkXGLbaONNsr53I033jhte8aMGUlPp8k54IAD4qc//Wn8+9//joiIDz/8MA488MDo1q1b7LHHHjFgwIDYdttto3///tG2bdt636dnz545ndehQ4e07a+//jqn6959993429/+Fv/+97/j/fffj3nz5sWSJUuisrIy63WLFi3Kafykn6PPPvus+ueVK1fWeN+pVKrOn781b968nOdWCCtWrKh1f3l5eUHud+yxx8YVV1wRH3zwQdr+sWPHxumnnx4//OEP6zXu9OnTMx5bd91163yGt9lmm4zHZsyYEVVVVdGmTZuc57P99ttnPNapU6eMxyoqKtK2P//884znfvLJJ1FSUpLznL5v6tSp9b62JWjXrl3GY7n+2wW0TIXungiNWxeNq3EbqrEbN6Iwnatx86dxNW5SrN/lR9tkp220TUNZv/uGtml9tA3kz7pW8Wm/uttP92XWUta0IrRffWg/7ZcEa1r50TXZ6RprWg3VUtpG1+Sv2F2zfPnyOOKII2o8g1deeWVef7MNoW0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIQmmxJ0Dtvv8f3X/66aeJjDtt2rSs92muunTpkvO5Xbt2TdtesGBB0tNpctq0aRMPP/xwDBw4MG3/ggUL4t57741TTjkltt9+++jatWsMHjw4brvttqioqMj7Pu3atavX/FKpVNbjn3zySey7776x6aabxnnnnRcTJ06Mjz76KObPnx+VlZV1jr9kyZKc5pH0czRv3ry07aqqqrTXqlWrql+pVKr6VZulS5fmPLdCyPS7rc9zkos2bdrERRddVGN/ZWVljBo1qt7jzp07N+OxXP497NGjR8Zjq1ativnz5+c1n3XXXTfjsfLy8pzHmTNnTl73zUe2z6w1WL58ecZj7du3b8SZAE1NobrnuzRudhpX4zZUYzduRGE6V+PmT+Nq3KRYv8uPtslO22ibhrJ+9w1t0/poG8ifda3i0351t5/uy6ylrGlFaL/60H7aLwnWtPKja7LTNda0GqqltI2uyV+xu+bFF1+Md955J23fkCFD4rjjjmu0OWgbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAklBa7AlQu/79+6dtv/TSSw0es6KiIt56663q7ZKSkhr3aa5KSkpyPjeVShVwJk1Xz54948knn4yJEyfG/vvvH+3atatxzrJly+LRRx+No446Kvr27RuPPPJIEWaa7o033ojtttsu/v73v9d7jFWrVuV0XtLPUWVlZc7jJXG/QurYsWOt+5cuXVqwex544IGx3Xbb1dh/9913x6uvvlqw+zamDh06ZDzWpk2bRpxJZkuWLCn2FIpq2bJlGY9l+rsASIrGrZvGrZvGzawYjRvR8jtX4zZ9Gjc51u/yo23qpm3qpm0ys35XGNqm6dM20DRpv7ppv+x0X2bWtApH+zV92i8Z1rTyo2vqpmvqpm0y0zaFoWvqVtuz/+CDD0ZJSUnG14QJEzKOt//++6ede9ddd9U5B20DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAEkqLPQFqN2DAgLTt559/PlasWNGgMZ977rmoqKio3t5kk02ie/fuDRrz+6qqqhIdL1cLFy7M+dxFixalbXfr1i3RuRTrM8jVfvvtFw899FAsXLgwnnrqqbj44otjv/32i65du6adN3369Nh///3j/vvvL9JMI1auXBlDhw6NuXPnVu/bdNNN4+KLL44nn3wyPv7441i0aFGsWLEiUqlU9evDDz+s1/2Sfo6++/e1/vrrp80x39d3P4Ni6N27d637586dG6tWrSrYfS+99NIa+1KpVJx99tn1Gq9Hjx4Zj82ZM6fO67P9HkpKSmKNNdao17waqmfPngUbO5VKFWzs5mDmzJkZj2X6uwBIisbNncbNTONmVqzGjUi2czVu/jSuxk2K9bv8aJvcaZvMtE1m1u++oW1aH20DTZP2y532q53uy6yHQv7xAAAgAElEQVSlrGlFaL/60H7aLwnNdU0rojjf67omd7omM22TWUtpG12Tv9beNRHaBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGSUFnsC1G6jjTaK9ddfv3p7wYIF8cADDzRozHHjxqVt77nnnhnPLS8vr/65srIy53vMnz8//4kl4MMPP8z53A8++CBtu1evXrWe19w+g3ytttpqscsuu8TZZ58dEydOjLlz58aTTz4Z++67b/U5qVQqhg8fHsuXLy/KHCdNmhTvvPNO9faxxx4bb7zxRpx99tkxcODA6Nu3b3Tu3DntdxXxzd9LfST9HK299trVP0+fPj2WLVtWr3k1BX369Kl1/8qVK2PmzJkFu++AAQNi8ODBNfZPmjQpZsyYkfd46667bsZj06dPjzlz5mS9/tVXX814bO211442bdrkPackZHtfe+65Z6RSqXq/rrrqqkZ8J03P9OnTMx7bYIMNGm8iQKukcfOncWvSuJkVq3Ejku1cjatx86Vxk2P9Lj/aJn/apiZtk5n1u29om9ZH20DTpP3yp/3S6b7MWsqaVoT20375037JKPaaVkTz+l7XNfnTNTVpm8xaStvoGl1TH9oGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAJJQWewJkdsopp6RtjxkzJqqqquo11tSpU+P++++v3i4tLY3hw4dnPL9z587VP8+bNy/n+7z55pv1ml9DPffcczmf+8ILL6Rt/+QnP6n1vOb2GTRUmzZtYuDAgfHwww/HIYccUr1/1qxZeX2+SXrqqaeqfy4vL4/LL7882rRpU+d19f0dJP0c7bzzztU/r1q1KiZNmlSveTUFW2yxRcZj77//fkHvfckll0Rpac2vq1WrVuU91jrrrBM/+tGPMh6/8847s15/xx13ZDy266675j2fpKy99tqx8cYb13psypQp8cUXX+Q1XlVVVdx4441x8cUXJzG9Zi3T892xY8fo27dvI88GaG00bsNpXI2bTTEbNyK5ztW4udG4/6Vxk2X9LnfapuG0jbbJxvrdN7RN66NtoGnSfg3X2ttP92XWUta0IrRfrrTff2m/5BRzTSuieX2v65qGa+1dE6FtsmkpbaNrcqNr0mkbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAklDzf2ynyTj++OOjc+fO1duvvPJKXH311fUa68QTT4zly5dXbw8ZMiQ23HDDjOf37t27+udZs2bF7Nmz67xHZWVlTJw4Mec5lZeXp21XVVXlfO333XnnnTldn0ql4q9//Wv1dqdOnWKbbbap9dzm9hkk6ZhjjknbnjZtWlHmMXPmzOqfe/fuHV26dMnpunvuuade90v6ORo0aFCUlJRUb1933XX1mldTsOGGG0a3bt1qPfb2228X9N6bb755HHnkkYmNt++++2Y8dv7552d83p988sm44447Ml47ePDghk6tQfbbb79a91dUVMTQoUNjyZIldY7x9ddfx/jx42OrrbaKE044IWbNmpXx3JUrV0ZJSUmtr80226ze76Opeeutt2rdv80220RpqYwCCkvjJkvjZqdx0xW6cSOS7VyNm5nGrUnjJsv6Xe60TbK0TXbaJp31u29oG20DNB7tl6zW2H66L7OWtKYVof2y0X41ab/kFHNNK6J5fa/rmmS1xq6J0DbZtKS20TWZ6ZraaRsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACS4H/GbsI6d+4cY8aMSdt39tlnx4MPPpjXOKeddlpMmjSpertLly5x+eWXZ72mf//+adv33ntvnfe59tpr44svvsh5Xp06dUrbnjdvXs7Xft9nn30W//u//1vnebfccku8//771dtDhw6Ndu3a1Xpuc/sMklRSUpK23aFDh6LMo3379tU/z549O5YvX17nNQ8//HDa856PpJ+jPn36xAEHHFC9PXny5LjtttvqNbemYNddd611/4svvljwe48ePTrj32q+zjjjjIxjzZs3L3bYYYcYN25czJw5MyorK2PatGlx8cUXx89+9rNYtWpVrdf98Ic/jEMOOSSR+dXX6aefnvY3811TpkyJTTbZJC677LJ4/fXXY8mSJVFVVRVz5syJt99+O8aPHx9HHXVUrLPOOnHMMcfE22+/3cizb7r+9a9/1bp/t912a+SZAK2Rxk2Wxs1O46ZrjMaNSK5zNa7GzYfGTZb1u9xpm2Rpm+y0TTrrd9qmJdM20DRpv2S1xvbTfdm1lDWtCO2n/fKj/ZJTzDWtiOb1va5rktUauyZC29SlpbSNrmleXbPrrrtGKpXK6zV06NCM402cODHt3MMOO6zOOWgbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAklBa7AmQ3XHHHReHHnpo9XZlZWUccsghcdlll8XKlSuzXjt37tw48sgj45prrknbf9NNN8UGG2yQ9drddtstVl999ert0aNHx/Tp0zOef99998Xvfve7rGN+X9++fdO2X3zxxbyu/76RI0fG448/nvH4lClT4tRTT63eLi8vj9NOOy3j+c3xM8hk3333jdtuuy1WrFhR57kVFRVx2WWXpe3bZpttCjKvumyxxRbVPy9dujQuvPDCrOdPmjQphg4d2qB7Jv0cjR49OlZbbbXq7eOOOy7Gjh2b01xSqVT84x//iL333jtmzZpV6znXXXddlJSUVL9OPPHEnMauj3322afW/U8//XTB7vmt9ddfP4YPH57IWOutt16cfvrpGY/PmDEjhg0bFmuvvXaUl5dHnz594pxzzolly5ZlvObSSy+Ntm3bJjK/+urdu3ecddZZGY9Pnz49Ro4cGVtvvXV07tw5ysrKYs0114zNN988jjnmmLjtttti4cKFjTjj/Hz/Wf/ua+nSpbVeU1VVlfGaMWPG1HnPOXPmxHvvvVfrsb333rtB7wcgVxo3M42bO42bWTEbNyK5ztW4GlfjFpf1u9xpm8y0Te6aU9s0ZtdEWL/TNsWlbYDv036Zab/cNKfui7CmVV/aT/tpv+Ip1ppWRPP7Xtc1mema3GmbzFpK2+ia5tk1xaJtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASEppsSdA3caNGxf77LNP9XZlZWWMHDkyNttss7jooovi1VdfjTlz5kRFRUV88cUX8dRTT8WIESNi4403jgkTJlRfV1paGldddVUcfPDBdd6zU6dOcfTRR1dvz5o1K7bbbrsYN25cfPnll1FZWRlz586Nxx9/PA455JA45JBDoqKiIo444oic39fGG28c3bt3r96+6KKL4q677orZs2dHVVVVzuNERPzsZz+LFStWxODBg+Okk06KF198MZYsWRJfffVVvPLKK3HaaafFHnvsEcuWLau+5txzz40f//jHLeYzyOaNN96Io446KtZcc8048sgj45ZbbonXX3895s2bFytXrozly5fHRx99FLfcckv0798/Jk+eXH3tnnvuGRtvvHFic8nHgQceGB06dKjevuCCC2KfffaJxx9/PKZPnx6VlZUxZ86c+Pvf/x6HHXZY7L333rF48eI45JBD6nW/QjxHm2yySYwbN656u6KiIk488cTo379/XH/99fH222/HokWLYuXKlbFgwYL44IMP4p577okRI0bEBhtsELvvvns8/vjjkUql6vWekvTzn/88ysrKauyfPn16vPfeewW//6hRo6JLly6JjHXhhRfGfvvtl8hYo0aNil/84heJjNVQv//97+PQQw8t9jRajMmTJ9f6t7feeuvFT3/60yLMCGhtNG52Gjc3Gje7YjduRHKdq3HJhcYtHOt3ddM22Wmb3Gib7IrdNtbv6qZtkqVtoOnSftlpv7rpvuyK3X0R2i8X2i9Z2q8wirGmFdG8vtd1TXa6JjfaJruW1Da6hlxpGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJS83+Lp8lZffXV46GHHorhw4fHjTfeWL3/gw8+iFGjRsWoUaNyGmP8+PFx8MEH53zfCy+8MB5++OH47LPPIiLiiy++iGHDhmU8f9SoUbHVVlvFHXfckdP4bdq0iWHDhsWll14aERFz586Nww8/vNZzb7/99jjyyCMzjnXNNdfEhx9+GO+//37ccMMNccMNN2S99+GHHx7nnHNOnXNsTp9BLhYvXhwTJkyICRMm5HR+nz59Yty4cQ26Z0P06tUrLrzwwjj99NOr9z322GPx2GOPZbxmr732ij/96U9xzz335H2/Qj1HRxxxRFRWVsaJJ54Yy5cvj4iIV199NU4++eS851hMa665ZgwaNCgeeeSRGscefPDB6NevX0Hvv8Yaa8RZZ52V02del9LS0rjnnnti+PDhMX78+HqN0aZNm/jTn/6UyHySUlJSErfddluss846cdVVV0UqlarXOG3bto0TTjghp++XluyBBx6odf/QoUOjtLS0kWcDtEYaNzcaNzuNm12xGzciuc7VuNlp3G9o3MKxfmf9LkLbfEvbFE+x28b6Xd20TbK0DTRd2i832i8z3ZddsbsvQvvlQvslS/sVRrHWtCKaz/e6rsmNrslO22TXktpG12Sna/5L2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAU/zt2M1FWVhZjx46N5557LnbYYYecr2vTpk0cf/zx8fHHH8fBBx+c1z27dOkSU6ZMic022yzreeXl5TFmzJi44IIL8ho/IuIPf/hDDBw4MO/rvq9Lly7xz3/+M3bccces55WVlcXIkSPj9ttvjzZt2uQ0bnP5DJJ28MEHxwsvvBDrrbdeUecxYsSIGDNmTLRt27bOc4cNGxYPPfRQlJWV1etehXqOIiKOOuqo+Ne//hV77bVXzvMpLS2NQYMGxRNPPBG9evXK+bpCGjZsWK3777vvvka5/4gRI2KdddZJZKz27dvHLbfcEvfdd19sueWWeV07cODAePrpp2PUqFFRUlKSyHySUl5eHldccUVMnjw5dt1117yu7dGjR5x++unxwQcfxLXXXhs9e/as1xxy/btoypYuXRqPPvpojf2lpaVx7LHHFmFGQGukcZOncTPTuDU1VuNGJNe5GrcmjftfGrfwrN9lp22Sp20y0zY1Wb9rOrRNMrQNNG3aL3mtrf10X92K3X0R2i8X2i8Z2q+wirGmFdF8vtd1TfJaW9dEaJtctKS20TU16Zp02gYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAklRV7AuRnhx12iOeeey7eeuuteOSRR+LJJ5+Mzz//PGbPnh1fffVVdO/ePdZcc8348Y9/HHvvvXcMHjw41lprrXrf7wc/+EG8/vrrcfvtt8f9998fr776asydOzc6d+4cP/jBD2Lw4MFx/PHHx7rrrluv8du3bx+TJk2KBx98MO677754/fXX44svvoilS5dGVVVVXmP16tUrnnnmmXjiiSdi3Lhx8eabb8b06dOjrKws1ltvvdhrr73imGOOiU033TSvcZvTZ5DJG2+8Ea+99lr1a+rUqTFv3ryYP39+LFq0KFZbbbXo1q1b9OvXL3bYYYc49NBDo1+/foncOwlnnnlmHHDAATF27Nh48skn45NPPomlS5dGjx49onfv3rH77rvHUUcdlcicC/UcRURsueWW8fjjj8frr78eEydOjKeeeqr6d7F8+fLo3LlzrLPOOrHlllvGjjvuGEOGDIlevXo1+D0l6Wc/+1n07ds3Pvnkk7T9r776arz55puxxRZbFPT+7du3jz/+8Y9x/PHHJzbmQQcdFAcddFA8/fTTMXny5Hj22Wdj2rRpMX/+/Fi6dGl07tw5unXrFhtvvHHsvPPOMXjw4IK/zyQMHDgwBg4cGO+880489thj8fzzz8e7774b8+fPj4ULF0bbtm2jR48esf7668f2228fAwYMiD333DPKy8tzGv+tt97KeOw3v/lNUm+jaO6777746quvauzfd999Y8MNNyzCjIDWSuNmpnFzp3GzK3bjRiTfuRpX49ZG4zYe63eZaZvMtE3utE12xW4b63e50zYNo22g6dN+mWm/3Oi+7IrdfRHaLx/ar2G0X+No7DWtiObzva5rMtM1udM22bXEttE1uiYTbQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECSSlKpVKrYkyiGP/7xj/GnP/0p4/F+/frFu+++24gzIh9jxoyJ3/72t9XbCxYsiK5duxZxRjRHnqP6+ctf/hLDhw+vsf/UU0+Nq6++uggzohguu+yyGDlyZI39u+++e0yePLkIM0rWLrvsEk8//XSN/VOmTIkBAwYUYUZ122STTeK9997L+7qFCxdGly5dCjAjWrPOnTvHkiVLMh6/6aabYtiwYY04o+ZBm5AEz1H9aFwiNG5TdOyxx8Ytt9yS8fhee+0Vjz/+eCPOiHz4TiIJnqP60TZEaJumyHpJ03fzzTfHcccdl/F4p06dYvHixY04o+bDdzYN5RmqH93Ht7Rf07Jo0aI6/w179NFHY++9926kGZEP30kkwXNUP9qGiJbfNRHNr21a2npJSUlJjX1nnHFGXH755UWYDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQIPdW1rsGQDQvAwbNizWW2+9GvvHjx8fixcvLsKMKIZJkybV2Lf66qvHTTfdVITZJOv111+Pp59+usb+PfbYIwYMGFCEGQEAhaZxidC4ALQc2oYIbQMArYHu41vaD4CWQNsQ0bK7JkLbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkLzSYk8AgOalvLw8fv/739fYv2TJkrj55puLMCMa24oVK+LZZ5+tsf+SSy6JPn36FGFGybriiitq3T969OhGngkA0Fg0LhoXgJZE26BtAKB10H1EaD8AWg5tQ0vvmghtAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPJKiz0BAJqfX//617HlllvW2D9mzJj4+uuvizAjGtNzzz1X4/e88847x/Dhw4s0o+R88sknceedd9bYf/jhh8d2221XhBkBAI1F47ZuGheAlkbbtG7aBgBaD92H9gOgJdE2rVtL7poIbQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBhlBZ7AgA0P23atImrr766xv4ZM2bE9ddfX4QZ0ZgmT56ctt2+ffsYN25clJSUFGlGyRk9enSsXLkybV+HDh3iz3/+c5FmBAA0Fo3bumlcAFoabdO6aRsAaD10H9oPgJZE27RuLblrIrQNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhVFW7AkA0DztsssukUqlij0NimDy5Mlp2+eff3786Ec/KtJsknXrrbfGrbfeWuxpAABFonFbL40LQEukbVovbQMArYvua920HwAtjbZpvVpy10RoGwAAAAAAAAAAAAAAAAD+P7t2j9NKGoRhtCmRWUaI1GwAdsQKyBGkbADhbRDMOkjYgCMnSMgZ4kdOCOzJJhrdW3dgeG1zjtRRd/AEJX2lTw0AAAAAAAAAAAAAAAAAAAAA8P/YTwcAANvl4eEhnQAAAF/KjgsA7BK7DQDAz2H3AwB2hb0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/lylAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAD8F5eXl8N6vf7nOTw8TCexhcwRALBJ7CZ8BXMEwKZwJvEVzBEAbAdnNp9lhgDYFM4kvoI5AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOC7VDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQU+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgp9IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9FQ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ5KBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBT6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6Kh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAT6UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Kl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2VDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCn0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0VDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICe/XTApprP58Pp6Wk6AwCgZT6fpxOg7fr6ephOp+kMAGDDLRaLX76/v793fwcAbI3lcplO4JOWy6X9EwD4rdVq9dtvzs/Ph9Fo9A01AACf8/Lykk4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgF/bTAZvq4+NjmM1m6QwAANg5i8ViWCwW6QwAYMstl0v3dwAAfJvVamX/BAC+xOPjYzoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAdUOkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZ2+9Xq/TEQlvb2/D6+trOgMAIOr4+HjY29tLZ7Bjnp6ehtVqlc4AAAAA2BpHR0fDaDRKZ/xoy+VyeH5+TmcAAAAAbI2qGiaTSTqj7d/+k7u4uBhub28DNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ/21366IOXg4GA4ODhIZwAAwM6ZTCbpBAAAAAD4I6PRaBiNRukMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgp9IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9FQ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ5KB30fxkUAACAASURBVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBT6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6Kh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAT6UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Kl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2VDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCn0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0VDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQU+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgp9IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9FQ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ5KBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBT6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6Kh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAT6UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Kl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2VDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCn0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0VDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQU+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOjZTwekTKfTYTqdpjMAAKJms9kwHo/TGeyYk5OT4f39PZ0BAAAAsDVubm6Gs7OzdMaPdnd3N1xdXaUzAAAAALbGeDweZrNZOgMAAAAAAAAAAADgb/buPLqq+t4b8DcnIQmBQEBRLmBLFShFsTiiYlVkKFLAsRYFqlJQUdHWqq/WOrVqtXpbC4ooIogiOINDq1xAaR0rFnHuFZBaqIIIgoDM5/3jLlNjSXIynR30edbaa7H3/g2ffbLPydnf/NYCAAAAAAAAAAAAAAAAAAAAAAAAAOBrKy/pAElZs2ZNLF26NOkYAACJ2rZtW9IR+ApaunRpfPrpp0nHAAAAANhhrFu3LukIX3vr1q3z92MAAACAKiguLk46AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNdaKukAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCaVdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyk0o6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJlJJR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzKSSDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBmUkkHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQmVTSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhMKukAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCaVdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyk0o6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJlJJR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzKSSDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBmUkkHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQmVTSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhMKukAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCaVdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyk0o6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJlJJR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzKSSDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBmUkkHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQmVTSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhMKukAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCaVdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyk0o6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJlJJR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzKSSDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBmUkkHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDOppAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQmVTSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhMKukAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCaVdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyk0o6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJlJJR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzKSSDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBmUkkHALLrk08+iXQ6vd1t7ty5ScfLmt133z0+++yz0msfMmRI0pGAOrT//vvHtm3bSt/zPXv2TDoSANRb/fr1K/eZIZ1Ox7Bhw5KO+LXi51F1XjPqUteuXeOaa66J2bNnxz//+c9Yv359bNmyJVavXh1vv/12PPjgg3HOOedEy5Ytk466XTWthzRp0iROO+20GDduXLzyyiuxdOnSWLduXWzatCk+/vjj+N///d947LHH4vrrr4/+/ftHcXFxHV1JdixYsKDM50d9/bmyY/niPbVhw4ak4+zQ1HsAAPg6qu6aDzUzytO2bds4+eST44YbbohHHnkkXn/99fjggw9i7dq1sWXLlli1alW899578Ze//CVuuummGDhwYBQVFSUd+z/U9jqgzp07x0UXXRQPPfRQvPbaa/Hxxx/Hxo0bY+PGjfHhhx/G22+/HdOmTYtLLrkkDj/88EilLMMEdnx5eXllvh988sknGfVTS98+9UsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyIZV0ALJj7dq1Zf5j+cq2bdu2xbp162L58uWxcOHCmD17dtx+++1x9tlnxx577JH05VBP5ObmxoEHHhiXXnppPPPMM7Fx48YK76s+ffokHbnU6NGjo7CwMCIiXn311bjnnnsqbD9t2rQy1zJ16tRsxKQO+Zl+vcydOzfuu+++0v2bb7458vPzE0wEAABUVZJ1iD59+sS8efPixRdfjF/84hfRvXv3aNOmTTRs2DByc3OjSZMm0bFjxzj++ONj9OjRsWTJkpg4cWK0bt261jLUhqrWQz7XrFmzGDNmTHzwwQdx5513xrBhw2LfffeNVq1aRVFRUTRo0CCaN28e7du3j379+sVFF10Ujz76aKxcuTJmzpwZp556ahQXF9flpZFl6irUB+o9AADAV0m2al8FBQXRt2/fuO2222LJkiXx3nvvxeTJk+OCCy6IY445Jvbaa69o2bJlNGrUKHJzc6OkpCTatm0bhx56aJx33nkxZcqU+OCDD+Lmm2+OnXbaqZZfheqrbt3ri3Jzc2Po0KHxxhtvxGuvvRbXX399HHfccdG5c+do3rx55OfnR35+fuy6667RsWPHOProo+Paa6+NZ555JhYvXhy//vWvo2XLlrV9aZC4L9cCa7qNHTs26UuCrFC/BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBtSSQegfsrJyYmioqJo0aJF7L777tG9e/cYPnx43HzzzbFgwYKYP39+nHjiiZGTk5N0VLKsXbt2ceaZZ8ZDDz0UK1asiJdeeimuvvrqOPzwwyM/Pz/peBkZMGBA9O3bt3T/4osvjnQ6nWAiqmrFihWRTqdLt5KSkqQjsQO49NJLY8uWLRER8e1vfzvOO++8hBMB8HUyduzYMt9fvry1bNky6YgA9VLSdYgGDRrEbbfdFn/605+iS5cuGffLzc2NU045Jd54440YMGBAHSbMXHXrIYceemi8/fbbMWLEiCgqKqrSnHl5edGjR4+YMGFCXHHFFRn18cwPVIV6D8DXi/oKAF81SdS+RowYEU888UScfvrp0bp162qN0aRJkzj77LPj7bffjn79+tVywqqrjXVA+++/f8ybNy/Gjx8fe+65Z5Uz7LbbbvHLX/4y3n333fjFL34RhYWFVR6jLqi1ASRL/RIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC6lko6ADumvffeO+6777545JFHoqioKOk4ZElhYWG8++67ceutt8Zxxx0XJSUlSUeqslQqFb/5zW9K9+fOnRtPPfVUgomAbFm0aFFMnTq1dP+SSy7ZIT/HAADg6yLpOkReXl5MmzYtTj/99GqPUVJSEg8//HAMGjSoFpNVXXXrIQcddFD86U9/il133bXM8aeeeiqGDh0ae++9dzRr1iwaNGgQLVq0iM6dO8fw4cNj6tSpsXbt2lq/DoAvU+8BAAB2VEnXvmpDixYt4pFHHonjjjsusQy1sQ7o1FNPjeeeey46d+5c5vjSpUtj7Nixccwxx0SnTp2iRYsW0aBBg2jevHkceOCBcd5558Wf//znMn0aN24c11xzTRxzzDHVvygAvjLULwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhrqaQDsGM7+uij49577006BmRsyJAh0alTp9L9a6+9NsE0QLb95je/iXQ6HRERzZo1iwsvvDDhRAAAQH31u9/9Lvr27VvjcXJzc2PChAnRtWvXWkhVPdWphxQWFsbdd98djRs3Lj22fPnyOOKII6JPnz4xYcKEeP311+OTTz6JLVu2xIoVK+KNN96IO+64I0466aRo1apVnH322bFgwYI6uSaAz6n3AAAAJCcvLy/uueeeaNu2bSLz13Qd0PDhw+POO++M/Pz80mOrVq2Kn//857H77rvHiBEjYvr06fH222/HihUrYsuWLbFq1ap4+eWXY9SoUXH44YdHly5dYsaMGbV2TVDf3XfffZGTk1Pt7cwzz0z6EiCr1C8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoS6mkA7DjO/roo+OYY45JOgZUKpVKxaWXXlq6/49//COmT5+eYCIg2956662YNWtW6f7IkSOjadOmCSYCAADqo4MPPjjOPvvsWhuvQYMGMW7cuMjLy6u1MTNV3XrIT37yk2jXrl3p/ubNm6N3794xZ86cjOb99NNPY8yYMdGpU6c499xz46OPPqp6+IS1a9cucnJySrcPP/ww6UjAdqj3AAAAJKthw4Zx4403Zn3emq4DOvLII2PMmDGRk5NTeuy9996LAw44IH73u9/Fpk2bMhpn/vz58f3vfz+GDRsW69evz/wCAL4i1NIrpn4JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAXUolHYCvhlNPPTXpCFCpo48+Otq3b1+6P27cuNi2bVuCiYAk3H777aX/Li4ujuHDhyeYBgDqn8cffzxycnLK3e64446kIwLUqVQqFbfffnukUuWXTj/66KMYPnx4tGrVKoqKiqJz584xZsyYCsft3Llz/OxnP6vtuJWqbj3khBNOKLM/efLkmD9/fpXn37x5c4wePTquv/76KvcFyJR6DwAAVEzdl4q8+OKL8atf/Sq6d+8e3/zmN6OwsDCaNm0ahxxySIwePTo2b95c6RgDBgyIkpKSLKT9t5qsA2ratGncddddkZeXV3psyZIlceihh8bChQurlWf8+PFx5JFHxooVK6rVH4CvLvVLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6koq6QDUD8cee2zk5OSU2Xbaaac48MADY/z48ZX279WrVxZSUt9s27Yt5s6dG9ddd1307NkzbrrppqQjVeinP/1p6b/T6XRMnDgxuTBAYqZNmxYff/xx6f65554bqZSvRAAAUN9lqw7Rs2fP2Guvvco9v3bt2ujWrVvccccd8cEHH8Rnn30Wb7zxRpx99tlx8cUXVzh2Es8f1a2HHHDAAWX2Z82aVZuxAGqVeg8AALCjy/YanNWrV8eNN94YHTt2jIMPPjiuuOKKeOaZZ+L999+PjRs3xpo1a+KFF16Ic889N773ve/FmjVrKhyvQYMGWV8/VpN1QJdcckm0adOmzLHhw4fHv/71rxpleumll6J3797xySef1GgcAL5a1C8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoK3lJB6D+WrlyZaxcuTJefvnlWLVqVVxwwQXlti0qKoqmTZvG6tWra2XuTp06xbBhw+KII46IPfbYI4qKimL58uVx3XXXxejRozMao2XLltGzZ8/43ve+F/vtt1/svPPO0bx58ygoKIgVK1bERx99FK+++mrMnDkznnzyyVixYkWNcycx55FHHhkDBw6MQw45JFq1ahUFBQXxr3/9KxYsWBAPPvhgPPjgg7X2c0mn07Fw4cKYOXNmzJw5M2bNmhWrVq0qPd+rV69amacu7L777nHYYYeV7j/33HOxdOnSxPK0aNEiBg4cGMcee2x885vfjFatWsWGDRti2bJl8dxzz8UDDzwQTz75ZK3O+e1vfztOPvnk6N27d7Rq1Sp23XXXWL16dfzzn/+MGTNmxOTJk+PNN9+s1Tm/7goLC+M73/lO7L333rH33nvHnnvuGbvsskuUlJRESUlJFBcXx6effhoff/xx/P3vf4+nn346Hn744XjvvfeSjl5lnTp1ih/84AfRq1evaNu2beyyyy5RWFgYy5cvj/fffz9mzpwZDz/8cLz22mu1NmebNm3ihBNOiH79+sU3vvGNaNmyZRQXF0dExM477xwff/zxdvtt3rw5pk+fHkOHDo2IiN122y169OgR//M//1Nr2QDYsRQWFkavXr2iV69e0alTp2jXrl00adIkGjduHFu3bo01a9bEmjVrYvXq1bFq1ap4//3347333ou///3v8eabb8a7774bmzdvTvoyKlQbz1h1kWnQoEHRs2fP2G233WKnnXaKVatWxeLFi2PGjBkxYcKEGn0vOvzww+Okk06Kbt26RevWraOgoCA++OCDWLRoUTz00EPxwAMPxMqVK2vxinYM3/jGN0qfW7t06RI77bRTNG/ePPLy8mLVqlWxcuXKePfdd+Mvf/lLPPPMM/HKK698Jebm3w4++OAYNGhQaR2hpKQkli1bFgsXLoxp06bFfffdF8uWLUs6ZkQkV4f4/FmhPNddd128++672z13ww03xNChQ6NDhw7bPd+mTZvo1atXPPXUUzXOmYnq1kOKi4ujUaNGZY6V94y1o6nus2RtyFY96MADD4yTTjopunfvHq1bt47i4uL48MMPY8mSJfHHP/4x7r333li8eHHNLyjLmjRpEv3794+jjjoq9tlnn2jRokWUlJTEqlWrYvny5TF37tz44x//GE888USsX79+h5nr6yAbdUn1HoDyNWrUKLp37x6HHHJIHHTQQdGqVato3rx5lJSUxIYNG+Ljjz+O119/PV544YV48MEHy/2u+2XNmzePDh06lNnatGkTLVq0iObNm0dhYWEUFBTEli1bYs2aNfHpp5/G4sWLY/78+fHyyy/HY489FmvXrq3jq6+ebP/Ntz7UMOrjM3t9rGclLYn1COWp69peRN19fm1Pku+BbK75yIZs3Bv14XOzNiRV+/r000/j2muvjRtvvLHMfBV56aWX4uyzz4677767wnbf+ta3aiNiRmqyDqhp06YxcuTIMscefPDBWlunM2/evArPfxXWkmRrjUgSda6k6kJJ1i13FNlcb9euXbs46qijokePHtGhQ4do0aJFNG3aNNauXVu6rnbRokXxwgsvxAsvvBCvvvpqbNq0KePxs3mfdenSpfR38+fvo2XLlsWSJUviySefjHvvvTcWLVpUozlq21exlq5+CQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ1Jf01dccUV6Yj42mxr166t8PU45phjKuy/HcSUSQAAIABJREFU3377VfqafuMb3yi3f79+/SrsO2zYsHREpAsKCtKjRo1Kb926dbvtbrrppkqvdc8990xPnDgxvWnTpkozf27dunXpG264Ib3zzjtX6/VNYs527dqlZ82aVek8a9asSY8cObK03yeffFJu27lz59boPrvuuusqzNKnT5/E3gNXXnllmSw//elPq9R/2rRpZfpPnTq10j5ftGHDhnREpHNzc9NXXHFFesOGDZX+7J5++un0rrvuWqWc25uzcePG6UmTJlU637Zt29KjR49ON27cOOP5evbsWWaMadOmVSlvSUlJmf5Lliwpt+2rr75a6TWUZ//996+Vn2lVt7Fjx1Y56+bNm9Pjx49PN2vWrNLxf/nLX5bp++ijj1Y769SpU8uMdd1112XUr2PHjumHH3444+ubMmVKuk2bNjW6pxs2bJgeM2ZMub8r0ul0pZ+tffr0KdP+nnvuqfWf/46yVfR7AaqruLg48XvbZstky8/PT/+///f/0qtWrarRPX/llVf+x9jnnHNOLb2j/k9hYWGZ8evyGSvTsavbr2XLlhl9f9iwYUP68ssvr/LP9Vvf+lb6qaeeqnT8tWvXpi+88MJ0Tk5OOqJun5VqslX35/Hlbf/990/ff//96S1btlT62nzRX//61/QPf/jD0tepOlu2567pa/aDH/wgvXHjxgrHmDBhQjo3N7e0z0033VRh+7322qvCOb/8bPRlEydOrPH1duzYMf3cc89V2Dad/ncdIZVKJXbfZ7rVRR2iqKio0mf2yp5pLrvssgr7T5o0KWuvUXXrIU2aNPmP3D/+8Y/rLGdtP/N/UU2eJRcsWFDmfMuWLSu9lu3NXdf1oM+3XXbZJT1lypRK59i6dWv61ltvTTds2DCdl5dX5twnn3yS0VzZqKt8vuXm5qZHjhyZ/uijjyq9tnQ6nV66dGl66NCh1frdlY25vujzeySTrWnTpunZs2eX6b927dp03759y7TLZr2usuuqy7rk9jb1HtuOvo0bN67S9wt1a9y4cYnfB7W5tWnTJv3b3/42vXLlyiq9Ds8//3x6wIABlf5+q6m1a9emx48fX+F3n7qur3x5y/bffOtDDSObz+y1Xc868sgjKxzv3HPPzThbfn5+ha/rY489luj7ORv3Zn2p7WXj8yup98CXt2yv+djR674R9eNzM5tbfVuDk5ubW+n78sYbb8xanpqsAzrrrLP+I/sRRxyRtex1vZaktmttX9zqeo3I51s261xfvMeTqAtVpW6Z1DqhbNYCt/caZau++vk9ft9996W3bdtW6VxfdPHFF9eb++zzraSkJD1+/PhK59i2bVt67Nix6cLCwmq/j9TSM9u+qvXL4uLiSl/L+mR713D++ecnHQsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKC67k8F1JKVK1fWqH9BQUE8+uijMXLkyEiltn9r5uTklNs/JycnLrjggnj11VfjlFNOiQYNGmQ8d1FRUVxwwQXx5ptvRrdu3TLul8ScERFdu3aNV155JY488shK2xYXF8eoUaNi8uTJkZeXV6V5vkqOO+64MvszZszIeoaCgoKYPn16XHnllVFQUFBp+yOOOCKeffbZ2Hnnnas9Z5MmTWLOnDkxZMiQStvm5OTEOeecE7Nnz44mTZpUe05qJi8vL4YOHRovvPBC7L777hW2HTduXGzevLl0v2/fvtGmTZsqz9miRYs49thjS/fT6XSMGzeu0n4nnnhizJs3r0zfygwcODD++te/RufOnaucM+L/PtOefvrpGDFiRLm/KyIq/n0RETFnzpzYtGlT6X7//v2r9BkOwI6vuLg4nnzyybjuuuuipKQk6Th1oqbPWHXhgAMOiPnz52f0/aGgoCCuuuqqGDVqVMbj77vvvvHKK69E7969K23bqFGj+O1vfxv333//V/p7QG5ubvzqV7+Kl156KX74wx9Gbm5ulfofcMABcf/998f06dOjWbNmO8zc1dWvX794+OGHIz8/v9w2o0aNiqFDh8bWrVuzkqk29OjRI15++eU45JBDKm37eR1h0qRJFX7n/qraZ599KnxmX7RoUSxZsqTCMZ599tkKzx900EHVylYd1a2HrFmzJtavX1/mWP/+/WstV7bV1rNkdWSrHtS6det4/vnnY+DAgZW2TaVSceaZZ8bMmTOjqKioSvNkW1FRUUybNi1GjRqV8WvSqlWrGD9+fEyaNKnK9dpszVVVu+22Wzz77LPRvXv30mPLli2Lww8/PP74xz/W2bw1kURdUr0H4N8GDx4cb731Vlx44YVVfp46+OCDY/r06bHHHnvUUbr/06hRoxg6dGi8+eab0adPnzqdqzJJ/M036RpGfX1mr0o9a/bs2fHGG2+UO9bw4cMznrdPnz7RtGnTcs9PmDAh47FqU1LrEcpT17W9iOx9fiX9HviqrfnIxr2R9OcmEVu3bo133nmnwjZffCarazVZB/TlvosWLYo5c+bUSq66UpW1JHUlW2tEkqhzJVUXqmrdMul1QknI5nq7QYMGxbx58+LEE0+sk1pxNu+zFi1axLPPPhtDhw6ttG1OTk6cccYZideLvw61dPVLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6kIq6QDsGE488cQKz7/99tuxdu3aGs1xyy23RO/evavVN5VKxZQpU+KGG26IvLy8amfYZZddYvbs2XHCCSfUyzkjIvbaa6+YMWNGNGnSpErznHzyyXHHHXdUJ+IOr3Xr1tG5c+fS/WXLlsVbb72V9Rzjxo2LH/zgBxERMX/+/Bg2bFi0a9cuioqKoqSkJA499NC4++67y/Rp165djB49utpzTpw4Mfbdd9+IiFi4cGGcc845sccee0TDhg2jZcuWcdRRR8XDDz9cps8BBxwQTzzxROTm5lZ7XsravHlzPPXUU/Gzn/0sunfvHm3atInGjRtHQUFBtGrVKvr37x933XVXbN68ubTPt7/97Zg2bVoUFBSUO+6yZcvikUceKd3Pzc2NYcOGVTnfqaeeGvn5+aX7M2fOjIULF1bY54wzzoipU6dGYWFh6bEPP/wwfvnLX8Z+++0XzZs3j8LCwthjjz3i7LPPjn/84x+l7f7rv/4r5syZE9/85jernHXixInRtWvXiIh444034swzz4z27dtHo0aNYtddd40jjjgiJk+eHDk5ORWO89lnn8WLL75Yut+kSZPo1q1blfMAsOMaNWpUdO/ePekYdaomz1h1Yb/99otZs2bFLrvsUqV+I0eOjP79+1farmPHjjFz5sxo1qxZlcY/4YQT4s4776xSnx1FXl5ePProo3HZZZdFKlWzElD//v3jb3/7W7Ru3brez11d/fr1i4ceeqjMd+Mv+/Wvfx3nnXdepNPpKo1d1fa1qWvXrvHYY49F48aNq9Rv0KBBMW7cuDpKVX99/gxdnldffbXSMSpr065duyguLq5SruqoaT3k+eefL7N//PHHxw9/+MNay5dNtfUsWR3ZqAc1atQoZs+eHXvssUfpsXQ6HRMnTowjjjgiWrRoEQ0bNox27drFyJEjY9GiRRERccghh8TYsWNr4SrrRiqVisceeyz69etX5vjntdQ2bdpEYWFh7LbbbjF48OB46aWXyrQbPHhwTJkypd7NVVVdunSJF198Mfbaa6/SY++8804cdNBB8corr9TJnLUhibqkeg/A/xk9enTcfffdWfnOWRt22mmneOihh2K//fZLZP4k/uabdA2jPj+zV7WedfPNN5d7bq+99opDDjkko3EqWg+xYsWKePzxxzPOVFuSWo9Qnrqu7UVk7/Mr6ffAV23NRzbujaQ/N/m3oqKiCs8vXrw4KzlqUvfKz8+P733ve2WOzZkzJ5Eabl2tJakL2VojkkSdK8m6UFXrlkmuE0pKttbb/exnP4t77rmnzD2+fv36GD16dPTq1SvatGkTBQUFUVJSEt/5znfilFNOiXvvvTc+++yzjMbP5n1WUFAQM2bMiD333LPM8XvvvTd69OgRu+yySxQVFUWHDh3i/PPPjyVLlkRERLdu3eLWW2/NaI668HWopatfAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUBdSSQeg/mrWrFnst99+cdttt8WFF15YYdsJEybUaK6+ffvGT37yk0rb5eTkbPf4DTfcED/60Y9qlOFz+fn5cdddd8Xee+9dYbsk5szLy4tJkyZFkyZNqjXPKaecEk2bNq1W3x1Zz549y+y/+OKLWc9QUFAQQ4YMiYiIq6++Ovbdd98YP358LFy4MD777LNYvXp1PPfcc/HjH/84zjnnnDJ9Bw4cGJ06darWnMcee2xEREybNi2++93vxi233BKLFi2KDRs2xLJly+LJJ5+M448/PgYPHhxbt24t7XvooYfG+eefX4Mrrn1dunSJnJycyMnJiY8//rjMuWbNmpWe2942d+7cRDIvX748LrvssmjZsmX06dMnbrrppnjmmWdi6dKlsW7duti0aVN88MEH8fjjj8epp54aXbt2jffff7+0f+fOnePSSy+tcI4xY8aU2f/JT34Subm5GWfMycmJ4cOHlzl2++23V9jngAMOiFGjRpX5TJ4yZUrssccecc0118Tf/va3WLVqVWzcuDEWLVoUY8aMiU6dOsXjjz9e2r5Zs2YxadKkSKUy/ypSUFAQxx13XERE/OEPf4h99tknbrvttliwYEGsX78+li9fHnPmzInBgwfH8uXLKx3v+eefL7Pfu3fvjLMAsGPr2LFjnHrqqUnHqFM1fcaqC2eeeWYUFxdXq+/1119f4fnc3Ny46667olmzZtUaf/DgwV/JZ6Vbbrkl+vbtW2vjtW3bNh599NEoKiqq13NXR//+/eOhhx6K/Pz87Z5Pp9Nx/vnnx+WXX16t8dPpdE3i1ciwYcOiYcOG1eo7dOjQ0ufKr4t99tmnwvNLliypdIxVq1bF+vXryz2fk5MTXbp0qXK2qqppPeTuu+8us5+TkxP33Xdf3H333XHAAQfUON8X1eUzf20/S1ZFtupB1157bXTo0KF0f/369dGrV6847bTTYs6cObFixYrYsGFDLFy4MG6++eb47ne/G9OnT4+IiJNOOqmWrrb2XXLJJXHkkUeWOXb++edHjx494qGHHoqlS5fGxo0bY8mSJTF58uQ45JBD4je/+U2Z9scff3ycccYZ9Wququjdu3f8+c9/jlatWpUee/bZZ6Nbt26xePHiWp2rNiVZl1TvAb7uLr/88v/4XrEjKCoqirvuuiurdYrPZftvvvWhhlFfn9mrU8+6++67Y9WqVeW2/fLfwLansLAwBgwYUO75e++9NzZt2lTpOLUtifUIFanL2l5Edj+/knwPfBXXfNT1vVEfPjf5P40aNYr27dtX2ObZZ5/NSpaa1L323HPP/6gDv/zyy7WSK1N1vZaktmtt2VwjkkSdK6m6UHXrlkmsE0pKtuqrRx55ZNxwww1ljs2ePTvat28f5557bsycOTOWLl0amzZtitWrV8c777wTkyZNikGDBkXLli3jyiuvjNWrV1c4Rzbvs8svv7zM3yA2bdoUAwYMiEGDBsXs2bPjo48+is8++yzefffd+P3vfx+dO3eOWbNmRUTEySefXOn4deHrVEtXvwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKC2pZIOQP3wyCOPRDqdLrOtXLky5s6dG6effnrk5OSU2/eFF16I0aNH12j+Y489ttp9jzrqqDj//PMrbDNlypQ47LDDomnTptGwYcPo0qVLjB07NtLp9HbbFxUVxQMPPBB5eXn1Zs6IiHPPPTf22WefCuflPx144IFl9l977bWEkkT84Q9/iMsuuyy2bdtWbptbbrklZsyYUebYaaedVu05586dGyeddFKsW7eu3DaTJ0+OCy64oMyxq666Klq0aFHteYm4/PLL4+qrr46VK1dm1H7evHnRt2/f2LBhQ+mxESNGREFBQbl95syZE2+99Vbpfps2baJv374ZZ+zevXu0b9++dH/ZsmUxffr0ctvn5ubGPffcE/n5+aXHHnjggRg0aFCsX7++3H7r16+P448/Pl599dXSY4cddliccMIJGWf93NSpU+OnP/1pbNmypcp9v2j+/Pll9r/8WQHAV9cxxxxT7rkPP/wwRowYER06dIiioqLIy8uL5s2bR/v27aN///5xySWXxJ/+9KcKv1vVBzV5xqqPvvOd78RBBx1U7vmzzjrL7/IvOe644+L000+v9XH33XffuOaaa+rt3NUxYMCAePDBB8t8x/2irVu3xrBhw+L3v/99tecorxawI7j11lujsLAw6RhZ06pVqwrPf/jhhxmNU1m7yuapDTWth0yePDlefvnlMsdycnJi8ODB8de//jXef//9mDRpUpx11lnRtWvXaNiwYY0z16XaepasjrqsB3Xo0CHOOeecMseGDBkSs2bNKrfP2rVrY+DAgTFv3rxKx09Kq1at4oorrihz7Oqrr67ws3jbtm3xi1/8Iu68884yx2+88cZo2rRpvZirKoYOHRpPPPFEFBcXlx578MEHo1evXhnXmpKWRF1SvQf4Ojv88MPjqquuyvq8K1eujHvuuSdGjBgRhx12WOy2227RtGnTyMvLi6Kiomjbtm307ds3brvttti4cWO54+y5554V1mzqQhJ/8026hlGfn9mrU89av379f3wn+6ITTzyx0u9nRx11VJnvXF82YcKEKueqqaTWI9SVymp72fz8Svo9YM1HWZXdGxHJf27yb0OGDImioqJyz8+bN6/M2oW6VJO6V4cOHf7jWLbXEWVjLUltyeYakSTqXPWhLlTVumW21wnVB3VZX83Pz4+77rorcnNzS4/NmjUr+vbtG//6178q7b9mzZq46qqr4tZbby23TTbvs7Zt28ZFF11U5tjpp58ejz32WLl9Pvnkkzj22GPjnXfeKbdNtnwdaunqlwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANS2VNIB2LHNmTMnjjrqqNiwYUOtjfn000/HCSecEK1atYqCgoJo27Zt9OjRI/77v/87Vq5cWaZtTk5OXH311RWON3z48Dj55JPjL3/5S6xZsyY2bNgQ8+fPjxEjRsSIESPK7dehQ4cYPHjwfxxPYs6IiFQqFSNHjqxw3oiIu+66Kw466KBo3LhxFBcXR9euXWPChAmRTqcr7ftVtd9++5XZf/311xPJ8cEHH8TFF1+cUdtbbrmlzP5hhx1W7XnPOeecjN6jo0aNitdee610v2HDhjF06NBqz0v1vPnmmzFu3LjS/Z133jn69etXYZ+xY8eW2T/99NMznu+MM84os3/nnXfG5s2by21//PHHR4cOHUr3V6xYEcOGDcvoM2bTpk3/8Rl47rnnZpw1ImLdunVx3nnnValPeb78WbD//vvXyrgA1H8dO3Ys99yPfvSjGDt2bLz77rvx2WefxdatW2PVqlWxYMGCePzxx+O6666Lvn37RrNmzaJPnz4xefLkWLt2bRbTV11VnrGy4dNPP42LLroodt999ygsLIwOHTrEmDFjKu3Xo0eP7R5PpVIZfT+4//77o1u3blFcXBzFxcXRrVu3mDp1apXz7whSqVT86le/qrTdlClT4rDDDouSkpJo2LBh7LXXXnHNNddU+vxw5plnRuvWrevd3NUxYMCAeOCBByI/P3+75zdt2hQDBw6MO++8s0bzbNu2rUb9a8PixYvjtNNOi9atW0dBQUG0bt06TjvttFi8eHGF/Xbdddc46aSTshOyHmjSpEmF5z/99NOMxqnsd0Nl89SGmtZDtm7dGgMGDIi33npru+d32223GDJkSNxyyy3x4osvxpo1a2Lu3Lnxu9/9Lr7//e9Hbm5utbPXttp8lqyquq4HDR8+PFKpf5f5n3zyyXj44Ycr7bdhw4aMao1JOeuss6JBgwal+wsWLIhf//rXGfX9+c9/HitWrCjdb9y4cYU1rmzOlamrrroqxo8fH3l5eaXHfv/738eJJ55Yq7X4upZEXVK9B/g6u/76/8/efUdHVa3/H//MkAIkEEIVAZEm2EABQRCvAlIEpImCgFKjYi/XgnpRr+2qWOGCQJAigStIUVA6yqVIByWg9F4F0kmbzPz+uD/n64RML2cS3q+1spb77PZMOGfn7Gf2Wr7vtk1OTo4mTpyozp0764orrlBUVJQqVKig6667TsOHD9fChQtVUFDg0Xzr169Xz549VbVqVT344IP64osvtGbNGh0/flzp6ekqKChQdna2jhw5osWLF+vRRx9Vu3btlJeX53TM+++/3+PP6y8jvvM1OodRnPbs3uSz/v3vfzvdd5ctW9bp9+9/6tu3r9O6HTt2aMeOHd5/AD8YdR7BU4HO7UmhW7+MfgZK+pmPYNwbRq+b+D81a9bUu+++67KNJ89XoPiT9yrqOTXiuxJv+XKWJBBCeUbEiDyX0XkhX/OWoTwnVJS+ffvKZrP59JOamurVXMHOrw4aNEg1a9a0l1NTUzVo0CDl5uZ6FacrobzPEhISHHKKa9as0bRp09zOk5GRYVgO/U+XSy6d/CUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACzey+CXApq9WqJ598UnfeeafS0tICNu4rr7yidu3aae7cuTp16pTy8vJ05MgRrVq1Sn//+9/1xhtvOLRv3769mjZt6nS86dOnKzEx0Wn9hAkTtGLFCqf1L7300iXXjJhTkjp06KCrr77aaT9JevbZZzV48GBt3LhRWVlZyszM1KZNmzR06FA9/fTTLvuWZA0aNHAoHz161JA4Jk2apJycHI/a/vjjj7LZbPZy48aNZTZ7v2T//PPP2rhxo0dtrVarPv/8c4drgwcP9npO+O+bb75xKLdq1cpl+2nTpikrK8tevvvuu1WrVi2381StWlU9e/a0l202m8v1S5KefPJJh/Jnn32m9PR0t3P9acOGDdq6dau9fNttt3kU65/mz5+vs2fPetzelcJrQVxcnKpWrRqQsQEA4a1ixYpO644fP+7RGPn5+Vq6dKkGDhyo0aNHX1I/duxYmUwm+8+ECRNcjle9enWH9oV/PH2PLMzbPVawpaam6rbbbtOHH36oQ4cOKTc3V/v27dPjjz+ucePGuezrbB/Wvn171atXz2XfN954Q3379tX69euVmZmpzMxMrV+/Xg888ID+8Y9/+Px5wlWnTp10/fXXu2zz3HPPqX///lqzZo3S0tKUk5OjXbt26bXXXlPHjh2Vm5vrtG/p0qX12GOPhd3c3urRo4e++eYbRUVFFVl/8eJFde/e/ZL3c18UFBT4PYY/kpOT1axZM02dOlUnT55UXl6eTp48qalTp6p58+bavXu3y/4JCQkhitR4cXFxLutd3Z/etHM3TyAEIh9y+vRptWjRQv/+97+Vn5/vsm1ERISaNWumZ599VkuWLNGxY8f0j3/8QzExMV7PG2iB3Et6K9j5oIEDBzqUx44d63Fs69at0/bt2z1uH0qDBg1yKH/++efKy8vzqG9qauol+Y0hQ4aExVzuREZGaurUqRo1apT9mtVq1TPPPKPnnnvO4f4Id0blJcn3ALhc3XnnnWrZsqXLNnv37tXNN9+sRx55REuXLtWZM2eUn5+vtLQ0/fbbb5o8ebK6d++uunXrKikpSVar1eV4t912m7799luv9jvr16/Xd99957T+9ttvdygHM79i1PfMRuYwisue3dt81qFDh7Ro0SKn47na05YtW1bdunVzWj9lyhSv4/eXUecRPBGM3F4o1y+jn4GSfOYjGPeGZPy6if+Jj4/Xt99+q/j4eKdtvvnmGy1YsCBkMfmT9ypfvvwl1wJ59i2YvD1LEgihPCNiRJ7L6LyQr3nLUJ4TMlqw86uF/3Z/8cUXOnHihPeBumBkrvPTTz/1MEpp2bJlbr8vCqbLJZdO/hIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACB5vr/9A04YTab9dlnn+mrr75StWrVAjJmUlKS3nvvPa/6dOnSxWX9Rx995NG8zjRq1EhXX3214XNKUtu2bV2OuWbNGn366adO68eMGaOffvrJbWwlTWxsrCpWrOhw7cSJE4bEsmLFCo/bZmRk6OTJk/Zy6dKlFRcX5/Wc33zzjVft582bJ6vVai83atRIlSpV8npe+OfXX391KDdv3txl+/T0dM2cOdNeLlWqlIYNG+Z2niFDhigqKspeXr58uQ4ePOi0fWxsrG699VaHa7Nnz3Y7T2HLli1zKLdq1crjvosWLfJ6PmcyMjKUkZHhcK2o9RcAUPIUXv//6uOPPw7YHsdovuyxgu2ll17Szp07i6wbM2aMy741a9Ys8rq7vdKWLVv01ltvOa1/5513tGnTJpdjFDedOnVyWf/jjz/qk08+cVq/Zs0affjhhz7NYeTc3ujZs6fmzJmjyMjIIuvT0tLUsWNHLV261O+5JDnss4wwbNgwXbhwoci68+fP6+GHH3bZ/5ZbblHZsmWDEVrYiYmJcVlvsVg8Gic/P99lfWxsrMcx+SKQ+ZCsrCw98cQTatCggd59910dOnTIo37Vq1fXP//5T+3du1e33367T3MHSiD3kt4KZj6obt26uuKKK+zlzMzMS/bc7sydO9er9qFQu3btS/7ue5t/mDVrlkP5hhtuKPJ3Gcq53Clfvrx++OEHDRo0yH4tJydH9913nz777DOvxzOaUXlJ8j0ALlddu3Z1WZ+amqrOnTvr999/dzvW0aNHNXDgQJffF/hj3759Tutq1KhxyXtssBjxna/ROYzisGf3NZ/1+eefO61r0qSJWrRoUWRd165dne4D8/PzHb5/CxWjziN4Ihi5vVCuX0Y/AyX5zEcw7g3J+HUTUuXKlbV8+XI1bdrwBkfPAAAgAElEQVTUaZtdu3Z5dD4hUPzNe/31jMSfsrKy/I4rFLw9S+KvUJ4RMSLPFQ55IV/zlqE6JxQOgplfrVSpkpo0aeJw7csvv/Q+SBdCeZ9dffXVqlGjhr2cnZ2tH374wau55syZ41X7QLpccunkLwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBoZqMDQPFlNps1cOBAbd68WQ0bNvRrLJvNptdee83rfu3bt3da98cff+jXX391O8bevXu9msOIOSWpVatWLvtMmDDB7byetClpqlWrdsm18+fPGxCJtHPnTq/ap6amOpTj4uK8nnPz5s1etU9JSdHBgwcdrrVo0cLreeGftLQ0Wa1We7l69epu+4wfP96hPGzYMJUqVcppe5PJpOHDhztcc7dGtGrVShEREfbymTNn3K5nRdmxY4dDuXnz5h733b59u9fzuXLu3DmHclFrBgCg5Nm/f7/Tuh49eujkyZP65Zdf9J///EdvvfWWBgwYoKZNm6ps2bIhjNI/vu6xgunChQuaMmWK0/o9e/YoLy/Pab2z92F3e6Xx48c7vFsVZrPZNG7cOJdjFDeu9q2SPPq848ePl81mc1p/8803Kz4+Pqzm9lS3bt00e/ZsRUZGFln/xx9/qG3btlq3bp3PcxTm6vME27Zt27Rp0yaXbdatW6ddu3Y5rY+IiNAtt9wS6NDC0sWLF13WO7tvCouOjnZZn5WV5XFMvghGPuTIkSN69dVXVbduXTVs2FAJCQlKTEzU1q1blZub67TflVdeqZUrV6p79+5+ze+PQO8lvRHMfFDh5zI5OVn5+flezbdt2zav2odCy5YtHcpHjhzRmTNnvBojOTnZ4TkzmUxF5rhCOZcrNWrU0Jo1a3TXXXfZr50/f17t27fXvHnzvBorXBiZlyTfA+By1KFDB5f1n3zyiQ4dOhS0+W+++WaNHDlSSUlJ2rx5s44fP66UlBTl5eXJZrM5/IwcOdLlWBUrVgxanH9lxHe+Rucwwn3P7k8+a+XKldq9e7fT+ocffrjI6/fff7/TPgsXLrzkvSIUjDqP4E6wcnuhXL+MfgZK6pmPYN0bkvHr5uXu6quv1rp169SsWTOnbY4dO6auXbsqPT09ZHH5m/cq6n6MiYnxK6ZQ8eUsiT9CeUbEiDxXOOSF/MlbhuKckDNff/21TCaTTz8VKlTwaq5g5ldvv/12mUwme/ns2bPat2+fV/O5E8r7rPC1nTt3Kicnx6u5vM3pBdLllEsnfwkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBAMhsdAIq/WrVqadGiRYqJifF5jJ9//lmHDx/2ul+9evWc1lWpUkU2m83tz7p161zOce211xo+pyTVqVPHZR93Y0rS+vXr3bYpaYq6L3NyckIeh9VqVVpamld9CsdZunRpr+f9/fffve7z22+/OZRr1arl9Ri4VI0aNfTEE09o+vTp2rp1q06ePKmMjAxZrdZL1gir1Sqz+f/+RFeoUMHt+Nu3b9eGDRvs5Zo1a6pLly5O27dv317169e3l0+fPq3vvvvO5RwNGzZ0KO/bt89tXEU5d+6cQ7lKlSoe9z1x4oRPczqTnZ3tUPbnbxkAoPhYvHixy3qz2azGjRurb9++eu211zRjxgxt3bpVmZmZ2rFjhz777DO1bdtWJpMpRBF7z9c9VjCtWLFC+fn5TuttNptSUlKc1jv7O123bl2X8/73v/91G5snbYoTd/tHTz7vyZMndeDAAaf1ZrNZV111VVjN7akePXooMjKyyLpjx47p9ttv1/bt230evyg2my2g43lj7dq1HrVzlzNw929bUrjbu0dHR3s0jrt23uYIvBXsfMjevXuVmJiohIQENW/eXOXKlVObNm30zjvv6MiRI5e0j4yM1IwZM1zm1YIp0HtJTwU7H1Q4Z7Nnzx6v5pJ8yx0FW82aNR3Ku3fv9noMq9V6yWcrPG6o53Lmxhtv1IYNG9S4cWP7tYMHD6p169bFOp9rZF6SfA+Ay5G7vfGcOXMCPmepUqU0ZMgQHTx4UNu2bdO7776r/v37q3nz5qpRo4YqVKjgdO/lSnx8fMBjLYoR3/kancMI9z27v/mssWPHOq3r16+fypUr53AtJiZGXbt2ddpnypQpPsfiD6POI7hjVG4vkOuX0c9AST3zEax7QzJ+3bycNWnSROvXr9c111zjtM2JEyfUtm3bInNBweRv3isjI+OSa3FxcX7F5I9gnyXxRyjPiBiR5wqHvJA/ectQnBMyWrDzq7Vr13Yo//LLL17N5YlQ3meF30ECkZ8Llcstl07+EgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIFkNjoAhIdevXrJZDI5/ERGRurKK69Uz549tWrVKpf969evrxdffNHn+Tdv3ux1n+jo6JD8D98rV65s6Jx/io+Pd9reZrPp6NGjbsc9evSorFarX7EVN9HR0Q7l/Px82Wy2kMdh1Lypqal+93F178G9Bg0aaN68eTp27JjGjBmjBx98UE2bNlX16tUVGxsrk8nkdoxy5cp5NNf48eMdyo888ojTtoXrvvzyS1ksFpfjV6xY0aHcunVr5eTkKCcnR7m5ucrNzVVeXp7y8/OVn58vi8Uii8WigoICFRQUyGq1ymq1auXKlQ7jeHqPFRQUKCsry6O2nsrNzXUolylTJqDjAwDC04YNGy75e+QJk8mkJk2a6KmnntKqVau0b98+9erVKwgR+s+XPVawJScnu22TnZ3ttM7Ze1Phd5TCDh065Hbew4cPl5i9krt9a3Z2ts6ePevRWIcPH3ZZX3jvauTcgbBv3z61adNGe/bsCfjYRjpy5IhH7dz9zt09ayVFWlqay/ry5ct7NI67fZy7efwV6nxIfn6+1q1bp9dee03169fX448/fsmaXq5cOb3++utBi8GZYOwlPRXs33uFChUcyr7kgYJ9L/qicJ4gJSXFp3EK9ysq/xDKuYoSGRmptWvXqmbNmvZrW7ZsUatWrbR3716fYgkXRuYlyfcAuNxER0e7fP/Mz8/Xb7/9FtA5y5cvryVLlujLL79UnTp1Ajp24XfZYDDqO18jcxjFYc/ubz5r+vTpTt9BYmJi1L9/f4dr99xzj9P3hNOnT2vJkiV+xeMLI88juBOM3F4o169weAZK6pmPYOV9JXK/Rrnzzju1evVqVa9e3WmbgwcP6o477tCBAwdCGNn/+Jv3On78+CXXjMh9hvIsia9CeUbEiDyX0XmhQOQtg31OyGjBzq9WqlTJoXz+/PmAzxHK+ywQz5EvfQLhcsulk78EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAIJmNDgDhy2Kx6NSpU/r222/Vvn17TZ061WX7Rx55RKVKlfJprmPHjnndp/D/jD5YKlWqZOicf4qJiXHaPjc3V1ar1aOxs7OzfY6rOMrNzXUoR0ZGymQyGRRNaFksFuXn53vdLysry6EcGxsbqJAuO506ddL27dvVq1cvv+47s9mzP9ezZ8/W+fPn7eW7775btWrVuqRdtWrV1KNHD3vZarVq0qRJbscvvAaazWZFR0crOjpaUVFRioqKUmRkpCIiIhQREaFSpUqpVKlSMpvNMpvNMplMRf4eXK1vf2WxWDxq543SpUs7lC+3NRIALmcDBw7Uvn37/BqjXr16mjdvnkaNGhWgqALHlz1WsF24cMFtG1/eX129S+Tk5KigoMDtGDabrcS8B7jbtxZ+3/enbVxcXNjMHQjZ2dnKzMwM+Lie8DWf4glPf+8XL150WV+uXLlAhBP2Tp065bL+iiuu8GicatWq+TWPv4zMh1gsFo0bN04dO3ZUXl6eQ12/fv083gMGMp6SqnDOxpe/Zd6szaFSeL1xtz45U/izFbWOhXKuopjNZpUvX97h2vjx43X27Fmf4ggXRuclyfcAuNy424ulp6cHfM45c+borrvuCvi4oWLUd75G5jCKw57d33xWVlaWpkyZ4rT+4Ycfdij37dvXadsZM2YYspcw8jyCO8HI7YVy/QqHZ6CknvkIVt5XIvdrhD59+mjJkiUu1/KdO3eqTZs2OnDgQAgj+z/+5r2K+m6ocePGfsfljVCfJfFVKM+IGJHnMjovFIh3jWCfEyrpCv9bBeM7olDeZ4WfI1/mCsd8cSCEWy6d/CUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyWx0ACg+XnzxRVmtVqf11apVU+PGjX0aOyMjw+s+qampPs3lrcjISEPn/FNWVpbT9tHR0TKbPXucy5Qp43NcxVFRv7fSpUsbEEnoRUREKCIiwut+MTExDuXMzMxAhXRZueaaa7RgwQKH3+fFixc1ffp0DR06VC1btlTNmjVVrlw5RUVFyWQyOfwUFBR4PWdOTo6mTJliL5vNZg0fPvySdkOGDHFYZ5YvX67Dhw+7HT87O9vrmDxhMpmCMq4nCq+JrtZaAEDJcvr0aTVr1kyfffaZ3+v/m2++qVtvvTVAkQWGL3usYMvNzXXbxtWe0xlX76ue7pVMJlOJ2SulpaW5rC/8vu9P28JzGTl3IDRu3FjLly9XhQoVAj62u71Z+fLlAz7nnzz9vZctW9ZlfTiuK8Gwfft2l/W1atVyO0blypVd5h5sNpt27NjhdWzeCId8yNq1azVx4kSHa5GRkWrTpk1I4yjJCv87+/K3zJu1OVQKrzfu1idnCn+2otaxUM5VlPz8fK1evdrh2qRJkzR48GCf4ggXRuclyfcAuNy4+/4y0PuN+++/Xx07dgzomKFm1He+RuYwisOePRD7zrFjxzrNLzVt2lTNmjWTJJUrV06dO3d2Os7UqVP9jsUXRp5HcCcYub1Qrl/h8AyU1DMfwcr7SuR+Q+2JJ57Q119/rejoaKdtVq9erdtvv12nTp0KYWSO/M17JScnKy8vz+Fa8+bN/Y7LU0acJfFVKM+IGJHnMjovFAjBPidU0qWnpzuUY2NjAz5HKO+zwn83S0q+OBDCLZdO/hIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBZDY6ABQff/zxh44cOeKyzXXXXefT2Far1es+ubm5If8fvhsx559SUlKc1plMJl111VVux6hVq5bM5svrsT99+vQl1ypXrmxAJMaoUKGC331c3Xv+KlWqVNDGNtro0aNVunRpe3njxo2qV6+eBg0apClTpmjTpk06ceKEMjMzlZ+f79C3dOnSPv9uvvjiC9lsNnt52LBhDmOZTCYlJCQ49JkwYYJHY587d86h/OWXX8pkMvn9c9ddd/n0WQOhUqVKDuUzZ84YFAkAwAgZGRl65plndOWVV2rIkCGaOXOmDh8+7PC31FPPP/98ECL0nS97rOLK3V6pZs2abseoXbt2idkr5eTkuNy3lilTRlWrVvVorKuvvtplfeH3QyPnDpSmTZtq6dKlKl++fEDHLVOmjMv6hg0bBnS+v6pdu3ZA2l24cCEQ4YS9bdu2uay/6aab3I5x8803u6w/cOCA0tPTvYrLW+GSD5k9e/Yl19w93/BcamqqQzkuLs7rMXzpE2yF/7bHx8f7NE7hfkWtY6GcqyhWq1V33323li5dar9mNpv15ZdfasSIET7F4q9A5euMzEuS7wFwucnNzVVGRobT+sjISDVq1Chg8z300EMu61NTU/WPf/xDN998s8qXLy+z2ezwncA777wTsFh8ZdR3vkbmMIrDnj0Q+ayDBw/qhx9+cFr/53dkPXr0cPge7682bdqkXbt2+R2LL4w8j2CEUK5f4fAMcObDe+R+Q+ftt9/WmDFjXP6u5syZo06dOiktLS2EkV3K37xXXl6e1q5d63Dtjjvu8DsuTxl1lsQXoTwjYkSey+i8UKAE85xQSVf436pwTikQQnmfFX6OApGfKynCLZdO/hIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBZDY6ABQvZrPrWyaQ/3N3Txw6dMhp3a5du2Qymfz+6dy5s+FzuptXkm677TY3vy3P2pQ0WVlZOn/+vMO1GjVqGBRN6F177bV+9zl27JjTthaLxaEcERHh1Vzx8fFetS8uKlSo4PAc5+Xl6d5779Xp06c96l+1alWf5z5w4ICWL19uL9eoUUNdu3a1lzt06KC6devay6dOndLChQs9GrvwvVC/fn2f4wwH5cqVU7ly5RyuHT582JhgAACGSk9P19SpUzVgwADVqVNHsbGxatq0qfr06aMXX3xR06dP16lTp1yO0a5duxBFi8IOHDjgsr5169Zux/jb3/4WqHDCgrv9oyef98orr1S9evWc1lutVh09ejSs5vbUF198ofT0dKf1LVq00OLFixUbG+vxmLm5uS7rK1as6LK+ffv2Hs/lrTZt2njUzt2z4u7ftqTYvn27y3/P2rVrq3bt2i7HcHefb9iwwafYvBEu+ZC9e/deci3U+cOSrPA+vWHDhl6P4UufYDt+/LhD2Zf8ltlsVqNGjVyOG+q5nMnOzlaPHj307bff2q+ZTCaNGzdOf//7372OJ1zydcHOSzpDvgfA5ergwYMu6++7776AzXXHHXc4rcvNzVWbNm309ttva8eOHcrIyJDNZnNoEy7vg0Z852t0DqM47NkD4fPPP3da179/f8XExOj+++932mbq1KlBiMpzRp1HMEoo1y+jnwHOfHjP6HXzchAREaHJkyfr1VdfddluzJgx6tevn9s8aCgEIu81b948h3K9evV05513+huaW0aeJfFFKM+IGJHnCoe8UCAE85xQSVf4b3Pjxo0DPkco77PC7yCByM+VFOGUSyd/CQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEAzGx0Aio9q1aqpVq1aLttkZGSEKJr/WbFihdO6a6+9VldeeWWJmFOSfv75Z5f1CQkJbsfwpE1JtHfvXody7dq1DYok9G655Rav2sfHx6tu3boO1zZt2uS0fXp6ukO5fPnyXs1Xv359r9oXF40bN1ZkZKS9vHr1ap04ccLj/t7+uxU2btw4h/LDDz9s/+9HHnnEoe7LL7+UxWLxaNz//ve/stls9vItt9yismXL+hGpsQqvBampqTp79qxB0QAAwsnFixe1fft2zZ07Vx9++KEGDRqkq666Sv/5z3+c9qlYsaJiYmKc1hcUFLicMyoqyud4L3fu9krDhg1zWW8ymfTYY48FMiTDrVy50mX9iBEj3I4xYsQImUwmp/Xbt29XSkpKWM3tqa1bt6pbt27Kzs522qZ169b6/vvvPX7fTUtLc1l/4403Oq2rUKGCBg0a5NE8vmjatKnbPUbr1q11ww03OK23WCzavHlzoEMLS1lZWfr2229dtnnooYec1kVERKh///4u+yclJfkUm7fCNR/iz/MLR4WfyxtvvNEhH+GJpk2bBjKkgNiwYYND+eqrr1bVqlW9GuP66693eDezWq1F5rhCOZcrubm56tOnzyXvmx9++KFGjRrl1Vjhkq8Ldl7SGfI9AC5Xy5cvd1n/7LPPBuR9MDY2VrGxsU7rV61apV27drkco0WLFj7PH8j8ihHf+RqdwygOe/ZAWL58uX777bci68qVK6dHH31UnTp1KrI+JydHs2bNCmZ4bhl1HsEooVq/JOOfAc58eM/odbOkK1u2rObPn6+hQ4c6bWOz2TRy5Eg99dRTslqtIYzONX/zXklJSbp48aLDtVDcK0afJfFWKM+IGJHnCpe8UCAE65xQSbd27VqHe7xatWpq0KBBQOcI5X1W+NqNN96o0qVLezVXqNeZUAmnXDr5SwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASa2egAUDyYTCaNHj1aZrPrW+b06dMhiuh/Fi9e7LTObDZr5MiRPo0bExOjF198UaNGjQqLOSXpxx9/dNn/jjvu0JNPPum0/rHHHlO7du18iq2427Jli0P5xhtvNCiS0OvTp49X7Xv37u3wnP/+++86f/680/bnzp1zKNevX9+r+dq2betV+z9ZLBaHsru1KdSqVq3qUD5+/LhX/Xv06OHX/IsWLdKxY8fs5bvvvltXXXWVrrjiCt1zzz3261arVYmJiR6Pe/bsWf3yyy/2cpkyZfyO1UiF14LCawUAAH9lsVg0ceJEl23Kli3rtC4zM9NlX2/fo/B/Vq1a5bL+rrvuUkJCgtP6V155RS1btgx0WIZaunSpy/p27drp2WefdVrfpk0bvfDCCz7NYeTc3lizZo3uvfde5efnO23zt7/9Td99951Kly7tdjx3+ZCEhARFR0dfcj0iIkKTJ09WlSpV3Afth8mTJys+Pr7Iuvj4eE2YMMFl/82bN+vixYvBCC0sTZkyxWX9iy++qGuuuabIuldeeUV169Z12vfEiRNavny5X/F5KhzyIfXq1bvkmrvnJdz3/OHkwIEDOnPmjL0cGxurDh06eDXGvffeG+iw/Hb06FGHvIbkfY6rX79+DuXk5GSlp6cbOpc7FotFAwYMuGQNevPNN/Wvf/3L43GMytcVFuy8pDPkewBcrr7//nuX9fHx8VqyZInT99i/qlq1qhITE4t8r3W3P4qIiHBZf9ttt6lFixZuY3AmkPkVI77zNTqHUVz27IEwduxYp3XvvPOOoqKiiqxbsGCBUlNTgxWWR4w6j2CUUK1fkvHPAGc+vGf0ulmSVaxYUStWrFC3bt2ctsnPz9egQYO82pOGir95r9TUVI0ZM8bh2n333afOnTv7HZsk3XTTTUWOZcRZEn9ybaE8I2JEniuc8kL+CtY5oZLuwoUL2r59u8O1IUOGBHSOUN5nhw8f1okTJ+zlMmXKqEuXLl7Ndd9993nVvrgIp1w6+UsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEmtnoABC+IiIiVL16dfXs2VM//vijBg4c6LK9xWIJ+f+Effny5fr111+d1j/++ON65plnPB6vYcOGeuedd3To0CG9//77qlq1aljM+ee8hw8fdjnWZ599psmTJ+uWW25RTEyMYmJidMsttygxMVFjx471OKaSZtOmTQ7lxo0bGxRJ6LVq1UotW7b0qK3ZbNaTTz7pcG3q1Kku+xw9elQpKSn2cvXq1VW/fn2P5itTpoyGDBniUdvCMjMzLxkrnOTk5DiUK1as6HHfq6++Wn379vVr/oKCAk2aNMleNpvNGjZsmIYOHarIyEj79aVLl7pdVworvJa8/vrrDmMWJ4XXgsJrBQCg5Lrvvvv0zTffqFu3boqKivK4X9OmTZ3WWSwWnT9/3mn9hQsXXI79/vvvq0WLFipbtqzH8eB/Vq1apf3797tsM2HCBE2cOFHNmze375VatWqlmTNn6u233w5RpKGzdOlS7dq1y2Wbjz/+WElJSWrTpo3KlSun6OhoXXfddXrrrbe0bNkyRUdHO+2bm5urcePGhd3c3lq8eLEGDBggq9XqtE379u21YMEClzFJ0rZt21zWN27cWEuXLlWrVq1UunRpxcfHq1u3blq7dq169+7tU/zeuPHGG7V161YNGjRI1atXV2RkpKpXr66HHnpIW7Zs0Q033OCy/1/3F5eDZcuWaffu3U7rY2NjtXbtWg0fPlxXXHGFSpcurRtuuEETJkzQm2++6XLssWPHqqCgINAhF8nffMisWbNUrVo1v2Lo06ePQ9lisWjt2rUu+4T7nj/czJgxw6H8+OOPe9y3devWLt9vjFQ4J/XUU08pIiLCo75xcXFKSEhwuPbll1+GxVzuWK1WDRs2TP/+978drr/00ksaM2aMTCaT2zGMytcVFuy8pDPkewBcrn766Se3a16jRo20Y8cOjRs3Th06dFDVqlUVGRmp8uXLq0GDBurfv7+SkpJ09OhRDRs2TGbzpUcJLly4IIvF4nSOVq1aqXbt2kXW1a1bV7NmzfLugxUxvyve5FeM+M7X6BxGcdqz+2v69OlKS0srss7VZ5gyZUqwQvKYUecRjBKq9Usy/hngzIf3jF43S6qrrrpK69atU6tWrZy2yczM1D333KOvvvoqhJF5LhDngN577z2dOHHC4dqkSZN05ZVX+hVbixYttHz5clWoUOGSOiPOkvibawvlGREj8lzhlBfyRzDPCZV0he/xRx99VNWrVw/oHKG8z6ZPn+5Q9ua9sWPHjrruuus8bl/chEsunfwlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs1sdAAID/Pnz5fNZnP4yc/P18mTJzV//nzdcccdbsdYvXq1UlJSQhDt/7HZbHr11Ved1ptMJn3yySf6+eefNWzYMF177bWKjY1VRESEqlSpomuvvVZ9+vTR6NGjtWXLFv3+++965ZVXVKVKlbCaU5KsVqvGjBnjso3JZNLQoUO1adMmZWZmKjMzU5s2bdKwYcNkMplc9vXU77//fsm98ufPSy+95LLv4sWLnfb94osvAhJfUVauXCmbzWYvt2rVKmC/j+Jg7Nixio6OdtvuqaeeUpMmTezlnJwcTZkyxW2/9evXO5QfffRRj+L68MMP3d73zpw9e9ahXLt2bZ/GCZaDBw86lO+8807FxcW57RcZGakZM2YoKirK7xgmTZqk/Px8e3nYsGFKSEhwaDNx4kSvx502bZrD52vYsKEmTJjge6AGuu222xzKy5cvNygSAECoRUdH695779XChQuVkpKiJUuW6NVXX1Xv3r11/fXXq2rVqipTpozMZrPi4vtiEz4AACAASURBVOLUokULffjhh3rvvfecjrlz505ZrVan9bt27XIZU/PmzbVx40ZlZWVd8q48cOBAnz/r5cBms+nTTz912cZkMikhIUGbN2+275XWr1+vBx54IERRhpbVatWoUaPctuvfv7/WrFmj9PR05eTkaNeuXXrttddUpkwZl/3Gjx+vEydOhN3cvpgzZ44efvhhl206deqkb775RpGRkU7bJCcn69y5cy7HueOOO7R+/XplZ2frwoULWrhwoVq2bOlT3L6oU6eOpk6dqpMnTyovL08nT57UtGnTVLduXZf9zpw5o1mzZoUoyksZkYewWq165JFHHHIJhVWpUkWTJk3SqVOnlJ2drZ07d7q9l5KTk/XRRx+5/sAB5G8+pFevXtq1a5cefPBBn/IoN910kx5//HGHa6tWrXKbPwz3PX+4mTRpksM7SJcuXdSjRw+3/aKjo/X5558HMzS/jB8/Xnl5efZyw4YN9fLLL3vUd/To0Q45p/T0dJc5rlDO5QmbzaYnnnhCH3zwgcP1J554QpMmTZLZ7P5rHSPydUUJdl6yKOR7AFzOPPn7VaZMGY0YMULLli3TmTNnlJeXp7S0NO3du1dJSUnq37+/y7XbarVq06ZNTutjY2O1YsUK9evXTzVq1FBUVJTq1aunF198UVu2bFGtWrV8+mx/CmR+xajvmY3MYRS3Pbs/MjMzNXXqVK/6HD9+XCtWrAhOQF4w6jyCkUKxfknGPwPhcuajODF63QwFI3JfDz/8sBo1auRy7NjYWC1ZssTp+M5+tmzZ4tPvwVuBOAeUlpamQYMGqaCgwH6tZs2aWrt2rducqTODBw/Wjz/+qMqVKxdZb8RZEn9zbaE8I2JEnivc8kL+CNY5oZJuxowZOnr0qL0cHx+vadOmBeTs1p9CeZ9NmjRJFovFXr799ts1aNAgt/PExsbqs88+8yim4ipccunkLwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBoZqMDQMlgs9k0atQoQ+ZetGiR2/+x/K233qrExETt3r1bGRkZys/P19mzZ7V7927NmTNHzz//vJo1axbWc0rS559/ru3bt3vVB9KpU6f0yy+/2MuVK1fWDTfcYGBEodW8eXPNmjVLMTExTtv0799fo0ePdrj2xhtv6OzZs27Hnzp1qkP5qaeeUrt27Zy2N5vNevfdd/X444+7HduZv/57SlKnTp18HisYdu/ercOHD9vLcXFxmjBhgiIiIpz2iY+P1/fff6/bbrstIDGcPn1aCxYssJdr1Kihq6++2l4+efKkFi1a5PW4FotFAwYMUG5urv3akCFDNG/ePFWqVMnjcapUqaIXXnhBc+fO9TqGQChTpoxatmxpL6enp2vdunWGxAIAMFbZsmXVqVMnvf3225o7d66Sk5N15swZXbx4UQUFBUpNTdXGjRv197//XZGRkU7HSUpKcjnPhg0bZLFYAh0+/r8vvvhCmzZtMjqMsDJv3jxNmjQp4ONu27ZNr776atjO7YvJkyfr+eefd9mmW7du+vrrr52+01ssFk2fPj3gsYWDxx57TDk5OUaHEXJr167V+PHjAzaexWJRQkKC8vPzAzamO4HIh1SqVEnTp0/Xzp071a9fP5nNnqWTu3TpopUrVyoqKsp+zWq1auTIkW77hvueP9zs2bNHY8eOdbiWlJSktm3bOu1TtmxZzZw50+vcZCidOnVKr7/+usO1f/7znxoxYoTTPmazWW+99ZaGDx/ucP35559Xenp6WMzljZdeeklvvPGGw7Vhw4ZpxowZLnNMkjH5uqIEOy9ZGPkeAJe7H3/8Uf/85z+DPs/MmTNd1tevX1+zZs3S8ePHlZubq/379+v9999XfHy833MHOr9ixHe+Rucwitue3R9jx46VzWbzuP306dNltVqDGJHnjDqPYJRQrV+S8c8AZz68Z/S6ifAUqHNAK1eu1GOPPebw96JOnTrasmWLnn32WYfclivXX3+9vv/+e02ZMkVly5Z12s6IsyT+5tpCeUbEiDxXuOaFfBGsc0IlXX5+vh566CEVFBTYr3Xo0EGLFi3SFVdc4bZ/+fLlNWrUKJf3TCjvs0OHDl2Sa5s4caLuuecep30qVKig+fPnq1GjRk7blAThkEsnfwkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBgMBsdAEqGf/3rX1q/fr1h8z/77LOaPXt2iZ/TYrHooYceUnp6uk/9k5KSlJaWFuCoioe5c+c6lDt16mRQJKGTm5ur+fPnS5J69eqlX375RSNGjFCdOnUUHR2tKlWqqFOnTpo7d66SkpJUqlQpe9+ff/5ZH330kUfzLFiwQNu3b7eXIyMjtXjxYn344Ye66aabFBMTozJlyqh+/fp6+OGH9euvv2rkyJGSpEmTJvn02RYuXOhQfuGFF/Tcc8+pXr16io6O9mnMQHv33Xcdyn379tXGjRvVv39/1ahRQxEREapQoYKaNWumN954Q/v371eHDh0kSTNmzFBBQYHfMYwfP95p3eTJk2WxWHwad8OGDRo+fLhDjL169dKRI0c0fvx49ejRQ7Vq1VLZsmUVGRmpSpUqqWHDhurVq5def/11rVu3TqdPn9YHH3ygevXq+RSDv+644w5FRUXZywsXLlR+fr4hsQAAir/k5GSNHTvWZZtz585p0aJFIYro8lNQUKBBgwYpJSXFp/4zZswokXulxx57TIsXLw7YeIcPH1b37t118eLFsJ7bFx9//LHeeustl2169ep1yd7pr0aPHu3zPfjBBx/41M8TkydPVk5Ojk99v/zyS82bNy/AERUfzzzzjJYuXer3OFarVcOHD9eGDRsCEJV3ApUPuf766zVr1iydOHFCkydPVu/evXX99derYsWKioiIUHx8vJo2baoRI0bov//9r77//ntVrFjRYYzXXntN27ZtcztXcdjzh5tXX31Ve/futZdjYmK0YsUKTZ48WX/7299UqVIlRUdHq27dunrsscf066+/qnfv3pKkWbNmGRW2Wx988IFWrFhhL5tMJo0bN05Lly5Vz549Vb16dUVFRalGjRp64IEHtG7dOr322msOY8yePVuJiYlhNZc33nzzTb3wwgsO1x544AHNnj3bIa9RmBH5ur8KVV6yMPI9ACC9/vrrmjBhQlDnmDRpkvbs2eNT35SUFH399dc+zx2M/Eqov/MNhxxGcduz+2r//v1efc6pU6cGLxgfGHEewUihWL/+ZOQzwJkP74XDuonwFKi818SJEzVs2DDl5eXZr8XHx+vjjz/WgQMHNG7cOHXv3l0NGza058Li4uLUrFkzPfHEE1q5cqWSk5PVpUsXj+YL9VmSQOTaQnlGxIg8V7jmhXwRrHNCJd3q1asvycF16NBB+/fv16effqr27dvb74Py5curUaNGevDBB5WUlKTTp0/rzTffVFxcnMs5Qnmfvfnmm/r111/t5aioKH333XeaMWOG2rZtq0qVKql06dKqX7++nn76ae3cuVN33XWXJGnmzJluxy/OjM6lk78EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAMJiNDgDFW0FBgV5//XW98sorhsZhtVrVr18/Pffcc8rLyyuxc0pScnKyOnbsqPT0dK/6zZ07V0OGDAlSVOHvq6++ks1ms5fvvfdeA6MJncGDB2vbtm2SpHr16mncuHE6ePCgcnJydPbsWS1ZskS9e/d26LN161Z16dJFFovFozksFosefPBBpaSk2K9FRUXp73//u7Zv367MzExdvHhR+/bt04QJE3T99ddLkqZPn66XX37Zp8+1ZMkS++eSpDJlyuijjz7S/v37lZOTI5vN5vDTvHlzt2P27dv3kn7e/HTu3NlhvMTERH399dcO15o2baqkpCQdP35c+fn5SklJ0ZYtW/T666+rYsWKkqRly5YpISHBp99LYT/++KN+++23S65brVYlJib6NfaMGTPUuXNnnT9/3n4tJiZGjz76qBYsWKCjR48qKytLeXl5OnfunH7//XfNmzdPb7zxhlq3bi2z2dhXkD59+jiUp02bZlAkAIDibteuXeratatyc3Pdtn3xxReVmZkZgqguT7///rvuuusuh/dST8yZM0dDhw6VyWRy2sZqtfobniEsFovuuecevf32235/hkWLFqlZs2Y6ceJE2M/tq1GjRunzzz932eb+++/XtGnTinyfPXXqlIYOHerxXkr637314osv6r333vM6Xk9t2LBB3bt393r9SUpK0sMPPxykqIqH/Px8de/eXZMnT/Z5jLS0NPXp08ewPUeg8yFXXHGFhg4dqrlz5yo5OVnnz59Xfn6+Lly4oK1bt2rcuHG6/fbbHfrk5eXp+eef9/g+D8aev6TLzMxU+/btdfDgQfs1s9msoUOHavXq1Tp37pxycnJ04MAB/fvf/1a9evUkST///LNGjBjhMFZ+fr5PMQQ6ryL9b43s3r27vvvuO4frHTt21Pz583Xy5Enl5ubq+PHjmjlzpm699VaHdtOnT9eAAQM8ij+Uc3lr9OjReuyxxxye5V69eunbb79VmTJliuxjRL6usFDkJQsj3wMA//Poo49q6NChQctB5OXl6Z577tEff/zhVb+UlBR17txZ+/fv92v+QOdXjPjO1+gcRnHcs/vK3T7/T2vXrtW+ffuCHI13jDqPYKRgr19/MvoZ4MyH94xeNxGeApn3mjJlitq0aaNdu3Y5XK9Zs6ZGjBihb7/9Vr///rs9F5aamqotW7ZozJgxateunUOf9PR0vfLKK1qwYEGRc4X6LEmgcm2hOiNiRJ4rnPNC3grmOaG/8jcX6GvuJ5g++eQTDR482OG9KyYmRk8//bRWrFhhvw/S0tL022+/afr06erfv7/T/FxhobzPcnJy1KFDh0vuhQEDBmjVqlU6d+6csrOztW/fPn366aeqWbOmJGndunWXPEcljdG5dPKXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAaz0QGgeMrPz9d3332nm266Sf/85z+NDkeSZLPZ9Mknn6hx48aaMGGCLl686NM4qampmj17th544AGNHDky7OaUpI0bN6p58+b68ccf3bbNzs7WyJEjdd999yk/P9+n+EqCI0eOaNWqVfZyy5YtVatWLQMjCo309HTdeeedmjFjhtu2NptN48ePV9u2bZWamurVPLt27VKbNm2UnJzstm1WVpaef/55DRo0SFar1at5/mS1WtW7d29t27bNp/6hYLPZNHDgQL3//vsqKChw2z4vL0/vvPOOunbtqpycnIDF8cUXX1xybcmSJTp69KjfY69YsUI33nijPv/8c2VnZ/s9XqhERESoR48e9vKxY8e0cuVKAyMCABRH6enpeuONN3Trrbd6/Hd137596tixY0D+DqNo27ZtU/PmzbV8+XK3bbOysvTCCy+ob9++slgsio2Nddo2JSUlkGGGVEFBgf7xj3+oZcuW+uabb7x+B9+yZYvuv/9+de/eXRcuXCg2c/vqmWee0dSpU122GTBggBITE2UymS6pW7Bggbp3766TJ0+6nWv//v3q2LGjPvzwQ1/D9djy5cvVokULbdq0yW3bjIwMPf3003rooYc82suUdHl5eRo+fLi6du2qX375xeN+BQUF+uqrr3TDDTdo/vz5QYzQNX/yIY0bN9Yrr7yizZs3+7R/z8/P17x583TjjTfq448/9rhfcdjzh6Pjx4+rVatW+vrrr922tdlsSkxMVPv27WWz2Rzq0tLSghWiT7Kzs9W7d289+eST+uOPPzzqc+LECQ0dOlSDBw+WxWIJy7m8NX78eA0dOtRhXe7cubO+//57p+8woc7XFRaqvOSfyPcAgKMpU6bo+uuv18cff+z13/eNGzeqZ8+eOnDggNM2+/btU7NmzbRmzRqPxly9erWaN2/u0Z7EnWDkV4z4ztfoHEZx3LP7YtmyZdqzZ4/bdu5yAUYx6jyCkYK9fv3J6GeAMx/eM3rdRPgJ9DmgzZs366abblJCQoJ2797tdf/Dhw/rzTffVIMGDfTee+85PfcR6rMkgcy1heqMiBF5rnDOC3krmOeESrpp06apefPmWrhwYVDGD+V9dvbsWbVp00bTpk1z29Zms2nixInq0KGDz++bxYlRuXTylwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiWCKMDQHjLzc1VZmam0tPTdfDgQe3evVtbtmzRwoULlZKSYnR4RdqzZ48effRRjRw5Uu3bt1fr1q3VokULXXHFFYqPj1f58uWVn5+vrKwspaSk6NChQzpw4IB27typdevWKTk5WVarNezn3Ldvn9q1a6d27drpgQceUKtWrVSjRg1FR0fr1KlTOnjwoBYsWKDZs2frjz/+8GrskurTTz9V+/btJUkmk0mDBw/WW2+9ZXBUwZeRkaEHH3xQb7/9tgYMGKAOHTqoRo0aqlq1qtLT03Xs2DEtX75cM2bMUHJyss/z7N69W02aNFGfPn3Us2dPtWzZUlWrVlVERIROnjypgwcPat68efr666914cIFvz/XkSNH1LJlS3Xp0kW9evVSkyZNVKtWLZUrV07R0dF+jx8IFotFL7/8siZMmKDhw4erbdu2atCggeLi4pSZmakzZ87o4MGD+u677zR//nydPXs24DHMmDFDn376qUwmk/3ahAkTAjb+qVOn9PTTT+utt97S3XffrXbt2unmm29WlSpVVKlSJUlSenq6/ef8+fP67bfflJycbP8JtR49eqhy5cr28pgxY7xegwEAxdvMmTO1du1a1a9fXw0aNFCDBg1Uv359Va1aVeXKlbP/xMbGqqCgQFlZWUpNTdW+ffu0e/durVy5UitXrlROTo7Xc//8889q0KCB7rvvPnXp0kVNmzZVtWrVVK5cOUVEsEUPhIMHD6pjx46688479cADD+i2225z2CsdOHBA8+bN05w5c3T+/HlJUtWqVWU2m52OWRL2VFu2bNF9992nq666Sh06dNDtt9+uJk2aqHLlyqpYsaIiIiKUkpKiCxcuaN++fVqzZo1++uknbdmypVjP7S2bzabhw4erfPny6t27t9N2Q4YMUX5+vh599FHZbDaHusWLF6tBgwYaNGiQunbtqsaNG6ty5cqyWCw6fvy4duzYoVmzZmnJkiXKz88P9key++2333TrrbeqTZs2euCBB9S6dWtdeeWViouL05kzZ3TgwAEtWLBA//nPf3TmzJmQxVVc/PDDD/rhhx/UqlUrde/eXa1atVL9+vVVqVIlRUVF6eLFizp58qR27dqln376SXPmzNGpU6eMDluS7/mQvXv36r333tN7772nChUqqE2bNrr11lt17bXXqkGDBqpWrZrKly+viIgIe/7w2LFj+vXXX7VlyxYtWLDA5/1/cdjzh6OzZ8+qX79++vjjjzVgwAC1bdtWNWrUUExMjM6cOaPjx49r6dKlSkpK0oEDByRJVapUcRgjNTXViNBdKigo0NixYzVt2jR1795dXbp00U033aSqVasqLi5OqampOnPmjLZu3aoffvhBCxcuVHZ2dtjP5a2pU6cqOztbM2bMsL83tm3bVsuWLdPdd9+ttLS0S/qEOl9XWKjykhL5HgAoytGjR/X8889r1KhR9u8vW7ZsqRo1aig+Pl4VKlRQTk6Ozp07p+TkZK1fv15z587V3r17PRr/2LFj+tvf/qb27dvb999XXnmlSpcurT/++EOnTp3S6tWrNWfOHG3cuDGgny1Y+ZVQf+cbDjmM4rRn94XNZtPYsWM1ZswYp20uXryo2bNnhzAq7xlxHsFIwV6//srIZ4AzH94Lh3UT4SXQ54AsFosSExOVmJioJk2a6O6771aLFi10zTXX2HMsNptNqampOn/+vPbs2aONGzdq7dq1Wrdu3SW5YlfzhPIsSSBzbaE6I2JEniuc80LeCPY5oZJu586d6t69u2644QZ17dpV7du3V506dVSlShWVLVtWaWlpSklJUUpKivbv36+NGzdq48aN2r59u0fjh/I+u3DhggYPHqzPPvtMAwcOVPv27VWzZk3Fxsban6MlS5YoKSlJBw8elKTL5vtqI9YY8pcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIFpPNZrMZHYQR3njjDb355ptGhwEghEwmk3bv3q1GjRpJko4ePao6derIarUaHFng/HVJz83NVenSpQ2MBuGga9euWrRokb184sQJ1a5dWwUFBQZGZaxly5apQ4cOkqTMzEzVrFlTaWlpBkdlnNTUVMXFxRkdBkqY8uXLKyMjw+gwAMBjXbp00ffff++0/v3339fLL78cwogAz3Xr1k0LFy50Wp+QkKDExMQQRoRwcznkQ+C7u+++Wz/88IO9PHfuXPXp08fAiFBcGZ2XJN+DkmDSpEkaPny40WFc1hITE5WQkGB0GIBL5DC8V65cOR0/flzly5cvsn769OkaNGhQiKMCECqsmyUbeS/8FXmu/+GcEBAc/q4xJTl/Wa5cOaWnpxsdhsdMJtMl15577jl99NFHBkQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgtzlmoyMAgFCx2Wx655137OWrrrpKPXv2NDAiIPgSEhIcypMnT1ZBQYFB0Rjv2muv1V133WUvjxkzRmlpaQZGBAAAwkG/fv1c1q9atSpEkQBA4JEPgSt33nmnQ3njxo3GBAL4gXwPAOByQg7DexkZGTp37pzT+qlTp4YuGAAhx7pZspH3wl+R5/ofzgkBweHPGkP+EgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMFkNjoAAAilmTNnKjk52V4eOXKkgdEAwVWjRg1169bNXrZYLEpMTDQwIuO9/PLLMplMkqTU1FR98MEHBkcEAACMdvPNN6tv375O67Ozs/Xf//43hBEBQOCRD0FRSpcurSFDhjhcW716tUHRAL4j3wMAuFyQw/BNs2bNVLdu3SLrDh06pJ9++im0AQEIGdbNywN5L0jkuf7EOSEgOPxdY8hfAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJjMRgcAAKFktVo1cuRIe7l58+bq1KmTgREBwfPMM8+oVKlS9vLcuXN17NgxAyMyVp06ddS/f397+b333lNqaqqBEQEAgECqVKmSVq1apW7dusls9izdcfPNN2vBggWKiopy2iYxMVE5OTmBChMADEE+BEUZPXq0qlSpYi/v2LFDmzZtMjAiwHvkewAAxRE5jNB67bXXnNZ98cUXstlsIYwGgC9YN+EKeS9I5Ln+xDkhIDj8WWPIXwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDYzEYHAAChtmjRIn3//ff28r/+9S+ZTCYDIwIC75prrtETTzxhL9tsNr3//vsGRmS8d955RxEREZKkPXv26NNPPzU4IgAAEEgmk0lt27bVwoULderUKU2cOFEPPfSQGjdurMqVKysiIkIxMTGqXbu2evfuraSkJG3atElXXXWV0zEzMjL01ltvhfBTAEDwkA8p2T766CMlJCQoKirKbduoqCh98sknevzxxx2uX+55AxRP5HsAAMUROYzgK1OmjJo2barp06erZ8+eRbbJyspSYmJiiCMD4AvWTbhD3qtkIc/lG84JAZ4J9RpD/hIAAAAAAAAAAAAAAAAAAAAAAAD4f+zdf2yVd9n48as3dYVgaN2QVUFLBGdCh5CxRAgS4wYRdDMidlAG7Zw0g8xR0MQfkSUlM1ldliU0zohBN8EE05DMrTMhDpcsqQrGgjPaTd2PBBbkN4wKrB2M549vvnvCA4Ub6Dmf9vT1SvoHd0/P51043Fy9chIAAAAAAAAAAAAAAAAAAAAAAIBCK08dAJDC6tWr484774yRI0fG9OnTY9myZbFly5bUWXDdqqur44477ojW1tYYOXLk+9e3bt0ae/bsSViW1owZM2LJkiXv//qhhx6Kvr6+hEUAQCGNGzcumpqaoqmp6Zqf47333osVK1bE4cOHB7AMIC37kNJVU1MT3/rWt+LRRx+N9vb2ePHFF2P37t1x6NCh6O3tjQ996EPxyU9+Mj7/+c/HAw88EBMmTLjg67du3Rq//vWvE9XDtbHvAaAU2GEMnJ/+9KfxwAMP5H78448/HseOHStgEVAI7pv0x96rdNhzXR3vE4KrU8x7jP0lAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxVCeOgAghTfeeCNGjRqVOgMGxA9/+MP4wQ9+0O/nDx06FGvXri1i0eDT1dUVWZalzgAAhojz58/H6tWro729/bKPKYSysrKCPC8MFK/9oc0+pPTddNNNsWrVqli1alXur3nmmWeiqampgFVQGPY9AJBvh8HF/vnPf8Zjjz121V/nZ2IY+q503/T3fOiy9yo99lz98z4huH7FuMfYXwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAM/kdtAChhhw8fji9+8Ytx6NCh1CkAAEPC3r17Y+7cufHkk0+mTgGAgtq/f380NzfHokWL4tSpU6lzAAC4SnYY1+b48eNxzz33xOnTp1OnAEXmvgmly57rf3mfEAw89xgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGs/LUAQDAwOrp6Yl//etf8dvf/jba2tri6NGjqZMAAAa91157LX72s5/Fxo0b4+TJk6lzcxKGngAAIABJREFUAOCq3H///fHLX/4yZs6cGbfeemtMmDAhKisro6qqKsaMGRPvvvtuHDt2LA4ePBg7d+6Ml156KZ577rno7e1NnQ4AwFWyw7h23d3dUV9fH3/7299SpwBF5L4JQ4s919XzPiHIzz0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAUlOeOgCAgVNWVpY6gQTWrVsX69atS50BAJDUkSNHYvz48fHpT386pk6dGlOnTo1PfOITUVVVFZWVlTFmzJgYPXp0nDp1Kt5+++04fvx4vPLKK/HnP/85/vSnP8XOnTvj/Pnzqb8NuGrPP/+8nwWBOHnyZHR0dERHR0fqFIYp/xYBQH52GMVz5syZOHToUHR1dcW2bdti27Zt8e6776bOAq6S+yYML/ZcV+Z9QnDt3GMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoNeWpAwAAAAAGwv79+2P//v2xffv2gp9VVlZW8DNgMPLaBwAAuH7F3GEMFytXroyVK1cW9Aw/E0M6xbpv+nsOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBQkqUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8sdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5ZKkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyCdLHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEA+WeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8slSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBPljoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAfLLUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOSTpQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgnyx1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPlkqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIJ0sdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQD5Z6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkE+WOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB8stQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5JOlDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCfLHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+WSpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgnSx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAPlnqAAAAoDDefPPNaGxsjO3bt8fZs2dT5wAAAADAFb3wwgvR3Nwcu3btSp0CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAINWljoAAAAojN7e3ti8eXMsWLAgbr755mhoaIgdO3bE+fPnU6cBAAAAwCUdP3482traYubMmVFTUxPNzc2xe/fu1FkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMKhkqQMAAIDCO3bsWGzZsiXmzZsXNTU10dzcHJ2dnamzAAAAAKBfe/fujba2tpgxY0bU1tZGS0tLvP7666mzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACC5LHUAAABQXPv27Yu2traYM2dO1NbWRktLS/z73/9OnQUAAAAA/eru7o7169fH5MmT4/bbb48NGzbEwYMHU2cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQBJZ6gAAACCd7u7uWL9+fXzqU5+KWbNmRVtbWxw4cCB1FgAAAAD0q6urK9asWRMTJkyIBQsWxObNm6Onpyd1FgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUTZY6AAAASO/8+fOxc+fOaG5ujvHjx8dnP/vZ2LBhQxw5ciR1GgAAAABc0tmzZ2P79u3R2NgY48aNi7vvvjs2b94cp0+fTp0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWVpQ4AAAAGl/feey/+8Ic/xJo1a+JjH/tYfPWrX41t27bFmTNnUqcBAAAAwCW988478fzzz0djY2OMHz8+vvGNb8SOHTvi3LlzqdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYMBlqQMAAIDB65133olnnnkm6urqorq6OhobG2P79u1x9uzZ1GkAAAAAcEknTpyIX/ziFzFv3ryYMGFCrFmzJnbt2pU6CwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTJY6AAAAGBpOnjwZmzdvjgULFsTNN98cDQ0NsWPHjjh//nzqNAAAAAC4pAMHDsSGDRti5syZUVNTE83NzbF79+7UWQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwXbLUAQAAwNBz7Nix2LJlS8ybNy9qamqiubk5Ojs7U2cBAAAAQL/27t0bbW1tMWPGjKitrY2WlpZ4/fXXU2cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFXLUgcAAABD2759+6KtrS3mzJkTtbW10dvbmzoJAAAAAC6ru7s71q9fH5MnT47bb789fv/736dOAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDcylMHAACQTlVVVeoESkx3d3fqBAAAAIAhp6mpKZqamlJnDFtdXV3R1dWVOgMAAABgSOnp6YmysrLUGQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMNWljoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAfLLUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOSTpQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgnyx1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPmUpw4AACCdNWvWREVFReoMCuTo0aOxadOm1BkAAAAAXMH8+fNj2rRpqTMGhVdffTWeffbZop87atSoOHPmTNHPBQAAABiqbrjhhli7dm3qjOsyZ86c1AkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADXrDx1AAAA6bS0tERlZWXqDArk1VdfjU2bNhXlrCzLYtasWVFXVxfr1q2L//73v0U5FwAAAKAULFq0KFasWJE6Y1Bob2+PZ599tihnjRw5MubOnRt1dXXR09MT3/zmN4tyLgAAAEApqKioiNbW1tQZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw1aWOgAAABi6pkyZEq2trfHWW29FZ2dnNDc3R1lZWeosAAAAALikESNGxOzZs2Pjxo1x8ODB6OjoiIaGhqioqEidBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC5lacOAAAAhpYpU6ZEfX191NfXx6RJk1LnAAAAAMBllZWVxaxZs6K+vj7uueeeGDduXOokAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALgu5akDAACAwa+mpiaWLFkS9fX1MW3atNQ5AAAAAHBFU6dOjaVLl8aSJUti4sSJqXMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYMCUpw4AAAAGpxtvvDG+9KUvRUNDQ9x5551RVlaWOgkAAAAALuvjH/94fOUrX4nGxsa47bbbUucAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEGUpw4AAAAGj1GjRsVdd90Vy5cvj/nz58cHPvCB1EkAAAAAcFk33XRTLFq0KJYvXx6zZ8+OsrKy1EkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUFDlqQMGq7Fjx8aDDz6YOgMAIJcnn3wyjhw5kjqDIaqioiIWLFgQS5cujbvuuitGjRpV0PPuvvvuuO222wp6BgAw9D333HOxZ8+efj8/adKkWLZsWRGLAACu3aOPPhp9fX2pM0pKZWVlLFy4MJYuXRp33HFHjBgxoqDn3XDDDfH973+/oGcAAENfb29vtLa2XvYx9957b0yePLlIRQAA12737t3R0dGROgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB+lKcOGKw+/OEPR0tLS+oMAIBc2tvb48iRI6kzGEKyLItZs2ZFXV1d3HvvvTF27Niinf3lL385VqxYUbTzAIChad++fbFnz55+Pz9p0iT7OwBgyHjiiSeir68vdcaQN3LkyJg7d27U1dXFokWLYvTo0UU7u6KiwvwJAFzR22+/Ha2trZd9zLJly2L+/PlFKgIAuHabNm2Kjo6O1BkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0ozx1AAAAUDxTpkyJhoaGaGhoiI985COpcwAAAADgskaMGBEzZ86MhoaGWLJkSYwZMyZ1EgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkV546AAAAKKwpU6ZEXV1dLF26NG655ZbUOQAAAABwRTNmzIjly5fH4sWLo7q6OnUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwq5akDAACAwqiuro6//vWvMW3atNQpAAAAAJDLZz7zmXjzzTdj4sSJqVMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYNAqTx0AAAAURlVVVVRVVaXOAAAAAIDcampqUicAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKCXpQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgnyx1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPlkqQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIJ0sdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQD5Z6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyyVIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkE+WOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB8stQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5JOlDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCfLHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+WSpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgnSx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAPlnqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPLJUgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQT5Y6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyy1AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkk6UOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ8sdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5ZKkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyCdLHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEA+WeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8slSBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBPljoAGLoef/zxKCsre//jxIkTqZMoopdeeumCP/////HEE0+kToNrdt999130mh49enS89dZbqdMAKBIz7vBmxqUUmXFheDPbDG9mG0qR2Qagf2a/4cvcR6ky+8HwZa4Z3sw2lCqzDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIWQpQ7g2vzjH/+Ixx57LL7whS/ElClTYuzYsVFRUREf/ehHY/r06bF48eJ4+umn4+DBg6lTgRJ07ty5aG5uvuh6dXV1rFq1KkERDIyHH344ysvLL7h2+vTp+M53vpOoCAAoFjMupcqMm479HZCS2YZSZbYBgAuZ+yhlZr807LSAlMw2lDKzDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIWQpQ7g6uzcuTPmzJkTt956a3z3u9+N3/3ud/HKK6/E0aNHo6+vL/7zn//Eyy+/HO3t7fH1r389xo8fHytXrowDBw6kTgdKyFNPPRUvv/zyRde//e1vx6hRo/r9uh//+MdRVlbW78eYMWPi8OHDuRomTJjQ7/OcOHHimr83Bqe+vr7o7u6O3/zmN/GjH/0o7r///pg9e3aMHTu239dBeXn5VZ8zadKkWLp06UXXt27dGrt27RqIbwUYJP7+979fcM/42te+ljoJSOxaZ9wIcy7XxoxbuuzvgMHA/o5iM9tAcdhpAf+XnRYpmP1Kk50WMBiYbUhh4sSJl33t5P341a9+ddlzzDYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUQpY6gHzOnTsXDz74YMyaNSs6Ozuv6us2btwYkydPjm3bthWw8Oo9/fTTF/yn76+99lrqpKLze8BQ1NfXF4888shF1z/4wQ9GU1PTdT13T0/PJZ8bVq9eHbW1tbFw4cL43ve+F0899VT88Y9/jKNHjw74WWvXrr3k9YcffnjAzwIoRWZchqJCzrgR5lwuzYxbeuzvSpPfA4Yi+ztSMNsApcDsx1Bjp0UqZr/SUoo7rQj/rg/375+hyWzDcGC2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYKBlqQO4stOnT8fChQvjJz/5yQXXb7nllnjkkUfiL3/5Sxw8eDB6e3tj37598eKLL8ZDDz0UN9544/uPPXXqVCxevDg2bNhQ7HygxPz85z+PvXv3XnT9vvvui8rKyut+/o0bN8Ybb7xx3c8D12r69Onxuc997qLrL7zwQnR2diYoAgAKrdAzboQ5l7TMuIVnfwcMJvZ3lDqzDQD8P3ZaDAdmv8Ky0wIGE7MNw4HZBgAAAAAAAAAAAAAA4H/Yu/PoKOt78eOfBBIQWQUUxY2ipaC4YVtcioo7LkWtG9jaK7hXRf1VrdjaimvF3VsXRLx4UdytoEKBVnGrrSLuGyBeUZAdEYUkML8/PKbGZCYz4Ukmy+t1zpyTZ/s+35k8Yd7n+w8AAAAAAAAAAAAAAAAAAAAAAAAkrTDfE6B6J598ckyYMKF8u3nz5nHVVVfFW2+9FZdcckn06dMnNt544yguLo7NN9889tlnn7j55pvjvffei+OOO678unXr1sWwYcPi4YcfzsfbABqBdevWxfXXX1/lsSFDhiRyj5KSkrjkkksSGQtqKt3zPHLkyDqeCQBQ2+qicSN0LvmncWuX9TugvrB+R1OhbQBo6qxp0ZRov9pjTQuoL7QNTYm2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIEmF+Z4AmY0ZMybuu+++8u3mzZvH+PHj46KLLoqioqKM13bu3Dnuv//+OOOMMyrsP/nkk+Pjjz+ulfkCjduECRNi1qxZlfbvtNNOsdNOOyV2n/Hjx8drr72W2HiQq6OOOiratGlTaf+ECRNizpw5eZgRAFBb6qpxI3Qu+aVxa4/1O6A+sX5HU6FtAGjqrGnRlGi/2mFNC6hPtA1NibYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgSYX5ngDprVy5Ms4999wK+6688so46qijchrn1ltvjf79+5dvL1++PM4///xE5gg0LXfddVeV+3/xi18kep9UKhUXXnhhomPSsLVo0SJ69uwZP//5z+OCCy6I0aNHx3PPPRcLFy6MDTfcMPH7tWrVKgYMGFBp/7p162LMmDGJ3w8AyJ+6atwInUtFGrdxsH4H1DfW78gXbQMAdcuaFvmk/Ro+a1pAfaNtqG+aNWsWqVQqp9cJJ5yQ1djaBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCQV5nsCpDdq1KhYsWJF+fbOO+8c5513Xs7jFBQUxB133BEtWrQo3/fYY4/F7NmzE5lnfZJKpeJvf/tbHHvssdGzZ89o3bp1dOjQIXbYYYf47W9/G2+//Xa+p5h3y5Yti7/85S8xcODA6N69e7Rr1y6KioqiY8eOsf3228evf/3rGD9+fKxevXq97jNjxow49dRTo3fv3tGuXbto06ZNbLvttjFkyJB4/vnnazTmJ598EjfccEMceeSR0b1792jTpk20bNkyunbtGrvttltcdNFFMWPGjPWad0TtPkepVComTZoUZ511Vuy8886x6aabRosWLaJTp07Ru3fvOOOMM2Lq1Knr/R5qw6JFi2LSpElVHhs4cGDi95syZUpMmzYt8XHTee655+LSSy+N/fbbL7p37x4dOnSIoqKi6NSpU/zwhz+Mww47LK655pp44403auX+CxcujKuvvjr69u0bm2yySbRs2TI233zzOOyww2LMmDFRVlZWo3FffvnluPzyy+PAAw+MbbbZJjbaaKMoLi6Ozp07R69evWLw4MFxzz33VPi+qY9uuummeOedd+Lxxx+Pa665Jk466aTYc889o3PnzrV2zyOOOKLK/ePGjYtUKlVr9wUantronu/SuNXTuNXTuFWr68aNqNvO1bga9/s0bvKs3+VO21RP21RP21TN+p22ySdtAw2Tda38036Z6b6qNfY1rQjtp/0q037JsqaVO11TPV1TPW1TtcbeNrqmfndNvmgbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEpNqoi699NJURKR99ezZM99TTG299dYV5jRu3Lj1Gu/444+vMN6wYcPSnvvzn/+8/Lwdd9wx63s89NBDFe7x5ptvVjpnww03zPjZV/W69957K4xx7bXXVji+bNmy1IIFC1J77rlnxnGaN2+euvDCC1NlZWXVvpf6/hnUxJ133plq165dVvfbaKONUjfccEOqpKQk7XhV/R5WrVqVGjRoULXjDxkyJKvfQyqVSk2ePDm13377pQoKCrKa+5FHHplasmRJtePWxXP0Xf/4xz9SO++8c1bvYa+99kp9+OGHOY1f2+66664q59q1a9esx7jllltyeu779OmTWrduXZVjde3aNe11y5Yty3pOjzzySGqnnXbKaV777bdf6oUXXshq/AMPPDDtOPPnzy//XFq1apXxntttt13qo48+yvp9Pfnkk6mf/vSnWb+n9u3bpy677LLUmjVrsr5HfZHu39RmzZqt17iLFy9O++/OK6+8ktDsk9OzZ8+cv1siIrV8+fJ8T51GqE2bNhmfu1GjRuV7iqk333yzwpyOOuqojOfXRfdo3JrRuNXPX+Oml0TjplL1r3M17jcvjVtZQ2vck046KePv+IADDsj3FK3ffedl/U7baJv8s373n5e2qV+0zTcawnpJUzdq1KiMv6M2bdrke4o5r2mlUta1tF/DaD/dl5vGuqaVSmm/b1/ar7KG1H7Lly+v9nf89NNP53WO+VzTSqXq9/e6rqkZXVP9/LVNeo21bXTNN6+G0DVbbbVVpXmvb7tUpyG1TUNYLwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGjCHiwM6qUPP/ww5s6dW77dvn37OPLII9drzKFDh1bYnjJlynqNV5988cUXsc8++8Tzzz+f8byysrK45ppr4pe//GWsXbu2jmZXP4wcOTJOOeWUWLFiRVbnL126NM4999x49tlns77HmjX/xj/HAAAgAElEQVRr4qCDDor77ruv2nNHjx4dp59+erXnLViwIA488MCYOnVqpFKprObx6KOPxh577BGff/55Vud/qzafo9tuuy3222+/eO2117I6/9lnn43dd989XnnllYzn3XrrrVFQUFD+Ou2007IavyaefvrpKvfvtddeiYxfWFj5K+nVV1+NBx54IJHxv+/rr7+OoUOHxlFHHRUzZ87M6dqpU6dGv3794sorr8z6uUznrLPOirPOOiu++uqrjOe9/fbb0a9fv1i+fHnG80pKSuLss8+OQw45JF5++eWs57F8+fL4wx/+EHvvvXcsWLAg6+sas44dO8Z2221X5bF0fw9A01Eb3fN9Grd6Grd6Gjez2m7ciLrtXI1bkcatTOMmy/pdbrRN9bRN9Rpa29Rl10RYv/subdM0aBuoGeta9YP2y6yhdV+ENa31pf0q0n6Vab/kWNPKja6pnq6pnrbJrLG1ja6pqKF2zbp16+JXv/pVbL/99rHRRhtFUVFRdOrUKbbddtsYOHBg/PnPf44PP/ywxuNrGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJS+X9zp1547rnnKmzvvvvu0bJly/Uac4899oiioqLy7XfeeSeWLl26XmPWF2effXa8++67UVhYGKecckq89NJLsWLFili5cmX8+9//jrPOOiuaNWtWfv79998fV155ZR5nXLdmz54dw4cPL99u0aJFDBs2LKZPnx6LFi2K0tLSWLlyZcyaNSvuv//++NWvfhUbbLBBzvcZNmxYPPfcc1FcXBxnn312vPTSS7Fs2bL4+uuv46233orzzjuvwu9h1KhRMX369KzH32233WLkyJHx/PPPx4IFC2LNmjXxxRdfxBtvvBHXXXddbLnlluXnvvfee3HyySfnNP/aeo7Gjh0bZ5xxRqxduzYiIoqKiuLEE0+MSZMmxeeffx4lJSWxePHimDRpUgwcOLD8ukWLFsXAgQNj8eLFOb2P2vLMM89Uuf+nP/1pIuMfe+yx0aJFi0r7L7nkkigtLU3kHt9at25dHHPMMTF69Ogaj7F27doYPnx4/P73v6/xGJdddlnceuutWZ//ySefxIUXXpj2eCqVil/+8pdxyy231HhOL730Uuy1116xYsWKGo/RmKR7vv/+97/X8UyA+qa2uydC41ZH42ZH42ZW240bUXedq3HT07gVadzkWL/LjbbJTNtkR9tkZv2uIm3TNGgbyJ11rfzTftXTfZk1pjWtCO2XifarSPslw5pWbnRNZromO9oms8bUNromvYbWNalUKu699954++23Y9myZVFWVhZLliyJWbNmxV//+te48MILo0ePHnH44YfHrFmzanQPbQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEASCvM9Aar2yiuvVNj+8Y9/vN5jtmjRInr37l2+nUql4tVXX13vcXP15ZdfRiqVijFjxlTY/+GHH0YqlarydcIJJ2Qc869//WsUFxfHhAkT4o477oi+fftG27Zto3Xr1rHrrrvGzTffHFOmTIkNNtig/JrLL7883n///Vp5j9Wpjc8gk/vvvz9KSkoiIqKwsDAmTZoUN9xwQ/zsZz+LTp06RfPmzaN169bRvXv3OO644+J//ud/4tNPP41hw4ZFcXFx1vcZP358dO7cOV588cW46aabom/fvtG+ffto2bJlbLfddnHdddfFXXfdVeGaW265JeOYBQUFMXDgwHj77bfjxRdfjPPPPz/22GOP2GSTTaK4uDjatGkTvXv3jvPOOy/eeuutOPjgg8uvnTBhQjzzzDNZz782nqMPPvggTj/99PLtTTfdNF588cW455574sADD4yNN944ioqKomPHjnHggQfGY489FnfddVcUFBRERMSnn34av/3tb7N+D7Vlzpw5sWTJkiqPfffflfWx5ZZbxhlnnFFp/+zZs+POO+9M5B7fuuSSS2LixImJjHXFFVfEI488UqNrb7vttpyvGTt2bCxbtqzKY5dffnk8+OCDNZrLd33wwQfxq1/9ar3HaQzSPd+vvvpqpFKpOp4NUJ/URvd8n8bNTONmR+OmVxeNG1F3natxM9O4/6Fxk2P9zvqdtvmGtmk6bWP9Ljvapm5pG8idda3KtN9/1Jf2033pNbY1rQjtVx3t9x/aLxmNeU0rIvnvdV2Tma7JjrZJr7G1ja7JrLF1TSqVigkTJsTOO+9co89H2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCEwnxPgKotXLiwwvYPfvCDRMbt1q1bhe1FixYlMm59cPXVV8eAAQPSHt9nn33ixhtvLN8uKSmpsN2YvfHGG+U/77777rH33ntXe02HDh3ihhtuiH79+mV9n4KCgrjvvvuiT58+ac/59a9/HXvuuWf59oQJE6K0tDTt+Ztsskk89thj0atXr2rv36ZNm3jooYeia9eu5fvuvPPOLGf/jaSfoxEjRsRXX30VERFFRUXx1FNPxa677ppxDkOGDInzzjuvfHvcuHExb968bN9CrXj99dfTHuvRo0di9xk+fHi0a9eu0v7LLrssvvzyy0Tu8cknn8T111+f9niXLl1i1KhR8dlnn8WaNWtizpw5ccUVV0SrVq3SXnPBBRdEWVlZjed0yimnxJtvvhmrV6+OOXPmxKmnnpr23NWrV8eUKVMq7Z8/f35cddVVaa/r1atXjB8/PhYsWBAlJSUxd+7cuPLKK6Nly5ZVnv/EE0/EtGnTcn8zjUzPnj2r3P/FF1/EnDlz6ng2QH1SG91TFY2bnsbNnsatWl01bkTtd67G1bi50LjJsX6XO22TnrbJnrapmvU7bdNUaRvInXWt/NN+2dF9VWtMa1oR2k/75Ub7JcOaVu50TXq6JnvapmqNqW10TdPtmi+//DIGDx4ckydPzuk6bQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEASCvM9Aaq2dOnSCtvt2rVLZNz27dtX2F6yZEki4+bblltuGWeddVa15w0dOjR69OhRvj1u3LhYs2ZNbU6tXvjyyy/Lf27dunWt3eeAAw6I/fbbr9rzjj/++PKf16xZE++++25ic9hwww3jjDPOKN+eMmVK1tcm/RzNnz8/xo8fX759yimnxE477ZTVXC6++OJo0aJFRESUlpbG448/ntV1teWjjz6qcn/z5s2jS5cuid2nY8eOccEFF1Tav3DhwrjuuusSuccNN9yQ9u++Y8eO8eKLL8bQoUNj0003jeLi4ujWrVtcfPHF8cQTT0RhYdVfm3PmzIkHHnigRvMZMWJE3HHHHbH99ttHixYtolu3bnH77bfHoYcemvaaV199tdK+66+/Pr7++usqz99uu+3i5ZdfjmOPPTY22WSTKCoqiq222ip+97vfxRNPPBEFBQVVXnfFFVfU6D01Jl27dk17LN3fBdA01EX3aNzMNG52NG56ddW4EbXfuRpX4+ZC4ybH+l1utE1m2iY72iY963fapqnSNpA761r5p/2qp/vSa0xrWhHaT/vlRvslw5pWbnRNZromO9omvcbUNrqmaXdNWVlZDBo0KFasWJH1NdoGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAJFT9v6WTdytXrqyw3bp160TG/f44X3zxRSLj5tugQYOiefPm1Z5XWFgYJ5xwQvn2ypUr47XXXqvNqdULm222WfnPL730Unz66ae1cp/jjjsuq/N22WWXCtsfffRRovPYc889y39evHhx/N///V9W1yX9HE2dOjXKysrKt3/5y19mNY+IiI022ij69u1bvv3cc89Ved5vfvObSKVS5a/bb78963vkIt0z07lz5ygsTParZNiwYRWe2W9dd911sXDhwvUe/8knn0x77Pe//31069atymP77rtvDBo0KO21Tz/9dM5z6dmzZ/zud7+r8limv6fPPvus0r6JEyemPX/s2LFpv0f233//OPjgg6s8Nn369FixYkXacZuCLl26pD02b968OpwJUN/URfdo3Mw0rsZdX3XZuBG127katyKNm5nGTY71u9xom8y0TeNsm7rqmgjrdxHapqnSNpA761r5p/2qb7+G1n0R1rRqSvtVpP0y037JsKaVG12Tma5pnGtaEdqmJnRNRQ2xa1q3bh3HHnts3HXXXfHGG2/E0qVLo6SkJBYsWBATJ06MI444IuP1S5cujWuvvTbr+2kbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkpD8/wxPIr7/n8GvWrUqkXG//PLLCttt27ZNZNx822OPPbI+d/fdd6+w/e9//zvp6dQ7Bx10UPnPK1asiP79+8djjz0WZWVlid5n1113zeq8jTfeuML2ihUrEp3H98efO3duVtcl/Rw999xz5T83b948dt5556zHj4jo1q1b+c+zZs3K6dqkrVy5ssr9rVq1SvxerVq1iksvvbTKOYwYMWK9xv7ss8/igw8+SHt80KBBGa/PdPyZZ57JeT4nnnhiNGvWrMpj3/39f9/3/2YWLFgQ7733XpXndu/ePXbZZZeM8/j+8/yttWvXVniOm6JMz/j3v1OBpqUuukfjZqZx52Z1ncZNry4b99txa6NzNW7VNG56Gjc51u9yo20y0zZzs7pO26Rn/a7649qmcdI2kDvrWvmn/eZWe43uS6+xrGlFaL90tF962i8Z1rRyo2sy0zVzs7pO26TXWNpG11StoXTN9ttvH6NGjYqFCxfG+PHjY8iQIdG7d+/o0KFDFBUVxSabbBKHHHJIPProozFu3Li0n21ExLhx47K+r7YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCc3zPQGq1rFjxwrby5cvT2Tc74+z0UYbJTJuvv3whz/M+twePXpU2J4/f37S06l3jjjiiPjJT34S//rXvyIi4oMPPogjjzwyOnToEPvtt1/069cvdt111+jTp08UFRXV+D6dO3fO6rxWrVpV2P7666+zuu6dd96JRx99NP71r3/Fe++9F0uWLImVK1dGaWlpxutWrFiR1fhJP0cff/xx+c9lZWWV3ncqlar2528tWbIk67nVhjVr1lS5v7i4uFbuN2TIkLj++uvj/fffr7D/jjvuiHPPPTd+8IMf1GjcefPmpT22+eabV/sM77LLLmmPzZ8/P9auXRvNmjXLej677bZb2mNt2rRJe6ykpKTC9ieffJL23NmzZ0dBQUHWc/q+OXPm1PjaxqBFixZpj2X7bxfQONV290Ro3OpoXI27vuq6cSNqp3M1bu40rsZNivW73GibzLSNtllf1u++oW2aHm0DubOulX/ar/r2033pNZY1rQjtVxPaT/slwZpWbnRNZrrGmtb6aixto2tyV5+6ZuLEiVmfO2jQoHjttddi5MiRVR6fO3duzJ49O7p3717tWNoGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAJBTmewJU7fv/0f1HH32UyLhz587NeJ+Gql27dlmf2759+wrby5YtS3o69U6zZs1i4sSJ0b9//wr7ly1bFg899FCcddZZsdtuu0X79u1jwIABMXbs2CgpKcn5Pi1atKjR/FKpVMbjs2fPjkMOOSS22267+P3vfx8TJkyIDz/8MJYuXRqlpaXVjr9y5cqs5pH0c7RkyZIK22vXrq3wWrduXfkrlUqVv6qyatWqrOdWG9L9bmvynGSjWbNmceWVV1baX1paGsOHD6/xuIsXL057LJt/Dzt16pT22Lp162Lp0qU5zWfzzTdPe6y4uDjrcRYtWpTTfXOR6TNrClavXp322AYbbFCHMwHqm9rqnu/SuJlpXI27vuq6cSNqp3M1bu40rsZNivW73GibzLSNtllf1u++oW2aHm0DubOulX/ar/r2033pNZY1rQjtVxPaT/slwZpWbnRNZrrGmtb6aixto2ty15C75rTTTst4fNasWVmNo20AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIQmG+J0DV+vTpU2H73//+93qPWVJSEm+++Wb5dkFBQaX7NFQFBQVZn5tKpWpxJvVX586dY9q0aTFhwoQ47LDDokWLFpXO+eqrr+Lpp5+OE088Mbp37x5PPvlkHmZa0euvvx59+/aNp556qsZjrFu3Lqvzkn6OSktLsx4vifvVptatW1e5f9WqVbV2zyOPPDL69u1baf8DDzwQM2bMqLX71qVWrVqlPdasWbM6nEl6K1euzPcU8uqrr75Keyzd3wVAUjRu9TRu9TRuevlo3IjG37kat/7TuMmxfpcbbVM9bVM9bZOe9bvaoW3qP20D9ZP2q572y0z3pWdNq/Zov/pP+yXDmlZudE31dE31tE162qZ26Jra1b1792jZsmXa44sWLcpqHG0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAEgrzPQGq1q9fvwrbL774YqxZs2a9xnzhhReipKSkfLtXr17RsWPH9Rrz+9auXZvoeNlavnx51ueuWLGiwnaHDh0SnUu+PoNsHXroofHEE0/E8uXL45lnnomrrroqDj300Gjfvn2F8+bNmxeHHXZYPPLII3maaURZWVkMHjw4Fi9eXL5vu+22i6uuuiqmTZsWs2bNihUrVsSaNWsilUqVvz744IMa3S/p5+i7f19bbrllhTnm+vruZ5APXbt2rXL/4sWLY926dbV232uuuabSvlQqFRdddFGNxuvUqVPaY4sWLar2+ky/h4KCgthoo41qNK/11blz51obO5VK1drYDcGCBQvSHkv3dwGQFI2bPY2bnsZNL1+NG5Fs52rc3GlcjZsU63e50TbZ0zbpaZv0rN99Q9s0PdoG6iftlz3tVzXdl15jWdOK0H41of20XxIa6ppWRH6+13VN9nRNetomvcbSNromd029ayK0DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMkozPcEqNoPf/jD2HLLLcu3ly1bFo899th6jTl69OgK2/vvv3/ac4uLi8t/Li0tzfoeS5cuzX1iCfjggw+yPvf999+vsN2lS5cqz2ton0GuWrZsGXvttVdcdNFFMWHChFi8eHFMmzYtDjnkkPJzUqlUnHnmmbF69eq8zHHKlCnx9ttvl28PGTIkXn/99bjooouif//+0b1792jbtm2F31XEN38vNZH0c7TpppuW/zxv3rz46quvajSv+qBbt25V7i8rK4sFCxbU2n379esXAwYMqLR/ypQpMX/+/JzH23zzzdMemzdvXixatCjj9TNmzEh7bNNNN41mzZrlPKckZHpf+++/f6RSqRq/brzxxjp8J/XPvHnz0h7beuut624iQJOkcXOncSvTuOnlq3Ejku1cjatxc6Vxk2P9LjfaJnfapjJtk571u29om6ZH20D9pP1yp/0q0n3pNZY1rQjtp/1yp/2Ske81rYiG9b2ua3KnayrTNuk1lrbRNU2ra2bNmpXx369NNtkkq3G0DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkozPcESO+ss86qsD1y5MhYu3ZtjcaaM2dOPPLII+XbhYWFceaZZ6Y9v23btuU/L1myJOv7vPHGGzWa3/p64YUXsj73pZdeqrD94x//uMrzGtpnsL6aNWsW/fv3j4kTJ8YxxxxTvv/zzz/P6fNN0jPPPFP+c3FxcVx33XXRrFmzaq+r6e8g6efoZz/7WfnP69atiylTptRoXvXBDjvskPbYe++9V6v3vvrqq6OwsPLX1bp163Iea7PNNottt9027fH7778/4/X33Xdf2mN77713zvNJyqabbho9evSo8tizzz4bn376aU7jrV27Nu6888646qqrkpheg5bu+W7dunV07969jmcDNDUad/1pXI2bST4bNyK5ztW42dG4/6Fxk2X9LnvaZv1pG22TifW7b2ibpkfbQP2k/dZfU28/3ZdeY1nTitB+2dJ+/6H9kpPPNa2IhvW9rmvWX1Pvmghtk0ljaRtdk5362DWHHXZYzs/abbfdlvF4us/s+7QNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASaj8P7ZTb5xyyinRtm3b8u1XX301brrpphqNddppp8Xq1avLtwcOHBjbbLNN2vO7du1a/vPnn38eCxcurPYepaWlMWHChKznVFxcXGF77dq1WV/7fffff39W16dSqfjf//3f8u02bdrELrvsUuW5De0zSNJJJ51UYXvu3Ll5mceCBQvKf+7atWu0a9cuq+sefPDBGt0v6efowAMPjIKCgvLtW2+9tUbzqg+22Wab6NChQ5XH3nrrrVq9d+/eveOEE05IbLxDDjkk7bHLLrss7fM+bdq0uO+++9JeO2DAgPWd2no59NBDq9xfUlISgwcPjpUrV1Y7xtdffx1jxoyJnXbaKU499dT4/PPP055bVlYWBQUFVb623377Gr+P+ubNN9+scv8uu+wShYUyCqhdGjdZGjczjVtRbTduRLKdq3HT07iVadxkWb/LnrZJlrbJTNtUZP3uG9pG2wB1R/slqym2n+5LrzGtaUVov0y0X2XaLzn5XNOKaFjf67omWU2xayK0TSaNqW10TXr1uWuefvrp2GGHHeK0006L9957r9rz77vvvrjxxhvTHu/du3dsueWWWd1b2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAE/zN2Pda2bdsYOXJkhX0XXXRRPP744zmNc84558SUKVPKt9u1axfXXXddxmv69OlTYfuhhx6q9j633HJLfPrpp1nPq02bNhW2lyxZkvW13/fxxx/Hf//3f1d73t13313hP6cfPHhwtGjRospzG9pnkKSCgoIK261atcrLPDbYYIPynxcuXBirV6+u9pqJEydWeN5zkfRz1K1btzjiiCPKt6dOnRpjx46t0dzqg7333rvK/S+//HKt33vEiBFp/1Zzdd5556Uda8mSJbH77rvH6NGjY8GCBVFaWhpz586Nq666Kg4//PBYt25dldf94Ac/iGOOOSaR+dXUueeeW+Fv5rueffbZ6NWrV1x77bUxc+bMWLlyZaxduzYWLVoUb731VowZMyZOPPHE2GyzzeKkk06Kt956q45nX3/985//rHL/PvvsU8czAZoijZssjZuZxq2oLho3IrnO1bgaNxcaN1nW77KnbZKlbTLTNhVZv9M2jZm2gfpJ+yWrKbaf7sussaxpRWg/7Zcb7ZecfK5pRTSs73Vdk6ym2DUR2qY6jaVtdE3D7ZrS0tK44447olevXrHvvvvG9ddfHzNmzIjFixdHWVlZLFy4MJ566qk46qijYvDgwWl/XxERJ598ctb31TYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkoTDfEyCzk08+OY499tjy7dLS0jjmmGPi2muvjbKysozXLl68OE444YS4+eabK+wfNWpUbL311hmv3WeffWLDDTcs3x4xYkTMmzcv7fkPP/xw/O53v8s45vd17969wvbLL7+c0/Xfd8EFF8TkyZPTHn/22Wfj7LPPLt8uLi6Oc845J+35DfEzSOeQQw6JsWPHxpo1a6o9t6SkJK699toK+3bZZZdamVd1dthhh/KfV61aFVdccUXG86dMmRKDBw9er3sm/RyNGDEiWrZsWb598sknxx133JHVXFKpVPz973+Pgw46KD7//PMqz7n11lujoKCg/HXaaadlNXZNHHzwwVXunz59eq3d81tbbrllnHnmmYmMtcUWW8S5556b9vj8+fNj6NChsemmm0ZxcXF069YtLr744vjqq6/SXnPNNddEUVFRIvOrqa5du8aFF16Y9vi8efPiggsuiJ133jnatm0bzZs3j4033jh69+4dJ510UowdOzaWL19ehzPOzfef9e++Vq1aVeU1a9euTXvNyJEjq73nokWL4t13363y2EEHHbRe7wcgWxo3PY2bPY2bXj4bNyK5ztW4Glfj5pf1u+xpm/S0TfYaUtvUZddEWL/TNvmlbYDv037pab/sNKTui7CmVVPaT/tpv/zJ15pWRMP7Xtc16ema7Gmb9BpL2+iahtk13/Xt38b5558fffr0ic6dO0dRUVFssskmccghh8Sjjz6a8fpevXrF6aefntW9tA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJKcz3BKje6NGj4+CDDy7fLi0tjQsuuCC23377uPLKK2PGjBmxaNGiKCkpiU8//TSeeeaZGDZsWPTo0SPGjRtXfl1hYWHceOONcfTRR1d7zzZt2sSvf/3r8u3PP/88+vbtG6NHj47PPvssSktLY/HixTF58uQ45phj4phjjomSkpIYNGhQ1u+rR48e0bFjx/LtK6+8MsaPHx8LFy6MtWvXZj1ORMThhx8ea9asiQEDBsTpp58eL7/8cqxcuTK+/PLLePXVV+Occ86J/fbbL7766qvyay655JL40Y9+1Gg+g0xef/31OPHEE2PjjTeOE044Ie6+++6YOXNmLFmyJMrKymL16tXx4Ycfxt133x19+vSJqVOnll+7//77R48ePRKbSy6OPPLIaNWqVfn25ZdfHgcffHBMnjw55s2bF6WlpbFo0aJ46qmn4rjjjouDDjoovvjiizjmmGNqdL/aeI569eoVo0ePLt8uKSmJ0047Lfr06RO33XZbvPXWW7FixYooKyuLZcuWxfvvvx8PPvhgDBs2LLbeeuvYd999Y/LkyZFKpWr0npL085//PJo3b15p/7x58+Ldd9+t9fsPHz482rVrl8hYV1xxRRx66KGJjDV8+PD4xS9+kchY6+sPf/hDHHvssfmeRqMxderUKv/2tthii/jJT36ShxkBTY3GzUzjZkfjZpbvxo1IrnM1LtnQuLXH+l31tE1m2iY72iazfLeN9bvqaZtkaRuov7RfZtqvej526NoAABYUSURBVLovs3x3X4T2y4b2S5b2qx35WNOKaFjf67omM12THW2TWWNqG13TdHXp0iUef/zxKp/lqmgbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkpLd/7BNXm244YbxxBNPxJlnnhl33nln+f73338/hg8fHsOHD89qjDFjxsTRRx+d9X2vuOKKmDhxYnz88ccREfHpp5/G0KFD054/fPjw2GmnneK+++7LavxmzZrF0KFD45prromIiMWLF8fxxx9f5bn33ntvnHDCCWnHuvnmm+ODDz6I9957L26//fa4/fbbM977+OOPj4svvrjaOTakzyAbX3zxRYwbNy7GjRuX1fndunWL0aNHr9c910eXLl3iiiuuiHPPPbd836RJk2LSpElprznggAPiT3/6Uzz44IM536+2nqNBgwZFaWlpnHbaabF69eqIiJgxY0acccYZOc8xnzbeeOM48MAD48knn6x07PHHH4+ePXvW6v032mijuPDCC7P6zKtTWFgYDz74YJx55pkxZsyYGo3RrFmz+NOf/pTIfJJSUFAQY8eOjc022yxuvPHGSKVSNRqnqKgoTj311Ky+Xxqzxx57rMr9gwcPjsLCwjqeDdAUadzsaNzMNG5m+W7ciOQ6V+NmpnG/oXFrj/U763cR2uZb2iZ/8t021u+qp22SpW2g/tJ+2dF+6em+zPLdfRHaLxvaL1nar3bka00rouF8r+ua7OiazLRNZo2pbXRNZo21a3r37h0PPPBAbLvttllfo20AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIiv8du4Fo3rx53HHHHfHCCy/E7rvvnvV1zZo1i1NOOSVmzZoVRx99dE73bNeuXTz77LOx/fbbZzyvuLg4Ro4cGZdffnlO40dEXHrppdG/f/+cr/u+du3axT/+8Y/YY489Mp7XvHnzuOCCC+Lee++NZs2aZTVuQ/kMknb00UfHSy+9FFtssUVe5zFs2LAYOXJkFBUVVXvu0KFD44knnojmzZvX6F619RxFRJx44onxz3/+Mw444ICs51NYWBgHHnhg/O1vf4suXbpkfV1tGjp0aJX7H3744Tq5/7Bhw2KzzTZLZKwNNtgg7r777nj44Ydjxx13zOna/v37x/Tp02P48OFRUFCQyHySUlxcHNdff31MnTo19t5775yu7dSpU5x77rnx/vvvxy233BKdO3eu0Ryy/buoz1atWhVPP/10pf2FhYUxZMiQPMwIaIo0bvI0bnoat7K6atyI5DpX41amcf9D49Y+63eZaZvkaZv0tE1l1u/qD22TDG0D9Zv2S15Taz/dV718d1+E9suG9kuG9qtd+VjTimg43+u6JnlNrWsitE02GlPb6JrK6nPXvPrqq3HOOefEJptskvO1Xbp0iREjRsQrr7wSPXv2zPo6bQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECSmud7AuRm9913jxdeeCHefPPNePLJJ2PatGnxySefxMKFC+PLL7+Mjh07xsYbbxw/+tGP4qCDDooBAwbU6D9k/9ZWW20VM2fOjHvvvTceeeSRmDFjRixevDjatm0bW221VQwYMCBOOeWU2HzzzWs0/gYbbBBTpkyJxx9/PB5++OGYOXNmfPrpp7Fq1apYu3ZtTmN16dIlnnvuufjb3/4Wo0ePjjfeeCPmzZsXzZs3jy222CIOOOCAOOmkk2K77bbLadyG9Bmk8/rrr8drr71W/pozZ04sWbIkli5dGitWrIiWLVtGhw4domfPnrH77rvHscceGz179kzk3kk4//zz44gjjog77rgjpk2bFrNnz45Vq1ZFp06domvXrrHvvvvGiSeemMica+s5iojYcccdY/LkyTFz5syYMGFCPPPMM+W/i9WrV0fbtm1js802ix133DH22GOPGDhwYHTp0mW931OSDj/88OjevXvMnj27wv4ZM2bEG2+8ETvssEOt3n+DDTaIP/7xj3HKKackNuZRRx0VRx11VEyfPj2mTp0azz//fMydOzeWLl0aq1atirZt20aHDh2iR48e8bOf/SwGDBhQ6+8zCf3794/+/fvH22+/HZMmTYoXX3wx3nnnnVi6dGksX748ioqKolOnTrHlllvGbrvtFv369Yv9998/iouLsxr/zTffTHvsN7/5TVJvI28efvjh+PLLLyvtP+SQQ2KbbbbJw4yApkrjpqdxs6dxM8t340Yk37kaV+NWRePWHet36Wmb9LRN9rRNZvluG+t32dM260fbQP2n/dLTftnRfZnlu/sitF8utN/60X51o67XtCIazve6rklP12RP22TWGNtG1zSMrtlxxx3jxhtvjBtuuCFmzpwZf//73+P111+P999/Pz755JNYuXJlfP3117HhhhtG+/btY6uttoof//jH0a9fvxgwYEAUFRXlfE9tAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJIKUqlUKt+TyIc//vGP8ac//Snt8Z49e8Y777xThzMiFyNHjozf/va35dvLli2L9u3b53FGNESeo5r5y1/+EmeeeWal/WeffXbcdNNNeZgR+XDttdfGBRdcUGn/vvvuG1OnTs3DjJK11157xfTp0yvtf/bZZ6Nfv355mFH1evXqFe+++27O1y1fvjzatWtXCzOiKWvbtm2sXLky7fFRo0bF0KFD63BGDYM2IQmeo5rRuERo3PpoyJAhcffdd6c9fsABB8TkyZPrcEbkwncSSfAc1Yy2IULb1EfWS+q/u+66K04++eS0x9u0aRNffPFFHc6o4fCdzfryDNWM7uNb2q9+WbFiRbX/hj399NNx0EEH1dGMyIXvJJLgOaoZbUNE4++aiIbXNtZLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6rWHCvM9AwAalqFDh8YWW2xRaf+YMWPiiy++yMOMyIcpU6ZU2rfhhhvGqFGj8jCbZM2cOTOmT59eaf9+++0X/fr1y8OMAIDapnGJ0LgANB7ahghtAwBNge7jW9oPgMZA2xDRuLsmQtsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQvMJ8TwCAhqW4uDj+8Ic/VNq/cuXKuOuuu/IwI+ramjVr4vnnn6+0/+qrr45u3brlYUbJuv7666vcP2LEiDqeCQBQVzQuGheAxkTboG0AoGnQfURoPwAaD21DY++aCG0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8grzPQEAGp7/+q//ih133LHS/pEjR8bXX3+dhxlRl1544YVKv+ef/exnceaZZ+ZpRsmZPXt23H///ZX2H3/88dG3b988zAgAqCsat2nTuAA0NtqmadM2ANB06D60HwCNibZp2hpz10RoGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGpHYb4nAEDD06xZs7jpppsq7Z8/f37cdttteZgRdWnq1KkVtjfYYIMYPXp0FBQU5GlGyRkxYkSUlZVV2NeqVav485//nKcZAQB1ReM2bRoXgMZG2zRt2gYAmg7dh/YDoDHRNk1bY+6aCG0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA7Wie7wkA0DDttddekUql8j0N8mDq1KkVti+77LLYdttt8zSbZN1zzz1xzz335HsaAECeaNymS+MC0Bhpm6ZL2wBA06L7mjbtB0Bjo22arsbcNRHaBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNrRPN8TAAAaln/961/5ngIAACRK4wIAjYm2AQBoOrQfANBY6BoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIXWG+JwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEB2CvM9AaiJ//f//l+kUqnyV/v27fM9JRogzxEAUJ9oE5LgOQKgvvCdRBI8RwDQMPjOZn15hgCoL3wnkQTPEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1pTDfEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA7hfmeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANkpzPcEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyE5hvicAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAdgrzPQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyU5jvCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCdwnxPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOwU5nsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZKcw3xMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgO4X5ngAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADZKcz3BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhOYb4nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQHYK8z0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAslOY7wkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQncJ8TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/344d2yYSAFEY3hshIRLXQwduy0ToAndhosugCUc4uHgzsqWBJeE6MCP55Gfs70sn+cOnAQAAAAAAAAAA6Kl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2VDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCn0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0VDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQU+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeiodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE+lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOipdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZ5EO+KqmaRqenp7SGQAALdM0pROgbb/fD6fTKZ0BAHxxb29v797HcfS/AwDuxjzP6QQ+aJ5n+xMAuKmz+15eXobX19dPqAEA+Jjj8ZhOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4B2LdMBXdT6fh81mk84AAIBv53A4DIfDIZ0BANy5cRz97wAA+DSXy8X+BAD+i91ul04AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAbqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKfSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRUOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeSgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQs0gHpDw+Pg4PDw/pDACAqNVqlU7gG9put8M8z+kMAAAAgLuxXq/TCT/eer0enp+f0xkAAAAAd2O5XKYTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfrRf1+v1mo4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgpj+VLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCn0gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0VDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FPpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoqHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBPpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGcxDMPvdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3/f0HtNlvY/bu3egAAAAASUVORK5CYII=", "text/plain": [ "" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Use `rankdir='LR'` to make the graph horizontal.\n", "tf.keras.utils.plot_model(model, show_shapes=True, show_layer_names=True, rankdir=\"LR\")" ] }, { "cell_type": "markdown", "metadata": { "id": "CED6OStLyEq7" }, "source": [ "Next, train and test the model:" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:20:57.441840Z", "iopub.status.busy": "2024-09-05T01:20:57.441537Z", "iopub.status.idle": "2024-09-05T01:21:19.081049Z", "shell.execute_reply": "2024-09-05T01:21:19.080354Z" }, "id": "OQfE3PC6yEq8" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/37\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m49s\u001b[0m 1s/step - accuracy: 0.5000 - loss: 0.6670" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/37\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 52ms/step - accuracy: 0.4863 - loss: 0.6746" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/37\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 53ms/step - accuracy: 0.4878 - loss: 0.6745" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/37\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 52ms/step - accuracy: 0.4889 - loss: 0.6722" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/37\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.4941 - loss: 0.6685" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/37\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 52ms/step - accuracy: 0.4962 - loss: 0.6667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/37\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 52ms/step - accuracy: 0.4987 - loss: 0.6645" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/37\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 52ms/step - accuracy: 0.5001 - loss: 0.6632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/37\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 52ms/step - accuracy: 0.5018 - loss: 0.6617" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/37\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 52ms/step - accuracy: 0.5037 - loss: 0.6603" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/37\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 52ms/step - accuracy: 0.5059 - loss: 0.6592" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/37\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 52ms/step - accuracy: 0.5082 - loss: 0.6580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/37\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 52ms/step - accuracy: 0.5103 - loss: 0.6571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/37\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 52ms/step - accuracy: 0.5122 - loss: 0.6564" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/37\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 52ms/step - accuracy: 0.5142 - loss: 0.6556" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/37\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 52ms/step - accuracy: 0.5163 - loss: 0.6547" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/37\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.5182 - loss: 0.6539" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/37\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.5205 - loss: 0.6528" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/37\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.5227 - loss: 0.6517" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/37\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.5249 - loss: 0.6507" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/37\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.5269 - loss: 0.6498" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/37\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.5289 - loss: 0.6490" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/37\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.5308 - loss: 0.6483" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/37\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.5326 - loss: 0.6476" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.5343 - loss: 0.6470" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.5377 - loss: 0.6459" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.5393 - loss: 0.6453" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.5409 - loss: 0.6447" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.5424 - loss: 0.6442" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.5438 - loss: 0.6437" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.5452 - loss: 0.6433" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.5465 - loss: 0.6429" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.5478 - loss: 0.6425" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.5491 - loss: 0.6421" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.5502 - loss: 0.6417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 56ms/step - accuracy: 0.5514 - loss: 0.6413 - val_accuracy: 0.7504 - val_loss: 0.5363\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 2/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/37\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 107ms/step - accuracy: 0.6016 - loss: 0.6262" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/37\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6113 - loss: 0.6234 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/37\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6198 - loss: 0.6165" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/37\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6238 - loss: 0.6138" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/37\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6268 - loss: 0.6110" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/37\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6290 - loss: 0.6092" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/37\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6300 - loss: 0.6084" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/37\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6309 - loss: 0.6080" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/37\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6319 - loss: 0.6073" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/37\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6326 - loss: 0.6067" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/37\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6332 - loss: 0.6062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/37\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6338 - loss: 0.6054" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/37\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6345 - loss: 0.6045" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/37\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6353 - loss: 0.6036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/37\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6358 - loss: 0.6031" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/37\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6361 - loss: 0.6027" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/37\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6365 - loss: 0.6023" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/37\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.6366 - loss: 0.6021" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/37\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.6368 - loss: 0.6020" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/37\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.6370 - loss: 0.6019" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/37\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.6371 - loss: 0.6018" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/37\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.6373 - loss: 0.6016" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/37\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.6375 - loss: 0.6014" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/37\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.6379 - loss: 0.6009" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.6381 - loss: 0.6006" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.6382 - loss: 0.6004" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.6384 - loss: 0.6001" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.6386 - loss: 0.5999" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.6388 - loss: 0.5996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.6391 - loss: 0.5993" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.6393 - loss: 0.5990" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.6395 - loss: 0.5987" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.6397 - loss: 0.5984" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.6399 - loss: 0.5981" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.6402 - loss: 0.5978" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.6404 - loss: 0.5975" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 54ms/step - accuracy: 0.6406 - loss: 0.5972 - val_accuracy: 0.7470 - val_loss: 0.5207\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 3/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/37\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 104ms/step - accuracy: 0.6914 - loss: 0.5792" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/37\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.6934 - loss: 0.5692 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/37\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.6949 - loss: 0.5651" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/37\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.6979 - loss: 0.5602" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/37\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.6991 - loss: 0.5584" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/37\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6989 - loss: 0.5582" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/37\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6987 - loss: 0.5582" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/37\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6990 - loss: 0.5582" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/37\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6991 - loss: 0.5581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/37\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6993 - loss: 0.5581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/37\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6992 - loss: 0.5584" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/37\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6989 - loss: 0.5590" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/37\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6984 - loss: 0.5594" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/37\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6980 - loss: 0.5596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/37\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6976 - loss: 0.5598" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/37\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.6968 - loss: 0.5599" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/37\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6964 - loss: 0.5598" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/37\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6962 - loss: 0.5596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/37\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6960 - loss: 0.5596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/37\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6958 - loss: 0.5596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/37\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6954 - loss: 0.5596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/37\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6953 - loss: 0.5596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/37\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6952 - loss: 0.5596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6951 - loss: 0.5597" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6950 - loss: 0.5596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6950 - loss: 0.5596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6949 - loss: 0.5596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6947 - loss: 0.5595" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6946 - loss: 0.5595" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6945 - loss: 0.5595" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6943 - loss: 0.5595" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 54ms/step - accuracy: 0.6941 - loss: 0.5595 - val_accuracy: 0.7470 - val_loss: 0.5103\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/37\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 106ms/step - accuracy: 0.6641 - loss: 0.5573" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/37\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 52ms/step - accuracy: 0.6562 - loss: 0.5736 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/37\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.6589 - loss: 0.5767" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/37\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.6685 - loss: 0.5735" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/37\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.6738 - loss: 0.5691" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/37\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.6759 - loss: 0.5674" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/37\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.6778 - loss: 0.5659" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/37\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.6795 - loss: 0.5647" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/37\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.6809 - loss: 0.5639" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/37\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.6818 - loss: 0.5635" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/37\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.6826 - loss: 0.5631" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/37\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.6831 - loss: 0.5628" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/37\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.6837 - loss: 0.5623" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/37\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.6845 - loss: 0.5616" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/37\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.6849 - loss: 0.5614" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/37\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.6851 - loss: 0.5613" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/37\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.6854 - loss: 0.5612" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/37\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6859 - loss: 0.5610" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/37\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6860 - loss: 0.5609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/37\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6864 - loss: 0.5607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/37\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6866 - loss: 0.5605" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6868 - loss: 0.5603" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6870 - loss: 0.5601" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6872 - loss: 0.5600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6874 - loss: 0.5598" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6875 - loss: 0.5597" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6878 - loss: 0.5595" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6880 - loss: 0.5594" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6883 - loss: 0.5590" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6885 - loss: 0.5589" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6887 - loss: 0.5587" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 54ms/step - accuracy: 0.6888 - loss: 0.5586 - val_accuracy: 0.7539 - val_loss: 0.5042\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 5/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/37\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 104ms/step - accuracy: 0.7109 - loss: 0.5402" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/37\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.7139 - loss: 0.5374 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/37\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.7151 - loss: 0.5382" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/37\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.7181 - loss: 0.5372" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/37\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.7174 - loss: 0.5380" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/37\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7153 - loss: 0.5388" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/37\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7151 - loss: 0.5381" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/37\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7141 - loss: 0.5384" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/37\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7124 - loss: 0.5392" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/37\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7111 - loss: 0.5396" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/37\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7106 - loss: 0.5396" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/37\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7098 - loss: 0.5397" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/37\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7095 - loss: 0.5398" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/37\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7092 - loss: 0.5399" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/37\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7089 - loss: 0.5399" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/37\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7087 - loss: 0.5398" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7087 - loss: 0.5397" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7086 - loss: 0.5398" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7084 - loss: 0.5401" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7082 - loss: 0.5404" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7081 - loss: 0.5405" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7080 - loss: 0.5408" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7079 - loss: 0.5409" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 53ms/step - accuracy: 0.7079 - loss: 0.5410 - val_accuracy: 0.7530 - val_loss: 0.4996\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 6/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/37\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 105ms/step - accuracy: 0.7266 - loss: 0.5484" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/37\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.7227 - loss: 0.5409 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/37\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.7231 - loss: 0.5345" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/37\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.7198 - loss: 0.5285" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/37\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7156 - loss: 0.5318" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/37\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.7143 - loss: 0.5324" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/37\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7117 - loss: 0.5352" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/37\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7105 - loss: 0.5370" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/37\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7091 - loss: 0.5387" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/37\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7077 - loss: 0.5399" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/37\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7072 - loss: 0.5404" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/37\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7064 - loss: 0.5410" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/37\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7056 - loss: 0.5415" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/37\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7054 - loss: 0.5416" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/37\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7054 - loss: 0.5416" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/37\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7054 - loss: 0.5415" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7055 - loss: 0.5414" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7055 - loss: 0.5413" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7056 - loss: 0.5411" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7058 - loss: 0.5409" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7060 - loss: 0.5408" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7061 - loss: 0.5408" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7062 - loss: 0.5407" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7063 - loss: 0.5407" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7065 - loss: 0.5407" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 53ms/step - accuracy: 0.7065 - loss: 0.5407 - val_accuracy: 0.7504 - val_loss: 0.4959\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 7/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/37\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 104ms/step - accuracy: 0.7070 - loss: 0.5494" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/37\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.7158 - loss: 0.5374 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/37\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7150 - loss: 0.5388" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/37\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7178 - loss: 0.5345" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/37\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7188 - loss: 0.5338" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/37\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7187 - loss: 0.5337" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/37\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7174 - loss: 0.5341" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/37\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7158 - loss: 0.5351" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/37\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7146 - loss: 0.5361" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/37\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7140 - loss: 0.5365" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/37\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7130 - loss: 0.5369" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/37\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7123 - loss: 0.5373" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/37\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7119 - loss: 0.5372" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/37\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7116 - loss: 0.5373" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7114 - loss: 0.5372" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7112 - loss: 0.5372" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7110 - loss: 0.5372" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7109 - loss: 0.5373" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7108 - loss: 0.5372" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7107 - loss: 0.5371" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 52ms/step - accuracy: 0.7106 - loss: 0.5370 - val_accuracy: 0.7556 - val_loss: 0.4941\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 8/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/37\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 111ms/step - accuracy: 0.6953 - loss: 0.5595" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/37\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.7041 - loss: 0.5481 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/37\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7126 - loss: 0.5352" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/37\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7163 - loss: 0.5294" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/37\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7179 - loss: 0.5283" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/37\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7177 - loss: 0.5286" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/37\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7177 - loss: 0.5285" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/37\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7179 - loss: 0.5282" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/37\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.7177 - loss: 0.5282" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/37\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7174 - loss: 0.5284" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/37\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.7173 - loss: 0.5287" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/37\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.7169 - loss: 0.5290" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/37\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7165 - loss: 0.5291" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/37\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7162 - loss: 0.5292" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/37\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7161 - loss: 0.5291" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/37\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7156 - loss: 0.5294" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/37\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7152 - loss: 0.5295" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/37\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7149 - loss: 0.5295" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/37\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7148 - loss: 0.5296" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7146 - loss: 0.5297" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7143 - loss: 0.5298" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7142 - loss: 0.5299" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7140 - loss: 0.5299" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7139 - loss: 0.5299" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7138 - loss: 0.5299" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7137 - loss: 0.5299" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7135 - loss: 0.5300" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7134 - loss: 0.5300" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7133 - loss: 0.5301" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7132 - loss: 0.5301" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7131 - loss: 0.5301" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 54ms/step - accuracy: 0.7131 - loss: 0.5302 - val_accuracy: 0.7591 - val_loss: 0.4922\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 9/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/37\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 106ms/step - accuracy: 0.7070 - loss: 0.5485" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/37\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7059 - loss: 0.5422 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/37\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7089 - loss: 0.5415" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/37\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 48ms/step - accuracy: 0.7106 - loss: 0.5394" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/37\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 48ms/step - accuracy: 0.7127 - loss: 0.5377" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/37\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 48ms/step - accuracy: 0.7152 - loss: 0.5362" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/37\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 48ms/step - accuracy: 0.7169 - loss: 0.5351" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/37\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 48ms/step - accuracy: 0.7180 - loss: 0.5338" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/37\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 48ms/step - accuracy: 0.7183 - loss: 0.5332" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/37\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7188 - loss: 0.5326" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/37\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7193 - loss: 0.5320" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/37\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7197 - loss: 0.5315" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/37\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7205 - loss: 0.5306" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/37\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7209 - loss: 0.5302" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/37\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7211 - loss: 0.5300" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/37\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7213 - loss: 0.5297" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/37\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7214 - loss: 0.5295" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7215 - loss: 0.5294" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7215 - loss: 0.5293" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7215 - loss: 0.5291" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7216 - loss: 0.5289" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7216 - loss: 0.5288" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7216 - loss: 0.5288" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7216 - loss: 0.5288" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 53ms/step - accuracy: 0.7216 - loss: 0.5289 - val_accuracy: 0.7582 - val_loss: 0.4908\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 10/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/37\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 107ms/step - accuracy: 0.7383 - loss: 0.5071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/37\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.7256 - loss: 0.5217 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/37\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.7207 - loss: 0.5252" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/37\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7171 - loss: 0.5259" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/37\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7148 - loss: 0.5270" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/37\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7149 - loss: 0.5262" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/37\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7158 - loss: 0.5256" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/37\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7167 - loss: 0.5254" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/37\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7176 - loss: 0.5254" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/37\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.7181 - loss: 0.5254" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/37\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7185 - loss: 0.5255" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/37\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7189 - loss: 0.5257" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/37\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7194 - loss: 0.5259" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/37\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7199 - loss: 0.5260" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/37\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7201 - loss: 0.5262" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/37\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7203 - loss: 0.5263" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7205 - loss: 0.5263" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7207 - loss: 0.5264" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7207 - loss: 0.5266" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7207 - loss: 0.5267" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7208 - loss: 0.5267" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7209 - loss: 0.5267" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7210 - loss: 0.5266" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 53ms/step - accuracy: 0.7211 - loss: 0.5266 - val_accuracy: 0.7574 - val_loss: 0.4899\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.fit(train_ds, epochs=10, validation_data=val_ds)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:21:19.084627Z", "iopub.status.busy": "2024-09-05T01:21:19.084101Z", "iopub.status.idle": "2024-09-05T01:21:19.226642Z", "shell.execute_reply": "2024-09-05T01:21:19.226045Z" }, "id": "T8N2uAdU2Cni" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m1/5\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 34ms/step - accuracy: 0.7617 - loss: 0.5009" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m3/5\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - accuracy: 0.7461 - loss: 0.5035" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m5/5\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - accuracy: 0.7408 - loss: 0.5098\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "{'accuracy': 0.737434983253479, 'loss': 0.5158435702323914}\n" ] } ], "source": [ "result = model.evaluate(test_ds, return_dict=True)\n", "print(result)" ] }, { "cell_type": "markdown", "metadata": { "id": "LmZMnTKaCZda" }, "source": [ "## Perform inference\n", "\n", "The model you have developed can now classify a row from a CSV file directly after you've included the preprocessing layers inside the model itself.\n", "\n", "You can now [save and reload the Keras model](../keras/save_and_load.ipynb) with `Model.save` and `Model.load_model` before performing inference on new data:" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:21:19.230237Z", "iopub.status.busy": "2024-09-05T01:21:19.229735Z", "iopub.status.idle": "2024-09-05T01:21:19.448945Z", "shell.execute_reply": "2024-09-05T01:21:19.448317Z" }, "id": "QH9Zy1sBvwOH" }, "outputs": [], "source": [ "model.save('my_pet_classifier.keras')\n", "reloaded_model = tf.keras.models.load_model('my_pet_classifier.keras')" ] }, { "cell_type": "markdown", "metadata": { "id": "D973plJrdwQ9" }, "source": [ "To get a prediction for a new sample, you can simply call the Keras `Model.predict` method. There are just two things you need to do:\n", "\n", "1. Wrap scalars into a list so as to have a batch dimension (`Model`s only process batches of data, not single samples).\n", "2. Call `tf.convert_to_tensor` on each feature." ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "execution": { "iopub.execute_input": "2024-09-05T01:21:19.452554Z", "iopub.status.busy": "2024-09-05T01:21:19.452262Z", "iopub.status.idle": "2024-09-05T01:21:19.665992Z", "shell.execute_reply": "2024-09-05T01:21:19.665299Z" }, "id": "rKq4pxtdDa7i" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "This particular pet had a 81.0 percent probability of getting adopted.\n" ] } ], "source": [ "sample = {\n", " 'Type': 'Cat',\n", " 'Age': 3,\n", " 'Breed1': 'Tabby',\n", " 'Gender': 'Male',\n", " 'Color1': 'Black',\n", " 'Color2': 'White',\n", " 'MaturitySize': 'Small',\n", " 'FurLength': 'Short',\n", " 'Vaccinated': 'No',\n", " 'Sterilized': 'No',\n", " 'Health': 'Healthy',\n", " 'Fee': 100,\n", " 'PhotoAmt': 2,\n", "}\n", "\n", "input_dict = {name: tf.convert_to_tensor([value]) for name, value in sample.items()}\n", "predictions = reloaded_model.predict(input_dict)\n", "prob = tf.nn.sigmoid(predictions[0])\n", "\n", "print(\n", " \"This particular pet had a %.1f percent probability \"\n", " \"of getting adopted.\" % (100 * prob)\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "XJQQZEiH2FaB" }, "source": [ "Note: You will typically have better results with deep learning with larger and more complex datasets. When working with a small dataset, such as the simplified PetFinder.my one, you can use a decision tree or a random forest as a strong baseline. The goal of this tutorial is to demonstrate the mechanics of working with structured data, so you have a starting point when working with your own datasets in the future.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "k0QAY2Tb2HYG" }, "source": [ "## Next steps\n", "\n", "To learn more about classifying structured data, try working with other datasets. To improve accuracy during training and testing your models, think carefully about which features to include in your model and how they should be represented.\n", "\n", "Below are some suggestions for datasets:\n", "\n", "- [TensorFlow Datasets: MovieLens](https://www.tensorflow.org/datasets/catalog/movie_lens): A set of movie ratings from a movie recommendation service.\n", "- [TensorFlow Datasets: Wine Quality](https://www.tensorflow.org/datasets/catalog/wine_quality): Two datasets related to red and white variants of the Portuguese \"Vinho Verde\" wine. You can also find the Red Wine Quality dataset on Kaggle.\n", "- Kaggle: arXiv Dataset: A corpus of 1.7 million scholarly articles from arXiv, covering physics, computer science, math, statistics, electrical engineering, quantitative biology, and economics.\n" ] } ], "metadata": { "colab": { "name": "preprocessing_layers.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.19" } }, "nbformat": 4, "nbformat_minor": 0 }